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Preface to the Second Edition

Optimization may be regarded as the cornerstone of many areas of applied mathematics, computer science, engi-
neering, and a number of other scientific disciplines. Among other things, optimization plays a key role in finding
feasible solutions to real-life problems, frommathematical programming to operations research, economics, man-
agement science, business, medicine, life science, and artificial intelligence, to mention only several.

Optimization entails engaging in an action to find the best solution. As a flourishing research activity, it has
led to theoretical and computational advances, new technologies and new methods in developing more optimal
designs of different systems, efficiency, and robustness, in minimizing the costs of operations in a process, and
maximizing the profits of a company.

The first edition of the encyclopedia of optimization was well received by the scientific community and has
been an invaluable source of scientific information for researchers, practitioners, and students.

Given the enormous yearly increases in this field since the appearance of the first edition, additional opti-
mization knowledge has been added to this second edition. As before, entries are arranged in alphabetical order;
the style of the entries has been retained to emphasize the expository and survey-type nature of the articles. Also
many older entries have been updated and revised in light of new developments. Finally, several improvements
have been made in the format to allow for more links to appropriate internet cites and electronic availability.
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The Scaled ABS Class: General Properties

ABS methods were introduced by [1], in a paper deal-
ing originally only with solving linear equations via

what is now called the basic or unscaled ABS class. The
basic ABS class was later generalized to the so-called
scaled ABS class and subsequently applied to linear least
squares, nonlinear equations and optimization prob-
lems, see [2]. Preliminary work has also been initiated
concerning Diophantine equations, with possible exten-
sions to combinatorial optimization, and the eigenvalue
problem. There are presently (1998) over 350 papers
in the ABS field, see [11]. In this contribution we will
review the basic properties and results of ABS meth-
ods for solving linear determined or underdetermined
systems and overdetermined linear systems in the least
squares sense.

Let us consider the linear determined or underde-
termined system, where rank(A) is arbitrary

Ax D b; x 2 Rn ; b 2 Rm ; m � n; (1)

or

a>i x � bi D 0; i D 1; : : : ;m; (2)

where

A D

0
B@
a>1
:::

a>m

1
CA : (3)

The steps of the scaled ABS class algorithms are as fol-
lows:
A) Let x1 2 Rn be arbitrary, H1 2 Rn, n be nonsingular

arbitrary, v1 be an arbitrary nonzero vector in Rm;
set i = 1.

B) Compute the residual ri = Axi � b. If ri = 0, stop (xi
solves the problem); else compute si = HiA|vi. If si
6D 0, then go to C). If si = 0 and � = v>i ri = 0, then
set xi + 1 = xi, Hi + 1 = Hi and go to F), else stop (the
system has no solution).
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C) Compute the search vector pi by

pi D H>i zi ; (4)

where zi 2 Rn is arbitrary save for the condition

v>i AH
>
i zi ¤ 0: (5)

D) Update the estimate of the solution by

xiC1 D xi � ˛i pi ; (6)

where the stepsize ˛i is given by

˛i D
v>i ri
r>i Api

: (7)

E) Update the matrix Hi by

HiC1 D Hi �
HiA>viw>i Hi

w>i HiA>vi
; (8)

where wi 2 Rn is arbitrary save for the condition

w>i HiA>vi ¤ 0: (9)

F) If i = m, then stop (xm + 1 solves the system), else
define vi + 1 as an arbitrary vector in Rm but linearly
independent from v1, . . . , vi, increment i by one and
go to B).

ThematricesHi appearing in step E) are generalizations
of (oblique) projection matrices. They probably first ap-
peared in [16]. They have been named Abaffians since
the first international conference on ABS methods (Lu-
oyang, China, 1991) and this name will be used here.

The above recursion defines a class of algorithms,
each particular method being determined by the choice
of the parameters H1, vi, zi, wi. The basic ABS class is
obtained by taking vi = ei, ei being the ith unitary vector
in Rm. The parameters wi, zi, H1 have been introduced
respectively by J. Abaffy, C.G. Broyden and E. Spedi-
cato, whose initials are referred to in the name of the
class. It is possible to show that the scaled ABS class is
a complete realization of the so-called Petrov–Galerkin
iteration for solving a linear system (but the principle
can be applied to more general problems), where the
iteration has the form xi + 1 = xi � ˛ipi with ˛i, pi cho-
sen so that the orthogonality relation r>iC1vj = 0, j = 1,

. . . , i, holds, the vectors vj being arbitrary linearly inde-
pendent. It appears that all deterministic algorithms in
the literature having finite termination on a linear sys-
tem are members of the scaled ABS class (this statement
has been recently shown to be true also for the quasi-
Newton methods, which are known to have under some
conditions termination in at most 2n steps: the iterate
of index 2i � 1 generated by Broyden’s iteration cor-
responds to the ith iterate of a certain algorithm in the
ABS class).

Referring [2] for proofs, we give some of the general
properties of methods of the scaled ABS class, assum-
ing, for simplicity, that A has full rank.
� Define Vi = (v1, . . . , vi), Wi = (w1, . . . , wi). Then

Hi + 1A|Vi = 0, H>iC1Wi = 0, meaning that vectors
A|vj, wj, j = 1, . . . , i, span the null spaces of Hi + 1

and its transpose, respectively.
� The vectors HiA|vi, H>i wi are nonzero if and only

if ai, wi are linearly independent from a1, . . . , ai� 1,
w1, . . . , wi� 1, respectively.

� Define Pi = (p1, . . . , pi). Then the implicit factor-
ization V>i A

>
i Pi = Li holds, where Li is nonsingular

lower triangular. From this relation, if m = n, one
obtains the following semi-explicit factorization of
the inverse, with P = Pn, V = Vn, L = Ln

A�1 D PL�1V>: (10)

For several choices of the matrix V the matrix L is
diagonal, hence formula (10) gives a fully explicit
factorization of the inverse as a byproduct of the
ABS solution of a linear system, a property that
does not hold for the classical solvers. It can also
be shown that all possible factorizations of the form
(10) can be obtained by proper parameter choices in
the scaled ABS class, another completeness result.

� Define Si and Ri by Si = (s1, . . . , si), Ri = (r1, . . . , ri),
where si =HiA|vi, ri =H>i wi. Then the Abaffian can
be written in the formHi+1 =H1 � SiR>i and the vec-
tors si, ri can be built via aGram–Schmidt type itera-
tions involving the previous vectors (the search vec-
tor pi can be built in a similar way). This representa-
tion of the Abaffian in terms of 2i vectors is compu-
tationally convenient when the number of equations
is much less than the number of variables. Notice
that there is also a representation in terms of n � i
vectors.
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� A compact formula of the Abaffian in terms of the
parameter matrices is the following

HiC1 D H1 � H1A>Vi (W>i H1A>Vi )�1W>i H1:

(11)

Letting V = Vm, W = Wm, one can show that the
parameter matrices H1, V , W are admissible (i. e.
are such that condition (9) is satisfied) if and only
if the matrix Q = V|AH>1 W is strongly nonsingular
(i. e. is LU factorizable). Notice that this condition
can always be satisfied by suitable exchanges of the
columns of V orW, equivalent to a row or a column
pivoting on the matrix Q. If Q is strongly nonsingu-
lar and we take, as is done in all algorithms insofar
considered, zi = wi, then condition (5) is also satis-
fied.

It can be shown that the scaled ABS class corresponds to
applying (implicitly) the unscaled ABS algorithm to the
scaled (or preconditioned) system V|Ax = V|b, where
V is an arbitrary nonsingular matrix of orderm. There-
fore we see that the scaled ABS class is also complete
with respect to all possible left preconditioning matri-
ces, which in the ABS context are defined implicitly and
dynamically (only the ith column of V is needed at the
ith iteration, and it can also be a function of the previ-
ous column choices).

Subclasses of the ABS Class

In [1], nine subclasses are considered of the scaled ABS
class. Here we quote three important subclasses.
� The conjugate direction subclass. This class is well

defined under the condition (sufficient but not
necessary) that A is symmetric and positive defi-
nite. It contains the implicit Choleski algorithm, the
Hestenes–Stiefel and the Lanczos algorithms. This
class generates all possible algorithms whose search
directions are A-conjugate. The vector xi + 1 mini-
mizes the energy or A-weighted Euclidean norm of
the error over x1 + Span(p1, . . . , pi). If x1 = 0, then
the solution is approached monotonically from be-
low in the energy norm.

� The orthogonally scaled subclass. This class is well
defined if A has full column rank and remains well
defined even if m is greater than n. It contains
the ABS formulation of the QR algorithm (the so-
called implicit QR algorithm), of the GMRES and of

the conjugate residual algorithms. The scaling vec-
tors are orthogonal and the search vectors are AA|-
conjugate. The vector xi + 1 minimizes the Euclidean
norm of the residual over x1 + Span(p1, . . . , pi). In
general, the methods in this class can be applied to
overdetermined systems to obtain the solution in
the least squares sense.

� The optimally scaled subclass. This class is obtained
by the choice vi = A� |pi. The inverse of A| disap-
pears in the actual formulas, if we make the change
of variables zi = A|ui, ui being now the parame-
ter that defines the search vector. For ui = ei the
Huang method is obtained and for ui = ri a method
equivalent to Craig’s conjugate gradient type algo-
rithm. From the general implicit factorization rela-
tion one obtains P|P = D or V|AA|V = D, a re-
lation which was shown in [5] to characterize the
optimal choice of the parameters in the general
Petrov–Galerkin process in terms of minimizing
the effect of a single error in xi on the final com-
puted solution. Such a property is therefore satis-
fied by the Huang (and the Craig) algorithm, but
not, for instance, by the implicit LU or the implicit
QR algorithms. A. Galantai [8] has shown that the
condition characterizing the optimal choice of the
scaling parameters in terms of minimizing the fi-
nal residual Euclidean norm is V|V = D, a con-
dition satisfied by the implicit QR algorithm, the
GMRES method, the implicit LU algorithm and
again by the Huang algorithm, which therefore sat-
isfies both conditions). The methods in the opti-
mally stable subclass have the property that xi + 1

minimizes the Euclidean norm of the error over x1 +
Span(p1, . . . , pi).

The Implicit LU Algorithm
and the Huang Algorithm

Specific algorithms of the scaled ABS class are obtained
by choosing the available parameters. The implicit LU
algorithm is given by the choices H1 = I, zi = wi = vi =
ei. We quote the following properties of the implicit LU
algorithm.
a) The algorithm is well defined if and only if A is reg-

ular (i. e. all principal submatrices are nonsingular).
Otherwise column pivoting has to be performed (or,
ifm = n, equations pivoting).
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b) The Abaffian Hi + 1 has the following structure, with
Ki 2 Rn� i, i:

HiC1 D

0
BBB@

0 0
:::

:::

0 0
Ki In�i

1
CCCA : (12)

c) Only the first i components of pi can be nonzero and
the ith component is one. Hence thematrix Pi is unit
upper triangular, so that the implicit factorization A
= LP�1 is of the LU type, with units on the diagonal,
justifying the name.

d) Only Ki has to be updated. The algorithm re-
quires nm2 � 2m3/3 multiplications plus lower or-
der terms, hence, for m = n, n3/3 multiplications
plus lower order terms. This is the same overhead
required by the classical LU factorization or Gaus-
sian elimination (which are two essentially equiva-
lent processes).

e) The main storage requirement is the storage of Ki,
whose maximum value is n2/4. This is two times
less than the storage needed by Gaussian elimina-
tion and four times less than the storage needed by
the LU factorization algorithm (assuming that A is
not overwritten). Hence the implicit LU algorithm
is computationally better than the classical Gaussian
elimination or LU algorithm, having the same over-
head but less memory cost.

The implicit LU algorithm, implemented in the case m
= n with row pivoting, has been shown in experiments
of M. Bertocchi and Spedicato [3] to be numerically sta-
ble and in experiments of E. Bodon [4] on the vector
processor Alliant FX 80 with 8 processors to be about
twice faster than the LAPACK implementation of the
classical LU algorithm.

The Huang algorithm is obtained by the parame-
ter choices H1 = I, zi = wi = ai, vi = ei. A mathemati-
cally equivalent, but numerically more stable, formula-
tion of this algorithm is the so-called modified Huang
algorithm where the search vectors and the Abaffians
are given by formulas pi = Hi(Hiai) and Hi+1 = Hi �

pip>i /p
>
i pi. Some properties of this algorithm follow.

� The search vectors are orthogonal and are the same
vectors obtained by applying the classical Gram–
Schmidt orthogonalization procedure to the rows
of A. The modified Huang algorithm is related,

but is not numerically identical, with the Daniel–
Gragg–Kaufmann–Stewart reorthogonalized Gram–
Schmidt algorithm [6].

� If x1 is the zero vector, then the vector xi+1 is the so-
lution with least Euclidean norm of the first i equa-
tions and the solution x+ of least Euclidean norm of
the whole system is approached monotonically and
from below by the sequence xi. L. Zhang [17] has
shown that the Huang algorithm can be applied, via
the Goldfarb–Idnani active set strategy [9], to sys-
tems of linear inequalities. The process in a finite
number of steps either finds the solution with least
Euclidean norm or determines that the system has
no solution.

� While the error growth in the Huang algorithm is
governed by the square of the number �i = k ai k
/ k Hiai k, which is certainly large for some i if A
is ill conditioned, the error growth depends only on
�i if pi or Hi are defined as in the modified Huang
algorithm and, at first order, there is no error growth
for the modified Huang algorithm.

� Numerical experiments, see [15], have shown that
the modified Huang algorithm is very stable, giv-
ing usually better accuracy in the computed solution
than both the implicit LU algorithm and the classical
LU factorization method.

The implicit LX algorithm is defined by the choices H1

= I, vi = ei, zi = wi = eki , where ki is an integer, 1 � ki �
n, such that

e>ki Hi ai ¤ 0: (13)

Notice that by a general property of the ABS class for
A with full rank there is at least one index ki such that
(13) is satisfied. For stability reasons it may be recom-
mended to select ki such that �i = |e>kiHiai| is maxi-
mized.

The following properties are valid for the implicit
LX algorithm. Let N be the set of integers from 1 to n,
N = (1, . . . , n). Let Bi be the set of indexes k1, . . . , ki
chosen for the parameters of the implicit LX algorithm
up to the step i. Let Ni be the set N \ Bi. Then:
� The index ki is selected in the set Ni�1.
� The rows of Hi + 1 of index k 2 Bi are null rows.
� The vector pi has n � i zero components; its kith

component is equal to one.
� If x1 = 0, then xi + 1 is a basic type solution of the

first i equations, whose nonzero components may lie
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only in the positions corresponding to the indices
k 2 Bi.

� The columns of Hi + 1 of index k 2 Ni are the unit
vectors ek, while the columns of Hi + 1 of index k 2
Bi have zero components in the jth position, with j
2 Bi, implying that only i(n � i) elements of such
columns have to be computed.

� At the ith step i(n � i) multiplications are needed
to compute Hiai and i(n � i) to update the nontriv-
ial part ofHi. Hence the total number of multiplica-
tions is the same as for the implicit LU algorithm
(i. e. n3/3), but no pivoting is necessary, reflecting
the fact that no condition is required on the matrix
A.

� The storage requirement is the same as for the im-
plicit LU algorithm, i. e. at most n2/4. Hence the im-
plicit LX algorithm shares the same storage advan-
tage of the implicit LU algorithm over the classical
LU algorithm, with the additional advantage of not
requiring pivoting.

� Numerical experiments by K. Mirnia [10] have
shown that the implicit LXmethod gives usually bet-
ter accuracy, in terms of error in the computed solu-
tion, than the implicit LU algorithm and often even
than the modified Huang algorithm. In terms of size
of the final residual, its accuracy is comparable to
that of the LU algorithm as implemented (with row
pivoting) in the MATLAB or LAPACK libraries, but
it is better again in terms of error in the solution.

Other ABS Linear Solvers

ABS reformulations have been obtained for most al-
gorithms proposed in the literature. The availability of
several formulations of the linear algebra of the ABS
process allows alternative formulations of each method,
with possibly different values of overhead, storage and
different properties of numerical stability, vectoriza-
tion and parallelization. The reprojection technique, al-
ready seen in the case of the modified Huang algorithm
and based upon the identities Hiq = Hi(Hiq), H>i =
H>i (H

>
i q), valid for any vector q if H1 = I, remarkably

improves the stability of the algorithm. The ABS ver-
sions of the Hestenes–Stiefel and the Craig algorithms
for instance are very stable under the above reprojec-
tion. The implicit QR algorithm, defined by the choices
H1 = I, vi = Api, zi = wi = ei can be implemented in

a very stable way using the reprojection in both the def-
inition of the search vector and the scaling vector. It
should also be noticed that the classical iterative refine-
ment procedure, which amounts to a Newton iteration
on the system Ax � b = 0 using the approximate fac-
tors of A, can be reformulated in the ABS context using
the previously defined search vectors pi. Experiments of
Mirnia [11] have shown that ABS refinement works ex-
cellently.

For problems with special structure ABS methods
can often be implemented taking into account the ef-
fect of the structure on the Abaffian matrix, which of-
ten tends to reflect the structure of the matrix A. For
instance, if A has a banded structure, the same is true
for the Abaffian matrix generated by the implicit LU,
the implicit QR and the Huang algorithm, albeit the
band size is increased. If A is SPD and has a ND struc-
ture, the same is true for the Abaffian matrix. In this
case the implementation of the implicit LU algorithm
has much less storage cost, for large n, than the cost
required by an implementation of the Choleski algo-
rithm. For matrices having the Kuhn–Tucker structure
(KT structure) large classes of ABS methods have been
devised, see � ABS algorithms for optimization. For
matrices with general sparsity patterns little is presently
known about minimizing the fill-in in the Abaffian ma-
trix. Careful use of BLAS4 routines can however sub-
stantially reduce the number of operations and make
the ABS implementation competitive with a sparse im-
plementation of say the LU factorization (e. g. by the
code MA28) for values of n not too big.

It is possible to implement the ABS process also in
block form, where several equations, instead of just one,
are dealt with at each step. The block formulation does
not deteriorate the numerical accuracy and can lead to
reduction of overhead on special problems or to faster
implementations on vector or parallel computers.

Finally infinite iterative methods can be obtained by
the finite ABS methods via two approaches. The first
one consists in restarting the iteration after k <m steps,
so that the storage will be of order 2kn if the represen-
tation of the Abaffian in terms of 2i vectors is used. The
second approach consists in using only a limited num-
ber of terms in the Gram–Schmidt type processes that
are alternative formulations of the ABS procedure. For
both cases convergence at a linear rate has been estab-
lished using the technique developed in [7]. The infinite
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iteration methods obtained by these approaches define
a very large class of methods, that contains not only
all Krylov space type methods of the literature, but also
non-Krylov type methods as the Gauss–Seidel, the De
La Garza and the Kackmartz methods, with their gener-
alizations.

ABSMethods for Linear Least Squares

There are several ways of using ABS methods for solv-
ing in the least squares sense an overdetermined lin-
ear system without forming the normal equations of
Gauss, which are usually avoided on the account of
their higher conditioning. One possibility is to compute
explicitly the factors associated with the implicit factor-
ization and then use them in the standard way. From
results of [14] the obtained methods work well, giving
usually better results than the methods using the QR
factorization computed in the standard way. A second
possibility is to use the representation of the Moore–
Penrose pseudo-inverse that is provided explicitly by the
ABS technique described in [13]. Again this approach
has given very good numerical results. A third possibil-
ity is based upon the equivalence of the normal system
A|Ax = A|bwith the extended system in the variables x
2 Rn, y 2 Rm, given by the two subsystems Ax = y, A|y
= A|b. The first of the subsystems is overdetermined
but must be solvable. Hence y must lie in the range of
A|, which means that y must be the solution of least
Euclidean norm of the second underdetermined sub-
system. Such a solution is computed by the Huang al-
gorithm. Then the ABS algorithm, applied to the first
subsystem, in step B) recognizes and eliminates the m
� k dependent equations, where k is the rank of A. If
k < n there are infinite solutions and the one of least
Euclidean norm is obtained by using again the Huang
algorithm on the first subsystem.

Finally a large class of ABS methods can be applied
directly to an overdetermined system stopping after n
iterations in a least squares solution. The class is ob-
tained by definingV =AU, whereU is an arbitrary non-
singular matrix in Rn. Indeed at the point xn+1 the satis-
fied Petrov–Galerkin condition is just equivalent to the
normal equations of Gauss. If U = P then the orthogo-
nally scaled class is obtained, implying, as already stated
in section 2, that the methods of this class can be applied
to solve linear least squares (but a suitable modification

has to be made for the GMRES method). A version of
the implicit QR algorithm, with reprojection on both
the search vector and the scaling vector, tested in [12],
has outperformed other ABS algorithms for linear least
squares methods as well as methods in the LINPACK
and NAG library based upon the classical QR factoriza-
tion via the Householder matrices.

See also
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The scaled ABS (Abaffy–Broyden–Spedicato) class of
algorithms, see [1] and � ABS algorithms for linear
equations and linear least squares, is a very general pro-
cess for solving linear equations, realizing the so-called
Petrov–Galerkin approach. In addition to solving gen-
eral determined or underdetermined linear systems Ax
= b, x 2 Rn, b 2 Rm, m � n, rank(A) � m, A = [a1,
. . .am]|, ABSmethods can also solve linear least squares
problems and nonlinear algebraic equations. In this ar-
ticle we will consider applications of ABS methods to
optimization problems. We will consider only the so-
called basic ABS class, defined by the following proce-
dure for solving Ax = b:
A) Let x1 2 Rn be arbitrary, H1 2 Rn, n be nonsingular

arbitrary, set i = 1.
B) Compute si = Hi ai. IF si 6D 0, go to C).

IF si = 0 and � = a>i xi � bi = 0, THEN set xi + 1 = xi,
Hi + 1 = Hi and go to F), ELSE stop, the system has
no solution.

C) Compute the search vector pi by pi = H>i zi, where
zi 2Rn is arbitrary save for the condition a>i H>i zi
6D 0.

D) Update the estimate of the solution by xi+1 = xi �
˛ipi, where the stepsize ˛i is given by ˛i = (a>i pi �
bi)/a>i pi.

E) Update the matrix Hi by Hi+1 = Hi � Hiaiw>i Hi/
w>i Hiai, where wi 2Rn is arbitrary save for the con-
dition w>i Hiai 6D 0.

F) IF i =m, THEN stop; xm + 1 solves the system, ELSE
increment i by one and go to B).

Among the properties of the ABS class the following
is fundamental in the applications to optimization. Let
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m < n and, for simplicity, assume that rank(A) = m.
Then the linear variety containing all solutions of the
underdetermined system Ax = b is represented by the
vectors x of the form

x D xmC1 C H>mC1q; (1)

where q 2Rn is arbitrary. In the following the matrices
generated by the ABS process will be called Abaffians.
It is recalled that the matrix Hi+1 can be represented in
terms of either 2i vectors or of n � i vectors, which is
also true for the representation of the search vector pi.
The first representation is computationally convenient
for systems where the number of equations is small (less
than n/2), while the second one is suitable for problems
where m is close to n. In the applications to optimiza-
tion, the first case corresponds to problems with few
constraints (many degrees of freedom), the second case
to problems withmany constraints (few degrees of free-
dom).

Among the algorithms of the basic ABS class, the
following are particularly important.
a) The implicit LU algorithm is given by the choices H1

= I, zi = wi = ei, where ei is the ith unit vector in
Rn. This algorithm is well defined if and only if A
is regular (otherwise pivoting of the columns has to
be performed, or of the equations, if m = n). Due
to the special structure of the Abaffian induced by
the parameter choices (the first i rows of Hi+1 are
identically zero, while the last n� i columns are unit
vectors) the maximum storage is n2/4, hence 4 times
less than for the classical LU factorization or twice
less than for Gaussian elimination; the number of
multiplications is nm2 � 2m3/3, hence, for m = n,
n3/3, i. e. the same as for Gaussian elimination or the
LU factorization algorithm.

b) The Huang algorithm is obtained by the parameter
choices H1 = I, zi = wi = ai. A mathematically equiv-
alent, but numerically more stable, formulation of
this algorithm is the so-called modified Huang al-
gorithm where the search vectors and the Abaffi-
ans are given by formulas pi = Hi(Hiai) and Hi+1 =
Hi � pip>i /p

>
i pi. The search vectors are orthogonal

and are equal to the vectors obtained by applying
the classical Gram–Schmidt orthogonalization pro-
cedure to the rows of A. If x1 is the zero vector,
then the vector xi+1 is the solution of least Euclidean

norm of the first i equations and the solution x+

of least Euclidean norm of the whole system is ap-
proached monotonically and from below by the se-
quence xi.

c) The implicit LX algorithm, where ‘L’ refers to the
lower triangular left factor while ‘X’ refers to the
right factor, which is a matrix obtainable after row
permutation of an upper triangular matrix, consid-
ered by Z. Xia, is defined by the choices H1 = I, zi =
wi = eki where ki is an integer, 1� ki � n, such that

e>ki Hi ai ¤ 0: (2)

If A has full rank, from a property of the basic ABS
class the vector Hiai is nonzero, hence there is at
least one index ki such that (2) is satisfied. The im-
plicit LX algorithm has the same overhead as the
implicit LU algorithm, hence the same as Gaussian
elimination, and the same storage requirement, i. e.
less than Gaussian elimination or the LU factoriza-
tion algorithm. It has the additional advantage of not
requiring any condition on the matrix A, hence piv-
oting is not necessary. The structure of the Abaffian
matrix is somewhat more complicated than for the
implicit LU algorithm, the zero rows of Hi+1 being
now in the positions k1, . . . ,ki and the columns that
are unit vectors being in the positions that do not
correspond to the already chosen indices ki.

The vector pi has n � i zero components and its kith
component is equal to one. It follows that if x1 = 0,
then xi+1 is a basic type solution of the first i equations,
whose nonzero components correspond to the chosen
indices ki.

In this paper we will present the following appli-
cations of ABS methods to optimization problems. In
Section 2 we describe a class of ABS related methods
for the unconstrained optimization problem. In Sec-
tion 3 we show how ABS methods provide the general
solution of the quasi-Newton equation, also with spar-
sity and symmetry and we discuss how SPD solutions
can be obtained. In Section 4 we present several special
ABS methods for solving the Kuhn–Tucker equations.
In Section 5 we consider the application of the implicit
LX algorithm to the linear programming (LP) problem.
In Section 6 we present ABS approaches to the general
linearly constrained optimization problem, which unify
linear and nonlinear problems.
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A Class of ABS Projection Methods
for UnconstrainedOptimization

ABS methods can be applied directly to solve uncon-
strained optimization problems via the iteration xi+1 =
xi � ˛i H>i zi, where Hi is reset after n or less steps
and zi is chosen so that the descent condition holds,
i. e. g>i H

>
i zi > 0, with gi the gradient of the function

at xi. If the function to be minimized is quadratic,
one can identify the matrix A in the Abaffian update
formula with the Hessian of the quadratic function.
Defining a perturbed point x0 by x0 = xi � ˇ vi one
has on quadratic functions g0 = g � ˇ Avi, hence the
update of the Abaffian takes the form Hi+ 1 = Hi �

Hiyiw>i Hi/w>i Hiyi, where yi = g0 � gi. The above de-
fined class has termination on quadratic functions and
local superlinear (n-step Q-quadratic) rate of conver-
gence on general functions. It is a special case of a class
of projection methods developed in [7]. Almost no nu-
merical results are available about the performance of
the methods in this class.

Applications to Quasi-NewtonMethods

ABS methods have been used to provide the general
solution of the quasi-Newton equation, also with the
additional conditions of symmetry, sparsity and posi-
tive definiteness. While the general solution of only the
quasi-Newton equation was already known from [2],
the explicit formulas obtained for the sparse symmetric
case are new, and so is the way of constructing sparse
SPD updates.

Let us consider the quasi-Newton equation defining
the new approximation to a Jacobian or a Hessian, in
the transpose form

d>B0 D y>; (3)

where d = x0 � x, y = g0 � g. We observe that (3) can
be seen as a set of n linear underdetermined systems,
each one having just one equation and differing only
in the right-hand side. Hence the general solution can
be obtained by one step of the ABS method. It can be
written in the following way

B0 D B �
s(B>d � y)>

d>s
C

�
I �

sd>

d>s

�
Q ; (4)

where Q 2Rn, n is arbitrary and s 2Rn is arbitrary sub-
ject to s|d 6D 0. Formula (4), derived in [9], is equivalent
to the formula in [2].

Now the conditions that some elements of B0 should
be zero, or have constant value or that B0 should be
symmetric can be written as the additional linear con-
straints, where b0i is the ith column of B0

(b0i)
>ek D �i j ; (5)

where �ij = 0 implies sparsity, �ij = const implies that
some elements do not change their value and �ij = �ji
implies symmetry. The ABS algorithm can deal with
these extra conditions, see [11], giving the solution in
explicit form, columnwise in presence of symmetry. By
adding the additional condition that the diagonal ele-
ments be sufficiently large, it is possible to obtain for-
mulas where B0 is quasi positive definite or quasi di-
agonally dominant, in the sense that the principal sub-
matrix of order n � 1 is positive definite or diagonally
dominant. It is not possible in general to force B0 to
be SPD, since SPD solutions may not exist, which is
reflected in the fact that no additional conditions can
be put on the last diagonal element, since the last col-
umn is fully determined by the n � 1 symmetry con-
ditions and the quasi-Newton equation. This result can
however be exploited to provide SPD approximations
by imbedding the original minimization problem of n
variables in a problem of n + 1 variables, whose solu-
tion with respect to the first n variables is the original
solution (just set, for instance, f (x0) = f (x) + x2nC1). This
imbedding modifies the quasi-Newton equation so that
SPD solutions exist.

ABSMethods for Kuhn–Tucker Equations

The Kuhn–Tucker equations (KT equations), which
should more appropriately be named Kantorovich–
Karush–Kuhn–Tucker equations (KKKT equations),
are a special linear system, obtained by writing the
optimality conditions of the problem of minimizing
a quadratic function with Hessian G subject to the lin-
ear equality constraint Cx = b. They are the system Ax
= b, where A is a symmetric indefinite matrix of the fol-
lowing form, with G 2Rn, n, C 2Rm, n

A D
�
G C>

C 0

�
: (6)
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If G is nonsingular, then A is nonsingular if and
only if CG�1C| is nonsingular. Usually G is nonsingu-
lar, symmetric and positive definite, but this assump-
tion, required by several classical solvers, is not neces-
sary for the ABS solvers.

ABS classes for solving the KT problem can be de-
rived in several ways. Observe that system (6) is equiv-
alent to the two subsystems

GpC C>z D g; (7)
Cp D c; (8)

where x = (p|, z|)| and b = (g|, C|)|. The general so-
lution of subsystem (8) has the form, see (1)

p D pmC1 C H>mC1q; (9)

with q arbitrary. The parameter choices made to con-
struct pm+1 and Hm+1 are arbitrary and define therefore
a class of algorithms.

Since the KT equations have a unique solution,
there must be a choice of q in (9) which makes p be the
unique n-dimensional subvector defined by the first n
components of the solution x. Notice that since Hm+1

is singular, q is not uniquely defined (but would be
uniquely defined if one takes the representation of the
Abaffian in terms of n �m vectors).

By multiplying equation (7) on the left byHm+1 and
using the ABS property Hm+1 C| = 0, we obtain the
equation

HmC1Gp D HmC1g; (10)

which does not contain z. Now there are two possibili-
ties to determine p:
A1) Consider the system formed by equations (8) and

(10). Such a system is solvable but overdeter-
mined. Since rank(Hm+1) = n � m, m equations
are recognized as dependent and are eliminated in
step B) of any ABS algorithm applied to this sys-
tem.

A2) In equation (10) substitute p with the expression
of the general solution (9) obtaining

HmC1GH>mC1q D HmC1g�HmC1GpmC1: (11)

The above system can be solved by any ABS
method for a particular solution q,m equations be-
ing again removed at step B) of the ABS algorithm
as linearly dependent.

Once p is determined, there are two approaches to de-
termine z, namely:
B1) Solve by any ABS method the overdetermined

compatible system

C>z D g � Gp (12)

by removing at step B) of the ABS algorithm the n
�m dependent equations.

B2) Let P = (p1, . . .pm) be the matrix whose columns
are the search vectors generated on the system Cp
= c. Now CP = L, with L nonsingular lower diago-
nal. Multiplying equation (12) on the left by P| we
obtain a triangular system, defining z uniquely

L>z D P>g � P>Gp: (13)

Extensive numerical testing has evaluated the accuracy
of the above considered ABS algorithms for KT equa-
tions for certain choices of the ABS parameters (cor-
responding to the implicit LU algorithm with row piv-
oting and the modified Huang algorithm). The meth-
ods have been tested against classical methods, in par-
ticular the method of Aasen and methods using the QR
factorization. The experiments have shown that some
ABS methods are the most accurate, in both residual
and solution error; moreover some ABS algorithms are
cheaper in storage and in overhead, up to one order,
especially for the case when m is close to n.

In many interior point methods the main computa-
tional cost is to compute the solution for a sequence of
KT problems where only G, which is diagonal, changes.
In such a case the ABS methods, which initially work
on the matrix C, which is unchanged, are advantaged,
particularly when m is large, where the dominant cu-
bic term decreases with m and disappears for m = n,
so that the overhead is dominated by second order
terms. Again numerical experiments show that some
ABS methods are more accurate than the classical ones.
For details see [8].

Reformulation of the SimplexMethod
via the Implicit LX Algorithm

The implicit LX algorithm has a natural application to
a reformulation of the simplex method for the LP prob-
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lem in standard form, i. e. the problem

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b

x � 0 :

The applicability of the implicit LXmethod is a con-
sequence of the fact that the iterate xi+1 generated by
the method, started from the zero vector, is a basic type
vector, with a unit component in the position ki, non
identically zero components corresponding to indices j
2 Bi, where Bi is the set of indices of the unit vectors
chosen as the zi, wi parameters, i. e. the set Bi = (k1,
. . . , ki), while the components of xi+1 of indices in the
set Ni = N/Bi are identically zero, where N = (1, . . .n).
Therefore, if the nonzero components are nonnegative,
the point defines a vertex of the polytope containing
the feasible points defined by the constraints of the LP
problem.

In the simplex method one moves from a vertex to
another one, according to some rules and usually re-
ducing at each step the value of the function c|x. The
direction along which one moves from a vertex to an-
other one is an edge direction of the polytope and is de-
termined by solving a linear system, whose coefficient
matrix AB, the basic matrix, is defined by m linearly
independent columns of the matrix A, called the basic
columns. Usually such a system is solved by the LU fac-
torization method or occasionally by the QR method,
see [5]. The new vertex is associated to a new basic ma-
trix AB

0, which is obtained by substituting one of the
columns in AB by a column of the matrix AN , which
comprises the columns of A that do not belong to AB.
The most efficient algorithm for solving the modified
system, after the column interchange, is the Forrest–
Goldfarb method [6], requiringm2 multiplications. No-
tice that the classical simplex method requires m2 stor-
age for the matrix AB plusmn storage for the matrix A,
which must be kept in general to provide the columns
for the exchange.

The application of the implicit LX method to the
simplex method, developed in [4,10,13,17] exploits the
fact that in the implicit LX algorithm the interchange
of a jth column in AB with a kth column in AN cor-
responds to the interchange of a previously chosen pa-
rameter vector zj = wj = ej with a new parameter zk =wk

= ek. This operation is a special case of the perturbation
of the Abaffian after a change in the parameters and can
be done using a general formula of [15], without explicit
use of the kth column in AN . Moreover since all quanti-
ties which are needed for the construction of the search
direction (the edge direction) and for the interchange
criteria can as well be implemented without explicit use
of the columns of A, it follows that the ABS approach
needs only the storage of the matrixHm+1, which, in the
case of the implicit LX algorithm, has a cost of at most
n2/4. Therefore for values of m close to n the storage
required by the ABS formulation is about 8 times less
than for the classical simplex method.

Here we give the basic formulas of the simplex
method in the classical and in the ABS formulation.
The column in AN substituting an old column in AB

is often taken as the column with minimal relative cost.
In terms of the ABS formulation this is equivalent to
minimize with respect to i 2 Nm the scalar �i = c|H|ei.
Let N� be the index chosen in this way. The column
in AB to be exchanged is usually chosen with the cri-
terion of the maximum displacement along an edge
which keeps the basic variables nonnegative. Define !i

= x|ei/e>i H
|eN� , where x is the current basic feasible

solution. Then the above criterion is equivalent to min-
imize !i with respect the set of indices i 2 Bm such that

e>i H
>eN� > 0: (14)

Notice that H|eN� 6D 0 and that an index i such that
(14) is satisfied always exists, unless x is a solution of
the LP problem.

The update of the Abaffian after the interchange of
the unit vectors, which corresponds to the update of the
LU factors after the interchange of the basic with the
nonbasic column, is given by the following formula

H0 D H � (HeB� � eB�)
e>N�H

e>N�HeB�
: (15)

The search direction d, which in the classical formula-
tion is obtained by solving the system ABd =� AeN� , is
given by d =H>mC1eN� , hence at no cost. Finally, the rel-
ative cost vector r, classically given by r = c � A|A�1B cB,
where cB consists of the components of c with indices
corresponding to those of the basic columns, is simply
given by r = Hm + 1c.



12 A ABS Algorithms for Optimization

Let us now consider the computational cost of up-
date (15). Since H eB� has at most n �m nonzero com-
ponents, whileH|eN� has at mostm, no more thanm(n
� m) multiplications are required. The update is most
expensive form = n/2 and gets cheaper the smaller m is
or the closer it is to n. In the dual steepest edge Forrest–
Goldfarb method [6] the overhead for replacing a col-
umn is m2, hence formula (15) is faster for m > n/2
and is recommended on overhead considerations for
m sufficiently large. However we notice that ABS up-
dates having aO(m2) cost can also be obtained by using
the representation of the Abaffian in terms of 2m vec-
tors. No computational experience has been obtained
till now on the new ABS formulation of the simplex
method.

Finally, a generalization of the simplex method,
based upon the use of the Huang algorithm started with
a suitable singular matrix, has been developed in [16].
In this formulation the solution is approached by points
lying on a face of the polytope. Whenever the point hits
a vertex the remaining iterates move among vertices
and the method is reduced to the simplex method.

ABS Unification of Feasible DirectionMethods
for Minimization with Linear Constraints

ABS algorithms can be used to provide a unification
of feasible point methods for nonlinear minimization
with linear constraints, including as a special case the
LP problem. Let us first consider the problem with only
linear equality constraints:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x2Rn

f (x)

s.t. Ax D b
A 2 Rm;n ; m � n;
rank(A) D m:

Let x1 be a feasible starting point; then for an itera-
tion procedure of the form xi+1 = xi � ˛idi, the search
direction will generate feasible points if and only if

Adi D 0: (16)

Solving the underdetermined system (16) for di by the
ABS algorithm, the solution can be written in the fol-

lowing form, taking, without loss of generality, the zero
vector as a special solution

di D H>mC1q; (17)

where the matrix Hm+1 depends on the arbitrary choice
of the parameters H1, wi and vi used in solving (16) and
q 2Rn is arbitrary. Hence the general feasible direction
iteration has the form

xiC1 D xi � ˛iH>mC1q: (18)

The search direction is a descent direction if and only
if d|rf (x) = q|Hm+1 r f (x) > 0. Such a condition can
always be satisfied by choice of q unless Hm+1 r f (x) =
0, which implies, from the null space structure ofHm+1,
that r f (x) = A| � for some �, hence that xi + 1 is a KT
point and � is the vector of the Lagrange multipliers.
When xi+1 is not a KT point, it is immediate to see that
the search direction is a descent directions if we select
q as q = WHm+1 r f (x), where W is a symmetric and
positive definite matrix.

Particular well-known algorithms from the litera-
ture are obtained by the following choices of q, with
W = I:
� The Wolfe reduced gradient method. Here, Hm+1 is

constructed by the implicit LU (or the implicit LX)
algorithm.

� The Rosen gradient projection method. Here,Hm+1 is
built using the Huang algorithm.

� TheGoldfarb–Idnanimethod. Here,Hm+1 is built via
the modification of the Huang algorithm where H1

is a symmetric positive definite matrix approximat-
ing the inverse Hessian of f (x).

If there are inequalities two approaches are possible:
A) The active set approach. In this approach the set of

linear equality constraints is modified at every iter-
ation by adding and/or dropping some of the linear
inequality constraints. Adding or deleting a single
constraint can be done, for every ABS algorithm, in
order two operations, see [15]. In the ABS reformu-
lation of the Goldfarb–Idnani method, the initial
matrix is related to a quasi-Newton approximation
of the Hessian and an efficient update of the Abaf-
fian after a change in the initial matrix is discussed
in [14].
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B) The standard form approach. In this approach, by
introducing slack variables, the problem with both
types of linear constraints is written in the equiva-
lent form
8̂
<̂
ˆ̂:

min f (x)
s.t. Ax D b

x � 0:

The following general iteration, started with x1 a feasi-
ble point, generates a sequence of feasible points for the
problem in standard form

xiC1 D xi � ˛iˇiHmC1r f (x); (19)

where the parameter ˛i can be chosen by a line search
along the vector Hm+1 r f (x), while the relaxation pa-
rameter ˇi > 0 is selected to avoid that the new point
has some negative components.

If f (x) is nonlinear, then Hm+1 can be determined
once and for all at the first step, since r f (x) generally
changes from iteration to iteration, therefore modifying
the search direction. If, however, f (x) = c|x is linear (we
have then the LP problem) to modify the search direc-
tion we need to change Hm+1. As observed before, the
simplex method is obtained by constructing Hm+1 with
the implicit LX algorithm, every step of the method cor-
responding to a change of the parameters eki . It can be
shown, see [13], that the method of Karmarkar (equiv-
alent to an earlier method of Evtushenko [3]), corre-
sponds to using the generalized Huang algorithm, with
initial matrix H1 = Diag(xi) changing from iteration to
iteration. Another method, faster than Karmarkar’s and
having superlinear against linear rate of convergence
and O(

p
n) against O(n) complexity, again first pro-

posed by Y. Evtushenko, is obtained by the generalized
Huang algorithm with initial matrix H1 = Diag(x2i ).

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� Gauss–Newton Method: Least Squares, Relation to
Newton’s Method

� Generalized Total Least Squares
� Least Squares Orthogonal Polynomials

� Least Squares Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
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Introduction

The adaptive convexification algorithm is a method
to solve semi-infinite optimization problems via a se-
quence of feasible iterates. Its main idea [6] is to
adaptively construct convex relaxations of the lower
level problem, replace the relaxed lower level problems
equivalently by their Karush–Kuhn–Tucker conditions,
and solve the resulting mathematical programs with
complementarity constraints. The convex relaxations
are constructed with ideas from the ˛BB method of
global optimization.

Feasibility in Semi-Infinite Optimization

In a (standard) semi-infinite optimization problem
a finite-dimensional decision variable is subject to in-

finitely many inequality constraints. For adaptive con-
vexification one assumes the form

SIP : min
x2X

f (x) subject to g(x; y) � 0;

for all y 2 [0; 1]

with objective function f 2 C2(Rn ;R), constraint
function g 2 C2(Rn �R;R), a box constraint set
X D [x`; xu] � Rn with x` < xu 2 Rn , and the set of
infinitely many indices Y D [0; 1]. Adaptive convexi-
fication easily generalizes to problems with additional
inequality and equality constraints, a finite number of
semi-infinite constraints as well as higher-dimensional
box index sets [6]. Reviews on semi-infinite program-
ming are given in [8,13], and [9,14,15] overview the ex-
isting numerical methods.

Classical numerical methods for SIP suffer from the
drawback that their approximations of the feasible set
X \M with

M D f x 2 Rn j g(x; y) � 0 for all y 2 [0; 1] g

may contain infeasible points. In fact, discretization
and exchange methods approximateM by finitely many
inequalities corresponding to finitely many indices in
Y D [0; 1], yielding an outer approximation of M,
and reduction based methods solve the Karush–Kuhn–
Tucker system of SIP by a Newton-SQP approach. As
a consequence, the iterates of these methods are not
necessarily feasible for SIP, but only their limit might
be. On the other hand, a first method producing feasible
iterates for SIPwas presented in the articles [3,4], where
a branch-and-bound framework for the global solution
of SIP generates convergent sequences of lower and up-
per bounds for the globally optimal value.

In fact, checking feasibility of a given point x̄ 2 Rn

is the crucial problem in semi-infinite optimization.
Clearly we have x̄ 2 M if and only if '(x̄) � 0 holds
with the function

' : Rn ! R; x 7! max
y2[0;1]

g(x; y) :

The latter function is the optimal value function of the
so-called lower level problem of SIP,

Q(x) : max
y2R

g(x; y) subject to 0 � y � 1 :

The difficulty lies in the fact that '(x̄) is the globally
optimal value of Q(x̄) which might be hard to deter-
mine numerically. In fact, standard NLP solvers can
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only be expected to produce a local maximizer yloc of
Q(x̄) which is not necessarily a global maximizer yglob.
Even if g(x̄; yloc) � 0 is satisfied, x̄ might be infeasible
since g(x̄; yloc) � 0 < '(x̄) D g(x̄; yglob) may hold.

Convex Lower Level Problems

Assume for a moment that Q(x) is a convex optimiza-
tion problem for all x 2 X, that is, g(x; �) is concave on
Y D [0; 1] for these x. An approach developed for so-
called generalized semi-infinite programs from [18,19]
then takes advantage of the fact that the solution set
of a differentiable convex lower level problem satisfy-
ing a constraint qualification is characterized by its first
order optimality condition. In fact, SIP and the Stackel-
berg game

SG : min
x;y

f (x) subject to g(x; y) � 0;

and y solves Q(x)

are equivalent problems, and the restriction
‘y solves Q(x)’ in SG can be equivalently replaced
by its Karush–Kuhn–Tucker condition. For this refor-
mulation we use that the Lagrange function of Q(x),

L(x; y; �`; �u) D g(x; y)C �` yC �u(1 � y);

satisfies

ryL(x; y; �`; �u) D ry g(x; y)C �` � �u

and obtain that the Stackelberg game is equivalent to
the following mathematical program with complemen-
tarity constraints:

MPCC : min
x;y;�`;�u

f (x) subject to g(x; y) � 0

ry g(x; y)C �` � �u D 0
�` y D 0

�u(1 � y) D 0

�`; �u � 0

y; 1 � y � 0 :

Overviews of solution methods for MPCC are given
in [10,11,17]. One approach to solveMPCC is the refor-
mulation of the complementarity constraints by a so-
called NCP function, that is, a function � : R2 ! R
with

�(a; b) D 0

if and only if a � 0 ; b � 0; a b D 0 :

For numerical purposes one can regularize these non-
differentiable NCP functions. Although MPCC does
not necessarily have to be solved via the NCP function
formulation, in the following we will use NCP func-
tions to keep the notation concise. In fact, MPCC can
be equivalently rewritten as the nonsmooth problem

P : min
x;y;�`;�u

f (x) subject to g(x; y) � 0

ry g(x; y)C �` � �u D 0
�(�`; y) D 0

�(�u; 1 � y) D 0 :

The ˛BBMethod

In ˛BB, a convex underestimator of a nonconvex func-
tion is constructed by decomposing it into a sum of
nonconvex terms of special type (e. g., linear, bilinear,
trilinear, fractional, fractional trilinear, convex, uni-
variate concave) and nonconvex terms of arbitrary type.
The first type is then replaced by its convex envelope
or very tight convex underestimators which are already
known. A complete list of the tight convex underesti-
mators of the above special type nonconvex terms is
provided in [5].

For the ease of presentation, here we will treat
all terms as arbitrarily nonconvex. For these terms,
˛BB constructs convex underestimators by adding
a quadratic relaxation function  . With the obvi-
ous modification we use this approach to construct
a concave overestimator for a nonconcave function
g : [y`; yu]! R being C2 on an open neighborhood of
[y`; yu]. With

 (y;˛; y`; yu) D
˛

2
(y � y`)(yu � y) (1)

we put

g̃(y;˛; y`; yu) D g(y)C  (y;˛; y`; yu) :

In the sequel we will suppress the dependence of g̃ on
y`; yu . For ˛ � 0 the function g̃ clearly is an overesti-
mator of g on [y`; yu], and it coincides with g at the
endpoints y`, yu of the domain. Moreover, g̃ is twice
continuously differentiable with second derivative

r2
y g̃(y;˛) D r

2g(y) � ˛
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on [y`; yu]. Consequently g̃ is concave on [y`; yu] for

˛ � max
y2[y`;yu]

r2g(y) (2)

(cf. also [1,2]). The computation of ˛ thus involves
a global optimization problem itself. Note, however,
that one may use any upper bound for the right-hand
side in (2). Such upper bounds can be provided by in-
terval methods (see, e. g., [5,7,12]). An ˛ satisfying (2)
is called convexification parameter.

Combining these facts shows that for

˛ � max

 
0; max

y2[y`;yu]
r2g(y)

!

the function g̃(y;˛) is a concave overestimator of g on
[y`; yu].

Formulation

For N 2N let 0 D �0 < �1 < : : : < �N�1 < �N D 1
define a subdivision of Y D [0; 1], that is, with
K D f1; : : : ;Ng and

Yk D [�k�1; �k ]; k 2 K ;

we have

Y D
[
k2K

Yk :

A trivial but very useful observation is that the single
semi-infinite constraint

g(x; y) � 0 for all y 2 Y

is equivalent to the finitely many semi-infinite con-
straints

g(x; y) � 0 for all y 2 Yk ; k 2 K :

Given a subdivision, one can construct concave over-
estimators for each of these finitely many semi-
infinite constraints, solve the corresponding optimiza-
tion problem, and adaptively refine the subdivision.

The following lemma formulates the obvious fact
that replacing g by overestimators on each subdivision
node Yk results in an approximation of M by feasible
points.

Lemma 1 For each k 2 K let gk : X � Yk ! R, and let
x̄ 2 X be given such that for all k 2 K and all y 2 Yk we
have g(x̄; y) � gk (x̄; y). Then the constraints

gk(x̄; y) � 0 for all y 2 Yk ; k 2 K ;

entail x̄ 2 M.

˛BB for the Lower Level

For the construction of these overestimators one uses
ideas of the ˛BB method. In fact, for each k 2 K we put

gk : X�Yk ! R; (x; y) 7! g(x; y)C (y;˛k ; �k�1; �k)

(3)

with the quadratic relaxation function  from (1) and

˛k > max

 
0; max

(x;y)2X�Yk
r2

y g(x; y)

!
: (4)

Note that the latter condition on ˛k is uniform in x. We
emphasize that with the single bound

¯̨ > max
�
0; max

(x;y)2X�Y
r2

y g(x; y)
�

(5)

the choices ˛k :D ¯̨ satisfy (4) for all k 2 K. Moreover,
the ˛k can always be chosen such that ˛k � ¯̨ , k 2 K.

The following properties of gk are easily verified.

Lemma 2 ([6]) For each k 2 K let gk be given by (3).
Then the following holds:
(i) For all (x; y) 2 X � Yk we have g(x; y) � gk(x; y).
(ii) For all x 2 X, the function gk(x; �) is concave on Yk.

Now consider the following approximation of the fea-
sible set M, where E D f�kj k 2 Kg denotes the set of
subdivision points, and ˛ the vector of convexification
parameters:

M˛BB(E; ˛) D f x 2 Rn j gk(x; y) � 0 ;

for all y 2 Yk ; k 2 K g :

By Lemma 1 and Lemma 2(i) we have
M˛BB(E; ˛) � M. This means that any solution con-
cept for

SIP˛BB(E; ˛) : min
x2X

f (x) subject to

x 2 M˛BB(E; ˛) ;
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be it global solutions, local solutions or stationary
points, will at least lead to feasible points of SIP (pro-
vided that SIP˛BB(E; ˛) is consistent).

The problem SIP˛BB(E; ˛) has finitely many lower
level problems Qk(x), k 2 K; with

Qk(x) : max
y2R

gk(x; y) subject to �k�1 � y � �k :

Since the inequality (4) is strict, the convex problem
Qk(x) has a unique solution yk(x) for each k 2 K and
x 2 X. Recall that y 2 Yk is called active for the con-
straint maxy2Yk gk(x; y) � 0 at x̄ if gk(x̄; y) D 0 holds.
By the uniqueness of the global solution of Qk(x̄) there
exists at most one active index for each k 2 K, namely
yk(x̄). Thus, one can consider the finite active index sets

K0(x̄) Df k 2 Kj gk(x̄; yk(x̄)) D 0 g;

Y˛BB0 (x̄) Df yk(x̄)j k 2 K0(x̄) g :

The MPCC Reformulation

Following the ideas to treat convex lower level prob-
lems, yk solves Qk(x) if and only if (x; yk ; � k

`
; � k

u ) solves
the system

ry gk(x; y)C �` � �u D 0

�(�`; y � �k�1) D 0

�(�u ; �k � y) D 0

with some � k
`
, � k

u , and � denoting some NCP function.
With

w :D (x; yk ; � k
` ; �

k
u ; k 2 K)

F(w) :D f (x)

Gk(w; E; ˛) :D g(x; yk)C
˛k

2
(yk � �k�1)(�k � yk)

Hk(w; E; ˛) :D
0
B@
ry g(x; yk)C ˛k

�
�k�1C�k

2 � yk
�
C � k

`
� � k

u

�(� k
`
; yk � �k�1)

�(� k
u ; �

k � yk)

1
CA

one can thus replace SIP˛BB(E; ˛) equivalently by the
nonsmooth problem

P(E; ˛) : min
w

F(w) subject to

Gk (w; E; ˛) � 0;

Hk(w; E; ˛) D 0; k 2 K :

The latter problem can be solved to local optimality by
MPCC algorithms [10,11,17]. For a local minimizer w̄
of P(E, ˛) the subvector x̄ of w̄ is a local minimizer and,
hence, a stationary point of SIP˛BB(E; ˛).

Method

The main idea of the adaptive convexification al-
gorithm is to compute a stationary point x̄ of
SIP˛BB(E; ˛) by the approach from the previous sec-
tion, and terminate if x̄ is also stationary for SIP within
given tolerances. If x̄ is not stationary it refines the sub-
division E in the spirit of exchange methods [8,15] by
adding the active indices Y˛BB0 (x̄) to E, and constructs
a refined problem SIP˛BB(E [ Y˛BB0 (x̄); ˜̨ ) by the fol-
lowing procedure. Note that, in view of Carathéodory’s
theorem, the number of elements of Y˛BB0 (x̄) may be
bounded by nC 1.

Refinement Step

For any �̃ 2 Y˛BB0 (x̄), let k 2 K be the index with
�̃ 2 [�k�1; �k ]. Put Yk;1 D [�k�1; �̃], Yk;2 D [�̃; �k], let
˛k;1 and ˛k;2 be the corresponding convexification pa-
rameters, put

gk;1(x; y) D g(x; y)C
˛k;1

2
(y � �k�1)(�̃� y);

gk;2(x; y) D g(x; y)C
˛k;2

2
(y � �̃)(�k � y);

and define M˛BB(E [ f�̃g; ˜̨) by replacing the con-
straint

gk(x; y) � 0; for all y 2 Yk

in M˛BB(E; ˛) by the two new constraints

gk;i(x; y) � 0; for all y 2 Yk;i ; i D 1; 2 ;

and by replacing the entry ˛k of ˛ by the two new en-
tries ˛k,i, i D 1; 2.

The Algorithm

The point x̄ is stationary for SIP˛BB(E; ˛) (in the sense
of Fritz John) if x̄ 2 M˛BB(E; ˛) and if there exist
yk 2 Y˛BB0 (x̄), 1 � k � nC 1, and (�; �) 2 SnC1 (the
(nC 1)�dimensional standard simplex) with

�r f (x̄)C
nC1X
kD1

�k rx g(x̄; yk) D 0

�k � gk(x̄; yk) D 0; 1 � k � nC 1 :
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For the adaptive convexification algorithm the notions
of active index, stationarity, and set unification are re-
laxed by certain tolerances.

Definition 1 For "act, "stat, "[ > 0 we say that
(i) yk is "act-active for gk at x̄ if gk(x̄; yk) 2 [�"act; 0],
(ii) x̄ is "stat-stationary for SIP with "act-active indices

if x̄ 2 M and if there exist yk 2 Y , 1 � k � nC 1,
and (�; �) 2 SnC1 such that
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ�r f (x̄)C

nC1X
kD1

�k rx g(x̄; yk)

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ � "stat

�k � g(x̄; yk) 2 [��k � "act; 0]; 1 � k � nC 1 ;

hold, and
(iii) the "[-union of E and �̃ is E [ f�̃g if

minf�̃ � �k�1; �k � �̃g > "[ � (�k � �k�1)

holds for the k 2 K with �̃ 2 [�k�1; �k], and E oth-
erwise (i. e., �̃ is not unified with E if its distance
from E is too small).

In [6] it is shown that Algorithm 1 is well-defined, con-
vergent and finitely terminating. Furthermore, the fol-
lowing feasibility result holds.

Theorem 2 ([6]) Let (x�)� be a sequence of points gen-
erated by Algorithm 1. Then all x� ; � 2 N, are feasible
for SIP, the sequence (x�)� has an accumulation point,
each such accumulation point x� is feasible for SIP, and
f (x�) provides an upper bound for the optimal value of
SIP.

Numerical examples for the performance of the method
from Chebyshev approximation and design centering
are given in [6].

A Consistent Initial Approximation

Even if the feasible set M of SIP is consistent, there is
no guarantee that its approximations M˛BB(E; ˛) are
also consistent. For Step 1 of Algorithm 1 [6] suggests
the following phase I approach: use Algorithm 1 to con-
struct adaptive convexifications of

SIPph:I : min
(x;z)2X�R

z subject to g(x; y) � z

for all y 2 [0; 1]

Algorithm 1
(Adaptive convexification algorithm)

Step 1: Determine a uniform convexification param-
eter N̨ with (5), choose N 2 N , �k 2 Y and ˛k �
N̨ , k 2 K = f1; : : : ;Ng, such that SIP˛BB(E; ˛) is
consistent, as well as tolerances "act; "stat; "[ >
0 with "[ � 2"act/ N̨ .

Step 2: By solving P(E; ˛), compute a stationary
point x of SIP˛BB(E; ˛) with "act�active indices
yk , 1 � k � n + 1, and multipliers (�; �).

Step 3: Terminate if x is "stat�stationary for SIPwith
(2"act)-active indices yk ; 1 � k � n + 1, from
Step 2 and multipliers (�; �) from Step 2.
Otherwise construct a new set QE of subdivision
points as the "[-union of E and fykj
1 � k � n + 1g, and perform a refinement step
for the elements in QE n E to construct a new fea-
sible set M˛BB( QE; Q̨ ).

Step 4: Put E = QE, ˛ = Q̨ , and go to Step 2.

Adaptive Convexification in Semi-Infinite Optimization, Al-
gorithm 1

until a feasible point (x̄; z̄) with z̄ � 0 of SIPph:I
˛BB (E; ˛)

is found with some subdivision E and convexification
parameters ˛. The point x̄ is then obviously also feasi-
ble for SIP˛BB(E; ˛) and can be used as an initial point
to solve the latter problem. Due to the possible noncon-
vexity of the upper level problem of SIP, this phase I ap-
proach is not necessarily successful, but possible reme-
dies for this situation are given in [6].

To initialize Algorithm 1 for phase I, select some
point x̄ in the box X and put E1 D f0; 1g, that is,
Y1 D Y D [0; 1]. Compute ˛1 according to (4) and
solve the convex optimization problem Q1(x̄) with
standard software. With its optimal value z̄, the point
(x̄; z̄) is feasible for SIPph:I

˛BB (E
1; ˛1).

A Certificate for Global Optimality

After termination of Algorithm 1 one can exploit that
the set E � [0; 1] contains indices that should also yield
a good outer approximation ofM. The optimal value of
the problem

Pouter : min
x2X

f (x) subject to g(x; �) � 0; � 2 E ;
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yields a rigorous lower bound for the optimal value of
SIP. If Pouter can actually be solved to global optimal-
ity (e. g., if a standard NLP solver is used, due to con-
vexity with respect to x), then a comparison of this
lower bound for the optimal value of SIPwith the upper
bound from Algorithm 1 can yield a certificate of global
optimality for SIP up to some tolerance.

Conclusions

The adaptive convexification algorithm provides an
easily implementable way to solve semi-infinite opti-
mization problems with feasible iterates. To explain its
basic ideas, in [6] the algorithm is presented in its sim-
plest form. It can be improved in a number of ways,
for example in the magnitude of the convexification pa-
rameters and in their adaptive refinement, or by using
other convexification techniques. Although the numer-
ical results from [6] are very promising, further work is
needed on error estimates on the numerical solution of
the auxiliary problem P(E,˛), which is assumed to be
solved to exact local optimality by the present adaptive
convexification algorithm.
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This article contains a survey of some well known
facts about the complexity of global optimization, and
also describes some results concerning the average-case
complexity.

Consider the following optimization problem.
Given a class F of objective functions f defined on
a compact subset of d-dimensional Euclidean space, the
goal is to approximate the global minimum of f based
on evaluation of the function at sequentially selected
points. The focus will be on the error after n observa-
tions

	n D 	n( f ) D fn � f �;

where f n is the smallest of the first n observed function
values (other approximations besides f n are often con-
sidered).

Complexity of optimization is usually studied in the
worst- or average-case setting. In order for a worst-case
analysis to be useful the class of objective functions F
must be quite restricted. Consider the case where F is
a subset of the continuous functions on a compact set.
It is convenient to consider the class F = Cr([0, 1]d) of
real-valued functions on [0, 1]d with continuous deriva-
tives up to order r � 0. Suppose that r > 0 and f r is
bounded. In this case 
(��d/r) function evaluations are
needed to ensure that the error is at most � for any f 2
F; see [8].

An adaptive algorithm is one for which the (n + 1)st
observation point is determined as a function of the
previous observations, while a nonadaptive algorithm
chooses each point independently of the function val-
ues. In the worst-case setting, adaptation does not help
much under quite general assumptions. If F is convex
and symmetric (in the sense that�F = F), then themax-
imum error under an adaptive algorithm with n ob-
servations is not smaller than the maximum error of
a nonadaptive method with n + 1 observations; see [4].

Virtually all global optimization methods in prac-
tical use are adaptive. For a survey of such methods
see [6,9]. The fact that the worst-case performance can
not be significantly improved with adaptation leads to
consideration of alternative settings that may be more

appropriate. One such setting is the average-case set-
ting, in which a probability measure P on F is chosen.
The object of study is then the sequence of random
variables 	n(f ), and the questions include under what
conditions (for what algorithms) the error converges to
zero and for convergent algorithms the speed of con-
vergence. While the average-case error is often defined
as the mathematical expectation of the error, it is useful
to take a broader view, and consider for example con-
vergence in probability of an	n for some normalizing
sequence {an}.

With the average-case setting one can consider less
restricted classes F than in the worst-case setting. As F
gets larger, the worst-case deviates more andmore from
the average case, but may occur on only a small portion
of the set F. Even for continuous functions the worst-
case is arbitrarily bad.

Most of what is known about the average-case com-
plexity of optimization is in the one-dimensional set-
ting under theWiener probability measure on C([0, 1]).
Under the Wiener measure, the increments f (t)�f (s)
have a normal distribution with mean zero and vari-
ance t�s, and are independent for disjoint intervals. Al-
most every f is nowhere differentiable, and the set of
local minima is dense in the unit interval. One can thus
think of the Wiener measure as corresponding to as-
suming ‘only’ continuity; i. e., a worst-case probabilistic
assumption.

K. Ritter proved [5] that the best nonadaptive algo-
rithms have error of order n�1/2 after n function eval-
uations; the optimal order is achieved by observing at
equally spaced points. Since the choice of each new ob-
servation point does not depend on any of the previ-
ous observations, the computation can be carried out
in parallel. Thus under the Wiener measure, the opti-
mal nonadaptive order of convergence can be accom-
plished with an algorithm that has computational cost
that grows linearly with the number of observations and
uses constant storage. This gives the base on which to
compare adaptive algorithms.

Recent studies (as of 2000) have formally estab-
lished the improved power of adaptive methods in the
average-case setting by analyzing the convergence rates
of certain adaptive algorithms. A randomized algorithm
is described in [1] with the property that for any 0 < ı <
1, a version can be constructed so that under theWiener
measure, the error converges to zero at rate n�1+ı . This
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algorithm maintains a memory of two past observation
values, and the computational cost grows linearly with
the number of iterations. Therefore, the convergence
rate of this adaptive algorithm improves from the non-
adaptive n�1/2 rate to n�1+ı with only a constant in-
crease in storage.

Algorithms based on a random model for the ob-
jective function are well-suited to average-case analysis.
H. Kushner proposed [3] a global optimization method
based on modeling the objective function as a Wiener
process. Let {zn} be a sequence of positive numbers, and
let the (n + 1)st point be chosen to maximize the prob-
ability that the new function value is less than the pre-
viously observed minimum minus zn. This class of al-
gorithms, often called P-algorithms, was given a formal
justification by A. Žilinskas [7].

By allowing the {zn} to depend on the past observa-
tions instead of being a fixed deterministic sequence, it
is possible to establish a much better convergence rate
than that of the randomized algorithm described above.
In [2] an algorithm was constructed with the property
that the error converges to zero for any continuous
function and furthermore, the error is of order e�ncn ,
where {cn} (a parameter of the algorithm) is a determin-
istic sequence that can be chosen to approach zero at an
arbitrarily slow rate. Notice that the convergence rate
is now almost exponential in the number of observa-
tions n. The computational cost of the algorithm grows
quadratically, and the storage increases linearly, since
all past observations must be stored.

See also
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to Protein Folding

� Global Optimization Based on Statistical Models
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The adaptive simulated annealing (ASA) algorithm [3]
has been shown to be faster and more efficient than
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simulated annealing and genetic algorithms [4]. In
this article we first outline some of the aspects of the
method and specific computational details, and then re-
view the application of the ASA method to biomolec-
ular structure determination [15], specifically for Met-
Enkephalin and a model of the poly(L-Alanine) system.

The ASAMethod

For a system described by a cost function E({pi}), where
all pi (i = 1, . . . , D) are parameters (variables) having
ranges [Ai, Bi], the ASA procedure to find the global
optimum of ‘E’ contains the following elements.

Monte-Carlo Configurations

As the kth point is saved in aD-dimensional configura-
tion space, the new point pikC1 is generated by:

pikC1 D pik C yi (Bi � Ai ); (1)

where the random variables yi in [�1, 1] (non-uniform)
are generated from a random number ui uniformly dis-
tributed in [0, 1], and the temperature Ti associated
with parameter pi, as follows:

yi D sgn(ui � 0:5)Ti

"�
1C

1
Ti

�j2u i�1j
� 1

#
: (2)

Note that if pikC1 is outside the range of [Ai, Bi] it will
be disregarded, with the process being repeated until it
falls within the range. The choice of yi is made so that
the probability density distribution of the D parameters
will satisfy the distribution of each parameter:

gi (yi ; Ti ) D
1

2(jyi j C Ti )(1C 1
Ti
)
; (3)

which is chosen to ensure that any point in configura-
tion space can be sampled infinitely often in annealing
time with a cooling schedule outlined below. Thus, at
any annealing time k0, the probability of not generating
a global optimum, given infinite time, is zero:

1Y
kDk0

(1 � gk) D 0; (4)

where gk is the distribution function at time step k. Note
that all atoms move at each Monte-Carlo step in ASA.
A Boltzmann acceptance criterion is then applied to the
difference in the cost function.

Annealing Schedule

The annealing schedule for each parameter tempera-
ture from a starting temperature T0i, and similarly for
the cost temperature, is given by:

Ti (ki ) D T0i exp
�
�ci k

1
D
i

�
; (5)

where ci and ki are the annealing scale and ASA step of
parameter pi. The index for re-annealing the cost func-
tion is determined by the number of accepted points
instead of the number of generated points as is being
used for the parameters. This choice was made since
the Boltzmann acceptance criterion uses an exponen-
tial distribution which is not as ‘fat-tailed’ as the ASA
distribution used for the parameters.

Re-Annealing

The temperatures may be periodically re-annealed or
re-scaled according to the sensitivity of the cost func-
tion. At any given annealing time, the temperature
range is ‘stretched out’ over the relatively insensitive pa-
rameters, thus guiding the search ‘fairly’ among the pa-
rameters. The sensitivity of the energy to each parame-
ter is calculated by:

Si D
@E
@pi

; (6)

while the re-annealing temperature is determined by:

Ti (k0) D Ti (k)
Si
Smax

: (7)

In this way, less sensitive parameters anneal faster. This
is done approximately every 100 accepted events.

For comparison, within conventional simulated an-
nealing [6] the cooling schedule is given by:

STk D T0e�(1�c)k (0 < c < 1); (8)

where trial and error are applied to determine the an-
nealing rate c�1 as well as the starting temperature
T0. A Monte-Carlo simulation is carried out at each
temperature step k with temperature Tk. This cooling
schedule is equivalent to Tk + 1 = Tk c.

The ASA algorithm is mostly suited to problems for
which less is known about the system, and has proven
to be more robust than other simulated annealing tech-
niques for complex problems with multiple local min-
ima, e. g., as compared to Cauchy annealing where Ti
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= T0/k, and Boltzmann annealing where Ti = T0/ln
k. The annealing schedule in (8), faster than ASA for
a large dimension of D, does not pass the infinitely of-
ten annealing-time test in (4), and is therefore referred
to as simulated quench in the terminology of ASA.

Application to Protein Folding

Computational Details

A protein can be defined as a biopolymer of hundreds
of amino acids bonded by peptide bonds, while the test
models in this article contain less amino acids, namely
oligopeptides. The Met-Enkephalin model was con-
structed as (H-Tyr-Gly-Gly-Phe-Met-OH). For 14(L-
Alanine), the neutral —NH2 and —COOH end groups
were substituted at the termini. The conformation of
a protein is described by the dihedral angles of the back-
bone (� i,  i), side-chains (�

j
i), and peptide bond (!i,

often very close to 180°). Therefore, the conformation
determination of the most stable protein is to find the
set of {�,  , �, !} which give the global minimal po-
tential energy E(�,  , �, !). Within the ASA nomen-
clature, the ‘cost function’ is the potential energy, while
a ‘parameter’ is a dihedral angle variable.

Conformational analyses using conventional simu-
lated annealing were carried out previously [9,11]. The
modifications in these works include moving a number
of dihedral angles in a Monte-Carlo step; adjusting the
maximum deviation of the variables as the temperature
decreases to insure that the acceptance ratio is more
than 25%; and treating the variables differently accord-
ing to their importance in the folding process, e. g., by
increasing sampling for the backbone dihedral angles as
compared to those of the side-chains. It is interesting to
point out that within ASA these modifications are im-
plicitly included.

Each ASA run in our work was started from a ran-
dom initial configuration {�,  , �}. The dihedral angle
! was fixed to 180° in all of the ASA runs. The initial
temperature was determined by the average energy of 5
or 10 random samplings, and a full search range of the
dihedral angles (� 
 , 
) was set. The typical maximum
number of calls to the energy function was 30000. An
ASA run was terminated if it repeated the best energy
value for 3 or 5 re-annealing cycles (each cycle gener-
ates 100 configurations). Further refinement of the final
ASA optimized configuration was carried out by using

the local minimizer SUMSL [1], or the conjugate gradi-
ent method. The combination of the ASA application
and a local minimizer improved the efficiency of the
search.

The ASA calculation is governed by various control
parameters [3], for which the most important setting
is the annealing rate for the temperatures of ‘cost’ and
‘parameters’, determined by the so-called ‘temperature-
ratio-scale’ (the ratio of the final to the initial tem-
perature after certain annealing steps) and the ‘cost-
parameter-scale’. The control parameters were varied
to improve the search efficiency. Adequate control pa-
rameters used for obtaining the results reported in
this study were: ‘temperature-ratio-scale’ = 10�4; ‘cost-
parameter-scale’ = 0.5. These parameter settings corre-
spond to an annealing rate for energy of ccost = 3.6, and
for all dihedral angles of cparameter = 7.2. Note that the
annealing rate for all dihedral angles was chosen to be
the same.

Met-Enkephalin

Met-Enkephalin has a complicated energy surface
[11,16]. The lowest energy for Met-Enkephalin was
found to be �12.9 kcal/mol with the force field being
ECEPP/2 (Empirical Conformation Energy Program
for Peptides) [8].With all! fixed, the lowest energy was
found to be �10.7 kcal/mol by MCM [14]. Using dif-
ferent initial conformations and control parameter set-
tings of the cooling schedule as described above, 55 in-
dependent ASA runs were carried out. Table 1 summa-
rizes the energy distribution of these calculations. Most
of the ASA calculations result in energies in the range
of �8 to �3 kcal/mol, with 7 of the results determining
conformations having energies that are only 3 kcal/mol
above the known lowest energy, thus exhibiting the ef-
fectiveness of the approach. Moreover, as the range of
search was somewhat narrowed, almost all of the ASA
runs reach the global energy minimum.

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 1
The energy (in kcal/mol) distribution of ASA runs for Met-
Enkephalin using a full search range

Energy <� 8 (�8,�5) (�5,�3) >� 3
No. of runs 7 19 19 10



24 A Adaptive Simulated Annealing and its Application to Protein Folding

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 2
Energy and dihedral angles of the lowest energy conforma-
tions of Met-Enkephalin calculated by ASA. RMSD1 is the
root-mean-squaredeviation (inÅ) for backboneatoms,while
RMSD2 is for all atoms

A0 A 1 2 3 4
E �12:9 �10:7 �10:6 �10:4 �10:1 �8:5
�1 �86 �87 �87 �87 �87 �87
 1 156 154 153 153 156 153
�2 �155 �162 �161 �162 �166 �166
 2 84 71 72 75 87 72
�3 84 64 64 63 68 63
 3 �74 �93 �94 �95 �91 �97
�4 �137 �82 �83 �81 �103 �74
 4 19 �29 �26 �30 �13 �30
�5 �164 �81 �79 �76 �76 �82
 5 160 144 133 132 137 143
�11 �173 �180 180 179 �166 �180
�21 79 �111 �110 71 88 73
�31 �166 145 145 �35 �148 �179
�14 59 180 72 �179 71 179
�24 �86 �100 84 �100 �93 �100
�15 53 �65 �171 �173 �65 �65
�25 175 �179 176 176 �178 �179
�35 �180 �179 180 179 �178 �179
�45 �58 �180 �60 60 �178 �179
RMSD1 0 0:04 0:07 0:51 0:26
RMSD2 0 2:52 1:92 2:08 1:29

For the full range search, we identified three
conformations with energies of �10.6, �10.4, and
�10.1 kcal/mol, that exhibit the configuration of the
known lowest geometry of �10.7 kcal/mol. Table 2 lists
the conformations of these lowest energy configura-
tions, as well as an additional low energy structure.
Conformations A0 and A are the lowest-energy confor-
mations with ! nonfixed and fixed, respectively, taken
from [11,14]. The first two conformations, #1 and #2,
have almost the same backbone configuration as that of
A (�10.7 kcal/mol), with a backbone root-mean-square
deviation (RMSD) of only 0.04 and 0.07Å, respectively.
The all-atom RMSD of the listed conformations with
energies ranging from�8.5 to�10.6 kcal/mol are about
2Å. For conformations #1 and #2, the noted differ-
ences are in the side-chains, corresponding to a 0.1 and
0.3 kcal/mol difference in energy, respectively.

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 3
The conformation of amodel 14(L-Alanine) peptide as calcu-
lated by ASA

2 3 4 5 6
� �99:4 �68:2 �68:0 �69:3 �66:9
 158:1 �34:3 �38:8 �38:5 �38:6

7 8 9 10 11
� �68:3 �66:7 �68:8 �67:1 �69:4
 �39:2 �38:0 �38:7 �37:7 �39:6

12 13 14 15
� �65:0 �67:2 �87:7 �75:9
 �40:0 �44:6 65:8 �40:1

Poly(L-Alanine)

The ASA algorithm was applied to a model of (L-
Alanine) that is known to assume a dominant right-
handed ˛-helical structure [13]. For a search range
of dihedral angles that include both the right-handed
(RH) ˛-helix and the ˇ-sheet region in the Ramachan-
dran’s diagram,  : (�115°, � 180°) and �: (� 115°, 0°),
it was significant to find RH ˛-helices with � 	 � 68°
and  	 � 38° in all backbones except those near the
end-groups, as shown in Table 3. The energy of such
a geometry is typically�10.2 kcal/mol after a local min-
imization. The energy surfaces of the RH ˛-helical re-
gions were found to be less complex than those of Met-
Enkephalin. These results are consistent with a previous
study [16].

Conclusion

The adaptive simulated annealing as a global optimiza-
tion method intrinsically includes some of the modi-
fications of conventional simulated annealing used for
biomolecular structure determination. As applied to
Met-Enkephalin, the performance of ASA is compara-
ble to the simulated annealing study reported in [12],
while better than the one reported in [11], although
some differences other than the algorithms are noted.
Utilizing a partial search range improves the efficiency
significantly, showing that ASA may be useful for re-
finement of a molecular structure predicted or mea-
sured by other methods. A dominant right-handed
˛-helical conformation was found for the 14 residue
(L-Alanine) model, with deviations observed only near
the end groups.
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Recent Studies and Future Directions

Recent studies have shown improved efficiency in the
conformational search of Met-Enkephalin, e. g., the
so-called conformation space annealing (CSA), which
combines the ideas of genetic algorithms, simulated an-
nealing, a build up procedure, and local minimization
[7]. The use of the multicanonical ensemble algorithm
(ME) (one of the generalized-ensemble algorithms [2]),
allows free random walks in energy space, escaping
from any energy barrier. Both the ME and CSA al-
gorithms outperform genetic algorithms (GA), simu-
lated annealing (SA), GA with minimization (GAM)
and Monte-Carlo with minimization (MCM). Our own
work (unpublished) and the work in ref. [5] both show
that simple GA alone underperforms simulated an-
nealing for the Met-Enkephalin conformational search
problem. Table 4 compares these algorithms for effi-
ciency (the number of evaluations of energy and energy
gradient, or the number of local minimizations) and ef-
fectiveness (the number of runs reaching the ground
state conformation (hits) versus the number of total
independent runs). Caution should be exercised since
some differences exist between these studies, such as the
version of the ECEPP potential used, the treatment of
the peptide dihedral angle !, etc. Ground state confor-

Adaptive Simulated Annealing and its Application to Protein
Folding, Table 4
Comparison of the conformation search efficiency and effec-
tiveness of Met-Enkephalin using different algorithms. NE ,
Nr E , and Nminz are the number of the evaluations of energy,
energy gradient, and number of local minimizations of each
run, in the unit of 103

hits/total NE NrE Nminz
ME [2] 10/10 < 1900 0 0

MCM [11] 24/24 
 
 15
GAM [10] 5/5 
 
 50
ME [2] 18/20 950 0 0
CSA [7] 99/100 300 250 5
ME [2] 21/50 400 0 0
CSA [7] 50/100 170 130 2:6
SA [2] 8/20 1000 0 0
GA [5] < 1/27 100 0 0:001


: The total number of E,rE evaluations are not given,
but can be estimated based on roughly 100 evalua-
tions for each minimization.

mations are those having energy within approximately
1eV from the known global minimum energy. Note that
the generalized-ensemble method can be carried out
with both Monte-Carlo and molecular dynamics.

In comparison to the studies summarized in Ta-
ble 4, ASA seems to be using too small a number
of function evaluations. Optimizing control parame-
ters such as the annealing schedule and increasing the
number of energy evaluations may improve the effec-
tiveness. Search efficiency could also be improved by
adopting parallellization to achieve scalable simulation
for various algorithms. Extensive research on the pro-
tein conformational search using various hybrids of ge-
netic algorithms and parallelization is in progress (as of
1999).
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The airline industry was one of the first to apply oper-
ations research methodology and techniques on a large
scale. As early as the late 1950s, operations researchers
were beginning to study how the developing fields of
mathematical programming could be used to address
a number of very difficult problems faced by the air-
line industry. Since that time many airline related prob-
lems have been the topics of active research [26]. Most
optimization-related research in the airline industry
can be placed in one of the following areas:
� network design and schedule construction;
� fleet assignment;
� aircraft routing;
� crew scheduling;
� revenue management;
� irregular operations;
� air traffic control and ground delay programs.

In the following, each of these problem areas will
be defined along with a brief discussion of some of
the operations research techniques that have been ap-
plied to solve them. The majority of applications uti-
lize network-based models. Solution of these models
range from traditional mathematical programming ap-
proaches to a variety of novel heuristic approaches.
A very brief selection of references is also provided.

Construction of flight schedules is the starting point
for all other airline optimization problems and is a crit-
ical operational planning task faced by an airline. The
flight schedule defines a set of flight segments that an
airline will service along with corresponding origin and
destination points and departure and arrival times for
each flight segment. An airline’s decision to offer cer-
tain flights will depend in large part on market de-
mand forecasts, available aircraft operating characteris-
tics, available manpower, and the behavior of compet-
ing airlines [11,12].

Of course, prior to the construction of flight sched-
ules, an airline must decide which markets it will serve.
Before the 1978 ‘Airline Deregulation Act’, airlines
had to fly routes as assigned by the Civil Aeronautics
Board regardless of the demand for service. During this
period, most airlines emphasized long point-to-point
routes. Since deregulation, airlines have gained the free-
dom to choose which markets to serve and how often
to serve them. This change led to a fundamental shift
in most airlines routing strategies from point-to-point
flight networks to hub-and-spoke oriented flight net-

works. This, in turn, led to new research activities for
finding optimal hub [3,18] and maintenance base [13]
locations.

Following network design and schedule construc-
tion, an aircraft type must be assigned to each flight
segment in the schedule. This is called the fleet assign-
ment problem. Airlines generally operate a number of
different fleet types, each having different characteris-
tics and costs such as seating capacity, landing weights,
and crew and fuel costs. The majority of fleet assign-
ment methods represent the flight schedule via some
variant of a time-space network with flight arcs between
stations and inventory arcs at each station. Amulticom-
modity network flow problem can then be formulated
with arcs and nodes duplicated as appropriate for all
fleets that can take a particular flight. Side constraints
must be implemented to ensure each flight segment is
assigned to only one fleet. In domestic fleet assignment
problems, a common simplifying assumption is that ev-
ery flight is flown every day of the week. Under this
assumption, the network model need only account for
one day’s flights and a looping arc connects the end of
the day with the beginning. The resulting models are
mixed integer programs [1,16,27,30].

Aircraft routing is a fleet by fleet process of assign-
ing individual aircraft to fly each flight segment as-
signed to a particular fleet. A primary consideration
at this stage is maintenance requirements mandated by
the Federal Aviation Administration. There are differ-
ent types of maintenance activities that must be per-
formed after a given number of flight hours. The ma-
jority of these maintenance activities can be performed
overnight; however, not all stations are equipped with
proper maintenance facilities for all fleets. During the
aircraft routing process, individual aircraft from each
fleet must be assigned to fly all flight segments assigned
to that fleet in a manner that provides maintenance op-
portunities for all aircraft at appropriate stations within
the required time intervals. This problem has been for-
mulated and solved in a number of ways including as
a general integer programming problem solved by La-
grangian relaxation [9] and as a set partitioning prob-
lem solved with a branch and bound algorithm [10].

As described above, the problems of fleet assign-
ment and aircraft routing have been historically solved
in a sequential manner. Recently, work has been done
to solve these problems simultaneously using a string-
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based model and a branch and price solution ap-
proach [5].

Crew scheduling, like aircraft routing, is done fol-
lowing fleet assignment. The first of two sequentially
solved crew scheduling problems is the crew pairing
problem. A crew pairing is a sequence of flight legs
beginning and ending at a crew base that satisfies all
governmental and contractual restrictions (some times
called legalities). These crew pairings generally cover
a period of 2–5 days. The problem is to find a mini-
mum cost set of such crew pairings such that all flight
segments are covered. This problem has generally been
modeled as a set partitioning problem in which pair-
ings are enumerated or generated dynamically [15,17].
Other attempts to solve this problem have employed
a decomposition approach based on graph partitioning
[4] and a linear programming relaxation of a set cover-
ing problem [21]. Often a practice called deadheading
is used to reposition flight crews in which a crew will fly
a flight segment as passengers. Therefore, in solving the
crew-pairing problem, all flight segments must be cov-
ered, but they may be covered by more than one crew.

The second problem to be solved relating to crew
scheduling is the monthly crew rostering problem. This
is the problem of assigning individual crew members to
crew pairings to create their monthly schedules. These
schedules must incorporate time off, training periods,
and other contractual obligations. Generally, a prefer-
ential bidding system is used to make the assignments
in which each personalized schedule takes into account
an employee’s pre-assigned activities and weighted bids
representing their preferences. While the crew pairing
problem has been widely studied, a limited number of
publications have dealt with the monthly crew rostering
problem. Approaches include an integer programming
scheme [14] and a network model [24].

Revenue management is the problem of determin-
ing fare classes for each flight in the flight schedule as
well as the allocation of available seats to each fare class.
Not only are seats on an airplane partitioned physically
into sections such as first class and coach, but also seats
in the same section are generally priced at many differ-
ent levels. The goal is to maximize the expected revenue
from a particular flight segment by finding the proper
balance between gaining additional revenue by selling
more inexpensive seats and losing revenue by turn-
ing away higher fare customers. A standard assump-

tion is that fare classes are filled sequential from the
lowest to the highest. This is often the case where dis-
counted fares are offered in advance, while last minute
tickets are sold at a premium. Recent research includes
a probabilistic decision model [6], a dynamic program-
ming formulation [31] and some calculus-based book-
ing policies [8].

When faced with a lack of resources, airlines of-
ten are not able to fly their published flight schedule.
This is frequently the result of aircraft mechanical dif-
ficulties, inclement weather, or crew shortages. As situ-
ations like these arise, decisions must be made to deal
with the shortage of resources in a manner that returns
the airline to the originally planned flight schedule in
a timely fashion while attempting to reduce operational
cost and keep passengers satisfied. This general situa-
tion is called the airline irregular operations problem
and it involves aircraft, crew, gates, and passenger re-
covery.

The aircraft schedule recovery problem deals with
re-routing aircraft during irregular operations. This
problem has received significant attention among ir-
regular operations topics; papers dealing with crew
scheduling during irregular operations have only re-
cently started to appear [28,35]. Most approaches for
dealing with aircraft schedule recovery have been based
on network models. Some early models were pure net-
works [19]. Recently, more comprehensive models have
been developed that better represent the problem, but
are more difficult to solve as side constraints have been
added to the otherwise network structure of these prob-
lems [2,33,36]. In practice, many airlines use heuristic
methods to solve these problems as their real-time na-
ture does not allow for lengthy optimization run times.

Closely related to the irregular operations prob-
lem is the ground delay problem in air traffic control.
Ground delay is a program implemented by the Fed-
eral Aviation Administration in cases of station conges-
tion. During ground delay, aircraft departing for a con-
gested station are held on the ground before departure.
The rational for this behavior is that ground delays are
less expensive and safer than airborne delays. Several
optimization models have been formulated to decrease
the total minutes of delay experienced throughout the
system during a ground delay program. These prob-
lems have generally been modeled as integer programs
([22,23]), but the problem has also been solved using



Airline Optimization A 29

stochastic linear programming [25] and by heuristic
methods [34].

Optimization based methods have also been ap-
plied to a myriad of other airline related topics such as
gate assignment [7], fuel management [29], short term
fleet assignment swapping [32], demandmodeling [20],
and others. Airline industry is an exciting arena for
the interplay between optimization theory and practice.
Many more optimization applications in the airline in-
dustry will evolve in the future.

See also

� Integer Programming
� Vehicle Scheduling
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Introduction

Interval optimization methods (� interval analysis: un-
constrained and constrained optimization) have the
guarantee not to loose global optimizer points. To
achieve this, a deterministic branch-and-bound frame-
work is applied. Still, heuristic algorithmic improve-
ments may increase the convergence speed while keep-
ing the guaranteed reliability.

The indicator parameter called RejectIndex

p f �(X) D
f � � F(X)

F(X) � F(X)

was suggested by L.G. Casado as a measure of the close-
ness of the interval X to a global minimizer point [1].
It was first applied to improve the work load balance of
global optimization algorithms.

A subinterval X of the search space with the mini-
mal value of the inclusion function F(X) is usually con-
sidered as the best candidate to contain a global min-
imum. However, the larger the interval X, the larger
the overestimation of the range f (X) on X compared
to F(X). Therefore a box could be considered as a good
candidate to contain a global minimum just because it
is larger than the others. To compare subintervals of
different sizes we normalize the distance between the
global minimum value f * and F(X).

The idea behind pf * is that in general we expect
the overestimation to be symmetric, i. e., the overes-
timation above f (X) is closely equal to the overesti-
mation below f (X) for small subintervals containing
a global minimizer point. Hence, for such intervals X
the relative place of the global optimum value inside
the F(X) interval should be high, while for intervals far
from global minimizer points pf * must be small. Obvi-
ously, there are exceptions, and there exists no theoreti-
cal proof that pf * would be a reliable indicator of nearby
global minimizer points.

The value of the global minimum is not available in
most cases. A generalized expression for a wider class
of indicators is

p( f̂ ; X) D
f̂ � F(X)

F(X) � F(X)
;

where the f̂ value is a kind of approximation of the
global minimum. We assume that f̂ 2 F(X), i. e., this
estimation is realistic in the sense that f̂ is within the
known bounds of the objective function on the search
region. According to the numerical experience col-
lected, we need a good approximation of the f * value
to improve the efficiency of the algorithm.

Subinterval Selection

I. Among the possible applications of these indica-
tors the most promising and straightforward is in
the subinterval selection. The theoretical and computa-
tional properties of the interval branch-and-bound op-
timization has been investigated extensively [6,7,8,9].
The most important statements proved are the follow-
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ing for algorithms with balanced subdivision direction
selection:
1. Assume that the inclusion function of the objective

function is isotone, it has the zero convergence prop-
erty, and the p(f k,Y) parameters are calculated with
the f k parameters converging to f̂ > f �, for which
there exists a point x̂ 2 X with f (x̂) D f̂ . Then the
branch-and-bound algorithm that selects that inter-
val Y from the working list which has the max-
imal p(f i,Z) value can converge to a point x̂ 2 X
for which f (x̂) > f �, i. e., to a point which is not
a global minimizer point of the given problem.

2. Assume that the inclusion function of the objective
function has the zero convergence property and f k
converges to f̂ < f �. Then the optimization branch-
and-bound algorithm will produce an everywhere
dense sequence of subintervals converging to each
point of the search region X regardless of the objec-
tive function value.

3. Assume that the inclusion function of the objective
function is isotone and has the zero convergence
property. Consider the interval branch-and-bound
optimization algorithm that uses the cutoff test, the
monotonicity test, the � interval Newton step, and
the concavity test as accelerating devices, and that
selects as the next leading interval that interval Y
from the working list which has the maximal p(f i,Z)
value. A necessary and sufficient condition for the
convergence of this algorithm to a set of global min-
imizer points is that the sequence {f i} converges to
the global minimum value f *, and there exist at most
a finite number of f i values below f *.

4. If our algorithm applies the interval selection rule
of maximizing the p( f �; X) D p f �(X) values for the
members of the list L (i. e., if we can use the known
exact global minimum value), then the algorithm
converges exclusively to global minimizer points.

5. If our algorithm applies the interval selection rule of
maximizing the p( f̃ ; X) values for the members of
the list L, where f̃ is the best available upper bound
for the global minimum, and its convergence to f *

can be ensured, then the algorithm converges exclu-
sively to global minimizer points.

6. Assume that for an optimization problem
minx2X f (x) the inclusion function F(X) of f (x)
is isotone and ˛-convergent with given positive
constants ˛ and C. Assume further that the pf * pa-

rameter is less than 1 for all the subintervals of X.
Then an arbitrary large number N(> 0) of consecu-
tive leading intervals of the basic B&B algorithm that
selects the subinterval with the smallest lower bound
as the next leading interval may have the following
properties:
i. None of these processed intervals contains a sta-

tionary point.
ii. During this phase of the search the pf * values are

maximal for these intervals.
7. Assume that the inclusion function of the objective

function is isotone and it has the zero convergence
property. Consider the interval branch-and-bound
optimization algorithm that uses the cutoff test, the
monotonicity test, the interval Newton step, and the
concavity test as accelerating devices and that selects
as the next leading interval that interval Y from the
working list which has the maximal pf (f k ,Z) value.
i. The algorithm converges exclusively to global

minimizer points if

f
k
� fk < ı( f k � f

k
)C f

k

holds for each iteration number k, where
0 < ı < 1.

ii. The above condition is sharp in the sense that
ı D 1 allows convergence to not optimal points.

Here f
k
D minfF(Y l ); l D 1; : : : ; jLk jg � fk < f̃k D

f k ; where |L| stands for the cardinality of the elements
of the list L.

II. These theoretical results are in part promising
(e. g., 7), in part disappointing (5 and 6). The conclu-
sions of the detailed numerical comparisons were that
if the global minimum value is known, then the use of
the pf * parameter in the described way can accelerate
the interval optimization method by orders of magni-
tude, and this improvement is especially strong for hard
problems.

In case the global minimum value is not available,
then its estimation, f k , which fulfills the conditions of 7,
can be utilized with similar efficacy, and again the best
results were achieved on difficult problems.

Multisection

I. The multisection technique is a way to accelerate
branch-and-bound methods by subdividing the actual
interval into several subintervals in a single algorithm
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step. In the extreme case half of the function evalua-
tions can be saved [5,10]. On the basis of the RejectIn-
dex value of a given interval it is decided whether simple
bisection or two higher-degree multisections are to be
applied [2,11]. Two threshold values, 0 < P1 < P2 < 1,
are used for selecting the proper multisection type.

This algorithm improvement can also be cheated
in the sense that there exist global optimization prob-
lems for which the new method will follow for an ar-
bitrary long number of iterations an embedded interval
sequence that contains no global minimizer point, or
that intervals in which there is a global minimizer have
misleading indicator values.

According to the numerical tests, the new multisec-
tion strategies result in a substantial decrease both in
the number of function evaluations and in the memory
complexity.

II. The multisection strategy can also be applied
to constrained global optimization problems [11]. The
feasibility degree index for constraint g j(x) � 0 can be
formulated as

puG j (X) D min

(
�G j(X)
w(Gj(X))

; 1

)
:

Notice that if puG j (X) < 0, then the box is certainly in-
feasible, and if puG j (X) D 1 then X certainly satisfies
the constraint. Otherwise, the box is undetermined for
that constraint. For boxes that are not certainly infea-
sible, i. e., for which puG j (X) � 0 for all j D 1; : : : ; r
holds, the total infeasibility index is given by

pu(X) D
rY

jD1

puG j (X) :

Wemust only define the index for such boxes since cer-
tainly infeasible boxes are immediately removed by the
algorithm from further consideration. With this defini-
tion,
� pu(X) D 1, X is certainly feasible and
� pu(X) 2 [0; 1), X is undetermined.

Using the pu(X) index, we now propose the fol-
lowing modification of the RejectIndex for constrained
problems:

pup( f̂ ; X) D pu(X) � p( f̂ ; X) ;

where f̂ is a parameter of this indicator, which is usu-
ally an approximation of f *. This new index works like
p( f̂ ; X) if X is certainly feasible, but if the box is unde-
termined, then it takes the feasibility degree of the box
into account: the less feasible the box is, the lower the
value of pu(X) is.

A careful theoretical analysis proved that the new
interval selection and multisection rules enable the
branch-and-bound interval optimization algorithm to
converge to a set of global optimizer points assuming
we have a proper sequence of {f k} parameter values.
The convergence properties obtained were very simi-
lar to those proven for the unconstrained case, and they
give a firm basis for computational implementation.

A comprehensive numerical study on standard
global optimization test problems and on facility loca-
tion problems indicated [11] that the constrained ver-
sion interval selection rules and, to a lesser extent, also
the new adaptive multisection rules have several advan-
tageous features that can contribute to the efficiency of
the interval optimization techniques.

Heuristic Rejection

RejectIndex can also be used to improve the efficiency
of interval global optimization algorithms on very hard
to solve problems by applying a rejection strategy to
get rid of subintervals not containing global minimizer
points. This heuristic rejection technique selects those
subintervals on the basis of a typical pattern of changes
in the pf * values [3,4].

The RejectIndex is not always reliable: assume that
the inclusion function F(X) of f (x) is isotone and ˛-
convergent. Assume further that the RejectIndex pa-
rameter pf * is less than 1 for all the subintervals of X.
Then an arbitrary large number N(> 0) of consecutive
leading intervals may have the following properties:
i. Neither of these processed intervals contains a sta-

tionary point, and
ii. During this phase of the search the pf * values are

maximal for these intervals as compared with the
subintervals of the current working list.
Also, when a global optimization problem has

a unique global minimizer point x*, there always exists
an isotone and ˛-convergent inclusion function F(X)
of f (x) such that the new algorithm does not converge
to x*.
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In spite of the possibility of losing the global mini-
mum, obviously there exist such implementations that
allow a safe way to use heuristic rejection. For example,
the selected subintervals can be saved on a hard disk for
further possible processing if necessary.

Although the above theoretical results were not
encouraging, the computational tests on very hard
global optimization problems were convincing: when
the whole list of subintervals produced by the B&B al-
gorithm is too large for the given computer memory,
then the use of the suggested heuristic rejection tech-
nique decreases the number of working list elements
without missing the global minimum. The new rejec-
tion test may also make it possible to solve hard-to-
solve problems that are otherwise unsolvable with the
usual techniques.
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Abstract

The genome of an organism not only serves as its
blueprint that holds the key for diagnosing and cur-
ing diseases, but also plays a pivotal role in obtaining
a holistic view of its ancestry. Recent years have wit-
nessed a large number of innovations in this field, as
exemplified by the Human Genome Project. This chap-
ter provides an overview of popular algorithms used in
genome analysis and in particular explores two impor-
tant and deeply interconnected problems: phylogenetic
analysis and multiple sequence alignment. We also de-
scribe our novel graph-theoretical approach that en-
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compasses a wide variety of genome sequence analysis
problems within a single model.

Introduction

Genomics encompasses the study of the genome in hu-
man and other organisms. The rate of innovation in this
field has been breathtaking over the last decade, espe-
cially with the completion of Human Genome Project.
The purpose of this chapter is to review some well-
known algorithms that facilitate genome analysis. The
material is presented in a way that is interesting to
both the specialists working in this area and others.
Thus, this review includes a brief sketch of the al-
gorithms to facilitate a deeper understanding of the
concepts involved. The list of problems related to ge-
nomics is very extensive; hence, the scope of this chap-
ter is restricted to the following two related important
problems: (1) phylogenetic analysis and (2) multiple
sequence alignment. Readers interested in algorithms
used in other fields of computational biology are rec-
ommended to refer to reviews by Abbas and Holmes [1]
and Blazewicz et al. [7].

Genome refers to the complete DNA sequence con-
tained in the cell. The DNA sequence consists of the
four nucleotides adenine (A), thymine (T), cytosine
(C), and guanine (G). Associated with each DNA strand
(sequence) is a complementary DNA strand of the same
length. The strands are complementary in that each nu-
cleotide in one strand uniquely defines an associated
nucleotide in the other: A and T are always paired, and
C and G are always paired. Each pairing is referred to as
a base pair; and bound complementary strands make up
a DNAmolecule. Typically, the number of base pairs in
a DNAmolecule is between thousands and billions, de-
pending on the complexity of a given organism. For ex-
ample, a bacterium contains about 600,000 base pairs,
while human and mouse have some three billion base
pairs. Among humans, 99.9% of base pairs are the same
between any two unrelated persons. But that leaves mil-
lions of single-letter differences, which provide genetic
variation between people.

Understanding the DNA sequence is extremely im-
portant. It is considered as the blueprint for an organ-
ism’s structure and function. The sequence order un-
derlies all of life’s diversity, even dictating whether an
organism is human or another species such as yeast or

a fruit fly. It helps in understanding the evolution of
mankind, identifying genetic diseases, and creating new
approaches for treating and controlling those diseases.
In order to achieve these goals, research in genome
analysis has progressed rapidly over the last decade.

The rest of this chapter is organized as follows.
Section “Phylogenetic Analysis” discusses techniques
used to infer the evolutionary history of species and
Sect. “Multiple Sequence Alignment” presents the mul-
tiple sequence alignment problem and recent advances.
In Sect. “Novel Graph-Theoretical Genomic Models”,
we describe our research effort for advancing genomic
analysis through the design of a novel graph-theoretical
approach for representing a wide variety of genomic se-
quence analysis problems within a single model. We
summarize our theoretical findings, and present com-
putational models based on two integer programming
formulations. Finally, Sect. “Summary” summarizes the
interdependence and the pivotal role played by the
abovementioned two problems in computational biol-
ogy.

Phylogenetic Analysis

Phylogenetic analysis is a major aspect of genome re-
search. It refers to the study of evolutionary relation-
ships of a group of organisms. These hierarchical rela-
tionships among organisms arising through evolution
are usually represented by a phylogenetic tree (Fig. 1).
The idea of using trees to represent evolution dates back
to Darwin. Both rooted and unrooted tree representa-
tions have been used in practice [17]. The branches of
a tree represent the time of divergence and the root rep-
resents the ancestral sequence (Fig. 2).

The study of phylogenies and processes of evolution
by the analysis of DNA or amino acid sequence data is

Algorithms for Genomic Analysis, Figure 1
An example of an evolutionary tree
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Algorithms for Genomic Analysis, Figure 2
Tree terminology

called molecular phylogenetics. In this study, we will fo-
cus on methods that use DNA sequence data. There are
two processes involved in inferring both rooted and un-
rooted trees. The first is estimating the branching struc-
ture or topology of the tree. The second is estimating
the branch lengths for a given tree. Currently, there are
wide varieties of methods available to conduct this anal-
ysis [16,19,55,79]. These available approaches can be
classified into three broad groups: (1) distance meth-
ods; (2) parsimony methods; and (3) maximum likeli-
hood methods. Below, we will discuss each of them in
detail.

Methods Based on Pairwise Distance

In distance methods, an evolutionary distance dij is
computed between each pair i, j of sequences, and
a phylogenetic tree is constructed from these pair-
wise distances. There are many different ways of defin-
ing pairwise evolutionary distance used for this pur-
pose. Most of the approaches estimate the number of
nucleotide substitutions per site, but other measures
have also been used [70,71]. The most popular one is
the Jukes–Cantor distance [37], which defines dij as
� 3

4 log(1 �
4 f
3 ), where f is the fraction of sites where

nucleotides differ in the pairwise alignment [37].
There are a large number of distance methods for

constructing evolutionary trees [78]. In this article, we
discuss methods based on cluster analysis and neighbor
joining.

Cluster Analysis: Unweighted Pair Group Method
Using Arithmetic Averages The conceptually sim-
plest and most known distance method is the un-
weighted pair group method using arithmetic aver-
ages (UPGMA) developed by Sokal and Michener [66].
Given a matrix of pairwise distances between each pair
of sequences, it starts with assigning each sequence to
its own cluster. The distances between the clusters are
defined as di j D 1

jCi jC jj

P
p2 Ci ;q2 C j

d(p; q), where Ci

and Cj denote sequences in clusters i and j, respectively.
At each stage in the process, the least distant pair of
clusters are merged to create a new cluster. This pro-
cess continues until only one cluster is left. Given n se-
quences, the general schema of UPGMA is shown in
Algorithm 1.

Algorithm 1 (UPGMA)
1. Input: Distance matrix dij, 1 � i; j � n
2. For i D 1 to n do
3. Define singleton cluster Ci comprising of se-

quence i
4. Place cluster Ci as a tree leaf at height zero
5. End for
6. Repeat
7. Determine two clusters i, j such that dij is mini-

mal.
8. Merge these two clusters to form a new cluster k

having a distance from other clusters defined as
the weighted average of the comprising two
clusters. If Ck is the union of two clusters Ci

and Cj, and if Cl is any other cluster, then dkl =
di l jCi jCd j l jC jj

jCi jCjC j j
.

9. Define a node k at height di j
2 with daughter nodes

i and j.
10. Until just a single cluster remains

The time and space complexity of UPGMA is O(n2),
since there are n � 1 iterations of complexity O(n).
A number of approaches have been developed which
are motivated by UPGMA. Li [52] developed a sim-
ilar approach which also makes corrections for un-
equal rates of evolution among lineages. Klotz and
Blanken [43] presented a method where a present-day
sequence serves as an ancestor in order to determine the
tree regardless of the rates of evolution of the sequences
involved.
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Neighbor Joining Neighbor joining is another very
popular algorithm based on pairwise distances [63].
This approach yields an unrooted tree and overcomes
the assumption of the UPGMA method that the same
rate of evolution applies to each branch.

Given a matrix of pairwise distances between each
pair of sequences dij, it first defines the modified dis-
tance matrix d̄i j . This matrix is calculated by subtract-
ing average distances to all other sequences from the dij,
thus compensating for long edges. In each stage, the two
nearest nodes (minimal d̄i j) of the tree are chosen and
defined as neighbors in the tree. This is done recursively
until all of the nodes are paired together.

Given n sequences, the general schema of neighbor
joining is shown in Algorithm 2.

Algorithm 2 (Neighbor joining)
1. Input: Distance matrix di j; 1 � i; j � n
2. For i D 1 to n
3. Assign sequence i to the set of leaf nodes of the

tree (T)
4. End for
5. Set list of active nodes (L) = T
6. Repeat
7. Calculate the modified distance matrix

d̄i j D di j � (ri C r j), where ri D 1
jLj�2

P
k2L dik

8. Find the pair i; j in L having the minimal value
of d̄i j

9. Define a new node u and set duk D 1
2 (dik C djk

� di j), for all k in L
10. Add u to T joining nodes i, jwith edges of length

given by: diu D 1
2 (di j C ri � r j); dju D di j � diu

11. Remove i and j from L and add u
12. Until only two nodes remain in L
13. Connect remaining two nodes i and j by a branch

of length dij

Neighbor joining has a execution time of O(n2), like
UPGMA. It has given extremely good results in prac-
tice and is computationally efficient [63,72]. Many
practitioners have developed algorithms based on this
approach. Gascuel [24] improved the neighbor-joining
approach by using a simple first-order model of the
variances and covariances of evolutionary distance es-
timates. Bruno et al. [10] developed a weighted neigh-
bor joining using a likelihood-based approach. Goef-
fon et al. [25] investigated a local search algorithm un-

der the maximum parsimony criterion by introducing
a new subtree swapping neighborhood with an effective
array-based tree representation.

ParsimonyMethods

In science, notion of parsimony refers to the prefer-
ence of simpler hypotheses over complicated ones. In
the parsimony approach for tree building, the goal is
to identify the phylogeny that requires the fewest nec-
essary changes to explain the differences among the ob-
served sequences. Of the existing numerical approaches
for reconstructing ancestral relationships directly from
sequence data, this approach is the most popular one.
Unlike distance-based methods which build trees, it
evaluates all possible trees and gives each a score based
on the number of evolutionary changes that are needed
to explain the observed sequences. The most parsimo-
nious tree is the one that requires the fewest evolution-
ary changes for all sequences to derive from a common
ancestor [69]. As an example, consider the trees in Fig. 3
and Fig. 4. The tree in Fig. 3 requires only one evolu-
tionary change (marked by the star) compared with the
tree in Fig. 4, which requires two changes. Thus, Fig. 3
shows the more parsimonious tree.

There are two distinct components in parsimony
methods: given a labeled tree, determine the score; de-
termine global minimum score by evaluating all possi-
ble trees, as discussed below.

Score Computation Given a set of nucleotide se-
quences, parsimony methods treat each site (position)
independently. The algorithm evaluates the score at
each position and then sums them up over all the po-
sitions. As an example, suppose we have the following
three aligned nucleotide sequences:

CCC

GGC

CGC

Then, for a given tree topology, we would calcu-
late the minimal number of changes required at each of
the three sites and then sum them up. Here, we inves-
tigate a traditional parsimony algorithm developed by
Fitch [21], where the number of substitutions required
is taken as a score. For a particular topology, this ap-
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Algorithms for Genomic Analysis, Figure 3
Parsimony tree 1

Algorithms for Genomic Analysis, Figure 4
Parsimony tree 2

proach starts by placing nucleotides at the leaves and
traverses toward the root of the tree. At each node, the
nucleotides common to all of the descendant nodes are
placed. If this set is empty then the union set is placed
at this node. This continues until the root of the tree is
reached. The number of union sets { equals} the num-
ber of substitutions required.

The general scheme for every position is shown in
Algorithm 3.

Algorithm 3 (Parsimony: score computation)
1. Each leaf l is labeled with set Rl having observed

nucleotide at that position.
2. Score S D 0
3. For all internal nodes kwith children i and j having

labels Ri and Rj do
4. Rk D Ri

T
Rj

Algorithms for Genomic Analysis, Figure 5
The sets Rk for the first site of given three sequences

5. if Rk D ; then
6. Rk D Ri

S
Rj

7. S D S C 1
8. end if
9. End for
10. Minimal scoreD S

Figure 5 shows the set Rk obtained by Algorithm 3.
The computation is done for the first site of the three se-
quences shown above. The minimal score given by the
algorithm is 1.

A wide variety of approaches have been developed
by modifying Fitch’s algorithm [68]. Sankoff and Ced-
ergren [64] presented a generalized parsimony method
which does not just count the number of substitutions,
but also assigns a weighted cost for each substitution.

Ronquist [62] improved the computational time by
including strategies for rapid evaluation of tree lengths
and increasing the exhaustiveness of branch swapping
while searching topologies.

Search of Possible Tree Topologies The number of
possible tree topologies dramatically increases with the
number of sequences. Consequently, in practice usu-
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ally only a subset of them are examined using efficient
search strategies. The most commonly used strategy is
branch and bound methods to select branching pat-
terns [60]. For large-scale problems, heuristic meth-
ods are typically used [69]. These exact and heuris-
tic tree search strategies are implemented in various
programs like PHYLIP (phylogeny inference package)
and MEGA (molecular evolutionary genetic analysis)
[20,47].

Maximum LikelihoodMethods

The method of maximum likelihood is one of the most
popular statistical tools used in practice. In molecular
phylogenetics, maximum likelihood methods find the
tree that has the highest probability of generating ob-
served sequences, given an explicit model of evolution.
The method was first introduced by Felenstein [18].We
discuss herein both the evolution models and the calcu-
lation of tree likelihood.

Model of Evolution A model of evolution refers to
various events like mutation, which changes one se-
quence to another over a period of time. It is required to
determine the probability of a sequence S2 arising from
an ancestral sequence S1 over a period of time t. Var-
ious sophisticated models of evolution have been sug-
gested, but simple models like the Jukes–Cantor model
are preferred in maximum likelihood methods.

The Jukes–Cantor [37] model assumes that all nu-
cleotides (A, C, T, G) undergo mutation with equal
probability, and change to all of the other three possible
nucleotides with the same probability. If the mutation
rate is 3˛ per unit time per site, the mutation matrix Pij

(probability that nucleotide i changes to nucleotide j in
unit time) takes the form

0
BBBBB@

1 � 3˛ ˛ ˛ ˛

˛ 1 � 3˛ ˛ ˛

˛ ˛ 1 � 3˛ ˛

˛ ˛ ˛ 1 � 3˛

1
CCCCCA
:

The above matrix is integrated to evaluate muta-
tion rates over time t and is then used to calculate
P(nt2jnt1; t), defined as the probability of nucleotide
nt1 being substituted by nucleotide nt2 over time t.

Algorithms for Genomic Analysis, Figure 6
A simple tree

Various other evolution models like the Kimura
model have also beenmentioned in the literature [9,42].

Likelihood of a Tree The likelihood of a tree is calcu-
lated as the probability of observing a set of sequences
given the tree.

L(tree) D probability[sequences|tree]

We begin with the simple case of two sequences
S1 and S2 of length n having a common ancestor a as
shown in Fig. 6. It is assumed that all different sites (po-
sitions) evolve independently, and thus the total likeli-
hood is calculated as the product of the likelihood of all
sites [15]. Here, the likelihood of each site is obtained
using substitution probabilities based on an evolution
model.

Given qa is the equilibrium distribution of nu-
cleotide a, the likelihood for the simple tree in Fig. 6
is calculated as L(tree) D P(S1; S2) D

Qn
iD1 P(S

1
i ; S

2
i ),

where P(S1i ; S
2
i ) D

P
a qaP(S

1
i ja)P(S

2
i ja). To general-

ize this approach form sequences, it is assumed that di-
verged sequences evolve independently after diverging.
Hence, the likelihood for every node in a tree depends
only on its immediate ancestral node and a recursive
procedure is used to evaluate the likelihood of the tree.
The conditional likelihood Lk, a is defined as the like-
lihood of the subtree rooted at node k, given that the
nucleotide at node k is a. The general schema for ev-
ery site is shown in Algorithm 4. The likelihood is then
maximized over all possible tree topologies and branch
lengths.



Algorithms for Genomic Analysis A 39

Algorithm 4 (Likelihood: computation at given site)
1. For all leaf l do
2. if leaf has nucleotide a at that site then
3. Ll ;a D 1
4. else
5. Ll ;a D 0
6. end if
7. End for
8. For all internal nodes k with children i and j
9. define the conditional likelihood

Lk;a D
P

b;c[P(bja)Li;b][P(cja)Lj;c]
10. End for
11. Likelihood at given site =

P
a qa Lroot;a

Recent Improvements The maximum likelihood ap-
proach has received great attention owing to the ex-
istence of powerful statistical tools. It has been made
more sophisticated using advance tree search algo-
rithms, sequence evolution models, and statistical ap-
proaches. Yang [80] extended it to the case where
the rate of nucleotide substitutions differ over sites.
Huelsenbeck and Crandall [34] incorporated the im-
provements in substitution models. Piontkivska [59]
evaluated the use of various substitution models in the
maximum likelihood approach and inferred that simple
models are comparable in terms of both efficiency and
reliability with complex models.

The enormously large number of possible tree
topologies, especially while working with a large num-
ber of sequences, makes this approach computationally
intensive [72]. It has been proved that reconstructing
the maximum likelihood tree is nondeterministic poly-
nomial time hard (NP) hard even for certain ap-
proximations [14]. In order to reduce computational
time, Guindon and Gascuel [31] developed a sim-
ple hill-climbing algorithm based on the maximum-
likelihood principle that adjusts tree topology and

Algorithms for Genomic Analysis, Figure 7
Two possible alignments for given three sequences

branch lengths simultaneously. Recently, parallel com-
putation has been used to address huge computa-
tional requirement. Stamatakis et al. [67] have used
OpenMP–parallelization for symmetric multiprocess-
ing machines and Keane et al. [39] developed a dis-
tributed platform for phylogeny reconstruction by
maximum likelihood.

Multiple Sequence Alignment

Multiple sequence alignment is arguably among the
most studied and difficult problems in computational
biology. It is a vital tool because it compactly repre-
sents conserved or variable features among the family
members. Alignment also allows character-based anal-
ysis compared to distance-based analysis and thus helps
to elucidate evolutionary relationships better. Conse-
quently, it plays a pivotal role in a wide range of se-
quence analysis problems like identifying conserved
motifs among given sequences, predicting secondary
and tertiary structures of protein sequences, andmolec-
ular phylogenetic analysis. It is also used for sequence
comparison to find the similarity of a new sequence
with pre-existing ones. This helps in gathering infor-
mation about the function and structure of newly found
sequences from existing ones in databases like GenBank
in the USA and EMBL in Europe.

The multiple sequence alignment problem can be
stated formally as follows. Let

P
be the alphabet and

let
P̂
D
PS

f�g, where “–” is a symbol to repre-
sent “gaps” in sequences. For DNA sequences, alphabetP̂
D fA,T,C,G,�g.
An alignment for N sequences S1; : : : ; SN is given

by a set Ŝ D fS1; : : : ; SNg over the alphabet
P̂

which
satisfy the following two properties: (1) the strings in Ŝ
are of the same length; (2) Si can be obtained from Ŝi by
removing the gaps. Thus, an alignment in which each
string Ŝi has length K can be interpreted as an align-
ment matrix of N rows and K columns, where row i
corresponds to sequence Si. Alphabets that are placed
into the same column of the alignment matrix are said
to be aligned with each other.

Figure 7 shows two possible alignments for given
three sequences: S1 D CCC; S2 D CGGC; and S3 D
CGC.

For two sequences, the optimal multiple sequence
alignment is easily obtained using dynamic program-
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ming (Needleman–Wunsch algorithm). Unfortunately,
the problem becomes much harder for more than two
sequences, and the optimal solution can be found only
for a limited number of sequences of moderate length
(approximately 100) [8]. Researchers have tried to solve
it by generalizing the dynamic programming approach
to a multidimensional space. However, this approach
has huge time and memory requirements and thus can-
not be used in practice even for small problems of
five sequences of length 100 each. This algorithm has
been improved by identifying the portion of hyperspace
which does not contribute to the solution and excluding
it from the computation [11]. But even this approach
of Carrillo and Lipman implemented in the multiple
sequence alignment program can only align up to ten
sequences [53]. Although, Gupta et al. [32] improved
the space and time usage of this approach, it cannot
align large data sets. To reduce the huge time and mem-
ory expenses, a wide variety of heuristic approaches for
multiple sequence alignment have been developed [56].

There are two components for finding the multiple
sequence alignment: (1) searching over all the possible
multiple alignments; (2) scoring each of them to find
the best one.

The problem becomes more complex for remotely
related homologous sequences, i. e., sequences which
are not derived from a common ancestor [28]. Numer-
ous approaches have been proposed, but the quest for
an approach which is accurate and fast is continuing. It
must be remembered that even the choice of sequences
and calculating the score of alignment is a nontrivial
task and is an active research field in itself.

Scoring Alignment

There is no unanimous way of characterizing an align-
ment as the correct one and the strategy depends on
the biological context. Different alignments are possi-
ble and we never know for sure which alignment is
correct. Thus, one scores every alignment according to
an appropriate objective function and alignments with
higher scores are deemed to be better. A typical align-
ment scoring scheme consists of the following steps.

Independent Columns The score of alignment is cal-
culated in terms of columns of alignments. The indi-
vidual columns are assumed to be independent and

thus the total score of an alignment is a simple sum-
mation over column scores. Thus, the score for an
alignment score(A) D

P
j score(Aj), where Aj is col-

umn j of the multiple alignment A. Now, the score
for every column j is calculated as the “sum-of-pairs”
function using the scoring matrices described below.
The sum-of-pairs score for column Aj is obtained as
score(Aj) D

P
k<l score(A

k
j ;A

l
j); where A

k
j and Al

j are
nucleotides in column j of the alignment correspond-
ing to sequences k and l, respectively. If the gap costs are
linear, score(nucleotide, –) and score(–, nucleotide) will
be the insertion cost. But, this approach would not dif-
ferentiate between opening a gap and extending it. So,
affine gap penalties are often used where gap opening
and extension penalty are treated as two different pa-
rameters. The correct value of both of these parameters
is a major concern since their values can be set only em-
pirically [75]. Also most schemes used in practice score
columns as the weighted sum of pairwise substitutions
instead of just addition as described before. The weights
are decided in accordance with the amount of indepen-
dent information each sequence possesses [4].

Both the assumption of treating every column in-
dependently and using the sum-of-pairs score for the
column have limitations. The problem increases as the
number of sequences increases.

Scoring Matrices Any alignment can be obtained by
performing three evolution operations: insertion, dele-
tion, and substitution. It is assumed that all the different
operations occur independently and thus the complete
score is evaluated as the sum of scores from every op-
eration. Insertion and deletion scores are calculated as
either linear or affine gap penalty. Substitutions scores
are stored as a substitution score matrix, which con-
tains the score for every pair of nucleotides. Thus, these
scores S(A,B) can be treated as the score of aligning nu-
cleotide A with nucleotide B.

These substitution score matrices can be obtained
in various ways. One could adopt an ad hoc approach
of setting up a score matrix which produces good align-
ments for a given set of sequences. The second ap-
proach would be more fundamental and look into the
physical and chemical properties of nucleotides. If two
nucleotides have similar properties, they would bemore
likely to be substituted by one another. The third and
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the most prominent one is a statistical approach where
the maximum likelihood principle is used in conjunc-
tion with probabilistic models of evolution [3].

Alignment Approaches

The number of different approaches for the multiple se-
quence alignment problem has steadily increased over
the last decade and thus being exhaustive will not be
possible. In this chapter, we will emphasize the most
widely used class of algorithms and the new emerging
and most promising approaches:
1. Progressive alignment algorithms: The most widely

used type of algorithm based on using pairwise
alignment information of input sequences. It as-
sumes that input sequences are phylogenetically re-
lated, and uses these relationships to guide the align-
ment [13].

2. Graph-based algorithms: A new trend where graph-
based models are used to approach this problem.

3. Iterative alignment algorithms: Typically an align-
ment is produced and is then refined through a se-
ries of iterations until no more improvement can be
made.

Progressive Algorithms

Progressive alignment constitutes one of the simplest
and most effective ways for multiple alignment. This
strategy was introduced by various researchers, like
Waterman and Perlwitz [77]. Among all the progres-
sive algorithms, ClustalW is the most famous one. It
is a noniterative, deterministic algorithm that attempts
to optimize the weighted sums-of-pairs with affine gap
penalties [73].

The typical progressive algorithm scheme is as fol-
lows:
� Compute the distance between all pairs of given se-

quences by aligning them. The distances represent
the divergence of each pair of sequences. These dis-
tances could be calculated by fast approximation
methods or by slower but more precise methods like
complete dynamic programming. Since for given N
sequences N(N�1)

2 pairwise scores have to be calcu-
lated and the scores are used just for construction
of a guide tree and not the alignment itself, it is de-
sirable to use approximation methods like k tuple
matches.

� Find a guide tree from the distance matrix. This is
typically achieved using the clustering algorithms
discussed in the construction of an evolutionary
tree. Once again, since the aim is to get the align-
ment and not the tree itself, approximation methods
are used to construct the evolution trees.

� Align sequences progressively according to the
branching order in the guide tree. The basic idea is
to start from the leaves of the guide tree and move
toward its root and to use a series of pairwise align-
ments to align larger and larger groups of sequences.
Some algorithms have only a single growing align-
ment to which every remaining sequence is aligned,
whereas other approaches align a subgroup of se-
quences and then merge the alignments.

There are three main shortcomings of the progressive
algorithms.
1. There does not exist an undisputable “best” way of

ordering the given sequences.
2. Once a sequence has been aligned, that alignment

will not be modified even if it conflicts with se-
quences added later in the process. Hence, the or-
der in which sequences are added becomes crucial,
and since there is no undisputed best way to order
the sequences, this approach returns suboptimal so-
lutions.

3. For a given set of n sequences,
�n
2

�
pairwise align-

ments are generated; but while computing the fi-
nal multiple alignment, most of these algorithms
use fewer than n pairwise alignments. Thus, the re-
sulting multiple alignment agrees with only a small
amount of information available in the data.

Therefore, there is a growing need for an algorithm
to align extremely divergent sequences whose pairwise
alignments are likely to be incorrect. In order to address
all these issues, some techniques have been developed;
while they are innovative, it is understandable that they
have their own assumptions and drawbacks.

Graph-Based Algorithms

Over the last few years, the field of genomics has un-
dergone evolutionary changes with a rapid increase in
new solution strategies. The use of graph-based mod-
els is easily seen as one of the most emerging and far-
reaching trends. Just and Vedova [38] used a rela-
tion between the facility location problem and sequence
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alignment to prove the NP-hardness of multiple se-
quence alignment. In this section, we review the most
prominent integer programming approaches for find-
ing multiple sequence alignment.

Maximum-Weight Trace Kececioglu et al. [40] used
a solution of the maximum trace problem to construct
alignment. The algorithm starts by calculating all pair-
wise alignments and using them to find a trace. To
achieve this, given n sequences, an input alignment
graph G = (V , E) is constructed. It is an n-partite graph
whose vertex set V represents the characters of the
given sequences and whos edge set E represents the
pairs of characters matched in the pairwise alignments.
The subset of matching in E realized by an alignment is
called a trace.

Alignment graphG D (V ; E) is extended to amixed
graph G0 D (V ; E;A) by adding arc set A which con-
nects the characters of every sequence to the next char-
acter in the same sequence. The objective of the algo-
rithm is to find the maximum weight trace by finding
cycles termed as “critical mixed cycles” in graphG0 such
that they satisfy sequence alignment properties [61].

The integer programming model for this problem is
formulated as

Maximize
X
e2E

wexe (1)

subject to
X

e2P\E

xe D jE \ Pj � 18 critical mixed

cycles P in G0 ; xe 2 f0; 1g for all e 2 E :
(2)

An implementation of a branch-and-cut algorithm
is used to solve the above problem. Various valid in-
equalities for the polytope are added as cuts, some of
which are facet-defining. The algorithm is capable of
giving an exact solution under the sum-of-pairs objec-
tive function with linear gap costs. Kececioglu et al. [40]
have made a significant contribution by introducing
a polyhedral approach capable of obtaining exact so-
lutions for a subclass of multiple sequence alignment.
However, this method has its own drawbacks like not
being able to capture the order of insertions and dele-
tions between two matchings and affine gap costs. Re-
cently, Althaus et al. [2] proposed a general model using
this approach in which arbitrary gap costs are allowed.

Minimum-Spanning Tree and Traveling Salesman
Problem Shyu et al. [65] explored the use of min-
imum spanning trees to determine the order of se-
quences. The idea of the approach is to preserve the
most informative distances among the set of given se-
quences. The criterion used is meaningful and capable
of working better than the traditional criteria like those
in sum-of-pairs. The algorithm itself is very efficient for
practical usage, and can be easily implemented. How-
ever, it fails to address the issue of using all the informa-
tion in pairwise alignments, since it only uses the score
and not the pairwise alignments themselves. Moreover,
this approach has all the drawbacks of the progressive
strategy.

A similar approach was also developed by Korosten-
sky and Gonnet [44] using the traveling salesman prob-
lem. In this technique, a circular sum measure is used
instead of a sum-of-pairs score. The cities in the travel-
ing salesman problem correspond to the sequences and
the scores of pairwise alignment are taken as the dis-
tances. The problem is to find the longest tour where
each sequence is visited exactly once [45].

Eulerian Path Approach Zhang and Waterman [81]
proposed a new approach motivated by the Eulerian
method for fragment assembly in DNA sequencing. In
their work, a consensus sequence is found and later
pairwise alignments are obtained between each input
sequence and consensus sequence. Finally, multiple se-
quence alignment is obtained according to these pair-
wise alignments. The most significant advantage of this
method is the linear time and memory cost for finding
the consensus sequence. And, if the consensus sequence
is the one closest to all given sequences, good quality
alignment can be obtained in a reasonable amount of
time. Once again, this approach suffers from the promi-
nent drawback of the progressive strategy and issues in
graph formation while finding the consensus sequence.

Iterative Algorithms

The main shortcoming of the progressive strategy is the
failure to remove errors in the alignment, which are in-
troduced early. The iterative algorithms are developed
precisely to overcome this flaw. They are based on the
idea of reconsidering and realigning previously aligned
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sequences with the goal of improving the overall align-
ment score. Eachmodification step is an iteration to im-
prove the quality of the alignment.

These available approaches can be classified into
two broad categories: probabilistic iterative algorithms,
and deterministic iterative algorithms. We will briefly
discuss them below.

Probabilistic Algorithms We will discuss both the
traditional probabilistic optimization approaches like
the genetic algorithm and relatively recent approaches
based on a Bayesian idea.
� Simulated annealing and genetic algorithm. Simu-

lated annealing and the genetic algorithm are very
popular stochastic methods for solving complex op-
timization problems. While they are often viewed
as separate and competing paradigms, both of them
are iterative algorithms which search for new solu-
tions “near” to already known good solutions. The
fundamental difference between simulated anneal-
ing and the genetic algorithm is that simulated an-
nealing performs a local move only on one solution
to create a new solution, whereas the genetic algo-
rithm also creates solutions by combining informa-
tion from two different solutions. The performance
of simulated annealing and the genetic algorithm
varies with the problem and representation used.
The algorithms starts with an initial alignment and
the alignment score is taken to be the objective
function [57]. Various operations like mutation, in-
sertion, and substitution constitute the local move
which is used to a get new solution from existing
ones. Flexibility in the scoring systems and the abil-
ity to correct for errors introduced during the early
phase makes these approaches desirable [41].

� Hidden Markov model and Gibbs sampler. The hid-
den Markov model and the Gibbs sampler are rel-
atively recent approaches which view multiple se-
quence alignment in a statistical context. Both of
them use the central Bayesian idea of simultane-
ouslymaximizing the data and themodel. The Gibbs
sampler find motifs using local alignment tech-
niques [49]. It is essentially similar to the hidden
Markov model with no insert and delete states.
The hidden Markov model is a statistical model
based on the Markov process, which has gained im-
portance in various fields related to pattern recogni-

tion. It determines the hidden parameters of the sys-
tem on the basis of the observable parameters of the
model. For multiple sequence alignment, the hid-
den Markov model consists of three types of states:
match states, insert states, and delete states [46].
Each state has its own emission probability of nu-
cleotides and transition probability to other states.
The standard expectation-maximization algorithm
or gradient descent algorithms are used to train the
model and evaluate the parameters.
Although the hidden Markov model has been suc-
cessfully used in other areas, it faces a lot of chal-
lenges. There need to be some minimum number of
sequences (approximately 50) required to train the
model and the hidden Markov model can be easily
trapped in local optima like other hill-climbing ap-
proaches [35].

Deterministic Algorithms A deterministic iterative
algorithm starts with an initial alignment and then at-
tempts to improve it. This helps in overcoming the
drawback of a progressive alignment strategy where
partial alignments are “frozen” [6]. A typical scheme is
as follows:
� Given N sequences S1; S2; : : : ; SN , find alignment A.
� Remove sequence S1 from alignmentA and realign it

to the profile of other aligned sequences S2; : : : ; SN
to get new alignment A0.

� Calculate the score of the new alignment A0 and if it
is better replace A by A0.

� Remove sequence S2 from A0 and realign it. Con-
tinue this procedure for S3; : : : ; SN .

� Repeat the realignment steps until the alignment
score converges or the number of iterations reaches
the user-specified limit.
Many iteration strategies which enable very accu-

rate alignments have been developed [76]. The aim is
to reduce the greedy nature of the algorithm and avoid
getting trapped in a local optimum. One approach is to
remove and realign every sequence to the rest in each it-
eration. Then, the alignment with the best score is taken
to be the input for the next iteration. The other famous
approach is to randomly split a set of sequences into
two sets, which are then realigned.

Some researchers have incorporated the iterative
strategy in the progressive alignment procedure it-
self. For instance, a double iteration loop has been
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used to make the alignment, guide tree, and sequence
weights mutually consistent [27]. Recently, Chakra-
barti et al. [12] developed an approach which provides
a fast and accurate method for refining existing block-
based alignments.

Novel Graph-Theoretical Genomic Models

In this section, we present our research effort for a novel
graph-theoretical approach for representing a wide va-
riety of genomic sequence analysis problems within
a single model [50]. The model allows incorporation
of the operations “insertion,” “deletion,” and “substi-
tution,” and various parameters such as relative dis-
tances and weights. Conceptually, we refer the prob-
lem as the minimum weight common mutated sequence
(MWCMS) problem. The MWCMS model has many
applications, including the multiple sequence align-
ment problem, phylogenetic analysis, the DNA se-
quencing problem, and the sequence comparison prob-
lem, which encompass a core set of very difficult prob-
lems in computational biology. Thus, the model pre-
sented in this section lays out a mathematical model-
ing framework that allows one to investigate theoretical
and computational issues, and to forge new advances
for these distinct, but related problems.

DNA sequencing refers to determining the exact
order of nucleotide sequences in a segment of DNA.
This was the greatest technical challenge in the Human
Genome Project. Achieving this goal has helped reveal
the estimated 30,000 human genes that are the basic
physical and functional units of heredity. The resulting
DNA sequence maps are being used by scientists to ex-
plore human biology and other complex phenomena.

The structure of a DNA strand (sequence) is deter-
mined by experimentation. Typically, short sequences
are determined to be in the strand, and the short
sequences identified are then “connected” to form
a long sequence. Recent advances attempting to iden-
tify DNA strand structure involve sequencing by hy-
bridization [5,36]. Sequencing by hybridization is the
process where every possible sequence of length n (4n

possibilities) is compared with a full DNA strand. Prac-
tical values for n are 8–12. Each short string either binds
or does not bind to the full strand. Biologists can thus
determine exactly which short strings are contained in
the DNA strand and which are not.

However, the experiment does not identify the ex-
act location of each short string in the full strand.
Hence, an important issue involves how these short
strings are connected together to form the complete
strand. This problem can be viewed as a shortest com-
mon superstring problem and has been studied exten-
sively [22,23,54]. Unfortunately, errors may arise dur-
ing sequencing experiments. Three types of errors are
deletions (a letter appears in an input string that should
not be in the final sequence), insertions (a letter is miss-
ing from an input string), and substitutions (a letter in
an input string should be substituted with another let-
ter). The MWCMS problem can be used to model and
solve this shortest common superstring problemwhile ad-
dressing the issue of possible errors.

Sequence comparison is one of the most crucial
problems faced by researchers in the area of bioinfor-
matics. The sequence patterns are conserved during
evolution. Given a new sequence, it will be of inter-
est to understand how much similarity it has with pre-
existing sequences. Significant similarity between two
sequences implies similarities in their structures and/or
functions. There are lots of DNA databases containing
DNA sequences and their functions. The major ones
are GenBank in the USA and the EMBL data library
in Europe. If one finds a new sequence similar to ex-
isting ones in these databases, one can transfer infor-
mation about the function and structure [78]. Hence,
an algorithm for sequence comparison which is efficient
for a large number of sequences will play a pivotal role
in rapid sequence analysis. The MWCMS problem can
be used to address this issue.

Definitions

Our motivation for first defining the problem arose
from the desire to help quantify the concept of the
“best” representative sequence in the evolutionary dis-
tance problem. The evolutionary distance problem in-
volves finding the DNA sequence of the most likely an-
cestor associated with a given set of DNA sequences
from distinct but similar organisms. In other words,
find the DNA strand that best represents a possible
ancestor, if each of the organisms evolved from the
same ancestor. Changes that contribute to differences
between the given sequences and the ancestor are re-
ferred to as insertions, deletions, and substitutions.
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These operations account for both evolutionary mu-
tations and experimental errors in sequencing. Math-
ematically, given two sequences S and B, let ord(S,B) be
an ordered collection of insertions, deletions, and sub-
stitutions to convert sequence S to sequence B. (For any
two sequences S and B, there are an infinite number of
collections ord(S,B).) Let w(ord(S; B)) be the weight of
the conversion from S to B, where the weight is the sum
of an expression involving values �; ı, and  2 <C

which represent the weights associated with a single
insertion, deletion, and substitution, respectively. Let
ord�(S; B) be such that w(ord�(S; B)) � w(ord(S; B))
for all ord(S,B). Define d(S; B) D w(ord�(S; B)). For-
mally, the MWCMS problem can be stated as fol-
lows: Given positive weights �; ı, and  correspond-
ing to a single insertion, deletion, and substitution re-
spectively, a positive threshold �, and finite sequences
S1; : : : ; Sm from a finite alphabet, does there exist a se-
quence B such that

Pm
iD1 d(Si ; B) � �?

We have defined the MWCMS problem—which in-
corporates the notions of insertion, deletion, and sub-
stitution—to help quantify the concept of the “best”
representative sequence in the evolutionary distance
problem. We now define precisely the operations of in-
sertion, deletion, and substitution. Let S D fs1; : : : ; sng
be a finite sequence of letters from a finite alphabet:

1. An insertion of an element x in position i of the se-
quence S is characterized by the addition of x be-
tween elements si and siC1. An insertion carries an
associated penalty cost of �.

2. A deletion of an element in position i of S amounts
to deleting si from the sequence S. The penalty for
deletion is represented by ı.

3. A substitution of an element in position i of S
amounts to replacing si with another letter from the
alphabet. The penalty for substitution is represented
by  .

We remark that a penalty cost for an operation could,
more generally, depend on the position where the op-
eration is performed and/or the element to be in-
serted/deleted/substituted.

Let S1 D fs11; : : : ; s1mg and S2 D fs21; : : : ; s2ng be
two finite sequences of letters from a finite alphabet

P
.

We say that the relative distance between elements s1i
and s2 j is k if ji � jj D k. We define a k-restrictive bi-
partite graph as a graphGk D (V1;V2; Ek) such that the

nodes in V1 and V2 correspond, respectively, to each of
the elements from the first and the second sequences.
We assume the nodes in Vi are ordered in the same
order as they appear in the sequence Si. There is an
edge between nodes u 2 V1 and v 2 V2 if u and v are
identical (i. e., the same letter of the alphabet

P
) and

if the relative distance between these two elements is
less than or equal to k. The problem of identifying the
“greatest similarity” between these two sequences can
then be approached as the problem of finding a maxi-
mum cardinality matching between the associated node
sets, subject to restrictions on which matchings are al-
lowed. In particular, one must take into consideration
the ordering of nodes so as to preserve the relative oc-
currence of the elements in the matching. In addition,
matchings that have edge crossings must be prevented.
When k D maxfjS1j; jS2jg � 1, we denote the graph by
G D (V1;V2; E), and the problem is equivalent to the
well-studied longest common subsequence problem for
two sequences, which is polynomial time solvable [23].

Construction of a Conflict Graph
from Paths of Multiple Sequences

Let Si ; i D 1; : : : ;m, be a collection of finite sequences,
each of length n, over a common alphabet

P
. Let

Gk D (V1; : : :Vm ; E1; E2; : : : ; Em�1) be the k-restrictive
multilayer graph in which each element in Si forms
a distinct node in Vi. Assume the nodes in Vi are or-
dered in the same order as they appear in the sequence
Si. Ei denotes the set of edges between nodes in Vi

and ViC1. There is an edge between nodes u 2 Vi and
v 2 ViC1 if and only if u and v are the same letter in
the alphabet

P
, and the relative distance between them

is less than or equal to k. The multiple sequence com-
parison problem involves finding the longest common
subsequence within the sequences Si ; i D 1; : : : ;m. We
call a path P D p1; p2; : : : ; pm a complete path in Gk if
pi 2 Vi and pi piC1 2 Ei . Two complete paths are said
to be parallel if their node sets are disjoint and the
edges do not cross. Hence, a set of parallel complete
paths in Gk corresponds to a feasible solution to longest
common subsequence problem on the collection of se-
quences Si ; i D 1; : : : ;m. We say that two complete
paths P1 and P2 cross if they are not parallel. We remark
that the longest common subsequence problem with
the number of sequences bounded,is polynomial time
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solvable using dynamic programming [23]. In general,
the problem remains NP-complete.

We can incorporate insertions by generating new
paths which include inserted nodes on various layers.
The weight for such a new path will be affected by the
total number of insertions in the path. In particular, if
L is a common subsequence for Si and jSi j D n for all
i D 1; : : : ;m, then the total number of unmatched el-
ements remaining will be m(n � jLj). These elements
can be deleted completely, or for a given unmatched
element, one can increase the size of L by 1 by appro-
priately inserting this element into various sequences.
By doing so, one decreases the number of unmatched
elements. Let l be the number of insertions needed to
generate a new complete path. Then the number of un-
matched elements will decrease by m � l . If we assume
that at the end of the sequencing process all unmatched
elements will be deleted, then the penalty for generating
this new complete path will be given by l� � (m � l)ı.

We next define the concept of a conflict graph rela-
tive to the complete paths in Gk.

Definition 1 Let P D fP1; : : : ; Psg be a finite col-
lection of complete paths in Gk. The conflict graph
CP D (VP ; EP) associated with P is constructed as fol-
lows:
� VP D fP1; : : : ; Psg;
� there is an edge between two nodes Pi and Pj in VP

if and only if Pi and Pj cross each other.

This definition applies to any multilayer graph in gen-
eral. Note that any stable set of nodes in CP corre-
sponds to a set of parallel complete paths for Gk, and
thereby to a feasible solution to the longest common
subsequence problem on the collection of sequences
Si ; i D 1; : : : ;m.

We remark that when m D 2, the resulting conflict
graph is weakly triangulated, and thus is perfect. For
m > 2, the conflict graph can contain an antihole of
size 6. However, these complete paths can be viewed as
continuous functions on the interval from 0 to 1; thus,
by construction, CP is perfect [26].

Complexity Theory

Recall that the notation ord(S,B), w(ord(S; B)),
ord�(S; B), and the formal definition of the MWCMS
problem were given in Sect. “Definitions”. As an opti-
mization problem, the MWCMS problem can be stated

as follows. Given a set of input sequences, the MWCMS
problem seeks to mutate every input sequence to the
same a priori unknown sequence using the operations
of insertion, deletion, and substitution; weights are
assigned for each operation, and the total weight as-
sociated with all mutations is to be minimized. Leven-
shtein [51] first considered a special case of this prob-
lem by changing a single input sequence to another
sequence using insertions, deletions, and substitutions.
Our study involves changing multiple input sequences
to arrive at an a priori unknown common sequence.

Given positive weights �; ı, and  corresponding,
respectively, to insertions, deletions, and substitutions
and any two sequences S and B, clearly any ord�(S; B)
will never contain more than jBj insertions or substitu-
tions. Proving that the MWCMS is in NP is not obvi-
ous. While one can transform the MWCMS to special
applications (as described at beginning of Sect. “Novel
Graph-Theoretical Genomic Models”) to conclude that
it is in NP, here we prove it directly for the general case.
One needs to be able to evaluate d(S,B) in polynomial
time for any two sequences S and B. We next construct
a graph that can be used to establish the existence of
a polynomial-time algorithm for obtaining d(S,B). The
constructs and arguments used here typify those used to
establish many of the results presented in this chapter.
It is noteworthy that the notions of both conflict graph
and perfect graph come into play.

Let
P

be a finite alphabet, and define
P

-cross to
be a directed bipartite graph consisting of j

P
j vertices

in each bipartition such that each vertex in the bipar-
tition represents a distinct element in

P
. There is an

arc between two vertices if the vertices correspond to
the same element in

P
, and the geometric layout is

rigidly constructed so that every arc crosses every other
arc. This graph will be used as a “supernode” for inser-
tion and substitution operations in our model. Figure 8
shows an example for

P
-cross when

P
D fA,C,G,Tg.

We now construct a three-layer supergraph, GL,
using the sequences S and B along with the

P
-

cross graphs. Layers 1 and 2 consist of exactly
jBj(jSj C 1)C jSj

P
-crosses. The first jBj

P
-crosses

represent potential insertions before the first letter in S.
The next

P
-cross represents either the first letter of S

or a substitution of this letter. The next jBj
P

-crosses
represent potential insertions between the first and sec-
ond letters of S. And this is followed by a

P
-cross rep-
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Algorithms for Genomic Analysis, Figure 8
An example of

P
-cross when

P
D fA, C, G, Tg

resenting either the second letter of S or a substitution
of this letter. This continues for each letter in S with the
final jBj

P
-crosses representing up to jBj insertions af-

ter the last letter in S. Each
P

-cross is called either an
insertion supernode or a substitution supernode, accord-
ing to what it represents. The weight of all of the arcs
in an insertion supernode is �. An arc in a substitution
supernode has weight �ı if the arc represents the origi-
nal letter in the sequences, or � ı if the arc represents
a substitution of the original letter. Layer 3 consists of
the vertices represented by B. A vertex in layer 2 is con-
nected to a vertex in layer 3 if they have the same let-
ter. The weight of every arc between layers 2 and 3 is
M � �(�C ı C  ). A sample of a three-layer super-
graph is given in Fig. 9. The bold arcs are used to de-
note the original letters in S (the weight of these arcs is
�ı). For simplicity, we omit the first two insertion su-
pernodes before the first letter G. The first supernode
thus represents the letter G from the original sequence,
which allows for substitution. The second and third su-
pernodes correspond to insertion supernodes, and the
fourth supernode corresponds to the letter C and allows
substitution as well. There are two more insertion su-
pernodes which are omitted from the graph.

The main step in proving d(S,B) to be polynomial
time solvable for any sequences S and B involves the
use of the conflict graph as defined in Definition 1. We
state some preliminary theoretical results below. De-
tailed proofs can be found in Lee et al. [50].

Algorithms for Genomic Analysis, Figure 9
An example of the three-layer supergraph for converting the
sequence S D GC to B D TC. Bold arcs are used to denote the
original letters in S (the weight of these arcs is�ı). For sim-
plicity, we omit the first two insertion supernodes before the
first letter G. The first supernode thus represents the letter
G from the original sequence, which allows for substitution.
The second and third supernodes correspond to insertions,
and the fourth supernode corresponds to the letter C and al-
lows substitution as well. There are two more insertion su-
pernodes which are omitted from the graph

Lemma 1 The following statements are equivalent:
1. There exists a conversion from S to B using no more

than a total of jBj insertions or substitutions.
2. There exist a set of noncrossing complete paths in the

associated three-layer supergraph GL of size jBj.
3. There exists a node packing of size jBj in the associ-

ated conflict graph C.



48 A Algorithms for Genomic Analysis

Lemma 2 Calculating d(S, B) for any sequences S and
B can be accomplished in polynomial time.

The three-layer supergraph can be generalized to amul-
tilayer supergraph whenmultiple sequences are consid-
ered. Clearly, suchmultilayer supergraphs aremuch too
large for practical purposes, yet polynomiality is pre-
served in the construction, and it is therefore sufficient.
We can now arrive at the result that the MWCMS is in
NP.

Theorem 1 The MWCMS is in NP.

To prove that the MWCMS is polynomial time solv-
able when the number of input sequences is bounded
by a positive constant, the following lemma is crucial,
though trivial.

Lemma 3 Given �; ı;  2 <C, an optimal solution B
to any MWCMS problem has the following properties. B
has no substitutions from letters other than the original
letters in Si, and B will never have an element which is
inserted in every sequence (in the same location). There-
fore, there are at most

Pm
iD1 jSi j insertions in any se-

quence.

In addition, we also require the construction of a (di-
rected) 2m-layer supergraph, Gm

L , similar to the three-
layer supergraph, GL.

Given sequences S1; : : : ; Sm , generate a 2m-layer
(directed) graph Gm

L D (V ; E) as follows. Layers 2i � 1
and 2i consist of (

Pm
jD1 jSjj)(jSi j C 1)C jSi j copies

of
P

-crosses for i D 1; : : : ;m, constructed in exactly
the same manner as layers 1 and 2 of the three-
layer supergraph using the input sequence Si. The
first

Pm
jD1 jSjj

P
-crosses represent the possibility thatPm

jD1 jSjj different letters can be inserted before the
first element in Si. The next

P
-cross corresponds to

either the first letter in Si or a substitution of this let-
ter. This is repeated jSi j times (for each letter in Si),
and the final

Pm
jD1 jSjj

P
-crosses represent insertions

after the final letter in Si. Thus, the first
Pm

jD1 jSjj
P

-
crosses represent the insertion supernodes, followed by
one

P
-cross representing a letter in Si or a substitu-

tion supernode, and so forth. An arc exists from a ver-
tex in layer 2i to a vertex in layer 2i C 1 if the vertices
correspond to the same letter. Observe that Gm

L is an
acyclic directed graph which is polynomial in the size
of the input sequences. Assign every arc between lay-
ers 2i and 2i C 1 a weight of 0. There are three differ-

ent weights for arcs between layers 2i � 1 and 2i each
corresponding to an insertion, deletion, or substitution.
The assignment of weights on such arcs is analogous to
the assignment in GL: a weight of � is assigned to ev-
ery arc contained in an insertion supernode; and an arc
in a substitution supernode is assigned a weight of �ı
if it corresponds to the original letter, or  � ı, other-
wise.

Figure 10 shows a sample graph for two sequences:
S1 D GC and S2 D TG. Observe that at most two inser-
tions are needed in an optimal solution; thus, we can re-
duce the number of

P
-crosses as insertion supernodes

from
P2

iD1 jSi j D 4 to 2. For simplicity, in the graph
shown in Fig. 10, we have not included the two inser-
tion supernodes before the first letter nor those after
the last letter of each sequence. Thus, in the figure, the
first

P
-cross represents the substitution supernode as-

sociated with the first letter in S1. The second and thirdP
-crosses represent two insertion supernodes. And the

last
P

-cross represents the substitution supernode as-
sociated with the second letter in S1. For simplicity, we
include only arcs connecting vertices associated to the
element G between layers 2 and 3. The arcs for other
vertices follow similarly.

A conflict graph C associated with Gm
L can be gen-

erated by finding all complete paths (paths from layer 1
to layer 2m) in Gm

L . These complete paths correspond
to the set of vertices in C, as in Definition 1. If we as-
sign a weight to each vertex equal to the weight of the
associated complete path, then the following result can
be established.

Theorem 2 Every node packing in C represents a can-
didate solution to the MWCMS if and only if at mostPm

iD1 jSi j letters can be inserted between any two origi-
nal letters. Furthermore, the weight of the node packing
is equal to the weight of the MWCMS �

Pm
iD1 jSi jı.

The supergraphGm
L and its associated conflict graph are

fundamental to our proof of the following theorem on
the polynomial-time solvability of a restricted version
of the MWCMS problem.

Theorem 3 The MWCMS problem restricted to in-
stances for which the number of sequences is bounded by
a positive constant is polynomial time solvable.
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Algorithms for Genomic Analysis, Figure 10
A sample graph Gm

L of MWCMS with S1 D GC to S2 D TG; where
P
D fA,C,G,Tg

Special Cases of MWCMS

The MWCMS encompasses a very broad class of prob-
lems. In computational biology as discussed in this
chapter, first and foremost, it represents a model
for phylogenetic analysis. The MWCMS as defined
is the “most likely ancestor problem,” and the con-
cept of the three-layer supergraph as described in
Sect. “Complexity Theory” describes the evolutionary
distance problem. An optimal solution to a multiple se-
quence alignment instance can be found using the solu-
tion of the MWCMS problem obtained on the 2m-layer
supergraph, Gm

L . The alignment is the character ma-
trix obtained by placing together the given sequences

incorporating the insertions into the solution of the
MWCMS problem. Furthermore, DNA sequencing can
be viewed as the shortest common superstring problem,
while sequence comparison of a given sequence B to
a collection of N sequences S1; : : : ; SN is the MWCMS
problem itself.

Broader than the computational biology applica-
tions, special cases of the MWCMS include shortest
common supersequences, longest common subse-
quences, and shortest common superstring; these prob-
lems are of interest in their own right as combinatorial
optimization problems and for their role in complexity
theory.



50 A Algorithms for Genomic Analysis

Computational Models:
Integer Programming Formulation

The construction of the multilayer supergraphs de-
scribed in our theoretical study lays the foundation
and provides direction for computational models and
solution strategies that we will explore in future re-
search. Although the theoretical results obtained are
polynomial-time in nature, they present computational
challenges. In many cases, calculating the worst-case
scenario is not trivial. Furthermore, the polynomial-
time result of a node-packing problem for a perfect
graph by Grötschel et.al. [29,30] is existential in nature,
and relies on the polynomial-time nature of the ellip-
soid algorithm. The process itself involves solving an
integer program relaxation multiple times. In our case,
the variables of the integer program generated are the
complete paths in the multilayer supergraph, Gm

L . For-
mally, the integer program corresponding to our con-
flict graph can be stated as follows.

Let xp be the binary variable denoting the use or
nonuse of the complete path p with weight wp. Then
the corresponding node-packing problem is

Minimize
X

wpxp

subject to xp C xq � 1 if complete paths p

and q cross

xp 2 f0; 1g for all complete
paths p in Gm

L :

(MIP1)

We call the inequality xp C xq � 1 an adjacency
constraint. A natural approach to improve the solution
time for (MIP1) is to decrease the size of the graph
Gm

L and thus the number of variables. Reductions in
the size of Gm

L can be accomplished for shortest com-
mon superstrings, longest common subsequences, and
shortest common supersequences. Among these three
problems, the graph Gm

L is smallest for longest com-
mon subsequences. In longest common subsequences,
all insertion and substitution supernodes can be elimi-
nated.

Our theoretical results thus far rely on the cre-
ation of all complete paths. Clearly, the typical num-
ber of complete paths will be on the order of nm, where
n D max jSi j. In this case, an instance with three se-

quences and 300 letters in each sequence generates
more than onemillion variables; hence, an exact formu-
lation with all complete paths is impractical in general.
A simultaneous column and row generation approach
within a parallel implementation may lead to computa-
tional advances related to this formulation.

An alternative formulation can be obtained by ex-
amining Gm

L from a network perspective using arcs (in-
stead of complete paths) in Gm

L as variables. Namely, let
xi, j denote the use or nonuse of arc (i, j) in the final se-
quence, with ci, j the cost of the arc in Gm

L . The network
formulation can be stated as

Minimize
X

(i; j)2E

ci; jxi; j

subject to
X

i :(i; j)2E

xi; j D
X

k:( j;k)2E

x j;k

for all j 2 V in layers 2; : : : ; 2m � 1

xi; j C xk;l � 1
for all crossing arcs (i; j) and (k; l) 2 E

xi; j 2 f0; 1g

for all (i; j) 2 E :
(MIP2)

The first set of constraints ensures flow in equals
flow out in all vertices contained in sequences
2; : : : ;m � 1 (complete paths). The second set of con-
straints ensures that no two arcs cross. This model
grows linearly in the number of sequences. This alter-
native integer programming formulation is still large,
but is manageable for even fairly large instances.

Utilizing a collection of DNA sequences (each with
40,000 base pairs in length) from a bacterium, and a col-
lection of short sequences associated with genes found
in breast cancer patients, computational tests of our
graph-theoretical models are under way. We are seek-
ing to develop computational strategies to provide rea-
sonable running times for evolutionary distance prob-
lem instances derived from these data. In an initial test,
when three sequences each with 100 letters are used, the
initial linear program requires more than 10,000 s to
provide a solution when tight constraints are employed
(in this case, each adjacency constraint is replaced by
a maximal clique constraint). Our ongoing computa-
tional effort will focus on developing and investigating
solution techniques for practical problem instances, in-
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cluding those based on the abovementioned two integer
programming formulations, as well as development of
fast heuristic procedures.

In [50], we outline a simple yet practical heuristic
based on (MIP2) that we developed for solving the mul-
tiple sequence alignment problem; and we report on
preliminary tests of the algorithm using different sets of
sequence data. Motivation for the heuristic is derived
from the desire to reduce computational time through
various strategies for reducing the number of variables
in (MIP2).

Summary

Multiple sequence alignment and phylogenetic analysis
are deeply interconnected problems in computational
biology. A good multiple alignment is crucial for reli-
able reconstruction of the phylogenetic tree [58]. On
the other hand, most of the multiple alignment meth-
ods require a phylogenetic tree as the guide tree for pro-
gressive iteration.

Thus, the evolutionary tree construction might
be biased by the guide tree used for obtaining the
alignment. In order to avoid this pitfall, various al-
gorithms have been developed which simultaneously
find alignment and phylogenetic relationship among
given sequences. Sankoff and Cedergren [64] devel-
oped a parsimony-based algorithm using a character-
substitution model of gaps. The algorithm is guar-
anteed to find the evolutionary tree and alignment
which minimizes tree-based parsimony cost. Hein [33]
also developed a parsimony-type algorithm but used
an affine gap cost, which is more realistic than the
character-substitution gap model. This algorithm is
also faster than Sankoff and Cedergreen’s approach but
makes simplifying assumptions in choosing ancestral
sequences.

Like parsimony methods for finding a phylogenetic
tree, both of the abovementioned approaches require
a search over all possible trees to find the global op-
timum. This makes these algorithms computationally
very intensive. Hence, there has been a strong focus on
developing an efficient algorithm that considers both
alignment and the tree. Vingron and Haeseler [74] have
developed an approach based on three-way alignment
of prealigned groups of sequences. It also allows change
in the alignment made early in the course of computa-

tion. Many programs, like MEGA, are trying to develop
an efficient integrated computing environment that al-
lows both sequence alignment and evolutionary analy-
sis [48].

We addressed this issue of simultaneously finding
alignment and phylogenetic relationships by presenting
a novel graph-theoretical approach. Indeed, our model
can be easily tailored to find theoretically provable opti-
mum solutions to a wide range of crucial sequence anal-
ysis problems. These sequence analysis problems were
proven to beNP-hard, and thus understandably present
computational challenges. In order to strike a balance
between the time and the quality of the solution, a va-
riety of parameters are provided. Ongoing research ef-
forts are exploring the development of efficient com-
putational models and solution strategies in a massive
parallel environment.
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Since the mid-1990s the need for techniques to paral-
lelize numerical applications has increased. When par-
allelizing nested loops for distributed memory parallel
computers, two major problems have to be solved: the
scheduling of the loop iterations and the mapping of
the computations and data elements onto the proces-
sors. The scheduling functions must satisfy all the data
dependences existing in the sequential loop nests. The
mapping functions should maximize the degree of par-
allelism obtained. Furthermore they should minimize
the amount of communication overhead due to non lo-
cal data references.

This survey presents the alignment problem, that is,
the problem of mapping computation and data onto

the processors. The alignment problem has been stud-
ied extensively since the beginning of the nineties, that
is, since the beginning of the introduction of massively
parallel distributed memory computers. For different
sub-problems of the alignment problem, the most in-
teresting results are surveyed.

Alignment Problem

The alignment problem is the problem of finding an
alignment of loop iterations with the array elements ac-
cessed. This means computing mapping functions of
the loop iterations, called computations, and mapping
functions of the array elements, called data, to a mul-
tidimensional grid of virtual processors. The name of
the problem comes from the idea of aligning the pro-
cessors computing with the ones owning the data. The
alignment problem is tightly related to the mapping of
the computation and data objects onto a grid of virtual
processors.

As input, programs containing nested loops are
considered. Each loop nest may contain one or more
instructions. For the sake of simplicity, only assignment
instructions are considered. The data access functions
are described by the functions Fl: Ij ! DK , where Ij
represents the iteration space surrounding instruction
Sj and DK the domain of the array K.

To solve the alignment problem, computation and
data mapping functions Cj andDK have to be computed
such as to minimize the overall execution time of the
resulting parallel program.

Cj : I j ! P;

DK : DK ! P;

where P represents a multidimensional grid of virtual
processors.

To minimize the overall execution time a solution
to the alignment problem has to address the following
needs:
i) maximize the degree of parallelism, that is, use as

many dimensions of the virtual grid of processors
as possible,

ii) minimize the need for non local data accesses, that
is, distribute the array elements such that a minimal
amount of communication overhead is required to
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access data elements stored on different processors
than the ones accessing them,

iii) guarantee the existence of scheduling functions
compatible with the computation mapping func-
tions.

Clearly the needs i)–iii) depend on each other. In this
survey we only focus on the first two needs.

Need i) can be expressed by maximizing the dimen-
sion of the virtual processor grid P onto which the com-
putations and data elements are mapped.

The need for a given data access Fl to be local is ex-
pressed by the equation (1) being satisfied:

Cj(E{) D DK(Fl (E{)): (1)

Equation (1) is called alignment constraint or locality
constraint. Depending on how the needs i) and ii) are
satisfied, various subproblems of the alignment prob-
lem can be defined.

Communication-Free Alignment Problem

The communication-free alignment problem (CFAP) is
the problem of finding computation and data mapping
functions for each instruction and for each data array
such that no communication is needed and the degree
of parallelism obtained is maximal. The CFAP can be
formulated as an optimization problem:

(
maxC j;DK dimension of P
s.t. 8 j; l ;K : Cj(E{) D DK(Fl (E{)):

Constant-Degree Parallelism Alignment Problem

Let F be the set of data access functions from a set of
loop nests forming an alignment problem and d a pos-
itive constant. Let c(F0, F) be a cost function on a sub-
set F0 � F of data access functions. The constant de-
gree parallelism alignment problem (CDPAP), denoted
by (F, d), is the problem of finding a subset F0 � F of
data access functions such that:
1) There exists a solution to the CFAP consisting of all

data accesses in the set F0 admitting a degree of par-
allelism of at least d.

2) The cost function c(F0, F) on the subset F0 is mini-
mized.

As for the CFAP, the CDPAP can be formulated as
follows as an optimization problem:
(
maxC j;DK

P
j;l ;K [[Cj(E{) D DK(Fl (E{))]]

s.t. dimension of P � d:

Example 1 The data accesses in this example are en-
coded by the three functions F1(i, j) = (i j + 1), F2(i, j) =
(i�1 j + 1) and F3(i, j) = (i + 1 j + 1). A possible solution
requiring no communication and admitting one degree
of parallelism is given by C(i, j) = j and Da(i, j) = j�1, P
being a one-dimensional processor set.

DO i = 2, n � 1
DO j = 2, n � 1

a(i; j + 1) = a(i � 1; j + 1) + a(i + 1; j + 1)
END DO

END DO

Solving the Alignment Problem

Communication-Free Alignment Approaches

C.-H. Huang and P. Sadayappan [17], in 1991, were the
first to formulate the alignment problem in a linear al-
gebra framework. They focus on a communication-free
solution. The data array elements as well as the loop
iterations are partitioned in disjoint sets represented
by hyperplanes. Each set is mapped onto a different
processor. The partitions are sought such that they re-
sult in the elimination of communication. A charac-
terization of a necessary and sufficient condition for
communication-free hyperplane partitioning is pro-
vided. Various results are given characterizing the sit-
uation where the iteration and data space can be parti-
tioned along hyperplanes so that no communication is
necessary. More precisely, two data elements accessed
during a single iteration in a single instruction must be
located on a single processor and two iterations in the
same instruction accessing a single data element must
be executed on the same processor.

In [30], a matrix notation is presented to de-
scribe array accesses in fully parallel loop nests.
A sufficient condition on the matrices for computing
a communication-free mapping of the arrays onto the
processors is given. The owner computes rule is as-
sumed for the computation mapping. The presented
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existence condition for communication-free partitions
is based on the connectivity of the data access graph
whichmodels the data access patterns. To compute data
mapping functions, a set of systems of linear equations
is constructed, one system of linear equations per pair
of read and write data accesses. If there exists a solu-
tion to the set of systems of linear equations, then there
exists a communication-free partitioning of the array
elements into parallel hyperplanes.

In [2] a linear algebra approach is proposed, based
on [17]. The communication-free alignment problem
is solved by computing a basis of the null space of the
application representing the alignment constraints. The
problem of data replication is addressed.

In [6], T.-S. Chen and J.-P. Sheu consider perfect
loop nests. They compute iteration and data space par-
titioning functions requiring no communication. Their
work focuses only on uniformly generated data ref-
erences. Sufficient conditions are given for the exis-
tence of a communication-free partition. The method
for partitioning the data onto the processors is based on
the computation of independent blocks called iteration
and data partitions respectively. If no communication-
free partitioning exists, data replication is considered.

In [24], an algorithm is presented that extracts all
the degrees of communication-free parallelism that can
be obtained via loop fission, fusion, interchange, re-
versal, skewing, scaling, re-indexing and statement re-
ordering. The algorithm first assigns the iterations of
the instructions in the program to processors via affine
processor mapping functions. Then it generates the
correct code by assuring that the semantics of the se-
quential program are satisfied.

Alignment Approaches Based on Generating HPF
like Data Distributions

J. Li and M. Chen [22,23] are interested in the indices
of the arrays that have to be aligned with one another
to minimize remote data references. The techniques
were initially developed for compiling the functional
language ‘Crystal’, but can be applied in the process
of compiling imperative languages like ‘Fortran’. The
parallelism is assumed to be specified explicitly and the
single assignment form is used. The goal of their ap-
proach is to find alignment functions such that the di-
mensions of each array are projected onto the same

space of a virtual processor grid. They consider four ba-
sic alignments:
i) permutations of the indices,
ii) embeddings,
iii) translations by a constant, and
iv) reflections.
To find a set of data accesses for which valid align-
ment functions exist, a component affinity graph is con-
structed. It represents the affinities between cross ref-
erence patterns. The nodes of the graph represent the
components of the index domains to be aligned. An
edge represents an affinity between the two correspond-
ing domain components. The alignment problem then
consists in partitioning the set of nodes of the compo-
nent affinity graph into disjoint subsets with the restric-
tion that no two nodes belonging to the same array are
allowed in the same subset. A fast and quite efficient
heuristic algorithm is presented.

M. Gupta, in his thesis in 1992 [16], presents a data
distribution algorithm that operates in four passes. The
first pass serves to compute an alignment of the array
dimensions. The algorithm developed is based on the
notion of component affinity graph introduced by Li
and Chen [22]. In the second phase the arrays are parti-
tioned using either block or cyclic data distributions. In
the third pass, the block sizes of the arrays distributed
are computed whereas the last pass computes the num-
ber of processors on which each array dimension is dis-
tributed.

K. Kunchithapadam and B.P. Miller [20], in oppo-
sition to other approaches, assume that a user-defined
data distribution is given. The data accesses of a pro-
gram are modeled by a colored proximity graph. Each
vertex of the graph represents a part of an array and
the color of a vertex represents the current processor
to which this array part is assigned. Edges of the graph
represent assignments of values arising from part of
one or more arrays to part of another array assum-
ing the owner computes rule for the computation map-
ping. Edges between vertices of different colors are as-
signed a weight representing the associated communi-
cation costs. The problem of improving a given set of
data mapping functions is to find a sequence of color
exchanges, that is, data redistributions, that minimize
the weight of the graph, that is, the communication
costs. A possible algorithm for solving this problem is
presented.
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B. Sinharoy and B.K. Szymanski [32] study the
problem of finding computation and data alignment
functions for regular iterative algorithms. A loop nest
can be represented by a regular iterative algorithm if
and only if all the data access functions are constant off-
set functions and the loop nest’s instructions are in sin-
gle assignment form. The communication cost function
used is based on the distance of the processors exchang-
ing data on the virtual processor grid. The authors show
that finding computation and data mapping functions
is equivalent to minimizing a sum of absolute values
composed of sums. An exact enumeration algorithm is
presented and a polynomial time algorithm for finding
an approximate solution is described.

Approaches Using a Graph Based Framework

K. Knobe, J.D. Lukas and G.L. Steele Jr. [19] study
the problem of aligning the array elements accessed
amongst each other. They target their approach to-
wards SIMD machines. Two different kinds of prefer-
ences are distinguished:
i) identity preferences representing alignment prefer-

ences due to different data accesses to the same ar-
ray, and

ii) conformance preferences relating two different ar-
rays.

To compute what preferences can be satisfied without
loosing parallelism, a cyclic preference graph is con-
structed. Each data access is represented by a vertex and
two vertices are related by an undirected weighted edge
if there exists a preference between the two data ac-
cesses. The weight of each edge is defined by the loop
depth at which the data accesses occur. Conflicts be-
tween preferences are represented by cycles in the cyclic
preference graph. A heuristic, using a greedy approach,
is presented to remove annoying cycles or to reduce the
parallelism.

In [5] an intermediate representation of a program
called the alignment-distribution graph is described.
The alignment-distribution graph is a directed graph in
which nodes represent communication and edges rep-
resent the data flow. It exposes the communication re-
quirements of the program. The framework restricts
the alignments computed to alignments in which each
axis of an array maps to a different axis of an HPF
like template and data elements are evenly spaced along

the template axis. The alignments computed have three
components:
i) the axis,
ii) the stride, and
iii) the offset.
The papers present two separate algorithms called the
compact dynamic programming algorithm and the
constraint graph method for minimizing a communi-
cation cost function.

A. Darte and Y. Robert [8] study the problem of
mapping perfectly nested affine loops onto distributed
memory parallel computers. The problem is formulated
by introducing the communication graph that captures
all the required information to align data and compu-
tations. Each instruction and each array is represented
by a vertex, the directed edges representing read and
write data accesses. The problem of message vectoriza-
tion and the use of global communication operations,
like broadcasting, is addressed.

In [11] an algorithm is presented for computing
HPF like data distribution functions. A distribution
graph is constructed representing the relation between
the data access functions and the array accessed. Based
on the distribution graph a decision tree, modeling all
possible combinations of data distribution functions, is
traversed using a branch and bound algorithm. The cost
functionminimized by the algorithm is based on a com-
munication analysis tool. The computation mapping is
done in accordance with the owner computes rule.

M. Wolfe and M. Ikey [33] propose in 1994 an
adaption of the techniques introduced by Li and Chen
[22,23] for the language ‘Crystal’ to the imperative lan-
guage ‘Tiny’. The alignment phase is decomposed into
four operations:
i) finding reference patterns,
ii) adding implicit dimensions to the arrays when re-

quired,
iii) building a component affinity graph, and
iv) partitioning the component affinity graph.
As the partitioning problem is NP-hard, a heuristic is
used. The authors furthermore describe an algorithm
to generate SPMD code based on the alignments com-
puted.

J. Garcia, E. Ayguagé and J. Labarta [15] proposed
for an algorithm to compute data distribution functions
that can be expressed using HPF distribute statements.
This algorithm is based on the construction and traver-
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sal of a single data structure, called the computation-
parallelism graph. The computation-parallelism graph
represents all possible data distributions along the di-
mensions of the arrays. Parallelism constraints are
modeled as hyper-edges. Weights are associated to the
edges to represent the associated communication costs.
Negative costs are associated with the hyperedges to
represent the associated parallelism. It is shown that
distributing the data according to one dimension is
equivalent to finding a path through the computation-
parallelism graph fulfilling some additional constraints.
The problem is formulated as a 0–1 integer program-
ming problem. In contrast to other graph based ap-
proaches, the computation-parallelism graph models
both the possible data distribution, that is, the locality
constraints within a single data structure, and the pos-
sible parallelism.

W. Kelly and W. Pugh [18] describe a technique
to minimize communication while preserving paral-
lelism. The approach is not sensitive to the original pro-
gram structure. For each array, the possible data map-
ping functions form a finite set of candidate space map-
pings. These sets consist of each dimension of the orig-
inal iteration space being distributed. Next, for each
candidate space, that is, for each possible data distri-
bution function, all possible permutations of the sur-
rounding loops are considered and the obtained par-
allelism measured. In a third step a weighted graph is
constructed tomodel the parallelism as well as the com-
munication cost associated with various data decom-
positions. One node in this weighted graph represents
one candidate space mapping for each statement. The
weight associated with a node is its degree of paral-
lelism obtained. The edges represent the communica-
tion required and their weight models the communi-
cation costs. The alignment problem, as formulated in
[18], is the problem of selecting one node per statement
such that the sum of the weights of the selected nodes
and edges is minimized. An algorithm to find such a set
using various pruning strategies to reduce the size of the
search space is presented.

Approaches Using a Linear Algebra Framework

Sheu and T.-H. Toi [31] introduced a method for the
parallel execution of nested loops with constant loop-
carried data dependences by reducing the communi-

cation overhead. First the nested loops are partitioned
into large blocks which result in little inter-block com-
munication. For a given linear transformation found by
the hyperplane method [21], the iterations are parti-
tioned into blocks such that the communication among
the blocks is reduced while the execution order defined
by the time transformation is not disturbed. The par-
titioning is based on projection techniques. In a sec-
ond step these blocks aremapped ontomessage-passing
multiprocessor systems according to specific properties
of the target machine.

M. O’Boyle and G.A. Hedayat [26,27] express the
alignment problem in a linear algebra framework. In
this framework, aligned data can be viewed as forming
a subspace in the iteration space. The problem solved
is the computation of a transformation of the data ac-
cess functions relative to one another such as to maxi-
mize the number of iteration points in the loop iteration
space for which no communication is needed.

P. Feautrier [14] addresses the problem of find-
ing an alignment function that maps the computations
on a one-dimensional grid of virtual processors. The
data mapping functions are defined by the owner com-
putes rule which is imposed. The alignment constraints
between computation and data accesses are derived
from the data-flow graph of the program, procedure or
loop nest considered. The data-flow graph is a directed
graph. Vertices correspond to statements and the arcs
to producers and consumers of data. For each state-
ment, the alignment function is assumed to be an affine
function of the iteration vectors with unknown param-
eters. The locality of data accesses is imposed by asking
that the producer and the consumer of a data element
be the same processor. Feautrier defines distance vec-
tors between all pairs of producers and consumers. To
any arc of the data-flow graph corresponds a distance
vector that expresses the difference of the indices of the
processor that computes the data and the one that uses
it. Thus, a computation is local if and only if the cor-
responding distance vector is zero. The edges are hence
transformed into affine equations and the problem con-
sists in determining nontrivial parameters for the com-
putation mappings that zero out as many distance vec-
tors as possible. A heuristic is used to sort the equa-
tions in decreasing order of the communication traffic
induced. The system of equations, which usually does
not have a non trivial solution, is solved by successive
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Gauss–Jordan eliminations as long as a feasible solution
remains nontrivial. A solution is nontrivial if it has one
degree of parallelism.

J.M. Anderson and M.S. Lam [1] describe neces-
sary conditions for the data elements accessed by each
processor to be local. They present a greedy algorithm
to compute the computation and data mapping func-
tions that can be satisfied. They incrementally add con-
straints as long as their conditions are satisfied, starting
with the most frequently used array access functions.
They only consider the linear part of the data access
functions, taking care of the constant offsets in a sec-
ond step. Their heuristic technique is close to the one
defined in [9].

A. Platonoff [28,29] develops extensions to Feau-
trier’s [14] automatic data distribution algorithm.
Amethod is presented to extract global broadcast oper-
ations as well as translation operations to optimize the
data mapping functions. In the data-flow graph, pat-
terns representing broadcast and other global commu-
nication patterns are searched for. The data distribu-
tion is then chosen such as to maximize the number of
global communication operations possible.

M. Dion and Robert [12,13] consider a problem
in which all data access functions are of full rank and
no smaller than d, the required degree of parallelism.
This ensures that the parallelism obtained is indeed as
large as wanted. By considering only the linear parts
they compute the largest set of alignment constraints
that can be satisfied while yielding the given degree of
parallelism d. The constant offsets are considered sub-
sequently, using techniques developed by Darte and
Robert [8]. They consider a set of candidate solutions
and search for an optimal one that verifies the largest
number of constraints while effectively yielding the de-
gree of parallelism desired. In their approach, Dion
and Robert consider three basic cases depending on the
structure of the data access function. Then, they build
a directed graph defined as follows. Vertices correspond
either to statements or arrays. There is an arc from ver-
tex p to vertex q if and only if a mapping of rank d can
be computed for q from a given mapping of rank d for
p according to the basic cases enumerated previously.
In this graph they search for a tree containing a maxi-
mal number of arcs. Obviously, choosing a mapping of
rank d for the root of the computed tree implicitly de-
termines mappings of rank d for all other vertices.

C. Mongenet [25] is interested in minimizing com-
munication costs in the presence of systems of affine
recurrence equations, that is, single assignment loop
nests. The data dependences are subdivided into two
classes:
i) auto dependences, and
ii) cross dependences.
Auto-dependences are data dependences between two
data accesses to the same array. The domains of these
arrays are projected onto hyperplanes such as to min-
imize the number of remote data accesses. Cross-
dependences are dependences between data accesses to
different arrays. Unimodular transformations are ap-
plied to the projected domains to align the different
data array and so minimize the resulting communi-
cations. A heuristic based on these two steps is intro-
duced.

C.G. Diderich [9] and Diderich andM. Gengler [10]
present and extend the algorithm for solving this prob-
lem introduced in [2]. In a second step they introduce
the constant degree parallelism alignment problem. It
is the problem of finding computation and data map-
ping functions that minimize the number of remote
data accesses for a given degree of parallelism. An ex-
act implicit enumeration algorithm is presented. It pro-
ceeds by enumerating all interesting subsets of align-
ment constraints to be satisfied. To allow large align-
ment problems to be solved an efficient heuristic is pre-
sented and applied to various benchmarks.

Other Approaches

B.M. Chapman, T. Fahringer and H.P. Zima [4] for
a software tool to provide automatic support for the
mapping of the data onto the processors of the tar-
get machine. The computation is mapped by using the
owner computes rule. The tool is integrated within
the Vienna Fortran Compilation System, a compiler
for Vienna Fortran, an HPF like Fortran dialect. The
tool makes use of performance analysis methods and
uses, via heuristics, empirical performance data. Once
the performance data has been obtained for a given
program, an inter-procedural alignment and pattern
matching phase determines a suitable alignment of the
arrays within each procedure. The alignments are then
propagated through the call graph of the program.
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Eventually more versions of a procedure are generated,
corresponding to differently distributed actual argu-
ments. Finally code is generated using the selected data
distributions.

In [7], P. Crooks and R.H. Perrott present an algo-
rithm for determining data mapping functions by gen-
erating HPF like directives. Their approach is based
on identifying reference patterns. To each read/write
pair is associated an ideal data distribution that mini-
mized inter-processor communication. Once the pref-
erences for the individual accesses are determined,
a performance estimator is used to select the combi-
nation of preferences that gives the best performance
estimate.

R. Bixby, K. Kennedy and U. Kremer [3] present an
automatic data layout algorithm based on 0–1 integer
programming techniques. The data mapping functions,
following the HPF alignment structure, are optimized
for a target distributed memory machine, a specific
problem size and the number of available processors.
The distribution analysis uses the alignment search
space, that is, the space of all possible HPF like align-
ments, to build candidate data layout search spaces of
reasonable data mapping functions for each loop nest.
In a second step the inter-phase or inter-loop nests data
layout problem is addressed. By using an integer pro-
gramming formulation, a data mapping function is se-
lected for each loop nest such that a single global cost
function, modeling the communication costs, is mini-
mized.

Conclusion

This article presents major advancements made in solv-
ing the alignment problem. Different subproblems are
defined and described. One major open problem is
how to incorporate scheduling information into the al-
gorithms computing efficient alignment functions. See
[9] for a first approach towards computing scheduling
functions compatible with computation and data map-
ping functions. The question of which cost function to
use when computing alignment functions has to be ad-
dressed with more details.

See also

� Integer Programming
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Deterministic global optimization techniques for non-
convex NLPs have been the subject of growing inter-
est because they can potentially provide a very com-
plete characterization of the problem being considered.
In addition to guaranteeing identification of the global
solution within arbitrary accuracy, they enable the lo-
cation of all local and global solutions of the problem.
As a result, they can be used to determine the feasibility
of a given problem with certainty [1,2,3,4], or to find all
solutions of a nonlinear system of equations [13]. They
are especially valuable in the study of systems in which
the global optimum solution is the only physically
meaningful solution, as is the case of the phase equilib-
rium of non ideal mixtures [16,17,18,19,20]. Tradition-
ally, a major theoretical limitation of these approaches
has been their inability to tackle problems with ar-
bitrary nonconvexities. However, the recent develop-
ment of rigorous convex relaxation techniques for gen-
eral twice continuously differentiable functions [2,3,4]
has greatly expanded the class of problems that can
be addressed through deterministic global optimiza-
tion. These approaches have been incorporated within
a branch and bound framework to create the ˛BB global
optimization algorithm for twice continuously differen-
tiable problems [3,6,12]. The theoretical basis of the al-
gorithm as well as the efficient search strategies it uses
are discussed in this article.

General Framework

The ˛BB algorithm guarantees finite �-convergence to
the global solution of nonlinear programming prob-
lems (NLPs) belonging to the general class

8̂
ˆ̂̂<
ˆ̂̂̂
:

minx f (x)
s.t. g(x) � 0

h(x) D 0
x 2 [xL; xU ];

(1)

where f (x), g(x) and h(x) are continuous twice-
differentiable functions.

The solution scheme is based on the generation of
a nonincreasing sequence of upper bounds and a non-
decreasing sequence of lower bounds on the global so-
lution. The monotonicity of these sequences is ensured
through successive partitioning of the search space
which enables the construction of increasingly tight re-
laxations of the problem. The validity of the bounds ob-
tained is of crucial importance in a rigorous global op-
timization approach. The upper bounding step does not
present any theoretical difficulties and consists of a lo-
cal optimization of the nonconvex problem. The lower
bounding step is a more challenging operation in which
the nonconvex problem must be convexified and un-
derestimated in the current subdomain. The strategy
adopted dictates the applicability of the algorithm and
plays a pivotal role in its performance as it determines
the tightness of the lower bounds obtained. The pro-
cedure followed in the ˛BB algorithm is discussed in
the next section. Finally, the branching step involves the
partition of the solution domain with the smallest lower
bound on the global optimum solution into a covering
set of subdomains. Although this is a simple task, the
choice of partition has implications for the rate of con-
vergence of the algorithm and efficient branching rules
must be used.

Convexification and Underestimation Strategy

A convex relaxation of problem (1) is obtained by con-
structing convex underestimators for the nonconvex
objective function and inequality constraints and by
relaxing the nonlinear equality constraints, replacing
them with less stringent linear equality constraints or
a set of two convex inequalities. The general convexi-
fication/relaxation procedure used is first discussed for
the objective function and nonconvex inequalities.

Function Decomposition

A convex underestimator for a twice continuously dif-
ferentiable function is constructed by following a two-
stage procedure. In the first stage, the function is de-
composed into a summation of terms of special struc-
ture, such as linear, convex, bilinear, trilinear, frac-
tional, fractional trilinear, concave in one variable and
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general nonconvex terms. Then, based on the fact that
the summation of convex functions results in a con-
vex function, a tailored convex underestimator is used
for each different term type. Thus, a twice-differentiable
function F(x) defined over the domain [xL, xU] is writ-
ten as

F(x) D c>xC FC(x)C
btX
iD1

bi xBi ;1xBi ;2

C

t tX
iD1

ti xTi;1xTi ;2xTi ;3 C

f tX
iD1

fi
xFi ;1
xFi ;2

C

f t tX
iD1

f ti
xFTi ;1xFTi ;2

xFTi ;3
C

uc tX
iD1

FUCi (xUCi )

C

nc tX
iD1

FNCi (x);

(2)

where c is a scalar vector; FC(x) is a convex function; bt
is the number of bilinear terms, bi is the coefficient of
the ith bilinear term and xBi ;1 and xBi ;2 are the two vari-
ables participating in the bilinear term; tt is the number
of trilinear terms, ti is the coefficient of the ith trilin-
ear term and xTi ;1 xTi ;2 and xTi ;3 are the three variables
participating in the trilinear term; ft is the number of
fractional terms, f i is the coefficient of the ith fractional
term and xFi ;1 and xFi ;2 are the two variables participat-
ing in the fractional term; ftt is the number of fractional
trilinear terms, fti is the coefficient of the ith fractional
trilinear term and xFTi ;1, xFTi ;2 and xFTi ;3 are the three
variables participating in the fractional trilinear term;
uct is the number of univariate concave terms, FUCi is
the ith univariate concave term and xUCi is the variable
participating in the univariate concave term; nct is the
number of general nonconvex terms and FNCi (x) is the
ith general nonconvex term.

The decomposition phase serves two purposes: it
can lead to the construction of a tight underestima-
tor by taking advantage of the special structure of the
function and it may reduce the complexity of the un-
derestimation strategy by permitting the treatment of
terms which involve a smaller number of variables than
the overall nonconvex function. As will become appar-
ent, this is especially important for general nonconvex
terms.

Linear and Convex Terms

Any term that has been identified as linear or convex
does not need to be modified during the convexifica-
tion/underestimation procedure.

Bilinear Terms

The bilinear terms can be replaced by their convex en-
velope [5,15]. A new variable wB substitutes a bilinear
term x1 x2 and is bounded by a set of four inequality
constraints which depend on the variable bounds.

8̂
ˆ̂̂<
ˆ̂̂̂
:

wB � xL1 x2 C xL2 x1 � xL1 xL2 ;
wB � xU1 x2 C xU2 x1 � xU1 xU2 ;
wB � xU1 x2 C xL2 x1 � xU1 xL2 ;
wB � xL1 x2 C xU2 x1 � xL1 xU2 :

(3)

Trilinear, Fractional and Fractional Trilinear Terms

For trilinear, fractional and fractional trilinear terms,
the convex underestimators proposed in [13] can be
used. They are constructed in a fashion similar to the
bilinear term underestimators: a new variable replaces
the term and a set of inequality constraints provides
bounds on this variable. For a trilinear term x1x2x3, for
instance, the substitution variable wT is subject to

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

wT � x1xL2 xL3 C xL1 x2xL3
CxL1 xL2 x3 � 2xL1 xL2 xL3 ;

wT � x1xU2 x
U
3 C xU1 x2xL3

CxU1 xL2 x3 � xU1 xL2 xL3 � xU1 xU2 xU3 ;
wT � x1xL2 xL3 C xL1 x2x

U
3

CxL1 xU2 x3 � xL1 xU2 xU3 � xL1 xL2 xL3 ;
wT � x1xU2 xL3 C xU1 x2x

U
3

CxL1 xU2 x3 � xL1 xU2 xL3 � xU1 xU2 xU3 ;
wT � x1xL2 x

U
3 C xL1 x2xL3

CxU1 xL2 x3 � xU1 xL2 xU3 � xL1 xL2 xL3 ;
wT � x1xL2 x

U
3 C xL1 x2x

U
3

CxU1 xU2 x3 � xL1 xL2 xU3 � xU1 xU2 xU3 ;
wT � x1xU2 xL3 C xU1 x2xL3

CxL1 xL2 x3 � xU1 xU2 xL3 � xL1 xL2 xL3 ;
wT � x1xU2 x

U
3 C xU1 x2x

U
3

CxU1 xU2 x3 � 2xU1 xU2 xU3 :

(4)
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For a fractional term x1/x2 with xL2 > 0, the new variable
wF is bounded by

wF �

8<
:

xL1
x2
C x1

xU2
�

xL1
xU2

if xL1 � 0;
x1
xU2
�

xL1 x2
xL2 x

U
2
C

xL1
xL2

if xL1 < 0;

wF �

8<
:

xU1
x2
C x1

xL2
�

xU1
xL2

if xU1 � 0;
x1
xL2
�

xU1 x2
xL2 x

U
2
C

xU1
xU2

if xU1 < 0:

(5)

Finally, for a fractional trilinear term x1x2/x3 with xL1 , xL2
� 0 and xL3 > 0, the substitution variable wFT is subject
to

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

wFT �
x1xL2
xU3
C

xL1 x2
xU3

C
xL1 x

L
2

x3
�

2xL1 x
L
2

xU3
;

wFT �
x1xL2
xU3
C

xL1 x2
xL3

C
xL1 x

U
2

x3
�

xL1 x
U
2

xL3
�

xL1 x
L
2

xU3
;

wFT �
x1xU2
xL3
C

xU1 x2
xU3

C
xU1 xL2
x3
�

xU1 xL2
xU3
�

xU1 xU2
xL3

;

wFT �
x1xU2
xU3
C

xU1 x2
xL3

C
xL1 x

U
2

x3
�

xL1 x
U
2

xU3
�

xU1 xU2
xL3

;

wFT �
x1xL2
xU3
C

xL1 x2
xL3

C
xU1 xL2
x3
�

xU1 xL2
xL3
�

xL1 x
L
2

xU3
;

wFT �
x1xU2
xU3
C

xU1 x2
xL3

C
xL1 x2
x3
�

xL1 x
U
2

xU3
�

xU1 xU2
xL3

;

wFT �
x1xL2
xU3
C

xL1 x2
xL3

C
xU1 xL2
x3
�

xU1 xL2
xL3
�

xL1 x
L
2

xU3
;

wFT �
x1xU2
xL3
C

xU1 x2
xL3

C
xU1 xU2
x3
�

2xU1 xU2
xL3

:

(6)

Univariate Concave Terms

For univariate concave terms, the convexifica-
tion/underestimation procedure does not require the
introduction of new variables or constraints: a simple
linearization of the term suffices. Thus, a univariate
concave term FUC(x) is replaced by the linear term

FUC(xL)C
FUC(xU ) � FUC(xL)

xU � xL
(x � xL): (7)

General Nonconvex Terms

For a general nonconvex term FNC(x), a convex un-
derestimator F̆NC(x) over [xL, xU ] is constructed by
subtracting a positive separable quadratic term from
FNC(x) [12]:

F̆NC(x) D FNC(x) �
nX

jD1

˛ j(x j � xLj )(x
U
j � x j); (8)

where n is the number of variables and the ˛ parameters
are positive scalars.

Themagnitude of the ˛ parameters determines both
the quality of the convex underestimator, that is, its
tightness, and its convexity. It was shown in [12] that
the maximum separation distance, dmax, between the
nonconvex term FNC(x) and its convex underestimator
F̆NC(x) is given by

dmax D max
x

�
FNC(x) � F̆NC(x)

�

D
1
4

nX
jD1

˛ j(xUj � xLj )
2 : (9)

Thus, small ˛ values are needed to construct a tight un-
derestimator. The dependence of the maximum sepa-
ration distance on the square of the variable ranges is
especially important for the convergence proof of the
algorithm [12]. Provided that the ˛ values do not in-
crease from a parent node to a child node, relation (9)
guarantees that the convex relaxations become increas-
ingly tight as the branch and bound iterations progress
and smaller subdomains are generated. In the limit, the
convex underestimators match the original functions.
As a result, the monotonicity of the lower bound se-
quence can be ensured.

To meet the convexity requirement of F̆NC(x), the
positive quadratic term needs to be sufficiently large to
overcome the nonconvexity of FNC(x). This is achieved
by manipulating the value of the ˛ parameters. Based
on the properties of convex functions, a necessary and
sufficient condition for the convexity of F̆NC(x) is the
positive semidefiniteness of the matrix HFNC (x) + 2
diag(˛j) for all x 2 [xL, xU], where HFNC (x) is the Hes-
sian matrix of the nonconvex term FNC(x). The diago-
nal matrix� = diag(˛j) results in a shift in the diagonal
elements of the matrixHFNC (x) and is therefore referred
to as the diagonal shift matrix. The rigorous derivation
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of a matrix � that satisfies the convexity condition is
a difficult matter in the general case, primarily because
of the nonlinear dependence of the Hessian matrix on
the x variables. This problem can be alleviated by using
interval arithmetic to generate an interval Hessian ma-
trix [HFNC ] such that HFNC (x) 2 [HFNC ] for all x 2]xL,
xU] [1,3,4]. This process allows the formulation of a suf-
ficient convexity condition for the underestimator: if all
real symmetric matrices in [HFNC ] + 2 diag(˛j) are pos-
itive semidefinite, then F̆NC(x) is convex over [xL, xU].

Based on the interval Hessian matrix, a number of
methods may be used to automatically and rigorously
compute a diagonal shift matrix � that guarantees the
convexity of F̆NC(x). The first class of techniques gener-
ates a uniform diagonal shift matrix by equating all the
diagonal elements of� with a single ˛ value. In the sec-
ond class of techniques, different ˛ values are used and
a nonuniform diagonal shift matrix is obtained [1,3].

In the first class of methods, the convexity condition
is equivalent to the positive semidefiniteness of all real
symmetric matrices in [HFNC ] + 2 diag(˛) and is satis-
fied by any ˛ parameter such that

˛ � max
�
0;�

1
2
�min

�
[HFNC ]

�	
; (10)

where �min ([HFNC ]) is the minimum eigenvalue of
[HFNC ] [3,12].

Consider a square symmetric interval Hessian ma-
trix family [H] whose element (ij) is the interval
[hi j; hi j] and whose radius matrix �H is defined as

(	H)i j D
(hi j�hi j)

2 . A lower bound on the minimum
eigenvalue of [H] can be obtained using one of the fol-
lowing methods [1,3,4]:
� Method I.1 — the Gershgorin theorem approach;
� Method I.2a — the E-matrix approach with E = 0;
� Method I.2b — the E-matrix approach with E =

diag(�H);
� Method I.3 —Mori–Kokame’s approach;
� Method I.4 — the lower bounding Hessian ap-

proach;
� Method I.5 — an approach based on the Kharitonov

theorem;
� Method I.6 — the Hertz approach.
Method I.1 is an extension of the Gershgorin theorem
for real matrices to interval matrices. The minimum

eigenvalue of [H] is such that

�min([H]) � min
i

2
4hi i �

X
j¤i

max
�

hi j



 ;



hi j





�35 :

Methods I.2a and I.2b are a generalization of the re-
sults presented in [8,23]. It requires the computation of
the modified midpoint matrix eHM such that (eHM)i j D
(hi jChi j)

2 for i 6D j and (eHM)i i D 0, as well as the com-
putation of the modified radius matrix e	H such that
(e	H)i j D

(hi j�hi j)
2 for i 6D j and (e	H)i i D hi j . Given an

arbitrary real symmetric matrix E, the minimum eigen-
value of the interval Hessian matrix [H] is such that

�min ([H]) � �min
�eHM C E

�
� �

�
e	H C kEk

�
;

where �(M) denotes the spectral radius of the real ma-
trixM. In practice, two E-matrices have been used: E =
0 (Method I.2a) and E =�H (Method I.2b).

Method I.3 is based on a result presented in [21],
which uses the lower vertex matrix H, such that (H)ij =
hij, and the upper vertex matrix H, such (H)i j D hi j .
The minimum eigenvalue of [H] is such that

�min ([H]) � �min(H) � �(H � H):

Method I.4 uses a lower bounding Hessian of the
interval Hessian matrix. Such a matrix is defined in
[24] as a real symmetric matrix whose minimum eigen-
value is smaller than the minimum eigenvalue of any
real symmetric matrix in the interval Hessian family. It
therefore suffices to compute the minimum eigenvalue
of this real matrix to obtain the desired lower bound.
A lower bounding Hessian L = (lij) can be constructed
from the following rule:

li j D

8<
:
hi i C

P
k¤i

h ik�hik
2 ; i D j;

hi jChi j
2 ; i ¤ j:

Method I.5 is based on the Kharitonov theorem [11]
which, by extension, gives a lower bound on the min-
imum eigenvalue of an interval Hessian matrix family
[2]. First, the corresponding characteristic polynomial
family must be derived

[K] D [c0; c0]C [c1; c1]�C [c2; c2]�2

C [c3; c3]�3 C [c4; c4]�4 C [c5; c5]�5 C � � � ;
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where the coefficients of � depend on the elements of
the interval Hessian matrix [H]. A lower bound on the
roots of this polynomial can then obtained by calcu-
lating the minimum roots of only four real polyno-
mials. The appropriate bounding polynomials are the
Kharitonov polynomials
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

K1 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � ;
K2 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � ;
K3 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � ;
K4 D c0 C c1�C c2�2 C c3�3

Cc4�4 C c5�5 C � � � :

Method I.6 allows the computation of the exact
minimum eigenvalue of the family of symmetric ma-
trices represented by the interval Hessian matrix. It re-
quires the construction of 2n� 1 vertex matrices Hk of
the interval matrix [H] as defined by

(Hk)i j D

8̂
<̂
ˆ̂:

hi i if i D j;
hi j if uiu j � 0; i ¤ j;
hi j if uiu j < 0; i ¤ j;

where all possible combinations of the signs of the ar-
bitrary scalars ui and uj are enumerated. It was shown
in [4,10] that the lowest minimum eigenvalue from this
set of real matrices is the minimum eigenvalue of the
interval matrix.

Three rigorous techniques for the generation of
a non uniform shift matrix� can be used [1,3]:
� Method II.1a — the scaled Gershgorin theorem ap-

proach with scaling vector d = 1;
� Method II.1b — the scaled Gershgorin theorem ap-

proach with scaling vector d = xU � xL;
� Method II.2 — the H-matrix approach;
� Method II.3 — an approach based on the minimiza-

tion of the maximum separation distance.
The main advantage of these techniques is that resort-
ing to a different value of the ˛ parameter for each vari-
able may lead to tighter underestimators by taking into
account the individual contribution of each variable to
the overall nonconvexity of the term being considered.
In the case of a uniform diagonal shift, the worst con-
tribution is uniformly assigned to all variables.

Methods II.1a and II.1b bear resemblance with the
Gershgorin theorem used forMethod I.1. In the present
case, however, each row is considered independently
and the ith element of the diagonal shift matrix, ˛i, is
the maximum of zero and

�
1
2

0
@hi i �

X
j¤i

max
n

hi j



 ;



hi j





o dj

di

1
A ;

where d is an arbitrary positive vector. In practice, d =
1 (Method II.1a) and d = xU � xL (Method II.1b) have
been used. The latter choice of scaling often helps to
reduce the maximum separation distance between the
nonconvex term and its underestimator by assigning
smaller ˛ values to variables with a larger range.

Method II.2 is an iterative method based on the
properties of H-matrices: a square interval matrix that
has the H-matrix property is regular and does not have
0 as an eigenvalue [22]. In order to determine whether
a square interval matrix [H] is an H-matrix, its com-
parison matrix hHimust first be defined. For i 6D j, the
off-diagonal element (hHi)ij of the comparison matrix
is given by �maxf



hi j


 ;



hi j




g. A diagonal element
(hHi)ii of the comparison matrix is given by
8<
:
0; 0 2 [hi i ; hi i ];

min
n
khi ik ;




hi i





o
; 0 … [hi i ; hi i ]:

A real matrix such as hHi is an M-matrix if all its off-
diagonal elements are nonpositive – this is always true
for hHi – and if there exists a real positive vector u such
that hHiu > 0. The interval matrix [H] is anH-matrix if
its comparison matrix hHi is anM-matrix. Method II.2
follows an iterative procedure to construct a nonuni-
form diagonal shift matrix � such that [H] + 2 � is an
H-matrix whose modified midpoint matrix is positive
definite. If these conditions are met, the diagonal ele-
ments of the shift matrix are guaranteed to lead to the
construction of a convex underestimator for the non-
convex term. The initial guess chosen for � is the uni-
form diagonal shift matrix given by Method I.2.

Method II.3 aims to generate a non uniform diago-
nal shift matrix which minimizes the maximum separa-
tion distance between the nonconvex term and its un-
derestimator. For this purpose, the following semidefi-
nite programming problem is solved using an interior
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point method [25]:
8̂
<̂
ˆ̂:

min˛i (xU � xL)>	(xU � xL)
s.t. LC 2 diag(˛i ) � 0

˛i � 0; 8i;

where L is the lower bounding Hessian matrix defined
in Method I.4. Because this approach is based on the
lower bounding Hessian matrix rather than the exact x-
dependent Hessian matrix, the solution found does not
correspond to the smallest achievable maximum sepa-
ration distance, but can be expected to be smaller than
when Method I.4 is used.

A comparative study [1,3] of all the methods avail-
able for the generation of a diagonal shift matrix found
that Methods II.1a, II.1b and II.3 usually give the tight-
est underestimators. However, Method II.3 is compu-
tationally intensive and therefore results in poorer con-
vergence rates than Methods II.1a and II.1b. Since the
least computationally expensive techniques for the gen-
eration of the diagonal shift matrix, Methods I.1, II.1a
and II.1b, are of order O(n2), the decomposition of the
nonconvex terms into a summation of terms involving
a smaller number of variables may have a significant
impact on the performance of the algorithm.

Overall Convexification/Relaxation Strategy

Based on the rigorous convexification/underestimation
schemes for bilinear, trilinear, fractional, fractional
trilinear, univariate concave and general nonconvex
terms, the overall convex underestimator F̆(x;w) for
a twice continuously differentiable function F(x) de-
composed according to (2) is

F̆(x;w) D c>xC FC (x)C
btX
iD1

biwBi

C

t tX
iD1

tiwTi C

f tX
iD1

fiwFi C

f t tX
iD1

f tiwFTi

C

uc tX
iD1

�
FUCi (x

L
UCi

)

C
FUCi (xUUCi

) � FUCi (xLUCi
)

xUUCi
� xLUCi

(xUCi � xLUCi
)

!

C

nc tX
iD1

0
@FNCi (x) �

nX
jD1

˛i j(x j � xLj )(x
U
j � x j)

1
A ;

(11)

where the notation is as defined for (2). The introduc-
tion of the new variables wBi , wTi , wFi and wFTi is ac-
companied by the addition of convex inequalities of the
type given in (3), (4), (5) and (6). For the trilinear, frac-
tional and fractional trilinear terms, the specific form of
these equations depends on the sign of the term coeffi-
cients and variable bounds.

The form given by (11) can be used to construct
convex underestimators for the objective function and
inequality constraints.

Equality Constraints

For nonlinear equality constraints, two different con-
vexification/relaxation schemes are used, depending on
the mathematical structure of the function. If the equal-
ity h(x = 0 involves only linear, bilinear, trilinear, frac-
tional and fractional trilinear terms, it is first decom-
posed into the equivalent equality constraint

c>xC
btX
iD1

bi xBi ;1xBi ;2 C

t tX
iD1

ti xTi ;1xTi ;2xTi ;3

C

f tX
iD1

fi
xFi ;1
xFi ;2

C

f t tX
iD1

f ti
xFTi ;1xFTi ;2

xFTi ;3
D 0; (12)

where the notation is as previously defined. (12) is then
replaced by

c>xC
btX
iD1

biwBi C

t tX
iD1

tiwTi

C

f tX
iD1

fiwFi C

f t tX
iD1

f tiwFTi D 0; (13)

with the addition of convex inequalities of the type
given by (3), (4), (5) and (6). If the nonlinear equal-
ity contains at least one convex, univariate concave or
general nonconvex term, the convexification/relaxation
strategy must first transform the equality constraint
h(x) into a set of two equivalent inequality constraints

(
h(x) � 0

� h(x) � 0;
(14)

which can then be convexified and underestimated in-
dependently using (11).

The transformation of a nonconvex twice-differen-
tiable problem into a convex lower bounding problem
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described in this section allows the generation of valid
and increasingly tight lower bounds on the global opti-
mum solution.

Branching Variable Selection

Once upper and lower bounds have been obtained for
all the existing nodes of the branch and bound tree,
the region with the smallest lower bound is selected
for branching. The partitioning of the solution space
can have a significant effect on the quality of the lower
bounds obtained because of the strong dependence of
the convex underestimators described by (3)–(8) on
the variable bounds. It is therefore important to iden-
tify the variables which most contribute to the separa-
tion between the original problem and the convex lower
bounding problem at the current node. Several branch-
ing variable selection criteria have been designed for
this purpose [1].

Least Reduced Axis Rule

The first strategy leads to the selection of the variable
that has least been branched on to arrive at the current
node. It is characterized by the largest ratio

xUi � xLi
xUi;0 � xLi;0

;

where xLi;0 and xUi;0 are the lower and upper bounds on
variable xi at the first node of the branch and bound tree
and xLi and xUi are the current lower and upper bounds
on variable xi.

The main disadvantage of this simple rule is that it
does not account for the specificities of the participa-
tion of each variable in the problem and therefore can-
not accurately identify the critical variables that deter-
mine the quality of the underestimators.

TermMeasure

A more sophisticated rule is based on the computation
of a term measure �t

j for term tj defined as

�t
j D t j(x�) � t̆ j(x�;w�); (15)

where tj(x) is a bilinear, trilinear, fractional, frac-
tional trilinear, univariate concave or general noncon-
vex term, t̆ j(x;w) is the corresponding convex underes-
timator, x� is the solution vector corresponding to the

minimum of the convex lower bounding problem, and
w� is the solution vector for the new variables at the
minimum of the convex lower bounding problem. One
of the variables participating in the termwith the largest
measure �t

j is selected for branching.

Variable Measure

A third strategy is based on a variable measure �v
i

which is computed from the term measures �t
j . For

variable xi, this measure is

�v
i D

X
j2Ti

�t
j; (16)

where Ti is the set of terms in which xi participates. The
variable with the largest measure �v

i is branched on.

Variable Bound Updates

The effect of the variable bounds on the convexifica-
tion/relaxation procedure motivates the tightening of
the variable bounds. However, the trade-off between
tight underestimators generated at a large computa-
tional cost and looser underestimators obtained more
rapidly must be taken into account when designing
a variable bound update strategy. For this reason, one
of several approaches can be adopted, depending on the
degree of nonconvexity of the problem [1,3]:
� variable bound updates

– at the beginning of the algorithmic procedure
only; or

– at each iteration;
� bound updates

– for all variables in the problem; or
– bound updates for those variables that most af-

fect the quality of the lower bounds as measured
by the variable measure �v

i .
Two different techniques can be used to tighten the

variable bounds. The first is based on the generation
and solution of a series of convex optimization prob-
lems while the second is an iterative procedure relying
on the interval evaluation of the functions in the non-
convex NLP.

Optimization-Based Approach

In the optimization approach, a new lower or upper
bound for variable xi is obtained by solving the convex
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problem
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

minx;w or maxx;w xi

s.t. f̆ (x;w) � f �

ğ(x;w) � 0

h̆CN (x;w) � 0

h̆�N (x;w) � 0

h̆L(x;w) D 0

n(x;w) � 0

x 2 [xL; xU ];

w 2 [wL;wU ];

(17)

where p̆(x;w) denotes the convex underestimator of
function p(x) as defined in (11), f � denotes the cur-
rent best upper bound on the global optimum solution,
hL(x) denotes the set of equality constraints which in-
volve only linear, bilinear, trilinear, fractional and frac-
tional trilinear terms, hCN (x) denotes the set of equality
constraints that involve other term types and h�N(x) de-
notes the negative of that set, n(x, w) denotes the set
of additional constraints that arise from the underes-
timation of bilinear, trilinear, fractional and fractional
trilinear terms, and w is the corresponding set of new
variables.

Interval-Based Approach

In the interval-based approach, an iterative procedure is
followed for each variable whose bounds are to be up-
dated. The original functions in the problem are used
without any transformations. An inequality constraint
g(x) � 0 is infeasible in the domain [xL, xU] if its range
[gL, gU], computed so that g(x)2 [gL, gU]8 x2 [xL, xU[,
is such that gL > 0. Similarly, an equality constraint h(x)
= 0 is infeasible in this domain if its range [hL, hU], com-
puted so that h(x) 2 [hL, hU],8 x 2 [xL, xU], is such that
0 62 [hL, hU]. The variable bounds are updated based on
the feasibility of the constraints in the original problem
and the additional constraint that the objective function
should be less than or equal to the current best upper
bound f �. The feasible region is therefore defined as

F D
�
x :

g(x) � 0; h(x) D 0;
f (x) � f �; x 2 [xL; xU ]

	
:

The lower (upper) bound on variable xi 2 [xLi , x
U
i ] is

updated as follows:

PROCEDURE interval-based bound update()
Set initial bounds L = xLi and U = xUi ;
Set iteration counter k = 0;
Set maximum number of iterations K;
DO k < K

Compute midpoint M = (U + L)/2;
Set left region fx 2 F : xi 2 [L;M]g;
Set right region fx 2 F : xi 2 [L;M]g;
Test interval feasibility of left (right region);
IF feasible,

Set U = M (L = M);
ELSE,

Test interval feasibility of right (left)
region;
IF feasible,

Set L = M (U = M);
ELSE,

Set L = U (U = L);
Set U = xUi (U = xLi )

IF k = 0 and L = xUi (U = xLi );
RETURN(infeasible node);

Set k = k + 1;
OD;
RETURN(xLi = L (xUi = U));

END interval-based bound update;

Interval-based bound update procedure

In general, the interval-based bound update
strategy is less computationally expensive than the
optimization-based approach. However, at the begin-
ning of the branch and bound search, when the bound
updates are most critical and the variable ranges are
widest, the overestimations inherent in interval com-
putations often lead to looser updated bounds in the
interval-based approach than in the optimization-based
technique.

Algorithmic Procedure

Based on the developments presented in previous sec-
tions, the procedure for the ˛BB algorithm can be sum-
marized by the following pseudocode:
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PROCEDURE ˛BB algorithm()
Decompose functions in problem;
Set tolerance �;
Set f � = f 0 = �1 and f̄ � = f̄ 0 = +1;
Initialize list of lower bounds f f 0g;
DO f̄ � � f � > �

Select node k with smallest lower bound, f k ,
from list of lower bounds;
Set f � = f k ;
(Optional) Update variable bounds for cur-
rent node using optimization or interval
approach;
Select branching variable;
Partition to create new nodes;
DO for each new node i

Generate convex lower bounding NLP
Introduce new variables, constraints;
Linearize univariate concave terms;
Compute interval Hessian matrices;
Compute ˛ values;

Find solution f i of convex lower bound-
ing NLP;
IF infeasible or f i > f̄ � + �

Fathom node;
ELSE

Add f i to list of lower bounds;
Find a solution f̄ i of nonconvex NLP;
IF f̄ i < f̄ �

Set f̄ � = f̄ i ;
OD;

OD;
RETURN( f̄ � and variables values at correspond-
ing node);

END ˛BB algorithm;

A pseudocode for the˛BB algorithm

Computational Experience

Significant computational experience with the ˛BB al-
gorithm has been acquired through the solution of
a wide variety of problems involving different types
of nonconvexities and up to 16000 variables [1,2,
3,4,6,9,12]. These include problems such as pool-
ing/blending, design of reactor networks, design of
batch plants under uncertainty [9], stability studies be-
longing to the class of generalized geometric program-

˛BB Algorithm, Figure 1
Simplified alkylation process flowsheet

ming problems, characterization of phase-equilibrium
using activity coefficient models, identification of stable
molecular conformations and the determination of all
solutions of systems of nonlinear equations.

In order to illustrate the performance of the algo-
rithm and the importance of variable bound updates,
a medium-size example is presented. The objective is to
maximize the profit for the simplified alkylation process
presented in [7] and shown in Fig. 1.

An olefin feed (100% butene), a pure isobutane re-
cycle and a 100% isobutane make up stream are intro-
duced in a reactor together with an acid catalyst. The
reactor product stream is then passed through a frac-
tionator where the isobutane and the alkylate prod-
uct are separated. The spent acid is also removed from
the reactor. The formulation used here includes 7 vari-
ables and 16 constraints, 12 of which are nonlinear. The
variables are defined as follows: x1 is the olefin feed
rate in barrels per day; x2 is the acid addition rate in
thousands of pounds per day; x3 is the alkylate yield
in barrels per day; x4 is the acid strength (weight per-
cent); x5 is the motor octane number; x6 is the exter-
nal isobutane-to-olefin ratio; x7 is the F-4 performance
number. The profit maximization problem is then ex-
pressed as:

Profit D �min(1:715x1 C 0:035x1x6
C 4:0565x3 C 10:0x2 � 0:063x3x5)
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subject to:

0:0059553571x26x1 C 0:88392857x3
� 0:1175625x6x1 � x1 � 0;

1:1088x1 C 0:1303533x1x6
� 0:0066033x1x26 � x3 � 0;

6:66173269x26 C 172:39878x5
� 56:596669x4 � 191:20592x6 � 10000;
1:08702x6 C 0:32175x4 � 0:03762x26
� x5 � �56:85075;

0:006198x7x4x3 C 2462:3121x2
� 25:125634x2x4 � x3x4 � 0;

161:18996x3x4 C 5000:0x2x4
� 489510:0x2 � x3x4x7 � 0;
0:33x7 � x5 C 44:333333 � 0;

0:022556x5 � 0:007595x7 � 1;

0:00061x3 � 0:0005x1 � 1;

0:819672x1 � x3 C 0:819672 � 0;

24500:0x2 � 250:0x2x4 � x3x4 � 0;

1020:4082x4x2 C 1:2244898x3x4
� 100000x2 � 0;

6:25x1x6 C 6:25x1 � 7:625x3 � 100000;

1:22x3 � x6x1 � x1 C 1 � 0;

1500 � x1 � 2000;
1 � x2 � 120;

3000 � x3 � 3500;
85 � x4 � 93;
90 � x5 � 95;
3 � x6 � 12;

145 � x7 � 162:

The maximum profit is $1772.77 per day, and the op-
timal variable values are x�1 = 1698.18, x�2 = 53.66, x�3
= 3031.30, x�4 = 90.11, x�5 = 95.00, x�6 = 10.50, x�7 =
153.53. In this example, variable bound tightening is
performed using the optimization-based approach. An
update of all the variable bounds therefore involves the
solution of 14 convex NLPs. The computational cost is
significant and may not always be justified by the cor-
responding decrease in number of iterations. Two ex-
treme tightening strategies were used to illustrate this
trade-off: an update of all variable bounds at the on-

set of the algorithm only (‘Single Up’), or an update
of all bounds at each iteration of the ˛BB algorithm
(‘One Up/Iter’). An intermediate strategy might involve
bound updates for those variables that affect the under-
estimators most significantly or bound updates at only
a few levels of the branch and bound tree. The results
of runs performed on an HP9000/730 are summarized
in the table below. tU denotes the percentage of CPU
time devoted to the construction of the convex under-
estimating problem.

Although the approach relying most heavily on
variable bound updates results in tighter underestima-
tors, and hence a smaller number of iterations, the time
requirements for each iteration are significantly larger
than when no bounds updates are performed. Thus, the
overall CPU requirements often increase when all vari-
able bounds are updated at each iteration.

Meth
Single up One Up/Iter

Iter. CPU tU Iter. CPU tU
sec. (%) sec. (%)

I.1 74 37:5 0:5 31 41:6 0:0
I.2a 61 30:6 1:6 25 37:2 0:2
I.2b 61 29:2 1:0 25 35:4 0:1
I.3 69 32:8 1:9 25 31:5 0:2
I.4 61 31:6 1:4 25 33:1 0:2
I.5 61 32:8 12:3 25 36:7 1:7
I.6 59 32:9 1:4 25 32:8 0:5
II.1a 56 24:9 0:3 30 36:5 0:3
II.1b 38 13:6 1:7 17 19:9 0:5
II.2 62 32:7 0:6 25 34:5 0:3
II.3 54 21:8 16:7 23 30:4 5:0

Alkylation process design results

In order to determine the best technique for the
construction of convex underestimators, the percent-
age of computational effort dedicated to this purpose,
tU , is tracked. As can be seen in the above table, the
generation of the convex lower bounding does not con-
sume a large share of the computational cost, regard-
less of the method. It is, however, significantly larger
for Methods I.5 and II.3 as they require the solution of
a polynomial and a semidefinite programming problem
respectively. tU decreases when bound updates are per-
formed at each iteration as a large amount of time is
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spent solving the bound updates problems. In this ex-
ample, the scaled Gershgorin approach with di = (xUi �
xLi ) (Method II.1b) gives the best results both in terms
of number of iterations and CPU time.

Conclusions

The ˛BB algorithm is guaranteed to identify the global
optimum solution of problems belonging to the broad
class of twice continuously differentiable NLPs. It is
a branch and bound approach based on a rigorous con-
vex relaxation strategy, which involves the decomposi-
tion of the functions into a sum of terms with special
mathematical structure and the construction of differ-
ent convex underestimators for each class of term. In
particular, the treatment of general nonconvex terms
requires the analysis of their Hessian matrix through
interval arithmetic. Efficient branching and variable
bound update strategies can be used to enhance the per-
formance of the algorithm.
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Alternative set theory has been created and, together
with his colleagues at Charles University, developed
by P. Vopěnka since the 1970s. In agreement with
Husserl’s phenomenology, he based his theory on the
natural world and the human view thereof.

The most important for any set theory is the way
it treats infinity. A different approach to infinity forms
the key difference between AST and classical set the-
ories based on the Cantor set theory (CST). Cantor’s
approach led to the creation of a rigid, abstract world
with an enormous scale of infinite cardinalities while
Vopěnka’s infinity, based on the notion of horizon, is
more natural and acceptable.

Another source of inspiration were nonstandard
models of Peano arithmetics with infinitely large (non-
standard) numbers. The way to build them in AST is
easy and natural.

The basic references are [9,10,11].

Classes, Sets and Semisets

AST, as well as CST, builds on notions of ‘set’, ‘class’,
‘element of a set’ and, in addition, introduces the notion
of ‘semiset’. A class is the most general notion used for
any collection of distinct objects. Sets are such classes
that are so clearly defined and clean-cut that their ele-
ments could be, if necessary, included in a list. Semisets
are classes which are not sets, because their borders are
vague, however, they are parts of sets. For example, all
living people in the world form a class—some are be-
ing born, some are dying, we do not know where all
of them are. The citizens of Prague, registered at the
given moment in the register, form a set. However, all
the beautiful women in Prague or brave men in Prague
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form a semiset, since it is not clear who belongs to this
collection and who not.

In the real world, we may find many other semisets.
Almost each property defines a semiset of objects, e. g.,
people who are big, happy or sick. Many properties are
naturally connected with a vagueness. Also, what we
see and perceive can be vague and limited by a hori-
zon. Objects described in this way may form a semiset,
e. g. flowers I can see in the blooming meadow, all my
friends, sounds I can hear.

Infinity

This interpretation differs from the normal one and
corresponds more to the etymological origin of the
word infinity. We will call finite those classes any part
of which is surveyable and forms a set. Any finite class
is a set.

Fin(X) , (8Y)(Y � X H) Set(Y)):

On the other side, infinite classes include ungrasped
parts, semisets. This phenomenon may occur also when
watching large sets in the case when it is not possible to
capture them clearly as a whole.

There are two different forms of infinity tradition-
ally called denumerability and continuum.

A countable (denumerable) class, in a way, repre-
sents a road towards the horizon. Its beginning is clear
and definite but it comes less and less clear and its end
loses in a vagueness. A countable class is defined as an
infinite class with a linear ordering such that each ini-
tial part (segment) is finite. For instance, a railway track
with cross-ties leading straight to the horizon, days of
our life we are to live or ever smaller and smaller reflec-
tions in two mirrors facing each other. The most im-
portant example is a class of natural numbers that will
be discussed later.

The phenomenon of denumerability corresponds
to a road towards the horizon. Though we get to the
last point we can see, we can still go a bit further, the
road will not disappear immediately. People have al-
ways tried to look a bit behind the horizon, to gain un-
derstanding and to overcome it in their thinking. This
experience is expressed here by the important axiom of
prolongation (see Axiom A6).

The other type of infinity, continuum, is based on
the following experience. If we watch an object, how-

ever, are not able to distinguish individual elements
which form it since they lie beyond the horizon of
our perception. For example, the class of all geometric
points in the plane, class of all atoms forming a table or
grains of sand which together form a heap.

In fact the classical infinite mathematics, when ap-
plied to the real world, then solely to the above two
types of infinity.

The intention of AST is to built on the natural world
and human intuition. There is no reason for other types
of infinity which are enforced in CST by its assumption
that natural numbers form a set and that a power set is
a set. That is why there are only two infinite cardinali-
ties in AST: denumerability and continuum (see Axiom
A8).

All examples from mathematical and real worlds
are intentionally set out here together. They serve the
purpose of inspiration to see where the idea of infin-
ity comes from, they should be kept in mind when one
deals with infinity.

The mathematical world is an ideal one, it is a per-
fect world of objective truths abstracted from all that
is external. There is only little space for subjectivity of
perception in it. That is why not all semisets from the
real world may be interpreted directly.

The axiomatic system bellow describes that part of
the AST which can be expressed in a strictly formal way.
This basis provides space for extending AST by semisets
which are parts of big, however, classically finite sets
and thus make a lot of applications possible.

Axiomatic System of AST

[3] The language of AST uses symbols 2 and =, sym-
bols X, Y , Z, . . . for class variables and symbols x, y, z,
. . . for set variables. Sets are created by iteration from
the empty set by Axiom A3. Classes are defined by for-
mulas by Axiom A2. Every set is a class. Formally, a set
is a class that is a member of another class:

Set(X), (9Y)(X 2 Y):

AST is a theory with the following axioms:
� A1 (extensionality). (X = Y), (8Z)(Z 2 X), (Z
2 Y);

� A2 (existence of classes). If  is a formula, then

(9Y)(8x)(x 2 Y ,  (x; X1; : : : ; Xn));
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� A3 (existence of sets).

Set(;)^ (8x; y)Set(x [ fyg):

A set-formula is a formula in which only set vari-
ables and constants occur.
� A4 (induction). If  is a set-formula, then ( (;) ^

(8x, y)( (x))  (x [ {y}))) (8x)  (x).
� A5 (regularity). If  is a set-formula, then (9x) (x)
) (9x)( (x) ^ (8y 2 x): (y)).

As usual, the class of natural numbers N is defined in
the von Neumann way

N D
�
x :

(8y 2 x)(y � x)
^(8y; z 2 x)(y 2 z _ y D z _ z 2 y)

	

The class of finite natural numbers (FN) consists of
the numbers represented by a finite set. They are acces-
sible, easy to overlook and lie before the horizon:

FN D fx 2 N : Fin(x)g

FN forms a countable class in the sense described
above. The class FN correspond to classical natural
numbers and the class N to their nonstandard model.
Both N and FN satisfy the axioms of Peano arithmetic.

Two classes X, Y are equivalent if there is a one-one
mapping of X onto Y , i. e. X 	 Y .
� A6 (prolongation). Every countable function can

be prolonged to a function which is a set, i. e.
(8F)((Fnc(F) ^ (F 	 FN)) ) (9f )(Fnc(f ) ^ F �
f )).

An easy corollary is that a countable class is a semiset.
Also FN is a semiset and it can be prolonged to a set
which is an element of N and which is greater than all
finite natural numbers and so it represents an infinitely
large natural number. Consequently, the class N is not
countable.

The universal class V includes all sets created by it-
eration from the empty set.
� A7 (choice). The universal class V can be well or-

dered.
� A8 (two cardinalities). Every two infinite classes that

are not countable are equivalent.
Thus, any infinite class is either equivalent to FN or N.

Using ultrapowers, the relative consistency of AST
can be proved.

Rational and Real Numbers

Rational numbers Q are constructed in the usual way
fromN as the quotient field of the classN [ {�n; n2N}
BecauseN includes infinitely large numbers,Q includes
infinitely small numbers.

Finite rational numbers FQ are similarly con-
structed from finite natural numbers FN. They include
quantities that are before the horizon with respect to
distance and depth. Surely FQ� Q.

We define that x, y 2 Q are infinitely near by

xḊy, (8n 2 FN)

8̂
<̂
ˆ̂:

jx � yj < 1
n

_(x > n ^ y > n)
_(x < �n ^ y < �n):

This relation is an equivalence. The corresponding par-
tition classes are called monads. For x 2 Q

Mon(x) D fy : yḊxg :

Rational numbers x that are elements of Mon(0), i. e.
(xė0), are infinitely small. All monads are of the same
nature except for the two limit ones. These consists of
infinitely large positive and negative numbers. The class
of bounded rational numbers is

BQ D fx 2 Q : (9n)((n 2 FN) ^ (jxj < n))g

Now, it is easy and natural to construct real numbers:

R D fMon(x) : x 2 BQg :

Real numbers built in this way display the same charac-
teristics as real numbers in CST.

This motivation for expressing real numbers as
monads of rational numbers corresponds rather to et-
ymology than to the traditional interpretation. Ratio-
nal numbers are constructed by reason, perfectly exact;
their existence is purely abstract. On the other hand,
real numbers are more similar to those that are used
in the real world. If we say: one eighth of a cake, we
surely do not expect it to be the ideal eighth, it is rather
a portion which differs from the ideal one by a differ-
ence which is beyond the horizon of our perception.
A similar situation occurs in the case of a pint of milk
or twenty miles.
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Infinitesimal Calculus

[12] Infinitesimal calculus in AST is based on the same
point of view and intuition as that of its founders, I.
Newton and G.W. Leibniz. It is so because infinitely
small or infinitesimal quantities are naturally available
in AST. For example, the limit of a function and the
continuity in a 2 Q are defined, respectively, by:

lim
x!a

f (x) D b

, (8x)((xḊa ^ x ¤ a)) f (x)Ḋb));

(8x)(xḊa) f (x)Ḋ f (a)):

This topic is discussed in detail in [9]. As a method,
these definitions were successfully used for teaching
students.

Topology

Classes described by arbitrary formulas can be com-
plex and difficult to capture. The easiest are sets, also
classes described by using set-formulas, so-called set-
definable classes (Sd-classes) can be described well.
Semisets which are defined by a positive property (big,
blue or happy and also distinguishable or to be a fi-
nite natural number) can be described as a count-
able union of Sd-classes, the so-called �-classes. On the
other hand, classes whose definition is based on nega-
tion (not big, not happy, indistinguishable), are the so-
called 
-classes—countable intersections of Sd-classes.
A class which is at the same time 
 and � is an Sd-class.
Using combinations of 
 and � , a set hierarchy can be
described.

One of the most important tasks of mathematics is
to handle the notion of the continuum. AST is based
on the assumption that this phenomenon is caused by
that of the indiscernibility of elements of the observed
class. That is why, for the study of topology, the basic
notion is a certain relation of indiscernibility (�). Two
elements are indiscernible if, when observed, available
criteria that might distinguish them fail. It is a negative
feature, therefore it must be a 
-class. The relation of
indiscernibility is naturally reflexive and symmetric. In
pure mathematics, it is in addition transitive (because
FN is closed under addition), thus it is an equivalence.
This relation must also be compact, i. e. for each infinite
set u � dom(�) there are x, y 2 u such that x 6D y ^ x

� y. The corresponding topological space is a compact
metric space.

The relation of infinite nearness in rational numbers
represents a special case of equivalence of indiscernibil-
ity.

Monads and figures correspond to phenomena of
points and shapes, respectively:

Mon(x) D fy : y � xg ;

Fig(X) D fy : (9x 2 X)(y � x)g :

Basic Definitions

Two classes X, Y are separable, Sep(X, Y) ,
(9Z)(Sd(Z) ^ Fig(X)� Z ^ Fig(Y) \ Z = ;).

A closure X of a class X is defined as X D

fx : : Sep(fxg; X)g.
A class X is closed if X D X.
A set u is connected if (8w)(; 6D = u) Fig(w) \

(u�w) 6D ;).
It is quite easy to prove basic topological theorems.

Also proofs of some classical theorems are much sim-
pler here. For instance the Sierpinski theorem: If v is
a connected set then Fig(v) cannot be expressed as
a countable union of disjoint closed sets.

The fundamental indiscernibility $c is defined as
follows. If c is a set then x $c y if for any set-formula
 with the constants from c and for any x, it is (x),
 (y).

This relation has a special position. For any relation
of indiscernibility� there is a set c such that${c} is finer
than� i. e.${c{ ��.

Motion

Unlike classical mathematics, the motion is captured in
AST by any relation of indiscernibility �.

Everybody knows the way films work. Pictures com-
ing one after another are almost indiscernible from
each other, however, when shown in a rapid sequence,
the pictures start to move. The continuous motion may
be viewed like this, as a sequence of indiscernible stages
in certain time intervals.

A function d is amotion of a point in the time ı 2 N
if dom(f ) = ı ^ (8˛ < ı)(d(˛)� d(˛+1)).

If ı 2 FN then the point does not move, it can move
only in an infinitely big time interval.
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A sequence {d(˛): ˛ 2 dom(d)} is a sequence of
states. The number ı = dom(d) is the number of mo-
ments and rng(d) is the trace of a moving point.

A trace is a connected set and for each nonempty
connected set u there is a motion of a point such that u
is the trace of d.

A motion of a set is defined similarly, only
the last condition is different: (8˛ < ı)(Fig(d(˛))
= Fig(d(˛+1))).

The following theorem is proved in [10,11]: Each
motion of a set may be divided into motions of points.
This does not involve only the mechanical motion, but
any motion describing a continuous change. Thus, for
example, even the growth of a tree from a planted seed
may be divided into movements of individual points
while all of their initial stages are already contained in
the seed. In addition, it is possible to describe condi-
tions under which such a change is still continuous.

Utility Theory

[7] The utility theory is one of nice examples of ap-
plying AST. Its aim is to find a valuation of elements
of a class S. There is a preference relation 
 on linear
combinations of elements of S with finite rational coef-
ficients, i. e. on the class

8<
:

nX
iD1

˛i ui :
(n 2 FN)

^(8i)((i � n)(ui 2 S) ^ (˛i 2 FQ))
^
Pn

iD1 ˛i D 1

9=
; :

An interpretation of a combination is a game in which
every ui can be won with the probability ˛i. The prefer-
ence relation 
 declares which of the two games is pre-
ferred.

The valuation is a function F from the class S to Q
for which

nX
iD1

˛i ui 


mX
jD1

ˇ ju j ,

nX
iD1

˛i F(ui) >
mX
jD1

ˇ jF(uj):

It is not necessary to require the so-called Archi-
medes property on the relation of preference thanks
to the possibility of using infinitely small and infinitely
large rational numbers. It is possible to capture finer
and more complex relations than in classic mathemat-
ics, e. g. the fact that the value of one element is incom-

parably higher than that of another element or it is pos-
sible to compare infinitely small differences of values.

For each class S with a preference relation a valu-
ation may be found. Such a valuation is not uniquely
defined, it is possible to construct it so that rng(F)�N.

Conclusion

The aim of this short survey is to demonstrate the basic
ideas of AST. Yet, there are other areas of mathemat-
ics which were studied in it, for instance measurabil-
ity [8], ultrafilters [6], endomorphic universes [5] and
automorphisms of natural numbers [2], representabil-
ity [1] metamathematics [3] and models of AST [4].
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8. Čuda K (1986) The consistency of measurability of projec-
tive semisets. Comment Math Univ Carolinae 27:103–121
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To ensure a certain level of reliability for the solution of
an extremum problem under uncertainty it has become
a spread approach to introduce probabilistic (chance)
cost and/or constraints into the model. The stability
analysis of chance constraint problems is rather com-
plicated due to complicated properties of the probabil-
ity function vt(x), defined as

vt(x) D P fs : f (x; s) � tg : (1)

Here f (x, s) is a real valued function, defined onRr ×Rr,
t is a fixed level of reliability, s is a random vector and P
denotes probability. The function vt(x) is never convex,
only in some cases (e. g., f (x, s) linear in s and distribu-
tion of the random parameter s normal), it is quasicon-
vex. Note that for a fixed x function vt(x), as a function
of t, is the distribution function of the random variable
f (x, s).

The ‘inverse’, the quantile function w˛(x), to the
probability function vt(x) is defined in such a way that
the probability level ˛, 0 < ˛ < 1, is fixed earlier, and the
purpose is to minimize the reliability level t:

w˛(x) D min
t
ft : P fs : f (x; s) � tg � ˛g : (2)

Varied examples of extremum problems with proba-
bility and quantile functions are presented in [7] and

in [8]. Some of these models have such a complicated
structure, see [8, Chap. 1.8], about correction of a satel-
lite orbit, that we are forced to look for a solution x from
a certain class of strategies, that means, the solution x
itself depends on the random parameter s, x = x(s).

This class of probability functions was introduced to
stochastic programming by E. Raik, and lower semicon-
tinuity and continuity properties of vt(x) and w˛(x) in
Lebesgue Lp-spaces, 1 � p < 1, were studied in [12].
Simultaneously, in [4] problems with various classes
of solutions x(s) (measurable, continuous, linear, etc)
were considered. Since the paper [4] solutions x(s) are
called decision rules, and we will follow also this termi-
nology.

Differently from [4], here we will consider approx-
imation of a decision rule x(s) by sequences of vectors
{xn}, xn = (x1n, . . . , xnn), n = 1, 2, . . . , with increasing
dimension in order to maximize the value of the prob-
ability functional v(x) under certain set C of decision
rules. It will be assumed that the set C will be bounded
in the space L1(S,˙ , �) = L1(�) of integrable functions
x(s), x 2 L1(�):

max
x2C

vt(x) D max
x2C

P fs : f (x(s); s) � tg : (3)

Here S is the support of random variable s with distri-
bution (probability measure) �(�) and ˙ denotes the
sigma-algebra of Borel measurable sets from Rr .

Due to technical reasons we are forced to assume
that the random parameter s has bounded support S �
Rr , diam S <1, and its distribution � is atomless,

� fs : js � s0j D constg D 0; 8s0 2 Rr : (4)

Since the problem (3) is formulated in the function
space L1(�) of �-integrable functions, the first step in
its solution is the approximation step where we will re-
place the initial problem (3) by a sequence of finite-
dimensional optimization problems with increasing di-
mension. Second step, solution methods were consid-
ered in a series of papers of the author (see, e. g., [9]),
where the gradient projection method was suggested
together with simultaneous Parzen–Rosenblatt kernel-
type smooth approximation of the discontinuous inte-
grand from (1).

There are several ways to divide the support S of the
probability measure � into smaller parts in discretiza-
tion, e. g., taking disjoint subsets Sj, j = 1, . . . , k, of S
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from the initial sigma-algebra ˙ as in [11], or using in
the partition of S only convex sets from˙ , as in [5].

We will divide the support S into smaller parts by
using only sets Ain, i = 1, . . . , n, n 2 N = {1, 2, . . . }, with
�-measure zero of their boundary, i. e., � (intAin) = �
(Ain) = � (clAin), where int A and cl A denote topo-
logical interior and closure of a set A, respectively. Such
division is equivalent toweak convergence of a sequence
of discrete measures {(mn, sn)} to the initial probability
measure � , see, e. g. [14]:

nX
iD1

h(sin)min !

Z
S
h(s) �(ds); n 2 N; (5)

for any continuous on S function h(s), h 2 C(S).
The usage of the weak convergence of discrete mea-

sures in stochastic programming has its disadvantages
and advantages. An example in [13] shows that, in gen-
eral, the stability of a probability function with respect
to weak convergence cannot be expected without addi-
tional smoothness assumptions on the measure � . This
is one of the reasons, why we should use only continu-
ousmeasures with the property (4). An advantage of the
usage of the weak convergence is that it allows us to ap-
ply in the approximation process instead of conditional
means [11] the more simple, grid point approximation
scheme.

Since the functional vt(x) is not convex, we are not
able to exploit in the stability analysis of discrete ap-
proximation of the problem (3) the more convenient,
weak topology, but only the strong (norm) topology. As
the first step we will approximate vt(x) so, that the dis-
crete analogue of continuous convergence of a sequence
of approximate functionals will be guaranteed.

Schemes of stability analysis (e. g., finite-dimen-
sional approximations) of extremum problems in Ba-
nach spaces require from the sequence of solutions of
‘approximate’ problems certain kind of compactness.
Assuming that the constraint set C is compact in L1(�),
we, as the second step, will approximate the set C by
a sequence of finite-dimensional sets {Cn} with increas-
ing dimension so, that the sequence of solutions of ap-
proximate problems is compact in a certain (discrete
convergence) sense in L1(�). Then the approximation
scheme for the discrete approximation of (3) will follow
formed schemes of approximation of extremum prob-
lems in Banach spaces, see e. g. [2,3,15].

Redefine the functional vt(x) by using the Heaviside
zero-one function �:

vt(x) D
Z
S
�(t � f (x(s); s)) �(ds); (6)

where

�(t � f (x(s); s)) D

(
1 if f (x(s); s) � t;
0 if f (x(s); s) > t:

Since the integrand �(�) itself, as a zero-one func-
tion, is discontinuous, we will assume that the function
f (x, s) is continuous both in (x, s) and satisfies following
growth and ‘platform’ conditions:

j f (x; s)j � a(s)C ˛ jxj ;

a 2 L1(�); ˛ > 0;
(7)

� fs : f (x; s) D constg D 0;

8(x; s) 2 Rr � S:
(8)

The continuity assumption is technical in order to sim-
plify the description of the approximation scheme be-
low. The growth condition (7) is essential: without it
the superposition operator f (x) = f (x(s), s) will not map
an element from L1 to L1 (is even not defined). Condi-
tion (8) means that the function f (x, s) should not have
horizontal platforms with positive measure.

Constraint set C is assumed to be a set of integrable
functions x(s), x 2 L1(�), with properties

Z
S
jx(s)j �(ds) � M <1; 8x 2 C (9)

for someM > 0 (C is bounded in L1(�));
Z
D
jx(s)j � K�(D); 8x 2 C; D 2 ˙ (10)

for some K > 0;

(x(s) � x(t); s � t) � 0 for a.a. s; t 2 S (11)

(functions x 2 C are monotone almost everywhere and
a.a. denotes abbreviation of ‘almost all’).

Conditions (9), (10) guarantee that the set C is
weakly compact (i. e., compact in the (L1, L1)-topol-
ogy, see, e. g., [6, Chap. 9.1.2]). Condition (11) guar-
antees now, following [1, Lemma 3], that the set C is
strongly compact in L1(�). Then, following [11], we
can conclude that assumptions (7)–(11) together with
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atomless assumption (4) for the measure � guarantee
the existence of a solution of problem (3) in the Banach
space L1(�) of �-integrable functions (the cost func-
tional vt(x) is continuous in x and the constraint set C
is compact in L1(�)).

Since approximate problems will be defined in Rrn,
we should define a system of connection operators P =
{pn} between spaces L1(�) and Rrn, n 2N. In Lp-spaces,
1 � p � 1, systems of connection operators should
be defined in a piecewise integral form (as conditional
means):

(pnx)in D �(Ain)�1
Z
Ain

x(s) �(ds); (12)

where i = 1, . . . , n, and sets Ain, i = 1, . . . , n, n 2 N,
that define connection operators (12), satisfy following
conditions A1)–A7):
A1) �(Ain)> 0;
A2) Ain \ Ajn = ;, i 6D j;
A3) [n

iD1 Ain = S;
A4)

Pn
iD1 |min � �(Ain)|! 0, n 2 N;

A5) maxi diamAin! 0, n 2 N;
A6) sin 2 Ain;
A7) �(intAin) = �(Ain) = �(clAin).

Remark 1 Weak convergence (5) is equivalent to the
partition {An} of S, An = {A1n, . . . , Ann}, with properties
A1)–A7), see [14].

Remark 2 Collection of sets {Ain} with the property
A7) constitutes an algebra ˙0 � ˙ , and if S = [0, 1]
and if � is Lebesgue measure on [0, 1], then integrabil-
ity relative to � |˙0 means Riemann integrability.

Define now the discrete convergence for the space L1(�)
of �-integrable functions.

Definition 3 A sequence of vectors {xn}, xn 2 Rrn, P-
converges (or converges discretely) to an integrable func-
tion x(s), if

nX
iD1

jxin � (pnx)injmin ! 0; n 2 N: (13)

Remark 4 Note that in the space L1(�) of �-integrable
functions we are also able to use the projection meth-
ods approach, defining convergence of {xn} to x(s) as
follows:
Z
S

ˇ̌
ˇ̌
ˇx(s) �

nX
iD1

xin�Ain (s)

ˇ̌
ˇ̌
ˇ �(ds)! 0; n 2 N:

Remark 5 Projection methods approach does not work
in the space L1(�) of essentially bounded measurable
functions with vraisup-norm topology (L1(�) is a non-
separable Banach space and the space C(S) of continu-
ous functions is not dense there).

We need the space L1(�), which is the topological dual
to the space L1(�) of �-integrable functions, in order
to define also the discrete analogue of the weak conver-
gence in L1(�).

Definition 6 A Sequence of vectors {xn}, xn 2 Rrn, n 2
N, wP-converges (or converges weakly discretely) to an
integrable function x(s), x 2 L1(�), if

nX
iD1

(zin ; xin)min !

Z
S
(z(s); x(s)) �(ds);

n 2 N;

(14)

for any sequence {zn} of vectors, zn 2 Rrn, n 2 N, and
function z(s), z 2 L1(�), such that

max
1�i�n

jzin � (pnz)inj ! 0; n 2 N: (15)

In order to formulate the discretized problem and to
simplify the presentation, we will assume that in parti-
tion {An} of S, where An = { A1n, . . . , Ann}, with proper-
ties A1)–A7), in property A4) we will identify min and
�(Ain), i. e. min = �(Ain) (e. g. squares with decreasing
diagonal in R2).

Discretize now the probability functional vt(x):

vtn(xn) D
nX

iD1

�(t � f (xin; sin))min; (16)

and formulate the discretized problem:

max
xn2Cn

vtn(xn)

D max
xn2Cn

nX
iD1

�(t � f (xin; sin))min;
(17)

where constraint set Cn will satisfy discrete analogues of
conditions (9)–(11), covered to the set C:

nX
iD1

jxinjmin � M 8xn 2 Cn ; (18)

X
i2In

jxinjmin � K
X
i2In

min;

8xn 2 Cn ; 8In � f1; : : : ; ng; (19)
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rX
kD1

(xk
ikn � xk

jk n)(ik � jk) � 0; 8ik; jk : ik < jk ;

(20)

and such that 0� ik, jk � n, 8n 2 N.

Definition 7 A sequence of sets {Cn}, Cn � Rrn, n 2N,
converges to the set C � L1(�) in the discrete Mosco
sense if
1) for any subsequence {xn}, n 2 N0 � N, such that xn
2 Cn, from convergence wP-lim xn = x, n 2 N, it
follows that x 2 C;

2) for any x 2 C there exists a sequence {xn}, xn 2 Cn,
which P-converges to x, P-lim xn = x, n 2 N.

Remark 8 If in the above definition also ‘for any’ part
1) is defined forP-convergence of vectors, then it is said
that sequence of sets {Cn} converges to the set C in the
discrete Painlevé–Kuratowski sense.

Denote optimal values and optimal solutions of prob-
lems (3) and (17) by v�, x� and v�n , x�n , respectively.

Let function f (x, s) be continuous in both variables
(x, s) and satisfy growth and platform conditions (7)
and (8). Then from convergence P-lim xn = x, n 2 N,
for any monotone a.e. function x(s), it follows conver-
gence vn(xn)! v(x), n 2 N.

Verification of this statement is quite lengthy and
technically complicated: we should first approximate
discontinuous function �(t � f (x, s)) by continuous
function �c(t � f (x, s)) in the following way:

�c(t � f (x; s))

D

8̂
<̂
ˆ̂:

1 if f (x; s) � t;
1 � ı�1[ f (x; s)� t] if t < f (x; s) � t C ı;
0 if f (x; s) > t C ı

for some (small) ı, and then a discontinuous solution
x(s), x 2 L1(�), by continuous function xc(s) (in L1-
norm topology).

Let constraint sets C and Cn satisfy conditions (9)–
(11) and (18)–(20), respectively. Let discrete measures
{(mn, sn)} converge weakly to the measure � . Then the
sequence of sets {Cn} converges to the set C in the dis-
crete Painlevé–Kuratowski sense.

Verification of this statement relies on the two fol-
lowing convergences:

1) sequence of sets, determined by inequalities (18),
(19) converges, assuming weak convergence of dis-
crete measures (5), in discrete Mosco sense to the
weakly compact in L1(�) set, determined by in-
equalities (9), (10);

2) adding to both, approximate and initial sets of ad-
missible solutions monotonicity conditions (20) and
(11), respectively, we can guarantee the discrete
convergence of sequence {Cn} to C in Painlevé–
Kuratowski sense.

Now we can formulate the discrete approximation con-
ditions for a stochastic programming problem with
probability cost function in the class of integrable de-
cision rules.

Let function f (x, s) be continuous in both variables
(x, s) and satisfy growth and platform conditions (7)
and (8), constraint set C satisfy conditions (9)–(11) and
let discrete measures {(mn, sn)} converge weakly to the
atomless measure � . Then v�n ! v�, n 2 N, and se-
quence of solutions {x�n } of approximate problems (17)
has a subsequence, which converges discretely to a so-
lution of the initial problem (3).

Remark 9 The usage of the space L1(�) of integrable
functions is essential. In reflexive Lp-spaces, 1 < p <1,
serious difficulties arise with application of the strong
(norm) compactness criterion for a maximizing se-
quence.

As a rule, problems with probability cost function are
maximized, whereas stochastic programs with quantile
cost are minimized, see, e. g., [8,10].

Consider at last discrete approximation of the quan-
tile minimization problem (2):

min
x2C

w˛(x)

D min
x2C

min
t
fP( f (x(s); s) � t) � ˛g; (21)

It was verified in [10] that under certain (quasi)-
convexity-concavity assumptions the quantile mini-
mization problem (21) is equivalent to the following
Nash game:

max
x2C

vt(x) D J�1 ; (22)

min
t
(vt(x) � ˛)2 D J�2 : (23)
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Discretizing vt(x) as in (16) and w˛(x) as

w˛n(xn) D min
t

( nX
iD1

�(t � f (xin; sin))min � ˛

)
;

we can, analogously to the probability functional ap-
proximation, approximate the quantile minimization
problem (21) too. In other words, to replace the Nash
game (22), (23) with the following finite-dimensional
game:

max
xn2Cn

vtn(xn) D J�1n ; (24)

min
t
(vtn(xn) � ˛)2 D J�2n : (25)

Verification of convergences J�1n ! J�1 and J�2n !
J�2 , n 2 N, is a little bit more labor-consuming com-
pared with approximate maximization of probability
functional vt(x), since we should guarantee also con-
vergence of the sequence of optimal quantiles {t�n} of
minimization problems (25).
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Approximation of multivariate probability integrals is
a hard problem in general. However, if the domain

of the probability integral is multidimensional interval,
then the problem reduces to the approximation ofmul-
tivariate probability distribution function values.

Lower andUpper Bounds

Let �| = (�1, . . . , �n) be a random vector with given
multivariate probability distribution. Introducing the
events

A1 D f�1 < x1g; : : : ;An D f�n < xng;

where x1, . . . , xn are arbitrary real values the multivari-
ate probability distribution function of the random vec-
tor � can be expressed in the following way:

F(x1; : : : ; xn)

D P(�1 < x1; : : : ; �n < xn)
D P(A1 \ � � � \ An)

D 1 � P(A1 [ � � � [ An)

D 1 � S1 C S2 � � � � C (�1)nS
n
;

where

Ai D f�i � xig; i D 1; : : : ; n;

and

Sk D
X

1�i1<���<ik�n

P(Ai1 \ � � � \ Aik ); k D 1; : : : ; n :

First one shows that S1, S2 and so the individual prob-
abilities P(Ai), i = 1, . . . , n, P(Ai \ Aj), i = 1, . . . , n �1,
j = i + 1, . . . , n, involved in them can be expressed by Fi

(xi), i = 1, . . . , n, and Fij(xi, xj), i = 1, . . . , n� 1, j = i + 1,
. . . , n, the one- and two-dimensional marginal probabil-
ity distribution functions of the random vector �. One
has

S1 D
nX

iD1

P(Ai ) D
nX

iD1

P(�i � xi)

D n �
nX

iD1

P(�i < xi) D n �
nX

iD1

Fi(xi)
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and

S2 D
X

1�i< j�n

P(Ai \ Aj)

D
X

1�i< j�n

P(�i � xi ; � j � x j)

D
X

1�i< j�n

f1 � P(�i < xi)

�P(� j < x j)C P(�i < xi ; � j < x j)
�

D
n(n � 1)

2
� (n � 1)

nX
iD1

Fi(xi)

C
X

1�i< j�n

Fi j(xi ; x j):

So if one can calculate the one- and two-dimensional
marginal probability distribution functions of the ran-
dom vector � then one can bound the multivariate
probability distribution function by the very simple
bounds given by C.E. Bonferroni [1]:

1 � S1 � F(x1; : : : ; xn) � 1 � S1 C S2;

or by the sharp bounds, called Boole–Bonferroni bounds
discovered independently by many authors (see [11] for
a summary):

1 � S1 C
2
n
S2

� F(x1; : : : ; xn)

� 1 �
2

k� C 1
S1 C

2
k�(k� C 1)

S2;

where

k� D 1C

$
2S2
S1

%
:

When applying the above bounds usually the upper
bound proves to be sharper. However one can improve
the lower bound by the application of the bound discov-
ered independently by D. Hunter [5] and K.J. Worsley
[18]. This bound is an upper bound for P(A1[� � �[An)
by the use of S1 and the individual probabilities P(Ai \

Aj), 1� i < j� n. It is constructed in the following way.
Construct a nonoriented complete graph with n nodes
and assign to node i the event Ai (or the probability
P(Ai )) and to arc (i, j) the weight P(Ai \ Aj). Let T� be

a maximum weight spanning tree in this nonoriented
complete graph then one has

P(A1 [ � � � [ An) � S1 �
X

(i; j)2T�
P(Ai \ Aj);

which is called the Hunter–Worsley upper bound. This
results the following lower bound on the multivariate
probability distribution function:

1 � S1 C
X

(i; j)2T�
P(Ai \ Aj) � F(x1; : : : ; xn):

The individual probabilities P(Ai \ Aj), 1 � i < j � n,
can be stored when one calculates the value of S2 and
the maximum weight spanning tree can be found by
several fast algorithms, for example by Kruskal’s algo-
rithm, see [9]. Now one has three lower and two up-
per bounds on the multivariate probability distribution
function and all of them are computable if the one-
and two-dimensional marginal probability distribution
functions are known. Let us denote these bounds in the
following way:

L1 D 1 � S1;

L2 D 1 � S1 C
2
n
S2;

L3 D 1 � S1 C
X

(i; j)2T�
P(Ai \ Aj);

U1 D 1 � S1 C S2;

U2 D 1 �
2

k� C 1
S1 C

2
k�(k� C 1)

S2:

As one has L1 � L2 � L3 and U2 � U1, the best lower
bound is L3 and the best upper bound is U2.

Monte-Carlo Simulation Algorithm

One can take the differences between the multivariate
probability distribution function and its lower and up-
per bounds introduced before:

F(x1; : : : ; xn) � L1 D S2 � S3 C � � � C (�1)nSn ;

F(x1; : : : ; xn) � L2

D

�
1 �

2
n

�
S2 � S3 C � � � C (�1)nSn ;
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F(x1; : : : ; xn) � L3

D �
X

(i; j)2T�
P(Ai \ Aj)C S2 � S3C � � � C (�1)nSn ;

F(x1; : : : ; xn) � U1 D S3 C � � � C (�1)nSn ;

F(x1; : : : ; xn) � U2

D

�
2

k� C 1
� 1

�
S1 C

�
1 �

2
k�(k� C 1)

�
S2

� S3 C � � � C (�1)nSn :

A Monte-Carlo simulation procedure of the multivari-
ate probability distribution function value based on the
estimation of the differences above will be given. First
however the so called crude Monte-Carlo simulation
procedure will be described. Let the random vectors (� s1,
. . . , � sn), s = 1, . . . , S, be distributed according to the mul-
tivariate probability distribution function to be approx-
imated. One must check the inequalities � s1 < x1, . . . , � sn
< xn for all sample elements, s = 1, . . . , S. For this pur-
pose let be defined the random values

� s0 D

(
1 if � s1 < x1; : : : ; � sn < xn;
0 otherwise;

s D 1; : : : ; S:

These random values are identically distributed and
stochastically independent. All of them take on the
value 1 with probability equal to the approximated mul-
tivariate probability distribution function value. The
sum of them has binomial probability distribution with
parameters S and F(x1, . . . , xn). So the random variable

�0 D
1
S
(�10 C � � � C �

S
0 )

has expected value P D F(x1; : : : ; xn) and variance
P(1�P)

S . This is why �0 can be regarded as an estimate,
the so called crude Monte-Carlo estimate of F(x1, . . . ,
xn). If one introduces �s as the number of those � s1 < x1,
. . . , � sn < xn inequalities which are not fulfilled, i. e. the
number of those � s1 � x1, . . . , � sn � xn inequalities which
are fulfilled, or the number of those As

1; : : : ;As
n events

which occur, s = 1, . . . , S, the � s0 random values can be
expressed as

� s0 D

(
1 if � s D 0;
0 otherwise

s D 1; : : : ; S;

and on the other hand for the binomial moments of �s

one has

E

" 
� s

k

!#
D Sk ; k D 0; : : : ; n; s D 1; : : : ; S:

The simplest proof of these equalities was given by L.
Takács [17] and it was reproduced by A. Prékopa in
[11]. If the random numbers �s, s = 1, . . . , S, are also
introduced as the number of those Ai \ Aj D f�

s
i �

xi ; � sj � x jg, (i, j) 2 T�, events which occur then for the
expected value of �s one has

E(�s) D
X

(i; j)2T�
P(Ai \ Aj); s D 1; : : : ; S:

Using these equalities one easily can see that the fol-
lowing random values have expected values equal to the
differences between the multivariate probability distri-
bution function and its bounds:

� sL1 D

 
� s

2

!
�

 
� s

3

!
C � � � C (�1)n

 
� s

n

!
;

� sL2 D

�
1 �

2
n

� 
� s

2

!
�

 
� s

3

!
C � � �

C (�1)n
 
� s

n

!
;

� sL3 D ��
s C

 
� s

2

!
�

 
� s

3

!
C � � �

C (�1)n
 
� s

n

!
;

� sU1
D �

 
� s

3

!
C � � � C (�1)n

 
� s

n

!
;

� sU2
D

�
2

k� C 1
� 1

� 
� s

1

!

C

�
1 �

2
k�(k� C 1)

� 
� s

2

!

�

 
� s

3

!
C � � � C (�1)n

 
� s

n

!
:

By the binomial theorem one has
 
� s

0

!
�

 
� s

1

!
C � � � C (�1)n

 
� s

n

!
D 0
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and the above random values can be expressed as

� sL1 D

(
� s � 1 if � s � 2;
0 otherwise;

� sL2 D

(
1
n (�

s � 1)(n � � s) if � s � 2;
0 otherwise;

� sL3 D

(
� s � 1 � �s if � s � 2;
0 otherwise;

� sU1
D

(
1
2 (�

s � 1)(2 � � s) if � s � 3;
0 otherwise;

� sU2
D

(
(k��� s )(� s�k��1)

k�(k�C1) if � s � 1;
0 otherwise:

Taking the new random values �L1 , �L2 , �L3 , �U1 , �U2

and the estimate �0 introduced before:

�0 D
1
S
(�10 C � � � C �

S
0 );

�L1 D L1 C
1
S
(�1L1 C � � � C �

S
L1);

�L2 D L2 C
1
S
(�1L2 C � � � C �

S
L2);

�L3 D L3 C
1
S
(�1L3 C � � � C �

S
L3);

�U1 D U1 C
1
S
(�1U1
C � � � C �SU1

);

�U2 D U2 C
1
S
(�1U2
C � � � C �SU2

);

one gets altogether six estimates of the multivariate
probability distribution function. These estimates obvi-
ously are not stochastically independent so one can mix
them to get a new estimate with minimal possible vari-
ance. This technique is called regression method and it
means forming the estimate

� D w0�0 C wL1�L1 C wL2�L2

C wL3�L3 C wU1�U1 C wU2�U2

with w0 + wL1 + wL2 + wL3 + wU1 + wU2 = 1, where w0,
wL1 , wL2 , wL3 , wU1 , wU2 are chosen so that the variance
of � be minimized. Let0
BBBBBBB@

c00 c0L1 c0L2 c0L3 c0U1 c0U2

cL10 cL1L1 cL1L2 cL1L3 cL1U1 cL1U2

cL20 cL2L1 cL2L2 cL2L3 cL2U1 cL2U2

cL30 cL3L1 cL3L2 cL3L3 cL3U1 cL3U2

cU10 cU1L1 cU1L2 cU1L3 cU1U1 cU1U2

cU20 cU2L1 cU2L2 cU2L3 cU2U1 cU2U2

1
CCCCCCCA

be the covariance matrix C of the six estimates, where
C is a symmetrical matrix. Then the variance of � is w|

Cw, where w = (w0, wL1 , wL2 , wL3 , wU1 , wU2 )|. The La-
grangian problem:

(
min w>Cw
s.t. w0 C wL1 C wL2 C wL3 C wU1 C wU2 D 1

can easily be solved. In fact, the gradient of w| Cw
equals 2 w| C, hence one has to solve the system of lin-
ear equations

c00w0 C c0L1wL1 C c0L2wL2 C c0L3wL3

C c0U1wU1 C c0U2wU2 � � D 0;

cL10w0 C cL1L1wL1 C cL1L2wL2 C cL1L3wL3

C cL1U1wU1 C cL1U2wU2 � � D 0;

cL20w0 C cL2L1wL1 C cL2L2wL2 C cL2L3wL3

C cL2U1wU1 C cL2U2wU2 � � D 0;

cL30w0 C cL3L1wL1 C cL3L2wL2 C cL3L3wL3

C cL3U1wU1 C cL3U2wU2 � � D 0;

cU10w0 C cU1L1wL1 C cU1L2wL2 C cU1L3wL3

C cU1U1wU1 C cU1U2wU2 � � D 0;

cU20w0 C cU2L1wL1 C cU2L2wL2 C cU2L3wL3

C cU2U1wU1 C cU2U2wU2 � � D 0;

w0 C wL1 C wL2 C wL3 C wU1 C wU2 � � D 1:

for the unknowns w0, wL1 , wL2 , wL3 , wU1 , wU2 , �. As
the covariance matrix C is not known in advance, so
one must estimate its elements from the random sam-
ple during the Monte-Carlo simulation procedure. This
means that one must sum up not only the individ-
ual random values � s0, � sL1 , �

s
L2 , �

s
L3 , �

s
U1
, � sU2

but their
crossproducts, too. The crossproducts are many times
trivial, so their calculation is not necessary. For exam-
ple � s0 equals � s0� s0, further when � s0 equals nonzero (�s

= 0) then all other random values � sL1 , �
s
L2 , �

s
L3 , �

s
U1
, � sU2

are equal zero, so the corresponding crossproducts are
all zero. One should also notice that the random val-
ues � sL1 , �

s
L2 , �

s
L3 are always nonnegative while the ran-

dom values � sU1
, � sU2

are always nonpositive. So the cor-
responding crossproducts cannot be positive even they
are many times negative yielding real variance reduc-
tion in the final estimate.



Approximation of Multivariate Probability Integrals A 87

One- and Two-Dimensional Marginal Distribution
Functions

For the applicability of the Monte-Carlo simulation al-
gorithm of the previous section one has to show that the
one- and two-dimensional marginal distribution func-
tion values can be evaluated efficiently. As in the cases
of the multivariate normal distribution, (one parame-
ter) gamma and Dirichlet distributions the marginal
distributions are also normal, gamma and Dirichlet and
the one-dimensional Dirichlet distribution is the beta
distribution, the one-dimensional marginal probability
distribution functions can be evaluated by known al-
gorithms. For example in the IMSL subroutine library
[6] the subroutines MDNOR, MDGAM and MDBETA
provide these calculations. In the case of the normal
distribution the two-dimensional marginal probability
distribution function also can be evaluated by a stan-
dard IMSL subroutine called MDBNOR. Some details
of the calculations provided by these subroutines can
be found in [8].

In the case of the multivariate gamma distribution,
introduced by Prékopa and T. Szántai in [12], only the
evaluation of the joint probability distribution function
of the random variables

�1 D �1 C �2;

�2 D �1 C �3

is necessary. Here the random variables �1, �2 and �3
are independent and gamma distributed with parame-
ters #1, #2 and #3. Taking the joint characteristic func-
tion of �1 and �2 and applying the inversion formula
one easily gets the joint probability density function of
them. This is in the form of series expansion involv-
ing Laguerre polynomials. Using some integral formu-
lae of these orthogonal polynomials one can integrate
the joint probability density function to get the final for-
mula for the evaluation of the joint probability distribu-
tion function in the following form

F(z1; z2) D F#1C#2(z1)F#1C#3(z2)

C

1X
kD1

C(#1; #2; #3; k)

� f#1C#2C1(z1)L
#1C#2
k�1 (z1)

� f#1C#3C1(z2)L#1C#3k�1 (z2);

where

C(#1; #2; #3; k) D
(k � 1)!

k
� (#1 C k)
� (#1)

�
� (#1 C #2 C 1)
� (#1 C #2 C k)

� (#1 C #3 C 1)
� (#1 C #3 C k)

and f # (z) and F#(z) are the one-dimensional gamma
probability density, respectively distribution, functions.
For the calculation of the Laguerre polynomial the fol-
lowing recursion formula can be used

(k C 1)L#kC1(z)

D (2k C # C 1 � z)L#k (z) � (k C #)L#k�1(z);

k D 0; 1; : : : ;

where L#0 (z) = 1 and L#1 (z) = # + 1� z. The conver-
gence of the series for calculation of F(z1, z2) has been
established by Szántai in [14].

In the case of Dirichlet distribution the two-
dimensional marginal probability density function of
the components � i, � j is given by

f (z1; z2) D
� (a)� (b)� (c)
� (aC bC c)

�za�11 zb�12 (1�z1�z2)c�1;

if z1 C z2 � 1; z1 � 0; z2 � 0;

where a = # i, b = # j and c =
PnC1

kD1#k� # i� # j. One
obtains by direct calculation for the two-dimensional
probability distribution function

F(z1; z2) D
� (aC b C c)
� (a)� (b)� (c)

�

Z z1

0

Z z2

0
ta�11 tb�12 (1 � t1 � t2)c�1 dt2 dt1

D
za1
a
zb2
b
C

1X
mD1

(1 � c) � � � (m � c)

�

"
za1
a

zbCm
2

(bC m)m!

C

mX
kD0

zaCk
1

(aC k)k!
zbCm�k
2

(bC m � k)(m � k)!

#
:

The above formula is valid only if z1 + z2 � 1, z1 � 0, z2
� 0; otherwise the statement a) of the following more
general theorem can be applied.

Theorem 1 Let z�1 � � � � � z�n be the ordered sequence
of z1, . . . , zn, the arguments of the n-dimensional Dirich-
let distribution function.
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a) If z�1+ z�2 > 1 then one has

F(z1; : : : ; zn) D 1 � nC
nX

iD1

Fi (zi):

b) If z�1+ z�2+ z�3 > 1 then one has

F(z1; : : : ; zn)

D
n � 1
2
�(n�2)

nX
iD1

Fi (zi)C
X

1�i< j�n

Fi j(zi ; z j):

Here Fi(zi) and Fij(zi, zj) are the one- and two-
dimensional marginal probability distribution functions.

This theorem was formulated and proved by Szántai in
[13]. It also can be found in [11].

Examples

For illustrating the lower and upper bounds on themul-
tivariate normal probability distribution function value
and the efficiency of the variance reduction technique
described before one can regard the following exam-
ples.

Example 2

n D 10;
x1 D 1:7; x2 D 0:8; x3 D 5:1;

x4 D 3:2; x5 D 2:4; x6 D 1:8;

x7 D 2:7; x8 D 1:5; x9 D 1:2;

x10 D 2:6;

ri j D 0:0; i D 2; : : : ; 10; j D 1; : : : ; i � 1;

except r21 = � 0.6, r43 = 0.9, r65 = 0.4, r87 = 0.2, r10, 9 =
� 0.8.

Number of trials: 10000.

Lower bound by S1, S2 0:524736
Lower bound by Hunter 0:563719
Upper bound by S1, S2 0:588646
Estimated value 0:582743
Standard deviation 0:000608
Time in seconds (PC-586) 0:77
Efficiency 65:73

Example 3

n D 15;

x1 D 2:9; x2 D 2:9; x3 D 2:9;
x4 D 2:9; x5 D 2:9; x6 D 2:9;

x7 D 2:9; x8 D 2:9; x9 D 2:9;

x10 D 2:9; x11 D 2:9; x12 D 2:7

x13 D 1:6; x14 D 1:2; x15 D 2:1;

ri j D 0:2; i D 2; : : : ; 10; j D 1; : : : ; i � 1;

ri j D 0:0; i D 11; : : : ; 15; j D 1; : : : ; i � 1

except r13, 12 = 0.3, r15, 14 = � 0.95.
Number of trials = 10000.

Lower bound by S1, S2 0:790073
Lower bound by Hunter 0:798730
Upper bound by S1, S2 0:801745
Estimated value 0:801304
Standard deviation 0:000193
Time in seconds (PC-586) 1:38
Efficiency 417:84

Both of the above examples are taken from [2, Exam.
4; 6] and they are according to standard multivariate
normal probability distributions, i. e. all components
of the normally distributed random vector have ex-
pected value zero and variance one. The efficiency of
the Monte-Carlo simulation algorithm was calculated
according to the crude Monte-Carlo algorithm in the
usual way, i. e. it equals to the fraction (t0�2

0)/(t1�2
1)

where t0, t1 are the calculation times and �2
0, �2

1 are the
variances of the crude and the compared simulation al-
gorithms.

Remarks

Inmany applications one may need finding the gradient
of multivariate distribution functions, too. As one has
the general formula

@F(z1; : : : ; zn)
@zi

D F(z1; : : : ; zi�1; ziC1; : : : ; zn jzi) � fi(zi);

where F(z1, . . . , zi�1, zi+ 1, . . . , zn | zi) is the conditional
probability distribution function of the random vari-
ables �1, . . . , � i� 1, � i+ 1, . . . , �n, given that � i = zi, and
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f i(z) is the probability density function of the random
variable � i, finding the gradient of a multivariate prob-
ability distribution function can be reduced to finding
conditional distribution functions. In the cases of mul-
tivariate normal and Dirichlet distributions the condi-
tional distributions are also multivariate normal and
Dirichlet, and in the case of multivariate gamma dis-
tribution they are different and more complicated as it
was obtained by Prékopa and Szántai [12].

In the case of multivariate normal probability dis-
tribution I. Deák [2] proposed another simulation tech-
nique which proved to be as efficient as the method de-
scribed here. The main advantage of Deák’s method is
that it easily can be generalized for calculation the prob-
ability content of more general sets in the multidimen-
sional space, like convex polyhedrons, hyperellipsoids,
circular cones, etc. Its main drawback is that it works
only for the multivariate normal probability distribu-
tion. The methods of Szántai and Deák have been com-
bined by H. Gassmann to compute the probability of an
n-dimensional rectangle in the case of multivariate nor-
mal distribution (see [3]). Also in the case of multivari-
ate normal probability distribution A. Genz proposed
the transformation of the original integration region
to the unit hypercube [0, 1]n and then the application
of a crude Monte-Carlo method or some lattice rules
for the numerical integration of the resulting multidi-
mensional integral. A comparison of methods for the
computation of multivariate normal probabilities can
be found in [4]. When the three-dimensional marginal
probability distribution function values are also calcu-
lated by numerical integration there exist some new,
sharper bounds. See [16] for these bounds and their ef-
fect on the efficiency of the Monte-Carlo simulation al-
gorithm.

Approximation of multivariate probability integrals
has a central role in probabilistic constrained stochas-
tic programming when the probabilistic constraints
are joint. The computer code PCSP (probabilistic con-
strained stochastic programming) originally was devel-
oped for handling the multivariate normal probability
distributions in this framework (see [15]). A new ver-
sion of the code now can handle multivariate gamma
and Dirichlet distributions as well. The calculation pro-
cedures of this paper also has been applied by J. Mayer
in his code solving this type of stochastic programming
problems by reduced gradient algorithm (see [10]).

These codes have been integrated by P. Kall and Mayer
into a more advanced computer system for modeling in
stochastic linear programming (see [7]).

See also

� Approximation of Extremum Problems with
Probability Functionals

� Discretely Distributed Stochastic Programs: Descent
Directions and Efficient Points

� Extremum Problems with Probability Functions:
Kernel Type Solution Methods

� General Moment Optimization Problems
� Logconcave Measures, Logconvexity
� Logconcavity of Discrete Distributions
� L-shaped Method for Two-stage Stochastic

Programs with Recourse
�Multistage Stochastic Programming: Barycentric

Approximation
� Preprocessing in Stochastic Programming
� Probabilistic Constrained Linear Programming:

Duality Theory
� Probabilistic Constrained Problems: Convexity

Theory
� Simple Recourse Problem: Dual Method
� Simple Recourse Problem: Primal Method
� Stabilization of Cutting Plane Algorithms for

Stochastic Linear Programming Problems
� Static Stochastic Programming Models
� Static Stochastic Programming Models: Conditional

Expectations
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Stochastic Linear Programs with Recourse and

Arbitrary Multivariate Distributions
� Stochastic Network Problems: Massively Parallel

Solution
� Stochastic Programming: Minimax Approach
� Stochastic Programming Models: Random Objective
� Stochastic Programming: Nonanticipativity and

Lagrange Multipliers
� Stochastic Programming with Simple Integer

Recourse
� Stochastic Programs with Recourse: Upper Bounds
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� Stochastic Quasigradient Methods in Minimax
Problems

� Stochastic Vehicle Routing Problems
� Two-stage Stochastic Programming: Quasigradient

Method
� Two-stage Stochastic Programs with Recourse
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Introduction

We consider a general conic optimization problem un-
der parameter uncertainty is as follows:

max c0x

s.t.
nP

jD1
Ã j x j � B̃ 2 K

x 2 X ;

(1)

where the cone K is a regular cone, i. e., a closed,
convex and pointed cone. The space of the data
(Ã1; : : : ; Ãn ; B̃) depends on the cone, K. The most
common cone is the cone of non-negative orthant, <m

C

in which the conic constraint in Problem (1) becomes
a set of m linear constraints. Two important cones,
which have many applications, include the second-
order cone,

LmC1 D f(y0; y) : kyk2 � y0; y 2 <mg
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and the cone of symmetric positive semidefinite ma-
trix,

Sm D fY : Y is a symmetric postive

semidefinite matrixg :

The interested reader may refer to the references of
Ben-Tal and Nemirovski [3] and Pardalos and Wolko-
wicz [13].

In the uncertain conic optimization problem (1),
the data (Ã1; : : : ; Ãn ; B̃) are uncertain. It is therefore
conceivable that as the data take values different than
the nominal ones, the conic constraint may be violated,
and the optimal solution found using the nominal data
may no longer be feasible at the conic constraint. To
control the feasibility level of the conic constraint, one
may consider a conic chance constrained model as fol-
lows:

max c0x

s.t. P(
nP
jD1

Ã j x j � B̃ 2 K) � 1 � �

x 2 X ;

(2)

in which the level of constraint violation is con-
trolled probabilistically. Unfortunately, the chance con-
strained conic optimization problem (2) destroys the
convexity of the problem and hence its computational
tractability.

Formulation

In modern robust optimization, we represent data un-
certainty using uncertainty sets instead of probability
distributions. We allow the data (Ã1; : : : ; Ãn ; B̃) to
vary within an uncertainty set U without having to vio-
late the conic constraint. We call the following problem
the robust counterpart of Problem (1)

max c0x

s.t.
nP

jD1
A j x j � B 2 K

8(A1; : : : ; An ; B) 2 U

x 2 X :

(3)

The robust counterpart is introduced by Ben-Tal and
Nemirovski [1] and independently by El-Ghoui et al.
[9]. An immediate consequence of the robust counter-

part is the preservation of the convexity. Unfortunately,
due to the possibly infinite number of scenarios corre-
sponding to the extreme points of the uncertainty set
U, optimizing the robust counterpart for general conic
optimization problems is intractable.

It is noteworthy that in robust optimization, the el-
lipsoidal uncertainty set is a popular choice because of
the motivation from the laws of large numbers and nor-
mal distributions. Under the assumption of normality,
we could design an ellipsoidal set that is large enough
so that the robust model will remain feasible with high
probability. However, it turns out this approach can
grossly over estimate the size of ellipsoid necessary to
ensure the same level of robustness. To illustrate this is-
sue, consider a linear constraint ã0x � b such that ã is
a multivariate normal with mean ā and covariance

P
.

It is natural to design an ellipsoidal uncertainty set of
the formU D fa : (a� ā)˙�1(a� ā) � ˛2g so that the
problem remains feasible if ã 2 U, which has a proba-
bility of �2n(˛2). However, when solving the equivalent
robust counterpart, ā0x � ˛

p
x0˙x � b, the robust

solution has a feasibility probability of at least ˚(˛),
where ˚(˛) is the standard normal function. Clearly,
the value �2n(˛2) would be a gross over estimate of the
robustness of the uncertain linear constraint compared
to the value ˚(˛). The reason for this disparity is the
fact that the uncertainty set chosen does not take into
account the structure of cone.

We focus on the robust optimization framework
proposed by Bertsimas and Sim [5], which offers a sim-
ple and tractable approximation of uncertain conic
optimization problems. Moreover, under reasonable
probabilistic assumptions on data variation, the frame-
work approximates the conic chance constraint prob-
lem (2) by relating its feasibility probability with the
size of the uncertainty set and the structure of the cone.
Note that more refined approximations of chance con-
strained problem are available for the case of linear
cones, K D <m

C. Interested readers can refer to Ben-
Tal and Nemirovski [2], Bertsimas and Sim [4], Chen,
Sim and Sun [8], Chen and Sim [6], Chen et al.[7], Lin
et al. [10] and Janak et al. [11].

Affine Data Dependency

We first assume that uncertain data (Ã1; : : : ; Ãn ; B̃)
are affinely dependent on some primitive uncertainty
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vector, z̃ 2 <N , as follows

Ãi D Ai (z̃) , A0
i C

NP
jD1

A j
i z̃ j i D 1; : : : ; n

B̃ D B(z̃) , B0 C
NP
jD1

B j z̃ j :

Note that we can always define a bijection map-
ping from a vector space of z̃ to the data space of
(Ã1; : : : ; Ãn ; B̃). Therefore, under the affine data de-
pendency, it is always possible to map all the data un-
certainties affecting the conic constraint to the primi-
tive uncertainty vector, z̃. It is more convenient to de-
fine the following linear function mapping with respect
to (z0; z),

Y((z0; z)) D
NX
jD0

Y j z j ;

in which the variables x are affinely mapped to the vari-
ables (Y0; : : : ; YN) as follows

Y j D

nX
iD1

A j
i xi � B j 8 j D 0; : : : ; N :

For instance, under such transformation, Problem (2)
is equivalent to

max c0x
s.t. Y j D

Pn
iD1 A

j
i xi � B j 8 j D 0; : : : ; N

P(Y((1; z̃)) 2 K) � 1 � �
x 2 X ;

(4)

and Problem (3) is the same as

max c0x
s.t. Y j D

Pn
iD1 A

j
i xi � B j 8 j D 0; : : : ;N

Y((1; z̃)) 2 K 8z 2 V

x 2 X ;

(5)

in which the uncertainty set U is mapped accordingly
to the uncertainty set V.

Example: Quadratic Chance Constraint Consider
the following quadratic chance constraint,

P(kA(z̃)xk22 C b(z̃)0x C c(z̃) � 0) � 1 � � ;

where x 2 <n is the decision variable and (A(z̃); b(z̃);
c(z̃)) 2 <m�n � <n � < are the input data, which are
affinely dependent on its primitive uncertainties as fol-
lows:

A(z̃) , A0 C
PN

jD1 A
j z̃ j

b(z̃) , b0 C
PN

jD1 b
j z̃ j

c(z̃) , c0 C
PN

jD1 c j z̃ j :

Note that a quadratic constraint

kA(z̃)xk22 C b(z̃)0x C c(z̃) � 0

is second-order cone representable as follows
2
64

1�b(z̃)0x�c(z̃)
2

A(z̃)x
1Cb(z̃)0xCc(z̃)

2

3
75 2 LmC2 :

Therefore, under the affine relation,

y0 D

2
64

A0x
1Cb00xCc0

2
1�b00x�c0

2

3
75 ;

and

y j D

2
64

A jx
b j 0xCc j

2
�b j 0x�c j

2

3
75 8 j D 1; : : : ; N

we transform the quadratic chance constraint problem
into the following conic chance constraint

P

0
@y0 C

nX
jD1

y j z̃ j 2 LmC2

1
A :

Hence, we treat the quadratic constraint as a special
case of second-order cone constraint.

Tractable Approximations
of a Conic Chance Constrained Problem

We focus on deriving a tractable approximation on the
following conic chance constraint:

P(Y((1; z̃)) 2 K) � 1 � � : (6)

For notational convenience, we define

X , (Y0; : : : ; YN) :



Approximations to Robust Conic Optimization Problems A 93

For a given a reference vector (or matrix), V 2 int(K),
where int(K) denotes the interior of the cone K, we can
define the function

f (X; (z0; z)) , maxf� : Y((z0; z))� �V 2 Kg ;

which has the following properties:

Proposition 1 For any V 2 int(K), the function
f (X; (z0; z)) satisfies the properties:
(a) f (X; (z0; z)) is bounded and concave in X

and (z0; z).
(b) f (X; k(z0; z)) D k f (X; (z0; z)); 8k � 0.
(c) f (X; (z0; z)) � s if and only if Y((z0; z)) � s

V 2 K.
(d) f (X; (z0; z)) > s if and only if Y((z0; z)) � s

V 2 int(K).

Hence, the conic chance constraint of (6) is equivalent
to the following chance constraint

P( f (X; (1; z̃)) � 0) � 1 � � : (7)

In order to build a tractable framework that approxi-
mates the conic chance constraint problem, we first an-
alyze the robust counterpart approach to uncertainty.
Given an ellipsoidal uncertainty set

E(�) D fz : kzk2 � �g ;

the robust counterpart

f (X; (1; z)) � 0 8z 2 E(�) ; (8)

despite its convexity, is generally intractable. Instead we
consider the following robust counterpart:

f (X; (1; 0))C
NX
jD1

f f (X; (0; e j))v j

C f (X; (0; �e j))wjg � 0;

8(v; w) 2 V(�)

(9)

where e j 2 <N is a unit vector with one at the jth entry
and the uncertainty set

V(�) D
˚
(v; w) 2 <N

C �<
N
C j kv C wk2 � �

�
: (10)

Proposition 2 The robust counterpart (9) is tractable
relaxation of the robust counterpart, (8).

Theorem 1
(a) The constraint (9) is equivalent to

f (X; (1; 0)) � �ksk2 ; (11)

where

s j D maxf� f (X; (0; e j)); � f (X; (0; �e j))g;

8 j D 1; : : : ; N :

(b) Eq. (11) can be written as:

f (X; (1; 0)) � �y
f (X; (0; e j))C t j � 0; 8 j 2 N
f (X; (0; �e j))C t j � 0; 8 j 2 N
ktk2 � y
for some y 2 <; t 2 <N :

(12)

From Proposition 1 and noting that

Y((1; 0)) D Y0

and

Y((0; ˙e j)) D ˙Y j ;

we can also represent the formulation (12) explicitly in
conic constraints as follows:

Y0 � �yV 2 K

Y j C t jV 2 K; 8 j 2 N
�Y j C t jV 2 K; 8 j 2 N
ktk2 � y
for some y 2 <; t 2 <N ;

(13)

for a given reference vector, V in the interior of the
cone, K. The formulation (12) becomes a cartesian
product of 2N C 1 cones of the nominal problem plus
an additional second-order cone, which is a computa-
tionally tractable cone. Hence, in theory the formula-
tion (12) is not much harder to solve compared with its
nominal problem.

One natural question is whether the simple approx-
imation is overly conservative with respect to Prob-
lem (8). While there is lack of theoretical evidence on
the closeness of the approximation, the framework does
lead to an approximation of the conic chance constraint
problem. An important component of the analysis is
the relation among different norms, which we will sub-
sequently present.
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Recall that a norm satisfies kAk � 0; kkAk D jkj �
kAk; kACBk � kAkCkBk, and kAk D 0, implies that
A D 0. For a given regular cone, K, and its interior, V,
we define the following cone induced norm

kYkK;V , minfy; yV�Y 2 K; YC yV 2 Kg : (14)

Proposition 3

maxf� f (X; (z0; z)); � f (X; �(z0; z))g
D kY((z0; z))kK;V :

We consider the common cones and the respective
norms.
(a) Second-order cone:

Let e1 2 int(LnC1) be the reference vector, we have
for any vector (y0; y) 2 <nC1

k(y0; y)kLnC1; enC1

D minf� : kyk2 � � � y0; kyk2 � � C y0g

D kyk2 C jy0j

(b) Cone of symmetric positive definite matrix:
Let the identity matrix I be the reference matrix,
then for any m � m symmetric matrix, Y ,

kYkSm
C
; I D minfy; yI � Y 2 SmC; Y � yI 2 SmCg
D kYk2 :

Proposition 4 Suppose X is feasible in Problem (12)
then

P( f (X; (1; z̃)) < 0)

� P

0
@








NX
jD1

Y j z̃ j








K;V

> �

sX
j2N

kY jk
2
K;V

1
A :

To obtain explicit bounds, we focus on primitive un-
certainties, z̃ that are normally and independently dis-
tributed with mean zero and variance one. For a sum of
random scalers, we have

P

0
@
ˇ̌
ˇ̌
ˇ̌

NX
jD1

y j z̃ j

ˇ̌
ˇ̌
ˇ̌ > �

vuut
NX
jD1

y2j

1
A � 1 � 2˚(�) :

To derive a similar large deviation result for the sum of
random vectors used in Proposition 4, we consider the

following generalization:

P

0
@








NX
jD1

Y j z̃ j








K;V

> �

vuut
NX
jD1

kY jk
2
K;V

1
A � �(�) ;

where �(�) is a non-trivial probability bound that de-
pends on the choice of cone, K, and possibly the di-
mension and the reference vector, V.

An important component of the analysis is the re-
lation among different norms. We denote by h ; i
the inner product on a vector space, <m , or the space
of m by m symmetric matrices. The inner product in-
duces a norm kXk ,

p
hX; Xi. For a vector space,

the natural inner product is the Euclidian inner prod-
uct, hx; yi D x 0y, and the induced norm is the Eu-
clidian norm kxk2. For the space of symmetric matri-
ces, the natural inner product is the trace product or
hX; Yi D trace(XY) and the corresponding induced
norm is the Frobenius norm, kYkF .

We analyze the relation of the inner product normp
hX; Xi with the norm kXkK;V for the conic opti-

mization problems we consider. Since kXkK;V and the
inner product norm kXk are valid norms in a finite di-
mensional space, there exist finite ˛1; ˛2 > 0 such that

1
˛1
kXkK;V � kXk � ˛2kXkK;V ;

for all X in the relevant space. Hence, we define the pa-
rameter

˛K;V D

�
max
kXkD1

kXkK;V
�

„ ƒ‚ …
D˛1

�
max

kXkK; VD1
kXk

�

„ ƒ‚ …
D˛2

(15)

whichmeasures the disparity between the norm k�kK;V
and the inner product norm k � k.

Parameter ˛K;V of Common Cones
(a) Second-order cone:

Let enC1 be the reference vector, then

k(y; ynC1)kLnC1; v D kyk2 C jynC1j :

Therefore,

1
p
2
k(y; ynC1)kLnC1; enC1

� k(y; ynC1)k2

� k(y; ynC1)kLnC1; enC1



Approximations to Robust Conic Optimization Problems A 95

Approximations to Robust Conic Optimization Problems, Ta-
ble 1
Probability bounds of P(f (X; (1; z̃)) < 0) for z̃ �N(0; I).

Type Probability bound of infeasibility

LmC1
q

e
2˝ exp(�˝

2

4 )

Sm
C

q
e
m˝ exp(�˝

2

2m )

and hence,

˛LnC1; v D
p
2 :

(b) Cone of symmetric positive definite matrix:
Let I be the reference matrix, then for any m � m
symmetric matrix Y

kYkSm
C
; I D kYk2 :

Let � j; j D 1; : : : ;m be the eigenvalues of the ma-

trix Y . Since kYkF D
p
trace(Y2) D

qP
j �

2
j and

kYk2 D max j j� jj, we have

kYk2 � kAkF �
p
mkYk2 :

Hence,

˛Sm
C
; I D

p
m :

Theorem 2 Given an inner product norm k � k and un-
der the assumption that z̃ j are normally and indepen-
dently distributed with mean zero and variance one, i. e.,
z̃ � N(0; I), then

P

0
@








NX
jD1

Y j z̃ j








K;V

> �

sX
j2N

kY jk
2
K;V ;

1
A

�

p
e�

˛K;V
exp

 
�

�2

2˛2K;V

!
; (16)

for all � > ˛K;V .

In order to have the smallest budget of uncertainty, �, it
is reasonable to select V that minimizes ˛K;V , i. e.,

˛K D min
V2int(K)

˛K;V :

For general conic optimization, we have shown that
the probability bound depends on the the choice of

V 2 int(K). A cone, K � <n is homogenous if for any
pair of points A; B 2 int(K) there exists an invertible
linear map M : <n ! <n such that M(A) D B and
M(K) D K. It turns out that for homogenous cones,
of which semidefinite and second-order cones are spe-
cial cases, the probability bound does not depend on
V 2 int(K).

Theorem3 Suppose the coneK is homogenous. For any
V 2 int(K), the probability bound of conic infeasibility
satisfies

P(Y((1; z)) … K) �
p
e�
˛K

exp
�
�
�2

2˛2K

�
:

For the second-order cone, ˛LnC1 D
p
2 and for the sym-

metric positive semidefinite cone, ˛Sm
C

D
p
m:

While different V lead to the same probability bounds,
some choices of V may lead to better objectives. The
following theorem suggests an iterative improvement
strategy.

Theorem 4 For any V 2 int(K), if X; t and y > 0 are
feasible in (13), then they are also feasible in the same
problem in which V is replaced by

W D Y0/(�y) :

While we focus on the primitive uncertainty vector z̃
being normally distributed, using the large deviation
bounds of Nemirovski [12], we can also apply the same
framework to other distributions. The interested reader
may refer to Bertsimas and Sim [5].
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Biographical Sketch

Archimedes (287–212 B.C.) was a famous Greek math-
ematician, engineer and philosopher. Born in the city
of Syracuse on the Island of Sicily to an astronomer
and mathematician named Phidias, Archimedes spent
the first years of his life in his home city and went to
Alexandria in Egypt to study mathematics. He soon
became friends with Konon of Samos and Eratos-
thenes. After spending a considerable amount of time

in Alexandria, he returned to Syracuse, where he re-
mained for the rest of his life conducting mathemati-
cal research. He had a good relationships with king Hi-
eron of Syracuse and his son Gelon. We know that he
assisted king Hieron numerous times either with his
inventions during the Second Punic War or by solv-
ing problems like the well-known case (the one that
Archimedes jumped out of his bathtub crying out eu-
reka) with the crown of king Hieron during peacetime.

In this article we will concentrate on the work of
Archimedes, which is closely related to what we call
today industrial engineering (including the mathemat-
ical theory of optimization, operations research, the-
ory of algorithms, etc.). In particular, we will present
Archimedes’ definition of convex sets, his method of
exhaustion for computing finite integrals, his contribu-
tion to recursive algorithms, and his approach to solv-
ing real-life operations research problems during the
Second Punic War.

Archimedes’ Work

One very important concept for optimization is the
definition of convex sets. The first such definition was
given by Euclid in his books Elements, but Archimedes
elaborated this definition and gave us his definition,
which was used until the first decades of the 20th cen-
tury. In his workOn the sphere and the cylinder he gives
the following definition of the convex arc:

Definition 1 I call convex in one and the same direc-
tions the surfaces for which the straight line joining two
arbitrary points lies on the same side of the surface.

On his workOn the equilibrium of planes he gives a defi-
nition of the convex set using the center-of-gravity con-
cept:

Definition 2 In any figure whose perimeter is convex
the center of gravity must be within the figure.

It is worth mentioning that Archimedes’ definitions of
convex arcs and convex sets were those used until 1913,
when E. Steinitz introduced the modern definitions of
convexity.

Archimedes had invented a geometrical method
called the method of exhaustion (or method of in-
finitesimals) in order to be able to compute areas un-
der convex curves. This was one of the first geometrical
methods devised to compute what we call today definite
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Archimedes and the Foundations of Industrial Engineering,
Figure 1
Illustration of Archimedes’ exhaustion method

integrals. In modern notation Archimedes was able to
compute

Z b

a
[ f (x)� g(x)]dx; (1)

where f (x) is a line segment and g(x) a convex function
(usually parabola). An illustration of this method can
be found in Fig. 1.

Suppose that we want to compute the area over
a curve and below the line segment AB. Archimedes
considered the triangle bABC, whereC is the point below
the midpointM of the line segment AB(MC is the mid-
dle vertical of AB). If we iteratively repeat this process,
we can see that the next two parabolic triangles have an
area that is 1

4 of the initial triangle. Therefore, the area
of the curve was the infinite sum of 1C 1

4 C
1
8 C : : :,

where 1 corresponds to the area of the initial triangle
bABC. In this way Archimedes was able to geometrically
approximate the area of a convex parabolic curve.

According to [7] Archimedes was the first (in
around 220 B.C.) to use a double recursive algorithm
to solve the problem of the sand reckoner (Psammitis).
In this book he tries to come up with of a number that
is much larger than the number of grains of sand in the
world and therefore prove that the number of grains of
sand in the world is not infinite. For this he fixes a num-

ber ˛ and defines the number pk(x) as follows (using
a double recursion scheme):

p0(x) D 1;

pkC1(0) D pk (˛);

pnC1(x C 1) D apkC1(x) :

(2)

Therefore, pk (x) D ˛xk . Then he considers p˛(˛)
for ˛ D 108, which was the largest number known at
that time, and he comes up with the number 101017,
which was the largest number used in mathematics un-
til 1933.

Apart from Archimedes’ exceptional skills in the-
oretical research, he also became famous for his abil-
ity to deal with everyday life problems. Although op-
erations research was developed during World War II,
when mathematicians were looking for ways to make
better decisions in utilizing certain materials subject to
some constraint, some consider Archimedes the father
of operations research as he helped his home city de-
fend itself against the Romans during the Second Punic
War.

Before King Hieron died, he asked Archimedes to
organize the complete defense of Syracuse against Ro-
man general Marcelus. Archimedes is said to have in-
vented many mechanical war machines like the claw of
Archimedes, a new version of catapult, an array of mir-
rors that was able to burn enemy ships, etc.

Archimedes was also responsible for organizing the
defense of Syracuse and the redecoration of Fort Eu-
ryalus [6]. Due to Archimedes’ clever defense plans,
Syracuse managed to survive the Roman siege for
2 years.

Conclusion

Archimedes was a perfect example of a scientist who
managed to combine theoretical research with practical
problem solving. He managed to distinguish between
the two by referring to his mechanical inventions as
parergon. This shows that Archimedes was capable of
performing both basic and applied research, but he re-
garded basic research as more important. In this sense
he can be considered the father of the modern indus-
trial engineer who utilizes theoretical methods to solve
problems that arise in everyday life.
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Introduction

Asset Liability Management (ALM) is an important di-
mension of risk management, where the exposure to

various risks is minimized while maintaining the ap-
propriate combination of asset and liability, in order to
satisfy the goals of the firm or the financial institution
(Kosmidou and Zopounidis [18]).

Up to the 1960’s, liability management was aimless.
In their majority, the banking institutions considered
liabilities as exogenous factors contributing to the limi-
tation of asset management. Indeed, for a long period
the greater part of capital resources originated from
savings deposits and deposits with agreed maturity.

Nevertheless, the financial system has radically
changed. Competition among the banks for obtaining
capital has become intense. Liability management is the
main component of each bank strategy in order to en-
sure the cheapest possible financing. At the same time,
the importance of decisions regarding the amount of
capital adequacy is enforced. Indeed, the adequacy of
the bank as far as equity, contributes to the elimina-
tion of bankruptcy risk, a situation in which the bank
cannot satisfy its debts towards clients who make de-
posits or others who take out loans. Moreover, the cap-
ital adequacy of banks is influenced by the changes
of stock prices in relation to the amount of the cap-
ital stock portfolio. Finally, the existence of a mini-
mum amount of equity is an obligation of commercial
banks to the Central Bank for supervisory reasons. It is
worth mentioning that based on the last published data
(31/12/2001) the Bank of Greece assigns the coefficient
for the Tier 1 capital at 8%, while the corresponding Eu-
ropean average is equal to 6%. This results in the con-
figuration of the capital adequacy of the Greek banking
system at higher levels than the European average rate.
The high capital adequacy index denotes large margins
of profitability amelioration, which reduces the risk of
a systematic crisis.

Asset management in a contemporary bank cannot
be distinct from liability management. The simultane-
ous management of assets and liabilities, in order to
maximize the profits and minimize the risk, demands
the analysis of a series of issues.

Firstly, there is the substantive issue of strategic
planning and expansion. That is, the evaluation of the
total size of deposits that the bank wishes to attract and
the total number of loans that it wishes to provide.

Secondly, there is the issue of determination of the
“best temporal structure” of the asset liability manage-
ment, in order to maximize the profits and to ensure

http://plato.stanford.edu/archives/sum2005/entries/recursive-functions
http://plato.stanford.edu/archives/sum2005/entries/recursive-functions
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the robustness of the bank. Deposits cannot all be liqui-
dated in the same way. From the point of view of assets,
the loans and various placements to securities consti-
tute commitments of the bank’s funds with a different
duration time. The coordination of the temporal struc-
ture of the asset liability management is of major im-
portance in order to avoid the problems of temporary
liquidity reduction, which might be very injurious.

Thirdly, there is the issue of risk management of
assets and liabilities. The main focus is placed on the
assets, where the evaluation of the quality of the loans
portfolio (credit risk) and the securities portfolio (mar-
ket risk) is more easily measurable.

Fourthly, there is the issue of configuration of an
integrated invoice, which refers to the entire range of
bank operations. It refers mainly to the determination
of interest rates for the total of loans and deposits as well
as for the various commissions which the bank charges
for specific mediating operations. It is obvious that in
a bankmarket which operates in a competitive environ-
ment, there is no issue of pricing. This is true even in the
case where all interest rates and commissions are set by
monetary authorities, as was the situation in Greece be-
fore the liberalization of the banking system.

In reality, bank markets have the basic character-
istics of monopolistic competition. Thus, the issue of
planning a system of discrete pricing and product di-
versification is of major importance. The problem of
discrete pricing, as far as the assets are concerned, is
connected to the issue of risk management. It is a com-
mon fact that the banks determine the borrowing inter-
est rate on the basis of the interest rates which increase
in proportion to the risk as they assess it in each case.
The product diversification policy includes all the loan
and deposit products and is based on thorough research
which ensures the best possible knowledge of market
conditions.

Lastly, the management of operating cost and tech-
nology constitutes an important issue. The collabo-
ration of a well-selected and fully skilled personnel,
as well as contemporary computerization systems and
other technological applications, constitutes an impor-
tant element in creating a low-cost bank. This results in
the acquisition of a significant competitive advantage
against other banks, which could finally be expressed
through amore aggressive policy of attracting loans and
deposits with low loan interest rates and high deposit

interest rates. The result of this policy is the increase of
the market stake. However, the ability of a bank to ab-
sorb the input of the best strategic technological inno-
vations depends on the human resources management.

The present research focuses on the study of bank
asset liability management. Many are the reasons that
lead us to study bank asset liability management, as an
application of ALM. Firstly, bank asset/liability man-
agement has always been of concern to bank man-
agers, but in the last years and especially today its im-
portance has grown more and more. The development
of information technology has led to such an increas-
ing public awareness that the bank’s performance, its
politics and its management are closely monitored by
the press and the bank’s competitors, shareholders and
customers and thereby highly affect the bank’s public
standing.

The increasing competition in the national and in-
ternational banking markets, the changeover towards
the monetary union and the new technological innova-
tions herald major changes in the banking environment
and challenge all banks to make timely preparations in
order to enter into the new competitive monetary and
financial environment.

All the above drove banks to seek out greater effi-
ciency in the management of their assets and liabilities.
Thus, the central problem of ALM revolves around the
bank’s balance sheet and the main question that arises
is: What should be the composition of a bank’s assets
and liabilities on average given the corresponding re-
turns and costs, in order to achieve certain goals, such
as maximization of the bank’s gross revenues?

It is well known that finding an appropriate balance
between profitability, risk and liquidity considerations
is one of the main problems in ALM. The optimal bal-
ance between these factors cannot be found without
considering important interactions that exist between
the structure of a bank’s liabilities and capital and the
composition of its assets.

Bank asset/liability management is defined as the si-
multaneous planning of all asset and liability positions
on the bank’s balance sheet under consideration of the
different banking and bank management objectives and
legal, managerial and market constraints. Banks are
looking to maximize profit and minimize risk.

Taking into consideration all the above, the purpose
of this paper is to develop a goal programming system
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into a stochastic environment, focusing, mainly, on the
change of the interest rate risk. This system provides
the possibility to the administrative board and theman-
agers of the bank to proceed to various scenarios related
to their future economic process, aiming mainly to the
management of the risks, emerged from the changes of
the market parameters.

The rest of the paper is organized as follows. The
next section includes a brief overview of bank ALM
techniques. Section “Model” outlines the methodology
used and describes the development of the ALM deci-
sion support system. Finally, the conclusions of the pa-
per as well as future research perspectives are discussed
in the last section.

Background

Looking to the past, we find the first mathematical
models in the field of bank management. Asset and
liability management models can be deterministic or
stochastic (Kosmidou and Zopounidis [17]).

Deterministic models use linear programming, as-
sume particular realizations for random events, and
are computationally tractable for large problems. The
deterministic linear programming model of Chambers
and Charnes [6] is the pioneer in ALM. Chambers and
Charnes were concerned with formulating, exploring
and interpreting the use and construction which may
be derived from a mathematical programming model
which expresses more realistically than past efforts the
actual conditions of current operations. Their model
corresponds to the problem of determining an optimal
portfolio for an individual bank over several time pe-
riods in accordance with requirements laid down by
bank examiners which are interpreted as defining limits
within which the level of risk associated with the return
on the portfolio is an acceptable one.

Cohen and Hammer [9], Robertson [31], Lifson
and Blackman [23], Fielitz and Loeffler [14] have real-
ized successful applications of Chambers and Charnes’
model. Even though these models have differed in their
treatment of disaggregation, uncertainty and dynamic
considerations, they all have in common the fact that
they are specified to optimize a single objective profit
function subject to the relevant linear constraints.

Eatman and Sealey [12] developed a multiobjective
linear programming model for commercial bank bal-

ance sheet management considering profitability and
solvency objectives subject to policy and managerial
constraints.

Giokas and Vassiloglou [15] developed a goal-pro-
gramming model for bank asset and liability manage-
ment. They supported the idea that apart from at-
tempting to maximize revenues, management tries to
minimize risks involved in the allocation of the bank’s
capital, as well as to fulfill other goals of the bank, such
as retaining its market share, increasing the size of its
deposits and loans, etc. Conventional linear program-
ming is unable to deal with this kind of problem, as it
can only handle a single goal in the objective function.
Goal programming is the most widely used approach
that solves large-scale multi-criteria decision making
problems.

Apart from the deterministic models, several
stochastic models have been proposed since the
1970s. These models, including the use of chance-
constrained programming [7,8,29], dynamic program-
ming [13,25,26,32], sequential decision theory [3,35]
and stochastic linear programming under uncer-
tainty [2,10,11,16], presented computational difficul-
ties. The stochastic models, in their majority, originate
from the portfolio selection theory of Markowitz [24]
and they are known as static mean-variance methods.
Pyle [30] and Brodt [4] adaptedMarkowitz’s theory and
presented an efficient dynamic balance sheet manage-
ment plan that considers only the risk of the portfolio
and not other possible uncertainties or maximizes prof-
its for a given amount of risk over a multi-period plan-
ning horizon respectively.

Wolf [35] proposed the sequential decision theo-
retic approach that employs sequential decision anal-
ysis to find an optimal solution through the use of im-
plicit enumeration.

An alternative approach in considering stochastic
models, is the stochastic linear programming with sim-
ple recourse. Kusy and Ziemba [19] employed a multi-
period stochastic linear program with simple recourse
to model the management of assets and liabilities in
banking while maintaining computational feasibility.
Their results indicate that the proposed ALM model
is theoretically and operationally superior to a corre-
sponding deterministic linear programming model and
that the computational effort required for its imple-
mentation is comparable to that of the deterministic
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model. Another application of the multistage stochas-
tic programming is the Russell-Yasuda Kasai model [5],
which aims at maximizing the long term wealth of the
firm while producing high income returns.

Mulvey and Vladimirou [27] used dynamic general-
ized network programs for financial planning problems
under uncertainty and they developed a model in the
framework of multi-scenario generalized network that
captures essential features of various discrete time fi-
nancial decision problems.

Finally, Mulvey and Ziemba [28] present a more de-
tailed overview of various asset and liability modeling
techniques, including models for individuals and finan-
cial institutions such as banks and insurance compa-
nies.

Moreover, over the years, many models have been
developed in the area of financial analysis and fi-
nancial planning techniques. Kvanli [20], Lee and
Lerro [22], Lee and Chesser [21], Baston [1], Sharma et
al. [34], among others have applied goal programming
to investment planning. Giokas and Vassiloglou [15],
Seshadri et al. [33] presented bank models using goal
programming. These studies focus on the areas of bank-
ing and financial institutions and they use data from the
bank financial statements.

Model

Kosmidou and Zopounidis [18] developed an asset lia-
bility management (ALM) methodology into a stochas-
tic environment of interest rates in order to select the
best direction strategies to the banking financial plan-
ning. The ALMmodel was developed through goal pro-
gramming in terms of a one-year time horizon. The
model used balance sheet and income statement infor-
mation for the previous year of the year t to produce
a future course of ALM strategy for the year t C 1. As
far as model variables are concerned, we used variables
familiar to management and facilitated the specification
of the constraints and goals. For example, goals con-
cerning measurements such as liquidity, return and risk
have to be expressed in terms of utilized variables.

More precisely, the asset liability management
model that was developed can be expressed as follows:

min z D
X
P

pk (d�k C dCk ) (1)

subject to constraints:

K˚X0 � X0 � A˚X0 (2)

K˚Y 0 � Y 0 � A˚Y 0 (3)

nX
iD1

Xi D

mX
jD1

Yj 8i D 1; : : : ; n; 8 j D 1; : : : ;m

(4)

X
j2˘Y00

Yj � a
X
i2EX00

Xi D 0 (5)

X
j2˘1

Yj �
X
i2E

wiXi � dCs C d�s D k1 (6)

X
i2Ex

Xi � k2
X
j2˘k

Yj C d�l � dCl D 0 (7)

nX
iD1

RX
i Xi �

mX
jD1

RY
j Yj � dCr C d�r D k3 (8)

X
i2Ep

Xi C d�p � dCp D lp ; 8p (9)

X
j2˘p

Yj C d�p � dCp D lp ; 8p (10)

Xi � 0;Yj � 0; dCk � 0; d�k � 0 ;

for all i D 1; : : : ; n; j D 1; : : : ;m; k 2 P (11)

where

Xi: the element i of asset, 8i D 1; : : : ; n, n is the num-
ber of asset variables

Yj: the element j of liability, 8 j D 1; : : : ;m, m is the
number of liability variables

K˚X0 (K˚Y 0 ): is the low bound of specific asset ac-
counts X0 (liability Y0)

A˚X0 (A˚Y 0 ): is the upper bound of specific asset ac-
counts X0 (liability Y0)

EX00 : specific categories of asset accounts
˘Y 00 : specific categories of liability accounts
˛: the desirable value of specific asset and liability data
˘1: the liability set, which includes the equity
E: the set of assets
wi: the degree of riskness of the asset data
k1: the solvency ratio, as it is defined from the Euro-

pean Central Bank.
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k2: the liquidity ratio, as it is defined from the bank pol-
icy

E�: the set of asset data, which includes the loans
˘� : the set of liability data, which includes the deposits
RX
i : the expected return of the asset i , 8i D 1; : : : ; n

RY
j : the expected return of the liability j,
8 j D 1; : : : ;m

k3: the expected value for the goal of asset and liability
return

P: the goal imposed from the bank
Lp: the desirable value goal for the goal constraint p de-

fined by the bank
dCk : the over-achievement of the goal k, 8k 2 P
d�k : the under-achievement of the goal k, 8k 2 P
pk : the priority degree (weight) of the goal k

Certain constraints are imposed by the banking reg-
ulation on particular categories of accounts. Specific
categories of asset accounts (X0) and liability accounts
(Y 0) are detected and the minimum and maximum al-
lowed limit for these categories are defined based on the
strategy and policy that the bank intends to follow (con-
straints 2–3).

The structural constraints (4–5) include those that
contribute to the structure of the balance sheet and es-
pecially to the performance of the equation Assets = Li-
abilities + Net Capital.

The bank management should determine specific
goals, such as the desirable structure of each financial
institution’s assets and liabilities for the units of surplus
and deficit, balancing the low cost and the high return.
The structure of assets and liabilities is significant, since
it affects swiftly the income and profits of the bank.

Referring to the goals of the model, the solvency
goal (6) is used as a risk measure and is defined as the
ratio of the bank’s equity capital to its total weighted
assets. The weighting of the assets reflects their respec-
tive risk, greater weights corresponding to a higher de-
gree of risk. This hierarchy takes place according to the
determination of several degrees of significance for the
variables of assets and liabilities. That is, the variables
with the largest degrees of significance correspond to
categories of the balance sheet accounts with the high-
est risk stages.

Moreover, a basic policy of the commercial banks
is the management of their liquidity and specifically
the measurement of their needs that is relative to the

progress of deposits and loans. The liquidity goal (7) is
defined as the ratio of liquid assets to current liabilities
and indicates the liquidity risk, that indicates the pos-
sibility of the bank to respond to its current liabilities
with a security margin, which allows the probable re-
duction of the value of some current data.

Furthermore, the bank aims at the maximization of
its efficiency that is the accomplishment of the largest
possible profit from the best placement of its funds. Its
aim is themaximization of its profitability and therefore
precise and consistent decisions should be taken into
account during the bank management. These decisions
will guarantee the combined effect of all the variables
that are included on the calculation of the profits. This
decision taking gives emphasis to several selected vari-
ables that are related to the bank management, such as
to the management of the difference between the asset
return and the liability cost, the expenses, the liquidity
management and the capital management. The goal (8)
determines the total expected return based on the ex-
pected returns for all the assets RX and liabilities RY .

Beside the goals of solvency, liquidity and return of
assets and liabilities, the bank could determine other
goals that concern specific categories of assets and li-
abilities, in proportion to the demands and preferences
of the bank managers. These goals are the deposit goal,
the loan goal and the goal of asset and liability return.

The drawing of capital, especially from the deposits
constitutes a major part of commercial bank manage-
ment. All sorts of deposits constitute the major source
of capital for the commercial banks, in order to proceed
to the financing of the economy, through the financing
of firms. Thus, it is given special significance to the de-
posits goal.

The goal of asset and liability return defines the goal
for the overall expected return of the selected asset-
liability strategy over the year of the analysis.

Finally, there are goals reflecting that variables such
as cash, cheques receivables, deposits to the Bank of
Greece and fixed assets, should remain at the levels
of previous years. More analytically, it is known that
the fixed assets are the permanent assets, which have
a natural existence, such as buildings, machines, lo-
cations and equipment, etc. Intangible assets are the
fixed assets, which have no natural existence but consti-
tute rights and benefits. They have significant economic
value, which sometimes is larger than the value of the
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tangible fixed assets. These data have stable character
and are used productively by the bank for the regular
operation and performance of its objectives. Since the
fixed assets, tangible or intangible, are presented at the
balance sheet at their book value that is the initial value
of cost minus the depreciation till today, it is assumed
that their value does not change during the develop-
ment of the present methodology.

At this point, Kosmidou and Zopounidis [18] took
into account that the banks should manage the interest
rate risk, the operating risk, the credit risk, the market
risk, the foreign exchange risk, the liquidity risk and the
country risk.

More specifically, the interest rate risk indicates the
effect of the changes to the net profit margin between
the deposit and borrowing values, which are evolved as
a consequence of the deviations to the dominant inter-
est rates of assets and liabilities. When the interest rates
diminish, the banks accomplish high profits since they
can refresh their liabilities to lower borrowing values.
The reverse stands to high borrowing values. It is ob-
vious, that the changes of the inflation have a relevant
impact on the above sorts of risk.

Considering the interest rate risk as the basic uncer-
tainty parameter to the determination of a bank asset
liability management strategy, the crucial question that
arises concerns the determination of the way through
which this factor of uncertainty affects the profitabil-
ity of the pre-specified strategy. The estimation of the
expected return of the pre-specified strategy and of its
variance can render a satisfactory response to the above
question.

The use of Monte Carlo techniques constitutes
a particular widespread approach for the estimation
of the above information (expected return – variance
of bank asset liability management strategies). Monte
Carlo simulation consists in the development of var-
ious random scenarios for the uncertain variable (in-
terest rates) and the estimation of the essential statis-
tical measures (expected return and variance), which
describe the effect of the interest rate risk to the se-
lected strategy. The general procedure of implementa-
tion of Monte Carlo simulation based on the above is
presented in Fig. 1.

During the first stage of the procedure the various
categories of the interest rate risks are identified. The
risk and the return of the various data of bank asset and

Asset Liability Management Decision Support System, Fig-
ure 1
General Monte Carlo simulation procedure for the evalua-
tion of the asset liability management strategies

liability are determined from the different forms of in-
terest rates. For example, the investments of a bank to
government or corporate bonds are determined from
the interest rates that prevail in the bond market, which
are affected so by the general economic environment
as by the rules of demand and supply. Similarly, the
deposits and loans of the bank are determined from
the corresponding interest rates of deposits and loans,
which are assigned by the bank according to the con-
ditions that prevail to the bank market. At this stage,
the categories of the interest rates, which constitute cru-
cial uncertain variables for the analysis, are detected.
The determined interest rates categories depend on the
type of the bank. For example, for a decisive commer-
cial bank, the deposit and loan interest rates have a role,
whereas for an investment bank more emphasis is given
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to the interest rates and the returns of various invest-
ment products (repos, bonds, interest-bearing notes,
etc.).

After the determination of the various categories of
interest rates, which determine the total interest rate
risk, at the second stage of the analysis the statistical
distribution that follows each of the pre-specified cat-
egories should be determined.

Having determined the statistical distribution that
describes the uncertain variables of the analysis (in-
terest rates), a series of random independent scenar-
ios is developed, through a random number genera-
tor. Generally, the largest the number of scenarios that
are developed, the more reliable conclusions can be de-
rived. However, the computational effort increases sig-
nificantly, since for each scenario the optimal asset lia-
bility strategy should be determined and moreover its
evaluation for each other scenario should take place.
Thus, the determination of the number volume N of
simulations (scenarios), which will take place should be
determined, taking into account both the reliability of
the results and the available computational resources.

For each scenario si (i = 1, 2, . . . , N) over the inter-
est rates the optimal asset liability management strat-
egy � i is determined through the solution of the goal
programming problem. It is obvious that this strategy
is not expected to be optimal for each of the other sce-
narios sj ( j ¤ i). Therefore the results obtained from
the implementation of the strategy Yi under the restN–
1 possible scenarios sj should be evaluated. The evalua-
tion of the results can be implemented from various di-
rections. The most usual is the one that uses the return.
Representing as ri j the outcome (return) of the strategy
� i under the scenario sj, the expected return r̄i of the
strategy can be easily determined based on all the other
N–1 scenarios sj ( j ¤ i), as follows:

r̄i D
1

N � 1

NX
jD1; j¤i

ri j (12)

At the same time, the variance �2
i of the expected return

can be determined as a risk measure of the strategy Y i,
as follows:

�2
i D

1
N � 1

NX
jD1; j¤i

�
ri j � r̄i

�2 (13)

These two statistical measures (average and variance)
contribute to the extraction of useful conclusions con-
cerning the expected efficiency of the asset liability
management strategy, as well as the risks that it car-
ries. Moreover, these two basic statistical measures can
be used for the expansion of the analysis of the deter-
mination of other useful statistical information, such as
the determination of the confidence interval for the ex-
pected return, the quantiles, etc.

Conclusions

The banking business has recently become more so-
phisticated due to technological expansion, economic
development, creation of financial institutions and in-
creased competition. Moreover, the mergers and acqui-
sitions that have taken place the last years create large
groups of banking institutions. The success of a bank
depends mainly on the quality of its asset and liabil-
ity management, since the latter deals with the efficient
management of sources and uses of bank funds concen-
trating on profitability, liquidity, capital adequacy and
risk factors.

It is obvious that in the last two decades modern
finance has developed into a complex mathematically
challenging field. Various and complicated risks exist in
financial markets. For banks, interest rate risk is at the
core of their business and managing it successfully is
crucial to whether or not they remain profitable. There-
fore, it has been essential the creation of the department
of financial risk management within the banks. Asset
liability management is associated with the changes of
the interest rate risk. Although several models exist re-
garding asset liability management, most of them are
focused on the general aspects and methodologies of
this field and do not refer extensively to the hedging
of bank interest rate risk through asset liability man-
agement. Thus, the main purpose of the present paper
was to describe the development of a bank ALM deci-
sion support system, which gives the possibility to the
decision maker to proceed to various scenarios of the
economic process of the bank in order to monitor its
financial situation and to determine the optimal strate-
gic implementation of the composition of assets and
liabilities. Moreover, we believe that the development
of a bank asset liability management model that takes
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into account the exogenous factors and the economic
parameters of the market as well as the uncertainty of
variations of the financial risks become essential.

Finally, despite the approaches described in this pa-
per, little academic work has been done so far to de-
velop a model for the management of assets and li-
abilities in the European banking industry. Based on
the above we conclude that the quality of asset liabil-
ity management in the European banking system has
become significant as a resource of competitive advan-
tage. Therefore, the development of new technological
approaches in bank asset liability management in Eu-
rope is worth further research.
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Matching problems comprise an important set of prob-
lems that link the areas of graph theory and combinato-
rial optimization. The maximum cardinality matching
problem (see below) is one of the first integer program-
ming problems that was solved in polynomial time.
Matchings are of great importance in graph theory
(see [9]) as well as in combinatorial optimization (see
e. g. [15]).

The matching problem and its variations arise in
cases when we want to find an ‘optimal’ pairing of the
members of two (not necessarily disjoint) sets. In par-
ticular, if we are given two sets of ‘objects’ and a ‘weight’
for each pair of objects, we want to match the objects
into pairs in such a way that the total weight is maxi-
mal. In graph theory, the problem is defined on a graph

G = (V , E) where V is the node set of the graph, corre-
sponding to the union of the two sets of objects, and E is
the edge set of the graph corresponding to the possible
pairs. A pair is possible if there exists an edge between
the corresponding nodes. A matching M is a subset of
the edges E with the property that each node in V is in-
cident to at most one edge in M. If each node in V is
met by exactly one edge inM, thenM is called a perfect
matching. There exist several versions of the matching
problem, depending on whether the graph G is bipar-
tite or not (i. e., the two sets of objects are disjoint or
not), and on whether we want to find themaximum size
(cardinality) or the maximum weight of the matching.
The book [1] gives several applications of the matching
problem.

Maximum Cardinality Bipartite Matching
Problem

The graph G is bipartite if the node set V can be par-
titioned into two disjoint sets V1 and V2 such that
no edge in E connects nodes from the same set. Find-
ing a maximum cardinality matching on a bipartite
graph can be solved by several efficient algorithms with
a worst-case bound of O(

p
nm), where n is the num-

ber of nodes and m the number of edges of the graph.
See [1] for details.

Weighted Bipartite Matching Problem

This problem is known as the assignment or the mar-
riage problem. In the traditional definition it is required
that the sets V1 and V2 are of equal size, but even if not,
one can add ‘dummy’ nodes to the smaller set to sat-
isfy this condition. This problem can be formulated as
a zero-one linear programming problem as follows:
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X

(u;v)2E

f (u; v)xuv

s.t.
X

(u;v)2E

xuv D 1 for all u 2 V1;

X
(u;v)2E

xuv D 1 for all v 2 V2;

xuv 2 f0; 1g for all u 2 V1; v 2 V2:

The assignment problem has the property that if solved
as a linear programming problem in nonnegative xuv it
yields an integer solution, i. e., the zero-one integrality
condition in the formulation is not necessary. This is
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so because the constraint matrix of the equations is to-
tally unimodular, i. e., the determinant of every square
submatrix of it is 0 or ˙1. This means that if the right-
hand sides of the equations are integer numbers, as is
the case in the assignment problem, then the solution
will be integer.

Linear programming algorithms are not as efficient
as specialized algorithms for solving the assignment
problem. The assignment problem is a special case of
the minimum cost flow problem, and adaptations of al-
gorithms for that problem that take into account the
special structure of the assignment problem yield the
most efficient algorithms. Probably the best known al-
gorithm is the so called Hungarian algorithm, see [8],
which is a primal-dual algorithm for the minimum cost
flow problem. See [1] for details and other algorithms.

Variations of the bipartite matching include among
others the order preserving assignment problem and
the stable marriage problem. In the order preserving
assignment problem the assignment must be such that
a prespecified order among the objects of one of the
node partitions is preserved. Although the linear pro-
gramming formulation of this problem is more compli-
cated than that of the assignment problem, the prob-
lem itself is easier to solve than the assignment problem
and can be solved in O(m) time where m is the num-
ber of edges in the graph; see [2,12]. In the stable mar-
riage problem each object of one partition has a ranking
(or preference) for each of the objects of the other par-
tition, and the assignment must be such that there is
no nonmatched pair of objects that its members prefer
each other to the ones they are matched against. This
problem can be solved in O(n2) time using a greedy al-
gorithm (n is the number of nodes in one partition).
See [1].

WeightedMatching Problem

The weighted matching problem can be formulated as
a 0–1 programming problem as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
X

(u;v)2E

f (u; v)xuv

s.t.
X

(u;v)2E

xuv � 1 for all u 2 V ;

xuv 2 f0; 1g for all (u; v) 2 E:

Unlike the case of the assignment problem, relaxing the
integrality constraints yields, in general, a fractional so-
lution.

Maximum Cardinality Matching Problem

J. Edmonds showed in [5] that one more set of in-
equalities—the odd-set constraints—is needed in order
to get a linear programming formulation of the match-
ing problem. The odd-set or blossom inequalities are

X
(u;v)2E(U)

xuv �
�
jUj
2



; 8odd U � V ; jUj � 3;

where E(U) is the set of all edges in E with both end
nodes in U. An odd set is a set of odd cardinality. See
also [11].

Solving the matching problem on nonbipartite
graphs is considerably more difficult than on bipar-
tite ones. This is so because the path augmenting al-
gorithms used in the case of bipartite matchings, may
fail when a structure called blossom is encountered. Ed-
monds provided anO(n4) algorithm that would find an
integer solution to the linear programming relaxation
of the formulation (including the odd-set constraints)
for any objective function, proving this way the com-
pleteness of the formulation. Several implementations
that improved the performance of the algorithm have
been proposed (see [1,10], among others) as well as data
structures for the efficient implementation of such algo-
rithms (see [3]). M. Grötschel and O. Holland [6] gave
a cutting plane algorithm for the weighted matching
problem, where they used an efficient separation algo-
rithm to identify violated blossom inequalities, based on
the algorithm of M.W. Padberg and M.R. Rao [14] for
the b-matching problem.

The b-matching problem is an important general-
ization of the matching problem. In the b-matching
problem each node v 2 V is met by no more than
bv edges; thus, in this context, the previous defini-
tion of matching corresponds to an 1-matching. A per-
fect b-matching is one in which each node v 2 V is
met by exactly bv edges. If it is permitted to chose an
edge more than one times then the problem becomes
a general integer program instead of a 0–1 program.
The b-matching problem can be reduced to 1-match-
ing problem on an appropriately constructed graph.
Although this procedure is not polynomial in gen-
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eral—and thus, Edmonds’ algorithm can not be read-
ily applied—the b-matching problem is polynomially
solvable; see [14] and [7]. A linear inequality descrip-
tion for the integer b-matching problem is given in [15].
See also [11]. The perfect 0–1 2-matching problem is
a relaxation of the traveling salesman problem (TSP).
Solving the 0–1 2-matching problem yields a heuris-
tic solution to the TSP which is an NP-hard problem;
see [13].

See also

� Assignment Methods in Clustering
� Bi-Objective Assignment Problem
� Communication Network Assignment Problem
� Frequency Assignment Problem
�Maximum Partition Matching
� Quadratic Assignment Problem
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The use of assignment methods in the formulation of
various optimization problems encountered in cluster-
ing and classification, can be introduced through the
well-known quadratic assignment (QA) model (see [5]
for a comprehensive discussion of most of the topics
presented in this entry). In its most basic form the QA
optimization task can be stated using two n × n matri-
ces, say P = { pij}, and Q = { qij}, and the identification
of a one-to-one function (or a permutation), �(�), on
the first n integers, to optimize (either by minimizing
or maximizing) the cross-product index

� (�) D
X
i; j

p�(i)�( j)qi j: (1)

Typically, the main diagonal entries in P andQ are con-
sidered irrelevant and can be set equal to zero. For ar-
bitrary matrices P andQ, the cross product index in (1)
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may be rewritten as

X
i; j

�
p�(i)�( j) C p�( j)�(i)

2

��
qi j C q ji

2

�

C
X
i; j

�
p�(i)�( j) � p�( j)�(i)

2

��qi j � q ji

2

�
;

indicating that the optimization of (1) jointly involves
the symmetric ([P + P0]/2 versus [Q + Q0]/2) and skew-
symmetric ([P � P0]/2 versus [Q � Q0]/2) components
of both P and Q. Because of this separation of P and
Q into symmetric and skew-symmetric components, it
is possible in the context of the clustering/classification
tasks to be discussed below, to assume that both P and
Q are symmetric or that both are skew-symmetric.

In applications to clustering, the matrix P usu-
ally contains numerical proximity information between
distinct pairs of the n objects from some given set S =
{ O1, . . . , On} that is of substantive interest. If P is sym-
metric, pij ( = pji) denotes the degree to which objects
Oi and Oj are similar (and keyed as what is referred to
as a dissimilarity [or as a similarity] measure if smaller
[or larger] values reflect greater object similarity). If P
is skew-symmetric, pij ( = � pji) is an index of domi-
nance (or flow) between objectsOi and Oj, with the sign
reflecting the directionality of dominance and the abso-
lute value indicating the degree. The (target) matrix Q,
as developed in detail in the next section, will typically
be fixed, with the specific pattern of entries character-
izing the type of structure to be identified for the set S,
e. g., a single object cluster, a partition, or a partition hi-
erarchy. An optimal permutation, say, ��(�), based on
the cross-product index in (1) for a specific target ma-
trixQ will identify the (salient) combinatorial structure
sought.

TheQA optimization task as formulated through (1)
has an enormous literature that will not be reviewed
here (for an up-to-date and comprehensive source on
QA, see [11]). For current purposes, one might con-
sider the optimization of (1) through a simple object
interchange heuristic that would begin with some per-
mutation (possibly chosen at random), and then im-
plement local interchanges until no improvement in
the index can be made. By repeatedly initializing such
a process randomly, a distribution over a set of local
optima can be achieved. At least within the context
of clustering/classification, such a distribution may be

highly relevant diagnostically for explaining whatever
structure is inherent in the data matrix P, and possibly
of even greater interest than the identification of just
a single optimal permutation. In a related framework,
there are considerable applications for the QAmodel in
a confirmatory context where the distribution of � (�)
is constructed over all n! possible permutations consid-
ered equally-likely, and the index value associated with
some identified permutation is compared to this distri-
bution. Most nonparametric statistical methods popular
in the literature can be rephrased through the device of
defining the matrices P andQ appropriately (see [5] for
a comprehensive development of these special cases as
well as approximation methods based on closed-form
expressions for the first three moments of � (�)). A few
of these applications will be briefly noted below.

Weighting Schemes
for the Fixed (Target) Matrix Q

Single Cluster Statistics

To identify a single salient cluster of fixed size K (that
can be varied by the user), consider Q to have the par-
titioned form

Q D
�
Q11 Q12

Q21 Q22

�
;

where within each submatrix of the size indicated, the
(off-diagonal) entries are constant:

Q11 D

0
B@

0 � � � q11
:::

: : :
:::

q11 � � � 0

1
CA

K�K

Q12 D

0
BB@

:::

� � � q12 � � �
:::

1
CCA

K�(n�K)

Q21 D

0
BB@

:::

� � � q21 � � �
:::

1
CCA

(n�K)�K

Q22 D

0
B@
0 � � � 0
:::

: : :
:::

0 � � � 0

1
CA

(n�K)�(n�K)

Depending on how the values for q11, q12, and q21 are
defined, different indices can be generated that measure
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the salience of the subset constructed by any permuta-
tion �(�), i. e., for the identified cluster S� � {O�(1), . . . ,
O�(K)}.

For symmetric P:
A) letting

q11 D
1

K(K � 1)
; q12 D q21 D 0;

the index � (�) is the average proximity within the
subset S� and defines a measure of cluster ‘compact-
ness’;

B) letting

q11 D 0; q12 D q21 D
1

2K(n � K)
;

� (�) is the average proximity between the subset S�
and its complement, and defines a measure of clus-
ter ‘isolation’ for either S� or S � S�; alternatively, it
can be considered ameasure of ‘separation’ between
S� or S � S�;

C) by contrasting A) and B) as

q11 D
1

K(K � 1)
;

q12 D q21 D �
1

2K(n � k)
;

� (�) characterizes the salience of the subset S� by
a trade-off between compactness and isolation. The
optimization of � (�) based on these latter weights
identifies a cluster that would be both relatively
compact and isolated, whereas the emphasis in A)
and B) are on clusters that may be either compact
or isolated but not necessarily both.
For skew-symmetric P:

D) letting

q11 D 0; q12 D
1

2K(n � K)
; q21 D �q12;

the index � (�) is the average dominance (or flow)
from the subset S� to its complement, minus the av-
erage dominance (or flow) from the complement to
the subset. Thus, its optimization (e. g., maximiza-
tion) identifies a subset of Swhose members tend to
dominate those in its complement (or where aggre-
gate outflow exceeds aggregate inflow).

In a confirmatory comparison context, the single-clus-
ter statistic � (�) can be used to generate a number of

nonparametric test statistics for comparing the differ-
ence between two independent groups. For example,
suppose observations are available on n objects, x1, . . . ,
xn, where the first K belong to group I and the last n�K
to group II. If the (now asymmetric) proximity matrix is
defined as P = { pij}, where pij = 1 if xj < xi and = 0 if xj �
xi then the weighting scheme in B) gives (a simple linear
transform of) the well-known Mann–Whitney statis-
tic for comparing two-independent groups, i. e., if two
observations are drawn at random from groups I and
II, then � (�o), for �o the identity permutation, is the
probability that the group I observation is the larger.
The distribution of � (�) over all n! permutations gen-
erates the null distribution against which the observed
index � (�o) can be compared. Because of the struc-
ture of Q, this null distribution is based on all n!/(K!(n
� K)!) distinct subsets considered equally-likely to be
formed from the collection of size n. (See [3, Chap. 7],
for a more complete discussion of the two-independent
sample problem in this type of nonparametric frame-
work.)

Although single-cluster statistics that depend on the
comparison of mean proximities may be the most ob-
vious to consider, a number of possible alternatives can
be constructed by varying the definition for the weight
matrices in Q. For example, for symmetric P, if Q11 is
(re)defined to have the form
0
BBBBB@

0 1 0 � � � 0 0 0
1 0 1 � � � 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 � � � 1 0 1
0 0 0 � � � 0 1 0

1
CCCCCA
;

with entries of all ones immediately above and below
the main diagonal, and q12 = q21 = 0, the salience of S�
is now based on (twice) the sum of adjacent proximities
along a path of length K considered in the object order
O�(1) $ � � � $ O�(K). Or, if Q11 is (re)defined to have
the form
0
BBB@

0 1 1 � � � 1 1
1 0 0 � � � 0 0
:::

:::
:::

: : :
:::

:::

1 0 0 � � � 0 0

1
CCCA ;

and q12 = q21 = 0, the salience of S� is now based on
(twice) the sum of proximities between O�(1) and the
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remaining objects O�(2), . . . , O�(K) (this is called a ‘star’
cluster of size K with object O�(1) as its center; see [10,
Sect. 4.5.2] for a further discussion of clustering based
on stars).

Partition Statistics

To identify a salient partition of S into M subsets, S1,
. . . , SM , of fixed sizes n1, . . . , nM , respectively, consider
Q to have the partitioned form

Q D

0
B@
Q11 Q12 � � � Q1M
:::

:::
: : :

:::

QM1 QM2 � � � QMM

1
CA ;

where the (off-diagonal) entries in each submatrixQmm0

of size nm × nm0 , are all equal to a constant qmm0 , 1�m,
m0 � M. Again, depending on how these latter values
are defined, a variety of different indices can be gener-
ated that now measure the salience of the partition gen-
erated by a permutation �(�). For a symmetric P, three
of the most popular alternatives are noted below that
differ only in how the weights qmm, 1�m�M, are de-
fined, and which all assume qmm0 = 0 form 6Dm0:
a) qmm = 1: each subset in a partition contributes in di-

rect proportion to the number of object pairs it con-
tains;

b) qmm = 1/(nm(nm � 1)): each subset contributes
equally irrespective of the number of objects (or ob-
ject pairs) it contains;

c) qmm0 = 1/nm: each subset contributes in direct pro-
portion to the number of objects it contains.

In a confirmatory comparison context, the partition
statistic � (�) with weighting option c) can be used
to construct a test-statistic equivalent to the common
F-ratio in a one-way analysis of variance for assess-
ing whether mean differences exist over K independent
groups. Explicitly, suppose observations are available
on n objects, x1, . . . , xn, with the first n1 belonging to
group 1, the second n2 belonging to group 2, and so on.
If proximity is defined as P = {pij}, where pij = (xi � xj)2,
then the weights in c) produce � (�o), for �o the iden-
tity permutation, equal to twice the within group sum
of squares. The distribution of � (�) over all n! permu-
tations generates a distribution over all n!/(n1! . . .nM !)
equally-likely ways the n observations can be grouped
into subsets of sizes n1, . . . , nM , and against which the

observed index � (�o) can be compared. (See [9] for
a more thorough discussion of thus evaluating a priori
classifications.)

For a skew-symmetric P, the partitioning of Swould
now be into M ordered subsets, S1 � . . . � SM of fixed
sizes n1, . . . , nM , with the most natural weights being
qmm = 0 for 1�m�M, qmm0 = + 1 ifm <m0, and =� 1 if
m >m0. Maximizing � (�) is this case would be a search
for an ordered partition in which objects in Sm tend to
dominate those in Sm0 ifm <m0, i. e., there are generally
positive dominance values from a lower-placed subset
to one that is higher.

There are several special cases of interest for the par-
tition statistic:
i) for symmetric P and if for convenience it is assumed

n is even and nm = 2 for 1�m�M (so, n = 2M), the
weights in a) make � (�) the index for amatching of
the objects in S induced by �(�);

ii) if the proximity matrix P is itself constructed from
a partition of S, then the index � (�) can be inter-
preted as a measure of association for a contingency
table defined by the n objects cross-classified using
�(�) and the two partitions underlying P and Q.

Depending on the choice of weights for Q, and how
proximity is defined in P based on its underlying parti-
tion, a number of well-known indices of association can
be obtained: Pearson’s chi-square statistic, Goodman–
Kruskal’s �b, and Rand’s index. For a more complete
discussion of these special cases, including the neces-
sary definitions for P, consult [5].

Partition Hierarchy Statistics

One straightforward strategy for extending QA to iden-
tify salient partition hierarchies having a specific form,
begins with a given collection of T partitions of S, P1,
. . . , PT , that are hierarchically related. Here, P1 con-
tains all n objects in n separate classes, PT contains all
n objects in one class, and Pt + 1 is formed from Pt for
t � 1 by uniting one or more of the classes in the latter.
If Q = {qij} is defined by qij = min{t� 1: Oi, Oj 2 com-
mon object class in Pt}, then these latter entries satisfy
the defining property of being an ultrametric, i. e., qij �
max{qik, qkj} for allOi,Oj,Ok 2 S (see [2,10, Chap. 7] for
an extensive discussion of ultrametrics). For symmetric
P, the optimization of � (�) in (1) would be the search
for a salient partition hierarchy having the generic form
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defined by P1, . . . , PT , and which optimizes the cross-
product between the proximity information in P and
the levels at which the object pairs are first placed into
common classes in the hierarchy. It might be noted that
both single clusters and partitions could be considered
special cases of a partition hierarchy when T = 3 and
the only nontrivial partition is P2, i. e., to obtain a sin-
gle cluster, P2 can be defined by one subset of size K
and n � K subsets each of size one; to obtain a single
partition, P2 merely has to be that partition with the
desired number of classes and class sizes.

Alternative Assignment Indices

There are a variety of alternatives for replacing the
cross-product in the QA index in (1) by a different func-
tion between the entries in P andQ. Depending on how
the proximity information in P and the target given by
Q are specified, one might adopt, for example, the sum
of absolute differences,

P
i, j |p�(i)�(j) � qij|, or the sum of

dichotomous indicators for equality,
P

i, j g(p�(i)�(j), qij),
where g(x, y) = 1 if x = y and 0 otherwise, or even use
‘bottleneck’ measures such as mini, j p�(i)�(j)qij or maxi, j
p�(i)�(j)qij. Somewhat more well-developed in the lit-
erature than these possibilities (e. g., see [5, Chap. 5])
are generalizations of (1) that would maintain the ba-
sic cross-product structure but which would rely on
higher-order functions of the entries in P and Q before
the cross-products were taken. Again, variations would
be possible, but two of the more obvious forms of ex-
tension are given below that depend solely on the order
of the entries within P and within Q:
� Three-argument functions: Given P and Q, and let-

ting sign(x) = +1 if x > 0, = 0 if x = 0, and = � 1 if
x < 0, define

A(�) D
X
i¤ j
i¤k

sign(p�(i)�( j)�p�(i)�(k)) sign(qi j�qik):

The indexA(�) can be interpreted as the difference
between two counts, say A+(�) and A�(�), where
A+(�) (respectively, A�(�)) is the number of con-
sistencies (inconsistencies) in the ordering of pairs
of off-diagonal entries in {p�(i)�(j)} and their coun-
terparts in {qij}, where the former pairs share a com-
mon (row) object O�(i).

� Four-argument functions: Define

B(�) D
X
i¤ j
k¤l

sign(p�(i)�( j)�p�(k)�(l )) sign(qi j�qkl ):

Again, the index B(�) can be viewed as the differ-
ence between B+(�) and B�(�), where B+(�) (re-
spectively, B�(�)) is the number of consistencies
(inconsistencies) in the ordering of pairs of off-
diagonal entries in {p�(i)�(j)} and their counterparts
in {qij}. In contrast to A(�), however, no com-
mon object need be present in the pairs of off-
diagonal entries. The distinction betweenA(�) and
B(�) in measuring the correspondence between P
and Q rests on whether the proximity entries in P
are strictly comparable only within rows (i. e., to
what are called row conditional proximity data, e. g.,
see [1, p. 192]) or whether such comparisons make
sense when performed across rows.

To illustrate the interpretation ofA(�) and B(�) in the
single cluster statistic context, supposeQ has the weight
structure in A) that generated through (1) the mea-
sure of cluster compactness as the average within group
proximity in S� = {O�(1), . . . , O�(K)}. In using this spe-
cific target Q forA(�), the index is, in words, twice the
difference between the number of instances in which
a proximity for two objects both within S� is greater
than the proximity from one of these two objects to an-
other in S � S�, and the number of instances in which
it is less. Depending on whether proximity is keyed as
a similarity or a dissimilarity, a compact subset would
be one for whichA(�) is maximized or minimized, re-
spectively. If instead, the weight structure for Q given
in B) that defined the measure of cluster isolation, the
indexA(�) would now be twice the difference between
the number of instances in which a proximity between
two objects that span S� and S � S� is greater than the
proximity between two objects within S� or within S �
S� (where the latter have one member in common with
the two that span S� and S� S�), and the number of in-
stances in which it is less. Now, an isolated subset would
be identified by maximizing or minimizing A(�) de-
pending on the keying of proximity as a dissimilarity or
similarity, respectively. For B(�), and the weight struc-
ture in A), the index is, in words, twice the difference
between the number of instances in which a proximity
for two objects both within S� is greater than the prox-
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imity between any two objects that span S� and S � S�
and the number of instances in which it is less. The in-
dexB(�) for the weight matrix in B) would be twice the
difference between the number of instances in which
a proximity between two objects that span S� and S �
S� is greater than the proximity between any two ob-
jects within S� or within S � S�.

In the partition context, a similar interpretation
to the use of the single subset compactness measure
would be present forA(�) and B(�) and for all of the
three weighting options mentioned, but now all aggre-
gated over the M subsets of the partition. In the parti-
tion hierarchy framework, the correspondence between
{p�(i)�(j)} and Q is measured by the degree of consis-
tency in the ordering of the object pairs by proxim-
ity and the ordering of the object pairs by the levels in
which the objects are first placed into a common class.

In addition to replacing the QA index in (1) by the
higher order functions adopted inA(�) andB(�) to ef-
fect a reliance only on the order properties of the entries
within P andQ, there are several other uses in a cluster-
ing/classification context for the definition of three- or
four-argument functions. One alternative will be men-
tioned here that deals with what can be called the gen-
eralized single cluster statistic. Explicitly, suppose three-
and four-argument function of the entries in P are de-
noted by u(�, �, �) and r(�, �, �, �), respectively, and those
in Q by v(�, �, �) and s(�, �, �, �), and consider the general
cross-product forms of

C(�) D
X
i; j;k

u(�(i); �( j); �(k))v(i; j; k);

D(�) D
X
i; j;k;l

r(�(i); �( j); �(k); �(l))s(i; j; k; l):

It will be assumed here that both v(�, �, �) and s(�, �, �, �)
are merely indicator functions for a subset of size K, so
v(i, j, k) = 1 if 1 � i, j, k � K, and = 0 otherwise; s(i, j,
k, l) = 1 if 1 � i, j, k, l � K, and = 0 otherwise. Thus,
the optimization of C(�) or D(�) can be viewed as the
search for a subset of size K with extreme values for the
indices

P
1� i, j, k� K u(�(i), �(j), �(k)) or

P
1� i, j, k, l� K

r(�(i), �(j), �(k), �(l)), and depending on how the func-
tions u(�, �, �) and r(�, �, �, �) are defined, a subset that is
very salient with respect to the property that character-
izes the latter.

A number of properties that may be desirable to
optimize in a subset of size K have been considered

(see [4] for a more complete discussion), of which the
two listed below are directly relevant to the cluster-
ing/classification context:
i) a proximity matrix (with a dissimilarity keying) rep-

resents a perfect partition hierarchy if it satisfies
the property of being an ultrametric: for all 1 � i,
j, k � n, pij � max{pik , pkj}, or equivalently, the
two largest values among pij, pik, and pkj are equal.
Thus, if u(�(i), �(j), �(k)) equals the absolute differ-
ence between the two largest values among p�(i)�(j),
p�(i)�(k), and p�(j)�(k) , the minimization of C(�) seeks
a subset of size K that is as close to being an ultra-
metric as possible (as measured by C(�));

ii) a proximity matrix (again, with a dissimilarity key-
ing) represents a perfect additive treewhere proxim-
ities can be reconstructed by minimum path lengths
in a tree if they satisfy the four-point property: for
all 1� i, j, k, l� n, pij + pkl �max{pik + pjl, pil + pjk},
or equivalently, the largest two sums among pij + pkl,
pik + pjl, and pil + pjk are equal. Thus, if r(�(i), �(j),
�(k), �(l)) equals the absolute difference between the
two largest values among p�(i)�(j) + p�(k)�(l) , p�(i)�(k)
+ p�(j)�(l) , and p�(i)�(l) + p�(j)�(k), the minimization of
D(�) seeks a subset of size K that is as close to satis-
fying the four-point condition as possible (as mea-
sured byD(�)).

Modifications of the Target Matrix Q

The optimization of an assignment index such as (1) as-
sumes that the target matrix Q is fixed and given a pri-
ori. Based on this invariance, maximizing (1), for exam-
ple, could be equivalently stated as the minimization of

X
i; j

(p�(i)�( j) � qi j)2: (2)

There has been a substantial recent literature (e. g.,
[6,7,8]) where not only is an optimal permutation, say
��(�), sought that would minimize (2), but in which
a specific target matrix Q is also constructed based on
a collection of (linear inequality) constraints that would
characterize some type of classificatory structure fitted
to {p�(i)�(j)}. The constraints imposed onQ are possibly
based on the (sought for) permutation ��(�).

In minimizing (2) but allowing the target matrix Q
to itself be estimated, a typical iterative process would
proceed as follows: on the basis of an initial target ma-
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trix Q(0), find a permutation, say �(1)(�), to maximize
the cross-product in (1). Using �(1)(�), fit a target matrix
Q(1) to { p�(1)(i)�(1)( j)} minimizing (2). Continue the pro-
cess for �(t) and Q(t) for t > 1 until convergence. A vari-
ety of constraints for Q have been considered. Among
these, there are
i) a sum of matrices each having what are called anti-

Robinson forms (i. e., a matrix is anti-Robinson if
within each row and column, the entries never de-
crease moving in any direction away from the main
diagonal [6]);

ii) a sum of ultrametric matrices (characterized by the
ultrametric condition given earlier [7]);

iii) a sum of additive tree matrices (again, as character-
ized by the four-point condition given earlier [7]);

iv) unidimensional scales (i. e., a matrix is a linear uni-
dimensional scale if its entries can be given by { |xj
� xi| + c}, where the estimated coordinates are x1 �
� � � � xn and c is an estimated constant [8]); and

v) circular unidimensional scales (i. e., a matrix is so
characterized if it can be represented as {min{|xj �
xi|, x0 � |xj � xi|} + c}, where x1 � � � � � xn, x0 is
the circumference of the circular structure, and c is
an estimated constant [8]).

See also

� Assignment and Matching
� Bi-Objective Assignment Problem
� Communication Network Assignment Problem
� Frequency Assignment Problem
�Maximum Partition Matching
� Quadratic Assignment Problem

References

1. Carroll JD, Arabie P (1998) Multidimensional scaling. In:
BirnbaumMH (ed) Measurement, judgement, and decision
making. Handbook Perception and Cognition. Acad Press,
New York, pp 179–250

2. De Soete G, Carroll JD (1996) Tree and other network mod-
els for representing proximity data. In: Arabie P, Hubert LJ,
De Soete G (eds) Clustering and classification. World Sci,
Singapore, pp 157–198

3. Gibbons JD (1971) Nonparametric statistical inference.
McGraw-Hill, New York

4. Hubert LJ (1980) Analyzing proximity matrices: The as-
sessment of internal variation in combinatorial structure.
J Math Psych 21:247–264

5. Hubert LJ (1987) Assignment methods in combinatorial
data analysis. M. Dekker, New York

6. Hubert LJ, Arabie P (1994) The analysis of proximity ma-
trices through sums of matrices having (anti-)Robinson
forms. British J Math Statist Psych 47:1–40

7. Hubert LJ, Arabie P (1995) Iterative projection strategies
for the least-squares fitting of tree structures to proximity
data. British J Math Statist Psych 48:281–317

8. Hubert LJ, Arabie P, Meulman J (1997) Linear and circular
unidimensional scaling for symmetric proximity matrices.
British J Math Statist Psych 50:253–284

9. Mielke PW, Berry KJ, Johnson ES (1976) Multi-response
permutation procedures for a priori classifications. Comm
Statist A5:1409–1424

10. Mirkin B (1996) Mathematical classification and clustering.
Kluwer, Dordrecht

11. Pardalos PM, Wolkowicz H (eds) (1994) Quadratic assign-
ment and related problems. DIMACS, Amer. Math. Soc.,
Providence, RI

Asymptotic Properties
of RandomMultidimensional
Assignment Problem

PAVLO A. KROKHMAL

Department of Mechanical and Industrial Engineering,
The University of Iowa, Iowa City, USA

MSC2000: 90C27, 34E05

Article Outline

Keywords and Phrases
Introduction
Expected Optimal Value of Random MAP
Expected Number of Local Minima in RandomMAP

Local Minima and p-exchange Neighborhoods in MAP
Expected Number of Local Minima in MAP with n= 2
Expected Number of Local Minima in a RandomMAP

with Normally Distributed Costs
Conclusions
References

Keywords and Phrases

Multidimensional assignment problem; Random
assignment problem; Expected optimal value;
Asymptotical analysis; Convergence bounds



Asymptotic Properties of RandomMultidimensional Assignment Problem A 115

Introduction

The Multidimensional Assignment Problem (MAP) is
a higher dimensional version of the two-dimensional,
or Linear Assignment Problem (LAP) [24]. If a classical
textbook formulation of the Linear Assignment Prob-
lem is to find an optimal assignment of “N jobs to M
workers”, then, for example, the 3-dimensional Assign-
ment Problem can be interpreted as finding an optimal
assignment of “N jobs to M workers in K time slots”,
etc. In general, the objective of the MAP is to find tu-
ples of elements from given sets, such that the total cost
of the tuples is minimized. The MAP was first intro-
duced by Pierskalla [26], and since then has found nu-
merous applications in the areas of data association [4],
image recognition [31], multisensor multitarget track-
ing [18,27], tracking of elementary particles [28], etc.
For a discussion of the MAP and its applications see,
for example, [7] and references therein.

Without loss of generality, a d-dimensional axial
MAP can be written in a form where each dimension
has the same number n of elements, i. e.,

min
x2f0;1gnd

� X
ik2f1;:::;ng
k2f1;:::;dg

ci1���id xi1���id

ˇ̌
ˇ̌ X

ik2f1;:::;ng
k2f1;:::;dgn j

xi1���id D 1;

i j D 1; : : : ; n; j D 1; : : : ; d
	
:

(1)

An instance of the MAP with different numbers of
elements in each dimension, n1 � n2 � � � � � nd , is re-
ducible to form (1) by introduction of dummy vari-
ables.

Problem (1) admits the following geometric inter-
pretation: given a d-dimensional cubic matrix, find
such a permutation of its rows and columns that the
sum of the diagonal elements is minimized (which ex-
plains the term “axial”). This rendition leads to an alter-
native formulation of the MAP (1) in terms of permu-
tations 
1; : : : ; 
d�1 of numbers 1 to n, i. e., one-to-one
mappings 
i : f1; : : : ; ng 7! f1; : : : ; ng,

min
�1;:::;�d�12˘ n

nX
iD1

ci;�1(i);:::;�d�1(i) ;

where ˘ n is the set of all permutations of the set
f1; : : : ; ng. A feasible solution to the MAP (1) can be

conveniently described by specifying its cost,

z D ci (1)1 ���i
(1)
d
C ci (2)1 ���i

(2)
d
C � � � C ci (n)1 ���i

(n)
d
; (2)

where
�
i(1)j ; i

(2)
j ; : : : ; i

(n)
j
�
is a permutation of the set

f1; 2; : : : ; ng for every j D 1; : : : ; d. In contrast to the
LAP that represents a d D 2 special case of the MAP (1)
and is polynomially solvable [7], the MAP with d � 3 is
generally NP-hard, a fact that follows from reduction of
the 3-dimensional matching problem (3DM) [8].

Despite its inherent difficulty, several exact and
heuristic algorithms [1,6,11,25] have been proposed to
this problem. Most of these algorithms rely, at least
partly, on repeated local searches in neighborhoods of
feasible solutions, which brings about the question of
how the number of local minima in aMAP impact these
solution algorithms. Intuitively, if the number of lo-
cal minima is small then one may expect better perfor-
mance from meta-heuristic algorithms that rely on lo-
cal neighborhood searches. A solution landscape is con-
sidered to be rugged if the number of local minima is
exponential with respect to the dimensions of the prob-
lem [21]. Evidence in [5] showed that ruggedness of the
solution landscape has a direct impact on the effective-
ness of the simulated annealing heuristic in solving at
least one other hard problem, the quadratic assignment
problem. Thus, one of the issues that we address be-
low is estimation of the expected number E[M] of local
minima in randomMAPs with respect to different local
neighborhoods.

Another problem that we discuss is the behavior of
the expected optimal value Z�d;n of random large-scale
MAPs, whose assignment costs are assumed to be inde-
pendent identically distributed (iid) random variables
from a given continuous distribution.

During the last two decades, expected optimal val-
ues of random assignment problems have been stud-
ied intensively in the context of random LAP. Per-
haps, the most widely known result in this area
is the conjecture by Mézard and Parisi [17] that
the expected optimal value E[Ln] :D Z�2; n of a LAP
of size n with iid uniform or exponential with
mean 1 cost coefficients satisfies limn!1 E[Ln] D �2

6 .
In fact, this conjecture was preceded by an upper
bound on the expected optimal value of the LAP
with uniform (0,1) costs: lim supn!1 Ln � 3 due to
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Walkup [32], which was soon improved by Karp [12]:
lim supn!1 Ln � 2. A lower bound on the limit-
ing value of Ln was first provided by Lazarus [14]:
lim infn!1 Ln � 1C e�1 	 1:37, and then has been
improved to 1.44 by Goemans and Kodialam [9] and
1.51 by Olin [20]. Experimental evidence in sup-
port of the Mézard-Parisi conjecture was provided by
Pardalos and Ramakrishnan [22]. Recently, Aldous [2]
has shown that indeed limn!1 E[Ln] D �2

6 , thereby
proving the conjecture. Another conjecture due to
Parisi [23] stating that the expected optimal value of
a random LAP of finite size n with exponentially dis-
tributed iid costs is equal to E[Ln] D Z�2;n D

Pn
iD1 i�2

has been proven independently in [16] and [19].
Our work contributes to the existing literature on

random assignment problems by establishing the limit-
ing value and asymptotic behavior of the expected op-
timal cost Z�d;n of random MAP with iid cost coeffi-
cients for a broad class of continuous distributions. The
presented approach is constructive in the sense that it
allows for deriving converging asymptotical lower and
upper bounds for Z�d;n , as well as for estimating the rate
of convergence for Z�d;n in special cases.

Expected Optimal Value of RandomMAP

Our approach to determining the asymptotic behavior
of the expected optimal cost Z�d;n of an MAP (1) with
random cost coefficients involves analysis of the so-
called index tree, a graph structure that represents the
set of feasible solutions of the MAP. First introduced by
Pierskalla [26], the index tree graph G D (V ; E) of the
MAP (1) has a set of vertices V which is partitioned into
n levels1 and a distinct root node. A node at level j of the
graph represents an assignment (i1; : : : ; id ) with i1 D j
and cost c ji2���id , whereby each level contains � D nd�1

nodes. The set E of arcs in the index tree graph is con-
structed in such a way that any feasible solution of the
MAP (1) can be represented as a path connecting the
root node to a leaf node at level n (such a path is called
a feasible path); evidently, the index tree contains n!d�1

feasible paths, by the number of feasible solutions of the
MAP (1).

The index tree representation of MAP aids in con-
struction of lower and upper bounds for the expected

1In the general case of MAP with ni elements in dimension
i D 1; : : : ; d , the index graph would contain n1 levels.

optimal cost of MAP (1) with random iid costs via the
following lemmata [10].

Lemma 1. Given the index tree graph G D (V ; E) of
d � 3, n � 3 MAP whose assignment costs are iid ran-
dom variables from an absolutely continuous distribu-
tion, construct set A � V by randomly selecting ˛ dif-
ferent nodes from each level of the index tree. Then,A is
expected to contain a feasible solution of the MAP if

˛ D

�
nd�1

n!
d�1
n

�
: (3)

Lemma 2. For a d � 3, n � 3 MAP whose cost coeffi-
cients are iid random variables from an absolutely con-
tinuous distribution F with existing first moment, define

Z�d;n :D nEF
�
X(1j�)

�
and Z

�

d;n :D nEF
�
X(˛j�)

�
;

(4)

where X(ij�) is the ith order statistic of � D nd�1 iid ran-
dom variables with distribution F, and parameter ˛ is
determined as in (3). Then, Z�d;n and Z�d;n constitute
lower and upper bounds for the expected optimal cost
Z�d;n of the MAP, respectively: Z�d;n � Z�d;n � Z

�

d;n .

Proofs of the lemmas are based on the probabilistic
method [3] and can be found in [10]. In particular, the
proof of Lemma 2 considers a set Amin that is con-
structed by selecting from each level of the index tree
˛ nodes with the smallest costs among the � nodes at
that level. The continuity of distribution F ensures that
assignment costs in the MAP (1) are all different almost
surely, hence locations of the nodes that comprise the
setAmin are random with respect to the array of nodes
in each level of G(V ; E). In the remainder of the paper,
we always refer to ˛ and � as defined above.

By definition, the parameter � D nd�1 approaches
infinity whenever n or d does; this allows us to denote

the corresponding cases by �
n
�!1 and �

d
�!1, re-

spectively. If certain statement holds for both cases of

n!1 and d !1, we indicate this by �
n;d
�!1. The

behavior of quantity ˛ (3) when n or d increases is more
contrasting. In the case n!1 it approaches a finite
limiting value,

˛ ! ˛� :D ded�1e; �
n
�!1; (5)
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while in the case of fixed n and unbounded d it increases
exponentially:

˛ � ��n ; �
d
�!1; where �n D 1�

ln n!
n ln n

; (6)

and it is important to observe that 0 < �n < 1
2 for

n � 3 [13].
The presented lemmata addresses MAPs with

d � 3; n � 3. The case d D 2 represents, as noted ear-
lier, the Linear Assignment Problem, whose asymptotic
behavior is distinctly different from that of MAPs with
d � 3. It can be shown that in the case of d D 2 Lem-
mas 1 and 2 produce only trivial bounds that are rather
inefficient in determining the asymptotic behavior of
the expected optimal value of the LAP within the pre-
sented approach. In the case n D 2 the costs of feasible
solutions to the MAP (1) have the form

z D ci (1)1 ���i
(1)
d
C ci (2)1 ���i

(2)
d
;

where i(1)j ; i
(2)
j 2 f1; 2g; i

(1)
j ¤ i(2)j ;

and consequently are iid random variables with dis-
tribution F2, which is the convolution of F with itself:
F2 D F 
 F [11]. This fact allows for computing the ex-
pected optimal value of n D 2MAP exactly, without re-
sorting to bounds (4):

Z�d;2 D EF�F
�
X(1j2!d�1)

�
: (7)

In the general case d � 3; n � 3 the main chal-
lenge is constituted by computation of the upper bound
Z
�

d;n D nEF
�
X(˛j�)

�
, where X(˛j�) is the ˛-th order

statistic among � independent F-distributed random
variables. The subsequent analysis relies on represen-
tation of Z

�

d;n in the form

Z
�

d;n D
n� (� C 1)

� (˛)� (� � ˛ C 1)

�

Z 1

0
F�1(u)u˛�1(1 � u)��˛ du ; (8)

where F�1 denotes the inverse of the c.d.f. F of the the
distribution of assignment costs in MAP (1). While it
is practically impossible to evaluate the integral in (8)
exactly in the general case, its asymptotic behavior for
large n and d can be determined for a wide range of dis-
tributions F. For instance, in the case when distribution

F has a finite left endpoint of its support set, the asymp-
totic behavior of the integral in (8) is obtained bymeans
of the following

Lemma 3. Let function h(u) have the following asymp-
totic expansion at 0C,

h(u) �
1X
sD0

asu(sC	�
)/
; u! 0C ; (9)

where �;� > 0. Then for any positive integer m one has

Z 1

0
h(u)u˛�1(1 � u)��˛ du

D

m�1X
sD0

as�s(�)C O
�
�m(�)

�
; �

n;d
�!1; (10)

where �s(�) D B
� sC	


C˛�1; ��˛C1

�
, s D 0; 1; : : : ,

provided that the integral is absolutely convergent for
� D ˛ D 1.

Above, B(x; y) is the Beta function. Using similar re-
sults for the cases when the support set of distribution
F is unbounded from below, we obtain that the limiting
behavior of the expected optimal value Z�d;n of random
MAP is determined by the location of the left endpoint
of the support of F [13].

Theorem 1. Expected Optimal Value of Random
MAP Consider a d � 3; n � 2MAP (1) with cost coef-
ficients that are iid random variables from an absolutely
continuous distribution F with existing first moment. If
the distribution F satisfies either of the following condi-
tions,
1. F�1(u) D F�1(0C)C O(uˇ ); u! 0C; ˇ > 0
2. F�1(u) � ��u�ˇ1

�
ln 1

u

�ˇ2
; u ! 0C, 0 � ˇ1 <

1; ˇ2 � 0; ˇ1 C ˇ2 > 0; � > 0
where F�1(0C) D limu!0C F�1(u), the expected opti-
mal value of the MAP satisfies

lim Z�d;n D lim nF�1(0C) ;

where both limits are taken at either n!1 or d !1.

The obtained results can be readily employed to con-
struct upper and lower asymptotical bounds for the ex-
pected optimal value of MAP when one of the param-
eters n or d is large but finite. The following statement
follows directly from Lemma 3 and Theorem 1.
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Corollary 1. Consider a d � 3; n � 3 MAP (1) with
cost coefficients that are iid random variables from an
absolutely continuous distribution with existing first mo-
ment. Let a 2 R be the left endpoint of the support set of
this distribution, a D F�1(0C), and assume that the in-
verse F�1(u) of the c.d.f. F(u) of the distribution is such
that

F�1(u) � a C
1X
sD1

asus/
; u! 0C; � > 0 : (11)

Then, for any integer m � 1, lower and upper bounds
Z�d;n ; Z

�

d;n (4) on the expected optimal cost Z�d;n of the
MAP can be asymptotically evaluated as

Z�d;n DanC
m�1X
sD1

as
n� (� C 1)�

� s


C 1

�

�
�
� C s



C 1

�

C O
 
n
� (� C 1)�

�m


C 1

�

�
�
� C m



C 1

�
!
; �

n;d
�!1 ;

(12a)

Z
�

d;n DanC
m�1X
sD1

as
n� (� C 1)�

� s


C ˛

�

� (˛)�
�
� C s



C 1

�

C O
 
n
� (� C 1)�

�m


C ˛

�

� (˛)�
�
� C m



C 1

�
!
; �

n;d
�!1 :

(12b)

It can be shown that the lower and upper bounds de-
fined by (12a, 12b) are convergent, i. e., jZ�d;n�Z

�
d;n j !

0; �
n;d
�!1; whereas the corresponding asymptotical

bounds for the case of distributions with support un-
bounded from below may be divergent in the sense that

jZ
�

d;n � Z�d;n j¹ 0 when �
n;d
�!1.

The asymptotical representations (12a, 12b) for the
bounds Z�d;n and Z

�

d;n are simplified when the inverse
F�1 of the c.d.f. of the distribution has a regular power
series expansion in the vicinity of zero. Assume, for ex-
ample, that function F�1 can be written as

F�1(u) D a1uC O(u2); u! 0+ : (13)

It is then easy to see that for n� 1 and d fixed the
expected optimal value of the MAP is asymptotically

bounded as

a1
nd�2

C O
�

1
nd�1

�
� Z�d;n

�
a1ded�1e
nd�2

C O
�

1
nd�1

�
; n!1 ; (14)

which immediately yields the rate of convergence to
zero for Z�d;n as n approaches infinity:

Corollary 2. Consider a d � 3; n � 3 MAP (1) with
cost coefficients that are iid random variables from an
absolutely continuous distribution with existing first mo-
ment. Let the inverse F�1 of the c.d.f. of the distribu-
tion satisfy (13). Then, for a fixed d and n!1 the ex-
pected optimal value Z�d;n of the MAP converges to zero
as O

�
n�(d�2)

�
.

For example, the expected optimal value of 3-dimen-
sional (d D 3) MAP with uniform U(0; 1) or exponen-
tial distributions converges to zero as O(n�1) when
n!1.

We illustrate the tightness of the developed bounds
(12a, 12b) by comparing them to the computed ex-
pected optimal values of MAPs with coefficients ci1���id
drawn from the uniform U(0; 1) distribution and ex-
ponential distribution with mean 1. It is elementary
that the inverse functions F�1(�) of the c.d.f.’s for both
these distributions are representable in form (13) with
a1 D 1.

The numerical experiments involved solving mul-
tiple instances of randomly generated MAPs with the
number of dimensions d ranging from 3 to 10, and
the number n of elements in each dimension running
from 3 to 20. The number of instances generated for
estimation of the expected optimal value of the MAP
with a given distribution of cost coefficients varied from
1000 (for smaller values of d and n) to 50 (for problems
with largest n and d).

To solve the problems to optimality, we used
a branch-and-bound algorithm that navigated through
the index tree representation of the MAP. Figures 1
and 2 display the obtained expected optimal values
of MAP with uniform and exponential iid cost coeffi-
cients when d is fixed at d D 3 or 5 and n D 3; : : : ; 20,
and when n D 3 or 5 and d runs from 3 to 10. This
“asymmetry” in reporting of the results is explained by
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Asymptotic Properties of RandomMultidimensional Assignment Problem, Figure 1
Expected optimal value Z�

d;n, lower and upper bounds Z�

d;n; Z
�

d;n of an MAP with fixed d D 3 (left) and d D 5 (right) for uni-
form U(0; 1) and exponential (1) distributions

Asymptotic Properties of RandomMultidimensional Assignment Problem, Figure 2
Expectedoptimal valueZ�

d;n , lower andupperboundsZ�

d;n; Z
�

d;n of anMAPwith fixedn D 3 (left) andn D 5 (right) for uniform
U(0; 1) and exponential(1) distributions

the fact that the implemented branch-and-bound algo-
rithm based on index tree is more efficient in solving
“shallow” MAPs, i. e., instances that have larger n and
smaller d. The solution times varied from several sec-
onds to 20 hours on a 2GHz PC.

The conducted numerical experiments suggest that
the constructed lower and upper bounds for the ex-
pected optimal cost of random MAPs are quite tight,
with the upper bound Z

�

d;n being tighter for the case of
fixed n and large d (see Figs. 1, 2).

Expected Number of Local Minima
in RandomMAP

Local Minima and p-exchange Neighborhoods
in MAP

As it has been mentioned in the Introduction, we
consider local minima of a MAP with respect to
a local neighborhood, in the sense of [15]. For
any p D 2; : : : ; n, we define the p-exchange lo-
cal neighborhood Np(i) of the ith feasible solu-



120 A Asymptotic Properties of RandomMultidimensional Assignment Problem

tion fi(1)1 � � � i
(1)
d ; : : : ; i

(n)
1 � � � i

(n)
d g of the MAP (1) as

the set of solutions obtained from i by permut-
ing p or less elements in one of the dimensions
1; : : : ; d. More formally, Np(i) is the set of n-tuples
f j(1)1 � � � j

(1)
d ; : : : ; j

(n)
1 � � � j

(n)
d g such that f j(1)k ; : : : ; j

(n)
k g is

a permutation of f1; : : : ; ng for all 1 � k � d, and, fur-
thermore, there exists only one k0 2 f1; : : : ; dg such
that

2 �
nX

rD1

ı̄i (r)k0
j(r)k0
� p; while

nX
rD1

ı̄i (r)k j(r)k
D 0

for all k 2 f1; : : : ; dgnk0 ;
(15)

where ı̄i j is the negation of the Kroneker delta, ı̄i j D
1 � ıi j. As an example, consider the following feasible
solution to a d D 3, n D 3 MAP: f111; 222; 333g. Then,
one of its 2-exchange neighbors is f111; 322; 233g, an-
other one is {131, 222, 313}; a 3-exchange neighbor
is given by {311, 122, 233}, etc. Evidently, one has
Np �NpC1 for p D 2; : : : ; n � 1.

Proposition 1. For any p D 2; : : : ; n, the size jNpj of
the p-exchange local neighborhood of a feasible solution
of a MAP (1) is equal to

jNpj D d
pX

kD2

D(k)

 
n
k

!
;

where D(k) D
kX

jD0

(�1)k� j

 
k
j

!
j! : (16)

The quantity D(k) in (16) is known as the number of
derangements of a k-element set [29], i. e., the num-
ber of permutations f1; 2; : : : ; kg 7! fi(1); i(2); : : : ; i(k)g
such that i(1) ¤ 1; : : : ; i(k) ¤ k, and can be easily calcu-
lated by means of the recurrent relation (see [29])

D(k) D kD(k � 1)C (�1)k; D(1) D 0 ;

so that, for example, D(2) D 1, D(3) D 2, D(4) D 9,
and so on. Then, according to Proposition 1, the size of
a 2-exchange neighborhood is jN2j D d

�n
2

�
, the size of

a 3-exchange neighborhood is jN3j D d
��n

2

�
C 2

�n
3

��
,

etc.
Note also that size of the p-exchange neighborhood

is linear in the number of dimensions d. Depending on

p, jNpj is either polynomial or exponential in the num-
ber of elements n per dimension, as follows from the
representation

D(n) D n!
�
1 � 1

1! C
1
2! �

1
3! C � � � C

(�1)n
n!

�
	

n!
e
;

n � 1 :

The definition of a local minimum with respect
to the p-exchange neighborhood is then straight-
forward. The kth feasible solution with cost zk is
a p-exchange local minimum iff zk � z j for all
j 2Np(k). Continuing the example above, the solution
f111; 222; 333g is a 2-exchange local minimum iff its
cost z1 D c111 C c222 C c333 is less than or equal to costs
of all of its 2-exchange neighbors.

The number Mp of local minima of the MAP is ob-
tained by counting the feasible solutions that are local
minima with respect to neighborhoods Np . In a ran-
dom MAP, where the assignment costs are random
variables, Mp becomes a random quantity itself. In this
paper we are interested in determining the expected
number E[Mp] of local minima in random MAPs that
have iid assignment costs with continuous distribution.

Expected Number of Local Minima in MAP
with n = 2

As it was noted above, in the special case of random
MAP with n D 2, d � 3, the costs of feasible solutions
are iid random variables with distribution F 
 F, where
F is the distribution of the assignment costs. This spe-
cial structure of the feasible set allows for a closed-form
expression for the expected number of local minima
E[M] (note that in a n D 2MAP the largest local neigh-
borhood isN2, thus M D M2), as established in [11].

Theorem 2. In a n D 2, d � 3 MAP with cost coeffi-
cients that are iid continuous random variables, the ex-
pected number of local minima is given by

E[M] D
2d�1

d C 1
: (17)

Equality (17) implies that in a n D 2; d � 3 MAP the
number of local minima E[M] is exponential in d, when
the cost coefficients are independently drawn from any
continuous distribution.
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Expected Number of Local Minima
in a RandomMAP with Normally Distributed Costs

Our ability to derive a closed-form expression (17) for
the expected number of local minima E[M] in the pre-
vious section has relied on the independence of feasible
solution costs (2) in a n D 2 MAP. As it is easy to ver-
ify directly, in the case n � 3 the costs of feasible solu-
tions are generally not independent. This complicates
analysis significantly if an arbitrary continuous distri-
bution for assignment costs ci1���id in (1) is assumed.
However, as we show below, one can derive upper and
lower bounds for E[M] in the case when the costs coeffi-
cients of (1) are independent normally distributed ran-
dom variables. First, we develop bounds for the num-
ber of local minima E[M2] defined with respect to 2-ex-
change neighborhoodsN2 that are most widely used in
practice.

2-exchange Local Neighborhoods Noting that in the
general case the number N of the feasible solutions to
MAP (1) is equal to N D (n!)d�1, the expected number
of local minima E[M2] with respect to local 2-exchange
neighborhoods can be written in the form

E[M2] D
NX

kD1

P
h \
j2N2(k)

zk � z j � 0
i
; (18)

whereN2(k) is the 2-exchange neighborhood of the kth
feasible solution, and zi is the cost of the ith feasible so-
lution, i D 1; : : : ;N: If we allow the nd cost coefficients
ci1���id of the MAP to be independent standard normal
N(�; �2) random variables, then the probability term
in (18) can be expressed as

P
h \
j2N2(k)

zk � z j � 0
i
D F˙ (0) ; (19)

where F˙ is the c.d.f. of the jN2j-dimensional random
vector

Z D (Z121; : : : ; Z12d ; Z131; : : : ; Z13d ; � � �

� � � ; Zrs1; : : : ; Zrsd ; � � � ; Zn�1;n;1; : : : ; Zn�1;n;d
�
;

r < s : (20)

Vector Z has a normal distribution N(0; ˙) with
the covariance matrix ˙ defined as

Cov(Zrsq ; Zi jk) D8̂
<̂
ˆ̂:

4�2; if i D r; j D s; q D k;
2�2; if i D r; j D s; q ¤ k;
�2; if (i D r; j ¤ s) or (i ¤ r; j D s) ;
0; if i ¤ r; j ¤ s:

(21)

While the value of F˙ (0) in (19) is difficult to com-
pute exactly for large d and n, lower and upper bounds
can be constructed using Slepian’s inequality [30]. To
this end, we introduce covariance matrices ˙ D (� i j)
and ˙ D (�̄i j) as

� i j D

8̂
<̂
ˆ̂:

4�2; if i D j;
2�2; if i ¤ j and

(i � 1) div d D ( j � 1) div d
0; otherwise

;

(22a)

�̄i j D

�
4�2; if i D j;
2�2; otherwise

; (22b)

so that � i j � �i j � � i j holds for all 1 � i; j � jN2j,
with �i j being the components of the covariance ma-
trix˙ (21). Then, Slepian’s inequality claims that

F˙ (0) � F˙ (0) � F˙ (0) ; (23)

where F˙ (0) and F˙ (0) are c.d.f.’s of random vari-
ables X˙ � N(0; ˙) and X˙ � N(0; ˙) respectively.
The structure of matrices ˙ and ˙ allows the corre-
sponding values F˙ (0) and F˙ (0) to be computed in
a closed form, which leads to the following bounds for
the expected number of local minima in random MAP
with iid normal coefficients:

Theorem 3. In a n � 3; d � 3 MAP with iid normal
cost coefficients, the expected number of 2-exchange local
minima is bounded as

(n!)d�1

(d C 1)n(n�1)/2
� E[M2] �

2(n!)d�1

n(n � 1)d C 2
: (24)

Note that both the lower and upper bounds in (24) co-
incide with the exact expression (17) for E[M2] in the
case n D 2. Also, from (24) it follows that for fixed
n � 3, the expected number of local minima is expo-
nential in the number of dimensions d for a fixed n.
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Higher-Order Neighborhoods (p � 3) The outlined
approach is applicable to general p-exchange neighbor-
hoods. For convenience, here we consider the neigh-
borhoods N �p as defined in Sect. “Local Minima
and p-exchange Neighborhoods in MAP”, i. e., the
neighborhoods obtained from a given feasible solu-
tion by permuting exactly p elements in one of the
d dimensions, so that for any feasible solution i D
fi(1)1 � � � i

(1)
d ; : : : ; i

(n)
1 � � � i

(n)
d g and its p-exchange neigh-

bor j D f j(1)1 � � � j
(1)
d ; : : : ; j

(n)
1 � � � j

(n)
d g 2 N �p (i) one has

(compare to (15))

nX
rD1

ı̄i (r)k0
j(r)k0
D p; k0 2 f1; : : : ; dg; and

nX
rD1

ı̄i (r)k j(r)k
D 0 for all k 2 f1; : : : ; dgnk0 :

(25)

Then, upper and lower bounds for the expected
number of local minima E[M�p ] defined with respect
to p-exchange neighborhoods N �p can be derived in
a similar fashion. Namely, the sought probability

P
h \
i2N�p (k)

zk � zi � 0
i
D F˙p (0)

can be bounded as F˙ p (0) � F˙p (0) � F˙ p
(0), where

the matrices ˙ p; ˙ p 2 RjN
�

p j�jN �p j are such that

�
˙ p
�
i j D

�
2p�2; if i D j;
(2p � 2)�2; if i ¤ j;

(26a)

�
˙ p
�
i j D

8̂
ˆ̂̂<
ˆ̂̂̂
:

2p�2; if i D j ;
p�2; if i ¤ j and (i � 1) div

�
dD(p)

�

D ( j � 1) div
�
dD(p)

�
;

0; otherwise :

(26b)

The corresponding bounds for the expected num-
ber of local minima E[M�p ] are established by the fol-
lowing theorem [11].

Theorem 4. In a n � 3; d � 3 MAP with iid normal
cost coefficients, the expected number of local minima
M�p with respect to p-exchange local neighborhoodsN �p

is bounded as

n!d�1
�
dD(p)C 1

�(np) � E[M�p ] � n!d�1

Z C1
�1

h
˚
�p

p � 1z
�id(np)D(p)

d˚(z) ;

(27)

where ˚(z) is the c.d.f. of the standard normal N(0; 1)
distribution. For 3-exchange neighborhoodsN �3 , an im-
proved upper bound holds:

E[M�3 ] �
3n!d�1

n(n � 1)(n � 2)d C 3
: (28)

It is interesting to note that for a fixed p the ratio of
number of local minima to the number of feasible solu-
tions becomes infinitely small as the dimensions of the
problem increase (see (17), (24), and (27)).

Conclusions

We have discussed asymptotical analysis of the ex-
pected optimal value and the expected number of lo-
cal minima of the Multidimensional Assignment Prob-
lem whose assignment costs are iid random variables
drawn from a continuous distribution. It has been
demonstrated that for a broad class of distributions,
the asymptotical behavior of the expected optimal cost
of a random MAP in the case when one of the prob-
lem’s dimension parameters approaches infinity is de-
termined by the location of the left endpoint of the sup-
port set of the distribution. The presented analysis is
constructive in the sense that it allows for derivation of
lower and upper asymptotical bounds for the expected
optimal value of the problem for a prescribed probabil-
ity distribution.

In addition, we have derived a closed-form ex-
pression for the expected number of local minima in
a n D 2 randomMAP with arbitrary distribution of as-
signment costs. In the case n � 3, bounds for the ex-
pected number of local minima have been derived in
the assumption that assignment costs are iid normal
random variables. It has been demonstrated that the ex-
pected number of local minima is exponential in the
number of dimensions d of the problem.
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Many iterative algorithms, deterministic or stochastic,
admit distributed implementations, whereby the work
load for performing computational steps, identified as
bottlenecks, is distributed among a variety of computa-
tional nodes. Extensive literature regarding distributed
implementations of optimization algorithms in partic-
ular is available, [19]. In recent years, there has been an
extremely fruitful interface between mathematical pro-
gramming algorithms and computer science. This has
resulted in major advances in the development of algo-
rithms and implementation of sophisticated optimiza-
tion algorithms on high performance parallel and dis-
tributed computers, [11,12]. Two major issues are im-
portant in designing an efficient distributed implemen-
tation, namely, task allocation, and communication pro-
tocol. Task allocation relates to the breakdown of the
total work load and this can either be static or dynamic
depending. Communication patterns and frequency are
important since they can induce substantial overhead in
cases where workload irregularities occur. Various im-
portant implementational details have been presented,
among others, in [10]. The straightforward translation
of serial to a distributed algorithm would assume some
sort of global synchronization mechanism that would
guarantee that information among processing nodes is
being exchanged once a computational step has been
performed. Processors must then synchronize so as to
exchange information and proceed all with the same
type of information to their next computational step.
Asynchronous algorithms relax the assumption of a pre-
determined synchronization protocol, and allow each
processing element to compute and communicate fol-
lowing local rates. The primary motivation for devel-
oping algorithms was to address situations in which:
� processors do not need to communicate to each

other processor at each time instance;
� processors may keep performing computations

without having to wait until they receive the mes-
sages that have been transmitted to them;

� processors are allowed to remain idle some of the
time;

� some processors may be performing computations
faster than others.

Such algorithms can alleviate communication over-
loads and they are not excessively slowed down by ei-
ther communication delays nor by differences in the
time it takes processors to perform one computation,
[18]. Another major motivation is clearly to develop
robust algorithms for distributed computation on het-
erogeneous networks of computers. The ideas of asyn-
chronous, also known as chaotic, iterative schemes, can
be traced by to [9], in which special schemes for solv-
ing linear systems of equations were developed. For
discussing the basic principles and conditions of asyn-
chronous iterations, the formalism of [8] will be fol-
lowed. This work presented the first comprehensive
treatment of the recent developments in the theory
and practice of asynchronous iterations for a variety of
problems, including deterministic and stochastic opti-
mization. In essence, most iterative algorithms can be
viewed as the search for a fixed point that corresponds
to the solution of the original problem. The basic as-
sumptions of the model of asynchronous (chaotic) iter-
ations for determining fixed point of (non)linear map-
pings are as follows:
1) Let X be a vector space and x = (x1, . . . , xn) 2 X are

n-tuples describing any vector from this set. It is also
assumed that X = X1 × � � � × Xn, with xi 2 Xi, i = 1,
. . . , n.

2) Let f : X! X be a function defined by f (x) = (f 1(x),
. . . , f n(x)), 8x 2 X.

3) A point X? 2 X is a fixed point of f (x) if x? = f (x?)
or, equivalently, x?i = f i(x?), i = 1, . . . , n.

For the solution of the aforementioned problem, one
can define an iterative method as:

xi :D fi(x); i D 1; : : : ; n;

with xi(t) being the values of the ith component at time
(iteration) t. In order to comprehend the concept of
asynchronous iterations, we assume that there exists
a set of times T = { 0, 1, . . . } at which one or more (pos-
sibly none) components xi of x are updated by some
processor of a distributed computing system. We de-
fined by Ti the set of times at which xi is updated. Given
that no synchronization protocol dictating the informa-
tion exchange exists, it is quite conceivable that not all
processors have access to the same and most recent val-
ues of of the corresponding components of x. It will be
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therefore assumed that:

xi(t C 1) D

8̂
<̂
ˆ̂:

fi(x1� i1(t); : : : ; xn(� in(t));
8t 2 Ti ; 0 � � ij (t) � t;

xi(t); 8t … Ti :

In the aforementioned definition of the iterative pro-
cess, the difference t � � ij(t) between the current time t
and the time � ij(t) corresponding to the jth component
available at the processor updating xi(t) can be viewed
as some form of communication delay. In studying the
convergence behavior of algorithms of this type, two
cases have to be considered. The operation can either
be totally asynchronous or partially asynchronous. The
concept of totally asynchronous algorithms was first in-
troduced in [9], and subsequently analyzed in, among
other, [1,5,15]. [5] proposed a general framework that
ensembles a variety of instances. The cornerstone of his
approach is based on the asynchronous convergence the-
orem, [8]. It defined a general pattern for proving con-
vergence of the asynchronous counterparts of certain
sequential algorithms. The asynchronous convergence
theorem can be applied to variety of problems includ-
ing:
� problems involving maximum norm contraction

mappings;
� problems involving monotone mappings;
� the shortest path problem;
� linear and nonlinear network flow problems.
Qualitatively speaking, the fundamental difference be-
tween a synchronous and an asynchronous iterative
mapping, is similar to the differences between a Jacobi
and a Gauss–Seidel iteration. Consider the implemen-
tation of both these approaches in the minimization of
function F(x). The specifics of the minimization algo-
rithm are irrelevant:
� Jacobi:

xi(t C 1) D argmin
xi

F(x1(t); : : : ; xn(t));

� Gauss–Seidel:

xi(tC 1) D argmin
xi

F(x1(t C 1); : : : ; xi(t); : : : ; xn(t)):

The Gauss–Seidel approach corresponds to the instan-
taneous communication, in a sequential manner, of the

information as it being generated. The Jacobi itera-
tion, forces processors to perform iterations utilizing
‘outdated’ information. The asynchronous iteration is
reminiscent to a Jacobi one. A thorough analysis and
comparison of these two extremes is presented in [16].
A major class of iterative schemes that can be shown
to be convergent when implemented asynchronously,
are defined by mappings which can be shown to be
contraction mappings with respect to a suitably defined
weighted maximum norm:

kxk!1 D max
i

jxi j
!i
;

x 2 Rn ; ! 2 Rn
C:

Let us consider the minimization of an unconstrained
quadratic function F:
(
min F(x) D 1

2 x
>Ax � b>x

s.t. x 2 Rn ;

where A is an n × n positive definite symmetric matrix,
and b 2 Rn. A gradient iteration of the form

x :D (I � �A)x C �b

will be convergent provided that the maximum row
sum of I � � A is less than 1, i. e.:
ˇ̌
1 � �˛i j

ˇ̌
C
X
j: j¤i

�
ˇ̌
ai j
ˇ̌
< 1; i D 1; : : : ; n;

implying the diagonal dominance condition:

ai j >
X
j: j¤i

ˇ̌
ai j
ˇ̌
; 8i:

If we consider the general nonlinear unconstrained op-
timization problem:
(
min g(x)
s.t. x 2 Rn ;

where g: Rn! R is a twice-differentiable convex func-
tion, with Hessian matrix r2g(x) which is positive def-
inite. If one considers a Newton mapping given by:

f (x) D x � [r2g(x)]�1r g(x)

The norm k x k = maxi |xi| makes f a contraction map-
ping in the neighborhood of x? (the optimal point). Ex-
tensions of the ordinary gradient method

f (x) D x � ˛r g(x)
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are also discussed in [5]. The shortest path problem
is defined in terms of a directed graph consisting of
n nodes. We denote by A(i) the set of all nodes j for
which there is an outgoing arc (i, j) from node i. The
problem is to find a path of minimum length starting
at node i and ending at node j. [4] considered the ap-
plication of the asynchronous convergence theorem to
fixed point iterations involving monotone mappings by
considering the Bellman–Ford algorithm, [3], applied
to the shortest path problem. This takes the form:

xi(t C 1) D min
j2A(i)

(ai j C x j(� ij (t));

i D 2; : : : ; n; t 2 Ti ;

x1(tC 1) D 0:

A(i) is the set of all nodes j for which there exists an arc
(i, j). Linear network flow problems are discussed in [8]
and asynchronous distributed versions of the auction
algorithm are discussed. In the general linear network
flow problem we are given a set of N nodes and a set of
arcs A, each arc (i, j) has associated with it an integer
aij, referred to as the cot coefficient. The problem is to
optimally assign flows, f ij to each one of the arcs, and
the problem is represented mathematically as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

(i; j)2A

ai j fi j

s.t.
X

j:(i; j)2A

fi j �
X
j:( j;i)

f ji D si ; 8i 2 N;

bi j � fi j � ci j; 8(i; j) 2 A;

where aij, bij, cij and si are integers. Extensions of
the sequential auction algorithms are discussed in [6],
in which asynchronism manifests itself in the sense
that certain processors may be calculating actions bids
which other update object prices. [7] extended the anal-
ysis to cover certain classes of nonlinear network flow
problems in which the costs aij are functions of the flows
f ij:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

(i; j)2A

ai j( fi j)

s.t.
X

j:(i; j)2A

fi j �
X
j:( j;i)

f ji D si ; 8i 2 N;

bi j � fi j � ci j; 8(i; j) 2 A:

Imposing additional reasonable assumptions to the
general framework of totally asynchronous iterative al-
gorithms can substantially increase the applicability of

the concept. A natural extension is therefore the par-
tially asynchronous iterative methods, whereby two ma-
jor assumptions are be satisfied:
a) each processor performs an update at least once

during any time interval of length B;
b) the information used by any processor is outdated

by at most B time units.
In other words, the partial asynchronism assump-

tion extends the original model of computation by stat-
ing that:

There exists a positive integer B such that:

� For every i and for every t � 0, at least one
of the elements of the set {t, . . . , t + B � 1}
belongs to Ti.

� There holds:

t � B � � ij (t) � t;

for all i and j, and all t � 0 belonging to Ti.
� There holds � ii (t) = t for all i and t 2 Ti.

[17] developed a very elegant framework with impor-
tant implications on the asynchronous minimization
of continuous functions. It was established that, while
minimize function F(x), the asynchronous implemen-
tation of a gradient-based algorithm:

x :D x � �rF(X)

is convergent if and only if the stepsize � is small com-
pared to the inverse of the asynchronism measure B.
Specifically, let F: Rn! R be a cost function to be min-
imized subject to no constraints. It will be further as-
sumed that:
1) F(x) > 0, 8x 2 Rn;
2) F(x) is Lipschitz continuous:

krF(x) � rF(y)k � K1 kx � yk ;

8x; y;2 Rn :

The asynchronous gradient algorithm of the syn-
chronous iteration:

x :D x � �rF(x)

is denoted by:

xi (tC 1) :D xi(t) � � si (t); i D 1; : : : ; n;
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where � is a positive stepsize, and si(t) is the update di-
rection. It will be assumed that

si (t) D 0; 8t … Ti :

It is important to realize that processor i at time time t
has knowledge of a vector xi(t) that is a, possibly, out-
dated version of x(t). In other words: xi(t) = ((x1(� i1 (t)),
. . . , xn(� in(t))). It is further assumed that when xi is be-
ing updated, the update direction si is a descent direc-
tion: For every i and t:

si (t)ri F(xi(t)) � 0

there exists positive constants K2, K3 such that

K1
ˇ̌
ri F(xi(t))

ˇ̌
� jsi (t)j � K3

ˇ̌
ri F(xi(t))

ˇ̌
;

8t 2 Ti ; 8i:

If all of the above is satisfied, then for the asynchronous
gradient iteration it can be shown that: There exists
some �0, depending on n, B, K1, K3, such that if 0 <
� < �0, then limt!1 � F(x(t)) = 0.

It can actually be further shown that the choice

� D
1

K3K1(1C BC nB)

can guarantee convergence of the asynchronous algo-
rithm. This results clearly states that one can always, in
principle, identify an adequate stepsize for any finite de-
lay.

Furthermore, [14] elaborated on the use of gradient
projection algorithm, within the asynchronous iterative
framework, for addressing certain classes of constraint
nonlinear optimization problems. The constrained op-
timization problems considered, is that of minimizing
a convex function F: Rn ! R, defined over the space
X =

Qn
iD1 Xi of lower-dimensional sets Xi � Rni , andPm

iD1 ni = n. The ith component of the solution vector
is now updated by

xi(t C 1) D [xi(t)� �ri F(xi(t))]C

where [�]+ denotes the projection on the set Xi. Once
again: xi(t + 1) = xi(t), t 62 Ti. Once again, a gradient
based algorithm is defined, for which

si (t) D

8̂
ˆ̂<
ˆ̂̂:

1
�

�
[xi(t)� �ri F(xi (t))]C � xi(t)

�
;

t 2 Ti ;

0 t … Ti :

It can actually be shown that for, provided that the par-
tial asynchronism assumption holds, one can always
define, in principle, a suitable stepsize �0 such that for
any 0 < � < 0 the limit point, x�, of the sequence gener-
ated by the partially asynchronous gradient projection
iteration minimizes the Lipschitz continuous, convex
function F over the set X. Recently, [2], analyzed asyn-
chronous algorithms for minimizing a function when
the communication delays among processors are as-
sumed to be stochastic with Markovian character. The
approach is also based on a gradient projection algo-
rithm and was used to address a an optimal routing
problem.

A major consideration in asynchronous distributed
computing is the fact that since no globally control-
ling mechanism exists makes the use of any termination
criterion which is based on local information obsolete.
Clearly, when executing asynchronously a distributed
iteration of the form xi � f i(x) local error estimates can,
and will be, misleading in terms of the global state of
the system. Recently [13] made several suggestions as
to how the standard model can be supplemented with
an additional interprocessor communication protocol
so as to address the issue of finite termination of asyn-
chronous iterative algorithms.
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The auction algorithm is an intuitive method for solv-
ing the classical assignment problem. It outperforms
substantially its main competitors for important types
of problems, both in theory and in practice, and is also
naturally well suited for parallel computation. In this
article, we will sketch the basic principles of the algo-
rithm, we will explain its computational properties, and
we will discuss its extensions to more general network
flow problems. For a detailed presentation, see the sur-
vey paper [3] and the textbooks [2,4]. For an extensive
computational study, see [8]. The algorithm was first
proposed in the 1979 report [1].

In the classical assignment problem there are n per-
sons and n objects that we have to match on a one-to-
one basis. There is a benefit aij for matching person i
with object j and we want to assign persons to objects
so as to maximize the total benefit. Mathematically, we
want to find a one-to-one assignment [a set of person-
object pairs (1, j1), . . . , (n, jn), such that the objects j1,
. . . , jn are all distinct] that maximizes the total benefitPn

iD1ai j i .
The assignment problem is important in many

practical contexts. The most obvious ones are resource
allocation problems, such as assigning personnel to
jobs, machines to tasks, and the like. There are also situ-
ations where the assignment problem appears as a sub-
problem in various methods for solving more complex
problems.

The assignment problem is also of great theoreti-
cal importance because, despite its simplicity, it em-
bodies a fundamental linear programming structure.
The most important type of linear programming prob-
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lems, the linear network flow problem, can be reduced
to the assignment problem by means of a simple refor-
mulation. Thus, any method for solving the assignment
problem can be generalized to solve the linear network
flow problem, and in fact this approach is particularly
helpful in understanding the extension of auction algo-
rithms to network flow problems that are more general
than assignment.

The classical methods for assignment are based on
iterative improvement of some cost function; for exam-
ple a primal cost (as in primal simplex methods), or
a dual cost (as in Hungarian-like methods, dual simplex
methods, and relaxation methods). The auction algo-
rithm departs significantly from the cost improvement
idea; at any one iteration, it may deteriorate both the
primal and the dual cost, although in the end it finds an
optimal assignment. It is based on a notion of approxi-
mate optimality, called �-complementary slackness, and
while it implicitly tries to solve a dual problem, it actu-
ally attains a dual solution that is not quite optimal.

The Auction Process

To develop an intuitive understanding of the auction
algorithm, it is helpful to introduce an economic equi-
librium problem that turns out to be equivalent to the
assignment problem. Let us consider the possibility of
matching the n objects with the n persons through
a market mechanism, viewing each person as an eco-
nomic agent acting in his own best interest. Suppose
that object j has a price pj and that the person who re-
ceives the object must pay the price pj. Then, the (net)
value of object j for person i is aij � pj and each person
i would logically want to be assigned to an object ji with
maximal value, that is, with

ai j i � p ji D max
jD1;:::;n

fai j � p jg: (1)

We will say that a person i is ‘happy’ if this condition
holds and we will say that an assignment and a set of
prices are at equilibrium when all persons are happy.

Equilibrium assignments and prices are naturally of
great interest to economists, but there is also a funda-
mental relation with the assignment problem; it turns
out that an equilibrium assignment offers maximum to-
tal benefit (and thus solves the assignment problem),
while the corresponding set of prices solves an associ-

ated dual optimization problem. This is a consequence
of the celebrated duality theorem of linear program-
ming.

Let us consider now a natural process for finding
an equilibrium assignment. I will call this process the
naive auction algorithm, because it has a serious flaw,
as will be seen shortly. Nonetheless, this flaw will help
motivate a more sophisticated and correct algorithm.

The naive auction algorithm proceeds in ‘rounds’
(or ‘iterations’) starting with any assignment and any
set of prices. There is an assignment and a set of prices
at the beginning of each round, and if all persons are
happy with these, the process terminates. Otherwise
some person who is not happy is selected. This person,
call him i, finds an object ji which offers maximal value,
that is,

ji 2 arg max
jD1;:::;n

fai j � p jg; (2)

and then:
a) Exchanges objects with the person assigned to ji at

the beginning of the round;
b) Sets the price of the best object ji to the level at which

he is indifferent between ji and the second best ob-
ject, that is, he sets pji to

p ji C �i ; (3)

where

�i D vi � wi ; (4)

vi is the best object value,

vi D max
j
fai j � p jg; (5)

and wi is the second best object value

wi D max
j¤ j i
fai j � p jg; (6)

that is, the best value over objects other than ji.
(Note that � i is the largest increment by which the
best object price pji can be increased, with ji still be-
ing the best object for person i.)

This process is repeated in a sequence of rounds until
all persons are happy.

We may view this process as an auction, where at
each round the bidder i raises the price of his or her pre-
ferred object by the bidding increment � i. Note that � i
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cannot be negative since vi � wi (compare (5) and (6)),
so the object prices tend to increase. Just as in a real auc-
tion, bidding increments and price increases spur com-
petition by making the bidder’s own preferred object
less attractive to other potential bidders.

Does this auction process work? Unfortunately, not
always. The difficulty is that the bidding increment � i
is zero when more than one object offers maximum
value for the bidder i (cf. (4) and (6)). As a result, a sit-
uation may be created where several persons contest
a smaller number of equally desirable objects without
raising their prices, thereby creating a never ending cy-
cle.

To break such cycles, we introduce a perturbation
mechanism, motivated by real auctions where each bid
for an object must raise its price by a minimum positive
increment, and bidders must on occasion take risks to
win their preferred objects. In particular, let us fix a pos-
itive scalar � and say that a person i is ‘almost happy’
with an assignment and a set of prices if the value of its
assigned object ji is within � of being maximal, that is,

ai j i � p ji � max
jD1;:::;n

fai j � p jg � �: (7)

We will say that an assignment and a set of prices
are almost at equilibrium when all persons are almost
happy. The condition (7), introduced first in 1979 in
conjunction with the auction algorithm, is known as �-
complementary slackness and plays a central role in sev-
eral optimization contexts. For � = 0 it reduces to ordi-
nary complementary slackness (compare (1)).

We now reformulate the previous auction process
so that the bidding increment is always at least equal
to �. The resulting method, the auction algorithm, is
the same as the naive auction algorithm, except that the
bidding increment � i is

�i D vi � wi C �; (8)

(rather than � i = vi � wi as in (4)). With this choice,
the bidder of a round is almost happy at the end of the
round (rather than happy). The particular increment
� i = vi � wi + � used in the auction algorithm is the
maximum amount with this property. Smaller incre-
ments � i would also work as long as � i � �, but using
the largest possible increment accelerates the algorithm.
This is consistent with experience from real auctions,

which tend to terminate faster when the bidding is ag-
gressive.

We can now show that this reformulated auction
process terminates in a finite number of rounds, nec-
essarily with an assignment and a set of prices that are
almost at equilibrium. To see this, note that once an ob-
ject receives a bid for the first time, then the person as-
signed to the object at every subsequent round is almost
happy; the reason is that a person is almost happy just
after acquiring an object through a bid, and continues
to be almost happy as long as he holds the object (since
the other object prices cannot decrease in the course of
the algorithm). Therefore, the persons that are not al-
most happy must be assigned to objects that have never
received a bid. In particular, once each object receives
at least one bid, the algorithm must terminate. Next
note that if an object receives a bid in m rounds, its
price must exceed its initial price by at least m�. Thus,
for sufficiently large m, the object will become ‘expen-
sive’ enough to be judged ‘inferior’ to some object that
has not received a bid so far. It follows that only for
a limited number of rounds can an object receive a bid
while some other object still has not yet received any
bid. Therefore, there are two possibilities: either
a) the auction terminates in a finite number of rounds,

with all persons almost happy, before every object
receives a bid; or

b) the auction continues until, after a finite number
of rounds, all objects receive at least one bid, at
which time the auction terminates. (This argument
assumes that any person can bid for any object, but
it can be generalized for the case where the set of
feasible person-object pairs is limited, as long as at
least one feasible assignment exists.)

Optimality Properties at Termination

When the auction algorithm terminates, we have an as-
signment that is almost at equilibrium, but does this as-
signment maximize the total benefit? The answer here
depends strongly on the size of �. In a real auction,
a prudent bidder would not place an excessively high
bid for fear that he might win the object at an unneces-
sarily high price. Consistent with this intuition, we can
show that if � is small, then the final assignment will be
‘almost optimal’. In particular, we can show that the to-
tal benefit of the final assignment is within n� of being
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optimal. To see this, note that an assignment and a set
of prices that are almost at equilibrium may be viewed
as being at equilibrium for a slightly different problem
where all benefits aij are the same as before, except for
the n benefits of the assigned pairs which are modified
by an amount no more than �.

Suppose now that the benefits aij are all integer,
which is the typical practical case (if aij are rational
numbers, they can be scaled up to integer by multiplica-
tion with a suitable common number). Then, the total
benefit of any assignment is integer, so if n� < 1, a com-
plete assignment that is within n� of being optimal must
be optimal. It follows, that if

� <
1
n
;

and the benefits aij are all integer, then the assignment
obtained upon termination of the auction algorithm is
optimal. Let us also note that the final set of prices is
within n� of being an optimal solution of the dual prob-
lem

min
p j

jD1;:::;n

8<
:

nX
jD1

p j C

nX
iD1

max
j
fai j � p jg

9=
; : (9)

This leads to the interpretation of the auction algorithm
as a dual algorithm (in fact an approximate coordinate
ascent algorithm; see the cited literature).

Computational Aspects: �-Scaling

The auction algorithm exhibits interesting computa-
tional behavior, and it is essential to understand this
behavior to implement the algorithm efficiently. First
note that the amount of work to solve the problem can
depend strongly on the value of � and on the maximum
absolute object value

C D max
i; j

ˇ̌
ai j
ˇ̌
:

Basically, for many types of problems, the number of
bidding rounds up to termination tends to be propor-
tional to C/�. Note also that there is a dependence on
the initial prices; if these prices are ‘near optimal,’ we
expect that the number of rounds to solve the problem
will be relatively small.

The preceding observations suggest the idea of �-
scaling, which consists of applying the algorithm sev-

eral times, starting with a large value of � and succes-
sively reducing � up to an ultimate value that is less than
some critical value (for example, 1/n, when the benefits
aij are integer). Each application of the algorithm pro-
vides good initial prices for the next application. This
is a very common idea in nonlinear programming, en-
countered for example, in barrier and penalty function
methods. An alternative form of scaling, called cost scal-
ing, is based on successively representing the benefits
aij with an increasing number of bits, while keeping � at
a constant value.

In practice, it is a good idea to at least consider scal-
ing. For sparse assignment problems, that is, problems
where the set of feasible assignment pairs is severely
restricted, scaling seems almost universally helpful.
In theory, scaling leads to auction algorithms with
a particularly favorable polynomial complexity (with-
out scaling, the algorithm is pseudopolynomial; see the
cited literature).

Parallel and Asynchronous Implementation

Both the bidding and the assignment phases of the auc-
tion algorithm are highly parallelizable. In particular,
the bidding and the assignment can be carried out for
all persons and objects simultaneously. Such an imple-
mentation can be termed synchronous. There are also
totally asynchronous implementations of the auction al-
gorithm, which are interesting because they are quite
flexible and also tend to result in faster solution in some
types of parallel machines. To understand these imple-
mentations, it is useful to think of a person as an au-
tonomous decision maker who at unpredictable times
obtains information about the prices of the objects.
Each person who is not almost happy makes a bid at
arbitrary times on the basis of its current object price
information (that may be outdated because of commu-
nication delays).

See [7] for a careful formulation of the totally asyn-
chronous model, and a proof of its validity, including
extensive computational results on a shared memory
machine, confirming the advantage of asynchronous
over synchronous implementations.

Variations and Extensions

The auction algorithm can be extended to solve a num-
ber of variations of the assignment problem, such as the
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asymmetric assignment problem where the number of
objects is larger than the number of persons and there is
a requirement that all persons be assigned to some ob-
ject. Naturally, the notion of an assignment must now
be modified appropriately. To solve this problem, the
auction algorithm need only be modified in the choice
of initial conditions. It is sufficient to require that all
initial prices be zero. A similar algorithm can be used
for the case where there is no requirement that all per-
sons be assigned. Other variations handle efficiently the
cases where there are several groups of ‘identical’ per-
sons or objects ([5]).

There have been extensions of the auction algo-
rithm for other types of linear network optimization
problems. The general approach for constructing auc-
tion algorithms for such problems is to convert them
to assignment problems, and then to suitably apply the
auction algorithm and streamline the computations.
In particular, the classical shortest path problem can
be solved correctly by the naive auction algorithm de-
scribed earlier, once the method is streamlined. Sim-
ilarly, auction algorithms can be constructed for the
max-flow problems, and are very efficient. These algo-
rithms bear a close relation to preflow-push algorithms
for the max-flow problem, which were developed inde-
pendently of auction ideas.

The auction algorithm has been extended to solve
linear transportation problems ([5]). The basic idea is
to convert the transportation problem into an assign-
ment problem by creating multiple copies of persons
(or objects) for each source (or sink respectively), and
then to modify the auction algorithm to take advantage
of the presence of the multiple copies.

There are extensions of the auction algorithm for
linear minimum cost flow (transshipment) problems,
such as the so called �-relaxation method, and the auc-
tion/sequential shortest path algorithm algorithm (see
the cited literature for a detailed description). These
methods have interesting theoretical properties and like
the auction algorithm, are well suited for parallelization
(see the survey [6], and the textbook [7]).

Let us finally note that there have been propos-
als of auction algorithms for convex separable network
optimization problems with and without gains (but
with a single commodity and without side constraints);
see [9].
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The Hessian of a scalar function f (x) can be computed
automatically in at least two ways. The first is a natural
extension of the forward method for calculating gradi-
ents. The others extend the reverse method.

The ForwardMode

The concept of forward automatic differentiation was
described by L.B. Rall [14]. When calculating the gradi-
ent vector of a function of n variables, a doublet data
structure is introduced, consisting of n + 1 floating
point numbers. To calculate the Hessian matrix, this
data structure is extended to a triplet.

A triplet is a data structure that, in the simplest
form, contains 1 + n + n(n+1)/2 floating point num-
bers. If X is a variable that occurs in the evaluation of
f (x), then the triplet of X consists of
�
X;
@X
@xi

;
@2X
@xi@x j

�

for i = 1, . . . ,n and j � i.

The doublet consists of the first n + 1 elements of
the triplet.

At the start of the function evaluation the triplets of
the variables xk must be set and these are simply (xk, ek,
0) where ek is the unit vector with 1 in the kth place,
and 0 is the null matrix. If the function evaluation is ex-
panded as a Wengert list [17] consisting of three types
of operations,
� addition and subtraction,
� multiplication and division,
� nonlinear scalar functions,
then the arithmetic required to correctly update the
triplets is easily deduced.
� If Xk = Xl + Xm, l, m < k, then to obtain the triplet

of Xk, the elements of the triplets of Xl and Xm are
simply added together element by element.

� If Xk = Xl Xm, l, m < k, then the background arith-
metic is more complex as

@Xk

@xi
D Xl

@Xm

@xi
C Xm

@Xl

@xi

and

@2Xk

@xi@x j
D
@Xl

@x j

@Xm

@xi
C Xl

@2Xm

@xi@x j

C
@Xm

@x j

@Xl

@xi
C Xm

@2Xl

@xi@x j
:

As all these terms are stored in the triplets of Xl and
Xm, given the triplets of Xl and Xm the triplet of Xk

can be computed by a standard routine.
� If Xk = � (Xm),m < k, then

@Xk

@xi
D �0(Xm)

@Xm

@xi

and

@2Xk

@xi@x j
D �00(Xm)

@Xm

@xi
@Xm

@x j
C �0(Xm)

@2Xm

@xi@x j
:

To perform this operation the values of �0 (Xm) and
�00 (Xm) must be calculated with �(Xm); all the other
data is contained in the triplet of Xm.
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Illustrative Example 1: ForwardMode

Consider the simple function

f (x) D (x1x2 C sin x1 C 4)
�
3x22 C 6

�

In this case n = 2 and each triplet contains 6 float-
ing point numbers, the value of X, its gradient, and
the upper half of its Hessian. To evaluate the function,
gradient, and Hessian, first expand the function in the
Wengert list as shown in column 1 and then evaluate
the triplets one by one. The evaluation is performed at
the point (0, 1) below.

Xk triplet(Xk)
X1 = x1 0, 1, 0, 0, 0, 0
X2 = x2 1, 0, 1, 0, 0, 0
X3 = X1X2 0, 1, 0, 0, 1, 0
X4 = sin X1 0, 1 , 0, 0, 0, 0
X5 = X3 + X4 0, 2, 0, 0, 1, 0
X6 = X5 + 4 4, 2, 0, 0, 1, 0
X7 = X2

2 1, 0, 2,0,0, 2
X8 = 3X7 3, 0, 6, 0, 0, 6
X9 = X8 + 6 9, 0, 6, 0, 0, 6
X10 = X6X9 36, 18, 24, 0, 21, 24

The last row contains the values of the function, gradi-
ent and Hessian. The values for this simple problem can
be easily verified by direct differentiation.

In practice forward automatic differentiation may
be implemented in many ways, one possibility in many
modern computer languages is to introduce the new
data type triplet and over-write the meaning of the stan-
dard operators and functions so they perform the arith-
metic described above. The code for the function eval-
uation can then be written normally without recourse
to the Wengert list. Details of an implementation in
Ada are given in [13]. A single run through a function
evaluation code then computes the function, gradient
and Hessian. If S is the store required to compute f (x)
then this method requires (1 + n + n(n + 1)/2)S store.
If M is the number of operations required to compute
f (x) then (1 + 3n + 7n2)M is a pessimistic bound on
the operations required to compute the function, gra-
dient and Hessian. Additional overheads are incurred
to access the data type and the over-written operator

subroutines. The efficiency is often improved by treat-
ing the triplet as a vector array and using sparse stor-
age techniques. The number of zeros in the triplets of
the above simple example illustrates the strength of the
sparse form to calculate full Hessians. Maany reports
the following results for the CPU time to differenti-
ate the 50-dimensional Helmholz function (for details
see [10]).

Doublets triplets
full sparse full sparse

f 1.36 0:44 60:29 0:44
f ;r f 9:24 3:42 68:68 3:52
f ;r f ;r2 f N/A N/A 476:36 20:69

The CPU time for calculating f alone within the
full triplet package rises dramatically as although the
derivative calculations are switched off the full pack-
age still allocates the space for the full triplet. Using the
sparse package is also especially helpful if n is large and
f (x) is a partially separable function, i. e.

f (x) D
X
k

fk(x)

where f k(x) only depends on a small number Vk of the
n variables, as then, throughout the calculation of f k(x),
the sparse triplet will only contain at most 1 + Vk +
Vk(Vk + 1)/2 nonzeros, and Vk will replace n in all the
operation bounds, to give

P
k(1 + 3Vk + 7V2

k)Mk oper-
ations.

One of the main purposes for calculating the Hes-
sian matrix is to use it in optimization calculations. The
truncated Newton method can be written so that it ei-
ther requires the user to provide f , r f , and r2 f at
each outer iteration or f , r f at each outer iteration
and (r2 f ) p at each inner iteration. The first method
is ideally suited to be combined with sparse triplet dif-
ferentiation. The algorithm is described in [9] and re-
sults given on functions of up to n = 3000 in [8]. The
calculation of (r2 f ) p can also be undertaken simply
by a modification of the triplet method.

In [7] the conclusion was drawn that

the sparse doublet and sparse triplet codes in Ada
enable normal code to be written for the func-
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tion f and accurate values of r f and r2 f to
be obtained reliably by the computer. The ma-
jor hope for automatic differentiation is therefore
achieved.

Implementations are also available in Pascal.SC, C++,
and Fortran90. The NOCOptima Library [1] code,OP-
FAD, implements the sparse doublet and triplet meth-
ods described above in Fortran90.

TheMixedMethod

The advent of reverse automatic differentiation, A.
Griewank [10], raised the hope that quicker ways could
be found. The bound on the operations needed to com-
pute the Hessian by the full forward triplet method con-
tains the term 1/2n2M; by using a mixed method this is
not required. The simplest mixed method is to use re-
verse automatic differentiation to compute the gradient
which, [10], only requires 5M operations to compute
the function and gradient for any value of n. This can
be repeated at appropriate steps h along each axis, i. e.
at x + hei, i = 1, . . . , n, and simple differences applied to
the gradient vectors to calculate the Hessian in less than
5(n + 1)(M + 1) operations.

Illustrative Example 2: Reverse Differentiation

To obtain the gradient by reverse differentiation we
must introduce the adjoint variables X�k and reverse
back through the list. These rules are discussed in the
previous article, but for convenience are repeated. If in
the calculation of f (x),

Xk D �(Xi ; Xj); i; j < k;

then in the reverse pass

X�i D X�i C
@�

@Xi
X�k

and

X�j D X�j C
@�

@Xj
X�k :

For the same example the steps needed to calculate the
gradient by reverse differentiation are

X�k X�k
X�10 = 1 1
X�9 = X�10X6 4
X�6 = X�10X9 9
X�8 = X�9 4
X�7 = 3X�8 12
X�2 = 2X2X�7 24
X�5 = X�6 9
X�4 = X�5 9
X�3 = X�5 9
X�1 = X�4 cos X1 9
X�2 = X�2 + X1X�3 24
X�1 = X�1 + X2X�3 18

giving the gradient as (18, 24) in agreement with the
forward calculation. To perform this calculation the
values of X6 and X9 were required which had been cal-
culated during the function value calculation. The re-
verse gradient calculation must, therefore, follow a for-
ward function evaluation calculation and the required
data must be stored.

The bound 5M on the number of operations re-
quired to calculate the gradient is often very pessimistic,
especially when the function evaluation uses matrix op-
erations, [15], standard subroutines, [5], or when effi-
cient sparse storage is used, [6]. The store required by
this simple approach is simply that needed to calculate
the gradient by reverse differentiation. The original re-
verse method required O(M) store, but Griewank [11]
describes how the store required can be reduced to O(S
logM) at the cost of increasing the operation bound to
O(M logM).

The accuracy obtained by calculating the Hessian by
simple differences will depend on h but will often be
sufficient as accurate Hessians are rarely required in op-
timization. Many software packages for calculating the
gradient by reverse differentiation now exist, including
the Optima Library Code OPRAD [1].

In 1998 the most widely used code to calculate gra-
dients automatically is probably the ADIFOR code, [3],
many examples of its use are given in that reference;
unfortunately this implements a ‘statement level hybrid
mode’. In this, each assignment statement

Yi D � (Yj; j < i; j 2 J)



136 A Automatic Differentiation: Calculation of the Hessian

is treated in turn and the gradient, @�
@Yj

, j 2 J, computed
efficiently by RAD but then to obtain the Doublet

@Yi

@xm
D
X
j

@�

@Yj

@Yj

@xm

many multiplications and additions may be required
leading to a high operation count.

ReverseMethod

A fully automatic approach could start by obtaining the
Wengert list for the function and gradient as calculated
by reverse automatic differentiation. This list will con-
tain at most 5M steps. Then a forward sparse Doublet
pass through this list could be performed that would
need less than (1 + 3n) 5M operations. The Doublet
formed for the same example is illustrated below. In
the Wengert list all identical Doublets are merged and
composite steps involving more than one operation are
split, it will be observed that the last two rows of the
Doublet contain the gradient and Hessian, as desired,
and that the number of operations, 22, is much less than
the bound 5M = 50. The storage requirement for this
approach, when n is large, is considerably greater than
that needed by the difference method. An alternative
would be to perform a reverse pass through the gra-
dient list. A full discussion is given in [4], who shows
the two are identical in arithmetic, storage and oper-
ation count. His experience with his Ada implementa-
tion showed that the performance was verymachine de-
pendent. If the sparse Doublet approach is used with
this reverse method on the partially separable func-
tion described above then the bound on the opera-
tions needed to obtain the Hessian reduces to

P
k5(Vk

+ 1)(Mk + 1), a considerable saving. An early imple-
mentation, PADRE2, is described in [12]. A more re-
cent code, ADOL-F, is described in [16]. Christianson’s
method is implemented in OPRAD, mentioned above.
It should perhaps bementioned that all the abovemeth-
ods can be hand-coded to solve any important problem
without incurring the overheads still associated with
most automatic packages, many of the helping hands
described in [5] are still not implemented in an auto-
matic package.

Further methods for speeding up the calculation of
the Hessian are described in � Automatic Differentia-
tion: Calculation of Newton Steps.

Illustrative Example 3:
Reverse Gradient, ForwardHessian

The variables in the Wengert list of the function and
gradient calculation will be denoted by Y .

Yk Doublet Yk
Y1 = x1 0, 1, 0
Y2 = x2 1, 0, 1
Y3 = Y1Y2 0, 1, 0
Y4 = sin Y1 0, 1, 0
Y5 = Y3 + Y4 0, 2, 0
Y6 = Y5 + 4 4, 2, 0
Y7 = Y2

2 1, 0, 2
Y8 = 3Y7 3, 0, 6
Y9 = Y8 + 6 9, 0, 6
Y10 = Y6Y9 36, 18, 24
Y11 = 1 1, 0, 0
Y12 = Y11Y6 4, 2, 0
Y13 = Y11Y9 9, 0, 6
Y14 = 3Y12 12, 6, 0
Y15 = Y2Y14 12, 6, 12
Y16 = 2Y15 24, 12, 24
Y17 = cos Y1 1, 0, 0
Y18 = Y17Y13 9, 0, 6
Y19 = Y1Y13 0, 9, 0
Y20 = Y2Y13 9, 0, 15
Y21 = Y18 + Y20 18, 0, 21
Y22 = Y16 + Y19 24, 21, 24

See also

� Automatic Differentiation: Calculation of Newton
Steps

� Automatic Differentiation: Geometry of Satellites
and Tracking Stations

� Automatic Differentiation: Introduction, History
and Rounding Error Estimation

� Automatic Differentiation: Parallel Computation
� Automatic Differentiation: Point and Interval
� Automatic Differentiation: Point and Interval

Taylor Operators
� Automatic Differentiation: Root Problem and

Branch Problem
� Nonlocal Sensitivity Analysis with Automatic

Differentiation
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Many algorithms for solving optimization problems re-
quire the minimization of a merit function, which may
be the original objective function, or the solution to
sets of simultaneous nonlinear equations whichmay in-
volve the constraints in the problem. To obtain second
order convergence near the solution algorithms to solve
both rely on the calculation of Newton steps.

When solving a set of nonlinear equations

s j(x) D 0; j D 1; : : : ; n;

the Newton step d at x(0), x 2 Rn, is obtained by solving
the linear set of equations

X
i

@s j
@xi

di D �s j; j D 1; : : : ; n;
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where both the derivatives @sj/ @xi and the vector func-
tion sj are evaluated at a point, which we will denote by
x(0).

For convenience we introduce the Jacobian matrix J
and write the equation as

Jd D �s

Whenminimizing a function f (x) the Newton equation
becomes
X
i

@2 f
@xi@x j

d j D �
@ f
@x j

where all the derivatives are calculated at a point, again
denoted by x(0).

In terms of the Hessian, H, and the gradient, g, this
can be written

Hd D �g

Automatic differentiation can be used to calculate
the gradient, Hessian and Jacobian, but it can also be
used to calculate the Newton step directly without cal-
culating the matrices. In this article we will first discuss
the calculation of the Jacobian, then extend briefly the
calculation of the gradient and Hessian, which was the
subject of � Automatic differentiation: Calculation of
the Hessian, and finally discuss the direct calculation of
the Newton step.

Jacobian Calculations

If the functions sj were each evaluated as separate enti-
ties, requiringMj operations, then the derivatives could
be evaluated by reverse automatic differentiation in 5
Mj operations. For many sets of functions it would,
however, be very inefficient to evaluate the set s in this
way, as considerable savings could be made by calculat-
ing threads of operations common to more than one sj
only once. In such situations the number of operations
M required to evaluate the set smay be much less thanP

jMj. Under these circumstances the decision on how
the Jacobian should be evaluated becomes much more
complicated.

Before the advent of automatic differentiation the
Jacobian was frequently approximated by one-sided
differences

@s j
@xi
D

s j
�
x(0) C hei

�
� s j

�
x(0)

�

h

If the vector function s requiresMWengert operations,
then the Jacobian would need (n + 1) M operations by
this approach. The accuracy of the result depends on
a suitable choice of h. If simple forward automatic dif-
ferentiation using doublets (see � Automatic differen-
tiation: Calculation of the Hessian) is used, an accu-
rate Jacobian is obtained at a cost of 3nM operations.
If a Newton step is to be calculated then the Jacobian
must be square and so the simple reverse mode, which
involves a backward pass through the Wengert list for
each subfunction, would be bounded by 5 n M opera-
tions.

Most large Jacobians are sparse and M.J.D. Powell,
A.R. Curtis, and J.R. Reid [5], introduced the idea of
combining columns i that had no common nonzeros.
Then, provided the sparsity pattern of J is known, the
values in those columns can be reconstructed by a re-
duced number of differences. If the number of such
PCR groups required to cover all the columns is c then
the operations count is reduced to (c + 1)M. For exam-
ple, the columns of the following 5 × 5 sparse Jacobian
could be divided into 3 groups
2
666664

� N 0 0 F
� N 0 F 0
0 N � F 0
0 0 � 0 F
� N 0 0 F

3
777775

indicated by�, N, andF.
This same grouping could be used with forward au-

tomatic differentiation to produce an accurate Jacobian
in at most 3cM operations. If the sparse Doublet is used,
the full benefit of sparsity within the calculation of the
sj is obtained, as well as the benefit due to sparsity in
the Jacobian, without the need to determine the column
groupings. Results showing the advantage of calculating
large (n = 5000) Jacobians this way are given in [15] and
summarised in [7].

It is possible for the calculation of some sj to be in-
dependent of other s that do contain a common thread.
It would obviously be efficient to calculate these sj by re-
verse differentiation, requiring 5Mj operations. Reverse
differentiation will also be appropriate if the common
thread has less outputs than inputs. Then sparse reverse
doublets, [2], should be used. These are implemented in
OPRAD, see � Automatic differentiation: Calculation
of the Hessian.
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T.F. Coleman et al. [3,4] demonstrated that calcu-
lating some columns using groups in the forward mode
and some rows using groups in the reverse mode is
considerably more efficient than using either alone. All
nonzeros of the Jacobian must be included in a row
and/or column computed. Similar results follow if some
columns are computed using sparse doublets and some
rows using the sparse reverse method. If C is the maxi-
mum number of nonzeros in a row within the columns
computed forward and R the maximum number of
nonzeros in a column within the rows computed in re-
verse then a crude bound on the number of operations
is (3C + 5R)M. This bound does not allow for the addi-
tional sparsity in the early calculations nor for the fact
that for some reverse calculations Mj should replaceM.
The selection of rows and columns taking account of
such considerations is still unresolved.

But the advantages to be obtained can be appre-
ciated by considering the arrow-head Jacobian, where
only the diagonal elements and the last row and col-
umn contain nonzeros. If the gradient of sn is computed
using sparse reverse doublets this will require at most
5Mn operations and if the other gradients are com-
puted using sparse forward doublets, no doublet will
contain more than 2 nonzeros, so the operations will be
bounded by 6M. The total operations required in this
case is independent of n.

The ExtendedMatrix

If the calculation of the functions sj proceeds by a se-
quence of steps

Xk D xk; k D 1; : : : ; n;
Xk D �k(Xl ; l 2 L; l < k);

k D nC 1; : : : ;M C n;

with

s j D XMC j; j D 1; : : : ; n;

then
@Xk

@xm
D 0; m ¤ k; k D 1; : : : ; n;

@Xk

@xk
D 1;

and
@Xk

@xm
D
X
l

@�k

@Xl

@Xl

@xm
:

If we now denote @Xk/ @xm by Yk and @�k/ @Xl by Lkl,
then this becomes

Yk D
X
l

Lk l Yl

i. e. the kth row of the matrix-vector product

(I � L)Y ;

where the elements in the first n rows of L are all zeros,
and then

@s j
@xm
D YMC j:

Obtaining the Jacobian by the forward method may be
considered as equivalent to solving

(I � L)Y D em:

Turning now to the reverse method if

Xk D �k(Xl );

then the adjoint variable X�l contains a term

X�l D X�l C
@�k

@Xl
X�k

which is the lth row of the matrix-vector product

(I � L>)X�:

To obtain the gradient of sm is therefore equivalent to
solving

(I � L>)X� D eMCm;

then

@sm
@xi
D X�i :

So both the calculation of the Jacobian by the forward
and backward method are equivalent to solving a very
sparse set of equations. If the Wengert list is used, each
row of L contains at most two nonzeros. It has therefore
been suggested that methods for solving linear equa-
tions with sparse matrices could be used to calculate
J, A. Griewank and S. Reese [14] suggested using the
Markowitz rule, while U. Geitner, J. Utke and Griewank
[11] applied themethod of Newsam and Ramsdell.
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Hessian Calculations

The calculation of the Hessian, as discussed in � Au-
tomatic differentiation: Calculation of the Hessian, can
also be formulated as a sparse matrix calculation. Using
the notation of � Automatic differentiation: Calcula-
tion of the Hessian if the calculation of f (x) consists of

Xk D �k(Xm;m < k;m 2 Mk);

then the reverse gradient calculation consists of

X�m D X�m C X�k
@�k

@Xm
; m 2 Mk :

If now we denote

Yk D
@Xk

@xi
; k D 1; : : : ;M;

and

Yk D
@X�2M�kC1

@xi
; k D M C 1; : : : ; 2M;

then we obtain

Yk D
@�k

@Xm
Ym ; k D 1; : : : ;M;

and

Y2MC1�m D Y2MC1�m C Y2MC1�k
@�k

@Xm

C X�k
@2�k

@Xm@Xj
Yj :

The second derivatives are 1, if � is a multiplication, 0
if � is an addition, and if � is unary only nonzero if j
= m. If we denote these second order terms by B, the
calculation ofH ei is equivalent to solving
�
I � L 0
B I � LS

�
Y D

�
ei
0

�
:

Here the superscript S indicates that L has been trans-
posed through both diagonals. The ith column of the
Hessian is then the last n values of Y . For the illustra-
tive example

f (x) D (x1x2 C sin x1 C 4)(3x22 C 6)

used in � Automatic differentiation: Calculation of the
Hessian, the off-diagonal nonzeros in the matrix which

we will denote by K, are

K3;1 D K20;18 D X2;

K3;2 D K19;18 D X1;

K4;1 D K20;17 D cos X1;

K5;3 D K18;16 D 1;

K5;4 D K17;16 D 1;
K6;5 D K16;15 D 1;

K7;2 D K19;14 D 2X2;

K8;7 D K14;13 D 3;

K9;8 D K13;12 D 1;

K10;6 D K15;11 D X9;

K10;9 D K12;11 D X6;

K12;6 D K14;9 D X�10;

K19;1 D K20;2 D X�3 ;

K19;2 D 2X�7 ;

K20;1 D �X�4 sin X1;

L contains 11 nonzeros and B contains 6. The matrix
is very sparse and the same sparse matrix techniques
could be used to solve this system of equations.

The Newton Step

As the notation is easier we will consider the Jacobian
case.

We have shown that if we solve (I � L) Y = em, then
columnm of the Jacobian J is in the last n terms of Y . If
we wish to evaluate J p we simply have to solve

(I � L)Y D p0

where p0 has its first n terms equal to p and the remain-
ing terms zero. Then the solution is again in the last n
terms of Y . To calculate the Newton step we know J d
as it must be equal to � s, but we do not know d. We
must therefore add the equations

YMCi D �si

to the equations, and delete the equations Yi = pi. For
convenience we will partition L, putting the first n
columns into A, retaining L for the remainder. So we
have to solve
�
�A I � L
0 E

��
d
Y

�
D

�
0
�s

�
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for d. The matrix E is rectangular and is full of zeros
except for the diagonals which are 1. Solving for d gives

E(I � L)�1Ad D �s;

so

J D E(I � L)�1A;

which is also the Schur complement of the sparse set of
equations.

One popular way of solving a sparse set of equations
is to form the Schur complement and solve the result-
ing equations, in this instance this becomes ‘form J and
solve J d = � s’, which would be the normal indirect
method. This also justifies the attention given in this ar-
ticle to the efficient calculation of J.

Griewank [12] observed that it may be possible to
calculate the Newton step more cheaply than forming
J and then solving the Newton equations. Utke [16]
demonstrated that a number of ways of solving the
sparse set of equations were indeed quicker. His imple-
mentation was compatible with ADOL-C and included
many rules for eliminating variables. This approach was
motivated by noting that if the Jacobian J = D + a b|,
where D is diagonal and a and b vectors, then J is full
and so solving J x = � s is an O(n3) operation. How-
ever introducing one extra variable z = b| x enables the
extended matrix to be solved very cheaply

b>x � z D 0;

Dx C az D �s

gives

x D �D�1(az C s);

z D �b>D�1(azC s);

so

z D �(1C b>D�1a)�1b>D�1s;

and then xmay be determined by substitution, which is
an O(n) operation. The challenge to find an automatic
process that finds such short cuts is still open.

L.C.W. Dixon [6] noted that the extended matrix
is an echelon form. An echelon matrix of degree k has
ones on the k super-diagonal and zeros above it. If the
lower part is sparse and contains NNZ nonzeros then

the Schur complement can be computed in kNNZ op-
erations and the Newton step obtained by solving the
resulting equations in O(k3) steps. The straight forward
sparse system is an echelon form with k = n, so he sug-
gested that by re-arranging rows and columns it might
be possible to reduce k. This would reduce the oper-
ations needed for both parts of the calculation. Many
sorting algorithms have been proposed for reducing the
echelon index of sparse matrices. J.S. Duff et al. [9] dis-
cuss the performance of methods known as P4 and P5.
R. Fletcher [10] introduced SPK1. Dixon and Z. Maany
[8] introduced another which when applied to the ex-
tended matrix of the extended Rosenbrock function re-
duces the echelon index from n to n/2 and gives a di-
agonal Schur complement. It follows that this method,
too, has considerable potential.

All these approaches still require further research.

Truncated Methods

Experience using the truncated Newton code has led
many researchers to doubt the wisdom of calculating
accurate Newton steps. Approximate solutions are of-
ten preferred in which the conjugate gradientmethod is
applied toH d =� g; this can be implemented by calcu-
lating H p at each inner iteration. H p can be calculated
very cheaply by a single forward doublet pass with ini-
tial values set at p through list for g obtained by reverse
differentiation. The operations required to compute H
p are therefore bounded by 15M.

If an iterative method is used to solve J d = � s, the
products J p and J| v can both be obtained cheaply, the
first by forward, the second by reverse automatic differ-
entiation.
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Satellites are used in a variety of systems for com-
munication and data collection. Familiar examples of
these systems include satellite networks for broadcast-
ing video programming, meteorological and geophysi-
cal data observation systems, the global positioning sys-
tem (GPS) for navigation, and military surveillance sys-
tems. Strictly speaking, these are systems in which satel-
lites are just one component, and in which there are
other primary subsystems that have no direct involve-
ment with satellites. Nevertheless, they will be referred
to as satellite systems for ease of reference.

Simple geometric models are often incorporated in
simulations of satellite system performance. Important
operational aspects of these systems, such as the times
when satellites can communicate with each other or
with installations on the ground (e. g. tracking stations),
depend on dynamics of satellite and station motion.
The geometric models represent these motions, as well
as constraints on communication or data collection.
For example, the region of space from which an an-
tenna on the ground can receive a signal might be mod-
eled as a cone, with its vertex centered on the antenna
and axis extending vertically upward. The antenna can
receive a signal from a satellite only when the satellite
is within the cone. Taking into account the motions of
the satellite and the earth, the geometric model predicts
when the satellite and tracking station can communi-
cate.

Elementary optimization problems often arise in
these geometric models. It may be of interest to de-
termine the closest approach of two satellites, or when
a satellite reaches a maximum elevation as observed
from a tracking station, or the extremes of angular ve-
locity and acceleration for a rotating antenna tracking
a satellite. Optimization problems like these are for-
mulated in terms of geometric variables, primarily dis-
tances and angles, as well as their derivatives with re-
spect to time. The derivatives appear both in the opti-
mization algorithms, as well as in functions to be op-
timized. One of the previously mentioned examples il-
lustrates this. When a satellite is being tracked from the
ground, the antenna often rotates about one or more
axes so as to remain pointed at the satellite. The angular
velocity and acceleration necessary for this motion are
the first and second derivatives of variables expressed
as angles in the geometric configuration of the antenna
and satellite. Determining the extreme values of these

derivatives is one of the optimization problems men-
tioned earlier.

Automatic differentiation is a feature that can be in-
cluded in a computer programming language to sim-
plify programs that compute derivatives. In the situa-
tion described above, satellite system simulations are
developed as computer programs that include com-
puted values for the distance and angle variables of
interest. With automatic differentiation, the values of
derivatives are an automatic by-product of the compu-
tation of variable values. As a result, the computer pro-
grammer does not have to develop and implement the
computer instructions that go into calculating deriva-
tive values. As a specific example of this idea, consider
again the rotating antenna tracking a satellite. Imag-
ine that the programmer has worked out the proper
equations to describe the angular position of the an-
tenna at any time. The simulation also needs to com-
pute values for the angular velocity and acceleration,
the first and second derivatives of angular position.
However, the programmer does not need to work out
the proper equations for these derivatives. As soon as
the equations for angular position are included in the
computer program, the programming language pro-
vides for the calculation of angular velocity and accel-
eration automatically. That is the effect of automatic
differentiation. Because the derivatives of geometric
variables such as distances and angles can be quite in-
volved, automatic differentiation results in computer
programs that are much easier to develop, debug, and
maintain.

The preceding comments have provided a brief
overview of geometric models for satellite systems, as
well as associated optimization problems and the use of
automatic differentiation. The discussion will now turn
to a more detailed examination of these topics.

Geometric Models

The geometric models for satellite systems are formu-
lated in the context of three-dimensional real space.
A conventional rectangular coordinate system is de-
fined by mutually perpendicular x, y, and z axes. The
earth is modeled as a sphere or ellipsoid centered at the
origin (0, 0, 0), with the north pole on the positive z
axis, and the equator in the xy plane. The coordinate
axes are considered to retain a constant orientation rel-
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ative to the fixed stars, so that the earth rotates about
the z axis.

In this setting, tracking station and satellite loca-
tions are represented by points moving in space. Each
such moving point is specified by a vector valued func-
tion r(t) = (x(t), y(t), z(t)) where t represents time. Ge-
ometric variables such as angles and distances can be
determined using standard vector operations:

c(x; y; z) D (cx; cy; cz);

(x; y; z)˙ (u; v;w) D (x ˙ u; y˙ v; z ˙ w);

(x; y; z) � (u; v;w) D xuC yv C zw;
(x; y; z) � (u; v;w)

D (yw � zv; zu � xw; xv � yu);

k(x; y; z)k D
q
x2 C y2 C z2

D
p
(x; y; z) � (x; y; z):

The distance between two points r and s is then given
by k r � s k. The angle � defined by rays from point r
through points p and q is determined by

cos � D
(p� r) � (q� r)
kp � rk � kq � rk

:

A more complete discussion of vector operations, their
properties, and geometric interpretation can be found
in any calculus textbook; [9] is one example.

There are a variety of models for the motions of
points representing satellites and tracking stations. The
familiar conceptions of a uniformly rotating earth cir-
cled by satellites that travel in stable closed orbits is
only approximately correct. For qualitative simulations
of the performance of satellite systems, particularly at
preliminary stages of system design, these models may
be adequate. More involved models can take into ac-
count such effects as the asphericity of the gravitational
field of the earth, periodic wobbling of the earth’s axis of
rotation, or atmospheric drag, to name a few. Modeling
the motions of the earth and satellites with high fidelity
is a difficult endeavor, and one that has been studied
extensively. Good general references for this subject are
[1,2,3,10].

For illustrative purposes, a few of the details will
be presented for the simplest models, circular orbits
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around a spherical earth, uniformly spinning on a fixed
axis. The radius of the earth will be denoted Re.

As a starting point, the rotation of the earth can
be specified by a single function of time, ˝(t), repre-
senting the angular displacement of the prime merid-
ian from a fixed direction, typically the direction speci-
fied by the positive x axis (see Fig. 1.). At any time, the
positive x axis emerges from the surface of the earth at
some point on the equator. Suppose that at a particular
time t, the point where the positive x axis emerges hap-
pens to be on the prime meridian, located at latitude
0 and longitude 0. Then ˝(t) = 0 for that t. As time
progresses, the prime meridian rotates away from the x
axis, counter-clockwise as viewed by an observer above
the north pole. The function ˝ measures the angle of
rotation, starting at 0 each time the prime meridian is
aligned with the x axis, and increasing toward a maxi-
mum of 360° (2 
 in radian measure) with each rota-
tion of the earth. With a uniformly spinning earth, ˝
increases linearly with t during each rotation.

Once ˝ is specified, any terrestrial location given
by a latitude �, longitude �, and altitude a can be trans-
formed into absolute coordinates in space, according to
the equations

� D �C˝(t); (1)

r D Re C a; (2)

x D r cos � cos�; (3)
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y D r sin � cos �; (4)

z D r sin �: (5)

Holding latitude, longitude, and altitude constant, these
equations express the position in space of a fixed loca-
tion on the earth for any time, thereby modeling the
point’s motion. It is also possible to develop models for
tracking stations that are moving on the surface of the
earth, say on an aircraft or on a ship in the ocean. For
example, if it is assumed that the moving craft is trav-
eling at constant speed on a great circle arc or along
a line of constant latitude, it is not difficult to express
latitude and longitude as functions of time. In this case,
the equations above reflect a dependence on t in � and
�, as well as in˝ . A more complicated example would
be to model the motion of a missile or rocket launched
from the ground. This can be accomplished in a similar
way: specify the trajectory in earth relative terms, that
is, using latitude, longitude, and altitude, and then com-
pute the absolute spatial coordinates (x, y, z). In each
case, the rotation of the earth is accounted for solely by
the effect of˝(t).

For a satellite in circular orbit, the position at any
time is specified by an equation of the following form:

r(t) D r[cos(!t)uC sin(!t)v]:

In this equation, ! t is understood as an angle in radian
measure for the sin and cos operations; r, !, u, and v
are constants. The first, r is the length of the orbit cir-
cle’s radius. It is equal to the sum of the earth’s radius
Re and the satellite’s altitude. The constant ! is the an-
gular speed of the satellite. The satellite completes an
orbit every 2
/! units of time, thus giving the orbital
period. Both u and v are unit vectors: u is parallel to the
initial position of the satellite; v is parallel to the initial
velocity. See Fig. 2.

Mathematically, the equation above describes some
sort of orbit no matter how the constants are selected.
But not all of these are accurate descriptions of a free
falling satellite in circular orbit. For one thing, u and v
must be perpendicular to produce a circular orbit. In
addition, there is a physical relationship linking r and
!. Assuming that the circular orbit follows Newton’s
laws of motion and gravitation, r and ! satisfy

! D Kr�
3
2 (6)
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where K is a physical constant that depends on both
Newton’s universal gravitational constant and the mass
of the earth. Its numerical value also depends on the
units of measurement used for time and distance. For
units of hours and kilometers, the value of K is 2.27285 �
106. As this relationship shows, for a given altitude (and
hence a given value of r), there is a unique angular speed
at which a satellite will maintain a circular orbit. Equiv-
alently, the altitude of a circular orbit determines the
constant speed of the satellite, as well as the period of
the satellite.

Generally, constants are chosen for a circular orbit
based on some geometric description. Here is a typical
approach. Assume that the initial position of the satel-
lite is directly above the equator, with latitude 0, a given
longitude, and a given altitude. In other words, assume
that the initial position is in the plane of the equator,
and so has a z coordinate of 0. (This is the situation de-
picted in Fig. 2.) Moreover, the initial heading of the
satellite can be specified in terms of the angle it makes
with the xy plane (which is the plane of the equator).
Call that angle ı. From these assumptions we can de-
termine values for the constants r, !, u, and v in the
equation for r(t). Now the altitude for the orbit is con-
stant, so the initial altitude determines r, as well as ! via
equation (6). The initial latitude, longitude, and altitude
also provide enough information to determine absolute
coordinates (x, y, z) for the initial satellite position us-
ing equations (1)–(5). Accordingly, the unit vector u is
given by

u D
(x; y; z)
k(x; y; z)k

:

As already observed, the z coordinate of u will be 0. Fi-
nally, the unit vector v is determined from the initial
position and heading. It is known that vmake an angle
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of ı with the xy plane, and hence makes an angle of 
/2
� ı with the z axis. This observation can be expressed
as the equation

v � (0; 0; 1) D sin ı:

It is also known that vmust be perpendicular to u, so

v � u D 0:

Finally, since v is a unit vector,

v � v D 1:

If u = (u1, u2, 0), then these three equations lead to v
= (˙ u2 cos ı, � u1 cos ı, sin ı). The ambiguous sign
can be resolved by assuming that the direction of orbit
is either in agreement with or contrary to the direction
of the earth’s rotation. Assuming that the orbit is in the
same direction as the earth’s rotation, v = (� u2 cos ı, u1
cos ı, sin ı). The alternative possibility, that the satellite
orbit opposes the rotation of the earth, is generally not
practically feasible, so is rarely encountered.

The preceding paragraphs are intended to provide
some insight about the mathematics used to describe
the movement of satellites and terrestrial observers. Al-
though the models presented here are the simplest ones
available, they appear in the same general framework as
much more sophisticated models. In particular, in any
of these models, it is necessary to be able to compute
instantaneous positions for satellites and terrestrial ob-
servers at any time during a simulation. Moreover, the
use of vector algebra and geometry to set up the simple
models is representative of the methods used in more
complicated cases.

Sample Optimization Problems

Computer simulations of satellite system performance
provide one tool for comparing alternative designs and
making cost/benefit trade-offs in the design process.
Optimization problems contribute both directly and in-
directly. In many cases, system performance is charac-
terized in terms of extreme values of variables: what is
the maximum number of users that can be accommo-
dated by a communications system? At a given latitude,
what is the longest period of time during which at most
three satellites can be detected from some point on the
ground? In these examples, the optimization problems
are directly connected with the goals of the simulation.

Optimization problems also arise indirectly as part
of the logistics of the simulation software. This is par-
ticularly the case when a simulation involves events that
trigger some kind of system response. Examples of such
events include the passage of a satellite into or out of
sunlight, reaching a critical level of some resource such
as power or data storage, or the initiation or termina-
tion of radio contact with a tracking station. The de-
tection of these events typically involves either root lo-
cation or optimization. These processes are closely re-
lated: the root of an equation can usually be charac-
terized as an extreme value of a variable within a suit-
able domain; conversely, optimization algorithms often
generate candidate solutions by solving equations.

In many of these event identification problems, the
independent variable is time. The objective functions
ultimately depend on the geometric models for satel-
lite and tracking station motion, and so can be formu-
lated in terms of explicit functions of time. In contrast,
some of the optimization problems that concern di-
rect estimation of system performance seek to optimize
that performance by varying design parameters. A typ-
ical approach to this kind of problem is to treat perfor-
mance measures as functions of the parameters, where
the values of the functions are determined through sim-
ulation. Both kinds of optimization are illustrated in the
following examples.

Minimum Range

As a very simple example of an optimization problem,
it is sometimes of interest to determine the closest ap-
proach of two orbiting bodies. Assume that a model has
been developed, with r(t) and s(t) representing the po-
sitions at time t for the two bodies. The distance be-
tween them is then expressed as k r(t) � s(t) k. This is
the objective function to be minimized. Observe that it
is simply expressed as a composition of vector opera-
tions and the motion models for the two bodies.

A variation of this problem occurs when several
satellites are required to stay in radio communication.
In that case, an antenna on one satellite (at position A,
say) may need to detect signals from two others (at po-
sitions B and C). In this setting, the measure of †BAC
is of interest. If the angle is wide, the antenna requires
a correspondingly wide field of view. As the satellites
proceed in their orbits, what is the maximum value of
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the angle? Equivalently, what is the minimum value of
the cosine of the angle? As before, the objective function
in this minimization problem is easily expressed by ap-
plying vector operations to the position models for the
satellites. If a(t), b(t), and c(t) are the position functions
for the three satellites, then

cos†BAC D
(b � a) � (c � a)
kb� ak � kc� ak

:

This is a good example of combining vector operations
with the models for satellite motion to derive the ob-
jective function in an optimization problem. The next
example is similar in style, but mathematically more in-
volved.

Direction Angles and Their Derivatives

A common aspect of satellite system simulation is the
representation of sensors of various kinds. The images
that satellites beam to earth of weather systems and
geophysical features are captured by sensors. Sensors
are also used to locate prominent astronomical features
such as the sun, the earth, and in some cases bright
stars, in order to evaluate and control the satellite’s at-
titude. Even the antenna used for communication is
a kind of sensor. It is frequently convenient to define
a coordinate system that is attached to a sensor, that is,
define three mutually perpendicular axes which inter-
sect at the sensor location, and which can be used as an
alternate means to assign coordinates to points in space.
Such a coordinate system is then used to describe the
vectors from the sensor to other objects, and to model
sensor sensitivity to signals arriving from various direc-
tions. With several different coordinate systems in use,
it is necessary to transform information described rela-
tive to one system into a form that makes sense in the
context of another system. This process also often in-
volves what are called direction angles.

As a concrete example, consider an antenna at
a fixed location on the earth, tracking a satellite in orbit.
The coordinate system attached to the tracking antenna
is the natural map coordinate system at that point on
the earth: the local x and y axes point east and north, re-
spectively, and the z axis points straight up (Fig. 3). The
direction from the station to the satellite is expressed
in terms of two angles: the elevation ı of the satellite
above the local xy plane, and the compass angle ˛ mea-
sured clockwise from north. (See Fig. 4.) To illustrate,
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Local map coordinates

here is the meaning of an elevation of 30 degrees and
a compass angle of 270 degrees. Begin by looking due
north. Turn clockwise through 270 degrees, maintain-
ing a line of sight that is parallel to the local xy plane. At
that point you are looking due west. Now raise the line
of sight until it makes a 30 degree angle with the local
xy plane. This direction of view, with elevation 30 and
compass angle 270 degrees, might thus be described as
30 degrees above a ray 270 degrees clockwise from due
north. The elevation and compass angle are examples
of direction angles. Looked at another way, if a spher-
ical coordinate system is imposed on the local rectan-

Automatic Differentiation: Geometry of Satellites and Track-
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Compass and elevation angles
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gular system at the antenna, then every point in space
is described by a distance and two angles. The angles
are direction angles. Direction angles can be defined in
a similar way for any local coordinate system attached
to a sensor.

How are direction angles computed? In general
terms, the basic idea is to define the local coordinate
system in terms of moving vectors, and then to use vec-
tor operations to define the instantaneous value of di-
rection angles. Here is a formulation for the earth based
antenna. First, the local z axis points straight up. That
means the vector from the center of the earth to the lo-
cation of the antenna on the surface is parallel to the
z axis. Given the latitude, longitude, and altitude of the
antenna, its absolute position r(t) = (x, y, z) is computed
using equations (1)–(5), as discussed earlier. The paral-
lel unit vector is then given by r/ k r k. To distinguish
this from the global z axis, we denote it as the vector up.
The vector pointing due east must be perpendicular to
the up direction. It also must be parallel to the equato-
rial plane, and hence perpendicular to the global z axis.
Using properties of vector cross products, a unit vector
pointing east can therefore be expressed as

east D
(0; 0; 1) � up
k(0; 0; 1) � upk

:

Finally, the third perpendicular vector is given by the
cross product of the other two: north = up × east. Note
that these vectors are defined as functions of time. At
each value of t the earth motion model gives an instan-
taneous value for r(t), and that, in turn, determines the
vectors up, east, and north.

Next, suppose that a satellite is included in the
model, with instantaneous position s(t). The view vec-
tor from the antenna to the satellite is given by v(t) =
[s(t) � r(t)]/ k s(t) � r(t) k. The goal is to calculate the
direction angles ˛ and ı for v. Since ı measures the an-
gle between v and the plane of east and north, the com-
plimentary angle can be measured between v and up.
This leads to the equation

sin ı D up � v:

The angle ˛ is found from

vn D v � north

ve D v � east

according to the equations

cos ˛ D
vnp

v2n C v2e

sin ˛ D
vep

v2n C v2e
:

These follow from the fact that the projection of v into
the local xy plane is given by ve east + vn north.

In this example, direction angles play a role in sev-
eral optimization problems. First, it may be of interest
to predict the maximum value of ı as a satellite passes
over the tracking station. This maximum value of ele-
vation is an indication of how close the satellite comes
to passing directly overhead, and may be used to deter-
mine whether communication will be possible between
satellite and tracking station.

Additional optimization problems concern the
derivatives of ˛ and ı. In many designs, an antenna can
turn about horizontal and vertical axes to point the cen-
ter of the field of view in a particular direction. In order
to stay pointed at a passing satellite, the antenna must
be rotated on its axes so as to match the motion of the
satellite, and ˛ and ı specify exactly how far the antenna
must be rotated about each axis at each time. However,
there are mechanical limits on how fast the antenna can
turn and accelerate. For this reason, during the time
that the satellite is in view, the maximum values of the
first and second derivatives of ˛ and ı are of interest.
If the first derivatives exceed the antenna’s maximum
turning speed, or if the second derivatives exceed the
antenna’s maximum acceleration, the antenna will not
be able to remain pointed at the satellite.

Design Parameter Optimization

The preceding examples all involve simple kinds of op-
timization problems with objective functions depend-
ing only on time. There are also many situations in
which system performance variables are optimized over
some domain of design parameters. As one example of
this, consider a system with a single satellite traveling in
a circular orbit. Assume that the initial point of the or-
bit falls on the equator, with angle ı between the initial
heading and the xy plane, as in Fig. 2. In this example,
the object is to choose an optimal value of ı. The opti-
mization problem includes several tracking stations on
the ground that are capable of communicating with the
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satellite. As it orbits, there may be times when the satel-
lite cannot communicate with any of the tracking sta-
tions. At other times, one or more stations may be ac-
cessible. Over the simulation period, the total amount
of time during which at least one tracking station is ac-
cessible will depend on the value of ı. It is this total
amount of access time (denoted A) that is to be max-
imized.

In this problem, the objective function A is not
given as a mathematical expression involving the vari-
able ı. An appropriate simulation can be created to
computeA for any particular ı of interest. This can then
be used in conjunction with an optimization algorithm,
with the simulation executed each time it is necessary
to calculate A(ı).

The preceding example is a simple one, and the ex-
ecution time required to compute A(ı) is small. For
more complicated situations, each execution of the sim-
ulation can require a significant amount of time. In
these cases, it may be more practical to use some sort
of interpolation scheme. The idea would be to run the
simulation for some values of the parameter(s), and to
interpolate between these values as needed during the
optimization process.

In some situations, there is a resource allocation
problem that can add yet another level of complexity to
optimizing system performance. For example, if there
are several satellites that must compete for connection
time with the various tracking stations, just determin-
ing how to assign the tracking stations to the satellites
is not a simple matter. In this situation, there may be
one kind of optimization problem performed during
the simulation to make the resource allocations, and
then a secondary optimization that considers the effect
of changing system design parameters. An example of
this kind of problem is described in detail in [6].

The preceding examples have been provided to il-
lustrate the kinds of optimization problems that arise
in simulations of satellite systems. Although there has
been very little discussion of methods to solve these op-
timization problems, it should be clear that standard
methods apply, especially in the cases for which the in-
dependent variable is time. In that context, the ability
to compute derivatives relative to time for the objec-
tive function is of interest. In addition, it sometimes
occurs that the objective function is, itself, defined as
a derivative of some geometric variable, providing an-

other motivation for computing derivatives. The next
topic of discussion concerns the use of automatic dif-
ferentiation for computing the desired derivatives.

Automatic Differentiation

Automatic differentiation refers to a family of tech-
niques for automatically computing derivatives as
a byproduct of function evaluation. A survey of differ-
ent approaches and applications can be found in [5] and
in-depth treatment appears in [4]. For the present dis-
cussion, attention will be restricted to what is called the
forward mode of automatic differentiation, and in par-
ticular, the approach described in [8]. In this approach,
to provide automatic calculation of the first m deriva-
tives of real valued expressions of a single variable x,
an algebraic system is defined consisting of real m+ 1
tuples, to which are extended the familiar binary op-
erations and elementary functions generally defined on
real variables. For concreteness,mwill be assumed to be
3 below, but the discussion can be generalized to other
values in an obvious way.

With m = 3, the objects manipulated by the auto-
matic differentiation system are 4-tuples. The idea is
that each 4-tuple represents the value of a function and
its first 3 derivatives, and that the operations on tuples
preserve this interpretation. Thus, if a = (a0, a1, a2, a3)
consists of the value of f (t), f 0(t), f 00(t), and f 00 0(t) at
some t, and if b = (b0, b1, b2, b3) is similarly defined
for function g, then the product ab that is defined for
the automatic differentiation system will consist of the
value at t of fg and its first 3 derivatives. Similarly, the
extension of the squareroot function to 4-tuples is so
contrived that

p
a will consist of the value of

p
f (t) and

its first 3 derivatives.
In the preceding remarks, the functions f and g are

assumed to be real valued, but similar ideas work for
vector valued functions. The principle difference is this:
when f (t) is a vector, then so are its derivatives, and the
ai referred to above are then vectors rather than scalars.
In addition, for vector valued functions, there are dif-
ferent operations than for scalar valued functions. For
example, vector functions may be combined with a dot
product, as opposed to the conventional product of real
scalars, and while the squareroot operation is not de-
fined for vector valued functions, the norm operation k
f (t) k is.
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In an automatic differentiation system built along
these lines, there must be some functions that are evalu-
ated directly to produce 4-tuples. For example, the con-
stant function with value c can be evaluated directly to
produce the tuple (c, 0, 0, 0), and the identity function
I(t) = t can be evaluated directly to produce (t, 1, 0,
0). For geometric satellite system simulations, it is also
convenient to provide direct evaluation of tuples for the
motion models. For example, let r(t) be the position
vector for a tracking station, as developed in equations
(1)–(5). It is a simple matter to work out appropriate
formulas for the first three derivatives of r(t), each of
which is also a vector. This is included in the automatic
differentiation system so that when a particular value of
t is given, the motion model computes the 4-tuple (r(t),
r0(t), r00(t), r000(t). A similar arrangement is made for
every moving object represented in the simulation, in-
cluding satellites, tracking stations, ships, aircraft, and
so on.

Here is a simple example of how automatic differen-
tiation is used. In the earlier discussion of optimization
problems, there appeared the following equation:

cos†BAC D
(b� a) � (c� a)
kb � ak � kc� ak

:

Using automatic differentiation, a, b, and c would be
4-tuples, each consisting of four vectors. These are pro-
duced by the motion models for three satellites, as the
values of position and its first three derivatives at a spe-
cific time. The operations used in the equation, vector
difference, dot product, and norm, as well as scalar mul-
tiplication and division, are all special modified opera-
tions that work directly on 4-tuples. The end result is
also a 4-tuple, consisting of the cosine of angle BAC,
as well as the first three derivatives of that function, all
at the specified value of t. As a result, the programmer
can obtain computed values for the derivatives of the
function without explicitly coding equations for these
derivatives. More generally, after defining appropriate
4-tuples for all of the motion models, the programmer
automatically obtains derivatives for any function that
is defined by operating on the motion models, just by
defining the operations. No explicit representation of
the derivatives of the operations is needed. Some details
of how the system works follow.

Scalar Functions and Operations

Consider first operations which apply to scalars. There
are two basic types: binary operations (+, �, ×, �) and
elementary functions (squareroot, exponential and log-
arithm, trigonometric functions, etc.). These operations
must be defined for the 4-tuples of the automatic dif-
ferentiation system in such a way that derivatives are
correctly propagated.

The definition for multiplication will illustrate the
general approach for binary operations. Suppose that
(a, b, c, d) and (u, v, w, x) are two 4-tuples of scalars.
They represent values of functions and their deriva-
tives, say, (a, b, c, d) = (f (t), f0(t), f 00(t), f000(t)) and (u,
v, w, x) = (g(t), g0(t), g000(t), g000(t)). The product is sup-
posed to give ((fg) (t), (fg)0(t), (fg)00(t), (fg)00(t)). Each of
these derivatives can be computed using the derivatives
of f and g.

( f g)(t) D f (t)g(t);

( f g)0(t) D f 0(t)g(t)C f (t)g0(t);
( f g)00(t) D f 00(t)g(t)C 2 f 0(t)g0(t)C f (t)g00(t);

( f g)000(t)) D f 000(t)g(t)C 3 f 00(t)g0(t)

C 3 f 0(t)g00(t)C f (t)g000(t)):

On the right side of each equation, now substitute the
entries of (a, b, c, d) and (u, v, w, x).

( f g)(t) D au;

( f g)0(t) D av C bu;

( f g)00(t) D aw C 2bv C cu;

( f g)000(t)) D ax C 3bw C 3cv C du:

This shows that 4-tuples must be multiplied according
to the rule

(a; b; c; d)(u; v;w; x)

D (au; avC bu; aw C 2bv C cu;

ax C 3bw C 3cv C du):

For addition, subtraction, and division a similar ap-
proach can be used. All that is required is that succes-
sive derivatives of the combination of f and g be ex-
pressed in terms of the derivatives of f and g separately.
Replacing these derivatives with the appropriate com-
ponents of (a, b, c, d) and (u, v, w, x) produces the de-
sired formula for operating on 4-tuples.
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To define the operation on a 4-tuple of an elemen-
tary function, a similar approach will work. Consider
defining how a function h should apply to a 4-tuple (a,
b, c, d) = (f (t), f0(t), f 00(t), f00(t). This time, the desired
end result should contain derivatives for the compos-
ite function h ı f , and so should have the form ((h ı f )
(t), (h ı f )0(t), (h ı f )00(t), (h ı f )000(t)) The derivative
of h ı f is given by h0(f (t)) f 0(t), which becomes h0(a)
b after substitution. Similar computations produce ex-
pressions for the second and third derivatives:

(h ı f )00(t)

D h00( f (t)) f 0(t)2 C h0( f (t)) f 00(t)

D h00(a)b2 C h0(a)c

and

(h ı f )000(t)

D h000( f (t)) f 0(t)3 C 3h00( f (t)) f 0(t) f 00(t)

C h0( f (t)) f 000(t)

D h000(a)b3 C 3h00(a)bcC h0(a)d:

These results lead to

h(a; b; c; d)

D (h(a); h0(a)b; h00(a)b2 C h0(a)c;

h000(a)b3 C 3h00(a)bc C h0(a)d):

As an example of how this is applied, let h(t) = et . Then
h(a) = h0(a) = h00(a) = h000(a) = ea so

e(a;b;c;d)

D (ea; eab; eab2 C eac; eab3 C 3eabc C ead)

D ea(1; b; b2 C c; b3 C 3bc C d):

Other functions are a little more complicated, but the
overall approach is generally correct.

The preceding discussion indicates how operations
on 4-tuples would be built into an automatic differenti-
ation system. However, the user of such a system would
simply apply the operations. So, if an appropriate defi-
nition has been provided for ˝(t) as discussed earlier,
along with the derivatives, the programwould compute
a 4-tuple for ˝ and its derivatives at a particular time.
Say that is represented in the program by the variable
W. If the program later includes the call sin(W), the re-
sult would be a 4-tuple with values for sin(˝(t)), and
the first three derivatives.

Vector Functions and Operations

The approach for vector functions is basically the same
as for scalar functions. The only modification that is
needed is to recognize that the components of 4-tu-
ples are now vectors. Because the rules for computing
derivatives of vector operations are so similar to those
for scalar operations, there is little difference in the ap-
pearance of the definitions. For example, here is the def-
inition for the dot product of two 4-tuples, whose com-
ponents are vectors:

(a; b; c; d) � (u; v;w; x)

D (a � u; a � v C b � u; a � w C 2b � v C c � u;

a � x C 3b � w C 3c � v C d � u):

The formulation for vector cross product is virtually
identical, as is the product of a scalar 4-tuple with a vec-
tor 4-tuple. For the vector norm, simply define

k(a; b; c; d)k D
p
(a; b; c; d) � (a; b; c; d):

Since both dot product of vector 4-tuples and square-
root of scalar 4-tuples have already been defined in
the automatic differentiation system, this equation will
propagate derivatives correctly.

With a full complement of scalar and vector oper-
ations provided by the automatic differentiation sys-
tem, all of the geometric variables discussed in previ-
ous examples can be included in a computer program,
with derivatives generated automatically. As a partic-
ular case, reconsider the discussion earlier of comput-
ing elevation ı and compass angle ˛ for a satellite as
viewed from a tracking station. Assuming that r and
s have been defined as 4-tuples for the vector posi-
tions of that station and satellite, the following fragment
of pseudocode would carry out the computations de-
scribed earlier:

up = r/norm(r)
east = cross(pole, up)
east = east/norm(east)
north = cross(up, east)
v = (s�r)/norm(s�r)
vn = dot(v, north)
ve = dot(v, east)
vu = dot(v, up)

delta = asin(vu)
alpha = atan2(ve, vn)
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Executed in an automatic differentiation system,
this code produces not just the instantaneous values of
the angles ˛ and ı, but their first three derivatives, as
well. The programmer does not need to derive and code
explicit equations for these derivatives, a huge savings
in this problem. And all of the derivative information is
useful. Recall that the first and second derivatives are of
interest for their physical interpretations as angular ve-
locities and accelerations. The third derivatives are used
in finding the maximum values of the second deriva-
tives (accelerations).

Implementation Methods

One of the simplest ways to implement automatic dif-
ferentiation is to use a language like C++ that sup-
ports the definition of abstract data types and operator
overloading. Then the automatic differentiation system
would be implemented as a series of data types and op-
erations, and included as part of the code for a simula-
tion. A discussion of one such implementation can be
found in [7].

Another approach is to develop a preprocessor that
automatically augments code with the steps needed to
compute derivatives. With such a system, the program-
mer develops code in a conventional language such as
FORTRAN, with some additional features that con-
trol the application of automatic differentiation. Next,
this code is operated on by the preprocessor, produc-
ing a modified program. That is then compiled and ex-
ecuted in the usual way. Examples of this approach can
be found in [5].

Summary

Geometric models are very useful in representing the
motions of satellites and terrestrial objects in simula-
tions of satellite systems. These models are defined in
terms of vector operations, which permit the conve-
nient formulation of equations for geometric constructs
such as distances and angles arising in the satellite sys-
tem configuration. Equations which specify instanta-
neous positions in space of moving objects are a funda-
mental component of the geometric modeling frame-
work.

Optimization problems occur in this framework in
two guises. First, there are problems in which the ob-
jective functions are directly defined as features of the

geometric setting. An example of this would be to find
the minimum distance between two satellites. Second,
measures of system performance are derived via sim-
ulation as a function of design parameters, and these
measures are optimized by varying the parameters. An
example of this kind of problem would be to seek a par-
ticular orbit geometry in order to maximize the total
amount of time a satellite has available to communicate
with a network of tracking stations.

Automatic differentiation is a feature of an envi-
ronment for implementing simulations as computer
programs. In an automatic differentiation system, the
equations which define values of variables automati-
cally produce the values of the derivatives, as well. In
the geometric models of satellite systems, derivatives of
some variables are of intrinsic interest as velocities and
accelerations. Derivatives are also useful in solving op-
timization problems.

Automatic differentiation can be provided by re-
placing single operands with tuples, representing the
operands and their derivatives. For some tuples, the
derivatives must be explicitly provided. This is the case
for the motion models. For tuples representing combi-
nations of the motion models, the derivatives are gen-
erated automatically. These combinations can be de-
fined using any of the supported operations provided
by the automatic differentiation system, typically in-
cluding the operations of scalar and vector arithmetic,
as well as scalar functions such as exponential, loga-
rithmic, and trigonometric functions. Languages which
support abstract data types and operator overloading
are a convenient setting for implementing an automatic
differentiation system.
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Introduction

Most numerical algorithms for analyzing or optimizing
the performance of a nonlinear system require the par-
tial derivatives of functions that describe a mathemat-
ical model of the system. The automatic differentiation
(abbreviated as AD in the following), or its synonym,
computational differentiation, is an efficient method for
computing the numerical values of the derivatives. AD
combines advantages of numerical computation and
those of symbolic computation [2,4].

Given a vector-valued function f: Rn! Rm:

y D f(x) �

0
B@

f1(x1; : : : ; xn)
:::

fm(x1; : : : ; xn)

1
CA (1)

of n variables represented by a big program with hun-
dreds or thousands of program statements, one often
had encountered (before the advent of AD) some diffi-
culties in computing the partial derivatives @f i/@xj with
conventional methods (as will be shown below). Now,
one can successfully differentiate them with AD, deriv-
ing from the program for f another program that ef-
ficiently computes the numerical values of the partial
derivatives.

AD is entirely different from the well-known nu-
merical approximation with quotients of finite differ-
ences, or numerical differentiation. The quotients of fi-
nite differences, such as (f (x + h)� f (x))/h and (f (x
+ h) � f (x � h))/2h, approximate the derivative f 0(x),
where truncation errors are of O(h) and O(h2), respec-
tively, but there is an insurmountable difficulty to com-
pute better and better approximation. For, although an
appropriately small value of h is chosen, it may fail to
compute the values of the function when x˙ h is out of
the domain of f , and, furthermore, the effect of round-
ing errors in computing the values of the functions is of
problem.
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AD is also different from symbolic differentiation
with a symbolic manipulator. The symbolic differen-
tiation derives the expressions of the partial deriva-
tives rather than the values. The mathematical model
of a large scale system may be described in thousands of
program statements so that it becomes very difficult to
handle whole of them with an existing symbolic manip-
ulator. (There are a few manipulators combined with
AD, which can handle such large scale programs. They
should be AD regarded as a symbolic manipulator.)

Example 1 Program 1 computes an output value y1 as
a composite function f 1 for given input values x1 = 2, x2
= 3, x3 = 4:

y1 D f1(x1; x2; x3) D
x1(x2 � x3)

exp(x1(x2 � x3))C 1
: (2)

IF (x2.le.x3)
THEN y1 = x1(x2� x3)
ELSE y1 = x1(x2 + x3)

ENDIF
y1 = y1/(exp(y1) + 1).

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 1
Example

The execution of this program is traced by a se-
quence of assignment statements (Program 2).

y1 x1(x2 � x3),
y1 y1/(exp(y1) + 1).

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 2
Program 1 expanded to straight line program for the speci-
fied input values

A set of unary or binary arithmetic operators (+, �,

, /) and elementary transcendental functions (exp, log,
sin, cos, . . . ) that may be used in the programs will be
called basic operations. (Some special operations such
as those generating ‘constant’ and ‘input’ are also to be
counted among basic operations.) Program 2 can be ex-
panded into a sequence of assignment statements each
of whose right side has only one basic operation (Pro-
gram 3), where z1, . . . , zs are temporary variables (s = 2
for this example).

1 z1  x2 � x3,
2 z1  x1 
 z1,
3 z2  exp(z1),
4 z2  z2 + 1,
5 z1  z1/z2.

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 3
Expanded history of execution with each line having only
one basic operation

Moreover, it is useful to rewrite Program 3 into a se-
quence of single assignment statements, in which each
variable appears at most once in the left sides (Pro-
gram 4), hence, ‘ ’ can be replaced by ‘ = ’.

1 v1  x2 � x3,
2 v2  x1 
 v1,
3 v3  exp(v2),
4 v4  v3 + 1;,
5 v5  v2/v4,

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 4
Computational process

The sequence is called a computational process,
where the additional variables v1, . . . , v5 are called in-
termediate variables that keep the intermediate results.
A graph called a computational graph, G = (V , A), may
be used to represent the process (see Fig. 1).

Algorithms

There are two modes for AD algorithm, forward mode
and reverse mode. The forward mode is to compute
@yi/@xj (i = 1, . . . , m) for a fixed j, whereas the reverse
mode is to compute @yi/@xj (j = 1, . . . , n) for a fixed i.

The forward mode corresponds to tracing an ex-
panded program such as Program 3 in the natural or-
der. Assume that execution of the kth assignment in the
program is represented as

zc   k (za; zb) : (3)

When the values of both @za/@xj and @zb/@xj are known,
@zc/@xj can be computed by applying the chain rule of
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Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Figure 1
Computational graph

differentiation to (3):

@zc
@x j
 

@ k

@za
@za
@x j
C
@ k

@zb
@zb
@x j

: (4)

@ k/@za and @ k/@zb are called elementary partial
derivatives, and are computed by Table 1 for various
 k.

Introducing new variables z1; : : : ; zs , x1; : : : ; xn
corresponding to @z1/@xj, . . . , @zs/@xj, @x1/@xj, . . . ,
@xn/@xj, respectively, and initializing xk  0 (1 � k
� n, k 6D j) and x j  1, we may express (4) as

zc  
@ k

@za
za C

@ k

@zb
zb : (5)

Thus, we can write down the whole program for the for-
ward mode as shown in Program 5.

The reverse mode corresponds to tracing a com-
putational process such as Program 4 backwards. The
kth computational step, i. e., execution of the kth assign-
ment in the program, can be written in general as

vk D  k (uk1; uk2)juk1Dv˛k ;uk2Dvˇk
; (6)

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Table 1
Elementary partial derivatives

zc D  (za; zb)
# 

#za

# 

#zb
zc D za ˙ zb 1 ˙1
zc D za � zb zb za
zc D za/zb 1/zb �za/z2b (D �zc/zb)
zc D
p
za 1

2 /
p
za(D 1

2 /zc) –
zc D log(za) 1/za –
zc D exp(za) exp(za)(D zc) –
zc D cos(za) � sin(za) –
zc D sin(za) cos(za) –
:::

:::
:::

Initialization
x j  1,
x  0 (1 � k � n; k ¤ j),
Forward algorithm:

1 z1  x2 � x3,
10 z1  1 
 x2 � 1 
 x3,
20 z1  z1 
 x1 + x1 
 z1,
2 z1  x1 
 z1,
3 z2  exp(z1),
30 z2  z2 
 z1,
4 z2  z2 + 1,
40 z2  1 
 z2,
5 z1  z1/z2,
50 z1  (1/z2) 
 z1 � (z1/z2) 
 z2

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 5
Forwardmode program for differentation

where uk, 1 and uk, 2 are formal parameters, v˛k and vˇk
are real parameters representing some of x1, . . . , xn, v1,
. . . , vk� 1. If  k is unary, uk, 2 and vˇk are omitted. Let
r be the total number of computational steps. In Pro-
gram 4, we have r = 5 and, for k = 2, e. g.,  2 = ‘
’, v˛2
= x1 and vˇ2 = v1.

The total differentiation of (6) yields the relations
among dx1, . . . , dxn, dv1, . . . , dvr such as follows:

dvk D
@ k

@uk;1
dv˛k C

@ k

@uk;2
dvˇk (k D 1; : : : ; r) : (7)

The computation of the partial derivatives of the ith
component of the final result yi = f i(x1, . . . , xn) in (1)
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with respect to x1, . . . , xn is that of the coefficients of the
relation among dx1, . . . , dxn and dyi.

Here, new variables x1; : : : ; xn , v1; : : : ; vr are intro-
duced for the computation of those coefficients. With-
out loss of generality, we may assume that the value of
yi is computed at vr . After Program 4 is executed in the
natural order with all the information on intermediate
results preserved, these new variables are initialized as
x j  0 (j = 1, . . . , n), vk  0 (k = 1, . . . , r� 1) and
vr  1, then the relation

dy D
nX
jD1

x jdx j C

rX
kD1

vkdvk (8)

holds. Secondly, dvr , dvr � 1, . . . , dvk can be eliminated
from (8) in this order by modifying

v˛k  v˛k C vk
@ k

@v˛k
; (9)

vˇk  vˇk C vk
@ k

@vˇk
: (10)

Finally, if we change k in the reverse order, i. e., k= r,
r� 1, . . . , 1, we can successfully eliminate all the dvk
(k= 1, . . . , r) to have

dy D
nX
jD1

x jdx j : (11)

The final coefficient x j indicates the value of @f i/@xj (j=
1, . . . , n). Program 6 in whichmodifications (9) and (10)
are embedded is the reverse mode program, which is
sometimes called the adjoint program of Program 4.

It is easy to extend the algorithms for computing
a linear combination of the column vectors of the Jaco-
bian matrix J with the forward mode, and a linear com-
bination of the row vectors of J with the reverse mode.

Complexity

It is proved that, for a constant C ( = 4 � 6, varying
under different computational models), the total oper-
ation count for @yi/@xj’s with a fixed j in the forward
mode algorithm, as well as that for @yi/@ xj’s with a fixed
i in the reverse mode algorithm, is at most C � r, i. e.,
in O(r). Roughly speaking, r is proportional to the ex-
ecution time T of the given program, so that the time
complexity is in O(T). Furthermore, we have to repeat
such computation n times to get all the required partial

Forward sweep:
(insert Program 4 here)

Initialization: (n = 3; r = 5)
x j  0 ( j = 1; : : : ; n),
vk  0 (k = 1; : : : ; r � 1),
vr  1,

Reverse elimination:
500 v2  v2 + (1/v4) 
 v5,

v4  v4 + (�v5/v4) 
 v5,
400 v3  v3 + 1 
 v4,
300 v2  v2 + v3 
 v3,
200 x1  x1 + v1 
 v2,

v1  v1 + x1 
 v2,
100 x2  x2 + 1 
 v1,

x3  x3 + (�1) 
 v1.

Automatic Differentiation: Introduction, History and Round-
ing Error Estimation, Program 6
Reverse mode program

derivatives by the forward mode, and m times by the
reverse mode. What should be noted here is that the
computational time of the forward or reverse mode al-
gorithm for one set of derivatives does not depend on
m or n but only on r.

Denoting the spatial complexity of the original pro-
gram by S, that of the forward mode algorithm is in
O(S). However, the spatial complexity of the reverse
mode is in O(T), since the reverse mode requires a his-
tory of the forward sweep recorded in storage whose
size is in O(T).

A rough sketch of the proof is as follows. Without
loss of generality, assume that the given program is ex-
panded into a sequence of single assignment statements
with a binary or unary basic operation as shown in Pro-
gram 3 and 4. The operation count for computing the
elementary partial derivatives (Table 1) is bounded by
a constant. The additional operation count for modi-
fying vk ’s and x j ’s in (5), (9) and (10) is also bounded
since there are at most two additions and two multipli-
cations. There are r operations in the original program,
so that the total operation count in the forward mode
algorithm as well as that in the reverse mode algorithm
is in O(r).

Note that the computational complexities of the for-
ward mode and the reverse mode may not be optimal,
but at least one can compute them in time proportional
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to that for the computation of the given original pro-
gram.

One can extend the AD algorithms to compute
higher derivatives. In particular, it is well known how
to compute a truncated Taylor series to get arbitrarily
higher-order derivatives of a function with one variable
[14]. One may regard a special function such as a Bessel
function or a block of several arithmetic operations,
such as the inner product of vectors, as a basic opera-
tion if the corresponding elementary partial derivatives
are given with computational definitions. An analogy is
pointed out in [7] between the algorithms for the partial
derivatives and those of the computation of the shortest
paths in an acyclic graph.

It has also been pointed out that there may be pit-
falls in the derived program with AD. For example,
a tricky program

IF (x.ne.1.0)
THEN y = x
x
ELSE y = 1.0 + (x � 1.0) 
 b
ENDIF

can compute the value of a function f (x) = x2 correctly
for all x. However, the derived program fails to compute
f 0(1.0), because the differentiation of the second assign-
ment with respect to x is not 2.0 but b. Thus condi-
tional branches (or equations equivalent to conditional
branches) should be carefully dealt with.

History

A brief history of AD is as follows. There were not a few
researchers in the world who had more or less indepen-
dently proposed essentially the same algorithms.

The first publication on the forward mode algo-
rithm was presumably the paper by R.E. Wengert in
1964 [16]. After 15 years, books were published by L.B.
Rall [14] and by H. Kagiwada et al. [9] which have been
influential on the numerical-computational circle. The
practical and famous software system for the forward
mode automatic differentiation was Pascal-SC, and its
descendants Pascal-XSC and C-XSC are popular now.

The paper [13] might be the first to propose system-
atically the reverse mode algorithm. But there are many
ways through which to approach the reverse mode al-
gorithm. In fact, it is related to Lagrange multipliers,
error analysis, generation of adjoint systems, reduction
of computational complexity of computing the gradi-

ent, neural networks, etc. Of course, the principles of
the derived algorithms are the same. Some remarkable
works on the reverse mode algorithm had been done by
S. Linnainmaa [11] and W. Miller and C. Wrathall [12]
from the viewpoint of the error analysis, by W. Baur
and V. Strassen [1] from that of complexity, and by P.J.
Werbos [17] from that of the optimization of neural
networks. A practical program had been developed by
B. Speelpenning in 1980 [15] and it was rewritten into
Fortran by K.E. Hillstrom in 1985 (now registered in
Netlib [5,6]).

Two proceedings of the international workshops
held in 1991 and 1996 collect all the theories, tech-
niques, practical programs, current works, and future
problems as well as history on automatic differentia-
tion [2,4]. It should be noted that, in 1992, A. Griewank
proposed a drastic improvement of the reverse mode
algorithm using the so-called checkpointing technique.
He succeeded in reducing the order of the size of stor-
age required for the reverse mode algorithm [3]. Sev-
eral software tools for automatic differentiation have
been developed and popular in the world, e. g., ADIC,
ADIFOR, ADMIT-1, ADOL-C, ADOL-F, FADBAD,
GRESS, Odyssée, PADRE2, TAMC, etc. (See [2,4].)

Estimates of Rounding Errors

In order to solve practical real-world problems, the ap-
proximation with floating-point numbers is inevitable
so that it is important to analyze and estimate the ac-
cumulated rounding errors in a big numerical com-
putation. Moreover, in terms of estimates of the accu-
mulated rounding errors, one can define a normalized
(or weighted) norm for a numerically computed vector,
that is useful for checking whether the computed vec-
tor can be regarded as zero or not from the viewpoint
of numerical computation [8].

For the previous example, let us denote as ık the
rounding error generated at the execution of the basic
operation to compute the value of vk. Then, the round-
ing errors in the example is explicitly written:

1 ev1 =ex2 �ex3 + ı1;
2 ev2 =ex1 
ev1 + ı2;
3 ev3 = exp(ev2) + ı3;
4 ev4 =ev3 + 1 + ı4;
5 ev5 =ev2/ev4 + ı5:
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Here,evk is the value with accumulated rounding er-
rors.

Defining a functionef as

ef (x1; x2; x3; ı1; ı2; ı3; ı4; ı5)
D

x1(x2 � x3 C ı1)C ı2
exp(x1(x2 � x3 C ı1)C ı2)C ı3 C 1C ı4

Cı5;

one has

ev5 Def (x1; x2; x3; ı1; : : : ; ı5);
v5 Def (x1; x2; x3; 0; : : : ; 0) :

Here,ev5 � v5 is the accumulated rounding error in the
function value. For v5 = v2/v4 = '5(v2, v4), one has

ev5 � v5 D '5(ev2;ev4) � '5(v2; v4)C ı5
D
@'5

@v2
(�2; �4) � (ev2 � v2)

C
@'5

@v4
(�2; �4) � (ev4 � v4)C ı5 ;

where �2 D � 0ev2C(1�� 0)v2 and �4 D � 00ev4C(1�� 00)v4
for 0 < � 0; � 00 < 1. Expandingev2� v2 andev4 � v4 simi-
larly and expanding the other intermediate variables se-
quentially, the approximation:

ev5 � v5 '
5X

kD1

@ef
@ık

ık (12)

is derived [10]. Note that @ef
@ık

are computed as vk in Pro-
gram 6, which are the final results of (9) and (10).

The locally generated rounding error ık for the
floating-point number system is bounded by

jıkj � c � jvk j � "M ; (13)

where "M indicates so-called ‘machine epsilon’ and c =
1 may be adopted for arithmetic operations according
to IEEE754 standard. Then �[f ]A, called absolute esti-
mation, is defined by

	[ f ]A �
rX

kD1

ˇ̌
ˇ̌
ˇ
@ef
@ık

ˇ̌
ˇ̌
ˇ � jvk j � "M ; (14)

which is an upper bound on the accumulated round-

ing error. Regarding the locally generated errors ık’s
as pseudo-probabilistic variables uniformly distributed
over [� |vk| "M , |vk|"M]’s, �[f ]P, called probabilistic es-
timate, is defined by

	[ f ]P � "M

vuut1
3

rX
kD1

 
@ef
@ık
� vk

!2

: (15)

There are several reports in which these estimates give
quite good approximations to the actual accumulated
rounding errors [8].

Moreover, one could answer the problem how to
choose a norm for measuring the size of numerically
computed vector. By means of the estimates of the
rounding errors, a weighted norm of a vector f = [f 1,
. . . , f m] whose components are numerically computed
is defined by

jjfjjN �





�

f1
	[ f1]A

; : : : ;
fm

	[ fm]A

�




p
; (16)

(p = 1,2 or1). This weighted norm is called normalized
norm, because it is normalized with respect to accumu-
lated rounding errors. With this normalized norm, one
can determine whether a computed vector approaches
to zero or not in reference to the rounding errors ac-
cumulated in the components. Note that, since all the
components of the vector are divided by the estimates
of accumulated rounding errors, they have no physical
dimension. The normalized norm may be used effec-
tively as stopping criteria for iterative methods like the
Newton–Raphson method.
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Research in the field of automatic differentiation (AD)
has blossomed since A. Griewank’s paper [15] in 1989
and the Breckenridge conference [17] in 1991. During
that same period, the power and availability of parallel
machines have increased dramatically. A natural con-
sequence of these developments has been research on
the interplay between AD and parallel computations.
This relationship can take one of two forms. One can
examine how AD can be applied to existing parallel
programs. Alternatively, one can consider how AD in-
troduces new potential for parallelism into existing se-
quential programs.

Background

Automatic differentiation relies upon the fact that all
programming languages are based on a finite number
of elementary functions. By providing rules for the dif-
ferentiation of these elementary functions, and by com-
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bining these elementary derivatives according to the
chain rule of differential calculus, an AD system can dif-
ferentiate arbitrarily complex functions. The chain rule
is associative—partial derivatives can be combined in
any order. The forward mode of AD combines the par-
tial derivatives in the order of evaluation of the elemen-
tary functions to which they correspond. The reverse
mode combines them in the reverse order. For systems
with a large ratio of dependent to independent vari-
ables, the reverse mode offers lower operation counts,
at the cost of increased storage costs [15].

The forward and the reverse mode are the extreme
ends of a wide algorithmic spectrum of accumulating
derivatives. Recently, hybrid approaches have been de-
veloped which combine the forward and the reverse
mode [5,10], or apply them in a hierarchical fashion
[8,25]. In addition, efficient checkpointing schemes have
been developed which address the potential storage ex-
plosion of the reverse mode by judicious recomputa-
tion of intermediate states [16,19]. Viewing the prob-
lem of automatic differentiation as an edge elimination
problem on the program graph corresponding to a par-
ticular code, one can in fact show that the problem of
computing derivatives with minimum cost is NP-hard
[21]. The development of more efficient heuristics is an
area of active research (see, for example, several of the
papers in [3]).

Implementation Approaches

Automatic differentiation is a particular instantiation of
a rule-based semantic transformation process. That is,
whenever a floating-point variable changes, an associ-
ated derivative object must be updated according to the
chain rule of differential calculus. For example, in the
forwardmode of AD, a derivative object carries the par-
tial derivative(s) of an associated variable with respect
to the independent variable(s). In the reverse mode of
AD, a derivative object carries the partial derivative(s)
of the dependent variable(s) with respect to an associ-
ated variable. Thus, any AD tool must provide an in-
stantiation of a ‘derivative object’, maintain the associ-
ation between an original variable and its derivative ob-
ject, and update derivative objects in a timely fashion.

Typically AD is implemented in one of two ways:
operator overloading or source transformation. In lan-
guages that allow operator overloading, such as C++

and Fortran90, each elementary function can be rede-
fined so that in addition to the normal function, deriva-
tives are computed as well, and either saved for later use
or propagated by the chain rule. A simple class defini-
tion using the forward mode might be implemented as
follows:

class adouble{
private:

double value, grad[GRAD_LENGTH];
public:

/* constructors omitted */
friend adouble operator*(const
adouble &, const adouble &);

/* similar decs for other ops */
}
adouble operator*(const adouble &g1,

const adouble &g2){
int i;
double newgrad[GRAD_LENGTH];
for (i=0; i<GRAD_LENGTH;i++){

newgrad[i] =
(g1.value)*(g2.grad[i])+
(g2.value)*(g1.grad[i]);

}
return adouble(g1.value*g2.value,

newgrad);
}

An example of how this class could be used is given
below.

In languages that do not support operator overload-
ing, it can be faked bymanually or automatically replac-
ing operators such as + and 
 with calls to subroutines.

main(){
double temp[GRAD_LENGTH];
adouble y;

/* initialize x1 to (3.0,[1.0 0.0]),
x2 to (4.0,[0.0 1.0])*/

temp[0] = 1.0; temp[1] = 0.0;
adouble *x1 = new adouble(3.0,temp);
temp[0] = 0.0; temp[1] = 1.0;
adouble *x2 = new adouble(4.0,temp);

y = (*x1)*(x2);

/* output (y,[dy/dx1 dy/dx2]) */
cout << y;
/* prints (12.0,[4.0 3.0]) */

}
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As an alternative to operator overloading, a prepro-
cessor can be used to transform source code for com-
puting the function into source code for computing
the function and its derivatives. This approach relies
heavily on compiler technology and typically involves
a combination of in-lining and subroutine calls to im-
plement the propagation of derivatives. An example of
ADIFOR-generated code (edited for clarity) invoking
the SparsLinC library for transparent exploitation of
sparsity [6] follows.

c derivation code for f=x*y/z

c preaccumulate partial derivates
temp1 = x*y/z
temp2 = 1.0/z
temp3 = temp2*y
temp4 = temp2*x
temp5 = -temp1/z

c propagate derivatives
c (g_x, ... , g_f may by sparse)

call sspg3q(g_f,temp3,g_x,temp4,
+ g_y,temp5,g_z)

f=temp1

The advantage of this approach is that it allows the
exploitation of computational context in deciding how
to propagate derivatives. For example, a recently de-
veloped Hessianmodule [1], adaptively determines the
best strategy for each assignment statement in the code
based on a machine-specific performance model for the
implementation kernels employed.

A comparison of these two implementation ap-
proaches is provided in [9]. This paper also introduces
an implementation design that separates the core issues
of automatic differentiation from language-specific is-
sues through the use of an interface layer called AIF
(AD intermediate form), thus arriving at a system de-
sign that allows reuse of differentiation components
across front-ends for different languages. Long-term,
such a system design also allows the exploitation of the
best features of both source transformation and opera-
tor overloading.

Current AD tools based on operator overloading in-
clude ADOL-C [18] and ADOL-F [29], both of which
offer the option of using either the forward or the
reverse mode, and to compute derivatives of arbi-
trary order Source transformation tools that use mostly

the forward mode to provide first- and second order
derivatives include ADIC [9] and ADIFOR [6]. The
Odyssee [28] and TAMC [14] tools use the reverse
mode in a source transformation context to provide
first order derivatives. A more comprehensive survey of
AD tools can be found at the website [31].

AD of Parallel Programs

In 1994, R.L. Hinkins reported on the application of
AD to magnetic field calculations implemented in the
data parallel languages MPFortran (MasPar Fortran)
and CMFortran [22]. In 1997, P. Hovland addressed
the larger issue of AD of parallel programs in gen-
eral, paying close attention to message-passing paral-
lel programs [23], but also considering other paral-
lel programming paradigms, and A. Carle developed
ADIFOR-MP, a prototype tool supporting a subset of
MPI [30] and PVM [13] constructs. The focus on par-
allel programs employing a message-passing paradigm
can be attributed to the popularity of this parallel
programming paradigm and its relevance to all par-
allel programs targeting nonuniform memory access
(NUMA) machines.

Correct AD of message-passing parallel programs
requires that we maintain an association between
a variable and its derivative object. In particular, when
a variable is sent from one processor to another via
a message, we must also send the associated derivative
object. There are twoways of accomplishing this goal—
we can pack the variable and derivative object together
in one message or send two separate messages. Pack-
ing a variable and its associated derivative object into
a single message may incur a copying overhead. On the
other hand, sending separate messages requires a mech-
anism for associating the messages with one another
at the receiving end and will increase delivery time on
high-latency systems. In general, it is preferable to pack
the variable and derivative object together in one mes-
sage [24], minimizing copying cost through judiciously
chosen derivative data structures. Other issues in en-
suring correct AD of parallel programs include proper
handling of nondeterminism, reduction operations at
points of nondifferentiability, and seed matrix initial-
ization [23].

In many instances, only a subset of the program
input- and output variables is considered as indepen-
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dent or dependent variables with respect to differenti-
ation. An optimization technique that tries to exploit
this fact is activity analysis, which seeks to reduce time
and storage costs by identifying variables that do not lie
on the computational path from independent to depen-
dent variables. Such variables are termed passive and
do not require an associated derivative object. Activity
analysis depends on sophisticated compiler technology,
namely interprocedural dataflow analysis. In message-
passing parallel programs, sends and receives greatly
complicate such an analysis. As the analysis needs to
guarantee correctness, this fact leads to much more
conservative assumptions, and as a result much opti-
mization potential may be lost. Among the available op-
tions to circumvent this situation are user annotations,
runtime analysis, or the use of a higher-level language
such as HPF [26]. These issues are investigated in more
detail in [23].

Another issue arising in the parallel setting is the
computation of partial derivatives of new elementary
functions, such as parallel reduction operations. For
most of the common reduction operations, such as
sum, maximum, and minimum, computing the par-
tial derivatives is trivial. For the product reduction,
the situation is more complex. The partial deriva-
tive of y =

Qn
iD1xi with respect to xi is @y/ @xi =

(
Qi�1

jD1xj)(
Qn

kDiC1xk). These partial derivatives can be
computed using a parallel prefix and reverse paral-
lel prefix operation. However, propagating the partial
derivatives requires an additional sum reduction. We
could instead combine the partial derivative computa-
tion and propagation into a single reduction. This in-
creases the computational cost, but reduces the com-
munication cost. In [24], Hovland and C. Bischof dis-
cuss the conditions under which each approach should
be preferred and give experimental results to support
the theory.

AD-Enabled Parallelism

As early as 1991, Bischof considered the problem of
parallelizing the computation of derivatives computed
via AD [4] to distribute the additional work introduced
by AD. Applying AD to a program introduces two ba-
sic types of parallelism: data parallelism and time paral-
lelism.

Data Parallelism

The potential for data parallelism arises whenever there
are multiple independent variables (for the forward
mode) or multiple dependent variables (for the reverse
mode). Different processes can be employed to propa-
gate partial derivatives with respect to a subset of the
independent variables in parallel.

Such an implementation is feasible if one can em-
ploy light-weight threads for the parallel derivative
computation. A limiting factor is the fact that the
derivative computations are interspersed with the func-
tion computation. Thus, an alternative approach is
to replicate the sequential computation on each pro-
cessor, thereby virtually eliminating communication
costs. This approach has proven effective for compu-
tations involving a large number of independent vari-
ables [7,32].

Time Parallelism

Time parallelism arises as a consequence of the asso-
ciativity of the chain rule. By breaking the computa-
tion into several phases, we can compute and propa-
gate partial derivatives over each phase simultaneously,
then combine the results according to the chain rule.
This approach is illustrated in Fig. 1. Before each phase,
a derivative computation for that phase is forked off,
using as input the results of the previous phase. At the
conclusion of the derivative computations, the partial
derivatives are combined according to the chain rule.

This illustration assumes the forward mode. If we
were using the reverse mode, the derivative computa-
tion for phase A would be forked off after phase A had
completed. The effectiveness of this approach has been
demonstrated for both the forward mode [10] and the
reverse mode [2]. The associativity of the chain rule
makes it possible to apply this time-parallel approach
to arbitrary computational structures, not just the lin-
ear schedule illustrated here.

Parallel AD Tools

Research in AD and parallelism is relatively new.
Nonetheless, there are several such tools, at varying
stages of development.

Hinkins developed special purpose libraries for
the AD of programs written in MPFortran or CM-
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Automatic Differentiation: Parallel Computation, Figure 1

Fortran [22]. Use of these libraries required that each
arithmetic operation bemanually replaced by a subrou-
tine call. As part of his thesis [23], Hovland developed
prototype tools for AD of FortranM [12], Fortran with
a subset of MPI [20] message passing, and C with MPI.
Carle is developing (1999) a prototype version of ADI-
FOR [11] supporting MPI and PVM. Roh is developing
an extension to ADIC that seeks to automatically ex-
ploit the parallelism introduced by AD through the use
of threads [27].

Summary

Since 1989, a great deal of progress has been made in
the fields of automatic differentiation and parallel com-

putation. Parallel computation and AD interact in two
ways. AD can be applied to a parallel program. Alterna-
tively, AD can be used as a source of new parallelism in
a computation. Effective strategies exist for exploiting
each of the two types of parallelism introduced: time
parallelism and data parallelism.

In either case, ensuring that the resulting derivative
computation is both correct and efficient requires AD
tools that are more sophisticated than in the serial set-
ting. Most of the existing tools are early in their devel-
opment cycle, but can be expected to mature swiftly as
they adopt advanced computational infrastructure de-
veloped in other fields of computer science, e. g., par-
allelizing compilers or parallel runtime systems. Thus,
we expect the beginning of 2000 to also provide robust
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and effective tools for the differentiation of parallel pro-
grams and the introduction of parallelism through dif-
ferentiation.
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Automatic differentiation (abbreviated AD) is a com-
putational method for evaluating derivatives or Taylor
coefficients of algorithmically defined functions. Sim-
ply speaking, an algorithmic definition of a function is
a step-by-step specification of its evaluation by arith-
metic operations and library functions. Application of
the rules of differentiation to the algorithmic definition
of a differentiable function yields values of its deriva-
tives. Examples of algorithmic definitions of functions
are code lists, computer subroutines, and even entire
computer programs.

Automatic differentiation differs from numerical
differentiation based on difference quotients of func-
tion values in that automatic differentiation is exact in
principle, but of course is subject to roundoff error in
practice. In addition to roundoff error, difference quo-
tients entail truncation error. Attempts to reduce this
truncation error by decreasing stepsize results in can-
cellation of significant digits and a catastrophic increase
in roundoff error in general. Automatic differentiation
also differs significantly from the symbolic differentia-
tion taught in school, the goal of which is the transfor-
mation of formulas for functions into formulas for their
derivatives. Although automatic differentiation uses the
same rules of differentiation as symbolic differentiation,
these rules are applied to the algorithmic definition of
the function, not to a formula for it, and the results
are values of derivatives, not formulas. Furthermore,
formulas may not be available for functions of inter-
est defined only algorithmically by computer subrou-
tines or programs to which automatic differentiation
can be applied. In summary, automatic differentiation
is more accurate than numerical differentiation and re-
quires fewer resources and is more generally applicable
than symbolic differentiation.

The simplest type of algorithmic definition of
a function is a code list, which is similar to the segment
of computer code for the evaluation of an expression

http://www.mcs.anl.gov/autodiff/adtools/


166 A Automatic Differentiation: Point and Interval

(i. e., a formula). For illustration, consider the function
defined by the formula

f (x; y) D (xyC sin x C 4)(3y2 C 6):

An equivalent algorithmic definition of this function by
a code list is

t1 D x; t6 D t5 C 4;
t2 D y; t7 D t22;
t3 D t1t2; t8 D 3t7;
t4 D sin t1; t9 D t8 C 6;
t5 D t3 C t4; t10 D t6t9:

Given the values of x and y, evaluation of the subse-
quent entries in the code list gives t10 = f (x, y). In-
deed, the first step in evaluation or symbolic differen-
tiation of a function defined by a formula is to form
a corresponding code list, perhaps subconsciously. The
conversion of well-formed expressions into code lists is
a fundamental process in computer science, sometimes
called ‘formula translation’. Although both automatic
differentiation and symbolic differentiation are applica-
ble in this case, automatic differentiation requires only
the code list and produces only values of derivatives for
given values of the input variables. To compute the gra-
dient r f , the rules of differentiation applied to the code
list above gives

r t1 D rx;

r t2 D r y;
r t3 D t1r t2 C t2r t1;

r t4 D (cos t1)r t1;

r t5 D r t3 Cr t4;

r t6 D r t5;

r t7 D 2t2r t2;

r t8 D 3r t7;
r t9 D r t8;

r t10 D t6r t9 C t9r t6:

It is evident from the chain rule that

r t10 D r f (x; y) D fx(x; y)rx C f y(x; y)r y:

Thus, once the code list for f (x, y) is given and the ‘seed’
values of x, r x and y, r y are known, the values of the
function and its gradient can be computed without for-
mulas for either. In case x, y are independent variables,

then r x = [1, 0], ry = [0, 1] and

r f (x; y) D [ fx(x; y); f y(x; y)]
D [t9(t2 C cos t1); 6t2t6 C t1t9]:

This example illustrates the forward mode of auto-
matic differentiation. This process is not restricted to
first derivatives as long as the entries ti of the code list
have the desired number of derivatives.

Although the forwardmode illustrated above is easy
to understand and implement, it is usually more effi-
cient to compute gradients in what is called the reverse
mode. To explain this process, consider a general code
list t = (t1, . . . , tn) which begins with m input variables
t1, . . . , tm, and ends with p output variables tn�p+1, . . . ,
tn. For i > m, the entry ti = tj ı tk, where j, k < i and ı
denotes an arithmetic operation, or ti = �(tj) with j < i,
where � is a function belonging to a library of standard
functions. For convenience, arithmetic operations be-
tween constants and entries will be considered library
functions in addition to the usual sine, cosine, and so
on.

If Ki denotes the set of indices k < i such that the
entry ti of the code list depends explicitly on tk, then
the forward mode of automatic differentiation consists
of application of the chain rule in the form

r ti D
X
k2Ki

@ti
@tk
r tk

for i =m + 1, . . . , n, to obtain the gradients of the inter-
mediate variables and output. This process works be-
cause rt1, . . . , rti�1 are known or have been computed
before they are needed for the evaluation of rti. If the
seed gradients have dimension at most d, then the for-
ward mode of automatic differentiation requires com-
putational effort proportional to nd, that is, d times the
effort required for evaluation of the output tn. If d > m,
then it is more efficient to consider the input variables
to be independent and then compose rf by the stan-
dard formula given below. This limits the computa-
tional effort for the forward mode to an amount essen-
tially proportional to nm.

The reverse mode is another way to apply the chain
rule. Instead of propagating the seed gradients rt1, . . . ,
rtm throughout the computation, differentiation is ap-
plied to the code list in reverse order. In the case of
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a single output variable tn, first tn is differentiated with
respect to itself, then with respect to tn�1, . . . , t1. The re-
sulting adjoints @tn/ @tm, . . . , @tn/ @t1 and the seed gra-
dients then give

r tn D
mX
iD1

@tn
@ti
r ti :

Formally, the adjoints are given by

@tn
@tn
D 1;

@tn
@tk
D
X
i2Ik

@tk
@ti

@ti
@tk

;

k = n� 1, . . . , 1, where Ik is the set of indices i> k such
that ti depends explicitly on tk. It follows that the com-
putational effort to obtain adjoints in the reverse mode
is proportional to n, the length of the code list, and is es-
sentially independent of the number of input variables
and the dimensionalities of the seed gradients. This can
result in significant savings in computational time. In
the general case of several output variables, the same
technique is applied to each to obtain their gradients.

The reverse mode applied to the example code list
gives

@t10
@t10
D 1;

@t10
@t9
D t6;

@t10
@t8
D
@t10
@t9

@t9
@t8
D t6 � 1;

@t10
@t7
D
@t10
@t8

@t8
@t7
D t6 � 3;

@t10
@t6
D t9;

@t10
@t5
D
@t10
@t6

@t6
@t5
D t9 � 1;

@t10
@t4
D
@t10
@t5

@t5
@t4
D t9 � 1;

@t10
@t3
D
@t10
@t5

@t5
@t3
D t9 � 1;

@t10
@t2
D
@t10
@t7

@t7
@t2
C
@t10
@t3

@t3
@t2

D (3t6) � (2t2)C t9 � t1;
@t10
@t1
D
@t10
@t4

@t4
@t1
C
@t10
@t3

@t3
@t1
D t9 � cos t1 C t9 � t2:

Although this computation appears to be complicated,
a comparison of operation counts in the case x, y are
independent variables shows that even for this low-
dimensional example, the reverse mode requires 13 op-
erations to evaluate rf in addition to the operations re-
quired to evaluate f itself, while the forward mode re-
quires 22 = 2 + 10 m. In reverse mode, the entire code
list has to be evaluated and its values stored before the
reverse sweep begins. In forward mode, since the com-
putation of ti and each component ofrti can be carried
out independently, a parallel computer with a sufficient
number of processors could compute tn, rtn in a single
pass through the code list, that is, with effort propor-
tional to n. A more detailed comparison of forward and
reverse modes for calculating gradients can be found in
the tutorial article [1, pp. 1–18] and the book [3].

Implementation of automatic differentiation can be
by interpretation, operator overloading, or code trans-
formation. Early software for automatic differentiation
simply interpreted a code list by calling the appropri-
ate subroutines for each arithmetic operation or library
function. Although inefficient, this approach is still use-
ful in interactive applications in which functions en-
tered from the keyboard are parsed to form code lists,
which are then interpreted to evaluate the functions and
their derivatives.

Operator overloading is a familiar concept in math-
ematics, as the symbol ‘+’ is used to denote addition of
such disparate objects as integers, real or complex num-
bers, vectors, matrices, functions, etc. It follows that
a code list as defined above can be evaluated in any
mathematical system in which the required arithmetic
operations and library function are available, including
differentiation arithmetics [14, pp. 73–90]. These arith-
metics can be used to compute derivatives or Taylor co-
efficients of any order of sufficiently smooth functions.
In optimization, gradient and Hessian arithmetics are
most frequently used. In gradient arithmetic, the basic
data type is the ordered pair (f , rf ) of a number and
a vector representing values of a function and its gra-
dient vector. Arithmetic operations in this system are
defined by

( f ;r f )˙ (g;r g) D ( f ˙ g;r f ˙r g);

( f ;r f )(g;r g) D ( f g; fr g C gr f );
( f ;r f )
(g;r g)

D

�
f
g
;
gr f � fr g

g2

�
;
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division by 0 excluded. If � is a differentiable library
function, then its extension to gradient arithmetic is de-
fined by

�( f ;r f ) D (�( f ); �0( f )r f );

which is just the chain rule. Hessian arithmetic extends
the same idea to triples (f , rf , H f ), where H f is a ma-
trix representing the value of the Hessian of f , H f = [
@2f / @xi @xj].

Programming differentiation arithmetic is conve-
nient in modern computer languages which support
operator overloading [9, pp. 291–309]. In this setting,
the program is written with expressions or routines for
functions in the regular form, and the compiler pro-
duces executable code for evaluation of these functions
and the desired derivatives. For straightforward imple-
mentations such as the one cited above, the differenti-
ation mode will be forward, which has implications for
efficiency.

Code transformation essentially consists of analyz-
ing the code for functions to generate code for deriva-
tives. This results in a new computer program which
then can be compiled and run as usual. To illustrate this
idea, note that in the simple example given above, the
expressions

fx(x; y) D t9(t2 C cos t1);
f y(x; y) D 6t2t6 C t1t9;

were obtained for the partial derivatives of the function
in either forward or reverse mode. This differs from
symbolic differentiation in that values of intermediate
entries in the code list for f (x, y) are involved rather
than the variables x, y. The corresponding lists for these
expressions

tx1 D cos t1;

tx2 D t2 C tx1;
tx3 D t9tx2;

t y1 D t2t6;

t y2 D 6t y1;

t y3 D t1t9;

t y4 D t y2 C t y3;

can then be appended to the code list for the function
to obtain a routine with output values t10 = f (x, y), tx3 =
f x(x, y), and ty4 = f y(x, y). Further, automatic differen-
tiation can be applied to this list to obtain routines for
higher derivatives of f [13]. As a practical matter, dupli-
cate assignments can be removed from such lists before
compilation.

Up to this point, the discussion has been of point
AD, values have been assumed to be real or complex
numbers with all operations and library functions eval-
uated exactly. In reality, the situation is quite differ-
ent. Expressions, meaning their equivalent code lists,
are evaluated in an approximate computer arithmetic
known as floating-point arithmetic. This often yields
very accurate results, but examples of simple expres-
sions are known for which double and even higher pre-
cision calculation gives an answer in which even the
sign is wrong for certain input values. Furthermore,
such failures can occur without any outward indication
of trouble. In addition, values of input variables may
not be known exactly, thus increasing the uncertainty
in the accuracy of outputs. The use of interval arith-
metic (abbreviated IA) provides a computational way to
attack these problems [11].

The basic quantities in interval arithmetic are finite
closed real intervals X = [x1, x2], which represent all real
numbers x such that x1 � x� x2. Arithmetic operations
ı on intervals are defined by

X ı Y D fx ı y : x 2 X; y 2 Yg ;

again an interval, division by an interval containing
zero excluded. Library functions � are similarly ex-
tended to interval functions ˚ such that �(x) 2 ˚(X)
for all x 2 X with ˚(X) expected to be an accurate in-
clusion of the range �(X) of � on X. Thus, if f (x) is
a function defined by a code list, then assignment of the
interval value X to the input variable and evaluation of
the entries in interval arithmetic yields the output F(X)
such that f (x) 2 F(X) for all x 2 X. The interval func-
tion F obtained in this way is called the united extension
of f [11].

In the floating-point version of interval arithmetic,
all endpoints are floating-point numbers and hence ex-
actly representable in the computer. Results of arith-
metic operations and calls of library functions are
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rounded outwardly (upper endpoints up, lower end-
points down) to the closest or very close floating-point
numbers to maintain the guarantee of inclusion. Thus,
one is still certain that for the interval extension F
of f actually computed, f (x) 2 F(X) for all x 2 X. Thus,
for example, an output interval F(X) which is very wide
for a point input interval X = [x, x] would serve as
a warning that the algorithm is inappropriate or ill-
conditioned, in contrast to the lack of such information
in ordinary floating-point arithmetic.

Automatic differentiation carried out in interval
arithmetic is called interval automatic differentiation.
Interval computation has numerous implications for
optimization, with or without automatic differentia-
tion [6]. Maxima and minima of functions can ‘slip
through’ approximate sampling of values at points of
the floating-point grid, but have to be contained in
the computable interval inclusion F(X) of f (x) over the
same interval region X, for example.

Although interval arithmetic properly applied can
solve many optimization and other computational
problems, a word of warning is in order. The properties
of interval arithmetic differ significantly from those of
real arithmetic, and simple ‘plugging in’ of intervals for
numbers will not always yield useful results. In partic-
ular, interval arithmetic lacks additive and multiplica-
tive inverses, and multiplication is only subdistributive
across addition, X(Y+ Z) � XY+ XZ [11]. A real algo-
rithmwhich uses one ormore of these properties of real
arithmetic is usually inappropriate for interval compu-
tation, and should be replaced by one that is suitable if
possible.

To this point, automatic differentiation has been ap-
plied only to code lists, which programmers customar-
ily refer to as ‘straight-line code’. Automatic differenti-
ation also applies to subroutines and programs, which
ordinarily contain loops and branches in addition to
expressions. These latter present certain difficulties in
many cases. A loop which is traversed a fixed num-
ber of times can be ‘unrolled,’ and thus is equivalent to
straight-line code. However, in case the stopping crite-
rion is based on result values, the derivatives may not
have achieved the same accuracy as the function val-
ues. For example, if the inverse function of a known
function is being computed by iterative solution of the
equation f (x) = y for x = f�1(y), then automatic dif-
ferentiation should be applied to f and the derivative

of the inverse function obtained from the standard for-
mula (f�1)0(y) = (f 0(x))�1. Branches essentially produce
piecewise defined functions, and automatic differentia-
tion then provides the derivative of the function defined
by whatever branch is taken. This can create difficul-
ties as described by H. Fischer [4, pp. 43–50], especially
since a smooth function can be approximated well in
value by highly oscillatory or other nonsmooth func-
tions such as result from table lookups and piecewise
rational approximations. For example, one would not
expect to obtain an accurate approximation to the co-
sine function by applying automatic differentiation to
the library subroutine for the sine. As with any powerful
tool, automatic differentiation should not be expected
to provide good results if applied indiscriminately, es-
pecially to ‘legacy’ code. As with interval arithmetic, au-
tomatic differentiation will yield the best results if ap-
plied to programs written with it in mind.

Current state of the art software for point automatic
differentiation of programs are ADOL-C, for programs
written in C/C++ [5], and ADIFOR for programs in
Fortran 77 [1, pp. 385–392].

Numerous applications of automatic differentiation
to optimization and other problems can be found in the
conference proceedings [1,4], which also contain exten-
sive bibliographies. An important result with implica-
tions for optimization is that automatic differentiation
can be used to obtain Newton steps without forming
Jacobians and solving linear systems, see [1, pp. 253–
264].

From a historical standpoint, the principles of au-
tomatic differentiation go back to the early days of cal-
culus, but implementation is a product of the computer
age, hence the designation ‘automatic’. The terminol-
ogy ‘algorithmic differentiation’, to which the acronym
automatic differentiation also applies, is perhaps bet-
ter. Since differentiation is widely understood, auto-
matic differentiation literature contains many anticipa-
tions and rediscoveries. The 1962 Stanford Ph.D. thesis
of R.E. Moore deals with both interval arithmetic and
automatic differentiation of code lists to obtain Tay-
lor coefficients of series solution of systems of ordi-
nary differential equations. In 1964, R.E. Wengert [15]
published on automatic differentiation of code lists and
noted that derivatives could be recovered from Taylor
coefficients. Early results in automatic differentiation
were applied to code lists in forwardmode, as described
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in [13]. G. Kedem [8] showed that automatic differen-
tiation applies to subroutines and programs, again in
forward mode. The reverse mode was anticipated by
S. Linnainmaa in 1976 [10], and in the Ph.D. thesis of
B. Speelpenning (Illinois, 1980), and published in more
complete form byM. Iri in 1984 [7]. automatic differen-
tiation via operator overloading and the concept of dif-
ferentiation arithmetics, which are commutative rings
with identity, were introduced by L.B. Rall [9, pp. 291–
309], [14, pp. 73–90], [4, pp. 17–24]. For additional in-
formation about the early history of automatic differ-
entiation, see [13] and the article by Iri [4, pp. 3–16] for
later developments.

Analysis of algorithms for automatic differentiation
has been carried out on the basis of graph theory by Iri
[7], A. Griewank [12, pp. 128–161], [3], and equivalent
matrix formulation by Rall [2, pp. 233–240].
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Frequently of use in optimization problems, automatic
differentiation may be used to generate Taylor coeffi-
cients. Specialized software tools generate Taylor series
approximations, one term at a time, more efficiently
than the general AD software used to compute (par-
tial) derivatives. Through the use of operator overload-
ing, these tools provide a relatively easy-to-use interface
that minimizes the complications of working with both
point and interval operations.

Introduction

First, we briefly survey the tools of automatic differenti-
ation and operator overloading used to compute point-
and interval-valued Taylor coefficients. We assume that

f is an analytic function f : R! R. Automatic differ-
entiation (AD or computational differentiation) is the
process of computing the derivatives of a function f at
a point t = t0 by applying rules of calculus for differ-
entiation [9,10,17,18]. One way to implement AD uses
overloaded operators.

Operator Overloading

An overloaded (or generic) operator invokes a proce-
dure corresponding to the types of its operands. Most
programming languages implement this technique for
arithmetic operations. The sums of two floating point
numbers, two integers, or one floating point number
and one integer are computed using three different
procedures for addition. Fortran 77 or C denies the
programmer the ability to replace or modify the vari-
ous routines used implicitly for integer, floating point,
or mixed-operand arithmetic, but Fortran 95, C++,
and Ada support operator overloading for user-defined
types. Once we have defined an overloaded operator
for each rule of differentiation, AD software performs
those operations on program code for f , as shown be-
low. The operators either propagate derivative values
or construct a code list for their computation. We give
prototypical examples of operators overloaded to prop-
agate Taylor coefficients below.

Automatic Differentiation

The AD process requires that we have f in the form of
an algorithm (e. g. computer program) so that we can
easily separate and order its operations. For example,
given f (t) = et/(2 + t), we can express f as an algorithm
in Fortran 95 or in C++ (using an assumed ADmodule
or class):

In this section, we use AD to compute first deriva-
tives. In the next section, we extend to point- and
interval-valued Taylor series. To understand the AD
process, we parse the program above into a sequence
of unary and binary operations, called a code list, com-
putational graph, or ‘tape’ [9]:

x0 D t0; x2 D 2C x0;

x1 D exp(x0); x3 D
x1
x2
:
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program Example1
use AD_Module
type(AD_Independent) :: t

AD_Independent(0)
type(AD_Dependent) :: f
f = exp(t)/(2 + t)

end program Example1
#include ‘AD_class.h’
void main (void) {

AD_Independent t(0);
AD_Dependent f ;
f = exp(t)/(2 + t);

}

Automatic Differentiation: Point and Interval Taylor Opera-
tors, Figure 1
Fortran and C++ calls to AD operators

Differentiation is a simple mechanical process for
propagating derivative values. Let t = t0 represent the
value of the independent variable with respect to which
we differentiate. We know how to take the derivative of
a variable, a constant, and unary and binary operations
(i. e. +, �, 
, /, sin, cos, exp, etc.). Then AD software
annotates the code list:

x0 D t0;

rx0 D 1;

x1 D exp(x0);

rx1 D exp(x0)
rx0;

x2 D 2C x0;
rx2 D 0Crx0;

x3 D
x1
x2
;

rx3 D
(rx1 � rx2
x3)

x2
:

AD propagates values of derivatives, not expres-
sions as symbolic differentiation does. AD values are
exact (up to round-off), not approximations of un-
known quality as finite differences. For more informa-
tion regarding AD and its applications, see [2,8,9,10,
17,18], or the bibliography [21].

AD software can use overloaded operators in two
different ways. Operators can propagate both the value
xi and its derivative rxi, as suggested by the annotated
code list above. This approach is easy to understand and
to program. We give prototypical Taylor operators of
this flavor below.

The second approach has the operators construct
and store the code list. Various optimizations and par-
allel scheduling [1,4,12] may be applied to the code list.
Then the code list is interpreted to propagate deriva-
tive values. This is the approach of AD tools such
as ADOL-C [11], ADOL-F [20], AD01 [16], or IN-
TOPT_90 [13]. The second approach is much more
flexible, allowing the code list to be traversed in either
the forward or reverse modes of AD (see [9]) or with
various arithmetics (e. g. point- or interval-valued se-
ries).

AD may be applied to functions of more than one
variable, in which partial derivatives with respect to
each are computed in turn, and to vector functions,
in which the component functions are differentiated
in succession. In addition, we can compute higher or-
der derivative values. One application of AD involving
higher order derivatives of f is the computation of Tay-
lor (series) coefficients to which we turn in the next sec-
tion.

Source code transformation is a third approach to
AD software used byATOMFT [5] for Taylor series and
by ADIFOR [3], PADRE2 [14], or Odyssée [19] for par-
tial derivatives. Such tools accept the algorithm for f as
data, rather than for execution, and produce code for
computing the desired derivatives. The resulting code
often executes more rapidly than code using overloaded
operators.

Taylor Coefficients

We define the Taylor coefficients of the analytic func-
tion f at the point t = t0:

( f jt0)i :D
1
i!
di f (t0)
dti

;

for i = 0, 1, . . . , and let F := ((f |t0)i) denote the vec-
tor of Taylor coefficients. Then Taylor’s theorem says
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that there exists some point � (usually not practically
obtainable) between t and t0 such that

f (t) D
pX

iD0

( f jt0)i(t � t0)i

C
1

(pC 1)!
dpC1 f (�)
dtpC1 (t � t0)pC1:

(1)

Computation of Taylor coefficients requires differ-
entiation of f . We generate Taylor coefficients automat-
ically using recursion formulas for unary and binary
operations. For example, the recurrences we need for
our example f (t) = et/(2 + t) are

x(t) D exp u(t)) x0 D xu0;

(x)0 D exp(u)0;

(x)i D
i�1X
jD0

(x) j
(u)i� j

(i � j)

i
;

x(t) D u(t)C v(t);
(x)i D (u)i C (v)i ;

x(t) D
u(t)
v(t)
) xv D u;

(x)i D

�
(u)i �

Pi�1
jD0(x) j
(v)i� j

�

(v)0
:

The recursion relations are described in more de-
tail in [17]. Except for + and �, each recurrence follows
from Leibniz’ rule for the Taylor coefficients of a prod-
uct. The relations can be viewed as a lower triangular
system. The recurrence represents a solution by for-
ward substitution, but there are sometimes accuracy or
stability advantages in an iterative solution to the lower
triangular system. The recurrences for each operation
can be evaluated in floating-point, complex, interval, or
other appropriate arithmetic.

To compute the formal series for f (t) = et/(2 + t)
expanded at t = 0,

8̂
ˆ̂̂<
ˆ̂̂̂
:

X0 :D (t0; 1; 0; : : :)(0; 1; 0; : : :);
X1 :D exp X0 D

�
1; 1; 1

2! ;
1
3! ; : : :

�
;

X2 :D 2C X0 D (2; 1; 0; : : :);
X3 :D X2

X3
D
� 1
2 ;

1
4 ;

1
8 ;

1
48 ; : : :

�
:

(2)

class Taylor { // Or make a template:
private:

cont int Max_Length = 20;
Value_type coef[Max_Length];

public:
Taylor ( Value_type t_0 ) {

// Constructor for Independents
coef[0] = t_0; coef[1] = 1;
for(int i = 2; i ¡ Max_Length; i++)

{ coef[i] = 0; }
}
Taylor ( void ) {

// Constructor for Dependents
for (int i = 0; i ¡ Max_Length; i++)

{ coef[i] = 0; }
}
Taylor ( Taylor &U) {

// Copy Constructor
for (int i=0; i ¡ Max_Length; i++)

{ coef[i] = Value_type(U.coef)[i]; }
}
friend Taylor operator +

(int u, Taylor V) {
V.coef[0] += u; return V;

}
friend Taylor operator /

(Taylor U, Taylor V) {
Taylor X;
for (int i = 0; i ¡ Max_Length; i++) {

Value_type sum = U.coef[i];
for (int j = 0; j ¡ i; j++)
{ sum� =X.coef[j] * V.coef[i�j]; }

X.coef[i] = sum / V.coef[0];
}
return X;

}
friend Taylor exp (Taylor U)

{ /* Similar to divide */ }
Value_type getCoef (int i)

{ return coef[i]; }
}; // end class Taylor

Point and Interval Taylor Operators

As foreshadowed by this example, we define an abstract
data type for Taylor series and use operator overloading
to define actions on objects of that type using previously
defined floating-point and interval operations.
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Design of Operators

In this section, we give prototypical operators for the di-
rect propagation of Taylor coefficients such as might be
called from code similar to that shown in Fig. 1. Direct
propagation of values works by translating each opera-
tion into a call to the appropriate AD routine at compile
time. Thus, simply compiling the source code for f and
linking it with the overloaded operator routines creates
a program that computes the Taylor coefficients of f at
t = t0. For illustration, we provide only a stripped-down
prototype with operators required for the example f (t)
= et/(2 + t). We suppress issues of references and the
like that are essential to the design of a useful class.
See [6] for a description of a set of interval Taylor oper-
ators in Ada.

If instead, operators for AD_type record a code list,
then an interpreter reads each node from the code list
and calls the appropriate operator from class Taylor:

Taylor Operand[MemSize];
for (int i = 0; ¡ CodeSize; i++) {
Node = getNextOperation ();
switch (Node.OpCode) {
case PLUS : Operand[Node.Result]
= Operand[Node.Left]
+ Operand[Node.Right];

break;
. . .
case EXP : Operand[Node.Result]
= exp ( Operand[Node.Left] );
break;

. . .
}

}

Use of Interval Operators

We have mentioned the possibility of working with in-
terval values but not the significance of doing so. From
equation (1) for an interval t, and for all t 2 t,

f (t) 2
pX

iD0

( f jt0)i(t � t0)i

C
1

(pC 1)!
dpC1 f (t)
dtpC1 (t � t0)pC1: (3)

Automatic Differentiation: Point and Interval Taylor Opera-
tors, Figure 2
Taylor series enclosures of f

In a computer implementation, the summation is
done in interval arithmetic to ensure enclosure. The
series Taylor coefficients (f |t0)i are narrow intervals
whose width comes only from outward rounding. The
remainder term is the Taylor coefficient (f |t)i, where
the recurrence relations are evaluated in interval arith-
metic. The series (3) can be used to bound the range of
f , for validated quadrature [7], or for rigorous solution
of ODEs [15]. For the example f (t) = et/(2 + t), we re-
peat the sequence of computations of Equation (2) for
the interval t0 = [0, 0] and for t = [�1, 1]:

�
( f j[0])i

�
D

�
1
2
;
1
4
;
1
8
;
1
48
; : : :

�
;

�
( f j[�1; 1])i

�

D ([0:12; 2:72]; [�2:59; 2:68]; [�2:64; 4:04]; : : :):

Assembling these according to (3) yields enclosures for
all t 2 [�1, 1]:

f (t) 2 ( f j[�1; 1])0 D [0:12; 2:72]

2 ( f j[0])0C ( f j[�1; 1])1(t � 0)

D
1
2
C [�2:59; 2:68]t

2 ( f j[0])0C ( f j[0])1(t � 0)

C ( f j[�1; 1])2(t � 0)2

D
1
2
C

1
4
tC [�2:64; 4:04]t2

:::
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To demonstrate the true power of this approximation
technique, we plot the corresponding 5, 10, and 20 term
enclosures in Fig. 2.

One-at-a-Time Coefficient Generation

The Taylor operators described the preceding section
accept vectors of p Taylor coefficients for operands u
and v and return Taylor coefficients for result x with
complexity O(p2). However, for applications such as
ODEs or order-adaptive quadrature, the entire operand
series is not known, and we need to compute terms one
at a time [6]. For example, for the DE

u0 D f (t; u) D
exp(u)
(2C t)

; u(0) D 1;

initial condition u(0) = 1 implies

(uj0)0 D 1;

and DE u0 = exp(u)/(2 + t) implies

(uj0)1 D
exp(1)
(2C 0)

D
e
2
;

u00 D u0 exp(u)
2Ct �

exp(u)
(2Ct)2 implies

(uj0)2 D
e
2
exp(1)
(2C 0)

�
e
4
D

e(e � 1)
4

;

etc.
Successive terms can be computed by interpreting

the code list for f (t, u) repeatedly for series of increasing
length for u. Each iteration of the automatic generation
process yields an additional Taylor coefficient. Unfortu-
nately, a simple implementation of Taylor operators has
complexity O(p3) because already known coefficients of
u0 are recomputed. However, since the order of oper-
ations is the same in each iteration, we can increase
the efficiency of the computations by storing interme-
diate results [6]. Each overloaded operator routine calls
a memory allocation procedure that refers it to the next
space in an array. If that space is empty, we store Tay-
lor coefficient values for that variable. Otherwise, the
space must contain the previously computed Taylor co-
efficients of that variable, which we can then use to
more quickly compute the next coefficient in the set.
With clever book-keeping, we compute p floating-point
or interval-valued Taylor coefficients one at a time in
O(p2) time.

Trade-Offs

Wemay strive for three goals when writing software for
point and interval Taylor operations: storage space effi-
ciency, time efficiency, and ease of use. These three fac-
tors are often at odds with each other.

Carefully implemented operator overloading pro-
vides an easy to use interface and provides reasonable
time and space efficiency. We may achieve greater time
and space efficiency by using source code transforma-
tion.

In conclusion, automatic differentiation through
Taylor operators shows merit as a technique for com-
puting guaranteed interval enclosures about a func-
tion f . Further efforts to refine this technique may pro-
vide us with a tool that handles multivariate functions,
and runs significantly faster thanks to parallelization
and improved optimization techniques.
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Automatic differentiation is a method in which a pro-
gram for evaluating a function f is transformed into an-
other program that evaluates both the function f and
some of its derivatives. The key idea is the repeated
use of the chain-rule for composing the derivatives of
f from derivatives of parts of f . For more about auto-
matic differentiation (AD), consult [2,3,5].

Proper combinations of differentiable functions
produce differentiable functions. Some combinations
of nondifferentiable functions also produce differen-
tiable functions. Therefore the mere fact that a program
defines a differentiable function is no guarantee that
ADwill work. Here we investigate two cases, where AD,
applied to a program for a differentiable function, fails.

The root problem arises when a square-root is com-
bined with other functions so that the resulting func-
tion is differentiable but the chain-rule is not applicable
for certain arguments.

The branch problem arises when a program for eval-
uating a differentiable function f employs statements of
the form B(x) then S1 else S2, where x is from the do-
main of f , B is a Boolean function, and S1 and S2 repre-
sent subprograms. This reflects a piece-wise definition
of the function f , and the derivative of one or the other
piece may be quite different from the derivative of the
function f .

Root Problem

An example that is typical of the root problem is shown
in Table 1. The program P defines the function

f : R2 ! R

with

f (x) D
q
x41 C x42 :

This function is differentiable at any x 2 R2, in partic-
ular f 0(0) = [0, 0]. Standard AD (in the forward mode)
transforms P into a program P0 by inserting assignment
statements for derivatives in proper places (see Table 2).

The program P0 is supposed to compute f (x) and
f 0(x). But for x = 0 it does not compute the correct value

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 1
Program P for evaluating f at x

input: x = (x1; x2) 2 R2

y1  x1
y2  x2
y3  y41
y4  y42
y5  y3 + y4
y6  

py5
f (x)  y6
output: f (x)

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 2
Program P0 for evaluating f and f 0 at x

input: x = (x1; x2) 2 R2

y1  x1 y01  [1,0]
y2  x2 y02  [0,1]
y3  y41 y03  4y31 � y01
y4  y42 y04  4y32 � y02
y5  y3 + y4 y05  y03 + y04
y6  

py5 y06  1
2py5
� y05

f (x)  y6 f 0(x)  y06
output: f (x) output: f 0(x)

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 3
Program Q for evaluating f at x

input: x 2 D � Rn

y1  A(x)
y2  

py1
y3  B(x; y2)
f (x)  y3
output: f (x)

f 0(0) = [0, 0], but rather it fails because of division by
zero.

One can easily see that this failure is not limited to
the forward mode, because the reverse mode encoun-
ters the same division-by-zero problem. Symbolic ma-
nipulation packages such asMAPLE also fail to produce
f 0(0).



178 A Automatic Differentiation: Root Problem and Branch Problem

A more general setting for the root problem is
shown in Table 3. Here, it is assumed that:
1) DA is a nonempty open subset of Rn;
2) the function A: DA � Rn! R is differentiable;
3) DB is a nonempty open subset of Rn+1;
4) the function B: DB � Rn+1! R is differentiable;
5) D := {x 2 DA: A(x)� 0, (x, A(x)) 2 DB};
6) D is nonempty.
The program Q defines the function

f : D � Rn ! R

with

f (x) D B(x;
p
A(x)):

Standard AD (in the forward mode) transforms Q into
a program Q0. The steps of Q0 in evaluating f 0(x) can be
seen in the formula

f 0(x) D B1(x; y2)C B2(x; y2) �
�

1
2py1

� y01

�
;

where [B1(x, y2), B2(x, y2)] is an appropriate partition
of B0(x, y2). For x 2 D with A(x) > 0, the program Q0

will produce f 0(x). And for x 2 D with A(x) = 0, the
program Q0 fails because of division by zero. The case
in which x� 2 D with A(x�) = 0 is ambiguous. It says
nothing about the existence of f 0(x�). In this case, we
distinguish the following four situations:
A) f 0(x�) does not exist, for instance n = 2, A(x) = x21 +

x22 and B(x, y) = y, x� = 0.
B) A alone guarantees existence of f 0(x�), for instance

n = 2, A(x) = x41 + x42, x� = 0.
C) B alone guarantees existence of f 0(x�), for instance

B(x, y) = y2.
D) A and B together guarantee existence of f 0(x�), for

instance n = 2, A(x) = x21 + x22 and B(x, y) = x1 � x2 �
y, x� = 0.

What can be done to resolve the root problem?
The use of AD tools for higher derivatives may be

helpful. Consider the simple case n = 1, A 2 C1, DB =
Rn+1, B(x, y) = y. So we have

D :D fx : x 2 DA; A(x) � 0g

and f : D� R! R with f (x) D
p
A(x).

Assume that for x 2 R it can be decided whether or
not x 2 D, for instance by testing x in a program for
evaluating A.

For x� 2 D, we require the value of the derivative
f 0(x�). Below, we list the relevant implications:
� A(x�) > 0) f 0(x�) D 1

2
p

A(x�)
� A0(x�).

� A(x�) = 0) no answer possible.
� A(x�) = 0, A0(x�) 6D 0) f 0(x�) does not exist.
� A(x�) = 0, A0(x�) = 0) no answer possible.
� A(x�) = 0, A0(x�) = 0, A00(x�) 6D 0) f 0(x�) does not

exist.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0) no answer pos-

sible.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) 6D 0)

f 0(x�) does not exist.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) = 0) no

answer possible.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) = 0,

A(4)(x�) > 0) f 0(x�) = 0.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A00(x�) = 0,

A(4)(x�)< 0) f 0(x�) does not exist.
� A(x�) = 0, A0(x�) = 0, A00(x�) = 0, A000(x�) = 0,

A(4)(x�) = 0) no answer possible.
Let n 2 {1, 2, 3 . . . } and A(k)(x�) = 0 for k = 0, . . . , 2n.
� A(2n+1)(x�) 6D 0) f 0(x�) does not exist.
� A(2n+1)(x�) = 0, A(2n+2)> 0) f 0(x�) = 0.
� A(2n+ 1)(x�) = 0, A(2n+ 2)< 0) f 0(x�) does not exist.
� A(2n+ 1)(x�) = 0, A(2n+ 2) = 0) no answer possible.

For a nonstandard treatment of these implications
see [6]. Of course in the general situation given in Ta-
ble 3, the classification of cases is more problematic.

Branch Problem

A typical example for the branch problem is Gauss-
elimination for solving a system of linear equations
with parameters. For illustrative purposes, it suffices to
consider two equations with a two-dimensional param-
eter x (see Table 4). Here, it is assumed that:
a) D is a nonempty open subset of R2;
b) the functionM: D� R2! R2, 2 is differentiable;
c) the function R: D� R2! R2 is differentiable;
d) x 2 D) the matrixM(x) is regular.
The program GAUSS defines the function

F : D � R2 ! R2

with

M(x) � F(x) D R(x):
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Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 4
Program GAUSS for evaluating f at x

input: x 2 D
M11  M11(x)
M12  M12(x)
M21  M21(x)
M22  M22(x)
R1  R1(x)
R2  R2(x)
IF M11 ¤ 0 THEN

S1: E  M21 / M11
M22  M22 � E 
M12
R2  R2 � E 
 R1
F2  R2 / M22
F1  (R1 �M12 
 F2) / M11
ELSE

S2: F2  R1 /M12
F1  (R2 �M22 
 F2) /M21
output: F(x) = (F1,F2)

Since the matrixM(x) is regular for x 2 D, the program
GAUSS and the function f are well-defined. Further-
more, the function f is differentiable.

Standard AD (in the forward mode) transforms
GAUSS into a new program by inserting assignment
statements for derivatives in proper places. The result-
ing program GAUSS’ is also well-defined, and for x 2D
it is supposed to produce F(x) and F0(x).

Now choose

D D
˚
x 2 R2 : 0 < x1 < 2; 0 < x2 < 2

�

and

M(x) D
M11(x) M12(x)
M21(x) M22(x)

D
x1 � x2 1
10 x1 C x2

;

R(x) D
R1(x)
R2(x)

D
100(x1 C 2x2)
100(x1 � 2x2)

:

It is easy to see that D is a nonempty open subset of
R2, that the functions M and R are differentiable, and
thatM(x) is regular for x 2 D.

GAUSS’ produces

F 0(1; 1) D
�40 �90
100 200

;

but the correct value is

F 0(1; 1) D
�54 �76
170 130

:

One can easily check that the wrong result is not limited
to the forward mode, because the reverse mode yields
exactly the same wrong result.

To better understand the situation we define

D1 :D fx : x 2 D;M11(x) ¤ 0g ;

D2 :D fx : x 2 D;M11(x) D 0g :

The program GAUSS can be considered as a piece-
wise definition of the function F,

F(x) D

(
F(x) according to S1; for x 2 D1;

F(x) according to S2; for x 2 D2:

Normally, one is not too concerned about the domain
of a function. But indeed in this case, we must be con-
cerned.

Let F|D1 denote the restriction of F toD1 and let F|D2

denote the restriction of F to D2. Then, of course

F(x) D

(
(FjD1)(x) for x 2 D1;

(FjD2)(x) for x 2 D2:

The domain D1 of the function F|D1 is an open set, x 2
D1 is an interior point of D1, and hence

F 0(x) D (FjD1)
0(x) for x 2 D1;

and this is the value GAUSS’ produces.
The domain D2 of the function F|D2 is too thin, it

has no interior points, and hence F|D2 is not differen-
tiable. In other words, the function F|D2 does not pro-
vide enough information to obtain F0(x) for x 2 D2.
Thus GAUSS’ cannot produce F0(x) for x 2 D2. What
GAUSS’ actually presents for F0(x) is the value for the
derivative of another function, which is of no interest
here. For more see [1].

In [4] it is claimed that the use of a certain branch-
ing function method makes the branch problem vanish.



180 A Automatic Differentiation: Root Problem and Branch Problem

This is true in certain cases, in our example the branch-
ing function method fails because it encounters divi-
sion by zero. At least this suggests that something went
wrong. For a partial solution to the branch problem,
see [1] and for a nonstandard treatment of the branch
problem, see [6].

A simple example of the branch problem is shown
in the informal program

IF x ¤ 1 THEN f (x) x � x
ELSE f (x) 1:

This program defines the function

f : R! R with f (x) D x2:

Of course, f is differentiable, in particular we have f 0(1)
= 2.

Standard AD software produces the wrong result
f 0(1) = 0. It is not surprising that symbolic manipula-
tion packages produce the same wrong result. Here it
is obvious that the else-branch does not carry enough
information for computing the correct f 0(1).

Sometimes branching is done to save work. Con-
sider the function

f : D � Rn ! R

with

f (x) D s(x)C c(x) � E(x);

where D is an open set. The real-valued functions s, c, E
may be given explicitly or by subroutines. Assume that
f (x) has to be evaluated many times for varying x-s, that
c(x) = 0 for many interesting values of x, and that E(x)
is computationally costly. Then it is effective to set up
a program for computing f (x) as shown in Table 5.

Assume that the functions s, c, E are differentiable.
Then f is differentiable too. For given x 2 D we ask for
f 0(x).

Standard AD (in the forward mode) transforms SW
into a new program by inserting assignment statements
concerning derivatives. The resulting program SW 0 is
well-defined, and for given x 2 D it is supposed to pro-
duce f (x) and f 0(x).

Define the sets

D1 :D fx : x 2 D; c(x) ¤ 0g ;

D2 :D fx : x 2 D; c(x) D 0g :

Automatic Differentiation: Root Problem and Branch Prob-
lem, Table 5
Program SW for computing f (x)

input: x 2 D
c(x)  � � �

IF c(x) ¤ 0 THEN
S1: s(x)  � � �

E(x)  � � �

r(x)  s(x) + c(x) � E(x)
f (x)  r(x)
ELSE

S2: s(x)  � � �

f (x)  s(x)
output: f (x)

SW 0 works correctly to produce

f 0(x) D r0(x) for x 2 D1:

Looking at SW, it is tempting to assume:

f 0(x) D s0(x) for x 2 D2

and SW 0 actually follows this assumption. But it is clear
that

f 0(x) D s0(x)C E(x) � c0(x)C c(x) � E0(x)
for x 2 D;

and in particular

f 0(x) D s0(x)C E(x) � c0(x)

for x 2 D2:

If x 2 D2, and if either E(x) = 0 or c0(x) = 0, then SW 0

produces the correct F0(x), otherwise SW 0 fails.

See also

� Automatic Differentiation: Calculation of the
Hessian

� Automatic Differentiation: Calculation of Newton
Steps

� Automatic Differentiation: Geometry of Satellites
and Tracking Stations

� Automatic Differentiation: Introduction, History
and Rounding Error Estimation

� Automatic Differentiation: Parallel Computation
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� Automatic Differentiation: Point and Interval
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Taylor Operators
� Nonlocal Sensitivity Analysis with Automatic

Differentiation
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The traditional numerical analysis considers optimiza-
tion algorithms which guarantee some accuracy for all
functions to be optimized. This includes the exact al-
gorithms (that is the worst-case analysis). Limiting the
maximal error requires a computational effort that of-
ten increases exponentially with the size of the problem.
An alternative is average case analysiswhere the average
error is made as small as possible. The average is taken
over a set of functions to be optimized. The average case
analysis is called the Bayesian approach (BA) [7,14].

There are several ways of applying the BA in opti-
mization. The direct Bayesian approach (DBA) is de-
fined by fixing a prior distribution P on a set of func-
tions f (x) and byminimizing the Bayesian risk function
R(x) [6,14]. The risk function describes the average de-
viation from the global minimum. The distribution P is
regarded as a stochastic model of f (x), x 2 Rm, where

f (x) might be a deterministic or a stochastic function.
In the Gaussian case assuming (see [14] that the (n +
1)th observation is the last one

R(x) D
1

p
2
sn(x)

Z C1
�1

min(cn ; z)e
� 1

2

�
y�mn(x)
sn (x)

�2
dz ;

(1)

Here, cn = mini zi � �, zi = f (xi), mn(x) is the condi-
tional expectation given the values of zi, i= 1, . . .n, dn(x)
is the conditional variance, and � > 0 is a correction pa-
rameter.

The objective of DBA (used mainly in continuous
cases) is to provide as small average error as possible
while keeping the convergence conditions.

The Bayesian heuristic approach (BHA) means fix-
ing a prior distribution P on a set of functions f K(x)
that define the best values obtained using K times some
heuristic h(x) to optimize a function v(y) of variables
y 2 Rn [15]. As usual, the components of y are discrete
variables. The heuristic h(x) defines an expert opin-
ion about the decision priorities. It is assumed that the
heuristics or their ‘mixture’ depend on some continu-
ous parameters x 2 Rm, where m < n.

The Bayesian stopping rules (BSR) [3] define the
best on average stopping rule. In the BSR, the prior dis-
tribution is determined regarding only those features of
the objective function f (x) which are relevant for the
stopping of the algorithm of global optimization.

Now all these ways will be considered in detail start-
ing from the DBA. The Wiener process is common
[11,16,19] as a stochastic model applying the DBA in
the one-dimensional case m = 1.

TheWiener model implies that almost all the sample
functions f (x) are continuous, that increments f (x4) �
f (x3) and f (x2) � f (x1), x1 < x2 < x3 < x4 are stochasti-



184 B Bayesian Global Optimization

cally independent, and that f (x) is Gaussian (0, � x) at
any fixed x > 0. Note that the Wiener process originally
provided a mathematical model of a particle in Brown-
ian motion.

The Wiener model is extended to multidimensional
case, too [14]. However, simple approximate stochas-
tic models are preferable, if m > 1. These models are
designed by replacing the traditional Kolmogorov con-
sistency conditions because they require the inversion
of matrices of nth order for computing the conditional
expectationmn(x) and variance dn(x). The favorable ex-
ception is the Markov process, including the Wiener
one. Extending theWiener process tom > 1 the Marko-
vian property disappears.

Replacing the regular consistency conditions by:
� continuity of the risk function R(x);
� convergence of xn to the global minimum;
� simplicity of expressions ofmn(x) and sn(x),
the following simple expression of R(x) is obtained us-
ing the results of [14]:

R(x) D min
1�i�n

zi � min
1�i�n

kx � xik2

zi � cn
:

The aim of the DBA is to minimize the expected devia-
tion. In addition, DBA has some good asymptotic prop-
erties, too. It is shown in [14] that

d�

da
D

�
fa � f � C �

�

�1/2

; n!1;

where d� is the density of xi around the global optimum
f �, da and f a are the average density of xi and the aver-
age value of f (x), and � is the correction parameter in
expression (1). That means that DBA provides conver-
gence to the global minimum for any continuous f (x)
and greater density of observations xi around the global
optimum, if n is large. Note that the correction param-
eter � has a similar influence as the temperature in sim-
ulated annealing. However, that is a superficial similar-
ity. Using DBA, the good asymptotic behavior should
be regarded just as an interesting ‘by-product’. The rea-
son is that Bayesian decisions are applied for the small
size samples where asymptotic properties are not no-
ticeable.

Choosing the optimal point xn+1 for the next iter-
ation by DBA one solves a complicated auxiliary op-
timization problem minimizing the expected deviation

Bayesian Global Optimization, Figure 1
The Wiener model

R(x) from the global optimum (see Fig. 1). That makes
the DBA useful mainly for the computationally expen-
sive functions of a few (m < 20) continuous variables.
This happens in wide variety of problems such as max-
imization of the yield of differential amplifiers, opti-
mization of mechanical system of shock absorber, opti-
mization of composite laminates, estimation of param-
eters of immunological model and nonlinear time se-
ries, planning of extremal experiments on thermostable
polymeric composition [14].

Using DBA the expert knowledge is included by
defining the prior distribution. In BHA the expert
knowledge is involved by defining the heuristics and
optimizing their parameters using DBA.

If the number of variables is large and the objec-
tive function is not expensive, the Bayesian heuristic
approach is preferable. That is the case in many dis-
crete optimization problems. As usual, these problems
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are solved using heuristics based on an expert opinion.
Heuristics often involve randomization procedures de-
pending on some empirically defined parameters. The
examples of such parameters are the initial tempera-
ture, if the simulated annealing is applied, or the prob-
abilities of different randomization algorithms, if their
mixture is used. In these problems, the DBA is a conve-
nient tool for optimization of the continuous parame-
ters of various heuristic techniques. That is the Bayesian
heuristic approach [15].

The example of knapsack problem illustrates the ba-
sic principles of BHA in discrete optimization. Given
a set of objects j = 1, . . . , n with values cj and weights
gj, find the most valuable collection of limited weight:
8̂
ˆ̂̂<
ˆ̂̂̂
:

max
y

v(y) D v(y) D
nX

jD1

c j y j

s.t.
nX

jD1

g j y j � g:

Here the objective function v(y) depends on n Boolean
variables y = (y1, . . . , yn), where yj = 1 if object j is in the
collection, and yj = 0 otherwise. The well-known greedy
heuristics hj = cj/gj is the specific value of object j. The
greedy heuristic algorithm: ‘take the greatest feasible hj’,
is very fast but it may get stuck in some nonoptimal de-
cision.

A way to force the heuristic algorithm out of such
nonoptimal decisions is to make decision j with prob-
ability rj = �x(hj), where �x(hj) is an increasing func-
tion of hj and x = (x1, . . .xm) is a parameter vector.
The DBA is used to optimize the parameters x by min-
imizing the best result f K(x) obtained applying K times
the randomized heuristic algorithm �x(hj). That is the
most expensive operation of BHA. Therefore, the paral-
lel computation of f K (x) should be used when possible
reducing the computing time in proportion to a num-
ber of parallel processors.

Optimization of x adapts the heuristic algorithm
�x(hj) to a given problem. Let us illustrate the param-
eterization of �x(hj) using three randomization func-
tions: rli = hli /

P
j hlj , l = 0, 1,1. Here, the upper in-

dex l = 0 denotes the uniformly distributed component
and l = 1 defines the linear component of randomiza-
tion. The index1 denotes the pure heuristics with no
randomization where r1i = 1 if hi =maxj hj and r1i = 0,
otherwise. Here, parameter x = (x0, x1, x1) defines the

probabilities of using randomizations l = 0, 1,1 corre-
spondingly. The optimal x may be applied in different
but related problems, too [15]. That is very important in
the ‘on-line’ optimization adapting the BHA algorithms
to some unpredicted changes.

Another simple example of BHA application is by
trying different permutations of some feasible solution
y0. Then heuristics are defined as the difference hi =
v(yi) � v(y0) between the permuted solution yi and the
original one y0. The well-known simulated annealing
algorithm illustrates the parameterization of �x(hj) re-
lated to a single parameter x. Here the probability of
accepting a worse solution is equal to e�hi /x , where x is
the ‘annealing temperature’.

The comparison of BHA with exact branch and
bound algorithms solving a set of the flow-show prob-
lems is shown by the Table from [15]:

R = 100;K = 1; J = 10; S = 10;O = 10
Technique fB dB x0 x1 x1

BHA 6:18 0:13 0:28 0:45 0:26
CPLEX 12:23 0:00 � � �

Here S is the number of tools, J is the number of jobs,
O is the number of operations, f B, x0, x1, x1 are the
mean results, dB is the variance, and ‘CPLEX’ denotes
the standard MILP technique truncated after 5000 it-
erations. The table shows that in the randomly gen-
erated flow-shop problems the average make-span ob-
tained by BHA was almost twice less that obtained by
the exact branch and bound procedure truncated at the
same time as BHA. The important conclusion is that
stopping the exact methods before they reach the exact
solution is not a good way to obtain the approximate
solution.

The BHA has been used to solve the batch schedul-
ing [15] and the clustering (parameter grouping) prob-
lems. In the clustering problem the only parameter x
was the initial annealing temperature [8].

The main objective of BHA is to improve any given
heuristic by defining the best parameters and/or the
best ‘mixtures’ of different heuristics. Heuristic decision
rules mixed and adapted by BHA often outperform (in
terms of speed) even the best individual heuristics as
judged by the considered examples. In addition, BHA
provides almost sure convergence. However, the final
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results of BHA depend on the quality of the specific
heuristics including the expert knowledge. That means
the BHA should be regarded as a tool for enhancing the
heuristics but not for replacing them.

Many well-known optimization algorithms such as
genetic algorithms (GA) [10], GRASP [13], and tabu
search (TS) [14],may be regarded as generalized heuris-
tics that can be improved using BHA. There are many
heuristics tailored to fit specific problems. For exam-
ple, the Gupta heuristic was the best one while applying
BHA to the flow-shop problem [15].

Genetic algorithms [10] is an important ‘source’ of
interesting and useful stochastic search heuristics. It
is well known [2] that the results of the genetic algo-
rithms depend on the mutation and cross-over param-
eters. The Bayesian heuristic approach could be used in
optimizing those parameters.

In the GRASP system [13] the heuristic is repeated
many times. During each iteration a greedy randomized
solution is constructed and the neighborhood around
that solution is searched for the local optimum. The
‘greedy’ component constructs a solution, one element
at a time until a solution is constructed. A possible
application of the BHA in GRASP is in optimizing
a random selection of a candidate to be in the solu-
tion because different random selection rules could be
used and their best parameters should be defined. BHA
might be useful as a local component, too, by randomiz-
ing the local decisions and optimizing the correspond-
ing parameters.

In tabu search the issues of identifying best com-
binations of short and long term memory and best
balances of intensification and diversification strategies
may be obtained using BHA.

Hence the Bayesian heuristics approach may be
considered when applying almost any stochastic or
heuristic algorithm of discrete optimization. The
proven convergence of a discrete search method (see,
for example, [1]) is an asset. Otherwise, the conver-
gence conditions are provided by tuning the BHA [15],
if needed.

The third way to apply the Bayesian approach is
the Bayesian stopping rules (BSR) [3]. The first way, the
DBA, considers a stochastic model of the whole func-
tion to be optimized. In the BSR the stochastic models
regard only the features of the objective function which
are relevant for the stopping of the multistart algorithm.

In [20] a statistical estimate of the structure of multi-
modal problems is investigated. The results are applied
developing BSR for the multistart global optimization
methods [4,5,18].

Besides these three ways, there are other ways to
apply the Bayesian approach in global optimization.
For example, the Bayes theorem was used to derive the
posterior distribution of the values of parameters in
the simulated annealing algorithm to make an optimal
choice in the trade-off between small steps in the con-
trol parameter and short Markov chains and large steps
and long Markov chains [12].

In the information approach [17] a prior distribu-
tion is considered on the location parameter ˛ of the
global optimum of an one-dimensional objective func-
tion. Then an estimate of ˛ is obtained maximizing
the likelihood function after a number of evaluations of
the objective function. This estimate is assumed as the
next search point. For the solution of multidimensional
problems, it is proposed to transform the problem into
a one-dimensional problem by means of Peano maps.
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Introduction

After the initial introduction in 1982, Bayesian net-
works (BN) have quickly developed into a dynamic area
of research. This is largely due to the special structure of
Bayesian networks that allows them to be very efficient
in modeling domains with inherent uncertainty. In ad-
dition, there is a strong connection between Bayesian
networks and other adjacent areas of research, includ-
ing data mining and optimization.

Bayesian networks have their lineage in statistics,
and were first formally introduced in the field of arti-
ficial intelligence and expert systems by Pearl [17] in
1982 and Spiegelhalter and Knill-Jones [21] in 1984.
The first real-life applications of Bayesian networks
were Munin [1] in 1989 and Pathfinder [7] in 1992.
Since the 1990s, the amount of research in Bayesian
networks has increased dramatically, resulting in many
modern applications of Bayesian networks to various
problems of data mining, pattern recognition, image
processing and data fusion, engineering, etc.

Bayesian networks comprise a class of interesting
special cases, many of which were in consideration
long before the first introduction of Bayesian networks.
Among such interesting cases are some frequently used
types of the model simplifying assumptions includ-
ing naïve Bayes, the noisy-OR and noisy-AND mod-
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els, as well as different models with specialized struc-
ture, in particular the time-stamped models, the strictly
repetitive models, dynamic Bayesian networks, hidden
Markov models, Kalman filter, Markov chains. Artifi-
cial neural networks are another subclass of Bayesian
networks, which has many applications, in particular in
biology and computer science.

Definitions

Based on classical probability calculus, the idea of
a Bayesian network has its early origins in Bayesian
statistics. On the other hand, it has an added benefit of
incorporating the notions of graph theory and networks
that allows us to visualize the relationships between the
variables represented by the nodes of a Bayesian net-
work. In other words, a Bayesian network is a graphical
model providing a compact representation for commu-
nicating causal relationships in a knowledge domain.
Below we introduce two alternative definitions of the
general notion of a Bayesian network, based on the
usual concepts of probability and graph theory (e. g.
joint probability distribution, conditional probability
distribution; nodes and edges of a graph, a parent of
a node, a child of a node, etc.).

Roughly speaking, a Bayesian network can be
viewed as an application of Bayesian calculus on
a causal network. More precisely, one can describe
a Bayesian network as a mathematical model for rep-
resenting the joint distribution of some set of random
variables as a graph with the edges characterized by the
conditional distributions for each variable given its par-
ents in the graph.

Given a finite collection of random variables X D
fX1; X2; : : : ; Xng, the formal definition of a Bayesian
network can be stated as follows:

Definition 1 A Bayesian network is an ordered pair
(G,D), where
� The first component G represents a directed acyclic

graph with nodes, which correspond to the ran-
dom variables X1; X2; : : : ; Xn , and directed arcs,
which symbolize conditional dependencies between
the variables. The set of all the arcs of G satisfies
the following assumption: Each random variable in
the graph is conditionally independent of its non-
descendants in G, given its parents in G.

� The second component D corresponds to the set of
parameters that, for each variable Xi ; 1 � i � n,
define its conditional distribution given its parents
in the graph G.

Note that the variables in a Bayesian networks can
follow discrete or continuous distributions. Clearly,
for continuously distributed variables, there is a cor-
respondent conditional probability density function
f (xi jPa(xi)) of Xi given its parents Pa(Xi). (From now
on we denote by xi the realization of the correspondent
random variable Xi.)

In many real-life applications modeled by Bayesian
networks the set of states for each variable (node) in
the network is finite. In the special case when all vari-
ables have finite sets of mutually exclusive states and
follow the discrete distributions, the previous definition
of a Bayesian network can be reformulated in the fol-
lowing fashion:

Definition 2 A Bayesian network is a structure that
consists of the following elements:
� A collection of variables with a finite set of mutually

exclusive states;
� A set of directed arcs between the variables symbol-

izing conditional independence of variables;
� A directed acyclic graph formed by the variables and

the arcs between them;
� Apotential table Pr(Xi jPa(Xi)) associated with each

variable Xi having a set of parent variables denoted
by Pa(Xi).

Observe that we do not require causality in Bayesian
networks, i. e. the arcs of a graph do not have to symbol-
ize causal relationship between the variables. However,
it is imperative that the so-called d-separation rules im-
plied by the structure are satisfied [12,19]. If variables
X and Y are d-separated in a Bayesian network under
the presence of evidence e, then Pr(XjY ; e) D Pr(Xje),
i. e. the variables are conditionally independent given
the evidence.

Furthermore, the d-separation rules are applied to
prove one of the key laws used in Bayesian networks,
a so-called chain rule for Bayesian networks.

The joint probability table Pr(X) D Pr(X1;

X2; : : : ; Xn) sufficiently describes the belief structure
on the set X D fX1; X2; : : : ; Xng of variables in the
model. In particular, for each variable Xi , using the
joint probability table, one can easily calculate the prior
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probabilities Pr(Xi) as well as the conditional proba-
bility Pr(Xi je) given an evidence e. Nevertheless, with
increase in the number of variables, the joint proba-
bility table quickly becomes unmanageably large, since
the table size grows exponentially fast with the size n
of the variable set. Thus, it is necessary to find another
representation, which adequately and more efficiently
describes the belief structure in the model. A Bayesian
network over X D fX1; X2; : : : ; Xng provides such
a representation. In fact, a graph in a Bayesian network
gives a compact representation of conditional depen-
dencies in the network, which allows one to compute
the joint probability table from the conditional prob-
abilities specified by the network using the chain rule
below.

The Chain Rule for Bayesian Networks [8]

The joint probability distribution Pr(X) D Pr(X1;

X2; : : : ; Xn) of the variables X D fX1; X2; : : : ; Xng in
a Bayesian network is given by the formula

Pr(X) D
nY

iD1

Pr(Xi jPa(Xi)) ; (1)

where Pa(Xi) denotes the set of all parents of variable
Xi.

The chain rule for Bayesian networks also provides
an efficient way for probability updating when the new
information is received about the model. There is a va-
riety of different types of such new information, i. e. ev-
idence. Two most common types of evidence are find-
ing and likelihood evidence. Finding is evidence that
specifies which states are possible for some variables,
while likelihood evidence gives a proportion between
the probabilities of two given states. Note that some
types of evidence including likelihood evidence cannot
be given in the form of findings.

Cases/Models

Bayesian networks provide a general framework for
a number of specialized models, many of which were
identified long before the concept of a Bayesian net-
work was proposed. Such special cases of BN vary in
their graph structures as well as the probability distri-
bution.

The probability distributions for a Bayesian net-
work can be defined in several ways. In some situations,

it is possible to use theoretically well-defined distribu-
tions. In others, the probabilities can be estimated from
data as frequencies. In addition, absolutely subjective
probability estimates are often used for practical pur-
poses. For instance, when the number of conditional
probability distributions to acquire from the data is very
large, some simplifying assumptions may be appropri-
ate.

The simplest Bayesian network model is the well-
known naïve Bayes (or simple Bayes) model [4], which
can be summarized as follows:
� The graph structure of the model consists of one hy-

pothesis variable H, and a finite set of information
variables I D fI1; I2; : : : ; Ing with the arcs from H
to every Ik ; 1 � k � n. In other words, the vari-
ables form a diverging connection, where the hy-
pothesis variable H is a common parent of variables
I1; I2; : : : ; In ;

� The probability distributions are given by the val-
ues Pr(IkjH), for every information variable Ik ; 1 �
k � n.

The probability updating procedure based on the naïve
Bayes model works in the following manner: Given
a collection of observations e1; e2; : : : ; en on the vari-
ables I1; I2; : : : ; In respectively, the likelihood of H
given e1; e2; : : : ; en is computed:

L(Hje1; e2; : : : ; en) D
nY

iD1

Pr(ei jH) : (2)

Then the posterior probability ofH is obtained from the
formula:

Pr(Hje1; e2; : : : ; en) D C �Pr(H) �L(Hje1; e2; : : : ; en) ;

(3)

where C is a normalization constant.
Another special case of BNs is a model underlined

by the simplifying assumption called noisy-OR [18].
This model can be constructed as follows:

Let A1;A2; : : : ;An represent some binary variables
listing all parents of a binary variable B. Each event
Ai D x; x 2 f0; 1g, causes B D x except when an in-
hibitor prevents it, with the probability pi, i. e. Pr(B D
1 � xjAi D x) D pi . Suppose that all inhibitors are
independent.
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Then the graph of a corresponding Bayesian net-
work is represented by the converging connection with
B as the child node of A1;A2; : : : ;An , while the condi-
tional probabilities are given by Pr(B D xjAi D x) D
1� pi . Since the conditional distributions are indepen-
dent of each other, then

Pr(B D 1 � xjA1;A2; : : : ;An) D
nY

iD1

pi : (4)

The noisy-OR assumption gives a significant advantage
for efficient probability updating, since the number of
distributions increases linearly with respect to the num-
ber of parents.

The construction complementary to noisy-OR is
called noisy-AND. In the noisy-AND model, the graph
is the convergent connection just as in the noisy-OR
model, all the causes are required to be on in order to
have an effect, and all the causes have mutually inde-
pendent random inhibitors. Both noisy-OR and noisy-
AND are special cases of a general method called noisy
functional dependence.

Many modeling approaches have been devel-
oped which employ introduction of mediating vari-
ables in a Bayesian network. One of these meth-
ods, called divorcing, is the process separating parents
A1;A2; : : : ;Ai and AiC1; : : : ;An of a node B by intro-
ducing a mediating variable C as a child of divorced
parent nodes A1;A2; : : : ;Ai and a parent of the initial
child node B. The divorcing of A1;A2; : : : ;Ai is possi-
ble if the following condition is satisfied:

The set � of all configurations of A1;A2; : : : ;Ai can
be partitioned into the sets c1; c2; : : : ; cs so that for ev-
ery 1 � j � m, any two configurations �1; �2 2 c j have
the same conditional probabilities:

Pr(Bj�1;AiC1; : : : ;An) D Pr(Bj�2;AiC1; : : : ;An) :

(5)

Other modeling methods, which engage the mediat-
ing variables, involve modeling undirected relations,
and situations with expert disagreement. Various types
of undirected dependencies, including logical con-
straints, are represented by adding an artificial child C
of the constrained nodes A1;A2; : : : ;An so that the
conditional probability Pr(CjA1;A2; : : : ;An) emulates
the relation. The situation, where k experts disagree

on the conditional probabilities for different vari-
ables B1; B2; : : : ; Bn in the model can be modeled
by introducing a mediating node M with k states
m1;m2; : : : ;mk so that the variables B1; B2; : : : ; Bn on
whose probabilities the experts disagree become the
only children of expert node M. Another approach to
modeling expert disagreements is by introducing alter-
native models with weights assigned to each model.

An important type of Bayesian networks are so-
called time-stamped models [10]. These models reflect
the structure which changes over time. By introduc-
ing a discrete time stamp in such structures, the time-
stamped models are partitioned into submodels for ev-
ery unit of time. Each local submodel is called a time
slice. The complete time-stamped model consists of all
its time slices connected to each other by temporal links.

A strictly repetitive model is a special case of a time-
stamped model such that all its time slices have the
same structure and all the temporal links are alike. The
well-studied hidden Markov models is a special class of
strictly repetitive time-stamped models for which the
Markov property holds, i. e. given the present, the past
is independent of the future.

A hidden Markov model with only one variable in
each time slice connected to the variables outside the
time slice is a Kalman filter. Furthermore, a Markov
chain can be represented as a Kalman filter with only
one variable in every time slice. It is possible to convert
a hidden Markov model into a Markov chain by cross-
multiplying all variables in each time slice.

The time-stamped models can have either finite
horizon or infinite horizon. An infinite Markov chain
would be an example of a time-stamped model with
an infinite horizon. Furthermore, the repetitive time-
stamped models with infinite horizon are also known
as dynamical Bayesian networks. By utilizing the spe-
cial structure of many repetitive temporal models, they
can be compactly represented [2]. Such special repre-
sentation can often facilitate the design of efficient al-
gorithms in updating procedures.

Artificial neural networks can also be viewed as
a special case of Bayesian networks, where the nodes
are partitioned into nmutually exclusive layers, and the
set of arcs represented by the links from the nodes on
layer i to the nodes on i C 1; 1 � i � n. Layer 1 is usu-
ally called the input layer, while layer n is known as the
output layer.
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Methods

Just as the BNs have their roots in statistics, the ap-
proaches for discovering a BN structure utilize statis-
tical methods. That is why a database of cases is in-
strumental for discovery of the graph configuration of
a Bayesian network as well as probability updating.
There are three basic types of approaches to extracting
BNs from data: batch learning, adaptation, and tuning.

Batch Learning. Batch Learning is a process of ex-
tracting the information from a database of collected
cases in order to establish a graph structure and the
probability distributions for a certain Bayesian net-
works.

Often there are many ways to model a Bayesian net-
work. For example, we may obtain two different proba-
bility distributions to model the true distribution of the
variable in the network. To make an intelligent choice
between two available distributions, it is important to
have an appropriate measure of their accuracy. A logi-
cal way to approach this subject is by assigning penalties
for a wrong forecast on the base of a specified distribu-
tion. For example, two widely accepted ways for assign-
ing penalties are the quadratic (Brier) scoring rule and
the logarithmic scoring rule.

Given the true distribution p D (p1; p2; : : : ; pm)
of a discrete random variable with m states, and some
approximate distribution q D (q1; q2; : : : ; qm), the
quadratic scoring rule assigns the expected penalty as:

ESQ (p; q) D
mX
iD1

pi

0
@(1 � qi)2 C

X
j¤i

q2j

1
A : (6)

The distance between true distribution p and approxi-
mation q is given by the formula:

dQ (p; q) D ESQ (p; q) � ESQ (p; p) : (7)

Hence, from (6) we have:

dQ (p; q) D
mX
iD1

(pi � qi)2 : (8)

The distance dQ (p; q) given in (8) is called the Eu-
clidean distance.

The logarithmic scoring rule assigns to each out-
come i the corresponding penalty SL(q; i) D � log qi .

Hence, the expected penalty is calculated as:

ESL(p; q) D �
mX
iD1

pi log qi : (9)

From (7), we obtain an expression for the distance be-
tween the true distribution p, and the approximation q:

dL(p; q) D
mX
iD1

pi log
pi
qi
; (10)

which is called the Kulbach–Leibler divergence.
Note that both definitions, the Euclidean distance

and the Kulbach–Leibler divergence, can be easily ex-
tended in the case of continuous random variables.
Moreover, both scoring rules, the quadratic and the log-
arithmic, possess the following useful property: only
the true distribution minimizes the score. The scor-
ing rules that exhibit this property are called strictly
proper. Since the quadratic and the logarithmic scor-
ing rules are strictly proper, then the corresponding dis-
tance measures dQ and dL both satisfy the following:

d(p; q) D 0 if and only if p D q :

Different scoring rules and corresponding distance
measures for discrete and continuous random variables
have been extensively studied in statistics. A compre-
hensive review of strictly proper scoring rules is given
in [6].

Naturally, among several different Bayesian net-
works that model the situation equally closely, the one
of the smallest “size” would be preferred.

Let M denote a Bayesian network over the variable
set X D fX1; X2; : : : ; Xng. Then the size of M is given
by

Size(M) D
nX

iD1

s(Xi) ; (11)

where s(Xi) denotes the number of entries in the con-
ditional probability table Pr(Xi jPa(Xi)), and Pa(Xi) is
the set of parents of Xi.

The following measure accounts for both the size of
the model and its accuracy.

Given a Bayesian network M over X with the
true probability distribution p, and an approximate
Bayesian network model N with distribution q, we de-
fine the acceptance measure as

˛(p;N) D Size(N)C C � d(p; q) ; (12)
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where Size(�) is the network size defined by (11), d(p; q)
is a distance measure between probability distributions
p and q, and C is a positive real constant.

The general approach to batch learning a Bayesian
network from the data set of cases can be summarized
as follows:
� Select an appropriate threshold � for distance mea-

sure d(p; q) between two distributions;
� Fix a suitable constant C in a definition of accep-

tance measure ˛(p;N);
� Among all Bayesian network models over X and dis-

tribution q such that d(p; q) < � , select the model
that minimizes ˛(p;N).
Although simple, this approach has many practical

issues. The data sets in batch learning are usually very
large, the model space grows exponentially in the num-
ber of variables, there may be missing data in the data
set, etc. To extract structure from such data, one of-
ten has to employ special heuristics for searching the
model space. For instance, causality can be used to clus-
ter the variables according to a causal hierarchy. In
other words, we partition the variable set X into sub-
sets S1; S2; : : : ; Sk , so that the arcs satisfy a partial or-
der relation. If we find the model N having the distance
d(p; q) < � , the search stops; otherwise we consider the
submodel of N.

Adaptation It is often desirable to build a system ca-
pable of automatically adapting to different settings.
Adaptation is a process of adjusting a Bayesian network
model so that it is better able to accommodate to new
accumulated cases.

When building a Bayesian network, usually there is
an uncertainty whether the chosen conditional proba-
bilities are correct. This is called the second-order un-
certainty.

Suppose that we are not sure which table out of m
different conditional probability tables T1; T2; : : : ; Tm

represents the true distribution for Pr(Xi jPa(Xi)) for
some variable Xi in a network. By introducing a so-
called type variable T with states t1; t2; : : : ; tm into the
graph so that T is a parent of Xi, we can model this un-
certainty into the network. Then the prior probability
Pr(t1; t2; : : : ; tm) represents our belief about the cor-
rectness of the tables T1; T2; : : : ; Tm respectively. Next,
we set Pr(Xi jPa(Xi); t j) D Tj . Our belief about the cor-
rectness of the tables is updated each time we receive

new evidence e. In other words, for the next case, we
use Pr(t1; t2; : : : ; tm je) as the new prior probability of
tables’ accuracy.

Sometimes the second-order uncertainty about the
conditional probabilities cannot be modeled by intro-
ducing type variables. In such cases, various statistical
methods can be applied. Normally such methods ex-
ploit various properties of parameters, such as global
independence, local independence, etc.

The property of global independence states that the
second-order uncertainty for the variables is indepen-
dent, i. e. the probability tables for the variables can be
adjusted independently from each other.

The local independence property holds if and only if
for any two different parent configurations 
1; 
2, the
second-order uncertainty on Pr(Aj
1) is independent
of the second-order uncertainty on Pr(Aj
2), and the
two distributions can be updated independently from
each other. In other words, local independence means
the independence of the uncertainties of the distribu-
tions for different configurations of parents.

The fractional updating scheme [22], is an algo-
rithm for reducing the second-order uncertainty about
the distributions based on the received evidence. Sup-
pose that the properties of global and local indepen-
dence for the second-degree uncertainty hold simulta-
neously. For every configuration 
 of parents of vari-
able Xi, the certainty about Pr(Xi j
) is given through
an artificially selected sample size parameter ni, and
for any state x j

i of variable Xi we have a corresponding
count nj

i D ni � Pr(x
j
i j
). After receiving an evidence

e, we compute probabilities Pr(x j
i ; 
je). Then the up-

dated count nj
i is the sum of Pr(x j

i ; 
je) and the old nj
i .

Since ni D
P

j n
j
i , the old sample size parameter ni be-

comes ni C Pr(
je).
Although efficient in reducing the uncertainty about

the distributions, this scheme has some serious draw-
backs. In fact, it tends to reduce the second-degree
uncertainty too fast, by overestimating the counts. In
order to avoid this, one can introduce a so-called fading
factor f . Then after receiving an evidence, the sample
size ni is changed to f � ni C Pr(
je), and the counts
nj
i are updated to f � nj

i C Pr(x j
i ; 
je). Therefore, the

fading factor f insures that the influence of the past
decreases exponentially [16].

After describing some approaches in adapting
a Bayesian network to different settings of distribution
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parameters, it is equally important to discuss the un-
certainty in the graph structure. In many cases, we can
compensate for the variability in the graph structure of
a Bayesian network just by modifying the parameters of
distributions in the network. Sometimes it may not be
sufficient to adjust the distribution parameters in order
to account for the change in the model. In fact, the dif-
ference in the graph structure may be so significant that
it becomes impossible to accurately reflect the situation
by a mere parameter change.

There are two main approaches to graph struc-
ture adaptation in Bayesian networks. The first method
works by collecting the cases, and re-running the batch
learning procedure to update the graph structure. The
second method, also known as the expert disagreement
approach, works simultaneously with a set of differ-
ent models, and updates the weight of each model ac-
cording to the evidence. More precisely, suppose there
are m alternative models M1;M2; : : : ;Mm with cor-
responding initial weights w1;w2; : : : ;wm that express
our certainty of the models. Let Y be some variable
in the network. After receiving an evidence e, we ob-
tain the probabilities Pri(Y je) :D Pr(Y je;Mi ) and
Pri (e) :D Pr(ejMi) according to each model Mi, for
1 � i � m. Then,

Pr(Y je) :D
mX
iD1

wi � Pr i (Y je) ; (13)

and the updated weights wi are computed as the prob-
abilities of the corresponding models Mi given the past
evidence: wi D Pr(Mi je). Hence, by the well-known
Bayes formula:

wi D
Pr(ejMi) Pr(Mi )P

j
w j Pr j(e)

: (14)

Note that the expert disagreement approach to graph
structure adaptation can be further extended to include
the adaptation of distribution parameters based on the
above methods, such as fractional updating.

Tuning Tuning is the process of adjusting the dis-
tribution parameters so that some prescribed requests
for the model distributions are satisfied. The commonly
used approach to tuning is the gradient descent on the
parameters similar to training in neural networks.

Let � represent the set of parameters which are cho-
sen to be altered. Let p(�) denote the current model
distribution, and q be the target distribution. Suppose
d(p; q) represents the distance between two distribu-
tions. The following gradient descent tuning algorithm
is given in [9]:
� Compute the gradient of d(p; q) with respect to the

parameters � ;
� Select a step size ˛ > 0, and let �� D �˛ �

�!
r

d(p; q)(�0), i. e. give �0 a displacement�� in the op-
posite direction to the gradient of d(p; q)(�0);

� Repeat this procedure until the gradient is suffi-
ciently close to zero.
Evolutionary methods, simulated annealing, expec-

tation-maximization and non-parametric methods are
among other commonly used methods for tuning or
training Bayesian networks.

Applications

The concept of a Bayesian network can be interpreted
in different contexts. From a statistical point of view,
a Bayesian network can be defined as a compact rep-
resentation of the joint probability over a given set of
variables. From a broader point of view, a Bayesian net-
work is a special type of graphical model capable of re-
flecting causality, as well as updating its beliefs in view
of received evidence. All these features make a Bayesian
network a versatile instrument that can be used for vari-
ous purposes, including facilitating communication be-
tween human and computer, extracting hidden infor-
mation and patterns from data, simplifying decision
making, etc.

Due to their special structure, Bayesian networks
have found many applications in various areas such
as artificial intelligence and expert systems, machine
learning and data mining. Bayesian networks are used
formodeling knowledge in text analysis, image process-
ing, speech pattern analysis, data fusion, engineering,
biomedicine, gene and protein regulatory networks,
and even meteorology. Furthermore, it has been ex-
pressed that the inductive inference procedures based
on Bayesian networks can be used to introduce induc-
tive reasoning in such a previously strictly deductive
science as mathematics.

The large scope of different applications of Bayesian
networks is especially impressive when taking into ac-
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count that the theory of Bayesian networks has only
been around for about a quarter of a century. Next, sev-
eral examples of recent real-life applications of Bayesian
networks are considered to illustrate this point.

Recent research in the field of automatic speech
recognition [13] indicates that dynamic Bayesian net-
works can effectively model hidden features in speech
including articulatory and other phonological features.
Both hidden Markov models (HMM), which are a spe-
cial case of dynamic Bayesian networks (DBN), and
more general dynamic Bayesian networks have been
applied for modeling audio-visual speech recognition.
In particular, a paper by A.V. Nefian et al. [15] de-
scribes an application of the coupled HMM and the fac-
torial HMM as two suitable statistical models for audio-
video integration. The factorial HMM is a generaliza-
tion of HMM, where the hidden state is represented by
a collection of variables also called factors. These fac-
tors, although independent of each other, all impact the
observations, and hence become connected indirectly.
The coupled HMM is a DBN represented as two reg-
ular HMM whose hidden state nodes have links to the
hidden state nodes from the next time slice. The cou-
pled HMM has also been applied to model hand ges-
tures, the interaction between speech and hand ges-
tures, etc. In addition, face detection and recognition
problems have been studied with the help of Bayesian
networks.

Note that different fields of application may call for
specialized employment of Bayesian network methods,
and conversely, similar approaches can be successfully
used in different application areas. For instance, along
with the applications to speech recognition above, cou-
pled hidden Markov models have been employed in
modeling multi-channel EEG (electroencephalogram)
data.

An interesting example of the application of
a Bayesian network to expert systems includes devel-
oping strategies for troubleshooting complex electro-
mechanical systems, presented in [23]. The constructed
Bayesian network has the structure of a naïve Bayes
model. In the decision tree for the troubleshooting
model, the utility function is given by the cost of repair.
Hence, the goal is to find a strategy minimizing the ex-
pected cost of repair.

An interesting recent study [3] describes some ap-
plications of Bayesian networks in meteorology from

a data mining point of view. A large database of daily
observations of precipitation levels andmaximumwind
speed is collected. The Bayesian network structure is
constructed from meteorological data by using various
approaches, including batch learning procedure and
simulation techniques. In addition, an important data
mining application of Bayesian networks is illustrated
by giving an example of missing data values estimation
from the evidence received.

Applications of Bayesian Networks to Data Mining;
Naïve Bayes Rapid progress in data collection tech-
niques and data storage has enabled an accumulation
of huge amounts of experimental, observational and
operational data. As the result, massive data sets con-
taining a large amount of information can be found al-
most everywhere. A well-known example is the data set
containing the observed information about the human
genome. The need to quickly and correctly analyze or
manipulate such enormous data sets facilitated the de-
velopment of data mining techniques.

Data mining is research aimed at discovery of var-
ious types of knowledge from large data warehouses.
Data mining can also be seen as an integral part of
the more general process of knowledge discovery in
databases. Two other parts of this knowledge discovery
are preprocessing and postprocessing. As seen above,
Bayesian networks can also extract knowledge from
data, which is called evidence in the Bayesian frame-
work. In fact, the Bayesian network techniques can be
applied to solve data mining problems, in particular,
classification.

Many effective techniques in data mining utilize
methods from other multidisciplinary research areas
such as database systems, pattern recognition, machine
learning, and statistics. Many of these areas have a close
connection to Bayesian networks. In actuality, data
mining utilizes a special case of Bayesian networks,
namely, naïve Bayes, to perform effective classification.
In a data mining context, classification is the task of
assigning objects to their relevant categories. The in-
centive for performing classification of data is to attain
a comprehensive understanding of differences and sim-
ilarities between the objects in different classes.

In the Bayesian framework, the data mining classifi-
cation problem translates into finding the class param-
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eter which maximizes the posterior probability of the
unknown instance. This statement is called the max-
imum a posteriori principle. As mentioned earlier, the
naïve Bayes is an example of a simple Bayesian network
model.

Similarly to the naïve Bayes classifier, classification
by way of building suitable Bayesian networks is ca-
pable of handling the presence of noise in the data as
well as the missing values. Artificial neural networks
can serve as an example of the Bayesian network clas-
sifier designed for a special case.

Application to Global and Combinatorial Optimiza-
tion In the late 1990s, a number of studies were con-
ducted that described how BN methodology can be
applied to solve problems of global and combinato-
rial optimization. The connection between graphical
models (e. g. Bayesian networks) and evolutionary al-
gorithms (applied to optimization problems) was estab-
lished. In particular, P. Larrañaga et al. combined some
techniques from learning BN’s structure from data
with an evolutionary computation procedure called
the Estimation of Distribution Algorithm [11] to de-
vise a procedure for solving combinatorial optimization
problems. R. Etxerberria and P. Larrañaga proposed
a similar approach for global optimization [5].

Another method based on learning and simulation
of BNs that is known as the Bayesian Optimization Al-
gorithm (BOA) was suggested by M. Pelikan et al. [20].
The method works by randomly generating an initial
population of solutions and then updating the popu-
lation by using selection and variation. The operation
of selection makes multiple copies of better solutions
and removes the worst ones. The operation of variation,
at first, constructs a Bayesian network as a model of
promising solutions following selection. Then new can-
didate solutions are obtained by sampling of the con-
structed Bayesian network. New solutions are incorpo-
rated into the population in place of some old candidate
solutions, and the next iteration is executed unless a ter-
mination criterion is reached.

For additional information on some real-world ap-
plications of Bayesian networks to classification, relia-
bility analysis, image processing, data fusion and bio-
informatics, see the recent book edited by A. Mittal
et al. [14].

See also

� Bayesian Global Optimization
� Evolutionary Algorithms in Combinatorial

Optimization
� Neural Networks for Combinatorial Optimization
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Synonyms

Beam orientation optimization; Beam angle optimiza-
tion

Introduction

Cancer is typically treated with 3 standard procedures:
1) surgery – the intent of which is to physically rescind
the disease, 2) chemotherapy – drug treatment that at-
tacks fast proliferating cells, and 3) radiotherapy – the
targeted treatment of cancer with ionizing beams of
radiation. About half of all cancer patients receive ra-
diotherapy, which is delivered by focusing high-energy
beams of radiation on a patient’s tumor(s). Treatment
design is traditionally considered in three phases:

Beam Selection The process of deciding the number
and trajectory of the beams that will pass through
the patient.

Fluence Optimization Calculating the amount of dose
to deliver along each of the selected beams so that
the patient is treated as well as possible.

Delivery Optimization Deciding how to best deliver
the treatment designed in the first two steps.

The fundamental question in optimizing radiother-
apy treatments is how to best treat the patient, and
such research requires detailed knowledge of medi-
cal physics and optimization. Unlike the numerous re-
search pursuits within the field of optimization that
require a specific expertise, the goals of this research
rely on an overriding understanding of modeling, solv-
ing and analyzing optimization problems as well as an
understanding of medical physics. The necessary spec-
trum of knowledge is commonly collected into a re-
search group that is comprised of medical physicists,
operations researchers, computer scientists, industrial
engineers, and mathematicians.

In amodern clinic, the first phase of selecting beams
is accomplished by a treatment planner, and hence, the
quality of the resulting treatment depends on the ex-
pertise of this person. Fluence optimization is automat-
ically conducted once beams are selected, and the re-
sulting treatment is judged with a variety of metrics
and visualization tools. If the treatment is acceptable,
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the process ends. However, unacceptable treatments are
common, and in this scenario the collection of beams is
updated and fluence optimization is repeated with the
new beams. This trial-and-error approach oscillates be-
tween the first two phases of treatment design and of-
ten continues for hours until an acceptable treatment
is rendered. The third phase of delivery optimization
strives to orient the treatment machinery so that the
patient is treated as efficiently as possible, where effi-
ciency is interpreted as shortest delivery time, shortest
exposure time, etc.

The focus of this entry is Beam Selection, which has
a substantial literature in the medical physics commu-
nity and a growing one in the operations research com-
munity. As one would expect, no single phase of treat-
ment design exists in isolation, and although the three
phase approach pervades contemporary thinking, read-
ers should be aware that future efforts to optimize the
totality of treatment design are being discussed. The
presentation below is viewed as part of this bigger goal.

Definitions

An understanding of the technical terms used to de-
scribe radiotherapy is needed to understand the scope
of Beam Selection. Patient images such as CAT scans
or MRI images are used to identify and locate the ex-
tent of the disease. Treatment design begins with the
tedious task of delineating the target and surrounding
tissues on each of the hundreds of images. The resulting
3D structures are individually classified as either a tar-
get, a critical structure, or normal tissue. An oncologist
prescribes a goal dose for the target and upper bounds
on the remaining tissues. This prescription is tailored
to the optimization model used in the second phase of
treatment design and is far from unique. A discussion
of the myriad of models used for fluence optimization
exceeds the confines of this article and is fortunately not
needed.

The method of treatment depends on the clinic’s
technology, and we begin with the general concepts
common to all modalities. A patient lies on a treatment
couch that can bemoved vertically and horizontally and
rotated in the plane horizontal to the floor. A gantry
rotates around the patient in a great circle, the head
of which is used to focus the beam on the patient, see
Fig. 1. Shaping and modulating the beam is important

Beam Selection in Radiotherapy Treatment Design, Figure 1
A typical treatment configuration

Beam Selection in Radiotherapy Treatment Design, Figure 2
A multileaf collimator

in all forms of treatment, and although these tasks are
accomplished differently depending on the technology,
it is common to control smaller divisions of each beam
called sub-beams. As an example, the gantry’s head of-
ten contains a multileaf collimator that is capable of di-
viding the beam (Fig. 2), a technology that is modeled
by replacing the whole beam with a grid of rectangular
sub-beams. Previous technology shaped andmodulated
the beamwithout a collimator, but the concept of a sub-
beam remains appropriate.

The center of the gantry’s rotation is called the
isocenter, a point that is placed near the center of the
target by repositioning the patient via couch adjust-
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ments. The beam can essentially be focused on the pa-
tient from any point on a sphere with a one meter
radius that encompasses the patient, although some po-
sitions are not possible due to patient-gantry interfer-
ence. The beam selection problem is to choose a few of
these positions so that the resulting treatment is of high
quality. If the selection process is restricted to a sin-
gle great circle, then the term beam is often replaced
with angle (in fact these terms are used synonymously
in much of the literature).

The collection of positions on the sphere from
which we are allowed to select is denoted by A. This
set contains every point of the sphere in the contin-
uum, but in practiceA is a finite set of candidate beams.
The problem of selecting beams depends on a judgment
function, which is a mapping from the power set of
A, denoted P(A), into the nonnegative extended reals,
denoted R�C D fx 2 R : x � 0g [ f1g. Assum-
ing that low values correspond with high-quality treat-
ments, we have that a judgment function is a mapping
f : P(A) ! R�C with the monotonicity property that
if A0 and A00 are subsets of A such that A0 � A00, then
f (A0) � f (A00). The monotonicity condition guaran-
tees that treatment quality can not degrade if beams are
added to an existing treatment.

The judgment function is commonly the optimal
value from the second phase of treatment design, and
for any A0 2 P(A), we let X(A0) be the feasible region
of the optimization problem that decides fluences. An
algebraic description of this set relies on the fact that
we can accurately model how radiation is deposited as
it passes through the anatomy. There are several com-
peting radiobiological models that accomplish this task,
each of which produces the rate coefficient A( j; a; i),
which is the rate at which sub-beam i in beam a de-
posits energy into the anatomical position j. These val-
ues form a dose matrix A, with rows being indexed by j
and columns by (a; i). The term used to measure a sub-
beam’s energy is fluence, and experimentation validates
that anatomical dose, which is measured in Grays (Gy),
is linear in fluence. So, if x(a; i) is the fluence of sub-
beam i in beam a, then the linear map x 7! Ax trans-
forms fluence values into anatomical dose.We partition
the rows of the dose matrix into those that correspond
with anatomical positions in the target – forming the
submatrix AT , in a critical structure – forming the sub-
matrix AC, and in normal tissue – forming the subma-

Beam Selection in Radiotherapy Treatment Design, Figure 3
A dose-volume histogram, the horizontal axis is the anatom-
ical dose (measured in Grays) and the vertical axis is the per-
cent of volume

trix AN . With this notation, ATx, ACx and ANx are the
delivered doses to the target, the critical structures, and
the normal tissues under treatment x.

Treatment planners use visual and numerical meth-
ods to evaluate treatments. The two most common vi-
sual tools are the dose-volume histogram (DVH) and
a collection of isocontours. A DVH is a plot of dose ver-
sus volume and allows a treatment planner to quickly
gauge the extent to which each structure is irradiated,
an example is found in Fig. 3. The curve in the upper
right side of the figure corresponds to the target, which
is the growth to the left of the brain stem in Fig. 4. The
ideal curve for the target would be one that remains at
100% until the desired dose and then falls immediately
to zero, and the ideal curves for the remaining struc-
tures would be ones that fall immediately to zero. The
curve passing through the middle of Fig. 3 corresponds
to the brain stem and indicates that approximately 80%
of the brain stem is receiving half of the target dose.

What a DVH lacks is spatial detail about the
anatomical dose, but this information is provided by
the isocontours, which are level curves drawn on each
of the patient images. For example, if the target’s goal is
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Beam Selection in Radiotherapy Treatment Design, Figure 4
A collection of isocontours on a single patient image

80Gy, then the 90% isocontour contains the anatomi-
cal region that receives at least 0:9 � 80 D 72 Gy. Fig-
ure 4 illustrates the 100%, 90%, . . . , 10% isocontours
on a single patient image. One would hope that these
isocontour would tightly contain the target on each of
the patient images, a goal commonly referred to as con-
formality. Although a DVH is often used to decide if
a treatment is unacceptable, both the DVH and the iso-
contours are used to decide if a treatment is acceptable.
Although treatments are commonly evaluated exclu-
sively with a DVH and the isocontours, there are well
established numerical scores that are also used. Such
scores are called conformality indices and consider the
ratios of under and over irradiated tissue, and as such,
these values collapse the DVH into a numerical value.
We do not discuss these measures here, but the reader
should be aware that they exist.

Formulation

The N-beam selection problem for the judgment func-
tion f and candidate set of beams A is

minf f (A0) : A0 2 P(A); jA0j D Ng : (1)

The parameter N is provided by the treatment plan-
ner and is intended to control the complexity of the

treatment. The prevailing thought is that fewer beams
are preferred if all other treatment goals remain satis-
factory, and if f adequately measures treatment quality,
a model that represents this sentiment is

minfN : minf f (A0) : A0 2 P(A); jA0j D Ng � "g ;

where " defines the quality of an acceptable treatment.
As mentioned in the previous section, the judgment

function is typically the objective value from fluence
optimization. A common least-squares approach de-
fines X(A0) to be

fx : x � 0;
X
i

x(a;i) D 0 for a 2 AnA0g

and f (A0) to be

minf!T � kATx � TGk2 C !C � kACxk2
C !N � kANxk2 : x 2 X(A0)g ; (2)

where TG is a vector that expresses the target’s treat-
ment goal and !T , !C and !N weight the objective
terms to express clinical desires. The prescription for
this model is TG, but more complicated models with
sophisticated prescriptions are common. In particular,
dose-volume constraints that restrict the amount of
each structure that is permitted to violate a bound are
common. Readers interested in fluence optimization
are directed to the entry on Cancer Radiation Treat-
ment: Optimization Models.

Models

The N-beam selection problem is often addressed as
a mixed integer problem. As an example, for the judg-
ment function in (2) the N-beam selection problem can
be expressed as

min !T � kATx � TGk2 C !C

�kACxk2 C !N � kANxk2
subject to:

P
i x(a;i) � M � ya ; fora 2 AP
a ya � N

x � 0
y 2 f0; 1gjAj ;

9>>>>>>>=
>>>>>>>;

(3)

where M is an arbitrarily large value that bounds each
beam’s fluence. This is one of many possible models,
with simple adjustments including the replacement of
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the 2-norm with the 1 and1 norms, both of which re-
sult in a linear mixed integer problem.

A modest discretization of the sphere, with 72
great circles through the north and south poles equally
spaced at 5 degrees at the equator and each great cir-
cle having beams equally spaced at 5 degrees, produces
a set of 4902 candidate beams. This means the search
tree associated with the mixed integer model above
has

�4902
N

�
terminal nodes, which for the clinically valid

N D 10 is approximately 2:2 � 1030. Beyond the im-
menseness of this search space, branch-and-bound pro-
cedures are difficult for two reasons, 1) the number of
N element subsets leading to near optimal solutions is
substantial, and 2) the evaluation of the judgment func-
tion at each node requires the solution to an underlying
fluence model, which in itself is time consuming. This
inherit difficulty has driven the development of heuris-
tic approaches, which separate into the two steps of: 1)
assigning each beam a value that measures its worth to
the overall treatment, and 2) using the individual beam
values to select a collection of N beams. As a simple
example, a scoring technique evaluates each beam and
then simply selects the top N beams. The remainder of
this section discusses several of the common heuristics.

A selection technique is called informed if it re-
quires the evaluation of the underlying judgment func-
tion. One example would be to iteratively let A0 be
the singleton beam sets and evaluate f (A0) for each.
The N beams with the best scores would be selected
for the treatment. If a selection method uses the data
forming the optimization problem that defines f but
fails to evaluate f , then the technique is calledweakly in-
formed. The preponderance of techniques suggested in
the medical physics literature fall into this category. An
example based solely on the dose matrix A is to value
beam a with

max(i; j)fA( j;a;i) : j 2 Tg
min(i; j)fA( j;a;i) : j 2 C [ Ng

;

where we assume the minimums in the denominator
are nonzero. This ratio is high if a beam can deliver
large amounts of dose to the target without damaging
other tissues. A scoring technique based on this would
terminate with the collection ofN beams with the high-
est values. Since weakly informed methods do not re-
quire the solution of an optimization problem, they
tend to be fast.

The concern about the size of the underlying flu-
ence model has lead to a sampling heuristic that re-
duces the accuracy of the radiobiological model. Clin-
ical relevance mandates that the anatomy be discretized
so that dose is measured at distances no greater than
2mm. For a 20 cm3 portion of the anatomy, roughly
the volume of the cranium, this means the coarsest 3D
grid permitted in the clinic divides the anatomy into 106

sub-regions called voxels, which are indexed by j. Cases
in the chest and abdomen are substantially larger and
require a significant increase in the number of voxels.
A natural question is whether or not all of these regions
are needed for beam selection. One approach is to re-
peatedly sample these regions together with the candi-
date set of beams and solve (1). Each beam is valued by
the number of times it has a high fluence. Beams with
high values create A in (1) with j being indexed over all
regions. The goal of this technique is to identify a can-
didate set of beams whose size is slightly larger than N,
which keeps the search space manageable with the full
compliment of voxels. The sampling procedure is cru-
cial to the success of the procedure since it is known
that beam selection depend on the collection of voxels.

Once beams are valued, there are many ways to use
this information to construct a collection of favorable
beams. As already discussed, common scoring methods
select the best N beams. Another approach is based on
set covering, which uses a high-pass filter to decide if
a beam adequately treats the target. Allowing " to be
the threshold at which we say beam a treats position j
within the target, we let

U( j;a) D

�
1;

P
i A( j;a;i) � "

0;
P

i A( j;a;i) < " ;

for each j 2 T. If each beam has a value of ca, where
low values are preferred, the set cover heuristic forms
a collection of beams by solving

min
nX

a

ca ya :
X
a

U( j;a)ya � 1 ;

for each j 2 T; ya 2 f0; 1g
o
: (4)

This in itself is a binary optimization problem, and
if " is small enough to guarantee that every beam treats
the target, which is typical, then the size of the search
space is the same as the original problem in (1). How-
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ever, the set cover problem has favorable solution prop-
erties, and this problem solves efficiently in practice.
The search space decreases in size as " increases, and
designing an appropriate heuristic requires both a judi-
cious selection of " and an appropriate objective. This
method can be informed or weakly informed depend-
ing on how the objective coefficients are constructed.

Another approach is to use the beam values as
a probability distribution upon normalization. This al-
lows one to address the problem probabilistically, a per-
spective that has been suggested within column gen-
eration and vector quantization. The column genera-
tion approach prices beams with respect to the likeli-
hood that they will improve the judgment function, and
beams with high probabilities are added to the current
collection. The process of adding and deleting beams
produces a sequence of beam sets A1;A2; : : : ;An , and
problem (1) is solved with A replaced with Ak , k D
1; 2; : : : ; n. Although it is possible for this technique to
price all subsets of A whose cardinality is greater than
N, which is significantly greater than the size of the
original search space in (1), the pricing scheme tends
to limit the number Aks.

The probabilistic perspective is further incorpo-
rated with heuristics based in information science. In
particular, a method based on vector quantization,
which is a modeling and solution procedure used in
data compression, has been suggested. Allowing ˛(a) to
be the probability associated with beam a, this heuristic
constructs a collection of beams by solving

min
Q

nX
a

˛(a)�(a;Q(a)) : jQ(A)j D N
o
; (5)

where Q is a mapping from A into itself and � is a met-
ric appropriate to the application. A common metric is
to let �(a;Q(a)) be the arc length between a and Q(a).

In the finite case, each N element subset, say A0, of
A uniquely defines Q by setting Q(A) D A0. Assum-
ing this equality, we complete the definition by setting
Q(a) D a0 2 A0 if and only if �(a; a0) � �(a; a00) for all
a00 2 A0, a condition referred to as the nearest neigh-
bor condition. Since the optimization problem in (5) is
defined over the collection of these functions, the size
of the feasible region is the same as the original beam
selection problem in (1). Unlike the set cover approach,
which solves (4) to optimality, and the column genera-

tion technique, which repeatedly solves (1) to optimal-
ity with a restricted beam set, the vector quantization
method often solves (5) heuristically. The most com-
mon heuristic is the Lloyd algorithm, a technique that
begins with an initial collection of N beams and then
iterates between
1. defining Q with the nearest neighbor condition, and
2. forming a new collection of beams with the centroids

of Q�1(a), where beam a is in the current collection.
This technique guarantees that the objective in (5) de-
creases with each new collection.

Conclusions

Selecting beams is one of the three sub-problems in the
design of radiotherapy treatments, a problem that cur-
rently does not have an appropriate solution outside the
clinical practice of manually selecting beams through
trial-and-error. However, research into automating the
selection of beams with optimization is promising. We
conclude with a few words on the totality of treatment
design.

The overriding goal of treatment design is to re-
move the threat of cancer while sparing non-cancerous
tissues. The status quo is to assume that a patient is
static while designing a treatment. Indeed, treatment
planners expand targeted regions to address the dy-
namic patient movement in the static approach, i. e. the
target is increased to include the gross volume that con-
tains the estimated movement of the actual target. The
primary goal of the third phase of treatment design is
to deliver the treatment as efficiently as possible to limit
patient movement. This leads to a dilemma. The mono-
tonicity property of the judgment function encourages
treatments withmany beams, but conventional wisdom
dictates that the number of beams and the efficiency
of the delivery are inversely proportional. However, in
many settings the number of beams is a poor surrogate
of efficiency. As an example, the most time demanding
maneuver is to rotate the couch since it requires a tech-
nician to enter the treatment vault. So, treatments with
many beams but fewer couch rotations are preferred to
treatments with fewer beams but more couch rotations.

The point to emphasize from the previous para-
graph is that the problem of selecting beams is always
expressed in terms of the number of beams, which is
a byproduct of the three-phase approach. Although the
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separation of the design process into phases is natural
and useful for computation, the division has drawbacks.
Fluence models are large and difficult to solve, and ev-
ery attempt is made to reduce their size. As already dis-
cussed, the voxels need to be under 2mm3 to reach clin-
ical viability, and hence, the index set for j is necessar-
ily large. The number and complexity of the sub-beams
has increased dramatically with advanced technology,
similarly making the index set for i large. This leaves
the number of beams as the only control, and treatment
designers are asked to select beams so that the fluence
model is manageable. Years of experience have devel-
oped standard collections for many cancers, but asking
a designer to select one of the 2:2�1030 possible collec-
tions for a 10 beam treatment in a non-standard case is
daunting. A designer’s instinct is to value a beam indi-
vidually rather than as part of a collection. Several of the
weakly informed selection methods from the medical
physics literature have the same weakness. Such indi-
vidual valuation typically identifies all but a few beams
of a quality solution, but the last few are often unintu-
itive. Automating beam selection with an optimization
process so that beams are considered within a collection
is a step in the right direction.

The future of treatment design is to build global
models and solution procedures that simultaneously
address all three phases of treatment design. Such mod-
els are naturally viewed from the perspective of beam
selection. What is missing is a judgment function that
includes both fluence and delivery optimization. Learn-
ing how to model and solve these holistic models would
alleviate the design process from a designer’s (lack of)
expertise and would provide a uniform level of care
available to clinics with comparable technology. Such
improvements are the promise of the field.

See also

� Credit Rating and Optimization Methods
� Evolutionary Algorithms in Combinatorial

Optimization
� Optimization Based Frameworkfor Radiation

Therapy

The literature on beam selection is mature within the
medical physics community but is in its infancy within
optimization. The five citations below cover the topics

discussed in this article and contain bibliographies that
adequately cite the work in medical physics.
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Introduction

We study the minimization of the distance to an
arbitrary closed set in a class of ordered normed
spaces (see [8]). This class is broad enough. It con-
tains the space C(Q) of all continuous functions de-
fined on a compact topological space Q and the space
L1(S; ˙; �) of all essentially bounded functions de-
fined on a measure space (S,˙ ,�). It is assumed that
these spaces are equipped with the natural order re-
lation and the uniform norm. This class also contains
direct products X D R � Y , where Y is an arbitrary
normed space, with the norm k(c; y)k D jcj C kyk.
The spaceX is equipped with the order relation induced
by the cone K D f(c; y) : c � kykg.

Let U be a closed subset of X, where X is a normed
space from the given class, and let t 2 X. We consider
the problem Pr(U, t):

minimize ku � tk subject to u 2 U: (1)

It is assumed that there exists a solution of Pr(U, t). This
solution is called a metric projection of t onto U, or
a best approximation of t by elements of U. We use the
structure of the objective function in order to present
necessary and sufficient conditions for the global mini-
mum of Pr(U, t) that give a clear understanding of the
structure of a metric projection and can be easily veri-
fied for some classes of problems under consideration.

We use the so-called downward and upward sub-
sets of a space X as a tool for analysis of Pr(U, t).
A set U � X is called downward if (u 2 U;
x � u) H) x 2 U . A set V � X is called upward
if (v 2 V ; x � v) H) x 2 V . Downward and upward
sets have a simple structure so the problem Pr(U, t)
can be easily analyzed for these sets U. If U is an ar-
bitrary closed subset of X we can consider its down-
ward hull U� D U � K and upward hull U� D U C K,
where K D fx 2 X : x � 0g is the cone of positive el-
ements. These hulls can be used for examination of
Pr(U, t). We also suggest an approach based on a di-
vision of a normed space under consideration into two

homogeneous not necessarily linear subspaces. A com-
bination of this approach with the downward-upward
technique allows us to give simple proofs of the pro-
posed necessary and sufficient conditions.

Properties of downward and upward sets play a cru-
cial role in this article. These properties have been
studied in [6,13] for X D Rn . We show that some re-
sults obtained in [6,13] are valid in a much more gen-
eral case. In fact, the first necessary and sufficient con-
ditions for metric projection onto closed downward
sets in Rn have been given in [1, p. 132, Theorem
9]. Proposition 1(1) and (2) are extensions of Rn and
1 D (1; : : : ; 1); of [1, Proposition 1(a) and (b)], respec-
tively. Also, Propositions 2 and 3 are extensions of [1,
p. 116, Proposition 2]. Furthermore, Corollary 3 is an
extension of [1, p. 116, Corollary 2 and p. 117, Re-
mark 2]. In connection with Proposition 6, the down-
ward hull U� has been introduced in [1, Sect. 1], where
the first results on the connection between d(t, U)
and d(t, U�) have been given, for the particular case
where U is a normal subset of Rn

C. We use methods of
abstract convexity and monotonic analysis (see [11]) in
this study.

Let X be a normed space. Let K � X be a closed
convex and pointed cone. (The latter means that
K \ (�K) D f0g.) The cone K generates the order re-
lation � on X. By definition x � y() x � y 2 K.
We say that x is greater than y and write x > y if
x � y 2 K n f0g. Assume that K is solid, that is, the in-
terior int K of K is nonempty. Let 1 2 int K. Using 1 we
can define the following function:

p(x) D inff� 2 R : x � �1g; (x 2 X) : (2)

It is easy to check that p is finite. It follows from (2) that

x � p(x)1; (x 2 X) : (3)

It is easy to check (and well known) that p is a sublinear
function, that is,

p(�x) D �p(x) (� > 0; x 2 X);

p(x C y) � p(x)C p(y) (x; y 2 X):

We need the following definition (see [13] and ref-
erences therein). A function s : X ! R is called top-
ical if s is increasing: x � y implies s(x) � s(y) and
s(x C �1) D s(x)C � for all x 2 X and � 2 R.
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It follows from the definition of p that p is topical.
Consider the function

kxk :D max(p(x); p(�x)) : (4)

It is easy to check (and well known) that k � k is a norm
on X. In what follows we assume that the norm (4) co-
incides with the norm of the space X.

It follows from (3) that

x � kxk1; �x � kxk1; (x 2 X) : (5)

The ball B(t; r) D fx 2 X : kx � tk � rg has the form

B(t; r) D fx 2 X : t � r1 � x � t C r1g : (6)

We now present three examples of spaces under con-
sideration.

Example 1 LetX be a vector lattice with a strong unit 1.
The latter means that for each x 2 X there exists � 2 R
such that jxj � �1. Then

kxk D inff� > 0: jxj � �1g ;

where norm k � k is defined by (4). It is well known
(see, for example, [21]) that each vector lattice X with
a strong unit is isomorphic as a vector-ordered space to
the space C(Q) of all continuous functions defined on
a compact topological space Q. For a given strong unit
1 the corresponding isomorphism  can be chosen in
such a way that  (1)(q) D 1 for all q 2 Q. The cone
 (K) coincides with the cone of all nonnegative func-
tions defined on Q. If X D C(Q) and 1(q) D 1 for all q,
then

p(x) D max
q2Q

x(q) and kxk D max
q2Q
jx(q)j :

A well-known example of a vector lattice with a strong
unit is the space L1(S; ˙; �) of all essentially bounded
functions defined on a measure space (S, ˙ , �). If
1(s) D 1 for all s 2 S, then p(x) D ess sups2S x(s) and
kxk D ess sups2S jx(s)j.

Example 2 Let X D R � Y , where Y is a normed space
with a norm k � k, and let K � X be the epigraph of
the norm K D f(�; x) : � � kxkg. The cone K is closed
solid convex and pointed. It is easy to check and well
known that 1 D (1; 0) is an interior point ofK. For each

(c; y) 2 X we have

p(c; y) D inff� 2 R : (c; y) � �1g

D inff� 2 R : (�; 0) � (c; y) 2 Kg

D inff� 2 R : (� � c;�y) 2 Kg

D inff� 2 R : � � c � k � ykg D c C kyk :

Hence

k(c; y)k D max(p(c; y); p(�(c; y)))

D max(c C kyk;�c C kyk) D jcj C kyk :

Example 3 Consider the space l1 of all summable se-
quences with the usual norm. Let Y D fx D (xi) 2
l1 : x1 D 0g. Then we can identify l1 with the space
R � Y . Let y 2 Y and x D (x1; y) 2 l1. Then kxk D
jx1j C kyk. Let K D fx D (xi) 2 l1 : x1 �

P1
iD2 jxi jg.

Assume that l1 is equipped with the order relation �
generated by K: if x D (xi) and z D (zi ), then

x � z() x1 � z1 �
1X
iD2

jxi � zi j :

Let 1 D (1; 0; : : : ; 0; : : :). Consider the function p de-
fined on l1 by

p(x) D x1 C
1X
iD2

jxi j; x D (x1; x2; : : :) 2 l1 :

Then (see the previous example) p(x) D inff� 2
R : x � �1g and kxk D

P1
iD1 jxi j coincides with

max(p(x); p(�x)).

Let X be a normed vector space. For a nonempty sub-
set U of X and t 2 X; define d(t;U) D infu2U kt � uk.
A point u0 2 U is called a metric projection of t onto
U, or a best approximation of t by elements of U, if
kt � u0k D d(t;U).

Let U � X. For t 2 X, denote by PU (t) the set of all
metric projections of t onto U:

PU (t) D fu 2 U : kt � uk D d(t;U)g : (7)

It is wellknown that PU (t) is a closed and bounded sub-
set of X. If t … U , then PU(t) is located in the boundary
of U.

We shall use the following definitions. A pair (U, t)
whereU � X and t 2 X is called proximinal if there ex-
ists ametric projection of t ontoU. A pair (U, t) is called
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Chebyshev if there exists a unique metric projection of
t onto U. A set U � X is called proximinal, if the pair
(U, t) is proximinal for all t 2 X. A set U � X is called
Chebyshev if the pair (U, t) is Chebyshev for all t 2 X.

A set U � X is called boundedly compact if the
set Ur D fu 2 U : kuk � rg is compact for each r > 0.
(This is equivalent to the following: the intersection of
a closed neighborhood of a point u 2 U with U is com-
pact.) Each boundedly compact set is proximinal.

For any subset U of a normed space X we shall de-
note by intU , clU, and bdU the interior, the closure,
and the boundary of U, respectively.

Metric Projection onto Downward
and Upward Sets

Definition 1 A set U � X is called downward if
(u 2 U; x � u) H) x 2 U .

First we describe some simple properties of downward
sets.

Proposition 1 Let U be a downward subset of X and
x 2 X. Then the following assertions are true:
(1) If x 2 U, then x � "1 2 intU for all " > 0.
(2) intU D fx 2 X : x C "1 2 U f or some " > 0g.

Proof
(1) Let " > 0 be given and x 2 U . Let N D fy 2

X : ky � (x � "1)k < "g be an open neighborhood
of (x � "1). Then, by (6) N D fy 2 X : x � 2"1 <
y < xg. Since U is a downward set and x 2 U , it
follows that N � U , and so x � "1 2 intU .

(2) Let x 2 intU . Then there exists "0 > 0 such that
the closed ball B(x; "0) � U . In view of (6), we get
x C "01 2 U .

Conversely, suppose that there exists " > 0 such that
x C "1 2 U . Then, by (1): x D (x C "1) � "1 2 intU ,
which completes the proof. �
Corollary 1 Let U be a closed downward subset of X
and u 2 U. Then, u 2 bdU if and only if �1C u … U
for all � > 0.

Lemma 1 The closure clU of a downward set U is
downward.

Proof Let xk 2 U , k D 1; 2; : : :, and xk ! x as
k!C1. Let kxk � xk D "k(k D 1; 2; : : :). Using (6)
we get x � "k1 � xk for all k � 1. Since U is a down-
ward set and xk 2 U for all k � 1, we conclude

that x � "k1 2 U for all k � 1. Let y � x be arbi-
trary and yk D y � "k1 � x � "k1(k D 1; 2; : : :). Then
yk 2 U(k D 1; : : :). Since yk ! y as k! C1, it fol-
lows that y 2 clU . �

Proposition 2 A closed downward subset U of X is
proximinal.

Proof Let t 2 X n U be arbitrary and r :D d(t;U) D
infu2U kt�uk > 0. This implies that for each " > 0 there
exists u" 2 U such that kt � u"k < rC ". Then, by (6):

� (rC ")1 � u" � t � (rC ")1 : (8)

Let u0 D t � r1. Then

kt � u0k D kr1k D r D d(t;U) :

In view of (8), we have u0 � "1 D t � r1 � "1 � u".
Since U is a downward set and u" 2 U , it follows that
u0 � "1 2 U for all " > 0. The closedness of U implies
u0 2 U , and so u0 2 PU (t). Thus the result follows. �

Remark 1 We proved that for each t 2 X n U the
set PU(t) contains the element u0 D t � r1 with
r D d(t;U). If t 2 U , then u0 D t and PU (t) D fu0g.

Proposition 3 Let U be a closed downward subset
of X and t 2 X. Then there exists the least element
u0 :D min PU (t) of the set PU(t), namely, u0 D t � r1,
where r :D d(t;U).

Proof If t 2 U , then the result holds. Assume that
t … U and u0 D t � r1. Then, by Remark 1, u0 2 PU (t).
Applying (6) and the equality kt � u0k D r we get

x � t � r1 D u0 8 x 2 B(t; r) :

This implies that u0 is the least element of the closed
ball B(t, r).

Now, let u 2 PU (t) be arbitrary. Then kt � uk D r,
and so u 2 B(t; r). Therefore, u � u0. Hence, u0 is the
least element of the set PU (t). �

Corollary 2 Let U be a closed downward subset of
X; t 2 X and u0 D min PU (t). Then, u0 � t.

Corollary 3 Let U be a closed downward subset of X
and t 2 X be arbitrary. Then

d(t;U) D minf� � 0 : t � �1 2 Ug :
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Proof Let A D f� � 0 : t � �1 2 Ug. If t 2 U , then
t � 0 � 1 D t 2 U , and so minA D 0 D d(t;U). Sup-
pose that t … U ; then r :D d(t;U) > 0. Let � > 0 be ar-
bitrary such that t � �1 2 U . Thus

� D k�1k D kt � (t � �1)k � d(t;U) D r :

Since, by Proposition 3, t � r1 2 U , it follows that
r 2 A. Hence, min A D r, which completes the proof.

�

The results obtained demonstrate that for the search of
a metric projection of an element t onto a downward set
U we need to solve the following optimization problem:

minimize � subject to t��1 2 U; � � 0 : (9)

This is a one-dimensional optimization problem that is
much easier than the original problem Pr(U, t). Prob-
lem (9) can be solved, for example, by a common bi-
section procedure: first find numbers �1 and �1 such
that t � �11 2 U and t � �11 … U . Let k � 1. As-
sume that numbers �k and �k are known such that
t � �k1 2 U and t � �k1 … U . Then consider the
number 
k D 1/2(�k C �k). If t � 
k1 2 U , then
put �kC1 D 
k , �kC1 D �k . If t � 
k1 … U , then put
�kC1 D �k , �kC1 D 
k . The number r D limk �k D

limk �k is the optimal value of (9).
The following necessary and sufficient conditions

for the global minimum easily follow from the results
obtained.

Theorem 1 Let U be a closed downward set and t … U.
Then u0 2 U is a solution of the problem Pr(U, t) if and
only if
(i) u0 � ū :D t � r1, where r D minf� � 0 : t � �1 2

Ug;
(ii) p(t � u0) � p(u0 � t).

Proof Let u0 2 PU (t). Since ū :D t � r1 is the least el-
ement of PU (t), it follows that u0 � ū, so (i) is proved.
We now demonstrate that (ii) is valid. In view of the
equality r D kt � u0k D max(p(t � u0); p(u0 � t)), we
conclude that p(u0 � t) � r and p(t � u0) � r. We
need to prove that p(t � u0) D r. Assume on the con-
trary that p(t � u0) :D inff� : t � u0 � �1g < r. Then
there exists " > 0 such that t � u0 � (r � ")1. This im-
plies that u0 � t � r1C "1 D ūC "1. Since u0 2 U
and U is downward, it follows that ūC "1 2 U , so ū

is an interior point ofU. This contradicts the fact that ū
is a best approximation of t by U.

Assume now that both items (i) and (ii) hold. It fol-
lows from (i) that t � u0 � r1. Since p is a topical func-
tion, we conclude that p(t � u0) � r. Item (ii) implies
kt � u0k D p(t � u0) � r. Since r D minu2U kt � uk,
we conclude that u 2 PU (t). �

We now turn to upward sets.

Definition 2 A set V � X is called upward if
(v 2 V ; x � v) H) x 2 V .

Clearly V is upward if and only if U D �V is down-
ward, so all results obtained for downward sets can be
easily reformulated for upward sets.

Proposition 4 A closed upward subset V of X is prox-
iminal.

Proof This is an immediate consequence of Proposi-
tion 2. �

Theorem 2 Let U be a closed upward set and t … U.
Then u0 is a solution of the problem Pr(U, t) if and only
if
(i) u0 � tC r1, where r D minf� � 0 : tC �1 2 Vg.
(ii) p(u0 � t) � p(t � u0).

Proof The result can be obtained by application of
Theorem 1 to the problem Pr(�U;�t). �

Corollary 4 Let V � X be a closed upward set and
t 2 X. Then d(t;V ) D minf� � 0 : t C �1 2 Vg.

Sets Z+ and Z�

Consider function s defined on X by

s(x) D
1
2
(p(x) � p(�x)) :

We now indicate some properties of function s.
(1) s is homogeneous of degree one, that is,

s(�x) D �s(x) for � 2 R. Indeed, we need to
check that s(�x) D �s(x) for all x 2 X and
s(�x) D �s(x) for all x 2 X and all � 2 R. Both
assertions directly follow from the definition of s.

(2) s is topical. It follows directly from the defini-
tion of s that s is increasing. We now check that
s(x C �1) D s(x)C � for all x 2 X and all � 2 R.
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Indeed,

s(x C �1) D
1
2
(p(x C �1) � (p(�x � �1))

D
1
2
(p(x) � p(�x)C 2�)

D s(x)C � :

We will be interested in the level sets

ZC D fx 2 X : s(x) � 0g and Z� D fx 2 X : s(x) � 0g

of function s. The following holds:

x 2 ZC() p(x) � p(�x)() p(x) D kxk :

x 2 Z� () p(x) � p(�x)() p(�x) D kxk :

Since s is homogeneous, it follows that Z� D �ZC. Let
Z0 D fx : s(x) D 0g. Then

ZC \ Z� D Z0; Z� [ ZC D X :

Since s is continuous, it follows that Z+ and Z� are
closed subsets of X. Note that both Z+ and Z� are
conic sets. (Recall that a set C � X is called conic if
(x 2 C; � > 0) H) �x 2 C).

Since s is increasing, it follows that Z+ is upward and
Z� is downward. Let R D f�1 : � � 0g be the ray pass-
ing through 1. In view of the topicality of s,

ZC D Z0 C R; Z� D Z0 � R :

Indeed, let x 2 ZC; then s(x) :D � � 0. Let u D x �
�1. Then s(u) D 0, hence u 2 Z0. We demonstrated
that x 2 Z0 C R, so ZC � Z0 C R. The opposite inclu-
sion trivially holds. Thus, ZC D Z0 C R. We also have
Z� D �Z0�R D Z0�R. We now give some examples.

Example 4 Let X D C(Q) be the space of all
continuous functions defined on a compact topo-
logical space Q and p(x) D maxq2Q x(q). Then
s(x) D maxq2Q x(q)Cminq2Q x(q); therefore Z0 D

fx 2 C(Q) : maxq2Q x(q) D �minq2Q x(q)g. Thus
x 2 Z0 if and only if there exist points qC; q� 2 Q
such that jx(qC)j D jx(q�)j D kxk and x(qC) > 0,
x(q�) < 0. Further, x 2 ZC if and only if kxk D
maxq2Q x(q) > �minq2Q x(q) and x 2 Z� if and only
if kxk D maxq2Q (�x(q)) > � minq2Q(�x(q)) D
maxq2Q x(q).

Let Q consist of two points. Then C(Q) coincides
with R2 and s(x) D x1 C x2, that is, s is a linear func-
tion. If Q contains more than two points, then s is not
linear.

Example 5 Let X D R � Y , where Y is a normed space
(Example 2). Let x D (c; y); then p(x) D c C kyk.
Hence

s(x) D
1
2
[(c C kyk) � (�c C k � yk)] D c ;

so s is linear. The following holds:

Z0 D f(c; y) : c D 0g; ZC D f(c; y) : c � 0g;

Z� D f(c; y) : c � 0g:

Example 6 Let X D l1 (see Example 3). Then
s(x) D x1 and

Z0 D fx D (xi) 2 l1 : x1 D 0g;

ZC D fx D (xi) 2 l1 : x1 � 0g;

Z� D fx D (xi) 2 l1 : x1 � 0g:

Downward Hull and Upward Hull

LetU be a subset of X. The intersection U� of all down-
ward sets that contain U is called the downward hull
of U. Since the intersection of an arbitrary family of
downward sets is downward, it follows thatU� is down-
ward. Clearly U� is the least (by inclusion) downward
set, which contains U. The intersection U� of all up-
ward sets containing U is called the upward hull of U.
The set U� is upward and is the least (by inclusion) up-
ward set containing U.

Proposition 5 ([15], Proposition 3) Let U � X. Then

U� D U � K :D fu � v : u 2 U; v 2 Kg;

U� D U C K :D fuC v : u 2 U; v 2 Kg :

We need the following result:

Proposition 6 Consider a closed subset U of X.
(1) Let t 2 X be an element such that t � U � ZC.

Then d(t;U) D d(t;U�).
(2) Let t 2 X be an element such that t � U � Z�.

Then d(t;U) D d(t;U�).
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Proof We shall prove only the first part of the propo-
sition. The second part can be proved in a similar
way. Let r D d(t;U�). Since U � U�, it follows that
r � d(t;U), so we need only check the reverse inequal-
ity. Let u� 2 U� be arbitrary. Then, by Proposition 5,
there exist u 2 U and v 2 K such that u� D u � v.
Hence

t � u� D t � uC v D x � u with x :D t C v � t :

By hypothesis, t � u 2 ZC. Since x � t and Z+ is up-
ward, it follows that x � u 2 ZC. Since kzk D p(z) for
all z 2 ZC and p is increasing, we have

kt�u�k D kx�uk D p(x�u) � p(t�u) D kt�uk :

Thus for each u� 2 U� there exists u 2 U such that
kt � u�k � kt � uk. This means that r :D d(t;U�) �
d(t;U). We proved that d(t;U) D r. �

Proposition 7
(1) Let t 2 X be an element such that t � U � ZC and

let U� be a closed set. Then (U, t) is a proximinal
pair.

(2) Let t 2 X be an element such that t � U � Z� and
let U� be a closed set. Then (U, t) is a proximinal
pair.

Proof We shall prove only the first part of the propo-
sition. Since U� is a closed downward set in X, it fol-
lows, by Proposition 3, that the least element u0 of the
set PU�(t) exists and u0 D t � r1, where r D d(t;U�).
In view of Proposition 6, r D d(t;U). Since u0 2 U�,
by Proposition 5, there exist u 2 U and v 2 K such that
u0 D t � r1 D u � v. Then t � u D r1 � v and

p(t � u) D p(r1 � v) � p(r1) D r :

Since, by hypothesis, t � u 2 ZC, it follows that kt �
uk D p(t � u) � r. On the other hand, kt � uk �
d(t;U) D r. Hence kt � uk D r, and so u 2 PU (t),
which completes the proof. �

Remark 2 LetU � X be a closed set. Assume that there
exists a set V � X such that V � U � V� and V� is
closed. Then U� D V�; hence U� is closed. In particu-
lar,U� is closed if there exists a compact set V such that
V � U � V�.

Proposition 7 can be used for the search of a met-
ric projection of an element t onto a set U such that

t � U � ZC and U� is closed. In particular, we can
give the following necessary and sufficient conditions
for a solution of the problem Pr(U, t) for these sets.

Theorem 3
(1) Let t � U � ZC and U� is closed. Then u0 2 U is

a solution of Pr(U, t) if and only if
(i) u0 � t � r1 where r D minf� � 0 : t � �1 2

U � Kg.
(ii) p(t � u0) � p(u0 � t);

(2) Let t � U � Z� and U� is closed. Then u0 2 U is
a solution of Pr(U, t) if and only if
(i0) u0 � t C r1 where r D minf� � 0 : t C �1 2

U C Kg.
(ii0) p(u0 � t) � p(t � u0).

Proof We again prove only the first part of the theo-
rem. Due to Proposition 6, we get d(t;U) D d(t;U�) D
r. Since U� is closed and downward, it follows (Propo-
sition 3) that ū :D t � r1 2 PU�(t). Let u0 � ū and
u0 2 U . Then u0 2 U� and in view of Proposition 6, it
holds:

d(u0;U) D d(u0;U�) D r

D minf� � 0 : t � �1 2 U�g :

Applying Theorem 1 we conclude that u0 is a best ap-
proximation of t by U�. Since u0 2 U , it follows that u0
is a best approximation of t by U.

Consider now a best approximation u0 of t by U.
Applying again Proposition 6we deduce that kt�u0k D
d(t;U) D d(t;U�) D r. Theorem 1 demonstrates that
both (i) and (ii) hold. �

Metric Projection onto a Closed Set

Downward and upward sets can be used for examina-
tion of best approximations by arbitrary closed sets (it
is assumed that a metric projection exists).

We start with the following assertion.

Proposition 8 Let U be a closed subset of X and t 2 X.
Consider the following sets:

UCt D U \ (t� ZC); U�t D U \ (t� Z�) : (10)

Then
(1) t � UCt � ZC; t � U�t � Z�.
(2) UCt [ U�t D U.
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(3) UCt \ U�t D U \ (t � Z0), where Z0 D fx 2 X :
s(x) D 0g.

(4) UCt and U�t are closed.
(5) If U is downward, then UCt is downward; if U is up-

ward, then U�t is upward.

Proof
(1) It is easy to check

(t �U)\ ZC D t � [U \ (t � ZC)] D t �UCt :

Hence t � UCt � ZC. A similar argument shows
that t � U�t � Z�.

(2) The following holds:

UCt [ U�t D [(t � ZC) \ U] [ [(t � Z�) \ U]

D [(t � ZC) [ (t � Z�)] \ U

D [t � (ZC [ Z�)] \ U :

Since ZC [ Z� D X; it follows that
UCt [ U�t D U .

(3) The following holds:

UCt \ U�t D [U \ [(t � ZC)] \ [U \ (t � Z�)]

D U \ [(t � ZC) \ (t � Z�)]

D U \ [t � (ZC \ Z�)] :

Since ZC \ Z� D Z0, the result follows.
(4) This is clear.
(5) It follows from the fact that t � ZC is downward

and t � Z� is upward. �

Consider a fixed proximinal pair (U, t). LetUCt andU�t
be the sets defined by (10). Since UCt [ U�t D U , it fol-
lows that

inf
u2U
kt�uk D min( inf

uC2UCt
kt�uCk; inf

u�2U�t
kt�u�k) :

(11)

It follows from (11) that at least one of the pairs (UCt ; t)
and (U�t ; t) is proximinal and a metric projection of t
onto U coincides with a metric projection onto at least
one of the sets UCt or U�t . Let

rC D inf
u2UCt

kt � uk;

r� D inf
u2U�t

kt � uk;

r D inf
u2U
kt � uk D min(rC; r�) :

(12)

For examination of metric projections of t onto U we
need to find numbers r+ and r�. The number r+ can be
found by solving a one-dimensional optimization prob-
lem of the form (9); r� can be found by solving a similar
problem.

If rC < r�, then a metric projection of t onto U co-
incides with a metric projection of t onto UCt . Since
t � UCt � ZC, we can use the results of this section for
analyzing the problem Pr(U, t) and its solution. In par-
ticular, if the downward hull (UCt )� of the set UCt is
closed, we can assert that the set PU(t) coincides with
the set PUCt (t). Using Theorem 3 we can give necessary
and sufficient conditions for the global minimum in
this case in terms of the set UCt . They can be expressed
in the following form:

PU (t) D PUCt (t) D fu 2 UCt : u � t � rC1;

p(t � u) � p(u � t)g :

If r� < rC, then a metric projection of t onto U coin-
cides with a metric projection of t onto U�t . If the set
(U�t )� is closed, we can assert that

PU (t) D PU�t (t) D fu 2 U�t : u � t C r1;

p(u � t) � p(t � u)g :

If r� D rC; then we can use both sets UCt and U�t .
We assume in the rest of this section that both pairs

(UCt ; t); (U�t ; t) are proximinal. In particular, these
pairs are proximinal for arbitrary t, ifU is a locally com-
pact set.

We are now interested in metric projections u of t
onto U such that s(u � t) D 0. We introduce the fol-
lowing definition.

Definition 3 A pair (U, t) with U � X, t 2 X is called
strongly proximinal if s(u � t) D 0 for each metric pro-
jection u of t onto U.

Recall that s(u � t) D 0 if and only if u � t 2 ZC \ Z�.

Proposition 9 The following assertions (i) and (ii) are
equivalent:
(i) (U, t) is a strongly proximinal pair;
(ii) PU (t) D PUCt (t)\ PU�t (t).

Proof
(i)H) (ii). Let u 2 PU (t). Since u � t 2 Z� D �ZC

and u 2 U , it follows that u 2 U \ (t � ZC) D UCt .
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Then kt�uk D minu02U kt�u0k � minu02UCt
kt�

u0k. Since u 2 UCt , we conclude that the equality
kt � uk D minu02UCt

kt � u0k holds. Thus u 2
PUCt (t). A similar argument shows that u 2 PU�t (t).
Let u 2 PUCt (t)\ PU�t (t). Then

ku � tk D d(t;UCt ) D d(t;U�t ) :

Combining the equality U D UCt [ U�t with (11),
we get ku � tk D minu02U ku0 � tk, and hence u 2
PU (t).

(ii)H) (i). Since (ii) holds, it follows that

PU (t) D PUCt (t)\ PU�t (t)

D fu 2 UCt : t � r1 � ug

\ fu 2 U�t : u � tC r1g
D fu 2 UCt \ U�t : t � r1 � u � tC r1g :

Applying Proposition 8 (3), we conclude that

PU (t) D fu 2 U \ (t � Z0) : t � r1 � u � tC r1g

D U \ (t � Z0) \ B(t; r) :

Since PU (t) D U \ B(t; r) (by definition), it follows
that PU (t) � t � Z0, that is, the pair (U, t) is strongly
proximinal. �

Let (U, t) be a proximinal pair. We are interested
in a description of conditions that guarantee that
ṽ :D t � ũ, where ũ is a metric projection of t onto U,
belongs to ZC \ Z� D Z0. First, we give the following
definition:

Definition 4 We say that a set U � X is weakly K-
open if for each u 2 U there exists an element q 2 int K
such that u C ıq 2 U for all ı with a small enough jıj.

Proposition 10 Assume that (U, t) is a proximinal pair
such that the set U is weakly K-open. Let ũ 2 PU (t).
Then ṽ :D t � ũ 2 Z0.

Proof Let ṽ … Z0; then ṽ … (ZC \ Z�). Assume
for the sake of definiteness that ṽ 2 ZC, that is,
kṽk D p(ṽ) > p(�ṽ). Since U is weakly K-open and
ũ 2 U , it follows that there exists q 2 int K such that
ũC ıq 2 U for all small enough ı > 0. Then:

p(ṽ) > p(ṽ � ıq) � p(�ṽ C ıq) D p(�(ṽ � ıq)) :

Hence kṽ � ıqk D p(ṽ � ıq) < p(ṽ) D kṽk. Let ū D
ũ C ıq. Because U is weakly K-open, we conclude that

ū 2 U for all small enough ı > 0. Since ṽ � ıq D t �
ũ � ıq D t � ū, we obtain

min
u2U
kt�uk � kt� ūk D kṽ�ıqk < kṽk D kt� ũk :

This is a contradiction because ũ 2 PU (t). �

Example 7 Let U 0 � X be a locally compact set and
q 2 int K. Consider the set

U D U 0Cf�q : � 2 Rg D fu0C�q : u0 2 U 0; � 2 Rg :

Clearly U is a locally compact set and U is weakly K-
open. Then for each t 2 X the pair (U, t) is strongly
proximinal.

Best Approximation in a Class of Normed Spaces
with Star-Shaped Cones

The theory of best approximation by elements of
convex sets in normed linear spaces is well devel-
oped and has found many applications [1,2,4,5,10,
16,17,18,19,20]. However, convexity is sometimes a re-
strictive assumption, and therefore the problem arises
of how to examine best approximation by not necessar-
ily convex sets. Special tools for this are needed.

The aim of the present article is to develop a the-
ory of best approximation by elements of closed sets
in a class of normed spaces with star-shaped cones
(see [9]). A star-shaped cone K in a normed space
X generates a relation �K on X, which is an or-
der relation if and only if K is convex. It can be
shown that each star-shaped cone K, such that the
interior of the kernel K is not empty, can be repre-
sented as the union of closed solid convex pointed
cones Ki (i 2 I, where I is an index set) such that
the interior of the cone K� :D \i2IKi is not empty.
A point 1 2 int K� generates the norm k � k* on X,
where kxk� D inff� > 0: x �K� �1;�x �K� �1g, and
we assume that X is equipped with this norm. In the
special case I D f1g (that is, K is a closed convex solid
pointed cone) the class of spaces under consideration
contains such Banach lattices as the space L1(S; ˙; �)
of all essentially bounded functions defined on a mea-
sure space (S,˙ ,�) and the space C(Q) of all con-
tinuous functions defined on a compact topological
space Q.

Now, let X be a normed space and U � X.
The set kernU consisting of all u 2 U such that
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(x 2 U; 0 � ˛ � 1) H) uC ˛(x � u) 2 U is called
the convex kernel ofU. A nonempty setU is called star-
shaped if kernU is not empty. It is known (see, for ex-
ample, [12]) that kernU is convex for an arbitrary star-
shaped set U. If U is closed, then kernU is also closed.
Indeed, let uk 2 kernU; k D 1; : : : and uk ! u. For
each k D 1; 2; : : :, x 2 U and ˛ 2 [0; 1], we have
uk C ˛(x � uk) 2 U , and so uC ˛(x � u) 2 U . This
means that u 2 kernU .

We need the following statement.

Proposition 11 Let U � X be a set and let u 2 U.
Then the following assertions are equivalent:
(i) There exists " > 0, an index set I, and a family of

convex sets (Ui)i2I such that

U D
[
i2I

Ui and Ui � B(u; ") (i 2 I): (13)

(ii) U is a star-shaped set and u 2 int kernU.

Proof
(i)H) (ii). Let z 2 B(u; ") and let x 2 U; ˛ 2 [0; 1].

It follows from (13) that there exists i 2 I such that
x 2 Ui . Since Ui is convex and z 2 B(u; ") � Ui ,
we conclude that z C ˛(x � z) 2 Ui � U . Hence,
z 2 kernU for each z 2 B(u; "), and so B(u; ") �
kernU .

(ii)H) (i). Let I D U . Since u 2 int kernU , it follows
that there exists " > 0 such that B(u; ") � kernU .
Let x 2 U and Ux D co(x [ B(u; ")). Then the
set Ux is convex and closed and x 2 Ux . Hence,
U �

S
x2U Ux . Applying the definition of the con-

vex kernel we conclude that Ux � U . Hence,S
x2U Ux � U . �

If 0 2 kernU , then the Minkowski gauge �U of U can
be defined as follows:

�U (x) D inff� > 0: x 2 �Ug : (14)

(It is assumed that inf ; D 0.)
Let u 2 kernU . Then, 0 2 kern (U � u), and so we

can consider the Minkowski gauge �U�u of the set
U � u.

Theorem 4 Let u 2 int kernU. Then the Minkowski
gauge �U�u of the set U � u is Lipschitz.

Theorem 4 has been proved in [11] (Theorem 5.2) for
finite-dimensional spaces. The proof from [11] holds
for an arbitrary normed space and we omit it.

In the sequel, we shall study star-shaped cones. Re-
call that a set K � X is called a cone (or conic set)
if (� > 0; x 2 K) H) �x 2 K. Let K be a star-shaped
cone and K� D kernK. Then, K� is also a cone. In-
deed, let u 2 K�, � > 0 and x 2 K. Let x0 D x/�. Then,
x0 2 K, and so uC ˛(x0 � u) 2 K for all ˛ 2 [0; 1].
We have �uC ˛(�x0 � �u) D �uC ˛(x � �u) 2 K.
Since x is an arbitrary element of K, it follows that
�u 2 kern K D K�. We now give an example.

Example 7 Let X coincide with the space C(Q) of
all continuous functions defined on a compact met-
ric space Q and K D fx 2 C(Q) : maxq2Q x(q) � 0g.
Clearly K is a nonconvex cone. It is easy to check that K
is a star-shaped cone and kernK D KC, where

KC D fx 2 C(Q) : x(q) � 0 for all q 2 Qg
D fx 2 C(Q) : min

x2Q
x(q) � 0g :

Indeed, let u 2 KC. Consider a point x 2 K. Then
there exists a point q0 2 Q such that x(q0) � 0.
Since u(q) � 0 for all q 2 Q, it follows that
˛u(q0)C (1 � ˛)x(q0) � 0 for all ˛ 2 [0; 1]. Therefore,
˛u C (1 � ˛)x 2 K. We proved that KC � kern K.
Now, consider u … KC. Then there exists a point
q0 such that u(q0) < 0. Since u is continuous, we
can find an open set G � Q such that u(q) < 0 for
q 2 G. Let x 2 K be a function such that x(q) < 0
for all q … G (such a function exists). Since the set
Q n G is compact, it follows that maxq…G x(q) < 0;
hence ˛x(q)C (1 � ˛)u(q) < 0 for all q 2 Q and
small enough ˛ > 0. Therefore ˛x C (1 � ˛)u … K for
these numbers ˛. The equality kernK D KC has been
proved. Note that int kernK ¤ ;.

The following statement plays an important role in this
paper.

Theorem 5 Let K � X be a closed cone and let u 2 K.
Then the following assertions are equivalent:
(i) There exists " > 0, an index set I and a family of

closed convex cones (Ki)i2I such that

K D
[
i2I

Ki and Ki � B(u; ") (i 2 I) : (15)

(ii) K is a star-shaped cone and u 2 int kernK.

Proof
(i)H) (ii). It follows from Proposition 11 that K is

a star-shaped set and u 2 int kern K. Since Ki is
a cone for each i 2 I, it follows that K is a cone.
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(ii)H) (i). In view of Proposition 11, there ex-
ists a family of convex sets Ui ; (i 2 I) such
Ui � B(u; ") and K D

S
i2I Ui . Let Ki be the

closed conic hull of Ui : Ki D cl
S
	 > 0 �Ui . Then

K D
S

i2I Ki . �

Remark 3
(1) Let K be a closed star-shaped cone with

int kernK ¤ ;. Then the set K� D kernK is
a closed solid convex cone. (Recall that a convex
cone K is called solid if int K ¤ ;.)

(2) Note that in Theorem 5, the family (Ki)i2I can be
chosen such that each Ki is a closed solid pointed
convex cone. Indeed, if u 2 int kern K, then u ¤ 0
and a neighborhood B(u; ") � kern K can be cho-
sen in such a way that 0 … B(u; "). Then the closed
conic hull Ki D cl

S
	 > 0 �Ui is a closed solid

pointed convex cone.

Let K be a star-shaped cone and K D
S

i2I Ki ,
where Ki is a convex cone and K� D

T
i2I Ki . Then

kern K � K�. Indeed, let u 2 K� and x 2 K. Then
there exists j 2 I such that x 2 Kj. The inclusion
u 2

T
i2I Ki implies that u 2 Kj. Since Kj is a con-

vex cone, it follows that ˛x C (1 � ˛)u 2 Kj for all
˛ 2 (0; 1). This means that u 2 kern K.

Let K be a closed star-shaped cone and
u 2 int kern K. Consider the function

pu;K(x) D inff� 2 R : �u � x 2 Kg : (16)

Functions (16) are well known if K is a convex cone.
These functions have been defined and studied in [12]
for the so-called strongly star-shaped cones (see [11]
for the definition of strongly star-shaped sets). Each
star-shaped set U with int kernU ¤ ; is strongly star-
shaped. (It was shown in [11] for finite-dimensional
space; however, the same argument is valid for ar-
bitrary normed spaces.) It was shown [12] that pu,K
is a finite positively homogeneous function of the
first degree and the infimum in (16) is attained, so
pu;K(x)u � x 2 int K. The following equality holds:

pu;K(x � �u) D �K�u(�u � x) ; (17)

where �K�u is the Minkowski gauge of K � u. In view
of Theorem 4, the function �K�u is Lipschitz, therefore
pu,K is also Lipschitz. If K is a convex cone, then pu,K is
a sublinear function. This function is also increasing in

the sense of the order relation induced by the convex
cone K. The following assertion holds (see [12]).

Proposition 12 Let K be a star-shaped cone and
u 2 int kernU. Then:

pu;K(xC�u) D pu;K(x)C�; x 2 X; � 2 R (18)

and

fx : pu;K(x) � �g D �u � K; � 2 R: (19)

We also need the following assertion.

Proposition 13 Let (Ki)i2I be a family of closed
star-shaped cones such that

T
i2I int kernKi ¤ ;. Let

u 2
T

i2I int kern Ki. Let K D
S

i2I Ki and K� DT
i2I Ki . Then

pu;K(x) D inf
i2I

pu;Ki (x) ;

pu;K�(x) D sup
i2I

pu;Ki (x); (x 2 X) :

Proof Let L be a cone such that u 2 int kern L. For
each x 2 X consider the set �x(L) D f� 2 R : �u �
x 2 Lg. It was proved in [12], Proposition 1, that this
set is a closed segment of the form [�x ;C1), where
�x D pu;L(x). We have

�x;K D f� 2 R : �u 2 x C
[
i2I

Kig

D f� 2 R : �u 2
[
i2I

(x C Ki)g

D
[
i2I

f� 2 R : �u 2 x C Kig D
[
i2I

�x;Ki :

Hence

pu;K(x) D inf�x;K D inf
[
i2I

�x;Ki

D inf
i2I

inf�x;Ki D inf
i2I

pu;Ki (x) :

The second part of the proposition can be proved by
a similar argument. �

Let K be a closed star-shaped cone with int kernK ¤ ;.
Then K can be represented as the union of a fam-
ily of closed convex cones (Ki)i2I. One such family
has been described in the proofs of Proposition 11
and Theorem 5: I D K, Ki D cl cone co fi [ B(u; ")g,
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where u 2 int kern K and " > 0 so small such that
B(u; ") � kern K. This family is very large; often we
can find a much simpler presentation. For example, as-
sume that a cone K is given as the union of a family of
closed convex cones (Ki)i2I such that the cone

T
i2I Ki

has a nonempty interior. Then this cone is contained in
kernK; we can use the given cones Ki in such a case. We
always assume that cones Ki are pointed for all i 2 I,
that is, Ki \ (�Ki) D f0g.

An arbitrary star-shaped cone K induces a relation
�K on X, where x �K ymeans that y � x 2 K. This re-
lation is a preorder relation if and only if K is a convex
set. Although�K is not necessarily an order relation, we
will say that x is greater than or equal to y in the sense
of K if x �K y. We say that x is greater than y and write
x > K y if x � y 2 K n f0g. Let K D

S
i2I Ki , where Ki

is a convex cone. The cone Ki induces the order rela-
tion �Ki . The relation �K , which is induced by cone K,
can be represented in the following form:

x �K y if and only if there exists i 2 I

such that x �Ki y : (20)

In the rest of this article, we assume that X is
equipped with a closed star-shaped cone K with
int kernK ¤ ;. We also assume that a family (Ki)i2I of
closed solid convex pointed cones Ki is given such that
K D

S
i2I Ki and K� D

T
i2I Ki has a nonempty inte-

rior. Let an element 1 2 int K� be fixed. It is clear that
1 2 int Ki for all i 2 I. We will also use the following
notations:

p1;K D p; p1;Ki D pi ; p1;K� D p� : (21)

It follows from Proposition 13 that

p(x) D inf
i2I

pi (x); p�(x) D sup
i2I

pi (x) : (22)

A function f : X ! R is called plus-homogeneous
(with respect to 1) if

f (x C �1) D f (x)C � for all x 2 X and � 2 R :

(The term plus homogeneous was coined in [13].) It
follows from (18) that pi (i 2 I); p and p� are plus-
homogeneous functions.

Let

Bi D fx 2 X : 1 �Ki x �Ki �1g i 2 I : (23)

Since Ki is a closed solid convex pointed cone, it is easy
to check that Bi (i 2 I) can be considered as the unit
ball of the norm k � ki defined on X by

kxki :D max(pi (x); pi (�x)) x 2 X : (24)

Let

kxk� D sup
i2I
kxki (x 2 X; i 2 I) : (25)

We now show that kxk� < C1 for each x ¤ 0. In-
deed, since 1 2 int K� � int Ki , it follows that there ex-
ists " > 0 such that 1C "B̃ � Ki for all i 2 I, where
B̃ D fx 2 X : kxk � 1g is the closed unit ball with re-
spect to the initial norm k � k of the normed space X. Let
x ¤ 0. Then x0 D ("/kxk)x 2 "B̃; hence 1 � x0 2 Ki .
This implies that

pi (x0) D inff� 2 R : �1 � x0 2 Kig � 1 :

Since pi is a positively homogeneous function, it follows
that

pi (x) D pi
�
kxk
"

x0
�

D
kxk
"

pi (x0) �
kxk
"
:

The same argument demonstrates that pi (�x) �
kxk/". Hence

kxk� D sup
i2I
kxki

D sup
i2I

max(p(xi); p(�xi )) �
kxk
"

< C1 :

Clearly k � k* is a norm on X. It is easy to see that

kxk� D max(p�(x); p�(�x)) x 2 X : (26)

Due to (23), we have

Bi (x; r) :D fy 2 X : ky � xki � rg
D fy 2 X : x C r1 �Ki y �Ki x � r1g ; (27)

where x 2 X, i 2 I and r > 0. Let x 2 X and r > 0. Con-
sider the closed ball B(x, r) with center x and radius r
with respect to k � k*:

B(x; r) :D fy 2 X : ky � xk� � rg

D fy 2 X : x C r1 �K� y �K� x � r1g : (28)
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It follows from (20), (27), and (28) that

B(x; r) D
\
i2I

Bi (x; r) ; (29)

and

B(x; r) � fy 2 X : x C r1 �K y �K x � r1g : (30)

We now present an example.

Example 8 Let X D R2. Consider the cones

A D f(x; y) 2 X : x � 0 and y � 2xg;

B D
�
(x; y) 2 X : x � 0 and y �

1
2
x
	
;

C D
�
(x; y) 2 X : x � 0 and y � �

1
2
x
	
;

D D f(x; y) 2 X : x � 0 and y � �2xg :

Set K1 D A[ B, K2 D C [ D, K D K1 [ K2, and
K� :D K1 \ K2 D A[ D. It is easy to check that K is
not a convex set while K1, K2 and K� are convex sets.
We also have:

p�(x) D max(y�2x; yC2x) for all x D (x; y) 2 X ;

kxk� D jyj C 2jxj for all x D (x; y) 2 X :

Example 9 Let X be a normed space with a norm k � k.
Let Y D X �R and K :D epik � k � Y be the epigraph
of k � k. (Recall that epik � k D f(x; �) 2 Y : � � kxkg.)
Then K is a convex closed cone and (0; 1) 2 int K.
Assume now that X is equipped with two equivalent
norms k � k1 and k � k2. Let Ki D epik � ki ; i D 1; 2, and
K D K1 [ K2. If there exist x0 2 X and x00 2 X such
that kx0k1 < kx0k2 and kx00k1 > kx00k2, then K is not
convex. Clearly K is a pointed cone. The set int K con-
tains (0, 1); hence it is nonempty. Clearly K n f0g is con-
tained in the open half-space f(x; �) : � > 0g. Cone K is
star-shaped. It can be proved that kern K D K1 \ K2.

In the remainder of the article, we consider a normed
space X with a closed star-shaped cone K such that
int kern K is not empty. Assume that K is given as
K D

S
i2I Ki , where

� I is an arbitrary index set;
� Ki ; (i 2 I) is a closed solid convex pointed cone;
� The interior int K� of the cone K� D

T
i2I Ki is

nonempty.
In the sequel, assume that the norm k � k of X coincides
with the norm k � k* defined by (26).

Characterization of Best Approximations

Let ' : X � X �! R be a function defined by

'(x; y) :D supf� 2 R : xC y �K �1g (x; y 2 X) :

(31)

Since 1 2 int K�, it follows that the set
f� 2 R : x C y �K �1g is nonempty and bounded
from above (by the number kx C yk�). Clearly this
set is closed. It follows from the definition of ' that the
function ' has the following properties:

�1 < '(x; y) � kx C yk� for each x; y 2 X ;

(32)

x C y �K '(x; y)1 for all x; y 2 X ; (33)

'(x; y) D '(y; x) for all x; y 2 X ; (34)

'(x;�x) D supf� 2 R : 0 D x � x �K �1g

D 0 for all x 2 X ;
(35)

'(x; yC �1) D '(x; y)C � for all x; y 2 X

and � 2 R ; (36)

'(x C �1; y) D '(x; y)C � for all x; y 2 X

and � 2 R ; (37)

'(�x; � y) D �'(x; y) for all x; y 2 X

and � > 0 : (38)

Proposition 14 Let ' be the function defined by (31).
Then

'(x; y) D �p(�x � y); (x; y 2 X) ; (39)

and hence

'(x; y) D sup
i2I

[�pi (�x � y)] (x; y 2 X) : (40)

Proof For each x; y 2 X, we have

�'(�x;�y) D � supf� 2 R : � (x C y) �K �1g

D inff�� 2 R : � (x C y) �K �1g

D inff�0 2 R : � (x C y) �K ��
01g

D inff�0 2 R : �01 �K x C yg

D p(x C y) :
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Hence '(x; y) D �p(�x � y). In view of (21), we
get (40). �

Now, consider x; y 2 X. We define the functions
'x : X �! R and 'y : X �! R by

'x(t) D '(x; t) t 2 X (41)

and

'y(t) D '(t; y) t 2 X : (42)

Note that 'x and 'y are nonincreasing functions with
respect to the relation generated by K on X. We have
the following result:

Corollary 5 Let ' be the function defined by (31). Then
' is Lipschitz continuous.

Proof This is an immediate consequence of Lipschitz
continuity of p and Proposition 14. �

Corollary 6 For each x; y 2 X, the functions defined
by (41) and (42) are Lipschitz continuous.

Proof It follows from Corollary 5. �

Proposition 15 Let ' be the function defined by (31)
and set

�(y; ˛) D fx 2 X : '(x; y) � ˛g (y 2 X; ˛ 2 R) :

Then, �(y; ˛) D K C ˛1 � y for all y 2 X and all
˛ 2 R. �

Proof Fix y 2 X and ˛ 2 R. Then

x 2 �(y; ˛)() '(x; y) � ˛ :

Due to Proposition 14, this happens if and only if
�p(�x � y) � ˛, and hence by Proposition 12, if
and only if �x � y 2 �˛1 � K. This is equivalent to
x 2 K C ˛1 � y, which completes the proof. �

Corollary 7 Under the hypotheses of Proposition 15, we
have

'(x; y) � ˛ if and only if x C y �K ˛1

(x; y 2 X; ˛ 2 R) :

Lemma 2 Let W be a closed downward subset of X,
y0 2 bdW and ' be the function defined by (31). Then

'(w;�y0) � 0 D '(y0;�y0) 8 w 2 W : (43)

Proof The proof is similar to the proof of Lemma 4.3
in [7]. �

For x 2 X and a nonempty subset W of X, we will use
the following notations:

di (x;W) :D inf
w2W
kx � wki i 2 I

and

Pi
W (x) D fw 2 W : kx � wki D di (x;W)g i 2 I :

Lemma 3 Let W be a closed downward subset of X,
x 2 X nW, r > 0, and i 2 I. Then r D di (x;W) if and
only if x � r1 2 W and pi (x � w � r1)) � 0 for all
w 2 W.

Proof Let r D di (x;W). In a manner analogous
to the proof of Proposition 3, one can prove
that x � r1 2 Pi

W (x) � W . Since Pi
W (x) � bdW , it

follows from Lemma 2 and Proposition 14 that
pi (x � w � r1) � 0 for all w 2 W . Conversely, sup-
pose that x � r1 2 W and pi (x � w � r1) � 0 for all
w 2 W . Let w 2 W be arbitrary. Since pi is plus-
homogeneous and pi (x � w � r1) D pi (x � w) � r, it
follows from (24) that

kx � wki � pi (x � w) � r :

Since kx � (x � r1)ki D r and x � r1 2 W , we con-
clude that r D di (x;W). �

Lemma 4 Let W be a closed downward subset of X,
x 2 X nW, and r > 0. Then r D d(x;W) if and only if
x � r1 2 W and for some i 2 I, pi (x � w � r1) � 0
for all w 2 W.

Proof Let r D d(x;W). By Proposition 3 we
have x � r1 2 PW (x) � bdW . Then it follows from
Lemma 3 that '(w; r1 � x) � 0 for all w 2 W . In view
of (40), we get pi (x � w � r1) � 0 for all w 2 W and
all i 2 I. Conversely, suppose that x � r1 2 W and
for some i 2 I, pi (x � w � r1) � 0 for all w 2 W .
Consider w 2 W . Since pi is plus-homogeneous and
pi (x � w � r1) D pi (x � w) � r, it follows from (24)
and (25) that

kx � wk� � kx � wki � pi (x � w) � r :

Since r D kx � (x � r1)k� and x � r1 2 W , one thus
has r D d(x;W). �
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The following result is an immediate consequence of
Lemmas 3 and 4.

Corollary 8 Let W be a closed downward subset of X,
x 2 X nW. Then

d(x;W) D di (x;W) for all i 2 I : (44)

Corollary 9 Let W be a closed downward subset of X,
x 2 X nW, and w0 2 W. Then, w0 2 PW (x) if and only
if w0 2 Pi

W (x) for each i 2 I.

Proof Let w0 2 PW (x). Then kx � w0k� D d(x;W).
In view of (25) and (44), we have kx � w0ki D

di (x;W) for each i 2 I. Therefore,w0 2 Pi
W (x) for each

i 2 I. Conversely, let w0 2 Pi
W (x) for each i 2 I. Then

kx � w0ki D di (x;W) for each i 2 I. Hence, by (44),
we get kx �w0k� D maxi2I kx �w0ki D d(x;W), that
is, w0 2 PW (x). �

Theorem 6 Let W be a closed downward subset of
X, x0 2 X nW, y0 2 W, and r0 :D kx0 � y0k�. Assume
that ' is the function defined by (31). Then the following
assertions are equivalent:
(1) y0 2 PW (x0).
(2) There exists l 2 X such that

'(w; l) � 0 � '(y; l); 8 w 2 W; y 2 B(x0; r0) :
(45)

Moreover, if (45) holds with l D �y0, then y0 D w0 D

minPW (x0), where w0 D x0 � r1 is the least element of
the set PW(x0) and r :D d(x0;W).

Proof
(1)H) (2). Suppose that y0 2 PW (x0). Then r0 D
kx0 � y0k� D d(x0;W) D r. Since W is a closed
downward subset of X, it follows from Proposi-
tion 3 that the least element w0 D x0 � r01 of the
set PW(x0) exists. Let l D �w0 and y 2 B(x0; r0)
be arbitrary. Then, by (30), we have y �K �l
or yC l �K 0. It follows from Corollary 7 that
'(y; l) � 0. On the other hand, since w0 2 PW (x0),
it follows that w0 2 bdW . Hence, by Lemma 2 we
have '(w; l) � 0 for all w 2 W .

(2)H) (1). Assume that (2) holds. By (28) it is clear
that x0 � r01 2 B(x0; r0). Therefore, by (45) we
have '(x0 � r01; l) � 0. Due to Corollary 7, we get

x0 � r01 C l �K 0, and so l � r01 �K �x0. Hence
there exists j 2 I such that

l � r01 �K j �x0 : (46)

Now, let w 2 W be arbitrary. Since pj is topical
and (21), (39), and (45) hold, it follows from (46) that

p j(x0 � w) � p j(r01 � l � w) D p j(�l � w)C r0
� p(�l � w)C r0
D �'(w; l)C r0
� 0C r0 D r0 :

Then, by (24) and (25), we have

r0 � p j(x0 � w) � kx0 � wk j
� kx0 � wk� for all w 2 W :

Thus kx0 � y0k� D d(x0;W). Consequently, y0 2

PW (x0). Finally, suppose that (45) holds with l D �y0.
Then, by the implication (2) H) (1), we have
y0 2 PW (x0), and so r0 D kx0 � y0k� D d(x0;W) and
y0 �K w0, where w0 D x0 � r1 is the least element of
the set PW (x0) and r :D d(x0;W). Now, letw 2 PW (x0)
be arbitrary. Then kx0 � wk� D d(x0;W) D r0, that is,
w 2 B(x0; r0). It follows from (45) that '(w;�y0) � 0.
In view of Corollary 7, we have w � y0 �K 0, and so
w �K y0. This means that y0 D minPW (x0) D w0. This
completes the proof. �

Strictly Downward Sets
and Their Best Approximation Properties

We start with the following definitions, which were in-
troduced in [7] for downward subsets of a Banach lat-
tice.

Definition 5 A downward subset W of X is called
strictly downward if for each boundary point w0 of W
the inequality w > K w0 implies w … W .

Definition 6 Let W be a downward subset of X. We
say that W is strictly downward at a point w0 2 bdW
if for all w0 2 bdW with w0 �K w0 the inequality
w > Kw0 implies w … W .

The following lemmas have been proved in [7]; how-
ever, those proofs hold for the case under considera-
tion.
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Lemma 5 Let f : X �! R be a continuous strictly
increasing function. Then all nonempty level sets
Sc( f )(c 2 R) of f are strictly downward.

Lemma 6 Let W be a closed downward subset of X.
Then W is strictly downward at w0 2 bdW if and only
if
(i) w > K w0 H) w … W;
(ii) (w0 �K w0;w0 2 bdW) H) w0 D w0.

Lemma 7 Let W be a closed downward subset of X.
Then W is strictly downward if and only if W is strictly
downward at each of its boundary points.

Lemma 8 Let ' be the function defined by (31) and W
be a closed downward subset of X that is strictly down-
ward at a point w0 2 bdW. Then there exists unique
l 2 X such that

'(w; l) � 0 D '(w0; l); 8 w 2 W :

Theorem 7 Let ' be the function defined by (31). Then
for a closed downward subset W of X the following asser-
tions are equivalent:
(1) W is strictly downward.
(2) For each w0 2 bdW there exists unique l 2 X such

that

'(w; l) � 0 D '(w0; l) 8 w 2 W :

Proof The implication (1) H) (2) follows from
Lemma 8. We now prove the implication (2) H) (1).
Assume that for each w0 2 bdW there exists unique
l 2 X such that

'(w; l) � 0 D '(w0; l) 8 w 2 W :

Let w0 2 bdW and y 2 X with y > K w0. Assume that
y 2 W . We claim that yC �1 … W for all � > 0. Sup-
pose that there exists �0 > 0 such that y C �01 2 W .
Since y C �01 > Kw0 C �01 and W is a downward set,
we have w0 C �01 2 W . In view of Corollary 1, it con-
tradicts with w0 2 bdW , and so the claim is true. Then,
by Corollary 1, we have y 2 bdW . Let l D �y. It fol-
lows from Lemma 2 that

'(w; l) � 0 D '(y; l) 8 w 2 W : (47)

On the other hand, applying Lemma 2 to the point w0

we have for l 0 D �w0:

'(w; l 0) � 0 D '(w0; l 0) 8 w 2 W : (48)

Since y > Kiw0 for some i 2 I and pi is increasing, it fol-
lows from (21), (39), and(48) that 0 D pi (�w0 � l 0) �
pi (�y � l 0) � p(�y � l 0) D �'(y; l 0) � 0. This, to-
gether with (48), implies that

'(w; l 0) � 0 D '(y; l 0) 8 w 2 W : (49)

Sincew0 ¤ y, it follows that l 0 ¤ l . Hence (47) and (49)
contradict the uniqueness of l. We have demonstrated
that the assumption y 2 W leads to a contradiction.
Thus y … W . This means that W is strictly downward.

�

Corollary 10 Let f : X �! R be a continuous strictly
increasing function and ' be the function defined
by (31). Then for each x 2 X there exists unique l D �x
such that

'(w; l) � 0 D '(x; l) 8 w 2 Sc( f ) ;

where c D f (x).

Proof This is an immediate consequence of Lemma 5
and Theorem 7. �

Definition 7 Let W be a downward subset of X.
A pointw0 2 bdW is said to be a Chebyshev point if for
each w0 2 bdW with w0 �K w0 and for each x0 … W
such that w0 2 PW (x0) it follows that PW (x0) D fw0g,
that is, the best approximation of x0 is unique.

Definition 7 was introduced in [7] for a downward sub-
set of a Banach lattice.

Definition 8 Let W be a downward subset of
X. A point w0 2 bdW is said to be a Chebyshev
point of W with respect to each Ki (i 2 I) if for
each w0 2 bdW with w0 �K w0 and for each x0 … W
such that w0 2 Pi

W (x0) for each i 2 I it follows that
Pi

W (x0) D fw0g for each i 2 I.

Remark 4 In view of Corollary 8, we have that Defini-
tions 7 and 8 are equivalent.

Theorem 8 Let W be a closed downward subset of X
and w0 2 bdW. If w0 is a Chebyshev point of W with
respect to each Ki (i 2 I), then W is a strictly downward
set at w0.
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Proof Suppose that w0 is a Chebyshev point of W
with respect to each Ki (i 2 I). Assume, if possible,
that W is not strictly downward at w0. Then we can
find w0 2 bdW and w 2 W such that w0 �K w0 and
w > K w0. Let r � kw � w0k� > 0. It follows from (27)
that

r1 �Ki w � w0 8 i 2 I :

Thus, w0 C r1 �Ki w for all i 2 I. Set x0 D w0 C

r1 2 X. Since w0 2 bdW , by Lemma 6 we have
'(y;�w0) � 0 for all y 2 W . Also, x0 � r1 D w0 2 W .
Thus, by (21), Proposition 14, and Lemma 4 we get
r D d(x0;W). Since kx0 � w0ki D kr1ki D r for
all i 2 I, it follows from (25) that kx0 � w0k� D r, and
hence w0 2 PW (x0). In view of Corollary 9, we obtain
w0 2 Pi

W (x0) for all i 2 I.
On the other hand, we have x0 D w0 C r1 �Ki w

for all i 2 I. Since w > K w0, we conclude that there
exists j 2 I such that w > K jw0. It follows that
r1 D x0 � w0 > K j x0 � w �K j 0. Hence

kx0 � wk j � kr1k j D r D d j(x0;W) � kx0 � wk j :

Thus kx0 � wk j D d j(x0;W), and so w 2 Pj
W (x0)

with w ¤ w0. Whence there exist a point x0 2 X nW
and a point w0 2 bdW with w0 �K w0 such that
w0 2 Pi

W (x0) for each i 2 I and Pj
W (x0) contains at

least one point different from w0. This is a contradic-
tion because w0 is a Chebyshev point ofW with respect
to each Ki (i 2 I), which completes the proof. �

Proposition 16 Let W be a closed downward subset of
X and w0 2 bdW. If W is a strictly downward set at w0,
then w0 is a Chebyshev point of W.

Proof The proof is similar to that of Theorem 4.2 (the
implication (2)H) (1)) in [7]. �

Corollary 11 Let f : X �! R be a continuous strictly
increasing function. Then Sc( f )(c 2 R) is a Chebyshev
subset of X.

Proof This is an immediate consequence of Lemma 5
and Proposition 16. �
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Introduction

Fractional bilevel programming (FBP), a class of bilevel
programming [6,10], has been proposed as a gener-
alization of standard fractional programming [9] for
dealing with hierarchical systems with two decision lev-
els. FBP problems assume that the objective functions
of both levels are ratios of functions and the common
constraint region to both levels is a nonempty and com-
pact polyhedron.

Formulation

Using the common notation in bilevel programming,
the FBP problem [1] can be formulated as:

min
x1;x2

f1(x1; x2) D
h1(x1; x2)
g1(x1; x2)

;

where x2 solves

min
x2

f2(x1; x2) D
h2(x1; x2)
g2(x1; x2)

s.t. (x1; x2) 2 S ;

where x1 2 Rn1 and x2 2 Rn2 are the variables con-
trolled by the upper level and the lower level decision
maker, respectively; hi and g i are continuous functions,
hi are nonnegative and concave and g i are positive and

convex on S; and S D f(x1; x2) : A1x1 C A2x2 � b;
x1 � 0; x2 � 0g, which is assumed to be nonempty and
bounded.

Let S1 be the projection of S on Rn1 . For each
x̃1 2 S1 provided by the upper level decision maker,
the lower level one solves the fractional problem:

min
x2

f2(x̃1; x2) D
h2(x̃1; x2)
g2(x̃1; x2)

s.t. A2x2 � b � A1 x̃1
x2 � 0 :

LetM(x̃1) denote the set of optimal solutions to this
problem. In order to ensure that the FBP problem is
well posed it is also assumed that M(x̃1) is a singleton
for all x̃1 2 S1.

The feasible region of the upper level decision
maker, also called the inducible region (IR), is implicitly
defined by the lower level decision maker:

IR D f(x̃1; x̃2) : x̃1 � 0; x̃2 D argmin
f f2(x̃1; x2) : A1 x̃1 C A2x2 � b; x2 � 0gg :

Therefore, the FBP problem can be stated as:

min
x1;x2

f1(x1; x2) D
h1(x1; x2)
g1(x1; x2)

s.t. (x1; x2) 2 IR :

Theoretical Results

The FBP problem is a nonconvex optimization problem
but, taking into account the quasiconcavity of f 2 and
the properties of polyhedra, in [1] it was proved that
the inducible region is formed by the connected union
of faces of the polyhedron S.

One of the main features of FBP problems is that,
even with the more complex objective functions, they
retain the most important property related to the opti-
mal solution of linear bilevel programming problems.
That is, there is an extreme point of S which solves the
FBP problem [1]. This result is a consequence of the
properties of IR as well as of the fact of f 1 being qua-
siconcave. The same conclusion is also obtained when
both level objective functions are defined as the mini-
mum of a finite number of functions which are ratios
with the previously stated conditions or, in general, if
they are quasiconcave.
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Under the additional assumption that the upper
level objective function is explicitly quasimonotonic,
another geometrical property of the optimal solution of
the FBP problem can be obtained by introducing the
concept of boundary feasible extreme point. Accord-
ing to [7], a point (x1; x2) 2 IR is a boundary feasible
extreme point if there exists an edge E of S such that
(x1; x2) is an extreme point of E, and the other extreme
point of E is not an element of IR.

Let us consider the relaxed problem:

min
x1;x2

f1(x1; x2) D
h1(x1; x2)
g1(x1; x2)

;

s.t. (x1; x2) 2 S :
(1)

Since f 1 is a quasiconcave function and S is
a nonempty and compact polyhedron, an extreme point
of S exists which solves (1). Obviously, if an optimal so-
lution of (1) is a point of IR, then it is an optimal so-
lution to the FBP problem. However, in general, this
will not be true, since both decisionmakers usually have
conflicting objectives.

Hence, if f 1 is explicitly quasimonotonic and there
exists an extreme point of S not in IR that is an optimal
solution of the relaxed problem (1), then a boundary
feasible extreme point exists that solves the FBP prob-
lem [3].

Although FBP problems retain some important
properties of linear bilevel problems, it is worth point-
ing out at this time some differences related to the
existence of multiple optima when solving the lower
level problem for given x1 2 S1. Different approaches
have been proposed in the literature to make sure that
the bilevel problem is well posed [6]. The most com-
mon one is to assume that M(x1) is single-valued for
all x1 2 S1. Other approaches give rules for selecting
x2 2 M(x1) in order to be able to evaluate the upper
level objective function f1(x1; x2). The optimistic ap-
proach assumes that the upper level decision maker has
the right to influence the lower level decision maker so
that the latter selects x2 to provide the best value of f 1.
On the contrary, the pessimistic approach assumes that
the lower level decision maker always selects x2 which
gives the worst value of f 1.

It is well-known [8] that, under the optimistic ap-
proach, at least one optimal solution of the linear bilevel
problem is obtained at an extreme point of the poly-

hedron defined by the common constraints. However,
in [3] an example of the FBP problem is proposed in
which M(x̃1) is not single-valued for given x̃1 2 S1 and
this assertion is not true. Firstly, IR no longer consists of
the union of faces of the polyhedron S. Secondly, if the
pessimistic approach is used, then an optimal solution
to the example does not exist. Finally, if the optimistic
approach is taken the optimal solution to the example
is not an extreme point of the polyhedron S.

Algorithms

Bearing in mind that there is an extreme point of S
which solves the FBP problem, an enumerative algo-
rithm can be devised which examines the set of extreme
points of S in order to identify the best one regard-
ing f 1, which is a point of IR. The bottleneck of the
algorithm would be the generally large number of ex-
treme points of a polyhedron together with the process
of checking if an extreme point of S is a point of IR or
not.

In the particular case in which f 1 is linear and f 2 is
linear fractional (LLFBP problem), in [2] an enumera-
tive algorithm has been proposed which finds a global
optimum in a finite number of stages by examining im-
plicitly only bases of the matrix A2. This algorithm con-
nects the points of IR with the bases of A2, by applying
the parametric approach to solve the fractional prob-
lem of the lower level. One of the main advantages of
the procedure is that only linear problems have to be
solved.

When f 1 is linear fractional and f 2 is linear (LFLBP
problem), the algorithm developed in [2] combines lo-
cal search in order to find an extreme point of IR with
a better value of f 1 than any of its adjacent extreme
points in IR and a penalty method when looking for
another point of IR from which a new local search can
start.

The Kth-best algorithm has been proposed in [3]
to globally solve the FBP problem when both objective
functions are linear fractional (LFBP). It essentially as-
serts that the best (in terms of the upper level objective
function) of the extreme points of S which is a point
of IR is an optimal solution to the problem. Moreover,
the search for this point can be made sequentially by
computing adjacent extreme points to the incumbent
extreme point.
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Finally, recently two genetic algorithms have been
proposed [4,5] which allow us to solve LLFBP, LFBP
and LFLBP problems. Both algorithms provide excel-
lent results in terms of both accuracy of the solution
and time invested, proving that they are effective and
useful approaches for solving those problems. Both al-
gorithms associate chromosomes with extreme points
of S. The fitness of a chromosome evaluates its quality
and penalizes it if the associated extreme point is not
in IR. The algorithms mainly differ in the procedure of
checking if an extreme point is in IR. When f 2 is linear,
all lower level problems have the same dual feasible re-
gion, so it is possible to prove several properties which
simplify the process.
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Many hierarchical optimization problems involving
two or more decision makers can be modeled as a mul-
tilevel mathematical program. The two-level struc-
ture is commonly known as a Stackelberg game where
a leader and a follower try to minimize their individ-
ual objective functions F(x, y) and f (x, y), respectively,
subject to a series of interdependent constraints [2,9].
Play is defined as sequential and the mood as noncoop-
erative. The decision variables are partitioned between
the players in such a way that neither can dominate the
other. The leader goes first and through his choice of
x 2 Rn is able to influence but not control the actions
of the follower. This is achieved by reducing the set of
feasible choices available to the latter. Subsequently, the
follower reacts to the leader’s decision by choosing a y
2 Rm in an effort to minimizes his costs. In so doing,
he indirectly affects the leader’s solution space and out-
come.

Two basic assumptions underlying the Stackelberg
game are that full information is available to the play-
ers and that cooperation is prohibited. This precludes
the use of correlated strategies and side payments. The
vast majority of research on this problem has centered
on the linear case known as the linear bilevel program
(BLP) [3,6]. Relevant notation, the basic model, and
a discussion of its theoretical properties follow.

For x 2 X � Rn, y 2 Y � Rm, F: X × Y! R1, and f :
X × Y ! R1, the linear bilevel programming problem
can be written as follows:

min
x2X

F(x; y) D c1x C d1 y; (1)
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s.t. A1x C B1y � b1; (2)

min
y2Y

f (x; y) D c2x C d2 y; (3)

s.t. A2x C B2y � b2; (4)

where c1, c2 2 Rn, d1, d2 2 Rm, b1 2 Rp, b2 2 Rq, A1 2

Rp × n, B1 2Rp ×m,A2 2Rq ×n, B2 2Rq ×m. The setsX and
Y place additional restrictions on the variables, such as
upper and lower bounds or integrality requirements.
Of course, once the leader selects an x, the first term
in the follower’s objective function becomes a constant
and can be removed from the problem. In this case, we
replace f (x, y) with f (y).

The sequential nature of the decisions in (1)–(4) im-
plies that y can be viewed as a function of x; i. e., y = y(x).
For convenience, this dependence will not be written
explicitly.

Definitions

a) Constraint region of the linear BLP:

S D f(x; y) : x 2 X; y 2 Y ;

A1x C B1y � b1;A2x C B2 y � b2g :

b) Feasible set for follower for each fixed x 2 X:

S(x) D fy 2 Y : A2x C B2y � b2g :

c) Projection of S onto the leader’s decision space:

S(X) D fx 2 X : 9 y 2 Y ;

A1x C B1y � b1;A2x C B2 y � b2g :

d) Follower’s rational reaction set for x 2 S(X):

P(x) D fy 2 Y :

y 2 argmin
˚
f (x;by) : by 2 S(x)

��
:

e) Inducible region:

IR D f(x; y) : (x; y) 2 S; y 2 P(x)g :

To ensure that (1)–(4) is well posed it is common to
assume that S is nonempty and compact, and that for
all decisions taken by the leader, the follower has some
room to respond; i. e., P(x) 6D ;. The rational reaction
set P(x) defines the response while the inducible region

IR represents the set over which the leader may opti-
mize. Thus in terms of the above notation, the BLP can
be written as

min fF(x; y) : (x; y) 2 IRg : (5)

Even with the stated assumptions, problem (5) may
not have a solution. In particular, if P(x) is not single-
valued for all permissible x, the leader may not achieve
his minimum payoff over IR. To avoid this situation in
the development of algorithms, it is usually assumed
that P(x) is a point-to-point map. Because a simple
check is available to see whether the solution to (1)–(4)
is unique (see [2]) this assumption does not appear to
be unduly restrictive.

It should be mentioned that in practice the leader
will incur some cost in determining the decision space
S(X) over which he may operate. For example, when
BLP is used as a model for a decentralized firm with
headquarters representing the leader and the divisions
representing the follower, coordination of lower level
activities by headquarters requires detailed knowledge
of production capacities, technological capabilities, and
routine operating procedures. Up-to-date information
in these areas is not likely to be available to corporate
planners without constant monitoring and oversight.

Theoretical Properties

The linear bilevel program was first shown to be NP-
hard by R.G. Jeroslow [7] using satisfiability arguments
common in computer science. The complexity of the
problem is further elaborated in � Bilevel linear pro-
gramming: Complexity, equivalence to minmax, con-
cave programs. Issues related to the geometry of the so-
lution space are now discussed. The main result is that
when the linear BLP is written as a standard mathemat-
ical program (5), the corresponding constraint set or
inducible region is comprised of connected faces of S
and that a solution occurs at a vertex (see [1] or [8] for
the proofs). For ease of presentation, it will be assumed
that P(x) is single-valued and bounded, S is bounded
and nonempty, and that Y = {y : y � 0}.

Theorem 1 The inducible region can be written equiva-
lently as a piecewise linear equality constraint comprised
of supporting hyperplanes of S.
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A straightforward corollary of this theorem is that the
linear BLP is equivalent to minimizing F over a feasi-
ble region comprised of a piecewise linear equality con-
straint. In general, because a linear function F = c1x
+ d1y is being minimized over IR, and because F is
bounded below on S by, say, min{c1x + d1y: (x, y) 2 IR},
it can also be concluded that the solution to the linear
BLP occurs at a vertex of IR. An alternative proof of
this result was given by W.F. Bialas and M.H. Karwan
[4] who noted that (5) could be written equivalently as

min fc1x C d1 y : (x; y) 2 co IRg ;

where co IR is the convex hull of the inducible region.
Of course, co IR is not the same as IR, but the next the-
orem states their relationship with respect to BLP solu-
tions.

Theorem 2 The solution (x�, y�) of the linear BLP oc-
curs at a vertex of S.

In general, at the solution (x�, y�) the hyperplane {(x,
y): c1x + d1y = c1x� + d1y�} will not be a support of the
set S. Furthermore, a by-product of the proof of The-
orem 2 is that any vertex of IR is also a vertex of S,
implying that IR consists of faces of S. Comparable re-
sults were derived by Bialas and Karwan who began by
showing that any point in S that strictly contributes in
any convex combination of points in S to form a point
in IR must also be in IR. This leads to the fact that if
x is an extreme point of IR, then it is an extreme point
of S. A final observation about the solution of the linear
BLP can be inferred from this last assertion. Because the
inducible region is not in general convex, the set of op-
timal solutions to (1)–(4) when not single-valued is not
necessarily convex.

In searching for a way to solve the linear BLP, it
would be helpful to have an explicit representation of IR
rather than the implicit representation given by Defini-
tion e). This can be achieved by replacing the follower’s
problem (3)-(4) with his Kuhn–Tucker conditions and
appending the resultant system to the leader’s problem.
Letting u 2 Rq and v 2 Rm be the dual variables associ-
ated with constraints (4) and y� 0, respectively, leads to
the proposition that a necessary condition for (x�, y�)
to solve the linear BLP is that there exists (row) vectors

u� and v� such that (x�, y�, u�, v�) solves:

min c1x C d1 y; (6)
s.t. A1x C B1 y � b1; (7)

uB2 � v D �d2; (8)
u(b2 � A2x � B2 y)C vy D 0; (9)
A2x C B2 y � b2; (10)
x � 0; y � 0; u � 0; v � 0: (11)

This formulation has played a key role in the de-
velopment of algorithms. One advantage that it offers is
that it allows for a more robust model to be solved with-
out introducing any new computational difficulties. In
particular, by replacing the follower’s objective function
(3) with a quadratic form

f (x; y) D c2x C d2 yC x>Q1y C
1
2
y>Q2y; (12)

where Q1 is an n × m matrix and Q2 is an m × m
symmetric positive semidefinite matrix, the only thing
that changes in (6)–(11) is constraint (8). The new con-
straint remains linear but now includes all problem
variables; i. e.,

x>Q1 C y>Q2 C uB2 � v D �d2: (13)

From a conceptual point of view, (6)–(11) is a standard
mathematical program and should be relatively easy to
solve because all but one constraint is linear. Neverthe-
less, virtually all commercial nonlinear codes find com-
plementarity terms like (9) notoriously difficult to han-
dle so some ingenuity is required to maintain feasibility
and guarantee global optimality.

Algorithmic Approaches

There have been nearly two dozen algorithms proposed
for solving the linear BLP since the field caught the at-
tention of researchers in the mid-1970s. Many of these
are of academic interest only because they are either im-
practical to implement or highly inefficient. In general,
there are three different approaches to solving (1)–(4)
that can be considered workable. The first makes use of
Theorem 2 and involves some form of vertex enumera-
tion in the context of the simplex method. W. Candler
and R. Townsely [5] were the first to develop an algo-
rithm that was globally optimal. Their scheme repeat-
edly solves two linear programs, one for the leader in
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all of the x variables and a subset of the y variables asso-
ciated with an optimal basis to the follower’s problem,
and the other for the follower with all the x variables
fixed. In a systematic way they explore optimal bases of
the follower’s problem for x fixed and then return to the
leader’s problem with the corresponding basic y vari-
ables. By focusing on the reduced cost coefficients of
the y variables not in an optimal basis of the follower’s
problem, they are able to provide a monotonic decrease
in the number of follower bases that have to be exam-
ined. Bialas and Karwan [4] offered a different approach
that systematically explores vertices beginning with the
basis associated with the optimal solution to the linear
program created by removing (3). This is known as the
high point problem.

The second and most popular method for solving
the linear BLP is known as the Kuhn–Tucker approach
and concentrates on (6)–(11). The fundamental idea is
to use a branch and bound strategy to deal with the com-
plementarity constraint (9). Omitting or relaxing this
constraint leaves a standard linear program which is
easy to solve. The various methods proposed employ
different techniques for assuring that complementarity
is ultimately satisfied (e. g., see [3,6]).

The third method is based on some form of penalty
approach. E. Aiyoshi and K. Shimizu (see [8, Chap.
15]) addressed the general BLP by first converting the
follower’s problem to an unconstrained mathemati-
cal program using a barrier method. The correspond-
ing stationarity conditions are then appended to the
leader’s problem which is solved repeatedly for de-
creasing values of the barrier parameter. To guarantee
convergence the follower’s objective function must be
strictly convex. This rules out the linear case, at least in
theory. A different approach using an exterior penalty
method was proposed by Shimizu and M. Lu [8] that
simply requires convexity of all the functions to guar-
antee global convergence.

In the approach of D.J.White and G. Anandalingam
[10], the gap between the primal and dual solutions of
the follower’s problem for x fixed is used as a penalty
term in the leader’s problem. Although this results in
a nonlinear objective function, it can be decomposed
to provide a set of linear programs conditioned on ei-
ther the decision variables (x, y) or the dual variables (u,
v) of the follower’s problem. They show that an exact
penalty function exists that yields the global solution.

Related theory and algorithmic details are highlighted
in [8, Chap. 16], along with presentations of several ver-
tex enumeration and Kuhn–Tucker-based implemen-
tations.
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A sequential optimization problem in which indepen-
dent decision makers act in a noncooperative manner
to minimize their individual costs, may be categorized
as a Stackelberg game. The bilevel programming prob-
lem (BLPP) is a static, open loop version of this game
where the leader controls the decision variables x 2 X
� Rn, while the follower separately controls the deci-
sion variables y 2 Y � Rm (e. g., see [3,9]).

In the model, it is common to assume that the leader
goes first and chooses an x to minimize his objective
function F(x, y). The follower then reacts by selecting
a y to minimize his individual objective function f (x,
y) without regard to the impact this choice has on the
leader. Here, F: X × Y ! R1 and f : X × Y ! R1. The
focus of this article is on the linear case introduced in
� Bilevel linear programming and given by:

min
x2X

F(x; y) D c1x C d1 y; (1)

s.t. A1x C B1y � b1; (2)

min
y2Y

f (x; y) D c2x C d2y; (3)

s.t. A2x C B2y � b2; (4)

where c1, c2 2 Rn, d1, d2 2 Rm, b1 2 Rp, b2 2 Rq, A1

2 Rp × n, B1 2 Rp ×m, A2 2 Rq × n, B2 2 Rq ×m. The sets
X and Y place additional restrictions on the variables,
such as upper and lower bounds. Note that it is always
possible to drop components separable in x from the
follower’s objective function (3).

Out of practical considerations, it is further sup-
posed that the feasible region given by (2), (4), X and
Y is nonempty and compact, and that for each decision
taken by the leader, the follower has some room to re-
spond. The rational reaction set, P(x), defines these re-
sponses while the inducible region, IR, represents the
set over which the leader may optimize. These terms
are defined precisely in � Bilevel linear programming.
In the play, y is restricted to P(x).

Given these assumptions, the BLPP may still not
have a well-defined solution. In particular, difficulties
may arise when P(x) is multivalued and discontinuous.
This is illustrated by way of example in [2,3].

Related Optimization Problems

The linear minmax problem (LMMP) is a special case
of (1)–(4) obtained by omitting constraint (2) and set-
ting c2 = � c1, d2 = � d1. It is often written compactly
without the subscripts as

min
x2X

max
y2Y
fcx C dy : Ax C By D bg (5)

or equivalently as

min
x2X

�
cx C max

y2S(x)
dy
�
; (6)

where S(x) = {y 2 Y : By � b � Ax}. Several restrictive
versions of (5) where, for example, X and Y are polyhe-
dral sets and Ax + By� b is absent, as well as related op-
timality conditions are discussed in [8]. Although im-
portant in its own right, the LMMP plays a key role in
determining the computational complexity of the linear
BLPP. This is shown presently.

Consider now the inner maximization problem in
(6) with Y = {y = 0}. Its dual is: min{u>(b�Ax): u 2U},
where u is a q-dimensional decision vector and U = {u :
u>B � d, u � 0}. Note that the dual objective function
is parameterized with respect to the vector x. Replacing
the inner maximization problem with its dual leads to
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a second representation of (5):

min
x2X;u2U

(cx � u>Ax C u>b); (7)

which is known as a disjoint bilinear programming
problem. The theoretical properties of (7) along with its
relationship to other optimization problems are high-
lighted in [1].

A more general version of a bilinear programming
problem can be obtained directly from the linear BLPP.
To see this, it is necessary to examine the Kuhn–Tucker
formulation of the latter given by (6)–(11) in � Bilevel
linear programming. Placing the complementarity con-
straint in the objective function as a penalty term gives
the following bilinear programming problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min c1x C d1y
CM[u>(b2 � A2x � B2y)C v> y];

s.t. A1x C B1y � b1;
u>B2 � v> D �d2;
A2x C B2y � b2;
x � 0; y � 0; u � 0; v � 0;

(8)

where M is a sufficiently large constant. In [10] it is
shown that a finiteM exists for the solution of (8) to be
a solution of (1)–(4), and that (8) is a concave program;
that is, its objective function is concave. This point is
further elaborated in the next section.

Complexity of the Linear BLPP Problem

(1)–(4) can be classified as NP-hard which loosely
means that no polynomial time algorithm exists for solv-
ing it unless P = NP. To substantiate this claim, it is
necessary to demonstrate that through a polynomial
transformation, some known NP-hard problem can be
reduced to a linear BLPP. This will be done below con-
structively by showing that the problem of minimizing
a strictly concave quadratic function over a polyhedron
(see [5]) is equivalent to solving a linear minmax prob-
lem (cf. [4]). For an alternative proof based on satisfia-
bility arguments from computer science see [7].

Theorem 1 The linear minmax problem is NP-hard.

To begin, let x be an n-dimensional vector of decision
variables, and c 2 Rn, b 2 Rq, A 2 Rq × n, D 2 Rn × n be

constant arrays. For A of full row rank and D positive
definite, it will be shown that the following minimiza-
tion problem can be transformed into a LMMP:

8<
:
�� D min

x
cx � 1

2 x
>Dx;

s.t. Ax � b;
(9)

where it is assumed that the feasible region in (9) is
bounded and contains all nonnegativity constraints on
the variables. The core argument centers on the fact that
the Kuhn–Tucker conditions associated with the con-
cave program (9) must necessarily be satisfied at opti-
mality. These conditions may be stated as follows:

Ax � b; (10)

x>D � u>A D c; (11)

u>(b � Ax) D 0; (12)

u � 0; (13)

where u is a q-dimensional vector of dual variables.
Now, multiplying (11) on the right by x/2, adding cx/2
to both sides of the equation, and rearranging gives

1
2
(cx � u>Ax) D cx �

1
2
x>Dx: (14)

From (12) we observe that u> b = u> Ax, so (14) be-
comes

1
2
(cx � u>b) D cx �

1
2
x>Dx: (15)

Replacing the objective function in (9) with the left-
hand side of (15), and appending the Kuhn–Tucker
conditions to (9) results in

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

�� D min
x;u

cx � u>b;

s.t. Ax � b;
x>D � u>A D c;
u>(b � Ax) D 0;
u � 0;

(16)

which is an alternative representation of (9). Thus
a quadratic objective function in (9) has been traded for
a complementarity constraint in (16).

Turning attention to this term, let z be a q-dimen-
sional nonnegative vector and note that u> (b � Ax)
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can be replaced by zi = min[ui, (b � Ax)i], i = 1, . . . , m,
where (b� Ax)i is the ith component of b� Ax, as long
as
P

i zi = 0. The aim is to show that the following linear
minmax problem is equivalent to (16):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

�0 D min
x;u

cx � u>bC
qX

iD1

Mzi ;

s.t. Ax � b;
x>D � u>A D cu � 0;

max
z

qX
iD1

Mzi ;

s.t. zi � ui ; i D 1; : : : ; q;
zi � (b � Ax)i ; i D 1; : : : ; q;
zi � 0; i D 1; : : : ; q;

(17)

where M in the objective functions of problem (17) is
a sufficiently large constant whose value must be deter-
mined.

Before proceeding, observe that an optimal solution
to (16), call it (x�, u�), is feasible to (17) and yields the
same value for the first objective function in (17). This
follows because

P
i z�i = 0, where z�i = z�i (x�, u�). It

must now be shown that (x�, u�, z�) also solves (17).
Assume the contrary; i. e., there exists a vector (x0, u0,
z0) in the inducible region of (17) such that �0 < �� andP

i z0i > 0. (Of course, if
P

i z0i = 0 and �0 < �� this
would contradict the optimality of (x�, u�).)

To exhibit a contradiction an appropriate value of
M is needed. Accordingly, let S be the polyhedron de-
fined by all the constraints in (17) and let

�C D min
˚
cx � u>b : (x; u; z) 2 S

�
: (18)

Evidently, because S is compact, �+ in (18) is finite.
Compactness follows from the assumption that {x: Ax
� b} is bounded, and the fact that A has full row rank
which implies that u is bounded in the second con-
straint in (17). Now define:

M >
�� � �CP

i z
0
i � �

� 0;

where � is any value in (0,
P

i z0i ). This leads to the fol-
lowing series of inequalities:

�0 D cx0 � b>u0 CM
X
i

z0i < cx� � b>u� D ��

or

(cx� � b>u�) � (cx0 � b>u0) > M
X
i

z0i : (19)

But from the definition ofM along with (19), one has

M
X
i

z0i �M� > �� � �C

� (cx� � b>u�) � (cx0 � b>u0) > M
X
i

z0i

which implies that the open interval (0,
P

i z0i ) does not
exist so

P
i z0i = 0, the desired contradiction.

Similar arguments can be used to show the reverse;
therefore, if (x�, u�) solves (16), it also solves (17) and
vice versa. Finally, note that the transformation from
(9) to (17) is polynomial because it only involves the ad-
dition of 2q variables and 2q + n constraints to the for-
mulation. The statement of the theorem follows from
these developments. A straightforward corollary is that
the linear BLPP is NP-hard.

In describing the size of a problem instance, I, it is
common to reference two variables:
1) its Length[I], which is an integer corresponding to

the number of symbols required to describe I under
some reasonable encoding scheme, and

2) its Max[I], also an integer, corresponding to the
magnitude of the largest number in I.

When a problem is said to be solvable in polynomial
time, it means that an algorithm exists that will return
an optimal solution in an amount of time that is a poly-
nomial function of the Length[I]. A closely related con-
cept is that of a pseudopolynomial time algorithmwhose
time complexity is bounded above by a polynomial
function of the two variables Length[I] and Max[I].
By definition, any polynomial time algorithm is also
a pseudopolynomial time algorithm because it runs in
time bounded by a polynomial in Length[I]. The re-
verse is not true.

The theory of NP-completeness states that NP-hard
problems are not solvable with polynomial time algo-
rithms unless P = NP; however, a certain subclass may
be solvable with pseudopolynomial time algorithms.
Problems that do not yield to pseudopolynomial time
algorithms are classified as NP-hard in the strong sense.
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The linear BLPP falls into this category. The proof in
[6], once again, is actually a corollary to the following
theorem.

Theorem2 The linear minmax problem is strongly NP-
hard.

The proof is based on the notion of a kernel K of a graph
G = (V, E) which is a vertex set that is stable (no two
vertices of K are adjacent) and absorbing (any vertex
not in K is adjacent to a vertex of K). It is shown that
the strongly NP-hard problem of determining whether
or notG has a kernel (see [5]) is equivalent to determin-
ing whether or not a particular LMMP has an optimal
objective function value of zero.
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Production systems typically involve significant uncer-
tainty in their operation due to either external or inter-
nal resources. Variability of process parameters during
operation and plant model mismatch (both paramet-
ric and structural) could give rise to suboptimality and
even infeasibility of the deterministic solutions. Conse-
quently, plant flexibility has been recognized to repre-
sent one of the important components in the operabil-
ity of the production processes.

In a broad sense the area covers
� a feasibility test that requires constraint satisfaction

over a specified space of uncertain parameters;
� a flexibility index associated with a given design that

represents a quantitative measure of the range of un-
certainty space that satisfies the feasibility require-
ment; and

� the integration of design and operations where
trade-offs between design cost and plant flexibility
are considered.

K.P. Halemane and I.E. Grossmann [21] proposed
a feasibility measure for a given design based on the
worst points for feasible operation, which can be math-
ematically formulated as a max-min-max optimization
problem as will be discussed in detail in the next section.

Different approaches exist in the literature that
quantify the flexibility for a given design involve the
deterministic measures such as the resilience index,
RI, proposed in [38], the flexibility index proposed in
[41,42] and the stochastic measures such as the design
reliability proposed in [27] and the stochastic flexibility
index proposed in [37] and [40].

The incorporation of uncertainty into design opti-
mization problems transforms the deterministic pro-
cess models to stochastic/parametric problems, the so-
lution of which requires the application of specialized
optimization techniques. The consideration of the fea-
sibility objective within the design optimization can
be targeted towards the following two design capa-
bilities. The first one concerns the design with fixed
degree of flexibility that has the capability to cope
with a finite number of different operating conditions
([19,20,32,34,40]). The second one considers the de-
sign optimization with optimal degree of flexibility that
can be achieved by the trade-off of the cost of the plant
and its flexibility ([22,33,35,36]). In the next section the
feasibility test and the flexibility index problem will be
considered in detail.

Problem Statement

The design problem can be described by a set of equality
constraints I and inequality constraints J, representing
plant operation and design specifications:

hi(d; z; x; �) D 0; i 2 I;

g j(d; z; x; �) � 0; j 2 J;
(1)

where d corresponds to the vector of design variables,
z the vector of control variables, x the state variables
and � the vector of uncertain parameters. As has been
shown in [21] for a specific design d, given this set of
constraints, the design feasibility test problem can be
formulated as the max-min-max problem:

�(d)

D max

2T

min
z

max
j2J;
i2I

�
hi(d; z; x; �) D 0;
g j(d; z; x; �) � 0

	
;

(2)

where the function �(d) represents a feasibility mea-
sure for design d. If �(d) � 0, design d is feasible for
all � 2 T, whereas if �(d) > 0, the design cannot operate
for at least some values of � 2 T. The above max-min-
max problem defines a nondifferentiable global opti-
mization problem which however can be reformulated
as the following two-level optimization problem:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

�(d) D max

2T

 (d; �)

s.t.  (d; �) � 0
 (d; �) D min

z;u
u

s.t. hi(d; z; x; �) D 0; i 2 I;
g j(d; z; x; �) � u; j 2 J;

(3)

where the function  (d, �) = 0 defines the boundary of
the feasible region in the space of the uncertain param-
eters � .

Plant feasibility can be quantified by determining
the flexibility index of the design. Following the defini-
tion of flexibility index as proposed in [41], this metric
expresses the largest scaled deviation ı of any expected
deviations � �+,� ��, that the design can handle. The
mathematical formulation for the evaluation of design’s
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flexibility is the following:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

F D max ı
s.t. �(d)

D max

2T

min
z

max
j2J;
i2I

(
hi (d; z; x; �) D 0;
g j(d; z; x; �) � 0

)
;

T(ı) D

(
� :

�N � ı	�� � �

� �N C ı	�C

)
;

ı � 0:
(4)

The design flexibility index problem can be refor-
mulated to represent the determination of the largest
hyperrectangle that can be inscribed within the feasible
region of the design [41]. Following this idea, the math-
ematical formulation of the flexibility problem has the
following form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

F D min ı
s.t.  (d; �) D 0;

 (d; �) D min
z

u;

hi(d; z; x; �) D 0; i 2 I;
g j(d; z; x; �) � u; j 2 J;

T(ı) D

(
� :

�N � ı	�� � �

� �N � ı	�C

)
;

ı � 0:

(5)

Local Optimization Framework

For the case where the constraints are jointly 1-D quasi-
convex in � and quasiconvex in z it was proven [41] that
the point � c that defines the solution to (3) lies at one
of the vertices of the parameter set T. Based on this as-
sumption, the critical uncertain parameter points cor-
respond to the vertices and the feasibility test problem
is reformulated in the following manner:

�(d) D max
k2V

 (d; � k ); (6)

where  (d, �k) is the evaluation of the function  (d,
�) at the parameter vertex �k and V is the index set for
the 2np vertices for the np uncertain parameters � . In
a similar fashion for the flexibility index, problem (4) is
reformulated in the following way:

F D min
k2V

ık ; (7)

where ık is the maximum deviation along each vertex
direction � �k, k 2 V , and is determined by the follow-
ing problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ık D max
ı;z

ı

s.t. g j(d; z; x; �) � 0; j 2 J;
hi(d; z; x; �) D 0; i 2 I;
� D �N C	� k ;

ı � 0:

(8)

Based on the above problem reformulations, a direct
search method was proposed [21] that explicitly enu-
merate all the parameter set vertices. To avoid the
explicit vertex enumeration, proposed two algorithms
were proposed [41,42]: a heuristic vertex search and an
implicit enumeration scheme. These algorithms how-
ever, rely on the assumption that the critical points cor-
respond to the vertices of the parameter set T which is
valid only for the type of constraints assumed above.
To circumvent this limitation, a solution approach was
proposed based on the following ideas [18]:
a) They replace the inner optimization problem:

8̂
<̂
ˆ̂:

 (d; �) D min
z;u

u

hi(d; z; x; �) D 0; 8i 2 I;
g j(d; z; x; �) � u; 8 j 2 J;

by the Karush–Kuhn–Tucker optimality conditions
(KKT):

X
j2J

� j D 1;

X
j2J

� j
@g j
@z
C
X
i2I

�i
@hi

@z
D 0;

X
j2J

� j
@g j
@x
C
X
i2I

�i
@hi

@x
D 0;

� j s j D 0; j 2 J;

s j D u � g j(d; z; x; �); j 2 J;

� j; s j � 0; j 2 J;

where sj are the slack variables of constraints j, �j,
�i are the Lagrange multipliers for inequality and
equality constraints, respectively.

b) For the inner problem the following property holds
that if each square submatrix of dimension (nz ×
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nz), where nz is the number of control variables, of
the partial derivatives of the constraints gj, 8j 2 J
with respect to the control variables z is of full rank,
then the number of the active constraints is equal to
nz + 1.

c) They utilize the discrete nature of the selection of
the active constraints by introducing a set of binary
variables yj to express if constraint gj is active. In
particular:

� j � y j � 0; j 2 J;
s j � U(1 � y j) � 0; j 2 J;X
j2J

y j D nz C 1;

ı � 0;
y j D 0; 1; � j; s j � 0; j 2 J;

where U represents an upper bound to the slack
variables sj. Note that if yj = 1, then �j � 0, sj = 0
which indicates that the constraint j is active, on the
other hand if yj = 0, then �j = 0, sj � 0 which indi-
cates that the constraint j is inactive.

Based on these ideas, the feasibility test problem can be
reformulated in the following way:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

�(d) D max u
s.t. hi(d; z; x; �) D 0;

g j(d; z; x; �)C s j � u D 0;X
j2J

� j D 1;

X
j2J

� j
@g j
@z
C
X
i2I

�i
@hi

@z
D 0;

X
j2J

� j
@g j
@x
C
X
i2I

�i
@hi

@x
D 0;

� j � y j � 0; j 2 J;
s j � U(1 � y j) � 0; j 2 J;X
j2J

y j D nz ;C1

� L � � � �U ;

ı � 0;
y j D 0; 1; � j; s j � 0; j 2 J;

which corresponds to a mixed integer optimization
problem either linear or nonlinear depending on the na-

ture of the constraints. In a similar way the flexibility
index problem takes the following form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

F D min ı

s.t. hi(d; z; x; �) D 0;

g j(d; z; x; �)C s j � u D 0;

u D 0;X
j2J

� j D 1;

X
j2J

� j
@g j
@z
C
X
i2I

�i
@hi

@z
D 0;

X
j2J

� j
@g j
@x
C
X
i2I

�i
@hi

@x
D 0;

� j � y j � 0; j 2 J;

s j � U(1 � y j) � 0; j 2 J;X
j2J

y j D nz C 1;

� L � � � �U ;

ı � 0;

y j D 0; 1; � j; s j � 0; j 2 J:

Grossmann and C.A. Floudas [18] proposed the active
set strategy for the solution of the above reformulated
problems based on the property that for any combina-
tion of nz + 1 binary variables that is selected (i. e., for
a given set of active constraints), all the other variables
can be determined as a function of � . They proposed
a procedure of systematically identifying the potential
candidates for the active sets based on the signs of the
gradients rzgj(d, z, x, �). The algorithm for the feasi-
bility test problem involves the following steps:
a) For every potential active set determine the value uk,

k = 1, . . . , nAS, through the solution of the following
nonlinear programming problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

uk D max u

s.t. hi(d; z; x; �) D 0;

g j(d; z; x; �) � u D 0; j 2 AS(k);

� L � � � �U ;

ı � 0;

y j D 0; 1; � j; s j � 0; j 2 J;
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or if the active set AS(k) involves lower and upper
bound constraints uk is given by:

uk D
1
˛k

0
@ X

j(l )2AS(k)

aj(l ) �
X

j(u)2AS(k)

b j(u)

1
A ;

where j(l), j(u) are the indices that correspond to
those pairs of constraints representing the lower and
upper bounds on the same function, and ˛k is the
total number of this type of constraints.

b) The solution for the feasibility test problem is given
by:

�(d) D max
k2AS(k)

uk :

A similar algorithm was proposed for the solution
of the flexibility index problem. Under the conditions
that the functions  (d, �) are quasiconcave in z and �
and strictly quasiconvex in z for fixed � , the approach
guarantees global optimality.

For the linear case where the feasibility function
problem has the following form:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

 (d; �) D min
z;u

u

f j(d; z; �) D
D ˇ1 jd C ˇ2 j(�)z � b2 j(�) � u;
8 j 2 J;

where f j are the inequality constraints after the elimi-
nation of the state variables. For this case, analytical ex-
pressions have been derived [32,33] the function  k(d,
�) for a given active set k:

 k (d; �) D
X

j2JkAS

�k
j (ˇ1 jd C ˇ2 j(�)z � b2 j(�)):

A branch and bound approach based on the eval-
uation of upper and lower bounds of function �(d)
was proposed in [30]. Although the suggested bounding
problems are simpler than the original feasibility test
problem they correspond to bilevel optimization prob-
lems where global optimality cannot be guaranteed us-
ing local optimization methods, (see [29]).

Design Optimization

Asmentioned above, the incorporation of the feasibility
objectives within the design optimization framework

can be targeted towards the design with fixed degree
of flexibility that is able to accommodate a finite num-
ber of changing operational conditions and the design
with optimal degree of flexibility determined by proper
balance of economic optimality and plant feasibility.
The design optimization for fixed degree of flexibility
was considered in [20], which presents a general for-
mulation for designing multipurpose plants consider-
ing a deterministic multiperiod model of the following
form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min C0(d)C
NX
iD1

Ci (d; zi ; xi ; t i)

s.t. hi(d; zi ; xi ; t i) D 0;

gi(d; zi ; xi ; t i) � 0;

r(d; z1; : : : ; zN ; x1; : : : ; xN ;

t1; : : : ; tN) � 0;

where d is the vector of design variables; zi is the vector
of control variables in period i; xi is the vector of state
variables in period i; ti is the length of time for period i;
hi is the vector of equalities for period i; gi is the vector
of inequalities for period i; r is the vector of inequali-
ties that involve variables of all periods; N is the num-
ber of periods where different operating conditions are
considered. This problem formulation exhibits a block
diagonal structure which has been exploited for compu-
tational efficiency. See [19] for the projection-restriction
strategy, which is an iterative scheme between eco-
nomic optimization and design feasibility. Based of the
flexibility analysis and the assumption that the critical
points lie on the vertices of the uncertain parameter set
T, Halemane and Grossmann [21] proposed an itera-
tive algorithm to solve the problem of design consider-
ing specific range of uncertainty. See [31], for a nested
solution procedure combining generalized Benders de-
composition and outer approximation algorithms to ad-
dress the problem of multiperiod design of heat inte-
grated distillation sequences. See [44] for an outer ap-
proximation based decomposition method for the solu-
tion of multiperiod design problems.

For design optimization with optimal degree of flex-
ibility, E.N. Pistikopoulos and Grossmann proposed
[33] an iterative scheme in order to construct the trade-
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off curves relating retrofit cost and expected revenue
to flexibility. In their later work, [34,35], they extend
their approach to nonlinear systems. Briefly, their iter-
ative scheme consists of two phases: first the trade-off
curve of retrofit cost and flexibility is determined, from
this curve a number of designs are obtained for which
at the second phase the expected revenue is evaluated
by employing amodified Cartesian integration method.
See [40], for a solution method based on generalized
decomposition for the maximization of the plant flex-
ibility subject to cost constraint. Recently (1996), a de-
composition based approach for the simultaneous opti-
mization of design economics and plant feasibility was
proposed [22]. The main ideas of the proposed ap-
proach are:
� the utilization of a modified Benders decomposition

scheme where the design variables correspond to the
complicating variables;

� the use of a numerical integration formula for the
approximation of the multiple integral of expected
revenue; and

� the determination of the unknown integration
points as part of the optimization procedure
through the solution of a series of feasibility sub-
problems.

The same approach has been employed for the solution
of planning and capacity expansion problems, [24], for
the design of batch plants where additional properties
simplified the solution procedure, [25]. The limitation
of the later approach however, is that it cannot guaran-
tee global optimality for the general case.

Bilevel Optimization

It should be noted that the feasibility test problem and
the flexibility index problem correspond to bilevel op-
timization problems where the inner level consists of
the evaluation of the function  (d, �) that defines the
boundary of the feasible region. Approaches that exist
in the literature to deal with the solution of the bilevel
optimization problem for the linear case involve the
enumeration techniques that based on the fact that the
solution must occur at an extreme point of the feasi-
ble set as the methods proposed in [13,14], and [12],
reformulation techniques based on the transformation
of the original problem to a single optimization prob-
lem by employing the optimality KKT conditions of the

inner level problem as the methods proposed in [11],
based on branch and bound principles [17], based on
mixed integer programming [26], based on paramet-
ric complementarity pivoting [8], based on local opti-
mization approaches for nonlinear programming such
as penalty and barrier function methods, and global op-
timization techniques based on the reformulation of
the complementarity slackness constraint to a separa-
ble quadratic reverse convex inequality constraint ([6]),
or the restatement of the original problem as a reverse
convex program ([43]). Recently (1996), [45], a global
optimization framework was proposed based on the re-
formulation of the bilevel linear problem utilizing the
KKT optimality conditions of the inner level and the
primal-dual global optimization approach proposed in
[15,16].

For the nonlinear case, local optimization tech-
niques has been proposed based on the one-dimen-
sional search algorithm [10], and penalty function
methods as the approach proposed in [5]. Recently
(1998) a general global optimization approach was
proposed [23] for the solution of the feasibility test
and flexibility index problem based on a utilization of
a branch and bound framework and the ideas of the de-
terministic global optimization algorithm ˛BB, [1,3,4,9].
Although the proposed approach was applied to de-
sign feasibility/flexibility problems, it can be extended
to general nonlinear bilevel problems. In the next sec-
tion the main ideas and basic steps of the later approach
for the solution of the feasibility test and flexibility in-
dex problems.

Global Optimization Framework

The basic idea of the proposed framework that leads
to the determination of the global optimal solution for
both the feasibility test and the flexibility index prob-
lem is to generate a relaxation/enlargement of the fea-
sible region based on the convexification of the original
problem constraints. Since the enlarged feasible region
involves more feasible points than the original feasible
region, the resulting feasibility test and flexibility index
problem will provide lower bounds to the global solu-
tions. Based on this relaxation idea, the proposed ap-
proach involves the following key steps:
a) Since the constraints gj(d, z, x, �), hi(d, z, x, �)

are nonconvex functions, the Karush–Kuhn–Tucker
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optimality conditions (KKT) of the inner problem
that correspond to the optimization of the  (d, �)
function, are not necessary and sufficient to guaran-
tee global optimality of the feasibility test and the
flexibility index problems. Hence, the first step of
the proposed framework involves the convexifica-
tion of the constraints gj(d, z, x, �), hi(d, z, x, �)
of the original problem. For the convexified prob-
lem and assuming that the constraint qualification
holds, the KKT optimality conditions are necessary
and sufficient, [18], and therefore we maintain the
equivalence of the transformed single stage opti-
mization problem. The solution of the single stage
problem provides a lower bound of the design flex-
ibility function �(d) and the flexibility index of the
design, F.

b) An upper bound to the design flexibility function
�(d) and flexibility index F is determined through
a feasible solution of the original MINLP formula-
tion obtained by substituting the inner problem by
the KKT optimality conditions.

c) The next step after establishing an upper and a lower
bound on the global solution, is to refine them. This
is accomplished by successfully partitioning the ini-
tial region of the uncertain and control variables
into smaller ones. The partitioning strategy involves
the successive subdivision of a hyperrectangle into
two subrectangles by halving on the middle point of
the longest side of the initial rectangle (bisection).
In each iteration the lower bound of the feasibility
test and the flexibility index problem is the mini-
mum over all the minima found in every subrectan-
gle composing the initial rectangle. Consequently,
a nondecreasing sequence of lower bounds is gen-
erated by halving the subrectangle that is respon-
sible for the infimum over the minima obtained at
each iteration. An nonincreasing sequence of upper
bounds is derived by solving the nonconvex MINLP
single optimization problem obtained after the sub-
stitution of the inner problem by the KKT opti-
mality conditions, and selecting as an upper bound
the minimum over all previously determined upper
bounds. If at any iteration the solution of the con-
vexified MINLP in any subrectangle is found to be
greater than the upper bound, this subrectangle is
fathomed since the global solution cannot be found
inside it.

Feasibility Test

The procedure for the global optimization of the design
feasibility problem involves the following steps:
1) Consider the whole uncertainty space. Set the lower

bound LB = �1, K = 1 and select a tolerance �.
2) Evaluate the valid underestimators of the original

constraints gj(d, z, x, �), hi(d, z, x, �) utilizing the
basic principles of the deterministic global opti-
mization algorithm ˛BB, [1,3,4,9].

3) Considering the convexified constraints substitute
the inner optimization problem by the necessary
and sufficient KKT optimality conditions.

4) Solve the resultingMINLP formulation to global op-
timality using the deterministic global optimization
algorithm SMIN-˛BB, or GMIN-˛BB, [2]. If the ob-
tained solution is greater than the current LB, up-
date the LB.

5) Substitute the inner optimization problem of the
original problem (i. e., without convexifying the
constraints) Solve the resulting problem using
a local MINLP optimizer (e. g. DICOPT, [46],
MINOPT, [39]). Set the upper bound UB equal to
the obtained solution.

6) Check for convergence. If UB� LB� �, STOP, oth-
erwise continue to step 7).

7) Apply one of the branching criteria to partition the
initial domain into two subdomains to be consid-
ered at the next iteration. Once the branching vari-
able is selected the subdivision is performed by halv-
ing on themiddle point of the longest side of the ini-
tial rectangle (bisection). The selection of a branch-
ing variable can bemade following different branch-
ing rules. Since the aim of the branching step is the
generation of problems with tighter lower bounds,
the control variables, u, that participate in noncon-
vex terms and the uncertain parameters, � , are in-
volved in the set of candidate branching variables.
The control variable or uncertain parameter that
is selected for branching, correspond to the least-
reduced axis, that is, the largest

ri D
xUi � xLi
xUi;0 � xLi;0

:

Note, that alternative branching strategies may be
applied as described in [1,3].
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Flexibility Index

The procedure for the global optimization of the flexi-
bility index problem (5), involves the following steps:
1) Consider the whole uncertainty space. Set the lower

bound LB = � 2, K = 1 and select a tolerance �.
2) Substitute the inner optimization problem by the

KKT optimality conditions and construct the fol-
lowing single stage MINLP optimization problem.
Solve the resulting problem using a local MINLP
optimizer (e. g., DICOPT, [46], MINOPT, [39]). Set
the upper bound UB equal to the obtained solution.

3) Determine the valid underestimators of the origi-
nal constraints gj(d, z, x, �), hi(d, z, x, �) utilizing
the basic principles of the deterministic global opti-
mization algorithm ˛BB, [1,3,4,9].

4) Considering the convexified constraints substitute
the inner optimization problem by the necessary
and sufficient KKT optimality conditions.

5) Solve the resultingMINLP formulation to global op-
timality using the deterministic global optimization
algorithm SMIN-˛BB, or GMIN-˛BB, [2]. If the ob-
tained solution is greater than the current LB, up-
date the LB.

6) Check for convergence. If UB � LB� �, STOP, oth-
erwise continue to step 7).

7) Apply one of the branching criteria to partition the
initial domain into two subrectangles to be consid-
ered at the next iteration.

Illustrative Example

In this section an example of a heat exchanger network
is considered to illustrate the steps of the approaches
presented in the previous sections for the feasibility test
and flexibility index problems.

The heat exchanger network given in [18] is con-
sidered here as shown in Fig. 1. The uncertain pa-
rameter is the heat flowrate of stream H1 which has
a nominal value of 1kW/K and an expected deviation
of +0.8kW/K. The following inequalities determine the
feasible operation of this network as they formulated af-
ter the elimination of the state variables:

f1 D �25FH1 C Qc � 0:5QcFH1 C 10 � 0;

f2 D �190FH1 C Qc C 10 � 0;

f3 D �270FH1 C Qc C 250 � 0;

f4 D 260FH1 � Qc � 250 � 0:

Bilevel Optimization: Feasibility Test and Flexibility Index,
Figure 1
Heat exchanger network

Bilevel Optimization: Feasibility Test and Flexibility Index,
Figure 2
Feasible region

The feasible region of the network is illustrated in
Fig. 2. Note that the feasible region consists of the two
disconnected domains which are highlighted in black.

First the feasibility test problem is solved. Con-
straint f 1 corresponds to the only nonconvex con-
straint involving the bilinear term QcFH1. By introduc-
ing a new variable w for the bilinear term QcFH1 and
introducing the four linear inequality constraints (f 5–
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f 8) that define its convex envelope, [4,7,28], we have:

f1 D �25FH1 C Qc � 0:5w C 10 � 0;

f2 D �190FH1 C Qc C 10 � 0;

f3 D �270FH1 C Qc C 250 � 0;
f4 D 260FH1 � Qc � 250 � 0;

f5 D 10FH1 C Qc � w � 10 � 0;

f6 D 236FH1 C 1:8Qc � w � 424:8 � 0;

f7 D �10FH1 � 1:8Qc C w C 18 � 0;

f8 D �236FH1 � Qc C w C 236 � 0:

Considering this set of linear constraints and sub-
stituting the inner optimization problem of the feasi-
bility test problem by the necessary and sufficient KKT
optimality conditions the following MILP optimization
formulation is obtained:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

�(d) D max u
s.t. f1 D �25FH1 C Qc

C10 � 0:5w C s1 D u;
f2 D �190FH1 C 10C Qc C s2 D u;
f3 D �270FH1 C 250C Qc C s3 D u
f4 D 260FH1 � 250 � Qc C s4 D u;
f5 D 10FH1 C Qc � w � 10C s5 D u;
f6 D 236FH1 C 1:8Qc

�w � 424:8C s6 D u;
f7 D �10FH1 � 1:8Qc

Cw C 18C s7 D u;
f8 D �236FH1 � Qc

Cw C 236C s8 � u D u;
8X

jD1

� j D 1;

�1 C �2 C �3 � �4 C �5

C1:8�6 � 1:8�7 � �8 D 0;
�0:5�1 � �5 � �6 C �7 C �8 D 0;
� j � y j � 0; j D 1; : : : ; 8;
s j � U(1 � y j) � 0; j D 1; : : : ; 8;
8X

jD1

y j D 3;

FN
H1 � ı	F�H1 � FH1 � FN

H1 C ı	FCH1;

ı � 0;
y j D 0; 1; � j; s j � 0; j D 1; : : : ; 8:

Note that due to the introduction of an additional con-
trol variable w, the number of active constraints is in-
creased to three. The solution of the above MILP op-
timization using GAMS/CPLEX is found to be equal
to 0. Since this value corresponds to the lower bound
of network feasibility �(d), this result suggests that the
network is not feasible within the whole range of uncer-
tainty, FH1 2 (1, 1.8), and no further steps are required.

The plant flexibility is then determined. First the in-
ner feasibility problem is substituted by the KKT op-
timality conditions. The resulting nonconvex MINLP
problem is solved using the local MINLP solver
MINOPT, [39]. The solution provides an upper bound
of the heat exchanger network flexibility index of 0.148,

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

F D min ı
s.t. f1 D �25FH1 C Qc

C10 � 0:5QcFH1 C s1 D 0;
f2 D �190FH1 C 10C Qc C s2 D 0;
f3 D �270FH1 C 250C Qc C s3 D 0;
f4 D 260FH1 � 250 � Qc C s4 D 0;
4X

jD1

� j D 1;

�0:5FH1�1 C �2 C �3 � �4 D 0;
� j � y j � 0; j D 1; : : : ; 4;
s j � U(1 � y j) � 0; j D 1; : : : ; 4;
4X

jD1

y j D 2;

FN
H1 � ı	F�H1 � FH1 � FN

H1 C ı	FCH1;

ı � 0;
y j D 0; 1; � j; s j � 0; j D 1; : : : ; 4:

Note that this formulation corresponds to a nonconvex
MINLP due to the bilinear term (Qc FH1) in constraint
f 1 and the bilinear term (FH1�1) in the gradient KKT
constraint.

In step 3), the original constraints are convexified
using the ˛BB resulting in the set of linear constraints
f 1, . . . , f 8 as presented above in the solution of the feasi-
bility test problem. In step 4), the KKT optimality con-
ditions are written considering the new set of linear
constraints leading to the formulation of the following
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MILP problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
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ˆ̂̂̂
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ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

F D min ı
s.t. f1 D �25FH1 C Qc

C10 � 0:5w C s1 D 0;
f2 D �190FH1 C 10C Qc C s2 D 0;
f3 D �270FH1 C 250C Qc C s3 D 0;
f4 D 260FH1 � 250 � Qc C s4 D 0;
f5 D 10FH1 C Qc � w � 10C s5 D 0;
f6 D 236FH1 C 1:8Qc

�w � 424:8C s6 D 0;
f7 D �10FH1 � 1:8Qc

Cw C 18C s7 D 0;
f8 D �236FH1 � Qc C w C 236C s8 D 0;
8X

jD1

� j D 1;

�1 C �2 C �3 � �4 C �5

C1:8�6 � 1:8�7 � �8 D 0;
�0:5�1 � �5 � �6 C �7 C �8 D 0;
� j � y j � 0; j D 1; : : : ; 8;
s j � U(1 � y j) � 0; j D 1; : : : ; 8
8X

jD1

y j D 3;

FN
H1 � ı	F�H1 � FH1 � FN

H1 C ı	FCH1;

ı � 0;
y j D 0; 1; � j; s j � 0; j D 1; : : : ; 8:

The solution of this MILP problem using
GAMS/CPLEX results in the network flexibility of 0.06
that provides a valid lower bound to the flexibility index
problem. Hence, at the end of the first iteration we have
an upper bound of 0.148 and a lower bound of 0.06 for
the flexibility index problem. In step 7), since only one
control variable is involved in the description of the
problem, this corresponds to the branching variable
resulting in the following subrectangles to be consid-
ered at the next iteration: subrectangle 1 described by
10 � Qc � 123 and subrectangle 1 described by 123
� Qc � 236. Steps 2) through 6) are then performed
for each one of these subrectangles. For subrectangle
1, the resulting upper bounding MINLP gives a value

of 0.148 the same as the lower bounding MILP in this
region. Subrectangle 2, on the other hand results in
a lower bound of 0.8138 which is larger than the cur-
rent upper bound of 0.148 and consequently this region
is fathomed and convergence is achieved to the global
solution of network flexibility of 0.148.

Conclusions

The incorporation of uncertainty in the design stages
is recognized to be one of the most important problems
in the plant design analysis. Having efficient ways to test
future plant feasibility and furthermore to quantify the
capability of a plant to accommodate future variations
of the operability parameters could lead to more effi-
cient, economic and more flexible plants. Much of the
work that appear in the literature to address the above
problems was briefly presented in this paper. A general
global optimization framework proposed in [23], was
presented in more detail. Finally, an example problem
was included to illustrate the main ideas of this frame-
work.
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Let us consider a sequential game where the first player
(‘leader’) incorporates into his optimization process the
optimal reaction vector y of the second player (‘fol-
lower’) to the leader’s decision vector x. This situation
is described mathematically by the bilevel program

BLP

8̂
ˆ̂<
ˆ̂̂:

min
x;y

f (x; y)

s.t. (x; y) 2 X
y 2 argmin

y02Y(x)
g(x; y0);

where it is understood that the leader is requested to
select a vector x such that the parameterized set Y(x) is
nonempty.

This formulation is extremely general in that it sub-
sumes linear zero-one optimization, quadratic concave
programming, disjoint bilinear programming, nonlinear
complementarity, etc. If one denotes by y(x) the set of
optimal answers to a given leader vector x, the above
bilevel program can be recast as the ‘standard’ mathe-
matical program
8̂
<̂
ˆ̂:

min
x;y

f (x; y)

s.t. (x; y) 2 X
y 2 y(x):

The induced region of a bilevel program is defined as
the feasible set of the above program. This set is usu-
ally nonconvex andmight be disconnected. It is implicit
that, whenever y(x) is not a singleton, the leader is free
to select that element y 2 y(x) that suits him best. This
interpretation is legitimate in the case where side pay-
ments are allowed, i. e., the leader can bias the follower’s
objective in his favor. On the other hand, the behavior
of a risk-averse leader which seeks to minimize, over the
feasible set X, the objective

max
y2y(x)

f (x; y):

has been considered in [4].
The algorithmic difficulty of bilevel programming

stems mainly from the fact that the set y(x) is ill-
behaved, and usually not available in closed form. To
gain some insight into this difficulty, let us consider the
‘simple’ situation where f , g are affine, the constraint
(x, y) 2 X is absent and Y(x) = {y: Ax + By � b} is
a convex polyhedron. It is easy to show that, as in lin-
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ear programming, bounded and feasible linear bilevel
programs admit extremal solutions, hence the linear
BLP lies in the class NP of problems polynomially solv-
able by a nondeterministic algorithm. Unfortunately, as
shown in [2] and [3], the linear BLP is also stronglyNP-
hard. Moreover, its optimal solution(s) need not even
be efficient (‘Pareto optimal’). This is one of the features
that distinguish bilevel programming from bicriterion
optimization. Indeed consider the linear BLP illustrated
in the figure below, where the arrows denote the play-
ers’ respective steepest descent directions:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
x;y

1
2 x C y

s.t. y 2 argmin
y0
�y0

x C y0 � 1
x; y0 � 0:

The induced region of this problem reduces to the
dotted line segment of Fig. 1. Optimizing over this line
segment yields the solution (x, y) = (1, 0), which is
strictly dominated by all points inside the triangle T
with vertices (0, 1/2), (0, 0) and (1, 0). Since the set of
efficient points is the segment [(0, 0), (0, 1)], the only ra-
tional point that is also Pareto optimal is (0, 1), which is
actually the worst possible outcome for the leader. Note
that, in the case where the functions f , g are affine and
the sets X, Y(x) are polyhedral, the induced region is in
general a nonconvex piecewise linear variety that con-
tains several local minima.

Assume now that the following conditions are satis-
fied:
� Y(x) = {y: hi(x, y) � 0, 1 � i � n};
� the functions g and hi are continuously differen-

tiable and convex;
� the set Y(x) is regular for every x, i. e., some con-

straint qualification holds.
Then one can substitute for the follower’s program
its Kuhn–Tucker conditions, yielding the equivalent
single-level program

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
(x;y)2X

f (x; y)

s.t. ry g(x; y)C
P

1�i�n
�iry hi(x; y) D 0

�i hi(x; y) D 0; 1 � i � n;
�i � 0; 1 � i � n:

Bilevel Programming, Figure 1

The complementarity constraints make this single-level
problem difficult both theoretically (the constraint set is
almost never regular) and algorithmically.

A useful variant of BLP occurs when y(x) corre-
sponds to the solution of an equilibrium system pa-
rameterized in x. If this system is modeled by means
of a variational inequality, one obtains a generalized
Kuhn–Tucker formulation where the gradient ry g(x,
y) is replaced by a function F(x, y). (See [5].) In both
cases, the complementarity constraint can be incor-
porated in the leader’s objective as a penalty term MP

1� i� n �ihi(x, y), thus greatly simplifying the con-
straint set. (It even becomes polyhedral in the linear
case.) Under suitable assumptions, and for large but fi-
nite values of the penalty multiplier M, the penalized
problem is equivalent to the original bilevel problem.
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Bilevel programming (see � Bilevel programming: In-
troduction, history and overview; � Bilevel program-
ming) is ideally suited to model situations where the

decision maker does not have full control over all deci-
sion variables. Five such situations are described in this
article.

Example 1 The first example involves the improve-
ment of a road network through either capacity expan-
sion, traffic signals synchronization, vehicle guidance
systems, etc. While management may be assumed to
control the design variables, it can only affect indirectly
the travel choices of the network users. Let x denote
the design vector, y the flow vector, X the set of fea-
sible design variables and ci(x, y) the travel delay along
link i. One wishes to minimize over the set X the system
travel cost

P
i yi ci(x, y), where the vector y is required

to be an equilibrium traffic assignment corresponding
to the design vector x. Neglecting the latter equilibrium
requirement could lead to suboptimal policies. How-
ever, as shown in [5] for a continuous variant of the
network design problem, efficient heuristic procedures
can generate near-optimal solutions at a low computa-
tional cost. Indeed it is in the interest of both the man-
agement and the network users to minimize travel de-
lays, although the former is interested inminimizing to-
tal travel time, while the users optimize their own travel
time.

Example 2 Next consider the maximization of rev-
enues raised from tolls set on a transportation network.
If tolls are set too high, traffic on the corresponding
arcs will drop and revenues will be affected negatively.
Conversely, low toll values will generate low revenues.
One could strike the right balance by maximizing to-
tal revenue, subject to the network users y achieving an
equilibrium with respect to the toll vector x. In the case
where the network is uncongested, users are assigned to
shortest paths linking their respective origin and des-
tination. This yields the bilevel program with bilinear
objectives
8̂
<̂
ˆ̂:

max
x;y

P
i2I1

xi yi

s.t. y 2 argmin
y02Y

X
i2I1

(ci C xi )y0i C
X
i2I2

ci y0i ;

where I1 represents the set of toll arcs, I2 the set of toll-
free arcs, and Y the polyhedron of demand-feasible flow
vectors. In [4] it has been shown that this problem is
reducible to a linear bilevel program with an economic
interpretation in terms of ‘second-best’ choices, and can
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also be reformulated as a zero-one integer program with
few binary variables. Special cases are amenable to poly-
nomial algorithms.

Example 3 The third example is the Stackelberg–Nash–
Cournot equilibrium studied in [8] where the leader
firm maximizes its revenue x � p(x +

P
1� i� n yi)�c(x)

(p denotes the inverse demand function and c the leader
firm’s production cost), subject to the vector y being
a Cournot–Nash equilibrium with respect to the shifted
inverse demand function px(Q) = p(x + Q). This model
subsumes the situations of monopoly (n = 0) as well as
that of Stackelberg equilibrium (n = 1). It has been ex-
tended in [7] to the case of multiple leaders, but does
not fit any more the framework of bilevel program-
ming.

Example 4 A fourth example is provided by the energy
sector, which is characterized by an extensive use of
large scale techno-economic models describing specific
subsectors ormarkets: gas and electricity subsectors, in-
dustrial and residential markets, etc. In this respect, it
provides a rich source for bilevel models. A bilevel pro-
gram arises when a utility, in its strategic planning pro-
cess, takes explicitly into account the rational reaction
of its competitors or customers to its own investment
schedule. This approach has been applied to assess the
impact of new demand management technologies for
reducing power usage [3]. Another bilevel model arises
when a utility is legally bound to buy any energy sur-
plus from ‘qualified small producers’ at marginal cost.
For example, a study of the impact of cogeneration in
the pulp and paper industry on the electricity market
has been conducted in [2].

Example 5 Finally we mention that bilevel program-
ming subsumes the principal/agent paradigm of eco-
nomics (see [1]), where the principal (leader) subcon-
tracts a job to an agent (follower). The principal re-
wards the agent according to the quality of the final out-
come !, which may be random, while the agent maxi-
mizes its own objective, which is a function of the ef-
fort level y and the expected reward x(!(y)). The lower
the effort level y, the lower the (expected) quality !(y)
of the finished job. Assuming that the agent accepts to
perform the job only if his utility is larger than some

‘reservation level’ gmin, one derives the bilevel program:
8̂
ˆ̂̂<
ˆ̂̂̂
:

max
x(�);y

f (x(!(y)); !(y))

s.t. g(x(!(y)); y) � gmin

y 2 argmax
y02Y

g(x(!(y0)); y0);

where the leader’s decision variable x is a function de-
fined over the set Y of possible effort levels. Whenever
the set Y is not finite, this yields an infinite-dimensional
optimization problem. The situation becomes all the
more complex when the output ! is a random variable
of the agent’s effort y.
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Introduction

Bilevel programming problems (BLPP) are encoun-
tered when one optimization problem is embedded
within another one as a constraint. BLPPs arise in many
areas of engineering, where hierarchical decision mod-
els are often encountered. Almost all areas of engineer-
ing can provide some examples in which two decision

models interact and the outcome of one decision influ-
ences another; applications can be found in areas as di-
verse as traffic control and reactive distillation.

The general BLPP formulation is as follows:

Outer
optimization
problem

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x

F(x; y)

s.t. G(x; y) � 0

H(x; y) D 0

inner
optimiziation
problem

8̂
<̂
ˆ̂:

min
y

f (x; y)

s.t. g(x; y) � 0

h(x; y) D 0
x 2 X � <n1 ; y 2 Y � <n2

where

f ; F : <n1 �<n2 ! <;

g D [g1; ::; gJ] : <n1 � <n2 !<J ;

G D [G1; : : : ;GJ0] : <n1 �<n2 ! <J0 ;

h D [h1; : : : ; hI] : <n1 � <n2 ! <I;

H D [H1; : : : ;HI0 ] : <n1 �<n2 ! <I0 :

The outer optimization problem, which minimizes
F(x, y), is constrained by inequality constraints G,
equality constraints H, and the inner optimization
problem. This inner optimization minimizes its objec-
tive function by varying y, while subject to its own in-
ner constraints g and h. The inner variables y may also
appear in the outer constraints and objective function,
and the inner constraints and objective function may be
parameterized by x. Novel global optimization strate-
gies exist to solve the BLPP with twice continuously
differentiable nonconvex nonlinear [18] and mixed-
integer nonlinear constraints [19].

This article explores a diverse sampling of bilevel
programming including examples from civil engineer-
ing traffic management, chemical engineering process
design and metabolic engineering.

Bilevel Programming in TrafficManagement

As urban populations increase and cities expand, traffic
and its related problems effect the everyday life of all
commuters.
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Traffic problems follow the hierarchical structure of
BLPPs. Each individual commuter travels upon a net-
work of roads that is created and organized by a cen-
tral regulatory agency. This agency plans the layout
and carrying capacity of highways and streets, chooses
where to place on-off ramps that connect limited access
highways to local streets, decides where to install traffic
lights, and sets their signaling rate.

As the regulatory agency plans and manages this
network of roads, it must accommodate the traffic pat-
tern formed by the individual decisions of the thou-
sands of travelers who use the network each day. Dur-
ing each trip, each traveler takes a path that she believes
will minimize her travel time, based on previous expe-
rience and ongoing traffic reports. Beckmann et al. [2]
have shown that when this information is perfect and
all travelers have access to it, the cumulative effect is to
minimize the total time spent by all drivers on all roads
in the network:

min
�

X
a

Z va

o
ta(x)dx :

This behavior by the travelling public creates bilevel
programming problems in traffic management. When
a regulatory agency tries to set policies that minimize
gas consumption, the travel time of all drivers, or some
other objective, its options are constrained by the re-
sponse of the travelling public.

One application of BLPPs in traffic is signal opti-
mization, where the objective is to minimize travel time
or gasoline consumption by varying the length of green
lights and the cycle time of traffic lights [9]:

min
X
a

tavl (t; s)

s.t min
�

X
a

Z va

o
ta(x)dx :

In this problem, the outer objective sums over all
costs based on the signaling policies.

This bilevel programming problem is used to plan
road improvements, where central planning agency
minimizes the cost of construction and similar activi-
ties, subject to the inner optimization problem that pre-
dicts the behavior of traffic on the road [1,9,21]. It is also
used to optimize the flow of traffic onto limited access
highways. The outer problemminimizes the total travel

time of all travelers by optimizing traffic light lengths
and other controls at the on- and off-ramps of the high-
way, while the inner optimization problem predicts the
behavior of traffic on the road [24,25,26].

Bilevel Programming in Chemical Process Synthesis

Chemical process synthesis by optimization techniques
is a vast area that includes plant design, the synthesis
of reactor networks, separation systems, heat exchanger
networks, and utility plants, and the planning of batch
and multiperiod operations [3,10,11,12].

Inner Problems that Minimize the Gibbs Free En-
ergy Many chemical engineering design problems in-
volve distillation columns, liquid-liquid extractors and
decanters, and reactors; modeling these unit opera-
tions usually requires modeling the chemical equilibria
and phase equilibria (vapor-liquid equilibrium, liquid-
liquid equilibrium, and vapor-liquid-liquid equilib-
rium) occurring within them. When the number of
phases is known in advance, phase and chemical equi-
librium can be modeled with a set of algebraic equa-
tions. When, however, the number of phases is not
known a priori, these algebraic equations cannot be
used; in these problems, the number of phases, phase
equilibrium, and in some problems chemical equilib-
rium can be predicted by minimizing the Gibbs free en-
ergy.Maximizing the profit, minimizing the cost, or op-
timizing some other measure of a chemical process that
contains a unit operation with an unknown number of
phases is a bilevel programming problem:

max F(x; nik )

s.t G(x; nik) � 0

H(x; nik ) D 0

min
nik

X
i

X
k

nik�i k

s.t.
X
i k

ai j nik D b j; 8 j 2 E

nik � ı; i D 1; : : : ;NC; k D 1; : : : ;NP :

Here, the outer problem maximizes the profit F.
Design specifications are captured by inequality con-
straints G, while equality constraints H are the mass
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and energy balances. The inner optimization minimizes
the Gibbs free energy, equal to the summation of nik�ik,
the moles of species i and phase k multiplied by the
corresponding chemical potential. This inner problem
is constrained by mass balances assuring that the to-
tal number of atoms of element j is constant regard-
less of the phase or chemical distribution, and that the
total number of moles of species i in phase k is posi-
tive.

Clark and Westerberg [7,8] used this strategy to
optimize a reactor making aniline from nitrobenzene
and hydrogen. The reaction also produces water, which
may form a two-liquid phase mixture with nitroben-
zene and aniline, depending upon the relative amounts
of nitrobenzene, aniline, and water. The outer problem
optimized the reactor temperature and pressure, while
the inner problem found the simultaneous phase and
chemical equilibrium by minimizing the Gibbs Free
Energy.

Gümüş and Ciric [17] used bilevel programming to
optimize a reactive distillation column that produces
aniline from nitrobenzene and water. The outer prob-
lem minimizes cost by varying the number of trays, re-
flux and reboil ratios, and feed tray locations. A series
of inner optimization problems predict the phase and
chemical equilibrium in the condenser and on each tray
in the column.

Bilevel Programming and Simultaneous Design and
Control Bilevel programming has also been used to
integrate the design of a chemical process with the syn-
thesis of its control scheme [4]. The outer optimization
problem maximizes the annual profit D(z) minus the
cost of off-spec product formed during process upsets,
while an inner optimization problem simultaneously
predicts the amount of off-spec product formed during
process upsets and finds the settings of a model predic-
tive controller that minimize this amount. The model
is:

maxD(z)

� �
X
l

COP
l fz; p; ul (t); xl (t); yl (t); pc(t)g � CH

s.t f (z; p) D 0
h(z; p) D 0

g(z; p) � 0

gph:l (z; p; ul (t); xl (t); yl (t); pc(t)) � 0

min
nik

COl fz; p; ul (t); xl (t); yl (t); pc(t)g

s.t. ẋ D f (z; p; ul (t); xl (t); yl (t); pc(t))

x(t D 0) D xd
y(t D 0) D yd
u(t D 0) D ud

gh:l (z; p; ul (t); xl (t); yl (t); pc(t)) � 0

h(z; p; ul (t); xl (t); yl (t); pc(t)) D 0

uL � u(t) � uH :

In this formulation, the cost of the fluctuations around
the steady state, denoted by subscript d, will increase
the cost of off spec production, COP

l . In the inner opti-
mization, the actions u of a model predictive controller
are based on the disturbance l.

Bilevel Programming and Design Under Uncertainty
In the planning stage of a design, the range of uncer-
tain parameters that the design can tolerate for feasi-
ble operation should be determined. The design un-
der parametric uncertainty problem can be described
by a set of equality constraints I and inequality con-
straints J representing plant operation and design spec-
ifications:

hi(d; z; x; ™) D 0; 8i 2 I

gj(d; z; x; ™) � 0; 8 j 2 J

where z is the vector of control variables, x is the vector
of state variables and ™ is the vector of uncertain pa-
rameters. Feasibility concerns are incorporated into the
design step by quantifying design feasibility and flexi-
bility with the feasibility test and flexibility index mea-
sures. These measures are characterized by max-min-
max formulations [20] that are further reformulated in
the BLPP form [13,16,23]. For a specific design d, the
BLPP feasibility test problem is of the form:

max
™2T

 (d; ™)

s.t  (d; ™) � 0

 (d; ™) D min
z;u

u



246 B Bilevel Programming: Applications in Engineering

s.t. hi(d; z; x; ™) D 0; 8i 2 I
u � gj(d; z; x; ™) � 0; 8 j 2 J

T D
˚
™j™L � ™ � ™U

�

where the function  (d, ™) represents a feasibility mea-
sure for design d. The boundary of the feasible region
in the space of the uncertain variables is at  (d, ™) = 0.
If  (d; ™) � 0, the design can not operate at least for
some values of ™ in T, and the BLPP is infeasible.

For a specific design d, the design flexibility test
problem is also formulated as a BLPP:

min
™2T

ı

s.t  (d; ™) D 0

 (d; ™) D min
z

u

s.t. hi (d; z; x; ™) D 0; 8i 2 I

g j(d; z; x; ™) � u; 8 j 2 J
T(ı) D

˚
™j™N � ı	™� � ™ � ™N C ı	™C

�

ı � 0

where ı is the largest scaled deviation of any ex-
pected deviations 	™� and 	™+ the design can han-
dle [13,16,23]. Higher ı signifies more flexible design
towards parametric variations.

Bilevel Programming in Metabolic Engineering

Metabolic engineering involves optimization of genetic
and regulatory processes within cells to increase over-
production of desired metabolites or proteins. These
changes can have major effects on cell growth if the de-
sired overproduction competes with growth resources,
so the cell will redistribute the metabolic fluxes to max-
imize its growth rate. Metabolic flux distributions can
be optimized utilizing in-silico genome scale metabolic
network maps to develop overproduction strategies.
Several different problems in this research area have re-
cently been formulated as BLPPs. These involve the (i)
determination of optimal gene knockouts, (ii) identifi-
cation of stable steady state solutions and (iii) dynamic
gene expression control strategies, all to achieve maxi-
mum product yield.

Gene Knockout Strategies Gene deletion strategies
to increase the overproduction of a desired product

can be straightforward and involve competing reaction
pathways; however, many others can be complex and
non-intuitive. Burgard et al. [5] introduced a BLPP for-
mulation to address the optimal manipulation of gene
knockout strategies to maximize overproduction, sub-
ject to maximizing cell’s growth objective at the inner
level. The inner problem is parameterized with gene
knockout strategies that are chosen by the outer prob-
lem and constrained by metabolic flux balances and
fixed substrate. This BLPP model for a steady-state
metabolic network of N metabolites and M metabolic
reactions fueled by a glucose substrate is formulated as:

max
y j

vchemical

s.t max
v j

vbiomass

s.t.
MX
jD1

Si jv j D 0; 8i 2 N

vpts C vglk � vglc_uptake D 0

vatp � vatp_main � 0

vbiomass � vtargetbiomass � 0

vmin
j � y j � v j � vmax

j � y j ; 8 j 2 M

yj D f0; 1g; 8 j 2 MX
j2M

(1 � y j) � K

where vchemical is the flux of the desired product, vbiomass

is biomass formation, Sij is the stoichiometric constant
for metabolite i in reaction j, vj is the flux of reac-
tion j, vpts and vglk respectively represent the uptake
of glucose through the phosphotransferase system and
glucokinase, Vglk_uptake is the basis glucose uptake sce-
nario, vatp_main is the non-growth associated ATPmain-
tenance requirement, K is the number of allowable
knockouts, and vtargetbiomass is a minimum level of biomass
production. The BLPP can be modified further to in-
clude additional bounds onO2, CO2 andNH3 transport
rates and secretion pathways for key metabolites in the
inner problem [22].

Stable Metabolic Networks Stability considerations
of a redesigned metabolic network can be addressed
within a BLPP framework, such that the new system is
stable around a neighborhood of the new steady state.
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Here, the outer problem maximum product flux objec-
tive is subject to flux balances and an inner stability ob-
jective [6].

Temporal Flux Control Gene expression can be con-
trolled dynamically using the BLPP structure to opti-
mize the temporal flux profile of a key reaction, such
that at the end of a batch, the total product formation is
maximized [14]. In the outer problem, a flux in a spe-
cific reaction known to have an impact on the prod-
uct formation is varied with time to maximize the to-
tal product formation at the end of a batch. The inner
problem maximizes cellular growth at each sampling
time over the batch period by optimizing the remain-
ing fluxes. The BLPP can be modified to determine the
optimal regulation time of the specific flux from an ini-
tial to a final value. Glycerol and ethanol production
in E. coli have been studied using the BLPP formula-
tion [14].

Gadkar et al. [15] coupled this BLPP model with
control algorithms to determine genetic manipulation
strategies in bioprocess applications. They introduced
three alternative BLPP models to maximize ethanol
production in anaerobic batch fermentation of E. coli,
optimizing ethanol production, batch time and multi-
batch scheduling in the presence of parametric uncer-
tainty and measurement noise. These include (i) opti-
mizing growth regulation time and batch duration time
by penalizing for longer batch times in the outer ob-
jective (ii) scheduling multiple batch runs to address
inhibition due to product accumulation in the reactor,
optimizing the number of batch runs, batch duration
times, glucose allocation per run and the manipulated
flux regulation time, and (iii) optimizing genetic alter-
ations in the presence of growth inhibition and para-
metric uncertainty in the inhibition constant.

Conclusions

The hierarchical structure of many engineering prob-
lems lends themselves to bilevel programming formula-
tions, where an inner optimization problem constrains
a larger, ‘outer’ optimization problem. Applications in
civil engineering design include traffic control, where
an inner optimization problem predicting driver’s be-
havior constrains an outer optimization problem that
identifies the optimal control strategies. In chemical

engineering, BLPPs are used to identify processes that
are both economically optimal – maximizing revenue
or minimizing cost – and simultaneously ensure that
multiphase equilibrium is satisfied by determining the
global minimum of Gibbs Free energy. Other applica-
tions include the combined optimization of a chem-
ical process and it’s controllers and chemical process
design under parametric uncertainty, to ensure oper-
ational feasibility and flexibility. Alternative BLPP for-
mulations have been introduced in modeling metabolic
engineering systems. These address the maximization
of product yield by determining optimal gene knock-
outs, identifying stable steady state solutions and dy-
namic gene expression control strategies. Metabolic en-
gineering area is a recent and growing application field
for BLPP.
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19. Gümüş ZH, Floudas CA (2005) Global optimization of
mixed-integer bilevel programming problems. Comput
Man Sci 2:181–212

20. HalemaneKP, Grossmann IE (1983)Optimal process design
under uncertainty. AIChE J 29:425–433

21. LeBlanc LJ, Boyce DE (1986) A bilevel programming algo-
rithm for exact solution of the network design problem
with user optimal flows. Transp Res-B 20B:259–265

22. Pharkya P, Burgard AP, Maranas C (2003) Exploring the
overproduction of amino acids using the bilevel optimiza-
tion framework optknock. Biotech Bioeng 84:887–899

23. Swaney RE, Grossmann IE (1985) An index for operational
flexibility in chemical process design. Part I: Formulation
and theory. AIChE J 31:621–630

24. Yang H, Yagar S, Iida Y, Asakura I (1994) An algorithm for
the inflow control problem on urban freeway networks
with user-optimal flows. Transp Res-B 28B:123–139

25. Yang H, Yagar S (1994) Traffic assignment and traffic con-
trol in general freeway-arterial corridor systems. Transp
Res-B 28B:463–486

26. Yang H, Yagar S (1995) Traffic assignment and signal con-
trol in saturated roadnetworks. Transp Res-A 29A:125–139

Bilevel Programming Framework
for Enterprise-Wide
Process Networks Under Uncertainty

EFSTRATIOS N. PISTIKOPOULOS, NUNO P. FAÍSCA,
PEDRO M. SARAIVA, BERÇ RUSTEM

Centre for Process Systems Engineering,
Imperial College London, London, UK

Article Outline

Introduction
Formulation

Bilevel Programming
Bilevel Programming with Multi-Followers

Applications
Cases

Global Optimum of a Bilevel Programming Problem
Bilevel Programming Problem
Bilevel Programming Problem with Multi-Followers
Bilevel Programming with Uncertainty

References

Introduction

Optimisation of enterprise-wide process networks has
attracted considerable attention in recent years; since it
represents substantial economic savings there has been
a growing concern to plan efficiently the operations
within the complexity of decision networks. Often, in
such complex networks, an hierarchy of decisions has
to be followed and compromises made between iden-
tities with equivalent authority. For instance, numer-
ous investigations have been done in the optimisation
of supply chains, Fig. 1, and in the plant selection prob-
lem, Fig. 2. A detailed study of hierarchical decisions
can be found in [13,14,26].

Formulation

The general multilevel decentralised optimisation
problem can be described as follows:

min
x;y i1;y

k
2 ;:::;y

l
m

f1(x; yi1; y
k
2 ; : : : ; y

l
m) ; (1st level)

s.t. g1(x; yi1; y
k
2 ; : : : ; y

l
m) � 0 ;

where
h
yi1; y

k
2 ; : : : ; y

l
m

i
solve ;

(1)

: : : ; min
y i1;y

k
2 ;:::;y

l
m

f i2 (x; y
i
1; y

k
2 ; : : : ; y

l
m); : : : (2nd level)

s.t. gi2(x; y
i
1; y

k
2 ; : : : ; y

l
m) ; � 0;

where
h
yk2 ; : : : ; y

l
m

i
solve;

:::

: : : ;min
y lm

f lm(x; y
i
1; y

k
2 ; : : : ; y

l
m); : : : (mth level)

s.t. glm(x; y
i
1; y

k
2 ; : : : ; y

l
m) � 0 ;
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Bilevel Programming Framework for Enterprise-Wide Pro-
cess Networks Under Uncertainty, Figure 1
Supply chain planning example

Bilevel Programming Framework for Enterprise-Wide Pro-
cess Networks Under Uncertainty, Figure 2
Hierarchical decision planning example

where, f are real convex functions, g are vectorial
real functions defining convex sets and x, y are sets
of variables belonging to the group of real numbers;
i 2 f1; 2; : : : ; Ig; k 2 f1; 2; : : : ;Kg; l 2 f1; 2; : : : ; Lg,
implying that (2nd level) has I optimisation subprob-
lems, (3rd level) K optimisation subproblems and (mth
level) has L optimisation subproblems, respectively. For
the sake of simplicity and without loss of generality, we
analyse the relations in Problem (1) using two partic-
ular classes of multilevel programming problems: the
bilevel programming problem, which organises verti-
cally in two levels, and the bilevel programming prob-
lem with multi-followers, which is similar to bilevel
programming but with several subproblems at the sec-
ond level.

Bilevel Programming

Bilevel programming problems (BLPP) involve a hier-
archy of two optimisation problems, of the following
form [6,17,20,25,32]:

min
x;y

F(x; y) ;

s.t. G(x; y) � 0 ;

x 2 X ;

y 2 argminf f (x; y) : g(x; y) � 0; y 2 Yg ;

(2)

where X � Rnx and Y � Rny are both compact convex
sets; F and f are real functions: R(nxCny) ! R; G and
g are vectorial real functions, G : R(nxCny) ! Rnu and
g : R(nxCny) ! Rnl ; nx; ny 2 N and nu; nl 2 N[f0g.
The following definitions are associated to Problem (2):
� Relaxed feasible set (or constrained region),

˝ D fx 2 X; y 2 Y : G(x; y) � 0; g(x; y) � 0g;

(3)

� Lower level feasible set,

C(x) D fy 2 Y : g(x; y) � 0g; (4)

� Follower’s rational reaction set,

M(x) D fy 2 Y : y 2 argminf f (x; y) : y 2 C(x)gg;

(5)

� Inducible region,

IR D fx 2 X; y 2 Y : (x; y) 2 ˝; y 2 M(x)g : (6)

Note the parametric nature of the rational reaction
set, (5), which reflects the dependence of the decisions
taken at the upper levels on the decisions taken at the
lower levels. This, in fact, is evidence that in bilevel
programming problems the relations between the lev-
els differ from the well-known Stackelberg game, where
the decisions made by the followers don’t affect the de-
cision already taken by the leader [32].

Bilevel Programming with Multi-Followers

Bilevel programming problems with multi-followers
involve two optimisation levels with several optimisa-
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tion subproblems at the lower (2nd level):

minx;y1;y2;:::;ym F(x; y1; y2; : : : ; ym); (1st level)
s.t. G(x; y1; y2; : : : ; ym) � 0;

x 2 X;
yi 2 argminf fi(x; y1; y2; : : : ; ym) :
gi (x; y1; y2; : : : ; ym) � 0; yi 2 Yig ;

(2nd level)
i 2 f1; 2; : : : ;mg ;

(7)

with the following definitions:
� Feasible set for the ith follower,

˝i(x; y1; y2; : : : ; yi�1; yiC1; : : : ; ym)

D fyi 2 Yi : gi (x; x; y1; y2; : : : ; ym) � 0g ;
(8)

� Rational reaction set for the ith follower,

�i (x; y1; y2; : : : ; yi�1; yiC1; : : : ; ym) D fyi 2 Yi :
yi 2 argminf fi(x; y1; y2; : : : ; ym) : yi 2 ˝i(x)gg :

(9)

Since one assumption is that followers may ex-
change information, conflicts naturally occur. The
Nash equilibrium is often a preferred strategy to coordi-
nate such decentralised systems [24]. Consequently, the
optimisation subproblems positioned in the lower level
reach a Nash equilibrium point, (x; y�1 ; y�2 ; : : : ; y�m) [2]:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

f1(x; y�1 ; y�2 ; : : : ; y�m) � f1(x; y1; y�2 ; : : : ; y�m);
8y1 2 Y1 ;
f2(x; y�1 ; y�2 ; : : : ; y�m) � f2(x; y�1 ; y2; : : : ; y�m);
8y2 2 Y2 ;
:::

fm(x; y�1 ; y�2 ; : : : ; y�m) � fm(x; y�1 ; y�2 ; : : : ; ym);
8ym 2 Ym :

(10)

Once more observe the parametric nature of the fol-
lowers’ rational reaction set, (9). In this case, however,
each rational reaction set is a function of both the up-
per level decision variables and the decision variables
of the other subproblems located in the same hierarchi-
cal level. Additionally, the priority remains to solve the

leader’s objective function to global optimality. Thus,
we aim to compute the global optimum for the leader
and the best possible equilibrium solution for the fol-
lowers.

Applications

Applications of bilevel and multilevel programming in-
clude:
1. design optimisation problems in process systems en-

gineering [4,5];
2. design of transportation networks [23];
3. agricultural planning [19];
4. management of multi-divisional firms [27] and
5. hierarchical decision-making structures [19].

Cases

Theoretical developments. Recently, Pistikopoulos
and co-workers [9,10] have proposed novel solution
algorithms which open the possibility of using a gen-
eral framework to address general classes of bilevel and
multilevel programming problems. These algorithms
are based on parametric programming theory [1,11]
and use of the Basic Sensitivity Theorem [15,16]. This
approach can be classified as a Reformulation Tech-
nique [33] since the bilevel problem is transformed into
a number of quadratic or linear problems. The main
idea is to divide the follower’s feasible area into differ-
ent rational reaction sets, and search for the global op-
timum of a simple quadratic (or linear) programming
problem in each area.

Global Optimum of a Bilevel Programming Problem

While for an optimal control problem (one-player
problem) there is a well-defined concept for optimality,
the same is not always true for multi-person games [2].
In the case of bilevel programming, [7,17,18,29,32,33]
interpret the optimisation problem as a leader’s prob-
lem, F, and search for the global minimum of F. The
solution point obtained for the follower’s problem, f ,
will respect the stationary (KKT) conditions and hence
it can be any stationary point. Obviously, this solu-
tion strategy is acceptable when the player in the upper
level of the hierarchy is in the most “powerful” posi-
tion, and the other levels just react to the decision of
their leader. Such an approach is sensible in many en-
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gineering applications of bilevel programming (for in-
stance, see [4,5]). It is also a valid strategy for the cases
of decentralised manufacturing and financial structures
when the leader has a full insight and control of the
overall objectives and strategy of the corporation, while
the follower does not.

However, this is not always the case. For example,
using the feedback Stackelberg solution, where at every
level of play a Stackelberg equilibrium point is searched,
the commitment of the leader for his/her decision in-
creases with the number of players involved. [3] present
an example where the sacrifice of the leader’s objective
on behalf of the followers results in a better solution for
both levels. Similar solution strategies have also been
studied [3,22,28,30].

Theorem 1 [32] If for each x 2 X, f and g are twice
continuously differentiable functions for every y 2 C(x),
f is strictly convex for every y 2 C(x) and C(x) is a con-
vex and compact set, then M(�) is a real-valued function,
continuous and closed. �
If Theorem 1 applies and assuming that M(x) is non-
empty, then M(x) will have only one element, which is
y(x). Thus, (2) can be reformulated as:

min
x;y

F(x; y(x))

s.t. G(x; y(x)) � 0

x 2 Cr f

Cr f D fx 2 X : 9y 2 Y ; g(x; y) � 0g :

(11)

Considering that f is a convex real function, the
function y(x) can be computed as a linear conditional
function based on parametric programming theory, as
follows [9]:

y(x) D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

m1 C n1x; if H1x � h1

m2 C n2x; if H2x � h2
:::

mk C nkx; if Hkx � hk

:::

mK C nKx; if HKx � hK

(12)

where, nk, mk and hk are real vectors and Hk is a real
matrix.

Theorem 2 [32] If the assumptions of Theorem 1 hold,
F is a real continuous function, X and the set defined by

G(x,y) are compact, and if f9x 2 X : G(x; y(x)) � 0g,
then there is a global solution for Problem (2). �

Since an explicit expression for y can be computed, if
the assumptions of Theorem 2 hold, and the two play-
ers have convex functions to optimise, then the global
optimum for Problem (2) can be obtained via the para-
metric programming approach. The advantage of using
this approach is that the final solution will consider the
possibility of existence of other global minima, which
could correspond to better solutions for the follower.
Moreover, the parametric nature of the leader’s prob-
lem is preserved.

Regarding computational complexity, a number of
authors have shown that bilevel programming prob-
lems are NP-Hard [8,21]. Furthermore, [31] proved
that even checking for a local optimum is anNP-Hard
problem.

The objective of this section is to describe a para-
metric programming framework which can solve dif-
ferent classes of multilevel programming problems to
global optimality. We describe the fundamental devel-
opments for the quadratic bilevel programming case,
and how the theory unfolds to address the existence of
RHS uncertainty.

Bilevel Programming Problem

Consider the following general quadratic BLLP:

min
x;y

F(x; y) D L1 C L2x C L3y C
1
2
xTL4x C yTL5x

C
1
2
yTL6 y ;

s.t. G1x C G2yC G3 � 0 ;

min
y

f (x; y) D l1 C l2x C l3yC
1
2
xT l4x C yT l5x

C
1
2
yT l6y ;

s.t. g1x C g2y C g3 � 0 ;
(13)

where x and y are the optimisation variables, x 2 X �
Rnx and y 2 Y � Rny . [L2]1xnx , [L3]1xny , [L4]nxxnx ,
[L5]nyxnx , [L6]nyxny ,

�
l2
�
1xnx ,

�
l3
�
1xny ,

�
l4
�
nxxnx ,�

l5
�
nyxnx and

�
l6
�
nyxny are matrices defined in the
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real space. The matrices [G1]nuxnx , [G2]nuxny , [G3]nux1,�
g1
�
nuxnx ,

�
g2
�
nuxny ,

�
g3
�
nux1 correspond to the con-

straints, also defined in the real space.
By focusing attention on the follower’s optimisation

problem, considering x as a parameter vector and op-
erating a variable change (z D y C l�16 l5x), it can be
rewritten as the following mp-QP problem:

min
z

f 0(x; z) D l 01 C l 02x C
1
2
xT l 04x C fl

0
3z C

1
2
zT l 06zg ;

s.t. g02z � g03 C g01x ;
(14)

where: l 01 D l1; l 02 D l2 � l3 l�16 l5; l 03 D l3; l 04 D l4 � lT5
l�16 l5; l 05 D 0; l 06 D l6; g01 D �(g1 � g2 l�16 l5); g02 D g2;
g03 D �g3. The mp-QP problem can be solved by ap-
plying the algorithm of [9]. As a result, a set of rational
reaction sets (5) is obtained for different regions of x:

zk D mk C nkx; Hkx � hk; k D 1; 2; : : : ;K : (15)

Incorporating the expressions (15) into Prob-
lem (13) results in the following K quadratic problems:

min
x

F 0(x) D L0k1 C L0k2 x C
1
2
xTL0k4 x;

s.t. G0k1 x � G0k3 ;

(16)

with:

L0k1 DL1 C L3mk C
1
2
mkTL6mk ;

L0k2 DL2 C L3nk � L3 l�16 l5 C mkT

� L5 CmkTL6nk � mkTL6 l�16 l5 ;

L0k4 DL4 C 2nkL5 � 2lT5 l
�1
6 L5 C nkT

� L6nk � 2nkTL6 l�16 l5 C lT5 l
�1
6 L6 l�16 l5 ;

G01 DG1 C G2nk � G2 l�16 l5 ;

G03 D� (G3 C G2mk);

G0k1 D[G
0
1jH

k]T(nx)x(nuCnhk )
;

G0k3 D[G
0
3jh

k]T(1)x(nuCnhk )
:

Clearly, the solution of the BLLP Problem (13) is the
minimum along the K solutions of Problem (16).

Remark 1 The artificial variable, z, introduced in Prob-
lem (14) is only necessary if l5 ¤ 0

¯̄
. In all other cases

the multi-parametric problem can be easily formulated
through algebraic manipulations.

Remark 2 When one of the matrices l 06, L
0k
4 is null

the optimisation problem where these are involved be-
comes linear. In particular, if l 06 D 0

¯̄
, Problem (14)

is transformed into an mp-LP; on the other hand, if
L0;k4 D 0

¯̄
, Problem (16) becomes an LP problem. In both

cases, the solution procedure is not affected, due to the
fact that the Basic Sensitivity Theorem [15,16] also ap-
plies to the mp-LP problem.

Remark 3 The expression for the artificial variable in-
troduced, z, is only valid when l6 is symmetric. If not,
with the following transformation:

l̄6 D
�
l6 C lT6

2

	
;

the resulting matrix is non-singular. If the resulting
matrix is singular, the expression for the artificial vari-
able should be given by:

z DyC Ax ;
where A should satisfy:�
A 2 Rnxxnx : l5 � (

1
2
l6 C

1
2
lT6 )AD 0

	
:

In this case, several solutions for the system above
can exist. However, as long as the bilinear terms are
eliminated in Problem (14) any solution can be selected.

Remark 4 This technique is not valid when at the same
time:
1. f is a pure quadratic cost function,
2. f involves bilinear terms and
3. matrix l̄6 is singular.

Observing Formulation (16) we can conclude that the
parametric programming approach, Alg. 1, transforms
the original quadratic bilevel programming problem
into simple quadratic problems, for which a global op-
timum can be reached.

Bilevel Programming Problem
with Multi-Followers

Consider the bilevel programming problemwith multi-
followers, and assume quadratic objective functions,
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linear constraints and two followers:

min
x;y1;y2

f1 DL11C

C L12 � x C L13 � y1 C L14 � y2 C (1st level)

C
1
2
xT � L15 � x C

1
2
yT1 � L

1
6 � y1

C
1
2
yT2 � L

1
7 � y2 C xT � L18 � y1

C yT2 � L
1
9 � x C yT2 � L

1
10 � y1 ;

s.t.

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

G1
1 � x C G1

2 � y1 C G1
3 � y2 � 0 ;

(2nd level)

min
y1

f2 D L21 C Follower 1

C L22 � x C L23 � y1 C L24 � y2

C
1
2
xT � L25 � x C

1
2
yT1 � L

2
6 � y1

C
1
2
yT2 � L

2
7 � y2 C xT � L28 � y1

C yT2 � L
2
9 � x C yT2 � L

2
10 � y1 ;

s.t. G2
1 � x C G2

2 � y1 C G2
3 � y2 � 0 ;

min
y2

f3 D L31 C Follower 2

C L32 � x C L33 � y1 C L34 � y2

C
1
2
xT � L35 � x C

1
2
yT1 � L

3
6 � y1

C
1
2
yT2 � L

3
7 � y2 C xT � L38 � y1

C yT2 � L
3
9 � x C yT2 � L

3
10 � y1 ;

s.t. G3
1 � x C G3

2 � y1 C G3
3 � y2 � 0 :

(17)

The difference between Problem (17) and Prob-
lem (13) is the existence of two optimisation subprob-
lems in a single level. Accordingly, the concept of Nash
equilibrium is introduced.

As in the bilevel programming case, each optimi-
sation subproblem in (2nd level) is recast as a multi-
parametric programming problem. In this problem, the
parameters are all the variables from the optimisation
problem at (1st level) as well as the optimisation vari-
ables of the other subproblems at the same level, Fol-
lower 1 or Follower 2 in this case (17). Thus, defin-
ing vectors,

�
!2�T D �xjy2

�
and

�
!3�T D �xjy1

�
, we

Algorithm– Parametric Programming Algorithm for
BLPP

1. Recast the inner problem as a multi-paramet-
ric programming problem, with the leader’s
variables being the parameters (14);

2. Solve the resulting problem using the suitable mul-
ti-parametric programming algorithm;

3. Substitute each of the K solutions in the lead-
er’s problem, and formulate the K one-level
optimisation problems;

4. Compare the K optimum points and select the
best one.

Bilevel Programming Framework for Enterprise-Wide Pro-
cess Networks Under Uncertainty, Algorithm 1
Parametric Programming algorithm for a BLPP

rewrite the (2nd level) optimisation subproblems as,

min
y1

f2(y1; !2) DL21 C L2�2 � !
2 C L23 � y1

C
1
2
!2T � L2�5 � !

2 C
1
2
yT1 � L

2
6 � y1

C yT1 � L
2�
8 � !

2 ;

s.t. G2�
1 � !

2 C G2
2 � y1 � 0 ;

(18)

and,

min
y2

f3(y2; !2) DL31 C L3�2 � !
3 C L34 � y2

C
1
2
!3T � L3�5 � !

2a C
1
2
yT2 � L

3
7 � y2

C yT1 � L
3�
9 � !

3 ;

s.t. G3�
1 � !

3 C G3
3 � y2 � 0 ;

(19)

where !2 and !3 are the vectors of parameters. The bi-
linearities can be circumvented by using a similar strat-
egy to the one used in the bilevel case. By using a multi-
parametric programming algorithm [9], problems (18)
and (19) result in the following parametric expressions:

(
y1 D �1(x; y2) ! rational reaction set follower 1 ;
y2 D �2(x; y1) ! rational reaction set follower 2 ;

(20)
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Algorithm

1. Recast each of the subproblems in the lower level
as amulti-parametric programming problem, with
the variables out of their control being the param-
eters (18–19);

2. Solve the resulting problems using the suitable
multi-parametric programming algorithm;

3. Compute aNash equilibrium point by direct com-
parison of the rational reaction sets (21);

4. Substitute each of the K solutions in the lead-
er’s problem, and formulate the K one level
optimisation problems;

5. Compare the K optima points and select the best
one.

Bilevel Programming Framework for Enterprise-Wide Pro-
cess Networks Under Uncertainty, Algorithm 2
Parametric programming algorithm for bilevel program-
ming problems with multi-followers

which are then used to compute the Nash equilibrium
(x; y�1 ; y�2 ):

(
f1(x; y�1 ; y�2 ) � f1(x; y1; y�2 ); 8y1 2 Y1 ;
f2(x; y�1 ; y�2 ) � f2(x; y�1 ; y2); 8y2 2 Y2;

(21)

easily computed by direct comparison [24]:

�01(x; y1) D �2(x; y1); ! y1 D ��2 (x) ; (22a)

�1(x; y2) D �02(x; y2); ! y2 D ��1 (x) : (22a)

Finally, substituting the expressions in (22) in the
leader’s optimisation problem, (1st level), we end up
with a single-level convex optimisation problem, in-
volving only the leader’s optimisation variables, as fol-
lows:

min
x

f �1 (x; y1(x; y
�
2 (x)); y2(x; y

�
1 (x))) ;

s.t. G1(x; y1(x; y�2 ); y2(x; y
�
1 )) � 0; x 2 Cr f ;

Cr f D fx 2 X : 9y1;y2 2 Y ; Z;G2(x; y1; y2) � 0 ;

G3(x; y1; y2) � 0g :
(23)

The algorithm is summarised in Alg. 2.

Bilevel Programming with Uncertainty

[12] highlighted the importance of considering uncer-
tainty/risk (e. g. prices, technological attributes, etc.) in
the solution of decentralised decision makers. A com-
prehensive analysis of linear bilevel programming
problems can be found in [27], where uncertainty is
considered unstructured, taking any value between its
bounds. Here it is extended to the quadratic case.
We address the following quadratic BLPP with uncer-
tainty, � :

min
x;y

F(x; y; �) D L1 C L2x C L3y C
1
2
xTL4x

C yTL5x C
1
2
yTL6 y

s.t. G1x C G2y C G3 � G4�

min
y

f (x; y; �) D l1 C l2x C l3y

1
2
xT l4x C yT l5x C

1
2
yT l6y

s.t. g1x C g2y C g3 � g4� ;

(24)

The steps for solving (24) are as follows:
1. Recast the inner problem as an mp-QP, with param-

eters being both x and � . The solution obtained is
similar to (15):

zk D mk C nk
b x C n̄k

c � ; Hkx C H̄k� � hk ;

k D 1; 2; : : : ;K :
(25)

2. Incorporate expressions (25) in (24) to formulate K
mp-QPs, with parameters being the uncertainty � :

min
x

F 0(x; �) D L̄0k1 C L̄0k2 x C
1
2
xTL̄0k4 x

s.t. Ḡ0k1 x � Ḡ0k3 C Ḡ0k4 � ;
(26)

where L̄0k1 , L̄
0k
2 , L̄

0k
4 , Ḡ

0k
1 , Ḡ

0k
2 , Ḡ

0k
4 are appropriate ma-

trices derived by algebraic manipulations.
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A large number of mathematical programming prob-
lems have optimization problems in their constraints.
Arising from the areas of game theory and multicriteria
decision making, these bilevel programming problems
(BPP) take the form:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x

F(x; y)

s.t. G(x; y) � 0

y D

8<
:
Argmin

y
f (x; y)

s.t. g(x; y) � 0

(1)

where x 2 Rn1 , y 2 Rn2 and the functions F(x, y), f (x,
y), G(x, y) and g(x, y) are continuous and twice differ-
entiable. It is generally assumed that these functions are
convex; the case of nonconvex functions has not been
considered in the literature so far (as of 2000).

Bilevel programming has its origins in Stackelberg
game theory, in particular from models of two-person
nonzero-sum games. In these games, two players make
alternate moves in a pre-established order. The first
player (the leader) selects a move, x, that optimizes his
own cost function. The second player (the follower)
then has to make a move y that is constrained by the
prior decision of the leader. The follower has access
only to his own cost function, while the leader is aware
of both his own as well as the follower’s cost function,
and can thus foresee the reaction of the follower to
any move that the leader makes. If the cost functions
of the two players are identical (called the cooperative
case), then the two constraint sets can be merged and
the problem can be solved as a single level optimiza-
tion problem. If the cost functions are exactly opposite
(that is, f (x, y) = � F(x, y)), then there can be neither
cooperation or compromise. The most interesting (and

normally studied) case is when the two objectives are
neither identical nor opposite.

BPP also arises in hierarchical decision making. For
example, a central planning office might decide upon
national budgets which act as constraints for local gov-
ernments and businesses. Other applications include
long-range planning problems followed by short term
scheduling in the chemical process industries and en-
ergy planning of businesses constrained by national
government policy. A detailed list of references for ap-
plications of BPP can be found in [14]. See [13] for
a full review of algorithms and applications of bilevel
and multilevel programming.

Definitions

The following definitions will be used in the sequel. The
relaxed constraint region for the BPP is defined as

S D f(x; y) : G(x; y) � 0; g(x; y) � 0g :

The follower’s feasible region for a fixed x, �(x), is de-
fined as

�(x) D fy : g(x; y) � 0g :

This set is parametric in x, and represents the allowable
choices for the follower. The rational reaction set M(x)
is defined as

M(x) D fy : y 2 Argmin f f (x; y) : y 2 �(x)gg :

Finally, the inducible region for the problem is

IR D f(x; y) : y 2 M(x); (x; y) 2 Sg :

The inducible region IR (which represents the fol-
lower’s feasible region) is in general nonconvex. In
terms of the bimatrix or Stackelberg games, IR repre-
sents ‘equilibrium’ points, that is, the set of compromise
solutions between the leader and the follower. In the
presence of first level constraints (1), IR may be empty,
which implies that the BPP has no solution. However,
it can be shown that the IR is compact and the BPP has
a solution, if the following conditions are met [7]:
a) F(x, y), f (x, y), G(x, y) and g(x, y) are continuous

and twice differentiable;
b) f (�, y) is strictly convex in y;
c) �(x) is a compact convex set; and
d) F(x, y) and G(x, y) are convex in x and y.



Bilevel Programming: Global Optimization B 257

Note that the solution to the BPP need not be individ-
ually optimal for each of the leader’s and follower’s ob-
jective function (that is, it need not be an efficient solu-
tion).

The specific instance of BPP when all the functions
involved are linear has received the most interest. The
linear bilevel programming problem (BLPP) can be writ-
ten as8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min
x

FL(x; y) D c>1 x C d>1 y

s.t. A1x C B1 y � b1

y D

8̂
<̂
ˆ̂:

Argmin
y

c>2 x C d>2 y

s.t. g(x; y)
D A2x C B2 y � b2:

(2)

Complexity

Because of the nonconvexity of the induced region
IR, BPP can be a hard problem to solve. It is gener-
ally known that even the linear problem, BLPP, is NP-
hard. This has been shown by reducing the problem
to a knapsack optimization problem [3], the standard
KERNEL problem [11], and by reduction to a problem
of minimizing a convex quadratic function over a poly-
hedron [1]. In fact, even checking for local optimality
in BLPP is NP-hard [15].

Multiple Solutions to the Follower’s Problem

In the absence of dual degeneracy, the follower’s sub-
problem has a single solution for every x. However,
if the follower’s subproblem has multiple solutions for
any x, then the overall BPP may not be well-defined. In
this case, we need further assumptions about the coop-
erativeness of the follower with respect to the leader. Al-
ternately, the follower’s objective function can be mod-
ified as

f (x; y) D f (x; y)C �F(x; y);

in effect, allowing the leader to ‘kick back’ a small por-
tion of its earnings to ensure that the follower selects
a suitable solution.

SolutionMethods

From the 1980s onwards, many approaches have been
proposed for the solution of BPP. These can be classi-
fied as enumerative, complementary pivot, branch and

bound, descent and penalty function methods. The last
two categories of methods are only useful in finding sta-
tionary points and local minima, and will not be dis-
cussed here. The vast majority of the approaches ad-
dress the linear case, BLPP. Some of the global opti-
mization methods are discussed below.

Enumeration Methods

The linear BLPP is equivalent to maximizing the linear
function FL(x, y) over a piecewise linear constraint re-
gion composed of the edges and hyperplanes of S, the
feasible region. It can be shown that the global opti-
mum to BLPP occurs at a vertex of S. This suggests
an extreme point search procedure for solving BLPP.
One such procedure is the Bialas–Karwan Kth-best al-
gorithm [4]. The basic idea is to find an ‘ordered’ set of
extreme points to the relaxed problem
8̂
<̂
ˆ̂:

min
x

FL(x; y) D c>1 x C d>1 y

s.t. A1x C B1y � b1
A2x C B2y � b2:

The algorithm has the following steps:

0 Solve the relaxed problem. Let the solution be
(x1; y1): Set k = 1.

1 Solve the inner problem with x = xk : If yk is
in the solution set to the inner problem, then
STOP.

2 Locate all adjacent extreme points (xi ; yi ) such
that

c>1 xi + d>1 yi � c>1 xk + d>1 yk 8i:

Choose the adjacent extreme point j that mini-
mizes c>1 x j + d>1 y j: Set k = k + 1, (xk+1; yk+1) =
(x j; y j): Go to Step 1.

Since each successive pair of points tested in this algo-
rithm is adjacent, it can be efficiently implemented us-
ing the dual simplex method.

Complementary Pivot Methods

Under proper regularity conditions, the inner problem
to the BPP can be replaced by its Karush–Kuhn–Tucker
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optimality conditions. For the case of the BLPP, this re-
sults in the following single-level optimization problem
(KKT):

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
x

FL(x; y) D c>1 x C d>1 y

s.t. A1x C B1y � b1
A2x C B2y � b2
�(A2x C B2y � b2) D 0
d2 C A>2 � D 0
� � 0:

(3)

The problem KKT has a linear complementarity pivot
formulation. As such, it can be solved using a comple-
mentary pivoting method. Consider the following para-
metric formulation LCP(�):

c>1 x C d>1 y � �;

A1x C B1 y � b1;

A2x C B2 y � b2;
�(A2x C B2y � b2) D 0;

d2 C A>2 � D 0;

� � 0:

The global minimization of BLPP then corresponds to
the identification of the minimum value of � such that
LCP(�) has a solution. The following method can be
used to solve LCP(�):

0 Solve LCP(�) without the first parametric con-
straint. Let (x0; y0) be the solution to this prob-
lem, with �0 = c>1 x0 + d>1 y0.

1 Solve LCP(�k). If LCP(�k) has no solution, go
to Step 3. Otherwise, let (xk; yk) be the solution.

2 Set

�k+1 = c>1 xk+d>1 yk � �
??c>1 xk+d>1 yk

??,

where � is a small positive number. Set k = k+1,
go to Step 1.

3 If k = 0, then BLPP has no solution. Otherwise,
xk ; yk is an �-global optimum to BLPP,where
� = �

??c>1 xk + d>1 yk
??.

The key to this algorithm is the ability to efficiently
solve LCP(�k) in Step 1. J. Judice and A. Faustino [12]

have proposed a hybrid enumerative method which
works by branching on the complementarity conditions
�(A2x + B2 y � b2) = 0. Numerous heuristics can be
used in each node of the resulting branch and bound
tree, in order to reduce the search for a complementary
solution.

Branch and BoundMethods

These methods work by identifying the set of inner-
level constraints that are active at the optimal solution.
The simplest method, due to J. Fortuny-Amat and B.
McCarl [10], works by converting the KKT comple-
mentarity conditions in (3) to

�(A2x C B2y � b2) D 0; �i � M˛i ;

A2x C B2y � b2 � M(1 � ˛i );

˛i D 0 � 1; 8i;

where M is a large constant. The variable ˛i is equal to
1 if inner level constraint i is active at the optimal so-
lution, and zero otherwise. This converts the one-level
problem to a mixed integer linear program (MILP),
which can be solved with commercial MILP codes.
However, this requires the addition of 2 �m constraints
and m variables, where m is the number of inner-level
constraints.

Note that at the optimal solution, at least one of the
inner problem constraints must be active, that is,

mX
iD1

˛i � 1: (4)

Moreover, it can be shown that the following conditions
must hold [11]:

X
n
i : B2i j>0

o
˛i � if dj < 0; (5)

X
n
i : B2i j<0

o
˛i � 1 if dj > 0; (6)

for j = 1, . . . , n2. It is possible to use (4)–(6) as branching
criteria in a branch and bound tree. Each of these con-
ditions, when tight, can be used to eliminate a variable
from the inner constraints. By combining these condi-
tions with the use of linear relaxations to obtain lower
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bounds, a branch and bound algorithm can be devel-
oped to solve the BLPP [11].

An alternate method to the use of binary variables is
to establish a one-to-one correspondence between each
˛i and each �i, as follows:

1
M
˛i � �i � M˛i ;

whereM is a suitably large number. This ensures that if
˛i = 0, then �i = 0, while if ˛i = 1, �i � (1/M) implying
an inactive constraint. With this approach, BLPP can be
transformed to:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
x

FL(x; y) D c>1 x C d>1 y

s.t. A1x C B1y � b1
A2x C B2y � b2
˛(A2x C B2y � b2) D 0
d2 C A>2 � D 0
�i � M˛i
˛i � M�i

� � 0; ˛ D f0; 1g:

By partitioning the variables into x D (x; y) and y D
(�; ˛), it can be seen that this problem is of the form
8̂
<̂
ˆ̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0
h(x; y) D 0;

where f (x; y), g(x; y) and h(x; y) are bilinear func-
tions. Thus, the GOP algorithm of [8,9] can be applied
to solve this problem. The algorithm works by solving
a set of primal and relaxed dual problems that bound
the global solution. The primal problem is
8̂
<̂
ˆ̂:

min
x

f (x; yk)

s.t. g(x; yk) � 0
h(x; yk) D 0;

where yk is a fixed number. Because this problem is lin-
ear, it can be solved for its global solution, and yields
an upper bound on the global solution. It also provides
multipliers for the constraints, �k and �k, which can be
used to construct a Lagrange function of the form

L(x; y; �k ; �k) D f (x; yk)C �k g(x; yk)

C �kh(x; yk):

It is then possible to solve a dual problem
8<
:
min
y

u

s.t. u � L(x; y; �k ; �k);

which provides a lower bound on the global solution.
The dual problem is actually solved by partitioning the
y-space using the gradients of L and solving a relaxed
dual subproblem in each region. In [16] it has been
shown that for the bilevel problems, only one dual sub-
problem needs to be solved at each iteration. This ap-
proach can also be used when the inner problem objec-
tive function is quadratic.

Another approach, proposed in [2], can also be used
when the inner level problem has a convex quadratic
objective function. The basic idea is to first solve the
one-level linear problem by dropping the complemen-
tarity conditions. At each iteration, a check is made to
see if the complementarity condition is satisfied. If it
is, the corresponding solution is in the inducible re-
gion IR, and hence a candidate solution for BPP. If not,
a branch and bound scheme is used to implicitly exam-
ine all combinations of complementary slackness.

LetW1 = {i:�i = 0},W2 = {i: gi = 0},W3 = {i: i 62W1

[W2}.

0 Set k = 0,W1 = W2 = ;,W3 = i, F =1.
1 Set �i = 0, i 2 W1, gi = 0, i 2 W2. Solve the

relaxed system. Let (xk ; yk ; �k) be the solution.
If no solution exists, or if F(xk ; yk) � F, go to
Step 4.

2 If �i gi = 0, 8i, go to Step 3. Otherwise se-
lect i such that �i gi is maximal, say î. Let
W1 = W1 [ î,W3 = W3 [ î, and go to Step 1.

3 Update F = F(xk ; yk).
4 If all nodes in the three have been exhausted,

go to Step 5. Else, branch to the newest un-
fathomed node, say j, and set W1 = W1 [ j,
W2 = W2 [ j. Go to Step 1.

5 If F =1, no solution exists to BPP. Otherwise,
the point corresponding to F is the optimum.

Computational Results and Test Problems

The difficulty of solving bilevel problems depends on
a number of factors, including the number of inner
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versus outer level variables, degree of cooperation be-
tween the leader and follower objective functions, num-
ber of inner level constraints and the density of the
constraints. Computational results have been reported
by many authors, including [2,11,12] and [16]. Gener-
ally, these have so far been limited to problems involv-
ing up to 100 inner level variables and constraints. See
[5,6] for methods for automatically generating linear
and quadratic bilevel problems which can be used to
test any of these and other algorithms for bilevel pro-
gramming.
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The bilevel programming problem is a hierarchical
problem in the sense that its constraints are defined in
part by a second parametric optimization problem. Let
� (x) be the solution set of this second problem (the so-
called lower level problem):

� (x) :D Argmin
y
f f (x; y) : g(x; y) � 0g ; (1)

where f , gi 2 C2(Rn × Rm, R), i = 1, . . . , p. Then, the
bilevel programming problem is defined as

“min
x

” fF(x; y) : y 2 � (x); x 2 Xg (2)

with F 2 C1(Rn × Rm, R) and X � Rn is closed. Prob-
lem (2) is also called the upper level problem. The inclu-
sion of equality constraints in the problem (1) is possi-
ble without difficulties. If inequalities and/or equations
in both x and y appear in the problem (2), this problem
becomes even more difficult since these constraints re-
strict the set � (x) after a solution y out of it has been
chosen. This can make the selection of y 2 � (x) a pos-
teriori infeasible [6].

The bilevel programming problem can easily be in-
terpreted in terms of Stackelberg games which are a spe-
cial case of them widely used in economics. In Stackel-
berg games the inclusion of lower level constraints g(x,
y) � 0 is replaced by y 2 Y where Y � Rm is a fixed
closed set. Consider two decision makers which select
their actions in an hierarchical manner. First the leader
chooses x 2 X and announces his selection to the fol-
lower. Knowing the selection x the follower computes
his response y(x) on it by solving the problem (1). Now,
the leader is able to evaluate the value of his initial
choice by computing F(x, y(x)). Having full knowledge

about the follower’s responses y(x) for all x 2 X the
leader’s task is it to minimize the function G(x) := F(x,
y(x)) over the set X, i. e.to solve problem (2).

The bilevel programming problem has a large num-
ber of applications e. g.in economics, natural sciences,
technology (cf. [17,25] and the references therein).

The quotation marks in (2) have been used to in-
dicate that, due to minimization only with respect to
x in the upper level problem (2), this problem is not
well defined in the case that the lower level problem (1)
has not a uniquely determined optimal solution for all
values of x [6]. Minimization only with respect to x in
(2) takes place in many applications of bilevel program-
ming, e. g.in the cases when the lower level problem
represents the reactions of the nature on the leader’s
actions. If � (x) does not reduce to a singleton for all
parameter values x 2 X, either an optimistic or a pes-
simistic approach has to be used to obtain a well defined
auxiliary problem.

In the optimistic case, problem (2) is replaced by

min
x;y
fF(x; y) : y 2 � (x); x 2 Xg (3)

[6,11], whereminimization is taken with respect to both
x and y. The use of (3) instead of (2) means that the
leader is able to influence the choice of the follower. If
the leader is not able to force the follower to take that
solution y 2 � (x) which is the best possible for him, he
has to bound the damage resulting from an unwelcome
choice of the follower. Hence, the leader has to take the
worst solution in � (x) into account for computing his
decision. This leads to the auxiliary problem in the pes-
simistic case:

min
x

�
max

y
fF(x; y) : y 2 � (x)g : x 2 X

	
(4)

[15,16].
In the sequel it is assumed that the lower level prob-

lem (1) has a unique (global) optimal solution y(x) for
all x 2 X. This is guaranteed to be true at least if the
assumptions C), SCQ), and SSOC) below are satisfied.
Then, the implicit function approach to bilevel program-
ming can be used which means that problem (2) (and
equivalently (3)) is replaced by

min
x
fG(x) :D F(x; y(x)) : x 2 Xg : (5)

C) The functions f (x, �), gi(x, �):Rm!R are convex
in y for each x 2 X.
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SCQ) For each x 2 X there exists a pointey(x) such that
g(x;ey(x)) < 0.

For convex problems, Slater’s condition SCQ) implies
that a feasible point y(x) to (1) is optimal if and only
if the Karush–Kuhn–Tucker conditions for this problem
are valid: There exists a point � 2 �(x; y(x)), where

�(x; y(x))

D
˚
� � 0 : ryL(x; y(x)) D 0; �>g(x; y(x)) D 0

�
(6)

with L(x, y) = f (x, y) + �> g(x, y) denoting the Lagrange
function of the problem (1).

Reformulation as a One-Level Problem

There are several methods to reformulate (3) as an
equivalent one-level problem.

The first possibility consists in replacing the lower
level problem (1) by its Karush–Kuhn–Tucker condi-
tions (6):

min
x;y

8̂
<̂
ˆ̂:
F(x; y) :

ryL(x; y) D 0;
�>g(x; y) D 0;
g(x; y) � 0;
� � 0; x 2 X

9>>=
>>;
: (7)

This is an optimization problem with constraints given
in part by a parametric complementarity condition.

A second possibility is to use a variational inequality
describing the set � (x). Let assumption C) be satisfied.
Then, the problem (3) is equivalent to

min
x;y

8<
:F(x; y) :

g(x; y) � 0; x 2 X;
r f (x; y)(z � y) � 0
8z : g(x; z) � 0

9=
; : (8)

Both approaches (7) and (8) lead to a so-called
mathematical program with equilibrium constraints
(MPEC) [17].
SSOC) For each x 2 X, for each y 2 � (x), for all � 2

�(x, y) and for all d 6D 0 satisfying

ry gi(x; y)d D 0 for all i : �i > 0;

the following inequality holds:

d>r2
y yL(x; y; �)d > 0:

If at an optimal solution y(x) of the convex problem
(1) at x D x the assumptions SCQ) and SSOC) are sat-
isfied, then y(x) is a strongly stable optimal solution in
the sense of M. Kojima [13]. This means that there ex-
ists an open neighborhood U of x and a uniquely deter-
mined continuous function y:U! Rm such that y(x) is
the uniquely determined optimal solution of (1) for all x
2 U. Hence, for convex problems (1), the assumptions
SCQ) and SSOC) imply that there is a uniquely deter-
mined implicit function y(x) describing the unique op-
timal solution of the problem (1) for all x 2 X. This
function can be inserted into the problem (2) which
results in the third equivalent one-level problem (5).
Problem (5) consists in minimizing the implicitly de-
termined, generally nonsmooth, nonconvex objective
function F(x, y(x)) on the set X. It has an optimal solu-
tion if the setX is compact or the function F(�, �) satisfies
some coercivity assumption [11].

Under suitable assumptions, the parametric com-
plementarity problem as well as the parametric varia-
tional inequality describing the constraints in a mathe-
matical program with equilibrium constraints also pos-
sess a uniquely determined continuous solution func-
tion [17]. Then, the implicit function approach can also
be used to investigate MPECs.

Properties of the Solution Function

For the investigation of bilevel programming problems
via (5) the knowledge of properties of the solution func-
tion y: X! Rm is needed. If the assumptions C), SCQ),
and SSOC) are satisfied, this function is continuous
[13], upper Lipschitz continuous [22], Hölder contin-
uous with exponent 1/2 [9] and directionally differen-
tiable [3,24]. Let z D (x; y(x)), I :D

˚
j : g j(z) D 0

�
,

J(�) := {j : �j > 0}. The directional derivative

y0(x; r) D lim
t!0C

t�1[y(x C tr) � y(x)]

of the function y(�) at a point x can be computed as the
unique optimal solution y0(x; r) of the convex quadratic
problem

1
2
d>r2

y yL(z; �)d C d>r2
x yL(z; �)r! min

d
;

rx gi (z)rCry gi (z)d D 0; 8 i 2 J(�);

rx gi (z)rCry gi (z)d � 0; 8 i 2 I n J(�);

(9)
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for some suitably chosen Lagrange multiplier

� 2 Argmax
	

frx L(z; �)r : � 2 �(z)g (10)

[3]. The correct choice of � is a rather difficult task since
it possibly belongs to the relative interior of some facet
of the polyhedral set �(z) [3]. For making the applica-
tion of these properties of the solution function easier,
a further assumption is used:
CR) For each pair (x; y), x 2 X; y 2 � (x), there is an

open neighborhood V � Rn × Rm of (x; y) such
that, for all I � I, the family of gradients {ry gi(x,
y) : i 2 I} has constant rank on V .

If the assumptions C), SCQ), SSOC), and CR) are sat-
isfied, the function y: X ! Rm is a piecewise continu-
ously differentiable function [21], i. e. it is continuous
and there exist an open neighborhood U of x and a fi-
nite number of continuously differentiable functions yi

U ! Rm, i = 1, . . . , k, such that y(�) is a selection of
the yi:

y(x) 2
˚
yi (x) : i D 1; : : : ; k

�
; 8 x 2 U:

The functions yi: U ! Rm describe locally optimal so-
lutions of auxiliary problems

min
y

˚
f (x; y) : g j(x; y) D 0; j 2 Ii

�
;

where the sets Ii, i = 1, . . . , k, satisfy the following two
conditions:
� there exists a vertex � 2 �(x; y(x)) such that J(�) �

Ii � I; and
� the gradients

˚
ry g j(x; y(x)) : j 2 Ii

�
are linearly

independent [14].
Let IS(x) denote the family of all sets Ii having these
two properties. Then, k is the cardinality of IS(x). The
functions yi: U! Rm are continuously differentiable at
x [7]. For the computation of the Jacobian of the func-
tion yi(�) at x D x the unique solution of a system of
linear equations is to be computed.

Moreover, the directional derivative y0(x; r) is equal
to the unique optimal solution of the quadratic problem
(9) for each optimal solution � of the linear problem
(10) [21]. For fixed x, it is a continuous, piecewise lin-
ear function of the direction r. The quadratic problem
(9) has an optimal solution if and only if � solves the
linear problem (10). Hence, for computing a linear ap-
proximation of the function y: X!Rm it is sufficient to

solve the parametric quadratic optimization problems
(9) for all vertices � 2 �(x; y(x)).

Piecewise continuously differentiable functions are
locally Lipschitz continuous [10]. The generalized Jaco-
bian [1] of the function y(�) satisfies

@y(x) � conv
˚
r yi (x) : i D 1; : : : ; k

�
(11)

[14]. Let gI(z) = (gi(z))i 2 I . If the assumption
FRR) For each x 2 X, for each vertex � 2 �(z) with

z D (x; y(x)), the matrix
 
r2

y yL(z; �) r>y gJ(	)(z) r
2
x yL(z; �)

ry gI(z) 0 rx gI(z)

!

has full row rank
is added to C), SCQ), SSOC), and CR), then equality
holds in (11) [5].

Optimality Conditions

Even under very restrictive assumptions, problem (5) is
a nondifferentiable, nonconvex optimization problem.
For the derivation of necessary and sufficient optimal-
ity conditions, various approaches of nondifferentiable
optimization can be used.

Conditions Using the Directional Derivative
of the Solution Function

Let X = {x: hk(x)� 0, k 2 K}, where hk 2 C1(Rn, R), k 2
K and K is a finite set. Generalizations of the following
results to larger classes of constraint sets are obvious.
Let x 2 X, y(x) 2 � (x), z D (x; y(x)). Let the assump-
tions C), SCQ), SSOC), and CR) as well as
MFCQ) There exists a direction d such that
rhk(x)d < 0 for all k 2 K :D fl : hl (x) D 0g

be valid. Then, if x is a locally optimal solution of the
problem (5) (and thus of the bilevel problem (2)), there
cannot exist a feasible direction of descent, i. e.

rx F(z)rCryF(z)y0(x; r) � 0 (12)

for all directions r satisfying rhk(x) � 0, k 2 K. By use
of the above approach for computing the directional
derivative of the solution function y(�), the verification
of this necessary optimality condition can be done by
solving a bilevel optimization problem of minimizing
the function (12) subject to the condition that y0(x; r)
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is an optimal solution of the problem (9). By replacing
problem (9) with its Karush–Kuhn–Tucker conditions
and applying an active index set strategy the following
condition is obtained: If x is a locally optimal solution
of the problem (2) then

v :D min f'(x; I) : I 2 IS(x)g � 0; (13)

where '(x; I) denotes the optimal objective function
value of the problem

rx F(z)rCryF(z)d ! min
d;r;˛

;

rx hk(x)r � 0; k 2 K;

r2
x yL(z; �)r Cr

2
y yL(z; �)d Cr

>
y gI(z)˛ D 0;

rx gi (z)rCry gi (z)d D 0; i 2 I;

rx gi (z)rCry gi (z)d � 0; i 2 I n I;

˛i � 0; i 2 I n J(�); krk D 1;

and � is the unique vertex of �(z) with J(�) � I [2].
Problem (13) is a combinatorial optimization problem
and can be solved by enumeration algorithms.

In [2] a more general necessary optimality condi-
tion is given even without assuming CR). Then, the di-
rectional derivative of the solution function is in gen-
eral discontinuous with respect to perturbations of the
direction and is to be replaced by the contingent deriva-
tive of the solution function.

In [17] it is shown that nonexistence of directions
of descent in the tangent cone to the feasible set is also
a necessary optimality condition forMPECs. In general,
this tangent cone is not convex. Using a so-called basic
constraint qualification it is shown that it is equal to the
union of a finite number of polyhedral cones. The re-
sulting condition is similar to (13). Dualizing this con-
dition, some kind of a Karush–Kuhn–Tucker condition
for MPECs is obtained.

It is also possible to obtain a sufficient optimality
condition by use of the directional derivative. Namely, if
for the optimal function value in (13) the strict inequal-
ity v > 0 holds then, for each c 2 (0, v), there exists " > 0
such that

F(x; y(x)) � F(x; y(x))C c kx � xk

for all x satisfying h(x)� 0 and kx � xk � " [2]. Neces-
sary and sufficient optimality conditions of second or-
der based on the implicit function approach (applied to
the more general MPEC formulation) are given in [17].

Conditions Using the Generalized Jacobian
of the Solution Function

By [1], the generalized differential of the function G(x)
:= F(x, y(x)) is equal to

@G(x) D conv
˚
rx F(z)CryF(z)! : ! 2 @y(x)

�
;

(14)

provided that the conditions C), SCQ), SSOC), and CR)
are satisfied. Hence, the application of the necessary
optimality conditions from Lipschitz optimization to
problem (5) leads to necessary optimality conditions
for the bilevel problem (2). Thus, if x is a locally op-
timal solution of the problem (2) and the assumptions
C), SCQ), SSOC), CR), and MFCQ) are satisfied, then
there exist Lagrange multipliers � i � 0, i 2 K, such that

0 2 @G(x)C
X

i2K

�ifrhi(x)g:

This is an obvious generalization of the necessary op-
timality condition given in [4], where no upper level
constraints in (2) appeared, and is also a special case
of the results in [19], where the general constraint set
x 2X in the upper level problem (2) together with more
restrictive assumptions for the lower level problem are
used. For the use of this necessary optimality condition
in computations the explicit description of the general-
ized Jacobian in (11) (with equality instead of inclusion)
is needed.

Solution Algorithms

The implicit function approach leads to the problem
(5) of minimizing a nondifferentiable, nonconvex, im-
plicitly determined function on a fixed set. Any algo-
rithm solving nonsmooth optimization problems can
be applied to this problem. Due to the structure of (5)
the computation of function values and derivative in-
formation for the objective function is expensive. Two
types of algorithms are proposed: descent and bundle
algorithms. The convergence proofs show that the algo-
rithms converge to points where the above optimality
conditions are satisfied, i. e. to solutions where no de-
scent direction exists respectively to Clarke stationary
points.
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Descent Algorithms

Let

X D fx : hk(x) � 0; k 2 Kg :

Descent algorithms are iterative methods which com-
pute a sequence of feasible points {xi}i 2 N by xi + 1 = xi +
ti ri, 8i, where ri is a feasible direction of descent and ti
is a stepsize. For bilevel problems a feasible direction of
descent is obtained by minimizing the function (12)

rx F(z)rCryF(z)y0(x; r)

subject to r being an inner direction of the cone of fea-
sible directions to X:

min
˛;r

˚
˛ : rx F(z)rCryF(z)y0(x; r) � ˛;

rhi(x)r � ˛; i 2 K; krk � 1
�
:

Inserting the Karush–Kuhn–Tucker conditions of the
quadratic optimization problem (9) for the computa-
tion of y0(x; r) and again using an active set strategy
this problem is converted into an equivalent combi-
natorial optimization problem. For the computation of
a stepsize, e. g., Armijo’s rule can be applied. Such an
algorithm is described in [6,8,17]. In [6] it is also in-
vestigated how this idea can be generalized to the case
when the lower level problem (1) is not assumed to have
a uniquely determined optimal solution for all values of
the parameter. In [17] this approach is applied to the
more general MPEC.

Bundle Algorithms

Let X = Rn. Different constraint sets can be treated by
use of approaches in [12]. As in descent algorithms, in
bundle algorithms for minimizing Lipschitz nonconvex
functions a sequence of iterates {xi}i 2 N with xi + 1 = xi +
tiri,8i, is computed. For computing a direction amodel
of the function to be minimized is used. In the pa-
per [23], the following bundle algorithm has been pro-
posed. Let two sequences of points {xi}kiD1, {z

i}kiD1 have
already been computed. Then, for minimizing a non-
convex function G(x), this model has the form

max
1�i�k

fv(zi )>d � ˛k;ig C
ukd>d

2
; (15)

where

˛k;i D max
n
G(xk) � v(zi )>(xk � zi ) � G(zi );

c0



xk � zi





o
;

v(zi) is a subgradient of the function G(x) at x = zi and
uk is a weight. If the direction computed by minimizing
the model function (15) realizes a sufficient decrease,
a serious step is made (i. e. tk = 1 is used). Otherwise,
either a short step (which means that tk is computed ac-
cording to a stepsize rule) or a null step (only the model
is updated by computing a new subgradient) is made.
For updating the model (15), in each iteration of the
bundle algorithm a subgradient of the objective func-
tion is needed. For its computation formula (14) can be
used.

The bundle algorithm is applied to problem (5) in
[4,18,20]. In [4], the lower level problem is not assumed
to have a uniquely determined optimal solution for
all parameter values. The Lipschitz optimization prob-
lem (5) is obtained via a regularization approach in the
lower level problem (1).

Numerical experience for solving bilevel problems
(in the formulation (2) as well as in the more general
MPEC formulation) with the bundle algorithm is re-
ported in [18,20].
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The bilevel programming (BP) problem is a hierarchical
optimization problem where a subset of the variables
is constrained to be a solution of a given optimization
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problem parameterized by the remaining variables. The
BP problem is a multilevel programming problem with
two levels. The hierarchical optimization structure ap-
pears naturally in many applications when lower level
actions depend on upper level decisions. The applica-
tions of bilevel and multilevel programming include
transportation (taxation, network design, trip demand
estimation), management (coordination of multidivi-
sional firms, network facility location, credit alloca-
tion), planning (agricultural policies, electric utility),
and optimal design.

In mathematical terms, the BP problem consists of
finding a solution to the upper level problem
8<
:
min
x;y

F(x; y)

s.t. g(x; y) � 0;

where y, for each value of x, is the solution of the lower
level problem:
8<
:
min
y

f (x; y)

s.t. h(x; y) � 0;

with x 2 Rnx, y 2 Rny, F, f : Rnx + ny ! R, g : Rnx + ny

! Rnu, and h : Rnx + ny ! Rnl (nx, ny, nu, and nl are
positive integers). The lower level problem is also re-
ferred as the follower’s problem or the inner problem.
In a similar way, the upper level problem is also called
the leader’s problem or the outer problem. One could
generalize the BP problem in different ways. For in-
stance, if either x or y or both are restricted to take inte-
ger values we would obtain an integer BP problem [22].
Or, if we replace the lower level problem by a varia-
tional inequality we would get a generalized BP prob-
lem [15].

For each value of the upper level variables x, the
lower level constraints h(x, y) � 0 define the constraint
set˝(x) of the lower level problem:

˝(x) D fy : h(x; y) � 0g :

Then, the setM(x) of solutions for the lower level prob-
lem is given by minimizing the lower level function f (x,
y) for all values in˝(x) of the lower level variables y:

M(x) D fy : y 2 argmin f f (x; y) : y 2 ˝(x)gg :

Given these definitions the BP problem can be re-
formulated as:
8̂
<̂
ˆ̂:

min
x;y

F(x; y)

s.t. g(x; y) � 0;
y 2 M(x):

The feasible set

f(x; y) : g(x; y) � 0; y 2 M(x)g

of the BP problem is called the induced or inducible re-
gion. The induced region is usually nonconvex and, in
the presence of upper level constraints, can be discon-
nected or even empty. In fact, consider the following BP
problem
8<
:
min
x;y

x � 2y

s.t. �x C 3y � 4 � 0;

where y, for each value of x, is the solution of:
8̂
<̂
ˆ̂:

min
y

x C y

s.t. x � y � 0;
�x � y � 0:

For this problem we have:

˝(x) D fy : y � jxjg

and

M(x) D jxj :

Thus, the induced region is given by:

f(x; y) : � x C 3y � 4 � 0; y 2 M(x)g
D f(x; y) : y D �x; �1 � x � 0g
[ f(x; y) : y D x; 0 � x � 2g ;

which is nonconvex but connected. If the upper level
constraints were changed to

� x C 3y � 4 � 0;

� yC
1
2
� 0;

then the induced region would become
�
(x; y) : y D �x; �1 � x � �

1
2

	

[

�
(x; y) : y D x;

1
2
� x � 2

	
;
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which would be a disconnected set. In either case the
BP problem has two local minimizers (�1, 1) and (2, 2)
and one global minimizer (�1, 1).

This simple example illustrates many features of
bilevel programming like the nonconvexity and the dis-
connectedness of the induced region and the existence
of different local minimizers. In this example the in-
duced region is compact. In fact, compactness of the in-
duced region is important for the existence of a global
minimizer and can be guaranteed under appropriate
conditions [9].

The original formulation for bilevel programming
appeared in 1973, in a paper authored by J. Bracken
and J. McGill [5], although it was W. Candler and R.
Norton [7] who first used the designation bilevel and
multilevel programming. However, it was not until the
early 1980s that these problems started receiving the at-
tention they deserve. Motivated by the game theory of
H. Stackelberg [20], several authors studied bilevel pro-
gramming intensively and contributed to its prolifera-
tion in the mathematical programming community.

The theory of bilevel programming focuses on
forms of optimality conditions and complexity results.
A number of authors ([8,16], just to cite a few) have
established original forms of optimality conditions for
bilevel programming by either considering reformula-
tions of the BP problem or by making use of nondif-
ferentiable optimization concepts or even by appealing
to the geometry of the induced region. The complex-
ity of the problem has been addressed by a number
of authors. It has been proved that even the linear BP
problem, where all the involved functions are affine, is
a strongly NP-hard problem [10]. It is not hard to con-
struct a linear BP problem where the number of local
minima grows exponentially with the number of vari-
ables [6]. Other theoretical results of interest have been
established connecting bilevel programming to other
fields in mathematical programming. For instance, one
can show that minimax problems and linear, integer,
bilinear and quadratic programming problems are spe-
cial cases of BP. Other classes of problems different
from but related to BP are multi-objective optimization
problems and static Stackelberg problems. See [21] for
references in these topics.

Many researchers have designed algorithms for the
solution of the BP problem. One class of techniques
consists of extreme point algorithms and has been

mostly applied to the linear BP problem because for this
problem, if there is a solution, then there is at least one
global minimizer that is an extreme point of ˝ [17].
Two other classes of algorithms are branch and bound
algorithms and complementarity pivot algorithms that
have in common the fact that exploit the complemen-
tarity part of the necessary optimality conditions of the
lower level problem (assumed convex in y so that the
necessary optimality conditions, under an appropriate
constraint qualification, are also sufficient). These two
classes of algorithms have been applied mostly to the
case where the upper level is linear and the lower level
is linear or convex quadratic (see for instance [10] and
[12]) and, as the extreme point algorithms, find a global
minimizer of the BP problem. On the other hand, the
algorithms designed to solve nonlinear forms of BP ap-
peal to descent directions (see, among others [14] and
[18]) and penalty functions (for instance [1]) and are
expected to find a local minimizer.

For additional material about bilevel programming,
see the books [3,19], the survey papers [2,4,11,13,23],
and the bibliography review [21].
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Decision-making in large, hierarchical organizations
rarely proceeds form a single point of view. Two of the
most prominent aspects of such organizations are spe-
cialization closely followed by coordination. The for-
mer arises from a practical need to isolate individual
jobs or operations and to assign them to specialized
units. This leads to departmentalization; however, to
accomplish the overall task, the specialized units must
be coordinated. The related process divides itself natu-
rally into two parts:
i) the establishment of individual goals and operating

rules for each unit; and
ii) the enforcement of these rules within the work en-

vironment.
The first deals with the selection of appropriate divi-
sional or lower level performance criteria and, more
generally, the selection of the modes of coordination
and control. The second relates to the choice of coor-
dination inputs.

An important control variable in the theory of de-
partmentalization is the degree of self-containment of
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the organization units. A unit is self-contained to the
extent and degree that the conditions of carrying out
its activities are independent of what is done elsewhere
in the system. The corporate or higher level unit is
then faced with the coordination problem of favorably
resolving the divisional unit interactions. Mathemati-
cal programming has often been used as the basis for
modeling these interactions with decomposition tech-
niques providing solutions to problems of large scale
(see, e. g., [9]). The central idea underlying decompo-
sition techniques is very simple and can be envisioned
as the following algorithmic process: top management,
with its set of goals, asks each division of the company
to calculate and submit an optimal production plan as
though it were operating in isolation. Once the plans
are submitted, they are modified with the overall bene-
fit of the company in mind. Marginal profit figures are
used to successively reformulate the divisional plans at
each stage in the algorithm. An output plan ultimately
emerges which is optimal for the company as a whole
and which therefore represents the solution to the orig-
inal programming problem.

Although this procedure attempts to mimic corpo-
rate behavior it fails on two counts. The first relates
to the assumption that it is possible to derive a single
objective or utility function which adequately captures
the goals of both top management and each subordi-
nate division. The second stems from lack of commu-
nications among the components of the organization;
at an intermediary stage of the calculations there is no
guarantee that each division’s plan will satisfy the cor-
porate constraints. In particular, if the production of
some output by division k imposes burdens on other
divisions by using up a scarce company resource, or by
causing an upward shift in the cost functions pertaining
to some other company operation, division k’s calcula-
tion is likely to lead it to overproduce this item from
the point of view of the company because the costs to
other divisions will not enter its accounts. This is the
classical problem of external diseconomies. Similarly, if
one of division k’s outputs yields external economies
where a rise in its production increases the profitabil-
ity of other divisions, division k may (considering just
its own gains in its calculations) not produce enough
of this product to maximize the company’s profits as
a whole. This may result in a final solution that does
not realistically reflect the production plan that proba-

bly would have been achieved had each division been
given the degree of autonomy it exercises in practice.

Another way of treating the multilevel nature of
the resource allocation problem is through goal pro-
gramming. T. Ruefli [11] was the first to apply this
technique by proposing a generalized goal decompo-
sition model. Others expanded on his work develop-
ing models capable of representing a wide range of
operational characteristics including informational au-
tonomy, interdependent strategies, and bounded ra-
tionality or individual goals. Combinations of these
models have been used to solve problems related to
government regulation, distribution, and control [9]. In
[3], J.F. Bard presents an approach that derives from
the complementary strategies of two-stage optimization
[7], � Bilevel linear programming, [10] and equilib-
rium analysis [13]. Decision-making between levels is
assumed to proceed sequentially but with some amount
of independence to account for the divergence of cor-
porate and subordinate objectives. At the divisional
level each unit simultaneously attempts to maximize its
own production function and, in so doing, produces
a balance of opposing forces. An example based on an
integrated paper company operating three divisions is
given to illustrate the differences between centralized
and decentralized control. The corporate unit has little
direct control over divisional schedules but may set in-
ternal transfer prices which affect production capacity
and profits.

Multilevel Model

A distinguishing characteristic of multilevel systems is
that the decision maker at one level may be able to influ-
ence the behavior of a decision maker at another level
but not completely control his actions. In addition, the
objective functions of each unit may, in part, be deter-
mined by variables controlled by other units operating
at parallel or subordinate levels. For example, policies
affected by corporate management relating to resource
allocation and benefits may curtail the set of strate-
gies available to divisional management. In turn, po-
lices adopted at the lower levels affecting productivity
and marketing may play a role in determining overall
profitability and growth. W.F. Bialas and M.H. Karwan
[7] have noted the following common features of mul-
tilevel organizations:
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1) interactive decision-making units exist within a pre-
dominately hierarchical structure;

2) each subordinate level executes its policies after, and
in view of, decisions made at a superordinate level;

3) these extramural effects enter a decision maker’s
problem through his objective function and feasible
strategy set.

The need for specialization and decentralization has
traditionally been met by the establishment of profit
centers. In this context, divisions or departments are
viewed as more or less independent units charged with
the responsibility of operating in the best possible man-
ner so as to maximize profit under the given con-
straints imposed by top management. The problem of
decentralization is essentially how to design and impose
constraints on the department units so that the well-
being of the overall corporation is assured. The tradi-
tional way to coordinate decentralized organizations is
by means of the pricing mechanism; coordination is de-
signed by analogy with the operation of a free market or
competitive economy. Exchange of products between
departments is allowed and internal prices are specified
for the exchange commodities. The problem of effective
decentralization reduces to the selection of the internal
prices.

The framework presented in this article is an exten-
sion of the bilevel programming problem introduced in
� Bilevel linear programming, and embodies a corpo-
rate management unit at the higher level and M divi-
sions or subordinate units at the lower level. The latter
may be viewed as either separate operating divisions of
an organization or coequal departments within a firm,
such as production, finance, and sales. This structure
can be extended beyond two levels (e. g., see [4,9]) with
the realization that attending behavioral and opera-
tional relationships becomemuchmore difficult to con-
ceptualize and describe.

To formulate the problem mathematically, suppose
the higher level decision maker wishes to maximize his
objective function F and each of theM divisions wishes
to maximize its own objective function f i. Control of
the decision variables is partitioned among the units
such that the higher level decision maker may select
a vector x0 2 S0 � Rn0 and each lower level decision
maker may select a vector xi 2 Si � Rni i = 1, . . . , M.
Letting x � (x1, . . . , xM) and n =

PM
i = 1 ni, in the most

general case we have F, f 1, . . . , f M : Rn! R1. It shall be

assumed that the corporate unit has the first choice and
selects a strategy x0 2 S0, followed by theM subordinate
units who select their strategies xi 2 Si, simultaneously.
In addition, the choice made at the higher level may af-
fect the set of feasible strategies available at the lower
level, while each lower-level decision maker may influ-
ence the choices available to his peers. The strategies
sets will be given explicitly by

S0 D
˚
x0 : g(x0; x0) � 0

�
;

Si D
n
xi : g(xi ; xi ) � 0

o
; i D 1; : : : ;M;

where xi � (x0; x1; : : : ; xi�1; xiC1; : : : ; xM) and gi: Rn

! Rmi , i = 1, . . . ,M.
To assure that the problem is well posed, it is com-

mon to assume that all functions are twice continu-
ously differentiable and that the sets Si, i = 0, . . . , M,
are nonempty and compact; i. e., the ith unit always has
some recourse. The bilevel multidivisional program-
ming problem (BMPP) can now be defined:

max
x0

F(x0; x0); (1)

s.t. g0(x0; x0) � 0; (2)

max
x i

f i(xi ; xi ); i D 1; : : : ;M; (3)

s.t. gi (xi ; xi ) � 0; (4)

When M = 0, problem (1)–(4) reduces to a standard
mathematical program; when M = 1 a bilevel program
results; when (1) is removed an equilibrium program-
ming problem remains [13]. A solution to the latter
is often taken as an equilibrium point; call it xE D
(xi ; x i), where xi solves subproblem (3)–(4), i = 1, . . . ,
M, for xi given. Thus, xE represents a point of stability.
No incentive exists at xE for any of the divisions to de-
viate from xi because each has optimized its individual
objective function. For the linear BMPP, results simi-
lar to those presented for the linear bilevel program-
ming problem in � Bilevel linear programming hold
(see [3]).

Applications

Most applications of bilevel programming, including
bilevel multidivisional programming, that have ap-
peared in the literature have dealt with central eco-
nomic planning at the regional or national level. In this
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context, the government is considered the leader and
controls a set of policy variables such as tax rates, sub-
sidies, import quotas, and price supports (e. g., see [5]
and accompanying papers). The particular industry tar-
geted for regulation is viewed as the follower. In most
cases, the follower tries to maximize net income subject
to the prevailing technological, economic, and govern-
mental constraints. Possible leader objectives include
maximizing employment, maximizing production of
a given product, or minimizing the use of certain re-
sources.

The early work of W. Candler and R. Norton [8],
focusing on agricultural development in northern Mex-
ico, illustrates how bilevel programming can be used
to analyze the dynamics of a regulated economy. Simi-
larly, J. Fortuny-Amat and B. McCarl [10] present a re-
gional model that pits fertilizer suppliers against local
farm communities, while E. Aiyoshi and K. Shimizu [1]
and Bard [3] discuss resource allocation in a decentral-
ized firm. In the case of the latter, a central unit supplies
resources to its manufacturing facilities whichmake de-
cisions concerning productionmix and output. Organi-
zational procedures and conflicting objectives over effi-
ciency, quality and performance lead to a hierarchical
formulation. In a work related to the original Stack-
elberg model of a single leader-follower oligopolistic
market in which a few firms supply a homogeneous
product, H.D. Sherali [12] presents an extension to N
leader firms and discusses issues related to the exis-
tence, uniqueness, and derivation of equilibrium so-
lutions. His analysis provides sufficient conditions for
some useful convexity and differentiability properties of
the followers’ reaction curves.

In a recent study [5], the French government has
used bilevel programming to examine the economics of
promoting biofuel production from farm crops within
the petro-chemical industry. The stumbling block to
this policy is that industry’s costs for producing fuels
from hydrocarbon-based raw materials is significantly
less than it is for producing biofuels. Without incentives
in the form of tax credits, industry will not buy farm
output for conversion. The problem faced by the gov-
ernment is to determine the level of tax credits for each
final product or biofuel that industry can produce while
minimizing public outlays. A secondary objective is to
realize some predefined level of land usage for nonfood
crops. Industry is assumed to be neutral in this scenario

and will produce any biofuel that is profitable. In the
model, the agricultural sector is represented by a subset
of farms in an agriculturally intensive region of France
and is a profit maximizer. It will use the land available
for nonfood crops only as long as the revenue gener-
ated from this activity exceeds the difference between
the set-aside payments now received directly from the
government and the maintenance costs incurred un-
der the current support program. The resultant bilevel
model contains 3628 variables and 3230 constraints at
the lower level, and 8 variables and 10 constraints at the
upper level. Both objective functions are quadratic and
all constraints are linear.

In an earlier effort, G. Anandalingam and V. Ap-
prey [2] investigated the problem of conflict resolution
by postulating the existence of an arbitrator who acts as
the leader in a Stackelberg game. They presented mod-
els for different configurations of the resulting multi-
level linear programs and proposed a series of solution
algorithms. The models were illustrated with an appli-
cation involving a water conflict problem between India
and Bangladesh; it is shown that both parties could gain
by the arbitration of an international agency such as the
United Nations.

Recently, researchers have tried to apply bilevel
models to the network design problem arising in trans-
portation and telecommunications systems. In the ac-
companying formulation, a central planner controls in-
vestment costs at the system level, while operational
costs depend on traffic flows which are determined by
the individual user’s route selection. Because users are
assumed to make decisions so as to maximize their in-
dividual utility functions, their choices do not necessar-
ily coincide (and may, in fact, conflict) with the choices
that are optimal for the system. Nevertheless, the cen-
tral planner can influence the users’ choices by improv-
ing some links to make them relatively more attractive
than the others. In deciding on these improvements, the
central planner tries to influence the users’ preferences
in such a way that total costs are minimized. The par-
tition of the control variables between the upper and
lower levels naturally leads to a bilevel formulation.

A conceptual framework for the optimization of
Tunisia’s inter-regional highways was proposed in [6].
The accompanying formulation included 2683 vari-
ables (2571 at the lower level) and 820 constraints (all
at the lower level); the follower’s problem was divided
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into two separate subproblems as a direct consequence
of the bilevel approach. The first centered on the user-
optimized flow requirement (user-equilibrium) and the
second on the nonconvex improvement functions. Be-
cause none of the standard algorithmic approaches
could handle problems of this size, a specialized algo-
rithm was devised to deal with each of the two lower-
level problems separately. At each iteration, the algo-
rithm tries to find a better compromise with the user,
while including the smallest possible number of non-
convex improvement functions to get the exact solu-
tion with the minimum computational effort. Despite
the large number of variables and constraints, optimal-
ity was achieved.

Solutions

An assessment of existing algorithms for solving vari-
ous classes of bilevel programs indicates that exact solu-
tions can only be guaranteed for problem instances with
up to a few hundred variables and constraints, and then
only for the linear case. When nonlinear (nonconvex)
functions are included in the model, virtually all algo-
rithms stumble in the presence of more than a handful
of variables and constraints. The ability of those work-
ing in the field to formulate problems far outstrips the
capacity of current techniques to solve them optimally.

When faced with the problem of actually having
to provide solutions to large scale formulations, re-
searchers have inevitably fallen back on heuristics and
ad hoc procedures. Simulated annealing, tabu search
and genetic algorithm-based approaches are examples
of the more formal techniques adapted, at least for the
linear case. In many instances, code developers were
able to demonstrate global optimality by comparing re-
sults with exact methods. The conclusion that can be
drawn from these observations and related experience
is that the need for efficient algorithms remains undi-
minished. This is the primary reason why realistic ap-
plications continue to lag behind theory and the devel-
opment new codes.
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The bilevel programming problem (abbreviation: BPP)
is a mathematical program in two variables x and � ,
where x = x°(�) is an optimal solution of another pro-
gram. Specifically, BPP can be formulated in terms of
two ordered objective functions ' and � as follows:

8<
:
min
(x;
)

'(x; �)

s.t. f i(x; �) � 0; i 2 P;
(1)

where x = x°(�) is an optimal solution of the program
8<
:
min
(x)

� (x; �)

s.t. g j(x; �) � 0; j 2 Q:
(2)

Here the functions ', � , f i, gj : Rn × Rm ! R, i 2
P, j 2 Q, are assumed to be continuous; x 2 Rn, �
2 Rm; P, Q are finite index sets. Program (1) is of-
ten called the upper (first level, outer, leader’s) prob-
lem; then (2) is the lower (second level, inner, follower’s)
problem. Many mathematical programs, such as min-
imax problems, linear integer, bilinear and quadratic

programs, can be stated as special cases of bilevel pro-
grams. In view of the so-called Reduction Ansatz, devel-
oped in [18,44], semi-infinite programs can be consid-
ered as special cases of bilevel programs. For stability
and deformations of these see, e. g., [20,21]. Problems
appearing in such seemingly unrelated areas as best ap-
proximation problems and data envelopment analysis
can be viewed as bilevel programs. In the former, one is
often interested in finding a least-norm solution in the
set of all best approximate solutions, while, in the latter,
one wants to rank, or decrease the number of, efficient
decision making units by a ‘post-optimality analysis’.
For history of bilevel programs, reviews of numerical
methods and applications, especially for connections
with von Stackelberg games ofmarket economy see, e. g.,
[14,22,30,39]. In this contribution we will focus only on
optimality conditions and duality.

Basic Difficulties

The study of bilevel programming problems requires
some familiarity with point-to-set topology; see, e. g.,
[1,2,6,15]. Since the lower level optimal solution map-
ping x° : �x°(�) is a point-to-set mapping (rather than
a vector function), the optimal value function of the
BPPmay be discontinuous. This is illustrated by the fol-
lowing example:

Example 1 Consider the bilevel program with the up-
per level objective ' (x, �) = �x1/� , the lower level ob-
jective � (x, �) = � x1 � x2, and the lower level feasible
set determined by x1 + � , x2 � 1, x1 � 0, x2 � 0. The
lower level optimal solutions x = x°(�) are the segment
{x1 + x2 = 1, x1 � 0, x2 � 0}, for � = 1, and the single-
ton [0, 1/�], when 0 < � < 1. The corresponding upper
level optimal solutions, i. e., the BPP optimal solutions,
are the points [1, 0] and [0, 1/�], respectively. Here the
corresponding optimal value of the BPP jumps from -1
to 0, as � assumes the value 1.

Note that the lower level feasible set mapping, in Exam-
ple 1, is lower semicontinuous (open) at � = 1. Hence
we conclude that discontinuity of the optimal value can
occur even if the lower level model is stable.

The fact that the set of optimal solutions is gener-
ally discontinuous in a stable situation is well known in
linear programming. It may manifest itself in a chaotic
behavior of the optimal solutions, but not the optimal
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value, when the program is solved by computer repeat-
edly with small perturbations of data; see � Nondiffer-
entiable optimization: Parametric programming. The
topological loss of continuity is generally unrelated to
the conditioning, which describes numerical sensitivity
of the solutions relative to roundoff errors. In particu-
lar, a linear program with an ill-conditioned coefficient
matrix can be stable.

Another difficulty results from the fact that the op-
timal solutions mapping x° : � x°(�) is not generally
closed. Hence a BPP may not have an optimal solution
even if the feasible set of the lower program is compact:

Example 2 Consider the bilinear BPP:

min x C �;

where x = x°(�) solves
8̂
<̂
ˆ̂:

min �x;
s.t. x� D 0;

0 � x � 1; 0 � � � 1:

Here the optimal solutions mapping is the function
x°(�) = 0, if � > 0, and x°(0) = 1, if � = 0. The feasi-
ble set of the lower level problem is a unit square in the
(� , x)-plane, while the feasible set of the BPP is a dis-
joint noncompact set consisting of the segment 0 < � �
1 and the point [0, 1]. Since the origin is not a feasible
point, the BPP does not have a solution. Note that the
function x°(�) is not continuous here because the lower
level feasible set mapping is not lower semicontinuous
at the origin, i. e., the lower level problem is unstable.

Optimality

A popular approach to the study of optimality in BPP
is to reduce the program to a one-level program. This
can be done as follows: Denote the optimal value of the
lower level program (2) by� °(�) and introduce the new
constraint f °(x, �) =� (x, �)�� °(�). Now the BPP can
be reformulated as

8̂
<̂
ˆ̂:

min
(x;
)

'(x; �)

s.t. f i(x; �) � 0;
i 2 R D f0g [ P:

(3)

Difficulties with this formulation generally include dis-
continuity of the leading constraint f ° and the lack of

classical constraint qualifications. The latter can be han-
dled in convex case using the results on optimality con-
ditions from, e. g., [5,15,47]. One of the first attempts
to formulate optimality conditions for bilevel program-
ming problems, using (3), was made in [2]. However
a counterexample to these conditions was given in
[4,12,17], also see [10]. The one-level approach leads,
under assumptions that guarantee Lipschitz continuity
of the optimal value function, to necessary conditions
of the Fritz John type. Under a partial calmness condi-
tion, and a constraint qualification for the lower level
problem, one obtains conditions of the Karush–Kuhn–
Tucker type. The concept of partial calmness is equiv-
alent to the ‘exact penalization’ and it is satisfied, in
particular, for the minimax problem and if the lower
level problem is linear. This approach in a nonsmooth
framework is used in, e. g., [11] and [46]. The relation-
ship between the BPP and an associated exact penalty
function was explored also in [7] to derive other types
of necessary and sufficient optimality conditions. Other
approaches to optimality conditions, that use nons-
mooth analysis, include [13,19,32]. Another approach
to reducing the BPP to a single-level program is to re-
place the lower level problem by an optimality condi-
tion. This is usually done in formulations of numerical
methods; see, e. g., [42]. There are also approaches that
use the specific geometry of BPP. One of these applies
properties of the steepest descent directions to BPP and
it yields a necessary condition for optimality, see [33].
Adaptations of the well-known first and second order
optimality conditions of mathematical programming to
BPP appeared in [40]. Checking local optimality for lin-
ear BPP is NP-hard; see [41]. Examples of linear BPPs
with an exponential number of local minima can be
generated by a technique proposed in [9].

Many authors have studied links between two-
objective and bilevel programming, looking for condi-
tions that guarantee that the optimal solution of a given
BPP be Pareto optimal for both upper and lower level
objective functions, and vice versa; e. g., [28,29,30,37].
The idea is to find an optimal solution of the BPP by
solving a bi-objective program. It was shown in [43]
that an optimal solution in linear BPP may not be
a Pareto optimum for the objective function of the outer
program and the optimal value function of the lower
program, contrary to a claim made in [38]. The authors
of [43] also give a sufficient condition for the implica-
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tion to hold. If an optimal solution exists, in the linear
BPP case with a compact feasible set at the lower level,
then at least one optimal solution is assumed at a ver-
tex of this set, see [3]. Necessary conditions for opti-
mality can also be stated using marginal value formu-
las for optimal value functions. However, these formu-
las can not assume a usual constraint qualification in
order to be applied to the formulation (3). One such
formula in parametric convex programming is given in
[48] and, under slightly different assumptions, in [49].
In the latter, it is used in the context of data envel-
opment analysis to rank efficiently administered uni-
versity libraries by their radii of rigidity. Existence of
optimal solutions is studied in [16,23,24]; constraints
in [24] are defined by an implicit variational problem.
Both, existence and stability of solutions and approx-
imate solutions are studied in [27]. Optimality condi-
tions are important for checking optimality, formula-
tion of duality theories, and for numerical methods.

Parametric Approach To Optimality

A parametric approach to characterizing global and lo-
cal optimal solutions in convex BPP can be described as
follows: Denote, for every � , the optimal value of (3) by

'ı(�) D

8<
:
min
(x)

'(x; �)

s.t. f i(x; �) � 0; i 2 R D f0g [ P:

Also, denote the feasible set in the x variable by F(�)
= {x : f i(x, �) � 0, i 2 R, and the feasible set in the �
variable by

F D f� 2 Rm : F(�) ¤ ;g :

A parametric formulation of the BPP is

(
min 'ı(�)

s.t. � 2 F:
(4)

Here we optimize the optimal value of the outer prob-
lem over the feasible set in the variable � , considered
as a ‘parameter’. The problem of the form (4) is a ba-
sic problem of parametric programming, e. g., � Non-
differentiable optimization: Parametric programming.

It has been extensively studied in the literature from
both the theoretical and the numerical side. In particu-
lar, various optimality conditions have been formulated
for it, e. g., in the context of input optimization; see [48].
The key observation in the parametric approach is that,
under the assumption that the feasible set of the lower
program is compact, every �� that globally solves the
parametric program (4), with the corresponding opti-
mal solution x� of the program (3), is a global optimal
solution of the bilevel program, and vice versa. How-
ever, under the compactness assumption, both sets can
be empty (as demonstrated by Example 2). A necessary
and sufficient condition for global optimality in convex
BPP can be given over a ‘region of cooperation’ in terms
of the existence of a saddle point; see [15]: Given a can-
didate for global optimality �� and the set of all optimal
solutions at the lower level {x° (�)}, � 2 F. Denote by
K(��) the region in the �-space, where the minimal in-
dex set of active constraints R= (�) = {i 2 R : x 2 {x°(�)}
) f i (x, �) = 0} does not strictly increase, i. e., K(��) =
{� 2 F : R= (�)� R=(��)}. Then the region of coopera-
tion at �� is defined as the set {(� , x)} : � 2 K(��), x 2
F(�)}. One can characterize global optimality on the en-
tire feasible set for linear BPP, and also for convex BPP
provided that the constraints are ‘LFS functions’, e. g.
[35,48]. These functions form a large class of convex
functions that includes all linear and polyhedral func-
tions. Characterizations of global optimality are sim-
plified under the so-called sandwich condition. This is
a two-sided global inclusion involving the set of opti-
mal solutions of the inner program, e. g., [15]. Charac-
terizations of locally optimal parameters �� for convex
(4) require lower semicontinuity of the optimal solu-
tions mapping x°. The results apply to the convex BPP
with the additional assumption that the corresponding
optimal solution x� 2 {x° (��} is unique; see, e. g., [15].
The uniqueness assumption in the characterization of
local optimality cannot be replaced by the requirement
that the set {x°(��)} be compact. The following example
illustrates a situation where a local optimum of the BPP
can not be recovered by the parametric approach.

Example 3 Consider the program min '(x, �) = x�2,
where x solves min � (x, �) = 0, subject to � 1� x, � �
1. Here x� = 1, �� = 0 is a local minimum of the bilevel
program. But '°(�) = � �2 and �� = 0 is not its local
minimum; in fact, it is an isolated global maximum!
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Duality

Duality theories for bilevel programming problems can
be formulated by adjusting the duality theories of math-
ematical programming (see, e. g., [34]) to the single-
objective model (3). Let us outline how this works using
a parametric approach; we follow the ideas from [15].
Instead of a single ‘dual’ one obtains a collection of sev-
eral ‘subduals’, each closely related to the original (pri-
mal) program. The number of these subduals is cardi-
nality of the set

˘ D f˝ � R : ˝ D RD(�) for some � 2 Fg :

First, with each˝ �˘ , one associates the feasible sub-
region S˝ = {� 2 F : R=(�) =˝}, the Lagrangian L˝ (x,
� ; u) = ' (x, �) +

P
i 2 R \˝ ui f i (x, �), and the point-

to-set mapping F˝ : F! Rn defined by F˝ (�) = {x : f i

(x, �) � 0, i 2˝}. The corresponding subdual function
is

˚˝(u) D inf fL˝(x; � ; u) : � 2 S˝ ; x 2 F˝(�)g

and the subdual (D,˝) is defined as

sup
n
˚˝ (u) : u 2 [S˝ ! RcardRn˝

C ]
o
: (5)

Here u belongs to the set of all nonnegative vector
functions defined on S˝ . The duality results, stated for
partly convex programs in, e. g., [47] can be reformu-
lated for the outer convexmodel and hence BPP. In par-
ticular, if, for some˝ �˘ , u� 2 [S˝! RcardRn˝

C ], and
an optimal solution x� of the inner program for some
fixed �� 2 S˝ , one has ˚˝(u�) = ' (x�, ��), then u�

solves the subdual (5) and �� solves (4) on S˝ .
If optimization of the optimal value function in (4)

is performed from some fixed ‘initial’ � , but using only
parameter paths that preserve continuity of the optimal
solutions mapping of the lower problem, then we talk
about stable BPP. This approach, in the convex case,
guarantees that the optimal solutions mapping in BPP
is closed and that the optimal value function is continu-
ous, thus removing the two basic difficulties mentioned
in Section 1. However, the optimal solutions now de-
pend on the initial choice of the parameter and on
a particular class of stable paths used. Stable paramet-
ric programming has been studied in [48], stable BPP is
mentioned (but not studied) in [15]; see [36].
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Introduction

A function f (x; y) is called bilinear if it reduces to a lin-
ear one by fixing the vector x or y to a particular value.
In general, a bilinear function can be represented as fol-
lows:

f (x; y) D aTx C xTQy C bTy ;

Where a; x 2 Rn , b; y 2 Rm , and Q is a matrix of
dimension n � m. It is easy to see that bilinear func-
tions compose a subclass of quadratic functions. We
refer to optimization problems with bilinear objective
and/or constraints as bilinear problems, and they can
be viewed as a subclass of quadratic programming.

Bilinear programming has various applications in
constrained bimatrix games, Markovian assignment
and complementarity problems. Many 0–1 integer pro-
grams can be formulated as bilinear problems. An ex-
tensive discussion of different applications can be found

in [5]. Concave piecewise linear network flow prob-
lems, fixed charge network flow problems, and multi-
item dynamic pricing problems, which are very com-
mon in the supply chain management, can be also
solved using bilinear formulations (see, e. g., [7,8,9]). It
should be noted that more general convex/non-convex
optimization problems can be reduced to a bilinear
problem as well, and different reduction techniques can
be found in [1,2,10].

Formulation

Despite a variety of different bilinear problems, most of
the practical problems involve a bilinear objective func-
tion and linear constraints, and theoretical results are
derived for those cases. In our discussion we consider
the following bilinear problem, which we refer to as BP.

min
x2X;y2Y

f (x; y) D aTx C xTQy C bTy ;

where X and Y are nonempty polyhedra. The BP for-
mulation is also known as a bilinear problemwith a dis-
joint feasible region because the feasibility of x (y) is in-
dependent form the choice of the vector y (x).

Equivalence to Other Problems

Below we discuss some theoretical results, which reveal
the equivalence between bilinear problems and some of
concave minimization problems.

Let V(x) and V(y) denote the set of vertices of X
and Y , respectively, and g(x) D miny2Y f (x; y) D aTx
C miny2Y fxTQy C bTyg. Note that miny2Y f (x; y)
is a linear programm. Because the solution of a lin-
ear problem attains on a vertex of the feasible region,
g(x) D miny2Y f (x; y) D miny2V (Y) f (x; y). Using
those notations, the BP problem can be restated as

min
x2X;y2Y

f (x; y) D min
x2X
fmin
y2Y

f (x; y)g

D min
x2X
f min
y2V (Y)

f (x; y)g D min
x2X

g(x) : (1)

Observe that the set of vertices of Y is finite, and for
each y 2 Y , f (x; y) is a linear function of x; therefore,
function g(x) is a piecewise linear concave function of x.
From the later it follows that BP is equivalent to a piece-
wise linear concave minimization problem with linear
constraints.
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It also can be shown that any concave minimiza-
tion problem with a piecewise linear separable objec-
tive function can be reduced to a bilinear problem. To
establish this relationship consider the following opti-
mization problem:

min
x2X

X
i

�i(x i ) ; (2)

whereX is an arbitrary nonempty set of feasible vectors,
and �i(x i ) is a concave piecewise linear function of only
one component xi, i. e.,

�i (x i) D

8̂
ˆ̂<
ˆ̂̂:

c1i x i C s1i (D �
1
i (x i )) x i 2 [�0i ; �

1
i )

c2i x i C s2i (D �
2
i (x i )) x i 2 [�1i ; �

2
i )

� � � � � �

cni
i x i C sni

i (D �ni
i (x i )) x i 2 [�ni�1

i ; �
ni
i ]

;

with c1i > c2i > : : : > cni
i . Let Ki D f1; 2; : : : ; nig.

Because of the concavity of �i(x i ), the function can be
written in the following alternative form

�i (x i) D min
k2Ki
f�k

i (x i)g D min
k2Ki
fcki x i C ski g : (3)

Construct the following bilinear problem:

min
x2X;y2Y

f (x; y) D
X
i

X
k2Ki

�k
i (x i)yki

D
X
i

X
k2Ki

(cki x i C ski )y
k
i (4)

where Y D [0; 1]
P

i jKi j. The proof of the following the-
orem follows directly from Equation (3), and for details
we refer to the paper [7].

Theorem 1 If (x�; y�) is a solution of the problem (4)
then x� is a solution of the problem (2).

Observe that X is not required to be a polytop. If X is
a polytop then the structure of the problem (4) is similar
to BP.

Furthermore, it can be shown that any quadratic
concave minimization problem can be reduced to a bi-
linear problem. Specifically, consider the following op-
timization problem:

min
x2X

�(x) D 2aTx C xTQx ; (5)

where Q is a symmetric negative semi-definite matrix.
Construct the following bilinear problem

min
x2X;y2Y

f (x; y) D aTx C aTy C xTQy ; (6)

where Y D X.

Theorem 2 (see [4]) If x� is a solution of the problem
(5) then (x�; x�) is a solution of the problem (6). If (x̂; ŷ)
is a solution of the problem (6) then x̂ and ŷ solve the
problem (5).

Properties of a Solution

In the previous section we have shown that BP is equiv-
alent to a piecewise linear concave minimization prob-
lem. On the other hand it is well known that a concave
minimization problem over a polytop attains its solu-
tion on a vertex (see, for instance, [3]). The following
theorem follows from this observation.

Theorem 3 (see [4] and [3]) If X and Y are bounded
then there is an optimal solution of BP, (x�; y�), such
that x� 2 V (X) and y� 2 V(Y).

Let (x�; y�) denote a solution of BP. By fixing the vec-
tor x to the value of the vector x�, the BP problem re-
duces to a linear one, and y� should be a solution of the
resulting problem. From the symmetry of the problem,
a similar result holds by fixing the vector y to the value
of the vector y�. The following theorem is a necessary
optimality condition, and it is a direct consequence of
the above discussion.

Theorem 4 (see [4] and [3]) If (x�; y�) is a solution of
the BP problem, then

min
x2X

f (x; y�) D f (x�; y�) D min
y2Y

f (x�; y) (7)

However, (7) is not a sufficient condition. In fact it
can only guarantee a local optimality of (x�; y�) un-
der some additional requirements. In particular, y� has
to be the unique solution of miny2Y f (x�; y) problem.
From the later it follows that f (x�; y�) < f (x�; y),
8y 2 V(Y), y ¤ y�. Because of the continuity of
the function f (x; y), for any y 2 V (y), y ¤ y�,
f (x�; y�) < f (x; y) in a small neighborhood Uy of the
point x�. LetU D

T
y2V (Y);y¤y� Uy . Then f (x�; y�) <

f (x; y), 8x 2 U , y 2 V(Y), y ¤ y�. At last ob-
serve that Y is a polytop, and any point of the set
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can be expressed through a convex combination of
its vertices. From the later it follows that f (x�; y�)
� f (x; y), 8x 2 U , y 2 Y , which completes the proof
of the following theorem.

Theorem 5 If (x�; y�) satisfies the condition (7) and
y� is the unique solution of the problemminy2Y f (x�; y)
then (x�; y�) is a local optimum of BP.

Recall that BP is equivalent to a piecewise concave min-
imization problem. Under the assumptions of the theo-
rem, it is easy to show that x� is a local minimum of the
function g(x) as well (see [4]).

Methods

In this section we discuss methods to find a solution of
a bilinear problem. Because BP is equivalent to a piece-
wise linear concave minimization problem, any solu-
tion algorithm for the later can be used to solve the for-
mer. In particular, one can employ a cutting plain al-
gorithms developed for those problems. However, the
symmetric structure of the BP problem allows con-
structing more efficient cuts. In the paper [6], the au-
thor discusses an algorithm, which converges to a so-
lution that satisfies condition (7), and then proposes
a cutting plain algorithm to find the global minimum
of the problem.

Assume that X and Y are bounded. Algorithm 1,
which is also known as the “mountain climbing” pro-
cedure, starts from an initial feasible vector y0 and it-
eratively solves two linear problems. The first LP is ob-
tained by fixing the vector y to the value of the vector
ym�1. The solution of the problem is used to fix the
value of the vector x and construct the second LP. If
f (xm; ym�1) ¤ f (xm ; ym), then we continue solving
the linear problems by fixing the vector y to the value
of ym . If the stopping criteria is satisfied, then it is easy
to show that the vector (xm ; ym) satisfies the condition
(7). In addition, observe that V(X) and V(Y) are fi-
nite. From the later and the fact that f (xm ; ym�1) �
f (xm; ym) it follows that the algorithm converges in
a finite number of iterations.

Let (x�; y�) denote the solution obtained by the
Algorithm 1. Assuming that the vertex x� is not de-
generate, denote by D the set of directions dj along
the ages emanating from the point x�. Recall that
g(x) D miny2Y f (x; y) is a concave function. To con-

Step 1: Let y0 2 Y denote an initial feasible solu-
tion, and m 1.
Step 2: Let xm = argminx2Xf f (x; ym�1)g, and
ym = argminy2Y f f (xm; y)g.
Step 3: If f (xm ; ym�1) = f (xm ; ym) then stop.
Otherwise, m m + 1 and go to Step 2.

Bilinear Programming, Algorithm 1
Mountain Climbing Procedure

struct a valid cut, for each direction dj find the maxi-
mum value of � j such that g(x�C� jd j) � f (x�; y�)�",
i. e.,

� j D argmaxf� jjg(x� C � jd j) � f (x�; y�) � "g ;

where " is a small positive number. Let C D (d1; : : : ;
dn),

�1
x D

(
xj
�
1
�1
; : : : ;

1
�n

�T

C�1(x � x�) � 1

)
;

and X1 D X
T
�1

x . If X1 D ; then

min
x2X;y2Y

f (x; y) � f (x�; y�) � " ;

and (x�; y�) is a global "-optimum of the problem. If
X1 ¤ ; then one can replace X by the set X1, i. e., con-
sider the optimization problem

min
x2X1;y2Y

f (x; y) ;

and run Algorithm 1 to find a better solution. How-
ever, because of the symmetric structure of the prob-
lem, a similar procedure can be applied to construct

Step 1:ApplyAlgorithm 1 to find a vector (x�; y�)
that satisfies the relationship (7).
Step 2: Based on the solution (x�; y�), compute
the appropriate cuts and construct the sets X1 and
Y1.
Step 3: If X1 = ; or Y1 = ;, then stop; (x�; y�) is
a global "-optimal solution. Otherwise, X  X1,
Y  Y1, and go to Step 1.

Bilinear Programming, Algorithm 2
Cutting Plane Algorithm
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a cut for the set Y . Let �1
y denote the corresponding

half-space, and Y1 D Y
T
�1

y . By updating both sets,
i. e., considering the optimization problem

min
x2X1;y2Y1

f (x; y) ;

the cutting plane algorithm (see Algorithm 2) might
find a global solution of the problem using less number
of iterations.
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Introduction

Many problems in the supply chain management can
be formulated as a network flow problem with speci-
fied arc cost functions. Let G(N,A) represent a network
where N and A are the sets of nodes and arcs, respec-
tively, and fa(xa) denotes an arc cost function. In the
network, there are supply and demand nodes, and the
main objective of the problem is to minimize the total
cost by satisfying the demand from the available sup-
ply. In addition, one can assume that the arc flows are
bounded, which corresponds to the cases where a ship-
ment along an arc should not exceed a specified capac-
ity. The mathematical formulation of the problem can
be stated as

min
x

f (x) D
X
a2A

fa(xa) (1)

s.t. Bx D b (2)

xa 2 [0; �a] 8a 2 A (3)

where B is the node-arc incident matrix of network G,
and b is a suplly/demand vector. In the next section, we
discuss two formulations where fa(xa) is either a con-
cave piecewise linear or fixed charge function of the arc
flow. The concave piecewise linear functions are typi-
cally used in the cases where merchandisers encourage
to buy more products by offering discounts in the unit
price for large orders. In [6], the authors showed that
the problem in these settings is NP hard. Some heuris-
tic procedures to solve the problem are discussed in [10]
and [13]. The fixed charge functions are used in the
cases where regardless the quantity of the shipment it
is required to pay a fixed cost to ship along an arc. The
fixed cost might be the cost of renting a truck, ship, air-
plane, or train to transport goods between nodes of the
network. The problem can be modeled as a 0–1 mixed
integer linear program and most solution approaches

http://dx.doi.org/10.1007/s10589-007-9060-x
http://dx.doi.org/10.1016/j.cor.2006.09.003
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utilize branch-and-bound techniques to find an exact
solution (see [1,2,5,7,16]). Some heuristic procedures
are discussed in [3,4,8,9,12,14]. In this article we show
that both problems are equivalent to a bilinear problem
with a disjoint feasible region.

In addition to choosing a proper production level,
sometimes managers have to make pricing decisions as
well. In particular, one can assume that the satisfied de-
mand is a function of the price, i. e., lower prices gener-
ate an additional demand. Such functional relationship
between the prices and the satisfied demand is com-
monly used by economists. However, because of the
production capacity restrictions, fixed costs related to
the production process, seasonality and other factors,
often it is not feasible to satisfy the optimal level of de-
mand, and managers should consider optimal produc-
tion and inventory levels in combination with pricing
decisions to maximize the net profit during a specified
time period. One of such problems and an equivalent
bilinear formulation are discussed in the next section as
well.

In addition to the bilinear formulations of the sup-
ply chain problems, in Sect. “Methods” we explore the
structure of the bilinear problems and discuss difficul-
ties in applying the standard computational methods.
Despite the intricacy, the section proposes some heuris-
tic methods to find a near optimum solution to the
problems. The solution obtained by a heuristic proce-
dure can also be used to expedite exact algorithms.

Formulation

Concave Piecewise Linear Network Flow Problem

In the problem (1)–(3), assume that fa(xa) is a piece-
wise linear concave function, i. e.,

fa(xa)D

8̂
<̂
ˆ̂:

c1axa C s1a(D f 1a (xa)) xa 2 [0; �1a)
c2axa C s2a(D f 2a (xa)) xa 2 [�1a ; �2a)
� � � � � �

cna
a xa C sna

a (D f na
a (xa)) xa 2 [�na�1

a ; �a] ;

with c1a > c2a > : : : > cna
a . Let Ka D f1; 2; : : : ; nag. Be-

cause of the concavity of fa(xa), it can be written in the
following alternative form

fa(xa) D min
k2Ka
f f ka (xa)g D min

k2Ka
fckaxa C skag : (4)

By introducing additional variables yka 2 [0; 1], k 2 Ka ,
construct the following bilinear problem.

min
x;y

g(x; y) D
X
a2A

2
4X

k2Ka

cka y
k
a

3
5 xa C

X
a2A

X
k2Ka

ska y
k
a

D
X
a2A

X
k2Ka

f ka (xa)y
k
a

(5)

s.t. Bx D b (6)

X
k2Ka

yka D 1 8a 2 A (7)

xa 2 [0; �a]; yka � 0 8a 2 A and k 2 Ka (8)

In [13], the authors show that at any local minima of the
bilinear problem, (x̂; ŷ), ŷ is either binary vector or can
be used to construct a binary vector with the same ob-
jective function value. Although the vector ŷ may have
a fractional components, the authors note that in prac-
tical problems it is highly unlikely. The proof of the
theorem below follows directly from (4). Details on the
proof as well as transformation of the problem (1)–(3)
into (5)–(8) can be found in [13].

Theorem 1 If (x*,y*) is a global optima of the problem
(5)–(8) then x* is a solution of the problem (1)–(3).

According to the theorem, the concave piecewise linear
network flow problem is equivalent to a bilinear prob-
lem in a sense that the solution of the later is a solution
of the former. It is important to notice that the prob-
lem (5)–(8) does not have binary variables, i. e., all vari-
ables are continuous. However, at optimum y* is a bi-
nary vector, which makes sure that in the objective only
one linear piece is employed.

Fixed Charge Network Flow Problem

In the case of the fixed charge network flow problem,
we assume that the function fa(xa) has the following
structure.

fa(xa) D
�

caxa C sa xa 2 (0; �a]
0 xa D 0

;

Observe that the function is discontinuous at the origin
and linear on the interval (0; �a].
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Management, Figure 1
Approximation of function fa(xa)

Let "a 2 (0; �a], and define

�"aa (xa) D
�

caxa C sa xa 2 ["a; �a]
c"aa xa xa 2 [0; "a)

where c"aa D ca C sa/"a . It is easy to see that �"aa (xa) D
fa(xa), 8xa 2 f0g

S
["a; �a] and �"aa (xa) < fa(xa),

8xa 2 (0; "a), i. e., �"aa (xa) approximates the function
fa(xa) from below. (see Fig. 1). Let us construct the fol-
lowing concave two-piece linear network flow problem.

min
x
�"(x) D

X
a2A

�"aa (xa) (9)

s.t. Bx D b; (10)

xa 2 [0; �a]; 8a 2 A ; (11)

where " denotes the vector of "a . Function �"(x) as
well as the problem (9)–(11) depends on the value of
the vector ". In the paper [14], the authors show that
for any value of "a 2 (0; �a], a global solution of the
problem (9)–(11) provides a lower bound for the fixed
charge network flow problem, i. e., �"(x") � f (x�),
where x" and x* denote the solutions of the correspond-
ing problems.

Theorem 2 (see [14]) For all " such that "a 2 (0; �a]
for all a 2 A, �"(x") � f (x�).

Furthermore, by choosing a sufficiently small value for
"a one can ensure that both problems have the same
solution. Let ı D minfxvajxv 2 V(x); a 2 A; xva > 0g,

where V(x) denotes the set of vertices of the polyhe-
dra (10)–(11). Observe that ı is the minimum among
all positive components of all vectors xv 2 V (x); there-
fore, ı > 0.

Theorem 3 (see [14]) For all " such that "a 2 (0; ı] for
all a 2 A, �"(x") D f (x�).

Theorem 3 proves the equivalence between the fixed
charge network flow problem and the concave two-
piece linear network flow problem (9)–(11) in a sense
that the solution of the later is a solution of the for-
mer. As we have seen in the previous section, concave
piecewise linear network flow problems are equivalent
to bilinear problems. In particular, problem (9)–(11) is
equivalent to the following bilinear problem.

min
x;y

X
a2A

[caxa C sa] ya C c"aa xa
�
1 � ya

�
(12)

s.t. Bx D b ; (13)

xa � 0 ; and ya 2 [0; 1] ; 8a 2 A ; (14)

where "a 2 (0; ı].

Capacitated Multi-Item Dynamic Pricing Problem

In the problem, we assume that a company during a dis-
crete time period � is able to produce different com-
modities from a set P. In addition, we assume that
at each point of time j 2 � and for each product
p 2 P a functional relationship f(p; j)(d(p; j)) between
the satisfied demand and the price is given, i. e., in order
to satisfy the demand d(p; j) of the product p, the price
of the product at time j should be equal to f(p; j)(d(p; j)).
As a result, the revenue generated from the sales of the
product p at time j is g(p; j)(d(p; j)) D f(p; j)(d(p; j))d(p; j).
Although we do not specify the function f(p; j)(d(p; j)),
it should ensure that g(p; j)(d(p; j)) is a concave function
(see Fig. 2a).

Because of the concavity of g(p; j)(d(p; j)), there ex-
ists a point d̃(p; j), such that the function reaches its
maximum, and producing and selling more than d̃(p; j)
is not profitable. Therefore, without lost of general-
ity, we can assume that d(p; j) 2 [0; d̃(p; j)]. According
to the definition of g(p; j)(d(p; j)), it is a concave mono-
tone function on the interval [0; d̃(p; j)]. To avoid non-
linearity in the objective, one can approximate it by
a concave piecewise linear function. Doing so, divide
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Bilinear Programming: Applications in the Supply Chain Management, Figure 2
The revenue function and its approximation

[0; d̃(p; j)] into intervals of equal length, and let dk
(p; j) ,

k 2 f1; : : : ;Ng
S
f0g D K

S
f0g, denote the end points

of the intervals. Then the approximation can be defined
as

g̃(p; j)(�(p; j)) D
NX

kD1

gk(p; j)�
k
(p; j) ;

where gk(p; j) D g(p; j)(dk
(p; j)) D f(p; j)(dk

(p; j))d
k
(p; j) ,PN

kD0 �
k
(p; j) D 1, and �k

(p; j) � 0;8p 2 P; j 2 � (see
Fig. 2b).

Let xk
(p;i; j) denote the amount of product p that is

produced at time i and sold at time j using the unit
price gk(p; j)/d

k
(p; j) D f k(p; j) D f(p; j)(dk

(p; j)). In addition,
let y(p;i) denote a binary variable, which equals one ifP

k
P

j x
k
(p;i; j)> 0 and zero otherwise. Costs associated

with the production process include inventory costs
cin(p;i; j), production costs cpr(p;i), and setup costs cst(p;i). At
last, let Ci represent the production capacity at time i,
which is “shared” by all products. Using those defini-
tions, one can construct a linear mixed integer formula-
tion of the problem. Below we provide a simplified for-
mulation of the problem, where the variables �(p; j) are
eliminated from the formulation. For the details on the
mathematical formulation of the problem and its sim-
plification we refer to [15].

max
x;y

X
p2P

X
i2�

2
4 X
j2�ji� j

X
k2K

qk(p;i; j)x
k
(p;i; j) � cst(p;i)y(p;i)

3
5

(15)

X
p2P

X
j2�ji� j

X
k2K

xk
(p;i; j) � Ci ;8i 2 � ; (16)

X
j2�ji� j

X
k2K

xk
(p;i; j) � Ci y(p;i);

8p 2 P and i 2 � ; (17)

X
k2K

X
i2�ji� j

xk
(p;i; j)

dk
(p; j)

� 1 ;

8p 2 P and j 2 � ; (18)

xk
(p;i; j) � 0 ; y(p;i) 2 f0; 1g ;

8p 2 P; i; j 2 � and k 2 K ; (19)

where qk(p;i; j) D f k(p; j) � cin(p;i; j) � cpr(p;i).
Let X D fxjx � 0 and xk

(p;i; j) be feasible to (16)
and (18)g, and Y D [0; 1]jPjj�j. Consider the following
bilinear problem.

max
x2X;y2Y

'(x; y) D

X
p2P

X
i2�

2
4 X

j2�ji� j

X
k2K

qk(p;i; j)x
k
(p;i; j) � cst(p;i)

3
5 y(p;i)

(20)

Theorem 4 (see [15]) A global maximum of the bilin-
ear problem (20) is a solution or can be transformed into
a solution of the problem (15)–(19).

Methods

In the previous section, we have discussed several prob-
lems arising in the supply chain management. To solve
the bilinear formulations of the problems, one can em-
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ploy techniques applicable for general bilinear prob-
lems. In particular, a cutting plain algorithm proposed
by Konno can be applied to find a global solution of the
problems. In addition, he proposes an iterative proce-
dure, which converges to a local minimum of the prob-
lem in a finite number of iterations. For details on the
procedure, which is also known as “mountain climb-
ing” procedure (MCP), and the cutting plain algorithm
we refer to the paper [11] or Bilinear Programming sec-
tion of this encyclopedia.

Below, we discuss problem specific difficulties of ap-
plying the above mentioned algorithms and some ef-
fective heuristic procedures, which are able to provide
a near optimum solution using negligible computer re-
sources. The MCP, which is used by the heuristics to
find a local minimum/maximum of the problems, is
very fast due to a special structure of both LP prob-
lems employed by the procedure. However, to obtain
a high quality solution, in some problems it is necessary
to solve a sequence of approximate problems. The bilin-
ear formulations of the supply chain problems typically
have many local minima. Therefore, cutting plain algo-
rithms may require many cuts to converge. By combin-
ing the heuristic procedures with the cutting plain algo-
rithm, one can reduce the number of cuts by generating
deep cuts.

One of the main properties of a bilinear problem
with a disjoint feasible region is that by fixing vectors x
or y to a particular value, the problem reduces to a lin-
ear one. The “mountain climbing” procedure employs
this property and iteratively solves two linear problems
by fixing the corresponding vectors to the solution of
the corresponding linear programs. In the case of con-
cave piecewise linear network flow problem, given the
vector x̂, the problem (5)–(8) can be decomposed into
jAj problems,

min
fyka jk2Kag

X
k2Ka

[cka x̂a C ska]y
k
a

s.t.
X
k2Ka

yka D 1 ; yka � 0 8k 2 Ka :

Furthermore, it can be shown that a solution of the
problem is a binary vector, which has to satisfy the in-
equality

X
k2Ka

� k�1a yka � x̂a �
X
k2Ka

� ka y
k
a :

As a result, one can employ a search technique by as-
signing yk̂a D 1 if � k̂�1a � x̂a � � k̂a and yka D 0,
8k 2 Ka , k ¤ k̂. On the other hand, by fixing the vector
y to the value of the constructed vector ŷ, the problem
(5)–(8) reduces to the following network flow problem.

min
x

X
a2A

2
4X

k2Ka

cka ŷ
k
a

3
5 xa

s.t. Bx D b; xa � 0; 8a 2 A

Observe that
P

k2Ka
cka ŷka D ck̂a , and different vectors ŷ

change the cost vector in the problem.
Although the MCP converges to a local minimum,

it can provide a near optimum solution for the problem
(5)–(8) if the initial vector ŷ is such that ŷna

a D 1 and
ŷka D 0, 8k 2 Ka , k ¤ na . The effectiveness of the
procedure is partially due to the fact that in the supply
chain problems fa(xa) is an increasing function. In ad-
dition, the procedure requires less computer resources
to converge because both linear problems are relatively
easy to solve. A detailed description of the procedure,
properties of the linear problems, and computational
experiments can be found in [13].

In the case of fixed charge network flow problems,
it is not obvious how to choose the vector ". Theorem 3
guarantees the equivalence between the fixed charge
network flow problem and the bilinear problem (12)–
(14) if "a 2 (0; ı]. However, according to the definition,
it is necessary to find all vertices of the feasible region
to compute the value of ı, which is computationally ex-
pensive. Even if the correct value of ı is known, typi-
cally it is a very small number. As a result, the value of
"a is close to zero, and c"aa is very large compared to the
value of ca. The later creates some difficulties for finding
a global solution of the bilinear problem. In particular,
the MCP may converge to a local minimum, which is
far from being a global solution.

To overcome those difficulties, [14] proposes a pro-
cedure where it gradually decreases the value of " (see
Algorithm 1). The algorithm starts from an initial value
for the vector ", i. e., "a D �a . After constructing the
corresponding bilinear problem, it employs the MCP
to find a local minimum of the problem. If the stopping
criteria is not satisfied, the value of " is updated, i. e.,
"a D ˛"a where ˛ 2 (0; 1), and the algorithm again
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solves the updated bilinear problem using the current
solution as an initial vector for the MCP.

The choice of ˛ has a direct influence on the CPU
time of the algorithm and the quality of the solution.
Specifically, if the value of ˛ is closer to one, then due to
the fact that " decreases slowly, the algorithm requires
many iterations to stop. On the other hand, if the val-
ues of the parameter is closer to zero, it may worsen the
quality of the solution. A proper choice of the parame-
ter depends on the problem, and it should be chosen by
trials and errors. In the paper [14], the authors test the
algorithm on various randomly generated test problems
and found satisfactory to choose ˛ D 0:5.

As for the stopping criteria, it is possible to show
that the solution of the final bilinear problem is the so-
lution of the fixed charge network flow problem if on
Step 2 one is able to find a global solution of the corre-
sponding bilinear problems. For details on the numer-
ical experiments, stopping criteria and other properties
of the algorithm, we refer to [14].

In the problems with pricing decisions, one may
also experience some difficulties to employ the MCP for
finding a near optimum solution. To explore the prop-
erties of the problem, consider the following two linear
problems, which are constructed from the problem (20)
by fixing either vector x or y to the value of the vector x̂
or ŷ, respectively.

LP1 :

max
y2Y

X
p2P

X
i2�

2
4 X
j2�ji� j

X
k2K

qk(p;i; j)x̂
k
(p;i; j) � cst(p;i)

3
5y(p;i)

LP2 :

max
x2X

X
p2P

X
i2�

X
j2�ji� j

X
k2K

h
qk(p;i; j) ŷ(p;i)

i
xk
(p;i; j) :

The MCP solves iteratively LP1 and LP2 problems,
where the solution of the first problem is used to fix the
corresponding vector in the second problem. However,
if one of the components of the vector y equals to zero
during one of the iterations, e. g., ŷ(p;i) D 0, then in
the second problem coefficients of the corresponding
variables xk

(p;i; j) are equal to zero as well. As a result,
changes in the values of those variables do not have any
influence on the objective function value. Furthermore,
because the products “share” the capacity and other
products may have positive coefficients in the objective,

Step 1: Let "a  �a , x0a  0, y0a  0, and
m 1.
Step 2: Find a local minimum of the problem (12)-
(14) using the MCP. Let (xm ; ym) denote the solu-
tion found by the algorithm.
Step 3: If 9a 2 A such that xma 2 (0; "ma ) then
"a  ˛"a , m  m + 1, and go to step 2. Other-
wise, stop.

Bilinear Programming: Applications in the Supply Chain
Management, Algorithm 1

it is likely that at optimum of LP2, x̂ k
(p;i; j) D 0, 8 j 2 �,

k 2 K. From the later, it follows that ŷ(p;i) D 0 during
the next iteration, and one concludes that if some prod-
ucts are eliminated from the problem during the iter-
ative process, the MCP does not consider them again.
Therefore, it is likely that the solution returned by the
algorithm is far from being a global one. To avoid zero
coefficients in the objective of LP2, [15] proposes an ap-
proximation to the problem (20), which can be used in
the MCP to find a near optimum solution.

To construct the approximate problem, let

'1
(p;i)(x(p;i)) D

X
j2�ji� j

X
k2K

qk(p;i; j)x
k
(p;i; j) � cst(p;i) ;

and

'2
(p;i)(x(p;i))D

"(p;i)

"(p;i) C cst(p;i)

X
j2�ji� j

X
k2K

qk(p;i; j)x
k
(p;i; j) ;

Step 1: Let "(p;i) be a sufficiently large number,
y0(p;i) = 1, 8p 2 P, i 2 �, and m 0.

Step 2:Construct the approximation problem (21),
and find a local maximum of the problem using
the MSP. Let (xm+1; ym+1) denote the solution re-
turned by the algorithm.
Step 3: If 9p 2 P and i 2 � such thatP

j2�ji� j
P

k2K qk(p;i; j)x
(m+1)k
(p;i; j) � cst(p;i) � "

m
(p;i) andP

j2�ji� j
P

k2K x(m+1)k
(p;i; j) > 0 then "  ˛", m  

m + 1 and go to Step 2. Otherwise, stop.

Bilinear Programming: Applications in the Supply Chain
Management, Algorithm 2
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where "(p;i)> 0, and x(p;i) is the vector of xk
(p;i; j). Us-

ing those functions, construct the following bilinear
problem

max
x2X;y2Y

'"(x; y) D
X
p2P

X
i2�

h
'1
(p;i)(x(p;i))y(p;i)C '

2
(p;i)(x(p;i))(1 � y(p;i))

i
;

(21)

where the feasible region is the same as in the problem
(20). The authors show that '"(x; y) approximates the
function '(x; y) from above.

Theorem 5 (see [15]) There exists a sufficiently small
"> 0 such that a solution of the problem (20) is a solu-
tion of the problem (21).

Algorithm 2 starts from a sufficiently large value of "(p;i)
and finds a local maximum of the corresponding bilin-
ear problem (21) using theMCP. If the stopping criteria
is not satisfied then it updates the value of " to ˛", up-
dates the bilinear problem (21), and employs the MCP
to find a better solution. Similar to the fixed charge net-
work flow problem, the choice of ˛ has a direct influ-
ence on the CPU time of the algorithm and the quality
of the returned solution. The running time of the algo-
rithm and the quality of the solution for the different
values of ˛ are studied in [15].

In addition to ˛, one has to find a proper initial
value for the parameter "(p;i). Ideally, it should be equal
to the maximum profit that can be generated by pro-
ducing only product p at time i. However, it requires
solving a linear problem for each pair (p; i) 2 P � �,
which is computationally expensive. On the other hand,
it is not necessary to find an exact solution of those LPs,
and one might consider a heuristic procedure which
provides a quality solution within a reasonable time.
One of such procedures is discussed in [15].
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Until recently (1998),multi-objective combinatorial op-
timization (MOCO) did not receive much attention in
spite of its potential applications. The reason is prob-
ably due to specific difficulties of MOCO models as
pointed out in � Multi-objective combinatorial opti-
mization. Here we consider a particular bi-objective
MOCO problem, the assignment problem (AP). This is
a basic well-known combinatorial optimization prob-
lem, important for applications and as a subproblem of
more complicated ones, like the transportation prob-
lem, distribution problem or traveling salesman prob-
lem. Moreover, its mathematical structure is very sim-
ple and there exist efficient polynomial algorithms to
solve it in the single objective case, like the Hungarian
method. In a bi-objective framework, the assignment
problem can be formulated as:

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

0min 0 zk(X) D
nX

iD1

nX
jD1

c(k)i j xi j;

k D 1; 2;
nX
jD1

xi j D 1; i D 1; : : : ; n;

nX
iD1

xi j D 1; j D 1; : : : ; n;

xi j 2 f0; 1g

where cki j are nonnegative integers and X = (x11, . . . ,
xnn). Our aim is to generate the set of efficient solu-
tions E(P). It is important to stress that the distinc-
tion between the supported efficient solutions (belong-
ing to SE (P)), i. e. those which are optimal solutions

of the single objective problem obtained by a linear ag-
gregation of the objectives, and the nonsupported effi-
cient solutions (belonging to NSE(P) = E(P)\SE(P)) (see
� Multi-objective integer linear programming) is still
necessary even if the constraints of the problem satisfy
the so-called ‘totally unimodular’ or ‘integrality’ prop-
erty: when this property is verified, the integrality con-
straints of the single objective problem can be relaxed
without any deterioration of the objective function, i. e.
the optimal values of the variables are integer even if
only the linear relaxation of the problem is solved. It is
well known that the single objective assignment prob-
lem satisfies this integrality property, and thus this is
true for the problem (see � Multi-objective combina-
torial optimization):

(P	)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min z	(X) D �1z1(X)C �2z2(X)
nX

jD1

xi j D 1; i D 1; : : : ; n;

nX
iD1

xi j D 1; j D 1; : : : ; n;

xi j 2 f0; 1g
�1 � 0; �2 � 0:

Nevertheless, in the multi-objective framework,
there exist nonsupported efficient solutions, as indi-
cated by the following didactic example:

C(1) D

0
BB@

5 1 4 7
6 2 2 6
2 8 4 4
3 5 7 1

1
CCA ;

C(2) D

0
BB@

3 6 4 2
1 3 8 3
5 2 2 3
4 2 3 5

1
CCA :

The values of the feasible solutions are represented in
the objective space in Fig. 1

There are four supported efficient solutions, cor-
responding to points Z1, Z2, Z3 and Z4; two nonsup-
ported efficient solutions corresponding to points Z5

and Z6; the eighteen other solutions are nonefficient.

Remark 1 In [7], D.J. White analyzes a particular case
of problem (P) corresponding to

c(k)i j D ci jı jk
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Bi-Objective Assignment Problem, Figure 1
The feasible points in the (z1, z2)-space for the didactic exam-
ple

where

ı jk D

(
1 if j D k;
0 if j ¤ k:

For this particular problem, he proves that E(P) =
SE(P).

We consider the problem to generate E(P) and (see
� Multi-objective combinatorial optimization) we can
distinguish three methodologies: direct methods; two-
phase methods and heuristic methods.

Direct Methods

In [1], the authors propose a theoretical enumerative
procedure to generate E(P) in the order of increasing
values of z1: at each step they consider the admissible
edges incident at the current basis and among the set of
possible new bases, they selected the one with the best
value of z1: they affirm that this basis corresponds to
a new efficient solution. As proved by the example de-
scribed above, this procedure appears false: for instance
from point Z5 = (16, 11), corresponding to the solution
x14 = x22 = x33 = x41 = 1, it is impossible to obtain by
an unique change of basis the following point Z6 = (19,
10), corresponding to the solution x13 = x21 = x34 = x42 =
1. Moreover the real difficulties induced by the high de-

generacy of the assignment problem are not taken into
account in [1].

Two-Phase Methods

The principle of this approach, and the first phase de-
signed to generate SE(P), are described in � Multi-ob-
jective combinatorial optimization; by complementary,
we analyse here the second phase [3].

The purpose is to examine each triangle MZrZs de-
termined by two successive solutions Xr and Xs of SE(P)
(see Fig. 2) and to determine the possible nonsupported
solutions whose image lies inside this triangle. We note
that

z	(X) D �1z1(X)C �2z2(X)

with �1 = z2r � z2s and �2 = z1s � z1r and c(	)i j = �1 c(1)i j

+ �2 c(2)i j .
In the first phase, the objective function z	(X) has

been optimized by the Hungarian method giving
� ez	 D �1z1r C �2z2r D �1z1s C �2z2s , the optimal

value of z	(X);
� the optimal value of the reduced cost c(	)i j D c(	)i j �

(uiCv j), where ui and vj are the dual variables asso-
ciated respectively to constraints i and j of problem
(P	).

At optimality, we have c(	)i j � 0 and exi j D 1 )
c(	)i j D 0.

First Step

We consider L D
n
xi j : c(	)i j > 0

o
. To generate non-

supported efficient solution in triangle MZrZs, each
variable xij 2 L is candidate to be fixed to 1. Never-
theless, a variable can be eliminated if we are sure that
the reoptimization of problem (P�) will provide a dom-
inated point in the objective space. If xij 2 L is set to 1,
a lower bound lij of the increase ofez	 is given by

li j D c(	)i j Cmin
�
c(	)i r jr ; min

k¤ j
c(	)i r k Cmin

k¤i
c(	)k jr ;

c(	)i s js ; min
k¤ j

c(	)i s k Cmin
k¤i

c(	)k js

�
;

where the indices ir and jr (is and js) are such that in the
solution Xr (respectively, Xs) we have

xir j D xi jr D 1; (xis j D xi js D 1):
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Bi-Objective Assignment Problem, Figure 2
Test 1

Effectively, to re-optimize problem (P	) with xij = 1, in
regard with its optimal solution Xr (respectively, Xs), it
is necessary to determine, at least, a new assignment in
the line ir (respectively, is) and in the column jr (respec-
tively, js). But clearly, to be inside the triangle MZrZs,
we must have (see Fig. 2)

ez	 C li j < �1z1s C �2z2r :

Consequently, we obtain the following fathoming test:
� (Test 1): xij 2 L can be eliminated ifez	 + lij � �1z1s

+ �2z2r or, equivalently, if lij � �1�2.
So in this first step, the lower bound lij is determined for
all xij 2 L; the list is ordered by increasing values of lij.

Only the variables not eliminated by test 1 are
kept. Problem (P	) is re-optimized successively for each
noneliminated variable; let us note that only one itera-
tion of the Hungarian method is needed. After the op-
timization, the solution is eliminated if its image in the
objective space is located outside the triangle MZrZs.
Otherwise, a nondominated solution is obtained and
put in a list NSrs; at this time, the second step is applied.

Second Step

When nondominated points Z1, . . . , Zm 2 NSrs are
found inside the triangle MZrZs, then test 1 can be im-
proved. Effectively (see Fig. 3), in this test the value

�1z1s C �2z2r

can be replaced by the lower value

(� ) � max
iDo;:::;m

�
�1z1;iC1 C �2z2;i

�
;

where Zo � Zr , Zm + 1 � Zs, with � � �1z1,m + 1 +
�2z2, 0.

Bi-Objective Assignment Problem, Figure 3
Test 2

The new value corresponds to an updated upper
bound of z	(X) for nondominated points. More vari-
ables of L can be eliminated with the new test
� (Test 2): xij 2 L can be eliminated if

ez	 C li j � max
iDo;:::;m

�
�1z1;iC1 C �2z2;i

�
:

Each time a new nondominated point is obtained, the
list NSrs and the test 2 are updated. The procedure stops
when all the xij 2 L have been either eliminated or ana-
lyzed. At this moment the listNSrs contains the nonsup-
ported solutions corresponding to the triangle MZrZs.

When each triangle have been examined

NSE(P) D [rsNSrs :

Numerical results are given in [3].

Heuristic Methods

As described in � Multi-objective combinatorial opti-
mization, the MOSA method is an adaptation of the
simulated annealing heuristic procedure to a multi-
objective framework. Its aim is to generate a good ap-
proximation, denoted bE(P), of E(P) and the procedure
is valid for any number K � 2 of objectives. Similarly
to a single objective heuristic in which a potentially op-
timal solution emerges, in the MOSA method the set
bE(P) will contain potentially efficient solutions.

Preliminaries

� A wide diversified set of weights is considered: dif-
ferent weight vectors �(l), l 2 L, are generated where
�(l) = (�(l )k )k = 1, . . . , K with �(l )k > 0, 8k and

KX
kD1

�
(l )
k D 1; 8l 2 L:



292 B Bi-Objective Assignment Problem

� A scalarizing function s(z, �) is chosen, the effect
of this choice on the procedure is small due to the
stochastic character of the method. The weighted
sum is very well known and it is the easiest scalar-
izing function:

s(z; �) D
KX

kD1

�kzk :

� The three classic parameters of a simulated anneal-
ing procedure are initialized
– T0: initial temperature (or alternatively an initial

acceptance probability P0);
– ˛ (< 1): the cooling factor;
– Nstep: the length of temperature step in the cool-

ing schedule;
and the two stopping criteria are fixed:
– Tstop: the final temperature;
– Nstop: the maximum number of iterations with-

out improvement
� A neighborhood V(X) of feasible solutions in the

vicinity of X is defined. This definition is problem
dependent. It is particularly easy to define V(X) in
the case of the assignment problem: if X is charac-
terized by xi j i = 1, i = 1, . . . , n, then V(X) contains
all the solutions Y satisfying

yi j i D 1; i 2 f1; : : : ; ng n fa; bg;

ya jb D yb ja D 1;

where a, b are chosen randomly in {1, . . . , n}.

Determination of PE(�(l)), l = 1, . . . , L

For each l 2 L the following procedure is applied to de-
termine a list PE(�(l)) of potentially efficient solutions.
a) (Initialization):

– Draw at random an initial solution X0.
– Evaluate zk(X0), 8k.
– PE(�(l)) = {X0}; Nc = n = 0.

b) (Iteration n):
– Draw at random a solution Y 2 V(Xn)
– evaluate zk(Y) and determine

�zk D zk(Y) � zk(Xn); 8k:

– Calculate

�s D s(z(Y); �) � s(z(Xn); �):

If� s � 0, we accept the new solution:

XnC1  Y Nc D 0:

Else we accept the new solution with a certain
probability p = exp(�� s/Tn):

XnC1

8<
:

p
 Y ; Nc D 0;
1�p
 Xn ; Nc D Nc C 1:

– If necessary, update the list PE(�(l)) in regard to
the solution Y .

– n n + 1

IF n( mod Nstep) D 0

THEN Tn D ˛Tn�1; ELSE Tn D Tn�1:

IF Nc D Nstop OR T < Tstop
THEN stop ELSE iterate:

Generation of bE(P)

Because of the use of a scalarizing function, a given set
of weights �(l) induces a privileged direction on the ef-
ficient frontier. The procedure generates only a good
subset of potentially efficient solutions in that direction.
Nevertheless, it is possible to obtain solutions which are
not in this direction, because of the large exploration of
D at high temperature; these solutions are often dom-
inated by some solutions generated with other weight
sets.

To obtain a good approximation bE(P) to E(P) it is
thus necessary to filter the set

[
jLj
lD1PE(�

(l ))

by pairwise comparisons to remove the dominated so-
lutions. This filtering procedure is denoted by ^ such
that

bE(P) D ^jLjlD1PE(�
(l )):

A great number of experiments is required to determine
the number L of set of weights sufficient to give a good
approximation of the whole efficient frontier.

Concluding Remarks

Details and numerical results are given in [3] and [5].
Let us add that it is easy to adapt the MOSAmethod

in an interactive way [2]; a special real case study of an
assignment problem is treated in this manner in [6].
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The biquadratic assignment problem was first intro-
duced by R.E. Burkard, E. Çela and B. Klinz [2], as
a nonlinear assignment problem that has applications
in very large scale integrated (VLSI) circuit design.
Given two fourth-dimensional arrays A = (aijkl) and B
= (bmpst) with n4 elements each, the nonlinear integer
programming formulation of the BiQAP is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
X
i; j;k;l

X
m;p;s;t

ai jk l bmpst ximx jpxksxl t

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j 2 f0; 1g; i; j D 1; : : : ; n:

The BiQAP is a generalization of the quadratic assign-
ment problem (cf. � Quadratic assignment problem)
(QAP), where the objective function is a fourth degree
multivariable polynomial and the feasible domain is the
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assignment polytope as in the QAP. An equivalent for-
mulation of the BiQAP using permutations is the fol-
lowing:

min
�2Sn

nX
iD1

nX
jD1

nX
kD1

nX
lD1

ai jk l b�(i)�( j)�(k)�(l ) ;

where Sn denotes the set of all permutations of the in-
teger set N = {1, . . . , n}.

Burkard, Çela and Klinz [2] showed that the BiQAP
is NP-hard. They computed lower bounds for BiQAP
derived from lower bounds of the QAP. The computa-
tional results showed that these bounds are weak and
deteriorate as the dimension of the problem increases.
This observation suggests that branch and boundmeth-
ods (cf. also � Integer programming: Branch and
bound methods) will only be effective on very small
instances. For larger instances, efficient heuristics, that
find good-quality approximate solutions, are needed.

Burkard and Çela [1] developed several heuristics
for the BiQAP, in particular deterministic improve-
ment methods and variants of simulated annealing and
tabu search. Computational experiments on test prob-
lems with known optimal solutions [1], suggest that
one version of simulated annealing is best among those
tested. T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, and
M.G.C. Resende develop a GRASP heuristic for solving
the BiQAP in [3], which finds the optimal solution for
all the test problems presented in [1].

See also

� Feedback Set Problems
� Generalized Assignment Problem
� Graph Coloring
� Graph Planarization
� Greedy Randomized Adaptive Search Procedures
� Quadratic Assignment Problem
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The centuries-old method of bisection can be gener-
alized to provide a global optimization algorithm for
Lipschitz continuous functions. Full details of the algo-
rithm, acceleration methods and its performance can be
found in [1,6,7]. (Recall that f :Rn!R is Lipschitz con-
tinuous if there is anM � 0 such that |f (x) � f (y)| �M
k x � y k for all x, y 2 Rn. We then term M a Lipschitz
constant of f .)

The familiar bisection method enables us to find
a point of interest on the line by first bracketing the
point in an interval, and then successively halving the
interval. It is used in this way, for example, to find
the root of a continuous function or to show that
a bounded sequence always has a limit point. The bisec-
tion method is simple and convergence is assured and
linear.

The bisection method can also be used (although we
never think of it in this role) to find the minimum of
a semi-infinite interval [m,1), as illustrated in the left-
hand side of Table 1. Given an initial interval bracket
around m we examine the midpoint: if the midpoint is
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Bisection Global OptimizationMethods, Table 1
A comparison of the bisection method and the generalization to higher dimensions

Bisection Multidimensional bisection
(n = 0) (n > 0)

Problem

�
�

Epigraph of f
��

��

�
��

��

�
�

�
�

�
�

�
�

�

m

f
�m

[m;1)

Find m Find m
Natural domain (in Rn)

Point line segment (n = 1)
hexagon (n = 2)

rhombic dodecahedron (n = 3)
: : :

Initial bracket (in Rn+1)

Single interval Union of (n + 1)-dimensional simplexes
Bracket reduction

Interval halving Reduction of simplexes,
followed by elimination

Convergence

\all brackets = fmg \all brackets = {all global minima}
Bracket size halves Bracket depth reduces linearly

in [m,1) then we retain the lower interval whereas if
the midpoint is not in [m,1) we retain the upper in-
terval. It is this idea that has been generalized to higher
dimensions to give the algorithm, detailed here, that has
been termed in the literature multidimensional bisec-
tion.

It can be shown (see [7]) that the analogue inRn+1 of
an upper semi-infinite interval in R is the epigraph (ev-
erything above and including the graph) of a Lipschitz
continuous function. Multidimensional bisection finds
the set of global minima of a Lipschitz continuous func-
tion f of n variables over a compact domain, in a man-
ner analogous to the bisection method. At any stage in
the iteration the bracket is a union of similar simplexes

in Rn+1, with the initial bracket a single simplex. (A sim-
plex is a convex hull of affinely independent points, so
a triangle, a tetrahedron and so on.) In the raw version
of the algorithm the depth of the bracket decreases lin-
early and the infinite intersection of all brackets is the
set of global minima of the graph of the function.

The algorithm works thanks to two simple facts and
a very convenient piece of geometry. First, however, we
note a property of a Lipschitz continuous function with
Lipschitz constantM: if x 2 Rn lies in the domain of the
function and (x, y) (with y 2 R) lies in the epigraph of
the function, then (x, y) + C lies in the epigraph, where
C is an upright spherically based cone of slopeM, with
apex at the origin.



296 B Bisection Global Optimization Methods

Bisection Global OptimizationMethods, Figure 1
A standard simplex and the three smaller standard simplexes
resulting from reduction; when (x, f (x))�� is removed from
the standard simplex three similar standard simplexes re-
main

Now for the two simple facts: if we evaluate the
function f at any point in the domain, then no point
higher than (x, f (x)) can be the global minimum on the
graph of f and no point in the interior of a (x, f (x)) �
C can be the global minimum. Informally, this means
that every evaluation of f lets us slice away an upper half
space and an upside down ice-cream cone, with apex at
(x, f (x)), from the space Rn+1; we are sure the global op-
tima are not there. These two operations coalesce in the
familiar bisection method.

Now for the convenient geometry, which comes to
light as soon as we attempt to generalise the bisection
method. Spherically based cones are ideal to use, but
hard to keep track of efficiently [3], so we use a sim-
plicial approximation to the spherical base of the cone
to make the bookkeeping easy. Such a simplex-based
cone, �, has a cap which we call a standard simplex;
one is shown as the large simplex in Fig. 1, for the case
when n = 2. It fits snugly inside C, so the sloping edges
have slope M. If we know that the global optimum lies
in this simplex bracket and evaluate f at x, then we can
remove (x, f (x))�� from the space. Conveniently, this
leaves three similar standard simplexes whose union
must contain the global minima, as shown in Fig. 1.
This process is termed reduction of the simplex.

What does a typical iteration of the algorithm do?
At the start of each iteration the global minima are held
in a multidimensional bracket, a union of similar stan-
dard simplexes. We denote this set of simplexes, or sys-
tem, by S. An iteration consists of reducing some (pos-
sibly all) of these simplexes, followed by elimination,
or retaining the portions of the bracket at the level of,
or below, the current lowest function evaluation. For
this reason an iteration can be thought of informally as
‘chop and drop’, or formally as ‘reduce and eliminate’.

How do we start off? The algorithm operates on cer-
tain natural domains which we must assume contain
a global minimizer (just as we begin in the familiar bi-
section method by containing the point of interest in
an interval). For functions of one variable a natural do-
main is an interval, for functions of two variables it is
a hexagon, while for functions of three variables the
natural domain is a rhombic dodecahedron (the hon-
eycomb cell). For higher dimensions the pattern con-
tinues; in each dimension the natural domains are ca-
pable of tiling the space. By means of n + 1 function
evaluations at selected vertices of the natural domain it
is possible to bracket the global optima over the natu-
ral domain in an initial single standard simplex, termed
the initial system.

In brief, given a Lipschitz continuous function f on
a standard domain, the algorithm can be summarised
as:

1 Set i = 0 and form the initial system S0.
2 Form Si+1, by applying reduction and then

elimination to the system Si .
3 If a stopping criterion is satisfied (such as that

the variation of the system is less than a pre-
assigned amount), then stop. Otherwise, incre-
ment i and return to Step 2.

Multidimensional bisection

By the variation of the system is meant the height
from top to bottom of the current set of simplexes. The
following example illustrates the course of a run of mul-
tidimensional bisection.

Take f (x1, x2) = �e�x21 sin x1 + |x2|, which has
a global minimum on its graph at (0.653273, 0,
�0.396653). There are also local minima along the
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Bisection Global OptimizationMethods, Table 2
Example of a run of multidimensional bisection. Note how
the number of simplexes in the system decreases in the 8th
iteration; this corresponds to the elimination of simplexes
around local, and nonglobal, minima

Iter Simpl. Variat. Best
in the point
system to date

0 1 33:300 (10:000, �10:000, 10:000)
1 3 20:000 (10:000, 6:667, 6:667)
2 9 9:892 (1:340, 1:667, 1:505)
5 108 1:959 (25:637, 0:185, 0:185)
7 264 0.504 (0.839, 0.074,�0:294)
8 39 0:257 (0:649, �0:036, �0:361)
15 369 0:007 (0:669, 0:000, �0:396)
18 924 0:001 (0:653, 0:000, �0:397)
19 1287 0:000 (0:651, 0:000, �0:397)

x1-axis. We use as our standard domain the regular
hexagon with center at (10, 10) and radius 20, and use
M = 1. Table 2 provides snapshots of the progress of the
algorithm to convergence; it stops when the variation is
less than 0.001. We carry the best point to date, shown
in the final column of the table.

In this example we reduced all simplexes in the sys-
tem at each iteration. This ensures that the infinite in-
tersection of the brackets is the set of global minima. In
[6] it is shown that, under certain conditions, the opti-
mal one-step strategy is to reduce only the deepest sim-
plex in each iteration. With this reduction and n = 1
multidimensional bisection is precisely the Piyavskii–
Shubert algorithm [4,5].

Raw multidimensional bisection can require a large
number of function evaluations, but can be economi-
cal with computer time (see [2]). As described so far,
the method does not use the full power of the spher-
ical cone, rather a simplicial approximation, and this
approximation rapidly worsens as the dimension in-
creases. Fortunately, much of the spherical power can
be utilized very simply, by raising the function evalua-
tion to an effective height. This is trivial to implement
and has been called spherical reduction [6]. Reduction,
as described so far, removes material only from a single
simplex, whose apex determines the evaluation point.
Simplexes overlap when n � 2, and it is possible to re-

move material from many simplexes rather than just
one. This is harder to implement, but has been carried
out in [1] where it is termed complete reduction. The al-
gorithm operates more efficiently when such improved
reduction methods are used.

Multidimensional bisection collapses to bisection
with n = 0 when we use a primitive reduction process,
one which depends only on whether the point in Rn+1

considered lies in the epigraph of f ; this is described in
[7]. A summary comparison of bisection and multidi-
mensional bisection is given in Table 1.

See also

� ˛BB Algorithm
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The conventional nonfuzzy relations using the classical
two-valued Boolean logic connectives for defining their

operations will be called crisp. The extensions that re-
place the 2-valued Boolean logic connectives by many-
valued logic connectives will be called fuzzy. A uni-
fied approach of relations is provided here, so that the
Boolean (crisp, nonfuzzy) relations and sets are just
special cases of fuzzy relational structures. The first
part of this entry on nonfuzzy relations can be used
as reference independently, without any knowledge of
fuzzy sets. The second part on fuzzy structures, how-
ever, refers frequently to the first part. This is so because
most formulas in the matrix notation carry over to the
many-valued logics based extensions.

In order to make this material useful not only theo-
retically but also in practical applications, we have paid
special attention to the form in which the material is
presented. There are seven distinguishing features of
our approach that facilitate the unification of crisp and
fuzzy relations and enhance their practical applicability:
1) Relations in their predicate forms are distinguished

from their satisfaction sets.
2) Foresets and aftersets of relations are used in addi-

tion to relational predicates.
3) Relational properties are not only global but also lo-

cal (important for applications).
4) Nonassociative BK-products are introduced and

used both in definitions of relational properties and
in computations.

5) The unified treatment of computational algorithms
by means of matrix notation is used which is equally
applicable to both crisp and fuzzy relations.

6) The theory unifying crisp and fuzzy relations makes
it possible to represent a whole finite nested family
of crisp relations with special properties as a single
cutworthy fuzzy relation for the purpose of compu-
tation. After completing the computations, the re-
sulting fuzzy relation is again converted by ˛-cuts
to a nested family of crisp relations, thus increasing
the computing performance considerably.

7) Homomorphisms between relations are extended
frommappings used in the literature to general rela-
tions. This yields generalized morphisms important
for practical solving of relational inequalities and
equations.

These features were first introduced in 1977 by W.
Bandler and L.J. Kohout [1] and extensively developed
over the years both in theory and practical applications
[7,30,52].
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Boolean Relations

Propositional Form

A binary relation (from A to B) is given by an open
predicate __P__ with two empty slots; when the first is
filled with the name a of an element of A and the sec-
ond with the name b of an element of B, there results
a proposition, which is either true or false. If aPb is true,
we write aRPb and say that ‘a is RP-related to b’. If a P
b is false, we write a : RP b and say that ‘a is not RP-
related to b’, etc. When it is unnecessary to emphasize
the propositional form the subscript is dropped in RP,
writing: R, a Rb, a : Rb, respectively.

Heterogeneous and Homogeneous Relations

The lattice of all binary (two-place, 2-argument) rela-
tions from A to B is denoted by R(AÝ B). Relations
of this kind are usually called heterogeneous. Nothing
forbids the set B to be the same as A, in which case we
speak of relations ‘within a set’ or ‘in a set’, or ‘on a set’,
and call these homogeneous.

Relations from A to B can always be considered as
relations within A [ B, but so ‘homogenized’ relations
may lose some valuable properties (discussed below),
when so viewed. For this reason, we do not attempt to
assimilate relations between distinct sets to those within
a set.

The Satisfaction Set

The satisfaction set or representative set or extension set
of a relation R 2 R(A! B) is the set of all those pairs
(a, b) 2 A × B for which it holds:

RS D f(a; b) 2 A� B : aRbg :

Clearly RS is a subset of the Cartesian product A ×
B. Knowing RP, we know RS; knowing RS, we know
everything about RP except the wording of its ‘name’
__P__.

The Extensionality Convention

This convention says that, regardless of their proposi-
tional wordings, two relations should be regarded as
the same if they hold, or fail to hold between exactly

the same pairs: RS = RS
0) RP = RP

0. In the set theory,
this appears as the axiom of extensionality. This conven-
tion is not universally convenient; it is perhaps partly
responsible for delays in the application of relation the-
ory in the engineering, social and economical sciences
and elsewhere.

Once the extensionality convention has been
adopted, it becomes a matter of indifference, or mere
convenience, whether a relation is given by an open
predicate or by the specification of its satisfaction set.
There is a one-to-one correspondence between the sub-
sets RS of A × B and the (distinguishable) relations RP

in R(A! B). Since RS and RP now uniquely determine
each other, the current fashion for set-theoretical parsi-
mony suggests that they be identified. This view is com-
mon in the literature, which often defines relations as
being satisfaction sets. We, however, maintain the dis-
tinction in principle.

Example of the failure of the extensionality convention

R�, Q> 2R(A Ý B); A = {1, 6, 8}, B = { 0, 5, 7}.
Predicates:
P1 := ‘__� __’ (‘__ is greater than or equal to __’)
P2 := ‘__>__’ (‘__ is greater than __’)
Relations in their Predicate Form:
R� = {1� 0, 8� 0, 8� 5, 8� 7, 6� 0, 6� 5 }
Q> = {1 > 0, 8 > 0, 8 > 5, 8 > 7, 6 > 0, 6 > 5 }
The Satisfaction Sets:
RS = QS = {(1, 0), (8, 0), (8, 5), (8, 7), (6, 0), (6, 5)}.
By the extensionality convention:
RS = QS) R� = Q>.
So, R should be the same relation as Q. This is not the case,
because the predicates are not equivalent:
(8x) x P1 x is true, but (8x) x P2 x is false.
Hence the extensionality convention fails for these relations.

The Digraph Representation

When B = A, so that we are dealing with a relation
within a set, we may use the digraph RD to represent
it; in which an arrow goes from a to a0 if and only if a
R a0. Any relation within a finite or countably infinite
set can, in principle, be shown in a digraph; conversely,
every digraph (with unlabelled arrows) represents a re-
lation in the set of its vertices. Interesting properties of
relations are often derived from digraphical considera-
tions; there is a whole literature on digraphs.
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Foresets and Aftersets of Relations

These are defined for any relation R from A to B.
� The afterset of a 2 A is

aR D fb 2 B : aRbg :

� The foreset of b 2 B is

Rb D fa 2 A : aRbg :

Mnemonically and semantically, an afterset consists
of all those elements which can correctly be written af-
ter a given element, a foreset of those which can cor-
rectly be written before it. An afterset or foreset may
well be empty.

Clearly, b 2 a R if and only if a 2 R b. A relation is
completely known if all its foresets or all its aftersets are
known.

Matrix Representation

Very important computationally and even conceptu-
ally, as well as being a useful visual aid, is the incidence
matrix RM of a relation R. This arises from a table in
which the row-headings are the elements of A and the
column-headings are the elements of B, so that the cells
represent A × B. In the (a, b)-cell is entered 1 if a R b,
and 0 if a : Rb. For visual purposes it is better to sup-
press the 0s, but they should be understood to be there
for computational purposes.

Example: The matrix representation RM and the afterset rep-
resentation of a relation R

Clearly there is a one-to-one correspondence (bijec-
tion) between distinct tables and distinct relations, and,
as soon as there has been agreement on the names and
ordering of the row and column headings, between ei-
ther of these and distinct matrices of size |A| × |B| with
entries from {0, 1}.

Furthermore, the afterset aiR is in one-to-one cor-
respondence with the nonzero entries of the ith row
of RM ; the foreset Rbj is in one-to-one correspondence
with the nonzero entries of the jth column of RM .

Operations and Inclusions inR(A Ý B)

There are a considerable number of natural and impor-
tant operations. We begin with unary operations and
then proceed to several kinds of binary ones.

Unary Operations

The negated or complementary relation of R 2 R(A!
B) is : R 2 R(A! B) given by a : R b if and only if it
is not the case that aRb.

The converse or transposed relation of R 2 R(A!
B) is R| 2 R(B! A) given by

bR>a , aRb:

(It is also called the inverse and is therefore often writ-
ten R�1. In no algebraic sense it is an inverse, in gen-
eral.)

Both operators | and : are involutory, that is, when
applied twice they give the original object: (R|)| = R, :
(: R) = R. They commute with each other: : (R|) = (:
R)|, so that the parentheses may be omitted safely. One
can write: : R|.

Definition 1 (Binary operators and a binary relation
on R(A! B))
� The intersection ormeet or AND-ing:

a(R u R0)b , aRb and aR0b:

� The union or join or OR-ing:

a(R t R0)b , aRb or aR0b:

� A relation R ‘is contained in’ (is a subrelation of)
a relation R0, and R0 ‘contains’ (is a superrelation of)
R0, Rv R0:

R v R0 , (8a)(8b)(aRb! aR0b)

, R u R0 D R , R t R0 D R0;

where! is the Boolean implication operator.

Definition 2 The relative complement of R with re-
spect to R0, or difference between R0 and R, is R0 \ R,
given by:

a(R0 n R)b , aR0b but a:Rb;

that is, by R0 \ R = R0 u : R.
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Binary Operations on Successive Relations

Definition 3 (Circle and square products) Where R
2 R(A! B) and S 2 R(B! C), the following compo-
sitions give a relation in R(A! C):
� The circle product or round composition is ı, given

by aR ı Sc, aR \ Sc 6D ;.
� The square composition or square product is �,

given by aR� Sc, aR = Sc.

The circle product is the usual one, to be found
throughout the literature going back at least to the nine-
teenth century. The square product is a more recent
(1977) innovation. The � product belongs to the fam-
ily of products sometimes called BK-products. Further
interesting kinds of BK-products and their uses are dis-
cussed in the sequel.

Proposition 4 (Properties of�-product)
1) (R� S) u (R0 � S)v (R u R0)� Sv (R t R0)� Sv

(R� S) t (R0 � S);
2) (R� S)�1 = S�1 � R�1;
3) R� S = : R� : S;
4) the square product is not associative.

Matrix Formulation of the Binary Operations

All of the binary operations on relations have a con-
venient formulation in matrix terms – using the ma-
trix operations given in Proposition 6. The matrix op-
erations use in their definitions standard Boolean logic
connectives for crisp relations. By replacing these by
the connectives of suitable many-valued logics, all the
formulas easily generalize to fuzzy relations. Thus ma-
trix formulation of binary operations and compositions
unifies computationally crisp and fuzzy relations.

Definition 5 The Boolean connectives ^, _,$, on the
set B2 = {0, 1} are given by:

For a pair (x1, x2) of elements from B2, we infix the
operators: x1 ^ x2, etc., while for a list (xk)k = 1, . . . , n or
(xk)k 2 K of elements from B2, we write

Vn
kD1 xk orV

k2K xk or simply
V

k xk . (Note that K can be denu-
merably infinite, or even greater, without spoiling the
definition; no convergence problems are involved.)

Proposition 6 (Matrix notation)
1) (R u S)ij = Rij ^ Sij;
2) (R t S)ij = Rij _ Sij;
3) (R ı S)i j D

W
k(Rik ^ Sk j);

4) (R � S)i k D
V

j(Ri j _ Sjk );
5) (R�S)i k D

V
j(Ri j � S jk );

6) (R1 × R2)i1 i2 j1 j2 = (R1)i1 j1 ^ (R2)i2 j2 .

Non-Associative Products of Relations

Definition 7 (Triangle products)
� Subproduct G: x(R G S) z, xR� Sz;
� Superproduct F: x(R F S) z, xR� Sz.

The matrix formulation of G and F products uses
the Boolean connectives!, ,˚ on the setB2 = {0, 1}
given by

Proposition 8 (Logic notation for G and F)
� (R C S)i k D

V
j(Ri j ! Sjk );

� (R B S)i k D
V

j(Ri j  Sjk ).

Only the conventional ı -product is associative. The�-
product is not associative [2].

Proposition 9 The following mixed pseudo-
associativities hold for the triangle products, with Q
2B (WÝ X) and the triple products in B (WÝ Z):
� Q G (R F S) = (Q G R) F S;
� Q G (R G S) = (Q ı R) G S;
� Q F (R F S) = Q F (R ı S).

Characterization of Special Properties
of Relations Between Two Sets

Definition 10 (Special properties of a heterogeneous
relation R 2R (XÝ Y)):
� R is covering if and only if (8x) 2 X (9y) 2 Y such

that xRy.
� R is onto if and only if (8y) 2 Y (9x) 2 X such that

xRy.
� R is univalent if and only if (8x) 2X, if xRy and xRy0

then y = y0.
� R is separating if and only if (8y) 2 Y , if xRy and

x0Ry then x = x0.
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Composed properties can be defined by combining
these four basic properties. Well-known is the combi-
nation ‘covering’ and ‘univalent’ which defines func-
tional. Other frequently used combination is ‘onto’ and
‘separating’.

The self-inverse circle product is very useful in the
characterization of special properties of relations be-
tween two distinct sets. Using the product, one can
characterize these properties in purely relational way,
without directly referring to individual elements of the
relations involved.

Proposition 11 (Special properties of a heterogeneous
relation R 2 R (XÝ Y)):
� R is covering if and only if EX v R ı R�1.
� R is univalent if and only if R�1 ı Rv EY .
� R is onto if and only if (for all) EY v R�1 ı R.
� R is separating if and only if R ı R�1 v EX.
Here EX and EY are the left and right identities, respec-
tively.

Relations on a Single Set: Special Properties

The self-inverse products are a fertile source of relations
on the single set X. There are certain well-known spe-
cial properties which a relation may possess (or may
lack), of which the most important are reflexivity, sym-
metry, antisymmetry, strict antisymmetry, and transi-
tivity, together with their combinations, forming pre-
orders (reflexive and transitive) (partial) orders (reflex-
ive, antisymmetric and transitive), equivalences (reflex-
ive, transitive and symmetric).

Definition 12 (Special properties of binary relations
from X to X)
� Covering: every xi is related by R to something,8i
2 I 9j 2 I such that Rij = 1.

� Locally reflexive: if xi is related to anything, or if any-
thing is related to xi, then xi is related to itself,8i
2 I Rii = maxj (Rij, Rji).

� Reflexive: covering and locally reflexive,8i 2 I Rii

= 1.
� Transitive 8i, j, k 2 I (xiRxj and xjRxk) xiRxk),

R2 v R.
� Symmetric: (xiRxj) xjRxi), R| = R.
� Antisymmetric: (xiRxj and xjRxi) xi = xj), if i 6D

j then min(Rij, Rji) = 0.
� Strictly antisymmetric: never both xiRxj and xjRxi,
8i, j 2 I min(Rij, Rji) = 0.

Most of the properties listed above are common in
the literature. Local reflexivity is worthwhile exception.
It appeared in [1] and was generalized to fuzzy rela-
tions in [4], leading to new computational algorithms
for both crisp and fuzzy relations [4,10]. Unfortunately,
it is absent from the textbooks, yet it is extremely im-
portant in applications of relational methods to analysis
of the real life data (see the notion of participant in the
next two sections).

Partitions IN andON a Set

A partition on a set X is a division of X into nonoverlap-
ping (and nonempty) subsets called blocks. A partition
in a set X is a partition on the subset of X [17,18] called
the subset of participants.

There is a one-to-one correspondence between par-
titions in X and local equivalences (i. e. locally reflexive,
symmetric and transitive relations) in R(XÝ B). The
partitions in X (so also the local equivalences inR(XÝ
B)) form a lattice with ‘__is-finer-than__’ as its order-
ing relation. This whole subject is coextensive with clas-
sification or taxonomy, i. e., very extensive indeed. Fur-
thermore, classification is the first step in abstraction,
one of the fundamental processes in human thought.

Tolerances andOverlapping Classes

Some tests for tolerance and equivalence are as follows:
� R ı R| is always symmetric and locally reflexive.
� R ı R| is a tolerance if and only if R is covering.
� R� R| is always a (local) tolerance.
� R� R| v R if and only if R is reflexive.
� E v Rv R� R| if and only if R is an equivalence.
� R� R| = R if and only if R is an equivalence.
� R� R| v R ı R| if and only if R is covering.

It is not always the case that one manages, or even
attempts, to classify participants into nonoverlapping
blocks. Local tolerance relations (i. e. locally reflexive
and symmetric) lead to classes which may well over-
lap, where one participant may belong to more than
one class. The classic case, giving its name to this kind
of relation, is ‘__is-within-one milimeter-of__’. This is
quite a different model from the severe partitions [80],
and has been for a long time unduly neglected both
in theory and applications, even when the data mutely
favor it.
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Hierarchies in and on a Set:
Local and Global Orders and Pre-orders

An example of a hierarchy in a finite set X is displayed
in Fig. 1. In such a hierarchy, there is a finite number
of levels and there is no ambiguity in the assignment of
a level to an element. The elements which appear even-
tually in the hierarchy are the participants; those which
do not are nonparticipants; if all of X participates, then
the hierarchy is on X.

Every local order (i. e. locally reflexive, transitive and
antisymmetric relation) from a finite set to itself estab-
lishes a hierarchy in that set, that is, can be used as the
‘precedes’ relation in the hierarchy. Conversely, given
any hierarchy, its ‘__precedes__’ is a local order. The hi-
erarchy is onX exactly when the local order is the global
one.

The picture of the hierarchy is called its Hasse di-
agram. It can always be obtained from the digraph of
the local-order relation by the suppression of loops and
of those arrows which directly connect nodes between
which there is also a longer path.

The formulas of Theorem 13 can be used for fast
computational testing of the listed properties.

Theorem13 The following conditions universally char-
acterize the transitivity, reflexivity and pre-order on R 2
R (XÝ X):
� R is transitive if and only if Rv R F R�1.
� R is reflexive if and only if R F R�1 v R.
� R is a pre-order if and only if R = R F R�1.

More complex relational structures are investigated by
theories of homomorphisms, which can be further gen-
eralized [6].

Definition 14 Let F, R,G, S be heterogeneous relations
between the sets A, B, C, D such that R 2 R(AÝ B).
The conditions that (for all a 2 A, b 2 B, c 2 C, d 2
D) the expression (aFc^ aRb ^ bGd)! cSd we denote
by FRG:S. We say that FRG:S is forward compatible, or,
equivalently, that F, G are generalized morphisms.

The following Bandler–Kohout compatibility theorem
holds, [6]:

Theorem 15 (Generalized morphisms)
� FRG : S are forward compatible if and only if F| ı R
ı Gv S.

� Formulas for computing the explicit compatibility cri-
teria for F and G are: FRG : S are forward-compatible
if and only if F v R G (G G S|).

The R’s of forward compatibility constitute a lower
ideal. Similarly, the backward compatibility given by F
ı S ı G| v R gives a generalized proteromorphism. It
constitutes an upper ideal or filter: FRG : S are backward
compatible if and only if F ı S ı G| v R if and only if S
v F| G R F G.

FRG : S are both-way compatible if they are both
forward and backward compatible. The conventional
homomorphism is a special case of both-way compati-
bility, where F and G are not general relations but just
many-to-one mappings.

The generalized morphisms of Bandler and Kohout
[6] are relevant not only theoretically, but have also an
important practical use in solving systems of inequali-
ties and equations on systems of relations.

For partial homomorphisms the situation becomes
more complicated. In partial structures the conven-
tional homomorphism splits into mutually related
weak, strong and very strong kinds of homomor-
phism [5].

Fuzzy Relations

Mathematical relations can contribute to investigation
of properties of a large variety of structures in sciences
and engineering. The power of relational analysis stems
from the elegant algebraic structure of relational sys-
tems that is supplemented by the computational power
of relational matrix notation. This power is further en-
hanced by many-valued logic based (fuzzy) extensions
of the relational calculus.
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As often in mathematics, where terms are used in-
clusively, the crisp (nonfuzzy) sets and relations are
merely special cases of fuzzy sets and relations, in which
the actual degrees happen to be the extreme ones. On
the theoretical side, fuzzy relations are extensions of
standard nonfuzzy (crisp) relations. By replacing the
usual Boolean algebra by many-valued logic algebras,
one obtains extensions that contain the classical rela-
tional theory as a special case.

Definitions

A fuzzy set is one to which any element may belong to
various degrees, rather than either not at all (degree 0)
or utterly (degree 1). Similarly, a fuzzy relation is one
which may hold between two elements to any degree
between 0 and 1 inclusive. The sentence xiRyj takes its
value ı (xi R yj) = Rij, from the interval [0, 1] of real
numbers. In early papers on fuzzy relations �R(xi, yj)
was usually written instead of Rij.

The matrix notation used in the previous sections
for nonfuzzy (crisp) relations is directly applicable to
the fuzzy case. Thus, all the definitions of operations,
compositions and products can be directly extended to
the fuzzy case.

Operations and Inclusion onRF (X Ý Y)

Fuzzy Relations with Min, Max Connectives

This has been the most common extension of relations
to the fuzzy realm. Boolean ^ and _ are replaced by
many-valued connectives min, max in all crisp defini-
tions.

In matrix terms, this yields the following intersec-
tion and union operations:

(R u S)i j D min(Ri j; Si j);

(R t S)i j D max(Ri j; Si j):

(In older �-notation, �(R u S)(xi, xj) = min(�R(xi, yj),
�S(xi, yj)), etc.)

The negation of R is given by (: R)ij = 1 � Rij. The
converse of R is given by (R|)ij = Rji.

Fuzzy Relations Based on Łukasiewicz Connectives

When the bold (Łukasiewicz) connectives x _ y =
min(1, x + y), x ^ y = max(0, x + y �1) are used to

define t, u operations, this is an instance of relations
inMV-algebras.

Fuzzy Relations With t-Norms and Co-Norms

Fuzzy logics can be further generalized.^ and_ are ob-
tained by replacing min and max by a t-norm and a t-
conorm, respectively. A t-norm is an operation 
 : [0,
1]2 ! [0, 1] which is commutative, associative, non-
decreasing in both arguments and having 1 as the unit
element and 0 as the zero element. Taking a continuous
t-norm, by residuation we obtain a many-valued logic
implication !. Using { ^, _, 
, ! } one can define
families of deductive systems for fuzzy logics called BL-
logics [31]. In relational systems using BL-logics, one
can define again various t-norm based relational prop-
erties [53,83], BK-products and generalized morphisms
of relations [47].

Definition 16 (Inclusion of relations) A relation R is
‘contained in’ or is a subrelation of a relation S, written
Rv S, if and only if (8i)(8j) Rij � Sij.

This definition guarantees that R is a subrelation of R0 if
and only if every R˛ is a subrelation of its corresponding
R˛ . (This convenient meta-property is called cutworthi-
ness, see Theorem 17 below.)

Products: RF(X Ý Y) ×RF(Y Ý Z) ! RF(X Ý Z)

For fuzzy relations, there are two versions of products:
harsh and mean [3,52]. Most conveniently, again, in
matrix terms harsh products syntactically correspond to
matrix formulas for the crisp relations. The fuzzy rela-
tional products are obtained by replacing the Boolean
logic connectives AND, OR, both implications and the
equivalence of crisp products by connectives of some
many-valued logic chosen according to the proper-
ties of the products required. Thus the ı-product and
�-product are given exactly as in Proposition 6 above
by formulas 3) and 5), respectively; for triangle prod-
ucts as given in Proposition 8 above. For the MVL im-
plication operators most often used to define fuzzy tri-
angle products, see � Checklist paradigm semantics for
fuzzy logics, Table 1, or [8]. The details of choice of the
appropriate many-valued connectives are discussed in
[3,7,8,40,43,52].

Given the general formula (R@S)ik := # (Rij 
 Sjk)
for a relational product, a mean product is obtained by
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Boolean and Fuzzy Relations, Table 1
Closures and an interior

1. The locally reflexive closure of R: locref clo R = Rt ER .

2. The symmetric closure of R: sym clo R = Rt R| .
3. symmetric interior of R: sym int R = Ru R| .
4. The transitive closure of R: tra clo R = Ru R2 u � � � =uk2ZC Rk .
5. The local tolerance closure of R: loctol clo R = locref clo (sym clo R).
6. The local pre-order closure of R: locpre clo R = locref clo (tra clo R) = tra clo (locref clo R).
7. The local equivalence closure of R: locequ clo R = tra clo (sym clo (locref clo R)).
8. The reflexive closure of R: ref clo R = Rt EX .
9. The tolerance closure of R: tol clo R = ref clo (sym clo R).

10. The pre-order closure of R: pre clo R = ref clo (tra clo R).
11. The equivalence closure of R: equ clo R = tra clo (tol clo R).

replacing the outer connective # by
P

and normalizing
the resulting product appropriately. In more concrete
terms, in order to obtain the mean products, the outer
connectives

W
j in ı and

V
j in �, G, F are replaced by

1/n)
P

j [3].

N-ary Relations

An n-ary relation R is an open sentence with n slots;
when these are filled in order by the names of elements
from sets X1, . . . , Xn, there results a proposition that is
either true or false if the relation is crisp, or is judged to
hold to a certain degree if the relation is fuzzy. This ‘in-
tensional’ definition is matched by the satisfaction set
RS of R, which is a fuzzy subset the n-tuple of X1, . . . ,
Xn, and can be used, if desired as its extensional defini-
tion. The matrix notation works equally well for n-ary
relations and all the types of the BK-products are also
defined. For details see [9].

Special Properties of Fuzzy Relations

The special properties of crisp relations can be general-
ized to fuzzy relations exactly as they stand in Defini-
tion 12, using in each case the second of the two given
definitions. It is perhaps worthwhile spelling out the re-
quirements for transitivity in more detail:

R2 v R , (8i; k)max
i
(min Ri j; Rjk )) � Rik :

Useful references provide further pointers to the lit-
erature: general [43] on fuzzy partitions [14,69], fuzzy
similarities [69], tolerances [34,75,85].

Alpha-cuts of Fuzzy Relations

It is often convenient to study fuzzy relations through
their ˛-cuts; for any ˛ in the half-open interval [0, 1],
the ˛-cut of a fuzzy relation R is the crisp relation R˛
given by

(R˛)i j D

(
1 if Ri j � ˛;

0 otherwise:

Compatibility of families of crisp relations with
their fuzzy counterpart (the original relation on which
the ˛-cuts have been performed) is guaranteed by the
following theorem on cutworthy properties [10]:

Theorem 17 It is true of each simple property P (given
in Definition 12) and every compound property P (listed
in Table 1), that every ˛-cut of a fuzzy relation R pos-
sesses P in the crisp sense, if and only if R itself possesses
in the fuzzy sense. (Such properties are called cutworthy.)

Fuzzy Partitions, Fuzzy Clusters
and Fuzzy Hierarchies

Via their ˛-cuts, fuzzy local and global equivalences
provide precisely the nested families of partitions in and
on a set which are required by the theory and for the ap-
plications in taxonomy envisaged in [17,18]. Fuzzy local
and global tolerances similarly provide families of toler-
ance classes for the cluster type of classification which
allows overlaps. Fuzzy local and global orders furnish
nested families of hierarchies in and on a set, with their
accompanying families of Hasse diagrams.
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The importance of fuzzy extensions cannot be over-
estimated. Thus, one may identify approximate simi-
larities in data, approximate equivalences and orders.
Such approximations are paramount in many applica-
tions, in situations when only incomplete, partial infor-
mation about the domain of scientific or technological
application is available.

Closures and interiors of relations play an impor-
tant role in design of fast fuzzy relational closure algo-
rithms [4,9,10,11] for computing such approximations.

Theorem 17 and other theorems on commuting of
cuts with closures [11,42] guarantee their correctness.

Closures and Interiors with Special Properties

For certain properties P which a fuzzy relation may
have or lack, there always exists a well-defined P-closure
of R, namely the least inclusive relation V which con-
tains R and has the property P. Also, for some proper-
ties P, the P-interior of R is the most inclusive relation
Q contained in R and possessing P. Clearly, where the
P-closure exists, R itself possesses P if and only if R is
equal to P-clo(R), and the same for interiors.

Certain closures use the local equality ER of R, given
by (ER)ii = maxi(max(Rij, Rji)), (ER)ij = 0 if j 6D i. Others
use the equality on X given by (EX)ii = 1, (EX)ij = 0 for
j 6D i.

Important closures and one important interior are
given in Table 1. See [4,10] for further details.

Applications of Relational Methods
in Engineering,Medicine and Science

Relational properties are important for obtaining
knowledge about characteristics and interactions of
various parts of a relational model used in real life appli-
cations. Identification of composite properties of math-
ematical relations, such as local or global pre-orders,
orders, tolerances or equivalences, plays an important
role in evaluation of empirical data, (e. g. medical data,
commercial data etc. or data for technological fore-
casting) and building and evaluating relational models
based on such data [48,49].

The local and global properties detect important
semantic distinctions between various concepts cap-
tured by relational structures. For example the inter-
actions between technological parts, processes etc., or
relationships of cognitive constructs elicited experimen-

tally [37,39,41,55]. Capturing both, local and global
properties is important for distinguishing participants
from nonparticipants in a relational structure. This dis-
tinction is crucial for obtaining a nondistorted picture
of reality.

In the general terms, the abstract theoretical tools
supporting identification and representation of rela-
tional properties are fuzzy closures and interiors [4,10].
Having such means for testing relational properties
opens the avenue to linking the empirical structures
that can be observed and captured by fuzzy relations
with their abstract, symbolic representations that have
well defined mathematical properties.

This opens many possibilities for computer ex-
perimentation with empirically identified logical, say,
predicate structures. These techniques found practical
use in directing resolution based theorem prover strat-
egy [56], relation-based inference in medical diagnosis
[48,58] and at extracting predicate structures of ‘train
of thought’ from questionnaires presented to people by
means of Kelly’s repertory grids. BK-relational prod-
ucts and fast fuzzy relational algorithms based on fuzzy
closures and interiors have been essential for compu-
tational progress of in this field and for optimization
of computational performance. See the survey in [52]
with a list of 50 selected references on the mathemat-
ical theory and applications of BK-products in various
fields of science and engineering. Further extensions or
modifications of BK-products have been suggested in
[19,20,21,30].

Applications of relational theories, computations
and modeling include the areas of medicine [48,59],
psychology [49], cognitive studies [36,38], nuclear en-
gineering [84], industrial engineering and management
[25,46], architecture and urban studies [65,66] value
analysis in business and manufacturing [60] informa-
tion retrieval [51,54], computer security [45,50] data-
bases, theoretical computer science [13,68,71], software
engineering [78], automated reasoning [56], and logic
[12,28,63]. Particularly important for software engi-
neering is the contribution of C.A.R. Hoare and He
Jifeng [33] who use the crisp triangle BK-superproduct
for software specification, calling the crisp G products
in fact ‘weak prespecifications’.

Relational equations [22] play an important role in
applications [70] in general, and also in AI and appli-
cations of causal reasoning [24]; fuzzy inequalities in
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mathematical programming [72]. Applications in game
theory of crisp relations is well established [78,79].

Brief Review of Theoretical Development

Binary (two place) relations were first perceived in their
abstract mathematical form by Galen of Pergamon in
the 2nd century AD [57]. After a long gap, first sys-
tematic development of the calculus of relations (con-
cerned with the study of logical operations on binary
relations) was initiated by A. DeMorgan, C.S. Pierce
and E. Schröder [9,64]. Significant investigation into
the logic of relations was the 1900 paper of B. Rus-
sell [76] and axiomatization of the relational calculus
in 1941 by A. Tarski [64,81]. Extensibility of Tarski’s
axioms to the fuzzy domain has been investigated by
Kohout [44].

Later algebraic advances in relational calculus [9]
stem jointly from the elegant work of J. Riguet (1948)
[74], less widely known but important work of O.
Borůvka (1939) [15,16,17,18] and the stimulus of fuzzy
set theory of L.A. Zadeh (1965) [35,85,86], and include
a sharpened perception of special properties and the
construction of new kinds of relational products [3], to-
gether with the extension of the theory from Boolean
to multiple-valued logic based relations [2,9]. The tri-
angle subproduct R G S, the triangle superproduct R
F S, and square product R � S were introduced in
their general form defined below by Bandler and Ko-
hout in 1977, and are referred to as the BK-products
in the literature [19,20,30]. The square product, how-
ever, stems from Riguet (1948) [74], needing only to
be made explicit [1,9]. E. Sanchez independently de-
fined an ˛-compostition [77] which is in fact G us-
ing Heyting–Gödel implication. The special instances
of the triangle BK-products were more recently redis-
covered and described in 1986 by J.P. Doignon, B.Mon-
jardet, M. Roubens, and P. Vincke [23,26] calling these
‘traces of relations’. Hence, a ‘trace-of-relation’ is a BK-
triangle superproduct in which ! is the residuum of
a commutative ^. The crisp square product was also
independently introduced in 1986 by R. Berghammer,
G. Schmidt and H. Zierer [13] as a generalization of
Riguet’s ‘noyau’ [74].

On the other hand, advances in abstract relational
algebras stems from the work of Tarski [81] and his
school [32,64,67,82]. Tarski’s axiomatization [81] of

homogeneous relational calculus takes relations and
operations over relations as the primitives. It applies
only to homogeneous relations as it has only one con-
stant entity, the identity relation E. For heterogeneous
relations, taking e. g. UXY as the universal relation we
have a finite number of separate identity relations (con-
stants) i. e. EXY , EYZ , . . . , etc. [4,10]. Therefore viewed
syntactically through the logic axioms, the axiomati-
zation of heterogeneous relations (containing a whole
family of universal relations) would be a many-sorted
theory [30], each universal relation belonging to a dif-
ferent sort.

Tarski’s axioms of homogeneous relations

R ı E = E ı R; (R ı S)| = S| ı R|;
(R|)| = R; (: R)| =: (R|);
(Rt S)| = R| t S|;
(R ı S) ı T = R ı (S ı T);
(Rt S) ı T = (R ı T)t (S ı T);
R ı (St T) = (R ı S)t (R ı T);
(R| ı :(R ı S))t: S =: S.

Taking the axioms on their own opens the way
to abstract relational algebras (RA) with new prob-
lems at hand. Tarski and his school have investigated
the interrelationship of various generalizations of as-
sociative RAs in a purely abstract way. In some of
these generalizations, the axiom of associativity for re-
lational composition is dropped. This leads from rep-
resentable (RRA) to semi-associative (SA), weakly as-
sociative (WA) and nonassociative (NA) relational al-
gebras. In 1982 R.D. Maddux [62] gave the following
result:

RRA � RA � SA �WA � NA:

All these generalizations deal only with one relational
composition. The equations for pseudo-associativities
given above (Proposition 9) and the nonassociativity
of the square product (Proposition 4) show that there
exist nonassociative representations of relational alge-
bras (RA) in the relational calculus. Theorem 15 and
Proposition 8 show that the interplay of several rela-
tional compositions is essentially involved in the com-
putationally more powerful formulas of the relational
calculus. The Tarskian RA axiomatizations, however,
do not express fully the richness of the calculus of bi-
nary relations and the mutual interplay of associative
ı, pseudo-associative F, G and nonassociative � prod-
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ucts. Considerable scope for further research into new
axiomatizations still remains. Our results based on
nonassociative BK-products of Bandler and Kohout
that historically precede abstract nonassociative gener-
alizations in relational algebras of Maddux show that
the nonassociative products have representations and
that these representations offer various computational
advantages. There is also a link of RA with projective
geometries [61].

Basic Books and Bibliographies

The best general books on theory of crisp relations and
applications are [78] and [80]. In fuzzy field, there is no
general book available at present. There are, however,
extant some more specialized monographs: on solving
fuzzy relations equations [27], on preference model-
ing and multicriteria decision making [39], on repre-
sentation of cognitive maps by relations [39] and on
crisp and fuzzy BK-products of relations [53]. One can
also find some specialized monographs on logic foun-
dations and relational algebras: [32,82]. All these books
also contain important list of references. The most im-
portant bibliography of selected references on the topic
related to fuzzy sets and relations is contained in [43].
The early years of fuzzy sets (1965–1975) are covered
very comprehensively in the critical survey and anno-
tated bibliography [29]. Many-valued logic connectives
form an important foundation for fuzzy sets and rela-
tions. The book of N. Rescher [73] still remains the best
comprehensive survey that is also accessible to a non-
logician. It contains almost complete bibliography of
many-valued logics from the end of the 19th century
to 1968.

See also

� Alternative Set Theory
� Checklist Paradigm Semantics for Fuzzy Logics
� Finite Complete Systems of Many-valued Logic

Algebras
� Inference of Monotone Boolean Functions
� Optimization in Boolean Classification Problems
� Optimization in Classifying Text Documents
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16. Borůvka O (1941) Über Ketten von Faktoroiden. MATH-A
118:41–64



Boolean and Fuzzy Relations B 309
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A bottleneck Steiner tree (or a min-max Steiner tree) is
a Steiner tree (cf.� Steiner tree problems) in which the
maximum edge weight is minimized. Several multifa-
cility location and VLSI routing problems ask for bot-
tleneck Steiner trees.

Consider the problem of choosing locations for
a number of hospitals serving homes where the goal is
to minimize maximum weighted distance to any home
from the hospital that serves it and between hospitals.
The solution is a tree which spans all hospitals and
connects each home to the closest hospital. This tree
can be seen as a Steiner tree where the homes are ter-
minals and hospitals are Steiner points (cf. � Steiner
tree problems). Unlike the classical Steiner tree prob-
lem where the total length of Steiner tree is minimized,
in this problem it is necessary to minimize maximum
edge weight.

The other instance of the bottleneck Steiner tree
problem occurs in electronic physical design automa-
tion where nets are routed subject to delay minimiza-
tion [2,3]. The terminals of a net are interconnected
possibly through intermediate nodes (Steiner points)
and for electrical reasons one would like to mini-
mize maximum distance between each pair of intercon-
nected points.

The most popular versions of the bottleneck Steiner
tree problem in the literature are geometric. Note that if

the number of Steiner points is not bounded, then any
edge can be subdivided into infinitely small segments
and the resulting maximum edge length becomes zero.
Therefore, any meaningful formulation should bound
the number of Steiner points. One such formulation is
suggested in [9].

Problem 1 Given a set of n points in the plane (called
terminals), find a bottleneck Steiner tree spanning all
terminals such that degree of any Steiner point is at
least 3.

Instead of introducing constraints, one can minimize
the number of Steiner points. The following formula-
tion has been proved to be NP-hard [15] and approxi-
mation algorithms have been suggested in [11,14].

Problem 2 Given a set of n terminals in the plane and
� > 0, find a Steiner tree spanning n terminals with
the minimum number of Steiner points such that every
edge is not longer than �.

Sometimes the bottleneck Steiner tree has predefined
topology, i. e. the unweighted tree consisting of edges
between terminals and Steiner points [4,5,10]. Then it
is necessary to find the optimal positions of all Steiner
points. Since the number of different topologies for
a given set of terminals grows exponentially, fixing the
topology greatly reduces the complexity of the bottle-
neck Steiner tree problem.

Problem 3 Find a bottleneck Steiner tree with a given
topology T which spans a set of n terminals in the plane.
The first algorithms for the Euclidean case of Problem
3 are based on nonlinear optimization [7] and [13]. For
a given � > 0, the algorithm from [15] finds whether
a Steiner tree ST with the maximum edge weight � ex-
ists as follows.

The topology T is first transformed into a forest by re-
moving edges between terminals, if any such edge has
length more than �, then ST does not exist. Each con-
nected component T is processed separately. The fol-
lowing regions are computed in bottom-up fashion:
i) the region of the plane R(s) where a Steiner point s

can be placed; and
ii) the region R+ (s) where the Steiner point adjacent to

s can be placed which is the area within distance at
most � from R(s).

If a Steiner point p is adjacent to nodes s1, . . . , sk in Ti,
then R(s) = R+ (s1) \ � � � \ R+ (sk). The number a(s)
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of arcs bounding R(s) may be as high as the number of
leaves in Ti. In order to keep this number low, the tree
K can be decomposed in O(log n) levels such that in
total there will be onlyO(n) arcs in all regions. Thus the
runtime of the algorithm is O(n log n) [15].

When the distance between points is rectilinear,
several efficient algorithms are suggested for Prob-
lem 3 [4,9,10]. The algorithm above can be adjusted
for the rectilinear plane: the regions R(s) are rectangles.
The fastest known algorithm solves Problem 3 in time
O(n2) [9].

Each bottleneck Steiner problems can be general-
ized to arbitrary weights on edges and formulated for
weighted graphs [6].

Problem 4 Given a graph G = (V , E, w) with nonneg-
ative weight w on edges, and a set of terminals S � V ,
find a Steiner tree spanning S with the smallest maxi-
mum edge weight.

Problem 4 can be solved efficiently in the optimal time
O(|E|) time [6]. Unfortunately, the above formulation
does not bound the number of Steiner points. To bound
the number of Steiner points it is necessary to take in
account that unlike the classical Steiner tree problem in
graphs (cf.� Steiner tree problems), an edge cannot be
replaced with a shortest path without affecting the bot-
tleneck objective. The following graph-theoretical gen-
eralization of Problem 1 considered in [1,9] has been
proved to be NP-hard.

Problem 5 Given a complete graph G = (V , E, w) with
nonnegative weight w on edges, and a set of terminals
S � V , find a Steiner tree spanning S with the smallest
maximum edge weight such that each Steiner point has
degree at least 3.

Similarly to the classical Steiner tree problem, if no
Steiner points are allowed, the minimum spanning tree
(cf. also� Capacitated minimum spanning trees) is the
optimal solution for Problems 1 and 5. Therefore, sim-
ilarly to the Steiner ratio, it is valid to consider the bot-
tleneck Steiner ratio �B(n). The bottleneck Steiner ratio
is defined as the supremum over all instances with n
terminals of the ratio of the maximum edge weight of
the minimum spanning tree over the maximum edge
weight of the bottleneck Steiner tree. It has been proved
that �B(n) = 2 blog2 nc� ı, where ı is either 0 or 1 de-

pending on whether mantissa of log2 n is greater than
log2 3/2 [9].

The approximation complexity of the Problem 5 is
higher than for the classical Steiner tree problem: even
(2 � �)-approximation is NP-hard for any � > 0 [1].
On the other hand, the best known approximation al-
gorithm for Problem 5 has approximation ratio log2 n
[1]. The algorithm looks for an approximate bottleneck
Steiner tree in the collection C of edges between all pairs
of terminals and minimum bottleneck Steiner trees for
all triples of terminals. Using Lovasz’ algorithm [12] it is
possible to find out whether such a collection contains
a valid Steiner tree, i. e. a Steiner tree with all Steiner
points of degree at least three. The algorithm finds the
smallest � such that C still contains valid Steiner tree if
all edges of weight more than � are removed. It has been
shown that � � M� log2 n, where M is the maximum
edge weight of the optimal bottleneck Steiner tree.

See also

� Capacitated Minimum Spanning Trees
� Directed Tree Networks
�Minimax Game Tree Searching
� Shortest Path Tree Algorithms
� Steiner Tree Problems
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In solving optimal control problems involving non-
linear differential equations, some iterative procedure
must be used to obtain the optimal control policy. From
Pontryagin’s maximum principle it is known that the

minimum of the performance index corresponds to the
minimum of the Hamiltonian. Obtaining the minimum
value for the Hamiltonian usually involves some itera-
tive procedure. Here we outline a procedure that uses
the necessary condition for optimality, but the bound-
ary conditions are relaxed. In essence we have the op-
timal control policy at each iteration to a wrong prob-
lem. Iterations are performed, so that in the limit the
boundary conditions, as specified for the optimal con-
trol problem, are satisfied. Such a procedure is called
approximation to the problem or boundary condition
iteration method (BCI). Many papers have been writ-
ten about the method. As was pointed out in [1], the
method is fundamentally very simple and computa-
tionally attractive for some optimal control problems.
In [3] some evaluations and comparisons of different
approaches were carried out, but the conclusions were
not very definitive [5]. Although for control vector it-
eration (CVI) many papers are written to describe and
evaluate different approaches with widely different op-
timal control problems, see for example [14], for BCI
such comparisons are much more limited and there is
sometimes the feeling that the method works well only
if the answer is already known. However, BCI is a use-
ful procedure for determining the optimal control pol-
icy for many problems, and it is unwise to dispatch it
prematurely.

To illustrate the boundary condition iteration pro-
cedure, let us consider the optimal control problem,
where the system is described by the differential equa-
tion

kxk
dx
dt
D f(x;u); with x(0) given; (1)

where x is an n-dimensional state vector and u is
an r-dimensional control vector. The optimal control
problem is to determine the control u in the time inter-
val 0 � t < tf , so that the performance index

I D
Z t f

0
 (x;u) dt (2)

is minimized. We consider the case where the final time
tf is given and there are no constraints on the control
or the state variables. According to Pontryagin’s maxi-
mum principle, the minimum value of the performance
index in (2) is obtained by minimizing theHamiltonian

H D  C z>f : (3)
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The adjoint variable z is defined by

dz
dt
D �

@H
@x
; with z(t f ) D 0; (4)

which may be written as

dz
dt
D �

@f>

@x
z �

@ 

@x
; with z(t f ) D 0: (5)

The necessary condition for the minimum of the
Hamiltonian is

@H
@u
D 0: (6)

Let us assume that (6) can be solved explicitly for the
control vector

u D g(x; z): (7)

If we now substitute (7) into (1) and (5), and in-
tegrate these equations simultaneously backward from
t = tf to t = 0 with some value assumed for x(tf ), we
have the optimal control policy for a wrong problem,
because there is no assurance that upon backward in-
tegration the given value of the initial state x(0) will be
obtained. Therefore it is necessary to adjust the guessed
value for the final state, until finally an appropriate
value for x(tf ) is found. For this reason the method is
called the boundary condition iteration method (BCI).

In order to find how to adjust the final value of the
state, based on the deviation obtained from the given
initial state, we need to find the mathematical relation-
ship to establish the effect of the change in the final
state on the change in initial state. Many papers have
been written in this area. The development of the neces-
sary sensitivity equations is presented very nicely in [1].
In essence, the sensitivity information can be obtained
by getting the transition matrix for the linearized state
equation. Linearization of (1) gives

dıx
dt
D

�
@f>

@x

�>
ıxC

�
@f>

@u

�>
ıu: (8)

The transition matrix ˚ is thus obtained from solving

d˚
dt
D

�
@f>

@x

�>
˚; with ˚(t f ) D I; (9)

where I is the (n × n) identity matrix.

Suppose at iteration j the use of x(j) (tf ) gives the ini-
tial state x(j)(0) which is different from the given initial
state x(0). Then a new choice will be made at iteration
(j + 1) through the use of

x( jC1)(t f ) D x( j)(t f )C �˚(0)(x( j)(0) � x(0)); (10)

where a stabilizing parameter � is introduced to avoid
overstepping. A convenient way of measuring the devi-
ation from the given initial state is to define the error as
the Euclidean norm

e( j) D



x( j)(0)� x(0)




 : (11)

Once the error is sufficiently small, say less than 10�6,
then the iteration procedure can be stopped.

The algorithm for boundary condition iteration
may thus be presented as follows:
� Choose an initial value for the final state x(1) (tf ) and

a value for �; set the iteration index j to 1.
� Integrate (1), (2), (5) and (9) backwards from t = tf

to t = 0, using for control (7). (2) is not needed for
the algorithm, but it will give the performance index.

� Evaluate the error in the initial state from (11), and
if it is less than the specified value, end the iteration.

� Increment the iteration index j by one. Choose
a new value for the final state x(j) (tf ) from (10) and
go to step 2.
The procedure is therefore straightforward, since

the equations are all integrated in the same direction.
Furthermore, there is no need to store any variables
over the trajectory. There is the added advantage that
the control appears as a continuous variable, and there-
fore the accuracy of results will not depend on the size
of the integration time step. Theoretically the results
should be as good as can be obtained by the second
variation method in control vector iteration. It is im-
portant to realize, however, that the Hamiltonian must
be well behaved, so that (7) can be obtained analyt-
ically. The only drawback is the potential instability
since the state equation and the sensitivity equation are
integrated backwards, and problems may arise if the fi-
nal time tf is too large. For many problems in chemical
engineering the BCI method can be easily applied as is
shown in the following example.
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Illustration of the Boundary Condition Iteration
Procedure

Let us consider the nonlinear continuous stirred tank
reactor that has been used for optimal control studies
in [4, pp. 308–318], and which was shown in [13] to ex-
hibit multiplicity of solutions. The system is described
by the two equations

dx1
dt
D �2(x1 C 0:25)

C (x2 C 0:5) exp
�

25x1
x1 C 2

�
� u(x1 C 0:25); (12)

dx2
dt
D 0:5 � x2 � (x2 C 0:5) exp

�
25x1
x1 C 2

�
; (13)

with the initial state x1(0) = 0.09 and x2(0) = 0.09. The
control u is a scalar quantity related to the valve open-
ing of the coolant. The state variables x1 and x2 rep-
resent deviations from the steady state of dimension-
less temperature and concentration, respectively. The
performance index to be minimized is

I D
Z t f

0
(x21 C x22 C 0:1u2) dt; (14)

where the final time tf = 0.78. The Hamiltonian is

H D z1(�2(x1 C 0:25)C R � u(x1 C 0:25))

C z2(0:5 � x2 � R)C x21 C x22 C 0:1u2; (15)

where R = (x2 + 0.5) exp (25 x1/(x1 + 2)). The adjoint
equations are

dz1
dt
D (uC 2)z1 � 2x1 C 50R

(z2 � z1)
(x1 C 2)2

; (16)

dz2
dt
D �2x2 C

(z2 � z1)
(x2 C 0:5)

RC z2: (17)

The gradient of the Hamiltonian is

@H
@u
D 0:2u � (x1 C 0:25)z1; (18)

so the optimal control is given by

u D 5(x1 C 0:25)z1: (19)

The equations for the transition matrix are:

d˚11

dt
D
@ f1
@x1

˚11 C
@ f1
@x2

˚21;

d˚12

dt
D
@ f1
@x1

˚12 C
@ f1
@x2

˚22;

d˚21

dt
D
@ f2
@x1

˚11 C
@ f2
@x2

˚21;

d˚22

dt
D
@ f2
@x1

˚12 C
@ f2
@x2

˚22

where

@ f1
@x1
D �2C

50R
(x1 C 2)2

� u;

@ f1
@x2
D

R
(x2 C 0:5)

;

@ f2
@x1
D �

50R
(x1 C 2)2

;

@ f2
@x2
D �1C

R
(x2 C 0:5)

:

The adjustment of the final state is carried out by the
following two equations:

x( jC1)
1 (t f ) D x( j)1 (t f )C �

h
˚11(0)(x

( j)
1 (0) � x1(0))

C˚12(0)(x
( j)
2 (0)� x2(0))

i
; (20)

x( jC1)
2 (t f ) D x( j)2 (t f )C �

h
˚21(0)(x

( j)
1 (0) � x1(0))

C˚22(0)(x
( j)
2 (0) � x2(0))

i
: (21)

To illustrate the computational aspects of BCI, the
above algorithm was used with a Pentium-120 per-
sonal computer using WATCOM Fortran compiler
version 9.5. The calculations were done in double pre-
cision. When the performance index is included, there
are 9 differential equations to be integrated backwards
at each iteration. Standard fourth order Runge–Kutta
method was used for integration with a stepsize of 0.01.
For stability, it was found that � had to be taken of the
order of 0.1. For all the runs, therefore, this value of �
was used. As is shown in Table 1, to get the error less
than 10�6, a large number of iterations are required, but
the computation time is quite reasonable. The optimal
value of the performance index is very close to the value
I = 0.133094 reported in [13] with the second variation



316 B Boundary Condition Iteration BCI

Boundary Condition Iteration BCI, Table 1
Application of BCI to CSTR

Initial choice
x1(tf ) D x2(tf )

Performance
index

Number of
iterations

CPU time s

0:045 0:133095 2657 13:9

0:00 0:133097 2858 14:9
�0:045 0:133097 2931 15:3
0:01 0:133097 2805 14:7

method and is essentially equivalent to I = 0.133101 ob-
tained in [6] by using 20 stages of piecewise linear con-
trol with iterative dynamic programming. By refining
the error tolerance to e < 10�8 required no more than
an additional thousand iterations with an extra expen-
diture of about 6 seconds of computation time in each
case. Then the final value of the performance index for
each of the four different initial starting points was I =
0.133096.

Now that computers are very fast and their speed
is rapidly being improved, and computation time is no
longer prohibitively expensive, the large number of iter-
ations required by BCI should not discourage one from
using the method. Since the control policy is directly in-
side the integration routine, equivalent results to those
obtained by second variation method can be obtained.
The number of equations, however, to be integrated is
quite high with a moderately high-dimensional system.
If we consider a system with 10 state variables, there are
121 differential equations to be integrated simultane-
ously. Although computationally this does not repre-
sent a problem, the programming could be a challenge
to derive and enter the equations without error. There-
fore, BCI methods for which the (n × n) transition ma-
trix is not used may find amore widespread application.
One possible approach is now presented.

Sensitivity InformationWithout Evaluating
the TransitionMatrix

Suppose at iteration j we have n sets of final states
x(j� n + 1) (tf ), . . . , x(j) (tf ) with corresponding values for
the initial state obtained by integration x(j� n + 1)(0), . . . ,
x(j)(0). Then we can write the transformation

P D AQ; (22)

where

P D
�
x( j�nC1)(t f ) � � � x( j)(t f )

�
; (23)

and

Q D
�
x( j�nC1)(0) � � � x( j)(0)

�
: (24)

The transformation matrix

A D PQ�1 (25)

and the next vector at tf is chosen as

x( jC1)(t f ) D Ax(0): (26)

(1) and (5) are integrated backward to obtain x(j + 1)(0),
and the matrices P and Q are updated and the pro-
cedure continued. If the initial guesses are sufficiently
close to the optimal, very rapid convergence is ex-
pected.

1 Pick n sets of values for x(t f ) and integrate (1)
and (5) backward from t = t f to t = 0. using (7)
for control, to give n sets of initial state vectors.

2 From these two sets of vectors form the (n � n)
matrices P and Q.

3 Calculate A from (25), and calculate a new vec-
tor x( j+1)(t f ) from (26).

4 With the vector from Step 3 as a starting con-
dition, integrate (1) and (5) backward to give
x( j+1)(0).

5 Use the vectors in Steps 3 and 4 to replace
x( j�n+1)(t f ) and x( j�n+1)(0) imn matrices P and
Q and continue until the error as calculated
from (11) is below some tolerance, such as 10�8.

Boundary Condition Iteration BCI, Algorithm

For good starting conditions, one may use itera-
tive dynamic programming (IDP) [9], and pick the final
states obtained after each of the first n passes. F. Har-
tig and F.J. Keil [2] found that in the optimization of
spherical reactors, IDP provided excellent values which
were refined by the use of sequential quadratic pro-
gramming. For convergence here we need good start-
ing conditions. This is now illustrated with the above
example.
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By using IDP, as described in [6,7,8] for piece-
wise linear continuous control, with 3 randomly cho-
sen points and 10 iterations per pass for piecewise lin-
ear control with 15 time stages, the data for the first four
passes in Table 2 give good starting conditions for BCI.

By using as starting conditions the final states ob-
tained in passes 1 and 2 as given in Table 2, the conver-
gence is very fast with the above algorithm as is shown
in Table 3. Only 9 iterations are required to yield I =
0.133096.

As expected, if the initial set of starting points is bet-
ter, then the convergence rate is also better as is seen in
comparing Table 4 to Table 3. However, in each case
the total computation time was only 0.05 seconds on
a Pentium-120. Taking into account that it takes 0.77
seconds to generate the initial conditions with IDP, it
is observed that the optimum is obtained in less than 1
second of computation time. Therefore, BCI is a very
useful procedure if (6) can be solved explicitly for the
control and the final time tf is not too large. Simple con-
straints on control can be readily handled by clipping
technique, as shown in [12]. Further examples with this
approach are given in [10].

Boundary Condition Iteration BCI, Table 2
Results of the first four passes of IDP

Pass no. Perf. index x1(tf ) x2(tf ) CPU time s
1 0:1627 0:05359 �0:13101 0:39
2 0:1415 0:01940 �0:05314 0:77
3 0:1357 0:05014 �0:09241 1:16
4 0:1334 0:05670 �0:10084 1:54

Boundary Condition Iteration BCI, Table 3
Convergence with the above algorithm from the starting
points obtained in passes 1 and 2 by IDP

Iteration no. Perf. index Error "
1 0:014520 0:1215
2 0:031301 0:1031
3 0:129568 0:1852 � 10�2

4 0:136682 0:2414 � 10�2

5 0:135079 0:1350 � 10�2

6 0:133218 0:8293 � 10�4

7 0:133093 0:2189 � 10�5

8 0:133096 0:1373 � 10�6

9 0:133096 0:5209 � 10�8

Boundary Condition Iteration BCI, Table 4
Convergence with the above algorithm from the starting
points obtained in passes 3 and 4 by IDP

Iteration no. Perf. index Error "
1 0:121769 0:7353 � 10�2

2 0:135249 0:1415 � 10�2

3 0:133317 0:1531 � 10�3

4 0:133138 0:2861 � 10�4

5 0:133094 0:1703 � 10�5

6 0:133096 0:1190 � 10�7

7 0:133096 0:5364 � 10�10

See also

� Control Vector Iteration
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Interval arithmetic can be used to bound the range of
a real function over an interval. Here, we bound the
ranges of its Taylor coefficients (and hence derivatives)
by evaluating it in an interval Taylor arithmetic. In the
context of classical numerical methods, truncation er-
rors, Lipschitz constants, or other constants related to
existence or convergence assertions are often phrased
in terms of bounds for certain derivatives. Hence, inter-
val inclusions of Taylor coefficients can be used to give
guaranteed bounds for quantities of concern to classical
methods.

Evaluating the expression for a function using in-
terval arithmetic often yields overly pessimistic bounds
for its range. Our goal is to tighten bounds for the range
of f and its derivatives by using a differentiation arith-
metic for series generation. We applymonotonicity and

Taylor form tests to each intermediate result of the cal-
culation, not just to f itself. The resulting inclusions for
the range of derivative values are several orders of mag-
nitude tighter than bounds obtained from differentia-
tion arithmetic and interval calculations alone. Tighter
derivative ranges allow validated applications such as
optimization, nonlinear equations, quadrature, or dif-
ferential equations to use larger steps, thus improving
their computational efficiency.

Consider the set of q times continuously differen-
tiable functions on the real interval x D [x; x] denoted
by f (x) 2 Cq [x]. We wish to compute a tight inclusion
for

R( f (p); x) :D
n
f (p)(x) : x � x � x

o
; (1)

where p � q. We assume that f is sufficiently smooth
for all indicated computations, and that all necessary
derivatives are computed using automatic differentia-
tion (cf. [5],� Automatic differentiation: Point and in-
terval Taylor operators).

Computing an inclusion for the range of f (p) is
a generalization of the problem of computing an inclu-
sion for the range of f , R(f ; x). Moore’s natural inter-
val extension [3] gives an inclusion which is often too
gross an overestimation to be practical. H. Ratschek and
J. Rokne [8] gives a number of improved techniques
and many references. The approach of this paper fol-
lows from two papers of L.B. Rall [6,7] and from [1].
Taken together, Rall’s papers outline four approaches
to computing tight inclusions of R(f ; x), which we ap-
ply to derivatives:
� monotonicity,
� mean value and Taylor forms,
� intersection, and
� subinterval adaptation.

We apply the monotonicity tests and the Taylor
form to each term of the Taylor polynomial of a func-
tion. Whenever we compute more than one enclosure
for a quantity, either a derivative or an intermediate
value, we compute intersections of all such enclosures.
We apply these tests to each intermediate result of the
calculation, not just to f itself. The bounds we com-
pute for R(f (p); x) are often several orders of magnitude
tighter than bounds computed from natural interval ex-
tensions. In one example, we improve the interval in-
clusion for R(f (10); x) from [� 3.8E10, 7.8E10] (width
= 1.1E11) to [� 2.1E03, 9.6E03] (width = 1.1E04).
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This improvement by a factor of 107 allows a Gaus-
sian quadrature using 5 points per panel or a 10th
order ODE solver (applications for which bounds for
R(f (10); x) might be needed) to increase their stepsizes,
and hence their computational efficiency, by a factor of
107/10 	 5.

We discuss the evaluation of a function from a code
list representation (see also � Automatic differentia-
tion: Point and interval Taylor operators). Then we dis-
cuss howmonotonicity tests and Taylor form represen-
tations can be used to give tighter bounds for R(f (p); x).

Evaluation of Functions

Functions are expressed inmost computer languages by
arithmetic operations and a set˚ of standard functions,
for example,˚ = {abs, arctan, cos, exp, ln, sin, sqr, sqrt}.
A formula (or expression) can be converted into a code
list or computational graph {t1, . . . , tn} (cf. [5],� Auto-
matic differentiation: Point and interval Taylor opera-
tors). The value of each term ti is the result of a unary or
binary operation or function applied to constants, val-
ues of variables, or one or two previous terms of the
code list. For example, the function

f (x) D
x4 � 10x2 C 9
x3 � 4x � 5

can be converted into the code list

t1 := sqr(x); t6 := x � t1;
t2 := sqr(t1); t7 := 4 � x;
t3 := 10 � t1; t8 := t6 � t7;
t4 := t2 � t3; t9 := t8 � 5;
t5 := t4 + 9; t10 := t5/t9:

Bounding Derivative Ranges, Figure 1
Code list

The final term tn of the code list (t10 in this case)
gives the value of f (x), if defined, for a given value of the
variable x. The conversion of a formula into an equiva-
lent code list can be carried out automatically by a com-
puter subroutine.

The code list serves equally well for various kinds
of arithmetic, provided the necessary arithmetic oper-
ations and standard functions are defined for the type
of elements considered. Thus, the code list in Fig. 1 can

serve for the computation of f (x) in real, complex, in-
terval, or differentiation arithmetic. When x is an inter-
val, one gets an interval inclusion f (x) of all real values
f (x) for real x 2 x [3,4].

The process of automatic differentiation to obtain
derivatives or Taylor coefficients of f (x) can be viewed
as the evaluation of the code list for f (x) using a differ-
entiation arithmetic in which the arithmetic operations
and standard functions are defined on the basis of the
well-known recurrence relations for Taylor coefficients
(cf. also [3,4,5],� Automatic differentiation: Point and
interval Taylor operators). Let (f )i := f (i)(x̌)/i! be the
value of the ith Taylor coefficient of f (x) = f (x̌ C h).
Then we can express a Taylor series as

f (x) D
1X
iD0

f (i)(x̌)
hi

i!
D

1X
iD0

( f )i hi ;

and the elements of Taylor series arithmetic are vec-
tors f = ((f )0, . . . , (f )p). In Taylor arithmetic, constants
c have the representation c = (c, 0, . . . , 0), and x = (x0, 1,
0, . . . , 0) represents the independent variable x = x0 + h.
For example, multiplication f (x) = u(x) � v(x) of Taylor
variables is defined in terms of the Taylor coefficients of
u and v by (f )i =

Pi
jD0 (u)j � (v)i� j, i = 0, . . . , p.

Monotonicity

We extend an idea of R.E. Moore for using monotonic-
ity [4]: we check for the monotonicity of every deriva-
tive of f and of every intermediate function ti from the
code list. If the ith derivative of f is known to be of
one sign on x (R (f (i); x) � 0 or � 0), then f (i � 1) is
monotonic on the interval x, and its range is bounded
by the real values f (i�1)(x) and f (i�1)(x). This is impor-
tant because the bounds of R(f (i � 1); x) by f (i�1)(x) and
f (i�1)(x) may be tighter than the bounds computed by
the naive interval evaluation of f (i � 1) (x). Hence, in ad-
dition to the ranges R(f (i); x), we propagate enclosures
of the values at the endpoints R( f (i); x) and R( f (i); x) so
that those values are available. (We use R( f (i); x) and
R( f (i); x) instead of R( f (i); x) and R( f (i); x) to denote
that f (i) at the endpoints is evaluated in interval arith-
metic.)

Similarly, if R(f (i); x) � 0 (or � 0), then
f (i � 2) is convex (resp. concave), and its maximum
value is max( f (i�2)(x); f (i�2)(x)) (resp. minimum is
min( f (i�2)(x); f (i�2)(x))).
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Bounding Derivative Ranges, Figure 2
R (f (3); x)� 0 implies f is monotonic and f 0 is convex

We apply the monotonicity test to each term of each
intermediate result because an intermediate result may
be monotonic when f is not. Further, by proceeding
with tighter inclusions for the terms of the intermedi-
ate results, we reduce subsequent over-estimations and
improve our chances for validating the monotonicity of
higher derivatives. If f (i� 1) is found to be monotonic,
the tightened enclosure for R(f (i� 1); x) may allow us to
validate R(f (i � 1); x) � 0 (or � 0), so we backtrack to
lower terms of the series as long as we continue to find
monotonicity. In the recurrence relations for divide and
for all of the standard functions, the value of f (i) (x) de-
pends on the value of f (i � 1) (x). Hence, if the enclosure
for R(f (i� 1); x) is tightened, we recompute the enclo-
sure for R(f (i); x) and all subsequent terms.

Table 1 shows (some of) the results when the mono-
tonicity test is applied to each of the intermediate re-
sults of

f (x) D
x4 � 10x2 C 9
x3 � 4x � 5

on the interval x := [1, 2]. Each row shows enclosures
for Taylor coefficients. The row ‘x’ has two entries for
the function x evaluates on the interval x and its deriva-

tive. All higher-order derivatives are zero. Similarly,
rows t4 and t5 have five nonzero derivatives.

A few entries show where tightening occurs because
of the monotonicity test. For example, at 1, the 3rd
derivative of t4 is positive. Hence, t4 is monotonic, but
that knowledge yields no tightening. Also t40 is convex,
a fact which does allow us to tighten the upper bound
from 12 to �8. Similarly at 2, finding that t8 is positive
allows us to improve the upper bound for t8. In this ex-
ample, the monotonicity tests allow us only two rela-
tively modest tightenings, but those two tighter values
propagate through the recurrences to reduce the width
of the bound finally computed for t(5)10 from about 2.3E6
to 300, an improvement of nearly a factor of 104.

Taylor Form

In [6], Rall proves that if x̌ 2 x, then

R( f ; x) � Fp(x) :D
p�1X
iD0

( f )i(x� x̌)i

C F(p) (x)(x� x̌)p

p!
; (2)
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Bounding Derivative Ranges, Table 1
Numerical results of applying monotonicity tests

x
x(x) [1, 2] 1

t1 := x2
t1(x) [1, 4] [2, 4] 1

t2 := t21 = x4
t2(x) [1, 16] [4, 32] [6, 24] [4, 8] 1

t3 := 10 
 t1 = 10x2
t3(x) [10, 40] [20, 40] 10

t4 := t2 � t3 = x4 � 10x2
t4(x) [�39, 6] [�36, 12] [�4, 14] [4, 8]1 1
Tightened to:
t4(x) [�24, -9] [�36, -8] [�4, 14] [4, 8] 1

t5 := t4 + 9 = x4 � 10x2 + 9
t5(x) [�30, 15] [�36, 12] [�4, 14] [4, 8] 1
Tightened as the result of tightening t4:
t5(x) [�15, 0] [�36, -8] [�4, 14] [4, 8] 1

: : :

t8 := t6 � t7 = x3 � 4x
t8(x) [�7, 4] [�1, 8] [3, 6]2 1
Tightened to:
t8(x) [�7, 0] [�1, 8] [3, 6] 1

t9 := t8 � 5 = x3 � 4x � 5
t9(x) [�12, -1] [�1, 8] [3, 6] 1
Tightened as the result of tightening t8:
t9(x) [�12, -5] [�1, 8] [3, 6] 1

t10 := t5/t9 = f
t10(x) [�15, 30] [�10097, 20823]

[�132, 276] [�87881, 181229]
[�1160, 2392] [�764851, 1577270]

Tightened as the result of tightening t5 and t9:
t10(x) [�9.73E�0.6, 3.01] [�9.68, 51.97]

[0.41, 12.01] [�21.84, 113.67]
[�5.21, 23.61] [�47.58, 248.96]

and F(p) is an interval extension of f (p). The Fp given
by (2) is called the (elementary) Taylor form of f of or-
der p.

We expand the Taylor series for the function f and
all intermediate functions ti appearing in the code list
at three points, x = a := x, x = c := midpoint (x), and
x D b :D x. The series for f at x and x are already
available since they were computed for the monotonic-
ity test. The extra work required to generate the series
at c is often justified because the midpoint form is much
narrower than either of the endpoint forms. Let h :=

width (x). We compute the Taylor form (2) for f and
each ti at the left endpoint, center, and right endpoint to
all available orders and intersect. The remainder using
R(f (i + 1); x) has the potential for tightening all previous
terms:

R( f ; x) �
�
f (a)C f 0(a)h[0; 1]C f 00(a)

h2

2!

 [0; 1]

C � � � C f (i)(a)
hi

i!

 [0; 1]

CR( f (iC1); x)
hiC1

(i C 1)!

 [0; 1]

�
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Bounding Derivative Ranges, Table 2
Numerical results of applying Taylor from tests

x
x(x) [1,2] 1

t1 = x2
t1([a; b]) [1, 4] [2, 4] 1
No tightening occurs.

: : :

t4 = t2 � t3 = x4 � 10x2
t4(x) [�39, 6] [�36, 12] [�4, 14] [4, 8] 1

[�24, 12] tightened by f (a) using Fab(2)
[�24, -2.5] tightened by f (c) using Fab(2)
[�20, -7] tightened by f (c) using Fab(3)
[�20, -8] tightened by f (c) using Fab(4)

[�29, -9] tightened by f (a) using Fab(1)
[�27.438, -9] tightened by f (c) using Fab(1)
[�24, -9] tightened by f (b) using Fab(1)

Tightened to :
t4(x) [�24, -9] [�20, -8] [�4, 14] [4, 8] 1

t5 = t4 + 9 = x4 � 10x2 + 9
t5(x) [�30, 15] [�36, 12] [�4, 14] [4, 8] 1
Tightened as the result of tightening t4:
t5(x) [�15, 0] [�20, -8] [�4, 14] [4, 8] 1

t8 = t6 � t7 = x3 � 4x
t8(x) [�7, 4] [�1, 8] [3, 6] 1
Tightened to:
t8(x) [�4, 0] [�1, 8] [3, 6] 1

t10 = t5/t9
t10(x) [�15, 30] [�10097, 20823]

[�132, 276] [�87881, 181229]
[�1160, 2392] [�764851, 1577270]

Tightened as the result of tightening t5 and t9:
t10(x) [�9.73E�06, 3.01] [�8.57, 39.94]

[0.55, 8.81] [�19.27, 87.64]
[�4.57, 18.49] [�42.02, 191.84]

[�6.08E�06, 3.01] tightened by f(c) using Fab(1)

\

�
f (c)C f 0(c)h 


[�1; 1]
2
C f 00(c)

h2

2!


[�1; 1]

4

C � � � C f (i)(c)
hi

i!


[�1; 1]i

2i

CR( f (iC1); x)
hiC1

(i C 1)!


[�1; 1]iC1

2iC1

�

\

�
f (b)C f 0(b)h 
 [�1; 0]C f 00(b)

h2

2!

 [0; 1]

C � � � C f (i)(b)
hi

i!

 [�1; 0]i

CR( f (iC1); x)
hiC1

(i C 1)!

 [�1; 0]iC1

�
:
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Bounding Derivative Ranges, Figure 3
Taylor polynomial enclosures for f , remainders from naive interval evaluation

Bounding Derivative Ranges, Figure 4
Taylor polynomial enclosures for f , remainders tightened by Taylor form
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For higher-order derivatives, R(f (i); x) is contained in
similar Taylor forms involving f (i + n) (x), for n > 0.

We apply the Taylor form to each intermediate re-
sult. Except for the operators +, �, 
, and sqr, when-
ever one term is tightened, all following terms can be
recomputed more tightly. This can result in an itera-
tive process which is finite only by virtue of Moore’s
theorem on interval iteration [4]. In practice then, we
restrict the number of times subsequent terms are re-
computed starting at a given order.

Table 2 shows (some of) the results when the Taylor
form is applied to each of the intermediate results of

f (x) D
x4 � 10x2 C 9
x3 � 4x � 5

on the interval x := [1, 2]. ‘Tightened by f (a), f (c),
or f (b)’ indicates whether the left endpoint, the mid-
point, or the right endpoint expansion was used. ‘Using
Fab(n)’ indicates that f (i) was tightened using f (i + n).

The pattern of Table 2 is typical: Most Taylor forms
give no tightening; there aremany small improvements;
and the compound effect of many small improvements
is significant. Here we have reduced the width of the en-
closure for the 6th Taylor coefficient from about 2.3E7
to 2.3E2. Figures 3 and 4 compare the Taylor poly-
nomial enclosures for f resulting from naive interval
evaluation of the remainders with the enclosures tight-
ened by the Taylor form computations shown in Ta-
ble 2.

For this example, the bounds achieved using the
Taylor form are tighter than those achieved using the
monotonicity test. For other examples, the monotonic-
ity test performs better. Hence in practice, we apply
both techniques. If the expression for f is rewritten in
a mathematically equivalent form to yield tighter inter-
val bounds for R(f ; x), the techniques of this paper can
still be used profitably to tighten enclosures of higher
derivatives.

Intersection and Subinterval Adaptation

The third general technique described by Rall for tight-
ening enclosures of R(f ; x) is to intersect all enclosures
for each quantity, as we have done here. That is, what-
ever bounds forR(f (i); x) we compute using monotonic-
ity or Taylor form of any degree, we intersect with the

tightest bound previously computed. Each new bound
may improve our lower bound, our upper bound, both,
or neither. Some improvements are large. Others are so
small as to seem insignificant, but even the smallest im-
provements may be magnified by later operations.

Rall’s fourth technique is the adaptive partitioning
of the interval x. The over-estimation of R(f (i); x) by
naive interval evaluation decreases linearly with width
(x), while the over-estimation by the Taylor form de-
creases quadratically. Hence, partitioning x into smaller
subintervals is very effective. However, we view subin-
terval adaptation as more effectively controlled by the
application (e. g., optimization, quadrature, DE solu-
tion) than by the general-purpose interval Taylor arith-
metic outlined here. Hence, we do not describe it fur-
ther.

Software Availability

An implementation in Ada of interval Taylor arith-
metic operators for +, �, 
, /, and sqr is available at
[9]. Similar implementations could be written in For-
tran 90, C++, or any other language supporting opera-
tor overloading.
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In this article, we present some important theoretical
results based upon which solution of parametric non-
linear programming problems can be approached. The
need for these results arises from the fact that while sta-
bility, continuity and convexity properties of objective
function value for linear programs are readily available
[7], their counterparts in nonlinear programs are valid
only for a special class of nonlinear programs. It is not
surprising then that a large amount of research has been
devoted towards establishing these conditions (see [1]
and [3] for a comprehensive list of references). Further,
due to the existence of strong duality results for linear
models, parametric programming can be done by ex-
tending the simplex algorithm for linear models [6]. On
the other hand, for nonlinear programs the parametric
solution is given by an approximation of the optimal
solution. This approximation or estimation of the opti-
mal solution can be achieved by obtaining the optimal
solution as a function of parameters. In order to derive
these results we first state the following implicit function
theorem:

Theorem 1 (see for example [3,8]) Suppose that �(x,
�) is a (r × 1) vector function defined on En × Em, with x
2 En and � 2 Em, andDx �(x, �) andD
 �(x, �) indicate
the (r × n) and (r × m) matrix of first derivatives with
respect to x and � respectively. Suppose that �: Em + n!

En. Let � (x, �) be continuously differentiable in x and �
in an open set at (x0, �0) where �(x0, �0) = 0. Suppose
that Dx �(x0, �0) has an inverse.

Then there is a function x(�) defined in a neigh-
borhood of �0 where for each b� in that neighborhood
�[x(b�);b�] D 0. Furthermore, x(�) is a continuously dif-
ferentiable function in that neighborhood and

x0(�0)
D �Dx�[x(�0); �0]�1D
�[x(�0); �0]

D �Dx�(x0; �0)�1D
�(x0; �0);

where x0(�0) denotes the derivative of x evaluated at �0.
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Consider the parametric nonlinear programming prob-
lem of the following form:

8̂
ˆ̂̂<
ˆ̂̂̂
:

z(�) D min
x

f (x; �)

s.t. gi (x; �) � 0; i D 1; : : : ; p;
hj(x; �) D 0; j D 1; : : : ; q;
x 2 X;

(1)

where f , g and h are twice continuously differentiable in
x and � . The first order KKT conditions for (1) are given
as follows:

r f (x; �) �
pX

iD1

�ir gi (x; �)C
qX

jD1

� jrhj(x; �) D 0;

�i gi (x; �) D 0; i D 1; : : : ; p;
hj(x; �) D 0; j D 1; : : : ; q :

(2)

An application of the implicit function theorem 1
to the KKT conditions (2) results in the following basic
sensitivity theorem:

Theorem 2 ([2,3,8]) Let �0 be a vector of parameter
values and (x0, �0, �0) a KKT triple corresponding to
(2), where �0 is nonnegative and x0 is feasible in (1). Also
assume that:
i) strict complementary slackness holds;
ii) the binding constraint gradients are linearly inde-

pendent;
iii) the second order sufficiency conditions hold.
Then, in neighborhood of �0, there exists a unique, once
continuously differentiable function [x(�), �(�), �(�)]
satisfying (2) with [x(�0), �(�0), �(�0)] = (x0, �0, �0),
where x(�) is a unique isolated minimizer for (1), and

0
B@

dx(
0)
d


d	(
0)
d


d
(
0)
d


1
CA D �(M0)�1N0; (3)

where

M0 D

0
BBBBBBBBBBB@

r2L �r g1 � � � �r gp rh1 � � � rhq
�1r

>g1 g1
:::

: : :

�pr
>gp gp

r>h1
:::

r>hr

1
CCCCCCCCCCCA

and

N0 D (r2

x L; �1r

>

 g1; : : : ; �pr

>

 gp;

r>
 h1; : : : ;r
>

 hq)

>;

L(x; �; �; �) D f (x; �)

C

pX
iD1

�i gi (x; �)C
qX

jD1

� j h j(x; �):

However, for a special case of (1) when the parameters
are present on the right-hand side of the constraints, (1)
can be rewritten in the following form:

8̂
<̂
ˆ̂:

z(�) D min
x

f (x)

s.t. g(x) � �;

x 2 X:

(4)

A simplified version of an equivalent of (3) for (4) can
also be obtained (see for example [8] for details). An-
other important result that can be derived for (4) is
that the rate of change of the optimal value function,
z(�), with change in � is given by KKTmultiplier. Thus,
given an optimal solution of (4) at a fixed point in �0,
an estimate of the optimal solution in the neighbor-
hood of �0 can be obtained by using the KKT multi-
plier obtained at �0 (see [8] and [9]). For a special case
of (4), when (4) is convex in x and � is bounded be-
tween certain lower and upper bounds, say 0 and 1, one
can obtain a piecewise linear approximation of the op-
timal value function for the whole range of � . In order
to derive these results, we first state the following prop-
erties.

Theorem 3 (continuity property of the objective func-
tion value; [3]) Let

z(�) D inf
x
f f (x) : x 2 X; g(x) � �g :

Suppose
i) X is a compact convex set in En,
ii) f and g are both continuous on X × En, and
iii) each component of g is strictly concave on X for

each � .
Then z(�) is continuous on its effective domain.
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Bounds and Solution Vector Estimates for Parametric NLPS,
Figure 1
Bounds on the optimal value function z(�)

Theorem 4 (convexity property of the solution space;
[4]) Suppose
i) gi are jointly quasiconcave on X and � , and
ii) X is convex.
Then the solution space R(�) = {x 2 X: g(x)� �}, is con-
vex.

Theorem 5 (convexity property of the objective func-
tion value; [4]) Suppose
i) f is convex on X, and
ii) the solution space R(�) is essentially convex.
Then z(�) is convex on � .

Since z(�) is continuous and convex under above con-
ditions, for a given interval [� i, � i+1], we can obtain [5]
(see Fig. 1) parametric lower and upper bounds as fol-
lows.

Parametric Lower Bound

A linear underestimator of the convex function, z(�),
will be a global underestimator, hence lower bounds at
� i and � i+1 given by:

LBi (�) D z�(�i)Cr
 z�(�i)(� � �i);

LBiC1(�) D z�(�iC1)Cr
 z�(�iC1)(� � �iC1);

where r
 z�(�) is given by the Lagrange multipliers
as discussed earlier, provide global underestimators to
z(�).

Parametric Upper Bound

A linear interpolation between the objective function
value at the end points � i and � i+1 given by:

bz(y; �) D ˛z�(y; �i )C (1�˛)z�(y; �iC1); ˛ 2 (0; 1);

gives a valid upper bound because of the convexity of
the objective function.

It may be mentioned that in this simple way we can
obtain a region, ABC, within which the value of ob-
jective function will lie. An intersection point, � int, of
the two lower bounds, LBi(�) and LBi+1 (�), is then de-
termined. At this point the value of lower and upper
bounds are compared, and if the difference is within
certain tolerance, �, we stop, otherwise, the interval [� i,
� i+1] is subdivided into two intervals [� i, � int] and [� int,
� i+1]. In each of these regions a similar bounding pro-
cedure is repeated until we meet the tolerance criterion.
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Branch and price is a generalization of linear program-
ming (LP) based branch and bound specifically de-
signed to handle integer programming (IP) formula-
tions that contain a huge number of variables. The ba-
sic idea of branch and price is simple. Columns are left
out of the LP relaxation because there are too many
columns to handle efficiently and most of them will
have their associated variable equal to zero in an op-
timal solution anyway. Then to check the optimality of
an LP solution, a subproblem, called the pricing prob-
lem, is solved to try to identify columns with a profitable
reduced cost. If such columns are found, the LP is reop-

timized. Branching occurs when no profitable columns
are found, but the LP solution does not satisfy the in-
tegrality conditions. Branch and price applies column
generation at every node of the branch and bound tree.

There are several reasons for considering IP formu-
lations with a huge number of variables.
� A compact formulation of an IPmay have a weak LP

relaxation. Frequently the relaxation can be tight-
ened by a reformulation that involves a huge num-
ber of variables.

� A compact formulation of an IP may have a sym-
metric structure that causes branch and bound to
perform poorly because the problem barely changes
after branching. A reformulation with a huge num-
ber of variables can eliminate this symmetry.

� Column generation provides a decomposition of the
problem into master and subproblems. This decom-
position may have a natural interpretation in the
contextual setting allowing for the incorporation of
additional important constraints or nonlinear cost
functions.

� A formulation with a huge number of variables may
be the only choice.
At first glance, it may seem that branch and price in-

volves nothing more than combining well-known ideas
for solving linear programs by column generation with
branch and bound. However, it is not that straight-
forward. There are fundamental difficulties in applying
column generation techniques for linear programming
in integer programming solution methods. These in-
clude:
� Conventional integer programming branching on

variables may not be effective because fixing vari-
ables can destroy the structure of the pricing prob-
lem.

� Column generation often converges slowly and solv-
ing the LPs to optimality may become computation-
ally prohibitive.

We illustrate the concepts of branch and price and the
difficulties that may arise by means of an example.

In the generalized assignment problem (GAP) the
objective is to find a maximum profit assignment of m
tasks to n machines such that each task is assigned to
precisely one machine subject to capacity restrictions
on the machines. For reasons that will become appar-
ent later, we will consider separately the two cases of
nonidentical and identical machines.
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Nonidentical Machines

The natural integer programming formulation of GAP
is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max
X

1�i�m

X
1� j�n

pi jzi j

s.t.
X

1� j�n

zi j D 1; i D 1; : : : ;m;

X
1�i�m

wi jzi j � dj ; j D 1; : : : ; n;

zi j 2 f0; 1g;

i D 1; : : : ;m; j D 1; : : : ; n;

where pij is the profit associated with assigning task i to
machine j, wij is the amount of the capacity of machine
j used by task i, dj is the capacity of machine j, and zij
is a 0–1 variable indicating whether task i is assigned to
machine j.

An alternative formulation of GAP in terms of
columns representing feasible assignments of tasks to
machines is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max
X
j�1�n

X
1�k�K j

0
@ X

1�i�m

pi j y
j
i k

1
A� j

k

s.t.
X

1� j�n

X
1�k�K j

y ji k�
j
k D 1; i D 1; : : : ;m;

X
1�k�K j

�
j
k D 1; j D 1; : : : ; n;

�
j
k 2 f0; 1g;

j D 1; : : : ; n; k D 1; : : : ;Kj;

where the firstm entries of a column, given by yjk = (yj1k ,
. . . , yjmk ), satisfy the knapsack constraint

X
1�i�m

wi jxi � dj; xi 2 f0; 1g; i D 1; : : : ;m;

and where Kj denotes the number of feasible solutions
to the above knapsack constraint. The first set of con-
straints ensures that each task is assigned to a machine,
and the second set of constraints, the convexity con-
straints, ensures that exactly one feasible assignment of
tasks to machines is selected for each machine. This is
in fact the formulation that is obtained when we ap-
plyDantzig–Wolfe decomposition to the natural formu-
lation of GAP with the assignment constraints defin-

ing the master problem and the machine capacity con-
straints defining the subproblems.

The reason for considering this alternative formu-
lation of GAP is that the LP relaxation of the master
problem is tighter than the LP relaxation of the natu-
ral formulation because certain fractional solutions are
eliminated. Namely, all fractional solutions that are not
convex combinations of 0–1 solutions to the knapsack
constraints.

Unfortunately, the LP relaxation of the master prob-
lem cannot be solved directly due to the exponential
number of columns. However, the LP relaxation of a re-
stricted version of the master problem that considers
only a subset of the columns can be solved directly us-
ing, for instance, the simplex method. Furthermore, if
the reduced costs of all the columns that were left out
are nonnegative, then the LP solution obtained is also
optimal for the LP relaxation of the unrestricted master
problem. To check whether there exist a column with
positive reduced cost we solve the pricing problem

max
1� j�n

fz(KP j) � v jg;

where vj is the optimal dual price from the solution to
the LP relaxation of the restricted master problem asso-
ciated with the convexity constraint of machine j, and
z(KPj) is the value of the optimal solution to the knap-
sack problem
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

max
X

1�i�n

(pi j � ui )xi

s.t.
X

1�i�n

wi jxi � dj

xi 2 f0; 1g;

i 2 f1; : : : ; ng;

with ui being the optimal dual price from the solution
to the LP relaxation of the restricted master problem
associated with the assignment constraint of task i. If
the optimal value of the pricing problem is positive, we
have identified a column with positive reduced cost. In
that case, we add the column to the restricted master
problem and reoptimize.

The LP relaxation of the master problem solved
by column generation may not have an integral op-
timal solution and applying a standard branch and
bound procedure to the master problem over the ex-
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isting columns is unlikely to find an optimal, or good,
or even feasible solution to the original problem. There-
fore it may be necessary to generate additional columns
in order to solve the linear programming relaxations
of the master problem at nonroot nodes of the search
tree.

Standard branching on the �-variables creates
a problem along a branch where a variable has been
set to zero. Recall that yjk represents a particular solu-
tion to the jth knapsack problem. Thus � j

k = 0 means
that this solution is excluded. However, it is possible
(and quite likely) that the next time the knapsack prob-
lem for the jth machine is solved the optimal solution
is precisely the one represented by yjk . In that case, it
would be necessary to find the second best solution to
the knapsack problem. At depth l in the branch and
bound tree we may need to find the lth best solution,
which is very hard. Fortunately, there is a simple rem-
edy to this difficulty. Instead of branching on the �s in
the master problem, we use a branching rule that corre-
sponds to branching on the original variables zij. When
zij = 1, all existing columns in the master that do not as-
sign task i to machine j are deleted and task i is perma-
nently assigned to machine j, i. e., variable xi is fixed to
1 in the jth knapsack. When zij = 0, all existing columns
in the master that assign job i to machine j are deleted
and task i cannot be assigned to machine j, i. e., variable
xi is removed from the jth knapsack. Note that each of
the knapsack problems contains one fewer variable af-
ter the branching has been done.

Observe that the branching scheme discussed above
is specific to the GAP. This is typical of branch and price
algorithms. Each problem requires its own ‘problem-
specific’ branching scheme.

In practice, one of the computational difficulties en-
countered when applying branch and price is the so-
called tailing-off effect of the column generation, i. e.,
the large number of iterations needed to prove the op-
timality of the LP solution. Potentially, this may hap-
pen at every node of the search tree. Also, the pric-
ing problem that needs to be solved at each column
generation iteration may be difficult and time con-
suming. Fortunately, the branch and bound framework
has some inherent flexibility that can be exploited ef-
fectively in branch and price algorithms. Branch and
bound is an enumeration scheme that is enhanced by
fathoming based on bound comparisons. To control the

size of the branch and bound tree it is best to work with
strong bounds; however, the method will work with any
bound. Therefore, instead of solving the linear program
to optimality, i. e., generating columns as long as prof-
itable columns exist, we can choose to prematurely end
the column generation process and work with bounds
on the final LP value.

Again, consider the alternative formulation of GAP.
By dualizing the assignment constraints, we obtain the
following Lagrangian relaxation, which provides an up-
per bound on the value of the LP for any vector u.
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After some algebraic manipulations, we obtain
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which is equivalent to
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z(KP j):

This shows that after solving the pricing problem, we
have all the information necessary to compute an up-
per bound on the value of the final LP solution. There-
fore, after every column generation iteration, we may
decide to prematurely end the column generation pro-



Branch and Price: Integer Programming with Column Generation B 331

cess if the value of the LP solution to the current re-
stricted master problem, which provides a lower bound
on the final LP value, and this upper bound are suffi-
ciently close.

Identical Machines

This is a special case of the problem with nonidenti-
cal machines and therefore the methodology described
above applies. However, we need only one subprob-
lem since all of the machines are identical, which im-
plies that the � j

k can be aggregated by defining �k =
P

j

�
j
k and that the convexity constraints can be combined

into a single constraint
P

1� k� K �k = nwhere �k is re-
stricted to be integer. In some cases the aggregated con-
straint will become redundant and can be deleted alto-
gether. An example of this is when the objective is to
minimize

P
�k, i. e., the number of machines needed to

process all the tasks. Note that this special case of GAP
is equivalent to a 0–1 cutting-stock problem.

A much more important issue here concerns sym-
metry, which causes branching on the original vari-
ables to perform very poorly. With identical machines,
there are an exponential number of solutions that dif-
fer only by the names of the machines, i. e. by swapping
the assignments of 2 machines we get 2 solutions that
are the same but have different values for the variables.
This statement is true for fractional as well as 0–1 so-
lutions. The implication is that when a fractional solu-
tion is excluded at some node of the tree, it pops up
again with different variable values somewhere else in
the tree. In addition, the large number of alternate op-
tima dispersed throughout the tree renders pruning by
bounds nearly useless.

The remedy here is a different branching scheme
that works directly on the master problem but focuses
on pairs of tasks. In particular, we consider rows of the
master with respect to tasks r and s. Branching is done
by dividing the solution space into one set in which r
and s appear together, in which case they can be com-
bined into one task when solving the knapsack, and into
another set in which they must appear separately, in
which case a constraint xr + xs � 1 is added to the knap-
sack. Note that the structure of the subproblems is no
longer the same on the different branches.

Most of the material presented above is based on
[3], in which the term branch and price was first in-

troduced, and [1], in which the concepts of branch and
price are covered in much more detail. Another impor-
tant source of information on branch and price is [4], in
which various general branching schemes and bound-
ing schemes are discussed. Routing and scheduling has
been a particularly fruitful application area of branch
and price, see [2] for a survey of these results.

See also

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Bound

Methods
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Algorithms
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� Integer Programming Duality
� Integer Programming: Lagrangian Relaxation
� LCP: Pardalos–Rosen Mixed Integer
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�Multi-Objective Integer Linear Programming
�Multi-Objective Mixed Integer Programming
� Set Covering, Packing and Partitioning Problems
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Introduction

Let G be a graph (or hypergraph) with node set V (G)
and edge set E(G). Let T be a tree having j E(G) j leaves
in which every non-leaf node has degree 3. Let � be a bi-
jection (one-to-one and onto function) from the edges
of G to the leaves of T. The pair (T, �) is called a branch
decomposition of G. Notice that removing an edge, say
e, of T partitions the leaves of T and the edges of G
into two subsets Ae and Be . The middle set of e and of
(Ae ; Be ), denoted by mid(e) or mid(Ae ; Be ), is the set
V (G[Ae]) \ V(G[Be ]) where G[Ae ] is the subgraph of
G induced by Ae and similarly for G[Be ]. The width of
a branch decomposition (T, �) is the maximum order
of the middle sets over all edges in T. The branchwidth
of G, denoted by ˇ(G), is the minimum width over all
branch decompositions of G. A branch decomposition
of G is optimal if its width is equal to the branchwidth

1This research was partially supported by NSF grant DMI-
0217265

of G. For example, Fig. 1 gives an optimal branch de-
composition of an example graph where some of the
middle sets of the edges of the branch decomposition
are provided.

An edge e is contracted if e is deleted and the ends
of e are identified into one node and a graph H is ami-
nor of a graph G if H can be obtained from a subgraph
ofG by contracting edges. Graphs of small branchwidth
are characterized by the following theorem.

Theorem 1 (Robertson and Seymour [49]) A graph G
has branchwidth:
� 0 if and only if every component of G has � 1 edge
� � 1 if and only if every component of G has� 1 node

of degree � 2
� � 2 if and only if G has no K4 minor. �

Other classes of graphs with known branchwidth are
grids, complete graphs, Halin graphs, and chordal
graphs. The branchwidth of a a�b-grid is theminimum
of a and b while the branchwidth of a complete graphG
with at least 3 nodes is d 23 j V (G) je [49]. Halin graphs
have branchwidth 3 and the branchwidth of chordal
graphs is bounded below by d 23 j !(G) je and above
by !(G) where !(G) denotes the clique number of the
graph [30].

GraphMinors Theorem

A planar graph is a graph that can be drawn on a sphere
or plane without having edges that cross. A subdivi-
sion of a graph G is a graph obtained from G by re-
placing its edges by internally vertex disjoint paths. In
the 1930s, Kuratowski [42] proved that a graph G is
planar if and only if G does not contain a subdivision
of K5 or K3;3. Let F be a class of graphs. F is minor
closed when all the minors of any member of F also
belong to F . Given a minor closed class of graphs F ,
the obstruction set of F is the set of minor minimal
graphs that are not elements of F . Clearly, any class of
graphs embeddable on a given surface is a minor closed
class. Erdös, also in the 1930’s, posed the question of
whether the obstruction set for a given surface is finite.
Wagner [57] later proved that the sphere has a finite
obstruction set, K5 and K3;3. The question of charac-
terizing the obstruction set for surfaces other than the
sphere remained open until 1979–1980 when Archdea-
con [4] and Glover et al. [27] solved the case for the
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Branchwidth and Branch Decompositions, Figure 1
Example Graph Gwith Optimal Branch Decomposition (T; �) with width 3

projective plane where they proved that there are 35mi-
nor minimal “non-projective-planar” graphs. Archdea-
con and Huneke [5] proved that the obstruction set for
any non-orientable surface is finite and Robertson and
Seymour [48] proved the case for any surface as a corol-
lary of the Graph Minors Theorem (formerly known
as Wagner’s conjecture): every minor closed class has
a finite obstruction set. Branch decompositions, tan-
gles, and tree decompositions, discussed in later sec-
tions, were beneficial to the proof of the Graph Minors
Theorem.

Tangles

Let G be a graph (or hypergraph) and let k�1 be an
integer. A separation of a graph G is a pair (G1;G2)
of subgraphs of G with G1 [ G2 D (V(G1) [ V (G2);
E(G1) [ E(G2)) D G; E(G1) \ E(G2) D ; and the or-
der of this separation is defined as j V (G1) \ V(G2) j
where V(G1)\V(G2) is called themiddle set of the sep-
aration. For a hypergraph G, define I(G) to be the bi-
partite graph such that the nodes of I(G) correspond to
the nodes and edges of G and an edge ev in I(G) corre-

sponds to the edge e ofG being incident with the node v
in G. A hypergraph G is called connected if I(G) is con-
nected. Also, denote �(G) as the largest cardinality of
a set of nodes incident to an edge of G. A tangle in G of
order k is a set T of separations of G, each of order< k
such that:

(T1) for every separation (A; B) ofG of order< k, one
of (A; B), (B;A) is an element of T ;

(T2) if (A1; B1), (A2; B2), (A3; B3) 2T then A1[A2 [

A3 6D G; and
(T3) if (A; B) 2 T then V(A) 6D V(G).

These are called the first, second and third tangle ax-
ioms. The tangle number of G, denoted by �(G), is the
maximum order of any tangle of G. Figure 2 gives an
example of a tangle of order 3 for the graph in Fig. 1.
Notice in Fig. 2 that the inclusion of separations of the
graph of order 3 to the tangle would result in a viola-
tion of one of the tangle axioms. A tangle T of G with
order k can be thought of as a “k-connected” compo-
nent of G because some “k-connected” component ofG
will either be on one side or the other for any separa-
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Separation of order 0
(;;G)

Separation of order 1
(v;G) 8v 2 V (G)

Separation of order 2
(fv;wg;G) 8v;w 2 V(G)

(G[e];G[E(G)ne]) 8e 2 E(G)
(G[0; 2; 4; 6; 8];G[1; 3; 5; 7; 9])

Branchwidth and Branch Decompositions, Figure 2
Tangle of Order 3 for the Example Graph of Fig. 1

tion of T . Robertson and Seymour [49] proved a min-
max relationship between tangles and branch decom-
positions, given below.

Theorem 2 (Robertson and Seymour [49]) For any
hypergraph G such that E(G) ¤ ;, max{ˇ(G), �(G)} =
�(G). �

Related structures to tangles are respectful tangles and
tangle bases. Respectful tangles of a graph G embed-
ded on a surface ˙ are tangles that are restricted ac-
cording to the graph’s embedding on ˙ and the or-
der of these tangles is limited by the graph’s represen-
tativeness on ˙ . Respectful tangles were discussed in
the work of Robertson and Seymour [50] and created
the foundation for the Seymour and Thomas [53] re-
sult for planar graphs. Tangle bases were introduced by
Hicks [33] to assist in a branch-decomposition-based
algorithm, discussed in a later section, to compute opti-
mal branch decompositions for general graphs. Tangle
bases are also restricted in the sense that the only mem-
bers of a tangle basis are edges (just considering the first
part of a separation) and separations which can be con-
structed from the union of edges. A formal definition is
given below.

For an integer k and hypergraph G, a tangle basis,
B, of order k is a set of separations of G with order < k
such that:

(B1) (G[e];G[E(G) n e]) 2 B8e 2 E(G) if �(e) < k
(B2) if (C;D) 2 B and Àe 2 E(G) such that G[e] D C,

then 9(A1; B1); (A2; B2) 2 B such that A1[A2 D

C and B1 \ B2 D D
(B3) B obeys the tangle axioms T2 and T3.

Separations of order 2
(G[e];G[E(G)ne]) 8e 2 E(G)

Branchwidth and Branch Decompositions, Figure 3
Connected Tangle Basis of Order 3 for the Graph of Fig. 1

A tangle basis,B, inG of order k is connected if every
separation (A; B) of B has A connected and define the
connected tangle basis number of G, denoted by � 0(G),
as the maximum order of any connected tangle basis
of G. An example of a connected tangle basis for the
graph in Fig. 1 is given in Fig. 3. Notice that the num-
ber of separations of the connected tangle basis of Fig. 1
is lower than the number of separations of the tangle
of Fig. 1 offered by Fig. 2 but still contains the essential
members of the tangle. Below is a min-max theorem re-
lationship between tangle bases and branchwidth.

Theorem 3 (Hicks [33]) If hypergraph G is connected
such that ˇ(G) � �(G), then the tangle basis number
� 0(G) is equal to the ˇ(G). �

Constructing Branch Decompositions

In terms of finding branch decompositions for general
graphs, there is an algorithm in Robertson and Sey-
mour [51] to approximate the branchwidth of a graph
within a factor of 3. For example, the algorithm de-
cides if a graph has branchwidth at least 10 or finds
a branch decomposition with width at most 30. This al-
gorithm has not been used in a practical implementa-
tion and its improvements by Bodlaender [8], Bodlaen-
der and Kloks [13], and Reed [46] have not been shown
to be practical either. Bodlaender and Thilikos [16]
presented a tree-decomposition-based linear time al-
gorithm for finding an optimal branch decomposition
but it appears to be impractical. Tree-decomposition-
based algorithms are discussed in a later section. In ad-
dition, Bodlaender and Thilikos [17] gave an algorithm
to compute the optimal branch decomposition for any
chordal graph with maximum clique size at most 4 but
the algorithm has been only shown practical for a par-
ticular type of 3-tree.

Under practical algorithms, Kloks et al. [39] gave
a polynomial time algorithm to compute the branch-
width of interval graphs, but for general graphs, one
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has to rely on heuristics. Cook and Seymour [20,21]
gave a heuristic algorithm to produce branch decompo-
sitions that shows promise. In addition, Hicks [30,31]
also found another branchwidth heuristic that was
comparable to the algorithm of Cook and Seymour.
Recently, Tamaki [54] has presented a linear time
heuristic for constructing branch decompositions of
planar graphs. This algorithm performs well when
compared to the heuristics of Cook and Seymour [21]
and Hicks [31]. Recently, Hicks [33] has developed
a branch-decomposition-based algorithm for con-
structing optimal branch decompositions and it seems
to be practical for sparse graphs with branchwidth at
most 8.

For planar graphs, Seymour and Thomas showed
that the branchwidth and an optimal branch decom-
position of a graph can be computed in polynomial
time. The complexity for the branchwidth is O(n3) and
the complexity for computing an optimal branch de-
composition is O(n4) [53]. Hicks [34,35] gave a practi-
cal implementation of these algorithms. Recently, Gu
and Tamaki [28] introduced an O(n3) algorithm to
compute an optimal branch decomposition of a planar
graph by restricting the number of calls to the Seymour
and Thomas algorithm for computing branchwidth to
O(n). More work in this area is encouraged to decrease
the bound further.

Branch-Decomposition-BasedAlgorithms

Branch decompositions are of algorithmic importance
for their appeal to solve intractable problems that can
be modelled on graphs with bounded branchwidth.
Courcelle [22] and Arnborg et al. [6] showed that
several NP-complete problems can be solved in poly-
nomial time using dynamic programming techniques
on input graphs with bounded treewidth, discussed
in a later section. Similar results have been obtained
by Borie et al. [18]. The result is also equivalent to
graphs with bounded branchwidth since the branch-
width and treewidth of a graph bound each other by
constants [49]. In contrast, Seymour and Thomas [53]
proved that testing if a general graph has branchwidth
at most k, is NP-complete. The use of dynamic pro-
gramming techniques in conjunction with a branch
decomposition or a tree decomposition is referred to
as a branch-decomposition-based or a tree-decomposi-

tion-based algorithm and these types of algorithms are
part of the class of algorithms called fixed parameter
tractable algorithms [1].

Some examples of branch-decomposition-based al-
gorithms proposed in theory are Fomin and Thi-
likos [24] and Alekhnovich and Razborov [2]. Fomin
and Thilikos used their result of improving a bound of
Alon et al. [3] for the upper bound on the branchwidth
of planar graphs to design a branch-decomposition-
based algorithm in theory for vertex cover and dom-
inating set for planar graphs [24]. Alekhnovich and
Razborov [2] used the branchwidth of hypergraphs
to design a branch-decomposition-based algorithm in
theory to solve satisfiability problems.

Although theory indicates the fruitful potential of
branch-decomposition-based algorithms, the number
of branch-decomposition-based algorithms in the lit-
erature is exiguous. One noted exception is the work
of Cook and Seymour [21] who produced the best
known solutions for the 12 unsolved problems in
TSPLIB95, a library of standard test instances for the
TSP [47]. Hicks also presented a practical branch-de-
composition-based algorithm for general minor con-
tainment [32] and constructing optimal branch de-
compositions [33]. One is also referred to the work of
Christian [19].

Branchwidth of Matroids

Since graph theory and matroid theory have a symbi-
otic relationship, it is only natural that branch decom-
positions can be extended to matroids. In fact, branch
decompositions have been used to produce a matroid
analogue of the graph minors theorem [26]. A formal
definition for the branchwidth of a matroid is given be-
low.

The reader is referred to the book by Oxley [43] if
not familiar with matroid theory. Let M be a matroid
with finite ground set S(M) and rank function �. The
rank function of M�, the dual ofM, is denoted ��.

A separation (A; B) of a matroidM is a pair of com-
plementary subsets of S(M) and the order of the sepa-
ration, denoted �(M;A; B), is defined to be following:

�(M;A; B) D

8<
:
�(A)C �(B) � �(M)C 1 if A ¤ ;

¤ B ;
0 else ;
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Branchwidth and Branch Decompositions, Figure 4
Example Graph G from Fig. 1 with Optimal Branch Decomposition (T;�) with width 3 for its Cycle MatroidM(G)

A branch decomposition of a matroid M is a pair
(T; �) where T is a tree having j S(M) j leaves in which
every non-leaf node has degree 3 and � is a bijection
from the ground set ofM to the leaves of T. Notice that
removing an edge, say e, of T partitions the leaves of
T and the ground set of M into two subsets Ae and
Be . The order of e and of (Ae ; Be ), denoted order(e)
or order(Ae ; Be ), is equal to �(M;Ae ; Be ). The width of
a branch decomposition (T, �) is the maximum order
of all edges in T. The branchwidth of M, denoted by
ˇ(M), is the minimumwidth over all branch decompo-
sitions of M. A branch decomposition of M is optimal
if its width is equal to the branchwidth of M. The cy-
cle matroid of graph G, denoted M(G), has E(G) as its
ground set and the cycles of G as the cycles of M(G).
For example, Fig. 4 gives an optimal branch decompo-
sition of the cycle matroid of the example graph given
Fig. 1 where all of the orders for the edges of the branch
decomposition are provided.

There is also a corresponding notion of a tangle and
tangle number for matroids, provided by Dharmati-
lake [23]. In addition, Dharmatilake gave amin-max re-

lationship between tangles of matroids and the branch-
width of matroids, given below.

Theorem 4 (Dharmatilake [23]) Let M be a matroid.
Then ˇ(M) D �(M) if and only if M has no coloop and
ˇ(M) ¤ 1. �
It was posed by Robertson and Seymour [49] that the
branchwidth of a graph and the branchwidth of the
graph’s cycle matroid are equivalent if the graph has
a cycle of length at least 2. Recently, this conjecture was
proved in the positive by Hicks and McMurray [37].
One is also referred to the work of Geelen et al. [26],
Geelen et al. [25], Hall et al. [29], and Hliněný [38] for
more detailed discussions on the branchwidth of ma-
troids.

Treewidth and Tree Decompositions

This text would be remiss if a definition for treewidth
and tree decompositions were not given.

A tree decomposition of a graph (or hypergraph) G
is a pair, (T; �), where T is a tree and for t 2 V (T), �(t)
is a subset of V(G) with the following properties:



Branchwidth and Branch Decompositions B 337

Branchwidth and Branch Decompositions, Figure 5
Optimal Tree Decomposition (T; � ) of Example Graph in
Fig. 1 with width 3

�
S

t2V (T) �(t) D V (G)
� 8e 2 E(G) ; 9t 2 V (T) such that the ends of e are

contained in �(t)
� for t; t0; t00 2 V(T), if t0 is on the path of T between

t and t00 then �(t) \ �(t00) � �(t0).
The width of a tree decomposition is the largest value
of j �(t) � 1 j over all nodes t 2 V(T). The treewidth
of a graph G, denoted by �(M), is the minimum width
over all tree decompositions of G. A tree decomposi-
tion of G is called optimal if its width is equal to the
treewidth ofG. For example, Fig. 5 gives an optimal tree
decomposition of the example graph in Fig. 1. If T is
restricted to be a path then (T; �) is called a path de-
composition and its corresponding connectivity invari-
ant for a graph G is called the pathwidth of G.

The relationship between branchwidth and
treewidth is characterized in the following theorem.

Theorem 5 (Robertson and Seymour [49]) For any
hypergraph G;max(ˇ(G); �(G)) � �(G) C 1 �

max(b 32ˇ(G)c; �(G); 1). �

Tree decompositions and the associated connectivity
invariant, treewidth, have been extensively researched
by Thomas [56], Seymour and Thomas [52], Bodlaen-
der [8,10], Bodlaender and Kloks [12,13], Bodlaender
et al. [11], Bodlaender et al. [15], Bodlaender et al. [14],
Ramachandramurthi [44], Reed [45,46] and many oth-
ers (see the survey papers by Bodlaender [7,9]). One is
also referred to the work of Koster et al. [40], Koster
et al. [41], Telle and Proskurowski [55], and Alber and
Neidermeier [1] for literature related to tree decom-
positions and tree-decomposition-based algorithms. In
addition, one is referred to Hicks et al. [36] for a more

thorough survey of branch and tree decomposition
techniques related to optimization.
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38. Hliněný P (2002) On the exclued minors for matroids of
branch-width three. preprint

39. Kloks T, Kratochvil J, Müller H (1999) New branchwidth ter-
ritories. In: Meinel C, Tison S (eds) STAC’99, 16th Annual
Symposium on Theoretical Aspects of Computer Science,
Trier, Germany, March 1999 Proceedings. Springer, Berlin,
pp 173–183

40. Koster A, van Hoesel S, Kolen A (2002) Solving partial con-
straint satisfaction problems with tree-decompositions.
Networks 40:170–180

41. Koster AMCA, Bodlaender HL, van Hoesel SPM (2001)
Treewidth: Computational experiments. Electr Notes Dis-
cret Math 8:54–57

42. Kuratowski K (1930) Sur le probleme des courbes gauches
en topologie. Fundamenta Mathematicae 15:271–283

43. Oxley JG (1992) Matroid Theory. Oxford University Press,
Oxford

44. Ramachandramurthi S (1997) The structure and number of
obstructions to treewidth. SIAM J Discret Math 10:146–157

45. Reed B (1992) Finding approximate separators and com-
puting tree width quickly. In: Proceeding of the 24th An-
nual Association for ComputingMachinery Symposium on
Theory of Computing. ACM Press, New York, pp 221–228

46. Reed B (1997) Tree width and tangles: A new connectivity
measure and some applications. In: Bailey RA (ed) Survey
in Combinatorics. Cambridge University Press, Cambridge,
pp 87–162

47. Reinelt G (1991) TSPLIB – a traveling salesman library.
ORSA J Comput 3:376–384

48. Robertson N, Seymour PD (1985) Graph minors: A survey.
In: Surveys in Combinatorics, LondonMath Society Lecture
Note Series, edition 103. Cambridge University Press, Cam-
bridge, pp 153–171

49. Robertson N, Seymour PD (1991) Graph minors X: Ob-
structions to tree-decompositions. J Combin Theory Ser B
52:153–190

50. Robertson N, Seymour PD (1994) Graph minors XI: Circuits
on a surface. J Combin Theory Ser B 60:72–106

51. Robertson N, Seymour PD (1995) Graph minors XIII: The
disjoint paths problem. J Combin Theory Ser B 63:65–110

52. Seymour P, Thomas R (1993) Graph searching and a min-
max theorem for tree-width. J Combin Theory Ser B
58:22–33

53. Seymour PD, Thomas R (1994) Call routing and the rat-
catcher. Combinatorica 14(2):217–241

54. Tamaki H (2003) A linear time heuristic for the branch-
decomposition of planar graphs. Technical Report MPI-I-
2003-1-010, Max-Planck-Institut fuer Informatik



Broadcast Scheduling Problem B 339

55. Telle JA, Proskurowski A (1997) Algorithms for vertex par-
titioning problems on partial k-trees. SIAM J Discret Math
10(4):529–550

56. Thomas R (1990) AMenger-like property of tree-width: The
finite case. J Combin Theory Ser B 48:67–76

57. Wagner K (1937) Uber eine eigenschaft der ebenen kom-
plexe. Math Annal 115:570–590

Broadcast Scheduling Problem
CLAYTON W. COMMANDER

Air Force Research Laboratory, Munitions Directorate,
and Dept. of Industrial and Systems Engineering,
University of Florida, Gainesville, USA

Article Outline

Synonyms
Introduction

Organization
Idiosyncrasies

Formulation
Methods

Sequential Vertex Coloring
Mixed Neural-Genetic Algorithm
Greedy Randomized Adaptive Search Procedures (GRASP)
Multi-start Combinatorial Algorithm
Computational Effectiveness

Conclusion
See also
References

Synonyms

BSP; The BROADCAST SCHEDULING PROBLEM is also
referred to as the TDMA MESSAGE SCHEDULING

PROBLEM [6]

Introduction

Wireless mesh networks (WMNs) have become an im-
portant means of communication in recent years. In
these networks, a shared radio channel is used in con-
junction with a packet switching protocol to provide
high-speed communication between many potentially
mobile users. The stations in the network act as trans-
mitters and receivers, and are thus capable of utilizing
a multi-hop transmission procedure. The advantage of
this is that several stations can be used as relays to for-
ward messages to the intended recipient. This allows

beyond line of sight communication between stations
which are geographically disbursed and potentially mo-
bile [2].

Mesh networks have increased in popularity in re-
cent years and the number of applications is steadily in-
creasing [25]. As mentioned in [1], WMNs allow users
to integrate various networks, such as Wi-Fi, the inter-
net and cellular systems. WMNs can also be utilized in
a military setting in which tactical datalinks network
various communication, intelligence, and weapon sys-
tems allowing for streamlined communication between
several different entities [6]. For a survey of wireless
mesh networks, the reader is referred to [1].

In WMNs, the critical problem involves efficiently
utilizing the available bandwidth to provide collision
free message transmissions. Unfettered transmission by
the network stations over the shared channel will lead
to message collisions. Therefore, some medium access
control (MAC) scheme should be employed to sched-
ule message transmissions so as to avoid message colli-
sions. The time division multiple access (TDMA) pro-
tocol is aMAC scheme introduced by Kleinrock in 1987
which was shown to provide collision free broadcast
schedules [19]. In a TDMA network, time is divided
into frames with each frame consisting of a number of
unit length slots in which the messages are scheduled.
Stations scheduled in the same slot broadcast simulta-
neously. Thus, the goal is to schedule as many stations
as possible in the same slot so long as there are no mes-
sage collisions.

When considering the broadcast scheduling prob-
lem on TDMA networks, there are two optimization
problems which must be addressed [31]. The first in-
volves finding the minimum frame length, or the num-
ber of slots required to schedule all stations at least
once. The second problem is that of maximizing the
number of stations scheduled within each slot, thus
maximizing the throughput. Both of these problems
however, are known to be NP-hard [2]. Therefore, ef-
ficient heuristics are typically used to quickly provide
high quality solutions to real-world instances.

Organization

The organization of this article is as follows. In the fol-
lowing section, we formally define the problem state-
ment and provide a mathematical programming for-



340 B Broadcast Scheduling Problem

mulation. We also examine the computational com-
plexity the problem. In Sect. “Methods”, we review
several solution techniques which appear in the lit-
erature. We provide some concluding remarks in
Sect. “Conclusion” and indicate directions of future re-
search. Finally, a list of cross references is provided in
Sect. “See also”.

Idiosyncrasies

We will now briefly introduce some of the symbols and
notations we will employ throughout this paper. De-
note a graph G D (V ; E) as a pair consisting of a set
of vertices V , and a set of edges E. All graphs in this
paper are assumed to be undirected and unweighted.
We use the symbol “b :D a” to mean “the expression a
defines the (new) symbol b” in the sense of King [18].
Of course, this could be conveniently extended so that
a statement like “(1 � �)/2 :D 7” means “define the
symbol " so that (1 � �)/2 D 7 holds”. Finally, we will
use italics for emphasis and SMALL CAPS for problem
names. Any other locally used terms and symbols will
be defined in the sections in which they appear.

Formulation

A TDMA network can be conveniently described as
a graph G D (V ; E) where the vertex set V repre-
sents the stations and the set of edges E represents the
set of communication links between adjacent stations.
There are two types of message collisions which must
be avoided when scheduling messages in TDMA net-
works. The first, called a direct collision occurs between
one-hop neighboring stations, or those stations i; j 2 V
such that (i; j) 2 E. One-hop neighbors which broad-
cast during the same slot cause a direct collision. Fur-
ther, if (i; j) … E, but (i; k) 2 E and ( j; k) 2 E, then i
and j are called two-hop neighbors. Two-hop neighbors
transmitting in the same slot cause a so-called hidden
collision [2].

Assume that there are M slots per frame. Further,
assume that packets are sent at the beginning of each
time slot and are received in the same slot in which they
are sent. Let x : M�V 7! f0; 1g, be a surjection defined
by

xmn :D

(
1; if station n scheduled in slot m ;

0; otherwise :
(1)

Also, let c : E 7! f0; 1g return 1 if i and j are one-hop
neighbors, i. e., if (i; j) 2 E and i ¤ j.

Using the aforementioned definitions and as-
sumptions, we can now formulate the BROADCAST

SCHEDULING PROBLEM (BSP) on TDMA networks as
the following multiobjective optimization problem:

MinimizeM

Maximize
MX
iD1

jV jX
jD1

xi j

subject to:
MX

mD1

xmn � 1; 8n 2 V ; (2)

ci j C xmi C xmj � 2;

8i; j 2 V ; i ¤ j;m D 1; : : : ;M ; (3)

cikxmi C ck jxm j � 1;8i; j; k 2 V ; i ¤ j; j ¤ k;

k ¤ i;m D 1; : : : ;M ; (4)

xmn 2 f0; 1g; 8n 2 V ;m D 1; : : : ;M ; (5)

M 2 ZC : (6)

The objective provides a minimum frame length
with maximum bandwidth utilization, while con-
straint (2) ensures that all stations broadcast at least
once. Constraints (3) and (4) prevent direct and hidden
collisions, respectively. Constraints (5) and (6) define
the proper domain of the decision variables.

Suppose that we relax the BSP and only the con-
sider the first objective function. This is referred
to as the FRAME LENGTH MINIMIZATION PROBLEM

(FLMP) and is given by the following integer program:
minfM : (2) � (6)g. Clearly any feasible solution to
this problem is feasible for BSP. Now, consider a graph
G0 D (V ; E0) where V follows from the original com-
munication graph G, but whose edge set is given by
E0 D E [ f(i; j) : i; j are two-hop neighborsg. Then us-
ing this augmented graph, we can formulate the follow-
ing theorem due to Butenko et al. [2].

Theorem 1 The FRAME LENGTH MINIMIZATION

PROBLEM on G D (V ; E) is equivalent to finding an
optimal coloring of the vertices of G0(V ; E0).
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Proof Recall that in order for a message schedule to
be feasible, all stations must broadcast at least once and
no collisions occur, either hidden or direct. Notice now
that E0 contains both one-hop and two-hop neighbors,
and in any feasible solution, neither of these can trans-
mit in the same slot. Thus, there is a one-to-one corre-
lation between time slots in G and vertex colors in G0.
Hence, a minimum coloring of the vertices of G0 pro-
vides the minimum required slots needed for a collision
free broadcast schedule on G. �

After one has successfully solved the FLMP by solv-
ing the corresponding GRAPH COLORING PROBLEM,
an optimal frame length M� is attained. With this,
the THROUGHPUT MAXIMIZATION PROBLEM (TMP)
given as follows maxf

PM�
iD1

PjV j
jD1 xi j : (2)� (6)g can be

solved, whereM is replaced byM� in (2)� (6). A direct
result of Theorem 1 is that finding an optimal frame
length for a general instance of the BSP isNP-hard [11].
The reader is referred to the paper by Butenko et al. [2]
for the complete proof. Also, in [8], the TMP was also
shown to beNP-hard [8]. Thus it is unlikely that a poly-
nomial algorithm exists for finding an optimal broad-
cast schedule for an instance of the BSP [11]. It is inter-
esting to note however, that if we ignore constraint (4)
which prevents two-hop neighbors from transmitting
simultaneously, then the resulting problem is in P, and
a polynomial time algorithm is provided in [13].

Due to the computational complexity of the
BSP, several heuristics have been applied and appear
throughout the literature [2,3,6,28,31]. In the follow-
ing section, we highlight several of these methods and
examine their effectiveness when applied to large-scale
instances.

Methods

In this section, we review many of the heuristics which
have been applied to the BSP. We analyze the tech-
niques used and compare their relative performance as
reported in [6]. The particular algorithms we examine
are as follows:
� Sequential vertex coloring [31];
� Mixed neural-genetic algorithm [27];
� Greedy randomized adaptive search procedures

(GRASP) [2,3];
� Amulti-start combinatorial algorithm [6].

We note here that none of the heuristics which we
describe in this section attempt to solve the BSP by us-
ing the typical multiobjective optimization approach, in
which one combines the multiple objectives into one
scalar objective whose optimal value is a Pareto opti-
mal solution to the original problem. Instead all of the
methods decouple the objectives and handle each in-
dependently. This is done because for instances of the
BSP, frame length minimization usually takes prece-
dence over the utilization maximization problem [27,
28,31].

Sequential Vertex Coloring

Yeo et al. [31] propose a two-phase approach based on
sequential vertex coloring (SVC). The first phase com-
putes an approximate solution for the FLMP. Then us-
ing the computed frame length, the TMP is considered
in the second phase. Specific details are as follows.

Frame Length Minimization For this phase, the
FRAME LENGTH MINIMIZATION PROBLEM is consid-
ered and an approximate solution is computed by solv-
ing a graph coloring problem in the augmented graph.
A sequential vertex ordering approach is used whereby
the stations are first ordered in descending order of the
number of one-hop and two-hop neighbors. The first
vertex is colored and the list of the other N � 1 vertices
are scanned downward. The remaining vertices are col-
ored with the smallest color which has not already been
assigned to one of its one-hop neighboring station. The
process is continued until all vertices have been col-
ored.

Throughput Maximization To solve the TMP in the
frame length computed in phase 1, an ordering method
of the sequential vertex coloring algorithm is applied.
The stations are now ordered in ascending order of the
the number of one-hop and two-hop neighbors. The
first ordered station is then assigned to any slots in
which it can simultaneously broadcast with the previ-
ously assigned stations. This process is repeated for ev-
ery station in the ordered list.

Mixed Neural-Genetic Algorithm

As with the coloring heursitic presented described
above, Salcedo-Sanz et al. [27] introduced a two-phase
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heuristic based on combining both Hopfield neural net-
works [15] and genetic algorithms as in [29]. As with
the vertex coloring algorithm, phase one considers the
FLMP and phase two attempts tomaximize the through-
put.

Frame Length Minimization In order to solve the
FRAME LENGTH MINIMIZATION PROBLEM, a discrete-
time binary Hopfield neural network (HNN) is used.
As described in [27], the HNN can be represented as
a graph whose vertices are the neurons (stations) and
whose edges represent the direct collisions. The neu-
rons are updated one at a time after a randomized ini-
tialization until the system converges. For specific im-
plementation details, the reader should see [27].

Utilization Maximization In this phase, a genetic al-
gorithm [12] is used tomaximize the throughput within
the frame length that was determined in phase one. Ge-
netic algorithms (GAs) get their names from the bio-
logical process which they mimic. Motivated by Dar-
win’s Theory of Natural Selection [7], these algorithms
evolve a population of solutions, called individuals, over
several generations until the best solution is eventually
reached. Each component of an individual is called a al-
lele. Individuals in the population mate through a pro-
cess called crossover, and new solutions having traits,
i. e. alleles of both parents are produced. In successive
generations, only those solutions having the best fitness
are carried to the next generation in a process which
mimics the fundamental principle of natural selection,
survival of the fittest [12]. Again, the reader should ref-
erence [27] for implementation specific information.

Greedy Randomized Adaptive Search Procedures
(GRASP)

GRASP [9] is a multi-start metaheuristic that has
been used with great success to provide solutions
for several difficult combinatorial optimization prob-
lems [10], including SATISFIABILITY [24], QUADRATIC

ASSIGNMENT [21,23], and most recently the COOPER-
ATIVE COMMUNICATION PROBLEM ON AD-HOC NET-
WORKS [4,5].

GRASP is a two-phase procedure which generates
solutions through the controlled use of random sam-
pling, greedy selection, and local search. For a given

problem ˘ , let F be the set of feasible solutions for ˘ .
Each solution X 2 F is composed of k discrete compo-
nents a1; : : : ; ak . GRASP constructs a sequence fXgi of
solutions for ˘ , such that each Xi 2 F. The algorithm
returns the best solution found after all iterations.

Construction Phase The construction phase for the
GRASP constructs a solution iteratively from a partial
broadcast schedule which is initially empty. The sta-
tions are first sorted in descending order of the num-
ber of one-hop and two-hop neighbors. Next, a so-
called Restricted Candidate List (RCL) is created and
consists of the stations which may broadcast simultane-
ously with the stations previously assigned to the cur-
rent slot. From this RCL a station is randomly chosen
and assigned. A new RCL is created and another station
is randomly selected. This process continues the RCL is
empty, at which time the slot number is incremented
and the procedure is repeated recursively for the sub-
graph induced by the set of all vertices whose corre-
sponding stations have not yet been assigned to a time
slot.

Local Search The local search phase used is a swap-
based procedure which is adapted from a similar
method for graph coloring implemented by Laguna and
Martí in [20]. First, the two slots with the fewest num-
ber of scheduled transmissions are cif stationombined
and the total number of slots is now given as k D m�1;
where m is the frame length of the schedule computed
in the construction phase. Denote the new broadcast
schedule as fxm0;n ;m0 D 1; : : : ; k; n D 1; : : : ;Ng.
Now, let the function f (x) D

Pk
iD1 E(m

0
i), where

E(m0i ) is the set of collisions in slotm
0
i . f (x) is thenmin-

imized by the application of a local search procedure as
follows.

A colliding station in the combined slot is chosen
randomly and every attempt is made to swap this sta-
tion with another from the remaining k � 1 slots. Af-
ter a swap is made, f (x) is re-evaluated. If f (x) has
a lower value than before the swap, the swap is kept
and the process repeated with the remaining colliding
stations. If after every attempt to swap a colliding sta-
tion the result is unimproved, a new colliding station is
chosen and the swap routine is attempted. This contin-
ues until either a successful swap is made or for some
specified number of iterations. If a solution is improved
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such that f (x) D 0, then the frame length has been suc-
cessfully decreased by one slot. The value of k is then
decremented and the process is repeated.If the proce-
dure ends with f (x) > 0, then no improved solution
was found.

Multi-start Combinatorial Algorithm

To our knowledge, the most recent heuristic for the
BSP is a hybrid multi-start method by Commander and
Pardalos [6]. This heuristic combines a graph color-
ing heuristic with a randomized local search to pro-
vide high-quality solutions for large-scale instances on
the problem. As with the previously described method,
this heuristic is also a two-phase approach. The reader
should see [6] for pseudo-code and other implementa-
tion specific details.

Frame Length Minimization First a greedy random-
ized construction heuristic was used to determine the
value for M. As a result of Theorem 1, the method is
based on the construction phase of the Greedy Ran-
domized Adaptive Search Procedure (GRASP) [26] for
coloring sparse graphs proposed by Laguna and Martí
in [20]. This particular method was chosen because it is
able to quickly provide excellent solutions for the frame
length. That being said, any other coloring heuristic
would provide a value for M such as the Sequential
Vertex Coloring method described above. However, the
randomized approach of the selected method allows the
search space to bemore thoroughly investigated. This is
due to the fact that different optimal colorings will yield
different solutions in the second phase.

Throughput Maximization The solution from the
first phase will not provide an optimal throughput in
general, because each station will only be scheduled to
transmit once in the frame. Therefore, a randomized
local improvement method is used to schedule each
station as many times as possible in the frame. This
method locally optimizes each slot by considering the
set of nodes which may transmit with the currently
scheduled slot. A node from this set is randomly se-
lected and the process repeats until no other stations
may broadcast in the current slot. The next slot is then
considered and the process is repeated until the solu-
tion is locally optimal.

Computational Effectiveness

In [6], the authors performed an extensive computa-
tional experiment comparing the effectiveness of the
aforementioned heuristics. They tested all of the algo-
rithms on a common platform and reported solutions
for 63 instances ranging from 15 to 100 stations with
varying densities. In addition, they implemented the
integer programming model from Sect. “Formulation”
using the Xpress-MP™ optimization suite from Dash
Optimization [17]. Xpress-MP contains an implemen-
tation of the simplex method [14], and uses a branch
and bound algorithm [30] together with advanced
cutting-plane techniques [16,22].

For each instance tested, the combinatorial algo-
rithm of [6] is superior to the other heuristics men-
tioned. For all 63 instances tested, the method found
solutions at least as good as any of the other algo-
rithms from the literature for all of the networks, out-
performing them on 56 cases. The performance of
the GRASP [2] and the Mixed Neural-Genetic Algo-
rithm [27] were comparable, with GRASP performing
slightly better on average. The weakest of the methods
was the Sequential Vertex Coloring [31] algorithm. For
specific numerical results, see [6].

Conclusion

In this article, we introduced the BROADCAST

SCHEDULING PROBLEM on TDMA networks. The BSP

is an important problem that occurs in wireless mesh
networks regarding efficiently scheduling collision free
broadcasts for the network stations. We formally de-
fined the problem, examined the computational com-
plexity, and discussed several algorithms which have
been applied to the BSP, all with competitive results.

We conclude with a few words on possible direc-
tions of future research. In addition to the ones de-
scribed, other metaheuristics could be considered and
approximation algorithms developed. Also, a heuris-
tic exploration of cutting plane algorithms on the IP
formulation would be an interesting alternative. An-
other alternative would be to consider instances of the
problem in which the stations are part of a mobile
ad-hoc network. In this case, the topology of the net-
work would change as the stations change position.
This could potentially cause significant difficulties in
determining the evolving sets of one-hop and two-hop
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neighbors. There is no doubt that as technology ad-
vances and research on ad-hoc networks increases, so
too will applications of the BSP which will require ad-
vanced solution techniques [25].

See also

� Frequency Assignment Problem
� Genetic Algorithms
� Graph Coloring
� Greedy Randomized Adaptive Search Procedures
�Multi-objective Integer Linear Programming
� Optimization Problems in Unit-Disk Graphs
� Simulated Annealing
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Quasi-Newtonmethods attempt to update a Hessian ap-
proximation (or the inverse of it) instead of evaluating
the Hessian matrix exactly at each iteration, as in the
basic Newton method for unconstrained optimization.
Consider the optimization problem:

min
x

f (x):

For this problem the Newton method requires the
solution and updating iteratively of the solution point
according to:

H(x(k))	x(k) D �g(x(k)); (1)

where H(x(k)) denotes the Hessian matrix at point x(k)

(kth iteration of Newton’s method), g(x(k)) is the gra-
dient vector at the same point, and finally 	x(k) is the
correction to the point x(k). The correction is applied
according to:

x(kC1) D x(k) C ˛	x(k)

where for the standard Newton method ˛ = 1, but oth-
erwise in practical applications and to force theoreti-
cally ‘global convergence’ (not just in the neighborhood
of the minimizer) one conducts a line search to estimate
optimally the value of ˛ at each iteration. Alternative al-
gorithms use the concept of trust regions.

There exist symmetric updating formulae of rank-
two corrections for both the inverse Hessian and the
Hessian, all belonging to the broad category of Broy-
den methods. The general family updates either the
Hessian (H) or the inverse Hessian (G = H�1). There
are two well-known schemes, the Davidon–Fletcher–
Powell rank-two update (DFP update), originally pro-
posed by W.C. Davidon [3], and later by R. Fletcher
and M.J.D. Powell [6], and the well-known Broy-
den–Fletcher–Goldfarb–Shanno update formula (BFGS
update). This was proposed by C.G. Broyden [1,2],
Fletcher [4], D. Goldfarb [7], and D.F. Shanno [9]. Both
of these methods preserve positive definiteness of the
updated matrices.

The definitions of p and q used below are intro-
duced first:

pk D xkC1 � xk ;

qk D gkC1 � gk :

The DFP updating scheme of the inverse Hessian is
given by:

GDFP
kC1 D Gk C

pkp>k
p>k qk

�
Gkqkq>k Gk

q>k Gkqk
:

The complementary updating formula to any up-
dating Hessian (or inverse Hessian) scheme can be
found by exchanging G with H and q with p (for ex-
ample as discussed in [8]). By applying this property to
the DFP update above, it is obtained:

HBFGS
kC1 D Hk C

qkq>k
q>k pk

�
Hkpkp>k Hk

p>k Hkpk
;

which is the BFGS updating scheme for the Hessian.
By taking the inverse of this one can obtain the in-

verse Hessian BFGS updating formula:

GBFGS
kC1 D Gk C

 
1C q>k Gkqk

q>k pk

! 
pkp>k
p>k qk

!

�

 
pkq>k Gk C Gkqkp>k

q>k pk

!
:
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The general class of Broyden methods can be de-
rived by the linear combination of the two types of up-
dates, since they are both symmetric rank-two type cor-
rections, being constructed from the same vectors pk
and Gk qk. Thus it can be obtained that (for example
see [5,8]):

G�kC1 D (1 � �)GDFP
kC1 C GBFGS

kC1 ;

which yields:

G�kC1 D Gk C
pkp>k
p>k qk

�
Gkqkq>k Gk

q>k Gkqk
C �vkv>k ; (2)

which is the general family of Broyden methods, with:

vk D
�
q>k Gkqk

� 1
2

 
pk

p>k qk

Gkqk

q>k Gk qk

!
:

A pure Broyden method is one that uses a constant
value of � in all iterations. The Broyden family does
not preserve positive definiteness of the updated inverse
Hessian G�kC1 for all values of �.

Generally, of all these schemes the varying � vari-
ant is never used nowadays (2000), with the BFGS
scheme being the method of choice whenever an up-
dating scheme is chosen. This is because computational
experience has proven the BFGS to be more effective
than the DFP scheme.
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The capacitated minimum spanning tree problem
(CMST) or terminal layout problem is usually described
as the problem of determining a rooted spanning tree
of minimum cost in which each of the subtrees off the
root node contains at most K nodes. That is, the CMST
is a generalization of the well-known minimum span-
ning tree problem (MST) where the objective is to find
a minimum cost tree spanning a given set of nodes such
that some capacity constraints are observed.

As a graph theoretic problem we consider a con-
nected graph G = (V , A, b, c) with node set V = {0, . . . ,
n} and arc set A. Each node i 2 V has a nonnegative
node weight bi which may be interpreted as capacity re-
quirement whereas a nonnegative arc weight cij repre-
sents the cost of using arc (i, j) 2 A. Node 0 denoted as
the center node will be the root of the tree (with b0 :=
0). We define a subtree or component Ci of a tree span-
ning V as its maximal subgraph uniquely connected to
the center by arc (0, i) (denoted as central arc). The de-
mand of a subtree is the sum of the node weights of the
included nodes. To satisfy the capacity constraint the
demand of each subtree must not exceed a given capac-
ity K. (Without loss of generality wemay assume bi � K
for all i.) By means of these definitions the CMST is the
problem of finding a minimum cost tree spanning node
set V where all subtrees satisfy the capacity constraint.

In spite of existing polynomial algorithms for the
unconstrained MST the CMST has been shown to be
NP-hard [32] even when all bi-values are identical. This
case of the CMST is referred to as unit weight CMST or
equal demand CMST; otherwise it is called the nonunit
weight case. Most references in the literature deal with
the unit weight case with only a few exceptions treat-
ing the more general case. For a comprehensive sur-
vey of the (unit weight) CMST up to the mid-1990s see
[4]. The CMST in undirected graphs requires a sym-
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metric cost matrix. Otherwise, the direction of the arcs
has to be considered, i. e., all subtrees are directed. This
capacitated minimum spanning arborescence problem
(CMDT) includes the CMST as a special case.

Motivated by the intractability of the problem both
heuristic as well as exact algorithms have been devel-
oped. In the sequel various algorithmic concepts are
reviewed mainly for the unit weight CMST (with spe-
cial emphasis on progress made in the late nineties; for
some older yet important references not given here see
[4]). However, first we sketch some applications of the
CMST some of which may also lead to important mod-
ifications of the problem.

Applications

The CMST has a great variety of applications especially
in the field of telecommunications network design. For
instance, in the design of minimum cost teleprocess-
ing networks terminals (nodes) have to be connected
to a central facility (the center node) by so-called mul-
tipoint lines (the subtrees) which have to be restricted
with respect to the traffic transfered between the center
and the included terminals or the number of terminals
included in the line. The latter is sometimes called reli-
ability constraint because it limits the maximal number
of terminals disconnected from the central facility in
the case of a single link breakdown. Although different
constraints may be referred to as capacity constraints
(e. g. considering arc weights instead of node weights
or even nonlinear weight functions depending on the
distance of a node or arc from the center) most formu-
lations in the literature consider only one of them.

Mathematical Programming Formulations

For the CMST a great variety of formulations may
be found in the literature; see, e. g., [14,19,20,21,22].
Here we restrict ourselves to the presentation of a well-
known flow-based formulation. As relaxations of di-
rected formulations may be advantageous we consider
the CMDT.

Assume bi = 1 for all i = 1, . . . , n, and b0 = 0, then
the CMDT can be described as a mixed integer linear
programming formulation as follows. Define xij = 1, if
arc (i, j) is included in the solution, and xij = 0, other-
wise. Furthermore, let yij denote the flow on arc (i, j)
for all i, j, i. e., i = 0, . . . , n and j = 1, . . . , n. Ensure vari-

ables xij and yij with (i, j) 62 A to be equal to zero by as-
signing prohibitively large weights to them. The follow-
ing single-commodity flow formulation gives a mini-
mum cost directed capacitated spanning tree with cen-
ter node 0 as the root:

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
nX

iD0

nX
jD1

ci j � xi j

s.t.
nX

iD0

xi j D 1; j D 1; : : : ; n;

nX
iD0

yi j �
nX

iD1

y ji D 1;

j D 1; : : : ; n;

xi j � yi j � (K � bi ) � xi j

for all i; j;

xi j 2 f0; 1g; yi j � 0 for all i; j:

The first set of equalities ensures that exactly one arc
is reaching each noncentral node. The coupling con-
straints in combination with the flow conservation en-
sure that no cycles are allowed and that the capac-
ity constraint is satisfied in each subtree. For a formal
proof of cycle prevention see [14], i. e., a tree spanning
all nodes is guaranteed.

Exact Algorithms

Most exact algorithms for solving the CMST are based
on the branch and bound or the branch and cut
paradigm, while other approaches are usually not com-
petitive due to time and space complexity (e. g. dynamic
programming [23]).

When describing the concepts from the literature
in most cases we do not report computational exper-
iments as there is no fair comparison. When report-
ing problem sizes solved to optimality by a specific al-
gorithm different authors have proposed various ways
of conducting experiments (e. g. the way of data gen-
eration), i. e., comparability is not always guaranteed.
Moreover, problem instances with a larger number of
nodes might be easier to solve than those with a smaller
number of nodes, depending on the respective values of
K [20,24]. Another aspect which seems to have consid-
erable impact on the performance of most algorithms is
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the location of the root. For instance, instances with the
root in the center of a rectangle in the Euclidean plane
may be solved very easily compared to instances with
the root in the corner of the rectangle. Recently, a set of
problem instances with 40 and 80 nodes became used
consistently (see, e. g., [20,22]).

Branch and bound methods for the CMST can be
divided into two classes. Node oriented methods branch
by fixing nodes, arc oriented methods branch by includ-
ing an arc (i, j) into the solution (i. e. fixing xij = 1) or
excluding it from the solution (xij = 0). A node is called
established if the path from the root to this node only
consists of arcs fixed to 1 (these arcs are called estab-
lished, too). Usually, only those arcs incident with ex-
actly one established node are allowed to be fixed. If an
arc is fixed to 1, it becomes established and both of its
end nodes are established. Correspondingly, an arc is
called disallowed, if xij = 0 is fixed.

A well-known relaxation of the CMST is the MST
relaxation which can be easily solved to optimality. If
theMST solution is feasible for the CMST, then it is also
optimal and the respective problem can be fathomed.

In the early 1970s an arc oriented branch and bound
algorithm based on the MST relaxation was very pop-
ular. Subproblems are, e. g., branched by defining the
first not yet established arc of an infeasible subtree (the
first counted from the center) as established or dis-
allowed, respectively [8]. This approach may be im-
proved by using logical tests and tighter lower bounds
[10]. Let node i be established, then in a subproblem
disallowing arc (i, j) all arcs (i, k) with node k being
an established node of the same subtree as j may be
disallowed, too, without loosing optimality. If an opti-
mal solution is lost by disallowing these arcs, the com-
plementary subproblem with established arc (i, j) con-
tains another optimal solution. A dominance criterion
is used to fathom some subproblems. In addition, the
lower bounds are improved using a special case of the
degree constrained MST considering that the degree of
the center node — and hence the number of subtrees —
is greater or equal to the ratio of the total demand and
the capacity K of each subtree.

A. Kershenbaum and R.R. Boorstyn [27] propose
two branch and bound algorithms both using last-in
first-out to choose the subproblem that is next to be
considered. One of the algorithms is node oriented. It
starts with n subtrees and each node being ‘permissi-

ble’ for each subtree. A subproblem is branched by in-
cluding or excluding a node from a specific subtree.
Lower bounds are obtained from a partitioning algo-
rithm. The node weights used in this algorithm are orig-
inally derived from the MST solution and then, dur-
ing the branch and bound, transformed in a weight ex-
change process. Theoretically, these bounds are at least
as good as those from the MST relaxation, in practice
they are much better. With the same partitioning tech-
nique an arc oriented branch and bound algorithm sim-
ilar to the one of [8] is developed.

B. Gavish [14] compares several relaxations of the
CMST with respect to lower and upper bounds. Best re-
sults are obtained with a Lagrangian relaxation with an
additional degree constraint combined with a subgradi-
ent optimization procedure.

Outperforming his previous methods, Gavish [15]
develops a new binary programming formulation for
the CMST based on an extension of the subtour elimi-
nation constraints known from the traveling salesman
problem (TSP). Because of the large number of these
constraints involved in the formulation an augmented
Lagrangian procedure is developed where a dual ascent
algorithm is used to obtain initial multipliers and a sub-
gradient procedure to optimize them.

L. Gouveia [20] presents a flow formulation with
binary variables zijq being 1 if a flow of q units goes
through arc (i, j). Instead of the O(n2) constraints of
the above flow formulation (P) only O(n) constraints
are required. The linear relaxation of the new formula-
tion yields lower bounds as good as those produced by
the original formulation. With additional constraints
different Lagrangian relaxation schemes are obtained
that yield some improvements on the bounds of Gav-
ish [15], especially for problem instances with small ca-
pacity K and the center in the ‘corner’ of a rectangle
containing the nodes.

K. Malik and G. Yu [30] present another branch
and bound algorithm with Lagrangian subgradient op-
timization. They give a formulation for the CMST
(closely related to the one of [15]) and additional tight-
ening constraints which are added to the problem dur-
ing the optimization process. Based on a multicom-
modity flow formulation R. Kawatra [26] uses a La-
grangian approach, too.

L. Hall [24] reports on experience with a cutting
plane algorithm for instances with up to 200 nodes



350 C Capacitated Minimum Spanning Trees

making clever use of polyhedral methods. Gouveia and
P. Martins [22] propose a hop-indexed generalization
of formulation (P). Further improvements on the lower
bounds for problem instances with the root in the cor-
ner of a rectangle are obtained.

P. Toth and D. Vigo [38] provide an exact algo-
rithm for the CMDT and numerical results are also
provided for problem instances with up to 200 nodes.
Their approach uses an additive lower bounding proce-
dure combining a Lagrangian lower bound and a lower
bound based on solving minimum cost flow prob-
lems.

Heuristics

Before presenting heuristics for the CMST it is useful
to consider the characteristics of feasible and infeasible
solutions [4]. A solution consists of a set of components
Ci = (Vi, Ai) with node set Vi and arc set Ai where usu-
ally Ci is a spanning tree for Vi. Each component in-
cludes only one central arc so that two different node
sets Vi and Vj may have the center node as the only
common node. Joining all node sets Vi would yield the
entire node set V .

A component is called feasible if it does not violate
the capacity constraint, and infeasible, otherwise. It is
referred to as central if it includes the center node and
noncentral, otherwise (i. e. a noncentral component re-
sults from a component by eliminating the central arc
and the center node). Sets of components having both
infeasible and noncentral components are not consid-
ered as a solution.

A solution is called feasible, if every component con-
tained in the solution is central and feasible itself. It is
incomplete, if every component is feasible but at least
one is noncentral. If all components are central but at
least one is not feasible then a solution is called infeasi-
ble.

The following special solutions of the CMSTmay be
emphasized. The incomplete solution with n + 1 com-
ponents Ci = ({i}, ;), i = 0, . . . , n, is called an empty tree.
All components are feasible and all except C0 are non-
central. The feasible solution with n components Ci =
({0, i}, {(0, i)}), i = 1, . . . , n, is called a star. All com-
ponents are central and feasible. In the case of a sparse
graph with only a subset of nodes being directly con-
nected to the center artificial arcs with high cost values

should be introduced to complete the graph. The star
then might be feasible only for the modified problem.

Finding Initial Feasible Solutions

Most procedures for determining initial feasible solu-
tions (start procedures) for the CMST may be classified
as construction procedures, savings procedures or dual
procedures.

Construction Methods

Construction methods start with an incomplete solu-
tion, usually the empty tree, and successively enlarge it
until the solution is feasible. Most procedures in this
category replace two components and the chosen arc
that connects them by a new component. We may dis-
tinguish between arc oriented and node oriented meth-
ods.

Arc oriented (or best arc) procedures choose in
a greedy fashion arcs which are used to join its two in-
cident components. The procedures stop when a feasi-
ble solution is obtained. The components of the final
solution generally are not built one by one but simul-
taneously. It is not necessary to finish one component
before starting another one.

As examples one may use the basic principle of well-
known MST algorithms. The modified Kruskal algo-
rithm [7] in each iteration chooses a feasible arc with
lowest cost and joins the two corresponding compo-
nents. All arcs that have become infeasible in this step
are removed from consideration for the next iterations.
Correspondingly, the modified Prim algorithm in each
iteration chooses an arc with minimal cost which is in-
cident to the center or a central component (with not
yet exhausted capacity).

Node oriented (or best node) procedures choose in
a greedy fashion a node or component and join it to its
nearest neighbor component by the best possible arc in-
cident to the chosen component, while preserving fea-
sibility.

An obvious idea is to cluster the nodes into groups
of no more than K nodes and then to choose the arc set
according to an MST for the nodes of each group and
the center. Assuming that coordinates of the nodes are
given this approach may be referred to as clustering (or
sweep) algorithm [36].
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The Martin algorithm [25,31] chooses the compo-
nent which is most distant to the center and joins it to
its nearest feasible neighbor component. If �i is the cost
of connecting component Ci to the center, the compo-
nent with maximal �i is chosen.

The regret method (or Vogel approximation method
(VAM, [8]) computes for every component Ci a regret
ri = a2(i) � a1(i) that has to be accepted if Ci is not
joined to its nearest feasible neighbor component with
cost a1(i) but to its second nearest feasible neighbor
with cost a2(i). The component with maximal regret is
chosen and joined to its nearest neighbor. The regrets
are recomputed and the procedure continues until the
solution is feasible.

Mixed procedures combine arc and node aspects.
They assign a weight wi to each node i and compute for
every arc (i, j) the trade-off function value as tij = wi �

cij. The feasible arc with largest tij is chosen and the re-
spective components are joined. In general, the weights
have to be updated after each iteration. With an appro-
priate definition of the weight function and an update
rule all preceding heuristics except the clustering pro-
cedures can be incorporated in this concept [29]:
� The Kruskal algorithm is obtained for wi = 0 for all

i. Obviously, no update is needed.
� For the Prim algorithm assign weights wi = 0 to all

central components and wi = �1 to all other com-
ponents. If a noncentral component is joined with
a central component, the weight of the new compo-
nent is set to zero.

� The Martin algorithm requires wi = �i+ a1(i), and
with wi = a2(i) = ri + a1(i) one obtains the VAM.
The weights wi have to be recomputed if the values
of a1(i) or a2(i) have changed, respectively.

Mixed VAM is a combined regret-best arc procedure
[18,39]. The regret ri is used as node weightwi and thus,
the trade-off function is tij = ri � cij.

The unified algorithm [29] proposes a parameteri-
zation of the weight function and the trade-off func-
tion.

Savings Procedures

Savings procedures for the CMST usually start with the
star. The best feasible change, i. e. the change which
yields the largest savings, is performed. This is itera-
tively repeated until no savings can be obtained any

more. The methods could easily be applied to other fea-
sible solutions and so they could be classified as im-
provement procedures, too.

The Esau–Williams algorithm (EW, [11]) joins the
two components which yield the maximal savings in
cost. The savings sij of joining Ci and Cj is defined as
sij = max{�i, �j} � c�i j if joining of Ci and Cj is feasible,
and sij =1, otherwise, with �i again being the minimal
cost of the connection from the center to the nodes of
Ci and c�i j being the minimal cost of an arc connecting
Ci and Cj. Then all savings concerning the new compo-
nent have to be recomputed and again the maximal sav-
ings is chosen. The process is stopped if no more posi-
tive savings are available.

The EW is closely related to the above mentioned
best node procedures. For instance, the Martin algo-
rithm may be referred to as a less greedy version of the
EW.

The EW can also be described as a special case of
the unified algorithm starting with the empty tree and
at each step adding a feasible arc withmaximal trade-off
tij = �i � cij.

Whitney’s savings heuristic [10,39] modifies the EW
by allowing noncentral arcs to be deleted as well as cen-
tral arcs. This leads to a possible recombination of seg-
ments of the components. Here we see again that sav-
ings algorithms are closely related to the class of im-
provement procedures.

The parallel savings algorithm (PSA) [18] computes
savings like the EW. However, one iteration does not
only join one pair of components but a set of pairs with
maximal total savings. This set is determined by solving
a maximum weight matching (maximal with respect to
the savings) in an adequate graph.

To avoid the parallel construction of nearly equal
sized components which cannot be joined any longer if
they exceed half of the capacity, Gavish [16] proposes
consideration of dummy nodes which yield high sav-
ings for any component joined with them. Thus, in this
PSA with dummy nodes the number of joins between
original components in one iteration is reduced by half
the number of dummy nodes.

Dual Procedures

Dual procedures start with an infeasible low cost solu-
tion, usually the MST solution. The violation of the con-
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straint(s) is iteratively reduced at the expense of a total
cost increase until the solution becomes feasible.

The start procedure of D. Elias and M.J. Ferguson
[10] examines every arc (i, j) of any infeasible compo-
nent. If (i, j) is deleted the resulting noncentral compo-
nent Ck is connected to another central component by
arc (k, l). This arc is chosen such that the total capac-
ity overflow is reduced. Ties are broken such that the
smallest cost increase is chosen. The procedure deletes
that arc (i, j) which leads to minimal total cost increase
ckl � cij and adds (k, l) to the solution. (As a modifica-
tion the arc (i, j) with minimal ratio of cost increase and
capacity overflow reduction could be chosen.) Given in-
teger cost weights, the procedure terminates with a fea-
sible solution after a finite number of iterations, because
in each iteration the total capacity overflow is reduced
by at least one unit.

Given a feasible solution one can try to improve the
solution by recombining segments of the components
in a similar way [10]. To increase flexibility, consider
a slight modification: Exchanging two arcs should be
allowed even if it leads to an increase of total capacity
overflow whenever the cost of the solution does not in-
crease and the arc that is to be included never had been
in the solution before.

Dual procedures may well be related to other con-
cepts. For instance, a dual procedure may be seen as
a constructive savings procedure starting within the in-
feasible region of the solution space. In that sense it
might be related to metastrategies as, e. g., tabu search
described below in the sense that it performs a recover
phase within a strategic oscillation approach.

Additional Procedures

Besides classifying construction, savings or dual proce-
dures, there are procedures using aggregation and de-
composition techniques combined with dynamic pro-
gramming. In addition, some heuristics which start
with generating a TSP tour are not considered in that
scheme.

Gouveia and J. Paixão [23] present two heuristics
for the CMST which are based on problem size reduc-
tion by aggregation and decomposition techniques. In
the aggregation heuristic the nodes are clustered using
the EW — thus forming new nodes with higher and in

general nonidentical weights — until the resulting ag-
gregated problem is small enough to be solved to op-
timality in time limits deemed practical. The decompo-
sition heuristic creates for each central arc of the MST
solution a subproblem by considering only the nodes
of the respective subtree. Subproblems which are small
enough are solved to optimality. For the remaining sub-
problems the aggregation heuristic is used.

Note that the above mentioned sweep algorithm
might be classified as aggregation procedure, too.

For the case of unit weights, K. Altinkemer andGav-
ish [2] provide a modified PSA with a worst-case error
bound of 3 � 2/K and derive a bound of 4 for the case
of nonunit weights. First, a TSP tour is constructed and
then it is partitioned into feasible subtrees by adding
some central arcs and removing respective noncentral
arcs. Note that the (noncenter) nodes of the resulting
subtrees are always connected in the same order as in
the TSP tour.

In the case of unit weights a K-iterated tour parti-
tioning algorithm is used: K solutions are constructed.
In each solution the first subtree starts with the first
(noncenter) node of the TSP-tour, the second subtree
starts with node 2 (first solution), node 3 (second so-
lution), . . . , node K + 1 (Kth solution). Apart from the
first and the last each subtree contains exactly K nodes.
The best out of these K solutions is chosen.

For nonunit weights a nearest insertion optimal par-
titioning algorithmmay be applied: In the nearest inser-
tion tour the nodes are renumbered according to their
position. Modified costs cij0 are computed as the cost of
a tree linking the center with node i, node i with node
i + 1, etc., and node j � 1 with node j. If such a tree is
infeasible (due to capacity), the respective cost is set to
infinity. With these definitions, the shortest path with
respect to cij0 from the center to node n represents the
optimal partitioning.

In each procedure a final step can be added: The so-
lution is improved by computing MSTs for the derived
components.

Improvement Procedures

Improvement procedures for the CMST can be classi-
fied as either local exchange procedures or second order
procedures.
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Neighborhood Definition

Local exchange procedures start with a feasible solution
and seek to improve it by modifying the current solu-
tion in a prespecified way: Sets of arcs are included in
or excluded from the solution. If more than one change
of the solution is possible the best one (with respect to
cost) is chosen. The procedure continues as long as im-
provements are possible.

Given a feasible solution, H. Frank et al. [13] ex-
amine for every node i the following exchange: Con-
nect i to its nearest neighbor not yet connected to i
and remove the arc with highest cost from the result-
ing cycle while still preserving feasibility. The exchange
with greatest cost decrease is chosen as long as improve-
ments are positive. The authors describe this procedure
for a network design problem with variable arc capaci-
ties and cost but it can be naturally applied to the special
case with only one available capacity and fixed cost for
each arc as in the CMST.

Elias and Ferguson [10] try to improve the solu-
tion by recombining segments of the components, i. e.,
deleting an arc and reconnecting the resulting non-
central component without loosing feasibility (cf. the
Whitney savings heuristic above).

The previously reported improvement procedures
alter a current solution by including or excluding arcs.
In contrast, a node exchange procedure transforms one
feasible solution to a neighbor solution by changing the
assignment of the nodes to the subtrees. Such a trans-
formation is called move. Subsequently a certain num-
ber of moves is performed thus trying to find improved
solutions.

Starting from the EW solution, in their CMST pro-
cedure A. Amberg et al. [4] consider two types of
moves: Shift moves choose one node and shift it from
its actual component to another one. Exchange moves
choose two nodes belonging to different subtrees and
exchange them. Both types may be simultaneously used
whereas only feasible moves are allowed, i. e. those lead-
ing again to feasible solutions.

A modified neighborhood definition involves cut-
ting a subtree from a given solution and to paste it
within another subtree or to connect it to the root node
[35]. Additional neighborhood structures are given in
[1]. Contrary to the previous neighborhood structures
the authors do not restrict themselves to the consider-

ation of two subtrees to be involved in one move but
into a chain of moves performed simultaneously (called
cyclic exchanges and path exchanges). That is, the num-
ber of exchanges grows exponentially with the problem
size. Based on a shortest path algorithm some profitable
exchanges may be determined in way which may be
termed Lin–Kernighan neighborhood or ejection chain.

Second Order Algorithms

Second order algorithms iteratively apply a slave pro-
cedure to different start solutions (where some arcs
are fixed to be included) and/or modified cost matri-
ces (where inhibitively high cost has been assigned to
some arcs) thus forcing arcs into or out of the solution.
Savings procedures as the EW or the PSA are applied as
slave procedures to complete the solution. In each itera-
tion, all possible modifications according to a given rule
are checked. The best one is realized and the respective
modifications are made permanent for the remaining
iterations. Two important second order algorithms are
inhibit and join [25].

The inhibit procedure examines for every arc of the
current solution the effect of excluding this arc by ap-
plying the EW to a modified graph where the cost of
the respective arc has been made inhibitively high. The
inhibition yielding the lowest cost solution is made per-
manent (the arc is inhibited for the remaining itera-
tions) and the process is repeated until no further cost
reduction can be obtained. At most O(n2) iterations,
each with at most O(n) inhibitions, have to be consid-
ered.

The join procedure determines for every node i its
nearest neighbor i1 as well as the closest neighbor i2
closer to the center than i (if different from i1). It com-
putes the effect on the cost of the solution if node i is
directly connected to node i1 or alternatively to node
i2 (if this is not already done in the actual solution) by
applying the start procedure on a modified graph. The
joining which produces the best solution is made per-
manent and the procedure is repeated with this solu-
tion. In each of the O(n) iterations O(n) joins have to
be considered.

It should be noted that both procedures, inhibit and
join, are already look ahead procedures (trying to over-
come a shortsighted myopic behavior). Both improve-
ment procedures can be used alone or in combina-
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tion with each other performing one iteration of join
after an iteration of inhibit and vice versa. Combin-
ing the procedures restricts the number of iterations to
O(n) (from the join procedure) yielding a complexity of
O(n2) times the EW complexity.

For the improvement procedure of [28] in a first
step the MST solution and the EW solution have to be
determined. Then the following iteration is performed.
Define T as the set of arcs which are in the MST but
not in the EW solution. For every nonempty subset S of
T generate a (incomplete) solution including these arcs
(if this is feasible), then exclude all arcs of the remaining
subset T\S (by modifying the respective arc costs) and
complete the solution by applying the heuristic. Choose
the subset S� which yields the largest improvement and
permanently include these arcs into the solution. Re-
peat this iteration with modified T := T\S�.

The min-exchange heuristic outlined in [17] starts
with any given feasible solution and determines for ev-
ery pair of components Cp and Cq the cheapest arc (i,
j) connecting the two components. All arcs incident to
i or j are deleted. Cp and Cq are decomposed into two
noncentral single node components Ci and Cj and some
remaining components. Now the noncentral compo-
nents are connected with the center; hereby the mini-
mal cost arcs are chosen. The PSA completes this mod-
ified solution. The authors propose to split all compo-
nents simultaneously.

Computational Results

In the early CMST literature the EW has been found
to perform best on average when compared to proce-
dures with similar computation times. Therefore, even
nowadays EW is taken as a benchmark to check the
performance of other procedures. Kershenbaum and
W. Chou [29] report that the unified algorithm run-
ning with 3 to 10 different parameter combinations and
correspondingly multiplied computation times yields
1–5% improvement over EW. Unfortunately, no spe-
cific parameter combination produces improvements
in general.

Gouveia and Paixão [23] admit the nearest insertion
optimal partitioning algorithm to perform much worse
than EW on average with some significant exceptions.
This shows that no general dominance of EW consider-
ing single problem instances can be derived.

Gavish and Altinkemer [16,18] report for test prob-
lems with up to 400 nodes that the PSA yields im-
provements of 2–4% in the unit weight case, but per-
forms poorly for nonidentical weights. In the latter case,
the min-exchange heuristic applied to the PSA solu-
tion gives results comparable to those of EW [17]. Gav-
ish [16] reports that the PSA with dummy nodes at-
tains improvements over EW (up to 6% some cases).
However, in the nonunit weight case EW performs still
better. Here, the PSA with constant number of joins
gives consistently better results than EW. Gouveia and
Paixão [23] apply this variant of the PSA with the num-
ber of joins varying between 1 (which is in fact the EW)
and 12 on unit weight test problems with up to 200
nodes: Significant improvements over EW with com-
putation times raised by a factor of up to 250 are ob-
tained. They also report that the (original) PSA per-
forms best when the capacity is a power of 2 (in the
unit weight case). Their aggregation heuristic on aver-
age yields a slight improvement over EW (up to 3% in
some cases). In test problems, that have the center in
the ‘middle’ of the rectangle containing the nodes, the
decomposition procedure has larger computation times
than the aggregation algorithm (factors of slightly more
than 1 up to 3 are found) and better results, whereas
in cases with the center on the ‘corner’ of the rectangle
both methods in almost all instances have similar run-
ning times and solutions. Apart from a few cases the
PSA with constant number of joins (and varied param-
eters) on average performs better than both procedures.

M. Karnaugh [25] tests inhibit and join on problems
with up to 150 nodes. The combination of the proce-
dures gives 2–3% improvement over EWwhile the run-
ning time is increased by a factor 100 (derived for the
150-node problems). Applying only inhibit performs
slightly worse.

Kershenbaum et al. [28] found that inhibit, join and
their own procedure yield improvements of around 2%
over EW. Thus, their own procedure requiring only 2 to
3 times more computation time than EW, outperforms
join.

Metaheuristics

Given a local search mechanism, a metastrategy like
tabu search or simulated annealing as a guiding process
decides which of the possible moves is chosen and for-
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wards its decision to the application process which then
executes the chosen move. In addition, it provides some
information for the guiding process (depending on the
requirements of the respective metastrategy) like the re-
computed set of possible moves.

Contrary to the improvement procedures reported
in the last section, the cost of a new solution may exceed
the cost of the previous one. Moves leading to a cost in-
crease are allowed in order to overcome local optima.
Which of the available feasible moves should be chosen
to transform the current solution? The answer to this
question is not clear and various approaches may lead
to good solutions. The guiding process may use, e. g.,
the two metastrategies simulated annealing and tabu
search.

Simulated annealing (SA) randomly chooses one
of the feasible moves and its change in cost is com-
puted. If the change is a cost decrease the move is per-
formed. Otherwise, the new solution is accepted with
a certain probability. The probability function usually
is logarithmic and — intending to favor good solutions
— decreases with raising amount of cost increase. It
decreases with the number of iterations already per-
formed thus intensifying the search in the current area
of the solution space when the execution time is grow-
ing. A parameter called start temperature has to be
specified to adapt the probability function to the actual
problem. SA does not require any additional informa-
tion. If the new solution is rejected the current solution
remains unchanged in this step. The next iteration tries
again to alter the same solution. Simulated annealing
implementations for the CMST are given in [4,6].

Tabu search (TS) examines all feasible moves. The
best move — leading to the highest cost decrease or the
lowest cost increase, respectively — is chosen and per-
formed. Now suppose that a local optimum is reached.
Without further instructions the procedure could per-
manently alternate between this local optimum and its
best neighbor. For that reason a so-called tabu list is
created: To prevent that a yet explored solution is exam-
ined again, all moves that (could) lead to such a solution
are stored in the tabu list. Which moves have to be set
tabu is derived from the running list (RL) containing all
performed moves in their sequence of execution. Both
lists have to be updated after each iteration.

In the literature there are several distinct ways of de-
riving the tabu list. They are referred to, e. g., as static

tabu search STS, reverse elimination method REM and
cancellation sequence method CSM (see [4] for the
CMST). For STS and CSM some parameters have to
be specified to adopt the methods to a specific prob-
lem and problem instances (especially problem size and
scaling of cost).

The storage complexity of the application process
is O(n2) and the time complexity O(K2) per iteration
because of the recomputation of MSTs in the changed
components. Using simulated annealing we have a time
complexity of the guiding process of O(K2): To com-
pute the probability of acceptance for the new solution
two new subtrees have to be computed. This is part
of the application process and need not be performed
twice. Thus, additional effort only arises if a solution is
rejected which does not influence the overall complex-
ity. The storage complexity also is not raised if simu-
lated annealing is used.

The complexity of the guiding process depends on
the special tabu search method. Different tabu search
implementations are described in [4,35]. Whereas [4]
seem to provide better results for the benchmark in-
stances with up to 80 nodes than [35], both seem to
be outperformed by the more recent (as of 2000) algo-
rithm in [1] based on their more powerful neighbor-
hood structures.

Besides TS and SA additional modern heuristic
search concepts have been investigated for the CMST.
A neural network approach is investigated in [33].
A GRASP implementation is provided in [34]. The re-
sults for both approaches seem to be behind some of
those described in the previous paragraphs.

ProblemModifications and Related Problems

Additionally to considering arc costs one may take into
account unreliable arcs and node outage costs which are
incurred by the user whenever a terminal node is un-
able to communicate with the central node, i. e., costs
associated with link failures [9].

An interesting modification of the CMDT is the
resource-constrained minimum spanning tree problem
in directed graphs [12]. Here each node, say i, has a cer-
tain amount of scarce resources available (a capacity)
which may be used to fulfill capacity requirements of
all arcs leaving i. Instead of measuring capacity require-
ments for subgraphs off the root node here the con-
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sideration restricts to the set of incident arcs leaving
a node. The current state of the art for solving this prob-
lem circumvents a branch and cut approach [12].

In practice we might be faced with the problem that
a solution of the design phase need not be a tree but
a forest with more than one root node. Most of the
approaches developed for the CMST might be applied
in a slightly modified way to this so-called multicenter
CMST (see e. g. [3] for an extension of the partitioning
heuristics with corresponding worst-case bounds).

When multiple centers are considered in arc ori-
ented vehicle routing then the capacitated arc routing
problem (CARP)may be transformed in a way that sub-
problems are successively solved as CMST. Amberg et
al. [5] develop this transformation and apply their TS
and SA approaches to this multiple center CARP.

Besides solving the CMST as a pure combinato-
rial optimization problem it may also be embedded
into a problem of users with traffic requirements who
have to build contracts with, e. g., a telephone com-
pany for the provision of service. This may lead to
the consideration of some game-theoretic concepts as-
sociated with a cost allocation problem arising from
the CMST or more general capacitated network design
problems [37].

Conclusions

In this paper we have provided a survey on existing
methods for solving the CMST.

With respect to considered algorithmic concepts it
might be interesting to incorporate some sort of either
exact or heuristic reduction techniques.

See also

� Bottleneck Steiner Tree Problems
� Directed Tree Networks
�Minimax Game Tree Searching
� Shortest Path Tree Algorithms
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Constantin Carathéodory, a mathematician of Greek
origin, was born in Berlin on September 13, 1873 and
died on February 2, 1950, in Munich, Germany. He
made important contributions to the theory of real
functions, to the calculus of variations, and to measure
theory.

He first studied in the Brussels’ Military School,
where he received a solid mathematical background.
After two years as an assistant engineer with the British
Asyut Dam project in Egypt, Carathéodory began his
study of mathematics at the Univ. of Berlin in 1900,
where he attended the courses of L. Fuchs, G. Frobe-
nius and H. Schwarz. He was particularly influenced by
Schwarz’ lectures with whom he became a close friend.
In 1902 he entered the Univ. of Göttingen, where he re-
ceived his PhD [1] under the German mathematician
H. Minkowski. In 1909 he became a full Professor in
the Univ. of Hannover. In 1913 he obtained the chair
held previously by F. Klein in Göttingen and in 1918
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he succeeded Frobenius in the Univ. of Berlin. Then,
in 1920, he accepted to help the Greek Government in
creating the Univ. of Smyrna, Asia Minor, which then
belonged to the Greeks. When the Turks razed Smyrna
in 1922, Carathéodory managed to save the university
library, which he moved to the Univ. of Athens, where
he taught until 1924. He then was appointed professor
of mathematics at the Univ. of Munich.

Carathéodory made important contributions to var-
ious branches of mathematics. In the calculus of vari-
ations, besides a comprehensive study of discontinu-
ous solutions, which was contained in his PhD thesis,
he also added important results linking the theory with
first order partial differential equations. His work on
the problems of variation of m-dimensional surfaces in
an n-dimensional space marked the first far-reaching
results for the general case. He also applied the calcu-
lus of variations to specific problems of mechanics and
physics. He contributed important findings in his book
[6]. The theory of functions and measure theory are
two additional areas where the work of Carathéodory
is very important. His book [3] is a classic of the field.
In the theory of functions of several variables he sim-
plified the proof of the main theorem of conformal rep-
resentation of simply connected regions on the unit-
radius circle. His investigations of the geometrical-set
theoretic properties of boundaries resulted in his the-
ory of boundary correspondence. Already in 1909 he
published a far-reaching paper on the foundations of
thermodynamics [2]. The paper remained unnoticed by
the physicists, because it was published in a mathemat-
ical journal. Only in 1921 M. Born brought the paper to
the attention of the physics community, and since then
the paper and the Carathéodory principle became clas-
sics. He also contributed to Einstein’s special theory of
relativity. His published works include [4,5,7,8,9].
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One of the basic results [3] in convexity, with many ap-
plications in different fields. In principle it states that
every point in the convex hull of a set S�Rn can be rep-
resented as a convex combination of a finite number (n
+ 1) of points in the set S. See for example [1,4,6,7,9,10].
Generalizations of the theorem can be found in [2]
and [5].

Theorem 1 Let S be any subset of Rn.
For every x 2 conv(S) (the convex hull of S), there

exist n + 1 points x0, . . . , xn 2 S such that x 2 conv(x0,
. . . , xn).

Proof Since x 2 conv(S), there exists a representation
x =

Pk
iD0 ˛i xi, xi 2 S for i = 0, . . . , k and

Pk
iD0 ˛i = 1.

If k � n, we are finished.
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Now suppose k > n. Note that then x1 � x0, . . . , xk
� x0 are linearly dependent. There then exist scalars �1,
. . . , �k, not all zero, such that

Pk
iD1 �i (xi � x0) = 0.

Let now �0 = �
Pk

iD1 �i; it then follows that
Pk

iD0
�ixi = 0 and we can find at least one �i > 0. So we have,

x D
kX

iD0

˛i xi � � � 0 D
kX

iD0

˛i xi � �
kX

iD0

�i xi

D

kX
iD0

(˛i � ��i )xi

for any � 2 R.
Choose � in the following way:

� D min
0�i�k

�
˛i

�i
: �i > 0

	
D
˛ j

� j

for some j 2 {0, . . . , k} so, ˛i � ��i � 0 for all i = 0, . . . ,
k.

Then we obtain x =
Pk

iD0(˛i � ��i) xi with ˛i �
��i � 0 for i = 0, . . . , k,

Pk
iD0 (˛i � ��i) = 1 and ˛j �

��j = 0.
And so x is represented as a convex combination of

at most k points in S. We can now repeat these steps
until k = n.

See also

� Carathéodory, Constantine
� Krein–Milman Theorem
� Linear Programming
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Why the Checklist Paradigm?

The classical logic deals with two logical values—‘truth’
and ‘falsity’. It can be characterised algebraically and se-
mantically by a Boolean algebra. Not all issues of logic
can, however, be settled by a system of classical two-
valued logic. For example some modalities, such as ne-
cessity and possibility cannot, in general, be expressed
in any system that admits only a finite number of logi-
cal values. Also some temporal logics [33] characteris-
ing time require an infinite number of logical values in
their semantics.

Fuzzy Logics

Many-valued logic algebras are needed for developing
the mathematics of fuzzy relations [28] and sets [18].
For example, in order to compute the degree ı to which
two fuzzy sets intersect, we use the formula ıA\ B(x) =
ıA(x) ^ ıB (x), where ^ is a many-valued ‘AND’ con-
nective and ıA(x), ıB(x) are some logical values: either
truth-values, possibilities, probabilities, etc. Depending
on the epistemological interpretation of the logical val-
ues, we read the statement ı(A)(x) ‘The degree to which
it is true that x 2 A’, ‘The degree to which it is possi-
ble that x 2 A’, ‘The degree to which it is probable that
x 2 A’, etc.

Computing the degree of inclusion of two sets [2] is
done by the formula ı(A � B) = (8x)ıA(x) ! ıB(x),
where x ranges over elements of the universe U from
which the elements of A and B are drawn. Here! is
a many-valued implication operator.

Approximate Reasoning

Many-valued logic systems are also required for alge-
braic characterization of logics of approximate reason-
ing. The premises of an inference (i. e. the antecedent
formulas that form the arguments of the rules of ap-
proximate inference) are used by the rules to generate
the succedent formulas — the conclusion(s).

If each of these logic formulas attains as its logic
value a single value from some lattice, we speak of
a point-based logic system of approximate reasoning. If
the logic value is a whole interval [ık, ıl] such that ık �
ıl it is an interval logic.

Hence, many-valued logics play a key role in all the
areas of mathematics and logic discussed above. There

is not one many-valued logic, there is an infinite num-
ber of families of logic systems of various kinds. Hence,
according to the purpose of its use, one has to choose
an appropriate many-valued system. But even after the
choice is made, the two key questions still remain:
� Where the logic values come from?
� Is there any basic epistemic or semantic procedure

by which the basic logic connectives can be mean-
ingfully derived?

These questions are answered by the checklist paradigm.

Many-Valued Logics in Fuzzy Sets

The theory of fuzzy sets and relations requires a many-
valued logic in which to manipulate the degrees of
truth which attach to fuzzy statements. As in classical
two-valued logic (in which the statements are judged
to be either utterly true or utterly false), one wishes
a truth-functional connection between the truth values
assigned to ‘p’ and to ‘q’ and those to be assigned to ‘p
or q’ and ‘p and q’ and ‘if p then q’, as well as to ‘not-
p’ and ‘not-q’, that is, one wishes the evaluation of the
derived formulas to depend solely on the evaluation of
the original formulas, without further reference to their
contents.

There are a number of such many-valued logical
systems, with truth values in the closed real interval
[0, 1]. Everyone agrees that the values assigned in the
crisp ‘corners’, where the values |p| of p and |q| of q are
zero (false) or one (true), must accord with the classical
Boolean logic. Most agree in setting

jnot � pj D j:pj D 1 � jpj

and the most usual ‘or’ and ‘and’ connectives are given
by

jp or qj D jp _ qj D max(p; q);

jp and qj D jp ^ qj D min(p; q);

although other have been proposed and have some-
thing to be said for them.

Selecting max and min as the functions for com-
puting the logical values of the connectives _ and ^
does not yet determine the system of many-valued logic
fully. Indeed, a number of different systems employ
these. Third determining factor is the choice the impli-
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cation operator !. Some frequently used! are listed
below.

Checklist Paradigm Semantics for Fuzzy Logics, Table 1
Some important many-valued implication operators

No Opr. Definition
2. S Standard Strict

a
2
�! b =

(
1; a � b
0; otherwise

3. S� Gödel

a
3
�! b =

(
1; a � b
b; otherwise

4. G43 product ply
(also: Goguen–Gaines)

a
4
�! b =min

�
1;

b
a

�

40. G430 Modified G43

a
40
�! b =min

�
1;

b
a
;
1 � a
1 � b

�

5. L Lukasiewicz

a
5
�! b =min(1; 1 � a + b)

5:5 KDL Reichenbach

a
5:5
�! b =min(1; 1 � a + ab)

6. KD Kleene–Dienes

a
6
�! b = (1 � a) _ b

7. EZ Early Zadeh

a
7
�! b = (a ^ b) _ (1 � a)

= (a
6
�! b) ^ ka

where ka = (1 � a)_ a
8. W Willmott

a
8
�! b = (a

7
�! b) ^ kb

Not only properties of the many-valued logic sys-
tems but also of the systems of fuzzy sets crucially de-
pend on the choice of the implication operator. For ex-
ample both the definition of a fuzzy power set (i. e. the
set of all subsets) and of the fuzzy set-inclusion opera-
tor depend on its choice. The very first paper on fuzzy
sets by L.A. Zadeh [44,45] uses max and min connec-
tives to define the intersection\ and the union[ of two
fuzzy sets. The set inclusion operator Zadeh defines by
the formula

�(A � B) D 1 , (8x)�A � �B(x):

Using the ‘Standard Strict’!2 in the formula given of
the first section above we obtain

ı(A � B)

D (8x)ıA(x)! ıB(x)

D (8x)�A(x)
2
! �B(x)

D min
fx2Ug

(�A(x)
2
! �B(x)) :

This formula is equivalent to Zadeh’s early definition
of fuzzy set inclusion which in fact is crisp (nonfuzzy).
Power set theories with proper fuzzy set inclusion have
been first investigated in [2,43] (using the implication
operators listed in the table above).

Since 1965, when the first paper on fuzzy sets was
written by Zadeh, not only max and min but also other
many-valued logic connectives were used to define the
union[ and the intersection \ of fuzzy sets. An impor-
tant pair are the so called ‘bold connectives’: ‘a ^5 b =
max(0, a + b � 1)’ and ‘a _5 b = min(1, a+ b)’. As the
subscript indicates, these are related to the Łukasiewicz
implication operator. These represent the so-calledMV
algebras which play an important role in application
of fuzzy sets in quantum logics [35] and elsewhere.
Both types of connectives, the pairs ‘max-min’ and the
‘bold’ connectives are special instances of the so-called
triangular norms (t-norms) and conorms (t-conorms)
[17,36]. These associative operations with special prop-
erties, defined on [0, 1], algebraically characterise the
whole infinite family of OR-AND pairs of many-valued
logic connectives and play a crucial role in the theory
and applications of fuzzy sets.

The Checklist Paradigm

The checklist paradigm provides the mechanism by
which several types of very different families of many-
valued logic connectives emerge from some more basic
considerations.
� It provides the semantics of systems that use single

value as its logic value.
� It provides the justification for interval logics.
� It provides a link of many-valued logics connectives

with generalized quantifiers.
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Mathematics of the Checklist Paradigm

A checklist template Q is a finite family of properties hP1,
. . . , Pni. With a template Q, and a given proposition A,
one can associate a specific checklist QA = hQ,Ai. A val-
uation f A of a checklistQA is a function fromQ to {0, 1}.

The value aQ of the proposition A with respect to
a template Q (which is the summarised value of the val-
uation f A) is given by the formula

aQ D
nX

iD1

pAi

where n = card Q and pAi = f A(Pi).
A fine valuation structure, a pair of propositions A,

Bwith respect to the template Q, is a function f QA;B from
Q into {0, 1} assigning to each attribute Pi the ordered
pair of its values hpA, pBi.

Let ˛j, k be the cardinality of the set of all attributes
Pi such that f QA;B(Pi) = hj, ki.

Obviously we have the following constraint on the
values: ˛00 +˛01 +˛10 +˛11 = n. Further, we define r0 =
˛00 +˛01, r1 = ˛10 +˛11, c0 = ˛00 +˛10, c1 = ˛01 +˛11.

These entities can be displayed systematically in
a contingency table. In such a table, the inner fine-
summarization structure consists of the four ˛j, k ap-
propriately arranged, and of margins c0, c1, r0, r1 (see
Fig. 1).

Now let F be any logical propositional function of
propositions A and B. For i, j 2 {0, 1}, let f (i, j) be the
classical truth value of F for the pair i, j of truth values;
let u(i, j) = ˛i, jn, the ratio of the number in the ij-cell of
the constraint table, to the grand total. Then we define
the (nontruth-functional) fuzzy assessment of the truth
of the proposition F(A, B) to be

m(F(A; B)) D
X
i; j

f (i; j) � ui j:

Checklist Paradigm Semantics for Fuzzy Logics, Figure 1
Checklist paradigm of the assignment of fuzzy values. De-
fine: a = r1/n; b = c1/n

This assessment operator will be called the contrac-
tion/approximation measure.

The four interior cells ˛00, ˛01, ˛10, ˛11 of the con-
straint table constitute its fine structure; the margins r0,
r1, c0, c1 constitute its coarse structure (see Fig. 1).

The fine structure gives us the appropriate fuzzy as-
sessments for all propositional functions ofA and B; the
coarse structure gives us only the fuzzy assessments of
A and B themselves. Our central question is:

to what extent can the fine structure be recon-
structed from the coarse?

As shown elsewhere [3,5,6,8] the coarse structure
imposes bounds upon the fine structure, without deter-
mining it completely. Hence, associated with the vari-
ous logical connectives between propositions are their
extreme values.

There are four extremes that the fine structure of the
contingency table (see Fig. 1) can attain [6,8]:
i) the two mindiag fine structures with the diagonal

values minimized (˛00 = 0 or ˛11 = 0); and
ii) the two maxdiag fine structures with the diagonal

values maximized (˛01 = 0 or ˛10 = 0).
Thus we obtain the inequality restricting the possible
values ofm(F):

con top � m(F) � con bot;

where ‘con’ is the name of connective represented by
f (i, j). Choosing for the logical type of the connective
‘con’ the implication and making the assessment of the
fuzzy value of the truth of a proposition by the formula
m1(F) = 1� u10 we obtain:

min(1; 1 � a C b) � m1(A! B) � max(1 � a; b):

We can see that the checklist paradigm generated
the Łukasiewicz implication operator, and the Kleene–
Dienes implication operator.

We have already noted that choosing for ‘F’ the con-
nective type ‘AND’ [5,8]) andm1, we obtain the bounds

min(a; b) � m1(AND) � max(0; aC b � 1):

These bounds are formally identical with those of B.
Schweitzer and A. Sklar [36] giving the bounds on
copulas which play an important role in their theory
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of t-norms and t-conorms. Surprisingly, these check-
list paradigm bounds also coincide with Novák’s re-
cent (1991) derivation [31] of bounds on fuzzy sets ap-
proximating classes of Vopěnka’s alternative set theory
[41,42]. E. Hisdal derives the same inequalities as the
bounds on some connectives of her TEE model and
comments on a possible link (cf. [16, Appendix A2]).
In the context of modalities in fuzzy logics, checklist
paradigm-like inequalities for F = {AND, OR} were re-
cently (1992) also independently discovered in [34]. Yet
all these models are neither formally nor epistemolog-
ically identical. This indicates the need for a more pre-
cise meta- and metametalogical formulation of many-
valued based mathematical systems, that would include
in their full definition a part formulating their ‘mathe-
matical epistemology’.

Interval Inference and The Checklist Paradigm

The checklist paradigm puts ordering on the pairs of
distinct implication operators and other pairs of con-
nectives. Hence it provides a theoretical justification of
interval-valued approximate inference. For the m1 con-
traction/approximation measure, there are 16 inequali-
ties linking the TOP and BOT types of connectives [5,8],
thus yielding 16 logical types of TOP-BOT pairs of con-
nectives. Ten of these interval pairs generated bym1 are
listed in Table 2.

Other Systems of Fuzzy Logic Connectives
for Interval Inference

In Boolean (crisp) logic, the values of a logical formula
written in the disjunctive normal form (DNF) are equal
to the values the formula expressed in the conjunctive
normal form (CNF). This does not hold for every system
of many-valued connectives.

I.B. Türksen [38,39,40] has shown that for max(a,
b), min(a, b) and some other t-norm and t-conorm
based CNFs and DNFs the inequality DNF(a CON b)
� CNF(a CON b) holds for all 16 basic many-valued
connectives CON.

Taking for example the max-min based CNF and
DNF, the corresponding implications are given by

CNF(a! b) D (:a _ b);

DNF(a! b) D (a ^ b)_ (:p ^ q) _ (:a ^ :b):

Checklist Paradigm Semantics for Fuzzy Logics, Table 2
Two-argument interval pairs of connectivesgenerated bym1

Logical Type Valuation
of Connective BOTTOM�TOP

AND max(0; a + b � 1)
a&b �min(a; b)
Nicod max(0; 1 � a � b)
a # b �min(1 � a; 1 � b)
Sheffer max(1 � a; 1 � b)
ajb �min(1; 2 � a � b)
OR max(a; b)
a _ b �min(1; a + b)

Nonimplication max(0; b � a)
a¸ b �min(1 � a; b)

Nonimplication max(0; a � b)
a¹ b �min(a; 1 � b)

Implication max(a; 1 � b)
a b �min(1; 1 + a � b)

Implication max(1 � a; b)
a! b �min(1; 1 � a + b)

Equivalence max(1�a�b; a+b�1)
a � b �

min(1�a+b; 1+a�b)
Exclusive OR max(a � b; b � a)

a˚ b �

min(2 � a � b; a + b)

For further information on other systems of con-
nectives for fuzzy interval inference see [11,27].

Optimization of Interval Inference

Formulas that are equivalent logically [6,27] may not be
equivalent when compared by their formula complex-
ity. This is well-known phenomenon when expressing
logical formulas in DNF or CNF normal forms [19].
The same logical function expressed in one of these
forms may have more complicated expression in the
other normal form. Similarly, this can be observed with
other logic connectives [40]. So, transformations be-
tween logically equivalent formulas expressed by differ-
ent connectives may have different formula complexity.
Hence, the knowledge of such transformations is useful
in optimization of interval inference.

For example, exclusive OR, or the eor operator, is
conveniently defined in two ways: as ‘a without b’ or
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‘b without a’, or else as ‘a or b but not both’, thus

a eor b D (a and :b) or (:a and b)

D (a or b) and (:a and b):

Using these definitions together with the definitions
of the previous section easy calculations bring the re-
sults of the following Table [6]:

a�top b = (a!top b)^top (b!top a)
= (a^top b)_top (: a^top : b)

a�bot b = (a!bot b)^bot (b!bot a)

= (a^bot b)_bot (:a^bot :b)
a˚top b = (a^top :b)_top (:a^top b)

= (a_top b)^top :(a^bot b)
a˚bot b = (a^bot : b)_bot (:a^bot b)

= (a_bot b)^bot :(a^top b)

Formulas for equivalence (IFF) and exclu-
sive-OR (EOR)

Other useful formulas are those that give universal
bounds on classes of fuzzy interval pairs of formulas. If
we define the unnormalized fuzziness of x [1] as �x =
min(x, 1 � x), then for x in the range [0, 1], �x is in the
range [0, 0.5], with value 0 if and only if x is crisp, and
value .5 if and only if x is .5. The following gap theorem
holds [8]:

Theorem 1

(a ^top b) � (a ^bot b)

D (a _top b) � (a _bot b)

D (a!top b)� (a!bot b)

D min(�a; �b):
(a �top b) � (a �bot b)

D (a˚top b) � (a˚bot b)

D 2min(�a; �b):

The width of the interval produced by an application
of a pair of associated connectives (i. e. TOP and BOT
connectives) characterises the margins of imprecision
of an interval logic expression. Because the interval be-
tween the TOP connective and the BOT connective is
directly linked to the concept of fuzziness �, the mar-
gins of imprecision can be directly measured by the de-
gree of �.

Other Systems of Checklist Paradigm Connectives

Several measures other than m1 that yield interesting
results are also important. For implication again, but
only the evaluation ‘by performance’ (that is, we are
only concerned with the cases in which the evaluation
of A is 1; see Fig. 1, we use m2 = u11/u10 + u11) and ob-
tain the inequality

min
�
1;

b
a

�
� m2(F) � max

�
0;

aC b � 1
a

�
;

in which the left-hand side is the well-known Goguen–
Gaines implication (cf. e. g. [3]). Still another contract-
ing measurewhich distinguishes the proportion of satis-
factions ‘by performance’, u(1, 1), and ‘by default’, u(0,
0) + u(0, 1). This measure given by the formula m3 =
u11 _ (u00 + u01) yields [3]

max[min(a; b); 1� a] � m3(F)

� max(a C b � 1; 1 � a) :

Two variations on measure m3 have turned out to be of
interest [3]. One is its lower contrapositivization given
by the formula

m4 D (u11 _ (u00 C u01)) _ (u00 _ (u01 C u11))

which gives the following inequality:

min[max(aC b � 1; 1 � a);max(b; 1 � a � b)]

� m4 � min[max(1 � a; b); �a; �b] ;

where �a = a _ (1� a).
The other arises by taking for the ‘performance’ part

the less conservative m2 thus obtaining the formula for
m5 =m2 _ (u00 + u11). This yields

max
�
min

�
1;

b
a

�
; 1 � a

�
� m5

� max
�
aC b � 1

a
; 1 � a

�
:

For the proofs of the results presented in this subsection
and further explanation see [6, Sect. 5] (this is the first
paper on the checklist paradigm, published in 1980).

Collapse of Intervals into Points Under
the Additional Probabilistic Constraints

When only the row and column totals ri, cj of the fine
structure are known (see Fig. 1), one can ask what are
the expected values for the ˛ij [3, Sect. 7].
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Suppose the ways in which numbers can be dis-
tributed within the cells of the fine structure (so as
to give the fixed coarse totals) constitute a hypergeo-
metric distribution. Then the means of the distribu-
tion for each cell, give the expected configuration of the
fine structure. The inequalities determining the interval
BOTCON � TOPCON now turn into equalities:

˛i j

˛i k
D

c j
ck
;

˛i j

˛hk
D

ri
rh
:

Surprisingly, introducing the expected value (a
probabilistic notion) this way causes the fuzzy inter-
val to collapse into a single point: the expected value
thus generating the values of the mid connective [3,5].
For example, the interval pair (!5, !6) generated
by m1 consisting of the Łukasiewicz implication and
Kleene–Dienes implication operators collapses into the
Reichenbach implication operator.

For further details on the ‘probabilistic collapse’
of the interval pairs generated by other measures see
[3,5,8,20,26].

Checklist Paradigm andGeneralizedQuantifiers

Some of the notions and results of the checklist
paradigm are in a remarkable relation to the theory
of observational generalized quantifiers, as studied by
P. Hájek and T. Havránek [14] in connection with
the method of automated hypothesis formation [12,13].
Namely, a particular type of implication operator and
a particular type of implicational quantifier are mutu-
ally definable. The link is given by the contingency ta-
bles of the checklist paradigm and the statistics of the
observational quantifiers [15].

Checklist Paradigm and Four Modes of Reasoning

Classical two-valued logic has presented certain modes
of reasoning, of which only two concern us: modus po-
nens and modus tollens, respectively.

The first of these derives from the two premises ‘if
a then b’ and ‘a’, the conclusion ‘b’; the second derives
from ‘if a then b’ and ‘not b’, the conclusion ‘not a’. The
validity of these modes is trivial.

On the other hand, there are two modes of reason-
ing which are classically illegitimate, although in the

daily life we all use something very much like them
all the time. These, so-called plausible rules [4,32], are
shown as the central pair in [26, Fig. 1]. Denial derives
from ‘if a then b’ and ‘not a’, the assertion ‘not b’, while
confirmation derives from ‘if a then b’ and ‘b’, the asser-
tion ‘a’.

The reason why these errors in classical reasoning
retain a strong intuitive attraction is that most human
reasoning does not deal with crisp or two-valued or
Boolean truth-versus-falsity, but with graded degrees of
credence, or belief-worthiness, or whatever you like to
call it. Because in multiple-valued logics the plausible
modes gain legitimacy this intuition about human rea-
soning gains mathematical legitimacy. Indeed, human
reasoning, ‘good’ human reasoning, is best modeled in
multiple-valued logic which admits in addition to the
modus ponens and modus tollens also the two modes
of plausible reasoning.

In classical logic, an evaluation takes each of a given
set of propositions into one of the extreme truth-values
0 (false) or 1 (true), subject to some semantic consis-
tency rules. In multiple-valued logic, an evaluation is
a mapping of the set of propositions into a somewhat
richer set, which for present purposes may be taken to
be the closed interval [0, 1] from 0 to 1, again subject to
certain semantic consistency rules.

Hence, in multiple-valued logic, for any fixed choice
among the distinguished implication operators, to the
classically valid modes of modus ponens and modus
tollens are to be added fuzzily valid modes of denial and
confirmation (modus negans and modus confirmans)
[4,7]. Although the out-of-bounds constraints were ad-
dressed elsewhere [4], one may wonder, what does the
checklist paradigm have to offer when applied to the
four plausible modes of inference.

Checklist paradigm is applicable not only to the
components of the object language, such as logical op-
erators and connectives, but also at the meta-level, thus
providing an interval logic based semantics for vari-
ous rules of inference. As shown below and in [8], it
also provides a justification and the proofs of validity
of nonclassical interval-based rules (plausible modes)
of reasoning called denial and confirmation (modus ne-
gans and modus confirmans) [4,7,8,24].

As already mentioned, these do not have a nontriv-
ial analogy in Boolean crisp logic. Thus we have the fol-
lowing theorems.



366 C Checklist Paradigm Semantics for Fuzzy Logics

Theorem 2 (checklist modus ponens) Given r = m(A
! B) and a = m(A) satisfying the consistency condition
r � 1 � a, the values of b = m(B) are subject to

r � (1 � a) � b � r: (1)

Theorem 3 (checklist confirmation) Given r = m(A!
B) and b = m(B) subject to the consistency condition b�
r, the values of a = m(A) are subject to

1 � r � a � 1 � (r � b): (2)

Theorem 4 (checklist modus tollens) Given r = m(A
! B) and :b = m (not � B) satisfying the consistency
condition r � b, the values of :a = m (not � A) are sub-
ject to

r � b � :a � r: (3)

Theorem 5 (checklist denial) r = m(A! B) and :a
= m (not � A) subject to the consistency condition 1 � a
� r, the values of :b = m (not � B) are subject to

1 � r � :b � 2 � (rC a): (4)

Group Transformations of Logic Connectives
and the Checklist Paradigm

Let us recall that a realization of an abstract group is any
group of concretely realizable operations which has the
same algebraic structure as the given abstract group. It
is well known that any abstract group can be concretely
realized by a family of permutations. So a specific ab-
stract group provides a global structural characteriza-
tion of a specific family of permutations that concretely
represent this abstract group. This idea can be used for
global characterization of logic connectives.

The Piaget Group of Transformations

Such a global characterization of two-valued connec-
tives of logic was first given by Piaget in the context
of studies of human cognitive development. J. Piaget
and his collaborators have shown that an important
role in child’s mental development is transition from
more concrete to more abstract thinking. This transi-
tion plays a role in development of intelligence, which is
viewed in the Piagetian setup as a transition from totally

ambiguous and vague notions to crisp propositions in
two-valued logic.

Given a family of logical connectives one can ap-
ply to them various transformations. Individual logic
connectives are 2-argument logic functions. Transfor-
mations are functors that, taking one connective as the
argument will produce another connective.

Let 4 transformations on basic propositional func-
tions f (x, y) of 2 arguments be given as follows:

I( f ) D f (x; y); D( f ) D : f (:x;:y);

C( f ) D f (:x;:y); N( f ) D : f (x; y):

In 1940, Piaget discovered experimentally a specific
concrete form of such transformations. In the set of the
above transformations Tp = {I, D, C, N} these individ-
ual transformations are called identity, dual, contrad-
ual, negation transformation, respectively.

It has been shown that the Piaget group of trans-
formation is satisfied by some many-valued logics (cf.
[5,6,10,37]).

The system of connectives

f�TOP;˚BOT;�BOT;˚TOPg

obeys the Piaget group of transformations. Hence it
possesses the abstract structure of the Klein 4-element
group.

An 8-Element Group of Logic Transformations

Adding new nonsymmetrical transformations to those
defined by Piaget enriches the algebraic structure of
logic transformations. In 1979 L.J. Kohout and W.
Bandler added the following nonsymmetric operations
[22,23]:

LC( f ) D f (:x; y); RC( f ) D f (x;:y)
LD( f ) D : f (:x; y); RD( f ) D : f (x;:y)

to the above defined four symmetrical transformations.
This yields a new 8-element group of transformations.

The abstract 8-element group [T, 
 ] that captures
the structure of the above defined logic transformations
is also commutative and is called the symmetric S2×2×2
group in the standard terminology of group theory. The
interval logic system based on m1 can be characterized
by such groups of transformations.

Given a set of connectives CON and a set of trans-
formations T , we say that TCON;T D T (CON) is the
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set of connectives generated by the application of T to
the set CON. For example, a !5 b will generate such
a set of connectives. This generated set is a realization
of S2×2×2.

A 16-Element S2×2×2×2 Group
of Logic Transformations

The implication operators a !5 b and a !6 b yield-
ing the measurem1 are contrapositive. This means that
their valuations satisfy the semantic equality a ! b =
:b!:a.

If we are interested in extending the interval logics
into the domain of noncontrapositive ! then the cor-
responding ^ is not commutative. In order to distin-
guish the contrapositive cases from noncontrapositive
ones in a syntactically correct formal way, an additional
operator is introduced.

This operator called, commutator K, satisfies the
equality a 
 b = K(b 
 a). The commutativity as well
as the contrapositivity involves restrictions on transfor-
mations of connectives. In the abstract group, these re-
strictions are expressed abstractly as congruences [30].
It is convenient to express such restrictions equation-
ally. For any contrapositive!, the following equalities
hold: C[K(a! b)] = K[C(a! b)] = a! b. For a non-
contrapositive !, (1) fails, but the following equality
holds:

(K(C(K(C(a! b))))) D a! b:

The following holds [29]:

Theorem 6 The closed set of connectives generated by
{ !4,  4, K} is a representation of the symmetric 16
element abstract group S2×2×2×2.

Conclusion

The checklist paradigm clearly demonstrates the fol-
lowing general meta-principle: a system of logic con-
nectives is formed by a specific family of connectives to-
gether with some common process/structure/principles
that involve the said family of connectives in some uni-
fying way, causing these to interact.

In the checklist paradigm semantic model we use
two basic unifying principles:
i) approximation (contraction) measures;

ii) transformations of logical types of connectives lead-
ing to a global characterization of logics by their
groups of transformations [23].

The methods of the checklist paradigm surveyed here
give the theoretical bounds on the performance of par-
ticular many-valued implication operators and other
connectives by deriving these fromdeeper epistemolog-
ical and formal assumptions. Hence, it provides a theo-
retical justification of interval-valued approximate in-
ference. The checklist paradigm, together with fuzzy
questionnaires and square and triangle relational prod-
ucts also plays an important role in the experimen-
tal identification of fuzzy membership functions and
structures [21,25] (see also � Boolean and fuzzy rela-
tions). The results can be extended to the groupoid-
based many-valued Pinkava algebras (see� Finite com-
plete systems of many-valued logic algebras) that are
used in the design of knowledge-based and other sys-
tems [19]. This theoretical work is supplemented by
empirical studies of the adequacy of various logical con-
nectives in practical applications of fuzzy sets and rela-
tions [9].

See also

� Alternative Set Theory
� Boolean and Fuzzy Relations
� Finite Complete Systems of Many-Valued Logic

Algebras
� Inference of Monotone Boolean Functions
� Optimization in Boolean Classification Problems
� Optimization in Classifying Text Documents
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As companies are increasingly concerned about long
term stability and profitability, recent years have wit-
nessed growing demand for long range planning tools
in all sectors. The chemical process industries are no
exception. New environmental regulations, rising com-
petition, new technology, uncertainty of demand, and
fluctuation of prices have all led to an increasing need
for decision policies that will be ‘best’ over a long time
horizon. Quantitative techniques have long established
their importance in such decision making problems.
It is therefore no surprise that there is a considerable
number of papers in the optimization literature devoted
to the problem of long range planning in the processing
industries. The purpose of this article is to review recent
advances in this area. We will describe the main mod-
eling issues, and discuss the computational complexity,
formulations and solution algorithms for this problem.

The Long Range Planning Problem

Consider a plant comprising of several processes to pro-
duce a set of chemicals for sale. Each process intakes
a number of raw materials and produces a main prod-
uct along with some by-products. Any of these main or
by-products could be the rawmaterials for another pro-
cess. Considering the ingredients and final product of
all the processes, we have a list of chemicals consisting
of all raw materials we consider purchasing from the
market, all products we consider offering for sale on the
market, and all possible intermediates. The plant can
then be represented as a network comprising of nodes
representing processes and the chemicals in the list, in-
terconnected by arcs representing the different alterna-
tives that are possible for processing, and purchases to
and sales from different markets.

The process planning problem then consists of
choosing among the various alternatives in such way as
to maximize profit. Once we know the prices of chem-
icals in the various markets and the operating costs of
processes, the problem is then to decide the operating
level of each process and amount of each chemical to be
purchased and sold to the various markets. The prob-
lem in itself grows combinatorially with the number
of chemicals and processes and is further complicated
once we start planning over multiple time periods.

Let us now consider the operation of the plant over
a number of time periods. It is reasonable to expect
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that prices and demands of chemicals in various mar-
kets would fluctuate over the planning horizon. These
fluctuations along with other factors, such as new en-
vironmental regulations or technology obsolescence,
might necessitate the decrease or complete elimination
of the production of some chemicals while requiring in-
crease or introduction of others. Thus, we have some
additional new decision variables: capacity expansion
of existing processes, installation of new processes and
shut down of existing processes. Moreover, due to the
broadening of the planning horizon, the effect of dis-
count factors and interest rates will become prominent
in the cost and price functions. Thus, the planning ob-
jective should be to maximize the net present value in-
stead of short term profit or revenue. This is the prob-
lem that we shall devote our attention to. The problem
can be stated as follows: assuming a given network of
processes and chemicals, and characterization of future
demands and prices of the chemicals and operating and
installation costs of the existing as well as potential new
processes, we want to find an operational and capacity
planning policy that would maximize the net present
value.

Computational Complexity

The number of possible alternatives, regarding which
processes to expand and when, increases with the num-
ber of processes and the number of time periods. Even
though this increase is clearly exponential in the num-
ber of processes and time periods, it was not until re-
cently that a formal computational complexity charac-
terization was provided for this problem. In particular,
the general long range process planning problem has
been shown by S. Ahmed and N.V. Sahinidis [3] to be
NP-hard by identifying two known NP-hard problems
as special cases.

Consider first a single-process, multiperiod prob-
lem where the decisions consist of determining the ex-
pansion sequence to satisfy given demands over a num-
ber of time periods at a minimum cost. It can be shown
that this problem is equivalent to the NP-hard capac-
itated lot-sizing problem, where one has to determine
production lot sizes to satisfy demands at a minimum
cost. Similarly, a multiple-process, single-time period
problem, where the decisions are to determine which
processes to install to satisfy demand at a minimum

cost, can be shown to be equivalent to the NP-hard
knapsack problem, where one has to select items from
a set to place into a knapsack such that weight restric-
tions are not violated and utility is maximized.

Solution Strategies

Some of the early approaches for the long range plan-
ning problem were based on dynamic programming
as described by S.M. Roberts [18]. A.S. Manne [5,15]
used integer programming approaches to account for
economies of scale. D.M. Himmelblau and T.C. Bickel
[7] presented a nonlinear programming formulation
for a hydrodesulfurization process, and I.E. Grossmann
and J. Santibez [6] developed a multi period mixed in-
teger linear programming formulation. Y. Shimizu and
T. Takamatsu [22] discussed a goal programming ap-
proach where in addition to cost minimization, mini-
mizing the number of expansions is also suggested. M.
Santiago, O.A. Iglesias and C.N. Pamiagua [21] devel-
oped a method to handle nonlinear concave cost func-
tions arising in planning models. A.G. Jimenez and D.F.
Rudd [9] presented a recursive mixed integer linear
programming technique and applied it to the Mexican
petrochemical industry. We next describe some of the
more contemporary approaches to these problems.

Integer Programming Approach

Under the assumption of linear mass balances in the
processes and fixed charge cost models, Sahinidis et
al. [20] developed a mixed integer linear programming
(MILP) formulation of the long range process planning
problem as described below.

Indices

i For the set of NP processes
j For the set of NC chemicals
l For the set of NM markets
t For the set of NT time periods

Parameters

XL
it , X

U
it Lower and upper bounds on the expansion of

process i in period t.
aLjl t , a

U
jl t Lower and upper bounds on the availability

of chemical j in market l in period t.
dL
jl t , d

U
jl t Lower and upper bounds on the demand of

chemical j in market l in period t.
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� jlt , � jlt Forecasted buying and selling prices of
chemical j in market l in period t.

�ij, �ij Input and output proportionality constants
for chemical j in process i.

˛it , ˇit Variable and fixed cost for the expansion of
process i at the beginning of period t.

Variables

Xit Capacity expansion of process i at the beginning of
period t.

Pjlt Amount of chemical j purchased from market l at
the beginning of period t.

Qit Total capacity of process i in period t. The capac-
ity of a process is expressed in terms of its main
product.

Sjlt Units of chemical j sold to market l at the end of
period t.

Wit Operating level of process i in period t expressed
in terms of output of its main product.

yit A 0–1 integer variable. If process i is expanded
during period t then yit = 1, else yit = 0

Formulation

maxNPV

D

NTX
tD1

(
�

NPX
iD1

(˛i t Xi t C ˇi t yi t C ıi tWit)

C

NCX
jD1

NMX
lD1

(� j l t S jl t � � j l t Pjl t)

9=
;

(1)

subject to

yi tXL
i t � Xit � yi tXU

i t ; 8i; t (2)

Qit D Qit�1 C Xit; 8i; t (3)

Wit � Qit ; 8i; t (4)

NPX
iD1

(�i j ��i j)Wit D

NMX
lD1

Sjl t �

NMX
lD1

Pjl t ; 8 j; t (5)

aLjl t � Pjl t � aUjl t ; 8 j; l ; t (6)

dL
jl t � Sjl t � dU

jl t ; 8 j; l ; t (7)

Xit;Qit ;Wit � 0; 8i; t (8)

yi t 2 f0; 1g; 8i; t: (9)

The objective (1) in the above formulation is to
maximize the difference between the sales revenues of
the final products and the investment, operating, and
raw material costs. Equation (2) is a constraint that
bounds capacity expansions. A zero value of yit forces
the capacity expansion of process i at period t to zero.
If the binary variable equals 1, then the capacity expan-
sion is performedwithin prescribed bounds. Constraint
(3) in the above formulation defines the total capacity
available at period t as a sum of capacity available in
period t � 1 and the capacity expansion at the begin-
ning of period t. The condition that the operating level
of any process cannot exceed the installed capacity is
modeled by constraint (4). Equation (5) expresses mass
balances for chemicals across processes and markets.
Constraints (6) and (7) are bounds on the purchase and
sales quantities. The nonnegativity and binary restric-
tions are imposed through constraints (8) and (9). Var-
ious extensions of this general model are discussed in
the recent survey article [2].

Sahinidis et al. [20] developed strong bounding
techniques and cutting planes to be used within
a branch and bound framework to solve the above prob-
lem. The fact that the problem is decomposable in the
number of time periods can also be exploited by us-
ing Benders decomposition. Further improvement of
the bounding schemes are suggested by reformulating
the problem to exploit lot sizing substructure in [19].
The reformulated problem results in a large number
of constraints and variables. In [10], the reformulated
problem is projected onto a lower-dimensional space
to reduce the number of variables, and is solved using
a cutting plane strategy along with branch and bound.
Computational results in [10,19] and [20] suggest the
following:
� Branch and bound with strong bounding techniques

performs much better than Benders decomposition
for large problems.

� For small sized problems, the reformulation and
projection approach do not provide appreciable
gains.

� For large problems, the best approach is to use a cut-
ting plane method based on the projected model.
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Continuous Global Optimization

In the MILP model, economies of scale in the invest-
ment cost functions were modeled by the introduc-
tion of a set of binary decision variables (yit) to impose
a fixed charge on the decision to expand in addition
to the linear term for variable costs. In reality, variable
costs are not directly proportional to expansion quan-
tity. Rather, the investment cost is a concave function
because of the presence of quantity discounts. Thus,
a more realistic model for the investment cost would
be:

f (Xit) D

(
0 when Xit D 0;
ˇi t C ai tXbit

i t when Xit > 0;

where ait > 0 and 0 < bit < 1. In this formulation, the in-
teger variables have been discarded and the linear vari-
able cost function has been replaced by a concave func-
tion in Xit with coefficient ait and exponent bit . Note
that this function is discontinuous at Xit = 0. M.L. Liu,
Sahinidis and J.P. Shectman [14] present two formula-
tions using these concave cost functions. In the fixed
charge concave programming model (FCP), the linear
cost relation is retained but the discrete variables are
eliminated by using the following concave function:

f (Xit) D

(
0 when Xit D 0;
ˇi t C ˛i t Xi t when Xit > 0:

In the continuous concave programming model (CCP),
the discontinuity at Xit = 0 is avoided by using the fol-
lowing function:

f (Xit) D ai tXbit
i t :

Both (FCP) and (CCP) are problems with concave
objective functions to be minimized over a set of lin-
ear constraints. These can be solved by a concave pro-
gramming method based on the branch and bound pro-
cedure. Computational experience with these models
suggests that the algorithm for (FCP) outperforms the
straightforward branch and bound for the MILP for-
mulation.

Approximation Schemes

Despite the success of optimization models and algo-
rithms in solving problems of industrial relevance, the

majority of approaches in current industrial-level plan-
ning practice are still based on heuristics rather than
integer programming techniques. However, the perfor-
mance characterization of these approximate methods
is based on empirical evidence and little has been done
in the way of analytical investigations. Liu and Sahinidis
[12] developed a simple heuristic for the process plan-
ning problem. The method is based upon solving the
LP relaxation of the MILP, and then shifting capacity
expansions from latter periods to earlier periods while
maintaining feasibility. Worst-case bounds on the per-
formance of this heuristic have also been developed and
probabilistic analysis of the heuristic has shown that,
under standard assumptions on the problem data, the
heuristic solution converges to the optimal solution al-
most surely as the problem size increases. A modifi-
cation of this heuristic for process planning problems
with a restriction on the number of allowed expansions
has been presented in [3]. The modified heuristic has
been proven to be asymptotically optimal in expecta-
tion.

Dealingwith Uncertainty

Uncertainty is an integral part of the long range pro-
cess planning problem. In the deterministic models dis-
cussed above, it is assumed that all uncertainty has been
accounted for in the estimation of the problem param-
eters. Stochastic models, on the other hand, provide ex-
plicit means of handling parameter uncertainties.

In process planning problems under uncertainty,
the decision maker is interested in a plan that optimizes
some sort of a stochastic objective. Two most common
such objective functions in the literature are the ex-
pected cost/profit of the plan and the plan’s flexibility.

Problems with the expected cost objective have
been formulated as two-stage stochastic linear programs
(2S-SLP). In such problems, the uncertain parameters
are treated as random variables with known distribu-
tions. The desired degree of flexibility of the plan is
pre-specified by identifying the probability space over
which the plan is required to be feasible. The decision
variables of the problem are partitioned into two sets.
The first stage variables, which are often known as ‘de-
sign’ variables, have to be decided before the actual re-
alization of the random parameters. Subsequently, once
the values of the design variables have been decided and
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the random events presented themselves, further pol-
icy improvements can be made by deciding the values
of the second stage variables, also known as ‘control’ or
‘operating’ variables. The choice of the design variables
should be such that the first stage costs and the sec-
ond stage expected costs are minimized. These prob-
lems have been solved using decomposition schemes,
where the expectation functional over the uncertain pa-
rameter space has been approximated using Monte-
Carlo sampling [11], successive disaggregation [4] or
by Gaussian quadrature [8]. Computational results in
[11] show that a combination of Benders decomposi-
tion withMonte-Carlo sampling provide optimal or ex-
cellent near-optimal solutions. Problems with up to 10
processes, 4 products, 6 chemicals, and with up to 524

scenarios were solved in at most a few CPUminutes on
a standard workstation.

From the flexibility objective point of view, one is
interested in a plan that maximizes the range of the un-
certain parameters over which the plan remains feasi-
ble. Problems of this type are typically harder to for-
mulate and require the identification of a suitable mea-
sure of flexibility that one can optimize. Such a formula-
tion has been presented in [24] which maximizes their
stochastic flexibility metric [23] subject to a cost con-
straint.

The objectives of optimizing cost or profit and
maximizing flexibility are typically conflicting. For-
mulations that combine the objectives by associating
a retrofit cost corresponding to design flexibility have
been presented in [16,17].

Liu and Sahinidis [13] applied a fuzzy programming
approach for the problem of process planning under
uncertainty. In this model, the uncertain parameters are
considered to be fuzzy numbers with a known range of
values, and constraints are treated as ‘soft,’ i. e. some vi-
olation is allowed. The degree of satisfaction of the con-
straints is then measured in terms of membership func-
tions, and the objective is to optimize a measure of con-
straint satisfaction.

The standard stochastic programming formulation
does not address the variability of the uncertain re-
course costs across the uncertain parameter scenarios.
The need for enforcing robustness of these costs is par-
ticularly important to a risk aversive planner in a high
variability environment. The stochastic programming
formulation of the process planning problem has been

extended in [1] to account for robustness of the re-
course costs through the use of an appropriate vari-
ability criterion. In particular, upper partial mean has
been proposed as the measure of variability for its intu-
itive appeal and to avoid nonlinear formulations. These
models provide the decision maker with a tool to an-
alyze the trade-off associated with the expected profit
and its variability. To overcome the difficulty asso-
ciated with solving the robust models which include
nonseparable terms, a heuristic procedure for the re-
stricted recourse formulation has been developed. This
method iteratively enforces recourse robustness while
solving the standard stochastic program in each step.
The heuristic generates similar but more conservative
trade-off frontiers for the profit and its upper partial
mean.

Conclusion

The purpose of this article has been to review the re-
cent advances in the use of optimization techniques in
long range chemical process planning. Considerable at-
tention has been devoted to the mixed integer linear
programming formulation of the problem and efficient
solution schemes that exploit the structure of the prob-
lem have been developed. Continuous models have also
been successfully solved using global optimization tech-
niques. The combinatorial complexity of the problem
has recently motivated the need for heuristics and their
performance analysis. Some exciting new results have
been obtained in this regard. Uncertainty of the prob-
lem parameters has been dealt with through stochastic
programming and fuzzy programming models. Vari-
ous different objective criteria including expected value,
flexibility and variability have been considered in exten-
sions of the two-stage stochastic programming formu-
lation and a number of efficient algorithms have been
developed for industrially relevant problems.
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Solving a linear system of the form Ax = b where A 2
Rn×n, b 2 Rn is one of the most fundamental problems
in mathematics and science. The two basic categories
of numerical solutions are direct methods and itera-
tive methods. Of the direct methods, Gaussian elimina-
tion with backsolving is the most commonly used tech-
nique. Straightforward Gaussian elimination uses row-
operations to reduce the system to upper-triangular
form before backsolving to find the solution, whereas
the equivalent LU-decomposition initially factors A into
the product of a lower- and upper-triangular matrix: A
= LU. In the special case whereA is both symmetric and
positive definite, the matrix may be decomposed into
A D eLeL> where eL 2 Rn�n is lower-triangular. This
decomposition is known as the Cholesky factorization,
and is named for A.L. Cholesky.

The LU-decomposition of a square matrix, A, is
the factorization of A into the product of a lower-
triangular matrix, L 2 Rn×n and an upper-triangular
matrix, U 2 Rn×n. The system Ax = (LU)x = b is
then solved by forward solving Ly = b where y = Ux,
and then backsolving Ux = y. The solution can be
found in roughly the same number of floating point
operations (flops) as Gaussian elimination with back-
ward substitution. More specifically, both methods re-
quire about n3/3 multiplications/divisions and n3/3 ad-
ditions/subtractions for large n. The main advantage of
this method is that once the matrix is factored (which
requires O(n3) steps), the system can be solved repeat-
edly for different b, which only requires O(n2) steps.
One drawback of this method is that pivoting may be
required to find the decomposition.

A special class of problems arises if the matrix in
the system is positive definite, i. e. x| Ax > 0 for x 6D
0. Note that if A is positive definite, but not symmet-
ric, this implies that 1/2(A+A|), the symmetric part of
A, is positive definite. The matrix A, can then be de-
composed into the form A = LDM| where L, M are
lower-triangular and D is a diagonal matrix containing
the pivots of A. If, in addition to being positive definite,
A is also symmetric, i. e. A = A|, then L is symmetric,M

= L, and the matrix has the special decomposition A =
LDL|, where D has positive entries. Therefore

p
D ex-

ists and A can be decomposed into A D eLeL>, where
eL D L

p
D and is referred to as the Cholesky triangle.

Hence the Cholesky factorization is often referred to as
the ‘square-rooting method’ [5]. The major advantage
of this is that it requires around half the flops of the
standard LU-decomposition.

The Cholesky factorization, presented below for
symmetric and positive definite A 2 Rn×n in pseu-
docode, is taken from [2].

FOR k = 1; : : : ; n;

akk :=
�
akk �

Pk�1
p=1 a2kp

�1/2

FOR i = k + 1; : : : ; n

aik :=
�
aik �

Pk�1
p=1 ai pakp

�ı
akk

Cholesky Factorization, Algorithm 1
A pseudocode for the Cholesky factorization

Example 1 Let A D
�
4 2
2 5

�
. This matrix is both sym-

metric and positive definite. Therefore a Cholesky fac-
torization exists for A (see [3] for a proof). An LU-
decomposition for it is

A D
�
1 0
1
2 1

��
4 2
0 4

�
:

Note that this is not unique, as another LU-decomposi-
tion is

A D
�
4 0
2 4

��
1 1

2
0 1

�
:

The pivots in both cases are 4 and 4. Hence, the
LDL|-decomposition is

A D
�
1 0
1
2 1

��
4 0
0 4

��
1 1

2
0 1

�
:

Finally, the Cholesky factorization is

A D LL> D
�
2 0
1 2

��
2 1
0 2

�
:

Additionally, this factorization is unique for symmetric,
positive definite matrices. The decomposition can be
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performed in fixed-point with no pivoting required [9].
This implies that the Cholesky decomposition is guar-
anteed to be stable without pivoting.

If the matrix A is ill-conditioned, i. e. has condition
number � = kAk kA�1k � 1, then the matrix may be
nearly singular and the computed solution to the sys-
tem, Ax = b, may not be sufficiently accurate. A process
of iterative refinement may be used to assess the accu-
racy of the solution and then improve upon it when
working in higher precision is not practical. See [2,9]
for a more detailed explanation.

The Cholesky factorization can also be used to find
the inverse and determinant of a symmetric, positive
definite matrix (the LU-decomposition can be used for
general A 2 Rn×n). It is important for the matrix to be
positive definite for a variety of reasons, for example, if
A is symmetric, but not positive definite, then the stabil-
ity is not guaranteed. In the case of finding the inverse
of a matrix A, a poor inverse may be obtained even if A
is well-conditioned, i. e. � is ‘close’ to 1.

The efficiency of the Cholesky factorization can be
further improved if the matrix is ‘banded’. A matrix A
= [aij] is said to have upper bandwidth q if aij = 0 when-
ever j > i + q and lower bandwidth p if aij = 0 whenever
i > j + p. Since A is symmetric, when A has lower band-
width p, it also has upper bandwidth p. In this case A is
said to have bandwidth p. For example, if p = 1, thenA is
tridiagonal. The following algorithm from [2] takes ad-
vantage of the fact that A is symmetric, positive definite
and has bandwidth p. It requires n square roots and

np2

2
�

p3

3
C

3
2
(np � p2)

flops or approximately n(p2C3p)
2 flops for p� n.

FOR i = 1; : : : ; n
FOR j = maxf1; i � pg; : : : ; i � 1

ai j :=
�
ai j�

P j�1
k=maxf1;i�pg aik a jk

�ı
aj j

ai i :=
�
ai i �

Pi�1
k=maxf1;i�pg a2i k

�1/2

Cholesky Factorization, Algorithm 2
A pseudocode for the banded Cholesky factorization

Another important application of the Cholesky fac-
torization is in the key role it plays in one of the most

commonly used numerical techniques for solving the
least squares problem (LS problem; cf. also � least
squares problems). The least squares problem is to find
the ‘best’ solution to Ax = b when the system is in-
consistent for A 2 Rm×n. Instead, the system A| Ax =
A|b, more commonly known as the normal equations,
is solved by first finding the Cholesky factorization of
the symmetric matrix A>A D eLeL>, which is positive
definite if A has rank n. Next, eLy D A>b is forward-
solved, and finally, the ‘best least squares’ solution,bx, is
found by backsolvingeL>x D y. Note thatbx minimizes
kAx � bk2 and the algorithm requires O(n3) flops. For
the algorithm and an analysis of the accuracy of the
method, see [2].
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Broadly speaking, matrix analysis is the study of non-
algebraic properties of matrices and the analysis of ma-
trices in order to reveal their finer properties and struc-
ture. (Here, ‘algebraic’ is understood at least in the clas-
sical sense of algebra.) The matrices are usually real or
complex matrices. Combinatorial matrix analysis is the
study of combinatorial properties of matrices and the
analysis of matrices which takes into account combi-
natorial structure. Here combinatorial structure usually
refers to the zero-nonzero pattern of a matrix, captured
through the use of either the directed graph or bipartite
graph associated with the nonzero entries of a matrix
(or the graph of the nonzero entries in the case of a sym-
metric matrix), or to the positive-negative-zero pattern
of a real matrix, captured through the use of the signed
digraph or signed bipartite graph of a matrix.

This article is intended as an introduction to com-
binatorial matrix analysis. More detail can be found in
[5] and [6], and the references contained therein.We do
not discuss here the many applications of matrix theory
and linear algebra to combinatorics, graphs, and dis-
crete structures.

Matrix Patterns and Various Graphs

Let A = [aij] be a matrix of order n whose entries aij
are real or complex numbers. To A there corresponds

a directed graph (or digraph) D(A) with vertex set V =
{1, . . . , n} and with an arc (i, j) from vertex i to vertex
j if and only if aij 6D 0. The bipartite graph (or bigraph)
BG(A) of A has vertex set {1r , . . . , nr} (corresponding
to the rows of A) and {1c, . . . , nc} (corresponding to the
columns of A); the edges of BG(A) are all pairs {ir, jc}
for which aij 6D 0. The bipartite graph of a matrix can
be defined for a rectangular m × n matrix in the same
way except that the vertices corresponding to the rows
are {1r, . . . ,mr}. Both the digraph and the bigraph reveal
the zero-nonzero pattern of a square matrix A.

If A is a real matrix and we want to capture the sign
(+, �, 0) of the entries of A, then we assign a + or �
to each arc of D(A) (to each edge of BG(A)) according
as the corresponding entry of A is positive or negative,
and in this way obtain the signed digraph and signed bi-
graph of A. We use the same notations D(A) and BG(A)
for the signed versions of the digraph and bigraph of
A. Thus two matrices A and B have the same sign pat-
tern if and only if they have the same signed digraphs
(equivalently, the same signed bigraphs).

If A is a symmetric matrix (or has a symmetric pat-
tern in the sense that aij 6D 0 if and only if aji 6D 0), then
the graph G(A) of A has vertex set {1, . . . , n} with an
edge {i, j} between i and j if and only if aij 6D 0 (equiv-
alently, aji 6D 0). Thus G(A) is obtained from D(A) by
‘removing’ the directions on arcs (this may result in two
edges joining certain pairs of vertices and one edge of
each such pair is removed as well). Sometimes in D(A)
and G(A) it is convenient to ignore the arcs (i, i) and
edges {i, i} (called loops) corresponding to nonzero en-
tries aii on the main diagonal of A.

A square matrix A of order n is irreducible provided
there does not exist a permutation matrix P such that

PAP> D
�
A1 O
A21 A2

�
;

where A1 is a square matrix of order k for some k with
0 < k < n. (The matrix PAP| is obtained from A by
simultaneously permuting its rows and columns. The
digraphs of A and PAP| are isomorphic.) A digraph
is strongly connected provided for each ordered pair of
distinct vertices i and j there is a path from i to j.

Proposition 1 The matrix A is irreducible if and only
if the digraph D(A) is strongly connected, [5].
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A square matrix can be brought to a very special form
by simultaneous row and column permutations.

Theorem 2 Let A be a matrix of order n. Then there
exist a permutation matrix P and an integer k � 1 such
that

PAP> D

2
6664

A1 O � � � O
A21 A2 � � � O
:::

:::
: : :

:::

Ak1 Ak2 � � � Ak

3
7775 ;

where A1, . . . , Ak are square, irreducible matrices. The
matrices A1, . . . , Ak are uniquely determined to within
simultaneous permutations of their rows and columns,
but their order on the diagonal is not necessarily unique.

The matrices A1, . . . , Ak in this theorem are called
the irreducible components of A and correspond to the
strongly connected components of the digraph D(A).

Irreducible matrices have an inductive structure that
is revealed in the next theorem [5].

Theorem 3 Let A be an irreducible matrix of order n
� 2. Then there exist a permutation matrix P and an
integer m � 2 such that

PAP> D

2
666664

A1 O � � � O E1

E2 A2 � � � O O
:::

::: � � �
:::

:::

O O � � � Am�1 O
O O � � � Em Am

3
777775
;

where A1, . . . , Am are irreducible matrices and E1, . . . ,
Em are matrices having at least one nonzero entry.

Allowing independent row and column permutations
in the definition of irreducibility leads to full indecom-
posability. A square matrix A of order n is fully in-
decomposable provided there do not exist permutation
matrices P and Q such that

PAQ D
�
A1 O
A21 A2

�
;

where A1 is a square matrix of order k for some k with
0 < k < n. The matrices A and PAQ have isomorphic
bigraphs.

Theorems analogous to Theorems 2 and 3 hold
with independent permutations replacing simultaneous

permutations and fully indecomposable replacing irre-
ducible. The connection is provided by the fact that
a square matrix A is fully indecomposable if and only
if there are permutation matrices P and Q such that
PAQ has a nonzero main diagonal and PAQ is irre-
ducible [5].

Eigenvalues and Digraphs

The following theorem is the Perron–Frobenius theo-
rem [7,8] and is one of the first instances of the influ-
ence of the digraph of a matrix on its spectral proper-
ties.

Theorem 4 (Perron–Frobenius theorem) Let A be
a matrix of order n > 1 each of whose entries is a nonneg-
ative real number. Assume that A is irreducible, equiva-
lently D(A) is strongly connected. Then there is a positive
number �(A) such that
1) �(A) is a simple eigenvalue of A;
2) every eigenvalue � of A satisfies |�| � �(A);
3) the number of eigenvalues � of A with |�| = �(A)

equals the greatest common divisor k of the lengths
of the circuits of D(A), and these eigenvalues are
�(A)e2� ij/k, (j = 1, . . . , k).

A more recent application of the digraph of a matrix to
localization of its eigenvalues concerns a generalization
[2] of theGershgorin theorem. LetA = [aij] be a complex
matrix of order n and let

Ri D
X
j¤i

ˇ̌
ai j
ˇ̌

(1 � i � n):

Then Gershgorin’s theorem asserts that the n eigenval-
ues of A lie in that part R of the complex plane deter-
mined by the union of the n closed disks

fz : jz � ai i j � Rig ; (1 � i � n):

If A is irreducible, then a boundary point of R is an
eigenvalue of A only if it is a boundary point of each of
the n closed disks.

By considering the circuits, or directed cycles, of the
digraph of A, a better inclusion region can be obtained.

Theorem 5 Let A = [aij] be a complex matrix of order
n. Then the n eigenvalues of A lie in that part S of the
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complex plane determined by the union of the regions

S(�) D
(
z :

Y
�

jz � ai i j �
Y
�

Ri

)
;

(� a circuit of D(A));

where
Q
� denotes the product over all vertices i belong-

ing to the circuit � . If A is irreducible, then a boundary
point of S is an eigenvalue of A only if it is a boundary
point of each S(� ).

Theorems 4 and 5 demonstrate how information con-
cerning the combinatorial structure of a matrix can be
used to give information on spectral properties of the
matrix.

Sign-NonsingularMatrices

It is easy to characterize real matrices A = [aij] of order
n whose singularity is a consequence of their zero pat-
tern, equivalently, of their nonzero pattern or bigraph
BG(A). Let Z(A) denote the set of all real matrices B of
order n that have the same zero pattern as A, that is, sat-
isfy BG(B) = BG(A). Then the following are equivalent:
i) Each matrix B 2 Z(A) is singular;
ii) Each of the n! terms in the standard determinant

expansion of A is zero (the standard determinant
expansion of a matrix A is

detA D
X

�(i1; : : : ; in)a1i1 � � � anin

where the sum extends over each permutation i1
. . . in of {1, . . . , n} and �(i1 . . . in) is + or� depending
on whether the permutation is even or odd);

iii) The bigraph BG(A) does not have a perfect match-
ing (i. e. a set of n pairwise vertex disjoint edges
meeting all vertices);

iv) There is a set of fewer than n rows and columns
which together contain all the nonzero entries of A;

v) There is a set of fewer that n vertices of BG(A)
which together meet all the edges of BG(A).

Properties ii) and iii) are clearly equivalent, as are prop-
erties iv) and v). Properties i) and ii) are equivalent,
since if there is a nonzero term in the standard deter-
minant expansion of A, then by sufficiently emphasiz-
ing the entries of A in that term we obtain a nonsingu-
lar matrix. Properties iii) and iv) are equivalent by the
Frobenius–König theorem [5].

Now let Q(A) denote the set of all real matrices of
order n that have the same sign pattern (+, �, 0) as A.
Q(A) consists of all real matrices of order n that have
the same signed digraph (equivalently, the same signed
bigraph) asA and is called the qualitative class ofA. The
matrix A is called sign-nonsingular provided each ma-
trix in Q(A) is nonsingular. Some equivalent character-
izations of sign-nonsingularity are:
i) A is sign-nonsingular;
ii) There is a nonzero term in the standard determi-

nant expansion of A and each such nonzero term
has the same sign;

iii) det (A) 6D 0 and the determinants of the matrices in
Q(A) all have the same sign.

The matrix
2
4
1 �1 0
1 1 �1
1 1 1

3
5

is a sign-nonsingular matrix.
If a matrix A = [aij] is sign-nonsingular, then

so is every matrix PAQ where P and Q are permu-
tation matrices, as is every matrix of the form DA
where D is a nonsingular diagonal matrix. Also a sign-
nonsingular matrix must have a nonzero term in its
standard determinant expansion. Thus in dealing with
sign-nonsingular matrices wemay assume that each en-
try on the main diagonal is negative, that is,A has a neg-
ative main diagonal. With this normalization, we have
the following theorem [1]. The sign of a circuit

� : j1 ! � � � ! jk ! j1

of the signed digraph of A is

sign(�) D sign aj1 j2 � � � ajk�1 jk a jk j1 ;

the products of the signs of the arcs of the cycle.

Theorem 6 (Bassett–Maybee–Quirk theorem) Let A
be a real matrix of order n with a negative main diago-
nal. Then A is a sign-nonsingular matrix if and only if
each circuit of the signed digraph of A is negative.

Sign-nonsingularity allows one to characterize square,
homogeneous systems of linear equations Ax = 0 for
whicheAx D 0 has only the zero solution (thus all solu-
tions ofeAx D 0 have the same sign pattern) for all ma-
triceseAwith the same sign pattern as A. Amore general
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problem is to characterize linear systems Ax = b that are
sign-solvable in the sense that the sign pattern of the so-
lution is determined solely by the sign patterns ofA and
b. More precisely, Ax = b is sign-solvable provided that
for all eA 2 Q(A) and alleb 2 Q(b) there is a vectorex
such thateAex Deb and all of the vectors in
n
ex : 9eA 2 Q(A);eb 2 Q(b) s.t.eAex Deb

o

have the same sign pattern.
Sign-solvable linear systems can be characterized in

terms of two classes of matrices, called S�-matrices and
L-matrices. An n × (n + 1)matrix B is an S�-matrix pro-
vided each matrix of order n obtained from B by delet-
ing a column is a sign-nonsingular matrix. Cramer’s
rule implies that B is an S�-matrix if and only if there is
a vector w with no zero coordinates such that the right
null spaces of the matrices in eB 2 Q(B) are contained
in {0} [ Q(w) [ Q(�w). The matrix
2
4
1 �1 0 0
1 1 �1 0
1 1 1 �1

3
5

is an S�-matrix. A matrix A is an L-matrix provided ev-
ery matrix in Q(A) has linearly independent rows. Sign-
nonsingular matrices are square L-matrices. Every S�-
matrix is an L-matrix and so is any matrix obtained
from an L-matrix by appending columns.

The following theorem characterizes sign-solvable
linear systems [9].

Theorem 7 Let A = [aij] be an m × n matrix and let
b be an m × 1 column vector. Let z = (z1, . . . , zn)| be
a solution of the linear system Ax = b, and let

ˇ D
˚
j : z j ¤ 0

�
;

˛ D
˚
i : ai j ¤ 0 for some j 2 ˇ

�
:

Then Ax = b is sign-solvable if and only if the matrix

[A[˛; ˇ] � b[ˇ]]

is an S�-matrix and the matrix A(˛, ˇ)| is an L-matrix.

(Here A[˛, ˇ], respectively A(˛, ˇ), is the submatrix
of A formed by the rows in ˛ and the columns in ˇ,
respectively not in ˛ and not in ˇ, and b[˛] = b[˛, {1}].)

A detailed study of sign-solvability and related is-
sues is contained in [6].

Doubly Stochastic Matrices

A real matrix A = [aij] of order n is doubly stochastic
provided each of its entries is nonnegative, and all row
and column sums equal 1:

ai j � 0 (i; j D 1; : : : ; n);
nX

jD1

ai j D 1;
nX

iD1

ai j D 1:

Doubly stochastic matrices arise quite naturally in
many different contexts:
i) Let U = [uij] be a real orthogonal matrix or a com-

plex unitary matrix. Then

bU D [
ˇ̌
ui j
ˇ̌2] (i; j D 1; : : : ; n)

is a doubly stochastic matrix.
ii) (Optimal assignment problem) Consider an assign-

ment of n people to n positions in which the ‘value’
of the ith person to the jth position is vij � 0 (i, j = 1,
. . . , n). An optimal assignment is an assignment i!
ji (i = 1, . . . , n) of people to positions (here j1 . . . jn
is a permutation of {1, . . . , n}) which maximizes the
total value

Pn
iD1vi ji . The set˝n of doubly stochas-

tic matrices of order n is a convex polytope and,
according to Birkhoff’s theorem [5], the set of ver-
tices of this polytope is the set Pn of permutation
matrices of order n. Thus the vertices of ˝n corre-
spond to the n! possible assignments, and the opti-
mal assignment problem can be solved as a linear
programming problem on˝n.

iii) Let Pn = {P1, . . . , Pn!}, and let (ci: i = 1, . . . , n!) be
a probability distribution on Pn: ci � 0 (i = 1, . . . ,
n!) and

Pn!
iD1 ci = 1. Then the expectation of a per-

mutation R 2 Pn chosen at random is

E D E[R] D
n!X
iD1

ci Pi D [ei j];

a doubly stochastic matrix. It is a consequence of
Birkhoff’s theorem that every doubly stochastic ma-
trix of order n arises from a probability distribution
on Pn in this way. The probability that a function f
chosen at random according to the probabilities

prob( f (i) D j) D ei j (i; j D 1; : : : ; n)

is a permutation equals the permanent of A defined
by

per(A) D
X

a1 j1 � � � an jn ;
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where the sum extends over all permutations j1
. . . jn of {1, . . . , n}.
Let A = [aij] be a real, symmetric matrix (or a com-

plex, Hermitian matrix). Then there exists a real, or-
thogonal matrix U such that

UAU> D

2
6664

�1 0 � � � 0
0 �2 � � � 0
:::

:::
: : :

:::

0 0 � � � �n

3
7775 ;

where �1 � . . . � �n are the n eigenvalues of A. Com-
paring diagonal entries, we get

(�1; : : : ; �n)> D S(a11; : : : ; ann)>; (1)

where S D bU is a doubly stochastic matrix. Without
loss of generality, assume that a11 � � � � � ann. Then
equation (1) implies that

�1C � � �C�i � a11C � � �C ai i (i D 1; : : : ; n); (2)

with equality for i = n. When the inequalities (2), with
equality for i = n, hold between two vectors � = (�1, . . . ,
�n) and � = (a11, . . . , ann) (that have been arranged in
nonincreasing order), then � is said to be majorized by
�. A Hardy–Littlewood–Pólya theorem states that if �
is majorized by �, then there exists a doubly stochastic
matrix S such that � = S� [10]. Hence by Birkhoff’s the-
orem, � is majorized by � if and only if � is in the con-
vex hull of all vectors obtained from � by permuting its
coordinates. There exist doubly stochastic matrices S of
very special form such that � = S� when � is majorized
by � [4,10].

As noted above, the vector of eigenvalues of a real,
symmetric matrix is majorized by the vector of its en-
tries on the main diagonal. Conversely, if � and � are
two n-vectors with � majorized by �, then according
to a theorem of A. Horn, there exists a real, symmetric
matrix of order n, whose eigenvalues are given by � and
whose main diagonal entries are given by � [10].

Let A be a doubly stochastic matrix, and let A1, . . . ,
Ak (k � 1) be the fully indecomposable components of
A. Since all row and column sums of A equal 1, it fol-
lows easily that up to row and column permutations A
is the direct sum of its fully indecomposable compo-
nents: there exist permutation matrices P and Q such
that

PAQ D A1 ˚ � � � ˚ Ak;

where ˚ denotes direct sum. The polytope ˝n has di-
mension (n� 1)2. Each doubly stochastic matrix deter-
mines a face of˝n equal to the set of all doubly stochas-
tic matrices S such that BG(S) is a subgraph of BG(A)
(i. e. each edge of BG(A) is also an edge of BG(A)).
This face is the smallest face of ˝n containing A, and
each nonempty face of ˝n arises in this way. Since no
entry of a doubly stochastic matrix can exceed 1, the
nonempty faces of ˝n can be described as follows: Let
C be a (0, 1)-matrix of order n which, up to row and
column permutations, is a direct sum of fully indecom-
posable matrices (such matrices are said to have total
support). Then

F(C) D fA : A 2 ˝n ;A � C entrywiseg

is a face of˝n and its dimension equals �(C) � 2n + k,
where �(C) is the number of 1s ofC and k is the number
of its fully indecomposable components [3].
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The resource allocation problem seeks to find an optimal
allocation of a fixed amount of resources to activities so
as to minimize the cost incurred by the allocation. A
simplest form of the problem is to minimize a separa-
ble convex function under a single constraint concern-
ing the total amount of resources to be allocated. The
amount of resources to be allocated to each activity is
treated as a continuous or integer variable, depending
on the cases. This can be viewed as a special case of the
nonlinear programming problem or the nonlinear inte-
ger programming problem.

Due to its simple structure, this problem is encoun-
tered in a variety of application areas, including load
distribution, production planning, computer resource
allocation, queueing control, portfolio selection, and
apportionment. The first explicit investigation of the

resource allocation problem is due to B.O. Koopman
[15] (1953), who dealt with the problem of the opti-
mal distribution of efforts, which arises in the problem
of searching for an object whose position is a random
variable. Since then, a great number of papers have been
published on resource allocation problems. Efficient al-
gorithms have also been developed, depending on the
form of objective functions and constraints or on the
type of variables (i. e., continuous or integer).

See [11] for a comprehensive review of the state-
of-the-art of the problems (as of 1988). After this book
was published, many papers have been published on re-
source allocation problems. A significant progress has
been made on the algorithm side. Also, new general-
izations and variants of the problem have been investi-
gated, and new application fields have been discovered.
Such new progress has been reviewed in [13].

We first classify the resource allocation problems.
A generic form of the resource allocation problem dis-
cussed in this article is described as follows:

(P)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x1; : : : ; xn)

s.t.
nX
jD1

x j D N;

x j � 0; j D 1; : : : ; n:

(1)

That is, given one type of resource whose total amount
is equal to N, we want to allocate it to n activities so that
the objective value f (x1, . . . , xn) is minimized. The ob-
jective value may be interpreted as the cost or loss, or
the profit or reward, incurred by the resulting alloca-
tion. In case of profit or reward, it is natural to max-
imize f , and we shall sometimes consider maximiza-
tion problems. The difference between maximization
and minimization is not essential because maximizing f
is equal to minimizing �f .

Each variable xj represents the amount of resource
allocated to activity j. If it represents persons, proces-
sors or trucks, however, variable xj becomes a discrete
variable that takes nonnegative integer values, and the
constraint

x j : integer; j D 1; : : : ; n; (2)

is added to the constraints in (1). The resource alloca-
tion problem with this constraint is often referred to as
the discrete resource allocation problem.
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As for the objective function, it usually has some
special structure according to the intended applica-
tions. Typically, the following special case, called sep-
arable, is often considered:

nX
jD1

f j(x j): (3)

If each f j is convex, the objective function is called sep-
arable convex objective function.

Resource allocation problems are classified accord-
ing to the types of objective functions, constraints and
variables. We shall describe the classification scheme,
and several types of problem formulations according to
the classification scheme. In general, we use the nota-
tion ˛/ˇ/� to denote the type of a resource allocation
problem. Here, ˛ specifies the type of objective func-
tion, ˇ the constraint type, and � the variable type;

� D D; � D C

denote the case of integer variable, respectively contin-
uous variable. We shall now explain the notations for ˛
and ˇ.

˛: Objective Functions

The objective function f (x1, . . . , xn) may take the fol-
lowing special structures:
1) Separable (S, for short):

Pn
j=1 f j(xj), where each f j is

a function of one variable.
2) Separable and convex (SC, for short):

Pn
j=1 f j(xj),

where each f j is a convex function of one variable.
In particular, if each f j is quadratic and convex, we
denote such a subclass by SQC.

3) Minimax: minimize max1� j� n f j(xj), or Maximin:
maximize min1� j� n f j(xj); here, all f j aremonotone
nondecreasing in xj.

4) Lexicographically minimax (Lexico-Minimax, for
short): Since the objective value of Minimax is de-
termined by the single variable x�k satisfying f k(x�k )
= maxj f j(x�j ), there may be many optimal solutions.
To remove such ambiguity, we introduce the lexico-
graphical ordering for n-dimensional vectors: Given
a = (a1, . . . , an) and b = (b1, . . . , bn), a is lexicograph-
ically smaller than b (or b is lexicographically greater
than a) if aj = bj for j = 1, . . . , k � 1 and ak < bk

some k. This is denoted by a �lex b or b �lex a. For
a = (a1, . . . , an), let DEC(a) (respectively, INC(a))
denote the n-tuple of aj, j = 1, . . . , n, arranged in non-
increasing order (respectively, nondecreasing order)
of their values (e. g., for a = (4, 3, 1, 5), we have
DEC(a) = (5, 4, 3, 1) and INC(a) = (1, 3, 4, 5)). The
objective of Lexico-Minimax is to find an allocation
vector x = (x1, . . . , xn) such that DEC(x) is minimal.
Notice that an optimal solution to Lexico–Minimax
is also optimal to Minimax, but the converse is not
generally true. This is a refined objective of Mini-
max. Similarly, we define Lexico-Maximin as the one
that maximizes INC(x).

5) Fair: minimize the expression

g
�
max
1� j�n

f j(x j); min
1� j�n

f j(x j)
�
;

where g(u, v) is nondecreasing (respectively, non-
increasing) in u (respectively, v). This objective is a
generalization of Minimax and Maximin.

ˇ: Constraints

In addition to the simple first resource constraint of
(1), other additional constraints are also imposed. Typi-
cal additional constraints which appeared in various re-
source allocation problems are as follows. We refer the
case of no additional constraints as ‘simple’.
1) Lower and upper bounds (LUB, for short): lj � xj �

uj, j = 1, . . . , n.
2) Generalized upper bounds (GUB, for short):

P
j2Si xj

� bi, i = 1, . . . , m, where S1, . . . , Sm is a partition of
{1, . . . , n}.

3) Nested constraints (Nested, for short):
P

j2Si xj � bi,
i = 1, . . . , m, where S1 � . . . � Sm. We can assume
b1 � . . . � bm, since if bi > bi+1, the ith constraint is
redundant.

4) Tree constraints (Tree, for short):
P

j2Si xj � bi, i =
1, . . . , m, where the sets Si are derived by some hier-
archical decomposition of E into disjoint subsets.

5) Network constraints (Network, for short): The con-
straint is defined in terms of a directed network with
a single source and multiple sinks. Given a directed
graph G = (V , A) with node set V and arc set A, let
s 2 V be the source and T � V be the set of sinks.
The amount of supply from the source is N > 0, and
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the capacity of arc (u, v) is c(u, v). Denote the flow
vector by ' = {'(u, v):(u, v) 2 A}. ' is a feasible flow
in G if it satisfies

0 � '(u; v) � c(u; v); (u; v) 2 A;X
(v;w)2AC(v)

'(v;w) �
X

(u;v)2A�(v)

'(u; v) D 0 ; (4)

v 2 V � T � fsg ; (5)

X
(s;v)2AC(s)

'(s; v) �
X

(u;s)2A�(s)

'(u; s) D N ; (6)

xt(')

�
X

(u;t)2A�(t)

'(u; t)�
X

(t;v)2AC(t)

'(t; v) � 0;

t 2 T ;

(7)

X
t

xt(') D N : (8)

The value xt(') denotes the amount of flow entering
a sink t 2 T. For a feasible flow ', the vector xt(')x 2
T} is called the feasible flow vector with respect to '.
For instance, the problem SC/Network/C (i. e., the
separable convex resource allocation problem under
network constraints) is defined as follows:

8<
:
min

X
t2T

ft(xt('))

s.t. (4) � (8) ;
(9)

where f t , for each t 2 T, is a convex function.
6) Submodular constraints (SM, for short): A set of fea-

sible solutions is defined by a base polyhedron B(r)
= x 2 RE : x(S) � r(S) for all S 2D, x(E) = r(E)} of a
submodular system (D, r), i. e.,

x 2 B(r) : (10)

Here, we use the notation E = {1, . . . , n}, and x(S)
�
P

i 2 S xi for S � E and x 2 RE. D � 2E is a dis-
tributive lattice such that ;, E 2 D, i. e., D is closed
under union and intersection operations. Also, the
function r : D! Z is submodular over D, i. e.,

r(X)C r(Y) � r(X [ Y)C r(X \ Y) :

For a submodular system (D, r),

P(r) D
˚
x 2 RE : x(S) � r(S) for all S 2 D

�

is called the submodular polyhedron of (D, r).
Notice that the first constraint in (1) is included in
the constraints of (10), as x(E) = r(E) in the above
definition. If we consider the case of integer vari-
ables, the constraint is defined by

x 2 B(r) \ ZE :

It is assumed, in general, that B(r) of the constraint
(10) is not explicitly given as an input, but is implic-
itly given through an oracle that tells the value r(X)
when X is given.

7) General linear constraints (Linear, for short): Con-
straints defined by a set of linear inequalities

nX
jD1

ai jx j � bi ; i D 1; : : : ;m: (11)

No other special assumption is imposed on the
structure of the constraints.

Notice that all the constraints, LUB, GUB, Nested, Tree,
Network are special cases of submodular constraints
(see [11]), and SM is a special case of Linear.

Algorithms

We first introduce an incremental algorithm for the
simple resource allocation problem, SC/Simple/D. We
assume that each f j is defined over the interval [0, N].
Since f j is convex, we have

dj(1) � � � � � dj(N); (12)

where

dj(y j) D f j(y j) � f (y j � 1):

The incremental algorithm is a kind of greedy algo-
rithm, and is also called a marginal allocation method.
Starting with the initial solution x = (0, . . . , 0), one unit
of resource is allocated at each iteration to the most fa-
vorable activity (in the sense of minimizing the increase
in the current objective value) until

P
xj =N is attained.
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Input: An instance of SC/Simple/D.
Output: An optimal solution x�.

Let x := (0; : : : ; 0) and k := 0;
WHILE k < N DO

Find j� such that
dj� (x j� + 1) = min1� j�n d j(x j + 1);
x j� := x j� + 1;
k := k + 1

END;
Output x as x�.

Procedure INCREMENT

It has been shown this procedure correctly com-
putes an optimal solution in O(N log n +n) time.

Several polynomial time algorithms have been de-
veloped for problem SC/Simple/D [3,7,14]. The fastest
among them is proposed in [3]. Its running time is
O (max{n, n log(N/n)}), but the algorithm is very com-
plicated. All these algorithms are based on divide-and-
conquer.

The incremental algorithm presented above also
works for problem SC/SM/D. In this case, among all the
elements such that x + e(j) 2 P(r) (i. e., feasible except
for the constraint (x + e(j)) (E) = r(E)), the xj with the
minimum increase in f j(xj) is incremented by one. This
process is repeated until x(E) = r(E) is finally attained.

A polynomial time algorithm for SC/SM/D is also
known [2,4]. It first solves a problem of SC/Simple/D
type, which is obtained from the original problem by
by considering only the simple constraint x(E) = r(E)
but disregarding the rest. If the obtained solution y
is feasible, we are done, i. e., it is an optimal solu-
tion of the original problem. Otherwise, the problem
is decomposed into subproblems using the information
obtained from the vector y and the submodular con-
straints.

When specialized to problem SC/Network/D, the
running time becomes O(|T|(�(n, m, Cmax)+ |T|
log(N|T|))), where �(n, m, Cmax) denotes the running
time for the maximum flow algorithm for a graph with
n vertices, m arcs and the maximum arc capacity Cmax.
The direct consequence of this result is that problems
SC/GUB/D, SC/Nested/D and SC/Tree/D can be solved
in O(n2 log(Nn)) time. For SC/Nested/D, the running
time was improved to O(n log n log(N/n)) in [8]. The

idea of the improvement is based on a general and beau-
tiful proximity theorem between integral and continu-
ous optimal solutions for SC/SM/D and SC/SM/C.

For SQC/–/D with – equal to Simple, GUB, Nested,
Tree or Network, D.S. Hochbaum and S. Hong [9] de-
veloped improved algorithms based on proximity re-
sult between SQC/–/C and SQC/–/D and efficient al-
gorithms for SQC/–/C.

Minimax/–/D and Maximin/–/D, are equivalently
transformed into problems of SC/–/D. Therefore,
equally efficient algorithms can be developed for min-
imax and maximin problems. The transformation is
done as follows: We only show this fact for the most
general case, i. e., Minimax/SM/D, which are described
as follows:

MINIMAX

8<
:
min max

j2E
f j(x j);

s.t. x is an integral base of B(r):

Here, all f j, j 2 E, are assumed to be nondecreasing.
When all f j are nonincreasing, problems MINIMAX
and MAXIMIN are mutually transformed into MAX-
IMIN and MINIMAX, respectively, by the following
identities:

�min
x

max
j2E

f j(x j) D max
x

min
j2E
� f j(x j);

�max
x

min
j2E

f j(x j) D min
x

max
j2E
� f j(x j):

Define for j 2 E,

g j(x j) D
x jX
yD0

f j(y); x j D 0; 1; : : : : (13)

Note that

g j(x j) � g j(x j � 1) D f j(x j)

holds for each xj = 0, 1, . . . . From the nondecreasing-
ness of f j, it follows that gj is convex over the nonneg-
ative integers. Now consider the following problems of
SC/SM/D:

Qg : min

8<
:
X
j2E

g j(x j) : x 2 B(r) \ ZE

9=
; :

It is then shown that an optimal solution of problem
Qg is optimal to MINIMAX.
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Generalizations

We finally note a recent development. K. Ando, S. Fu-
jishige and T. Naitoh [1,6] considered the separable
convex resource allocation problem for a bisubmodular
system and for a finite jump system, whose underlying
constraint can be viewed as a generalization of the sub-
modular constraint. They developed greedy algorithms
for such problems. For the case of a bisubmodular sys-
tem, a polynomial time algorithm has been given in [5].
Also, Hochbaum and J.G. Shanthikumar [10] showed
that, for a class of general linear constraints, efficient al-
gorithms can be developed. The running time of their
algorithm depends on the maximum absolute value of
the subdeterminants, �, and if � = 1 (i. e., the con-
straint matrix is totally unimodular), the running time
becomes polynomial. The idea is based on the proxim-
ity result between the integral and continuous optimal
solutions. When � = 1, V.V. Karzanov and S.T. Mc-
Cormick [12] proposed another polynomial time algo-
rithm.

In addition to these efforts to generalize the con-
straints, new progress has recently been made towards
generalizing objective functions for which efficient al-
gorithms can still be developed. This research was done
by K. Murota [16,17] who identified a subclass of non-
separable convex functions, M-convex functions, which
is defined on the base polyhedron of a submodular sys-
tem as follows.

A function f : ZE! R[ {1} is said to beM-convex
if it satisfies the following property:
� (M-EXC): For any x, y 2 dom f and for any i 2

supp+(x�y), there exists a j 2 supp�(x�y) such that

f (x)C f (y)

� f (x � e(i)C e( j))C f (yC e(i) � e( j));

where

dom f D
˚
x 2 ZE : f (x) < C1

�
;

suppC(x � y) D fk 2 E : xk > ykg ;

supp�(x � y) D fk 2 E : xk < ykg :

The M-convex functions can enjoy nice theorems of
discrete convex analysis in a parallel manner to the tra-
ditional convex analysis. A polynomial time algorithm
has been developed for this class of problems [18].
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In combinatorial optimization games, we consider co-
operative games for which the value of the game is ob-
tained via a combinatorial optimization problem. For
a cooperative game (a class of games with side pay-
ments), the set of participating players is denoted by N
and a value v(S) is achieved by each subset S of play-
ers without any help from other players (in the set N �
S). Usually, we set v(;) = 0. In general, the representa-
tion of the game requires an input size exponential in
the number of players. For a combinatorial optimiza-
tion game, however, the value v(S) is often succinctly
defined as a solution to a combinatorial optimization
problem for which the combinatorial structure is de-
termined by the subset S of players. The income dis-
tributed to individual player i is represented by xi, 1� i
� N, and x = (x1, . . . , xN).

The main issue in cooperative games is how to fairly
distribute the income collectively earned by the whole
group of players in the game, cooperating with each
other. For simplicity, let x(s) =

P
i 2 Sxi. The income

vector x is called an imputation if x(N) = v(N), and 8i
2 N: xi � v({i}) (individual rationality). Additional re-
quirements may be added to ensure fairness, stability
and rationality. And they lead to different sets of in-
come vectors which are generally referred to as solu-
tion concepts. Among many of these solution concepts,
the core, which consists of all the imputations satisfy-
ing the subgroup rationality condition 8S � N: x(s) �
v(s), is naturally defined and has attracted much atten-
tion from researchers. It has also led to many fruitful
results in combinatorial optimization games. Our fo-
cus in this article will be on the core. Readers inter-
ested in other solution concepts for cooperative games
in general can find them in many game theory books
and survey papers. For example, [12] gives an inter-
esting discussion for several classical solution concepts
in cooperative games and their applications to political
economy.

Recently, computational complexity has been sug-
gested as another metric for evaluating the rational-
ity of these solution concepts [2]. In this argument,
computational complexity is suggested as a measure of
bounded rationality [13] for players not to spend super-
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polynomial time to search for themost suitable solution.
For combinatorial optimization games, N. Megiddo [7]
suggested that algorithms polynomial in the number of
players (as good algorithms following the concept in-
troduced by J. Edmonds [3]) be sought for solutions.
As the value of any subset of players is defined as the
optimal solution to a combinatorial optimization prob-
lem, the input size can often be restricted to be bounded
by a polynomial in the number of players. This is usu-
ally the case for many practical collective optimization
problems. The value of a subgroup of players is the op-
timal objective function value that this subgroup can
achieve under the constraints imposed by resources
controlled by players in the subgroup. Very often the
collective optimization problem requires an integer so-
lution. It is under this context the game is then referred
to as a combinatorial optimization game.

An example to formulate a two-sided market (the
assignment game) is given in [11]. The underlying
structure is a bipartite graph (V1, V2;E). One interpre-
tation given by L.S. Shapley and M. Shubik is that V1

is the set of sellers, and V2 is the set of buyers. For the
simplest case, each seller has an item (say a house) to
sell and each buyer wants to purchase an item. The ith
seller, i 2 V1, values its item at ci dollars and the jth
buyer values the item of the ith seller at hij dollars. Be-
tween this pair, we may define a value v({i, j}) = hij �
ci if hij � ci and set (i, j) an edge in E with weight v({i,
j}). Otherwise, there is no edge between i and j since no
deal is possible if the seller values the item more than
the buyer does. Considering a game with side-payment,
the value v(s) of a subset S of buyers and sellers is de-
fined to be the weight of maximum matching in the bi-
partite graph G[S] induced by the corresponding set S
of vertices (an edge is in G[S] if and only if its two end
vertices are both in S). In a linear programming formu-
lation, this is
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

v(S) D max
X

(i; j)2E

v(i; j)xi j

s.t.
X

i2V1\S

xi j � 1
X

j2V2\S

xi j � 1

x � 0:

Shapley and Shubik have shown that the core for this
assignment game is precisely the set of solutions for the

dual program of the above linear program with S = V1

[ V2. Such nice properties are not unusual in combina-
torial optimization games. For example, the same fact is
established for another game, a cost allocation game on
trees, by A. Tamir. Tamir has shown that the core is ex-
actly the set of optimal solutions to the dual program of
the linear program formulation for the total cost of the
cost allocation problem on trees [14].

The Shapley–Shubik model is a theoretical formu-
lation for a pure exchange economy. The linear produc-
tion game of G. Owen [8] applies their ideas to a pro-
duction economy. In Owen’s model, each player j (j 2
N) owns a resource vector, bj. For a subset S of players,
their value is the objective function value of the optimal
solution for the following linear program:

8̂
ˆ̂<
ˆ̂̂:

max c>y
s.t. Ay �

X
j2S

b j

y � 0:

(1)

Thus, the value is what the subset of players can achieve
in the linear production model with the resources un-
der their control. The core for the lin- ear production
game is always nonempty [8] if all the above linear pro-
grams have finite optimum. A constructive proof pre-
sented by Owen obtains an imputation in the core from
any optimal solution of the dual program
8̂
<
:̂
min

X
j2N

w>b j

s.t. w>A � c>

of the linear program for all the players
8̂
<
:̂
max c>y
s.t. Ay �

X
j2N

b j:

In fact, let w be the optimal solution for the dual pro-
gram. Set xj = w>bj, j 2 N. Then x = (x1, . . . , xN) is an
imputation in the core. To see so, for each subset S�N,
consider x(s) =

P
i 2 Sxi. By definition of x, we have x(s)

=
P

i 2 Sw>bi. Let y�S be the optimal solution for the lin-
ear program for v(s). Then, Ay�S �

P
y 2 Sbj. Therefore,

x(s)�w>Ay�S . On the other hand, w
>A� c>. It follows

that x(s) � c>y�S , which is the same as x(s) � v(s) since
v(s) = c>y�S .
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Notice that this proof depends on the fact that, if for
each S � N, the linear program (1) has a finite optimal
value. In general, a linear program may be unbounded
or infeasible. If for any S � N, the linear program (1)
is unbounded, obviously the core does not exist. If it is
infeasible, we may define v(s) = �1. This allows the
extension of the above result to the case when the fol-
lowing conditions are satisfied:
1)

8̂
ˆ̂<
ˆ̂̂:

max c>y
s.t. Ay �

X
j2N

b j

y � 0

has a finite optimal value.
2) For each S � N, 1) has a finite optimal value or is

infeasible.
However, unlike the assignment game, there may in
general be imputations in the core which cannot be ob-
tained from the dual program for Owen’s linear pro-
duction game [8]. In general, it is not known how to
decide whether an imputation is in the core in polyno-
mial time.

There is a weakness in applying the linear produc-
tion game model to the studies of coalition optimiza-
tion problems. That is, in reality, many variables are re-
quired to be of integer values. It happens that for the as-
signment game of Shapley and Shubik, the linear pro-
duction model of Owen’s always results in an integer
solution. There are, however, many other situations for
which the integer optimal solution cannot be obtained
in the framework of the linear program.

A generalized linear production model introduced
by D. Granot retains the main linear program structure
of Owen’s model but allows right-hand sides of the re-
source constraints not to be linear in the resource vec-
tors bj of individual players [6]. Thus, v(S) is defined to
be max{c>y: Ay � b(S), y � 0}, where b(S) = (b1(s), . . . ,
bm(s)) is a general function of S. It is shown that, if for
each i, 1 � i � N, the game consisting of player set N
with value function bi(s) has a nonempty core, the gen-
eralized linear production game has a nonempty core.
As the game of Owen’s model, an imputation in the
core is constructed from the optimal solution for the
dual program and vectors in the core associated with
(N, bi) [6]. This would in general need an exponen-

tial number of function values b(s) for all the subset S
of N. For some collective combinatorial optimization
problems, b(S) is given implicitly as a solution to some
optimization problem and thus the problem input size
is polynomially bounded. The extended power of Gra-
not’s model can be applied to prove nonemptiness for
the cores of many games beyond those of Owen’s linear
production game.

In particular, the generalized linear production
game model is applied to show the nonemptiness of
a certain minimum cost spanning tree game [6]. In this
problem, we have a complete graph as the underlying
structure. A cost is assigned to each edge. There is a dis-
tinguished node 0. Players are vertices {1, . . . , n}. The
cost c(S) of a subset S of players is defined to be the cost
of minimum spanning tree in the graph G[S [ 0}] in-
duced by S [ {0}. (Notice that the cost game is different
from the value game defined as above but can be han-
dled similarly.) Even though an imputation in the core
can be found in polynomial time for this game, in [4] it
is shown that it is NP-hard to decide whether an impu-
tation is not in the core.

Another way to extend Owen’s model to include
games of combinatorial optimization nature is to ex-
plicitly require integer solutions in the definition of
the linear production model. That is, one may define
game value v(s) for a subset S � N to be the maximum
value of an integer program instead of a linear program.
Therefore,

v(S) D max

8<
:c
>x : Ax �

X
j2S

b j; x integers

9=
; :

For the assignment game of Shapley and Shubik and
the cost allocation game on trees of Tamir, the integer
program can be solved by its linear program relaxation,
since there is always an integer solution for the latter.
In the work of Shapley and Shubik, as well as that of
Tamir, bj is a unit vector and b(N) is a vector of all ones.
It is this particular structure of linear constraints that
makes the core to be identified with the set of optimal
solutions for the dual linear program to the linear pro-
gram of the game value for the set of players [11,14].
It is no wonder this property is further exploited in [5]
for a partition game, and in [1] for packing/covering
games.
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The packing game, for example, is defined for a set
N of players whose game value is given by the following
integer program
8̂
<̂
ˆ̂:

max c>x
s.t. x>AM;N � 1N

x 2 f0; 1gm;

where 1N is a vector of |N| ones, and AM, N is a 0–1 ma-
trix of rows indexed by M and columns indexed by N.
For each subset S of players, its value is given by
8̂
<̂
ˆ̂:

max c>x
s.t. x>AM;S � 1>

jSj; x>AM;S � 0>n�jSj;
x 2 f0; 1gm;

where AM, S is the submatrix of A with row set M and
column set S, S D N � S and v(;) is defined to be 0.

The covering game and the partition game are de-
fined similarly. It is a necessary and sufficient condition
for the core of the packing (and covering, and parti-
tioning) game to be nonempty that the linear relaxation
of the corresponding optimization problem always has
an integer optimal solution. In additional, the core, if
nonempty, is exactly the set of optimal solutions to the
dual programof the linear relaxation of the correspond-
ing integer program [1,5].

These results allow for a characterization of combi-
natorial structures for the corresponding combinatorial
optimization game to have a nonempty core. Because of
the linear program characterization of the core, ques-
tions such as whether the core is empty or not, whether
we can find an imputation in the core, and whether an
imputation is in the core, can often be determined in
polynomial time. Notice that, there are cases that the
linear program may be of exponential size in the num-
ber of players, it is not immediate that all these ques-
tions can be solved in polynomial time. But even for
cases when there are an exponential number of con-
straints, the linear program may be solvable in polyno-
mial time [9].

First established by Shapley and Shubik for the as-
signment game, the connection of the core for a com-
binatorial optimization game with dual program of the
linear program relaxation has been a successful tool in
the characteration of the core, design and analysis of al-

gorithms to find an imputation in the core and to test
membership of an imputation in the core. It is expected
that this approach would continously lead to fruitful re-
sults in cooperative game theory.
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Introduction

Test problems are instances of a mathematical problem
used to establish the accuracy or efficiency of a solu-
tion method. Test problems provide a common base-
line against which to compare a new solution algo-
rithm with an existing procedure. A problem genera-
tor is an algorithm to produce a test instance for a spe-
cific combinatorial problem. In this section, we pro-
vide an overview of test problems and generation meth-
ods, as well as sources of test problems for a number
of well-known combinatorial problems. The design of

test problems is a critical step in the design of combi-
natorial algorithms, and a sufficient number and vari-
ety of test problems must be available to determine the
performance of a proposed algorithm across a range of
problem types.

There are four basic sources of test problems:
1. Problems taken from real-world applications
2. Libraries of standard test problems
3. Test problems with parameters generated randomly

from a specified probability distribution
4. Test problems generated by an algorithm designed

to produce problem instances with specific charac-
teristics: e. g., problems with a known solution.

Each of these sources has associated advantages and
disadvantages. For example, problems taken from real-
world applications have a degree of complexity consis-
tent with at least some problems encountered in prac-
tice [28], and provide a context for presenting proposed
solutions that promotes understanding and acceptance.
However, we typically cannot find a sufficient num-
ber of such problems to constitute a satisfactory exper-
iment.

Libraries of standard test problems can provide
problems that were used by other researchers, facili-
tating comparisons with existing solution procedures.
However, as with real-world cases, libraries may not
provide a sufficient number or variety of problem in-
stances. Procedures that randomly generate test prob-
lems can quickly provide an essentially unlimited num-
ber of problem instances, but the optimal solution to
large randomly generated problems may remain un-
known. An additional hazard with randomly generated
problems is that such problems are sometimes artifi-
cially easy to solve [6,33].

Constructive procedures designed to generate test
problems with known solutions can be very useful for
evaluating an algorithm’s performance, and can also
provide a large number of test instances. Problem gen-
eration procedures must be carefully examined to de-
termine the difficulty, realism, and other characteristics
of the problems generated. An ideal generator would
produce problems in polynomial time, with a known
solution, of appropriate hardness, and with sufficient
diversity [31]. Of course, it can be difficult to simultane-
ously meet all these requirements. For example, a triv-
ial problem instance might be generated in polynomial
time, but provide no real test for a proposed solution
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procedure. Problem instances should also be posed us-
ing standardized representations [10].

A good set of test problems is only one part of
the evaluation of an algorithm. Barr, et al. [2] provide
guidelines for designing computational experiments
and for reporting results of solution algorithm perfor-
mance.

The following section provides sources of standard
test problems and problem generators for a number of
well-known combinatorial optimization problems.

Libraries and Generators

The INFORMS OR/MS Resource Collection [16] and
the OR-Library maintained by Beasley [3,4] both pro-
vide extensive collections of test data sets for a variety of
operations research problems. The Zuse Institute [19]
maintains a collection of various problems related to
mathematical programming. A handbook of test prob-
lems [11] provides a collection of test problems from
a wide variety of engineering applications. The Discrete
Mathematics and Theoretical Computer Science (DI-
MACS) Challenges [8] encourage experimental eval-
uations of algorithms using standard test problems.
Over the past decade, challenges have been held for
TSP, cliques, coloring, and satisfiability. An overview of
sources for specific combinatorial problems is provided
below.

Combinatorial Auctions

This problem involves auctions in which bidders place
unrestricted bids for bundles of goods. A seller faced
with a set of offers for bundles of goods wishes to max-
imize his revenue. The Combinatorial Auction Test
Suite (CATS) provides an algorithm for generating
problem instances of differing levels of realism [21].

Frequency Assignment Problem

A library of frequency assignment problems in the con-
text of wireless communication networks is available
at [9]. This website includes an extensive bibliography
on frequency assignment problems.

Graph Colorability

Sanchis [31] provides an algorithm for generating
graph colorability problems with known solutions. This

reference also provides a generator for the minimum
dominating set problem.

Linear Ordering Problem

Reinelt [29] maintains a library of problems instances
for the linear ordering problem, including problem data
and optimal solutions. This library also includes soft-
ware and data for several other discrete optimization
problems. Another library is maintained by Martí [22]
in which there are large randomly generated problems
with best known solutions.

Maximum Clique Problem

Hasselberg, et al. [13] consider a number of interest-
ing problems, including the maximum clique problem.
They introduce different test problem generators mo-
tivated by a variety of practical applications, including
coding theory and fault diagnosis.

Minimum Cut-Set

Krishnamurthy [20] provides a problem generator for
partitioning heuristics, including the minimum cut-set
problem. Generated instances of this problem are useful
in circuit design applications.

Minimum Vertex Cover Problem

Sanchis and Jagota [32] discuss a test problem genera-
tor that builds instances of the minimum vertex cover
problem. The generator provides construction param-
eters to control problem difficulty. Sanchis [31] pro-
vides an algorithm to generate minimum vertex cover
problems that are diverse, hard and of known solu-
tion.

Multidimensional Assignment Problem (MAP)

The axial MAP is a generalization of the linear as-
signment problem. Grundel and Pardalos [12] provide
a MAP generator that produces difficult problems with
known unique optimal solutions.

Quadratic Assignment Problem (QAP)

Pardalos [25] provides a method for constructing test
problems for constrained bivalent quadratic program-
ming. This reference includes a standardized random
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test problem generator for the unconstrained quadratic
zero-one programming problem. Yong and Parda-
los [35] provide methods for generating test problems
with known optimal solutions for more general cases
of the QAP. Calamai, et al. [7] describe a technique
for generating convex, strictly concave and indefinite
QAP instances. Palubeckis [24] provides a method for
generating hard rectilinear instances of the QAP with
known optimal solutions. Burkard, et al. [5] give addi-
tional useful information concerning this difficult prob-
lem.

Satisfiability

Achlioptas, et al. [1] propose a generator for satisfiabil-
ity problems that controls the hardness of the instances.
Aweb pagemaintained byUchida, Motoki, andWatan-
abe [34] is dedicated to two methods of generating in-
stances of 3-satisfiability. A library of satisfiability prob-
lem instances and solvers is available on a Darmstadt
University website [15].

Steiner Problem in Graphs

Khoury, et al. [17] use a binary-programming formu-
lation to generate test problems with known solutions
by applying the Karush-Kuhn-Tucker optimality con-
ditions to the corresponding quadratically-constrained
optimization problem. Koch, et al. [18] provide a li-
brary of Steiner tree problems with information about
the origin, solvability, and other characteristics of this
problem.

Traveling Salesman Problem (TSP)

Moscato [23] maintains a web site with resources for
the generation of TSP instances with known optimal so-
lutions. An approach for generating discrete instances
of the symmetric TSP with known optima is provided
by Pilcher and Rardin [27]. A number of libraries
(e. g [4,30]) provide test cases for the TSP.

Vehicle Routing Problem

Homberger [14] provides a large set of Vehicle Rout-
ing Problems with Time Windows, including instances
with up to one thousand customers.

Conclusions

Researchers need a large set of well-designed test prob-
lems to effectively compare the performance of exist-
ing solution algorithms or to evaluate a new algorithm.
Although practitioners may prefer real-world problems
for such tests, a sufficient number of test problems may
not be available to conduct a thorough experiment.
Randomly generated test problems can provide an es-
sentially limitless supply of instances. However, ran-
dom test instances may be artificially easy to solve, or, at
the other extreme, may have no known solution, mak-
ing it difficult to judge the performance of a new solu-
tion algorithm. Test problem generators, if properly de-
signed, can provide a large supply of hard problem in-
stances with known optimal solutions. Many such gen-
erators are readily available to researchers. Libraries of
test problem are also available, providing a variety of
problem types and sizes.
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In the communication network assignment problem
(CAP) a system of communication centers C1, . . . , Cn

is given. The centers have to be embedded into a given
(undirected) network N = (V , E) with vertex set V , |V|
= n, and edge set E. The centers exchange messages at
given rates per time unit through a selected routing pat-
tern. Let tij be the amount of messages sent from center
Ci to center Cj per time unit. If there is no direct con-
nection between Ci and Cj the messages sent from Ci to
Cj pass through several intermediate centers. The mes-
sages exchanged between Ci and Cj may be sent along
a single path or they may be split into several parts, each
part being sent along its own path. For any fixed em-
bedding E of the centers into the network and for any-
fixed routing pattern � of the messages, let IMTE, � (Ci)
denote the overall amount of traffic going through the
center Ci as intermediate center. The goal is to find an
embedding E of the centers into the network and a rout-
ing pattern � which minimizes the maximum interme-
diate traffic over all centers:

min
E;�

max
˚
IMTE;�(Ci) : 1 � i � n

�
(1)

A typical application of the problem arises in the
case of locating stations (terminals, computers) in
a local-area computer network (LAN) as described by
T.B. Boffey and J. Karkazis [1]. Usually, a given seg-
ment of the LAN serves different pairs of communi-
cating stations. In order to prevent interference and
garbled messages, only one message at a time can be
sent through a given segment of the LAN. On the other
hand one has to restrict the offered traffic through the
same segment so as to maintain a reasonable through-
put in the network. To this end it is reasonable to locate
bridges at the endpoints of each segment. All bridges
will work as intermediate centers and all stations will
work as bridges. The result is that each pair of stations
(or bridges) communicates through its own segment. It
is reasonable to require an embedding of stations and
additional bridges into the nodes of the LAN such that
the intermediate traffic going through the busier station
(or bridge) is minimized. Boffey and Karkazis [1] pro-
posed and discussed also a continuous version of the
problem.

A similar problem, the so-called elevator problem
leads also to the optimization problem (1) as described
by Karkazis [5]. The elevator problem arises when a sin-

gle elevator has to be replaced by two elevators, each
covering contiguous subsets of floors. It might be rea-
sonable to place the connecting landing so as to min-
imize the traffic intensity on the busier elevator. More
specifically assume that the first elevator serves floors
{1, 2, . . . , i} and the second elevator serves floors {i,
i + 1, . . . , n}, and let tij represent the traffic intensity
from floor i to floor j. Then the traffic load of the first
elevator is given as T(1)

i =
Pi

kD1
Pn

lD1 (tkl + tlk) and
the traffic load of the second elevator is given as T(2)

i
=
Pn

k=i
Pn

lD1 (tkl + tlk). Then we want to choose i so
as to minimize max{T(1)

i , T(2)
i }. Obviously this problem

setting can be generalized for more than two elevators.
Essentially there are two distinct models of routing

patterns in (1): the single pathmodel and the fractional
model. In the single path model, for every pair of com-
munication centers Ci and Cj, a single route in the net-
work is selected and all tij messages are sent along this
fixed route. In the fractional model, the amount tij is
split into a number of positive parts and every part is
sent along its own path. Most of the results available in
the literature concern the CAP on trees. In this case, for
each pair of vertices in the network there is only one
path to join them and hence, both models coincide.

R.E. Burkard, E. Çela and G.J. Woeginger have
proved in [3] that in general the CAP is NP-hard.
More specifically has been shown that the CAP is NP-
hard for networks that are i) paths; ii) stars of branch
length three; iii) cyclesNP-hardness in both models); or
iv) doublestars (NP-hardness in the single path model).
Moreover, it has been proved in [3] that the CAP is
polynomially solvable in the case of stars of branch
length two and in the case of doublestars in the frac-
tional model. In the case of a star of branch length two
the CAP can be formulated as a maximum weight per-
fect matching problem (MWPMP) if the communica-
tion center to be assigned to the central node of the
star is kept fixed. Since there are only n possibilities for
the selection of the center to be placed at the central
node, one just has to solve n MWPMPs. In the frac-
tional model, finding an embedding of the communica-
tion centers into the nodes of the network and a routing
pattern which minimize the intermediate traffic can be
done by solving a specified number of linear programs
with O(P) variables and O(n2) constraints each, where
P is the number of pairwise disjoint paths in N. In the
case of doublestars P = O(n2) and there are O(n2) pro-
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grams to be solved (see [3]). This implies that in this
case the CAP is polynomially solvable in the fractional
model.

Some exact algorithms and heuristic approaches to
solve the CAP on trees have been proposed in [3,5].
Karkazis has proposed a branch and bound algorithm
in the case where N is a path [5], and Burkard, Çela
and Woeginger [3] have proposed a branch and bound
approach in the case that N is a tree. The algorithms
have been tested on randomly generated trees and com-
munication rates tij. The tests show that only small in-
stances of the CAP of size up to 12 can be solved in
reasonable time. For large instances the number of the
branched nodes in the branch and bound tree explodes.
In order to approximately solve larger instances of the
CAP on trees Burkard, Çela and T. Dudàs proposed
in [2] simulated annealing and tabu search approaches.
The proposed heuristics are tested on randomlygener-
ated instances of size up to 32. The comparison of the
heuristic solutions with the optimal solution produced
by the branch and bound algorithm for instances of
small size shows that the performance of these heuris-
tics is quite satisfactory.

Finally, in [2] the asymptotic behavior of the CAP on
trees has been investigated.Under natural probabilis-
tic assumptions on the problem data the CAP on trees
shows a very interesting behavior: The ratio between
the maximum and the minimum values of the objective
function, i. e., the ratio between the maximum and the
minimum values of the intermediate traffic through the
busiest center, approaches 1 with probability tending to
1 as the size of the problem tends to infinity. The proof
of this fact is based on the strong relationship between
the CAP-T and a special version of the quadratic as-
signment problem. It is shown that the latter fulfills the
condition of a theorem of Burkard and U. Fincke [4] on
the asymptotic behavior of combinatorial optimization
problems. From a practical point of view the asymp-
totic behavior described above implies that the CAP on
trees becomes trivial as its size tends the infinity: every
feasible solution provides a good approximation of an
optimal solution.
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Introduction

Facility location models deal, for the most part, with the
location of plants, warehouses, distribution centers and
other industrial facilities. These location models do not
account for competition or for differences among fa-
cilities and therefore allocate customers to facilities by
proximity. In reality, retail facilities operate in a com-
petitive environment with an objective of profit and
market share maximization. These facilities are also dif-
ferent from each other in their overall attractiveness
to consumers. One branch of location analysis focuses
on the location of retail and other commercial facilities
which operate in a competitive environment, namely
competitive facility location. The basic problem is the
optimal location of one or more new facilities in a mar-
ket area where competition already exists or will exist in
the future. Assuming that profit increases when market
share increases, maximizing profit is equivalent to max-
imizing market share. It follows, then, that the location
objective is to locate the retail outlet at the location that
maximizes its market share.

A unique feature of competitive facility location
models is facility attractiveness (its appeal to con-
sumers). Facilities differ in the total “bundle of bene-
fits” they offer customers. They vary in one or more
of the attributes which make up their total attractive-
ness to customers. Furthermore, varying importance
assigned to each of these attributes by different cus-
tomers will result in a selective set of consumers patron-
izing each. Facility attractiveness level, therefore, needs

to be incorporated in the location model. Facility attrac-
tiveness needs to first be assessed using one of a vari-
ety of methods. Once attractiveness is assumed known,
market share captured can be calculated. Facility attrac-
tiveness is estimated using a utility function (a com-
posite index of attractiveness) or some other measure
(floor area) serving as a surrogate for a latent attractive-
ness. Utility models are predicated on consumer spatial
choice models as well as on the premise that facilities of
the same type are not necessarily comparable.

Also unique to competitive facility location is the
modeling of demand in terms of buying power. Income
levels and discretionary spending become a measure of
demand. For a review of competitive models see [4,15].

The underlying theme running through all compet-
itive models is the existence of an interrelationship be-
tween four variables: buying power(demand), distance,
facility attractiveness, and market share, with the first
three variables being independent variables and the last
the dependent variable. Buying power, or effective buy-
ing income, is known (for example, Sales and Mar-
keting Management magazine). Distance from demand
points to facilities can be measured. The most difficult
link in the interrelationship between the four variables
is the determination of facility attractiveness. For a dis-
cussion of the determination of facility attractiveness
see [6,9]. As is mentioned above and discussed below,
it is estimated using a utility function. Once buying
power, distance, and attractiveness are known, market
share can be calculated.

The Proximity Model

The first modern paper on competitive facility location
is generally agreed to be Hotelling’s paper on duopoly
in a linear market [21]. Hotelling considered the loca-
tion of two competing facilities on a segment (for ex-
ample, two ice-cream vendors along a beach strip). The
distribution of buying power along the segment is as-
sumed uniform and customers patronize the closest fa-
cility. When one facility is located and there is no com-
petition, all customers patronize the existing facility.
However, when a competing facility is introduced and
is located at a different point on the segment, the cus-
tomers on one side of the midpoint between the two fa-
cilities patronize one facility and the customers on the
other side of the midpoint patronize the second facil-
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ity. If one facility is held fixed in place, the best loca-
tion for the second is either immediately left or right
of the fixed one, depending on which segment – left or
right of the existing facility – is longer. In models based
on Hotelling’s formulation it is assumed that customers
patronize the closest facility.

The Location-Allocation Model

An extension to Hotelling’s approach is the location-
allocation model for the selection of sites for facilities
that serve a spatially dispersed population. Both the
facilities’ locations and the allocation of customers to
them are determined simultaneously. The allocation of
customers to facilities is made using Hotelling’s prox-
imity assumption – each facility attracts the consumers
closest to it. The market share attracted by each facility
is calculated and the best locations for the new facilities
are then found. Multifacility location-allocation models
analyze the system-wide interactions among all facili-
ties. Revelle [28] introduced location-allocation models
to competitive location. Goodchild [19] suggested the
location-allocation market share model (MSM). A re-
tail firm is planning to open a chain of outlets in a mar-
ket in which a competing chain already exists. The en-
tering firm’s goal is to maximize the total market share
captured by the entire chain. Most location-allocation
solution methods rely on heuristic approaches that do
not guarantee an optimal solution, rather they provide
good solutions for implementation. The best locations
are selected from a user-provided, prespecified set of
potential sites. Typically, these problems are formulated
on a network and the location solution is on a node.
A book edited by Ghosh and Rushton [18] provides
a collection of papers on the subject. A comprehen-
sive review of location-allocation models can be found
in [17].

The assumption that customers patronize the facil-
ity closest to them implies that the competing facilities
are equally attractive. For equally attractive facilities,
the plane is partitioned by a Voronoi diagram [26,27]. It
is implicitly assumed that all customers located at a de-
mand point patronize the same facility. This, in turn,
implies an “all or nothing” property. The combined
buying power at a demand point is assigned entirely to
one facility and none is assigned to other facilities, un-
less two or more facilities are equidistant. A solution

procedure for solving the multiple competitive facility
location in the plane is proposed in [29].

The Deterministic Utility Model

When the facilities are not equally attractive, the prox-
imity premise for allocating consumers to facilites is no
longer valid. To account for variations in facility at-
tractiveness, a deterministic utility model for compet-
itive facility location is introduced by T. Drezner [2].
Hotelling’s approach is extended by relaxing the prox-
imity assumption. Consumers are known to make their
choice of a facility based on factors other than distance
alone. Therefore, it is assumed that customers base their
choice of a facility on facility attractiveness which is
represented by a utility function. This utility function is
a composite index of facility attributes and the distance
to the facility, representing the expected satisfaction
from that facility (either an additive or a multiplicative
utility function). It is generally agreed that customers,
through a decision-making process, choose the facility
with the highest utility, the facility which is expected to
maximize their satisfaction. This choice is determined
by some formula according to which customers eval-
uate alternative facilities’ attributes weighted by their
personal salience to arrive at an overall facility attrac-
tiveness.

A trade-off between distance and attractiveness
takes place. Based on this premise the degree of ex-
pected satisfaction with each alternative as a function of
the relevant characteristics of that facility is measured.
It is suggested that a customer will patronize a better
and farther facility as long as the extra distance to it
does not exceed its attractiveness advantage. For exam-
ple, paramedics transporting a motor vehicle accident
victim will by-pass a nearby hospital in favor of a far-
ther, better equipped trauma center as long as the dif-
ference in quality of care exceeds the adverse effect to
the patient caused by the extra distance and time de-
lay. A break-even distance is defined. At the break-even
distance the attractiveness of two competing facilities is
equal. This break-even distance, therefore, is the maxi-
mumdistance that a customer will be willing to travel to
a farther facility (new or existing) based on his percep-
tion of its attractiveness and advantage relative to other
facilities. All customers at a demand point will patron-
ize the new facility if it is located within the break-even
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distance. While customers are no longer assumed to pa-
tronize the closest facility, customers at a certain de-
mand point are assumed to apply the same utility func-
tion, therefore, they all patronize the same facility. The
“all or nothing” property is maintained in this exten-
sion.

Based on aggregated utility values for existing facil-
ities and a utility function for a new facility, the best
location is found for the new one. The optimal location
for the new facility is sensitive to its attractiveness. Dif-
ferent attractiveness levels may yield different optimal
locations.

The RandomUtility Model

To address the “all or nothing” assumption of the de-
terministic utility model and to account for variations
in individual utility functions, a random utility model
is introduced by Drezner and Drezner [7]. The deter-
ministic utility model is extended by assuming that each
customer draws his utility from a random distribution
of utility functions. The probability that a customer will
prefer a certain facility over all other facilities is cal-
culated by applying the multivariate normal distribu-
tion. Once the probabilities are calculated, the market
share captured by a particular facility (new or exist-
ing) can be calculated as a weighted sum of the buy-
ing power at all demand points. This formulation elim-
inates the “all or nothing” property since a probability
that a customer will patronize a particular facility can be
established and is no longer either 0% or 100%. To cir-
cumvent the mathematically complicated formulation
of the random utility model, Drezner et al. [14] sug-
gested using the simpler logit model. The probability
that a customer will patronize a facility as a function
of the distance to that facility, can be approximated by
a logit function of the distance.

Gravity BasedModels

An alternative approach to the location of competing
facilities, based on the gravity model, was introduced
by Huff [22,23] and is extensively used by marketers.
According to the gravity model two cities attract retail
trade from an intermediate town in direct proportion
to the populations of the two cities and in inverse pro-
portion to the square of the distances from them to the
intermediate town. Huff proposed that the probability

that a consumer patronizes a retail facility is propor-
tional to its size (floor area) and inversely proportional
to a power of the distance to it. Facility size, or square
footage, is a surrogate for facility attractiveness. Huff
depicted equi-probability lines. A customer located on
such a line between two facilities patronizes the two
facilities with equal probability. These equi-probability
lines divide the region into catchment areas, each dom-
inated by a facility, in a manner similar to the Voronoi
diagram [26]. These lines do not define an “all or noth-
ing” assignment of customers to facilities, rather, at any
demand point, the proportion of consumers attracted
to each facility is a function of its square footage (at-
tractiveness) and distance. The model finds the market
share captured at each potential site, and thus the best
location for new facilities whose individual measures of
attractiveness are known.

Suppose there are k existing facilities and n de-
mand points. The attractiveness of facility j is Aj for
j D 1; : : : ; k, and the distance between demand point i
and facility j is di j . The buying power at demand point
i is bi. Therefore, the proportion of the buying power
(market share)Mj attracted by facility j is:

Mj D

nX
iD1

bi

A j

d�i j
kP

mD1

Am
d�im

(1)

where � is the power to which distances are raised.
In the original Huff formulation, facility floor

area serves as a surrogate for attractiveness. A ma-
jor improvement on Huff’s approach was suggested by
Nakanishi and Cooper [25] who introduced the mul-
tiplicative competitive interaction (MCI) model. The
MCI coefficient replaces the floor area with a product of
factors, each a component of attractiveness. Each fac-
tor in the product is raised to a power. Thus, the at-
tractiveness of a facility is a composite of a set of at-
tributes rather than the floor area alone. Nakanishi and
Cooper’s idea was elaborated on and applied by Jain
andMahajan [24] to food retailing using specific attrac-
tiveness attributes. Gravity based models suggest the
evaluation in terms of market share of a user provided
discrete set of potential sites for the location of a new
facility.

Huff’s and Nakanishi and Cooper’s models were ex-
tended to the location of multiple facilities by [1,16].
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Achabal et al. [1] extended the MCI model to the lo-
cation of multiple facilities which belong to the same
chain. The problem was modeled as a nonlinear integer
programming problem and a random search procedure
combined with an interchange heuristic was employed
to identify optimal and near-optimal sets of locations.
Ghosh and Craig [16] proposed a franchise distribution
model. An expanding franchise seeks to maximize sales
while minimizing cannibalization of franchise outlets.
This model was also formulated as a nonlinear integer
programming problem but included additional factors
such as advertising. These two models select the best
locations from a user-provided set of alternative sites as
well.

Other papers [20,30] suggest variations on Huff’s
formulation by replacing the distance raised to a power
with an exponent of the distance. This formulation ac-
celerates the distance decay.

Finding the best location for a new facility (or mul-
tiple facilities) in a continuous space using the grav-
ity model objective is discussed in T. Drezner [3] and
Drezner and Drezner [10] for the single facility case,
and in T. Drezner [5] and T. Drezner et al. [12] for the
location of multiple facilities.

Finding the best location for a competing facil-
ity that minimizes the probability of not meeting
a given minimum threshold of market share is dis-
cussed in [13].

All models discussed above assume that demand is
distributed among the competing facilities. For non-
essential services, some of the demand may not be satis-
fied. A model which assumes that some of the demand
is lost is proposed in [11].

Anticipating Future Competition

The competitive facility location models discussed
above are myopic and short-term oriented in that they
attempt to find the optimal location for a new facility
(facilities) by maximizing current market share against
existing competition. A different approach to compet-
itive location focuses on anticipating and preempting
future competition. It is assumed that a new compet-
ing facility will enter the market at some point in the
future. The competitor will establish his facility at the
location which maximizes his market share. Therefore,
one’s present location decision will affect the competi-

tor’s location decision. Conversely, assuming a future
competitive entry has implications for one’s present lo-
cation decision. The objective is to find the location that
maximizes the market share captured by one’s own fa-
cility following the competitor’s entry. This problem is
known in the economic literature as the Stackelberg
equilibrium problem or the leader-follower problem
and as the Simpson’s problem in voting theory. See [8]
for a review of the topic.

Conclusions

There are two main applications for competitive facil-
ity location models. The first application is the location
analysis of a new facility. The best location for the new
facility, based on market share maximization at that lo-
cation, is found. The second application is an analysis of
the impact of changes in quality in existing facilities (ei-
ther own’s, competitor’s, or both) on the market share
captured by one’s facility and on its optimal location.
In addition, a decision maker will be able to perform
a “what-if analysis” and anticipate the impact on his fa-
cility of either competitor’s improvements or of the in-
troduction of a new facility. In this case one needs to
know the overall attractiveness of the proposed new fa-
cility or the difference in overall attractiveness pre-post
improvements in an existing one. Using the models,
a decision maker can assess:
1. the impact on location of changes in attractiveness

for his new facility;
2. the impact on market share of change in location for

his new facility;
3. the impact on market share of changes in attractive-

ness at his existing facility(ies);
4. the impact on his facility of changes in other facilities

or the introduction of a new facility.
These models afford the anticipation and analysis of the
impact of likely future scenarios. In a highly competi-
tive market such as exists domestically, and in the face
of increasing global competition, the ability to optimize
location in terms of market share provides a strategic
advantage for decision makers.
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Portfolio management is a typical decision making
problem under incomplete, sometimes unknown, in-
formation. Very often, a probability distribution is as-
sumed for stock/bond prices in the future. In the clas-
sical work of H.M. Markowitz [9], the investors are as-
sumed to base their decisions for portfoliomanagement
on their preference of return and risk. In this model, the
return is specified as the expected value of the portfolio,
and the risk its variance. One of the great achievements
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of this work is its predictive power of diversified invest-
ment decisions.

The assumption that future events would follow
some probability distribution is also widely accepted for
many other problems for which information on future
events is uncertain. Very often, uncertainty is used as
a synonym for probability distribution. However, a fun-
damental problem still remains: What decisions should
we make in presence of future unknown events for
which we are simply ignorant of any information? In
such situations, the quality of a solution made under
ignorance can only be known after future events reveal
themselves. Therefore, the quality of a decision should
be evaluated in comparison with the optimal available
strategy we could have chosen knowing the outcome.
Along this approach, the concept of competitive ratio,
which optimizes the ratio of the outcome of a strategy
under incomplete information and the optimal outcome
under complete information, has been widely applied
to solve computational problems under incomplete in-
formation, [4,7,8,11]. In particular, R. El-Yaniv, et al.,
applied competitive analysis to the problem of foreign
currency purchase [5]. X. Deng has suggested to apply
the competitive analysis to portfoliomanagement prob-
lems [3].

Consider a maximization problem. Let X = (x1, . . . ,
xn) be the variables we have no complete information
until in the future. Let Y = (y1, . . . , ym) be the deci-
sion variablesfor which we have to choose their values
now. Let A = (a1, . . . , ak) be the variables we know of
their values at the time we make decisions on Y . A de-
cision rule is a function S: A� > Y . Let v(A, Y , X) be
the value of the objective function. Denote by vS(A, X)
= v(A, S(A), X) be the value of the objective function
achieved by the decision rule S if the future outcome is
X. Let OPT (A, X) = maxall Y v(A, Y , X). The competi-
tive ratio of decision rule S is

min
all X

vS(A; X)
OPT(A; X)

:

We are interested in a decision rule which achieves the
optimal competitive ratio:

max
all S

min
all X

vS (A; X)
OPT(A; X)

:

Consider the portfolio management problem of
choosing from a set of n stocks. We may scale units of

stocks so that one unit of money and the current price
for each stock is one. The portfolio choice decision can
be represented by a vector (x1, . . . , xn), 1� i� n,

Pn
iD1

xi = 1.
To illustrate the competitive analysis method, we

first consider the extreme case when we know no in-
formation about future prices of the stocks. A simple
strategy is to distribute the fund equally to all the stocks
such that x1 = � � � = xn = 1/n. Let 1 + ci be the price of
stock i at the end of the period. Therefore, in retrospec-
tive, the best strategy would be to invest all the money
in the stock of the best performance: 1 + ck = max {1 +
ci: 1� i� n}. The income of the above strategy achievesPn

iD1(1+ ci)/n. Since we may assume that 1+ ci � 0, we
have

Pn
iD1

1Cc i
n

1C ck
�

1
n
:

This simple strategy achieves a competitive ratio of 1/n.
On the other hand, it is natural that this strategy is op-
timal when we have no information whatsoever about
the stocks. Consider any strategy which invests xi in
stock i (

Pn
iD1xi = 1). Its outcome will be

Pn
iD1xi(1+ci).

Since
Pn

iD1xi = 1, there existssome j such that xj � 1/n.
In the worst case, it may happen that we have 1 + cj = 2
and 1 + ci = 0 for all other stocks. Therefore, the opti-
mal investment will be put all the money in stock cj. The
competitive ratio of this strategy is no more than xj(1 +
cj)/(1 + cj) � l/n. Therefore, the above simple strategy
achieves the optimal competitiveratio when no infor-
mation is available.

To illustrate this idea further, consider another case
is when we have some information about future prices
of the stocks. Suppose that the onlyinformation we have
is that stock i will fluctuate between [(1 � �i), (1 + ıi)]
(� �i � ıi), 1 � i � n. It is easy to see that we may
normalize the value versus the risk-free rate of interest
and make it as the first option so that ��1 = ı1 = 0. E.g.,
we may divide outcomes of other securities by (1 + r),
the riskless interest rate.

Given a portfolio choice decision, xi, 1 � i � n,P
i = 1xi = 1. That is, one unit of investment is dis-

tributed to n options with a fraction of xi on option
i: 1 � i � n. Let (1 + ci) be the unknown future price
of option i by the projected time of sales (��i � ci �
ıi). In retrospect, the optimal solution wouldhave been
maxnjD1(1 + cj) by investing all one unit on the option
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achieving the optimum. For a fixed strategy of assigning
xi: 1� i� n, its ratio versus the optimum will be

Pn
iD1(1C ci)xi

max f1C ci : 1 � i � ng
:

Taking all situations into consideration, the competi-
tive ratio of this strategy is

min

( Pn
iD1(1C ci )xi

max
˚
1C c j : 1 � j � n

� : � �i � ci � ıi

)
;

where the minimum is taken over all the ranges of ci:
��i � ci � ıi, 1 � i � n. Suppose now that maxnjD1(1+
cj) is achieved at some i: 1� i� n. Then, the above ratio
is at least xi since xj � 0 and 1 + cj � 0, for all j: 1 � j
� n. If ci < ı i, the adversary can choose a new value
c0i = ıi. In this case, the denominator maxnjD1 (1 + cj)
increases by ıi � ci > 0. The numerator

Pn
iD1 (1 + ci)

xi increases by (ıi� ci) xi. Thereforeit is to the benefit
of the adversary to choose ci = ıi. Similarly, it is to the
benefit of the adversary to set cj =��i, for all j 6D i. That
is, the minimum ratio is achieved at

(1C ıi)xi C
P

j¤i (1 � � j)x j

1C ıi

for some i, 1 � i � n. Therefore, the adversary will
choose some i such that

min

(
(1C ıi)xi C

P
j¤i (1 � � j)x j

1C ıi
: 1 � i � n

)
:

Given a portfolio decision vector x, we can search
through all n possible situations to find theminimum in
polynomial time. This allows us to evaluate the quality
of portfolio choices in terms of their competitive ratios.

As a portfolio manager aiming at a solution with the
best competitive ratio, its goal is to choose the decision
vector x which maximizes

min

(
(1C ıi)xi C

P
j¤i (1 � � j)x j

1C ıi
: 1 � i � n

)
:

In a linear program formulation, this is
8̂
ˆ̂̂<
ˆ̂̂̂
:

max z

s.t. (1Cıi )xiC
P

j¤i(1�� j)x j

1Cıi
� z;

1 � i � n;
xi � 0;

Pn
iD1 xi D 1:

Therefore, the optimal competitive ratio for the above
portfolio management problem can be solved in poly-
nomial time.

In the general case, information about futuremay be
different for different investigators. Compare two situ-
ations where two investors each has two options, one
government bond of riskless interest rate 1 + r and a se-
curity. One investor knows that the future price of the
security will be in [1 + �, 1 + ı] with � < ı and another
knows nothing about future prices of the security. The
most interesting case will be 2� < r < ı. Apply the above
analysis, the more informed investor will decide a pro-
portion x of his fortune on riskless bond with

x(1C r)C (1 � x)(1C �)
1C r

D
x(1C r)C (1 � x)(1C ı)

1C ı
:

Therefore, it invests

x D
(1C ı)(r � �)

(1C ı)(r � �)C (1C r)(ı � r)

on the riskless bond and

1 � x D
(1C r)(ı � r)

(1C ı)(r � �)C (1C r)(ı � r)

on the other security. Its competitive ratio will be

(1C ı)(r � �)C (1C �)(ı � r)
(1C ı)(r � �)C (1C r)(ı � r)

:

Applying the analysis above, we see that the person
knowing nothing will invest 1/2 for the riskless bond
and 1/2 for the other security. However, the worst sit-
uations considered by the less informed investor would
not occur at all. Therefore, its competitive ratio will be
the minimum of

(1C r)C (1C �)
2(1C r)

and

(1C r)C (1C ı)
2(1C ı)

:

From the above discussion, the decision of the investor
knowing nothing has a worse competitive ratio than
that of the more informed one.



404 C Competitive Ratio for Portfolio Management

In comparison with the general approach of us-
ing probability distribution for events of uncertainty,
the above situation shows that the competitive analysis
method allows analysis for information asymmetry of
investors. It is not easy to apply the probability method
here since, in principle, the real world should not have
two different probability distributions. This advantage
is not only for the above case when the range of future
prices is known. It can also be applied to other types of
information about future.

Other decision rules based on rationality other than
probability argument have also been suggested for fi-
nancial problems. In particular, T.M. Cover has sug-
gested a solution, the universal portfolio, which re-
quires no information (not even probability distribu-
tion) about the future prices of the stocks under con-
sideration [1]. In contrast to competitive analysis which
evaluates a strategy with all other strategies, Cover has
evaluated his solution in comparison with a class of
strategies called constant rebalanced portfolio, which
maintains a fixed proportion of one’s fortune in each
of the securities. Notice that, this would require fre-
quent adjustment the holdings of the securities as their
prices change. Surprisingly, Cover has shown his solu-
tion to approximate, under mild conditions, the best
constant rebalanced portfolio (chosen after the stock
outcomes are known) which out-perform any constant
rebalanced portfolio, any single stock and index fund
such as Down Jones Index Average (DJIA) [1]. How-
ever, Cover’s algorithm requires higher-dimensional
integration to calculate his solution and the dimen-
sion grows with the number of securities under con-
sideration. This may make it computationally difficult
to apply this method. In comparison, the competitive
analysis would suggest a solution which is a constant
rebalanced portfolio with the same weight for all the
securities.

Dembo and King have discussed a tracking model
for asset allocation which minimizes an investor’s re-
gret (defined as the difference of the solution of a strat-
egy under incomplete information and the optimal so-
lution) distribution in the L2 metric [2]. In general, one
may express the regret of a decision maker with strat-
egy S as a function of f (vS(X), OPT (X)), where X is the
revealed future event, vS(X) is the value achieved un-
der strategy S operating under ignorant of the future
event X, and OPT(X) is the optimal value achievable

knowing the complete information. One such function
often used is the L1 metric distance of these two values
in the feasible space [10]. However, since the authors
use the absolute difference for the basis of evaluation
of strategies, probability assumption is still necessary in
this model. The competitive analysis and the solution of
Cover [1] base the evaluation on the ratio of the perfor-
mance of a strategy with unknown information and the
performance of the best solution in the class of strate-
gies under consideration.

R.M. Hogarth and H. Kunreuther have discussed
situations when financial decisions are made under ig-
norance. They have designed experiments to study it by
evaluating human empirical judgements. However, de-
cision making processes ofeconomic agents are ignored
in this study [6].

Some information is still available in reality, though
not necessarily in the form of a well shaped probability
distribution. The competitive analysis provides an ap-
proach which does not rely on probability distribution,
allows for analysis under asymmetrical information of
agents in the market, and in principle, has no difficulty
to include available information in the analysis. The re-
maining difficulties in applying it successful to portfolio
management aremainly modeling of available informa-
tion and efficient algorithms for computational purpose.

See also

� Financial Applications of Multicriteria Analysis
� Financial Optimization
� Portfolio Selection and Multicriteria Analysis
� Robust Optimization
� Semi-Infinite Programming and Applications in

Finance
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Introduction

Basic to the process of human understanding and learn-
ing, the problem of recognition, which includes classifi-
cation and machine learning and the more general ap-
proach of pattern recognition, consists of a set of algo-
rithms or procedures to determine in which of a num-
ber of alternative classes an object belongs.

While recognition is a human process whose func-
tioning is largely unknown [11], pattern recognition
and classification and machine learning are algorithms
or heuristic procedures with a precise functional char-

acterization to determine as precisely as possible the
class membership of an object.

The two approaches, pattern recognition on the one
hand and classification and machine learning on the
other, emphasize two different aspects of the learning
methodology, similar to a distinction often made in nu-
merical analysis between extrapolation and interpola-
tion [13].

In pattern recognition, given a feature of a popu-
lation, it is desired that all objects that belong to that
population be recognized with an acceptable small er-
ror, since the paramount aspect of this activity is to rec-
ognize the object so as to be able to proceed accord-
ingly. It is not of interest to diagnose a varying percent-
age of sick individuals, but rather it is essential to rec-
ognize correctly the pathology. Thus in pattern recog-
nition, given an object, it is desired to determine if the
object belongs to the population specified and, if so, to
determine precisely to which class it belongs [5].

In classification and machine learning, a population
is considered given and some objects belong to known
classes, while other objects belong to as yet unknown
classes, so it is desired to determine the class member-
ship of objects that are known to belong to that popu-
lation. Depending on the definition of the populations
considered and the algorithms used, the classification
rate may differ from one application to another. Classi-
fication and machine learning procedures are often de-
fined in terms of heuristics, such as support vector ma-
chines with kernel methods. The kernel to be applied to
a given problem cannot be determined except by trial
and error, so that the existence of a suitable kernel is
not guaranteed. Thus results may differ markedly from
application to application [5].

Here we shall be concerned with pattern recogni-
tion problems that must consider:
� The collection of objects to examine and the training

set available for learning the classes.
� The attributes that can be defined precisely on the

objects in the training set and on the objects to be
recognized (which may be as yet unknown).

� The precision with which the recognition is re-
quired, as well as the possible structures defined on
the data sets.

The pattern recognition algorithm used to perform
this will be formulated as a complementarity problem
rather than an optimization algorithm as it may be con-
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sidered more general, and the known differences that
may exist in the attributes of the classes allows addi-
tional constraints to be defined, which permit more
precise results to be obtained.

Definitions

Consider a set of objects, characterized by a set of com-
mon attributes, which have been assigned to suitable
classes, so that their class labels are known. This is called
a training set [5].

Definition 1 A subset of a data set is termed a training
set if every entity in the training set has been assigned
a class label.

Definition 2 Suppose there is a set of entities E and
a set P D fP1; P2; : : : ; Png of subsets of the set of enti-
ties, i. e. Pj � E; j 2 J D f1; 2; : : : ; ng. A subset Ĵ � J
forms a cover of E if

S
j2 Ĵ Pj D E. If, in addition, for

every k; j 2 Ĵ; j ¤ k; Pj \ Pk D ;, it is a partition.

Definition 3 The data set is coherent if there exists
a partition that satisfies the following properties:
1. The relations defined on the training set and in par-

ticular the membership classes, defined over the data
set, consist of disjoint unions of the subsets of the
partition.

2. Stability: the partition is invariant to additions to the
data set. This invariance should apply both to the
addition of duplicate entities and to the addition of
new entities obtained in the same way as the objects
under consideration.

3. Extendability: if the dimension of the set of at-
tributes is augmented, so that the basis will be com-
posed of pC 1 attributes, then the partition ob-
tained by considering the smaller set will remain
valid, even for the extension, as long as this exten-
sion does not alter the relations defined on the data
set.

Definition 4 A data set is linearly separable if there
exist linear functions such that the entities belonging to
one class can be separated from the entities belonging
to the other classes. It is pairwise linearly separable if
every pair of classes is linearly separable. A set is piece-
wise separable if every element of each class is separable
from all the other elements of all the other classes.

Clearly if a set is linearly separable, it is pairwise linearly
separable and piecewise separable, but the converse is
not true. The following results are straightforward:

Theorem 1 If a data set is coherent, then it is piecewise
separable.

A given class is formed from distinct subsets of the par-
tition, so no pattern can belong to two classes. There-
fore each pattern of a given class will be separable from
every pattern in the other subsets of the partition. Con-
sequently the data set is piecewise separable.

Theorem 2 Given a data set that does not contain two
identical patterns assigned to different classes, a correct
classifier can be formulated that realizes the given parti-
tion on this training set.

Corollary 1 Given that the training set does not con-
tain two or more identical patterns assigned to differ-
ent classes, the given partition yields a completely correct
classification of the patterns.

The avoidance of the juxtaposition property, i. e. two
identical patterns belong to different classes, entails that
the Bayes error is zero [2].

In general this does not mean that in any given
neighborhood of a pattern there cannot be other pat-
terns of other classes, but only that they cannot lie on
the same point. Thus the probability distribution of the
patterns with respect to the classes may overlap, if such
distributions exist, although they will exhibit discon-
tinuities in the overlap region, so that juxtaposition is
avoided.

Formulation

The classification algorithm to be formulated may be
specified as a combinatorial problem in binary vari-
ables [6].

Suppose that a training set is available with n pat-
terns, represented by appropriate feature vectors in-
dicated by xi 2 Rp;8i D 1; 2; : : : ; n and grouped in
c classes. An upper bound is selected to the number
of barycentres that may result from the classification,
which can be taken “ad abundantiam” as m, or on the
basis of a preliminary run of some classification algo-
rithm.



Complementarity Algorithms in Pattern Recognition C 407

The initial barycenter matrix will be an p � mc ma-
trix which is set to zero. The barycentres when cal-
culated will be written in the matrix by class. Thus
a barycenter of class k will occupy a column of the ma-
trix between (m(k � 1)C 1) andmk.

Since we are considering a training set, the feature
vectors can be ordered by increasing class label. Thus
the first n1 columns of the training set matrix consists
of patterns of class 1, from n1 C 1 to n2 of class 2 and in
general from nk�1 C 1 to nk of class k.

Thus consider the following inequality constrained
optimization problem, from which we shall derive the
non-linear complementarity specification. Let the fol-
lowing hold:
� xi 2 Rp : the p-dimensional pattern vector of pat-

tern i;
� c classes are considered, k D 0; 1; : : : ; (c � 1). Let

the number of patterns in class ck be indicated by nk;
then the n patterns can be subdivided by class so that
n D

Pc�1
kD0 nk ;

� z j 2 f0; 1g, integer: f j D 1; 2; : : : mcg if z j D 1 then
the barycenter vector j 2 fmkC 1g; : : : ;m(kC 1)g
belonging to recognition class ck 2 f0; : : : ; c � 1g,

� yi j 2 f0; 1g, integer: pattern i has been assigned to
the barycenter j (yi j D 1);

� t j 2 Rp : the sum of the elements of the vectors
of the patterns assigned to the barycenter j D
f1; 2; : : : ;mcg;

� M is a large scalar.

Min Z D
mcX
jD1

z j (1)

s.t.
m(kC1)X
jDkmC1

yi j � 1 � 0 8k D 0; 1; : : : ; (c � 1);

8i D nk�1 C 1; : : : ; nk (2)

�

nX
iD1

mcX
jD1

yi j C n � 0 (3)

Mzj �
nX

iD1

yi j � 0 8 j D 1; 2; : : : ;mc (4)

t j �
nX

iD1

xi yi j � 0 8 j D 0; 1; : : : ;mc (5)

�

mcX
jD1

 
t j �

nX
iD1

xi yi j

!
� 0 (6)

 
xi �

thPm(lC1)
sDlmC1 ysh

!T  
xi �

thPm(lC1)
sDlmC1 ysh

!

�

m(kC1)X
jDkmC1

 
xi �

t jPm(kC1)
rDkmC1 yr j

!T  
xi �

t jPm(kC1)
rDkmC1 yr j

!

� yi j � 0

8i D 1; 2; : : : ; n; h D 1; 2; : : : ;mc;

k; l D 0; 1; : : : ; c � 1; (7)

z j; yi j 2 f0; 1g integer : (8)

The solution of this optimization problem assigns
each pattern to a mean vector, called a barycen-
ter (z j; j D 1; 2; : : : ;mc), whose values are given by
the vectors t j 2 Rp; j D f1; 2; : : : ;mcg divided by the
number of patterns assigned to that barycenter. The
least number of barycentres, indicated by the objective
function Eq. (1), which will satisfy the stated constraints
is determined.

The n constraints Eqs. (2) and (3) state that each
feature vector from a pattern in a given class must be
assigned to some barycenter vector of that class. As pat-
terns and barycentres have been ordered by class, the
summation should be run over the appropriate index
sets.

The mc constraints Eq. (4) impose that no pattern
be assigned to a non-existing barycenter.

Instead, constraints Eqs. (5) and (6) determine the
vector of the total sum element by element assigned to
a barycenter. Notice that xi is a vector, so the number of
inequalities will be 2mc times the number of elements
in the feature vector.

The last set of inequalities Eq. (7) indicates that each
feature vector must be nearer to the assigned barycenter
of its own class than to any other barycenter. Should the
barycenter be null, this is immediately verified, while if
it is non-zero, this must be imposed.

Finally, Eq. (8) indicates that the vectors z 2 Rmc

and y 2 Rnmc are binary.
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The solution will determine that each pattern of the
training set is nearer to a barycenter of its own class
than to a barycenter of another class. Each barycenter
has the class label of the patterns assigned to it, which
will belong by construction to a single class. This de-
fines a partition of the pattern space.

A new pattern can be assigned to a class by deter-
mining its distance from each barycenter formed by the
algorithm and then assigning the pattern to the class of
the barycenter to which it is nearest.

In general, other constraints which characterize re-
lationships between objects of different classes can be
easily introduced in this specification, as well as dynam-
ical relationships regarding the attributes of the objects.

The problem can also be formulated as a non-linear
complementarity problem in binary variables, which
will be solved through iterating on a set of linear com-
plementarity problems in binary variables, by using
a linear programming technique with parametric vari-
ation in one scalar variable [7] which has given good
results [3].

For simplicity in the representation and analysis,
write the constraints (7) as:

g(y; x; t)

D

 
xi �

thPm(lC1)
sDlmC1 ysh

!T 
xi �

thPm(lC1)
sDlmC1 ysh

!

�

m(kC1)X
jDkmC1

 
xi �

t jPm(kC1)
rDkmC1 yr j

!T 
xi �

t jPm(kC1)
rDkmC1 yr j

!

� yi j (9)

The following additional notation should be
adopted to write the optimization problem (1)–(8) as
a non-linear complementarity problem:
� e is an appropriate dimensional vector of ones.
� E 2 Rn�nmc is a matrix composed of mc identity

matrices of dimension n � n.
� H 2 Rmc�n matrix of ones.
� � is a scalar to be assigned by dichotomous search

during the iterations.
The data matrix of patterns indicated as X of dimension
(p � m � c) � (n � m � c) is written in diagonal block
formwith blocks of dimension p � n elements contain-
ing the original data matrix.

This block is repeated mc times with the first ele-
ment of the block placed at the position

�
( j � 1)pC 1;

( j � 1)n
�
; j D 1; 2; : : : ;mc.

In fact the size of matrices E,H and X can be greatly
reduced in applications since the patterns in the train-
ing set are ordered conformably with the barycenter
vector t D ft jg 2 Rpmc and each class is of known car-
dinality.

The non-linear complementarity problem can
therefore be written as:

0
BBBBBBBBBBBBBBB@
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�y
0
Ey
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Binary values to the z, y variables are imposed by the
constraints Eq. (10) and the complementarity condition
Eq. (12).

Finally, by recursing on the parameter � fewer and
fewer barycentres will be created, as long as the problem
remains feasible and thus ensuring a minimal solution.

Methods and Applications

The aim of this section is to describe the method to
solve the non-linear complementarity problem speci-
fied in the previous section. The convergence of the
non-linear complementarity problem Eqs. (10)–(12)
has been given elsewhere [1].

In a small enough neighborhood, the approxima-
tion of the non-linear complementarity problem by
a linear complementarity problem will be sufficiently
accurate so that, instead of solving the original system,
a linear complementarity system approximation can be
solved, which may be thus represented:

0
BBBBBBBBBBBBBBBBBBB@
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The problem (10)–(12) is then solved by expand-
ing the vectorial function g(y,x,t) in a Taylor series
around the iteration point and solving the resulting
linear complementarity problem approximation (13)–
(15) of the given non-linear complementarity problem
within a suitable trust region. It is easy to show:

Theorem 3 The following are equivalent:
1. The non-linear optimization problem defined by (1)–

(8) has a solution;
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2. The non-linear complementarity problem defined
by (10)–(12) has a solution;

3. The linear complementarity problem defined by (13)–
(15) has a solution.

Thus the computational specification of this algorithm
is:

Algorithm 1 (CASTOR)
Begin;
� Given: a training set A 2 Rp�n with n patterns each

with p elements belonging to c classes;
� Construct: the matrices E 2 Rn�nmc ;H 2 Rmc�n ;

X 2 R(pmc)�(mnc);D 2 Rpmc�pmc ;
� Set y0; d0; �0;
For k D 1; 2; : : :;
� while zkC1; ykC1; tkC1 is a solution to LCP

Eqs. (13)–(15)Do;
� Begin: recursion on g(x,y,t)

– while (zkC1; ykC1; tkC1) 6D (zk; yk ; tk)Do;
– (zk ; yk ; tk) (zkC1; ykC1; tkC1)
– Determine r gy(xk ; yk ; tk; )

*Begin: dichotomous search on �k;
(zkC1; ykC1; tkC1) LCP(zk ; yk ; tk)
*end;

� end;
the solution is (zk; yk ; tk)

end;

The termination of the classification algorithm may
now be proved under a consistency condition.

Theorem 4 Given a set which does not contain two
identical patterns assigned to different classes, a correct
classifier will be determined by Algorithm 1.

Models

Suppose a training set is available, defined over a suit-
able representation space, which is piecewise separable
and coherent, what properties should such a training set
have to determine a precise classification with regard to
a set of data of as yet unknown classes?

The algorithm CASTOR (Complementarity Algo-
rithm System for TOtal Recognition) described in the
Sects. “Formulation” and “Methods” will determine
a classification rule to apply, on the data set, just that
partition which has been found for the training set, so
that to each entity in the data set a class is assigned. If
the training set forms a random sample and the data

set which includes the training set is coherent, then this
classification can be performed to any desired degree
of accuracy by extending the size of the training sam-
ple. Sufficient conditions to ensure that these properties
hold are given by selecting the data set and the verifica-
tion set by non-repetitive random sampling.

Theorem 5 Suppose that the data set is coherent; then
the data set can be classified correctly.

To avoid having to introduce distributional properties
on the data set considered, the empirical risk minimiza-
tion inductive principle may be applied [12]:

Definition 5 A data set is stable, according to defini-
tion 3, with respect to a partition and a population of
entities if the relative frequency of misclassification is
Remp (˛�) � 0 and

lim
n!1

prfRemp(˛�) > �g D 0; (16)

where ˛* is the classification procedure applied, � > 0
for given arbitrary small value and pr{.} is the probabil-
ity of the event included in the braces.

In some diagnostic studies the set of attributes consid-
ered have no significant relationship with the outcome
or the classification of the entity. Typically the classes
could be eye color and the attributes the weight, height
and sex of a person. Such a classification would be spu-
rious since there is no relation between eye color and
body indices.

A spurious collection of entities, in which there is
no similarity relations, may occur and should be recog-
nized. With this algorithm, this occurrence is easily de-
termined, as very many barycentres are formed, almost
one per object. Such spuriousness may arise even in the
presence of some meaningful relationships in the data,
which are, however, swamped by noise, and so data re-
duction techniques may be useful [5].

In general, by considering smaller and smaller sub-
sets of the attribute space X, if there exists a relation-
ship between the attributes and the classes of the en-
tities, for certain of these subsets the frequency of the
entities of a given class will increase to the upper limit
of one, while in other subsets it will decrease to a lower
limit of zero. Thus for a very fine subdivision of the at-
tribute space, each subset will tend to include entities
only of a given class.
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Definition 6 A proper subset Sk of the attribute space
X of the data set will give rise to a spurious classification
if the conditional probability of a pattern belonging to
a given class c is equal to its unconditional probability
over the attribute space. The data set is spurious if this
holds for all subsets of the attribute space X.

prfyi D c j (yi ; xi)\ Skg D prfyi D c j (yi ; xi )\Xg

(17)

The following results can now be presented, which are
proved elsewhere [1].

Theorem 6 Consider a training set of n patterns ran-
domly selected, assigned to two classes, where the uncon-
ditional probability of belonging to class one is p. Let a be
a suitable large number and let (n > a). Let the train-
ing set form bn barycentres. Then, under CASTOR, this
training set will provide a spurious classification if

bn
n
� (1 � p) n > a: (18)

Theorem 7 Let the probability of a pattern belonging to
class one be p. Then the number of barycentres required
to partition correctly a subset S, containing ns > a pat-
terns, which is not spurious, formed from the CASTOR
algorithm, is bs < ns, 8ns > a.

Corollary 2 ([12]) The Vapnik–Cervonenkis dimen-
sion (VC dimension), s(C,n), for the class of sets defined
by the CASTOR algorithm, restricted to the classifica-
tion of a non-spurious data set which is piecewise sepa-
rable, with ns elements and two classes, is less than 2ns , if
ns > a.

Theorem 8 ([2]) Let C be a class of decision func-
tions and  n

* a classifier restricted to the classification
of a data set which is not spurious and returns a value
of empirical error equal to zero based on the training
sample (z1; z2; : : : ; zn). Thus In f 2CL( ) D 0, i. e. the
Bayes decision is contained in C. Then

pr
˚
L( �n ) > �

�
� 2s(C; 2n)2

�n�
2 : (19)

By calculating bounds on the VC dimension, the uni-
versal consistency property can be established for this
algorithm applied to the classification of a data set
which is not spurious.

Corollary 3 ([5]) A non-spurious classification prob-
lem with a piecewise separable training set is strongly
universally consistent.

Cases

To use the CASTOR algorithm in applications, it is
necessary to determine, first, whether the data set is
spurious or not, for the given problem with the spe-
cific pattern vectors adopted. The way the pattern vec-
tors are defined based on the data available may affect
strongly the results obtainable.

Further, the coherence of the data set must be tested
to ensure that the patterns extracted are sufficiently rich
to ensure the proper classification, stability and extend-
ability of the data set (Definition 5). Then the algorithm
can be applied, but the results will only hold if the data
set, training set and verification set are random sam-
ples, taken from a known or unknown population, as
otherwise the sample may not be representative of the
population.

Note that with this method, if the data come from
a set of unknown populations, a suitable partition of
the data set will form accordingly, even though the op-
erator may not know to which population an individ-
ual barycenter belongs. If the number of objects com-
ing from different populations is so high with respect
to the training set, then the problemmay be recognized
as spurious, only to signify that too many barycentres
are formed with respect to the available training ob-
jects [8,9].

Consider a set of proteins randomly sampled from
a population of proteins, and the set of proteins whose
structure should be determined also belongs to that
population, but are of unknown structure. Probability
limits can be imposed on the likelihood of the struc-
ture identified being the correct one. Therefore, accu-
rate limits on the precision of the recognition of the the
new protein’s structure can be specified.

Results could be obtained also by selecting “pur-
posefully” representative proteins and subjecting these
to a suitable algorithm. The results could be better
on particular sets than the asymptotic mean precision
measures, but generally, and, almost surely, on using
new data, the results will turn out to have a greater
variance and a lower mean precision, as is well known
from sampling theory [4]. Thus tominimize the asymp-
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Complementarity Algorithms in Pattern Recognition, Table 1
Q3 Classification results on the Rost 126 verification set by similarity classes (15 proteins selected)

Sim. class CASTOR PHD DSC PRED MUL NNSSP Zpred CONS

0 0.82 0.74 0.73 0.72 0.68 0.78. 0.66. 0.80
1 0.96 0.75 0.77 0.64 0.64 0.70 0.76 0.76
3 1.00 0.84 0.87 0.83 0.69 0.83 0.69 0.84
5 1.00 0.81 0.83 0.75 0.76 0.68 0.73 0.77
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 0.98 0.67 0.69 0.61 0.59 0.66 0.55 0.68

Complementarity Algorithms in Pattern Recognition, Table 2
Q3 estimate of the classification precision of CASTOR and other classification procedures on 56 randomly selected proteins
of the Cuff 513 data set

Sim. class CASTOR PHD DSC PRED MUL NNSSP Zpred CONS
0 0.73 0.73 0.71 0.72 0.66 0.71 0.63 0.75
1 0.95 0.79 0.76 0.69 0.68 0.74 0.75 0.78
2 0.87 0.84 0.81 0.89 0.62 0.95 0.65 0.90
3 0.94 0.77 0.79 0.78 0.72 0.82 0.67 0.80
5 1.00 0.81 0.83 0.75 0.76 0.68 0.73 0.77
6 0.95 0.85 0.81 0.80 0.79 0.79 0.78 0.82
7 0.85 0.71 0.70 0.67 0.61 0.69 0.57 0.72

Mean 0.84 0.73 0.72 0.70 0.64 0.71 0.61 0.74

totic misclassification error a sample, as large as possi-
ble, drawn randomly from the given population should
be used, which will then ensure that under mild condi-
tions the properties derived above are satisfied.

Also a distinction is often introduced regarding the
similarity between classes of subsets of proteins [10].
In this case, it may be considered relevant that a cover
be defined on the population of proteins, so as to form
eight or more subpopulations. The samples can still be
drawn randomly from the relevant subpopulation and
the classifier determined for each subpopulation. To de-
termine the structure of a new protein, first the simi-
larity in the residue chain must be determined with re-
spect to each subpopulation and then the classifier of
the subpopulation with the highest similarity coefficient
is applied. Here, the proper sampling method should
consist of a stratified non-repetitive random sampling
design, but this would be warranted only if there are
significant differences in the results for the subpopula-
tions.

The limitations of not using stratified random data
sets and using ad hoc heuristics, instead of demon-

strably convergent algorithms, is well brought out in
the following tables [1], where classification results are
compared between the CASTOR algorithm and seven
popular alternative procedures, for two well-known
data sets the Rost 126 and the Cuff 513 data sets.

Table 1 presents the Q3 classification results on
the Rost 126 verification set for the various similar-
ity classes which have appeared in the sample of 15
proteins and in the random verification set. The pre-
cision of the classification results found by applying
the CASTOR algorithm dominate all other procedures,
and usually by over 15%.

In Table 2 the Q3 estimates are given for the clas-
sification precision of CASTOR and the other classi-
fication procedures on 56 randomly selected proteins
of the Cuff 513 data set. It is seen that the precision
obtained by CASTOR dominates all the other entries
except four. Two of these entries occur for the CONS
algorithm for similarity classes 0 and 2, while the two
other entries which dominate the results by the CAS-
TOR algorithm occur for similarity class 2, for the pro-
cedures PRED and NNSSP.
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Conclusions

The experiments described above shed some light on
two important aspects, which are very closely related:
the sampling procedure to adopt and the classification
procedure to apply. Moreover, these results show the
essential non-linearity and complexity of the pattern
recognition problem.

Random sampling is necessary for precise and sta-
ble estimates, with the required accuracy, obtainable in
predictions, since invariably the choice of special sets
in verification or in training will alter the expected pre-
diction accuracy, as a non-random sample will contain
a different distribution of classes from the one regard-
ing the population. As the prediction precision varies
with the class distribution, this will have a significant
effect on recognition.

Heuristics compared to algorithms will bias the re-
sults in the same way: they will be accurate in some
cases, unstable in others. Moreover, when the classifica-
tion results are poor, with a heuristic the source of the
problem cannot usually be determined. With an algo-
rithm, such as the one indicated, the root of the prob-
lem will invariably be tied to one of the mild assump-
tions not being satisfied.

This can be checked and remedied.

See also

� Generalizations of Interior Point Methods for the
Linear Complementarity Problem

� Generalized Eigenvalue Proximal Support Vector
Machine Problem
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i) the time and space complexities of both determin-
istic and nondeterministic multitape Turing ma-
chines as formalized in [1];

ii) the complexity classes above including the known
results on their intercontainments; and

iii) the concepts of polynomial reducibility, F-hardness,
and F-completeness, for the complexity classes F
above.
We present brief historical surveys of the results ob-

tained in ii) and iii). We also briefly survey many of the
results on the above complexity classes in the basic ref-
erences [1,12,16,25,29,30,37], emphasizing results espe-
cially relevant to the area of optimization.

The following are a list of some of the basic notation
and terminology used here.

Definition 1 A finite alphabet ˙ is a finite nonempty
set of characters. A set of strings over some finite alpha-
bet is said to be a language.

Further, we denote ‘infinitely often’ by ‘i. o.’.

Definition 2 By an exponential function in n we mean
a function f (n) = 2c�nr where c, r > 0 are constants inde-
pendent of n.

The languages or problems 3-SATISFIABILITY (3-
SAT), 3-DIMENSIONAL MATCHING, VERTEX
COVER, CLIQUE, HAMILTON CIRCUIT, and PAR-
TITION are defined as in [12]. Thus, for example, the
language 3-SAT is defined to be the set of all satisfi-
able CNF formulas with no more than 3 literals per
clause, when suitably encoded as a language over some
finite alphabet. We note that this language, its quan-
tified variants, and its succinctly-specified variants are
the languages in the literature most widely used to
prove NP-, PSPACE-, DEXPTIME-, and NDEXPTIME-
hardness results (Definition 8 and [12,21,22,29,30]).

Finally, we denote the linear programming, {0, 1}-
integer linear programming, integer linear program-
ming, and quadratic programming problems as defined
in [12,25,30,37] by LP, {0, 1}-ILP, ILP, and QP, respec-
tively.

Time and Space Complexity of TuringMachines

In the literature of computational complexity, the most
common models of computational devices and the
problems solvable by such devices are Turing machines
(TMs) and language recognition problems, respectively

[1,9,12,15,17,29]. Here, we only consider multitape de-
terministic and nondeterministic Turing machines (de-
noted DTMs and NDTMs, respectively) and their as-
sociated language recognition problems as described in
[1]. Informally, such a Turing machine M consists of
the following:
1) a finite state control together with a finite nonempty

set Q of possible states of the control;
2) finite nonempty tape and input alphabets T and I,

respectively, and distinct symbols b and `, denoting
‘blank’ and ‘leftmost cell of tape’, such that I � T
and b, ` 2 T � I;

3) a finite number k � 1 of tapes, each of which is infi-
nite to the right only and is divided into individual
tape cells such that each cell can contain exactly one
symbol in T at any one time;

4) k tape heads, one for each tape, each head capable of
scanning a single cell at any one time;

5) a start state qo 2 Q and a set of accepting states F �
Q; and

6) a finite set � ofmoves, each of the form

(q; s1; : : : ; sk ; r; (t1; d1); : : : ; (tk; dk ))

2 Q � Tk � Q � (T � fL; R; Sg)k :

M is said to be deterministic if, for each k + 1 tuple (q, s1,
. . . , sk) 2 Q × Tk, there is at most one move in � whose
initial k + 1 components are q, s1, . . . , sk, respectively.
Otherwise, M is said to be nondeterministic. A state q 2
Q is said to be final if there is no move in � whose first
component equals q. We assume that the following two
restrictions hold on F and �:
7) Each accepting state is final.
8) There are no moves

(q; s1; : : : ; sk ; r; (t1; d1); : : : ; (tk; dk ))

in � such that letting 1 � i � k, si = ` and ti 6D `, si
6D ` and ti = `, or si = ` and di = L.

Let w 2 I�. A a partial computation of M on w is a finite
sequence �w = (m1, . . . , ml) with l � 0 of moves of M
such that the following hold:
1) Initially, M is in its start state qo; the first tape of M

holds the string ` w, one symbol per cell starting at
its leftmost cell; the contents of the leftmost cells of
each of the other tapes of M equal ` the contents
of all other cells of M equal b; and each of the tape
heads ofM scans the leftmost cell of its correspond-
ing tape.
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2) When initialized as in 1), M executes the move-
rulesm1, . . . ,ml consecutively and in that order. The
length of the partial computation �w = (m1, . . . , ml)
ofM on w equals l. A partial computation �w = (m1,
. . . , ml) of M on w is said to be an accepting com-
putation (respectively, a nonaccepting computation)
of M on w if, after executing the sequence of moves
�w, M is in an accepting state (respectively, M is in
afinal state that is not an accepting state).

The restrictions 7) and 8) on the sets F and � ensure
that no accepting or nonaccepting computation of M
on w is an initial subsequence of any other partial com-
putation of M on w and at no point during a partial
computation of M on w does one of the tape heads of
M attempt to move off the left end of its corresponding
tape.

The language accepted by a Turing machine M, de-
noted by L(M), is the set of all strings w 2 I� such that
there exists an accepting computation on M on w. The
language recognition problem of M is the problem of
verifying, given w 2 I� \ L(M), that w is, in fact an el-
ement of L(M). The time and space complexities of M
are defined in terms of partial computations of M on
strings w 2 I� as follows:

Definition 3 Let M be a deterministic Turing ma-
chine. The time complexity of M, denoted by TM(�), is
the function fromN toN[ {1 } defined, for all n 2N,
by
� TM (n) = max{l 2N : l is the length of a partial com-

putation ofM on w, where w 2 In}, if this maximum
exists;

� TM(n) =1 otherwise.
The space complexity ofM, denoted by SM(�) is the func-
tion from N to N [ {1 } defined, for all n 2 N, by
� SM(n) = max { s 2 N : s is the maximum number of

tape cells scanned on any of the tapes of M during
a partial computation of M on w }, where w 2 In, if
this maximum exists;

� SM(n) =1 otherwise.
LetM be a nondeterministic Turing machine. The time
complexity ofM, denoted by TM(�), is the function from
N to N defined, for all n 2 N, by
� TM(n) = 0 if no string w 2 In is in L(M);
� TM(n) = max { l 2 N : l is the minimum length of

an accepting computationM on w }, where w 2 In \
L(M);

� TM(n) =1 otherwise.
The space complexity of M, denoted by SM(�) is the

function fromN to N defined, for all n 2 N, by
� SM(n) = 0 if no string w 2 In is in L(M);
� SM(n) = max {m 2N |m equals the minimum of the

maximum numbers of tape cells scanned on any of
the tapes of M during an accepting computation of
M on w, where w 2 In \ L(M)};

� SM(n) =1 otherwise.

There is a fundamental difference between the defini-
tions of time and space complexity, for DTMs and for
NDTMs, respectively. For a DTMM, the functions TM

and SM are defined in terms of the numbers of moves
executed and tape cells scanned in an arbitrary par-
tial computation of M on strings w 2 I�. In contrast,
for an NDTM M, these functions are defined only in
terms of the numbers of moves executed and tape cells
scanned in minimum ‘cost accepting computations’ of
M on stringsw 2 I� \ L(M). The following are two easy
implications of this difference:

Proposition 4 If L is accepted by a DTM M with time
and space complexities TM and SM, then L is also ac-
cepted by an NDTM M0 with time and space complex-
ities TM0 and SM0 such that, for all n 2 N,

TM0 (n) � TM(n) and SM0(n) � SM0(n):

Proposition 5 If L is accepted by a DTMM with input
alphabet I such that, for all n 2 N, TM (n) 2 N (equiva-
lently, TM(n) 6D1), then the language I� � L is accepted
by a DTMM0 such that, for all n 2 N, TM

0(n) = TM (n).

Consequently, deterministic time complexity classes as
defined in Definition (6) are closed under complemen-
tation. At present (1999), nondeterministic time com-
plexity classes are not known to be closed under com-
plementation.

Definition of the Complexity Classes

InDefinition (6)we use Definition (3) to define the time
and space complexity classes most relevant to optimiza-
tion. Next in Theorem (7), we give several basic prop-
erties of these classes, whose proofs do not require the
concept of polynomial time reducibility defined in Def-
inition (8).
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Definition 6 Let T, S :N!N.
A Turing machine M is said to be polynomi-

ally time-bounded, respectively polynomially space-
bounded, if the function TM(n), respectively SM(n), is
bounded above by a polynomial function in n.M is said
to be exponentially time-bounded, respectively exponen-
tially space-bounded, if the function TM(n), respectively
SM(n), is bounded above by an exponential function in
n.
� DTIME(T(n)), respectively NDTIME(T(n)), is the

class of all languages L for which there exist a DTM,
respectively an NDTM,M and and a c > 0 such that

L D L(M)

and, for all n 2 N,

TM(n) � c � T(n):

� DSPACE (S(n)), respectively NDSPACE (S(n)), is
the class of all languages L for which there exist
a DTM, respectively an NDTM, M and a c > 0 such
that

L D L(M)

and, for all n 2 N,

SM(n) � c � S(n):

� P, NP, PSPACE, DEXPTIME, NDEXPTIME, and
EXSPACE are the classes of all languages L such
that L is the language accepted by a polynomially
time-bounded DTM, a polynomially time-bounded
NDTM, a polynomially space-bounded TM, an ex-
ponentially time-bounded DTM, an exponentially
time-bounded NDTM, and an exponentially space-
bounded TM, respectively.

� CoNP, respectively CoNDEXPTIME, is the class of
all languages L for which there exists an NDTM M
with tape alphabet I such that L = I� � L(M) and
the function TM(n) is polynomially time-bounded,
respectively exponentially time-bounded.

Theorem 7
1) The following containments hold among the com-

plexity classes defined in Definition 6:
a) P � NP \ CoNP.
b) NP, CoNP� PSPACE� DEXPTIME.

c) DEXPTIME � NDEXPTIME \ CoNDEXP-
TIME.

d) NDEXPTIME, CoNDEXPTIME� EXSPACE.
2)

a) P = NP if and only if NDTIME(n)� P;
b) P = PSPACE if and only if 9� > 0 such that

DSPACE(n�)� P;
c) NP = PSPACE if and only if 9� � 0 such that

DSPACE(n�)� NP;
d) for all integers k � 1, NDTIME(nk) �

DSPACE(nk).
3) PSPACE = DEXPTIME if and only if 9� � 0 such

that DTIME(2n�)� PSPACE.
4) If we restrict the classes P and NP to languages over

a single letter alphabet, denoting these restrictions by
Psla and NPsla, respectively, then
a) Psla = NPsla if and only if [k� 1DTIME(2kn) =
[k� 1 NDTIME(2kn);

b) NPsla is closed under complementation if and only
if the class [k� 1 NDTIME(2kn) is closed under
complementation.

Proof The claims in 1), 2), and 3) of the theorem fol-
low directly from Definitions 3 and 6, the discussion af-
ter Definition 3, and simple well-known arguments in-
volving ‘padding’, e. g. see [4,13,17]. As an example, let
L 2 DSPACE(nl), where l � 1 is an integer. Let k� 2 be
an integer. Let L0 = {w � #m : m = k � l, w 2 L}, with #
a symbol not occurring in L. Then L0 2 DSPACE(n1/k);
and L0 2 P (respectively L0 2NP) if and only if L 2 P (re-
spectively L 2 NP). The claims of 4) follow from simple
arguments about ‘tally languages’, see [13].

General Comments

The Turing machine model is due to A.M. Turing [36].
Additional discussions of this model can be found in
[1,9,17].

The time and space complexity of DTMs were first
studied in [15], and [14], respectively.

The time-bounded complexity classes P, NP, CoNP,
etc. are invariant under several otherformal computer
models, including multihead multitape Turing ma-
chines, Turing machines with multidimensional tapes,
and both the RAM and RASP models of [35] and [11]
under the logarithmic cost function. (For a detailed dis-
cussion of this, see [1, Chap. 1].
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It is widely assumed that a computational problem
is ‘practically computationally tractable’ only if it can be
solved by a deterministic polynomially time-bounded
Turing machine [1,12,25,29,30,37]. The resulting im-
portance of the class P was first observed by A. Cobham
[7] and J. Edmonds [10].

By the well-known Savitch theorem [33] that
NDSPACE(log n) � DSPACE([log n]2), the classes
of languages accepted by polynomially space-bounded
DTMs and NDTMs are equal and the classes of
languages accepted by exponentially space-bounded
DTMs and NDTMs are equal. This is the reason for
defining the complexity classes PSPACE and EXSPACE,
rather than the classes DPSPACE, NDPSPACE, DEXS-
PACE, and NDEXSPACE.

Efficient Reducibility and ‘Hard’ Problems

Throughout this section F is a class of languages. Fol-
lowing [1,12,17], we define polynomial reducibility,
F-hardness and F-completeness under such reducibili-
ties. To do this, we must extend the definition of DTMs
given above so that the resulting machines have out-
puts, and thus can be viewed as computing partial func-
tions of their inputs. This is accomplished by augment-
ing each DTM M with an additional ‘output’ tape oM
such that the tape head of oM can only move one cell to
the right or stay stationary during any move of M. In
addition to all usual constraints on M, for all inputs w
ofM:
1) initially, during a partial computation ofM on w, all

cells of oM are blank and the tape head of oM scans
its leftmost cell;

2) the value computed ofM on w is the final nonblank
contents of oM during the accepting computation or
the nonaccepting computation of M on w, if such
a computation exists, and is undefined otherwise.
The time complexity TM of such augmented DTMs

(henceforth, referred to simply as DTMs) is defined ex-
actly as in Definition 3.

Definition 8 Let˙ and� be finite alphabets.
A function f from˙� to�� is said to be polynomial

time computable if and only if there exists a polynomi-
ally time-bounded DTMM with input alphabet˙ such
that, for all w 2˙�, the value computed byM on input
w is f (w).

Let L�˙� andM���. L is said to be polynomially
reducible toM, denoted L� pM, if and only if there is an
f :˙�!�� such that f is polynomial time computable
and, for all w 2˙� : w 2 L if and only if f (w) 2M.

A language L is said to be F-hard if and only if for
all languages L0 2 F, L0 �p L. L is said to be F-complete
if and only if L is both F-hard and is in F.

Henceforth, let F be any of the complexity classes NP,
CoNP, PSPACE, DEXPTIME, NDEXPTIME, CoNDEX-
PTIME, or EXSPACE. The following two propositions
underlie most of the work on F-hard and F-complete
problems in the literature on algorithmic analysis and
computational complexity.

Proposition 9
1) Let ˙ , �, and ˘ be finite alphabets. Let L � ˙�, M
���, and N �˘�. If L �p M and M � p N, then L
�p N. (Thus, polynomial reducibility is transitive.)

2) If L and M are languages such that L �p M and L is
F-hard, then M is also F-hard.

3) P = NP if and only if some NP-complete language is
in P.

4) P = PSPACE if and only if some PSPACE-complete
language is in P.

5) NP = PSPACE if and only ifsome PSPACE-complete
language is in NP.

6) NP = CoNP if and only if some CoNP-complete lan-
guage is in NP if and only if some NP-complete lan-
guage is in CoNP.

7) If L is DEXPTIME-, NDEXPTIME-, or EXSPACE-
hard, then the recognition of L requires more than
2n� time, 2n� time, respectively 2n� space, i. o. on any
DTM, NDTM, respectively TM, where � > 0 is a con-
stant independent of n.

Proof We sketch a proof: 1) follows from the fact that
the polynomial time computable functions are closed
under composition. The proofs of 2) through 6) fol-
low directly from the correctness of 1) and Defini-
tions 6 and 8. The proof of 7) follows directly from
well-known ‘hierarchy’ theorems, for deterministic and
nondeterministic time and space-bounded Turing ma-
chines [1,12,14,15,17,34].

Proposition 10 There exists an F-complete language,
for each of the complexity classes F.

Proof It is easy to construct F-complete languages de-
fined in terms of Turing machines and coded versions
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of their inputs, for each of the complexity classes F. For
example, the language L = {# � Mi �# � code(x1, . . . , xn)
� #m : x1 � xn is accepted by the one-tape NDTM Mi in
time t}, where m = 3 � |Mi| � t, is both an element of
NDTIME(n) and is NP-hard.

The first complete problems for NP and, consequently,
the importance of the class NP in nonnumerical com-
putation are due to S.A. Cook [8], and R.M. Karp [18].
Following the terminology of [12], these initial NP-
complete problems include the problems
� 3-SAT,
� 3-DIMENSIONAL MATCHING,
� VERTEX COVER, CLIQUE,
� HAMILTONIAN CIRCUIT, and
� PARTITION.

The first complete problems for PSPACE and ND-
EXPTIME, are due to A.R. Meyer and L.J. Stockmeyer
[24]. Subsequently, a very large number of natural com-
putational problems have been shown to be F-hard or
F-complete, for each of the complexity classes F. Many
examples and historical references can be found in
[1,12,16,25,29,30,37]. References [12,25,28,30,37], are
especially relevant to problems in the area of optimiza-
tion, including:
� LP (which is solvable deterministically in polyno-

mial time as show initially in [19]);
� {0, 1}-ILP and ILP (the feasibility problems of which

are NP-complete [5,12,17,30]); and
� QP (which is NP-complete) [12,32,37].
Reference [12] also discusses much of the early work
(prior to 1979) on the complexity of approximatingNP-
hard optimization problems. Reference [16] consists of
several separately authored chapters surveying many of
the more recent results on the complexity of approxi-
mating NP-hard optimization problems. These results
include the important result of [3] that unless P =
NP, no MAX SNP-hard optimization problem [31] has
a PTAS (i. e. a polynomial time approximation scheme,
[12]).

Many basic polynomial time solvable and NP-
hard optimization problems become PSPACE-hard,
DEXPTIME-hard, NDEXPTIME-hard, and even EXS-
PACE-hard, when problem instances are specified
succinctly by hierarchical specifications or by 1-
and 2-dimensional periodic specifications, see [20,21,
22,26,27,29]. References [2,6] discuss algorithms for

and the computational complexity of solving systems
of multivariable polynomial equations over real closed
fields. Most of these last problems are NP-hard or
worse. Finally, the problems of determining the solv-
ability of a system of multivariable polynomial equa-
tions over N or Z are recursively undecidable, by
a straightforward effective reduction from Hilbert’s
tenth problem [9,23].
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Degeneracy in Linear Programming

In mathematical programming, the terms degeneracy,
and its absence, nondegeneracy, have arisen first in the
simplex method of linear programming (LP), where
they have been given precise definitions. The notions
were first introduced by G.B. Dantzig in his seminal pa-
per [7] when he invoked the nondegeneracy assump-
tion to prove the finite convergence of the simplex
method.

In the study of the simplex method for LP, degener-
acy and nondegeneracy are properties defined for basic
feasible (or extreme point) solutions of systems of lin-
ear constraints or for the systems themselves. To give
the definition, let us consider the general system of lin-
ear constraints

Ai �x

(
D bi ; i D 1; : : : ; r;
� bi ; i D rC 1; : : : ;m;

(1)

where Ai� 2 Rn is the row vector of coefficients in the ith
constraint, and we assume that the equality constraints
in it are linearly independent. Let K denote its set of
feasible solutions.

Given x 2 K, the ith constraint in (1) is said to be:
active or tight at x if either it is an equality constraint
(i. e., i 2 {1, . . . , r}), or it is an inequality constraint that
holds as an equation at x; inactive or slack at x other-
wise. We denote the index set of active constraints at x,
i. e., fi : i 2 f1; : : : ;mg;Ai �x D big by I(x).

The feasible solution x for (1) is said to be an ex-
treme feasible solution or a BFS (basic feasible solution)

if it is the unique solution of the system of equations de-
fined by the active constraints at it in (1); i. e., Ai �x D bi
for i 2 I(x).

The BFS x for (1) is said to be: a nondegenerate BFS
if the set of active constraints at it, treated as equations,
forms a square nonsingular system of equations; a de-
generate BFS if that system has one or more redundant
equations, i. e., if jI(x)j > n. Thus at a degenerate BFS,
this system of equations formed from the active con-
straints is an overdetermined system of linear equations
with a unique solution.

The general system (1) is said to be: a degenerate sys-
tem if it has at least one degenerate BFS; nondegenerate
system if all its BFSs are nondegenerate.

Degeneracy in Standard Form Systems

Before solving an LP, the simplex method transforms
the constraints into a standard form which is

Ax D b;

x � 0;
(2)

where the matrix A is of order m × n, and without any
loss of generality we assume that rank(A) = m. Let A�j
denote the jth column vector of A for j = 1, . . . , n, it is
the column of xj in (2) and we assume it is 6D 0 for all j.
Let � denote the set of feasible solutions of (2).

Specializing the above definitions to the standard
form, we conclude that a feasible solution x of (2) is
a BFS if and only if

˚
A� j : j such that x j > 0

�
is lin-

early independent. The BFS x is: degenerate if
ˇ̌
f j :

x j > 0g
ˇ̌
< m, nondegenerate if

ˇ̌
f j : x j > 0g

ˇ̌
D m.

So, for a nondegenerate BFS x, the submatrix with
column vectors

˚
A� j : j such that x j > 0

�
is a basis for

the system of equations in (2). If x is a degenerate BFS,
this submatrix has to be augmented with the columns of
some variables having 0 values in x in order to become
a basis; usually this augmentation can be carried out in
many ways. Hence, while each nondegenerate BFS is as-
sociated with a unique basis, each degenerate BFS is as-
sociated with several (usually a huge number of) bases.

System (2) is said to be: degenerate if it has at least
one degenerate BFS; nondegenerate otherwise. From
this we see that if system (2) is degenerate, then the
right-hand side constants vector b lies in a subspace that
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is the linear hull of a set ofm� 1 or less column vectors
of the coefficient matrix A. These observations imply
the following facts.
1) Keeping the coefficient matrix A fixed in (2), but let-

ting the right-hand side constants vector b vary over
Rm, the set of all b for which (2) is degenerate is a set
of Lebesgue measure zero in Rm.

2) If (2) is degenerate, the right-hand side constants
vector b in it can be perturbed ever so slightly to
make the perturbed system nondegenerate.
The perturbation technique for resolving the prob-
lem of cycling in the simplex method caused by de-
generacy is based on this fact. We will discuss more
on this later.

3) If (2) has at least one nondegenerate BFS, the dimen-
sion of � is d = n �m.
Whether (2) is degenerate or not, every nondegener-
ate BFS of (2) is incident to exactly d = n �m edges
of � .
However, a degenerate BFS is usually incident to
more than d (could be very large) edges of � , and
the number of edges of � incident at different de-
generate extreme points of � may be very different.

4) If (2) is nondegenerate, � is said to be a regular
or simple polyhedron because every one of its ver-
tices is incident to exactly d (the dimension of � )
edges. This nice regular property may not hold for
� if (2) is degenerate. Thus, degeneracy has the ef-
fect of making the polyhedron more complex geo-
metrically.

The Complexity of CheckingWhether a System
of Constraints is Degenerate

Despite the rarity of degeneracy among all possible LP
models, surprisingly, many real world LP models turn
out to be degenerate. However, R. Chandrasekaran,
S.N. Kabadi and K.G. Murty [4] showed that the prob-
lem of checking whether a given system of linear con-
straints is degenerate is NP-complete.

A nondegenerate BFS of (2) is said to be nearly de-
generate if some variables have positive values which
are very close to zero in it. In practice, while comput-
ing BFSs of (2), unless exact arithmetic is used, it is very
hard to distinguish between degenerate and nearly de-
generate BFSs because of round-off errors introduced in
digital computation.

Problems Posed By Degeneracy
for the Simplex Method of LP

Cycling

Very soon after developing the simplex method for LP,
Dantzig realized that it may not lead to an optimum so-
lution under degeneracy but instead may cycle indefi-
nitely among a set of nonoptimal degenerate bases. The
first example of cycling in the simplex method was con-
structed by A.J. Hoffman [13].

For implementing the simplex method, the user has
to select two tie breaking rules to be used in each pivot
step, one for selecting the entering nonbasic variable,
and the other for selecting the dropping basic variable,
among all those that tie. For cycling to occur, these tie
breaking rules are very crucial.

Any technique that makes sure that the simplex
method cannot cycle under degeneracy is said to re-
solve degeneracy. Quite early in the development of LP,
techniques for resolving degeneracy in theory, using
a virtual perturbation involving powers of an infinites-
imal indeterminate, without altering the data were de-
veloped ([5,8,21]; also see [16] for an extension of this
technique to the bounded variable simplex method).
These fix the tie breaker for the dropping variable as one
based on lexicographic ordering, but leave the entering
variable choice arbitrary among those eligible. Over the
years several other techniques have been developed for
resolving degeneracy in theory; some, e. g., Bland’s tech-
nique [3], fix the tie breakers for both the entering and
dropping variables. Bland’s technique and others like it,
however, lead to implementations which are very slow
in practice.

Computationally, it is also important that tech-
niques for resolving degeneracy pay attention to the
possible effects of round-off errors in near degenerate
solutions. See [10].

It is commonly believed that the problem of cycling
is not encountered in practice; however, degeneracy re-
lated problems have been discovered to contribute sub-
stantially to the difficulty in using LP based methods in
scheduling and related combinatorial and integer pro-
gramming problems.

Stalling

Even after resolving the problem of cycling, yet another
phenomenon called stalling at a degenerate BFS can oc-
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cur in the simplex method. Unlike cycling which is an
infinite repetition of the same sequence of degenerate
bases, stalling is a finite but exponentially long sequence
of consecutive degenerate pivot steps at the same objec-
tive value. Examples of stalling in network flow models
have been exhibited by J. Edmonds, see [6,17].

A technique is said to resolve both cycling and
stalling under degeneracy, if it can be established that
the total number of consecutive degenerate pivot steps
in the simplex method, using this technique, is bounded
above by a polynomial function of n and the size of the
LP. Such techniques that fix the tie breakers for both
the entering and the dropping variables have been de-
veloped in [6] for the special case of minimum cost pure
network flow problems. Extending this work to the gen-
eral LP model seems to be hard, as it can be shown
that resolving both cycling and stalling in a general LP
model is only possible if there exist tie breakers for both
the entering and dropping variables which guarantee to
make the simplex method a polynomial time method
for LP. To establish whether such tie breakers exist has
been a long standing open problem in LP theory.

Degeneracy Handling in Commercial Codes

In spite of the folklore that cycling is very unlikely to oc-
cur in practice, commercial LP codes have sought to im-
plement anti-cycling procedures that involve little over-
head and are effective in practice.

The lexicographic technique for resolving degener-
acy is not very desirable, as it needs the explicit basis in-
verse in every step (most commercial codes do not com-
pute the basis inverse explicitly, they use matrix factor-
izations of the basis inverse for preserving sparsity and
for numerical stability).

For handling degeneracy, commercial codes nor-
mally use procedures based on perturbing the bounds
on the variables. If there is no progress in the objec-
tive value after some number of iterations dependent
on problem size, then the bounds on the variables in
the present basic vector are enlarged (i. e., if the previ-
ous lower and upper bounds on xj are `j and uj, they
are changed to `j � ıj and uj + ıj, where ıj is a small
positive quantity chosen appropriately), and the appli-
cation of the algorithm is continued on the perturbed
problem. When the perturbed problem reaches opti-
mality, the bounds are reset to their original values to

see if the resulting basis is optimal to the original prob-
lem (this happens very often). Otherwise, the resulting
basis satisfies the optimality criterion but may be infea-
sible. Then a Phase I procedure is used to get feasibility,
this works fine in almost all cases since the optimal basis
for the perturbed problem is close to one for the orig-
inal problem. The dual simplex algorithm can also be
used for this later part. See [11] for details.

Effect of Degeneracy on the Optimum Face of an LP

From LP theory we know that if an LP has at least one
optimum nondegenerate BFS, then the dual problem
has a unique optimum solution. Conversely, if the dual
problem has at least one optimum nondegenerate BFS,
then the primal LP optimum solution is unique.

Effects of Degeneracy
on Post-optimality Analysis in LP

After having found an optimum solution for an LP,
an integral part of a good report generator is marginal
analysis.

Consider the LP in standard form: minimize z = cx
subject to (2), and let z�(b) denote the optimum objec-
tive value in this LP as a function of the right-hand side
constants vector bwhile all the other data remains fixed.
Themarginal value or shadow price vector for this LP is
defined to be (@z(b)/ @bi : i = 1, . . . , m) when it exists.

If the LP has a nondegenerate optimum BFS, then
the dual optimum solution is unique, it is the vector of
marginal values; and for each right hand side constant
bi there is an interval of positive length containing the
present value of bi in its interior, which is its optimal-
ity range. As bi varies in this range while all the other
data remains fixed, the dual optimum solution remains
unchanged and remains as the marginal value vector.

In practical applications, the right-hand side con-
stants vector b in the LP model for a company’s op-
erations usually contains parameters such as the lim-
its on raw material supplies, etc. When it exists, prac-
titioners use the marginal value vector to derive many
facts of great use in planning, such as identifying which
raw material supplies are critical, what the break even
price is for additional supply of each raw material, etc.
Marginal analysis is the process of drawing such con-
clusions, and practitioners rely on it heavily to provide
valuable planning information.
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The situation changes dramatically when all the op-
timum BFSs of the LP are degenerate. The dual opti-
mum solution may not be unique, and the marginal
value vector as defined above may not exist. In its
place we have two-sided marginal values: a positive (and
a negative) marginal value giving the rate of change
in the optimum objective value per unit increase (de-
crease) in bi. M. Akgul [1] proved the existence of these
two-sided marginal values using convex analysis. Sim-
ple proofs based on parametric LP are given in [16]
where it is shown that the positive (negative) marginal
value with respect to bi is

max f
i : over the dual optimum faceg
(min f
i : over the dual optimum faceg):

Effects of Degeneracy
in Interior Point Methods for LP

Unlike the simplex method which walks along edges
of the polyhedron, the paths traced by interior point
methods (IPMs) are contained in the strict interior of
the polyhedron. There are many different classes of
IPMs based on the strategy used. At first glance, degen-
eracy, a concept based on properties of extreme point
solutions, does not seem to be as serious a problem
for IPMs as it is for simplex methods. In fact proofs of
polynomiality for IPMs of the projective, path follow-
ing, and affine potential reduction categories hold true
without any nondegeneracy assumption.

However, degeneracy affects the convergence of the
primal-dual pair in the affine scaling method. Under
primal nondegeneracy, this method has been shown to
be globally convergent for any steplength as long as all
the iterates remain in the interior of the feasible region.
But this technique breaks down when the primal non-
degeneracy assumption is removed, in fact L.H. Hall
and R.J. Vanderbei [12] constructed a degenerate ex-
ample to show that the dual sequence cannot be con-
vergent anymore if any fixed steplength greater than
2/3 to the boundary is taken. Thus stepsize 2/3 to the
boundary is the longest stepsize for the affine scaling
algorithm that guarantees convergence of the primal-
dual pair in the presence of degeneracy.

Although other IPMs go through the interior of
the feasible region, degeneracy still has a role to play
in them. But the problems here are different from the
cycling and stalling problems occurring in the sim-

plex method. Degeneracy and redundant constraints
affect the central path which most IPMs aim to follow.
Numerical performance of the algorithms may suffer
from numerical instability and ill-conditioning if the
optimum solutions are degenerate or near degenerate.
Also, generating an optimum basis from the near op-
timum interior solution at the termination of the IPM
is strongly polynomial, but the computational effort de-
pends on the degree of degeneracy.

Effect of Degeneracy on Algorithms
for Enumerating Extreme Point Solutions

Consider the problem of enumerating all the extreme
point solutions of a system of linear constraints, say (2).
Let `0 denote the unknown number of extreme point
solutions.

If (2) is nondegenerate, all its extreme point solu-
tions can be enumerated in time O(`0mn), an effort
which grows linearly with `0, D. Avis and K. Fukuda
[2]. If (2) is degenerate and is the system of constraints
for a network linear program, J.S. Provan [19] has an al-
gorithm for enumerating all its extreme point solutions
in time polynomial in `0 and the input size.

However, it remains an open question whether
there is an algorithm for enumerating all extreme point
solutions in time polynomial in `0 and input size, when
(2) is a general degenerate system of constraints.

Murty and S.-J. Chung [18] have shown that de-
generate polyhedra have proper subsets called segments
satisfying certain facial incidence properties. For each
nondegenerate polyhedron, the only segment possible
is the whole polyhedron itself. The difficulty of enu-
merating extreme point solutions of degenerate sys-
tems efficiently is related to the problem of recogniz-
ing whether a given segment is the whole polyhedron
or a proper subset of it.

Effect of Degeneracy
in Extreme Point RankingMethods

Consider the objective function z(x) = cx defined over
� , the set of feasible solutions of (2). For simplicity as-
sume that � is a convex polytope, i. e., it is bounded.
An algorithm for ranking the extreme points of � in
increasing order of z(x) has been discussed in [15]. In
each step, this algorithm carries out the operation of
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enumerating the adjacent extreme points of a given ex-
treme point of � .

If (2) is nondegenerate, every extreme point has ex-
actly n � m adjacent extreme points, and the above
operation can be carried out efficiently by pivot steps.
Hence, the complexity of generating k extreme points
in the ranked sequence grows linearly with k, and the
ranking algorithm becomes practically effective.

If (2) is degenerate, the number of adjacent extreme
points of a degenerate extreme point of � may be very
large, and the ranking algorithm becomes almost im-
practical.

The assignment problem is a well known example of
a highly degenerate problem. However all its extreme
point solutions known as assignments are 0 � 1 vec-
tors, using this property an efficient special algorithm
has been developed in [14] for ranking the assignments
in increasing order of a linear objective function.

Degeneracy in Nonlinear Programming

In contrast to linear programming where the concept
of degeneracy is defined purely using extreme point so-
lutions; in nonlinear programming it is defined for any
solution point.

Discussion of degeneracy arises in nonlinear pro-
gramming, particularly in methods known as active set
methods. These methods are popular for solving non-
linear programs in which the constraints are linear, say
of the form (1); but also used when there are nonlin-
ear constraints in the system. In these methods, when at
a feasible point x0, certain constraints indexed by an ac-
tive set A are treated as equations, and the rest are tem-
porarily disregarded, and a search direction y0 is gener-
ated. The next point is taken ideally as the best feasible
point on the half-line {x0 + �y0: �� 0}. However, if one
ormore inequality constraints not from the setA are vi-
olated by x0 + �y0 whenever � > 0 and sufficiently small,
then those constraints allow no progress in the search
direction, and we have a degenerate situation. See [10]
and [11] for a discussion of this degeneracy in active set
methods, and its resolution.

There are also other generalizations of the notions
of degeneracy and nondegeneracy, to systems of non-
linear constraints. In these generalizations, degeneracy
is taken to mean any measure of departure of problem
structure from some idealized norm. Simply put, non-

degenerate means well-posed in some context, degen-
erate means absence of such nice structure. For a non-
linear program, nondegeneracy at a solution point has
been defined variously as the satisfaction of: LICQ (lin-
ear independence constraint qualification of the bind-
ing constraint gradients), KKT first order necessary
conditions for a local minimum, second order suffi-
cient conditions for a local minimum, or the strict com-
plementary slackness condition. Also connections be-
tween nondegeneracy and performance of algorithms
has been studied, addressing the local effects of special
kinds of nondegeneracy or its lack at a local minimizer.
See [9].
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The evaluation or approximation of derivatives is a cen-
tral part of most nonlinear optimization calculations.
The gradients of objectives and active constraints en-
ter directly into they Karush–Kuhn–Tucker conditions
so that inaccuracies in their evaluation limit the achiev-
able solution accuracy. The latter depends also crucially
on the conditioning of the projected Hessian of the La-
grangian. Hence accurate values of this symmetric ma-
trix allow the design of appropriate stopping criteria
including the verification of second order conditions.
Second derivatives also facilitate a rapid final rate of
convergence, provided the step-defining linear systems
can be solved by factorization or iteration at a reason-
able cost. The same observations apply to more general
optimization calculations like the solution of nonlinear
complementarity problems.

Whether or not the obvious benefits of evaluating
first and higher derivatives accurately justify the costs
incurred, does strongly depend on the suitability of
the differentiation method employed for the particular
problem at hand. Wemay distinguish five principal op-
tions for evaluating or approximating derivatives
� symbolic differentiation;
� handcoded derivatives;
� automatic differentiation;



426 C Complexity of Gradients, Jacobians, and Hessians

� difference quotients;
� secant updating.

‘Numerical’ DifferentiationMethods

The last two options are widely used in practical op-
timization, primarily because they require no extra ef-
fort whatsoever on the part of the user. Difference quo-
tients are often called divided differences or finite dif-
ferences, though the last term invites confusion with
a related method for discretizing differential equations.
Other popular labels are differencing or numerical dif-
ferentiation, because the results are floating point num-
bers rather than algebraic expressions. The latter are of-
ten presumed to be the output of more symbolic meth-
ods. Even though we shall see that the distinction is not
quite that easy, there is no doubting the importance of
the fundamental relation

F 0(x)ẋ D
d
d˛

F(x C ˛ẋ)
ˇ̌
ˇ̌
˛D0

D
1
"

�
F(x C "ẋ) � F(x)

�
C O("):

Here, the vector function F: Rn ! Rm is assumed
Lipschitz-continuously differentiable on some neigh-
borhood of the base point x 2 Rn. In other words, the
directional derivative of F along some vector ẋ 2 Rn is
the product of the Jacobian matrix F0(x) 2 Rm× n with
the direction ẋ and it can be approximated by a dif-
ference quotient. The quality of this approximation de-
pends strongly on the choice of " and one must expect
a halving in the number of significant digits under the
best of circumstances. Quasi-Newton, or secant meth-
ods may be viewed as an ingenious way of sequentially
incorporating difference quotients into a Jacobian ap-
proximation while iterating towards the solution vec-
tor of a nonlinear system of equations. The correspond-
ing theory of superlinear convergence is quite beautiful
from a mathematical point of view, though perhaps not
terribly relevant in practice for large, structured prob-
lems.

It is important to note that the quality of the approx-
imate derivative matrices generated by quasi-Newton
methods influences only the rate of convergence but not
so much the solution accuracy itself. The latter depends
on the accurate evaluation of residual vectors, which
may be composed of gradients as is the case for the KKT

conditions. The importance of accurate residual values
is particularly well understood in numerical linear al-
gebra, and replacing them with approximations of un-
certain reliability is generally a dicy proposition. For-
tunately, it just so happens that gradients can usually
be evaluated with working precision at a moderate cost
relative to that of the underlying functions. This is far
from true for Jacobians and Hessians, whose cost is very
hard to predict (and even define) as we shall demon-
strate further below on various examples.

The relative cost of evaluating one-sided difference
quotients in p directions ẋ from the same base point
x is clearly p + 1. Theoretically one might sometimes
reduce the evaluation costs by exploiting the fact that
the p points x + "ẋ are close to x. This proximity may
arise in the topological sense that the stepsize "kẋk is
small as well as in the structural sense that ẋ is sparse
and thus leaves many components of x unchanged. In
practice such savings are rarely realized and they would
certainly destroy the main advantage of differencing,
namely its black box quality, which does not require
any insight or access to the process by which function
values are generated. Of course, there is the optimistic
assumption that they vary smoothly as a function of the
argument x, and usually the selection of a suitable incre-
ment " causes enough trouble for the user and possibly
even quite a few extra trial evaluations.

Hence it is indeed fair to assume that one-sided or
centered differences in p directions ẋ at a common x re-
quire 1 + p or 1 + 2p separate function evaluations but
little extra storage. By letting ẋ range over all n Carte-
sian basis vectors one obtains an approximate Jacobian
with first or second order accuracy at the cost of 1 + n
or 1 + 2 n function evaluations. The number of depen-
dent variables does not matter for differencing so that
the cost of a gradient, where m = 1, is also 1 + n or 1
+ 2n times that of the underlying scalar function. To
compute the Hessian or more generally a full second
derivative tensor one needs n(n + 1)/2 function evalu-
ations for one-sided and twice that many for the more
accurate centered differences.

Since multiple function evaluations are an ‘embar-
rassingly’ parallel task the availability of several pro-
cessors can be used to achieve a nearly perfect speed
up for derivative approximations by differencing [7]. In
the sparse case, the number of independent variables
n can be replaced in the cost ratios above by a num-
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ber p � n that represents either the maximal number
of nonzeros in any row of F0(x) or the usually slightly
larger chromatic number of the column incidence graph.
The latter reduction can be achieved by the by now
classical grouping or coloring technique originally due
to Curtis–Powell–Reid [6] and further developed by
Coleman–Moré [4]. An alternative way to compress the
rows of the Jacobian even further at the expense of some
linear equation solving is due to Newsam–Ramsdell
[12] and has recently been adopted to automatic differ-
entiation.

‘Analytical’ DifferentiationMethods

The first three options listed at the beginning are based
on the chain rule and may therefore be combined under
the label analytical differentiation. They all would yield
exact derivative values if real arithmetic could be per-
formed in infinite precision. Moreover, even the actual
sequence of operations performed to evaluate a partic-
ular partial derivative would quite likely be the same
and thus yield identical results if the same floating point
arithmetic was used. Only the way in which the instruc-
tion for this floating point calculation are generated and
stored differ significantly between the three approaches.
Also, there may be more or less recalculation of inter-
mediates that are common to several partial derivatives,
which can have drastic effects on the computational ef-
ficiency.

The result of the second option handcoding may
in principle be always similarly obtained by symbolic
or automatic differentiation, provided the computer al-
gebra package or the differentiation software is suffi-
ciently smart. Hence we will discuss only the pure op-
tions one and three, which might of course also be com-
bined by a highly sophisticated programmer or soft-
ware tool.

Symbolic differentiation is usually performed in
computer algebra packages like Maple, Mathematica
and Reduce. Most users have the notion that the dif-
ferentiation commands in these sophisticated systems
turn formulas for functions into formulas for deriva-
tives. Moreover there is a tendency to assume that
having a ‘formula’ means directly expressing depen-
dent variables as algebraic expressions of independents
without allowing any named intermediates. The natural
data structures for such formulas would be expression

trees. There, every node has only one parent, so that
the whole thing can be easily linearized and printed by
enumeration in a depth first order. In reality computer
algebra packages do not restrict themselves to expres-
sion trees, because for any nontrivial function the cor-
responding tree structure is very likely to represent an
incredible amount of redundancy, even before any dif-
ferentiation takes place.

Two-Stranded Chain Scenario

Consider for example a sequence of complex function
evaluations

xkC1 C iykC1 D �k(xk C iyk)C i k (xk C iyk)

for k = 0, . . . , l � 1 starting from some initial x0 + iy0
2 C. Suppose all function pairs �k + i  k are nonlin-
ear and do not allow any algebraic simplifications. Then
eliminating the intermediates x1 and y1 yields the for-
mula

x2 C iy2 D �1(�0(x0; y0)C i'0(x0; y0))

C  1(�0(x0; y0)C i'0(x0; y0));

which involves already twice as many terms as the one-
level original formula. The same doubling occurs at
each subsequent level so that expressing xl and yl di-
rectly in terms of the initial components x0 and y0 yields
an exponentially long formula with the symbols x0 and
y0 each occurring exactly 2l times. In this case one could
avoid the highly undesirable expression swell by merely
substituting zk � xk+ iyk, which turns the binary ex-
pression tree into a simple chain of the same height l.

While this example may appear rather algebraic and
somewhat contrived, exactly the same effect occurs if
the real pairs (xk, yk) specify straight lines in the plane.
Specifically, one might think of light-beams being re-
flected in a maze of mirrors or some other optical ar-
rangement in the plane. Each ray (xk, yk) that is in-
coming to a mirror or lense uniquely determines an
outgoing ray (xk + 1, yk + 1) via some simple algebraic
relationship. Then expressing the final ray parameters
(xl, yl) directly as functions of the initial parameters (x0,
y0) will again yield an expression of size 2l.

Rather than dealing with this algebraic monster one
should of course keep all the intermediate pairs (xk, yk)
with 0 � k � l as named variables. Along this chain
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one can easily propagate all information of interest, in-
cluding the 2 × 2 Jacobian of (xk, yk) with respect to
(x0, y0), at a temporal and spatial complexity of order
l. To achieve this result one may employ suitable vari-
ants of computer algebra, automatic differentiation or,
of course, hand-coding. Before discussing them inmore
detail let us discuss a general model of function and
derivative evaluations.

Computational Model

All analytical differentiation methods are based on the
observation that most vector functions F of practical in-
terest are being evaluated by a sequence of assignments

vi D 'i(v j) j<i for i D 1; : : : ; l C m: (1)

Here, the variables vi are real scalars and the elemental
functions ' i are either binary arithmetic operations or
univariate intrinsics. Consequently, only one or two of
the partial derivatives

ci j �
@

@vj
'i (vk)k<i

do not vanish identically and can be evaluated at a cost
comparable to that of the underlying ' i itself.

Without loss of generality we may require that the
first n variables vj� n = xj with j = 1, . . . , n represent the
independent variables and the lastm variables yi = vl + i
with i = 1, . . . , m represent the dependent variables.
Then the function y = F(x) is defined by the program
(1). Here, the nonnegative integer l represents the num-
ber of intermediate variables, which we expect to be
much larger than both n and m for seriously nonlinear
problems. We will also assume that within a small con-
stant all elemental functions have the same complexity
so that we have the approximate operations count

OPS(x
prog
7�! y) � l � #intermediates:

Throughout this article,�means proportional with
small constants that are independent of the particular
problem at hand. Each intermediate variable may be
viewed and thus later differentiated as a function vi �
vi(x) of the independent variable vector x. As long as
all intermediates vi are stored in separate locations the
memory requirement for evaluating F will also be pro-

portional to l. This is a very unrealistic assumption as
most evaluation programs involve shared allocation of
intermediates. Due to space constraints we will not be
able to discuss any aspects of spatial complexity in this
article. For a detailed treatment of various trade-offs be-
tween space and time see [9].

The way in which the elemental partials cij are han-
dled differs amongst various analytical differentiation
methods. They are always evaluated as floating point
numbers at the current argument in what is variously
known as automatic or algorithmic or computational
differentiation. The same can be assumed for hand
written derivative codes unless they are programmed
within a computer algebra system, where the cij can be
defined and manipulated as algebraic expressions. In
some cases applying the chain rule to these expressions
may theoretically lead to significant simplifications and
thus potentially provide the user with analytical insight.
In the following section we reverse engineer one such
class of examples and arrive at the tentative conclusion
that the practical potential for symbolic simplifications
during the differentiation process appears to be very
slim indeed.

Indefinite Integral Scenario

Suppose that

F(x) D
xZ

a

P(ex)
Q(ex) dex

for two polynomials P(x) and Q(x) with deg(Q)>
deg(P). Besides a rational term the symbolic expression
for F(x) is then likely to contain a welter of logarithms
and arcus tangents, whose complexity may easily ex-
ceed that of the integrand f (x) � P(x) / Q(x) by orders
of magnitude. Then fully symbolic differentiation will
of course lead back to an algebraic expression for f (x),
while automatic differentiation will combine the cij in
floating point arithmetic according to some variant of
the chain rule and obtain‘just’ a numerical value of f (x)
at the given point x 2 R. Moreover, due to cancellations
that value may well be less accurate than that obtained
by plugging the particular argument x into the formula
for f (x).

However, similar numerical instabilities are likely to
already affect the evaluation of F(x) itself. They may
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also show up in the form of an imaginary component
when the coefficients of P(x) andQ(x) are real but given
in floating point format. Then the roots of the denomi-
nator polynomial are already perturbed by unavoidable
round-off and symbolic differentiation of the resulting
expression for F(x) will usually not lead back to f (x)
but some other rational function with a higher poly-
nomial degree in the numerator or denominator. To
avoid this effect all coefficients of f (x) must be spec-
ified as algebraic numbers so that the symbolic inte-
gration can be performed exactly. This process which
typically involves rational numbers with enormous co-
efficients and thus requires a large computational ef-
fort.

Hence on practical models one may well be bet-
ter advised to evaluate F(x) by a numerical quadrature
yielding highly accurate results at a fraction of the com-
puting time. Analytically differentiating a nonadaptive
quadrature procedure yields the same quadrature ap-
plied to the derivatives of the integrand, namely f 0(x) =
F00(x). Hence the resulting values are quite likely to be
good approximations to the original integrand f (x) and
they are the exact derivatives of the approximate values
computed for F(x) by the quadrature.

Lack of Smoothness

Adaptive quadratures on the other hand may vary grid
points and coefficient values in a nondifferentiable or
even discontinuous fashion. Then derivatives of the
quadrature value may well not exist in the classical
sense at some critical arguments x. This difficulty is
likely to arise in the form of program branches in all
substantial scientific codes and there is no agreement
yet on how to deal with it. In most situations one can
still compute one-sided directional derivatives as well
as generalized gradients and Jacobians [9]. Naturally,
computing difference quotients of nonsmooth func-
tions is also a risky proposition. Generally, optimal re-
sults in terms of accuracy and efficiency can only be
expected from a derivatives code developed by a knowl-
edgeable user, possibly with the help of program analy-
sis and transformation tools.

Predictability of Complexities

With regards to spatial and temporal complexity the
following basic distinction applies between the analyti-

cal differentiation methods sketched above. The cost of
fully symbolic differentiation seems impossible to pre-
dict. It can sometimes be very low due to fortuitous can-
cellations but it is more likely to grow drastically with
the complexity of the underlying function. In contrast
the relative cost incurred by the various modes of au-
tomatic differentiation can always be a priori bounded
in terms of the number of independent and dependent
variables. Moreover, as we will see below these bounds
can sometimes be substantially undercut for certain
structured problems.

Another advantage of automatic differentiation
compared to a fully symbolic approach is that restric-
tions and projections of Jacobians and Hessians to cer-
tain subspaces of the functions domain and range can
be built into the differentiation process with corre-
sponding savings in computational complexity. In the
remainder of this article we will therefore focus on the
complexity of various automatic differentiation tech-
niques; always making sure that no other known ap-
proach is superior in terms of accuracy and complex-
ity on general vector functions defined by a sequence of
elemental assignments.

Goal-OrientedDifferentiation

The two-stranded chain scenario above illustrates the
crucial importance of suitable representations of the
mathematical objects, whose complexity we try to
quantify here. So one really has to be more specific
about what one means by computing a function, gradi-
ent, Jacobian, Hessian, or their restriction and projec-
tion to certain subspaces. At the very least we have to
distinguish the (repeated) evaluation in floating point
arithmetic at various arguments from the preparation
of a suitable procedure for doing so. This preparation
stage comes actually first and might be considered the
symbolic part of the differentiation process. It usually
involves no floating point operations, except possibly
the propagation and simplification of some constants.
This happens for example when a source code for eval-
uating F is precompiled into a source code for jointly
evaluating F(x) and its Jacobian F0(x) at a given argu-
ment x. In the remainder we will neglect the prepa-
ration effort presuming that it can be amortized over
many numerical evaluations as is typically the case in
iterative or time-dependent computations.
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In general, it is not a priori understood that F0(x)
should be returned as a rectangular array of floating
point numbers, especially if it is sparse or otherwise
structured. Its cheapest representation is the sparse tri-
angular matrix

C D C(x) � (ci j)
jD1�n;:::;lCm
iD1�n;:::;lCm :

The nonzero entries in C can be obtained during the
evaluation of F at a given x for little extra cost in terms
of arithmetic operations so that

OPSfx 7! Cg � OPSfx
prog
7�! Fg :

As we will see below, the nonzeros in C allow directly
the calculation of the products

F 0(x)ẋ 2 Rm for ẋ 2 Rn ;

and

F 0(x)>y> 2 Rn for y> 2 Rm ;

using just one multiplication and addition per cij 6� 0.
So if our goal is the iterative calculation of an approxi-
mate Newton-step using just a few matrix-vector prod-
ucts, we are well advised to just work with the collection
of nonzero entries of C provided it can be kept in mem-
ory. If on the other hand we expect to take a large num-
ber of iterations or wish to compute a matrix factoriza-
tion of the Jacobian we have to first accumulate all mn
partial derivatives @yî/ @xĵ from the elemental partials
cij. It is well understood that a subsequent inplace trian-
gular factorization of the Jacobian F0(x) yields an ideal
representation if one needs to multiply itself as well as
its inverse by several vectors and matrices from the left
or right. Hence we have at least three possible ways in
which a Jacobian can be represented and kept in stor-
age:
� unaccumulated: computational graph;
� accumulated: rectangular array;
� factorized: two triangular arrays.
Here the arrays may be replaced by sparse matrix struc-
tures. For the time being we note that Jacobians and
Hessians can be provided in various representation at
various costs for various purposes. Which one is most
appropriate depends strongly on the structure of the
problem function F(x) at hand and the final numerical

purpose of evaluating derivatives in the first place. The
interpretation of C as computational graph goes back
to L.V. Kantorovich and requires a little more explana-
tion.

The Computational Graph

With respect to the precedence relation

j � i () ci j 6� 0 () ( j; i) 2 E ;

the indices i, j 2 V � [1 � n, . . . , l +m] form a directed
graph with the edge set E. Since by assumption j � i
implies j < i the graph is acyclic and the transitive clo-
sure of � defines a partial ordering between the corre-
sponding variables vi and vj. The minimal and maximal
elements with respect to that order are exactly the inde-
pendent and dependent variables vj � n � xj with j = 1,
. . . , n and the vm+ i � yi with i = 1, . . . , m, respectively.
For the two stranded chain scenario with l = 3 one ob-
tains a computational graph of the following form:

Assuming that all elemental ' i are unary functions
or binary operations we find |E|� 2(l+m)� l. One may
always annotate the graph vertices with the elemental
functions ' i and the edges with the nonvanishing ele-
mental partials cij. For most purposes the ' i do not re-
ally matter and we may represent the graph (V , E) sim-
ply by the sparse matrix C.

ForwardMode

Given some vector ẋ � (v̇ j�n)j = 1, . . . , n 2 Rn, there
exist derivatives

v̇i �
d
d˛

vi(x C ˛ẋ)
ˇ̌
ˇ̌
˛D0

for 1 � i � l C m :

By the chain rule these v̇i satisfy the recurrence

v̇i �
X
j	i

ci j v̇ j for i D 1; : : : ; l C m : (2)

The resulting tangent vector ẏ � (v̇lCi)i = 1, . . . , m sat-
isfies ẏ = F0(x)ẋ and it is obtained at a cost propor-
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tional to l. Instead of propagating derivatives with re-
spect to just one direction vector ẋ one may amortize
certain overheads by bundling p of them into a ma-
trix Ẋ 2 Rn × p and then computing simultaneously Ẏ
= F0(x)Ẋ 2 Rm × p. The cost of this vector forwardmode
of automatic differentiation is given by

OPSfC
forw
7�! Ẏg � pl � pOPSfx

prog
7�! yg : (3)

If the columns of Ẋ are Cartesian basis vectors ej 2 Rn

the corresponding columns of the resulting Ẏ are the
jth columns of the Jacobian. Hence by setting Ẋ = I with
p = n we may compute the whole Jacobian at a tempo-
ral complexity proportional to nl. Fortunately, in many
applications the whole Jacobian is either not needed at
all or due to its sparsity pattern it may be reconstructed
from its compression Ẏ = F0(x)Ẋ for a suitable seed ma-
trix Ẋ. As in the case of difference quotients this matrix
may be chosen according to the Curtis–Powell–Reid [6]
or the Newsam–Ramsdell [12] approach with p usually
close to the maximal number of nonzeros in any row of
the Jacobian.

Bauer’s Formula

Using the recurrence for the v̇i given above one may
also obtain an explicit expression for each individual
partial derivative @yi/ @xj. Namely, it is given by the sum
over the products of all arc values c{̂|̂ along all paths
connecting the minimal node vj�n with the maximal
node vl+i. This formula due to F.L. Bauer [1] implies
in particular that the ijth Jacobian entry vanishes iden-
tically exactly when there is no path connecting nodes j
� n and l + i in the computational graph. In general the
number of distinct paths in the graph is very large and it
represents exactly the lengths of the formulas obtained
if one expresses each yi directly in terms of all xj that it
depends on. Hence we may conclude

OPSfC
bauer
7�! F 0g � OPSfx

formul
7�! yg :

In the two-stranded chain scenario considered above,
both operations counts would be of order 2l, which
is obviously an unacceptable effort. Fortunately, vec-
tor forward and Bauer’s formula are just two special
choices amongst many ways for accumulating the Jaco-
bian F0(x) from the computational graph C. The most

celebrated alternative is the reverse or backward mode
of automatic differentiation.

ReverseMode

Rather than propagating directional derivatives v̇i for-
ward through the computational graph one may also
propagate adjoint quantities vi backward. To define
them properly one must perturb the original evaluation
loop by rounding errors ıi so that now

vi D ıi C 'i(v j) j<i for i D 1 � n; : : : ; l :

Then the resulting vector y is a function not only
of x but also of the vector of small perturbations
(ı i)iD1�n;:::;l . Given any row vector of weights y D
(vlCi )iD1;:::;m we obtain the sensitivities

vi �
@

@ıi
yy
ˇ̌
ˇ̌
ıiD0

for 1 � n � i � l ;

where all other perturbations ıj with j 6D i are set to
zero during the differentiation. The adjoint compo-
nents v j�n D x j form the row vector x D yF 0(x) 2 Rn ,
which is simply the gradient of the linear combination
yF(x). In the optimization context this scalar valued
function is usually a Lagrangian, whose gradient and
Hessian figure prominently in the first and second or-
der optimality conditions. The amazing thing is that
as a consequence of the chain rule such gradients can
be computed at the same cost as tangents by using the
backward recurrence

v j D
X
i
 j

v i ci j for j D l ; : : : ; 1 � n : (4)

Just like in the forward scalar recurrence (2), each ele-
mental partial cij 6D 0 occurs exactly once and we may
amortize costs by bundling several y into an adjoint
seed matrix Y 2 Rq�m . This vector reverse mode yields
the matrix X D YF 0(x) 2 Rq�n at the cost

OPSfC
rev
7�! Xg � ql � qOPSfx

prog
7�! yg :

Again the whole Jacobian is obtained directly if we seed
Y D I with q = m. Hence we find by comparison with
(3) as a rule of thumb that the reverse mode is prefer-
able if m� n, i. e., if there are not nearly as many de-
pendents as independents. In classical NLPs we may
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think ofm as the number of active constraints plus one,
which is oftenmuch smaller then n, the number of vari-
ables. In unconstrained optimization we have m = 1 so
that the gradient of the objective F can be computed
with essentially the same effort as F itself. In the sparse
case we may now employ column rather than row com-
pression with q roughly equal to the maximal number
of nonzeros in any column of F0(x).

For suitable seeds Y the column compression X D
YF 0(x) allows the reconstruction of the complete Jaco-
bian F0 (x). Furthermore, row and column compression
can be combined yielding for example Jacobians with
arrow head structure at the cost of roughly p + q = 3
function evaluations. In that case one may use

Ẋ �
�
1 1 � � � 1 0
0 0 � � � 0 1

�>
and Y D e>m :

Then X D YF 0(x) is the last row of the arrowhead ma-
trix F0(x) and the two columns of Ẏ = F0(x)Ẋ contain all
other nonzero entries. For pure row or column com-
pression dense rows or columns always force p = n or
q = m, respectively. Hence the combination of forward
and reverse differentiation offers the potential for great
savings. In either case projections and restrictions of the
Jacobian to subspaces of the vector functions domain
and range can be built into the differentiation process,
which is part of the goal-orientation we alluded to be-
fore.

Second Order Adjoints

Rather than separately propagating some first deriva-
tives forward, others reverse, and then combining the
results to compute Jacobian matrices efficiently, one
may compose these two fundamental modes to com-
pute second derivatives like Hessians of Lagrangians.
More specifically, we obtain by directional differentia-
tion of the adjoint relation x D yF 0(x) the second order
adjoint

ẋ D yF 00(x)ẋ 2 Rn :

Here we have assumed that the adjoint vector y is con-
stant. We also have taken liberties with matrix vector
notation by suggesting that them × n × n derivative ten-
sor F00(x) can be multiplied by the row vector y 2 Rm

from the left and the column vector ẋ 2 Rnx 2 Rn from

the right yielding a row vector ẋ of dimension n. In an
optimization context y should be thought of as a vector
of Lagrange multipliers and ẋ as a feasible direction. By
composing the complexity bounds for the reverse and
the forward mode one obtains the estimates

OPSfx
prog
7�! yg � OPSfx; ẋ

forw
7�! ẏg

� OPSfx; y
rev
7�! xg � OPSfx; ẋ; y

ad
7�! ẋg :

Here, ad represents reverse differentiation followed by
forward differentiation or vise versa. The former inter-
pretation is a little easier to implement and involves
only one forward and one backward sweep through the
computational graph.

Operations Counts and Overheads

From a practical point of view one would of course
like to know the proportionality factors in the relations
above. If one counts just multiplication operations then
ẏ and x are at worst 3 times as expensive as y, and ẋ is
at most 9 times as expensive. A nice intuitive example
is the calculation of the determinant y of a

p
n �
p
n

matrix whose entries form the variable vector x. Then
we have m = 1 and

OPSfx 7! yg D
1
3
p
n3 C O(n)

multiplications if one uses an LU factorization. Then it
can be seen that y D 1/y makes x the transpose of the
inverse matrix and the resulting cost estimate of

p
n3C

O(n) multiplications conforms exactly with that for the
usual substitution procedure.

However, these operations count ratios are no re-
liable indications of actual runtimes, which depend
very strongly on the computing platform, the particu-
lar problem an hand, and the characteristics of the AD
tool. Implementations of the vector forward mode like
ADIFOR [3] that generate compilable source codes can
easily compete with divided differences, i. e. compute
p directional derivatives in the form Ẏ D F 0(x)Ẋ at
the cost of about p function evaluations. For sizeable
p 	 10 they are usually faster than divided differences,
unless the roughly p-fold increase in storage results in
too much paging onto disk. The reverse mode is an en-
tirely different ball-game since most intermediate val-
ues vi and some control flow hints need to be first saved
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and later retrieved, which can easily make the calcula-
tion of adjoints memory bound. This memory access
overhead can be partially amortized in the vector re-
verse mode, which yields a bundle X D YF 0(x) of q gra-
dient vectors. For example inmulticriteria optimization
one may well have q	 10 objectives or soft constraints,
whose gradients are needed simultaneously.

Worst-Case Optimality

Counting only multiplications we obtain for Jacobians
F0 2 Rm×n the complexity bound

OPSfx
ad
7! F 0g � 3min(n;m) OPSfx

prog
7�! yg :

Here, n and m can be reduced to the maximal number
of nonzero entries in the rows and columns of the Jaco-
bian, respectively.

Similarly, we have for the one-sided projection of
the Lagrangian Hessian

H(x; y) � yF 00 �
mX
iD1

yir
2Fi 2 Rn�n

onto the space spanned by the columns of Ẋ:

OPSfx
ad
7! H(x; y)Ẋg � 9pOPSfx

prog
7�! yg :

Aswe already discussed for indefinite integrals there
are certainly functions whose derivatives can be evalu-
ated much cheaper than they themselves for example
using a computer algebra package. Note that here again
we have neglected the preparation effort, which may be
very substantial for symbolic differentiation. Neverthe-
less, the estimates given above for AD are optimal in
the sense that there are vector functions F defined by
evaluation procedures of the form (1), for which no dif-
ferentiation process imaginable can produce the Jaco-
bian and projected Hessian significantly cheaper than
the given cost bound divided by a small constant. Here,
producing these matrices is understood to mean calcu-
lating all its elements explicitly, which may or may not
be actually required by the overall computation.

Consider, for example, the cubic vector function

F(x) D x C
b(a>x)3

2
with a; b 2 Rn :

Its Jacobian and projected Hessian are given by

F 0(x) D I C b
�
a>x

�2 a> 2 Rn�n

and

H(x; y)Ẋ D 2a(yb)(a>x)a>Ẋ 2 Rn�p :

For general a, b and Ẋ, all entries of the matrices F0(x)
and H(x; y)Ẋ are distinct and depend nontrivially on x.
Hence their explicit calculation by any method requires
at least n2 or np arithmetic operations, respectively.
Since the evaluation of F itself can be performed using
just 3n multiplications and a few additions, the opera-
tions count ratios given above cannot be improved by
more than a constant. There are other, more meaning-
ful examples [9] with the same property, namely that
their Jacobians and projected Hessians are orders of
magnitude more expensive than the vector function it-
self. At least this is true if we insist on representing them
as rectangular arrays of reals. This does not contradict
our earlier observation that gradients are cheap, be-
cause the components of F(x) cannot be considered as
independent scalar functions. Rather, their simultane-
ous evaluation may involve many common subexpres-
sions, as is the case for our rank-one example. These ap-
pear to be less beneficial for the corresponding deriva-
tive evaluation, thus widening the gap between function
and derivative complexities.

Expensive� Redundant?

The rank-one problem and similar examples for which
explicit Jacobians or Hessians appear to be expen-
sive have a property that one might call redundancy.
Namely, as x varies over some open neighborhood in its
domain, the Jacobian F0(x) stays in a lower-dimensional
manifold of the linear space of all matrices with its for-
mat and sparsity pattern. In other words, the nonzero
entries of the Jacobian are not truly independent of each
other so that computing them all and storing them sep-
arately may be wasteful. In the rank-one example the
Jacobian F0(x) is dense but belongs at all x to the one-
dimensional affine variety {I + b˛a| : ˛ 2 R}. Note
that the vectors a, b 2 Rn are assumed to be dense
and constant parameter vectors of the problem at hand.
Their elements all play the role of elemental partials cij
with the corresponding operation ' i being multiplica-
tions. Hence accumulating the extremely sparse trian-
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gular matrix C, which involves only O(n) nonzero en-
tries, to the dense n × n array F0(x) is almost certainly
a bad idea, no matter what the ultimate purpose of the
calculation. In particular, if one wishes to solve linear
systems in the Jacobian, the inverse formula of Sher-
man–Morrison–Woodbury provides a way of comput-
ing the solution of rank-one perturbations to diagonal
matrices with O(n) effort. This formula may be seen as
a very special case of embedding linear systems in F0

into a much larger and sparse linear system involving C
as demonstrated in [11] and [5].

As of now, all our examples for which the array
representation of Jacobians and Hessians are orders of
magnitude more expensive to evaluate than the under-
lying vector function exhibit this redundancy property.
In other words, we know of no convincing example
where vectors that one may actually wish to calculate as
end products are necessarily orders of magnitude more
expensive than the functions themselves. Especially for
large problems it seems hard to imagine that array rep-
resentations of the Jacobians and Hessians themselves
are really something anybody would wish to look at
rather than just use as auxiliary quantities within the
overall calculation.

So evaluating complete derivative arrays is a bit like
fitting a handle to a wooden crate that needs to be
moved about frequently. If the crate is of small weight
and size this job is easily performed using a few screws.
If, on the other hand, the crate is large and heavy,
fitting a handle is likely to require additional bracing
and other reinforcements. Moreover, this effort is com-
pletely pointless since nobody can just pick up the crate
by the handle anyhow and one might as well use a fork
left in the first place.

Preaccumulation and Combinatorics

The temporal complexity for both the forward and the
reverse (vector) mode are proportional to the number
of edges in the linearized computational graph. Hence
one may try to reduce the number of edges by cer-
tain algebraic manipulations that leave the correspond-
ing Jacobian, i. e., the linear mapping between ẋ and
ẏ D F 0(x)ẋ and equivalently also that between y and
x D yF 0(x) unchanged. It can be easily checked that
this is the case if given an index j one updates first

cikC D ci j c jk

either for fixed i 
 j and all k � j, or for fixed k � j
and all i 
 j, and then sets cij = 0 or cjk = 0, respec-
tively. In other words, either the edge (j, i) or the edge
(k, j) is eliminated from the graph. This leads to fill-in
by the creation of new arcs, unless all updated cik were
already nonzero beforehand. Eliminating all edges (k, j)
with k � j or all edges (j, i) with i 
 j is equivalent and
amounts to eliminating the vertex j completely from the
graph. After all intermediate vertices 1� j� l are elim-
inated in some arbitrary order, the remaining edges cij
directly connect independent variables with dependent
variables and are therefore entries of the Jacobian F0(x).
Hence, one refers to the accumulation of the Jacobian
F0 if all intermediate nodes are eliminated and to preac-
cumulation if some of them remain so that the Jacobian
is represented by a simplified graph.

As we have indicated in the section on goal oriented
differentiation one would have to carefully look at the
problem function and the overall computational task
to decide how much preaccumulation should be per-
formed.Moreover, there areel! different orders in which
a particular set ofel � l intermediate nodes can be elim-
inated and even many more different ways of eliminat-
ing the corresponding set of edges. So far there have
only been few studies of heuristic criteria for finding
efficient elimination orderings down to an appropriate
preaccumulation level [9].

Summary

First and second derivative vectors of the form ẏ D
F 0(x)ẋ, x D yF 0(x) and ẋ D yF 00(x)ẋ can be evaluated
for a fixed small multiple of the temporal complexity of
the underlying relation y = F(x). The calculation of the
gradient x and the second order adjoint ẋ by the basic
reverse method may require storage of order l � #in-
termediates. This possibly unacceptable amount can be
reduced to order log(l) at a slight increase in the opera-
tions count (see [8]).

Jacobians and one-sided projected Hessians can be
composed column by column or row by row from vec-
tors of the kind ẏ, x and ẋ. For sparse derivative ma-
trices row and/or column compression using suitable
seed matrices of type CPR or NR allow a substantial
reduction of the computational effort. In some cases
the nonzero entries of derivative matrices may be re-
dundant, so that their calculation should be avoided, if
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the overall computational goal can be reached in some
other way. The attempt to evaluate derivative array with
absolutely minimal effort leads to hard combinatorial
problems.

See also

� Complexity Classes in Optimization
� Complexity of Degeneracy
� Complexity Theory
� Complexity Theory: Quadratic Programming
� Computational Complexity Theory
� Fractional Combinatorial Optimization
� Information-Based Complexity and

Information-Based Optimization
� Kolmogorov Complexity
�Mixed Integer Nonlinear Programming
� NP-Complete Problems and Proof

Methodology
� Parallel Computing: Complexity Classes
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Introduction

Least squares problems and solution techniques to
solve them have a long history briefly addressed by
Björck [4]. In this article we focus on two classes of
complex least squares problems. The first one is estab-
lished by models involving differential equations. The
other class is made by least squares problems involv-
ing difficult models which need to be solved for many
independent observational data sets. We call this least
squares problems with massive data sets.
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A Standard Formulation for Unconstrained
Least Squares Problem

The unconstrained least squares problem can be ex-
pressed by

min
p

l2(p) ; l2(p) :D


r1

�
x(t1); : : : ; x(tk); p

�

2
2

D

NX
kD1

�
r1k(p)

�2
; r1 2 IRN : (1)

The minimization of this functional, i. e., the minimiza-
tion of the sum of weighted quadratic residuals, un-
der the assumption that the statistical errors follow
a Gaußian distribution with variances as in (4), pro-
vides a maximum likelihood estimator ([7] Chap. 7) for
the unknown parameter vector p. This objective func-
tion dates back to Gauß [14] and in the mathemati-
cal literature the problem is synonymously called least
squares or `2 approximation problem.

The least squares structure (1) may arise either from
a nonlinear over-determined system of equations

r1k(p) D 0 ; k D 1; : : : ;N ; N > n ; (2)

or from a data fitting problem with N given data points
(tk; Ỹk ) and variances �� , a model function F̃(t; p),
and n adjustable parameters p:

r1k :D r1k(p) D Yk � Fk(p) D
p
wk
�
Ỹk � F̃(tk; p)

�
:

(3)

The weights wk are related to the variances �k by

wk :D ˇ/�2
k : (4)

Traditionally, the weights are scaled to a variance of
unit weights. The factor ˇ is chosen so as to make the
weights come out in a convenient range. In short vector
notation we get

r1 :D Y � F(p)D
�
r11(p); : : : ; r1N (p)

�T
;

F(p);Y 2 IRN :

Our least squares problem requires us to provide the
following input:
1. model,
2. data,
3. variances associated with the data,

4. measure of goodness of the fit, e. g., the Euclidean
norm.

In many practical applications, unfortunately, less at-
tention is paid to the variances. It is also very important
to point out that the use of the Euclidean norm requires
pre-information related to the problem and statistical
properties of the data.

Solution Methods

Standard methods for solving linear version of (1),
i. e., F(p) D Ap, are reviewed by Björck [4]. Non-
linear methods for unconstrained least squares prob-
lems are covered in detail by Xu [35,36,37]. In addition,
we mention a popular method to solve unconstrained
least squares problems: the Levenberg–Marquardt algo-
rithm proposed independently by Levenberg [21] and
Marquardt [22] and sometimes also called “damped
least squares”. It modifies the eigenvalues of the nor-
mal equation matrix and tries to reduce the influence
of eigenvectors related to small eigenvalues (cf. [8]).
Damped (step-size cutting) Gauß–Newton algorithms
combined with orthogonalization methods control the
damping by natural level functions [6,9,10] seem to be
superior to Levenberg–Marquardt type schemes and
can be more easily extended to nonlinear constrained
least squares problems.

Explicit Versus Implicit Models

A common basic feature and limitation of least squares
methods, but seldom explicitly noted, is that they re-
quire some explicit model to be fitted to the data. How-
ever, not all models are explicit. For example, some
pharmaceutical applications for receptor-ligand bind-
ing studies are based on specifically coupled mass equi-
librium models. They are used, for instance, for the
radioimmunological determination of Fenoterol or re-
lated substances, and lead to least squares problems in
systems of nonlinear equations [31], in which themodel
function F(p) is replaced by F(t; p; z) which, besides the
parameter vector p and the time t, depends on a vector
function z D z(t; p) implictly defined as the solution of
the nonlinear equations

F2(t; p; z) D 0 ; F2(p) 2 IRn2 : (5)

This is a special case of an implicit model. There is
a much broader class of implicit models. Most models
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in science are based on physical, chemical and biologi-
cal laws or include geometry properties, and very often
lead to differential equations which may, however, not
be solvable in a closed analytical form. Thus, such mod-
els do not lead to explicit functions or models we want
to fit to data. We rather need to fit an implicit model
(represented by a system of differential equations or an-
other implicit model). The demand for and the applica-
tions of such techniques are widespread in science, es-
pecially in the rapidly increasing fields of nonlinear dy-
namics in physics and astronomy, nonlinear reaction
kinetics in chemistry [5], nonlinear models in mate-
rial sciences [16] and biology [2], and nonlinear sys-
tems describing ecosystems [28,29] in biology, or the
environmental sciences. Therefore, it seems desirable
to focus on least squares algorithms that use nonlin-
ear equations and differential equations as constraints
or side conditions to determine the solution implic-
itly.

Practical Issues of Solving Least Squares Problems

Solving least squares problems involves various difficul-
ties among them to find an appropriate model, non-
smooth models with discontinuous derivatives, data
quality and checking the assumption of the underlying
error distribution, and dependence on initial parameter
or related questions of global convergence.

Models and Model Validation A model may be de-
fined as an appropriate abstract representation of a real
system. In the natural sciences (e. g., Physics, Astron-
omy, Chemistry and Biology) models are used to gain
a deeper understanding of processes occurring in na-
ture (an epistemological argument). The comparison of
measurements and observations with the predictions of
a model is used to determine the appropriateness and
quality of the model. Sir Karl Popper [26] in his famous
book Logic of Scientific Discovery uses the expressions
falsification and verification to describe tasks that the
models can be used to accomplish as an aid to scientific
process. Models were used in early scientific work to ex-
plain the movements of planets. Then, later, aspects and
questions of accepting and improving global and fun-
damental models (e. g., general relativity or quantum
physics) formed part of the discussion of the philoso-
phy of science. In science models are usually falsified,

and, eventually, replaced bymodified or completely dif-
ferent ones.

In industry, models have a rather local meaning.
A special aspect of reality is to be mapped in detail.
Pragmatic and commercial aspects are usually the mo-
tivation. The model maps most of the relevant features
and neglect less important aspects. The purpose is to
� provide insight into the problem,
� allow numerical, virtual experimentation but avoid

expensive and/or dangerous real experiments, or
� tune a model for later usage, i. e., determine, for in-

stance, the reaction coefficients of a chemical sys-
tem – once these parameters are known the dynam-
ics of the process can be computed.

A (mathematical) model represents a real-world prob-
lem in the language of mathematics, i. e., by using
mathematical symbols, variables (in this context: the
adjustable least squares parameters), equations, in-
equalities, and other relations. How does one get
a mathematical model for a real-world problem? To
achieve that is neither easy nor unique. In some sense
it is similar to solving exercises in school where prob-
lems are put in a verbal way [25]. The following points
are useful to remember when trying to build a model:
� there will be no precise recipe telling the user how to

build a model,
� experience and judgment are two important aspects

of model building,
� there is nothing like a correct model,
� there is no concept of a unique model, as different

models focusing on different aspects may be appro-
priate.

Industrial models are eventually validated which means
that they reached a sufficient level of consensus among
the community working with these models.

Statistics provide some means to discriminate mod-
els but this still is an art and does not replace the
need for appropriate model validation. The basic no-
tion is: with a sufficient number of parameters on can
fit an elefant. This leads us to one important conse-
quence: it seems to be necessary that one can interpret
these model parameters. A reasonable model derived
from the laws of science with interpretable parameters
is a good candidate to become accepted. Even, if it may
lead to a somewhat worse looking fits than amodel with
a larger number of formal parameters without interpre-
tation.
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Non-Smooth Models The algorithm reviewed by
Xu [35,36,37] for solving least squares problems usu-
ally require the continuous first derivatives of themodel
function with respect to the parameters. We might,
however, encounter models for which the first deriva-
tives are discontinuous. Derive-free methods such as
Nelder and Mead’s [23] downhill Simplex method, or
direction set methods; cf. ([27], p. 406) have been suc-
cessfully used to solve least squares problems. The Sim-
plex method provides the benefit of exploring parame-
ter space and good starting values for derivative based
methods. Powell’s direction set method with appropri-
ate conjugate directions preserve the derivative free na-
ture of the method.

Global Convergence Nonlinear least squares algo-
rithms usually converge only if the initial parameters
are close to the best fit parameters. Global convergence
can be established for some algorithms, i. e., they con-
verge for all initial parameters. An essential support
tool accompanying the analysis of difficult least squares
problem is to visualize the data and the fits. Inappro-
priate or premature fits can easily be excluded. Inappro-
priate fits are possible because all algorithms mentioned
in Sect. “Introduction”, “Parameter Estimation in ODE
Models”, and “Parameter Estimation in DAE Models”
are local algorithm. Only if the least squares problem
is convex, they yield the global least squares minimum.
Sometimes, it is possible to identify false local minima
from the residuals.

Data and Data Quality Least squares analysis is con-
cerned by fitting data to a model. The data are not ex-
act but subject to unknown random errors "k . In ideal
cases these errors follow a Gaussian normal distribu-
tion. One can test this assumption after the least squares
fit by analyzing the distribution of the residuals as de-
scribed in Sect. “Residual Distributions, Covariances
and Parameter Uncertainties”. Another important is-
sue is whether the data are appropriate to estimate all
parameters. Experimental design is the discipline which
addresses this issue.

Residual Distributions, Covariances and Parameter
Uncertainties Once the minimal least squares solu-
tion has been found one should at first check with
the �2-test or Kolmogoroff–Smirnov test whether the

usual assumption that the distribution really follows
a Gaussian normal distribution. With the Kolmogo-
roff–Smirnov test (see, e. g., [24]) it is possible to check
as follows whether the residuals of a least-squares solu-
tion are normally distributed around the mean value 0.
1. let M :D (x1, x2; : : :, xn) be a set of observations for

which a given hypothesis should be tested;
2. let G : x 2 M ! IR, x ! G(x), be the correspond-

ing cumulative distribution function;
3. for each observation x 2 M define Sn(x) :D k/n,

where k is the number of observations less than or
equal to x;

4. determine the maximum D :D max(G(x) � Sn(x) j
x 2 M);

5. Dcrit denotes the maximum deviation allowed for
a given significance level and a set of n elements.
Dcrit is tabulated in the literature, e. g., ([24], Ap-
pendix 2, p. 560); and

6. if D < Dcrit, the hypothesis is accepted.
For the least squares problem formulated in

Sect. “A Standard Formulation for Unconstrained Least
Squares Problem” the hypothesis is “The residuals
x :D r1 D Y�F(p) are normally distributed around the
mean value 0”. Therefore, the cumulative distribution
function G(x) takes the form
p
2
G(x) D

Z x

�1

g(z)dz

D

Z �x0
�1

g(z)dz C
Z x

�x0
g(z)dz;

g(z) :D e�
1
2 z

2
:

The value x0 separates larger residuals; this is problem
specific control parameter.

The derivative based least squares methods usually
also give the covariance matrix from which the uncer-
tainties of the parameter are derived; cf. [7], Chap. 7.
Least squares parameter estimations without quantify-
ing the uncertainty of the parameters are very doubtful.

Parameter Estimation in ODEModels

Consider a differential equation with independent vari-
able t for the state variable

x0(t) D
dx
dt
D f(t; x; p) ; x 2 IRnd ; p 2 IRnp (6)

with a right hand side depending on an unknown pa-
rameter vector p. Additional requirements on the solu-
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tion of the ODE (1) like periodicity, initial or boundary
conditions or range restrictions to the parameters can
be formulated in vectors r2 and r3 of (component wise)
equations and inequalities

r2
�
x(t1); : : : ; x(tk); p

�
D 0 or

r3
�
x(t1); : : : ; x(tk); p

�
� 0 :

(7)

The multi-point boundary value problem is linked to
experimental data via minimization of a least squares
objective function

l2(x; p) :D


r1

�
x(t1); : : : ; x(tk); p

�

2
2 : (8)

In a special case of (8) the components ` of the vec-
tor r1 2 IRL are “equations of condition” and have the
form

r1` D ��1i j [�i j � gi (x(t j); p)] ;

` D 1; : : : ; L :D
N jX
iD1

Ji : (9)

This case leads us to the least squares function

l2(x; p) :D
NDX
jD1

N jX
iD1

��2i j [�i j � gi (x(t j); p)]2 : (10)

Here, ND denotes the number of values of the inde-
pendent variable (here called time) at which observed
data are available, Nj denotes the number of observ-
ables measured at time t j and �i j denotes the observed
value which is compared with the value of observable i
evaluated by the model where the functions gi (x(t j); p)
relate the state variables to x this observable

�i j D gi (x(t j); p)C "i j : (11)

The numbers "i j are the measurement errors and �2
i j

are weights that have to be adequately chosen due to
statistical considerations, e. g. as the variances. The un-
known parameter vector p is determined from themea-
surements such that the model is optimally adjusted to
the measured (observed) data. If the errors "i j are inde-
pendent, normally distributed with the mean value zero
and have variances �2

i j (up to a common factor ˇ2), then
the solution of the least squares problem is amaximum
likelihood estimate.

The Initial Value Problem Approach

An obvious approach to estimate parameters in ODE
which is also implemented in many commercial pack-
ages is the initial value problem approach. The idea is to
guess parameters and initial values for the trajectories,
compute a solution of an initial value problem (IVP) (6)
and iterate the parameters and initial values in order to
improve the fit. Characteristic features and disadvan-
tages are discussed in, e. g., [6] or [18]. In the course
of the iterative solution one has to solve a sequence of
IVPs. The state variable x(t) is eliminated for the ben-
efit of the unknown parameter p and the initial values.
Note that no use is made of the measured data while
solving the IVPs. They only enter in the performance
criterion. Since initial guesses of the parameters may be
poor, this can lead to IVPs which may be hard to solve
or even have no solution at all and one can come into
badly conditioned regions of the IVPs, which can lead
to the loss of stability.

The Boundary Value Problem Approach

Alternatively to the IVP approach, in the “boundary
value problem approach” invented by Bock [5], the in-
verse problem is interpreted as an over-determined,
constrained, multiple-point boundary problem. This
interpretation does not depend on whether the direct
problem is an initial or boundary value problem. The
algorithm used here consists of an adequate combina-
tion of a multiple shooting method for the discretiza-
tion of the boundary value problem side condition in
combination with a generalized Gauss-Newton method
for the solution of the resulting structured nonlinear
constrained least squares problem [5,6]. Depending on
the vector of signs of the state and parameter depen-
dent switching functions Q it is even possible to allow
piecewise smooth right hand side functions f , i. e., dif-
ferential equations with switching conditions

x0 D f (t; x; p; sign(Q(t; x; p))) ; (12)

where the right side may change discontinuously if the
vector of signs of the switching functions Q changes.
Such discontinuities can occur, e. g. as a result of un-
steady changes of physical values. The switching points
are in general given by the roots of the state-dependent
components of the switching functions

Qi (t; x; p) D 0 : (13)
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Depending on the stability behavior of the ODE and
the availability of information about the process (mea-
sured data, qualitative knowledge about the problem,
etc.) a grid Tm

Tm : �1 < �2 < : : : < �m ; �� j :D � jC1 � � j ;

1 � j � m � 1 ; (14)

ofmmultiple shooting nodes � j (m� 1 subintervals I j)
is chosen. The grid is adapted to the problem and data
and is defined such that it includes the measuring inter-
val ([�1; �m] D [t0; t f ]). Usually, the grid points � cor-
respond to values of the independent variable t at which
observations are available but additional grid points
may be chosen for strongly nonlinear models. At each
node � j an IVP

x0(t) D f(t; x; p) ; x(t D � j) D s j 2 IRnd (15)

has to be integrated from � j to � jC1. The m � 1 vec-
tors of (unknown) initial values s j of the partial trajec-
tories, the vector sm representing the state at the end
point and the parameter vector p are summarized in the
(unknown) vector z

zT :D (sT1 ; : : : ; s
T
m; p

T ) : (16)

For a given guess of z the solutions x(t; s j; p) of them�1
independent initial value problems in each sub inter-
val I j are computed. This leads to an (at first discon-
tinuous) representation of x(t). In order to replace (6)
equivalently by these m� 1 IVPs matching conditions

h j(s j; s jC1; p) :D x(� jC1; s j; p) � s jC1 D 0 ;

h j : IR2ndCnp ! IRnd (17)

are added to the problem. (17) ensures the continuity of
the final trajectory x(t).

Replacing x(ti) and p in (10) by z the least squares
problem is reformulated as a nonlinear constrained op-
timization problem with the structure

min
z

�
1
2
kF1(z)k22 jF2(z) D 0 2 IRn2 ;

F3(z) � 0 2 IRn3
	
; (18)

wherein n2 denotes the number of the equality and n3
the number of the inequality constraints. This usu-
ally large constrained structured nonlinear problem

is solved by a damped generalized Gauss-Newton
method [5]. If J1(zk) :D @zF1(zk), J2(zk) :D @zF2(zk)
vis. J3(zk) :D @zF3(zk) denote the Jacobi matrices of F1,
F2vis. F3, then the iteration proceeds as

zkC1 D zk C ˛k�zk (19)

with damping constant ˛k ; 0 < ˛min � ˛k � 1, and
the increment �zk determined as the solution of the
constrained linear problem

min
z

�
1
2
kJ1(zk)´zk C F1(zk)k22

ˇ̌
ˇ

J2(zk)�zk C F2(zk) D 0
J3(zk)�zk C F3(zk) � 0

	
: (20)

Global convergence can be achieved if the damping
strategy is properly chosen [6].

The inequality constraints that are active in a feasi-
ble point are defined by the index set

I(zk ) :D fijF3i(zk) D 0 ; i D 1; : : : ; n3g : (21)

The inequalities which are defined by the index set
I(zk ) or their derivatives are denoted with F̂3 or Ĵ3 in
the following. In addition to (21) we define

Fc :D
�

F2
F̂3

�
; Jc :D

�
J2
Ĵ3

�
: (22)

In order to derive the necessary conditions that have
to be fulfilled by the solution of the problem (18) the
Lagrangian

L(z;�;�) :D
1
2
kF1(z)k22 ��

TF2(z)��TF3(z) (23)

and the reduced Lagrangian

L̂(z;�c) :D
1
2
kF1(z)k22 � �

T
c Fc(z) ; �c :D

�
�
�c

�

(24)

are defined. The Kuhn–Tucker-conditions, i. e. the nec-
essary conditions of first order, are the feasibility con-
ditions

F2(z�) D 0 ; F3(z�) � 0 (25)

ensuring that z� is feasible, and the stationarity condi-
tions stating that the adjoined variables ��, �� exist as
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solution of the stationary conditions

@L
@z

(z�;��;��)D FT
1 (z
�) � J(z�) �

�
��
�T J2(z�)

�
�
��
�T J3(z�) D 0 (26)

and

�� � 0 ; i … I(z�)) ��i D 0 : (27)

If (z�;��;��) fulfills the conditions (25), (26) and (27),
it is called a Kuhn–Tucker-point and z� a stationary
point. The necessary condition of second order means
that for all directions

s 2 T(x�) :D
�
s ¤ 0

ˇ̌
ˇ̌ J2(z�)s D 0
J3(z�)s � 0

; �iJ3i(z�)s D 0
	

(28)

the Hessian G(z�;��;��) of the Lagrangian is positive
semi-definite:

sTG(z�;��;��)s � 0 ;

G(z�;��;��) :D
@2

@z2
L(z�;��;��) : (29)

As �i D 0 for i … I(z�) it is sufficient to postulate the
stationary condition for the reduced Lagrangian (24).
For the linear problem (20) follows: (z�;��;��) is
a Kuhn–Tucker-point of the nonlinear problem (18) if
and only, if (0;��;��) is a Kuhn–Tucker-point of the
linear problem. The necessary conditions for the exis-
tence of a local minimum of problem (18) are:
1. (z�;��;��) is a Kuhn–Tucker-point of the non-

linear problem
2. the Hessian G(z�;��;—�) of the Lagrangian is pos-

itive definite for all directions s 2 T(x�), vis. sTG
(z�;��;��)s > 0

If the necessary conditions for the existence of the local
minimum and the condition �i ¤ 0 for i 2 I(z�) are
fulfilled, two perturbation theorems [6] can be formu-
lated. If the sufficient conditions are fulfilled it can be
shown for the neighborhood of a Kuhn–Tucker-point
(z�;��;��) of the nonlinear problem (18) that the lo-
cal convergence behavior of the inequality constrained
problem corresponds to that of the equality constrained
problem which represents active inequalities and equa-
tions. Under the assumption of the regularity of the Ja-

cobians J1 and Jc , i. e.

rank
�

J1 (zk)
Jc (zk)

�
D nd C np ; rank(Jc(zk)) D nc ;

(30)

a unique solution �zk of the linear problem (20) exists
and an unique linear mapping JCk can be constructed
which satisfies the relation

�zk D �JCk F(zk) ; JCk JkJ
C
k D JCk ;

JTk :D
�
JT1 (zk); J

T
c (zk)

�
: (31)

The solution �zk of the linear problem or formally the
generalized inverse JCk [5] of Jk results from the Kuhn–
Tucker conditions. But it should be noticed that zk is
not calculated from (31) because of reasons of numer-
ical efficiency but is based on a decomposition proce-
dure using orthogonal transformations.

By taking into consideration the special structure of
the matrices Ji caused by the continuity conditions of
the multiple shooting discretization (18) can be reduced
by a condensation algorithm described in [5,6] to a sys-
tem of lower dimension

min
�
1
2
kA1xk C a1k22jA2xk C a2 D 0 ;

A3xk C a3 � 0g; (32)

from which xk can be derived at first and at last �zk .
This is achieved by first performing a “backward re-
cursion”, the “solution of the condensed problem” and
a “forward recursion” [6]. Kilian [20] has implemented
an active set strategy following the description in [6]
and [33] utilizing the special structure of J2.

The details of the parameter estimation algorithms
which are incorporated in the efficient software pack-
age PARFIT (a software package of stable and efficient
boundary value problem methods for the identification
of parameters in systems of nonlinear differential equa-
tions) are found in [6]. The damping constant ˛k in
the k-th iteration is computed with the help of natu-
ral level functions which locally approximate the dis-
tance kzk � z�k of the solution from the Kuhn–Tucker
point z�.

The integrator METANB (for the basic discretization
see, for instance, [3]) embedded in PARFIT is also suit-
able for the integration of stiff differential equation sys-
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tems. It allows the user to compute simultaneously the
sensitivity matrixes G;

G(t; t0; x0; p) :D
@

@x0
x(t; t0; x0; p) 2M(nd ; nd ) (33)

and H;

H(t; t0; x0; p) :D
@

@p
x(t; t0; x0; p) 2M(nd ; np) (34)

which are the most costly blocks of the Jacobians Ji via
the so-called internal numerical differentiation as intro-
duced by Bock [5]. This technique does not require the
often cumbersome and error prone formulation of the
variational differential equations

G0 D fx(t; x; p) � G ; G(t0; t0; x0; p) D 1l (35)

and

H0 D fx (t; x; p) � HC fp(t; x; p) ;

H(t0; t0; x0; p) D 0 (36)

by the user.
Using the multiple shooting approach described

above, differential equation systems with poor stability
properties and even chaotic systems can be treated [18].

Parameter Estimation in DAEModels

Another, even more complex class of problems, are pa-
rameter estimation in mechanical multibody systems,
e. g., in the planar slider crank mechanisms, a simple
model for a cylinder in an engine. These problems lead
to boundary problems for higher index differential al-
gebraic systems [34]. Singular controls and state con-
straints in optimal control also lead to this structure. In-
herent to such problems are invariants that arise from
index reduction but also additional physical invariants
such as the total energy in conservative mechanical sys-
tems or the Hamiltonian in optimal control problems.

A typical class of DAEs in mechanical multibody
systems is given by the equations of motion

ẋ D v

M(t; x)v̇ D f(t; x) � rxg(t; x)� ;

0 D g(t; x)

(37)

where x D x(t) and v D v(t) are the coordinates and
velocities, M is the mass matrix, f denotes the applied
forces, g are the holonomic constraints, and � are the
generalized constraint forces. Usually, M is symmet-
ric and positive definite. A more general DAE system
might have the structure

ẋ D f(t; x; z; p)
0 D g(t; x; z; p) ;

where p denotes some parameters and z D z(t) is
a set of algebraic variables, i. e., the differentials ż do
not appear; in (37) � is the algebraic variable. In ad-
dition we might have initial values x0 and z0. Obvi-
ously, some care is needed regarding the choice of z0
because it needs to be consistent with the constraint.
In some exceptional cases (in which Z :D r zg has full
rank and can be inverted analytically) we might insert
z D z(t; x; p) into the differential equation. DAE sys-
tems with a regular matrix Z are referred to as index-1
systems. Index-1-DAEs can be transformed into equiv-
alent ordinary differential equations by differencing the
equations w.r.t. t. At first we get the implicit system of
differential equations

gt C X ẋC Zż D 0 ; X :D rxg

which, according to the assumption of the regularity of
Z, can be written as the explicit system

ż D Z�1 (gt C Xf) :

Many practical DAEs have index 1, e. g., in some chem-
ical engineering problems, where algebraic equations
are introduced to describe, for instance, mass balances
or the equation of state. However, multibody systems
such as (37) have higher indices; (37) is of index 3. The
reason is, that the multiplier variables, i. e., the alge-
braic variables, do not occur in the algebraic constraints
and it is therefore not possible to extract them directly
without further differentiation. If Z does not have full
rank the equations are differentiated successively, un-
til the algebraic variables can be eliminated. The small-
est number of differentiations required to transform the
original DAE system to an ODE system is called the in-
dex of the DAE. The approach developed and described
by Schulz et al. [34] is capable to handle least squares
problems without special assumption to the index.
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An essential problem for the design, optimization
and control of chemical systems is the estimation of
parameters from time-series. These problems lead to
nonlinear DAEs. The parameters estimation problem
leads to a non-convex optimization problem for which
several local minima exist. Esposito and Floudas [13]
developed two global branch-and-bound and convex-
underestimator based optimization approaches to solve
this problem. In the first approach, the dynamical sys-
tem is converted into an algebraic system using orthog-
onal collocation on finite elements. In the second ap-
proach, state profiles are computed by integration. In
Esposito and Floudas [12] a similar approach is used to
solve optimal control problems.

Parameter Estimation in PDEModels

A very complex class of least squares problems are
data fitting problems in partial differential equations
based models. These include eigenvalue problems, as
well as initial and boundary value problems and cover
problems in atomic physics, elasticity, electromagnetic
fields, fluid flow or heat transfer. Some recent prob-
lems are, for instance, in models describing the water
balance and solid transport used to analyze the distri-
butions of nutrients and pesticides [1], in the determi-
nation of diffusive constants in water absorption pro-
cesses in hygroscopic liquids discussed in [15], or in
multispecies reactive flows through porous media [38].
Such nonlinear multispecies transport models can be
used to describe the interaction between oxygen, ni-
trate, organic carbon and bacteria in aquifers. Theymay
include convective transport and diffusion/dispersion
processes for the mobile parts (that is the mobile pore
water) of the species. The immobile biophase represents
the part where reactions caused by microbial activity
take place and which is coupled to transport through
mobile pore water. The microorganisms are assumed
to be immobile. The model leads to partial differential
algebraic equations

M@tu� r(Dru)C qru D f1(u; v; z; p) ;

@tv D f2(u; v; z; p) ;

0 D g(u; v; z; p) ;

(38)

where D and q denote the hydraulic parameters of the

model, p denotes a set of reaction parameters, u and v
refer to the mobile and immobile species, and z is re-
lated to source and sink terms.

Methodology

To solve least squares problems based on PDE mod-
els requires sophisticated numerical techniques but also
great attention with respect to the quality of data and
identifiability of the parameters. To solve such prob-
lems we might use the following approaches:
1. Unstructured approach: The PDEmodel is, for fixed

parameters p, integrated by any appropriate method
yielding estimations of the observations. The param-
eters are adjusted by a derivative-free optimization
procedure, e. g., by the Simplex method by Nelder
and Mead [23]. This approach is relatively easy to
implement, it solves a sequence of direct problems,
and is comparable to what in Sect. “Parameter Es-
timation in ODE Models” has been called the IVP
approach. Arning [1] uses such an approach.

2. Structured approach (for initial value PDE prob-
lems): Within the PDE model spatial coordinates
and time are discretized separately. Especially for
models with only one spatial coordinate, it is advan-
tageous to apply finite difference or finite element
discretizations to the spatial coordinate. The PDE
system is transformed into a system of (usually stiff)
ordinary differential equations. This approach is
known as themethod of lines (see, for example, [30]).
It reduces parameter estimation problems subject
to time-dependent partial differential equations to
parameter identification problems in systems of or-
dinary differential equations to be integrated w.r.t.
time. Now it is possible to distinguish again between
the IVP and BVP approach. Schittkowski [32] in his
software package EASY-FIT applies the method of
lines to PDEs with one spatial coordinate and uses
several explicit and implicit integration methods to
solve the ODE system. The integration results are
used by an SQP optimization routine or a Gauß–
Newton method to estimate the parameters. Zieße
et al. 38 and Dieses et al. [11], instead, couple the
method of lines (in one and two spatial coordinates)
with Bock’s [6] BVP approach, discretize time, for
instance, by multiple shooting and use an extended
version of PARFIT.
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The method of lines has become one of the standard
approaches for solving time-dependent PDEs with only
one spatial coordinate. It is based on a partial discretiza-
tion, which means that only the spatial derivative is
discretized but not the time derivative. This leads to
a system of N coupled ordinary differential equation,
where N is the number of discretization points. Let us
demonstrate the method by applying it to the diffusion
equation

@

@t
c(t; z) D D

@2

@z2
c(t; z) ; 0 � t <1

0 � z � L
(39)

with constant diffusion coefficient D. We discretize the
spatial coordinate z according to

zi D i�z ; �z :D
L
N
;

ci D ci(t) D c(t; zi) ; i D 0; : : : ;N : (40)

If we choose a finite difference approximation we get

@2

@z2
c(t; z) 	

c(t; z ��z) � 2c(t; z)C c(t; zC�z)
(�z)2

D
ci�1 � 2ci C ciC1

(�z)2
; (41)

which replaces the diffusion Eq. (39) by N ordinary dif-
ferential equations

ċi (t) D
ci�1 � 2ci C ciC1

(�z)2
: (42)

A detailed example of this method is discussed in [15].
The water transport and absorption processes within
a hygroscopic liquid are described by a model contain-
ing the diffusion Eq. (39) describing the water trans-
port within the hygroscopic liquid, a mixed Dirich-
let–Neumann condition representing a flux balance
equation at the surface of the liquid, and an additional
integral relation describing the total amount of water in
the liquid. The model included three parameters to be
estimated.

The available measurement data provide the total
time dependent concentration C(t) of water in the liq-
uid. A further complication was that the mathematical
solution of the diffusion equation is the water concen-
tration c(t,z) in the hygroscopic liquid and it is a func-

tion of time and location. Therefore, in order to com-
pare the mathematical solution with the observed data
one had to integrate c(t; z) over the space coordinate z,
i. e., the depth of the fluid.

Least Squares Problems withMassive Data Sets

We motivate the necessity to analyze massive data sets
by an example taken from astrophysics [19]. We out-
line the method for a huge set of millions of observed
data curves in which time is the independent parame-
ter and for each of the N;N ' 106, curves there is a dif-
ferent underlying parameter set we want to estimate by
a least squares method. Note that we assume that there
is a model in the sense of (6) or (10) available involv-
ing an adjustable parameter vector p. We are further
assume that we are dealing with nonlinear least squares
problems which are not easy to solve. The difficulties
could arise from the dependence on initial parameters,
non-smoothness of the model, the number of model
evalutions, or the CPU time required for one model
evaluation. For each available curve we can, of course,
solve this least squares problem by the techniques men-
tioned or discussed earlier in this article. However, the
CPU time required to solve this least squares problem
for several million curves is prohibitive. The archive ap-
proach described in this section is appropriate for this
situation.

Examples of massive data sets subject to least
squares analyses are surveys in astrophysics where mil-
lions of stars are observed over a range of time. About
50% of them are binary stars or multiple systems. The
observed data could be flux of photons (just called light
in the discipline of binary star researchers) in a cer-
tain wavelength region or radial velocity as a function
of time. Thus we have to analyze millions of light and
radial velocity curves. There are well validated mod-
els and methods (cf., [17] to compute such curves on
well defined physical and geometrical parameters of the
binary systems, e. g., the mass ratio, the ratio of their
radii, their temperatures, inclination, semi-major axis
and eccentricity to mention a few. Thus one is facing
the problem how to analyze the surveys and to derive
the stellar parameters P relevant to astrophysicists. In
this eclipsing binary star example it suffices to consider
the range [0; P] for the independent parameter time be-
cause the observed curves are periodic with respect to
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the period P. The period could be determined a priori
from a frequency analysis of the observed curve. Under
certain assumptions, in eclipsing binary star analyses,
time can be replaced by phase.

The critical issues are speed and stability. Speed is
obviously necessary to analyze large number of data,
light and radial velocity curves in the example. Stabil-
ity is required to automatize the procedure. Automati-
zation enables the user to analyze large sets of eclipsing
binary data produced by surveys. Stability and autom-
atization need to overcome the problem of initial pa-
rameters usually experienced in nonlinear least squares.
There is a price to be paid in terms of accuracy. But nev-
ertheless, such an approach will produce good approx-
imate results and may indicate interesting eclipsing bi-
nary stars for detailed follow-up analysis.

The method we propose to solve least squares prob-
lems with massive data sets is a matching approach:
match one or several curves to a large test sets of pre-
computed archive curves for an appropriate set of com-
binations of jPj parameters.

The Matching Approach

Let for a given binary system `oi c be any observed light
value for observable c, c D 1 : : :C, at phase �i , i D
1; : : : ; I. Correspondingly, `ci ck denotes the computed
light value at the same phase �i for the archive light
curve k, k D 1 : : : K. Note that K easily might be a large
number such as 1010 . Each archive light curve k is com-
puted by a certain parameter combination.

The idea of the matching approach is to pick that
light curve from the archive which matches the ob-
served curve of binary j best. The best fit solution is ob-
tained by linear regression. The matching approach re-
turns, for each j, the number of the archive light curve
which fits best, a scaling parameter, a, and a shift pa-
rameter, b, (which might be interpreted as a constant
third light) by solving the following nested minimiza-
tion problem for all j, j D 1; : : : ;N :

min
k

(
min
akc ;bkc

IX
iD1

wi
�
`oi c �

�
akc`ci ck C bkc

��2
)

Note that the inner minimization problem requires just
to solve a linear regression problem. Thus, for each k,
there exists an analytic solution for the unknown pa-

rameters akc and bkc . Further note that the `ci ck val-
ues might be obtained by interpolation. The archive
light curves are generated in such a way that they have
a good covering in the eclipses while a few points will
do in those parts of the light curves which show only
small variation with phase. Thus, there might be a non-
equidistant distribution of phase grid points. A cubic
interpolation will probably suffice.

Thus, the matching approach requires us to provide
the following components:
1. solving linear regression problems determining a

and b for all archive curves and all observed curves
(the sequence of the loops is important),

2. generating the archive curves,
3. cubic interpolation in the independent time-like

quantity and interpolation after the best matching
solution has been found.

In the sequel we briefly comment on the last two com-
ponents.

Generating and Storing the Archive Curves As the
number of archive curves can easily reach 1010 one
should carefully think about storing them. That re-
quires also appropriate looping over the parameters
p D 1; : : : ; jPj. For the eclipsing binary example the
details are given in [19]. Among the efficiency issues is
the usage of non-equidistant parameter grids exploit-
ing the sensitivity of the parameters on the model func-
tion `ci c .

One might think to store the archive light curves in
a type of data base. However, data base techniques be-
come very poor when talking about 1010 curves. There-
fore, it is probably easier to use a flat storage scheme. In
the simplest case, for each k we store the physical and
geometric parameters, then those parameters describ-
ing observable c, and then the values of the observable.
If we use the same number of phase values for each ob-
servable and each k, we have the same amount of data
to be stored.

Exploiting Interpolation Techniques Within the
matching approach interpolation can be used at two
places. The first occurrence is in the regression phase.
The test curves in the archive are computed for a finite
grid of the independent parameter time (phase in this
example). The observed curves might be observed at
time values not contained in the archive. We can inter-
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polate from the archive values by linear or cubic inter-
polation to the observed time values. However, it may
well pay out to have some careful thoughts on the gen-
eration of the time grid points.

The second occurrence is when it comes to deter-
mining the best fit. The linear regression returns that
parameter set which matches the observed one best. Al-
ternatively, we could exploit several archive points to
obtain a better fit to the observed curve. Interpolation
in an appropriately defined neighborhoods of the best
archive solution can improve the fit of the observed
curve.

Numerical Efficiency The efficiency of a least squares
method could be measured by the number of function
or model evaluation per unknown parameter. If we as-
sume that for each model parameter p we generate np

archive curves in the archive, the archive contains test
curves Nc D

QjPj
pD1 np and thus requires Nc model

evaluation; np is the number of archive grid points of
parameter p.

Conclusions

This contribution outlines how to solve ODE and PDE
based least squares problems. Academic and commer-
cial least squares solvers as well as software packages
are available. Massive data sets and observations arise
in data mining problems, medicine, the stock market,
and surveys in astrophysics. The approach described
in Sect. “The Matching Approach” has been proven
efficient for surveys in astrophysics. It can also sup-
port the generation of impersonal good initial param-
eter estimations for further analysis. The archive ap-
proach is also suitable for parameter fitting problems
with non-smooth models. Another advantage is that on
the archve grid it provides the global least squares min-
imum.
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Complexity theory poses the question: How much com-
puting time is required to solve a problem, as a func-
tion of the size of the problem? A similar questions may
be asked about other computing resources like memory
space. In the context of optimization, the commonly-
asked complexity question is how much computing
time, as a function of m and n, is required to solve
a certain class of mathematical programming problems
with n variables andm constraints. This form of asymp-
totic complexity analysis was introduced by J. Hartma-
nis and R.E. Stearns [4].

Several different complexity theories have been de-
veloped to address this question. The best known com-
plexity theory is based on Turing machines. Before
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defining this term, we start with a definition of ‘prob-
lem’. Formally, a problem is a function F that takes as
input an instance and produces as output a result. For
example, in the context of linear programming the in-
stance would be a triple (A, b, c) specifying a standard-
form linear program LP:
8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b;

x � 0:

The value of F(A, b, c) is the optimal value of the LP
instance, or perhaps the optimizer. The range of Fmust
also include special output values to signify an infeasi-
ble instance, an unbounded instance, or an ill-formed
instance, e. g., dimensions of A and b are incompati-
ble. Thus, in the context of complexity theory, the word
‘problem’ refers not to a specific instance but to a class
of instances.

For a Turing machine, all instances must be speci-
fied as finite-length strings of symbols where the sym-
bols are chosen from a fixed, finite alphabet. For LP
and other optimization problems, a reasonable alphabet
would include the ten digits and delimiter marks like
decimal points, commas, parentheses. A cardinality ar-
gument shows that this stipulation of finite string over
finite alphabet precludes the consideration of problems
with arbitrary real number data. Thus, Turing machine
solution of linear programming is generally restricted
to rational or integer data. Rational and integer data are
essentially equivalent since one can transform rational
to integer by multiplying by a common denominator.

A second limitation of the Turing machine model is
that there is no simple way to specify a general objec-
tive function or constraint function of an optimization
problem as part of the input. There is a generalization
of the Turing machine definition to overcome this lim-
itation (so-called ‘oracle’ Turing machines), but in this
article we limit attention to conventional Turing ma-
chines. This limitation means that our Turing machine
complexity analysis focuses on optimization problems
with predefined classes of objective functions and con-
straints in which the only free parameters are numeric
data, e. g., (A, b, c) in linear programming.

A Turing machine (TM) is a computational device
equipped with an infinitely-long tape used for memory
and a controller with a finite program. The tape con-

tains an infinite number of cells numbered 0, 1, 2, . . . ,
and each cell is capable of holding one symbol chosen
from a finite alphabet. The alphabet of the tape is a su-
perset of the alphabet used for the input. Initially the
tape contains the input instance written one symbol per
cell starting at the left end of the tape (cell 0). The re-
maining cells contain a special symbol meaning ‘blank’.

The Turing machine controller has a tape head that
is above one cell of the tape at any particular time. The
controller is always in a state chosen from a finite list
of states. Finally, the TM obeys a finite list of transition
rules. Each transition rule has the form: ‘if the current
symbol under the head is x and the current state is y,
then change the symbol to x0, change the state to y0 and
move the tape head one cell in direction d’, where d is
either ‘left’ or ‘right’. Thus, a TM is fully specified by its
input alphabet, its tape alphabet, its list of states, and its
list of transition rules. If, for any given combination of
current symbol/current state, there is at most one appli-
cable transition rule, the TM is said to be deterministic
else it is said to be nondeterministic. In this article we
consider deterministic TMs only.

An execution of a Turing machine consists of a se-
quence of moves. Initially, as mentioned above, the in-
put is written on the tape, the head is at position 0, and
the machine is in a specially designated state called the
‘start’ state. The applicable transition rule is selected
and executed, meaning that cell 0 is rewritten and the
head is moved. Each execution of a transition rule is
called a ‘move’. The Turing machine continues to make
moves until it reaches another special state called the
‘halt’ state.

The Turing machine is said to solve problem F, if
given an input instance x, the TM (eventually) writes
F(x) on its tape starting at position 0, followed by
blanks, and then halts. If for some input the TM could
ever execute an illegal operation, e. g., move left from
cell 0, or enter a state/symbol combination before halt-
ing for which there is no applicable transition rule, then
it does not solve F. Furthermore, we require that the
Turing machine can correctly handle every possible fi-
nite string that can be written with the input alphabet.
For incorrectly formatted strings, the Turing machine
should output a special string indicating incorrect for-
matting.

The running time of a Turing machine for a given
input instance is the number of moves required before
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it halts. The running time for the whole problem F is
usually expressed as a function of the size of the input,
that is, the number of symbols in the input string.

It can be proved using lengthy constructions that
a Turing machine is capable of all the operations of an
ordinary computer: it can simulate consecutively num-
bered memory cells each holding a separate integer or
rational number that are individually addressable, it can
multiply, divide, add, and subtract two such numbers,
etc. For a more detailed treatment of Turing machines,
see [5].

A Turing machine is said to solve problem F in
polynomial time if its running time is no more than
a polynomial function of the size of the input. Examples
of optimization problems that can be solved in poly-
nomial time include linear and convex quadratic pro-
gramming.

A decision problem is a problem F in which the
range of F consists of just two entries, ‘YES’ and ‘NO’.
Optimization problems can often be recast as decision
problems. For instance, in the case of linear program-
ming, the input instance consists of (A, b, c, r), where r
is a rational number, and the TM outputs ‘YES’ if the
minimal solution to the LP problem is r or less, else
it outputs ‘NO’. For incorrectly formatted and infea-
sible problems, the TM also outputs ‘NO’. The deci-
sion problem F partitions the input space into two sets
of strings, ‘YES’-instances and ‘NO’-instances. A syn-
onym for ‘decision problem’ is language recognition
problem.

The set P is defined to be all decision problems that
can be solved in polynomial time. This set includes lin-
ear programming (as recast in the previous paragraph)
and many combinatorial optimization problems such
as the minimum spanning tree problem and the short-
est path problem (cf. also � Shortest path tree algo-
rithms).

Many interesting problems, such as nonconvex
quadratic programming and Boolean satisfiability, are
not known to be inP, but are also not proven to lie out-
side ofP. To analyze these cases, we introduce a second
complexity class calledNP. A decision problem F is said
to lie in NP if there exists a polynomial time ‘certificate-
checking’ machine M outputting ‘YES’ or ‘NO’, and
polynomials p(�), q(�) with the following properties. For
every ‘YES’-instance x of F, there exists another string
y, called the certificate of x, such that the size of y is

no more than p(size(x)) such that the pair (x, y) (i. e.,
the string concatenation of x and y properly delimited)
is a ‘YES’-instance of M. On the other hand, for every
‘NO’-instance x of F, and for every possible certificate
y, M outputs ‘NO’ for the input pair (x, y). Finally, in
both cases, M is required to run in time no more than
q(size(x) + size(y)).

Notice this definition is asymmetric between ‘YES’-
and ‘NO’-instances. Thus, it is not necessarily true
that if problem F is in NP, then the problem F that
results from complementing F’s output (i. e., ‘YES’-
instances of F are ‘NO’-instances of F and vice-
versa) is still in NP. Indeed, the question of whether
F 2 NP, F 2 NP is a well-known open question.

Another observation from the above definition is
that P � NP. In particular, if a decision problem F lies
in P, then it has polynomial time Turing machine T
that distinguishes ‘YES’-instances from ‘NO’-instances.
In this case, it is simple to design the certificate checking
machineM needed for the definition of NP: in particu-
lar,M takes as input (x, y), it discards y, i. e., overwrites
it with blank cells, and then switches to running T on x.

The most famous open question in complexity the-
ory is whether this containment is actually equality,
i. e., whether P = NP. It turns out that the P = NP
question hinges on NP-complete problem the proto-
type of which is the satisfiability problem. The satisfi-
ability problem is as follows. An instance is a Boolean
formula with variables x1, . . . , xm, conjunctions, dis-
junctions and complement operations. For example,
x1 ^ (x1_ x2)^ (x2_ x3) is a satisfiability instance. The
decision problem is to determine whether there is an
assignment of the variables, each one either ‘TRUE’ or
‘FALSE’, to make the entire formula true following the
usual laws of boolean algebra. For example, the preced-
ing formula is a ‘YES’-instance because there is a satis-
fying assignment, namely x1 = ‘TRUE’, x2 = ‘FALSE’, x3
= ‘TRUE’. It is easy to see that this problem is inNP: the
certificate for a ‘YES’-instance is the satisfying assign-
ment. The certificate-checking machine M substitutes
the satisfying assignment into the formula and verifies
that the formula evaluates as ‘TRUE’. Thus, every satis-
fiable formula has a certificate, but every nonsatisfiable
instance is rejected by M no matter what certificate is
given.

S.A. Cook [2] proved that every problem in NP is
polynomially transformable to satisfiability. We say that
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decision problem F is polynomially transformable to F0

if there exists a Turing machine T that takes as input an
instance x of F and produces as output an instance x0

of F0, such that the running time of T is no more than
a polynomial in the size of the input, and such that x is
a ‘YES’-instance of F if and only if x0 is a ‘YES’-instance
of F0.

Cook’s result means that given any decision prob-
lem F in NP, there is a Turing machine M depending
on F that takes as input an instance x of F and proceeds
as follows. In polynomial time,M constructs a Boolean
formula x0 from x such that x0 is satisfiable if and only
x is a ‘YES’-instance of F. The construction of M is as
as follows. The Boolean formula x0 simulates the action
of the certificate-checking machine in on x. The actual
entries of the certificate are represented by unknown
Boolean variables, as are the entries on the tape ofM af-
ter the first move. The formula is composed of clauses
that require the Turing machine to obey all transition
rules and to end up halting with ‘YES’ as the output.

Thus, Cook’s theorem implies that if there were
a polynomial time algorithm for satisfiability, then
there would be a polynomial time algorithm for every
other problem in NP. Thus, the famous open question
‘is P = NP?’ is now reduced to the (apparently) simpler
question ‘is there a polynomial time algorithm for the
satisfiability problem?’

It is not yet (1999) known whether the answer to
either question in the last paragraph is ‘yes’. But many
in the field suspect that the answer is ‘no’, i. e., many
believe that there is no polynomial time algorithm for
satisfiability. If indeed it is proved some day that no
such polynomial time algorithm exists, we would say
that satisfiability is intractable.

A decision problem F is said to be NP-complete if it
has these two properties, namely
1) F is in NP; and
2) every problem in NP can be polynomially trans-

formed to F.
Cook’s result can be restated as: satisfiability is NP-
complete. Furthermore, since polynomial transforma-
tions can be composed, any problem F in NP to which
any known NP-complete problem F0 can be trans-
formed must itself be NP-complete. After Cook’s result
was announced, R.M. Karp [6] showed that many well-
known combinatorial problems, such as the Hamilto-
nian cycle problem (‘given an undirected graph, is there

a cycle containing each vertex exactly once?’) and the
max-clique problem (‘given an undirected graph and an
integer k, is there a set of k vertices that are all mutu-
ally connected by edges?’), are NP-complete. By 1979,
already thousands of problems were known to be NP-
complete andmany were catalogued in [3]. A proof that
a problem is NP-complete is regarded as strong evi-
dence of the problem’s intractability.

Although the first batch of NP-completeness proofs
applied to combinatorial problems, many continu-
ous optimization problems are also known to be NP-
complete; see � NP-complete problems and proof
methodology.

A generalization of ‘NP-complete’ is the notion of
‘NP-hard’. A problem F is said to beNP-hard if satisfia-
bility (or any other NP-complete problem) can be poly-
nomially transformed to F. Thus, an NP-hard problem
does not necessarily lie in NP. Indeed, the term NP-
hard is often used to describe problems that are not
even decision problems.

The Turing machine is not the only model of com-
plexity used in the literature. In fact, some feel that the
TM is inadequate for modeling continuous optimiza-
tion problems. Most continuous optimization prob-
lem are based on computation with real numbers, but
true real number computation is not possible with
a TM. One model of real number computation is the
information-based model. In this model, an algorithm
is composed of operations on real numbers. Operations
on real numbers are often counted as cost-free in this
model, and the only costly operation is the evaluation of
the functions defining the objective and constraints of
the optimization problem. The objective functions and
constraints are considered external black-box subrou-
tines that take as input a vector and return as output the
value of the function and possibly derivative values. In
information-based complexity, a parameter � > 0 that
specifies the desired degree of accuracy in the solution
is always part of the input, since the information-based
model rarely permits any problem to be solved exactly.
This information-based model was used to analyze the
ellipsoid method by its inventors D.B. Yudin and A.S.
Nemirovsky [7]. It has also been used to analyze com-
plexity of local optimization by S.A. Vavasis [12]. This
model has also been used extensively to analyze other
numerical algorithms not related to optimization, e. g.,
quadrature and other linear problems [9].
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A second model of computation is a real number
model in which each operation is unit cost, and in which
there is no concept of external black-box function eval-
uation. In this model it is possible to develop real num-
ber analogs of complexity classes P and NP, and also
a reasonable definition for NP-complete; see [1]. This
model can be used to analyze linear programming and
other problems specified by a finite number of real pa-
rameters. The complexity of linear programming prob-
lem in this model is not fully understood (see [13] and
[10]).

For a more detailed look at complexity in optimiza-
tion up to 1991, see [11]. For a more recent collection
of papers on this topic, see [8].
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Nowhere in optimization is the dichotomy between
convex and nonconvex programming more appar-
ent than in complexity issues for quadratic program-
ming. Quadratic programming, abbreviated QP, refers
to minimizing a quadratic function q(x) = x>Hx/2+
c>x subject to linear constraints Ax � b. The problem
is thus specified by the four-tuple (H,A, b, c) whereH is
a symmetric n × nmatrix, A is an m × nmatrix, b is an
m-vector and c is an n-vector. Minimizing a quadratic
function subject to convex quadratic constraints is also
an interesting problem and is considered at the end of
this article. The quadratic function q(x) is said to be
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convex if the matrix H is positive semidefinite. A spe-
cial case of a convex function is when H = 0, in which
case the problem is now called linear programming.

Convex quadratic programming inherits all the de-
sirable attributes of the general convex programming.
In particular, there is no local minimizer other than the
global minimizer(s). Furthermore, general convex pro-
gramming techniques like the ellipsoid method and in-
terior point methods can be applied.

With either the ellipsoid or interior point method,
convex quadratic programming can be solved in poly-
nomial time. In more detail, assume that (H, A, b, c)
contain all integer data so that the problem is finitely
represented for a Turing machine (see � Complexity
theory). Let L denote the length of the input data, that
is, the total number of digits to write (H, A, b, c). As-
sume L � m2 since H has m2 entries. Then M.K. Ko-
zlov et al. [9] showed that the ellipsoid algorithm of
A.S. Nemirovsky and D.B. Yudin [14] can solve a con-
vex QP instance in time O(m2L) iterations, where each
iteration requires O(m2) arithmetic operations on in-
tegers, each of which has at most O(L) digits. This re-
sult built on an analogous result for the LP case by L.G.
Hačijan (also spelled L.G. Khachiyan) [4]. Thus, the to-
tal running time of this algorithm is polynomial in the
size of the input. Note that the the global minimizer for
quadratic programming (either convex or nonconvex),
if it exists, can be written down with O(nL) digits, and
hence computing the true global minimizer in a Turing
machine setting is possible.

Later, S. Kapoor and P.M. Vaidya [6] and Y. Ye
and E. Tse [29] proved that an interior point method
can solve convex quadratic programming in polyno-
mial time under similar assumptions. This result built
on the earlier result for the LP case by N.K. Karmarkar
[7]. The best known running time for an interior point
method for convex QP is O(m1/2L) iterations, each it-
eration requiring O(m3) arithmetic operations on inte-
gers each of which has at most O(L) digits and is based
on work by J. Renegar [17].

The running times of both the ellipsoid and inte-
rior point algorithms are ‘weakly’ polynomial, meaning
that the number of arithmetic operations is bounded
by a polynomial in L rather than by a polynomial in
m and n. In contrast, polynomial time algorithms for
other problems like solving a system of linear equations
or finding a minimum flow a network are strongly poly-

nomial time, meaning that the number of operations is
bounded by a polynomial in the combinatorial dimen-
sion of the input data. A well-known open (1999) ques-
tion asks whether there is a strongly polynomial time
algorithm for convex QP (or, more specifically, for LP).
A strongly polynomial algorithm would involve a num-
ber of arithmetic operations polynomially bounded in
m, n, in which each operation involves integers with
a number of digits bounded by a polynomial in L. Some
progress related to this question is as follows. If the di-
mension n is restricted to a small integer, then QP can
be solved in time linear in m. This result is due to I.
Adler and R. Shamir [1] and builds on [10] and [2].
Since the constant of proportionality (or perhaps an ad-
ditive term) is exponential in n, this algorithm is not
so useful except when n � m. An example would be
quadratic programming arising from a geometric prob-
lem, such as finding the point in a 3D polyhedron clos-
est to the origin.

In the case of linear programming, a modified ellip-
soid algorithm has a number of operations depending
only on LA, where LA is the number of digits in A (i. e.,
the number of operations no longer depends on b or c),
a result due to É. Tardos [19] and extended in [25]. Fi-
nally, some special cases of quadratic programming are
known to be solvable in strongly polynomial time such
as the convex quadratic knapsack problem [5] which is:

8̂
<̂
ˆ̂:

min q1(x1)C � � � C qn(xn)
s.t. l � x � u;

b>x D �:

(1)

Here q1, . . . , qn are convex quadratic functions of one
variables (each specified by a quadratic and a linear co-
efficient) l, u, b, � are also part of the problem data.

Nonconvex quadratic programming is much harder
than convex quadratic programming. If H is not posi-
tive semidefinite, then the QP instance is said to be non-
convex. A special case of nonconvex problems is when
H is negative semidefinite, in which case the problem is
said to be concave quadratic programming. When H is
neither positive nor negative semidefinite, the problem
is indefinite. Nonconvex quadratic programming was
shown to be NP-hard by S. Sahni [18]. If the problem
is posed as a decision problem, then it lies in NP (and
is therefore NP-complete), a result due to S.A. Vava-
sis [20]. (See � Complexity theory or � NP-complete
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problems and proof methodology for the definitions of
NP-complete and NP-hard.) Even the problem of find-
ing a local minimizer is known to be NP-hard, a result
due to K.G. Murty and S.N. Kabadi [13].

Many restricted versions of the problem are stillNP-
hard. The nonconvex quadratic knapsack problem, that
is, (1) with general (not necessarily convex) quadratic
functions q1, . . . , qn, is NP-hard [18]. QP with only box
constraints, that is, minimize q(x) subject to l � x � u,
is also NP-hard. Similarly, minimizing q(x) subject to
simplicial constraints, that is, constraints x � 0 and x1+
� � � +xn = 1, is NP-hard as proved in [15] using a theo-
rem of T.S. Motzkin and E.G. Straus [12]. The simpli-
cial case is interesting because minimizing either a con-
cave or convex quadratic function on a simplex can be
solved in polynomial time. P.M. Pardalos and Vavasis
[16] showed that quadratic programming in which H
has a single negative eigenvalue (i. e., H is ‘almost’ pos-
itive semidefinite) is NP-hard.

The hardness results have motivated a search for ap-
proximation algorithms to nonconvex quadratic pro-
gramming problems. Vavasis [22,24] proposed ap-
proximation algorithms for concave and indefinite QP
in which the complexity depends exponentially on
the number of negative eigenvalues of H. An addi-
tional result is a fully polynomial time approximation
scheme for the indefinite knapsack problem. Ye [28]
gave a constant-factor polynomial time approximation
scheme for indefinite qua- dratic programming with
box constraints.

Because computing even a local minimum of
a quadratic programming instance is hard, several re-
searchers have looked at approximations and special
cases for the local minimization problem. J.J. Moré and
Vavasis [11] proved that a local minimizer for the con-
cave knapsack problem can be found in polynomial
time; this result was extended to the indefinite case in
[23]. Ye [28] gave a polynomial time algorithm to find
an approximate KKT point of general nonconvex QP.

So far we have considered only linear constraints.
A convex quadratic constraint, also called an ellipsoidal
constraint, is a constraint of the form (x � c)> A(x
� c) � 1, where A is a symmetric positive semidefi-
nite matrix. The problem of minimizing a nonconvex
quadratic function subject to a single ellipsoidal con-
straint is called the trust region problem and has re-
ceived extensive attention in the literature because al-

gorithms to solve this problem are often used as sub-
routines by general-purpose optimization algorithms.
A polynomial time algorithm for the trust region prob-
lem was proposed independently by Ye [27] and Kar-
markar [8]. The sense in which this algorithm is ‘poly-
nomial time’ is weaker than the analogous claim for
QP because in the trust region case, the optimizer x
cannot be written in a finite number of digits even if
the input data is all integer (because the solution may
be irrational). But Vavasis and R. Zippel [26] showed
nonetheless that this algorithm leads to a proof that the
associated decision problem lies in P. The trust region
problem is thus one of the very few nonconvex opti-
mization problem solvable in polynomial time. M. Fu,
Z.-Q. Luo and Ye [3] have considered generalizing this
result to more than one ellipsoidal constraint, although
the results are not as strong as the single-constraint
case.

All of the pre-1991 material in this article is covered
in more depth by [21].
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By composite nonsmooth optimization (CNSO) we
mean a class of optimization problems involving com-
posite functions of the form f (x) := g(F(x)), where
F: Rn ! Rm is a (differentiable) smooth map and
g: Rm ! R is a nonsmooth function. The function
g is often a nonsmooth convex function. Problems of
CNSO occur when solving nonlinear equations Fi(x) =
0, i = 1, . . . ,m, by minimizing the norm k F(x) k. Similar
problems arise when finding a feasible point of a system
of nonlinear inequalities Fi(x)� 0, i = 1, . . . ,m, by min-
imizing k F(x)+ k where FCi = max(Fi, 0). Composite
functions f also appear in the form of an exact penalty
function when solving a nonlinear programming prob-
lem. Another type of CNSO problem which frequently
arises in (electrical) engineering [4] is to minimize the
max-function maxiFi(x), where the maximum is taken
over some (finite) set. All these examples can be cast
within the structure of CNSO. Moreover, CNSO pro-
vides a unified framework in which to study theoretical
properties and convergence behavior of various numer-
ical methods for constrained optimization problems.
There have been many contributors to the study of
CNSO problems both in finite and infinite dimensions.
(See for example [2,6,7,10,11,13,15,16,19].) In this arti-
cle we only discuss different forms of composite model
problems in finite dimensions and provide a brief ac-
count of their first and second order Lagrangian theory
of CNSO problems. The implications for numerical op-
timization are not discussed here. For details on this
see, for instance, [1,6].

Real-Valued CNSO

Consider the problem

(P) min
x2Rn

g(F(x)):

Notably, A.D. Ioffe [7,8,9] provided the theoretical
foundation for CNSO problems in the case where the
function g is sublinear (convex plus positively homoge-
neous). Then J.V. Burke [2] extended the theory to the
case where g is convex. A fundamental local dualization
technique plays a significant role in the development of
first – and second order Lagrangian theory for (P). To
see the dualization result, let us define the Lagrangian
of (P) as

L(x; y�) D hy�; F(x)i � g�(y�);

where g� is the Fenchel conjugate of g [14]. Let

L0(z) D
˚
y� : y� 2 @g(F(z)); y�F 0(z) D 0

�

and let

L��(z) D
˚
y� : y� 2 @� g(F(z));



y�F 0(z)

 � �� ;

where F0(z) is the derivative of F at z, @g(y) is the convex
subdifferential of g at y, � > 0, � > 0 and @� g(F(z)) is the
�-subdifferential of g at F(z). The set L0(z) is the set of
Lagrange multipliers for (P) at z (see [2,11]). Define

���(x) :D max
y�2L��(z)

L(x; y�):

A general form of the Ioffe–Burke local dualization re-
sult [11] states that if g is a lower semicontinuous
convex function and F is a locally Lipschitzian and
(Gâteaux) differentiable function then the following
statements are equivalent:
i) g(F(x)) attains a local minimum at z.
ii) L0(z) 6D ; and ��� attains a local minimum at z, for

any � > 0, � > 0.
iii) L0(z) 6D ; and ��� attains a local minimum at z, for

some � > 0, � > 0.
These conditions also provide first order La-

grangian conditions for (P). Moreover, this local dual-
ization result and a generalized Taylor expansion of V.
Jeyakumar and X.Q. Yang [11] yield second order op-
timality conditions for (P). If g is a lower semicontinu-
ous convex function and F is a differentiable map with
locally Lipschitzian derivative F0 (i. e. C1, 1) then a nec-
essary condition for a 2 Rn to be a local minimizer of
(P) is

max
y�2L0(a)

Lıı(a; y�; u; u) � 0; 8u 2 K(a):

On the other hand if a 2 Rn, L0(a) 6D ; and

max
y�2L0(a)

�Lıı(a; y�; u;�u) > 0; 8u 2 D(a);

then a is a strict local minimizer of order 2 for (P), i. e.,
there exist � > 0, � > 0 such that whenever k x � a k <
�, f (x) � f (a)+ � k x� a k2. Here

K(a) D

8<
:u 2 Rn :

9t > 0;
g(F(a)C tF 0(a)u)
� g(F(a))

9=
; ;
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D(a) = {u 2 Rn: f 0(a; u)� 0}, and the directional deriva-
tive of f at a is given by f 0(a; d) = g0(F(a); F0(a)d). The
generalized second order directional derivative of L at a
in the directions (u, v) 2 Rn × Rn, L°°(a; u, v), is defined
by

lim sup
y!a; s!0

hrL(yC su); vi � hrL(y); vi
s

:

Special cases of these optimality conditions under twice
continuously differentiability hypothesis can be found
in [2,9]. Composite problems where the map F is C1, 1,
but is not necessarily twice continuously differentiable
are discussed in [19].

Extended Real-Valued CNSO

A composite problem formwhich has greater versatility
than the traditional form (P) is the following nonfinite
valued problem [15,16]

(PE)

8̂
<̂
ˆ̂:

min g(F(x))
s.t. x 2 Rn ;

F(x) 2 dom(g);

where g: Rm ! R [ {+1} is a convex function and F:
Rn ! Rm is a smooth map. For instance, constrained
CNSO problems of the form,
8̂
<̂
ˆ̂:

min g0(F0(x))
s.t. x 2 C;

g j(Fj(x)) � 0; j D 1; : : : ;m;

studied in [10,17], can be re-written in the form of (PE)
[11]. Here C is a closed convex subset of Rn, gj, j =
0, . . . , m, are locally Lipschitz functions and Fj, j = 0,
. . . , m, are differentiable functions. Optimality condi-
tions for (PE) can be derived by reducing (PE) to a real-
valued minimization problem as it was shown in [3].
This requires a regularity condition known as a con-
straint qualification in the nonlinear programming lit-
erature. The following regularity condition, introduced
in [15] as a basic constraint qualification, permits one
to establish a reduction theorem. If g: Rm! R [ {+1}
is a lower semicontinuous convex function and if F
: Rn ! Rm is locally Lipschitzian then the function
f (x) := g(F(x)) is said to satisfy the basic constraint
qualification at a point x 2 dom(f ) if the only point

w 2 N(F(x)|dom(g)) for which 0 2 w| @F(x) is w = 0,
where N(F(x)|dom(g)) is the normal cone to dom(g)
at F(x) and @F(x) is the generalized Jacobian of F at x
[5]. The basic constraint qualification is equivalent to
theMangasarian–Fromovitz constraint qualification for
the standard nonlinear programming problem with in-
equality and equality constraints (see [15]). The Burke–
Poliquin reduction result gives us the following second
order conditions for (PE). For problem (PE), suppose
that F(a) 2 dom(g), g is lower semicontinuous convex
and F is C1, 1. Then the following statements (i) and (ii)
hold.
i) If a is a local minimizer of (PE) at which the basic

constraint qualification holds, then

max
y�2L0(a)

Lıı(a; y�; u; u) � 0; 8u 2 K(a):

ii) If L0(a) 6D ; and

max
y�2L0(a)

�Lıı(a; y�; u;�u) > 0; 8u 2 D(a);

then a is a strict local minimizer of order 2 for (PE).
With the aid of a representation condition, second or-
der conditions can also be obtained for a global mini-
mizer of (PE) in the case where F is twice strictly dif-
ferentiable. This was shown in [19]. The problems (PE)
have also been extensively studied by R.T. Rockafellar
[15,16] in the case where F is twice continuously differ-
entiable and g is a proper convex function that is piece-
wise linear quadratic in the sense that the dom(g) is ex-
pressible as the union of finitely many polyhedral sets,
relative to each of which g is given by the formula that
is quadratic (or affine).

Multi-Objective CNSO

Nonsmooth vector optimization problems (cf. � Vec-
tor optimization) where the functions involved are
compositions of convex functions and smooth func-
tions arise in various applications. The following model
problem was examined in [12]:

(MP)

8̂
ˆ̂̂<
ˆ̂̂̂
:

V �min ( f1(F1(x)); : : : ; fp(Fp(x)))
s.t. x 2 C;

g j(Gj(x)) � 0;
j D 1; : : : ;m;

where C is a convex subset of Rn, f i, gj are real val-
ued convex functions on Rn, Fi, Gj are locally Lips-
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chitz and differentiable functions fromRn into Rn. Note
here that ‘V-min’ stands for vector minimization. This
model is broad and flexible enough to cover many com-
mon types of vector optimization problems. In par-
ticular, this model includes the penalty representation
of the standard vector nonlinear programming prob-
lems, examined in [18], and many vector approxima-
tion problems. By employing the Clarke subdifferential,
first order Lagrangian optimality and duality results can
be discussed as it was shown in [12]. Second order opti-
mality conditions for a special case of the problem (MP)
are discussed in [19,21]

See also

� Nonconvex-Nonsmooth Calculus of Variations
� Nonsmooth and Smoothing Methods for Nonlinear

Complementarity Problems and Variational
Inequalities

� Solving Hemivariational Inequalities by Nonsmooth
Optimization Methods
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Many problems that arise in operations research and
related fields are combinatorial in nature: problems
where we seek the optimum from a very large but finite
number of solutions. Sometimes such problems can be
solved quickly and efficiently, but often the best solu-
tion procedures available are slow and tedious. It there-
fore becomes important to assess how well a proposed
procedure will perform.

The theory of computational complexity addresses
this issue. Complexity theory is a comparatively young
field, with seminal papers dating from 1971–1972
([1,5]). Today, it is a wide field encompassing many
subfields. For a formal treatment, see [6]. As we shall
see, the theory partitions all realistic problems into two
groups: the ‘easy’ and the ‘hard’ to solve, depending on
how complex (hence how fast or slow) the computa-
tional procedure for that problem is. The theory defines
still other classes, but all but the most artificial mathe-
matical constructs fall into these two. Each of them can
be further subdivided in various ways, but these refine-
ments are beyond our scope. It should be noted that we
have not here used the accepted terminology, which is
introduced below.

Definitions

A problem is a well-defined question to which an unam-
biguous answer exists. Solving the problem means an-
swering the question. The problem is stated in terms of
several parameters, numerical quantities which are left
unspecified but are understood to be predetermined.
They make up the data of the problem. An instance
of a problem gives specified values to each parameter.
A combinatorial optimization problem, whether maxi-
mization or minimization, has for each instance a fi-
nite number of candidates from which the answer, or
optimal solution, is selected. The choice is based on
a real-valued objective function which assigns a value
to each candidate solution. A decision problem or recog-

nition problem has only two possible answers, YES or
NO.

Example 1 For example, consider the problem of solv-
ing a given system of linear equations. Stated as a ques-
tion, it becomes: ‘what is the solution to A x = b?’ with
parameters m, n, ai, j, bi, xj where i = 1, . . . , m, j = 1, . . . ,
n. An instance might be: ‘What is the solution to 7x1 �
3x2 = 16 and 2x1 + 5x2 = 9?’ with parameters m = 2,
n = 2 etc.

This is neither an optimization problem nor a de-
cision problem. An example of an optimization prob-
lem is a linear program, which asks: ‘what is the greatest
value of cx subject toAx� b?’ To make this a combina-
torial optimization problem, we might make the vari-
able x bounded and integer-valued so that the number
of candidate solutions is finite. A decision problem is:
‘does there exist a solution to the linear program with
cx � k?’

To develop complexity theory, it is convenient to state
all problems as decision problems. An optimization
(say, maximization) problem can always be replaced by
a sequence of problems of determining the existence of
solutions with values exceeding k1, k2, . . . . An algorithm
is a step-by-step procedure which provides a solution
to a given problem; that is, to all instances of the prob-
lem. We are interested in how fast an algorithm is. We
now introduce a measure of algorithmic speed: the time
complexity function.

The Nature of the Time Complexity Function

Complexity theory does not measure the speed of an
algorithm directly; that would depend on the speed of
the computer being used and other extraneous factors.
Rather, it considers the rate of growth of the solution
time as a function of the instance size. Since different
instances of the same size may require dramatically dif-
ferent solution times, we use the ‘worst case’ or longest
time that any instance of that size requires. This maxi-
mal time needed to solve a problem instance, as a func-
tion of its size, is called the time complexity function
(TCF) or simply the complexity of the algorithm. When
we speak of the complexity of the problem, we mean
the complexity of the most efficient algorithm (known
or unknown) that solves it.

We need to clarify what we mean by the ‘time re-
quired’ and the ‘size of an instance’. First, note that
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we always think of solving problems using a computer.
Thus, an algorithm is a piece of computer code. Sim-
ilarly, the size of a problem instance is technically the
number of characters needed to specify the data, or the
length of the input needed by the program. For a deci-
sion problem, an algorithm receives as input any string
of characters, and produces as output either YES or NO
or ‘this string is not a problem instance’. An algorithm
solves the instance or string in time m if it requiresm ba-
sic operations to reach one of the three conclusions and
stop.

In order to avoid detailed consideration of the ex-
act input length (are binary or alphanumeric characters
used? what encoding scheme is used?), as well as avoid-
ing precise measurement of solution times, the theory
requires no more than orders of magnitude of these
measurements. Recall, we are only concerned with the
rate of increase of solution time as instances grow. For
example, we may ask how much longer it takes if we
double the instance size. As long as we enter data con-
sistently, an instance that is twice as big as another un-
der one data entry scheme remains twice as big under
another. (For a rigorous proof and other technical is-
sues, see [4]). Indeed, it is customary to use as a surro-
gate for instance size, any number that is roughly pro-
portional to the true value. We shall use the symbol n,
n = 1, 2, . . . , to represent the size of a problem instance.
In summary, for a decision problem˘ :

Definition 2 The time complexity function (TCF) of
algorithm A is:

TA(n) D

(
maximal time for A
to solve any string of length n:

In what follows, the big oh notation (O) introduced in
[3] will be used when expressing the time complexity
function. We say that, for two real-valued functions f
and g, ‘f (n) is O(g(n))’, or ‘f (n) is of the same order as
g(n)’, if |f (n)| � k � |g(n)| for all n � 0 and some k > 0.

Polynomial Versus Exponential Algorithms

An efficient, polynomially bounded, polynomial time al-
gorithm, or simply a polynomial algorithm, is one which
solves a problem instance in time bounded by a power
of the instance size. Formally:

Definition 3 An algorithm A is polynomial time if
there exists a polynomial p such that

TA(n) � p(n); 8n 2 ZC � f1; 2; : : :g:

More specifically, an algorithm is polynomial of degree
c, or has complexity O(nc), or runs in O(nc) time if, for
some k > 0, the algorithm never takes longer than knc

(the TCF) to solve an instance of size n.

Definition 4 The collection P comprises all problems
for which a polynomial time algorithm exists.

Problems which belong to P are the ones we referred
to earlier as ‘easy’. All other algorithms are called expo-
nential time or just exponential, and problems for which
nothing quicker exists are ‘hard’. Although not all al-
gorithms in this class have TCF’s that are technically
exponential functions, we may think of a typical one as
running inO(cp(n)) for some polynomial p(n). Other ex-
amples of exponential rates of growth are nn and n!.

The terms ‘hard’ and ‘easy’ are somewhat mislead-
ing, even though exponential TCFs clearly lead to far
more rapid growth in solution times. Suppose an ‘easy’
problem has an algorithm with running time bounded
by, say kn5. Such a TCF may not be exponential, but
it may well be considered pretty rapidly growing. Fur-
thermore, some algorithms take a long time to solve
even small problems (large k), and hence are unsatis-
factory in practice even if the time grows slowly. On the
other hand, an algorithm for which the TCF is expo-
nential is not always useless in practice. Recall, the con-
cept of the TCF is a worst case estimate, so complexity is
only an upper bound on the amount of time required by
an algorithm. This is a conservative measure and usu-
ally useful, but it is too pessimistic for some popular
algorithms. The simplex algorithm for linear program-
ming, for example, has a TCF that is O(2n), but it has
been shown that for the average case the complexity is
only O(n). Thus, the algorithm is actually very fast for
most problems encountered.

Despite these caveats, exponential algorithms gen-
erally have running times that tend to increase at an ex-
ponential rate and often seem to ‘explode’ when a cer-
tain problem size is exceeded. Polynomial time algo-
rithms usually turn out to be of low degree (O(n3) or
better), run pretty efficiently, and are considered desir-
able.
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Reducibility

A problem can be placed in P as soon as a polyno-
mial time algorithm is found for it. Sometimes, rather
than finding such an algorithm, we may place it in P
by showing that it is ‘equivalent’ to another problem
which is already known to be in P. We explain what
wemean by equivalence between problemswith the fol-
lowing definitions.

Definition 5 A problem ˘ 0 is reducible or trans-
formable to a problem˘ (˘ 0 /˘ ) if, for any instance
I0 of˘ 0, an instance I of˘ can be constructed in poly-
nomially bounded time, such that the solution to I is
sufficient to find the solution to I0 in polynomial time.

We call the construction of the I that corresponds to I0

a polynomial transformation of I0 into I.

Definition 6 Two problems are equivalent if each is
reducible (or simply reduces) to the other.

Since reduction, and hence equivalence, are clearly
transitive properties, we can define equivalence classes
of problems, where all problems in the same equivalence
class are reducible (or equivalent) to each other. Con-
sider polynomial problems. Clearly, for two equivalent
problems, if one is known to be polynomial, the other
must be, too. Also, if two problems are each known
to be polynomial, they are equivalent. This is because
any problem ˘ 0 2 P is reducible to any other problem
˘ 2 P, or indeed to any ˘ 62 P, in the following triv-
ial sense. For any instance I0 of ˘ 0, we can pick any
instance of ˘ , ignore its solution, and find the solu-
tion to I0 directly. We conclude that P is an equivalence
class.

We state a third simple result for polynomial prob-
lems as a theorem.

Theorem 7 If˘ 2 P, then ˘ 0 /˘ )˘ 0 2 P.

Given any instance I0 of ˘ 0, one can find an instance I
of ˘ by applying a polynomial time transformation to
I0. Since ˘ 2 P, there is a polynomial time algorithm
that solves I. Hence, using the transformation followed
by the algorithm, I0 can be solved in polynomial time.

Classification of Hard Problems

In practice, we do not usually use reduction to show
a problem is polynomial. We are more likely to start

optimistically looking for an efficient algorithm directly,
which may be easier than seeking another problem
known to be polynomial, for which we can find an ap-
propriate transformation. But suppose we cannot find
either an efficient algorithm or a suitable transforma-
tion. We begin to suspect that our problem is not ‘easy’
(i. e., is not a member of P). How can we establish that
it is in fact ‘hard’? We start by defining a larger class
of problems, which includes P and also all the difficult
problems we ever encounter. To describe it, consider
any combinatorial decision problem. For a typical in-
stance, there may be a very large number of possible so-
lutions which may have to be searched. Picture a candi-
date solution as a set of values assigned to the variables
x = (x1, . . . , xn). The question may be ‘for a given vector
c is there a solution x such that cx � B?’ and the algo-
rithmmay search the solutions until it finds one satisfy-
ing the inequality (whereupon it stops with the answer
YES) or exhausts all solutions (and stops at NO).

This may well be a big job. But suppose we are told
‘the answer is YES, and here is a solution x that satis-
fies the inequality’. We feel we must at least verify this,
but that is trivial. Intuitively, even for the hardest prob-
lems, the amount of work to check that a given candi-
date solution confirms the answer YES should be small,
even for very large instances. We will now define our
‘hard’ problems as those which, though hard to solve,
are easy to verify, where as usual ‘easy’ means taking
a time which grows only polynomially with instance
size. To formalize this, let:

VA(n) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

maximal time for A
to verify that a given solution
establishes the answer YES
for any instance of length n:

Definition 8 An algorithm Ã is nondeterministic poly-
nomial time if there exists a polynomial p such that for
every input of length n with answer YES, VÃ(n)� p(n)

Definition 9 The collection NP comprises all prob-
lems for which a nondeterministic polynomial algo-
rithm exists.

It may be noted that a problem in NP is solvable
by searching a decision tree of polynomially bounded
depth, since verifying a solution is equivalent to trac-
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ing one path through the tree. From this, it is easy to
see that P � NP. Strangely, complexity theorists have
been unable to show that P � NP; it remains possible
that all the problems in NP could actually be solved by
polynomial algorithms, so that P = NP. However, since
so many brilliant researchers have worked on so many
difficult problems in NP for so many years without suc-
cess, this is regarded as being very unlikely. Assuming
P 6D NP, as we shall hereafter, it can be shown that the
problems in NP include an infinite number of equiva-
lence classes, which can be ranked in order of increas-
ing difficulty; where an equivalence class C is ‘more dif-
ficult’ than another class C0 if, for every problem ˘ 2

C and every˘ 0 2 C0,˘ 0 /˘ but˘ 6/ ˘ 0. There also
exist problems that cannot be compared: neither ˘ /
˘ 0 nor˘ 0 /˘ .

Fortunately, however, all problems that arise natu-
rally have always been found to lie in one of two equiv-
alence classes: the ‘easy’ problems in P, and the ‘hard’
ones, which we now define.

The class of NP-hard problem (NPH) is a collection
of problems with the property that every problem inNP
can be reduced to the problems in this class. More for-
mally,

Definition 10

NPH D
˚
˘ : 8˘ 0 2 NP : ˘ 0 / ˘

�
:

Thus each problem in NPH is at least as hard as any
problem in NP. We know that some problems in NPH
are themselves in NP, though some are not. Those that
are include the toughest problems in NP, and form the
class of NP-complete problem (NPC). That is,

Definition 11

NPC D

8̂
<
:̂
˘ :

(˘ 2 NP)
and

(8˘ 0 2 NP : ˘ 0 / ˘ )

9>=
>;
:

The problems in NPC form an equivalence class. This
is so because all problems in NP reduce to them, hence,
since they are all in NP, they reduce to each other. The
class NPC includes the most difficult problems in NP.
As we mentioned earlier, by a surprising but happy
chance, all the problems we ever encounter outside the

most abstract mathematics turn out to belong to either
P or NPC.

Using Reduction to Establish Complexity

When tackling a new problem˘ , we naturally wonder
whether it belongs to P or NPC. As we said above, to
show that the problem belongs to P, we usually try to
find a polynomial time algorithm, though we could seek
to reduce it to a problem known to be polynomial. If we
are unable to show that the problem is in P, the next
step generally is to attempt to show that it lies in NPC;
if we can do so, we are justified in not developing an
efficient algorithm. To do this, clearly no direct algo-
rithmic development is possible, and only a reduction
argument will do. This is based on the following theo-
rem, which should be clear enough to require no proof.

Theorem 12 8˘ ˘ 0 2 NP : (˘ 0 2 NPC) and (˘ 0 /
˘ ) imply˘ 2 NPC.

Thus, we need to find a problem ˘ 0 2 NPC and show
˘ 0 / ˘ , thereby demonstrating that ˘ is at least as
hard as any problem in NPC. To facilitate this, we need
a list of problems known to be in NPC. Several hun-
dred are listed in [2] in a dozen categories such as
graph theory, mathematical programming, sequencing
and scheduling, number theory, etc., and more are be-
ing added all the time. Even given an ample selection,
a good deal of tenacity and ingenuity are needed to pick
one with appropriate similarities to ours and to fill in
the precise details of the transformation.

Of course, to build up the membership in NPC us-
ing Theorem 12, we need other problems that have al-
ready been show to belong to that class. To begin this
process, at least one problem needs to be in NPC. It
was S.A. Cook [1] who showed that the satisfiability
problem is NP-complete, using direct arguments that
did not involve reduction. This very important result is
called Cook’s theorem. For a proof, see [2].

As a simple illustration of reduction, we show that
the traveling salesperson decision problem (TSP) is in
NPC. To do so, we first select a closely related problem,
the Hamiltonian circuit problem (HCP), which we as-
sume has already been shown to be NP-complete. We
then find a reduction of HCP to TSP. The problems are
defined as follows.
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Definition 13 (TSP, traveling salesperson problem).
Instance:

� a positive integer n;
� a finite set C = {c1, . . . , cn} of ‘cities’;
� ‘distances’, dij 2 Z+. 8i, j : ci, cj 2 C;
� a bound B 2 Z+.
Question: Does there exist a tour (i. e., a closed path
that visits every city exactly once), of length no greater
than B?

Definition 14 (HCP, Hamiltonian circuit problem)
Instance: A graph G = (V , E), where V is the set of m
vertices, and E the set of edges.

Question: Does G contain a Hamiltonian circuit,
i. e., a tour that traverses all vertices exactly once?

Example 15 To show: HCP/ TSP.
In TSP, we have a complete graph and seek the

shortest tour, whereas in HCP, given an arbitrary graph
we require any tour. Thus, given the challenge of show-
ing that the traveling salesperson problem (or the deci-
sion version of it) isNP-complete, we have found a sim-
ilar problem whose membership in NPC is already es-
tablished. We may still be unable to find a polynomial
transformation fromHCP, in which case another prob-
lem must be sought. A transformation of ˘ 0 to ˘ is
a way of computing each parameter of ˘ in terms of
the parameters of˘ 0. In this case, the reduction is rela-
tively simple. The parameters of HCP are:
� m = cardinality V ;

� E D
�
(i; j) : G contains an arc

between vertices i; j

	
:

The parameters of TSP are computed as follows:
� n =m;

� di j D

(
1 (i; j) 2 E;
N otherwise;

� B =m.
Here,N can be any number larger than 1; say, 2. Clearly,
the shortest possible tour in TSP has length m, and this
only occurs when arcs in E are used exclusively; that is,
when a tour in HCP exists.

To complete the reduction, we need to show that the
transformation can be performed in polynomial time.
For that, given a pair of nodes in TSP, we need to check
if an arc exists in HC, and this requires time

O
�
m(m � 1)

2

�
D O(m2):
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Concave programming constitutes one of the most fun-
damental and intensely-studied problem classes in de-
terministic nonconvex optimization. There are at least
three reasons for this. First, many of the mathematical
properties of concave programming are intriguingly at-
tractive. Some are even identical to properties of lin-
ear programming. Second, concave programming has
a remarkably broad range of direct and indirect appli-
cations. Third, the algorithmic ideas used in concave
programming have played and continue to play an ac-
tive and often fundamental role in the development of
solution procedures for other types of nonconvex pro-
gramming problems.

The concave programming, or concave minimiza-
tion, problem (CMP) can be written

(
globmin f (x);

s.t. x 2 D;

whereD is a nonempty, closed convex set in Rn and f is
a real-valued, concave function defined on some open
convex set A in Rn that contains D. The goal in CMP is
to find the global minimum value that f achieves over
D, and, if this value is not equal to �1, to find, if it
exists, at least one point in D that achieves this value.
In many applications, D is compact and A equals all of
Rn. CMP invariably contains many points in D that are
local, but not global, minimizers of f over D. For this
reason, CMP is an example of a (multi-extremal) global
optimization problem [7].

The application of standard algorithms designed
for solving constrained convex programming problems
generally will fail to solve CMP. Even instances of
CMPwith relatively simple components can apparently
present very significant solution challenges. For exam-
ple, B. Kalantari [8] has shown that in problems involv-
ing the minimization of concave quadratic functions
over rectangles in Rn, an exponential number of ex-
treme point local minima can exist. Additionally, P.M.
Pardalos and G. Schnitger [13] have shown that mini-
mizing a concave quadratic function over a hypercube
is an NP-hard problem.

Although CMP is more difficult to solve than a con-
vex programming problem, it possesses some highly in-
teresting, special mathematical properties. A number of
these properties have been exploited by researchers to
create successful algorithms for solving the problem.

For instance, if D contains at least one extreme
point, and CMP has at least one global optimal solu-
tion, then there must exist a global optimal solution
which is an extreme point ofD [14]. This is perhaps the
most important and striking property of concave min-
imization problems. As a result of this property, just
as in linear programming, if CMP has a global opti-
mal solution, then one can confine the search for such
a solution to the set of extreme points of D, provided
that this set is nonempty. This property holds, as in lin-
ear programming, even when D is unbounded. A num-
ber of algorithms for CMP are based upon this prop-
erty.

Another highly important property for CMP is that
ifD is a compact set, then CMPmust have a global opti-
mal solution which is an extreme point ofD. This is per-
haps the most widely-known theoretical result in con-
cave minimization [1]. Like the property stated in the
previous paragraph, it forms the basis for a number of
important concave minimization algorithms.

For cases where D is a polyhedron, possibly un-
bounded, that contains at least one extreme point, it
has been shown that either CMP has a global optimal
solution which is an extreme point of D, or CMP must
be unbounded and f must be unbounded from below
over some extreme direction of D. Notice that the same
property, remarkably, holds in the case of linear pro-
gramming. This property is used by a large number
of the algorithms designed to solve CMP when D is
a nonempty polyhedron.

CMP displays a remarkable diversity of applica-
tions. Each application is either direct or indirect. By di-
rect, wemean that the original model formulation takes
the form of CMP immediately or, if not, with only rela-
tively simple algebraic manipulations. The indirect ap-
plications involve problems whose direct formulations
do not take the form of CMP, but existing theory can
be used to reformulate these problems in the form of
CMP.

Some of the oldest and most diverse direct applica-
tions of CMP belong to a class of problems called fixed
charge problems. In these problems, the objective func-
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tion f is separable, i. e., it is of the form

f (x) D
nX

iD1

fi(xi) :

For each i = 1, . . . , n, in these problems f i is a concave
function on {xi 2 R: xi � 0} of the form

fi(xi) D

(
0 if xi D 0;
ci C wi(xi) if xi > 0;

where ci > 0 is the fixed setup cost of undertaking activ-
ity i at a positive level, and wi(xi) is a continuous con-
cave function on {xi 2 R : xi > 0} that represents the
variable cost of undertaking the activity at level xi.

When the functions wi(xi), i = 1, . . . , n, are linear,
the classical linear fixed charge problem is obtained.
Some of the oldest applications of concave minimiza-
tion involve solving problems of this type. Among these
are applications to transportation planning, site selec-
tion, production lot sizing and network design. For
cases where at least one of the functions wi(xi), i = 1, . . . ,
n, is piecewise linear, several types of applications have
been reported. Included among these are problems in-
volving price breaks, such as bid evaluation problems,
certain inventory planning problems and various plant
location problems. When wi(xi) is a general concave
function for some i = 1, . . . , n, applications involving
economies of scale, for instance, can be solved.

More recently, CMP has been directly applied to
a class of problems called multiplicative programming
problems. These are problems of the form CMP where

f (x) D
pY

jD1

f j(x) (1)

for some set of p � 2 functions f j, j = 1, . . . , p, that are
each nonnegative over D. Notice that if fk(x) D 0 for
some k 2 {1. . . . , p} and some x 2 D, then it is easy to
see that the global minimum value for CMP is 0, and
x is a global optimal solution. Therefore, it is generally
assumed in multiplicative programming problems that
each function f j is positive over D. Let us make this as-
sumption henceforth.

The objective function (1) of a multiplicative pro-
gram is generally not a concave function. But, when
each function f j, j = 1, . . . , p, is a concave function on

Rn, some simple transformations of (1) yield concave
functions over D. For instance, if, for each x 2 D, we
define w1 and w2 by

w1(x) D ln f (x) D
pX

jD1

ln f j(x);

w2(x) D [ f (x)]
1
p ;

respectively, then, whenever each f j, j = 1, . . . , p, is
a concave function on Rn, both w1 and w2 are concave
functions on D [3,10]. Thus, by using w1 or w2, multi-
plicative programming problems in which f j, j = 1, . . . ,
p, are concave functions can be easily transformed to
concave minimization problems.

Various applications of multiplicative program-
ming problems with concave or linear functions f j, j =
1, . . . , p, in (1) have arisen, especially since the 1960s.
For example, the linear case has been applied to the
problem of optimizing value functions for multiple ob-
jective programming problems subject to linear or non-
linear constraints. For p = 2, the linear case has been
used to help solve the modular design problem, to de-
sign integrated circuit chips and to select bond port-
folios. The concave case has been used to analyze and
solve a number of problems in microeconomics.

Subject to occasional restrictions, large classes of in-
teger programming problems can be converted by var-
ious means into the form of CMP and solved as con-
cave minimization problems. As a result, these integer
programming problems, indirectly, are applications of
concave minimization. The transformation processes
used to accomplish the conversion, however, can be
rather involved. They may also increase the size of
the original problem [4], and they may call for choos-
ing values for parameters that are difficult to deter-
mine [5,9].

In particular, by using a certain general transfor-
mation process, any feasible linear integer or quadratic
integer programming problem over a polyhedron with
nonnegative, bounded variables can be converted into
the form of CMP and solved as a concave minimiza-
tion problem. By using more customized conversion
processes, linear zero-one programs, quadratic assign-
ment problems, and other special integer programming
problems can also be transformed to the form of CMP
and solved as concave minimization problems. The spe-
cialized transformations generally take advantage of
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some aspect of the original integer programming prob-
lem that the general processes ignore.

There are many other indirect applications of CMP,
including d.c. optimization, indefinite quadratic pro-
gramming, and bilinear programming, for instance. For
further details and additional direct and indirect appli-
cations, see [1,2,6,7,11,12].

To solve CMP, a large number of algorithms have
been developed. Many of these rely on one or more of
the following four approaches.

In the cutting plane approach, a local minimum for
f over D is found. Subsequently, a hyperplane is con-
structed and used to cut off all points of D whose ob-
jective function values are not less than that of the local
minimum. This yields a new closed convex set D1 � D.
This process is then repeated with D1 in the role of D.
By iterating this process, the portion of D remaining to
be explored is progressively reduced. Termination oc-
curs when it can be shown that f (y) � f (xk) for all y 2
Dk, where Dk is the portion of D remaining at iteration
k, and xk is the local minimum found through iteration
k with the smallest objective function value.

In a typical outer approximation approach, D is as-
sumed to be compact. To initiate the approach, a simple
bounded polyhedron P1 containing D whose vertices
can be enumerated is constructed. A vertex v1 of P1 of
minimum objective function value among all of the ver-
tices of P1 is found. This gives a lower bound f (v1) for
the optimal value of CMP. If v1 2 D, v1 is a global op-
timal solution for CMP and termination occurs. Other-
wise, a new bounded polyhedron P2 � P1 is constructed
that contains D, and its vertices are enumerated. With
P2 in the role of P1, the process is repeated. By repeating
this process, a sequence of telescoping bounded poly-
hedra containing D is obtained. Termination occurs in
the first iteration k where the vertex vk found that min-
imizes f over all of the vertices of Pk lies in D.

In inner approximation (polyhedral annexation) ap-
proaches for CMP, D is assumed to be a bounded poly-
hedron. Typically, at each major iteration of an inner
approximation algorithm, a local minimum extreme
point solution x for CMP is available. A sequence of
expanding inner approximating compact polyhedra for
(D \ G) is constructed via a series of subiterations,
where G D fx 2 Rn : f (x) � f (x)g. During this pro-
cess, either an improved local minimum extreme point
x is found, or, after k subiterations, the algorithm de-

tects that D� Pk, where Pk is the current inner approx-
imation of (D\G). In the former case, x replaces x and
a new major iteration begins. In the latter case, since Pk

� (D \ G), it follows that D � G, and the algorithm
therefore terminates with the global optimal solution x.

In the branch and bound approaches for CMP, D
is repeatedly subdivided into finer and finer partitions.
A lower bound for f over each partition element is cal-
culated. The lowest of these lower bounds at any step k
of the process gives a global lower bound LBk for f over
D. At any stage, typically some feasible solutions for
CMP have been detected. A feasible solution y with the
smallest f value among all feasible solutions detected
through any point in the algorithm is always available.
This solution is called the incumbent solution. When,
at some step k, the inequality LBk � f (y) holds for the
first time, the algorithm stops and returns the global op-
timal solution y.

Details concerning these and other solution ap-
proaches can be found in [1,2,6,7].
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Introduction

Conjugate-gradient methods (CGmethods) are used to
solve large-dimensional problems that arise in compu-
tational linear algebra and computational nonlinear op-
timization. These two subjects share a broad common
frontier, and one of the most easily traversed crossing
points is via the following simple observation: the prob-
lem of solving a system of linear equations Ax = b for
the unknown vector x 2 Rn, where A is a positive defi-
nite, symmetric matrix and b is a given vector, is math-
ematically equivalent to finding the minimizing point
of the strictly convex quadratic function

q(x) D �b>xC
1
2
x>Ax:

The linear CG method for solving the system of lin-
ear equations is able to capitalize on this equivalent
optimization formulation. It was developed in the pi-
oneering 1952 paper of M.R. Hestenes and E.L. Stiefel
[11] who, in turn, cite antecedents in the contributions
of several other authors (see [9]). The method fell out of
favor with numerical analysts during the 1960s because
it did not compete with direct methods, in particu-
lar, Gaussian elimination, but it continued to be widely
used in real-world applications by specialists in other
areas. Interest in CG as an iterative method, down-
playing its finite-termination properties, revived in the
1970s when the solution of large scale linear systemswas
coming to the forefront of academic research.

The nonlinear CGmethod extends the linear CG ap-
proach to the problem of minimizing a smooth, non-
linear function f (x), x 2 Rn, where n can be large. It
was developed in another landmark article published
in 1964 by R. Fletcher and C. Reeves [8]. Optimization
techniques for this class of problems, which are inher-
ently iterative in nature, form a direction of descent at
an approximation to the solution (the current iterate),
and search along this direction to obtain a new iterate
with an improved function value. The Fletcher–Reeves
algorithm combined a search direction derived from the
Hestenes–Stiefel approach with an efficient line search
procedure along this direction vector adapted from the
1959 variable-metric breakthrough algorithm of W.C.
Davidon [6]. The resulting CG algorithm was a marked
enhancement of the classical steepest descent method
of A.-L. Cauchy.
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Like steepest descent, the nonlinear CG method
is storage-efficient and requires only a few n-vectors
of computer storage beyond that needed to specify
the problem itself. During the three decades after its
discovery, a large number of storage-efficient nonlin-
ear CG-related algorithms were proposed. In particu-
lar, a structural connection between conjugate-gradient
and variable-metric techniques for defining search di-
rection vectors provided the springboard for effective
new families of variable-storage/limited-memory algo-
rithms and affine-reduced-Hessian algorithms that oc-
cupy a middle ground.

These three classes of algorithms, namely, linear
CG, nonlinear CG and nonlinear CG-related, will be
discussed in the respective Sections below.

Notation and Preliminaries

Lowercase boldface letters, e. g., x, denote vectors, and
uppercase boldface letters, e. g., A, denote symmetric,
positive definite matrices. The residual at x of the linear
systemAx= b is r =Ax� b. It equals the gradient vector
g = �b + Ax of the strictly convex, quadratic form

q(x) D �b>xC
1
2
x>Ax

at x. The gradient vector of q vanishes only at the
unique solution A�1b of the linear system.

Linear CG Algorithms

A basic CG algorithm for solving the system of linear
equations Ax = b, where A is a positive definite, sym-
metric matrix, is as follows:

(Initialization)
0 x1 = arbitrary;

r1 = residual of linear system at x1;
d1 = �r1;
(Iteration i)

1 xi+1 = unique minimazing point of q on
halfline through xi along direction di ;

2 ri+1 = residual of linear system at xi+1;
3 ˇi = jjri+1jj2/jjri jj2;
4 di+1 = �ri+1 + ˇidi .

In the computational linear algebra setting, the matrix
A is provided exogenously. The residual ri+1, at step 2, is
computed as Axi+1 � b or else obtained by updating ri.

The direction di is always a descent direction for q at xi.
At step 1, the minimizing point is computed as follows:

˛i D �
r>i di

d>i Adi
; xiC1 D xi C ˛idi :

There are numerous variants on this basic algorithm
that seek to enhance convergence through problem pre-
conditioning (transformation of variables), to improve
algorithm stability and to solve related computational
linear algebra problems. A contextual overview and fur-
ther references can be found in [2].

Here our focus is optimization. In this setting, the
residual at xi+1 is given its alternative interpretation
and representation as the gradient vector gi+1 of q at
xi+1, and this gradient is assumed to be provided ex-
ogenously. The minimizing point at step 1 is computed,
alternatively, as follows:

˛i D �
g>i (xi � xi)
d>i (gi � gi )

;

where xi is any point on the ray through xi in the di-
rection di and gi is its corresponding gradient vector;
xi+1 = xi + ˛idi. The expression for ˛i is derived from
the previous linear systems version and the relation
A(xi � xi ) D gi � gi .

We will call the resulting optimization algorithm
the CG-standard for minimizing q. It will provide an
important guideline for defining CG algorithms in the
subsequent discussion.

Nonlinear CG Algorithms

A nonlinear CG algorithm is used to find a minimizing
point of the nonlinear function f (x), x 2 Rn, when n is
large and/or computer storage is at a premium. A basic
algorithm can be stated as follows:

(Initialization)
0 x1 = arbitrary;

g1 = gradient of f at x1;
d1 = �g1;
(Iteration i)

1 xi+1 = an improved iterate on halfline
through xi along direction di ;

2 gi+1 = gradient of f at xi+1;
3 ˇi = jjgi+1jj2/jjgi jj2;
4 di+1 = �gi+1 + ˇidi .
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Note that this algorithm is closely patterned after the
CG-standard. The improved iterate at step 1 is obtained
by a line search procedure, which is normally based
on quadratic or cubic polynomial fitting (suitably safe-
guarded). When f = q, such a line search procedure can
immediately locate the minimizing point along the line
of search, once it has gathered the requisite information
to make an exact fit. In other words, when applied to
the minimization of q, the foregoing nonlinear CG al-
gorithm is able to replicate the CG-standard precisely.
This property characterizes a nonlinear CG algorithm.

Considerable research has gone into alternative ex-
pressions for the quantity ˇi. The four leading con-
tenders are the Fletcher–Reeves (FR), Hestenes–Stiefel
(HS), Polyak–Polak–Ribière (PPR) and Dai–Yuan (DY)
choices (see [5,8,11,20,22]). These define ˇi as follows:

FR : ˇi D
g>iC1giC1

g>i gi
;

HS : ˇi D
g>iC1yi
d>i yi

;

PPR : ˇi D
g>iC1yi
g>i gi

;

(1)

DY : ˇi D
g>iC1giC1

d>i yi
; (2)

where yi = gi+1 � gi is the gradient change that corre-
sponds to the step si = xi+1 � xi.

When line searches are exact and the function is
quadratic, the following relations hold:

g>iC1giC1 D g>iC1yi ; g>i gi D d>i yi : (3)

Thus, the values of the scalar ˇi are identical for all four
choices, and each of the associated algorithms becomes
the CG-standard. In general, however, they are applied
to nonquadratics and use inexact line searches, result-
ing in four distinct, nonlinear CG algorithms that can
exhibit behavior very different from one another.

The following generalization yields a two-parameter
family:

ˇi D
�i (g>iC1giC1)C (1 � �i )(g>iC1yi)
�i (g>i gi)C (1 � �i )(d>i yi )

; (4)

where �i 2 [0, 1] and �i 2 [0, 1]. For any choice of
�i and �i in these ranges, the associated algorithm re-

duces to the CG-standard when f is quadratic and line
searches are exact, which follows from (3). If the scalars
�i and �i take only their extreme values, 0 or 1, then
one obtains four possible combinations corresponding
to (1)–(2). The above two-parameter family of nonlin-
ear CG algorithms, which subsumes FR, HS, PPR and
DY, and its subfamilies (defined, for example, by taking
�i � 1) are currently a topic of active research.

When the line search is sufficiently accurate, a non-
linear CG algorithm always produces a direction of de-
scent at step 4. Suitable inexact line search termination
conditions, in conjunction with different choices of ˇi,
have been extensively studied, both theoretically and
computationally. A good overview of the theory and
convergence analysis of nonlinear CG algorithms can
be found in [19]. The nonlinear CG algorithm based
on the PPR choice for ˇi [20,22] and a suitable restart-
ing strategy [23] has emerged as the most efficient in
practice. However, it is well known that no single non-
linear CG algorithm works well all the time. There is
enormous variability in performance on different prob-
lems or even within different regions of the same prob-
lem.

Nonlinear CG-Related Algorithms

We informally characterize a nonlinear CG-related al-
gorithm as follows:
� its computer storage requirements are ‘similar’ to

those of an implemented nonlinear CG algorithm,
for example, [23];

� its path traverses the iterates of the CG-standard
when the function is a strictly convex quadratic,
line searches are exact, and the same initialization
is used.

In other words, it may use a fewmore n-vectors of com-
puter storage than, say, the PPR nonlinear CG algo-
rithm, and it is permitted to generate additional inter-
mediate iterates and form search vectors in novel ways.
A nonlinear CG-related algorithm does not have to im-
itate the ‘structure’ of the basic nonlinear CG algorithm
of the previous Section. But the above requirement that
its path must cover the iterates of the CG-standard of
the first Section implies the following: if the candidate
algorithm does not exhibit finite termination when ap-
plied to a quadratic q then it is not a CG-related algo-
rithm.
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Let us now briefly categorize the main lines of de-
velopment.

Classical Alternatives to CG

These seek to enhance or accelerate the steepest descent
algorithm of Cauchy more directly, without explicitly
introducing notions of conjugacy. The year of publica-
tion of [8] was indeed a banner year for such devel-
opments. Two particularly noteworthy contributions,
which coincidentally also appeared in 1964, were the
parallel-tangents or PARTAN algorithm of B.V. Shah,
R.J. Buehler and O. Kempthorne [24] and the heavy ball
algorithm of B.T. Polyak [21]. For a modern descrip-
tion of the former, and its subsequently discovered CG-
related properties, see [14]. The basic iteration of the
latter algorithm is as follows:

xiC1 D xi � ˛gi C ˇ(xi � xi�1);

where ˛ is a constant positive stepsize and ˇ is a scalar
with 0 < ˇ < 1. Although, strictly speaking, it is not CG-
related in this form, the algorithm has CG-like rate of
convergence properties on a quadratic under optimal
choices of the algorithm parameters ˛ and ˇ (see [3]).
The algorithms in [24] and [21] both used very simple
steplength techniques to move from one iterate to the
next, in contrast to the nonlinear CG implementation
of [8]. The introduction of the line-search technique
of Davidon [6] into either of these 1964 algorithms, as
in [8], could have propelled them much more into the
limelight at the time. More recently, the important con-
tribution of Yu.E. Nesterov [17] on global rate of con-
vergence is based on an algorithm akin to PARTAN
[24]. However, in general, classical alternatives to CG
remain on the sidelines.

Nonlinear CG Variants

These are premised on retaining the algorithmic struc-
ture, and the conjugacy properties on quadratics, of
the basic nonlinear CG algorithm of the above Section
when the initial direction is not along the negative gra-
dient and/or line searches are inexact. For instance, the
three-term-recurrence algorithm (TTR) is able to simul-
taneously relax both CG-standard requirements. The
overall iteration follows the basic algorithm of the pre-
vious Section, but with the computation of the search

direction at steps 3 and 4 replaced as follows:

ˇi D
y>i yi
y>i di

; �i D
y>i�1yi
y>i�1di�1

;

and

diC1 D �yi C ˇidi C �idi�1:

Conjugacy of search directions is retained when the ini-
tial search direction is chosen to be an arbitrary direc-
tion of descent. If this initial direction is along the neg-
ative gradient and line searches are exact, then the TTR
generates the same search directions and iterates as the
CG-standard on a positive definite quadratic. A draw-
back of the TTR algorithm is that it does not guarantee
a descent direction on more general functions even if
line searches are exact. But, in practice, the direction al-
most always satisfies the condition g>iC1di+1 < 0.

For references to other nonlinear CG variants, see
[10] and the survey articles in [1]. Despite theoretical
advantages on quadratics, algorithms in this category,
in practice, have not proved to be significantly superior
to the PPR nonlinear CG algorithm of the above Sec-
tion.

Variable-Storage/Limited-Memory Algorithms

These are premised on a key structural relation-
ship between the nonlinear CG algorithm and the
BFGS variable-metric algorithm, and its properties on
quadratics, see [4,12,15]. The most effective CG-related
algorithm, to date, is the L-BFGS algorithm of J. No-
cedal [18]. This is described in more detail in � Un-
constrained nonlinear optimization: Newton–Cauchy
framework and is not repeated here. The algorithm has
the property that it produces a descent direction un-
der weak termination conditions on the line search. It
has proved to be an efficient and versatile algorithm
(it can exploit additional computer storage when avail-
able) that generally outperforms the PPR algorithm in
practice.

For an overview of other variable-storage algo-
rithms that draw on the BFGS-CG relationship, see the
survey articles in [1].

Affine-Reduced-Hessian Algorithms

These make estimates of curvature, i. e., approxima-
tions to the Hessian or its inverse, in an affine sub-
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space usually of low dimension and defined by the most
recent gradient and one or more prior steps and/or
gradients. For algorithms of this type and their CG-
related properties, see [7,13,16] and references cited
therein.

The foregoing principle, on which such algorithms
are premised, has the conceptual advantage that it pro-
vides a true continuum between the nonlinear CG and
full-storage variable-metric (and Newton) algorithms.
But, practical affine-reduced-Hessian implementations
are not yet widespread.

Conclusion

CG algorithms are among the simplest and most ele-
gant algorithms of computational nonlinear optimiza-
tion. They can be surprisingly effective in practice, and
thus will always have an honored place in the repertoire.
Nevertheless, the subject still lacks a comprehensive un-
derlying theory, and many interesting algorithmic is-
sues remain to be explored.

Some references cited in the present discussion are
listed below, and other key references can be traced, in
turn, through their bibliographies.

See also

� Broyden Family of Methods and the BFGS
Update

� Large Scale Trust Region Problems
� Large Scale Unconstrained Optimization
� Local Attractors for Gradient-Related Descent

Iterations
� Nonlinear Least Squares: Newton-Type Methods
� Nonlinear Least Squares: Trust Region Methods
� Unconstrained Nonlinear Optimization:

Newton–Cauchy Framework
� Unconstrained Optimization in Neural Network

Training
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Introduction

Contact map overlap maximization is a problem that
arises in computational biology as an important ap-
proach to compare structural similarity of proteins.
Contact map overlap was proposed in [6] as a measure
for protein structural similarity, and is employed in the
Critical Assessment of Techniques for Protein Struc-
ture Prediction (CASP).

Proteins consist of amino acid residues and assume
specific 3-dimensional structures. Proteins of similar
structures often have similar function and proper-
ties. Therefore, structure alignment provides critical in-
sights into the relation of existing proteins, and has im-
portant applications in designing knowledge-based po-
tential functions that are useful for protein folding pre-
diction.

Definition

Given two proteins A and B with m and n residues, re-
spectively, we denote the residues of A with indices i, i0,
and i00, and the residues of B with indices j, j0 and j00.
If two residues in the same protein are close in space,
we say that they are in contact. A list of residue pairs
is known as the contact map of a given protein. In this
article, the contact map for protein A (resp. B) is de-
noted as EA (resp. EB) so that EA

i i 0 D 1 (resp. EB
j j0 D 1) if

residues i and i0 in protein A (resp. j and j0 in protein B)
are in contact, and EA

i i 0 D 0 (resp. EB
j j0 D 0) otherwise.

From a graph-theoretic perspective, a contact map
is a node-node incident graph where nodes represent
residues and edges represent contacts. The contact map
overlap maximization problem aims at identifying an
ordered residue correspondence between two contact
maps so as to result in a maximum common subgraph.
To solve this problem, a correspondence (alignment)
must be established between the node sets (residues) of
the contact maps so that the number of common con-
tacts (edges) can be maximized. If residue i in protein
A aligns with residue j in protein B, they form a pair
(i, j). If pairs (i, j) and (i0; j0) result in common contacts,
i. e., EA

i i 0 D 1 and EB
j j0 D 1, then they form an overlap.

If two pairs (i, j) and (i0; j0) form an overlap, we set
h(i; j; i0; j0) D 1. Otherwise, h(i; j; i0; j0) is set to zero.

An important requirement for structure alignment
is that the relative orders of residues in the original se-
quences agree – a property that is known as the non-
crossing property in the CMO literature. For two pairs
(i, j) and (i0; j0) to be non-crossing, either i < i0 and
j < j0 or i > i0 and j > j0must hold. In this paper, non-
crossing pairs are also referred to as parallel pairs.

For convenience of the presentation, [i; i0] (resp.
[ j; j0]) will denote the set of residues fi00 : i � i00 � i0g
(resp. f j00 : j � j00 � j0g). The interval product [i; i0] �
[ j; j0] therefore denotes the set of pairs f(i00; j00) : i �
i00 � i0; j � j00 � j0)g. For any given set of residue
pairs S, we will use Q(S) to denote the set of subsets of
S that contain only parallel pairs. The objective of CMO
is to identify a set of parallel pairs that maximize the re-
sultant number of overlaps. For proteins A and B, the
problem can be stated as follows:

max
Q2Q([1;m]�[1;n])

1
2

X
(i; j)2Q

X
(i 0; j0)2Q

h(i; j; i0; j0) :

An optimal alignment of the contact maps of the hu-
man Rap30 DNA-binding domain (1BBY) and the
DNA binding domain of Escherichia coli LexA repres-
sor (1LEA) is shown in Fig. 1 together with their 3-di-
mensional structures.

Methods

Goldman et al. [7] proved that CMO is APX-hard,
which practically defies the existence of a polynomial
time exact algorithm or even a polynomial time approx-
imation scheme. In the remainder of this section, we
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Contact Map Overlap Maximization Problem, CMO, Figure 1
An instance of CMO involving 1BBY and 1LEA

will survey both exact and approximate algorithms for
this problem.

Exact algorithms

Four exact algorithms have been proposed for the CMO
problem so far. All embrace the branch-and-bound
framework to ensure global optimality. The branch-
and-reduce algorithm [12,13] currently has an edge
against all other exact algorithms both in terms of com-
putational speed as well as its ability to solve challeng-
ing instances.

Integer Linear Program Carr et al. [5] proposed an
integer linear programming formulation for the prob-
lem. This formulation was further developed in [9] and
involves two sets of binary variables: xij and yi ji 0 j0 . Vari-
able xij equals one if pair (i, j) is chosen in the optimal
alignment and zero otherwise. Variable yi ji 0 j0 equals

one if both pairs (i, j) and (i0; j0) are chosen in the final
solution. Otherwise, variable yi ji 0 j0 is set to zero. The
model is as follows:

(M1)

max
X

(i; j;i 0; j0):EA(i;i 0)D1;EB( j; j0)D1;i<i 0; j< j0
yi ji 0 j0 (1)

s.t.
X

i 0:EA(i;i 0)D1;i 0>i

yi ji 0 j0 � xi j (2)

X
j0 :EB ( j; j0)D1; j0> j

yi ji 0 j0 � xi j (3)

X
i :EA(i;i 0)D1;i<i 0

yi ji 0 j0 � xi 0 j0 (4)

X
j:EB ( j; j0)D1; j< j0

yi ji 0 j0 � xi 0 j0 (5)

xi jC xi 0 j0 � 1 8 crossing pairs (i; j) and (i0; j0) (6)

xi j 2 f0; 1g; yi ji 0 j0 2 f0; 1g

The sum of common contacts in Eq. (1) constitutes
the number of overlaps by definition since Eq. (6) pro-
hibits the existence of crossing pairs in the final solu-
tion. Equations (2)–(5) ensure that the optimal solu-
tion contains at most one pair from each residue that
does not cross a chosen pair. In addition to these nec-
essary constraints, two classes of cuts, clique-cuts and
odd-hole-cuts, can be optionally generated in polyno-
mial time and append to (M1) as was shown in [9].

Lagrangian Relaxation In [3], Caprara and Lancia
proposed a Lagrangian relaxation approach for the
CMO problem. Their approach begins with an inte-
ger linear program formulation of CMO as is shown
in model (M2) below. In this model, xij and yi ji 0 j0 bear
same definitions as their counterparts in (M1), and I is
the set of maximal set of crossing pairs.

(M2)

max
X

(i; j;i 0; j0)

1
2
hi ji 0 j0 yi ji 0 j0 (7)

s.t.
X

(i; j):(i; j)2I

xi j � 1; 8I 2 I (8)
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X
(i; j)

yi ji 0 j0 � xi 0 j0 ; 8I 2 I; (i0; j0) (9)

yi ji 0 j0 D yi 0 j0 i j; 8i < i0; j < j0 (10)

xi j; yi ji 0 j0 2 f0; 1g (11)

It is easy to verify that Eq. (7) yields the number of
overlaps given the validity of Eq. (10). Since any two
pairs in a maximal set of crossing pairs would cross,
constraint (8) enforces the non-crossing property by
prohibiting any such two pairs to co-exist in the final
alignment. Constraint (9) ensures that, if an arbitrary
pair (i0; j0) is chosen, the final solution should contain
no more than one pair (i, j) from any maximal crossing
pair set that could form an overlap with pair (i0; j0).

By introducing multipliers �i ji 0 j0 for Eq. (9),
Caprara and Lancia obtained the following Lagrangian
relaxation of (M2):

(LM2)

min
	

max
i; j

X
(i; j;i 0; j0)

1
2
hi ji 0 j0 yi ji 0 j0

C
X

(i; j;i 0; j0):i<i 0; j< j0
�i ji 0 j0

�
yi ji 0 j0 � yi 0 j0 i j

�

s.t. Constraints (8), (9), and (11):

A subgradient method was used to iteratively improve
the multipliers, while an O(jEAjjEBj) algorithm was
employed to solve (LM2) for the set of multipliers at
each iteration.

Reformulation as Maximum Clique Strickland
et al. [11] showed that CMO can be cast into a max-
imum clique problem. To this end, they considered
a two-dimensional lattice whose rows correspond to
the contacts in EA and columns correspond to the
contacts in EB. Each vertex of the lattice, if chosen,
contributes a unit overlap to the objective value. In
addition, an edge is drawn between two vertices if the
corresponding pair of overlaps are admissible to some
feasible alignments. It is not difficult to see that a maxi-
mum clique in the resultant graph indeed corresponds
to an optimal solution for the CMO problem. This al-
gorithm involves a number of preprocessing routines

to reduce the problem size before calling a maximum
clique solver. In a more recent work [10], the authors
proposed improved data structures to enhance the al-
gorithm performance.

Combinatorial Branch-and-Reduce Xie and Sa-
hinidis [12,13] developed a branch-and-reduce algo-
rithm, which combines the generic branch-and-bound
framework with problem-specific reduction schemes.
The algorithm initializes a branch-and-bound tree with
a root node where all pairs are allowed. Reduction
schemes, both based on domination and the current
best solution value, are used to remove inferior pairs.
Lower and upper bounds on the overlaps for the cur-
rent node are then computed using dynamic program-
ming. If the lower and upper bounds agree, the search is
terminated with a global optimal alignment. Otherwise,
the algorithm chooses a branching pair and creates two
children nodes. The branching pair is enforced in one
of the node, while it is disallowed in the other node.

A key step in their algorithm is the computation of
the contribution to the overlaps by a given pair on a set
of pairs. Define Q(S) to be the set of all subsets of S
that contain only parallel pairs. Then, the contribution
of pair (i, j) to the objective value on the set S is defined
as

p(i; j; S) :D max
Q2Q(S)

X
(i 0; j0)2Q

h(i; j; i0; j0) :

In particular, let pC(i; j; i0; j0) and p�(i; j; i0; j0) de-
note p(i; j; S) when S D [i0;m] � [ j0; n] and when S D
[1; i0] � [1; j0], respectively. They proved that comput-
ing a single term of pC(�) or p�(�) can be accomplished
inO(mn) time with preprocessing time and space com-
plexity of O(mC n).

The upper bounding scheme is summarized in
Proposition 1, where, for a node V of the search tree,
C(V) is the set of pairs that must be included and F(V )
is the set of pairs that have the freedom to be in the so-
lution or not. In addition, define

g(i; j) :D
X

(i 0; j0)2C(V )

h(i; j; i0; j0):8(i; j) 2 F(V )

Then:
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Proposition 1 Define

t(i; j) :D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

g(i; j);
if (i; j) 2 F(V ); i D 1 or j D 1 ;

max fg(i; j); g(i; j)C w(i; j)g ;
if (i; j) 2 F(V ); i > 1 and j > 1 ;

�1; otherwise ,

where

h̄(i; j; i0; j0) :D

8̂
<
:̂

h(i; j; i0; j0) ;
if (i; j); (i0; j0) 2 F(V )

0; otherwise ,

w(i; j) :D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

�1;

if [1; i � 1] � [1; j � 1] \ F(V ) D ; ;
max(i 0; j0)2[1;i�1]�[1; j�1]\F(V )

˚
t(i0; j0)

C h̄(i0; j0; i; j)C 1
2u(i

0; j0; i; j)
�
;

otherwise ,

and

u(i0; j0; i; j) :D pC(i0; j0; i C 1; jC 1)

C p�(i; j; i0 � 1; j0 � 1) :

Then

1
2

X
(i; j)2C(V )

X
(i 0; j0)2C(V )

h(i; j; i0; j0)C
�

max
(i; j)2F(V )

t(i; j)



is an upper bound for the current node V.

Proposition 1 suggests an O(m2n2) algorithm to com-
pute the upper bound. In addition, the upper bound-
ing scheme also provides a natural lower bound as was
shown in [13].

Approximate Algorithms

This subsection outlines both approximation algo-
rithms (i. e., with performance guarantee) and heuris-
tics (i. e., without performance guarantee) that have
been proposed in the literature for the CMO problem.

Goldman et al. [7] considered a special class of
CMO instances from 2-dimensional self-avoiding walk,
and proposed a 3-approximation algorithm that runs
in O(n6) time. Agarwal et al. [1] proposed a 6-approx-
imation algorithm for the same class of problems, with

however a better complexity ofO(n3 log n). In addition,
they proved the special class of CMO from 3-dimen-
sional self-avoiding walk is MAXSNP-hard, and pro-
posed a O(pn)-approximation algorithm for this class
of CMO instances.

Carr et al. [4] proposed to use a memetic algo-
rithm, which combines global search and local search,
to solve general instances of CMO. In [2], Caprara et
al. proposed several heuristics, including a genetic al-
gorithm, local search, and greedy algorithms based on
Lagrangian relaxation. Existing computational stud-
ies [8,13] suggest that Lagrangian-relaxation-based
greedy algorithms perform the best among existing
heuristics for a large set of test instances.

Conclusions

The contact map overlap maximization problem is
a very important problem in computational biology. Ef-
ficient algorithms, both exact and approximate, for this
problem are of great interest. Despite the inherent dif-
ficulty of this problem, many large-scale practical in-
stances have been solved within reasonable amounts of
time. Many challenging instances of the problem cur-
rently remain unsolved [13].
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Introduction

In this paper we use the following notation: Rn is an
n-dimensional space, where the scalar product will be
denoted by hx; yi:

hx; yi D
nX

iD1

xi yi ;

and k � k will denote the associated norm. The gradient
of a function f : Rn ! R1 will be denoted by r f .

A function f is differentiable at a point x 2 Rn with
respect to a direction g 2 Rn if the limit

f 0(x; g) D lim
˛#0

f (x C ˛g) � f (x)
˛

exists. The closed unit ball will be denoted by
B : B D fx 2 Rn : kxk � 1g.

Consider a function f defined on Rn . This function
is called locally Lipschitz continuous if for any bounded
subset X � Rn there exists an L > 0 such that

j f (x)� f (y)j � Lkx � yk 8x; y 2 X :

If f is convex then one can define a subdifferential @ f (x)
of this function at a point x 2 Rn as follows [13]:

@ f (x) D fv 2 Rn : f (y) � f (x) � hv; y � xi; y 2 Rng :

Elements v 2 @ f (x) of the subdifferential @ f (x) are
called subgradients of f at the point x. For a convex
function f defined on Rn the subdifferential @ f (x) is
nonempty, convex and compact at any x 2 Rn . A set-
valued mapping x 7! @ f (x) is upper semicontinuous.

An "-subdifferential @" f (x); " > 0 of the convex
function f at a point x 2 Rn is defined as [13]

@" f (x) D fv 2 Rn : f (y)� f (x)

� hv; y � xi � "; y 2 Rng :

Elements v 2 @" f (x) of the subdifferential @" f (x) are
called "-subgradients of f at the point x. For a convex
function f defined on Rn the "-subdifferential @" f (x)
is nonempty, convex and compact at any x 2 Rn and
a set-valued mapping x 7! @" f (x) is continuous in
Hausdorff metric at any x.

Most efficient methods in nonsmooth optimization
such as the bundle method and its variations are based

http://citeseer.ist.psu.edu/659931.html
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on "-subgradients of convex functions (see, for exam-
ple, [10,11]).

The analysis of nonsmooth, nonconvex functions
has been area of intensive research for more than three
decades. Clarke [4,5] introduced the notion of gener-
alized gradient. We define a Clarke subdifferential for
locally Lipschitz continuous functions defined on Rn .
A locally Lipschitz function f is differentiable almost
everywhere and one can define for it a Clarke subdif-
ferential [5] by

@ f (x) D co
n
v 2 Rn : 9(xk 2 D( f ); xk ! x;

k ! C1) : v D lim
k!C1

r f (xk)
o
;

whereD(f ) denotes the set where f is differentiable, and
co denotes the convex hull of a set. It is shown in [5]
that the mapping @ f (x) is upper semicontinuous and
bounded on bounded sets. The generalized directional
derivative of f at x in the direction g is defined to be

f 0(x; g) D lim sup
y!x;˛#0

˛�1[ f (yC ˛g) � f (y)] :

The generalized directional derivative always exists and

f 0(x; g) D maxfhv; gi : v 2 @ f (x)g :

f is called a Clarke regular function on Rn if it is dif-
ferentiable with respect to any direction g 2 Rn and
f 0(x; g) D f 0(x; g) for all x; g 2 Rn . For nonregular
functions the Clarke subdifferential has calculus only
by means of inclusions, which makes very difficult the
computation of subgradients of some complex non-
smooth, nonconvex functions. The cluster function
from the cluster analysis is one such example [2,3].

Demyanov and Rubinov [6,7] introduced the no-
tion of quasidifferential. Let f be a locally Lipschitz con-
tinuous function defined on Rn . This function is called
quasidifferentiable at a point x 2 Rn if it is direction-
ally differentiable and there exist compact, convex sets
@ f (x) and @ f (x) such that

f 0(x; g) D maxfhv; gi;~v 2 @ f (x)g

Cminfhw; gi;~w 2 @ f (x)g :

The pair

D f (x) D [@ f (x); @ f (x)]

is called a quasidifferential of the function f at a point x.
The set @ f (x) is said to be a subdifferential and the set
@ f (x) a superdifferential of the function f at x.

Unlike the Clarke subdifferential, the quasidiffer-
ential enjoys a full-scale calculus; however, set-valued
mappings x 7! @ f (x) and x 7! @ f (x) need not be even
upper semicontinuous.

Unfortunately, the notion of an "-subdifferential
cannot be extended for nonsmooth, nonconvex func-
tions. Instead one can define the Goldstein "-subdiffer-
ential [9]. However, in general the Goldstein "-subdif-
ferential is only upper semicontinuous.

In this paper, we consider continuous approxima-
tions to subdifferentials and quasidifferentials. We will
also describe an algorithm for computation of elements
of such approximations.

Definitions

Continuous Approximations

Let X be a compact subset of the space Rn . We con-
sider a family C(x; ") D C"(x) of set-valued mappings
depending on a parameter " > 0. For each " > 0

C(�; ") : X ! 2Rn
:

We suppose that C(x; ") is a compact convex set for all
x 2 X and " > 0. It is assumed that there exists a num-
ber K > 0 such that

sup fkvk : v 2 C(x; "); x 2 X; " > 0g � K : (1)

Definition 1 The limit CL(x) of the family
fC(x; ")g; " > 0 at a point x is defined as follows:

CL(x) D
n
v 2 Rn : 9(xk ! x; "k ! C0; k! C1;

vk 2 C(xk ; "k)) : v D lim
k!C1

vk
o
:

It is possible that the limit CL(x) is not convex even if
all the sets C(x; ") are convex. We consider coCL(x) the
convex hull of CL(x). It follows from Definition 1 and
the inequality (1) that the mapping coCL has compact
convex images.

Definition 2 A family fC(x; ")g; " > 0 is called a con-
tinuous approximation to a subdifferential @ f on X if
the following holds:
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1. C(x; ") is a Hausdorff continuous mapping with re-
spect to x on X for all " > 0.

2. The subdifferential @ f (x) is the convex hull of the
limit of the family fC(x; ")g; " > 0 on X, i. e. for all
x 2 X

@ f (x) D coCL(x) :

Some properties of the continuous approximations
were studied in [1].

Such continuous approximations need not be
monotonically decreasing as "! C0. Uniform and
strongly continuous approximations to the subdifferen-
tial studied in [14] have such a property. Let f be a lo-
cally Lipschitz continuous function defined on an open
set which contains a compact set X. We consider a fam-
ily of set-valued mappings A" f : Rn ! 2Rn

; " > 0. As-
sume that the sets A" f (x) are nonempty and compact
for all " > 0 and x 2 X. We will denote by @ f (x C Bı )
the set

S
f@ f (y) : y 2 Bı(x)g, where Bı (x) D fy 2

Rn : kx � yk � ıg.

Definition 3 ([14]) We say that the family fA" f (�)g">0

is a uniform continuous approximation to the subdif-
ferential @ f on X, if the following conditions are satis-
fied:
1. For each given " > 0; � > 0 there exists � > 0, such

that for all x 2 X

@ f (x C B� ) � A" f (x)C B
 :

2. For each x 2 X and for all 0 < "1 < "2:

A"1 f (x) � A"2 f (x) :

3. A" f (x) is Hausdorff continuous with respect to x on
X.

4. For each x 2 X
\
">0

A" f (x) D @ f (x) :

Definition 4 ([14]) We say that the family fA" f (�)g">0

is a strong continuous approximation to the subdiffer-
ential @ f on X, if fA" f (�)g">0 satisfies properties 1–3
above and instead of property 4 the following is valid:
40. For every �; � > 0 there exists " > 0 such that for

all x 2 X

@ f (x) � A" f (x) � @ f (x C B� )C B
 :

For the set-valued mapping C(x; ") we set

C0(x) D
n
v 2 Rn : 9("k ! C0; k! C1;

vk 2 C(x; "k)) : v D lim
k!C1

vk
o

and let

C(x; 0) D C0(x) :

Theorem 1 ([1]) Let the family fA" f (�)g">0 be a uni-
form continuous approximation to the subdifferential @ f
on a compact set X. Then C(x; ") D A" f (x) is a contin-
uous approximation to the subdifferential @ f in the sense
of Definition 2.

Corollary 1 It was shown in [14] that a strong continu-
ous approximation is a uniform continuous approxima-
tion. So a strong continuous approximation is a contin-
uous approximation in the sense of Definition 2.

Theorem 2 ([1]) Let the family C(x; ") be a continuous
approximation to the subdifferential @ f on a compact set
X and the mapping C(x; ") be continuous with respect
to (x; "); x 2 X; " > 0. Assume coCL(x) D C0(x) for all
x 2 X. Then the mapping

Q(x; ") D co
[
fC(x; t) : 0 � t � "g

is a uniform continuous approximation to @ f on X.

Corollary 2 Let the family C(x; ") be a continuous ap-
proximation to the subdifferential @ f on a compact set
X and the mapping C(x; ") be a continuous with respect
to (x; "); x 2 X; " > 0. Assume coCL(x) D C0(x) for all
x 2 X. Then the mapping Q is upper semicontinuous
with respect to (x; ") at the point (x; 0).

One can get a chain rule for continuous approximations
[1,14]. However it is not always applicable to compute
elements of continuous approximations. In the next
section we propose an algorithm to compute those el-
ements.

Methods

Computation of the Continuous Approximations

We consider a locally Lipschitz continuous function f
defined on Rn and assume that this function is semi-
smooth and quasidifferentiable (for the definition of
semismooth functions see [12]). We also assume that
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both sets @ f (x) and @ f (x) are represented as a convex
hull of a finite number of points at any x 2 Rn , that is
at a point x 2 Rn there exist sets

A D fa1; : : : ; amg; ai 2 Rn ; i D 1; : : : ;m;m � 1

and

B D fb1; : : : ; bpg; b j 2 Rn ; j D 1; : : : ; p; p � 1

such that

@ f (x) D coA; @ f (x) D coB :

In other words we assume that the subdifferential and
the superdifferential of the function f are polytopes
at any x 2 Rn . This assumption is true, for example,
for functions represented as a maximum, minimum or
max–min of a finite number of smooth functions.

We take a direction g 2 Rn such that

g D (g1; : : : ; gn); jgi j D 1; i D 1; : : : ; n

and consider the sequence of n vectors e j D e j(˛);
j D 1; : : : ; n with ˛ 2 (0; 1]:

e1 D (˛g1; 0; : : : ; 0) ;

e2 D (˛g1; ˛2g2; 0; : : : ; 0) ;

: : : D : : : : : : : : : ;

en D (˛g1; ˛2g2; : : : ; ˛n gn) :

We introduce the following sets:

R0 D A; R0 D B ;

Rj D
n
v 2 Rj�1 : v j g j D maxfwj g j : w 2 Rj�1g

o
;

Rj D
˚
v 2 Rj�1 : v j g j D minfwjg j : w 2 Rj�1g

�
:

It is clear that

Rj ¤ ;; 8 j 2 f0; : : : ; ng; Rj � Rj�1;

8 j 2 f1; : : : ; ng

and

Rj ¤ ;; 8 j 2 f0; : : : ; ng; Rj � Rj�1;

8 j 2 f1; : : : ; ng :

Moreover

vr D wr 8v;w 2 Rj; r D 1; : : : ; j (2)

and

vr D wr 8v;w 2 Rj; r D 1; : : : ; j : (3)

Consider the following two sets:

R(x; e j(˛)) D
�
v 2 A : hv; e ji D max

u2A
hu; e ji

	
;

R(x; e j(˛)) D
�
w 2 B : hw; e ji D min

u2B
hu; e ji

	
:

Proposition 1 Assume that the function f is quasidif-
ferentiable and its subdifferential and superdifferential
are polytopes at a point x. Then there exists ˛0 > 0 such
that

R(x; e j(˛)) � Rj; R(x; e
j(˛)) � Rj; j D 1; : : : ; n

for all ˛ 2 (0; ˛0).

Corollary 3 Assume that the function f is quasidiffer-
entiable and its subdifferential and superdifferential are
polytopes at a point x. Then there exists ˛0 > 0 such that

f 0(x; e j(˛)) D f 0(x; e j�1(˛))C vj˛ j g j C wj˛
j g j ;

8v 2 Rj; w 2 Rj; j D 1; : : : ; n

for all ˛ 2 (0; ˛0].

Proposition 2 Assume that the function f is quasidif-
ferentiable and its subdifferential and superdifferential
are polytopes at a point x. Then the sets Rn and Rn are
singletons.

In the next subsection we propose an algorithm to ap-
proximate subgradients. This algorithm finds a subgra-
dient which can be represented as a sum of elements of
the sets Rn and Rn .

Computation of Subgradients

Let g 2 Rn ; jgi j D 1; i D 1; : : : ; n be a given vector
and � > 0; ˛ > 0 be given numbers. We define the fol-
lowing points

x0 D x; x j D x0 C �e j(˛); j D 1; : : : ; n :

It is clear that

x j D x j�1C(0; : : : ; 0; �˛ j g j; 0; : : : ; 0); j D 1; : : : ; n:

Let v D v(˛; �) 2 Rn be a vector with the following co-
ordinates:

vj D (�˛ j g j)�1
�
f (x j) � f (x j�1)

�
; j D 1; : : : ; n: (4)
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For any fixed g 2 Rn ; jgi j D 1; i D 1; : : : ; n and ˛ >
0 we introduce the following set:

V(g; ˛) D
n
w 2 Rn : 9(�k ! C0; k! C1);

w D lim
k!C1

v(˛; �k)
o
:

Proposition 3 Assume that f is a quasidifferentiable
function and its subdifferential and superdifferential are
polytopes at x. Then there exists ˛0 > 0 such that

V(g; ˛) � @ f (x)

for all ˛ 2 (0; ˛0].

Remark 1 It follows from Proposition 3 that in or-
der to approximate subgradients of quasidifferentiable
functions one can choose a vector g 2 Rn such that
jgi j D 1; i D 1; : : : ; n, sufficiently small ˛ > 0; � > 0
and apply (4) to compute a vector v(˛; �). This vector
is an approximation to a certain subgradient.

Remark 2 A class of quasidifferentiable functions
presents a broad class of nonsmooth functions, includ-
ing many interesting nonregular functions. Thus, the
scheme proposed in this section allows one to approxi-
mate subgradients of a broad class of nonsmooth func-
tions.

Discrete Gradients

In the previous subsection we demonstrated an algo-
rithm for the computation of subgradients. In this sub-
section we consider an algorithm for the computation
of subdifferentials. This algorithm is based on the no-
tion of a discrete gradient. We start with its defini-
tion [1].

Let f be a locally Lipschitz continuous function de-
fined onRn . Let

S1 D fg 2 Rn : kgk D 1g;

G D fe 2 Rn : e D (e1; : : : ; en); je jj D 1;

j D 1; : : : ; ng ;

P D fz(�) : z(�) 2 R1; z(�) > 0; � > 0;

��1z(�)! 0; �! 0g :

Here S1 is the unit sphere, G is the set of vertices of the
unit hypercube inRn and P is the set of univariate pos-
itive infinitesimal functions.

We take any g 2 S1 and define jgi j D maxfjgk j;
k D 1; : : : ; ng. We also take any e D (e1; : : : ; en) 2
G, a positive number ˛ 2 (0; 1] and define the se-
quence of n vectors e j(˛); j D 1; : : : ; n. Then for given
x 2 Rn and z 2 P we define a sequence of n C 1 points
as follows:

x0 D x C �g ;

x1 D x0 C z(�)e1(˛) ;
x2 D x0 C z(�)e2(˛) ;

: : : D : : : : : : ;

xn D x0 C z(�)en(˛) :

Definition 5 The discrete gradient of the function f
at the point x 2 Rn is the vector � i(x; g; e; z; �; ˛) D
(� i

1 ; : : : ; �
i
n ) 2 Rn ; g 2 S1 with the following coordi-

nates:

� i
j D [z(�)˛ j e j)]�1

�
f (x j) � f (x j�1)

�
;

j D 1; : : : ; n; j ¤ i ;

� i
i D (�gi )�1

2
4 f (x C �g) � f (x)� �

nX
jD1; j¤i

� i
j g j

3
5 :

It follows from the definition that

f (x C �g) � f (x) D �h� i(x; g; e; z; �; ˛); gi (5)

for all g 2 S1; e 2 G; z 2 P; � > 0; ˛ > 0.

Remark 3 One can see that the discrete gradient is de-
fined with respect to a given direction g 2 S1 and in or-
der to compute the discrete gradient � i (x; g; e; z; �; ˛)
first we define a sequence of points x0; : : : ; xn and
compute the values of the function f at these points,
that is we compute nC 2 values of this function includ-
ing the point x. n � 1 coordinates of the discrete gra-
dient are defined similar to those of the vector v(˛,�)
from (4) and ith coordinate is defined so as to satisfy
the equality (5), which can be considered as some ver-
sion of the mean value theorem.

Proposition 4 Let f be a locally Lipschitz continuous
function defined on Rn and L > 0 be its Lipschitz con-
stant. Then for any x 2 Rn ; g 2 S1; e 2 G; � > 0;
z 2 P; ˛ > 0

k� ik � C(n)L; C(n) D (n2 C 2n3/2 � 2n1/2)1/2 :
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For a given ˛ > 0 we define the following set:

B(x; ˛) D fv 2 Rn : 9(g 2 S1; e 2 G; zk 2 P;

zk ! C0; �k ! C0; k ! C1) ;

v D lim
k!C1

� i (x; g; e; zk ; �k ; ˛)g : (6)

Proposition 5 Let the function f be a differentiable
with respect to any direction g 2 Rn. Then for any
g 2 Rn there exists v 2 B(x; ˛); ˛ > 0 such that

f 0(x; g) D hv; gi :

Proposition 6 Let the function f be a locally Lipschitz
continuous, differentiable with respect to any direction
g 2 Rn and x 2 D( f ). Then r f (x) 2 B(x; ˛); ˛ > 0.

Proposition 7 Assume that f is a semismooth, qua-
sidifferentiable function and its subdifferential and su-
perdifferential are polytopes at a point x. Then there ex-
ists ˛0 > 0 such that

coB(x; ˛) � @ f (x)

for all ˛ 2 (0; ˛0].

Remark 4 Proposition 7 implies that discrete gradi-
ents can be applied to approximate subdifferentials of
a broad class of semismooth, quasidifferentiable func-
tions.

Remark 5 The discrete gradient contains three param-
eters: � > 0; z 2 P and ˛ > 0. z 2 P is used to exploit
semismoothness of the function f and it can be chosen
sufficiently small. In general ˛ depends on x. However
if f is a semismooth quasidifferentiable function and
its subdifferential and superdifferential are polytopes at
any x 2 Rn then there exist ı > 0 and ˛0 > 0 such that
˛(x) 2 (0; ˛0] for all y 2 Bı(x). The most important
parameter is � > 0. In the sequel we assume that z 2 P
and ˛ > 0 are sufficiently small.

Consider the following set at a point x 2 Rn :

D0(x; �; z) D cl co
n
v 2 Rn : 9(g 2 S1; e 2 G) : v

D � i(x; g; e; �; z; ˛)
o
:

Proposition 4 implies that the set D0(x; �; z) is compact
and convex for any x 2 Rn .

Corollary 4 Let f be a quasidifferentiable semismooth
function. Assume that its subdifferential and superdiffer-
ential are polytopes and that in the equality

f (x C �g) � f (x) D � f 0(x; g)C o(�; g); g 2 S1

��1o(�; g)! 0 as �! C0 uniformly with respect to
g 2 S1. Then for any ı > 0 there exist �0 > 0 and z0 2 P
such that

D0(x; �; z) � @ f (x)C Bı

for all � 2 (0; �0) and z 2 (0; z0).

Consider the continuous approximation C(x; ") to the
subdifferential @ f (x). Then Corollary 4 implies that for
any ı > 0 there exist "0 > 0; �0 > 0 and z0 2 P such
that

D0(x; �; z) � C(x; ")C Bı

for all " 2 (0; "0); � 2 (0; �0) and z 2 (0; z0). Thus, dis-
crete gradients can be used to compute subsets of con-
tinuous approximations to the subdifferential in the
sense of Definition 2. Consequently they can also be
used to compute subsets of uniform and strongly uni-
form continuous approximations.

Continuous Approximations to the Quasidifferential

In this subsection we will consider continuous approx-
imations to the Demyanov–Rubinov quasidifferential.
We consider a function of the form

f (x) D F(x; y1(x); : : : ; ym(x)) ; (7)

where x 2 Rn , the function F is continuously differen-
tiable in RnCm , yi (x); i 2 I D f1; : : : ;mg; are semi-
smooth, regular functions and their subdifferentials are
polytopes. It is easy to see that the function f is differ-
entiable with respect to any direction and

f 0(x; g) D
�
@F(x; y(x))

@x
; g
�

C
X
i2I

@F(x; y(x))
@yi

y0i (x; g) ;

where y(x) D (y1(x); : : : ; ym(x)); @F(x; y(x))/@x is
the gradient of the function F with respect to x, and
@F(x; y(x))/@yi is the partial derivative of the function
F with respect to yi ; i 2 I.
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Let

I1(x) D
�
i 2 I :

@F(x; y(x))
@yi

> 0
	
;

I2(x) D
�
i 2 I :

@F(x; y(x))
@yi

< 0
	
:

Consider the mappings Bi (x; ˛) corresponding to
the functions yi(x); i 2 I. We introduce the following
two sets:

Z(x; ˛) D co

(
v 2 Rn : v D

@F(x; y(x))
@x

C
X

i2I1(x)

@F(x; y(x))
@yi

vi ;

vi 2 Bi (x; ˛); i 2 I1(x)

)
;

Z(x; ˛) D co

(
w 2 Rn : w D

X
i2I2(x)

@F(x; y(x))
@yi

wi ;

wi 2 Bi (x; ˛); i 2 I2(x)

)
:

Proposition 8 Assume that the function F is continu-
ously differentiable in RnCm, functions yi (x); i 2 I; are
semismooth and regular and their subdifferentials are
polytopes. Then the function f is quasidifferentiable and
there exists ˛0 > 0 such that

Z(x; ˛) � @ f (x)

and

Z(x; ˛) � @ f (x)

for all ˛ 2 (0; ˛0).

Corollary 5 Suppose we are given the function
f (x) D f1(x) � f2(x), where f 1 and f 2 are semismooth,
regular functions and their subdifferentials are poly-
topes, andB1(x; ˛) and B2(x; ˛) are mappings corre-
sponding to the functions f 1 and f 2, respectively. Then
the function f is quasidifferentiable and there exists
˛0 > 0 such that

B1(x; ˛) � @ f1(x); B2(x; ˛) � @ f2(x)

for all ˛ 2 (0; ˛0).

Let D0i(x; �; z) be mappings corresponding to the
functions yi (x); i 2 I. We set

D1(x; �; z) D cofv 2 Rn : v D
@F(x; y(x))

@x

C
X

i2I1(x)

@F(x; y(x))
@yi

vi ;

vi 2 D0i(x; z; �); i 2 I1(x)g ;

D2(x; z; �; ˇ) D cofw 2 Rn :

w D
X

i2I2(x)

@F(x; y(x))
@yi

wi ;

wi 2 D0i(x; z; �); i 2 I2(x)g :

Note that the mappings D1(x; �; z);D2(x; �; z) are
Hausdorff continuous with respect to x for any fixed
� > 0; z 2 P.

It follows from Corollary 4 that the sets
D1(x; �; z);D2(x; �; z) can be used to compute subsets
of continuous approximations to the subdifferential
and superdifferential of the function (7).

Conclusions

In this paper we introduced continuous approxima-
tions to the subdifferential and the quasidifferential of
the nonsmooth, nonconvex functions. We proposed
the algorithm for their computation. This algorithm al-
lows one to approximate subgradients a broad class of
nonsmooth functions.
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Nonlinear Systems and Global Optimization

Man-made systems and processes can often bemodeled
to reasonable accuracy by postulating the exclusive use

of continuous linear functions. For instance, one may
think of the simplest production and distribution mod-
els known from the OR literature. (Models with inte-
ger variables will not be discussed here, even though
they can be equivalently reformulated, to fit into the
present framework.) If we attempt, however, the anal-
ysis of natural — physical, chemical, biological, envi-
ronmental, or even economic, financial and societal —
systems and their governing processes, then nonlinear
functions start to play a significant role in the quan-
titative description. To illustrate this point, one may
think of the most prominent (basic) function forms
in physics: probably polynomials, power functions, the
exponential-logarithmic pair and trigonometric func-
tions come to mind first. Clouds, water flows, rugged
terrains, plants and animals — as well as many other
natural objects — all possess visible nonlinearities. For
sophisticated examples and general principles, one may
think of discussions of nonlinear dynamics, chaos, self-
organizing systems and the fractal nature of the Uni-
verse: consult, e. g., [3,5,14,19,25].

Prescriptive (control, management, optimization)
models which attempt to describe and optimize the be-
havior of inherently nonlinear systems — as a rule —
lead to nonlinear decision problems. Since nonlinear
decision models frequently possess multiple local op-
tima, the general relevance of global optimization (GO)
becomes obvious. In this brief article we present a list
of important and challenging GO applications. We also
provide several illustrative references: these describe
numerous further application areas.

The Continuous Global OptimizationModel

We shall consider problems in the general form

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x2D

f (x)

s.t. D :D

8̂
<̂
ˆ̂:
x :

l � x � u;

g(x) � 0;

j D 1; : : : ; J

9>>=
>>;
:

(1)

In (1) we use the following notation:
� x is a vector which represents decision alternatives

in Rn;
� f (x) is a continuous objective function;
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� D is a nonempty set of feasible decisions, defined by
– g(x), anm-vector of continuous constraint func-

tions; and
– l. u, explicit (finite, componentwise) n-vector

bounds.
Explicit bounds on the constraint function values

can also be imposed; however, such more specialized
models are directly amenable to the form (1).

First of all, note that if all functions are continu-
ous, then – by the classical theorem of Weierstrass –
the optimal solution set to (1) is nonempty. At the same
time, without further structural assumptions, (1) can be
a very difficult global optimization problem. In other
words – unless additional information is provided –
there may well exist multiple (local) solutions of var-
ious quality to (1). Naturally, in most cases one would
like to find the ‘very best’ (global) solution to the under-
lying decision problem, avoiding the ‘traps’ offered by
local optima. To attain this objective, a considerable va-
riety of GO models and solution approaches have been
suggested: consult, e. g., [12].

Test Problems

Although our primary topic is real-world GO applica-
tions, one should at least mention several standardized
test problem suites, since these often originate from
real-world applications. For collections of (both con-
vex and nonconvex) nonlinear programming test prob-
lems, consult, e. g., [11,18]. See [6,7,13,22] for collec-
tions of GO test problems. On theWWW, see [1,8] and
[21]; especially [21] provides numerous further links
and pointers, including discussions of test and real-
world problems.

Illustrative Applications

Since GO problems are literally ubiquitous in scientific,
engineering and economic decision making, we shall
only list a number of illustrative applications. All appli-
cation areas will be listed simply in alphabetical order,
by information source. (The reader will notice overlaps
among the problems studied in different works.)

The test problem collection [6] presents application
models from the following fields:
� chemical reactor networks;
� distillation column sequencing;
� heat exchanger network synthesis;

� indefinite quadratic programming;
� mechanical design;
� general nonlinear programming;
� phase and chemical reaction equilibrium;
� pooling and blending;
� quadratically constrained problems;
� reactor-separator-recycling systems;
� VLSI design.

The volume [7] significantly expands upon the
above material, adding more specific classes of nonlin-
ear programming models, combinatorial optimization
problems, and dynamic models, as well as further prac-
tical examples (see later on).

The MINPACK-2 collection presented at [1] in-
cludes models related to the following types of prob-
lems:
� brain activity;
� Chebychev quadrature;
� chemical and phase equilibria;
� coating thickness standardization;
� combustion of propane;
� control systems (analysis and design);
� database optimization;
� design with composites;
� elastic-plastic torsion;
� enzyme reaction analysis;
� exponential data fitting;
� flow in a channel;
� flow in a driven cavity;
� Gaussian data fitting;
� Ginzburg–Landau problem;
� human heart dipole;
� hydrodynamic modeling;
� incompressible elastic rods;
� isomerization of alpha-pinene;
� Lennard–Jones clusters;
� minimal surfaces;
� pressure distribution;
� Ramsey graphs;
� solid fuel ignition;
� steady-state combustion;
� swirling flow between disks;
� thermistor resistance analysis;
� thin film design;
� VLSI design.

A detailed discussion of several GO case studies and
applications is presented in [22]. These problems were
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analyzed by using LGO, an integrated model develop-
ment environment to formulate and solve GO prob-
lems; consult also [23]. The current list of LGO appli-
cations includes, for instance, the following areas:
� bio-mechanical design;
� ‘black box’ (closed, confidential, etc.) system design

and operation;
� combination of negotiated expert opinions (fore-

casts, votes, assessments, etc.);
� data classification, pattern recognition;
� dynamic population and resource management;
� extremal energy (point arrangement) problems, free

and surface-constrained forms;
� inverse model fitting to observation data (calibra-

tion);
� multifacility location-allocation problems;
� nonlinear approximation, nonlinear regression, and

other curve/surface fitting problems;
� optimized tuning of equipment and instruments in

medical research and other areas;
� reactor maintenance policy analysis;
� resource allocation (in cutting, loading, scheduling,

sequencing, etc. problems);
� risk analysis and control in various environmental

management contexts;
� robotics design issues;
� robust product/mixture design;
� satisfiability problems;
� statistical modeling;
� systems of nonlinear equations and inequalities;
� therapy (dosage and schedule) optimization.

TheWWWsite [21] discusses, inter alia, the follow-
ing application areas:
� bases for finite elements;
� boundary value problems;
� chemical engineering problems;
� chemical phase equilibria;
� complete pivoting example;
� distance geometry models;
� extreme forms;
� identification of dynamical systems with matrices

depending linearly on parameters;
� indefinite quadratic programming models;
� minimax problems;
� nonlinear circuits;
� optimal control problems;
� optimal design;

� parameter identification with data of bounded error;
� PDE defect bounds;
� PDE solution by least squares;
� pole assignment;
� production planning;
� propagation of discrete dynamical systems;
� protein-folding problem;
� pseudospectrum;
� quadrature formulas;
� Runge–Kutta formulas;
� spherical designs (point configurations);
� stability of parameter matrices.

The collection of test problems [7] includes models
from the following application areas:
� batch plant design under uncertainty;
� chemical reactor network synthesis;
� conformational problems in clusters of atoms and

molecules;
� dynamic optimization problems in parameter esti-

mation;
� homogeneous azeotropic separation system;
� network synthesis;
� optimal control problems;
� parameter estimation and data reconcilliation;
� phase and chemical reaction equilibrium;
� pooling/blending operations;
� pump network synthesis;
� robust stability analysis;
� trim loss minimization.

The article [4] reviews several significant applica-
tions of rigorous global optimization (based on the in-
terval branch and bound approach). These applications
include:
� currency trading;
� finite element analysis (in a high-tech engineering

design context);
� gene prediction in genome therapeutics;
� magnetic resonance imaging (in a medical applica-

tion);
� numerical mathematics (search for an approxi-

mate greatest common divisor of given polynomi-
als);

� parameter estimation in signal processing;
� portfolio management;
One can immediately add here the application of inter-
val techniques to an issue of paramount significance in
numerical modeling:
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� solving systems of nonlinear (and linear) equations;
consult, e. g., [20]
The volume [24] also covers a broad range of appli-

cations from the following areas:
� agro-ecosystem management;
� analysis of nucleid acid sequences;
� assembly line design;
� cellular mobile network design;
� chemical process optimization;
� chemical product design;
� computational modeling of atomic and molecular

structures;
� controller design for motors;
� electrical engineering design;
� feeding strategies in animal husbandry;
� financial modeling;
� laser equipment design;
� mechanical engineering design;
� radiotherapy equipment calibration;
� robotics design;
� satellite data analysis (interferometry problem);
� virus structure reconstruction;
� water resource distribution systems.

As the above lists illustrate, the application poten-
tials of global optimization are indeed most diverse.

For additional literature on real-world applications,
see, e. g., the following references:
� network problems, combinatorial optimization

(knapsack, traveling salesman, flow-shop prob-
lems), batch process scheduling: [17];

� GO algorithms and their applications (primarily) in
chemical engineering design: [9];

� contributions on decision support systems and tech-
niques for solving GO problems, but also on molec-
ular structures, queueing systems, image recon-
struction, location analysis and process network
synthesis: [2];

� multilevel optimization algorithms and their appli-
cations: [15];

� engineering applications of the finite element
method: [16];

� a variety of applications, e. g., from the fields
of environmental management, geometric design,
robust product design, and parameter estima-
tion: [10].
Numerous issues of the Journal of Global Optimiza-

tion – as well as a large number of other professional

OR/MS, natural science and engineering journals – also
publish articles describing interesting GO applications.

See also

� ˛BB Algorithm
� Continuous Global Optimization: Models,

Algorithms and Software
� Differential Equations and Global Optimization
� DIRECT Global Optimization Algorithm
� Forecasting
� Global Optimization in the Analysis and

Management of Environmental Systems
� Global Optimization Based on Statistical Models
� Global Optimization in Binary Star Astronomy
� Global Optimization Methods for Systems of

Nonlinear Equations
� Global Optimization Using Space Filling
� Interval Global Optimization
�Mixed Integer Nonlinear Programming
� Topology of Global Optimization
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The Continuous Global OptimizationModel

We shall consider the continuous global optimization
problem (GOP) in the general form

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x2D

f (x)

s.t. D :D

8̂
<̂
ˆ̂:
x :

l � x � u;
g(x) � 0;
j D 1; : : : ; J

9>>=
>>;
:

(1)

In (1) the following assumptions are used:
� x is a vector representing decision alternatives in Rn;
� D is a nonempty set of feasible decisions, defined by

– l, u: explicit (finite, componentwise) n-vector
bounds of x, and

– g(x) is an m-vector of continuous constraint
functions defined on [l, u];
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Continuous Global Optimization: Models, Algorithms and
Software, Figure 1
A two-variable multi- extremal function

� f (x) is a continuous objective function defined
on D.

Explicit bounds on the constraint function values can
also be imposed; however, such more specialized mod-
els are also directly amenable to the form (1).

Since the functions f and g are all continuous in D,
the GOP (1) evidently has a nonempty globally opti-
mal solution set X�. At the same time, one can imme-
diately realize that — in its full generality — instances
of model (1) can pose a very significant numerical chal-
lenge. Since the usual convexity assumptions are absent,
Dmay be disconnected and/or nonconvex, and the ob-
jective function f may also be multi-extremal. That is,
the number of local (pseudo) solutions to (1) is typi-
cally unknown and it can be large; the quality of the var-
ious local and global solutions may differ significantly.
To illustrate this point, see Fig. 1, which depicts a ‘hilly
landscape’ (in fact, the surface plot of a relatively sim-
ple composition of trigonometric functions with em-
bedded polynomial arguments, in just two variables).
For instance, this function could be the objective in
(1) defined on the corresponding interval feasible re-
gion [l, u].

To solve the GOP (1) – in a strict mathematical
sense – means to find the complete set of globally op-
timal solutions X�, and the associated global optimum
value f � = f (x�), x� 2 X�. In most cases, at least in the
realm of continuous GO, we need to replace this ‘am-
bitious’ objective by finding a verified estimate – up-
per and lower bounds – of f �, and corresponding ap-
proximation(s) of points from the set X�. Naturally,

such estimates are to be determined on the basis of a fi-
nite number of algorithmically generated sample points
from D, or from the embedding interval [l, u].

For reasons of better analytical and numerical
tractability, usually the following additional assump-
tions are made:
� D is a full-dimensional subset (a ‘body’) in Rn;
� X� is at most countable;
� g (i. e., each of its component functions) and f are

Lipschitz-continuous on [l, u].
Observe that the first assumption makes algorithmic
search possible within the set D. With respect to the
second assumption, note that – in most practical con-
texts – the set of global optimizers consists only of a sin-
gle point, or of several points. Finally, the Lipschitz as-
sumption – i. e., that changes in function values are uni-
formly controlled by changes in their argument – is
a sufficient condition for estimating f � on the basis of
a finite set of search points. We emphasize that the fac-
tual knowledge of the smallest suitable Lipschitz con-
stant is not required – and in practice it is typically un-
known indeed. The Lipschitz criterion is evidently met,
e. g., by all continuously differentiable functions defined
on [l, u]; however, their class is even broader.

Due to the very general model structure postu-
lated above, classical (convexity-based) numerical ap-
proaches are, generally speaking, not directly applicable
to solve GOPs: instead, truly global scope methodology
is needed. In the past decades, a considerable variety
of GO models and solution approaches have been pro-
posed and analyzed. Below we shall provide a concise
review, with a view towards software development. For
detailed discussions, consult, e. g., the illustrative list of
references.

Model Types

The most important GO model classes that have been
extensively studied include the following. (Note that
postulated properties of g – such as e. g., convexity –
are required componentwise.)
� Bilinear and biconvex programming (f is bilinear or

biconvex, D is convex).
� Combinatorial optimization (problems that have

discrete decision variables in f and/or in g can be
equivalently reformulated as GO problems in con-
tinuous variables).
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� Concave minimization (f is concave, D is convex).
� Continuous global optimization (f and g are arbi-

trary continuous functions).
� Differential convex (DC) optimization (f and the

components in g can all be explicitly represented,
as the difference of two corresponding convex func-
tions).

� Fractional programming (f is the ratio of two real
functions, and g is convex).

� Linear and nonlinear complementarity problems (f
is the scalar product of two vector functions, D is
typically assumed to be convex).

� Lipschitz optimization (f and g are arbitrary
Lipschitz-continuous functions).

� Minimax problems (f is some minimax objective,
the maximum is considered over a discrete set or
a convex set, D is convex).

� Multilevel optimization (e. g., models of noncooper-
ative games, involving hierarchies of decision mak-
ers, the conflicting criteria are aggregated by f ; D is
usually assumed to be convex).

� Multi-objective programming (e. g., determination
of the efficient set, when several conflicting objec-
tives are to be optimized over the region D).

� Multiplicative programming (f is the product of sev-
eral convex functions, and g is convex, or – more
generally – also multiplicative).

� Network problems (f can be taken from several non-
convex function classes, and g is typically linear or
convex).

� Parametric nonconvex programming (in these the
feasible regionD and/or the objective f may also de-
pend also on a parameter vector).

� Quadratic optimization (f is an arbitrary – indefi-
nite – quadratic function; g is linear or, in the more
general case, is also made up by arbitrary quadratic
functions).

� Reverse convex programming (at least one of the
functions in g expresses a reverse convex con-
straint).

� Separable global optimization (f is an arbitrary non-
linear – in general, nonconvex – separable function,
D is typically convex).

� Stochastic (nonconvex) models in which the func-
tions f , g depend on random factors.

� Various other nonlinear programming problems, in
absence of a verified convex structure: this broad

category includes, e. g., models in which some of the
functions f , g are defined by complex ‘black box’
computational procedures.

Note that the problem classes listed are not necessar-
ily distinct; in fact, several of them are hierarchically
contained in the more general problem types listed. For
detailed descriptions of most of these model types and
their connections consult, e. g., [13], with numerous
further references.

Observe also that in the list presented, there are
specifically structured models (such as e. g., a concave
minimization problem under linear or convex con-
straints), as well as far more general ones (such as e. g.,
differential convex, Lipschitz or continuous problems).
Hence, one can reasonably expect that the most suit-
ably tailored solution approaches will also vary to a con-
siderable extent. Very general search strategies should
work for most models – albeit their efficiency might be
low for specialized problems. At the same time, strictly
specialized solvers may not work at all for problem
classes outside of their scope.

Several of the most important GO strategies are
listed below, together with additional remarks and ref-
erences. Again, the items of the list are not necessar-
ily exclusive. Most GO software implementations are
based upon one of these approaches, possibly combin-
ing ideas from several strategies.

Exact Methods

Naive Approaches

These include the most well known passive (simultane-
ous) or direct (not fully adaptive) sequential GO strate-
gies: uniform grid, space covering, and pure random
searches. Note that such methods are obviously conver-
gent under mild assumptions, but are – as a rule – im-
practicable in higher-dimensional problems. Consult
corresponding chapters in [13,24,30].

Complete (Enumerative) Search Strategies

These are based upon an exhaustive (and typically
streamlined) enumeration of all possible solutions. Ap-
plicable to combinatorial problems, as well as to certain
‘well-structured’ continuous GO problems such as, e. g.,
concave programming. See, e. g., [14].



Continuous Global Optimization: Models, Algorithms and Software C 489

Homotopy (Parameter Continuation),
Trajectory Methods, and Related Approaches

These methods have the ‘ambitious’ objective of visiting
all stationary points of the objective function: this, in
turn, leads to the list of all – global as well as local – op-
tima. This general approach includes differential equa-
tion model based, path following search strategies, as
well as fixed-point methods and pivoting algorithms.
See, for instance, [5] and [8].

Successive Approximation (Relaxation) Methods

The initial optimization problem is replaced by a se-
quence of relaxed subproblems that are easier to solve.
Successive refinement of subproblems to approximate
the initial problem; cutting planes and more gen-
eral cuts, diverse minorant function constructions,
nested optimization and decomposition strategies are
also possible. Applicable to structured GO problems
such as, e. g., concave minimization and DC prob-
lems [14].

Branch and Bound Algorithms

A variety of partition strategies have been proposed to
solve GOPs. These are based upon adaptive partition,
sampling, and subsequent lower and upper bounding
procedures: these operations are applied iteratively to
the collection of active (remaining ‘candidate’) subsets
within the feasible set D. Their exhaustive search fea-
ture is similar in spirit to analogous integer program-
ming methodology. Branch and bound subsumes many
specific approaches, and allows for a range of imple-
mentations.

Branch and bound methods typically rely on some
a priori structural knowledge about the problem. This
information may relate, for instance to how rapidly
each function can vary (e. g. the knowledge of a suitable
‘overall’ Lipschitz constant, for each function f and g);
or to the availability of an analytic formulation – and
guaranteed smoothness – of all functions (for instance,
in interval arithmetic based methods).

The branch and bound methodology is applicable
to broad classes of GO problems: e. g., in combinato-
rial optimization, concave minimization, reverse con-
vex programs, DC programming, and Lipschitz opti-
mization. For details, consult [12,14,15,20,24,26].

Bayesian Search (Partition) Algorithms

These methods are based upon some postulated statis-
tical information, to enable a prior stochastic descrip-
tion of the function class modeled. During optimiza-
tion, the problem instance characteristics are adaptively
estimated and updated. Note that, typically only the
corresponding one-dimensional model development is
exact; furthermore, that inmost practical cases ‘myopic’
approximate decisions govern the search procedure.

This general approach is applicable also to (merely)
continuous GO problems. Theoretically, convergence
to the optimal solution set is guaranteed only by gen-
erating an everywhere dense set of search points. One
of the obvious challenges of using statistical methods
is the choice and verification of an ‘appropriate’ sta-
tistical model, for the class of problems to which they
are applied. Additionally, it seems to be difficult to
implement rigorous and computationally efficient ver-
sions of these algorithms for higher-dimensional opti-
mization problems. Note, however, that if one ‘skips’
the underlying Bayesian paradigm, then these meth-
ods can also be pragmatically viewed as adaptive par-
tition algorithms, and – as such – they can be di-
rectly extended to higher dimensions: see [24]. For
detailed expositions on Bayesian approaches, consult,
e. g., [18,19,27].

Adaptive Stochastic Search Algorithms

This is another broad class of methods, based upon ran-
dom sampling in the feasible set. In its basic form, it
includes various random search strategies that are con-
vergent, with probability one. Search strategy adjust-
ments, clustering and deterministic solution refinement
options, statistical stopping rules, etc. can also be added
as enhancements.

The methodology is applicable to both discrete and
continuous GO problems under very mild conditions.
Consult, for instance, [2,24,30].

Heuristic Strategies

‘Globalized’ Extensions of Local Search Methods

These are partially heuristic algorithms, yet often suc-
cessful in practice. The essential idea is to apply a pre-
liminary grid search or random search based global
phase, followed by applying a local (convex program-
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ming) method. For instance, random multistart per-
forms a local search from several points selected ran-
domly from the search domain D. Note that even such
sampling is not trivial, whenD has a complicated shape,
as being defined, e. g., by (merely) continuous nonlinear
functions.

Frequently, sophisticated algorithm enhancements
are added to this basic strategy. For instance, the clus-
tering of sample points is aimed at selecting only a sin-
gle point from each sampled ‘basin’ of f from which
then a local search method is initiated. Formore details,
consult, for instance, [27].

Genetic Algorithms, Evolution Strategies

These methods ‘mimic’ biological evolution: namely,
the process of natural selection and the ‘survival of the
fittest’ principle. An adaptive search procedure based
on a ‘population’ of candidate solution points is used.
Iterations involve a competitive selection that drops
the poorer solutions. The remaining pool of candidates
with higher ‘fitness value’ are then ‘recombined’ with
other solutions by swapping components with another;
they can also be ‘mutated’ by making some smaller-
scale change to a candidate. The recombination and
mutation moves are applied sequentially; their aim is to
generate new solutions that are biased towards subsets
of D in which good – although not necessarily globally
optimized – solutions have already been found.

Numerous variants of this general strategy, based
on diverse evolution ‘game rules’, can be constructed.
The different types of evolutionary search methods in-
clude approaches that are aimed at continuous GOPs,
and also others that are targeted towards solving com-
binatorial problems. The latter group is often called
genetic algorithms. For details, consult, e. g., [10,17,
22,29].

Simulated Annealing

These techniques are based upon the physical analogy
of cooling crystal structures that spontaneously attempt
to arrive at some stable (globally or locally minimal po-
tential energy) equilibrium. This general principle is
applicable to both discrete and continuous GO prob-
lems under mild structural requirements: consult, e. g.,
[1,22,28].

Tabu Search

In this general category of metaheuristics, the essential
idea during search is to ‘forbid’ moves to points already
visited in the (usually discrete) search neighborhood, at
least for a number of upcoming steps. This way, one
can temporarily accept new inferior solutions, in order
to avoid (sub)paths already investigated. This approach
can lead to exploring new regions of D, with the goal of
finding a solution by ‘globalized’ search.

Tabu search has traditionally been applied to com-
binatorial optimization (e. g., scheduling, routing, trav-
eling salesman) problems. The technique can bemade –
at least, in principle – directly applicable to continu-
ous GOPs by a discrete approximation (encoding) of
the problem, but other extensions are also possible. See
[9,22,29].

Approximate Convex Global Underestimation

This heuristically attractive strategy attempts to esti-
mate the (postulated) large scale, ‘overall’ convexity
characteristics of the objective function f based on di-
rected sampling in D. Applicable to smooth problems.
See, e. g., [6].

Continuation Methods

These first transform the potential function into a more
smooth (‘simpler’) function which has fewer local min-
imizers, and then attempt to trace the minimizers back
to the original function. Again, this methodology is
applicable to smooth problems. For theoretical back-
ground, see, for instance, [8].

Sequential Improvement of Local Optima

These methods usually operate on adaptively con-
structed auxiliary functions, to assist the search for
gradually better optima. The general heuristic principle
is realized by so-called tunneling, deflation, and filled
function approaches; consult, for example, [16].

Global Optimization Software

In spite of significant theoretical advances in GO, soft-
ware development and ‘standardized’ use lag behind.
This can be expected due to the potential numerical dif-
ficulty of GOPs; recall Fig. 1. Even ‘much simpler’ prob-
lem instances – such as e. g., concave minimization, or
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indefinite quadratic programming – belong to the hard-
est (NP) class of mathematical programming problems.

As summarized above, there exist several broad
classes of algorithmic GO approaches that possess
strong theoretical convergence properties, and – at least
in principle – are straightforward to implement. How-
ever, all such rigorous approaches involve a computa-
tional demand that increases exponentially as a func-
tion of problem size, even in case of the simplest GO
problem instances. (Consult, for example, [13] for re-
lated discussions.) Therefore many practical GO strate-
gies are completed by a ‘traditional’ local optimization
phase. Global convergence, however, needs to be guar-
anteed by the global scope algorithm component: the
latter – at least in theory – should be used in a com-
plete, ‘exhaustive’ fashion. The above remarks indicate
the basic inherent theoretical (and practical) difficulty
of developing robust, yet efficient GO software.

Since the computational demand of rigorous strate-
gies can be expected to be some exponential function of
the problem dimensionality, GO problems in Rn (n be-
ing just 5, 10, 20, 50, 100, . . . ) may have rapidly increas-
ing – possibly straight enormous – numerical complex-
ity. This is (and will remain) true, in spite of the fact that
computational power seems to grow at an unbelievable
pace: the so-called ‘curse of dimensionality’ is here to
stay.

In 1996, a survey on continuous GO software was
prepared for the newsletter of the Mathematical Pro-
gramming Society [23]. Additional information has
been collected from the Internet, from several GO
books, and from the Journal of Global Optimization.
Drawing on the responses of software developers and
the additional information available, over 50 software
products were annotated in that review. (In order to as-
sist in obtaining further information, contact person(s),
their e-mail addresses, ftp and/or WWW sites have also
been listed.)

Most probably, by now the number of solvers aimed
at GOPs is around one hundred (or even more). The
general impression is, however, that many of these soft-
ware products are still at an experimental development
stage, and of dominantly ‘academic’ character, as op-
posed to ‘industrial strength’ tools. (Of course, it is
not impossible that proprietary software products used
by industry and private companies are not announced
publicly.)

Below we shall list some key aspects that should be
addressed by professional quality GO software develop-
ment:
� well-specified hardware and software environments

(supported development platforms);
� quality user guidance: clearly outlined model de-

velopment procedure, sensible modeling and trou-
bleshooting tips, user file templates, and (also) non-
trivial numerical examples;

� fully functional, ‘friendly’ user interface;
� ‘fool-proof’ solver selection and execution proce-

dures;
� good runtime communication and documentation:

clear system output for all foreseeable program exe-
cution versions and situations, including proper er-
ror messages, and result file(s);

� visualization features which are especially desirable
in nonlinear systems modeling, to avoid problem
misrepresentation, and to assist in finding alterna-
tive models and solution procedures;

� reliable, high-quality user support;
� continuous product maintenance and development

(since not only science progresses, but hardware
devices, operating systems, as well as development
platforms are in permanent change).
This tentative ‘wish-list’ of requirements indicates

that although the task is not impossible, it is a chal-
lenge. As for an example, we refer to LGO – an in-
tegrated model development and solver system – that
has been developed with a view towards the desiderata
listed above. Details regarding LGO are described, e. g.,
in [24,25].

Software Evaluation

In order to obtain information regarding the scope and
usability of GO software, it needs to be thoroughly
tested. This is a demanding task, when done properly.
Consideration needs to be given to the selection of ap-
propriate – nontrivial and practically meaningful – ex-
amples. Computational experiments should be care-
fully designed; and the results should be reported in suf-
ficient details, to assure a fair and accurate assessment.
For corresponding discussions and GO (or other) test
problems, consult, e. g., [3,4,7,21].

A GO software evaluation framework can be pro-
posed, for instance, along the following guidelines.
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Software Applicability Range
(Solvable Model Types)

� objective function: concave, DC, Lipschitz, continu-
ous, or some other (general or more special) func-
tion form;

� constraints: unconstrained problems, bound con-
strained problems, linear constraints, general non-
linear smooth constraints;

� additional information related to solvable model
types and sizes, with corresponding expected run-
times (within given hardware and software environ-
ments).

GOMethodology Applied

� summary (or more detailed) description of basic
principles;

� adequate list of references;

Hardware and Software Requirements

� supported hardware platforms;
� minimal hardware configuration needed;
� operating systems;
� programming languages and environments;
� compiler(s) needed;
� connectivity to other development environments;
� portability to other hardware and software plat-

forms.

Test Results

� test problem description, mathematical and/or
coded form;

� real world background information (when applica-
ble);

� best known results, with references;
� accuracy requirements, stopping criteria;
� hardware and software environment used in testing;
� standard timing (to facilitate comparisons among

different platforms);
� time and computational demand, in order to find

the (estimated) global optimum;
� comparative success rate;
� information regarding the reproducibility of results.

Additional Software Information

� installation procedure;
� user interface features;

� academic and/or professional licenses; conditions of
use;

� user support (manual, on-line help, example files,
input and result handling, etc.);

� other points of interest.
Of course – at least from a practical point of view –

the most meaningful test is to apply GO methods to
problems that are of interest in the real world. For
numerous existing and prospective GO applications,
please consult the related articles � Global Optimiza-
tion in the Analysis andManagement of Environmental
Systems and � Continuous Global Optimization: Ap-
plications.

See also

� ˛BB Algorithm
� Convex Envelopes in Optimization Problems
� Differential Equations and Global Optimization
� DIRECT Global Optimization Algorithm
� Global Optimization Based on Statistical Models
� Global Optimization in Batch Design Under

Uncertainty
� Global Optimization in Binary Star Astronomy
� Global Optimization in Generalized Geometric

Programming
� Global Optimization of Heat Exchanger Networks
� Global Optimization Methods for Systems of

Nonlinear Equations
� Global Optimization in Phase and Chemical

Reaction Equilibrium
� Global Optimization Using Space Filling
� Interval Global Optimization
� Large Scale Unconstrained Optimization
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Heat Exchanger Network Synthesis
�MINLP: Mass and Heat Exchanger Networks
�Mixed Integer Linear Programming: Heat

Exchanger Network Synthesis
�Mixed Integer Linear Programming: Mass and Heat

Exchanger Networks
�Modeling Languages in Optimization: A New

Paradigm
� Optimization Software
� Smooth Nonlinear Nonconvex Optimization
� Topology of Global Optimization
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Introduction

Nonlinear optimization problems involving discrete
decision variables, also known as generalized disjunc-
tive programming (GDP) or mixed-integer nonlinear
programming (MINLP) problems, arise frequently in
applications. Examples from process engineering in-
clude the synthesis of heat exchanger or reactor net-
works, the optimization of separation processes, such
as sequencing and tray optimization problems of dis-
tillation columns, and the optimization of entire pro-
cess flowsheets [3]. The discrete decisions in these prob-
lems are usually related to the structure of the process
whereas typical continuous variables are process states
such as temperatures, concentrations or flows.

Connections between continuous and discrete op-
timization problems have been studied for several
decades (see, e. g., [4]). In particular, in [9] it was ob-
served that discrete variables can be modeled by com-
plementarity constraints, that is, the discrete model
is replaced by a continuous model. A broad sur-
vey on other approaches to model discrete decisions
by continuous formulations is given in [10], includ-
ing concave optimization problems and relaxation by
semi-definite programming, with applications to the
maximum clique problem, satisfiability, the Steiner tree
problem, and minimax problems.

Extensive work has been addressed to discrete-
continuous problems with linear objective function and
constraints, known as mixed-integer linear program-
ming (MILP) problems. In fact, a number of power-
ful algorithms have been developed which are ready to
solve practically relevant, large-scale problems of this
type. As soon as the objective function and the con-
straints comprise nonlinear terms in the continuous
variables, as it is usually the case, for example, for prob-
lems in process engineering, the optimization problem
is referred to as a mixed-integer nonlinear program-
ming (MINLP) problem. Algorithms for MINLP prob-
lems are either based on branch and bound with non-
linear programming (NLP) subproblems or on decom-
position methods that alternately solve NLP and MILP
subproblems. These algorithms are guaranteed to locate
the global optimum if the nonlinearities are convex.

Optimization problems involving nonconvex objec-
tive function and constraints are by far more difficult
to solve. In [11] it is proposed to reformulate discrete-

continuous optimization problems by the idea from [9],
as purely continuous optimization problems with com-
plementarity constraints. In this approach, the dis-
crete variable set of an MINLP problem is replaced by
continuous variables which are restricted to take dis-
crete values by enforcing a special type of either non-
differentiable or degenerate continuous constraints.

[15] complements this approach by purely con-
tinuous reformulations of MINLP problems with bet-
ter theoretical properties, as will be explained below.
As all continuous reformulation approaches inevitably
lead to nonconvex optimization problems, searching
for a global solution may be numerically challenging.
On the other hand, these continuous reformulations
yield efficient ways to locally solve MINLP problems on
the basis of NLP solution methods.

Definitions

Consider a generalized disjunctive representation [12]
of nonlinear optimization problems, where an objec-
tive function is minimized subject to two different types
of constraints, namely global constraints that hold ir-
respectively of any discrete decision, and constraints
contained in disjunctions that are only enforced if
a corresponding Boolean variable Yi;k is True. The
optimization problem is then formulated as follows:

(GDP)min
x;Y

˚(x)C
X
k2K

bk

s.t. f (x) D 0 ; (1)

g(x) � 0 ; (2)

_
i2Dk

2
664

Yi;k

hi;k(x) D 0 ;
ri;k(x) � 0 ;
bk D �i;k ;

3
775 ; k 2 K ; (3)

Dk D f1; 2; : : : ; nkg ;

˝(Y) D True, Yi;k 2 fTrue; Falseg : (4)

In GDP, x represents a vector of continuous de-
cision variables and Yi;k are Boolean variables. bk is
a scalar and �i;k represents a fixed charge. The objec-
tive function comprises the sum of all fixed charges
and a nonlinear term ˚(x). Whereas the model equa-
tions (1) and inequality constraints (2) hold irrespective
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of discrete choices, there are further equations and in-
equality constraints (3) that are contained in nk ; k 2 K,
disjunctions. Each disjunction k may consist of several
terms i 2 Dk , where the index set Dk defines the num-
ber of terms for each disjunction. Note that exactly one
term i 2 Dk holds per disjunction, that is,

W
i2Dk

is un-
derstood as an ‘exclusive or’ operator. The disjunctive
constraints are only enforced if the Boolean variable
value Yi;k is True. Otherwise, if Yi;k is False, the corre-
sponding constraints are removed from the optimiza-
tion problem.

The Boolean variables themselves are related to each
other by so called propositional logic constraints (4).
These logic constraints are used to model interrela-
tionships between disjunctive constraints. For exam-
ple, assume that the first disjunctive term from dis-
junction k D 1 has to be selected (Y1;1 D True) if an-
other term from disjunction k D 2 is removed from the
constraint set (Y1;2 D False). This situation can be ex-
pressed by the implication:Y1;2) Y1;1 ;which can be
transformed into a constraint of type (4):

Y1;2 _ Y1;1 D True : (5)

Any optimization problem in disjunctive formGDP
can be posed as an equivalent MINLP problem [5] by,
for example, transforming the disjunctive constraints
into big-M or binary multiplication constraints and by
replacing the Boolean variables Yi;k by binary variables
yi;k 2 f0; 1g.

A problem reformulation based on binary multipli-
cation is:

(BM) min
x;y

˚(x)C
X
k2K

bk

s.t. f (x) D 0 ;

g(x) � 0 ;

yi;k � hi;k(x) D 0 ; (6)

yi;k � ri;k(x) � 0 ; (7)

yi;k � (bk � �i;k) D 0 ; (8)

Ay � a ; (9)

X
i2Dk

yi;k D 1 ; (10)

yi;k 2 f0; 1g ; i 2 Dk ; k 2 K ; (11)

where each disjunctive constraint is multiplied by
a variable yi;k . If yi;k D 0, the corresponding constraint
becomes redundant. On the other hand, a constraint
contained in a disjunction is enforced with yi;k D 1.
The propositional logic constraints (4) can be modeled
by the linear constraints (9) on the binary variables.
Note that with these inequalities not only exclusive but
also inclusive ‘or’-relations can be modeled, although
a binary variable itself takes only exclusively the values
0 or 1. In fact, for two binary variables y1 and y2 the
inclusive relation y1 C y2 � 1, modeling (5), becomes
exclusive under the additional relation y1 C y2 � 1.

It is important to note that the problem formulation
BM has the drawback of being nonconvex even if the
nonlinear, disjunctive constraints of the original opti-
mization problem are convex. Thus, a problem refor-
mulation based on binary multiplication would be em-
ployed only if the disjunctive optimization problemwas
nonconvex itself, as it is the case, for example, in a large
portion of process engineering applications. Hence, this
drawback should not be regarded as a strong limitation.
Also note that the nonconvex expressions in (7) can be
convexified if ri;k is a convex function [16]. However,
in the following this assumption will not be made.

Formulations

Instead of applying an MINLP algorithm for solving
the discrete-continuous optimization problem BM in-
troduced in the previous section directly, one can re-
formulate the problem such that no discrete variables
are present anymore. In particular, the discrete set de-
fined in (10),(11) can be replaced by a set of restric-
tions involving continuous variables only, which can be
used as constraints to form a purely continuous NLP.
Since NLP solvers are usually designed to work with
continuous variables, that is, variables from at least one-
dimensional sets, the basic idea here is to increase the
dimension of the constraint sets for yi;k . Note that the
discrete variables yi;k as defined in (11) are contained
in a set of dimension zero.

For the explanation of the main ideas consider a sin-
gle disjunction with nk D 2 as it appears in (3). Put
yk :D y1;k as well as zk :D y2;k and drop the fixed in-
dex k. This leads to a single binary decision variable
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Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 1
Values of the discrete variable (y; z)

y 2 f0; 1g and its negation z, where the pair (y; z) can
then attain exactly one of the values (1; 0) and (0; 1),
that is,

(y; z) 2 A0 D f(1; 0); (0; 1)g ; (12)

(cf. Fig. 1). Hence, in this case the conditions (10),(11)
are replaced equivalently by (12). In the general case
nk � 2 there are several ways to use the set A0 to refor-
mulate (10),(11) equivalently. A first possibility is to in-
troduce additional variables zi;k D 1� yi;k and replace
only (11) by the conditions (yi;k; zi;k) 2 A0; i 2 Dk .

Note that the constraint (10) guarantees that exactly
one of the variables yi;k ; i 2 Dk ; is equal to 1, since
these variables can only take the values 0 and 1. This
restriction can be relaxed in conjunction with an al-
ternative approach for modeling binary decision vari-
ables explained below. Having these later developments
in mind, note that an alternative reformulation of (10),
(11) using A0 is
0
@yi;k ;

X
j2Dknfig

y j;k

1
A 2 A0 ; i 2 Dk ; k 2 K : (13)

An advantage of the latter reformulation is that it does
not increase the problem dimension by auxiliary vari-
ables zi;k .

Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 2
The points which satisfy the complementarity condi-
tion (14),(15)

Representing the Discrete Decisions
by Approximate Continuous Variables

There are a number of ways to describe A0 with con-
tinuous constraints. A suggestion of [9,11] is to re-
place (12) with the equivalent set of constraints

y � z D 0 ; (14)

y � 0 ; z � 0 ; (15)

y C z D 1 : (16)

In fact, the constraints (14),(15) are known as a comple-
mentarity condition. They model a piecewise linear set
with one kink at the origin in R2, as depicted in Fig. 2.
Together with the constraint (16) one obtains exactly
the set A0 (cf. Fig. 3).

It is well-known that sets whose description con-
tains complementarity conditions are not easy to
treat numerically. In fact, the so-called Mangasarian–
Fromovitz constraint qualification is violated every-
where in the feasible set as soon as a complementarity
condition appears [14]. This constraint qualification,
however, is known to characterize the (numerical) sta-
bility of the described set [6,13].
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Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 3
Modeling discrete variables with a complementarity condi-
tion

There are many suggestions on how a complemen-
tarity condition can be treated numerically, in particu-
lar in the literature on so-called mathematical programs
with equilibrium constraints (MPECs) which are opti-
mization problems with complementarity conditions in
the constraints [7,8].

One approach is to use regularization techniques,
for example to replace the condition (14) by its relax-
ation y � z � � with some positive parameter �. The
idea is to trace the solutions of the corresponding aux-
iliary problems to a solution of the original problem
while driving � to zero.

For the reformulation of binary variables this ap-
proach means that the discrete set A0 is replaced by the
one-dimensional set

A
 D f(0; 1)C t � (1;�1)jt 2 [0; 0:5�
p
0:25 � �]

[ [0:5C
p
0:25 � �; 1]g ;

which is disconnected for � < 0:25 as illustrated in
Fig. 4.

Hence, this approach replaces discrete by continu-
ous variables, at least via an approximation. [15] refers
to the variables from the set A
 as approximate continu-
ous. In view of (13), a possible approximation of binary

Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 4
Continuous variables for the relaxed complementarity con-
dition

variables from a general disjunction is
0
@yi;k ;

X
j2Dknfig

y j;k

1
A 2 A
 ; i 2 Dk ; k 2 K

with � > 0.
Note that there are two serious drawbacks of the

reformulation by a complementarity condition. First,
a look at Fig. 3 shows that the kink at the origin is ir-
relevant for the description of A0 because of the addi-
tional constraint (16). Thus, there is no need to use the
numerically demanding complementarity condition to-
gether with (16), but any function with a smooth zero
set and the correct intersection points would do. For
example, one can use the constraint
�
y �

1
2

�2

C

�
z �

1
2

�2

D
1
2
;

which is illustrated in Fig. 5.
Here, the Mangasarian–Fromovitz constraint quali-

fication and even the stronger linear independence con-
straint qualification are satisfied everywhere in the set
A0 (for background information on constraint qualifi-
cations see [1]). This can be seen as an important ad-
vantage when compared to the properties of A0 repre-
sented by the complementarity condition.

A second drawback which the circle condition
shares with the reformulation by a complementarity
condition is that the variables are still contained in the
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Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 5
The circle condition

discrete set A0. In order to obtain a one-dimensional
set one can again relax the conditions that describe A0

to obtain a set A� corresponding to A
 from the MPEC
relaxation above. In fact, the constraints

�
y �

1
2

�2

C

�
z �

1
2

�2

�
1
2�

y �
1
2

�2

C

�
z �

1
2

�2

�

�
1
p
2
� �

�2

yC z D 1 ;

with � > 0 describe sets A� (cf. Fig. 6), which corre-
spond to the sets A
(� > 0) via a reparametrization,
that is, one arrives at the same set of approximate con-
tinuous variables.

Unfortunately, for the limiting case � D 0 the cir-
cle is not described by one equality constraint but by
two inequalities with gradients pointing in opposite di-
rections, so that theMangasarian–Fromovitz constraint
qualification is then again violated in A0.

Representing the Discrete Decisions
by Exact Continuous Variables

Although both the reformulation by a complementarity
condition and the reformulation by a circle condition
lead to well performing numerical methods for small

Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 6
The circle relaxation

examples [11,15] they share two intrinsic drawbacks:
� the replacement for A0 is one-dimensional, but only

approximate,
� in the (limiting) case of an exact description for

A0, the Mangasarian–Fromovitz constraint qualifi-
cation is violated,

� the one-dimensional set becomes discrete if equality
constraints are inconsistent (see below).

Since these propertiesmay affect the numerical solution
of large problems, [15] proposes a different continuous
reformulation of the integrality constraints with better
theoretical features.

The subsequent considerations are based on an al-
ternative model reformulation that allows to replace
the discrete decision variables defined in (10) by vari-
ables yi;k , which are not defined on a discrete set as,
for example, A0. In fact, this model reformulation has
the property of being equivalent to the corresponding
disjunctive optimization problem in conjunction with
one-dimensional rather than discrete variables yi;k . Be-
fore describing the model reformulation in detail, we
focus on the variables yi;k and show how a continuous,
one-dimensional set A1 can be defined using appropri-
ate constraints.

In fact, since in BM any disjunctive constraint is
not only enforced by yi;k D 1, but alternatively also by
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Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 7
A one-dimensional feasible set for (y; z).

yi;k � 1, one may define yi;k as continuous variables of
dimension one according to:

yi;k 2 f0g [ [1;1) :

Of course, now the negation of yi;k in general does not
coincide with 1� yi;k , as the value of yi;k might exceed
1. On the other hand, for the case nk D 2 as above we
obtain

(y; z) 2 A1 D ([1;1) � f0g)[ (f0g � [1;1)) (17)

(cf. Fig. 7). Hence, the negation of yi;k is coded by the
variable zi;k . Moreover, one can now describe the bi-
nary decisions via
0
@yi;k ;

X
j2Dknfig

y j;k

1
A 2 A1 ; i 2 Dk ; k 2 K : (18)

The set A1 is obviously one-dimensional and is an
exact rather than approximate model of a discrete deci-
sion. Therefore, the variables defined by the set A1 are
referred to as exact continuous.

To be able to apply an NLP solution algorithm, one
has to describe A1 by continuous constraints. One pos-
sibility, of course, is to use the (degenerate) comple-
mentarity condition (14),(15) with the additional con-
straint yC z � 1. However, it is also possible to choose

a function with an appropriate zero set, such that the
linear independence constraint qualification holds ev-
erywhere in the feasible set. A function with these
properties is the so-called Fischer–Burmeister function
'FB(y; z) D yC z �

p
y2 C z2. This means that one

can write

A1 D f (y; z) 2 R2j 'FB(y; z) D 0 ; yCz � 1 g : (19)

Equivalently, one could use a multitude of other so-
called NCP-functions (for a survey see [2]). NCP-
functions are used for the description of nonlinear
complementarity problems. They are designed such
that their zero set coincides with the set defined
by (14),(15) (cf. Fig. 2). A description like (19) reveals
better numerical properties than the original descrip-
tion via (14),(15). For example, whereas the Mangasar-
ian–Fromovitz constraint qualification is violated ev-
erywhere in the set under a description via (14),(15), the
description as the zero set of the Fischer–Burmeister
function even leads to the validity of the linear inde-
pendence constraint qualification everywhere in the set,
except for the origin (which does not play a role here).
In terms of the Fischer–Burmeister function, and us-
ing (19), the condition (18) is equivalent to

'FB

0
@yi;k ;

X
j2Dknfig

y j;k

1
A D 0 ; i 2 Dk ; k 2 K ;

X
i2Dk

yi;k � 1 ; k 2 K :

Modeling Propositional Logic Constraints
with Exact Continuous Variables

The question remains how logical conditions on two
logical variables Y1 and Y2 should be modeled when
(y1; z1) and (y2; z2) are not discrete but continuous as
proposed in (17). This can easily be done by adding in-
equality constraints. In fact, Y1 ^ Y2 is true if and only
if y1 � 1 and y2 � 1. Moreover, Y1 _ Y2 is true if and
only if y1 C y2 � 1. For the negation of Y1 one may not
use 1 � y1, as y1 might take a value strictly larger than
one. On the other hand, for nk D 2 the negation of Y1 is
already coded in the variable z1. Moreover, for nk > 2
the negation of yi;k is coded in

P
j2Dknfig y j;k , and one

can proceed as above. Just like in the discrete case, in-
clusive as well as exclusive ‘or’-relations can bemodeled
with exact continuous variables.
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To circumvent the introduction of nonconvexity
into the model by binary multiplication in BM, [15]
presents an alternative, convex reformulation approach
on the basis of tailored big-M constraints which can
also be used in conjunction with exact continuous vari-
ables as defined in equation (17). A distinctive property
of the binary multiplication-based model formulation
BM, however, is the treatment of inconsistent equality
constraints.

The Case of Inconsistent Equalities

In many applications, the constraints (6)–(8) in BM
lead to implicit restrictions on the exact continu-
ous variables. In particular, (6) and (8) have to hold
simultaneously for i 2 Dk ; k 2 K. In process engi-
neering applications, the underlying equations (i. e.
hi;k(x) D 0; i 2 Dk as well as bk � �i;k D 0; i 2 Dk)
are often inconsistent for fixed k 2 K, that is, they do
not admit a common solution or, put geometrically, the
sets described by these equations are disjoint. Note that
this is an inherent property of a GDP problem with so-
called disjoint disjunctions which have non-empty in-
tersecting feasible regions [17].

This is particularly the case, if for fixed k 2 K the
values �i;k are pairwise distinct for i 2 Dk . It implies
that at most one of the variables yi;k ; i 2 Dk , is non-
vanishing. In the case nk D 2 with y D y1 and z D y2
this means that the equation y � z D 0 holds automati-
cally. As a consequence, the only constraint needed for
the description ofA1 (cf. Fig. 7) is y C z � 1, that is, the
set

A2 D f (y; z) 2 R2j y C z � 1 g

coincides with A1 in the case of inconsistent equalities
(cf. Fig. 8).

Although the pair (y; z) does not vary in the com-
plete two-dimensional set A2 from Fig. 8, in the restric-
tions one does not code the same information twice.
This can be expected to lead to better numerical per-
formance when NLP solvers are applied.

Conclusions

In [15] several example problems involving discrete
and continuous decision variables from process engi-

Continuous Reformulations of Discrete-Continuous Opti-
mization Problems, Figure 8
A two-dimensional feasible set for (y; z)

neering are treated numerically, with approximate as
well as exact continuous variables representing the dis-
crete decisions. It is shown that, using these reformu-
lations, an efficient numerical treatment of disjunctive
optimization problems is possible, but one can only ex-
pect to find local solutions when using standard NLP
solvers. This is due to the fact that any continuous
reformulation of a disjunctive optimization problem
leads to a nonconvex optimization problem. Conse-
quently, the reformulation approaches may be com-
bined with global optimization algorithms whenever
the problem size admits to do so.

See also

� Disjunctive Programming
�Mixed Integer Programming/Constraint

Programming Hybrid Methods
� Order Complementarity
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Introduction

Inventory control is an important issue in supply chain
management. Today, many different approaches are
used to solve the complicated inventory control prob-
lems. While some of the approaches use a periodic re-
view cycle, others use methods based on continuous re-
view of inventory. In this survey, stochastic inventory
theory that is based on continuous review is analyzed.

One of the challenging tasks in continuous review
inventory problems is finding the order quantity (Q)
and the reorder point (R) such that the total cost is min-
imized and fill rate constraints are satisfied. The total
cost includes ordering cost, backorder cost, and inven-
tory holding cost. The fill rate is defined as the fraction
of demand satisfied from inventory on hand. Under the
continuous inventory control methodology, when the
inventory position (on-hand inventory plus outstand-
ing orders minus backorders) drops down to or below
a reorder point, R, an order of size Q is placed.

Although they are all the same, there are many dif-
ferent representations of this inventory model such as
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(Q, r) (Boyaci and Gallego [5]), (Q, R) (Hing et al. [14]),
(R, Q) (Axsater [2,3] and Marklund [16]). In addition,
for some of the problems it is assumed that the order
quantity (nQ) is a multiple of minimum batch size, Q.
Here, n is the minimum integer required to increase the
inventory position to above R (Chen and Zheng[8]). In
this case, the problem is formulated as a (R, nQ) type
model.

Models

When the literature of (Q, R) models is investigated,
some similarities and differences among the publica-
tions can easily be identified. Thus, the publications can
be classified according to those similarities and differ-
ences. Two of the most distinctive attributes of (Q, R)
models are as follows:
1. Type of supply chain: While some articles only con-

sider one entity that uses a (Q, R) policy [1,5,14],
others consider a multi echelon inventory system
[2,3,8,16].

2. Exact evaluation or near-optimal evaluation: The (Q,
R) inventory problems are not easy to solve; thus,
many of the research papers give approximate so-
lution approaches or try to find bounds on the so-
lutions [1,2,4,5,20], only a small number of articles
give the exact evaluation of the (Q, R) inventory sys-
tem [3,9,21].

In the next section, the literature based on type of sup-
ply chain considered and the evaluation methods used
is reviewed. First, heuristic methods are analyzed. Sec-
ond, publications providing optimal methods are re-
viewed. In the last section, we give some concluding re-
marks.

Single-Echelon Models

Hing et al. [14] focus on average inventory level ap-
proximation in a (Q, R) system with backorders. They
compare different approaches proposed in the liter-
ature. Their numerical analysis shows that the ap-
proximation developed by Hadley and Whitin [13],
1/2Q+ safety stock, is more robust than other approxi-
mations that have been proposed so far. Then, the au-
thors propose a newmethodology based on spreadsheet
optimization. Using numerical examples they show that
spreadsheet optimization based approach is better than
those methods proposed in the literature.

Agrawal and Seshadri [1] provide upper and lower
bounds for optimal R and Q subject to fill rate con-
straints. Although the authors consider backorder cost,
the algorithm that was developed to find bounds can
be used when backorder costs are zero. Another impor-
tant application of the algorithm is that it can be applied
when there are no service level constraints.

Like Agrawal and Seshadri [1], Platt et al. [19] also
consider fill rate constraints and propose two heuris-
tics that can be used for (Q, R) policy models. While
the first heuristic is suitable for deterministic lead time
demand models, the second one assumes that demand
during the lead time follows a normal distribution. Both
heuristics are used to find R and Q values. The authors
compare the proposed heuristics with others that have
been proposed in the literature. Their analysis shows
that their heuristics do not necessarily outperform the
other heuristics in each problem instance.

Boyaci and Gallego [5] propose a new (Q, R) model
that minimizes average holding and ordering costs sub-
ject to upper bounds on the expected and maximum
waiting times for the backordered items. They provide
optimality conditions and an exact algorithm for the
problem. Boyaci and Gallego [5] conclude their study
by performing a numerical analysis.

Gallego [12] proposes heuristics to find distribu-
tion-free bounds on the optimal cost and optimal batch
size when a (Q, R) policy is used. He also shows that the
heuristics work well when the demand distribution is
Poisson or compound Poisson.

Bookbinder and Cakanyildirim [4] consider a (Q, R)
policy where lead time is not constant. They treat lead
time as a random variable and develop two probabilistic
models. While in the first model the lead time is fixed,
in the second model the lead time can be reduced by
using an expediting factor (�). The order quantity, re-
order point, and expediting factor are the the three de-
cision variables in the second model. The authors show
that for both models the expected cost per unit time
is jointly convex. They also make a sensitivity analysis
with respect to cost parameters.

Ryu and Lee [20] consider the lead time as a de-
cision variable. However, in this study the demand is
constant. In their model, Ryu and Lee [20] assume that
there are two suppliers for the items to be procured.
They mainly consider two cases. In the first case, lead
time cannot be decreased but in the second case, or-
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ders can be expedited. The authors also assume that
lead-time distributions are non-identical exponential.
For the first case, their objective is to determine a Q,
an R, and an order-splitting proportion. In the sec-
ond case, they find new values for the lead times using
the order-splitting proportion. Their sensitivity analy-
sis shows that the order-splitting proportion tends to
be a half, and it is biased by the coefficient of the expe-
diting function.

Cakanyildirim et al. [6] develop a model that con-
siders lead-time variability. The authors assume that
lead time is effected by both the lot size and the reserved
capacity. The authors come up with a closed-form solu-
tion for the situation where lead time is proportional to
the lot size. Cakanyildirim et al. [6] also present the ef-
fect of linear and concave lead times on the value of cost
function. In the model, in addition to the order quan-
tity and the reorder point, the reserved capacity is also
a decision variable. Finally, the authors consider a case
in which fixed proportion of capacity is allocated at the
manufacturing facility.

Most of the articles in the literature consider lead
time as a constant and focus on demand during the lead
time. However, Wu and Ouyang [21] assume that lead
time is a decision variable and that lead-time demand
follows a normal distribution. They also assume that an
arrival order may contain some defective parts and that
those parts will be kept in inventory until next deliv-
ery. Moreover, they include an inspection cost for de-
fective parts to the model. Their model is defined as
(Q, R, L) inventory model where order quantity (Q),
reorder point (R), and lead time (L) are decision vari-
ables. The objective is to minimize the total cost which
includes ordering costs, inventory holding costs (de-
fective and non-defective), lost sales costs, backorder
costs, and inspection costs. The authors present an al-
gorithm to find the optimal solutions for the given
problem.

Duran et al. [9] present a (Q, R) policy where orders
can be expedited. At the time of order release, if inven-
tory position is less than or equal to a critical value re,
the order is expedited at an additional cost. If the in-
ventory level is higher then re and lower than or equal
to the reorder point R, then order is not expedited. The
aim is to find the order quantity (Q), the reorder point
(R), and the expediting point re which minimize av-
erage cost (note that this does not include backorder

costs). The authors present an optimal algorithm to ob-
tain the Q, R, and re values if they are restricted to be
integers.

The model proposed by Kao and Hsu [15] is dif-
ferent from other models reviewed in this paper be-
cause the authors discuss the order quantity and re-
order point with fuzzy demand. Kao and Hsu [15] use
this fuzzy demand to construct the fuzzy total inven-
tory cost. The authors derive five pairs of simultaneous
nonlinear equations to find the optimal order quantity
Q and the reorder point R. The authors show that when
the demand is a trapezoid fuzzy number, the equations
can be reduced to a set of closed-form equations. Then,
they prove that the solution to these equations give an
optimal solution. Kao and Hsu [15] also present a nu-
merical example to show that the solution methodology
developed in the paper is easy to apply in practice.

Multi-Echelon Models

Moinzadeh and Lee [18] present a model to determine
the batch size in a multi-echelon system with one cen-
tral depot andM sites. In their problem, when the num-
ber of failed items is equal to the order quantity Q at any
site, then those items are sent to the depot. If the depot
has sufficient inventory on hand, it delivers the items
immediately; otherwise, the items are backlogged. Al-
though all sites use a (Q, R) policy, the depot uses a (S-1,
S) policy. In other words, whenever the depot receives
an order of size Q, it places an order simultaneously to
replenish its stock. After determining the Q and R val-
ues for each site, the authors use an approximation to
estimate the total system stock and the backorder lev-
els. The numerical results show that the (Q, R) policy is
better than the (S-1, S) policy for such systems.

Forsberg [10] deals with a multi-echelon inventory
system with one warehouse and multiple non-identical
retailers. The author assumes that the retailers face in-
dependent Poisson demand and both the warehouse
and the retailers use (Q, R) policies. Forsberg [10] eval-
uates inventory holding and shortage costs using an ex-
act solution approach.

Chen and Zheng [8] study a (nQ, R) policy in
a multi-stage serial inventory system where stage 1 or-
ders from stage 2, stage 2 from stage 3, etc., and stage N
places orders to an outside supplier with unlimited ca-
pacity. The demand seen by stage 1 is compound Pois-
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son and excess demand is backlogged at every stage.
The transportation lead times among stages are con-
stant. By using a two-step approach, Chen and Zheng
[8] provide near-optimal solution. In the first step, they
find the lower and upper bounds on the cost function by
changing the penalty cost of being short on inventory.
In the second step, the authors minimize the bounds
by using three different heuristic approaches. Chen and
Zheng [8] also propose an optimal algorithm that re-
quires additional computational effort.

Axsater [2] considers a two-stage inventory system
with one warehouse and N non-identical retailers. He
presents an exact method to evaluate inventory hold-
ing and shortage costs when there are only two retail-
ers. He focuses on the timing of the warehouse orders
for the sub-batches ofQ. He identifies three possibilities
and evaluates the cost for each case separately. At the
end, total cost is calculated by summing the costs for
the three cases. When there are more than two retail-
ers, he extends his evaluation technique by combining
the retailers into two groups, and then uses the same
approach he developed for the two retailer case. The
author also presents a model where the lead times are
constant and all facilities use (Q, R) policies with dif-
ferent Q and R values. In this model, all stockouts are
backordered, delayed orders are delivered on a first-
come-first-served basis, and partial shipments are also
allowed. In order to simplify the problem, Axsater [2]
assumes that all batch sizes are multiples of the small-
est batch size. In the objective function, the author only
considers expected inventory holding cost and back-
order cost.

Like Axsater [2], Marklund [16] also considers
a two-stage supply chain with one central warehouse
and an arbitrary number of non-identical retailers. Cus-
tomer demands occur only at the retailers. The retailers
use (Q, R) policies with different parameters, and they
request products from the central warehouse whenever
their inventory positions reach R or fall below R. The
author proposes a new policy (Q0, a0) that is motivated
by relating the traditional echelon stock model to the
installation stock (Q, R)model where the order quantity
Q is a multiple of a minimum batch size. In the article,
Marklund [16] gives the detailed derivation of the exact
cost function when the retailers use (Q, R) policies and
the warehouse uses the new (Q0, a0) policy. The perfor-
mance of the new policy is compared to traditional ech-

elon stock policy and (Q, R) policy through numerical
examples. Although the results show that the proposed
policy outperforms the other policies in all numerical
examples, the author does not guarantee that the policy
will always give the best result.

Fujiwara and Sedarage [11] apply a (Q, R) policy
for a multi-part assembly system under stochastic lead
times. The objective of the article is to simultaneously
determine the order quantity and the assembly lot size
so that the average total cost per unit time is minimized.
The total cost includes setup costs, inventory holding
costs of parts and assembled items, and shortage costs
of assembled items. The authors try to find separate re-
order points, ri, for each part and a global order quan-
tity,Q, which will be used for all parts. Although the au-
thors propose a global order quantity Q, they also men-
tion that this kind of policy may not be optimal. They
suggest that instead of a global Q, a common Q where
all order quantities are multiples of Q might be more
sensible.

Chen and Zheng [7] consider a distribution system
with one warehouse and multiple retailers. The retail-
ers’ demands follow an independent compound Pois-
son process. It is assumed that the order quantity is
a multiple of the smallest batch size. The order quantity
and the reorder point are calculated by using a heuris-
tic. The authors present an exact procedure for evaluat-
ing the performance (average cost) of the (nQ, R) pol-
icy when the demand is a Poisson process. Chen and
Zheng [7] also give two approximation procedures for
the case with compound Poisson processes. The ap-
proximations are based on exact formulations of the
case with Poisson processes.

Axsater [3] presents an exact analysis of a two-stage
inventory system with one warehouse and multiple re-
tailers. The demand for each retailer follows an inde-
pendent compound Poisson process. The retailers re-
plenish their stock from the warehouse, and the ware-
house replenishes its stock from an outside supplier.
The transportation times from the warehouse to the re-
tailers and from the outside supplier to the warehouse
are constant. In addition, if there is a shortage, then ad-
ditional delay may also occur since shortages and stock-
outs are backordered. The author emphasizes that the
approach developed is not directly applicable for items
with large demand. Instead, it is suitable mostly for
slow-moving parts such as spare parts.
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Moinzadeh [17] also considers a supply chain with
one warehouse and multiple identical retailers. The au-
thor assumes that demand at the retailers is random but
stationary and that each retailer places its order accord-
ing to a (Q, R) policy. In addition, Moinzadeh [17] as-
sumes that the warehouse receives online information
about the demand. The author shows the effect of infor-
mation sharing on order replenishment decisions of the
supplier. In the article, the author first proposes a possi-
ble replenishment policy for the supplier and then pro-
vides an exact analysis for the operating measures of
such systems. The author concludes the article by giving
information about when information sharing is most
beneficial.

Conclusions

We provide a literature review on continuous review
(Q, R) inventory policies. Although we review most of
the well known papers that deal with (Q, R) policy, this
is not an exhaustive review of the literature. Our aim is
to present the importance of the (Q, R) policy and show
possible extensions of the simple (Q, R) model.

References

1. Agrawal V, Seshadri S (2000) Distribution free bounds for
service constrained (Q, r)inventory systems. Nav Res Logist
47:635–656

2. Axsater S (1998) Evaluation of installation stock based (R,
Q)-policies for two-level inventory systems with poisson
demand. Oper Res 46(3):135–145

3. Axsater S (2000) Exact analysis of continuous review (R,
Q) policies in two-echelon inventory systems with com-
pound poisson demand. Oper Res 48(5):686–696

4. Bookbinder JH, CakanyildirimM (1999) Random lead times
and expedited orders in (Q, r) inventory systems. Eur J Oper
Res 115:300–313

5. Boyaci T, Gallego G (2002) Managing waiting times of
backordered demands in single-stage (Q, r) inventory sys-
tems. Nav Res Logist 49:557–573

6. Cakanyildirim M, Bookbinder JH, Gerchak Y (2000) Contin-
uous review inventory models where ran- dom lead time
depends on lot size and reserved capacity. Int J Product
Econ 68:217–228

7. Chen F, Zheng YS (1997) Onewarehousemulti-retailer sys-
tem with centralized stock information. Oper Res 45(2):
275–287

8. Chen F, Zheng YS (1998) Near-optimal echelon-stock
(R, nQ) policies in multistage serial systems. Oper Res
46(4):592–602

9. Duran A, Gutierrez G, Zequeira RI (2004) A continuous re-
view inventory model with order expediting. Int J Product
Econ 87:157–169

10. Forsberg R (1997) Exact evaluation of (R, Q)-policies for
two-level inventory systems with Poisson demand. Eur J
Oper Res 96:130–138

11. Fujiwara O, Sedarage D (1997) An optimal (Q, r) policy for
a multipart assembly system under stochastic part pro-
curement lead times. Eur J Oper Res 100:550–556

12. Gallego G (1998) New bounds and heuristics for (Q, r) poli-
cies. Manag Sci 44(2):219–233

13. Hadley G, Whitin TM (1963) Analysis of inventory systems.
Prentice-Hall, Englewood Cliffs, NJ

14. Hing A, Lau L, Lau HS (2002) A comparison of different
methods for estimating the average inventory level in a (Q;
R) system with backorders. Int J Product Eco 79:303–316

15. Kao C, Hsu WH (2002) Lot size-reorder point inventory
model with fuzzy demands. Comput Math Appl 43:1291–
1302

16. Marklund J (2002) Centralized inventory control in a two-
level distribution system with poisson demand. Nav Res
Logist 49:798–822

17. Moinzadeh K (2002) A multi-echelon inventory system
with information exchange. Manag Sci 48(3):414–426

18. Moinzadeh K, Lee HL (1986) Batch size and stocking lev-
els in multi-echelon repariable systems. Manag Sci 32(12):
1567–1581

19. Platt DE, Robinson LW, Freund RB (1997) Tractable (Q, R)
heuristic models for constrained service level. Manag Sci
43(7):951–965

20. Ryu SW, Lee KK (2003) A stochastic inventorymodel of dual
sourced supply chain with lead-time reduction. Int J Prod-
uct Eco 81–82:513–524

21. Wu KS, Ouyang LY (2001) (Q, r, L) inventory model with de-
fective item. Comput Ind Eng 39:173–185

Contraction-Mapping
C. T. KELLEY

Department Math. Center for Research in Sci.,
North Carolina State University, Raleigh, USA

MSC2000: 65H10, 65J15

Article Outline

Keywords
Statement of the Result
Affine Problems
Nonlinear Problems
Integral Equations Example



506 C Contraction-Mapping

See also
References

Keywords

Nonlinear equations; Linear equations; Integral
equations; Iterative method; Contraction mapping

Statement of the Result

The method of successive substitution, Richardson iter-
ation, or direct iteration seeks to find a fixed point of
a map K, that is a point u� such that

u� D K(u�):

Given an initial iterate u0, the iteration is

ukC1 D K(uk); for k � 0: (1)

Let X be a Banach space and let D � X be closed.
A map K : D! D is a contraction if

kK(u) � K(v)k � ˛ ku � vk (2)

for some ˛ 2 (0, 1) and all u, v 2 D. The contraction
mapping theorem, [3,7,13,14], states that if K is a con-
traction on D then
� K has a unique fixed point u� in D, and
� for any u0 2 D the sequence {uk} given by (1) con-

verges to u�.
The message of the contraction mapping theorem is
that if one wishes to use direct iteration to solve a fixed
point problem, then the fixed point map K must satisfy
(2) for someD and relative to some choice of norm. The
choice of norm need not be made explicitly, it is deter-
mined implicitly by the K itself. However, if there is no
norm for which (2) holds, then another, more robust,
method, such as Newton’s method with a line search,
must be used, or the problem must be reformulated.

One may wonder why a Newton-like method is not
always better than a direct iteration. The answer is that
the cost for a single iteration is very low for Richardson
iteration. So, if the equation can be set up to make the
contraction constant ˛ in (2) small, successive substitu-
tion, while taking more iterations, can be more efficient
than a Newton-like iteration, which has costs in linear
algebra and derivative evaluation that are not incurred
by successive substitution.

Affine Problems

An affine fixed point map has the form

K(u) D Mu C b

where M is a linear operator on the space X. The fixed
point equation is

(I �M)u D b; (3)

where I is the identity operator. The classical stationary
iterative methods in numerical linear algebra, [8,13],
are typically analyzed in terms of affine fixed point
problems, whereM is called the iteration matrix. Multi-
grid methods, [2,4,5,9], are also stationary iterative
methods. We give an example of how multigrid meth-
ods are used later in this article.

The contraction condition (2) holds if

kMk � ˛ < 1: (4)

In (4) the norm is the operator norm on X. M may be
a well defined operator on more than one space and (4)
may not hold in all of them. Similarly, if X is finite di-
mensional and all norms are equivalent, (4)may hold in
one norm and not in another. It is known, [10], that (4)
holds for some norm if and only if the spectral radius of
M is < 1.

When (4) does not hold it is sometimes possible to
form an approximate inverse preconditioner P so that
direct iteration can be applied to the equivalent prob-
lem

u D (I � P(I �M))u � Pb: (5)

In order to apply the contraction mapping theorem and
direct iteration to (5) we require that

kI � P(I � M)k � ˛ < 1

in some norm. In this case we say that P is an approxi-
mate inverse for I �M. In the final section of this article
we give an example of how approximate inverses can be
built for discretizations of integral operators.

Nonlinear Problems

If the nonlinear fixed point map K is sufficiently
smooth, then a Newton-like method may be used to
solve

F(u) D u � K(u) D 0:
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The transition from a current approximation uc of u�

to an update u+ is

uC D uc � P(uc � K(uc)); (6)

where

P 	 F 0(u�)�1 D (I � K0(u�))�1:

P = F(uc)�1 is Newton’s method and P = F0(u0)�1 is the
chord method.

It is easy to show [7,13,14] that if u is near u� and P
is an approximate inverse for F0(u�) then the precondi-
tioned fixed point problem

u D u � P(u � K(u))

is a contraction on a neighborhood D of u�. This is, in
fact, one way to analyze the convergence of Newton’s
method. In this article our focus is on preconditioners
that remain constant for several iterations and do not
require computation of the derivative of K.

The point to remember is that, if the goal is to trans-
form a given fixed point map into a contraction, pre-
conditioning of nonlinear problems can be done by the
same process (formation of an approximate inverse) as
for linear problems.

Integral Equations Example

We close this article with the Atkinson–Brakhage pre-
conditioner for integral operators [2,4]. We will begin
with the linear case, from which the nonlinear algo-
rithm is a simple step. Let ˝ 2 RN be compact and let
k(x, y) be a continuous function on ˝ × ˝ . We con-
sider the affine fixed point problem

u(x) D f (x)C (Ku)(x) D f (x)C
Z
˝

k(x; y)u(y) dy;

where f 2 X = C(˝) is given and a solution u� 2 X is
sought. In this example D = X. We will assume that the
linear operator I � K is nonsingular on X.

We consider a family of increasingly accurate
quadrature rules, indexed with a level l, with weights
{wl

i }
Nl
iD1 and nodes {xli }

Nl
iD1 that satisfy

lim
l!1

NlX
jD1

f (xl
j)w

l
j D

Z
˝

f (x) dx

for all f 2 X. The family of operators {Kl} defined by

Kl u(x) D
NlX
jD1

k(x; xl
j)u(y)w

l
j

converges strongly to K, that is

lim
l!1

Kl u D Ku

for all u 2X. The family {Kl} is also collectively compact,
[1]. This means that if B is a bounded subset of X, then

[lKl (B)

is precompact in X. The direct consequences of the
strong convergence and collective compactness are that
I � Kl are nonsingular for l sufficiently large and

(I � Kl )�1 ! (I � K)�1 (7)

strongly in X. The Atkinson–Brakhage preconditioner
is based on these results.

For g 2 X one can compute

v D (I � Kl )�1g

by solving the finite-dimensional linear system

vi D g(xl
i )C

NlX
jD1

k(xl
i ; x

l
j )v jw

l
j (8)

for the values v(xli ) = vi of v at the nodal points and then
applying the Nyström interpolation

v(x) D g(x)C
NlX
jD1

k(x; xl
j)v jw

l
j D g(x)C (Kl v)(x)

to recover v(x) for all x 2˝ . (8) can be solved at a cost
ofO(N3

l ) floating point operations if direct methods for
linear equations are used and for much less if iterative
methods such as GMRES [15] are used. In that case,
only O(1) matrix-vector products are need to obtain
a solution that is accurate to truncation error [6]. This
is, up to amultiplicative factor, optimal. The Atkinson–
Brakhage preconditioner can dramatically reduce this
factor, however.

The results in [1] imply that

Ml D I C (I � Kl )�1K;
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the Atkinson–Brakhage preconditioner, converges to
(I � K)�1 in the operator norm. Hence, for l sufficiently
large (coarse mesh sufficiently fine) Richardson itera-
tion can be applied to the system

u D u �Ml (I � Kl )u �Ml f ;

where L� l. Applying this idea for a sequence of grids
or levels leads to the optimal form of the Atkinson–
Brakhage iteration [11]. The algorithm uses a coarse
mesh, which we index with l = 0, to build the precon-
ditioner and then cycles through the grids sequentially
until the solution at a desired fine (l = L) mesh is ob-
tained. One example of this is a sequence of composite
midpoint rule quadratures in which Nl+1 = 2Nl. Then,
[2,11], if the coarse mesh is sufficiently fine, only one
Richardson iteration at each level will be needed. The
cost at each level is two matrix vector products at level l
and a solve at level 0.
1) Solve u0 � K0 u0 = f ; set u = u0.
2) For l = 1, . . . , L:

a) Compute r = u � Klu � f ;
b) u = u �M0 r.

Nonlinear problems can be solved with exactly the same
idea. We will consider the special case of Hammerstein
equations

u(x) D K(u)(x) D
Z
˝

k(x; y; u(y)) dy:

If we use a sequence of quadrature rules as in the linear
case we can define

Kl (u)(x) D
NlX
jD1

k(x; xl
j ; u(x

l
j))w

l
j :

The nonlinear form of the Atkinson–Brakhage algo-
rithm for Hammerstein equations simply uses the ap-
proximation

I C (I � K00(u0))
�1K0(u) 	 (I � K0l (u))

�1

in a Newton-like iteration. One can see from the formal
description below that little has changed from the linear
case.
1) Solve u0 � K0 (u0) = 0; set u = u0.
2) For l = 1, . . . , L:

a) Compute r = u � Kl(u);
b) u = u � (I + (I � K0l (u0))

�1 K0(u))r.

The Atkinson–Brakhage algorithm can, under some
conditions, be further improved, [12] and the number
of fine mesh operator-function products per level re-
duced to one. There is also no need to explicitly repre-
sent the operator as an integral operator with a kernel.

See also

� Global Optimization Methods for Systems of
Nonlinear Equations

� Interval Analysis: Systems of Nonlinear Equations
� Nonlinear Least Squares: Newton-Type Methods
� Nonlinear Systems of Equations: Application to the

Enclosure of all Azeotropes
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In solving optimal control problems involving non-
linear differential equations, some iterative procedure
must be used to obtain the optimal control policy. As
is true with any iterative procedure, one is concerned
about the convergence rate and also about the reliabil-
ity of obtaining the optimal control policy. Although
from Pontryagin’s maximum principle it is known that
the minimum of the performance index corresponds to
the minimum of the Hamiltonian, to obtain the mini-
mum value for the Hamiltonian is not always straight-
forward. Here we outline a procedure that changes the
control policy from iteration to iteration, improving the
value of the performance index at each iteration, until
the improvement is less than certain amount. Then the
iteration procedure is stopped and the results are ana-
lyzed. Such a procedure is called control vector iteration
method (CVI), or iteration in the policy space.

Optimal Control Problem

To illustrate the procedure, let us consider the optimal
control problem, where the system is described by the
differential equation

dx
dt
D f(x;u); with x(0) given ; (1)

where x is an n-dimensional state vector and u is
an r-dimensional control vector. The optimal control
problem is to determine the control u in the time inter-
val 0 � t < tf, so that the performance index

I D
Z tf

0
�(x;u)dt (2)

is minimized. We consider the case where the final time
tf is given. To carry out the minimization of the perfor-
mance index in (2) subject to the constraints in (1), we
consider the augmented performance index

J D
Z tf

0

�
� C zT

�
f �

dx
dt

��
dt ; (3)

where the n-dimensional vector of Lagrangemultipliers
z is called the adjoint vector. The last term in (3) can be
thought of as a penalty function to ensure that the state
equation is satisfied throughout the given time interval.
We introduce the Hamiltonian

H D � C zTf (4)

and use integration by parts to simplify (3) to

J D
Z tf

0

�
H C

dzT

dt
x
�
dt�z(tf)x(tf)CzT(0)x(0): (5)

The optimal control problem now reduces to the mini-
mization of J.

To minimize J numerically, we assume that we have
evaluated J at iteration j by using control policy denoted
by u(j). Now the problem is to determine the control
policy u( jC1) at the next iteration. Since the goal is to
minimize J, obviously we want to make the change in
J negative and numerically as large as possible. If we
let ıu D u( jC1) � u( j), the corresponding change in J
is obtained by using Taylor series expansion up to the
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quadratic terms:

ıJ D
Z tf

0

" �
@H
@x

�T

C
dzT

dt

!
ıxC

�
@H
@u

�T

ıu

#
dt

C
1
2

Z tf

0

�
ıxT

@2H
@x2

ıxC 2ıxT
@2H
@x@u

ıu

CıuT
@2H
@u2

ıu
�
dt � zT(tf)ıx(tf) :

(6)

The necessary condition for minimum of J is that the
first integral in (6) should be zero; i. e.,

dz
dt
D �

@H
@x
; with z(tf) D 0 : (7)

and

@H
@u
D 0 : (8)

In control vector iteration, we relax the necessary con-
dition in (8) and choose ıu to make ıJ negative and in
the limit (8) is satisfied. One approach is to choose

ıu D ��
@H
@u

; (9)

where � is a positive parameter which may vary from
iteration to iteration. This method is sometimes called
first variation method, since the driving force for the
change in the control policy is based only on the first
term of the Taylor series expansion. The negative sign
in (9) is required to minimize the Hamiltonian, as is re-
quired by Pontryagin’s maximum principle. Numerous
papers have been written on the determination of the
stepping parameter � [7].

Second VariationMethod

Instead of arbitrarily determining the stepping param-
eter �, one may solve the accessory minimization prob-
lem, where ıu is chosen to minimize ıJ given by (6)
after the requirements for the adjoint are satisfied; i. e.,
it is required to find ıu to minimize ıJ given by

ıJ D
Z tf

0

"�
@H
@u

�T

ıuC
1
2
ıxT

@2H
@x2

ıx

CıxT
@2H
@x@u

ıuC
1
2
ıuT

@2H
@u2

ıu
�
dt ; (10)

subject to the differential equation

dıx
dt
D

�
@fT

@x

�T

ıxC
�
@fT

@u

�T

ıu;

with ıx(0) D 0 : (11)

The solution to this accessory minimization problem
is straightforward, since (11) is linear and the perfor-
mance index in (10) is almost quadratic, and can be eas-
ily done, as shown in ([1], pp. 259–266) and [7]. The
resulting equations, to be integrated backwards from
t D tf to t D 0 with zero starting conditions, are

dJ
dt
C J

�
@fT

@x

�T

C
@fT

@x
JC

@2H
@x2

� ST
�
@2H
@u2

��1
S D 0 ; (12)

where the (r × n)-matrix S D @2H/@u@xC @fT /@xJ,
and

dg
dt
� ST

�
@2H
@u2

��1 �
@H
@u
C
@fT

@x
g
�
C

�
@fT

@x

�
g D 0 :

(13)

The control policy is then updated through the equa-
tion

u( jC1) D u( j) �
�
@2H
@u2

��1 �
@H
@u
C
@fT

@x
g
�

�

�
@2H
@u2

��1
S
�
x( jC1) � x( j)

�
: (14)

This method of updating the control policy is called the
second variation method. In (12) the (n× n)-matrix J is
symmetric, so the total number of differential equations
to be integrated backwards is n(n C 1)/2C 2n. How-
ever, the convergence is quadratic if the initial control
policy is close to the optimum.

To obtain good starting conditions, Luus and
Lapidus [6] suggested the use of first variation method
for the first few iterations and then to switch over to the
second variation method.

One additional feature of the second variation
method is that the control policy given in (14) is a func-
tion of the present state, so that the control policy is
treated as being continuous and is not restricted to be-
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ing piecewise constant over an integration time step,
as is the case with the first variation method. As was
shown in ([1], pp. 316–317), for the linear six-plate
gas absorber example, when the system equation is lin-
ear and the performance index is quadratic, the second
variation method yields the optimal control policy in
a single step.

Determination of Stepping Parameter

However, the large number and complexity of equa-
tions required for obtaining the control policy and the
instability of the method for very complex systems led
to investigating different means of obtaining faster con-
vergence with the first variation method. The effort was
directed on the best means of obtaining the stepping pa-
rameter � in (9). When � is too large, overstepping oc-
curs, and if � is too small, the convergence rate is very
small.

Numerous papers have been written on the deter-
mination of �. Several methods were compared by Rao
and Luus [8] in solving typical optimal control prob-
lems. Although they suggested a means of determining
the ‘best’ method for performance indices that are al-
most quadratic, it is found that a very simple scheme
is quite effective for a wide variety of optimal control
problems. Instead of trying to get very fast convergence
and risk instability, the emphasis is placed on the ro-
bustness. The strategy is to obtain the initial value for
� from the magnitude of @H/@u, and then increasing �
when the iteration has been successful, and reducing its
value if overstepping occurs. This type of approach was
used in [2] in solving the optimal control of a pyrolysis
problem. When the iteration was successful, the step-
ping parameter was increased by 10 percent, and when
overstepping resulted, the stepping parameter was re-
duced to half its value. The algorithm for first variation
method may be presented as follows:
� Choose an initial control policy u(0) and a value for
�; set the iteration index j to 0.

� Integrate (1) from t D 0 to t D tf and evaluate the
performance index in (2). Store the values of the
state vector at the end of each integration time step.

� Integrate the adjoint equation (7) from t D tf to
t D 0, using for x the stored values of the state vec-
tor in Step 2. At each integration time step evaluate
the gradient @H/@u.

� Choose a new control policy

u( jC1) D u( j) � �
@H
@u

: (15)

� Integrate (1) from t D 0 to t D tf and evaluate the
performance index in (2). Store the values of the
state vector at the end of each integration time step.
If the performance index is worse (i. e., overstepping
has occurred), reduce � to half its value and go to
Step 4. If the performance index has been improved
increase � by a small factor, such as 1.10 and go to
Step 3, and continue for a number of iterations, or
terminate the iterations when the change in the per-
formance index in an iteration is less than some cri-
terion, and interpret the results.

Illustration of the First VariationMethod

Let us consider the nonlinear continuous stirred tank
reactor that has been used for optimal control studies in
([1], pp. 308–318) and [6], and which was shown in [4]
to exhibit multiplicity of solutions. The system is de-
scribed by the two equations

dx1
dt
D� 2 (x1 C 0:25)

C (x2 C 0:5) exp
�

25x1
x1 C 2

�
� u (x1 C 0:25) ;

(16)

dx2
dt
D 0:5 � x2 � (x2 C 0:5) exp

�
25x1
x1 C 2

�
; (17)

with the initial state x1(0) D 0:09 and x2(0) D 0:09.
The control u is a scalar quantity related to the valve
opening of the coolant. The state variables x1 and x2
represent deviations from the steady state of dimen-
sionless temperature and concentration, respectively.
The performance index to be minimized is

I D
Z tf

0

�
x21 C x22 C 0:1u2� dt ; (18)

where the final time tf D 0:78. The Hamiltonian is

H D z1 (�2 (x1 C 0:25)C R � u (x1 C 0:25))
C z2 (0:5 � x2 � R)C x21 C x22 C 0:1u2 ; (19)
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where R D (x2 C 0:5) exp(25x1/(x1 C 2)). The adjoint
equations are

dz1
dt
D (u C 2) z1 � 2x1 C 50R

(z2 � z1)
(x1 C 2)2

; (20)

dz2
dt
D �2x2 C

(z2 � z1)
(x2 C 0:5)

R C z2 ; (21)

and the gradient of the Hamiltonian is

@H
@u
D 0:2u � (x1 C 0:25) z1 : (22)

To illustrate the computational aspects of CVI, the
above algorithm was used with a Pentium-120 personal
computer using WATCOM Fortran compiler version
9.5. The calculations were done in double precision. As
found in [4], convergence to the local optimumwas ob-
tained when small values for the initial control policy
were used, and the global optimum was obtained when
large values were used as initial policy. As is seen in
Table 1, when an integration time step of 0.0065 was
used (allowing 120 piecewise constant steps), in spite of
the large number of iterations, the optimal control pol-
icy can be obtained in less than 2 s of computer time.
The iterations were stopped when the change in the
performance index from iteration to iteration was less
than 10�6.

The total computation time for making this run
with 11 different initial control policies was 9.6 s on
the Pentium-120 digital computer. When an integra-

Control Vector Iteration CVI, Table 1
Application of First Variation Method to CSTR

Initial
policy u(0)

Performance
index

Number of
iterations

CPU
time s

1.0 0.244436 16 0.16
1.2 0.244436 17 0.17
1.4 0.244436 18 0.11
1.6 0.244436 18 0.16
1.8 0.244436 19 0.22
2.0 0.133128 143 1.49
2.2 0.133128 149 1.53
2.4 0.133128 149 1.54
2.6 0.133130 133 1.43
2.8 0.133129 142 1.37
3.0 0.133130 136 1.38

Control Vector Iteration CVI, Table 2
Effect of the number of time stages P on the optimal perfor-
mance index

Number of
time stages P

Optimal I
by CVI

Optimal I
by IDP

20 0.13429 0.13416
30 0.13363 0.13357
40 0.13339 0.13336
60 0.13323 0.13321
80 0.13317 0.13316

120 0.13313 0.13313
240 0.13310 0.13310

tion time step of 0.00312 was used, the value of the per-
formance index at the global optimum was improved
to 0.133104. When a time step of 0.001 was used, giv-
ing 780 time steps, the optimal control policy yielded
I D 0:133097. Even here the computation time for the
11 different initial conditions was only 31 s. With the
use of piecewise linear control and only 20 time stages,
a performance index of I D 0:133101 was obtained
in [3] with iterative dynamic programming (IDP). To
obtain this result with IDP, by using 5 randomly cho-
sen points and 10 passes, each consisting of 20 itera-
tions, took 13.4 s on a Pentium-120. The use of 15 time
stages yielded I D 0:133112 and required 7.8 s. There-
fore, computationally CVI is faster than IDP for this
problem, but the present formulation does not allow
piecewise linear control to be used in CVI.

The effect of the number of time stages for piecewise
constant control is shown in Table 2, where CVI results
are compared to those obtained by IDP in [5].

As can be seen, the given algorithm gives results
very close to those obtained by IDP, and the deviations
decrease as the number of time stages increases, be-
cause the approximations introduced during the back-
ward integration when the stored values for the state
vector are used, and in the calculation of the gradient of
the Hamiltonian in CVI become negligible as the time
stages become very small. As is shown in Fig. 1, when
the optimal value of the performance index is plotted
against 1/P2, the extrapolated value, as 1/P2 approaches
zero, gives the value obtained with the second variation
method.

The first variation method is easy to program and
will continue to be a very useful method of determining
the optimal control of nonlinear systems.
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Control Vector Iteration CVI, Figure 1
Linear variation of optimal performance index with P�2;
�–�–� CVI, M - -M - -M IDP
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Abstract

We develop an algorithmic theory of convex optimiza-
tion over discrete sets. Using a combination of algebraic
and geometric tools we are able to provide polyno-
mial time algorithms for solving broad classes of convex
combinatorial optimization problems and convex in-
teger programming problems in variable dimension.
We discuss some of the many applications of this the-
ory including to quadratic programming, matroids, bin
packing and cutting-stock problems, vector partition-
ing and clustering, multiway transportation problems,
and privacy and confidential statistical data disclosure.
Highlights of our work include a strongly polynomial
time algorithm for convex and linear combinatorial op-
timization over any family presented by a member-
ship oracle when the underlying polytope has few edge-
directions; a new theory of so-termed n-fold integer
programming, yielding polynomial time solution of im-
portant and natural classes of convex and linear in-
teger programming problems in variable dimension;
and a complete complexity classification of high dimen-

sional transportation problems, with practical applica-
tions to fundamental problems in privacy and confi-
dential statistical data disclosure.

Introduction

The general linear discrete optimization problem can
be posed as follows.

LINEAR DISCRETE OPTIMIZATION. Given a set S �
Zn of integer points and an integer vector w 2 Zn , find
an x 2 Smaximizing the standard inner productwx :DPn

iD1 wixi .
The algorithmic complexity of this problem, which

includes integer programming and combinatorial opti-
mization as special cases, depends on the presentation
of the set S of feasible points. In integer programming,
this set is presented as the set of integer points satisfying
a given system of linear inequalities, which in standard
form is given by

S D fx 2 Nn : Ax D bg ;

where N stands for the nonnegative integers, A 2
Zm�n is an m � n integer matrix, and b 2 Zm is an
integer vector. The input for the problem then consists
of A; b;w. In combinatorial optimization, S � f0; 1gn

is a set of f0; 1g-vectors, often interpreted as a family
of subsets of a ground set N :D f1; : : : ; ng, where each
x 2 S is the indicator of its support supp(x) � N. The
set S is presented implicitly and compactly, say as the
set of indicators of subsets of edges in a graph G sat-
isfying a given combinatorial property (such as being
a matching, a forest, and so on), in which case the in-
put is G;w. Alternatively, S is given by an oracle, such
as a membership oracle which, queried on x 2 f0; 1gn ,
asserts whether or not x 2 S, in which case the algo-
rithmic complexity also includes a count of the number
of oracle queries needed to solve the problem.

Here we study the following broad generalization of
linear discrete optimization.

CONVEX DISCRETE OPTIMIZATION. Given a set
S � Zn , vectors w1; : : : ;wd 2 Zn , and a convex
functional c : Rd �! R, find an x 2 S maximizing
c(w1x; : : : ;wdx).

This problem can be interpreted as multi-objective
linear discrete optimization: given d linear functionals
w1x; : : : ;wdx representing the values of points x 2 S
under d criteria, the goal is to maximize their “con-
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vex balancing” defined by c(w1x; : : : ;wdx). In fact, we
have a hierarchy of problems of increasing generality
and complexity, parameterized by the number d of lin-
ear functionals: at the bottom lies the linear discrete
optimization problem, recovered as the special case of
d D 1 and c the identity on R; and at the top lies the
problem of maximizing an arbitrary convex functional
over the feasible set S, arising with d D n and with
wi D 1i the ith standard unit vector inRn for all i.

The algorithmic complexity of the convex discrete
optimization problem depends on the presentation of
the set S of feasible points as in the linear case, as
well as on the presentation of the convex functional c.
When S is presented as the set of integer points satisfy-
ing a given system of linear inequalities we also refer to
the problem as convex integer programming, and when
S � f0; 1gn and is presented implicitly or by an ora-
cle we also refer to the problem as convex combinatorial
optimization. As for the convex functional c, we will as-
sume throughout that it is presented by a comparison
oracle that, queried on x; y 2 Rd , asserts whether or
not c(x) � c(y). This is a very broad presentation that
reveals little information on the function, making the
problem, on the one hand, very expressive and applica-
ble, but on the other hand, very hard to solve.

There is a massive body of knowledge on the com-
plexity of linear discrete optimization – in particular
(linear) integer programming [55] and (linear) combi-
natorial optimization [31]. The purpose of this mono-
graph is to provide the first comprehensive unified
treatment of the extended convex discrete optimiza-
tion problem. The monograph follows the outline of
five lectures given by the author in the Séminaire
de Mathématiques Supérieures Series, Université de
Montréal, during June 2006. Colorful slides of the-
ses lectures are available online at [46] and can be
used as a visual supplement to this monograph. The
monograph has been written under the support of the
ISF – Israel Science Foundation. The theory devel-
oped here is based on and is a culmination of several
recent papers including [5,12,13,14,15,16,17,25,39,47,
48,49,50,51] written in collaboration with several col-
leagues – Eric Babson, Jesus De Loera, Komei Fukuda,
Raymond Hemmecke, Frank Hwang, Vera Rosta, Uriel
Rothblum, Leonard Schulman, Bernd Sturmfels, Rekha
Thomas, and Robert Weismantel. By developing and
using a combination of geometric and algebraic tools,

we are able to provide polynomial time algorithms
for several broad classes of convex discrete optimiza-
tion problems. We also discuss in detail some of the
many applications of our theory, including to quadratic
programming, matroids, bin packing and cutting-stock
problems, vector partitioning and clustering, multiway
transportation problems, and privacy and confidential
statistical data disclosure.

We hope that this monograph will, on the one hand,
allow users of discrete optimization to enjoy the new
powerful modelling and expressive capability of convex
discrete optimization along with its broad polynomial
time solvability, and on the other hand, stimulate more
research on this new and fascinating class of problems,
their complexity, and the study of various relaxations,
bounds, and approximations for such problems.

Limitations

Convex discrete optimization is generally intractable
even for small fixed d, since already for d D 1 it in-
cludes linear integer programming which is NP-hard.
When d is a variable part of the input, even very sim-
ple special cases are NP-hard, such as the following
problem, so-called positive semi-definite quadratic bi-
nary programming,

max f(w1x)2 C � � � C (wnx)2 : x 2 Nn ;

xi � 1 ; i D 1; : : : ; ng :

Therefore, throughout this monograph we will assume
that d is fixed (but arbitrary).

As explained above, we also assume throughout that
the convex functional c which constitutes part of the
data for the convex discrete optimization problem is
presented by a comparison oracle. Under such broad
presentation, the problem is generally very hard. In par-
ticular, if the feasible set is S :D fx 2 Nn : Ax D bg
and the underlying polyhedron P :D fx 2 Rn

C : Ax D
bg is unbounded, then the problem is inaccessible even
in one variable with no equation constraints. Indeed,
consider the following family of univariate convex inte-
ger programs with convex functions parameterized by
�1 < u � 1,

max fcu(x) : x 2 Ng ;

cu(x) :D
�
�x; if x < u;
x � 2u; if x � u.

:
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Consider any algorithm attempting to solve the prob-
lem and let u be themaximum value of x in all queries to
the oracle of c. Then the algorithm can not distinguish
between the problem with cu, whose objective function
is unbounded, and the problemwith c1, whose optimal
objective value is 0. Thus, convex discrete optimization
(with an oracle presented functional) over an infinite set
S � Zn is quite hopeless. Therefore, an algorithm that
solves the convex discrete optimization problemwill ei-
ther return an optimal solution, or assert that the prob-
lem is infeasible, or assert that the underlying polyhe-
dron is unbounded. In fact, in most applications, such
as in combinatorial optimization with S � f0; 1gn or
integer programming with S :D fx 2 Zn : Ax D
b; l � x � ug and l ; u 2 Zn , the set S is finite and
the problem of unboundedness does not arise.

Outline and Overview of Main Results
and Applications

We now outline the structure of this monograph and
provide a brief overview of what we consider to be our
main results and main applications. The precise rele-
vant definitions and statements of the theorems and
corollaries mentioned here are provided in the relevant
sections in the monograph body. As mentioned above,
most of these results are adaptations or extensions of re-
sults from one of the papers [5,12,13,14,15,16,17,25,39,
47,48,49,50,51]. The monograph gives many more ap-
plications and results that may turn out to be useful in
future development of the theory of convex discrete op-
timization.

The rest of the monograph consists of five sections.
While the results evolve from one section to the next,
it is quite easy to read the sections independently of
each other (while just browsing now and then for rele-
vant definitions and results). Specifically, Sect. “Convex
Combinatorial Optimization and More” uses defini-
tions and the main result of Sect. “Reducing Convex
to Linear Discrete Optimization”; Sect. “Convex Inte-
ger Programming” uses definitions and results from
Sections “Reducing Convex to Linear Discrete Opti-
mization” and “Linear N-fold Integer Programming”;
and Sect. “Multiway Transportation Problems and Pri-
vacy in Statistical Databases” uses the main results
of Sections “Linear N-fold Integer Programming” and
“Convex Integer Programming”.

In Sect. “Reducing Convex to Linear Discrete Opti-
mization” we show how to reduce the convex discrete
optimization problem over S � Zn to strongly polyno-
mially many linear discrete optimization counterparts
over S, provided that the convex hull conv(S) satisfies
a suitable geometric condition, as follows.

Theorem 1 For every fixed d, the convex discrete opti-
mization problem over any finite S � Zn presented by
a linear discrete optimization oracle and endowed with
a set covering all edge-directions of conv(S), can be solved
in strongly polynomial time.

This result will be incorporated in the polynomial
time algorithms for convex combinatorial optimization
and convex integer programming to be developed in
Sect. “Convex Combinatorial Optimization and More”
and Sect. “Convex Integer Programming”.

In Sect. “Convex Combinatorial Optimization and
More” we discuss convex combinatorial optimization.
The main result is that convex combinatorial optimiza-
tion over a set S � f0; 1gn presented by a member-
ship oracle can be solved in strongly polynomial time
provided it is endowed with a set covering all edge-
directions of conv(S). In particular, the standard lin-
ear combinatorial optimization problem over S can be
solved in strongly polynomial time as well.

Theorem 2 For every fixed d, the convex combinatorial
optimization problem over any S � f0; 1gn presented by
a membership oracle and endowed with a set covering all
edge-directions of the polytope conv(S), can be solved in
strongly polynomial time.

An important application of Theorem 2 concerns con-
vex matroid optimization.

Corollary 1 For every fixed d, convex combinatorial
optimization over the family of bases of a matroid pre-
sented by membership oracle is strongly polynomial time
solvable.

In Sect. “Linear N-fold Integer Programming” we de-
velop the theory of linear n-fold integer program-
ming. As a consequence of this theory we are able
to solve a broad class of linear integer program-
ming problems in variable dimension in polynomial
time, in contrast with the general intractability of lin-
ear integer programming. The main theorem here
may seem a bit technical at a first glance, but is
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really very natural and has many applications dis-
cussed in detail in Sect. “Linear N-fold Integer Pro-
gramming”, Sect. “Convex Integer Programming” and
Sect. “Multiway Transportation Problems and Privacy
in Statistical Databases”. To state it we need a defini-
tion. Given an (r C s) � t matrix A, let A1 be its r � t
sub-matrix consisting of the first r rows and letA2 be its
s � t sub-matrix consisting of the last s rows. We refer
to A explicitly as (rC s)� t matrix, since the definition
below depends also on r and s and not only on the en-
tries of A. The n-fold matrix of an (r C s) � t matrix A
is then defined to be the following (rC ns)� nt matrix,

A(n) :D (1n ˝ A1)˚ (In ˝ A2)

D

0
BBBBBB@

A1 A1 A1 � � � A1

A2 0 0 � � � 0
0 A2 0 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � A2

1
CCCCCCA
:

Given now any n 2 N , lower and upper bounds
l ; u 2 Znt

1 with Z1 :D Z ] f˙1g, right-hand side
b 2 ZrCns , and linear functional wx with w 2 Znt ,
the corresponding linear n-fold integer programming
problem is the following program in variable dimen-
sion nt,

max fwx : x 2 Znt; A(n)x D b; l � x � ug :

The main theorem of Sect. “Linear N-fold Integer Pro-
gramming” asserts that such integer programs are poly-
nomial time solvable.

Theorem 3 For every fixed (r C s) � t integer ma-
trix A, the linear n-fold integer programming problem
with any n, l, u, b, and w can be solved in polynomial
time.

Theorem 3 has very important applications to high-
dimensional transportation problems which are dis-
cussed in Sect. “Three-Way Line-Sum Transportation
Problems” and in more detail in Sect. “Multiway Trans-
portation Problems and Privacy in Statistical Data-
bases”. Another major application concerns bin pack-
ing problems, where items of several types are to be
packed into bins so as to maximize packing utility sub-
ject to weight constraints. This includes as a special case
the classical cutting-stock problem of [27]. These are

discussed in detail in Sect. “Packing Problems and Cut-
ting-Stock”.

Corollary 2 For every fixed number t of types and type
weights v1; : : : ; vt , the corresponding integer bin packing
and cutting-stock problems are polynomial time solvable.

In Sect. “Convex Integer Programming” we discuss
convex integer programming, where the feasible set S is
presented as the set of integer points satisfying a given
system of linear inequalities. In particular, we consider
convex integer programming over n-fold systems for
any fixed (but arbitrary) (r C s) � t matrix A, where,
given n 2 N , vectors l ; u 2 Znt

1, b 2 ZrCns and
w1; : : : ;wd 2 Znt , and convex functional c : Rd �! R,
the problem is

max fc(w1x; : : : ;wdx) : x 2 Znt;

A(n)x D b; l � x � ug :

The main theorem of Sect. “Convex Integer Program-
ming” is the following extension of Theorem 3, assert-
ing that convex integer programming over n-fold sys-
tems is polynomial time solvable as well.

Theorem 4 For every fixed d and (rC s)� t integer ma-
trix A, convex n-fold integer programming with any n, l,
u, b, w1; : : : ;wd , and c can be solved in polynomial time.

Theorem 4 broadly extends the class of objective func-
tions that can be efficiently maximized over n-fold
systems. Thus, all applications discussed in Sect.
“Some Applications” automatically extend accordingly.
These include convex high-dimensional transporta-
tion problems and convex bin packing and cutting-
stock problems, which are discussed in detail in Sect.
“Transportation Problems and Packing Problems” and
Sect. “Multiway Transportation Problems and Privacy
in Statistical Databases”.

Another important application of Theorem 4 con-
cerns vector partitioning problems which have appli-
cations in many areas including load balancing, circuit
layout, ranking, cluster analysis, inventory, and relia-
bility, see e. g. [7,9,25,39,50] and the references therein.
The problem is to partition n items among p players so
as to maximize social utility. With each item is associ-
ated a k-dimensional vector representing its utility un-
der k criteria. The social utility of a partition is a con-
vex function of the sums of vectors of items that each
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player receives. In the constrained version of the prob-
lem, there are also restrictions on the number of items
each player can receive. We have the following conse-
quence of Theorem 4; more details on this application
are in Sect. “Vector Partitioning and Clustering”.

Corollary 3 For every fixed number p of players and
number k of criteria, the constrained and unconstrained
vector partition problems with any item vectors, convex
utility, and constraints on the number of item per player,
are polynomial time solvable.

In the last Sect. “Multiway Transportation Problems
and Privacy in Statistical Databases” we discuss mul-
tiway (high-dimensional) transportation problems and
secure statistical data disclosure. Multiway transporta-
tion problems form a very important class of discrete
optimization problems and have been used and studied
extensively in the operations research and mathemat-
ical programming literature, as well as in the statistics
literature in the context of secure statistical data disclo-
sure and management by public agencies, see e. g. [4,6,
11,18,19,42,43,53,60,62] and the references therein. The
feasible points in a transportation problem are the mul-
tiway tables (“contingency tables” in statistics) such that
the sums of entries over some of their lower dimen-
sional sub-tables such as lines or planes (“margins” in
statistics) are specified. We completely settle the algo-
rithmic complexity of treating multiway tables and dis-
cuss the applications to transportation problems and
secure statistical data disclosure, as follows.

In Sect. “The Universality Theorem” we show that
“short” 3-way transportation problems, over r � c � 3
tables with variable number r of rows and variable
number c of columns but fixed small number 3 of lay-
ers (hence “short”), are universal in that every inte-
ger programming problem is such a problem (see Sect.
“The Universality Theorem” for the precise stronger
statement and for more details).

Theorem 5 Every linear integer programming problem
maxfcy : y 2 Nn : Ay D bg is polynomial time repre-
sentable as a short 3-way line-sum transportation prob-
lem

max
�
wx : x 2 N r�c�3 :

X
i

xi; j;k D z j;k ;

X
j

xi; j;k D vi;k ;
X
k

xi; j;k D ui; j

	
:

In Sect. “The Complexity of the Multiway Transporta-
tion Problem” we discuss k-way transportation prob-
lems of any dimension k. We provide the first polyno-
mial time algorithm for convex and linear “long” (k C
1)-way transportation problems, over m1�� � ��mk �n
tables, with k and m1; : : : ;mk fixed (but arbitrary), and
variable number n of layers (hence “long”). This is best
possible in view of Theorem 21. Our algorithm works
for any hierarchical collection of margins: this captures
common margin collections such as all line-sums, all
plane-sums, and more generally all h-flat sums for any
0 � h � k (see Sect. “Tables andMargins” for more de-
tails). We point out that even for the very special case of
linear integer transportation over 3 � 3 � n tables with
specified line-sums, our polynomial time algorithm is
the only one known.We prove the following statement.

Corollary 4 For every fixed d; k;m1; : : : ;mk and fam-
ilyF of subsets of f1; : : : ; kC1g specifying a hierarchical
collection of margins, the convex (and in particular lin-
ear) long transportation problem over m1� � � ��mk � n
tables is polynomial time solvable.

In our last subsection Sect. “Privacy and Entry-Unique-
ness” we discuss an important application concerning
privacy in statistical databases. It is a common practice
in the disclosure of a multiway table containing sensi-
tive data to release some table margins rather than the
table itself. Once the margins are released, the security
of any specific entry of the table is related to the set of
possible values that can occur in that entry in any ta-
ble having the same margins as those of the source ta-
ble in the data base. In particular, if this set consists of
a unique value, that of the source table, then this entry
can be exposed and security can be violated. We show
that for multiway tables where one category is signifi-
cantly richer than the others, that is, when each sample
point can take many values in one category and only
few values in the other categories, it is possible to check
entry-uniqueness in polynomial time, allowing disclos-
ing agencies to make learned decisions on secure dis-
closure.

Corollary 5 For every fixed k;m1; : : : ;mk and fam-
ilyF of subsets of f1; : : : ; kC1g specifying a hierarchical
collection of margins to be disclosed, it can be decided in
polynomial time whether any specified entry xi1;:::;ikC1 is
the same in all long m1 � � � � � mk � n tables with the
disclosed margins, and hence at risk of exposure.
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Terminology and Complexity

We use R for the reals, RC for the nonnegative reals,
Z for the integers, and N for the nonnegative integers.
The sign of a real number r is denoted by sign(r) 2
f0;�1; 1g and its absolute value is denoted by jrj. The
ith standard unit vector in Rn is denoted by 1i . The
support of x 2 Rn is the index set supp(x) :D fi :
xi ¤ 0g of nonzero entries of x. The indicator of a sub-
set I � f1; : : : ; ng is the vector 1I :D

P
i2I 1i so that

supp(1I) D I. When several vectors are indexed by sub-
scripts, w1; : : : ;wd 2 Rn , their entries are indicated by
pairs of subscripts, wi D (wi;1; : : : ;wi;n). When vec-
tors are indexed by superscripts, x1; : : : ; xk 2 Rn , their
entries are indicated by subscripts, xi D (xi

1; : : : ; xi
n).

The integer latticeZn is naturally embedded inRn . The
space Rn is endowed with the standard inner product
which, for w; x 2 Rn , is given by wx :D

Pn
iD1 wixi .

Vectors w in Rn will also be regarded as linear func-
tionals on Rn via the inner product wx. Thus, we refer
to elements ofRn as points, vectors, or linear function-
als, as will be appropriate from the context. The convex
hull of a set S � Rn is denoted by conv(S) and the set of
vertices of a polyhedron P � Rn is denoted by vert(P).
In linear discrete optimization over S � Zn , the facets
of conv(S) play an important role, see Chvátal [10] and
the references therein for earlier work, and Grötschel,
Lovász and Schrijver [31,45] for the later culmination
in the equivalence of separation and linear optimization
via the ellipsoidmethod of Yudin andNemirovskii [63].
As will turn out in Sect. “Reducing Convex to Linear
Discrete Optimization”, in convex discrete optimiza-
tion over S, the edges of conv(S) play an important role
(most significantly in a way which is not related to the
Hirsch conjecture discussed in [41]). We therefore use
extensively convex polytopes, for which we follow the
terminology of [32,65].

We often assume that the feasible set S � Zn is
finite. We then define its radius to be its l1 radius
�(S) :D maxfkxk1 : x 2 Sg where, as usual, kxk1 :D
maxniD1 jxi j. In other words, �(S) is the smallest � 2 N
such that S is contained in the cube [��; �]n .

Our algorithms are applied to rational data only,
and the time complexity is as in the standard Tur-
ing machine model, see e. g. [1,26,55]. The input typi-
cally consists of rational (usually integer) numbers, vec-
tors, matrices, and finite sets of such objects. The bi-

nary length of an integer number z 2 Z is defined
to be the number of bits in its binary representation,
hzi :D 1 C dlog2(jzj C 1)e (with the extra bit for the
sign). The length of a rational number presented as
a fraction r D p

q with p; q 2 Z is hri :D hpi C hqi.
The length of an m � n matrix A (and in particular of
a vector) is the sum hAi :D

P
i; jhai; ji of the lengths of

its entries. Note that the length of A is no smaller than
the number of entries, hAi � mn. Therefore, when A
is, say, part of an input to an algorithm, with m; n vari-
able, the length hAi already incorporates mn, and so we
will typically not account additionally for m; n directly.
But sometimes, especially in results related to n-fold in-
teger programming, we will also emphasize n as part of
the input length. Similarly, the length of a finite set E
of numbers, vectors or matrices is the sum of lengths of
its elements and hence, since hEi � jEj, automatically
accounts for its cardinality.

Some input numbers affect the running time of
some algorithms through their unary presentation, re-
sulting in so-called “pseudo polynomial” running time.
The unary length of an integer number z 2 Z is the
number jzjC1 of bits in its unary representation (again,
an extra bit for the sign). The unary length of a rational
number, vector, matrix, or finite set of such objects are
defined again as the sums of lengths of their numerical
constituents, and is again no smaller than the number
of such numerical constituents.

When studying convex and linear integer program-
ming in Sect. “Linear N-fold Integer Programming”
and Sect. “Convex Integer Programming” we some-
times have lower and upper bound vectors l ; u with
entries in Z1 :D Z ] f˙1g. Both binary and unary
lengths of a ˙1 entry are constant, say 3 by encoding
˙1 :D ˙“00".

To make the input encoding precise, we introduce
the following notation. In every algorithmic statement
we describe explicitly the input encoding, by listing
in square brackets all input objects affecting the run-
ning time. Unary encoded objects are listed directly
whereas binary encoded objects are listed in terms of
their length. For example, as is often the case, if the
input of an algorithm consists of binary encoded vec-
tors (linear functionals) w1; : : : ;wd 2 Zn and unary
encoded integer � 2 N (bounding the radius �(S) of
the feasible set) then we will indicate that the input is
encoded as [�; hw1; : : : ;wd i].
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Some of our algorithms are strongly polynomial
time in the sense of [59]. For this, part of the input
is regarded as “special”. An algorithm is then strongly
polynomial time if it is polynomial time in the usual
Turing sense with respect to all input, and in addi-
tion, the number of arithmetic operations (additions,
subtractions, multiplications, divisions, and compar-
isons) it performs is polynomial in the special part of
the input. To make this precise, we extend our in-
put encoding notation above by splitting the square
bracketed expression indicating the input encoding
into a “left” side and a “right” side, separated by semi-
colon, where the entire input is described on the right
and the special part of the input on the left. For ex-
ample, Theorem 1, asserting that the algorithm un-
derlying it is strongly polynomial with data encoded
as [n; jEj; h�(S);w1; : : : ;wd ; Ei], where �(S) 2 N ,
w1; : : : ;wd 2 Zn and E � Zn , means that the run-
ning time is polynomial in the binary length of �(S),
w1; : : : ;wd , and E, and the number of arithmetic oper-
ations is polynomial in n and the cardinality jEj, which
constitute the special part of the input.

Often, as in [31], part of the input is presented
by oracles. Then the running time and the number
of arithmetic operations count also the number of or-
acle queries. An oracle algorithm is polynomial time
if its running time, including the number of oracle
queries, and the manipulations of numbers, some of
which are answers to oracle queries, is polynomial in
the length of the input encoding. An oracle algorithm
is strongly polynomial time (with specified input encod-
ing as above), if it is polynomial time in the entire input
(on the “right”), and in addition, the number of arith-
metic operations it performs (including oracle queries)
is polynomial in the special part of the input (on the
“left”).

Reducing Convex to Linear Discrete Optimization

In this section we show that when suitable auxiliary ge-
ometric information about the convex hull conv(S) of
a finite set S � Zn is available, the convex discrete opti-
mization problem over S can be reduced to the solution
of strongly polynomially many linear discrete optimiza-
tion counterparts over S. This result will be incorpo-
rated into the polynomial time algorithms developed in
Sect. “Convex Combinatorial Optimization and More”

and Sect. “Convex Integer Programming” for convex
combinatorial optimization and convex integer pro-
gramming respectively. In Sect. “Edge-Directions and
Zonotopes” we provide some preliminaries on edge-di-
rections and zonotopes. In Sect. “Strongly Polynomial
Reduction of Convex to Linear Discrete Optimization”
we prove the reduction which is the main result of this
section. In Sect. “Pseudo Polynomial Reduction when
Edge-Directions are not Available” we prove a pseudo
polynomial reduction for any finite set.

Edge-Directions and Zonotopes

We begin with some terminology and facts that play
an important role in the sequel. A direction of an edge
(1-dimensional face) e D [u; v] of a polytope P is any
nonzero scalar multiple of u� v. A set of vectors E cov-
ers all edge-directions of P if it contains a direction of
each edge of P. The normal cone of a polytope P � Rn

at its face F is the (relatively open) cone CF
P of those lin-

ear functionals h 2 Rn which are maximized over P
precisely at points of F. A polytope Z is a refinement
of a polytope P if the normal cone of every vertex of Z
is contained in the normal cone of some vertex of P.
If Z refines P then, moreover, the closure of each nor-
mal cone of P is the union of closures of normal cones
of Z. The zonotope generated by a set of vectors E D
fe1; : : : ; emg in Rd is the following polytope, which is
the projection by E of the cube [�1; 1]m into Rd ,

Z :D zone(E)

:D conv

( mX
iD1

�i ei : �i D ˙1

)
� Rd :

The following fact goes back toMinkowski, see [32].

Lemma 1 Let P be a polytope and let E be a finite set
that covers all edge-directions of P. Then the zonotope
Z :D zone(E) generated by E is a refinement of P.

Proof Consider any vertex u of Z. Then u DP
e2E �e e for suitable �e D ˙1. Thus, the normal

cone Cu
Z consists of those h satisfying h�e e> 0 for all e.

Pick any ĥ 2 Cu
Z and let v be a vertex of P at which

ĥ is maximized over P. Consider any edge [v;w] of P.
Then v � w D ˛e e for some scalar ˛e ¤ 0 and some
e 2 E, and 0 � ĥ(v � w) D ĥ˛e e, implying ˛e�e > 0.
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It follows that every h 2 Cu
Z satisfies h(v � w)> 0

for every edge of P containing v. Therefore h is max-
imized over P uniquely at v and hence is in the cone
Cv
P of P at v. This shows Cu

Z � Cv
P . Since u was arbi-

trary, it follows that the normal cone of every vertex
of Z is contained in the normal cone of some vertex
of P. �

The next lemma provides bounds on the number of
vertices of any zonotope and on the algorithmic com-
plexity of constructing its vertices, each vertex along
with a linear functional maximized over the zonotope
uniquely at that vertex. The bound on the number of
vertices has been rediscovered many times over the
years. An early reference is [33], stated in the dual form
of 2-partitions. A more general treatment is [64]. Re-
cent extensions to p-partitions for any p are in [3,39],
and to Minkowski sums of arbitrary polytopes are in
[29]. Interestingly, already in [33], back in 1967, the
question was raised about the algorithmic complexity
of the problem; this is now settled in [20,21] (the lat-
ter reference correcting the former). We state the pre-
cise bounds on the number of vertices and arithmetic
complexity, but will need later only that for any fixed d
the bounds are polynomial in the number of gener-
ators. Therefore, below we only outline a proof that
the bounds are polynomial. Complete details are in the
above references.

Lemma 2 The number of vertices of any zonotope Z :D
zone(E) generated by a set E of m vectors inRd is at most
2
Pd�1

kD0
�m�1

k

�
. For every fixed d, there is a strongly poly-

nomial time algorithm that, given E � Zd , encoded as
[m :D jEj; hEi], outputs every vertex v of Z :D zone(E)
along with a linear functional hv 2 Zd maximized
over Z uniquely at v, using O(md�1) arithmetics oper-
ations for d � 3 and O(md ) for d � 2.

Proof We only outline a proof that, for every fixed d,
the polynomial bounds O(md�1) on the number of ver-
tices and O(md ) on the arithmetic complexity hold. We
assume that E linearly spansRd (else the dimension can
be reduced) and is generic, that is, no d points of E lie
on a linear hyperplane (one containing the origin). In
particular, 0 … E. The same bound for arbitrary E then
follows using a perturbation argument (cf. [39]).

Each oriented linear hyperplane H D fx 2 Rd :
hx D 0g with h 2 Rd nonzero induces a partition

of E by E D H�
U

H0UHC, with H� :D fe 2 E :
he < 0g, E0 :D E \ H, and HC :D fe 2 E : he> 0g.
The vertices of Z D zone(E) are in bijection with or-
dered 2-partitions of E induced by such hyperplanes
that avoid E. Indeed, if E D H�

U
HC then the lin-

ear functional hv :D h defining H is maximized over Z
uniquely at the vertex v :D

P
fe : e 2 HCg �

P
fe :

e 2 H�g of Z.
We now show how to enumerate all such 2-par-

titions and hence vertices of Z. Let M be any of the� m
d�1

�
subsets of E of size d � 1. Since E is generic, M is

linearly independent and spans a unique linear hyper-
plane lin(M). Let Ĥ D fx 2 Rd : ĥx D 0g be one
of the two orientations of the hyperplane lin(M). Note
that Ĥ0 D M. Finally, let L be any of the 2d�1 subsets
ofM. SinceM is linearly independent, there is a g 2 Rd

which linearly separates L from M n L, namely, satisfies
gx < 0 for all x 2 L and gx> 0 for all x 2 M n L. Fur-
thermore, there is a sufficiently small � > 0 such that the
oriented hyperplane H :D fx 2 Rd : hx D 0g defined
by h :D ĥ C �g avoids E and the 2-partition induced
byH satisfies H� D Ĥ�

U
L and HC D ĤC

U
(MnL).

The corresponding vertex of Z is v :D
P
fe : e 2

HCg �
P
fe : e 2 H�g and the corresponding linear

functional which is maximized over Z uniquely at v is
hv :D h D ĥC �g.

We claim that any ordered 2-partition arises that
way from some M, some orientation Ĥ of lin(M), and
some L. Indeed, consider any oriented linear hyper-
plane H̃ avoiding E. It can be perturbed to a suitable
oriented Ĥ that touches precisely d � 1 points of E. Put
M :D Ĥ0 so that Ĥ coincides with one of the two ori-
entations of the hyperplane lin(M) spanned by M, and
put L :D H̃�\M. LetH be an oriented hyperplane ob-
tained fromM, Ĥ and L by the above procedure. Then
the ordered 2-partition E D H�

U
HC induced by H

coincides with the ordered 2-partition E D H̃�
U

H̃C

induced by H̃.
Since there are

� m
d�1

�
many (d � 1)-subsets M � E,

two orientations Ĥ of lin(M), and 2d�1 subsets L �
M, and d is fixed, the total number of 2-partitions
and hence also the total number of vertices of Z obey
the upper bound 2d

� m
d�1

�
D O(md�1). Furthermore,

for each choice of M, Ĥ and L, the linear functional ĥ
defining Ĥ, as well as g; �; hv D h D ĥ C �g, and the
vertex v D

P
fe : e 2 HCg �

P
fe : e 2 H�g of Z at

which hv is uniquely maximized over Z, can all be com-
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puted using O(m) arithmetic operations. This shows
the claimed bound O(md ) on the arithmetic complex-
ity. �

We conclude with a simple fact about edge-directions
of projections of polytopes.

Lemma 3 If E covers all edge-directions of a polytope P,
and Q :D !(P) is the image of P under a linear map
! : Rn �! Rd , then !(E) covers all edge-directions
of Q.

Proof Let f be a direction of an edge [x; y] of Q. Con-
sider the face F :D !�1([x; y]) of P. Let V be the set
of vertices of F and let U D fu 2 V : !(u) D x g.
Then for some u 2 U and v 2 V n U , there must be
an edge [u; v] of F, and hence of P. Then !(v) 2 (x; y]
hence !(v) D x C ˛ f for some ˛ ¤ 0. Therefore, with
e :D 1

˛
(v � u), a direction of the edge [u; v] of P, we

find that f D 1
˛
(!(v) � !(u)) D !(e) 2 !(E). �

Strongly Polynomial Reduction of Convex
to Linear Discrete Optimization

A linear discrete optimization oracle for a set S � Zn is
one that, queried on w 2 Zn , either returns an optimal
solution to the linear discrete optimization problem
over S, that is, an x� 2 S satisfying wx� D maxfwx :
x 2 Sg, or asserts that none exists, that is, either the
problem is infeasible or the objective function is un-
bounded. We now show that a set E covering all edge-
directions of the polytope conv(S) underlying a convex
discrete optimization problem over a finite set S � Zn

allows to solve it by solving polynomially many lin-
ear discrete optimization counterparts over S. The fol-
lowing theorem extends and unifies the corresponding
reductions in [49] and [12] for convex combinatorial
optimization and convex integer programming respec-
tively. Recall from Sect. “Terminology and Complexity”
that the radius of a finite set S � Zn is defined to be
�(S) :D maxfjxi j : x 2 S; i D 1; : : : ; ng.

Theorem 6 For every fixed d there is a strongly poly-
nomial time algorithm that, given finite set S � Zn

presented by a linear discrete optimization oracle, in-
teger vectors w1; : : : ;wd 2 Zn, set E � Zn cover-
ing all edge-directions of conv(S), and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [n; jEj; h�(S);w1; : : : ;wd ; Ei], solves the convex dis-

crete optimization problem

max fc(w1x; : : : ;wdx) : x 2 Sg :

Proof First, query the linear discrete optimization or-
acle presenting S on the trivial linear functional w D
0. If the oracle asserts that there is no optimal solu-
tion then S is empty so terminate the algorithm as-
serting that no optimal solution exists to the convex
discrete optimization problem either. So assume the
problem is feasible. Let P :D conv(S) � Rn and
Q :D f(w1x; : : : ;wdx) : x 2 Pg � Rd . Then Q is
a projection of P, and hence by Lemma 3 the projection
D :D f(w1e; : : : ;wd e) : e 2 Eg of the set E is a set
covering all edge-directions of Q. Let Z :D zone(D) �
Rd be the zonotope generated by D. Since d is fixed,
by Lemma 2 we can produce in strongly polynomial
time all vertices of Z, every vertex v along with a lin-
ear functional hv 2 Zd maximized over Z uniquely
at v. For each of these polynomially many hv, repeat
the following procedure. Define a vector gv 2 Zn by
gv; j :D

Pd
iD1 wi; jhv;i for j D 1; : : : ; n. Now query

the linear discrete optimization oracle presenting S on
the linear functional w :D gv 2 Zn . Let xv 2 S be
the optimal solution obtained from the oracle, and let
zv :D (w1xv ; : : : ;wdxv) 2 Q be its projection. Since
P D conv(S), we have that xv is also a maximizer of
gv over P. Since for every x 2 P and its projection
z :D (w1x; : : : ;wdx) 2 Q we have hvz D gv x, we
conclude that zv is a maximizer of hv over Q. Now we
claim that each vertex u of Q equals some zv. Indeed,
since Z is a refinement of Q by Lemma 1, it follows
that there is some vertex v of Z such that hv is maxi-
mized overQ uniquely at u, and therefore u D zv . Since
c(w1x; : : : ;wdx) is convex on Rn and c is convex on
Rd , we find that

max
x2S

c(w1x; : : : ;wdx)

D max
x2P

c(w1x; : : : ;wdx)

D max
z2Q

c(z)

D maxfc(u) : u vertex of Qg

D maxfc(zv) : v vertex of Zg :

Using the comparison oracle of c, find a vertex v of Z
attaining maximum value c(zv), and output xv 2 S,
an optimal solution to the convex discrete optimization
problem. �
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Pseudo Polynomial Reduction
when Edge-Directions Are not Available

Theorem 6 reduces convex discrete optimization to
polynomially many linear discrete optimization coun-
terparts when a set covering all edge-directions of the
underlying polytope is available. However, often such
a set is not available (see e. g. [8] for the important
case of bipartite matching). We now show how to re-
duce convex discrete optimization to many linear dis-
crete optimization counterparts when a set covering all
edge-directions is not offhand available. In the absence
of such a set, the problem is much harder, and the
algorithm below is polynomially bounded only in the
unary length of the radius �(S) and of the linear func-
tionals w1; : : : ;wd , rather than in their binary length
h�(S);w1; : : : ;wd i as in the algorithm of Theorem 6
Moreover, an upper bound � � �(S) on the radius of S
is required to be given explicitly in advance as part of
the input.

Theorem 7 For every fixed d there is a polynomial
time algorithm that, given finite set S � Zn presented
by a linear discrete optimization oracle, integer � �
�(S), vectors w1; : : : ;wd 2 Zn, and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [�;w1; : : : ;wd ], solves the convex discrete optimiza-
tion problem

max fc(w1x; : : : ;wdx) : x 2 Sg :

Proof Let P :D conv(S) � Rn , let T :D f(w1x; : : : ;
wdx) : x 2 Sg be the projection of S by w1; : : : ;wd , and
let Q :D conv(T) � Rd be the corresponding pro-
jection of P. Let r :D n�maxdiD1kwik1 and let G :D
f�r; : : : ;�1; 0; 1; : : : ; rgd . Then T � G and the num-
ber (2rC 1)d of points of G is polynomially bounded in
the input as encoded.

Let D :D fu � v : u; v 2 G; u ¤ vg be the set of dif-
ferences of pairs of distinct point ofG. It covers all edge-
directions of Q since vert(Q) � T � G. Moreover, the
number of points of D is less than (2rC 1)2d and hence
polynomial in the input. Now invoke the algorithm of
Theorem 6: while the algorithm requires a set E cover-
ing all edge-directions of P, it needs E only to compute
a set D covering all edge-directions of the projection Q
(see proof of Theorem 6, which here is computed di-
rectly. �

Convex Combinatorial Optimization andMore

In this section we discuss convex combinatorial opti-
mization. The main result is that convex combinato-
rial optimization over a set S � f0; 1gn presented by
a membership oracle can be solved in strongly poly-
nomial time provided it is endowed with a set cov-
ering all edge-directions of conv(S). In particular, the
standard linear combinatorial optimization problem
over S can be solved in strongly polynomial time as
well. In Sect. “From Membership to Linear Optimiza-
tion” we provide some preparatory statements involv-
ing various oracle presentation of the feasible set S.
In Sect. “Linear and Convex Combinatorial Optimiza-
tion in Strongly Polynomial Time” we combine these
preparatory statements with Theorem 6 and prove the
main result of this section. An extension to arbitrary fi-
nite sets S � Zn endowed with edge-directions is es-
tablished in Sect. “Linear and Convex Discrete Opti-
mization over any Set in Pseudo Polynomial Time”. We
conclude with some applications in Sect. “Some Appli-
cations”.

As noted in the introduction, when S is contained in
f0; 1gn we refer to discrete optimization over S also as
combinatorial optimization over S, to emphasize that S
typically represents a family F � 2N of subsets of
a ground set N :D f1; : : : ; ng possessing some com-
binatorial property of interest (for instance, the family
of bases of a matroid over N, see Sect. “Matroids and
Maximum Norm Spanning Trees”. The convex com-
binatorial optimization problem then also has the fol-
lowing interpretation (taken in [47,49]). We are given
a weighting ! : N �! Zd of elements of the ground
set by d-dimensional integer vectors. We interpret the
weight vector !( j) 2 Zd of element j as representing
its value under d criteria (e. g., if N is the set of edges in
a network then such criteria may include profit, relia-
bility, flow velocity, etc.). The weight of a subset F � N
is the sum !(F) :D

P
j2F !( j) of weights of its ele-

ments, representing the total value of F under the d cri-
teria. Now, given a convex functional c : Rd �! R, the
objective function value of F � N is the “convex bal-
ancing” c(!(F)) of the values of the weight vector of F.
The convex combinatorial optimization problem is to
find a family member F 2 F maximizing c(!(F)). The
usual linear combinatorial optimization problem over
F is the special case of d D 1 and c the identity on
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R. To cast a problem of that form in our usual setup
just let S :D f1F : F 2 Fg � f0; 1gn be the set of
indicators of members of F and define weight vectors
w1; : : : ;wd 2 Zn by wi; j :D !( j)i for i D 1; : : : ; d and
j D 1; : : : ; n.

FromMembership to Linear Optimization

A membership oracle for a set S � Zn is one that,
queried on x 2 Zn , asserts whether or not x 2 S. An
augmentation oracle for S is one that, queried on x 2 S
and w 2 Zn , either returns an x̂ 2 S with wx̂>wx,
i. e. a better point of S, or asserts that none exists, i. e.
x is optimal for the linear discrete optimization prob-
lem over S.

Amembership oracle presentation of S is very broad
and available in all reasonable applications, but reveals
little information on S, making it hard to use. However,
as we now show, the edge-directions of conv(S) allow to
convert membership to augmentation.

Lemma 4 There is a strongly polynomial time algo-
rithm that, given set S � f0; 1gn presented by a mem-
bership oracle, x 2 S, w 2 Zn, and set E � Zn cover-
ing all edge-directions of the polytope conv(S), encoded
as [n; jEj; hx;w; Ei], either returns a better point x̂ 2 S,
that is, one satisfying wx̂>wx, or asserts that none ex-
ists.

Proof Each edge of P :D conv(S) is the difference
of two f0; 1g-vectors. Therefore, each edge direction
of P is, up to scaling, a f�1; 0; 1g-vector. Thus, scaling
e :D 1

kek1
e and e :D �e if necessary, we may and will

assume that e 2 f�1; 0; 1gn and we � 0 for all e 2 E.
Now, using the membership oracle, check if there is an
e 2 E such that x C e 2 S and we> 0. If there is such
an e then output x̂ :D x C e which is a better point,
whereas if there is no such e then terminate asserting
that no better point exists.

Clearly, if the algorithm outputs an x̂ then it is in-
deed a better point. Conversely, suppose x is not a max-
imizer of w over S. Since S � f0; 1gn , the point x is
a vertex of P. Since x is not a maximizer of w, there is
an edge [x; x̂] of P with x̂ a vertex satisfying wx̂>wx.
But then e :D x̂ � x is the one f�1; 0; 1g edge-direc-
tion of [x; x̂] with we � 0 and hence e 2 E. Thus,
the algorithm will find and output x̂ D x C e as it
should. �

An augmentation oracle presentation of a finite S al-
lows to solve the linear discrete optimization problem
maxfwx : x 2 Sg over S by starting from any feasible
x 2 S and repeatedly augmenting it until an optimal
solution x� 2 S is reached. The next lemma bounds
the running time needed to reach optimality using this
procedure. While the running time is polynomial in the
binary length of the linear functional w and the initial
point x, it is more sensitive to the radius �(S) of the fea-
sible set S, and is polynomial only in its unary length.
The lemma is an adaptation of a result of [30,57] (stated
therein for f0; 1g-sets), which makes use of bit-scaling
ideas going back to [23].

Lemma 5 There is a polynomial time algorithm that,
given finite set S � Zn presented by an augmentation
oracle, x 2 S, and w 2 Zn, encoded as [�(S); hx;wi],
provides an optimal solution x� 2 S to the linear discrete
optimization problemmaxfwz : z 2 Sg.

Proof Let k :D maxnjD1dlog2(jwjj C 1)e and note
that k � hwi. For i D 0; : : : ; k define a linear func-
tional ui D (ui;1; : : : ; ui; n) 2 Zn by ui; j :D sign(wj)
b2i�k jwjjc for j D 1; : : : ; n. Then u0 D 0, uk D w, and
ui � 2ui�1 2 f�1; 0; 1gn for all i D 1; : : : ; k.

We now describe how to construct a sequence of
points y0; y1; : : : ; yk 2 S such that yi is an optimal so-
lution to maxfui y : y 2 Sg for all i. First note that all
points of S are optimal for u0 D 0 and hence we can
take y0 :D x to be the point of S given as part of the
input. We now explain how to determine yi from yi�1
for i D 1; : : : ; k. Suppose yi�1 has been determined.
Set ỹ :D yi�1. Query the augmentation oracle on ỹ 2 S
and ui; if the oracle returns a better point ŷ then set
ỹ :D ŷ and repeat, whereas if it asserts that there is no
better point then the optimal solution for ui is read off
to be yi :D ỹ. We now bound the number of calls to the
oracle. Each time the oracle is queried on ỹ and ui and
returns a better point ŷ, the improvement is by at least
one, i. e. ui ( ŷ� ỹ) � 1; this is so because ui, ỹ and ŷ are
integer. Thus, the number of necessary augmentations
from yi�1 to yi is at most the total improvement, which
we claim satisfies

ui (yi � yi�1) D (ui � 2ui�1)(yi � yi�1)

C 2ui�1(yi � yi�1) � 2n�C 0 D 2n� ;

where � :D �(S). Indeed, ui � 2ui�1 2 f�1; 0; 1gn

and yi ; yi�1 2 S � [��; �]n imply (ui � 2ui�1)(yi �



Convex Discrete Optimization C 525

yi�1) � 2n�; and yi�1 optimal for ui�1 gives ui�1(yi �
yi�1) � 0.

Thus, after a total number of at most 2n�k calls to
the oracle we obtain yk which is optimal for uk. Since
w D uk we can output x� :D yk as the desired opti-
mal solution to the linear discrete optimization prob-
lem. Clearly the number 2n�k of calls to the oracle, as
well as the number of arithmetic operations and binary
length of numbers occurring during the algorithm, are
polynomial in �(S); hx;wi. This completes the proof.�

We conclude this preparatory subsection by record-
ing the following result of [24] which incorporates
the heavy simultaneous Diophantine approximation
of [44].

Proposition 1 There is a strongly polynomial time al-
gorithm that, given w 2 Zn, encoded as [n; hwi], pro-
duces ŵ 2 Zn, whose binary length hŵi is polyno-
mially bounded in n and independent of w, and with
sign(ŵz) D sign(wz) for every z 2 f�1; 0; 1gn.

Linear and Convex Combinatorial Optimization
in Strongly Polynomial Time

Combining the preparatory statements of Sect. “From
Membership to Linear Optimization” with Theorem 6,
we can now solve the convex combinatorial optimiza-
tion over a set S � f0; 1gn presented by a member-
ship oracle and endowed with a set covering all edge-
directions of conv(S) in strongly polynomial time. We
start with the special case of linear combinatorial opti-
mization.

Theorem 8 There is a strongly polynomial time algo-
rithm that, given set S � f0; 1gn presented by a mem-
bership oracle, x 2 S, w 2 Zn, and set E � Zn

covering all edge-directions of the polytope conv(S), en-
coded as [n; jEj; hx;w; Ei], provides an optimal solution
x� 2 S to the linear combinatorial optimization problem
maxfwz : z 2 Sg.

Proof First, an augmentation oracle for S can be simu-
lated using the membership oracle, in strongly polyno-
mial time, by applying the algorithm of Lemma 4.

Next, using the simulated augmentation oracle
for S, we can now do linear optimization over S in
strongly polynomial time as follows. First, apply to w
the algorithm of Proposition 1 and obtain ŵ 2 Zn

whose binary length hŵi is polynomially bounded in

n, which satisfies sign(ŵz) D sign(wz) for every z 2
f�1; 0; 1gn . Since S � f0; 1gn , it is finite and has radius
�(S) D 1. Now apply the algorithm of Lemma 5 to S, x
and ŵ, and obtain amaximizer x� of ŵ over S. For every
y 2 f0; 1gn we then have x��y 2 f�1; 0; 1gn and hence
sign(w(x�� y)) D sign(ŵ(x�� y)). So x� is also a max-
imizer of w over S and hence an optimal solution to the
given linear combinatorial optimization problem. Now,
�(S) D 1, hŵi is polynomial in n, and x 2 f0; 1gn and
hence hxi is linear in n. Thus, the entire length of the
input [�(S); hx; ŵi] to the polynomial-time algorithm
of Lemma 5 is polynomial in n, and so its running time
is in fact strongly polynomial on that input. �

Combining Theorems 6 and 8 we recover at once the
following result of [49].

Theorem 9 For every fixed d there is a strongly poly-
nomial time algorithm that, given set S � f0; 1gn

presented by a membership oracle, x 2 S, vectors
w1; : : : ;wd 2 Zn, set E � Zn covering all edge-
directions of the polytope conv(S), and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [n; jEj; hx;w1; : : : ;wd ; Ei], provides an optimal solu-
tion x� 2 S to the convex combinatorial optimization
problem

max fc(w1z; : : : ;wdz) : z 2 Sg :

Proof Since S is nonempty, a linear discrete optimiza-
tion oracle for S can be simulated in strongly polyno-
mial time by the algorithm of Theorem 8. Using this
simulated oracle, we can apply the algorithm of Theo-
rem 6 and solve the given convex combinatorial opti-
mization problem in strongly polynomial time. �

Linear and Convex Discrete Optimization
over any Set in Pseudo Polynomial Time

In Sect. “Linear and Convex Combinatorial Optimiza-
tion in Strongly Polynomial Time” above we devel-
oped strongly polynomial time algorithms for linear
and convex discrete optimization over f0; 1g-sets. We
now provide extensions of these algorithms to arbitrary
finite sets S � Zn . As can be expected, the algorithms
become slower.

We start by recording the following fundamen-
tal result of Khachiyan [40] asserting that linear pro-
gramming is polynomial time solvable via the ellipsoid
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method [63]. This result will be used below as well as
several more times later in the monograph.

Proposition 2 There is a polynomial time algorithm
that, given A 2 Zm�n , b 2 Zm, and w 2 Zn, encoded as
[hA; b;wi], either asserts that P :D fx 2 Rn : Ax � bg
is empty, or asserts that the linear functional wx is un-
bounded over P, or provides a vertex v 2 vert(P) which
is an optimal solution to the linear program maxfwx :
x 2 Pg.

The following analog of Lemma 4 shows how to covert
membership to augmentation in polynomial time, al-
beit, no longer in strongly polynomial time. Here, both
the given initial point x and the returned better point x̂
if any, are vertices of conv(S).

Lemma 6 There is a polynomial time algorithm that,
given finite set S � Zn presented by a membership or-
acle, vertex x of the polytope conv(S);w 2 Zn, and set
E � Zn covering all edge-directions of conv(S), encoded
as [�(S); hx;w; Ei], either returns a better vertex x̂ of
conv(S), that is, one satisfying wx̂>wx, or asserts that
none exists.

Proof Dividing each vector e 2 E by the greatest com-
mon divisor of its entries and setting e :D �e if nec-
essary, we can and will assume that each e is primi-
tive, that is, its entries are relatively prime integers, and
we � 0. Using the membership oracle, construct the
subset F � E of those e 2 E for which x C re 2 S
for some r 2 f1; : : : ; 2�(S)g. Let G � F be the sub-
set of those f 2 F for which w f > 0. If G is empty then
terminate asserting that there is no better vertex. Other-
wise, consider the convex cone cone(F) generated by F.
It is clear that x is incident on an edge of conv(S) in di-
rection f if and only if f is an extreme ray of cone(F).
Moreover, since G D f f 2 F : w f > 0g is nonempty,
there must be an extreme ray of cone(F) which lies inG.
Now f 2 F is an extreme ray of cone(F) if and only if
there do not exist nonnegative �e , e 2 F nf f g, such that
f D

P
e¤ f �e e; this can be checked in polynomial time

using linear programming. Applying this procedure to
each f 2 G, identify an extreme ray g 2 G. Now, us-
ing the membership oracle, determine the largest r 2
f1; : : : ; 2�(S)g for which xCrg 2 S. Output x̂ :D xCrg
which is a better vertex of conv(S). �

We now prove the extensions of Theorems 8 and 9
to arbitrary, not necessarily f0; 1g-valued, finite sets.

While the running time remains polynomial in the bi-
nary length of the weights w1; : : : ;wd and the set of
edge-directions E, it is more sensitive to the radius �(S)
of the feasible set S, and is polynomial only in its unary
length. Here, the initial feasible point and the opti-
mal solution output by the algorithms are vertices of
conv(S). Again, we start with the special case of linear
combinatorial optimization.

Theorem10 There is a polynomial time algorithm that,
given finite S � Zn presented by a membership or-
acle, vertex x of the polytope conv(S), w 2 Zn, and
set E � Zn covering all edge-directions of conv(S),
encoded as [�(S); hx;w; Ei], provides an optimal solu-
tion x� 2 S to the linear discrete optimization problem
maxfwz : z 2 Sg.

Proof Apply the algorithm of Lemma 5 to the given
data. Consider any query x0 2 S, w0 2 Zn made by that
algorithm to an augmentation oracle for S. To answer
it, apply the algorithm of Lemma 6 to x0 and w0. Since
the first query made by the algorithm of Lemma 5 is
on the given input vertex x0 :D x, and any consequent
query is on a point x0 :D x̂ which was the reply of the
augmentation oracle to the previous query (see proof of
Lemma 5), we see that the algorithm of Lemma 6 will
always be asked on a vertex of S and reply with another.
Thus, the algorithm of Lemma 6 can answer all aug-
mentation queries and enables the polynomial time so-
lution of the given problem. �

Theorem 11 For every fixed d there is a polynomial
time algorithm that, given finite set S � Zn pre-
sented by membership oracle, vertex x of conv(S), vec-
tors w1; : : : ;wd 2 Zn, set E � Zn covering all edge-
directions of the polytope conv(S), and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [�(S); hx;w1; : : : ;wd ; Ei], provides an optimal solu-
tion x� 2 S to the convex combinatorial optimization
problem

max fc(w1z; : : : ;wdz) : z 2 Sg :

Proof Since S is nonempty, a linear discrete optimiza-
tion oracle for S can be simulated in polynomial time
by the algorithm of Theorem 10 . Using this simulated
oracle, we can apply the algorithm of Theorem 6 and
solve the given problem in polynomial time. �
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Some Applications

Positive Semidefinite Quadratic Binary Program-
ming The quadratic binary programming problem is
the following: given an n � n matrix M, find a vector
x 2 f0; 1gn maximizing the quadratic form xTMx in-
duced byM. We consider here the instance whereM is
positive semidefinite, in which case it can be assumed
to be presented as M D WTW with W a given d � n
matrix. Already this restricted version is very broad: if
the rank d of W and M is variable then, as mentioned
in the introduction, the problem is NP-hard. We now
show that, for fixed d, Theorem 9 implies at once that
the problem is strongly polynomial time solvable (see
also [2]).

Corollary 6 For every fixed d there is a strongly poly-
nomial time algorithm that given W 2 Zd�n, encoded
as [n; hWi], finds x� 2 f0; 1gn maximizing the form
xTWTWx.

Proof Let S :D f0; 1gn and let E :D f11; : : : ; 1ng be the
set of unit vectors in Rn . Then P :D conv(S) is just the
n-cube [0; 1]n and hence E covers all edge-directions
of P. A membership oracle for S is easily and efficiently
realizable and x :D 0 2 S is an initial point. Also, jEj
and hEi are polynomial in n, and E is easily and effi-
ciently computable.

Now, for i D 1; : : : ; d define wi 2 Zn to be the
ith row of the matrix W, that is, wi; j :D Wi; j for all
i; j. Finally, let c : Rd �! R be the squared l2 norm
given by c(y) :D kyk22 :D

Pd
iD1 y

2
i , and note that the

comparison of c(y) and c(z) can be done for y; z 2 Zd

in time polynomial in hy; zi using a constant number of
arithmetic operations, providing a strongly polynomial
time realization of a comparison oracle for c.

This translates the given quadratic programming
problem into a convex combinatorial optimization
problem over S, which can be solved in strongly poly-
nomial time by applying the algorithm of Theorem 9
to S, x D 0, w1; : : : ;wd , E, and c. �

Matroids and Maximum Norm Spanning Trees
Optimization problems over matroids form a funda-
mental class of combinatorial optimization problems.
Here we discuss matroid bases, but everything works
for independent sets as well. Recall that a family B of
subsets of f1; : : : ; ng is the family of bases of a matroid
if all members of B have the same cardinality, called

the rank of the matroid, and for every B; B0 2 B and
i 2 B n B0 there is a j 2 B0 such that B n fig [ f jg 2 B.
Useful models include the graphic matroid of a graph
Gwith edge set f1; : : : ; ng andB the family of spanning
forests ofG, and the linearmatroid of anm�nmatrix A
with B the family of sets of indices of maximal linearly
independent subsets of columns of A.

It is well known that linear combinatorial opti-
mization over matroids can be solved by the fast
greedy algorithm [22]. We now show that, as a conse-
quence of Theorem 9, convex combinatorial optimiza-
tion over a matroid presented by a membership oracle
can be solved in strongly polynomial time as well (see
also [34,47]). We state the result for bases, but the anal-
ogous statement for independent sets hold as well. We
say that S � f0; 1gn is the set of bases of a matroid if it
is the set of indicators of the family B of bases of some
matroid, in which case we call conv(S) thematroid base
polytope.

Corollary 7 For every fixed d there is a strongly poly-
nomial time algorithm that, given set S � f0; 1gn of
bases of a matroid presented by a membership ora-
cle, x 2 S, w1; : : : ;wd 2 Zn, and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [n; hx;w1; : : : ;wdi], solves the convex matroid opti-
mization problem

max fc(w1z; : : : ;wdz) : z 2 Sg :

Proof Let E :D f1i � 1 j : 1 � i < j � ng be
the set of differences of pairs of unit vectors in Rn .
We claim that E covers all edge-directions of the ma-
troid base polytope P :D conv(S). Consider any edge
e D [y; y0] of P with y; y0 2 S and let B :D supp(y) and
B0 :D supp(y0) be the corresponding bases. Let h 2 Rn

be a linear functional uniquely maximized over P at e.
If B n B0 D fig is a singleton then B0 n B D f jg is
a singleton as well in which case y � y0 D 1i � 1 j

and we are done. Suppose then, indirectly, that it is
not, and pick an element i in the symmetric difference
B�B0 :D (BnB0)[ (B0 nB) of minimum value hi. With-
out loss of generality assume i 2 B n B0. Then there is
a j 2 B0 n B such that B00 :D B n fig [ f jg is also a basis.
Let y00 2 S be the indicator of B00. Now jB�B0qj > 2
implies that B00 is neither B nor B0. By the choice of i we
have hy00 D hy � hi C hj � hy. So y00 is also a max-
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imizer of h over P and hence y00 2 e. But no f0; 1g-
vector is a convex combination of others, a contradic-
tion.

Now, jEj D
�n
2

�
and E � f�1; 0; 1gn imply that jEj

and hEi are polynomial in n. Moreover, E can be eas-
ily computed in strongly polynomial time. Therefore,
applying the algorithm of Theorem 9 to the given data
and the set E, the convex discrete optimization problem
over S can be solved in strongly polynomial time. �

One important application of Corollary 7 is a polyno-
mial time algorithm for computing the universal Gröb-
ner basis of any system of polynomials having a finite
set of common zeros in fixed (but arbitrary) number of
variables, as well as the construction of the state polyhe-
dron of any member of the Hilbert scheme, see [5,51].
Other important applications are in the field of alge-
braic statistics [52], in particular for optimal experimen-
tal design. These applications are beyond our scope here
and will be discussed elsewhere.

Here is another concrete example of a convex ma-
troid optimization application.

Example 1 (MAXIMUM NORM SPANNING TREE). Fix
any positive integer d. Let k � kp : Rd �! R be the
lp norm given by kxkp :D (

Pd
iD1 jxi jp)

1
p for 1 � p <

1 and kxk1 :D maxdiD1 jxi j. Let G be a connected
graph with edge set N :D f1; : : : ; ng. For j D 1; : : : ; n
let uj 2 Zd be a weight vector representing the values
of edge j under some d criteria. The weight of a subset
T � N is the sum

P
j2T u j representing the total values

of T under the d criteria. The problem is to find a span-
ning tree T of G whose weight has maximum lp norm,
that is, a spanning tree T maximizing k

P
j2T u jkp .

Define w1; : : : ;wd 2 Zn by wi; j :D uj;i for i D
1; : : : ; d, j D 1; : : : ; n. Let S � f0; 1gn be the set of in-
dicators of spanning trees of G. Then, in time polyno-
mial in n, a membership oracle for S is realizable, and
an initial x 2 S is obtainable as the indicator of any
greedily constructible spanning tree T. Finally, define
the convex functional c :D k � kp . Then for most com-
mon values p D 1; 2;1, and in fact for any p 2 N , the
comparison of c(y) and c(z) can be done for y; z 2 Zd

in time polynomial in hy; z; pi by computing and com-
paring the integer valued pth powers kykpp and kzkpp .
Thus, by Corollary 7, this problem is solvable in time
polynomial in hu1; : : : ; un ; pi.

Linear N-fold Integer Programming

In this section we develop a theory of linear n-fold in-
teger programming, which leads to the polynomial time
solution of broad classes of linear integer programming
problems in variable dimension. This will be extended
to convex n-fold integer programming in Sect. “Convex
Integer Programming”.

In Sect. “Oriented Augmentation and Linear Opti-
mization” we describe an adaptation of a result of [56]
involving an oriented version of the augmentation or-
acle of Sect. “From Membership to Linear Optimiza-
tion”. In Sect. “Graver Bases and Linear Integer Pro-
gramming” we discuss Graver bases and their applica-
tion to linear integer programming. In Sect. “Graver
Bases of N-fold Matrices” we show that Graver bases
of n-fold matrices can be computed efficiently. In Sect.
“Linear N-fold Integer Programming in Polynomial
Time” we combine the preparatory statements from
Sect. “Oriented Augmentation and Linear Optimiza-
tion”, Sect. “Graver Bases and Linear Integer Program-
ming”, and Sect. “Graver Bases of N-fold Matrices”,
and prove the main result of this section, asserting that
linear n-fold integer programming is polynomial time
solvable. We conclude with some applications in Sect.
“Some Applications”.

Here and in Sect. “Convex Integer Programming”
we concentrate on discrete optimization problems over
a set S presented as the set of integer points satisfying an
explicitly given system of linear inequalities. Without
loss of generality wemay and will assume that S is given
either in standard form S :D fx 2 Nn : Ax D bg
where A 2 Zm�n and b 2 Zm , or in the form

S :D fx 2 Zn : Ax D b; l � x � ug

where l ; u 2 Zn
1 and Z1 D Z ] f˙1g, where some

of the variables are bounded below or above and some
are unbounded. Thus, S is no longer presented by an
oracle, but by the explicit data A; b and possibly l ; u.
In this setup we refer to discrete optimization over S
also as integer programming over S. As usual, an algo-
rithm solving the problemmust either provide an x 2 S
maximizing wx over S, or assert that none exists (either
because S is empty or because the objective function is
unbounded over the underlying polyhedron). We will
sometimes assume that an initial point x 2 S is given,
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in which case bwill be computed as b :D Ax and not be
part of the input.

Oriented Augmentation and Linear Optimization

Wehave seen in Sect. “FromMembership to Linear Op-
timization” that an augmentation oracle presentation of
a finite set S � Zn enables to solve the linear discrete
optimization problem over S. However, the running
time of the algorithm of Lemma 5 which demonstrated
this, was polynomial in the unary length of the radius
�(S) of the feasible set rather than in its binary length.

In this subsection we discuss a recent result of
[56] and show that, when S is presented by a suit-
able stronger oriented version of the augmentation or-
acle, the linear optimization problem can be solved by
a much faster algorithm, whose running time is in fact
polynomial in the binary length h�(S)i. The key idea
behind this algorithm is that it gives preference to aug-
mentations along interior points of conv(S) staying far
off its boundary. It is inspired by and extends the com-
binatorial interior point algorithm of [61].

For any vector g 2 Rn , let gC; g� 2 Rn
C de-

note its positive and negative parts, defined by gCj :D
maxfg j; 0g and g�j :D �minfg j; 0g for j D 1; : : : ; n.
Note that both gC; g� are nonnegative, supp(g) D
supp(gC)

U
supp(g�), and g D gC � g�.

An oriented augmentation oracle for a set S � Zn

is one that, queried on x 2 S and wC;w� 2 Zn , either
returns an augmenting vector g 2 Zn , defined to be one
satisfying x C g 2 S and wCgC � w�g�> 0, or asserts
that none exists.

Note that this oracle involves two linear function-
als wC;w� 2 Zn rather than one (wC;w� are two
distinct independent vectors and not the positive and
negative parts of one vector). The conditions on an
augmenting vector g indicate that it is a feasible direc-
tion and has positive value under the nonlinear objec-
tive function determined by wC;w�. Note that this or-
acle is indeed stronger than the augmentation oracle of
Sect. “From Membership to Linear Optimization”: to
answer a query x 2 S, w 2 Zn to the latter, set wC :D
w� :D w, thereby obtaining wCgC � w�g� D wg for
all g, and query the former on x;wC;w�; if it replies
with an augmenting vector g then reply with the better
point x̂ :D x C g, whereas if it asserts that no g exists
then assert that no better point exists.

The following lemma is an adaptation of the result
of [56] concerning sets of the form S :D fx 2 Zn :
Ax D b; 0 � x � ug of nonnegative integer points sat-
isfying equations and upper bounds. However, the pair
A; b is neither explicitly needed nor does it affect the
running time of the algorithm underlying the lemma.
It suffices that S is of that form. Moreover, an arbitrary
lower bound vector l rather than 0 can be included. So it
suffices to assume that S coincides with the intersection
of its affine hull and the set of integer points in a box,
that is, S D aff(S) \ fx 2 Zn : l � x � ug where
l ; u 2 Zn . We now describe and prove the algorithm
of [56] adjusted to any lower and upper bounds l ; u.

Lemma 7 There is a polynomial time algorithm that,
given vectors l ; u 2 Zn, set S � Zn satisfying S D
aff(S) \ fz 2 Zn : l � z � ug and presented by an
oriented augmentation oracle, x 2 S, and w 2 Zn,
encoded as [hl ; u; x;wi], provides an optimal solution
x� 2 S to the linear discrete optimization problem
maxfwz : z 2 Sg.

Proof We start with some strengthening adjust-
ments to the oriented augmentation oracle. Let � :D
maxfklk1; kuk1g be an upper bound on the radius
of S. Then any augmenting vector g obtained from the
oriented augmentation oracle when queried on y 2 S
and wC;w� 2 Zn , can be made in polynomial time
to be exhaustive, that is, to satisfy y C 2g … S (which
means that no longer augmenting step in direction g
can be taken). Indeed, using binary search, find the
largest r 2 f1; : : : ; 2�g for which l � y C rg � u;
then S D aff(S) \ fz 2 Zn : l � z � ug implies
y C rg 2 S and hence we can replace g :D rg. So from
here on we will assume that if there is an augmenting
vector then the oracle returns an exhaustive one. Sec-
ond, let R1 :D R ] f˙1g and for any vector v 2 Rn

let v�1 2 Rn
1 denote its entry-wise reciprocal defined

by v�1i :D 1
v i
if vi ¤ 0 and v�1i :D 1 if vi D 0. For any

y 2 S, the vectors (y� l)�1 and (u� y)�1 are the recip-
rocals of the “entry-wise distance” of y from the given
lower and upper bounds. The algorithm will query the
oracle on triples y;wC;w� with wC :D w��(u� y)�1

and w� :D wC�(y� l)�1 where� is a suitable positive
scalar and w is the input linear functional. The fact that
such wC;w� may have infinite entries does not cause
any problem: indeed, if g is an augmenting vector then
y C g 2 S implies that gCi D 0 whenever yi D ui
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and g�i D 0 whenever li D yi , so each infinite entry
inwC orw� occurring in the expression wCgC�w�g�

is multiplied by 0 and hence zeroed out.
The algorithm proceeds in phases. Each phase i

starts with a feasible point yi�1 2 S and performs
repeated augmentations using the oriented augmen-
tation oracle, terminating with a new feasible point
yi 2 S when no further augmentations are possible.
The queries to the oracle make use of a positive scalar
parameters �i fixed throughout the phase. The first
phase (i=1) starts with the input point y0 :D x and
sets �1 :D � kwk1. Each further phase i � 2 starts
with the point yi�1 obtained from the previous phase
and sets the parameter value �i :D 1

2�i�1 to be half its
value in the previous phase. The algorithm terminates
at the end of the first phase i for which �i <

1
n , and

outputs x� :D yi . Thus, the number of phases is at most
dlog2(2n�kwk1)e and hence polynomial in hl ; u;wi.

We now describe the ith phase which determines yi
from yi�1. Set �i :D 1

2�i�1 and ŷ :D yi�1. Iter-
ate the following: query the strengthened oriented aug-
mentation oracle on ŷ, wC :D w � �i (u � ŷ)�1, and
w� :D wC�i ( ŷ� l)�1; if the oracle returns an exhaus-
tive augmenting vector g then set ŷ :D ŷCg and repeat,
whereas if it asserts that there is no augmenting vector
then set yi :D ŷ and complete the phase. If�i �

1
n then

proceed to the (iC1)th phase, else output x� :D yi and
terminate the algorithm.

It remains to show that the output of the algorithm
is indeed an optimal solution and that the number of
iterations (and hence calls to the oracle) in each phase is
polynomial in the input. For this we need the following
facts, the easy proofs of which are omitted:
1. For every feasible y 2 S and direction g with yC g 2

S also feasible, we have

(u � y)�1gC C (y � l)�1g� � n :

2. For every y 2 S and direction g with y C g 2 S but
y C 2g … S, we have

(u � y)�1gC C (y � l)�1g� >
1
2
:

3. For every feasible y 2 S, direction g with y C g 2 S
also feasible, and �> 0, setting wC :D w � �(u �

y)�1 and w� :D w C �(y � l)�1 we have

wCgC � w�g� D wg � �
�
(u � y)�1gC

C(y � l)�1g�
�
:

Now, consider the last phase i with �i <
1
n , let

x� :D yi :D ŷ be the output of the algorithm at the
end of this phase, and let x̂ 2 S be any optimal so-
lution. Now, the phase is completed when the oracle,
queried on the triple ŷ, wC D w � �i (u � ŷ)�1, and
w� D w C �i ( ŷ � l)�1, asserts that there is no aug-
menting vector. In particular, setting g :D x̂ � ŷ, we
find wCgC � w�g� � 0 and hence, by facts 1 and 3
above,

wx̂ � wx� D wg � �i
�
(u � ŷ)�1gC

C( ŷ � l)�1g�
�
<

1
n
n D 1 :

Since wx̂ and wx� are integer, this implies that in fact
wx̂�wx� � 0 and hence the output x� of the algorithm
is indeed an optimal solution to the given optimization
problem.

Next we bound the number of iterations in each
phase i starting from yi�1 2 S. Let again x̂ 2 S be any
optimal solution. Consider any iteration in that phase,
where the oracle is queried on ŷ,wC D w��i(u� ŷ)�1,
and w� D w C �i( ŷ � l)�1, and returns an exhaustive
augmenting vector g. We will now show that

w( ŷ C g) � wŷ �
1
4n

(wx̂ � wyi�1) ; (1)

that is, the increment in the objective value from ŷ to
the augmented point ŷ C g is at least 1

4n times the dif-
ference between the optimal objective value wx̂ and the
objective value wyi�1 of the point yi�1 at the beginning
of phase i. This shows that at most 4n such increments
(and hence iterations) can occur in the phase before it
is completed.

To establish (1), we show that wg � 1
2�i and

wx̂ � wyi�1 � 2n�i . For the first inequality, note that
g is an exhaustive augmenting vector and so wCgC �
w�g�> 0 and ŷ C 2g … S and hence, by facts 2 and 3,
wg>�i ((u� ŷ)�1gCC( ŷ� l)�1g�)> 1

2�i . We proceed
with the second inequality. If i D 1 (first phase) then
this indeed holds since wx̂�wy0 � 2n�kwk1 D 2n�1.
If i � 2, let w̃C :D w � �i�1(u � yi�1)�1 and w̃� :D
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w C �i�1(yi�1 � l)�1. The (i � 1)th phase was com-
pleted when the oracle, queried on the triple yi�1, w̃C,
and w̃�, asserted that there is no augmenting vector. In
particular, for g̃ :D x̂�yi�1, we find w̃C g̃C�w̃� g̃� � 0
and so, by facts 1 and 3,

wx̂ � wyi�1
Dwg̃ � �i�1

�
(u � yi�1)�1 g̃C C (yi�1 � l)�1 g̃�)

�

��i�1n D 2n�i : �

Graver Bases and Linear Integer Programming

We now come to the definition of a fundamental ob-
ject introduced by Graver in [28]. The Graver basis of
an integer matrix A is a canonical finite set G(A) that
can be defined as follows. Define a partial order v on
Zn which extends the coordinate-wise order � on Nn

as follows: for two vectors u; v 2 Zn put u v v and
say that u is conformal to v if jui j � jvi j and uivi � 0
for i D 1; : : : ; n, that is, u and v lie in the same or-
thant of Rn and each component of u is bounded by
the corresponding component of v in absolute value. It
is not hard to see that v is a well partial ordering (this
is basically Dickson’s lemma) and hence every subset of
Zn has finitely-manyv-minimal elements. LetL(A) :D
fx 2 Zn : Ax D 0g be the lattice of linear integer de-
pendencies on A. The Graver basis of A is defined to be
the set G(A) of all v-minimal vectors in L(A) n f0g.

Note that ifA is anm�nmatrix then its Graver basis
consist of vectors in Zn . We sometimes write G(A) as
a suitable jG(A)j � nmatrix whose rows are the Graver
basis elements. The Graver basis is centrally symmet-
ric (g 2 G(A) implies �g 2 G(A)); thus, when list-
ing a Graver basis we will typically give one of each an-
tipodal pair and prefix the set (or matrix) by ˙. Any
element of the Graver basis is primitive (its entries are
relatively prime integers). Every circuit of A (nonzero
primitive minimal support element of L(A)) is in G(A);
in fact, if A is totally unimodular then G(A) coincides
with the set of circuits (see Sect. “Convex Integer Pro-
gramming over Totally Unimodular Systems” in the se-
quel for more details on this). However, in general G(A)
is much larger. For more details on Graver bases and
their connection to Gröbner bases see Sturmfels [58]
and for the currently fastest procedure for computing
them see [35,36].

Here is a quick simple example; we will see more
structured and complex examples later on. Consider
the 1�3 matrix A :D (1; 2; 1). Then its Graver basis can
be shown to be the set G(A) D ˙f(2;�1; 0); (0;�1; 2);
(1; 0;�1); (1;�1; 1)g. The first three elements (and
their antipodes) are the circuits of A; already in this
small example non-circuits appear as well: the fourth
element (and its antipode) is a primitive linear integer
dependency whose support is not minimal.

We now show that when we do have access to the
Graver basis, it can be used to solve linear integer pro-
gramming. We will extend this in Sect. “Convex Integer
Programming”, where we show that the Graver basis
enables to solve convex integer programming as well.
In Sect. “Graver Bases of N-foldMatrices” we will show
that there are important classes of matrices for which
the Graver basis is indeed accessible.

First, we need a simple property of Graver bases.
A finite sum u :D

P
i vi of vectors vi 2 Rn is con-

formal if each summand is conformal to the sum, that
is, vi v u for all i.

Lemma 8 Let A be any integer matrix. Then any h 2
L(A)nf0g can be written as a conformal sum h :D

P
gi

of (not necessarily distinct) Graver basis elements gi 2
G(A).
Proof By induction on the well partial orderv. Recall
that G(A) is the set of v-minimal elements in L(A) n
f0g. Consider any h 2 L(A) n f0g. If it is v-minimal
then h 2 G(A) and we are done. Otherwise, there is
a h0 2 G(A) such that h0 @ h. Set h00 :D h � h0. Then
h00 2 L(A) n f0g and h00 @ h, so by induction there is
a conformal sum h00 D

P
i gi with gi 2 G(A) for all i.

Now h D h0C
P

i gi is the desired conformal sum of h.
�

The next lemma shows the usefulness of Graver bases
for oriented augmentation.

Lemma 9 Let A be an m�n integer matrix with Graver
basis G(A) and let l ; u 2 Zn

1, wC;w� 2 Zn, and b 2
Zm. Suppose x 2 T :D fy 2 Zn : Ay D b; l � y � ug.
Then for every g 2 Zn which satisfies x C g 2 T and
wCgC � w�g�> 0 there exists an element ĝ 2 G(A)
with ĝ v g which also satisfies x C ĝ 2 T and wC ĝC �
w� ĝ�> 0.

Proof Suppose g 2 Zn satisfies the requirements.
Then Ag D A(xC g)�Ax D b�b D 0 since x; xC g 2
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T. Thus, g 2 L(A) n f0g and hence, by Lemma 8, there
is a conformal sum g D

P
i hi with hi 2 G(A) for all i.

Now, hi v g is equivalent to hCi � gC and h�i � g�,
so the conformal sum g D

P
i hi gives corresponding

sums of the positive and negative parts gC D
P

i h
C
i

and g� D
P

i h
�
i . Therefore we obtain

0 < wCgC � w�g� D wC
X
i

hCi � w�
X
i

h�i

D
X
i

(wChCi � w�h�i )

which implies that there is some hi in this sum with
wChCi �w�h

�
i 0. Now, hi 2 G(A) implies A(xChi) D

Ax D b. Also, l � x; x C g � u and hi v g imply that
l � x C hi � u. So x C hi 2 T. Therefore the vector
ĝ :D hi satisfies the claim. �
We can now show that the Graver basis enables to solve
linear integer programming in polynomial time pro-
vided an initial feasible point is available.

Theorem 12 There is a polynomial time algorithm
that, given A 2 Zm�n , its Graver basis G(A), l ; u 2
Zn
1, x;w 2 Zn with l � x � u, encoded as

[hA;G(A); l ; u; x;wi], solves the linear integer program
maxfwz : z 2 Zn ;Az D b; l � z � ug with b :D Ax.

Proof First, note that the objective function of the in-
teger program is unbounded if and only if the objec-
tive function of its relaxation maxfwy : y 2 Rn ;Ay D
b; l � y � ug is unbounded, which can be checked in
polynomial time using linear programming. If it is un-
bounded then assert that there is no optimal solution
and terminate the algorithm.

Assume then that the objective is bounded. Then,
since the program is feasible, it has an optimal solu-
tion. Furthermore, (as basically follows from Cramer’s
rule, see e. g. [13, Theorem 17.1]) it has an optimal x�

satisfying jx�j j � � for all j, where � is an easily com-
putable integer upper bound whose binary length h�i is
polynomially bounded in hA; l ; u; xi. For instance, � :D
(nC1)(nC1)!rnC1 will do, with r the maximum among
maxi j

P
j Ai; j x jj, maxi; j jAi; jj, maxfjl jj : jl jj < 1g,

and maxfjujj : jujj <1g.
Let T :D fy 2 Zn : Ay D b; l � y � ug

and S :D T \ [��; �]n . Then our linear integer pro-
gramming problem now reduces to linear discrete op-
timization over S. Now, an oriented augmentation ora-
cle for S can be simulated in polynomial time using the

given Graver basis G(A) as follows: given a query y 2 S
and wC;w� 2 Zn , search for g 2 G(A) which satisfies
wCgC � w�g�> 0 and y C g 2 S; if there is such a g
then return it as an augmenting vector, whereas if there
is no such g then assert that no augmenting vector ex-
ists. Clearly, if this simulated oracle returns a vector g
then it is an augmenting vector. On the other hand, if
there exists an augmenting vector g then yC g 2 S � T
and wCgC �w�g�> 0 imply by Lemma 9 that there is
also a ĝ 2 G(A) with ĝ v g such thatwC ĝC�w� ĝ�> 0
and y C ĝ 2 T. Since y; y C g 2 S and ĝ v g, we
find that y C ĝ 2 S as well. Therefore the Graver basis
contains an augmenting vector and hence the simulated
oracle will find and output one.

Define l̂ ; û 2 Zn by l̂ j :D max(l j;��); û j :D
min(uj; �), j D 1; : : : ; n. Then it is easy to see that
S D aff(S) \ fy 2 Zn : l̂ � y � ûg. Now apply the al-
gorithm of Lemma 7 to l̂ ; û, S, x, and w, using the above
simulated oriented augmentation oracle for S, and ob-
tain in polynomial time a vector x� 2 S which is opti-
mal to the linear discrete optimization problem over S
and hence to the given linear integer program. �

As a special case of Theorem 12 we recover the follow-
ing result of [55] concerning linear integer program-
ming in standard form when the Graver basis is avail-
able.

Theorem13 There is a polynomial time algorithm that,
given matrix A 2 Zm�n , its Graver basis G(A), x 2 Nn,
and w 2 Zn, encoded as [hA;G(A); x;wi], solves the
linear integer programming problem maxfwz : z 2
Nn ; Az D bg where b :D Ax.

Graver Bases of N-fold Matrices

As mentioned above, the Graver basis G(A) of an in-
teger matrix A contains all circuits of A and typically
many more elements. While the number of circuits is
already typically exponential and can be as large as� n
mC1

�
, the number of Graver basis elements is usually

even larger and depends also on the entries of A and
not only on its dimensions m; n. So unfortunately it is
typically very hard to compute G(A). However, we now
show that for the important and useful broad class of n-
foldmatrices, the Graver basis is better behaved and can
be computed in polynomial time. Recall the following
definition from the introduction. Given an (r C s) � t
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matrix A, let A1 be its r � t sub-matrix consisting of the
first r rows and letA2 be its s�t sub-matrix consisting of
the last s rows. We refer to A explicitly as (rC s)� t ma-
trix, since the definition below depends also on r and s
and not only on the entries ofA. The n-fold matrix of an
(r C s) � t matrix A is then defined to be the following
(rC ns) � nt matrix,

A(n) :D (1n ˝ A1)˚ (In ˝ A2)

D

0
BBBBB@

A1 A1 A1 � � � A1

A2 0 0 � � � 0
0 A2 0 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � A2

1
CCCCCA
:

We now discuss a recent result of [54], which orig-
inates in [4], and its extension in [38], on the stabiliza-
tion of Graver bases of n-fold matrices. Consider vec-
tors x D (x1; : : : ; xn) with xk 2 Zt for k D 1; : : : ; n.
The type of x is the number jfk : xk ¤ 0gj of nonzero
components xk 2 Zt of x. The Graver complexity of an
(r C s) � t matrix, denoted c(A), is defined to be the
smallest c 2 N ] f1g such that for all n, the Graver
basis of A(n) consists of vectors of type at most c(A).
We provide the proof of the following result of [38,54]
stating that the Graver complexity is always finite.

Lemma 10 The Graver complexity c(A) of any (rCs)�t
integer matrix A is finite.

Proof Call an element x D (x1; : : : ; xn) in the Graver
basis of some A(n) pure if xi 2 G(A2) for all i. Note that
the type of a pure x 2 G(A(n)) is n. First, we claim that
if there is an element of typem in some G(A(l )) then for
some n � m there is a pure element inG(A(n)), and so it
will suffice to bound the type of pure elements. Suppose
there is an element of type m in some G(A(l )). Then its
restriction to its m nonzero components is an element
x D (x1; : : : ; xm) in G(A(m)). Let xi D

Pki
jD1 gi; j be

a conformal decomposition of xi with gi; j 2 G(A2) for
all i; j, and let n :D k1 C � � � C km � m. Then g :D
(g1;1; : : : ; gm;km ) is in G(A(n)), else there would be ĝ @
g in G(A(n)) in which case the nonzero x̂ with x̂ i :DPki

jD1 ĝi; j for all iwould satisfy x̂ @ x and x̂ 2 L(A(m)),
contradicting x 2 G(A(m)). Thus g is a pure element of
type n � m, proving the claim.

We proceed to bound the type of pure elements. Let
G(A2) D fg1; : : : ; gmg be the Graver basis of A2 and

let G2 be the t � m matrix whose columns are the gi.
Suppose x D (x1; : : : ; xn) 2 G(A(n)) is pure for some n.
Let v 2 Nm be the vector with vi :D jfk : xk D gigj
counting the number of gi components of x for each i.
Then

Pm
iD1 vi is equal to the type n of x. Next, note that

A1G2v D A1(
Pn

kD1 x
k) D 0 and hence v 2 L(A1G2).

We claim that, moreover, v 2 G(A1G2). Suppose indi-
rectly not. Then there is v̂ 2 G(A1G2) with v̂ @ v, and
it is easy to obtain a nonzero x̂ @ x from x by zeroing
out some components so that v̂i D jfk : x̂ k D gigj
for all i. Then A1(

Pn
kD1 x̂ k) D A1G2v̂ D 0 and hence

x̂ 2 L(A(n)), contradicting x 2 G(A(n)).
So the type of any pure element, and hence the

Graver complexity of A, is at most the largest valuePm
iD1 vi of any nonnegative element v of the Graver ba-

sis G(A1G2). �

Using Lemma 10 we now show how to computeG(A(n))
in polynomial time.

Theorem 14 For every fixed (r C s) � t integer ma-
trix A there is a strongly polynomial time algorithm that,
given n 2 N , encoded as [n; n], computes the Graver
basis G(A(n)) of the n-fold matrix A(n). In particular,
the cardinality jG(A(n))j and binary length hG(A(n))i of
the Graver basis of the n-fold matrix are polynomially
bounded in n.

Proof Let c :D c(A) be the Graver complexity ofA and
consider any n � c. We show that the Graver basis of
A(n) is the union of

�n
c

�
suitably embedded copies of the

Graver basis of A(c). For every c indices 1 � k1 < � � � <
kc � n define a map �k1;:::;kc from Zc t to Znt sending
x D (x1; : : : ; xc) to y D (y1; : : : ; yn) with yki :D xi

for i D 1; : : : ; c and yk :D 0 for k … fk1; : : : ; kcg. We
claim that G(A(n)) is the union of the images of G(A(c))
under the

�n
c

�
maps �k1;:::;kc for all 1 � k1 < � � � < kc �

n, that is,

G(A(n)) D
[

1�k1<���<kc�n

�k1;:::;kc (G(A(c))) : (2)

If x D (x1; : : : ; xc) 2 G(A(c)) then x is a v-minimal
nonzero element ofL(A(c)), implying that �k1;:::;kc (x) is
av-minimal nonzero element of L(A(n)) and therefore
we have �k1;:::;kc (x) 2 G(A(n)). So the right-hand side of
(2) is contained in the left-hand side. Conversely, con-
sider any y 2 G(A(n)). Then, by Lemma 10, the type of y
is at most c, so there are indices 1 � k1 < � � � < kc � n
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such that all nonzero components of y are among those
of the reduced vector x :D (yk1 ; : : : ; ykc ) and therefore
y D �k1;:::;kc (x). Now, y 2 G(A(n)) implies that y is
a v-minimal nonzero element of L(A(n)) and hence x
is a v-minimal nonzero element of L(A(c)). Therefore
x 2 G(A(c)) and y 2 �k1;:::;kg (G(A(c))). So the left-hand
side of (2) is contained in the right-hand side.

Since A is fixed we have that c D c(A) and G(A(c))
are constant. Then (2) implies that jG(A(n))j ��n
c

�
jG(A(c))j D O(nc ). Moreover, every element of

G(A(n)) is an nt-dimensional vector �k1;:::;kc (x) ob-
tained by appending zero components to some
x 2 G(A(c)) and hence has linear binary length O(n).
So the binary length of the entire Graver basis
G(A(n)) is O(ncC1). Thus, the

�n
c

�
D O(nc ) im-

ages �k1;:::;kc (G(A(c))) and their union G(A(n)) can be
computed in strongly polynomial time, as claimed. �
Example 2 Consider the (2 C 1) � 2 matrix A with
A1 :D I2 the 2 � 2 identity and A2 :D (1; 1). Then
G(A2) D ˙(1;�1) and G(A1G2) D ˙(1; 1) from
which the Graver complexity of A can be concluded to
be c(A) D 2 (see the proof of Lemma 10). The 2-fold
matrix of A and its Graver basis, consisting of two an-
tipodal vectors only, are

A(2) D

0
BB@

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

1
CCA ;

G(A(2)) D ˙
�
1 �1 �1 1

�
:

By Theorem 14, the Graver basis of the 4-fold matrix
A(4) is computed to be the union of the images of the
6 D

�4
2

�
maps �k1;k2 : Z2�2 �! Z4�2 for 1 � k1 < k2 �

4, getting

A(4) D

0
BBBBBBB@

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

1
CCCCCCCA
;

G(A(4)) D ˙

0
BBBBBBB@

1 �1 �1 1 0 0 0 0
1 �1 0 0 �1 1 0 0
1 �1 0 0 0 0 �1 1
0 0 1 �1 �1 1 0 0
0 0 1 �1 0 0 �1 1
0 0 0 0 1 �1 �1 1

1
CCCCCCCA
:

Linear N-fold Integer Programming
in Polynomial Time

We now proceed to provide a polynomial time
algorithm for linear integer programming over
n-fold matrices. First, combining the results of
Sect. “Graver Bases and Linear Integer Programming”
and Sect. “Graver Bases of N-fold Matrices”, we get
at once the following polynomial time algorithm for
converting any feasible point to an optimal one.

Lemma 11 For every fixed (rC s) � t integer matrix A
there is a polynomial time algorithm that, given n 2 N ,
l ; u 2 Znt

1, x;w 2 Znt satisfying l � x � u, encoded
as [hl ; u; x;wi], solves the linear n-fold integer program-
ming problem with b :D A(n)x,

max fwz : z 2 Znt; A(n)z D b; l � z � ug :

Proof First, apply the polynomial time algorithm of
Theorem 14 and compute the Graver basis G(A(n)) of
the n-fold matrix A(n). Then apply the polynomial time
algorithm of Theorem 12 to the data A(n), G(A(n)),
l ; u; x and w. �

Next we show that an initial feasible point can also be
found in polynomial time.

Lemma 12 For every fixed (rC s) � t integer matrix A
there is a polynomial time algorithm that, given n 2 N ,
l ; u 2 Znt

1, and b 2 ZrCns , encoded as [hl ; u; bi], either
finds an x 2 Znt satisfying l � x � u and A(n)x D b or
asserts that none exists.

Proof If l 6� u then assert that there is no feasible point
and terminate the algorithm. Assume then that l � u
and determine some x 2 Znt with l � x � u and
hxi � hl ; ui. Now, introduce n(2r C 2s) auxiliary vari-
ables to the given n-fold integer program and denote by
x̂ the resulting vector of n(tC2rC2s) variables. Suitably
extend the lower and upper bound vectors to l̂ ; û by set-
ting l̂ j :D 0 and û j :D 1 for each auxiliary variable x̂ j .
Consider the auxiliary integer program of finding an in-
teger vector x̂ that minimizes the sum of auxiliary vari-
ables subject to the lower and upper bounds l̂ � x̂ � û
and the following system of equations, with Ir and Is the
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r � r and s � s identity matrices,

0
BBBBBB@

A1 Ir �Ir 0 0 A1 Ir �Ir 0
A2 0 0 Is �Is 0 0 0 0
0 0 0 0 0 A2 0 0 Is
:::

:::
:::

:::
:::

:::
:::

:::
:::

0 0 0 0 0 0 0 0 0

0 � � � A1 Ir �Ir 0 0
0 � � � 0 0 0 0 0
�Is � � � 0 0 0 0 0
:::

: : :
:::

:::
:::

:::
:::

0 � � � A2 0 0 Is �Is

1
CCCCCCA
x̂ D b:

This is again an n-fold integer program, with an (rCs)�
(t C 2r C 2s) matrix Â, where Â1 D (A1; Ir ;�Ir ; 0; 0)
and Â2 D (A2; 0; 0; Is ;�Is). Since A is fixed, so is Â.
It is now easy to extend the vector x 2 Znt deter-
mined above to a feasible point x̂ of the auxiliary pro-
gram. Indeed, put b̂ :D b � A(n)x 2 ZrCns ; now, for
i D 1; : : : ; r C ns, simply choose an auxiliary variable
x̂ j appearing only in the ith equation, whose coefficient
equals the sign sign(b̂i) of the corresponding entry of b̂,
and set x̂ j :D jb̂i j. Define ŵ 2 Zn(tC2rC2s) by setting
ŵ :D 0 for each original variable and ŵ :D �1 for each
auxiliary variable, so that maximizing ŵx̂ is equivalent
to minimizing the sum of auxiliary variables. Now solve
the auxiliary linear integer program in polynomial time
by applying the algorithm of Lemma 11 corresponding
to Â to the data n, l̂ , û, x̂, and ŵ. Since the auxiliary ob-
jective ŵx̂ is bounded above by zero, the algorithm will
output an optimal solution x̂�. If the optimal objective
value is negative, then the original n-fold program is in-
feasible, whereas if the optimal value is zero, then the
restriction of x̂� to the original variables is a feasible
point x� of the original integer program. �

Combining Lemmas 11 and 12 we get at once the main
result of this section.

Theorem 15 For every fixed (rC s)� t integer matrix A
there is a polynomial time algorithm that, given n, lower
and upper bounds l ; u 2 Znt

1, w 2 Znt, and b 2 ZrCns,
encoded as [hl ; u;w; bi], solves the following linear n-
fold integer programming problem,

max fwx : x 2 Znt; A(n)x D b; l � x � ug :

Again, as a special case of Theorem 15 we recover the
following result of [13] concerning linear integer pro-
gramming in standard form over n-fold matrices.

Theorem 16 For every fixed (rC s)� t integer matrix A
there is a polynomial time algorithm that, given n, linear
functional w 2 Znt, and right-hand side b 2 ZrCns,
encoded as [hw; bi], solves the following linear n-fold in-
teger program in standard form,

max
n
wx : x 2 Nnt; A(n)x D b

o
:

Some Applications

Three-Way Line-Sum Transportation Problems
Transportation problems form a very important class
of discrete optimization problems studied extensively
in the operations research and mathematical program-
ming literature, see e. g. [6,42,43,53,60,62] and the ref-
erences therein. We will discuss this class of problem
and its applications to secure statistical data disclo-
sure in more detail in Sect. “Multiway Transportation
Problems and Privacy in Statistical Databases”.

It is well known that 2-way transportation problems
are polynomial time solvable, since they can be encoded
as linear integer programs over totally unimodular sys-
tems. However, already 3-way transportation problem
are much more complicated. Consider the following
3-way transportation problem over p�q�n tables with
all line-sums fixed,

max
�
wx : x 2 N p�q�n ;

X
i

xi; j;k D z j;k ;

X
j

xi; j;k D vi;k ;
X
k

xi; j;k D ui; j

	
:

The data for the problem consist of given integer num-
bers (lines-sums) ui; j, vi;k , z j;k for i D 1; : : : ; p, j D
1; : : : ; q, k D 1; : : : ; n, and a linear functional given by
a p� q� n integer array w representing the transporta-
tion profit per unit on each cell. The problem is to find
a transportation, that is, a p�q�n nonnegative integer
table x satisfying the line sum constraints, which attains
maximum profit wx D

Pp
iD1

Pq
jD1

Pn
kD1 wi; j;kxi; j;k .

When at least two of the table sides, say p; q, are
variable part of the input, and even when the third
side is fixed and as small as n D 3, this problem is
already universal for integer programming in a very
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strong sense [14,16], and in particular is NP-hard [15];
this will be discussed in detail and proved in Sect.
“Multiway Transportation Problems and Privacy in
Statistical Databases”. We now show that in contrast,
when two sides, say p; q, are fixed (but arbitrary), and
one side n is variable, then the 3-way transportation
problem over such long tables is an n-fold integer pro-
gramming problem and therefore, as a consequence of
Theorem 16, can be solved is polynomial time.

Corollary 8 For every fixed p and q there is a polyno-
mial time algorithm that, given n, integer profit array
w 2 Zp�q�n, and line-sums u 2 Zp�q, v 2 Zp�n and
z 2 Zq�n, encoded as [hw; u; v; zi], solves the integer
3-way line-sum transportation problem

max
�
wx : x 2 N p�q�n ;

X
i

xi; j;k D z j;k ;

X
j

xi; j;k D vi;k ;
X
k

xi; j;k D ui; j

	
:

Proof Re-index p � q � n arrays as x D (x1; : : : ; xn)
with each component indexed as xk :D (xk

i; j) :D
(x1;1;k; : : : ; xp;q;k) suitably indexed as a pq vector rep-
resenting the kth layer of x. Put r :D t :D pq and s :D
pC q, and let A be the (rC s)� t matrix with A1 :D Ipq
the pq� pq identity and with A2 the (pCq)� pqmatrix
of equations of the usual 2-way transportation problem
for p�q arrays. Re-arrange the given line-sums in a vec-
tor b :D (b0; b1; : : : ; bn) 2 ZrCns with b0 :D (ui; j) and
bk :D ((vi;k); (z j;k)) for k D 1; : : : ; n.

This translates the given 3-way transportation prob-
lem into an n-fold integer programming problem in
standard form,

max fwx : x 2 Nnt; A(n)x D bg ;

where the equations A1(
Pn

kD1 x
k) D b0 represent

the constraints
P

k xi; j;k D ui; j of all line-sums
where summation over layers occurs, and the equations
A2xk D bk for k D 1; : : : ; n represent the constraintsP

i xi; j;k D z j;k and
P

j xi; j;k D vi;k of all line-sums
where summations are within a single layer at a time.

Using the algorithm of Theorem 16, this n-fold inte-
ger program, and hence the given 3-way transportation
problem, can be solved in polynomial time. �
Example 3 We demonstrate the encoding of the p�q�
n transportation problem as an n-fold integer program

as in the proof of Corollary 8 for p D q D 3 (small-
est case where the problem is genuinely 3-dimensional).
Here we put r :D t :D 9, s :D 6, write

xk :D (x1;1;k; x1;2;k; x1;3;k; x2;1;k; x2;2;k; x2;3;k;

x3;1;k; x3;2;k; x3;3;k) ; k D 1; : : : ; n ;

and let the (9C 6) � 9 matrix A consist of A1 D I9 the
9 � 9 identity matrix and

A2 :D

0
BBBBBBB@

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

1
CCCCCCCA
:

Then the corresponding n-fold integer program en-
codes the 3 � 3 � n transportation problem as desired.
Already for this case, of 3�3�n tables, the only known
polynomial time algorithm for the transportation prob-
lem is the one underlying Corollary 8 .

Corollary 8 has a very broad generalization to mul-
tiway transportation problems over long k-way tables
of any dimension k; this will be discussed in detail in
Sect. “Multiway Transportation Problems and Privacy
in Statistical Databases”.

Packing Problems and Cutting-Stock We consider
the following rather general class of packing problems
which concern maximum utility packing of many items
of several types in various bins subject to weight con-
straints. More precisely, the data is as follows. There
are t types of items. Each item of type j has integer
weight vj. There are nj items of type j to be packed.
There are n bins. The weight capacity of bin k is an inte-
ger uk. Finally, there is a utility matrix w 2 Zt�n where
wj;k is the utility of packing one item of type j in bin k.
The problem is to find a feasible packing of maximum
total utility. By incrementing the number t of types by 1
and suitably augmenting the data, we may assume that
the last type t represents “slack items” which occupy the
unused capacity in each bin, where the weight of each
slack item is 1, the utility of packing any slack item in
any bin is 0, and the number of slack items is the total
residual weight capacity nt :D

Pn
kD1 uk �

Pt�1
jD1 njv j .

Let x 2 N t�n be a variable matrix where x j;k represents
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the number of items of type j to be packed in bin k. Then
the packing problem becomes the following linear inte-
ger program,

max
�
wx : x 2 N t�n ;

X
j

v jx j;k D uk ;

X
k

x j;k D nj

	
:

We now show that this is in fact an n-fold integer pro-
gramming problem and therefore, as a consequence of
Theorem 16, can be solved is polynomial time. While
the number t of types and type weights vj are fixed,
which is natural in many bin packing applications, the
numbers nj of items of each type and the bin capaci-
ties uk may be very large.

Corollary 9 For every fixed number t of types and
integer type weights v1; : : : ; vt, there is a polynomial
time algorithm that, given n bins, integer item num-
bers n1; : : : ; nt, integer bin capacities u1; : : : ; un, and
t � n integer utility matrix w, encoded as [hn1; : : : ; nt ;

u1; : : : ; un ;wi], solves the following integer bin packing
problem,

max
�
wx : x 2 N t�n ;

X
j

v jx j;k D uk ;

X
k

x j;k D nj

	
:

Proof Re-index the variable matrix as x D (x1; : : : ;
xn) with xk :D (xk

1 ; : : : ; xk
t ) where xk

j represents the
number of items of type j to be packed in bin k for all j
and k. Let A be the (t C 1) � t matrix with A1 :D It
the t � t identity and with A2 :D (v1; : : : ; vt) a sin-
gle row. Re-arrange the given item numbers and bin
capacities in a vector b :D (b0; b1; : : : ; bn) 2 ZtCn

with b0 :D (n1; : : : ; nt) and bk :D uk for all k. This
translates the bin packing problem into an n-fold inte-
ger programming problem in standard form,

max fwx : x 2 Nnt; A(n)x D bg ;

where the equations A1(
Pn

kD1 x
k) D b0 represent the

constraints
P

k x j;k D nj assuring that all items of
each type are packed, and the equations A2xk D bk for
k D 1; : : : ; n represent the constraints

P
j v jx j;k D uk

assuring that the weight capacity of each bin is not ex-
ceeded (in fact, the slack items make sure each bin is
perfectly packed).

Using the algorithm of Theorem 16, this n-fold in-
teger program, and hence the given integer bin packing
problem, can be solved in polynomial time. �

Example 5 (cutting-stock problem). This is a classical
manufacturing problem [27], where the usual setup is
as follows: a manufacturer produces rolls of material
(such as scotch-tape or band-aid) in one of t different
widths v1; : : : ; vt . The rolls are cut out from standard
rolls of common large width u. Given orders by cus-
tomers for nj rolls of width vj, the problem facing the
manufacturer is to meet the orders using the smallest
possible number of standard rolls. This can be cast as
a bin packing problem as follows. Rolls of width vj be-
come items of type j to be packed. Standard rolls be-
come identical bins, of capacity uk :D u each, where
the number of bins is set to be n :D

Pt
jD1dnj/bu/v jce

which is sufficient to accommodate all orders. The util-
ity of each roll of width vj is set to be its width negated
wj;k :D �vj regardless of the standard roll k from
which it is cut (paying for the width it takes). Intro-
duce a new roll width v0 :D 1, where rolls of that width
represent “slack rolls” which occupy the unused width
of each standard roll, with utility w0;k :D �1 regard-
less of the standard roll k from which it is cut (paying
for the unused width it represents), with the number
of slack rolls set to be the total residual width n0 :D
nu �

Pt
jD1 njv j . Then the cutting-stock problem be-

comes a bin packing problem and therefore, by Corol-
lary 9, for every fixed t and fixed roll widths v1; : : : ; vt , it
is solvable in time polynomial in

Pt
jD1dnj/bu/v jce and

hn1; : : : ; nt ; ui.
One common approach to the cutting-stock prob-

lem uses so-called cutting patterns, which are feasi-
ble solutions of the knapsack problem fy 2 N t :Pt

jD1 v j y j � ug. This is useful when the common
width u of the standard rolls is of the same order of
magnitude as the demand role widths vj. However,
when u is much larger than the vj, the number of cut-
ting patterns becomes prohibitively large to handle.
But then the values bu/vjc are large and hence n :DPt

jD1dnj/bu/v jce is small, in which case the solution
through the algorithm of Corollary 9 becomes particu-
larly appealing.
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Convex Integer Programming

In this section we discuss convex integer programming.
In particular, we extend the theory of Sect. “Linear
N-fold Integer Programming” and show that convex
n-fold integer programming is polynomial time solv-
able as well. In Sect. “Convex Integer Programming
over Totally Unimodular Systems” we discuss convex
integer programming over totally unimodular matri-
ces. In Sect. “Graver Bases and Convex Integer Pro-
gramming” we show the applicability of Graver bases to
convex integer programming. In Sect. “Convex N-fold
Integer Programming in Polynomial Time” we com-
bine Theorem 6, the results of Sect. “Linear N-fold In-
teger Programming”, and the preparatory facts from
Sect. “Graver Bases and Convex Integer Programming”,
and prove the main result of this section, asserting
that convex n-fold integer programming is polynomial
time solvable. We conclude with some applications in
Sect. “Some Applications”.

As in Sect. “Linear N-fold Integer Programming”,
the feasible set S is presented as the set of integer points
satisfying an explicitly given system of linear inequali-
ties, given in one of the forms

S :D fx 2 Nn : Ax D bg or

S :D fx 2 Zn : Ax D b; l � x � ug ;

with matrix A 2 Zm�n , right-hand side b 2 Zm , and
lower and upper bounds l ; u 2 Zn

1.
As demonstrated in Sect. “Limitations”, if the poly-

hedron P :D fx 2 Rn : Ax D b; l � x � ug is un-
bounded then the convex integer programming prob-
lemwith an oracle presented convex functional is rather
hopeless. Therefore, an algorithm that solves the con-
vex integer programming problem should either return
an optimal solution, or assert that the program is in-
feasible, or assert that the underlying polyhedron is un-
bounded.

Nonetheless, we do allow the lower and upper
bounds l ; u to lie in Zn

1 rather than Zn , since of-
ten the polyhedron is bounded even though the vari-
ables are not bounded explicitly (for instance, if each
variable is bounded below only, and appears in some
equation all of whose coefficients are positive). This re-
sults in broader formulation flexibility. Furthermore, in
the next subsections we prove auxiliary lemmas assert-
ing that certain sets cover all edge-directions of rele-

vant polyhedra, which do hold also in the unbounded
case. So we now extend the notion of edge-directions,
defined in Sect. “Edge-Directions and Zonotopes” for
polytopes, to polyhedra. A direction of an edge (1-di-
mensional face) e of a polyhedron P is any nonzero
scalar multiple of y � x where x; y are any two distinct
points in e. As before, a set covers all edge-directions of
P if it contains a direction of each edge of P.

Convex Integer Programming
over Totally Unimodular Systems

A matrix A is totally unimodular if the determinant of
every square submatrix of A lies in f�1; 0; 1g. Such ma-
trices arise naturally in network flows, ordinary (2-way)
transportation problems, and many other situations.
A fundamental result in integer programming [37] as-
serts that polyhedra defined by totally unimodular ma-
trices are integer. More precisely, if A is anm�n totally
unimodular matrix, l ; u 2 Zn

1, and b 2 Zm , then

PI :D convfx 2 Zn : Ax D b; l � x � ug

D fx 2 Rn : Ax D b; l � x � ug :D P ;

that is, the underlying polyhedron P coincides with its
integer hull PI . This has two consequences useful in fa-
cilitating the solution of the corresponding convex in-
teger programming problem via the algorithm of Theo-
rem 6. First, the corresponding linear integer program-
ming problem can be solved by linear programming
over P in polynomial time. Second, a set covering all
edge-directions of the implicitly given integer hull PI ,
which is typically very hard to determine, is obtained
here as a set covering all edge-directions of P which is
explicitly given and hence easier to determine.

We now describe a well known property of polyhe-
dra of the above form. A circuit of a matrix A 2 Zm�n is
a nonzero primitive minimal support element of L(A).
So a circuit is a nonzero c 2 Zn satisfying Ac D 0,
whose entries are relatively prime integers, such that no
nonzero c0 with Ac0 D 0 has support strictly contained
in the support of c.

Lemma 13 For every A 2 Zm�n, l ; u 2 Zn
1, and b 2

Zm, the set of circuits of A covers all edge-directions of
the polyhedron P :D fx 2 Rn : Ax D b; l � x � ug.

Proof Consider any edge e of P. Pick two distinct
points x; y 2 e and set g :D y � x. Then Ag D 0
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and therefore, as can be easily proved by induction on
jsupp(g)j, there is a finite decomposition g D

P
i ˛i ci

with ˛i positive real number and ci circuit of A such
that ˛i ci v g for all i, where v is the natural ex-
tension from Zn to Rn of the partial order defined in
Sect. “Graver Bases and Linear Integer Programming”.
We claim that x C ˛i ci 2 P for all i. Indeed, ci be-
ing a circuit implies A(x C ˛i ci ) D Ax D b; and
l � x; xC g � u and ˛i ci v g imply l � xC˛i ci � u.

Now let w 2 Rn be a linear functional uniquely
maximized over P at the edge e. Then w˛i ci D w(x C
˛i ci ) � wx � 0 for all i. But

P
(w˛i ci) D wg D

wy � wx D 0, implying that in fact w˛i ci D 0 and
hence x C ˛i ci 2 e for all i. This implies that each ci
is a direction of e (in fact, all ci are the same and g is
a multiple of some circuit). �

Combining Theorem 6 and Lemma 13 we obtain the
following statement.

Theorem 17 For every fixed d there is a polynomial
time algorithm that, given m�n totally unimodular ma-
trix A, set C � Zn containing all circuits of A, vectors
l ; u 2 Zn

1, b 2 Zm, and w1; : : : ;wd 2 Zn, and convex
c : Rd �! R presented by a comparison oracle, encoded
as [hA;C; l ; u; b;w1; : : : ;wd i], solves the convex integer
program

max fc(w1x; : : : ;wdx) : x 2 Zn ;

Ax D b; l � x � ug :

Proof First, check in polynomial time using linear pro-
gramming whether the objective function of any of the
following 2n linear programs is unbounded,

max f˙yi : y 2 Pg; i D 1; : : : ; n;

P :D fy 2 Rn : Ay D b; l � y � ug :

If any is unbounded then terminate, asserting that P is
unbounded. Otherwise, let � be the least integer upper
bound on the absolute value of all optimal objective val-
ues. Then P � [��; �]n and S :D fy 2 Zn : Ay D
b; l � y � ug � P is finite of radius �(S) � �. In
fact, since A is totally unimodular, PI D P D conv(S)
and hence �(S) D �. Moreover, by Cramer’s rule, h�i is
polynomially bounded in hA; l ; u; xi.

Now, since A is totally unimodular, using linear
programming over PI D P we can simulate in polyno-

mial time a linear discrete optimization oracle for S. By
Lemma 13, the given set C, which contains all circuits
of A, also covers all edge-directions of conv(S) D PI D
P. Therefore we can apply the algorithm of Theorem 6
and solve the given convex n-fold integer programming
problem in polynomial time. �

While the number of circuits of an m � n matrix A can
be as large as 2

� n
mC1

�
and hence exponential in general,

it is nonetheless relatively small in that it is bounded in
terms of m and n only and is independent of the ma-
trix A itself. Furthermore, it may happen that the num-
ber of circuits is much smaller than the upper bound
2
� n
mC1

�
. Also, if in a class of matrices, m grows slowly

in terms of n, say m D O(log n), then this bound is
subexponential. In such situations, the above theorem
may provide a good strategy for solving convex integer
programming over totally unimodular systems.

Graver Bases and Convex Integer Programming

We now extend the statements of Sect. “Convex Integer
Programming over Totally Unimodular Systems” about
totally unimodular matrices to arbitrary integer matri-
ces. The next lemma shows that the Graver basis of any
integer matrix covers all edge-directions of the integer
hulls of polyhedra defined by that matrix.

Lemma 14 For every A 2 Zm�n , l ; u 2 Zn
1, and b 2

Zm, the Graver basisG(A) of A covers all edge-directions
of the polyhedron PI :D convfx 2 Zn : Ax D b; l �
x � ug.

Proof Consider any edge e of PI and pick two distinct
points x; y 2 e \Zn . Then g :D y � x is in L(A) n f0g.
Therefore, by Lemma 8, there is a conformal sum g DP

i hi with hi 2 G(A) for all i. We claim that x C hi 2

PI for all i. Indeed, first note that hi 2 G(A) � L(A)
implies Ahi D 0 and hence A(x C hi) D Ax D b; and
second note that l � x; x C g � u and hi v g imply
that l � x C hi � u.

Now let w 2 Zn be a linear functional uniquely
maximized over PI at the edge e. Then whi D w(x C
hi)�wx � 0 for all i. But

P
(whi) D wg D wy�wx D

0, implying that in fact whi D 0 and hence x C hi 2 e
for all i. Therefore each hi is a direction of e (in fact,
all hi are the same and g is a multiple of some Graver
basis element). �
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Combining Theorems 6 and 12 and Lemma 14 we ob-
tain the following statement.

Theorem 18 For every fixed d there is a polyno-
mial time algorithm that, given integer m � n ma-
trix A, its Graver basis G(A), l ; u 2 Zn

1, x 2 Zn

with l � x � u, w1; : : : ;wd 2 Zn, and convex
c : Rd �! R presented by a comparison oracle, encoded
as [hA;G(A); l ; u; x;w1; : : : ;wdi], solves the convex in-
teger program with b :D Ax,

max fc(w1z; : : : ;wdz) : z 2 Zn;

Az D b; l � z � ug :

Proof First, check in polynomial time using linear pro-
gramming whether the objective function of any of the
following 2n linear programs is unbounded,

max f˙yi : y 2 Pg; i D 1; : : : ; n;

P :D fy 2 Rn : Ay D b; l � y � ug :

If any is unbounded then terminate, asserting that P is
unbounded. Otherwise, let � be the least integer upper
bound on the absolute value of all optimal objective val-
ues. Then P � [��; �]n and S :D fy 2 Zn : Ay D
b; l � y � ug � P is finite of radius �(S) � �. More-
over, by Cramer’s rule, h�i is polynomially bounded in
hA; l ; u; xi.

Using the given Graver basis and applying the al-
gorithm of Theorem 12 we can simulate in polynomial
time a linear discrete optimization oracle for S. Further-
more, by Lemma 14, the given Graver basis covers all
edge-directions of the integer hull PI :D convfy 2 Zn :
Ay D b; l � y � ug D conv(S). Therefore we can
apply the algorithm of Theorem 6 and solve the given
convex program in polynomial time. �

Convex N-fold Integer Programming
in Polynomial Time

We now extend the result of Theorem 15 and show
that convex integer programming problems over n-fold
systems can be solved in polynomial time as well. As
explained in the beginning of this section, the algo-
rithm either returns an optimal solution, or asserts that
the program is infeasible, or asserts that the underlying
polyhedron is unbounded.

Theorem 19 For every fixed d and fixed (r C s) � t
integer matrix A there is a polynomial time algorithm
that, given n, lower and upper bounds l ; u 2 Znt

1,
w1; : : : ;wd 2 Znt, b 2 ZrCns, and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [hl ; u;w1; : : : ;wd ; bi], solves the convex n-fold integer
programming problem

max fc(w1x; : : : ;wdx) : x 2 Znt;

A(n)x D b; l � x � ug :

Proof First, check in polynomial time using linear pro-
gramming whether the objective function of any of the
following 2nt linear programs is unbounded,

max f˙yi : y 2 Pg; i D 1; : : : ; nt;

P :D fy 2 Rnt : A(n)y D b; l � y � ug :

If any is unbounded then terminate, asserting that P is
unbounded. Otherwise, let � be the least integer upper
bound on the absolute value of all optimal objective val-
ues. Then P � [��; �]nt and S :D fy 2 Znt : A(n)y D
b; l � y � ug � P is finite of radius �(S) � �. More-
over, by Cramer’s rule, h�i is polynomially bounded
in n and hl ; u; bi.

Using the algorithm of Theorem 15 we can simu-
late in polynomial time a linear discrete optimization
oracle for S. Also, using the algorithm of Theorem 14
we can compute in polynomial time the Graver basis
G(A(n)) which, by Lemma 14, covers all edge-directions
of PI :D convfy 2 Znt : A(n)y D b; l � y � ug D
conv(S). Therefore we can apply the algorithm of The-
orem 6 and solve the given convex n-fold integer pro-
gramming problem in polynomial time. �
Again, as a special case of Theorem 19 we recover the
following result of [12] concerning convex integer pro-
gramming in standard form over n-fold matrices.

Theorem 20 For every fixed d and fixed (r C s) � t
integer matrix A there is a polynomial time algorithm
that, given n, linear functionals w1; : : : ;wd 2 Znt,
right-hand side b 2 ZrCns , and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [hw1; : : : ;wd ; bi], solves the convex n-fold integer pro-
gram in standard form

max fc(w1x; : : : ;wdx) : x 2 Nnt; A(n)x D bg :
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Some Applications

Transportation Problems and Packing Problems
Theorems 19 and 20 generalize Theorems 15 and 16
by broadly extending the class of objective functions
that can be maximized in polynomial time over n-
fold systems. Therefore all applications discussed in
Sect. “Some Applications” automatically extend ac-
cordingly.

First, we have the following analog of Corollary 8
for the convex integer transportation problem over long
3-way tables. This has a very broad further general-
ization to multiway transportation problems over long
k-way tables of any dimension k, see Sect. “Multiway
Transportation Problems and Privacy in Statistical
Databases”.

Corollary 10 For every fixed d; p; q there is a polyno-
mial time algorithm that, given n, arrays w1; : : : ;wd 2

Zp�q�n, line-sums u 2 Zp�q, v 2 Zp�n and z 2 Zq�n,
and convex functional c : Rd �! R presented by a com-
parison oracle, encoded as [hw1; : : : ;wd ; u; v; zi], solves
the convex integer 3-way line-sum transportation prob-
lem

max
�
c(w1x; : : : ;wdx) : x 2 N p�q�n ;

X
i

xi; j;k D z j;k ;
X
j

xi; j;k D vi;k ;

X
k

xi; j;k D ui; j

	
:

Second, we have the following analog of Corollary 9 for
convex bin packing.

Corollary 11 For every fixed d, number of types t,
and type weights v1; : : : ; vt 2 Z, there is a polyno-
mial time algorithm that, given n bins, item numbers
n1; : : : ; nt 2 Z, bin capacities u1; : : : ; un 2 Z, util-
ity matrices w1; : : : ;wd 2 Zt�n, and convex functional
c : Rd �! R presented by a comparison oracle, encoded
as [hn1; : : : ; nt ; u1; : : : ; un ;w1; : : : ;wdi], solves the con-
vex integer bin packing problem,

max
�
c(w1x; : : : ;wdx) : x 2 N t�n ;

X
j

v jx j;k D uk ;
X
k

x j;k D nj

	
:

Vector Partitioning and Clustering The vector par-
tition problem concerns the partitioning of n items
among p players to maximize social value subject to
constraints on the number of items each player can re-
ceive. More precisely, the data is as follows. With each
item i is associated a vector vi 2 Zk representing its
utility under k criteria. The utility of player h under or-
dered partition 
 D (
1; : : : ; 
p) of the set of items
f1; : : : ; ng is the sum v�h :D

P
i2�h

vi of utility vec-
tors of items assigned to h under 
 . The social value
of 
 is the balancing c(v�1;1; : : : ; v�1;k; : : : ; v

�
p;1; : : : ; v�p;k)

of the player utilities, where c is a convex functional
on Rpk . In the constrained version, the partition must
be of a given shape, i. e. the number j
hj of items that
player h gets is required to be a given number �h (withP
�h D n). In the unconstrained version, there is no

restriction on the number of items per player.
Vector partition problems have applications in di-

verse areas such as load balancing, circuit layout, rank-
ing, cluster analysis, inventory, and reliability, see e. g.
[7,9,25,39,50] and the references therein. Here is a typ-
ical example.

Example 6 (minimal variance clustering). This prob-
lem has numerous applications in the analysis of statis-
tical data: given n observed points v1; : : : ; vn in k-space,
group them into p clusters 
1; : : : ; 
p that minimize the
sum of cluster variances given by

pX
hD1

1
j
h j

X
i2�h

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌vi �

0
@ 1
j
h j

X
i2�h

vi

1
A
ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
2

:

Consider instances where there are n D pm points and
the desired clustering is balanced, that is, the clusters
should have equal size m. Suitable manipulation of the
sum of variances expression above shows that the prob-
lem is equivalent to a constrained vector partition prob-
lem, where �h D m for all h, and where the convex
functional c : Rpk �! R (to be maximized) is the Eu-
clidean norm squared, given by

c(z) D jjzjj2 D
pX

hD1

kX
iD1

jzh;i j2 :

If either the number of criteria k or the number of play-
ers p is variable, the partition problem is intractable
since it instantly captures NP-hard problems [39].
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When both k; p are fixed, both the constrained and un-
constrained versions of the vector partition problem are
polynomial time solvable [39,50]. We now show that
vector partition problems (either constrained or un-
constrained) are in fact convex n-fold integer program-
ming problems and therefore, as a consequence of The-
orem 20, can be solved is polynomial time.

Corollary 12 For every fixed number p of players and
number k of criteria, there is a polynomial time al-
gorithm that, given n, item vectors v1; : : : ; vn 2 Zk,
�1; : : : ; �p 2 N , and convex functional c : Rpk �!

R presented by a comparison oracle, encoded as
[hv1; : : : ; vn ; �1; : : : ; �pi], solves the constrained and
unconstrained partitioning problems.

Proof There is an obvious one-to-one correspondence
between partitions and matrices x 2 f0; 1gp�n with all
column-sums equal to one, where partition 
 corre-
sponds to the matrix x with xh;i D 1 if i 2 
h and
xh;i D 0 otherwise. Let d :D pk and define d ma-
trices wh; j 2 Zp�n by setting (wh; j)h;i :D vi; j for all
h D 1; : : : ; p, i D 1; : : : ; n and j D 1; : : : ; k, and set-
ting all other entries to zero. Then for any partition 

and its corresponding matrix x we have v�h; j D wh; jx
for all h D 1; : : : ; p and j D 1; : : : ; k. Therefore, the
unconstrained vector partition problem is the convex
integer program

max
�
c(w1;1x; : : : ;wp;kx) : x 2 N p�n ;

X
h

xh;i D 1
	
:

Suitably arranging the variables in a vector, this be-
comes a convex n-fold integer program with a (0 C
1) � p defining matrix A, where A1 is empty and A2 :D
(1; : : : ; 1).

Similarly, the constrained vector partition problem
is the convex integer program

max
�
c(w1;1x; : : : ;wp;kx) : x 2 N p�n ;

X
h

xh;i D 1 ;
X
i

xh;i D �h

	
:

This again is a convex n-fold integer program, now with
a (pC 1)� p defining matrix A, where now A1 :D Ip is
the p�p identity matrix and A2 :D (1; : : : ; 1) as before.

Using the algorithm of Theorem 20, this convex n-
fold integer program, and hence the given vector parti-
tion problem, can be solved in polynomial time. �

Multiway Transportation Problems and Privacy
in Statistical Databases

Transportation problems form a very important class
of discrete optimization problems. The feasible points
in a transportation problem are the multiway tables
(“contingency tables” in statistics) such that the sums
of entries over some of their lower dimensional sub-
tables such as lines or planes (“margins” in statistics)
are specified. Transportation problems and their cor-
responding transportation polytopes have been used
and studied extensively in the operations research and
mathematical programming literature, as well as in the
statistics literature in the context of secure statistical
data disclosure and management by public agencies,
see [4,6,11,18,19,42,43,53,60,62] and references therein.

In this section we completely settle the algorith-
mic complexity of treating multiway tables and discuss
the applications to transportation problems and secure
statistical data disclosure, as follows. After introduc-
ing some terminology in Sect. “Tables and Margins”,
we go on to describe, in Sect. “The Universality Theo-
rem”, a universality result that shows that “short” 3-way
r � c � 3 tables, with variable number r of rows and
variable number c of columns but fixed small number 3
of layers (hence “short”), are universal in a very strong
sense. In Sect. “The Complexity of the Multiway Trans-
portation Problem” we discuss the general multiway
transportation problem. Using the results of Sect. “The
Universality Theorem” and the results on linear and
convex n-fold integer programming from Sect. “Linear
N-fold Integer Programming” and Sect. “Convex In-
teger Programming”, we show that the transportation
problem is intractable for short 3-way r � c � 3 ta-
bles but polynomial time treatable for “long” (k C 1)-
way m1 � � � � � mk � n tables, with k and the sides
m1; : : : ;mk fixed (but arbitrary), and the number n of
layers variable (hence “long”). In Sect. “Privacy and En-
try-Uniqueness” we turn to discuss data privacy and
security and consider the central problem of detecting
entry uniqueness in tables with disclosed margins. We
show that as a consequence of the results of Sect. “The
Universality Theorem” and Sect. “The Complexity of
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the Multiway Transportation Problem”, and in anal-
ogy to the complexity of the transportation problem
established in Sect. “The Complexity of the Multiway
Transportation Problem”, the entry uniqueness prob-
lem is intractable for short 3-way r � c � 3 tables
but polynomial time decidable for long (k C 1)-way
m1 � � � � � mk � n tables.

Tables and Margins

We start with some terminology on tables, margins and
transportation polytopes. A k-way table is anm1�� � ��

mk array x D (xi1;:::;ik ) of nonnegative integers. A k-
way transportation polytope (or simply k-way polytope
for brevity) is the set of all m1 � � � � � mk nonnega-
tive arrays x D (xi1;:::;ik ) such that the sums of the en-
tries over some of their lower dimensional sub-arrays
(margins) are specified. More precisely, for any tuple
(i1; : : : ; ik) with i j 2 f1; : : : ;mjg [ fCg, the corre-
sponding margin xi1;:::;ik is the sum of entries of x over
all coordinates jwith i j D C. The support of (i1; : : : ; ik)
and of xi1;:::;ik is the set supp(i1; : : : ; ik) :D fj : ij ¤
Cg of non-summed coordinates. For instance, if x is
a 4�5�3�2 array then it has 12 margins with support
F D f1; 3g such as x3;C;2;C D

P5
i2D1

P2
i4D1 x3;i2;2;i4 .

A collection of margins is hierarchical if, for some fam-
ily F of subsets of f1; : : : ; kg, it consists of all mar-
gins ui1;:::;ik with support in F . In particular, for any
0 � h � k, the collection of all h-margins of k-tables
is the hierarchical collection with F the family of all h-
subsets of f1; : : : ; kg. Given a hierarchical collection of
margins ui1;:::;ik supported on a family F of subsets of
f1; : : : ; kg, the corresponding k-way polytope is the set
of nonnegative arrays with these margins,

TF :D f x 2 Rm1�����mk
C : xi1;:::;ik D ui1;:::;ik ;

supp(i1; : : : ; ik) 2 F g :

The integer points in this polytope are precisely the k-
way tables with the given margins.

The Universality Theorem

We now describe the following universality result of
[14,16] which shows that, quite remarkably, any ra-
tional polytope is a short 3-way r � c � 3 polytope
with all line-sums specified. (In the terminology of

Sect. “Tables and Margins” this is the r � c � 3 poly-
tope TF of all 2-margins fixed, supported on the fam-
ily F D ff1; 2g; f1; 3g; f2; 3gg.) By saying that a poly-
tope P � Rp is representable as a polytope Q � Rq

we mean in the strong sense that there is an injection
� : f1; : : : ; pg �! f1; : : : ; qg such that the coordinate-
erasing projection


 : Rq �! Rp : x D (x1; : : : ; xq)

7! 
(x) D (x�(1); : : : ; x�(p))

provides a bijection between Q and P and between the
sets of integer points Q \ Zq and P \ Zp . In particu-
lar, if P is representable as Q then P and Q are isomor-
phic in any reasonable sense: they are linearly equiv-
alent and hence all linear programming related prob-
lems over the two are polynomial time equivalent; they
are combinatorially equivalent and hence they have the
same face numbers and facial structure; and they are in-
teger equivalent and therefore all integer programming
and integer counting related problems over the two are
polynomial time equivalent as well.

We provide only an outline of the proof of the fol-
lowing statement; complete details and more conse-
quences of this theorem can be found in [14,16].

Theorem21 There is a polynomial time algorithm that,
given A 2 Zm�n and b 2 Zm, encoded as [hA; bi], pro-
duces r; c and line-sums u 2 Zr�c , v 2 Zr�3 and z 2
Zc�3 such that the polytope P :D fy 2 Rn

C : Ay D bg is
representable as the 3-way polytope

T :D
�
x 2 Rr�c�3

C :
X
i

xi; j;k D z j;k ;

X
j

xi; j;k D vi;k ;
X
k

xi; j;k D ui; j

	
:

Proof The construction proving the theorem con-
sists of three polynomial time steps, each representing
a polytope of a given format as a polytope of another
given format.

First, we show that any P :D fy � 0 : Ay D bg with
A; b integer can be represented in polynomial time as
Q :D fx � 0 : Cx D dg with C matrix all entries of
which are in f�1; 0; 1; 2g. This reduction of coefficients
will enable the rest of the steps to run in polynomial
time. For each variable yj let kj :D maxfblog2 jai; jjc :
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i D 1; : : :mg be the maximum number of bits in the
binary representation of the absolute value of any en-
try ai; j of A. Introduce variables x j;0; : : : ; x j;k j , and re-
late them by the equations 2x j;i � x j;iC1 D 0. The
representing injection � is defined by �( j) :D ( j; 0),
embedding yj as x j;0. Consider any term ai; j y j of the
original system. Using the binary expansion jai; jj DPk j

sD0 ts2s with all ts 2 f0; 1g, we rewrite this term as
˙
Pk j

sD0 ts x j;s . It is not hard to verify that this repre-
sents P as Q with defining f�1; 0; 1; 2g-matrix.

Second, we show that any Q :D fy � 0 : Ay D
bg with A; b integer can be represented as a face F
of a 3-way polytope with all plane-sums fixed, that is,
a face of a 3-way polytope TF of all 1-margins fixed,
supported on the family F D ff1g; f2g; f3gg.

Since Q is a polytope and hence bounded, we
can compute (using Cramer’s rule) an integer upper
boundU on the value of any coordinate yj of any y 2 Q.
Note also that a face of a 3-way polytope TF is the set of
all x D (xi; j;k) with some entries forced to zero; these
entries are termed “forbidden”, and the other entries
are termed “enabled”.

For each variable yj, let rj be the largest between the
sum of positive coefficients of yj and the sum of absolute
values of negative coefficients of yj over all equations,

r j :D max
�X

k

fak; j : ak; j > 0g ;

X
k

fjak; jj : ak; j < 0g
�
:

Assume that A is of size m � n. Let r :D
Pn

jD1 r j , R :D
f1; : : : ; rg, h :D m C 1 and H :D f1; : : : ; hg. We now
describe how to construct vectors u; v 2 Zr; z 2 Zh ,
and a set E � R � R � H of triples – the enabled, non-
forbidden, entries – such that the polytope Q is repre-
sented as the face F of the corresponding 3-way poly-
tope of r� r� h arrays with plane-sums u; v; z and only
entries indexed by E enabled,

F :D
�
x 2 Rr�r�h

C : xi; j;k D 0

for all (i; j; k) … E ;

and
X
i; j

xi; j;k D zk ;
X
i;k

xi; j;k D v j ;

X
j;k

xi; j;k D ui

	
:

We also indicate the injection � : f1; : : : ; ng �! R �
R � H giving the desired embedding of coordinates yj
as coordinates xi; j;k and the representation of Q
as F.

Roughly, each equation k D 1; : : : ;m is encoded
in a “horizontal plane” R � R � fkg (the last plane
R � R � fhg is included for consistency with its en-
tries being “slacks”); and each variable yj, j D 1; : : : ; n
is encoded in a “vertical box” Rj � Rj � H, where
R D

Un
jD1 Rj is the natural partition of R with jRjj D

r j for all j D 1; : : : ; n, that is, with Rj :D f1 CP
l< j rl ; : : : ;

P
l� j rl g.

Now, all “vertical” plane-sums are set to the same
value U, that is, uj :D v j :D U for j D 1; : : : ; r. All
entries not in the union

Un
jD1 Rj � Rj � H of the vari-

able boxes will be forbidden. We now describe the en-
abled entries in the boxes; for simplicity we discuss the
box R1 � R1 � H, the others being similar. We distin-
guish between the two cases r1 D 1 and r1 � 2. In
the first case, R1 D f1g; the box, which is just the sin-
gle line f1g � f1g � H, will have exactly two enabled
entries (1; 1; kC); (1; 1; k�) for suitable kC, k� to be de-
fined later. We set �(1) :D (1; 1; kC), namely embed
y1 D x1;1;kC . We define the complement of the vari-
able y1 to be ȳ1 :D U � y1 (and likewise for the other
variables). The vertical sums u; v then force ȳ1 D U �
y1 D U � x1;1;kC D x1;1;k� , so the complement of y1
is also embedded. Next, consider the case r1 � 2. For
each s D 1; : : : ; r1, the line fsg � fsg � H (respectively,
fsg�f1C(s mod r1)g�H) will contain one enabled en-
try (s; s; kC(s)) (respectively, (s; 1C(s mod r1); k�(s)).
All other entries of R1 � R1 � H will be forbidden.
Again, we set �(1) :D (1; 1; kC(1)), namely embed
y1 D x1;1;kC(1); it is then not hard to see that, again,
the vertical sums u; v force xs;s;kC(s) D x1;1;kC(1) D y1
and xs;1C(s mod r1);k�(s) D U � x1;1;kC(1) D ȳ1 for each
s D 1; : : : ; r1. Therefore, both y1 and ȳ1 are each em-
bedded in r1 distinct entries.

We now encode the equations by defining the hori-
zontal plane-sums z and the indices kC(s); k�(s) above
as follows. For k D 1; : : : ;m, consider the kth equa-
tion

P
j ak; j y j D bk . Define the index sets JC :D

f j : ak; j > 0g and J� :D f j : ak; j < 0g, and set
zk :D bk C U �

P
j2J� jak; jj. The last coordinate of z

is set for consistency with u; v to be zh D zmC1 :D
r � U �

Pm
kD1 zk . Now, with ȳ j :D U � y j the com-

plement of variable yj as above, the kth equation can be
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rewritten as
X

j2JC

ak; j y j C
X
j2J�
jak; jj ȳ j

D

nX
jD1

ak; j y j C U �
X
j2J�
jak; jj

D bk C U �
X
j2J�
jak; jj D zk :

To encode this equation, we simply “pull down” to the
corresponding kth horizontal plane as many copies of
each variable yj or ȳ j by suitably setting kC(s) :D k
or k�(s) :D k. By the choice of rj there are sufficiently
many, possibly with a few redundant copies which are
absorbed in the last hyperplane by setting kC(s) :D mC
1 or k�(s) :D mC 1. This completes the encoding and
provides the desired representation.

Third, we show that any 3-way polytope with plane-
sums fixed and entry bounds,

F :D
�
y 2 Rl�m�n

C :
X
i; j

yi; j;k D ck ;

X
i;k

yi; j;k D b j ;

X
j;k

yi; j;k D ai ;

yi; j;k � ei; j;k
	
;

can be represented as a 3-way polytope with line-sums
fixed (and no entry bounds),

T :D
�
x 2 Rr�c�3

C :
X
I

xI;J;K D zJ;K ;

X
J

xI;J;K D vI;K ;
X
K

xI;J;K D uI;J

	
:

In particular, this implies that any face F of a 3-way
polytope with plane-sums fixed can be represented as
a 3-way polytope T with line-sums fixed: forbidden
entries are encoded by setting a “forbidding” upper-
bound ei; j;k :D 0 on all forbidden entries (i; j; k) … E
and an “enabling” upper-bound ei; j;k :D U on all en-
abled entries (i; j; k) 2 E. We describe the presenta-
tion, but omit the proof that it is indeed valid; further
details on this step can be found in [14,15,16]. We give

explicit formulas for uI;J; vI;K ; zJ;K in terms of ai ; b j; ck
and ei; j;k as follows. Put r :D l �m and c :D nC l Cm.
The first index I of each entry xI;J;K will be a pair
I D (i; j) in the r-set

f(1; 1); : : : ; (1;m); (2; 1); : : : ;

(2;m); : : : ; (l ; 1); : : : ; (l ;m)g :

The second index J of each entry xI;J;K will be a pair
J D (s; t) in the c-set

f(1; 1); : : : ; (1; n); (2; 1); : : : ; (2; l); (3; 1); : : : ; (3;m)g :

The last index K will simply range in the 3-set f1; 2; 3g.
We represent F as T via the injection � given explicitly
by �(i; j; k) :D ((i; j); (1; k); 1), embedding each vari-
able yi; j;k as the entry x(i; j);(1;k);1. Let U now denote the
minimal between the two values maxfa1; : : : ; al g and
maxfb1; : : : ; bmg. The line-sums (2-margins) are set to
be

u(i; j);(1;t) D ei; j;t;

u(i; j);(2;t) D
�

U if t D i,
0 otherwise.

;

u(i; j);(3;t) D
�

U if t D j;
0 otherwise.

v(i; j);t D

8<
:

U if t D 1,
ei; j;C if t D 2,
U if t D 3.

;

z(i; j);1 D

8<
:

c j if i D 1,
m � U � aj if i D 2,
0 if i D 3.

z(i; j);2 D

8<
:

eC;C; j � c j if i D 1,
0 if i D 2,
b j if i D 3.

;

z(i; j);3 D

8<
:

0 if i D 1,
aj if i D 2,
l � U � b j if i D 3.

:

Applying the first step to the given rational poly-
tope P, applying the second step to the resulting Q, and
applying the third step to the resulting F, we get in poly-
nomial time a 3-way r�c�3 polytope T of all line-sums
fixed representing P as claimed. �
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The Complexity
of the Multiway Transportation Problem

We are now finally in position to settle the complex-
ity of the general multiway transportation problem. The
data for the problem consists of: positive integers k (ta-
ble dimension) and m1; : : : ;mk (table sides); family F
of subsets of f1; : : : ; kg (supporting the hierarchical col-
lection of margins to be fixed); integer values ui1;:::;ik
for all margins supported on F ; and integer “profit”
m1�� � ��mk array w. The transportation problem is to
find anm1�� � ��mk table having the given margins and
attaining maximum profit, or assert than none exists.
Equivalently, it is the linear integer programming prob-
lem of maximizing the linear functional defined by w
over the transportation polytope TF ,

max f wx : x 2 Nm1�����mk : xi1;:::;ik D ui1;:::;ik ;

supp(i1; : : : ; ik) 2 F g :

The following result of [15] is an immediate con-
sequence of Theorem 21 . It asserts that if two sides
of the table are variable part of the input then the
transportation problem is intractable already for short
3-way tables with F D ff1; 2g; f1; 3g; f2; 3gg support-
ing all 2-margins (line-sums). This result can be eas-
ily extended to k-way tables of any dimension k � 3
and F the collection of all h-subsets of f1; : : : ; kg for
any 1 < h < k as long as two sides of the table are
variable; we omit the proof of this extended result.

Corollary 13 It is NP-complete to decide, given r; c, and
line-sums u 2 Zr�c , v 2 Zr�3, and z 2 Zc�3, encoded
as [hu; v; zi], if the following set of tables is nonempty,

S :D
�
x 2 N r�c�3 :

X
i

xi; j;k D z j;k ;

X
j

xi; j;k D vi;k ;
X
k

xi; j;k D ui; j

	
:

Proof The integer programming feasibility problem
is to decide, given A 2 Zm�n and b 2 Zm , if fy 2
Nn : Ay D bg is nonempty. Given such A and b, the
polynomial time algorithm of Theorem 21 produces r; c
and u 2 Zr�c , v 2 Zr�3, and z 2 Zc�3, such that
fy 2 Nn : Ay D bg is nonempty if and only if the set S
above is nonempty. This reduces integer programming

feasibility to short 3-way line-sum transportation feasi-
bility. Since the former is NP-complete (see e. g. [55]),
so turns out to be the latter. �

We now show that in contrast, when all sides but
one are fixed (but arbitrary), and one side n is vari-
able, then the corresponding long k-way transportation
problem for any hierarchical collection of margins is an
n-fold integer programming problem and therefore, as
a consequence of Theorem 16, can be solved is poly-
nomial time. This extends Corollary 8 established in
Sect. “Three-Way Line-Sum Transportation Problems”
for 3-way line-sum transportation.

Corollary 14 For every fixed k, table sides m1; : : : ;mk,
and familyF of subsets of f1; : : : ; kC1g, there is a poly-
nomial time algorithm that, given n, integer values u D
(ui1;:::;ikC1 ) for all margins supported on F , and integer
m1 � � � � � mk � n array w, encoded as [hu;wi], solves
the linear integer multiway transportation problem

max f wx : x 2 Nm1�����mk�n ;

xi1;:::;ikC1 D ui1;:::;ikC1 ; supp(i1; : : : ; ikC1) 2 F g :

Proof Re-index the arrays as x D (x1; : : : ; xn) with
each x j D (xi1;:::;ik ; j) a suitably indexed m1m2 � � �mk

vector representing the jth layer of x. Then the trans-
portation problem can be encoded as an n-fold integer
programming problem in standard form,

max fwx : x 2 Nnt; A(n)x D bg ;

with an (r C s) � t defining matrix A where t :D
m1m2 � � �mk and r; s, A1 and A2 are determined from
F , and with right-hand side b :D (b0; b1; : : : ; bn) 2
ZrCns determined from the margins u D (ui1;:::;ikC1 ),
in such a way that the equations A1(

Pn
jD1 x

j) D b0 rep-
resent the constraints of all margins xi1;:::;ik ;C (where
summation over layers occurs), whereas the equations
A2x j D b j for j D 1; : : : ; n represent the constraints
of all margins xi1;:::;ik ; j with j ¤ C (where summations
are within a single layer at a time).

Using the algorithm of Theorem 16, this n-fold inte-
ger program, and hence the given multiway transporta-
tion problem, can be solved in polynomial time. �

The proof of Corollary 14 shows that the set of feasi-
ble points of any long k-way transportation problem,
with all sides but one fixed and one side n variable,
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for any hierarchical collection of margins, is an n-fold
integer programming problem. Therefore, as a conse-
quence of Theorem 20, we also have the following ex-
tension of Corollary 14 for the convex integer multiway
transportation problem over long k-way tables.

Corollary 15 For every fixed d, k, table sides
m1; : : : ;mk, and family F of subsets of f1; : : : ; k C 1g,
there is a polynomial time algorithm that, given n, inte-
ger values u D (ui1;:::;ikC1 ) for all margins supported on
F , integer m1�� � ��mk�n arrays w1; : : : ;wd, and con-
vex functional c : Rd �! R presented by a comparison
oracle, encoded as [hu;w1; : : : ;wd i], solves the convex
integer multiway transportation problem

max f c(w1x; : : : ;wdx) : x 2 Nm1�����mk�n ;

xi1;:::;ikC1 D ui1;:::;ikC1 ; supp(i1; : : : ; ikC1) 2 Fg :

Privacy and Entry-Uniqueness

A common practice in the disclosure of a multiway
table containing sensitive data is to release some of
the table margins rather than the table itself, see e. g.
[11,18,19] and the references therein. Once the margins
are released, the security of any specific entry of the ta-
ble is related to the set of possible values that can occur
in that entry in any table having the same margins as
those of the source table in the data base. In particular,
if this set consists of a unique value, that of the source
table, then this entry can be exposed and privacy can be
violated. This raises the following fundamental entry-
uniqueness problem: given a consistent disclosed (hier-
archical) collection of margin values, and a specific en-
try index, is the value that can occur in that entry in
any table having these margins unique? We now de-
scribe the results of [48] that settle the complexity of
this problem, and interpret the consequences for secure
statistical data disclosure.

First, we show that if two sides of the table are vari-
able part of the input then the entry-uniqueness prob-
lem is intractable already for short 3-way tables with
all 2-margins (line-sums) disclosed (corresponding to
F D ff1; 2g; f1; 3g; f2; 3gg).This can be easily extended
to k-way tables of any dimension k � 3 and F the col-
lection of all h-subsets of f1; : : : ; kg for any 1 < h < k
as long as two sides of the table are variable; we omit the
proof of this extended result. While this result indicates

that the disclosing agency may not be able to check for
uniqueness, in this situation, some consolation is in that
an adversary will be computationally unable to identify
and retrieve a unique entry either.

Corollary 16 It is coNP-complete to decide, given r; c,
and line-sums u 2 Zr�c , v 2 Zr�3, z 2 Zc�3, encoded
as [hu; v; zi], if the entry x1;1;1 is the same in all tables in
�
x 2 N r�c�3 :

X
i

xi; j;k D z j;k ;

X
j

xi; j;k D vi;k ;
X
k

xi; j;k D ui; j

	
:

Proof The subset-sum problem, well known to be
NP-complete, is the following: given positive in-
tegers a0; a1; : : : ; am , decide if there is an I �

f1; : : : ;mg with a0 D
P

i2I ai . We reduce the com-
plement of subset-sum to entry-uniqueness. Given
a0; a1; : : : ; am , consider the polytope in 2(mC 1) vari-
ables y0; y1 : : : ; ym ; z0; z1; : : : ; zm ,

P :D
�
(y; z) 2 R2(mC1)

C : a0y0 �
mX
iD1

ai yi D 0 ;

yi C zi D 1 ; i D 0; 1 : : : ;m
	
:

First, note that it always has one integer point with y0 D
0, given by yi D 0 and zi D 1 for all i. Second, note that
it has an integer point with y0 ¤ 0 if and only if there is
an I � f1; : : : ;mg with a0 D

P
i2I ai , given by y0 D 1,

yi D 1 for i 2 I, yi D 0 for i 2 f1; : : : ;mg n I, and
zi D 1 � yi for all i. Lifting P to a suitable r � c � 3
line-sum polytope T with the coordinate y0 embedded
in the entry x1;1;1 using Theorem 21, we find that T has
a table with x1;1;1 D 0, and this value is unique among
the tables in T if and only if there is no solution to the
subset-sum problem with a0; a1; : : : ; am . �

Next we show that, in contrast, when all table sides but
one are fixed (but arbitrary), and one side n is vari-
able, then, as a consequence of Corollary 14, the cor-
responding long k-way entry-uniqueness problem for
any hierarchical collection of margins can be solved
is polynomial time. In this situation, the algorithm of
Corollary 17 below allows disclosing agencies to effi-
ciently check possible collections of margins before dis-
closure: if an entry value is not unique then disclosure
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may be assumed secure, whereas if the value is unique
then disclosure may be risky and fewer margins should
be released. Note that this situation, of long multiway
tables, where one category is significantly richer than
the others, that is, when each sample point can take
many values in one category and only few values in the
other categories, occurs often in practical applications,
e. g., when one category is the individuals age and the
other categories are binary (“yes-no”). In such situa-
tions, our polynomial time algorithm below allows dis-
closing agencies to check entry-uniqueness and make
learned decisions on secure disclosure.

Corollary 17 For every fixed k, table sides m1; : : : ;mk,
and familyF of subsets of f1; : : : ; kC1g, there is a poly-
nomial time algorithm that, given n, integer values u D
(uj1;:::; jkC1 ) for all margins supported on F , and entry
index (i1; : : : ; ikC1), encoded as [n; hui], decides if the
entry xi1;:::;ikC1 is the same in all tables in the set

fx 2 Nm1�����mk�n : x j1;:::; jkC1 D uj1;:::; jkC1 ;

supp(j1; : : : ; jkC1) 2 F g :

Proof By Corollary 14 we can solve in polynomial time
both transportation problems

l :D min f xi1;:::;ikC1 : x 2 Nm1�����mk�n ;

x 2 TF g ;

u :D max fxi1;:::;ikC1 : x 2 Nm1�����mk�n ;

x 2 TF g ;

over the corresponding k-way transportation polytope

TF :D f x 2 Rm1�����mk�n
C : x j1;:::; jkC1 D uj1;:::; jkC1 ;

supp(j1; : : : ; jkC1) 2 F g :

Clearly, entry xi1;:::;ikC1 has the same value in all tables
with the given (disclosed) margins if and only if l D
u, completing the description of the algorithm and the
proof. �
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Let f : S! R be a lower semicontinuous function, where
S� Rn is a nonempty convex subset. The convex enve-
lope taken over S is a function f S: S! R such that
� f S is a convex function defined over the set S;
� f S(x)� f (x) for all x 2 S;
� if h is any other convex function such that h(x) �

f (x) for all x 2 S, then h(x)� f S(x) for all x 2 S.
In other words, f S is the pointwise supremum among
any convex underestimators of f over S, and is uniquely
determined. The following demonstrates the most fun-
damental properties shown by [3,6]. Suppose that the
minimum of f over S exists. Then,

min f f (x) : x 2 Sg D min f fS(x) : x 2 Sg

and

fx� : f (x�) � f (x); 8x 2 Sg
� fx� : fS(x�) � fS(x); 8x 2 Sg :

The properties indicate that an optimal solution of a
nonconvex minimization problem could be obtained by
minimizing the associated convex envelope. In general,
however, finding the convex envelope is at least as diffi-
cult as solving the original one.

Several practical results have been proposed for spe-
cial classes of objective functions and constraints. Sup-
pose that the function f is concave and S is a polytope
with vertices v0, . . . , vK . Then, the convex envelope f S
over S can be expressed as:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

fS(x) D min
KX
iD0

˛i f (vi)

s.t.
KX
iD0

˛i vi D x;

KX
iD0

˛i D 1;

˛i � 0; i D 0; : : : ;K :

Especially, if S is an n-simplex with vertices v0, . . . , vn,
f S is the affine function

fS(x) D a>x C b;

which is uniquely determined by solving the following
linear system

a>vi C b D f (vi ); i D 0; : : : ; n:

The properties above have been used to solve concave
minimization problems with linear constraints [4,6].

The following property shown in [1,5] is frequently
used in the literature. For each i = 1, . . . , p, let f i: Si !
R be a continuous function, where Si � Rni , and let n =
n1+ � � � + np. If

f (x) D
pX

iD1

f i(xi )

and

S D S1 � � � � � Sp;

where xi 2 Rni , i = 1, . . . , p, and x = (x1, . . . , xp) 2 Rn,
then the convex envelope f S(x) can be expressed as:

fS(x) D
pX

iD1

f iS (x
i):
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In particular, let f (x) =
Pn

i = 1 f i(xi) be a separable func-
tion, where x = (x1, . . . , xn) 2 Rn, and let f i(xi) be con-
cave for each i = 1, . . . , n. Then the convex envelope of
f (x) over the rectangle R = {x 2 Rn: ai � xi � bi, i = 1,
. . . , n} can be the affine function, which is given by the
sum of the linear functions below:

fR(x) D
nX

iD1

li (xi);

where li(xi) meets f i(xi) at both ends of the interval ai �
xi � bi for each i = 1, . . . , n. B. Kalantari and J.B. Rosen
[7] show an algorithm for the global minimization of
a quadratic concave function over a polytope. They ex-
ploit convex envelopes of separable functions over rect-
angles to generate lower bounds in a branch and bound
scheme.

Also, convex envelopes of bilinear functions over
rectangles have been proposed in [2]. Consider the fol-
lowing rectangles:

˝i D

�
(xi ; yi ) :

li � xi � Li ;

mi � yi � Mi

	
;

i D 1; : : : ; n;

and let

f i(xi ; yi ) D xi yi ; i D 1; : : : ; n;

be bilinear functions with two variables. It has been
shown that for each i = 1, . . . , n, the convex envelope
of f i(xi, yi) over˝ i is expressed as:

f i˝i
(xi ; yi ) D maxfmixi C li yi � limi ;Mixi

C Li yi � LiMig:

Moreover, it can be verified that f i˝ i(xi, yi) agrees with
f i(xi, yi) at the four extreme points of˝ i. Thus, the con-
vex envelope of the general bilinear function

f (x; y) D x>y D
nX

iD1

f i (xi ; yi);

where x| = (x1, . . . , xn) and y| = (y1, . . . , yn) over ˝ =
˝1× � � � ×˝n can be expressed as

f˝(x; y) D
nX

iD1

f i˝i
(xi ; yi ):

Another characterization of convex envelopes of bilin-
ear functions over a special type of polytope, which in-
cludes a rectangle as a special case, is derived in [8].

See also

� ˛BB Algorithm
� Global Optimization in Generalized Geometric

Programming
�MINLP: Global Optimization with ˛BB
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Introduction

A twice continuously differentiable function in several
variables, when considered on a compact convex set
C, becomes convex if an appropriate convex quadratic
is added to it, e. g. [2]. Equivalently, a twice continu-
ously differentiable function is the difference of a con-
vex function and a convex quadratic on C. This decom-
position is valid also for smooth functions with Lip-
schitz derivatives [8]. Here we recall three conditions
that are both necessary and sufficient for the decom-
position [9,10]. We also list several implications of the
convexification in optimization and applied mathemat-
ics [10,11]. A different notion of convexification is stud-
ied in, e. g. [6]; see also [3,5].

Definitions

Definition 1. ([7,10]) Given a continuous function
f : Rn ! R on a compact convex set C of the Eu-
clidean space Rn , consider � : RnC1 ! R defined
by �(x; ˛) D f (x) � 1/2˛xTx where xT is the trans-
pose of x. If �(x; ˛) is convex on C for some ˛ D ˛�,
then �(x; ˛) is said to be a convexification of f and ˛� is
its convexifier on C. Function f is convexifiable if it has
a convexification.

Observation. If ˛� is a convexifier of f on a compact
convex set C, then so is every ˛ < ˛�.

Illustration 1. Consider f (t) D cos t on, say, �
 �
t � 2
 . This function is convexifiable, its convexifier
is any ˛ � �1. For, e. g., ˛� D �2, its convexification
is �(t;�2) D cos t C t2. Note that f (t) is the differ-
ence of (strictly) convex �(t; ˛) D cos t � 1/2˛t2 and
(strictly) convex quadratic �1/2˛xTx for every suffi-
ciently small ˛. The graphs of f (t) and its convexifica-
tion �(t;�2) are depicted in Fig. 1.

Characterizations of a Convexifiable Function

One can characterize convexifiable functions using the
fact that a continuous f : Rn ! R is convex if, and only
if, f is mid-point convex, i. e., f ((xCy)/2) � 1/2( f (x)C
f (y)); x; y 2 C, e. g. [4]. Denote the norm of u 2 Rn by
jjujj D (uTu)1/2 . With a continuous f : Rn ! R one
can associate � : Rn �Rn ! R :

Definition 2. ([10]) Consider a continuous f : Rn !

R on a compact convex set C in Rn . The mid-point ac-

Convexifiable Functions, Characterization of, Figure 1
Function f (t) D cos t and its convexification

Convexifiable Functions, Characterization of, Figure 2
Mid-point acceleration function of f (t) D cos t

celeration function of f on C is the function

� (x; y) D (4 / jjx � yjj2)[ f (x)C f (y)

� 2 f ((x C y) / 2)]; x; y 2 C; x ¤ y :

Function � describes a mid-point “displacement of
the displacement” (i. e., the “acceleration”) of f at x be-
tween x and y along the direction y� x. The graph of �
for the scalar function f (t) D cos t is depicted in Fig. 2.

Using � one can characterize a convexifiable func-
tion:

Theorem 1. ([10]) Consider a continuous f : Rn ! R
on a compact convex set C inRn . Function f is convexifi-
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able on C if, and only if, its mid-point acceleration func-
tion � is bounded from below on C.

For scalar functions one can also use a determinant:

Theorem 2. ([9] Determinant Characterization of
Scalar Convexifiable Function) A continuous scalar
function f : R ! R is convexifiable on a compact con-
vex interval I if, and only if, there exists a number ˛ such
that for every three points s < t < � in I

det

0
@

1 1 1
s t �

f (s) f (t) f (�)

1
A � 1

2
˛(s� t)(t� �)(� � s) :

Illustration 2. Function f (t) D �jtj3/2 on C D

[�1; 1] is continuously differentiable but it is not con-
vexifiable. Indeed, for s D 0; � (0; t) D 25/2(1 �
21/2)/t�1/2 ! �1 as t > 0; t ! 0. Also, using The-
orem 2 at s D ��; t D 0; � D " > 0, we find that
there is no ˛ such that ˛ � �2/� as " ! 0. Function
g(t) D �jtj is not convexifiable around the origin.

Scalar convexifiable functions can be represented ex-
plicitly on a compact interval I:

Theorem 3. ([9] Explicit Representation of Scalar
Convexifiable Functions) A continuous scalar func-
tion f : I ! R is convexifiable if, and only if, there exists
a number ˛ such that

f (t) D f (c)C
1
2
˛(t2 � c2)C

tZ

c

g(�; ˛)d� :

Here c; t 2 I; c < t, and g D g(�; ˛) : I ! R is a non-
decreasing right-continuous function.

An implication of this result is that every smooth
function with a Lipschitz derivative, in particular every
analytic function and every trajectory of an object gov-
erned by Newton’s Second Law, is of this form.

Two important classes of functions are convexifi-
able and a convexifier ˛ can be given explicitly. First,
if f is twice continuously differentiable, then the second
derivative of f at x is represented by the Hessian matrix
H(x) D (@2 f (x)/@xi@x j); i; j D 1; : : : ; n. This is a sym-
metric matrix with real eigenvalues. Denote its smallest
eigenvalue at x by �(x) and its “globally” smallest eigen-
value over a compact convex set C by

�� D min
x2C

�(x) :

Corollary 1. ([7]) A twice continuously differentiable
function f : Rn ! R is convexifiable on a compact con-
vex set C inRn and ˛ D �� is a convexifier.

Suppose that f is a continuously differentiable
(smooth) function with the derivative satisfying the Lip-
schitz property, i. e., jjr f (x)�r f (y)jj � Ljjx � yjj for
every x; y 2 C and some constant L. Here r f (u) is the
(Frechet) derivative of f at u. We represent the deriva-
tive of f at x by a column n-tuple gradient r f (x) D
(@ f (x)/@xi).

Corollary 2. ([8]) A continuously differentiable func-
tion f : Rn ! R, with the derivative having the Lip-
schitz property with a constant L on a compact convex
set C in Rn , is convexifiable on C and ˛ D �L is a con-
vexifier.

A Lipschitz function may not be convexifiable. For ex-
ample, f (t) D t2 sin(1/t) for t ¤ 0 and f (0) D 0
is a Lipschitz function and it is also differentiable
(not continuously differentiable). Its derivative is uni-
formly bounded, but the function is not convexifiable,
e. g. [7,11].

Canonical Form of Smooth Programs

Every mathematical program (NP)

Min f (x); f i(x) � 0; i 2 P D f1; : : : ;mg; x 2 C ;

where the functions f ; f i : Rn ! R; i 2 P are con-
tinuous and convexifiable on a compact convex set C
can be reduced to a canonical form. First one consid-
ers some convexifications of these functions: �(x; ˛) D
f (x) � 1/2˛xTx and � i(x; ˛i ) D f i(x) � 1/2˛i xTx,
where ˛; ˛i are, respectively, arbitrary convexifiers of
f ; f i ; i 2 P. Then one associates with (NP) the follow-
ing program with partly linear convexifications

(LF; �; ") :

Min(x;
)�(x; ˛)C
1
2
˛xT� ;

� i(x; ˛i )C
1
2
˛i xT� � 0; i 2 P ;

x 2 C; kx � �k � " :

Here " � 0 is a scalar parameter. This parameter was
fixed at zero value in [2]. For the sake of “numerical
stability” it was extended to " � 0 in [7]. If the norm
is chosen to be uniform, i. e., kuk1 D maxiD1;:::;n jui j
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then (LF; � , ") is a convex program in x for every fixed
(� , ") and linear in (� , ") for every x. Such programs are
called partly linear-convex. Theory of optimality and
stability for such programs and related models is well
studied, e. g. [1,8].

Remark Since one can construct the program (LF; � , ")
for every (NP) with convexifiable functions, we refer to
(LF; � , ") as the parametric Liu–Floudas canonical form
of (NP).

Let us relate an optimal solution of (NP) to optimal so-
lutions x0("); �0(") of (LF; � , ").

Theorem 4. ([8,9]) Consider (NP) with a unique opti-
mal solution, where all functions are assumed to be con-
vexifiable, and its partly linear-convex program (LF; � ,
"). Then a feasible x� is an optimal solution of (NP) if,
and only if, x� D lim�!0 x0(") and �� D lim"!0 �

0("),
with x� D ��. Moreover, the feasible set mapping of (LF;
� , ") is lower semi-continuous at � * and "� D 0, relative
to all feasible perturbations of (� , ").

Other Applications

There are many other areas of applications of convexi-
fiable functions:

(i) Every convexifiable function f is the difference
of a convex function �(x; ˛) and a convex quadratic
1/2˛xTx for every sufficiently small ˛ on a compact
convex set. Hence it follows that the results for con-
vex functions can be applied to �(x; ˛). With minor
adjustments, pertaining to the quadratic term, such re-
sults can be extended to convexifiable (generally non-
convex) functions. Here is an illustration of how this
works for the mean value. The result is well known for
convex functions (the case ˛ D 0).

Theorem 5. ([9]) Consider a continuous scalar convex-
ifiable function f : R ! R on an open interval (a, b)
with a convexifier ˛. Then

1/(d � c)
dZ

c

f (�)d� �
1
2
[ f (c)C f (d)]

�
1
12
˛(d � c)2 ; for every a < c < d < b :

A composite version of this result follows.

Theorem 6. ([9]) Integral Mean-Value for Compos-
ite Convexifiable Function) Let f : (a; b) ! R be con-
tinous and convexifiable with a convexifier ˛ and let
g : [c; d]! (a; b) be continuous. Then

f

0
@1/(d � c) �

dZ

c

g(t)dt

1
A � 1/(d � c)

�

dZ

c

( f ı g)(t)dtC
1
2
˛ � R(c; d; g)

where

R(c; d; g) D [1/(d � c) �
dZ

c

g(t)dt]2 � 1/(d � c)

�

dZ

c

[g(t)]2 dt :

Remarks If f : (a; b) ! R and g : [c; d] ! (a; b)
are continuous on (a, b), then, in Theorem 5 and 6,
one can specify ˛ D 0, if f is convex on (a, b). Also
˛ D �� D mint2I f 00(t), if f is twice continuously dif-
ferentiable or analytic on (a, b), and ˛ D �L a negative
Lipschitz constant of the derivative of f on (a, b), if f is
continuously differentiable.

(ii) Convexification of differential equations: A so-
lution y(t) of an ordinary differential equation of sec-
ond or higher order, over a compact interval, is contin-
uously differentiable with a Lipschitz derivative. Such
y is convexifiable. Using y(t) D �(t; ˛) C 1/2˛t2, the
problems in differential equations can be “convexified”,
i. e., transformed to equivalent differential equations
with convex solutions �(t; ˛). After back-substitution,
the true solution y(t) is recovered. In particular, the
problems of theoretical mechanics based on the Second
Newton Law, can be “convexified”, e. g. [9,11].

(iii) Convexification in linear algebra: Some of the
basic eigenvalue inequalities for symmetric matrices
follow from inequalities for convex functions, e. g. [4].
Using a convexification, one can extend these results to
non-convexity. For example, after finding a convexifier
of the product function f (x) D x1x2 � � � xn , the follow-
ing follows:

Corollary 3. (Bounds for the Determinant of an Ar-
bitrary Symmetric Matrix [11]) Let A D (ai j) be an
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n� n real symmetric matrix where n � 2 and let � be its
spectral radius. Then

Y
iD1;:::;n

ai i � (n � 1)�n�2
X

i; jD1;:::;n;i< j

a2i j � detA

�
Y

iD1;:::;n

ai i C (n � 1)�n�2
X

i; jD1;:::;n;i< j

a2i j :

If the left hand-side in Corollary 3 is positive, then the
matrix A is non-singular.

From the two-sided Jensen inequalities, obtained by
convexification, new estimates follow for the absolute
value of the inner product function in arbitrary inner
product spaces. In some situations the new estimates
are sharper than the Cauchy–Schwarz inequality. Many
results for convexifiable functions, including the canon-
ical form (LF; � , "), can be extended to non-smooth
Lipschitz functions. This can be done using the fact that
every Lipschitz function, when considered on a com-
pact convex set, is only a linear function away from the
set of all coordinate-wise monotone functions [11].

Conclusions

A necessary and sufficient condition for convexifiability
on a compact convex set is given using the mid-point
acceleration function. For scalar functions there are
also characterizations given in terms of determinants
and integrals. In particular, every smooth function with
a Lipschitz derivative is convexifiable. Such function is
only a convex quadratic away from the set of all con-
vex functions. Using this “closeness”, many results for
convex functions can be extended to smooth (generally
non-convex) functions with Lipschitz derivatives. On
the other hand, mathematical programs with convexi-
fiable functions can be reduced to the parametric Liu-
Floudas partly linear-convex canonical form.
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Synonyms

Minimax

Examples of the Problem

In a classic nonlinear program (NLP) a smooth objec-
tive function is minimized on a feasible set defined by
finitely many smooth constraints. However, many op-
timization problems have an objective function that is
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not smooth but is of the max type, that is, defined as

f (x) :D max f f`(x) : ` 2 Lg ; (1)

where the functions f `:Rn!R are themselves smooth.
When L is finite, the minimization of f is called a fi-

nite minimax problem. In a general minimax problem,
the indices ` can range over an infinite compact set L,
see [6]. Those f `’s realizing the maximum in (1) are
called active functions. The corresponding indices form
the active index set, defined as La(x) := {l 2 L: f (x) =
f l(x)}.

There are numerous examples of optimization
problems dealing with the minimization of convex
max-functions:
� When processing empirical data {(t`, p`): ` = 1,

. . . , m}, consider the problem of selecting the coef-
ficients x of a polynomial px(t) =

Pn
jD0xj + 1tj that

fits well the data. The quality of the approximation
can be measured through the deviation f `(x) := |p`
� px(t`)|, defined for all `. Depending on the nature
of the problem, it can be interesting to minimize ei-
ther the sum of squared deviations or the maximum
deviation. The first case is a least squares problem,
while the second is known as Chebyshev best approx-
imation, and is a particular instance of (1), with in-
dex set ` = {`: ` = 1, . . . ,m}.

� A more general case is finding the best approxima-
tion of a continuous function '0 on a compact in-
terval L Instead of n powers tj, n linearly indepen-
dent functions ' j: L! R are given. To find the lin-
ear combination

P
j xj' j which best approximates

'0 in the max-norm comes to solve (1), with f `(x)
= |

P
j xj' j(`) � '0(`)|. Because the problem has

infinitely many constraints, it is also an example of
semi-infinite programming.

� A basic problem in structural optimization, see [2],
is to find the stiffest structure of a given volume that
is able to carry loads varying on a given set. Opti-
mization can be performed through the variation of
sizing variables, like the thickness of bars in a truss;
shape variables, as the splines defining the boundary
of the body; or even the distribution and properties
of the composite material used tomake the structure
itself. After discretization by finite elements, the de-
sign problem has an objective function as in (1). The
f `’s therein have usually the form f `(x) = (1/2)x| A`

x � b|x, with A` denoting the stiffness matrix of the
`th element of the grid.

� Some large scale mixed integer problems can
be solved by decomposition techniques using La-
grangian relaxation. The idea is to coordinate, by
means of a master program, the iterative resolu-
tion of problems of smaller dimension or complex-
ity, called local problems. When applying price de-
composition, the master is led to maximize a dual
function, say �(�), on the space of multipliers �,
using some iterative method. In production plan-
ning problems, the iterate �k sent to the local solvers
can be interpreted as prices paid by the master.
Let ` =

Q
i Li denote the (decomposed) primal

space and let L(x, �) =
P

i Li(xi, �) be the (decom-
posed) Lagrangian of the original problem. Each lo-
cal unit i decides its corresponding optimal level
of production by solving minx i2Li Li(xi, �k). Hav-
ing those local optimal levels, the master adjusts
prices by updating �k in order to maximize the
dual function � , defined as the pointwise mini-
mum of the Lagrangian: �(�) D minx2L L(x; �) DP

i minx i2Li Li (xi ; �). An equivalent problem for
the master is to minimize f (�) := � �(�). This last
formulation has an objective f that is amax-function
as in (1), letting f `(�) =�

P
iLi(xi`, �), for each x` 2

L.
� Solving a nonlinear program using exact penal-

ties leads to the iterative minimization of penalized
objective which are max-functions, with the max-
operation involving the constraints.

� In game theory, consider a zero sum game, with two
players whose strategy is to optimize their individ-
ual choice against the worst possible selection by the
other player. The first player can choose his action
over n possible moves, with probability distribution
x = (x1, . . . , xn). To every possible move j = 1, . . . , m
of the second player, corresponds a loss ai, j player I
pays to player II. Let ` be a continuous index count-
ing elements in the set of probability distributions
of the second player: L = {z 2 Rm:

Pm
jD1zj = 1, zj �

0}. Calling A = [ai, j] the n ×m loss-matrix, the aver-
age amount to be paid by player I is f `(x) = x|Az`.
It follows that the first player needs to solve a prob-
lem like (1). The mini-maximization of the bivariate
function F(x, z) = x|Az is also called a saddle-point
problem.
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Continuity andOptimality Conditions

When taking the pointwise maximum in (1), some
properties of the functions f ` are transmitted to f . Such
is the case of continuity and convexity, but not of dif-
ferentiability.

More precisely, f is continuous when both the f `-s
and its gradients rf ` are continuous. When the under-
lying functions f ` are convex, so is f .

Convexity implies that the max-function f is dif-
ferentiable almost everywhere. Nevertheless, at those
points where more than one underlying function f l re-
alizes the maximum, the gradient fails to exist. Typi-
cally, such is the case at x, a minimizer of f . For in-
stance, suppose that La(x) D f1; 2g, i. e., there are two
active functions at x: f (x) D f1(x) D f2(x). Clearly,
for r f (x) to exist, the unlikely equality r f (x) D
r f1(x) D r f2(x) needs to hold. Moreover, the opti-
mality condition for minimizing f on Rn would require
all the involved gradients to be null.

Rather than a single gradient, it is possible to define
a whole set of subgradients by making convex combi-
nations of r f1(x) and r f2(x). For an arbitrary convex
max-function f , at any given x, the set of subgradients
is the so-called subdifferential of f at x. Its expression is
given by the formula

@ f (x) D

8<
:
X

l2La (x)

˛lr fl (x) : ˛ 2 �

9=
; ; (2)

where� is the unit simplex

� :D

8<
:˛ 2 RjLa (x)j :

X
l2La (x)

˛l D 1; ˛l � 0

9=
; : (3)

When L in (1) is an infinite compact set, (2) still holds,
provided the application ` 7�! f `(x) is upper semicon-
tinuous for each x, see [8, Chap. VI, §4.4].

Consider the constrained problem

min
x2˝

f (x); (4)

where ˝ � Rn is a closed convex set and f is the func-
tion defined in (1). Assume the index set L is infinite
and suppose (4) has a solution x such that f (x) D
max f f`(x) : ` 2 Lg. Then it can be proved (see [6,
Chap. VI, Thm. 3.3]) that (4) is equivalent to the finite

minimax

min
x2˝

max
iD1;:::;r

˚
f`i (x) : `i 2 L

�
; (5)

with r � n + 1. The set {`1, . . . , `r} is called an extremal
basis of (4).

When ˝ satisfies a constraint qualification condi-
tion of Slater type, see, for instance, [7, Chap. III], a nec-
essary optimality condition (OC) characterizing a min-
imizer x of (4) is

0 2 @ f (x)C N˝(x); (6)

where N is the normal cone of convex analysis. Because
f is convex, the optimality condition is also sufficient.

The optimality condition (6) can be further speci-
fied when ˝ is represented by a set of convex inequali-
ties:

˝ :D
˚
x 2 Rn : c j(x) � 0; j 2 J

�
: (7)

Observe that˝ may contain an infinite number of con-
straints cj, assumed to be smooth and convex. Using (1)
together with (7), the following characterization of x re-
sults:

Lemma 1 There exist r � n + 1 and s � n such that for
the index sets La(x) :D fl1; : : : ; lrg � L and {j1, . . . , js}
� J it holds

rX
iD1

˛ir fl i (x)C
sX

iD1

�irc ji (x) D 0; (8)

where the multipliers ˛ and � are positive and ˛ is an
element of the simplex� inRjLja (x) from (3).

This characterization ensures the existence of an ex-
tremal basis of (4) near x.

Algorithms of Minimization

Depending on the nature of the problem, several ap-
proaches have been proposed to solve (4):
� Reformulation as a NLP.
� Minimization of the nonsmooth max-function.
� Determination of a saddle point.
� Search of an extremal basis.
For example, the amount of available information can
determine the method of resolution: if for any given x,
all the active indices in (1) are known, then the full sub-
differential (2) is available and a nonlinear program-
ming technique can be applied.
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Nonlinear Programming

An important feature of this approach is that smooth
NLP techniques have a superlinear rate of convergence.
The essential idea is first to write (4) as an NLP with an
additional variable:8̂

<
:̂
min
r2R
x2˝

r

s.t. r � f`(x); ` 2 L;
(9)

and then solve the associated optimality conditions
by using a Newton-like method, such as sequen-
tial quadratic programming (cf. also � Successive
quadratic programming) or interior point schemes, see
[4, Parts III–IV] and [3, §§4.3–4.4].

Nonsmooth Optimization

Sometimes the explicit knowledge of all the active con-
straints in (9) can be difficult, if not impossible, to ob-
tain; such is the case for structural optimization prob-
lems.

On the other hand, it is often possible to obtain
a single subgradient almost for free when computing
f (x). Indeed, suppose that just one active index l in `a(x)
is known: f (x) = f l(x). Then, because of (2), rf l(x) 2
@f (x).

Algorithms from nonsmooth optimization, such as
bundle methods [8, Chaps. XIV–XV], are designed to
minimize a general convex function, possibly nondif-
ferentiable, with the information furnished by an ora-
cle that gives f (x) and only one subgradient at x. Non-
smooth optimization techniques, specialized to a max-
function like f in (1), have been successfully used in [12]
and [9] to solve general minimax problems.

Although bundle methods are essentially first or-
der methods, in recent years some proposals have been
given that aim at obtaining better than linear conver-
gence. They consist of a combination of bundle, proxi-
mal and quasi-Newton techniques [5,10,11].

Other Methods of Resolution

V.F. Demyanov and V.N. Malozemov treat (4) in an
indirect way, by solving an infinite sequence of finite
minimax problems. Keeping (5) in mind, the idea is
to asymptotically identify an extremal basis by making
successive approximations on a finite grid of the index
set L.

In game theory, rather than solving (4) by some
‘mini-maximization’ procedure, it can be more con-
venient to find a saddle point. That is, an equilibrium
point satisfying minx maxz` F(x, z`) = maxz` minx F(x,
z`), with F(x, z`) := f `(x). The determination of saddle
points of F can be performed taking advantage of the
extra structure of the problem. Some popular methods
are Arrow–Hurwicz’s and Uzawa’s, see [1].

See also

� Lagrangian Multipliers Methods for Convex
Programming
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W.I. Zangwill [9] first proposed the convex-simplex al-
gorithm (CSA) for the following problem:

min
x2S

f (x); (1)

where f (x) is a pseudoconvex function on Rn. The set
S is a nonempty polyhedron, i. e., S = {x 2 Rn: Ax = b,
x � 0}, A is am × nmatrix, and b is a vector in Rm. For
simplicity, S is assumed to be bounded also.

CSA belongs to a class of algorithms called feasible
direction methods. Given an initial feasible solution, al-
gorithms in this class solve problem (1) by iteratively
generating an improving feasible direction that leads
to another feasible solution with an improved objec-
tive value. The name ‘convex-simplex’ is to indicate that
the algorithm generates improving feasible directions
in manner similar to the simplex algorithm for linear
programs. When f (x) is linear, the algorithm is iden-
tical to the simplex algorithm. In general, a vector d is
an improving feasible direction at a point, x, feasible to
problem (1) if the following (sufficient) conditions hold
a) r f (x)| d < 0,
b) Ad = 0, and
c) dj � 0 if xj = 0.

It follows from the first order Taylor series expan-
sion of f (x) that

f (x C �d) D f (x)C �r f (x)>d C � kdk ˛(x;�d);

where lim	! 0 ˛ (x; �d) = 0. Via the above expansion,
condition a) implies that f (x + �d) < f (x) for a suffi-
ciently small � > 0, i. e., d leads to an improvement in
the objective function. The remaining two conditions
guarantee that d can produce a point in S. In particular,
condition b) yields the following:

A(x C �d) D Ax C �Ad D Ax D b:

This shows that x + �d is always feasible with respect
to the equality constraint. Next, each component of x +
�d can be written as

xi C �di D

(
xi C �di if xi > 0;
�di if xi D 0:

When � is a sufficiently small positive number, xi + �di
remains nonnegative in the first case. For the second
case, it follows directly from condition c) that �di � 0
for all � > 0. Thus, x + �d 2 S when � is sufficiently
small.

To describe how CSA generates an improving fea-
sible direction, let aj denote the jth column of A. Also,
assume that everym columns of A are linearly indepen-
dent and every extreme point of S has m strictly posi-
tive components. Under these assumptions, every fea-
sible solution has at leastm positive components and at
most (n � m) zero components. Given a feasible solu-
tion x, let I(x) be the set of indices for them largest com-
ponents of x. Then, A can be partitioned into [B, N],
where B = [aj : j 2 I(x)] and N = [aj : j 62 I(x)]. Similarly,
x> can be partitioned into [x>B , x>N ] where x>B , the basic
component, corresponds to components of x belonging
to I(x), and x>N , the nonbasic component, corresponds
to components not in I(x). By the above assumptions,
x>B > 0 and B is nonsingular.

Partitioning the direction vector, d>, into its basic
and nonbasic components, i. e., [d>B , d>N ], produces the
following sequence of relationships:

Ad D 0;
BdB C NdN D 0;

dB D �B�1NdN :

The last equality yields the following:

r f (x)>d D rB f (x)>dB CrN f (x)>dN
D [rN f (x)> � rB f (x)>B�1N]dN

D r>N dN D
X
j…I(x)

r jd j ;
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where r>N � rNf (x)> � rBf (x)> B�1 N. In order for
d to be an improving direction, r f (x)>d < 0. There are
several approaches to make this inner product negative.
Each approach generates a different algorithm and all of
which can be viewed as an extension or variant of the re-
duced gradient algorithm first proposed by P.Wolfe [8].

Like the simplex algorithm, CSA allows only one
nonbasic component of d to be nonzero. In particular,
let

jC D argmax
j…I(x)

˚
�r j : r j < 0

�

and

j� D argmax
j…I(x)

˚
x jr j : x j > 0; r j > 0

�
:

Then, CSA chooses dN as follows. If � r jC � xj� r j� ,
then djC = 1 and dj = 0 for the remaining nonbasic
components. This makes r f (x)> d = r jC < 0. Other-
wise, dj� = � 1 instead and r f (x)> d = � r j� < 0.
Given dN , the basic component can be computed using
the relationship dB = � B�1 NdN .

When rN � 0 and r>N xN = 0, the indices j+ and j� are
undefined in the above construction. When this occurs,
x is globally optimal and dN is usually set to zero to in-
dicate that there is no improving feasible direction. To
demonstrate, it is sufficient to show that there exist vec-
tors �> = [�>B , �

>
N ] � 0 and � (unrestricted) satisfying

the following equations:

rB f (x)C B>� � �B D 0;

rN f (x)C N>� � �N D 0;

�>B xB D 0;

�>B xN D 0 :

These equations are known as the Karush–Kuhn–
Tucker conditions (see, e. g., [2]) and they are sufficient
optimality conditions for problem (1). Letting �B = 0,
�N = rN f (x) � N(B>)�1 rN f (x), and � = � (B>)�1

rBf (x) satisfies the first three conditions. Since �N =
rN , the above assumptions concerning rN imply that�N

� 0 and �>N xN = 0. Thus, the Karush–Kuhn–Tucker
conditions hold and xmust be globally optimal.

When dN 6D 0, a better feasible point can be ob-
tained from a solution to the following problem, typi-
cally called the line search problem:

min
0�	�	max

f (x C �d);

where �max = minj {� xj/dj : dj < 0}. This prevents com-
ponents of x + �d from being negative. (If S is un-
bounded, then every component of d may be nonneg-
ative and �max =1.) Algorithms such as the bisection
search, the golden section method, and an inexact line
search technique (e. g., the Armijo rule, [1]) can effi-
ciently solve the line search problem.

To summarize, CSA can be stated as follows:

0 Select x1 2 S and set k = 1.
1 Identify I(xk) and form the submatrices B

and N .
Compute

r>N = rN f (xk)> � rB f (xk)>B�1N .

2 IF rN � 0 and r>N x
>
N = 0,

THEN stop and xk is an optimal solution.
ELSE, let

j+ = argmaxf�r j : r j < 0g ;
j…I(xk )

j� = argmax
˚
xk
j r j : x

k
j > 0; r j > 0

�
:

j…I(xk )

Set dk
N = 0.

IF �r j+ � xk
j� r j� ,

THEN set dk
j+ = 1.

ELSE, set dk
j� = �1 instead.

Set dk
B = B�1Ndk

N . Go to Step 3.
3 Set �max = min jf�xk

j /d
k
j : d

k
j < 0g and com-

pute

�k = argmin f (xk + �dk).
0�	�	max

Then, set xk+1 = xk + �kdk and k = k + 1.
Return to Step 1.

The convex-simplex algorithm (CSA)

The convergence proof for CSA is the same as that
of the reduced gradient algorithm and follows stan-
dard arguments in nonlinear programming. Although
CSA behaves like the simplex algorithm, CSA con-
verges slowly when compared to other algorithms. This
is due in part to the restriction that only one nonba-
sic component of the improving feasible direction can
be nonzero. To accelerate CSA, B.A. Murtagh and M.A.
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Saunder [5] used a second order approximation for the
objective function and allowed several nonbasic com-
ponents to be nonzero. The latter is often referred to as
superbasic variables.

For other developments, S. Nguyen [6] and R.V.
Helgason and J.L. Kennington [4] specialized CSA to
nonlinear network flow problems. D.P. Rutenberg [7]
(see also [3]) demonstrated that special techniques for
solving linear programs with generalized network and
generalized upper bounding structure also extend to
CSA.

See also

� Lemke Method
� Linear Complementarity Problem
� Linear Programming
� Parametric Linear Programming: Cost Simplex

Algorithm
� Sequential Simplex Method
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Copositive optimization (or copositive programming,
coined in [4]) is a special case of conic optimization that
consists in extremizing a linear function over a (con-
vex) cone subject to additional (inhomogeneous) linear
(inequality or equality) constraints.

It is well known that the simplest class of hard prob-
lems in continuous optimization is that of quadratic
optimization problems [20] – to extremize a (possi-
bly indefinite) quadratic form x>Qx over a polyhedron˚
x 2 Rn

C : Ax D b
�
. Note that a linear term in the ob-

jective function can be removed by an affine transfor-
mation of the polyhedron. The number of local, non-
global solutions to this problem may be exponential in
the number of variables and/or constraints.

This class has a close connection to copositive op-
timization. The idea here is to linearize the quadratic
form

x>Qx D trace(x>Qx) D trace(Q; xx>) D hQ; xx>i

by introducing the new symmetric matrix variable
X D xx> and Frobenius duality hX;Yi D trace(X;Y).
If Ax 2 Rm

C for all x 2 Rn
C and b 2 Rm

C, then the linear
constraints can be squared, to arrive in a similar way at
constraints of the form hAi ; Xi D b2i .

Now the set of all these X generated by feasible x is
nonconvex since rank(xx>) D 1. The convex hull

K D conv
˚
xx> : x 2 Rn

C

�
;

results in a convex matrix cone known as the cone
of completely positive matrices since [14]; see [1].
Note that a similar construction dropping nonnegativ-
ity constraints leads to

P D conv
˚
xx> : x 2 Rn� ;

the cone of positive-semidefinite matrices, the basic set
in semidefinite optimization (or semidefinite program-
ming, SDP).

The first account of copositive optimization goes
back to [4], who established a copositive representa-
tion of a subclass of particular interest, namely, in stan-
dard quadratic optimization (StQP). Here the feasible
polyhedron is the standard simplex � D fx 2 Rn

C :
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P
i xi D 1g: this subclass is also NP-hard from the

worst-case complexity but allows for a polynomial-
time approximation scheme [3]. There can be up to
	 2n/(1:25

p
n) local nonglobal solutions. Now, with J

the n � n all-ones matrix, we have

min
˚
x>Qx : x 2 �

�

D min fhQ; Xi : hJ; Xi D 1 ; X 2 Kg :

Note that the right-hand problem is convex, so there are
no more local, nonglobal solutions. In addition, the ob-
jective function is now linear, and there is just one lin-
ear equality constraint. The complexity has been com-
pletely pushed into the feasibility condition X 2K,
which also shows that there are indeed convex mini-
mization problems that cannot be solved easily.

The duality theory for conic optimization problems
requires the dual cone K� of K w.r.t. the Frobenius
inner product h : : : ; i, which is

K� D fS symmetric n � n : hS; Xi � 0

for all X 2Kg :

Here it can easily be shown thatK� coincides with the
cone of copositive matrices, which justifies the termi-
nology:

K� D
˚
S symmetric n � n : x>Sx � 0 if x 2 Rn

C

�
;

i. e., a matrix S is copositive [18] (most probably abbre-
viating “conditionally positive-semidefinite”), if S gen-
erates a quadratic form x>Sx taking no negative values
over the positive orthant. The dual of the special pro-
gram overK above is then

max fy : S D Q � yJ 2K�g ;

a linear objective in just one variable y with the
innocent-looking feasibility constraint S 2K�. This
shows that checking membership of K� (and, simi-
larly, ofK) is already NP-hard, and there are many ap-
proaches to algorithmic copositivity detection; for re-
cent developments see, e. g., [7] and references therein.

More generally, a typical primal-dual pair in copos-
itive optimization (COP) is of the following form:

inf fhC; Xi : hAi ; Xi D bi ; i D 1 : m ; X 2Kg

� sup

(X
i

bi yi : y 2 Rm ; S D C � yiAi 2K�
)
:

The inequality above is just standard weak duality, but
observe we have to use inf and sup since – as in general
conic optimization – there may be problems with the
attainability of either or both problems above, and like-
wise there could be a (finite or infinite) positive duality
gap without any further conditions such as strict feasi-
bility (Slater’s condition). For the above representation
of standard quadratic optimization problems, this is not
the case:

min fhQ; Xi : hJ; Xi D 1 ; X 2Kg
D max fy : S D Q � yJ 2K�g :

But for a similar class arising in many applications, the
multi-standard quadratic optimization problems [6],
dual attainability is not guaranteed while the duality
gap is zero – an intermediate form between weak and
strong duality [25].

Recently Burer [8] showed a more general result:
any mixed-binary quadratic optimization problem

min
�
1
2
x>Qx C c>x : Ax D b ; x 2 Rn

C ;

x j 2 f0; 1g ; all j 2 B
	

can (under mild conditions) be represented as COP:

min
�
1
2
hQ̂; X̂i : A(X̂) D b̂; X 2K

	
;

where X̂ and Q̂ are (nC 1) � (nC 1) matrices, and the
size of (A; b̂) is polynomial in the size of (A, b).

Denote by N D
˚
N symmetric n � n : Ni j � 0

for all i; j D 1 : n
�
the cone of nonnegative matrices.

Then evidently

K � P \N � P CN �K� ;

which also shows that K never can be self-dual (note
(P \N )� D P� CN � D P CN ), unlike P D P�
andN DN �. For n � 5, A. Horn noted that the left-
most and the rightmost inclusion above is strict [10,14],
so the middle sets P \N andP CN can only be used
as tractable approximations for the intractable conesK
andK�, respectively.

Copositive approximation hierarchies [3,15,21,22]
start with K0) D P CN and consist of an increasing
sequenceK(r) of cones satisfying [r�0K(r) D intK�,
the cone of strictly copositive matrices, i. e., those that
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generate quadratic forms strictly positive over �. For
instance, a higher-order approximation due to [21]
squares the variables to get rid of sign constraints:
S 2K� if and only if y>Sy � 0 for all y s.t. yi D x2i ,
some x 2 Rn , and this is guaranteed if the n-variable
polynomial of degree 2(rC 2) in x,

p(r)S (x) D
�X

x2i
�r y>Sy D �

X
x2i
�r X

j; k

S jk x2j x
2
k ;

is nonnegative for all x 2 Rn . But this holds in particu-
lar if
(a) p(r)S has no negative coefficients; or if
(b) p(r)S is a sum-of-squares (s.o.s.):

p(r)S (x) D
X
i

[ fi(x)]2 ; fi some polynomials.

This gives the approximation cones

C(r) D fS symmetric n � n : S satisfies (a)g

and

K(r) D fS symmetric n � n : S satisfies (b)g :

While C(r) can be described by linear constraints on
the entries of S, leading to LP formulations, the cones
K(r) need for their description linear matrix inequali-
ties (LMIs), leading to SDP formulations. However, for
large r both are also intractable as they generate prob-
lems on matrices of order O(nrC1 � nrC1), see [3].

Copositive optimization has been receiving increas-
ing attention also because many NP-hard combinato-
rial problems have a representation in this domain; we
start with the historically first such representation, the
maximum (weight) clique problem, which amounts to
finding a largest (or heaviest) clique in an undirected
graph G (with weights on the vertices). Using an StQP
formulation going back to [19] and applying some reg-
ularization [2], the following copositive formulation
was introduced in [4]:

1/!(G) D min
˚
x>QGx : x 2 �

�

D min
˚
hQG ; Xi : hJ; Xi D 1 ; X 2K

�
;

whereQG is a matrix derived from the adjacency matrix
of G (and the weights). Taking the inverse t D 1/y in
the dual of the last problem above, we also arrive at the
formulation of [9] (for the complementary graph):

!(G) D min ft : tQG � J 2K�g :

Here !(G) is the clique number of G, i. e., the size
(weight) of a maximum (weight) clique in G. Replac-
ing K� with its zero-order approximation, we get
a strengthening � 0(G) of the well-known Lovász bound
�(G) [16,17,26]:

� 0(G) D min ft : tQG � J 2 P CN g � !(G) ;

while shrinking further the feasible set to P, we finally
arrive at the Lovász number �(G) which – as � 0(G) –
can be computed in polynomial time:

�(G) D min ft : tQG � J 2 Pg � !(G) :

Strong duality yields, as above,

1/� 0(G) D min fhQG ; Xi : hJ; Xi D 1; X 2 P \N g ;

and a recent improvement over � 0(G) adding a single
valid linear cut motivated by the COP representation is

1/�C (G) D min
˚
hQG ; Xi : hJ; Xi D 1 ;

hC; Xi � 0 ; X 2 P \N
�
� 1/� 0(G) ;

where C 2K� is arbitrary: indeed, for any X 2K we
then have hC; Xi � 0. See [5] for appropriate choices
of C and results, and [9,13,15,22] for higher-order ap-
proximation alternatives, with a particular emphasis
on SDP-based bounds on the clique number. Simi-
lar copositivity optimization approaches, among many
others, were employed to obtain bounds on the (frac-
tional) chromatic number of a graph [11,12], and
graph partitioning and quadratic assignment prob-
lems [23,24].
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13. Gvozdenović N, Laurent M (2006) Semidefinite bounds
for the stability number of a graph via sums of squares
of polynomials. Lecture Notes in Computer Science,
vol 3509/2005, pp 136–151. Integer Programming and
Combinatorial Optimization: 11th International IPCO Con-
ference

14. Hall M, Newman M (1963) Copositive and completely pos-
itive quadratic forms. Proc Cambridge Philos Soc 59:329–
339

15. Lasserre JB (2001) Global optimization with polynomials
and the problem of moments. SIAM J Optim 11:796–817

16. Lovász L (1979) On the Shannon capacity of a graph. IEEE
Trans Inf Theory IT 25:1–7

17. McEliece RJ, Rodemich ER, Rumsey HC (1978) The Lovász’
bound and some generalizations. J Combinat Inf Syst Sci
3:134–152

18. Motzkin TS (1952) Copositive quadratic forms. Natl Bur
Stand Rep 1818 11–22

19. Motzkin TS, Straus EG (1965) Maxima for graphs and a new
proof of a theorem of Turán. Can J Math 17:533–540

20. Murty KG, Kabadi SN (1987) Some NP-complete problems
in quadratic and linear programming. Math Programm
39:117–129

21. Parrilo P (2003) Semidefinite programming relaxations for
semi-algebraic problems. Math Programm 696B:293–320

22. Peña J, Vera J, Zuluaga L (2007) Computing the stability
number of a graph via linear and semidefinite program-
ming. SIAM J Optim 18:87–105

23. Povh J, Rendl F (2006) Copositive and semidefinite re-
laxations of the quadratic assignment problem. Univ.
of Klagenfurt, submitted. Available at http://www.
optimization-online.org/DB_HTML/2006/10/1502.html.
Accessed Nov 2007

24. Povh J, Rendl F (2007) A copositive programming ap-
proach to graph partitioning. SIAM J Optim 18:223–241

25. Schachinger W, Bomze IM (2007) A conic duality Frank–
Wolfe type theorem via exact penalization in quadratic
optimization. Technical Report 2006-10, ISDS, University
of Vienna. to appear in Math Oper Res. Available at http://
www.optimization-online.org/DB_HTML/2007/02/1596.
html. Accessed Nov 2007

26. Schrijver A (1979) A comparisonof the Delsarte and Lovasz
bounds. IEEE Trans Inf Theory IT 25:425–429

Copositive Programming
STANISLAV BUSYGIN

Department of Industrial and Systems Engineering,
University of Florida, Gainesville, USA

MSC2000: 90C25, 90C22

Article Outline

Introduction
Applications

Complexity of Copositive Programming
Models

Approximating Cn with Linear Matrix Inequalities
References

Introduction

Let us denote the set of n � n real symmetric matrices
by

Sn D fX 2 Rn�n ; X D XTg :

We will be considering the following subsets of Sn :
� The n � n symmetric positive semidefinitematrices

SCn D fX 2 Sn; yTXy � 0 8y 2 Rng ;

� The n � n symmetric copositivematrices

Cn D fX 2 Sn ; yTXy � 0 8y 2 Rn ; y � 0g ;
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� The n � n symmetric completely positivematrices

C�n D fX D
kX

iD1

yi yTi ; yi 2 Rn ; yi � 0 (i D 1; : : : ; k)g;

� The n � n symmetric nonnegative matrices

Nn D fX 2 Sn ; X � 0g :

It is easy to see that all these sets are convex cones
(that is, if X and Y belong to one of these sets, then cX,
for any c � 0, and ˛X C (1 � ˛)Y , for any 0 � ˛ � 1,
also do so).

We will denote the Eucledian inner product of A 2
Sn and B 2 Sn by

A � B D
nX

iD1

nX
jD1

ai jbi j D trace(AB) :

For an arbitrary cone of matricesK, we define its dual
coneK� as

K� D fY jX � Y � 0; 8X 2Kg :

The cone of positive semidefinite matrices SCn is dual
to itself, and it is easy to see that the cone of copositive
matrices Cn and the cone of completely positive matri-
ces C�n are dual to each other (generally,K�� DK).

For a given cone of n � n matricesKn , and its dual
cone K�n , we define a pair of conic linear programs
called, correspondingly, primal and dual:

p� D inf
X
fC � X : Ai � X D bi (i D 1; : : : ;m);

X 2 Kng ; (1)

d� D sup
y
fbT y : C�

mX
iD1

yiAiCS D C; S 2K�n g: (2)

When Kn D Nn , we refer to linear programming,
whenKn D SCn , we refer to semidefinite programming,
and when Kn D Cn , we refer to copositive program-
ming.

The conic duality theorem (see, e. g., [9]) establishes
the duality relation between (1) and (2):

Theorem 1 (Conic Duality Theorem) If there exists
an interior feasible solution X0 2 int(K) of (1) and
a feasible solution of (2), then p� D d� and the supre-
mum in (2) is attained. Similarly, if there exist feasible y0

and S0 for (2), where S0 2 int(K�), and a feasible solu-
tion for (1), then p� D d� and the infimum in (1) is
attained.

It is well-known that optimization over the cones SCn
and Nn can be done in polynomial time (in sense
of computing "-optimal solution), but copositive pro-
gramming is NP-hard as we will see below.

Applications

Copositive matrices have a great variety of applications
in mathematics and, especially, in optimization. They
play an essential part in characterization of local so-
lutions of constrained optimization problems [5], in-
cluding the linear complementarity problem. In [1,2,8]
the authors used copositivity to improve convex re-
laxation bounds for quadratic programming problems.
Generally, convex relaxations are the underlying basis
of many crucial results in robustness analysis. For ex-
ample, copositive matrices have been used in the sta-
bility analysis of piecewise linear control systems (in
context of using piecewise quadratic Lyapunov func-
tions [4]).

Complexity of Copositive Programming

Copositive programming can be easily shown to be NP-
hard by reduction from the maximum independent set
problem. In [3], the authors established the following
theorem:

Theorem 2 Let G(V; E) be a given graph with V D
f1 : : : ng. Then the maximum independent set size of G
is the optimum value of the following program:

˛(G) D max On � X (3)

subject to
8<
:

xi j D 0; (i; j) 2 E
trace(X) D 1
X 2 C�n

(4)

where On is the all-one n � n matrix.

Proof. Extreme rays of C�n are rank-one matrices of the
form xxT for nonnegative x 2 Rn . Then, considering
the convex cone

CG D fX 2 C�n : xi j D 0; (i; j) 2 Eg ;
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we can conclude that its extreme rays are of the
form xxT , where the nonnegative x 2 Rn supports an
independent set (i. e., the set fi : xi > 0g is indepen-
dent). Therefore, the extreme points of the set defined
by (4) are given by the intersection of the extreme rays
of CG with the hyperplane On � X D 1.

Since the optimum value of a linear function over
a convex set is attained at an extreme point, there is an
optimum solution of the form

X� D x�x�T ; x� 2 Rn ; x� � 0; kx�k D 1;

and where x� supports an independent set. Therefore,
we can reformulate the program (3) as

max
x

 nX
iD1

xi

!2

; kxk D 1;

x � 0; xi x j > 0) (i; j) … E:

Then, it is easy to see that the maximum is attained
when x supports a maximum independent set and
all xi > 0 are equal to 1/˛(G). This provides the op-
timum value to the program (3) equal to ˛(G). QED.

Since X 2 C�n is always nonnegative, we can reduce
the set of constraints xi j D 0; (i; j) 2 E in (4) to a single
constraint A � X D 0. Thus, the following copositive
program is dual to (3), (4):

˛(G) D min
	;y2R

f� : �I C yA� On D Q; Q 2 Cng :

Therefore, the maximum independent set problem is
reducible to copositive programming. See also [1,2] for
reduction of the standard quadratic optimization prob-
lem to copositive programming.

Furthermore, it can be shown that checking if
a given matrix is not copositve is NP-complete [5] and,
hence, checking matrix copositivity is co-NP-complete.

Models

Approximating Cn with Linear Matrix Inequalities

While, in general, there is no polynomial-time verifi-
able certificate of copositivity, unless co-NP D NP,
in many cases it is still possible to show by a short
argument that a matrix is copositive. For instance, if
the matrix M can be represented as sum of a positive
semidefinite matrix S 2 SCn and a nonnegative matrix

N 2 Nn , then it follows that M 2 Cn . Hence, we can
obtain a semidefinite relaxation of a copositive program
overM introducing the linear matrix constraints:

�
M D S C N
N � 0; S 2 SCn

Parrilo showed in [6] that using sufficiently large sys-
tems of linear matrix inequalities, one can approximate
the copositive cone Cn to any desired accuracy.

Obviously, copositivity of the matrix M is equiv-
alent to (global) nonnegativity of the fourth-degree
form:

P(x) D (x ı x)TM(x ı x)

D

nX
iD1

nX
jD1

Mi jx2i x
2
j � 0; x 2 Rn ; (5)

where “ı” denotes the componentwise (Hadamard)
product. It is shown in [6] that the mentioned de-
composition into positive semidefinite and nonnegative
matrices exists if and only if P(x) can be represented as
sum of squares. Higher-order sufficient conditions for
copositivity proposed by Parrilo in [6] correspond to
checking whether the polynomial

P(r)(x) D

 nX
iD1

x2i

!
P(x) (6)

has a sum-of-squares decomposition (or – a weaker
condition – whether P(r)(x) has only nonnegative co-
efficients). These conditions can be expressed via linear
matrix inequalities over nr � nr symmetric matrices. In
particular, for r D 1, Parrilo showed that the existence
of a sum-of-squares decomposition of P(1)(x) is equiv-
alent to feasibility of the following system (see also [3]):

8̂
ˆ̂<
ˆ̂̂:

M �M(i) 2 SCn ; i D 1; : : : ; n;
M(i)

i i D 0; i D 1; : : : ; n;
M(i)

j j C 2M( j)
i j D 0; i ¤ j;

M(i)
jk CM( j)

i k CM(k)
i j � 0; i < j < k;

where M(i) (i D 1; : : : ; n) are symmetric matrices.
With sufficiently large r, the convergence to the

copositivity constraint on M is guaranteed by the fa-
mous theorem of Pólya [7]:
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Theorem 3 (Pólya) Let f be a homogeneous polyno-
mial which is positive on the simplex

� D

�
x 2 Rn :

nX
iD1

xi D 1; x � 0
	
:

Then, for a sufficiently large N, all the coefficients of the
polynomial
 nX

iD1

xi

!N

f (x)

are positive.
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The notion of cost approximation (CA) was created in
the thesis [39], to describe the construction of the sub-
problem of a class of iterative methods in mathematical
programming. In order to explain the notion of CA, we
will consider the following conceptual problem (the full
generality of the algorithm is explained in detail in [45]
and in [37,38,40,42,43,44,46]):

(
min T(x) :D f (x)C u(x);
s.t. x 2 X;

(1)

where X � Rn is nonempty, closed and convex, u: Rn

! R [ {+1} is lower semicontinuous (l.s.c.), proper
and convex, and f : Rn ! R [ {+ 1} is continuously
differentiable (for short, in C1) on dom u \ X, where
dom denotes ‘effective domain’. This problem is gen-
eral enough to cover convex optimization (f = 0), un-
constrained optimization (f = 0 and X = Rn), and dif-
ferentiable constrained optimization (u = 0). We note

http://www.mit.edu/~parrilo/pubs
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that if int (dom u) \ X is nonempty, then any locally
optimal solution x� satisfies the inclusion

� r f (x�) 2 @u(x�)C NX(x�); (2)

where NX is the normal cone operator for X and @u is
the subdifferential mapping for u. Equivalently, by the
definitions of these two operators,

r f (x�)>(x � x�)C u(x) � u(x�) � 0; x 2 X:

The CA algorithm was devised in order to place
a number of existing algorithms for (1) in a common
framework, thereby facilitating comparisons, for exam-
ple, between their convergence properties. In short, the
method works iteratively as follows. Note that, from (2),
we seek a zero of the mapping [rf + @u +NX]. Given an
iterate, xt 2 dom u \ X, this mapping is approximated
by a monotone mapping, constructed so that a zero of
which is easier to find. Such a point, yt , is then utilized
in the search for a new iterate, xt + 1, having the prop-
erty that the value of some merit function for (1) is re-
duced sufficiently, for example through a line search in
T along the direction of dt := yt � xt .

Instances of the CA Algorithm

To obtain a monotone approximating mapping, we in-
troduce a monotone mapping ˚ t : dom u \ X ! Rn,
which replaces the (possibly nonmonotone) mapping
rf ; by subtracting off the error at xt , [˚ t � rf ](xt),
from ˚ t , so that the resulting mapping becomes [˚ t +
@u +NX] + [rf �˚ t](xt), the CA subproblem becomes
the inclusion

[˚ t C @u C NX](yt)C [r f � ˚ t](xt) 3 0n : (3)

We immediately reach an interesting fixed-point char-
acterization of the solutions to (2):

Theorem 1 (Fixed-point, [45]) The point xt solves (2) if
and only if yt = xt solves (3).

This result is a natural starting point for devising stop-
ping criteria for an algorithm.

Assume now that ˚ t � r't for a convex function
't . We may then derive the inclusion equivalently as
follows. At xt , we replace f with the function 't , and
subtract off the linearization of the error at xt ; the sub-
problem objective function then becomes

T' t (y) :D ' t(y)C u(y)C [r f (xt) � r' t(xt)]>y:

It is straightforward to establish that (3) is the optimal-
ity conditions for the convex problem of minimizing
T' t over X.

Linearization Methods

Our first example instances utilize Taylor expansions of
f to construct the approximations.

Let u = 0 and X = Rn. Let˚ t(y) := (1/� t)Qt y, where
� t > 0 and Qt is a symmetric and positive definite map-
ping in Rn × n. The inclusion (3) reduces to

r f (xt)C
1
�t
Qt(yt � xt) D 0n ;

that is, yt = xt � � t(Qt)�1rf (xt). The direction of yt

� xt , dt := � � t(Qt)�1rf (xt), is the search direction of
the class of deflected gradient methods, which includes
the steepest descent method (Qt := In, the identity ma-
trix) and quasi-Newton methods (Qt equals (an approx-
imation of) r2 f (xt), if positive definite). (See further
[5,35,47,50].)

In the presence of constraints, this choice of ˚ t

leads to yt = PQt

X [xt � � t(Qt)�1rf (xt)], where PQt

X [�] de-
notes the projection onto X with respect to the norm
kzkQt :D

p
z>Qtz. Among the algorithms in this class

we find the gradient projection algorithm (Qt := In)
and Newton’s method (Qt := r2 f (xt), � t := 1). (See
[5,19,27,50].)

A first order Taylor expansion of f is obtained from
choosing 't(y) := 0; this results in T' t (y) = rf (xt)| y
(if u = 0 is still assumed), which is the subproblem ob-
jective in the Frank–Wolfe algorithm ([5,17]; cf. also
� Frank–Wolfe algorithm).

We next provide the first example of the very use-
ful fact that the result of the cost approximation (in the
above examples a linearization), leads to different ap-
proximations of the original problem, and ultimately
to different algorithms, depending on which represen-
tation of the problem to one applies the cost approxi-
mation.

Consider the problem
(
min f (x)
s.t. gi (x) D 0; i D 1; : : : ; `;

(4)

where f and gi, i = 1, . . . , `, are functions in C2. We
may associate this problem with its first order optimal-
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ity conditions, which in this special case is

F(x�; ��) :D
�
rx L(x�; ��)
�r	L(x�; ��)

�
D

�
0n

0`

�
; (5)

where � 2 R` is the vector of Lagrange multipliers for
the constraints in (4), and L(x, �) := f (x)+ �| g(x) is
the associated Lagrangian function. We consider using
Newton’s method for this system, and therefore intro-
duce a (primal-dual) mapping˚ :R2(n+ `)!Rn + ` of the
form

˚((y; p); (x; �)) :D rF(x; �)
�
y
p

�

D

�
r2

x L(x; �) r g(x)>

�r g(x) 0

��
y
p

�
:

The resulting CA subproblem in (y, p) can be written as
the following linear system:

r2
x L(x; �)(y � x)Cr g(x)>p D 0n ;

r g(x)(y � x) D �g(x);

this system constitutes the first order optimality condi-
tions for (e. g., [4, Sec. 10.4])
8̂
<̂
ˆ̂:

min f (x)Cr f (x)>(y � x)
C 1

2 (y � x)>r2
x L(x; �)(y � x)

s.t. g(x)Cr g(x)>(y � x) D 0`;

where we have added some fixed terms in the objective
function for clarity. This is the generic subproblem of
sequential quadratic programming (SQP) methods for
the solution of (4); see, for example, [5,16].

Regularization, Splitting
and Proximal Point Methods

We assume now that f := f 1 + f 2, where f 1 is convex on
dom u \ X, and rewrite the cost mapping as

[r f C @u C NX] D [r' t Cr f1 C @u C NX]

� [r' t � r f2]:

The CA subproblem is, as usual, derived by fixing the
second term at xt ; the difference to the original setup is
that we have here performed an operator splitting in the
mapping rf to keep an additive part from being ap-
proximated. (Note that such a splitting can always be

found by first choosing f 1 as a convex function, and
then define f 2 := f � f 1. Note also that we can derive
this subproblem from the original derivation by simply
redefining 't := 't + f 1.) We shall proceed to derive
a few algorithms from the literature.

Consider choosing 't(y) = 1/(2� t) k y � xt k2, � t
> 0. If f 2 = 0, then we obtain the subproblem ob-
jective T' t (y) = T(y)+ 1/(2 � t) k y � xt k2, which
is the subproblem in the proximal point algorithm
(e. g., [32,33,34,51,52]). This is the most classical algo-
rithm among the regularization methods. More general
choices of strictly convex functions 't are of course pos-
sible, leading for example to the class of regularization
methods based on Bregman functions ([9,14,22]) and
 -divergence functions ([23,54]). If, on the other hand,
f 1 = 0, then we obtain the gradient projection algorithm
if also u = 0.

We can also construct algorithms in between these
two extremes, yielding a true operator splitting. If both
f 1 and f 2 are nonzero, choosing 't = 0 defines a partial
linearization ([25]) of the original objective, wherein
only f 2 is linearized. Letting x = (x>1 , x>2 )|, the choice
't(y) = 1/(2� t) k y1 � xt1 k2 leads to the partial proxi-
mal point algorithm ([7,20]); choosing 't(y) = f (y1, xt2)
leads to a linearization of f in the variables x2.

Several well-known methods can be derived either
directly as CA algorithms, or as inexact proximal point
algorithms. For example, the Levenberg–Marquardt al-
gorithm ([5,49]), which is a Newton-like algorithm
wherein a scaled diagonal matrix is added to the Hes-
sian matrix in order to make the resulting matrix posi-
tive definite, is the result of solving the proximal point
subproblem with one iteration of a Newton algorithm.
Further, the extra-gradient algorithm of [24] is the re-
sult of instead applying one iteration of the gradient
projection algorithm to the proximal point subprob-
lem.

The perhaps most well-known splitting algorithm
is otherwise the class of matrix splitting methods
in quadratic programming (e. g., [28,29,35,36]). In
a quadratic programming problem, we have

f (x) D
1
2
x>Ax C q>x;

where A 2 Rn × n. A splitting (At
1, A

t
2) of this matrix is

one for which A = At
1 + At

2, and it is further termed
regular if At

1 � At
2 is positive definite. Matrix splitting
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methods correspond to choosing

f1(x) D
1
2
x>At

1x;

and results in the CA subproblem mapping y 7�! At
1 y

+ [At
2 xt + q], which obviously is monotone whenever

At
1 was chosen positive semidefinite.
Due to the fact that proximal point and splitting

methods have dual interpretations as augmented La-
grangian algorithms ([51]), a large class of multiplier
methods is included among the CA algorithms. See [45,
Chapt. 3.2–3.3] for more details.

Perturbation Methods

All the above algorithms assume that
i) the mappings @u and NX are left intact; and
ii) the CA subproblem has the fixed-point property of

Theorem 1.
We here relax these assumptions, and are then able
to derive subgradient algorithms as well as perturbed
CA algorithms which include both regularization algo-
rithms and exterior penalty algorithms.

Let [˚ t + NX] + [rf + @u + ˚ t] represent the orig-
inal mapping, having moved @u to the second term.
Then by letting any element �u(xt) 2 @u(xt) repre-
sent this point-to-set mapping at xt, we reach the sub-
problem mapping of the auxiliary problem principle of
[12]. Further letting ˚ t(y) = (1/� t)[y � xt] yields the
subproblem in the classical subgradient optimization
scheme ([48,53]), where, assuming further that f = 0,
yt := PX[xt � � t �u(xt)]. (Typically, `t := 1 is taken.)

Let again [˚ t + @u + NX]+ [rf + ˚ t] represent the
original problem mapping, but further let u be replaced
by an epiconvergent sequence {ut} of l.s.c., proper and
convex functions. An example of an epiconvergent se-
quence of convex functions is provided by convex exte-
rior penalty functions. In this way, we can construct CA
algorithm that approximate the objective function and
simultaneously replace some of the constraints of the
problem with exterior penalties. See [3,13] for example
methods of this type.

One important class of regularization methods
takes as the subproblem mapping [˚ t + rf + @u +
NX], where˚ t is usually taken to be strongly monotone
(cf. (12)). This subproblem mapping evidently does not
have the fixed-point property, as it is not identical to
the original one at xt unless ˚ t(xt) = 0n holds. In order

to ensure convergence, we must therefore force the se-
quence {˚ t} ofmappings to tend to zero; this is typically
done by constructing the sequence as ˚ t := (1/� t)˚ for
a fixed mapping ˚ and for a sequence of � t > 0 con-
structed so that {� t} ! 1 holds. For this class of al-
gorithms, F. Browder [10] has established convergence
to a unique limit point x� which satisfies � ˚(x�) 2
NX�(x�), where X� is the solution set of (2). The origin
of this class of methods is the work of A.N. Tikhonov
[55] for ill-posed problems, that is, problems with mul-
tiple solutions. The classical regularization mapping is
the scaled identity mapping, ˚ t(y) := (1/� t)[y], which
leads to least squares (least norm) solutions. See fur-
ther [49,56].

Variational Inequality Problems

Consider the following extension of (2):

� F(x�) 2 @u(x�)C NX(x�); (6)

where F: X! Rn is a continuous mapping on X. When
F = rf we have the situation in (2), and also in the case
when F(x, y) = (rx˘ (x, y)|, � ry˘ (x, y)|)| holds for
some saddle function ˘ on some convex product set
X × Y (cf. (5)), the variational inequality problem (6)
has a direct interpretation as the necessary optimality
conditions for an optimization problem. In other cases,
however, a merit function (or, objective function), for
the problem (6) is not immediately available. We will
derive a class of suitable merit functions below.

Given the convex function ': dom u\ X! R in C1

on dom u \ X, we introduce the function

 (x) :D sup
y2X

L(y; x); x 2 dom u \ X; (7)

where

L(y; x) :D u(x) � u(y)C '(x)� '(y)

C [F(x) � r'(x)]>(x � y): (8)

We introduce the optimization problem

min
x2X

 (x): (9)

Theorem 2 (Gap function, [45]) For any x 2 X,  (x)
� 0 holds. Further,  (x) = 0 if and only if x solves (6).
Hence, the solution set of (6) (if nonempty) is identical
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to that of the optimization problem (9), and the optimal
value is zero.

The Theorem shows that the CA subproblem defines
an auxiliary function  which measures the violation
of (6), and which can be used (directly or indirectly) as
a merit function in an algorithm.

To immediately illustrate the possible use of this re-
sult, let us consider the extension of Newton’s method
to the solution of (6). Let x 2 dom u \ X, and con-
sider the following cost approximating mapping: y 7�!
˚(y, x) := rF(x)(y � x). The CA subproblem then is
the linearized variational inequality problem of finding
y 2 dom u \ X such that

[F(x)CrF(x)>(y�x)]>(z� y)Cu(z);�u(y) � 0;

8z 2 X: (10)

Assuming that x is not a solution to (6), we are inter-
ested in utilizing the direction d := y� x in a line search
based on amerit function. Wewill utilize the primal gap
function ([2,62]) for this purpose, which corresponds to
the choice ' := 0 in the definition of  . We denote the
primal gap function by  p. Let w be an arbitrary solu-
tion to its inner problem, that is,  p(x) = u(x) � u(w)
+ F(x)|(x � w). The steplength is chosen such that the
value of  p decreases sufficiently; to show that this is
possible, we use Danskin’s theorem and the variational
inequality (10) with z = w to obtain (the maximum is
taken over all w defining  p(x))

 0p(x; d)

:D max
w

n�
F(x)CrF(x)>(x � w)

�>
d C u0(x; d)

o

� � p(x)� d>rF(x)>d;

which shows that d defines a direction of descent with
respect to the merit function p at all points outside the
solution set, whenever F is monotone and in C1 on dom
u \ X. (See also [30] for convergence rate results.) So,
if Newton’s method is supplied with a line search with
respect to the primal gap function, it is globally conver-
gent for the solution of variational inequality problems.

Themerit function and the optimization problem
(9) cover several examples previously considered for the
solution of (6).

The primal gap function, as typically all other gap
functions, is nonconvex, and further also nondiffer-
entiable in general. In order to utilize methods from

differentiable optimization, we consider letting ' be
strictly convex, whence the solution yt to the inner
problem (7) is unique. Under the additional assump-
tion that dom u \ X is bounded and that u is in C1 on
this set,  is in C1 on dom u \ X. Among the known
differentiable gap functions that are covered by this
class of merit functions we find those of [1,18,26,40],
and [31,59,60,61].

Descent Properties

Optimization

Assume that xt is not a solution to (2).We are interested
in the conditions under which the direction of dt := yt �
xt provides a descent direction for the merit function T.
Let dt :D yt�xt , where yt is a possibly inexact solution
to (3). Then, if ˚ t = r't , the requirement is that

T' t (yt) < T' t (xt); (11)

that is, any improvement in the value of the subprob-
lem objective over that at the current iterate is enough
to provide a descent direction. To establish this result,
one simply utilizes the convexity of 't and u and the
formula for the directional derivative of T in the direc-
tion of dt (see [45, Prop. 2.14.b]). We further note that
(11) is possible to satisfy if and only if xt is not a solution
to (2); this result is in fact a special case of Theorem 1.

If ˚ t has stronger monotonicity properties, descent
is also obtained when ˚ t is not necessarily a gradient
mapping, and, further, if it is Lipschitz continuous then
we can establish measures of the steepness of the search
directions, extending the gradient relatedness condi-
tions of unconstrained optimization. Let ˚ t be strongly
monotone on dom u \ X, that is, for x, y 2 dom u \ X,

[˚ t(x) �˚ t(y)]>(x � y) � m˚ t kx � yk2 ; (12)

for some m˚ t > 0. This can be used to establish that

T0(xt ; dt) � �m˚ t


dt

2 :

If yt is not an exact solution to (3), in the sense that for
a vector yt , we satisfy a perturbation of (3) where its
right-hand side 0n is replaced by rt 6D 0n, then dt :D
yt � xt is a descent direction for T at xt if k rt k < m˚ t

k dt k.
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Variational Inequality Problems

The requirements for obtaining a descent direction in
the problem (6) are necessarily much stronger than in
the problem (2), the reason being the much more com-
plex form that the merit functions for (6) takes. (For
example, the directional derivative of T at x in any di-
rection d depends only on those quantities, while the
directional derivative of  depends also on the argu-
ment y which defines its value at x.) Typically, mono-
tonicity of the mapping F is required, as is evidenced
in the above example of the Newton method. If further
a differentiable merit function is used, the requirements
are slightly strengthened, as the following example re-
sult shows.

Theorem 3 (Descent properties, [45,60]) Assume that
X is bounded, u is finite on X and F is monotone and
in C1 on X. Let ': X × X! R be a continuously differ-
entiable function on X × X of the form '(y, x), strictly
convex in y for each x 2 X. Let ˛ > 0. Let x 2 X, y be the
unique vector in X satisfying

 ˛(x) :D max
y2X

L˛(y; x);

where

L˛(y; x) :D u(x)� u(y)

C
1
˛
['(x; x)� '(y; x)]

C

�
F(x)�

1
˛
ry'(x; x)

�>
(x � y):

Then, with d := y � x, either d satisfies

 0˛(x; d) � �� ˛(x); � 2 (0; 1);

or

 ˛(x) � �
1

˛(1 � �)
('(y; x)Crx'(y; x)>d):

A descent algorithm is devised from this result as fol-
lows. For a given x 2 X and choice of ˛ > 0, the CA sub-
problem is solved with the scaled cost approximating,
continuous and iteration-dependent function '. If the
resulting direction does not have the descent property,
then the value of ˛ is increased and the CA subproblem
rescaled and resolved. Theorem 3 shows that a sufficient
increase in the value of ˛ will produce a descent direc-
tion unless x solves (6).

Steplength Rules

In order to establish convergence of the algorithm, the
steplength taken in the direction of dt must be such that
the value of the merit function decreases sufficiently.
An exact line search obviously works, but we will intro-
duce simpler steplength rules that do not require a one-
dimensional minimization to be performed.

The first is the Armijo rule. We assume temporarily
that u = 0. Let ˛, ˇ 2 (0, 1), and ` :D ˇ{ , where { is the
smallest nonnegative integer i such that

f (xt C ˇ i dt) � f (xt) � ˛ˇ ir f (xt)>dt : (13)

There exists a finite integer such that (13) is satisfied for
any search direction d

t
:D yt�xt satisfying (11), by the

descent property and Taylor’s formula (see [45, Lemma
2.24.b]).

In the case where u 6D 0, however, the situation
becomes quite different, since T := f + u is nondif-
ferentiable. Simply replacing rf (xt)| dt with T0(xt ;dt)
does not work. We can however use an overestimate of
the predicted decrease T0(xt ;dt). Let ˛, ˇ 2 (0, 1), and
` :D ˇ{ , where { is the smallest nonnegative integer i
such that

T(xt C ˇ i dt) � T(xt)

� ˛ˇ i [r' t(xt) � r' t(yt)]>dt ;

where now yt necessarily is an exact solution to (3),
and 't must further be strictly convex. We note that
T0(xt ;dt) � [r't(xt) � r't(yt)]| dt indeed holds, with
equality in the case where u = 0 and X = Rn (see [45,
Remark 2.28]).

To develop still simpler steplength rules, we further
assume that rf is Lipschitz continuous, that is, that for
x, y 2 dom u \ X,

kr f (x)� r f (y)k � Mr f kx � yk ;

for some Mr f > 0. The Lipschitz continuity assump-
tion implies that for every ` 2 [0, 1],

T(xt C `dt) � T(xt)

� `
�
r' t(xt) � r' t(yt)

�> dt

C
Mr f

2
`2


dt

2 ;

adding a strong convexity assumption on 't yields that

T(xt C `dt)� T(xt) � `
�
�m' t C

Mr f `

2

�

dt

2 :



Cost Approximation Algorithms C 573

This inequality can be used to validate the relaxation
step, which takes

`t 2

�
0;

2m' t

Mr f

�
\ [0; 1]; (14)

and the divergent series steplength rule,

[0; 1] � f`tg ! 0;
1X
tD0

`t D 1: (15)

In the case of (14), descent is guaranteed in each step,
while in the case of (15), descent is guaranteed after a fi-
nite number of iterations.

Convergence Properties

Convergence of the CA algorithm can be established
under many combinations of
i) the properties of the original problem mappings;
ii) the choice of forms and convexity properties of the

cost approximating mappings;
iii) the choice of accuracy in the computations of the

CA subproblem solutions;
iv) the choice of merit function; and
v) the choice of steplength rule.
A subset of the possible results is found in [45, Chapt.
5–9]. Evident from these results is that convergence re-
lies on reaching a critical mass in the properties of the
problem and algorithm, and that, given that this critical
mass is reached, there is a very large freedom-of-choice
how this mass is distributed. So, for example, weaker
properties in the monotonicity of the subproblem must
be compensated both by stronger coercivity conditions
on the merit function and by the use of more accurate
subproblem solutions and steplength rules.

Decomposition CA Algorithms

Assume that dom u \ X is a Cartesian product set, that
is, for some finite index set C and positive integers ni
with

P
i2C ni D n,

X D
Y
i2C

Xi ; Xi � Rni ;

u(x) D
X
i2C

ui(xi); ui : Rni ! R[ fC1g:

Such problems arise in applications of equilibrium pro-
gramming, for example in traffic ([41]) and Nash equi-

librium problems ([21]); of course, box constrained and
unconstrained problems fit into this framework as well.

The main advantage of this problem structure is
that one can devise several decomposition versions of
the CA algorithm, wherein components of the original
problem are updated upon in parallel or sequentially,
independently of each other. With the right computer
environment at hand, this canmean a dramatic increase
in computing efficiency. We will look at three comput-
ing models for decomposition CA algorithm, and com-
pare their convergence characteristics. In all three cases,
decomposition is achieved by choosing the cost approx-
imating mapping separable with respect to the partition
of Rn defined by C:

˚(x)> D [˚1(x1)>; : : : ; ˚jCj(xjCj)>]: (16)

The individual subproblems, given x, then are to find yi,
i 2 C, such that

˚i (yi)C @ui (yi )C NXi (yi )C Fi(x) � ˚i(xi)

3 0ni ;

if ˚ i � r' i for some convex function ' i: dom ui \ Xi

! R in C1 on dom ui \ Xi, then this is the optimality
conditions for

min
yi2Xi

T'i (yi)

:D 'i(yi )C ui(yi )C [Fi(x) � r'i(xi)]>yi :

Sequential Decomposition

The sequential CA algorithm proceeds as follows. Given
an iterate xt 2 dom u\X at iteration t, choose an index
it 2 C and a cost approximating mapping˚ t

i t , and solve
the problem of finding ytit 2 R

nit such that (i = it)

˚ t
i (y

t
i )C @ui (yti )C NXi (y

t
i )C Fi(xt) �˚ t

i (x
t
i )

3 0ni :

Let ytj := xtj for all j 2 C \ {it} and dt := yt � xt . The next
iterate, xt + 1, is then defined by xt + 1 := xt + `tdt , that is,

xtC1
j :D

(
xt
j C `t(y

t
j � xt

j); j D it ;
xt
j ; j ¤ it ;

for some value of `t such that xtit + `t(y
t
it � xtit ) 2 dom

uit \ Xit and the value of a merit function  is reduced
sufficiently.
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Assume that F is the gradient of a function f : dom u
\ X! R. Let the sequence {it} be chosen according to
the cyclic rule, that is, in iteration t,

it :D t (mod jCj)C 1:

Choose the cost approximating mapping (i = it)

yi 7! ˚ t
i (yi) :D ri f (xt

¤i ; yi );

yi 2 dom ui \ Xi :

Note that this mapping is monotone whenever f is con-
vex in xi. Since ˚ t

i (xti) = r if (xt), the CA subproblem is
equivalent (under this convexity assumption) to finding

yti 2 arg min
yi2Xi
f f (xt

¤i ; yi )C ui(yi )g:

An exact line search would produce `t := 1, since yti
minimizes f (x 6D i, �)+ ui over dom ui \ Xi (the remain-
ing components of x kept fixed), and so xtC1

i := yti . The
iteration described is that of the classic Gauss–Seidel al-
gorithm ([35]) (also known as the relaxation algorithm,
the coordinate descent method, and the method of suc-
cessive displacements), originally proposed for the solu-
tion of unconstrained problems. The Gauss–Seidel al-
gorithm is hence a special case of the sequential CA al-
gorithm.

In order to compare the three decomposition ap-
proaches, we last provide the steplength requirement in
the relaxation steplength rule (cf. (14)). The following
interval is valid under the assumptions that for each i
2 C, r i f is Lipschitz continuous on dom ui \ Xi and
each mapping ˚ t

i is strongly monotone:

`i;t 2

�
0;

2m˚ t
i

Mri f

�
\ [0; 1]: (17)

Synchronized Parallel Decomposition

The synchronized parallel CA algorithm is identical to
the original scheme, where the CA subproblems are
constructed to match the separability structure in the
constraints.

We presume the existence of a multiprocessor pow-
erful enough to solve the |C| CA subproblems in par-
allel. (If fewer than |C| processors are available, then ei-
ther some of the subproblems are solved in sequence or,
if possible, the number of components is decreased; in

either case, the convergence analysis will be the same,
with the exception that the value of |C| may change.)

In the sequential decomposition CA algorithm, the
steplengths are chosen individually for the different
variable components, whereas the original CA algo-
rithm uses a uniform steplength, `t . If the relative scal-
ing of the variable components is poor, in the sense that
F or u changes disproportionally to unit changes in the
different variables xi, i 2 C, then this ill-conditioning
may result in a poor performance of the parallel algo-
rithm. Being forced to use the same steplength in all the
components can also have an unwanted effect due to
the fact that the values of some variable components are
close to their optimal ones while others may be far from
optimal, in which case one might for example wish to
use longer steps for the latter components. These two
factors lead us to introduce the possibility to scale the
component directions in the synchronized parallel CA
algorithm. We stress that such effects cannot in general
be accommodated into the original algorithm through
a scaling of the mappings˚ t

i . The scaling factors si, t in-
troduced are assumed to satisfy

0 < si � si;t � 1; i 2 C:

Note that the upper bound of one is without any loss of
generality.

Assume that F is the gradient of a function f : dom u
\ X! R. In the parallel algorithm, choose the cost ap-
proximating mapping of the form (16), where for each
i 2 C,

yi 7! ˚ t
i (yi ) :D ri f (xt

¤i ; yi );

yi 2 dom ui \ Xi :

This mapping is monotone on dom u \ X whenever f
is convex in each component xi. Since ˚ t

i(xti ) = r if (xt),
i 2 C, it follows that the CA subproblem is equivalent
(under the above convexity assumption on f ) to finding

yti 2 arg min
yi2Xi
f f (xt

¤i ; yi )C ui(yi )g:

Choosing `t := 1 and si, t := 1, i 2 C, yields xt + 1 := yt ,
and the resulting iteration is that of the Jacobi algo-
rithm [8,35] (also known as themethod of simultaneous
displacements). The Jacobi algorithm, which was origi-
nally proposed for the solution of systems of equations,
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is therefore a parallel CA algorithm where the cost ap-
proximating mapping is (18) and unit steps are taken.

The admissible step in component i is `si, t 2 [0, 1],
where

` 2

�
0;min

i2C

� 2m˚ t
i

si;tMr f

	�
: (18)

The maximal step is clearly smaller than in the se-
quential approach. To this conclusion contributes both
the minimum operation and that Mri f � Mrf ; both
of these requirements are introduced here because the
update is made over all variable components simulta-
neously. (An intuitive explanation is that the sequen-
tial algorithm utilizes more recent information when it
constructs the subproblems.) One may therefore expect
the sequential algorithm to converge to a solution with
a given accuracy in less iterations, although the paral-
lel algorithm may be more efficient in terms of solution
time; the scaling introduced by si, t may also improve
the performance of the parallel algorithm to some ex-
tent.

Although the parallel version of the algorithm may
speed-up the practical convergence rate compared to
the sequential one, the need for synchronization in
carrying out the updating step will generally deterio-
rate performance, since faster processors must wait for
slower ones. In the next section, we therefore introduce
an asynchronous version of the parallel algorithm, in
which processors do not wait to receive the latest infor-
mation available.

Asynchronous Parallel Decomposition

In the algorithms considered in this Section, the syn-
chronization step among the processors is removed. Be-
cause the speed of computations and communications
can vary among the processors, and communication
delays can be substantial, processors will perform the
calculations out of phase with each other. Thus, the ad-
vantage of reduced synchronization is paid for by an
increase in interprocessor communications, the use of
outdated information, and a more difficult convergence
detection (see [8]). (Certainly, the convergence analysis
also becomes more complicated.) Recent numerical ex-
periments indicate, however, that the introduction of
such asynchronous computations can substantially en-
hance the efficiency of parallel iterative methods (e. g.,
[6,11,15]).

The model of partial asynchronism that we use is as
follows. For each processor (or, variable component) i
2 C, we introduce
a) initial conditions, xi(t) := x0i 2 Xi, for all t � 0;
b) a set Ti of times at which xi is updated; and
c) a variable � ij(t) for each j 2 C and t 2 Ti, denoting

the time at which the value of xj used by processor
i at time t is generated by processor j, satisfying 0 �
� ij(t)� t for all j 2 C and t � 0.

We note that the sequential CA algorithm and the
synchronized parallel CA algorithm can both be ex-
pressed as asynchronous algorithms: the cyclic sequen-
tial algorithm model is obtained from the choices Ti

:= [k� 0{|C| k + i � 1} and � ij(t) := t, while the syn-
chronous parallel model is obtained by choosing Ti :=
{1, 2, . . . } and � ij(t) := t, for all i, j and t.

The communication delay from processor j to pro-
cessor i at time t is t� � ij(t). The convergence of the
partially asynchronous parallel decomposition CA algo-
rithm is based on the assumption that this delay is upper
bounded: there exists a positive integer P such that
i) for every i 2 C and t � 0, at least one element of {t,

. . . , t + P � 1} belongs to Ti;
ii) 0 � t � � ij(t) � P � 1 holds for all i, j 2 C and all t
� 0; and

iii) � ii (t) = t holds for all i 2 C and all t � 0.

In short, parts i) and ii) of the assumption state
that no processor waits for an arbitrarily long time to
compute a subproblem solution or to receive a mes-
sage from another processor. (Note that a synchronized
model satisfies P = 1.) Part iii) of the assumption states
that processor i always uses the most recent value of its
own component xi of x, and is in [58] referred to as
a computational nonredundancy condition. This condi-
tion holds in general when no variable component is
updated simultaneously by more than one processor,
as, for example, in message passing systems. For further
discussions on the assumptions, we refer the reader to
[8,57]; we only remark that they are easily enforced in
practical implementations.

The iterate x(t) is defined by the vector of xi(t), i
2 C. At a given time t, processor i has knowledge of
a possibly outdated version of x(t); we let

xi (t)> :D
h
x1(� i1(t))

>; : : : ; xjCj(� ijCj(t))
>
i
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denote this vector. (Note that iii) above implies the re-
lation xii(t) := xi(� ii(t)) = xi(t).)

To describe the (partially) asynchronous parallel
CA algorithm, processor i updates xi(t) according to

xi(t C 1) :D xi(t)C `si (yi (t)� xi
i (t));

t 2 T i ;

where yi(t) solves the CA subproblem defined at xi(t),
and si 2 (0, 1] is a scaling parameter. (We define di(t) :=
yi(t)� xii(t) to be zero at each t 62 Ti.)

The admissible steplength for i 2 C is `si 2 [0, 1],
where

` 2

 
0;

2mini2Cf
m˚i
s i
g

Mr f [1C (jCj C 1)P]

!
: (19)

If further for someM� 0 and every i2 C, all vectors
x, y in dom u\ X with xi = yi satisfy

kri f (x) � ri f (y)k � M kx � yk ; (20)

then, in the above result, the steplength restrictions are
adjusted to

` 2

 
0;

2mini2Cf
m˚i
s i
g

Mr f C (jCj C 1)MP

!
:

(We interpret the property (20) as a quantitative mea-
sure of the coupling between the variables.)

Most important to note is that the upper bound
on ` is (essentially) inversely proportional to the maxi-
mal allowed asynchronism P; this is very intuitive, since
if processors take longer steps then they should ex-
change information more often. Conversely, the more
outdated the information is, the less reliable it is, hence
the shorter step.

The relations among the steplengths in the three
approaches (cf. (17), (18), and (19)) quantify the intu-
itive result that utilizing an increasing degree of paral-
lelism and asynchronism results in a decreasing quality
of the step directions, due to the usage of more out-
dated information; subsequently, smaller steplengths
must be used. More detailed discussions about this
topic is found in [45, Sect. 8.7.2].

See also

� Dynamic Traffic Networks
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Introduction/Background

Financial risk management has evolved over the past
two decades in terms of both its theory and its prac-
tices. Economic uncertainties, changes in the business
environment and the introduction of new complex fi-
nancial products (e. g., financial derivatives) led finan-
cial institutions and regulatory authorities to the devel-
opment of a new framework for financial risk manage-
ment, focusing mainly on the capital adequacy of banks
and credit institutions.

Banks and other financial institutions are exposed
to many different forms of financial risks. Usually these
are categorized as [14]:

� Market risk that arises from the changes in the prices
of financial securities and currencies.

� Credit risk originating from the inability of firms
and individuals to meet their debt obligations to
their creditors.

� Liquidity risk that arises when a transaction cannot
be conducted at the existing market prices or when
early liquidation is required in order to meet pay-
ments obligations.

� Operational risk that originate from human and
technical errors or accidents.

� Legal risk which is due to legislative restrictions on
financial transactions.

Among these types of risk, credit risk is considered as
the primary financial risk in the banking system and ex-
ists in virtually all income-producing activities [7].How
a bank selects and manages its credit risk is critically
important to its performance over time.

In this context credit risk management defines the
whole range of activities that are implemented in order
to measure, monitor and minimize credit risk. Credit
risk management has evolved dramatically over the
last 20 years. Among others, some factors that have
increased the importance of credit risk management
include [2]: (i) the worldwide increase in the num-
ber of bankruptcies, (ii) the trend towards disinterme-
diation by the highest quality and largest borrowers,
(iii) the increased competition among credit institu-
tions, (iv) the declining value of real assets and collat-
eral in many markets, and (v) the growth of new finan-
cial instruments with inherent default risk exposure,
such as credit derivatives.

Early credit risk management was primarily based
on empirical evaluation systems of the creditworthiness
of a client. CAMEL has been the most widely used sys-
tem in this context, which is based on the empirical
combination of several factors related to capital, assets,
management, earnings and liquidity.

It was soon realized, however, that such empirical
systems cannot provide a solid and objective basis for
credit risk management. This led to an outgrowth of
studies from academics and practitioners on the devel-
opment of new credit risk assessment systems. These
efforts were also motivated by the changing regulatory
framework that now requires banks to implement spe-
cific methodologies for managing and monitoring their
credit portfolios [4].



Credit Rating and Optimization Methods C 579

The existing practices are based on sophisticated
statistical and optimization methods, which are used
to develop a complete framework for measuring and
monitoring credit risk. Credit rating models are in the
core of this framework and are used to assess the credit-
worthiness of firms and individuals. The following sec-
tions describe the functionality of credit rating systems
and the type of optimization methods that are used
in some popular techniques for developing rating sys-
tems.

Definitions

As already noted, credit risk is defined as the likelihood
that an obligor (firmor individual) will be unable or un-
willing to fulfill debt obligations towards the creditors.
In such a case, the creditors will suffer losses that have
to be measured as accurately as possible.

The expected loss Lit over a period t from granting
credit to a given obligor i can be measured as follows:

Lit D PDitLGDiEADi

where PDit is the probability of default for the obligor i
in the time period t, LGDi is the percentage of exposure
the bank might lose in case the borrower defaults and
EADi is the amount outstanding in case the borrower
defaults. The time period t is usually taken equal to one
year.

In the new regulatory framework default is consid-
ered to have occurred with regard to a particular obligor
when one or more of the following events has taken
place [4,11]:
� it is determined that the obligor is unlikely to pay its

debt obligations in full;
� a credit loss event associated with any obligation of

the obligor;
� the obligor is past due more than 90 days on any

credit obligation; or
� the obligor has filed for bankruptcy or similar pro-

tection from creditors.
The aim of credit rating models is to assess the prob-

ability of default for an obligor, whereas other models
are used to estimate LGD and EAD. Rating systems
measure credit risk and differentiate individual cred-
its and groups of credits by the risk they pose. This
allows bank management and examiners to monitor
changes and trends in risk levels thus promoting safety

and soundness in the credit granting process. Credit
rating systems are also used for credit approval and
underwriting, loan pricing, relationship management
and credit administration, allowance for loan and lease
losses and capital adequacy, credit portfolio manage-
ment and reporting [7].

Formulation

Generally, a credit rating model can be considered as
a mapping function f : Rn �! G that estimates the
probability of default of an obligor described by a vec-
tor x 2 Rn of input features and maps the result to a set
G of risk categories. The feature vector x represents all
the relevant information that describes the obligor, in-
cluding financial and nonfinancial data.

The development of a rating model is based on the
process of Fig. 1.

The process begins with the collection of appropri-
ate data regarding known cases in default and nonde-
fault cases. These data can be taken from the historical
database of a bank, or from external resources. At this
data selection stage, some preprocessing of the data is
necessary in order to transform the obtained data into
useful features, to clean out the data from possible out-
liers and to select the appropriate set of features for the
analysis. These steps lead to the final data fx i ; yigmiD1,
where x i is the input feature vector for obligor i, yi in
the known status of the obligor (e. g. yi D �1 for cases

Credit Rating and OptimizationMethods, Figure 1
The process for developing credit rating models
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in default and yi D 1 for nondefault cases), and m in
the number of observations in the data set. These data,
which are used for model development, are usually re-
ferred to as training data.

The second stage involves the optimization process,
which refers to the identification of the model’s pa-
rameters that best fit the training data. In the simplest
case, the model can be expressed as a linear function of
the form:

f (x) D xˇ C ˇ0

where ˇ 2 Rn is the vector with the coefficients of the
selected features in the model and ˇ0 is a constant term.
Other types of nonlinear models are also applicable.

In the above linear case, the objective of the opti-
mization process is to identify the optimal parameter
vector ˛ D (ˇ; ˇ0) that best fit the training data. This
can be expressed as an optimization problem of the fol-
lowing general form:

min
˛2S

L(˛; X) (1)

where S is a set of constraints that define the feasible
(acceptable) values for the parameter vector ˛, X is the
training data set and L is a loss function measuring the
differences between the model’s output and the given
classification of the training observations.

The result of the model optimization process are
validated using another sample of obligors with known
status. This is referred to as the validation sample. Typ-
ically it consists of cases different than the ones of the
training sample and for a future time period. The op-
timal model is applied to these new observations and
its predictive ability is measured. If this is acceptable,
then the model’s outputs are used to define a set of risk
rating classes (usually 10 classes are used). Each rating
class is associated with a probability of default and it
includes borrowers with similar credit risk levels. The
defined rating needs also to be validated in terms of its
stability over time, the distribution of the borrowers in
the rating groups, and the consistency between the es-
timated probabilities of default in each group and the
empirical ones which are taken from the population of
rated borrowers.

Methods/Applications

The optimization problem (1) is expressed in differ-
ent forms depending on the method used to develop
the rating model. The characteristics of some popular
methods are outlined below.

Logistic Regression

Logistic regression is the most widely usedmethod in fi-
nancial decision-making problems, with numerous ap-
plications in credit risk rating. Logistic regression as-
sumes that the log of the probability odds is a linear
function:

log
p

1 � p
D ˇ0 C xˇ

where p D Pr(1 j x) is the probability that an obligor x
is a member of class 1, which is then expressed as

p D
h
1C exp�(ˇ0Cxˇ)

i�1

The parameters of the model (constant term ˇ0 and
coefficient vector ˇ) are estimated tomaximize the con-
ditional likelihood of the classification given the train-
ing data. This is expressed as

max
ˇ0;ˇ2R

mY
iD1

Pr(yi j x i)

which can be equivalently written as

max
ˇ0;ˇ2R

mX
iD1

�
yi C 1
2

ln(pi)C
1 � yi

2
ln(1� pi )

�

where yi D 1 if obligor i is in the nondefault group and
yi D �1 otherwise.

Nonlinear optimization techniques such as the
Newton algorithm are used to perform this optimiza-
tion.

Logistic regression has been widely applied in credit
risk rating both by academics and by practitioners [1].
Its advantages are mainly related to its simplicity and
transparency: it provides direct estimates of the proba-
bilities of default as well as estimates for the significance
of the predictor variables and it is computationally fea-
sible even for large data sets.
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Neural Networks

Neural networks is a popular methodology for devel-
oping decision-making models in complex domains.
A neural network is a network of parallel processing
units (neurons) organized into layers. A typical struc-
ture of a neural network (Fig. 2) includes the following
structural elements:
1. An input layer consisting of a set of nodes (process-

ing units – neurons); one for each input to the net-
work.

2. An output layer consisting of one or more nodes de-
pending on the form of the desired output of the
network. In classification problems, the number of
nodes of the output layer is determined in accor-
dance with the the number of groups.

3. A series of intermediate layers referred to as hidden
layers. The nodes of each hidden layer are fully con-
nected with the nodes of the subsequent and the pro-
ceeding layer.
Each connection between two nodes of the network

is assigned a weight representing the strength of the
connection. On the basis of the connections’ weights,
the input to each node is determined as the weighted
average of the outputs from all the incoming connec-
tions. Thus, the input inir to node i of the hidden layer
r is defined as follows:

inir D

r�1X
jD0

n jX
kD1

wj
ikoik C �ir

Credit Rating and OptimizationMethods, Figure 2
A typical architecture of a neural network

where nj is the number of nodes at the hidden layer j,
wik is the weight of the connection between node i at
layer r and node k at layer j, ok j is the output of node k
at layer j and �ir an bias term.

The output of each node is specified through
a transformation function. The most common form of
this function is the logistic function:

oir D (1C exp�ini j)�1

The determination of the optimal neural net-
work model requires the estimation of the connec-
tion weights and the bias terms of the nodes. The
most widely used network training methodology is the
backpropagation approach [18]. Nonlinear optimiza-
tion techniques are used for this purpose [10,13,16].

Neural networks have become increasingly popu-
lar in recent years for the development of credit rating
models [3]. Their main advantages include their abil-
ity to model complex nonlinear relationships in credit
data, but they have also been criticized for their lack of
transparency, the difficulty of specifying a proper archi-
tecture and the increased computational resources that
are needed for large data sets.

Support Vector Machines

Support vector machines (SVMs) have become an in-
creasingly popular nonparametric methodology for de-
veloping classification models. In a dichotomous clas-
sification setting, SVMs can be used to develop a linear
decision function f (x) D sgn(xˇ C ˇ0).

The optimal decision function f should maximize
the margin induced in the separation of the classes [24],
which is defined as 2/kˇk. Thus, the estimation of the
optimal model is expressed as a quadratic program-
ming problem of the following from:

min 1
2ˇ
>ˇ C Ce>d

subject to Y(Xˇ C eˇ0)C d � e

ˇ; ˇ0 2 R; d � 0

(2)

where X is anm�nmatrix with the training data, Y
is anm�mmatrix such that Yii D yi and Yi j D 0 for all
i ¤ j, d is m � 1 vector with nonnegative error (slack)
variables defined such that di > 0 iff yi (x iˇCˇ0) < 1, e
is am�1 vector of ones, and C > 0 is a user-defined con-
stant representing the trade-off between the two con-
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flicting objectives (maximization of the separating mar-
gin and minimization of the training errors).

SVMs can also be used to develop nonlinear
models. This is achieved by mapping the problem
data to a higher-dimensional space H (feature space)
through a transformation of the form x ix>j D

�(x i )�>(x j). The mapping function � is implicitly de-
fined through a symmetric positive definite kernel func-
tion K(x i ; x j) D �(x i )�>(x j) [22]. The representation
of the data using the kernel function enables the devel-
opment of a linear model in the feature space H.

For large training sets several computational proce-
dures have been proposed to enable the fast training of
SVM models. Most of these procedures are based on
a decomposition scheme. The optimization problem (2)
is decomposed into smaller subproblems taking advan-
tage of the sparse nature of SVM models, since only
a small part of the data (the support vectors), contribute
to the final form of the model. A review of the algo-
rithms for training SVMs can be found in [6].

SVMs seem to be a promising methodology for
developing credit rating models. The algorithmic op-
timization advances enable their application to large
credit data sets and they provide a unified framework
for developing both linear and nonlinear models. Re-
cent application of SVMs in credit rating can be found
in [9,12,21].

Multicriteria Value Models
and Linear Programming Techniques

The aforementioned classification methods assume that
the groups are defined in a nominal way (i. e., the
grouping provides a simple description of the cases).
However, in credit risk modeling the groups are defined
in an ordinal way, in the sense that an obligor classified
in a low risk group is preferred to an obligor classified in
a high risk group (in terms of its probability of default).
Multicriteria methods are well-suited to the study of or-
dinal classification problems [26].

A typical multicriteria method that is well-suited for
the development of credit rating models is the UTADIS
method. The method leads to the development of an
multiattribute additive value function:

V (x) D
nX

jD1

wjv j(x j)

where wj is the weight of attribute j, and vj(x j) is the
corresponding marginal value function. Each marginal
value function provides a monotone mapping of the
performance of the obligors on the corresponding at-
tribute in a scale between 0 (high risk) and 1 (low
risk). According to [15], such an additive value func-
tion model is well-suited for credit scoring and is widely
used by banks in their internal rating systems.

Using a piece-wise linear modeling approach, the
estimation of the value function is performed based on
a set of training data using linear programming tech-
niques. For a two-class problem, the general form of the
linear programming formulation is as follows [8]:

min d1 C d2 C � � � C dm
subject to: yi [V(x i ) � ˇ]C di � ı; 1; 2; : : : ; m

w1 C w2 C � � � C wn D 1
wj; di ; ˇ � 0

where ˇ is a value threshold that distinguishes the two
classes, ı is a small positive user-defined constant and
di D maxf0; ı � yi [V(x i)� ˇ]g denotes the classifica-
tion error for obligor i.

Extensions of this framework and alternative lin-
ear programming formulations with applications to
credit risk rating have been presented by [5,17,19]. The
main advantages of these methodologies involve their
computational efficiency and the simplicity and trans-
parency of the resulting models.

Evolutionary Optimization

Evolutionary algorithms (EA) are stochastic search and
optimization heuristics inspired from the theory of nat-
ural evolution. In an EA, different possible solutions of
an optimization problem constitute the individuals of
a population. The quality of each individual is assessed
with a fitness (objective) function. Better solutions are
assigned higher fitness values than worse performing
solutions. The key idea of EAs is that the optimal so-
lution can be found if an initial population is evolved
using a set of stochastic genetic operators, similar to the
“survival of the fittest” mechanism of natural evolution.
The fitness values of the individuals in a population
are used to define how they will be propagated to sub-
sequent generations of populations. Most EAs include
operators that select individuals for reproduction, pro-
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duce new individuals based on those selected, and de-
termine the composition of the population at the sub-
sequent generation.

Well-known EAs and similar metaheuristic tech-
niques include, among others, genetic algorithms, ge-
netic programming, tabu search, simulated annealing,
ant colony optimization and particle swarm optimiza-
tion. EAs have been used to facilitate the development
of credit rating systems addressing some important is-
sues such as feature selection, rule extraction, neural
network development, etc. Some recent applications
can be found in the works of Varetto [20], Salcedo-
Sanza et al. [25] and Tsakonas et al. [23].

Conclusions

Credit rating systems are in the core of the new regula-
tory framework for the supervision of financial institu-
tions. Such systems support the credit granting process
and enable the measurement and monitoring of credit
risk exposure.

The increasing volume of credit data which are
available for developing rating systems highlight the
importance of implementing efficient optimization
techniques for the construction of rating models. The
existing optimization methods used in this field, are
mainly based on nonlinear optimization, linear pro-
gramming and evolutionary algorithms.

Future research is expected to take advantage of
the advances in computer science, algorithmic devel-
opments regarding new forms of decision models, the
analysis of the combination of different models, the
comparative investigation on the performance of the
existing methods and the implementation into decision
support system that can be used by credit analysts in
their daily practice.
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Introduction

From the early days of linear optimization (LO) (or lin-
ear programming), many people have been looking for
a pivot algorithm that avoids the two-phase procedure
needed in the simplex method when solving the general
LO problem in standard primal form

min
˚
c>x : Ax D b; x � 0

�
;

and its dual

max
˚
b>y : A>y � c

�
:

Such a method was assumed to rely on the intrinsic
symmetry behind the primal and dual problems (i. e. it
hoped to be selfdual), and it should be able to start with
any basic solution.

There were several attempts made to relax the fea-
sibility requirement in the simplex method. It is im-
portant to mention Dantzig’s [7] parametric selfdual
simplex algorithm. This algorithm can be interpreted
as Lemke’s algorithm [22] for the corresponding lin-
ear complementarity problem (cf. � Linear comple-
mentarity problem) [23]. In the 1960s people realized
that pivot sequences through possibly infeasible basic
solutions might result in significantly shorter paths to
the optimum. Moreover a selfdual one phase proce-
dure was expected to make linear programming more
easily accessible for broader public. Probably these ad-
vantages stimulated the introduction of the criss-cross
method by S. Ziont [39,40].

Ziont’s Criss-Cross Method

Assuming that the reader is familiar with both the
primal and dual simplex methods, Ziont’s criss-cross
method can easily be explained.
� It can be initialized by any, possibly both primal and

dual infeasible basis.
If the basis is optimal, we are done.
If the basis is not optimal, then there are some
primal or dual infeasible variables. One might
choose any of these.
It is advised to choose once a primal and then
a dual infeasible variable, if possible.
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� If the selected variable is dual infeasible, then it
enters the basis and the leaving variable is chosen
among the primal feasible variables in such a way
that primal feasibility of the currently primal feasi-
ble variables is preserved.

If no such basis exchange is possible another in-
feasible variable is selected.

� If the selected variable is primal infeasible, then it
leaves the basis and the entering variable is chosen
among the dual feasible variables in such a way that
dual feasibility of the currently dual feasible vari-
ables is preserved.

If no such basis exchange is possible another in-
feasible variable is selected.

If the current basis is infeasible, but none of the infeasi-
ble variables allows a pivot fulfilling the above require-
ments then it is proved that the LO problem has no op-
timal solution.

Once a primal or dual feasible solution is reached
then Ziont’s method reduces to the primal or dual sim-
plex method, respectively.

One attractive character of Ziont’s criss-cross
method is primal-dual symmetry (selfduality), and this
alone differentiates itself from the simplex method.
However it is not clear how one can design a finite ver-
sion (i. e. a finite pivot rule) of this method. Both lex-
icographic perturbation and minimal index resolution
seem not to be sufficient to prove finiteness in the gen-
eral case when the initial basis is both primal and dual
infeasible. Nevertheless, although not finite, this is the
first published criss-cross method in the literature.

The other thread, that lead to finite criss-cross
methods, was the intellectual effort to find finite, other
than the lexicographic rule [4,8], variants of the simplex
method. These efforts were also stimulated by study-
ing the combinatorial structures behind linear pro-
gramming. From the early 1970s in several branches of
the optimization theory, finitely convergent algorithms
were published. In particular A.W. Tucker [32] intro-
duced the consistent labeling technique in the Ford–
Fulkersonmaximal flow algorithm; pivot selection rules
based on least-index ordering, such as the Bard-type
scheme for the P-matrix linear complementarity prob-
lem (K.G. Murty, [24]) and the celebrated least-index
rule in linear and oriented matroid programming (R.G.
Bland, [2]). A thorough survey of pivot algorithms can
be found in [29].

It is remarkable that almost at the same time, in dif-
ferent parts of the world (China, Hungary, USA) es-
sentially the same result was obtained independently
by approaching the problem from quite different direc-
tions.

Below we will refer to the standard simplex (basis)
tableau. A tableau is called terminal if it gives a pri-
mal and dual optimal solution or evidence of primal or
dual infeasibility/inconsistency of the problem. Termi-
nal tableaus have the following sign structure.

Terminal tableaus

The pivot operations at all known pivot methods,
including all variants of the primal and dual simplex
method and Ziont’s criss-cross method have the fol-
lowing properties. When a primal infeasible variable is
selected to leave the basis, the entering variable is se-
lected so that after the pivot both variables involved
in the pivot will be primal feasible. Analogously, when
a dual infeasible variable is selected to enter the basis,
then the leaving variable is selected in such a way that
after the pivot both variables involved in the pivot will
be dual feasible. Such pivots are called admissible. The
sign structure of tableaus at an admissible pivot of ‘type
I’ and ‘type II’ are demonstrated by the following fig-
ure.

Admissible pivot situations

Observe that, while dual(primal) simplex pivots
preserve dual(primal) feasibility of the basic solution,
admissible pivots do not in general. Admissible pivots
extract the greedy nature of pivot selection, i. e. ‘repair
primal/dual infeasibility’ of the pivot variables.
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The Least-Index Criss-CrossMethod

The first finite criss-cross algorithm, which we call the
least-index criss-cross method, was discovered indepen-
dently by Y.Y. Chang [26], T. Terlaky [26,27,28] and
Zh. Wang [34]; further, a strongly related general re-
cursion by D. Jensen [18]. Chang presented the algo-
rithm for positive semidefinite linear complementarity
problems, Terlaky for linear optimization, for oriented
matroids and with coauthors for QP, LCP and for ori-
ented matroid LCP [9,16,19], while Wang primarily for
the case of oriented matroids.

The least-index criss-cross method is perhaps the
simplest finite pivoting method to LO problems. This
criss-cross method is a purely combinatorial pivoting
method, it uses admissible pivots and traverses through
different (possibly both primal and dual infeasible)
bases until the associated basic solution is optimal, or
an evidence of primal or dual infeasibility is found.

To ease the understanding a figure is included
that shows the scheme of the least-index criss-cross
method.

Scheme of the least-index criss-cross method

Observe the simplicity of the algorithm:
� It can be initiated with any basis.
� No two phases are needed.
� No ratio test is used to preserve feasibility, only the

signs of components in a basis tableau and a prefixed
ordering of variables determine the pivot selection.

Several finiteness proofs for the least-index criss-cross
method can be found in the literature. The proofs are
quite elementary, they are based on the orthogonality of
the primal and dual spaces [14,26,28,29,34]; on recur-
sive argumentation [11,18,33] or on lexicographically
increasing lists [11,14].

0 Let an ordering of the variables be fixed.
Let T(B) be an arbitrary basis tableau (it can be
neither primal nor dual feasible);

1 Let r be the minimal i such that either xi is pri-
mal infeasible or xi has a negative reduced cost.
IF there is no r, THEN stop; the first terminal
tableau is obtained, thus T(B) is optimal.

2 IF xr is primal infeasible THEN let p := r; q :=
minf` : tp` < 0g.
IF there is no q, THEN stop; the second terminal
tableau is obtained, thus the primal problem is
infeasible.
Go to Step 3.
IF xr is dual infeasible, THEN let q := r :
p :=minf` : tl q > 0g.
IF there is no q, THEN stop: the third terminal
tableau is obtained, thus the dual problem is in-
feasible.
Go to Step 3.

3 Pivot on (p; q). Go to Step 1.

The least-index criss-cross rule

One of the most important consequences of the
finiteness of the least-index criss-cross method is the
strong duality theorem of linear optimization. This gives
probably the simplest algorithmic proof of this funda-
mental result:

Theorem 1 (Strong duality theorem) Exactly one of
the following two cases occurs.
� At least one of the primal problem and the dual prob-

lem is infeasible.
� Both problems have an optimal solution and the op-

timal objective values are equal.
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Other Interpretations

The least-index criss-cross method can be interpreted
as a recursive algorithm. This recursive interpretation
and the finiteness proof based on it can be derived from
the results in [2,3,18] and can be found in [33].

Recursive Interpretation

As performing the least-index criss-cross
method at each pivot one can make a note of
the larger of the two indices r = max{p, q} that
entered or left the basis. In this list, an index
must be followed by another larger one before
the same index occurs anew.

The recursive interpretation is becoming apparent
when one notes that it is based on the observation that
the size of the solved subproblem (the subproblem for
which a terminal tableau is obtained) is monotonically
increasing.

The third interpretation is based on the proof tech-
nique developed by J. Edmonds and K. Fukuda [9] and
adapted by Fukuda and T. Matsui [11] to the case of the
least-index criss-cross method.

Lexicographically Increasing List

Let u be an binary vector with appropriate di-
mension, set initially to be the zero vector. In
applying the algorithm let r = max{p, q} be the
larger of the two indices p that entered or q that
left the basis.

At each pivot update u as follows: let ur = 1 and ui
= 0, 8i < r. The remaining components of u stay
unchanged. Then at each step of the least-index
criss-cross method the vector u strictly increases
lexicographically, thus the method terminates in
a finite number of steps.

Other Finite Criss-Cross Methods

Both the recursive interpretation and the hidden flex-
ibility of pivot selection in the least-index criss-cross
method make it possible to develop other finite vari-
ants. Such finite criss-cross methods, which do not rely
on a fixed minimal index ordering, were developed on
the basis of the finite simplex rules presented by S.
Zhang [37]. These finite criss-cross rules [38] are as fol-
lows.

First-in Last-out Rule (FILO)

First, choose a primal or dual infeasible variable
that has changed its basis-nonbasis status most
recently.

Then choose a variable in the selected row or col-
umn so that the pivot entry fulfills the sign re-
quirement of the admissible pivot selection and
which has changed its basis/nonbasis status most
recently.

When more than one candidates occur with the
same pivot age then one break tie as you like (e. g.
randomly).

This rule can easily be realized by assigning an
‘age’ vector u to the vector of the variables and
using a pivot counter k. Initially we set k = 0 and
u = 0. Increase k by one at each pivot and we set
the pivot coordinates of u equal to k. Then the
pivot selections are made by choosing the vari-
able with the highest possible ui value satisfying
the sign requirements.

Most Often Selected Variable Rule

First, choose a primal or dual infeasible variable
that has changed its basis-nonbasis status most
frequently.

Then choose a variable in the selected row or col-
umn so that the pivot entry fulfills the sign re-
quirement of the admissible pivot selection and
which has changed its basis/nonbasis status most
frequently.

When more than one candidates occur with the
same pivot age then one break tie as you like (e. g.
randomly).

The most often selected rule can also be realized
by assigning another ‘age’ vector u to the vector
of the variables. Initially we set u = 0. At each
pivot we increase the pivot-variable components
of u by one. Then the pivot selections are made
by choosing the variable with the highest possible
ui value satisfying the sign requirement.

Exponential and Average Behavior

The worst-case exponential behavior of the least-index
criss-cross method was studied by C. Roos [25]. Roos’



588 C Criss-Cross Pivoting Rules

exponential example is a variant of the cube of V. Klee
and G.J. Minty [21]. In this example the starting solu-
tion is the origin defined by a feasible basis, the variables
are ordered so that the least-index criss-cross method
follows a simplex path, i. e. without making any ratio
test feasibility of the starting basis is preserved. An-
other exponential example was presented by Fukuda
and Namiki [12] for linear complementarity problems.

Contrary to the clear result on the worst-case behav-
ior, to date not much is known about the expected or
average number of pivot steps required by finite criss-
cross methods.

Best-Case Analysis of Admissible Pivot Methods

As it was discussed above, and it is the case for many
simplex algorithms, the least-index criss-cross method
is not a polynomial time algorithm. A question nat-
urally arises: whether there exists a polynomial criss-
cross method? Unfortunately no answer to this ques-
tion is available at this moment. However some weaker
variants of this question can be answered positively.
The problem is stated as follows: An arbitrary basis is
given. What is the shortest admissible pivot path from
this given basis to an optimal basis?

For nondegenerate problems, [10] shows the exis-
tence of such an admissible pivot sequence of length at
most m. The nondegeneracy assumption is removed in
[15]. This result solves a relaxation of the d-step conjec-
ture.

Observe, that we do not know of any such result for
feasibility preserving, i. e. simplex algorithms. In fact,
the maximum length of feasibility-preserving pivot se-
quences between two feasible bases is not known to be
bounded by a polynomial in the size of the given LO
problem.

Generalizations

Finite criss-cross methods were generalized to solve
fractional linear optimization problems, to large classes
of linear complementarity problems (LCPs; cf. � Lin-
ear complementarity problem) and to oriented matroid
programming problems (OMPs).

Fractional Linear Optimization

Fractional linear or, as it is frequently referred to, hyper-
bolic programming, can be reformulated as a linear op-

timization problem. Thus it goes without surprise that
the least-index criss-cross method is generalized to this
class of optimization problems as well [17].

Linear Complementarity Problems

The largest solvable class of LCPs is the class of LCPs
with a sufficient matrix [5,6]. The LCP least-index criss-
cross method is a proper generalization of the LO criss-
cross method.When the LCP arises from a LOproblem,
the LO criss-cross method is obtained.

Convex Quadratic Optimization

Convex quadratic optimization problems give an LCP
with a bisymmetric coefficient matrix. Because a bisym-
metric matrix is semidefinite and semidefinite matri-
ces form a subclass of sufficient matrices, one obtain
a finite criss-cross algorithm for convex quadratic opti-
mization problems as well. Such criss-cross algorithms
were published e. g. in [20]. The least-index criss-cross
method is extremely simple for the P-matrix LCP. Start-
ing from an arbitrary complementary basis, here the
least-indexed infeasible variable leaves the basis and it is
replaced by its complementary pair. This algorithm was
originally proposed in [24], and studied in [12]. The
general case of sufficient LCPs was treated in [4,13,16].

Oriented Matroids

The intense research in the 1970s on oriented ma-
troids and oriented matroid programming [2,9] gave
a new insight in pivot algorithms. It became clear that
although the simplex method has rich combinatorial
structures, some essential results like the finiteness of
Bland’s least-index simplex rule [2] does not hold in
the oriented matroid context. Edmonds and Fukuda [9]
showed that it might cycle in the oriented matroid case
due to the possibility of nondegenerate cycling which is
impossible in the linear case.

The predecessors of finite criss-cross rules are:
Bland’s recursive algorithm [2,3], the Edmonds–
Fukuda algorithm [9], its variants and generaliza-
tions [1,35,36,37]. All these are variants of the simplex
method in the linear case, i. e. they preserve the feasibil-
ity of the basis, but not in the oriented matroid case. In
the case of oriented matroid programming only Todd’s
finite lexicographic method [30,31] preserves feasibility
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of the basis and therefore yields a finite simplex algo-
rithm for oriented matroids.

The least-index criss-cross method is a finite criss-
cross method for oriented matroids [28,34]. A gen-
eral recursive scheme of finite criss-cross methods is
given in [18]. Finite criss-cross rules are also pre-
sented for oriented matroid quadratic programming
and for oriented matroid linear complementarity prob-
lems [13,19].

See also

� Least-Index Anticycling Rules
� Lexicographic Pivoting Rules
� Linear Programming
� Pivoting Algorithms for Linear Programming

Generating Two Paths
� Principal Pivoting Methods for Linear

Complementarity Problems
� Probabilistic Analysis of Simplex Algorithms
� Simplicial Pivoting Algorithms for Integer

Programming
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In solving global and combinatorial optimization prob-
lems cuts are used as a device to discard portions of the
feasible set where it is known that no optimal solution
can be found. Specifically, given the optimization prob-
lem

min f f (x) : x 2 D � Rng ; (1)

if x0 is an unfit solution and there exists a function l(x)
satisfying l(x0) > 0, while l(x)� 0 for every optimal solu-
tion x, then by adding the inequality l(x)� 0 to the con-
straint set we exclude x0 without excluding any optimal
solution. The inequality l(x) � 0 is called a valid cut, or
briefly, a cut. Most often the function l(x) is affine: the
cut is then said to be linear, and the hyperplane l(x) = 0
is called a cutting plane. However, nonlinear cuts have
proved to be useful, too, for a wide class of problems.

Cuts may be employed in different contexts: outer
and inner approximation (conjunctive cuts), branch
and bound (disjunctive cuts), or in combined form.

Outer Approximation

Let ˝ � Rn be the set of optimal solutions of problem
(2). Suppose there exists a family P of polytopes P �˝
such that for each P 2 P a distinguished point z(P) 2 P
(conceived of as some approximate solution) can be de-
fined satisfying the following conditions:
A1) z(P) always exists (unless˝ = ;) and can be com-

puted by an efficient procedure;
A2) given any P 2 P and the associated distinguished

point z = z(P), we can recognize when z 2 ˝ and
if z 62 ˝ , we can construct an affine function l(x)
such that P0 = P \ {x: l(x) � 0} 2 P, and l(z)> 0,
while l(x) � 0, 8 x 2˝ , i. e.˝ � P0 � P \ {z}.

Under these conditions, one can attempt to solve prob-
lem (2) by the following outer approximation method
(OA method) [8]:

Prototype OA (outer approximation) procedure

0 Start with an initial polytope P1 2 P. Set k = 1.
1 Compute the distinguished point zk = z(Pk) (by A1)). If

z(Pk) does not exist, terminate: the problem is infeasible.
If z(Pk) 2˝ , terminate. Otherwise, continue.

2 Using A2), construct an affine function lk(x) such that Pk+
1 = Pk \ {x:lk (x)� 0{ 2 P and lk(x) strictly separates zk

from˝ , i. e. satisfies

lk(zk) > 0; lk(x) � 08x 2 ˝: (2)

Set k k + 1 and return to Step 1.
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The algorithm is said to be convergent if it is either
finite or generates an infinite sequence {zk} every cluster
point of which is an optimal solution of problem (2).

Usually the distinguished point zk is defined as
a vertex of the polytope Pk satisfying some criterion
(e. g., minimizing a given concave function). In these
cases, the implementation of the above algorithm re-
quires a procedure for computing, at iteration k, the
vertex set Vk of the current polytope Pk. At the begin-
ning, V1 is supposed to be known, while Pk+1 is ob-
tained from Pk simply by adding one more linear con-
straint lk(x) � 0. Using this information Vk+1 can be
derived from Vk by an on-line vertex enumeration pro-
cedure [1].

Example 1 (Concave minimization.) Consider the
problem (1) where f (x) is concave and D is a convex
compact set with int D 6D ;.

Assume thatD is defined by a convex inequality g(x)
� 0 and let w 2 int D. Take P to be the collection of
all polytopes containing D. For every P 2 P define z :=
z(P) to be a minimizer of f (x) over the vertex set V of
P (hence, by concavity of f (x), a minimizer of f (x) over
P). Clearly, if z 2 D, it solves the problem. Otherwise,
the line segment joining z to w meets the boundary of
D at a unique point y and the affine function l(x) = hp,
x� yi + g(y) with p 2 @ g(y) strictly separates D from
z (indeed, l(z) = g(z)> 0 while l(x) � g(x)� g(z)+ g(z)
� 0 for all x 2 D. Obviously P0 = P \ {x : l(x) � 0}
2 P, so Assumptions A1) and A2) are fulfilled and the
OA algorithm can be applied. The convergence of the
algorithm is easy to establish.

Example 2 (Reverse convex programming.) Consider
the problem (1) where f (x) = hc, xi, while D = {x 2 Rn

: h(x) � 0 � g(x)} with g(x), h(x) continuous convex
functions. Assume that the problem is stable, i. e. that
D = cl(int D), so a feasible solution x 2 D is optimal if
and only if

fx 2 D : hc; x � xi � 0g � fx : g(x) � 0g : (3)

Also for simplicity assume a point w is available satisfy-
ing max{h(w), g(w)}< 0 and hc, wi < min{hc, xi:h(x) �
0 � g(x)} (the latter assumption amounts to assuming
that the constraint g(x)� 0 is essential).

Let ˝ be the set of optimal solutions, P the collec-
tion of all polytopes containing ˝ . For every P 2 P let
z = z(P) be a maximizer of g(x) over the vertex set V

of the polyhedron P \ }x : hc, xi � �}, where � is the
value of the objective function at the best feasible solu-
tion currently available (set � = +1 if no feasible so-
lution is known yet). By (3), if g(z) � 0, then � is the
optimal value (for �< +1), or the problem is infeasi-
ble (for � = +1). Otherwise, g(z)> 0, and we can con-
struct an affine function l(x) strictly separating z from
˝ as follows. Since max{h(w), g(w)}< 0 while max{h(z),
g(z)}> 0 the line segment joining z, wmeets the surface
max{h(x), g(x)} = 0 at a unique point y.
1) If g(y) = 0 (while h(y) � 0), then y is a feasible solu-

tion and since y = � w+ (1� �) z for some � 2 (0, 1)
we must have hc, yi = � hc, wi + (1� �)hc, zi < � , so
the cut l(x) = hc, x�yi � 0 strictly separates z from
˝ .

2) If h(y) = 0, then the cut l(x) = hp, x�y + h(y) � 0,
where p2 @ h(y), strictly separates z from˝ (indeed,
l(x)� h(x)� h(y)+ h(y) = h(x)� 0 for all x 2˝ while
l(z)> 0 because l(w)< 0, l(y) = 0).

Thus assumptions A1), A2) are satisfied, and again the
OA algorithm can be applied. The convergence of the
OA algorithm for this problem is established by a more
elaborate argument than for the concave minimization
problem (see [3,8]).

Various variants of OA method have been developed
for a wide class of optimization problems, since any op-
timization problem described by means of differences
of convex functions can be reduced to a reverse convex
program of the above form [3]. However, a difficulty
with this method when solving large scale problems is
that the size of the vertex set Vk of Pk may grow expo-
nentially with k, creating serious storage problems and
making the computation of Vk almost impracticable.

Inner Approximation

Consider the concave minimization problem under lin-
ear constraints, i. e. the problem (2) when f (x) is a con-
cave function and D is a polytope in Rn.

Without loss of generality we may assume that 0 is
a vertex ofD. For any real number � � f (0), the setC� =
{x 2Rn}{f (x)� �} is convex and 02D\ C� . Of course,
D� C� if and only if f (x) � � for all x 2 D.

The idea of the inner approximation method (IA
method), also called the polyhedral annexationmethod
(or PA method)[3], is to construct a sequence of ex-
panding polytopes P1 � P2� � � � together with a nonin-
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creasing sequence of real numbers �1 � �2 � � � � , such
that � k 2 f (D), Pk � C�k, k = 1, 2, . . . , and eventually
D � Ph for some h: then �h � f (x) for all x 2 D, i. e. �h
will be the optimal value.

For every set P � Rn let P° be the polar of P, i. e.
P° = {y 2 Rn:hy, xi � 1, 8 x 2 P. As is well known P°
is a closed convex set containing 0 (in fact a polyhe-
dron if P is a polyhedron), and P � Q only if P° � Q°;
moreover, if C is a closed convex set containing 0, then
(C°)° = C. Therefore, setting Sk = (Pk)°, the IA method
amounts to constructing a sequence of nested polyhe-
dra S1 � � � � � Sh satisfying S°k � C� k, k = 1, . . . , h and
Sh � D°. The key point in this scheme is: Given � k 2
f (D) and a polyhedron Sk such that Sk° � C� k, check
whether Sk � D° and if there is yk 2 Sk\D°, then con-
struct a cut lk(y)� 1 to exclude yk and to form a smaller
polyhedron Sk+ 1 such that Sk+1° � C�k+1 for some � k+1
2 f (D) satisfying � k+1 � � k.

To deal with this point, define s(y) = max{hy, xi :
x 2 D}. Since y 2 D° whenever s(y) � 1 we will have Sk
� D° whenever

max fs(y) : y 2 Skg � 1: (4)

But clearly the function s(y) is convex as the pointwise
maximum of a family of linear functions. Therefore, de-
noting the vertex set and the extreme direction set of Sk
by Vk, Uk, respectively, we will have (4) (i. e. Sk � D°)
whenever

(
max fs(y) : y 2 Vkg � 1;
max fs(y) : y 2 Ukg � 0:

(5)

Thus, checking the inclusion Sk � D° amounts to
checking (5), a condition that fails to hold in either of
the following cases:

s(yk) > 1 for some yk 2 Vk (6)

s(yk) > 0 for some yk 2 Uk : (7)

In each case, it can be verified that if xk maximizes hyk,
xi over D, and � k+1 = min{� k, f (xk)} while

�k D sup
n
� : f (�xk) � �kC1

o
;

then Sk+1 = Sk \ {y : hxk, yi � 1/�k} satisfies

PkC1 :D SıkC1 D conv(Pk [ f�kxkg) � C�kC1 :

In the case (6), Sk+1 no longer contains yk while in the
case (7), yk is no longer an extreme direction of Sk+1. In
this sense, the cut hxk, y� 1/�k excludes yk.We can thus
state the following algorithm.

IA Algorithm (for concaveminimization)

0 By translating if necessary, make sure that 0 is a vertex of
D. Let x1 be the best basic feasible solution available, �1
= f (x1). Take a simplex P1 � C�1 and let S1 = P1°, V1 =
vertex set of S1, U1 = extreme direction set of S1. Set k = 1.

1 Compute s(y) for every new y 2 (Vk [ Uk)\{0}. If (5) holds,
then terminate: Sk � D° so xk is a global optimal solution.

2 If (6) or (7) holds, then let

xk 2 argmax
˚˝
yk; x

˛
: x 2 D

�
:

Update the current best feasible solution by comparing
xk and xk . Set �kC1 D f (xkC1).

3 Compute 
 k =max{
 � 1:f (
xk)� �k+1} and let

SkC1 D Sk \
n
y :

˝
xk; y

˛
� 1
�k

o
:

From Vk and Uk derive the vertex set Vk+1 and the
extreme direction set Uk+1 of Sk+1. Set k k+ 1 and go to
Step 1.

It can be shown that the IA algorithm is finite [3].
Though this algorithm can be interpreted as dual to the
OA algorithm, its advantage over the OAmethod is that
it can be started at any vertex of D, so that each time
the set Vk has reached a certain critical size, it can be
stopped and ‘restarted’ at a new vertex of D, using the
last obtained best value of f (x) as the initial �1. In that
way the set Vk can be kept within manageable size.

Note that if D is contained in a cone M and P1 = {x
2 M:hv1, xi � 1} � C� 1, then it can be shown that (7)
automatically holds, and only (6) must be checked [6].

Concavity Cut

The cuts mentioned above are used to separate an unfit
solution from some convex set containing at least one
optimal solution. They were first introduced in convex
programming [2,4]. Another type of cuts originally de-
vised for concave minimization [7] is the following.

Suppose that a feasible solution x has already been
known with f (x) D � and we would like to check
whether there exists a better feasible solution. One way
to do that is to take a vertex x0 of D with f (x0) > � and
to construct a cone M, as small as possible, vertexed at
x0, containing D and having exactly n edges. Since x0

is interior to the convex set C� = {x : f (x) � �}, each
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ith edge of M, for i = 1, . . . , n, meets the boundary of
C� at a uniquely defined point yi (assuming that C�
is bounded). Through these n points y1, . . . , yn (which
are affinely independent) one can draw a unique hyper-
plane, of equation 
 (x� x0) = 1 such that 
 (yi� x0) =
1 (i = 1, . . . , n), hence 
 = e| U�1, whereU is the matrix
of columns y1� x0, . . . , yn� x0 and e denotes a vector of
n ones. Since the linear inequality

e>U�1(x � x0) � 1 (8)

excludes x0 without excluding any feasible solution x
better than x, this inequality defines a valid cut. In par-
ticular, if it so happens that the whole polytope D is cut
off, i. e. if

D �
˚
x : e>U�1(x � x0) � 1

�
; (9)

then x is a global optimal solution.
This cut is often referred to as a �-valid concavity cut

for (f , D) at x0 [3]. Its construction requires the avail-
ability of a cone M � S vertexed at x0 and having ex-
actly n edges. In particular, if the vertex x0 of D has ex-
actly n neighboring vertices then M can be taken to be
the cone generated by the n halflines from x0 through
each of these neighbors of x0. Note, however, that the
definition of the concavity cut can be extended so that
its construction is possible even when the cone M has
more than n edges (as e. g., when x0 is a degenerated
vertex of D).

Condition (9), sufficient for optimality, suggests
a cutting method for solving the linearly constrained
concave minimization problem by using concavity cuts
to iteratively reduce the feasible polyhedron. Unfortu-
nately, experience has shown that concavity cuts, when
applied repeatedly, tend to become shallower and shal-
lower. Though these cuts can be significantly strength-
ened by exploiting additional structure of the problem
(e. g., in concave quadratic minimization, bilinear pro-
gramming [5] and also in low rank nonconvex prob-
lems [6]), pure cutting methods are often outperformed
by branch and cut methods where cutting is combined
with successive partition of the space [8].

Concavity cuts have also been used in combinato-
rial optimization (‘intersection cuts’, or in a slightly ex-
tended form, ‘convexity cuts’).

Nonlinear Cuts

In many problems, nonlinear cuts arise in a quite natu-
ral way.

For example, consider the following problem of
monotonic optimization [10]:

max
˚
f (x) : g(x) � 1; h(x) � 1; x 2 Rn

C

�
; (10)

where f , g, h are continuous increasing functions onRn
C

(a function f (x) is said to be increasing on Rn
C if 0 � x

� x0) f (x) � f (x0); the notation x � x0 means xi � x0i
for all i while x < x0 means xi < x0i for all i). As argued in
[10], a very broad class of optimization problems can be
cast in the form (10). Define G = {x 2 Rn

Cg(x)� 1},H =
{x 2 Rn

C : h(x) � 1}, so that the problem is to maximize
f (x) over the feasible set G \ H. Clearly

0 � x � x0 2 G ) x 2 G; (11)

0 � x � x0 … H ) x … H: (12)

Assume that g(0) < 1 and 0 < a � x � b for all x 2 G \
H (so 0 2 int G, b 2 H). From (11) it follows that if z
2 Rn
C\ G and 
(z) is the last point of G on the halfline

from 0 through z, then the cone K
(z)} = {x 2 Rn
C : x>


(z)} separates z from G, i. e. G \ K� (z) = ;, while z 2
K� (z).

A set of the form P = [y 2 V {x: 0 � y}, where V is
a finite subset of Rn

C, is called a polyblock of vertex set V
[9]. A vertex v is said to be improper if v� v0 for some v0

2 V \ {v}. Of course, improper vertices can be dropped
without changing P. Also if P � G \ H then the poly-
block of vertex set V 0 = V \ H still contains G \ H
because v 62 H implies that [0, v] \ H = ;. With these
properties in mind we can now describe the polyblock
approximation procedure for solving (10).

Start with the polyblock P1 = [0, b]� G\ H and its
vertex set V1 = {b} � H. At iteration k we have a poly-
block Pk � G \ H with vertex set Vk � H. Let yk 2 arg
max{f (x) : x 2 Vk}. Clearly yk maximizes f (x) over Pk,
and yk 2 H, so if yk 2 G then yk is an optimal solution.
If yk 62 G then the point xk = 
 (yk) determines a cone
Kxk such that the set Pk+1 = Pk\ Kxk excludes yk but still
contains G \ H. It turns out that Pk+1 is a polyblock
whose vertex set Vk+1 is obtained from Vk by adding n
points vk, 1, . . . , vk, n (which are the n vertices of the hy-
perrectangle [xk, yk] adjacent to yk) and then dropping
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all those which do not belong toH. With this polyblock
Pk+1, we pass to iteration k+1.

In that way we generate a nested sequence of poly-
blocks P1 � P2 � � � � � G \ H. It can be proved that
either yk is an optimal solution at some iteration k or
f (yk)& � := max{f (x) : x 2 G \ H}.

A similar method can be developed for solving the
problem

min
˚
f (x) : g(x) � 1; h(x) � 1; x 2 Rn

C

�

by interchanging the roles of g, h and a, b. In contrast
with what happens in OA methods, the vertex set Vk of
the polyblock Pk in the polyblock approximation algo-
rithm is extremely easy to determine. Furthermore this
method admits restarts, which provide a way to pre-
vent stall and overcome storage difficulties when solv-
ing large scale problems [10].
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A company that produces large rolls of paper, textile,
steel, etc., usually faces the problem of how to cut the
large rolls into smaller rolls, called finished rolls, in such
a way that the demands for all finished rolls be satisfied.
Any large roll is cut according to some cutting pattern
and the problem is to find the cutting patterns to be
used and to how many large rolls they should be ap-
plied. We assume, for the sake of simplicity, that each
large roll has widthW, an integer multiple of some unit
and the finished roll widths are also specified by some
integersw1, . . . ,wm. Let aij designate the number of rolls
of width wi produced by the use of the jth pattern, i = 1,
. . . , m, j = 1, . . . , n. Let further bi designate the demand
for roll i, i = 1, . . . ,m, and cj = 1, j = 1, . . . , n. If A = (aij),
b = (b1, . . . , bm)|, c = (c1, . . . , cn)|, then the problem is:
8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b

x � 0:

Here xj means the number of jth cutting patterns to be
used and as such, an all integer solution would be re-
quired to the problem. However, one is usually satisfied
with an optimal solution of the above problem with-
out the integrality restriction and, having that, a simple
round-off procedure provides us with the solution to
the problem.

In the above problem, however, the matrix A is
huge, therefore we do not, and in most cases can-
not, create it, by enumerating the cutting patterns. P.C.
Gilmore and R.E. Gomory [3,4] resolved this difficulty
by an ingenious column generation technique. It works
in such a way that we generate column j, in the course
of the simplex algorithm, whenever needed. Assume
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that B is the current basis and designate by � the cor-
responding dual vector, i. e., the solution of the linear
equation: �|B = c>B . Now, if a = (a1, . . . , am)| 2 Zm

C

satisfies the inequality w|a � W, then, by definition,
a represents a cutting pattern, a column of the matrix
A. Since the cutting-stock problem is a minimization
problem, the basis B is optimal if �|a� 1 for any a that
satisfies w|a�W. We can check it by solving the linear
program:8̂
<̂
ˆ̂:

min �>a
s.t. w>a � W

a 2 Zm
C:

If the optimum value is greater than 1, then the optimal
a vector may enter the basis, otherwise B is an optimal
basis and xB is an optimal solution to the problem. The
problem to find the vector a is a knapsack problem for
which efficient solution methods exist.

In practice, however, frequently more complicated
cutting-stock problems come up, due to special cus-
tomer requirements depending on quality and other
characteristics. In addition, we frequently need to in-
clude set up costs, capacity constraints and costs due
to delay in manufacturing. These lead to the develop-
ment of special algorithms as described in [1,4,5,6,7].
Recently Cs.I. Fábián [2] formulated stochastic variants
of the cutting-stock problem, for use in fiber manufac-
turing.
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Often the solution of multivariable optimization prob-
lems it is desired to be done with a gradient-free algo-
rithm. This may be the case when gradient evaluations
are difficult, or in fact gradients of the underlying opti-
mization method do not exist. Such a method that of-
fers this feature is the method of the cyclic coordinate
search and its variants.

The minimization problem considered is:

min
x

f (x):

The method in its basic form uses the coordinate axes
as the search directions. In particular, the search di-
rections d(1), . . . , d(n), where the d(i) are vectors of ze-
ros, except for a 1 in the ith position. Therefore along
each search direction d(i) the corresponding variable xi
is changed only, with all remaining variables being kept
constant to their previous values.

It is assumed here that the minimization is carried
out in order over all variables with indices 1, . . . , n
at each iteration of the algorithm. However there are
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variants. The first of these is the Aitken double sweep
method, which processes first the variables in the order
mentioned above, and then in the second sweep returns
in reverse order, that is n� 1, . . . , 1. The second variant
is termed the Gauss–Southwell method [2], according
to which the component (variable) with largest partial
derivative magnitude in the gradient vector is selected
for line searching. The latter requires the availability of
first derivatives of the objective function.

The algorithm of the cyclic coordinate method can
be summarized as follows:

1. Initialization
Select a tolerance � > 0, to be used in the ter-
mination criterion of the algorithm. Select an
initial point x(0) and initialize by setting z(1) =
x(0). Set k = 0 and i = 1.

2. Main iteration
Let ˛�i (scalar variable) be the optional solu-
tion to the line search problem of minimizing
f (z(i) + ˛di). Set z(i+1) = z(i) + ˛�i d

(i). If
j < n, then increase i to i+1 and repeat step 2.
Otherwise, if j = n, then go to step 3.

3. Termination check
Set xk+1 = z(n). If the termination criterion is
satisfied, for example jjx(k+1) � x(k)jj � �, then
stop. Else, set z(1) = x(k+1). Increase k to k + 1,
set i = 1 and repeat step 2.

The steps above outline the basic cyclic coordinate
method, the Aitken and Gauss–Southwell variants can
be easily included by modifying the main algorithm.

In terms of convergence rate comparisons, D.G. Lu-
enberger [3] remarks that such comparisons are not
easy. However, an interesting analysis presented there
indicates that roughly n� 1 coordinate searches can be
as effective as a single gradient search. Unless the vari-
ables are practically uncoupled from one another then
coordinate search seems to require approximately n line
searches to bring about the same effect as one step of
steepest descent.

It can generally be proved that the cyclic coordinate
method, when applied to a differentiable function, will
converge to a stationary point [1,3]. However, when
differentiability is not present then the method can stall
at a suboptimal point. Interestingly there are ways to
overcome such difficulties, such as by applying at ev-
ery pth iteration (a heuristic number, user specified)
the search direction x(k+ 1)� x(k). This is even applied
in practice for differentiable functions, as it is found to
be helpful in accelerating convergence. These modifi-
cations are referred to as acceleration steps or pattern
searches.
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Data envelopment analysis (DEA) is a novel technique
based on linear programming for evaluating the rela-
tive performance of similar units, referred to as deci-
sion making units (DMUs). The system under evalu-
ation consists of n DMUs: each DMU consumes vary-
ing amount of m1 different inputs (resources) to pro-
duce m2 different outputs (products). Specifically, the
jth DMU is characterized by the input vector xj > 0 and
the output vector yj > 0. The aim of DEA is to discern,
for each DMU, whether or not is operating in an effi-
cient way, given its inputs and outputs, relative to all
remaining DMUs under consideration. The measure of
efficiency is the ratio of a weighted sum of the outputs
to a weighted sum of the inputs. For each DMU, the
weights are different and obtained by solving a linear
programming problem with the objective of showing
the DMU in the best possible light.

The ability to deal directly with incommensurable
inputs and outputs, the possibility of each DMU of
adopting a different set of weights and the focus on in-
dividual observation in contrast to averages are among
the most appealing features of model based on DEA.

A process is defined output-efficient if there is no
other process that, using the same or smaller amount
of inputs, produces higher level of outputs. A process
is defined input-efficient if there is no other process
that produces the same or higher level of outputs, using
smaller amount of inputs. For each orientation there
are four possible models:
1) the ‘constant returns’ model;
2) the ‘variable returns’ model;
3) the ‘increasing returns’ model;
4) the ‘decreasing returns’ model.
Each model is defined by a specific set of economic as-
sumptions regarding the relation between inputs and
outputs [10,11]. Associated with each of the four DEA
models, independent of the orientation, there is a pro-
duction possibility set, that is, the set of all possible in-
puts and outputs for the entire system. This set consists
of the nDMUs and of ‘virtual’ DMUs obtained as linear
combination of the original data. The efficient frontier
is a subset of the boundary points of this production set.
The objective of DEA is to determine if the DMU un-
der evaluation lies on the efficient frontier and to assign
a score based on the distance from this frontier [6].

The production set for the ‘constant returns’ model
is

T1 D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

(x; y) � 0 :

x � �
Pn

jD1 x j� j;

y � �
Pn

jD1 y
j� j;

8� j � 0;
Pn

jD1 � j D 1;

� > 0

9>>>>>>=
>>>>>>;

;
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while for the ‘variable returns’ model we have

T2 D

8̂
<̂
ˆ̂:
(x; y) � 0 :

x � �
Pn

jD1 x
j� j;

y � �
Pn

jD1 y
j� j;

8� j � 0;
Pn

jD1 � j D 1

9>>=
>>;
:

The production sets for the ‘increasing’ (resp. ‘de-
creasing’) returns models are similar to the set T2 above
with the equality constraint

Pn
jD1 �j = 1 replaced by the

inequality
Pn

jD1 �j � 1 (resp.
Pn

jD1 �j � 1).
The ‘constant returns, input oriented’ envelopment

LP is given next:
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min

;	�0

�

s.t.
nX

jD1

x j� j � x j�� � 0

nX
jD1

y j� j � y j
�

:

(1)

For the ‘constant returns, output oriented’ case we
have, instead, the following LP problem [4]:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

max
 ;	�0

 

s.t.
nX

jD1

x j� j � x j�

nX
jD1

y j� j � y j
�

 � 0:

(2)

In both cases the additional constraint

nX
jD1

� j

0
@
D

�

�

1
A 1

defines the LP for the variable, increasing and decreas-
ing returns DEA models, respectively.

The corresponding dual problem for the input-
oriented case is

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
�;�;ˇ

�> y j� C ˇ

s.t. �
>x j C �> y j C ˇ � 0
j D 1; : : : ; n

>x j� � 1

 � 0; � � 0;

(3)

where ˇ = 0, ˇ unrestricted, ˇ � 0 and ˇ � 0 for
the constant, variable, increasing and decreasing return
DEA models.

For the output-oriented case the dual is:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
�;�;ˇ


>x j� C ˇ

s.t. 
>x j � �>y j C ˇ � 0
j D 1; : : : ; n
�> y j� � 1

 � 0; � � 0

(4)

with ˇ = 0, ˇ unrestricted ˇ � 0 and ˇ � 0 for the con-
stant, variable, increasing and decreasing returns DEA
models.

For the ‘input-oriented, constant returns’ case, the
reference DMU j� is
� inefficient if

– the optimal value of problem (1) is different from
1, or

– the optimal value of Problem (1) is equal to 1 but
there exists an optimal solution with at least one
slack variable strictly positive;

� efficient in the remaining cases.
Moreover the efficient DMU j� can be
� extreme-efficient if Problem (1) has the unique solu-

tion ��j� = 1, ��j = 0, j = 1, . . . , n, j 6D j�;
� nonextreme efficient when Problem (1) has alternate

optimal solutions.
The efficiency for the other models is defined in a simi-
lar manner.

The conditions � � 0 and  � 0 can be introduced
without loss of generality in (1) and (2) since only non-
negative values for these variables are possible given our
assumption on the data. Since �j � = 1, �j = 0 for j 6D j�,
�� = 1, and �j � = 1, �j = 0 for j 6D j�,  � = 1 are always
feasible for (1) and (2), respectively, the optimal objec-
tive function value lies in the interval (0, 1] for the input
orientation case and [1,1) for the output orientation
case.

The linear programs (1) and (3) above can be in-
terpreted in the following way. In the input-oriented
case, we compare the reference DMU j� with a ‘virtual’
DMU obtained as linear combination of the original
DMUs. Each input and output of this virtual DMU is
a linear combination of the corresponding component
of the inputs and outputs of all the DMUs. The optimal
value is, in this case, always less than or equal to 1. If
the optimal value is strictly less than 1, then it is possi-
ble to construct a virtual DMU that produces at least the
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same amount of outputs as the reference DMUusing an
amount of inputs that is strictly smaller than amount
used by the j�th DMU. When this happens we declare
the DMU j� inefficient. Instead, when the optimal value
is equal to 1 there are three possible cases:
� there exists an optimal solution with at least one

slack variable strictly positive;
� the optimal solution is unique;
� there exists multiple optimal solutions.
In the first case we declare the reference DMU ineffi-
cient. In the last two cases the j�th DMU is efficient
(extreme-efficient, respectively nonextreme efficient).

For Problem (3), the optimal solution 
� and ��

represent the weights that are the most favorable for
the reference DMU, i. e., the weights that produce the
highest efficiency score under the hypothesis that, us-
ing the same weights for the other DMUs, the efficiency
remains always below 1.

Similar interpretations can be given for the output-
oriented case for Problems (2) and (4).

In Fig. 1 it is represented the production possibility
set and the efficient frontier for the five DMUs ‘A’ to ‘E’.
These DMUs are characterized by two different inputs
and a single output value set to some fixed value.

All the DMUs are efficient but the DMU ‘E’. The
DMU ‘B’ is efficient but nonextreme. The virtual DMU
‘K’, obtained as convex combination of the DMUs ‘C’
and ‘D’, is more efficient than the DMU ‘E’. The optimal
value �� for the linear programming problem (1) for
the DMU ‘E’ is exactly the ratio of the lengths of the
segments OE and OK.

Data Envelopment Analysis, Figure 1
Two-input, single output DMUs

Data Envelopment Analysis, Figure 2
Two-output, single input DMUs

Figure 2 shows the case of DMUs characterized by
two distinct outputs and a single input set to a fixed
value. All the DMUs are efficient except the DMU ‘F’
that is dominated by the virtual DMU ‘K’. The optimal
value  � for the linear programming problem (2) for
the DMU ‘F’ is the ratio of the lengths of the segments
OE and OK.

The original ‘constant returns’ model was proposed
in [4]. In [2] the variable returns model was proposed
with the objective of discriminating between technical
efficiency and scale efficiency. The bibliography pub-
lished in [7] (part of [3]) contains more than 500 refer-
ences to published article in the period 1978–1992 and
many more articles appeared since.

In all the DEA models discussed above, all efficient
DMUs receive an equal score of 1. An important mod-
ification proposed in [1] allows to rank efficient units.
The main idea is to exclude the column being scored
from the DEA envelopment LP technology matrix. The
efficiency score is now a value between (0, +1] in both
orientations. In [5] are discussed in detail the issues (in-
feasibility, relationship between modified and standard
formulation, degeneracy, interpretation of the optimal
solutions) related to these DEA models.
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In [8] and [9] the properties of ‘unit invariance’ (in-
dependence of the units in which inputs and outputs
are measured) and ‘translation invariance’ (indepen-
dence of an affine translation of the inputs and the out-
puts) of an efficiency DEA measure are discussed. The
translation invariance property is particularly impor-
tant when data contain zero or negative values. Stan-
dard DEAmodels are not unit invariant and translation
invariant. In [8] it is proposed a weighted additive DEA
model that satisfies these properties:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
	;sC;s�

m1X
iD1

wCi s
C
i C

m2X
rD1

w�r s
�
r

s.t.
nX

jD1

x j
i� j C sCi D x j�

i

i D 1; : : : ;m1
nX

jD1

y jr� j � s�r D y j
�

r

r D 1; : : : ;m2
nX

jD1n

� j D 1

� j � 0; j D 1; : : : ; n;
sCi � 0; i D 1; : : : ;m1;

s�r � 0; r D 1; : : : ;m2:

(5)

where wCi and w�r are the sample standard deviation of
the inputs and outputs variables respectively.

Models based on data envelopment analysis have
been widely used in order to evaluate efficiency in both
public and private sectors. [3, Part II] contains 15 ap-
plication of DEA showing the ‘range, power, elegance
and insight obtainable via DEA analysis’. Banks, hos-
pitals, and universities are among the most challenging
sectors where models based on DEA have been able to
assess efficiency and determine strength and weakness
of the various units.

See also

� Optimization and Decision Support Systems
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Introduction

Data mining has proven valuable in almost every as-
pect of life involving large data sets. Data mining is
made possible by the generation of masses of data from
computer information systems. In engineering, satel-
lites stream masses of data down to storage systems,
yielding amountain of data that needs some sort of data
mining to enable humans to gain knowledge. Data min-
ing has been applied in engineering applications such
as quality [4], manufacturing and service [13], labor
scheduling [17], and many other places. Medicine has
been an extensive user of data mining, both in the tech-
nical area [21] and in health policy [6]. Pardalos [16]
provide recent research in this area. Governmental op-
erations have received support from data mining, pri-
marily in the form of fraud detection [9].

In business, data mining has been instrumental
in customer relationship management [5,8], financial
analysis [3,12], credit card management [1], health
service debt management [22], banking [19], insur-
ance [18], and many other areas of business involv-
ing services. Kusiak [13] reviewed data mining appli-
cations to include service applications of operations.
Recent reports of data mining applications in web
service and technology include Tseng and Lin [20]
and Hou and Yang [11]. In addition to Tseng and
Lin, Lee et al. [14] discuss issues involving mobile
technology and data mining. Data mining support
is required to make sense of the masses of business
data generated by computer technology. Understand-
ing this information-generation system and tools avail-
able leading to analysis is fundamental for business in
the 21st century. The major applications have been in
customer segmentation (by banks and retail establish-
ments wishing to focus on profitable customers) and in
fraud and rare event detection (especially by insurance
and government, as well as by banks for credit scor-
ing). Data mining has been used by casinos in customer
management, and by organizations evaluating person-
nel.

We will discuss data mining functions, data min-
ing process, data systems often used in conjunction
with data mining, and provide a quick review of soft-
ware tools. Four prototypical applications are given to
demonstrate data mining use in business. Ethical issues
will also be discussed.

Definitions

There are a few basic functions that have been applied
in business. Bose andMahapatra [2] provided an exten-
sive list of applications by area, technique, and problem
type.
� Classification uses a training data set to identify

classes or clusters, which then are used to catego-
rize data. Typical applications include categorizing
risk and return characteristics of investments, and
credit risk of loan applicants. The Adams [1] case,
for example, involved classification of loan appli-
cations into groups of expected repayment and ex-
pected problems.

� Prediction identifies key attributes from data to de-
velop a formula for prediction of future cases, as
in regression models. The Sung et al. [19] case pre-
dicted bankruptcy while the Drew et al. [5]) case and
the customer retention part of the Smith et al. [18]
case predicted churn.

� Association identifies rules that determine the
relationships among entities, such as in market
basket analysis, or the association of symptoms
with diseases. IF–THEN rules were shown in the
Sung et al. [19] case.

� Detection determines anomalies and irregularities,
valuable in fraud detection. This was used in claims
analysis by Smith et al. [18].
To provide analysis, data mining relies on some fun-

damental analytic approaches. Regression and neural
network approaches are alternative ways to identify the
best fit in a given set of data. Regression tends to have
advantages with linear data, while neural network mod-
els do very well with irregular data. Software usually
allows the user to apply variants of each, and lets the
analyst select the model that fits best. Cluster analysis,
discriminant analysis, and case-based reasoning seek to
assign new cases to the closest cluster of past observa-
tions. Rule induction is the basis of decision tree meth-
ods of data mining. Genetic algorithms apply to special
forms of data, and are often used to boost or improve
the operation of other techniques.

In order to conduct data mining analyzes, a data
mining process is useful. The Cross-Industry Standard
Process for Data Mining (CRISP-DM) is widely used
by industry members [15]. This model consists of six
phases intended as a cyclical process:
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� Business understanding: Business understanding
includes determining business objectives, assessing
the current situation, establishing data mining goals,
and developing a project plan.

� Data understanding: Once business objectives and
the project plan are established, data understanding
considers data requirements. This step can include
initial data collection, data description, data explo-
ration, and the verification of data quality. Data ex-
ploration such as viewing summary statistics (which
includes the visual display of categorical variables)
can occur at the end of this phase. Models such
as cluster analysis can also be applied during this
phase, with the intent of identifying patterns in the
data.

� Data preparation:Once the data resources available
are identified, they need to be selected, cleaned, built
into the form desired, and formatted. Data clean-
ing and data transformation in preparation for data
modeling needs to occur in this phase. Data explo-
ration at a greater depth can be applied during this
phase, and additional models utilized, again provid-
ing the opportunity to see patterns based on busi-
ness understanding.

� Modeling: Data mining software tools such as vi-
sualization (plotting data and establishing relation-
ships) and cluster analysis (to identify which vari-
ables go well together) are useful for initial analy-
sis. Tools such as generalized rule induction can de-
velop initial association rules. Once greater data un-
derstanding is gained (often through pattern recog-
nition triggered by viewing model output), more de-
tailed models appropriate to the data type can be ap-
plied. The division of data into training and test sets
is also needed for modeling (sometimes even more
sets are needed for model refinement).

� Evaluation: Model results should be evaluated in
the context of the business objectives established
in the first phase (business understanding). This
will lead to the identification of other needs (often
through pattern recognition), frequently reverting
to prior phases of CRISP-DM. Gaining business un-
derstanding is an iterative procedure in data mining,
where the results of various visualization, statistical,
and artificial intelligence tools show the user new re-
lationships that provide a deeper understanding of
organizational operations.

� Deployment: Data mining can be used both to
verify previously held hypotheses, and for knowl-
edge discovery (identification of unexpected and
useful relationships). Through the knowledge dis-
covered in the earlier phases of the CRISP-DM
process, sound models can be obtained that may
then be applied to business operations for many
purposes, including prediction or identification of
key situations. These models need to be monitored
for changes in operating conditions, because what
might be true today may not be true a year from
now. If significant changes do occur, the model
should be redone. It is also wise to record the results
of data mining projects so documented evidence is
available for future studies.
This six-phase process is not a rigid, by-the-num-

bers procedure. There is usually a great deal of back-
tracking. Additionally, experienced analysts may not
need to apply each phase for every study. But CRISP-
DM provides a useful framework for data mining.

There are many database systems that provide con-
tent needed for data mining. Database software is avail-
able to support individuals, allowing them to record
information that they consider personally important.
They can extract information provided by repetitive
organizational reports, such as sales by region within
their area of responsibility, and regularly add external
data such as industry-wide sales, as well as keep records
of detailed information such as sales representative ex-
pense account expenditure.
� Data warehousing is an orderly and accessible

repository of known facts and related data that is
used as a basis for making better management de-
cisions. Data warehouses provide ready access to
information about a company’s business, products,
and customers. This data can be from both internal
and external sources. Data warehouses are used to
store massive quantities of data in amanner that can
be easily updated and allow quick retrieval of spe-
cific types of data. Data warehouses often integrate
information from a variety of sources. Data needs to
be identified and obtained, cleaned, catalogued, and
stored in a fashion that expedites organizational de-
cision making. Three general data warehouse pro-
cesses exist. (1) Warehouse generation is the pro-
cess of designing the warehouse and loading data.
(2) Data management is the process of storing the
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data. (3) Information analysis is the process of using
the data to support organizational decision making.

� Data marts are sometimes used to extract specific
items of information for data mining analysis. Ter-
minology in this field is dynamic, and definitions
have evolved as new products have entered the mar-
ket. Originally, many data marts were marketed as
preliminary data warehouses. Currently, many data
marts are used in conjunction with data warehouses
rather than as competitive products. But also many
data marts are being used independently in order to
take advantage of lower-priced software and hard-
ware. Data marts are usually used as repositories of
data gathered to serve a particular set of users, pro-
viding data extracted from data warehouses and/or
other sources. Designing a data mart tends to begin
with the analysis of user needs. The information that
pertains to the issue at hand is relevant. This may
involve a specific time-frame and specific products,
people, and locations. Data marts are available for
data miners to transform information to create new
variables (such as ratios, or coded data suitable for
a specific application). In addition, only that infor-
mation expected to be pertinent to the specific data
mining analysis is extracted. This vastly reduces the
computer time required to process the data, as data
marts are expected to contain small subsets of the
data warehouse’s contents. Data marts are also ex-
pected to have ample space available to generate ad-
ditional data by transformation.

� Online analytical processing (OLAP) is a multi-
dimensional spreadsheet approach to shared data
storage designed to allow users to extract data and
generate reports on the dimensions important to
them. Data is segregated into different dimensions
and organized in a hierarchical manner. Many vari-
ants and extensions are generated by the OLAP ven-
dor industry. A typical procedure is for OLAP prod-
ucts to take data from relational databases and store
them in multidimensional form, often called a hy-
percube, to reflect the OLAP ability to access data on
these multiple dimensions. Data can be analyzed lo-
cally within this structure. One function of OLAP is
standard report generation, including financial per-
formance analysis on selected dimensions (such as
by department, geographical region, product, sales-
person, time, or other dimensions desired by the

analyst). Planning and forecasting are supported
through spreadsheet analytic tools. Budgeting cal-
culations can also be included through spreadsheet
tools. Usually, pattern analysis tools are available.
There are many statistical and analytic software

tools marketed to provide data mining. Many good
data mining software products are being used, in-
cluding the well-established (and expensive) Enterprise
Miner by SAS and Intelligent Miner by IBM, CLEMEN-
TINE by SPSS (a little more accessible by students),
PolyAnalyst by Megaputer, and many others in a grow-
ing and dynamic industry. For instance, SQL Server
2005 has recently been vastly improved by Microsoft,
making a more usable system focused on the database
perspective.

These products use one or more of a number of an-
alytic approaches, often as complementary tools that
might involve initial cluster analysis to identify rela-
tionships and visual analysis to try to understand why
data clustered as it did, followed by various prediction
models. The major categories of methods applied are
regression, decision trees, neural networks, cluster de-
tection, and market basket analysis. TheWeb site www.
KDnuggets.com gives information on many products,
classified by function. In the category of overall data
mining suites, they list 56 products in addition to 16
free or shareware products. Specialized software prod-
ucts were those using multiple approaches (15 commer-
cial plus 3 free), decision tree (15 plus 10 free), rule-
based (7 plus 4 free), neural network (12 plus 3 free),
Bayesian (13 plus 11 free), support vector machines (3
plus 8 free), cluster analysis (8 plus 10 free), text min-
ing (50 plus 4 free), and other software for functions
such as statistical analysis, visualization, and Web us-
age analysis.

Example Applications

There are many applications of data mining. Here we
present four short examples in the business world.

Customer Relationship Management (CRM)

The idea of customer relationship management is to
target customers for special treatment based on their
anticipated future value to the firm. This requires esti-
mation of where in the customer life-cycle each subject
is, as well as lifetime customer value, based on expected

http://www.KDnuggets.com
http://www.KDnuggets.com
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tenure with the company, monthly transactions by that
customer, and the cost of providing service. Lifetime
value of a customer is the discounted expected stream
of cash flow generated by the customer.

Many companies applying CRM score each individ-
ual customer by their estimated lifetime value (LTV),
stored in the firm’s customer database [5]. This concept
has been widely used in catalog marketing, newspaper
publishing, retailing, insurance, and credit cards. LTV
has been the basis for many marketing programs offer-
ing special treatment such as favorable pricing, better
customer service, and equipment upgrades.

While CRM is very promising, it has often been
found to be less effective than hoped [10]. CRM systems
can cost up to $70 million to develop, with additional
expenses incurred during implementation. Many of the
problems in CRM expectations have been blamed on
over-zealous sales pitches. CRM offers a lot of opportu-
nities to operate more efficiently. However, they are not
silver bullets, and benefits are not unlimited. As with
any system, prior evaluation of benefits is very difficult,
and investments in CRM systems need to be based on
sound analysis and judgment.

Credit Scoring

Data mining can involve model building (extension of
conventional statistical model building to very large
data sets) and pattern recognition. Pattern recognition
aims to identify groups of interesting observations. In-
teresting is defined as discovery of knowledge that is
important and unexpected. Often experts are used to
assist in pattern recognition. Adams et al. [1] compared
data mining used formodel building and pattern recog-
nition on the behavior of customers over a one-year
period. The data set involved bank accounts at a large
British credit card company observed monthly. These
accounts were revolving loans with credit limits. Bor-
rowers were required to repay at least some minimum
amount each month. Account holders who paid in full
were charged no interest, and thus not attractive to the
lender.

We have seen that clustering and pattern search are
typically the first activities in data analysis. Then ap-
propriate models are built. Credit scoring is a means to
use the results of data mining modeling for two pur-
poses. Application scoring was applied in the Adams

et al. example to new cases, continuing an activity that
had been done manually for half a century in this orga-
nization. Behavioral scoring monitors revolving credit
accounts with the intent of gaining early warnings of
accounts facing difficulties.

Bankruptcy Prediction

Corporate bankruptcy prediction is very important to
management, stockholders, employees, customers, and
other stakeholders. A number of data mining tech-
niques have been applied to this problem, including
multivariate discriminant analysis, logistical regression,
probit, genetic algorithms, neural networks, and deci-
sion trees.

Sung et al. [19] applied decision analysis and deci-
sion tree models to a bankruptcy prediction case. De-
cision tree models provide a series of IF–THEN rules
to predict bankruptcy. Pruning (raising the proportion
of accurate fit required to keep a specific IF–THEN re-
lationship) significantly increased overall prediction ac-
curacy in the crisis period, indicating that data collected
in the crisis period was more influenced by noise than
data from the period with normal conditions. Example
rules obtained were as shown in Table 1, giving an idea
of how decision tree rules work.

For instance, in normal conditions, if the variable
Productivity of capital (E6) was greater than 19.65, the
model would predict firm survival with 86 percent con-
fidence. Conversely, if Productivity of capital (E6) was
less than or equal to 19.65, and if the Ratio of cash flow
to total assets (C9) was less than or equal to 5.64, the
model would predict bankruptcy with 84 percent confi-
dence. These IF–THEN rules are stated in ways that are
easy for management to see and use. Here the rules are
quite simple, a desirable feature. With large data sets, it
is common to generate hundreds of clauses in decision
tree rules, making it difficult to implement (although
gaining greater accuracy). The number of rules can be
controlled through pruning rates within the software.

Fraud Detection

Data mining has successfully supported many as-
pects of the insurance business, to include fraud de-
tection, underwriting, insolvency prediction, and cus-
tomer segmentation. An insurance firm had a large data
warehouse system recording details on every transac-
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Data Mining, Table 1
Bankruptcy Prediction Rules

Condition Rule Prediction Confidence level

Normal E6>19.65 Nonbankrupt 0.86
Normal C9>5.64 Nonbankrupt 0.95
Normal C9�5.64 & E6�19.65 Bankrupt 0.84

Crisis E6>20.61 Nonbankrupt 0.91
Crisis C8>2.64 Nonbankrupt 0.85
Crisis C3>87.23 Nonbankrupt 0.86
Crisis C8�2.64, E6�20.61, & C3�87.23 Bankrupt 0.82

Where C3= Ratio of fixed assets to equity & long-term liabilities. C8 = Ratio of
cash flow to liabilities. C9= Ratio of cash flow to total assets. E6= Productivity
of capital. Based on Sung et al. [19]

tion and claim [18]. An aim of the analysis was to accu-
rately predict average claim costs and frequency, and to
examine the impact of pricing on profitability.

In evaluating claims, data analysis for hidden trends
and patterns is needed. In this case, recent growth in the
number of policy holders led to lower profitability for
the company. Understanding the relationships between
cause and effect is fundamental to understanding what
business decisions would be appropriate.

Policy rates are based on statistical analysis assum-
ing various distributions for claims and claim size. In
this case, clustering was used to better model the per-
formance of specific groups of insured.

Profitability in insurance is often expressed by the
cost ratio, or sum of claim costs divided by sum of pre-
miums. Claim frequency ratio is the number of claims
divided by the number of policy units of risk (possible
claims). Profitability would be improved by lowering

Data Mining, Table 2
General Ability of Data Mining Techniques to Deal with Data Features

Data characteristic Rule induction Neural networks Case-based reasoning Genetic algorithms
Handle noisy data Good Very good Good Very good
Handle missing data Good Good Very good Good
Process large data sets Very good Poor Good Good

Process different data types Good Transform to numerical Very good Transforma-tion needed
Predictive accuracy High Very high High High
Explanation capability Very good Poor Very good Good
Ease of integration Good Good Good Very good
Ease of operation Easy Difficult Easy Difficult

Extracted from Bose and Mahapatra [2]

the frequency of claims, or the costs of claims relative
to premiums.

Data was extracted from the data warehouse for
policies for which premiums were paid in the first quar-
ter over a three-year period. This meant that policies
were followed over the period, augmented by new poli-
cies, and diminished by terminations. Data on each
policy holder was available as well as claim behavior
over the preceding year. The key variables of cost ra-
tio and claim frequency ratio were calculated for each
observation. Sample sizes for each quarter were well
above 100,000.

Descriptive statistics found exceptional growth in
policies over the past two years for young people (un-
der 22), and with cars insured for over $40,000. Clus-
tering analysis led to the conclusion that the claim cost
of each individual policy holder would be pointless, as
the vast majority of claims could not be predicted. Af-
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ter experimentation, the study was based on 50 clus-
ters. A basic k-means algorithm was used. This iden-
tified several clusters as having abnormal cost ratios or
frequency sizes. By testing over a two-year gap, stability
for each group was determined. Table 2 compares data
mining techniques.

Ethical Issues in Data Mining

Data mining is a potentially useful tool, capable of do-
ing a lot of good, not only for business but also for
the medical field and for government. It does, however,
bring with it some dangers. So, how can we best protect
ourselves, especially in the area of business data min-
ing?

A number of options exist. Strict control of data
usage through governmental regulation was proposed
by Garfinkel [7]. A number of large database projects
that made a great deal of practical sense have ultimately
been stopped. Those involving government agencies
were successfully stopped due to public exposure, the
negative outcry leading to cancellation of the National
Data Center and the Social Security Administration
projects. A system with closely held information by
credit bureaus in the 1960s was only stopped after gov-
ernmental intervention, which included the passage of
new laws. Times have changed, with business adopting
a more responsive attitude toward consumers. Innova-
tive data mining efforts by Lotus/Equifax and by Lexis-
Nexis were quickly stopped by public pressure alone.

Public pressure seems to be quite effective in pro-
viding some control over potential data mining abuses.
If that fails, litigation is available (although slow in ef-
fect). It is necessary for us to realize what businesses
can do with data. There will never be a perfect system
to protect us, and we need to be vigilant. However, too
much control can also be dangerous, inhibiting the abil-
ity of business to provide better products and services
through data mining. Garfinkel prefers more govern-
mental intervention, while we would prefer less gov-
ernmental intervention and more reliance on publicity
and, if necessary, the legal system.

Control would be best accomplished if it were nat-
urally encouraged by systemic relationships. The first
systemic means of control is publicity. Should those
adopting questionable practices persist, litigation is
a slow, costly, but ultimately effective means of sys-

tem correction. However, before taking drastic action,
a good rule is that if the system works, it is best not to fix
it. The best measure that electronic retailers can take is
to not do anything that will cause customers to suspect
that their rights are being violated.

Conclusions

Data mining has evolved into a useful analytic tool in
all aspects of human study, to include medicine, engi-
neering, and science. It is a necessary means to cope
with the masses of data that are produced in contem-
porary society. Within business, data mining has been
especially useful in applications such as fraud detection,
loan analysis, and customer segmentation. Such appli-
cations heavily impact the service industry. Data min-
ing provides a way to quickly gain new understanding
based upon large-scale data analysis.

This paper reviewed some of the applications that
have been applied in services. It also briefly reviewed
the data mining process, some of the analytic tools
available, and some of the major software vendors of
general data mining products. Specific tools for partic-
ular applications are appearing with astonishing rapid-
ity.
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As optimization techniques become widely used in en-
gineering, economics, and other sciences, an increasing
number of nonconvex optimization problems are en-
countered that can be described in terms of dc functions
(differences of convex functions). These problems are
called dc optimization problems, and the theory dealing
with these problems is referred to as dc programming,
or dc optimization ([3,4,5,6,13]; see also [1,8]).

Historically, the first dc optimization problem that
was seriously studied is the concave minimization
problem [11]. Subsequently, reverse convex program-
ming and some other special dc optimization problems
such as quadratic and, more generally, polynomial pro-
gramming problems appeared before a unified theory
was developed and the term dc optimization was intro-
duced [12]. In fact, most global optimization problems
of interest that have been studied so far can be identi-
fied as dc optimization problems, despite the diversity
of the approaches used.

DC Structure in Optimization

Let ˝ be a convex set in Rn . A function f : ˝ ! R is
said to be dc on˝ if it can be expressed as the difference
of two convex functions on ˝ : f (x) D p(x) � q(x);
where p(x); q(x) : ˝ ! R are convex. Denote the set
of dc functions on˝ by DC(˝).

Proposition 1 DC(˝) is a vector lattice with respect to
the two operations of pointwise maximum and pointwise
minimum.

In other words, if fi(x) 2 DC(˝); i D 1; : : : ;m;
then:
1.
Pm

iD1 ˛i f i(x) 2 DC(˝), for any real numbers ˛i ;
2. g(x) D maxf f1(x); : : : ; fm(x)g 2 DC(˝);
3. h(x) D minf f1(x); : : : ; fm(x)g 2 DC(˝).
From this property it follows in particular that if
f 2 DC(˝), then j f j 2 DC(˝), and if g; h 2 DC(˝),
then gh 2 DC(˝). But for the purpose of optimization
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the most important consequence is that

gi (x) � 0; 8i D 1; : : : ;m

, g(x) :D maxfg1(x); : : : ; gm(x)g � 0 ;

gi (x) � 0 for at least one i D 1; : : : ;m

, g(x) :D minfg1(x); : : : ; gm(x)g � 0 :

Therefore, any finite system of dc inequalities, whether
conjunctive or disjunctive, can be rewritten as a single
dc inequality.

By easy manipulations it is then possible to reduce
any dc optimization problem to the following canonical
form:

minimize f (x)
subject to g(x) � 0 � h(x) ;

(CDC)

where all functions f , g, h are convex.
Thus dc functions allow a very compact description

of a wide class of nonconvex optimization problems.

Recognizing dc Functions

To exploit the dc structure in optimization problems,
it is essential to be able to recognize dc functions that
are still in hidden form (i. e., not yet presented as dif-
ferences of convex functions). The next proposition ad-
dresses this question.

Proposition 2 Every function f 2 C2 is dc on any com-
pact convex set˝ .

It follows that any polynomial function is dc, and hence,
by the Weierstrass theorem, DC(˝) is dense in the Ba-
nach space C(˝) of continuous functions on ˝ with
the supnorm topology. In other words, any continuous
function can be approximated as closely as desired by
a dc function.

More surprisingly, any closed set S in Rn can be
shown to be a dc set, i. e., a set that is the solution set
of a dc inequality. Namely, given any closed set S � Rn

and any strictly convex function h : Rn ! R, there ex-
ists a continuous convex function gS : Rn ! R such
that S D fx 2 Rn : gS (x) � h(x) � 0g [10].

In many situations we not only need to recognize
a dc function but also to know how to represent it ef-
fectively as a difference of two convex functions. While
several classes of functions have been recognized as dc
functions [2], there are still few results about effective

dc representations of these functions. For composite
functions a useful result about dc representation is the
following [13].

Proposition 3 Let h(x) D u(x) � v(x), where u; v :
˝ ! RC are convex functions on a compact con-
vex set ˝ � Rm such that 0 � h(x) � a8x 2 ˝ . If
q : [0; a] ! R is a convex nondecreasing function such
that q0�(a) <1 (q0�(a) being the left derivative of q(t)
at a), then q(h(x)) is a dc function on˝ :

q(h(x)) D g(x) � K[aC v(x) � u(x)] ;

where g(x) D q(h(x))C K[aC v(x) � v(x)] is a con-
vex function and K is any constant satisfying K � q0�(a).

For example, by writing x˛ D eh(x) with h(x) DP
iD1; :::; n ˛i log xi and applying the above proposition,

it is easy to see that x˛ D x˛11 � � � x˛nn ; with ˛ 2 Rn
C; is

dc on any box ˝ D [r; s] � Rn
CC. Hence, any syno-

mial function f (x) D
P
˛ c˛x˛ , with c˛ 2 R; ˛ 2 Rn

C;

is also dc on˝ .

Global Optimality Criterion

A key question in the theoretical as well as computa-
tional study of a global optimization problem is how to
test a given feasible solution for global optimality.

Consider a pair of problems in some sense mutually
obverse:

inff f (x) : x 2 ˝ ; h(x) � ˛g ; (P˛)

supfh(x) : x 2 ˝ ; f (x) � �g ; (Q� )

where ˛; � 2 R; ˝ is a closed set in Rn , and
f ; g : Rn ! R are two arbitrary functions.

We say that problem (P˛) is regular if

inf P˛ D inff f (x) : x 2 ˝; h(x) > ˛g : (1)

Analogously, problem (Q� ) is regular if supQ� D
supfh(x) : x 2 ˝; f (x) < �g.

Proposition 4 Let x̄ be a feasible solution of problem
(P˛). If x̄ is optimal to problem (P˛) and if problem (Q� )
is regular for � D f (x̄), then

supfh(x) : x 2 ˝; f (x) � �g D ˛ : (2)

Conversely, if (2) holds and if problem (P˛) is regular,
then x̄ is optimal to (P˛).
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Turning now to the canonical dc optimization problem
(CDC), let us set ˝ D fx : g(x) � 0g and without los-
ing generality assume that the reverse convex constraint
h(x) � 0 is essential, i. e.,

inff f (x) : x 2 ˝g < inff f (x) : x 2 ˝; h(x) � 0g: (3)

Since CDC is a problem (P˛) with ˛ D 0, if x̄ is a fea-
sible solution to CDC, then condition (3) ensures the
regularity of the associated problem (Q� ) for � D f (x̄).
Define

C D fx : h(x) � 0g; D(�) D fx 2 ˝ : f (x) � �g ;

(4)

and for any set E denote its polar by E�. As specialized
for CDC, Proposition 4 yields:

Proposition 5 In order that a feasible solution x̄ of
CDC may be a global minimizer, it is necessary that the
following equivalent conditions hold for � D f (x̄) :

D(�) � C ; (5)

0 D maxfh(x) : x 2 D(�)g ; (6)

C� � [D(�)]� : (7)

If the problem is regular, then any one of the above con-
ditions is also sufficient.

An important special dc program is the following prob-
lem:

minimize g(x)� h(x) subject to x 2 Rn ; (DC)

where g; h : Rn ! R̄ are convex functions (R̄ denotes
the set of extended real numbers). Writing this problem
as minfg(x) � t : x 2 D; h(x) � tg with D D domg \
domh and using (7), one can derive the following:

Proposition 6 Let g; h : Rn ! R̄ be two convex func-
tions such that h(x) is proper and lsc. Let x̄ be a point
where g(x̄) and h(x̄) are finite. In order for x̄ to be
a global minimizer of g(x) � h(x) over Rn , it is neces-
sary and sufficient that

@"h(x̄) � @"g(x̄) 8" > 0 ; (8)

where @" f (a) D fp 2 Rn : hp; x � ai � " � f (x) �
f (a) 8x 2 Rng is the "-subdifferential of f (x) at
point a.

Solution Methods

Numerous solution methods have been proposed for
different classes of dc optimization. Each of them pro-
ceeds either by outer approximation (OA) of the feasi-
ble set or by branch and bound (BB) or is of a hybrid
type, combining OA with BB. Following are some typi-
cal dc algorithms.

An OAMethod for (CDC)

Without losing generality, assume (3), i. e.,

9w s.t. g(w) � 0 ;
f (w) < minf f (x) : x 2 ˝; h(x) � 0g : (9)

where, as was defined above, ˝ D fx : g(x) � 0g. In
most cases checking the regularity of a problem is not
easy while regularity is needed for the sufficiency of
the optimality criteria in Proposition 5. Therefore the
method to be presented below only makes use of the
necessity part of this proposition and is independent of
any regularity assumption.

In practice, what we usually need is not an exact
solution but just an approximate solution of the prob-
lem. Given tolerances " > 0; � > 0;we are interested in
"-approximate solutions, i. e., solutions x 2 ˝ satisfy-
ing h(x) � �". An "-approximate solution x� is then
said to be �-optimal if f (x�) � � � minf f (x) : x 2
˝; h(x) � 0g.

With x̄ now being a given "-approximate solution
and � D f (x̄) � �, consider the subproblem

maxfh(x) : x 2 ˝; f (x) � �g : (Q� )

For simplicity assume that the set D(�) D fx 2 ˝;

f (x) � �g is bounded. Then (Q� ) is a convex maxi-
mization problem over a compact convex set and can
be solved by an OA algorithm (see [13] or [3]) generat-
ing a sequence fxk; ykg such that

xk 2 ˝; f (xk) � �; h(xk) � max(Q� ) � h(yk) (10)

and, furthermore, kxk � ykk ! 0 as k! C1: These
relations imply that we must either have h(yk) < 0
for some k (which implies that max (Q� ) < 0), or
else h(xk) � �" for some k: In the former case,
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this means there is no x 2 ˝ with h(x) � 0 and
f (x) � f (x̄) � �; i. e., x̄ is �-optimal to CDC, and we
are done. In the latter case, xk is an "-approximate solu-
tion with f (xk) � f (x̄) � �: Using then a local search
(or any inexpensive way available) one can improve
xk to x0 2 ˝ \ fx : h(x) D �"g, and, after resetting
�  f (x0) � � in (Q� ), one can repeat the procedure
with the new (Q� ). And so on.

As is easily seen, the method consists essentially of
a number of consecutive cycles in each of which, say
the lth cycle, a convex maximization subproblem (Q� )
is solved with � D f (xl ) � � for some "-approximate
solution xl. This sequence of cycles can be organized
into a unified procedure. For this, it suffices to start
each new cycle from the result of the previous cycle:
after resetting �  � 0 :D f (x0) � � in (Q� ), we have
D(� 0) � D(�), with a point x0 … D(� 0), so the algo-
rithm can be continued by using a hyperplane separat-
ing x0 from D(� 0) to form with the current polytope
outer approximating D(�) a smaller polytope outer
approximating D(� 0). Since each cycle decreases the
objective function value by at least a quantity � > 0,
and the objective function is bounded from below, the
whole procedure must terminate after finitely many cy-
cles, yielding an "-approximate solution that is �-opti-
mal to (CDC).

It is also possible to use a BB algorithm for solving
the subproblem (Q� ) in each cycle. The method then
proceeds exactly as in the BB method for GDC to be
presented next.

A BBMethod for General DC Optimization

A general dc optimization problem can be formulated
as

minf f (x) : gi (x) � 0;

i D 1; : : : ;m; x 2 ˝g ; (GDC)

where ˝ is a compact convex subset of Rn , and
f ; g1; : : : ; gm are dc functions on˝ . Although in prin-
ciple GDC can be reduced to the canonical form and
solved as a CDC problem, this may not be an efficient
method as it does not take account of specific features
of GDC. For instance, if the feasible set of GDC is highly
nonconvex, computing a single feasible solution may be
as hard as solving the problem itself. Under these con-
ditions, a direct application of the OA or the BB strate-

gies to GDC is fraught with pitfalls. Without adequate
precautions, such approaches may lead to grossly incor-
rect results or to an unstable solution that may change
drastically upon a small change of the data or the toler-
ances [15,16].

A safer approach is to reduce GDC to a sequence
of problems with a convex feasible set in the follow-
ing way. By simple manipulations it is always pos-
sible to arrange that the objective function f (x) is
convex. Let g(x) D miniD1; ::: ;m gi(x), and for every
� 2 R [ fC1g consider the subproblem

maxfg(x) : x 2 ˝; f (x) � �g : (R� )

Assuming the set D(�) :D fx 2 ˝; f (x) � �g to be
bounded, we have in (R� ) a dc optimization over
a compact convex set. Using a BB procedure to solve
(R� ) we generate a nested sequence of partition sets
Mk (boxes, e. g., using a rectangular subdivision),
together with a sequence ˛(Mk ) 2 R [ f�1g, and
xk 2 Rn ; k D 1; 2; : : : ; such that

diam Mk ! 0 as k! C1 ; (11)

˛(Mk)& maxfg(x) : x 2 Mk \ D(�)g(k! C1) ;

(12)

˛(Mk ) � max(R� ); xk 2 Mk \ D(�) ; (13)

where max(P) denotes, as usual, the optimal value of
problem P. Condition (11) means that the subdivision
rule used must be exhaustive, while (12) indicates that
˛(Mk) is an upper bound over the feasible solutions in
Mk, and (13) follows from the fact that Mk is the parti-
tion set with the largest upper bound among all parti-
tion sets currently of interest.

As before, we say that x is an "-approximate solu-
tion of GDC if x 2 ˝; g(x) � �" and x� is �-optimal if
f (x�) � � � minf f (x) : g(x) � 0; x 2 ˝g. From (11)–
(13) it follows that ˛(Mk ) � g(xk)! 0 as k! C1,
and hence, for any given " > 0, either ˛(Mk ) < 0 for
some k or g(xk) � �" for some k. In the former
case, max(R� ) < 0, hence max (GDC) > � ; in the lat-
ter case, xk is an "-approximate solution of GDC with
f (xk) � � . So, given any "-approximate solution x̄ with
� D f (x̄) � �, a finite number of iterations of this BB



D.C. Programming D 611

procedure will help to determine whether there is no
feasible solution x to GDC with f (x) � f (x̄) � �; i. e.,
x̄ is �-optimal to GDC, or else there exists an "-approx-
imate solution x0 to GDC with f (x0) � f (x̄) � �. In the
latter case, we can reset f (x0) � � � and repeat the
procedure with the new � , and so on. In this way the
whole solution process consists of a number of cycles,
each involving a finite BB procedure and giving a de-
crease in the incumbent value of f (x) by at least � > 0.
By starting each cycle right from the result of the previ-
ous one, the sequence of cycles forms a unified proce-
dure. Since � is a positive constant, the number of cycles
is finite and the procedure terminates with an "-approx-
imate solution that is �-optimal to GDC.

The efficiency of such a BB procedure depends on
two basic operations: branching and bounding. Usu-
ally, branching is performed by means of an exhaus-
tive subdivision rule, so as to satisfy condition (11). For
rectangular partition, this condition can be achieved
by the standard bisection rule: bisect the current box
M into two equal subboxes by means of a hyper-
plane perpendicular to a longest edge of M at its mid-
point. However, it has been observed that the con-
vergence guaranteed by an exhaustive subdivision rule
is rather slow, especially in high dimensions. To im-
prove the situation, the idea is to use, instead of the
standard bisection, an adaptive subdivision rule de-
fined as follows. Let the upper bound ˛(Mk) in (12)
be obtained as ˛(Mk ) D maxf� (x) : x 2 Mk \ D(�)g,
where � (x) is some concave overestimator of g(x)
over Mk that is tight at some point yk 2 Mk , i. e.,
satisfies � (yk) D g(yk). If xk 2 argmaxf� (x)jx 2
Mk \ D(�)g, then the subdivision rule is to bi-
sect Mk by means of the hyperplane xs D xk

s C yks /2,
where s 2 argmaxiD1; ::: ;njy

k
i � xk

i j. As has been proved
in [13], such an adaptive bisection rule ensures the
existence of an infinite subsequence fk�g such that
yk� � xk� ! 0 as � ! C1. The common limit x�

of xk� and yk� then yields an optimal solution of
the problem (R� ). Computational experience has ef-
fectively confirmed that convergence achieved with an
adaptive subdivision rule is usually much faster than
with the standard bisection. For such an adaptive sub-
division to be possible, the constraint set D(�) of (12)
must be convex, so that for each partition set Mk two
points xk 2 Mk \ D(�) and yk 2 Mk can be defined
such that ˛(Mk ) � g(yk) D o(kxk � ykk).

DCA–A Local Optimization Approach to (DC)

By rewriting DC as a canonical dc optimization prob-
lem

minft � h(x) : x 2 Rn ; t 2 R; g(x) � t � 0g ;

we see that DC can be solved by the same method as
CDC. Since, however, for some large-scale problems we
are not so much interested in a global optimal solution
as in a sufficiently good feasible solution, a local opti-
mization approach to DC has been developed [9] that
seems to perform quite satisfactorily in a number of ap-
plications. This method, referred to as DCA, is based on
the well-known Toland equality:

inf
x 2domg

fg(x)�h(x)g D inf
y 2domh�

fg�(y)� g�(y)g; (14)

where g; h : Rn ! R are lower semicontinuous proper
convex functions, and the star denotes the conjugate,
e. g., g�(y) D supfhx; yi � g(x) : x 2 domgg. Taking
account of this equality, DCA starts with x0 2 domg
and for k D 1; 2; : : : ; computes yk 2 @h(xk); xkC1 2

@g�(yk). As has been proved in [9], the thus generated
sequence xk ; yk satisfies the following conditions:
1. The sequences g(xk) � h(xk) and h�(xk) � g(�(xk)

are decreasing.
2. Every accumulation point x� (resp. y�) of the se-

quence fxkg (resp. fykg) is a critical point of the
function g(x) � h(x) (resp. h�(y) � g�(y)).

Though global optimality cannot be guaranteed by this
method, it has been observed that in many cases of in-
terest it yields a local minimizer that is also global.

Applications and Extensions

The above described dc methods are of a general-
purpose type. For many special dc problems more
efficient algorithms are needed to take full advantage
of additional structures. Along this line, dc methods
have been adapted to solve problems with separated
nonconvexity, bilinear programming, multilevel pro-
gramming, multiobjective programming, optimization
problems over efficient sets, polynomial and synomial
programming, fractional programming, continuous lo-
cation problems, clustering and datamining problems,
etc. [4]. In particular, quite efficient methods have been
developed for a class of dc optimization problems im-
portant for applications called multiplicative program-
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ming [4,5]. Also, techniques for bounding, branching,
and decomposition have been refined that have very
much widened the range of applicability of dc meth-
ods. Most recently, monotonic optimization, also called
DM optimization, has emerged as a new promising
field of research dealing with a class of optimization
problems important for applications whose structure,
though different from the dc structure, shares many
common features with the latter. To be specific, let C
be a family of real valued functions on Rn such that
(i) g1; g2 2 C; ˛1; ˛2 2 RC) ˛1g1 C ˛2g2 2 C; (ii)
g1; g2 2 C ) g(x) :D maxfg1(x); g2(x)g 2 C. Then
the family D(C) D C � C is a vector lattice with re-
spect to the two operations of pointwise maximum
and pointwise minimum. When C is the set of convex
functions, D(C) is nothing but the vector lattice of dc
functions. When C is the set of increasing functions
on Rn , i. e., the set of functions f : Rn ! R such that
x0 � x ) f (x0) � f (x), the vector lattice D(C) con-
sists of DM functions, i. e., functions representable as
the difference of two increasing functions. For the the-
ory, methods, and algorihms of DM optimization, we
refer the reader to [7,14,18].
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In practical real-world situations the available time for
making decisions is often limited, while the cost of in-
vestigation is increasing with time. Therefore, it would
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be enviable to exploit the increasing processing power
provided by the modern computer technology, to save
significant amounts of time and cost in decision mak-
ing problems. Computationally intensive, but routine
tasks, such as data management and calculations can be
performed with remarkable speed by a common per-
sonal computer, compared to the time that a human
would need to perform the same tasks. On the other
hand, computers are unable to perform cognitive tasks,
while their inference and reasoning capabilities are still
very limited compared to the capabilities of the human
brain. Thus, in decision making problems, computers
can support decision makers by managing the data of
the problem and performing computationally intensive
calculations, based on a selected decision model, which
could help in the analysis, while the decision makers
themselves have to examine the obtained results of the
models and conclude to the most appropriate decision.

This merging of human judgment and intuition to-
gether with computer systems constitutes the underly-
ing philosophy, methodological framework and basic
goal of decision support systems [17]. The term ‘deci-
sion support system’ (DSS) is already consolidated and
it is used to describe any computer system that provides
information on a specific decision problem using ana-
lytical decision models and access to databases, in or-
der to support a decision maker in making decisions ef-
fectively in complex and ill-structured problems where
no straightforward, algorithmic procedure can be em-
ployed [28].

The development of DSSs kept pace with the ad-
vances in computer and information technologies, and
since the 1970s numerous DSSs have been designed by
academic researchers and practitioners for the exami-
nation and analysis of several decision problems includ-
ing finance and accounting, production management,
marketing, transportation, human resources manage-
ment, agriculture, education, etc. [17,19].

Except for the specific decision problems that DSSs
address, these systems are also characterized by the
type of decision models and techniques that they in-
corporate (i. e. statistical analysis tools, mathematical
programming and optimization techniques, multicrite-
ria decision aid methods, etc.). Some of these method-
ologies (optimization, statistical analysis, etc.) which
have already been implemented in several DSSs, are
based on the classical monocriterion approach. How-

ever, real world decision problems can be hardly con-
sidered through the examination of a single criterion,
attribute or point of view that will lead to the ‘opti-
mum’ decision. In fact such a monocriterion approach
is merely an oversimplification of the actual nature of
the problem at hand, that can lead into unrealistic deci-
sions.

On the other hand, a more realistic and flexible ap-
proach would be the simultaneous consideration of all
pertinent factors that may affect a decision. However,
through this appealing approach a very essential issue
emerges: how can several and often conflicting factors
can be aggregated to make rational decisions? This is-
sue constitutes the focal point of interest for all the
multicriteria decision aid methods. The incorporation
of multicriteria decision aid methods in DSSs provides
the decision makers with a highly efficient tool to study
complex real world decision problems where multiple
criteria of conflicting nature are involved. Therefore,
the subsequent sections of this paper will concentrate
on this specific category of DSSs (multicriteria DSSs,
MCDSSs).

The article is organized as follows. In section 2 some
basic concepts, notions and principles of multicriteria
decision aid are discussed. Section 3 presents the main
features and characteristics ofMCDSSs, along with a re-
view of the research that has been conducted in this
field, while some extensions of the classical MCDSSs
framework in group decision making and intelligent
decision support are also discussed. Finally, section 4
concludes the paper and outlines some possible future
research directions in the design, development and im-
plementation of MCDSSs.

Multicriteria Decision Aid

Multicriteria decision aid (MCDA, the European
School) or multicriteria decision making (MCDM, the
American School) [49,64] constitutes an advanced field
of operations research which is devoted to the develop-
ment and implementation of decision support method-
ologies to confront complex decision problems involv-
ing multiple criteria, goals or objectives of conflict-
ing nature. The foundations of MCDA can be traced
back in the works of J. von Neumann and O. Mor-
genstern [43], and P.C. Fishburn [20] on utility theory,
A. Charnes and W.W. Cooper [10] on goal program-
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ming, and B. Roy [47] on the concept of outranking
relations and the foundations of the ELECTRE meth-
ods. These pioneering works have affected the subse-
quent research in the field of MCDA that can be distin-
guished in two major groups: discrete and continuous
MCDA. The former is involved with decision problems
where there is a finite set of alternatives which should
be considered in order to select the most appropriate
one, to rank them from the best to the worst, or to clas-
sify them in predefined homogeneous classes. On the
contrary in continuous MCDA problems the alterna-
tives are not defined a priori, but instead one seeks to
construct an alternative that meets his/her goals or ob-
jectives (for instance the construction of a portfolio of
stocks).

There are different ways to address these two classes
of problems in MCDA. Usually, a continuous MCDA
problem is addressed through multi-objective or goal
programming approaches. In the former case, the ob-
jectives of the decision maker are expressed as a set of
linear or non linear functions which have to be ‘opti-
mized’, whereas in the latter case the decision maker
expresses his/her goals in the form of a reference or
ideal point which should be achieved as close as pos-
sible. These two approaches extend the classical single-
objective optimization framework, through the simul-
taneous consideration of more than one objectives or
goals. Of course in this new context it seems illusory
to speak of optimality, but instead the aim is initially
to determine the set of efficient solutions (solutions
which are not dominated by any other solution) and
then to identify interactively a specific solution which
is consistent with the preference structure of the deci-
sion maker. The books [54,57] and [63] provide an ex-
cellent and extensive discussion of both multi-objective
and goal programming.

On the other hand, discrete MCDA problems are
usually addressed through the multi-attribute utility
theory (MAUT) [26], the outranking relations approach
[48] or the preference disaggregation approach ([23,44]).
These three approaches are mainly focused on the de-
termination and modeling of the decision makers’ pref-
erences, in order to develop a global preference model
which can be used in decision making. Their differences
concern mainly the form of the global preferencemodel
that is developed, as well as the procedure that is used
to estimate the parameters of the model. The developed

preference model in both MAUT and preference dis-
aggregation is a utility or value function either additive
or multiplicative, whereas the outranking relations ap-
proach is based on pairwise comparisons of the form
‘alternative a is at least as good as alternative b’. Con-
cerning the procedure that is used to estimate the pa-
rameters of the global preferencemodel, both inMAUT
and outranking relations there is a direct interrogation
of the decision maker.More precisely, inMAUT the de-
cision maker is asked to determine the trade-offs among
the several attributes or criteria, while in outranking re-
lations the decision maker has to determine several pa-
rameters, such as the weights of the evaluation crite-
ria, indifference, strict preference and veto thresholds
for each criterion. On the contrary, in preference dis-
aggregation, an ordinal regression procedure is used to
estimate the global preference model. Based on a refer-
ence set of alternatives, which may consist either of past
decisions or by a small subset of the alternatives un-
der consideration, the decision maker is asked to pro-
vide a ranking or a classification of the alternatives ac-
cording to his/her decision policy (global preferences).
Then, using an ordinal regression procedure the global
preference model is estimated so that the original rank-
ing or classification (and consequently the global pref-
erence system of the decisionmaker) can be reproduced
as consistently as possible.

Multicriteria Decision Support Systems

From the above brief discussion of the basic concepts
and approaches of MCDA, it is clear that in any case
the decision maker and his/her preferences constitute
the focal point of the methodological framework of
MCDA. This special characteristic of MCDA implies
that a comprehensive model of a decision situation can-
not be developed, but instead the model should be de-
veloped to meet the requirements of the decision maker
[46]. The development of such a model can be only
achieved through an iterative and interactive process,
until the decision maker’s preferences are consistently
represented in the model. Both interactivity and itera-
tive operation are two of the key characteristics of DSSs.
Consequently, a DSS incorporating MCDA methods
could provide essential support in structuring the de-
cision problem, analyzing the preferences of the deci-
sion maker, and supporting the model building process.
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The support provided by multicriteria DSSs (MCDSSs)
is essential for the decision maker as well as for the de-
cision analyst.
� The decision maker through the use of MCDSSs

becomes familiar with sophisticated operations re-
search techniques, he is supported in structuring the
decision problem considering all possible points of
view, attributes or criteria, and furthermore, he is
able to analyze the conflicts between these points of
view and consider the existing trade-offs. All these
capabilities provided by MCDSSs serve the learning
process of decision makers in resolving complex de-
cision problems in a realistic context, and constitute
a solid scientific basis for arguing upon the decisions
taken.

� On the other hand, from the decision analyst point
of view, MCDSSs provide a supportive tool which
is necessary throughout the decision making pro-
cess, enabling the decision analyst who usually acts
as an intermediate between the system and the de-
cision maker, to highlight the essential features of
the problem to the decision maker, to introduce the
preferences of the decision maker in the system, and
to develop the corresponding model. Furthermore,
through sensitivity and robustness analyses the de-
cision analyst is able to examine several scenarios,
concerning both the significance of the evaluation
criteria as well as the changes in the decision envi-
ronment.
The supportive operation ofMCDSSs inmaking de-

cisions in ill-structured complex decision problems was
the basic motivation for computer scientists, manage-
ment scientists and operations researchers in the devel-
opment of such systems. Actually, MCDSSs are one of
the major areas of DSSs research since the 1970s [19]
and significant progress has been made both on the the-
oretical and the practical/implementation viewpoints.

The first MCDSSs to be developed in the 1970s
where mainly oriented towards the study of multi-
objective mathematical programming problems
([16,61]). These early pioneer systems, mainly due to
the limited capabilities of computer technology dur-
ing that period, were primarily developed for academic
purposes, they were implemented in mainframe com-
puters, with no documentation available, while they
had no visual representation capabilities [31]. Today,
after more than twenty years of research and advances

in MCDA, DSSs, and computer science, most MCDSSs
provide many advanced capabilities to decision makers
including among others [46]:
1) Enhanced data management capabilities including

interactive addition, deletion or modification of cri-
teria.

2) Assessment and management of weights.
3) User-friendly interfaces based on visual representa-

tions of both alternatives and criteria to assist the
interaction between the system and the decision
maker.

4) Sensitivity analysis (what-if analysis) to determine
how the changes in the weights of the evaluation cri-
teria can affect the actual decision.
These capabilities are in accordance with the gen-

eral characteristics of DSSs, that is interactivity, flexibil-
ity and adaptability to the changes of the decision envi-
ronment, user oriented design and development, and
combination of data base management with decision
models. Although the aforementioned capabilities are
common to most of the existing MCDSSs, one could
provide a distinction of the MCDSSs according to the
MCDA approaches that they employ:
� MCDSSs based on the multi-objective program-

ming approach:
– the TOMMIX system [2],
– the TRIMAP system [11],
– the VIG system ([29,32]),
– the VIDMA system [30],
– the DIDAS system [36],
– the AIM system [37],
– the ADBASE system [58], and
– the STRANGE system [59].

� MCDSSs based on the MAUT approach:
– the MACBETH system [5],
– the VISA system [6], and
– the EXPERT CHOICE system [21].

� MCDSSs based on the outranking relations ap-
proach:
– the PROMCALC and GAIA systems [7],
– the ELECCALC system [27],
– the PRIAM system [34], and
– the ELECTRE TRI system [62].

� MCDSSs based on the preference disaggregation ap-
proach:
– the PEFCALC system [22],
– the MINORA system [51],
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– the MIIDAS system [52], and
– the PREFDIS system [66].
Most of the existing MCDSSs are designed for the

study of general multicriteria decision problems. Al-
though they provide advanced capabilities for model-
ing the decision makers’ preferences in order to make
a specific decision regarding the choice of an alternative
and the ranking or the classification of the alternatives,
MCDSSs do not consider the specific characteristics, as
well as the nature of the decision that should be taken
according to the specific decision problem that is con-
sidered.

To address the unique nature of some significant
decision problems, where except for the application
of MCDA methodology, some other type of analyses
are necessary to consider the environment in which
the decision is taken, several authors proposed do-
main specific MCDSSs. Some decision problems for
which specific MCDSSs have been developed include
the assessment of corporate performance and viability
(the BANKADVISER system [39], the FINCLAS sys-
tem [65], the FINEVA system [68], and the system
proposed in [53]), bank evaluation (the BANKS sys-
tem [40]), bank asset liability management [33], finan-
cial planning [18], portfolio selection [67], new prod-
uct design (the MARKEX system [42]), urban planning
(the system proposed in [1]), strategic planning [9], and
computer system design [15].

Multicriteria Group Decision Support Systems

A common characteristic of all the aforementioned
MCDSSs is that they refer to decisions that are taken
by individual decision makers. However, in many cases
the actual decision is not the responsibility of an in-
dividual, but instead there is a team of negotiating or
cooperative participants who must conclude to a con-
sensus decision. In this case, although the decision pro-
cess and consequently the required decision support,
remains the same, as far as each individual decision
maker is concerned, the process that will lead the co-
operative team or the negotiating parties to a consensus
decision is completely different from the individual de-
cision making process. Therefore, the type of support
needed also differs.

Group DSSs (GDSSs) aim at supporting such deci-
sion processes, and since the tools provided by MCDA

can be extended to generalized group decision process,
several attempts have been made to design and develop
such multicriteria systems. Some examples of multicri-
teria GDSSs include the Co-oP system [8], the JUDGES
system [12], the WINGDSS system [13], the MEDIA-
TOR system [24], and the SCDAS system [35].

Intelligent Multicriteria Decision Support Systems

Except for the extension of the MCDSSs frame-
work in supporting group decision making, recently
researchers have also investigated the extension of
MCDSSs through the exploitation of the advances in
the field of artificial intelligence. Scientific fields such
as those of neural networks, expert systems, fuzzy sets,
genetic algorithms, etc., provide promising features and
new capabilities regarding the representation of expert
knowledge, the development of intelligent and more
friendly user interfaces, the reasoning and explanation
abilities, as well as the handling of incomplete, uncer-
tain and imprecise information.

These appealing new capabilities provided by ar-
tificial intelligence techniques can be incorporated in
the existing MCDSSs framework to provide expert ad-
vice on the problem under consideration, assistance to
the use of the several modules of the system, expla-
nations concerning the results MCDA, models, sup-
port on structuring the decision making process, as well
as recommendations and further guidance for the fu-
ture actions that the decision maker should take in or-
der to implement successfully his/her decisions. The
terms ‘intelligent multicriteria decision support systems’
or ‘knowledge-based multicriteria decision support sys-
tems’ have been used by several authors to describe
MCDSSs which take advantage of artificial intelligence
techniques in combination with MCDA methods.

Some representative examples of intelligent
MCDSSs are, the system proposed in [3] for multi-
objective linear programming, the MARKEX system
for new product design [42], the CREDEX system [45]
and the CGX system [55] for credit granting problems,
the MIIDAS system for estimating additive utility func-
tions based on the preference disaggregation approach
[52], the INVEX system for investment analysis [60]
based on the PROMETHEE method, as well as the
FINEVA system [68] for the assessment of corporate
performance and viability. All these systems incor-
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porate in their structure one or more expert system
components either to derive estimations regarding the
problem under consideration (FINEVA, MARKEX,
CREDEX, CGX, INVEX systems) or to support the use
of the MCDA models which are incorporated in the
system and generally support and improve the commu-
nication between the user and the system (MIIDAS and
MARKEX systems). Furthermore, the INVEX system
incorporates fuzzy sets to provide an initial distinction
between good and bad investment projects, so that the
number of alternatives to be considered latter on in the
multicriteria analysis module is reduced.

The ongoing research on the integration of artifi-
cial intelligence with MCDA regarding the theoretical
foundations of this integration and the related imple-
mentation issues ([4,25]), the construction of fuzzy out-
ranking relations ([14,41,50]), and the applications of
neural networks in preference modeling and utility as-
sessment ([38,56]) constitutes a significant basis for the
design and development of intelligent MCDSSs imple-
menting the theoretical findings of this research.

Conclusions

This article investigated the potentials provided by
MCDSSs in the decision making process. MCDSSs dur-
ing the last two decades have consolidated their posi-
tion within the operations research, information sys-
tems and management science communities as an ef-
ficient tool for supporting the whole decision making
process beginning from problem structuring until the
implementation of the final decision, in complex ill-
structured problems.

The review which was presented in this paper re-
veals that recent advances in MCDSSs include systems
for general use to solve both discrete and continuous
MCDA problems, systems designed to study some spe-
cific real world decisions, as well as systems designed to
support negotiation and group decision making.

As the computer science and technology progresses
rapidly, new areas of applications of MCDSSs can be
explored including their operation over the Internet to
provide computer support to co-operative work of dis-
persed and asynchronous decision units. The incorpo-
ration of artificial intelligence techniques in the existing
framework of MCDSSs also constitutes another signif-
icant area of future research. Although, as its has been

illustrated in this paper, researchers have already tried
to integrate these two approach in an integrated intelli-
gent system, there is a lot of work to be done in order
to take the most out of the capabilities of neural net-
works, fuzzy sets and expert systems to provide user-
friendly support in decision problems where multiple
criteria are involved.
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Abstract

Stochastic multistage mean-variance optimization
problems represent one of the most frequently used
modeling tools for planning problems, especially finan-
cial. Decomposition algorithms represent a powerful
tool for the solution of problems belonging to this class.
The first aim of this article is to introduce multi-stage
mean-variance models, explain their applications and
structure. The second aim is the discussion of efficient
solution methods of such problems using decomposi-
tion algorithms.

Background

Stochastic programming (SP) is becoming an increas-
ingly popular tool for modeling decisions under uncer-
tainty because of the flexible way uncertain events can
be modeled, and real-world constraints can be imposed
with relative ease. SP also injects robustness to the opti-
mization process. Consider the following standard “de-
terministic” quadratic program:

min
x

1
2
x0Hx C c0x

s:t Ax D b

xl � x � xu :

(1)

It is not always possible to know the exact values of the
problem data of (1) given by H, A, c, and b. Instead, we
may have some estimations in the form of data gath-
ered either empirically or known to be approximated
well by a probability distribution. The SP framework al-
lows us to solve problemswhere the data of the problem
are represented as functions of the randomness, yield-
ing results that are more robust to deviations.

The power and flexibility of SP does, however, come
at a cost. Realistic models include many possible events
distributed across several periods, and the end result
is a large-scale optimization problem with hundreds
of thousands of variables and constraints. Models of
this scale cannot be handled by general-purpose opti-
mization algorithms, so special-purpose algorithms at-

tempt to take advantage of the specific structure of SP
models. We examine two decomposition algorithms
that had encouraging results reported in linear SP; the
first is based on the regularized version of Benders de-
composition developed by [21], and the second on an
augmented-lagrangian-based scheme developed by [4].

Others [9,24,27] formulated multistage SP as
a problem in optimal control, where the current stage
variables depend on the parent node variables, and used
techniques from optimal control theory to solve the re-
sulting problem. Another related method is the approx-
imation algorithm by [11] where a sequence of scenario
trees is generated whose solution produces lower and
upper bounds on the solution of the true problem. De-
composition algorithms are not, however, the only ap-
proach to tackle the state explosion fromwhich SPs suf-
fer; approximation algorithms and stochastic methods
are just two examples of other methods where research
is very active [5]. In this study, we are concerned only
with decomposition methods.

Problem Statement

We consider a quadratic multistage SP. In the lin-
ear case, SP was first proposed independently by [10]
and [1]; for a more recent description see [7] and [13].
For two stages, the problem is:

min
x

1
2
x0Hx C c0x CQ(x) (2a)

s:t Ax D b (2b)

xl � x � xu : (2c)

We use 0 to denote the transpose of a vector or a ma-
trix. c and xu;l are known vectors in <n1 . Let A and H
be known matrices in<m1�n1 and<n1�n1 . These quan-
tities represent the state of the world that is known. We
assume that H is positive semidefinite. The first two
terms in the objective function (2a) model the goals
of the decision maker that do not depend on uncer-
tain events. Q(x) represents the expected value of the
second-stage objective function:

Q(x) D E�[Q(x; �(!))] ;

where
Q(x; �(!)) D min

y

1
2
˛y0(!)H(!)y(!)

� (1 � ˛)c0(!)y(!) (3)
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s:t W(!)y(!) D h(!) � T(!)x (4)

y(!)l � y(!) � y(!)u : (5)

Let ˝ be the set of all random events, and ! 2 ˝ be
the particular realization of an event so that when ! is
known the random events are aggregated in the vector
�(!) D [y(!);H(!);W(!); h(!); T(!); yu;l(!)], and
let� be the support of �. The uncertainty of the second
stage is represented by the random data H(!);W(!),
and T(!), which are matrices in <n2�n2 ;<m2�n2 ,
and <m2�n1 respectively. The vectors c(!); h(!), and
yl ;u(!) are random vectors in <n2 ;<m2 , and <n2 re-
spectively. We assume that the number of possible re-
alizations of ! is finite. Under this assumption, �(!)
is taken to mean that for different !’s the data of the
problem change. The dependence of y on uncertainty
is depicted as y(!) 2 <n2 . The vector y(!) is still the
decision variable but this notation is used to stress the
point that for different realizations of ! we must have
a different y. In the objective function (3), the quadratic
term represents the risk of the decision measured by
variance, while the linear term represents the expected
outcome. The scalar ˛ 2 [0; 1] is used in (3) to describe
the trade-off between risk expectation.

Deriving the multi-stage problem from the two-
stage formulation is just a matter of applying the ideas
described above recursively to attain the required num-
ber of stages. For the multistage problem with Ts pe-
riods, the first-stage decision remains the same but for
t D 2 : : : Ts we have

Qt(xt�1) D E�t
h
Qt

�
xt�1; �t(!)

�i
; (6)

where

Qt(xt�1; �t(!)) D min
y
˛
1
2
y0t(!)Ht(!)yt(!)

� (1 � ˛)c0t yt(!)CQtC1(yt(!))

s:t Wt(!)yt(!) D ht(!)�Tt�1(!)xt�1
yt(!)l � yt(!) � yt(!)u :

(7)

For the last time period t D Ts , the recourse function
QTsC1 is zero.

Our principal concern involves decomposition al-
gorithms for (7). For more insight into the properties
of stochastic quadratic problems the reader is referred

to [14], and [15]. Before we delve into decomposition
algorithms, we introduce some terminology that will be
used in the next section.

The dynamic programming model (7) is usually re-
ferred to as non-anticipative. This property means that
decisions are based on the past and not the future.
There are two ways this concept can be represented,
namely compact and split-view formulations [20].

The compact variable formulation can be mapped
directly onto a tree structure known as the scenario tree;
see Fig. 1a. The root of the tree represents the state of
the world that is deterministic. As we move down the
scenario tree, different events represent different real-
izations of !, each level of the tree represents a different
time period, and the path from the root to a leaf node
is known as a scenario. We use � D (t; k) to denote the
kth node in period t; a(�) the ancestor node, and d(�)
the descendant nodes. Benders decomposition, to be in-
troduced in the next section, assumes such a structure
and the result is a decomposition of the large scale prob-
lem into several subproblems, each representing a node
in the tree.

In a split-variable formulation for each scenario,
from the set of possible scenarios, new decision vari-
ables are introduced so that the large-scale problem is
decomposed into n subproblems, where n is the num-
ber of scenarios. Conceptually, using this approach, the
non-anticipative constraints are completely relaxed; see

Decomposition Algorithms for the Solution of Multistage
Mean-Variance Optimization Problems, Figure 1
Different views on non-anticipativity
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Fig. 1b. To enforce these constraints, new constraints
are introduced that “rebuild” the links between sub-
problems, usually through some penalty function (see
Fig. 1c).

Methods

The importance of decomposition algorithms in SP was
recognized early on, as results in the theory of stochas-
tic programs are closely linked with their solution al-
gorithms. The two algorithms described in this section
represent two very promising approaches in decompo-
sition of SPs.

Nested Benders Decomposition (NBD)

Benders decomposition was first proposed in [2], and it
has been applied to SP by [26]; it is usually referred to
as the L-shaped method due to the structure of the con-
straint matrix. The extension to the non-linear convex
case has been done in [12], and the extension to the gen-
eral convex SP appears in [8]. The algorithm has also
been widely studied for multistage problems in a paral-
lel environment[6]. More recent studies appear in [18].
In [15] the quadratic case is also studied.

It can easily be seen that (2a) is equivalent to:

min
x;


1
2
x0Hx C c0x C e0�

s:t Ax D b

� � p!Q(x; �(!))

xl � x � xu

(8)

where e is a vector of ones. The dimension of the latter
vector is equal to the number of nodes in the next pe-
riod. The expression p!Q(x; �(!)) represents the value
of the next stage decision if event ! occurs (with proba-
bility p!). The dimensions of the rest of the data are the
same as in (2a). Even though it is possible to aggregate
the � vector to a single variable, computational stud-
ies [5,6] have shown that the reduction of variables did
not enhance performance, possibly due to loss of infor-
mation.

To represent the recourse function in (8), we con-
struct an approximation using outer linearizations.
This is achieved by computing cuts (cutting planes).
There are two types of cuts: optimality and feasibility.
Instead of solving the large-scale problem (8) we solve

the relaxed version

min
x

1
2
x0Hx C c0x C e0�

s:t Ax D b
Dx � d (9a)

� � Gx C g (9b)

xl � x � xu

where (9a) and (9b) represent feasibility and optimal-
ity cuts, respectively. The aim of these constraints is to
approximate the feasible region of (8). Feasibility cuts
are constructed as follows: Assuming that t D T and
for a fixed !̂ the �th problem in (7) takes the follow-
ing form:

Q(x) D min
y

˛

2
y0Hy � (1 � ˛)c0y

s:t Wy D h � Txa(�)
yl � y � yu

(10)

Assume that this problem is infeasible due to the vec-
tor xa(�) generated in a subproblem of a previous stage.
Consider the following problem:

P(y; xa(�)) D min
y

e0yC C e0y�

s:t Wy C yC � y� D h � Txa(�) (11)

yl � y � yu (12)

yC;� � 0

Then since the original problem was infeasible due to
xa(�) we must have that P(�; xa(�)) > 0. Let � be the
Lagrange multiplier of the constraint in (11), then by
duality we must also have that �0(h � Txa(�)) � 0. Set
D D �0T and d D �0h to obtain (9a), a supporting hy-
perplane to Q(x). To apply this result when t ¤ T just
note that the same procedure is recursively applied by
taking under consideration the additional constraints
from cuts of other subproblems.

For optimality cuts, one proceeds as follows: again
we start with the problem in (10) and let xk be the so-
lution vector of a subproblem in the previous stage. By
the gradient inequality wemust have that (! is dropped
since it is clear from context):

Q(x) � Q(xk)CrQ(xk)(x � xk)

Q(xk) D
˛

2
y0Hy � (1 � ˛)c0y C �0(Wy � hC Txk)

rQ(xk) D �0T
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Thus

Q(x) � �0Tx C
a
2
y0Hy � (1� ˛)c0yC �0(Wy � h)

Set

� D Q(x)

G D �0T

g D
˛

2
y0Hy � (1 � ˛)c0y C �(Wy � h)

to obtain (9b). Since we require a lower support for
the expected value, we then multiply G and g by the
probability of ! taking the particular realization of !̂
for two-stage problems and the conditional probability
for multistage problems. The application of optimality
cuts when t ¤ T is again developed recursively just by
taking into account the additional variables and con-
straints.

The algorithm proceeds by solving the relaxed prob-
lem (7) to obtain a solution vector, known as the pro-
posal vector. The latter is then used to solve the sub-
problems in (10). If a subproblem is feasible then an
optimality cut is appended to the constraint set of the
ancestor problem (also called themaster problem). Oth-
erwise, only a feasibility cut is appended.

In the linear case, there are some well known
drawbacks to the algorithmic framework developed
above [5,21]. We expect issues similar to the following
to manifest themselves in the quadratic case:
� The algorithm tends to be inefficient in early itera-

tions due to the poor description of the original ob-
jective function provided by the cuts. Moreover, if
a good warm-start is used, the algorithm may de-
viate significantly from this point, so any efficiency
achieved by a good starting point is lost.

� The number of cuts for master problems may in-
crease substantially, adding considerable computa-
tional burden to their solution.

For these reasons a regularized version of the algorithm
was proposed in [21]; see also [22,23] for the multi-
stage version. Ruszczynski’s results, as well as a study
performed in [28], indicate that the regularized version
outperforms the original algorithm.

The basic idea is to add a quadratic term
� k x � x̂ k22 in the objective function, where x̂ is cho-
sen as the “best” current point, in a way to be made pre-
cise, and � is a penalty parameter. For a high value of �

the algorithm is penalized from deviating from the cur-
rent point. In [21], the convergence of the algorithm for
� D 1

2 was established for the convex case. The regular-
izing term stabilizes the behavior of the algorithm be-
tween iterations, enables valid deletion schemes of the
cuts, and avoids degenerate iterations that would oth-
erwise be possible.

The original problem is now decomposed into three
types of subproblems. The first type is for the root node.
The following problem is solved at each iteration:

min
x;


1
2
˛x0Hx � (1 � ˛)c0x C e0� C

�

2
k x � x̂ k22

s:t Ax D b

Gx � � C g

Dx � d

xl � x � xu :

The second type is for non-terminal nodes. The follow-
ing subproblem needs to be considered:

min
y� ;
�

a
2
y0�H� y� � (1 � ˛)c0� y�

C e0�� C
��

2
k y� � ŷ� k22

s:t Wy� D h� � Ta(�)xa(�)
G� y� � �� C g�
D� y� � d�
yl� � y� � yu� :

(13)

The third type is for terminal nodes. This type of sub-
problem is identical to (13) without, of course, the cuts
in the constraint set and the regularizing term in the
objective function.

The way cuts are recursively defined and the way
subproblems are nested in each other has led this to be
referred to as nested Benders decomposition (NBD). The
algorithm can now be stated as follows:

Step 1: Set the iteration counter i D 0 and t D k D 0,
and let x̂ be a feasible point.

Step 2: Construct and solve �(t; k) to find the solution
vector xi

� .

Step 2.1: If the problem is infeasible and t D 0
then STOP: the problem is infeasible.

Step 2.2: If the problem is infeasible and t > 0,
generate an optimality cut (9a) and append it to
the constraint set of a(�).
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Step 2.3: If the problem was optimal and t > 0,
generate an optimality cut (9b) and append it
to the constraint set of a(�).

Step 3: Compute

F̂(xi
�) D

1
2
x0Hx C c0x C

X
jDd(�)

� j

F(x̂ i
�) D

1
2
x0Hx C c0x C

X
jDd(�)

Qj(x) :

If F̂ D F and t D k D 0 then STOP: x̂ is optimal;
Else go to step 4

Step 4: Update the regularizing term:

4.1 If a subproblem returned a feasibility cut then
x̂ iC1
� D x̂ i

� .
4.2 If F(xi

�) > F(x̂ i
�) or F(xi

�) > �F(x̂ i
�)C(1��)F̂,

then set x̂ iC1
� D x̂ i

� , and increase �.
4.3 If F(xi

�) < F(x̂ i
�) or F(xi

�) < �F(x̂ i
�)C(1��)F̂,

then set x̂ iC1
� D xi

� and decrease �.
4.4 If F(xi

�) D F̂, then set x̂ iC1
� D xi

� , and de-
crease �.

Step 5: Set i D i C 1, find the next subproblem to
solve (see below), and go to step 2.

Augmented Lagrangian Decomposition (ALD)

An alternative algorithm to Benders decomposition de-
scribed in the previous section is based on the aug-
mented lagrangian and the method of multipliers [3].
The fundamental difference between NBD and ALD is
the way the two algorithms attack non-anticipativity
constraints. NBD handles these constraints by having
a master problem generating proposals to the subprob-
lems further down the event tree; proposal vectors are
affected by “future” nodes by feasibility and optimal-
ity cuts. In ALD a different approach is taken: non-
anticipativity constraints are relaxed by expressing the
large-scale problem in terms of smaller subproblems
that are discouraged from violating the original con-
straints. The algorithm we use was developed in [4], so
here we only sketch the main idea. ALD was developed
and applied to the stochastic quadratic programming
setting in [25] with encouraging results. Similar algo-
rithms to ALD have been developed for linear stochas-
tic programs [16,17].

The expectation in (6) for a given time period can
also be written as

min
y

mX
iD1

pi
�˛
2
y0iHi yi � (1 � ˛)c0i yi

�

s:tWj yi D hj � Tjxa(i) j D 1 : : : r

yli � yi � yui :

(14)

The problem in (14) is to be interpreted as follows: at
the current time period there arem scenarios, each hav-
ing different realizations for H, W, c, etc. There are r
linking constraints (14) that are linked by the vector
xa(i). In [4] the problem is decomposed by introducing
a new variable z as follows

min
y;z

mX
iD1

pi
�˛
2
y0iHi yi � (1 � ˛)c0i yi

�

s:t Wji yi D zi j j D 1 : : : r; i 2 I( j)

zi j D hj � Tjxa(i) j D 1 : : : r; i 2 I( j)

yli � yi � yui ;

(15)

where I(j) contains the indices of the subproblems that
the jth constraint “crosses”, i. e., I( j) D fijwji ¤ 0g.
“Crosses” means that a constraint contains data from
more than one subproblem. It is obvious that (14)
and (15) are exactly the same problem, but the struc-
ture of (15) facilitates a decomposition algorithm via
the relaxation of the constraints of (15). In [4] the
method of multipliers is used for the general problem
minf f (x)jAx D bg. Let Lc(x; �) denote the associated
augmented lagrangian defined by Lc (x; �) D f (x) C
�0(Ax � b) C c

2 k Ax � b k22, where � is the vector of
multipliers. The general algorithmic framework of the
method of multipliers can be described as follows:

Step 1: Initialization: Set the iteration counter k D 0,
and set c(0) > 0. Set x(0), and �(0) as the starting
point for the decision variables, and lagrange mul-
tipliers, respectively.

Step 2: Compute the next point x(k C 1) D argmin
Lc (x; �(k)):

Step3 Update the Lagrange multiplier vector �(k C
1) D �(k)C c(k)

�
Ax(k C 1) � b

�
:

Step 4: Update the penalty parameter c(k), and set
k D k C 1. If some convergence criterion is not sat-
isfied go to step 2.
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Applying this general algorithmic framework
to (15), the problem is decomposed intom subproblems
and the non-anticipativity constraints are enforced
through the penalty term in the augmented lagrangian.

The computation for the solution of (15) involves
keeping z fixed in order to compute the next incumbent
for y, and then keeping y fixed in order to compute the
next incumbent for z. Thus, at the kth iteration the fol-
lowing subproblems are solved:

yi (k C 1) D argmin
�

(
pi
�˛
2
� 0iHi�i � (1 � ˛)c0i�i

�

C
X
f jji2I( j)g

�
�0ji(k)Wji�i

C
c(k)
2

(Wji�i � z ji )2
�)

8i D 1; : : : ; n

z ji (k C 1) D argmin
� j i

(
�
X
i2I( j)

�0ji(k)� ji C
c(k)
2

�
X
i2I( j)

(Wji�i � � ji)2)

)
8 j D 1; : : : ; r

s:t � ji D hj � Tjxa(i) i 2 I( j)

followed by an update of the lagrange-multiplier vector
� ji(kC 1) D � ji (k)C c(k)(Wji yi (kC 1)� z ji (kC 1)).
From a computational point of view the above iterative
framework is inefficient because of the alternate min-
imizations required, making this algorithm unsuitable
for a parallel environment. In our implementation we
used the more efficient iteration proposed in [4]:

yi (k C 1) D argmin
�

(
pi
�˛
2
� 0iHi�i � (1 � ˛)c0i�i

�

C
X
f jji2I( j)g

�
�0j(k)Wji�i

C
c(k)
2
�
Wji (�i � yi (k))C wj

�2�
)

(16)

where wj D
1
m j
(Wjyi � hj C Tjxa(i)), � j(k C 1) D

� j(k)C c(k)
m j

(Wjyi � hj C Tjxa(i)), and mj denotes the
cardinality of I( j). The derivation of this iteration is dis-
cussed in Bertsekas and Tsitsiklis ([4], p. 249). The ex-
pression in (16) forms the main iteration of the ALD

algorithm. In order to have a complete description of
the algorithm we need to specify how one can perform
the updates of the penalty parameter c(k) and how we
tested for convergence.

The obvious convergence criteria for ALD are a test
for feasibility and small changes in the objective func-
tion. However, it is possible, due to a poor selection of
updates for c(k), to reach a suboptimal solution. For
this reason, it is vital to check the KKT conditions of
the problem in addition to any other stopping criteria.
If the KKT conditions are not satisfied while the change
in the objective function is small (10�6 in our imple-
mentation), the update strategy for the penalty param-
eter appears to have been inappropriate. We performed
various experiments with different update strategies for
this penalty parameter and found that the strategy that
works best on most problems is to start with a small
value (0.001) and increase it at every iteration by an-
other small factor (1.05); beingmore aggressive with the
update of this parameter caused the algorithm to termi-
nate prematurely. Note that an arbitrary starting point
can be used to start the algorithm. If a feasible solution
or the solution from a previous run is available it may
be beneficial to start with a higher penalty term.

Numerical Experiments

The two algorithms were implemented and tested on
a multistage financial planning problem. The detailed
results can be found in [19]. Figure 2 summarizes the
numerical performance (in terms of CPU time) as the
number of scenario increases. ALD, and NBD stand for
Augmented Lagrangian Decomposition, and Nested
Benders Decomposition respectively. ONBD refers to
Ordinary Nested Benders Decomposition, i. e. NBD
without the regularizing term. From Fig. 2 it is clear
that the regularized version of Benders decomposition
is the most efficient of the algorithms we considered in
this article. This result is in line with similar studies
performed in the linear setting. One possible explana-
tion is that the NBD algorithm takes advantage of the
constraint structure of multistage stochastic program-
ming problems more effectively. Note that the ALD al-
gorithm can be applied to separable convex problems
with more general constraint structure while NBD will
need to be modified in order to be applicable to other
types of separable problems. SP problems are one of the
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Decomposition Algorithms for the Solution of Multistage Mean-Variance Optimization Problems, Figure 2
Solution times vs. number of scenarios

most frequently occurring class of large scale problems,
so it is important to know whether cutting plane type
algorithms or Lagrangian based algorithms take advan-
tage of this structure more effectively. Based on the re-
sults of our experiments it seems that the NBD algo-
rithm appears to be substantially better. Furthermore,
we found that the penalty parameter often caused no-
table changes to the convergence times of both NBD
and ALD. Finding an update scheme that works for all
problems is a difficult task. In ALD the penalty parame-
ter has two goals, one is forcing feasibility and the other
of keeping iterations close to each other, thus a ‘subop-
timal’ penalty update scheme may be more damaging
than in NBD, this may give some insight to the differ-
ence in performance of the two algorithms. More de-
tailed numerical experiments can be found in [19].
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In many nonconvex optimization problems the set of
variables is partitioned into two groups such that the
problem becomes much easier to solve when the vari-
ables in one group are held temporarily fixed. To ex-
ploit this structure, a method which has proved to be
efficient is to decompose the problem into a sequence
of easier subproblems involving only variables of the
other group. The basic tool for this decomposition is
the branch and bound (BB) concept.

BB Procedure for Decomposition

Consider the nonconvex global optimization problem

min fF(x; y) : G(x; y) �K 0; x 2 X; y 2 Yg ; (P)

where X is a compact convex subset ofRn ;Y is a closed
convex subset of Rp , F : X � Y ! R;G : X � Y !
Rm ;K is a closed convex cone inRm and�K is the par-
tial ordering in Rm induced by the cone K, i. e., such
that y �K y0 , y0 � y 2 K.

Problems of this form abound in applications such
as pooling and blending in oil refining, optimal design
of water distribution, structural design, signal process-
ing, robust stability analysis and design of chips.

Suppose that by fixing x 2 X problem (P) becomes
an easier problem in y 2 Y . Then, to take advantage of
this property on can solve (P) by a BB algorithm with
branching performed in the x-space.

Specifically, at iteration k of of the BB procedure
a collection Sk of partition sets in the x-space is con-
sidered, where for each partition set M 2 Sk a number
(lower bound) ˇ(M) 2 R[ fC1g has been computed
such that

ˇ(M) � inffF(x; y) : G(x; y) �K 0; x 2 M\X; y 2 Yg:

(1)

http://www.speps.info/
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A partition set Mk 2 argminfˇ(M) : M 2 Skg is then
further subdivided according to an exhaustive subdi-
vision rule (e. g., the standard bisection rule, if rectan-
gular subdivision is used), while the best feasible solu-
tion available (x̄ k ; ȳk) is recorded. By removing every
M such that ˇ(M) � F(x̄ k; ȳk) the new collection SkC1

is formed. If SkC1 D ;, the procedure terminates, con-
cluding that the problem is infeasible if no feasible so-
lution is available, or else that the current best feasible
solution is actually an optimal one. Otherwise, the next
iteration is started.

A key operation in this procedure is bounding:
M 7! ˇ(M). It is assumed that this operation satisfies
the following natural conditions:

(a) M0 � M) ˇ(M0) � ˇ(M) ;

(b) ˇ(M) < C1) M \ X ¤ ; :
(2)

When the BB procedure is infinite it generates
a filter (an infinite nested sequence of partition sets)
Mk� ; � D 1; 2; : : : ; such that

ˇ(Mk� ) � min (P) 8�;

Mk� \ X ¤ ; 8�;

C1\
�D1

Mk� D fx
�g :

(3)

The algorithm is said to be convergent if x� 2 X and

min (P) D minfF(x�; y) : G(x�; y) �K 0; y 2 Yg; (4)

so any optimal solution y� of this problem yields an op-
timal solution (x�, y�) of (P).

The basic issue of this decomposition scheme is un-
der which conditions the BB procedure described above
is guaranteed to converge in sense (4).

First observe that, since Mk�C1 � Mk� and hence,
ˇ(Mk�C1 ) � ˇ(Mk� ); we have from (3)

ˇ(Mk� )% ˇ� � min (P) : (5)

Theorem 1 If ˇ(Mk ) D C1 for some k then (P) is
infeasible and the algorithm terminates. If ˇ(Mk) <

C1 8k, then there is an infinite subsequence Mk� ; � D

1; 2; : : : ; satisfying (3) and such that x� 2 X. If in ad-

dition

lim
�!C1

ˇ(Mk� )

D minfF(x�; y) : G(x�; y) �K 0; y 2 Yg; (6)

then the BB decomposition algorithm is convergent.

Condition (6) simply says that the lower bound must
be eventually exact as k! C1. Also note that for en-
suring that x� 2 X the condition x 2 M \ X in (1) is
essential and cannot be omitted.

Convergence Achieved with Lagrangian Bounds

In many important cases Lagrangian bounds can be
used throughout the decomposition algorithm, so that
for every partition setM:

ˇ(M) D sup
	2K�

inffF(x; y)C h�;G(x; y)i :

x 2 M \ X; y 2 Yg ; (7)

where K� D f� 2 Rm : h�; ui � 0 8u 2 Kg is the dual
cone of K.

For every t � 0 define

v(t) D sup
	2K�

inf
y2Y

kx�x�k�t;x2X

fF(x; y)Ch�;G(x; y)ig; (8)

where, as throughout in what follows, x� denotes the
limit point of an exhaustive filter of partition sets gen-
erated by the BB algorithm, i. e., an infinite nested se-
quence fMk� g such that \C1�D1Mk� D fx�g.

Theorem 2 Assume Lagrangian bounds are used
throughout the BB decomposition algorithm, and:
(A1) v(t)! v(0) as t& 0.
(A2) sup	2K� infy2Y fF(x�; y) C h�;G(x�; y)ig D

miny2Y sup	2K�fF(x�; y)C h�;G(x�; y)ig.
Then the BB decomposition algorithm is convergent.

Condition A1 expresses the continuity of v(t) at t D 0.
Condition A2 requires that the duality gap be zero for
the subproblem miny2YfF(x�; y) : G(x�; y) �K 0g.

Theorem 3 Assume that F(x; y);Gi(x; y); i D 1; : : : ;
m; are lower semi-continuous and:
(i) There exists a compact set Y0 � Y such that

(8x 2 X)(8� 2 K�)

Y0\argminy2YfF(x; y)Ch�;G(x; y)ig ¤ ; ;
(9)
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(ii) sup	2K� infy2Y fF(x�; y) C h�;G(x�; y)ig D

miny2Y sup	2K�fF(x�; y)C h�;G(x�; y)ig.
Then the BB decomposition algorithm using La-
grangian bounds is convergent. Furthermore, the func-
tion x 7! �(x) :D minfF(x; y) : G(x; y) �K 0; y 2 Yg
is lower semicontinuous at x� and satisfies

lim
x2X
x!x�

�(x) D min(P) : (10)

Remark 1 Condition (i) cannot be replaced by the fol-
lowing weaker one

(*) There exists a compact set Y0 � Y such that for
each� 2 Rm

C and for each x 2 X either the set of optimal
solutions of the problem

minfF(x; y)C
mX
iD1

�iGi(x; y) : y 2 Yg (11)

is empty or it has a nonempty intersection with Y0.

Partly Convex Optimization Problems

An important class of problems (P) is constituted by
partly convex problems, i. e., problems (P) with the fol-
lowing assumption:

(PCA) For every fixed x 2 X the function y 7!
F(x; y) is convex, while the mapping y 7! G(x; y)
is K-convex. The latter means that G(x; ˛y1 C (1 �
˛(y2 �K ˛G(x; y1)C(1�˛)G(x; y2) whenever y1; y2 2
Rp; 0 � ˛ � 1.

Owing to (PCA), for every � 2 K� and fixed x 2 X
the function h�;G(x; y)i is convex and the problem
minfF(x; y)C h�;G(x; y)i : y 2 Yg is a convex opti-
mization problem. Specific decomposition methods for
this class of problems were developed earlier in [3,4],
and more recently in [1]. Within the present frame-
work, the convergence conditions can be specialized as
follows.

A function f : Y ! R is said to be coercive on Y if
limy2Y; y!C1 f (y) D C1: Clearly this is equivalent
to saying that for any � 2 R the set fy 2 Y : f (y) � �g
is bounded.

Theorem 4 Assume (PCA) with F(x; y);Gi(x; y); i D
1; : : : ;m, is lower semi-continuous on X � Y and con-
tinuous in x for fixed y 2 Y. Assume further that:

(S) For some �� 2 K� the function y 7! F(x�; y)C
h��;G(x�; y)i is coercive on Y.

Then the BB decomposition algorithm using La-
grangian bounds is convergent and the function
�(x) :D minfF(x; y) : G(x; y) �K 0; y 2 Yg is lower
semicontinuous at x� and satisfies

lim
x2X
x!x�

�(x) D min(P) :

Remark 2 Condition A2, sometimes referred to as
dual properness at x�, means that the subproblem
minfF(x�; y) : G(x�; y) �K 0; y 2 Yg has zero dual-
ity gap. When Y is bounded, condition (S) obviously
holds, so by Theorem 4, both conditions A1 and A2
follow from (PCA) and the lower semicontinuity of
F(x; y);Gi (x; y); i D 1; : : : ;m. On the other hand,
when Y is unbounded, dual properness (i. e., condi-
tion A2), even coupled with continuity of the functions
involved, is not sufficient to guarantee condition A1.
These results suggest that several methods developed in
the literature for problems of the form (P) should be
revised for validity.

Partly Linear Optimization

A subclass of the class of partly convex optimization
problems is formed by partly linear optimization prob-
lems which have the general formulation

minfhc(x); yi C hc0; xi

: A(x)yC B(x) � b; r � x � s; y � 0g ; (GPL)

where x 2 Rn ; y 2 Rp; c : Rn ! Rp; c0 2 Rn ; A :D
Rn ! Rm�p ; B 2 Rm�n ; b 2 Rm ; r; s 2 Rn

C.
A special case of interest is the “pooling and blend-

ing problem” from the petrochemical industry which
can be stated as

minfcT y : A(x)y � b; y � 0; x 2 Xg ;

where X is a box in Rn and A(x) is an m � p matrix
whose elements aij(x) are continuous functions of x.
Condition (S) in Theorem 4 now reads

For some �� 2 Rm
C

we have cT y C ��;A(x�)y � bi ! C1
as y! C1 ;

which clearly holds if and only if hA(x�); ��i C c > 0 :
For example this condition is fulfilled by the partly lin-
ear problems considered in [1], and also by the bilinear
matrix inequalities problem studied in [5].
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Extensions

The above decomposition method can be extended to
a number of important nonconvex global optimization
problems.

Partly Monotonic Optimization

A function f (x) : Rn ! R is said to be increasing (de-
creasing, respectively) if f (x) � f (x0) ( f (x) � f (x0),
respectively) whenever x � x0 [7].

Theorem 5 In problem (P) assume that X D [a; b] �
Rm
C; > F(x; y);G(x; y) are continuous, and

(PMA) F(x; y);Gi(x; y); i D 1; : : : ;m;
are increasing in x 2 [a; b] for every fixed y 2 Y :

Assume further that the set fy 2 Y : G(b; y) �K 0g is
contained in some box Y0. Then, with lower bounds de-
fined as

M D [r; s] � [a; b] 7! ˇ(M)

D minfF(r; y) : G(s; y) �K 0; y 2 Yg ; (12)

the BB decomposition algorithm is convergent.

If F(x; y);Gi (x; y); i D 1; : : : ;m; are monotonic in
y 2 Y0 (or more generally, dm functions in y 2 Y0 [7])
then the subproblems in (12) are standard monotonic
(or dm) optimization problems and can be solved by
currently available algorithms [7,10].

Remark 3 Theorem 5 still holds if F(x; y);Gi(x; y);
i D 1 : : : ;m are decreasing in x 2 [a; b] for fixed
y 2 Y and we define

ˇ(M) D minfF(s; y) : G(r; y) �K 0g :

Monotonic/Convex Optimization

Theorem 6 In problem (P) assume X � [a; b],
F(x; y);Gi (x; y); i D 1; : : : ;m; are continuous in
(x,y), increasing in x 2 [a; b] for fixed y 2 Y, and
convex (affine, respectively) in y for fixed x 2 [a; b].
Assume, in addition, that

(ST) For some �� 2 K�

the function F(a; y)C h��;G(a; y)i is coercive on Y :

Then for every M D [r; s] � [a; b]; the Lagrangian
bound problem

sup
	2K�

inf
x2M\X
y2Y

F(x; y)C h�;G(x; y)i (13)

is a convex (linear, respectively) program and the associ-
ated BB decomposition algorithm is convergent.
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A frequently applied approach in the history of opti-
mization is that of decomposition, by which a large
problem is decomposed into smaller problems. The
principle of decomposition goes back to the seminal pa-
per by G.B. Dantzig and P. Wolfe [2].

The basic model is a linear programming problem
with two sets of constraints to be stated as follows:8̂

ˆ̂̂<
ˆ̂̂̂
:

max cx
s.t. A1x � b1

A2x � b2
x � 0:

(1)

where c 2 Rn, A1 2 Rm × n, b1 2 Rm, A2 2 Rq × n and
b2 2 Rq are given constants and x 2 Rn is a vector of
variables.

The fundamental idea is to solve (1) by interaction
between two optimization problems, one of which is
subject to the first set of constraints and the other sub-
ject to the second set of constraints. Denote the second
set by

X D fx � 0 : A2x � b2g :

For simplicity we assume that X is bounded and
nonempty. Hence X is a polytope. Let xi denote an ex-
treme point of X for i 2 P where P is the index set of
all extreme points. According to the Minkowski repre-
sentation theorem (see [1]), the polytope X can alterna-
tively be represented as the convex hull of the extreme
points, i. e.

X D

(
x D

X
i2P

�i x i :
P

i2P �i D 1;
�i � 0 for i 2 P

)
:

If X is unbounded extreme rays are introduced in the
representation of X leading to a straightforward exten-
sion of the subsequent considerations.

Hence (1) is equivalent to
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

max
X
i2P

cx i�i

s.t.
X
i2P

A1xi�i � b1
X
i2P

�i D 1

�i � 0:

(2)

Problem (2) operates with fewer rows than the original
formulation (1). The variable x has been substituted by
the variables �i. However, since the number of extreme
points is usually very large in comparison with the di-
mension n of the problem, the number of �-variables
may also be very large, and it requires a big effort
to enumerate and calculate all extreme points. Fortu-
nately, this is unnecessary. In fact, by the Caratheodory
theorem, at most n + 1 extreme points need to be con-
sidered, see for example [1]. The trouble is to find the
correct ones.

Problem (2) is called the full master problem since all
extreme points are introduced in the formulation. As
already indicated we shall consider formulations deal-
ing with only a subset of extreme points. For this pur-
pose let P denote a subset of the index set P leading to
a tightening of (2), called the restricted master problem.

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

max
X

i2P

cx i�i

s.t.
X

i2P

A1xi�i � b1
X

i2P

�i D 1

�i � 0 for i 2 P:

(3)

Assume here for simplicity that (3) is feasible. If not,
additional techniques exist and may be applied to make
the problem feasible. So an optimal basic solution exists
together with optimal dual variables to be denoted by
y 2 Rm and v 2 R according to the m + 1 rows of (3).
By linear programming duality there exists a dual linear
programming problem of the full master problem (2)
with the variables (y, v) and with constraints

yA1xi C v � cx i for all i 2 P: (4)

Also by linear programming we know that an optimal
solution has been found for the full master problem (2)
if and only if the dual solution (y, v) satisfies (4). This
may of course be checked through examination of all
extreme points xi. Fortunately, this is not necessary and
here comes the major idea behind the decomposition
principle. Instead we consider the following linear pro-
gramming problem, the so-called subproblem.

8̂
<̂
ˆ̂:

u D max (c � yA1)x
s.t. A2x � b2

x � 0:

(5)
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Decomposition Principle of Linear Programming, Table 1

Step 1 Calculate an optimal dual solution (y, v) of the
restricted master problem (3).

Step 2 Determine an extreme point by solving the
subproblem (5). If (6) is violated expand the index
set P by including the extreme point and go to
Step 1.

Step 3 An optimal solution has been obtained by the
solution of the last master problem as
x D

P
i2P x

i	i

By assumption an optimal solution exists among the
extreme points of X. Let i� 2 P denote the index of
an optimal extreme point. Observe that the objective
function calculates the maximal value u of cxi � yA1xi

among all extreme points xi in X. Hence by (4) it re-
mains to check if

u � v: (6)

If so, then all constraints of (4) are satisfied and we may
stop. Otherwise introduce the elements (cxi� , A1xi

�) as
a new column in the restricted masterproblem (3) and
continue by solving it.

The above discussion can be summarized into the
algorithm in Table 1.

The number of extreme points in X is finite. Hence
only a finite number of mutually different columns may
be introduced in the restricted master problem. This
implies that the algorithm must terminate in a finite
number of steps.

The decomposition principle is suited to solve large
scale problems. Moreover it has a nice economic in-
terpretation. Consider a central level and a sublevel of
a decentralized organization. The central level operates
on the first set of constraints A1x � b1 and the sublevel
on the second set of constraints A2x � b2. The right
hand sides b1, b2 may be interpreted as resources for
the central level and sublevel, respectively. During the
course of the algorithm information is communicated
from one level to the other. The central level solves
the restricted master problem and as a result marginal
prices y on central resources are communicated to the
sublevel. The sublevel solves the subproblem in which
the objective function incorporates the costs for utiliza-
tion of the central resources. The sublevel then suggests
activities xi to be incorporated at central level. During

the iterations no direct information about the coeffi-
cients in the constraints is communicated between the
central level and the sublevel. Instead price information
is communicated from the central level to the sublevel
and the algorithm is the fundamental method among
the so-called price-directive procedures.

In most applications the last set of constraints, A2x
� b2 have a so-called block-angular structure, in which
the variables are grouped into independent blocks. This
implies that the subproblem separates into multiple
independent problems. In an economic context the
block-angular structure reflects a division of the sub-
level into multiple independent sublevels, each of which
communicates directly with the central level.

A counterpart of the present Dantzig–Wolfe de-
composition procedure exists in the form of Benders
decomposition. In linear programming they are dual in
the sense that application of Benders decomposition on
the dual program of the original problem (1) is equiv-
alent to the direct application of the present procedure
on (1).

See also

� Generalized Benders Decomposition
�MINLP: Generalized Cross Decomposition
�MINLP: Logic-Based Methods
� Simplicial Decomposition
� Simplicial Decomposition Algorithms
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Successive Quadratic Programming: Decomposition

Methods
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A large number of combinatorial optimization prob-
lems can be viewed as potentially ‘easy’ problems to
solve that are complicated by a set of side constraints. If
the complicating constraints were removed, the result-
ing problem would have constraints possessing a high
degree of structure, for whichmany efficient algorithms
exist. One of the most attractive methods to exploit
this property is the Lagrangian relaxation technique,
in which the complicating constraints are dualized and
then removed from the constraint set. This class of
methods, originally proposed by various authors for
a variety of problems, and later generalized in [3], has
proven highly successful in solving otherwise difficult
combinatorial problems. For an excellent introduction
to the approach and its applications, see [1,2].

Consider the following problem (P):

max f>x (1)

such that

Ax � b (2)

Cx � d (3)

x 2 X; (4)

where x is an n-vector, b is an m-vector and d is a k-
vector, and f , A and C have conformable dimensions.
Some or all of the x variables can be integers (i. e. X �
Zn). It is assumed that there is a finite and nonempty
set of solutions to the constraints in the problem (2)–

(4). Let (LP) represent problem (P) with any integrality
constraints in X removed.

The following notation is used in the sequel. For any
problem (�), OS(�) is its optimal set, and V(�) represents
its optimal value. For any set S, Co(S) represents the
convex hull of the set.

The Lagrangian relaxation (LRu) of (P) relative to
the constraint set (2) and a conformable nonnegative
vector u is defined as
8̂
<̂
ˆ̂:

max
x

f>x C u(b � Ax)

s.t. Cx � d
x 2 X:

The problem

(LR) D min
u�0

(LRu)

is called the Lagrangian dual relative to (2). The con-
straints (2) are referred to as the ‘dualized constraints’,
and u is the corresponding multiplier or dual vector.
The constraints should be chosen so that the remaining
set Cx � d possesses desirable structure. For example,
(3) might only specify up per bounds on the variable,
or might be a single ‘knapsack’ constraint of the formPn

iD1 xi � 1.
The first point to note about (LRu) is that it always

provides an upper bound for (P), i. e.

V (LRu) � V (P):

This can easily be seen from the fact that u � 0 and Ax
� b for any solution x which is optimal for (P). In prac-
tice, it is desirable to have V(LRu) as close to V(P) as
possible. Moreover, there is already an LP relaxation of
(P), obtained by dropping the integrality requirement
on x. How does V(LRu) relate to V(LP)? To answer this
question, consider the following relaxation of (P), de-
noted by (P�):
8̂
<̂
ˆ̂:

max f>x
s.t. Ax � b

x 2 Co fCx � d : x 2 Xg :

It can be shown ([3]) that

V (P) � V(P�) D V (LR) � V (LP):
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The equality for the optimal values of problems (P�)
and (LR) follows from the fact that they are duals of
each other. Moreover, it can be shown that if the mul-
tipliers for the constraints obtained from solving the
LP relaxation were used, the resulting Lagrangian re-
laxation provides a bound at least as tight as the bound
from (LP). Also, if u is an optimal solution for (LR),
with Ax � b and u(Ax � b) D 0, then x is optimal
for (P).

When are the inequalities above strict? This can be
shown through the following integrality property, again
due to [3]: The optimal value of (LRu) is not changed by
dropping the integrality condition on the x variables.

If the integrality property (also referred to as the
complementary slackness property) holds, then

V (P) D V(P�) D V (LR) D V(LP):

In this case, therefore, Lagrangian relaxation can do
no better than the standard LP relaxation for (P). For
a large number of practical problems, however, this
property does not hold. This fact allows (LRu) to be
used in place of (LP) to provide lower bounds in
a branch and bound algorithm.

Lagrangian decomposition

A drawback of the Lagrangian relaxation (LR) de-
scribed above is that only one of the possibly many spe-
cial structured constraint sets embedded in the problem
can be exploited. This results in the loss of structure of
all the dualized constraints. One way to avoid this is to
use Lagrangian decomposition ([4,5,6,7]).

Introducing a new set of ‘copy’ constraints y = x,
problem (P) is equivalent to

max
x;y

f>x

such that

Ay � b (5)

Cx � d (6)

y D x (7)

x 2 X; y 2 Y ; (8)

where X � Y . Dualizing the ‘copy’ constraints (7) re-
sults in

max f>x C v(y � x)

such that

Ay � b (9)

Cx � d (10)

x 2 X; y 2 Y ; (11)

which can be decomposed to the following problem
(LDv):
8̂
<̂
ˆ̂:

max
x

F1(x)

s.t. Cx � d
x 2 X

C

8̂
<̂
ˆ̂:

max
y

F2(y)

s.t. Ay � b
y 2 Y

;

where F1 (x) = (f � v)| x and F2 (y) = v| y. The La-
grangian decomposition dual (LD) can then be defined
to be

min
v�0

V(LDv )

If u is an optimal solution to (LR), then, with v D u �A,
it can be shown that

V (LDv ) D V (LRu) � u(b � Ay)

and therefore

V (LD) � V(LR):

It is possible to define an integrality property ([5]) such
that if either the x- or the y-problem has the property,
then V(LD) will be equal to the stronger of the bounds
obtained from the two Lagrangian relaxations corre-
sponding to each set of constraints.

Lagrangian decomposition (LD) has several advan-
tages over (LR). Every constraint in the original prob-
lem appears in one of the subproblems. It thus avoids
having to choose between the various sets of structured
constraints. Secondly, as shown above, the bounds from
(LD) can be tighter than those from (LR). Furthermore,
the bound can be tightened by adding surrogate con-
straints (for example, a surrogate constraint from Ax �
b can be added to the x-problem in (LD). Thirdly, anal-
ogous to (LR), it can be shown that (LD) is really the
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dual of a primal problem involving the optimization of
the original objective function over the intersection of
the convex hulls of the two constraint sets. Finally, em-
pirical results suggest that when using heuristics based
on Lagrangian decomposition, any intermediate solu-
tions found in the solution of (LD) lead to better solu-
tions for problem (P) as compared to solutions found
by Lagrangian relaxation.

Aggregation Schemes

The main drawback of the Lagrangian decomposition
method is that a large number of multipliers (v) are in-
troduced, one for each of the copy variables. The calcu-
lation of v can be time consuming at each step. More-
over, the convergence of the scheme can be slowed sig-
nificantly by the larger number of directions (for the
multipliers) to search. In order to avoid this, an alter-
nate approach that has been suggested [8] is to aggre-
gate some or all of the variables using a simplified linear
function, and then to dualize the resulting copy con-
straints. The purpose of the aggregation is to substan-
tially reduce the number of dual variables, while still
maintaining the constraint structure as in the standard
decomposition.

Let A � [A1 | A2], and x �
�x1
x2
�
, with x1 2 Rn1 and

x2 2 Rn�n1 . Introduce the copy variables y �
�y1
y2
�
D x

and the constraints

x1 D y1 and A2x2 D g(y2);

where g(�) is the aggregation function (for example,
g(y2) = A2 y2, or g(y2) = y2). Then, the problem (P) can
be written as

max f>x

such that

A1y1 C g(y2) � b (12)

Cx � d (13)

x1 D y1 (14)

A2x2 D g(y2) (15)

x 2 X; y 2 Y ; (16)

where X � Y . Dualizing the constraints (14) and (15)
leads to
8̂
ˆ̂̂<
ˆ̂̂̂
:

max f>x C w1(y1 � x1)C w2(g(y2) � A2x2)
s.t. A1y1 C g(y2) � b

Cx � d
x 2 X; y 2 Y ;

which can be decomposed to the problem (LDAw),
given by
8̂
<̂
ˆ̂:

max
x

F1(x)

Cx � d
x 2 X

C

8̂
<̂
ˆ̂:

max
y

F2(y)

A1y1 C g(y2) � b
y 2 Y ;

where F1 (x) = f | x � w1 x1 � w2 A2 x2 and F2 (y) = w1

y1 + w2 g(y2). The corresponding dual problem (LDA)
is then defined by

min
w�0

LDAw

It can then be proved that for any optimal solution of
(LR) defined by u 2 OS(LR), with w1 D uA1 and w2 D

u,

V (LDAw ) � V(LRu)

and therefore

V (LDA) � V(LR):

This inequality is strict only if the second subprob-
lem in (LDAw) (i. e. the problem of maximizing F2(y))
does not satisfy the integrality (complementary slack-
ness) property. Moreover, this inequality holds only for
the Lagrangian relaxation with those constraints that
have been aggregated. Any other Lagrangian relaxation
defined for problem (P) by dualizing other sets of con-
straints will not necessarily satisfy this inequality.

Similarly, defining v � (w1;w2)>, it can also be eas-
ily shown that

V (LDv ) � V (LDAw)

and therefore

V (LD) � V (LDA):

In general, therefore, the bound obtained by aggregat-
ing some or all of the variables is stronger than the
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bound obtained from Lagrangian relaxation but weaker
than the bounds from standard Lagrangian decompo-
sition. However, while the standard (LD) introduces n
multipliers, (LDA) has n1 + m, which can be consid-
erably less depending on the number of dualized con-
straints. Moreover, any inherent problem structure is
still maintained in (LDA). The aggregate formulation
can thus be viewed as a reasonable compromise be-
tween tightness of the bounds and speed of solution.
As in the case of standard decomposition, (LDA) can
be defined by aggregating different subsets of variables.
Unfortunately, it is not always apparent a priori which
is the best choice for obtaining the tightest bound, and
various alternatives may have to be tried in practice.

One possible method of exploiting the potential in-
equalities in these various bounds is as follows:
1) solve (LR) to obtain u;
2) if the integrality property does not hold, set w1 D

uA1 and w2 D u, and solve (LDAu); this problem is
guaranteed to give a tighter bound than (LR);

3) set v �
�w1

w2

�
, and solve (LDv ). Note that if the aggre-

gate function g(y2) is of the form A2y, this step will
not yield any improvement.

Practical Issues

Because (LR), (LD) and (LDA) can all provide tighter
bounds than (LP), any one of the relaxations can be
used in place of (LP) to provide upper bounds in a clas-
sical branch and bound algorithm to solve (P). Conse-
quently, the choice of the relaxation scheme used, as
well as the quality of the bounds obtained, is of consid-
erable importance. These are discussed in some detail
below.

Choosing Among Alternate Relaxations

Often, there are several choices for the constraints to be
dualized. For example, consider the generalized assign-
ment problem

min
mX
iD1

nX
jD1

ci jxi j

such that
mX
iD1

xi j D 1; j D 1; : : : ; n; (17)

nX
jD1

ai jxi j � bi ; i D 1; : : : ;m; xi j D 0 or 1 8i; j:

(18)

By dualizing the first set of constraints (17), this prob-
lem reduces to m knapsack problems. Conversely, du-
alizing (18) results in a generalized upper bound (GUB)
problem in 0–1 variables. Which of the two relaxations
should be used? There are two conflicting factors in-
volved here, namely the tightness of the bounds and the
ease of solution of the problem. It would be wise to se-
lect a relaxation that yields a problem that is fairly easy
to solve, but not so easy that the bounds are very loose.
In general, it is difficult to know this a priori. In some
instances, however, the test of the integrality property
can be useful. For example, in the generalized assign-
ment problem, the integrality property holds for the
second relaxation but not the first, suggesting that the
second relaxation will yield a tighter bound.

For the case of the Lagrangian decomposition, this
issue is not important since all constraints are main-
tained in one of the subproblems. However, if aggre-
gation is being used, then again, it is in general hard to
know a priori which variables to aggregate and which
ones to copy. Often, the best solution is to try various
alternatives and use the computational results to guide
the choice.

Choice of Multipliers

It is clear that for (LR), the best choice for u is an opti-
mal solution to the problem

min
u�0

V(LRu)

since this will yield the tightest bound V(LR). Simi-
larly, the best dual vectors v and w for (LD) and (LDA)
are those from the optimal solutions to the respective
dual problems. Unfortunately, these optimal values for
the dual variables cannot be determined a priori, and
therefore, an interactive procedure is the only viable
approach to improv ing the value of u, v or w. Below,
a couple of techniques for updating u for (LR) are dis-
cussed, but the methods are just as relevant for updating
v and w for (LD) and (LDA).

In general, the function V(LRu) is piecewise lin-
ear, convex and differentiable at all points except where
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the Lagrangian problem hasmultiple optimal solutions.
This observation has led to the development of subgra-
dient techniques for the determining the u that min-
imizes V(LRu). This method is similar to traditional
gradient methods, except that at the nondifferentiable
points, it chooses randomly from the set of optimal La-
grange solutions. Given an initial value u0 (typically u0

= 0), a sequence {uk} is generated by the formula

ukC1 D maxfuk C tk(Axk � b); 0g;

where xk is an optimal solution to (LRuk ) and tk is
a scalar stepsize, generally designed to be a decreasing
sequence converging to zero. It is not possible to prove
optimality in this method, so usually it is terminated
upon reaching a specified number of iterations. Because
of its simplicity, the subgradient technique is generally
the method of first choice when solving (LR).

An alternate way to update u is to use dual descent
algorithms, also referred to as multiplier adjustment
methods. In these methods, the sequence uk is gener-
ated by

ukC1 D uk C tkdk ;

where dk is an descent direction, determined from the
directional derivative of V(LRuk ) using a finite set of
directions. Typically, the direction of steepest descent
is chosen, and the stepsize tk is the one that mini-
mizes V(LRukCtdk ). Unlike subgradient optimization,
this procedure guarantees monotonic bound improve-
ment. Moreover, it may only adjust a few multipliers
at each iteration, resulting in improved computational
performance. However, for general problems, the set of
directions to choose from can be very large, resulting in
very poor descent. It is therefore essential to tailor these
methods to particular problems to exploit their struc-
ture in determining the set of directions.

Applications

Lagrangian relaxation and decomposition have been
successfully applied to solve a large number of practical
combinatorial problems. These include the generalized
assignment problem, capacitated facility location prob-
lem, the traveling salesman problem and instances of
the general mixed integer programming problem. For
each of these problems, the constraints contain well-
understood structures such as knapsack, spanning tree

and generalized upper bound constraints, thus facili-
tating the dualization of the other complicating con-
straints. For a number of problems, these techniques
represent the best available solution method. Computa-
tional results for these and other problems indicate that
the bounds provided by (LR) and (LD) can be extremely
sharp. These results have led to (LD) and (LDA) being
considered among the best available solution methods
for solving these problems.

See also

� Branch and Price: Integer Programming with
Column Generation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Bound Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
� Integer Programming Duality
� Integer Programming: Lagrangian Relaxation
� Lagrange, Joseph-Louis
� Lagrangian Multipliers Methods for Convex

Programming
� LCP: Pardalos–Rosen Mixed Integer Formulation
�Mixed Integer Classification Problems
�Multi-objective Integer Linear Programming
�Multi-objective Mixed Integer Programming
�Multi-objective Optimization: Lagrange Duality
�Multiparametric Mixed Integer Linear

Programming
� Parametric Mixed Integer Nonlinear Optimization
� Set Covering, Packing and Partitioning Problems
� Simplicial Pivoting Algorithms for Integer

Programming
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Time-Dependent Traveling Salesman Problem

References

1. Fisher ML (1981) The Lagrangean relaxation method for
solving integer programming problems. Managem Sci,
27(1):1–18

2. Fisher ML (1985) An applications oriented guide to La-
grangean relaxation. Interfaces 15(2):10–21



638 D De Novo Protein Design Using Flexible Templates

3. Geoffrion AM (1974) Lagrangian relaxation and its uses in
integer programming. Math Program Stud 2:82–114

4. Glover F, Klingman D (1988) Layering strategies for creating
exploitable structure in linear and integer programs. Math
Program 40:165–182

5. Guignard M, Kim S (1987) Lagrangean decomposition:
A model yielding stronger Lagrangean bounds. Math Pro-
gram 39:215–228

6. GuignardM, Kim S (1987) Lagrangean decomposition for in-
teger programming: Theory and applications. RAIRO Oper
Res 21(4):307–323

7. Jörsten K, Näsberg M, Smeds P (1985) Variable splitting–a
new Lagrangean relaxation approach to some mathemati-
cal programming models. Techn Report Dept Math Linkop-
ing Inst Technol, Sweden MAT-R-85-04

8. Reinoso H, Maculan N (1992) Lagrangean decomposition in
integer linear programming: A new scheme. INFOR 30:1–5

De Novo Protein Design
Using Flexible Templates
HO KI FUNG, CHRISTODOULOS A. FLOUDAS

Department of Chemical Engineering,
Princeton University, Princeton, USA

MSC2000: 92D20, 46N10, 90C10

Article Outline

Introduction
Flexible Template via Multiple Discrete Templates
and Discrete Rotamers
Approaches Which Separate Sequence Selection
and Backbone Movement

Approaches Which Iterate Between Sequence Space
and Structure Space

Flexible Template via Continuum Template
and Discrete Rotamers
Successes

Flexible Template via Continuum Template
and NMR Structure Refinement
Successes

References

Introduction

The assumption of a fixed template for de novo peptide
and protein design is highly questionable [41], as pro-
tein is commonly known to exhibit backbone flexibility,
as illustrated by the superposition of NMR structures in
Fig. 1. De novo design templates were observed to allow

De Novo Protein Design Using Flexible Templates, Figure 1
Template flexibility as illustrated by the superposition of the
20NMRstructuresof apo intestinal fatty acidbindingprotein
(Protein Data Bank code 1AEL)

residues that would not have been permissible had the
backbone been fixed [34]. TheMayo group claimed that
their ORBIT protein design programwas robust against
15% change in the backbone. Nevertheless, they found
in a later case study on T4 lysozyme that core repacking
to stabilize the fold was difficult to achieve without con-
sidering a flexible template [37]. The secondary struc-
tures of ˛-helices and ˇ-sheets actually display twisting
and bending in the fold, and Emberly et al. [6,7] applied
principal component analysis of database protein struc-
tures to quantify the degree and modes of their flexibil-
ities.

In this chapter we classify the various methods of
incorporating backbone flexibility into the design tem-
plate into three main types according to their treatment
of the backbone and side-chain conformations. The
first type involves considering a set of multiple discrete
templates and performing de novo design with discrete
rotamers on each of the templates under the fixed-back-
bone assumption. The second type considers a contin-
uum template by means of algebraic parameterization
of the backbone and variation of the parameters to al-
low for backbone movement during sequence selection.
However, it still employs rotamer libraries to simplify
the side-chain conformations. Through novel sequence
selection formulations [14] and pairwise contact poten-
tials which are discretized over distance bins [35,44,45],
the third type considers a continuum design template in
which the C˛–C˛ distances and dihedral angles assume
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continuous values between upper and lower bounds ob-
served from the template structures [9], and confirms
sequence specificity to the target fold based on these
bounded continuous distances and angles via NMR
structure refinement methods [16,17] rather than the
discrete rotamer approach. For each category we will
quote some examples of successes of de novo peptide
and protein design.

Flexible Template via Multiple Discrete
Templates and Discrete Rotamers

By incorporating protein backbone flexibility via dis-
crete templates and discrete rotamers, de novo protein
design frameworks either separate sequence selection
and backbone movement explicitly or iterate between
sequence space and structure space [3]. Notice that in
both cases, the sequence search methods outlined in the
previous section are all applicable, as fixed backbones
and discrete rotamers are still assumed.

ApproachesWhich Separate Sequence Selection
and BackboneMovement

These approaches consider an ensemble of fixed back-
bones, searches for sequences for each of them assum-
ing a fixed template, and finally identify the best so-
lutions from all the results. Successes using different
kinds of search algorithms include the ones described
next.

Successes Using Dead-End Elimination By vary-
ing the supersecondary structure parameters, Ross
et al. [46] and Su and Mayo [48] generated several sets
of perturbed backbones from the native structure and
redesigned the core of the ˇ1 domain of the streptococ-
cal protein using the DEE algorithm under the fixed-
template assumption for each backbone. Confirmed by
NMR experiments, six of the seven sequences tested
folded into nativelike structure.

Successes Using the Self-Consistent Mean Field
Method Kono and Saven [29] applied their self-con-
sistent mean field based protein combinatorial library
design strategy to a set of similar backbone structures
to obtain new sequences that are robust to distance
changes in the template for the immunoglobulin light
chain-binding domain of protein L.

Successes of Monte Carlo Methods/Genetic Algo-
rithms The Pande group generated families of 100
fixed templates within 1Å root-mean-square devia-
tion (rmsd) from the initial backbone using a Monte
Carlo method. With these fixed-template ensembles,
they performed de novo design, which was based
on genetic algorithms, on their Genome@home dis-
tributed grid system for 253 naturally occurring pro-
teins. They obtained sequences that exhibited higher di-
versity than the corresponding natural sequence align-
ments, as well as good agreement on the sequence en-
tropies of the designed sequences from the same tem-
plate family [32,33].

In order to incorporate protein flexibility, Kraemer-
Pecore et al. [30] executed a Monte Carlo simulation
to generate 30 fixed backbones that were within 0:3Å
rmsd of the initial template. A genetic-algorithm-based
sequence prediction algorithm [43] which combines fil-
tering and sampling rotamers and energy minimization
was then employed for sequence search on each tem-
plate under the fixed backbone assumption. The work
led to the identification of a sequence that folded into
the WW domain.

In designing protein conformational switches, Am-
broggio and Kuhlman [1,2] also used the Monte Carlo
based RosettaDesign to search for sequences for multi-
ple fixed-template structures.

ApproachesWhich Iterate Between Sequence Space
and Structure Space

There are two good examples which belong to this
class. The first example is a genetic algorithm/Monte
Carlo based framework used by Desjarlais and Han-
del [5], in which a starting population of backbones
is generated by small angle perturbations to the tem-
plate, rotamers are randomly selected on each back-
bone, and a genetic algorithm is subsequently used
which exchanges not only rotamers but also backbone
torsional information in recombination. The frame-
work is ended with a Monte Carlo stage which re-
fines the backbone structures. Using this novel ap-
proach, Desjarlais and Handel [5] designed three
new core variants of the protein 434 cro. They also
compared results on 434 cro and T4 lysozyme with
those obtained earlier using fixed-template models and
found that they were similar, given that the fixed-
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template models scan over a much larger rotamer
space.

The second one was proposed by Kuhlman et al.
[31] and Saunders and Baker [31,47]. Their method
starts with a set of initial backbones, searches by
a Monte Carlo method for the sequence with the low-
est energy for each of them, performs atomic-resolution
structure prediction for the sequences to allow shifts in
the structure space, and continues until the number of
iterations hits a predetermined number. They success-
fully designed a new sequence for Top 7, a 93-residue
˛/ˇ protein with a novel fold [31]. They also claimed
that the newmethod better captures sequence variation
than approaches that separate sequence selection and
backbone movement explicitly.

Flexible Template via Continuum Template
and Discrete Rotamers

This method of constituting a continuum template via
backbone parameterization and performing sequence
search from rotamer libraries was proposed by Har-
bury et al. [18,19,40]. On the basis of the algebraic pa-
rameterization equations developed for coiled-coils by
Crick [4], they allowed backbone movement by treat-
ing the parameters as variables during sequence search
for energy minimization, which was in turn done by
the local optimization methods of steepest descent min-
imization and adopted-basis Newton–Raphson mini-
mization.

Successes

Harbury et al. [18,19,40] adopted this approach to de-
sign a family of ˛-helical bundle proteins with right-
handed superhelical twist. The crystal structure of the
designed sequences with the optimal specificity was ex-
perimentally validated to match the design template.

Flexible Template via Continuum Template
and NMR Structure Refinement

Considering discrete rotamers is certainly not the best
approach to adopt in de novo design, as about 15% of
side-chain conformations are not represented by com-
mon rotamer libraries [8]. A recent two-stage de novo
design approach proposed by the Floudas group [10,11,
26,27] considers a continuum design template without

using discrete rotamers for the possible side-chain con-
formations. The first stage selects a rank-ordered list
of low-energy sequences using novel quadratic assign-
ment-like models [13,14] driven by pairwise residue
contact potentials, which were developed by the group
by solving a linear programming parameter estima-
tion problem, requiring that the native conformations
for a large training set of 1250 proteins be ranked en-
ergetically more favorably than their high-resolution
decoys [35,44,45]. The forcefields developed were
found to produce very good Z scores in recognizing the
native folds for a large test set of proteins [35,44,45].
Rather than being continuous, the dependence of con-
tact potential on distance is discretized into bins. This
designed feature serves to make the energy objective
function insensitive to a limited degree of backbone
movement. For example, in the high resolution C˛-C˛

forcefield [44], if the pair of amino acids selected at two
positions i and k, which are 3:5Å apart in the template,
are Arg and Glu, respectively, their energy contribu-
tion to the objective function is Minus 7.77 kcal/mol.
Despite small distance variations, this energy value is
constant for all Arg–Glu interactions as long as the C˛

positions of the two residues are 3–4Å (bin 1) apart.
To perform sequence selection based on a flexible tem-
plate of multiple structures, Fung et al. [14] also devel-
oped two novel formulations: a weighted model which
considers the distance between any two positions as the
weighted average of their distances in all structures, and
a binary distance bin model that decides which bin the
distance falls into during energy optimization. The lat-
ter approach is in a sense similar to the backbone pa-
rameterization approach of Harbury et al. [18,19,40] in
which there are distance variables associated with the
backbone.

The second stage of the approach confirms fold
specificity of the sequences generated in the first stage
based on a full-atomistic forcefield. The group used to
perform the task via ASTRO-FOLD [20,21,22,23,24,25,
28,36], a protein structure prediction method via global
optimization. Conformational ensembles are generated
for each sequence under two sets of conditions. In the
first circumstance, the structure is constrained to vary,
with some imposed fluctuations, around the template
structure. In the second condition, a free folding cal-
culation is performed for which only a limited number
of restraints (e. g., disulfide bridges), but not the un-
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derlying template structure, are enforced. The relative
fold specificity of the sequence, f spec, can be found by
summing the statistical weights for those conformers
from the free folding simulation that resemble the tem-
plate structure (denoted as set temp), and dividing this
sum by the summation of statistical weights for all con-
formers from the free folding simulation (denoted as set
total):

fspec D

P
i2temp exp[�ˇEi ]P
i2total exp[�ˇEi]

where exp[�ˇEi ] is the statistical weight for con-
former i.

Note that in this nonrotamer approach, in both the
template-constrained and the free folding calculations,
all continuous C˛–C˛ and angle values between upper
and lower bounds input by the user are considered in
sampling the conformers. True backbone flexibility [9]
is thus conserved.

Lately the Floudas group developed an approximate
fold validation method which is computationally less
expensive than ASTRO-FOLD. Through the CYANA
2.1 software for NMR structure refinement [16,17], an
ensemble of several hundred conformers is generated
for both a new sequence from the first stage and the na-
tive sequence. The energies of the conformers are then
minimized using TINKER [42], and the fold specificity
of the new sequence is calculated using the formula

fspec D

P
i 2 conformers for new sequence exp[�ˇEi]P
i 2 conformers for native sequence exp[�ˇEi]

based on the assumption that the fold specificity to the
flexible template is unity for the native sequence.

Like the fold-validation method via ASTRO-FOLD,
all continuous distance and dihedral angle values be-
tween their upper and lower bounds, which are input
into CYANA on the basis of observations about the
template structures, are considered in generating the
conformers. This distinguishes the method from the
common rotamer approach in which only discrete side-
chain conformations are allowed.

Successes

The novel two-stage de novo strategy was applied to
(1) the design of new sequences for compstatin, a syn-
thetic 13-residue cyclic peptide that binds to comple-
ment protein 3 (C3) and inhibits the activation of the

complement system (part of innate immunity) [10,26,
27,38,39], (2) the design of a potential peptide-drug
candidate derived from the C-terminal sequence of the
C3a fragment of C3 [15], and (3) the full sequence of
human ˇ-defensin-2, a 41-residue cationic peptide in
the immune system [12]. In the case of the compstatin
redesign, sequences with 16-fold and 45-fold improve-
ment in specificity over the native sequence were con-
firmed in experiments [26,27]. For the design of the
peptide drug from C3a, the best sequence identified
corresponds to 15-fold improvement [15].
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Introduction

Computational protein design efforts were first initi-
ated with the premise that the three-dimensional coor-
dinates of the design template or backbone were fixed.
This simplification was first proposed in [39], and was
appealing because it greatly reduced the combinato-
rial complexity of the search. Together with consider-
ation of only a limited set of most frequently observed
side-chain conformations called rotamers [29,40], the
assumption enhanced the efficiency of the initial de
novo design efforts, most of which focused on pro-
tein cores [5,16,32,41,42], in exploring search spaces.
The reason why protein cores were selected instead
of the boundary or surface regions was based on the
thesis that protein folding is primarily driven by hy-
drophobic collapse, and thus a good core tends to pro-
vide a well-folded and stable structure for the de novo

designed protein [10]. The scope of the de novo de-
sign encompassed intermediate and surface residues in
subsequent years, and obviously the problem became
more challenging. In this chapter, we outline the dif-
ferent deterministic and stochastic methods that search
for sequences specific to the fixed rigid design tem-
plate. It should be noted that they all discretize the side-
chain conformational space into rotamers for tractabil-
ity of the search problem. After the introduction of each
method we also review examples of successes.

Sequence SearchMethods

De novo design algorithms can be classified into two
main categories, namely, deterministic and stochas-
tic [8]. The two main methods that fall into the deter-
ministic category are dead-end elimination (DEE) and
self-consistent mean field (SCMF), whereas the twoma-
jor stochastic type frameworks are Monte Carlo and ge-
netic algorithms. Some methods search for low-energy
sequences, whereas others assign probability to each of
the 20 amino acids for each design position in a se-
quence in order to maximize the conformational en-
tropy.

Deterministic Methods

The Dead-End Elimination Criteria DEE, which is
arguably the most popular rotamer search algorithm,
operates on the basis of the systematic elimination of
rotamers that cannot be parts of the sequence with the
lowest energy. The energy function in DEE is written
in the form of the sum of an individual term (rotamer–
template) and a pairwise term (rotamer–rotamer):

E D
NX
iD1

E(ia) C
N�1X
iD1

NX
j>i

E(ia; jb ) ; (1)

where E(ia) is the rotamer–template energy for rotamer
ia of amino acid i, E(ia; jb) is the rotamer–rotamer en-
ergy of rotamer ia and rotatmer jb of amino acids i and
j, respectively, and N is the total number of positions.
The original DEE pruning criterion is based on the con-
cept that if the pairwise energy between rotamer ia and
rotamer jb is higher than that between rotamer ic and
rotamer jb for all rotamer jb in a certain rotamer set {B},
then rotamer ia cannot be in the global energy mini-
mum conformation and thus can be eliminated. It was
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proposed in [9] and can be expressed in the following
mathematical form:

E(ia) C
NX
j¤i

E(ia; jb) > E(ic) C
NX
j¤i

E(ic ; jb) 8fBg:

(2)

Rotamer ia can be pruned if the above holds true.
Bounds implied by (1) can be utilized to generate
the following computationally more tractable inequal-
ity [9]:

E(ia) C
NX
j¤i

min
b

E(ia; jb)

> E(ic) C
NX
j¤i

max
b

E(ic ; jb) : (3)

The above equations for eliminating rotamers at
a single position (or singles) can be extended to elimi-
nating rotamer pairs at two distinct positions (doubles),
rotamer triplets at three distinct positions (triples), or
above [9,37]. In the case of doubles, the equation be-
comes

"(ia; jb ) C
NX

k¤i; j

min
c
"(ia; jb ; kc )

> "(ia0; jb0) C
NX

k¤i; j

max
c
"(ia0; jb0 ; kc) ; (4)

where " is the total energy of rotamer pairs:

"(ia; jb ) D E(ia) C E( jb) C E(ia; jb) ; (5)

"(ia; jb ; kc) D E(ia; kc) C E( jb ; kc ) : (6)

It determines a rotamer pair ia and jb which al-
ways contributes higher energies than rotamer pair ia0
and jb0 for all possible rotamer combinations. Gold-
stein [14] improved the original DEE criterion by stat-
ing that rotamer ia can be pruned if the energy contri-
bution is always reduced by an alternative rotamer ic:

E(ia) � E(ic) C
NX
j¤i

min
b

[E(ia; jb )�E(ic; jb)] > 0 :

(7)

This can be generalized to the use of a weighted av-
erage of C rotamers ic to eliminate ia [14]:

E(ia) �
X

cD1;:::;C

wcE(ic) C
NX
j¤i

min
b
[E(ia; jb)

�
X

cD1;:::;C

wcE(ic ; jb)] > 0 :
(8)

Lasters et al. [25] proposed that the most suitable
weights wc can be determined by solving a linear pro-
gramming problem.

In addition to these criteria proposed by Gold-
stein [14], Pierce et al. [38] introduced the split DEE,
which splits the conformational space into partitions
and thus eliminated the dead-ending rotamers more ef-
ficiently:

E(ia) � E(ic)

C

NX
j; j¤k¤i

fmin
a0

[E(ia; ja0) � E(ic ; ja0)]g

C [E(ia; kb0 ) � E(ic ; kb0 )] > 0 : (9)

In general, n splitting positions can be assigned for
more efficient but computationally expensive rotamer
elimination:

E(ia) � E(ic)

C

NX
j; j¤k1;:::;kn¤i

fmin
a0

[E(ia; ja0) � E(ic ; ja0)]g

C
X

kDk1;:::;kn

[E(ia; kb0 ) � E(ic; kb0 )] > 0 : (10)

Looger and Hellinga [27] also introduced the gen-
eralized DEE by ranking the energy of rotamer clus-
ters instead of that of individual rotamers and increased
the ability of the algorithm to deal with higher lev-
els of combinatorial complexity. Further revisions and
improvements on DEE were performed by Wernisch
et al. [47] and Gordon et al. [15].

Being deterministic in nature, the different forms of
DEE reviewed above all yield the same globally optimal
solution upon convergence.

Successes Using Dead-End Elimination: Based on
operating the DEE algorithm on a fixed template, the
Mayo group devised their optimization of rotamers



De Novo Protein Design Using Rigid Templates D 645

by an iterative technique (ORBIT) program and ap-
plied it to numerous de novo protein designs. Exam-
ples are the full-sequence design of the ˇˇ˛ fold of
a zinc finger domain [6], improvement of calmodulin
binding affinity [45], full core design of the variable do-
mains of the light and heavy chains of catalytic anti-
body 48G7 FAB, full core/boundary design, full surface
design, and full-sequence design of the ˇ1 domain of
protein G [15], as well as the redesign of the core of
T4 lysozyme [32]. They also adjusted secondary struc-
ture parameters to build the “idealized backbone” and
used it as a fixed template to design an ˛/ˇ-barrel pro-
tein [33]. The Hellinga group applied DEE with a fixed
backbone structure to introduce iron and oxygen bind-
ing sites into thioredoxin [2,3], design receptor and sen-
sor proteins with novel ligand-binding functions [28],
and confer novel enzymatic properties onto ribose-
binding protein [11].

The Self-Consistent Mean-Field Method The SCMF
optimization method is an iterative procedure that pre-
dicts the values of the elements of a conformational
matrix P(i, a) for the probability of a design position i
adopting the conformation of rotamer a. Note that
P(i, a) sums to unity over all rotamers a for each po-
sition i. Koehl and Delarue [19] were among those who
introduced such a method for protein design. They
started the iteration with an initial guess for the con-
formational matrix, which assigns equal probability to
all rotamers:

P(i; a) D
1
A

a D 1; 2; : : : ;A : (11)

Most importantly, they applied the mean-field po-
tential, E(i, a), which depends on the conformational
matrix P(i, a):

E(i; a) D U(xia) C U(xia; x0)

C

NX
jD1; j¤i

BX
bD1

P( j; b)U(xia ; x jb ) ; (12)

where x0 corresponds to the coordinates of atoms in the
fixed template, and xia and x jb correspond to the coor-
dinates of the atoms of position i assuming the confor-
mation of rotamer a and those of position j assuming
the conformation of rotamer b, respectively. The clas-
sical Lennard-Jones (12-6) potential can be used to de-

scribe potential energyU [19]. The conformational ma-
trix can be subsequently updated using the mean-field
potential and the Boltzmann law:

P1(i; a) D
e
�E(i;a)

RT

PA
aD1 e

�E(i;a)
RT

: (13)

The update on P(i, a), namely, P1(i; a), can then be
used to repeat the calculation of the mean-field poten-
tial and another update until convergence is attained.
Koehl and Delarue [19] set the convergence criterion
to be 10�4 to define self-consistency. They also pro-
posed the introduction of memory of the previous step
to minimize oscillations during convergence:

P(i; a) D �P1(i; a) C (1 � �)P(i; a) ; (14)

with the optimal step size � to be 0.9 [19].
The Saven group [12,24,44,48] extended the SCMF

theory and formulated de novo design as an opti-
mization problem maximizing the sequence entropy
subject to composition constraints and mean-field en-
ergy constraints. In addition to the site probabilities,
their method also predicts the number of sequences for
a combinatorial library of arbitrary size for the fixed
template as a function of energy.

It should be highlighted that though deterministic
in nature, the SCMF method does not guarantee con-
vergence to the global optimal solution [26].

Successes Using the Self-Consistent Mean-Field
Method Koehl and Delarue [20] applied the SCMF
approach to design protein loops. In their optimization
procedure, they first selected the loop fragment from
a database with the highest site probabilities. Then they
placed side chains on the fixed loop backbone from
a rotamer library. Kono and Doi [23] also used an en-
ergy minimization with an automata network, which
bears some resemblance to the SCMFmethod, to design
the cores of the globular proteins of cytochrome b562,
triosephosphate isomerase, and barnase. The SCMF
method is related to the design of combinatorial li-
braries of new sequences with good folding properties,
which was reviewed in several papers [17,34,35,43].

Stochastic Methods

The fact that de novo design is nondeterministic
polynomial-time hard [13,36] means that in the worst
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case the time required to solve the problem scales non-
polynomially with the number of design positions. As
the problem complexity exceeds a certain level, deter-
ministic methods may reach their limits and in such in-
stances we may have to resort to stochastic methods,
which perform searches for only locally optimal solu-
tions. Monte Carlo methods and genetic algorithms are
the two most commonly used types of stochastic meth-
ods for de novo protein design.

Monte Carlo Methods Different variants of the
Monte Carlo methods have been applied for sequence
design. In the classic Monte Carlo method, mutation
is performed at a certain position in the sequence and
energies of the sequence in the fixed template are cal-
culated before and after the mutation. This usually
involves the use of discrete rotamer libraries to sim-
plify the consideration of possible side-chain confor-
mations. The new sequence after mutation is accepted
if the energy becomes lower. If the energy is higher, the
Metropolis acceptance criterion [30] is used

paccept D min(1; exp(�ˇ�E)) ˇ D
1
kT

; (15)

and the sequence is updated if paccept is larger than
a random number uniformly distributed between 0
and 1.

In the configurational bias Monte Carlo method,
at each step a local energy is used which does not in-
clude those positions where amutation has not been at-
tempted [49]. Cootes et al. [4] reported that the method
was more efficient at finding good solutions than the
conventional Monte Carlo method, especially for com-
plex systems. Zoz and Savan [49] also devised themean-
field biased Monte Carlo method which biases the se-
quence search with predetermined site probabilities,
which are in turn calculated using SCMF theory. They
claimed their new method converges to low-energy se-
quences faster than classic Monte Carlo and configura-
tional bias Monte Carlo methods.

Successes of Monte Carlo Methods Imposing se-
quence specificity by keeping the amino acid composi-
tion fixed, which reduced significantly the complexity,
Koehl and Levitt [21,22] designed new sequences for
the fixed backbones of the ˇ1 domain of protein G, �

repressor, and sperm whale myoglobin using the con-
ventional Monte Carlo method. The Baker group also
utilized the classic Monte Carlo algorithm in their com-
putational protein design program RosettaDesign. Ex-
amples of applications of the program include the re-
design of nine globular proteins: the src SH3 domain,
� repressor, U1A, protein L, tenascin, procarboxypepti-
dase, acylphosphatase, S6, and FKBP12 using fixed tem-
plates [7].

Genetic Algorithms Originating in genetics and evo-
lution, genetic algorithms generate a multitude of ran-
dom amino acid sequences and exchange them for
a fixed template. Sequences with low energies form hy-
brids with other sequences, while those with high en-
ergies are eliminated in an iterative process which only
terminates when a converged solution is attained [46].

Successes of Genetic Algorithms With fixed back-
bones, Belda et al. [1] applied genetic algorithms to
the design of ligands for prolyl oligopeptidase, p53,
and DNA gyrase. In addition, with a cubic lattice and
empiricial contact potentials Hohm et al. [18] and
Miyazawa and Jernigan [31] also employed evolution-
ary methods to design short peptides that resemble the
antibody epitopes of thrombin and blood coagulation
factor VIII with high stability.
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Introduction

Consider the following unconstrained minimization
problem:

minimize f (x) subject tox 2 IRn ; (1)

where the objective function f is assumed to be Lips-
chitz continuous.

Nonsmooth unconstrained optimization problems
appear in many applications and in particular in data
mining. Over more than four decades different meth-
ods have been developed to solve problem (1).Wemen-
tion among them the bundle method and its different
variations (see, for example, [11,12,13,14,17,20]), algo-
rithms based on smoothing techniques [18], and the
gradient sampling algorithm [8].

In most of these algorithms at each iteration the
computation of at least one subgradient or approxi-
mating gradient is required. However, there are many
practical problems where the computation of even one
subgradient is a difficult task. In such situations deriva-
tive-free methods seem to be a better choice since they
do not use the explicit computation of subgradients.

Among derivative-free methods, the generalized
pattern search methods are well suited for nonsmooth
optimization [1,19]. However their convergence are
proved under quite restrictive differentiability assump-
tions. It was shown in [19] that when the objective func-
tion f is continuously differentiable in IRn , then the
lower limit of the norm of the gradient of the sequence
of points generated by the generalized pattern search
algorithm goes to zero. The paper [1] provides conver-
gence analysis under less restrictive differentiability as-
sumptions. It was shown that if f is strictly differen-
tiable near the limit of any refining subsequence, then
the gradient at that point is zero. However, in many
practically important problems this condition is not
satisfied, because in such problems the objective func-
tions are not differentiable at local minimizers.

In the paper [15] a derivative-free algorithm for
a linearly constrained finite minimax problem was
proposed. The original problem was converted into
a smooth one using a smoothing technique. This algo-
rithm is globally convergent toward stationary points of
the finite minimax problem.

In this paper we describe a derivative-free method
based on the notion of a discrete gradient for solving
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unconstrained nonsmooth optimization problems. Its
convergence is proved for a broad class of nonsmooth
functions.

Definitions

We use the following notation: IRn is an n-dimensional
space, where the scalar product will be denoted by
hx; yi:

hx; yi D
nX

iD1

xi yi

and k � k will denote the associated norm. The gradient
of a function f : IRn ! IR1 will be denoted by r f and
the closed ı-ball at x 2 IRn by Sı(x) (by Sı if x D 0):
Sı(x) D fy 2 IRn : kx � yk � ıg; ı > 0.

The Clarke Subdifferential

Let f be a function defined on IRn . Function f is called
locally Lipschitz continuous if for any bounded subset
X � IRn there exists an L > 0 such that

j f (x)� f (y)j � Lkx � yk8x; y 2 X:

We recall that a locally Lipschitz function f is differ-
entiable almost everywhere and that we can define for
it a Clarke subdifferential [9] by

@ f (x) D co
n
v 2 IRn : 9(xk 2 D( f );

xk ! x; k ! C1) : v D lim
k!C1

r f (xk)
o
;

where D( f ) denotes the set where f is differentiable and
co denotes the convex hull of a set. It is shown in [9]
that the mapping @ f (x) is upper semicontinuous and
bounded on bounded sets.

The generalized directional derivative of f at x in the
direction g is defined as

f 0(x; g) D lim sup
y!x;˛#0

˛�1[ f (yC ˛g) � f (y)] :

If function f is locally Lipschitz continuous, then the
generalized directional derivative exists and

f 0(x; g) D max fhv; gi : v 2 @ f (x)g :

f is called a Clarke regular function on IRn if it is dif-
ferentiable with respect to any direction g 2 IRn and

f 0(x; g) D f 0(x; g) for all x; g 2 IRn , where f 0(x; g) is
a derivative of function f at point x with respect to di-
rection g:

f 0(x; g) D lim
˛#0

˛�1[ f (x C ˛g) � f (x)]:

It is clear that the directional derivative f 0(x; g) of the
Clarke regular function f is upper semicontinuous with
respect to x for all g 2 IRn .

Let f be a locally Lipschitz continuous function de-
fined on IRn . For point x to be a minimum point of
function f on IRn , it is necessary that 0 2 @ f (x):

Semismooth Functions

The function f : IRn ! IR1 is called semismooth at
x 2 IRn , if it is locally Lipschitz continuous at x and for
every g 2 IRn , the limit

lim
g0!g;˛#0;v2@ f (xC˛g0)

hv; gi

exists. It should be noted that the class of semismooth
functions is fairly wide and it contains convex, concave,
max- and min-type functions [16]. The semismooth
function f is directionally differentiable and

f 0(x; g) D lim
g0!g;˛#0;v2@ f (xC˛g0)

hv; gi:

Quasidifferentiable Functions

A function f is called quasidifferentiable at a point x if it
is locally Lipschitz continuous and directionally differ-
entiable at this point and there exist convex, compact
sets @ f (x) and @ f (x) such that

f 0(x; g) D max
u2@ f (x)

hu; gi C min
v2@ f (x)

hv; gi:

The set @ f (x) is called a subdifferential, the set @ f (x)
is called a superdifferential, and the pair of sets
[@ f (x); @ f (x)] is called a quasidifferential of function
f at a point x [10].

Methods

Approximation of Subgradients

We consider a locally Lipschitz continuous function f
defined on IRn and assume that this function is quasid-
ifferentiable. We also assume that both sets @ f (x) and
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@ f (x) at any x 2 IRn are polytopes, that is, at a point
x 2 IRn there exist sets

A D fa1; : : : ; amg; ai 2 IRn ; i D 1; : : : ;m;m � 1

and

B D fb1; : : : ; bpg; b j 2 IRn ; j D 1; : : : ; p; p � 1

such that

@ f (x) D co A; @ f (x) D co B:

This assumption is true, for example, for functions rep-
resented as a maximum, minimum, or max-min of a fi-
nite number of smooth functions.

We take a direction g 2 IRn such that

g D (g1; : : : ; gn); jgi j D 1; i D 1; : : : ; n

and consider the sequence of n vectors e j D e j(˛); j D
1; : : : ; n with ˛ 2 (0; 1]:

e1 D (˛g1; 0; : : : ; 0);
e2 D (˛g1; ˛2g2; 0; : : : ; 0);
: : : D : : : : : : : : :

en D (˛g1; ˛2g2; : : : ; ˛n gn):

We introduce the following sets:

R0 D A; R0 D B;

Rj D
n
v 2 Rj�1 : v j g j D maxfwjg j : w 2 Rj�1g

o
;

Rj D
˚
v 2 Rj�1 : v j g j D minfwjg j : w 2 Rj�1g

�
:

j D 1; : : : ; n :

It is clear that

Rj ¤ ;;8 j 2 f0; : : : ; ng; Rj � Rj�1;8 j 2 f1; : : : ; ng

and

Rj ¤ ;;8 j 2 f0; : : : ; ng; R j � Rj�1;8 j 2 f1; : : : ; ng:

Moreover,

vr D wr 8v;w 2 Rj; r D 1; : : : ; j (2)

and

vr D wr 8v;w 2 Rj; r D 1; : : : ; j: (3)

Consider the following two sets:

R(x; e j(˛)) D
�
v 2 A : hv; e ji D max

u2A
hu; e ji

	
;

R(x; e j(˛)) D
�
w 2 B : hw; e ji D min

u2B
hu; e ji

	
:

Proposition 1 Assume that function f is quasidiffer-
entiable and its subdifferential and superdifferential are
polytopes at a point x. Then there exists ˛0 > 0 such that

R(x; e j(˛)) � Rj; R(x; e
j(˛)) � Rj; j D 1; : : : ; n

for all ˛ 2 (0; ˛0).

Corollary 1 Assume that function f is quasidifferen-
tiable and its subdifferential and superdifferential are
polytopes at a point x. Then there exists ˛0 > 0 such that

f 0(x; e j(˛)) D f 0(x; e j�1(˛))C vj˛ j g j C wj˛
j g j;

8v 2 Rj; w 2 Rj; j D 1; : : : ; n

for all ˛ 2 (0; ˛0]

Proposition 2 Assume that function f is quasidiffer-
entiable and its subdifferential and superdifferential are
polytopes at a point x. Then the sets Rn and Rn are sin-
gletons.

Remark 1 In the next subsection we propose an al-
gorithm to approximate subgradients. This algorithm
finds a subgradient that can be represented as a sum of
elements of the sets Rn and Rn .

Computation of Subgradients

Let g 2 IRn ; jgi j D 1; i D 1; : : : ; n be a given vector and
� > 0; ˛ > 0 be given numbers. We define the follow-
ing points:

x0 D x; x j D x0 C �e j(˛); j D 1; : : : ; n:

It is clear that

x j D x j�1C(0; : : : ; 0; �˛ j g j; 0; : : : ; 0); j D 1; : : : ; n:

Let v D v(˛; �) 2 IRn be a vector with the following co-
ordinates:

v j D (�˛ j g j)�1
�
f (x j) � f (x j�1)

�
; j D 1; : : : ; n: (4)
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For any fixed g 2 IRn ; jgi j D 1; i D 1; : : : ; n and ˛ > 0
we introduce the following set:

V(g; ˛) D
�
w 2 IRn : 9(�k !C0; k !C1);

w D lim
k!C1

v(˛; �k)
	
:

Proposition 3 Assume that f is a quasidifferentiable
function and its subdifferential and superdifferential are
polytopes at x. Then there exists ˛0 > 0 such that

V(g; ˛) � @ f (x)

for all ˛ 2 (0; ˛0].

Remark 2 It follows from Proposition 3 that in or-
der to approximate subgradients of quasidifferentiable
functions one can choose a vector g 2 IRn such that
jgi j D 1; i D 1; : : : ; n, sufficiently small ˛ > 0; � > 0,
and apply (4) to compute a vector v(˛; �). This vector
is an approximation to a certain subgradient.

Computation of Subdifferentials
and Discrete Gradients

In the previous subsection we demonstrated an algo-
rithm for the computation of subgradients. In this sub-
section we consider an algorithm for the computation
of subdifferentials. This algorithm is based on the no-
tion of a discrete gradient. We start with the definition
of the discrete gradient, which was introduced in [2]
(for more details, see also [3,4]).

Let f be a locally Lipschitz continuous function de-
fined on IRn . Let

S1 D fg 2 IRn : kgk D 1g;G D fe 2 IRn :

e D (e1; : : : ; en); je jj D 1; j D 1; : : : ; ng;

P D fz(�) : z(�) 2 IR1; z(�) > 0;
� > 0; ��1z(�)! 0; �! 0g:

Here S1 is the unit sphere, G is the set of vertices of the
unit hypercube in IRn , and P is the set of univariate pos-
itive infinitesimal functions.

We take any g 2 S1 and define jgi j D maxfjgk j;
k D 1; : : : ; ng. We also take any e D (e1; : : : ; en) 2
G, a positive number ˛ 2 (0; 1], and define the
sequence of n vectors e j(˛); j D 1; : : : ; n as in

Sect. “Approximation of Subgradients.” Then for given
x 2 IRn and z 2 P we define a sequence of nC 1 points
as follows:

x0 D
x1 D
x2 D
: : : D

xn D

x C �g;
x0 C z(�)e1(˛);
x0 C z(�)e2(˛);
: : : : : :

x0 C z(�)en(˛):

Definition 1 The discrete gradient of function f
at point x 2 IRn is the vector � i (x; g; e; z; �; ˛) D
(� i

1 ; : : : ; �
i
n ) 2 IRn ; g 2 S1 with the following coor-

dinates:

� i
j D [z(�)˛ j e j)]�1

�
f (x j) � f (x j�1)

�
;

j D 1; : : : ; n; j ¤ i ;

� i
i D (�gi)�1

2
4 f (x C �g) � f (x)� �

nX
jD1; j¤i

� i
j g j

3
5 :

It follows from the definition that

f (x C �g) � f (x) D �h� i(x; g; e; z; �; ˛); gi (5)

for all g 2 S1; e 2 G; z 2 P; � > 0; ˛ > 0.

Remark 3 One can see that the discrete gradient is de-
fined with respect to a given direction g 2 S1, and in or-
der to compute the discrete gradient� i (x; g; e; z; �; ˛),
first we define a sequence of points x0; : : : ; xn and com-
pute the values of function f at these points; that is, we
compute nC 2 values of this function including point
x. n � 1 coordinates of the discrete gradient are de-
fined similarly to those of the vector v(˛; �) from the
Sect. “Approximation of Subgradients,” and the ith co-
ordinate is defined so as to satisfy equality (5), which
can be considered as as version of the mean value theo-
rem.

Proposition 4 Let f be a locally Lipschitz continuous
function defined on IRn and L > 0 its Lipschitz constant.
Then for any x 2 IRn ; g 2 S1; e 2 G; � > 0; z 2 P;
˛ > 0

k� ik � C(n)L;C(n) D (n2 C 2n3/2 � 2n1/2)1/2:
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For a given ˛ > 0 we define the following set:

B(x; ˛) Dfv 2 IRn : 9(g 2 S1; e 2 G; zk 2 P;

zk ! C0; �k ! C0; k! C1);
v D lim

k!C1
� i (x; g; e; zk ; �k ; ˛)g: (6)

Proposition 5 Assume that f is a semismooth, qua-
sidifferentiable function and its subdifferential and su-
perdifferential are polytopes at a point x. Then there ex-
ists ˛0 > 0 such that

co B(x; ˛) � @ f (x)

for all ˛ 2 (0; ˛0].

Remark 4 Proposition 5 implies that discrete gradi-
ents can be applied to approximate subdifferentials of
a broad class of semismooth, quasidifferentiable func-
tions.

Remark 5 One can see that the discrete gradient con-
tains three parameters: � > 0, z 2 P, and ˛ > 0. z 2 P
is used to exploit the semismoothness of function f , and
it can be chosen sufficiently small. If f is a semismooth
quasidifferentiable function and its subdifferential and
superdifferential are polytopes at any x 2 IRn , then for
any ı > 0 there exists ˛0 > 0 such that ˛ 2 (0; ˛0] for
all y 2 Sı(x). The most important parameter is � > 0.
In the sequel we assume that z 2 P and ˛ > 0 are suffi-
ciently small.

Consider the following set:

D0(x; �) Dcl co fv 2 IRn : 9(g 2 S1; e 2 G; z 2 P) :

v D � i (x; g; e; �; z; ˛)g:

Proposition 4 implies that the set D0(x; �) is compact
and it is also convex for any x 2 IRn .

Corollary 2 Let f be a quasidifferentiable semismooth
function. Assume that in the equality

f (x C �g) � f (x) D � f 0(x; g)C o(�; g); g 2 S1

��1o(�; g)! 0 as �!C0 uniformly with respect to
g 2 S1. Then for any " > 0 there exists �0 > 0 such that

D0(x; �) � @ f (x)C S"

for all � 2 (0; �0).

Corollary 2 shows that the set D0(x; �) is an approxi-
mation to the subdifferential @ f (x) for sufficiently small

� > 0. However, it is true at a given point. To get con-
vergence results for a minimization algorithm based on
discrete gradients, we need some relationship between
the set D0(x; �) and @ f (x) in some neighborhood of
a given point x. We will consider functions satisfying
the following assumption.

Assumption 1 Let x 2 IRn be a given point. For any
" > 0 there exist ı > 0 and �0 > 0 such that

D0(y; �) � @ f (x C S̄")C S" (7)

for all y 2 Sı(x) and � 2 (0; �0). Here

@ f (x C S̄") D
[

y2S̄"(x)

@ f (y); S̄"(x)

D fy 2 IRn : kx � yk � "g:

A Necessary Condition for a Minimum

Consider problem (1), where f : IRn ! IR1 is an arbi-
trary function.

Proposition 6 Let x� 2 IRn be a local minimizer of
function f . Then there exists �0 > 0 such that

0 2 D0(x; �)

for all � 2 (0; �0).

Proposition 7 Let 0 62 D0(x; �) for a given � > 0 and
v0 2 IRn be a solution to the following problem:

minimizekvk2subject to v 2 D0(x; �):

Then the direction g0 D �kv0k�1v0 is a descent direc-
tion.

Proposition 7 shows how the set D0(x; �) can be used
to compute descent directions. However, in many cases
the computation of the set D0(x; �) is not possible. In
the next section we propose an algorithm for the com-
putation of descent directions using a few discrete gra-
dients from D0(x; �).

Computation of Descent Directions

In this subsection we describe an algorithm for the
computation of descent directions of the objective func-
tion f of Problem (1).
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Let z 2 P; � > 0; ˛ 2 (0; 1], the number c 2 (0; 1),
and a tolerance ı > 0 be given.

Algorithm 1 An algorithm for the computation of the
descent direction.

Step 1. Choose any g1 2 S1; e 2 G; compute i D
argmax fjg jj; j D 1; : : : ; ng and a discrete gradient
v1 D � i (x; g1; e; z; �; ˛). Set D1(x) D fv1g and k D 1.

Step 2. Compute the vector kwkk2 D minfkwk2 :
w 2 Dk(x)g. If

kwkk � ı; (8)

then stop. Otherwise go to Step 3.
Step 3. Compute the search direction by gkC1 D

�kwkk�1wk .
Step 4. If

f (x C �gkC1) � f (x) � �c�kwkk; (9)

then stop. Otherwise go to Step 5.
Step 5. Compute i D argmax fjgkC1

j j : j D 1; : : : ; ng
and a discrete gradient

vkC1 D � i(x; gkC1; e; z; �; ˛);

construct the set DkC1(x) D co fDk(x)
S
fvkC1gg, set

k D k C 1, and go to Step 2.

In what follows we provide some explanations of Al-
gorithm 1. In Step 1 we compute the discrete gradient
with respect to an initial direction g1 2 IRn . The dis-
tance between the convex hull Dk(x) of all computed
discrete gradients and the origin is computed in Step 2.
This problem is solved using the algorithm from [21].
If this distance is less than the tolerance ı > 0, then
we accept point x as an approximate stationary point
(Step 2); otherwise we compute another search direc-
tion in Step 3. In Step 4 we check whether this direction
is a descent direction. If it is, we stop and the descent
direction has been computed; otherwise we compute
another discrete gradient with respect to this direction
in Step 5 and update the set Dk(x). At each iteration k
we improve the approximation of the subdifferential of
function f .

The next proposition shows that Algorithm 1 is ter-
minating.

Proposition 8 Let f be a locally Lipschitz function de-
fined on IRn. Then, for ı 2 (0; C̄), either condition (8) or

condition (9) satisfies after m computations of the dis-
crete gradients, where

m � 2(log2(ı/C̄)/ log2 rC1); r D 1�[(1�c)(2C̄)�1ı]2;

C̄ D C(n)L, and C(n) is a constant from Proposition 4.

Remark 6 Proposition 4 and equality (5) are true for
any � > 0 and for any locally Lipschitz continuous
functions. This means that Algorithm 1 can compute
descent directions for any � > 0 and for any locally Lip-
schitz continuous functions in a finite number of itera-
tions. Sufficiently small values of � give an approxima-
tion to the subdifferential, and in this case Algorithm 1
computes local descent directions. However, larger val-
ues of � do not give an approximation to the subdif-
ferential and in this case descent directions computed
by Algorithm 1 can be considered global descent direc-
tions.

The Discrete Gradient Method

In this section we describe the discrete gradient
method. Let sequences ık > 0; zk 2 P; �k > 0; ık !
C0; zk ! C0; �k ! C0; k ! C1, sufficiently small
number ˛ > 0, and numbers c1 2 (0; 1); c2 2 (0; c1] be
given.

Algorithm 2 Discrete gradient method
Step 1. Choose any starting point x0 2 IRn and set

k D 0.
Step 2. Set s D 0 and xk

s D xk .
Step 3. Apply Algorithm 1 for the computation of

the descent direction at x D xk
s ; ı D ık ; z D zk ; � D

�k ; c D c1. This algorithm terminates after a finite
number of iterations l > 0. As a result we get the set
Dl (xk

s ) and an element vks such that

kvks k
2 D minfkvk2 : v 2 Dl (xk

s )g:

Furthermore, either kvks k � ık or for the search direc-
tion gks D �kvks k�1vks

f (xk
s C �k gks ) � f (xk

s ) � �c1�kkvks k: (10)

Step 4. If

kvks k � ık; (11)

then set xkC1 D xk
s ; k D k C 1 and go to Step 2. Other-

wise go to Step 5.
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Step 5. Construct the following iteration xk
sC1 D

xk
s C �s gks , where �s is defined as follows:

�s D argmax f� � 0 : f (xk
s C � g

k
s ) � f (xk

s )

� �c2�kvks k
o
:

Step 6. Set s D s C 1 and go to Step 3.

For the point x0 2 IRn we consider the set M(x0) D˚
x 2 IRn : f (x) � f (x0)

�
:

Proposition 9 Assume that function f is semismooth
quasidifferentiable, its subdifferential and superdifferen-
tial are polytopes at any x 2 IRn, Assumption 1 is sat-
isfied, and the set M(x0) is bounded for starting points
x0 2 IRn. Then every accumulation point of fxkg belongs
to the set X0 D fx 2 IRn : 0 2 @ f (x)g.

Remark 7 Since Algorithm 1 can compute descent di-
rections for any values of � > 0, we take �0 2 (0; 1),
some ˇ 2 (0; 1), and update �k ; k � 1 as follows:

�k D ˇ
k�0; k � 1:

Thus in the discrete gradient method we use approx-
imations to subgradients only at the final stage of the
method, which guarantees convergence. In most itera-
tions we do not use explicit approximations of subgra-
dients. Therefore it is a derivative-free method.

Remark 8 It follows from (10) and c2 � c1 that always
�s � �k and therefore �k > 0 is a lower bound for �s .
This leads to the following rule for the computation of
�s . We define a sequence:

�m D m�k ; m � 1;

and �s is defined as the largest �m satisfying the inequal-
ity in Step 5.

Applications

There are many problems from applications where the
objective and/or constraint functions are not regular.
We will consider one of them, the cluster analysis prob-
lem, which is an important application area in data
mining.

Clustering is also known as the unsupervised classi-
fication of patterns; it deals with problems of organiz-
ing a collection of patterns into clusters based on simi-
larity. Clustering has many applications in information
retrieval, medicine, etc.

In cluster analysis we assume that we have been
given a finite set C of points in the n-dimensional space
IRn , that is,

C D fc1; : : : ; cmg; where ci 2 IRn ; i D 1; : : : ;m:

We consider here partition clustering, that is, the distri-
bution of the points of set C into a given number q of
disjoint subsets Ci ; i D 1; : : : ; q with respect to prede-
fined criteria such that:

(1) Ci ¤ ;; i D 1; : : : ; q;
(2) Ci TC j D ;; i; j D 1; : : : ; q; i ¤ j;

(3) C D
qS

iD1
Ci .

The sets Ci ; i D 1; : : : ; q are called clusters. The
strict application of these rules is called hard clustering,
unlike fuzzy clustering, where the clusters are allowed
to overlap. We assume that no constraints are imposed
on the clusters Ci ; i D 1; : : : ; q, that is, we consider the
hard unconstrained clustering problem.

We also assume that each cluster Ci ; i D 1; : : : ; q
can be identified by its center (or centroid). There are
different formulations of clustering as an optimization
problem. In [5,6,7] the cluster analysis problem is re-
duced to the following nonsmooth optimization prob-
lem:

minimize f (x1; : : : ; xq)

subject to (x1; : : : ; xq) 2 IRn�q;
(12)

where

f (x1; : : : ; xq) D
1
m

mX
iD1

min
sD1;:::;q

kxs � cik2: (13)

Here k � k is the Euclidean norm and xs 2 IRn stands for
the sth cluster center. If q > 1, then the objective func-
tion (13) in problem (12) is nonconvex and nonsmooth.
Moreover, function f is a nonregular function, and the
computation of even one subgradient of this function is
quite a difficult task. This function can be represented
as the difference of two convex functions as follows:

f (x) D f1(x) � f2(x);

where

f1(x) D
1
m

mX
iD1

qX
sD1

kxs � cik2;
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f2(x) D
1
m

mX
iD1

max
sD1;:::;q

qX
kD1;k¤s

kxk � cik2:

It is clear that function f is quasidifferentiable and its
subdifferential and are polytopes at any point.

Thus, the discrete gradient method can be applied
to solve clustering problem.

Conclusions

We have discussed a derivative-free discrete gradient
method for solving unconstrained nonsmooth opti-
mization problems. This algorithm can be applied to
a broad class of optimization problems including prob-
lems with nonregular objective functions. It is globally
convergent toward stationary points of semismooth,
quasidifferentiable functions whose subdifferential and
superdifferential are polytopes.
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Introduction

The optimal design of stochastic systems like queueing
or inventory systems is a specific stochastic optimiza-
tion problem.

Let Yx(t) be an ergodic Markov process with dis-
crete time t = 1, 2, . . . and values in Rm, depending on
a control parameter x 2 Rd. Let H(x, �) be some cost
function. The problem is to find the control x which
minimizes the expectedcosts of the system either under
the transient or under the stationary regime:
1) Under the transient regime, the process is started at

time 0 in a specific starting state y0 and observed un-
til time T. The optimality problem reads

8̂
<̂
ˆ̂:
min F(x) D

TX
tD1

E[H(x;Yx (t)]

s.t. x 2 S � Rd :

(1)

2) Under the stationary regime it is assumed that
Yx(1) is distributed according to the stationary dis-
tribution of the process, which is — by ergodicity —
the asymptotic distribution of Yx(t) as t tends to in-
finity. The optimality problem reads

(
min F(x) D E[H(x;Yx(1)]
s.t. x 2 S � Rd :

(2)

As an example, consider the problem of optimally
determining the decision limits (x1, x2) in an inventory
policy (if the inventory at hand has fallen below x1 order
the amount needed to bring the inventory up to x2). As-
suming that the sales are of random size, the inventory
system can be modeled as a Markov process depending
on control parameters (x1 and x2).

The solution method for such an optimization
problem is a version of the stochastic quasigradient
method (cf. also � Stochastic quasigradient methods).
The solution is stepwise improved by moving it into the
direction of an estimate of the negative gradientof the
objective function.

The basic problem is therefore to find good esti-
mates for the gradientrx F(x). This problem is a gener-
alization of the problem of finding derivatives of prob-
ability measures (cf. � Derivatives of probability mea-
sures). The general notions of distributional derivatives
(direct differentiability) and process derivatives (inverse
differentiability) are applicable here.

Process Derivatives

Suppose that the process Yx(�) has a representation of
the form

Yx (tC 1) D Kt(x;Yx (t); �t);

where � t is a sequence of random variables, the distri-
bution of which does not depend on x. If the derivatives
rx Kt(x, y, �), ry Kt(x, y, �) and ry H(y) exist, we get
by elementary calculus

rxH(Yx (t)) D ryH(Yx (t))

�

2
4

t�1X
iD0

0
@

t�1Y
jDiC1

ryK j(x;Yx ( j); � j)

1
A

rxKi(x; zx (i); �i)

#
; (3)

where the order of multiplication in the product is here
and in the following from left to right by descending in-
dex. Formula (3) may be computed recursively, as fol-
lows.

Define the [m × d] (random) matrices Nt by

Nt D

t�1X
iD1

0
@

t�1Y
jDiC1

ryK j(x;Yx ( j); � j)

1
A

� rxKi(x;Yx (i); �i ):

This sequence follows the forward recursion

N0 D 0;
NtC1 D rxKt(x;Yx (t); �t)CryKt(x;Yx (t); �t) � Nt :

After having found Nt by this recursion, one may cal-
culate

rxH(Yx (t)) D ryH(Yx (t)) � Nt :

This pointwise calculation carries over to the expec-
tation under the standard assumptions of dominated
convergence, yielding

rxE[H(Yx (t))] D E[ryH(Yx (t)) � Nt]:

Now, the estimate for the problem in transient
regime is

brx F(x) D
TX

tD1

H(Yx (t)) � Nt ;
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whereas for the stationary regime one uses

brx F(x) D
1

T � �

TX
tD�C1

H(Yx (t)) � Nt;

where T is large and � stands for the warmup-phase
of the process, which is skipped for the estimation. Of
course, the latter estimate is biased, it bias decreases
with increasing T and � .

Distributional Derivatives

Suppose that the Markov transition has transition den-
sity px(y1 | y0), i. e.

P(Yx (t C 1) 2 AjYx (t) D y0) D
Z

A

px (y1jy0) dy1

and starts in state y0. The expectation of H(Yx(t) is

E[H(Yx(t))]

D

Z
� � �

Z
H(yt)

tY
iD1

px (yi jyi�1) dyt � � � dy1:

Introduce the score function

sx (y0; : : : ; yt) D
tX

iD1

rx px (yi jyi�1)
px (yi jyi�1)

:

By the product rule we get the formula

rxE[H(Yx (t))]

D

Z
� � �

Z
H(yt)sx (y0; : : : ; yt)

�

tY
iD1

px (yi jyi�1) � � �dyt � � � dy1:

An estimate for rx E[H(Yx(t))] is

H(Yx (t)) �Wx(t);

where Wx(t) = sx(Yx(0), . . . , Yx(t)) is called the score
function martingale. As before, the estimate for the
problem in transient regime is

brx F(x) D
TX

tD1

H(Yx (t)) �Wx (t);

whereas the estimate for the stationary regime is

brx F(x) D
1

T � �

TX
tD�

H(Yx (t)) �Wx (t):

It is asymptotically unbiased for T, � !1 (see [2]).
There is also the a way of attacking directly the

derivative of the stationary distribution: Let Px repre-
sent the transition matrix (transition operator) of the
Markov process. The stationary distribution 
x satisfies


x D 
x � Px

and therefore

rx
x D [rx
x ] � Px C 
x � [rx Px ];

i. e.

rx
x D 
x [rxPx ]Sx ; (4)

with

Sx D
1X
kD0

(Pk
x � 1 � 
x ):

Here 1�
x is the transition with rows being identical to

x. The operator Sx solves the Poisson equation

Sx (I � Px ) D I;

where I is the identity operator. There is a method, to
use equation(4)) as the basis for estimating rx E[Yx(�)],
see [1, Chapt. 3].

Regenerative Processes

Recall that a set A is a regenerative set of the ergodic
Markov transition P if
i) u! P(u, B) is independent of u 2 A, for all B; and
ii) 
(A) > 0, where 
 is the unique stationary proba-

bility measure pertaining to P.
Suppose thatA is a regenerative set for all transitions Px.
The sequence of regenerative stopping times of Yx(t)is

T(A)
1 D min ft : Yx (t) 2 Ag ;

T(A)
iC1 D min

n
t > T(A)

i : Yx (t) 2 A
o
:
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These stopping times cut the process into independent
pieces. For a process Yx started in A, the following fun-
damental equation relates the finite time behavior to the
stationary, i. e. long run behavior:

E[H(Yx (1))] D
E
hPT (A)

tD1 H(Yx (t))
i

E(T(A))
: (5)

The score method for derivative estimation gives

rxE

2
4

T (A)X
tD1

H(Yx(t))

3
5 D E

2
4

T (A)X
tD1

H(Yx (t))Wx(t)

3
5

and

rxE[T(A)] D E

2
4

T (A)X
tD1

Wx (t)

3
5

and — by the quotient rule —

rxE[H(Yx(1))]

D
E(T(A)) � rxE

hPT (A)

tD1 H(Yx (t))
i

[E(T(A))]2

�
E
hPT (A)

tD1 H(Yx (t))
i
� rxE(T(A))

[E(T(A))]2

(see [2]). For the estimation of rx E[H(Yx(1))], all ex-
pectations of the right-hand side have to be replaced by
estimates.

See also

� Derivatives of Probability and Integral Functions:
General Theory and Examples

� Derivatives of Probability Measures
� Discrete Stochastic Optimization
� Optimization in Operation of Electric and Energy

Power Systems
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Probability functions are commonly used for the anal-
ysis of models with uncertainties or variabilities in pa-
rameters. For instance, in risk and reliability analysis,
performance functions, characterizing the operation of
systems, are formulated as probabilities of successful
or unsuccessful accomplishment of their missions (core
damage probability of a nuclear power plant, probabil-
ity of successful landing of an aircraft, probability of
profitable transactions in a stock market, or percentiles
of the risks in public risk assessments). Sensitivity anal-
ysis of such performance functions involves evaluating
of their derivatives with respect to the parameters. Also,
the derivatives of the probability function can be used
to solve stochastic optimization problems [1].

A probability function can be formally presented as
an expectation of a discontinuous indicator function of
a set, or as an integral over a domain— depending upon
parameters. Nevertheless, differentiability conditions of
the probability function do not follow from similar con-
ditions of the expectations of continuous (smooth or
convex) functions.
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The derivative of the probability function has many
equivalent representations. It can be represented as an
integral over the surface, an integral over the volume, or
a sum of integrals over the volume and over the surface.
Also, it can be calculated using weak derivatives of the
probability measures or conditional expectations.

The first general result on the differentiability of
the probability function was obtained by E. Raik [8].
He represented the gradient of the probability function
with one constraint in the form of the surface integral.
S. Uryasev [10] extended Raik’s formula for probability
functions with many constraints. A.I. Kibzun and G.L.
Tretyakov [3] extended it to the piecewise smooth con-
straint and probability density function. Special cases of
probability function with normal and gamma distribu-
tions were investigated by A. Prékopa [6]. G.Ch. Pflug
[5] represented the gradient of probability function in
the form of an expectation using weak probability mea-
sures.

Uryasev [9] expressed the gradient of the probabil-
ity function as a volume integral. Also, using a change
of variables, K. Marti [4] derived the probability func-
tion gradient in the form of the volume integral.

A general analytical formula for the derivative of
probability functions with many constraints was ob-
tained by Uryasev [10]; it calculates the gradient as an
integral over the surface, an integral over the volume,
or the sum of integrals over the surface and the volume.
Special cases of this formula correspond to the Raik for-
mula [8], the Uryasev formula[9], and the change-of-
variables approach [4].

The gradient of the quantile function was obtained
in [2].

Notations and Definitions

Let an integral over the volume

F(x) D
Z
f (x;y)�0

p(x; y) dy (1)

be defined on the Euclidean space Rn, where f : Rn × Rm

! Rk and p: Rn × Rm ! R are some functions. The
inequality f (x, y) � 0 in the integral is a system of in-
equalities

fi(x; y) � 0; i D 1; : : : ; k:

Both the kernel function p(x, y) and the function f (x, y)
defining the integration set depend upon the parame-

ter x. For example, let

F(x) D Pf f (x; �(!)) � 0g (2)

be a probability function, where � (!) is a random vec-
tor in Rm. The random vector � (!) is assumed to have
a probability density p(x, y) that depends on a parame-
ter x 2 Rn. The probability function can be represented
as an expectation of an indicator function, which equals
one on the integration set, and equals zero outside of it.
For example, let

F(x) D E
�
If f (x;�)�0gg(x; �)

�

D

Z
f (x;y)�0

g(x; y)�(x; y) dy

D

Z
f (x;y)�0

p(x; y) dy; (3)

where I{�} is an indicator function, andthe random vec-
tor � in Rm has a probability density �(x, y) that de-
pends on a parameter x 2 R.

Integral Over the Surface Formula

The following formula calculates the gradient of an in-
tegral (1) over the set given by nonlinear inequalities as
sum of integral over the volume plus integral over the
surface of the integration set. We call this the integral
over the surface formula because if the density p(x, y)
does not depend upon x the gradient of the integral (1)
equals an integral over the surface. This formula for the
case of one inequality was obtained by Raik [8] and gen-
eralized for the case with many inequalities by Uryasev
[10].

Let us denote by �(x) the integration set

�(x) D fy 2 Rm : f (x; y) � 0g
:D fy 2 Rm : fl (x; y) � 0; 1 � l � kg

and by @�(x) the surface of this set�(x). Also, let us de-
note by @i�(x) a part of the surface which corresponds
to the function f i(x, y), i. e.,

@i�(x) D �(x) \ fy 2 Rm : fi(x; y) D 0g :

If the constraint functions are differentiable and the
following integral exists, then gradient of integral (1)
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equals

rx F(x) D
Z

(x)
rx p(x; y) dy

�

kX
iD1

Z
@i
(x)

p(x; y)

ry fi(x; y)


rx fi(x; y) dS: (4)

A potential disadvantage of this formula is that in mul-
tidimensional case it is difficult to calculate the integral
over the nonlinear surface. Most well known numeri-
cal techniques, such asMonte-Carlo algorithms, are ap-
plicable to volume integrals. Nevertheless, this formula
can be quite useful in various special cases, such as the
linear case.

Example 1 (Linear case: Integral over the surface for-
mula [10].)

Let A(!), be a random l × n matrix with the joint den-
sity p(A). Suppose that x 2 Rn and xj 6D 0, j = 1, . . . , n.
Let us define

F(x) D PfA(!)x � b; A(!) � 0g;

b D (b1; : : : ; bl ) 2 Rl ; x 2 Rn ; (5)

i. e. F(x) is the probability that the linear constraints
A(!)x� b, A(!)� 0 are satisfied. The constraint, A(!)
� 0, means that all elements aij(!) of the matrix A(!)
are nonnegative. Let us denote by Ai and Ai the ith row
and column of the matrix A

A D

0
B@
A1
:::

Al

1
CA D �A1; : : : ;An� ;

then

f (x;A) D

0
B@
f1(x;A)
:::

fk(x;A)

1
CA D

0
BBBBBBBBB@

A1x � b1
:::

Al x � bl
�A1

:::

�An

1
CCCCCCCCCA

;

k D l C l � n:

The function F(x) equals

F(x) D
Z
f (x;A)�0

p(A) dA: (6)

We use formula (4) to calculate the gradient rxF(x) as
an integral over the surface. The function p(A) does not
depend upon x and rxp(A) = 0. Formula (4) implies
that rxF(x) equals

�

kX
iD1

Z
@i
(x)

p(A)
krA fi(x;A)k

rx fi(x;A) dS:

Since rxf i(x, A) = 0 for i = l + 1, . . . , k, then rxF(x)
equals

�

lX
iD1

Z
@i
(x)

p(A)
krA fi(x;A)k

rx fi(x;A) dS

D �

lX
iD1

Z
@i
(x)

p(A)
kxk

A>i dS

D �kxk�1
lX

iD1

Z
Ax�b;
A�0

Ai xDbi

p(A)A>i dS:

Integral Over the Volume Formula

This section presents gradient of the function (1) in the
form of volume integral. Let us introduce the following
shorthand notations

f1l (x; y) D

0
B@
f1(x; y)
:::

fl (x; y)

1
CA ; f (x; y) D f1k(x; y);

ry f (x; y) D

0
BB@

@ f1(x;y)
@y1

� � �
@ fk (x;y)
@y1

:::
@ f1(x;y)
@ym

� � �
@ fk (x;y)
@ym

1
CCA :

Divergence for the n × m matrix H consisting of the
elements hji is denoted by

divy H D

0
BB@

Pm
iD1

@h1i
@yi

:::Pm
iD1

@hni
@yi

1
CCA :

Following [10], the derivative of the function (1) is rep-
resented as an integral over the volume

rx F(x) D
Z

(x)
rx p(x; y) dy

C

Z

(x)

divy
�
p(x; y)H(x; y)

�
dy; (7)
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where a matrix function H: Rn × Rm ! Rn×m satisfies
the equation

H(x; y)ry f (x; y)Crx f (x; y) D 0: (8)

The last system of equations may have many so-
lutions, therefore formula (7) provides a number of
equivalent expressions for the gradient. The following
section gives analytical solutions of this system of equa-
tions. In some cases, this system does not have any solu-
tion, and formula (7) is not valid. The following section
deals with such cases and provides a general formula
where system of equations can be solved only for some
of the functions defining the integration set.

Example 2 (Linear case: Integral over the volume for-
mula [10].)

With formula (7), the gradient of the probability func-
tion (5) with linear constrains considered in Example 1
can be represented as the integral over the volume. It
can be shown that equation (8) does not have a solu-
tion in this case. Nevertheless, we can slightly modify
the constraints, such that integration set is not changed
and equation (8) has a solution. In the vector function
f (x, A) we multiply column Ai on xi if xi is positive or
multiply it on �xi if xi is negative. Therefore, we have
the following constraint function

f (x;A) D

0
BBBBBBBBB@

A1x � b1
:::

Al x � bl
�(C)x1A1

:::

�(C)xnAn

1
CCCCCCCCCA

; (9)

where �(+) means that we take an appropriate sign. It
can be directly checked that, the matrix H�l (x, A)

H�(x;A) D
�
h1(x;A1); : : : ; hl (x;Al )

�
;

hi(x;Ai) D �

0
B@
ai1x�11 0

: : :

0 ainx�1n

1
CA

is a solution of system (8). As it will be shown in the
next section, this analytical solution follows from the
fact that change of the variables Yi = xiAi, i = 1, . . . ,

n, eliminates variables xi, i = 1, . . . , n, from the con-
straints (9).

Since rxp(A) = 0 and divA(p(A)H�(x, A)) equals

�

0
BBB@

x�11

�
l p(A)C

Pl
iD1 ai1

@
@ai1

p(A)
�

:::

x�1n

�
l p(A)C

Pl
iD1 ain

@
@ain

p(A)
�

1
CCCA ;

formula (7) implies that @F(x)/ @xj} equals

�x�1j

Z
Ax�b
A�0

 
l p(A)C

lX
iD1

ai j
@

@ai j
p(A)

!
dA:

General Formula

Further, we give a general formula [9,10] for the dif-
ferentiation of integral (1). A gradient of the integral is
represented as a sum of integrals taken over a volume
and over a surface. This formula is useful when system
of equations (8) does not have a solution. We split the
set of constraints K := = {1, . . . , k} into two subsets K1

and K2.Without loss of generality we suppose that

K1 D f1; : : : ; lg; K2 D fl C 1; : : : ; kg:

The derivative of integral (1) can be represented as the
sum of the volume and surface integrals

rx F(x) D
Z

(x)
rx p(x; y) dy

C

Z

(x)

divy
�
p(x; y)Hl (x; y)

�
dy

�

kX
iDlC1

Z
@i
(x)

p(x; y)

ry fi(x; y)




�
�
rx fi(Cx; y)C Hl (x; y)ry fi(x; y)

�
dS; (10)

where the matrix Hl: Rn × Rm ! Rn×m satisfies the
equation

Hl (x; y)ry f1l (x; y)Crx f1l (x; y) D 0: (11)

The last equation can have a lot of solutions and we can
choose an arbitrary one, differentiable with respect to
the variable y.

The general formula contains as a special cases the
integral over the surface formula (4) and integral over
the volume formula (7). When the set K1 is empty, the
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matrix Hl is absent and the general formula is reduced
to the integral over the surface. Also, when the set K2 is
empty we have integral over the volume formula (7).
Except these extreme cases, the general formula pro-
vides number of intermediate expressions for the gradi-
ent in the form of the sum of an integral over the surface
and an integral over the volume. Thus, we have a num-
ber of equivalent representations of the gradient corre-
sponding to the various sets K1 and K2 and solutions of
equation (11).

Equation (11) (and equation (8) which is a partial
case of equation (11)) can be solved explicitly. Usually,
this equation has many solutions. The matrix

� rx f1l (x; y) �
�
r>y f1l (x; y)ry f1l (x; y)

��1

r>y f1l (x; y) (12)

is a solution of equation (11). Also, in many cases there
is another way to solve equation (11) using change of
variables. Suppose that there is a change of variables

y D �(x; z)

which eliminates vector x from the function f (x, y)
defining integration set, i. e., function f (x, �(x, z)) does
not depend upon the variable x. Denote by ��1(x, y) the
inverse function, defined by the equation

��1 (x; �(x; z)) D z:

Let us show that the following matrix

H(x; y) D rx�(x; z)jzD��1(x;y) (13)

is a solution of (11). Indeed, the gradient of the function
�(x, y(x, z)) with respect to x equals zero, therefore

0 D rx f1l (x; �(x; z))

D rx�(x; z)ry f1l (x; y)jyD�(x;z)
Crx f1l (x; y)jyD�(x;z);

and functionrx �(x, z)|z = ��1(x, y) is a solution of (11).
Formula (7) with matrix (13) gives the derivative

formulas which can be obtained with change of vari-
ables in the integration set [4].

Example 3 While investigating the operational strate-
gies for inspected components (see [7]) the following

integral was considered

F(x) D
Z

b(y)�x;
yi�
;

iD1;:::;m

p(y) dy; (14)

where x 2 R1, y 2 Rm, p: Rm! R1, � > 0, b(y) =
Pm

iD1
y˛i . In this case

f (x; y) D

0
BBB@

b(y)� x
� � y1
:::

� � ym

1
CCCA ;

and

F(x) D
Z
f (x;y)�0

p(y) dy D
Z

(x)

p(y) dy:

Let us consider that l = 1, i. e. K1 = {1} and K2 = {2, . . . ,
m + 1}. The gradient rxF(x) equals

Z

(x)

�
rx p(y)C divy

�
p(y)H1(x; y)

��
dy

�

mC1X
iD2

Z
@i
(x)

p(y)

ry fi(x; y)




�
�
rx fi(x; y)C H1(x; y)ry fi(x; y)

�
dS; (15)

Where the matrix H1(x, y) satisfies (11). In view of

ry f1(x; y) D ˛

0
B@
y˛�11
:::

y˛�1m

1
CA ; rx f1(x; y) D �1:

a solution H�1 (x, y) of (11) equals

H�1 (x; y) D h(y) :D
�
h1(y1); : : : ; hm(ym)

�

D
1
˛m

�
y1�˛1 ; : : : ; y1�˛m

�
: (16)

Let us denote

(�i jy) D (y1; : : : ; yi�1; �; yiC1; : : : ; ym);

y�i D (y1; : : : ; yi�1; yiC1; : : : ; ym);

b(�i jy) D �˛ C
mX
jD1
j¤i

y˛j :

We denote by y�i � � the set of inequalities

y j � �; j D 1; : : : ; i � 1; i C 1; : : : ;m:
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The sets @i�(x), i = 2, . . . ,m + 1, have a simple structure

@i�(x) D �(x)
\
fy 2 Rm : yi D �g

D
˚
y�i 2 Rm�1 : b(�i jy) � x; y�i � 0

�
:

For i = 2, . . . ,m + 1, we have
�
ry fi(y)

�
j D 0; j D 1; : : : ;m; j ¤ i � 1; (17)

�
ry fi(y)

�
i�1 D �1;



ry fi(y)


 D 1: (18)

The function p(y) and the functions f i(y), i = 2, . . . ,m +
1, do not depend on x, consequently

rx p(y) D 0; (19)

rx fi(y) D 0; i D 2; : : : ;mC 1: (20)

Equations (15)–(20) imply

rx F(x) D
Z

(x)

divy
�
p(y)h(y)

�
dy

�

mC1X
iD2

Z
@i
(x)

p(y)

ry fi(y)


 h(y)ry fi(y) dS

D

Z

(x)

divy
�
p(y)h(y)

�
dy

C

mC1X
iD2

hi�1(�)
Z
@i
(x)

p(y) dS

D

Z
b(y)�x;
yi�
;

iD1;:::;m

divy
�
p(y)h(y)

�
dy

C

mX
iD1

�1�˛

˛m

Z
b(
i jy)�x;
y�i�


p(�i jy) dy�i :

Since

divy
�
p(y)h(y)

�

D h(y)ry p(y)C p(y) divy h(y)

D
1
˛m

mX
iD1

@p(y)
@yi

y1�˛i C p(y)
1 � ˛
˛m

mX
iD1

y�˛i ;

we, finally, obtain that the gradient rx F(x) equals

Z
b(y)�x;
yi�
;

iD1;:::;m

mX
iD1

y�˛i
˛m

�
yi
@p(y)
@yi

C (1 � ˛)p(y)
�
dy

C
�1�˛

˛m

mX
iD1

Z
b(
i jy)�x;
y�i�


p(�i jy) dy�i :

The formula for rx F(x) is valid for an arbitrary suffi-
ciently smooth function p(y).

See also

� Derivatives of Markov Processes and Their
Simulation

� Derivatives of Probability Measures
� Discrete Stochastic Optimization
� Optimization in Operation of Electric and Energy

Power Systems
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For stochastic optimization problems of the form
8<
:
min F(x) D

Z
H(x; v) d�x (v)

s.t. x 2 S � Rd
(1)

where H(x, v) is a cost function, �x a family of prob-
ability measures indexed by x and F(x) the objective
value function (OVF), the necessary condition rxF(x)
= 0 must be expressed in terms of the derivatives of
H(x, �) and �x w.r.t. x. In particular, concepts of dif-
ferentiability of probability measures are needed.

Direct Differentiability

Suppose that the family (�x) is dominated, i. e. there is
a Borel measure � such that the densities

gx (v) D
d�x

d�
(v)

exist for all x. Then the differentiability of the measures
may be defined by the differentiability of the densities.

Definition 1 The family of densities (gx(v)) is called
strongly L1(�)-differentiable if there is a vector of inte-
grable functions rxgx = (g0x;1, . . . , g0x;d )

| such that
Z ˇ̌

gxCh(v) � gx (v) � h> � rx gx (v)
ˇ̌
d�(v)

b D o(khk) as khk # 0: (2)

The family of densities (gx(v)) is called weakly L1(�)-
differentiable if there is a vector of L1(�) functions rxgx
= (g0x;1, . . . , g0x;d )

| such that for every bounded measur-
able function HZ

[gxCh(v) � gx (v) � h> � rx gx (v)]H(v) d�(v)

D o(khk) as khk # 0 : (3)

Weak differentiability implies strong differentiability
but not vice versa.

There is also a notion of differentiability for families
(�x), which do not possess densities (see [3]).

If the densities (gx) are differentiable and H(x,
v) is boundedly differentiable in x and bounded and
continuous in v, then the gradient of F(x) =

R
H(x,

v)gx(v)d�(v) isZ
rxH(x; v)gx (v) d�(v)

C

Z
H(x; v)rx gx (v) d�(v):

Inverse Differentiability

The family (�x) is called process differentiable if there
exists a family of random variables Vx(!) — the process
representation—defined on some probability space (˝ ,
A, P), such that:
a) Vx(�) has distribution �x for all x; and
b) x 7�! Vx(!) is differentiable a.s.

As an example, let �x be exponential distributions
with densities gx(v) = x exp(�x � u). Then Vx(!) = (1/x)
U for U �Uniform [0, 1] is a process representation in
the sense of a) and differentiable in the sense of b) with
derivative rxVx(!) = �(1/x2)U.

Process differentiability does not imply and is not
implied by weak differentiability. If Gx(u) =

R u
�1

gx(v)dv is the distribution function, then process differ-
entiability is equivalent to the differentiability of x 7�!
G�1x (u), whereas the weak differentiability is connected
to the differentiablity of x 7�! Gx(u).

If Vx(�) is a process representation of (�x), then the
objective function

F(x) D
Z

H(x; v) d�x (v) D E[H(x;Vx)]

has derivative

rx F(x) D E[Hx(x;Vx )C Hv (x;Vx) � rxVx ]:

where Hx(x, v) = rxH(x, v) and Hv(x, v) = rvH(x, v).
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Simulation of Derivatives

If the objective function F in (1) is easily calculated,
then the stochastic optimization problem reduces to
a standard nonlinear deterministic optimization prob-
lem. This is however the exception. In the majority of
applications, the objective function value has to be ap-
proximated either by a numeric integration technique
or a Monte-Carlo (MC) estimate. In the same manner,
the gradientrxF(x) may be approximated either by nu-
merical integration or by Monte-Carlo simulation. We
discuss here the construction of MC estimates for the
gradient rxF(x). For simplicity, we treat only the uni-
variate case x 2 R1.

We begin with recalling the Monte-Carlo (MC)
method for estimating F(x). If (V(i)

x ) is a sequence of
independent identically distributed random variables
with distribution function Gx, then the MC estimate

bFn(x) D
1
n

nX
iD1

H(x;V (i)
x )

is an unbiased estimate of F(x).

Process Derivatives

If the family (�x) has differentiable process representa-
tion (Vx), then

1rx Fn(x) D
1
n

nX
iD1

h
Hx (x;V (i)

x )

CHv (x;V (i)
x ) � rxV (i)

x

i
(4)

is a MC estimate of rxF(x). The method of using the
process derivative (4) is also called perturbation analysis
([1,2]).

Distributional Derivatives

If the densities gx are differentiable, there are two possi-
bilities to construct estimates. First, one may define the
score function sx(v) = [rxgx(v)]

ı
gx(v) and construct the

score function estimate [4]

1rx Fn(x) D
1
n

nX
iD1

h
Hx (x;V (i)

x )

CH(x;V (i)
x )sx (V (i)

x )
i
;

which is unbiased.

Alternatively, onemay write the functionrxgx(v) in
the form

rx gx (v) D cx [ ġx (v) � g̈x (v)]; (5)

where ġx and g̈x are probability densities w.r.t. �, and
cx is a nonnegative constant. One possibility is to set ġx
resp. g̈x as the appropriately scaled positive, resp. neg-
ative, part of rxgx, but other representations are possi-
ble as well. Let now V̇ (i)

x , resp. V̈ (i)
x , be random variables

with distributions ġx d�, resp. g̈x d�. The difference esti-
mate is

1rx Fn(x) D
1
n
�

nX
iD1

n
Hx(x;V (i)

x )

Ccx [H(x; V̇ (i)
x ) � H(x; V̈ (i)

x ]
o
;

which is unbiased (see [3]).

Example 2 Assume again that (�x) are exponential dis-
tributions with expectation x. The probability �x has
density

gx (y) D x � exp(�xy):

Let Vx be distributed according to �x. For simplicity,
assume that the cost function H does not depend ex-
plicitly on x. We need estimates for rxE(H(Vx)). The
three methods are:
1) Score derivative: The score function is

rx gx (v)
gx(v)

D
1
x
� v

and the score function estimate is

brx F(1) D H
�
Vx)(

1
x
� Vx

�
:

2) Difference derivative: There are several representa-
tions in the sense of (5). One could use the decom-
position ofrxgx(�) into its positive and negative part
(Jordan–Hahn decomposition) and get the estimate

brx F(2a) D
1
x
(H(V̇x) � H(V̈x ));

where V̇x has density

xe(1� xv)e�xv � 1v� 1
x
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and V̈x has density

xe(xv � 1)e�xv � 1v> 1
x

and both are independent.
Another possibility is to set

V̇x D �
1
x
logU1;

V̈x D �
1
x
(logU1 C logU2);

where U1, U2 are independent Uniform [0, 1] vari-
ates. The final difference estimate is

brx F(2b) D
1
x
(H(V̇x) � H(V̈x)):

3) Process derivative: A process representation of (�x)
is

Vx D �
1
x
log(1 � U); U � Uniform[0; 1]:

A process derivative ofH(Vx) is

brx F(3)
x :D Hx(Vx )(�

1
x
Vx ):

Notice that in methods 1) and 2) the function H
need not to be differentiable and may be an indica-
tor function – as is required in some applications. In
method 3), the function H must be differentiable.

Whenever a MC estimate 2rx F(x) has been defined, it
can be used in a stochastic quasigradient method (SQG;
cf. also � Stochastic quasigradient methods) for opti-
mization

XsC1 D prS[Xs � �s1rx Fn(Xs)]

where prS is the projection on the set S and (�s) are
the stepsizes. The important feature of such algorithms
is the fact that they work with stochastic estimates. In
particular, the sample size n per step can be set to 1
and still convergence holds under regularity assump-
tions. To put it differently, the SQG allows to approach
quickly a neighborhood of the solution even with much
noise corrupted estimates.

See also

� Derivatives of Markov Processes and Their
Simulation

� Derivatives of Probability and Integral Functions:
General Theory and Examples

� Discrete Stochastic Optimization
� Optimization in Operation of Electric and Energy

Power Systems

References
1. Glasserman P (1991) Gradient estimation via perturbation

analysis. Kluwer, Dordrecht
2. Ho YC, Cao X (1983) Perturbation analysis and optimization

of queueing networks. J Optim Th Appl 20:559–589
3. Pflug GC (1996) Optimization of stochastic models. Kluwer,

Dordrecht
4. Rubinstein RY, Shapiro A (1993) Discrete event systems:

Sensitivity analysis and stochastic optimization by the score
functionmethod. Wiley, New York

Design Optimization
in Computational Fluid Dynamics
DOYLE KNIGHT

Department Mechanical and Aerospace Engineering,
Rutgers University, New Brunswick, USA

MSC2000: 90C90

Article Outline

Keywords
Synonyms
Focus
Framework
Levels of Simulation
The Stages of Design
Emergence of Automated Design Optimization
Using CFD

Problem Definition
Algorithms for Optimization

Gradient Optimizers
Stochastic Optimizers

Examples
Sequential Quadratic Programming
Variational Sensitivity
Response Surface
Simulated Annealing
Genetic Algorithms

Conclusion
See also
References



Design Optimization in Computational Fluid Dynamics D 667

Keywords

Optimization; Computational fluid dynamics

Synonyms

Design Optimization in CFD

Focus

The article focuses on design optimization using com-
putational fluid dynamics (CFD). Design implies the
creation of an engineering prototype (e. g., a pump)
or engineering process (e. g., particle separator). Opti-
mization indicates the selection of a ‘best’ design. Com-
putational fluid dynamics (CFD) represents a family of
models of fluid motion implemented on a digital com-
puter. In recent years, efforts have focused on merging
elements of these three disciplines to improve design
effectiveness and efficiency.

Framework

Consider the design of a prototype or process with n
design variables {xi: i = 1, . . . , n} denoted by x. It is
assumed that n is finite, although infinite-dimensional
design spaces also exist (e. g., the shape of a civilian
transport aircraft). The domain of x constitutes the de-
sign space. A scalar objective function f (x) is assumed
to be defined for some (or possibly all) points in the
design space. This is the simplest design optimization
problem. Oftentimes, however, the optimization can-
not be easily cast into this form, and other methods
(e. g., Pareto optimality) are employed. The purpose of
the design optimization is to find the design point x�

which minimizes f . Note that there is no loss of gen-
erality in assuming the objective is to minimize f , since
the maximization of an objective functionef (x) is equiv-
alent to the minimization of f D �ef .

The design optimization is typically an iterative pro-
cess involving two principal elements. The first element
is the simulation which evaluates the objective function
by (in the case of computational fluid dynamics) a fluid
flow code (flow solver). The second element is the search
which determines the direction for traversing the de-
sign space. The search engine is the optimizer of which
they are several different types as described later. The
design optimization process is an iterative procedure
involving repetitive simulation and search steps until

Search

Gradient Optimizer

Stochastic Optimizer

�

�
Simulate

Generate grid
Solve flowfield

Compute objective function

Design Optimization in Computational Fluid Dynamics, Fig-
ure 1
Elements of design optimization

a predefined convergence criteria is met. This is illus-
trated in Fig. 1.

Levels of Simulation

There are five levels of complexity for CFD simulation
Fig. 2. Empirical methods represent correlations of ex-
perimental data and possibly simple one-dimensional
analytical models. An example is the NIDA code [15]
employed for analysis of two-dimensional and axi-
symmetric inlets. The code is restricted to a limited
family of geometries and flow conditions (e. g., no
sideslip). Codes based on the linear potential equations
(e. g., PANAIR [6]; see also [17]) and nonlinear poten-
tial equations (e. g., [8]; see also [7]) incorporate in-
creased geometric flexibility while implementing a sim-
plified model of the flow physics (i. e., it is assumed
that the shock waves are weak and there is no signifi-
cant flow separation). Codes employing the Euler equa-
tions (e. g., [22]) allow for strong shocks and vortic-
ity although neglect viscous effects. Reynolds-averaged
Navier–Stokes codes (RANS codes) (e. g., GASP [31])
employ a model for the effects of turbulence. The range
of execution time between the lowest and highest levels
is roughly three orders of magnitude, e. g., on a conven-
tional workstation the NIDA code requires only a few
seconds execution time while a 2-dimensional RANS
simulation would typically require a few hours.
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 2
Levels of CFD simulation

The Stages of Design

There are typically three stages of design: conceptual,
preliminary and detailed. As the names suggest, the de-
sign specification becomes more precise at successive
design stages. Thus, for example, a conceptual design
of a civilian transport aircraft may consider a (discrete)
design space with the possibility of two, three or four
engines, while the preliminary design space assumes
a fixed number of engines and considers the details
of the engine (e. g., nacelle shapes). It is important to
note that the CFD algorithms employed in each of these
three stages are likely to be different. Typically, the con-
ceptual design stage employs empirical formulae, while
the preliminary design stage may also include simpli-
fied CFD codes (e. g., linearized and nonlinear poten-
tial methods, and Euler codes), and the detailed design
stage may utilize full Reynolds-averaged Navier–Stokes
methods. Additionally, experiment is oftentimes essen-
tial to verify key features of the design.

Emergence of Automated Design Optimization
Using CFD

Although the first numerical simulation of viscous fluid
flow was published in 1933 by A. Thom [51], CFD as
a discipline emerged with the development of digital
mainframe computers in the 1960s. With the princi-
pal exception of the work on inverse design methods
for airfoils (see, for example, the review [30] and [48]),
CFD has mainly been employed in design analysis as
a cost-effective replacement for some types of experi-
ments. However, CFD can now be employed as part of

an automated design optimization process. This oppor-
tunity has arisen for five reasons. First, the continued
rapid improvements in computer performance (e. g.,
doubling of microprocessor performance every 18 to
24 months [3]) enable routine numerical simulations
of increasing sophistication and complexity. Second,
improve- ments in the accuracy, efficiency and robust-
ness of CFD algorithms (see, for example, [18]) like-
wise contribute to the capability for simulation of more
complex flows. Third, the development of more accu-
rate turbulence models provides increased confidence
in the quality of the flow simulations [16]. Fourth, the
development of efficient and robust optimizers enable
automated search of design spaces [33]. Finally, the de-
velopment of sophisticated shell languages (e. g., Perl
[43]) provide effective control of pathological events
which may occur in an automated design cycle using
CFD (e. g., square root of a negative number, failure to
converge within a predetermined number of iterations,
etc.).

ProblemDefinition

The general scalar nonlinear optimization problem
(also known as the nonlinear programming problem) is
[11,33,52]

minimize f (x); (1)

where f (x) is the scalar objective function and x is the
vector of design variables. Typically there are limits on
the allowable values of x:

a � x � b; (2)

and m additional linear and/or nonlinear constraints
(
ci(x) D 0; i D 1; : : : ;m0;
ci(x) � 0; i D m0 C 1; : : : ;m:

(3)

If f and ci are linear functions, then the optimization
problem is denoted the linear programming problem,
while if f is quadratic and the ci are linear, then the op-
timization problem is denoted the quadratic program-
ming problem.

An example of a nonlinear optimization problem
using CFD is the design of the shape of an inlet for
a supersonic missile. The geometry model of an axisym-
metric inlet [53] is shown in Fig. 3.



Design Optimization in Computational Fluid Dynamics D 669

Design Optimization in Computational Fluid Dynamics, Figure 3
Geometry of high speed inlet

The eight design variables are listed below.

Item Definition


1 initial cone angle

2 final cone angle
xd x-coordinate of throat
rd r-coordinate of throat
xe x-coordinate of end of ‘constant’ cross section

3 internal cowl lip angle
Hej height at end of ‘constant’ cross section
Hfk height at beginning of ‘constant’ cross section

There are no general methods for guaranteeing that
the global minimum of an arbitrary objective function
f (x) can be found in a finite number of steps [4,11].
Typically, methods focus on determining a local min-
imum with additional (often heuristic) techniques to
avoid convergence to a local minimum which is not the
global minimum.

A point x� is a (strong) local minimum [11] if there
is a region surrounding x� wherein the objective func-
tion is defined and f (x) > f(x�) for x 6D x�. Provided f (x)
is twice continuously differentiable (this is not always
true; see, for example, [53]), necessary and sufficient
conditions for the existence of a solution to (1) subject
to (3) may be obtained [11]. In the one-dimensional
case with no constraints the sufficient conditions for
a minimum at x� are

g D 0 and H > 0 at x D x�;

where g = df /dx andH = d2f / dx2. For the multidimen-
sional case with no constraints

jgi j D 0 and H is positive definite at x D x�; (4)

where gi = @f / @xi, jgi j is the norm of the vector gi, and
H = Hij is the Hessian matrix

H D

0
BB@

@2 f
@x21

� � �
@2 f

@x1@xn
:::

:::
@2 f

@x1@xn
� � �

@2 f
@xn@xn

1
CCA :

The matrixH is positive definite if all of the eigenvalues
of H are positive.

Algorithms for Optimization

The efficacy of an optimization algorithm depends
strongly on the nature of the design space. In engineer-
ing problems, the design space can manifest patholog-
ical characteristics. The objective function f may pos
sess multiple local optima [36] arising from physical
and/or numerical reasons. Examples of the latter in-
clude noise introduced in the objective function by grid
refinement between successive flow simulations, and
incomplete convergence of the flow simulator. Also, the
objective function f and/or its gradient gi may exhibit
near discontinuities for physical reasons. For example,
a small change in the the design state x of a mixed com-
pression supersonic inlet operating at critical condi-
tions can cause the terminal shock to be expelled, lead-
ing to a rapid decrease in total pressure recovery [44].
Moreover, the objective function f may not be evaluable
at certain points. This may be due to constraints in the
flow simulator such as a limited range of applicability
for empirical data tables.

A brief description of some different classes of gen-
eral optimizers is presented. These methods are de-
scribed for the unconstrained optimization problem for
reasons of brevity. See [33] for an overview of opti-
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mization algorithms and software packages, and [11]
for a comprehensive discussion of the constrained op-
timization problem. Detailed mathematical exposition
of optimization problems is presented in [19].

Gradient Optimizers

If the objective function f can be approximated in the
vicinity of a pointex by a quadratic form, then

f 	ef Cegi (xi �exi )C
1
2
(xi �exi)eHi j(x j �ex j); (5)

whereef ,eg and eHi j imply evaluation atex and the Ein-
stein summation convention is implied. In the relatively
simple method of steepest descent [40], the quadratic
term in (5) is ignored, and a line minimization is per-
formed along the direction of � gi, i. e., a sequence of
values of the design variable x =(�), � = 1, . . . , are formed
according to

x(�) DexC ıx(�)

where

ıx(�)i D ��
(�)egi jegi j�1

and �(�), � = 1, . . . , are an increasing sequence of dis-
placements. The estimated decrease in the objective
function f is��(�) jegi j. The objective function f is eval-
uated at each iteration � and the search is terminated
when f begins to increase. At this location, the gradi-
ent gi is computed and the procedure is repeated. This
method, albeit straightforward to implement, is ineffi-
cient for design spaces which are characterized by long,
narrow ‘valleys’ [40].

The conjugate gradient methods [40] are more ef-
ficient than the method of steepest descent, since they
perform a sequence of line minimizations along specific
directions in the design space which are mutually or-
thogonal in the context of the objective function. Con-
sider a line minimization of f along a direction u = {ui: i
= 1, . . . , n}. At any point on the line, the gradient of f in
the direction of u is uieg i by definition. At the minimum
pointex in the line search,

uiegi D 0

by definition. Consider a second line minimization of f
along a direction v. From (5) and noting thatHij is sym-
metric, the change in gi along the direction v is eHi jv j .

Thus, the condition that the second line minimization
also remain a minimization along the first direction u is

uieHi jv j D 0

When this condition is satisfied, u and v are denoted
conjugate pairs. Conjugate gradient methods (CGM)
generate a sequence of directions u, v, . . .which are mu-
tually conjugate. If f is exactly quadratic, then CGM
yield an n-step sequence to the minimum.

Sequential quadratic programming methods employ
the Hessian H which may be computed directly when
economical or may be approximated from the sequence
of gradients gi generated during the line search (the
quasi-Hessian [33]). Given the gradient and Hessian,
the location x�i of the minimum value of f may be found
from (5) as

eHi j(x�j �ex j) D �eg i :
For the general case where f is not precisely quadratic,
a line minimization is typically performed in the direc-
tion (x�i �exi ), and the process is repeated.

Variational sensitivity employs the concept of direct
differentiation of the optimization function f and gov-
erning fluid dynamic equations (in continuous or dis-
crete form) to obtain the gradient gi, and optimization
using a gradient-based method. It is related to the the-
ory of the control of systems governed by partial dif-
ferential equations [29,39]. For example, the boundary
shape (e. g., airfoil surface) is viewed as the (theoreti-
cally infinite-dimensional) design space which controls
the objective function f . Several different formulations
have been developed depending on the stage at which
the numerical discretization is performed, and the use
of direct or adjoint (costate) equations. Detailed de-
scriptions are provided in [23] and [24]. Additional ref-
erences include [2,5,20,21,37,38,50].

The following summary follows the presentation in
[24] which employs the adjoint formulation. The ob-
jective function f is considered to be a function of the
flowfield variables w and the physical shape S. The dif-
ferential change in the objective function is therefore

ı f D
@ f
@w
ıw C

@ f
@S
ıS: (6)

The discretized governing equations of the fluidmotion
are represented by the vector of equations

R(w; S) D 0
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and therefore

ıR D
@R
@w
ıw C

@R
@S
ıS D 0; (7)

where ıR is a vector. Assume a vector Lagrange multi-
plier  and combining (6) and (7)

ı f D
�
@ f
@w
�  >

@R
@w

	
ıw C

�
@ f
@S
�  >

@R
@S

	
ıS;

where | indicates vector transpose. If is chosen to sat-
isfy the adjoint (costate) equation

 >
@R
@w
D
@ f
@w
; (8)

then

ı f D GıS;

where

G D
@ f
@S
�  >

@R
@S
:

This yields a straightforward method for optimization
using, for example, the method of steepest descent. The
increment in the shape is

ıS D ��G;

where � is a positive scalar. The variational sensitivity
approach is particularly advantageous when the dimen-
sion n of the design space (which defines S) is large,
since the gradient of S is obtained from a single flow-
field solution (7) plus a single adjoint solution (8) which
is comparable to the flowfield solution in cost. Con-
straints can be implemented by projecting the gradient
onto an allowable subspace in which the constraints are
satisfied.

Response surface methods employ an approximate
representation of the objective function using smooth
functions which are typically quadratic polynomials
[25]. For example, the objective function may be ap-
proximated by

f 	bf D ˛ C
X

1�i�n

ˇi xi C
X

1�i� j�n

�i j xi x j

where ˛, ˇi and � ij are coefficients which are deter-
mined by fitting bf to a discrete set of data using the
method of least squares. The minimum ofbf can then be
found by any of the gradient optimizers, with optional
recalibration of the coefficients of bf as needed. There
are many different implementations of the response
surface method (see, for example, [12,34] and [46]).

Stochastic Optimizers

Often the objective function is not well behaved in
a portion or all of the design space as discussed above.
In such situations, gradient methods can stop with-
out achieving the global optimum (e. g., at an infeasible
point, or a local minimum). Stochastic optimizers seek
to avoid these problems by incorporating a measure of
randomness in the optimization process, albeit often-
times at a cost of a significant increase in the number of
evaluations of the objective function f .

Simulated annealing [26,27,32] mimics the process
of crystalization of liquids or annealing of metals by
minimizing a function E which is analogous to the en-
ergy of a thermodynamic system. Consider a current
point (state) in the design spaceex and its associated ‘en-
ergy’eE. A candidate for the next state x� is selected by
randomly perturbing typically one of the components
ex j , 1 � j � n, of,ex and its energy E� is evaluated (typi-
cally, each component of x is perturbed in sequence). If
E� <eE thenex D x�, i. e., the next state is x�. If E� >eE
then the probability of selecting x� as the next design
state is

p D exp
�
�
E� �eE
kT

�
;

where k is the ‘Boltzman constant’ (by analogy to sta-
tistical mechanics) and T is the ‘temperature’ which is
successively reduced during the optimization according
to an assumed schedule [27]. (Of course, only the value
of the product kT is important.) The stochastic nature
can be implemented by simply calling a random num-
ber generator to obtain a value r between zero and one.
Then the state x� is selected if r < p. Therefore, during
the sequence of design states, the algorithm permits the
selection of a design state with E > eE, but the proba-
bility of selecting such a state decreases with increasing
E �eE. This feature tends to enable (but does not guar-
antee) the optimizer to ‘jump out’ of a local minimum.

Genetic algorithms (GAs) mimic the process of bio-
logical evolution by means of random changes (muta-
tions) in a set of designs denoted the population [14].
At each step, the ‘least fit’ member(s) of the population
(i. e., those designs with the highest value of f ) are typi-
cally removed, and newmembers are generated by a re-
combination of some (or all) of the remaining mem-
bers. There are numerous GA variants. In the approach
of [41], an initial population P of designs is generated
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Design Optimization in Computational Fluid Dynamics, Figure 4
P2 and P8 inlets

by randomly selecting points xi, i = 1, . . . , p, satisfying
(2). The two best designs (i. e., with the lowest values
of f ) are joined by a straight line in the design space.
A random point x0 is chosen on the line connecting the
two best designs. A mutation is performed by randomly
selecting a point xp+1 within a specified distance of x0.
This new point is added to the population. Amember of
the population is then removed according to a heuristic
criterion, e. g., among the k members with the highest
f , remove the member closest to xp+1, thus maintaining
a constant number of designs in the population. The
removal of the closest member tends to prevent clus-
tering of the population (i. e., maintains diversity). The
process is repeated until convergence.

Examples

Examples of the above algorithms for optimization us-
ing CFD are presented. All of the examples are single
discipline involving CFD only. It is emphasized that

multidisciplinary optimization (MDO) involving com-
putational fluid dynamics, structural dynamics, electro-
magnetics, materials and other disciplines is a very ac-
tive and growing field, and many of the optimization
algorithms described herein are appropriate to MDO
also. A recent review is presented in [49].

Sequential Quadratic Programming

V. Shukla et al. applied a sequential quadratic program-
ming algorithm CFSQP [28] to the optimal design of
two hypersonic inlets (denoted P2 and P8) at Mach 7.4.
The geometric model is shown in Fig. 4. The optimiza-
tion criteria was the minimization of the strength of
the shock wave which reflected from the centerbody
(lower) surface. This is the same criteria as originally
posed in the design of the P2 and P8 inlets [13]. The
NPARC flow solver [47] was employed for the P2 op-
timization, and the GASP flow solver [31] for the P8
optimization.
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 5
Static pressure contours for optimal P8 inlet (the original
centerbody contour is shown by the dotted line)

The optimization criteria was met for both inlets. In
Fig. 5, the static pressure contours for the optimized P8
inlet are shown. The strength of the reflected shock is
negligible.

Variational Sensitivity

A. Jameson et al. [24] applied the methodology of varia-
tional sensitivity (control theory) to the optimization of
a three-dimensional wing section for a subsonic wide-
body commercial transport. The design objective was
to minimize the drag at a given lift coefficient CL =
0.55 at Mach 0.83 while maintaining a fixed planform.
A two stage procedure was implemented. The first stage
employed the Euler equations, while the second stage
used the full Reynolds-averaged Navier–Stokes equa-
tions. In the second stage, the pressure distribution ob-
tained from the Euler optimization is used as the target
pressure distribution.

The initial starboard wing shape is shown in Fig. 6
as a sequence of sections in the spanwise direction.
The initial pressure distribution on the upper surface,
shown as the pressure coefficient cp plotted with nega-
tive values upward, is presented in Fig. 7. A moderately
strong shock wave is evident, as indicated by the sharp
drop in �cp at roughly the mid-chord line. After sixty
design cycles of the first stage, the drag coefficient was
reduced by 15 counts from 0.0196 to 0.0181, and the
shock wave eliminated as indicated in the cp distribu-
tion in Fig. 8. A subsequent second stage optimization

Design Optimization in Computational Fluid Dynamics, Fig-
ure 6
Initial shape of wing

Design Optimization in Computational Fluid Dynamics, Fig-
ure 7
Initial surface pressure distribution

using the Reynolds–averaged Navier–Stokes equations
yielded only slight modifications.

Response Surface

R. Narducci et al. [35] applied a response surface
method to the optimal design of a two-dimensional
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 8
Optimized surface pressure distribution

transonic airfoil. The design objective was to maximize
the lift coefficient CL at Mach 0.75 and zero degrees an-
gle of attack, while satisfying the constraints that the
drag coefficient CD � 0.01 and the thickness ratio 0.075
� t � 0.15 where t is the ratio of the maximum airfoil
thickness to the airfoil chord. The airfoil surface was
represented by a weighted sum of six different shapes
which included four known airfoils (a different set of
basis functions were employed in [9] for airfoil opti-
mization using a conjugate gradient method). The ob-
jective function f was represented by a quadratic poly-
nomial. An inviscid flow solver was employed.

A successful optimization was achieved in five re-
sponse surface cycles. The history of the convergence
of CL and CD is shown in Fig. 9. A total of twenty three
flow solutions were required for each response surface.

Simulated Annealing

S. Aly et al. [1] applied a modified simulated anneal-
ing algorithm to the optimal design of an axisymmetric
forebody in supersonic flow. The design objective was
to minimize the pressure drag on the forebody of a ve-
hicle at Mach 2.4 and zero angle of attack, subject to
constraints on the allowable range of the body radius as

Design Optimization in Computational Fluid Dynamics, Fig-
ure 9
Convergence history for transonic airfoil

a function of axial position. Two different variants of SA
were employed, and compared to a gradient optimizer
NPSOL [10] which is based on a sequential quadratic
programming algorithm. All optimizers employed the
same initial design which satisfied the constraints but
was otherwise a clearly nonoptimal shape. Optimiza-
tions were performed for two different initial shapes.
The flow solver was a hybrid finite volume implicit Eu-
ler marching method [45].

The first method, denoted simulated annealing with
iterative improvement (SAWI), employed SA for the
initial phase of the optimization, and then switched to
a random search iterative improvement method when
close to the optimum. This method achieved from
8% to 31% reduction in the pressure drag, compared
to optimal solution obtained NPSOL alone, while re-
quiring fewer number of flowfield simulations (which
constitute the principal computational cost). The sec-
ond method employed SA for the initial phase of
the optimization, followed by NPSOL. This approach
achieved from 31% to 39% reduction in the pressure
drag, compared to the optimal solution obtained by
NPSOL alone, while requiring comparable (or less)
cputime. The forebody shapes obtained using SA, SA
with NPSOL and NPSOL alone are shown in Fig. 10.
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Design Optimization in Computational Fluid Dynamics, Fig-
ure 10
Forebody shapes obtained using SA, SA with NPSOL and
NPSOL. Copyright 1996 AIAA - Reprinted with permission

Genetic Algorithms

G. Zha et al. applied a modified genetic algorithm
(GADO [42]) to the optimal design of an axisymmet-
ric supersonic mixed compression inlet at Mach 4 and
60 kft altitude cruise conditions (see above). The ge-
ometric model included eight degrees of freedom (see
above), and the optimization criteria was maximization
of the inlet total pressure recovery coefficient. The con-
straints included the requirement for the inlet to start
at Mach 2.6, plus additional constraints on the inlet ge-
ometry including a minimum cowl thickness and lead-
ing edge angle. The constraints were incorporated into
the GA using a penalty function. The flow solver was
the empirical inlet analysis code NIDA [15]. This code
is very efficient, requiring only a few seconds cputime
on a workstation, but is limited to 2-dimensional or
axisymmetric geometries. Moreover, the design space
generated by NIDA (i. e., the total pressure recovery co-
efficient as a function of the eight degrees of freedom) is
nonsmooth with numerous local minima and gaps at-
tributable to the use of empirical data Fig. 11.

The GA achieved a 32% improvement in total pres-
sure recovery coefficient compared to a trial-and-error
method [53]. A total of 50 hours on a DEC-2100 work-
station was employed. A series of designs generated
during the optimization were selected for evaluation
by a full Reynolds-averaged Navier–Stokes code (GASP
[31]). A close correlation was observed between the pre-
dictions of NIDA and GASP Fig. 12.

Design Optimization in Computational Fluid Dynamics, Fig-
ure 11
Total pressure recovery coefficient versus axial location of
throat

Design Optimization in Computational Fluid Dynamics, Fig-
ure 12
Total pressure recovery coefficient from NIDA and GASP for
several different inlet designs

Conclusion

Computational fluid dynamics has emerged as a vital
tool in design optimization. The five levels of CFD anal-
ysis are utilized in various optimization methodolo-
gies. Complex design optimizations have become com-
monplace. A significant effort is focused on multidis-
ciplinary optimization involving fluid dynamics, solid
mechanics, materials and other disciplines.
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� Bilevel Programming: Applications in Engineering
� Interval Analysis: Application to Chemical

Engineering Design Problems
�Multidisciplinary Design Optimization
�Multilevel Methods for Optimal Design
� Optimal Design of Composite Structures
� Optimal Design in Nonlinear Optics
� Structural Optimization: History

References

1. Aly S, Ogot M, Pelz R (Sept.–Oct.1996) Stochastic approach
to optimal aerodynamic shape design. J Aircraft 33(5):945–
961

2. Anderson W, Venkatakrishnan V (1997) Aerodynamic de-
sign optimization on unstructured grids with a continu-
ous adjoint formulation. AIAA Paper 97–0643, (Amer. Inst.
Aeronautics and Astronautics, Reston, VA)

3. Berkowitz B (1996) Information age intelligence. Foreign
Policy, 103:35–50

4. Boender C, Romeijn H (1995) Stochasticmethods. In: Hand-
book of Global Optimization. Kluwer, Dordrecht, pp 829–
869

5. Cabuk H, Modi V (1992) Optimal plane diffusers in laminar
flow. J Fluid Mechanics 237:373–393

6. Carmichael R, Erickson L (1981) PAN AIR – A higher or-
der panel method for predicting subsonic or supersonic
linear potential flows about arbitrary configurations. AIAA
Paper 81–1255, (Amer. Inst. Aeronautics and Astronautics,
Reston, VA)

7. Caughey D (1982) The computation of transonic potential
flows. In: Annual Rev. Fluid Mechanics, 14, pp 261–283

8. Caughey D, Jameson A (Feb. 1979) Numerical calculation
of transonic potential flow about wing–body combina-
tions. AIAA J 17(2):175–181

9. Eyi S, Hager J, Lee K (Dec. 1994) Airfoil design optimiza-
tion using the Navier–Stokes equations. J Optim Th Appl
83(3):447–461

10. Gill P, Murray W, Saunders M, Wright M (1986) User’s guide
for NPSOL: A FORTRAN package for nonlinear program-
ming. SOL Techn Report Dept Oper Res StanfordUniv 86(2)

11. Gill P, Murray W, Wright M (1981) Practical optimization.
Acad. Press, New York

12. Giunta A, Balabanov V, Haim D, Grossman B, Mason W,
Watson L (1996) Wing design for a high speed civil trans-
port using a design of experimentsmethodology. AIAA Pa-
per 96–4001-CP, (Amer. Inst. Aeronautics andAstronautics,
Reston, VA)

13. Gnos A, Watson E, Seebaugh W, Sanator R, DeCarlo J (Apr.
1973) Investigation of flow fields within large–scale hyper-
sonic inlet models. Techn Note NASA D–7150

14. Goldberg DE (1989) Genetic algorithms in search, opti-
mization, andmachine learning. Addison-Wesley, Reading,
MA

15. Haas M, Elmquist R, Sobel D (Apr. 1992) NAWC inlet de-
sign and analysis (NIDA) code. UTRC Report, R92–970037–
1, (United Technologies Res. Center)

16. Haase W, Chaput E, Elsholz E, Leschziner M, Müller U (eds)
(1997) ECARP – European computational aerodynamics re-
search project: Validation of CFD codes and assessment of
turbulence models. Notes on Numerical Fluid Mechanics.
Vieweg, Braunschweig/Wiesbaden

17. Hess J (1990) Panel methods in computational fluid dy-
namics. In: Annual Rev. Fluid Mechanics, 22, pp 255–
274

18. Hirsch C (1988) Numerical computation of internal and ex-
ternal flows, vol I–II. Wiley, New York

19. Horst R, Pardalos PM (eds) (1995) Handbook of global op-
timization. Kluwer, Dordrecht

20. IbrahimA, Baysal O (1994)Designoptimizationusing varia-
tional methods and CFD. AIAA Paper 94–0093, (Amer. Inst.
Aeronautics and Astronautics, Reston, VA)

21. Iollo A, Salas M (1995) Contribution to the optimal shape
design of two–dimensional internal flows with embedded
shocks. ICASE Report 95–20, (NASA Langley Res. Center,
Hampton, VA)

22. Jameson A (1982) Steady–state solution of the Euler equa-
tions for transonic flow. In: Transonic, Shock and Multidi-
mensional Flows. Acad. Press, New York, pp 37–70

23. Jameson A (1988) Aerodynamic design via control theory.
J Sci Comput 3:33–260

24. Jameson A, Pierce N, Martinelli L (1997) Optimum aero-
dynamic design using the Navier–Stokes equations. AIAA
Paper 97–0101, (Amer. Inst. Aeronautics and Astronautics,
Reston, VA)

25. Khuri A, Cornell J (1987) Response surfaces: Designs and
analyses. M. Dekker, New York

26. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by
simulated annealing. Science 220(4598):671–680

27. van Laarhoven P, Aarts E (1987) Simulated annealing: The-
ory and Acad. Pressplications. Reidel, London

28. Lawrence AHGC, Zhou J, Tits A (Nov. 1994) User’s guide for
CFSQP version 2.3: A C code for solving (large scale) con-
strained nonlinear (minimax) optimization problems, gen-
erating iterates satisfying all inequality constraints. Techn
Report Inst Systems Res Univ Maryland 94–16r1

29. Lions JL (1971) Optimal control of systems governed by
partial differential equations. Springer, Berlin (translated
from the French)

30. Lores M, Hinson B (1982) Transonic design using computa-
tional aerodynamics. In: Progress in Astronautics and Aero-
nautics, 81. Am Inst Aeronautics and Astronautics, Reston,
VA, pp 377–402

31. McGrory W, Slack D, Pressplebaum M, Walters R (1993)
GASP version 2.2: The general aerodynamic simulation
program. Aerosoft, Blacksburg, VA



Design of Robust Model-Based Controllers via Parametric Programming D 677

32. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller
E (1953) Equations of state calculations by fast computing
machines. J Chem Phys 21:1087–1092

33. Moré J, Wright S (1993) Optimization software guide. SIAM,
Philadelphia

34. Myers R, Montgomery D (1995) Response surface method-
ology: Process and product optimization using design ex-
periments. Wiley, New York

35. Narducci R, Grossman B, Valorani M, Dadone A, Haftka R
(1995) Optimizationmethods for non–smooth or noisy ob-
jective functions in fluid dynamic design problems. AIAA
Paper 95–1648–CP. Am Inst Aeronautics and Astronautics,
Reston, VA

36. Obayashi S, Tsukahara T (1996) Comparison of optimiza-
tion algorithms for aerodynamic shape design. AIAA Pa-
per 96–2394–CP. Am Inst Aeronautics and Astronautics,
Reston, VA

37. Pironneau O (1973) On optimal profiles in Stokes flow.
J Fluid Mechanics 59(1):117–128

38. Pironneau O (1974) On optimal design in fluid mechanics.
J Fluid Mechanics 64(1):97–110

39. Pironneau O (1984) Optimal shape design for elliptic sys-
tems. Springer, Berlin

40. Press W, Flannery B, Teukolsky S, Vetterling W (1986) Nu-
merical recipes. Cambridge Univ. Press, Cambridge

41. Rasheed K, Gelsey A (1996) Adaption of genetic algorithms
for continuous design space search. In: Fourth Internat.
Conf. Artificial Intelligence inDesign: Evolutionary Systems
in Design Workshop,

42. Rasheed K, Hirsh H, Gelsey A (1997) A genetic algorithm
for continuous design space search. Artif Intell in Eng
11(3):295–305

43. Schwartz R (1993) Learning Perl. O’Reilly, Sebastopol,
CA

44. Seddon J, Goldsmith E (eds) (1985) Intake aerodynamics.
AIAA Education Ser Amer. Inst. Aeronautics and Astronau-
tics, Reston, VA

45. Siclari M, Del Guidice P (Jan 1990) Hybrid finite volume
Approach to Euler solutions for supersonic flows. AIAA J
28(1):66–74

46. Simpson T, Peplinski J, Koch P, Allen J (1997) On the use of
statistics in design and the implications for deterministic
computer experiments. ASME Paper DETC 97/DTM–3881.
Am Soc Mech Engin, New York

47. Sirbaugh J, Smith C, Towne C, Cooper G, Jones R, Power
G (Nov. 1994) A users guide to NPARC version 2.0. NASA
Lewis Res. Center and Arnold Engin. Developm. Center,
Cleveland, OH/Arnold, TN

48. SobieczkyH, Seebass A (1984) Supercritical airfoil andwing
design. In: Annual Rev. Fluid Mechanics, 16, pp 337–363

49. Sobieszczanski–Sobieski J, Haftka R (1996) Multidisci-
plinary aerospace design optimization: Survey of recent
developments. AIAA Paper 96–0711. Am Inst Aeronautics
and Astronautics, Reston, VA

50. Ta’asan S, Kuruvilla K, Salas M (1992) Aerodyamic design
and optimization in one shot. AIAA Paper 92–0025. Am Inst
Aeronautics and Astronautics, Reston, VA

51. Thom A (1933) The flow past circular cylinders at low
speeds. Proc Royal Soc London A141:651–666

52. Vanderplaats G (1984) Numerical optimization techniques
for engineering design: With Applications. McGraw-Hill,
New York

53. Zha G, Smith D, Schwabacher M, Rasheed K, Gelsey A,
Knight D (Nov.–Dec. 1997) High–performance supersonic
missile inlet design using automated optimization. J Air-
craft 34(6):697–705

Design of Robust Model-Based
Controllers
via Parametric Programming
K.I. KOURAMAS1, V. SAKIZLIS2,
EFSTRATIOS N. PISTIKOPOULOS1

1 Centre for Process Systems Engineering,
Imperial College London, London, UK

2 Bechtel Co. Ltd., London, UK

Article Outline

Introduction/Background
Definitions
Formulation

Open-Loop Robust Parametric Model Predictive Controller
Closed-Loop Robust Parametric Model-Based Control

Methods/Applications
Parametric Solution of the Inner Maximization Problem
of the Open-Loop Robust pMPC Problem

Solution of the Closed-Loop RpMPC Problem
Cases

Robust Counterpart (RC) Problem
Interval Robust Counterpart Problem

Conclusions
References

Introduction/Background

Model predictive control (MPC) is very popular for its
capacity to deal with multivariable, constraints-model-
based control problems for a variety of complex lin-
ear or non-linear processes [13]. MPC is based on
the receding-time-horizon philosophy where an open-
loop, constrained optimal control problem is solved on-
line at each sampling time to obtain the optimal control
actions. The optimal control problem is solved repet-
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itively at each time when a new measurement or es-
timate of the state is available, thus establishing an
implicit feedback control method [14,15]. The main
reasons for the popularity of MPC are its optimal per-
formance, its capability to handle constraints and its in-
herent robustness due to feedback control properties.

Despite the widely acknowledged capabilities of
MPC, there are two main shortcomings that have been
a major concern for the industrial and academic com-
munities. The first shortcoming is that MPC imple-
mentation is limited to slowly varying processes due
to the demanding online computational effort for solv-
ing the online optimal control problem. The second
is that, despite its inherent robustness due to the im-
plicit feedback, MPC cannot guarantee the satisfac-
tion of constraints and optimal performance in the
presence of uncertainties and input disturbances, since
usually it relies on nominal models (uncertainty-free
models) for the prediction of future states and control
actions [14,20,22].

The first shortcoming of MPC can be overcome
by employing the so-called parametric MPC (pMPC)
or multiparametric MPC (mp-MPC) [4,16,20]. Para-
metric MPC controllers are based on the well-known
parametric optimization techniques [9,18] for solving
the open-loop optimal control problem offline and ob-
tain the complete map of the optimal control actions
as functions of the states. Thus, a feedback control law
is obtained offline and the online computational effort
is reduced to simple function evaluations of the feed-
back control. The inevitable presence of uncertainties
and disturbances have been ignored by the pMPC com-
munity, and only recently has the research started fo-
cusing on control problems with uncertainty [2,20]. In
traditional MPC the issue of robustness under uncer-
tainty has been dealt with using various methods such
as robust model predictive control [3,8], model predic-
tive tubes [6,12] and min-max MPC [21,22]. However,
this is still an unexplored area for pMPC, apart from the
recent work presented in [2,20].

In this manuscript we discuss the challenges of
robust parametric model predictive control (RpMPC)
and we present a method for RpMPC for linear,
discrete-time dynamic systems with exogenous distur-
bances (input uncertainty) and a method for RpMPC
for systems with model uncertainty. In both cases the
uncertainty is described by the realistic scenario where

no uncertainty model (stochastic or deterministic) is
known but it is assumed that the uncertainty variables
satisfy a set of inequalities.

Definitions

Consider the following linear, discrete-time system:

xtC1 D Axt C But CW�t

yt D Bxt C Dut C F�t ;
(1)

where x 2 X � Rn , u 2 U � Rm , y 2 Y � Rq

and � 2 
 � Rw are the state, input, output and dis-
turbance (or uncertain) input vectors respectively and
A, B, C, D, W and F are matrices of appropriate di-
mensions. The disturbance input � is assumed to be
bounded in the set 
 D f� 2 Rw j� Li � �i � �

U
i ; i D

1; : : : ;wg. This type of uncertainty is used to character-
ize a broad variety of input disturbances and modeling
uncertainties including non-linearities or hidden dy-
namics [7,11]. This type of uncertainty in general may
result in infeasibilities and performance degradation.

Definition 1 The robust controller is defined as the
controller that provides a single control sequence that
steers the plant into the feasible operating region for
a specific range of variations in the uncertain variables.

The general robust parametric MPC (RpMPC) problem
is defined as [20]

�(xtjt) D min
uN2VN

(
xTtCNjtPxtCNjt C

N�1X
kD0

h
yTtCkjtQytCkjt C uT

tCkRutCk

i)
(2)

s.t. xtCkC1jt D AxtCkjtCButCkCW�tCk ; k � 0

(3)

ytCkjt D CxtCkjtCDutCkCF�tCk ; k � 0 (4)

g(xtCkjt; utCk) D C1xtCkjtCC2utCkCC3 � 0;

k D 0; 1; : : : ;N � 1 (5)

h(xtCNjt) D D1xtCNjt C D2 � 0 (6)

utCk D KxtCkjt ; k � N (7)

xtjt D x� (8)
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where g : X �U! Rng and h : X ! Rnh are the
path and terminal constraints respectively, x� is the
initial state, uN D fut; : : : ; utCN�1g 2 U � � � � �
U D UN are the predicted future inputs and �N D

f�t; : : : ; �N�1g 2 

N are the current and future values

of the disturbance.

Formulation

The design of a robust control scheme is obtained by
solving a receding horizon constrained optimal con-
trol problem where the objective is the deviations ex-
pected over the entire uncertainty set, or the nominal
value of the output and input deviations. In order to
ensure feasibility of (2)–(8) for every possible uncer-
tainty scenario �tCk 2 
, k D 0; : : : ;N � 1, the set of
constraints of (2)–(8) is usually augmented with an ex-
tra set of feasibility constraints. The type of these con-
straints, as will be described later, will determine if the
RpMPC is an open-loop or closed-loop controller.

Open-Loop Robust Parametric Model Predictive
Controller

To define the set of extra feasibility constraints the fu-
ture state prediction

xtCkjt D Akx�C
k�1X
jD0

(AjButCk�1� jCAjW�tCk�1� j)

(9)

is substituted into the inequality constraints (5)–(6),
which then become

ḡ j(x�; uN ; �N ) � 0 ; j D 1; : : : ; J ,
nX

iD1

�1i; jx�i C
N�1X
kD0

qX
iD1

�2i;k; jutCk;i

C

N�1X
kD0

wX
iD1

�3i;k; j� C t C k; i C �4 j � 0 (10)

where �1, �2, �3 are coefficients that are explicit func-
tions of the elements of matrices A, B, C, D, W, F, C1,
C2, C3, D1, D2, Q, R, P. The set of feasibility constraints
is defined as

 (x�; uN) � 0, 8�N 2 
N �8 j D 1; : : : ; J�
ḡ j(x�; uN ; �N ) � 0; uN 2 UN ; x� 2 X :

��
(11)

The constraints  � 0 ensure that, given a particular
state realization x�, the single control action uN satis-
fies all the constraints for all possible bounded distur-
bance scenarios over the time horizon. However, this
feasibility constraint represents an infinite set of con-
straints since the inequalities are defined for every pos-
sible value of �N 2 
N . In order to overcome this prob-
lem one has to notice that (11) is equivalent to

max

N

max
j

˚
ḡ(x�; uN ; �N )j

j D 1; : : : ; J; uN 2 UN ; x� 2 X; �N 2 
N� � 0
(12)

Adding (12) into (2)–(8) and minimizing the expec-
tation of the objective function (2) over all uncertain re-
alizations �tCk one obtains the following robust model
predictive control problem:

�(xtjt) D min
uN2VN

E
N2�N

(
xTtCNjtPxtCNjt C

N�1X
kD0

h
yTtCkjtQytCkjt C uT

tCkRutCk

i)
(13)

s.t. (3)–(8) and (11) (14)

Problem (13)–(14) is a bilevel program that has as
constraint a maximization problem, which, as will be
shown later, can be solved parametrically and then re-
placed by a set of linear inequalities of uN ; x�. The so-
lution to this problem corresponds to a robust control
law as it is defined in Definition 1. Problem (13)–(14)
is an open-loop robust control formulation in that it
obtains the optimal control actions uN for the worst-
case realization of the uncertainty only, as expressed by
inequality (12), and does not take into account the in-
formation of the past uncertainty values in the future
measurements, thus losing the benefit of the prediction
property. This implies that the future control actions
can be readjusted to compensate for any variation in the
past uncertainty realizations, thereby obtaining more
“realistic” and less conservative values for the optimal
control actions. This problem can be overcome if we
consider the following closed-loop formulation of the
problem (2)–(8).
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Closed-Loop Robust Parametric
Model-Based Control

To acquire a closed-loop formulation of the general
RpMPC problem, a dynamic programming approach
is used to formulate the worst-case closed-loop MPC
problem, which requires the solution of a number of
embedded optimization problems that in the case of
a quadratic objective are non-linear and non-differen-
tiable. Feasibility analysis is used to directly address
the problem and a set of constraints is again incorpo-
rated in the optimization problem to preserve feasibility
and performance for all uncertainty realizations. Future
measurements of the state contain information about
the past uncertainty values. This implies that the future
control actions can be readjusted to compensate for the
past disturbance realizations by deriving a closed-loop
MPC problem as shown next. The main idea is to intro-
duce constraints into the control optimization problem
(2)–(8) that preserve feasibility and performance for all
disturbance realizations. These constraints are given as

 
tC` (x�; [utCk]kD0;:::;`),

8�tC` 2 
f9utC`C1 2 Uf8�tC`C1

2 
f9utC`C2 2 U : : : f8�tCN�2

2 
f9utCN�1 2 Uf8�tCN�1 2 


f8 j D 1; : : : ; J
�
ḡ j(x�; [utCk]kD0;:::;N�1;

[�tCk]kD0;:::;N�1) � 0
�
ggg : : : ggg ;

utCk 2 U ; k D 0; : : : ; ` ; x� 2 X ; �tCk 2 
 ;

k D 0; : : : ; ` � 1 ; ` D 0; : : : ;N � 1 : (15)

The constraints of (15) are incorporated into (2)–
(8) and give rise to a semi-infinite dimensional program
that can be posed as a min–max bilevel optimization
problem:

�(x�) D min
uN2VN

(
xTtCNjtPxtCNjt C

N�1X
kD0

h
yTtCkjtQytCkjt C uT

tCkRutCk

i)
(16)

s.t. max

tCN�1; j

ḡ j(x�; uN ; �N ) � 0

:::

(17)

max

tC1

min
utC2

: : : max

tCN�2

min
utCN�1

max

tCN�1

max
j

ḡ j(x�; uN ; �N ) � 0
(18)

max

t

min
utC1

max

tC1

min
utC2

: : : max

tCN�2

min
utCN�1

max

tCN�1

max
j

ḡ j(x�; uN ; �N ) � 0 (19)

uN 2 UN ; x� 2 X ; �N 2 
N : (20)

The difference between the above formulation and for-
mulation (13)–(14) is that at every time instant tC k
the future control actions futCkC1; : : : ; utCN�1g are
readily adjusted to offset the effect of the past uncer-
tainty f�t; : : : ; �tCkg to satisfy the constraints. In con-
trast, in formulation (13)–(14) the control sequence has
to ensure constraint satisfaction for all possible distur-
bance scenarios. The main issue for solving the above
optimization problem is how to solve parametrically
each of (17)–(19) and replace them with a set of in-
equalities of uN ; x� suitable to formulate a multipara-
metric programming problem. This is shown in the fol-
lowing section.

Methods/Applications

Parametric Solution of the Inner Maximization
Problem of the Open-Loop Robust pMPC Problem

An algorithm for solving parametrically the maximiza-
tion problem of (12), which forms the inner maximiza-
tion problem of the open-loop RpMPC (13)–(14), com-
prises the following steps:
Step 1. SolveGj(x�; uN) D max
N f ḡ j(x�; uN ; �N )j�N;L

� �N � �N;Ug; j D 1; : : : ; J as a parametric program
with respect to �N and by recasting the control ele-
ments and future states as parameters. The paramet-
ric solution can be obtained by following the method
in [19], where the critical disturbance points for each
maximization are identified as follows:
1. If @ ḡ j

@
tCk;i
D �3i;k > 0 ) � crtCk;i D �UtCk;i , j D

1; : : : ; J, then k D 0; : : : ;N � 1, i D 1; : : : ;w;
2. If @ ḡ j

@
tCk;i
D �3i;k < 0 ) � crtCk;i D � LtCk;i , j D

1; : : : ; J, then k D 0; : : : ;N � 1, i D 1; : : : ;w.
Substituting � crtCk;i in the constraints ḡ � 0 we obtain
Gj(x�; uN) D ḡ j(x�; uN ; �N;cr), where �N;cr is the se-
quence of the critical values of the uncertainty vector
� crt over the horizon N.
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Step 2. Compare the parametric profiles Gj(x�; uN )
over the joint space of uN and x� and retain the up-
per bounds. A multiparametric linear program is for-
mulated:

 (x�; uN) D max
j

G j

,  (x�; uN ) D min
"
f"j" � Gj; j D 1; : : : ; Jg ;

uN 2 UN ; x� 2 X ; (21)

which is equivalent to the comparison procedure of [1].
Step 3. Problem (21) is a multiparametric linear pro-
gramming problem; hence the solution consists of a set
of piece-wise linear expressions for  i in terms of
the parameters uN and x� and a set of regions �i ,
i D 1; : : : ; N̂reg where these expressions are valid. This
statement was proven in [20], sect. 2.2, theorem 2.1,
and in [10]. Note that no region �s exists such that
 s �  i , 8fx�; uNg 2 �s and 8i ¤ s since  is con-
vex. Thus, inequality (11) can be replaced by the in-
equalities  i (x�; uN ) � 0. In this way problem (13)–
(14) can be recast as a single-level stochastic program:

�(x�) D min
uN2UN

f˚(x�; uN ; �N;n)j

ḡ j(x�; uN ; �N;n) � 0; j D 1; : : : ; J;

 (x�; uN) � 0; i D 1; : : : ; N̂regg ; (22)

where ˚ is the quadratic objective (13) after substitut-
ing (9). The superscript n in �N;n denotes the nominal
value of �N , which is usually zero. An approximate so-
lution to the above stochastic problem can be obtained
by discretizing the uncertainty space into a finite set
of scenarios �N;i , i D 1; : : : ; ns with associated objec-
tive weights ([20]), thus leading to a multiperiod op-
timization problem where each period corresponds to
a particular uncertainty scenario. By treating the con-
trol variables uN as the optimization variables and the
current state x� as parameters, (22) is recast as multi-
parametric quadratic program.

Theorem 1 The solution of (22) is a piece-wise lin-
ear control law ut(x�) DAc x� C bc and CRcx� C crc ,
c D 1; : : : ;Nc is the polyhedral critical region where this
control law is valid and guarantees that (5) and (6) are
feasible for all �tCk 2 
, k D 0; : : : ;N � 1.

The proof of the theorem is straightforward from (21)
and [20] and is omitted for brevity’s sake. It shows that
the solution to (22), and hence (13)–(14), can be ob-
tained as an explicit multiparametric solution [9].

Solution of the Closed-Loop RpMPC Problem

In order to solve the problem (16)–(20), the inner max–
min–max problem in (17)–(19) have to be solved para-
metrically and replaced by simpler linear inequalities,
so the resulting problem is a simple multiparametric
quadratic program. For simplicity, we only present an
algorithm for solving the most difficult problem (19).
The same thought process can be performed for the re-
maining constraints. The algorithm consists of the fol-
lowing steps:
Step 1. Solve

G
tCN�1
j (x�; uN ; [�tCk]kD0;:::;N�2)

D max

tCN�1

f ḡ j(x�; uN ; �N ); �N;L � �N � �N;Ug ;

j D 1; : : : ; J ; (23)

as a multiparametric optimization problem by recast-
ing x� and uN as parameters and by following again the
method of [19] or [20], sect. 2.2.
Step 2. Compare the parametric profiles
G
tCN�1

j (x�; uN ; [�tCk]kD0;:::;N�2) over the joint space
of uN , [�tCk]kD0;:::;N�2 and x� to retain the upper
bounds. For this comparison a multiparametric pro-
gram is formulated and then solved by following the
comparison procedure in [1]:

 
tCN�1 (x�; uN ; [�tCk]kD0;:::;N�2) D max
j

G
tCN�1
j

,  
tCN�1 (x�; uN ; [�tCk]kD0;:::;N�2)

D min
"
f" j s.t. G
tCN�1

j � "; j D 1; : : : ; Jg : (24)

The solution of the above optimization consists of a set
of linear expressions for 
tCN�1

i in terms of the param-
eters x�, uN , [�tCk]kD0;:::;N�2 and a set of polyhedral
regions � 
tCN�1

i , i D 1; : : : ; N̂
tCN�1
reg , where these ex-

pressions are valid.
Step 3. Set ` D N � 1.
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Step 4. Solve the following multiparametric optimiza-
tion problem over u`

 utC` (x�; u`; �`)

D min
utC`2U

f 

tC`
i (x�; [utCk]kD0;:::;`; [�tCk]kD0;:::;`�1);

if � 
tC`i � 0; i D 1; : : : ; N̂
tC`reg g : (25)

The above problem can be solved parametrically by
following the procedure in [20], appendix A, or [17],
chap. 3, sect. 3.2. The solution to (25) is a convex piece-
wise affine function of  utC` in terms of the parame-
ters x�, uN , [�tCk]kD0;:::;N�2 that is defined over a set of
polyhedral regions � utC`

i , i D 1; : : : ; N̂utC`
reg .

Step 5. Set ` D ` � 1 and solve the followingmaximiza-
tion problem over �`�1:

 
tC` (x�; [utCk]kD0;:::;`; [�tCk]kD0;:::;`�1)

D max

tC`
f 


tC`
i (x�; [utCk]kD0;:::;`; [�tCk]kD0;:::;`�1);

if � utC`C1
i � 0; i D 1; : : : ; N̂utC`C1

reg g : (26)

Since the function on the left-hand side of the above
equality is a convex piecewise affine function, its maxi-
mization with respect to [�tCk]kD0;:::;`�1 reduces to the
method of [19] followed by a comparison procedure as
described in step 2.
Step 6. If ` > 0, then go to step 4, else terminate
the procedure and store the affine functions  
ti ,
i D 1; : : : ; N̂
treg.

Step 7. The expressions  
ti (ut; x�) are the max–min–
max constraint (19). Similarly, the remaining max–
min–max constraints are replaced by the set of inequal-
ities

 

tC1
i (x�; [uT

t ; u
T
tC1]

T ; �t) � 0 ;
: : : ;

 

tCN�2
i (x�; [uT

t ; u
T
tC1; : : : ; u

T
tCN�2]

T ;

[�Tt ; �
T
tC1; : : : ; �

T
tCN�3]

T ) � 0 ;

 

tCN�1
i (x�; [uT

t ; u
T
tC1; : : : ; u

T
tCN�1]

T ;

[�Tt ; �
T
tC1; : : : ; �

T
tCN�2]

T ) � 0 :

Substituting the inequalities in step 7 into the max–
min–max constraints of (16)–(20) we obtain the follow-

ing stochastic multparametric program:

�(x�) D min
uN2UN

E
N2�N
˚
˚(x�; uN ; �N;n)

�

s.t. ḡ j(x�; uN ; �N;n) � 0

 

t
i (x�; ut) � 0; i D 1; : : : ; N̂
0reg

 

tC1
i (x�; [uT

t ; u
T
tC1]

T ; � nt ); i D 1; : : : ; N̂
1reg
:::

 

tCN�2
i (x�; [utCk]kD0;:::;N�2; [� ntCk]kD0;:::;N�3);

i D 1; : : : ; N̂
tCN�2
reg

 

tCN�1
i (x�; [utCk]kD0;:::;N�1; [� ntCk]kD0;:::;N�2);

i D 1; : : : ; N̂
tCN�1
reg

xtjt D x�; j D 1; : : : ; J ;
(27)

where ˚ is again the quadratic objective function in
(16). By discretizing the expectation of the value func-
tion to a set of discrete uncertainty scenarios and by
treating the current state x� as parameter and the con-
trol actions as optimization variables and the problem
is recast as a parametric quadratic program. The so-
lution is a complete map of the control variables in
terms of the current state. The results for the closed-
loop RpMPC controller are summarized in the follow-
ing theorem.

Theorem 2 The solution of (27) is obtained as a linear
piecewise control law ut(x�) DAc x� C bc and a set of
polyhedral regions CRc D fx� 2 XjCRcx� C crc � 0g
in the state space for which system (1) satisfies con-
straints (5)–(6) for all �N 2 
N.

Cases

A special case of the RpMPC problem (2)–(8) arises
when the system matrices in the first equation in (1)
are uncertain in that their entries are unknown but
bounded within specific bounds. For simplicity we will
consider the simpler case where W; F D 0 and the en-
tries aij and bij of matrices A and B are not known but
satisfy

ai j D āi j C ıai j; bi` D b̄i` C ıbi`
ıai j 2Ai j D fıai j 2 Rj � "jāi jj � ıai j � "jāi jjg ;

(28)
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ıbi` 2 Bi` D fıbi` 2 Rj � "jb̄i`j � ıbi` � "jb̄i`jg ;

(29)

where āi j , b̄i` are the nominal values of the entries of
A, B respectively and ıai j, ıbi` denote the uncertainty
in the matrix entries, which is assumed to be bounded
as in (28)–(29). The general RpMPC formulation (2)–
(8) must be redefined to include the introduced model
uncertainty by adding the extra constraints

ai j D āi j C ıai j; bi` D b̄i` C ıbi`
8ıai j 2Ai j;8ıbi` 2 Bi` ;

(30)

The new formulation of the RpMPC (2)–(8) and (30)
gives rise to a semi-infinite dimensional problem with
a rather high computational complexity.

Definition 2 A feasible solution uN for problem (2)–
(8) and (30), for a given initial state x�, is called a robust
or reliable solution.

Obviously, a robust solution for a given x� is a control
sequence uN (future prediction vector) for which con-
straints (5)–(6) are satisfied for all admissible values of
the uncertainty. Since it is difficult to solve this MPC
formulation by the known parametric optimization
methods, the problemmust be reformulated in a multi-
parametric quadratic programming (mpQP) form. Our
objective in this section is to obtain such a form by con-
sidering the worst-case values of the uncertainty, i. e.
those values of the uncertain parameters for which the
linear inequalities of (5)–(6) are critically satisfied. Usu-
ally, the objective function (2) is formulated to penal-
ize the nominal system behavior; thus one must sub-
stitute xtCkjt D Ākx� C

Pk�1
jD0 Āj B̄utCk�1� j in (2). In

this way the objective function is a quadratic func-
tion of uN and x�. Finally, the uncertain evolution of
the system xtCkjt D Akx� C

Pk�1
jD0 A

jButCk�1� j is re-
placed in the constraints (5)–(6) to formulate a set of
linear inequalities. Thus the following formulation of
the RpMPC is obtained:

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�TFuN C
1
2
(x�)TYx�

	
; (31)

s.t. CT
1i A

kx� C
k�1X
jD0

CT
1iA

jButCk�1� j

C CT
2iutCk C C3i � 0 ;

k D 1; : : : ;N � 1 ; i D 1; : : : ; ng ; (32)

DT
1`A

Nx� C
N�1X
jD0

DT
1`A

jButCk�1� j C D2` � 0 ;

` D 1; : : : ; nh ; (33)

8ıai j 2Ai j ; 8ıbi` 2 Bi` ;

i; j D 1; : : : ; n ; ` D 1; : : : ;m : (34)

It is evident that the new formulation of the RpMPC
problem (31)–(34) is also a semi-infinite dimensional
problem. This formulation can be further simplified if
one considers that for any uncertain matrices A and B,
the entries of the matrices Ak and AkB for all k � 0 are
given respectively by [17]

aki` D āki`C ıa
k
i`;��jıa

k
i`;minj � ıa

k
i` � �jıa

k
i`;maxj ;

(35)

abki` D ābki` C ıab
k
i`;

� �jıabki`;minj � ıab
k
i` � �jıab

k
i`;maxj : (36)

The analysis on (35)–(36) follows from [17], chap. 3,
and is omitted for brevity’s sake.

Robust Counterpart (RC) Problem

Using the basic properties of matrix multiplication and
(35)–(36), problem (31)–(34) reformulates into

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�T FuN C
1
2
(x�)TYx�

	
; (37)

k�1X
jD1

nX
qD1

mX
`D1

C1i qab
j
q`utCk�1� j;`

C
X
`

C2i`utCk;`C

nX
qD1

nX
`D1

C1i qakq`x
�
` CC3i � 0 ;

(38)
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k D 1; : : : ;N � 1; i D 1; : : : ; ng

N�1X
jD1

nX
qD1

mX
`D1

D1i qab
j
q`utCk�1� j;`

C

nX
qD1

nX
`D1

D1i qakq`x
�
` C D2i � 0 (39)

i D 1; : : : ; nh8ıai j 2Ai j;

8ıbi` 2 Bi`; i; j D 1; : : : ; n; ` D 1; : : : ;m : (40)

This is a robust multiparametric QP problem (ro-
bust mp-QP) where the coefficients of the linear in-
equalities in the constraints are uncertain, the vector
uN is the optimization variable and the initial states x�

are the parameters. A similar robust LP problem was
studied in [5] where the coefficients of the linear con-
straints are uncertain, similar to (35)–(36); however, no
multiparametric programming problems were consid-
ered.

In a similar fashion to the analysis in [5] we con-
struct the robust counterpart of the robust mp-QP
problem (37)–(40):

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�T FuN C
1
2
(x�)TYx�

	
; (41)

s.t.
k�1X
jD1

nX
qD1

mX
`D1

C1i q āb
j
q`utCk�1� j;`

C

k�1X
jD1

nX
qD1

mX
`D1

�maxfjC1i qjjıabkq`;minj;

jC1i qjjıakq`;maxjgjutCk�1� j;`j C
X
`

C2i`utCk;`

C

nX
qD1

nX
`D1

C1i q ākq`x
�
` C

nX
qD1

nX
`D1

�maxfjC1i qjjıakq`;minj;

jC1i qjjıakq`;maxjgjx
�
` j C C3i � 0

k D 1; : : : ;N � 1 ; i D 1; : : : ; ng ;

(42)

N�1X
jD1

nX
qD1

mX
`D1

D1i q āb
j
q`utCk�1� j;`

C

N�1X
jD1

nX
qD1

mX
`D1

maxfjD1i qjjıabkq`;minj;

jD1i qjjıabkq`;maxjgjutCk�1� j;`j

C

nX
qD1

nX
`D1

D1i q ākq`x
�
` C

nX
qD1

nX
`D1

maxfjD1i qjjıakq`;minj;

jD1i qjjıakq`;maxjgjx
�
` j C D2i � 0

i D 1; : : : ; nh ;

(43)

uN 2 UN ; x� 2 X : (44)

In this way the initial semi-infinite dimensional
problem (37)–(40) becomes the above multiparametric
non-linear program (mp-NLP). However, the paramet-
ric solution of this mp-NLP problem is still very diffi-
cult.

Interval Robust Counterpart Problem

The interval robust counterpart (IRC) problem can
then be formulated as follows:

�(x�) D min
uN2UN

�
1
2
(uN)THuN

Cx�TFuN C
1
2
(x�)TYx�

	
; (45)

s.t.
k�1X
jD1

nX
qD1

mX
`D1

C1i q āb
j
q`utCk�1� j;`

C

k�1X
jD1

nX
qD1

mX
`D1

�maxfjC1i qjjıabkq`;minj;

jC1i qjjıakq`;maxjgztCk�1� j;` C
X
`

C2i`utCk;`

C

nX
qD1

nX
`D1

C1i q ākq`x
�
`

C

nX
qD1

nX
`D1

�maxfjC1i qjjıakq`;minj;

jC1i qjjıakq`;maxjgw` C C3i � 0

k D 1; : : : ;N � 1 ; i D 1; : : : ; ng ;

(46)
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Design of Robust Model-Based Controllers via Parametric Programming, Figure 1
Critical regions for the nominal parametric MPC and state trajectory

N�1X
jD1

nX
qD1

mX
`D1

D1i q āb
j
q`utCk�1� j;`

C

N�1X
jD1

nX
qD1

mX
`D1

maxfjD1i qjjıabkq`;minj;

jD1i qjjıabkq`;maxjgztCk�1� j;`

C

nX
qD1

nX
`D1

D1i q ākq`x
�
` C

nX
qD1

nX
`D1

maxfjD1i qjjıakq`;minj;

jD1i qjjıakq`;maxjgw` C D2i � 0

i D 1; : : : ; nh ;

(47)

� ztCk�1� j;` � utCk�1� j;` � ztCk�1� j;` ; (48)

� w` � x�` � w` ; (49)

uN 2 UN ; x� 2 X ; (50)

where the non-linear inequalities (42)–(43) have been
replaced by four new linear inequalities. Two new vari-
ables have been introduced to replace the absolute val-
ues of the utCk�1� j;` and x�

`
, thus leading to the relaxed

IRC problem.
The IRC is a mpQP problem with a quadratic index

and linear inequalities, where the optimization vari-

ables now are the vectors utCk�1� j, ztCk�1� j and w
and the parameters are the states x�. The IRC prob-
lem can be solved with the known parametric opti-
mization methods [4,9,16] since the objective func-
tion is strictly convex by assumption. The optimal
control inputs uN , optimization variables z and w
and hence the optimal control ut can then be ob-
tained as explicit functions uN(x�), z(x�) and w(x�)
of the initial state x�. Furthermore, the control in-
put ut is obtained as the explicit, optimal control

Design of Robust Model-Based Controllers via Parametric
Programming, Figure 2
Magnification of Fig. 1 around the state trajectory at the sec-
ond time instant
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Design of Robust Model-Based Controllers via Parametric Programming, Figure 3
Critical regions for the nominal parametric MPC and state trajectory

law [9] ut(x�) DAc x� C bc which is valid in the
polyhedral region CRc D fx� 2 XjCRcx� C cr � 0g,
c D 1; : : : ;Nc , where Nc is the number of critical re-
gions obtained from the parametric programming al-
gorithm.

The general RpMPC problem obtained from the
case where the dynamic system (1) pertains to model
uncertainties have now been transformed into the IRC
problem and can be solved as a mp-QP problem. It is
obvious that a feasible solution for the IRC problem is
also a feasible solution for the RC and hence the initial
RpMPC problem (2)–(8) and (30). Hence:

Lemma 1 If uN is a feasible solution for the IRC prob-
lem, then it is also a feasible solution for the RC problem,
and hence it is a robust solution for the initial RpMPC
problem (2)–(8), (30).

Example 2 Consider a two-dimensional, discrete-time
linear system (1) whereW D F D 0 and

A D
�
0:7326C ıa �0:0861
0:1722 0:0064

�
;

B D
�

0:0609C ıb
0:0064

�
;

(51)

where the entries a11 and b1 of the A and Bmatrices are
uncertain, where ıa and ıb are bounded as in (28)–(29)
with � D 10% and the nominal values are ā11 D 0:7326

and b̄1 D 0:0609. The state and control constraints are
�3 � [0 1:4142]Tx � 3 ; �2 � u � 2, and the termi-
nal constraint is

2
664

0:070251 1
�0:070251 �1
0:21863 1
�0:21863 �1

3
775 x �

2
664

0:02743
0:02743
0:022154
0:022154

3
775 : (52)

Moreover,

Q D
�

0 0
0 2

�
R D 0:01; P D

�
1:8588 1:2899
1:2899 6:7864

�
:

(53)

Initially, the MPC problem (2)–(8) is formulated and
solved only for the nominal values ofA and B, thus solv-
ing amultiparametric quadratic programming problem
as described in [4,16]. Then the IRC problem is formu-
lated as in (45)–(50) by using POP software [9]. The re-
sulting regions for both cases are shown in Figs. 1 and 3
respectively. A simulation of the state trajectories of the
nominal and the uncertain system are shown in Figs. 1
and 3 respectively. In these simulations the uncertain
parameters ıa and ıb were simulated as a sequence of
random numbers that take their values on the upper or
lower bounds of ıa, ıb i. e. a time-varying uncertainty.
It is clear from Fig. 1 (and Fig. 2, which displays the
magnified area around the state trajectory at the second
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time instant) that the nominal solution to problem (2)–
(8) cannot guarantee robustness in the presence of the
uncertainty and the nominal system trajectory results
in constraint violation. On the other hand, the con-
troller obtained with the method discussed here man-
ages to retain the trajectory in the set of feasible initial
states (obtained by the critical regions of the paramet-
ric solution) and drives the trajectory close to the origin.
One should notice that the space of feasible initial states
(Fig. 3) given by the critical regions of the parametric
solution is smaller than the one given in the nominal
system’s case (Fig. 1).

Conclusions

In this chapter two robust parametric MPC prob-
lems were analyzed. In the first problem two meth-
ods for robust parametric MPC are discussed, an
open-loop and a closed-loop method, for treating ro-
bustness issues arising from the presence of input dis-
turbances/uncertainties. In the second problem, a ro-
bust parametric MPC procedure was discussed for the
control of dynamic systems with uncertainty in the
system matrices by employing robust parametric opti-
mization methods.
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Introduction

Clustering is probably the most important unsuper-
vised learning problem and involves finding coherent
structures within a collection of unlabeled data. As such
it gives rise to data groupings so that the patterns are
similar within each group and remote between differ-
ent groups. Besides having been extensively applied in
areas such as image processing and pattern recognition,
clustering also sees rich applications in biology, mar-
ket research, social network analysis, and geology. For
instance, in marketing and finance, cluster analysis is
used to segment and determine target markets, position
new products, and identify clients in a banking data-
base having a heavy real estate asset base. In libraries,
clustering is used to aid in book ordering and in insur-
ance, clustering helps to identify groups of motor in-
surance policy holders with high average claim costs.
Given its broad utility, it is unsurprising that a substan-
tial number of clustering methods and approaches have
been proposed.

On the other hand, fewer solutions to systemati-
cally evaluate the quality or validity of clusters have
been presented [1]. Indeed, the prediction of the opti-
mal number of groupings for any clustering algorithm
remains a fundamental problem in unsupervised classi-
fication. To address this issue, numerous cluster indices
have been proposed to assess the quality and the results
of cluster analysis. These criteria may then be used to
compare the adequacy of clustering algorithms and dif-
ferent dissimilarity measures, or to choose the optimal

number of clusters. Some of these measures are intro-
duced in the following section.

Methods

Dunn’s Validity Index

This technique [2,5] is based on the idea of identifying
the cluster sets that are compact and well separated. For
any partition of clusters, where ci represent the ith clus-
ter of such a partition, Dunn’s validation index, D, can
be calculated as

D D min
1�i�n

�
min
1� j�n
i¤ j

�
d(c1; c j)
max1�k�n

d0(ck)
		

:

Here, d(ci,cj) is the distance between clusters ci, and
cj (intercluster distance), d0(ck) is the intracluster dis-
tance of cluster ck, and n is the number of clusters. The
goal of this measure is to maximize the intercluster dis-
tances and minimize the intracluster distances. There-
fore, the number of cluster that maximizes D is taken as
the optimal number of clusters to be used.

Davies–Bouldin Validity Index

This index [4] is a function of the ratio of the sum of
within-cluster scatter to between-cluster separation:

DB D
1
n

nX
iD1

max
i¤ j

�
Sn(Qi)C Sn(Qj)

S(Qi ;Qj)

	
:

In this expression, DB is the Davies–Bouldin index, n
is the number of clusters, Sn is the average distance of
all objects from the cluster to their cluster center, and
S(QiQj) is the distance between cluster centers. Hence,
the ratio is small if the clusters are compact and far
from each other. Consequently, the Davies–Bouldin in-
dex will have a small value for a good clustering.

The silhouette validation technique [22] calculates
the silhouette width for each sample, the average sil-
houette width for each cluster, and the overall average
silhouette width for a total data set. With use of this ap-
proach each cluster can be represented by a so-called
silhouette, which is based on the comparison of its
tightness and separation. The average silhouette width
can be applied for the evaluation of clustering validity
and can also be used to decide how good are the number
of selected clusters. To construct the silhouettes S(i) the
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following formula is used:

S(i) D
(b(i)� a(i))

max fa(i); b(i)g
:

Here, a(i) is the average dissimilarity of the ith object
to all other objects in the same cluster and b(i) is the
minimum average dissimilarity of the ith object to all
objects in the other clusters.

It follows from the formula that s(i) lies between
�1 and 1. If the silhouette value is close to 1, it means
that sample is “well clustered” and has been assigned
to a very appropriate cluster. If the silhouette value is
close to 0, it means that that sample could be assigned
to another “closest” cluster as well, and the sample lies
equally far away from both clusters. If the silhouette
value is close to �1, it means that sample is “misclas-
sified” and is merely somewhere in-between the clus-
ters. The overall average silhouette width for the entire
plot is simply the average of the S(i) for all objects in
the whole dataset and the largest overall average silhou-
ette indicates the best clustering (number of clusters).
Therefore, the number of clusters with the maximum
overall average silhouette width is taken as the optimal
number of the clusters.

Measure of Krzanowski and Lai

This index is based on the decrease of the within-cluster
sum of squares (WSS) [15] and is given by

KL(k) D
ˇ̌
ˇ̌ DIFF(k)
DIFF(k C 1)

ˇ̌
ˇ̌ ; where

DIFF(k) D (k � 1)
2
p WSS(k � 1) � k

2
pWSS(k) :

Assuming that g is the ideal cluster number for a given
dataset, and k is a particular number of clusters, then
WSS(k) is assumed to decrease rapidly for k � g and
decreases only slightly for k > g. Thus, it is expected
that KL(k) will be maximized for the optimal number
of clusters.

Measure of Calinski and Harabasz

This method [3] assesses the quality of k clusters via the
index

CH(k) D
BSS(k � 1)/(k � 1)
WSS(k)/(n � k)

:

Here,WSS(k) and BSS(k) are theWSS and the between-
cluster sums of squares, for a dataset of nmembers. The
measure seeks to choose clusters that are well isolated
from one another and coherent, but at the same time
keep the number of clusters as small as possible, thus
maximizing the criterion at the optimal cluster number.
Incidentally, a separate study comparing 28 validation
criteria [18] found this measure to perform the best.

In addition, some other measures to determine the
optimal number of clusters are (i) the C index [10],
(ii) the Goodman–Kruskal index [8]), (iii) the isolation
index [19], (iv) the Jaccard index [11], and (v) the Rand
index [20].

Applications

As can be seen, while it is relatively easy to propose
indices of cluster validity, it is difficult to incorporate
these measures into clustering algorithms and to ap-
point suitable thresholds on which to define key deci-
sion values [9,12]. Most clustering algorithms do not
contain built-in screening functions to determine the
optimal number of clusters. This implies that for a given
clustering algorithm, the most typical means of deter-
mining the optimal cluster number is to repeat the clus-
tering numerous times, each with a different number of
groupings, and hope to catch a maximum or minimum
turning point for the cluster validity index in play.

Nonetheless, there have been attempts to incorpo-
rate measures of cluster validity into clustering algo-
rithms. One such method [21] introduces a validity in-
dex:

Validity D
Intra � Cluster
Inter � Cluster

:

Since it is desirable for the intracluster distance and the
intercluster distance to be minimized and maximized,
respectively, the above validity measure should be as
small as possible. Using the K-means algorithm, Ray
and Turi [21] proposed running the process for two
up to a predetermined maximum number of clusters.
At each stage, the cluster with the maximum variance
is split into two and clustering is repeated with these
updated centers, until the desired turning point for the
validity measure is observed. Another approach [16]
is based on simulated annealing, which was originally
formulated to simulate a collection of atoms in equi-
librium at a given temperature [14,17]. It assumes two
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given parameters D, which is the cutoff cluster diame-
ter, and P, a P-value statistic, as well as p(d), the distri-
bution function of the Euclidean distances between the
members in a dataset. Then, the upper boundary for the
fraction of incorrect vector pairs is given by

f (D;K D 1) D
Z 1
D

p(x)dx :

On the other hand, it is possible to define a lower
boundary for f(D,K) with a preassigned P-value cutoff.
The clustering algorithm then sequentially increases the
cluster number until the two indicators converge.

A Novel Clustering Approach
with Optimal Cluster Determination

See also the article on “Gene Clustering: A Novel
Optimization-Based Approach”.

Recently, we proposed a novel clustering ap-
proach [23,24] that expeditiously contains a method
to predict the optimal cluster number. The clustering
seeks to minimize the Euclidean distances between the
data and the assigned cluster centers as

MIN
wi j;z jk

nX
iD1

cX
jD1

sX
kD1

wi j
�
aik � z jk

�2
:

To make the nonlinear problem tractable, we apply
a variant of the generalized benders decomposition al-
gorithm [6,7], the global optimum search. The global
optimum search decomposes the problem into a primal
problem and themaster problem. The former solves the
continuous variables while fixing the integer variables
and provides an upper-bound solution, while the latter
finds the integer variables and the associated Lagrange
multipliers while fixing the continuous variables and
provides a lower-bound solution. The two sequences
are iteratively updated until they converge at an opti-
mal solution in a finite number of steps.

In determining the optimal cluster number, we note
that the optimal number of clusters occurs when the
intercluster distance is maximized and the intracluster
distance is minimized. We adapt the novel work of Jung
et al. [13] in defining a clustering balance, which has
been shown to have a minimum value when intraclus-
ter similarity is maximized and intercluster similarity is
minimized. This provides a measure of how optimal is

a certain number of clusters used for a particular clus-
tering algorithm. Given n data points, each having k
feature points, j clusters, and a binary decision variable
for cluster membership wij, we introduce the following:

Global center, zok D
1
n

nP
iD1

aik ; 8k ;

Intracluster error sum;

� D
nP

iD1

cP
jD1

sP
kD1

wi j


aik � z jk



2
2 ;

Intercluster error sum; � D
cP

jD1

sP
kD1



z jk � zok


2
2 :

Jung et al. [13] next proposed a clustering balance pa-
rameter, which is the ˛-weighted sum of the two error
sums:

Clustering balance, " D ˛�C (1 � ˛)� :

We note here that the right ˛ ratio is 0.5. There are two
ways to come to this conclusion. We note that the fac-
tor ˛ should balance the contributive weights of the two
error sums to the clustering balance. At extreme clus-
ter numbers, that is, the largest and smallest numbers
possible, the sum of the intracluster and intercluster er-
ror sums at both cluster numbers should be balanced.
In the minimal case, all the data points can be placed
into a single cluster, in which case the intercluster error
sum is zero and the intracluster error sum can be cal-
culated with ease. In the maximal case, each data point
forms its own cluster, in which case the intracluster er-
ror sum is zero and the intercluster error sum can be
easily found. Obviously the intracluster error sum in
the minimal case and the intercluster error sum in the
maximal case are equal, suggesting that the most appro-
priate weighting factor to use is in fact 0.5. The second
approach uses a clustering gain parameter proposed by
Jung et al. [13]. This gain parameter is the difference be-
tween the decreased intercluster error sum � j compared
with the value at the initial stage and the increased in-
tracluster error sum � j compared with the value at the
initial stage, and is given by

� jk D

nX
iD1

wi j


aik � zok



2
2 �



z jk � zok


2
2 ;

8j,8k ;

�jk D
nX

iD1

wi j


aik � z jk



2
2; 8j,8k ;
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Gain; � jk D

nX
iD1

wi j


aik � zok



2
2 �



z jk � zok


2
2

�

nX
iD1

wi j


ai j � z jk



2
2; 8j,8k :

With the identities
nP

iD1
wi jaik D njz jk ; 8 j; 8k ;

nP
iD1

wi j D nj ; 8 j ;

where nj denotes the number of data points in cluster j,
the gain can be simplified to

�jk D
�
nj � 1

� 

zok � z jk


2
2 ;8j;8k ;

� D
cP

jD1

sP
kD1

�
nj � 1

� 

zok � z jk


2
2 :

Jung et al. [13] showed the clustering gain to have
a maximum value at the optimal number of clusters,
and demonstrated that the sum total of the clustering
gain and balance parameters is a constant. As can be
seen from the following derivation, this is only possible
if the ˛ ratio is 0.5:

Sum of clustering balance and clustering gain;˝

D "C�

D�C � C�

D

2
4

nX
iD1

cX
jD1

sX
kD1

wi j


aik � z jk



2
2

3
5

C

2
4

cX
jD1



z jk � zok


2
2

3
5C : : :

2
664

nP
iD1

cP
jD1

sP
kD1

wi j


aik � zok



2
2 �

cP
jD1



z jk � zok


2
2

�
nP

iD1

cP
jD1

sP
kD1

wi j


aik � z jk



2
2

3
775

D

nX
iD1

cX
jD1

sX
kD1

wi j


aik � zok



2
2

D

nX
iD1

sX
kD1



aik � zok


2
2 ;

which is a constant for any given dataset.

Extension for Biological Coherence Refinement

Today, the advent of DNA microarray technology has
made possible the large-scale monitoring of genomic
behavior. In working with gene expression data, it is
often useful to utilize external validation in evaluating
clusters of gene expression data. Besides assessing the
biological meaning of a cluster through the functional
annotations of its constituent genes using gene ontol-
ogy resources, other indications of strong biological co-
herence [25] are (i) the proportion of genes that reside
in clusters with good P-value scores, (ii) cluster corre-
lation, since closely related genes are expected to ex-
hibit very similar patterns of expression, and (iii) clus-
ter specificity, which is the proportion of genes within
a cluster that annotates for the same function. A novel
extension of the previously described work [25] allows
not just for the determination of the optimal cluster
number within the framework of a robust yet intuitive
clustering method, but also for an iterative refinement
of biological validation for the clusters. The algorithm
is as follows.

Gene Preclustering We precluster the original data
by proximity studies to reduce the computational
demands by (i) identifying genes with very similar
responses and (ii) removing outliers deemed to be in-
significant to the clustering process. To provide just ad-
equate discriminatory characteristics, preclustering can
be done by reducing the expression vectors into a set
of representative variables {C; o;�}, or by pregroup-
ing genes that are close to one another by correlation
or some other distance function.

Iterative Clustering We let the initial clusters be de-
fined by the genes preclustered previously, and find the
distance between each of the remaining genes and these
initial clusters and as a good initialization point place
these genes into the nearest cluster. For each gene, we
allow its suitability in a limited number of clusters on
the basis of the proximity study. In the primal problem
of the global optimum search algorithm, we solve for
zjk. These, together with the Lagrange multipliers, are
used in the master problem to solve for wij. The primal
problem gives an upper-bound solution and the master
problem gives a lower bound. The optimal solution is
obtained when both bounds converge. Then, the worst-



692 D Determining the Optimal Number of Clusters

Determining the Optimal Number of Clusters, Figure 1
Iterative clustering procedure. GOS global optimum search
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placed gene is removed and used as a seed for a new
cluster. This gene has already been subjected to a mem-
bership search, so there is no reason for it to belong to
any of the older clusters. The primal and master prob-
lems are iterated and the number of clusters builds up
gradually until the optimal number is attained.

Iterative Extension Indication of strong biological
coherence is characterized by good P values based on
gene ontology resources and the proportion of genes
that reside in such clusters. As an extension, we would
like to mine for the maximal amount of relevant in-
formation from the gene expression data and sieve out
the least relevant data. This is important because infor-
mation such as biological function annotation drawn
from the cluster content is often used in the further
study of coregulated gene members, common reading
frames, and gene regulatory networks. From the clus-
tered genes, we impose a coherence floor, based on
some or all of the possible performance factors such
as functional annotation, cluster specificity, and corre-
lation, to demarcate genes that have already been well
clustered. We then iterate to offer the poorly placed
genes an opportunity to either find relevant member-
ship in one of the strongly coherent clusters, or regroup
amongst themselves to form quality clusters. Through
this process, a saturation point will be reached eventu-
ally whereby the optimal number of clusters becomes
constant as the proportion of genes distributed within
clusters of high biological coherence levels off. Figure 1
shows a schematic of the entire clustering algorithm.
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A classification problem is concerned with categorizing
a data point (entity) into one of G (G � 2) mutually
exclusive groups based upon m (positive integer) spe-
cific measurable features of the entity. A classification
rule is typically constructed from a sample of entities,
where the group classifications are known or labeled
(training or supervised learning). Then it can be used
to classify new unlabeled entities. Many classification
methods are based on distance measures. A common
approach is to find a hyperplane to classify two groups
(G D G1

S
G2). The hyperplane can be represented in

a form of A! D � , where A denotes an n � m input
data matrix, n is the total number of input data points,
and m is the total number of data features/attributes.
The classification rule is then made by the weight vec-
tor ! to map data points onto a hyperplane, and the
scalar � , which are best selected by solving a mathe-
matical programming model. The goal is to have en-
tities of Group 1 (G1) lie on one side of the hyperplane
and entities of Group 2 (G2) lie on the other side. Sup-
port Vector Machines (SVM) is the most studied hy-

perplane construction method. The SVM concept is to
construct a hyperplane that minimizes the upper bound
on the out-of-sample error. The critical step of SVM is
to transform (or map) data points on to a high dimen-
sional space, known as kernel transformation, and clas-
sify data points by a separating plane [9]. Subsequently,
the hybrid linear programming discriminant model is
proposed by [12,13,20]. The hybrid model does not de-
pend on data transformation, where the objective is
to find a plane that minimizes violations and maxi-
mizes satisfactions of the classified groups. Glover [19]
proposed a mixed integer programming (MIP) formu-
lation for the hybrid model by adding binary vari-
ables for misclassified entities. Other MIP formulations
that are subsequently developed include [1,15,16]. Re-
cently, a new technique that use multiple hyperplanes
for classification has been proposed by [17]. This tech-
nique constructs a piecewise-linear model that gives
convex separating planes. Subsequently, Better, Glover
and Samorani [6] proposed multi-hyperplane formula-
tions that generate multiple linear hyperplanes simulta-
neously with the consequence of forming a binary deci-
sion tree.

In classification, the selection of data’s features/
attributes is also very critical. Many mathematical pro-
gramming methods have been proposed for selecting
well represented features/attributes. Bennett and Man-
gasarian [5,23] gives a feature selection formulation
such that the model not only separates entities into two
groups, but also tries to suppress nonsignificant fea-
tures. In a more recent study, Chaovalitwongse et al.
(2006) proposed Support Feature Machine (SFM) for-
mulations can be used to find a set of features that gives
the highest classification performance [10].

Baysian decision method has also been widely stud-
ied in classification. However, there are only few stud-
ies incorporating the Baysian model with mathematical
programming approaches. Among those studies, As-
parouhov and Danchev [4] formulates a MIP model
with binary variables, which are conformed with the
Bayesian decision theory. In the case of multi-group
classification, Anderson [2] developed a mathematical
formulation that incorporates the population densities
and prior probabilities of training data. This model
yields classification rules for multi-groups with a reject
option, (a set having entities that does not belong to any
group) [22].
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Deterministic OptimizationModels

Support Vector Machines

Support Vector Machines (SVM) is aimed at finding
a hyperplane that separates the labeled input data into
two groups, G1 and G2. Then the optimal plane can
be used for classifying new data point. The hyperplane
can be mathematically expressed by A! D � , where
! 2 <m is anm-dimensional vector of real numbers,m
is total number of attributes/features used to represent
a data entity, and � 2 <n is a scalar vector. All elements
fromG1 andG2 will be separated by this hyperplane un-
der the assumption that the sets G1 and G2 are separa-
ble. Define margin as the minimum distance from the
plane to elements in a group, G1 or G2. The objective
function of SVM is to find a separating hyperplane with
the largest margin. The data set G1 can be represented
by the matrix Ai 2 <

k�m ; i 2 G1 and the set G2 can
be represented by the matrix Aj 2 <

(n�k)�m ; j 2 G2,
where k are number of data points (entities) of group
G1. Two open half spaces defined by the hyperplane are
fAi! < �g and fAj! > �g. One contains elements
of G1 and the other contains elements of G2. There-
fore, a linear programming (LP) problem can be formu-
lated to determine the optimal values of vectors ! and
� . To construct valid inequalities for linear program-
ming, we rescale the variables (!; �), by dividing them
by the positive value min

i2G1; j2G2
fAi!��;�Aj!C�g. Let

e denote a vector of ones, and the resulting inequalities
become

Ai! � e� C e; Aj! � e� � e : (1)

The performance of the SVM relies heavily on the
kernel transformation, the data mapping to a high di-
mension. SVM can also incorporates nonlinear map-
ping �(�). If the new dimension is sufficiently high
enough, the data from two classes can always be sep-
arated by a hyperplane [9,11]. Examples of SVM kernel
functions include linear, polynomial, radial basis func-
tion (RBF) and sigmoid. Recently, Shimodaira et al. [24]
has proposed the Dynamic Time-Alignment Kernel for
time series data.

Robust LP for SVM

It is important to note that the above LPmodel assumes
that Ai and Aj are perfectly separable, which is usually

not a case in practice. In other words, it is possible that
the inequalities in Eq. (1) provide no solution as the
data are not perfectly separable. Bennett andMangasar-
ian [5] proposed an improved formulation that mini-
mizes an average misclassifications given by

min
!;�;y;z

eT y
m
C

eTz
k

s:t: Ai! � e� � e � y;

� Aj! C e� � e � z;

y � 0; z � 0 :

It is easy to see that the variables y and z are, in fact,
the vectors representing the violations of inequalities in
Eq. (2) and minimizing the objective function would
lead to the minimum average violation.

Feature Selection with SVM

We note that an extension of the robust LP formulation
can be used for feature selection [5,23]. A new term is
added in the objective function in the robust LP model
to suppress the components of !. This would try to
eliminate all unnecessary features. Let v denote the ab-
solute value of the weight vector !, log is the base of the
natural logarithm, and � 2 (0; 1). The mathematical
program with a concave objective function and linear
constraints for feature selection is given by

min
!;�;y;z;v

(1 � �)( e
T y
m C

eT z
k )C �eT (e � log�˛v )

s:t: Ai! � e� � e � y;
�Aj! C e� � e � z;
y � 0; z � 0;
�v � ! � v :

Note that when � D 0, the model gives a plane that
separates Ai and Aj without considering feature sup-
pression. On the other hand, when � > 0, the ob-
jective not only tries to separate Ai and Aj, but also
tries to eliminate as many of ! components as possi-
ble. Specifically, for each vi (i D 1; : : : ; n), we min-
imize an exponential smoothing of the step function
(1� log�˛v i ). This step function enables the deletion of
irrelevant components of !. There also exists a finitely-
terminating algorithm that solves this problem using
successive linear programming [8].
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Hybrid LP Discriminant Model

A hybrid LP discriminant model is proposed
in [12,13,20]. This model is guaranteed to give the
optimal solution regardless of the nature of the data.
Therefore, the solution is invariant to transformations.
This model is improved to overcome many shortcom-
ings of contemporary linear discriminant formulations,
which are reviewed and discussed in [21]. Recall that
m is the number of attributes, all data points in G1 are
represented by an k � m matrix Ai ; i 2 G1, and all
data points in G1 are represented by an (n � k) � m
matrix Aj; j 2 G2. For the simplicity of mathematical
representation, the membership inG1 or G2 can be rep-
resented by i 2 G1 or i 2 G2, respectively. This model
will give a hyperplane of the form AT! D � , where
the model seeks for the optimal weight vector !, and
a scalar � , where data points of Group 1 lie on one side
of the hyperplane and data points of Group 2 lie on the
other side (i. e., Ai! < �; i 2 G1 and Ai! > �; i 2 G2).
Let yi and zi represent external and internal deviation
variables referring to the point violations and satisfac-
tions of the classification rule. More specifically, they
are the magnitudes of the data points lying outside or
inside their targeted half spaces. The objective is to
minimize violations and maximize the satisfactions of
the classified groups. Thus, in the objective function,
variable hi’s discourage external deviations and vari-
able ki’s encourage internal deviations. Then hi � ki
for i D 0 and i 2 G, must be satisfied. The hybrid
model is given by

min h0y0 C
X
i2G

hi yi � k0z0 �
X
i2G

kizi

s.t. Ai! � y0 � yi C z0 C zi D �; i 2 G1

Ai! C y0 C yi � z0 � zi D �; i 2 G2

z0 C
X
i

zi D 1; i 2 G

y0; z0 � 0
yi ; zi � 0; i 2 G

!; � unrestricted:

(2)

We note that Eq. (2) is a normalization constraint
that is necessary for avoiding a trivial solution where all
! j D 0 and � D 0. Glover [18] identifies more nor-
malization methods to conquer the problem with null
weighting.

MIP Discriminant Model

There are several related mixed integer formulations in
the literature [1,15,16]. In general, due to the computa-
tional requirements, these standard MIP formulations
can only be applied to classification problems with a rel-
atively small number of observations. Glover [19] pro-
posed a compact mathematical program for discrimi-
nant model, which is a variant of the above-mentioned
hybrid LPmodel. This objective of this model is to min-
imize the number of misclassified entities. TheMIP dis-
criminant model is given by

min
X
i2G

zi

s:t: Aix �Mzi C ˇi D b; i 2 G1

Aix CMzi � ˇi D b; i 2 G2

ˇi � 0; i 2 G
zi 2 f0; 1g; i 2 G

x; b unrestricted;

where ˇi are slack variables, and M is a large constant
chosen so that when zi D 1, Aix � bCMzi will be re-
dundant for i 2 G1 and Aix � b � Mzi will be redun-
dant for i 2 G2. This model can incorporate a normal-
ization constraint, (�n2

P
i2G1

Ai C n1
P

i2G2
Ai)x D

1, where n1 and n2 are the number of entities in G1 and
G2, respectively.

Multi-hyperplane Classification

Multi-hyperplane formulations, given by Better et
al. [6], generate multiple linear hyperplanes simultane-
ously with the consequence of forming a decision tree.
The hyperplanes are generated from an extension of the
Discriminant Model proposed by Glover [18]. Instead
of using kernel transformation that projects data into
a high dimensional space to improve the performance
of SVM, the multi-hyperplane approach approximates
a nonlinear separation by constructing multiple hyper-
planes. Let d D 0 when we are at a root node of a bi-
nary tree, where none of the classifications have been
done. Let d D D when the tree has two leaf nodes cor-
responding to the final separation step. In order to ex-
plain the model, we define the following terms.
� Successive Perfect Separation (SPS) is a procedure

that forces all elements of Group 1 (G1) and Group 2
(G2) to lie on one side of the hyperplane at each node
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for any depth d 2 f0; : : : ;D�1g. SPS is a special use
of a variant based on a proposal of Glover [18].

� SPS decision tree is a tree that results from the two-
group classification iteratively applying the SPS pro-
cedure. The root node (d D 0) contains all the enti-
ties in the data set, and at d D D the two leaf nodes
correspond to the final separation step.

For a given maximum depth D, an initial multi-
hyperplane model considers each possible SPS tree type
of depth d, for d D 0; : : : ;D� 1. A root node is viewed
as a “problem” node where all data points from both
groups need to be separated. A leaf node, on the other
hand, is considered to be a “decision” node where data
points are classified into two groups. Define slicing vari-
ables sli for i 2 f1; : : : ;D � 1g. There are total of
D � 1 slicing variables needed for a tree having max-
imum depth D. Specifically, at depth d D 1, sl1 D 0 if
the “left” node constitutes a leaf node while the “right”
node constitutes a root (or problem) node.Without loss
of generality, we herein consider D D 3 for the initial
multi-hyperplane model. The mathematical model for
multi-hyperplane SVM can be formally defined as fol-
lows.

Let M and " denote large and small positive con-
stants, respectively, and G denote a set of the union of
entities in G1 and G2. Suppose there are n entities in the
training data set. Define a binary variable z�i D 0 if ob-
ject i is correctly classified by the “tree”, otherwise z�i D
1. Define a binary variable and z�hi D 0 if object i is cor-
rectly classified by “hyperplane h”, otherwise z�hi D 1.
The multi-hyperplane SVM model also includes tradi-
tional hyperplane constraints for each depth d of the
tree and the normalization constraint, which is similar
to the mixed integer programmingmodel in [18]. Then,
" is added to prevent data points from lying on the hy-
perplane. Tree-type constraints are included to identify
the optimal tree structure for the data set, which will
be in part of the optimal classification rule. Binary vari-
ables yi are used for tree types (0,1) and (1,0) to acti-
vate or deactivate either-or constraints. The SPS deci-
sion tree formulation for the depth D D 3 is given by

min
nX

iD1

z�i

s:t:Aixd � Mzdi C ˇi D bd � "

i 2 G1; d D 1; 2; 3 (3)

Aixd CMzdi � ˇi D bd C "

i 2 G2; d D 1; 2; 3 (4)

M(sl1 C sl2)C z�i
� z1i C z2i C z3i � 2 i 2 G1 (5)

M(sl1 C sl2)CMz�i
� z1i C z2i C z3i i 2 G2 (6)

M(2 � sl1 � sl2)CMz�i
� z1i C z2i C z3i i 2 G1 (7)

M(2 � sl1 � sl2)C z�i
� z1i C z2i C z3i � 2 i 2 G2 (8)

M(1C sl1 � sl2)C z�i � z1i � Myi
i 2 G1 (9)

M(1C sl1 � sl2)CMz�i
� z2i C z3i � M[1 � yi] i 2 G1 (10)

M(1C sl1 � sl2)C z�i � z1i
i 2 G2 (11)

M(1C sl1 � sl2)C z�i
� z2i C z3i � 1 i 2 G2 (12)

M(1C sl1 � sl2)C z�i � z1i
i 2 G1 (13)

M(1C sl1 � sl2)C z�i � z2i C z3i � 1

i 2 G1 (14)

M(1C sl1 � sl2)C z�i � z1i � Myi
i 2 G2 (15)

M(1C sl1 � sl2)CMz�i
� z2i C z3i � M[1 � yi] i 2 G2 (16)
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nX
jD1

3X
dD1

x jd D 1 (17)

z�i 2 f0; 1g; zd i 2 f0; 1g; yi 2 f0; 1g;

i 2 G; d D 1; 2; 3

slk 2 f0; 1g k D 1; 2; x; b unrestricted,

where the constraints in Eqs. (3)-(4) are the hyper-
plane constraints, Eqs. (5)-(6) are the constraints for
tree type (0,0), Eqs. (7)-(8) are the constraints for tree
type (1,1), Eqs. (9)-(12) are the constraints for tree type
(0,1), Eqs. (13)-(16) are the constraints for tree type
(1,0), and Eq. (17) is the normalization constraint. This
small model with D D 3 performs well for small depths
and has computational limitations. The reader should
refer to [6] for a greater detail of an improved and gen-
eralized structure model for all types of SPS trees.

Support Feature Machines

Support Feature Machines (SFM) proposed in [10] is
a mathematical programming technique used to iden-
tify a set of features that gives the highest performance
in classification using the nearest neighbor rule. SFM
can be formally defined as follows. Assume there are n
data points, each withm features, we define the decision
variables x j 2 f0; 1g ( j D 1; : : : ;m) indicating if fea-
ture j is selected by SFM and yi 2 f0; 1g (i D 1; : : : ; n)
indicating if sample i can be correctly classified by SFM.
There are two versions of SFM, voting and averaging.
Each version uses different weight matrices, which are
provided by user’s classification rule.

The objective function of voting SFM is to maximize
the total correct classification as in Eq. (18). There are
two sets of constraints used to ensure that the training
samples are classified based on the voting nearest neigh-
bor rule as in Eqs. (19)-(20). There is a set of logical
constraints in Eq. (21) used to ensure that at least one
feature is used in the voting nearest neighbor rule. The
mixed-integer program for voting SFM is given by:

max
nX

iD1

yi (18)

s.t.
mX
jD1

ai jx j �

mX
jD1

x j

2
� Myi

for i D 1; : : : ; n (19)

mX
jD1

x j

2
�

mX
jD1

ai jx j C � � M(1 � yi )

for i D 1; : : : ; n (20)

mX
jD1

x j � 1 (21)

x 2 f0; 1gm; y 2 f0; 1gn ;

where ai j D 1 if the nearest neighbor rule correctly
classified sample i at electrode j, 0 otherwise, n is total
number of training samples, m is total number of fea-
tures,M =m/2, and � is a small positive number used to
break a tie during the voting (0 < � < 1/2).

The objective function of averaging SFM is to maxi-
mize the total correct classification as in Eq. (22). There
are two sets of constraints used to ensure that the train-
ing samples are classified based on the distance aver-
aging nearest neighbor rule as in Eqs. (23)-(24). There
is a set of logical constraints in Eq. (25) used to ensure
that at least one feature is used in the distance averag-
ing nearest neighbor rule. The mixed-integer program
for averaging SFM is given by:

max
nX

iD1

yi (22)

s.t.
mX
jD1

d̄i j x j �

mX
jD1

di jx j � M1i yi

for i D 1; : : : ; n (23)

mX
jD1

di jx j �

mX
jD1

d̄i j x j � M2i (1 � yi )

for i D 1; : : : ; n (24)

mX
jD1

x j � 1 (25)

x 2 f0; 1gm; y 2 f0; 1gn ;

where di j is the average statistical distance between
sample i and all other samples from the same class at
feature j (intra-class distance), d̄i j is the average statis-
tical distance between sample i and all other samples
from different class at feature j (inter-class distance),
M1i D

Pm
jD1 di j , and M2i D

Pm
jD1 di j .
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Probabilistic OptimizationModels

The deterministic classification models in the previous
section make a strong assumption that the data are sep-
arable. In the case that the data may not be well sepa-
rated, using the deterministic models may lead to a high
misclassification rate. The classification models that in-
corporate probabilities may be a better option for such
noisy data. When the population densities and prior
probabilities are known, there are probabilistic models
that consider constrained rules with a reject option [2]
as well as a Baysian-based model [4].

Bayesian-Based Mathematical Program

The Baysian-based mathematical program that are con-
formedwith the Bayesian decision theoretic approach is
proposed by Asparouhov and Danchev [4]. The model
can be formally defined as follows. Denote c 2 < as
a cut-off value, x 2 Bm as a vector of m binary val-
ues, and ! 2 <m is a decision variable having m-
dimensional vector of real numbers. A preprocessing
needs to be performed so that if xT! � c, the entity
x belong to class 1; otherwise it belongs to class 2. Sup-
pose we have a set of n data points, n1 data points are
in G1 and n2 data points are in G2, (n D n1 C n2).
Let s be a non empty multinomial cell. Denote nis as
the number of design set observation from the class i,
where i D 1; 2, falling in this cell s. There are 2m num-
ber of multinomial cells. Each cell is unique and all ob-
servations that belongs to it have exactly the same val-
ues of them binary variables. DenoteM as a sufficiently
large positive real number, and � as a small positive
number. In addition to having a geometric interpreta-
tion, this formulation is inspired from Bayesian deci-
sion theoretic approach and having prior probabilities,
ni /n > 8i, incorporated. Experimental studies in [4]
suggest this Baysian-based model can give better per-
formance than other contemporary linear discriminant
models. The Baysian-based classification formulation is
given by

min
!;zs;c

X
s

(jn1s � n2s j zs Cmin(n1s ; n2s))

s:t: xTs ! � Mzs � c if n1s � n2s
xTs ! CMzs � c C " if n1s < n2s
n1s C n2s ¤ 0

zs 2 f0; 1g; ! 2 <m ; c 2 < :

Probabilistic Models for Classification

An optimization model proposed by Anderson [2]
incorporates population densities, prior probabili-
ties from all groups, and misclassification proba-
bilities. This method is aimed to find a partition
fR0; R1; : : : ; RGg of Rem where m is the number of fea-
tures. This method naturally forms a multi-group clas-
sification. The objective is to maximize the probability
of correct allocation subject to constraints on the mis-
classification probabilities. The mathematical model
can be formally defined as follows. Let f h, h D 1; : : : ;G,
denote the group conditional density functions. Let 
g

denote the prior probability that a randomly selected
entity is from group g, g D 1; : : : ;G, and ˛hg , h ¤ g,
are constants between 0 and 1. The probabilistic classi-
fication model is then given by

min
GX

gD1


g

Z

Rg

fg(w)dw

s:t:
Z

Rg

fh(w)dw � ˛hg

for h; g D 1; : : : ;G; h ¤ g :

The optimal rule that can be used as a classification
method is given by

Rg D

�
x 2 <k : Lg(x) D max

h 2 0;1;:::;G
Lh(x)

	
; (26)

where g D 0; : : : ;G, L0(x) D 0, and Lh(x) D

h fh(x) �

PG
iD1;i¤h �i h fi(x), for h D 1; : : : ;G. In

general, there exist nonnegative constants �i h ; i; h 2
1; : : : ;G; i ¤ h, such that this optimal rule holds. The
procedure for deriving a discriminant rule is composed
of two stages. The first stage is to compute f̂h, which are
estimated density functions f h, and 
̂h , which are esti-
mated prior probabilities 
h, for h D 1; : : : ;G. There
are many methods proposed for density estimation.
The second stage is to estimate the optimal �0jh s, given
the estimates f̂ 0hs and 
̂

0
hs. For estimating the �0jh s, there

is a MIP approach proposed in [14], and a LP approach
proposed in [22].

The MIP approach uses binary variables to record
whether each entity was allocated to each region. This
approach measures the probabilities of correct classi-
fication and misclassification for any candidate set of
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�0i h s, which are calculated as the proportion of train-
ing samples that fall into each of the regions. The ob-
jective is to maximize a linear combination of vari-
ables representing correct allocation. The proportions
of training samples misclassified were incorporated in
constraints on misclassification probabilities. On the
other hand, the LP approach does not have binary vari-
ables to incorporate proportions of misclassified train-
ing data points, and to provide a mechanism for mod-
eling a priori bounds on misclassification probabilities.
Instead, the LP approach provides a mechanism for es-
timating �0i hs that balances the minimization of mis-
classifications and the maximization of correct classifi-
cations. This can be demonstrated as follows. Redefine
the function Lh ; h D 1; : : : ;G, as

Lh(x) D 
h ph(x) �
GX

iD1;i¤h

�i h pi (x) ; (27)

where pi (x) D fi(x)/
PG

tD1 ft(x). This is analogous to
the definition of original pi in Eq. (26) since Rg can be
expressed as Rg D fx 2 <k : Lg(x) � Lh(x); h D
0; : : : ;Gg, if and only if,

��
1/
PG

tD1

�
ft(x)

�
Lg(x) ���

1/
PG

tD1

�
ft(x)

�
Lh(x):Note that this new definition

of Lh is just an assumption. In addition, we also as-
sume that we have a training sample of n data points
whose group classifications are known. There are ng
data points in group g and

PG
gD1 ng D n. For no-

tational convenience, let � D 1; : : : ;G and Ng D

1; : : : ; ng . Each data point x has k attributes, denoted
as xg j 2 <k for g D 1; : : : ;G and j D 1; : : : ; ng .

MIP Formulation for Anderson’s Model

In order to find the optimal estimation of the second
stage for solving Anderson’s formula in Eq. (27), after
the estimates f̂ 0hs and 
̂

0
hs are given, the optimal �0jh s

is the final goal. For estimating the �0jh s, Gallagher et
al. [14] proposed a MIP formulation. Same notation
used in Anderson’s formula in last section is applied
here. The model ensures that the proportion of train-
ing data points and total data points ng of group g in
region Rh is less than or equal to a pre-specified per-
centage, ˛hg > (0 < ˛hg < 1), for h; g 2 � and h ¤ g.
The original formulation of the approach is a nonlinear

MIP model given by

min
Lhg j;yg j;	ih ;ug j

X
g2�

X
j2Ng

ug g j

s:t:

Lhg j D 
h p̂h(xg j) �
X

i2�nfhg

�i h p̂i (xg j) (28)

for h; g 2 �; j 2 Ng

yg j D max
˚
0; Lhg j : h D 1; : : : ;G

�
(29)

for g 2 �; j 2 Ng

yg j � Lgg j � M
�
1 � ugg j

�
(30)

for g 2 �; j 2 Ng

yg j � Lhg j � "(1� uhg j) (31)

for h; g 2 �; h ¤ g; j 2 Ng

X
j2Ng

uhg j � b˛hgngc (32)

for h; g 2 �; h ¤ g

�1 < Lhg j <1 for h; g 2 �; j 2 Ng

yg j � 0 for g 2 �; j 2 Ng

�i h � 0 for i 2 Ng ; h 2 �

ug j 2 f0; 1g for g 2 �; j 2 Ng

The above nonlinear mixed integer programming
model can be transformed to an equivalent linear mixed
integer model. The transformation is made by replacing
the constraint in Eq. (29) with the following constraints:

yg j � Lhg j h; g 2 �; j 2 Ng

ỹhg j � Lhg j � M(1 � vgh j) h; g 2 �; j 2 Ng

ỹhg j � 
h p̂h(xg j)vhg j h; g 2 �; j 2 NgX
h2G

vhg j � 1 g 2 �; j 2 Ng

X
h2G

ỹhg j D yg j g 2 �; j 2 Ng ;
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where ỹhg j � 0 and vgh j 2 f0; 1g, for h; g 2 �; j 2 Ng .
The constraints in Eq. (28) define the decision variable
Lhg j as a function value of Lh at xg j . The variable yg j
in Eq. (29) gives a result that xg j lies in region Rh, if
and only if, yg j D Lhg j . The binary variable uhg j is
used to indicate whether or not xg j lies in region Rh.
The constraints in Eq. (30) together with the objective
function ensure that ugg j D 1, if and only if, the jth
entity from group g is correctly allocated to group g.
The constraints in Eqs. (31)-(32) ensure that at most
b˛hgngc data points of group g are allocated to group
h, h ¤ g. Note that the condition of indicator vari-
ables, uhg j D 0, h ¤ g, implies that xg j … Rh by
Eq. (31), but the converse need not hold. As a result,
the number of misclassifications may be overcounted.
To force the converse hold, (that is uhg j D 1, if and
only if, xg j 2 Rh ;8h; g 2 �), one can include the
following constraints: yg j � Lhg j � M

�
1 � uhg j

�
for

h; g 2 �; j 2 Ng . However, the addition of such con-
straints substantially increases the solution times and
the actual amount of overcounting is minimal. M and
" are large and small positive constants, respectively.
Since this MIP formulation is very difficult to solve,
especially it involves 2GN binary variables. There is
a preprocessing strategy suggested in [14] by aggregat-
ing variables and constraints. Special branching strate-
gies for solving the MIP model is also suggested in [14].
Those strategies include branching on the smallest in-
dexed fractional-valued binary variable, branching on
the most infeasible fractional-valued binary variable,
pseudo reduced-cost branching schemes, and strong
branching [3,7].

LP Formulation for Anderson’s Model

In order to estimate the �0jh s for solving Anderson’s
formula in the second stage in Eq. (27), Lee et al. [22]
proposed the Linear Programming (LP) model that
minimizes a penalty function in order to allocate each
training entity to its correct group or to the reserved-
judgment region. Note that same notation used in the
MIP approach and Anderson’s formula is consistent
here. The method is given by

min
Lhg j;!g j;yg j;	ih

X
g2�

X
j2Ng

�
c1!g j C c2yg j

�

s:t:

Lhg j D 
h p̂h(xg j) �
X

i2�nfhg

�i h p̂i (xg j) (33)

for h; g 2 �; j 2 Ng

Lgg j � Lhg j C !g j � 0 (34)

for h; g 2 �; h ¤ g; j 2 Ng

Lgg j C !g j � 0 (35)

for g 2 �; j 2 Ng

� Lhg j C yg j � 0 (36)

for h; g 2 �; j 2 Ng

�1 < Lhg j <1 for h; g 2 �; j 2 Ng

!g j � 0 for g 2 �; j 2 Ng

yg j � 0 for g 2 �; j 2 Ng

�i h � 0 for i 2 Ng ; h 2 � :

The constraints in Eq. (33) define the decision vari-
able Lhg j as a function value of Lh for xg j . If the op-
timal solution yields !g j D 0, for some (g, j) pair,
the constraints in Eqs. (34)-(35) imply that Lgg j D

maxf0; Lhg j : h 2 �g. Thus, when !g j D 0, it means
that the jth entity from group g is correctly classified. If
yg j D 0 is the case for some (g; j) pair, then the con-
straints in Eq. (36) implies that Lgg j D maxf0; Lhg j :
h 2 �g D 0. Hence, the jth entity from group g is
placed in the reserved-judgment region. If both !g j and
yg j are positive, the jth entity from group g is misclas-
sified. The optimization solver is attempting either to
correctly classify training data points (!g j D 0), or to
place them in the reserved-judgment region (yg j D 0).
The optimizer’s emphasis can be realized by varying the
weights c1 and c2. It is possible for both !g j and yg j to
be zero. One should decide how to interpret in such sit-
uation. Recall the optimal rule in Eq. (26), which con-
strains that if x belongs to the reserved judgment region
(h D 0) then it gives the function value L0(x) D 0.
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Let N be the set of natural numbers. Let N 2 N and RN

be the N-dimensional real Euclidean space, let CN be
the N-dimensional complex Euclidean space, R, C are
used in place of R1, C1 respectively. Let R+ = {x 2 R: x
� 0}. Let x 2 R; then |x| denotes the absolute value of x.
Let x, y 2 RN ; then (x, y) denotes the scalar product in
RN and k x k denotes the euclidean norm in RN . Let SN

= {x 2 RN+1: k x k = 1}.
LetD� RN be a connected domain, let F:D!R be

a given function. The following problem is considered:

min
x2D

F(x): (1)

When D = RN problem (1) is called the global un-
constrained optimization problem. When D � RN it is
called the global constrained optimization problem.

Without loss of generality one considers only the
minimization problem, that is, problem (1), since the
maximization problem can be easily reduced to a mini-
mization problem.

To solve problem (1) means to find a point x� 2 D
such that F(x�)� F(x), 8x 2 D.

A large number of problems with great theoretical
and practical interest can be formulated as global opti-
mization problems, that is, as problem (1).

In this article the global optimization problems are
studied only from the point of view of numerical opti-
mization and in particular of numerical methods based
on differential equations. Many other fruitful points of
view are possible to study that include the set of global
minimizers of F on D or in general the set of critical
points of F onD depending on the hypotheses made on
F and D.

A method to solve problem (1) in the sense of nu-
merical optimization is usually an iterative scheme that
from a given initial guess x0 2D is able to compute a se-
quence {xn 2 D: n 2 N} such that xn ! x� when n!
1.

Problem (1) can be easily solved in some special
cases, that is, when the function F and the domain D
have special forms, for example one can recall the fol-
lowing two important cases:
� linear programming problem: F linear function, D

convex polyhedron, i. e., D � RN is defined implic-
itly by means of equalities and inequalities between
linear functions;

� convex programming problem: F convex function, D
� RN convex region.

One notes that the linear programming problem can
be considered as a special case of the convex program-
ming problem. For both cases effective methods to solve
problem (1) are known, e. g., for the linear program-
ming problem the simplex method, see [7], and for
the convex programming problem the Newton method
coupled with some strategy to treat the constraints that
define D, for example active set strategy, see [9].

In general, problem (1) is a difficult one since the
property of being a global minimizer is not a local prop-
erty. That is, a global minimizer x� cannot be recog-
nized from local properties of the function F at x�, such
as the value of F and its derivatives at x�. Numerical al-
gorithms to recognize global properties are unusual and
in general computationally expensive.

For example, let D = R,m, ˛ 2 R, ı > 0, one consid-
ers the following two functions:

F1(x) D �
1

1C x2
;

F2(x) D �
1

1C x2

C m

(
e

1
(x�˛)2�ı2 e

1
ı2 ; x 2 (˛ � ı; ˛ C ı);

0; x … (˛ � ı; ˛ C ı):

Function F1 has in x = 0 the unique local minimizer
which is also the global minimizer, i. e. x� = 0. Let m
< �1, 0 < ı < |˛|; then function F2 has several critical
points including two local minimizers, one is x = 0 and
the other is x = x2 2 (˛ � ı, ˛ + ı). Moreover the global
minimizer of F2 is x = x� = x2. One notes that F1, F2 are
smooth functions and that they coincide, for every x 2
R \ (˛ � ı, ˛ + ı) where ı > 0 is arbitrary.

Let D = RN , let F: D ! R be a continuously dif-
ferentiable function, let rF be the gradient of F, let
x 2 D be such that (rF)(x) 6D 0 then the vector �
(rF)(x) gives the direction of steepest descent for the
function F at the point x. One can consider the follow-
ing system of differential equations:

dx
dt

(t) D �(rF)(x(t)); t > 0; (2)

x(0) D x0: (3)

Under some hypotheses on F, the solution of prob-
lem (2), (3) is a trajectory in RN starting from x0 and
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ending in the critical point x�loc(x
0) of F whose attrac-

tion region contains x0. Using a numerical integration
scheme for (2), (3) one can obtain a numerical opti-
mization method, for example choosing the Euler inte-
gration scheme with variable stepsize from (2), (3) one
obtains the so-called steepest descent algorithm. Let �k 2
RN be the approximation of x(tk), k 2 N, where t0 = 0,
0 < tk < tk+1 < +1, k = 1, 2, . . . , and tk ! +1 when k
!1, obtained with a numerical optimization method
coming from (2), (3). Suppose {�k k2N} is a sufficiently
good approximation of the solution x(t), t > 0 of (2), (3)
one has limk!1�

k = limt! +1 x(t) = x�loc(x
0), thus the

numerical optimization methods obtained from (2), (3)
compute critical points that depend on the initial guess
x0. So that these critical points usually are not global
minimizers of F.

One can consider numerical optimization methods
due to other differential equations instead of (2), that
is differential equations taking in account higher or-
der derivatives of F or of x(t). However the minimizers
computed with these numerical optimization methods
depend only on local properties of the function F, thus
in general they will not be global minimizers of F. So
that methods based on ordinary differential equations
are inadequate to deal with problem (1).

In this article it is described how to use stochas-
tic differential equations to avoid this difficulty. In fact
one wants to destabilize the trajectories generated by
problem (2), (3) using a stochastic perturbation in or-
der to be able to reach global minimizers. This must
be an appropriate perturbation, that is the correspond-
ing perturbed trajectories must be able to leave the at-
traction region of a local minimizer of F to go in an
attraction region of another minimizer of F obtaining
as t ! +1 the solution of problem (1). This is done
by adding a stochastic term, i. e., a Brownian motion
on the right-hand side of equation (2). Moreover this
stochastic term takes into account the domain D, when
D � RN . This is done introducing the solution of the
Skorokhod reflection problem.

In the second section one gives some mathematical
background about stochastic differential equations that
is necessary to state the results of the third and fourth
sections. In the third section, the unconstrained version
of problem (1) is treated, i. e.,D = RN . In the fourth sec-
tion, the constrained version of problem (1) is treated,
i. e., D� RN . In both these sections one gives methods,

convergence analysis and discussion when possible of
a relevant software library. In the last section one gives
some information about new application areas of global
optimization such as graph theory and game theory.

Mathematical Background

Let ˝ � R, ˙ be a �-field of subsets of ˝ and P be
a probability measure on ˙ . The triple (˝;˙; P) is
called a probability measure space, see [5] for a detailed
introduction to probability theory. Let ˝ 0 � R, � be
a topology of subsets of˝ 0. Then X :˝!˝ 0 is a ran-
dom variable if {X 2 A} 2˙ for every A 2 � .

The distribution function GX : R! [0, 1] of X is de-
fined by GX(x) D PfX � xg, x 2 R and one denotes
with gX its density. The expected value or the mean
value of X is defined as follows:

m(X) D
Z

R
xGX( dx) D

Z
R
xgX(x) dx (4)

and the variance of X is given by:

v(X) D m((X � m(X))2): (5)

For example, a random variable X has discrete distri-
bution, or is concentrated on x1, . . . , xn, when gX(x) =Pn

iD1 piı(x � xi), where pi > 0, xi 2 ˝ 0, i = 1, . . . , n,Pn
iD1 pi = 1 and ı is the Dirac delta. Given m 2 R, v >

0 a random variable has normal distribution when

gX(x) D
1

p
2
v

e�
(x�m)2

2v ;

one notes that m(X) =m and v(X) = v.
A stochastic process is a family of random variables

depending on a parameter t, that is, {X(t):˝!˝ 0, t �
0}. A Brownian motion is a stochastic process {w(t): t �
0} having the following properties:
� Pfw(0) D 0g D 1;
� for every choice of ti, i = 1, . . . , k, 0� ti < ti+1 < +1,

i = 1, . . . , k� 1, the increments w(ti+1) � w(ti), i = 1,
. . . , k� 1, are independent and normally distributed
random variables with mean value equal to zero and
variance equal to ti+1 � ti.
An N-dimensional Brownian motion is a N-dimen-

sional process

fw(t) D (w1(t); : : : ;wN(t)) : t � 0g

where its components {wi(t):˝!˝ 0, t � 0}, i = 1, . . . ,
N, are independent Brownian motions. The Brownian
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motion is a good mathematical model to describe phe-
nomena that are the superposition of a large number
of chaotic elementary independent events. The most
famous example of Brownian motion is the motion
of pollen grains immersed in a fluid, the grains have
a chaotic perpetual motion due to the collisions with
the molecules of the fluid, see [15, p. 39].

Let ˘ = ˝ 0 × � � � × ˝ 0 � RN , where × denotes the
Cartesian product of sets. Let � 0 be a topology of sub-
sets of ˘ . Let s, t, be such that 0 � s � t, let x 2 ˘ ,
A2� 0, then the transition distribution function of aN-
dimensional stochastic process {X(t) : t � 0} is defined
as follows:

T(s; x; t;A) D PfX(t) 2 A and X(s) D xg: (6)

When T can be written as:

T(s; x; t;A) D
Z
A
p(s; x; t; y) dy (7)

for every 0 � s � t, x 2 ˘ , A 2 � 0 then the function p
is called the transition probability density of the process
{X(t): t � 0}.

Finally, if there exists a density distribution function

 that depends only on x 2˘ such that:


(x) D lim
t!C1

p(s;u; t; x); (8)

then 
 is called the steady-state distribution density of
the process {X(t): t � 0}.

One considers the following stochastic differential
equation:

dZ(t) D ˛(Z(t); t) dt C ˇ(Z(t); t) dw(t);

t > 0;
(9)

Z(0) D x0; (10)

where w is the N-dimensional Brownian motion, ˛ is
the drift coefficient and ˇ is the diffusion coefficient,
see [8, p. 98] or [8, p. 196] for a detailed discussion.
One notes that dw cannot be considered as a differen-
tial in the elementary sense and must be understood as
a stochastic differential, see [8, p. 59]. Under regularity
assumptions on ˛ and ˇ there exists a unique solution
{Z(t): t > 0} of (9), (10), see [8, p. 98].

When ˛ is minus the gradient of a potential
function equation (9) is called the Smoluchowski-
Kramers equation. The Smoluchowski-Kramers equa-
tion is a singular limit of the Langevin equation.

The Langevin equation expresses Newton principle for
a particle subject to a random force field, see [15, p. 40].

Let divy be the divergence operator with respect to
the variables y,�y be the Laplace operator with respect
to the variables y and Lˇ , ˛(�) = divy(�˛)� (1/2)�y(�ˇ2).
Under regularity assumptions on ˛ and ˇ, the transi-
tion probability density p(s, x, t, y), 0 � s < t, x, y 2
RN , associated to the solution {Z(t): t � 0} of problem
(9), (10) exists and satisfies the Fokker–Planck equa-
tion, (see 8, p. 149]) that is, given x 2 RN , s � 0 one
has:

@p
@t
C Lˇ;˛(p) D 0; y 2 RN ; t > s; (11)

lim
t!s;t>s

p(s; x; t; y) D ı(x� y); y 2 RN : (12)

For the treatment of the constrained global opti-
mization, that is, problem (1) with D� RN , a stochastic
process depending on the domain D must be consid-
ered. Let �(x) � SN�1 be the set-valued function that
gives the outward unit normals of the boundary @D of
D at the point x 2 @D. One notes that when x is a regu-
lar point of @D, �(x) is a singleton. Let �: [0, T]! RN ,
with possibly [0, T] = R+, let |�|(t) be the total variation
of � in the interval [0, t], where t < T. The Skorokhod
problem is defined as follows: let �,  , �: [0, T]! RN ,
then the triple (�,  , �) satisfies the Skorokhod prob-
lem, on [0, T] with respect to D, if |�|(T) < +1, �(0) =
 (0) and for t 2 [0, T] the following relations hold:

	(t) D  (t)C 
(t); (13)

	(t) 2 D; (14)

j
j (t) D
Z t

0
�fr2R : 	(r)2@Dg(s) d j
j (s); (15)


(t) D �
Z t

0
�(s) d j
j (s); (16)

where �S is the characteristic function of the set S and
�(s) 2 �(�(s)), when s 2 [0, T] and 	(s) 2 @D and �(s)
= O elsewhere. Viewing  (t), t 2 [0, T], as the trajec-
tory of a point A 2 RN , one has that at time zero A is
inside D, since  (0) 2 D. Moreover the trajectory of A
is reflected from the boundary of D and the reflected
trajectory can be viewed as �(t), t 2 [0, T]. That is, �
is equal to  until A 2 D, when A goes out of D it is
brought back on @D in the normal direction to @D. One
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notes that the function 
 gives the reflection rule with
respect to the boundary of D of the function  . In [16]
it is proved that under suitable assumptions on D and
F there exists a unique solution of the Skorokhod prob-
lem.

One considers the following stochastic differential
equation with reflection term, that is:

dZ(t) D ˛(Z(t); t) dt

C ˇ(Z(t); t) dw(t)C d
(t); t > 0 ; (17)

Z(0) D x0; (18)

where

(Z;Z � 
;
) (19)

is the solution of the Skorokhod problem. One notes
that relations (14), (19) imply that the solution of (17),
(18) verifies Z(t) 2 D, t > 0. In [16] it is proved that
under some hypotheses there exists a unique solution
{Z(t): t � 0} of (17), (18), (19) for every x0 2 D.

Global UnconstrainedOptimization

Given problem (1) with D = RN one considers the fol-
lowing stochastic differential equation:

dZ(t) D �(rF)(Z(t)) dt C �(t)dw(t);

t > 0; (20)

Z(0) D x0; (21)

where {w(t): t � 0} is theN-dimensional Brownian mo-
tion and �(t) is a suitable decreasing function that guar-
antees the convergence of the stochastic process {Z(t) : t
� 0} to a random variable with density concentrated on
the global minimizers of F. Under some assumptions
on F, the transition probability density p(0, x0, t, x), x0,
x 2 RN , t > 0, of the process {Z(t) : t � 0} exists and ver-
ifies equations (11), (12); moreover, when � � �, � > 0,
for the steady-state distribution density 
�(x), x 2 RN ,
the following equation holds:

L�;�rF (
�) D 0; x 2 RN ; (22)

one has:


�(x) D C�e�
2F(x)
�2 ; x 2 RN ; � > 0; (23)

where:

C� D
�Z

RN
e�

2F(y)
�2 dy

��1
; � > 0: (24)

One assumes C � < +1 for � > 0. Moreover, one has:

p(0; x0; t; x) D 
�(x)

C e�
2F(x0)
�2

1X
nD1


n
� (x)


n
� (x

0)e	
n
� t ; (25)

where 
n
� is the eigenfunction of L�,�rF correspond-

ing to the eigenvalue �n
� , n = 1, 2, . . . , and 0 = �0� >

�1�> � � � . One notes that the eigenfunctions 
n
� , n = 1,

2 . . . , are appropriately normalized and 
� is the eigen-
function of L�,�rF corresponding to the eigenvalue �0�
= 0. Consider N = 1, the function F smooth and with
three extrema in x�, x0, x+ 2 R such that x� < x0 < x+.
Moreover, F increases in (x�, x0) and in (x+, +1) and
decreases in (�1, x�) and in (x0, x+). Let:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

c� D
d2F
dx2

(x�);

c0 D
d2F
dx2

(x0);

cC D
d2F
dx2

(xC):

(26)

One assumes c˙, c0 to be nonzero. In [1] it is shown
that when F(x�) < F(x+), one has 
�(x)! ı(x� x�) as
�! 0 while when F(x�) = F(x+) one has 
�(x)! �ı(x
� x�) + (1� �)ı(x� x+), where � D [1C

q
c�
cC ]
�1 as �

! 0, and the limits are taken in distribution sense. That
is in [1] it is shown that the steady-state distribution
density tends to Dirac deltas concentrated on the global
minimizers of F when �! 0.

In [12] it is shown that:

�1� 	 �

p
cCc0

2

e�

2
�2
ıF as � ! 0; (27)

where ı F = max{F(x0) � F(x�), F(x0) � F(x+)}. For-
mula (25) shows that p converges to 
� when t! +1,
but the rate of convergence becomes slow when � is
small. Replacing � with �(t) a slowly decreasing func-
tion such that �(t)! 0 when t! +1, using elemen-
tary adiabatic perturbation theory one can expect that
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the condition:
Z C1
0

e�
2

�2(t) ıF dt D C1 (28)

guarantees that {Z(t) : t > 0} is a solution of (20), (21)
when t! +1 converges to a random variable concen-
trated on the global minimizers of F.

In [6] the following result is proved:

Theorem 1 (convergence theorem) Let F : RN ! R be
a twice continuously differentiable function satisfying the
following properties:

min
x2RN

F(x) D 0; (29)

lim
kxk!C1

F(x) D lim
kxk!C1

k(rF)(x)k D C1; (30)

lim
kxk!C1

k(rF)(x)k2 � (	F)(x) > �1; (31)

let �(t) D
p
(c)/(log t) for t ! +1, where c > cF > 0

and cF is a constant depending on the function F. Then
the transition probability density p of the process {Z(t) :
t � 0}, solution of (20), (21), converges weakly to a sta-
tionary distribution 
 , that is:

p(0; x; t; �)! 
 when t! C1: (32)

Moreover the distribution 
 is the weak limit of
� , given
by (23), as �! 0.

One notes that (20), (21) is obtained perturbing the tra-
jectories given by the steepest descent equation for F
with the Brownian motion and � is a factor that con-
trols the amplitude of this perturbation. The fact that
�(t)! 0 when t ! +1 makes possible the stabiliza-
tion of the perturbed trajectories at the minimizers of
F. With the assumptions of the convergence theorem
it is possible to conclude that 
 is concentrated on the
global minimizers of F, so that the random variable Z(t)
= (Z1(t), . . . , ZN(t)) ‘converges’ to x�, solution of prob-
lem (1), as t ! +1. That is, when x� is the unique
global minimizer of F, then PfZi (t) D x�i g ! 1 when
t! +1 for i = 1, . . . , N.

The stochastic differential equation (20) can be in-
tegrated numerically to obtain an algorithm for the so-
lution of problem (1). Let t0 = 0, tk =

Pk�1
lD0 hl, where hl

> 0, l = 0, 1, . . . , are such that tk ! +1 when k!1
then using the Euler method one has:

�0 D x0; (33)

�kC1 D �k � hk(rF)(�k)

C �(tk)(w(tk C hk) � w(tk)); (34)

where k = 0, 1, . . . and �k 2 RN is the approximation of
Z(tk), k = 1, 2, . . . , see [2,3].

In (34) due to the presence of the stochastic term,
one can substitute the gradient of F with a kind of
‘stochastic gradient’ of F in order to save computational
work, see [2,3] for details.

One notes that the sequence {�k: k 2 N} depends
on the particular realization of the Brownian motion
{w(tk) : k = 0, 1, . . . }. That is, solving several times prob-
lem (20), (21), by means of (33), (34), the solutions ob-
tained are not necessarily the same. However, the con-
vergence theorem states that ‘all’ the solutions {�k : k 2
N} obtained by (33), (34) tend to x� as k! +1.

So that in the numerical algorithm derived from
(20), (21) using (33), (34) one can approximate by
means of nT independent realizations (i. e., trajectories)
of the stochastic process {Z(t) : t � 0}, solution of (20),
(21). A possible strategy for a numerical algorithm is the
following: after an ‘observation period’ the various tra-
jectories are compared, one of them is discarded and is
not considered any more, another one is branched. The
new set of trajectories are computed throughout the
next observation period. The following stopping con-
ditions are used:
� uniform stop: the final values of the function F at the

end of the various trajectories are numerically equal;
� maximum trial duration: amaximum number of ob-

servation periods has been reached.
One notes that the algorithms based on the dis-

cretization of the stochastic differential equations have
sound mathematical basis, that is for a wide class of
functions F some convergence results such as the con-
vergence theorem given above are available. These al-
gorithms usually have a slow convergence rate, this can
be seen from the kind of function � which is required
in the convergence theorem. This implies that the algo-
rithms based on stochastic differential equations have
an high computational cost, so that their use is usu-
ally restricted to low-dimensional problems. However
these algorithms can be parallelized with a significant
computational advantage, for example in the algorithm
described above each trajectory can be computed inde-
pendently from the others until the end of an obser-
vation period. One notes that the algorithms derived
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from (20), (21) are in some sense similar to the simu-
lated annealing algorithm (cf. also� Simulated anneal-
ing methods in protein folding) introduced in combi-
natorial optimization in [11].

Global ConstrainedOptimization

Given problem (1) with D � RN the following stochas-
tic differential equation with reflection term is consid-
ered:

dZ(t) D �(rF)(Z(t)) dt

C �(t) dw(t)C d
(t);

t > 0; (35)

Z(0) D x0; (36)

where x0 2D, {w(t) : t � 0} is the N-dimensional Brow-
nian motion, �(t) is a suitable decreasing function that
guarantees the convergence of the stochastic process
{Z(t) : t > 0} to a random variable with density con-
centrated on the global minimizers of F onDwhen t!
+1 and �(t) is a suitable function to assure Z(t)2D, t >
0, that is, (Z, Z � �, �) is the solution of the Skorokhod
problem in R+ respect to D.

Let int(D) be the set of the interior points of D. One
assumes that D is the closure of int(D). Let p(0, x0, t, x),
x0, x2 int(D), t > 0, be the transition probability density
of the process {Z(t): t > 0}, solution of (35), (36), when
� � �, � > 0. Then p satisfies the Fokker–Planck equa-
tion:

@p
@t
C L�;�rF (p) D 0; x 2 int(D); (37)

lim
t!0C

p(0; x0; t; x) D ı(x� x0); x 2 int(D); (38)

�
�2

2
rxpC prF;n(x)

�
D 0;

x 2 @D; t > 0; (39)

where L�,�rF is defined in (11) (12) and n(x) 2 �(x) is
the outward unit normal to @D in x 2 @D. One notes
that boundary condition (39) assures that PfZ(t) 2
Dg D 1 for every t > 0. This boundary condition follows
from the requirement that (Z, Z � �, �) is the solution
of the Skorokhod problem.

One assumes the following properties of F and D:
� F : D! R is twice continuously differentiable;

� D � RN is a bounded convex domain such that ex-
ists p satisfying (37), (38), (39) and exists the steady-
state distribution density 
 of the process solution
of (35), (36);

� let 
� be the steady-state distribution density of the
process solution of (35), (36) when � � �, � > 0, that
is:


�(x) D C�e�
2F(x)
�2 ; x 2 D; (40)

C� D
�Z

D
e�

2F(y)
�2 dy

��1
(41)

and 
 is the weak limit of 
� as �! 0.
In analogy with the unconstrained case one can con-
jecture that when D � RN and F : D rarr; R satisfy the
properties listed above and when �(t) D

p
(c)/(log t)

for t! +1, where c > cF > 0 and cF is a constant de-
pending on F, then the transition probability density
p(0, x0, t, y), x0, x 2 D, t > 0 of the process {Z(t): t �
0}, solution of (35), (36) converges to a steady-state dis-
tribution density 
 when t ! +1 and 
 is the distri-
bution density obtained as weak limit of 
� when �!
0. That is, the process {Z(t): t � 0} converges in law to
a random variable concentrated at the points x� 2 D
that solve problem (1).

A numerical algorithm to solve problem (1), with
D � RN , can be obtained using a numerical method to
integrate problem (35), (36). This is done integrating
numerically problem (20), (21) and ‘adding’ the con-
straints given by D. In the numerical algorithm the tra-
jectories can be computed using formulas (33), (34)
when the trajectories are in D, when a trajectory vio-
lates the constraints, it is brought back on @D putting
to zero its normal component with respect to the vi-
olated constraints. Finally the stopping conditions are
the same ones considered in the previous section.

Analogously to the unconstrained problem, the al-
gorithms based on the stochastic differential equations
for the constrained case have slow convergence rate.
However these algorithms have a high rate of paral-
lelism.

Miscellaneous Results

In this section are shown two mathematical problems
that are somewhat unusual as optimization problems.
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Clique Problem

Let I = {1, . . . , N} � N be a finite set, let I 
 I be the
set of unordered pairs of elements of I. Let E � I 
 I.
Then a graph G is a pair G = (I, E), where I is the set of
the nodes of G and E is the set of the edges of G, i. e. {i,
j} 2 E implies that G has an edge joining nodes i, j 2 I.
A graphG = (I, E) is said to be complete or to be a clique
when E = I 
 I. A graph G0 = (I0, E0) is a subgraph of G
= (I, E) when I0 � I and E0 � E \ (I0 
 I0).

The maximum clique problem can be defined as fol-
lows: Given G = (I, E), find the largest subgraph G0 of G
which is complete. Let k(G) be the number of nodes of
the graph G0.

Several algorithms exist to obtain a numerical so-
lution of the maximum clique problem see, for exam-
ple, [14] where the branch and bound algorithm is de-
scribed.

One considers here the maximum clique problem
as a continuous optimization problem. The adjacency
matrix A of the graph G = (I, E) is a square matrix of
order equal to the number of nodes of G and its generic
entry Ai, j, at row i and at column j, is defined equal to 1
if {i, j} 2 E and is equal to 0 otherwise. Then in [13] it is
shown that:

1 �
1

k(G)
D max

x2S
xtAx; (42)

where

S D

(
x D (x1; : : : ; xN)t 2 RN :

NX
iD1

xi D 1; xi � 0; i D 1; : : : ;N

)
:

One notes that many maximizers of (42) can exist, how-
ever there exists always a maximizer x� = (x�1 , . . . , x�N )

t

of problem (42) such that for i = 1, . . . , N one has x�i =
1/k(G) if i 2 G0 and x�i = 0 if i 62 G0. That is the maxi-
mum clique problem is reduced to a continuous global
optimization problem that can be treated with the al-
gorithms described above. Several other problems in
graph theory can be reformulated as continuous opti-
mization problems.

Quasivariational Inequalities

Let X � RN be a nonempty set, let ˝(x) � X, x 2 X,
be a set-valued function and let F : RN ! RN . The qua-

sivariational inequality problem, is defined as follows:
Find a vector x� 2˝(x�) such that:

�
F(x�); y � x�

�
� 0; 8y 2 ˝(x�); (43)

see [4] for a detailed introduction to quasivariational
inequalities. This problem can be reduced to the search
of a fixed-point of a function defined implicitly by
a variational inequality.

The quasivariational inequalities have many appli-
cations such as for example the study of the generalized
Nash equilibrium points of an N-player noncoopera-
tive game. See [10] for a detailed discussion onN-player
noncooperative games.
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Directional Derivatives

Let f be a function defined on some open set X � Rn

and taking its values in R D R [ f�1;C1g. The set
dom f = {x 2 X : |f (x)| < +1} is called the effective set
(or domain) of the function f . Take x 2 dom f , g 2 Rn.
Put

f "D (x; g) :D lim sup
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
; (1)

f #D (x; g) :D lim inf
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
: (2)

Here ˛ # 0 means that ˛! +0.
The quantity f "D (x; g) (respectively, f #D (x; g)) is

called the Dini upper (respectively, lower) derivative of
the function f at the point x in the direction g.

The limit

f 0(x; g) D f 0D(x; g) :D lim
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
; (3)

is called the Dini derivative of f at the point x in the
direction g. If the limit in (3) exists, then f "D (x; g) D
f #D (x; g) D f 0(x; g).

The quantity

f "H(x; g) :D lim sup
[˛;g0]![C0;g]

1
˛

�
f (x C ˛g0) � f (x)

�
(4)

(respectively,

f #H(x; g) :D lim inf
[˛;g0]![C0;g]

1
˛

�
f (x C ˛g0) � f (x)

�
);

(5)

is called the Hadamard upper (respectively, lower)
derivative of the function f at the point x in the direc-
tion g.

The limit

f 0H(x; g) :D lim
[˛;g0]![C0;g]

1
˛

�
f (x C ˛g0) � f (x)

�
(6)

is called the Hadamard derivative of f at x in the direc-
tion g.

If the limit in (6) exists, then f "H(x; g) D f #H(x; g).
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Note that the limits in (1), (2), (4) and (5) always
exist but are not necessarily finite.

Remark 1 In the one-dimensional case (Rn = R) the
Hadamard directional derivatives coincide with the
corresponding Dini directional derivatives:

f "H(x; g) D f "D (x; g);

f #H(x; g) D f #D (x; g);

f 0H(x; g) D f 0D(x; g):

If the limit in (3) exists and is finite, then the function
f is called differentiable (or Dini differentiable) at x in
the direction g. The function f is called Dini direction-
ally differentiable (Dini d.d.) at the point x if it is Dini
differentiable at x for every g 2 Rn. Analogously, if the
limit in (6) exists and is finite, the function f is called
Hadamard differentiable at x in the direction g. The
function f is called Hadamard directionally differen-
tiable (Hadamard d.d.) at the point x if it is Hadamard
differentiable at x for every g 2 Rn.

If the limit in (6) exists and is finite, then the limit
in (3) also exists and f 0H(x, g) = f 0(x, g). The converse is
not necessarily true.

All these derivatives are positively homogeneous (of
degree one) functions of direction:

f �Q (x; �g) D � f
�
Q (x; g); 8� � 0: (7)

(Here 
 is either ", or #, and Q is either D, or H.)
A function f defined on an open set X is called Dini

uniformly directionally differentiable at a point x 2 X if
it is directionally differentiable at x and for every " > 0
there exists a real number ˛0 > 0 such that

1
˛

�
f (x C ˛g) � f (x) � ˛ f 0(x; g)

�
< ";

8˛ 2 (0; ˛0); 8g 2 S;

where S = {g 2 Rn: kgk = 1} is the unit sphere.

Proposition 2 (see [2, Thm. I.3.2]) A function f is
Hadamard d.d. at a point x 2 X if and only if it is Dini
uniformly differentiably at x and its directional deriva-
tive f 0(x, g) is continuous as a function of direction.

Remark 3 If f is locally Lipschitz andDini directionally
differentiable at x2X, then it is Hadamard d.d. at x, too.

For Dini and Hadamard derivatives (see (3) and (6))
there exists a calculus:

Proposition 4 Let functions f 1 and f 2 be Dini
(Hadamard) directionally differentiable at a point x 2
X. Then their sum, difference, product and quotient (if
f 2(x) 6D 0) are also Dini (Hadamard) d.d. at this point
and the following formulas hold:

( f1 ˙ f2)0Q (x; g) D f 01Q(x; g)˙ f 02Q (x; g); (8)

( f1 f2)0Q (x; g) D f1(x) f 02Q(x; g)C f2(x) f 01Q(x; g); (9)

�
f1
f2

�0
Q
(x; g) D �

1
( f2(x))2

�
f1(x) f 02Q(x; g)

� f2(x) f 01Q(x; g)
�
: (10)

Here Q is either D, or H.

These formulas follow from the classical theorems of
differential calculus.

Proposition 5 Let

'(x) D max
i21:N

fi(x); (11)

where the functions f i are defined and continuous on an
open set X � Rn and Dini (Hadamard) d.d. at a point
x 2 X in a direction g. Then the function ' is also Dini
(Hadamard) d.d. at x and

' 0Q (x; g) D max
i2R(x)

f 0i (x; g); (12)

where R(x) = {i 2 1 : N : f i(x) = '(x)} (see [2, Cor. I.3.2]).

If ' is defined by

'(x) D max
y2Y

fi(x; y);

where Y is some set, then under some additional con-
ditions a formula, analogous to (12), also holds (see [2,
Chap. I, Sec. 3]).

A theorem on the differentiability of a composition
can also be stated.

Unfortunately, formulas similar to (8)–(10) and
(12) are not valid for Dini (Hadamard) upper and lower
derivatives.

The Dini and Hadamard upper and lower direc-
tional derivatives are widely used in nonsmooth anal-
ysis and nondifferentiable optimization. For example,
the followingmean value theorem holds.



712 D Dini and Hadamard Derivatives in Optimization

Proposition 6 (see [2, Thm. I.3.1]) Let f be defined
and continuous on the interval {y: y = x + ˛g, ˛ 2 [0,
˛0], ˛0 > 0}. Put

m D inf
˛2[0;˛0]

f #D (x C ˛g; g);

M D sup
˛2[0;˛0]

f "D (x C ˛g; g):

Then [1]

m˛0 � f (x C ˛0g) � f (x) � M˛0:

The following first order approximations may be con-
structed via the Dini and Hadamard derivatives.

Proposition 7 Let f be defined on an open set X � Rn,
and Dini d.d. at a point x 2 X. Then

f (x C	) D f (x)C f 0D(x; 	)C oD(x; 	): (13)

If f is Hadamard d.d. at x, then

f (x C	) D f (x)C f 0H(x; 	)C oH(x; 	): (14)

Let f be defined on an open set X � Rn and finite at x 2
X. Then

f (x C	) D f (x)C f "D (x; 	)C oD(x; 	); (15)

f (x C	) D f (x)C f #D (x; 	)C oD(x; 	); (16)

f (x C	) D f (x)C f "H(x; 	)C oH(x; 	); (17)

f (x C	) D f (x)C f #H(x; 	)C oH(x; 	); (18)

where

oD(x; ˛	)
˛

˛#0
! 0; 8	 2 Rn ; (19)

oH(x; ˛	)
k	k

k�k!0
! 0; (20)

lim sup
˛#0

oD(x; ˛	)
˛

D 0; 8	 2 Rn ; (21)

lim inf
˛#0

oD(x; ˛	)
˛

D 0; 8	 2 Rn ; (22)

lim sup
[˛;�0]![C0;�]

oH(x; ˛	0)
˛

� 0; 8	 2 Rn ; (23)

lim inf
[˛;�0]![C0;�]

oH(x; ˛	
0)

˛
� 0; 8	 2 Rn : (24)

First Order Necessary and Sufficient Conditions
for an UnconstrainedOptimum

Let a function f be defined on an open set X �Rn,˝ be
a subset of X. A point x� 2˝ is called a local minimum
point (local minimizer) of the function f on the set˝ if
there exists ı > 0 such that

f (x) � f (x�); 8x 2 ˝ \ Bı (x�);

where Bı(x�) = {x 2Rn: k x� x� k � ı}. If ı = +1, then
the point x� is called a global minimum point (global
minimizer) of f on ˝ . A point x� 2 ˝ is called a strict
local minimum point (strict local minimizer) of f on ˝
if there exists ı > 0 such that

f (x) > f (x�); 8x 2 ˝ \ Bı (x�); x ¤ x�:

Analogously one can define local, global and strict local
maximum points (maximizers) of f on˝ .

It may happen that the set of local (global, strict lo-
cal) minimizers (maximizers) is empty.

If˝ = X then the problem of finding a minimum or
a maximum of f on X is called an unconstrained opti-
mization problem.

Proposition 8 Let a function f be Dini (Hadamard)
directionally differentiable on X. For a point x� 2 dom f
to be a local or global minimizer of f on X it is necessary
that

f 0D(x
�; g) � 0; 8g 2 Rn ; (25)

�
f 0H(x

�; g) � 0 8g 2 Rn � : (26)

If f is Hadamard d.d. at x� and

f 0H(x
�; g) > 0; 8g 2 Rn ; g ¤ 0n ; (27)

then x� is a strict local minimizer of f .

Here 0n = (0, . . . , 0) is the zero element of Rn.

Proposition 9 Let f be Dini (Hadamard) d.d. on X. For
a point x� � 2 dom f to be a local or global maximizer of
f on X it is necessary that

f 0D(x
��; g) � 0; 8g 2 Rn ; (28)

( f 0H(x
��; g) � 0; 8g 2 Rn ): (29)
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If f is Hadamard d.d. at x� � and

f 0H(x
��; g) < 0; 8g 2 Rn ; g ¤ 0n; (30)

then x�� is a strict local maximizer of f .

Note that (26) implies (25), and (29) implies (28). In
the smooth case f 0H(x, g) = (f 0(x), g) (f 0(x) being the
gradient of f at x) and the conditions (27) and (30) are
impossible. It means that the sufficient conditions (27)
and (30) are essentially nonsmooth.

Proposition 10 Let f be defined on an open set on X
� Rn. For a point x� 2 dom f (i. e., |f (x)| < +1) to be
a local or global minimizer of f on X it is necessary that

f #D (x
�; g) � 0; 8g 2 Rn ; (31)

f #H (x
�; g) � 0; 8g 2 Rn : (32)

If

f #H (x
�; g) > 0; 8g 2 Rn ; g ¤ 0n ; (33)

then x� is a strict local minimizer of f .

Note that (32) implies (31) but (31) does not necessarily
imply (32).

Proposition Let f be defined on an open set on X �
Rn. For a point x� � 2 dom f to be a local or global max-
imizer of f on X it is necessary that

f "D (x
��; g) � 0; 8g 2 Rn (34)

and

f "H (x
��; g) � 0; 8g 2 Rn : (35)

If

f "H (x
��; g) < 0; 8g 2 Rn ; g ¤ 0n ; (36)

then x�� is a strict local maximizer of f .

The condition (35) implies (34) but (34) does not nec-
essarily imply (35).

Remark 12 Observe that the conditions for a mini-
mum are different from the conditions for a maximum.

A point x� satisfying the conditions (25) or (31) is called
a Dini inf-stationary point of f , while a point x� satis-
fying (26) or (32) is called an Hadamard inf-stationary

point. A point x�� satisfying the conditions (28) or (34)
is called a Dini sup-stationary point of f , while a point
x�� satisfying (28) or (35) is called an Hadamard sup-
stationary point.

Remark 13 Note that the function f is not assumed to
be continuous or even finite-valued.

Let x0 2 dom f and assume that the condition (31) does
not hold, i. e. x0 is not a Dini inf-stationary point. If g0
2 Rn, kg0k = 1,

f #D (x0; g0) D inf
kgkD1

f #D (x0; g);

then g0 is called a Dini steepest descent direction of f at
x0 (kgk is the Euclidean norm).

If (32) does not hold and if g0 2 Rn, kg0k = 1,

f #H(x0; g0) D inf
kgkD1

f #H(x0; g);

then g0 is called anHadamard steepest descent direction
of f at x0.

Analogously if x0 is not a Dini sup-stationary point
and if g0 2 Rn, kg0k = 1,

f "D (x0; g
0) D sup

kgkD1
f "D (x0; g);

then g0 is called a Dini steepest ascent direction of f at
x0.

If x0 is not an Hadamard sup-stationary point of f
(i. e. (35) does not hold) and if g0 2 Rn, k g0 k = 1,

f "H(x0; g
0) D sup

kgkD1
f "H(x0; g);

then g0 is called an Hadamard steepest ascent direction
of f at x0.

Of course it is possible that there exist many steepest
descent or/and steepest ascent directions of f at x0.

It may also happen that some direction is a direc-
tion of steepest ascent and, at the same time, a direc-
tion of steepest ascent as well (which is impossible in
the smooth case).

Example 14 Let X = R,

f (x) D

(
jxj C 1

2 x sin
1
x ; x ¤ 0;

0; x D 0:
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Dini and Hadamard Derivatives in Optimization, Figure 1

Take x0 = 0. It is clear that (see Fig. 1):

f "D (x0; g) D jgj C
1
2
jgj D

3
2
jgj ;

f #D (x0; g) D jgj �
1
2
jgj D

1
2
jgj :

As X = R, the Hadamard derivatives coincide with the
Dini ones (see Remark 1).

f #D (x0; g) > 0; 8g ¤ 0;

we may conclude (see (32)) that x0 is a strict local min-
imizer (in fact it is a global minimizer but our theory
does not allow us to claim this).

Note that f "D and f #D are positively homogeneous
(see (7)), therefore it is sufficient to consider (in R) only
two directions: g1 = 1 and g2 = �1.

Example 15 Let X = R, x0 = 0,

f (x) D

(
x sin 1

x ; x > 0;
0; x � 0:

It is clear that (see Fig. 2) that

f "D (x0; g) D

(
jgj ; g > 0;
0; g � 0;

f #D (x0; g) D

(
� jgj ; g > 0;
0; g � 0:

Neither the condition (25) nor the condition (31)
holds, therefore we conclude that x0 is neither a local

Dini and Hadamard Derivatives in Optimization, Figure 2

minimizer nor a local maximizer. Since

max
kgkD1

f "D (x0; g)

D maxf f "D (x0;C1); f
"
D (x0;�1)g

D maxf1; 0g D f "D (x0;C1) D C1;

then g1 = +1 is a steepest ascent direction.
Since

min
kgkD1

f #D (x0; g)

D minf f #D (x0;C1); f
#
D (x0;�1)g

D minf�1; 0g D f #D (x0;C1) D �1;

then g1 = +1 is a steepest descent direction as well.

Conditions for a Constrained Optimum

Let a function f be defined on an open set X �Rn,˝ be
a subset of X. Let x 2˝ , |f (x)| < +1, g 2 Rn. The limit

f "D (x; g;˝) D lim sup
˛#0

xC˛g2˝

f (x C ˛g) � f (x)
˛

(37)

is called the Dini conditional upper derivative of the
function f at the point x in the direction g with re-
spect to ˝ . If no sequence {˛k} exists such that ˛k #
0, x + ˛kg 2 ˝ for all k, then, by definition, we set
f "D (x; g;˝) D �1.
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The limit

f #D (x; g;˝) D lim inf
˛#0

xC˛g2˝

f (x C ˛g) � f (x)
˛

(38)

is called the Dini conditional lower derivative of the
function f at the point x in the direction g with re-
spect to ˝ . If no sequence {˛k} exists such that ˛k #
0, x + ˛kg 2 ˝ for all k, then, by definition, we set
f #D (x; g;˝) D C1.

The limit

f "H(x; g;˝) D lim sup
[˛;g0]![C0;g]
xC˛g02˝

f (x C ˛g0) � f (x)
˛

(39)

is called the Hadamard conditional upper derivative of
the function f at the point x in the direction g with re-
spect to˝ . If no sequences {˛k}, {gk} exist such that [˛k,
gk]! [+0, g], x + ˛k gk 2˝ for all k, then, by definition,
we set f "H(x; g;˝) D �1.

The limit

f #H(x; g;˝) D lim inf
[˛;g0]![C0;g]
xC˛g02˝

f (x C ˛g0) � f (x)
˛

(40)

is called the Hadamard conditional lower derivative of f
at x in the direction g with respect to˝ . If no sequences
{˛k}, {gk} exist such that [˛k, gk]! [+0, g], x + ˛kgk 2
˝ for all k, then, by definition, we set f #H(x; g;˝) D
C1.

Proposition 16 (see [1]) For a point x� 2 ˝ and such
that |f (x�)| <1 to be a local or global minimizer of f on
˝ it is necessary that

f #D (x
�; g;˝) � 0; 8g 2 Rn ; (41)

f #H (x
�; g;˝) � 0; 8g 2 Rn : (42)

Furthermore, if

f #H (x
�; g;˝) > 0; 8g 2 Rn ; g ¤ 0n ; (43)

then x� is a strict local minimizer of f on˝ .

A point x� 2 ˝ satisfying (41) ((42)) is called a Dini
(Hadamard) inf-stationary point of f on˝ .

Proposition 17 For a point x�� 2 ˝ and such that
|f (x��)| < 1 to be a local or global minimizer of f on
˝ it is necessary that

f "D (x
��; g;˝) � 0; 8g 2 Rn ; (44)

f "H (x
��; g;˝) � 0; 8g 2 Rn : (45)

If

f "H (x
��; g;˝) < 0; 8g 2 Rn ; g ¤ 0; (46)

then x�� is a strict local maximizer of f on˝ .

A point x�� 2 ˝ satisfying (44) ((45)) is called a Dini
(Hadamard) sup-stationary point of f on˝ .

The condition (41) is equivalent to

f #D (x
�; g;˝) � 0; 8g 2 K(x�;˝); (47)

where

K(x�;˝) D

8<
:g 2 Rn : 9˛k :

˛k # 0;
x� C ˛k g 2 ˝;

8k

9=
; :

(48)

Analogously, the condition (44) is equivalent to

f "D (x
��; g;˝) � 0; 8g 2 K(x��;˝): (49)

The condition (42) is equivalent to

f #H(x
�; g;˝) � 0; 8g 2 � (x�;˝); (50)

where

� (x�;˝)

D

8<
:g 2 Rn : 9f[˛k ; gk]g :

[˛k ; gk]! [C0; g];
x� C ˛k gk 2 ˝;

8k

9=
; :

(51)

Analogously, the condition (45) is equivalent to

f "H(x
��; g;˝) � 0; 8g 2 � (x��;˝): (52)

Note that the cones K(x�, ˝) and K(x� �, ˝) are
not necessarily closed, while the cones � (x�, ˝) and
� (x��,˝) are the Bouligand cones to˝ at x� and x� �,
respectively, and therefore always closed.

Now it is possible to define conditional steepest as-
cent and descent directions.

Remark 18 It is also possible (see [3, p. 156]) to define
the Dini and Hadamard conditional directional deriva-
tives as follows:

f 0D(x; g;˝) D lim
˛#0

xC˛g2˝

f (x C ˛g) � f (x)
˛

; (53)
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f 0H(x; g;˝) D lim
[˛;g0]![C0;g]
xC˛g02˝

f (x C ˛g0) � f (x)
˛

: (54)

A function f is called Dini (Hadamard) conditionally
differentiable at x in a direction g if the limit in (53)
((54)) exists and is finite.

Remark 19 The conditional directional derivatives de-
fined by (37)–(40) essentially depend on the set˝ .

In some cases it is possible to ‘separate’ the function f
and the set ˝ in the necessary conditions (47), (49),
(50) and (52). For example, if f is Lipschitz and direc-
tionally differentiable at x, then

f "D (x; g;˝) D f #D (x; g;˝)

D f "H(x; g;˝) D f #H(x; g;˝)

D f 0(x; g) 8g 2 K(x;˝):

In this case the derivatives at the left-hand sides of
(47), (49) and (50), (52) should be replaced by f 0(x�, g)
or f 0(x� �, g) respectively.

Note that if g 2 � (x, g) but g 62 K(x,g) then
f "D (x; g;˝) and f #D (x; g;˝) are not finite, by definition,
while

f "D (x; g;˝) D f #D (x; g;˝) D f 0(x; g):

Remark 20 The necessary optimality conditions for
unconstrained and constrained optimization problems
described above can be used to construct numeri-
cal methods for finding corresponding (inf- or sup-
stationary) points.

For special classes of functions (e. g., convex, con-
cave, max-type, minmax-type, quasidifferentiable func-
tions), the derivative (3) has a more ‘constructive’ form
and therefore the conditions (25)–(36) and (41)–(46)
take also more ‘constructive’ forms (see, e. g., [2]).

Remark 22 The limits in (4), (5), (6), (39) and (40) are
taken if

[˛; g0]! [C0; g]: (55)

Sometimes, in the literature instead of this relation
one can see two relations

˛ ! C0; g0 ! g: (56)

It was demonstrated in [4] that the limits resulting
from (55) and (56) do not necessarily coincide. This
warning should be taken into account.
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Technological developments in the field of optical com-
munication networks using wavelength-division multi-
plexing have triggered intensive research in an opti-
mization problem concerning the assignment of col-
ors to paths in a directed tree. Here, the term directed
tree refers to the graph obtained from an undirected
tree by replacing each undirected edge by two directed
edges with opposite directions. This path coloring prob-
lem was first studied by M. Mihail, C. Kaklamanis and
S. Rao [19]. An instance of it is given by a directed tree
T D (V ; E) and a set P D fp1; : : : ; ptg of directed
simple (i. e., not visiting any vertex twice) paths in T,
where each path is specified by an ordered pair of ver-
tices (start vertex and end vertex). The task is to assign
colors to the given paths such that paths receive differ-
ent colors if they share a directed edge. The goal is to
minimize the number of different colors used. For given
T D (V ; E) and P, let L(e) denote the load on directed
edge e 2 E, i. e., the number of paths containing e. Ob-
viously, the maximum load L D maxe2E L(e) is a lower
bound on the number of colors in an optimal coloring.
Consider Fig. 1 for an example of a tree with six vertices
and paths from a to e, from f to e, from f to c, from d to
b, and from a to b. A possible valid coloring is to assign
these paths the colors 1, 2, 1, 2, and 3, respectively. The
maximum load of the paths is 2, because 2 paths use the
edge (d; c). It is not possible to color these paths with
2 colors, because the conflict graph of the paths (a graph
with a vertex for each path and an edge between ver-
tices if the corresponding paths share an edge) is a cycle
of length 5. Hence, the coloring with three colors is an
optimal coloring.

Directed Tree Networks, Figure 1
Example path coloring instance

The path coloring problem models the assignment
of wavelengths to directed connection requests in all-
optical networks with tree topology. In such networks
data is transmitted in optical form via laser beams [13].
Two adjacent nodes of the network are connected by
a pair of optical fiber links, one for each direction.
When wavelength-division multiplexing is used, multi-
ple signals can be transmitted over the same link if they
use different wavelengths, and the nodes are capable of
switching an incoming signal onto any outgoing link
depending on the wavelength of the signal. However,
the wavelength of a signal cannot be changed, and ev-
ery connection uses the same wavelength on the whole
transmitter-receiver path. If two signals using the same
wavelength are transmitted over the same directed link,
the data is lost due to interference. The number of avail-
able wavelengths is called optical bandwidth, and it is
a scarce resource. Therefore, one is interested in min-
imizing the number of wavelengths necessary to route
a given set of requests. This optimization problem cor-
responds to the path coloring problem defined above:
paths correspond to connection requests, and colors
correspond to wavelengths.

Complexity Results

Whereas the path coloring problem can be solved in lin-
ear time in chain networks as it is equivalent to interval
graph coloring, it is NP-hard in directed tree networks.
More precisely, it is NP-complete to decide whether
a set of paths in a directed tree of arbitrary degree can
be colored using at most 3 colors [8,9], and it is NP-
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complete to decide whether a set of paths in a directed
binary tree can be colored using at most k colors if k is
part of the input [7,9,17]. The respective reductions will
be outlined in the following. It should be remarked that
the special case in which both the maximum degree of
the tree as well as the maximum load of the paths are
bounded by a constant can be solved optimally in poly-
nomial time [7,9].

Reduction from Edge Coloring

It is an NP-complete problem to decide whether the
edges of a given 3-regular undirected graph G can be
colored with three colors such that edges receive differ-
ent colors if they are incident to the same vertex [14].
Let G be a 3-regular undirected graph with n vertices
and m edges. A directed tree T with n0 D 10n C 1
vertices and a set P of t D 4m paths in T can be con-
structed in polynomial time such that the paths in T can
be colored using three colors if and only if the edges of
G can be colored with three colors. T consists of a root
r, one child cv of the root for every vertex v of G, three
children c1v , c2v and c3v of every cv , and two children ci;1v
and ci;2v of every civ . For each edge e D fv;wg of G,
four paths in T are created: one from ci;1v to c j;2w and
one from c j;1w to ci;2v , called real paths, and two copies
of the path from ci;1v to ci;2v , called blockers. Here i and
j are chosen such that the subtree rooted at civ resp. c

j
w

is not used by any paths other than the paths created
for this particular edge e. Figure 2 shows an example of
a 3-regular graph G, the constructed tree T (two of the
four subtrees are represented by dotted triangles), and
the paths created for the edge between the black vertices
of G.

If the paths in T are to be colored with three colors,
the blockers ensure that the two real paths correspond-

Directed Tree Networks, Figure 2
Reduction from edge coloring

ing to e receive the same color and, therefore, this color
cannot be used by any other real path corresponding to
an edge incident to v or w. If there exists a 3-coloring
of the paths in T, a 3-coloring of the edges of G can be
obtained by assigning each edge the color of its corre-
sponding real paths. On the other hand, if there exists
a 3-coloring of the edges of G, a 3-coloring of the paths
in T can be obtained by assigning the real paths corre-
sponding to edge e the same color as e and coloring the
blockers with the remaining two colors. Hence, a solu-
tion to the path coloring problem in T would also solve
the edge coloring problem in G.

Since it has just been proved NP-complete to decide
whether paths in a directed tree can be colored with
three colors, it follows that there cannot be an approx-
imation algorithm for path coloring with absolute ap-
proximation ratio < 4/3 unless P D NP.

Reduction from Arc Coloring

The NP-complete arc coloring problem [12] is to de-
cide for a given set of n arcs A1; : : : ;An on a cir-
cle and a given integer k whether the arcs can be
colored with k colors such that arcs receive differ-
ent colors if they intersect. Without loss of general-
ity, assume that each arc is specified by a pair (ai ; bi)
with ai ¤ bi and 1 � ai ; bi � 2n. The span
of arc Ai is sp(Ai ) D fai C 1; ai C 2; : : : ; big if
ai < bi and sp(Ai ) D fai C 1; : : : ; 2n; 1; 2; : : : ; big
if ai > bi . Two arcs Ai and Aj intersect iff sp(Ai) \
sp(Aj) ¤ ;. Note that one can view the arc coloring
problem as a path coloring problem on a cycle.

If a number is contained in the span of more than
k arcs, then the arcs can surely not be colored with k
colors and the answer to this instance of arc coloring
is no. Otherwise, one can assume that every number i,
1 � i � 2n is contained in the span of exactly k arcs;
if this were not the case, one could simply add arcs of
the form (i; i C 1) until the condition holds, without
changing the answer of the coloring problem.

Now consider a chain of n vertices v1, v2; : : : ; vn .
Imagine the chain drawn from left to right, with v1 the
start vertex at its left end. The directed edges from left
to right followed by the directed edges from right to
left make up a cycle of length 2n. The given circular
arcs can be translated into directed paths on this cycle
such that two paths share a directed edge iff the corre-
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Directed Tree Networks, Figure 3
Reduction from arc coloring

sponding arcs intersect, but these paths do not yet con-
stitute a valid path coloring problem because some of
the paths are not simple: an arc (1; 2n) would corre-
spond to a path running from v1 to vn and back to v1,
for example. Nevertheless, it is possible to obtain a valid
instance of the path coloring problem by splitting paths
that are not simple into two or three simple paths and
by using blockers to make sure that the paths derived
from one non-simple path must receive the same color
in any valid k-coloring.

For this purpose, extend the chain by adding k ver-
tices on both ends, resulting in a chain of length nC2k.
Connect each of the newly added vertices to a distinct
subtree consisting of a new vertex with two leaf chil-
dren. The resulting network is a binary tree T. If a path
arrives at vertex vn coming from the left (i. e., from
vn�1) and “turns around” to revisit vn�1, divide the path
into two: one coming from the left, passing through vn
and ending at the left leaf of one of the subtrees added
on the right side of the chain; the other one starting at
the right leaf of that subtree, passing through vn and
continuing left. In addition, add k � 1 blockers in that
subtree, i. e., paths from the right leaf to the left leaf. Ob-
serve that there are no more than k paths containing vn
as an inner vertex, and a different subtree can be chosen
for each of these paths. A symmetric splitting procedure
is applied to the paths that contain v1 as an inner vertex,
i. e., the paths that arrive at v1 coming from the right
(i. e., from v2) and “turn around” to revisit v2. This way,
all non-simple paths are split into two or three simple
paths, and a number of blockers are added.

The resulting set of paths in T can be colored with k
colors if and only if the original arc coloring instance is
a yes-instance. The blockers ensure that all paths corre-
sponding to the same arc receive the same color in any
k-coloring. Hence, a k-coloring of the paths can be used
to obtain a k-coloring of the arcs by assigning each arc
the color of its corresponding paths. Also, a k-coloring

of the arcs can be turned into a k-coloring of the paths
by assigning all paths corresponding to an arc the same
color as the arc and by coloring the blockers with the
remaining k � 1 colors. This shows that the decision
version of the path coloring problem is NP-complete
already for binary trees.

Approximation Algorithms

Since the path coloring problem in directed tree net-
works is NP-hard, one is interested in polynomial-time
approximation algorithms with provable performance
guarantee. All such approximation algorithms that have
been developed so far belong to the class of greedy algo-
rithms. A greedy algorithm picks a start vertex s in the
tree T and assigns colors to the paths touching (starting
at, ending at, or passing through) s first. Then it visits
the remaining vertices of the tree in some order that en-
sures that the current vertex is adjacent to a previously
visited vertex; for example, a depth-first search can be
used to obtain such an order. When the algorithm pro-
cesses vertex v, it assigns colors to all paths touching v
without changing the color of paths that have been col-
ored at a previous vertex. Each such step is referred to
as coloring extension. Furthermore, the only informa-
tion about the paths touching the current vertex that
the algorithm considers is which edges incident to the
current vertex they use. To emphasize this latter prop-
erty, greedy algorithms are sometimes referred to as lo-
cal greedy algorithms.

Whereas all greedy algorithms follow this general
strategy, individual variants differ with respect to the
solution to the coloring extension substep. The best
known algorithm was presented by T. Erlebach, K.
Jansen, C. Kaklamanis, and P. Persiano in [11,16] (see
also [10]). It colors a set of paths with maximum load
L in a directed tree network of arbitrary degree with
at most d5L/3e colors. In the next section this will be
shown to be best possible in the class of greedy algo-
rithms.

For the sake of clarity, assume that the load on all
edges is exactly L and that L is divisible by 3. The al-
gorithm maintains two invariants: (a) the number of
colors used is at most 5L/3, and (b) for each pair of
directed edges with opposite directions the number of
colors used to color paths going through either of these
edges is at most 4L/3. First, the algorithm picks a leaf s
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of T as the start vertex and colors all paths starting or
ending at s using at most L colors. Therefore, the invari-
ants are satisfied initially. It remains to show that they
still hold after a coloring extension step if they were sat-
isfied at the beginning of this step.

Reduction to Constrained Bipartite Edge Coloring

The coloring extension problem at a current vertex v is
reduced to a constrained edge coloring problem in a bi-
partite graph Gv with left vertex set V1 and right ver-
tex set V2. This reduction was introduced by M. Mihail,
C. Kaklamanis and S. Rao in [19]. Let n0, n1; : : : ; nk be
the neighbors of v in T, and let n0 be the unique neigh-
bor that was processed before v. For every neighbor ni

of v the graph Gv contains four vertices: vertices wi and
zi in V1, and vertices xi and yi in V2. Vertex wi is said
to be opposite xi , and zi is opposite yi . A pair of oppo-
site vertices is called a line of Gv . A line sees a color if it
appears on an edge incident to a vertex of that line. For
every path touching v there is one edge in Gv : an edge
(wi ; x j) for each path coming from ni , passing through
v and going to nj ; an edge (wi ; yi ) for each path com-
ing from ni and ending at v; and an edge (zi ; xi) for
each path starting at v and going to ni .

It is easy to see that coloring the paths touching v
is equivalent to coloring the edges of Gv . Note that the
vertices wi and xi have degree L in Gv , while the other
vertices may have smaller degree. If this is the case, the
algorithm adds dummy edges (shown dashed in Fig. 4)
in order to make the graph L-regular.

As the paths that contain the edges (n0; v) or (v; n0)
have been colored at a previous vertex, the edges inci-
dent to w0 and x0 are already colored with at most 4L/3
colors by invariant (b). These edges are called color-

Directed Tree Networks, Figure 4
Construction of the bipartite graph

forced edges. A color that appears on exactly one color-
forced edge is a single color. A color that appears on two
color-forced edges is a double color. Since there are at
most 4L/3 colors on 2L color-forced edges, there must
be at least 2L/3 double colors. Furthermore, one can as-
sume that there are exactly 2L/3 double colors and 2L/3
single colors, because if there are too many double col-
ors then it is possible to split an appropriate number of
double colors into two single colors for the duration of
the current coloring extension step. In order to main-
tain invariant (a), the algorithm must color the uncol-
ored edges of Gv using at most L/3 new colors (colors
not used on the color-forced edges). Invariant (b) is sat-
isfied by ensuring that no line ofGv sees more than 4L/3
colors.

Partition Into Matchings

Gv is an L-regular bipartite graph and its edges can
thus be partitioned into L perfect matchings efficiently.
Each matching is classified according to the colors on
its two color-forced edges: SS-matchings contain two
single colors, ST-matchings contain one single color
and one double color, PP-matchings contain the same
(preserved) double color on both color-forced edges,
and TT-matchings contain two different double col-
ors. Next, the Lmatchings are grouped into chains and
cycles: a chain of length ` � 2 is a sequence of `
matchings M1; : : : ;M` such that M1 and M` are ST-
matchings, M2; : : : ;M`�1 are TT-matchings, and two
consecutive matchings share a double color; a cycle of
length ` � 2 is a sequence of ` TT-matchings such that
consecutive matchings as well as the first and the last
matching share a double color. Obviously, the set of L
matchings is in this way entirely partitioned into SS-
matchings, chains, cycles, and PP-matchings. In addi-
tion, if a chain or cycle contains parallel color-forced
edges, then the algorithm exchanges these edges in the
respective matchings, thus dividing the original chain
or cycle into a shorter sequence of the same type and an
extra cycle.

Now the algorithm chooses triplets, i. e., groups of
three matchings, and colors the uncolored edges of each
triplet using at most one new color and at most four
active colors. The active colors are selected among the
colors on color-forced edges of that triplet, and a color
is active in at most one triplet. The algorithm ensures
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that a line that sees the new color does not see one of
the active colors of that triplet. This implies that no line
ofGv sees more than 4L/3 colors altogether, as required
to maintain invariant (b).

Coloring of Triplets

The rules for choosing triplets ensure that each triplet
contains two color-forced edges with single colors and
four color-forced edges with double colors. Further-
more, most triplets are chosen such that one double
color appears twice, and this double color as well as
the two single colors can be reused without considering
conflicts outside the triplet. V. Kumar and E.J. Schwabe
proved in [18] that such triplets can be colored as re-
quired using three active colors and one new color. This
coloring procedure can be sketched as follows. Partition
the edges of the triplet into a matching on all vertices
except w0 and x0 and a gadget, i. e., a subgraph in which
w0 and x0 have degree 3 while all other vertices have de-
gree 2. A gadget consists of a number of cycles of even
length not containing w0 or x0 and either three disjoint
paths from w0 to x0 or one path fromw0 to x0, one path
from w0 to w0, and one path from x0 to x0. A careful
case analysis shows that the triplet can be colored by
reusing the single colors and the double color to color
the gadget and using a new color for the matching. If
a partitioning into gadget and matching does not exist,
the triplet contains a PP-matching and can be colored
using the double color of the PP-matching for the un-
colored edges of the PP-matching and a single color and
a new color for the uncolored edges of the cycle cover
consisting of the other two matchings.

In the following, the terms even sequence and odd
sequence refer to sequences of TT-matchings of even
resp. odd length such that consecutive matchings share
a double color. Note that an even sequence can be
grouped into triplets by combining two consecutive
matchings of the sequence with an SS-matching as long
as SS-matchings are available and combining each re-
maining TT-matching with a chain of length 2. There
are always enough SS-matchings or chains of length 2
because the ratio between color-forced edges with dou-
ble colors and color-forced edges with single colors is
2 : 1 in Gv initially and remains the same after extract-
ing triplets. Similarly, an odd sequence can be grouped
into triplets if there is at least one chain of length 2,

which can be used to form a triplet with the first match-
ing of the sequence, leaving an even sequence behind.

Selection of Triplets

Now the rules for selecting triplets are as follows. From
chains of odd length, combine the first two matchings
and the last matching to form a triplet. The remainder
of the chain (if non-empty) is an even sequence and can
be handled as described above. Cycles of even length are
even sequences and can be handled the same way. As
long as there is a chain of length 2 left, chains of even
length � 4 and odd cycles can be handled, too. Pairs of
PP-matchings can be combined with an SS-matching,
single PP-matchings can be combined with chains of
length 2. If there are two chains of even length � 4,
combine the first two matchings of one chain with the
last matching of the other and the last two matchings
of the first chain with the first matching of the other,
leaving two even sequences behind. So far, all triplets
contained a double color twice and could be colored
as outlined above. What remains is a number of cy-
cles of odd length, at most one chain of even length,
at most one PP-matching, and some SS-matchings. To
deal with these, it is necessary to form some triplets
that contain four distinct double colors. However, it
is possible to ensure that the set of color-forced edges
of Gv (inside and outside the triplet) colored with one
of these double colors does not contain parallel edges;
T. Erlebach, K. Jansen, C. Kaklamanis and P. Persiano
showed in [11] that such a triplet can be colored as re-
quired using its single colors, two of its double colors,
and one new color.

In the end, the entire graph Gv has been partitioned
into triplets, and each triplet has been colored using at
most one new color and such that a line that sees a new
color in a triplet does not see one of the active colors
of that triplet. Hence, invariants (a) and (b) hold at the
end of the coloring extension step, and once the color-
ing extension step has been performed for all vertices
of T all paths have received one of d5L/3e colors. Since
the number OPT of colors necessary in an optimal col-
oring is at least L, this implies that the algorithm uses
at most d5OPT/3e colors to color the paths. From the
lower bound in the next section it will be clear that the
algorithm (and any other greedy algorithm) is not bet-
ter than 5OPT/3 in the worst case.
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Note that greedy algorithms are well-suited for
practical distributed implementation in optical net-
works: one node of the network initiates the wavelength
assignment by assigning wavelengths to all connections
going through that node; then it transfers control to
its neighbors who can extend the assignment inde-
pendently and in parallel, transferring control to their
neighbors in turn once they are done.

It should be mentioned that simpler variants of
greedy algorithms are known that are restricted to bi-
nary trees and color a given set of paths with load L us-
ing d5L/3e colors. These algorithms do not make use
of the reduction to constrained bipartite edge color-
ing [6,15].

Lower Bounds

Two kinds of lower bounds have been investigated for
path coloring in directed tree networks. First, one wants
to determine the best worst-case performance guarantee
achievable by any greedy algorithm. Second, it is inter-
esting to know how many colors are required even in
an optimal coloring for a given set of paths with load L
in the worst case.

Lower Bound for Greedy Algorithms

For a given local greedy algorithm A and positive in-
teger L, an adversary can construct an instance of path
coloring in a directed binary tree network such that A
uses at least b5L/3c colors while an optimal solution
uses only L colors [15]. The construction proceeds in-
ductively. As A considers only the edges incident to
a vertex v when it colors the paths touching v, the ad-
versary can determine how these paths should continue
and introduce new paths not touching v depending on
the coloring A produces at vertex v.

Assume that there are ˛i L/2 paths going through
each of the directed edges between vertex v and its par-
ent, and that these paths have been colored with ˛i L
different colors. Initially, this assumption can be sat-
isfied for ˛0 D 1 by introducing L paths in either di-
rection on the link between the start vertex picked by
algorithm A and one of its neighbors and letting ap-
propriately chosen L/2 of these paths start resp. end at
that neighbor. Denote the set of paths coming down
from the parent by Pd and let them continue to (pass
through) the left child v1 of v. Denote the set of paths

Directed Tree Networks, Figure 5
Lower bound for greedy algorithms

going up to the parent by Pu and let them pass through
the right child v2 of v. Introduce a set P` of (1 � ˛i /2)L
paths coming from v2 and going left to v1, and a set Pr
of L paths coming from v1 and going right to v2.

Algorithm A must use (1 � ˛i /2)L new colors to
color the paths in P`. No matter which colors it chooses
for the paths in Pr , it will use at least (1C ˛i /4)L differ-
ent colors on the connection between v and v1 or on
the connection between v and v2. The best it can do
with respect to minimizing the number of colors ap-
pearing between v and v1 and between v and v2 is to
color (1 � ˛i /2)L paths of Pr with colors used for P`,
˛i L/4 paths of Pr with colors used for Pd , and ˛i L/4
paths of Pr with colors used for Pu . In that case, it uses
(1 C ˛i /4)L colors on each of the downward connec-
tions of v. Any other assignment uses more colors on
one of the downward connections.

If the algorithm uses at least (1 C ˛i /4)L different
colors for paths on, say, the connection between v and
v1, let (1C˛i /4)L/2 of the downward paths and equally
many of the upward paths extend to the left child of
v1, such that all of these paths use different colors, and
let the remaining paths terminate or begin at v1. Now
the inductive assumption holds for the left child of v1
with ˛iC1 D 1 C ˛i /4. Hence, the number of colors
on a pair of directed edges can be increased as long as
˛i < 4/3. When ˛i D 4/3, 4L/3 colors are used for the
paths touching v and its parent, and algorithm A must
use L/3 new colors to color the paths in P`, using 5L/3
colors altogether.
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The previous calculations have assumed that all oc-
curring terms like (1C˛i /4)L/2 are integers. If one takes
the possibility of non-integral values into account and
carries out the respective calculations for all cases, one
can show that, for every L, every greedy algorithm can
be forced to use b5L/3c colors on a set of paths with
maximum load L [15].

Furthermore, it is not difficult to show that the paths
resulting from this worst-case construction for greedy
algorithms can be colored optimally using only L col-
ors. Hence, this yields also a lower bound of b5OPT/3c
colors for any greedy algorithm.

Lower Bounds for Optimal Colorings

The instance of path coloring depicted in Fig. 1 con-
sists of 5 paths in a binary tree with maximum load
L D 2 such that even an optimal coloring requires 3 col-
ors. Consider the instances of path coloring obtained
from this instance by replacing each path by ` identical
copies. Such an instance consists of 5` paths with max-
imum load L D 2`, and an optimal coloring requires at
least d5`/2e D d5L/4e colors because no more than two
of the given paths can be assigned the same color. Fur-
thermore, d5`/2e colors are also sufficient to color these
instances: for example, if ` is even, use colors 1; : : : ; `
for paths from a to e, colors `C1; : : : ; 2` for paths from
f to e, colors 1; : : : ; `/2 and 2` C 1; : : : ; 5`/2 for paths
from f to c, colors `/2C 1; : : : ; 3`/2 for paths from d to
b, and colors 3`/2 C 1; : : : ; 5`/2 for paths from a to b.
Hence, for every even L there is a set of paths in a binary
tree with load L such that an optimal coloring requires
d5L/4e colors [4,18].

While the path coloring instance with L D 2 and
OPT D 3 could be specified easily, K. Jansen used
amore involved construction to obtain an instance with
L D 3 and OPT D 5 [15]. It makes use of three com-
ponents as building blocks. Each component consists of
a vertex v with its parent and two children and a spec-
ification of the usage of edges incident to v by paths
touching v.

The root component ensures that at least 3 colors
are used either on the left downward connection (ex-
tending below v1) or on the right downward connection
(extending below v2). Each child of the root compo-
nent is connected to a type A component, i. e., the child
is identified with the parent vertex of a type A com-

Directed Tree Networks, Figure 6
Root component

Directed Tree Networks, Figure 7
Type A component

ponent and the corresponding paths are identified as
well.

Type A components have the property that, if the
paths touching v and its parent are colored with 3 col-
ors, at least 4 colors must be used either for the paths
touching v and v1 or for those touching v and v2. (If the
paths touching v and its parent are colored with 4 col-
ors, the remaining paths of the type A component re-
quire even 5 colors.) Hence, there is at least one child in
one of the two type A components below the root com-
ponent such that the paths touching this child and its
parent are colored with four colors.



724 D Directed Tree Networks

Directed Tree Networks, Figure 8
Type B component

The final component used is of type B. It has the
property that, if the paths touching v and its parent are
colored with 4 colors, at least 4 colors must be used ei-
ther for the paths touching v and v1 or for those touch-
ing v and v2. For certain arrangements of colors on the
paths touching v and its parent, 5 colors are necessary.
It is possible to arrange a number of type B components
in a binary tree such that for any combination of four
colors on paths entering the tree of type B components
at its root, 5 colors are necessary to complete the color-
ing. Hence, if one attaches a copy of this tree of type B
components to each of the children of a type A compo-
nent, it is ensured that at least one of the trees will be en-
tered by paths with four colors and consequently 5 col-
ors are necessary to color all paths. Since the load on
every directed edge is at most 3, this gives a worst-case
example for path coloring in binary trees with L D 3
and OPT D 5.

Randomized Algorithms

In [1,2], V. Auletta, I. Caragiannis, C. Kaklamanis and
G. Persiano presented a class of randomized algorithms
for path coloring in directed tree networks. They gave
a randomized algorithm that, with high probability,
uses at most 7/5L C o(L) colors for coloring any set
of paths of maximum load L on binary trees of height
o(L1/3). The analysis of the algorithm uses tail inequali-
ties for hypergeometrical probability distributions such
as Azuma’s inequality. Moreover, they proved that no

randomized greedy algorithm can achieve, with high
probability, a performance ratio better than 3/2 for trees
of height˝(L) and better than 1:293� o(1) for trees of
constant height.

These results have been improved in [5] by I. Cara-
giannis, A. Ferreira, C. Kaklamanis, S. Pérennes, and
H. Rivano, who gave a randomized approximation al-
gorithm for bounded-degree trees that has approxima-
tion ratio 1:61 C o(1). The algorithm first computes
in polynomial time an optimal solution for the frac-
tional path coloring problem and then applies random-
ized rounding to obtain an integral solution.

Related Topics

A number of further results related to the path color-
ing problem in directed tree networks or in networks
with different topology are known. The number of col-
ors required for sets of paths that have a special form
have been investigated, e. g., one-to-all instances, all-
to-all instances, permutations, and k-relations. A sur-
vey of many of these results can be found in [4]. The
undirected version of the path coloring problem has
been studied by P. Raghavan and E. Upfal in [20];
here, the network is represented by an undirected graph
and paths must receive different colors if they share
an undirected edge. Approximation results for directed
and undirected path coloring problems in ring net-
works, mesh networks, and arbitrary networks (all of
these areNP-hard nomatter whether the paths are fixed
or can be chosen by the algorithm [7]) have been de-
rived.

An on-line variant of path coloring was studied by
Y. Bartal and S. Leonardo in [3]. Here, the algorithm is
given connection requests one by one and must deter-
mine a path connecting the corresponding vertices and
a color for this path without any knowledge of future
requests. The worst-case ratio between the number of
colors used by the on-line algorithm and that used by
an optimal off-line algorithm with complete advance
knowledge is the competitive ratio. In [3] on-line al-
gorithms with competitive ratio O(log n) are presented
for trees, trees of rings, and meshes with n vertices.
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For a black-box global optimization algorithm to be
truly global, some effort must be allocated to global
search, that is, search done primarily to ensure that po-
tentially good parts of the space are not overlooked. On
the other hand, to be efficient, some effort must also
be placed on local search near the current best solu-
tion. Most algorithms either move progressively from
global to local search (e. g., simulated annealing) or
combine a fundamentally global method with a fun-
damentally local method (e. g., multistart, tunneling).
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DIRECT introduces a new approach: in each iteration
several search points are computed using all possible
weights on local versus global search (how this is done
will be made clear shortly). This approach eliminates
the need for ‘tuning parameters’ that set the balance be-
tween local and global search, resulting in an algorithm
that is robust and easy-to-use.

DIRECT is especially valuable for engineering op-
timization problems. In these problems, the objec-
tive and constraint functions are often computed us-
ing time-consuming computer simulations, so there is
a need to be efficient in the use of function evaluations.
The problems may contain both continuous and inte-
ger variables, and the functions may be nonlinear, non-
smooth, and multimodal. While many algorithms ad-
dress these problem features individually, DIRECT is
one of the few that addresses them collectively. How-
ever, the versatility of DIRECT comes at a cost: the al-
gorithm suffers from a curse of dimensionality that lim-
its it to low-dimensional problems (say, no more than
20 variables).

The general problem solved by DIRECT can be
written as follows:
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min f (x1; : : : ; xn)
s.t. g1(x1; : : : ; xn) � 0;

:::

gm(x1; : : : ; xn) � 0;
`i � xi � ui ;

xi 2 I integer:

To prove convergence, we must assume that the ob-
jective and constraint functions are continuous in the
neighborhood of the optimum, but the functions can
otherwise be nonlinear, nondifferentiable, nonconvex,
and multimodal. While DIRECT does not explicitly
handle equality constraints, problems with equalities
can often be rewritten as problems with inequality con-
straints (either by replacing the equality with an in-
equality that becomes binding in the solution, or by us-
ing the equalities to eliminate variables). The set I in the
above problem is the set of variables that are restricted
to integer values. DIRECT works best when the inte-
ger variables describe an ordered quantity, such as the
number of teeth on a gear. It is less effective when the
integer variables are categorical.

Direct Global Optimization Algorithm, Figure 1

In what follows, we begin by describing how DI-
RECT works when there are no inequality and integer
constraints. This basic version corresponds, withminor
differences, to the originally published algorithm [2].
After describing the basic version, we then introduce
extensions to handle inequality and integer constraints
(this article is the first publication to document these
extensions). We conclude with a step-by-step descrip-
tion of the algorithm.

The bounds on the variables limit the search to an
n-dimensional hyper-rectangle. DIRECT proceeds by
partitioning this rectangle into smaller rectangles, each
of which has a ‘sampled point’ at its center, that is,
a point where the functions have been evaluated. An ex-
ample of such a partition for n = 2 is shown in Fig. 1.

We have drawn the rectangle as a square because
later, whenever wemeasure distances or lengths, we will
weight each dimension so that the original range (ui �
`i) has a weighted distance of one. Drawing the hyper-
rectangle as a hyper-cube allows us to visualize relative
lengths as they will be used in the algorithm.

Figure 2 shows the first three iterations of DIRECT
on a hypothetical two-variable problem. At the start of
each iteration, the space is partitioned into rectangles.
DIRECT then selects one ormore of these rectangles for
further search using a technique described later. Finally,
each selected rectangle is trisected along one of its long
sides, after which the center points of the outer thirds
are sampled. In this way, we sample two new points in
the rectangle andmaintain the property that every sam-
pled point is at the center of a rectangle (this property
would not be preserved if the rectangle were bisected).

At the beginning of iteration 1, there is only one
rectangle (the entire space). The process of selecting
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rectangles is therefore trivial, and this rectangle is tri-
sected as shown. At the start of iteration 2, the selec-
tion process is no longer trivial because there are three
rectangles. In the example, we select just one rectangle,
which is then trisected and sampled. At the start of it-
eration 3, there are 5 rectangles; in this example, two of
them are selected and trisected.

The key step in the algorithm is the selection of rect-
angles, since this determines how search effort is allo-
cated across the space. The trisection process and other
details are less important, and we will defer discussion
of them until later.

To motivate how DIRECT selects of rectangles, let
us begin by considering the extremes of pure global
search and pure local search. A pure global search strat-
egy would select one of the biggest rectangles in each
iteration. If this were done, all the rectangles would be-
come small at about the same rate. In fact, if we al-
ways trisected one of the biggest rectangles, then af-
ter 3kn function evaluations every rectangle would be
a cube with side length 3�k, and the sampled points
would form a uniform grid. By looking everywhere, this
pure global strategy avoids overlooking good parts of
the space.

A pure local strategy, on the other hand, would sam-
ple the rectangle whose center point has the best objec-
tive function value. This strategy is likely to find good

Direct Global Optimization Algorithm, Figure 3

solutions quickly, but it could overlook the rectangle
that contains the global optimum (this would happen if
the rectangle containing the global optimum had a poor
objective function value at the center).

To select just one ‘best’ rectangle, we would have
to introduce a tuning parameter that controlled the lo-
cal/global balance. Unfortunately, the algorithm would
then be extremely sensitive to this parameter, since the
proper setting would depend on the (unknown) diffi-
culty of the problem at hand.

DIRECT avoids tuning parameters by rejecting the
idea of selecting just one rectangle. Instead, several rect-
angles are selected using all possible relative weightings
of local versus global search. The idea of using all possi-
ble weightings may seem impractical, but with the help
of a simple diagram this idea can actually be made quite
intuitive. For this diagram, we will need a way to mea-
sure of the size of a rectangle. We will measure size us-
ing the distance between the center point and the ver-
tices, as shown in Fig. 3.

With this measure of rectangle size, we can now
turn our attention to Fig. 4 which shows how rectan-
gles are selected. In the figure, each rectangle in the
partition is represented by a dot. The horizontal coor-
dinate of a dot is the size of the rectangle, measured
by the center-vertex distance. The vertical coordinate
is the function value at the midpoint of the rectangle.
The dot labeled A represents the rectangle with the low-
est function value, and so this would be the rectangle
selected by a pure local strategy. Similarly, the dot la-
beled B represents one of the biggest rectangles, and so
it would be selected by a pure global strategy. DIRECT
selects not only these two extremes but also all the rect-
angles on the lower-right convex hull of the cloud of
dots (the dots connected by the line). These rectan-
gles represent ‘efficient trade-offs’ between local versus
global search, in the sense that each of them is best for
some relative weighting of midpoint function value and
center-vertex distance. (We will explain the other lines
in Fig. 4. shortly.)
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One might think that the idea illustrated in Fig. 4
would extend naturally to the constrained case; that is,
we would simply select any rectangle that was best for
some weighting of objective value, center-vertex dis-
tance, and constraint values. Unfortunately, this does
not work because it leads to excessive sampling in the
infeasible region. However, as we explain next, there
is an alternative way of thinking about the lower-right
convex hull that does extend to the constrained case.

For the sake of the exposition, let us suppose for the
moment that we know the optimal function value f �.
For the function to reach f � within rectangle r, it would
have to undergo a rate of change of at least (f r � f �)/dr ,
where f r is the function value at the midpoint of rectan-
gle r and dr is the center-vertex distance. This follows
because the function value at the center is f r and the
maximum distance over which the function can fall to
f � is the center-vertex distance dr. Intuitively, it seems
‘more reasonable’ to assume that the function will un-
dergo a gradual change than to assume it will make
a steep descent to f �. Therefore, if only we knew the
value f �, a reasonable criterion for selecting a rectangle
would be to choose the one that minimizes (f r � f �)/dr .

Figure 4 shows a graphical way to find the rectangle
that minimizes (f r � f �)/dr . Along the vertical axis we
show the current best function value, fmin, as well as the
supposed global minimum f �. Now suppose we anchor
a line at the point (0, f �) and slowly swing it upwards.
When we first encounter a dot, the slope of the line will
be precisely the ratio (f r � f �)/dr , where r is the index

Direct Global Optimization Algorithm, Figure 5

of the rectangle corresponding to the encountered dot.
Moreover, since this is the first dot touched by the line,
rectangle r must be the rectangle that minimizes (f r �
f �)/dr .

Of course, in general we will not know the value of
f �. But we do know that, whatever f � is, it satisfies f �

� fmin. So imagine that we repeat the line-sweep exer-
cise in Fig. 4 for all values of f � ranging from fmin to
�1. How many rectangles could be selected? Well,
with a little thought, it should be clear that the set of
dots that can be selected via these line sweeps is pre-
cisely the lower-right convex hull of the dots.

This alternative approach to deriving the lower-
right convex hull suggests a small but important mod-
ification to the selection rule. In particular, to prevent
DIRECT from wasting function evaluations in pursuit
of very small improvements, we will insist that the value
of f � satisfy f � � fmin � �. That is, we are only inter-
ested in selecting rectangles where it is reasonable that
we can find a ‘significantly better’ solution. A natural
value of � would be the desired accuracy of the solution.
In our implementation, we have set � =max(10�4|fmin|,
10�8).

As shown in Fig. 5, the implication of this modifica-
tion is that some of the smaller rectangles on the lower-
right convex hull may be skipped. In fact, the smallest
rectangle that will be selected is the one chosen when
f � = fmin��.

The version of DIRECT described so far corre-
sponds closely to the originally published version [2].
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The only difference is that, in the original version, a se-
lected rectangle was trisected not just on a single long
side, but rather on all long sides. This approach elim-
inated the need to arbitrarily select a single long side
when there weremore than one and, as a result, it added
an element of robustness to the algorithm. Experience
has since shown, however, that the robustness benefit is
small and that trisecting on a single long side (as here)
accelerates convergence in higher dimensions.

Let us now consider how the rectangle selection
procedure can be extended to handle inequality con-
straints. The key to handling constraints in DIRECT is
to work with an auxiliary function that combines in-
formation on the objective and constraint functions in
a special manner. To express this auxiliary function, we
will need some additional notation. Let grj denote the
value of constraint j at the midpoint of rectangle r. In
addition, let c1, . . . , cm be positive weighting coefficients
for the inequality constraints (we will discuss how these
coefficients are computed later). Finally, for the sake of
the exposition, let us again suppose that we know the
optimal function value f �. The auxiliary function, eval-
uated at the center of rectangle r, is then as follows:

max( fr � f �; 0)C
mX
jD1

c j max(gr j ; 0)

The first term of the auxiliary function exacts a penalty
for any deviation of the function value f r above the
global minimum value f �. Note that, in a constrained
problem, it is possible for f r to be less than f � by violat-
ing the constraints; due to the maximum operator, the
auxiliary function gives no credit for values of f r below
f �. The second term in the auxiliary function is a sum of
weighted constraint violations. Clearly, the lowest pos-
sible value of the auxiliary function is zero and occurs
only at the global minimum. At any other point, the
auxiliary function is positive either due to suboptimal-
ity or infeasibility.

This auxiliary function is not a penalty function in
the standard sense. A standard penalty function would
be a weighted sum of the objective function and con-
straint violations; it would not include the value f �

since this value is generally unknown. Moreover, in the
standard approach, it is critical that the penalty coeffi-
cients be sufficiently large to prevent the penalty func-
tion from being minimized in the infeasible region.

This is not true for our auxiliary function: as long as f �

is the optimal function value, the auxiliary function is
minimized at the global optimum for any positive con-
straint coefficients.

For the global minimum to occur in rectangle r,
the auxiliary function must fall to zero starting from its
(positive) value at the center point. Moreover, the max-
imum distance over which this change can occur is the
center-vertex distance dr . Thus, to reach the global min-
imum in rectangle r, the auxiliary function must un-
dergo a minimum rate of change, denoted hr(f �), given
by

hr( f �) D
max( fr � f �; 0)C

Pm
jD1 c j max(gr j; 0)

dr
:

Since it is more reasonable to expect gradual changes
than abrupt ones, a reasonable way to select a rectan-
gle would be to select rectangle that minimizes the rate
of change hr(f �). Of course, this is impractical because
we generally will not know the value f �. Nevertheless, it
is possible to select the set of rectangles that minimize
hr(f �) for some f � � fmin � �. This is how we select rect-
angles with constraints—assuming a feasible point has
been found so that fmin is well-defined (we will show
how this is implemented shortly). If no feasible point
has been found, we simply select the rectangle that min-
imizes

Pm
jD1 c j max(gr j; 0)

dr
:

That is, we select the rectangle where the weighted con-
straint violations can be brought to zero with the least
rate of change.

To implement this selection rule, it is again help-
ful to draw a diagram. This new selection diagram is
based on plotting the rate-of-change function hr(f �) as
a function of f �. Figure 6 illustrates this function. For
values of f � � f r , the first term in the numerator of
hr(f �) is zero, and so hr(f �) is constant. As f � falls be-
low f r , however, the hr(f �) increases, because we now
exact a penalty for f r being above the supposed global
minimum f �. The slope of hr(f �) function to the left of
f r is � 1/dr .

Figure 7 superimposes, in one diagram, the rate-of-
change functions for a hypothetical set of seven rectan-
gles. For a particular value of f �, we can visually find the
rectangle that minimizes hr(f �) by starting at the point
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(f �, 0) along the horizontal axis and moving vertically
until we first encounter a curve. What we want, how-
ever, is the set of all rectangles that can be selected in
this way using any f � � fmin � �. This set can be found
as follows (see Fig. 7). We start with f � = fmin � � and
move upwards until we first encounter a curve for some
rectangle. We note this rectangle and follow its curve to
the left until it intersects the curve for another rectan-
gle (these intersections are circled in Figure 7). When
this happens, we note this other rectangle and follow its
curve to the left. We continue in this way until we find
a curve that is never intersected by another one. This
procedure will identify all the hr(f �) functions that par-
ticipate in the lower envelope of the curves to the left of
fmin� �. The set of rectangles found in this way is the
set selected by DIRECT.

Along the horizontal axis in Fig. 7, we identify
ranges of f � values for which different rectangles have
the lowest value of hr(f �). As we scan from fmin � � to

the left, the rectangles that participate in the lower en-
velope are 1, 2, 5, 2, and 7. This example illustrates that
it is possible to encounter a curve more than once (here
rectangle 2), and caremust be taken not to double count
such rectangles. It is also possible for some curves to co-
incide along the lower envelope, and so be ‘tied’ for the
least rate of change (this does not happen in Fig. 7). In
such cases, we select all the tied rectangles.

Tracing the lower envelope in Fig. 7 is not compu-
tationally intense. To see this, note that each selected
rectangle corresponds to a curve on the lower enve-
lope, and for each such curve the work we must do is
to find the intersection with the next curve along the
lower envelope. Finding this next intersection requires
computing the intersection of the current curve with all
the other curves. It follows that the work required for
each selected rectangle (and hence for every two sam-
pled points) is only on the order of the total number of
rectangles in the partition.

The tracing of the lower envelope can also be accel-
erated by some pre-processing. In particular, it is possi-
ble to quickly identify rectangles whose curves lie com-
pletely above other curves. For example, in Fig. 7, curve
3 lies above curve 1, and curve 4 lies above curve 2.
These curves cannot possibly participate in the lower
envelope, and so they can be deleted from considera-
tion before the lower envelope is traced.

It remains to explain how the constraint coefficients
c1, . . . , cm are computed, as well as a few other details
about trisection and the handling of integer variables.
We will cover these details in turn, and then bring ev-
erything together into a step-by-step description of the
algorithm.

To understand how we compute the constraint co-
efficient cj, suppose for the moment that we knew the
average rate of change of the objective function, de-
noted a0, and the average rate of change of constraint j,
denoted aj. Furthermore, suppose that at the center of
a rectangle we have gj > 0. At the average rate of change
of constraint j, we would have to move a distance equal
to gj/aj to get rid of the constraint violation. If during
this motion the objective function got worse at its av-
erage rate of change, it would get worse by a0 times the
distance, or a0(gj/aj) = (a0/aj) gj. Thus we see that the
ratio a0/aj provides a way of converting units of con-
straint violation into potential increases in the objective
function. For this reason, we will set cj = a0/aj.
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The average rates of change are estimated in a very
straightforward manner. We maintain a variable s0 for
the sum of observed rates of change of the objective
function. Similarly we maintain variables s1, . . . , sm for
the sum of observed rates of change for each of the
m constraints. All of these variables are initialized to
zero at the start of the algorithm and updated each time
a rectangle is trisected. Let xmid denote the midpoint of
the parent rectangle and let xleft and xright denote the
midpoints of the left and right child rectangles after tri-
section. The variables are updated as follows:

s0 D s0 C
rightX

childDleft

ˇ̌
f (xchild) � f (xmid)

ˇ̌


xchild � xmid





s j D s j C
rightX

childDleft

ˇ̌
g j(xchild) � g j(xmid)

ˇ̌


xchild � xmid



 :

Now the average rates of change are a0 = s0/N and aj =
sj/N, whereN is the number of rates of change accumu-
lated into the sums. It follows that

a0
aj
D

s0
N
s j
N

D
s0
s j
:

Wemay therefore compute cj using

c j D
s0

max(s j; 10�30)
;

where we use the maximum operator in the denomina-
tor to prevent division by zero.

So far we have said that we will always trisect a rect-
angle along one of its long sides. However, as shown
in Fig. 2, several sides may be tied for longest, and so
we need some way to break these ties. Our tie breaking
mechanism is as follows.Wemaintain counters ti (i = 1,
. . . , n) for how many times we have split along dimen-
sion i over the course of the entire search. These coun-
ters are initialized to zero at the beginning of the algo-
rithm, and counter ti is incremented each time a rectan-
gle is trisected along dimension i. If we select a rectangle
that has several sides tied for being longest, we break
the tie in favor of the side with the lowest ti value. If
several long sides are also tied for the lowest ti value, we
break the tie arbitrarily in favor of the lowest-indexed
dimension. This tie breaking strategy has the effect of
equalizing the number of times we split on the different
dimensions.

Let us now turn to the calculation of the center-
vertex distance. Recall that we measure distance using
a weighted metric that assigns a length of one to the
initial range of each variable (ui � `i). Each time a rect-
angle is split, the length of that side is then reduced by
a factor of 1/3. Now consider a rectangle that has been
trisected T times. Let j = mod(T, n), so that we may
write T = kn + j where k = (T � j)/n. After the first kn
trisections, all of the n sides will have been trisected k
times and will therefore have length 3� k. The remain-
ing j trisections will make j of the sides have length
3� (k+ 1), leaving n � j sides with length 3� k. Simple al-
gebra then shows that the distance d from the center to
the vertices is given by

d D
3�k

2

�
j
9
C n � j

�0:5

:

(This is not obvious, but can be easily verified.)
The handling of integer variables is amazingly sim-

ple, involving only minor changes to the trisection rou-
tine and to the way the midpoint of a rectangle is de-
fined. For example, consider an integer variable with
range [1, 8]. We could not define the midpoint to be
4.5 because this is not an integer. Instead, we will use
the following procedure. Suppose the range of a rectan-
gle along an integer dimension is [a, b], with both a and
b being integers. We will define the ‘midpoint’ as b(a
+ b)/2c, that is, it is the floor of algebraic average (the
floor of z, denoted bzc, is the greatest integer less than
or equal to z).

To trisect along the integer dimension, we first com-
pute� = b(b � a + 1)/3c. If� � 1, then after trisection
the left child will have the range [a, a + � � 1], the
center child will have the range [a + �, b � �], and
the right child will have range [b � � + 1, b]. If � =
0, then the integer side must have a range of two (i. e.,
b = a + 1). In this case, the center child will have the
range [a, a] the right child will have the range [b, b],
and there will be no left child. This procedure main-
tains the property that the midpoint of the parent rect-
angle always becomes the midpoint of the center child.
As an example, Fig. 8 shows how a rectangle would be
trisected when there are two integer dimensions. In the
figure, the circles represent possible integer combina-
tions, and the filled circles represent the midpoints.

Integer variables introduce three other complica-
tions. The first, which may be seen in Fig. 8, is that the
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sampled point may not be in the true geometric cen-
ter of the rectangle. As a result, the center-vertex dis-
tance will not be unique but will vary from vertex to
vertex. We ignore this detail and simply use the for-
mula given above for the continuous case, which only
depends upon the number of times a rectangle has been
trisected.

The second complication concerns how we define
a ‘long’ side. In the continuous case, the length of a side
is directly related to the number of times it has been
trisected along that dimension. Specifically, if a rect-
angle has been split k times along some side, then the
side length will be 3� k (recall that we measure dis-
tance relative to the original range of each variable). In
the continuous case, therefore, the set of long sides is
the same as the set of sides that have been split upon
the least. When there are integers, however, the side
lengths will no longer be multiples of 1/3. To keep
things simple, however, we ignore this and continue to
define a ‘long’ side as one that has been split upon the
least. However, if an integer side has been split so many
times that its side length is zero (i. e., the range contains
a single integer), then this side will not be considered
long.

The third and final complication is that, if all the
variables are integer, then it is possible for a rectangle
to be reduced to a single point. If this happens, the rect-
angle would be fathomed; hence, it should be ignored
in the rectangle selection process in all subsequent iter-
ations.

DIRECT stops when it reaches a user-defined limit
on function evaluations. It would be preferable, of
course, to stop when we have achieved some desired
accuracy in the solution. However, for black-box prob-
lems where we only assume continuity, better stopping
rules are hard to develop.

As for convergence, it is easy to show that, as f �

moves to �1, DIRECT will select one of the largest
rectangles. Because we always select one of the largest
rectangles, and because we always subdivide on a long
side, every rectangle will eventually become very small
and the sampled points will be dense in the space. Since
we also assume the functions are continuous in the
neighborhood of the optimum, this insures that we will
get within any positive tolerance of the optimum after
a sufficiently large number of iterations.

Although we have now described all the elements
of DIRECT, our discussion has covered several pages,
and so it will be helpful to bring everything together in
a step-by-step description of the algorithm.
1) Initialization.

Sample the center point of the entire space. If the
center is feasible, set xmin equal to the center point
and fmin equal to the objective function value at this
point. Set sj = 0 for j = 0, . . . , m; ti = 0 for i = 1, . . . ,
n; and neval = 1 (function evaluation counter). Set
maxeval equal to the limit on the number of func-
tion evaluations (stopping criterion).

2) Select rectangles.
Compute the cj values using the current values of s0
and sj, j = 1, . . . , m. If a feasible point has not been
found, select the rectangle that minimizes the rate
of change required to bring the weighted constraint
violations to zero. On the other hand, if a feasible
point has been found, identify the set of rectangles
that participate in the lower envelope of the hr(f �)
functions for some f � � fmin � �. A good value for
� is � = max(10�4 |fmin|, 10�8). Let S be the set of
selected rectangles.

3) Choose any rectangle r 2 S.
4) Trisect and sample rectangle r.

Choose a splitting dimension by identifying the set
of long sides of rectangle r and then choosing the
long side with the smallest ti value. If more than one
side is tied for the lowest ti value, choose the one
with the lowest-dimensional index. Let i be the re-
sulting splitting dimension. Note that a ‘long side’



Direct Global Optimization Algorithm D 733

is defined as a side that has been split upon the least
and, if integer, has a positive range. Trisect rectangle
r along dimension i and increment ti by one. Sam-
ple the midpoint of the left third, increment neval by
one, and update xmin and fmin. If neval = maxeval,
go to Step 7. Otherwise, sample the midpoint of the
right third, increment neval by one, and update xmin

and fmin (note that there might not be a right child
when trisecting on an integer variable). Update the
sj j = 0, . . . , m. If all n variables are integer, check
whether a child rectangle has been reduced to a sin-
gle point and, if so, delete it from further considera-
tion. Go to Step 5.

5) Update S.
Set S = S � {r}. If S is not empty, go to Step 3. Oth-
erwise go to Step 6.

6) Iterate.
Report the results of this iteration, and then go to
Step 2.

7) Terminate.
The search is complete. Report xmin and fmin and
stop.
The results of DIRECT are slightly sensitive to the

order in which the selected rectangles are trisected and
sampled because this order affects the ti values and,
hence, the choice of splitting dimensions for other se-
lected rectangles. In our current implementation, we se-
lect the rectangles in Step 3 in the same order that they
are found as we scan the lower envelope in Fig. 7 from
f � = fmin � � towards f � = �1.

On the first iteration, all the sj will be zero in Step 2
and, hence, all the cj will be zero when computed using
cj = s0/max(sj, 10�30). Thus, in the beginning the con-
stants cj will not be very meaningful. This is not impor-
tant, however, because on the first iteration there is only
one rectangle eligible for selection (the entire space),
and so the selection process is trivial. As the iterations
proceed, the sj will be based onmore observations, lead-
ing to more meaningful cj constants and better rectan-
gle selections.

When there are no inequality constraints, the above
step-by-step procedure reduces to the basic version of
DIRECT described earlier. To see this, note that, when
there are no constraints, every point is feasible and so
f r � fmin � f � for all rectangles r. This fact, combined
with the lack of any constraint violations, means that
the hr(f �) function given earlier reduces to (f r� f �)/dr ,
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which is precisely the rate-of-change function we min-
imized in the unconstrained version. Thus, in the un-
constrained case, tracing the lower envelope in Fig. 7
identifies the same rectangles as tracing the lower-right
convex hull in Fig. 5.

We will illustrate DIRECT on the following two-
dimensional test function:
8̂
<̂
ˆ̂:

min f (x1; x2)
s.t. g(x1; x2) � 0

�1 � x1; x2 � C1;

where

f (x1; x2)

D

�
4 � 2:1x21 C

x41
3

�
x21 C x1x2 C

�
�4C 4x22

�
x22 ;

g(x1; x2) D � sin(4
x1)C 2 sin2(2
x2):

We call this problem the Gomez #3 problem since it was
listed as the third test problem in an article by S. Gomez
and A. Levy [1]. The global minimum of the Gomez #3
problem occurs at the point (0.109, � 0.623) where the
function value is � 0.9711. The problem is difficult be-
cause the feasible region consists of many disconnected,
approximately circular parts, giving rise to many local
optima (see Fig. 9).

For this test function, DIRECT gets within 1% of
the optimum after 89 function evaluations and within
0.01% after 513 function evaluations. The first 89 sam-
pled points are shown in Fig. 10. For comparison, the
tunneling algorithm of Gomez and Levy [1] converged
using an average of 1053 objective function evaluations
and 1873 constraint evaluations (averaged over 20 ran-
dom starting points). One reason DIRECT converges
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quickly is that it searches both globally and locally dur-
ing each iteration; as a result, as soon as the global part
of the algorithm finds the basin of convergence of the
optimum, the local part of the algorithm automatically
exploits it.

In this example, DIRECT quickly gets close to the
optimum but takes longer to achieve a high degree
of accuracy. This suggests that the best performance
would be obtained by combining DIRECT with a good
local optimizer. The simplest way to do this is to run
DIRECT for a predetermined number of function eval-
uations and then use the resulting solution as a start-
ing point for a local optimization. While straightfor-
ward, this approach is highly sensitive to the number
of function evaluations used in the global phase with
DIRECT. If one uses too few function evaluations, DI-
RECT might not discover the basin of convergence of
the global minimum.

To ensure that the global optimum is eventually
found, we must somehow return to the global phase af-
ter we have performed a local search. One way of do-
ing this is as follows. We start the local optimizer the
very first time a feasible point is found (or perhaps af-
ter a minimum initial phase of 50–100 evaluations). Af-
ter the local finishes, we return to DIRECT. However,
DIRECT does not proceed the same as it would have
without the local optimizer. Instead, the search will be
more global, because the local optimizer will have re-
duced the value of fmin (which affects rectangle selec-
tion). DIRECT will now be looking for a point that
improves upon the local solution—in effect, it will be
looking for the basin of convergence of a better mini-
mum. If DIRECT finds such an improving point, then

we run a local search from this point and again return to
DIRECT. This process continues until we reach a pre-
determined limit on the total number of function evalu-
ations (for both DIRECT and the local optimizer). Used
in this way, DIRECT becomes an intelligent routine for
selecting starting points for the local optimizer.

While DIRECT works well on the Gomez #3 prob-
lem and on test functions reported in [2], the algo-
rithm is not without its disadvantages. For example, DI-
RECT’s use of a space-partitioning approach requires
the user to have relatively tight lower and upper bounds
on all the variables. DIRECT will perform miserably
if one specifies wide bounds such as [�1030, +1030].
The space-partitioning approach also limits the algo-
rithm to low-dimensional problems (say, less than 20).
While integer variables are handled, they must be or-
dered, such as the number of gear teeth, since only then
can we expect the function value at a rectangle’s mid-
point to be indicative of what the function is like in the
rest of the rectangle. Another limitation is that equality
constraints are not handled. Finally, the stopping crite-
rion—a limit on function evaluations—is weak.

The advantages of DIRECT, however, are consider-
able. The algorithm can handle nonsmooth, nonlinear,
multimodal, and even discontinuous functions (as long
as the discontinuity is not close to the global optimum).
The algorithm works well in the presence of noise, since
a small amount of noise usually has little impact on
the set of selected rectangles until late in the search.
Computational overhead is low, and the algorithm can
exploit parallel processing because it generates several
new points per iteration. Based on the comparisons in
[2], the algorithm also appears to be efficient in terms
of the number of function evaluations required to get
close to the global minimum. But the most important
advantage of DIRECT stems from its unique approach
to balancing local and global search—the simple idea
of not sampling just one point per iteration, but rather
sampling several points using all possible weightings of
local versus global search. This approach leads to an al-
gorithm with no tuning parameters, making the algo-
rithm easy-to-use and robust.

See also

� ˛BB Algorithm
� Continuous Global Optimization: Applications
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� Continuous Global Optimization: Models,
Algorithms and Software

� Differential Equations and Global Optimization
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Nonlinear Equations
� Global Optimization Using Space Filling
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Direct search optimization procedures are attractive be-
cause of the ease with which they can be used. Op-
timization procedures where auxiliary functions such

as gradients are not calculated are desirable for prob-
lems where discontinuous functions are encountered,
or where numerous constraints make the calculation
and use of gradients very difficult in searching for the
global optimum. The reliability of getting to the vicin-
ity of the global optimum is an additional feature that
makes the use of direct search optimization an attrac-
tive means of optimization.

The need for an efficient and easy to use optimiza-
tion procedure was illustrated in [1], in attempting to
obtain the best weighting factors in a Liapunov func-
tion used for time suboptimal control of a linear gas ab-
sorber. Although at that time the best optimization pro-
cedure for that problem was the hill-climbing proce-
dure due to H.H. Rosenbrock [35], the method encoun-
tered difficulties in establishing the global optimum. In
the 1970s a large number of direct search optimiza-
tion procedures were introduced. One such method is
due to R. Luus and T.H.I. Jaakola [29], which has been
called in the literature by numerous authors as the LJ
optimization procedure. The method is based on using
a number of randomly chosen test points over some re-
gion and contracting the region after every iteration,
always starting the iteration with the best point found
from the previous iteration as the center of the region.
The ease of programming and the ease with which in-
equality constraints can be handled make this direct
search procedure attractive.

Optimization Problem

We consider the problem of minimizing the perfor-
mance index or cost function

I D f (x1; : : : ; xn) (1)

subject to p inequality constraints

g j(x1; : : : ; xn) � 0; j D 1; : : : ; p; (2)

through the appropriate choice of x1, . . . , xn. The di-
rect search optimization procedure suggested in [29]
involves only three steps:
� Choose a number of points in the n-dimensional

space through the equation

x D x� CDr; (3)

whereD is a diagonal matrix with diagonal elements
chosen at random between �1 and +1, and r is the
region size vector.
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� Check the feasibility of each point with respect to
(2), and for each feasible point evaluate the perfor-
mance index I in (1).

� At the end of each iteration, x� is replaced by the
best feasible value of x obtained in Step 2, and the
region size vector r is reduced in size by

r( jC1) D �r( j); (4)

where � is a contraction factor such as 0.95. This
procedure is continued for a number of iterations
and the results are examined.

If adequate convergence is not obtained, then the pro-
cedure can be repeated by carrying out another pass,
using the information obtained from the previous pass.
This optimization procedure enabled several difficult
optimization problems to be solved in the original pa-
per [29], and provided a means to solve a wide vari-
ety of problems in optimal control, such as time sub-
optimal control [9,8,7] and gave good approximation
to optimal control by providing a means of obtaining
the elements for the feedback gain matrix. The LJ op-
timization procedure was found very useful for stabi-
lizing systems through shifting of poles [30] and test-
ing stabilizability of linear systems [13]. Research was
done to improve the likelihood of getting the global op-
timum for nonunimodal systems [37], but even with-
out any modification, the reliability of the LJ proce-
dure was found to be very good [38], even for the dif-
ficult bifunctional catalyst blend problem [26]. There-
fore, the LJ optimization procedure could be used ef-
fectively for optimization of complex systems such as
heat exchanger networks [17], a transformer design
problem [36], design of structural columns in such
a way that the amount of material would be min-
imized [3], and problems dealing with metallurgical
processes [34]. The simplicity of the method was illus-
trated by the computer program given in its entirety in
reference [17].

When the variables are restricted to be integers, spe-
cial procedures may be necessary [12], since we can-
not simply search on integer values to get the global
optimum. Thus the scope of problems where LJ op-
timization procedure has been successfully applied is
quite wide. In parameter estimation, N. Kalogerakis
and Luus [6] found that by LJ optimization reliable
estimates could be obtained for parameters in very

few iterations, so that these estimates could then be
used as starting values for quadratically convergent
Gauss–Newton method, without having to worry about
nonconvergence. In model reduction the LJ method
has been found useful to match the reduced system’s
Nyquist plot to that of the original system [15], or used
directly in time domain [40]. LJ optimization procedure
has also been used successfully in model reduction in
sampled-data systems [39] and is illustrated with sev-
eral examples in [23].

Handling Equality Constraints

Suppose that in addition to the inequality constraints in
(2), we also have m equality constraints

hi(x1; : : : ; xn) D 0; i D 1; : : : ;m; (5)

where these equality constraints are ‘difficult’ in the
sense that they can not be used to solve for some partic-
ular variable.

Although a two-pass method to deal with equal-
ity constraints [10] was effective to solve optimization
problems involving recycle streams [11], the general ap-
proach for handling equality constraints with LJ opti-
mization procedure was not solved satisfactorily, un-
til it was shown [4] that penalty functions can be used
very effectively in direct search optimization. The work
was extended in [33], and now it appears that the use
of a quadratic penalty function incorporating a shift-
ing term is the best way of dealing with difficult equal-
ity constraints [19]. We consider the augmented perfor-
mance index

J D I C �
mX
iD1

(hi � si )2; (6)

where a shifting term si is introduced for each equal-
ity constraint. To solve the optimization problem, LJ
optimization procedure is used in a multipass fash-
ion, where at the beginning of each pass consisting of
a number of iterations, the region sizes are restored to
a fraction of the sizes used at the beginning of the pre-
vious pass. The shifting terms si are updated after every
pass simply by adjusting the values at the beginning of
pass (q+1) based on the deviation of the left-hand side
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in (5) from zero; i. e.,

s(qC1)
i D s(q)i � hi ; i D 1; : : : ;m; (7)

where q is the pass number. Upon optimization the
product � 2 � si gives the Lagrange multiplier asso-
ciated with the ith equality constraint, yielding useful
sensitivity information. Full details are given in [19].
This approach to dealing with equality constraints was
used in [31] in using iterative dynamic programming
(IDP) to solve an optimal control problem where the
final state was specified, and in [28] where the volume
of the fed-batch reactor was specified at the final time.

Another approach to deal with equality constraints
is to solve the algebraic equations at each iteration by
grouping the equations [21]. For several optimization
problems this approach yielded very rapid convergence
to the global optimum [22].

Use of LJ Optimization Procedure
for High-Dimensional Problems

In [2] it was found that LJ optimization can be used
quite effectively to solve optimal control problems,
where the system is divided into a number of time
stages. This approach was used in [27] to solve a very
difficult optimal control problem involving the deter-
mination of the optimum drug delivery schedule to
minimize the tumor size at the end of 12 weeks. The
problem was broken into 84 time stages, each con-
sisting of a single day. In spite of the state constraints
and discontinuous functions, this 84-dimensional opti-
mization problem was solved successfully on a personal
computer in reasonable computation time. Especially
now that the personal computers are much faster, such
a problem is considerably easier to solve. To solve high-
dimensional problems a multipass method was used for
LJ optimization where after a pass, the region would be
restored to a value smaller than used at the beginning
of the previous pass and the procedure was repeated.
In the case of the cancer chemotherapy problem, the
problem required a number of runs for successful so-
lution [27].

Determination of Region Size

One of the problems that was outstanding for the LJ op-
timization procedure was how to choose the region size

vector r effectively at the beginning of the iterations,
especially when a multipass procedure was used. This
problem was recently solved in [20], by suggesting that
the initial region size be determined by the extent of the
variation of the variable during the previous pass. With
the use of reliable values for the region size at the be-
ginning of each pass in a multipass run, the computa-
tional effort is decreased quite substantially. For exam-
ple, when we consider the nonseparable optimization
problem introduced in [32], where we have a system de-
scribed by three difference equations:

x1(k C 1) D
x1(k)

1C 0:01u1(k)(3C u2(k))
;

x2(k C 1) D
x2(k)C u1(k)x1(k C 1)
1C u1(k)(1C u2(k))

;

x3(k C 1) D
x3(k)

1C 0:01u2(k)(1C u3(k)
;

with the initial condition

x(0) D [2 5 7]>:

The control variables are constrained by

0 � u1(k) � 4;

0 � u2(k) � 4;

0 � u3(k) � 0:5:

The performance index to be minimized is

I D x21(P)C x22(P)C x23(P)

C

" PX
kD1

x21(k � 1)C x22(k � 1)C 2u2
3(k � 1)

!

�

 PX
kD1

x23(k � 1)C 2u2
1(k � 1)C 2u2

2(k � 1)

!# 1
2

where P is the number of stages. When P is taken as
100, then we have a 300 variable optimization problem,
because at each stage there are three control variables
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to be determined. Without the use of a reliable way
of determining the region sizes over which to take the
control variables, the problem is very difficult, but with
the method suggested in [20] the problem was solved
quite readily by the LJ optimization procedure by us-
ing 100 random points per iteration and 60 passes, each
consisting of 201 iterations, to yield I = 258.3393. Al-
though the computational requirements appear enor-
mous, the actual computation time was less than 20
minutes on a Pentium-120 personal computer [20],
which corresponds to less than one minute on the
Pentium4/2.4 GHz personal computer. This value of
the performance index is very close to the value I =
258.3392 obtained by use of iterative dynamic program-
ming [18]. To solve this problem, IDP is much more ef-
ficient in spite of the nonseparability of the problem,
because in IDP the problem is solved as a 3 variable
problem over 100 stages, rather than a 300 variable op-
timization problem. Therefore, the LJ procedure is use-
ful in checking the optimal control policy obtained by
some other method. Here, the control policies obtained
by IDP and LJ optimization procedure are almost iden-
tical, where a sudden change at around stage 70 occurs
in the control variables u1 and u2. Therefore, LJ opti-
mization procedure is ideally suited for checking results
obtained by other methods, especially when the optimal
control policy differs from what is expected, as is the
case with this particular example.

Recently it was shown that the convergence of the LJ
optimization procedure in the vicinity of the optimum
can be improved substantially by incorporating a sim-
ple line search to choose the best center point for a sub-
sequent pass [24]. For a typical model reduction prob-
lem, to reach the global optimum the computation time
was reduced by a factor of four when the line search was
incorporated. Due to its simplicity, the LJ optimization
procedure can be programmed very easily. Computa-
tional experience with numerous optimization prob-
lems has shown that the method has high reliability of
obtaining the global optimum, so the LJ optimization
procedure provides a very good means of obtaining the
optimum for very complex problems.

See also

� Interval Analysis: Unconstrained and Constrained
Optimization
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Continuous optimization refers to optimization involv-
ing objective functions whose domain of definition is
a continuum, as opposed to a set of discrete points in
combinatorial (or discrete) optimization. Discontinu-
ous optimization is the special case of continuous opti-
mization in which the objective function, although de-
fined over a continuum (let us suppose over Rn), is not
necessarily a continuous function.

We define the discontinuous optimization problem
as:

8̂
ˆ̂<
ˆ̂̂:

inf ef (x)
s.t. fi(x) D 0; i 2 E;

fi(x) � 0; i 2 I;

(1)

where the index sets E and I are finite and disjoint and
ef and f i, i 2 E [ I are a collection of (possibly dis-
continuous) piecewise differentiable functions that map
Rn to R. A piecewise differentiable function f : Rn ! R
is a function whose derivative is defined everywhere
except over a subset of a finite number of sets, called
ridges, of the form {x 2 Rn: r(x) = 0}, where r is a differ-
entiable function, and these ridges partition the domain
into subdomains over each of which f is differentiable.
By abuse of language, we shall call r(x) a ridge of f .
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Without loss of generality, we can restrict our at-
tention to the unconstrained optimization problem: infx
f (x), where f is a (possibly discontinuous) piecewise
differentiable function. Indeed, in order to solve prob-
lem (1), one can consider the unconstrained l1 exact
penalty function

f� (x) :D �ef (x)C
X
i2E

j fi(x)j

�
X
i2I

min[0; fi(x)]

for a succession of decreasing positive values of the
penalty parameter � (f � is clearly a piecewise differ-
entiable function). Notice however that using the l1
penalty function (and dealing with the decrease of
a penalty parameter) is only one approach to han-
dling the constrained problem and may not be the best
way.

Given a (possibly discontinuous) piecewise differ-
entiable function f defined over Rn and the finite set
fri(x)gi2R of its ridges, we define a cell of f to be
a nonempty set C � Rn such that for all x, y 2 C we
have sign(ri(x)) = sign(ri(y)) 6D 0, for all i2R, where the
function sign is either 1, �1 or 0, according to whether
its argument is positive, negative or zero. Thus, f is dif-
ferentiable over a cell.

Considering the optimization of functions which
are nonsmooth and even discontinuous is motivated
by applications in VLSI and floor-planning problems,
plant layout, batch production, switching regression,
discharge allocation for hydro-electric generating sta-
tions, fixed-charge problems, for example (see [4, In-
trod.] for references). Note that most of these prob-
lems can alternatively be modeled within the con-
text of mixed integer programming, a field straddling
combinatorial optimization and continuous optimiza-
tion.

The inescapable nonconvexity nature of discontin-
uous functions gives rise to the existence of several local
optima in discontinuous optimization problems. We
do not address here the difficult issue of global opti-
mization. We are concerned with finding a local in-
fimum of the above optimization problem. An algo-
rithm looking for local optima can however be used
as an adjunct to some heuristic or global optimization
method for discontinuous optimization problems but

the inherent combinatorial nature of such an approach
is often ultimately dominant. More importantly, it pro-
vides a framework allowing the optimizer to deal di-
rectly with the nonsmoothnesses and discontinuities
involved, and thereby, improve solutions found by
heuristic methods, when this is possible.

Leaving aside the heuristic methods (which many
people facing practical discontinuous optimization
problems rely upon in order to solve mixed integer pro-
gramming formulation of discontinuous optimization
problems), previous work on discontinuous optimiza-
tion includes smoothing algorithms. The smoothing al-
gorithms express discontinuities by means of a step
function, and then they approximate the step func-
tion by a function which is not only continuous but
moreover smooth, so that the resulting problem can be
solved by a gradient technique (cf. also � Conjugate–
gradient methods). Both I.I. Imo and D.J. Leech [7] and
I. Zang [9] developed methods in which the objective
function is replaced only in the neighborhood of the
discontinuities. Two drawbacks of these methods are
the potential numerical instability when we want this
neighborhood to be small, and the cost of evaluating
the smoothed functions. In many instances the discon-
tinuities of the first derivative are exactly the regions of
interest and smoothing has the effect of making such
regions less discernible.

Another approach, which deals explicitly with the
discontinuities within the framework of continuous op-
timization, is the following active set method (intro-
duced in [4]). Recall the following definitions relevant
to active set methods: the null space of M, denoted by
N(M), is defined by

N (M) �
n
x 2 Rn : Mx D E0

o
:

We say that a ridge r is active at bx if r(bx) D 0. Let
A(bx) � R be the (finite) index set of the ridges that
are active at the current pointbx, and let A(bx) be thema-
trix of activities, having as columns the gradients of the
ridges that are active atbx. In the case of linear ridges,
ri(x) := a|

i x � bi, a direction d 2 N (A>(bx)) is said to
preserve each activity i 2A(bx) since for each i 2A(bx)
we have ri(bx C ˛d) D ri (bx) D 0.

IfA(bx) ¤ ;, then r f (bx) is not necessarily defined.
This is because we cannot talk about the gradient of the
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function atbx since there is no vector g 2 Rn such that
g|d is the first order change of f in direction d, for any d
2 Rn. Thus, we cannot use, as in the smooth situation,
the negative gradient direction as a descent direction.
We term any (n × 1)-vector gx̂ such that

f 0(bx; d) D g>x̂ d;

for all d 2N (A>);

a restricted gradient of f atbx, because it is the gradient
of the restriction of f to the spaceN (A>(bx)).

Let us first consider the continuous piecewise linear
case. We assume that the ridges of f are given, and also
we assume that the restriction of f to any cell is known.
Hence, we are assuming that more information on the
structure of the objective function is available than, for
example, in a bundle method [8], which assumes that
only one element of the subdifferential is known at any
point.

It is shown in [4] that, under some nondegener-
acy assumptions (e. g. the gradients of the ridges which
are active at x are linearly independent), any continu-
ous piecewise linear function f can be decomposed in
a neighborhood ofbx into a smooth function and a sum
of continuous functions having a single ridge as fol-
lows:

f (x) D f (bx)C g>x̂ (x �bx)

C
X

i2A(x̂)

� ix̂ min(0; a>i (x �bx)) ;

for some scalars f� ix̂gi2A(x̂), and some vector gx̂ 2 Rn .
We term gx̂ the restricted gradient of f atbx. Note that if
m ridges of f are active atbx, it means that there are 2m

cells in any small neighborhood ofbx. The vector gx̂ and
the m scalars f� ix̂gi2A(bx), together with the m gradients
of the activities, faigi2A(bx), thus completely character-
ize the behavior of f over the 2m cells in the neighbor-
hood ofbx!

With such a decomposition at any point of Rn, an
algorithm for finding a local minimum of a continuous
piecewise linear function f is readily obtained, as long
as we assume no degeneracy at any iterate and at any
breakpoint encountered in the line search (we shall dis-
cuss later the degenerate situation):

1 Choose any x1 2 Rn and set k 1.
BEGIN REPEAT
2 Identify the activities, A(xk), and com-

pute dk � �P(gxk ), the projection of
the restricted gradient onto the space or-
thogonal to the gradients of the activi-
ties.
IF dk = �!0 (xk is a dead point; compute a
single-dropping descent direction or es-
tablish optimality), THEN

3 Compute fuigi2A(xk ), the coefficients of
faigi2A(xk ) in the linear combination of
gxk in terms of the columns ofA(xk).

4 IF ui < 0 or ui > �� ix k , for some
i 2 A(xk) (violated optimality condi-
tion), THEN

5 (Drop activity i)
Redefine dk = P�i (ai), if the vio-
lated inequality found corresponds to
ui � 0; otherwise dk = �P�i (ai) if it is
ui � ��

i
x k , where P�i is the orthogonal

projector onto the space orthogonal to
the gradients of all the activities but ac-
tivity i.
ELSE stop: xk is a local minimum of f .
ENDIF ENDIF

6 (Line search)
Determine the step size ˛k by solving
min˛>0 f (xk + ˛dk ). This line search
can be done from xk , moving from one
break-point of f to the next, in the di-
rection dk , until either we establish un-
boundedness of the objective function
or the value of f starts increasing.

7 Update xk+1 = xk + ˛kdk ; k k + 1.
END REPEAT

Continuous piecewise linear minimization algorithm

Remark that in step 6, the directional derivative of
the objective function in the direction dk can easily be
updated from one breakpoint to the other in terms of
the scalar � ix , where i is the index of the ridge crossed at
breakpoint x.

Let us now consider the case where f is still piece-
wise linear but with possibly discontinuities across
some ridges. We term such ridges: faults, and F(bx) de-
notes the faults that are active atbx.
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Note first that a (local) minimum does not always
exist in the discontinuous case. Consider for exam-
ple the following univariate function, having x = 0 as
a fault:

f (x) D

(
x C 1 if x � 0;
�x otherwise:

Hence, we rather look for a local infimum. In order to
find such a local infimum of a function f having some
faults, we shall simply generalize the algorithm for the
continuous problem by implicitly considering any dis-
continuity or jump across a fault i in f as the limit-
ing case of a continuous situation. Since we are looking
for a local infimum, without loss of generality we shall
henceforth only consider functions f such that

f (x) D lim inf
x!x

f (x);

in other words, we consider the lower semicontinuous
envelope of f .

The algorithm for the discontinuous case is essen-
tially the same as in the continuous case except that we
consider dropping an active fault from a dead point, x,
only if we do so along a direction d such that

lim
ı!0C

f (x C ıd) D f (x)

(i. e. as ı > 0 is small, the value of f does not jump
up from x to x + ıd). Thus, virtually only step 4 must
be adapted from the continuous problem algorithm in
order to solve the discontinuous case. To make more
carefully the intuitive concept of directions jumping up
or down, we define the set of soaring directions from
a pointbx to be:

S(bx) :D
8<
:d 2 Rn :

9� > 0; ı > 0 :
8 0 < ı < ı :

f (bx C ıd) � f (bx) > �

9=
; :

If we define, for a nondegenerate pointbx,

SC(bx) :D

8̂
<
:̂
i 2A(bx) :

if diC 2N (A>�i)
and a>i d

iC > 0
then diC 2 S(bx)

9>=
>;
;

S�(bx) :D
8<
:i 2A(bx) :

if di� 2N (A>�i )
and a>i d

i� < 0
then di� 2 S(bx)

9=
; ;

then the set of soaring single-dropping directions from
bx are simply the directions dropping an activity i 2
SC(bx) positively and the directions dropping an i 2
S�(bx) negatively (we say that activity i is dropped posi-
tively (negatively) if all current activities, except for the
ith, are preserved and if, moreover, a>i d is positive
(negative)). A fault can now be definedmore rigorously:
a positive (negative) fault of f at a pointbx is a ridge i 2R

such that for any neighborhood, B(bx), ofbx, there exists
a nondegenerate point x0 2 B(bx) with i 2 S+(x0) (with
i 2 S�(x0)). The set of all positive (negative) faults atbx
is denoted by FC(bx) F�(bx)). The set of faults of f at
a pointbx is denoted by

F(bx) :D FC(bx) [ F�(bx):

We modify the continuous problem algorithm in such
a way that, at a nondegenerate dead point, xk, we do not
need to verify the optimality conditions corresponding
to soaring single-dropping directions (ui � 0, i2 S+ (xk)
and ui � � � i, i 2 S� (xk)), so that we never consider
such single-dropping directions in order to establish
whether xk is optimal. This is reasonable since we are
looking for a local minimum. The line-search step (step
6) is modified similarly: when we encounter a break-
point x on a fault along a direction d 2 S(x) (jump up),
we stop; while if d is such that�d 2 S(x), (jump down),
we carry on to the next breakpoint, and update properly
the directional derivative along d.

Note that one has to be careful at a ‘contact’ point xc
2 R (defined below). At xc, contrary to at other points
of a fault, we can drop activity i both positively and neg-
atively.

The function f : R2! R, given by

f (x) D

8̂
<̂
ˆ̂:

2x2 if x1 > 0 or

(x1 D 0 and x2 � 0);

�x2 otherwise;

(2)

illustrates well the situation. Figure 1 shows the graph
of f in a neighborhood of xc := (0, 0)| (the dotted lines
are simply lines that could be seen if the hatched surface
were transparent). The point xc is a contact point with
respect to the fault x1 = 0.
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Formally, we define xc 2 Rn to be a contact point of
f with respect to i 2 A(xc), when i 2 F(xc) such that
either
1) i 2 F+ (xc) \ F� (xc), or
2) there exist �+, �� 2 3|R| such that �Ci = 1, ��i = � 1

and

lim
x!xc ;
�(x)D�C

f (x) D lim
x!xc ;
�(x)D��

f (x)

(continuity when crossing ridge i, which is a fault, at
xc), where �(x) is the vector whose kth component
is sign(rk(x)).

Note that the fault x1 = 0 and the point xc = (0, 0)| sat-
isfy both conditions 1) and 2) in the above definition of
a contact point for the function f defined by (2). They
however satisfy only condition 1) for the function f : R2

! R, defined by

f (x) D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1 if x1 � 0 and x2 � 0;
2 if x1 � 0 and x2 � 0

and x ¤ (0; 0)>;
3 if x1 > 0 and x2 < 0;
4 otherwise;

with faults x1 = 0 and x2 = 0. For the function f : R2!

R given by

f (x) D

(
�x2 if x1 > 0 and x2 < 0;
0 otherwise;

with fault x1 = 0, we satisfy only condition 2) (F� (xc)
is empty).

An algorithm similar to the one introduced in the
continuous case, but which does not consider soaring
single-dropping directions, will encounter no difficulty
with the discontinuity in f at any noncontact point (e. g.
for (2), at any point other than xc). Let us assume, with-
out loss of generality, that at the kth iterate, xk, F(xk)
= F�(xk). The only step of the continuous algorithm
which need to be modified is (assuming moreover that
all points encountered in the algorithm are noncontact
points):

4 IF ui<0 for some i 2A(xk), or ui > ��
i
x k for

some i 2 A(xk)nF(xk) (violated optimality
condition), THEN

The paper [4] describes techniques (including per-
turbation) to cope with problems that occur in certain
cases where the hypothesis of nondegeneracy is not sat-
isfied at points encountered in the course of the algo-
rithm. One cannot however extend this algorithm to
deal with dead-point iterates (i. e. not encountered as
breakpoint along the line search) without considering
carefully the combinatorial nature of the problem of
degeneracy. Nevertheless, no difficulties were encoun-
tered in the computational experiments reported in [4],
although serious problems can still arise at certain sin-
gular points (contact points and dead-point iterates, at
which the objective function is not decomposable). In-
deed, in the discontinuous case, there is no straightfor-
ward extension of this approach to the cases where the
algorithm encounters a contact point. In the continu-
ous case, the behavior of f over two juxtaposed cells are
linked. At contact points however, there is coincidence
of the values of restrictions of f to subdomains not oth-
erwise linked to each other.

Let us now discuss the extension to the nonlin-
ear case. An advantage of the active set approach for
the continuous piecewise linear optimization problem,
over, for example, the simplex-format algorithm of R.
Fourer [6], is that it generalizes it not only to the dis-
continuous situation but also to the nonseparable and
certain (decomposable) nonconvex cases. Above all, the
active set approach is readily extendable to the nonlin-
ear case, by adapting conventional techniques for non-
linear programming, as was done above with the pro-
jected gradient method for the (possibly discontinuous)
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piecewise linear case. The definition of decomposition
must first be generalized so that it expresses the first
order behavior of a piecewise differentiable function in
the neighborhood of a point. The piecewise linear algo-
rithm described above used descent directions attempt-
ing to decrease the smooth part of the function while
maintaining the value of its nonsmooth part (when pre-
serving the current activities). A first order algorithm
for the nonlinear case could obtain these two objec-
tives up to first order changes, as in the approach of
A.R. Conn and T. Pietrzykowski to nonlinear optimiza-
tion, via an l1 exact penalty function [5]. In order to de-
velop a second order algorithm, assuming now that f is
(possibly discontinuous) piecewise twice-differentiable
(i. e. twice differentiable everywhere except over a fi-
nite number of ridges), one must first extend the defi-
nition of first order decomposition to that of second or-
der decomposition. One could then consider extending
the strategies used by T.F. Coleman and Conn [2] on
the exact penalty function approach to nonlinear pro-
gramming (although the l1 exact penalty function in-
volves only first order types of nondifferentiabilities –
ridges). The main idea is to attempt to find a direction
which minimizes the change in f (up to second order
terms) subject to preserving the activities (up to sec-
ond order terms). Specifically, second order conditions
must be derived (which are the first order conditions
plus a condition on the ‘definiteness’ of the reduced
Hessian of the twice-differentiable part of f (in the sec-
ond order decomposition of f )). An analog of the New-
ton step (or of a modification of the Newton method;
cf. also � Gauss-Newton method: Least squares, rela-
tion to Newton’s method) using a nonorthogonal pro-
jection [3] is then taken (or a single-dropping direction
is used). An algorithm following these lines would be
expected to possess global convergence properties (re-
gardless of starting point) and a fast (2-step superlinear)
asymptotic convergence rate as in [1].

See also

� Nondifferentiable Optimization
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Introduction

Many problems in stochastic optimization, as for in-
stance optimal stochastic structural design problems,
stochastic control problems, problems of scenario anal-
ysis, etc., can be described [3,5] by mean value mini-
mization problems of the type

(
min F(x)
s.t. x 2 D;

(1)

where the objective function F = Fu is the mean value
function, defined by

F(x) D Eu(A(!)x � b(!)); x 2 R: (2)

Here, (A(!), b(!)) is a random m × (n + 1) matrix, E
denotes the expectation operator, D is a convex subset
of Rn and u : R m! R designates a convex loss function
measuring the loss arising from the deviation z = A(!)x
� b(!) between the output A(!) x of the stochastic lin-
ear system x! A(!) x and the random target b(!).

Solving (1), (2), the loss function u should be ex-
actly known. However, in practice mostly there is some
uncertainty about the appropriate selection of u, for
instance due to difficulties in assigning appropriate
penalty costs to the deviation z = A(!)x � b(!) be-
tween the output A(!)x and the target b(!). We sup-
pose that u 2 U, where U is a given set of convex loss
functions containing the true, but unknown loss func-
tion u0. A possible way out in this situation of uncer-
tainty about u is either to construct (feasible) descent
directions h of F at a (iteration) point x being valid for
a large class U of loss functions, or to provide the deci-
sion maker with a certain set E = ED, U (�D) of efficient
points or solutions, being substitutes for an optimal so-
lution x� of (1), (2); hence, this set ED, U or at least its
closed hull ED;U should contain an optimal solution x�

= x�u of (1), (2) for each u 2 U. An important class U =
C J
m of loss functions u is the set of partially monotonous

increasing convex loss functions on Rm defined asfol-
lows:

Definition 1 Let J be a given subset of {1, . . . , m}. For
J = ; we put C;m = Cm, where Cm is the set of all convex
functions u on Rm. If J 6D ;, then CJ

m denotes the set of
all convex functions u : Rm ! R having the following
property:

zI � wI; zII � wII H) u(z) � u(w): (3)

Here, zI 2 R|J|, zII 2 Rm�|J| is the partition of any z 2
Rm into the subvectors zI = (zi)i 2 J , zII = (zi)i 62 J . More-
over, zI � wI means that zj � wj for all j 2 J.

Remark 2 In many cases one has loss functions u 2
C J
m with one of the following additional strict partial

monotonicity property:
8̂
<̂
ˆ̂:

zI � wI;

zII D wII;

zi < wi for some i 2 J

H) u(z) < u(w); (4)

zI < wI; zII D wII H) u(z) < u(w); (5)

where zI < wI means that zj < wj for all j 2 J.

For a given set U of convex loss functions u containing
the true, but unknown loss function u0, a first definition
of efficient solutions can be given as follows:

Definition 3 A point x 2 D is called a nondominated,
admissible or Pareto optimal solution of (1), (2) if there
is no vectorex 2 D,ex ¤ x, such that

Fu(x̃) � Fu(x) for all u 2 U; (6)

Fũ(x̃) < Fu(x) for some ũ 2 U; (7)

where Fu(x) := Eu(A(!)x � b(!)). Let E0D;u denote the
set of all nondominated solutions of (1), (2).

Discretely Distributed Stochastic Programs

In the following we consider the construction of de-
scent directions and efficient solutions for (1), (2) in the
case that (A(!), b(!)) has a discrete distribution

P(A(�);b(�)) D
rX

iD1

˛i�(Ai ;b i ); (8)
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where r > 1 is an integer, ˛i > 0, i = 1, . . . , r,
Pr

iD1˛i = 1,
and �(Ai ;b i ) denotes the one-point measure in the given
m × (n + 1) matrix (Ai, bi), i = 1, . . . , r.

Example: Scenario Analysis

Given a certain planning problem, in scenario analysis
[1,2,6,7,8] the future evolution or development of the
system to be considered is anticipated or explored by
means of a (usually small) number r (e. g., r = 3, 4, 5,
6) of so-called scenarios s1, . . . , sr . Scenarios si, i = 1,
. . . , r, are plausible alternative models of the future de-
velopment given by ‘extreme points’ of a certain set of
basic or key variables. An individual scenario or a cer-
tain mixture of the scenarios s1, . . . , sr is assumed then
to be revealed in the considered future time period. We
assume now that the planningproblem can be described
mathematically by the optimization problem

(
min c0x
s.t. Tx D (�) h; x 2 D:

(9)

Here, D is a given convex subset of Rn, and the data (c,
T, h) are given by (c, T, h) = (ci, Ti, hi) for scenario si,
i = 1, . . . , r, where ci is an n-vector, Ti an m × n matrix
and hi an m-vector. Having written here the scenarios
s1, . . . , sr by means of (9) and the data (ci, Ti, hi), i = 1,
. . . , r, and facing therefore the subproblems

(
min ci0x
s.t. Ti x D (�) hi ; x 2 D;

(10)

for i = 1, . . . , r, the decision maker has then to select an
appropriate decision x 2 D. Since one is unable in gen-
eral to predict with certainty which scenario si will oc-
cur, scenario analysts are looking for decisions x0 which
are ‘robust’ with respect to the different scenarios or
‘scenario-independent’, cf. [6,7,8]. Obviously, this ro-
bustness concept is closely related to the idea of detect-
ing ‘similarities’ within the family of optimal solutions
x�(si), i = 1, . . . , r, of the individual subproblems (10)(i),
i = 1, . . . , r. Let ˛1, . . . , ˛r with ˛i > 0, i= 1, . . . , r,

Pr
iD1˛i

= 1, be (subjective) probabilities for the occurrence of
s1, . . . , sr, or weights reflecting the relative importance
of s1, . . . , sr . Considering loss functions u 2 C J

m for eval-
uating the violations zi = Ti x � hi of the constraint
Tix = hi, Tix � hi, resp., in (10)(i), a class of robust or

scenario-independent decisions are obviously the effi-
cient solutions of

min
x2D

rX
iD1

˛i
�
ci
0

x C u(Ti x � hi)
�
; (11)

which is a discretely distributed stochastic optimization
problem of the type (1), (2).

A System of Linear Relations for the Construction
of Descent Directions

Fundamental for the computation of the set ED, U of ef-
ficient solutions of (1), (2) is the following construction
method for descent directions of the objective function
F of (1), (2), cf. [3,4]. We suppose that the true, but un-
known loss function u in (1) is, see Definition 1, an el-
ement of CJ

m for some known index set J � {1, . . . , m}.
We recall that for any vector z 2 Rm the subvectors zI ,
zII are defined by zI = (zi)i 2 J , zII = (zi)i 62 J ;see (3). Of
course, if J = ;, then z = zII and zI does not exist. For
anym × (n + 1)matrix (A, b), let (AI , bI), (AII , bII), resp.,
denote the submatrices of (A, b) having the rows (Ai, bi)
with i 2 J, i 2 {1, . . . , m}\ J, respectively.

Given an n-vector x (e. g., the tth iteration point of
an algorithm for solving (1), (2)), we consider, in exten-
sion of [3, system (3.1)–(3.4b)], the following system of
linear relationsfor the unknowns (y, ˘ ), where y 2 Rn

and˘ = (
 ij) is an auxiliary r × r matrix:
rX

jD1


i j D 1; 
i j � 0; i; j D 1; : : : ; r; (12)

˛ j D

rX
iD1

˛i
i j; j D 1; : : : ; r; (13)

Aj
I y � b j

I �

rX
iD1

˛i
i j

˛ j
(Ai

Ix � biI);

j D 1; : : : ; r; (14)

Aj
II y � b j

II D

rX
iD1

˛i
i j

˛ j
(Ai

II x � biII);

j D 1; : : : ; r: (15)

The transition probability measure

K j D

rX
iD1

ˇi j�z i ; ˇi j D
˛i
i j

˛ j
; zi D Aix�bi ; (16)

is not a one-point measure for at least one j, 1 � j � r.
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There exists at least one j, 1� j� r, such that for all
i = 1, . . . , r

K j is not a one-point measure and 
i j > 0: (17)

At least one inequality in (14) holds with < : (18)

The constraint x 2 D in (1) can be handled by
adding the condition

y 2 D: (19)

Remark 4
a) By �z we denote the one-point measure in a point

z 2 Rm.
b) According to (12), ˘ is a stochastic matrix. System

(12)–(15) has always the trivial solution (y,˘ ) = (x,
Id), where Id is the r × r identity matrix.

c) If (y,˘ ) solves (12)–(15), then

AI y � BIx; AII y D BIIx; (20)

where AI D EAI(!), AII D EAII(!).
d) If PAII(�)y�bII(�) denotes the probability distribu-

tion of the random (m � |J|)-vector AII(!)x�
bII(!), then (12), (13) and (15) mean that the dis-
tributions PAII(�)y� bII(�) and PAII(�)x� bII(�) corre-
sponding to y, x, resp., are related by

PAII (�)x�bII (�) D KPAII (�)y�bII (�)

D

Z
K(w; �)PAII (�)y�bII (�) (dw); (21)

where K(w, �) is theMarkov kernel defined by

K(wj; �) :D K j D

rX
iD1

˛i
i j

˛ j
�z i ; (22)

with wj = Ajy � bj, zi = Aix � bi, i, j = 1, . . . , r. SinceR
zK(w, dz) = w, the Markov kernel K is also calleda

dilatation.
e) If n-vectors x, y are related by (21), (22), then for

every convex subset B� Rm � |J| we have that

PAII (�)x�bII (�)(B) D 1 H) PAII (�)x�bII (�)(B) D 1;

hence, the distribution of AII(�) y� bII(�) is concen-
trated to the convex hull of the support of PAII(�)x�
bII(�).

f) If J = ;, then (14) vanishes and (15) reads

Aj y � b j D

rX
iD1

˛i
i j

˛ j
(Aix � bi);

j D 1; : : : ; r: (23)

In the special case

(Aj
I ; b

j
I) D (AI; bI) for all j D 1; : : : ; r; (24)

i. e., if (AI(!), bI(!)) is constant with probability
one, then (14) is reduced, cf. (20), to

AI y � AIx: (25)

The meaning of (12)–(15) and the additional condi-
tions (16)–(18) for the basic mean value minimization
problem (1), (2) with objective function F is summa-
rized in the next result.

Theorem 5 Let J be any fixed subset of {1, . . . , m}.
a) If (y, II) is a solution of (12)–(15), then F(y) � F(x)

for every u 2 CJ
m. For J = ; also the converse holds: If

there is a vector y such that F(y)� F(x) for all u 2 Cm

(C;m), then there exists an r × r matrix II such that (y,
II) satisfies (12), (13) and (23).

b) If (y, II) is a solution of (12)–(15) and (16), then
F(y)< F(x) for every u 2 CJ

m which is strictly convex
on conv{zi : 1 � i � r}.

c) If (y, II) is a solution of (12)–(15) and (17), then F(y)
< F(x) for every u 2 CJ

m which is not affine-linear on
conv{zi : 1 � i � r}.

d) If (y, II) fulfills (12)–(15) and (18), then F(y) < F(x)
for every u 2 CJ

m satisfying (4).

Proof If x and (y, II) are related by (12)–(15), then F(y)
�
Pr

jD1˛ju(
Pr

iD1ˇijzi) for every u 2 CJ
m .

If x, (y, II) are related by (12)–(15) and (18), then
F(y) <

Pr
jD1˛ju(

Pr
iD1ˇijzi) for every u 2 CJ

m fulfilling
(4). The rest can then be shown as in [3, Thm. 2.2].

A simple, but important consequence of the above the-
orem is stated next:

Corollary 6 For given x 2 Rn or x 2 D let (y, II) be
any solution of (12)–(15) such that y 6D x, y 2 D

�
{ x},

respectively.
a) Then h = y � x is a descent direction, a feasible de-

scent direction, resp., of F at x for every u 2 CJ
m such

that F is not constant on the line segment xy joining
x and y.
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b) If (y, II) fulfills also (16), (17), (18), resp., then h = y
� x is a (feasible) descent direction of F at x for every
u 2 CJ

m which is strictly convex on conv {zi:1� i� r},
is not affine-linear on conv { zi : 1� i� r}, fulfills (4),
respectively.

Efficient Solutions of (1), (2)

In the following we suppose that the unknown loss
function u is an element of CJ

m , where J is a given sub-
set of {1, . . . , m}. For a given point x 2 D, the descent
direction-finding procedure described in the previous
section only can fail completely if for each solution (y,
II) of (12)–(15) with x 2 D we have that

Aj y D Ajx for each j D 1; : : : ; r: (26)

Indeed, in this case we either have y = x, or, for arbi-
trary loss functions u, the objective function F of (1),
(2) is constant on the whole line through the points x, y.
This observation suggests the following basic efficiency
concept.

Definition 7 A point x 2 D is called a (CJ
m)-efficient

point or a (CJ
m)-efficient solution of (1), (2) if and only if

for each solution (y, II) of (12)–(15) with y 2 D we have
that Ajy = Ajx for each j = 1, . . . , r, i. e., A(!)x = A(!)y
with probability 1. Let ED, J denote the set of all efficient
points of (1), (2).

For deriving parametric representations of ED, J , we
need the following definitions and lemmas.

For a given n-vector x and zi = Aix� bi, i = 1, . . . , r,
let S = Sx � { 1, . . . , r} with |S| = s be an index set such
that {zi : 1 � i � r } = {zi: i 2 S}, where zi 6D zj for i, j 2
S, i 6D j. Defining for i 2 S, j = 1, . . . , r, the quantities

ęi :D
X
ztDz i

˛t ;

�i j :D
1
ęi
X
ztDz i

˛t
t j ; f̌i j :D ęi�i j
˛ j

; (27)

we find that relations (12)–(15) can also be represented
by

rX
jD1

�i j D 1; �i j � 0; j D 1; : : : ; r; i 2 S; (28)

˛ j D
X
i2S

ęi�i j; j D 1; : : : ; r; (29)

Aj
I y � b j

I �
X
i2S

ěi jziI ; j D 1; : : : ; r; (30)

Aj
II y � b j

II D
X
i2S

ěi jziII ; j D 1; : : : ; r: (31)

For the next lemma we still need the s × r matrix T0

= (�0i j) defined by

�0i j D

(
0 if zi ¤ z j;
˛ j

ęi
if z j D zi ;

for i 2 S; j D 1; : : : ; r: (32)

Lemma 8 Let (y, II) be a solution of (12)–(15), and let
T = T(II) = (� ij) be the s × r matrix having the elements
� ij given by (27). If (26) holds, then T(II) = T0 and (14)
holds with ‘ = ’.

Lemma 8 implies the following important property of
efficient solutions:

Corollary 9 Let x 2 D be an efficient solution of (1),
(2). If (y, II) is any solution of (21)–(22) with y 2 D, then
T(II) = T0 and (14) holds with ‘ = ’.

For J = ; we obtain the set ED := ED, ; of all Cm-efficient
solutions of (1), (2). This set is studied in [3]. An im-
portant relationship between ED and ED, J for any J �
{1, . . . ,m} is given next:

Lemma 10 ED, J � ED for every J � {1, . . . , m}.

Comparison of Definitions 7 and 3

Comparing the efficient solutions according to Defini-
tion 7 and the nondominated solutions according to
Definition 3, first for J = ;, i. e., U = Cm, we find the-
following correspondence:

Theorem 11 ED, ; = E(0)D;Cm
.

The next corollary follows immediately from the above
theorem and Lemma 10.

Corollary 12 ED, J � ED, ; = E(0)D;Cm
for J � { 1, . . . , m}.

Considering now U = CJ
m we have this inclusion:

Theorem 13 ED, J � ED, CJ
m
(0) for J � {1, . . . , m}.

The following inclusion follows from Corollary 12 and
Theorem 13.

Corollary 14 E(0)
D;C J

m
� ED, J � E(0)D;Cm

for J � {1, . . . , m}.

A converse statement to Theorem 13 can be obtained
for (24):
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Theorem 15 If (AI(!); bI(!)) D (AI; bI) with proba-
bility 1, then ED, J = E(0)

D;C J
m
for each J � {1, . . . , m}.

Further Characterization of ED, J

TheCJ
m-efficiency of a point x 2D can also be described

in the following way.

Theorem 16 A point x 2 D is (CJ
m)-efficient if and only

if for every solution (y, II) of (12)-(15) we have that Ajy
= Ajx for all j = 1, . . . , r, or h = y � x is not a feasible
direction for D at x.

Necessary Optimality Conditions
Without Using (Sub)Gradients

If x 2 D is efficient, then, cf. Theorem 16, the descent
direction-finding method described in in the previous
Section fails at x. Since especially in any optimal solu-
tion x� of (1), (2) no feasible descent direction may ex-
ist, efficient points are candidates for optimal solutions:

Theorem 17 Suppose that for every x 2 D and every
solution (y, II) of (12)-(15) with y 2D the objective func-
tion F of (1), (2) with a loss function u 2 CJ

m is constant
on the line segment xy if and only if Ajy = Ajx for every j
= 1, . . . , r. If x� is an optimal solution of (1), (2), then x�

2 ED, J .

Remark 18 The assumption in Theorem 17 concerning
F is fulfilled, e. g., if u 2 CJ

m is strictly convex on the
convex hull conv {(Ajy� bj)(Ajx� bj): x, y 2 D, 1 � j
� r} generated by the line segments (Ajy� bj)(Ajx � bj)
joining (Ajy � bj) and (Ajx � bj).

If the assumption in Theorem 17 concerning F does not
hold, then it may happen that F is constant on a certain
line segment xy though Ajy 6D Ajx for at least one index
j, 1� j� r. Hence, Theorem 17 can not be applied then
directly. However, in this case the following modifica-
tion of Theorem 17 holds true.

Theorem 19 Let u be an arbitrary loss function from
CJ
m for some J � {1, . . . , m}. If D is a compact convex

subset of Rn, then there exists at least one optimal solu-
tion x� of (1), (2) lying in the closure ED;J of the set ED, J
of efficient solutions of (1), (2).

Parametric Representation of ED, J

Suppose that u 2 CJ
m for some index set J � { 1, . . . ,m}.

For solving the descent direction-generating relations

(12)–(15) and (16)–(18), resp., we may use, see Theo-
rem 5 and Corollary 6, the quadratic program, cf. [3,4],

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min �0(AI y � AIx)C
rX

jD1

˛ j
X
i2S

ě2
i j

s.t.
rX

jD1

�i j D 1; �i j � 0;

j D 1; : : : ; r; i 2 S;
˛ j D

X
i2S

ęi�i j; j D 1; : : : ; r;

Aj
I y � b j

I �
X
i2S

ěi jziI ; j D 1; : : : ; r;

Aj
II y � b j

II D
X
i2S

ěi jziII ; j D 1; : : : ; r;

y 2 D;

(33)

where � = (�l) is a |J|-vector having fixed positive com-
ponents �l, l 2 J. Efficient solutions of (1), (2) can be
characterized as follows:

Lemma 20 A vector x 2 D is an efficient solution of (1),
(2) if and only if (33) has an optimal solution (y�, T�)
such that Ajy� = Ajx for all j = 1, . . . , r.

Remark 21 According to Lemma 8 we have then also
that T� = T0 and (14) holds with ‘ = ’.

We suppose now that the feasible domain D of (1), (2)
is given by

D D fx 2 Rn : gk(x) � 0; k D 1; : : : ; �g : (34)

Here, g1, . . . , g� are differentiable, convex functions.
Moreover, we suppose that (33) has a feasible solution
(y, T) such that for each nonaffine linear function gk

gk(y) < 0: (35)

No constraint qualifications are needed in the impor-
tant special case D = {x 2 Rn : Gx � g}, where (G, g) is
a given� × (n + 1) matrix.

By means of the Kuhn-Tucker conditions of (33),
the following parametric representation of ED, J can be
derived [3,4]:

Theorem 22 Let D be given by (34), and assume that
the constraint qualification (35) holds for every x 2 D.
An n-vector x is an efficient solution of (1), (2) if and
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only if x satisfies the linear relations

� j � �i �

�b� j

˛ j
�
b� i

˛i

�0
zi D 2

�
1
˛i
�

1
˛ j

�
;

if zi D z j; (36)

� j � �i �

�b� j

˛ j
�
b� i

˛i

�0
zi �

2
˛i
;

if zi ¤ z j; (37)

where �1, . . . , �r are arbitrary real parameters, and the
parameter m-vectors �1, . . . , � r and further parameter
vectors � 2 R� , y 2 Rn are selected such that

rX
jD1

Aj0b� j C

�X
kD1

�kr gk(y) D 0; (38)

� jI � 0; j D 1; : : : ; r; (39)

gk(x) � 0; k D 1; : : : ; �; (40)

gk(y) � 0; �k gk (y) D 0; �k � 0;
k D 1; : : : ; �;

(41)

Aj y D Ajx; j D 1; : : : ; r; (42)

and the vectorsb� j are defined byb� j D
�
˛ j�C� j l
� jII

�
, j = 1,

. . . , r.
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A stochastic combinatorial optimization problem is of
the form

8<
:
min F(x) D

Z
H(x; v) d�x (v)

s.t. x 2 S
(1)

where S = {x1, . . . , xN} is a finite discrete feasible set. If
the value of the objective function F is easily obtainable,
the problem is just a deterministic combinatorial op-
timization problem. In most applications however, the
value of the objective function F has to be approximated
by numerical integration or Monte-Carlo simulation.

Some problems of type (1) exhibit a special struc-
ture, which can be exploited for solution methods, like
the stochastic linear optimization problems, where S
are the integer points of a convex polyhedron and H
is piecewise linear (see � Stochastic integer program-
ming: Continuity, stability, rates of convergence). In
this contribution, we discuss problems with an arbi-
trary and unstructured feasible set S.

An example is the stochastic single machine tar-
diness problem (SSMTP): The optimal sequence of m
jobs, which are processed on a single machine has to be
found. Each job has a random processing time, which
is distributed according to the distribution function Gi,
i = 1, . . . , m (independent of all others), and a fixed due
date di. The feasible set S is the set of all m! permuta-
tions 
 of {1, . . . ,m}. If 
 is the solution found, we pro-
cess job 
(1) as the first, 
(2) as the second and so on.

Let ci(u) be the costs for job i being late u time units
(ci(u) = 0 for u � 0). The SSMTP is

8̂
<
:̂
min

mX
iD1

E[ci (V�(1) C � � � C V�(i) � d�(i))]

s.t. 
 2 S
(2)

where Vi are random variables distributed indepen-
dently according to Gi. The analytic calculation of the
objective function (OF) in (2) involves multiple inte-
grals (the convolution of up to m distribution func-
tions). A simple way of approximating the OF is by
Monte-Carlo simulation. Let V(1)

i , . . . , V(n)
i be indepen-

dent random (pseudorandom) variables, each with dis-
tribution Gi. The true expectation F(
) = E[ci(V�(1) +
� � � + V�(i) � d
(i))] is approximated by the estimate

bFn(
)

D
1
n

nX
jD1

mX
iD1

[ci(V
( j)
�(1) C � � � C V ( j)

�(i) � d�(i))]:

In principle, all exact (branch and bound) and
heuristic (evolutionary algorithms, tabu search, ant
systems, random search, simulated annealing, genetic
algorithms) methods for combinatorial optimization
may be applied to stochastic combinatorial optimiza-
tion— just that the exact values F(x) have to be replaced
by stochastic estimatesbFn(x), which are based on sam-
ple size n.

The main difficulty in stochastic combinatorial op-
timization is the fact that even if F(x1) � F(x2) � ı,
it may happen with positive probability that bFn(x1) >
bFn(x2), that is wemay wrongly conclude that x2 is better
than x1. The probability of this error decreases to zero
with sample size n increasing to infinity. A compromise
between the quality of the solution and the costs of very
large samples has to be found in stochastic optimiza-
tion.

If the random distribution �x in (1) does not de-
pend on x, common random numbersmay be taken. To
be more precise, let V(1), . . . , V(n) be a sample from �

and let

bFn(xi) D
1
n

nX
jD1

H(xi ;V ( j)):

The estimatesbF are now correlated, and the probability
that bFn(x1) > bFn(x2) although bFn(x1) � bFn(x2) � ı
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is typically much smaller for such a choice than with
samples taken independently for each xj (see [6]).

If the estimates bF are difficult to get (e. g. they need
real observation or expensive simulation) allocation
rules decide, which estimate or which set of estimates
has to be taken next. These rules try to exclude quickly
subsets of the feasible set, which – with high statistical
evidence – do not contain optimal solutions. The effort
is then concentrated on the (shrinking) set of not yet
excluded points.Allocation rules may be based on sub-
set selection (see [3]) or ordinal optimization (see [5]).
There is also a connection to experimental design, in
particular to sequential experimental design: In experi-
mental design one has to choose the next point(s) for
sampling, which – based on the information gathered
so far – will give the best additional information which
we need to solve the underlying estimation or optimiza-
tion problem (for experimental design literature see [1]
and the references therein).

For large sets S, which have graph-neighborhood
or partition structures, ‘stochastic’ variants of neighbor
search or branch and bound methods may be used. In
particular, stochastic simulated annealing and stochas-
tic branch and bound have been studied in literature.

Stochastic Simulated Annealing

This is a variant of ordinary simulated annealing (cf.
� Simulated annealing): The Metropolis rule for the
acceptance probability is calculated on the basis of the
current stochastic estimates of the objective function,
i. e. the new state xj is preferred to the current state xi
with probability

min

 
exp

 
�
bFn(x j) �bFn(xi)

kBT

!
; 1

!

where kB is the Boltzmann constant and T is the tem-
perature. The estimatesbF are improved in each step by
taking additional observations, i. e. increasing the sam-
ple size n. For an analysis of this algorithm see [4].

Stochastic Branch and Bound

For the implementation of a stochastic branch and
bound method (cf. also � Integer programming:
Branch and bound methods), an estimate of a lower
bound function is needed. Recall that a function F, de-
fined on the subsets of S, is called a lower bound function

if

inf fF(x) : x 2 Tg � F(T)

for all T � S.
In stochastic branch and bound an estimatebF of F

can be found for instance by sampling bFn(xi) for each
xi in T with E(bFn(xi)) D F(xi) and setting

bF(T) D inf
nbFn(xi) : xi 2 T

o
:

The bound-step of the branch and bound method is re-
placed by a statistical test, whether the lower bound es-
timate of a branch is significantly larger than the esti-
mate of an intermediate solution. After each step, all es-
timates are improved by taking additional observations.
For details see [2] and [7].

In all these algorithms, common random numbers
may decrease the variance.

See also
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Abstract

In this chapter, we present classification models based
on mathematical programming approaches. We first
provide an overview of various mathematical pro-
gramming approaches, including linear programming,
mixed integer programming, nonlinear programming,
and support vector machines. Next, we present our
effort of novel optimization-based classification mod-
els that are general purpose and suitable for develop-

ing predictive rules for large heterogeneous biological
and medical data sets. Our predictive model simultane-
ously incorporates (1) the ability to classify any num-
ber of distinct groups; (2) the ability to incorporate
heterogeneous types of attributes as input; (3) a high-
dimensional data transformation that eliminates noise
and errors in biological data; (4) the ability to in-
corporate constraints to limit the rate of misclassifi-
cation, and a reserved-judgment region that provides
a safeguard against overtraining (which tends to lead
to high misclassification rates from the resulting pre-
dictive rule); and (5) successive multistage classification
capability to handle data points placed in the reserved-
judgment region. To illustrate the power and flexibil-
ity of the classification model and solution engine, and
its multigroup prediction capability, application of the
predictive model to a broad class of biological andmed-
ical problems is described. Applications include the dif-
ferential diagnosis of the type of erythemato-squamous
diseases; predicting presence/absence of heart disease;
genomic analysis and prediction of aberrant CpG is-
land methylation in human cancer; discriminant anal-
ysis of motility and morphology data in human lung
carcinoma; prediction of ultrasonic cell disruption for
drug delivery; identification of tumor shape and volume
in treatment of sarcoma; multistage discriminant anal-
ysis of biomarkers for prediction of early atheroscle-
rois; fingerprinting of native and angiogenic microvas-
cular networks for early diagnosis of diabetes, aging,
macular degeneracy, and tumor metastasis; prediction
of protein localization sites; and pattern recognition of
satellite images in classification of soil types. In all these
applications, the predictive model yields correct classi-
fication rates ranging from 80 to 100%. This provides
motivation for pursuing its use as a medical diagnostic,
monitoring and decision-making tool.

Introduction

Classification is a fundamental machine learning task
whereby rules are developed for the allocation of in-
dependent observations to groups. Classic examples of
applications include medical diagnosis – the allocation
of patients to disease classes on the basis of symptoms
and laboratory tests – and credit screening – the accep-
tance or rejection of credit applications on the basis of
applicant data. Data are collected concerning observa-
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tions with known group membership. These training
data are used to develop rules for the classification of
future observations with unknown group membership.

In this introduction, we briefly describe some ter-
minologies related to classification, and provide a brief
description of the organization of this chapter.

Pattern Recognition, Discriminant Analysis,
and Statistical Pattern Classification

Cognitive science is the science of learning, knowing,
and reasoning. Pattern recognition is a broad field
within cognitive science, which is concerned with the
process of recognizing, identifying, and categorizing in-
put information. These areas intersect with computer
science, particularly in the closely related areas of arti-
ficial intelligence, machine learning, and statistical pat-
tern recognition. Artificial intelligence is associated with
constructing machines and systems that reflect human
abilities in cognition. Machine learning refers to how
these machines and systems replicate the learning pro-
cess, which is often achieved by seeking and discovering
patterns in data, or statistical pattern recognition.

Discriminant analysis is the process of discriminat-
ing between categories or populations. Associated with
discriminant analysis as a statistical tool are the tasks of
determining the features that best discriminate between
populations, and the process of classifying new objects
on the basis of these features. The former is often called
feature selection and the latter is referred to as statisti-
cal pattern classification. This work will be largely con-
cerned with the development of a viable statistical pat-
tern classifier.

As with many computationally intensive tasks, re-
cent advances in computing power have led to a sharp
increase in the interest and application of discrim-
inant analysis techniques. The reader is referred to
Duda et al. [25] for an introduction to various tech-
niques for pattern classification, and to Zopounidis and
Doumpos [121] for examples of applications of pattern
classification.

Supervised Learning, Training,
and Cross-Validation

An entity or observation is essentially a data point as
commonly understood in statistics. In the framework
of statistical pattern classification, an entity is a set

of quantitative measurements (or qualitative measure-
ments expressed quantitatively) of attributes for a par-
ticular object. As an example, in medical diagnosis an
entity could be the various blood chemistry levels of
a patient. With each entity is associated one or more
groups (or populations, classes, categories) to which it
belongs. Continuing with the medical diagnosis exam-
ple, the groups could be the various classes of heart dis-
ease. Statistical classification seeks to determine rules
for associating entities with the groups to which they
belong. Ideally, these associations align with the asso-
ciations that human reasoning would produce on the
basis of information gathered on objects and their ap-
parent categories.

Supervised learning is the process of developing
classification rules based on entities for which the clas-
sification is already known. Note that the process im-
plies that the populations are already well defined.
Unsupervised learning is the process of discovering pat-
terns from unlabeled entities and thereby discover-
ing and describing the underlying populations. Mod-
els derived using supervised learning can be used for
both functions of discriminant analysis – feature selec-
tion and classification. The model that we consider is
a method for supervised learning, so we assume that
populations are previously defined.

The set of entities with known classification that is
used to develop classification rules is the training set.
The training set may be partitioned so that some enti-
ties are withheld during the model-development pro-
cess, also known as the training of the model. The with-
held entities form a test set that is used to determine
the validity of the model, a process known as cross-
validation. Entities from the test set are subjected to the
rules of classification tomeasure the performance of the
rules on entities with unknown group membership.

Validation of classification models is often per-
formed using m-fold cross-validation where the data
with known classification are partitioned into m folds
(subsets) of approximately equal size. The classification
model is trained m times, with the mth fold withheld
during each run for testing. The performance of the
model is evaluated by the classification accuracy on the
m test folds, and can be represented using a classifica-
tion matrix or confusion matrix.

The classification matrix is a square matrix with the
number of rows and columns equal to the number of
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groups. The ijth entry of the classification matrix con-
tains the number or proportion of test entities from
group i that were classified by the model as belonging
to group j. Therefore, the number or proportion of cor-
rectly classified entities is contained in the diagonal el-
ements of the classification matrix, and the number or
proportion of misclassified entities is in the off-diagonal
entries.

Bayesian Inference and Classification

The popularity of Bayesian inference has risen drasti-
cally over the past several decades, perhaps in part due
to its suitability for statistical learning. The reader is
referred to O’Hagan [92] for a thorough treatment of
Bayesian inference. Bayesian inference is usually con-
trasted against classical inference, though in practice
they often imply the same methodology.

The Bayesian method relies on a subjective view of
probability, as opposed to the frequentist view upon
which classical inference is based [92]. A subjective
probability describes a degree of belief in a proposition
held by the investigator based on some information.
A frequency probability describes the likelihood of an
event given an infinite number of trials.

In Bayesian statistics, inferences are based on the
posterior distribution. The posterior distribution is the
product of the prior probability and the likelihood func-
tion. The prior probability distribution represents the
initial degree of belief in a proposition, often before
empirical data are considered. The likelihood function
describes the likelihood that the behavior is exhibited,
given that the proposition is true. The posterior distri-
bution describes the likelihood that the proposition is
true, given the observed behavior.

Suppose we have a proposition or random variable
� about which we would like to make inferences, and
data x. Application of Bayes’s theorem gives

dF(� jx) D
dF(�)dF(xj�)

dF(x)
:

Here, F denotes the (cumulative) distribution function.
For ease of conceptualization, assume that F is differ-
entiable, then dF D f , and the above equality can be
rewritten as

f (� jx) D
f (�) f (xj�)

f (x)
:

For classification, a prior probability function 
(g)
describes the likelihood that an entity is allocated
to group g regardless of its exhibited feature val-
ues x. A group density function f (xjg) describes
the likelihood that an entity exhibits certain measur-
able attribute values, given that it belongs to pop-
ulation g. The posterior distribution for a group
P(gjx) is given by the product of the prior prob-
ability and group density function, normalized over
the groups to obtain a unit probability over all
groups. The observation x is allocated to group h
if h D argmaxg2G P(gjx) D argmaxg2G

�(g) f (xjg)P
j2G �( j) f (xj j)

,
where G denotes the set of groups.

Discriminant Functions

Most classification methods can be described in terms
of discriminant functions. A discriminant function
takes as input an observation and returns information
about the classification of the observation. For data
from a set of groups G, an observation x is assigned to
group h if h D argmaxg2G lg(x); where the functions
lg are the discriminant functions. Classification meth-
ods restrict the form of the discriminant functions, and
training data are used to determine the values of the pa-
rameters that define the functions.

The optimal classifier in the Bayesian frame-
work can be described in terms of discriminant
functions. Let 
g D 
(g) be the prior probability
that an observation is allocated to group g and let
fg(x) D f (xjg) be the likelihood that data x are
drawn from population g. If we wish to minimize
the probability of misclassification given x, then
the optimal allocation for an entity is to the group
h D argmaxg2G P(gjx) D argmaxg2G

�g f g(x)P
j2G � j f j(x)

.
Under the Bayesian framework,

P(gjx) D

g f (xjg)

f (x)
D


g f (xjg)P
j2G

 j f (xj j)

:

The discriminant functions can be lg(x) D P(gjx)
for g 2 G. The same classification rule is given
by lg(x) D 
g f (xjg) and lg(x) D log f (xjg)C log
g .
The problem then becomes finding the form of the
prior functions and likelihood functions that match the
data.
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If the data are multivariate normal with equal co-
variance matrices ( f (xjg) � N(�g ; ˙)), then a linear
discriminant function (LDF) is optimal:

lg(x) D log f (xjg)C log
g

D �1/2(x � �g)T˙�1(x � �g) � 1/2 log j˙g j

� d/2 log 2
 C log
g

D wT
g x C wg0 ;

where d is the number of attributes, wg D ˙
�1�g ,

and wg0 D �1/2�T
g˙
�1�g C log
g C xT˙�1x �

d/2 log 2
 . Note that the last two terms of wg0 are
constant for all g and need not be calculated. When
there are two groups (G D f1; 2g) and the priors are
equal (
1 D 
2), the discriminant rule is equivalent to
Fisher’s linear discriminant rule [30]. Fisher’s rule can
also be derived, as it was by Fisher, by choosing w so
that (wT�1 � wT�2)2/(wT˙w) is maximized.

These LDFs and quadratic discriminant functions
(QDFs) are often applied to data sets that are not multi-
variate normal or continuous (see pp. 234–235 in [98])
by using approximations for the means and covari-
ances. Regardless, these models are parametric in that
they incorporate assumptions about the distribution of
the data. Fisher’s LDF is nonparametric because no as-
sumptions are made about the underlying distribution
of the data. Thus, for a special case, a parametric and
a nonparametric model coincide to produce the same
discriminant rule. The LDF derived above is also called
the homoscedastic model, and the QDF is called the
heteroscedastic model. The exact form of discriminant
functions in the Bayesian framework can be derived for
other distributions [25].

Some classification methods are essentially meth-
ods for finding coefficients for LDFs. In other words,
they seek coefficients wg and constants wg0 such that
lg(x) D wgx C wg0, g 2 G is an optimal set of discrim-
inant functions. The criteria for optimality are differ-
ent for different methods. LDFs project the data onto
a linear subspace and then discriminate between enti-
ties in that subspace. For example, Fisher’s LDF projects
two-group data on an optimal line, and discriminates
on that line. A good linear subspace may not exist
for data with overlapping distributions between groups
and therefore the data will not be classified accurately
using these methods. The hyperplanes defined by the

discriminant functions form boundaries between the
group regions. A large portion of the literature concern-
ing the use of mathematical programming models for
classification describes methods for finding coefficients
of LDFs [121].

Other classification methods seek to determine
parameters to establish QDFs. The general form of
a QDF is lg(x) D xTWgx C wT

g x C wg0. The bound-
aries defining the group regions can assume any hyper-
quadric form, as can the Bayes decision rules for arbi-
trary multivariate normal distributions [25].

In this paper, we survey the development and
advances of classification models via the mathemat-
ical programming techniques, and summarize our
experience in classification models applied to pre-
diction in biological and medical applications. The
rest of this chapter is organized as follows. Sec-
tion “Mathematical Programming Approaches” first
provides a detailed overview of the development and
advances of mathematical programming based classi-
fication models, including linear programming (LP),
mixed integer programming (MIP), nonlinear pro-
gramming, and support vector machine (SVM) ap-
proaches. In Sect. “Mixed Integer Programming Based
Multigroup Classification Models and Applications to
Medicine and Biology”, we describe our effort in devel-
oping optimization-based multigroup multistage dis-
criminant analysis predictive models for classification.
The use of the predictive models for various biological
and medical problems is presented. Section “Progress
and Challenges” provides several tables to summa-
rize the progress of mathematical programming based
classification models and their characteristics. This is
followed by a brief description of other classification
methods in Sect. “Other Methods”, and by a summary
and concluding remarks in Sect. “Summary and Con-
clusion”.

Mathematical Programming Approaches

Mathematical programmingmethods for statistical pat-
tern classification emerged in the 1960s, gained pop-
ularity in the 1980s, and have grown drastically since.
Most of the mathematical programming approaches are
nonparametric, which has been cited as an advantage
when analyzing contaminated data sets over methods
that require assumptions about the distribution of the
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data [107]. Most of the literature about mathemati-
cal programming methods is concerned with either us-
ing mathematical programming to determine the coef-
ficients of LDFs or support vector machines (SVMs).

The following notation will be used. The subscripts
i, j, and k are used for the observation, attribute, and
group, respectively. Let xij be the value of attribute j of
observation i. Let m be the number of attributes, K be
the number of groups, Gk represent the set of data from
group k, M be a big positive number, and � be a small
positive number. The abbreviation “urs” is used in ref-
erence to a variable to denote “unrestricted in sign.”

Linear Programming Classification Models

The use of linear programs to determine the coefficients
of LDFs has been widely studied [31,46,50,74]. The
methods determine the coefficients for different objec-
tives, including minimizing the sum of the distances to
the separating hyperplane, minimizing the maximum
distance of an observation to the hyperplane, and min-
imizing other measures of badness of fit or maximizing
measures of goodness of fit.

Two-Group Classification One of the earliest LP
classification models was proposed by Mangasar-
ian [74] to construct a hyperplane to separate two
groups of data. Separation by a nonlinear surface us-
ing LP was also proposed when the surface parameters
appear linearly. Two sets of points may be inseparable
by one hyperplane or surface through a single-step LP
approach, but they can be strictly separated by more
planes or surfaces via a multistep LP approach [75].
In [75] real problems with up to 117 data points, ten at-
tributes, and three groups were solved. The three-group
separation was achieved by separating group 1 from
groups 2 and 3, and then group 2 from group 3.

Studies of LP models for the discriminant problem
in the early 1980s were carried out by Hand [47], Freed
and Glover [31,32], and Bajgier and Hill [5]. Three LP
models for the two-group classification problem, in-
cluding minimizing the sum of deviations (MSD), min-
imizing the maximum deviation (MMD), andminimiz-
ing the sum of interior distances (MSID) were pro-
posed. Freed and Glover [33] provided computational
studies of these models where the test conditions in-
volved normal and nonnormal populations.

MSD:

Minimize
X
i

di

subject to w0 C
X
j

xi jw j � di � 0 8i 2 G1 ;

w0 C
X
j

xi jw j C di � 0 8i 2 G2 ;

wj urs 8 j ;
di � 0 8i :

MMD:

Minimize d

subject to w0 C
X
j

xi jw j � d � 0 8i 2 G1 ;

w0 C
X
j

xi jw j C d � 0 8i 2 G2 ;

wj urs 8 j ;

d � 0 :

MSID:

Minimize pd �
X
i

ei

subject to w0 C
X
j

xi jw j � d C ei � 0 8i 2 G1 ;

w0 C
X
j

xi jw j C d � ei � 0 8i 2 G2 ;

wj urs 8 j ;

d � 0 ;
ei � 0 8i ;

where p is a weight constant.
The objective function of the MSD model is the

L1-norm distance, while the objective function ofMMD
is the L1-norm distance. They are special cases of
Lp-norm classification [50,108].

In somemodels the constant term of the hyperplane
is a fixed number instead of a decision variable. The
model minimize the sum of deviations with constant
cutoff score MSD0 shown below is an example where
the cutoff score b replaces w0 in the formulation. The
same replacement could be used in other formulations.
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MSD0:

Minimize
X
i

di

subject to
X
j

xi jw j � di � b 8i 2 G1 ;

X
j

xi jw j C di � b 8i 2 G2 ;

wj urs 8 j ;

di � 0 8i :

A gap can be introduced between the two regions
determined by the separating hyperplane to prevent de-
generate solutions. Take MSD as an example; the sepa-
ration constraints become

w0 C
X
j

xi jw j � di � �� 8i 2 G1 ;

w0 C
X
j

xi jw j C di � � 8i 2 G2 :

The small number � can be normalized to 1.
Besides introducing a gap, another normalization

approach is to include constraints such as
Pm

jD0 wj D 1
or
Pm

jD1 wj D 1 in the LP models to avoid unbounded
or trivial solutions.

Specifically, Glover et al. [45] gave the hybridmodel,
as follows.

Hybrid model:

Minimize pd C
X
i

pi di � qe �
X
i

qi ei

subject to w0 C
X
j

xi jw j � d � di C e C ei D 0

8i 2 G1 ;

w0 C
X
j

xi jw j C d C di � e � ei D 0

8i 2 G2 ;

wj urs 8 j ;

d; e � 0 ;
di ; ei � 0 8i ;

where p; pi ; q; qi are the costs for different deviations.
Including different combinations of deviation terms in
the objective function then leads to variant models.

Joachimsthaler and Stam [50] reviewed and sum-
marized LP formulations applied to two-group classi-

fication problems in discriminant analysis, including
MSD, MMD, MSID, and MIP models, and the hy-
brid model. They summarized the performance of the
LP methods together with the traditional classification
methods such as Fisher’s LDF [30], Smith’s QDF [106],
and a logistic discriminant method. In their review,
MSD sometimes but not uniformly improves classifica-
tion accuracy, compared with traditional methods. On
the other hand, MMD is found to be inferior to MSD.
Erenguc and Koehler [27] presented a unified survey
of LP models and their experimental results, in which
the LP models include several versions of MSD, MMD,
MSID, and hybrid models. Rubin [99] provided experi-
mental results comparing these LPmodels with Fisher’s
LDF and Smith’s QDF. He concluded that QDF per-
forms best when the data follow normal distributions
and that QDF could be the benchmark when seeking
situations for advantageous LP methods. In summary,
the above mentioned review papers [27,50,99] describe
previous work on LP classification models and their
comparison with traditional methods. However, it is
difficult to make definitive statements about the condi-
tions under which one LP model is superior to others,
as stated in [107].

Stam and Ungar [110] introduced the software
package RAGNU, a utility program in conjunction with
the LINDO optimization software, for solving two-
group classification problems using LP-based methods.
LP formulations such as MSD, MMD, MSID, hybrid
models, and their variants are contained in the package.

There are some difficulties in LP-based formu-
lations, in that some models could result in un-
bounded, trivial, or unacceptable solutions [34,87], but
possible remedies are proposed. Koehler [51,52,53]
and Xiao [114,115] characterized the conditions of
unacceptable solutions in two-group LP discrimi-
nant models, including MSD, MMD, MISD, the hy-
brid model, and their variants. Glover [44] proposed
the normalization constraint

Pm
jD1(�jG2j

P
i2G1

xi j C
jG1j

P
i2G2

xi j)wj D 1, which is more effective and re-
liable. Rubin [100] examined the separation failure for
two-group models and suggested applying the mod-
els twice, reversing the group designations the second
time. Xiao and Feng [116] proposed a regularization
method to avoid multiple solutions in LP discriminant
analysis by adding the term �

Pm
jD1 w

2
j in the objective

functions.
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Bennett and Mangasarian [9] proposed the follow-
ing model which minimizes the average of the devia-
tions, which is called robust LP (RLP):

Minimize
1
jG1j

X
i2G1

di C
1
jG2j

X
i2G2

di

subject to w0 C
X
j

xi jw j � di � �1 8i 2 G1 ;

w0 C
X
j

xi jw j C di � 1 8i 2 G2 ;

wj urs 8 j ;

di � 0 8i :

It is shown that this model gives the null solution
w1 D � � � D wm D 0 if and only if 1

jG1j

P
i2G1

xi j D
1
jG2j

P
i2G2

xi j for all j, in which case the solution
w1 D � � � D wm D 0 is guaranteed to be not unique.
Data of different diseases have been tested by the pro-
posed classification methods, as in most of Mangasar-
ian’s papers.

Mangasarian et al. [86] described two applications
of LP models in the field of breast cancer research, one
in diagnosis and the other in prognosis. The first appli-
cation is to discriminate benign from malignant breast
lumps, while the second one is to predict when breast
cancer is likely to recur. Both of them work successfully
in clinical practice. The RLP model [9] together with
the multisurface method tree algorithm [8] is used in
the diagnostic system.

Duarte Silva and Stam [104] included the second-
order (i. e., quadratic and cross-product) terms of the
attribute values in the LP-based models such as MSD
and hybrid models and compared them with linear
models, Fisher’s LDF, and Smith’s QDF. The results
of the simulation experiments show that the methods
which include second-order terms perform much bet-
ter than first-order methods, given that the data sub-
stantially violate the multivariate normality assump-
tion. Wanarat and Pavur [113] investigated the effect
of the inclusion of the second-order terms in the MSD,
MIP, and hybrid models when the sample size is small
to moderate. However, the simulation study shows that
second-order terms may not always improve the per-
formance of a first-order LP model even with data con-
figurations that are more appropriately classified by
Smith’s QDF. Another result of the simulation study is

that inclusion of the cross-product terms may hurt the
model’s accuracy, while omission of these terms causes
the model to be not invariant with respect to a nonsin-
gular transformation of the data.

Pavur [94] studied the effect of the position of the
contaminated normal data in the two-group classifi-
cation problem. The methods for comparison in that
study included MSD, minimizing the number of mis-
classifications (MM; (described in the “Mixed Integer
Programming Classification Models” section), Fisher’s
LDF, Smith’s QDF, and nearest -neighbor models. The
nontraditional methods such as LP models have po-
tential for outperforming the standard parametric pro-
cedures when nonnormality is present, but this study
shows that no one model is consistently superior in all
cases.

Asparoukhov and Stam [3] proposed LP and MIP
models to solve the two-group classification problem
where the attributes are binary. In this case the training
data can be partitioned into multinomial cells, allow-
ing for a substantial reduction in the number of vari-
ables and constraints. The proposed models not only
have the usual geometric interpretation, but also pos-
sess a strong probabilistic foundation. Let s be the index
of the cells, n1s ; n2s be the number of data points in cell
s from groups 1 and 2, respectively, and (bs1; : : : ; bsm)
be the binary digits representing cell s. The model
shown below is the LP model of minimizing the sum
of deviations for two-group classification with binary
attributes.
Cell conventional MSD:

Minimize
X

s: n1sCn2s>0

(n1sd1s C n2sd2s)

subject to w0 C
X
j

bs jw j � d1s � 0 8s : n1s > 0 ;

w0 C
X
j

bs jw j C d2s > 0 8s : n2s > 0 ;

wj urs 8 j ;
d1s ; d2s � 0 8s :

Binary attributes are usually found in medical di-
agnoses data. In this study three real data sets of dis-
ease discrimination were tested: developing postoper-
ative pulmonary embolism or not, having dissecting
aneurysm or other diseases, and suffering from post-
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traumatic epilepsy or not. In these data sets the MIP
model for binary attributes (BMIP), which will be de-
scribed later, performs better than other LP models or
traditional methods.

Multigroup Classification Freed and Glover [32] ex-
tended the LP classification models from two-group
to multigroup problems. One formulation which uses
a single discriminant function is given below:

Minimize
K�1X
kD1

ck˛k

subject to
X
j

xi jw j � Uk 8i 2 Gk 8k ;

X
j

xi jw j � Lk 8i 2 Gk 8k ;

Uk C � � LkC1 C ˛k

8k D 1; : : : ;K � 1 ; wj urs 8 j ;

Uk ; Lk urs 8k ;

˛k urs 8k D 1; : : : ;K � 1 ;

where the number � could be normalized to be 1,
and ck is the misclassification cost. However, single-
function classification is not as flexible and general
as multiple-function classification. Another extension
from the two-group case to the multigroup case in [32]
is to solve two-group LP models for all pairs of groups
and determine classification rules based on these solu-
tions. However, in some cases the group assignment is
not clear and the resulting classification scheme may be
suboptimal [107].

For the multigroup discrimination problem, Ben-
nett and Mangasarian [10] defined the piecewise-linear
separability of data fromK groups as the following: The
data from K groups are piecewise-linear-separable if
and only if there exist (wk

0 ;wk
1 ; : : : ;wk

m) 2 RmC1; k D
1; : : : ;K, such thatwh

0C
P

j xi jw
h
j � wk

0C
P

j xi jw
k
jC

1; 8i 2 Gh 8h; k ¤ h. The following LP will generate
a piecewise-linear separation for the K groups if one ex-
ists, otherwise it will generate an error-minimizing sep-
aration:

Minimize
X
h

X
k¤h

1
jGh j

X
i2Gh

dhk
i

subject to dhk
i � �(w

h
0 C

X
j

xi jwh
j )

C (wk
0 C

X
j

xi jwk
j )C 1

8i 2 Gh 8h; k ¤ h ;

wk
j urs 8 j; k ;

dhk
i � 0 8i 2 Gh 8h; k ¤ h :

The method was tested in three data sets. It per-
forms pretty well in two of the data sets which are to-
tally (or almost totally) piecewise-linear separable. The
classification result is not good in the third data set,
which is inherently more difficult. However, combin-
ing the multisurface method tree algorithm [8] results
in an improvement in performance.

Gochet et al. [46] introduced an LP model for the
general multigroup classification problem. The method
separates the data with several hyperplanes by sequen-
tially solving LPs. The vectors wk, k D 1; : : : ;K, are
estimated for the classification decision rule. The rule
is to classify an observation i into group s, where
s D argmaxkfwk

0 C
P

j xi jw
k
j g.

Suppose observation i is from group h. Denote the
goodness of fit for observation i with respect to group k
as

Gi
hk(w

h ;wk)

D
h�
wh
0 C

X
j

xi jwh
j
�
�
�
wk
0 C

X
j

xi jwk
j
�iC

;

where [a]C D maxf0; ag :

Likewise, denote the badness of fit for observation iwith
respect to group k as

Bi
hk(w

h ;wk)

D
h�
wh
0 C

X
j

xi jwh
h
�
�
�
wk
0 C

X
j

xi jwk
j
�i�

;

where [a]� D �minf0; ag :

The total goodness of fit and total badness of fit are then
defined as

G(w) D G(w1; : : : ;wK) D
X
h

X
k¤h

X
i2Gh

Gi
hk(w

h;wk) ;

B(w) D B(w1; : : : ;wK) D
X
h

X
k¤h

X
i2Gh

Bi
hk (w

h;wk) :
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The LP is to minimize the total badness of fit, subject to
a normalization equation, in which q > 0:

Minimize B(w) ;

subject to G(w) � B(w) D q ;

w urs .

Expanding G(w) and B(w) and substituting
Gi

hk(w
h;wk) and Bi

hk(w
h;wk) by � i

hk and ˇ i
hk respec-

tively, the LP becomes

Minimize
X
h

X
k¤h

X
i2Gh

ˇ i
hk

subject to
�
wh
0 C

X
j

xi jwh
j

�
�
�
wk
0 C

X
j

xi jwk
j

�

D � i
hk � ˇ

i
hk 8i 2 Gh 8h; k ¤ h ;

X
h

X
k¤h

X
i2Gh

(� i
hk � ˇ

i
hk) D q ;

wk
j urs 8 j; k ;

� i
hk; ˇ

i
hk � 0 8i 2 Gh 8h; k ¤ h :

The classification results for two real data sets show
that this model can compete with Fisher’s LDF and the
nonparametric k-nearest-neighbor method.

The LP-based models for classification problems
highlighted above are all nonparametric models. In
Sect. “Mixed Integer Programming Based Multigroup
Classification Models and Applications to Medicine
and Biology”, we describe LP-based and MIP-based
classification models that utilize a parametric multi-
group discriminant analysis approach [39,40,60,63].
These latter models have been employed successfully
in various multigroup disease diagnosis and biolog-
ical/medical prediction problems [16,28,29,56,57,59,
60,64,65].

Mixed Integer Programming Classification Models

While LP offers a polynomial-time computational
guarantee, MIP allows more flexibility in (among other
things) modeling misclassified observations and/or
misclassification costs.

Two-Group Classification In the two-group classi-
fication problem, binary variables can be used in the
formulation to track and minimize the exact number
of misclassifications. Such an objective function is also
considered as the L0-norm criterion [107].

MM:

Minimize
X
i

zi

subject to w0 C
X
j

xi jw j � Mzi 8i 2 G1 ;

w0 C
X
j

xi jw j � �Mzi 8i 2 G2 ;

wj urs 8 j ;

zi 2 f0; 1g 8i :

The vector w is required to be a nonzero vector to
prevent the trivial solution.

In theMIP formulation the objective function could
include the deviation terms, such as those in the hy-
brid models, as well as the number of misclassifi-
cations [5]; or it could represent expected cost of
misclassification [1,6,101,105]. In particular, there are
some variant versions of the basic model.

Stam and Joachimsthaler [109] studied the classifi-
cation performance of MM and compared it with that
of MSD, Fisher’s LDF, and Smith’s QDF. In some cases
the MM model performs better, but in some cases it
does not. MIP formulations are in the review stud-
ies of Joachimsthaler and Stam [50] and Erenguc and
Koehler [27], and are contained in the software devel-
oped by Stam and Ungar [110]. Computational experi-
ments show that the MIP model performs better when
the group overlap is higher [50,109], although it is still
not easy to reach general conclusions [107].

Since the MIP model is NP-hard, exact algo-
rithms and heuristics are proposed to solve it effi-
ciently. Koehler and Erenguc [54] developed a proce-
dure to solve MM in which the condition of nonzero
w is replaced by the requirement of at least one vio-
lation of the constraints w0 C

P
j xi jw j � 0 for i 2 G1

or w0 C
P

j xi jw j � 0 for i 2 G2. Banks and Abad [6]
solved the MIP of minimizing the expected cost of
misclassification by an LP-based algorithm. Abad and
Banks [1] developed three heuristic procedures for the
problem of minimizing the expected cost of misclas-
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sification. They also included the interaction terms
of the attributes in the data and applied the heuris-
tics [7]. Duarte Silva and Stam [105] introduced the di-
vide and conquer algorithm for the classification prob-
lem of minimizing the misclassification cost by solv-
ing MIP and LP subproblems. Rubin [101] solved the
same problem by using a decomposition approach, and
tested this procedure on some data sets, including two
breast cancer data sets. Yanev and Balev [119] proposed
exact and heuristic algorithms for solving MM, which
are based on some specific properties of the vertices of
a polyhedral set neatly connected with the model.

For the two-group classification problem where the
attributes are binary, Asparoukhov and Stam [3] pro-
posed LP and MIPmodels which partition the data into
multinomial cells and result in fewer variables and con-
straints. Let s be the index of the cells, n1s ; n2s be the
number of data points in cell s from groups 1 and 2, re-
spectively, and (bs1; : : : ; bsm) be the binary digits rep-
resenting cell s. Below is the BMIP, which performs best
in the three real data sets in [3]:
BMIP

Minimize
X

s: n1sCn2s>0

fjn1s � n2s jzs Cmin(n1s ; n2s)g

subject to w0 C
X
j

bs jw j � Mzs 8s : n1s � n2s ;

n1s > 0 ;

w0 C
X
j

bs jw j > �Mzs 8s : n1s < n2s ;

wj urs 8 j ;

zs 2 f0; 1g 8s : n1s C n2s > 0 :

Pavur et al. [96] included different secondary goals
in model MM and compared their misclassification
rates. A new secondary goal was proposed, which maxi-
mizes the difference between the means of the discrimi-
nant scores of the two groups. In this model the term –ı
is added to theminimization objective function as a sec-
ondary goal with a constant multiplier, while the con-
straint

P
j x̄

(2)
j w j �

P
j x̄

(1)
j w j � ı is included, where

x̄(k)j D 1/jGk j
P

i2Gk
xi j 8 j, for k D 1; 2. The results

of simulation study show that an MIP model with the
proposed secondary goal has better performance than
the other models studied.

Glen [42] proposed integer programming (IP) tech-
niques for normalization in the two-group discrimi-
nant analysis models. One technique is to add the con-
straint

Pm
jD1 jwjj D 1. In the proposed model, wj for

j D 1; : : : ;m is represented by wj D wCj � w�j , where
wCj ;w

�
j � 0, and binary variables ı j and � j are defined

such that ı j D 1, wCj � � and � j D 1, w�j � �.
The IP normalization technique is applied to MSD and
MMD, and the MSD version is presented below.

MSD – with IP normalization:

Minimize
X
i

di

subject to w0 C

mX
jD1

xi j(wCj � w�j ) � di � 0

8i 2 G1 ;

w0 C

mX
jD1

xi j(wCj � w�j )C di � 0

8i 2 G2 ;

mX
jD1

(wCj C w�j ) D 1 ;

wCj � �ı j � 0 8 j D 1; : : : ;m ;

wCj � ı j � 0 8 j D 1; : : : ;m ;

w�j � �� j � 0 8 j D 1; : : : ;m ;

w�j � � j � 0 8 j D 1; : : : ;m ;

ı j C � j � 1 8 j D 1; : : : ;m ;

w0 urs ,

wCj ;w
�
j � 0 8 j D 1; : : : ;m ;

di � 0 8i ;

ı j; � j 2 f0; 1g 8 j D 1; : : : ;m :

The variable coefficients of the discriminant func-
tion generated by the models are invariant under ori-
gin shifts. The proposed models were validated using
two data sets from [45,87]. The models were also ex-
tended for attribute selection by adding the constraintPm

jD1(ı j C � j) D p, which allows only a constant num-
ber, p, of attributes to be used for classification.



Disease Diagnosis: Optimization-Based Methods D 763

Glen [43] developed MIP models which determine
the thresholds for forming dichotomous variables as
well as the discriminant function coefficients, wj. For
each continuous attribute to be formed as a dichoto-
mous attribute, the model finds the threshold among
possible thresholds while determining the separating
hyperplane and optimizing the objective function such
as minimizing the sum of deviations or minimizing the
number of misclassifications. Computational results of
a real data set and some simulated data sets show that
the MSD model with dichotomous categorical variable
formation can improve classification performance. The
reason for the potential of this technique is that the LDF
generated is a nonlinear function of the original vari-
ables.

Multigroup Classification Gehrlein [41] proposed
MIP formulations of minimizing the total number
of misclassifications in the multigroup classification
problem. He gave both a single-function classification
scheme and a multiple-function classification scheme,
as follows.

General single-function classification (GSFC) –
minimizing the number of misclassifications:

Minimize
X
i

zi

subject to w0 C
X
j

xi jw j �Mzi � Uk 8i 2 Gk ;

w0 C
X
j

xi jw j CMzi � Lk 8i 2 Gk ;

Uk � Lk � ı
0 8k ;

Lg � Uk CMygk � ı
Lk � Ug CMykg � ı
ygk C ykg D 1

9>=
>;
8g; k; g ¤ k ;

wj urs 8 j ;

Uk ; Lk urs 8k ;

zi 2 f0; 1g 8i ;

ygk 2 f0; 1g 8g; k; g ¤ k ;

where Uk ; Lk denote the upper and lower endpoints of
the interval assigned to group k, and ygk D 1 if the in-
terval associated with group g precedes that with group

k and ygk D 0 otherwise. The constant ı0 is the mini-
mum width of an interval of a group and the constant ı
is the minimum gap between adjacent intervals.

General multiple-function classification (GMFC) –
minimizing the number of misclassifications:

Minimize
X
i

zi

subject to wh
0 C

X
j

xi jwh
j � wk

0

�
X
j

xi jwk
j CMzi � �

8i 2 Gh; 8h; k ¤ h ;

wk
j urs 8 j; k ;

zi 2 f0; 1g 8i :

Both models work successfully on the iris data set
provided by Fisher [30].

Pavur [93] solved the multigroup classification
problem by sequentially solving the GSFC in one di-
mension each time. LDFs were generated by succes-
sively solving the GSFC with the added constraints that
all linear discriminants are uncorrelated to each other
for the total data set. This procedure could be repeated
for the number of dimensions that is believed to be
enough. According to the simulation results, this proce-
dure substantially improves the GSFCmodel and some-
times outperforms GMFC, Fisher’s LDF, or Smith’s
QDF.

To solve the three-group classification problem
more efficiently, Loucopoulos and Pavur [71] made
a slight modification to the GSFC and proposed the
model MIP3G, which also minimizes the number of
misclassifications. Compared with GSFC, MIP3G is
also a single-function classification model, but it re-
duces the possible group orderings from six to three
in the formulation and thus becomes more efficient.
Loucopoulos and Pavur [72] reported the results of
a simulation experiment on the performance of GMFC,
MIG3G, Fisher’s LDF, and Smith’s QDF for a three-
group classification problem with small training sam-
ples. Second-order terms were also considered in the
experiment. Simulation results show that GMFC and
MIP3G can outperform the parametric procedures
in some nonnormal data sets and that the inclusion
of second-order terms can improve the performance
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of MIP3G in some data sets. Pavur and Loucopou-
los [95] investigated the effect of the gap size in the
MIP3G model for the three-group classification prob-
lem. A simulation study illustrates that for fairly separa-
ble data, or data with small sample sizes, a non-zero-gap
model can improve the performance. A possible reason
for this result is that the zero-gap model may be over-
fitting the data.

Gallagher et al. [39,40,63] and Lee [59,60] proposed
MIP models, both heuristic and exact, as a computa-
tional approach to solving the constrained discriminant
method described by Anderson [2]. These models are
described in detail in Sect. “Mixed Integer Program-
ming Based Multigroup Classification Models and Ap-
plications to Medicine and Biology”.

Nonlinear Programming Classification Models

Nonlinear programming approaches are natural exten-
sions for some of the LP-based models. Thus far, non-
linear programming approaches have been developed
for two-group classification.

Stam and Joachimsthaler [108] proposed a class
of nonlinear programming methods to solve the two-
group classification problem under the Lp-norm objec-
tive criterion. This is an extension of MSD and MMD,
for which the objectives are the L1-norm and L1-norm,
respectively.

Minimize the general Lp-norm distance:

Minimize (
X
i

d p
i )

1/p

subject to
X
j

xi jw j � di � b 8i 2 G1 ;

X
j

xi jw j C di � b 8i 2 G2 ;

wj urs 8 j ;

di � 0 8i :

The simulation results show that, in addition to
the L1-norm and the L1-norm, it is worth the ef-
fort to compute other Lp-norm objectives. Restrict-
ing the analysis to 1 � p � 3, plus p D1, is recom-
mended. This method was reviewed by Joachimsthaler
and Stam [50] and Erenguc and Koehler [27].

Mangasarian et al. [85] proposed a nonconvex
model for the two-group classification problem:

Minimize d1 C d2

subject to
X
j

xi jw j � d1 � 0 8i 2 G1 ;

X
j

xi jw j C d2 � 0 8i 2 G2 ;

max
jD1; ::: ;m

jwjj D 1 ;

wj urs 8 j ;

d1; d2 urs ,

This model can be solved in polynomial-time by
solving 2m linear programs, which generate a sequence
of parallel planes, resulting in a piecewise-linear non-
convex discriminant function. The model works suc-
cessfully in clinical practice for the diagnosis of breast
cancer.

Further, Mangasarian [76] also formulated the
problem of minimizing the number of misclassifica-
tions as a linear program with equilibrium constraints
(LPEC) instead of the MIP model MM described previ-
ously:

Minimize
X

i2G1[G2

zi

subject to w0 C
X
j

xi jw j � di � �1 8i 2 G1 ;

zi (w0 C
X
j

xi jw j � di C 1) D 0

8i 2 G1 ;

w0 C
X
j

xi jw j C di � 1 8i 2 G2 ;

zi (w0 C
X
j

xi jw j C di � 1) D 0

8i 2 G2 ;

di (1 � zi ) D 0 8i 2 G1 [ G2 ;

0 � zi � 1 8i 2 G1 [ G2 ;

di � 0 8i 2 G1 [ G2 ;

wj urs 8 j :

The general LPEC can be converted to an exact
penalty problem with a quadratic objective and linear
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constraints. A stepless Frank–Wolfe-type algorithm is
proposed for the penalty problem, terminating at a sta-
tionary point or a global solution. This method is called
the parametric misclassification minimization (PMM)
procedure, and numerical testing is included in [77].

To illustrate the next model, we first define the step
function s : R! f0; 1g as

s(u) D

(
1 if u > 0 ;

0 if u � 0 :

The problem of minimizing the number of misclas-
sifications is equivalent to

Minimize
X

i2G1[G2

s(di )

subject to w0 C
X
j

xi jw j � di � �1 8i 2 G1 ;

w0 C
X
j

xi jw j C di � 1 8i 2 G2 ;

di � 0 8i 2 G1 [ G2 ;

wj urs 8 j :

Mangasarian [77] proposed a simple concave ap-
proximation of the step function for nonnegative
variables: t(u; ˛) D 1 � e�˛u , where ˛ > 0; u � 0. Let
˛ > 0 and approximate s(di) by t(di ; ˛). The problem
then reduces to minimizing a smooth concave function
bounded below on a nonempty polyhedron, which has
a minimum at a vertex of the feasible region. A finite
successive linearization algorithm (SLA) was proposed,
terminating at a stationary point or a global solution.
Numerical tests of SLA were done and compared with
the PMM procedure described above. The results show
that the much simpler SLA obtains a separation that is
almost as good as PMM in considerably less computing
time.

Chen and Mangasarian [21] proposed an algorithm
on a defined hybrid misclassification minimization
problem, which is more computationally tractable than
theNP-hard misclassification minimization problem.
The basic idea of the hybrid approach is to obtain iter-
atively w0 and (w1; : : : ;wm) of the separating hyper-
plane:

1. For a fixed w0, solve RLP [9] to determine
(w1; : : : ;wm).

2. For this (w1; : : : ;wm), solve the one-dimensional
misclassification minimization problem to deter-
mine w0.

Comparison of the hybrid method is made with the
RLP method and the PMM procedure. The hybrid
method performs better in the testing sets of the ten-
fold cross-validation and is much faster than PMM.

Mangasarian [78] proposed the model of minimiz-
ing the sum of arbitrary-norm distances of misclassified
points to the separating hyperplane. For a general norm
jj � jj on Rm, the dual norm jj � jj0 on Rm is defined as
jjxjj0 D maxjjyjjD1 xT y. Define [a]C D maxf0; ag and
let w D (w1; : : : ;wm). The formulation can then be
written as

Minimize
X
i2G1

h
w0 C

X
j

xi jw j

iC

C
X
i2G2

h
� w0 �

X
j

xi jw j

iC

subject to jjwjj0 D 1 ;

w0;w urs :

The problem is to minimize a convex function on
a unit sphere. A decision problem related to this min-
imization problem is shown to be NP-complete, ex-
cept for p D 1. For a general p-norm, the minimization
problem can be transformed via an exact penalty for-
mulation to minimizing the sum of a convex function
and a bilinear function on a convex set.

Support Vector Machine

A support vector machine (SVM) is a type of math-
ematical programming approach [112]. It has been
widely studied, and has become popular in many appli-
cation fields in recent years. The introductory descrip-
tion of SVMs given here is summarized from the tu-
torial by Burges [20]. In order to maintain consistency
with SVM studies in published literature, the notation
used below is slightly different from the notation used
to describe the mathematical programming methods in
earlier sections.

In the two-group separable case, the objective func-
tion is to maximize the margin of a separating hyper-
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plane, 2/jjwjj, which is equivalent to minimizing jjwjj2:

Minimize wTw ;

subject to xTi w C b � C1 for yi D C1 ;

xTi w C b � �1 for yi D �1 ;

w; b urs ,

where xi 2 Rm represents the values of attributes of ob-
servation i and yi 2 f�1; 1g represents the group of ob-
servation i.

This problem can be solved by solving its Wolfe
dual problem:

Maximize
X
i

˛i �
1
2

X
i; j

˛i˛ j yi y jxTi x j ;

subject to
X
i

˛i yi D 0 ;

˛i � 0 8i :

Here, ˛i is the Lagrange multiplier for the training
point i, and the points with ˛i > 0 are called the sup-
port vectors (analogous to the support of a hyperplane,
and thus the introduction of the name “support vec-
tor”). The primal solutionw is given byw D

P
i ˛i yi xi .

b can be computed by solving yi (wTxi C b) � 1 D 0
for any i with ˛i > 0.

For the nonseparable case, slack variables � i are in-
troduced to handle the errors. Let C be the penalty for
the errors. The problem becomes

Minimize
1
2
wTw C C(

X
i

�i )k ;

subject to xTi w C b � C1 � �i for yi D C1 ;

xTi w C b � �1C �i for yi D �1 ;

w; b urs ,

�i � 0 8i :

When k is chosen to be 1, neither the � i nor their
Lagrange multipliers appear in theWolfe dual problem:

Maximize
X
i

˛i �
1
2

X
i; j

˛i˛ j yi y jxTi x j ;

subject to
X
i

˛i yi D 0 ;

0 � ˛i � C 8i :

The data points can be separated nonlinearly by
mapping the data into some higher-dimensional space

and applying linear SVM to the mapped data. In-
stead of knowing explicitly the mapping ˚ , SVM needs
only the dot products of two transformed data points
˚(xi ) � ˚(x j). The kernel function K is introduced
such that K(xi ; x j) D ˚(xi) � ˚(x j). Replacing xTi x j by
K(xi ; x j) in the above problem, the separation becomes
nonlinear, while the problem to be solved remains
a quadratic program. In testing a new data point x af-
ter training, the sign of the function f (x) is computed
to determine the group of x:

f (x) D
NsX
iD1

˛i yi˚(si )�˚(x)Cb D
NsX
iD1

˛i yiK(si ; x)Cb;

where the si are the support vectors and Ns is the num-
ber of support vectors. Again the explicit form of ˚(x)
is avoided.

Mangasarian provided a general mathematical pro-
gramming framework for SVM, called generalized
SVM or GSVM [79,83]. Special cases can be derived
from GSVM, including the standard SVM.

Many SVM-type methods have been developed
by Mangasarian and others to solve huge classifica-
tion problems more efficiently. These methods in-
clude successive overrelaxation for SVM [82], proximal
SVM [36,38], smooth SVM [68], reduced SVM [67], La-
grangian SVM [84], incremental SVMs [37], and other
methods [13,81]. Mangasarian [80] summarized some
of the developments. Examples of applications of SVM
include breast cancer studies [69,70] and genome re-
search [73].

Hsu and Lin [49] compared different methods for
multigroup classification using SVMs. Three methods
studied were based on several binary classifiers: one
against one, one against all, and directed acyclic graph
(DAG) SVM. The other two methods studied are meth-
ods with decomposition implementation. The experi-
mental results show that the one-against-one and DAG
methods are more suitable for practical use than the
other methods. Lee et al. [66] proposed a generic ap-
proach to multigroup problems with some theoretical
properties, and the proposed method was well applied
to microarray data for cancer classification and satellite
radiance profiles for cloud classification.

Gallagher et al. [39,40,63] offered the first discrete
SVM for multigroup classification with reserved judge-
ment. The approach has been successfully applied to
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a diverse variety of biological and medical applica-
tions (see Sect. “Mixed Integer Programming Based
Multigroup Classification Models and Applications to
Medicine and Biology”).

Mixed Integer Programming BasedMultigroup
Classification Models and Applications
to Medicine and Biology

Commonly used methods for classification, such as
LDFs, decision trees, mathematical programming ap-
proaches, SVMs, and artificial neural networks, can
be viewed as attempts at approximating a Bayes op-
timal rule for classification; that is, a rule that maxi-
mizes (minimizes) the total probability of correct clas-
sification (misclassification). Even if a Bayes optimal
rule is known, intergroup misclassification rates may be
higher than desired. For example, in a population that
is mostly healthy, a Bayes optimal rule for medical di-
agnosis might misdiagnose sick patients as healthy in
order to maximize total probability of correct diagno-
sis. As a remedy, a constrained discriminant rule that
limits the misclassification rate is appealing.

Assuming that the group density functions and
prior probabilities are known, Anderson [2] showed
that an optimal rule for the problem of maximizing
the probability of correct classification subject to con-
straints on the misclassification probabilities must be
of a specific form when discriminating among mul-
tiple groups with a simplified model. The formulae
in Anderson’s result depend on a set of parameters
satisfying a complex relationship between the density
functions, the prior probabilities, and the bounds on
the misclassification probabilities. Establishing a viable
mathematical model to describe Anderson’s result, and
finding values for these parameters that yield an opti-
mal rule are challenging tasks. The first computational
models utilizing Anderson’s formulae were proposed
in [39,40].

Discrete Support Vector Machine Predictive Models

As part of the work carried out at Georgia Institute
of Technology’s Center for Operations Research in
Medicine, we have developed a general-purpose dis-
criminant analysis modeling framework and computa-
tional engine that are applicable to a wide variety of
applications, including biological, biomedical, and lo-

gistics problems. Utilizing the technology of large-scale
discrete optimization and SVMs, we have developed
novel classification models that simultaneously include
the following features: (1) the ability to classify any
number of distinct groups; (2) the ability to incorporate
heterogeneous types of attributes as input; (3) a high-
dimensional data transformation that eliminates noise
and errors in biological data; (4) constraints to limit
the rate of misclassification, and a reserved-judgment
region that provides a safeguard against overtraining
(which tends to lead to high misclassification rates from
the resulting predictive rule); and (5) successive mul-
tistage classification capability to handle data points
placed in the reserved-judgment region. Studies involv-
ing tumor volume identification, ultrasonic cell disrup-
tion in drug delivery, lung tumor cell motility analysis,
CpG island aberrant methylation in human cancer, pre-
dicting early atherosclerosis using biomarkers, and fin-
gerprinting native and angiogenic microvascular net-
works using functional perfusion data indicate that our
approach is adaptable and can produce effective and re-
liable predictive rules for various biomedical and biobe-
havior phenomena [16,28,29,56,57,59,60,64,65].

Based on the description in [39,40,59,60,63], we
summarize below some of the classification models we
have developed.

Modeling of Reserved-Judgment Region for General
Groups When the population densities and prior
probabilities are known, the constrained rules with a re-
ject option (reserved judgment), based on Anderson’s
results, call for finding a partition fR0; : : : ; RGg of
Rk that maximizes the probability of correct allocation
subject to constraints on the misclassification probabil-
ities; i. e.,

Maximize
GX

gD1


g

Z
Rg

fg(w) dw (1)

subject to
Z
Rg

fh(w)dw � ˛hg ; h; g D 1; : : : ;G;

h ¤ g ; (2)

where fh; h 2 f1; : : : ;Gg; are the group conditional
density functions, 
g denotes the prior probability
that a randomly selected entity is from group g; g 2
f1; : : : ;Gg, and ˛hg ; h ¤ g, are constants between 0
and 1. Under quite general assumptions, it was shown
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that there exist unique (up to a set of measure zero)
nonnegative constants �i h ; i; h 2 f1; : : : ;Gg; i ¤ h;
such that the optimal rule is given by

Rg D fx 2 Rk : Lg(x) D max
h2f0;1; ::: ;Gg

Lh(x)g ;

g D 0; : : : ;G ;
(3)

where

L0(x) D 0 ; (4)

Lh(x) D 
h fh(x)�
GX

iD1;i¤h

�i h fi(x); h D 1; : : : ;G :

(5)

For G D 2 the optimal solution can be modeled rather
straightforwardly. However, finding optimal �ih’s for
the general case, G � 3, is a difficult problem, with the
difficulty increasing as G increases. Our model offers an
avenue for modeling and finding the optimal solution
in the general case. It is the first such model to be com-
putationally viable [39,40].

Before proceeding, we note that Rg can be written as
Rg D fx 2 Rk : Lg(x) � Lh(x) for all h D 0; : : : ;Gg.
So, since Lg(x) � Lh(x) if, and only if, (1/

PG
tD1 ft(x))

Lg(x) � (1/
PG

tD1 ft(x))Lh(x), the functions Lh ; h D
1; : : : ;G; can be redefined as

Lh(x) D 
h ph(x)�
GX

iD1;i¤h

�i h pi (x); h D 1; : : : ;G ;

(6)

where pi (x) D fi(x)/
PG

tD1 ft(x). We assume that Lh is
defined as in (6) in our model.

Mixed Integer Programming Formulations As-
sume that we are given a training sample of N entities
whose group classifications are known; say, ng entities
are in group g, where

PG
gD1 ng D N . Let the k-dimen-

sional vectors xgj, g D 1; : : : ;G; j D 1; : : : ; ng ; con-
tain the measurements on k available characteristics of
the entities. Our procedure for deriving a discriminant
rule proceeds in two stages. The first stage is to use the
training sample to compute estimates, f̂h , either para-
metrically or nonparametrically, of the density func-
tions f h [89] and estimates, 
̂h , of the prior probabili-
ties 
h ; h D 1; : : : ;G. The second stage is to determine

the optimal �ih’s given these estimates. This stage re-
quires being able to estimate the probabilities of correct
classification and misclassification for any candidate set
of �ih’s. One could, in theory, substitute the estimated
densities and prior probabilities into (5), and directly
use the resulting regions Rg in the integral expressions
given in (1) and (2). This would involve, even in sim-
ple cases such as normally distributed groups, the nu-
merical evaluation of k-dimensional integrals at each
step of a search for the optimal �ih’s. Therefore, we
have designed an alternative approach. After substitut-
ing the f̂h ’s and 
̂h ’s into (5), we simply calculate the
proportion of training sample points which fall in each
of the regions R1; : : : ; RG : The MIP models discussed
below attempt to maximize the proportion of training
sample points correctly classified while satisfying con-
straints on the proportions of training sample points
misclassified. This approach has two advantages. First,
it avoids having to evaluate the potentially difficult inte-
grals in (1) and (2). Second, it is nonparametric in con-
trolling the training sample misclassification probabil-
ities. That is, even if the densities are poorly estimated
(by assuming, for example, normal densities for non-
normal data), the constraints are still satisfied for the
training sample. Better estimates of the densities may
allow a higher correct classification rate to be achieved,
but the constraints will be satisfied even if poor esti-
mates are used. Unlike most SVM models that mini-
mize the sum of errors, our objective is driven by the
number of correct classifications, and will not be biased
by the distance of the entities from the supporting hy-
perplane.

A word of caution is in order. In traditional un-
constrained discriminant analysis, the true probabil-
ity of correct classification of a given discriminant rule
tends to be smaller than the rate of correct classifi-
cation for the training sample from which it was de-
rived. One would expect to observe such an effect for
the method described herein as well. In addition, one
would expect to observe an analogous effect with re-
gard to constraints on misclassification probabilities –
the true probabilities are likely to be greater than any
limits imposed on the proportions of training sample
misclassifications. Hence, the ˛hg parameters should be
carefully chosen for the application in hand.

Our first model is a nonlinear 0/1 MIP model with
the nonlinearity appearing in the constraints. Model 1
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maximizes the number of correct classifications of the
given N training entities. Similarly, the constraints on
the misclassification probabilities are modeled by en-
suring that the number of group g training entities in
region Rh is less than or equal to a prespecified per-
centage, ˛hg(0 < ˛hg < 1), of the total number, ng , of
group g entities, h; g 2 f1; : : : ;Gg; h ¤ g.

For notational convenience, let G D f1; : : : ;Gg
and Ng D f1; : : : ; ngg, for g 2 G. Also, analogous to
the definition of pi, define p̂i by p̂i D f̂ i(x)/

PG
tD1 f̂ t(x).

In our model, we use binary indicator variables to de-
note the group classification of entities. Mathemati-
cally, let uhgj be a binary variable indicating whether or
not xgj lies in region Rh; i. e., whether or not the jth en-
tity from group g is allocated to group h. Then model 1
can be written as follows.

Discriminant analysis MIP (DAMIP):

Maximize
X
g2G

X
j2Ng

ug g j

subject to Lhg j D 
̂h p̂h(xg j) �
X
i2Gnh

�i h p̂i (xg j) ;

h; g 2 G; j 2 Ng ;

(7)

yg j D maxf0; Lhg j : h D 1; : : : ;Gg; g 2 G; j 2 Ng ;

(8)

yg j � Lgg j � M(1 � ugg j); g 2 G; j 2 Ng ; (9)

yg j � Lhg j � "(1�uhg j); h; g 2 G; j 2 Ng ; h ¤ g ;
(10)

X
j2Ng

uhg j � b˛hgngc; h; g 2 G; h ¤ g ; (11)

�1 < Lhg j <1; yg j � 0; �i h � 0; uhg j 2 f0; 1g :

Constraint (7) defines the variable Lhgj as the value
of the function Lh evaluated at xgj. Therefore, the con-
tinuous variable ygj, defined in constraint (8), repre-
sents maxfLh(xg j) : h D 0; : : : ;Gg; and consequently,
xgj lies in region Rh if, and only if, yg j D Lhg j . The bi-
nary variable uhgj is used to indicate whether or not xgj

lies in region Rh; i. e., whether or not the jth entity from
group g is allocated to group h. In particular, constraint

(9), together with the objective, forces uggj to be 1 if, and
only if, the jth entity from group g is correctly allocated
to group g; and constraints (10) and (11) ensure that
at most b˛hgngc (i. e., the greatest integer less than or
equal to ˛hgng) group g entities are allocated to group
h; h ¤ g. One caveat regarding the indicator variables
uhgj is that although the condition uhg j D 0; h ¤ g, im-
plies (by constraint (10)) that xg j … Rh , the converse
need not hold. As a consequence, the number of mis-
classifications may be overcounted. However, in our
preliminary numerical study we found that the actual
amount of overcounting is minimal. One could force
the converse (thus, uhg j D 1 if and only if xg j 2 Rh) by
adding constraints yg j � Lhg j � M(1 � uhg j), for ex-
ample. Finally, we note that the parameters M and �
are extraneous to the discriminant analysis problem it-
self, but are needed in the model to control the indica-
tor variables uhgj. The intention is for M and � to be,
respectively, large and small positive constants.

Model Variations We explore different variations in
the model to grasp the quality of the solution and the
associated computational effort.

A first variation involves transforming model 1 to
an equivalent linear mixed integer model. In particular,
model 2 replaces the N constraints defined in (8) with
the following system of 3GN C 2N constraints:

yg j � Lhg j ; h; g 2 G; j 2 Ng ; (12)

ỹhg j � Lhg j � M(1� vhg j); h; g 2 G; j 2 Ng ; (13)

ỹhg j � 
̂h p̂h(xg j)vhg j; h; g 2 G; j 2 Ng ; (14)

X
h2G

vhg j � 1; g 2 G; j 2 Ng ; (15)

X
h2G

ỹhg j D yg j ; g 2 G; j 2 Ng ; (16)

where ỹhg j � 0 and vhg j 2 f0; 1g; h; g 2 G; j 2 Ng .
These constraints, together with the nonnegativity of ygj
force yg j D maxf0; Lhg j : h D 1; : : : ;Gg.

The second variation involves transforming
model 1 to a heuristic linear MIP model. This is
done by replacing the nonlinear constraint (8) with
yg j � Lhg j ; h; g 2 G; j 2 Ng , and including penalty
terms in the objective function. In particular, model 3
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has the objective

Maximize
X
g2G

X
j2Ng

ˇugg j �
X
g2G

X
j2Ng

� yg j ;

where ˇ and � are positive constants. This model
is heuristic in that there is nothing to force
yg j D maxf0; Lhg j : h D 1; : : : ;Gg. However, since
in addition to trying to force as many uggj’s to 1 as pos-
sible, the objective in model 3 also tries to make the ygj’s
as small as possible, and the optimizer tends to drive ygj
towards maxf0; Lhg j : h D 1; : : : ;Gg. We remark that
ˇ and � could be stratified by group (i. e., introduce
possibly distinct ˇg ; �g ; g 2 G) to model the relative
importance of certain groups to be correctly classified.

A reasonable modification to models 1, 2, and
3 involves relaxing the constraints specified by (11).
Rather than placing restrictions on the number of
type g training entities classified into group h, for
all h; g 2 G; h ¤ g, one could simply place an upper
bound on the total number of misclassified training en-
tities. In this case, the G(G � 1) constraints specified by
(11) would be replaced by the single constraint

X
g2G

X
h2Gnfgg

X
j2Ng

uhg j � b˛Nc ; (17)

where ˛ is a constant between 0 and 1. We will refer
to models 1, 2, and 3 modified in this way as models
1T, 2T, and 3T, respectively. Of course, other modifi-
cations are also possible. For instance, one could place
restrictions on the total number of type g points mis-
classified for each g 2 G. Thus, in place of the con-
straints specified in (17), one would include the con-
straints

P
h2Gnfgg

P
j2Ng

uhg j � b˛gNc; g 2 G, where
0 < ˛g < 1.

We also explore a heuristic linear model of model 1.
In particular, consider the linear program (DALP):

Maximize
X
g2G

X
j2Ng

(c1wg j C c2yg j) (18)

subject to Lhg j D 
h p̂h(xg j) �
X
i2Gnh

�i h p̂i (xg j) ;

h; g 2 G; j 2 Ng ;

(19)

Lgg j�Lhg jCwg j � 0; h; g 2 G; h ¤ g; j 2 Ng ; (20)

Lgg j C wg j � 0; g 2 G; j 2 Ng ; (21)

� Lhg j C yg j � 0; h; g 2 G; j 2 Ng ; (22)

�1 < Lhg j <1;wg j; yg j ; �i h � 0 :

Constraint (19) defines the variable Lhgj as the
value of the function Lh evaluated at xgj. As the op-
timization solver searches through the set of feasi-
ble solutions, the �ih variables will vary, causing the
Lhgj variables to assume different values. Constraints
(20), (21), and (22) link the objective-function vari-
ables with the Lhgj variables in such a way that cor-
rect classification of training entities and allocation of
training entities into the reserved-judgment region are
captured by the objective-function variables. In par-
ticular, if the optimization solver drives wgj to zero
for some g,j pair, then constraints (20) and (21) im-
ply that Lgg j D maxf0; Lhg j : h 2 Gg. Hence, the jth
entity from group g is correctly classified. If, on
the other hand, the optimal solution yields yg j D 0
for some g,j pair, then constraint (22) implies that
maxf0; Lhg j : h 2 Gg D 0. Thus, the jth entity from
group g is placed in the reserved-judgment region. (Of
course, it is possible for both wgj and ygj to be zero. One
should decide prior to solving the linear program how
to interpret the classification in such cases.) If both wgj

and ygj are positive, the jth entity from group g is mis-
classified.

The optimal solution yields a set of �ih’s that best al-
locates the training entities (i. e., “best” in terms of min-
imizing the penalty objective function). The optimal
�ih’s can then be used to define the functions Lh, h 2 G,
which in turn can be used to classify a new entity with
feature vector x 2 Rk by simply computing the index
at which maxfLh(x) : h 2 f0; 1; : : : ;Ggg is achieved.

Note that model DALP places no a priori bound on
the number of misclassified training entities. However,
since the objective is to minimize a weighted combi-
nation of the variables wgj and ygj, the optimizer will
attempt to drive these variables to zero. Thus, the op-
timizer is, in essence, attempting either to correctly
classify training entities (wg j D 0), or to place them
in the reserved-judgment region (yg j D 0). By vary-
ing the weights c1 and c2, one has a means of control-
ling the optimizer’s emphasis for correctly classifying
training entities versus placing them in the reserved-
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Disease Diagnosis: Optimization-Based Methods, Table 1
Model size

Model Type Constraints Total variables 0/1 Variables

1 Nonlinear MIP 2GNC NC G(G� 1) 2GNC NC G(G� 1) GN
2 Linear MIP 5GNC 2NC G(G� 1) 4GNC NC G(G� 1) 2GN
3 Linear MIP 3GNC G(G� 1) 2GNC NC G(G� 1) GN
1T Nonlinear MIP 2GNC NC 1 2GNC NC G(G� 1) GN
2T Linear MIP 5GNC 2NC 1 4GNC NC G(G� 1) 2GN
3T Linear MIP 3GNC 1 2GNC NC G(G� 1) GN
DALP Linear program 3GN NGC NC G(G� 1) 0

judgment region. If c2/c1 < 1, the optimizer will tend
to place a greater emphasis on driving the wgj variables
to zero than driving the ygj variables to zero (conversely,
if c2/c1 > 1). Hence, when c2/c1 < 1, one should expect
to get relatively more entities correctly classified, fewer
placed in the reserved-judgment region, and more mis-
classified, than when c2/c1 > 1. An extreme case is
when c2 D 0. In this case, there is no emphasis on driv-
ing ygj to zero (the reserved-judgment region is thus ig-
nored), and the full emphasis of the optimizer is to drive
wgj to zero.

Table 1 summarizes the number of constraints, the
total number of variables, and the number of 0/1 vari-
ables in each of the discrete SVM models, and in the
heuristic LP model (DALP). Clearly, even for moder-
ately sized discriminant analysis problems, the MIP in-
stances are relatively large. Also, note that model 2 is
larger than model 3, in terms of both the number of
constraints and the number of variables. However, it is
important to keep in mind that the difficulty of solving
an MIP problem cannot, in general, be predicted solely
by its size; problem structure has a direct and substan-
tial bearing on the effort required to find optimal so-
lutions. The LP relaxation of these MIP models poses
computational challenges as commercial LP solvers re-
turn (optimal) LP solutions that are infeasible, owing to
the equality constraints, and the use of bigM and small
� in the formulation.

It is interesting to note that the set of feasible solu-
tions for model 2 is “tighter” than that for model 3. In
particular, if Fi denotes the set of feasible solutions of
model i, then

F1 D f(L; �; u; y) : there exists ỹ; v

such that (L; �; u; y; ỹ; v) 2 F2g ¨ F3 : (23)

The novelties of the classification models devel-
oped herein include the following: (1) they are suitable
for discriminant analysis given any number of groups,
(2) they accept heterogeneous types of attributes as in-
put, (3) they use a parametric approach to reduce high-
dimensional attribute spaces, and (4) they allow con-
straints on the number of misclassifications, and utilize
a reserved judgment to facilitate the reduction of mis-
classifications. The lattermost point opens the possibil-
ity of performing multistage analysis.

Clearly, the advantage of an LP model over an MIP
model is that the associated problem instances are com-
putationally much easier to solve. However, the most
important criterion in judging a method for obtaining
discriminant rules is how the rules perform in correctly
classifying new unseen entities. Once the rule has been
developed, applying it to a new entity to determine its
group is trivial. Extensive computational experiments
have been performed to gauge the qualities of solutions
of different models [17,19,40,59,60,63].

Validation of Model and Computational Effort We
performed tenfold cross-validation, and designed sim-
ulation and comparison studies on our models. The
results reported in [40,63] demonstrate that our ap-
proach works well when applied to both simulated
data and data sets from the machine learning data-
base repository [91]. In particular, our methods com-
pare favorably and at times superior to other math-
ematical programming methods, including the GSFC
model by Gehrlein [41], and the LP model by Gochet
et al. [46], as well as Fisher’s LDF, artificial neural net-
works, quadratic discriminant analysis, tree classifica-
tion, and other SVMs, on real biological and medical
data.
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Classification Results for Real-World Biological
and Medical Applications

The main objective in discriminant analysis is to de-
rive rules that can be used to classify entities into
groups. Computationally, the challenge lies in the ef-
fort expended to develop such a rule. Once the rule
has been developed, applying it to a new entity to de-
termine its group is trivial. Feasible solutions obtained
from our classification models correspond to predictive
rules. Empirical results [40,63] indicate that the result-
ing classification model instances are computationally
very challenging, and even intractable by competitive
commercial MIP solvers. However, the resulting pre-
dictive rules prove to be very promising, offering cor-
rect classification rates on new unknown data ranging
from 80 to 100% for various types of biological/medical
problems. Our results indicate that the general-purpose
classification framework that we have designed has the
potential to be a very powerful predictive method for
clinical settings.

The choice of MIP as the underlying modeling
and optimization technology for our SVM classification
model is guided by the desire to simultaneously incor-
porate a variety of important and desirable properties of
predictive models within a general framework. MIP it-
self allows for incorporation of continuous and discrete
variables, and linear and nonlinear constraints, provid-
ing a flexible and powerful modeling environment.

Our mathematical modeling and computational
algorithm design shows great promise as the result-
ing predictive rules are able to produce higher rates of
correct classification for new biological data (with un-
known group status) compared with existing classifica-
tion methods. This is partly due to the transformation
of raw data via the set of constraints in (7). While most
mathematical programming approaches directly deter-
mine the hyperplanes of separation using raw data, our
approach transforms the raw data via a probabilistic
model, before the determination of the supporting hy-
perplanes. Further, the separation is driven by maxi-
mizing the sum of binary variables (representing cor-
rect classification or not of entities), instead of max-
imizing the margins between groups, or minimizing
a sum of errors (representing distances of entities from
hyperplanes), as in other SVMs. The combination of
these two strategies offers better classification capabil-

ity. Noise in the transformed data is not as profound as
in raw data. And the magnitudes of the errors do not
skew the determination of the separating hyperplanes,
as all entities have equal importance when correct clas-
sification is being counted.

To highlight the broad applicability of our ap-
proach, below we briefly summarize the application
of our predictive models and solution algorithms to
ten different biological problems. Each of the projects
was carried out in close partnership with experimen-
tal biologists and/or clinicians. Applications to finance
and other industry applications are described else-
where [17,40,63].

Determining the Type of Erythemato-Squamous
Disease The differential diagnosis of erythemato-
squamous diseases is an important problem in der-
matology [60]. They all share the clinical features of
erythema and scaling, with very little differences. The
six groups are psoriasis, seboreic dermatitis, lichen
planus, pityriasis rosea, cronic dermatitis, and pityria-
sis rubra pilaris. Usually a biopsy is necessary for the
diagnosis but unfortunately these diseases share many
histopathological features as well. Another difficulty for
the differential diagnosis is that a disease may show the
features of another disease at the beginning stage and
may have the characteristic features at the following
stages [91].

The six groups consisted of 366 subjects (112, 61, 72,
49, 52, and 20 respectively) with 34 clinical attributes.
Patients were first evaluated clinically with 12 features.
Afterwards, skin samples were taken for the evalua-
tion of 22 histopathological features. The values of the
histopathological features were determined by an anal-
ysis of the samples under a microscope. The 34 at-
tributes include (1) clinical attributes (erythema, scal-
ing, definite borders, itching, koebner phenomenon,
polygonal papules, follicular papules, oral mucosal in-
volvement, knee and elbow involvement, scalp involve-
ment, family history, age) and (2) histopathological
attributes (melanin incontinence, eosinophils in the in-
filtrate, polymorphonuclear leukocyte infiltrate, fibrosis
of the papillary dermis, exocytosis, acanthosis, hyperk-
eratosis, parakeratosis, clubbing of the rete ridges, elon-
gation of the rete ridges, thinning of the suprapapillary
epidermis, spongiform pustule, Munro microabscess,
focal hypergranulosis, disappearance of the granular
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layer, vacuolization and damage of basal layer, spongio-
sis, sawtooth appearance of retes, follicular horn plug,
perifollicular parakeratosis, inflammatory monoluclear
infiltrate, band-like infiltrate).

Ourmultigroup classification model selected 27 dis-
criminatory attributes, and successfully classified the
patients into six groups, each with an unbiased correct
classification of greater than 93% (with 100% correct
rate for groups 1, 3, 5, and 6) with an average overall
accuracy of 98%. Using 250 subjects to develop the rule,
and testing the remaining 116 patients, we obtained
a prediction accuracy of 91%.

Predicting Presence/Absence of Heart Disease The
four databases concerning heart disease diagnosis were
collected by Dr. Andras Janosi of the Hungarian Insti-
tute of Cardiology, Budapest; Dr. William Steinbrunn
of University Hospital, Zurich; Dr. Matthias Pfisterer
of University Hospital, Basel; and Dr. Robert Detrano
of V.A. Medical Center, Long Beach, and Cleveland
Clinic Foundation [60]. Each database contains the
same 76 attributes. The “goal” field refers to the pres-
ence of heart disease in the patient. The classification
attempts to distinguish presence (values 1, 2, 3, 4, in-
volving a total of 509 subjects) from absence (value
0, involving 411 subjects) [91]. The attributes include
demographics, physiocardiovascular conditions, tradi-
tional risk factors, family history, personal lifestyle, and
cardiovascular exercise measurements. This data set has
posed some challenges to past analysis via various clas-
sification approaches, resulting in less than 80% correct
classification. Applying our classification model with-
out reserved judgment, we obtained 79 and 85% correct
classification for each group respectively. To determine
the usefulness of multistage analysis, we applied two-
stage classification. In the first stage, 14 attributes were
selected as discriminatory. One hundred and thirty-five
group absence subjects were placed into the reserved-
judgment region, with 85% of the remaining being clas-
sified as group absence correctly; while 286 group pres-
ence subjects were placed into the reserved-judgment
region, and 91% of the remaining were classified cor-
rectly into the group presence. In the second stage, 11
attributes were selected with 100 and 229 classified into
group absence and presence respectively. Combining
the two stages, we obtained a correct classification of 82
and 85%, respectively, for diagnosis of absence or pres-

Disease Diagnosis: Optimization-Based Methods, Figure 1
A tree diagram for two-stage classification and prediction of
heart disease

ence of heart disease. Figure 1 illustrates the two-stage
classification.

Predicting Aberrant CpG Island Methylation in Hu-
man Cancer More details of this work can be found
in [28,29]. Epigenetic silencing associated with aberrant
methylation of promoter-region CpG islands is one
mechanism leading to loss of tumor suppressor func-
tion in human cancer. Profiling of CpG island methy-
lation indicates that some genes are more frequently
methylated than others, and that each tumor type is as-
sociated with a unique set of methylated genes. How-
ever, little is known about why certain genes succumb
to this aberrant event. To address this question, we
used restriction landmark genome scanning (RLGS) to
analyze the susceptibility of 1749 unselected CpG is-
lands to de novo methylation driven by overexpression
of DNMT1. We found that whereas the overall inci-
dence of CpG island methylation was increased in cells
overexpressing DNMT1, not all loci were equally af-
fected. The majority of CpG islands (69.9%) were re-
sistant to de novo methylation, regardless of DNMT1
overexpression. In contrast, we identified a subset of
methylation-prone CpG islands (3.8%) that were con-
sistently hypermethylated in multiple DNMT1 overex-
pressing clones. Methylation-prone and methylation-
resistant CpG islands were not significantly different
with respect to size, C+G content, CpG frequency,
chromosomal location, or gene association or pro-
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moter association. To discriminate methylation-prone
from methylation-resistant CpG islands, we developed
a novel DNA pattern recognition model and algo-
rithm [61], and coupled our predictive model described
herein with the patterns found. We were able to de-
rive a classification function based on the frequency
of seven novel sequence patterns that was capable of
discriminating methylation-prone from methylation-
resistant CpG islands with 90% correctness upon cross-
validation, and 85% accuracy when tested against blind
CpG islands unknown to us regarding the methylation
status. The data indicate that CpG islands differ in their
intrinsic susceptibility to de novo methylation, and sug-
gest that the propensity for a CpG island to become
aberrantly methylated can be predicted on the basis of
its sequence context.

The significance of this research is twofold. First,
the identification of sequence patterns/attributes that
distinguish methylation-prone CpG islands will lead to
a better understanding of the basic mechanisms under-
lying aberrant CpG island methylation. Because genes
that are silenced by methylation are otherwise struc-
turally sound, the potential for reactivating these genes
by blocking or reversing the methylation process repre-
sents an exciting new molecular target for chemothera-
peutic intervention. A better understanding of the fac-
tors that contribute to aberrant methylation, includ-
ing the identification of sequence elements that may
act to target aberrant methylation, will be an impor-
tant step in achieving this long-term goal. Secondly,
the classification of the more than 29,000 known (but
as yet unclassified) CpG islands in human chromo-
somes will provide an important resource for the iden-
tification of novel gene targets for further study as po-
tential molecular markers that could impact on both
cancer prevention and treatment. Extensive RLGS fin-
gerprint information (and thus potential training sets
of methylated CpG islands) already exists for a num-
ber of human tumor types, including breast, brain,
lung, leukemias, hepatocellular carcinomas, and primi-
tive neuroectodermal tumor [23,24,35,102]. Thus, the
methods and tools developed are directly applicable
to CpG island methylation data derived from human
tumors. Moreover, new microarray-based techniques
capable of “profiling” more than 7000 CpG islands
have been developed and applied to human breast can-
cers [15,117,118]. We are uniquely poised to take ad-

vantage of the tumor CpG islandmethylation profile in-
formation that will likely be generated using these tech-
niques over the next several years. Thus, our general-
predictive modeling framework has the potential to
lead to improved diagnosis and prognosis and treat-
ment planning for cancer patients.

Discriminant Analysis of Cell Motility and Morphol-
ogy Data in Human Lung Carcinoma Refer to [16]
for more details of this work. This study focuses on
the differential effects of extracellular matrix proteins
on the motility and morphology of human lung epider-
moid carcinoma cells. The behavior of carcinoma cells
is contrasted with that of normal L-132 cells, result-
ing in a method for the prediction of metastatic poten-
tial. Data collected from time-lapsed videomicroscopy
were used to simultaneously produce quantitative mea-
sures of motility and morphology. The data were subse-
quently analyzed using our discriminant analysis model
and algorithm to discover relationships between motil-
ity, morphology, and substratum. Our discriminant
analysis tools enabled the consideration of many more
cell attributes than is customary in cell motility stud-
ies. The observations correlate with behaviors seen in
vivo and suggest specific roles for the extracellular ma-
trix proteins and their integrin receptors in metasta-
sis. Cell translocation in vitro has been associated with
malignancy, as has an elongated phenotype [120] and
a rounded phenotype [97]. Our study suggests that ex-
tracellular matrix proteins contribute in different ways
to the malignancy of cancer cells, and that multiple ma-
lignant phenotypes exist.

Ultrasound-Assisted Cell Disruption for Drug Deliv-
ery Reference [57] discusses this in detail. Although
biological effects of ultrasound must be avoided for safe
diagnostic applications, ultrasound’s ability to disrupt
cell membranes has attracted interest as a method to fa-
cilitate drug and gene delivery. This preliminary study
seeks to develop rules for predicting the degree of cell
membrane disruption based on specified ultrasound
parameters and measured acoustic signals. Too much
ultrasound destroys cells, while cell membranes will not
open up for absorption ofmacromolecules when too lit-
tle ultrasound is applied. The key is to increase cell per-
meability to allow absorption of macromolecules, and
to apply ultrasound transiently to disrupt viable cells so
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as to enable exogenous material to enter without cell
damage. Thus our task is to uncover a “predictive rule”
of ultrasound-mediated disruption of red blood cells
using acoustic spectrums andmeasurements of cell per-
meability recorded in experiments.

Our predictive model and solver for generating pre-
diction rules were applied to data obtained from a se-
quence of experiments on bovine red blood cells. For
each experiment, the attributes consisted of four ultra-
sound parameters, acoustic measurements at 400 fre-
quencies, and a measure of cell membrane disruption.
To avoid overtraining, various feature combinations of
the 404 predictor variables were selected when develop-
ing the classification rule. The results indicate that the
variable combination consisting of ultrasound expo-
sure time and acoustic signals measured at the driving
frequency and its higher harmonics yields the best rule,
and our method compares favorably with classification
tree and other ad hoc approaches, with a correct clas-
sification rate of 80% upon cross-validation and 85%
when classifying new unknown entities. Our methods
used for deriving the prediction rules are broadly ap-
plicable, and could be used to develop prediction rules
in other scenarios involving different cell types or tis-
sues. These rules and the methods used to derive them
could be used for real-time feedback about ultrasound’s
biological effects. For example, it could assist clinicians
during a drug delivery process, or could be imported
into an implantable device inside the body for auto-
matic drug delivery and monitoring.

Identification of Tumor Shape and Volume in Treat-
ment of Sarcoma Reference [56] includes the de-
tailed analysis. This project involves the determina-
tion of tumor shape for adjuvant brachytherapy treat-
ment of sarcoma, based on catheter images taken after
surgery. In this application, the entities are overlapping
consecutive triplets of catheter markings, each of which
is used for determining the shape of the tumor contour.
The triplets are to be classified into one of two groups:
group 1 (triplets for which the middle catheter mark-
ing should be bypassed) and group 2 (triplets for which
the middle marking should not be bypassed). To de-
velop and validate a classification rule, we used clini-
cal data collected from 15 soft-tissue sarcoma patients.
Cumulatively, this comprised 620 triplets of catheter
markings. By careful (and tedious) clinical analysis of

the geometry of these triplets, 65 were determined to
belong to group 1, the “bypass” group, and 555 were
determined to belong to group 2, the “do-not-bypass”
group.

A set of measurements associated with each triplet
was then determined. The choice of what attributes
to measure to best distinguish triplets as belonging to
group 1 or group 2 is nontrivial. The attributes involved
the distance between each pair of markings, angles,
and the curvature formed by the three triplet mark-
ings. On the basis of the attributes selected, our pre-
dictive model was used to develop a classification rule.
The resulting rule provides 98% correct classification
on cross-validation, and was capable of correctly deter-
mining/predicting 95% of the shape of the tumor with
new patients’ data. We remark that the current clinical
procedure requires manual outline based onmarkers in
films of the tumor volume. This study was the first to
use automatic construction of tumor shape for sarcoma
adjuvant brachytherapy [56,62].

Discriminant Analysis of Biomarkers for Prediction
of Early Atherosclerosis More detail on this work
can be found in [65]. Oxidative stress is an important
etiologic factor in the pathogenesis of vascular disease.
Oxidative stress results from an imbalance between in-
jurious oxidant and protective antioxidant events, of
which the former predominate [88,103]. This results
in the modification of proteins and DNA, alteration in
gene expression, promotion of inflammation, and de-
terioration in endothelial function in the vessel wall,
all processes that ultimately trigger or exacerbate the
atherosclerotic process [22,111]. It was hypothesized
that novel biomarkers of oxidative stress would pre-
dict early atherosclerosis in a relatively healthy non-
smoking population free from cardiovascular disease.
One hundred and twenty-seven healthy nonsmokers,
without known clinical atherosclerosis had carotid in-
tima media thickness (IMT) measured using ultra-
sound. Plasma oxidative stress was estimated by meas-
uring plasma lipid hydroperoxides using the determi-
nation of reactive oxygen metabolites (d-ROMs) test.
Clinical measurements include traditional risk factors,
including age, sex, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides, cholesterol,
body-mass index (BMI), hypertension, diabetes melli-
tus, smoking history, family history of coronary artery
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disease, Framingham risk score, and high-sensitivity
C-reactive protein.

For this prediction, the patients were first clus-
tered into two groups: (group 1, IMT � 0:68; group 2,
IMT <0.68). On the basis of this separator, 30 patients
belonged to group 1, and 97 belonged to group 2.
Through each iteration, the classification method trains
and learns from the input training set and returns
the most discriminatory patterns among the 14 clini-
cal measurements; ultimately resulting in the develop-
ment of a prediction rule based on observed values of
these discriminatory patterns among the patient data.
Using all 127 patients as a training set, the predictive
model identified age, sex, BMI, HDL cholesterol, fam-
ily history of coronary artery disease under 60, high-
sensitivity C-reactive protein, and d-ROM as discrim-
inatory attributes that together provide unbiased cor-
rect classification of 90 and 93%, respectively, for group
1 (IMT � 0:68) and group 2 (IMT<0.68) patients. To
further test the power of the classification method for
correctly predicting the IMT status of new/unseen pa-
tients, we randomly selected a smaller patient training
set of size 90. The predictive rule from this training set
yielded 80 and 89% correct rates for predicting the re-
maining 37 patients as group 1 and group 2 patients,
respectively. The importance of d-ROM as a discrimi-
natory predictor for IMT status was confirmed during
the machine learning process. This biomarker was se-
lected in every iteration as the “machine” learned and
was trained to develop a predictive rule to correctly
classify patients in the training set. We also performed
predictive analysis using Framingham risk score and
d-ROM; in this case the unbiased correct classifica-
tion rates (for the 127 individuals) for groups 1 and 2
were 77 and 84%, respectively. This is the first study
to illustrate that this measure of oxidative stress can
be effectively used along with traditional risk factors to
generate a predictive rule that can potentially serve as
an inexpensive clinical diagnostic tool for prediction of
early atherosclerosis.

Fingerprinting Native and Angiogenic Microvascu-
lar Networks Through Pattern Recognition and Dis-
criminant Analysis of Functional Perfusion Data
The analysis and findings are described in [64]. The
cardiovascular system provides oxygen and nutrients
to the entire body. Pathological conditions that impair

normal microvascular perfusion can result in tissue is-
chemia, with potentially serious clinical effects. Con-
versely, development of new vascular structures fuels
the progression of cancer, macular degeneration, and
atherosclerosis. Fluorescence microangiography offers
superb imaging of the functional perfusion of new
and existent microvasculature, but quantitative anal-
ysis of the complex capillary patterns is challenging.
We developed an automated pattern-recognition al-
gorithm to systematically analyze the microvascular
networks, and then applied our classification model
described herein to generate a predictive rule. The
pattern-recognition algorithm identifies the complex
vascular branching patterns, and the predictive rule
demonstrates, respectively, 100 and 91% correct clas-
sification for perturbed (diseased) and normal tissue
perfusion. We confirmed that transplantation of nor-
mal bone marrow to mice in which genetic deficiency
resulted in impaired angiogenesis eliminated predicted
differences and restored normal-tissue perfusion pat-
terns (with 100% correctness). The pattern-recogni-
tion and classification method offers an elegant solution
for the automated fingerprinting of microvascular net-
works that could contribute to better understanding of
angiogenic mechanisms and be utilized to diagnose and
monitor microvascular deficiencies. Such information
would be valuable for early detection and monitoring of
functional abnormalities before they produce obvious
and lasting effects, which may include improper perfu-
sion of tissue, or support of tumor development.

The algorithm can be used to discriminate between
the angiogenic response in a native healthy specimen
compared with groups with impairment due to age or
chemical or other genetic deficiency. Similarly, it can
be applied to analyze angiogenic responses as a result
of various treatments. This will serve two important
goals. First, the identification of discriminatory pat-
terns/attributes that distinguish angiogenesis status will
lead to a better understanding of the basic mechanisms
underlying this process. Because therapeutic control of
angiogenesis could influence physiological and patho-
logical processes such as wound and tissue repairing,
cancer progression and metastasis, or macular degener-
ation, the ability to understand it under different con-
ditions will offer new insight into developing novel
therapeutic interventions, monitoring and treatment,
especially in aging, and heart disease. Thus, our study
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and the results form the foundation of a valuable di-
agnostic tool for changes in the functionality of the
microvasculature and for discovery of drugs that al-
ter the angiogenic response. The methods can be ap-
plied to tumor diagnosis, monitoring, and prognosis.
In particular, it will be possible to derive microangio-
graphic fingerprints to acquire specific microvascular
patterns associated with early stages of tumor develop-
ment. Such “angioprinting” could become an extremely
helpful early diagnostic modality, especially for easily
accessible tumors such as skin cancer.

Prediction of Protein Localization Sites The pro-
tein localization database consists of eight groups with
a total of 336 instances (143, 77, 52, 35, 20, 5, 2,
and 2, respectively) with seven attributes [91]. The
eight groups are eight localization sites of protein, in-
cluding cytoplasm (cp), inner membrane without sig-
nal sequence (im), perisplasm (pp), inner membrane,
uncleavable signal sequence (imU), outer membrane
(om), outer membrane lipoprotein (omL), inner mem-
brane lipoprotein (imL), inner membrane, and cleav-
able signal sequence (imS). However, the last four
groups were taken out of our classification experiment
since the population sizes are too small to ensure signif-
icance.

The seven attributes include McGeoch’s method
for signal sequence recognition (mcg), von Heijne’s
method for signal sequence recognition (gvh), von Hei-
jne’s signal peptidase II consensus sequence score (lip),
presence of charge on N-terminus of predicted lipopro-
teins (chg), score of discriminant analysis of the amino
acid content of outer membrane and periplasmic pro-
teins (aac), score of the ALOM membrane spanning
region prediction program (alm1), and score of the
ALOM program after excluding putative cleavable sig-
nal regions from the sequence (alm2).

In the classification we use four groups, 307 in-
stances, with seven attributes. Our classification model
selected the discriminatory patterns mcg, gvh, alm1,
and alm2 to form the predictive rule with unbiased cor-
rect classification rates of 89%, compared with 81% by
other classification models [48].

Pattern Recognition in Satellite Images for Deter-
mining Types of Soil The satellite database consists
of the multispectral values of pixels in 3 � 3 neighbor-

hoods in a satellite image, and the classification associ-
ated with the central pixel in each neighborhood. The
aim is to predict this classification, given the multispec-
tral values. In the sample database, the class of a pixel
is coded as a number. There are six groups with 4435
samples in the training data set and 2000 samples in the
testing data set; and each sample entity has 36 attributes
describing the spectral bands of the image [91].

The original Landsat Multi-Spectral Scanner (MSS)
image data for this database were generated from data
purchased from NASA by the Australian Centre for
Remote Sensing. The Landsat satellite data are one of
the many sources of information available for a scene.
The interpretation of a scene by integrating spatial data
of diverse types and resolutions including multispec-
tral and radar data, maps indicating topography, land
use, etc. is expected to assume significant importance
with the onset of an era characterized by integrative ap-
proaches to remote sensing (for example, NASA’s Earth
Observing System commencing this decade).

One frame of Landsat MSS imagery consists of four
digital images of the same scene in different spectral
bands. Two of these are in the visible region (corre-
sponding approximately to green and red regions of the
visible spectrum) and two are in the (near) infrared.
Each pixel is an 8-bit binary word, with 0 correspond-
ing to black and 255 to white. The spatial resolution
of a pixel is about 80 m × 80 m. Each image contains
2340 � 3380 such pixels.

The database is a (tiny) subarea of a scene, consist-
ing of 82 � 100 pixels. Each line of data corresponds to
a 3 � 3 square neighborhood of pixels completely con-
tained within the 82 � 100 subarea. Each line contains
the pixel values in the four spectral bands (converted to
ASCII) of each of the nine pixels in the 3 � 3 neighbor-
hood and a number indicating the classification label of
the central pixel. The number is a code for the following
six groups: red soil, cotton crop, gray soil, damp gray
soil, soil with vegetation stubble, and very damp gray
soil. Running our classification model, we selected 17
discriminatory attributes to form the classification rule,
producing an unbiased prediction with 85% accuracy.

Further Advances

Brooks and Lee [17,18] devised other variations of
the basic DAMIP model. They also showed that
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DAMIP is strongly universally consistent (in some
sense) with very good rates of convergence from Vap-
nik and Chervonenkis theory. A polynomial-time al-
gorithm for discriminating between two populations
with the DAMIP model was developed, and DAMIP
was shown to be NP-complete for a general number
of groups. The proof demonstratingNP-completeness
employs results used in generating edges of the conflict
graph [4,11,12,55]. Exploiting the necessary and suffi-
cient conditions that identify edges in the conflict graph
is the central contribution to the improvement in solu-
tion performance over industry-standard software. The
conflict graph is the basis for various valid inequalities,
a branching scheme, and for conditions under which
integer variables are fixed for all solutions. Additional
solution methods are identified which include a heuris-
tic for finding solutions at nodes in the branch-and-
bound tree, upper bounds for model parameters, and
necessary conditions for edges in the conflict hyper-
graph [26,58]. Further, we have concluded that DAMIP
is a computationally feasible, consistent, stable, robust,
and accurate classifier.

Progress and Challenges

We summarize in Table 2 the mathematical program-
ming techniques used in classification problems as re-
viewed in this chapter.

As noted by current research efforts, multigroup
classification remainsNP-complete and much work is
needed to design effective models as well as to derive
novel and efficient computational algorithms to solve
these multigroup instances.

Other Methods

While most classification methods can be described
in terms of discriminant functions, some methods
are not trained in the paradigm of determining co-
efficients or parameters for functions of a predefined
form. These methods include classification and regres-
sion trees, nearest-neighbor methods, and neural net-
works.

Classification and regression trees [14] are nonpara-
metric approaches to prediction. Classification trees
seek to develop classification rules based on successive
binary partitions of observations based on attribute val-
ues. Regression trees also employ rules consisting of bi-

nary partitions, but are used to predict continuous re-
sponses.

The rules generated by classification trees are easily
viewable by plotting them in a treelike structure, from
which the name arises. A test entity may be classified
using rules in a tree plot by first comparing the entity’s
data with the root node of the tree. If the root node con-
dition is satisfied by the data for a particular entity, the
left branch is followed to another node; otherwise, the
right branch is followed to another node. The data from
the observation are compared with conditions at subse-
quent nodes until a leaf node is reached.

Nearest-neighbor methods begin by establishing
a set of labeled prototype observations. The nearest-
neighbor classification rule assigns test entities to
groups according to the groupmembership of the near-
est prototype. Different measures of distance may be
used. The k-nearest-neighbor rule assigns entities to
groups according to the group membership of the k
nearest prototypes.

Neural networks are classification models that can
also be interpreted in terms of discriminant functions,
though they are used in a way that does not require
finding an analytic form for the functions [25]. Neural
networks are trained by considering one observation at
a time, modifying the classification procedure slightly
with each iteration.

Summary and Conclusion

In this chapter, we presented an overview of mathemat-
ical programming based classification models, and an-
alyzed their development and advances in recent years.
Many mathematical programming methods are geared
toward two-group analysis only, and their performance
is often compared with Fisher’s LDF or Smith’s QDF.
It has been noted that these methods can be used for
multiple group analysis by finding G(G � 1)/2 discrim-
inants for each pair of groups (“one against one”) or by
finding G discriminants for each group versus the re-
maining data (“one against all”), but these approaches
can lead to ambiguous classification rules [25].

Mathematical programmingmethods developed for
multiple group analysis have been described [10,32,
39,40,41,46,59,60,63,93]. Multiple group formulations
for SVMs have been proposed and tested [17,36,40,49,
59,60,66], but are still considered computationally in-
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Disease Diagnosis: Optimization-Based Methods, Table 2
Progress in mathematical programming-based classificationmodels

Mathematical programming methods References
Linear programming
Two-group classification

Separate data by hyperplanes [74,75]
Minimizing the sum of deviations,
minimizing the maximum
deviation, and minimizing the
sum of interior distances

[5,31,32,33,47,99]

Hybrid model [45,99]
Review [27,50,107]
Software [110]
Issues about normalization [34,44,51,52,53,87,

100,114,115,116]
Robust linear programming [9,86]
Inclusion of second-order terms [104,113]
Effect of the position of outliers [94]
Binary attributes [3]

Multigroup classification
Single function classification [32]
Multiple function classification [10,46]
Classificationwith
reserved-judgment region using
linear programming

[39,40,60,63]

Mixed integer programming
Two-group classification

Minimizing the number of
misclassifications

[1,5,6,7,54,101,105,
109,119]

Review [27,50,107]
Software [110]
Secondary goals [96]

Mathematical programming methods References

Binary attributes [3]
Normalization and attribute
selection

[42]

Dichotomous categorical variable
formation

[43]

Multigroup classification
Multigroup classification [41,93]
Three-group classification [71,72,95]
Classificationwith
reserved-judgment region using
mixed integer programming

[17,39,40,59,60]

Nonlinear programming
Two-group classification

Lp-norm criterion [108]
Review [27,50,107]

Piecewise-linear nonconvex
discriminant function

[85]

Minimizing the number of
misclassifications

[21,76,77]

Minimizing the sum of
arbitrary-norm distances

[78]

Support vector machine
Introduction and tutorial [20,112]
Generalized support vector
machine

[79,83]

Methods for huge-size problems [13,36,37,38,67,68,
80,81,82,84]

Multigroup support vector machine [17,38,39,40,49,59,
60,63,66]

tensive [49]. The “one-against-one” and “one-against-
all” methods with SVMs have been successfully ap-
plied [49,90].

We also discussed a class of multigroup general-
purpose predictive models that we have developed
based on the technology of large-scale optimization and
SVMs [17,19,39,40,59,60,63]. Our models seek to max-
imize the correct classification rate while constraining
the number of misclassifications in each group. The
models incorporate the following features: (1) the abil-
ity to classify any number of distinct groups; (2) al-
low incorporation of heterogeneous types of attributes
as input; (3) a high-dimensional data transformation
that eliminates noise and errors in biological data;

(4) constrain the misclassification in each group and
a reserved-judgment region that provides a safeguard
against overtraining (which tends to lead to high mis-
classification rates from the resulting predictive rule);
and (5) successive multistage classification capability
to handle data points placed in the reserved-judgment
region. The performance and predictive power of the
classification models is validated through a broad class
of biological and medical applications.

Classification models are critical to medical ad-
vances as they can be used in genomic, cell, molec-
ular, and system-level analyses to assist in early pre-
diction, diagnosis and detection of disease, as well as
for intervention and monitoring. As shown in the CpG
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island study for human cancer, such prediction and di-
agnosis opens up novel therapeutic sites for early inter-
vention. The ultrasound application illustrates its ap-
plication to a novel drug delivery mechanism, assisting
clinicians during a drug delivery process, or in devising
devices that can be implanted into the body for auto-
mated drug delivery and monitoring. The lung cancer
cell motility study offers an understanding of how can-
cer cells behave in different protein media, thus assist-
ing in the identification of potential gene therapy and
target treatment. Prediction of the shape of a cancer
tumor bed provides a personalized treatment design,
replacing manual estimates by sophisticated computer
predictive models. Prediction of early atherosclerosis
through inexpensive biomarker measurements and tra-
ditional risk factors can serve as a potential clinical di-
agnostic tool for routine physical and health mainte-
nance, alerting physicians and patients to the need for
early intervention to prevent serious vascular disease.
Fingerprinting of microvascular networks opens up the
possibility for early diagnosis of perturbed systems in
the body that may trigger disease (e. g., genetic defi-
ciency, diabetes, aging, obesity, macular degeneracy, tu-
mor formation), identification of target sites for treat-
ment, and monitoring prognosis and success of treat-
ment. Determining the type of erythemato-squamous
disease and the presence/absence of heart disease helps
clinicians to correctly diagnose and effectively treat pa-
tients. Thus, classification models serve as a basis for
predictive medicine where the desire is to diagnose
early and provide personalized target intervention. This
has the potential to reduce healthcare costs, improve
success of treatment, and improve quality of life of pa-
tients.
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Disjunctive programming (DP) problems can be stated
in the form

(DP) Minimize f f (x) : x 2 X; x 2 [h2HShg ;

where f : Rn! R is a lower semicontinuous function, X
is a closed convex subset of the nonnegative orthant of
Rn, andH is an index set for the collection of nonempty
polyhedra

Sh D
n
x : Ahx � bh ; x � 0

o
; h 2 H: (1)

The name for this class of problems arises from the
feature that the constraints in (1) include the disjunc-
tion that at least one of the (linear) sets of constraints
defining Sh, for h 2 H, must be satisfied. Problems
including other logical conditions such as conjunc-
tions, negations, and implications can be cast in the
framework of this problem. Problem (DP) subsumes
the classes of 0–1 mixed integer problems, the general-
ized lattice point problem, the cardinality constrained

linear program, the extreme point optimization prob-
lem, the linear complementarity problem, among nu-
merous others, and finds application in several re-
lated problems such as orthogonal production schedul-
ing, scheduling on identical machines, multistage as-
signment, location-allocation problems, load balancing
problems, the segregated storage problem, the fixed-
charge problem, project/portfolio selection problems,
goal programming problems, and many other game
theory and decision theory problems (see [35] for a de-
tailed discussion of such problems and applications).

The theory and algorithms for disjunctive program-
ming problems are mainly supported by the fundamen-
tal disjunctive cut principle. The forward part of this re-
sult due to E. Balas [4,5] states that for any nonnegative
surrogate multiplier vectors �h, h 2 H, the inequality

sup
h2H
f�hAhgx � inf

h2H
f�hbhg (2)

is valid for (or is implied by) the disjunction x 2
[h 2 HSh, where the sup{�} and inf{�} are taken compo-
nentwise in (2). More importantly, the converse part of
this result due to R.G. Jeroslow [16] states that for any
given valid inequality 
x � 
0 for the disjunction x 2
[h 2 HSh, there exist nonnegative surrogate multipliers
�h, h 2 H, such that the disjunctive cut (2) implies this
given valid inequality, or uniformly dominates it, over
the nonnegative orthant. This disjunctive cut principle
also arises from the setting of convexity cuts and poly-
hedral annexation methods as propounded by F. Glover
[11,12], and it subsumes as well as can improve upon
many types of classical cutting planes such as Gomory’s
mixed integer cuts, intersection cuts, and reverse outer
polar cuts for 0–1 programs (see [4,5,11,12,35]). H.P.
Williams [39] provides some additional insights into
disjunctive formulations.

The generation of particular types of ‘deep cuts’ to
delete a given solution (say, the origin, without loss of
generality) based on the criteria of maximizing the Eu-
clidean distance or the rectilinear distance between the
origin and the nonnegative region feasible to the cut-
ting plane, or maximizing the surplus in the cut with
respect to the origin subject to suitable normalization
constraints has also been explored in [34,37]. The in-
tent behind such cutting plane methods is to generate
nondominated valid inequalities that are supports (and
hopefully, facets) of the closure convex hull of solutions
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feasible to the disjunction. H.D. Sherali and C.M. Shetty
[35,37] discuss how different alternate formulations of
the disjunctive statement can influence the strength of
the cut derived therefrom, and demonstrate how a se-
quence of augmented formulations can be used to se-
quentially tighten a given valid inequality. This process
turns out to be precisely the Glover polyhedral annexa-
tion scheme in [12]. In contrast with this sequence de-
pendent ‘lifting’ procedure, Sherali and Shetty [37] pro-
pose a ‘simultaneous lifting’ variant of this approach.
Other types of disjunctive cutting planes for special
problems include the cuts of [4,5,10,11,12,20], and [32]
for linear knapsack, multiple choice and combinatorial
disjunctions, [29] for linear complementarity problems,
and the facet cuts of [25] based on the convex hull of
certain types of disjunctions.

Balas [3] also provides an algebraic characterization
for the closure convex hull of a union of polyhedra. This
characterization is particularly useful in the study of the
important class of facial disjunctive programs, that sub-
sumes mixed integer 0–1 problems and linear comple-
mentarity problems, for example. A facial disjunctive
program (FDP) can be stated as follows.

(FDP) Minimize fcx : x 2 X \ Yg ;

where X is a nonempty polytope in Rn, and where Y
is a conjunction of somebh disjunctions given in the so-
called conjunctive normal form (conjunction of disjunc-
tions)

Y D \h2H

h
[i2Qh

n
x : ahi x � bhi

oi
: (3)

Here, H D f1; : : : ;bhg and for each h 2H we have spec-
ified a disjunction that requires at least one of the in-
equalities ahi x � bhi , for i 2 Qh, to be satisfied. The ter-
minology ‘facial’ conveys the feature that X \ {x: ahi x
� bhi } defines a face of X for each i 2 Qh, h 2 H. For
example, in the context of 0–1 mixed integer problems,
the set X represents the linear programming relaxation
of the problem, and for each binary variable xh, h 2 H,
the corresponding disjunction in (3) states that xh � 0
or xh � 1 should hold true (where 0 � xh � 1 is in-
cluded within X). Balas [3] shows that for facial disjunc-
tive programs, the convex hull of feasible solutions can
be constructed inductively by starting with K0 = X and

then determining

Kh D conv
h
[i2Qh

�
Kh�1 \

n
x : ahi x � bhi

o�i

for h D 1; : : : ;bh ; (4)

where Kbh produces conv(X \ Y). Based on this, a hier-
archy of relaxations K0; : : : ;Kbh is generated for (FDP)
that spans the spectrum from the linear programming
to the convex hull representation [6]. Each member in
this hierarchy can also be viewed as being obtained by
representing the feasible region of the original problem
as the intersection of the union of certain polyhedra,
and then taking a hull-relaxation of this representation.
Here, for a set D = \jDj, where each Dj is the union of
certain polyhedra, the hull-relaxation ofD [3] is defined
as h � rel(D) = \j conv(Dj)� conv(D).

In the context of 0–1 mixed integer problems
(MIP), Sherali and W.P. Adams [27,28] develop
a reformulation-linearization technique (RLT) for gen-
erating a hierarchy of such relaxations, introducing the
notion of multiplying constraints using factors com-
posed of xh and (1 � xh), h 2 H, to reformulate the
problem, followed by a variable substitution to linearize
the resulting problem. Approaches based on such con-
straint product and linearization strategies were used
by these authors earlier in the context of several special
applications [1,2,26]. Later, L. Lovász and A. Schrijver
[17] independently used more general constraint fac-
tors to generate a similar hierarchy for 0–1 problems.
The foregoing RLT construct can be specialized to de-
rive Kh defined by (4) for 0–1 MIPs, where in this case,

Kh � conv
�
(Kh�1 \ fx : xh � 0g)

[ (Kh�1 \ fx : xh � 1g)
�

can be obtained by multiplying the (implicitly defined)
constraints ofKh�1 by xh and (1� xh) and then lineariz-
ing the resulting problem. This RLT approach is used
in [8] in the ‘lift-and-project’ hierarchy of relaxations.
However, the RLT process of [27,28] generates tighter
relaxations at each level which can be viewed as hull
relaxations produced by the intersection of the convex
hull of the union of certain specially constructed poly-
hedra. No direct realization of (4) can produce these re-
laxations. For a survey on RLT approaches and for fur-
ther enhancements, see [29,30].
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In the context of general facial disjunctive pro-
grams, Jeroslow [15] presented a cutting plane algo-
rithm that generates suitable facetial inequalities at
each stage of the procedure such that an overall fi-
nite convergence is guaranteed via (4). This is accom-
plished by showing that in the worst case, the hierarchy
K0; : : : ;Kbh would be generated. The lift-and-project al-
gorithm of [8] employs this cutting plane procedure
based on the foregoing hierarchy of relaxations. Balas
[7] also addresses an enhanced procedure that consid-
ers two variables at a time to define the disjunctions.
The RLT process is used to construct partial convex
hulls, and the resulting relaxations are embedded in
a branch and cut algorithm.

Furthermore, for general facial disjunctive pro-
grams, Sherali and Shetty [36] present another finitely
convergent cutting plane algorithm. At each step, this
procedure searches for extreme faces of X relative to
the cuts generated thus far (these are faces that do not
contain any feasible points lying in a lower-dimensional
face of X, see [18]), and based on the dimension of this
extreme face and its feasibility to Y , either a disjunctive
face cut or a disjunctive intersection cut is generated.
This procedure was specialized for bilinear program-
ming problems in [33] to derive a first nonenumerative
finitely convergent algorithm for this class of problems.

Other disjunctive cutting plane algorithms include
the Sherali–Sen procedures [31] for solving the general
class of extreme point mathematical programs, the Bap-
tiste–LePape procedures [9], and the Pinto–Grossmann
procedures [21] for solving certain scheduling prob-
lems having disjunctive logic constraints. S. Sen and
Sherali [24] also discuss issues related to designing con-
vergent cutting plane algorithms, and present examples
to show nonconvergence of certain iterative disjunc-
tive cutting plane methods. Sensitivity and stability is-
sues related to feasible and optimal sets of disjunctive
programs have been addressed in [14]; [13] deals with
the problem of solving algebraic systems of disjunctive
equations. For other applications of disjunctive meth-
ods to process systems engineering, and to logic pro-
gramming, see [19,23,38].

See also

�MINLP: Branch and Bound Global Optimization
Algorithm

�MINLP: Branch and Bound Methods
�MINLP: Global Optimization with ˛BB
�MINLP: Logic-Based Methods
� Reformulation-linearization Methods for Global

Optimization
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Abstract

Protein force fields play an important role in protein
structure prediction. Knowledge based force fields use
the database information to derive the interaction en-
ergy between different residues or atoms of a protein.
These simplified force fields require less computational
effort and are relatively easy to use. A C ˛–C ˛ distance
dependent high resolution force field has been devel-
oped using a set of high quality (low rmsd) decoys.
A linear programming based formulation was used in
which non-native “decoy” conformers are forced to
take a higher energy compared to the corresponding
native structure. This force field was tested on an inde-
pendent test set and was found to excel on all the met-
rics that are widely used to measure the effectiveness of
a force field.
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Introduction

Predicting the structure of a protein from its amino acid
sequence is one of the biggest and yet most fundamen-
tal problems in computational structural biology. An-
finsen’s hypothesis [1] is one of the main approaches
used to solve this problem, which says that for a given
physiological set of conditions the native structure of
a protein corresponds to the global Gibbs free energy
minimum. Thus, one needs a force field to calculate the
energy of different conformers and pick the one with
the lowest energy.

Physics-based force fields consider various types of
interactions (for example, van der Waals interactions,
hydrogen bonding, electrostatic interactions etc.) oc-
curring at the atomic level of a protein to calculate the
energy of a conformer. CHARMM [19], AMBER [5],
ECEPP [20], ECEPP/3 [21] and GROMOS [24] are
a few examples of the physics-based force fields. On the
other hand, knowledge-based force fields use informa-
tion from databases. Researchers have used the Boltz-
mann distribution [4,7,26,], optimization based tech-
niques [17,27] and many other approaches [6,12,13,
14,15,16,18,23,25] to calculate these parameters. A re-
cent review on such potentials can be found in Floudas
et al. [8].

This work presents a novel C ˛–C ˛ distance depen-
dent high resolution force field that has been generated
using linear optimization based framework [22]. The
emphasis is on the high resolution, which would enable
us to differentiate between native and non-native struc-
tures that are very similar to each other (rmsd < 2Å).
The force field is called high resolution because it has
been trained on a large set of high resolution decoys
(small rmsd with respect to the native) and it intends
to effectively distinguish high resolution decoys struc-
tures from the native structure.

The basic framework used in this work is similar
to the one developed by Loose et al. [17]. However, it
has been improved and applied to a diverse and en-
hanced (both in terms of quantity and quantity) set of
high resolution decoys. The new proposed model has

resulted in remarkable improvements over the LKF po-
tential. These high resolution decoys were generated
using torsion angle dynamics in combination with re-
stricted variations of the hydrophobic core within the
native structure. This decoy set highly improves the
quality of training and testing. The force field developed
in this paper was tested by comparing the energy of the
native fold to the energies of decoy structures for pro-
teins separate from those used to train the model. Other
leading force fields were also tested on this high quality
decoy set and the results were compared with the re-
sults of our high resolution potential. The comparison
is presented in the Results section.

Theory andModeling

In this model, amino acids are represented by the loca-
tion of its C ˛ atom on the amino acid backbone. The
conformation of a protein is represented by a coordi-
nate vector, X, which includes the location of the C ˛ of
each amino acid. The native conformation is denoted as
Xn, while the set i D 1; : : : ;N is used to denote the de-
coy conformations Xi. Non-native decoys are generated
for each of p D 1; : : : ; P proteins and the energy of the
native fold for each protein is forced to be lower than
those of the decoy conformations (Anfinsen’s hypothe-
sis). This constraint is shown in the following equation:

E(Xp; i ) � E(Xp; n) > "

p D 1; : : : ; P i D 1; : : : ;N
(1)

Equation (1) requires the native conformer to be always
lower in energy than its decoy. A small positive parame-
ter " is used to avoid the trivial solution in which all en-
ergies are set to zero. An additional constraint (Eq. 2)
is used to produce a nontrivial solution by constrain-
ing the sum of the differences in energies between de-
coy and native folds to be greater than a positive con-
stant [28]. For the model presented in this paper, the
values of " and � were set to 0.01 and 1000, respec-
tively.

X
p

X
i

[E(Xp; i) � E(Xp; n)] > � (2)

The energy of each conformation is taken as the arith-
metic sum of pairwise interactions corresponding to
each amino acid combination at a particular “contact”
distance. A contact exists when the C ˛ carbons of two
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Distance Dependent Protein Force Field via Linear Optimiza-
tion, Table 1
Distance dependent bin definition [17]

Bin ID C˛ Distance [Å]
1 3–4
2 4–5
3 5–5.5
4 5.5–6
5 6–6.5
6 6.5–7
7 7–8
8 8–9

amino acids are within 9Å of each other. The energy of
each interaction is a function of the C ˛–C ˛ distances
and the identity of the interacting amino acids. To for-
mulate the model, the energy of an interaction between
a pair of amino acids, IC, within a distance bin, ID, was
defined as � IC,ID. The eight distance bins defined for the
formulation are shown in Table 1. The energy for any
fold X, of decoy i, for a protein p, is given by Eq. (3).

E(Xp; i) D
X
IC

X
ID

Np; i; IC; ID�IC; ID (3)

In this equation, Np, i, IC, ID is the number of interac-
tions between an amino acid pair IC, at a C ˛–C ˛ dis-
tance ID. The set IC ranges from 1 to 210 to account for
the 210 unique combinations of the 20 naturally occur-
ring amino acids. These bin definitions yield a total of
1680 interaction parameters to be determined by this
model. To determine these parameters, a linear pro-
gramming formulation is used in which the energy of
a native protein is compared with a large number of its
decoys. The violations, in which a non-native fold has
a lower energy than the natural conformation, are min-
imized by optimizing with respect to these interaction
parameters.

Equation (1) can be rewritten in terms of Np, i, IC, ID

as Eq. (4), where the slack parameters, Sp, are positive
variables (Eq. 5) that represent the difference between
the energies of the decoys and the native conformation
of a given protein.
X
IC

X
ID

[Np; i; IC; ID � Np; n; IC; ID]�IC; ID C Sp � "

p D 1; : : : ; P i D 1; : : : ;N (4)

Sp � 0 p D 1; : : : ; P (5)

min

(IC; ID)

X
p

Sp (6)

The objective function for this formulation is to min-
imize the sum of the slack variables, Sp, written in the
form of Eq. (6). The relative magnitude of � IC,ID is
meaningless because if all � IC,ID parameters are multi-
plied by a common factor then Eqs. (4) and (5) are still
valid. In this formulation, � IC,ID values were bound be-
tween �25 and 25.

Physical Constraints

The above mentioned equations constitute the basic
constraints needed to solve this model. However, this
set does not guarantee a physically realistic solution.
It is possible to come up with a set of parameters that
can satisfy Eqs. (2,3,4,5,6) but would not reflect the
actual interaction occurring between amino acids in
a real system. To prohibit these unrealistic cases, an-
other set of constraints based on the physical properties
of the amino acids was imposed. Statistical results pre-
sented in Bahar and Jernigan [2] were also incorporated
through the introduction of hydrophilic and hydropho-
bic constraints. The details of these physical constraints
are given elsewhere [22].

Database Selection and Decoy Generation

The protein database selection is critical to force field
training. This set should adequately represent the PDB
set [3]. At the same time, it should not be too large, as
the training becomes difficult with an increase in the
size of the training set. Zhang and Skolinck [29] devel-
oped a set of 1,489 nonhomologous single domain pro-
teins. High resolution decoys were generated for these
proteins and used for training and testing purposes.
High quality decoy generation was based on the hy-
pothesis that high-quality decoy structures should pre-
serve information about the distances within the hy-
drophobic core of the native structure of each pro-
tein. For each of the proteins in the database, a num-
ber of distance constraints are introduced based on
the hydrophobic-hydrophobic distances within the na-
tive structure. Using a set of proximity parameters,
a large number of decoy structures are generated using
DYANA [9]. The rmsd distribution of decoy structures
can be found elsewhere [22].
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Training and Test Set

Of the 1400 proteins used for decoy generation, 1250
were randomly selected for training and the rest were
used for testing purposes. For every protein in the
set, 500–1600 decoys were generated depending on
the fraction of secondary structure present in the na-
tive structure of the protein. These decoys were sorted
based on their C ˛ rmsd to the native structure and
then 500 decoys were randomly selected to represent
the whole rmsd range. This creates a training set of
500 � 1250 D 625; 000 decoys. However, because of
computer memory limitations, it is not possible to in-
clude all of these decoys at the same time for training.
An iterative scheme, “Rank and Drop”, was employed
to overcome the memory problem while effectively us-
ing all the high quality structures. In this scheme, a sub-
set of decoys is used to generate a force field. This force
field is then used to rank all the decoys and a set of most
challenging decoys (based on their energy value) is se-
lected for the next round of force field generation. This
process of force field generation and decoy ranking is
repeated until there is no improvement in the ranking
of the decoys [22]. This force field model was solved
using the GAMS modeling language coupled with the
CPLEX linear programming package [11].

It is equally important to test a force field on a diffi-
cult and rigorous testing set to confirm its effectiveness.
The test set was comprised of 150 randomly selected
proteins (41–200 amino acids in length). For each of the
150 test proteins, 500 high resolution decoys were gen-
erated using the same technique that was used to gen-
erate training decoys. The minimum C ˛ based rmsds
for these non-native structures were in the range of 0–
2Å. This HR force field was also tested on another set
of medium resolution decoys [17]. This set has 200 de-
coys for 151 proteins. The minimum RMSD of the de-
coys of this set ranged from 3–16Å. This set, along with
the high resolution decoy set, spans the practical range
of possible protein structures that one might encounter
during protein structure prediction.

Results and Discussion

A linear optimization problem was solved using infor-
mation from 625,000 decoy structures and the values
of all the energy parameters were obtained. The ability
to distinguish between the native structure and native-

Distance Dependent Protein Force Field via Linear Optimiza-
tion, Table 2
Testing force fields on 150proteins of the high resolution de-
coy set. TE13 force field was only tested on 148 cases

FF-Name Average Rank No of Firsts Average rmsd
HR 1.87 113 (75.33%) 0.451
LKF 39.45 17 (11.33%) 1.721
TE13 19.94 92 (62.16%) 0.813
HL 44.93 70 (46.67%) 1.092

like conformers is the most significant test for any force
field. The HR force field was tested on 500 decoys of the
150 test proteins. In this testing, the relative position, or
rank, of the native conformation among its decoys was
calculated. An ideal force field should be able to assign
rank 1 to the native structures of all the test proteins.
Other force fields like LKF [17], TE13 [27], and HL [10]
were also tested on this set of high resolution decoys.
All these force fields are fundamentally different from
each other in their methods of energy estimation. Com-
paring the results obtained with these force fields aims
to assess the fundamental utility of the HR force field.
The comparison of the energy rankings obtained using
different force fields is presented in Table 2. From this
table it is evident that the HR force field is the most ef-
fective in identifying the native structures by rank. The
HR force field correctly identified the native folds of 113
proteins out of a set of 150 proteins, which compares fa-
vorably to a maximum of 92 (out of 148) by the TE13
force field.

Another analysis was carried out to evaluate the dis-
crimination ability of these potentials. In this evalua-
tion, all the decoys of the test set were ranked using
these potentials. For each test protein, the C ˛ rmsd of
the rank 1 conformer was calculated with respect to the
native structure of that protein. The C ˛ rmsd would be
zero for the cases in which a force field selects the na-
tive structure as rank 1. However, it will not be zero for
all other cases in which a non-native conformer is as-
signed the top rank. The average of these rmsds repre-
sents the spatial separation of the decoys with respect to
the native structure. The average rmsd value obtained
for each of the force fields is shown in Table 2. It can be
seen that the average C ˛ rmsd value is least for the HR
force field. The average C ˛ rmsd value for the HR force
field is 0.451Å, which is much less compared to 1.721Å
by the LKF, and 0.813Å by TE13 force field. This means



Distance Dependent Protein Force Field via Linear Optimization D 791

that the structures predicted by the HR force fields have
the least spatial deviation from their corresponding na-
tive structures.

The HR force field was also tested on the test set
published by Loose et al. [17] and was found to do bet-
ter than other force fields. The comparison results for
this test can be found elsewhere [22]. The effectiveness
of the HR force field is further reinforced by its suc-
cess on the medium resolution decoy test set. On the
test set of 110 medium resolution decoys, it was capable
of correctly identifying 78.2% of the native structures,
significantly more than other force fields.

Conclusions

TheHR force field was developed using an optimization
based linear programming formulation, in which the
model is trained using a diverse set of high quality de-
coys. Physically observed interactions between certain
amino acids were written in the form of mathematical
constraints and included in the formulation.

The decoys were generated based on the premise
that high quality decoy structures should preserve in-
formation about the distance within the hydrophobic
core of the native structure of each protein. The set
of interaction energy parameters obtained after solving
the model were found to be of very good discrimina-
tory capacity. This force field performed well on a set
of independent, non-homologous high resolution de-
coys. This force field can become a powerful tool for
fold recognition and de novo protein design.
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Introduction

Exact algorithms allow one to find optimal solutions to
NP-hard combinatorial optimization (CO) problems.
Many research papers report on solving large instances
of someNP-hard problems (see, e. g., [25,27]). The run-
ning time of exact algorithms is often very high for large
instances (many hours or even days), and very large
instances remain beyond the capabilities of exact algo-
rithms. Even for instances of moderate size, if we wish
to remain within seconds or minutes rather than hours
or days of running time, only heuristics can be used.
Certainly, with heuristics, we are not guaranteed to find
optimum, but good heuristics normally produce near-
optimal solutions. This is enough in most applications
since very often the data and/or mathematical model
are not exact anyway.

Research on CO heuristics has produced a large va-
riety of heuristics especially for well-known CO prob-
lems. Thus, we need to choose the best ones among
them. In most of the literature, heuristics are com-
pared in computational experiments. While experi-



Domination Analysis in Combinatorial Optimization D 793

mental analysis is of definite importance, it cannot
cover all possible families of instances of the CO prob-
lem at hand and, in particular, it practically never cov-
ers the hardest instances.

Approximation Analysis [3] is a frequently used tool
for theoretical evaluation of CO heuristics. Let H be
a heuristic for a combinatorial minimization problem
P and let In be the set of instances of P of size n. In
approximation analysis, we use the performance ratio
rH(n) D maxf f (I)/ f �(I) : I 2 Ing; where f (I)( f �(I))
is the value of the heuristic (optimal) solution of I.
Unfortunately, for many CO problems, estimates for
rH (n) are not constants and provide only a vague pic-
ture of the quality of heuristics. Moreover, even con-
stant performance ratio does not guarantee that the
heuristic often outputs good-quality solutions, see, e. g.,
the discussion of the DMST heuristic below.

Domination Analysis (DA) (for surveys, see [22,24])
provides an alternative and a complement to approxi-
mation analysis. In DA, we are interested in the domi-
nation number or domination ratio of heuristics. Dom-
ination number (ratio) of a heuristic H for a combina-
torial optimization problem P is the maximum number
(fraction) of all solutions that are not better than the
solution found by H for any instance of P of size n.
In many cases, DA is very useful. For example, we
will see later that the greedy algorithm has domina-
tion number 1 for many CO problems. In other words,
the greedy algorithm, in the worst case, produces the
unique worst possible solution. This is in line with lat-
est computational experiments with the greedy algo-
rithm, see, e. g., [25], where the authors came to the
conclusion that the greedy algorithm ‘might be said to
self-destruct’ and that it should not be used even as
‘a general-purpose starting tour generator’.

The Asymmetric Traveling Salesman Problem
(ATSP) is the problem of computing aminimumweight
tour (Hamilton cycle) passing through every vertex in
a weighted complete digraph K�n on n vertices. The
Symmetric TSP (STSP) is the same problem, but on
a complete undirected graph. When a certain fact holds
for both ATSP and STSP, we will simply speak of TSP.
Sometimes, the maximizing version of TSP is of inter-
est, we denote it byMax TSP.

APX is the class of CO problems that admit poly-
nomial time approximation algorithms with a constant
performance ratio [3]. It is well known that while Max

TSP belongs to APX, TSP does not. This is at odds
with the simple fact that a ‘good’ approximation algo-
rithm for Max TSP can be easily transformed into an
algorithm for TSP. Thus, it seems that both Max TSP
and TSP should be in the same class of CO problems.
The above asymmetry was already viewed as a draw-
back of performance ratio already in the 1970’s, see,
e. g. [11,28,33]. Notice that from the DA point view
Max TSP and TSP are equivalent problems.

Zemel [33] was the first to characterize measures of
quality of approximate solutions (of binary integer pro-
gramming problems) that satisfy a few basic and nat-
ural properties: the measure becomes smaller for bet-
ter solutions, it equals 0 for optimal solutions and it is
the same for corresponding solutions of equivalent in-
stances. While the performance ratio and even the rel-
ative error (see [3]) do not satisfy the last property, the
parameter 1-r, where r is the domination ratio, does sat-
isfy all of the properties.

Local Search (LS) is one of the most successful ap-
proaches in constructing heuristics for CO problems.
Recently, several researchers investigated LS with Very
Large Scale Neighborhoods (see, e. g., [1,12,24]). The
hypothesis behind this approach is that the larger the
neighborhood the better quality solution are expected
to be found [1]. However, some computational ex-
periments do not support this hypothesis; sometimes
an LS with small neighborhoods proves to be supe-
rior to that with large neighborhoods. This means that
some other parameters are responsible for the relative
power of neighborhoods. Theoretical and experimen-
tal results on TSP indicate that one such parameter
may well be the domination number of the correspond-
ing LS.

In our view, it is advantageous to have bounds for
both performance ratio and domination number (or,
domination ratio) of a heuristic whenever it is possible.
Roughly speaking this will enable us to see a 2D rather
than 1D picture. For example, consider the double min-
imum spanning tree heuristic (DMST) for the Met-
ric STSP (i. e., STSP with triangle inequality). DMST
starts from constructing a minimum weight spanning
tree T in the complete graph of the STSP, doubles ev-
ery edge in T, finds a closed Euler trail E in the ‘dou-
ble’ T, and cancels any repetition of vertices in E to
obtain a TSP tour H. It is well-known and easy to
prove that the weight of H is at most twice the weight
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of the optimal tour. Thus, the performance ratio for
DMST is bounded by 2. However, Punnen, Margot
and Kabadi [29] proved that the domination number
of DMST is 1. Interestingly, in practice DMST often
performs much worse than the well-known 2-Opt LS
heuristic. For 2-Opt LS we cannot give any constant ap-
proximation guarantee, but the heuristic is of very large
domination number [29].

The above example indicates that it makes sense to
use DA to rank heuristics for the CO problem under
consideration. If the domination number of a heuristic
H is larger than the domination of a heuristicH 0 (for
all or ‘almost all’ sizes n), we may say thatH is better
thanH 0 in the worst case (from the DA point of view).
Berend, Skiena and Twitto [10] used DA to rank some
well-known heuristics for the Vertex Cover problem
(and, thus, the Independent Set and Clique problems).
The three problems and the heuristics will be defined in
the corresponding subsection of the Cases section. Ben-
Arieh et al. [7] studied three heuristics for the General-
ized TSP: the vertices of the complete digraph are par-
titioned into subsets and the goal is to find a minimum
weight cycle containing exactly one vertex from each
subset. In the computational experiment in [7] one of
the heuristics was clearly inferior to the other two. The
best two behaved very similarly. Nevertheless, the au-
thors of [7] managed to ‘separate’ the two heuristics by
showing that one of the heuristics was of much larger
domination number.

One might wonder whether a heuristic A, which
is significantly better that another heuristic B from the
DA point of view, is better that B in computational ex-
periments. In particular, whether the ATSP greedy al-
gorithm, which is of domination number 1, is worse, in
computational experiments, than any ATSP heuristic of
domination number at least (n� 2)! ? Generally speak-
ing the answer to this natural question is negative. This
is because computational experiments and DA indicate
different aspects of quality of heuristics. Nevertheless,
it seems that many heuristics of very small domination
number such as the ATSP greedy algorithm perform
poorly also in computational experiments and, thus,
cannot be recommended to be widely used in compu-
tational practice.

The rest of the entry is organized as follows.We give
additional terminology and notation in the section Def-
initions. In the section Methods, we describe two pow-

erful methods in DA. In the section Cases, we consider
DA results for some well-known CO problems.

Definitions

Let P be a CO problem and let H be a heuristic for
P. The domination number domn(H ; I) of H for an
instance I of P is the number of solutions of I that
are not better than the solution s produced by H in-
cluding s itself. For example, consider an instance T
of the STSP on 5 vertices. Suppose that the weights
of tours in T are 2,5,5,6,6,9,9,11,11,12,12,15 (every in-
stance of STSP on 5 vertices has 12 tours) and sup-
pose that the greedy algorithm computes the tour T of
weight 6. Then domn(greedy;T ) D 9. In general, if
domn(H ; I) equals the number of solutions in I, then
H finds an optimal solution for I. If domn(H ; I) D 1,
then the solution found byH for I is the unique worst
possible one.

The domination number domn(H ; n) of H is the
minimum of domn(H ; I) over all instances I of size n.
Since the ATSP on n vertices has (n�1)! tours, an algo-
rithm for the ATSP with domination number (n � 1)!
is exact. The domination number of an exact algorithm
for the STSP is (n � 1)!/2: If an ATSP heuristicA has
domination number equal 1, then there is an assign-
ment of weights to the arcs of each complete digraph
K�n , n � 2, such thatA finds the unique worst possible
tour in K�n :

While studying TSP we normally consider only fea-
sible solutions (tours), for several other problems some
authors take into consideration also infeasible solu-
tions [10]. One example is the Maximum Independent
Set problem, where given a graph G, the aim is to find
an independent set in G of maximum cardinality. Ev-
ery non-empty set of vertices is considered to be a solu-
tion by Berend, Skiena and Twitto [10]. To avoid deal-
ing with infeasible solutions (and, thus, reserving the
term ‘solution’ only for feasible solutions) we also use
the notion of the blackball number introduced in [10].
The blackball number bbn(H ; I) ofH for a an instance
I of P is the number of solutions of I that are better
than the solution produced byH . The blackball num-
ber bbn(H ; n) ofH is the maximum of domn(H ; I)
over all instances I of size n.

When the number of solutions depends not only on
the size of the instance of the CO problem at hand (for
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example, the number of independent sets of vertices in
a graph G on n vertices depends on the structure of G),
the domination ratio of an algorithm A is of interest:
the domination ratio of A, domr(A; n), is the mini-
mum of domn(A; I)/sol(I); where sol(I) is the num-
ber of solutions of I, taken over all instances I of size n.
Clearly, domination ratio belongs to the interval (0; 1]
and exact algorithms are of domination ratio 1.

Methods

Currently, there are two powerful methods in DA. One
is used to prove that the heuristic under consideration is
of domination number 1. For this method to be useful,
the heuristic has to be a greedy-type algorithm for a CO
problem on independence systems. We describe the
method and its applications in the subsection Greedy-
Type Algorithms. The other method is used prove that
the heuristic under consideration is of very large dom-
ination number. For many problems this follows from
the fact that the heuristic always finds a solution that is
not worse than the average solution. This method is de-
scribed in the subsection Better-Than-Average Heuris-
tics.

Greedy-Type Algorithms

The main practical message of this subsection is that
one should be careful while using the classical greedy
algorithm and its variations in combinatorial optimiza-
tion (CO): there are many instances of CO problems for
which such algorithms will produce the unique worst
possible solution. Moreover, this is true for several well-
known optimization problems and the corresponding
instances are not exotic, in a sense. This means that not
always the paradigm of greedy optimization provides
any meaningful optimization at all.

An independence system is a pair consisting of a fi-
nite set E and a family F of subsets (called independent
sets) of E such that (I1) and (I2) are satisfied.

(I1) the empty set is in F ;
(I2) If X 2 F and Y is a subset of X, then Y 2 F .

All maximal sets of F are called bases. An indepen-
dence system is uniform if all its bases are of the same
cardinality.

Many combinatorial optimization problems can be
formulated as follows. We are given an independence

system (E,F), a set W � ZC and a weight function
w that assigns a weight w(e) 2 W to every element of
E (ZC is the set of non-negative integers). The weight
w(S) of S 2 F is defined as the sum of the weights of
the elements of S. It is required to find a base B 2 F of
minimumweight. We will consider only such problems
and call them the (E,F,W)-optimization problems.

If S 2 F , then let I(S) D fx : S [ fxg 2 Fg � S.
This means that I(S) consists of those elements from E-
S, which can be added to S, in order to have an indepen-
dent set of size jSj C 1. Note that by (I2) I(S) ¤ ; for
every independent set S which is not a base.

The greedy algorithm tries to construct a minimum
weight base as follows: it starts from an empty set X,
and at every step it takes the current set X and adds
to it a minimum weight element e 2 I(X), the al-
gorithm stops when a base is built. We assume that
the greedy algorithm may choose any element among
equally weighted elements in I(X). Thus, when we say
that the greedy algorithm may construct a base B, we
mean that B is built provided the appropriate choices
between elements of the same weight are made.

An ordered partitioning of an ordered set Z D
fz1; z2; : : : ; zkg is a collection of subsets A1;A2; : : : ;Aq

of Z such that if zr 2 Ai and zs 2 Aj where 1 � i <
j � q then r < s. Some of the sets Ai may be empty and
[

q
iD1Ai D Z.
The following theorem by Bang-Jensen, Gutin and

Yeo [6] characterizes all uniform independence systems
(E,F) for which there is an assignment of weights to
the elements of E such that the greedy algorithm solv-
ing the (E;F ; f1; 2; : : : ; rg)-optimization problem may
construct the unique worst possible solution.

Theorem 1 Let (E,F) be a uniform independence sys-
tem and let r � 2 be a natural number. There exists
a weight assignment w : E ! f1; 2; : : : ; rg such that the
greedy algorithm may produce the unique worst possible
base if and only ifF contains some base B with the prop-
erty that for some ordering x1; : : : ; xk of the elements
of B and some ordered partitioning A1;A2; : : : ;Ar of
x1; : : : ; xk the following holds for every base B0 ¤ B
of F :

r�1X
jD0

jI(A0; j) \ B0j <
rX

jD1

j � jAjj ; (1)

where A0; j D A0 [ � � � [ Aj and A0 D ;.
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The special case r D 2 has an ‘easier’ characterization
also proved in [6].

Theorem 2 Let (E,F) be a uniform independence sys-
tem. For every choice of distinct natural numbers a,b
there exists a weight function w : E ! fa; bg such that
the greedy algorithm may produce the unique worst base
if and only if F contains a base B D fx1; x2; : : : ; xkg
such that for some 1 � i < k the following holds:

(a) If B0 is a base such that fx1; : : : ; xig � B0 then B0 D
B.

(b) If B0 is a base such that fxiC1; : : : ; xkg � B0 then
B0 D B.

Using Theorem 1, the authors of [6] proved the follow-
ing two corollaries.

Corollary 3 Consider STSP as an (E,H ,W)-optimiza-
tion problem. Let n � 3:

(a) If n � 4 and jWj � b n�12 c, then the greedy algo-
rithm never produces the unique worst possible base
(i. e., tour).

(b) If n � 3, r � n � 1 and W D f1; 2; : : : ; rg, then
there exists a weight function w : E ! f1; 2; : : : ; rg
such that the greedy algorithm may produce the
unique worst possible base (i. e., tour).

Corollary 4 Consider ATSP as an (E,H ,W)-optimiza-
tion problems. Let n � 3:

(a) If jWj � b n�12 c, then the greedy algorithm never
produces the unique worst possible base (i. e., tour).

(b) For every r � d nC1
2 e there exists a weight function

w : E(K�n ) ! f1; 2; : : : ; rg such that the greedy al-
gorithm may produce the unique worst possible base
(i. e., tour).

LetF be the sets of those subsets X of E(K2n) which in-
duce a bipartite graph with at most n vertices in each
partite set. Then (E(K2n);F) is a uniform indepen-
dence system and the bases of (E(K2n);F) correspond
to copies of the complete balanced bipartite graph Kn;n

in K2n . The (E(K2n);F ;ZC)-optimization problem is
called the Minimum Bisection Problem. Theorem 2 im-
plies the following:

Corollary 5 [6] Let n � 4. The greedy algorithm for the
(E(K2n);F ;W)-optimization problem may produce the
unique worst solution even if jWj D 2.

For W D ZC, the following sufficient condition can
often be used:

Theorem 6 [21] Let (E,F) be an independence system
which has a base B0 D fx1; x2; : : : ; xkg such that the
following holds for every base B 2 F , B 6D B0,

k�1X
jD0

jI(x1; x2; : : : ; x j) \ Bj < k(k C 1)/2 :

Then the greedy algorithm for the (E;F ;ZC)-
optimization problem may produce the unique worst so-
lution.

Gutin, Yeo and Zverovich [23] considered the well-
known nearest neighbor (NN) TSP heuristic: the tour
starts at any vertex x of the complete directed or undi-
rected graph; we repeat the following loop until all ver-
tices have been included in the tour: add to the tour
a vertex (among vertices not yet in the tour) closest to
the vertex last added to the tour. It was proved in [23]
that the domination number of NN is 1 for any n � 3:

Bendall and Margot [8] studied greedy-type algo-
rithms for many CO problems. Greedy-type algorithms
were introduced in [18]. They include NN and were de-
fined as follows. A greedy-type algorithm H is similar
to the greedy algorithm: start with the partial solution
X D ;; and then repeatedly add to X an element of
minimum weight in IH (X) (ties are broken arbitrarily)
until X is a base of F , where IH (X) is a subset of I (X)
that does not depend on the cost function c, but only
on the independence system (E,F) and the set X. More-
over, IH (X) is non-empty if I(X) ¤ ;, a condition that
guarantees that H always outputs a base. Bendall and
Margot [8] obtained complicated sufficient conditions
for an independent system (E,F) that ensure that every
greedy-type algorithm is of domination number 1 for
the (E;F ;ZC)-optimization problem.

The conditions imply that every greedy-type algo-
rithm is of domination number 1 for the following clas-
sical CO problems [8]: (1) The Minimum Bisection
Problem; (2) The k-Clique Problem: find a set of k ver-
tices in a complete graph so that the sum of the weights
of the edges between them is minimum; (3) ATSP; (4)
STSP; (5) The MinMax Matching Subgraph Problem:
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find a maximal (with respect to inclusion) matching so
that the sum of the weights of the edges in the matching
isminimum; (6) TheAssignment Problem: find a perfect
matching in a weighted complete bipartite graph so that
the sum of the weights of the edges in the matching is
minimum.

Better-Than-Average Heuristics

The idea of this method is to show that a heuristic is
of very large domination number if it always produces
a solution that is not worse than the average solution.
The first such result was proved by Rublineckii [31] for
the STSP.

Theorem 7 Every STSP heuristic that always produces
a tour not worse than the average tour (of the instance)
is of domination number at least (n � 2)! when n is odd
and (n � 2)!/2 when n is even.

The following similar theorem was proved by Sar-
vanov [32] for n odd and Gutin and Yeo [20] for n even.

Theorem 8 Every ATSP heuristic that always produces
a tour not worse than the average tour (of the instance)
is of domination number at least (n�2)! for each n ¤ 6:

The two theorems has been used to prove that a wide
variety of TSP heuristics have domination number at
least ˝((n � 2)!). We discuss two families of such
heuristics.

Consider an instance of the ATSP (STSP). Order the
vertices x1; x2; : : : ; xn of K�n (Kn) using some rule. The
generic vertex insertion algorithm proceeds as follows.
Start with the cycle C2 D x1x2x1. Construct the cy-
cle Cj from Cj�1 ( j D 3; 4; 5; : : : ; n), by inserting the
vertex xj into Cj-1 at the optimum place. This means
that for each arc e D xy which lies on the cycle Cj-1

we compute w(xx j) C w(x j y) � w(xy), and insert xj
into the arc e D xy, which obtains the minimum such
value. Here w(uv) denotes the weight of an arc uv. E.M.
Lifshitz (see [31]) was the first to prove that the generic
vertex insertion algorithm always produces a tour not
worse than the average tour. Thus, we have the follow-
ing:

Corollary 9 The generic vertex insertion algorithm has
domination number at least (n � 2)! (n ¤ 6).

In TSP local search (LS) heuristics, a neighborhood
N(T) is assigned to every tour T; N(T) is a set of tours

in some sense close to T. The best improvement LS pro-
ceeds as follows. We start from a tour T0. In the i’th it-
eration (i � 1), we search in the neighborhood N(Ti�1)
for the best tour Ti. If the weights of Ti-1 and Ti do not
coincide, we carry out the next iteration. Otherwise, we
output Ti.

The k-Opt, k � 2, neighborhood of a tour T con-
sists of all tours that can be obtained by replacing a col-
lection of k edges (arcs) by a collection of k edges (arcs).
It is easy to see that one iteration of the best improve-
ment k-Opt LS can be completed in time O(nk ): Rubli-
neckii [31] showed that every local optimum for the
best improvement 2-Opt or 3-Opt LS for STSP is of
weight at least the average weight of a tour and, thus, by
Theorem 7 is of domination number at least (n � 2)!/2
when n is even and (n � 2)! when n is odd. Observe
that this result is of restricted interest since to reach
a k-Opt local optimum one may need exponential time
(cf. Section 3 in [26]). However, Punnen, Margot and
Kabadi [29] managed to prove that, in polynomial time,
the best improvement 2-Opt and 3-Opt LS’s for STSP
produce a tour of weight at least the average weight of
a tour. Thus, we have the following:

Corollary 10 For the STSP the best improvement 2-
Opt LS produces a tour, which is not worse than at least
˝((n�2)!) other tours, in at most O(n3 logn) iterations.

Corollary 10 is also valid for the best improvement
3-Opt LS and some other LS heuristics for TSP,
see [24,29]. In the next section, we will give further ex-
amples of better-than-average heuristics for problems
other than TSP.

Cases

Traveling Salesman Problem

In the previous sections, we discussed several TSP
heuristics. However, there are many more TSP heuris-
tics and, in this subsection, we consider some of them.
In the next subsection, some general upper bounds are
given on the domination number of TSP heuristics.

Gutin, Yeo and Zverovich [23] considered the re-
peated nearest neighbor (RNN) heuristic, which is the
following variation of the NN heuristic: construct n
tours by starting NN from each vertex of the complete
(di)graph and choose the best tour among the n tours.
The authors of [23] proved that for the ATSP, RNN al-
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ways produces a tour, which is not worse than at least
n/2�1 other tours, but for some instance it finds a tour,
which is not worse than at most n-2 other tours, n � 4.
We also show that, for some instance of the STSP on
n � 4 vertices, RNN produces a tour not worse than at
most 2n�3 tours.

Another ATSP heuristic, max-regret-fc (fc ab-
breviates First Coordinate), was first introduced by
Ghosh et al. [13]. Extensive computational experiments
in [13] demonstrated a clear superiority of max-regret-
fc over the greedy algorithm and several other con-
struction heuristics from [14]. Therefore, the result
of Theorem 11 obtained by Gutin, Goldengorin and
Huang [15] was somewhat unexpected.

Let K�n be a complete digraph with vertices V D
f1; 2; : : : ; ng. The weight of an arc (i,j) is denoted by
wij. Let Q be a collection of disjoint paths in K�n . An arc
a=(i,j) is a feasible addition to Q if Q+a is either a col-
lection of disjoint paths or a tour in K�n : Consider the
following two ATSP heuristics: max-regret-fc and max-
regret.

The heuristic max-regret-fc proceeds as follows. Set
W D T D ;:While V ¤ W do the following: For each
i 2 V nW , compute two lightest arcs (i,j) and (i,k) that
are feasible additions to T, and compute the difference
�i D jwi j � wikj. For i 2 V n W with maximum �i

choose the lightest arc (i,j), which is a feasible addition
to T and add (i,j) toM and i toW.

The heuristic max-regret proceeds as follows. Set
WC D W� D T D ;: While V ¤ WC do the fol-
lowing: For each i 2 V n WC, compute two lightest
arcs (i,j) and (i,k) that are feasible additions to T, and
compute the difference �Ci D jwi j � wikj; for each
i 2 V n W�, compute two lightest arcs (j,i) and (k,i)
that are feasible additions to T, and compute the differ-
ence ��i D jwji � wki j. Compute i0 2 V n WC with
maximum �Ci 0 and i00 2 V nW� with maximum ��i 00 .
If �Ci 0 � ��i 00 choose the lightest arc (i0; j0), which is
a feasible addition to T and add (i0; j0) to M, i0 to W+

and j0 toW�:Otherwise, choose the lightest arc ( j00; i00),
which is a feasible addition to T and add ( j00; i00) to M,
i00 toW� and j00 toWC:

Notice that in max-regret-fc, if jV nWj D 1 we set
�i D 0. A similar remark applies to max-regret.

Theorem 11 The domination number of both max-
regret-fc and max-regret equals 1 for each n � 2:

Upper Bounds for Domination Numbers
of ATSP Heuristics

It is realistic to assume that any ATSP algorithm spends
at least one unit of time on every arc of K�n that it con-
siders. We use this assumption in this subsection.

Theorem 12 [17] LetA be an ATSP heuristic of run-
ning time t(n). Then the domination number ofA does
not exceedmax1�n0�n(t(n)/n0)n

0 .

Corollary 13 [17] LetA be an ATSP heuristic of com-
plexity t(n). Then the domination number of A does
not exceed maxfet(n)/e; (t(n)/n)ng, where e is the basis
of natural logarithms.

The next assertion follows directly from the proof of
Corollary 13.

Corollary 14 [17] LetA be an ATSP heuristic of com-
plexity t(n). For t(n) � en, the domination number of
A does not exceed (t(n)/n)n :

We finish this subsection with a result from [17] that
improves (and somewhat clarifies) Theorem 20 in [29].

Theorem 15 Unless P = NP, there is no polynomial
time ATSP algorithm of domination number at least
(n � 1)! � bn � n˛c! for any constant ˛ < 1.

Multidimensional Assignment Problem (MAP)

In case of s dimensions, MAP is abbreviated by s-AP
and defined as follows. Let X1 D X2 D � � � D Xs D

f1; 2; : : : ; ng. We will consider only vectors that belong
to the Cartesian product X D X1 � X2 � � � � � Xs . Each
vector e is assigned a weight w(e). For a vector e, ej de-
notes its jth coordinate, i. e., e j 2 Xj: A partial assign-
ment is a collection e1; e2; : : : ; et of t � n vectors such
that eij ¤ ekj for each i ¤ k and j 2 f1; 2; : : : ; sg: An
assignment is a partial assignment with n vectors. The
weight of a partial assignment A D fe1; e2; : : : ; etg is
w(A) D

Pt
iD1 w(ei): The objective is to find an assign-

ment of minimum weight. Notice that s-AP has (n!)s�1

solutions (assignments).
s-AP can be considered as the (X;F ;ZC)-opti-

mization problem. (F consists of partial assignments
including the empty one.) This allows us to define the
greedy algorithm for s-AP and to conclude from Theo-
rem 6 that the greedy algorithm is of domination num-
ber 1 (for every fixed s � 3).
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In the subsection Traveling Salesman Problem, we
considered the max-regret-fc and max-regret heuristics.
In fact, max-regret was first introduced for 3-AP by
Balas and Saltzman [4]. (See [15] for detailed descrip-
tion of the s-AP max-regret-fc and max-regret heuris-
tics for each s � 2.) In computational experiments,
Balas and Saltzman [4] compared the greedy algorithm
with max-regret and concluded that max-regret is su-
perior to the greedy algorithm with respect to the qual-
ity of solutions. However, after conducting wider com-
putational experiments, Robertson [30] came to a dif-
ferent conclusion: the greedy algorithm and max-regret
are of similar quality for 3-AP. Gutin, Goldengorin and
Huang [15] share the conclusion of Robertson: both
max-regret and max-regret-fc are of domination num-
ber 1 (similarly to the greedy algorithm) for s-AP for
each s � 3. Moreover, there exists a family of s-AP
instances for which all three heuristics will find the
unique worst assignment [15] (for each s � 3).

Similarly to TSP, we may obtain MAP heuristics
of factorial domination number if we consider better-
than-average heuristics. This follows from the next the-
orem:

Theorem 16 [15] Let H be a heuristic that for each
instance of s-AP constructs an assignment of weight at
most the average weight of an assignment. Then the
domination number ofH is at least ((n � 1)!)s�1:

Balas and Saltzman [4] introduced a 3-Opt heuristic
for 3-AP which is similar to the 3-Opt TSP heuristic.
The 3-Opt neighborhood of an assignment A D fe1;
e2; : : : ; eng is the set of all assignments that can be
obtained from A by replacing a triple of vectors with
another triple of vectors. The 3-Opt is a local search
heuristic that uses the 3-Opt neighborhood. It is proved
in [15] that an assignment, that is the best in its 3-Opt
neighborhood, is at least as good as the average assign-
ment. This implies that 3-Opt is of domination number
at least ((n�1)!)2:We cannot guarantee that 3-Opt local
search will stop after polynomial number of iterations.
Moreover, 3-Opt is only for 3-AP. Thus, the following
heuristic introduced and studied in [15] is of interest.

Recursive Opt Matching (ROM) proceeds as fol-
lows. Compute a new weight w̄(i; j) D w(Xi j)/ns�2,
where Xij is the set of all vectors with last two coordi-
nates equal i and j, respectively. Solving the 2-AP with
the new weights to optimality, find an optimal assign-

ment f(i; 
s(i)) : i D 1; 2; : : : ; ng, where 
 s is a per-
mutation on Xs. While s ¤ 1, introduce (s-1)-AP
with weights given as follows: w0( f i) D w( f i ; 
s(i))
for each vector f i 2 X0, where X0n D X1 � X2 �

� � � � Xs�1, with last coordinate equal i and apply
ROM recursively. As a result we have obtained per-
mutations 
s ; 
s�1; : : : ; 
2. The output is the assign-
ment f(i; 
2(i); : : : ; 
s(
s�1(: : : (
2(i))) : : : )) : i D 1;
2; : : : ; ng.

Clearly, ROM is of running time O(n3) for every
fixed s � 3: Using Theorem 16, it is proved in [15] that
ROM is of domination number at least ((n � 1)!)s�1:

Minimum Partition
andMultiprocessor Scheduling Problems

In this subsection, N always denotes the set
f1; 2; : : : ; ng and each i 2 N is assigned a positive inte-
gral weight �(i).A D (A1;A2; : : : ;Ap) is a p-partition
of N if each Ai � N , Ai \ Aj D ; for each i ¤ j and
the union of all sets in A equals N. For a subset A of
N, �(A) D

P
i2A �(i). The Minimum Multiprocessor

Scheduling Problem (MMS) [3] can be stated as follows.
We are given a triple (N; �; p), where p is an integer,
p � 2: We are required to find a p-partition C of
N that minimizes �(A) D max1�i�p �(Ai ) over all
p-partitionsA D (A1;A2; : : : ;Ap) of N.

Clearly, if p � n, then MMS becomes trivial. Thus,
in what follows, p < n: The size s of MMS is 
(n CPn

iD1 log �(i)): Consider the following heuristicH for
MMS. If s � pn , then we simply solve the problem op-
timally. This takes O(s2) time, as there are at most O(s)
solutions, and each one can be evaluated and compared
to the current best in O(s) time. If s < pn , then we
sort the elements of the sequence �(1); �(2); : : : ; �(n).
For simplicity of notation, assume that �(1) � �(2) �
� � � � �(n). Compute r D dlog n/ log pe and solve
MMS for (f1; 2; : : : ; rg; �; p) to optimality. Suppose we
have obtained a p-partitionA of f1; 2; : : : ; rg. Now for
i from r+1 to n add i to the set Aj of the current p-
partition A with smallest �(Aj): The following result
was proved by Gutin, Jensen and Yeo [16].

Theorem 17 The heuristicH runs in time O(s2 log s)
and lims!1 domr(H ; s) D 1:

The Minimum Partition Problem (MP) is MMS with
p=2. Alon, Gutin and Krivelevich [2] proved Theo-
rem 17 for MP with s replaced by n.
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Max Cut Problem

The Max Cut (MC) is the following problem: given
a weighted graph G=(V,E), find a bipartition (a cut)
(X,Y) of V such that the sum of weights of the edges
with one end vertex in X and the other in Y , called the
weight of the cut (X,Y), is maximum. For this problem,
there are some better-than-average heuristics. The sim-
plest is probably the following greedy-like heuristic C;
order the vertices arbitrarily and put each vertex in its
turn either in X or in Y in order to maximize in each
step the total weight of crossing edges.

Using an advanced probabilistic approach Alon,
Gutin and Krivelevich [2] proved that the heuristic C
is of domination ratio larger than 0.025. For the un-
weighted MC (all weights are equal), a better quality
algorithm can be designed as described in [2]. Its dom-
ination ratio is at least 1/3 � o(1):

Constraint Satisfaction Problems

Let r be a fixed positive integer, and let F D f f1;
f2; : : : ; fmg be a collection of Boolean functions, each
involving at most r of the n variables, and each hav-
ing a positive weight w( fi). The Max-r-Constraint Sat-
isfaction Problem (orMax-r-CSP, for short), is the prob-
lem of finding a truth assignment to the variables so as
to maximize the total weight of the functions satisfied.
Note that this includes, as a special case, the Max Cut
problem. Another interesting special case is the Max-r-
SAT problem, in which each of the Boolean functions
f i is a clause of at most r literals.

Alon, Gutin and Krivelevich [2] proved the follow-
ing:

Theorem 18 For each fixed integer r � 1 there ex-
ists a linear time algorithm for the Max-r-CSP problem,
whose domination ratio exceeds 1

24/3�26r .

Vertex Cover, Independent Set
and Clique Problems

A clique in a graph G is a set of vertices in G such
that every pair of vertices in the set are connected by
an edge. The Maximum Clique Problem (MCl) is the
problem of finding a clique of maximum cardinality in
a graph. A vertex cover in a graph G is a set S of ver-
tices in G such that every edge is incident to a vertex
in S. TheMinimumVertex Cover Problem (MVC) is the

problem of finding aminimum cardinality vertex cover.
An independent set in a graph is a set S of vertices such
that no edge joins two vertices in S. The Maximum In-
dependent Set Problem (MIS) is the problem of finding
a minimum cardinality independent set in a graph. It is
easy to see that the number of cliques and independent
sets in a graph depends on its structure, and not only
on the number of vertices. The same holds for vertex
covers.

Notice that if C is a vertex cover of a graph G, then
V (G)nC is an independent set inG; ifQ is a clique inG,
then Q is an independent set in the complement of G.
These well-known facts imply that if there is a heuristic
for one of the problem of domination ratio at least r(n),
all other problems admit a heuristic of domination ratio
at least r(n).

MCl, MIS and MVC are somewhat different from
the previous problems we have considered. Firstly, the
number of feasible solutions, for an input of size n, de-
pends on the actual input, and not just its size. The sec-
ond difference is that the three problems do not admit
polynomial-time heuristics of domination ratio at least
1/p(n) for any polynomial p(n) in n unless P=NP. This
was proved by Gutin, Vainshtein and Yeo [19].

Because of the first difference, it is better to compare
heuristics for the problems using the blackball number
rather than domination number. Since a heuristic for
MVC can be easy transformed into a heuristic for the
other two problems, we restrict ourselves only to MVC
heuristics.

The incremental deletion heuristic starts with an ar-
bitrary permutation 
 of vertices of G and an initial so-
lution S=V(G). We consider each vertex of G in turn
(according to 
), deleting it from S if the resulting sub-
set remains a (feasible) solution. A seemingly better
heuristic for MVC is obtained by ordering the vertices
by degree (lower degrees first), and then applying the
incremental deletion heuristic. We call it the increasing-
degree deletion heuristic. The well-known maximal
matching heuristic constructs a maximal matching M
and outputs both end-vertices of all edges inM as a so-
lution. Berend, Skiena and Twitto [10] proved that the
incremental deletion heuristic (increasing-degree dele-
tion heuristic, maximal matching heuristic) is of black-
ball number 2n�1 � n (of blackball number larger than
2 � �)n for each � > 0, of blackball number approxi-
mately 1:839n). Clearly, the maximal matching heuris-



Domination Analysis in Combinatorial Optimization D 801

tic is the best among the three heuristics from the DA
point of view.

Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) can be for-
mulated as follows. We are given two n � n matrices
A D [ai j] and B D [bi j] of integers. Our aim is to
find a permutation 
 of f1; 2; : : : ; ng that minimizes the
sum

nX
iD1

nX
jD1

ai jb�(i)�( j) :

Gutin and Yeo [23] described a better-than-average
heuristic for QAP and proved that the heuristic is of
domination number at least n!/ˇn for each ˇ > 1.
Moreover, the domination number of the heuristic is
at least (n � 2)! for every prime power n. These results
were obtained using a group-theoretical approach.

See also

� Traveling Salesman Problem
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Abstract

Duality gaps in optimization problems arise because of
the nonconvexities involved in the objective function or
constraints. The Lagrangian dual of a nonconvex opti-
mization problem can also be viewed as a two-person
zero-sum game. From this viewpoint, the occurrence of
duality gaps originates from the order in which the two
players select their strategies. Therefore, duality theory
can be analyzed as a zero-sum game where the order of
play generates an asymmetry. One can conjecture that

this asymmetry can be eliminated by allowing one of
the players to select strategies from a larger space than
that of the finite-dimensional Euclidean space. Once
the asymmetry is removed, then there is zero duality
gap. The aim of this article is to review two methods by
which this process can be carried out. The first is based
on randomization of the primal problem. The second
extends the space from which the dual variables can be
selected. Duality gaps are important in mathematical
programming and some of the results reviewed here are
more than 50 years old, but only recently methods have
been discovered to take advantage of them. The theory
is elegant and helps appreciate the game-theoretic ori-
gins of the dual problem and the role of Lagrange mul-
tipliers.

Background

We discuss how duality gaps arise, and how they can
be eliminated in nonconvex optimization problems.
A standard optimization problem is stated as follows:

min f (x) ;

g(x) � 0 ;

x 2 X ;

(1)

where f : Rn ! R and g : Rn ! Rm are assumed to be
smooth and nonconvex. The feasible region of (1) is de-
noted byF , and it is assumed to be nonempty and com-
pact. X is some compact convex set.

In order to understand the origins of duality in
mathematical programming, consider devising a strat-
egy to determine whether a point, say y, is the glob-
ally optimal solution of (1). Such a strategy can be con-
cocted as follows: if f (y) is the global solution of (1) then
the following system of inequalities

f (x) < f (y) ;
g(x) � 0 ;

x 2 X

(2)

will not have a solution. We can reformulate (2) in
a slightly more convenient framework. Indeed, suppose
that there exist m positive scalars �i, i D 1; : : : ;m,
such that

L(x; �) D f (x)C
mX
iD1

�i gi (x) < f (y) (3)
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has no solution. Then (2) does not have a solution ei-
ther. The left-hand side of (3) is called the Lagrangian
function associated with (1). It is clear from the discus-
sion above that the Lagrangian can be used to answer
questions about the optimal solutions of (1). The use-
fulness of the dual function emanates from the follow-
ing duality observation: Let f � be the optimal objective
function value of (1), and let L : Rm ! R be defined as
follows:

L(�) D inf
x2X

L(x; �) :

Then it is easy to prove that:

sup
	�0

L(�) � f � : (4)

This result is known as the weak duality theorem, and
it is valid with a quite general set of assumptions. The
strong duality theorem asserts that if f and g are convex,
f � > �1, and the interior ofF is not empty, then

sup
	�0

L(�) D f � :

Proofs of the weak and strong duality theorems can be
found in [1,10].

Game Theory Interpretation

There is an interesting relationship between (1) and the
following optimization problem:

sup
	�0

inf
x2X

f (x)C
mX
iD1

�i gi (x) : (5)

We refer to (1) as the primal problem, while (5) is re-
ferred to as the Lagrangian dual. The �’s that appear
in (5) are called the Lagrange multipliers (or dual vari-
ables).

It is interesting to note that (1) can equivalently be
restated as follows:

inf
x2X

sup
	�0

f (x)C
mX
iD1

�i gi (x) : (6)

The relationship between (6) (or (1)) and (5) can be an-
alyzed as a two-person zero-sum game. In this game
player A chooses the x variables, and player B chooses

the � variables. If player A chooses x0, and player B
chooses �0, then player A pays L(x0,�0) to player B. Nat-
urally, player A wishes to minimize this quantity, while
player B attempts to maximize it.

In game theory equilibria play an important role.
An equilibrium, in the present context means a point
from which no player will gain by a unilateral change
of strategy. For the game outlined above an equilibrium
point (x�; ��) must satisfy

L(x; ��) � L(x�; ��)

� L(x�; �) 8x 2 X; 8� 2 Rm
C : (7)

A point satisfying the preceding equation is also known
as a saddle point of L. To see that (7) is an equilibrium
point we argue as follows: Given that player A wishes to
minimize the amount paid to player B, then it is obvious
that if player B chooses �� and player A selects anything
other than x�, player A will be worse off. Similarly, if
player A chooses x�, then if player B chooses anything
other than ��, then player B will be worse off.

By the strong duality theorem, we know that the
game has an equilibrium point under convexity as-
sumptions. For the general case, insight can be obtained
by interpreting (5) and (6) as two different games.
A saddle point will exist if the optimal values of the two
games are equal.

Our next task is to interpret (5) and (6) as games. In-
deed consider the following situation: Player A chooses
a strategy first, and then player B chooses a strat-
egy. Thus, player B already knows the strategy that
player A has chosen. As a result player B will have an
advantage. Player A will argue as follows: “If I choose
x, then player B will choose sup	�0 L(x; �), therefore
I had better choose the strategy that will minimize my
losses.” In other words player A will choose the optimal
strategy given by solving (6).

Now consider the same game, but with the order of
play reversed, i. e., player B chooses first, and player A
second. Then applying the rules of rational behavior
(as above), we see that player B will select the � that
solves (5).

Consequently, duality gaps originate from the order
in which the two players select their strategies. In the
next section we see how this asymmetry can be elimi-
nated by allowing one of the players to select strategies
from a larger space than that of the finite-dimensional
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Euclidean space. Once the asymmetry is eliminated,
then there is zero duality gap.

Methods

As argued above, the player that chooses first is dis-
advantaged, since the other player can adjust. In this
section we discuss two methods in which this asymme-
try in the order of play can be eliminated. Both meth-
ods were proposed early in the history of mathemat-
ical programming. The first method proceeds by ran-
domization (increasing the powers of player A). It is
difficult to say who suggested this strategy first. Since
the origins of the idea emanate from mixed strategies
in game theory, one could argue that the idea was first
suggested by Borel in the 1920s [14]. A modern proof
can be found in [2]. The second method allows player
B to select the dual variables from a larger space. This
idea seems to have been suggested by Everett [3], and
then by Gould [6]. A review can be found in [11]. Algo-
rithms that attempt to reduce the duality gap appeared
in [4,5,7,8,9,12].

Randomization

Assume that player A chooses first, then the game can
be described by

P� D inf
x2X

sup
	�0

L(x; �) ;

and in general by

P� � D� D sup
	�0

inf
x2X

L(x; �) :

Player A has a handicap since player B will choose
a strategy knowing what player A will do. In order to
avoid having a duality gap, we consider giving more
flexibility to player A. We thus allow player A to choose
strategies fromM(X), whereM(X) denotes the space
of probability measures on B (the �-field generated
by X). Player A will therefore choose a strategy by solv-
ing

P� D inf

2M(X)

Z
X
f (x)d�(x)

Z
X
g(x)d�(x) � 0

Z
X
d�(x) D 1 :

(8)

Equivalently:

P� D inf

2M(X)

sup
	�0

Z
X
f (x)d�(x)

C

mX
iD1

�i

Z
X
g(x)d�(x)C �0

�Z
X
d�(x) � 1

�
:

The dual of (8) is given by

D� D sup
	�0

inf

2M(X)

Z
X
f (x)d�(x)

C

mX
iD1

�i

Z
X
g(x)d�(x)C �0

�Z
X
d�(x) � 1

�
:

Then it can be shown that P� D D�. The proof is be-
yond the scope of this article; it can be found in [2].

Functional LagrangeMultipliers

We now consider the case where player B chooses first.
From the previous section, it follows that player B will
choose a strategy according to:

D� D sup
	�0

inf
x2X

L(x; �) : (9)

We have already pointed out that the following holds:

D� � inf
x2X

sup
	�0

L(x; �) :

In order for the preceding equation to hold as an equal-
ity, without any convexity assumptions, we consider in-
creasing the space of available strategies of B. This was
suggested in [3,6]. The exposition here is based on [11].
LetH denote all the feasible right-hand sides for (1):

H D fb 2 Rm j 9x 2 X : g(x) � bg :

LetD denote the following set of functions:

D D fz : Rm ! R j z(d1) � z(d2); if d1 � d2;

8d1; d2 2H g :

The following dual can be defined using the concepts
above:

D� D sup
z

z(0)

z(g(x)) � f (x) 8x 2 X z 2 D :
(10)

The dual in (10) is different from the type of duals that
we have been discussing in this article. If, however, we
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assume that c CD � D, then it was shown in [11] that
(10) is equivalent to the following:

D� D sup
z2D

inf
x2X

f (x)C z(g(x))

dual problem. A proof that the duality gap between (10)
and (1) is zero can be found in [11].

Conclusions

We have discussed Lagrangian duality, and the exis-
tence of duality gaps from a game-theoretic viewpoint.
We have discussed two ways in which duality gaps can
be eliminated. The first is randomization and the sec-
ond is the use of functional Lagrange multipliers. Un-
fortunately none of the two methods are immediately
applicable to real-world problems. However, for certain
classes of problems the functional Lagrange multiplier
approach can be useful. It was shown in [13] that if the
original problem involves the optimization of polyno-
mial functions, and if the Lagrange multipliers are al-
lowed to be themselves polynomials then there will be
no duality gap. Unlike the general case discussed in this
article, polynomial Lagrange multipliers can be manip-
ulated numerically. This approach can potentially help
develop efficient algorithms for a large class of prob-
lems.
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Consider the following optimal control problem with
first order ordinary or partial differential equations:

(P) min J(x; u) D
Z
˝

r(t; x(t); u(t)) dt

subject to functions (x, u) 2W1;n
p (˝) × L�p (˝), fulfill-

ing
� the state equations

xi
t˛ (t) D gi˛(t; x(t); u(t)) a.e. on˝;

(˛ D 1; : : : ;m; i D 1; : : : ; n);

� the control restrictions

u(t) 2 U � R� a.e. on˝ ;

� the state constraints

x(t) 2 G(t) � Rn on˝;

� and the boundary conditions

x(s) D '(s) on @˝:

The data of problem (P) satisfies the following hypoth-
esis:
H1) For m = 1 we have 1 � p �1, for m � 2 we have

m < p <1.
H2) The sets˝ and

X :D f(t; �) 2 Rm �Rn : t 2 ˝; � 2 G(t)g

are strongly Lipschitz domains in the sense of C.B.
Morrey and S. Hildebrandt [6]; the set U is closed.

H3) The functions r, r� , g i˛ , (g i˛)� , ' are continuous
with respect to all arguments.

H4) The set of all admissible pairs (x, u), denoted by Z,
is nonempty.

The characterization of optimal solutions of special
variational problems by dual or complementary prob-
lems has been well known in physics for a long time,
e. g.,
� in elasticity theory, the principle of the minimum of

potential energy (Dirichlet’s principle) and the prin-
ciple of tension (Castigliano’s principle) are dual or
complementary to each other.

� in the theory of electrostatic fields, the principle of
the minimum of potential energy and the Thomson
(Lord Kelvin) principle are dual problems.

A first systematic approach to duality for special
problems in calculus of variations was given by K.
Friedrichs ([4], 1928). In the 1950s and 1960s, this con-
cept was extended by W. Fenchel [3], J.-J. Moreau, R.T.
Rockafellar [19,20] and I. Ekeland and R. Temam [2] to
larger classes of variational and control problems. Bas-
ing on Legendre transformation (or Fenchel conjuga-
tion), it was proved to be a suitable tool to handle con-
vex problems.

Nonconvex problems (P) require an extended con-
cept of duality. The construction of R. Klötzler, given
in 1977 [7], can be regarded as a further development
of Hamilton–Jacobi field theory.

Construction of a Dual Problem

In a very general setting, a problem (D) of maximiza-
tion of an (extended real-valued) functional L over an
arbitrary set S 6D ; is said to be a dual problem to (P) if
the weak duality relation

sup (D) � inf (P)

is satisfied.
The different notions of duality given in the intro-

duction can be embedded into the following construc-
tion scheme:

1 The set of admissible pairs (x; u) = z 2 Z is
represented by the intersection of two suitable
nonempty sets Z0 and Z1.

2 For an (extended real-valued) functional
˚ : Z0�

S0 ! R the equivalence relation

inf
z2Z

J(z) = inf
z2Z0

sup
S2S0

˚(z; S),

holds.
3 Assuming L0(S) := inf

z2Z0
˚(z; S), each problem

(D)
�
max L(S)
s.t. S 2 S1 � S0

is a (weak) dual problem to (P) if L(S) � L0(S)
for all S 2 S1.
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The proof of the weak duality relation results from the
well-known inequality

inf
z2Z0

sup
S2S0

˚(z; S) � sup
S2S0

inf
z2Z0

˚(z; S):

Fenchel–Rockafellar Duality

In accordance with [2], we transform (P) into a general
variational problem:

(V)

8<
:
min

Z
˝

l(t; x(t); xt˛(t)) dt

s.t. x 2 X

where l : Rn �Rn �Rnm ! R is given by

l(t; �;w) :D

8̂
ˆ̂̂<
ˆ̂̂̂
:

inffr(t; �; v) :
v 2 U with
w D g(t; �; v)g; (t; �) 2 X;
1 else:

andX = {x 2W1;n
p (˝) : x(s) = '(s) on @˝}.

Then (P) is called convex if (V) is convex in the sense
of [2, p. 113]. In this case both problems are equivalent
[15]. The Fenchel-dual problem is obtained by the fol-
lowing settings in the above construction scheme:
1) Z0 D fz D (x; u) 2 W1;n

p (˝) � L1;�p (˝) :

u(t) 2 U a.e. on˝;

x(t) 2 G(t) on˝;

x(s) D '(s) on @˝g;

Z1 D fz D (x; u) 2 W1;n
p (˝) � L1;�p (˝) :

xi
t˛ (t) D gi˛(t; x(t); u(t)) a.e. on˝;

˛ D 1; : : : ;m; i D 1; : : : ; ng:

2) S0 = Ln(1Cm)
q (˝) (p�1 + q�1 = 1), ˚ is the classical

Lagrange functional,

˚(z; S) D J(z)C
X
i;˛

˝
xi
t˛ � g(�; x; u); y˛i

˛
;

where h�, �i is the bilinear canonical pairing over Lp
(˝)× L�p (˝), [15]. By use of theHamiltonian of (P),

H : R1 �Rn �Rnm ! R;

H (t; �; �) D sup fH(t; �; v; �) : v 2 Ug

with

H(t; �; v; �) D �r(t; �; v)C
X
i;˛

�˛i g
i
˛(t; �; v)

it can be formulated as follows [15]:

(DR)q

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max"
�

Z
˝

 
sup
�2G(t)

[H (t; �;�y(t))

� y0(t)>�]
�

dt

� sup
�2X

�Z
˝

�
y0(t)>�(t)

C
X
i;˛

y˛i (t)�
i
t˛ (t)

1
A dt

3
5
3
5

s.t. (y0; y) 2 Ln(1Cm)
q (˝):

Duality in the Sense of Klötzler

The duality in the sense of Klötzler is realized by the fol-
lowing settings in the general construction scheme [14]:
1) Z0 and Z1 are chosen as before.
2) S0 D W1;n

q (X), and ˚ is an extended Lagrange
functional,

˚(z; S) D J(z)

C
X
i;˛

xi
t˛ � gi˛(�; x; u); S

i
�˛
(�; x);

where h�, �i is again the bilinear canonical pairing
over Lp (˝) × L�p(˝).
By use of Gauss’ theorem, the dual problem reads as

follows [8]:

(DK)q

8<
:
max

Z
@˝

S(s; �(s))n(s) do(s)

s.t. S 2 S1;

where

S1 :D

8<
:S 2 S0 :

Pm
˛D 1 S

˛
t˛ (t; �)

CH (t; �; S(t; �)) � 0
a.e. on X

9=
; ;

n(�) is the exterior unit normal vector to @˝ .
In this way we can characterize minimizers of (P)

in terms of solutions of the Hamilton–Jacobi inequality
or of the Hamilton–Jacobi equation. Since classical so-
lutions of the latter equation may fail to exist, on the
one hand techniques were developed to construct gen-
eralized solutions of this equation (viscosity solutions
[11], generalized solutions involving the Clarke gener-
alized gradient [1] or lower Dini derivatives [24]). On
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the other hand, optimization techniques for paramet-
ric problems in finite-dimensional spaces are used to
minimize the defect in the Hamilton–Jacobi inequal-
ity and to get sufficient conditions for (local) optimality
[16,17,27,28,29].

Bidual Problems, Generalized Flows, Relaxed
Controls

Duality allows to associate the bidual problem with
a flow problem or a relaxed control problem. (DK)q, in-
terpreted as an infinite linear programming problem,
[13], has a dual problem again, which can be identified
as a generalized flow problem in the sense of L.C. Young
[26]: Assuming compactness of the control set U, one
obtains the bidual problem (DK)�q = (F):

(F)

8<
:
min

Z
D
r(t; �; v) d�(t; �; v)

s.t. � 2 ND;

with

ND :D
�
� 2 RD :

Z
@˝

X
˛

 ˛(s; �(s))n˛(s) do(s)

D

Z
D

0
@ ˛t˛ (t; �)C

X
i;˛

 ˛�i (t; �)g
i
˛(t; �; v)

1
A

d�(t; �; v); 8 2 C1;m(X)
	
;

where RD is the set of all nonnegative Radon measures
on D :D X � U . ND contains special measures

d�(t; �; v) D dıx(t) d�t(v) dt;

with � = {�t :t 2 ˝} 2MU , MU is a regular family of
probability measures, concentrated onU, [5], and ı� are
Dirac measures concentrated on the point � 2 G(t).

Thus the relaxed control problem

(P)

8<
:
min

Z
˝

Z
U
r(t; x(t); v) d�t(v) dt

s.t. (x; �) 2 W1;n
p (˝) �MU ;

satisfying x(t) 2 G(t) and fulfilling the following varia-
tional equation for all  2 C1;m(X),

Z
@˝

X
˛

 ˛(s; �(s))n˛(s) do(s)

D

Z
˝

"X
˛

 ˛t˛ (t; x(t))

C
X
i;˛

 ˛�i (t; x(t))
Z
U
gi˛(t; x(t); v) d�t(v)

3
5 dt

has the embedding (F), and

sup (DK)1 D inf (F) � inf (P)

holds, [13].

Strong Duality Results

The property of strong duality between (P) and (D) is
defined by the equation

sup (D) D inf (P);

and this common value is called settle-value of ˚ .

Case A

Control problems with single integrals and ordinary
differential equations, ˝ = [0, T].

For convex problems (P),

sup (DR)q D min (P)

holds, [2]. Moreover, in (DR)q the optimal solution (y�0 ,
y�) exists and fulfills

y� 2 W1;n
p (˝)

and

d
dt

y�(t) D y�0 (t) a.e. on (0; T);

[15]. Both dual problems, (DR)q and (DK)q, coincide, if
in (DK)q a linear setting

S(t; �) D a(t)C �>y(t)

is chosen, [14].
For nonconvex control problems with compact U is

was shown by different techniques, that (P) as well as
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(P) possess a same dual problem, [12,22,23], and strong
duality

sup (DK)1 D min (P)

holds. The variational equation appearing in (P) is in
this case equivalent to the generalized state equations

d
dt

xi (t) D
Z
U
gi (t; x(t); v) d�t(v) a.e. on (0; T)

with the boundary conditions

x(s) D '(s) for s D 0; s D T:

The question of existence of a solution of the dual prob-
lem (DK)1 was discussed in [21].

Case B

Control problems with multiple integrals and first or-
der partial differential equations.

As before, for convex problems

sup (DR)q D min (P)

holds. The equivalence of (DR)q and (DK)q is lost in
general. Results concerning strong duality between (D)
and (P) in the nonconvex case are largely missing.

Sufficient Optimality Conditions

First- and second order sufficient optimality conditions
for global minimizers can be derived by means of du-
ality. In the general concept, (x�, u�) 2 Z is a global
minimizer of (P) if

J(x�; u�) D inf
z2Z0

sup
S2S0

˚(z; S)

D max
S2S0

inf
z2Z0

˚(z; S)

and it exists an S� 2 S1 with

L0(S�) D max
S2S1

L(S) D max
S2S0

L0(S):

Following the concept of Klötzler, these equations are
satisfied if and only if for S� 2 W1;n

1 (X) the following
conditions are fulfilled:
a) the Hamilton–Jacobi inequality

�(t; �) :D
X
˛

S�˛t˛ (t; �)

CH (t; �; S�� (t; �)) � 0 on X;

b) the Hamilton–Jacobi equation
X
˛

S�˛t˛ (t; x
�(t))

CH (t; x�(t); S�� (t; x
�(t))) D 0 on˝;

c) themaximum condition

H (t; x�(t); S�� (t; x
�(t)))

DH (t; x�(t); u�(t); S�� (t; x
�(t))) a.e. on˝:

From conditions a) and b) follows that x�(t) must
be a global minimizer of the parametric optimization
problem

(P)t

8<
:
max �(t; �)

s.t. � 2 G(t)

with parameter t 2 ˝ . For this last problem (P)t first-
and second order sufficient optimality conditions can
be derived with the quadratic setting

S�˛ (t; �) D a˛(t)C y˛>(t)(� � x(t))

C
1
2
(� � x�(t))Q˛(t)(� � x�(t))

in the dual problem (DK)1, where y˛ 2W1;n
1 (˝) and

Q˛ 2W1;nn
1 (˝) symmetric.

The ideas, mentioned above, can be used for identi-
fying strong local minimizers of (P) too. In this case X is
to be replaced by

X" D X

\
˚
(t; �) 2 RnC1 : k� � x(t)k < "; t 2 ˝

�
;

[16,17,27,28,29]. The second order condition for (P)t
yields a definiteness condition for a Riccati-type expres-
sion which generalizes the known theory of conjugated
points in the calculus of variations in one independent
variable.

Duality andMaximum Principle

Case A

Control problems with single integrals, ˝ = [0, T]. For
convex problems (P) it can be shown that the Pontrya-
gin maximum principle is not only a necessary but also
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a sufficient optimality condition. In this case the canon-
ical variables in the Maximum principle solve at the
same time the dual problem (DK)1, [15].

Case B

Control problems with multiple integrals, ˝ � Rm,
m � 2. For convex problems (P) or relaxed problems
(P) a maximum principle was proved in the beginning
of the 1990s, [10,18,25]. It turns out, that the canon-
ical variables in this principle are not necessarily func-
tions but contents ormeasures from L�1 (˝) orC� (˝).
A corresponding duality theory with dual variables in
these measure spaces was developed by Klötzler [9] and
strong duality was shown. As before, in the convex case
the canonical variables of the maximum principle solve
the dual problem.
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Synonyms

SDP duality

Basic Properties

Consider the primal semidefinite program

SDP �� :D

8̂
<̂
ˆ̂:

min C � X
s.t. AX D b

X � 0;

whereC �X = traceCX denotes the inner product of the
symmetric matrices C, X; X � Y denotes that the sym-
metric matrix X � Y is positive semidefinite; and A: Sn

! Rm is a linear operator on the space of symmetric
matrices, with adjoint A�. Equivalently, the linear con-
straint can be written using symmetric matrices Ai, i =
1, . . . ,m, as

Ai � X D bi for all i D 1; : : : ;m;

while the adjoint operation on y 2 Rm is

A�y :D
mX
iD1

yiAi :

The Lagrangian function is

L(X; y) :D C � X C y>(b �AX):

The primal problem is equivalent to

�� D min
X�0

max
y
L(X; y) D C � X C y>(b �AX):

The equivalence can be seen by using the hidden con-
straint in the outer minimization problem b�A X = 0,
i. e. if this constraint does not hold then the inner max-
imum value is +1.

By interchanging the maximum and minimum and
rewriting the order of terms in the Lagrangian, we get
the dual problem and weak duality:

�� � �� :D max
y

min
X�0

b>yC (C �A�y) � X:

Using the hidden constraint in the outer maximization
problem C �A�y � 0, this becomes equivalent to

(D) �� D

(
max b>y
s.t. A�y � C:

The dual pair SDP and (D) look very much like
a dual pair of linear programs (denoted LP) where the
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adjoint operator replaces the transpose and positive
semidefiniteness of matrix variables replaces nonnega-
tivity of vector variables. In fact, duality theory for SDP
has a lot of similarities with that of LP: weak duality ��

� �� follows from the interchange of maximum and
minimum; from this we get that unboundedness of SDP
(respectively, (D)) implies infeasibility of (D) (respec-
tively, (D)).

Weak duality illustrates one of the powerful uses of
the dual program, i. e. it provides lower bounds on the
optimal value of the primal program.

Other formulations of SDP provide similar duals. In
fact, SDP is a special case of cone programming. Let
K, L be two convex cones, i. e. K (and L) satisfy: the
Minkowski sum K + K � K and ˛ K � K for all ˛ 2
R. Define the primal cone program as

(PC) �� D

8̂
<̂
ˆ̂:

min hC; Xi
s.t. AX �K b

X �L 0;

where X �L Y denotes X � Y 2 L (and similarly for K),
and h�, �i denotes the appropriate inner product. Then
the above min-max argument yields the dual cone pro-
gram

(DC) �� D

8̂
<̂
ˆ̂:

max hb; yi
s.t. A�y �LC C

y �KC 0;

where �+ denotes taking the polar cone.
It is an interesting exercise to see that this elegant

dual formulation works for linear programs that have
mixtures of inequality and equality constraints with
mixtures of free and nonnegative variables.

Strong Duality

However, unlike linear programming, strong duality for
SDP needs a constraint qualification, e. g. strict primal
feasibility (called Slater’s condition),

there exists a bX 
 0 withAbX D b:

This constraint qualification implies strong duality
holds, i. e. that �� = �� and �� is attained. Conversely,

A�y �LC C

also implies that �� = �� but with �� attained. If
Slater’s condition does not hold, then a duality gap�� >
�� can exist, and/or the dual (or primal) optimal value
may not be attained, see e. g. [10].

Example 1 If the dual is

(D) �� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

sup x2

s.t.

0
BB@
x2 0 0
0 x1 x2
0 x2 0

1
CCA �

0
BB@
1 0 0
0 0 0
0 0 0

1
CCA ;

then the primal is

(P) �� D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

inf U11

s.t. U22 D 0

U11 C 2U23 D 1

U � 0

and we have the duality gap

�� D 0 < �� D 1:

If strong duality holds, we get the following primal-dual
characterization of optimality for the dual pair X, y,
with X � 0:
� A X = b (primal feasibility);
� A�y � C (dual feasibility);
� X (A�y � C) = 0 (complementary slackness).
These optimality conditions provide the basis for:
i) the primal simplex method (maintain primal feasi-

bility and complementary slackness while striving
for dual feasibility);

ii) the dual simplex method (maintain dual feasibil-
ity and complementary slackness while striving for
primal feasibility); and

iii) the interior point methods (maintain primal and
dual feasibility while striving for complementary
slackness).

Unlike the LP case, there are currently no efficient al-
gorithms for primal or dual simplex methods for SDP;
however, interior point methods have proven to be very
successful. Thus we see the importance of duality for
both theoretical and algorithmic purposes.
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Strict Complementarity

Another example of the difference between LP and SDP
arises in the complementary slackness conditions. If an
optimal pair X, y exist, then in the LP case there also ex-
ists an optimal pair that satisfies strict complementarity,
i. e.

X C (C �A�y) 
 0;

where in the LP case this is a sum of nonnegative diago-
nal matrices, see [4,5]. However, in the SDP case, there
may not exist such a strict complementary optimal pair,
though the existence is generic, see [8].

Closing the Duality Gap

Both the strict complementarity and strict feasiblity,
or Slater’s constraint qualification, are generic, see [8].
But there are classes of problems where strong duality
fails, e. g. relaxations that arise from hard combinatorial
problems, e. g. [13].

One can regularize semidefinite programs and guar-
antee that Slater’s constraint qualification holds, e. g.
[2,3,12]. This involves finding the minimal face of the
semidefinite cone that contains the feasible set, i. e.
the so-called minimal cone. A numerical procedure for
regularization is presented in [3]. However, this pro-
cess is not computationally tractable. An equivalent ap-
proach is the extended Lagrange–Slater dual program
of M. Ramana [9,10]. This provides a means of writ-
ing down a regularized program that is of polynomial
size. Thus strong duality can be attained theoretically
using the above techniques and exploiting the struc-
ture of specific problems. However, lack of regular-
ity (Slater’s condition) is an indication of an ill-posed
problem. Thus, the question of whether regularization
can be done computationally for general problems is
still an open question, see e. g. [7].

Extensions

The SDPs considered above have all contained lin-
ear objectives and constraints. There is no reason to
restrict SDPs to this special case. Duality for general
cone programs with possible nonlinear objectives and
constraints is considered in [2,3,11]. Applications for
quadratic objectives SDP appear in, e. g., [1,6].
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It is known that in convex optimization, the Lagrangian
associated with a constrained problem is usually a sad-
dle function, which leads to the classical saddle La-
grange duality (i. e. the monoduality) theory. In non-
convex optimization, a so-called superLagrangian was
introduced in [1], which leads to a nice biduality theory
in convex Hamiltonian systems and in the so-called d.c.
programming.

SuperLagrangianDuality

Definition 1 Let L(x, y�) be an arbitrary given real-
valued function on X × Y�.

A function L:X ×Y�!R is said to be a supercritical
function (or a @+-function) on X × Y� if it is concave in
each of its arguments.

A function L: X × Y�! R is said to be a subcritical
function (or a @�-function) on X × Y� if � L is a super-
critical function on X × Y�.

A point (x; y�) is said to be a supercritical point (or
a @+-critical point) of L on X × Y� if

L(x; y�) � L(x; y�) � L(x; y�) (1)

holds for all (x, y�) 2 X × Y�.

A point (x; y�) is said to be a subcritical point (or
a @�-critical point) of L on X × Y� if

L(x; y�) � L(x; y�) � L(x; y�) (2)

holds for all (x, y�) 2 X×Y�.

Clearly, a point (x; y�) is a subcritical point of L on X

× Y� if and only if it is a supercritical point of �L on
X × Y�. A supercritical function L(x, y�) is called the
superLagrangian if it is a Lagrange form associated with
a constrained optimization problem. L(x, y�) is called
the subLagrangian if � L(x, y�) is a superLagrangian.

For example, the quadratic function

L(x; y) D axy �
1
2
bx2 �

1
2
cy2; b; c > 0;

is concave for each x and y, and hence is a supercritical
point function on R × R. But L(x, y) is not concave on
the vector (x, y) since the Hessian matrix of L

D2L(x; y) D
�
�b a
a �c

�

is not necessarily to be negative-definite for any a 2 R
and b, c > 0. L is a subcritical function if b, c < 0. But L
may not be convex on (x, y) for the same reason.

Since L is a subLagrangian if and only if �L is a su-
perLagrangian, here we only consider the duality theory
for the superLagrangian.

Theorem 2 (Supercritical point) Let L(x, y�) be an ar-
bitrary given function, partially Gâteaux differentiable
on an open subset Xa × Y�a � X × Y�. If (x; y�) 2
Xa � Y�a is either a supercritical or subcritical point of
L, then (x; y�) is a critical point of L on Xa × Y�a .

Any critical point of a Gâteaux differentiable superLa-
grangian is a supercritical point. However, if (x; y�) is
a supercritical point of L, it does not follows that L is
a superLagrangian. In the d.c. programming or varia-
tional analysis of convex Hamiltonian systems, the fol-
lowing statements are of important theoretical value.
S1) Under certain necessary and sufficient conditions

we have

inf
x2Xa

sup
y�2Y�a

L(x; y�) D inf
y�2Y�a

sup
x2Xa

L(x; y�): (3)

A statement of this type is called a superminimax
theorem and the pair (x; y�) is called a supermini-
max point of L on Xa × Y�a .
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S2) Under certain conditions, a pair (x; y�) 2 Xa�Y�a
exists such that

L(x; y�) � L(x; y�) � L(x; y�) (4)

holds for all (x, y�) 2 Xa ×Y�a . A statement of this
type is called a supercritical point theorem.

By the fact that the maxima of L(x, y�) can be taken in
either order on Xa × Y�a , the equality

sup
x2Xa

sup
y�2Y�a

L(x; y�) D sup
y�2Y�a

sup
x2Xa

L(x; y�) (5)

always holds. A pair (x; y�) which maximizes L on Xa

× Y�a is called a supermaximum point of L on Xa × Y�a .
For a given superLagrangian L: Xa × Y�a ! R, we let

Xk � Xa and Y�s � Y�a be such that

sup
y�2Y�a

L(x; y�) < C1; 8x 2 Xk ;

sup
x2Xa

L(x; y�) < C1; 8y� 2 Y�s :

Theorem 3 (superLagrangian duality) Let the La-
grangian L: X × Y�! R be an arbitrary given function.
If there exists either a supermaximum point (x; y�) 2
Xa � Y�a such that

L(x; y�) D max
x2Xa

max
y�2Y�a

L(x; y�)

D max
y�2Y�a

max
x2Xa

L(x; y�); (6)

or a superminimax point (x; y�) 2 Xa � Y�a such that

L(x; y�) D min
x2Xa

max
y�2Y�a

L(x; y�)

D min
y�2Y�a

max
x2Xa

L(x; y�); (7)

then (x; y�) is a supercritical point of L on Xa × Y�a .
Conversely, if L is partially Gâteaux differentiable on

an open subset Xa × Y�a � X × Y�, and (x; y�) is a su-
percritical point of L on 2Xa × Y�a , then either the super-
maximum theorem in the form

L(x; y�) D max
x2Xk

max
p2Y�a

L(x; y�)

D max
y�2Y�s

max
x2Xa

L(x; y�); (8)

holds, or the superminimax theorem in the form

L(x; y�) D min
x2Xk

max
y�2Y�a

L(x; y�)

D min
y�2Y�s

max
x2Xa

L(x; y�) (9)

holds.

This superLagrangian duality theorem shows a very im-
portant fact in Hamiltonian systems, i. e. the critical
points of the Lagrangian L either maximize or mini-
maximize L on Xk × Y�s in either order.

Nonconvex Primal and Dual Problems

Let L: Xa × Y�a ! R be an arbitrary given supercritical
function. For any fixed x 2 Xa, let

P(x) D sup
y�2Y�a

L(x; y�): (10)

Clearly, the function P(x) need not be either convex or
concave. LetXk�Xa be the primal feasible set such that
P:Xk! R is finite and Gâteaux differentiable. Then for
a nonconvex function P, two primal problems can be
proposed as:

(Pinf) : P(x)! min; 8u 2 Xk ; (11)

(Psup) : P(x)! max; 8u 2 Xk : (12)

The problems (Pinf) and (Psup) are realisable if the pri-
mal feasible set Xk is not empty.

Dually, for any fixed y� 2 Y�a , let

Pd (y�) D sup
x2Xa

L(x; y�) (13)

with the dual feasible set Y�s � Y�a such that Pd: Y�s ! R
is finite and Gâteaux differentiable. The two nonconvex
dual problems are:

(Pd
inf) : Pd (y�) ! min; 8y� 2 Y�s ; (14)

(Pd
sup) : Pd (y�) ! max; 8y� 2 Y�s : (15)

These two dual problems are realisable if the dual feasi-
ble set Y�s is not empty.

Theorem 4 (Biduality theorem) Let L: Xa × Y�a ! R
be a given arbitrary function such that P and Pd are well-
defined by (10) and (13) on the open subsets Xk and Y�s ,
respectively.
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1) If (x; y�) is a supercritical point of L onXk × Y�s , then
DP(x) D 0, DPd (y�) D 0, and

P(x) D L(x; y�) D Pd (y�): (16)

2) If (x; y�) is a supercritical point of L onXk × Y�s , then
x is a minimizer of P on Xk if and only if y� is a min-
imizer of Pd on Y�s , i. e. the double-min duality

P(x) D inf
x2Xk

P(x), inf
y�2Y�s

Pd (y�) D Pd (y�) (17)

holds.
3) If (x; y�) is a supercritical point of L onXk × Y�s , then

x is a maximizer of P onXk if and only if y� is a max-
imizer of Pd on Y�s , i. e. the double-max duality

P(x) D sup
x2Xk

P(x), sup
y�2Y�s

Pd (y�) D Pd (y�) (18)

holds.

D.C. Programming and Hamiltonian

In d.c. programming, the primal function P: Xk ! R
can be written as

P(x) DW(�x) � F(x);

where �: X! Y is a linear operator, W: Ya ! R and
F: Xa! R are two convex, Gâteaux differentiable real-
valued functions, satisfying the Legendre duality rela-
tions

x� D DF(x), x D DF�(x�)

, hx; x�i D F(x)C F�(x�)

on Xa × X�a , and

y� D DW(y), y D DW�(y�)

, hy; y�i DW(y)CW�(y�)

on Ya × Y�a , where F�: X�a ! R and W�: Y�a ! R are
the Legendre conjugates of F andW, respectively.

In dynamical systems, if � = d/dt is a differential
operator, its adjoint associated with the standard bilin-
ear forms inL2 is�� =� d/dt. IfW denotes the kinetic
energy, F stands for potential energy, then the primal
function P(x) = W(�x)� F(x) is the total action of the
system. The primal feasible set Xk � X, defined by

Xk D fx 2 Xa : �x 2 Yag ;

is called the kinetically admissible space. Clearly, P: Xk

! R is nonconvex.
The Lagrangian form associated with the nonconvex

primal problems is defined by

L(x; y�) D h�x; y�i �W�(y�) � F(x); (19)

which isG âteaux differentiable onXa × Y�a . The critical
condition DL(x; y�) D 0 leads to the Lagrange equa-
tions:

�x D DW�(y�); ��y� D DF(x):

Clearly, L: Xa × Y�a ! R is a supercritical function, and

P(x) D sup
y�2Y�a

L(x; y�); 8x 2 Xk :

Dually, for any given dual feasible y� 2 Y�s ,

Pd (y�) D sup
x2Xa

L(x; y�) D F�(��y�) �W�(y�);

where the dual feasible set Y�s � Y�a is defined by

Y�s D
˚
y� 2 Y�a : ��y� 2 X�a

�
:

The criticality conditions DL(x; y�) D 0, DP(x) D 0
and DPd (y�) D 0 are equivalent to each other.

The Hamiltonian H: Xa × Y�a ! R associated with
the Lagrangian L is defined by

H(x; y�) D h�x; y�i � L(x; y�)

DW�(y�)C F(x) : (20)

For d.c. programming, H(x, y�) is a convex function
on Xa × Y�a . The critical point (x; y

�) of L satisfies the
Hamiltonian canonical form

�x D Dy�H(x; y�); ��y� D DxH(x; y�):

Particularly, if W(� x) = 1/2 h�x, C� xi is
a quadratic function, C: Ya ! Y�a is a symmetric op-
erator such that the composite operator A = �� C � =
A� is selfadjoint, then the total action can be written as

P(x) D
1
2
hx;Axi � F(x):

Let Pc(x) = � Pd(C � x); then the function Pc: Xa! R

Pc (x) D
1
2
hx;Axi � F�(Ax)

is the so-called Clarke dual action (see [1]).
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Theorem 5 (Clarke duality theorem) Let A: Xk � Xa

! X�a be a closed selfadjoint operator, and Ker A = {x
2 X: A x = 0 2 X�} the null space of A. If x 2 Xk is
a critical point of P, then any vector x 2 KerA C x is
a critical point of Pc.

Conversely, if there exists a xo 2 Xk such that A xo
2 X�a , then for a given critical point x of Pc, any vector
x 2 KerAC x is a critical point of P.

Example 6 Let us consider a very simple one-
dimensional optimization problem with constraint

8<
:
F(x) D

1
2
kx2 � f x ! max

s.t. a � x � b;
(21)

where k > 0 and f 2 R are given constants. We assume
that �1 < a < 0 < b <1. Since F(x) is strictly convex
on the closed set [a, b], the maximum is attained only
on the boundary, i. e.

sup
x2[a;b]

F(x) D maxfF(a); F(b)g <1:

The classical Lagrange multiplier method cannot be
used for this nonconvex problem. To set this problem
within our framework, we need only set X = R, Xa = [a,
b] and let� = 1, so that

y D �x D x 2 Y D R:

Thus, the range of the mapping �: Xa! Y = R is Ya =
[a, b]. Let

W(y) D

(
0 if y 2 Ya;

C1 if y … Ya:

It is not difficult to check that W: Y! R [ {+1 } is
convex. On Ya,W is finite and differentiable. Thus, the
primal feasible space can be defined by

Xk D fx 2 Xa : �x D x 2 Yag D [a; b]:

Clearly, on Xk P(x) = W(� x) � F(x) = F(x). The
constrained maximization problem (21) is then equiva-
lent to the standard nonconvex minimization problem
(Pinf): P(x)!min, 8x 2 Xk.

Since F(x) is strictly convex and differentiable onXa

= [a, b], and

x� D DF(x) D kx � f 2 X�a

is invertible, where

X�a D [ak � f ; bk � f ] � X� D R;

the Legendre conjugate Pc: X�a ! R can easily be ob-
tained as

F�(x�) D max
x2Xa
fxx� � F(x)g D

1
2k

(x� C f )2:

By the Fenchel transformation, the conjugate of the
nonsmooth functionW can be obtained as

W�(y�) D sup
y2Y
fyy� �W(y)g D max

y2Ya
yy�

D

8̂
<̂
ˆ̂:

by� if y� > 0;
0 if y� D 0;
ay� if y� < 0:

It is convex and differentiable on Y�a = Y� = R.
On Xa × Y�a = [a, b] × R, the Lagrange form for this

nonconvex programming is well-defined by

L(x; y�) D y��x �W�(y�) � F(x)

D

8̂
<̂
ˆ̂:

xy� � by� � 1
2 kx

2 C f x if y� � 0;

xy� � ay� � 1
2 kx

2 C f x if y� < 0:

Since bothW� and F are convex, L(x, y�) is a supercrit-
ical point function. If x 2 Xk = [a, b], then

P(x) D sup
y�2Y�a

L(x; y�):

On the other hand, for any y� in the dual feasible
space

Y�s D
˚
y� 2 Y�a D R : ��y� D y� 2 X�a

�

D [ak � f ; bk � f ];

the dual function is obtained by

Pd (y�) D sup
x2Xa

L(x; y�)

D sup
x2R
f(�x)y� � F(x)g �W�(y�)

D F�(��y�) �W�(y�);

where

F�(��y�) D sup
x2Xa

f(�x)y� � F(x)g

D sup
x2R
fx(yC f ) �

1
2
kx2g

D
1
2k

(y� C f )2:
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Duality Theory: Biduality in Nonconvex Optimization, Fig-
ure 1
Biduality in constrained nonconvex optimization

Thus, the dual action Pd is well defined on Y�s by

Pd (y�) D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1
2k (y

� C f )2 � by� if y� > 0;

1
2k f

2 if y� D 0;

1
2k (y

� C f )2 � ay� if y� < 0:

(22)

This is a double-well function on R (see Fig. 1.). The
dual problem

(Pd
inf) : Pd (y�)! min; 8y� 2 Y�s ;

is a convex optimization problem on either

Y�s
C
D
˚
y� 2 Y�s : y� > 0

�

or

Y�s
�
D
˚
y� 2 Y�s : y� < 0

�
:

In n-dimensional problems, this dual problem is much
easier than the primal problem. The criticality condi-
tion leads to

y� D

8̂
<̂
ˆ̂:

bk � f if y� > 0;
0 if y� D 0
ak � f if y� < 0:

It is easy to check that the following duality theorems
hold:

min
x2Xk

P(x) D min
y�2Y�s

Pd (y�);

max
x2Xk

P(x) D max
y�2Y�s

Pd (y�):

The graphs of P(x) and Pd(y�) are shown in Fig. 1.
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The concept of duality is one of the most successful
ideas inmodern mathematics and science. Inner beauty
in natural phenomena is bound up with duality, which
has always been a rich source of inspiration in human
knowledge through the centuries. Duality inmathemat-
ics, roughly speaking, is a fundamental concept that un-
derlies many aspects of extremum principles in natu-
ral systems. Eigenvectors, geodesics, minimal surfaces,
KKT conditions, harmonic maps, Hamiltonian canoni-
cal equations and equilibrium states of many field equa-
tions are all critical points of certain functions on some
appropriate constraint sets or manifolds. Considerable
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attention has been attracted on this fascinating research
subject during the last years. A comprehensive study
on duality theory in general nonconvex and nonsmooth
systems is given in [1]. In global optimization problems,
duality falls principally into three categories:
1) the classical saddle Lagrange duality (i. e. monodu-

ality) in convex optimization;
2) the nice biduality in convex Hamilton systems or the

d.c. programming (difference of convex functions);
and

3) the interesting triduality in general nonconvex sys-
tems.

Saddle LagrangeDuality

Let (X, X�) and (Y, Y�) be two pairs real vector spaces,
finite- or infinite-dimensional, and let h 
, 
 i: X × X�

! R and h 
; 
 i: Y� Y�! R be certain bilinear forms
which put the paired spaces (X, X�) and (Y, Y�) in
duality, respectively. In classical convex optimization,
a real-valued function L:X × Y�!R is said to be a sad-
dle function if it is convex in one variable and concave
in the other one.

A pair (x; y�) is called a right saddle point of L on
a subspace Xa × Ya� � X × Y� if

L(x; y�) � L(x; y�) � L(x; y�)

holds for any (x, y�) 2 Xa × Y�a .
A pair (x; y�) is called a left saddle point of L on

a subspace Xa × Y�a � X × Y� if it is a right saddle point
of �L on the subspace Xa × Y�a .

A pair (x; y�) 2 Xa � Y�a is called a critical point of
L if L is partially Gâteaux differentiable at (x; y�) and

DxL(x; y�) D 0; Dy�L(x; y�) D 0;

whereDxL:Xa!X� andDy�L:Y�a!Y denote, respec-
tively, the partial Gâteaux derivatives of L with respect
to x and y�.

Any critical point of a Gâteaux differentiable saddle
function is a saddle point. However, if (x; y�) is a saddle
point of L it does not follow that L is a saddle function.
In convex optimization problems, the following state-
ments are of important theoretical value.
S1) Under certain necessary and sufficient conditions,

suppose that

inf
x2Xa

sup
y�2Y�a

L(x; y�) D sup
y�2Y�a

inf
x2Xa

L(x; y�): (1)

A statement of this type is called a saddle-minimax
theorem and the pair (x; y�) is called a saddle-
minimax point of L on Xa × Y�a .

S2) Under certain conditions, suppose that a pair
(x; y�) 2 Xa � Y�a exists such that

L(x; y�) � L(x; y�) � L(x; y�) (2)

holds for any (x, y�) 2Xa × Y�a . A statement of this
type is called a right saddle-point theorem.

Let Xk be a subset of Xa such that Xk contains all point
u 2Xa for which the supremum supy� L(x, y�) is finite,
i. e.

sup
y�2Y�a

L(x; y�) < C1; 8x 2 Xk :

Dually, let Y�s be a subset of Y�a such that Y�s contains
all points y� 2 Y�a for which the infimum infx L(x, y�) is
finite, i. e.

inf
x2Xa

L(x; y�) > �1; 8y� 2 Y�s :

The sets Xk and Y�s may be either empty orXk =Xa and
Y�s = Y�a . The connection between the minimax theo-
rem and the saddle-point theorem is given by the fol-
lowing results.

Theorem 1 (Saddle-minimax theorem) Let L: Xa ×
Y�a ! R be a given arbitrary function. If there exists
a saddle-minimax point (x; y�) 2 Xa � Y�a such that

L(x; y�) D min
x2Xa

max
y�2Y�a

L(x; y�)

D max
y�2Y�a

min
x2Xa

L(x; y�);
(3)

then (x; y�) is a saddle point of L on Xa × Y�a .
Conversely, if L(x, y�) possesses a saddle point (x; y�)

on Xa × Y�a , then the saddle-minimax theorem in the
form

L(x; y�) D min
x2Xk

max
y�2Y�a

L(x; y�)

D max
y�2Y�s

min
x2Xa

L(x; y�)
(4)

holds.

Let L: Xa × Y�a ! R be a given arbitrary right saddle
function. For any fixed x 2 Xa, let

P(x) D sup
y�2Y�a

L(x; y�): (5)
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Let Xk � Xa be the domain of P such that P: Xk! R is
finite and Gâteaux differentiable. Then the inf-problem

(Pinf) : P(x)! min; 8u 2 Xk ; (6)

is called the primal problem.
Dually, for any fixed y� 2 Y�a , let

Pd (y�) D sup
x2Xa

L(x; y�) (7)

with domain Y�s � Y�a , on which, Pd:Y�s ! R is finite
and Gâteaux differentiable. Thus, the sup-problem

(Pd
sup) : Pd (y�)! max; 8y� 2 Y�s ; (8)

is referred as the dual problem. The problems (Pinf) and
(Pd

sup) are realisable if Xk and Y�s are not empty, i. e.,
there exists a pair (x; y�) 2 Xk � Y�s such that

P(x) D min
x2Xk

P(x) D inf
x2Xk

P(x);

Pd (y�) D max
y�2Y�s

Pd (y�) D sup
y�2Y�s

Pd (y�):

Theorem 2 (Saddle duality theorem) Let L: Xa ×
Y�a !R be a given arbitrary function such that P and
Pd are well-defined by (5) and (7) on the open subsets Xk

andY�s , respectively. If (x; y
�) is a saddle point of L onXk

× Y�s , P is Gâteaux differentiable at x, and Pd is Gâteaux
differentiable at y�, then DP(x) D 0, DPd (y�) D 0,
and

P(x) D L(x; y�) D Pd (y�): (9)

Theorem 3 (Weak duality theorem) The inequality

P(x) � Pd (y�) (10)

holds for all (x, y�) 2 Xk × Y�s .

Theorem 4 (Strong duality theorem) (x; y�) is
a saddle-point of L on Xk × Y�s � Xa × Y�a if and only
if the equality

P(x) D inf
x2Xk

P(x) D sup
y�2Y�s

Pd (y�) D Pd (y�) (11)

holds.

Fenchel–Rockafellar Duality

Very often, the primal function P: Xk! R can be writ-
ten as

P(x) DW(�x) � F(x);

where �: X! Y is a linear operator, W: Ya ! R and
F: Xa! R are Gâteaux differentiable real-valued func-
tions. The feasible set Xk � X is then defined by

Xk D fx 2 Xa : �x 2 Yag :

Clearly, P: Xk! R is convex if W is convex on Ya and
F is concave on Xa.

The conjugate function W�: Y�a ! R ofW(y) is de-
fined by the Fenchel transformation, i. e.

W�(y�) D sup
y2Ya

fhy; y�i �W(y)g; (12)

which is always l.s.c. and convex on Y�. The following
Fenchel–Young inequality

W(y) � hy; y�i �W�(y�) (13)

holds on Ya × Y�a . If W is strictly convex, and Gâteaux
differentiable on Ya � Y, then the following Legendre
duality relations

y� D DW(y), y D DW�(y�)

, hy; y�i DW(y)CW�(y�)

hold on Ya × Y�a . In this case, we have W(y) =W��(y),
the biconjugate of W, and the Fenchel transformation
(12) is equivalent to the classical Legendre transforma-
tion

W�(y�) D hy(y�); y�i �W(y(y�)):

The Lagrangian form associated with (Pinf) is de-
fined by

L(x; y�) D h�x; y�i �W�(y�) � F(x); (14)

which is Gâteaux differentiable on Xa × Y�a . The critical
condition DL(x; y�) D 0 leads to the Lagrange equa-
tions:

�x D DW�(y�); ��y� D DF(x); (15)

where ��: Y�a ! X�a is the adjoint operator of �.
Clearly, L: Xa × Y�a ! R is a right saddle function if
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F(x) is concave on Xa. For convex function W(y), we
have

P(x) D sup
y�2Y�a

L(x; y�); 8x 2 Xk:

The Fenchel conjugate function of a concave function
F: Xa! R is defined by

F�(x�) D inf
x2Xa
fhx; x�i � F(x)g: (16)

Thus, for any given dual admissible y� 2 Y�s with

Y�s D
˚
y� 2 Y�a : ��y� 2 X�a

�
;

the Fenchel–Rockafellar dual function Pd: Y�k ! R can
be obtained as

Pd (y�) D inf
x2Xa

L(x; y�) D F�(��y�) �W�(y�):

If P is Gâteaux differentiable onXk, the critical con-
dition DP(x) D 0 leads to the Euler–Lagrange equation
of the primal problem (Pinf):

��DW(�x) � DF(x) D 0: (17)

Similarly, the critical condition DPd (y�) D 0 gives the
dual Euler–Lagrange equation of (Pd

sup):

�DF�(��y�) � DW�(y�) D 0: (18)

Clearly, the critical point theorem (9) holds if the La-
grange equation (15), Euler–Lagrange equation (17)
and its dual equation (18) are equivalent to each oth-
ers.

For any given F and W, the weak duality theorem
(10) always holds on Xk × F�s . The difference inf P
� sup Pd is the so-called duality gap. For convex pri-
mal problem, the duality gap is zero and the strong
Lagrange duality theorem (11) holds, which is also re-
ferred as the Fenchel–Rockafellar duality theory.

Linear Programming and Central Path

Let us now demonstrate how the above scheme fits in
with finite-dimensional linear programming. Let X =
X� =Rn, Y =F� =Rm, with the standard inner products
hx, x�i = x| x� in Rn, and hy;y�i = y|y� in Rm. For fixed
x� D c 2 Rn and y D b 2 Rm , the primal problem is
a constrained linear optimization problem:

8<
:
min
x2Rn

hc; xi

s.t. �x D b; x � 0;
(19)

where � 2 Rm × n is a matrix, and its adjoint is simply
�� =�| 2Rn×m. To reformulate this linear constrained
optimization problem in themodel form (Pinf), we need
to set Xa = {x 2 Rnx� 0}, which is a convex cone in Rn,
Ya = {y 2 Rm:y = b}, a hyperplane in Rm, and let

F(x) D �hc; xi ; 8x 2 Xa;

W(y) D 0; 8y 2 Ya :

Thus on the primal feasible set

Xk D fx 2 Rn : �x D b; x � 0g

we have P(x) = W(�x)� F(x) = hc, xi. The conjugate
functions in this elementary case may be calculated at
once as

W�(y�) D sup
y2Ya

hy; y�i D hb; y�i ;

8y� 2 Y�a D Rm ;

F�(x�) D inf
x2Xa
hx; x� C ci D 0; 8x� 2 X�a ;

where X�a = {x� 2 Rn: x� + c � 0} is a polar cone of Xa.
Thus, on the dual feasible space

Y�s D fy� 2 Rm : ��y� C c � 0g ;

the problem dual to the linear programming (19) reads

max
p2Rm

Pd (y�) D �hb; y�i ; 8y� 2 Y�s : (20)

The Lagrangian L:Xa ×Y�a !R associated with this
constrained linear programming is

L(x; y�) D h�x; y�i � hb; y�i C hc; xi
D hx; ��y C ci � hb; y�i :

But for inequality constraints in Xa, the Lagrange mul-
tiplier x� =�� y� 2 Rn has to satisfy the following KKT
optimality conditions

�x D b; s D c C��y�;

x � 0; s � 0; s>x;D 0;
(21)

where the vector s 2 Rn is called the dual slacks.
The problem of finding (x; y�; s) satisfying (21) is also
known as the mixed linear complementarity problem.

By using the vector of dual slacks s 2 Rn, the dual
problem can be rewritten as

8<
:
max
p2Rm

hb; pi

s.t. ��y� C c � s D 0; s � 0:
(22)
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We can see that the primal variable x is the Lagrange
multiplier for the constraint ��y� + c � 0 in the dual
problem. However, the dual variables y� and s are re-
spectively Lagrange multipliers for the constraints �x
= b and x � 0 in the primal problem. These choices are
not accidents.

Theorem 5 The vector x 2 Rn is a solution of (19) if
and only if there exists a Lagrange multipliers (y�; s) 2
Rm � Rn for which the KKT optimality conditions (21)
hold for (x; y�; s). Dually, the vector (y�; s) 2 Rm �Rn

is a solution of (22) if and only if there exists a Lagrange
multiplier x 2 Rn such that the KKT conditions (21)
hold for (x; y�; s).

The vector (x; y�; s) is called a primal-dual solution of
(19). The so-called primal-dual methods in mathemat-
ical programming are those methods to find primal-
dual solutions (x; y�; s) by applying variants of New-
ton’s method to the three equations in (21) and modi-
fying the search directions and steplengths so that the
inequalities in (21) are satisfied at every iteration. If the
inequalities are strictly satisfied, the methods are called
primal-dual interior-point methods. In these methods,
the so called central path Cpath plays a vital role in the
theory of primal-dual algorithms. It is a parametrical
curve of strictly feasible points defined by

Cpath D
˚
(x� ; y�� ; s� )

> 2 R2nCm : � > 0
�
; (23)

where each point (x� , y�� , s� ) solves the following sys-
tem:

�x D b; ��y� C c D s;

x > 0; s > 0; ui si D �; i D 1; : : : ; n:
(24)

This problem has a unique solution (x� , y�� , s� ) for each
� > 0 if and only if the strictly feasible set

Fo D

�
(x; p; s) :

�x D b; ��y� C c D s;
x > 0; s > 0

	

is nonempty. A comprehensive study of the primal-dual
interior-point methods in mathematical programming
has been given in [3] and [2].
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Consider the following general nonconvex extremum
problem (P):

P(x) D ˚(x; �(x))! extremum; 8x 2 X; (1)

where X is a locally convex topological vector space
(l.c.s.), P : X ! R :D R [ f�1g [ fC1g is a non-
convex and nonsmooth extended function, whose ef-
fective domain

Xk D dom P D fx 2 X : jP(x)j < C1g

is a nonempty convex subset ofX; the operator� :X!
Y is a continuous, generally nonlinear, mapping from
X to another l.c.s. Y, and ˚ : X � Y ! R is an associ-
ated extended function. Since the cost function P(x) is
usually nonconvex, the problem (P) may possess many
locally extremum (either minimum or maximum) so-
lutions. The goal of global optimization is to find all the
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local extrema of P(x) over the feasible set Xk. Generally
speaking, traditional direct approaches and algorithms
for solving nonconvex, nonsmooth global optimization
problems are usually very difficult. The classical sad-
dle Lagrange duality methods as well as the well-known
Fenchel-Rockafellar duality theory can be used mainly
for solving convex problems. For nonconvex problems,
there exists a so-called duality gap between the primal
and the classical dual problems.

The canonical dual transformation method andas-
sociated triduality theory were proposed originally in
finite deformation theory [1]. The key idea of this
method is to choose a suitable nonlinear operator �:
X ! Y such that ˚(x, y) is either convex or concave
in each of its variables. This method can be used to
solve many nonconvex, nonsmooth global optimiza-
tion problems.

Canonical Dual Transformation

Let (X, X�) be a pair of real linear spaces, placed in du-
ality by a bilinear form h�, �i : X × X�! R. For a given
extended real-valued function P : X ! R, the subdif-
ferential of P at x 2 X is a convex subset @�P(x) � X�
such that for each x� 2 @�P(x), we have
˝
x�; x � x

˛
� P(x) � P(x); 8x 2 X:

Dually, the superdifferential of P at x 2 X is a convex
subset @CP(x) � X� such that for each x� 2 @CP(x) ,
we have
˝
x�; x � x

˛
� P(x) � P(x); 8x 2 X:

Clearly, we always have @+P = � @� (�P). In convex
analysis, it is convention that @� is simply written as @.
In nonconvex analysis, @stands for either @� or @+, i. e.

@ D f@�; @Cg:

If P is smooth, Gâteaux-differentiable at x 2 Xa � X ,
then

@P(x) D @�P(x) D @CP(x) D fDP(x)g;

where DP : Xa! X� denotes the Gâteaux derivative of
P at x.

Definition 1 The set of functions P : X ! R which
are either convex or concave is denoted by � (X). In

particular, let �̌ (X) denote the subset of functions P 2
� (X) which are convex and b� (X) the subset of P 2
� (X) which are concave.

The canonical function space � G(Xa) is a subset of
functions P 2 � (Xa) which are Gâteaux differentiable
on Xa � X and the duality mapping DP : Xa ! X�a �

X� is invertible.
The extended canonical function space � 0(X) is

a subset of functions P 2 � (X)which are either convex,
lower semicontinuous or concave, upper semicontinu-
ous, and if P takes the values ˙1, then P is identically
equal to˙1.

By the Legendre–Fenchel transformation, the supcon-
jugate function of an extended function P : X ! R is
defined by

P](x�) D sup
x2X
fhx; x�i � P(x)g:

By the theory of convex analysis, P] : X� ! ER :D
R[fC1g is always convex and lower semicontinuous,
i. e. P] 2 �̌0(X�). Dually, the subconjugate function of
P, defined by

P[(x�) D inf
x2X
fhx; x�i � P(x)g;

is always concave and upper semicontinuous, i. e. P[ 2
b� 0(X�), and P[ D �P]. Both the super- and subcon-
jugates are called Fenchel conjugate functions and we
write P� D fP[; P]g. Thus the extended Fenchel trans-
formation can be written as

P�(x�) D ext fhx; x�i � P(x) : 8x 2 Xg ; (2)

where ext stands for extremum. Clearly, if P 2 � 0(X),
we have the Fenchel equivalent relations, namely,

x� 2 @P(x), x 2 @P�(x�)
, P(x)C P�(x�) D hx; x�i : (3)

The pair (x, x�) is called the Fenchel duality pair on X ×
X� if and only if equation (3) holds on X × X�.

The conjugate pair (x, x�) is said to be a Legendre
duality pair on Xa × X�a � X × X� if and only if the
equivalent relations

x� D DP(x), x D DP�(x�)

, P(x)C P�(x�) D hx; x�i (4)

hold on Xa × X�a .
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Let (Y, Y�) be an another pair of locally convex
topological real linear spaces paired in separating dual-
ity by the second bilinear form h�; �i : Y × Y�! R. The
so-called geometrical operator � :X! Y is a continu-
ous, Gâteaux differentiable operator such that for any
given x 2 Xa � X, there exists a y 2 Ya � Y satisfying
the geometrical equation

y D �(x):

The directional derivative of y at x in the direction x 2
X is then defined by

ıy(x; x) :D lim

!0C

y(x C �x) � y(x)
�

D �t(x)x;

where �t(x) D D�(x) denotes the Gâteaux deriva-
tive of the operator � at x. For a given y� 2 Y�, G�y (x)
= h�(x);y�i is a real-valued function of x on X. Its
Gâteaux derivative at x 2 Xa in the direction x 2 X

is

ıGy�(x; x) D h�t(x)x; y�i D
˝
x; ��t (x)y

�
˛
;

where ��t (x) : Y� ! X� is the adjoint operator of �t

associated with the two bilinear forms.
Let ˚ : X � Y ! R be an extended function such

that P(x) = ˚(x, �(x)). If ˚ : X � Y ! R is an ex-
tended canonical function, i. e.˚ 2 � 0(X) × � 0(Y), the
duality relations between the paired spaces (X,X�) and
(Y, Y�) can be written as

x� 2 @x˚(x; y); y� 2 @y˚(x; y): (5)

On the product spaceXa ×Ya �X × Y, if the canon-
ical function ˚(x, y) is finite and Gâteaux differentiable
such that the feasible space Xk can be written as

Xk D fx 2 Xa : �(x) 2 Yag ; (6)

then on Xk, the critical condition ıP(x ; x) D

hx;DP(x)i D 0, 8x 2 Xk , leads to the Euler equation

Dx˚(x; �(x))C��t (x)Dy˚(x; �(x)) D 0; (7)

where Dx˚ and Dy˚ denote the partial Gâteaux
derivatives of ˚ with respect to x and y, respectively.
Since ˚ 2 � G(Xa) × � G(Ya) is a canonical function,
the Gâteaux derivative D˚ : Xa × Ya ! X�a × Y�a �

X� × Y� is a monotone mapping, i. e. there exists a pair
(x�; y�) 2 X� � Y� such that

�x� D Dx˚(x; �(x)); y� D Dy˚(x; �(x)):

Thus, in terms of canonical dual variables x� and y�,
the Euler equation (7) can be written in the so-called
balance (or equilibrium ) equilibrium

x� D ��t (x)y
�; (8)

which linearly depends on the dual variable y�.

Definition 2 Suppose that for a given problem (P), the
geometrical operator � : X! Y can be chosen in such
a way that P(x) = ˚(x, �(x)), ˚ 2 � G(Xa) × � G(Ya)
and Xk = {x 2 Xa :�(x) 2 Ya}. Then
1) the transformation {P; Xk}! {˚ ; Xa × Ya} is called

the canonical transformation, and ˚ : Xa × Ya! R
iscalled the canonical function associated with�;

2) the problem (P) is called geometrically nonlinear
(respectively, geometrically linear) if �: X ! Y is
nonlinear (respectively, linear); it is called physically
nonlinear (respectively, physically linear) if the du-
ality mappingD˚ :Xa × Ya!X�a × Y�a is nonlinear
(respectively, linear); it is called fully nonlinear if it
is both geometrically and physically nonlinear.

The canonical transformation plays a fundamental role
in duality theory of global optimization. By this def-
inition, the governing equation (7) for fully nonlin-
ear problems canbe written in the tricanonical forms,
namely,
1) geometrical equation: y =�(x);
2) physical relations: (� x�, y�) 2 @˚(x, y);
3) balance equation: x� =��t (x) y�.

Since � : X! Y is Gâteaux differentiable, for any
given x 2 X we have the operator decomposition

�(x) D �t(x)x C�c(x); (9)

where �c = � � �t is the complementary operator of
�t . By this operator decomposition, the relation be-
tween the two bilinear forms reads

h�(x); y�i D
˝
x; ��t (x)y

�
˛
� G(x; y�);

where G(x, y�) = h� �c(x); y�i is the so-called comple-
mentary gap function, introduced in [2]. This gap plays
an important role in the canonical dual transformation
methods. A framework for the fully nonlinear system is

x 2 X  hx; x�i ! X� 3 x�

�tC�cD� # " ��t D(���c )�

y 2 Y  hy; y�i ! Y� 3 y�
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Extensive illustrations of the canonical transformation
and the tricanonical forms in mathematical physics and
variational analysis can be found in [1].

Very often, the extended canonical function ˚ can
be written in the form

˚(x; y) DW(y) � F(x);

where F 2 � (X) andW 2 � (Y) are extended canonical
functions. The duality relations (5) in this special case
take the forms

x� 2 @F(x); y� 2 @W(y):

If F 2 � G(Xa) and W 2 � G(Ya) are Gâteaux differen-
tiable, the Euler equation (7) reads

��t (x)DW(�(x)) � DF(x) D 0:

If � : X! Y is linear, and W Y! R is quadratic
such that DW = Cy, where C : Y! Y� is a linear opera-
tor, then the governing equations for linear system can
be written as

��C�x D Ax D x�:

For conservative systems, the operator A = �� C� is
usually symmetric. In static systems, C is usually posi-
tive definite and the associated total potential P is con-
vex. However, in dynamical systems, C is indefinite and
P is called the total action, which is usually a d.c. func-
tion in convex Hamilton systems.

Triality Theory

We assume that for any given nonconvex extended
function P : X ! R, there exists a general nonlinear
operator� :X! Y and a canonical functionW 2 � (Y)
suchthat the canonical transformation can be written as

P(x) D W(�(x)) � hx; ci ; (10)

where c 2X� is a given source variable. Since F(x) = x, c
is a linear function, the HamiltonianH(x, y�) =W�(y�)
+ x, c is a canonical function on Z = X × Y� and the
extended Lagrangian reads

L(x; y�) D h�(x); y�i �W�(y�) � hx; ci : (11)

For a fixed y� 2 Y�, the convexity of L(�; y�) : X ! R
depends on�(x) and y� 2 Y�.

Let Za = Xa × Y�a � Z be the effectivedomain of L,
and let Lc � Za be a critical point set of L, i. e.

Lc D
˚
(x; y) 2 Xa � Y�a : DL(x; y�) D 0

�
:

For any given critical point (x; y�) 2 Lc , we let Xr ×
Y�r be its neighborhood such that on Xr × Y�r , the pair
(x; y�) is the only critical point of L. The following re-
sultis of fundamental importance in global optimiza-
tion.

Theorem 3 (Triality theorem) Suppose that W 2

�̌ (Ya) is convex, (x; y�) 2 Lc is a critical point of L
and Xr × Y�r is a neighborhood of (x; y�).

If
˝
�(x); y�

˛
is convex on Xr, then

L(x; y�) D min
x2Xr

max
y�2Y�r

L(x; y�)

D max
y�2Y�r

min
x2Xr

L(x; y�): (12)

However, if
˝
�(x); y�

˛
is concave on Xr, then either

L(x; y�) D min
x2Xr

max
y�2Y�r

L(x; y�)

D min
y�2Y�r

max
x2Xr

L(x; y�) ; (13)

or

L(x; y�) D max
x2Xr

max
y�2Y�r

L(x; y�)

D max
y�2Y�r

max
x2Xr

L(x; y�): (14)

Since W 2 � (Ya) is a canonical function, we always
have

P(x) D ext fL(x; y�) : y� 2 Y�g ; 8x 2 Xk : (15)

On the other hand, for a given Gâteaux differentiable
geometrical mapping� :Xa! Ya, the criticality condi-
tion DxL(x; y�) D 0 leads to the equilibrium equation

��t (x)y
� D c: (16)

If there exists a subspace Y�s � Y�a such that for any y�

2 Y�s and a given source variable c 2 X�, the equation
(16) can be solved for x D x(y�), then by the operator
decomposition (9), the dual function Pd : Y�s ! R can
be written explicitly in the form

Pd (y�) D sta fL(x; y�) : x 2 Xg
D �Gd (y�) �W�(y�); 8y� 2 Y�s ;
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where Gd : Y�! R is the so-called pure complementary
gap function, defined by

Gd (y�) D G(x(y�); y�) D �h�c (x(y�)); y�i :

For any given critical point (x; y�) 2 Lc , we have
Gd (y�) D hx; ci �

˝
�(x(y�)); y�

˛
. Thus, the Legendre

duality relations among the canonical functions W and
W� lead to

P(x) � Pd (y�) D 0; 8(x; y�) 2 Lc : (17)

This identity shows that there is no duality gap between
the nonconvex function P and its canonical dual func-
tion Pd. Actually the duality gap, which exists in clas-
sical duality theories, is now recovered by the comple-
mentary gap function G(x; y�).

Theorem 4 (Triduality theorem) Suppose that W 2

�̌ (Ya) is a critical point of L and Xr × Y�r is a neighbor-
hood of (x; y�). If

˝
�(x); y�

˛
is convex on Xr, then

P(x) D min
x2Xr

P(x), Pd (y�) D max
y�2Y�r

Pd (y�):

However, if
˝
�(x); y�

˛
is concave on Xr, then

P(x) D min
x2Xr

P(x), Pd (y�) D min
y�2Y�r

Pd (y�);

P(x) D max
x2Xr

P(x), Pd (y�) D max
y�2Y�r

Pd (y�):

Example 5 We now illustrate the application of the
interesting triduality theory for solving the following
nonconvex optimization problem in X = Rn,

P(x) D
a
2
(
1
2
kAxk2 � �)2 � x>c ! sta; 8x;

where a, � > 0 are given parameters, c 2 Rn is a given
vector, and A : Rn ! Rm is a matrix. The Euler equa-
tion associated with this nonconvex stationary problem
is a nonlinear algebraic equation in Rn

a(
1
2
kAxk2 � �)Cx D c;

whereC =A|A = C| 2Rnn. We are interested in finding
all the critical points of P. To set this nonconvex prob-
lem in our framework, we let X = Rn = X�, and � : Rn

! Y = R a quadratic operator

y D �(x) D
1
2
kAxk2 � � D

1
2
x>Cx � �:

Since F(x) = hx, ci = x| c is a linear function on Rn,
the admissible space Xa = X = Rn. By the fact that x� =
DF(x) = c, the range for the canonical mapping DF : X
! X� = R is a hyperplane in Rn, i. e.

X�a D fx� 2 Rn : x� D cg :

The feasible set for the primal problem is Xk = {x 2 Xa

:�(x) 2 Ya} = Rn.
By the fact that x| Cx � 0, 8x 2 Xa = X = Rn,

the range for the geometrical mapping �: Xa ! R is
a closed convex set in R

Ya D fy 2 R : y � ��g � Y D R:

On the admissible subset Ya � Y = R, the canonical
functionW(y) = (1/2)ay2 is quadratic. The range for the
constitutive mapping DW: Ya! Y� = R is also a closed
convex set in R,

Y�a D fy� 2 R : y� � �a�g :

On Y�a , the Legendre conjugate ofW isalso strictly con-
vex

W�(y�) D
1
2
a�1y�2; (18)

and the Legendre duality relations hold on Ya × Y�a .
On Xa × Y�a = Rn × R, the extended Lagrangian in

this case reads

L(x; y�) D
1
2
y�x>Cx � �y� �

1
2
a�1y�2 � x>c:

It is easy to check that the dual function associated with
L is

Pd (y�) D
1
2
(y�)�1c>Cc � �y� �

1
2a

y�2:

The dual Euler–Lagrange equation is an algebraic equa-
tion in R:

(�C a�1y�)y�2 D
1
2
�2; (19)

where �2 = c|Cc is a constant. Since C 2 Rnn is positive
definite, this equation holds only on Y�a .

In algebraic geometry, the dual Euler–Lagrange
equation (19) is the so-called singular algebraic curve in
(y�, �)-space (see Fig. 1). For a given parameter � and c
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Duality Theory: Triduality in Global Optimization, Figure 1
Singular algebraic curve

2 Rn, this dual equation has at most three real roots y�k
2 Y�a , k = 1, 2, 3, which leads to the primal solution

xk D y�k C
Cc; k D 1; 2; 3;

where C+ stands for the generalized inverse of C. We
know that each (xk, y�k ) is a critical point of L and

P(xk) D L(xk ; y�k ) D Pd (y�k ); k D 1; 2; 3:

In the case of n = 1, the cost function

P(x) D
1
2
a
�
1
2
x2 � �

�2

� cx

is a double-well function (see Fig. 2, solid line), which
appears in many physical systems. The graph of the
canonical dual function

Pd (y�) D
1
2
c2

y�
� �y� �

y�2

2a

has two branches (Fig. 2, dashed line). It is easy to prove
(see [1]) that if � > �c = 1.5 (�/a)2/3, the dual Eu-
ler–Lagrange equation (19) has three roots y�1 > 0 > y�2
> y�3 , corresponding to three critical points of Pd (see
Fig. 2). Then, y�1 is a global maximizer of Pd, x1 = �/y�1
is a global minimizer of P, Pd takes local minimum and
local maximum values at y�2 and y�3 , respectively, x2 =
�/y�2 is a local maximizer of P, while x3 = �/y�3 is a local
minimizer.

The Lagrangian associated with this double-well en-
ergy is

L(x; y�) D
1
2
x2y� � (

1
2a

y�2 C �y�) � y�x:

It is a saddle function for y� > 0. If y� < 0, it is a super-
critical point function (see Fig. 3).

Duality Theory: Triduality in Global Optimization, Figure 2
Graphs of P(u) and itsdual Pd(y�)

Duality Theory: Triduality in Global Optimization, Figure 3
Lagrangian for the double-well energy

See also

� Duality Theory: Biduality in Nonconvex
Optimization

� Duality Theory: Monoduality in Convex
Optimization

� History of Optimization
� Von Neumann, John
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Introduction

We consider the application of Dykstra’s algorithm for
solving the following optimization problem

min
x2˝
kx0 � xk ; (1)

where x0 is a given point, ˝ is a closed and convex
set, and kzk2 D hz; zi defines a real inner product in
the space. The solution x* is called the projection of x0

onto ˝ and is denoted by P˝(x0). Dykstra’s algorithm
for solving (1) has been extensively studied since it fits
in many different applications (see [5,21,22,23,27,28,
29,32,24,42,42,45]).

For simplicity, we consider the case

˝ D \
p
iD1˝i ; (2)

where ˝i are closed and convex sets in Rn , for i D
1; 2; : : : ; p, and ˝ ¤ ;. Moreover, we assume that
for any z 2 Rn the calculation of P˝ (z) is not trivial;
whereas, for each ˝i , P˝i (z) is easy to obtain as in the
case of a box, an affine subspace, or a sphere. For the
not feasible case (i. e., when ˝ D ;) the behavior of
Dykstra’s algorithm is treated in [2,6,37].

Dykstra’s alternating projection algorithm is a cyclic
scheme for finding asymptotically the projection of
a given point onto the intersection of a finite number
of closed convex sets. Roughly speaking, it iterates by
projecting in a clever way onto each of the convex sets
individually. The algorithm was originally proposed by
Dykstra [20] for closed and convex cones in the Eu-
clidean spaceRn , and later extended by Boyle and Dyk-
stra [7] for closed and convex sets in a Hilbert space.
It was rediscovered by Han [30] using duality theory,
and the linear rate of convergence was established by
Deutsch and Hundal [18] for the polyhedral case (see
also [19,43,44]).

Dykstra’s algorithm belongs to the general family of
alternating projection methods, that dates back to von
Neumann [46] who treated the problem of finding the
projection of a given point in a Hilbert space onto the
intersection of two closed subspaces. Later, Cheney and
Goldstein [15] extended the analysis of von Neumann’s
alternating projection scheme to the case of two closed
and convex sets. In particular, they established con-
vergence under mild assumptions. However, the limit
point need not be the closest in the intersection. There-
fore, the alternating projection method, proposed by
von Neumann, is not useful for problem (1). Fortu-
nately, Dykstra [20] found the clever modification of
von Neumann’s scheme for which convergence to the
solution point is guaranteed. For a complete discussion
on alternating projection methods see Deutsch [17].

Dykstra’s algorithm has been extended in several
different ways. Gaffke and Mathar [24] proposed, via
duality, a family of simultaneous Dykstra’s algorithm
in Hilbert space. Later Iusem and De Pierro [37] es-
tablished the convergence of the simultaneous ver-
sion considering also the inconsistent case in the Eu-
clidean space Rn . Bauschke and Borwein [2] further
analyzed Dykstra’s algorithm for two sets, that appears
frequently in applications and in particular generalized
the results in [37]. In [36] it was established that for
linear inequality constraints the method of Dykstra re-
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duces to the method proposed by Hildreth [33] in his
pioneer work on dual alternating projections. See also
[40] for further analysis and extensions.

Dykstra’s algorithm has also been generalized by
Deutsch and Hundal [35] to an infinite family of sets,
and also to allow a random ordering, instead of cyclic,
of the projections onto the closed convex sets. More re-
cently, it has also been generalized by Bregman et al. [9]
to avoid the projection onto each one of the convex sets
in every cycle. Instead, projections onto either a suit-
able half space of the intersection of two half spaces
are used. Further results concerning the connection be-
tween Bregman distances and Dykstra’s algorithm can
be found in [3,4,8,14]. For the advantages of project-
ing cyclically onto suitable half spaces, see the previous
work by Iusem and Svaiter [38,39].

A computational experiment comparing Dykstra’s
algorithm and the Halpern-Lions-Wittmann-Bauschke
algorithm [1] on linear best approximation test prob-
lems can be found in [12].

Formulations

Dykstra’s Algorithm

Dykstra’s algorithm solves (1), (2) by generating two
sequences: the iterates fxk

i g and the increments fyki g.
These sequences are defined by the following recursive
formulae:

xk
0 D xk�1

p ;

xk
i D P˝i (x

k
i�1 � yk�1i ); i D 1; 2; : : : ; p ;

yki D xk
i � (xk

i�1 � yk�1i ); i D 1; 2; : : : ; p ;

(3)

for k D 1; 2; : : : with initial values x0p D x0 and y0i D 0
for i D 1; 2; : : : ; p.

Remarks
1. For the sake of simplicity, the projecting control in-

dex i(k) used in (3) is the most common one: i(k) D
kmod p C 1, for all k � 0. However, more ad-
vanced control indices can also be used, as long as
they satisfy some minimal theoretical requirements
(see e. g., [35]).

2. The increment yk�1i associated with˝i in the previ-
ous cycle is always subtracted before projecting onto
˝i . Only one increment (the last one) for each ˝i

needs to be stored.

3. If ˝i is a closed affine subspace, then the operator
P˝i is linear and it is not required, in the kth cycle, to
subtract the increment yk�1i before projecting onto
˝i . Thus, for affine subspaces, Dykstra’s procedure
reduces to the alternating projection method of von
Neumann [46].

4. For k D 1; 2; : : : and i D 1; 2; : : : ; p, it is clear from
(3) that the following relations hold

xk�1
p � xk

1 D yk�11 � yk1 ; (4)

xk
i�1 � xk

i D yk�1i � yki ; (5)

where x0p D x0 and y0i D 0, for all i D 1; 2; : : : ; p.
For the sake of completeness we now present the key
theorem associated with Dykstra’s algorithm.

Theorem 1 Boyle and Dykstra, 1986 [7] Let
˝1; : : : ;˝p be closed and convex sets of Rn such that
˝ D \

p
iD1˝i ¤ ;. For any i D 1; 2; : : : ; p and any

x0 2 Rn , the sequence fxk
i g generated by (3) converges

to x� D P˝ (x0) (i. e., kxk
i � x�k ! 0 as k!1).

We now discuss the delicate issue of stopping Dykstra’s
algorithm within a certain previously established toler-
ance that indicates the distance of the current iterate to
the unique solution.

Difficulties with some Commonly Used Stopping
Criteria

In some applications it is possible to obtain a some-
how natural stopping rule, associated with the prob-
lem at hand. For example, when solving a linear system,
Ax D b, by alternating projection methods [10,25],
the residual vector (r(x) D b � Ax) is usually avail-
able and yields some interesting and robust stopping
rules. Another example appears in image reconstruc-
tion for which a good and feasible image tells the user
that it is time to stop the process [13,16]. Similar cir-
cumstances are present in some other specific applica-
tions (e. g. saddle point problems [31], and molecular
biology [28,29]).

However, in general, this is not the case, and we
are left with the information produced only by the in-
ternal computations, i. e., the sequence of iterates and
perhaps the sequence of increments, and some inner
products. For this general case, a popular stopping rule
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Dykstra’s Algorithm and Robust Stopping Criteria, Figure 1
Feasible set˝ D˝1 \˝2 in R2

is to monitor the subsequence of projections onto one
particular convex set, ˝i , and stop the process when
the distance, in norm, of two consecutive projections is
less than or equal to a previously established tolerance
[26,27,32,41].

Another commonly used criterion, that is claimed
to improve the previous one (e. g. [7,22,28,45]) is to
somehow compute an average of all the projections at
each cycle of projections, and then stop the process
when the distance, in norm, of two consecutive of those
average projections is less than or equal to a previously
established tolerance.

Finally, we would like to mention that another crite-
rion, that is also designed to improve any of the two cri-
teria above, is to check any of the previously described
rules during N consecutive cycles, where N is a fixed
positive integer.

None of these stopping rules is a trustable choice.
In [6], Birgin and Raydan presented the example below
to establish that they can fail even for a two dimensional
problem. (see Figs. 1 and 2).

Consider the closed and convex set ˝ D ˝1 \˝2,
where˝1 D fx 2 R2 j x1Cx2 � 10g is a half space and
˝2 D fx 2 R2 j 3 � x1 � 10; 0 � x2 � 4g is a box.
This closed and convex set in R2 is shown in Fig. 1.

Let x0 D (�49; 50)T and let us use Dykstra’s al-
gorithm to find the closest point to x0 in ˝ . In Fig. 2

Dykstra’s Algorithm and Robust Stopping Criteria, Figure 2
First two cycles of Dykstra’s algorithm to find the projection
of x0 D (�49; 50)T onto˝ D˝1 \˝2

we can see the first two cycles of this convergent pro-
cess. Since y01 D y02 D 0 (null initial increments)
then for the first cycle we project x0 onto ˝1 to ob-
tain p2 D x11 D (�44:5; 54:5)T and then we project
p2 onto ˝2 to obtain p3 D x12 D (3; 4)T . For the sec-
ond cycle, the increments are not null (y11 D (4:5; 4:5)T

and y12 D (47:5;�50:5)T), and we start from p3. First
we project p4 D p3 � y11 onto ˝1 to obtain p5 D x21 .
Then we project p6 D p5 � y12 onto ˝2 to obtain p3
again. Hence x22 D x12 . The increment associated with
˝2 is large enough to take the iterate back to the quad-
rant where the projection onto the box is again p3. As
discussed in [6], this phenomenon will occur until cy-
cle 32, i. e., p3 D x12 D x22 D � � � D x322 .

Moreover, by choosing x0 far enough, this mislead-
ing event can be repeated for as many cycles as any pre-
viously established positive integer N. Eventually the
size of the increments will be reduced and convergence
to x* will be observed.
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Robust Stopping Criteria

After a close inspection of the proof of the Boyle and
Dykstra’s theorem, Birgin and Raydan [6] proposed
some robust stopping criteria for Dykstra’s algorithm.
For that they first established the following result.

Theorem 2 Let x0 be any element of Rn. Consider
the sequences fxk

i g and fy
k
i g generated by (3) and de-

fine ck as

ck D
kX

mD1

pX
iD1

kym�1i � ymi k
2

C 2
k�1X
mD1

pX
iD1

hymi ; x
mC1
i � xmi i : (6)

Then, in the kth cycle of Dykstra’s algorithm,

kx0 � x�k2 � ck : (7)

Moreover, at the limit when k goes to infinity, equality is
attained in (7).

Based on the previous theorem, let us now write ck as
follows:

ck D ckL C ckS ;

where

ckL D
kX

mD1

cmI ; (8)

cmI D
pX

iD1

kym�1i � ymi k
2 (9)

and

ckS D 2
k�1X
mD1

pX
iD1

hymi ; x
mC1
i � xmi i :

Both ckL and ckS are monotonically nondecreasing by
definition. Moreover in [6], the following theorem is
also established.

Theorem 3 Consider the sequences fxk
i g and fy

k
i g gen-

erated by (3), and ck, ckL and ckI as defined in (6), (8)
and (9), respectively. For any k 2 N , if xk ¤ x� then
ckC1
I > 0 and, hence, ckL < ckC1

L and ck < ckC1.

The results established in Theorems 2 and 3 are com-
bined in [6] to propose robust stopping criteria. No-
tice that fckLg and {c

k} are monotonically increasing and

convergent, and also that fckI g converges to zero. There-
fore we can stop the process when

ckI D
pX

iD1

kyk�1i � yki k
2 � "

or, similarly, when

ck � ck�1 D ckI C 2
pX

iD1

hyk�1i ; xk
i � xk�1

i i � " ; (10)

where " > 0 is a sufficiently small tolerance. As ck may
grow fast, computing ck � ck�1 may give inaccurate re-
sults due to loss of accuracy in floating point represen-
tation and, hence, cancellation. So, for the criterion in
(10), it is recommendable to test convergence with the
second expression.

The computation of ckI involves the squared-norm
kyk�1i �yki k

2, for i D 1; 2; : : : ; p. By (5), yki D yk�1i Cv,
where v D xk

i � xk
i�1 is a temporary n-dimensional ar-

ray needed in the computation of Dykstra’s algorithm.
So, the computational cost involved in the calculation
of ckI is just the cost of the extra inner product hv; vi at
each iteration.

The computation of ck involves the calculation of
ckI plus an extra term. The computational of this extra
term is also small and involves an inner product and the
difference of two vectors per iteration. But, in contrast
with the computation of ckI which does not require ad-
ditional savings, the computation of the extra term re-
quires to save p extra n-dimensional arrays (the same
amount of memory required in Dykstra’s algorithm to
save the increments). So, the computation of ck requires
some additional calculations and memory savings, and
hence it is more expensive. However, it also has the ad-
vantage of revealing the optimal distance: kx0 � x�k2,
that could be of interest in some applications.

We close this section with some comments con-
cerning the behavior of the stopping criteria when the
problem is not feasible. In this case (˝ D ;), there
is no solution and we know from Theorem 3 that the
sequences fckLg and fc

kg are monotonically increas-
ing. Moreover, under some mild assumptions on the
sets ˝i , the sequences fxk

i g converge for 1 � i �
p, and there exists a real constant ı > 0 such thatPp

iD1 kx
k
i�1 � xk

i k
2 � ı for all k. A discussion on this

topic is presented in [2, Section 6], including a notion
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of distance between all the sets ˝i (see also [37]). Now
using (5), we obtain

pX
iD1

kxk
i�1 � xk

i k
2 D

pX
iD1

kyk�1i � yki k
2 D ckI :

Therefore, the sequence fckI g remains bounded away
from zero, whereas fckLg and {ck} tend to infinity. Con-
sequently, none of the proposed stopping criteria will
be satisfied for any k, as expected.
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Dynamic programming deals with optimal decision
making problems in the presence of uncertainty that
addresses systems in which events occur sequential. In
general the state transitions are described by stationary
dynamic systems of the form:

xkC1 D f (xk; uk; !k ); k D 0; : : : ;

where for each time instance (stage) k, the state of the
system is an element of the space S, the control ac-
tion u that is to be implemented so as to achieve op-
timality belong to a space C, and finally the uncertainty
is modeled through a set of random disturbances !
that belong to a countable set D. Furthermore, it is as-
sumed that the control uk is constrained to take values
in a given nonempty set U(xk) 2 C, which depends of
the current state xk. The random disturbances !k, k =
0, . . . , have identical statistics and the probability distri-
butions P(�jxk; uk) are defined onD. These may depend
explicitly on xk and uk but not on prior disturbances.
Given an initial state x0, we seek a policy 
 such that 

= {�0, �1, . . . } for which:

�k : S ! C !; �k(xk) 2 U(xk); 8xk 2 S;

that minimizes a cost function defined as:

J� (x0) D lim
N!1

E

( N�1X
kD1

˛k g(xk ; �k(xk); !k )

)
:

The function g() is the cost per stage such that: g: S ×
C × D! R and is assumed to be given. Finally, the pa-
rameter ˛ is termed discount factor and it holds that: 0
< ˛ � 1. We denote by ˘ the set of all admissible poli-
cies 
 = {�0, �1, . . . }, that is the set of all sequences of
such functions for which:

�k : S ! C; �k(xk) 2 U(xk); 8xk 2 S:

The optimal cost function J� is then defined as:

J� D min
�2˘

J� (x); x 2 S:

An admissible policy of the form 
 = {�, �, . . . } is
termed stationary and its corresponding cost is J
.

When studying problems of this kind the assump-
tion is made that either the discount factor is ˛ < 1
(discounted problems, [3]) or that naturally there ex-
ists a special cost-free absorbing state (stochastic short-
est path problems, [3]). In either of these two cases the
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total expected cost is finite, and the minimization, the
way it was previously stated, is well defined. In situa-
tions where either the discount factor is 1, or a terminal
state does not exist it is more meaningful to optimize an
average expected cost as:

J� (x0) D lim
N!1

1
N
E

( N�1X
kD0

g(xk; uk ; !k)

)
:

The problems are known as average cost per stage prob-
lems and although they bare various similarities with
both discounted and stochastic shortest path problems,
they have some distinct characteristics. One of the ear-
liest studies was that of D. Blackwell, [7], which made
the connection between the optimal average return and
the optimal return for values of ˛! 1. Precisely these
characteristics make the analysis of average cost per
stage problems the target of intense research, [1]. Con-
nections are made, for developing the associated the-
ory, with both the associated discounted problem, but
also recently with an associated stochastic shortest path
problem, [4].

Since the theory for analyzing average cost dynamic
programming problems has been largely based on the
associated theory for discounted and stochastic shortest
path problems, most of the results and computational
methods bare major similarities. As a prelude to what
follows, it should be pointed out that for the average
cost per stage problems:
1) the optimal average cost per stage is independent of

the initial state for most problems;
2) Bellman’s equationwill take a slightly modified form

that would include differential cost for each state;
3) there exist computational analogues of all methods

developed for either discounted or stochastic short-
est path problems.

The cost function of average cost per stage problems are
closely related the associated ˛-discounted problem for
a given stationary policy as follows:
� For any stationary policy� and for any ˛ 2 (0, 1) we

have:

J˛;
 D (1 � ˛)�1 J
 C h
 C O(j1 � ˛j);

where

J
 D

 
lim
n!1

1
N

N�1X
kD1

Pk



!
g


is the average cost corresponding to policy �, for

a process with a transition probability matrix P
 and
costs g
. The matrix O is such that: lim˛! 1 O(|1�
˛|) = 0, and the vector h
 satisfies: J
 + h
 = g
 +
P
h
.

In the above, the matrix P
 is the transition probability
matrix for a given stationary policy �, given by:

P
 D

0
@
p11(�(1)) � � � p1n(�(1))
� � � � � � � � �

pn1(�(1)) � � � pnn(�(n))

1
A

and g
 the associated cost vector:

g
 D

0
@
g(1; �(1))
� � �

g(n; �(n))

1
A :

The vector h
 is termed differential cost vector, and it
represents the difference in N-stage expected optimal
cost due to starting at stage i rather than starting at
stage j. The key optimality results irrespective of ini-
tial states is based on ideas first formulated in [6]. An
important element of this analysis is that of a unichain
policy. Given a stationary-state Markov chain, [10], the
subset of states that communicate, i. e., there exist tran-
sitions k1 and k2 for which state transitions probabilities
pk1i j and pk2ji are positive, is termed a recurrent class of
states. States that do not belong to a recurrent class are
termed transient. A stationary policy whose associated
Markov chain has a single recurrent class and a possi-
bly empty set of transient states is called unichain. In
view of the above, the form of the Bellman’s equation
for characterizing an optimal policy, [9], for the aver-
age cost per stage problem takes the following from:
� Assume that any of the following conditions hold:

1) Every policy that is optimal within the class of
stationary policies is unichain.

2) For every two states i and j, there exists a station-
ary policy 
(i, j), such that for some k:

P(xk D jjx0 D i; 
) > 0:

3) There exist a state t, a constant L > 0, and ˛ 2
(0; 1) such that:

jJ˛(i) � J˛(t)j � L;

i D 1; : : : ; n;

˛ 2 (˛; 1);

where J˛ is the ˛-discounted optimal cost vector.
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Then:

1) The optimal average cost per stage cost has the
same value, �, for all intimal states, and it satis-
fies:

� D lim
˛!1

(1 � ˛)J˛(i);

i D 1; : : : ; n:

2) For any state t, the vector of differential cost, h is
given by:

h(i) D lim
˛!1

(J˛(i) � J˛(t));

i D 1; : : : ; n;

together with �, satisfies Bellman’s equation:

�C h(i)

D lim
u2U(i)

2
4g(i; u)C

nX
jD1

pi j(u)h( j)

3
5 ;

i D 1; : : : ; n;

and � is the optimal average cost per stage for all
states i, i. e.,

� D J�(x) D min
�

J� (i);

i D 1; : : : ; n:

The above result is also discussed in [2] where the
minimization of an expected cost without discounting
is considered. All classical methods for computing op-
timal policies and costs in dynamic programming have
their counterparts for addressing average cost per stage
problems. Certain alterations are nevertheless neces-
sary. Let us consider first the value iterationmethod ex-
haustively analyzed in [11,12]. This is a method based
on the premise that the limit of steps of the basic dy-
namic programming algorithm:

lim
k!1

1
k
Tk J D J�:

Two issues arise with average cost per stage problems.
First, some elements of the sequence TkJ may diverge
to +1 or �1making the numerical calculation trou-
blesome. Furthermore, since we found that the quantity
described as the differential cost is important it would

be appropriate to develop methods that allow the paral-
lel computation of h as well. [14] developed the funda-
mentals based on which a relative value iteration of the
form:

hkC1(i) D (Thk)(i) � (Thk)(t);
i D 1; : : : ; n;

for some fixed state t, converges to vector h such that
(Th)(t) is equal to the optimal average cost per stage for
all initial states, and h is the associated differential cost
vector. [3] discusses various technical details required
for proving convergence. Tight bounds that could im-
prove the computational behavior of the value iteration
method were proposed by [8] which modified the ap-
proach set forth in [14] to prove that upper and lower
bounds on the maximal gain could be readily obtained.
These are given according to:

ck � ckC1 � � � ckC1 � ck;

where � is the optimal average cost per stage for all ini-
tial states and

ck D min
i
[(Thk)(i) � hk(i)];

ck D max
i
[(Thk)(i) � hk(i)]:

Recently, [4], by exploiting the connection between the
average cost and the stochastic shortest path problem
developed a new value iteration method by making use
of weighter sup-norm contraction arising in the stochas-
tic shortest path problem. One of the key advantages
of this approach is that it admits a Gauss–Seidel im-
plementation, thus it is amenable to a distributed im-
plementation. Policy iteration methods can also be de-
veloped. The policy iteration algorithms generate se-
quences of stationary policies, each with improved cost
over the preceding one. These methods are comprised
of two basic steps, a policy evaluation and a policy im-
provement step. During the first step, for a given sta-
tionary policy, �k, we obtain the corresponding aver-
age and differential costs via the solution of the follow-
ing system of equations which solution provides the kth
iterate of �, and h:

�k C hk(i) D g(i; �k (i))C
nX

jD1

pi j(�k(i))hk( j);

j D 1; : : : ; n:
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The policy improvement step, consists of finding a pol-
icy �k + 1, where for all state i, is such that:

g(i; �kC1(i))C
nX
jD1

pi j(�kC1(i))hk( j)

D min
u2U(i)

2
4g(i; u)C

nX
jD1

pi j(u)hk( j)

3
5 :

In [7], the scope of policy iteration is expanded so as
to address problems in which the optimal average cost
per stage is not the same for every initial state. It can
also be shown, [3], that the optimal vector (��, h�) is
equivalent to the optimal solution of the following lin-
ear program:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max �

s.t. �C h(i) � g(i; u)C
nX

jD1

pi j(u)h( j)

u 2 U(i)
i D 1; : : : ; n:

In [9] the dual problem of the above-mentioned formu-
lation is considered, whose optimal value is the optimal
value of the primal problem. The form of the dual is:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
nX

iD1

X
u2U(i)

q(i; u)g(i; u)

s.t.
X

u2U(i)

q( j; u) D
nX

iD1

X
u2U(i)

q(i; u)pi j(u)

j D 1; : : : ; n
nX

iD1

X
u2U(i)

q(i; u) D 1

q(i; u) � 0; i D 1; : : : ; n
u 2 U(i):

Simulation-based methods are presented in [3,5] that
use the basic concepts of Monte-Carlo simulation as
well as ideas of reinforcement learning, [13].
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Many of the data analysis tasks that arise in the field of
classification and clustering can be given some type of
combinatorial characterization that involves the iden-
tification of object groupings, partitions, or sequences.
These combinatorial structures are generally defined by
certain properties of optimality for some loss (or merit)
criterion based on data given in the form of an n × n
symmetric proximity matrix P between distinct pairs of
objects from a set S = {O1, . . . , On}. The focus of this
entry will be solely in this context and the use of a gen-
eral optimization strategy referred to as theGeneral Dy-
namic Programming Paradigm (GDPP), which allows
the construction of recursive procedures to solve a range
of combinatorial optimization tasks encountered in the
field of classification and clustering. The GDPP will be
presented in a general form below with later sections
indicating how it can be operationalized for a number

of specific problem types. For a more extensive presen-
tation of the topics introduced in this entry and for gen-
eralizations to proximity matrices that may not be sym-
metric or that are defined between objects from (two)
distinct sets, the monograph [12] should be consulted.
This latter source also provides numerical illustrations
for the topics introduced here plus instructions on how
to obtain a collection of programs (available on the
World Wide Web) to carry out the various optimiza-
tion tasks presented in this entry and [12]. For a recent
and comprehensive review of cluster analysis and the
use of mathematical programming techniques in gen-
eral, see [7].

The GDPP

To present the GDPP, a collection of K sets of entities is
first defined, ˝1, . . . , ˝K , where it is possible by some
operation to transform entities in˝k�1 to certain enti-
ties in˝k for 2 � k � K. Each such transformation can
be assigned a merit (or cost) value based only on the
entity in ˝k�1 and the transformed entity in ˝k. An
entity in˝k is denoted by Ak, and F(Ak) is the optimal
value that can be assigned toAk based on the sum of the
merit (or cost) increments necessary to transform an
entity in˝1, step-by-step, to Ak 2 ˝k. If Ak�1 2 ˝k� 1

can be transformed into Ak 2 ˝k, the merit (or cost)
of that single transition will be denoted byM(Ak�1, Ak)
(or C(Ak�1, Ak)), and where the latter does not depend
on how Ak�1 may have been arrived at starting from an
entity in˝1. Given these conditions, and assuming the
values F(A1) for A1 2 ˝1 are available to initialize the
recursive system, F(Ak) may be constructed for k = 2,
. . . , K (when merit is to be maximized) as

F(Ak) D max[F(Ak�1)CM(Ak�1;Ak)];

where Ak 2 ˝k, Ak�1 2 ˝k� 1, and the maximum is
taken over all Ak�1 that can be transformed into Ak. Or,
if cost is to be minimized,

F(Ak) D min[F(Ak�1)C C(Ak�1;Ak)]:

In addition, both max/min and min/max forms could
be considered as:

F(Ak) D max[min(F(Ak�1);M(Ak�1;Ak))];

F(Ak) D min[max(F(Ak�1);C(Ak�1;Ak))]:
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The leading maximization or minimization is over all
Ak�1 2˝k�1 that can be transformed into Ak. In all in-
stances, an optimal solution is identified by some value
for F(AK) for a specific AK 2 ˝K , and the actual opti-
mal solution obtained by working backwards through
the recursion to see how F(AK) was constructed.

Partitioning

The most direct characterization of the partitioning
task can be stated as follows: given S = {O1, . . . , On}
and P = {pij}, find a collection of M mutually exclusive
and exhaustive subsets (or clusters) of S, say, S1, . . . ,
SM , such that for some measure of heterogeneity H(�)
that attaches a value to each possible subset of S, ei-
ther the sum

PM
mD1 H(Sm), or alternatively, max[H(S1),

. . . ,H(SM)], is minimized. This stipulation assumes that
heterogeneity has a cost interpretation and that smaller
values of the heterogeneity indices represent the‘better’
subsets (or clusters). IfH(Sm) for some Sm � S depends
only on those proximities from P that are within Sm
and/or between Sm and S � Sm, an application of the
GDPP is possible. Define K to beM, and let each of the
sets˝1, . . . ,˝M contain all of the 2n� 1 nonempty sub-
sets of the n object subscripts; F(Ak) is the optimal value
for a partitioning into k classes of the object subscripts
present in Ak. A transformation of an entity Ak�1 2

˝k�1 to Ak 2 ˝k is possible if Ak�1 � Ak, with cost
C(Ak�1, Ak)�H(Ak � Ak�1). Thus, beginning with the
heterogeneity indicesH(A1) for every subset A1 � S, the
recursion can be carried out, with the optimal solution
represented by F(AM) when AM = S.

The first discussion of this general type of recur-
sive solution for the partitioning task was in [14] but
limited to one specific measure of subset heterogeneity
defined by the sum of proximities within a subset di-
vided by twice the number of objects in the subset. If
the original proximities in P happened to be squared
Euclidean distances between numerically given vectors
(or profiles) for the n objects over some set of vari-
ables, then this subset heterogeneity measure is equiv-
alent to the sum of squared Euclidean distances be-
tween each profile and the mean profile for the subset
(this quantity is usually called the sum of squared er-
ror or the k-means criterion, e. g., see [16], p. 52) A ma-
jor advantage of the GDPP formulation is that a vari-
ety of heterogeneity measures can be considered under

a common rubric, with the sole requirement that the
measure chosen be dependent only on the proximities
within a subset and/or between the subset and its com-
plement. For example, in [12] some twelve different al-
ternatives are illustrated using a program implemen-
tation that can effectively deal with object set sizes in
their lower 20’s with the type of computational equip-
ment and storage capacity now commonly available. As
noted in a later section, it is also possible to extend the
GDPP heuristically to allow for much larger object set
sizes, although an absolute guarantee of globally opti-
mality for the identified structures is sacrificed.

Admissibility Restrictions on Partitions

A specific restriction discussed at some length in the
literature (see [8, Chapt. 5], [16, pp. 61–64], [6]) that
would permit the construction of optimal partitions
(subject to the restriction) for very large object sets is
when there is an a priori assumed object ordering along
a continuum that can be taken without loss of general-
ity asO1 � � � � �On, and the only admissible clusters are
those for which the objects in the cluster form a consec-
utive sequence or segment. Thus, an optimal partition
will consist of M clusters, each of which defines a con-
secutive segment along the given object ordering. To
tailor the GDPP to a consecutive-ordering admissibility
criterion, each of the sets˝1, . . . ,˝M is now defined by
the n subsets of S that contain the objects {O1, . . . , Oi}
for 1� i� n; F(Ak) is the optimal value for a partition-
ing of Ak into k classes; a transformation of an entity
Ak�1 2 ˝k�1 to Ak 2 ˝k is possible if Ak�1 � Ak; and
the cost of the transition is H(Ak�Ak�1), where Ak�

Ak�1 must contain a consecutive sequence of objects.
Again, F(AM) for AM = S identifies an optimal solution.

The selection of some prespecified ordering that
constrains admissible clusters in a partition obviously
does not lead necessarily to the same unconstrained op-
timal partitions, even though the identical subset het-
erogeneity measure and optimization criterion are be-
ing used. There are, however, several special instances
where the original proximity matrix P is appropri-
ately defined and/or patterned so that the imposition of
a particular order constraint does invariably lead to par-
titions that would also be optimal even when no such
order constraint was imposed. One such result dates
back toW.D. Fisher [6] who showed that when proxim-
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ities are squared differences between the values on some
(unidimensional) variable, and the order constraint is
derived from the ordering of the objects on this vari-
able, then the selection of the sum of squared error as
the subset heterogeneity measure, and minimizing this
sum as an optimization criterion, leads to partitions
that are not only optimal under the order constraint
but also optimal when unconstrained, i. e., an uncon-
strained optimal partition will include only those sub-
sets defined by objects consecutive in the given order.
(The subset heterogeneity measure in this unidimen-
sional case reduces to the sum of squared deviations of
the univariate values for the objects from their mean
value within the subset.) A more general result appears
in [3] where the special case is discussed when a prox-
imity matrix P can be row- and column-reordered to
display an anti-Robinson form (a matrix pattern first
introduced in [15]). As stated more formally below,
a matrix has an anti-Robinson form if the entries within
each row and column of P never decrease whenmoving
away from a main diagonal entry in any direction. For
certain subset heterogeneity measures and optimiza-
tion criteria, imposing the order constraint that displays
the anti-Robinson pattern in the row- and column-
reordered proximity matrix leads to partitions that are
also optimal when unconstrained.

The choice of an ordering that can be imposed
to constrain the search domain for optimal partitions
could be directly tied to a task, discussed later, of find-
ing an (optimal) sequencing of the objects along a con-
tinuum. Somewhat more generally, one possible data
analysis strategy for seeking partitions as close to opti-
mal as possible, would be to construct an object order-
ing through an initial optimization process, and pos-
sibly one based on another analysis method that could
then constrain the domain of search for an optimal par-
tition. Obviously, if one were successful in generating
an appropriate object ordering, partitions that would
be optimal when constrained would also be optimal
without the constraint. The obvious key here is to have
some mechanism for identifying an appropriate order
to give this possible equivalence (between an optimal
constrained partition and one that is optimal without
constraint) a chance to succeed. As one example of
how such a process might be developed for constructing
partitions based on an empirically generated ordering
for the objects, a three-stage process is proposed in [1]

and [2]. First, the objects to be partitioned are embed-
ded in a Euclidean representation with a specific multi-
dimensional scaling strategy. Second, by heuristic meth-
ods, a path among the n objects in the Euclidean repre-
sentation is identified (hopefully, with close to minimal
length) and used to define a prior ordering for the ob-
jects and to constrain the subsets present in a partition.
Finally, a recursive strategy of the same general form
just described is carried out to obtain a partitioning of S.

Hierarchical Clustering

The problem of hierarchical clustering will be charac-
terized by the search for an optimal collection of par-
titions of S, which are denoted generically as P1, . . . ,
Pn. Here, P1 is the (trivial) partition where all n objects
from S are placed into n separate classes, Pn is the (also
trivial) partition where a single subset contains all n ob-
jects, andPk is obtained fromPk�1 by uniting some pair
of classes present in Pk�1. As an optimization criterion
the sum of transition costs is minimized, irrespective of
how the costs might be defined, between successive par-
titions in a hierarchy. Specifically, suppose T(Pk�1, Pk)
denotes some measure of transition cost between two
partitions Pk�1 and Pk, where Pk is constructed from
Pk�1 by uniting two classes in the latter partition. An
optimal partition hierarchy P1, . . . , Pn will be one for
which the sum of the transition costs,

P
k>2 T(Pk�1,

Pk), is minimized. To apply the GDPP, first define n
sets˝1, . . . ,˝n, where˝k contains all partitions of the
n objects in S into n� k+ 1 classes. The value F(Ak) for
Ak 2˝k is the optimal sum of transition costs up to the
partition Ak; a transformation of an entity Ak�1 2˝k�1

to Ak 2 ˝k is possible if Ak is obtainable from Ak�1 by
uniting two classes in Ak�1, and has cost C(Ak�1, Ak)
� T(Ak�1, Ak). Beginning with an assumed value for
F(A1) of 0 for the single entity A1 2 ˝1 (which is the
partition of S into n subsets each containing a single
object), and constructing F(Ak) recursively for 2, . . . , n,
an optimal solution is identified by F(An) for the single
entity An 2˝n defined by the partition containing all n
objects in a single class.

A concept routinely encountered in discussions of
hierarchical clustering is that of an ultrametric, which
can be characterized by any nonnegative n × n symmet-
ric dissimilarity matrix for distinct pairs of the objects
in S, denoted generically asU = {uij}, where uij = 0 if and
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only if i = j and the entries in U satisfy the ultrametric
inequality: uij � max{uik, ujk} for 1 � i, j, k � n. Any
ultrametric identifies a specific partition hierarchy, P1,
. . . , Pn, where those object pairs defined between sub-
sets united in Pt�1 to form Pt all have a common ultra-
metric value; moreover, this latter value is not smaller
than those for object pairs defined within these same
subsets. One approach to the development of hierarchi-
cal clustering methods is by directly fitting an ultramet-
ric to P minimizing a loss criterion defined by an Lp-
norm between {pij} and a (to be identified) ultrametric
matrix {uij}. To be specific, for a given partition hierar-
chy, P1, . . . , Pn, let C(u)

t�1 and C
(v)
t�1 denote the two classes

united in Pt�1 to form Pt , and specify bt�1 to be some
appropriate aggregate (or ‘average’) value of the prox-
imities for object pairs between C(u)

t�1 and C
(v)
t�1. The loss

functions used to index the adequacy of a given parti-
tion hierarchy in producing an ultrametric fitted to P
are for the L1-norm:

nX
tD2

X

Oi02C
(u)
t�1;

O j02C
(v)
t�1

ˇ̌
pi 0 j0 � bt�1

ˇ̌
;

where bt�1 is the median proximity between C(u)
t�1 and

C(v)
t�1; for the L2-norm:

nX
tD2

X

Oi02C
(u)
t�1;

O j02C
(v)
t�1

(pi 0 j0 � bt�1)2;

where bt�1 is the mean proximity between C(u)
t�1 and

C(v)
t�1; and for the L1-norm:

nX
tD2

max
Oi02C

(u)
t�1;

O j02C
(v)
t�1

ˇ̌
pi 0 j0 � bt�1

ˇ̌
;

where bt�1 is the average of the minimum and maxi-
mum proximities between C(u)

t�1 and C(v)
t�1. For all three

Lp-norms, an optimal ultrametric will be one for which
the order constraint on the between-subset aggregate
values holds: b1 � � � � � bn�1, and the norm is mini-
mized. For such an optimal solution, b1, . . . , bn�1 de-
fine the distinct entries in an (optimal) fitted ultramet-
ric. To implement a dynamic programming approach
for locating an optimal ultrametric, C(Ak�1, Ak) is the
incremental cost of transforming Ak�1 to Ak character-

ized by the appropriate Lp-norm when that pair of sub-
sets in Ak�1 is united to form Ak. As developed in de-
tail in [11], an explicit admissibility criterion must also
be imposed for defining a permissible transition from
Ak�1 to Ak that could ensure a nondecreasing sequence
of between-subset aggregate values.

Constrained Hierarchical Clustering

Analogously to the admissibility conditions for parti-
tions, one constraint that might be imposed on each
partition in ˝k is for the constituent subsets to con-
tain objects consecutive in some given ordering (which
could be taken as O1 � � � � � On without loss of any
generality). Thus,˝k will be redefined to contain those
partitions that include n� k+ 1 classes, and where each
class is a segment in the given object ordering.

Optimal Sequencing of an Object Set

A combinatorial optimization task closely related to
both partitioning and hierarchical clustering is the
search for an optimal sequencing of the object set S
based on the proximity matrix P. A best reordering is
sought for the rows and columns of P that will opti-
mize, over all possible row/column reorderings, some
specified measure of patterning for the entries of the re-
ordered matrix. Irrespective of the particular measure
chosen, the GDPP is specialized as follows: A collec-
tion of sets ˝1, . . . , ˝n is defined, where ˝k includes
all the subsets that have kmembers from the integer set
{1, . . . , n}. The value F(Ak) is the optimal contribution
to the total measure of matrix patterning for the ob-
jects in Ak when they occupy the first k positions in the
(re)ordering. A transformation is now possible between
Ak�1 2˝k�1 and Ak 2˝k if Ak�1 � Ak (i. e., Ak�1 and
Ak differ by one integer). The contribution to the total
measure of patterning generated by placing the single
integer inAk�1�Ak at the kth order position isM(Ak�1,
Ak). As always, the validity of the recursive process will
require the incremental merit index, M(Ak�1, Ak), to
depend only on the unordered setsAk�1 andAk, and the
complement S � Ak, and specifically not on how Ak�1

may have been obtained beginning with˝1. Assuming
F(A1) for all A1 2 ˝1 are available, the recursive pro-
cess can be carried out from ˝1 to ˝n, with F(An) for
the single set An = {1, . . . , n} 2˝n defining the optimal
value for the specified measure of matrix patterning.
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Two general classes of measures of matrix pattern-
ing are mentioned here. The first is a row and col-
umn gradient index motivated by the ideal of reorder-
ing a symmetric proximity matrix to have an anti-
Robinson form (and which is the same structure noted
briefly in the clustering context when an optimal order-
constrained partition might also be optimal when un-
constrained). Specifically, suppose �(�) is some permu-
tation of the first n integers that reorders both the rows
and columns of P (i. e., P� � {p�(i)�(j)}). As noted ear-
lier, the reordered matrix P� is said to have an anti-
Robinson form if the entries within the rows and within
the columns of P� moving away from the main diag-
onal in any direction never decrease; or formally, two
gradient conditions must be satisfied:
� within rows: p�(i)�(k) � p�(i)�(j) for 1 � i < k < j � n;
� within columns: p�(k)�(j) � p�(i)�(j) for 1 � i < k <

j � n.
It might be noted that whenever P is an ultrametric, or
if P has an exact Euclidean representation in a single di-
mension (i. e., P = {|xj � xi|}, for some collection of co-
ordinate values, x1, . . . , xn), then P can be row/column
reordered to display a perfect anti-Robinson pattern.
Thus, the notion of an anti-Robinson form can be in-
terpreted as generalizing either a perfect discrete clas-
sificatory structure induced by a partition hierarchy
(through an ultrametric) or as the pattern expected in P
if there exists an exact unidimensional Euclidean repre-
sentation for the objects in S. In any case, if a matrix can
be row/column reordered to display an anti-Robinson
form, then the objects are orderable along a continuum
so that the degree of separation between objects in the
ordering is reflected perfectly by the dissimilarity infor-
mation in P, i. e., for the object ordering, O�(i) � O�(k)
� O�(j) (for i < k < j), p�(i)�(k) � p�(i)�(j) and p�(k)�(j) �
p{�(i)�(j).

A natural (merit) measure of how well a reordered
proximity matrix P� satisfies these two gradient con-
ditions would rely on an aggregate index of the vio-
lations/nonviolations over all distinct object triples, as
given by the expression:

X
i<k< j

f (p�(i)�(k); p�(i)�( j))

C
X
i<k< j

f (p�(k)�( j); p�(i)�( j)); (1)

where f (�, �) is some function indicating how a viola-
tion/nonviolation of a particular gradient condition for
an object triple within a row or within a column (and
defined above the main diagonal of P�) is to be counted
in the total measure of merit. The one option concen-
trated on here will be f (z, y) = sign(z � y) = + 1 if z >
y; 0 if z = y; and � 1 if z < y; thus, the (raw) number
of satisfactions minus the number of dissatisfactions of
the gradient conditions within rows above the main di-
agonal of P� is given by the first term in (1), and the
(raw) number of satisfactions minus dissatisfactions of
the gradient conditions within columns above the main
diagonal of P� is given by the second term. To carry
out the GDPP based on the measure in (1), an explicit
form must be given for the incremental contribution,
M(Ak�1, Ak), to the total merit measure of patterning
generated by placing the single integer Ak� Ak�1 at the
kth order position. For any ordering �(�) of the rows
and columns of P, the merit increment for placing an
integer, say, k0 (� �(k)) (i. e., {k0} = Ak� Ak�1) at the
kth order position can be defined as

Pn
kD1 Irow(�(k)) +Pn

kD1 Icol�(k)), where

Irow(�(k)) D
X

i 02Ak�1

X
j02S�Ak

f (pi 0k0 ; pi 0 j0 );

Icol(�(k)) D
X

i 02Ak�1

X
j02S�Ak

f (pk0 j0 ; pi 0 j0 );

and Ak�1 = {�(1), . . . , �(k�1)}, S � Ak = {�(k+1), . . . ,
�(n)}. Thus, letting F(A1) = 0 for all A1 2 ˝1, and
using the specification for f (�, �) suggested above, the
recursion can be carried out to identify an optimal
row/column reordering of the given proximity matrix P
to maximize this gradient measure over all row/column
reorderings of P.

A second class of measures of matrix patterning can
be derived indirectly from the auxiliary problem of at-
tempting to fit a given proximity matrix P by some type
of unidimensional scaling representation (i. e., a seri-
ation). Suppose the search is for a set of n ordered coor-
dinate values, x1 � � � � � xn (such that

P
k xk = 0), and

a permutation �(�) to minimize the least squares crite-
rion

X
i< j

(p�(i)�( j) �
ˇ̌
x j � xi

ˇ̌
)2:
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After some algebraic reduction (see [5]), this latter least
squares criterion can be rewritten as

X
i< j

p2i j

Cn
X
k

[xk�
�
1
n

�
G(�(k))]2�

1
n

X
k

[G(�(k))]2;

where

G(�(k)) D
k�1X
iD1

p�(k)�(i) �
nX

iDkC1

p�(k)�(i):

If the measure
nX

kD1

[G(�(k))]2 (2)

is maximized over all row/column reorderings of P,
and denoting the optimal permutation by ��(�), then
G(��(1)) � � � � � G(��(n)), and the optimal coordi-
nates can be retrieved as xk = (1/n)G(��(k)), for 1 �
k � n. To execute the GDPP recursion using (2), the
merit increment for placing the integer, say k0 (� �(k))
(i. e., {k0} = Ak � Ak�1) in the kth order position can be
written as [G(�(k))]2, where

G(�(k)) D
X

i 02Ak�1

pk0 i 0 �
X

j02S�Ak

pk0 j0 ;

with Ak�1 = {�(1), . . . , �(k�1)}, S � Ak = {�(k+1), . . . ,
�(n)}, and F(A1) for A1 = {k0} 2˝1 defined by

0
@ X

j02S�fk0g

pk0 j0

1
A

2

:

Optimal Sequencing Based on the Construction
of Optimal Paths

To tailor the GDPP (and for the moment emphasizing
the minimization of the sum of adjacent object prox-
imities in constructing a path among the objects in S),
a collection of sets ˝1, . . . , ˝n is defined so that each
entity in ˝k, 1 � k � n, is now an ordered pair (Ak,
jk). Here, Ak is a k element subset of the n subscripts
on the objects in S, and jk is one subscript in Ak (to be
interpreted as the subscript for the last-placed object in
a sequencing of the objects contained within Ak). The

function value F((Ak, jk)) is the optimal contribution to
the total measure of matrix patterning for the objects in
Ak when they are placed in the first k positions in the
(re)ordering, and the object with subscript jk occupies
the kth. A transformation is possible between (Ak�1,
jk�1) 2 ˝k�1 and (Ak, jk) 2 ˝k if Ak�1 � Ak and Ak

� Ak�1 = {jk} (i. e., Ak�1 and Ak differ by the one in-
teger jk). The cost increment C((Ak�1, jk�1), (Ak, jk)) is
simply p( jk�1) jk for the contribution to the total mea-
sure of patterning generated by placing the object with
the single integer subscript in Ak � Ak�1 at the kth or-
der position (i. e., the proximity between the adjacently-
placed objects with subscripts jk�1 and jk). The type of
GDPP recursion used for the construction of optimal
linear paths can be modified easily for the construction
of optimal circular paths: choose object O1 as an (arbi-
trary) origin and force the construction of the optimal
linear paths to include O1 as the initial object by defin-
ing F((A1, j1)) = 0 for j1 = 1 and A1 = {1}, and otherwise
by a very large positive or negative value (depending on
whether the task is a minimization or a maximization,
respectively). The function values F((An, jn)) for all jn,
1� jn � n for (An, jn) 2˝n and An = {1, . . . , n} can then
be used to obtain the optimal circular paths depending
on the chosen optimization criteria as follows:
� minimum path length:

min[F((An; jn))C p jn1];

� maximum path length:

max[F((An; jn))C p jn1];

� minimax path length:

min[max(F((An; jn)); p jn1)];

� maximin path length:

max[min(F((An; jn)); p jn1)]:

For the first discussions in the literature on construct-
ing optimal paths through DP, see [4,9]; for applica-
tions to a variety of data analysis tasks, see [13].

Optimal Ordered Partitions

The task of constructing an ordered partition of an ob-
ject set S = {O1, . . . ,On} intoM ordered classes, S1 � � � �
� SM , using some (merit) measure of matrix patterning
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and a proximity matrix P, can be approached through
the GDPP recursive process applied to the partition-
ing task but with appropriate variation in defining the
merit increments. Explicitly, the sets ˝1, . . . , ˝M will
each contain all 2n� 1 nonempty subsets of the n ob-
ject subscripts; F(Ak) for Ak 2 ˝k is the optimal value
for placing k classes in the first k positions, and the sub-
set Ak is the union of these k classes. A transformation
from Ak�1 2˝k�1 to Ak 2˝k is possible if Ak�1 � Ak;
the merit increment M(Ak�1, Ak) is based on placing
the class Ak�1 � Ak at the kth position (which will de-
pend on Ak�1, Ak, and S� Ak). Beginning with F(A1)
for all A1 2 ˝1 (i. e., the merit of placing the class A1

at the first position), the recursion proceeds from˝1 to
˝M, with F(AM) forAM = S 2˝M defining the optimal
merit value for an ordered partition intoM classes.

To generalize the gradient measure given in (1), the
merit increment for placing the class Ak� Ak�1 at the
kth order position is Irow(Ak� Ak�1) + Icol (Ak�Ak�1),
where

Irow(Ak � Ak�1)

D
X

i 02Ak�1

X
k02Ak�Ak�1

X
j02S�Ak

f (pi 0k0 ; pi 0 j0 );

and

Icol(Ak � Ak�1)

D
X

i 02Ak�1

X
k02Ak�Ak�1

X
j02S�Ak

f (pk0 j0 ; pi 0 j0 ):

To initialize the recursion, let F(A1) = 0 for all A1 2˝1.
A merit measure based on a coordinate representa-

tion for each of the M ordered classes, S1 � � � � � SM ,
that generalizes (2) can also be developed directly. Here,
M coordinates, x1 � � � � � xM , are to be identified so
that the residual sum-of-squares

X
k�k0

X
ik2Sk ;
jk02Sk0

(pik jk0 � jxk0 � xkj)2;

is minimized (the notation pikjk0) indicates those prox-
imities in P defined between objects with subscripts ik
2 Sk and jk0M 2 Sk0). A direct extension of the argument
that led to optimal coordinate representation for single
objects would require the maximization of

MX
kD1

�
1
nk

�
(G(Ak � Ak�1))2; (3)

where

G(Ak � Ak�1)

D
X

k02Ak�Ak�1

 X
i 02Ak�1

pk0 i 0 �
X

i 02S�Ak

pk0 i 0

!
;

and nk denotes the number of objects in Ak � Ak�1.
Themerit increment for placing the subset Ak �Ak�1 at
the kth order position would be (1/nk)(G(Ak � Ak�1))2,
with the recursion initialized by

F(A1) D
�

1
n1

� X
k02A1

X
i 02S�A1

pk0 i 0

!2

;

for all A1 2 ˝1. If an optimal ordered partition that
maximizes (3) is denoted by S�1 � � � � � S�M , the opti-
mal coordinates for each of the M classes can be given
as

x�k D
�
1
n

�
(
G(S�k )
nk

);

where x�1 � � � � � x�M , and
P

knkx�k = 0. A more com-
plete discussion of constructing optimal ordered parti-
tions appears in [10].

Heuristic Applications of the GDPP

When faced with the task of finding a single optimal
partition for a (large) object set S, if one had knowl-
edge that for an optimal M-class partition the classes
could be allocated to two (or more) groups, then the
aggregate collections of the objects within these latter
groups could be separately and optimally partitioned
and an optimal M-class partition for the complete ob-
ject set identified directly. Or, if it were known that cer-
tain elemental subsets of the objects in S had to ap-
pear within the classes of an optimal M-class partition,
one could begin with these elemental subsets as the ob-
jects to be analyzed, and an optimal M-class partition
could again be retrieved. The obvious difficulty is to
identify either the larger aggregate groups that might
be dealt with separately, or an appropriate collection
of elemental subsets, and in a size and number that
might be handled by the recursive optimization strat-
egy. For the latter task of identifying elemental subsets,
one possible approach would be to begin with a parti-
tion of S into several classes (possibly obtained through
another heuristic process), and where each class con-
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tained a number of objects that could be optimally an-
alyzed. Based on these separate subset analyses, a (ten-
tative) collection of elemental subsets would be identi-
fied. These could then be used to obtain a subdivision
of S, and again within each group of this subdivision,
the objects could be optimally partitioned to generate
a possibly better collection of elemental subsets. This
process could be continued until no change occurred in
the particular elemental subsets identified. As an alter-
native, one could start with some collection of tentative
elemental subsets obtained through another (heuristic)
optimization strategy and try, if possible, to improve
upon these through the same type of procedure. This
latter approach is illustrated in [12]. Similarly, the tasks
of constructing a (hopefully optimal) partition hierar-
chy or object order for a (large) set could be approached
through the identification of a collection of elemental
subsets, which would then be operated on as the basic
entities for the generation of a partition hierarchy or an
object sequence.
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Even though dynamic programming [1] was originally
developed for systems with discrete types of decisions,
it can be applied to continuous problems as well. In this
article the application of dynamic programming to the
solution of continuous time optimal control problems
is discussed.

Problem Formulation

Consider the following continuous time dynamical sys-
tem:

(
ż(t) D f (z(t); u(t));
z(0) D z0; 0 � t � T;

(1)

where z(t) 2 Rn is the state vector at time t with time
derivative given by ż(t), u(t) 2 U � Rm is the control
vector at time t,U is the set of control constraints, and T
is the terminal time. The function f (z(t), u(t)) is contin-
uously differentiable with respect to z and continuous
with respect to u. The set of admissible control trajecto-
ries are given by the piecewise constant functions, {u(t):
u(t) 2 U, 8t 2 [0, T]}. It is assumed that for any admis-
sible control trajectory, that a state trajectory zu(t) ex-
ists and is unique. For a full treatment of existence and
uniqueness, see [4].

The objective is to determine a control trajectory
and the corresponding state trajectory whichminimizes
a cost function of the form:

h(zu(T))C
Z T

0
g(zu(t); u(t)) dt; (2)

where the functions g, and h are continuously differen-
tiable with respect to both z and u.

Example

As a simple example, consider the problem of moving
a unit mass from an initial point to a given final point.

The position of the mass along a line is given by the
state z1(t) and its velocity by z2(t). The control u(t) is
the force applied to the mass, and is bounded u(t) 2
[�1, 1]. This system is described by:

ż1(t) D z2(t); ż2(t) D u(t);

z(0) D [z1(0); z2(0)]; t 2 [0; T];

u(t) 2 [�1; 1]:

The objective is to move this mass as near to the final
state point, [z1; z2], as possible. This can be formulated
as the minimization of the square error at the final time
point.

min
u(t)

2X
iD1

(zi(T) � zi (T))2 :

Converting this cost function into the form given by
(2)) results in:

h(z(T)) D
2X

iD1

(zi (T) � zi (T))2 ;

g(zu(t); u(t)) D 0; 8t 2 [0; T]:

Hamilton–Jacobi–Bellman Equation

The time horizon is divided intoN equally spaced inter-
vals with ı = T/N. This converts the problem into the
discrete-time domain and the dynamic programming
approach can be applied. Once the approach is applied,
the result is converted back into the continuous-time
domain by taking the limit as ı ! 0. The result is the
following partial differential equation,

0 D min
u2U�

g(z; u)Crt J�(t; z)Crx J�(t; z)> f (z; u)
�
;

J�(T; z) D h(z); 8z;

(3)

where J�(t, z) is the optimal cost-to-go function. This
equation is called the Hamilton–Jacobi–Bellman equa-
tion. It is also referred to as the continuous-time analog
of the dynamic programming equation.

PontryaginMinimum Principle

It is possible to derive the Pontryagin minimum princi-
ple using the Hamilton–Jacobi–Bellman equation given
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above. Using the system given by (1), the classic princi-
ple results:

ṗ(t) D �rzH(z�(t); u
(t); p(t));

p(T) D rh(z�(T));

H(z�(t); u�(t); p(t))

D g(z�(t); u�(t))C p>(t) f (z�(t); u�(t));

u�(t) D argmin
u2U

H(z�(t); u(t); p(t));

where z�(t) and u�(t) are the optimal state and control
trajectories, respectively.

A more detailed description of these two results are
given in the following sections. For dynamic program-
ming and optimal control problems, see [2] as well as
the classic optimal control text [3].
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Dynamic programming addresses models of decision
making systems of an inherent sequential character.
The problem of interest is defined as follows. We con-
sider a discrete-time dynamic system:

xkC1 D f (xk; uk ; !k); k D 0; 1; : : : :
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The state transitions, f , that define the evolution of the
system from time k to time k + 1 depend on the current
state of the system, xk, external disturbances, !k, which
are considered to be random variables, and finally on
a set of control, or policy, actions, uk. The state of the
system, xk, k = 0, 1, . . . , is an element of a space S, the
control variables, uk, k = 0, 1, . . . , belong to space C, and
the random external disturbance belongs to a countable
space D. The control variables are such that: uk 2 U(xk)
� C, k = 0, 1, . . . , and depend on the current state xk, k
= 0, 1, . . . . The random disturbances, !k, k = 0, 1, . . . ,
have identical, known, distributions which depend on
the current state and control, P(!K | xk, uk). Note that
!k does not depend on previous values of the distur-
bances, but may depend explicitly on the values of xk,
and uk. Given an initial state x0, the problem is to find
a control law 
 = {�0, �1, . . . }, belonging to the set of
admissible policies, ˘ , which is the set of all sequences
of functions 
 = {�0, �1, . . . } with:

�k : S ! C; �x (xk) 2 U(xk);

8xk 2 S; k D 0; 1; : : : ;

that minimizes the cost functional:

J� (x0) D lim
N!1

E

( kDN�1X
kD0

˛k gk(xk; uk ; !k)

)
:

The optimal cost function J� is thus defined as:

J�(x) D min
�2˘

J� (x); x 2 S:

The cost, J� (x0), for any x0 2 S and a given policy 
 ,
represents the limit of the expected finite horizon costs
and these are well defined. The discounted problems
with bounded cost per stage are such that the following
assumption holds:

Assumption 1
1) 8(x, u, !) 2 S × C × D the functions defining the

cost per stage g are uniformly bounded:

0 � jgk(xk ; uk ; !k)j � M;

2) M 2 R, and 0 < ˛ < 1.

This type of problem was first address through the pi-
oneering work of D. Blackwell, [6]. The scalar, ˛, is

the discount factor, and the range of its admissible val-
ues implies that future costs matter less that costs in-
curring at the present time, particularly when the cost
per stage has a monetary interpretation. Mathemati-
cally, the presence of the discount factor guarantees the
finiteness of the cost functional provided that the per
stage costs are bounded uniformly. Furthermore, al-
though the assumption of an infinite number of stages
may never be satisfied in practice, it constitutes a rea-
sonable approximation for problems involving a large
number of stages. A rather typical example of a dis
counted infinite horizon dynamic problem is the so-
called asset selling problem where the reward for selling
a particular asset at a given time k diminishes as time
progresses.

For any function J: S ! R we define the operator
(T(�)) as:

(TJ)(x) D min
u2U(x)

Efg(x; u; !)C ˛J( f (x; u; !))g:

This is in essence the function obtained when apply-
ing the standard dynamic programming mapping to J.
Note that (TJ) represents essentially the optimal cost for
a one-stage problem that has stage cost g and terminal
cost ˛J. For this operator, it can be shown, [4], that:
� For any bounded function J, the optimal cost func-

tion satisfies:

J�(x) D lim
N!1

(TN J)(x); 8x 2 S:

In other words, the dynamic programming algorithm
converges to the optimal cost function. The above re-
sult relies on Assumption 1. It should be noted that the
operator (TJ) can be shown to be:
1) monotonic:

J(x) � J0(x) ) (Tk J)(x) � (Tk J0)(x)

for any functions J: S! R and J0: S! R and,
2) contractive:

max
x2S

ˇ̌
ˇ(Tk J)(x)� (Tk J0(x)

ˇ̌
ˇ

� ˛k max
x2S

ˇ̌
J(x)� J0(x)

ˇ̌

for any bounded functions J: S! R and J0: S! R.
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Both of these properties are important so as to show not
only theoretical convergence of the dynamic program-
ming algorithm but also to construct numerical solu-
tion schemes. Furthermore, the optimal cost function
J� can be shown to satisfy Bellman’s equation, i. e., 8x
2 S:

J�(x) D min
u2U(x)

Efg(x; u; !)C ˛J�( f (x; u; !))g;

in other words: J� = TJ�. This proposition essentially
defines the necessary and sufficient condition for the
optimality of a policy �, i. e. �(x) is optimal if and only
if it attains the minimum in Bellman’s equation for ev-
ery x 2 S.

For the case where the state, control and distur-
bance space are finite, i. e., each set has a definite num-
ber of elements which can be found in principle, [9],
several approaches exist for numerically solving the dis-
counted problemwith bounded cost per stage. It should
be pointed out that under these conditions the prob-
lem is equivalent to a finite-state Markov chain. The
first, value iteration, is based on a successive compu-
tation of TJ, T2J, . . . , since we know that limk ! 1

(TkJ) = J�. Recall that the operator (TJ) is defined as the
minimum over all possible disturbances with respect
to the controls. Therefore, asymptotically we approach
the optimal cost as well as the optima policy. Tight up-
per and lower bounds on the iterations can be derived,
[3,4], which substantially improve the convergence rate
of the successive approximations. More specifically, it
can shown that for every vector J, state i, and time k:

(Tk J)(i)C ck � J�(i) � (Tk J)(i)C ck;

where:

ck D
˛

1 � ˛
min

iD1;:::;n
[(Tk J)(i) � (Tk�1 J)(i)];

ck D
˛

1 � ˛
max

iD1;:::;n
[(Tk J)(i) � (Tk�1 J)(i)]:

In fact, these error bounds can be used so as to further
prove the finite convergence of the value iteration after
k < k0 steps, k0 2 N. It can also be observed that instead
of performing the value iteration simultaneously for
all policies, one can perform the iteration in a Gauss–
Seidel fashion, [10]. The contractive characteristics of
the operator (FJ) make it possible to develop similar
schemes. Instead of iterating on the operator (TJ), we

define a new sequence based on the operator (FJ):

(FJ)(1) D min
u2U(1)

2
4g(1; u)C ˛

NX
jD1

p1 j(u)J( j)

3
5 ;

(FJ)(i) D lim
u2U(i)

"
g(i; u)

C˛

i�1X
jD1

pi j(FJ)( j)C ˛
nX
jDi

pi j(u)J( j)

3
5 ;

i D 1; : : : ; n :

In fact, when the error bounds are not used, a very in-
teresting property can be shown, [4]:
� If J satisfies:

J(i) � (TJ)(i) � J�(i); i D 1; : : : ; n;

then:

(Tk J)(i) � (Fk J)(i) � J�(i);

i D 1; : : : ; n; k D 1; 2; : : : :

In other words, the Gauss–Seidel iteration converges
faster than the ordinary, i. e., Jacobi, value iteration. An
excellent treatment of the comparisons between Gauss–
Seidel and Jacobi iterations and their parallel imple-
mentation can be found in [14]. Although the value
iteration can be shown to be convergent even when
the state and control spaces are infinite, the actual im-
plementation can only proceed via approximations. In
other words, instead of actually computing TJ we can
only compute J0, such that: maxx 2 S|J0(x)�(TJ)(x)| �
�. For such approximate methods to be in order, we
do not necessarily need infinite spaces but even spaces
with a very large number of states in which the actual
computation is deemed inappropriate. Any function
J0 that satisfies the above criterion can in principle be
used. Details regarding discretization approaches and
computational techniques for addressing infinite state
spaces can be found in [2,11].

The value iteration, thus far presented, is based on
successive evaluations of the cost functions. Early on,
[1], it was suggested that an alternate approach is to
iterate on policies so as to generate sequences of sta-
tionary policies with improved, over the preceding one,
costs. This method is know as the policy iteration. The
method proceeds in three steps:



Dynamic Programming: Discounted Problems D 849

1) initialize control policy, u0.
2) given a stationary policy, �k, evaluate the cost func-

tion J
k by solving:

(I � ˛P
k )J
k D g
k :

3) Obtain a new policy such that it satisfies: T
kC1 J
k

= TJ
k .
In the above, the matrix P
 is the transition probability
matrix for a given stationary policy �, given by:

P
 D

0
@
p11(�(1)) � � � p1n(�(1))
� � � � � � � � �

pn1(�(1)) � � � pnn(�(n))

1
A

and g
 the associated cost vector:

g
 D

0
@
g(1; �(1))
� � �

g(n; �(n))

1
A :

Termination is detected once J
k = TJ
k , i. e., a fixed
point of the operator TJ has been identified. Notice that
because of the assumption that the policy space is finite,
the algorithm will terminate in a finite number of steps.
Similarly to the value iteration, infinite state and con-
trol spaces pause problems when implementing policy
iterations. Specifically, the policy evaluation and policy
improvement steps can only be performed via approxi-
mations.

In [5] an adaptive aggregation method is proposed
so as to address the issue of occasional slow conver-
gence. The fundamental premise is to lump states of
the original problem so as to generate a smaller dimen-
sion problem. In other words, the state space S is parti-
tioned into smaller-dimensional spaces as: S = S1 [ � � �
[ Sm. Given such a partitioning one can further define
the transition probabilities for the aggregate states as:

ri j D
X
s2Si

qis
X
t2S j

pst(�(s));

which is the probability that the next state will belong to
Sj given that the current state is Si. qij are the elements
of anm × nmatrix Q, such that qis 6D 0, if s 2 S.

Finally, [7], noticed that since in the limit J � J� =
TJ�, the optimal policy can be derived as the solution of

the following linear programming problem:
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

max
X
i2S

�i

s.t. �i � g(i; u)C ˛
nX

jD1

pi j(u)�i ;

u 2 U(i);
i D 1; : : : ; n:

In the above formulation pij(u) denote the transition
probabilities: pij(u) = { P(xk+1 = j| xk = i, uk = u)}, i,
j 2 S, u 2 U(i). These can either be given or derived
based on the discrete dynamic system, xk+1 = f (xk, uk,
!k), and the known probability distribution P(�|x, u) of
the input disturbance !k. Linear programming formu-
lations can also be used to derived cost and policy eval-
uation approximations. One possibility is to approxi-
mate J� by a set of known basis functions as: J0(x, r) =Pm

kD1 rk!k(x). The vector r is an m-dimensional vec-
tor of known parameters, and for each state x we have
chose a set of known scalars !k(x). The vector r can be
determined as the solution of:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
X
x2S0

J0(x; r)

s.t. J0(x; r) � g(x; u)C ˛
X
y2S

px y J0(y; r);

x 2 S0 � S;
u 2 U 0(x) � U(x):

Furthermore, the cost function J
 for a given policy
� can be approximated via linear programming for-
mulations by identifying a vector r so as to minimize:
maxx 2 S | J0(x, r)�J
(x)|. This can be shown, [4], to be
equivalent to solving:
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min z

s.t.

ˇ̌
ˇ̌
ˇJ
0(x; r) � g(x; �(x))

�˛
X
y2S

px y(�(x))J0(y; r)

ˇ̌
ˇ̌
ˇ̌ � z;

x 2 S0 � S:

Extensions of the general ideas are discussed in [12]
where work on including constraints in the general
formulation of the discounted dynamic programming
problem is presented. Furthermore, [8] expanded the
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scope of these models so as to address dynamic pro-
gramming optimization problems involving multiple
criteria by identifying the set of non-inferior, Pareto op-
timal, solutions.
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Dynamic programming deals with situations where op-
timal decisions are being sought in systems operating
in stages. Events occur in a specific order, such that the
decision at time k+ 1 depends on the state of the sys-
tem at time k. In general the key variables of the basic
formulation are as follows:
� k represents discrete time;
� xk represents the state of the system at time k;
� � (xk) represents the control, or decision, variable to

be selected at time k;
� !k represents a random disturbance occurring at

time k;
� N represents the time horizon.
Given the aforementioned variables, the basic dynamic
programming formulation requires the following in-
gredients:
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� a discrete-time dynamic system:

xkC1 D fk(xk; �k ; !k);

� an additive cost function of the form:

gN (xN)C
kDN�1X
kD1

gk(xk; �k ; !k);

where gk corresponds to the cost incurred at time k.
One is therefore wishing to identify that control policy,

 = {�0, . . . ,�N � 1, which minimizes the expected cost:

J�(x0) D min
�2˘

J� (x0)

D E

(
gN (xN)C

kDN�1X
kD1

gk(xk; �k ; !k )

)
:

The expectancy operator is needed since the presence of
the random parameters !k the cost function becomes
itself a random variable. As further complication, one
might also minimize the expected cost not only for
a given initial state of the system, x0, but also with re-
spect to all possible initial states.

Infinite horizon problems are further characterized
by the fact that the number of stages N is infinite. In
such a case, the cost functional over an infinite number
of stages for a given control policy 
 = {�0,�1, . . . }, and
initial state x0, is given by:

J� (x0) D lim
n!1

E

( kDN�1X
kD1

˛k gk(xk; �k ; !k)

)
:

The factor ˛ is termed discount factor and is a positive
scalar 0 < ˛ � 1 which simply implies that future costs
matter less than similar costs incurred at the present
time. Infinite horizon problems are by definition the
limit of the corresponding N-stage problem, as N !
1. Three points are pivotal in the analysis of infinite-
dimensional dynamic programming problems:
� The optimal cost for the infinite horizon is the limit

of the corresponding N-stage optimal cost, i. e., J� =
limN!1 JN .

� The optimal costs satisfy Bellman’s equation, i. e.,

J�(x) D min
u2U(x)

E fg(x; �;w)C J�( f (x; �;w))g :

� If the optimal policy that correspond to the mini-
mum of Bellman’s equation is �(x), then the policy

 = {�, �, . . . } should be optimal.

The assumption of an infinite number of stages may not
be satisfied in practice but is a very important one in
terms of analyzing the asymptotic behavior of systems
involving a finite but large number of stages. Depend-
ing on the nature of the cost per stage and the discount
factor, the following categories of infinite horizon dy-
namic programming problems can be identified, [1]:
� stochastic shortest path problems: this problem is ac-

tually a generalization of the deterministic shortest
path problem in the sense that we select not a succes-
sor but rather a probability distribution pij(�). Ob-
viously, if the probability pij(�) = 1 for a unique state
j, then we recover the deterministic shortest path
problem. One key feature of the stochastic short-
est path problem is that the termination state t is
cost-free termination state such that once the sys-
tem reaches that state it never leaves from it. In other
words, ptt(�) = 1 and g(t, �) = 0, for all policies �.
In effect, the horizon is finite but the actual length is
random. Furthermore, there exists at least one pol-
icy for which the destination state will be reached in-
evitably. A key assumption required for guarantee-
ing eventual termination states that there exists an
integer m such that for every initial state and policy,
there is a positive probability that the termination
state will be reached after no more than m stages.

� discounted problems with bounded cost per stage: this
type of infinite horizon dynamic programming en-
compasses problems for which:

jg(x; �; !)j � M; 8(x; �; !) 2 S � C � D;

i. e., there exists a finite scalar, M, that bounds the
per stage cost. Furthermore, the discount factor is
such that 0 < ˛ < 1.
Both of these conditions are important so as to show
that:

lim
K!1

E

( KX
kDN

˛k g(xk ; �(xk); !k)

)
! 0:

Boundedness and discounting results in succes-
sive approximation mappings which are contraction
mappings, [2], thus proving the convergence of such
schemes to the optimal solution of the discounted
with bounded costs infinite horizon dynamic pro-
gramming problems.

� undiscounted problems: this type of infinite horizon
problems covers situations in which the discount
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factor ˛ = 1, which greatly complicates the analy-
sis. The key distinction is that the lack of a discount
factor may result in infinite costs even when the per
cost stage is bounded.

� average cost per stage problems: In cases where nei-
ther discounting nor a cost-free termination state
exists, it is often meaningful to optimize the average
per stage cost starting from state i.

J(i)

D lim
N!1

1
N
E

( N�1X
kD1

g(xk ; �k(xk); !k) : x0 D i

)
:

In essence what is assumed is that for most problems
of interest the average and the optimal per stage cost
are independent of the initial state. As a result, costs
that incurred in the early stages do not matter since
their contributions vanishes, i. e.,

lim
N!1

1
N
E

( KX
kD0

g(xk ; �k(xk); !k)

)
D 0:

For discrete state and transition spaces, it is helpful
to consider the associated finite-state Markov chain. Let
the state space S consist of n states, denoted by 1, . . . , n:

S D f1; : : : ; ng:

The transitions probabilities from state i to state j are:

pi j(u) D P(xkC1 D jjxk D i; uk D u);

i; j 2 S; u 2 U(i):

The dynamics of the state transitions xk + 1 = f (xk, uk,
!k) can actually be used to compute the state transi-
tions. Given the above, the per stage expected cost can
be expressed as: g(i, u) =

Pn
jD1 pij(u) g

0(i, u, j) Given the
above definitions, a very important mapping can now
be defined:

(TJ)(i) D min
u2U(i)

2
4g(i; u)C ˛

nX
jD1

pi j(u)J( j)

3
5 ;

i D 1; 2; : : : ;

and also

(T
 J)(i) D g(i; �(i))C ˛
nX

jD1

pi j(�(i))J( j);

i D 1; 2; : : : ;

This operator can actually be written as:

T
 J D g
 C ˛P
 J:

Therefore, a stationary policy has a corresponding cost,
J
, which is the solution to the equation:

(I � ˛P
)J
 D g
:

Computationally, two major families of approaches
exists for determining the optimal additive costs and
the optimal policies. The first one, value iteration, is
based on the idea of successive approximations. It can
be shown, under conditions depending of the specific
type of infinite horizon problem, that:

lim
k!1

(Tk J)(i) D J�(i):

This property essentially implies that the successive ap-
plication of the mapping (TJ) will in the limit provide
the optimal cost.

On the other hand policy iteration operates on the
policy space and tries to identify a converging sequence
of stationary policies converging to the optimal one. In
all cases, the following basic three steps define the iter-
ation:
� Initialization: guess an initial stationary policy,mu0.
� Policy evaluation: given a stationary policy,�k, com-

pute the corresponding cost function, J
k from the
system:

(I � ˛P
k )J
k D g
k :

� Policy improvement: obtain a new stationary policy
satisfying:

T
kC1 J
k D TJ
k :
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Consider the problem of ordering a quantity of a cer-
tain item at each of the N periods so as to meet some
stochastic demand. In mathematical terms the problem
is defined as follows:
� xk, the stock of a particular commodity available at

the beginning of the kth period.
� uk the stock to be ordered and immediately deliv-

ered at the beginning of the kth period.
� !k the demand during the kth period, whose proba-

bility distribution is assumed to be known.
The demand distributions are assumed to be indepen-
dent random variables for each time period k. A sim-
ple stock balance at the beginning of each time period

provides the description of the discrete-time evolution
equation as:

xkC1 D xk C uk � !k :

In other words, the state of the system (stock) at the
beginning of period k + 1 was the state of the system
(stock) at period k plus the ordered stock minus the de-
mand at period k. The form of the replenishment of pol-
icy is very important and sits at the hart of the analysis
of similar problems. The one just presented is, as will be
seen, one of the two major assumptions regarding the
stock balance equations. Given the above definitions,
the cost incurred at period k has two components:
� a cost r(xk) representing either a penalty for positive

stock, storage, or negative stocks, shortage for un-
filled demand.

� a surcharging cost, cuk, where c is the per unit sur-
charged cost.

The problem just described is known as the inventory
control problem, one of the most important ones in the
area of operations research. The preceding formulation
illustrates the main characteristics of the inventory con-
trol problem:
� a discrete-time system that defines the system evo-

lution in time of the form:

xk D fk(xk; uk ; !k);

� a set of independent random disturbances, repre-
senting commodity demands;

� a set of control constraints that depend on the state
of the system at time k, xk, that is uk 2 U(xk);

� a period of N time intervals over which the operat-
ing cost has an additive form as:

E

 
gN (xN)C

N�1X
kD0

gk(xk; uk ; !k )

!
;

and, finally,
� we wish to optimally select the control actions at ev-

ery time interval k, so as to optimize over all possible
control policies the cost of operating the inventory
system.

Clearly, the above definition of the inventory control
problem, formulates the problem as dynamic program-
ming problem in which we try to minimize an expected
additive cost function.



854 D Dynamic Programming: Inventory Control

Stochastic inventory problems were first consid-
ered by [6,10], were an abstract stochastic inventory
model that allowed for possible constraints on the in-
ventory after ordering were considered. In the litera-
ture of stochastic inventory models, there are two dif-
ferent assumptions about the excess demand unfilled
from existing inventories: the backlog assumption and
the lost sales assumption. These affect the form of the
stock balance equation. The backlog assumption is his-
torically more popular in the literature because of the
inventory studies with spare parts inventory manage-
ment problems. This assumption essentially states that
an unfilled demand is being accumulated and satisfied
at later times. The lost sales assumption states that un-
filled demand is lost, which is the situation arising in
retail establishments. Under either assumption, an im-
portant issue has been to establish the optimality of the
(s, S)-type policy, [7]. It defines a very simple replenish-
ment rule:

��(xk) D

(
Sk � xk; xk < sk ;
0; xk � sk :

The above rule is referred to as the (s, S) policy, imply-
ing that when the current level is less than the reorder
point, s, an order up to the reorder level, S, has to be
placed. Under an (s, S) policy if the inventory level at
the beginning of a period is less than the reorder point s,
then a sufficient quantity must be re-ordered to achieve
an inventory level S upon replenishment. The key con-
cept of K-convexity, [1], was instrumental in proving
the optimality of the (s, S) policies. A real-valued func-
tion g is K-convex, where K � 0, if:

K C g(z C y) � g(y)C z
�
g(y) � g(y � b)

b

�
;

8z � 0; b > 0; y:

The parameter K is the fixed cost associated with a pos-
itive inventory order:

C(u) D

(
K C cu; u > 0;
0; u D 0:

The concept of K-convexity is one of the most impor-
tant tools for the analysis of inventory control problem.
It essentially expands the concept of convexity and is
instrumental in proving the optimality of policies in in-
ventory control problems. Regarding K-convexity, [2],
the following hold true:

1) A real-valued convex function g is also 0-convex and
hence also K-convex for all K � 0.

2) If g1(y) and g2(y) are K-convex and L-convex (K �
0, L � 0), respectively, then ˛g1(y) + ˇg2(y) is (˛K
+ ˇL)-convex for all ˛ > 0 and ˇ > 0.

3) If g(y) is K-convex and ! is a random variable, then
E!{g(y�!)} is also K-convex, provided E!{|g(y �
!)|} <1, for all y.

4) If g is a continuous K-convex function and g(y)!
1 as |y|!1, then there exist scalars s and S with s
� S such that:
a) g(S)� g(y), for all scalars y;
b) g(S) + K = g(s) < g(y), for all y < s;
c) g(y) is a decreasing function on (�1, s);
d) g(y)� g(z) + K, for all y, z with z � y � z.

If we further define a holding/storage cost as:

r(x) D pmax(0;�x)C hmax(0; x);

the function H as:

H(y) D pE
�
max(0; !k � y)

�
C E

�
max(0; y � !k )

�
:

Application of the dynamic programming algorithm for
zero final cost gives:

Jk(xk) D min�
Gk(xk);min

uk>0
fK C cuk C Gk(xk C uk)g

	
;

with Gk(xk) defined as:

Gk(y) D cyH(y)C E(JkC1(y � !))

and yk = xk + uk. Because of the K-convexity of G, it
can actually be shown, [7], that the (s, S) policy is op-
timal. See [11] for the optimality of the (s, S) policy in
the case of lost sales. For the case where the unfilled de-
mand is not backlogged but rather lost, the system dy-
namic equation is defined as:

xkC1 D max(0; xk C uk � !k):

Additional K-convexity results and the optimality of
the (s, S) for the case of lost-sales is presented and an-
alyzed in [4]. Finite storage capacity in most real-life
situations imposes an upper bound on theory that can
be kept. The recent analysis of [3] considers the multi-
product inventory model with stochastic demands and
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warehousing constraints. This is a fairly general model
in that it does not allow for surplus disposal, uk � 0, and
imposes constraints on the stored stock, xk + uk 2 � .

Similar ideas pertain the analysis of inventory con-
trol problems over an infinite horizon. Infinite horizon
problems need not necessarily correspond to physically
realistic situations, but nevertheless, they define the ve-
hicle for a thorough analysis of the asymptotic response
of the inventory system. A discounted version of the
backlogged problem can be stated as:

J� (x0) D lim
N!1

E

 N�1X
kD1

˛k(c�k(xk)C H(xk C �(xk) � !k ))

!
;

where:

H(y) D pmax(0;�y)C hmax(0; y):

The case of ˛ < 1, i. e., a discounted infinite horizon
problem, has also been analyzed, [8], and the existence
of an optimal state-dependent (s, S)-type policy for
problems with discounted costs was rigorously estab-
lished.

The classical papers [5,10] were also devoted to
stochastic inventory problems with the criterion of
long-run average cost. In other words, one is interested
in minimizing an average expected cost within an infi-
nite horizon

J� (x0) D lim
N!1

1
N

� E

 N�1X
kD1

˛k(c�k(xk)C H(xk C �(xk) � !k))

!
:

This analysis also concludes that (s, S)-type policies are
as well optimal for the long time average-return prob-
lem. The (s, S)-type of optimal policies are very impor-
tant and they have be shown to be optimal for a wide
variety of inventory problems including systems with
continuous demands and discrete order sizes, [9], in
other words for the cases where the orders uk are as-
sumed to be nonnegative integers, as well as the case
where special structure in the form of periodicity of var-
ious components of the formulation such as demands,
prices, and cost, [2].

Undoubtably, one of the most appealing features of
inventory theory has been the fact that (s, S) policies
are optimal for the class of dynamic inventory prob-

lems with random demands. However, real-life inven-
tory problems impose constraints that make the as-
sumption imposed on the analysis apparently too re-
strictive. The nature of demand, for instance, is an im-
portant factor in determining optimal policies. Classi-
cal models have assumed demand in each period to be
a random variable independent of demands in other pe-
riods and of environmental factors at other times. Nev-
ertheless, fluctuating economic conditions and uncer-
tain market conditions can have a major effect. Fur-
thermore, various constraints are observed in real life
that limit the nature of ordering decisions nd inventory
levels. The recent work of [8] addresses similar issues
so as to incorporate cyclic or seasonal demand, as well
as constraints imposed on the ordering periods, stor-
age and service level constraints. Nevertheless, it is still
shown that (s, S) policies are also optimal for these types
of generalized models.
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Discrete-Time Optimal Control

The cost function in the standard k-stage discrete-time
optimal control problem is defined by

J D lkC1(xkC1)C
kX

iD1

li(ui ; xi) (1)

and the recursion
(
x1 D a;
xiC1 D fi(ui ; xi); i D 1; : : : ; k:

(2)

In these equations, ui is a control vector in Rm and xi is
a state vector in Rn. For each vector-valued k-tuple u =
(u1, . . . , uk) in the direct sum Rkm = ˚k

iD1 R
m, there is

a unique state vector-valued (k + 1)-tuple x(u) = (x1(u),
. . . , xk+1(u)) 2 R(k+1)n satisfying (2), and a correspond-
ing unique value J(u) in (1). For present purposes, the
state transition functions f i, the terminal loss function
lk+1 and the stage-wise loss functions li, i = 1, . . . , k, are
assumed to be twice continuously differentiable. The
functions x(�) and J(�) are then also twice continuously
differentiable, and Newton’s method is formally appli-
cable to the problem ofminimizing J(�) overRkm. More-
over, for fixedm and n the km × km linear system asso-
ciated with the Newton iteration map for (1), (2) can be
solved efficiently with dynamic programming recursions
in O(k) floating point operations as k increases with-
out bound. In contrast, it requires O(k3) floating point
operations to assemble and solve the Newtonian linear
system for a general cost function J on Rkm by standard
Gaussian elimination methods.

The following discussion conforms to [4]. See [7]
and [8] for an alternative development with connec-
tions to differential dynamic programming, and for a re-
lated but nonequivalent treatment of discrete-time op-
timal control problems based on the Riccati transfor-
mation. For analogous constructions in the setting of
continuous-time optimal control problems, see [4] and
the original papers [5] and [6]. For extensions to New-
tonian projection methods and input-constrained opti-
mal control problems, see [2] and [3].

Newton’s Method

If J is any continuously differentiable real-valued func-
tion on RN with global or local minimizing vectors u,
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then all such vectors must satisfy the first order neces-
sary condition,

r J(u) D 0; (3)

where

r J(u) D
�
@J
@u1

(u); : : : ;
@J
@uN

(u)
�
:

A solution of (3) is called a stationary point.
Condition (3) comprises N scalar equations in N

scalar unknowns ui. If J is a quadratic function, then (3)
is a linear system which can be treated with standard
elimination algorithms or other techniques capable of
exploiting whatever structure may exist in the coeffi-
cient matrix for (3). On the other hand, if J is a non-
quadratic nonlinear function, then (3) is a nonlinear
system and iterative methods are generally needed to
generate successive approximations to a solution of (3).
One such method is Newton’s recursive linearization
scheme,

u! uC v;

r J(u)Cr2 J(u)v D 0: (4)

When J is twice continuously differentiable, the
vector-valued maprJ(�):RN!RN is continuously dif-
ferentiable and its first differential at u is the Hessian
operator r2 J(u): RN ! RN defined by

(r2 J(u)v)i D
NX
iD1

@2 J
@ui@uj

(u)v j

for i = 1, . . . , N. In such cases, (4) is formally applicable
to the nonlinear system (3). Furthermore, if r2 J(u) is
invertible at a solution u for (3), then in some neighbor-
hoodN of u,r2J(u) is also invertible and for each start-
ing point u0 2 N, the iteration (4) generates a sequence
of vectors, u0, u1, . . . , which remain in N and converge
rapidly to u. More precisely, either ui D u eventually,
or the errors



ui � u


 D (

˝
ui � u; ui � u

˛
)
1
2 satisfy the

superlinear convergence condition,

lim
i!1



uiC1 � u




kui � uk
D 0: (5)

A solution of (3) at which r2J(u) is invertible is said
to be a regular stationary point. Note that solutions of
(3) can be local maximizers or saddle points of J, and

that regular points of this kind can also attract the New-
ton iterates. Hence forminimization problems, a simple
steepest descent iteration is often employed at the out-
set to seek out likely starting points u0 for (4) near some
regular local minimizer for J.

If J is twice continuously differentiable, then every
global or local minimizer u must also satisfy the second
order necessary condition,

8v 2 RN ;
˝
v;r2 J(u)v

˛
� 0; (6)

where h�, �i is the standard Euclidean inner product,

hv;wi D
NX
iD1

viwi :

In RN , u is therefore a regular local minimizer if and
only if r2 J(u) is positive definite, i. e.,

8v 2 RN ; v ¤ 0)
˝
v;r2 J(u)v

˛
> 0: (7)

The gap between (6) and (7) is not large, hence regular
local minimizers are commonly encountered in RN .

By continuity, property (7) extends to r2J(u) in
some neighborhood of u. At each fixed u in this neigh-
borhood, the linear system in Newton’s iteration (4) is
equivalent to a corresponding unconstrained accessory
minimum problem

v 2 arg min
v2RN

�(v) (8)

with a strictly convex quadratic cost function

�(v) D hr J(u); vi C
1
2
˝
v;r2 J(u)v

˛
; (9)

and a unique global minimizer v. This equivalence
is computationally significant for unconstrained min-
imization problems in general and discrete-time opti-
mal control problems in particular.

The Accessory Minimum Problem

If J is the cost function of a discrete-time optimal con-
trol problem, then it can be shown that the accessory
minimum problem (8)–(9) is also a discrete-time con-
trol problem with quadratic loss functions and linear
state transition functions. Near a regular minimizer
for J, this linear-quadratic (LQ) problem has a strictly
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convex cost function that can be minimized with dy-
namic programming recursions. The required control-
theoretic construction for � and the related dynamic
programming algorithms are outlined below.

In the following development, the symbol umay de-
note a vector in Rm or a vector-valued k-tuple in Rkm.
Similarly, x may indicate a vector in Rn or a vector-
valued (k + 1)-tuple in R(k+1)n, and the bracket h�, �imay
denote the Euclidean inner product in any of the spaces
Rm, Rn, Rkm, or R(k+1)n. In each case, the correct inter-
pretation is always clear from the context. Now suppose
that J(�) is defined by (1)–(2) on Rkm, and fix u 2 Rkm.
Then for all v 2 Rkm the chain rule gives,

hr J(u); vi D
d
ds

J(uC sv)jsD0

D

kC1X
iD1

hrx li ; yii C
kX

iD1

hru li ; vii (10)

and

˝
v;r2 J(u)v

˛
D

d2

ds2
J(uC sv)jsD0

D

kC1X
iD1

hrx li ; zii C
kC1X
iD1

˝
yi ;r2

xx li yi
˛

C 2
kX

iD1

˝
yi ;r2

xu livi
˛
C

kX
iD1

˝
vi ;r2

uu li vi
˛
; (11)

where

yi D
d
ds

xi(uC sv)jsD0;

zi D
d2

ds2
xi(uC sv)jsD0;

(12)

and where all partial gradients and Hessians of lk+1 and
li, i = 1, . . . , k, are evaluated at xk+1(u) 2 Rn and (ui,
xi(u)) 2 Rm ˚ Rn, respectively.

Equations (2) and (12) and the chain rule also es-
tablish that yi and zi are recursively generated by the
equations of variation,

(
y1 D 0;
yiC1 D Ai yi C Bivi ; i D 1; : : : ; k;

(13)

and8̂
<̂
ˆ̂:

z1 D 0;
ziC1 D Aizi
C(Ci yi )yi C 2(Di yi )vi C (Eivi)vi

(14)

for i = 1, . . . , k, with linear differential maps,

Ai D
@ fi
@x
; Bi D

@ fi
@u

and

Ci D
@2 fi
@x@x

; Di D
@2 fi
@x@u

; Ei D
@2 fi
@u@u

evaluated at (ui, xi(u)). Useful control-theoretic repre-
sentations for rJ(u) and � can now be constructed by
removing yi from formula (10) and zi from formula (11)
with the aid of an adjoint recursion for (13) and (14).

Equations (13) and (14) are special instances of

8<
:
w1 D 0;

wiC1 D Aiwi C �i ; i D 1; : : : ; k;
(15)

with w = (w1, . . . , wk+1) 2 R(k+1)n and � = (�1, . . . , �k) 2
Rkn. For each �, there is a unique w =˚� satisfying (15),
and the resulting correspondence defines a linear map
˚ : Rkn! R(k+1)n. The map ˚ has an associated adjoint
linear map ˚�: R(k+1)n ! Rkn} which, in principle, is
uniquely determined by the requirement,

h˚��; �i D h�;˚�i ; (16)

imposed for all � 2 Rkn and � 2 R(k+1)n. The matrix rep-
resentor for ˚� in the standard basis for R(k+1)n is ob-
tained by transposing the analogous matrix represen-
tor for ˚ ; however, the adjoint map can also be com-
puted directly with recursions derived from (15), with-
out prior construction of ˚ . More precisely, for each �
2 R(k+1)n,

(˚��)i D  iC1 (17)

for i = 1, . . . , k, where  is the unique solution of the
adjoint recursion,

8<
:
 kC1 D �kC1;

 i D A�i  iC1 C �i ; i D 1; : : : ; k:
(18)
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To see this, note that if w and  are solutions of (15)
and (18) respectively, then

h�kC1;wkC1i D h kC1;wkC1i � h 1;w1i

D

kX
iD1

(h iC1;wiC1i � h i ;wii)

D

kX
iD1

h iC1;Aiwi C �ii

�

kX
iD1

˝
A�i  iC1 C �i ;wi

˛

D

kX
iD1

h iC1; �ii �

kX
iD1

h�i ;wii :

Hence for all � 2 Rkn and � 2 R(k+1)n condition (16)
gives,

h˚��; �i D h�;˚�i D h�;wi D
kX

iD1

h iC1; �ii ;

and this establishes (17).
With the preceding formulas, it is now possible to

write � as a sum of linear and quadratic terms in the
variables v1, . . . , vk and y1, . . . , yk+1, with coefficients de-
rived from the partial gradients and Hessians ofHamil-
tonian functions,

Hi(ui ; xi ;  iC1)

D li(ui ; xi)C h iC1; fi(ui ; xi)i : (19)

Fix u and v in Rkm, let �i(u) = rx li for i = 1, . . . , k + 1,
and let  (u) 2 R(k+1)n be the corresponding solution of
the adjoint recursion,

8<
:
 kC1 D rx lkC1;

 i D A�i  iC1 Crx li ; i D 1; : : : ; k:
(20)

In addition, let y and z be the unique solutions of (13)
and (14) respectively. Then with reference to (15)–(17)
and (20),

kC1X
iD1

hrx li ; yii D
kX

iD1

h iC1; Bivii

D

kX
iD1

˝
B�i  iC1; vi

˛

and

kC1X
iD1

hrx li ; zii D
kX

iD1

h iC1; (Ci yi )yii

C 2
kX

iD1

h iC1; (Di yi )vii C
kX

iD1

h iC1; (Eivi )vii :

When these expressions are substituted into (9)–(11), it
follows from (19) that � is prescribed by

�(v) D qkC1(ykC1)C
kX

iD1

qi(vi ; yi) (21)

and the recursions,
(
y1 D 0;
yiC1 D Ai yi C Bivi ; i D 1; : : : ; k;

(22)

where Ai and Bi are the differential maps

Ai D
@ fi
@x
; Bi D

@ fi
@u

as before, and the loss functions q are given by

qkC1(y) D
1
2
hy;QkC1yi

and

qi(v; y) D hri ; vi C
1
2
hy;Qi yi

C hy; Rivi C
1
2
hv; Sivi ;

for i = 1, � � � , k, with

QkC1 D r
2
xx lkC1;

ri D ruHi ;

and

Qi D r
2
xxHi ; Ri D r

2
xuHi ; Si D r2

uuHi

for i = 1, . . . , k. Moreover, the cost gradient rJ(u) is
separately recoverable from

r J(u) D (r1; : : : ; rk)

D (ruH1; : : : ;ruHk) : (23)

In these equations, the Hessian of lk+1 is evaluated at
xk+1(u) and the Hamiltonian gradients and Hessians are
evaluated at (ui, xi(u),  i+1(u)).
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Dynamic Programming Recursions

Recall that r2J(u) is positive definite in some neighbor-
hood of a regular local minimizer for J. When r2J(u)
is positive definite, the quadratic accessory minimum
problem with cost function (21)–(22) can be solved
by dynamic programming techniques, which rest on
a simple embedding scheme and a few elementary theo-
rems stated below without proof. For a fuller discussion
of dynamic programming, see [1].

For j = 1, . . . , k and y 2 Rn, define the family of cost
functions � j(�;y): R(k+1�j)m! R1 by

� j(v j; : : : ; vk ; y) D qkC1(ykC1)C
kX

iD j

qi(vi ; yi ) (24)

and the recursions,
(
y j D y
yiC1 D Ai yi C Bivi ; i D j; : : : ; k;

(25)

where qi, Ai and Bi are u-dependent entities defined as
before. Evidently, the cost function � in (21)–(22) is re-
covered from the equation,

�(v) D �1(v1; : : : ; vk ; 0): (26)

Moreover, the cost functions � j are recursively gener-
ated by

�k(vk ; y) D qk(vk ; y)C qkC1(Ak y C Bkvk)

and

� j(v j; : : : ; vk ; y) D q j(v j; y)

C � jC1(v jC1; : : : ; vk ;Aj y C Bjv j);

for j = k � 1, . . . , 1. It is likewise readily seen that

� j(v j; : : : ; vk ; 0) D �(0; : : : ; 0; vj; : : : ; vk);

r2
vv� j(v j; : : : ; vk ; y) D r2

vv� j(v j; : : : ; vk ; 0);

and

r2
vv�(v) D r

2 J(u)

for j = 1, . . . , k, v 2 Rkm and y 2 Rn. Note also that
since �(�) and � j(�;y) are quadratic functions, their cor-
responding v-Hessians are independent of v as well as
y. These facts and the basic principles of dynamic pro-
gramming yield the following theorems.

Theorem 1 The following statements are equivalent:
1) The quadratic function �(�) has a unique global min-

imizer v 2 Rkm.
2) r2J(u) is positive definite.
3) For all j = 1, . . . , k, r2

vv� j is positive definite.
4) For all j = 1, . . . , k and all y 2 Rn, the quadratic

function � j(�;y) has a unique global minimizer
(v j; : : : ; vk) 2 R(kC1� j)m

Theorem 2 The following statements are equivalent:
1) For all j = 1, . . . , k and y 2 Rn,

�0
j (y) :D inf

v j;:::;vk
� j(v j; : : : ; vk ; y) > �1; (27)

2) The real-valued functions �0
1(�), . . . , �

0
k(�) satisfy the

backward functional recursion,

�0
j (y) D inf

v2Rm
[q j(v; y)C �0

jC1(Aj yC Bjv)] (28)

for j = k, . . . , 1, with

�0
kC1(y) :D qkC1(y):

Theorem 3 Let ri, Ai, Bi, Qi, Ri, and Si be the vectors
and linear maps appearing in the representations (21)–
(22) and (24)–(25) for the functions �(�) and � j(�;y).
Then the following statements are equivalent for all v D
(v1; : : : ; vk) 2 Rkm:
1) v is the unique global minimizer for � in Rkm, i. e.,

arg min
v2Rkm

�(v) D fvg:

2) The vector v 2 Rkm is generated by the forward re-
cursions(

y1 D 0;
y jC1 D Aj y j C Bjv j;

(29)

fv jg D arg min
v2Rm

h
q j(v; y j)C �0

jC1(Aj y j C Bjv)
i

D f� j C � j y jg;

(30)

for j = 1, . . . , k, where

q j(v; y) D
˝
r j; v

˛
C

1
2
˝
y;Qj y

˛

C
˝
y; Rjv

˛
C

1
2
hv; Sivi ;

�0
j (y) D ˛ j C

˝
ˇ j ; y

˛
C

1
2
˝
y; 
 j y

˛
;
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Sj + B�j
j+1Bj is positive definite,

� j D �(Sj C B�j
 jC1Bj)�1(r j C B�j ˇ jC1); (31)

� j D �(SjCB�j
 jC1Bj)�1(R�j CB�j
 jC1Aj); (32)

and the linear maps 
j, vectors ˇj, and numbers ˛j
satisfy the backward recursions,

8̂
<̂
ˆ̂:


kC1 D 0;

 j D Qj C A�j
 jC1Aj

C(R�j C B�j
 jC1Aj)�� j;

(33)

(
ˇkC1 D 0;
ˇ j D (Aj C Bj� j)�ˇ jC1 C �

�
j r j;

(34)

and
8<
:
˛kC1 D 0;

˛ j D ˛ jC1 �
1
2

D
� j; (Sj C B�j
 jC1Bj)� j

E (35)

for j = k, . . . , 1.

These theorems support the following efficient scheme
for computing the Newton increment v in (4).

1 Given u 2 Rkm , solve the forward recur-
sion (2) for x(u), and construct the corre-
sponding linear maps Aj and Bj , and vectors
� j = rx l j.

2 Solve the backward adjoint recursion (20) for
 (u) and construct the corresponding vec-
tors r j .

3 Construct the linear maps Qi ; Ri and Si , solve
the backward dynamic programming recur-
sions (33) and (34) for 
 j and ˇ j , and com-
pute � j and � j in (31) and (32).

4 Solve the forward recursions (29)–(30) for y
and v.

Algorithm

Stages 1 and 2 in the foregoing algorithm are always
well-posed, and yield the cost gradient rJ(u) (see (23)).
The calculation for the Newton increment v is well-
posed if and only if stage 3 produces invertible linear
maps Sj + B�j
j+1Bj for j = k, . . . , 1. The calculation for

v is well-posed and stage 3 concludes with k positive
definite linear maps Sj + B�j
j+1Bj if and only if r2J(u)
is positive definite. If a positive semidefinite, indefinite
or singular linear map Sj + B�j
j+1Bj is encountered at
some point in stage 3, it follows that r2J(u) is not pos-
itive definite and the accessory minimum problem may
have no global minimizers or stationary points, or in-
finitely many such points. In such cases, it may be ad-
vantageous or even necessary to abort stage 3 and aban-
don Newton’s method temporarily in favor of a descent
iteration that employs the negative gradient �rJ(u)
computed in stages 1 and 2, or some other descent
direction. Alternative quasi-Newtonian descent direc-
tions can be obtained by replacing Sj in stage 3 with
Sj + �jI where �jI is a positive shift added where nec-
essary to maintain positive definiteness of Sj + �jI +
B�j
j+1Bj. This variant of stage 3 is automatically well-
posed and produces the unique global minimizer v of
the perturbed cost function,

�(v)C
1
2
hv; �(u)vi ;

where

�(u)v D (�1v1; : : : ; �kvk):

By construction, r2J(u) +�(u) is positive definite and

v D �(r2 J(u)C�(u))�1r J(u):

Hence v is a descent vector for J. On the other hand,
the simple steepest descent direction �rJ(u) may be
more cost-efficient, particularly when u is far from a lo-
cal minimizer for J.

If the work required to compute the differentials for
f j and lj in each time step j is uniformly bounded in j,
withm and n fixed, then the number of arithmetic oper-
ations required to execute the foregoing algorithm (or
its shifted variants) is directly proportional to k. This
compares very favorably with the standard O(k3) esti-
mate for general Newtonian calculations in Rkm.

Finally, references [9] and [10] revise the basic serial
dynamic programming algorithm for parallel computa-
tion, and thereby achieve significant reductions in the
time needed to calculate each Newton iteration.

See also

� Automatic Differentiation: Calculation of Newton
Steps
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A very powerful method for optimization of a system
that can be separated into stages is dynamic program-
ming developed by R. Bellman [1]. The main concept
of this technique lies in the principle of optimalitywhich
can be stated as follows:

An optimal policy has the property that whatever
the initial state and the initial decision are, the
remaining decisions must constitute an optimal
policy with regard to the state resulting from the
first decision.

Many engineering systems are in the form of indi-
vidual stages, or can be broken into stages, so the idea of
breaking up a complex problem into simpler subprob-
lems so that optimization could be carried out system-
atically by optimizing the subproblems was received en-
thusiastically. Numerous applications of the principle
of optimality in dynamic programming were given in
[2], and there was a great deal of interest in applying
dynamic programming to optimal control problems.
In the 1960s many books and numerous papers were
written to explore the use of dynamic programming as
a means of optimization for optimal control problems.
Since an optimal control problem, involving optimiza-
tion over a trajectory, can be broken into a sequence
of time stages, it appeared that dynamic programming
would be ideally suited for such problems.

Although dynamic programming could be success-
fully applied to some simple optimal control problems,
one of the greatest problems in using dynamic pro-
gramming, however, was the interpolation problem en-
countered when the trajectory from a grid point did not
reach exactly the grid point at the next stage [12]. This
interpolation difficulty coupled with the dimensionality
restriction and the requirement of a very large number
of grid points limited the use of dynamic programming
to only very simple optimal control problems. The limi-
tations imposed by the ‘curse of dimensionality’ and the
‘menace of the expanding grid’ for solving optimal con-
trol problems kept dynamic programming from being
used for practical types of optimal control problems,

until R. Luus [14] suggested effective means of over-
coming both the interpolation and the dimensionality
problems.

Optimal Control Problem

We consider the continuous dynamic system described
by the vector differential equation

dx
dt
D f(x;u) (1)

with the initial state x(0) given, where x is an (n × 1)
state vector and u is an (m × 1) control vector bounded
by

˛ j � uj(t) � ˇ j; j D 1; : : : ;m: (2)

The performance index associated with this system
is a scalar function of the state at the given final time tf ;
i. e.,

I D ˚(x(t f )): (3)

We may have also state constraints, but for simplicity
we shall leave these for later. The optimal control prob-
lem is to find the control u in the time interval 0 �
t < tf , so that the performance index in (3) is either
minimized or maximized. To set up the problem into
a staged form, we may approximate the optimal control
problem by requiring a piecewise constant control pol-
icy instead of a continuous control policy, over P stages,
each of length L, so that

L D
t f
P
; (4)

and we can consider the system at the grid points set
up at these P stages. We may also use a piecewise linear
approximation and the stages do not necessarily have
to be of equal length.

Iterative Dynamic Programming

M. DeTremblay and Luus [10] suggested that instead
of interpolation, an approximation can be used when
the trajectory from a grid point does not reach a grid
point at the next stage. They suggested that the con-
trol policy that was found to be optimal for the clos-
est grid point be used to continue the integration to the
next stage. If a large number of grid points are taken at
each stage then a reasonable approximation may be ob-
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tained, but the resulting control policy can still be quite
far from the optimum. Therefore, this simplification by
itself gives only a crude approximation.

However, by making a small change to the proce-
dure, the accuracy with which the optimum is obtained
can be improved substantially. This change requires the
use of the procedure repeatedly in an iterative fashion
[16], so that after every iteration, where the best value
is used as the center point, the regions for the allowable
values for control and for the grid points are reduced in
size. The idea of region reduction in optimization was
successfully used by Luus and T.H.I. Jaakola [37] in di-
rect search optimization. As was shown by Luus [16],
dynamic programming can be used in this fashion to
give a sufficiently accurate optimal control policy. Al-
though easy to program, the method was not computa-
tionally attractive until the idea of using accessible states
as grid points [14]. With this latter change, the method
was recognized as a feasible approach to solving optimal
control problems.

The advantage of generating the state grid points is
also that the dimensionality of the state vector then does
not matter. The application of the method to a non-
linear system described by 7 differential equations and
having 4 control variables was solved quite easily [15].
Also the method was used for system of difference equa-
tions, which is actually easier, since no discretization is
necessary [40]. In essence, the ‘curse of dimensional-
ity’ was eliminated and the new computational proce-
dure became known as iterative dynamic programming
(IDP).

Early Applications of IDP

Iterative dynamic programming provided a very conve-
nient way of investigating the effect of the choice of the
final time in optimal control problems [18]. However,
by generating the grid points, it was no longer possi-
ble to guarantee a global optimum. This was illustrated
by Luus and M. Galli [36]. Even the use of a very large
number of grid points does not guarantee getting the
global optimum. In fact, the number of grid points can
be quite small in many cases and the global optimum is
still obtained with good accuracy [4].

A very challenging problem is the bifunctional
catalyst problem, where it is necessary to determine
the blend of the catalyst along a tubular reactor to

maximize the yield of a desired component [35]. By us-
ing successive quadratic programming (SQP) and start-
ing from 100 randomly chosen starting points, 26 lo-
cal optima were located, but the global optimum was
not obtained. With IDP, however, the global optimum
was readily obtained with the use of a single grid point
[34]. To avoid the numerous local optima, all that was
required for this system was to take a sufficiently large
initial region size for the control.

Although the optimal control of fed-batch reactors
was very difficult to obtain by methods based on Pon-
tryagin’s maximum principle, iterative dynamic pro-
gramming provided a reliable means of obtaining the
global optimum, and the results were even marginally
better than had been previously reported [20,22]. The
additional advantage of IDP is that the computations
are straightforward and the algorithm can be easily pro-
grammed to run on a personal computer.

Choice of Candidates for Control

In the early work with IDP, the test values for the con-
trol variables were chosen over a uniform distribution.
This was easy to program and was easy to visualize. For
each control variable we could have a minimum of 3
values, namely �r, 0, and r, where r is the region size.
For m control variables we must examine then 3m can-
didates at each grid point. This is fine ifm is less than 4,
but ifm is large, this number becomes excessively large.

An alternative method for choosing candidates for
control was suggested by V. Tassone and Luus [47], but
a better approach as shown by B. Bojkov and Luus [3]
was to choose such candidates at random inside the al-
lowable range. This meant that in theory there was no
upper limit onm. Conceptuallym could be greater than
100. In fact, IDP was used successfully on a system with
130 differential equations and 130 control variables [21]
and later with 250 differential equations with 250 con-
trol variables [26].

Piecewise Linear Continuous Control

In the early work with IDP, the given time interval was
divided into P time stages of equal length and at each
time-stage we would have constant control. In many
cases the optimal control policy is quite smooth, and
therefore it may be beneficial to approximate the con-
trol policy by linear sections. This, indeed, gives a bet-
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ter result with a smaller number of time stages as was
shown by Luus [23], and allowed an optimal control
policy for very high-dimensional systems to be deter-
mined accurately [15,26]. For a piecewise linear control
we calculate the control policy in the time interval (tk,
tk+1) by the expression

u(t) D u(k)C
u(k C 1) � u(k)

L
(t � tk); (5)

where u(k) is the value of u at the time tk and u(k + 1)
is the value of u at time tk+1.

Algorithm for IDP

To illustrate the underlying logic in IDP, an algorithm
is given to solve the optimal control problem as out-
lined in (1)-(4), where it is required to minimize the
performance index in (3) with the use of piecewise con-
stant control over P stages, each of same length:
1) Divide the time interval [0, tf ] into P time stages,

each of length L.
2) Choose the number of test values for u, denoted

by R, an initial control policy and the initial region
size rin; also choose the region contraction factor �
used after every iteration and the number of grid
points N.

3) Choose the total number of iterations to be used
in every pass and set the iteration number index to
j = 1.

4) Set the region size vector r(j) = rin.
5) By using the best control policy (the initial control

policy for the first iteration) as reference, integrate
(1) from t = 0 to tf N times with different values
for control inside the allowable region to generate
Nx-trajectories and store the values of x at the be-
ginning of each time stage as grid points, so that
x(k� 1) corresponds to the value of x at beginning
of stage k.

6) Starting at stage P, corresponding to time tf � L,
for each of the N stored values for x(P � 1) from
step 5 (grid points) integrate (1) from tf � L to tf ,
with each of the R allowable values for the control
vector calculated from

u(P � 1) D u(P � 1)�( j) CDr( j); (6)

where u(P � 1)�(j) is the best value obtained in the
previous iteration andD is a diagonal matrix of dif-
ferent random numbers between �1 and 1. Out of

the R values for the performance index, choose the
control values that give the minimum value, and
store these values as u(P�1). We now have the best
control for each of these N grid points.

7) Step back to stage P� 1, corresponding to time
tf � 2L, and for each of theN grid points do the fol-
lowing calculations. Choose R values for u(P� 2)
as in the previous step, and by taking as the initial
state x(P� 2) integrate (1) over one stage length.
Continue integration over the last time stage by
using the stored value of u(P� 1) from step 6 by
choosing the control policy corresponding to the
grid point that is closest to the values of the state
vector that has been reached. Compare the R values
of the performance index and store the u(P� 2)
that gives the minimum value for the performance
index.

8) Continue the procedure until stage 1, correspond-
ing to the initial time t = 0 and the given ini-
tial state, is reached. This stage has only a single
grid point, since the initial state is specified. As be-
fore, integrate (1) and compare the R values of the
performance index and store the control u(0) that
gives the minimum performance index. Store also
the corresponding x-trajectory.

9) Reduce the region for allowable control

r( jC1) D �r( j); (7)

where j is the iteration number index. Use the best
control policy from step 8 as the midpoint for the
allowable values for the control denoted by the su-
perscript 
.

10) Increment the iteration index j by 1 and go to step 5
and continue the procedure for the specified num-
ber of iterations and interpret the results.

The application of this algorithm is illustrated with sev-
eral examples in [33], where also the computer program
in FORTRAN is given for IDP.

Time-Delay Systems

The great advantage of IDP over Pontryagin’s maxi-
mum principle is that no auxiliary variables have to be
calculated and no derivatives are required. The state
equation is integrated forward and there is no need
to integrate any equations backward. Therefore, the
method is applicable to more complex systems, such as
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time-delay systems. The initial attempt to apply IDP to
time-delay systems was made by S.A. Dadebo and Luus
[8]. By using piecewise linear continuous control very
good results for a difficult nonlinear time-delay CSTR
system were obtained by Luus et al. [43]. The method is
further illustrated in [32].

State Constraints

Control constraints actually simplify the problem by
decreasing the range over which the admissible values
of control are to be taken. Research in how to handle
state constraints is still continuing, but already very use-
ful results have been obtained. As was shown in [39]
and [17], the use of penalty functions appears to be
the best way to deal with state constraints. The best
type of penalty function has not yet been firmly estab-
lished. Although Dadebo and K.B. McAuley [9] sug-
gested the use of absolute value type of penalty function
for state equality constraints, the recent work of Luus
[27], and Luus and C. Storey [41] show that a quadratic
penalty function with shifting terms also works very
well. The advantage of using the quadratic penalty func-
tion with shifting terms is that, at the optimum, the
shifting terms yield useful sensitivity information with
respect to the constraints. Handling of state inequality
constraints can be achieved by introducing through dif-
ferential equations auxiliary variables that are increased
in value whenever the constraint is violated and then
including these auxiliary variables at the final time as
penalty functions in the augmented performance index
[46]. The use of differential equations is better than the
use of difference equations as was used by Luus [17],
because this will prevent violation of the constraint in-
side a time stage. The auxiliary variables when incorpo-
rated into the augmented performance index through
a penalty function with a sufficiently large penalty func-
tion factor thus prevent a violation of the state con-
straint anywhere in the time interval.

Singular Control Problems

When Pontryagin’s maximum principle is used, com-
putational difficulties arise if the Hamiltonian is not an
explicit function of the control for a portion of the tra-
jectory. Such problems do not arise when IDP is used,
and therefore this area was investigated by using IDP.
The early work [19] showed that IDP can be used with-

out much difficulty for such problems, and Luus [29]
was able to obtain solutions to singular control problems
that had eluded many investigators. For these problems
the main difficulty is the very low sensitivity of the per-
formance index on control.

Sensitivity of Control Policy

Especially for batch reactors, it is found that the cause of
computational difficulties lies in the sensitivity of con-
trol policy with respect to the yield that is to be maxi-
mized [24]. Whereas we are not concerned with more
than four figure accuracy in the yield, we would never-
theless like to know what the optimal control policy is.
The very low sensitivity was brought out by Luus [25]
where in the optimal control of a fed-batch reactor, it
was shown that the optimal control policy is relatively
smooth.

Use of Variable Stage-Lengths

Bojkov and Luus [5,6] suggested the use of flexible
stage-lengths in IDP for time optimal control problems
where the time of switching is very important. For gen-
eral type of optimal control problems the use of vari-
able stage-lengths enabled the optimum to be more ac-
curately obtained, and in some instances the local op-
tima encountered with the use of stages of fixed length
could be avoided [7]. The problem of applying this idea
to problemswhere the final time was specified was over-
come by the use of shifting terms in a quadratic penalty
function [27]. The use of flexible stage-lengths provides
a means of obtaining accurate switching times and al-
lowed some optimal control problems, that had gone
by unsolved for several decades, to be readily solved
[29]. The use of variable stage lengths and a quadratic
penalty function with shifting terms enables time opti-
mal control problems to be solved directly [31], so that
a difficult boundary value problem is avoided. Further
illustration of the usefulness of variable stage lengths is
given in [30] and [33].

Nonseparable Problems

Problems where the performance index is a function
of all the control variables and states, and where sep-
aration into stages as required for dynamic program-
ming is not possible, constitutes and interesting class
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of problems. D. Li and Y.Y. Haimes [13] suggested
a method of tackling such problems, and Luus and Tas-
sone [42] considered the application of IDP to nonsepa-
rable problems. Luus [28] showed that even for complex
nonseparable problems a large number of grid points
is not necessary, and the optimum can be obtained
quite readily. If the number of stages is large, then IDP
has a great advantage over direct search optimization
where optimization is carried out simultaneously over
all the stages. The best means for the application of IDP
to nonseparable problems are still to be determined.
The strategy of using the values for some of the vari-
ables from previous iteration appears to work very well,
however.

Future Directions

Iterative dynamic programming has been developed
into a useful optimization procedure. As has been
shown in [11], IDP has certain advantages over other
optimization procedures for the optimization of a fed-
batch reactor. The reliability of getting the global op-
timum is very high. Now that the personal computers
have become very powerful, the method can be easily
used on very complex optimal control problems. When
G. Marroquin and W.L. Luyben [44] suggested operat-
ing a batch reactor at its best isothermal temperature
as the set point, the computational power of the exist-
ing computers was relatively low and the cost of com-
putation was very high. It appeared then that optimal
control could not be used for realistic systems. Now,
however, we can, in effect, have a feedback control if
the measurements of the pertinent state variables can
be done sufficiently fast, by solving the optimal control
problem many times during the time of operation of
the batch reactor. If the trend in the enhancement of
computer speed continues, we can use realistic mod-
els and carry out optimization ‘on-line’, so that optimal
control calculations can be carried out during the op-
eration and the required changes in the control can be
immediately implemented. Then the optimal control’s
application will not be only for investigation of design
possibilities, but will constitute an important part of the
actual operation of the process.

The viability of using IDP for on-line optimal con-
trol has been illustrated for reactor control by Luus and
O.N. Okongwu [38].

Since derivatives are not required in the use of IDP,
the method is applicable to more general types of op-
timal control problems. Also, since no auxiliary vari-
ables are necessary, except to handle state inequality
constraints, the method is easier to use than varia-
tional methods based on Pontryagin’s maximum prin-
ciple. As convergence properties of IDP are studied in
greater detail, further improvements will inevitably be
introduced, to make IDP even more useful. Luus [30]
showed that variable stage lengths can be incorporated
into optimal control problems where state inequality
constraints are also present, by combining the approach
of Bojkov and Luus [7] along with that of W. Mekara-
piruk and Luus [46]. Although the best choice for the
penalty function to be used in IDP has not yet been
established, good progress has been made in this field
[45] and further research in this area is continuing. Fur-
thermore, since no derivatives are required for IDP, the
method should have important applications where non-
differentiable functions are encountered.
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The shortest path problem is considered to be one of the
classical and most important combinatorial optimiza-
tion problems. Given a directed graph and a length ˛ij
for each arc (i, j), the problem is to find a path of min-
imum length that leads from any node i to a node t,
called the destination node. So, for each node i, we need
to optimally identify a successor node u(i) so as to reach
the destination at the minimum sum of arc lengths over
all paths that start at i and terminate at t. Of particu-
lar relevance is, in the area of distributed computation,
the problem of data routing within a computer com-
munication network. In such a case, the cost associated
with a particular link (i, j) is related to an average de-
lay. The stochastic shortest path problem is a general-
ization whereby for each node i we must select a prob-
ability distribution over all possible successor nodes j
out of a given set of probability distributions pij(u), pa-
rameterized by a control u 2 U(i). Clearly, the path tra-
versed and its length are random variables, but the op-
timal path should lead to the destination with probabil-
ity 1 and have the minimum expected length. Further-
more, if the probability distributions are such that they
assign a probability of 1 to a single successor we then re-
cover the deterministic shortest path problem. Clearly,
sequential decisions have to be made optimally so as to
determine the sequence of controls that would produce
for any current state, i. e. node, a successor state, i. e.
node, so as to minimize the expected length for reach-
ing the terminal state. If we were to assume that a par-
ticular policy 
 , i. e., set of control actions, has been
selected the total expected cost starting from an initial
state i, using this policy would be:

J� (i)

D lim
N!1

E

( N�1X
kD0

˛k g(ik; �k (i); ikC1) : i0 D i

)
:
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The optimal cost-to-go starting from state i is denoted
by

J� D min
�

J� (i):

This problem is defined as s special case of the total cost
infinite horizon problem. The need to assume an infi-
nite horizon is not required by the actual description
of the problem, but rather it is a necessity since the ac-
tual length is random as well as unknown. The follow-
ing are the key characteristics of the stochastic short-
est path problem description within the infinite horizon
dynamic programming framework:
1) There is no discounting, ˛ = 1.
2) The state space is S = {1, . . . , n, t}.
3) The transitions probabilities are:

pi j(u) DD P(xkC1 D jjxk D i; uk D u);

i; j 2 S; u 2 U(i):

4) The state t is absorbing, that is,

ptt(u) D 1; 8u 2 U(t);

the state t, the termination state, is special in the
sense that reaching it is inevitable.

5) The control set U(i) is finite.
6) The destination is cost-free, i. e.,

g(t; u; t) D 0; 8u 2 U(t):

If we denote by g0(i, u, j) the cost of moving from i to j
using control u, then the expected cost per stage will be
defined as:

g0(i; u) D
nX

jD1

pi j(u)g(i; u; j):

The concept of the absorbing state implies that this state
will either be reached inevitably, or there is an incen-
tive to reach it with the minimum expected cost. The
stochastic shortest path problem was first formulated
in [3] while addressing a fundamental problem in con-
trol theory, namely finding the input that would take
a given system to a specified terminal state at minimum
cost. A fundamental assumption regarding the types of
stochastic shortest path problems that can be analyzed
states that:

Assumption 1 There exists at least one proper policy.

A proper policy � is a stationary policy which, when
used, results in a positive probability that the destina-
tion state will be reached after at most n stages, regard-
less of the initial state. That is:

�
 D max
iD1;:::;n

P fxn ¤ t : x0 D i; �g < 1:

A stationary policy is a policy of the form 
 = {�, �,
. . . }.

For analysis purposes, the following operator for
any vector J is defined:

(TJ)(i) D min
u2U(i)

2
4g(i; u)C

nX
jD1

pi j(u)J( j)

3
5 ;

i D 1; : : : ; n;

which is obtained by applying one iteration of the basic
dynamic programming algorithm to the cost function J,
by realizing that the expectancy operator can be refor-
mulated based on the functional form of the state tran-
sition probabilities pij. It can actually be shown, [1], that
T is a contraction mapping with respect to a weighter
sup norm. In other words there exist positive constants
v1, . . . , vn, and some � with 0 < � < 1, such that for all
J1, J2:

max
iD1;:::;n

1
vi
j(TJ1)(i) � (TJ2)(i)j

� � max
iD1;:::;n

1
vi
jJ1(i) � J2(i)j :

Furthermore, the operator T is monotone, that is: for
any vector J and J such that J(i) � J(i), i = 1, . . . , n, and
for any stationary policy � we have:

(Tk J)(i) � (Tk J)(i);

(Tk

 J)(i) � (Tk


 J)(i);

i D 1; : : : ; n; k D 1; 2; : : : :

The main results of the theoretical analysis of stochas-
tic shortest path problems are analogous to those for
discounted problems:
i) The optimal cost vector is a solution to Bellman’s

equation: J� = TJ�.
ii) For every proper policy the cost vector J satisfies:

lim
k!1

(Tk J)(i) D J�(i); i D 1; : : : ; n:
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iii) A stationary policy � is optimal if and only if T
J�

= TJ�.
iv) For every proper policy �:

lim
k!1

Tk

 J D J
;

J
 D T
 J
:

A thorough analysis of the computational complexity
of stochastic shortest path problems has been presented
in [5].

In order to address computationally stochastic
shortest path problems the general methods, i. e., value
iteration, and policy iteration, as well as approximation
schemes along the lines presented in [1] as developed
for discounted problems. A detailed account can also be
found in [6]. Value iteration is a principal method for
calculating optimal cost J� by generating sequences TkJ
starting from some J. Issues related to the Gauss–Seidel
implementation of the value iteration are discussed in
[2]. Although in principle an infinite number of iter-
ations will be required, under certain conditions finite
convergence can be achieved. An alternative way is to
perform policy iterations, in the sense that starting with
a proper policy �0, a sequence of policies converging to
the optimal one is constructed. According to property
iv), for any given policy �, the cost vector can be evalu-
ate as the solution of a system of linear equations:

J(i) D
nX

jD1

pi j(�k(i))(g(i; �k(i); j)C J( j));

i D 1; : : : ; n:

A policy improvement can be know determined as in:

�kC1(i)

D arg min
u2U(i)

nX
jD0

pi j(u)(g(i; u; j)C J
k ( j)):

These approaches assume that mathematical models for
the cost structure and the transition probabilities of the
system exist. In may cases however, such information
is not available and methods based on simulation have
been developed. This information can be derived by
simulating, for given control and state spaces, the sys-
tem’s response so as to derive the associated transition
costs g(i, u, j). The ideas ofMonte-Carlo simulation can

be utilized so as to use simulation for policy evaluations.
A straightforward way of computing the corresponding
cost vector J
 for a given policy �, is to generate many
sample trajectories starting at i, average the correspond-
ing costs, therefore obtaining an estimate for J
(i). An
alternative way, is to perform an infinite (large) num-
ber of simulation runs from various initial states up to
the destination state, and any time that state i is en-
countered we record the corresponding cost of reaching
state t:

c(i;m) D g(i; i1)C g(i1; i2)C � � � C g(iN ; t):

By averaging the simulations we obtain:

J
(i) D lim
M!1

1
M

MX
mD1

c(i;m):

The iterative implementation of the update process re-
sults in:

J
(ik) D J
(ik)

C �k
�
g(ik ; ikC1)C g(ikC1; ikC2)

C � � � C g(iN ; t) � J
(ik)
�
;

k D 1; : : : ;N;

�k D
1
m
; m D 1; 2; : : :

Using simulation to perform the policy evaluation as
just described, can be utilized so as to improve on the
actual policies in order to achieve optimality. The con-
cept of temporal differences, [7], was proposed recently
as an alternative way so as to develop policy iterations,
[1,2]. This concept originated in the field of reinforce-
ment learning, and the key premise is to adjust the esti-
mations appropriately so as to modify prior predictions
when a temporal difference if observed, by essentially
looking back in time and correcting previous predic-
tions. The temporal difference is defined as the quantity:

dk D g(ik ; ikC1)C J
kC1 � J
k ;

k D 1; : : : ;N:

The temporal difference represents the difference be-
tween the current estimate J
(ik) of expected cost-to-go
to the termination state and the predicted cost-to-go to
the termination state g(ik, ik+1)+ J
kC1 . The key idea
of the Monte-Carlo simulation using temporal differ-
ences is to update the individual cost-to-go as soon as
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the cost to go of the successor has been estimated. In
other words J
(i1) is update as soon as g(i1, i2) and i2
are generated during the simulation runs. Then update
both J
(i1) and J
(i2) immediately after g(i2, i3) and i3
are generated, etc.

For the cases where the number of stages becomes
prohibitively large, approximations schemes can be
used so as to derive accurate estimates of either the
optimal cost, J�, or the optimal policy, �. By approx-
imating the optimal cost, J�, we need to generate for
a given state i and approximation J0(i, r) of J�(i), where
r a parameter vector that is to be determined by using
some type of least squares minimization. Once the cost
is know, it can then be used so as to generate subopti-
mal policies as:

�0(i)

D arg min
u2U(i)

nX
jD1

pi j(u)(g(i; u; j)C J0( j; r)) :

The type of the approximation is nonunique but usually
the approximations are of the form:

J0(i; r) D
mX

kD1

rkwk(i):

In essence the approximation is a linear combination of
a set of basis functions.

Recently (1994), [8], presented an approximation
scheme referred to as feature-based aggregation. The
idea is to develop an approximation by making use of
the fact that several states may share some common
characteristics (features). For a stochastic shortest path
problem with n states, one can identify m disjoint sub-
sets Sk, k = 1, . . . , m, such that:

S D S1 [ � � � [ Sm :

The basis functions !k(i) can therefore be defined as:

!k(i) D

(
1 if i 2 Sk ;
0 if i 2 Sk :

The approximate cost can thus be defined as:

J0(i; r) D
mX

kD1

rk!k(i):

The optimal vector r can be determined as the solution
of the aggregate stochastic shortest path problem, for
which the aggregate aggregate transition probabilities
qki express the probability of moving from any state in
Sk to state i. The vector r solves the corresponding Bell-
man’s equation of the aggregate problem:

rk D
nX

iD1

qki

� min
u2U(i)

nX
jD1

pi j(u)

 
g(i; u; j)C

mX
sD1

rs!s( j)

!
;

k D 1; : : : ;m:

For the aggregate problem, the simulation ideas previ-
ously developed can be utilized so as to obtain the opti-
mal vector r and therefore obtain the required approxi-
mation.

Approximation and simulation schemes can also be
combined so as to provide alternatives to performing
policy iterations, [1]. For a given stationary policy �,
a number of simulations, M, can be performed so as
to obtain the estimates c(i, m). subsequently, a least
squares optimization can be solved to provide an ap-
proximation to the costs J
0(i, r, and the coefficients r
are derived by solving the following optimization prob-
lem:

min
r

X
i2S

MX
mD1

ˇ̌
J0(i; r) � c(i;m)

ˇ̌2
:

Once the costs function have been determined, and im-
proved policy, �(i) is identified as:

�(i) D arg min
u2U(i)

X
j

pi j(u)(g(i; u; j)C J0(i; r)):

In essence, the method iterates between a policy evalu-
ation and a policy improvement step, using both simu-
lation techniques for obtaining, for a given state i and
policy �, sample costs and approximation techniques
for obtaining representation of these costs. There are
subsequently used so as to estimate improved policies
and the iterations continue. The concept of Q-learning,
[9], was recently proposed as an alternative way of im-
plementing the concept of re-enforcement learning in
the solution of dynamic programming, [4].
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Total cost infinite horizon problems deal with optimal
decision making problems in the presence of uncer-
tainty of systems in which events occur sequential. In
general, the state transitions are described by a station-
ary dynamic system of the form:

xkC1 D f (xk; uk; !k ); k D 0; 1; : : : ;

where for each time instance (stage) k, the state of the
system is an element of the space S, the control action u
that is to be implemented so as to achieve optimality be-
long to a space C, and finally the uncertainty is modeled
through a set of random disturbances ! that belong
to a countable set D. Furthermore, it is assumed that
the control uk is constrained to take values in a given
nonempty set U(xk) 2 C, which depends of the cur-
rent state xk. The random disturbances !k, k = 0, 1,
. . . , have identical statistics and the probability distri-
butions P(�|xk, uk) are defined onD. These may depend
explicitly on xk and uk but not on prior disturbances.
Given an initial state x0, we seek a policy 
 such that 

= {�0, �1, . . . } for which:

�k : S ! C;
�k(xk) 2 U(xk ); 8xk 2 S;

that minimizes a cost function defined as:

J� (x0) D lim
N!1

E

( N�1X
kD1

˛k g(xk ; �k(xk); !k )

)
:

The function g() is the cost per stage such that: g: S ×
C × D! R and is assumed to be given. Finally, the pa-
rameter ˛ is termed discount factor and it holds that: 0
< ˛ � 1. We denote by ˘ the set of all admissible poli-
cies 
 = {�0, �1, . . . }, that is, the set of all sequences of
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such functions for which:

�k : S ! C;

�k(xk) 2 U(xk); 8xk 2 S:

The optimal cost function J� is then defined as:

J� D min
�2˘

J� (x); x 2 S:

An admissible policy of the form 
 = {�, �, . . . } is
termed stationary and its corresponding cost is J�.

Nevertheless, it is often the case that either the dis-
count factor, ˛, does not have to be less than one, or
even the cost per stage does not have to be bounded
from either above or bellow. If that is the case, then it
is quite possible that for some initial states x0, the cost
functional J� (x0) may become infinite.

D. Blackwell [4] was among the first to analyze the
case in which the discount factor ˛ becomes 1. His ap-
proach was based on the idea of studying the behavior
as the discount factor approaches 1. Based on the ideas
introduced in [7], undiscounted problems are analyzed
under either of the following assumptions:
� Positivity assumption:

0 � g(x; u; !); 8(x; u; !) 2 S � C � D;

� Negativity assumption:

g(x; u; !) � 0; 8(x; u; !) 2 S � C � D:

Having costs per stages being bounded from either
above or belowmay result in the complication of having
unbounded costs for some initial states. Therefore, the
assumption will be made that1, (�1), are admissible
costs J� , under the positivity (negativity) assumption.
Defining the following two mappings, greatly simplifies
the analysis. For any function J defined in S that takes
the values [0, +1] under the positivity assumption, or
the values [� 1, 0] under the negativity assumption,
the mappings T and T
 are defined as:

(TJ)(x) D min
u2U(x)

Efg(x; u; !)C J( f (x; u; !)g:

Furthermore, for any admissible stationary policy, the
mapping T
 is defined as:

(T
 J)(x) D Efg(x; �(x); !)C J( f (x; �(x); !)g:

Under both the positivity or negativity assumptions,
it can be shown, [1], that Bellman’s equation is satisfied:

� Under either the positivity or the negativity assump-
tion, the optimal cost function, J� satisfies:

J�(x) D min
u2U(x)

Efg(x; u; !)C J�( f (x; u; !)g

Clearly, the optimality conditions requires that:

J� D TJ�:

Equivalently, for any stationary policy, it holds true
that:

J
 D T
(J
):

It is to be noted though that for undiscounted
problems, ˛ = 1, the function J� need not be the
unique function minimizes Bellman’s equation. In
other words, the mapping T does not have a unique
fixed point. Nevertheless, the optimal cost vector, J�, is
the smallest fixed point, under the positivity assump-
tion, or the largest fixed point, under the negativity as-
sumption.
� Under the positivity assumption, if J0: S! [0, +1]

satisfies J0 = TJ0, then:

J� � J0:

� Under the negativity assumption, if J0: S! [�1, 0]
satisfies J0 = TJ0, then:

J0 � J�:

It should be pointed out, that in the analysis of undis-
counted problems the concept of monotonicity plays
a key role. The following monotone convergence theo-
rem summarizes the key properties, [3]:

Theorem Let P = (p1, p2, . . . ) be a probability distri-
bution over S = {1, 2, . . . }. Let {hN} be a sequence of ex-
tended real-valued functions on S such that for all i 2 S
and N = 1, 2, . . . :

0 � hN(i) � hNC1(i):

Let h: S! [0,1] be the limit function:

h(i) D lim
N!1

hN(i):

Then:

lim
N!1

1X
iD1

pi hN(i) D
1X
iD1

pi lim
N!1

hN(i)

D

1X
iD1

pi h(i):
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As examples of undiscounted problems, let us consider
two types of problems that define interesting classes
that can be cast as undiscounted dynamic program-
ming problems, namely the optimal stopping and the
optimal gambling strategy problem. The former defines
a situation in which at each state x of the state space
there are two possible actions that are available. One
may either decide to stop, by selecting control u1, and
pay a terminal cost t(x), or, select control u2, pay a cost
c(x) and continue the process, with a new state be given
by:

xkC1 D f (xk; !k ):

For completeness purposes one also defines a termina-
tion state s that is entered once the stopping decision is
made. In other words,

xkC1 D s if uk D u1 or xk D s:

If it is further assumed that both the termination and
the continuation costs are positive (or negative), then
the problem satisfies the positivity (negativity) assump-
tion. ThemappingT defined earlier takes now the form:

(TJ)(x) D min ft(x); c(x)C EfJ( f (x; !))gg ;

8x 2 S:

The objective is to find the optimal stopping policy
that minimizes the total expected costs over an infi-
nite number of stages. Insofar regarding external dis-
turbances, !, it is assumed that they have the same
probability distribution for all time instances and de-
pend only on the current state xk.

The early work [5] details the gambling problem,
but was also one of the early works on undiscounted
problems. The problem is defined as one in which
a player may stake at any time k any amount uk � 0 that
does not exceed his/her current fortune, xk. The stake is
won back with probability p, and lost with probability
1� p. The discrete-time state evolution is described by:

xkC1 D xk C !kuk; k D 1; 2; : : : :

The disturbance !k is considered to be 1 with proba-
bility p, and �1 with probability 1� p. The gambling is
continued until reaching given fortune or loosing the
entire initial capital. The problem is to determine that
optimal gambling strategy that maximizes the probabil-
ity of reaching the target fortune. As gambling strategy

is defined the specific rule that specifies what the stakes
should be at time k. It can be shown that the bold strat-
egy is an optimal policy. The bold strategy is defined as:

��(x) D

(
x; 0 < x � 1

2 ;

1 � x; 1
2 � x < 1:

As suggested by the theory of undiscounted problems,
the bold strategy is simply an optimal strategy and oth-
ers can also be derived, [5].

From a computational standpoint it is important to
knowwhether the method of successive approximations,
i. e., value iteration, converges to the optimal cost func-
tion. In other words, it is important to know whether
the basic dynamic programming algorithm converges.
Under either of the two basic assumptions we have:
� Positivity assumption:

J0 � T(J0) � � � � � Tk (J0) � � � � :

� Negativity assumption:

J0 � T(J0) � � � � � Tk (J0) � � � � :

In either case

J1(x) D lim
k!1

Tk (J0)(x); x 2 S:

In other words, the sequence generated by successive
approximation, i. e., by successively applying the map-
ping T, converges and the limit is well defined, includ-
ing the values of +1 and �1. For the value iteration
method though to be valid we also need to have that J1
= J�. In order for the above to be true under the posi-
tivity assumptions, an additional condition needs to be
satisfied, [2]:
� Let the positivity assumption be satisfied and as-

sume that the sets:

Uk(x; �) D
n
u 2 U(x) :

Efg(x; u; !)C Tk (J0)( f (x; u; !))g � �
o

are compact subsets of a Euclidean space for every x
2 S, � 2 R, and for all k greater than some integer k.
Then:

J1 D T(J1) D J�:
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It should be noted that since U(x) is assumed to be fi-
nite, the above condition is satisfied. A detailed account
of the value iteration method of undiscounted Markov
decision problems can also be found in [6].

It can also be shown, [3], that it is possible to de-
vise computational methods based on mathematical
programming when the state, control, and disturbance
spaces are finite. Under the negativity assumption, the
vector J solves the following linear programming prob-
lem:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
nX

iD1

�i

s.t. �i � g(i; u)C
nX

jD1

pi j(u)� j

i D 1; 2; : : : :

Under the positivity assumption, the corresponding
program takes the form:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
nX

iD1

�i

s.t. �i � min
u2U(x)

8<
:g(i; u)C

nX
jD1

pi j(u)� j

9=
; ;

i D 1; 2; : : : :

Unfortunately, this two-level optimization problem is
neither linear nor convex, and therefore its solution
highly nontrivial.
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Congested urban transportation networks represent
complex systems in which travelers interact so as to
determine unilaterally their cost-minimizing routes of
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travel between their points of origin and their desti-
nations. The governing concept here is that of ‘user-
optimization’, which dates to J.G. Wardrop [19] (and
was so termed by S.C. Dafermos and F.T. Sparrow [4]),
and states that, in equilibrium, all used paths connect-
ing an origin/destination pair of nodes will have travel
costs that are equal and minimal.

The complexity of user-optimized transportation
networks, sometimes also referred to as the ‘traffic as-
signment’ problem, has stimulated much research in
the past several decades, both frommethodological per-
spectives, as well as in terms of practical application.
Notable developments include: the proof by M.J. Beck-
mann, C.B. McGuire, and C.B. Winsten [1] that, under
certain symmetry assumptions on the link travel cost
functions (and travel disutility functions), the traffic
network equilibrium solution also satisfies the Kuhn–
Tucker conditions of an appropriately constructed op-
timization problem, and the identification by Dafermos
[2] that the traffic network equilibrium conditions, as
formulated by M.J. Smith [17] (without any imposi-
tion of a symmetry assumption), satisfy a variational
inequality problem. Books that discuss methodologi-
cal approaches to static traffic equilibrium problems in-
clude [9,14,16] (see also [6]).

The study of dynamic travel route choice models on
general transportation networks, where time is explic-
itly incorporated into the framework, was initiated by
D.K. Merchant and G.L. Nemhauser [8], who focused
on dynamic system-optimal networks with the char-
acteristic of many origins and a single destination. In
system-optimal networks, in contrast to user-optimal
networks, one seeks to determine the path flow and link
load patterns that minimize the total cost in the net-
work, rather than the individual path travel costs.

M.J. Smith [18], in turn, proposed a dynamic traf-
fic user-optimized model with fixed demands. H. Mah-
massani [7] also proposed dynamic traffic models and
investigated them experimentally. The recent book [15]
provides an overview of the history of dynamic traffic
network models and discusses distinct approaches for
their analysis and computation.

Here we present a dynamic trafficmodel with elastic
demands proposed by P. Dupuis and A. Nagurney [5],
who, along with D. Zhang and Nagurney [22], estab-
lished the foundations for a new methodology, that of
‘projected dynamical systems’ theory. The notable fea-

ture of a projected dynamical system is that its set of sta-
tionary points coincides with the set of solutions of the
corresponding variational inequality problem. There,
thus, exists a fundamental linkage between the static
world of finite-dimensional variational inequality prob-
lems and the dynamic world exhibited by a new class of
dynamical system.

The dynamic adjustment process that is presented
here models the travelers’ day-to-day dynamic behav-
ior of making trip decisions and route choices associ-
ated with a travel disutility perspective. Subsequently,
some of the stability results of this travel-route choice
adjustment process obtained by Zhang and Nagurney
[21] are reviewed, which address whether and how the
travelers’ dynamic behavior in attempting to avoid con-
gestion leads to a traffic equilibrium pattern. Finally, we
recall the discrete-time algorithms devised for the com-
putation of traffic network equilibria with elastic de-
mands and with known travel disutility functions. The
convergence of these discrete-time algorithms was es-
tablished by Zhang and Nagurney [10,13]. Additional
dynamic traffic network models, as well as qualitative
and numerical results, using this methodology can be
found in [11,12], and [22]. For alternative dynamic traf-
fic network models and approaches, see [15], and the
references therein.

ADynamic Traffic Network Model

The model that we present is due to Dupuis and Nagur-
ney [5]. It is a dynamic counterpart to the static traffic
network equilibrium model with elastic travel demands
developed by Dafermos [3].

We consider a network [N, L] consisting of nodes
[N] and directed links [L]. Let a denote a link of the
network connecting a pair of nodes, and let p denote
a path (assumed to be acyclic) consisting of a sequence
of links connecting an origin/destination (O/D) pair w.
Pw denotes the set of paths connecting the O/D pair w
with nPw paths. We let W denote the set of O/D pairs
and P the set of paths in the network.

Let xp represent the flow on path p and let f a denote
the load on link a. The following conservation of flow
equation must hold for each link a:

fa D
X
p

xpıap;
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where ıap = 1, if link a is contained in path p, and 0
otherwise. The expression states that the load on a link
a is equal to the sum of all the path flows on paths that
contain the link a.

Moreover, if we let dw denote the demand associ-
ated with an O/D pair w, then we must have that for
each O/D pair w

dw D
X
p2Pw

xp;

where xp � 0, for all p, that is, the sum of all the path
flows on paths connecting the O/D pairwmust be equal
to the demand dw. Let x denote the column vector of
path flows with dimension nP .

Let ca denote the user cost associated with traversing
link a, and let Cp denote the user cost associated with
traversing path p. Then

Cp D
X
a

caıap:

In other words, the cost of a path is equal to the sum of
the costs on the links comprising that path. We group
the link costs into the column vector c with nA com-
ponents, and the path costs into the column vector C
with nP components. We also assume that we are given
a travel disutility function �w for each O/D pair w. We
group the travel disutilities into the column vector �
with J components.

We assume that, in general, the cost associated with
a link may depend upon the entire link load pattern,
that is,

ca D ca( f )

and that the travel disutility associated with anO/D pair
may depend upon the entire demand pattern, that is,

�w D �w (d);

where f is the nA-dimensional column vector of link
loads and d is the J-dimensional column vector of travel
demands.

We now, for completeness, recall the traffic network
equilibrium conditions.

Definition 1 (traffic network equilibrium, [1,3]) A
vector x� 2 Rnp

C , which induces a vector d� through the

demand equations, is a traffic network equilibrium if for
each path p 2 Pw and every O/D pair w:

Cp(x�)

(
D �w (d�); if x�p > 0
� �w (d�); if x�p D 0:

In equilibrium, only those paths connecting an O/D
pair that have minimal user costs are used, and their
costs are equal to the travel disutility associated with
traveling between the O/D pair.

The equilibrium conditions have been formulated
as a variational inequality problem by Dafermos (cf.
[2,3]). In particular, we have:

Theorem 2 [3] (x�, d�) 2 K1 is a traffic network equi-
librium pattern, that is, satisfies the equilibrium condi-
tions if and only if it satisfies the variational inequality
problem (path flow formulation):

˝
C(x�)>; x � x�

˛
�
˝
�(d�)>; d � d�

˛
� 0;

8(x; d) 2 K1;

where K1 � {(x, d) : x � 0, and the demand constraints
hold}.

Note that, in view of the demand constraints, one may
defineb�(x) � �(d), in which case one may rewrite the
variational inequality in the path flow variables x only,
that is, we seek to determine x� 2 Rnp

C , such that
D
(C(x�) � �(x�))>; x � x�

E
� 0; 8x 2 RnP

C ;

where �(x) is the nPw1 × . . .nPwJ
-dimensional column

vector with components:

(b�w1 (x); : : : ;b�w1 (x); : : : ;b�wJ (x); : : : ;b�wJ (x));

where J is the number of O/D pairs. If we now let
F(x) � (C(x) � �(x)) and K � {x : x 2 Rnp

C }, then,
clearly, this inequality can be placed into standard vari-
ational inequality form.

The Trip-Route Choice Adjustment Process

The dynamical system, first presented in [5], whose sta-
tionary points correspond to solutions of the latter vari-
ational inequality problem above, is given by:

ẋ D ˘K(x; �(x) � C(x)); x(0) D x0 2 K;
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where, assuming that the feasible set K is a convex poly-
hedron (as is the case here), and given x 2 K and v 2
Rn, we define the projection of the vector v at x (with
respect to K) by

˘K(x; v) D lim
ı!0

PK(x C ıv) � x
ı

;

where PK is defined as:

PK(x) D argmin
z2K
kx � zk ;

and k � k denotes the Euclidean norm.
This dynamical system is a projected dynamical sys-

tem (cf. [10,22]), since the right-hand side, which is
a projection operator, is discontinuous.

The adjustment process interpretation of the dy-
namical system, as discussed in [5], is as follows: Users
of a transportation network choose, at the greatest rate,
those paths whose differences between the travel disu-
tilities (demand prices) and path costs are maximal;
in other words, those paths whose costs are minimal
relative to the travel disutilities. If the travel cost on
a path exceeds the travel disutility associated with the
O/D pair, then the flow on that path will decrease; if
the travel disutility exceeds the cost on a path, then the
flow on that path will increase. If the difference between
the travel disutility and the path cost drives the path
flow to be negative, then the projection operator guar-
antees that the path flow will be zero. The process con-
tinues until there is no change in path flows, that is,
until all used paths have path costs equal to the travel
disutilities, whereas unused paths will have costs which
exceed the disutilities. Specifically, the travelers adjust
their route choices until an equilibrium is reached.

The following example, given in a certain discrete-
time realization, shows how the dynamic mechanism
of the above trip-route choice adjustment would real-
locate the traffic flow among the paths and would react
to changes in the travel disutilities.

Example 3 Consider a simple transportation network
consisting of two nodes, with a single O/D pair w, and
two links a and b representing the two disjoint paths
connecting the O/D pair. Suppose that the link costs
are:

ca( fa) D fa C 2; cb( fb) D 2 fb;

and the travel disutility function is given by:

�w (dw ) D �dw C 5:

Note that here a path consists of a single link and,
hence, we can use x and f interchangeably. Suppose
that, at time t = 0, the flow on link a is 0.7, the flow
on link b is 1.5; hence, the demand is 2.2, and the travel
disutility is 2.8, that is,

xa(0) D 0:7; xb(0) D 1:5;

dw (0) D 2:2; �w (0) D 2:8;

which yields travel costs: ca (0) = 2.7 and cb(0) = 3.0.
According to the above trip-route choice adjust-

ment process, the flow changing rates at time t = 0 are:

ẋa(0) D �w(0) � ca(0) D 0:1;

ẋb(0) D �w (0) � cb(0) D �0:2:

If a time increment of 0.5 is used, then at the next
moment t = 0.5, the flows on link a and link b are:

xa(0:5) D xa(0)C 0:5ẋa(0)

D 0:7C 0:5 � 0:1 D 0:75;
xb(0:5) D xb(0)C 0:5ẋb(0)

D 1:5 � 0:5 � 0:2 D 1:4;

which yields travel costs: ca(0.5) = 2.75 and cb (0.5) =
2.8, a travel demand dw(0.5) = 2.15, and a travel disu-
tility �w(0.5) = 2.85. Now, the flow changing rates are
given by:

ẋa(0:5) D �w (0:5) � ca(0:5)

D 2:85 � 2:75 D 0:1;

ẋb(0:5) D �w(0:5) � cb(0:5)

D 2:85 � 2:8 D 0:05:

The flows on link a and link b at time t = 1.0 would,
hence, then be:

xa(1:0) D xa(0:5)C 0:5ẋa(0:5)

D 0:75C 0:5 � 0:1 D 0:80;
xb(1:0) D xb(0:5)C 0:5ẋb(0:5)

D 1:4C 0:5 � 0:05 D 1:425;

which yields travel costs: ca(1.0) = 2.80 and cb(1.0) =
2.85, a travel demand dw(1.0) = 2.225, and a travel disu-
tility �w(1.0) = 2.775. Now, the flow changing rates are
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given by:

ẋa(1:0) D �w (1:0) � ca(1:0)
D 2:775 � 2:800 D 0:025;

ẋb(1:0) D �w(1:0) � cb(1:0)

D 2:775 � 2:850 D �0:075:

The flows on link a and link b at time t = 1.5 would
be:

xa(1:5) D xa(1:0)C 0:5ẋa(1:0)

D 0:8 � 0:5 � 0:025 D 0:7875;

xb(1:5) D xb(1:0)C 0:5ẋb(1:0)
D 1:425 � 0:5 � 0:075 D 1:3875;

which yields travel costs: ca(1.5) = 2.7875 and cb(1.5)
= 2.775, a travel demand dw(1.5) = 2.175, and a travel
disutility �w(1.0) = 2.82.

In this example, hence, as time elapses, the trip-
route choice adjustment process adjusts the flow vol-
ume on the two links so that the difference between the
travel costs of link a and link b is being reduced, from
0.3, to 0.05, and, finally, to 0.0125; and, the difference
between the disutility and the travel costs on the used
links is also being reduced from 0.2, to 0.1, and to 0.045.
In fact, the traffic equilibrium with: x�a = 0.8 and x�b =
1.4, which induces the demand d�w = 2.2, is almost at-
tained in only 1.5 time units.

Stability Analysis

We now present the stability results of the trip route
choice adjustment process. The results described herein
are due to Zhang and Nagurney [21]. For example,
the questions that motivate transportation planners and
analysts to study the stability of a transportation sys-
tem include: Will any initial flow pattern be driven to
an equilibrium by the adjustment process? In addition,
will a flow pattern near an equilibrium always stay close
to it? These concerns of system stability are important
in traffic assignment and form, indeed, a critical base
for the very concept of an equilibrium flow pattern.

For the specific application of transportation net-
work problems, the following definitions of stability of
the transportation system and the local stability of an
equilibrium are adapted from the general stability con-
cepts of projected dynamical systems (cf. [22]).

Definition 4 (stability at an equilibrium) An equilib-
rium flow pattern x� is stable if it is a global mono-
tone attractor for the corresponding route choice ad-
justment process.

Definition 5 (asymptotical stability at an equilibrium)
An equilibrium flow pattern x� is asymptotically stable
if it is a strictly global monotone attractor for the corre-
sponding route choice adjustment process.

Definition 6 (stability of the system) A route choice
adjustment process is stable if all its equilibrium flow
patterns are stable.

Definition 7 (asymptotical stability of the system)
A route choice adjustment process is asymptotically
stable if all its equilibrium flow patterns are asymptoti-
cally stable.

We now present the stability results in [21] for the trip-
route choice adjustment process.

Theorem 8 ([21]) Suppose that the link cost functions
c are monotone increasing in the link load pattern f and
that the travel disutility functions � are monotone de-
creasing in the travel demand d. Then the trip-route
choice adjustment process is stable.

Theorem 9 ([21]) Assume that there exists some equi-
librium path flow pattern. Suppose that the link cost
functions c and negative disutility functions � � are
strictly monotone in the link load f and the travel de-
mand d, respectively. Then the trip-route choice adjust-
ment process is asymptotically stable.

The first theorem states that, provided that monotonic-
ity of the link cost functions and the travel disutility
functions holds true, then any flow pattern near an
equilibrium will stay close to it forever. Under the strict
monotonicity assumption, on the other hand, the sec-
ond theorem can be interpreted as saying that any ini-
tial flow pattern will eventually be driven to an equilib-
rium by the route choice adjustment process.

Discrete Time Algorithms

The Euler method and the Heun method were em-
ployed in [13] and [10] for the computation of solu-
tions to dynamic elastic demand traffic network prob-
lems with known travel disutility functions, and their
convergence was also established therein. We refer the
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reader to these references for numerical results, includ-
ing traffic network examples that are solved on a mas-
sively parallel computer architecture.

In particular, at iteration � , the Euler method com-
putes

x�C1 D PK (x� � a�F(x� ));

whereas, according to the Heun method, at iteration �
one computes

x�C1

D PK
�
x� � a�

1
2
�
F(x� )C F(P(x� � a�F(x� )))

��
:

In the case that the sequence {a�} in the Euler
method is fixed, say, {a� } = �, for all iterations � , then
the Euler method collapses to a projection method (cf.
[2,6,9], and [14]).

In the context of the dynamic traffic network prob-
lem with known travel disutility functions, the projec-
tion operation in the above discrete-time algorithms
can be evaluated explicitly and in closed form. Indeed,
each iteration � of Euler method takes the form: For
each path p 2 P in the transportation network, compute
the path flow x�C1

p according to:

x�C1
p D maxf0; x�p C a� (�w (d� ) � Cp(x� ))g:

Each iteration of the Heunmethod, in turn, consists
of two steps. First, at iteration � one computes the ap-
proximate path flows:

x�p D maxf0; x�p C a� (�w(d� ) � Cp(x� ))g;

8p 2 P;

and updates the approximate travel demands:

d
�

w D
X
p2Pw

x�p; 8w 2 W:

Let

x� D fx�p; p 2 Pg

and

d
�
D fd

�

w ;w 2 Wg:

Then, for each path p 2 P in the transportation net-
work one computes the updated path flows x�C1

p ac-
cording to:

x�C1
p D max

n
0;

x�p C
a�
2
[�w (d� ) � Cp(x� )C �w (d

�
) � Cp(x� )]

o
;

8p 2 P;

and updates the travel demands d�C1
w according to:

d�C1
w D

X
p2Pw

x�C1
p ; 8w 2 W:

It is worth noting that both the Euler method and
the Heunmethod at each iteration yield subproblems in
the path flow variables, each of which can be solved not
only in closed form, but also, simultaneously. Hence,
these algorithms in the context of this model can be in-
terpreted as massively parallel algorithms and can be
implemented on massively parallel architectures. In-
deed, this has been done so by Nagurney and Zhang
[13] (see also [11] for the case where the demand func-
tions are given, rather than the travel disutility func-
tions).

In order to establish the convergence of the Euler
method and the Heun method, one regularizes the link
cost structures.

Definition 10 (regular cost function) The link cost
function c is called regular if, for every link a 2 L,

ca( f )!1; as fa !1;

holds uniformly true for all link flow patterns.

We note that the above regularity condition on the link
cost functions is natural from a practical point of view
and it does not impose any substantial restrictions. In
reality, any link has an upper bound in the form of
a capacity. Therefore, letting f a ! 1 is an artificial
device under which one can reasonably deduce that
ca(f )!1, due to the congestion effect. Consequently,
any practical link cost structure can be theoretically ex-
tended to a regular link cost structure to allow for an
infinite load.

The theorem below shows that both the Euler
method and the Heun method converge to the traffic
network equilibrium under reasonable assumptions.
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Theorem 11 ([10,13]) Suppose that the link cost func-
tion c is regular and strictly monotone increasing, and
that the travel disutility function � is strictly monotone
decreasing. Let {a� } be a sequence of positive real num-
bers that satisfies

lim
�!1

a� D 0

and
1X
�D0

a� D1:

Then both the Euler method and the Heun method pro-
duce sequences {x� } that converge to some traffic network
equilibrium path flow pattern.
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Introduction

A considerable amount of effort has been spent on
studying and developing efficient solution procedures
for the economic lot-sizing problem. This problem had
been solved in 1958, but there is still continuing inter-
est in the problem. The main reason for the continu-
ing interest in this problem is its practical applications.
For example, economic lot-sizing is the core problem in

aggregate production planning in MRP systems (Nah-
mias [25]). For an extensive review, see Aggarwal and
Park [1], Bahl et al. [2], Belvaux and Wolsey [6,7,8],
Nemhauser and Wolsey [26], and Wolsey [36].

The economic lot-sizing problem can be defined as
follows. Given the demand, the unit production cost,
the unit inventory holding cost for a commodity, the
production capacities, and the setup costs for each time
period over a finite, discrete-time horizon, find a pro-
duction schedule that would satisfy demand at mini-
mum cost.

This model assumes a fixed and a variable com-
ponent of production costs. The fixed cost consists of
manpower and materials to start up the machines. To
reduce the fixed cost per unit, large lot sizes are desired.
On the other hand, for every unit produced there are
associated production and inventory holding costs, and
the total variable cost (production plus inventory) in-
creases with the number of units produced. Solving the
lot-sizing problem means finding a production sched-
ule that would satisfy demand at every period and min-
imize the total of fixed and variable costs.

The work by Harris [18] in 1913 has been cited as
the first study of the economic lot-sizing problem that
assumes deterministic demands. This model, known as
the Economic Order Quantity (EOQ) model, proposes
a production schedule to satisfy the demand for a single
commodity with a constant demand rate. Production
takes place continuously over time, and the model does
not incorporate capacity limits.

Amajor limitation of the above model is that the de-
mand is continuous over time and has a constant rate.
Manne [23] and Wagner and Whitin [35] studied the
lot-sizing problem with a finite time horizon consisting
of a number of discrete periods, each with its own de-
terministic and independent demand.
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Formulation

Let T be the length of the planning horizon, and ct , ht ,
st , bt denote the unit production cost, the unit inventory
holding cost, the setup cost, and the demand in period
t(1 � t � T), respectively. The following are the deci-
sion variables for this problem:

qt : amount of production in period t

It : inventory level at the end of period t

yt D

(
1 if production occurs in period t
0 otherwise

A mixed-integer programming formulation of the clas-
sical economic lot-sizing problem is

minimize
TX

tD1

(ctqt C st yt C ht It)

subject to (C-ELS)

qt C It�1 D bt C It ; 1 � t � T ; (1)

qt � btT yt ; 1 � t � T ; (2)

IT D 0 ; (3)

yt 2 f0; 1g; 1 � t � T ; (4)

qt; It � 0; 1 � t � T ; (5)

where btT is the total demand in periods t; : : : ; T .
Below, some of the approaches that have been used

to solve the economic lot-sizing problem are summa-
rized.

Dynamic Programming Algorithm

In 1958, Wagner and Whitin [35] developed a dy-
namic programming algorithm to solve the economic
lot-sizing problem. This algorithm runs in O(T2).

The special structure of the optimal solutions to the
economic lot-sizing problem contributed to develop-
ing an efficient dynamic programming algorithm. For
this purpose, it is useful to view the problem as a fixed
charge network flow problem. The optimal solution for
this network flow problem will be a tree since the ob-
jective function is concave and the arcs do not have ca-
pacity restrictions. This property of an optimal solution
implies that:

Theorem 1 An optimal solution to the economic lot-
sizing problem satisfies the following:
(i.) qt It�1 D 0 for 1 � t � T,
(ii.) If qt > 0, then qt D

P� 0

�Dt b� for t � � 0 � T.

Property (i.) shows that production takes place when
the inventory carried forward is zero. This property is
known as the Zero-Inventory Ordering (ZIO) property.
Property (ii.) shows that if production takes place in pe-
riod t, the amount produced will be exactly equal to the
total demand for a number of periods (t to � 0). Prop-
erty (ii.) is used to develop the dynamic programming
algorithm for the economic lot-sizing problem.

Let v(t) be the minimum cost of a solution for pe-
riods 1; : : : ; t. If � � t is the last period in which pro-
duction occurs, then q� D b� t and I��1 D 0. This im-
plies that the problem can be divided into two smaller
subproblems, and the least-cost solution v(� � 1) is op-
timal for the first subproblem (periods 1; : : : ; � � 1).
This leads to the following recursive function:

v(t) D min
1���t

fv(� � 1)C s� C c�b� t C
t�1X
sD�

hsbsC1;tg

with v(0)=0.

Calculating v(t) for t D 1; : : : ; T leads to the opti-
mal solution v(T) of the economic lot-sizing problem.

Shortest Path Algorithm

The economic lot-sizing problem has also been solved
as a shortest-path algorithm in an acyclic network (Ep-
pen and Martin [13], Martin [24], Zangwill [38]). The
acyclic network, G, is built in the following way: let
the total number of nodes in G be equal to T C 1,
one for each time period along with a dummy node.
The traversing arc (t; t0) 2 G(1 � t � t0 � T C 1) rep-
resents the choice of producing in period t to satisfy the
demand in periods t; : : : ; t0 � 1. Thus, the cost of arc
(t, t0) is calculated using the following cost function:

gt;t0 D st C ctbt;t0�1 C
t0�2X
�Dt

h�b�C1;t0�1 :

The shortest path from node “1” to node “T C 1” pro-
vides the set of production intervals of minimum cost
and therefore solves the economic lot-sizing problem.
The shortest-path algorithm is solved in order O(m),
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where m is the number of arcs in the directed, acyclic
network. The total number of arcs in G is in the order
of T2; therefore, this shortest-path algorithm solves the
economic lot-sizing problem in O(T2).

Primal-Dual Algorithm

Almost 30 years later (after Wagner and Whitin devel-
oped their dynamic programming algorithm), Wagel-
mans et al. [34], Aggarwal and Park [1], and Feder-
gruen and Tzur [15] showed that the running time of
the dynamic programming algorithm could be reduced
to O(T log T) in the general case and to O(T) when
the costs have a special structure. This special structure
(ht C pt � ptC1) is also referred to as the absence of
speculative motives. They developed a primal-dual al-
gorithm to get these results.

Below, we present a reformulation of the eco-
nomic lot-sizing problem. In this formulation, qt� (� D
t; : : : ; T) is defined as the amount produced in period
t to satisfy demand in period � (Krarup and Bilde [20],
van Hoesel [31]). The reformulation is

minimize
TX

tD1

"
ct

TX
�Dt

qt� C st yt

#

subject to (Ex-ELS)
�X

tD1

qt� D b� ; 1 � � � T ; (7)

qt� � b� yt � 0; 1 � t � � � T ; (8)

qt� � 0; 1 � t � � � T ; (9)

yt 2 f0; 1g; 1 � t � T ; (10)

where ct D pt C
P�

sDtC1 hs .
Krarup and Bilde show that the linear program-

ming relaxation of (Ex-ELS) (obtained by relaxing con-
straints y 2 f0; 1g) always has an integer solution. The
corresponding dual problem has a special structure that
enables developing a primal-dual-based algorithm. The
following is the formulation of the dual problem:

maximize
TX

tD1

btvt

subject to (D-ELS)

TX
�Dt

b� max(0; v� � ct) � st 1 � t � T : (11)

The dual variables have the following property:
vt � vtC1for1 � t � T � 1. This property of the dual
variables is used to show that the dual-ascent algorithm
gives the optimal solution to the economic lot-sizing
problem. Note that formulation (Ex-ELS) of the eco-
nomic lot-sizing problem is a special case of the facility
location problem. The primal-dual algorithm, in prin-
ciple, is similar to the primal-dual scheme proposed
by Erlenkotter [14] for the facility location problem.
The primal-dual algorithm for the economic lot-sizing
problem developed by Wagelmans et al. [34] runs in
O(T log T).

Cutting Plane Algorithm

Many researchers studying lot-sizing problems also fo-
cused on determining a partial polyhedral description
of the set of the feasible solutions and applying branch-
and-cut methods (Pochet et al. [28], Leung et al. [21],
Barany et al. [5]). The main motivation for studying the
polyhedral structure of the single item lot-sizing prob-
lem is to use the results from these studies to develop
efficient algorithms for problems such as the multi-
commodity economic lot-sizing problem. However, the
branch-and-cut approach has not yet resulted in com-
petitive algorithms for the single-item lot-sizing prob-
lem itself. The reason is that generating a single cut
could be as time-consuming as solving the whole prob-
lem.

Barany et al. [4,5] provide a set of valid inequali-
ties for the single-commodity lot-sizing problem and
show that these inequalities are facets of the convex hull
of the feasible region. Furthermore, they show that the
inequalities fully describe the convex hull of the fea-
sible region. Their separation algorithm runs in order
O(T2).

Pereira and Wolsey [27] study a family of un-
bounded polyhedra arising in an uncapacitated lot-
sizing problem with Wagner-Whitin type costs (ht C

pt � ptC1 � 0). They characterize the bounded faces of
maximal dimension completely and show that they are
integral. For a problem with T periods they derive an
O(T2) algorithm to express any point within the poly-
hedron as a convex combination of the extreme points
and the extreme rays of the polyhedron. They observe
that for a given objective function, the face of optimal
solutions can be found in O(T2).
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Cases

Capacitated Economic Lot-Sizing Problem

The capacitated lot-sizing problem is NP-hard even
for many special cases (Florian et al. [16] and Bi-
tran and Yanasse [9]). In 1971, Florian and Klein pre-
sented a remarkable result. They developed an O(T4)
algorithm for solving the capacitated lot-sizing prob-
lem with equal capacities in all periods. This result
uses a dynamic programming approach combined with
some important properties of optimal solutions to these
problems. Recently, van Hoesel and Wagelmans [32]
showed that this algorithm can be improved to O(T3)
if backlogging is not allowed and the holding cost func-
tions are linear.

Several solution approaches have been proposed
for NP-hard special cases of the capacitated lot-siz-
ing problem. These methods are typically based on
branch-and-bound (see, for instance, Baker et al. [3]
and Erengüç and Aksoy [12]), dynamic programming
(Kirca [19] and Chen and Lee [10]) or a combination of
the two (Chung and Lin [11] and Lofti and Yoon [22]).

Shaw and Wagelmans [29] considered the capaci-
tated lot-sizing problem with piecewise linear produc-
tion costs and general holding costs. They showed that
this is anNP-hard problem and presented an algorithm
that runs in pseudopolynomial time.

Multi-commodity Economic Lot-Sizing Problem

The multicommodity version of the problem has at-
tracted much attention. Manne [23] uses the ZIO prop-
erty to develop a column generation approach to solve
this problem. Barany et al. [5] solve the multicommod-
ity capacitated lot-sizing problem without setup times
optimally using a cutting-plane procedure followed by
branch-and-bound. Moreover, Manne introduces up-
per bounds on the production capacities.

Other extensions to the classic economic lot-sizing
problem consider setup times, backorders, and other
factors. Zangwill [37] extends Wagner and Whitin’s
model by allowing backlogging and introducing general
concave cost functions. Veinott [33] studies an unca-
pacitated model with convex cost structures. Trigeiro
et al. [30] show that a capacitated lot-sizing problem
with setup times is much harder to solve than a capac-
itated lot-sizing problem without setup times. It is easy
to check if the capacitated lot-sizing problem without

setup times has a feasible solution or not. This can be
done by computing cumulative demand and cumula-
tive capacity. When setup times are considered, the fea-
sibility problem is NP-complete. Also, the bin-packing
problem is a special case of capacitated lot-sizing prob-
lem with setup times (Garey and Johnson [17, p. 226]).
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Selfadjoint eigenvalue problems for ordinary differen-
tial equations are very important in the sciences and
in engineering. The characterization of eigenvalues by
a minimum-maximum principle for the Rayleigh quo-
tient forms the basis for the famous Rayleigh–Ritz
method. This method allows for an efficient compu-
tation of nonincreasing upper eigenvalue bounds. N.J.
Lehmann and H.J. Maehly [6,7,8] independently devel-
oped complementary characterizations that can be used
to compute lower bounds. These methods are based
on extremal principles for the Temple quotient. In gen-
eral, however, an application of the Lehmann–Maehly
method requires that certain quantities can be deter-
mined explicitly. This may be difficult or even impos-
sible when dealing with partial differential equations.
Of great importance is therefore a generalization, the
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Goerisch method [3,4,5], that may be used to overcome
these problems. Nevertheless, the original Lehmann–
Maehly method can easily be applied to a large class of
ordinary differential equations; in [10] it is shown, that
the method can be interpreted as a special application
of the Rayleigh–Ritz method.

InclusionMethod

Let (H, (�|�)) be an infinite-dimensional Hilbert space
with the inner product (�|�) and the norm k � k. Suppose
that V is a dense subspace of H and that one has the
inner product [�|�] in V such that (V , [�|�]) is a Hilbert
space (the norm inV is denoted by k � k V ). The embed-
ding V ,! H is assumed to be compact.

One can consider the right-definite eigenvalue
problem

(
Find � 2 R and ' 2 V ; ' ¤ 0;
s.t. ['jv] D �('jv) for all v 2 V :

(1)

Problem (1) has a countable spectrum of eigenvalues,
and the eigenvalues can be ordered by magnitude:

0 < �1 � �2 � � � � ; lim
j!1

� j D1:

The Rayleigh–Ritz procedure for calculating upper
bounds is a discretization of the Poincaré principle
(cf. [9, Chapt. 22])

� j D min
E�V

dim ED j

max
u2E
u¤0

[uju]
(uju)

; j 2 N: (2)

If the linearly independent trial functions

u1; : : : ; un 2 V ; n 2 N;

are chosen, one can reduce (2) to the n-dimensional
subspace Vn (the span of the chosen functions {u1, . . . ,
un}) and obtains the values

�
[n]
1 � � � � � �

[n]
n ;

which are upper bounds to the following �j:

� j � �
[n]
j ; j D 1; : : : ; n:

�
[n]
j is called a Rayleigh–Ritz bound for �j. Now one

forms the real n × n-matrices
(
A0 :D ((ui juk))i;kD1;:::;n ;

A1 :D ([ui juk])i;kD1;:::;n ;
(3)

the Rayleigh–Ritz bounds are the eigenvalues of thema-
trix eigenvalue problem

A1x D �[n]A0x; (�[n]; x) 2 R �Rn : (4)

The Rayleigh–Ritz bounds are monotonically decreas-
ing in n 2 N.

The Lehmann–Goerisch procedure (see [3,4,5,6,7])
for calculating lower bounds can be understood as
the discretization of a variational principle for char-
acterizing the eigenvalues as well. This principle and
a proof of the method is due to S. Zimmermann and
U. Mertins [10].

Let � 2 R be a spectral parameter such that for an N
2 N the inequality

�N < � < �NC1 (5)

holds true. One expresses the first N eigenvalues in the
form

�NC1�i D �C
1
�i
; i D 1; : : : ;N

(assuming � i < 0). For u 2 V, wu 2 H denotes the
uniquely determined solution of the equation

[ujv] D (wujv) for all v 2 V ;

the following � i therefore are characterized by

�i D inf
E�V

dim EDi

max
u2E
u¤0

[uju]� �(uju)
(wujwu) � 2�[uju]C �2(u; u)

; (6)

i = 1, . . . , N. A negative upper bound for � i results in
a lower bound for �N+1� i. In order to discretize (6),
one determines w1, . . . , wn 2 H such that

[ui jv] D (wi jv) for all v 2 V ; (7)

then one defines the matrix

A2 :D ((wi jwk))i;kD1;:::;n ; (8)

and solves the matrix eigenvalue problem

(A1 � �A0) x D �
�
A2 � 2�A1 C �

2A0
�
x;

(�; x) 2 R � Rn : (9)



Eigenvalue Enclosures for Ordinary Differential Equations E 889

If for n 2 N the condition �[n]
N < � is fulfilled, then (9)

has exactly N negative eigenvalues �1 � � � � � �N < 0�
� � � � �n. These � i are upper bounds for our � i (� i � � i,
i = 1, . . . , N). One obtains the lower bounds

�
�[n]
j :D �C

1
�NC1� j

� � j; j D 1; : : : ;N: (10)

This discretization (9), (10) is the Lehmann–Goerisch
procedure. ��[n]j is called a Lehmann–Goerisch bound
for �j.

Numerical Example

The numerical example is the well known Mathieu
equation. This equation has been considered by several
authors, bounds for eigenvalues of the Mathieu equa-
tion can be found in [1,9] and [3]. The eigenvalue prob-
lem reads as follows

� ˚ 00(x)C s cos2(x)˚(x) D �˚(x); x 2
h
0;



2

i
;

˚ 0(0) D ˚ 0
�

2

�
D 0;

where s 2 R, s > 0, is a parameter.
In order to treat this problem, the required quanti-

ties can be defined as follows: I := (0, 
/2),

H :D L2(I); V :D H1(I):

The inner products (�, �) and [�, �] are given by

( f ; g) :D
Z 	

2

0
f (x) g(x) dx for all f ; g 2 H;

[ f ; g] :D
Z 	

2

0

�
f 0(x)g0(x)C s cos2(x) f (x)g(x)

�
dx

for all f , g 2 V .
With this definition the inner product [�, �] and the

usual H1 inner product are equivalent; the embedding
(V , [�, �]) ,! (H, (�, �)) is compact.

Now the eigenvalue problem
(
Find � 2 R and ' 2 V ; ' ¤ 0
s.t. ['jv] D �('jv) for all v 2 V :

is equivalent to the Mathieu equation. The trial func-
tions vk 2 V are defined by

v1(x) :D 1;

vk(x) :D cos(2(k � 1)x)

for x 2 I; k D 2; : : : ; n:

(11)

With these trial functions the Rayleigh–Ritz upper
bounds �[n]

i (cf. (3), (4)) can be computed. For n = 5
one obtains

i �
[5]
i

1 2:28404873592
2 8:4560567005
3 19:606719005
4 39:5439779
5 67:609198

The quality of these upper bounds can be increased by
increasing n.

An application of the Lehmann–Goerisch proce-
dure requires a spectral parameter � which is a rough
eigenvalue bound (cf. (5)). For this aim the Mathieu
equation is considered for s = 0. This is a second order
problem with constant coefficients and can be solved
in closed form. Its eigenvalues aree�i D 4(i � 1)2, i 2
N. From the comparison theorem (see [3]) one can see
that thee�i are lower bounds for the eigenvalues of the
Mathieu equation with s > 0; this can be used to verify
the left hand side inequality of (5), the right-hand side
inequality can be examined by means of the Rayleigh–
Ritz bounds. For N = 4 one obtains

�3 � �
[n]
3 � 19:607 < � :De�4 D 36 < �4:

If s is increased dramatically, it may be impossible to
satisfy (5). If this happens, one can link the eigen-
value problem under consideration and the comparison
problem by a homotopy method (cf. [3]).

The next task is the determination of wi 2 H such
that (7) holds true. In general this is a problem, but for
differential equations, where the right-hand side is the
identity, one can proceed as follows: The operator on
the left-hand side of the differential equation is denoted
byM; then the trial functions vi are chosen from D(M)
(that means sufficiently smooth) such that all essential
and natural boundary conditions are satisfied. Now wi

:= M vi fulfills (7). For the Mathieu equation one can
define

(M f )(x) :D � f 00(x)C s cos2(x) f (x)

and

eV :D
n
f 2 H2(I) : f 0(0) D f 0

�

2

�
D 0

o
;
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now it is easy to see that the vi from (11) fulfill vi 2 eV
and wi :=M vi can be used in (7), (8).

From the eigenvalues of the matrix eigenvalue prob-
lem (9) one obtains the following bounds:

i �
�[5]
i �

[5]
i

1 2:28404873561 2:28404873592
2 8:4560566942 8:4560567005
3 19:6067171 19:6067191

For an example with a system of ordinary differen-
tial equations see [2].

See also

� ˛BB Algorithm
� Hemivariational Inequalities: Eigenvalue Problems
� Interval Analysis: Eigenvalue Bounds of Interval

Matrices
� Semidefinite Programming and Determinant

Maximization
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Abstract

In this article, we give an overview of the Ellipsoid
Method. We start with a historic introduction and pro-
vide a basic algorithm in Sect. “Method”. Techniques
to avoid two important assumptions required by this
algorithm are considered in Sect. “Polynomially Run-
ning Time: Avoiding The Assumptions”. After the dis-
cussion of some implementation aspects, we are able
to show the polynomial running time of the Ellipsoid
Method. The second section is closed with some mod-
ifications in order to speed up the running time of the
ellipsoid algorithm. In Sect. “Applications”, we discuss
some theoretical implications of the Ellipsoid Method
to linear programming and combinatorial optimiza-
tion.
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Introduction

In 1979, the Russian mathematician Leonid G.
Khachiyan published his famous paper with the ti-
tle “A Polynomial Algorithm in Linear Programming”,
[11]. He was able to show that linear programs (LPs)
can be solved efficiently; more precisely that LP be-
longs to the class of polynomially solvable problems.
Khachiyan’s approach was based on ideas similar to
the Ellipsoid Method arising from convex optimiza-
tion. These methods were developed by David Yudin
and Arkadi Nemirovski, [24,25,26], and independently
by Naum Shor, [20], preceded by other methods as for
instance the Relaxation Method, Subgradient Method
or the Method of Central Sections, [2]. Khachiyan’s ef-
fort was to modify existing methods enabling him to
prove the polynomial running time of his proposed al-
gorithm. For his work, he was awarded with the Fulk-
erson Prize of the American Mathematical Society and
the Mathematical Programming Society, [16,21].

Khachiyan’s four-page note did not contain proofs
and was published in the journal Soviet Mathematics
Doklady in February 1979 in Russian language. At this
time he was 27 years young and quite unknown. So it
is not surprising that it took until the Montreal Mathe-
matical Programming Symposium in August 1979 until
Khachiyan’s breakthrough was discovered by the math-
ematical world and a real flood of publications fol-
lowed in the next months, [23]. In the same year, The
New York Times made it front-page news with the ti-
tle “A Soviet Discovery Rocks World of Mathematics”.
In October 1979, the Guardian titled “Soviet Answer to
Traveling Salesmen” claiming that the Traveling Sales-
man problem has been solved – based on a fatal misin-
terpretation of a previous article. For an amusing out-
line of the interpretation of Khachiyan’s work in the
world press, refer to [15].

Method

The Ellipsoid Method is designed to solve decision
problems rather than optimization problems. There-
fore, we first consider the decision problem of finding
a feasible point to a system of linear inequalities

ATx � b (1)

where A is a n � m matrix and b is an n-dimensional
vector. From now on, we assume all data to be inte-

gral and n to be greater or equal than 2. The goal is
to find a vector x 2 Rn satisfying (1) or to prove that
no such x exists. We see in Sect. “Linear Programming”
that this problem is equivalent to a linear programming
optimization problem of the form

min
x

cTx s:t: ATx � b ; x � 0 ;

in the sense that any algorithm solving one of the two
problems in polynomial time can be modified to solve
the other problem in polynomial time.

The Basic Ellipsoid Algorithm

Roughly speaking, the basic idea of the Ellipsoid
Method is to start with an initial ellipsoid containing
the solution set of (1). The center of the ellipsoid is in
each step a candidate for a feasible point of the problem.
After checking whether this point satisfies all linear in-
equalities, one either produced a feasible point and the
algorithm terminates, or one found a violated inequal-
ity. This is used to construct a new ellipsoid of smaller
volume and with a different center. Now the proce-
dure is repeated until either a feasible point is found
or a maximum number of iterations is reached. In the
latter case, this implies that the inequality set has no fea-
sible point.

Let us now consider the presentation of ellipsoids.
It is well known, that the n-dimensional ellipsoid with
center x0 and semi-axis gi along the coordinate axis is
defined as the set of vectors satisfying the equality

nX
iD1

(xi � x0i )
2

g2i
D 1: (2)

More general, we can formulate an ellipsoid alge-
braically as the set

E :D fx 2 Rn j (x � x0)TB�1(x � x0) D 1g; (3)

with symmetric, positive definite, real-valued n�nma-
trix B. This can be seen with the following argument. As
matrix B is symmetric and real-valued, it can be diago-
nalized with a quadratic matrix Q, giving D D Q�1BQ,
or equivalently, B D QDQ�1. The entries of D are the
eigenvalues of matrix B, which are positive and real-
valued. They will be the quadratic, reciprocal values of
the semi-axis gi. Inserting the relationship for B into (3)
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yields to (x�x0)TQD�1Q�1(x�x0) D 1which is equiv-
alent to
�
(x � x0)TQ

�
D�1

�
(x � x0)TQ

�T
D 1:

Hence, we can interpret matrixQ as a coordinate trans-
form to the canonical case where the semi-axis of the
ellipse are along the coordinate axis. Recognize that in
the case when matrix B is a multiple of the unit matrix,
B D r2 � I, then the ellipsoid gets a sphere with radius
r > 0 and center x0. We abbreviate this in the following
by S(x0; r).

We start with a somewhat basic version of the el-
lipsoid algorithm. This method requires two important
assumptions on the polyhedron

P :D fx 2 Rn jAx � bg:

We assume that
1. the polyhedron P is bounded and that
2. P is either empty or full-dimensional.

In Sect. “Polynomially Running Time: Avoiding
The Assumptions”, we will see how this algorithm can
be modified not needing these assumptions. This will
allow us to conclude that a system of linear inequalities
can be solved in polynomial running time with the El-
lipsoid Method.

Let us now discuss some consequences of these two
assumptions. The first assumption allows us to con-
struct a sphere S(c0; R) with center c0 and radius R con-
taining P completely: P � S(c0; R). The sphere S(c0; R)
can be constructed, for instance, in the following two
ways. If we know the bounds on all variables x, e. g.
Li � xi � Ui , one can use a geometric argument to
see that with

R :D

vuut
nX

iD1

max fjLi j; jUi jg2;

the sphere S(0; R) will contain the polytope P com-
pletely. In general, when such bounds are not given ex-
plicitly, one can use the integrality of the data and proof,
see for instance [6], that the sphere with center 0 and
radius

R :D
p
n2hAiChbi�n

2
(4)

contains P completely, where h�i denotes the encoding
length of some integral data. For an integer number bi,

we define

hbii :D 1C
˙
log2(jbi j C 1)

�
;

which is the number of bits needed to encode integer bi
in binary form; one bit for the sign and

˙
log2(jbi j C 1)

�
bits to encode jbi j. With this, the encoding length of
a vector b is the sum of the encoding lengths of its com-
ponents. Similarly, for a matrix A, the encoding length
is given by hAi :D

Pm
iD1haii.

The second assumption implies that if P is non-
empty, its volume is strictly positive, meaning that there
is an n-dimensional sphere of radius r > 0 which is
contained in P. More precisely, it is possible to show
that

vol(P) � 2�(nC1)hAiCn3 ; (5)

in the case that P is not empty, see [5]. This will help
us to bound the number of iterations of the basic ellip-
soid algorithm. The graphical interpretation of the pos-
itive volume of polytope P is that the solution set of sys-
tem (1) is not allowed to have mass zero, for instance,
not to be a hyperplane.

Figure 1 illustrates the effect of the two assumptions
in the case that P is non-empty. As this is a two-di-
mensional example, the second assumption implies that

Ellipsoid Method, Figure 1
P is bounded and full-dimensional
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polytope P is not just a line segment but instead con-
tains a sphere of positive radius r.

Now, we are ready to discuss the main steps of
the basic ellipsoid algorithm. Consider therefore Algo-
rithm 1. In the first six steps the algorithm is initialized.
The first ellipsoid is defined in step three. The meaning
of the parameters for the ellipsoid and especially num-
ber k� will be discussed later in this section. For now,
let us also ignore step seven. Then, for each iteration k,
it is checked in step eight if center xk satisfies the lin-
ear inequality system (1). This can be done for instance
by checking each of the m inequalities explicitly. In the
case that all inequalities are satisfied, xk is a feasible
point and the algorithm terminates. In the other case
there is an inequality aTj x � b j which is violated by xk,
step nine. In the next two steps, a new ellipsoid EkC1 is
constructed. This ellipsoid has the following properties.
It contains the half ellipsoid

H :D Ek \ fx 2 Rn j aTj x � aTj x
kg (6)

which insures that the new ellipsoid EkC1 also contains
polytope P completely, assuming that the initial ellip-
soid S(0; R) contained P. Furthermore, the new ellip-
soid has the smallest volume of all ellipsoids satisfying
(6), see [2]. The central key for the proof of polynomial
running time of the basic ellipsoid Algorithm 1 is an-
other property, the so called Ellipsoid Property. It pro-
vides the following formula about the ratio of the vol-
umes of the ellipsoids

volEkC1

volEk
D

s�
n

nC 1

�nC1 � n
n � 1

�n�1

< exp
�
�

1
2n

�
; (7)

for a proof see, for instance, [5,17]. As exp(�1/
(2n)) < 1 for all natural numbers n, the new ellip-
soid has a strict smaller volume than the previous one.
We also notice that exp(�1/(2n)) is a strictly increasing
function in n which has the consequence that the ratio
of the volumes of the ellipsoids is closer to one when the
dimension of the problem increases.

Now, let us discuss the situation when P is empty.
In this case, we want Algorithm 1 to terminate in step
seven. To do so, we will derive an upper bound k� on
the number of iterations needed to find a center xk sat-
isfying the given system of linear inequalities for the

Input: Matrix A, vector b; sphere S(c0; R) contain-
ing P

Output: feasible x or proof that P = ;

// Initialize
1: k := 0
2: k� = 2n(2n + 1) < C > +2n2(log(R) � n2 + 1)

// Max number of iterations
3: x0 = c0, B0 = R2 � I // Initial ellipsoid
4: � := 1

n+1 // Parameter for ellipsoid: step
5: � := 2

n+1 // Parameter for ellipsoid: dilation
6: ı := n2

n2�1 // Parameter for ellipsoid: expansion

// Check if polytope P is empty
7: if k = k� return P = ;

// Check feasibility
8: if Axk � b return x := xk // x is a feasible point
9: else let aTj x

k > b j

// Construct new ellipsoid
10: Bk+1 := ı(Bk � �

Bk a j(Bk a j)T

aTj Bk a j
)

11: xk+1 := xk � �
Bk a jq
aTj Bk a j

// Loop
12: k k + 1 and goto step 7

Ellipsoid Method, Algorithm 1
Basic Ellipsoid Algorithm

case that P is not empty. Clearly, if the algorithm would
need more than k� iterations, the polytope P must be
empty. Therefore, let us assume again that P ¤ ;. In
this case (5) provides a lower bound for the volume of P
and an upper bound of its volume is given, for instance,
by (4). In addition, according to the construction of the
ellipsoids, we know that each of the EkC1 contains P
completely. Together with the Ellipsoid Property (7) we
get the relation

vol(Ek�) < exp
�
�k�

2n

�
vol(E0) < 2

k�
2n CnCn log(R)

!
D 2�(nC1)hCiCn3 � vol(P):

This chain provides an equation defining the maximum
number of iterations

k� :D 2n(2nC 1)hCi C 2n2(log(R) � n2 C 1): (8)
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Ellipsoid Method, Figure 2
Basic ellipsoid algorithm. a P6 ¤ ;. b P D ;

A geometric interpretation is that the volume of the el-
lipsoid in the k�th iteration would be too small to con-
tain the polytope P. Obviously, this implies that P has to
be empty. With this, we have shown that the presented
basic ellipsoid algorithm works correctly.

One iteration of the basic ellipsoid algorithm, for
the case of a non-empty polytope P, is illustrated in
Fig. 2a. We recognize that P is contained completely
in Ek. The dashed line shows equality aTj x � b j cor-
responding to one of the inequalities which are violated
by xk. Geometrically, this equality is moved in parallel
until it contains center xk. Recognize that the new ellip-
soid EkC1 contains the half ellipsoid (6). In this case, the
new center xkC1 is again not contained in polytope P
and at least one more step is required. The case that
polytope P is empty is illustrated in Fig. 2b which is
mainly the same as Fig. 2a.

In the case that Bk is a multiple of the identity,
the ellipsoid is an n-dimensional sphere. According
to the initialization of the basic ellipsoid algorithm in
step three, this is the case for the first iteration when
k D 0. This gives us an interpretation of the values
of ı and � . The new ellipsoid EkC1 is shrunk by the
factor

p
ı(1 � �) D n/(n C 1) in the direction of vec-

tor aj and expanded in all orthogonal directions by fac-
tor
p
ı D n/

p
n2 � 1. Hence, we see that in the next

step we do no longer get a sphere if we start with one.
The third parameter, the step, gives intuitively the mea-
sure how far we go from point xk in the direction of

vector Bka j , multiplied by factor 1/
q
aTj Bk a j . For more

details we refer to the survey of Bland, Goldfarb and
Todd, [2].

After all the discussions above, we are now able to
conclude the polynomial running time of the basic el-
lipsoid Algorithm 1 for the case that the polyhedron P
is bounded and either empty or full-dimensional. For
an algorithm to have polynomial running time in the
deterministic Turing-machine concept, there has to be
a polynomial in the encoding length of the input data
describing the number of elementary steps needed to
solve an arbitrary instance of the problem. Therefore,
let L :D hA; bi be the encoding length of the in-
put data. Obviously, each of the steps of Algorithm
1 can be done in polynomial many steps in L. The
maximum number of iterations is given through k�

which is also a polynomial in L; consider therefore
equations (8) and (4). Hence, we conclude that the el-
lipsoid Algorithm 1 has a polynomial running time.
During the reasoning above, we required implicitly
one more important assumption, namely to have ex-
act arithmetic. Normally, this is of more interest in nu-
merics rather than in theoretical running time analy-
sis. However, it turns out that for the Ellipsoid Method
this is crucial as the Turing-machine concept also re-
quires finite precision. Let us postpone this topic to the
end of the next subsection and rather discuss meth-
ods to avoid the two major assumptions on polyhe-
dron P.
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Polynomially Running Time:
Avoiding the Assumptions

In order to prove that the Ellipsoid Method can solve
the system of linear inequalities (1) in polynomial time,
one has to generalize the basic ellipsoid Algorithm 1
to need not the assumptions that 1. polyhedron P is
bounded, 2. P is either empty or full-dimensional and
3. that exact arithmetic is necessary.

In 1980, Khachiyan published a paper, [12], dis-
cussing all the details and proofs about the Ellipsoid
Method which were neglected in his paper from 1979.
In Lemma 1, he showed that

P \ S(0; 2L) ¤ ;; (9)

in the case that P ¤ ;. With this, one can use for R
of (4) value 2L. However, we cannot just adopt the al-
gorithm above to the new situation. Instead of a lower
bound for vol(P), as given in (5), we would need a lower
bound for vol(P \ S(0; 2L)). To achieve this, we follow
a trick introduced by Khachiyan and consider the per-
turbed system of linear inequalities

2LaTi x � 2Lˇi C 1 i D 1; : : : ;m: (10)

Let us abbreviate the corresponding solution set
with P0, which is in general a polyhedron. Khachiyan
was able to proof a one-to-one correspondence of the
original system (1) and the perturbed one (10). This
means that P is empty if and only if P0 is empty, it is
possible to construct a feasible point for (1) out of (10)
in polynomial time and the formulation of the per-
turbed system is polynomial in L. Furthermore, the new
inequality system has the additional property that if
P0 ¤ ; it is full-dimensional. Hence, it is possible to
find a (non-empty) sphere included in P0. It can be
shown, that

S(x; 2�2L) � P0 \ S(0; 2L);

where x is any feasible point of the original system (1)
and hence x 2 P. With this argument at hand, it is pos-
sible to derive an upper bound for the number of itera-
tions for the Ellipsoid Method by solving the perturbed
system (10). It can be shown that a feasible point can be
found in at most 6n(n C 1)L iterations, [2].

With the perturbation of the original system and
property (9), we do no longer require that P is bounded.
As a byproduct, polyhedron P has not to be of full-
dimension in the case that it is non empty; as sys-
tem (10) is of full-dimension independent of whether P
is or not, assuming that P ¤ ;. As a consequence, the
basic ellipsoid algorithm can be generalized to apply for
any polyhedron P and the two major assumptions are
no longer necessary.

During all of the reasoning, we assumed to have ex-
act arithmetic, meaning that no rounding errors dur-
ing the computation are allowed. This implies that all
data have to be stored in a mathematically correct way.
As we use the Turing-machine concept for the running
time analysis, we require that all computations have to
be done in finite precision. Let us now have a closer
look for the reason why this is crucial for ellipsoid Al-
gorithm 1.

The presentation of the ellipsoid with the matrix Bk

in (3) yields to the convenient update formulas for the
new ellipsoid, parameterized by BkC1 and xkC1. How-
ever, to obtain the new center xkC1 one has to divide
by factor

q
aTj Bk a j . If we work with finite precision,

rounding errors are the consequence, and it is likely
that matrix Bk is no longer positive definite. This may
cause that aTj Bk a j becomes zero or negative, implying
that the ellipsoid algorithm fails.

Hence, to implement the ellipsoid method, one has
to use somemodifications tomake it numerically stable.
One basic idea is to use factorization

Bk D LkDkLTk

for the positive definite matrix Bk, with L being a lower
triangular matrix with unit diagonal and diagonal ma-
trix Dk with positive diagonal entries. Obtaining such
a factorization is quite expensive as it is of order n3.
But there are update formulae applying for the case of
the ellipsoid algorithm which have only quadratic com-
plexity. Already in 1975, for such a type of factorization,
numerically stable algorithms have been developed, in-
suring that Dk remains positive definite, see [7]. We
skip the technical details here and refer instead to Gol-
farb and Todd, [9].

With a method at hand which can handle the ellip-
soid algorithm in finite precision numerically stable, the
proof of its polynomial running time is complete.
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Modifications

In this subsection, we briefly discuss some straightfor-
ward modifications of the presented ellipsoid method
in order to improve its convergence rate. Therefore,
let us consider Fig. 2 once more. From this figure it is
intuitively clear that an ellipsoid containing set fx 2
Ek j aTj x � bg has a smaller volume than the one con-
taining the complete half-ellipsoid (6). In the survey pa-
per of Bland et al. it is shown that the smallest ellipsoid,
arising from the so called deep cut aTj x � b, can be
obtained by choosing the following parameters for Al-
gorithm 1

� :D
1C n˛
n C 1

;

� :D
2C 2n˛

(nC 1)(1C ˛)
;

ı :D
n2

(n2 � 1)(1� ˛2)
;

with

˛ :D
aTj � b jq
aTj Bk a j

:

The parameter ˛ gives an additional advantage of this
deep cut, as it is possible to check infeasibility or for
redundant constraints, [19].

Another idea could be to use a whole system of vio-
lated inequalities as a cut instead of only one. Such type
of cuts are called surrogate cuts and were discussed by
Goldfarb and Todd. An iterative procedure to generate
these cuts was described by Krol and Mirman, [14].

Consider now the case that the inequality system (1)
contains two parallel constraints which means that they
differ only in the right hand side. With this it is possible
to generate a new ellipsoid containing the information
of both inequalities. These cuts are called parallel cuts.
Update formulas for Bk and xk were discovered inde-
pendently by several authors. For more details, we refer
to [2,19].

However, all modifications which have been found
so far do not allow to reduce the worst case running
time significantly – they especially do not allow to avoid
the presence of L. This implies that the running time
does not only depend on the size of the problem but
also on the magnitude of the data.

At the end of the second chapter, we point out that
the Ellipsoid Method can also be generalized to use
other convex structures as ellipsoids. Methods working
for instance only with spheres, or triangles, are possi-
ble. The only crucial point is that one has to make sure
that its polynomial running time can be proven. Fur-
thermore, the underlying polytope can be generalized
to any convex set; for which the separation problem can
be solved in polynomial time, see Sect. “Separation and
Optimization”.

Applications

In 1981, Grötschel, Lovász and Schrijver used the Ellip-
soid Method to solve many open problems in combi-
natorial optimization. They developed polynomial al-
gorithms, for instance, for the vertex packing in per-
fect graphs, and could show that the weighted frac-
tional chromatic number isNP-hard, [5]. Their proofs
were mainly based on the relation of separation and
optimization, which could be established with the help
of the Ellipsoid Method. We discuss this topic in
Sect. “Separation and Optimization” and give one ap-
plication for the maximum stable set problem. For all
other interesting results, we refer to [5]. But first, we
consider another important application of the Ellipsoid
Method. We examine two concepts showing the equiv-
alence of solving a system of linear inequalities and to
find an optimal solution to a LP. This will prove that LP
is polynomial solvable.

Linear Programming

As we have seen in the last section, the EllipsoidMethod
solves the problem of finding a feasible point of a system
of linear inequalities. This problem is closely related to
the problem of solving the linear program

max
x

cTx s:t: ATx � b ; x � 0 : (11)

Again, we assume that all data are integral. In the
following we briefly discuss two methods of how the
optimization problem (11) can be solved in polynomial
time via the Ellipsoid Method. This will show that LP is
in the class of polynomially solvable problems.

From duality theory, it is well known that solving
the linear optimization problem (11) is equivalent to
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finding a feasible point of the following system of lin-
ear inequalities

ATx � b;
�x � 0;

�A y � �c;

�y � 0;

�cTx C bTy � 0:

(12)

The third and fourth inequality come from the dual
problem of (11), insuring primal and dual feasibility
of x and y, respectively. The last inequality results from
the Strong Duality Theorem, implying that this in-
equality always has zero slack. The equivalence of the
two problems means in this case that vector x of each
solution pair (x; y) of (12) is an optimal solution of
problem (11) and y is an optimum for the dual problem
of (11). In addition, to each solution of the optimization
problem exists a vector such that this pair is feasible for
problem (12).

From the equivalence of the two problems (11) and
(12) we immediately conclude that the linear program-
ming problem can be solved in polynomial time; as
the input data of (12) are polynomially bounded in
the length of the input data of (11). This argument
was used by Gács and Lovász in their accomplishment
to Khachiyan’s work, see [4]. The advantage of this
method is that the primal and dual optimization prob-
lem are solved simultaneously. However, note that with
this method, one has no idea whether the optimization
problem is infeasible or unbounded in the case when
the Ellipsoid Method proves that problem (12) is infea-
sible. Another disadvantage is that the dimension of the
problem increases from n to n C m.

Next we discuss the so called bisection method
which is also known as binary search or sliding ob-
jective hyperplane method. Starting with an upper and
lower bound of an optimal solution, the basic idea is to
make the difference between the bounds smaller until
they are zero or small enough. Solving system AT x � b,
x � 0 with the Ellipsoid Method gives us either a vec-
tor x providing the lower bound l :D cTx for prob-
lem (11) or in the case that the polyhedron is empty, we
know that the optimization problem is infeasible. An
upper bound can be obtained, for instance, by finding
a feasible vector to the dual problem Ay � c, y � 0.

If the Ellipsoid Method proves that the polytope of the
dual problem is empty, we can use the duality theory
(as we already know that problem (11) is not infeasible)
to conclude that the optimization problem (11) is un-
bounded. In the other case we obtain vector y yielding
to the upper bound u :D bTy of problem (11), accord-
ing to theWeak Duality Theorem. Once bounds are ob-
tained, one can iteratively use the Ellipsoid Method to
solve the modified problem AT x � b, x � 0 with the
additional constraint

�cTx � �
uC l
2

;

which is a constraint on the objective function value of
the optimization problem. If the new problem is infea-
sible, one can update the upper bound to uCl

2 , and in
the case that the ellipsoid algorithm computes a vec-
tor x, the lower bound can be increased to cTx which
is greater or equal to uCl

2 . In doing so, one at least bi-
sects the gap in each step. However, this method does
not immediately provide a dual solution. Note that only
one inequality is added during the process, keeping
the problem size small. More details and especially the
polynomial running time of this method are discussed
by Padberg and Rao [1].

Separation and Optimization

An interesting property of the ellipsoid algorithm is
that it does not require an explicit list of all inequali-
ties. In fact, it is enough to have a routine which solves
the so called Separation Problem for a convex body K:

Given z 2 Rn , either conclude that z 2 K or give
a vector 
 2 Rn such that inequality 
Tx < 
Tz
holds for all x 2 K.

In the latter case we say that vector 
 separates z
from K. In the following, we restrict the discussion to
the case when K is a polytope meeting the two assump-
tions of Sect. “The Basic Ellipsoid Algorithm”. To be
consistent with the notation, we write P for K. From
the basic ellipsoid Algorithm 1 follows immediately that
if one can solve the separation problem for polytope P
polynomially in L and n, then the corresponding opti-
mization problem

max
x

cTx s:t: x 2 P
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can also be solved in polynomial time in L and n;
L is again the encoding length of the input data, see
Sect. “The Basic Ellipsoid Algorithm”. The converse
statement was proven by Groetschel et al., yielding to
the following equivalence of separation and optimiza-
tion:

The separation problem and the optimization
problem over the same family of polytopes are
polynomially equivalent.

Consider now an example to see how powerful the con-
cept of separation is. Given a graph G D (V ; E) with
node set V and edges e 2 E. A stable set S of graph G
is defined as a subset of V with the property that any
two nodes of S are not adjacent; which means that no
edge between them exists in E. To look for a maximum
one is the maximum stable set problem. This is a well
known optimization problem and proven to be NP-
hard, see [3]. It can be modeled, for instance, as the in-
teger program

max
x

cTx

s:t: xi C x j � 1 8(i; j) 2 E x 2 f0; 1g (13)

with incidence vector x, meaning that xi D 1 if
node i is in a maximum stable set, otherwise it is zero.
Constraints (13) are called edge inequalities. Relaxing
the binary constraints for x gives the so-called trivial
inequalities

0 � x � 1 (14)

yielding to a linear program. However, this relaxation
is very weak; consider therefore a complete graph. To
improve it, one can consider the odd-cycle inequalities

X
i2C

xi �
jCj � 1

2 (15)

for each odd cycle C in G. Recognize that there are in
general exponentially many such inequalities in the size
of graph G. Obviously, every stable set satisfies them
and hence they are valid inequalities for the stable set
polytope. The polytope satisfying the trivial-, edge- and
odd-cycle inequalities

P :D fx 2 RjV j j x satisfies (14); (15) and (16)g (16)

is called the cycle-constraint stable set polytope. No-
tice that this polytope is contained strictly in the sta-
ble set polytope. It can be shown that the separation
problem for polytope (16) can be solved in polynomial
time. One idea is based on a construction of an aux-
iliary graph H with a double number of nodes. Solv-
ing a sequence of n shortest path problems on H solves
then the separation problem with a total running time
of order jV j � jEj � log(jV j). With the equivalence of op-
timization and separation, the stable set problem over
the cycle-constraint stable set polytope can be solved in
polynomial time. This is quite a remarkable conclusion
as the number of odd-cycle inequalities may be expo-
nential. However, note that it does not imply that the
solution will be integral and hence, we cannot conclude
that the stable set problem can be solved in polyno-
mial time. But we can conclude that the stable set prob-
lem for t-perfect graphs can be solved in polynomial
time; where a graph is called t-perfect, if the stable set
polytope is equal to the cycle-constraint stable set poly-
tope (16). For more details about this topic see, for in-
stance [8,18].

Conclusion

In 1980, the Ellipsoid Method seemed to be a promising
algorithm to solve problems practically [23]. However,
even though many modifications to the basic ellipsoid
algorithm have been made, the worst case running time
still remains a function in n, m and especially L. This
raises two main questions. First, is it possible to modify
the ellipsoid algorithm to have a running time which is
independent of the magnitude of the data, but instead
depends only on n and m – or at least any other algo-
rithm with this property solving LPs? (This concept is
known as strongly polynomial running time.) The an-
swer to this question is still not known and it remains
an open problem. In 1984, Karmarkar introduced an-
other polynomial running time algorithm for LP which
was the start of the Interior Point Methods, [10]. But
also his ideas could not be used to solve this question.
For more details about this topic see [17,22]. The sec-
ond question, coming into mind, is how the algorithm
performs in practical problems. Unfortunately, it turns
out that the ellipsoid algorithm tends to have a run-
ning time close to its worst-case bound and is ineffi-
cient compared to other methods. The Simplex Method
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developed by George B. Dantzig in 1947, was proven
by Klee and Minty to have exponential running time
in the worst case, [13]. In contrast, its practical per-
formance is much better and it normally requires only
a linear number of iterations in the number of con-
straints.

Until now, the Ellipsoid Method has not played
a role for solving linear programming problems in prac-
tice. However, the property that the inequalities them-
selves have not to be explicitly known, distinguishes the
Ellipsoid Method from others, for instance from the
Simplex Method and the Interior Point Methods. This
makes it a theoretically powerful tool, for instance at-
tacking various combinatorial optimization problems
which was impressively shown by Grötschel, Lovász
and Schrijver.

See also

� Linear Programming
� Linear Programming: Interior Point Methods
� Linear Programming: Karmarkar Projective

Algorithm
� Linear Programming: Klee–Minty Examples
� Volume Computation for Polytopes: Strategies and

Performances
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Introduction

Natural disasters (such as fires, hurricanes, tornadoes,
flash floods, tsunamis, earthquakes, etc.) or man-made
disasters (such as nuclear power plant explosions,
chemical plant explosions, hazmat releases, dirty bomb
threats, etc.) affect millions of people every year. Evac-
uation is an emergency management strategy used to
ensure a population’s safety in these type of situations.
Emergency evacuation is defined as the relocation of
a threatened population to a safer area due to an im-
mediate or predictable life-threatening danger [25].

Prior to 1979, the models developed for evacuat-
ing people and vehicles from dangerous locations were
mainly qualitative. However, the accident at the Three
Mile Island nuclear power plant near Middletown,
Pennsylvania, in 1979 provided a major motive for

quantifying emergency response plans [36]. Since then,
a number of optimization- and simulation-based mod-
els have been developed to identify evacuation strate-
gies for communities (urban and rural areas), build-
ings and industrial plants, and residential areas. The
most recent and challenging developments in this area
are real-time trafficmanagement and agent-based mod-
els.

Applications

Community Evacuation

Southworth [35] models a community evacuation plan
using a five-step procedure that involves trip genera-
tion, trip departure time, trip destination, trip route se-
lection, and evacuation plan set-up and analysis. The
factors that affect any of these steps are the distribu-
tion of the population that is at risk, human behav-
ior, transportation infrastructure, road capacity, vehicle
utilization, accessibility of warning technologies, time
available before the occurrence of the hazard, evacuees’
route and destination selection, promptness in clean-
ing and preparing to operate the affected highways and
roads, traffic management actions and the availability
of non-evacuation based protective actions, such as in
site sheltering [6,7,10,35,36]. The next sections of this
article provide a summary of the research related to the
above mentioned steps.

Community Evacuation: Trip Generation

The trip generation step determines the number of ve-
hicles loaded to the traffic network during the evacua-
tion. The number of vehicles loaded in the network de-
pends on the population of the evacuation zone (which
is space and time dependent), number of vehicles per
household and vehicle utilization rate. The population
of an evacuation area consists of the permanent resi-
dents, the transients (tourists and daily workers), and
the residents of special facilities such as students, prison-
ers, patients, customers in shopping malls, and mem-
bers at recreational facilities [35,36]. For a given resi-
dential area with a population size equal to N, South-
worth [35] estimates the daytime population using the
following equation:

D D H CW C P C S ;
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where W, P, and S denote the number of workers, stu-
dents, and residents of special facilities, respectively. H
denotes the number of people who stay at home during
the day and is estimated by

H D [N � (W C P)] 
 (1 � s) ;

where s is the probability that a non-working adult (or
a child) is not being engaged in shopping, recreational
or social activities.

Based on Southworth [35], the vehicle utilization
rate depends on the time of the evacuation, the house-
hold size, the average number of commuters per vehi-
cle and the average number of workers and licensed
drivers per household. Estimating vehicle utilization
rate is challenging. This is why some post evacuation
surveys report significantly different utilization rates.
For example, Baker [1] estimates the vehicle utilization
rate to be 52% and Lindell and Perry [23] 75%.

Community Evacuation: Trip Departure Time

This is the time it takes one to evacuate once the evacu-
ation warning is released. The trip departure time con-
sists of the time required to receive the official evacu-
ation warning, the time required to leave the current
location to get home, the time required to arrive home,
and the time to prepare to leave home. Next, we give
a summary of the approaches used to calculate trip de-
parture time.

In 1984, Jamei [18] introduced the mobilization
curve to estimate the percent of evacuees that enter the
traffic network in specific time intervals. The mobiliza-
tion curve is represented using the following equation:

Pt D
1

(1C exp[�z(t � h)])
;

where Pt is the cumulative percentage of traffic volume
loaded in the network by time t, z is the response rate
of the public to the disaster and is known as the slope
of the mobilization curve, and h is the “half loading
time”. The loading time depends on the incident and
its relative severity. Radwan et al. [29] and Hobeika and
Kim [17] have incorporated the mobilization curve in
mass evacuation computer programs (MASSVAC 3.0
and MASSVAC 4.0) to determine the loading rate of
evacuees. This approach relies on the planner’s judg-
ment in calibrating the model parameters z and h.

In 2000, Urbanik [36] developed a probability dis-
tribution of the trip departure time. He defined the
probability distribution of an activity time based on
the percentage of the population that completed the
activity within a given time span. To simplify, he as-
sumed that the probability distribution of trip depar-
ture sub-activity times were independent. Then, he de-
rived the probability distributions of trip departure
time as the join probability distribution of sub-activities
involved.

None of the above mentioned approaches con-
sider the impact of human behavior on trip depar-
ture time. The work by Murray et al. [27,28] addresses
the tendency of households to gather and then evacu-
ate as a single unit. They believe that this type of be-
havior increases the departure time and, as a conse-
quence, the evacuation time. Their evacuation model
is based on a network flow formulation of the prob-
lem. In this network, the nodes represent residential
and other possible meeting locations. The arcs repre-
sent the shortest path between nodes. Two linear in-
teger programming formulations of the problem are
given that consider a realistic presentation of human
behavior in emergency situations. The first formula-
tion determines the household meeting location while
minimizing the maximum travel time of family mem-
bers. The second formulation determines the route as-
signment along with the non-drivers’ pickup sched-
ule by minimizing the linear trade-off between waiting
time and travel time. For a more extensive review of
the impact of human behavior in trip departure time,
see [20,22,33,40].

Community Evacuation: Trip Destination Selection

In emergency situations, the most straightforward ap-
proach that evacuees follow in choosing a destination
is the shortest evacuation plan (SEP) [38]. Based on
SEP, the evacuees seek the closest exit that flows them
away from the danger area. In 1996, Yamada [38] pre-
sented an emergency evacuation plan for a city using
two network flow optimization models. In these mod-
els, the residential areas (RA) and places of refuge (PR)
are the nodes of the network, and the roads between
them are the arcs. Yamada assumes that the roads are
bi-directional with the same travel time in both direc-
tions and that the evacuees traverse roads on foot at
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a uniform speed. He introduces a dummy node, v+. v+

is then connected to each RA node. The new network
is denoted by GC(VC; EC), and VC D V [ fvCg,
EC D E [ f(vC; d)jd 2 Dg. V is the original set of
nodes (RA and PR nodes), E is the original set of arcs
and D is the set of RA nodes only.

The first model does not consider node and arc ca-
pacities. The model minimizes the individual and total
travel distance. Yamada applied the Dijkstra algorithm
with v+ as the source node and PR as the demand nodes.
This algorithm runs in O(jVCj2). The optimal solution
for this network flow problem is a forest of trees with
exactly one PR in each tree. The solution determines
the best possible destination for each RA.

The second model considers capacity constraints on
PR nodes. Yamada uses a minimum cost network flow
formulation to model this problem. He modified the
original graph by adding a dummy source node (v�),
a dummy sink node (v*), and a set of arcs connecting
(v�) to RA and v* to PR nodes. The new network is de-
noted by G�(V�; E�), where V� D V [ fv�; v�g and
E� D E [ f(v�; r)jr 2 Rg [ f(d; v�)jd 2 Dg.

The following is the problem formulation:

minimize
X

(u;v)2E

k(u; v)x(u; v)

subject to
X
u2V�

x(u; v) D
X
w2V�

x(v; w) 8v 2 V

X
d2D

x(d; v�) D P

0 � x(u; v) � c(u; v) 8(u; v) 2 E� ;

where k(u, v), c(u, v), and x(u, v) are the cost coefficient,
the capacity, and the number of evacuees traversing arc
(u, v), respectively. P is the size of the population, and R
is the set of RA nodes. Due to the capacity constraints,
the solution may not be a forest of trees and, as a result,
evacuees of an RA node may be assigned to multiple PR
nodes that may not necessary be the closest.

The SEP minimizes the total travel distance by rout-
ing evacuees to the closest exit. This approach causes
congestion in certain exits, which in turn increases the
total evacuation time. Cova and Johnson [10] over-
came this difficulty by developing an optimal lane-
based evacuation routing plan. They formulated the

problem as an integer extension of the minimum cost
network flow problem. The objective, again, is to min-
imize the total travel distance. However, the model
generates routing plans that trade total vehicle travel
distance against merging conflicts while preventing
traffic-crossing conflicts at intersections. They use ami-
croscopic traffic simulation to compare the relative ef-
ficiency of the plans. The model is then used to identify
evacuation routing plans for Salt Lake City, Utah.

The selection of a specific destination limits the
route choices of evacuees and increases congestion of
the roads that lead to safety. To avoid congestion,
Hobeika et al. [17] have developed a model that routes
the evacuees to the outside boundary of the risk area
and lets them seek a safe place afterwards. They have
extended the traffic network by adding dummy links
that connect the final destinations to the network at the
boundary areas. The dummy links have infinite capac-
ity and short travel time. The objective is to minimize
the total evacuation time.

Similarly to the trip departure step, human behavior
significantly affects the destination choice of evacuees
in emergency situations. Evacuees may change their
intended destination if they notice considerable traf-
fic backed up ahead of them [35]. In situations when
the household members are scattered throughout the
evacuation area, the individuals’ tendency to meet be-
fore evacuating affects the destination selection choice.
Murray and Mahmassani [27] point out that depend-
ing on the current location of familymembers, evacuees
may decide to meet in a place that is close to the danger
rather than far from it.

Community Evacuation: Trip Route Selection

The trip route selection, also known as trip route as-
signment, identifies the movement of evacuees during
the evacuation process. Numerous optimization, sim-
ulation and combinatorial optimization-simulation ap-
proaches have been used to model route selection pro-
cedures in the last four decades. The most common
objectives of these models are to minimize the total
travel time, to minimize the total evacuation time, or
to maximize the flow of evacuees from the risk area to
safety [3,10,27,28,38]. The travel time depends on the
speed of a vehicle on a highway segment. The average
speed is a non-increasing function of the traffic vol-
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ume [15]. The following equation demonstrates the re-
lationship between speed and volume and is referred to
as the BPR (Bureau of Public Roads) equation.

SPi t D
SPi

[1C ˛(Vit
Ci
)ˇ ]

where, SPi is the speed limit on segment i, SPi t is the av-
erage speed of a vehicle on segment i at time t, Ci is the
capacity of segment i, Vit vehicle flow entering segment
i at time t, ˛ and ˇ are constants.

Evacuation time depends not only on the traffic
density, but also on traffic delays at intersections. The
limited capacity, merging conflicts and crossing con-
flicts at intersections create unavoidable bottlenecks.
The lane-base routing approach, presented by Cova and
Johnson [10] in 2003, speeds up the evacuating pro-
cess by increasing the intersection capacity and alleviat-
ing conflicts. The formulate the problem as a minimum
cost network flow problem that minimizes the total
travel distance, considering intersection conflicts, lane
changing, and left-hand turns, simultaneously. Murray
et al. [27,28] have formulated the evacuation routing
as a vehicle routing problem (VRP). Unlike the clas-
sic VRP, they assume that vehicles have different ca-
pacities and are not located in a single depot but scat-
tered throughout the network. In addition, the objec-
tive function minimizes not only the total travel time,
but also the waiting time of evacuees at the meeting lo-
cations.

Besides optimization approaches, simulation based
approaches have also been used to model evacuation
routing. The employed route selection logic in simula-
tion models might be simple, static or dynamic [35]. In
a simple routing approach, the drivers either select the
least congested route based on their myopic perception
or follow some pre-determined set of routes. This ap-
proach has been used in microscopic simulation mod-
els such as CLEAR and NETSIM to simulate evacuation
routing in small urban and rural areas [26,30].

The static route assignment models assume that
traffic conditions remain unchanged during the sim-
ulation period. A mesoscopic simulation package,
DYNEV, developed by KLD Associates Inc., uses such
models to create evacuation routing plans for large ur-
ban areas [21].

Considering the dynamic nature of emergency
evacuation, the dynamic traffic route assignment mod-

els are superior to simple and static approaches [16,17,
31,32,36]. To route the evacuees to safety, the dynamic
routing approach does not follow a pre-determined set
of turning movements at intersections; instead, turn-
ing movements are function of dynamic traffic flow
and evacuee behavioral considerations. These behav-
ioral considerations address a driver’s prior knowledge
of the best direction leading to safety and her/his my-
opic perception of traffic conditions.

In combinatorial optimization-simulation ap-
proaches, an optimal route assignment model is
integrated with a traffic simulation model. MASS-
VAC [17,29] and Dynasmart-P [4] are examples of
macroscopic simulation packages that rely on com-
binatorial approaches. The objective of the optimiza-
tion model in MASSVAC is to minimize the number
of casualties. This model generates an optimal set of
routes along with an optimal evacuation schedule.
Dynasmart-P is a dynamic traffic network analysis
and evaluation tool that determines a time-dependent
assignment of vehicles to different network paths.
Thus, the assignment of a driver to a path is made
not only based on the length of the path, but also
evacuation time. The objective is to minimize the
travel time for each individual traveler. A set of out-
flow constraints limits the total number of vehicles
leaving the link at an intersection approach. Addition-
ally, a set of inflow constraints limits the maximum
number of vehicles allowed to enter a link from all
approaches [19].

Building Evacuation

The issues discussed above are applicable in many
emergency scenarios. However, the inevitable differ-
ences of some cases demand special considerations.
Evacuating a building due to a disaster, such as the
threat of smoke, fire, earthquake, bomb or toxic gas
leak, requires a different approach. Lindell and Pra-
ter [24] have identified major differences between
building and community evacuation. First, the social
units within a building are not as clear as residential
units within a community. Second, the employers can
exercise more control strategies than public agencies.
Finally, the departure time for building evacuation is
shorter because of limited required preparation activ-
ities.
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A number of studies have been devoted to de-
scribing the behavior of building inhabitants in emer-
gency situations. For an extensive review, see Bryan [1].
However, fewer studies have been conducted to model
evacuation procedures. One of the earliest attempts by
Chalmet et al. [3] uses a capacitated network flow prob-
lem as the basis for modeling a building. Workplaces,
halls, stairwells, and elevators represent the nodes of the
network, and movement paths between them represent
the arcs. The static capacity of nodes is the maximum
number of individuals who are allowed to be in building
components simultaneously. And the dynamic capacity
of arcs is an upper bound on the number of individuals
who can traverse the pathways in each time interval.

Chalmet et al. have used three different optimiza-
tion models to solve the problem: a dynamic model,
a graphical model and an intermediate model. The dy-
namic model is a multi objective optimization model
that represents the evacuation as it evolves over time.
In contrast, the graphical and intermediate models are
not time dependent; they treat time as a parameter.
They are simpler than the dynamic model; however,
they provide almost the same insight about the build-
ing evacuation process.

The objectives of the dynamic model are to mini-
mize the average number of time periods spent by each
individual to evacuate the building, to maximize the to-
tal number of people saved, and to minimize the total
evacuation time. The dynamic model is formulated as
a minimum cost flow problem and efficiently solved us-
ing the GNET Algorithm [2].

The graphical approach to model building evacu-
ation was originally presented by Francis [13,14]. The
model assigns people to evacuation routes with the ob-
jective of minimizing the evacuation time. Two implicit
assumptions of this model are that all evacuees have
a uniform accessibility to the exit routes and that route
clearance time depends on the number of people using
the route. Given k to be the number of individuals in
a building that has n exit routes, the formulation is

minimizemax[t j(x j)j1 � j � n]

subject to

x1 C : : : C xn D k

x1; : : : ; xn � 0

where tj(xj) is the time required to clear route j if the
total number of evacuees on this route is xj. tj is a con-
tinuous function and is strictly increasing with respect
to xj. Note that t j(0) D 0. Considering the assump-
tions made by this model, the minimum evacuation
time happens when all routes are cleared in the same
time.

The intermediate model uses the same network
structure as the dynamic model. However, it is supe-
rior to the dynamic model in view of the required in-
put data and computational time. Similar to the dy-
namic model, the arcs are capacitated, but there is no
traverse time on arcs. For a given subset A of arcs,
called critical arcs, there is no capacity constraint; in-
stead, the function tij(xij) estimates the time it takes
to traverse arc (i; j) 2 A when the flow of evacuees
on this arc is xij. Clearly, ti j(0) D 0. The objective
is to minimize the building evacuation time which is
explained as minimizing the traverse time on critical
arcs. A heuristic bisection search algorithm and an ex-
act minimax algorithm were used to solve the prob-
lem.

Small-Area Evacuation

The standard approach for developing an evacuation
plan for regions, buildings, ships, etc starts with de-
termining the evacuation zone around a known haz-
ard and then exploring some important factors that af-
fect the evacuation plan (e. g., population distribution,
road capacities and human behavior). To delimit the
evacuation zone, a boundary is established around the
affected area. In nuclear power plant evacuations, the
boundary of the evacuation area is defined to X miles
of radius from the plant, and X depends on the type of
plant and the type of accident. In building evacuations
such a boundary is defined by the shell of the building.
However, for some emergency situations, such as urban
firestorms or toxic spills on highways, the spatial impact
of the hazard is unknown. In these kind of situations,
defining the evacuation zone and its boundary can not
be done in advance. This is usually the case for small
urban and rural areas that could be subject to different
hazardous events with uncertain spatial effects. Thus,
the focus has been on general planning and mock drills
rather than attempting to develop neighborhood spe-
cific evacuation plans. Cova and Church [8] were the
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first to analyze the potential for evacuation difficulty at
the neighborhood scale.

Little is known about small area evacuation as it
is nearly impossible to measure accurately during an
emergency. But, there has been an interest in look-
ing for those areas that might be difficult to evacuate
safely in an emergency. Church and Cova [6] intro-
duce a network-based model to search for small con-
tiguous areas or neighborhoods, within a urban/rural
area, that may face difficulties in a sudden evacua-
tion scenario. Their model classifies a neighborhood
based on the degree of evacuation difficulty. The evac-
uation difficulty is measured by the evacuation risk
factor which is defined as the number of vehicles per
exit road. Church and Cova formulate the problem
as a nonlinear network partitioning problem. The ob-
jective is to identify a critical neighborhood (criti-
cal cluster) that has the highest evacuation risk fac-
tor. In their network the nodes represent the house-
holds and the arcs represent the road segments con-
necting them. The demand of each node is esti-
mated by multiplying the number of people per house-
hold with the average number of vehicles per per-
son. The problem is transformed to an integer lin-
ear program whose objective is to identify an evacu-
ation area that has a risk factor greater than a spe-
cific minimum threshold. This problem is solved for
each node of the network. As a result, each node is
labelled by the risk factor of its corresponding crit-
ical neighborhood. Finally, for each node the criti-
cal risk value is the highest value related to the crit-
ical clusters that this node has been part of. An ex-
act and a heuristic approach are proposed to solve the
integer-linear programming problem. Since the exact
approach is time consuming, the heuristic approach is
used to find a contiguous critical area around a given
node. The heuristic approach follows a region grow-
ing basis. The base node is selected arbitrarily from
the network. The area around the node is expanded
iteratively by selecting a node randomly from a list
of candidate nodes within a specific distance from
the base node that most improves the objective func-
tion.

Cove and Church [8] have applied a similar
methodology to generate an evacuation vulnerability
map which classifies a local area based on the evacua-
tion difficulty.

Real-Time Traffic Management

Real-time traffic management for emergency evacua-
tion dynamically controls the traffic flow to achieve
certain system objectives such as maximum utilization
of transportation system and minimum fatalities and
property losses. This approach considers the evolution
of the traffic flow in a traffic network to generate a real-
time feedback traffic management system by using in-
vehicle and on-route surveillance systems [5,25]. Briefly
stated, the current condition of dynamic traffic flow
is monitored by surveillance systems and a reference
model that generates the desired traffic status and the
“safest evacuation strategy” is developed to satisfy the
designated objectives. The objectives are defined based
on the nature of the hazard and the involvement of the
emergency authorities. Possible objectives are minimiz-
ing the total travel time, minimizing the network clear-
ance time or minimizing the number of casualties. The
generated real-time control strategies include routing
assignments, split rates at intersections, or traffic con-
trol advisories that are passed on to evacuees cyclically.
In fact, the control strategies are not necessarily prac-
ticed by all evacuees in emergency situations. There-
fore, these strategies are modified based on the differ-
ences between the current traffic status and the desired
traffic status defined by the reference model. The “mon-
itor, control, and modify” framework is repeated fre-
quently in a closed feedback loop to decrease discrep-
ancies between the the original plan and the current
traffic status [25]. Some evacuation models include as-
pects of human behavior to provide more realistic con-
trol strategies that alleviate the deviations. The evacu-
ation route choice model developed by Chiu et al. [5]
is an example. This model replicates the route-selection
procedure of evacuees when they are provided with safe
evacuation routes. The probability that an evacuee will
select a particular route depends on his familiarity with
the route, the degree of overlap between the routes and
his preference of using freeways.

Agent-Based Modeling

Agent-based modeling is also known as individual-
oriented modeling. This is an increasingly powerful
modeling technique to simulate individual interactions
in dynamic routing situations such as emergency evac-
uations. Agent-based modeling treats the individual
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vehicles as intelligent decision-making entities [11].
A model of agents and a model of their environ-
ment are two basic components of agent-based mod-
eling [39]. The behavior of an agent and its interac-
tion with other agents is modeled by a set of rules such
as accelerating, decelerating, and lane-changing rules.
The traffic environment is modeled using a traffic net-
work topology, road category, traffic lights, and traffic
signs [12,37].

In emergency evacuations, the agent-based sim-
ulation captures the collective behavior of agents,
which greatly affects the evacuation plan. As a re-
sult, more realistic strategies are developed by includ-
ing the individual behavior of evacuees and their in-
teractions in panic situations. In 1993 Sinuany-Stern
and Stern [34] used agent-based simulation for spon-
taneous urban evacuation. They examined the sensi-
tivity of network clearance time to several traffic fac-
tors (such as interaction with pedestrians, intersec-
tion traversing time, and car ownership), and route
choice mechanisms (such as shortest path selection
or myopic-based selection). Cova and Johnson [9] as-
sessed the spatial affect of a proposed second access
road on household evacuation time using an agent-
based microsimulation model. Church and Sexton [7]
used Paramics, an agent-based microsimulation soft-
ware, to simulate evacuation scenarios in a small neigh-
borhood. They estimated the impact of different evac-
uation scenarios, such as opening an alternative exit,
invoking traffic control plans, and changing the num-
ber of vehicles leaving a household, on evacuation
time.

Conclusions

Emergency evacuation is a management strategy to en-
sure population safety in emergency situations. Com-
munities, buildings, and residential areas are prone to
disasters, thus detailed evacuation planing is neces-
sary. Evacuation planning models consist of a five-step
procedure that involves trip generation, trip departure
time, trip destination, trip route selection, and evacua-
tion plan set-up and analysis. We have presented here
a summary of some noteworthy research on each of the
above mentioned steps of the planning process. This re-
view also focuses on the special features of community,
building and small area evacuation planing. In addition,

real-time traffic management and agent-based models
are discussed. The real-time trafficmanagement models
consider the dynamic nature of traffic flow and gener-
ate a real-time feedback traffic management system in
emergency situation. The agent-based models provide
realistic emergency evacuation strategies by consider-
ing the individual behavior of evacuees (agents) and
their interactions.
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This section introduces the interior point approach to
solving entropy optimization problems with linear con-
straints. In particular, we consider the following prob-
lem:

Program EL:
8̂
<̂
ˆ̂:
min f (x) � c>xC

nX
jD1

djx j ln x j

s.t. Ax D b; x � O;

(1)

where c 2 Rn, d 2 Rn, d > O, b 2 Rm, A is an (m × n)-
matrix, O is an n-dimensional zero vector, and 0 ln 0
� 0. When c = O and dj = 1, j = 1, . . . , n, Program EL
becomes a pure entropy optimization problem.

Denote the feasible region of Program EL by Fp �

{x 2 Rn: Ax = b; x � O} and the (relative) interior of Fp

by F0
p � {x 2 Rn:A x = b; x >O}. An n-vector x is called

an interior solution of Program EL if x 2 F0
p . With these

definitions, we have the following verifiable result:

Lemma 1 If Fp is nonempty, then Program EL
has a unique optimal solution. Moreover, if Fp has
a nonempty interior, then the unique optimal solution
is strictly positive.

All interior point methods, including those to be dis-
cussed in this section, require the fundamental assump-
tion that Fp has a nonempty interior, i. e., F0

p 6D ;. A La-
grangian dual can be derived in the following manner.
For all x 2 Rn, y 2 Rm, and z 2 Rn

C � x: x 2 Rn, x �O},
define the following Lagrangian function:

L(x; y; z) �
nX

jD1

c jx j C

nX
jD1

dj e(x j)

�

mX
iD1

0
@

nX
jD1

ai jx j � bi

1
A yi �

nX
jD1

z jx j; (2)

where

e(x) �

(
x ln x if x � 0;
1 if x < 0;

is a proper convex function with the set {x: x 2 R, x �
0} being its effective domain [6]. The concept of proper

convex function has often been used to simplify convex
analysis. For details about the theory of using Lagrange
multipliers for solving constrained optimization prob-
lems defined in terms of proper convex functions, the
reader is referred to [6, Chap. 28].

Rearranging terms in (2) results in

L(x; y; z) D
nX

jD1

c jx j C

nX
jD1

dj e(x j)

C

mX
iD1

bi yi �
nX

jD1

 mX
iD1

ai j yi C z j

!
x j:

Considering the fact that dj > 0 and the shape of the
entropic function x ln x, we know that, for any given y2
Rm and z 2 Rn

C, L(x, y, z) achieves its unique minimum
at x � > O. Also, its first derivative at x � vanishes. This
implies

dj ln x�j �
mX
iD1

ai j yi C c j C dj D z j � 0: (3)

Multiplying both sides of (3) by x�j and summing over j
produces

nX
jD1

c jx�j C
nX

jD1

djx�j ln x
�
j

�

nX
jD1

 mX
iD1

ai j yi C z j

!
x�j

D�

nX
jD1

djx�j :

Consequently, for any y 2 Rm and z 2 Rn
C,

L(x�; y; z) D
mX
iD1

bi yi �
nX

jD1

djx�j ;

where x � satisfies (3). Therefore, a Lagrangian dual of
Program EL becomes
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
y2Rm

z2Rn
C

L(y; z) �
mX
iD1

bi yi �
nX

jD1

djx�j

s.t. dj ln x�j �
mX
iD1

ai j yi C c j C dj D z j ;

j D 1; : : : ; n:
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This dual is equivalent to
Program DEL:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
y2Rm

O<x2Rn

L(x; y) �
mX
iD1

bi yi �
nX

jD1

djx j

s.t. dj ln x j C c j C dj �

mX
iD1

ai j yi � 0;

j D 1; : : : ; n:

(4)

Note that x is strictly positive because ln 0 is not well-
defined. However, if we define ln 0 = �1, the domain
of x in Program DEL can be replaced by {x:x 2 Rn, x �
O}. Denote the excess vectorO f (x) � A|y by s. The jth
component of s is simply dj ln xj + cj + dj �

Pm
iD1 aij

yi, which is the left-hand side of (4). Denote the feasible
region of Program DEL by Fd � {(x, y): O f (x�) � A|

y � �O}, and assume that Fd has a nonempty interior.
We now derive the Karush–Kuhn–Tucker condi-

tions for Program DEL. First, define, for all u � O, the
following Lagrangian:

L0(x; y;u) �
mX
iD1

bi yi �
nX

jD1

djx j

C

nX
jD1

uj

 
dj ln x j C c j C dj �

mX
iD1

ai j yi

!
:

Setting the partial derivatives with respect to yi and xj
to zero gives

bi �
nX

jD1

ai ju j D 0; i D 1; : : : ;m;

� dj C
ujd j

x j
D 0; j D 1; : : : ; n:

(5)

Note that (5) is equivalent to uj = xj. Therefore, the KKT
conditions for Program DEL become
a) There exists x 2Rn such thatAx = b and x�O. This

can be viewed as the ‘primal feasibility condition’.
b) There exists y 2 Rm such that, together with x, dj

ln xj + cj + dj �
Pm

iD1 aij yi � 0 orO f (x)�A| y�O.
Similarly, this can be viewed as the ‘dual feasibility
condition’.

c) For all j = 1, . . . , n, (dj ln xj + cj + dj �
Pm

iD1 aij yi) xj
= 0. This can be viewed as the ‘complementary slack-
ness condition’.

Note that, by (5), the Lagrange multipliers associ-
ated with the constraints of Program DEL at its opti-
mal solution happen to coincide with the x-component
of the optimal solution of Program DEL. This, together
with the fact that the dual of Program DEL is Program
EL, imply that the optimal solution of Program DEL
contains the optimal solution of Program EL.

Also note that an alternative dual program can be
defined by considering the following Lagrangian:

L00(x; y) �
nX

jD1

c jx j C

nX
jD1

djx j ln x j

�

mX
iD1

0
@

nX
jD1

ai jx j � bi

1
A yi ;

for x � O and y 2 Rm. In this expression, no Lagrange
multipliers are defined for the constraints x �O, and it
leads to the following dual program:

max
y2Rm

mX
iD1

bi yi

�

nX
jD1

dj exp
� Pm

iD1 ai j yi � c j
d j

� 1
	
:

Since this dual program is unconstrained, any solution
algorithm can be viewed as an interior point algorithm.
For details about this approach and companion efficient
solution algorithms, see [2].

In the rest of this section, we focus on the devel-
opment of a primal-dual interior point algorithm [5].
Note that, to obtain the algorithm, Program DEL,
rather than the unconstrained dual program, was used
in [5]. The primal-dual interior point algorithm starts
with an initial primal feasible solution x0 and an ini-
tial dual feasible solution y0. While the algorithm iter-
ates, it maintains the primal and dual feasibility con-
ditions and reduces the complementary slackness. In
other words, the algorithm iterates from a pair of in-
terior solutions (xk, yk), with A xk = b, xk > O and sk

= O f (xk) � A|yk > O, to a new interior solution pair
(xk + 1, yk + 1) such that the complementary slackness is
reduced from ık � (xk)|sk to ık + 1 � (xk + 1)|sk + 1. The
algorithm terminates when ık � �, for some given � > 0
(or when the difference between f (xk) and the optimum
is sufficiently small).
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To describe the algorithm, we use the boldface
upper-case letters X, S, and W to denote the diagonal
matrices formed by the components of vectors x, s, and
w, respectively. We also denote the vectors of all ones of
appropriate dimensions by e, the l2 norm by k � k , and
the vector whose components are ln (xj)’s, j = 1, . . . , n,
by ln x.

Rather than dealing with the complementary slack-
ness ık directly, the following primal-dual potential
function [8]

 (x; s) D � ln(x>s) �
nX

jD1

ln(x js j);

where � � n C
p
n, can be used as a surrogate mea-

sure [5].
Given the initial solution pair, the potential of the

associated complementary slackness can be calculated.
Given the inaccuracy tolerance �, a target potential can
be calculated. Therefore, the amount of required poten-
tial reduction can be calculated. The primal-dual inte-
rior point algorithm, under proper conditions, will re-
duce the potential by a constant amount in each itera-
tion.

Note that two different pairs of (x, s) that have the
same complementary slackness measure may have dif-
ferent potentials. Therefore, to ensure that the target
potential is sufficiently small, we need to find the mini-
mum potential among all those (x, s) pairs such that x|

s = �, or a lower bound of this minimum potential.
Rewrite the potential function as

 (x; s) D (� � n) ln(x>s) �
nX

jD1

ln
�x js j
x>s

�
:

Applying the geometric-arithmetic inequality results in
nY

jD1

�x js j
x>s

� 1
n
�

1
n

nX
jD1

�x js j
x>s

�
D

1
n
:

Taking the natural logarithm leads to

1
n

nX
jD1

ln
� x js j
x>s

�
� ln

�
1
n

�
D � ln n:

Consequently,
nX

jD1

ln
�x js j
x>s

�
� �n ln n:

Therefore, the target potential should be (� � n) ln �
+ n ln n. Given the potential associated with the initial
solution, the exact amount of potential reduction is  
(x0, s0) � (� � n) ln � � n ln n. Note that for a given
inaccuracy tolerance �, the target potential is indeed the
minimum of all the potentials associated with all (x, s)
pairs such that x| s = �. This is indicated by the tight
geometric-arithmetic inequality.

Given the knowledge of how much potential reduc-
tion needs to be, if an algorithm reduces the potential
by a constant amount in each iteration, then the com-
plexity of the algorithm is O( (x0, s0) � (� � n) ln � �
n ln n).

Assume that, in iteration k, we have a primal-dual
feasible solution pair (xk, yk) and the slack vector sk�O
f (xk) � A|yk >O. Ideally, one would like to find (xk + 1,
yk + 1) such that the KKT conditions are met, i. e.,

AxkC1 D b; xkC1 � O;

r f (xkC1) � A>ykC1 � O;

XkC1(r f (xkC1) � A>ykC1) D O:

Define

	x � xkC1 � xk ;

	y � ykC1 � yk ;

	s � skC1 � sk;

	X � XkC1 � Xk:

With these definitions, the conditions stated above be-
come

A(xk C	x) D b ; xk C	x � O;

r f (xk C	x) � A>(yk C	y) � O;

(Xk C	X)

� [r f (xk C	x) � A>(yk C	y)] D O:

(6)

Note that quantity in the bracket of (6) is simply sk + 1 =
sk + M s, where

	s � r f (xk C	x) � r f (xk) � A>	y:

Therefore, we have

(Xk C	X)(sk C	s) D O;

or

Xksk C Xk	sC	Xsk C	X	s D O;
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or

Xk	sC Sk	x D �	X	s � Xksk:

Solving the equations

A(xk C	x) D b;

Xk	sC Sk	x D �	X	s� Xksk ;

subject to the condition

r f (xk C	x) � A>(yk C	y) � O

is in general difficult.
Given O < xk 2 Fp, sk = O f (xk) � A|yk > 0, and

ık = (xk)|sk, the algorithm proposed in [4] solves the
following system of nonlinear equations forMx andMy:

Xk	sC Sk	x D �pk ; (7)

A	x D O; (8)

where � > 0 is a constant to be specified later and

pk �
ık

�
e � XkSke;

and n C
p
n � � < 2n.

By choosing

� D
ˇmin j(

q
xk
j s

k
j )

(XkSk)�0:5pk




for some 0 < ˇ < 1 yet to be determined, we obtain

 (xkC1; skC1) �  (xk ; sk) � �

for a constant � > 0. Let C > 0 be a real number. Choose
ˇ such that

0 < ˇ < 1; (9)

ˇ(1C Cˇ) �
1
2
; 1 � Cˇ � 0: (10)

It can be shown [5] that, to reduce the potential by
a constant amount in each iteration, solving a linear ap-
proximation of equations (7) and (8) can achieve the
required accuracy.

Suppose that n C
p
n � � < 2n and that M x and

M y satisfy

A	x D O; Xk	sC Sk	x D �pk C zk ;


zk



 � Cˇ2 min(xk

j s
k
j );

(11)

then

 (xk ; sk) �  (xkC1; skC1) > �;

where � D (
p
3
2 )ˇ(1 � Cˇ) � ˇ2(1C Cˇ)2.

Condition (11) can be achieved by solving the fol-
lowing set of linear equations:

Xk(r2 f (xk)	x� A>	y)C Sk	x D �pk ; (12)

A	x D O: (13)

Note that the vector O2 f (xk)M x replaces O f (xk +
M x) � O f (xk) of (7) and serves as a simple linear ap-
proximation. Equations (12) and (13) are key to the
‘potential-reduction’ primal-dual interior point algo-
rithm.

Given an initial interior point solution, an interior
point algorithm can be stated as follows.

Initialization:
Given an initial primal interior point solution x0

and an initial dual solution y0 such that Ax0 = b,
x0 > 0, and s0 = r f (x0) � A>y0 > 0, calculate
ı0 = (x0)>s0;

set k  0.
Iteration:

IF ık < �, THEN STOP
ELSE
solve (12), (13) for	x and 	y;
set

xk+1 � xk +	x;
yk+1 � yk +	y;
sk+1 � r f (xk+1) � A>yk+1;
ık+1 � (xk+1)>sk+1;

reset k  k + 1 for the next iteration.
END IF

With a standard procedure for obtaining an initial
solution [1], the following theorem of polynomial time
convergence was shown in [5].

Theorem 2 Suppose that � > 0 and 2n � � � nC
p
n.

Then, in the kth iteration, xk > O, sk > O, and xk and
yk are feasible for Programs EL and DEL. Moreover, the
interior point algorithm terminates in at most O( (x0,
s0) � (� � n) ln � � n ln n) iterations.

It was also suggested that, in practical implementation,
the stepsize can be set to � based on a line search such
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that � � argmin��0  (xkC�	x; skC�	s). With this
stepsize, one can set xkC1 � xk C �	x, ykC1 � yk C
�	y.

The search direction is a combination of a decent
direction and a centering direction. To enable local
quadratic convergence, a computable criterion was de-
veloped under which a pure Newton method for solv-
ing O f (x) � A| y = O, Ax = b (by solving the linear
system of O2 f (xk)Mx � A| My = � sk and AMx = O)
can be applied for the rest of the search process. Note
that when xk is close to the optimal solution, we have
xk being strictly positive, and therefore O f (x) � A|

y should be close to O. Implementation of primaldual
interior point algorithms proposed in [5] is discussed
in [3].

In addition to the ‘potential-reduction’ interior
point method described above, the ‘path following’
interior point method, which follows an ideal inte-
rior trajectory to reach an optimal solution, was pro-
posed in [7,9]. The convergence of the path follow-
ing interior point method has been established. How-
ever, to the best of our knowledge, possible polyno-
mial time convergence behavior remains an open is-
sue.
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Introduction

Entropy optimization has been applied to problems in
various fields of interest from thermodynamics to fi-
nancial planning. In this context ‘entropy’ refers to the
amount of uncertainty in a system, rather than the
amount of disorder. A detailed definition of entropy
can be found in [4].

One area of application, which has not received
much attention in recent years, is that of parame-
ter estimation. The estimation of parameters in semi-
empirical mathematical models is a process which is
important in many disciplines in the sciences and en-
gineering. This article will focus on a few different areas
of the parameter estimation problem which have been
approached from an entropy perspective. Jaynes’ maxi-
mum entropy principle allows for the estimation of pa-
rameters in a statistical distribution function by specifi-
cation of the characteristic moments. This method can
also be used to derive the principle of maximum likeli-
hood, one of the most widely used parameter estimation
approaches. Entropy principles have also been used to
derive theoretical ‘best estimators’ for recursive param-
eter estimation schemes. These results can then be used
to gauge the performance of various nonoptimal ap-
proaches. A final application involves the development
of a measure which not only allows for the estimation
of model parameters, but also simultaneously choosing
the best mathematical form of the model.

EntropyMeasures

In order to optimize entropy, one must possess some
quantitative measure of the entropy of a given distribu-
tion. One suchmeasure was developed by C.E. Shannon
[8]. Shannon arrived at the function by postulating a set
of properties which the measure should have, and then
deriving a form which possesses those properties. For
a probability distribution p = (p1, . . . , pn), the function
takes the form of:

S D �
nX

iD1

pi ln pi : (1)

Shannon also proved that this function was unique for
the postulated set of properties. Other researchers have
postulated different sets of properties, but arrived at the
same result [4].

Another measure of entropy, in this case the cross
entropy or distance between two distributions, was pre-
sented by S. Kullback and R.A. Leibler [5]. For two
given distributions, p = (p1, . . . , pn), and q = (q1, . . . ,
qn), the function takes the form:

I D
nX

iD1

pi ln
pi
qi
: (2)

It is assumed that when qi = 0, the associated pi also is
zero and 0 ln 0

0 � 0. This function is referred to as the
Kullback–Leibler measure of cross-entropy.

Jaynes’ Maximum Entropy
for Continuous Distributions

Since most distributions encountered in practice are
continuous in nature, Jaynes’ principle of maximum
entropy (MaxEnt), must first be extended to continu-
ous distributions. This extension is straight forward and
results in:8̂

ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

max �

Z b

a
f (x) ln f (x) dx

s.t.
Z b

a
f (x) dx D 1

Z b

a
f (x)gr(x) dx D ar ;

r D 1; : : : ;m;

(3)

where f (x) is a continuous probability density function
from a to b. The Lagrange function takes the form of:

L � �
Z b

a
f (x) ln f (x) dx

� (�0 � 1)

"Z b

a
f (x)dx � 1

#

�

mX
rD1

�r

"Z b

a
f (x)gr(x) dx � ar

#
: (4)

Using the Euler–Lagrange equation the following ex-
pression results:

f (x) D exp
�
��0 � �1g1(x) � � � � �m gm(x)

�
: (5)

A detailed discussion can be found in [4].
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MaxEnt Estimation Method

The estimation of parameters in a statistical distribu-
tion using MaxEnt follows these steps:
1) Specifym characterizing functions, g1(x), . . . , gm(x).
2) Use MaxEnt to find f (x), which is given by (5).
3) Find estimates of the values of the moment equa-

tions from the observed data set x = {x1, . . . , xn}
through the relationship:

bar D 1
n
�
gr(x1)C � � � C gr (xn)

�
: (6)

4) Determine estimates of the Lagrange multipliers,
b�0; : : : ;b�m , from:

ar D
R b
a gr(x)e�b	1 g1(x)�����b	m gm (x) dx
R b
a e�b	1 g1(x)�����b	m gm (x) dx

(7)

and

eb	0 D
Z b

a
e�b	1 g1(x)�����b	m gm (x) dx: (8)

5) The estimated function then takes the form:

f (x) D exp
h
�b�0 � � � � �b�m gm(x)

i
: (9)

Maximum Likelihood FromMaxEnt

The principle of maximum likelihood has been widely
used to estimate the parameters of both statistical dis-
tributions and semi-empirical models. Maximum like-
lihood assumes that information exists about a ran-
dom variable in the form of an observation, x1, . . . , xn,
and a density function, f (x;�1, . . . , �m), unlike in Max-
Ent where the forms of the characterizing moments are
known. The approach seeks to maximize the likelihood
that the given observations will occur given a set of pa-
rameters. If each observation is independent, then this
‘likelihood’ is defined as:

L(X;
) D
nY

iD1

f (xi j
): (10)

The log likelihood function is most often used:

ln L(X;
) D
nX

iD1

ln f (xi j
): (11)

The ln L is maximized to determine the optimal param-
eter estimates b
.

The same objective can also be derived using the
concept of MaxEnt, even though the former predates
the latter. The parameters need to be chosen such that
the entropy which remains after the observed values are
known is large as possible. This implies that the entropy
of the observation itself has to be a minimum. The en-
tropy is given by:

�

Z b

a
f (x; 
) ln f (x; 
) dx D

Z b

a
ln f (x; 
) dF: (12)

The knowledge which is given by the observation is:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

F(x; 
) D 0 when x < x1
F(x; 
) D 1

n when x1 � x < x2
:::

:::

F(x; 
) D r
n when xr � x < xrC1

:::
:::

F(x; 
) D 1 when xn � x

where F(x, 
) is the cumulative density. Thus the en-
tropy of the sample is then written as:

�
1
n
�
ln f (x1; 
)C � � � C ln f (xn; 
)

�
; (13)

which is equal to:

�
1
n
�
L(x1; : : : ; xn ; �1; : : : ; �m)

�
; (14)

where L is the same as described by (11). Therefore to
minimize the entropy of the sample the likelihood func-
tion must be maximized.

Recursive Parameter Estimation

The determination of the parameters of a dynamical
system on-line is a key step in the implementation of
a wide range of control schemes. The estimation pro-
cedure is conducted in a recursive fashion in which
the estimates from the previous time step are com-
bined with the current state observations to calculate
a new set of parameter estimates. The analysis of the
estimation process used is typically approached from
a mean square error criterion. This method requires
some assumptions about the error to be made and the
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form of the data processor to be restricted. H.L. Weide-
mann and E.B. Stear [9] presented an approach based
on entropy concepts which has various benefits over the
mean squared error method:
� The form of the optimal data processor is not con-

strained nor does it have to be known.
� Errors are not restricted to have a normal probabil-

ity distribution.
� None of the operators in the system are required to

be linear.
Before continuing with the analysis, various mea-

sures need to be defined. The entropy of a K-dimen-
sional random vector X with the joint probability den-
sity function, px(x1, . . . , xk) is defined as:

H(X) D �
Z 1
�1

px (X) ln px (X) dX: (15)

If Rx is the covariance matrix of the vector X then the
following holds:

H(X) �
1
2
ln
˚
(2
e)K det[Rx]

�
: (16)

When X is a Gaussian random vector then (16) holds
as an equality. Another quantity which will be used in
the analysis is referred to as themutual information be-
tween X and Y.

I(X;Y) D
Z Z 1

�1

px y(X;Y) ln
px y(X;Y)
py(Y)py(Y)

dX dY: (17)

Entropy Optimization: Parameter Estimation, Figure 1
Typical parameter estimator

The object is to estimate a vector 
 of unknown
parameters with the joint probability density function,
p
 (�1, . . . , �m). The output of the dynamical model as
a function of these parameters is expressed as yk(�1, . . . ,

�m, k). These outputs are then measured by a sensor to
produce {zk}. These measurements are then used by the
data processor F to produce an r-dimensional vector V
which is an estimate of D(
). The estimation error is
given by:

X D D(
) � V D D(
) � F(Z) D U � V: (18)

Also, under certain conditions, the transformD(
) will
possess a property that for any given random vector �,
the following holds:

I(�;
) D I(�;D(
)); (19)

or, in words, that D(
) preserves energy. When this
does not hold, I(�
)> I(�D(
)).

The problem now is to determine the function F̂
which will produce an optimal estimator. The theoret-
ically best function results in a minimum of the error
entropy, defined to be Ĥ0. The only constraint on the
approach is that the mutual information, I(
;Z), must
be known. With that the following can be stated:
� The minimum entropy of the error vector is given

by:
H0 D H(U)� I(U;Z): (20)

� Minimizing the mutual information, I(X;Z), is
equivalent to the minimization of the error vector.
This is achieved be choosing F(Z) such that Z and X
are independent.

� Whether or not D(
) preserves energy, the reduc-
tion in the processed parameter entropy, H(U), is
bounded above by I(
;Z), that is,

H(D(
))� H(X) � I(
;Z); (21)

and the equality holds when D(
) preserves energy
and the optimal processor, F̂, is used.

These three statements now make it possible to deter-
mine the best possible performance an estimator can
achieve for a given system. The proofs of these state-
ments and a simple example can be found in [9]. The
extension of the theorems to the continuous time case
is given in [6], and to the similar problem of state esti-
mation in [7].

Parameter Estimation andModel Selection

For most problems of any physical significance the
form of the model equations are not known with abso-
lute certainty. In this lies the problem of not only esti-
mated unknown parameters, but also determining the
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best fitting model. Given a set of N independent ob-
servations, x1, . . . , xN , of a random variable from an
unknown true distribution g(x), the objective is to es-
timate this true distribution by choosing a member of
a family of distributions given by f (x|
) where 
 is
a vector of parameters. In order to accomplish this, the
distance between the two distributions needs to bemin-
imized. The entropy of the true distribution is given by:

S(g; g) D
Z

g(x) ln g(x) dx (22)

while a measure of the cross-entropy is given by:

S(g; f (xj
) D
Z

g(x) ln f (xj
) dx: (23)

The Kullback–Leibler (K-L) measure is defined as:

I D S(g; g)�S(g; f (xj
) D
Z

g(x) ln
g(x)

f (xj
)
dx: (24)

Therefore the solution involves the minimization of the
K-L measure [3].

Take the example of a family of possible distribu-
tions each one having a different number, k, of un-
known parameters, 
k. These are denoted by f (x|
k).
The resulting form of the measure to choose the cor-
rect distribution is referred to as Akaike’s information
criterion (AIC) [1]:

AIC(k) D �2 ln L(b
k)C 2k; (25)

where ln L(b
k) is the value of the log likelihood func-
tion with optimally determined parameters b
k . It is
proven in [3] that this result is obtained by the mini-
mization of the K-L measure given by (24).

A secondary problem in the area of model selection,
is sequential design of experiments. The concept of en-
tropy has been applied to this problem in [2]. A total
entropy criterion is developed which includes the un-
certainty in the model selected as well as the uncertainty
in the parameter values in each model. The use of this
measure leads to a choice of an experiment for which
the outcome is the most uncertain.
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The word entropy originated in the literature on ther-
modynamics around 1865 in Germany and was coined
by R. Clausius [4] to represent a measure of the amount
of energy in a thermodynamic system as a function of
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the temperature of the system and the heat that en-
ters the system. Clausius wanted a word similar to the
German word energie (i. e., energy) and found it in
the Greek word ���o
�, which means transformation
[1]. The word entropy had belonged to the domain of
physics until 1948 when C.E. Shannon, while develop-
ing his theory of communication at Bell Laboratories,
used the term to represent a measure of information
after a suggestion made by J. von Neumann. Shannon
wanted a word to describe his newly found measure of
uncertainty and sought Von Neumann’s advice. Von
Neumann’s reasoning to Shannon [25] was that: ‘No
one really understands entropy. Therefore, if you know
what you mean by it and you use it when you are in an
argument, you will win every time.’

Whatever the reason for the name is, the concept of
Shannon’s entropy has penetrated a wide range of dis-
ciplines, including statistical mechanics [12], thermo-
dynamics [12], statistical inference [24], business and
finance [5], nonlinear spectral analysis [21], image re-
construction [3], transportation and regional planning
[26], queueing theory [10], information theory [9,20],
statistics [17], econometrics [8], and linear and nonlin-
ear programming [6,7].

The concept of entropy is closely tied to the concept
of uncertainty embedded in a probability distribution. In
fact, entropy can be defined as a measure of probabilis-
tic uncertainty. For example, suppose the probability
distribution for the outcome of a coin-toss experiment
is (0.0001, 0.9999), with 0.0001 being the probability of
having a tail. One is likely to notice that there is much
more ‘certainty’ than ‘uncertainty’ about the outcome
of this experiment and hence about the probability dis-
tribution. In fact, one is almost certain that the out-
come will be a head. If, on the other hand, the probabil-
ity distribution governing that same experiment were
(0.5, 0.5), one would realize that there is much less ‘cer-
tainty’ and much more ‘uncertainty,’ when compared
to the previous distribution. Generalizing this observa-
tion to the case of n possible outcomes, we conclude
that the uniform distribution has the highest uncer-
tainty out of all possible probability distributions. This
implies that, if one had to choose a probability distribu-
tion for a chance experiment without any prior knowl-
edge about that distribution, it would seem reasonable
to pick the uniform distribution. This is because one
would have no reason to choose any other and because

that distribution maximizes the ‘uncertainty’ of the out-
come. This is called Laplace’s principle of insufficient
reasoning [15]. Note that we are able to justify this prin-
ciple without resorting to a rigorous definition of ‘un-
certainty.’ However, this principle is inadequate when
one has some prior knowledge about the distribution.
Suppose, for example, that one knows some particular
moments of the distribution, e. g., the expected value.
In this case, a mathematical definition of ‘uncertainty’
is crucial. This is the case where Shannon’s measure of
uncertainty, or Shannon’s entropy, plays an indispens-
able role [20].

To define entropy, Shannon proposed some axioms
that he thought any measure of uncertainty should sat-
isfy and deduced a unique function, up to a multiplica-
tive constant, that satisfies them. It turned out that this
function actually possesses many more desirable prop-
erties. In later years, many researchers modified and re-
placed some of his axioms in an attempt to simplify the
reasoning. However, they all deduced that same func-
tion.

We first focus on finite-dimensional entropy, i. e.,
Shannon’s entropy defined on discrete probability dis-
tributions that have a finite number of outcomes (or
states). Let p � (p1, . . . , pn)| be a probability distribu-
tion associated with n possible outcomes, denoted by
x� (x1, . . . , xn)|, of an experiment. Denote its entropy
by Sn(p). Among those defining axioms, J.N. Kapur and
H.K. Kesavan stated the following [15]:
1) Sn(p) should depend on all the pj’s, j = 1, . . . , n.
2) Sn(p) should be a continuous function of pj, j = 1,

. . . , n.
3) Sn(p) should be permutationally symmetric. In

other words, if the pj’s are merely permuted, then
Sn(p) should remain the same.

4) Sn(l/n, . . . , l/n) should be amonotonically increasing
function of n.

5) Sn(p1, . . . , pn) = Sn�1(p1 + p2, p3, . . . , pn) + (p1 + p2)
S2(p1/(p1 + p2), p2/(p1 + p2)).
Properties 1, 2 and 3 are obvious. Property 4 states

that the maximum uncertainty of a probability distri-
bution should increase as the number of possible out-
comes increases. Property 5 is the least obvious but
states that the uncertainty of a probability distribution
is the sum of the uncertainty of the probability distribu-
tion that combines two of the outcomes and the uncer-
tainty of the probability distribution consisting of only
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those two outcomes adjusted by the combined proba-
bilities of the two outcomes.

It turns out that the unique family of functions that
satisfy the defining axioms has the form Sn(p) = �kPn

jD1 pj ln pj, where k is a positive constant, ln rep-
resents the natural logarithmic function, and 0 ln 0 �
0 [15]. Shannon chose �

Pn
jD1 pj ln pj to represent his

concept of entropy [20]. Among its many other desir-
able properties, we state the following:
6) Shannon’s measure is nonnegative and concave in

p1, . . . , pn.
7) The measure does not change with the inclusion of

a zero-probability outcome.
8) The entropy of a probability distribution repre-

senting a completely certain outcome is 0, and the
entropy of any probability distribution represent-
ing uncertain outcomes is positive.

9) Given any fixed number of outcomes, the maxi-
mum possible entropy is that of the uniform dis-
tribution.

10) The entropy of the joint distribution of two inde-
pendent distributions is the sum of the individual
entropies.

11) The entropy of the joint distribution of two depen-
dent distributions is no greater than the sum of the
two individual entropies.
Property 6 is desirable because it is much eas-

ier to maximize a concave function than a noncon-
cave one. Properties 7 and 8 are appealing because
a zero-probability outcome contributes nothing to un-
certainty, and neither does a completely certain out-
come. Property 9 was discussed earlier. Properties 10
and 11 state that joining two distributions does not af-
fect the entropy, if they are independent, and may actu-
ally reduce the entropy, if they are dependent.

Shannon’s entropy was originally defined for
a probability distribution over a finite sample space,
i. e., a finite number of possible outcomes, and can be
interpreted as a measure of uncertainty of the proba-
bility distribution. It has subsequently been defined for
general discrete and continuous random vectors. It has
been rigorously proved that Shannon’s entropy is the
unique measure of uncertainty (up to a multiplicative
constant) of a finite probability distribution that satis-
fies a set of axioms considered necessary for any rea-
sonable measure of uncertainty [16,19,20]. The con-
cept of entropy, when extended for probability distri-

butions defined on a countably infinite sample space,
takes the form of �

P
1
jD1 pj ln pj. It can still be viewed

as a measure of uncertainty but such an interpretation
does not enjoy the same degree of mathematical rigor as
its finite-sample-space counterpart. When the concept
is extended for continuous probability distributions, it
is defined to be �

R
p(x) ln p(x) dx. However, it can no

longer be interpreted as a measure of uncertainty at all
[9,11]. Rather, it can only be viewed as a measure of rel-
ative uncertainty [15].

Note that, with Shannon’s entropy as the measure
of uncertainty, in the absence of any prior information
about the underlying probability distribution, the best
course of action suggested by the principle of insuffi-
cient reasoning is to choose the uniform distribution
because it possesses maximum uncertainty. Given the
knowledge of some moments of the underlying distri-
bution, the same reasoning leads to the following prin-
ciple:
� Out of all possible distributions that are consistent

with the moment constraints, choose the one that
has maximum entropy.

This principle was proposed by E.T. Jaynes ([5, Chap-
ter 2]), and has been known as the principle of maxi-
mum entropy or Jaynes’ maximum entropy principle. It
has often been abbreviated asMaxEnt in literature.

Let X be a random variable with n possible out-
comes {x1, . . . , xn} and p � (p1, . . . , pn)| be a vector
consisting of corresponding probabilities. Suppose that
g1(X), . . . , gm(X) are m functions of X with known ex-
pected values a1, . . . , am, respectively. The principle of
maximum entropy leads to the following mathematical
optimization problem:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max H1(p) D �
nX

jD1

p j ln p j

s.t.
nX

jD1

p j gi (x j) D ai ; i D 1; : : : ;m;

nX
jD1

p j D 1;

p j � 0; j D 1; : : : ; n:

This is a convex programming problem with lin-
ear constraints. The nonnegativity constraints are not
binding for the optimal solution p� because each p�j
can be expressed as an exponential function in terms
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of the Lagrange multipliers associated with the equal-
ity constraints. Note that, in the absence of the moment
constraints, the solution to the problem is the uniform
probability distribution, whose entropy is ln n. As such,
the maximum entropy principle can be viewed as an
extension of the Laplace’s principle of insufficient rea-
soning. The distribution selected under the maximum
entropy principle has also been interpreted as one that
is the ‘most probable’ in the sense that the maximum
entropy distribution coincides with the frequency dis-
tribution that can be realized in the greatest number of
ways [3]. An explanation of this linkage in the context
of the well-known application of entropy maximization
in transportation planning can be found in [7].

Recall that the above discussion was originally mo-
tivated by the task of choosing a probability distribu-
tion among those that are consistent with some given
moments. Now, in addition to the moment constraints,
suppose that we have an a priori probability distribu-
tion p0 that we think our probability distribution p
should be close to. In fact, in the absence of the mo-
ment constraints, we would like to choose p0 for p be-
cause it is clearly the closest to p0. However, in the
presence of some moment constraints which p0 does
not satisfy, we need a precise definition of ‘closeness’
or ‘deviation’. In other words, we need to define some
sort of deviation or, more precisely, ‘directed divergence’
[15] on the space of discrete probability distributions
where the distribution is chosen from. Note that we de-
liberately avoid calling this measure a ‘distance’. This is
because a distance measure should be symmetric and
should satisfy the triangular inequality, but these two
properties are not important in this context. In fact,
we can be content with a ‘one-way (asymmetric) devi-
ation measure’, D(p, p0), from p to p0. If a ‘one-way
deviation measure’ from p to p0 is not satisfactory, one
can consider using a symmetric measure defined as the
sum of D(p, p0) and D(p0, p). What is desirable for
this ‘directed divergence’ measure includes the follow-
ing properties:
1) D(p, p0) should be nonnegative for all p and p0.
2) D(p, p0) = 0 if and only if p = p0.
3) D(p, p0) should be a convex function of p1, . . . , pn.
4) When D(p, p0) is minimized subject to moment

constraints but without the explicit presence of the
nonnegativity constraints, the resulting pj’s should
be nonnegative.

Property 1 is desirable for any such measure of de-
viation. If property 2 were not satisfied, then it would
be possible to choose a vector p that has a zero directed
divergence from p0, i. e., one that is as ‘close’ to p0 as p0

itself, but differs from p0. Property 3 makes minimiz-
ing the measure much simpler, and property 4 spares us
from explicitly considering n nonnegativity constraints.
Fortunately, there are many measures that satisfy these
properties. We may even be able to find one that satis-
fies the triangular inequality. But, simplicity of the mea-
sure is also desirable. The simplest and most important
of those measures is the Kullback–Leibler measure ([5,
Chapt. 4]), defined asD(p, p0) =

Pn
jD1 pj ln (pj/p

0
j ), with

the convention that, whenever p0j is 0, pj is set to 0 and
0 ln (0/0) is defined to be 0. This measure is also known
as the cross-entropy, relative entropy, directed divergence
or expected weight of evidence of p with respect to p0. A.
Hobson [1] provided an axiomatic characterization of
cross-entropy. He interpreted D(p, p0) as the ‘informa-
tion in p relative to p0’, and showed that the only func-
tion I(p, p0) satisfying the following five properties has
the form of k

Pn
jD1 pj ln (pj/p0j ), where k is a positive

constant:
5) I(p, p0) is a continuous function of p and p0.
6) I(p, p0) is permutationally symmetric, i. e., the mea-

sure does not change if the pairs of (pj, p0j ) are per-
muted among themselves.

7) I(p, p) = 0.
8) For any pair of integers n and n0 such that n0 � n

> 0, I(1/n, . . . , 1/n, 0, . . . , 0; 1/n0, . . . , 1/n0) is an in-
creasing function of n0 and a decreasing function of
n, where I(1/n, . . . , 1/n, 0, . . . , 0; 1/n0, . . . , 1/n0) de-
notes the information obtained when the number of
equally likely possibilities is reduced from n0 to n.

9)
I(p1; : : : ; pn ; p01; : : : ; p

0
n) D I(q1; q2; q01; q

0
2)

C q1I
�
p1
q1
; : : : ;

pr
q1

;
p01
q01
; : : : ;

p0r
q01

�

C q2I
�
prC1

q2
; : : : ;

pn
q2

;
p0rC1

q02
; : : : ;

p0n
q02

�
;

where 1� r � n, q1 � p1 + � � � + pr , q2 � pr+ 1 + � � �
+ pn, q01 � p01 + � � � + p0r , q02 � p0r + 1 + � � � + p0n .
Property 8 says, for example, that the information

obtained upon reducing the number of equally likely
sides on a die from 6 to 3 is greater than the information
obtained upon reducing the number from 6 to 4. Prop-
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erty 9 says that one may give information about the out-
come associated with the random event either by speci-
fying the probabilities p1, . . . , pn directly, or by specify-
ing the probabilities q1 and q2 first and then specifying
the conditional probabilities pi/q1 and pi/q2.

In addition to the nine properties discussed above,
we state the following desirable properties for cross-
entropy:
10) D(p, p0) is convex in both p and p0.
11) D(p, p0) is not symmetric.
12) If p and q are independent and r and s are also in-

dependent, then D(p 
 q, r 
 s) = D(p, r) + D(q,
s), where 
 denotes the convolution operation be-
tween two independent distributions.

13) In general, the triangular inequality does not hold.
But, if distribution pminimizes D(p, p0) subject to
some moment constraints and q is any other dis-
tribution that satisfies those same constraints, then
D(q, p0) = D(q, p) + D(p, p0). Thus, in this spe-
cial case, the triangular inequality holds, but as an
equality.
Kullback and Leibler’s cross-entropy was also orig-

inally defined for probability distributions with a fi-
nite sample space and can be interpreted as a mea-
sure of deviation of one probability distribution from
another. It has been extended subsequently for distri-
butions defined on countably infinite and continuous
sample spaces. The corresponding forms become

P
1
jD1

pj ln (pj/p0j ) and
R
p(x) ln (p(x)/p0 (x)) dx, respectively.

It has also been derived rigorously as the unique mea-
sure of deviation of one probability distribution from
another that satisfies a set of axioms considered as ne-
cessity for any reasonable measure of deviation, for
both finite probability distributions [11] and contin-
uous distributions [14]. Cross-entropy for probability
distributions with countably infinite sample space can
be viewed and has been used as a measure of deviation,
although the justification is not as strong as their finite-
sample-space and continuous counterparts.

With cross-entropy interpreted as a measure of ‘de-
viation’, the Kullback–Leibler’s principle of minimum
cross-entropy, orMinxEnt, can be stated as follows [15]:

Out of all possible distributions that are consis-
tent with the moment constraints, choose the
one that minimizes the cross-entropy with re-
spect to the given a priori distribution.

Mathematically, we consider the following opti-
mization problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min H2(p) D
nX

jD1

p j ln
p j

p0j

s.t.
nX

jD1

p j gi (x j) D ai ; i D 1; : : : ;m;

nX
jD1

p j D 1;

p j � 0; j D 1; : : : ; n:

Note that the nonnegativity constraints are not bind-
ing, for the same reason as in the MaxEnt problem. For
a detailed discussion of the properties of MinxEnt, the
reader is referred to [23].

Note that, if there is no a priori information, then
one may use the uniform distribution, denoted by u, as
the a priori distribution. In this case, D(p, p0) = D(p,
u) =

Pn
jD1 pj ln (pj/(1/n)) = ln n +

Pn
jD1 pj ln pj. Since

minimizing
Pn

jD1 pj ln pj is equivalent to maximizing
�
Pn

jD1 pj ln pj, minimizing the cross-entropy with re-
spect to the uniform distribution is equivalent to maxi-
mizing entropy and, therefore, MaxEnt is a special case
of MinxEnt. These two principles can now be combined
into a general principle:

Out of all probability distributions satisfying the
given moment constraints, choose the distribu-
tion that minimizes the cross-entropy with re-
spect to the given a priori distribution and, in the
absence of it, choose the distribution that mini-
mizes the cross-entropy with respect to the uni-
form distribution.

Both the MaxEnt andMinxEnt principles for select-
ing finite-sample-space probability distributions and
the MinxEnt principle for selecting continuous prob-
ability distributions can be axiomatically derived [22].
Under four consistency axioms, it was shown that the
two principles are uniquely correct methods for induc-
tive inference when new information is given in the
form of expected values. Many well-known and widely
used distributions, including the normal, gamma and
geometric distributions, can actually be derived as so-
lutions to some MaxEnt or MinxEnt problems [15].

The maximum entropy principle has also been
shown to be a dual principle of themaximum likelihood
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principle for the exponential family of probability distri-
butions in the sense that a dual problem to the linearly
constrained entropy maximization problem is equiva-
lent to the problem of maximizing a likelihood function
with respect to the parameters of an exponential family
[2]. This principle has also been shown to be related to
the Bayesian parameter estimation problem [7].Duality
theory and major mathematical algorithms for solving
finite-dimensional MaxEnt or MinxEnt problems can
be found in [7] and the references therein.

See also

� Entropy Optimization: Interior Point Methods
� Entropy Optimization: Parameter Estimation
� Jaynes’ Maximum Entropy Principle
�Maximum Entropy Principle: Image Reconstruction
� Optimization in Medical Imaging
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An equality-constrained nonlinear programming prob-
lem may be posed in the form

8<
:
min
x2Rn

f (x)

subject to c(x) D 0;
(1)

where f is a real-valued nonlinear function and c is
anm-vector of real-valued nonlinear functions with ith
component ci(x), i = 1, . . . , m. Normally, with the term
equality-constrained nonlinear programming problem is
meant a problem of the form (1) where f and c are
sufficiently smooth, at least continuously differentiable.
This will be assumed throughout this discussion, with
the gradient of f (x) denoted by g(x) and the m × n Ja-
cobian of c(x) denoted by J(x).

Of fundamental importance for equality-
constrained optimization problems are the first order
necessary optimality conditions. These conditions are
often referred to as the KKT necessary optimality con-
ditions, or more briefly, the KKT conditions. The KKT
conditions state that if x� is a local minimizer to (1)
that satisfies a certain constraint qualification, then
there exists anm-dimensional vector �� such that

g(x�) � J(x�)>�� D 0;

c(x�) D 0:

The vector �� is usually referred to as the vector of La-
grange multipliers. For equality-constrained problems,
the KKT conditions are attributed to J.L. Lagrange, and
hence ‘classical’. The acronym KKT arises from the
more general results on inequality-constrained prob-
lems provided byW. Karush [3], H.W. Kuhn and A.W.
Tucker [4,5].

For an equality-constrained problem, the KKT con-
ditions state that x� must be feasible, i. e., c(x�) = 0; and
that the gradient must have zero projection onto the
null space of the constraint gradients, i. e., there exists
a �� such that g(x�) = J(x�)| ��. In the case of linear
equality constraints, i. e., c(x) = Ax � b for some (m ×
n)-matrix A andm-vector b, it follows that if x� is feasi-
ble, then x� + p is feasible if and only if Ap = 0. Hence,
in this situation, if x� is a local minimizer, it must hold

that g(x�)| p = 0 for all p such that Ap = 0. But this is
equivalent to the existence of a �� such that g(x�) = A|

��. Consequently, in the case of linear constraints, the
KKT conditions are necessary for x� to be a local min-
imizer to problem (1). Constraint qualifications essen-
tially ensure that the linearization of c at x� provided by
J(x�) adequately describes c in a neighborhood of x�.
A constraint qualification which is frequently used is
that J(x�) has rankm, i. e., that the gradients of the con-
straints are linearly independent at x�. The related Fritz
John necessary optimality conditions are valid without
any constraint qualification.

The KKT conditions are of fundamental impor-
tance, not only from a theoretical point of view, but also
algorithms for solving equality-constrained nonlinear
programming problems are often based on finding a so-
lution to the KKT conditions. In general, the KKT con-
ditions are not sufficient for x� to be a local minimizer,
but second order optimality conditions need be con-
sidered. However, if c is affine and f is a convex func-
tion on the feasible region, then the KKT conditions are
sufficient for x� to be a global minimizer. Detailed dis-
cussions on optimality conditions can be found in text-
books on nonlinear programming, e. g., [1,2,6].

As a simple example, consider the two-dimensional
problem where f (x) = x1 and c(x) = (x21 + x22 � 1)/2.
Then, the KKT conditions have two solutions: x̃ = (1,
0)| together with e� D 1, and bx = (� 1, 0)| together
withb� D �1 However, onlybx is a local minimizer (and
in fact also a global minimizer).

See also
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Many complex systems in which agents compete for
scarce resources on a network, be it a physical one, as
in the case of congested urban transportation systems,
or an abstract one, as in the case of certain economic
and financial problems, can be formulated and stud-
ied as network equilibrium problems. Applications of
network equilibrium problems are common in many

disciplines, in particular, in operations research and
management science and in economics and engineer-
ing (cf. [10,17]).

Network equilibrium problems as opposed to
network optimization problems involve competition
among the agents or users of the network system.More-
over, network equilibrium problems are governed by
an underlying behavioral principle as to the behavior
of the agents as well as the equilibrium conditions. For
example, in congested urban transportation systems in
which users seek to determine their cost minimizing
routes of travel, the equilibrium conditions, due to J.G.
Wardrop [23] (see also [2] and [8]), state that, in equi-
librium all used paths connecting an origin/destination
pair will have minimal and equal user travel costs. On
the other hand, in the case of spatial price equilib-
rium patterns one seeks to determine the commodity
production, trade, and consumption pattern satisfying
the equilibrium condition, due to S. Enke [9] and P.A.
Samuelson [20], that expresses that there will be trade
between a pair of spatially separated supply and de-
mand markets provided the supply price of the com-
modity at the supply market plus the unit cost of trans-
portation associated with shipping the commodity is
equal to the demand price of the commodity at the de-
mand market; if the supply price plus the transporta-
tion cost exceed the demand price, then there will be no
trade between this pair of supply and demand markets.

M.J. Beckmann, C.B. McGuire, and C.B. Winsten
[2] initiated the systematic study of network equilib-
rium problems in the general setting of traffic networks
and demonstrated that the equilibrium flow pattern sat-
isfying the traffic network equilibrium conditions (see
also [23]), under certain symmetry assumptions on the
underlying functions, could be reformulated as the so-
lution to an optimization problem. Samuelson [20], fol-
lowing [9], had made a similar connection but in the
more specialized context of spatial price equilibrium
problems on networks that were bipartite.

M.J. Smith [22] later proposed an alternative formu-
lation of traffic network equilibrium conditions which
were then identified by S.C. Dafermos [3] to sat-
isfy a finite-dimensional variational inequality problem.
This connection allowed for the relaxation of the sym-
metry assumption and, consequently, for the construc-
tion of more realistic models (cf. [17,21], and the refer-
ences therein).
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Other network equilibrium applications whose
study and understanding have benefited from this
methodology (cf. [10,14,17,19]), include: spatial price
equilibrium problems (see, e. g., [11,15]), oligopolis-
tic market equilibrium problems ([7,12,13]), migration
equilibrium problems (cf. [16,18]), and general eco-
nomic equilibrium problems (cf. [5]).

Here we present two examples of network equilib-
rium problems for illustrative purposes with the first
example being a multimodal/multiclass transportation
network equilibrium problem in which the network is
a physical one whereas the second problem is a multi-
class migration equilibrium problem which is isomor-
phic to a specially structure multiclass traffic network
equilibrium problem.

Additional background, models and applications,
qualitative results, as well as computational procedures
and references can be found in [17] and [10].

AMultimodal Traffic Network EquilibriumModel

We now present a multimodal traffic network equilib-
rium model (cf. [3,4,6]). The model is a fixed demand
model in that the demands associated with traveling be-
tween the origin/destination pairs are assumed known.
See [17] for additional background, as well as elastic
demand traffic network equilibrium models and other
network equilibrium problems.

Consider a general network N = [G, A], where N
denotes the set of nodes and A the set of directed links.
Let a, b, c, . . . denote the links, p, q, . . . the paths. As-
sume that there are J origin/destination (O/D) pairs,
with a typical O/D pair denoted by w, and n modes of
transportation on the network with typical modes de-
noted by i, j, . . . .

The flow on a link a generated by mode i is de-
noted by f ia , and the user cost associated with traveling
by mode i on link a is denoted by cia . Group the link
flows into a column vector f 2 RnL, where L is the num-
ber of links in the network. Group the link costs into
a row vector c2RnL. Assume that the user cost on a link
and a particular modemay, in general, depend upon the
flows of every mode on every link in the network, that
is,

c D c( f );

where c is a known smooth function.

The travel demand of users of mode i traveling be-
tween O/D pair w is denoted by diw and the travel disu-
tility associated with traveling between this O/D pair
using the mode is denoted by �i

w . Group the demands
into a vector d 2 RnJ .

The flow on path p due to mode i is denoted by xip .
Group the path flows into a column vector x 2 RnQ,
where Q denotes the number of paths in the network.

The conservation of flow equations are as follows.
The demand for a mode and O/D pair must be equal to
the sum of the flows of the mode on the paths joining
the O/D pair, that is,

di
w D

X
p2Pw

x i
p; 8i; 8w;

where Pw denotes the set of paths connecting w.
A nonnegative path flow vector x which satisfies

the demand constraint is termed feasible. Moreover, we
must have that

f ia D
X
p

x i
pıap;

that is, for each mode, the link load associated with
a mode is equal to the sum of the path flows of that
mode on paths that utilize that link.

A user traveling on path p using mode i incurs a user
(or personal) travel cost Ci

p satisfying

Ci
p D

X
a

ciaıap;

in other words, the cost on a path p due to mode i is
equal to the sum of the link costs of links comprising
that path and using that mode.

The traffic network equilibrium conditions are
given below.

Definition 1 (multimodal traffic network equilibrium)
([2,3,4]) A link load pattern f � satisfying the feasibil-
ity conditions is an equilibrium pattern, if, once estab-
lished, no user has any incentive to alter his travel ar-
rangements. This state is characterized by the follow-
ing equilibrium conditions, which must hold for every
mode i, every O/D pair w, and every path p 2 Pw:

Ci
p

(
D �i

w if xi
p
�
> 0;

� �i
w if xi

p
�
D 0;
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where �i
w is the equilibrium travel disutility associated

with the O/D pair w and mode i.

We now define the feasible set K as

K �

8<
: f :

9x � 0;
the demand constraints and
the link load constraints hold

9=
; :

One can verify (see [3]) that the variational inequal-
ity governing equilibrium conditions for this model
would be given as in the subsequent theorem.

Theorem 2 (variational inequality formulation) A
vector f � 2 K is an equilibrium pattern, if and only if,
it satisfies the variational inequality problem

hc( f �); f � f �i � 0; 8 f 2 K:

Note that this variational inequality is in link loads.
One can also derive a variational inequality problem in
path flows (see also [1,4,17]). Existence of an equilib-
rium f � follows from the standard theory of variational
inequalities (cf. [14]) solely from the assumption that
c is continuous, since the feasible set K is now com-
pact.

In the special case where the symmetry condition
"
@cia
@ f jb
D
@c jb
@ f ia

#
; 8i; j; a; b;

holds, then the variational inequality problem can be
reformulated as the solution to an optimization prob-
lem. This symmetry assumption, however, is not ex-
pected to hold in most applications. Consequently, the
variational inequality problem which is the more gen-
eral problem formulation is needed. For example, the
symmetry condition essentially says that the flow on
link b due to mode j should affect the cost of mode i
on link a in the same manner that the flow of mode i
on link a affects the cost on link b and mode j. In the
case of a single mode problem, the symmetry condition
would imply that the cost on link a is affected by the
flow on link b in the same manner as the cost on link b
is affected by the flow on link a.

AMigration Network EquilibriumModel

Human migration is a topic that has been studied not
only by economists, but also by demographers, sociolo-

gists, and geographers. Here a model of human migra-
tion is described, which is shown to have a simple, ab-
stract network structure in which the links correspond
to locations and the flows on the links to populations of
a particular class at the particular location. Hence, the
model is isomorphic to the traffic network equilibrium
problem just described on a network with special struc-
ture. For additional details, see [16,17,18].

Assume a closed economy in which there are n lo-
cations, typically denoted by i, and J classes, typically
denoted by k. Assume further that the attractiveness of
any location i as perceived by class k is represented by
a utility uk

i . Let p
k denote the fixed and known popu-

lation of class k in the economy, and let pki denote the
population of class k at location i. Group the utilities
into a row vector u 2 RJn and the populations into a col-
umn vector p 2 RJn. Assume no births and no deaths in
the economy.

The conservation of flow equation for each class k is
given by

pk D
nX

iD1

pki ;

where pki � 0, k = 1, . . . , J; i = 1, . . . , n. Let

K �
�
p : p � 0 and satisfy the

conservation of flow equation

	
:

The conservation of flow equation expresses that the
population of each class k must be conserved in the
economy.

Definition 3 (migration equilibrium) Assume that
the migrants are rational and that migration will con-
tinue until no individual of any class has any incentive
to move since a unilateral decision will no longer yield
an increase in the utility. Mathematically, hence, a mul-
ticlass population vector p� 2 K is said to be in equilib-
rium if for each class k, k = 1, . . . , J:

uk
i

(
D �k if pki

�
> 0

� �k if pki
�
D 0:

The equilibrium conditions express that for a given
class k only those locations i with maximal utility will
have a positive population volume of the class. More-
over, the utilities for a given class are equilibrated across
the locations.
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Equilibrium Networks, Figure 1
Network equilibrium formulation of a multiclass migration
equilibrium model

We now discuss the utility functions. Assume that,
in general, the utility associated with a particular lo-
cation as perceived by a particular class, may depend
upon the population associated with every class and ev-
ery location, that is, assume that

u D u(p):

Note that in allowing the utility to depend upon the
populations of the classes, we are using populations as
a proxy for amenities associated with a particular loca-
tion. Such a utility function can also model the nega-
tive externalities associated with overpopulation, such
as congestion, increased crime, competition for scarce
resources, etc.

As illustrated in [17], the above migration model is
equivalent to a network equilibrium model with a sin-
gle origin/destination pair and fixed demands. Indeed,
one can make the identification as follows. Construct
a network consisting of two nodes, an origin node 0 and
a destination node 1, and n links connecting the origin
node to the destination node. Associate with each link
i, J costs: � u1i , . . . , u

J
i , and link flows represented by p1i ,

. . . , pJi . This model is, hence, equivalent to a multimodal
traffic network equilibrium model with fixed demand
for each mode, consisting of a single origin/destination
pair, and J paths connecting the O/D pair. Note that
one can make J copies of the network, in which case,
each ith network will correspond to class i with the cost
functions on the links defined accordingly. This identi-
fication enables us to immediately write down the fol-
lowing:

Theorem 4 (variational inequality formulation) A
population pattern p� 2 K is in equilibrium, if and only
if it satisfies the variational inequality problem:

h�u(p�); p � p�i � 0; 8p 2 K:

Existence of an equilibrium then follows from the stan-
dard theory of variational inequalities, since the feasible
set K is compact, assuming that the utility functions are
continuous. Uniqueness of the equilibrium population
pattern also follows from the standard theory provided
that the�u function is strictly monotone. The interpre-
tation of this monotonicity condition in the context of
applications is that condition implies that the utility as-
sociated with a given class and location is expected to
be a decreasing function of the population of that class
at that location.
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Complementarity theory is a new domain of applied
mathematics strongly related to Linear Analysis, Non-
linear Analysis, Topology, Variational Inequalities The-
ory, Ordered Topological Vector Spaces, Numerical
Analysis etc. The main goal in this theory is the study of
complementarity problems. It is well known that com-
plementarity problems encompass a variety of practi-
cal problems arising in: Optimization, Structural Me-
chanics, Elasticity, Economics etc. [8]. The relation be-
tween the general nonlinear complementarity problem
and the fixed point problem it seems to be remarkable.
The main aim of this article is the study of this relation.
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Preliminaries

Let E, E� be a pair of real locally convex spaces. The
space E� can be the topological dual of E. Let h�, �i be
a bilinear form on E × E� satisfying the separation ax-
ioms:

s1) hx0, yi = 0 for all y 2 E� implies x0 = 0;
s2) hx, y0i = 0 for all x 2 E implies y0 = 0.

The triplet (E, E�, h�, �i) is called a dual system or a du-
ality (denoted by hE, E�i). In practical problems, the
space E can be a Banach space and E� its topological
dual and hx, yi = y(x) for all x 2 E and y 2 E�. When
E is a Hilbert space (H, h�, �i) or the Euclidean space
(Rn, h�, �i) we have that H� (respectively, (Rn)�) is iso-
morphic toH (respectively, to Rn). Let hE, E�i be a dual
system of locally convex spaces. Denote by K a pointed
convex cone in E, i. e., a subset of E satisfying the follow-
ing properties:
1) K + K � K;
2) �K � K for all � 2 R+ (the set of nonnegative real

numbers); and
3) K \ (�K) = {0}.
The closed convex cone

K� D fy 2 E� : hx; yi � 0 for all x 2 Kg

is called the dual of K. The polar of K is K0 = � K�.
Given the pointed convex cone K � E we denote by �
the ordering defined on E by K, i. e., x � y if and only
if y � x K. In some situations, E is a vector lattice with
respect to this ordering, i. e., for every pair x, y 2 E there
exist inf(x, y) (denoted by x ^ y) and sup(x, y) (denoted
by x _ y). We say that the bilinear form h�, �i is K-local
if hx, yi = 0, whenever x, y 2 K and x ^ y = 0.

Let (H, h�, �i) be a Hilbert space and K� H a closed
pointed convex cone. It is known that the projection
operator onto K, denoted by PK is well defined [20] and
for every x 2 H, PK (x) is the unique element of K satis-
fying k x� PK (x) k = miny 2 K k x � y k.

Theorem 1 For every x 2 H, PK (x) is characterized by
the following property:
1) hPK(x)� x, yi � 0 for all y 2 K;
2) hPK(x) �x, xi = 0.

Proof A proof of this theorem is in [20]. �

Very useful is also the following classical Moreau’s the-
orem:

Theorem 2 If K�H is a closed convex cone and x, y, z
2 H, then the following statements are equivalent:
i) z = x + y, x 2 K, y 2 K0 and hx, yi = 0;
ii) x = PK (z) and y = PK0 (z).

Proof For the proof the reader is referred to [16]. �

We say that the closed pointed convex cone K � H is
isotone projection if and only if, for every x, y 2 H such
that y � x 2 K we have PK(y)�PK(x) 2 K. This remark-
able class of cones has been studied in several papers
(see for example [13]). We say that a closed pointed
convex cone K � H is a Galerkin cone if there exists
a family of convex subcones {Kn}n 2 N of K such that:
1) Kn is a locally compact cone, for every n 2 N;
2) if n �m, then Kn � Km;
3) K D [n2NKn .
We denote a Galerkin cone by K(Kn)n 2 N. For more
information about the application of Galerkin cones
in complementarity theory, we indicate the papers
[7,8,10,11,12,13] and [14].

Nonlinear Complementarity Problem

Let hE, E�i be a dual system of locally convex spaces and
K � E a pointed convex cone. Given the mapping f :K
! E�, the nonlinear complementarity problem associ-
ated to f and K is:

NLCP( f ;K)

8̂
<̂
ˆ̂:

find x0 2 K
s.t. f (x0) 2 K�

and hx0; f (x0)i D 0:

Given two mappings f : K! E� and g: K! E the im-
plicit complementarity problem is:

ICP( f ; g;K)

8̂
<̂
ˆ̂:

find x0 2 K
s.t. g(x0) 2 K; f (x0) 2 K�

and hg(x0); f (x0)i D 0:

The problem NLCP(f , K) is important in optimiza-
tion, Economics, mechanics, engineering, game theory,
etc. [8]. The problem ICP(f , g, K) was defined in rela-
tion with the study of some problems in stochastic op-
timal control [8]. The problems NLCP(f , K), ICP(f , g,
K) can be solvable or unsolvable.
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Solvability by Fixed Points Theorems

Given a topological space X and a mapping f : X !
X, the fixed point problem is to know under what con-
ditions there exists a point x� 2 X such that f (x�) =
x�. This problem is studied in the Fixed Point Theory,
which is a very popular domain in Nonlinear Analysis.
In particular the Fixed Point Theory has been used by
several authors in the study of solvability of the prob-
lem NLCP(f , K). The results obtained in this sense, are
based on some equivalences between NLCP(f , K) and
the fixed point problem. Let (H, h�, �i) be aHilbert space,
K � H a pointed closed convex cone and f : K ! H
a mapping.

Theorem 3 The element x� 2 K is a solution of the
problem NLCP(f , K) if and only if x� is a fixed point in
K for the mapping T(x) = PK(x �f (x)).

Proof Suppose that x� 2K is a solution of the problem
NLCP(f ,K).We can show that x� satisfies properties 1),
2), of Theorem 1 for x = x��f (x�).

Conversely, if x� 2 K and x� = PK(x��f (x�)), then
since PK(x��f (x�)) satisfies properties 1), 2) of Theo-
rem 1 we deduce that x� is a solution of the problem
NLCP(f , K). �

Theorem 4 The problem NLCP(f , K) has a solution if
and only if the mapping˚(x) = PK(x)�f (PK(x)), defined
for every x 2 H, has a fixed point in H. Moreover, if x0 is
a fixed point of ˚ , then x� = PK(x0) is a solution of the
problem NLCP(f , K).

Proof Suppose that x0 is a fixed point for the mapping
˚ , i. e.,

x0 D PK(x0) � f (PK(x0)) :

If we denote by x� = PK(x0), we have that x� 2 K and
x0 = x�� f (x�), or x�� x0 = f (x�). Applying Theorem 1
we can show that f (x�) 2 K� and hx�, f (x�)i = 0, i. e.,
x� is a solution of the problem NLCP(f , K).

Conversely, if x� 2 K is a solution of the problem
NLCP(f , K), then denoting by x0 = x��f (x�) and ap-
plying Theorem 2 we deduce that PK(x0) = x� and fi-
nally,

˚(x0) D PK(x0) � f (PK(x0))

D x� � f (x�) D x0;

i. e., x0 is a fixed point of ˚ . �

The mapping, ˚ defined in Theorem 4 was applied in
complementarity theory in 1988, [7], while the map-
ping � (x) = x� ˚(x) was used in 1992 [19]. The map-
ping � is known as the normal map. By Theorem 3
the NLCP(f , K) is transformed in a fixed point prob-
lem for the mapping T with respect to the cone Kwhile,
by Theorem 4 the problem NLCP(f , K) is transformed
in a fixed point problem with respect to the whole space
H. Several existence results for the problemNLCP(f ,K)
have been obtained by several authors using the fixed
point theory and themappings T and˚ , [3,6,7,8,10,13].
The fixed point problem associated to the mappings
T and ˚ has been also used in several iterative meth-
ods for solving numerically the problem NLCP (f , K)
[1,8,13,17,18] etc.

In [15] and also in [2] it is shown that the problem
NLCP (f , K) is equivalent to the following variational
inequality

VI( f ;K)

8̂
<̂
ˆ̂:

find x 2 K
s.t. h f (x); y � xi � 0

for all y 2 K:

Because, the fixed point theory is systematically applied
to the study of variational inequalities, we have by this
way another possibility to use the fixed point theory in
the study of the problem NLCP(f , K). In this sense are
relevant the results obtained in [5,7,8,12] and in many
other papers dedicated to the study of variational in-
equalities. In the study of some economical problems,
we are interested to find a solution of the problem
NLCP(f , K) which is also the least element of the fea-
sible set

F D fx 2 K : f (x) 2 K�g :

This particular problem can be also studied by the fixed
point theory [5,8]. If the cone K is an isotone projec-
tion cone in a Hilbert space H and if the mapping f : H
! H satisfies some properties with respect to the or-
dering defined by K, we obtain that the mappings T
and˚ are monotone increasing or the difference of two
monotone increasing mappings. In this case, we can ap-
ply some fixed point theorems based on the ordering, to
study of the problem NLCP(f ,K). Several results in this
sense are presented in [13].
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The Nonlinear Complementarity Problem
as aMathematical Tool in Fixed Point Theory

The fixed point theorems on cones attracted the atten-
tion of many mathematicians. The applications of such
kind of fixed point theorems are very important. We
will show now how the problem NLCP(f , K) can be
used to obtain new fixed point theorems on cones.

Let H be a Hilbert space, K � H a closed pointed
convex cone and h: K! K a mapping. The fixed point
problem associated to h and K is:

FP(h;K)

(
find x0 2 K
s.t. h(x0) D x0:

Consider the mapping f : K!H defined by f (x) = x
�h(x) for all x 2 K.

Theorem 5 The problems NLCP(f ,K) and FP(h,K) are
equivalent.

Proof Suppose that x� is a solution of the problem
FP(h, K). In this case we have h(x�) = x�, which im-
plies that f (x�) = 0. It is evident that x� is a solution of
the problem NLCP(f ,K). Conversely, if x� is a solution
of the problemNLCP(f ,K) we have that x� is a solution
of the problem VI(f , K), i. e., x� 2 K and hf (x�), y�x�i
� 0 for all y 2 K. But f (x�) = x��h(x�) and h(x�) 2 K
(by hypothesis). This means that

0 � hx� � h(x�); x� � h(x�)i � 0;

which implies that h(x�) = x�. �
We note that Theorem 5 was applied to obtain new
fixed point theorems [7,10,11]. We cite only the follow-
ing two fixed point theorems.

Theorem 6 Let (H, h�, �i) be a Hilbert space ordered by
a Galerkin cone K(K)n 2 N. Let T: K! K be a mapping
satisfying the following assumptions:
1) T(0) 6D 0;
2) T is a (ws)-compact operator;
3) T is �-asymptotically bounded, with limt!1 �(t) 6D

+1.
Then, T has a fixed point x� 2 K\ {0}. Moreover, x� is
the limit of a sequence {xm}m 2 N where for every m 2 N,
xm is a solution of the problem NLCP(T, Km).

Proof The terminology and the proof is in [7]. �
Recently, a new proof for this theorem was proposed
in [14].

Theorem 7 Let (H, h�, �i) be a Hilbert space ordered by
a Galerkin cone K(K)n 2 N � H. Suppose, given two con-
tinuous operators S, T: K!H such that S is bounded, T
is compact and (S + T)(K)� K. If the following assump-
tions are satisfied:
1) I � S satisfies condition (S)+;
2) I � S � T satisfies condition (GM),
then S + T has a fixed point in K.

Proof The terminology and the proof is in [11]. �

We note that Theorem 7 has several interesting corol-
laries. In [10] the reader can find other fixed point the-
orems for set-valued operators.

Conclusions

This interesting double relation between the nonlinear
complementarity problem and the fixed point theory, can
be exploited to obtain new results in complementarity
theory and also in fixed point theory.
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One of the most crucial steps in many multicriteria de-
cision making methods (MCDM) is the accurate esti-
mation of the pertinent data [18]. Very often these data
cannot be known in terms of absolute values. For in-
stance, what is the worth of the ith alternative in terms
of a political impact criterion? Although information
about questions like the previous one is vital in mak-
ing the correct decision, it is very difficult, if not im-
possible, to quantify it correctly. Therefore, many de-
cision making methods attempt to determine the rela-
tive importance, or weight, of the alternatives in terms
of each criterion involved in a given decision making
problem.

Consider the case of having a single decision cri-
terion and a set of n alternatives, denoted as Ai (for
i = 1, . . . , n). The decision maker wants to deter-
mine the relative performance of these alternatives
in terms of a single criterion. An approach based
on pairwise comparisons which was proposed by T.L.
Saaty [11], and [12] has long attracted the interest of
many researchers, because both of its easy applicabil-
ity and interesting mathematical properties. Pairwise
comparisons are used to determine the relative im-



932 E Estimating Data for Multicriteria Decision Making Problems: Optimization Techniques

portance of each alternative in terms of each crite-
rion.

In that approach the decision maker has to express
his/her opinion about the value of one single pairwise
comparison at a time. Usually, the decision maker has
to choose his/her answer among 10–17 discrete choices.
Each choice is a linguistic phrase. Some examples of
such linguistic phrases when two concepts, A and B are
considered might be: ‘A is more important than B’, or
‘A is of the same importance as B’, or ‘A is a little more
important than B’, and so on. When one focuses di-
rectly on the data elicitation issue onemay use linguistic
statements such as ‘Howmuch more does alternative A
belong to the set S than alternative B’?

The main problem with the pairwise comparisons
is how to quantify the linguistic choices selected by the
decision maker during the evaluation of the pairwise
comparisons. All the methods which use the pairwise
comparisons approach eventually express the quali-
tative answers of a decision maker into some num-
bers.

Pairwise comparisons are quantified by using
a scale. Such a scale is nothing but an one-to-one map-
ping between the set of discrete linguistic choices avail-
able to the decision maker and a discrete set of numbers
which represent the importance, or weight, of the previ-
ous linguistic choices. There are two major approaches
in developing such scales. The first approach is based on
the linear scale proposed by Saaty [12] as part of the an-
alytic hierarchy process AHP. The second approach was
proposed by F. Lootsma [8,9,10] and determines expo-
nential scales. Both approaches depart from some psy-
chological theories and develop the numbers to be used
based on these psychological theories. For an extensive
study of the scale issue, see [18] and [19].

In this article we examine three problems related to
the use of pairwise comparisons for data elicitation in
MCDM. The first problem is how to combine the n(n�
1)/2 comparisons needed to compare n entities (alter-
natives or criteria) under a given goal and extract their
relative preferences. This subject was extensively stud-
ied in [21] and it is briefly discussed in the second sec-
tion. The second problem in this article is how to esti-
mate missing comparisons. The third problem is how to
select the order for eliciting the comparisons and deter-
mine whether all comparisons are needed. These prob-
lems are examined in detail in the following sections.

Extraction of Relative Priorities
from Complete PairwiseMatrices

Let A1, . . . , An be n alternatives (or criteria or, in gen-
eral, concepts) to be compared. We are interested in
evaluating the relative preference values of the above
concepts. Saaty [11,12,14] proposed to use a matrix A
of rational numbers taken from the set {1/9, l/8, 1/7,
. . . , 1, . . . , 9}. Each entry of the above matrix A repre-
sents a pairwise judgment. Specifically, the entry aij de-
notes the number that estimates the relative preference
of element Ai when it is compared with element Aj. Ob-
viously, aij = 1/aji and aii = 1. That is, the matrix is re-
ciprocal.

The Eigenvalue Approach

Let us first examine the case in which it is possible to
have perfect values aij. In this case it is aij =Wi/Wj (Ws

denotes the actual value of element s) and the previous
reciprocal matrix A is consistent. That is:

ai j D aik � ak j for i; j; k D 1; : : : ; n; (1)

where n is the number of elements in the comparison
set. It can be proved [12] that the matrix A has rank 1
with n to be its nonzero eigenvalue. Thus, we have:

Ax D nx; (2)

where x is an eigenvector. From the fact that aij =
Wi/Wj, the following are obtained:

nX
jD1

ai jWj D

nX
jD1

Wi D nWi ; i D 1; : : : ; n; (3)

or

AW D nW: (4)

Equation (4) states that n is an eigenvalue of A with W
being a corresponding eigenvector. The same equation
also states that in the perfectly consistent case (i. e., when
aij = aik × akj for all possible triplets), the vectorW, with
the relative preferences of the elementsA1, . . . ,An, is the
principal right eigenvector (after normalization) of A.

In the nonconsistent case (which is the most com-
mon) the pairwise comparisons are not perfect, that is,
the entry aij might deviate from the real ratio Wi/Wj

(i. e., from the ratio of the real relative preference val-
ues Wi and Wj). In this case, the previous expression



Estimating Data for Multicriteria Decision Making Problems: Optimization Techniques E 933

(1) does not hold for all possible combinations. Now
the new matrix A can be considered as a perturbation
of the previous consistent case. When the entries aij
change slightly, then the eigenvalues change in a sim-
ilar fashion [12]. Moreover, the maximum eigenvalue
is close to n (actually greater than n) while the remain-
ing eigenvalues are close to zero. Thus, in order to find
the relative preferences in the nonconsistent cases, one
should find an eigenvector that corresponds to themax-
imum eigenvalue �max. That is to say, to find the prin-
cipal right eigenvector W that satisfies:

AW D �maxW where �max D n:

Saaty estimates the principal right eigenvector W by
multiplying the entries in each row of A together and
taking the nth root (n being the number of the elements
in the comparison set). Since we desire to have values
that add up to 1, we normalize the previously found
vector by the sum of the above values. If we want to
have the element with the highest value to have a rel-
ative preference value equal to 1, we divide the previ-
ously found vector by the highest value.

Under the assumption of total consistency, if the
judgments are gamma distributed (something that
Saaty claims to be the case), the principal right eigen-
vector of the resultant reciprocal matrix A is Dirichlet
distributed. If the assumption of total consistency is re-
laxed, then L.G. Vargas [23] proved that the hypothesis
that the principal right eigenvector follows a Dirichlet
distribution is accepted if the consistency ratio is 10%
or less.

The consistency ratio (CR) is obtained by first es-
timating �max. Saaty estimates �max by adding the
columns of matrix A and then multiplying the resulting
vector with the vector W. Then, he uses what he calls
the consistency index (CI) of the matrix A. He defined
CI as follows:

CI D
�max � n
n � 1

:

Then, the consistency ratio CR is obtained by divid-
ing the CI by the random consistency index (RCI) as
given in Table 1. Each RCI is an average random con-
sistency index derived from a sample of size 500 of ran-
domly generated reciprocal matrices with entries from

Estimating Data for Multicriteria Decision Making Problems:
Optimization Techniques, Table 1
RCI values for sets of different order n [12]

n 1 2 3 4 5 6 7 8 9
RCI 0 0 0:58 0:90 1:12 1:24 1:32 1:41 1:45

the set {1/9, 1/8, 1/7, . . . , 1, . . . , 9} to see if its CI is 10% or
less. If the previous approach yields a CR greater than
10%, then a reexamination of the pairwise judgments is
recommended until a CR less than or equal to 10% is
achieved.

Optimization Approaches

A.T.W. Chu, R.E. Kalaba and K. Spingarn [2] claimed
that given the data aij, the valuesWi to be estimated are
desired to have the property:

ai j 	
Wi

Wj
: (5)

This is reasonable since aij is meant to be the esti-
mation of the ratio Wi/Wj. Then, in order to get the
estimates for the Wi given the data aij, they proposed
the following constrained optimization problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min S D
nX

iD j

nX
jDi

(ai jw j � wi)2;

s.t.
nX

iD j

Wi D 1;

Wi > 0 for i D 1; : : : ; n:

(6)

They also provide an alternative expression S1 that is
more difficult to solve numerically. That is,

S1 D
nX

iD j

nX
jDi

�
ai j �

Wj

Wi

�2

: (7)

In [3] a variation of the above least squares formu-
lation is proposed. For the case of only one decision
maker it recommends the following models:

log ai j D logWi � logWj C  2(Wi ;Wj)"i j; (8)

ai j D
Wi

Wj
C  2(Wi ;Wj)"i j; (9)
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where Wi and Wj are the true (and hence unknown)
relative preferences;  1(X, Z) and  2(X, Z) are given
positive functions (where X, Z > 0). The random er-
rors "ij are assumed independent with zero mean and
unit variance. Using these two assumptions one is able
to calculate the variance of each individual estimated
relative preference. However, is fails to give a way of
selecting the appropriate positive functions. In the sec-
ond example, presented later, a sample problem which
originates in [11] and later in [3] is solved for different
functions  1,  2 using this method.

Considering the Human Rationality Factor

According to the human rationality assumption [21] the
decision maker is a rational person. Rational persons
are defined here as individuals who try to minimize
their regret [15], to minimize losses, or to maximize
profit [24]. In the relative preference evaluation prob-
lem, minimization of regret, losses, or maximization of
profit could be interpreted as the effort of the decision
maker to minimize the errors involved in the pairwise
comparisons.

As it is stated in previous paragraphs, in the incon-
sistent case the entry aij of the matrix A is an estimation
of the real ratio Wi/Wj. Since it is an estimation, the
following is true:

ai j D
�
Wi

Wj

�
di j ;

i; j D 1; : : : ; n: (10)

In the above relation dij denotes the deviation of aij
from being an accurate judgment. Obviously, if dij =
1, then the aij was perfectly estimated. From the pre-
vious formulation we conclude that the errors involved
in these pairwise comparisons are given by:

"i j D di j � 1:00;

or after using (10), above:

"i j D ai j
�
Wj

Wi

�
� 1:00: (11)

When a comparison set contains n elements, then
Saaty’s method requires the estimation of the following

n(n � 1)/2 pairwise comparisons:

W2

W1
; : : : ;

Wn

W1
;

W3

W2
; : : : ;

Wn

W2
;

:::

Wn�1

Wn
:

(12)

The corresponding n(n � 1)/2 errors are (after using
relations (11) and (12)):

"i j D ai j
�
Wj

Wi

�
� 1:00;

i; j D 1; : : : ; n; and j > 1:
(13)

Since the Wi are relative preferences that add up to 1,
the following relation (14) should also be satisfied:

nX
iD1

Wi D 1:00: (14)

Apparently, since the Wi represent relative preferences
we also have:

Wi > 0; i D 1; : : : ; n: (15)

Relations (13) and (14), when the data are consistent
(i. e., all the errors are equal to zero), can be written as
follows:

BW D b: (16)

The vector b has zero entries everywhere except the last
one that is equal to 1, and thematrix B has the following
form (blank entries represent zeros):

B D

2
666666666666666666664

1 2 3 � � � n
�1 a1;2 1
�1 a1;3 2
:::

: : :
:::

�1 a1;n n � 1
�1 a2;3 1
:::

: : :
:::

�1 a2;n n � 2
: : :

:::

an�1;n 1
1 1 1 � � � 1

3
777777777777777777775

:
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The error minimization issue is interpreted in many
cases (regression analysis, linear least squares problem)
as the minimization of the sum of squares of the residual
vector: r = b � BW [16]. In terms of formulation (15)
this means that in a real life situation (i. e., when errors
are not zero any more) the real intention of the decision
maker is to minimize the expression:

f 2(x) D kb � BWk ; (17)

which, apparently, expresses a typical linear least
squares problem.

If we use the notation described previously, then the
quantity (6) which is minimized in [2] becomes:

S D
nX

iD1

nX
jD1

(ai jWj �Wi )2 D
nX

iD1

nX
jD1

("i jWi)2

and the alternative expression (7) becomes:

S1 D
nX

iD1

nX
jD1

�
ai j

Wj

Wi

�2

D

nX
iD1

nX
jD1

�
"i j

Wi

Wj

�2

:

Clearly, both expressions are too complicated to re-
flect, in a reasonable way, the intentions of the decision
maker.

The models proposed in [3] are closer to the one de-
veloped under the human rationality assumption. The
only difference is that instead of the relations:

log ai j D logwi � logWj C  1(Wi ;Wj)"i j

and

ai j D
Wi

Wj
C  2(Wi ;Wj)"i j;

the following simpler expression is used:

ai j D
Wi

Wj
di j; (18)

or

ai j D
Wi

Wj
� ("i j C 1:00):

However, as the second example illustrates, the per-
formance of this method is greatly dependent on the
selection of the  1(X, Z) or  2 (X, Z) functions. Now,
however, these functions are further modified by (17).

Example 1
Let us assume that the following is the matrix with

the pairwise comparisons for a set of four elements:

A D

2
664

1 2/1 1/5 1/9
1/2 1 1/8 1/9
5/1 8/1 1 1/4
9/1 9/1 4/1 1

3
775 :

Using the methods presented in previous sections we
can see that

�max D 4:226;

CI D
4:226 � 4
4 � 1

D 0:053;

CR D
CI
0:90

D 0:0837 < 0:10:

The formulation (15) that corresponds to this example
is as follows:
2
6666666664

�1 2/1 0:0 0
�1 0:0 1/5 0
1 0:0 0 1/9
0:0 �1 1/8 0
0:0 �1 0 1/9
0:0 0:0 �1 1/4
1 1 1 1

3
7777777775

�

2
664

V1

V2

V3

V4

3
775 D

2
6666666664

0
0
0
0
0
0
1:0

3
7777777775

:

The vector V that solves the above least squares prob-
lem is calculated to be:

V D (0:065841 0:039398 0:186926 0:704808):

Hence, the sum of squares of the residual vector com-
ponents is 0.003030. The average squared residual for

Estimating Data for Multicriteria Decision Making Problems:
Optimization Techniques, Table 2
Data for the second example

(1) (2) (3) (4) (5) (6) (7)
(1) 1 4 9 6 6 5 5
(2) 1/4 1 7 5 5 3 5
(3) 1/9 1/7 1 1/5 1/5 1/7 1/5
(4) 1/6 1/5 5 1 1 1/3 1/3
(5) 1/6 1/5 5 1 1 1/3 1/3
(6) 1/5 1/3 7 3 3 1 2
(7) 1/5 1/4 5 3 3 1/2 1
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Estimating Data for Multicriteria Decision Making Problems: Optimization Techniques, Table 3
Comparison of the relative preferences for the data in Table 2

elements in set
method used (1) (2) (3) (4) (5) (6) (7) Ave. residual
Saaty eigenvector 0:429 0:231 0:021 0:053 0:053 0:119 0:095 0:134method
Power method 0:427 0:230 0:021 0:052 0:052 0:123 0:094 0:135eigenvector
Chu’s method 0:487 0:175 0:030 0:059 0:059 0:104 0:085 0:097
Federov Model 1 0:422 0:232 0:021 0:052 0:052 0:127 0:094 0:138with  1 = 1
Federov Model 2 0:386 0:287 0:042 0:061 0:061 0:088 0:075 0:161with  2 = 1
Federov Model 2 0:383 0:262 0:032 0:059 0:059 0:122 0:083 0:152with  2 = jWi �Wjj

Federov Model 2 0:047 0:229 0:021 0:051 0:051 0:120 0:081 0:130with  2 = Wi /Wj
Least squares

0:408 0:147 0:037 0:054 0:054 0:080 0:066 0:082method under the
HR assumption

this problem is 0.003030/(4(4 � 1)/2) + 1 = 0.000433;
that is, the average residual is

p
0:000433 D 0:020806:

Example 2 The second example uses the same data
used originally in [11], and later in [2] and [3]. These
data are presented in Table 2.

Table 3 presents a summary of the results (as found
in the corresponding references) when the methods de-
scribed in the subsections above are used. The power
method for deriving the eigenvector was applied as pre-
sented in [7]. In the last row of Table 2 are the results
obtained by using the least square method under the
human rationality assumption (HR).

As it is shown in the last column of Table 3, the
performance of each method is very different as far the
mean residual is concerned. The results also illustrate
how critical is the role of the functions  1(X, Z) and
 2(X, Z) in the method of [3]. The mean residual ob-
tained by using the least squares method under the hu-
man rationality assumption is the smallest one by 16%.

Matrices with Missing Comparisons

For one to evaluate n concepts, normally all the re-
quired n(n � 1)/2 pairwise comparisons are needed.

However, for large numbers of concepts to be com-
pared, the decision maker may become quite bored,
tired and inattentive with assigning the values to the
comparisons as time is going on, which may easily lead
to erroneous judgments. Moreover, the time spent to
elicit all the comparisons for a judgment matrix may be
unaffordable. Also the decision maker may not be sure
about the values of some comparisons and thus may not
want to make a direct evaluation of them. In cases like
the previous ones, the decision maker may wish to stop
the process and then try to derive the relative prefer-
ences from an incomplete pairwise comparison (judg-
ment) matrix.

Given an incomplete pairwise comparison matrix,
there are two central and closely interrelated problems.
The first problem is how to estimate the missing com-
parisons. The second problem is which comparison to
evaluate next. In other words, if the decision maker
wishes to estimate a few extra comparisons (from the
remaining undetermined ones) how should the next
comparison be selected? Should it be selected randomly
or according to some rule (to be determined)? Next,
we study the first of these two closely related prob-
lems.
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Estimating Missing Comparisons

Using Connecting Paths

Suppose that Xi, j is a missing comparison to be es-
timated. Next, also assume that there are two known
comparisons ai, k and ak, j for some index k. In the per-
fectly consistent case the following relationship should
be true:

Xi; j D ai;k � ak; j:

In the more general inconsistent case, the Xi, j value can
be approximated by the product ai, k × ak, j. In [5], and
[6] the pair ai, k and ak, j is called an elementary con-
necting path connecting the missing comparison Xi, j.
Obviously, given a missing comparison, more than one
such connecting path may exist (i. e., if there are more
than one k indexes which satisfy the above relation-
ship). Moreover, it is also possible to have connecting
paths comprised bymore than two known comparisons
(i. e., paths of size larger than 2). The general structure
of a connecting path of size r, denoted as CPr, has the
following form:

CPr : Xi; j D ai;k1 � ak1;k2 � � � � � akr; j;

for i, j, k1, . . . , kr = 1, . . . , n, 1� r � n � 2.
According to P.T. Harker [5,6] the value of the miss-

ing comparison Xi, j should be equal to the geometric
mean of all connecting paths related to this missing
comparison. That is, the following should be true:

Xi j D
q

vuut
qY

rD1

CPr :

In the previous expression it is assumed that there are
q such connecting paths. For the above reasons, this
method is known as the geometric mean method for es-
timating missing comparisons.

A method alternative to the geometric means
method is to express the missing comparisons in terms
of the arithmetic averages of all related connecting
paths and some error terms. In this way, one can also
introduce error terms on consistency relations which
are defined on pairs of missing comparisons (for more
details, please see [1]). A natural objective then, could
be to minimize the sum of the absolute terms of all
these error terms (which can be of any sign). That is, the

above consideration leads to the formulation of a lin-
ear programming (LP) problem. A similar approach is
presented in [17] (in which the path problem does not
occur).

However, there is a serious drawback with any
method which attempts to use connecting paths. The
number of connecting paths may be astronomically
large, rendering any such method computationally in-
tractable. For instance, for a comparison matrix of di-
mension of six, the number of possible connecting
paths to be considered might be equal to 64, while in
a case of dimension equal to ten, the number of paths
may become equal to 109,600. As a result, some alter-
native approaches have been developed. The revised ge-
ometric means method (or RGM) method and a least
squares formulation are two such methods and are dis-
cussed next.

Revised Geometric Mean Method (RGM)

An alternative approach to the use of connecting paths,
is to convert the incomplete judgement matrix into
a transformed matrix and then determine its principal
right eigenvector. This was proposed by Harker [4] and
it is best illustrated by means of an example.

Suppose that the following is an incomplete judge-
ment matrix of order 3 (taken from [4]).

A0 D

2
4

1 2 �

1/2 1 2
� 1/2 1

3
5 :

One can replace the missing elements (denoted by �)
by the corresponding ratios of weights. Therefore, the
previous matrix becomes:

A1 D

2
4

1 2 w1/w3

1/2 1 2
w3/w1 1/2 1

3
5 :

That is, the missing comparison X1, 3 was replaced by
the ratio w1/w3 (similar for the reciprocal entry X3, 1).
Next observe that the product A1 W is equal to:

A1W D

2
4

1 2 w1/w3

1/2 1 2
w3/w1 1/2 1

3
5
2
4
w1

w2

w3

3
5

D

2
4

2w1 C 2w2

w1/2C w2 C 2w3

w2/2C 2w3

3
5
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The same result can also be obtained if one consid-
ers the matrix C, given as follows:

C D

2
4

2 2 0
1/2 1 2
0 1/2 2

3
5 ;

that is, matrix C satisfies the relationship

A1W D CW:

Therefore, the desired relative preferences (i. e., the en-
tries of vector W) can be determined as the principal
right eigenvector of the new matrix C. This is true be-
cause:

A1W D CW D �W:

In general, the entries of matrix C can be determined
from the entries of an incomplete judgement matrix A0

as follows (where ci, j and ai, j are the elements of the
matrices C and A0, respectively):

ci;i D 1C mi

and for i 6D j:

ci; j D

(
ai; j if ai; j is a positive number;
0 otherwise;

wheremi is the number of unanswered questions in the
ith row of the incomplete comparison matrix.

Next, the elements of the W vector can be deter-
mined by using one of the methods presented in the
second section.

Least Squares Formulation

This formulation is a natural extension of the formu-
lation discussed earlier in the section on the HR fac-
tor. The only difference is that in relations (12) one
should only consider known comparisons. This, as a re-
sult, implies that the new matrix B (as defined earlier)
should not have rows which would correspond to miss-
ing comparisons. Finally, observe that in order to solve
the least squares problem given as (16), one has to cal-

culate the vectorW as follows:

W D (B>B)�1B>b;

where B| stands for the transpose of B.
In [1] the revised geometric means and the previous

least squares method were tested on random problems.
First, a complete judgment matrix was determined.
These matrices, in general, were slightly inconsistent.
They were derived according to the procedures used in
[20,22], and [19]. Then, some comparisons were ran-
domly removed and set as missing. Then, the previous
two methods were applied on the incomplete judgment
matrix and the missing comparisons were estimated.
The estimated matrix was used to derive a ranking of
the compared entities. This ranking was compared with
the ranking derived when the original complete judg-
ment matrix is used. In these computational experi-
ments it was found that the two estimation methods
for missing comparisons performed almost in a sim-
ilar manner. This manner was different for matrices
of different order and various percentages of missing
comparisons. More details on these issues can be found
in [1].

Determining the Comparison to Elicit Next

Suppose that the decision maker has determined some
of the n(n � 1)/2 comparisons when a set of n en-
tities is considered for extracting relative preferences.
Next assume that the decision maker wishes to proceed
with only a few additional comparisons and not deter-
mine the entire judgment matrix. The question we ex-
amine at this point is which ones the additional com-
parisons should be. To be more specific, the question
we consider is best stated as follows: Given an incom-
plete judgment matrix, and the option to elicit just some
additional comparisons, then which one should be the
comparison to elicit next?

One obvious approach is to select the next compar-
ison just randomly among the missing ones. This prob-
lem was examined by Harker in [5] and [6]. Harker fo-
cused his attention on how to determine which com-
parison, among the missing ones, is the most critical
one. He determined as the most critical one, to be the
comparison which would have the largest impact (when
the appropriate derivatives are considered) on the vec-
torW.
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He observed that the largest absolute gradient (i. e.,
the largest partial derivative) means that a unit change
of the specific missing comparison brings out the
biggest change on the vectorW. Therefore, he asserted,
that the missing comparison related to the largest abso-
lute gradient should be the most critical one and there-
fore, the one to evaluate next. Then, the following for-
mula calculating the largest absolute gradient can be
used to choose the most critical comparison index (i, j):

(i; j) D arg max
(k;l )�Q






@x(A)
@k;l






1

;

where Q is the set of missing comparisons and k � k1
is the Tchebyshev norm. The most critical comparison
index (i, j) is determined by the maximum norm of the
vector of @x(A)/ @k, l which corresponds to all missing
comparisons.

The previous approach is intuitively plausible but
computationally non trivial. Moreover, its effectiveness
had not been addressed until recently. In [1] Harker’s
derivatives approach was tested versus a method which
randomly selects the next comparison to elicit. The
test problems were generated similarly to the ones
described at the end of the previous section. The
two methods were also tested in a similar manner
as before. To our surprise, the two methods per-
formed in a similar manner. Therefore, the obvi-
ous conclusion is that one does not have to imple-
ment the more complex derivatives method. It is suf-
ficient to select the next comparison just randomly.
Of course, the more comparisons are selected, the bet-
ter is for the accuracy of the final results. Since the
order of comparisons seems not to have an impact,
the best strategy is to select as the next comparison
the one which is easier for the decision maker to
elicit.

Conclusions

Deriving the data for MCDM problems is an approach
which requires trade-offs. Thus, it should not come
as a surprise that optimization can be used at various
stages of this crucial phase in solving many MCDM
problems. The previous analysis of some key problems
signifies that optimization becomes more critical as the
size of the decision problem increases.

Finally, it should be stated here that an in depth
analysis of many key issues in multicriteria decision
making theory and practice is provided in [18].
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Abstract

Planning and design of evacuation networks is both
a complex and critically important optimization prob-
lem for a number of emergency situations. One partic-
ularly critical class of examples concerns the emergency
evacuation of chemical plants, high-rise buildings, and
naval vessels due to fire, explosion or other emergen-
cies. The problem is compounded because the solution
must take into account the fact that human occupants
may panic during the evacuation, therefore, there must
be a well-defined set of evacuation routes in order to
minimize the sense of panic and at the same time cre-
ate safe, effective routes for evacuation. The problem
is a highly transient, stochastic, nonlinear, combinato-
rial optimization programming problem. We focus on
evacuation networks where congestion is a significant
problem.
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Introduction

Evacuation is one of the most perilous, pernicious,
and persistent problems faced by humanity. Hurri-
canes, fires, earthquakes, explosions and other natural
and man-made disasters happen on almost a daily ba-
sis throughout the world. How can we safely evacuate
a collection of occupants within an affected region or
facility is the fundamental problem faced in evacuation.

Purpose of Chapter

The purpose of this chapter is to both introduce to the
reader the problem of evacuation and its manifest na-
ture, and also suggest some alternative approaches to
optimize this process. That life-threatening evacuations
happen as often as they do is somewhat surprising. That
people often do not know how to safely evacuate in time
of need is a sad reality. That people must help people
plan for evacuation is one of the most important activi-
ties of a research scientist.

Outline of Chapter

In this chapter we first introduce the problem in
Sect. “Modelling Fundamentals” and then also de-
scribe our fundamental modelling 3-step methodol-
ogy. In Sect. “Mathematical Models”, we array the
number of different of static and dynamic approaches
to this problem and present our general approach
which has guided our research on the problem. Finally,
in Sect. “Algorithms” we discuss the algorithmic ap-
proaches to the problem where we capture the con-
gested flow of occupants in the network and attempt to
define the safest evacuation routes trading off the dif-
ferent objective performance measures in the network.

Modelling Fundamentals

The process of an evacuation is captured in the sim-
plified flow chart of Fig. 1. There are essentially five
phases which underly the evacuation process. The first
and foremost is a warning bell or siren signaling the oc-
cupant population to leave. Unfortunately, onemust re-
act to the warning and recognize the problem at hand,
so there is often a great deal of uncertainty associated

Evacuation Networks, Figure 1
Processes for an evacuation

with the second phase. Thirdly, after the warning is
taken seriously, the occupants must decide to evacu-
ate. The first three phases are highly uncertain and tran-
sient. Once the occupants decide to evacuate, the gen-
eral evacuation process gets underway and this is where
the evacuation plans should be followed. Finally, there
is a verification phase, were one must account for all
the occupants to ensure their safe arrival at the destina-
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Evacuation Networks, Figure 2
Evacuation plan for a hospital complex

tion. As a constructive framework for this chapter on
evacuation networks, we establish that the modelling of
evacuation problems has three fundamental steps: Step
1.0 Representation: How should a region, e. g. Fig. 2 or
facility be represented or modelled? Step 2.0 Analysis:
Given the model, how should analyze the evacuation of
the occupants, i. e. a deterministic or stochastic evacua-
tion process? What performance measures are crucial to
measuring performance of the evacuation? and Step 3.0
Synthesis: How should one synthesize the results of the
analysis step so as to best evacuate the occupants in light
of the performance measures?

Representation Stage

Figure 2 depicts a large hospital campus with many
inter-connected buildings, many different levels, and
a complex array of circulation passages, and illustrates
that the evacuation problem is a difficult one to repre-
sent. However, one can begin to accurately model the
evacuation process through a network as depicted in
Fig. 3. By definition, an evacuation network (graph)
G(V ; E)` is comprised of a finite set V of nodes (ver-

tices) of size N where V D fV1;V2; : : : ;Vng together
with a finite set E of arcs ek D (vi ; v j) 8(i; j) nodal
pairs and an indication of the level at which the net-
work is defined `. The levels actually correspond to the
degree of aggregation inherent in modelling large com-

Evacuation Networks, Figure 3
Route site plan
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plex networks. V can further be partitioned into three
sets of nodes:

V1 := which represents the occupant source nodes dur-
ing the evacuation,

V2 := which represents the intermediate nodes during
the evacuation;

V3 := which represents the sink or destination nodes of
the occupants.

The set of arcs represent the different streets, pas-
sageways, or routes from V1 to V3. Associated with
each node ` 2 V and each arc (vi ; v j) 2 E are variables
and parameters which represent node and arc process-
ing times, node and arc capacities, arrival times to the
network, distances, and occupant population sizes at
the source nodes.

Figure 3 illustrates the example evacuation network
with the key congested routes in the evacuation plan-
ning problem embedded in the network model.

The Representation Step is often defined in terms
of the size and composition of the customer popula-
tion: infinite, finite, or mixed and how the facility under

Evacuation Networks, Figure 4
Morphological diagram of multi-objective approaches

study should be decomposed by V , E, and `. The cru-
cial link between the Representation and Analysis Steps
is the complexity (i. e., number of nodes and arcs) of
G`; which governs the number of equations used in the
mathematical model in the Analysis Step. The Repre-
sentation Step presents an interesting and challenging
problem because of the many possible ways of repre-
senting regions, facilities, ships, vehicles, and building
components.

Analysis Step

The Analysis Step is the point at which the method-
ology and mathematical models underlying the flow
processes, and the algorithmic structure for comput-
ing the performance characteristics of G`(Z; E) come
together. Mathematically, we have a network G(V ; E),
with a finite set of nodes V , and edges(arcs) E, over
which multiple classes of customers (occupants) flow
from source(s) to sink(s) while a vector of objective
functions ˝ D f f1(x̄); f2(x̄); : : : ; fp(x̄)g is simultane-
ously extremized subject to a set of constraints on the
occupants flowing through the network. Figure 4 cap-
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tures many of the recognized criteria appropriate in an-
alyzing a network evacuation problem. In our studies,
we have often used Minimum Total Evacuation Time
and Minimum Total Distance Travelled to capture the
evacuation problem. The Total Distance travelled is
a suitable surrogate objective for approaching the route
complexity, since reducing the evacuation path length
will often begin to capture the path complexity and,
hopefully, minimizing this measure will abate the oc-
cupants sense of panic. Other objectives might be ap-
propriate given the particular context or decision situa-
tion.

Synthesis Step

Given the performance characteristics determined dur-
ing the Analysis Step, we can begin to optimize the net-
work topology itself, routing and resource allocation
problems within:

Topological Network Design (TND): Determination
of the number, type, and subset of nodes and arcs
as well as the particular node and arc topology to be
used for the evacuation.

Evacuation Networks, Figure 5
Morphological diagram of EEP approaches

Routing Network Design (RND): Determination of
the routing scheme in both steady-state and real
time.

Capacitated Network Design (CND): Determination
of the Network Resources: Number of highway
lanes, corridor length, widths, areas, landing shape,
reception center capacity, configuration etc.

Mathematical Models

There are many possible mathematical modelling ap-
proaches once our network is constructed and Fig. 5
represents the range of approaches many research sci-
entists have followed. References are provided for fur-
ther details. The boldface text along the morphological
tree represents the approach suggested in this chapter
which we have applied in many different contexts.

Many mathematical models which have appeared
in the literature for generating and evaluating evacu-
ation paths for an occupant population [3,9,13,24,31].
Besides the models for estimating flows, many newer
works are just becoming available for the optimization
of the evacuation networks, i. e. the TND, RND, and
CND problems, and these are illustrated in the third
branch of the morphological tree.
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Set Partitioning Model

The model which is presented below is a variation of
one model appearing in [13]. It was one of the first to
account for the critical features of the stochastic evacu-
ation problem. Another class of models that one might
utilize to formulate the problem are those of the class of
multi-commodity network flowmodels. Unfortunately,
these models will not control the Bernoulli splitting of
the occupant population along the different evacuation
paths which is problematic since splitting the different
source populations will engender confusion and create
a potential sense of panic among the evacuating occu-
pants. The integer set partitioning programming model
presented below has the desired property to control
splitting of the flows. The multi-objective model of our
routing problem is:

Minimize
˚
f1(x̄); f2(x̄)

�

where:

(Evacuation Time) : f1(x̄) D
X
i

X
j

X
k

qi jk�i jk xi jk

(Distance Travelled) : f2(x̄) D
X
i

X
j

X
k

di jk xi jk

subject to:

(V2 Arcs) :
X
i

X
j

X
k

˛`i jk�i jk xi jk � �` 8` (1)

(V3 Sinks) :
X
i

X
j

X
k

pi jk xi jk � Cq 8q (2)

(Occupant Classes) :
X
k

xi jk D 1 8i j (3)

(Routes) : xi jk D 0; 1 8i jk (4)

and where:

xi jk :D 1 if the ith occupant class from the jth source
is assigned the kth route alternative.

�i jk :D the arrival rate of the i jth occupant population
into the kth routing alternative.

˛`i jk :D a data coefficient which equals 1 if the `th arc
is included in the i jkth route assignment and equals
0 otherwise.

�` :D maximum allowable traffic service rate along
arc `.

Cq : capacity of sink (destination) node q.
pi jk :D occupant population of source i j on the kth

route alternative.
qi jk :D expected evacuation (sojourn) time of the

i jkth occupant class. These values must be calcu-
lated from the particular stochastic model used in
the evacuation study, see discussion below.

di jk :D average distance travelled for the i jkth occu-
pant class.

Since we have two objectives in our model, it makes
sense to talk of the Noninferior (NI) set of route alter-
natives, since the tradeoffs between f 1 and f 2 naturally
underlie the optimal set of solutions we seek. Because of
the complexity of solving this model directly, an alter-
native approach which systematically generates feasible
routing alternatives to a relaxed version of our mathe-
matical model but at the same time measures the criti-
cal objectives of evacuation time and distance travelled
is proposed and demonstrated in the next two sections
of the chapter.

Congestion Models

The real crux of the evacuation problem is to capture
the congestion that naturally occurs when occupants
choose the shortest routes to evacuate. There are some
deterministic measures possible for measuring conges-
tion, yet stochastic ones are the most accurate, because
queueing is a nonlinear complex phenomenon.

Erlang Loss/Delay Networks

Fundamentally, each Sj node in the circulation network
is an M/G/c/c queue, i. e. there is no waiting room and
C depends on the square footage area of the circula-
tion segment or the number of vehicles which can max-
imally occupy a highway segment [33]. Let’s for the
sake of the argument, focus on pedestrian evacuation.
Later on we will show how our model extends to vehic-
ular congestion. Each occupant in the circulation sys-
tem consumes approximately 0:2m2 of floorspace, and,
therefore, the capacity of a circulation system element
is:

C D 5LW

where L(Length) and W(Width) are given in meters.
Each circulation segment is a representative “building
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Evacuation Networks, Figure 6
Three-dimensional network models

block” for modelling pedestrian movements through
the facility. Corridor segments, intersections, landings,
stairwells, ramps, and so on represent a network of in-
terconnected M/G/c/c queues, see Fig. 6. The separa-
tions of the circulation blocks are due to changes in flow
direction, level, or merging and splitting decisions. Fur-
ther, the cardinality of S depends on the configuration
and complexity of movement patterns within the facil-
ity. Flows through the nodes of S, the circulation sys-
tem of a building are largely state dependent, in that
a customer receives service in the circulation node Sj
and this service rate decays with increasing amounts of
customer traffic.

Figure 7 shows a family of curves which represent
the variety of empirical studies (curves a-f in Fig. 7)
that document the decay rate of the customer service
rate as a function of population density in a corri-
dor. Empirical models are also available showing dis-
tributions for stairs and other circulation elements with

bi-, and multi-directional pedestrian flows [10,26]. Fi-
nally, there are a set of classical linear and exponential
curves which relate vehicle speed and vehicle density
captured in Fig. 8. We have utilized these type of vehic-
ular speed/density relations to develop state dependent
models for vehicular traffic analysis [12]. In general, the
service rate� is a function of velocity vi, which is a con-
stant for each individual in the corridor. Thus, it takes
ti (seconds)

ti D
L
vi

for each person to traverse the corridor, where i is the
number of occupants in the circulation system when an
individual enters.

Because of the complexity of dynamically updat-
ing the service rate as a function of the number of
customers within a corridor segment, it becomes ex-
tremely difficult to utilize digital simulation models in
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Evacuation Networks, Figure 7
Empirical distributions of pedestrian traffic flows

Evacuation Networks, Figure 8
Empirical distributions of vehicular traffic flows

the design of circulation systems within buildings. Our
computational experience in digital simulation of ac-
cess and egress networks underscores this defect in sim-
ulation models. We must, therefore, look to analyti-
cal models to aid the network design process if state
dependent models are to be effectively utilized. Also,
since we are examining the pedestrian/vehicular net-
work as a design problem rather than as a control prob-
lem, it makes most sense to look at steady state mea-
sures rather than transient ones.

We have recently developed a generalized model
of the M/G/c/c Erlang loss queueing model for ser-
vice rate decay which can model any service rate dis-
tribution (linear, exponential, . . . ) [4,5,22]. It is a spe-
cial case of an Erlang Loss model. Kelly [14] has treated
M/G/c/c state dependent models in his book, but only
ones with a linear, increasing function of the number
of customers in the queue, whereas, we treat the queue
with an nonlinear, decreasing service rate, see Fig. 3.

Our M/G/c/c state dependent model dynamically
models the flow rate of pedestrians within a corridor as
a function of the population within the corridor. Sup-
pose that G is a continuous distribution having den-
sity g and failure rate �(t) D g(t)

ı
G(t). Loosely speak-

ing, �(t) is the instantaneous probability intensity that
a service t units old will end. The service rate depends
on the number of customers in the system: given that
there are n people in the system, each server processes
work at rate f (n). In other words, if there is an arrival,
the service rate will change to f (nC 1) and if there is
a departure, the service rate will change to f (n � 1).

In particular, the probability distribution of the
number of occupants in the corridor is given by:

P(n in system) D
[�E(S)]nP0

n! f (n) : : : f (2) f (1)
n D 1; 2 : : :C

where

P0 D
1

1C
PC

iD1
[	E(S)]i

i ! f (i)::: f (2) f (1)

E(S) D
L
1:5

f (n) D
vn
v1

and E(S) is the mean service time of a lone occupant
flowing through a corridor of length L, with service rate
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1.5m/s (see Fig. 3). The term vn is defined as the av-
erage walking speed when n people are in the corridor.
For the M/G/c/c state dependent model, we have also
shown that the departure process (including customers
completing service and those that are lost) is a Poisson
process with rate � [4,5].

Algorithms

The problem we face in our evacuation planning prob-
lem is that we do not know a priori which paths are NI
without assessing the congestion in G(V ; E). We must
iteratively generate candidate paths, assess the conges-
tion in G(V ; E), and then iterate again until the de-
sired tradeoffs between distance travelled and evacua-
tion time is acceptable to the planner. This iterative pro-
cess leads to the algorithm described below. For prod-
uct form networks where the estimate of time delays in
the Expected Savings calculation for re-routing among
the alternative Noninferior paths can be computed ex-
actly, then the algorithm will guarantee finding a Non-
inferior path for re-routing the occupant classes. For
non-product form networks, which are typically the
case, we can only approximate these time delays, there-
fore, the algorithm can only guarantee an approximate
Noninferior solution. Considering the complexity of
the underlying stochastic-integer programming prob-
lem, this is a reasonable and practical strategy.

K-shortest Paths

The algorithm to facilitate the design methodology can
be incorporated into any appropriate discrete-event
simulation model [6] or analytical model [8] to estimate
f 1, f 2, and carry out the evacuation planning/routing
analysis. To summarize and focus the efforts in this
chapter, an algorithmic description of Steps 1.0, 2.0, 3.0
and it substeps are presented.

Step 1.0: Representation Step Represent the underly-
ing facility or region as a network G(V ; E) where
V :D is a finite set of nodes and E :D is a finite set
of arcs or nodal pairs.

Step 2.0: Analysis Step Analyze G(V ; E) as a queue-
ing network either with a transient or steady-state
model and compute the total evacuation time of the
occupant population along with total distance trav-
elled to evacuate given a set of evacuation paths.

Step 3.0 Synthesis Step

Step 3.1: Analyze the queueing output from the
evacuation model and compute the set of
Noninferior evacuation paths which simultane-
ously minimize time and distance travelled in
G(V ; E) for each occupant population.
3.1.1 If the set on NI paths are uniquely opti-

mal then

Ek
i j D qi jk �

�
(dk

i j
ı
!)C qki j

�
� 0 8i jk

go to Step 3.2 where:
Ei jk :D is the net increase or decrease in the

average egress time per person caused
by re-routing occupants to the (kth + 1)
Noninferior route.

qi jk :D the sum of the average queue times
per person on the original route.

dk
i j :D the increased distance travelled on
the (kth + 1) Noninferior route (e. g. if
the kth Noninferior route is 100 feet and
the kth + 1Noninferior route is 120 feet,
dk
i j is equal to 20 feet i. e. 120minus 100).

! :D is the average travel speed for dk
i j .

qki j :D the sum of the expected queue times
per person on the (kth + 1) Noninferior
route, otherwise:

3.1.2 Significant queueing (congestion) exists
on one or more routes then go to Step 3.3.

Step 3.2: STOP! The NI shortest time/distance
routes are optimal and identical and total evac-
uation time, distance and congestion are mini-
mized.

Step 3.3: Determine the total number of occupants
who pass through the queueing area(s) and
trace them back to their origins.

Step 3.4: Select the total number of occupants to
be re-routed from each source node. The total
number of occupants re-routed is correlated to
both the size of the queues and the number of
occupants on each route. In selecting the popu-
lation, the analyst should strive to achieve uni-
formity of occupants and queues on each egress
route.

Step 3.5: Re-route the population to the kth route
of the NI set of paths where k is selected by em-
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ploying the following formula:

Ek
i j D qi jk �

�
(dk

i j
ı
!)C qki j

�
8i jk

Step 3.6: Select the largest positive E* for each set
of populations to be re-routed, where:

E� D max
8i jsources

fE11; E22; : : : ; EIJg

for all possible savings, and then re-run the
computer evacuation planning model with the
new set of routes, by returning to Step 2.0 of the
General Algorithm. If all E0t s are negative, stop!
The current set of NI shortest routes used on the
previous iteration are selected.

Other Algorithms

Besides the k-shortest path approach, one might utilize
a turn-penalty algorithm to guide the process of de-
termining the evacuation paths. This is probably very
appropriate in vehicular evacuation schemes. Also, an-
other approach which seems quite viable, would be to
define the set of arc disjoint paths, since this would tend
to completely separate the occupant congestion along
the paths. We have not experimented with these ap-
proaches to define the evacuation routes, but their use
might be quite appropriate in the future.

Summary and Conclusion

We have given you some insights into the performance
modelling and optimization problems associated with
evacuation networks. As the maturity of this applica-
tion area grows, the more research that is devoted to the
area, the more theoretical and algorithmic issues and
progress that will emerge.
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Most of the NP-hard combinatorial optimization prob-
lems cannot be solved to optimality in practice. There-
fore heuristic techniques have to be used to obtain solu-
tions of high quality. There exists different approaches
to design a heuristic algorithm, such as tabu search
and genetic algorithm for example. The latter solution
method belongs to a wider class of algorithms, called
evolutionary algorithms, that handle a set of several so-
lutions. Within this class, the best known algorithms
that are applied to combinatorial optimization prob-
lems are genetic algorithms (cf. � Genetic algorithms)
and ant systems. For a general presentation, one can
mention [22,72] for genetic algorithms and [12,23] for
ant systems.

In this article, a review of the evolutionary algo-
rithms used up to 1998 in combinatorial optimization
is being made. For a certain number of combinatorial
problems, the main papers that present an evolutionary
algorithm for that problem are referenced, and some
short remarks are given. While it is difficult to provide
a very precise definition of an evolutionary algorithm,
this term will be used here as a synonym of population-
based algorithm: an algorithm that makes evolve sev-
eral solutions, in particular by exchanging some kind of
information between them. Algorithms that iteratively
modify a solution in order to obtain a good one (like
tabu search or genetic algorithms with a ‘population’
of size 1) will not be considered as evolutionary algo-
rithms.
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The Traveling Salesman Problem

The traveling salesman problem (or TSP) is probably
the problem on which the largest number of evolution-
ary algorithms have been applied. It consists in deter-
mining a shortest tour visiting all of the given cities ex-
actly once. A very complete survey of local search ap-
proaches to this problem has been provided by D.S.
Johnson and L.A. McGeoch [51], while J.-Y. Potvin
[70] compared several genetic algorithms for TSP. In
[51], the authors recommend different solving tech-
niques depending on the quality of the solution desired
and the time available. Genetic algorithms or ant sys-
tems are a good choice if enough running time is al-
lowed and good solutions are needed.With similar run-
ning times, the iterated Lin–Kernighan algorithm (or
ILK) yields better results but is more complex to imple-
ment. In ILK, a single solution instead of a population
of individuals is considered and this method will there-
fore not be referred to as an evolutionary algorithm. If
there is no restriction on the running time, the best re-
sults can be obtained by genetic algorithms based on
ILK.

An important breakthrough in the field of evolu-
tionary algorithms for the TSP was the paper [67] by
H. Mühlenbein, M. Gorges-Schleuter and O. Krämer.
In their algorithm, implemented on a parallel machine,
a solution was allowed to mate only with certain other
solutions and some optimization technique was applied
to the offsprings. Indeed, the use of a local search al-
gorithm to improve created offsprings is a necessary
condition for an evolutionary algorithm to be efficient.
Moreover, they designed a crossover specific to the TSP,
called MPX (maximum preservative crossover). It con-
sists in copying a segment of a certain length from
a first parent into the offspring and adding cities con-
secutively from the second parent according to some
rules. This crossover is very suitable for the TSP, as
shown in [66]. Further researches studied the impact
of the different elements on the results and improved
the quality of the solutions obtained [7,44,89]. Sev-
eral other crossovers, most of them using two parents,
have been suggested by various authors. In particular,
B. Freisleben and P. Merz proposed [37,38] the dis-
tance preserving crossover (or DPX): An offspring is
created by keeping the edges that are found in both
parents, and greedily reconnecting the different pieces

without using the edges contained in only one par-
ent. They obtain a very efficient algorithm, that won
both the ATSP (asymmetric TSP) and the TSP com-
petitions at the First International Contest in Evolu-
tionary Optimization [6]. They further improved their
algorithm, in terms of speed and quality of solutions,
in [39]. Their use of an edge-preserving crossover and
of a hill-climbing algorithm illustrates important el-
ements necessary to obtain an efficient genetic algo-
rithm for TSP. These elements have been put forward
in different comparisons between various genetic al-
gorithms for TSP [70,78], together with the neces-
sity to split the population into several subpopulations
for solving large instances (more than a few hundred
cities).

The first presentation of ant colony optimization
(ACO) [12] was made with the TSP as illustration and
this problem remains the most often used application
problem of works on ant colony optimization. The ini-
tial ACO system, named ant system, has been extended
to what is called ant colony system (ACS). A descrip-
tion of this algorithm can be found in [23] byM. Dorigo
and L.M. Gambardella. In the same paper, local search
has been added to ACS and the resulting algorithm
has been applied to ATSP and TSP. The results re-
ported are better in [39] for TSP, but are better in [23]
for ATSP. Another proposed extension of ant system,
called MAX-MIN ant system [79], consists in introduc-
ing explicit maximum andminimum values for the trail
factors on the arcs. Good results are obtained with such
an algorithm when local search is added.

The Vehicle Routing Problem

The most studied extension of the vehicle routing prob-
lem (VRP) is the one with time windows (VRPTW).
In order to solve this problem, a two-phase heuristic,
called GIDEON, has been proposed in [84]. The first
phase uses a genetic algorithm to cluster the customers,
and the solutions obtained are improved by local op-
timization techniques in the second phase. This proce-
dure has first been improved in [83], and then extended
in [85]. In this last paper, S.R. Thangiah, I.H. Osman
and T. Sun present several metaheuristics, all having
a first phase similar to the one in GIDEON. These algo-
rithms have been compared to several other heuristics
and showed very good results on test problems taken
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from the literature. Some improvements have still to be
brought for solving problems with large time windows.
For such problems, a heuristic based on simulated an-
nealing and a population-based algorithm called GEN-
EROUS [71] are shown to be a little more efficient. The
latter is not a standard genetic algorithm since it does
not represent solutions by chromosomes, but it never-
theless handles several solutions and uses a recombina-
tion operator. An adaptive memory procedure, in con-
junction with tabu search, has also been applied to this
problem [75].

Improvements of the GIDEON approach with lo-
cal post-optimization procedures have also been used
for the VRP with time deadlines. A comparison done in
[86,87] with two other heuristics shows that the cluster-
first route-second algorithm with a genetic algorithm in
the first phase performs well for problems in which the
customers are distributed uniformly and/or with short
time deadlines.

The Quadratic Assignment Problem

The quadratic assignment problem (or QAP) allows the
modelization of many practical problems in location
science, but can be solved optimally only for very small
instances. Therefore different heuristics have been pro-
posed for this problem. Several of them are compared in
[13,81]. For real-world problems (irregular and struc-
tured), the genetic hybrid by C. Fleurent and J.A. Fer-
land in [33] appears to be one of the most efficient al-
gorithms [81]. Based on a standard genetic algorithm
with solutions encoded as permutations [82], this ge-
netic hybrid applies a robust tabu search on the off-
springs and was able to find several new best solutions
on some benchmark problems.

The ant colony optimization approach has also been
considered, first in [64]. This ant system algorithm,
hybridized with a local search, has been improved in
[62,63] and provides very good results. A different ACO
approach, where at each iteration the solutions are
modified instead of newly constructed, has been pro-
posed in [40]. This algorithm, also hybridized with a lo-
cal search procedure, yields better results on real-world
problems than the genetic hybrid of [33], but is not
competitive on random problems. A further promis-
ing method, based on scatter search, has been presented
in [19].

The Satisfiability Problem (SAT)

The problem of finding a truth assignment for vari-
ables to make a propositional formula true is probably
the best known, and historically the first, NP-complete
problem. But only few evolutionary algorithms for SAT
can be found in the literature. After a straightforward
approach in [52], a rather different solution representa-
tion has been proposed in [45]. But the drawback of this
method, despite adapted operators, is that it increases
the size of the individuals in an important way, com-
pared to the coding ‘one gene for one variable’. This
last coding has been used in [35], together with a SAT-
adapted crossover (the objective function being simply
the number of satisfied clauses). But the evolutionary
algorithm thus obtained was not able to compete with
a tabu search (also presented in [35]). The tabu search-
genetic hybrid (where some iterations of tabu search is
used for mutation) is computationally expensive, but is
able to solve large instances that a tabu search alone
cannot solve. For smaller instances, the hybridization
is not useful.

Another heuristic approach to SAT consists in as-
signing weights to the different clauses and minimizing
the sum of the weights of the unsatisfied clauses. These
weights are adapted during the algorithm depending on
the ‘difficulty’ of each constraint. This mechanism has
been used in evolutionary algorithms in [25] and [90],
but in both cases it came out that the best results are ob-
tained with a ‘population’ of size 1. Such an algorithm
is therefore no longer considered as an evolutionary al-
gorithm.

The Set Covering and Set Partitioning Problems

The set covering problem (SCP) is a zero-one integer
programming problem where the constraints are all of
the type

P
j aijxj � 1 with zero-one coefficients. It is

a well-known problem, that has also been used to study
penalty functions in genetic algorithms [3,74].

Different genetic algorithms approaches have been
proposed in the literature (see for example [50,60,61]),
and a very efficient one has been presented by J.E.
Beasley and P.C. Chu in [5]. This algorithm uses
binary representation of the solutions, and a repair
operator to preserve the feasibility of the individu-
als and to improve the solutions. Moreover, a vari-
able mutation rate has been introduced. Results on
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standard test problems up to 1000 constraints and
10,000 variables show the efficiency of this algo-
rithm that was able to improve the best-known re-
sult on some of the larger instances. The same pa-
per shows no significant difference between various
crossovers.

The set partitioning problem (SPP) is also a zero-
one integer programming problem, the difference with
SCP being that the constraints are equalities instead
of inequalities. Relatively few heuristics have been de-
veloped for this problem. D. Levine investigated se-
quential and parallel genetic algorithms for SPP [59].
His best algorithm was a genetic algorithm in an is-
land model, hybridized with a local search heuristic.
But this algorithm remained less efficient, both in terms
of quality of the solutions and in terms of running
time, than the branch and cut approach of [49]. Some
problems met by his algorithm were due to the penalty
term for infeasible solutions in the fitness function. In
order to overcome these problems, other authors de-
composed the single fitness measure in two distinct
parts (the objective function and a measure of ‘infea-
sibility’) [10]. Adapting the parent selection method to
this modification, and also using an improvement op-
erator, they obtained a better genetic algorithm, but
that is still not able, for the problems they consid-
ered, to compete with a commercial mixed integer
solver.

The Knapsack Problem

The multidimensional (zero-one) knapsack problem is
equivalent to the zero-one integer programming prob-
lem with nonnegative coefficients. Only few papers
tried to solve this problem with evolutionary algo-
rithms. While the first such algorithms did not give
high-quality results and were not competitive with
other heuristics [56,88], the quality has improved. Ge-
netic algorithms as presented in [11,48], both work-
ing only with feasible solutions, are able to obtain op-
timal solutions on standard test problems (instances
with at most 105 variables and 30 constraints). In
[11], Chu and Beasley proposed some larger test prob-
lems (up to 500 variables and 30 constraints), without
known optimal solution, and used them for a com-
parison with other heuristics. Their genetic algorithm
uses a ‘repair’ operator specific to this problem to en-

sure good feasible offsprings and obtained high-quality
results, but needed also more computation time (on
a same machine, about one hour for the genetic al-
gorithm against a few seconds for the other heuris-
tics).

The Bin Packing Problem

The standard one-dimensional bin packing problem
consists in putting items of given sizes in bins of given
capacity. Many evolutionary algorithms proposed for
this problem (genetic algorithms and evolution strat-
egy, see for example [16,57,77]) performed worse than
a simple heuristic like first fit decreasing. E. Falkenauer
and A. Delchambre then suggested in [30] a genetic al-
gorithm designed for grouping problems: the grouping
genetic algorithm (GGA). In this algorithm, solutions
are represented by chromosomes having two parts: the
item part encodes for each item its bin and the group
part, of variable length, encodes the bin identifiers used.
The crossover, mutation and inversion operators have
been adapted to this encoding. Instead of simply us-
ing the number of bins, the authors designed a fitness
function that also takes into account the proportion
to which each bin is filled. With this approach, they
obtained very satisfactory results. The arguments pre-
sented for this new encoding are discussed by C. Reeves
in [73]. In the same paper, a hybrid genetic algorithm is
presented, where solutions are represented by permu-
tations and decoded using heuristics like first fit and
best fit. The results obtained are more or less similar
to those in [30]. A problem size reduction heuristic,
similar to the reduction process used in [16], has also
been introduced in this genetic algorithm. According to
Falkenauer [29], this reduction violates the search strat-
egy of the genetic algorithm and he therefore prefers
the GGA’s crossover, that has the same goal of prop-
agating promising bins. In the same paper, the GGA
is improved by the introduction of local optimization
inspired by the dominance criterion of [65]. The new
algorithm is compared with an efficient branch and
bound algorithm and gives excellent results.

Extensions of the standard bin packing problem,
like the two-dimensional bin packing problem, have
also been considered with evolutionary algorithms
[15,69,77]. An overview of these variations is presented
in [43].
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Graph Coloring

The graph coloring problem is a well-known problem
in graph theory; it consists in determining the smallest
number of colors that must be used to color the ver-
tices of a graph such that two adjacent vertices do not
have the same color. L. Davis is the first author who
proposed an evolutionary algorithm for this problem
[22]. In fact, he considered a graph with weights on the
vertices and an integer k. He then designed a hybrid
genetic algorithm for finding a partial k-coloring such
that the colored vertices have maximum total weight. In
this algorithm, individuals are represented as permuta-
tions of the vertices of the graph. This order-based en-
coding is not very efficient, as shown by Fleurent and
Ferland in [34]. In this paper, they also present hybrid
genetic algorithms that use string-based encodings of
the solutions for finding a coloring in k colors with as
few conflicting edges (edges with both ends of the same
color) as possible. They consider different crossovers,
including a graph-adapted one, and hybridize the ge-
netic algorithm with a simple local search or with tabu
search (a modified version of [46]). The results on
random graphs Gn, 0.5 improve the previous best re-
sults. For graphs up to 300 vertices, their tabu search-
genetic hybrid and their tabu search give similar results,
but in much less time for the latter. For larger graphs
(500 or 1000 vertices), the running time becomes pro-
hibitive, and both the evolutionary algorithm and the
tabu search must be used within a different approach
(determining large stable sets and coloring the resid-
ual graph). The tests on 450-vertices Leighton graphs
(with known chromatic numbers) showed that the tabu
search-genetic hybrid outperforms the tabu search on
about half of the instances, while the opposite is true
for the remaining instances. The hybrid algorithm was
able to find an optimal solution for two instances (out
of twelve) that could not be solved by the tabu search
alone.

Another evolutionary algorithm has been proposed
in [18], with a graph-adapted crossover that takes into
account how ‘close’ a vertex is to conflicting edges. The
improving algorithm applied to offsprings is a steepest
descent method, instead of a tabu search like in [34].
Despite this less sophisticated method, their algorithm
gives similar results to those obtained by the hybrid al-
gorithm in [34]. Moreover, the latter gives worser re-

sults when the tabu search is replaced by a simple de-
scent method.

Concerning ant colony optimization, a first ap-
proach to graph coloring has been proposed in [17], but
the results obtained need improvements.

Other Graph Problems

Maximum Clique

The problem of determining the maximum clique
(complete subgraph) in a graph is equivalent to the
problem of determining the minimum vertex cover or
the maximum stable set in the complementary graph.
A first genetic algorithm, hybridized with a tabu search,
has been proposed by Fleurent and Ferland in [35], but
they show that their tabu search alone gives similar re-
sults in a shorter time. In these algorithms, a solution
is a set of vertices of given size and the objective func-
tion measures how many edges are missing for a set to
be a clique. Improving an algorithm of [2], E. Balas and
W. Niehaus [4] proposed a genetic algorithm (without
improving algorithm applied to the offsprings) for both
the maximum cardinality and maximum weight clique
problems where an individual is a clique. In this algo-
rithm, the recombination operation (‘crossover’) used
is designed specifically for this problem and taken from
another heuristic. The results obtained on the DIMACS
benchmark graphs are very good, similar to those ob-
tained in [35] from the point of view of the solutions’
quality. A different fitness function has been suggested
in [8] and included in a hybrid genetic algorithm us-
ing a local optimization step. The fitness value associ-
ated to a set of vertices is a weighted combination of the
size of the set and the number of edges missing to have
a clique, but the weights are modified during the run of
the algorithm according to a simple rule. Despite the in-
troduction of a preprocessing step that determines the
order of the vertices on the chromosome, this algorithm
is less efficient (but this may be due to the use of the 2-
point crossover).

Graph Partitioning

Evolutionary algorithms are rather seldom used to
tackle the k-way graph partitioning problem (partition-
ing a (weighted) graph in k equal-sized parts), even if
the graph bisectioning problem (the case k = 2) is some-
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times taken to illustrate various ingredients in genetic
algorithms ([9,54]). For the general k-way graph parti-
tioning problem, different problem-oriented operators
are introduced and studied in a parallel genetic algo-
rithm in [58]. In this algorithm, the population is only
composed of feasible solutions. Another approach has
been proposed in [76] where the population is split in
two halves: one containing only feasible solutions and
the other only infeasible ones. This algorithm uses the
same encoding scheme and crossover operator as [58],
but has not been applied on similar instances of the
problem. In a general way, genetic algorithms give good
results on partitioning problems, but at a very high
computational cost.

Miscellaneous

Sequencing and Scheduling

The best-known sequencing and scheduling problems
are the flow-shop, job-shop and open shop problems.
The first paper applying an evolutionary algorithm to
such a problem is [21]. Later, several other genetic al-
gorithms have been proposed ([36,80] for example).
One of the first efficient evolutionary algorithm for job-
shop problems has been presented in [68] and improved
in [20,91]. Comparisons done with other heuristics on
benchmark problems show that sophisticated genetic
algorithms (with the use of problem-adapted crossovers
and hybridization) yield the best results for flow-shop
and job-shop problems [1,24,42]. The open shop prob-
lems have less attracted researchers of the evolutionary
algorithms’ field, but a genetic algorithm has been pro-
posed in [31,32]. An ant colony approach of job-shop
problems has also been tested, in [14], but gave worse
results than known genetic algorithms.

Steiner Trees

Only very few works deal with Steiner trees and evo-
lutionary algorithms. Moreover, they consider differ-
ent variants of this problem. The first paper [47] pro-
poses a genetic algorithm with local optimization for
determining minimum Steiner trees in the Euclidean
plane. A solution is represented by the coordinates of
the Steiner points. A comparison with simulated an-
nealing and the Rayward-Smith–Care algorithm shows
no significant differences. The problem of the rectilin-

ear Steiner problem has been addressed in [53] with
a specific coding and an adapted crossover. The min-
imal Steiner tree problem in graphs has attracted a lit-
tle more interest. A standard genetic algorithm (with
bit strings as chromosomes) that gave good results on
the sparse graphs tested has been proposed in [55].
Later, H. Esbensen and P. Mazumder [28] designed
a genetic algorithm in which the encoding method is
based on the distance network heuristic. Improvements
have been brought in [26] and [27], where there is also
a comparison between different algorithms. But this ge-
netic algorithm is not competitive with an efficient tabu
search as presented in [41].

Conclusion

In this paper, some references on the evolutionary ap-
proaches that have been proposed up to 1998 for differ-
ent combinatorial problems have been given. A general
remark that can be made on these solution methods is
that evolutionary algorithms in general, and genetic al-
gorithms in particular, are not efficient for such prob-
lems if implemented too naively. To obtain an algo-
rithm with good performances, it is necessary to make
adjustments of the basic method. Moreover, knowledge
about the problem considered is very often also needed,
in order to design adapted operators.

Another remark concerns their competitivity com-
pared to other heuristic methods. While evolutionary
algorithms can quite easily be adapted to (almost) any
problem, their running time is often quite high. Lo-
cal search algorithms, like tabu search or simulated an-
nealing, can also be adapted to the different combi-
natorial problems quite easily. If they are designed in
an intelligent way, they are very often able to obtain
better results than evolutionary algorithms. Moreover,
they are usually faster. For some problems, specifically
designed heuristics can use theoretical results about
this problem, allowing them to obtain good results. In
general, evolutionary algorithms are not competitive
against (extended) local search or specific algorithms
for small to medium size instances of combinatorial
problems.

But this does not mean that population-based algo-
rithms are not useful. In fact, the different approaches
have various (dis)advantages, and the efficient algo-
rithms that will be developed in the future will proba-
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bly mix these different approaches. Such algorithms are
usually called ‘hybrid algorithms’ and have already been
proposed for example for the traveling salesman prob-
lem [39] or the quadratic assignment problem [33],
demonstrating their potentials.
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Introduction

The ˛-ECP (Extended Cutting Plane) algorithm [13,14]
is an algorithm for solving quasi-convex MINLP

(Mixed Integer Nonlinear Programming) problems.
The algorithm approximates the feasible region with
linear approximations and solves a sequence of MILP
problems based on these approximations. There are
several other similar methods, for instance the Gener-
alized Benders Decomposition method [7], the Outer
Approximation method [4], the LP/NLP Based Branch-
and-Bound method [8], the Linear Outer Approxi-
mation method [5] and the Sequential Cutting Plane
method [10]. A good overview of MINLP algorithms
and applications is given in [6]. Most of the other meth-
ods iteratively solve both NLP and MILP problems,
while the ˛-ECP method only solves MILP problems.
The size of the MILP problems grow in each itera-
tion, so efficient algorithms of this type require efficient
MILP solvers.

Most of the MINLP methods can only ensure
global convergence for convex MINLP problems. Dif-
ferent heuristic procedures for some of the above algo-
rithms have been introduced for the non-convex case,
e. g. [11]. Although these methods perform quite well
in different applications, convergence towards the opti-
mal solution cannot generally be ensured by these algo-
rithms for non-convex problems.

There are also some MINLP global optimization
methods [1,2,9,12]. In these algorithms the function
space is separated for the continuous and discrete vari-
ables and the discrete variables can only occur in lin-
ear space. The ˛-ECP method can solve quasi-convex
problems where the discrete variables are involved in
nonlinear equations as well.

The ˛-ECP method has also been further extended
to global optimization problems through the use of
transformation techniques for problems containing sig-
nomial terms, see [15].

Formulation

The ˛-ECP algorithm can be used to solve problems of
the form

min cTz;

s.t. g(z) � 0;

Az � a;

Bz D b;

z 2 X � Y ;

(1)
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where c is a vector of constants, z D (x; y) consists of
a vector x of continuous variables in Rn and a vector y
of integer variables in Zm and g(z)Rn � ZmRp is a vec-
tor of continuous differentiable quasi-convex functions
defined on the set X � Y having non-zero gradients in
the infeasible region of (1). The feasible region of (1) is
assumed to be nonempty. Furthermore, X is a compact
convex set X � Rn andY is a finite discrete set Y � Zm .

The matrices A and B and vectors a and b are used
to define the linear constraints of the problem and are
of suitable dimensions.

The ˛-ECP method guarantees global optimal so-
lutions for MINLP problems having a linear objective
function and differentiable quasi-convex constraints.
The linear objective function is not too restrictive since
most optimization problems having a nonlinear objec-
tive f (z) can be rewritten as a problem involving an ad-
ditional variable u and an additional constraint

f (z) � u � 0: (2)

The new problem, then, will be to minimize u subject
to the original constraints and the additional constraint
(2). Note, however, that this is not, in general, possible
for quasi-convex objectives since f (z)� u is not neces-
sarily quasi-convex when f (z) is quasi-convex. An ex-
tension to handle quasi-convex objective functions, rig-
orously, is given in [13]

Methods

The algorithm solves the problem (1) by approximating
the maximal violated nonlinear function with a linear
function

l(z) D gi (zk)C ˛ � r gi (zk)T (z � zk) (3)

in the current iterate zk, where i D argmaxifgi (zk)g.
To simplify notation, let gk D gi(zk). Furthermore,
if the linearization added to the MILP problem is
the jth linearization, let ḡ j D gi (zk), ḡ j(z) D gi (z),
r ḡ j D r gi (zk) and z̄ j D zk where i is defined as above.
The ˛ values change from iteration to iteration so to be
able to reference the value of the jth constant in itera-
tion k the ˛ constants are replaced with ˛(k)j . Thus the
linearization (3) is redefined so that in iteration k the
jth linear approximation l (k)j will be

l (k)j (z) D ḡ j C ˛(k)j � (r ḡ j)
T(z � z̄ j)

and the algorithm adds the linear constraint

l (k)j (z) � 0 (4)

to the MILP problem. The ˛ constants initially have the
value ˛(k)j D 1 and they are either left unchanged or
increased by a factor in each iteration. The algorithm
then iteratively adds more and more constraints to an
MILP problem originally consisting of only the linear
constraints Az � a and Bz D b from (1). In iteration k
it thus solves the MILP problem

min cTz ; s.t. l (k)j (z) � 0 ; j D 1; : : : ; Lk ;

Az � a ; Bz D b ; z 2 X � Y ; (5)

where Lk is the number of linearizations in iteration k.
The solution to this MILP problem will be the new it-
eration point. Using this point a new linearization is
added to the MILP problem or one or several of the ˛
constants are updated. The procedure is then repeated
until a feasible point of (1) is found. A point is consid-
ered feasible if

gi (z) � �g ; i D 1; : : : ; p; (6)

for some prespecified tolerance �g . Note that the con-
straints Az � a and Bz D b are automatically satisfied
since the current iteration point is the solution to (5).
The idea of finding a feasible and optimal point by solv-
ing a sequence of MILP problems is the same as in the
classical Kelley’s cutting plane method for NLP prob-
lems. However, Kelley considered only the continuous
case using LP subsolutions. Furthermore, Kelley’s cut-
ting plane algorithm assumes that the linearizations will
always be valid underestimators of the corresponding
nonlinear functions. This is true if the functions are
convex, since for convex functions it holds that

gi (zk)Cr gi (zk)T(z � zk) � gi (z) (7)

for all z; zk 2 X � Y . Thus, l (k)j (z) � 0 whenever
ḡ j(z) � 0 even when ˛(k)j D 1.

Unfortunately (7) does not generally hold for quasi-
convex functions. It is possible that the linear approx-
imations are not valid underestimators of the corre-
sponding nonlinear function and thus the constraint
l (k)j (z) � 0 may cut away parts of the feasible region.
To avoid this problem the ˛ constants have been in-
troduced. By using sufficiently large ˛ values it is en-
sured that l (k)j (z) � 0 whenever ḡ j(z) � 0 holds. The
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linearizations will then be valid outer approximations
of the feasible region of (1).

Generally it is not known how large the ˛ constants
should be. Instead an updating strategy is used. The
˛ values are checked and updated in each iteration if
they turn out to be too small. The updated value is ob-
tained by multiplying the current value with a constant
greater than one. When the current MILP solution is
a feasible solution in (1) and all ˛ constants are large
enough, the optimal solution to (1) has been found and
the algorithm terminates.

Calculating Sufficiently Large ˛-values

Since it is not known beforehand how large ˛ values to
use, it is shown below how to obtain large enough val-
ues to ensure �-optimality. As previously mentioned,
parts of the feasible region may be cut out when lin-
earizing the quasi-convex functions, if the value of the
˛ constant is not increased.

If a sufficiently large ˛ value can be found so that
the linearization is a global underestimator of the cor-
responding nonlinear function in the entire feasible re-
gion, the linearization should satisfy

ḡ j C ˛(k)j � (r ḡ j)
T(z � z̄ j) � ḡ j(z) ;

8z 2 fz 2 X � Y : ḡ j(z) � 0g: (8)

A weaker condition is that the inequality (8) is
satisfied only for all current iteration points. If this
condition is satisfied, the linearization is called a local
underestimator. Thus, the linearization is a local under-
estimator if it satisfies the following inequality in itera-
tion k

ḡ j C ˛(k)j � (r ḡ j)
T(zk � z̄ j) � ḡ j(zk) ;

j D 1; : : : ; Lk : (9)

This inequality is easy to check in each iteration. If
there is some ˛ constant ˛(k)j that does not satisfy (9)
then it is updated by multiplying the constant with ˇ.
The update formula is thus

˛
(kC1)
j D

(
ˇ � ˛

(k)
j ; l (k)j (zk) > ḡ j(zk) ;

˛
(k)
j ; otherwise:

(10)

The ˇ constant is a prespecified constant (ˇ > 1).
The concept of local underestimators is now extended

to feasible underestimators. A linearization is called
a feasible underestimator if it approximates the entire
feasible region. Thus, for such linearizations, it holds
that

ḡ j C ˛(k)j � (r ḡ j)
T (z � z̄ j) � 0;

8z 2 fz 2 X � Y : ḡ j(z) � 0g: (11)

This is a much more strict requirement since a local
underestimator need only underestimate the nonlinear
function in a finite set of infeasible points. But condi-
tion (11) is weaker than the condition for global under-
estimators (8) since a feasible underestimator does not
necessarily have to underestimate all points in the fea-
sible region of the corresponding nonlinear function.
It is only required that l (k)j � 0 in this region. In prac-
tice, a feasible underestimator needs to underestimate
the entire boundary or, more precisely, the convex hull
of the feasible region.

To see how to get a feasible underestimator, a new
constant h(k)j is introduced where, as previously with
the ˛ constants, the constant will be used in the jth lin-
earization and k stands for the value of the constant in
the kth iteration. The constant is defined as

h(k)j D
ḡ j
˛
(k)
j

: (12)

Since (11) can be divided by ˛(k)j , the inequality be-
comes

h(k)j C (r ḡ j)T(z � z̄ j) � 0 (13)

and moreover, because ˛(k)j � 1, it holds that

h(k)j � ḡ j : (14)

The level sets of quasi-convex functions are convex,
which means that if the constant parameter h(k)j is re-
placed with zero, then the linearization (13) is always
an outer approximation of the feasible region. In fact,
the linearization is then an approximation of an even
larger region

fz 2 X � Y : ḡ j(z) � ḡ j(zk)g

containing the feasible region. Thus, if h(k)j is suffi-
ciently small, (13) is an approximation of the feasible
region. In practice the h constants should satisfy

h(k)j � �h ; 8 j D 1; : : : ; Lk :
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This is the same as requiring that

˛
(k)
j �

ḡ j
�h
; 8 j D 1; : : : ; Lk ; (15)

which can easily be seen from (12). In (15) it can be
seen that there is an important connection between suf-
ficiently large ˛ values and the value of the nonlinear
function in the linearization point ( ḡ j). The larger the
term ḡ j is, the larger the constant ˛ has to be, to be suffi-
ciently large. One could use the same updating scheme
(10) as was used for obtaining a local underestimator,
but to speed up the process a new updating factor � > 1
(and � � ˇ) is introduced. This constant is used to up-
date the ˛ values if the corresponding linearizations are
not feasible underestimators.

Whenever the algorithm finds a feasible point it
checks that all linearizations are feasible underestima-
tors, i. e. that (15) holds. If there is some ˛(k)j constant
that violates this inequality, the value of that constant is
updated by multiplying it with � . Thus, the ˛ constants
will be updated according to

˛
(kC1)
j D

(
� � ˛

(k)
j ; ˛

(k)
j < ḡ j/�h ;

˛
(k)
j ; otherwise:

(16)

In fact it would be sufficient to require that the lin-
ear underestimators should not cut away the optimal
point z�, i. e. that l (k)j (z�) � 0. The algorithm would
then terminate in considerably fewer iterations, but
since the optimal solution z� is not known it is very dif-
ficult to check this requirement. The same difficulty also
appears if the algorithm would be based on global un-
derestimators of the type (8). However, as will follow,
global convergence of the algorithm towards the opti-
mal solution can be guaranteed by using local and fea-
sible underestimators. That is why the concepts of local
and feasible underestimators have been introduced.

Handling Infeasible MILP Problems

It is possible that the linearizations cut out enough of
the feasible region of (1) to make the corresponding
MILP problem infeasible. Then there would be no new
iteration point and the algorithm would not be able to
continue. The solution to this problem is to update all ˛
values and solve the MILP problem again, after updat-
ing the values. If there is still no feasible point, this pro-
cess is repeated until a feasible point is obtained. There

exist large enough ˛ values to make the MILP problem
feasible, since the nonlinear problem (1) was assumed
to be feasible. Thus, if the MILP problem is infeasible,
the ˛ update will be

˛
(kC1)
j D ˇ � ˛

(k)
j ; j D 1; : : : ; Lk : (17)

To illustrate the algorithm, a flowsheet of the algo-
rithm is given below.

Extended Cutting Plane Algorithm, Figure 1

Convergence

Convergence properties of the algorithm are now stud-
ied. Below it is proven that the algorithm converges to-
wards the optimal solution for the quasi-convex prob-
lem (1). There are three important properties which
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are needed to prove convergence. First, the algorithm
will never return to the same point if it is infeasible,
secondly the generated points will converge to a fea-
sible solution and finally this feasible solution will be
the global optimal solution to the original quasi-convex
problem (1).

Cycling

First it is shown that the algorithm never returns to the
same point if it is infeasible, i. e., that cycling is not pos-
sible. Note that compactness or quasi-convexity of the
constraint functions are unnecessary to prove this the-
orem.

Theorem 1 If, in iteration k, the current point zk is not
feasible, then all new points generated by the algorithm
will be different from zk.

Proof If zk is infeasible, then gk > 0 and a linearization
is added to the MILP problem. If this linearization was
the jth one added, then all new points zl generated by
the algorithm will satisfy

ḡ j C ˛(l )j � (r ḡ j)
T (zl � z̄ j) � 0 ; l > k: (18)

Since zl D zk (D z̄ j) does not satisfy the inequality
(18), all new points will be different from zk. �

It immediately follows that all previous points gener-
ated by the algorithm are different from zk as well.

Corollary 1 If the current point zk is infeasible, then zk

is different from all previous points.

Proof If there is a z j ; j < k such that z j D zk then zj

would be a point not satisfying the previous theorem.�

Convergence to a Feasible Point

Convergence to a feasible point for discrete problems is
directly ensured by the above cycling theorem. By as-
sumption, there are only a finite number of points in Y ,
and there is at least one feasible point. Consequently, if
the algorithm does not find any of the feasible points in
finite time, it would have to repeat an infeasible point
after generating at most jY j iteration points, which is
not possible under the cycling theorem.

Convergence in the mixed integer case can be
proven by utilizing the fact that the points xk are taken
on a compact set X, and the set Y is finite. This implies

that any infinite sequence of points fzk D (xk; yk); k 2
Kg taken on the set X � Y has a subsequence with
a limit point. The following theorem shows that any
limit point will be a feasible point which is a property
required for convergence. Note that the quasi-convex
property of the nonlinear functions is not required to
prove convergence of the algorithm. Quasi-convexity is
only required to ensure a global optimal solution.

The algorithm ensures that ˛(k)j � ḡ j/�h , but for
simplicity assume that equality holds for those j where
ḡ j � �h . Then the constant h(k)j satisfies

min (�h; ḡ j) � h(k)j � ḡ j : (19)

This follows directly from (14) and the fact that (15)
is already satisfied for ˛(k)j D 1 if ḡ j < �h .

Below it is proven that any limit point is a feasible
point.

Theorem 2 Suppose that the ˛-ECP algorithm gener-
ates an infinite sequence of points fzk; k 2 Kg. Then
the limit point of any convergent subsequence K̄ �K is
feasible.

Proof Assume there is a convergent subsequence
fzk ; k 2 K̄g with a limit point that is not feasible. Then
limk2K̄ gk D � > 0 and one can find a constantM such
that

h(k)j � min (�h ;
�

2
) ; 8 j > LM ; 8k > M;

by (19). Since subsequent points zk are solutions to
a linear program containing the linearization (13) it
holds for all k that

0 � h(k)j C (r ḡ j)T (zk � z̄ j)

� h(k)j � jjr ḡ jjj � jjz
k � z̄ j jj

when j D 1; : : : ; Lk . Define G as the maximal
norm of the gradient of g(z) in X � Y . That is,
G D maxfjjr gi(z)jj; z 2 X � Y ; i D 1; : : : ; pg. Then

jjzk � z̄ jjj �
h(k)j

jjr ḡ jjj
�

min (�h ; �/2)
G

> 0

when k > M and j > LM . This implies that the se-
quence is not a Cauchy sequence and thus not conver-
gent, which is a contradiction since it was assumed that
the sequence fzk ; k 2 K̄g was convergent. �
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Convergence to the Optimal Solution

Finally convergence of the algorithm to the global opti-
mal solution of (1) is shown.

First note that the algorithm will terminate in fi-
nite time at a point where all underestimators are
�-feasible underestimators, i. e. (15) is satisfied. This
follows from the convergence theorem. Since any con-
vergent subsequence has a limit point that is feasible,
it means that the entire sequence of points will also
converge to a feasible point. Thus, there is a tail of
the sequence, say fz̄ j; j D M; : : : g, where the initial
˛ values of the corresponding linearizations directly
satisfy (15). This is true for those M values that sat-
isfy ḡ j � �h ; 8 j > M. These ˛ values will remain con-
stant in subsequent iterations. On the other hand, af-
ter reaching a feasible point (ḡ j � �g), the old constants
˛
(k)
j ; j D 1; : : : ;M can only be updated a finite number

of times before being sufficiently large to satisfy (15).
Therefore the algorithm will eventually reach a feasible
point where all linearizations are �-feasible underesti-
mators and the algorithm terminates. It remains to see
if this point is also the optimal solution.

To prove that the obtained solution is the optimal
solution one needs to assume that all linear constraints
are feasible underestimators according to (11). This is
in general true if h(k)j D 0. However, in the actual al-
gorithm it was only required that h(k)j � �h . Thus, the
actual solution obtained by the algorithm can only be
ensured to be �-optimal.

Theorem 3 Assume that the ˛-ECP algorithm con-
verges to a feasible solution z1 and that all lineariza-
tions are feasible underestimators according to (11).
Then z1 is an optimal point in (1) and Z(z1), where
Z(z) D cTz, is the optimal solution of (1).

Proof Denote the feasible region of (1) with˝ , the fea-
sible region of the MILP problem that was solved to ob-
tain z1 with ˝1 and an optimal point of (1) with z�.
By (11) it holds that˝ � ˝1 and thus

Z(z1) � Z(z�): (20)

On the other hand z1 was feasible in (1) and thus

Z(z�) � Z(z1) : (21)

From (20) and (21) one gets that Z(z�) D Z(z1)
and thus Z(z1) is the optimal solution to (1) and z1

is an optimal point in (1). �

Cases

The algorithm is demonstrated on a quasi-convex in-
teger problem. In these, as well as in other test runs,
it has turned out that a suitable choice of ˇ and � is
ˇ D 1:3 and � D 10. The �-tolerances in these exam-
ples are �g D �h D 0:001.

Consider the problem

min 3y1 C 2y2;

s.t. 3:5 � y1y2 � 0;

y 2 f1; : : : ; 5g2:

(22)

The optimal solution to this problem is y D (2; 2),
which can be seen from the Fig. 2.

The steps executed by the ˛-ECP algorithm are:

Iteration 1. Solve problem

min 3y1 C 2y2;
s.t. y 2 f1; : : : ; 5g2:

The solution is y1 D (1; 1). A linearization in this
point

2:5C ˛(1)1
�
�1 �1

� �y1 � 1
y2 � 1

�
� 0

is added to the MILP problem according to (4).
Set ˛(1)1 D 1. The linearization l (1)1 is shown in the

Extended Cutting Plane Algorithm, Figure 2
Feasible region of (22)
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Fig. 2. As can be seen from the figure, the lineariza-
tion cuts away the optimal solution to the problem.

Iteration 2. The solution to the new MILP problem
is y2 D (1; 4). This point is a feasible solution to
the INLP problem. The linearization satisfies the
requirements of a local underestimator but is not
a feasible underestimator. Observe, that without the
concept of feasible underestimators the algorithm
would stop here at a nonoptimal point. However, in
order to ensure the linear function be a feasible un-
derestimator, the ˛ constant is updated according
to (16) and ˛(3)1 D 10. Since maxifgi (zk)g < 0, no
additional linearization is added.

Iteration 3. The solution to the new MILP problem
is y3 D (1; 2). A new linearization at this point is
added to the MILP problem (˛(3)2 D 1)

1:5C ˛(3)2
�
�2 �1

� �y1 � 1
y2 � 2

�
� 0:

Iteration 4. The MILP solution is y4 D (2; 2) which is
feasible, however, neither linearization is a feasible
underestimator, so the ˛ values are updated using
(16). The new values are ˛(5)1 D 100 and ˛(5)2 D 10.

Iteration 5. The solution of the modified MILP prob-
lem is y5 D (2; 1). Since it is infeasible, a new lin-
earization

1:5C ˛(5)3
�
�1 �2

� �y1 � 2
y2 � 1

�
� 0

is added, where ˛(5)3 D 1.
Iteration 6. The MILP solution is y6 D (1; 3) which is

also infeasible. A new linearization

0:5C ˛(6)4
�
�3 �1

� �y1 � 1
y2 � 3

�
� 0

is added (˛(6)4 D 1).
Iteration 7. The MILP solution is again the feasi-

ble solution y7 D (2; 2). The linearizations are not
feasible underestimators and thus the ˛ values
are updated. The new ˛ values are ˛(8)1 D 1000,
˛
(8)
2 D 100 and ˛(8)3 D ˛

(8)
4 D 10.

Iterations 8–10. The new solutions to the MILP prob-
lems are still y8;9;10 D (2; 2) but the ˛ values are not
large enough to guarantee that the linearizations are
feasible underestimators. Therefore the ˛ constants
are updated.

Iteration 11. The solution is y11 D (2; 2) and all lin-
earizations are feasible underestimators. The algo-
rithm terminates with y� D (2; 2).

The algorithm thus returns the global solution
y� D (2; 2) to (22) with the optimal value Z(2; 2) D 10.
The final MILP problem solved in iteration 11 is

min 3y1 C 2y2;

s.t. 2:5C 10;000(2 � y1 � y2) � 0;

1:5C 10;000(4 � 2y1 � y2) � 0;

1:5C 10;000(4 � y1 � 2y2) � 0;

0:5C 1000(6 � 3y1 � y2) � 0;
y 2 f1; : : : ; 5g2:

Conclusions

The above algorithm has several advantages when com-
pared to other similar algorithms for solving MINLP
problems. At each iteration, the procedure only solves
MILP subproblems and is thus a competitive alterna-
tive to algorithms where only NLP problems or both
NLP and MILP problems are solved in each itera-
tion.

One consequence is that since only MILP problems
are solved in each iteration, the nonlinear constraints
need not be calculated at relaxed values of the integer
variables. It can be very difficult to calculate the value
in a relaxed point if, for instance, there are binary vari-
ables that represent the existence of units in a process
and the constraints are evaluated by simulating the re-
sult of having those units present or not. Then it may
sometimes be impossible to evaluate the constraints if
the integer variables are relaxed.

The ˛-ECP algorithm also solves MINLP problems
that have general integer variables, not only binary vari-
ables. Also, no integer cuts are needed to ensure conver-
gence. This is not the case with all outer approximation
MINLP methods. In addition, the proposed algorithm
ensures global convergence for quasi-convex MINLP
problems.

Cutting plane methods are claimed to have slow
convergence. This, generally, is not the case if the con-
vergence rate is measured as the number of nonlinear
function evaluations. Numerical experience with the al-
gorithm indicates that there are many cases where the
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number of function evaluations are even magnitudes
lower than for competing algorithms that solve both
MINLP and NLP subproblems. This is a significant ad-
vantage if evaluation of the constraints is the most time-
consuming part of the problem.

Very good results for the algorithm for a set of dif-
ficult block optimization problems is reported in [3].
Therefore, the algorithm also appears to work very well
on problems where the problem complexity is domi-
nated by the integer part.
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Introduction

The roots of contemporary optimization are found in
the works of some of the greatest minds in mathe-
matics: Lagrange, Weierstrass, Caratheodory and von
Neumann to name a few. However, it was the work of
George Dantzig in the late 1940s that catalyzed much
of the research comprising the core of optimization,
mathematical programming and operations research.
Dantzig developed the simplex algorithm and proved
the discipline’s fundamental theorem, and in doing so
he became known as the father of linear programming.
The simplex algorithm is arguably one of the most im-
portant discoveries of the 20th century. Applications
and subsequent theoretical developments have flour-
ished ever since.

The Fundamental Theorem of Linear Programming
states that every well-posed linear program has a basic
optimal solution. Some related theory shows that this
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result can be interpreted algebraically (as stated), ge-
ometrically (replace basic with vertex), or in terms of
convex analysis (replace basic with extreme point). This
multi-faceted perspective is a byproduct of the linearity
since the supporting polyhedral analysis shows that all
three constructs are one and the same. However, a nat-
ural question is whether or not the algebraic interpre-
tation extends beyond the confines of linearity. The an-
swer is yes, and the goal of this article is to explain how
a broader perspective is achieved.

Definitions

We consider the following multiple objective extension
of the standard form linear program

(MOP)minfF(x) : Ax D bg ;

where each component function Fi of F : Rn ! Rp

has the form Fi(x) D
Pn

jD1 f(i; j)(x j). Notice that each
Fi is separable in the sense that f(i; j) only depends
on the component xj. The codomain of F is ordered
lexicographically so that the minimization problem is
well defined. Unlike a standard form linear program,
(MOP) does not have inequality constraints. However,
the lexicographic ordering allows us to model inequali-
ties through the objective function. Let D : Rn ! R be
defined by

D(x) D
nX
jD1

maxf�x j; 0g ;

so that

argmin
˚
cTx : Ax D b; x � 0

�

D argmin
��

D(x)
cTx

�
: Ax D b

	
(1)

and

(LP) min
˚
cTx : Ax D b; x � 0

�

D min
��

D(x)
cTx

�
: Ax D b

	
; (2)

provided that (LP) is well-posed. Hence (MOP) is an
extension of (LP).Wemake the tacit assumption that A
has full row rank.

For x 2 Rn
C � fx 2 R : x � 0g, we define

B(x) D fi : xi > 0g and N(x) D fi : xi D 0g. The argu-
ment is assumed when it is clear. A set subscripts on

a vector (matrix) indicates the subvector (submatrix)
whose components (columns) are indexed by the set.
For example,

Ax D
�

1 1 0
2 �1 �1

�0
@

1
0
1

1
A

D

�
1 0
2 �1

��
1
1

�
C

�
1
�1

� �
0
�

D ABxB C ANxN
D ABxB :

A basic feasible solution is an x 2 Rn
C satisfying Ax D

b so that the columns of AB are linearly independent.
A basic feasible solution within the optimal set of (LP)
is called a basic optimal solution, and the Fundamen-
tal Theorem states that such a solution exists as long as
(LP) is well-posed – i. e. not infeasible or unbounded.

Observe that the definition of a basic feasible solu-
tion is independent of the objective function, after all, it
is only concerned with feasibility. However, the (MOP)
framework blurs the division between the constraints
and the objective, and the Fundamental Theorem’s ex-
tension relies on a broader definition of B andN that in-
cludes information from the objective. The idea is to re-
place the separation of zero and nonzero expressed by B
and N with the distinction of whether or not the objec-
tive is monotonic. Notice that each term ofD has a nat-
ural change in monotonicity when its argument is 0.
It is precisely this observation that permits the broader
perspective.

We say that a function f from R into R is lo-
cally strongly monotonic at x if there is a neighborhood
about x over which f is strictly increasing, strictly de-
creasing or constant. The objective F is not a single
variable mapping, making the concept of monotonicity
opaque. However, the terms of each component func-
tions are single variable mappings, and we define

Hj D fx j : f(i; j) is not strongly monotonic at x j

for some i 2 f1; 2; : : : ; pgg :

Each Hj is the collection of values on the jth axis at
which the monotonicity of at least one of the objec-
tive’s components changes. In the case of D, we have
for each j that Hj D f0g. The jth component of x is
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cornered if x j 2 Hj , and the analogs to B and N are

ˇ(x) D f j : x j is not corneredg and

�(x) D f j : x j is corneredg :

As before, we drop the argument when it is clear. The
corresponding definition of a basic feasible solution is
a corner solution, which is any x 2 Rn satisfying Ax D
b so that the columns of Aˇ are linearly independent.

We are not guaranteed that (MOP) has a corner so-
lution, and to circumvent this undesirable possibility,
we assume that Hj is non-empty for each j. Then, from
the full rank assumption ofAwe know that the columns
of A can be rearranged so that A D [A0jA00], where A0

is invertible. Partitioning x appropriately and corner-
ing each component of x00, we have that ((A0)�1(b �
Ax00)T; (x00)T)T is a corner solution.

The monotonicity discussion above permits an ex-
tended definition of a basic optimal solution, but it is
not enough to extend the Fundamental Theorem. For
this we require F to have an additional monotonicity
property. We say that a real valued function f is strongly
linearly monotonic over ˝ if it is strongly monotonic,
which again means strictly increasing, strictly decreas-
ing or constant, on each line segment within ˝ . The
monotonicity property we impose on F to extend the
Fundamental Theorem is that each component func-
tion Fi be strongly linearly monotonic on the closure
of

˝(x) D fx C ˛q : ˛ 2 R;Aq D 0; �(x C ˛q)

D �(x); x�(x) D (x C ˛q)�(x)g ;

for each non-cornered optimal x. This assumption
guarantees the component functions, and in turn F, are
well behaved as we move from a non-corner optimal
solution in the affine plane fx : Ax D bg.

Methods

The following result extends the Fundamental Theo-
rem of Linear Programming.

Extension of the Fundamental Theorem

Under the assumptions of the previous section, we have
that if minfF(x) : Ax D bg has a solution, then it has
a corner optimal solution.

The fact that this result includes the original Fun-
damental Theorem follows directly from (1) and (2).

Although the monotonicity properties required by the
result are technical, they are not overly restrictive. In-
deed, no assumption of continuity or differentiability
is needed, and the extension permits functions that are
standard counter examples to other analytical results.
To highlight this fact, we consider an example with
A D [0; 0; 1] and b D [0], which makes the feasible re-
gionR2�f0g. We let g be the standard Cantor function
on [0; 1], which is continuous, piecewise constant, and
differentiable almost everywhere with f 0(x) D 0. This
function fails to be differentiable on the Cantor set, de-
noted by C D f

P1
iD1 �i/3i : �i 2 f0; 2gg. If f (i, j) is the

Cantor function, then Hj contains each of these points.
We additionally let h be the Dirichlet function on [1, 2]
defined by

h(x) D
�

0; x 2 [1; 2] \Q
1; x 62 [1; 2] \Q

:

The Dirichlet function is discontinuous over its entire
domain. These two functions have played a critical role
in the development of analysis since they highlight er-
rors in previous mathematical convention. The point of
discussing them here is to show that the extension of
the Fundamental Theorem does not suffer from similar
hindrances.

We let F1 D D, which guarantees each Hj con-
tains 0. The first two component functions of F2 are

f(2;1)(x1) D

8̂
<̂
ˆ̂:

1 � x; x1 < 1
h(x); 1 � x � 2
sin(x � (4C 
)/2)C 1 x1 > 2 ;

and

f(2;2)(x2) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

arctan(1 � x); x2 � 1
1 � 2g(x � 1); 1 < x2 < 4/3
2g(x � 1) � 1; 4/3 � x2 < 2
ln(x � 1); x2 � 2 :

Since every feasible element has x3 D 0 and 0 2 H3,
this element is always cornered. Notice that f(2;3) only
needs to be defined over the singleton {0}, and we set
f(2;3)(0) D 0. Each of the functions just defined are non-
negative over their domains, and since F1(1; 1; 0) D 0
and F2(1; 1; 0) D 0, the minimum values of F1 and F2

over fx : Ax D bg D fx 2 R3 : x3 D 0g are simultane-
ously zero.
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From the definition of F we have that

H1 D f0g [ [1; 2] [ f2C k
 : k D 0; 1; 2; : : : g

H2 D f0g [ (C C 1); and H3 D f0g :

Since x3 is cornered for every feasible element, we have
that ˇ(x) � f1; 2g, and hence, Aˇ (x) is a submatrix of
[0, 0]. No subcollection of these columns has linearly
independent columns, and we conclude that every cor-
ner satisfies ˇ(x) D ;. This means the collection of cor-
ners is H1 � H2 � H3. Since (1, 1, 0) is in this set and
F(1; 1; 0) D (0; 0)T, we have that a corner optimal so-
lution exists. To see that there are non-corner optimal
solutions, notice that F(1; 3/2; 0) is also (0; 0)T but that
(1; 3/2; 0) is not a corner.

Conclusions

The Fundamental Theorem of Linear Programming
was one of the most important results of the 20th cen-
tury, and we have discussed how the algebraic insights
of this result extend beyond the assumption of linear-
ity. The extended presentation leads to simplex type
procedures for many problems in which the basic idea
is to move from corner to corner until optimality is
achieved. Unfortunately, the number of corners can be
uncountable as demonstrated by our example, so we
lose the finite convergence of linear programming.
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Two types of stochastic programs are widely known:
two-stage and chance constrained problems. The last
ones were introduced to stochastic programming by A.
Charnes andW.W. Cooper in the 1950s [1] and are for-
mally described defining a nonlinear probability func-
tion v(x, t) of the form:

v(x; t) D P f� : f (x; �) � tg : (1)

Here f (x, �) is a real valued function, defined on Rr ×
Rv, t is a fixed level of reliability, � = � (!) is a ran-
dom parameter and P denotes probability. Note that for
a fixed x the function v(x, t) as a function of t is the dis-
tribution function of the random variable f (x, s).

Various examples of extremum problems with
probability function v(x, t) can be found in [3, Chap. 1],
where among others also the so-called ‘stock exchange’
paradox is analyzed. To overcome a paradoxical situa-
tion being caused by an unsuccessful choice of the ob-
jective expected return, the strategy which maximizes
the expected growth of return (Kelly strategy), was ap-
plied in [2]. In [3] it was demonstrated that a risky (i. e.
probabilistic) strategy is better than the Kelly one.

In the approximate maximization of v(x, t) over the
constraint set X � Rr we should apply some (quasi-)
gradient type method. This in turn needs the presenta-
tion of v(x, t) as an integral, which we can realize via the
Heaviside zero-one function � (�):

�(t � f (x; �)) D

(
1; if f (x; �) � t;
0; if f (x; �) > t:

Then

v(x; t) D
Z

S

�(t � f (x; �))�( d�); (2)

where � (�) is the distribution function of a random
vector � and the integral in (2) is understood in the
Lebesgue–Stieltjes sense.
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Integral representation (2) of the probability func-
tion v(x, t) demonstrates us expressively difficulties
which arise in approximate maximization of its value:
integrand � (�) itself is a discontinuous zero-one func-
tion and integral (2) over � (�) is never convex. Only in
some cases, e. g., if function f (x, �) is jointly convex and
continuous in (x, �) and � (�) as a measure is quasicon-
cave, then function v(x, t) is quasiconcave in x, see [12].

In this survey we at first will solve iteratively, using
stochastic analogues of linearization and gradient pro-
jection methods, the following probability maximiza-
tion problem:

max
x2X

v(x; t) D max
x2X

P f� : f (x; �) � tg ; (3)

where the constraint set X is assumed to be simple, i. e.
onX we can effectively solve auxiliary problems of max-
imization of linear or quadratic functions. At second,
we will exploit the introduced technique for minimiza-
tion of a smooth function over probabilistic equality-
inequality type constraints, using a stochastic analogue
of the modified Lagrange method.

Gradient type methods require differentiability of
a cost function. A lot of papers have been devoted to
differentiability conditions of v(x, t) in x, starting from
[13] where v0x(x, t) was presented via surface integral.
The gradient of v(x, t) via volume integral was pre-
sented in [16]; see also the survey paper [4]. All these
formulas are quite uncomfortable to handle, especially
for numerical methods. In the following we will assume
differentiability of v(x, t) in x and in (x, t), i. e. there ex-
ist v0x (x, t) and v00x t(x, t).

Define solution sets X� for the problem (3) as fol-
lows:

X� D
˚
x� : (v0x(x

�; t); x � x�) � 0; 8x 2 X
�
; (4)

or

X� D
˚
x� : x� D 
[x� C �v0x (x; t)]; 8� > 0

�
; (5)

where 
[y] means the projection of a vector y to the
set X. Then we can interpret linearization and gradient
projection methods as iteration ways for testing condi-
tions (4) and (5), respectively.

Following [17, Chap. IV], method for solution of
a problem is said to be convergent, if limit points of the
sequence {xn}, generated by the algorithm, belong to the
solution set X�.

Denote n independent realizations �1, . . . , �n of
a random vector � by �n, i. e., �n = (�1, . . . , �n). Then,
following [14] and [10], the smoothed approximation
of v(x, t) looks as follows:

vn(x; t; �n) D vn(x; t; �1 : : : ; �n)

D
1

nhn

nX
iD1

tZ

�1

K(
� � f (x; �i)

hn
)d�; (6)

where the sequence {hn} is connected with the sequence
N = {1, 2, . . . } as

lim hn D 0; lim nhn D 1; n 2 N; (7)

and the continuous kernel function K(y) satisfies con-
ditions [14]:

1Z

�1

K(y) dy D 1; sup
�1<y<1

jK(y)j <1; (8)

1Z

�1

yK(y) dy D 0;
1Z

�1

jyK(y)j dy <1: (9)

Gradient of the smoothed approximate probability
function vn(x, t, �n) from (6) looks now as follows:

v0nx (x; t; �
n)

D �
1

nhn

nX
iD1

f 0x(x; �i )K
�
t � f (x; �i)

hn

�
: (10)

Even estimates (6) and (10) are biased, i. e.,

Ev0nx (x; t; �
n) ¤ v0x(x; t);

we still have

Ev0nx(x; t; �
n)

D v0x(x; t) � hn

1Z

�1

yK(y)v0x;t(x; t � �hn y) dy;

where 0 � � � 1, see [15], and consequently,

lim
n!1

sup
x2X

ˇ̌
Ev0nx (x; t; �

n) � v0x (x; t)
ˇ̌
D 0:

For approximate solution of (3) consider the
stochastic analogue of the linearization method:

xnC1 D xn C �n(xn � xn); (11)
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where xn is a solution of the linear problem:

max
x2X

(v0nx(xn; t; �
n); x) D v0nx (xn; t; �

n ; xn)

and x0 2 X.
Explain the stochastic nature of the sequence {xn},

generated by the algorithm (11). For each n the ran-
dom vector xn is defined on the sigma-algebra Fn� 1,
generated by random vectors �1, . . . , �n� 1. Union of
the sequence of sub-sigma-algebras [1iD1 Fi is equal to
the sigma-algebra F of the initial probability space (˝ ,
F, P), where the random vector � was defined. Note that
in each iteration step we should generate new (indepen-
dent) realizations of the random vector �.

Assume that function f (x, �) is differentiable in x
and that for all t 2 R1 and all x 2 X its gradient is
bounded with a �-integrable function K(�):

j fx(x; �)j � K(�);
Z

Rv

K(�)�( d�) <1: (12)

Let the sequence {�n} of steplength satisfy condi-
tions:

0 � �n � 1; �n ! 0;
1X
nD1

�n D 1: (13)

Then the following convergence theorem holds [5]

Theorem 1 Let differentiable in x function f (x, �) sat-
isfy conditions (12), smoothing continuous kernel K(y)
conditions (8), (9), sequence {�n} of steplength conditions
(13), and let the solution set X� be finite. Then all limit
points of the sequence {xn}, generated by the algorithm
(11), belong almost surely to the solution set X�.

Remark 2 Proof of the theorem relies on the stochastic
analogue of [17, Thm. A], see [9, Chap. II, Thm. 8], and
was verified in [5].

Remark 3 Statements of the theorem are valid also
for the stochastic analogue of the gradient projection
method, see [5]:

xnC1 D 
[xn C �nv0nx(xn; t; �n)]; x0 2 X: (14)

As it was described earlier, algorithms (11) and (14)
need in nth iteration step n independent realizations
of the random vector �. In [11] it was verified that in
asymptotic sense statistical estimation type methods, as

algorithms (11) and (14) are, have no advantages com-
pared with methods of random search, but need more
calculating efforts.

As an example of the last statement consider the free
maximum problem:

max
x2Rr
D max

x2Rr
P f� : f (x; �) � tg : (15)

Let �n be the nth realization of the random variable
�. Consider the algorithm:

xnC1 D xn �
�n

hn
f 0x(xn; �n)K(

t � f (xn; �n)
hn

): (16)

Assume, in addition to assumptions (7)–(9) and
(12), (13) to {hn}, {�n}, K(y) and f (x, �), that

1X
nD1

�2n <1;
1X
nD1

�nhn <1;
1X
nD1

�2n
h2n
<1: (17)

Then, if
R

Rv j f 0x(x; �)j�(d�) is bounded for
bounded x, the limit points of the sequence {xn} be-
long almost surely to the set X� of stationary points,

X� D
˚
x� : v0x(x

�; t) D 0
�
;

see [7].

Remark 4 Even algorithms (11) and (14) take more
calculating efforts compared with random search
method (16), the last one is very unstable, and con-
verges only ‘in probability’ sense.

Consider the following nonlinear programming prob-
lem with a smooth cost function f (x) and with proba-
bilistic constraints of inequality type with a fixed level
of reliability ˛, 0 < ˛ < 1, i. e.,

min
x2Rr
f f (x) : v(x; t) � ˛g (18)

(for sake of simplicity consider only the case with one
inequality constraint).

Define the solution set X� for the problem (18) as
follows [8]:

X� D fx� : F \ Gg ; (19)

where

F D
n
x� :

ˇ̌
f 0x(x

�)C v0x(x
�; t)��

ˇ̌2
D 0

o
; (20)



972 E Extremum Problems with Probability Functions: Kernel Type Solution Methods

with

�� D argmin
	�0

ˇ̌
f 0x(x

�)C v0x(x
�; t)�

ˇ̌2
; (21)

and

G D fx� : v(x�; t) � ˛g ; (22)

where �� is the optimal Lagrange multiplier of the La-
grangian.

Replacing v(x, t) and v0x (x, t) with their estimates
(6) and (10), we should regularize the estimated ana-
logue of (21) since the approximated subproblem (21)
could be ill-posed.

Denote by

wn(x; t; �n) D minf0; vn(x; t; �n) � ˛g:

Then the stochastic analogue of modified Lagrange
method looks as follows:

xnC1 D xn
� �n[ f 0x(xn)C v0nx(xn; t; �

n)�n(�n)
CMv0nx (xn; t; �

n)wn(xn; t; �n)];

(23)

where �n(�n) is a solution of the regularized auxiliary
subproblem of quadratic programming

min
	�0

hˇ̌
f 0x(xn)C v0nx(xn ; t; �

n)�
ˇ̌2
C ˛n j�j

2
i

with ˛n > 0, ˛n! 0, n!1 andM > 0. The following
convergence theorem is valid, see [6]:

Theorem 5 Let conditions of the previous theorem be
satisfied, let the cost function f (x) be continuously differ-
entiable and let

1X
nD1

˛n�n <1:

Then limit points of the sequence, generated by the algo-
rithm (23), belong almost surely to the solution set X�,
defined by (19).
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Facilities layout (FL) is concerned with the placement,
relative to one another, of the facilities of some physi-
cal system. This area differs from planar multifacilities
location (MFL; cf. also � Multifacility and Restricted
Location Problems) in that in FL the facilities are all as-
sumed to have a significant physical area and are to be

placed in a finite total area which represents their phys-
ical system. In MFL the facilities are assumed to be di-
mensionless points.

The aim of FL is to produce a scale plan (in some
scenarios called a block plan) of the physical system to
be designed. The plan depicts the facilities of the system
(each one having its given area and shape) laid out rel-
ative to each other. An example of a simple block plan
is shown in Fig. 1.

The identification of effective plans depends upon
interfacility relationships, which may be quantitative
(e. g. transportation costs) or qualitative (e. g. utility
scores, called REL chart scores, based on facility adja-
cency). Each FL problem involves optimizing one or
more objective functions based on the given interfacil-
ity relationship.

FL is an important application area of optimiza-
tion. This is partly because increased global competi-
tion in manufacturing has spurred renewed efforts to

Facilities Layout Problems, Figure 1
A block plan with 11 facilities, including the exterior region,
indicated as facility 1
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reduce production costs. Efficient physical layout de-
sign of manufacturing plants is critical in the quest to
achieve and maintain competitive productivity. Indeed,
up to 70% of the operating costs of a manufacturing sys-
tem are related to materials handling and layout. This is
because improved layout design often brings about re-
ductions in materials handling, transportation, conges-
tion, and work-in-process.

There are applications of FL techniques in areas
other than manufacturing plant design. Examples in-
clude the design of office blocks and other commer-
cial buildings, hospitals and other public services, and
university campuses, government agencies, and sports
complexes. As will become evident in the following dis-
cussion, most FL models are NP-hard in the strong
sense (cf. also � Complexity Theory; � Complexity
Classes in Optimization). This has reinforced the search
for effective heuristics for them.

One of the earliest and best-known FL heuristics is
termed CRAFT (coordinate relative allocation of facil-
ities technique) [1]. It requires an initial block plan as
input, which it attempts to improve by exchanging the
positions of two or three facilities at a time. In con-
trast to this improved procedure, many other early FL
heuristics are construction procedures which build up
the final block plan iteratively, by placing facilities se-
quentially. The serial decision process requires, at each
step:
i) a selection of which facility is to be placed next in

the block plan being constructed, and
ii) a decision as to where this facility is going to be

placed.
Early construction procedures include: COREL-
LAP [23] and ALDEP [32].

One of the major FL optimization models is based
on the quadratic assignment problem (QAP; cf. also
� Quadratic Assignment Problem). For overviews on
this subject see [4,5,29]. Formulations of various FL
problems based on the QAP involve minimizing the
total transportation cost between all pairs of facilities.
This total cost comprises a sum of components calcu-
lated according to the distance and the amount of work
flow between each pair of facilities. The constraints
of the QAP model are based on the assumption that
the block plan is tessellated into a grid of unit squares
(called locations) and that no two facilities are to be as-
signed the same location. Many of these models assume

that all the facilities are of equal area. However, when
facilities have unequal areas or irregular shapes, addi-
tional constraints must be added. The facilities are par-
titioned into a number of subfacilities of unit area. The
problem then is to locate the subfacilities so that all the
subfacilities of each facility are assigned adjacent loca-
tions in an appropriate configuration. As the QAP is
NP-hard, most FL applications of it are concerned with
heuristics. A QAP model of a common FL problem is:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

iD1

nX
jD1

nX
kD1

nX
rD1

ai jkr xi jxkr

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j D 0 or 1; i; j D 1; : : : ; n;

where

n D the number of subfacilities,
ci j D the cost per unit time period of assigning sub-

facility i to location j. (These costs are usually
one-time relocation costs which are converted
to an annual equivalent.)

djr D the cost per movement or interaction over the
distance from location i to location r,

fi k D the number of moves per time period in the
workflow from subfacility i to subfacility k,

Si D the set of locations to which subfacility i may
be feasibly assigned,

ai jkr D

(
fi kd jr if i ¤ k or j ¤ r;
ci j if i D k and j D r;

xi j D

8̂
<̂
ˆ̂:

1 if subfacility i
is assigned to location j;

0 otherwise:

If there are more locations than subfacilities, a num-
ber of dummy facilities can be introduced with zero cij
and f ik values. The f ik values are set to relatively high
levels if subfacilities i and k belong to the same facility,
thereby ensuring their adjacency. The cij values are set
to relatively high values when j 62 Si.

A second major FL optimization model is based on
graph theory (GT) and involves maximizing the sum
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of the REL chart scores corresponding to the pairs of
facilities that are adjacent in the block plan. The for-
mulations can accommodate specifications that the re-
gion exterior to the block plan is one of the facilities,
and that the facilities are of unequal areas and vari-
ous shapes. GT models represent facilities and the pos-
sible adjacency of pairs of facilities in the block plan
by the vertices and edges of a graph, respectively. The
REL chart scores are used to weight the edges of the
graph. The objective is to identify the planar subgraph
(termed an adjacency graph) of this graph with the
largest total weight in terms of its REL chart scores.
The optimal adjacency graph specifies which pairs of
facilities are to be placed adjacent to each other in the
block plan. As this model was shown to be NP-hard in
[13], most research concentrates on heuristics. How-
ever, some GT algorithms for FL problems guarantee-
ing optimality, do exist. The algorithm in [12] involves
a series of tests for determining whether a proposed ad-
jacency graph being constructed is planar or not. In [6]
an integer programming formulation based on the GT
approach is discussed. It employs a Lagrangian relax-
ation procedure (cf. also � Integer Programming: La-
grangian Relaxation) for the derivation of bounds to be
used in a branch and bound algorithm (cf. also � Inte-
ger Programming: Branch and Bound Methods). Ap-
proaches to enforce connectivity of subgraphs corre-
sponding to facilities are taken from k-cardinality tree
models ([14] and [7]) which can also incorporate for-
bidden areas [10,11].

Early GT heuristics first identify the adjacency
graph and then attempt to construct a block plan cor-
responding to the information provided by the graph.
Examples include the heuristics of [3,9,24] and [27].
The comparisons in [28] show that the results of [27]
are invariably so close to optimality that the quest for
heuristics which find good quality adjacency graphs can
now be considered essentially solved. More recent GT
heuristics build up the adjacency graph and its corre-
sponding block plan simultaneously, such as the heuris-
tics of [37].

It has been observed that many of the previously
mentioned techniques are not computationally feasible
for some of the large scale numerical instances of FL
problems encountered in industry and often identify lo-
cal optima which are clearly far from globally optimal.
This has given rise to many investigations into whether

the more recently developed random search procedures
(such as simulated annealing (SA; cf. also � Simulated
Annealing Methods in Protein Folding) and genetic al-
gorithms (GA; cf. also � Genetic Algorithms)) could
be used to devise useful FL heuristics. There is a fun-
damental difference between SA and GA. That is, GA
must, of necessity, deal with a set of possible solutions
to the problem in hand, while SA considers only one
possible solution at a time. Because GA explores the set
of all feasible solutions by combining the characteristics
of various single feasible solutions, it sometimes covers
a larger portion of the solution space than SA, within
the same computational time. Thus, it appears to be the
more successful of the two for FL problems.

SA can be applied to FL problems in a variety of
ways. There exist SA improvement heuristics for FL
problems with
i) multiple floors, (based on the improvement ap-

proach) [26],
ii) multiple objectives based on both transportation

costs and REL chart scores [33].
For further information see [16] and [22]. However,
it appears that the logarithmic cooling schedule of SA
causes its FL heuristics to perform relatively slowly. For
this reason it seems that GA heuristics are more effec-
tive for FL problems. For instance the GA approach to
solve the QAP, devised in [35], can be applied to QAP
models of FL problems, such as the one given earlier.
However, this GA heuristic has only a single solution
giving rise to a mutant, which means that parallelism is
lost to a certain extent.

To overcome this deficiency, it is possible to design
more effective GA heuristics for FL problems by adopt-
ing a small mutation rate and a large crossover rate.
A heuristic with efficient crossover operators with low
level mutation has been devised in [34]. Further heuris-
tic attempts to tackle the QAP include tabu search (see
e. g. [2]) or the reverse elimination method [36].

The approaches to FL described so far have been
classical in the sense that they have nearly all embraced
single objective functions. In contrast, there have been
developments in FL models with multiple criteria. Ex-
amples include: a multifactor plant layout methodology
devised in [15], a layout planning system with multiple
criteria and a variable domain representation in [18],
an expert system using priorities for solving multiple
criteria facilities layout problems in [25], and a multi-



978 F Facilities Layout Problems

attribute decision theoretic approach for layout design
in [31].

There are numerous computer programs in exis-
tence which implement FL heuristics. Three early ones
from the 1960s: CRAFT, CORELAP, and ALDEP have
already been discussed. In the 1970s two improvement-
style heuristics, both based on CRAFT, appeared to be
among the best of those proposed then. FRAT (facili-
ties relative allocation technique) [21] assumes that all
the facilities have equal areas. TSP (terminal sampling
procedure) [17] carries out the interchange of the place-
ment, in the block plan, of pairs of facilities on a se-
lective basis. The program has the ability to use im-
proved block plans as input and to fix the placement of
certain facilities. Three of the large number of FL pro-
grams written in the 1980s will be mentioned. SPACE-
CRAFT [20] is an extension of CRAFT to multifloor FL
problems. See [17] for a perturbation scheme, and [18]
for a new FL system which accommodates a variety of
types of spaces, including solid, circulation, and empty.
A multicriteria objective function involves transporta-
tion cost, REL chart scores, the percentage of unused
area, and block plan structure.

The 1990s saw a different type of FL program
emerging: the decision support system (DSS). One such
example, called layout manager [8] is a user-friendly
menu-driven DSS which provides for the choice be-
tween a number of optimality criteria including, among
others, transportation cost and REL chart scores. The
system is written in Pascal, within the Microsoft Win-
dows environment.
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A typical assumption in facility location models is that
the cost customers face in patronizing facilities is in-
dependent of the actions of other customers (with the
possible exception of capacity restrictions). For exam-
ple, many classical facility location models assume that
customers patronize the facility (or are served by the fa-
cility) that minimizes the cost of travel between the fa-
cility and the customer (e. g., see, [12,13]). Other facility
location models incorporate marketing considerations,
and assume that customers patronize the facility that is
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‘most attractive’ to them, where attractiveness depends
not only on travel cost, but also on attributes of each fa-
cility such as size, goods offered, and number of servers
(e. g., see [15]).

However, in many situations, the cost customers
face in patronizing a facility is a function of the actions
of other customers. For example, waiting time for ser-
vice may be longer in a store that is patronized by many
customers than in a store with fewer customers. An am-
bulance that serves a large, heavily-populated area is
likely to incur longer delays in providing service than an
ambulance serving a smaller, less-populated area. These
are examples of negative externalities associated with
the market share of the facility. Conversely, in some
cases the externalities could be positive: for example,
a crowded nightclub is likely to be more popular than
one that attracts fewer patrons.

If facilities provide essential services (e. g., gasoline,
drivers’ licenses), customer demand may be constant,
regardless of the costs customers face in obtaining ser-
vices. However, for facilities that provide nonessential
services (e. g., fast-food restaurants, retail stores), cus-
tomer demand might be a function of the total cost of
receiving service.

This chapter discusses models for the location of
facilities that incorporate not only travel cost but also
negative externalities associated with the market share
of the facility. Various problem formulations are dis-
cussed, and selected references are provided. A more
comprehensive discussion is given in [10]. The case of
positive externalities is not discussed because, for such
problems, degenerate solutions tend to occur (e. g., the
optimal solution may be to locate all facilities at the
same point, with any point in the region being opti-
mal).

One can consider two different situations regard-
ing the allocation of customer demands to facilities.
In a user-optimizing environment, customers patron-
ize the facility that minimizes their total cost, in this
case travel cost plus externality cost. Such a situation
occurs, for example, in customers’ selection of grocery
stores and bank branches. In a system-optimizing envi-
ronment, customers are assigned to facilities by a cen-
tral agent. An example is the assignment of voters to
polling places.

In the system-optimizing environment, allocation
of customer demands can be considered as part of the

location optimization problem, similar to many mod-
els of facility location that do not incorporate exter-
nalities. In the user-optimizing environment, however,
models of facility location have at their core a customer-
choice equilibrium problem: equilibrium occurs when
each customer frequents the facility that minimizes his
total travel cost plus externality cost. For purely neg-
ative externalities, the equilibrium utilization of facili-
ties (total demand satisfied by each facility) is unique,
although the equilibrium user-choice pattern (alloca-
tion of individual customer demands to facilities) may
not be unique ([8,18]). This result holds whether de-
mands are inelastic or elastic with respect to total cus-
tomer cost. Determination of the user-choice equilib-
rium can be written as a nonlinear complementarity
problem (analogous to [1]), and also as a network flow
problem [21] which can be solved using network opti-
mization techniques (e. g., [20]).

This article discusses models for the location of fa-
cilities in both types of customer choice environments.
A distinction is made between facilities with mobile
servers (e. g., ambulances) that travel to fixed customers
and return to their home location between calls and fa-
cilities that house fixed servers (e. g., postal clerks).

Location of Mobile Servers

Some of the first location models to incorporate ex-
ternalities were developed in the context of emergency
service vehicle location. In such models, the servers
(the emergency service vehicles) travel to customers,
and the externality cost is the servers’ queueing de-
lay. A system-optimizing environment is assumed: cus-
tomers are assigned to service regions of the servers.
Models for determining the home location of such mo-
bile servers have considered a variety of location ob-
jectives, including minimization of mean response time
to customers (travel time plus queue delay), minimiza-
tion of the maximum response time to any customer,
equalization of server workloads, and other objectives.
Examples of such models can be found in [3,4,5,7,11],
and [19].

Location of Fixed Service Facilities

Most other facility location models that incorporate ex-
ternality costs have assumed fixed service facilities.
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System-Optimizing Environment

In the system-optimizing environment, since cus-
tomers are assigned centrally to facilities, it is natu-
ral to think only of noncompeting facilities. For the
case of fixed customer demands, a natural objective
in locating facilities (and allocating customers to fa-
cilities) is to minimize total customer cost. This prob-
lem is a generalized p-median problem. Such a model
might be appropriate for the location of certain pub-
lic facilities such as voters’ polling places. O. Berman
and R.C. Larson [2] presented a p-median problem
that includes queueing-like congestion of the facilities.
In the system-optimizing environment with elastic de-
mands, a natural objective is to locate facilities to max-
imize the total demand served by facilities (i. e., max-
imum facility utilization). Such a model might be rel-
evant for the location of fast-food franchises or clinics
for preventive childcare (e. g., inoculations). This facil-
ity location problem is a generalized p-median prob-
lem with an embedded demand equilibrium [18]. For
the case of discrete customer demands on a network,
S. Kumar [18] proved a nodal optimality theorem and
showed that the problem can be formulated as a nonlin-
ear integer convex programming problem and solved
using branch and bound (see also [10]).

User-Optimizing Environment

In the user-optimizing environment with fixed service
facilities, one can distinguish between noncompeting
and competing facilities. For the case of noncompet-
ing facilities in the user-optimizing environment with
inelastic demand, a natural location objective is to min-
imize total customer cost. This framework might be ap-
propriate for the location of public facilities such as So-
cial Security Offices. Assuming discrete customer de-
mands, the problem can be written as a mixed integer
bilevel program [10] (given a set of fixed facility loca-
tions, one can then determine the user-choice equilib-
rium utilization of facilities). M.L. Brandeau and S.S.
Chiu [8] considered the case of two such facilities on
a tree network with nodal demands. They character-
ized the optimal facility locations, and presented an al-
gorithm for finding those locations.

A typical location objective for the case of com-
peting facilities (whether or not externalities are con-
sidered) is maximization of market share. When ex-

ternalities are not considered, problems of competi-
tive facility location involve a locational equilibrium;
when negative externality costs and user-optimizing
customer choice are considered, such problems also in-
volve a customer-choice equilibrium. E. Kohlberg [17]
considered the location of competing identical facilities
on a line with uniformly distributed, inelastic demands
where customers select a facility based on the sum of
travel time plus waiting time for service. For the case
of two facilities, the optimal locations occur at the mid-
point of the line, and for the case of more than two fa-
cilities, Kohlberg [17] showed that a locational equilib-
rium does not occur. R.M. Braid [6] analyzed the lo-
cational equilibrium for two congested public facilities
located by competing governmental jurisdictions in an
inelastic-demand environment. Brandeau and Chiu [9]
analyzed the case of two competing facilities on a tree
network with inelastic demands and a general negative
externality function. Such a model might be appropri-
ate for the location of similar competing grocery stores.
They assumed a Stackelberg game (with a leader and
a follower). They characterized the optimal locations of
the leader and the follower, and presented an algorithm
for finding those locations.

Kumar [18] considered the location decision of
a profit-maximizing firm that locates one facility in a re-
gion where a number of competitors are already located
and in which customer demand is elastic. An example
application is the location of competing retail outlets.
The problem is a bilevel programming problem which
can be heuristically solved using a gradient projection
ascent approach (e. g., [14]).

Resource Allocation with Externalities

If facilities are already located, changing facility loca-
tions may be expensive. An alternative is to allocate re-
sources to change the characteristics of the facility (e. g.,
through training or technological improvements). The
question is how to balance the cost of change with the
associated benefits (e. g., increased market share, low-
ered total customer cost). Resource allocation problems
of this type are discussed in [10] and [16].

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems
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Facility location problems deal with the question of
where to locate certain facilities, so that they can sat-
isfy some kind of demand of a certain set of customers,
and so that the total cost is minimized. If the facili-
ties are factories or warehouses and the goods will be
shipped from the facilities to the customers, one can as-
sume that the shipments will be made so as to minimize
the transportation costs. (See also � Facility Location
with Staircase Costs and � Stochastic Transportation
and Location Problems.) However, if the facilities are
hospitals or supermarkets, transportation will consist of
customers traveling by their own means to/from the fa-
cility, and in such a case, it is not certain that each cus-
tomer will behave exactly so as to minimize the trans-
portation costs.

So in public facility location problems where the
clients are free to make their own choice of facility,
one should probably expect different results than those
minimizing the transportation costs. Modeling such
situations, the objective cannot only be to minimize
the total transportation and facility costs. The effect
of spatial interaction has been used to improve loca-
tionmodels of this type. Simple plant location problems
with spatial interaction between the travelers have been
treated in [3,4,6,19,20,22,23], modeled as a nonlinear,
mixed integer programming problem.

In [15] a different model is derived, in a similar way
as used in [14], that does not use the approximation
yielding entropy terms. The model is called the ‘exact’
formulation of the simple plant location problem with
spatial interaction, because of the usage of the classical
way of deriving the gravity model, without doing any
approximation.

Assuming integer requirements on the transported
amounts enables an exact linearization of the nonlinear
costs. This yields a linear, pure zero-one model, to the
price of a significantly increased number of variables.

Luckily the model has a special structure that can be
exploited by several different solution methods.

Model

We now describe a public facility location model, with
m possible locations for supply points (plants) and n de-
mand points (client zones). The fixed cost for opening
plant i is ai. At demand point j the demand (the num-
ber of clients in zone j) iswj. Trips will be made between
the demand points and the opened plants so that the de-
mand is satisfied. The transportation costs for one trip
between plant i and demand point j (i. e. the cost for
a client at zone j to get service at plant i) is cij.

The following variables are introduced.

zi D
�

1 if a plant at location i is opened;
0 if not;

xi j D

8̂
ˆ̂̂<
ˆ̂̂̂
:

the number of trips between
plant i and demand point j
(i. e. the number of clients
in zone j getting service at plant i):

The total cost for transportation and opening plants
is

v1 D min
mX
iD1

nX
jD1

ci jxi j C
mX
iD1

aizi :

As for the spatial interaction, one may note that
several microstates (obtained by identifying every sin-
gle client’s trip) may yield the same macrostate (the x-
solution). The macrostate given by the largest number
of microstates is the most probable solution, according
to [29]. Maximizing the number of microstates yielding
x yields another objective function for finding the most
likely x-solution.

v2 D min
mX
iD1

nX
jD1

ln(xi j!):

A suitable objective function is now obtained by
combining these two parts, v
 D v2 C �v � 1, where
the weight � reflects the sensitivity of the system to the
costs. For large values of � , it is very important to min-
imize the costs, while for smaller values of � , the costs
are not very important.



984 F Facility Location Problems with Spatial Interaction

The best value of the parameter � , being the weight
of how much the clients take the costs into account,
must be found by calibrating the model against a real
life situation. Considering a certain situation, one can
assume that � is fixed and given.

The following model (SPLPS) is obtained:

v� D min
mX
iD1

nX
jD1

ln(xi j!)C �

0
@

mX
iD1

nX
jD1

ci jxi j C
mX
iD1

aizi

1
A

such that
mX
iD1

xi j D wj; 8 j (1)

xi j � wjzi � 0; 8i; j (2)

xi j � 0; integer; 8i; j (3)

zi 2 f0; 1g; 8i: (4)

SPLPS is a pure integer problem, with a nonlinear
objective function that actually is defined only in the
integer points.

If � is so large that the logarithmic part is negligible,
we get pure cost minimization. The model is then iden-
tical to the simple plant location problem, SPLP, and
can be efficiently solved by for example a dual ascent
method, [5].

In previous work, a continuous relaxation of x
together with Stirling’s approximation, ln(xij!) 	 xij
ln(xij)� xij, have been used, yielding a nonlinear, mixed
integer programming problem.

Now we linearize the cost function for each vari-
able xij in the interval 0 � xij � wj, with break points
at each integer point. This does not introduce any
error (as Stirling’s approximation would). The num-
ber of variables then depends on the values of the
demands.

We get ci jk D ln(k!) � ln((k � 1)!) C � ci j D
ln(k) C � ci j. Note that ci jk > ci jk�1, [18], which in-
dicates convexity of the resulting cost functions.

Then we do the substitution xij =
P

k xijk, where xijk
is the amount of xij that falls in the interval (k � 1, k).
The following model (SPLPE) is obtained:

v� D min
mX
iD1

nX
jD1

w jX
kD1

ci jk xi jk C
mX
iD1

�aizi

such that

mX
iD1

w jX
kD1

xi jk D wj; 8 j; (5)

xi jk � zi � 0; 8i; j; k; (6)

xi jk 2 f0; 1g; 8i; j; k; (7)

zi 2 f0; 1g; 8i: (8)

This is a large linear integer programming problem
withm(1 +

Pn
jD1 wj) binary variables. The fact that it is

a pure 0–1-problem is favorable when it comes to solu-
tion methods. The coefficients in the constraints (6) are
all reduced to one, so the formulation is probably quite
strong.

Solution Methods

It is in principle possible to solve SPLPEwith a standard
integer programming code, but the size of the model
prohibits this for all instances but very small ones. As
the model is fairly new, one cannot find many solution
methods proposed in the literature.

A dual ascent procedure for this problem has been
developed, see [17]. Another method, based on the
same dual, is Lagrangian relaxation and subgradient
optimization, investigated in [18]. Solution methods
based on primal and dual decomposition techniques
can also be used, see [16], where one conclusion is that
Benders decomposition seems to be an efficient solu-
tion method. In [13], the dual ascent approach is in-
serted in a branch and bound framework, and applied
to a somewhat more general problem.

We will briefly describe these methods below.

The Dual Ascent and Adjustment Method

A dual ascent procedure can be used to, in principle,
solve the LP-dual of the LP relaxation of SPLPE, by in-
creasing the dual variables in small steps, in such a way
that an ascent of the dual function is obtained in each
step. Furthermore, a dual adjustment procedure can be
used to temporarily decrease dual variables that block
further improvement.

Let ˛j denote the dual variables corresponding to
constraint set 1 of the LP relaxation of SPLPE, ˇijk the
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dual variables corresponding to constraint set 2 and
ıi the dual variables corresponding to the constraints
zi � 1. The LP-dual will be as follows:

v� D max
nX

jD1

wj˛ j C

mX
iD1

ıi

such that

˛ j � ˇi jk � ci jk ; 8i; j; k; (9)

nX
jD1

w jX
kD1

ˇi jk � ıi � �ai ; 8i; (10)

ˇi jk � 0; 8i; j; k; (11)

ıi � 0; 8i: (12)

The basic steps are to make moves in the dual vari-
ables ˛j. For fixed ˛ D ˛, the LP-dual is trivially solv-
able, yielding

ˇi jk D max(0; ˛ j � ci jk); 8i; j; k;

and

ıi D max

0
@0;

nX
jD1

w jX
kD1

ˇi jk � �ai

1
A ; 8i:

Now let kij be such that

˛ j � ci jk ; 8k � ki j; ˛ j < ci jk ; 8k > ki j;

and

qi j D

(
1 if ˛ j D ci jk i j
0 if not:

Also, let

si D
nX

jD1

w jX
kD1

max(0; ˛ j � ci jk )

and define I>={i: si > � ai}, I=={i: si = �ai}, I< = {i: si <
�ai and I� = I> [ I=.

The complementary slackness conditions are

xi jk D zi ; 8k � ki j � qi j; 8i; j;

xi jk D 0; 8k > ki j; 8i; j;

zi D 1; 8i 2 I>;

zi D 0; 8i 2 I<:

Now define

wl
j(˛) D

X
i2I>

(ki j � qi j)

and

wu
j (˛) D

X
i2I�

ki j:

Then it can be shown, [17], that

wl
j(˛) �

mX
iD1

w jX
kD1

xi jk � wu
j (˛):

This means that wl
j and w

u
j are lower and upper bounds

on the left-hand sides of constraints (9). In order to
obtain feasibility (optimality in the dual) the intervals
between these bounds should contain the right-hand
sides wj. The following is proved in [17]: If wl

j(˛) �
wj � wu

j (˛);8 j, then ˛ is optimal in the LP relaxation
of SPLPE.

The dual ascent method is now to increase ˛j in
small steps, so that wl

j(˛) and wu
j (˛) increase. The in-

crease of a certain ˛j is bounded by the closest break-
point, induced by the dual constraints of either set 1
(corresponding to enabling or forcing the increase of
yet another xijk) or set 2 (corresponding to enabling or
forcing the increase of yet another zi).

The bounds wl
j and wu

j will approach wj from be-
low, and wl

j will not be allowed to exceed wj. The in-
crease of ˛ is repeated, in each step for the jwhich yields
the largest distance between wu

j and wj, until optimum
is found or improvement is blocked (i. e. a further in-
crease of any ˛j would result in wl

j > wj). In the last case
we use an adjustment procedure, which decreases some
˛j, in order to allow the increase of other ˛j’s. Then
the ascent phase above is repeated. More details can be
found in [17].

Dual Ascent and Branch-And-Bound

The dual ascent and adjustment procedure only solves
the LP relaxation of the problem, so to find the ex-
act integer optimum, the procedure must be used
within a branch and bound framework. The subprob-
lem in each node of the branch and bound tree is then
solved with the dual ascent procedure, in the sense that
lower bounds on the optimal objective function value
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and sometimes feasible primal solutions are obtained.
Branches are cut off when the lower bound exceeds the
best upper bound known.

One can note that if all the z-variables are fixed in
SPLPE, then the problem is trivially solvable, and the
x-variables will attain integer values even if the con-
straints xijk 2 {0, 1} are replaced by 0 � xijk � 1, so
it may be regarded as an LP-problem. Furthermore it
is proved, in [13], that the dual ascent procedure accu-
rately solves the problem when all z-variables are fixed,
within a finite number of steps.

Therefore, it is natural to do the branching over the
z-variables. Fixed z-variables are handled as follows in
the dual ascent phase. Let I0 = {I: zi is fixed to 0} and
I1 = {I: zi is fixed to 1}. For all i 2 I0 [ I1, the dual
variables ıi are removed, and the corresponding dual
constraints in set 2 are removed. For all i 2 I1 the cor-
responding primal constraints in set 2 are redundant,
so we can assume that ˇijk = 0, 8 i 2 I1, 8j, k. Also,
xijk = 0, 8 i 2 I0, 8 j, k.

All elements of I0 [ I1 must be removed from I>,
I=, I< and I�. It is not necessary to calculate si for i 2
I0 [ I1. After these changes, the bounds wl

j and wu
j are

calculated as above.
Some supporting hyperplanes, and breakpoints, are

removed from the dual function, as a result of the fixa-
tions, so in the dual ascent procedure, fewer steps often
need to be taken. (Sometimes the increase of some ˛j
is limited by the breakpoint where a facility is opened.
This will not occur if the facility is fixed open or closed.)

In the worst case, the branch and bound method
will enumerate all z-solutions. Thus we have the fol-
lowing result: The dual ascent method within a branch
and bound framework will find the exact optimum of
SPLPE within a finite number of steps.

In practice branching is done when the dual ascent
and adjustment procedure stops, which not necessar-
ily means that the LP-optimum is found. In many cases
unnecessary branching is done, and we must expect the
branch and bound tree to be larger than it would be for
an LP-based branch and bound method.

Branching is done over any zi, i 2 I=, since any value
between 0 and 1 is optimal for such a zi, i. e. the com-
plementary slackness conditions allow for nonintegral
values of zi.

The original dual ascent method starts from zero
(no facilities opened and nothing sent). However, for

very small values of � in SPLPS many facilities will be
opened, while for very large values of � the z-solution
obtained for the ordinary uncapacitated facility loca-
tion problem, SPLP, by for examples the dual ascent
method DUALOC, [5], might be optimal or close to
optimal in SPLPS. In such cases one can use these so-
lutions as starting solutions.

The choice of which dual variable, ˛j, to increase
first in the dual ascent procedure, could be done cycli-
cally in j, but it seems better to choose the j which ex-
hibits the maximal residual, i. e. the largest gap between
wl

j and wj.

Lagrangian Relaxation
with Subgradient Optimization

Lagrangian relaxation is a well known and often used
approach for approximate solution of integer and
mixed integer problems, see for example [8] and [7].
The Lagrangian relaxation of SPLPE is obtained by re-
laxing the demand constraints, using multipliers ˛j. We
obtain the following Lagrangian dual:

(LD) vL D max'(˛);

where, for fixed multipliers, ˛ D ˛, the Lagrangian re-
laxation takes the following form:

(DS)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

'(˛) D min
mX
iD1

nX
jD1

w jX
kD1

ci jk xi jk

C

mX
iD1

�aizi

C

nX
jD1

˛ j

 mX
iD1

w jX
kD1

xi jk � wj

!

s.t. xi jk � zi � 0; 8i; j; k;
xi jk 2 f0; 1g; 8i; j; k;
zi 2 f0; 1g; 8i:

(DS) separates into m problems, one for each fa-
cility, containing one binary variable and a number of
continuous variables, and is trivially solvable. It has the
‘integrality property’, i. e. the y-solution will obtain in-
tegral values even if the integrality constraints are re-
moved. This property implies that the optimal value of
LD is the same as that of the LP relaxation.
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In order to solve the Lagrangian dual, we use
the well known technique subgradient optimization,
see [25,26] and [9]. We use a subgradient, �, of the dual
function '(˛) to find a search direction for updating
the multipliers, ˛:

� j D

mX
iD1

w jX
kD1

xi jk � wj; 8 j;

where x denotes the optimal solution of (DS) at ˛. Let-
ting ˛(l ) denote the multiplier values in iteration l, we
obtain the multipliers in the next iteration by setting

˛(lC1) D ˛(l ) C t(l )�(l );

where t(l) and �(l) are the stepsize and the search di-
rection. Several ways of choosing the stepsize, t(l), have
been suggested. Here we use the one that is suggested
by [26]:

t(l ) D �l
ev � '(˛(l ))

�(l )

2

;

whereev is an upper bound of vL and �l should be as-
signed a value in the interval ("1, 2 � "1), where "1 > 0,
in order to ensure convergence.

Termination of the subgradient search procedure
occurs when kd(l)k < �, t(l) < �, l >M, v�'(˛(l )) � � or
v � v < 1. The last criterion indicates optimality, since
all feasible solutions are integral, i. e. v� is integral.

Benders Decomposition

We have noted that if all z-variables were fixed, the so-
lution would not be changed if the constraints xijk 2
{0,1} were replaced by 0� xijk � 1. Therefore one might
regard SPLPE as a mixed integer programming prob-
lem. This opens up the possibility of solving the prob-
lem with Benders decomposition, [1]. Below we give
a short description of how the method can be applied
to SPLPE, as done in [16].

In the Benders subproblem, (PS), we fix z to z,
which makes the subproblem separable into several
trivial knapsack problems:

(PS) h(z) D
nX

jD1

hj(z)C
mX
iD1

�ai zi ;

where, 8 j,
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

hj(z) D min
mX
iD1

w jX
kD1

ci jk xi jk

s.t.
mX
iD1

w jX
kD1

xi jk D wj;

xi jk � zi ; 8i;
xi jk 2 f0; 1g; 8i; k:

(PS) is feasible if and only if
P

i zi � 1. The dual solu-
tion (˛, ˇ) is also easy to calculate.

The Benders master problem is given below.

(PM)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

vPM D min
nX

jD1

q j C

mX
iD1

�aizi

s.t. q j � wj˛
(l )
j �

mX
iD1

w jX
kD1

ˇ
(l )
i jk zi ;

8l ; j;
mX
iD1

zi � 1;

zi 2 f0; 1g; 8i:

The Benders decomposition method is to iterate be-
tween the master problem, (PM), and the subproblem,
(PS). (PM) yields a lower bound on v�, and z to be used
in (PS). (PM) yields an upper bound on v� (for inte-
gral z) and a new dual solution, (˛(l)j , ˇ

(l)
ijk), which is used

to form a new cut for the master problem. The method
has exact finite convergence.

The proportion of z-variables is much smaller in
SPLPE than in SPLP, which is promising for the
Benders decomposition approach. However, as shown
computationally in [16], (PM) often is very difficult to
solve. A suggested modification, [24], is to use the LP re-
laxation of (PM), by replacing zi 2 {0, 1} with 0� zi� 1,
in initial iterations (for example until the LP-bounds
are within 1% of each other). A good set of Benders cuts
is thus generated before the integer master problem is
solved. It is possible since any dual feasible solution of
(PS) yields a valid Benders cut, and z only appears in
the dual objective function.

If z is not integer, (PS) might not yield integer x-
solutions, but is still easily solvable. The bounds ob-
tained from the master problem and subproblem are
not valid for the integer problem, but for the LP relax-
ation of SPLPE.
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Mean Value Cross Decomposition

An alternate way of solving the LP relaxation of the
problem is to use the method mean value cross de-
composition, [10,11,12]. This method is a modifica-
tion of the subproblem phase of ordinary cross de-
composition, [28], but also a generalization of the
Kornai–Liptak method, [21], and a generalization of
the Brown–Robinson methods for polyhedral games,
[2,27].

The method uses the Lagrangian relaxation and the
subproblem of Benders decomposition, both described
in previous sections, but nomaster problems. The input
to one of the problems consists of the mean value of
all the previous solutions of the other subproblem. The
method has asymptotic convergence.

Comparisons and the Role of �

The parameter � reflects the relation between the trans-
portation costs and the effects of the spatial interaction
in the objective function, and its value should be chosen
specifically for each real life situation.

For very small values of � , the optimal solution is
zi = 1, 8 i, while for large values of � , the optimal z-
solution can be obtained by DUALOC. In these cases
the problem is then completely solved by simply solv-
ing the primal subproblem, (PS), once. In computa-
tional tests in [16,17,18] and [13], this occurs when �
is smaller than 0.0001 or larger than 0.1, while for � =
0.01 the differences to the solutions mentioned above
are the largest.

The conclusions of the computational tests in [16,
17,18] and [13] are the following. Ordinary Benders de-
composition seems to be more efficient than direct so-
lution with a general integer programming code. How-
ever, direct solution with a standard IP-code can only
solve small problems, due to memory requirements,
and the ordinary Benders decomposition method also
fails for many of the problems. The integer master
problem is simply too hard.

The modified Benders decomposition method
(starting with the LP relaxation of the master problem)
eliminates the weaknesses of the Benders approach, and
is a very efficient method.

The approximate methods mean value cross de-
composition and Lagrangian relaxation with dual sub-
gradient optimization are much quicker than ordinary

Benders, but not better than modified Benders decom-
position. For some large problems, these methods give
large gaps between the upper and lower bounds.

The dual ascent method is also quite quick, but
leaves gaps between the upper and lower bounds of
varying size. In [18] it is noted that the dual ascent
method and the Lagrangian method complement each
other in an interesting way.

The best methods seems to be the modified Benders
decomposition method and the dual ascent method
with branch and bound. These methods are capable of
solving quite large problems (up to almost 3,000,000
variables) optimally.

Finally we wish to point out that none of these
methods explicitly store the whole x-matrix, and that
this is what enables the solving of large problems.

Conclusion

We have described the simple plant location problem
with spatial interaction, applied an exact linearization
to the problem, and described a couple of solution
methods for the resulting large integer programming
problem. Although the model has a large number of
variables, the methods are able to solve it quite effi-
ciently. The problem is very well suited for the ap-
proaches of Benders decomposition, Lagrangian relax-
ation, and dual ascent. These methods actually manage
to solve the problem without storing all of the variables,
and especially the dual ascent method uses relatively
small amounts of computer memory.

We conclude that the model is solvable and useful
in practice.

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems

� Competitive Facility Location
� Facility Location with Externalities
� Facility Location with Staircase Costs
� Global Optimization in Weber’s Problem with

Attraction and Repulsion
�MINLP: Application in Facility Location-allocation
�Multifacility and Restricted Location Problems
� Network Location: Covering Problems
� Optimizing Facility Location with Rectilinear

Distances
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� Production-distribution System Design Problem
� Resource Allocation for Epidemic Control
� Single Facility Location: Circle Covering Problem
� Single Facility Location: Multi-objective Euclidean

Distance Location
� Single Facility Location: Multi-objective Rectilinear

Distance Location
� Stochastic Transportation and Location Problems
� Voronoi Diagrams in Facility Location
�Warehouse Location Problem
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Location of facilities, plants, or other units for produc-
tion or distribution, is an important problem in many
different situations. The same type of problem can oc-
cur when one is installing equipment in for example
telecommunication networks, or when installing ma-
chines in a factory.

The common circumstances in these situations are
the following. A number of units, ‘facilities’, produc-
ing a certain service, may be located at certain possible
points. The service commodity is then to be sent from
the facilities to certain ‘customer’ points, which have
a certain demand for the service. The main complica-
tion is that the costs for production of the service is not
linear, instead there is a fixed cost for placing a facil-
ity at a certain location. In addition there may be linear
costs for producing and shipping the commodity to the
customers.

In the literature, see for example [3,4,6,8,13] and [1],
one can find the traditional capacitated plant location
model, where the total cost for satisfying demand con-
sists of two parts, namely linear transportation costs
and fixed costs for opening/installing the facilities. In
this model there is one fixed cost for each facility.
(Other variants can be found in � Stochastic trans-
portation and location problems and� Facility location
problems with spatial interaction.)

However, in practice, there is often a need for con-
sidering several different possible sizes of each facility.
This leads to a facility location problem with staircase
shaped costs. This approach will not only allow differ-
ent sizes, but also different production costs at different
levels of production at a facility.

For example, in telecommunications there are al-
most always several different sizes for the fibers, cables,

switches, controllers and other connections that must
be dimensioned when installing a new network. In such
problems staircase shaped costs will occur at several dif-
ferent levels, both for the activities at nodes as well as
along links. One situation where the specific location
model discussed here is quite appropriate is the instal-
lation of video servers for a video-on-demand service
on a telecommunication network.

Mathematical Model

We define a staircase cost function as a finite piece-
wise linear nondecreasing function with a finite set of
discontinuities, each corresponding to a certain size of
a facility. Letm be the number of possible location sites,
n the number of customers and qi the number of pos-
sible sizes at location site i. Furthermore, Dj is the de-
mand of customer j, pik is the unit cost of production at
a facility at location site i and size k, Sik is the capacity
of a facility of size k at location site i, f ik is the fixed cost
for a facility of size k at location site i, and cij is the cost
for sending one unit from location site i to customer j.

The following variables are used: tik is the produc-
tion within level k at facility i (where level k of the stair-
case corresponds to an operating facility of size k), xij is
the amount shipped from location i to customer j, and
yik is set to 1 if the facility at site i is of size k or larger
and 0 otherwise.

The capacities and costs for increasing the size of
a facility are	 Sik = Sik � Sik� 1 and	 f ik = f ik � f ik� 1

� (pik � pik� 1) Sik� 1, where Si0 = 0 and f i0, = 0, see
Fig. 1. Note that 0 � tik � 	 Sik, 8i, k, and if the total
production at facility i requires more than size k, then
tik =	 Sik.

v� D min
mX
iD1

nX
jD1

ci jxi j

C

mX
iD1

qiX
kD1

(pik tik C	 fi k yik);

such that
mX
iD1

xi j D Dj; 8 j; (1)

nX
jD1

xi j D
qiX
kD1

tik; 8i; (2)



Facility Location with Staircase Costs F 991

tik � 	Sik yik ; 8i; k; (3)

tik�1 � 	Sik�1yik ; 8i; k > 1; (4)

xi j � 0; 8i; k; (5)

yik D 0 or 1; 8i; k: (6)

It is natural to assume that pik � 0, 	 f ik � 0, 	 Sik
> 0 for all i, k and Dj > 0 for all j. The constraints (1) en-
sure that all the demandmust bemet for each customer,
while (2) ensure that, for each location, the amount
shipped also is produced. Constraint sets (3) and (4)
ensure that the level of production corresponds to the
correct level on the staircase cost function for each fa-
cility. One might note that from constraints (3) and (4)
follows that yik + 1 � yik.

This is a linear mixed integer programming prob-
lem with mn +

Pm
iD1 qi continuous variables andPm

iD1 qi integer variables. The proportion of integer
variables is higher than in the ordinary facility lo-
cation problem. Because of this, and because of the
structure of the problem, solving the problem with
a general code for mixed integer programming prob-
lems is probably not very efficient for large (real life)
instances.

One aspect of the structure of the problem is that if
y is kept fixed (i. e. the sizes of the facilities are given),
the remaining problem is simply a standard network
flow problem, and hence x and t will attain integer
values.

Another important aspect of the structure of the
problem is the potential separability. There are several

Facility Location with Staircase Costs, Figure 1

possibilities of making the model separable by relaxing
different sets of constraints.

It is also possible to use a problem formulation with
f and S instead of 	 f and 	 S. This yields constraints
of SOS1-type (onemust ensure that only one of the pos-
sible sizes is used at a facility), and a somewhat smaller
problem (less constraints). The LP relaxation is quicker
to solve and the optimal objective function value is the
same as that of the model above (i. e. the duality gaps
of the two formulations are the same). However, solv-
ing the model with general mixed integer codes, the
alternate model seems to produce larger branch and
bound trees. Concerning the methods discussed below,
the two models in most cases behave in identical man-
ners.

Solution Methods

Methods for models with staircase cost functions or
for models capable of modeling such functions can be
found in for example [2,11,14,15] and [12]. We will be-
low describe some possibilities.

If the exact solution is to be found (and verified),
the only reasonable way seems to be to resort to branch
and bound, in some sense. This matter in general is ex-
tensively discussed in the literature, and although there
might be some considerations for the staircase cost case
that differ from the single fixed cost case, when it comes
to branching and search strategies, we will not dwell on
it here.

Assuming a standard branch and bound frame-
work, the main question is how to solve the subprob-
lems, i. e. how to get the bounds, especially the lower
bounds. This will be discussed more below.

However, an alternative is to move the branch and
bound procedure into a Benders master problem, i. e.
use a Benders decomposition framework in order to
obtain the exact solution. This will also be briefly de-
scribed below.

We will start with procedures for obtaining upper
and lower bounds on the optimal objective function
value. The upper bounds correspond to feasible solu-
tions obtained, while the lower bounds are used to get
estimates of the quality of the feasible solutions. If all
cost coefficients are integral, we note that a lower bound
that is within one unit from the upper bound indicates
that the upper bound is optimal.
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Primal Heuristics

There is a well-known ADD heuristic for the capaci-
tated plant location problem, [13], which can be mod-
ified to suit the staircase cost facility location problem,
see [12]. This heuristic can be improved by combining
it with certain priority rules, [6].

If for each plant it is decided to which level of pro-
duction it can be used (i. e. the y-variables are fixed),
the resulting problem is an unbalanced transportation
problem. Let Li denote the level (size) of plant i, and
initiate the heuristic by setting Li = 0, 8i. Let I = {i: Li
< qi}. The ADD heuristic consists of the repeated use
of the following step: Increase the size (set Li = Li + 1)
of the location site i 2 I that provides the largest reduc-
tion of the total cost. Terminate the procedure when no
more reduction is possible.

In order to avoid ADD increasing the level of pro-
duction in the order of ‘decreasing’ capacity until a fea-
sible solution is found, we apply a generalization of
one of the priority rules discussed in [6]. These priority
rules provides a better phase-1 solution than the ADD
heuristic itself. Two examples of priority rules, PR1 and
PR2, for choosing the location site i 2 I where the size
is to be increased (Li = Li + 1), are given below. (They
correspond to P1 and P3 in the notation of [6]).
PR1) Choose site i 2 I in the order of decreasing quo-

tients 	 Si;LiC1/	 f i;LiC1, until the location sites
are able to serve the entire demand.

PR2) Choose site i 2 I in the order of increasing values
of

1
bn/3c

bn/3cX
jD1

ci j C
	 fi;LiC1

	Si;LiC1
;

until the location sites are able to serve the en-
tire demand. (c is c sorted according to increasing
values.)

In [13] the ADD heuristic is outperformed by the
heuristic DROP but [6] show that ADD with prior-
ity rules produce solutions with equally good objective
function values as DROP, in less computational time.

Linearization

A widely used way of obtaining a lower bound is di-
rect LP relaxation. The integer requirements (6) are re-
placed with the constraints 0 � yik � 1, 8i, k. We also

include the redundant constraints tik �	 Sik, 8i, k, and
possibly yik � yik� 1 for all i, k > 1. The optimal objec-
tive function value of the LP relaxation is denoted by
vLP, and vLP � v�. The duality gap, the difference be-
tween v� and vLP, is in most cases larger than zero. The
LP-problem is large, but sparse, and can be solved with
a standard LP-code.

Convex Piecewise Linearization

Since the binary variables yik are only included to give
the correct cost for the production, they can be elim-
inated if we use an approximation of the costs. If the
staircase cost function is underestimated with a piece-
wise linear and convex function, we get a problem,
much easier to solve, which gives a lower bound on v�,
denoted by vCPL, see [14] and [11]. For explicit expres-
sions of how to construct the convex piecewise lin-
earization see [11].

The resulting problem is a linear minimal cost net-
work flow problemwith parallel arcs, which is quite eas-
ily solvable by a standard network code. The x- and t-
part of the solution is feasible in the original problem,
so we can generate an upper bound by evaluating this
solution in the correct cost function, which is done by
finding the correct values of y.

In [10] it is proved that the convex piecewise lin-
earization and the LP relaxation are equivalent, in the
sense that vCPL = vLP and an x-solution that is opti-
mal in one of the problems is also optimal in the other
problem. Utilizing the network structure, we thus get
a quicker way of solving the LP relaxation.

Benders Decomposition

In [11] a Benders decomposition approach is used, and
combined with the convex piecewise linearization de-
scribed above.

The Benders subproblem is simply obtained by fix-
ing the integer variables, i. e. fixing the sizes of the fa-
cilities. The resulting problem is minimal cost network
flow problem, similar to a transportation problem, but
with certain intervals (given by the facility sizes) for the
supplies.

However, the Benders master problem obtained
by a standard application of the Benders approach, is
much too hard to solve. The number of integer variables
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is much larger than in an ordinary location problem
with the same numbers of facilities and customers. One
way around this is to combine the Benders approach
with the convex piecewise linearization.

An improved piecewise linearization is obtained by
branching at certain production levels. A staircase cost
function is divided into two parts by the branching, and
a binary variable is introduced, indicating which of the
parts that is to be used. In each of the two parts, con-
vex piecewise linearization is used. In this manner, one
could design a branch and bound method for solving
the problem, similar to what is described in [14].

Considering the model after a number of branch-
ings, we have an approximation (a relaxation) of the
original problem, with a much smaller number of in-
teger variables. On this problem we then apply Benders
decomposition.

In principle one could let each subproblem in the
branch and bound method be solved exactly with
Benders decomposition, thereby obtaining basically
a branch and bound method, which employs Benders
decomposition to solve the branch and bound subprob-
lems. This is however very inefficient.

The other extreme is standard application of Ben-
ders decomposition to the original problem, in which
case the Benders approach employs branch and bound
to solve the Benders subproblems. This is also quite in-
efficient in practice.

A more efficient method is to combine the two
approaches, Benders decomposition and branch and
bound on a more equal level. This can be done the fol-
lowing way.
1) Solve the initial convex piecewise linearization (with

a network code).
2) Do one or more branchings, where the error of the

approximation at the obtained solution is largest.
3) Solve the obtained problem with Benders decompo-

sition (to a certain accuracy).
4) Repeat 2) and 3), until optimality.
There are two very important comments to the above
algorithm.
A) When one returns to step 3) after having done

branchings, one can recalculate and reuse all the
Benders cuts obtained before the branchings. (This
is described in detail in [11].)

B) The stopping criterion for the Benders method, i. e.
the required accuracy in step 3), is a very important

control parameter. One should in initial iterations
require a low accuracy, and gradually, as the method
approaches the optimal solution, require higher and
higher accuracies.

The effect of combining comments A) and B) is that one
should only do a few Benders iteration in each main
iteration, since the number of Benders cuts will auto-
matically increase, as the old cuts are recalculated and
kept.

The main conclusion of the computational tests
done in [11] is that only a small part of all the integer
variables (in average 4%) need to be included by the im-
proving piecewise linearization technique, when solv-
ing a problem to reasonable accuracy. In other words,
only a small subset of the possible sizes need to be in-
vestigated.

Lagrangian Relaxation
and Subgradient Optimization

Now we will describe a Lagrangian heuristic, found
in [12], in more detail. Lagrangian relaxation and sub-
gradient optimization are used to obtain a near-optimal
dual solution, and act as a base for an efficient primal
heuristic. Based on the solution of the Lagrangian re-
laxation one can construct a transportation problem
which yields primal feasible solutions, and can be used
during the subgradient process.

An important aspect of the Lagrangian approach is
that a method yielding good feasible primal solutions
can be based on dual techniques.

Lagrangian relaxation, [7], in combination with
subgradient optimization, [9] is a commonly used tech-
nique for generating lower bounds on the optimal ob-
jective function value of mixed integer programming
problems. Here we apply Lagrangian relaxation to con-
straint set (2), and denote the Lagrangian multipliers by
ui. For fixed values of u, the subproblem separates into
several smaller problems:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

�1 j(u) D min
mX
iD1

(ci j C ui )xi j

s.t.
mX
iD1

xi j D Dj;

xi j � 0;
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8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�2i (u) D min
qiX
kD1

((pik � ui )tik C	 fi k yik )

s.t. tik � 	Sik yik ; 8k;
tik�1 � 	Sik�1yik ; 8k > 1;
tik � 0;
yik D 0 or 1

The first set of subproblems consists of n continu-
ous knapsack problems, which are trivially solvable.
The second set of subproblems consists of m one-
dimensional staircase cost problems. The solution can
be found by calculating the minimizer ki for each i, as
follows:

�2i(ui) D min
kiD0;:::;qi

k iX
kD1

((pik � ui )tik C	 fi k yik):

The resulting solution is

y0i k D

(
1; 8k � ki ;
0; 8k > ki ;

t0i k D

(
	Sik ; 8k � ki ;
0; 8k > ki :

Note that the subproblem has the integrality prop-
erty, [7], so max �(u) = vLP.

The Lagrangian dual,

max �(u) D
nX

jD1

�1 j(u)C
mX
iD1

�2i (u)

can be solved by standard subgradient optimiza-
tion, [9], in order to get the best lower bound. One can
use enhancements such as modified directions, [5], dr

= �r + ˛ dr � 1, where �r is the subgradient generated in
iteration r and dr is the direction used in iteration r.

A steplength shortening is obtained by setting
� = �\2 when there has not been any improvement of v
for N1 consecutive iterations. When there has not been
any improvement of v for N2 iterations, the subgradient
optimization procedure is terminated. The subgradient
is given by � ri =

Pn
jD1 xij

0 �
Pqi

kD1 tik
0 for all i, where xij0

and tik0 are the optimal solutions to the subproblems.
Reasonable choices for the parameters are N1 D 6,
N2 D 25, and ˛ = 0.7.

One can use a heuristic based on the solution of the
Lagrangian relaxation to try to get a feasible solution.

The obtained values of yik0 are used to calculate the
supply at each location and a transportation problem
is solved. The solution to the transportation problem is
feasible in the original problem if constraint sets (3) and
(4) are satisfied, which easily can be achieved. The val-
ues of the flow variables xij are taken directly from the
solution to the transportation problem. The total pro-
duction ti is then calculated as ti =

Pn
j = 1 xij. One can

then easily find tik as the part of ti that lies within level
k, and the yik solution is simply yik = 1 if tik > 0 and 0 if
not. Finally all unnecessary production capacity at each
location i is removed.

The complete Lagrangian heuristic, LH, also in-
cludes the following. The convex piecewise lineariza-
tion, CPL, is solved with an efficient network code. The
Lagrangian multipliers are initiated with a convex com-
bination of the appropriate node prices obtained by
solving CPL and minj cij, with the largest weight on the
former. The primal procedure to generate feasible so-
lutions is used every third iteration in the subgradient
procedure.

Note that CPL yields vCPL = vLP, so the subgradi-
ent procedure cannot improve the lower bound, which
is quite unusual in methods of this kind. The motiva-
tion behind using the subgradient procedure is not to
get lower bounds, but to get primal solutions (upper
bounds).

Computational Results

In [12] the heuristic procedures are tested by solving
a number of randomly generated test problems, with up
to 50 locations, 100 destinations and 20 sizes of each
location (yielding 6000 continuous variables and 1000
integer variables). The conclusions of the tests are the
following.

A standard mixed integer programming code (in
this case LAMPS) needs extremely long solution times
for finding the exact optimum. The ADD heuristics
produce solutions with relative errors in the range of
1%–20% (in average 11%), but also requires quite long
solution times (although not as long as the MIP-code).

The convex piecewise linearization CPL, combined
with exact integer evaluation of the solutions obtained,
yields solutions that all are better than those obtained
by the ADD heuristics, with relative errors between
0.8% and 10% (in average 4%), in a much shorter time
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(in average 1000 times quicker than the ADD heuris-
tics). So CPL dominates the ADD heuristics completely,
both with respect to solution time and solution quality.

The Lagrangian heuristic, LH, produces solutions
with relative errors between 0.4% and 3.2% (in average
1.5%), with solution times in average 20 times shorter
than the ADD heuristics, but of course significantly
longer than CPL.

Comparison to other tests is difficult, since other
computers and codes are used. The Benders approach
in [11] seems to be slower than the Lagrangian ap-
proach. However, on modern computers and with
modernMIP-codes, its performance may well improve.

Conclusion

The capacitated facility location problem with staircase
costs has many important applications. Computational
results indicate that it is possible to find near-optimal
solutions to such problems of reasonable size in a rea-
sonable time, i. e. that this better model can be used in-
stead of, for example, the ordinary capacitated facility
location problem in appropriate situations.
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Farkas’ lemma is the most well-known theorem of the
alternative or transposition theorem (cf. � Linear opti-
mization: Theorems of the alternative). Given anm × n
matrix A and a vector b (of dimension m) it states that
either the set

S :D
˚
y : y>A � 0; y>b < 0

�

or the set

T :D fx : Ax D b; x � 0g

is empty but not both sets are empty. This result has
a long history and it has had a tremendous impact on
the development of the duality theory of linear and
nonlinear optimization.

J. Farkas (1847–1930) was professor of Theoretical
Physics at the Univ. of Kolozsvár in Hungary. His inter-
est in the subject is explained in the first two sentences
of his paper [5]:

The natural and systematic treatment of analytic
mechanics has to have as its background the in-
equality principle of virtual displacements first
formulated by Fourier and later by Gauss. The
possibility of such a treatment requires, however,
some knowledge of homogeneous linear inequal-
ities that may be said to have been entirely miss-
ing up to now.

J.B.J. Fourier [7] seems to have been the first who es-
tablished that a mechanical system has a stable equilib-
rium state if and only if some homogeneous system of
inequalities, like in the definition of the above set S, has
no solution. This observation became known as theme-
chanical principle of Fourier. By Farkas’lemma this hap-
pens if and only if the set T is nonempty.

It is almost obvious that if the set T is not empty,
then the set S will be empty and we have equilibrium.

This follows easily by noting that the sets S and T can-
not be both nonempty: if y 2 S and x 2 T then the con-
tradiction

y>b D y>(Ax) D (y>A)x � 0

follows, because y> A � 0 and x � 0. This shows that
the condition ‘T is not empty’ is certainly a sufficient
condition for equilibrium. The hard part is to prove
that this is also a necessary condition for equilibrium.
The proof has a long history. First, the condition with-
out proof for special cases was given by A. Cournot in
1827 and for the general case by M. Ostrogradsky in
1834. Farkas published his condition first in 1894 and
1895, but the proof contains a gap. A second attempt,
in 1896, is also incomplete. The first complete proof was
published in Hungarian, in 1898 [3], and in German in
1899 [4]. This proof is included in Farkas’ best known
paper [5]. For more details and references, see the his-
torical overviews [9] and [10].

Nowadays (1998) many different proofs of Farkas’
lemma are known. For quite recent proofs, see,
e. g., [1,2,8]. An interesting derivation has been given
by A.W. Tucker [11], based on a result that will be re-
ferred to as Tucker’s theorem. (See � Tucker homoge-
neous systems of linear relations.) The theorem states
that for any skew-symmetric matrix K (i. e., K = � K>)
there exists a vector x such that

Kx � 0; x � 0; x C Kx > 0:

By taking

K D

0
BB@

0 0 A �b
0 0 �A b
�A> A> 0 0
b> �b> 0 0

1
CCA ;

Tucker’s theorem implies the existence of nonnegative
vectors z1, z2 and x and a nonnegative scalar t such
that

Ax � tb � 0; (1)

� Ax C tb � 0; (2)

�A>z1 C A>z2 � 0;

b>z1 � b>z2 � 0;
(3)
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and

z1 C Ax � tb > 0;

z2 � Ax C tb > 0;

x � A>z1 C A>z2 > 0;

t C b>z1 � b>z2 > 0: (4)

If t = 0, then, putting y = z2 � z1, (3) and (4) yield a vec-
tor in the set S. If t > 0, since the above inequalities are
all homogeneous, one may take t = 1 and then (1) and
(2) give a vector in the set T. This shows that at least one
of the two sets S and T is nonempty, proving the hard
part of Farkas’ lemma.

It is worth mentioning a result of C.G. Broyden [1]
who showed that Tucker’s theorem, and hence also
Farkas’ lemma, follows from a simple property of or-
thogonal matrices. The result states that for any or-
thogonal matrix Q (so QQ> = Q> Q = I) there exists
a unique sign matrix D and a positive vector x such that
Qx = Dx; a sign matrix is a diagonal matrix whose di-
agonal elements are equal to either plus one or minus
one.

The key observation here is that if K is a skew-
symmetric matrix, then

Q D (I C K)�1(I � K)

is an orthogonal matrix, where I denotes the identity
matrix; Q is known as the Cayley transform of K [6].
The proof of this fact is straightforward. First, for each
vector x one has

x>(I C K)x D x>x;

whence I + K is an invertible matrix. Furthermore, us-
ing K> = � K, one may write

Q>Q D (I C K)(I � K)�1(I C K)�1(I � K)

D (I C K)(I � K2)�1(I � K):

Multiplying both sides from the left with (I � K) one
gets

(I � K)QQ> D (I � K2)(I � K2)�1(I � K)

D (I � K);

and multiplying both sides with (I � K)�1 one finds
QQ> = I, showing that Q is orthogonal indeed.

Therefore, by Broyden’s theorem, there exists a sign
matrix D and a positive vector z such that

(I C K)�1(I � K)z D Dz:

This can be rewritten as

(I � K)z D (I C K)Dz;

whence

z � Kz D Dz C KDz;

or

z � Dz D K(z C Dz):

Defining x = z + Dz one has x� 0, Kx� 0 and x + Kx =
2z > 0, proving Tucker’s theorem.
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The key to identifying optimal solutions of constrained
nonlinear optimization problems is the Lagrange mul-
tiplier conditions. One of the main approaches to estab-
lishing such multiplier conditions for inequality con-
strained problems is based on the dual solvability char-
acterizations of systems involving inequalities. J. Farkas
[7] initially established such a dual characterization for
linear inequalities which was used in [23] to derive nec-
essary conditions for optimality for nonlinear program-
ming problems. This dual characterization is popularly
known as Farkas’ lemma, which states that given any
vectors a1, . . . , am and c in Rn, the linear inequality c>x
� 0 is a consequence of the linear system a>i x� 0, i = 1,
. . . , m, if and only if there exist multipliers �i � 0 such
that c =

Pm
iD1 �iai. This result can also be expressed as

a so-called alternative theorem: Exactly one of the fol-
lowing alternatives is true:
i) 9x 2 Rn, a>i x � 0, c>x < 0,
ii) 9�i � 0, c =

Pm
iD1 �iai.

This lemma is the key result underpinning the lin-
ear programming duality and has played a central role
in the development of nonlinear optimization theory.
A large variety of proofs of the lemma can be found
in the literature (see [5,25,26]). The proof [3,5] that
relies on the separation theorems has led to various
extensions. These extensions cover wide range of sys-
tems including systems involving infinite-dimensional
linear inequalities, convex inequalities and matrix in-
equalities. Applications range from classical nonlinear
programming to modern areas of optimization such
as nonsmooth optimization and semidefinite program-
ming. Let us now describe certain main generalizations
of Farkas’ lemma and their applications to problems in
various areas of optimization.

Infinite-Dimensional Optimization

The Farkas lemma for a finite system of linear inequal-
ities has been generalized to systems involving arbi-
trary convex cones and continuous linear mappings be-
tween spaces of arbitrary dimensions. In this case the
lemma holds under a crucial closure condition. In sym-
bolic terms, the main version of such extension to arbi-
trary dual pairs of vector spaces states that the following
equivalence holds [6]:

�
A(x) 2 S) c(x) � 0

�
, c 2 A>(S�); (1)

provided the cone A>(S�) is closed in some appropri-
ate topology. HereA is a continuous linear mapping be-
tween two Banach spaces, S is a closed convex cone hav-
ing the dual cone S� [5]. The closure condition holds
when S is a polyhedral cone in some finite-dimensional
space. For simple examples of nonpolyhedral convex
cones in finite dimensions where the closure condition
does not hold, see [1,5]. However, the following asymp-
totic version of Farkas’ lemma holds without a closure
condition:

�
A(x) 2 S) c(x) � 0

�
, c 2 cl(A>(S�)); (2)

where cl(A>(S�)) is the closure of A>(S�) in the ap-
propriate topology. These extensions resulted in the
development of asymptotic and nonasymptotic first
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order necessary optimality conditions for infinite-
dimensional smooth constrained optimization prob-
lems involving convex cones and duality theory for
infinite-dimensional linear programming problems
(see e. g. [12]). Smooth optimization refers to the opti-
mization of a differentiable function. A nonasymptotic
form of an extension of Farkas’ lemma that is differ-
ent from the one in (1) is given in [24] without the
usual closure condition. For related results see [4]. An
approach to the study of semi-infinite programming,
which is based on generalized Farkas’ lemma for infi-
nite linear inequalities is given in [12].

Nonsmooth Optimization

The success of linear programming duality and the
practical nature of the Lagrange multiplier conditions
for smooth optimization have led to extensions of
Farkas’ lemma to systems involving nonlinear func-
tions. Convex analysis allowed to obtain extensions in
terms of subdifferentials replacing the linear systems
by sublinear (convex and positively homogeneous) sys-
tems [8,31]. A simple form of such an extension states
that the following statements are equivalent:

� g(x) 2 S) f (x) � 0 (3)

0 2 cl

"
@ f (0)C

[
	2S�

@(�g)(0)

#
; (4)

where the real valued function f is sublinear and lower
semicontinuous, and the vector function g is sublinear
with respect to the cone S and vg is lower semicontinu-
ous for each v 2 S�. When f is continuous the statement
(4) collapses to the condition

0 2 @ f (0)C cl

" [
	2S�

@(�g)(0)

#
: (5)

This extension was used to obtain optimality conditions
for convex optimization problems and quasidifferen-
tiable problems in the sense of B.N. Pshenichnyi [27].
A review of results of Farkas type for systems involving
sublinear functions is given in [13,14].

Difference of sublinear (DSL) functions which arise
frequently in nonsmooth optimization provide useful
approximations for many classes of nonconvex nons-

mooth functions. This has led to the investigation of
results of Farkas type for systems involving DSL func-
tions.

A mapping g: X! Y is said to be difference sublin-
ear (DSL) (with respect to S) if, for each v 2 S�, there are
(weak 
) compact convex sets, here denoted @(vg)(0)
and @(vg)(0), such that, for each x 2 X,

vg(x) D max
u2@(v g)(0)

u(x) � max
w2@(v g)(0)

w(x);

where X and Y are Banach spaces. If Y = R and S =
R+ then this definition coincides with the usual no-
tion of a difference sublinear real-valued function. Thus
a mapping g is DSL if and only if vg is a DSL function
for each v 2 S�. The sets @(vg)(0) and @(vg)(0) are the
subdifferential and superdifferential of vg, respectively.
For a DSL mapping g: X ! Y we shall often require
a selection from the class of sets

n
@(vg)(0) : v 2 S�

o
.

This is a set, denoted (wv), in which we select a single
element @(vg)(0) for each v 2 S�. An extension of the
Farkas lemma for DSL systems states that the following
statements are equivalent [10,20]:
i) � g(x) 2 S) f (x) � 0;
ii) for each selection (wv) with wv 2 @(vg)(0), v 2 S�,
@ f (0) � @ f (0)C B,

where B D cl cone co
�S

v2S�(@(vg)(0)� wv )
�
. A uni-

fied approach to generalizing the Farkas lemma for sub-
linear systems which uses multivalued functions and
convex process is given [2,17,18].

Global Nonlinear Optimization

Given that the optimality of a constrained global opti-
mization problem can be viewed as the solvability of ap-
propriate inequality systems, it is easy to see that an ex-
tension of Farkas’ lemma again provides a mechanism
for characterizing global optimality of a range of nonlin-
ear optimization problems. The �-subdifferential analy-
sis here allowed to obtain a new version of the Farkas
lemma replacing the linear inequality c(x) � 0 by a re-
verse convex inequality h(x) � 0, where h is a convex
function with h(0) = 0. This extension for systems in-
volving DSL functions states that the following condi-
tions are equivalent.
i) � g(x) 2 S) h(x)� 0;
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ii) for each selection (wv) with wv 2 @(vg)(0), v 2 S�

and for each � � 0,

@�h(0) � cl cone co

"[
v2S�

(@(vg)(0)� wv)

#
:

Such an extension has led to the development of con-
ditions which characterize optimal solutions of various
classes of global optimization problems such as convex
maximization problems and fractional programming
problems (see [19,20]).

However, simple examples show that the asymp-
totic forms of the above results of Farkas type do not
hold if we replace the DSL (or sublinear) system by
a convex system. Ch.-W. Ha [15] established a ver-
sion of the Farkas lemma for convex systems in terms
of epigraphs of conjugate functions. A simple form of
such a result [29] states that the following statements
are equivalent:
i) (8i 2 I) gi(x)� 0) h(x) � 0;
ii) epi h� � cl cone co [ [i 2 I epi g�i ],
provided the system

i 2 I; gi (x) � 0

has a solution. Here h and, for each i 2 I, gi are
continuous convex functions, I is an arbitrary index
set, and h� and g�i are conjugate functions of h and
gi respectively. This result has also been employed
to study infinite-dimensional nonsmooth nonconvex
problems [30]. A basic general form of the Farkas
lemma for convex system with application to multi-
objective convex optimization problems is given in [11].
Extensions to systems involving the difference of con-
vex functions are given in [21,29]. A more general re-
sult involving H-convex functions [29] with application
to global nonlinear optimization is given in [29].

Nonconvex Optimization

The convexity requirement of the functions involved in
the extended Farkas lemma above can be relaxed to ob-
tain a form of Farkas’ lemma for convex-like system.
Let F: X × Y ! R and let f : X! R, where X and Y are
arbitrary nonempty sets. The pair (f , F) is convex-like
on X if

(9˛ 2 (0; 1))(8x1; x2 2 X)(9x3 2 X);

f (x3) � ˛ f (x1)C (1 � ˛) f (x2)

and (8y 2 Y):

F(x3; y) � ˛F(x1; y)C (1 � ˛)F(x2; y):

If the pair (f , F) is convex-like on X, there is x0 2 X with
(8y 2 Y) F(x0, y)� 0 and if a regularity condition holds
then the following statements are equivalent [21]:

8y 2 Y ; F(x; y) � 0 H) f (x) � 0;

(8� < 0)(9� 2 �)(8x 2 X)

f (x)C
X
y2Y

�yF(x; y) > �;

where� is the dual cone of the convex cone of all non-
negative functions on Y . An asymptotic version of the
above result holds if the regularity hypothesis is not
fulfilled. This extension has been applied to develop
Lagrange multiplier type results for minimax prob-
lems and constrained optimization problems involving
convex-like functions. For related results see [16].

Semidefinite Programming

A useful corollary of the Farkas lemma, which is often
used to characterize the feasibility problem for linear in-
equalities, states that exactly one of the following alter-
natives is true:
i) 9x 2 Rn a>i x � bi, i = 1, . . . ,m,
ii) 9�i � 0

Pm
iD1 �iai = 0,

Pm
iD1 bi�i = � 1.

This form of the Farkas lemma has also attracted vari-
ous extensions to nonlinear systems, including sublin-
ear and DSL systems [20] with the view to character-
ize the feasibility of such systems. The feasibility prob-
lem, which has been of great interest in semidefinite pro-
gramming, is the problem of determining whether there
exists an x 2 Rn such that Q(x) � 0, for real symmetric
matrices Qi, i = 0, . . . , m, where � denotes the partial
order, i. e. B�A if and only ifA� B is positive semidef-
inite, andQ(x) =Q0 �

Pm
iD1 xi Qi. However, simple ex-

amples show that a direct analog of the alternative does
not hold for the semidefinite inequality systems Q(x)�
0 without additional hypothesis on Q. A modified dual
conditions which characterize solvability of the system
Q(x) � 0 is given in [28].

See also

� Farkas Lemma
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Feasible sequential quadratic programming (FSQP)
refers to a class of sequential quadratic programming
(SQP) methods that have the additional property that
all iterates they construct satisfy the inequality con-
straints. Thus, for the problem

8̂
<̂
ˆ̂:

min
x2Rn

f (x)

s.t. g j(x) � 0; j D 1; : : : ;mi ;

hj(x) D 0; j D 1; : : : ;me ;

(1)

where f , the gjs, and the hjs are smooth, FSQP methods
generate a sequence {xk} such that gj(xk) � 0 for all j
and all k.

From the application’s point of view, enforcing fea-
sibility of the iterates with respect to inequality con-
straints is often an important attribute. First, it may be
the case that the objective function is simply not defined
when certain constraints are violated, for example, with
problems involving dynamical systems, in which stabil-
ity is needed in order for, say, certain steady state er-
rors to be well defined. Second, it may be crucial that
a (suboptimal) solution satisfying certain ‘hard’ con-
straints be available after a prescribed amount of time
has elapsed, too short to allow convergence to the op-
timal solution. This is the case, for instance in certain
real-time control applications. A third situation where
feasibility of successive iterates is desirable is in the con-
text of trade-off exploration for design problems. In-
deed, trade-offs between ‘soft’ design specifications can-
not be meaningfully explored unless ‘hard’ specifica-
tions are satisfied. From the point of view of numerical
algorithms, while maintaining feasibility of successive
iterates obviously requires special attention, it also has
important beneficial side effects. Namely,
i) the objective function can be forced to decrease at

each iteration, and thus can serve as merit func-
tion in the line search, thereby avoiding the complex
issue of choice of an appropriate surrogate merit
function; and

ii) as pointed out below, in the context of SQP type
methods, the quadratic programs successively con-
structed all have a nonempty feasible set, which is
not the case in general for ‘infeasible’ methods.

Methods that generate feasible iterates have regained
much popularity in recent years with the in-depth in-
vestigation of barrier-based interior point methods, suc-
cessively in the context of linear, convex-quadratic,

general convex, and nonconvex problems, the class of
problems of interest here. Contributions to the latter
can be found in the classical book [4] as well as, e. g.,
in [11] (see [14] for a ‘modern’ presentation) and [3],
and in many recent reports. In those methods, each
search direction is typically obtained via the solution of
a linear system of equations. FSQP algorithms, on the
other hand, being of the SQP type, involve the solution
of quadratic programs as subproblems. While they are
often impractical for problems with large numbers of
variables, SQP-type algorithms are particularly suited
to various classes of engineering applications where the
number of variables is not too large but evaluations
of objective/constraint functions and of their gradients
are highly time consuming. Indeed, because these al-
gorithms use quadratic programs as successive models,
progress between (expensive) function evaluations is
typically significantly better than with algorithms mak-
ing use of mere linear systems of equations as models.

FSQP algorithms are of the feasible direction type
in that, while they allow iterates to lie on constraint
boundaries, small enough displacements along the
search directions they generate always yield feasible
points. Indeed, whenever the current iterate lies on or
near a nonlinear constraint boundary, the search di-
rection tends to point toward the interior of the feasi-
ble set. In that respect FSQP algorithms are analogous
to interior point methods. Early feasible direction al-
gorithms (see, e. g., [12,16]) were first order methods,
i. e., only first derivatives were used and no attempt was
made to accumulate and use second order information.
As a consequence, such algorithms converged linearly
at best. E. Polak proposed several extensions to these
algorithms which take second order information into
account when computing the search direction (see [12,
Sect. 4.4]). Some of the search directions proposed by
Polak can be viewed as modified SQP directions but the
fast local convergence rate usually associated with SQP
is not preserved. In [1], a feasible SQP algorithm is pro-
posed with emphasis on avoiding costly line searches
by making it likely that a full step along the constructed
direction is acceptable as a next iterate, even early on
in the optimization process. The price paid however is
again the loss of fast local convergence.

In this article, we focus on feasible SQP methods
which, under appropriate assumptions, preserve the
fast rate of convergence of standard SQPmethods. Such
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methods have been considered early on by J.N. Her-
skovits and L.A.V. Carvalho [5] and in [2,6,8,9,10], and
recently also by L. Qi and Z. Wei [13].

Main Ideas

For simplicity, consider the case where only inequality
constraints are present, i. e., me = 0. Suppose that the
current estimate xk for the solution of (1) is feasible, i. e.,
gj(xk) � 0 for all j. The basic SQP direction, d0k , is ob-
tained by solving the quadratic programming problem

8<
:
min
d0

1
2

˝
d0;Hkd0

˛
C
˝
r f (xk); d0

˛

s.t. g j(xk)C
˝
r g j(xk); d0

˛
� 0; 8 j;

(2)

where Hk is the Hessian of the Lagrangian, or an esti-
mate thereof. While, in general, QP (2) may be incon-
sistent, feasibility of xk, which we seek to enforce, guar-
antees that it admits a feasible point. Indeed, in particu-
lar, d0k = 0 is always feasible. Assume thatHk is symmet-
ric positive definite. Then QP (2) has a unique solution
d0k . It is a simple exercise to show that, in addition, d0k
has the interesting property of being a first order de-
scent direction for f at xk, i. e., hr f (xk), d0ki < 0.

Suppose now that some constraint, say g j0 , is active
at xk, i. e., g j0 (xk) = 0. Then, if the j0th constraint is also
active in QP (2), then hr g j0 (xk), d0ki = 0, so that d0k is
tangent to the feasible set. Quite possibly, as a result,
g j0 (xk + td0k ) may be positive for small t, making it dif-
ficult, or impossible, to locate a next feasible iterate in
direction d0k . Thus d

0
k is not an appropriate search di-

rection for FSQP.However any, however small, amount
of tilting of d0k towards the interior of the feasible set
makes it a feasible direction. The challenge in FSQP
type methods is to tilt d0k enough that a sizable step
can be made within the feasible set, but little enough
that the fast local convergence properties of sequential
quadratic programming are preserved.

With appropriate titling of the basic SQP search di-
rection, and an appropriate line search along the re-
sulting direction d (yielding a next iterate xk + tkdk for
some tk 2 (0, 1]) a globally convergent feasible SQP al-
gorithm can be constructed. However, the result would
be unsatisfactory if the algorithm thus obtained did not
exhibit a fast local convergence rate, a property that is
generally expected from SQP-type methods. For such
rate (in particular, a superlinear rate) to take place, it

is critical that a full step of one be eventually taken,
i. e., that, when xk is close to the solution, tk be equal
to one. Here a difficulty already arises in the context
of classical (nonfeasible) SQP methods, where it may
happen that the line search rule prevents the full step
from being taken. This possible conflict between global
convergence and fast local convergence is known as the
Maratos effect. In the context of FSQP methods, this
difficulty is compounded by the fact that, in order to
be acceptable, in addition to satisfy an appropriate de-
scent criterion, the next iterate must be feasible. This
imposes further demands on the Maratos-effect avoid-
ance scheme. Two schemes have been proposed in the
literature: second order correction with arc search, and
nonmonotone line search.

Algorithms

Following is a simple example of an FSQP algorithm,
taken from [10].

Parameters: ˛ 2 (0; 1/2); ˇ 2 (0; 1).
Data: x0 2 X; H0 = H>0 > 0.
Step 0. Initialization: Set k = 0.
Step 1. Computation of a search arc.

Compute d0k . If d
0
k = 0, stop.

Compute d1k and �k and set
dk = (1 � �k )d0k + �kd

1
k .

Compute correction d̃k .
Step 2. Arc search.

Compute tk , the first number t in the sequence
f1; ˇ; ˇ2; : : :g satisfying f (xk + tdk + t2d̃k ) �
f (xk) + ˛thr f (xk); dki, g j(xk + tdk + t2d̃k) � 0;
j = 1; : : : ;mi .

Step 3. Updates.
Compute Hk+1 = H>k+1 > 0.
Set xk+1 = xk + tkdk + t2k d̃k .
Set k = k + 1.
Go back to Step 1.

Algorithm: Simple FSQP

Here, d1k is a feasible direction and a direction of first
order descent for f , � 2 (0, 1] goes to zero fast enough
(like k d0k k

2) when d0k goes to zero, andedk is a correc-
tion that aims at insuring that the full step of one will be
accepted when xk is close enough to a solution; compu-
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tation ofedk involves constraint values at xk+ dk. Under
standard assumptions this algorithm is known to gen-
erate sequences whose limit points are Karush–Kuhn–
Tucker points. Under strengthened assumptions, in-
cluding the assumption thatHk is updated in such away
that it approximates well, in a certain sense, the Hessian
of the Lagrangian as a solution is approached, conver-
gence can be shown to be Q-superlinear or 2-step su-
perlinear. See [10] for details. A refined version of the
algorithm of [10] is implemented in the CFSQP/FFSQP
software (see [15]). Refinements include the capability
to handle equality constraints [6], minimax and con-
strained minimax problems and to efficiently handle
problems with large numbers of inequality constraints
and minimax problems with large numbers of objec-
tive functions [8]. Also note that an FSQP method with
drastically reduced amount of work per iteration has
been recently proposed [7].

Applications

Applications abound where FSQP-type algorithms are
of special interest. In particular, as stressed above, such
algorithms are particularly appropriate for problems
where the number of variables is not too large but func-
tions evaluations are expensive, and feasibility of iter-
ates is desirable (or imperative). Furthermore, prob-
lems with a large number of inequality constraints (or
minimax problems with large numbers of objective
functions), such as finely discretized semi-infinite op-
timization problems, can be handled effectively, mak-
ing FSQP especially well-suited for problems involving,
e. g., time or frequency responses of dynamical systems.
Pointers to a large number of applications can be found
on the web, at the URL listed above. Application areas
include all branches of engineering, medicine, physics,
astronomy, economics and finances, to mention but
a few.
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In recent years (1990) feedback set problems have been
the subject of growing interest. They have found ap-
plications in many fields, including deadlock preven-
tion [90], program verification [79], and Bayesian in-
ference [2]. Therefore, it is natural that in the past
few years there have been intensive efforts on exact
and approximation algorithms for these kinds of prob-
lems. Exact algorithms have been proposed for solving
the problems restricted to special classes of graphs as
well as several approximation algorithms with provable
bounds for the cases that are not known to be polyno-
mially solvable. The most general feedback set problem
consists in finding a minimum-weight (or minimum
cardinality) set of vertices (arcs) that meets all cycles
in a collection C of cycles in a graph (G, w), where w
is a nonnegative function defined on the set of vertices
V(G) (on the set of edges E(G)). This kind of problem is
also known as the hitting cycle problem, since one must
hit every cycle in C. It generalizes a number of prob-
lems, including the minimum feedback vertex (arc) set
problem in both directed and undirected graphs, the
subset minimum feedback vertex (arc) set problem and
the graph bipartization problem, in which one must re-
move a minimum-weight set of vertices so that the re-
maining graph is bipartite. In fact, if C is the set of all
cycles in G, then the hitting cycle problem is equivalent
to the problem of finding the minimum feedback vertex
(arc) set in a graph. If we are given a set of special ver-
tices and C is the set of all cycles of an undirected graph
G that contains some special vertex, then we have the
subset feedback vertex (arc) set problem and, finally, if
C contains all odd cycles of G, then we have the graph
bipartization problem. All these problems are also spe-
cial cases of vertex (arc) deletion problems, where one
seeks a minimum-weight (or minimum cardinality) set
of vertices (arcs) whose deletion gives a graph satis-
fying a given property. There are different versions of
feedback set problems, depending on whether the graph
is directed or undirected and/or the vertices (arcs) are
weighted or unweighted. See [30] for a complete sur-
vey, and [91] for a general NP-hardness proof for al-
most all vertex and arc deletion problems restricted to
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planar graphs. These results apply to the planar bipar-
tization problem, the planar (directed, undirected, or
subset) feedback vertex set problems, already proved to
be NP-hard [33,46]. Furthermore, it isNP-complete for
planar graphs with no indegree or outdegree exceeding
three [46], general graphs with no indegree or outde-
gree exceeding two [46], and edge-directed graphs [46].

The scope of this article is to give a complete state-
of-art survey of exact and approximation algorithms
and to analyze a new practical heuristic method called
GRASP for solving both feedback vertex and feedback
arc set problems.

Notation and Graph Representation

Throughout this paper, we use the following notation
and definitions.

A graph G = (V , E) consists of a finite set of vertices
V(G), and a set of arcs E(G)� V(G) × V(G).

An arc (or edge) e = (v1, v2) of a directed graph (di-
graph) G = (V , E) is an incoming arc to v2 and an out-
going arc from v1 and it is incident to both v1 and v2. If
G is undirected, then e is said to be only incident to v1
and v2.

For each vertex i 2 V(G), let in(i) and out(i) denote
the set of incoming and outgoing edges of i, respec-
tively. They are defined only in case of a digraph G. If G
is undirected, we will take into account only the degree
�G(i) of i as the number of edges that are incident to i
in G.

�(G) denotes the maximum degree among all ver-
tices of a graph G and it is called the graph degree.

A vertex v 2 G is called an endpoint if it has degree
one, a linkpoint if it has degree two, while a vertex hav-
ing degree higher than two is called a branchpoint.

A path P in G connecting vertex u to vertex v is a se-
quence of arcs e1, . . . , er in E(G), such that ei = (vi, vi + 1),
i = 1, . . . , r, with v1 = u and vr + 1 = v. A cycle C in G is
a path C = (v1, . . . , vr), with v1 = vr .

A subgraph G0 = (V 0, E0) of G = (V , E) induced by
V 0 is a graph such that E0 = E \ (V 0 × V 0). A graph G is
said to be a singleton, if |V(G)| = 1. Any graph G can be
partitioned into isolated connected componentsG1, . . . ,
Gk and the partition is unique. Similarly, every feedback
vertex set V 0 of G can be partitioned into feedback ver-
tex sets F1, . . . , Fk such that Fi is a feedback vertex set of
Gi. Therefore, following the additive property and de-

noting by �(G, w) the weight of a minimum feedback
vertex (arc) set for (G, w), we have:

�(G;w) D
kX

iD1

�(Gi ;w):

The Feedback Vertex Set Problem

Formally, the feedback vertex set problem can be de-
scribed as follows. Let G = (V , E) be a graph and let w:
V(G) ! R+ be a weight function defined on the ver-
tices of G. A feedback vertex set of G is a subset of ver-
tices V 0� V(G) such that each cycle in G contains at
least one vertex in V 0. In other words, a feedback ver-
tex set V 0 is a set of vertices of G such that by removing
V 0 from G along with all the edges incident to V 0, re-
sults in a forest. The weight of a feedback vertex set is
the sum of the weights of its vertices, and a minimum
feedback vertex set of a weighted graph (G, w) is a feed-
back vertex set of G of minimum weight. The weight
of a minimum feedback vertex set will be denoted by
�(G, w). The minimum weighted feedback vertex set
problem (MWFVS) is to find a minimum feedback ver-
tex set of a given weighted graph (G, w). The special
case of identical weights is called the unweighted feed-
back vertex set problem (UFVS).

Mathematical Model
of the Feedback Vertex Set Problem

As a covering-type problem, the feedback vertex set
problem admits an integer zero-one programming for-
mulation. Given a feedback vertex set V 0 for a graph
(G,w),G = (V , E), and a set of weightsw= {w(v)}v 2 V(G),
let x = {xv}v 2 V(G) be a binary vector such that xv = 1 if
v 2 V 0, and xv = 0 otherwise. Let C be the set of cy-
cles in (G, w). The problem of finding the minimum
feedback vertex set of G can be formulated as an integer
programming problem as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

v2V (G)

w(v)xv

s.t.
X

v2V (� )

xv � 1; 8� 2 C;

0 � xv � 1 integer; v 2 V (G):

If one denotes by Cv the set of cycles passing through
vertex v 2V(G), then the dual of the corresponding lin-
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ear programming relaxation is a packing problem:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
X
� 2C

y�

s.t.
X
� 2Cv

y� � w(v); 8v 2 V (G);

y� � 0; 8� 2 C:

Polynomially Solvable Cases

Given the NP-completeness of the feedback vertex set
problem, a recent line of research has focused on iden-
tifying the largest class of specially structured graphs
on which such problems remain polynomially solvable.
A pioneering work is due to A. Shamir [79], who pro-
posed a linear time algorithm to find a feedback vertex
set for a reducible flow graph. C. Wang, E. Lloyd, and
M. Soffa [90] developed anO(|E(G)|�|V(G)|2) algorithm
for finding a feedback vertex set in the class of graphs
known as cyclically reducible graphs, which is shown to
be unrelated to the class of quasireducible graphs. Al-
though the exact algorithm proposed by G.W. Smith
and R.B. Walford [83] has exponential running time in
general, it returns an optimal solution in polynomial
time for certain types of graphs. A variant of the al-
gorithm, called the Smith–Walford-one algorithm, se-
lects only candidate sets F of size one and runs in
O(|E(G)|�|V(G)|2) time. The class of graphs for which it
finds a feedback vertex set is called Smith–Walford one-
reducible. In the study of feedback vertex set problems
a set of operations called contraction operations has had
significant impact. They contract the graph G(V , E),
while preserving all the important properties relevant
to the minimum feedback vertex set. See [56] for a de-
tailed analysis of these reduction procedures which are
important for the following two reasons. First, a class of
graphs of increasing size is computed, where the feed-
back vertex set of each graph can be found exactly.
Second, most proposed heuristics and approximation
algorithms use the reduction schemes in order to re-
duce the size of the problem. Another line of research
on polynomially solvable cases focuses on other spe-
cial classes, including chordal and interval graphs, per-
mutation graphs, convex bipartite graphs, cocomparabil-
ity graphs and on meshes and toroidal meshes, butter-
flies, and toroidal butterflies. The feedback vertex set on
chordal and interval graphs can be viewed as a special
instance of the generalized clique cover problem, which

is solved in polynomial time on chordal graphs [20,93]
and interval graphs [65]. For permutation graphs, an
algorithm due to A. Brandstädt and D. Kratsch [8]
was improved by Brandstädt [7] to run in O(|V(G)|6)
time. More recently (1994), Y.D. Liang [58] presented
an O(|V(G)|�|E(G)|) algorithm for permutation graphs
that can be easily extended to trapezoid graphs while
keeping the same time complexity. On interval graphs,
C.L. Lu and C.Y. Tang [61] developed a linear-time
algorithm to solve the minimum weighted feedback
vertex set problem using dynamic programming. S.R.
Coorg and C.P. Rangan [19] present an O(|V(G)|4)
time and O(|V(G)|4) space exact algorithm for cocom-
parability graphs, which are a superclass of permuta-
tion graphs. More recently, Liang and M.S. Chang [13]
developed a polynomial time algorithm, that by ex-
ploring the structural properties of a cocomparability
graph uses dynamic programming to get a minimum
feedback vertex set in O(|V(G)2| |E(G)|) time. A re-
cent (1998) line of research [63] on polynomially solv-
able cases focuses on special undirected graphs having
bounded degree and that are widely used as connection
networks, namely mesh, butterfly and k-dimensional
cube connected cycle (CCCk).

Approximation Algorithms and Provable Bounds
on Undirected Graphs

A 2 log2|V(G)|-approximation algorithm for the un-
weighted minimum feedback vertex set problem on
undirected graphs is contained in a lemma due to P.
Erdös and L. Posa [25]. This result was improved in [66]
to obtain a performance ratio of O(

p
log jV (G)j). R.

Bar-Yeruda, D. Geiger, J. Naor, and R.M. Roth [2] gave
an approximation algorithm for the unweighted undi-
rected case having ratio less than or equal to 4 and
two approximation algorithms for the weighted undi-
rected case having ratios 4 log2 |V(G)| and 2�2(G), re-
spectively. To speedup the algorithm, they show how to
preprocess the input valid graph by applying the cor-
responding undirected versions of the Levy–Lowe re-
duction transformations. For the feedback vertex set
problem in general undirected graphs, two slightly dif-
ferent 2-approximation algorithms are described in [3]
and [1]. These algorithms improve the approximation
algorithms of [2]. They also can find a loop cutset
which, under specific conditions, is guaranteed in the
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worst case to contain less than four times the number
of variables contained in a minimum loop cutset. Sub-
sequently, A. Becker and Geiger [4] applied the same
reduction procedure from the loop cutset problem to
the minimum weighted feedback vertex set problem
of [2], but their result is independent of any condition
and is guaranteed in the worst case to contain less than
twice the number of variables contained in a minimum
loop cutset. They [4] propose two greedy approxima-
tion algorithms for finding the minimum feedback ver-
tex set V 0 in a vertex-weighted undirected graph (G,
w), one of them having performance ratio bounded by
the constant 2 and complexity O(m+n log n), where m
= |E(G)| and n = |V(G)|. In [17], F.A. Chudak, M.X.
Goemans, D. Hochbaum, and D.P. Williamson showed
how the algorithms due to Becker and Geiger [3] and
V. Bafna, P. Berman, and T. Fujito [1] can be explained
in terms of the primal-dual method for approxima-
tion algorithms that are used to obtain approximation
algorithms for network design problems. The primal-
dual method starts with an integer programming for-
mulation of the problem under consideration. It then
simultaneously builds a feasible integral solution and
a feasible solution to the dual of the linear program-
ming relaxation. If it can be shown that the value of
these two solutions is within a factor of ˛, then an ˛-
approximation algorithm is found. The integrality gap
of an integer program is the worst-case ratio between
the optimum value of the integer program and the op-
timum value of its linear relaxation. Therefore, by ap-
plying the primal-dual method it is possible to proof
that the integrality gap of the integer program under
consideration is bounded. In fact, Chudak et al., after
giving a new integer programming formulation of the
feedback vertex set problem, provided a proof that its
integrality gap is at most 2. They also gave the proofs of
some key inequalities needed to prove the correctness
of their new integer programming formulation.

Theorem 1 Let V 0 denote any feedback vertex set of
a graph G = (V, E), E 6D ;, let � denote the cardinal-
ity of the smallest feedback vertex set for G, and let E(S)
denote the subset of edges that have both endpoints in
S� V(G), b(S) = |E(S)| � |S|+1. Then

X
v2V 0

[	G(v) � 1] � b(V(G)); (1)

X
v2V 0

	G(v) � b(V(G))C �: (2)

If every vertex in G has degree at least two, and V 0M is
any minimal feedback vertex set (i. e. 8 v 2 V 0M, V 0M\
{v} is not a feedback vertex set), then

X
v2V 0M

	G(v) � 2(b(V(G))C �) � 2: (3)

G. Even, Naor, B. Schieber, and L. Zosin [28] showed
that the integrality gap of that integer program for the
standard cycle formulation of the feedback vertex set
problem is˝(log n). The new integer programming for-
mulation given in [17] is as follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
X

v2V (G)

w(v)xv

s.t.
X
v2S

(	S(v) � 1)xv � b(S);

S � V (G) : E(S) ¤ ;;
xv 2 f0; 1g; v 2 V (G):

The linear programming relaxation is:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
X

v2V (G)

w(v)xv

s.t.
X
v2S

(	S(v) � 1)xv � b(S);

S � V (G) : E(S) ¤ ;;
xv � 0; v 2 V (;G);

and its dual is:
8̂
ˆ̂̂<
ˆ̂̂̂
:

max
X
S

b(S)yS

s.t.
X
S :v2S

(	S (v) � 1)yS � wv ; v 2 V(G);

yS � 0; S � V(G) : E(S) ¤ ;:

For the subset feedback vertex problem, the authors
of [28] showed that it can be approximated in poly-
nomial time by a factor of min{2 �(G), 8 log(|V 0|+1),
O(log ��)}, where �� denotes the value of the opti-
mal fractional solution. In [28] the authors also pro-
posed a technique, called bootstrapping, that enhances
the O(log |V 0|) to a factor of O(log ��/ˇ), where ˇ de-
notes the minimum weight of a vertex. The bootstrap-
ping technique iteratively uses a graph partition algo-
rithm. The output of each iteration is by itself a subset
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feedback vertex set and is used as part of the input of
the next iteration. After O(log |V 0|) iterations the algo-
rithm gives as output a subset feedback vertex set having
weight at most O(�� log ��). Even, Naor and Zosin [26]
improved this result proposing an 8-approximation al-
gorithm. The main tool that they used in developing
their approximation algorithm and its analysis is a new
version of multicommodity flow, called relaxed multi-
commodity flow, a hybrid of multicommodity flow and
multiterminal flow, in which there are additional con-
straints, called intercommodity constraints. For each arc,
the authors considered the maximum flow among all the
commodities, which is shipped along it. They required
that for each vertex v 2 V(G) the sum of the maximum
flows shipped along its incident arcs be bounded by four
times the capacity of v. By considering the multicommod-
ity flow, the vertices for which the intercommodity con-
straints are tight play an important role from the point
of view of the connectivity of the graph. They are called
intersatured vertices. The main result of [26] is a theo-
rem that bounds the weight of the vertices that must be
intersatured, so as to satisfy a given demand vector by
the sum of demands.

Approximation Algorithms and Provable Bounds
on Directed Graphs

In general, problems on undirected graphs are relatively
easier to handle than problems on directed graphs,
since more graph theory can be utilized. Not surpris-
ingly, the approximation results obtained so far for the
undirected version are stronger than those for the di-
rected version. In fact, none of the algorithms referred
to in the previous subsections apply to the feedback
vertex set problem in directed graphs and, in contrast
with the undirected version, no analytical results are
known for the directed case. A very recent direction of
research on approximation algorithms in the directed
version focuses on the complete equivalence among all
feedback set (and/or feedback subset) problems and
among these and the directed minimum capacity mul-
ticut problem in circular networks. An exhaustive de-
scription of the procedures that reduce any feedback
set problem to any other or any of them to the directed
minimum capacity multicut problem and vice versa are
formalized and used in [27] to obtain an approxima-
tion algorithm for the subset feedback arc set problem

of a weighted directed graph G = (V , E), where the in-
teresting cycles to be hit are contained in a set of spe-
cial vertices X � V(G), where |X| = k. The weight of
the feedback arc set found by their approximation al-
gorithm is O(�� log2|X|), where �� is the weight of
an optimal fractional feedback set. Nevertheless, their
approach can be used to solve any other feedback set
problem as well as the directed minimum capacity mul-
ticut problem. Even et al. [27] also proposed an algo-
rithm for approximating the minimum weighted sub-
set vertex set problem in the weighted and directed
case, leading to a result that holds for any other feed-
back set problem as well. This approach is an algorith-
mic adaptation of a theoretical result due to P.D. Sey-
mour [78], who proved that the integrality gap in the
case of the unweighted feedback vertex set problem can
be at most O(log �� log log ��), where �� is defined as
above. Even et al. observe that all existence arguments
contained in the proof of Seymour’s statement can be
made constructive and thus, with some additional oper-
ations, an algorithm for the unweighted feedback vertex
set problem having an approximation factor of O(log
�� log log ��) can be obtained. Further modifications
of the algorithm lead to a polynomial time approxi-
mation scheme applicable to the weighted problem. In
O(|E(G)|�|V(G)|2) time the algorithm finds a feedback
vertex set having weight

O
�
min f�� log �� log log ��;

�� log jV (G)j log log jV (G)jg
�
:

All the observations contained in [27] improve
the O(log2 |V(G)|)-approximation algorithm for this
case [54]. In the case of directed planar graphs,
H. Stamm [86] presented an O(|V(G)|log |V(G)|)-
approximation algorithm, whose performance guaran-
tee is bounded by the maximum degree of the graph
and an O(|V(G)|2) time approximation algorithm with
performance guarantee no more than the number of
cyclic faces in the planar embedding of the graph mi-
nus 1. M. Cai, X. Deng, and W. Zang [10] obtained
a 2.5-approximation algorithm for the minimum feed-
back vertex set problem on tournaments, improving the
previously known algorithm with performance guaran-
tee of 3 by E. Speckenmeyer [85]. Let H be the triangle-
vertex incidence matrix of a tournament T and let e be
the all-one vector. In [10], necessary and sufficient con-
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ditions are established for the linear system {x: Hx � e,
x � 0} to be a totally dual integral system (TDI).

Definition 2 A rational linear system {x:Ax� b, x� 0}
is called totally dual integral, if the optimization prob-
lem max {y| b: y| A � c|, y � 0} has an integral opti-
mum solution y for every integral vector c for which the
maximum is finite.

It has been shown that any rational polyhedron P has
a TDI system P = {x: Ax � b} representation with A in-
tegral, and that, if P is full-dimension, there is a unique
minimal TDI system P = {x: Ax � b} with A and b inte-
gral if and only if P is integral. In [11] the authors have
extended this approach to the feedback vertex set prob-
lems and the cycle packing problem in bipartite tourna-
ments, where a bipartite tournament is an orientation
of a complete bipartite graph. For the aforementioned
problems they have found strongly polynomial time al-
gorithms, which are a consequence of a min-max relax-
ation on packing and covering directed cycles.

Exact Algorithms

In contrast to the numerous approximation schemes
that have been studied, relatively few exact algorithms
for the feedback vertex set problem have been pro-
posed. To our knowledge, the first algorithm to find an
exact minimal cardinality FVS is due to Smith andWal-
ford [83], who proposed a particular graph partition
technique. Although their algorithm solves the prob-
lem in an arbitrary directed graph in exponential run-
ning time, it returns an optimal solution in polynomial
time for certain types of graphs. Later, exact algorithms
of enumerative nature often used the graph reduction
procedures to speed up the process. One study, [16],
essentially used direct enumeration plus reduction and
reported satisfactory computational results for a set
of partial scan design test problems. T. Orenstein, Z.
Kohavi, and I. Pomeranz [67] proposed a somewhat
more involved exact enumerative procedure based on
graph reduction and efficient graph partitioning meth-
ods. Their algorithm has been designed for identifying
a minimum feedback vertex set in a digital circuit and
it is efficient in random graphs, even though in cliques
or graphs that are ‘almost’ cliques it has an exponential
behavior, since the reduction and partition techniques
cannot be applied.

Somewhat surprising, exact algorithms for feedback
vertex set based on mathematical programming formu-
lation are quite few. Recently (1996), M. Funke and
G. Reinelt [32] considered a special variant of feed-
back problems, namely the problem of finding a max-
imum weight node induced acyclic subdigraph. They
discussed valid and facet defining inequalities for the
associated polytope and developed a polyhedral-based
exact algorithm presenting computational results ob-
tained by applying a branch and cut algorithm.

The Feedback Arc Set Problem

Given a graph G = (V , E) and a nonnegative weight
function w: E(G) ! R+ defined on the arcs of
G, the feedback arc set problem consists of finding
a minimum-weight subset of arcs E0 � E(G) that meets
every cycle in a given collection C of cycles in (G,w). As
in the vertex case, this leads to the minimum feedback
arc set problem (MWFAS) in both directed and undi-
rected graphs, the minimum weighted graph bipartiza-
tion problem via arc removals, and so on.

Mathematical Model
of the Feedback Arc Set Problem

Given an arc weighted graph (G, w), G = (V , E) and the
set C of all cycles inG, the minimumweighted feedback
arc set problem can be formulated as the following in-
teger programming problem:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X

e2E(G)

w(e)xe

s.t.
X
e2�

xe � 1; 8� 2 C;

xe 2 f0; 1g; 8e 2 E(G):

In its relaxation, the constraints xe 2 {0, 1}, 8 e 2 E(G)
are replaced by xe � 0,8 e2 E(G), obtaining a fractional
feedback arc set. As with the feedback vertex set prob-
lem, the feedback arc set problem is a covering problem
and its (linear programming) dual is called a packing
problem. In the case of the feedback arc set problem this
means assigning a dual variable to all interesting cycles
to be hit in the given graph, such that for each arc the
sum of the variables corresponding to the interesting
cycles passing through that arc is at most the weight of
the arc itself.
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State of the Art of Feedback Arc Set Problems

Feedback arc set problems tend to be easier than their
vertex counterparts, especially for planar graphs. In the
directed case feedback vertex and feedback arc set prob-
lems are each reducible to one another. Even, Naor,
Schieber, and Sudan [27] showed how to perform re-
ductions among feedback set problems and feedback
subset problems and vice versa, preserving feasible so-
lutions and their costs. In all reductions, there is a one-
to-one correspondence between feasible solutions and
their corresponding costs. Therefore, an approximate
solution to one problem can be translated to an ap-
proximate solution of the other problem reducible to
this problem. Because most of the reduction procedures
can be performed in linear time, these problems can be
viewed as different representations of the same prob-
lem. Hence, as feedback vertex sets are reduced into
feedback arc sets with the same weight and vice versa,
all of these problems are equally hard to approximate.
In the literature of feedback set problems most of the
proposed algorithms are designed to solve the prob-
lem in vertex-weighted graphs. One of the pioneering
papers on feedback arc set problems is [76], where it
is proved that finding a minimum feedback arc set in
an arc-weighted reducible flow graph is as difficult as
finding a minimum cut in a flow network. The pro-
posed algorithm has complexity O(mn2 log (n2/m)),
where m = |E(G)| and n = |V(G)|. The algorithm was
adapted to solve the problem in the vertex-weighted
case. Shamir’s linear time algorithm [79], used for the
unit-weighted case, cannot be applied to solve the arc-
weighted problem, because any reduction between arc
and vertex set problems does not preserve the reducibil-
ity property. Given a directed graph G = (V , E), a di-
join E0 � E(G) is a set of arcs such that the graph G0

= (V , B), B = E [ {(v, u): (u, v)2 E0} is strongly con-
nected. Given nonnegative weights we, e 2 E(G), the
minimum-weight dijoin problem is to find the dijoin
with minimum weight. The feedback arc set problem in
planar digraphs is reducible to the problem of finding
a minimum-weight dijoin in the dual graph, which is
solvable in polynomial time [39]. Stamm [86] proposed
a simple 2-approximation algorithm for the minimum
weight dijoin problem by superposing two arbores-
cences. It is interesting to observe that, when translated
to the dual graph, all these problems lead to problems

of hitting certain cutsets of the dual graph, problems
which can be approximated within a ratio of 2 by the
primal-dual method. Goemans and Williamson [37]
proposed a primal-dual algorithm that finds a 9/4-
approximate solution to feedback set problems in pla-
nar graphs. The first approximation algorithm for the
feedback arc set problem was given in [54]. The ap-
proximation factor is O(log2 n) in the unweighted case,
where n is the number of vertices of the input graph.
This bound was obtained by using a O(log n) approx-
imation algorithm for a directed separator that splits
the graph into two approximately equally-sized com-
ponents, S and S. This separator can be found by ap-
proximating special cuts called quotient cuts. This result
was improved by Seymour [78], who gave a O(log n log
log n)-approximation algorithm that solves the linear
relaxation of the feedback arc set mathematical model
and then interprets the optimal fractional solution x� as
a length function defined on the arcs. Systematically, in
a recursive fashion, it uses this length function to delete
from the graphG all arcs between S and S. Note that the
linear program can be solved in polynomial time by us-
ing the ellipsoid or an interior point algorithm. Hence,
the quality of the bound in this approach depends on
the way the graph is partitioned. Seymour [78] proved
the following lemma:

Lemma 3 For a given strongly connected digraph G =
(V, E), suppose there exists a feasible solution x to the
feedback arc set problem. If � is the value of the optimal
fractional solution x�, then there exists a partition (S; S)
such that, for some �, 0 < � < 1, the following conditions
hold: If ıC(S) D f(u; v) : (u; v) 2 E(G); u 2 S; v 2 Sg
and ı�(S) D f(v; u) : (v; u) 2 E(G); u 2 S; v 2 Sg,
then the following is true:

X
e2E(S)

w(e)x(e) � ��; (4)

X

e2E(S)

w(e)x(e) � (1 � �)�; (5)

and either
X

e2ıC(S)

w(e) � 20�� log
�
1
�

�
log log � (6)

or
X

e2ı�(S)

w(e) � 20�� log
�
1
�

�
log log�: (7)
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Furthermore, the partition (S; S) can be found in poly-
nomial time.

This Lemma admits a constructive proof, [27]. The al-
gorithm in this proof finds a feedback arc set having
weight O(�� log2|X|), where X is a special set of ver-
tices defining the cycles to be hit and �� is the weight
of an optimal fractional feedback set. The idea is to re-
duce the problem to the directed minimum capacity
multicut problem in circular networks and of adapt-
ing the undirected sphere growing technique described
in [35] to directed circular networks. Then the graph
is decomposed in the following way. A fractional and
optimal solution to the directed feedback set problem
induces a distance metric on the set of arcs (on the set
of vertices) E(G). The approximation algorithm arbi-
trarily picks a vertex v 2 X and solves the shortest path
tree problem rooted at v with respect to the metric in-
duced by the fractional solution. The procedure that
finds the shortest path tree defines layers with respect to
the source v. Each layer is a directed cut that partitions
the graph into two parts. The next step of the approxi-
mation algorithm is to choose a directed cut and to add
the cut to the feedback set constructed so far. The algo-
rithm continues recursively in each part and ends when
the graph does not contain any interesting cycles. The
key of the algorithm is the choice of the criterion to se-
lect the directed cut that partitions the graph. Even et al.
decided to relate the weight of the cut to the cost of the
fractional solution. More recently (1996), Even, Naor,
Schieber, and Zosin [28] showed that, for any weight
function defined on the arcs, the subset feedback arc
set problem can be approximated in polynomial time
by a factor of two. The approximation algorithm con-
sists of successive computations of minimum cuts. Its
approximation factor is estimated by considering the
capacities of minimum cuts as flow paths. When new
minimum cuts are computed, previous flow paths are
updated according to the decomposition of the graph
induced by an optimal solution.

AGRASP for Feedback Set Problems

Although the approximation algorithms guarantee
a solution of a certain quality, for many practical real
world cases, heuristic methods can lead to better so-
lutions in a reasonable amount of CPU time. Meta-
heuristics, such as genetic algorithms, simulated an-

nealing, greedy randomized adaptive search procedures
(GRASP), Lagrangian relaxation, and others have been
developed with successful computational performance
on a wide range of combinatorial optimization prob-
lems. Interestingly, however, feedback vertex set prob-
lems seem to be an exception. For this family of prob-
lems relatively few practical heuristics have been de-
veloped. Furthermore, most of the heuristics that seem
to be quite successful computationally are greedy type
heuristics or generalized greedy type heuristics (e. g.
GRASP). Almost all the efficient heuristics developed
so far employ the solution-preserved reduction rules
studied in [56]. It has been observed in practice that
this group of heuristics greatly reduces the cardinal-
ity of the graph not only at the beginning of the al-
gorithm, but also dynamically during the execution of
node deletion type heuristics. A recent line of research
on heuristic approaches is due to P.M. Pardalos, T.
Qian, and M.G.C. Resende [70] where three variants of
the so-called greedy randomized adaptive search proce-
dure (GRASP) metaheuristic are proposed for finding
approximate solutions of large instances of the feed-
back vertex set problem in a digraph. GRASP is a mul-
tistart method characterized by two phases: a construc-
tion phase and a local search phase, also known as a lo-
cal improvement phase. During the construction phase
a feasible solution is iteratively constructed. One ele-
ment at time is randomly chosen from a restricted can-
didate list (RCL), whose elements are sorted according
to some greedy criterion, and is added to the build-
ing feedback vertex set and removed from the graph
with all its incident arcs. Since the computed solution,
in general, may not be locally optimal with respect to
the adopted neighborhood definition, the local search
phase tries to improve it. These two phases are iterated
and the best solution found is kept as an approximation
of the optimal solution. To improve the efficiency of the
method, Pardalos et al. incorporated in each iteration
of their algorithm solution-preserving graph reduction
techniques in their directed version and that can be
used also to check if a digraph is acyclic, returning an
empty reduced graph in case of positive answer. The
authors employed the following three greedy functions
used to select the node with the maximum G(i) values:
� GA (i) = in(i) + out(i);
� GB (i) = in(i) 
 out(i);
� GC (i) = max {in(i), out(i)}.
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Greedy function GA assigns equal weight to in- and
out-degrees. GB favors the balance between in- and
out-degrees. GC only considers the largest value of the
degrees. As demonstrated in [70], GB produced the
best computational results. GRASP was tested on two
randomly generated problem sets, finding the optimal
solutions to all the problems in the first set, where the
optimal values are known (computed in [32]). Further-
more, this GRASP dominates the pure greedy heuris-
tics in all the test instances with comparable running
time. In [31], Fortran subroutines are given for finding
approximate solutions of both the directed feedback
vertex set problem and the directed feedback arc set
problem using GRASP. The subroutines for solving
approximately the feedback vertex set problem corre-
sponds to the pseudocode algorithm proposed in [70].
The subroutines for solving approximately the feedback
arc set problem uses a linear-time procedure proposed
in [27] in order to reduce the given feedback arc set
problem instance to an equivalent feedback vertex set
problem instance, and then the reduced vertex version
problem is solved.

Future Research

As has been pointed out in [38], fast construction
heuristics combined with local improvement tech-
niques tailored for special applications have been the
‘workhorse’ of combinatorial optimization in practice.
As the design of efficient construction heuristics and
local search procedures will be a key to the effective
computational procedure for feedback set problems,
new approaches are considered that will lead to higher
quality solution. New variants of the classical GRASP
approach are considered, called Reactive GRASP tech-
niques. The first idea along this line has been due to M.
Prais and C.C. Ribeiro [74], who used reactive GRASP
to a matrix decomposition problem arising in the con-
text of traffic scheduling in satellite-division-multiple-
access systems (SS/TDMA). In the reactive GRASP, the
restricted candidate list parameter ˛ is not fixed, but
selfadjusted according to the quality of the solution pre-
viously found during the search. In more detail, the pa-
rameter ˛ is randomly chosen from a set of m prede-
terminated acceptable values A = {˛1, . . . , ˛m}. Associ-
ated with the choice of ˛i there is a probability pi, ini-
tially corresponding to a uniform distribution. During

the search phase some information is collected in order
to change the discrete set of probabilities {pi}i = 1, . . . , m.
Several possible strategies can be explored for this up-
date operation. One among them has been proposed by
Prais and Ribeiro. It is an absolute qualification rule,
based on the average value of the solutions obtained
with each value of ˛ = ˛i. Once chosen the updating
criterion of the probabilities {pi}i = 1, . . . , m, it is possible
to use different values of ˛ at different iterations. There-
fore, different restricted candidate lists can be built and
eventually different solutions can be constructed, which
would never be built by using a single, fixed value of ˛.

T.A. Feo and Resende have discussed in [29] the ef-
fects the parameter ˛ can have on the quality of the
solution and, at least analyzing the results obtained by
Prais and Ribeiro, it seems that ˛ can have an evident
impact on the outcome of a GRASP procedure.

Conclusions

Despite the large body of work on approximation al-
gorithms, computational studies of feedback set prob-
lems seem to be still in their embryonic stage. No mod-
ern metaheuristics, except the GRASP procedure re-
cently (1996) developed in [70] have ever been applied
to the feedback vertex set problem. The size of the gen-
eral problem that can be handled is still quite limited. It
seems that this area of computational research has the
greatest potential for progress and impact in the com-
ing years. It has to be also underlined that, since detect-
ing cycles is a relatively expensive operation, the local
search of feedback vertex set appears to be even more
difficult than other notorious combinatorial problems
like the traveling salesperson or set covering problems.
Therefore, the design of efficient local search proce-
dures and fast construction heuristics will be a key to
the effective computational procedure for feedback set
problems.

See also

� Generalized Assignment Problem
� Graph Coloring
� Graph Planarization
� Greedy Randomized Adaptive Search Procedures
� Quadratic Assignment Problem
� Quadratic Semi-assignment Problem
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Let S be a nonempty closed and convex set in a real
Hilbert space H with norm k�k. A sequence (xn)n� 0 of
points in H is said to be Fejér monotone with respect to
S (or simply S-Fejérian) if

8x 2 S 8n 2 N : kxnC1 � xk � kxn � xk : (1)

In words, each point in the sequence is not further from
any point in S than its predecessor. Given x0 2H, a typ-
ical example of S-Fejérian sequence is that generated by
the algorithm

8n 2 N : xnC1 D Txn ;
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where T:H!H is a nonexpansive operator, i. e.,

8(x; y) 2H 2 : kTx � Tyk � kx � yk ; (2)

with nonempty fixed point set S. Under suitable as-
sumptions, the sequence of successive approximations
(xn)n� 0 converges to a point in S [20].

In convex optimization, one frequently encounters
algorithms whose orbits (xn)n� 0 are Fejér monotone
with respect to the solution set. In order to simplify and
standardize the convergence proofs of this broad class
of algorithms, it is important to investigate the notion
of Fejér monotonicity and to bring out some general
convergence principles. These are precisely the objec-
tives of the present article.

Notation and Assumptions

Throughout, the sequence (xn)n� 0 is Fejér monotone
with respect to a nonempty closed and convex set S in
a real Hilbert space H with scalar product h�|�i, norm
k�k, and distance d. For every n 2 N, pn denotes be the
projection of xn onto S, i. e., the unique point pn 2 S
such that kxn � pnk = d(xn, S). Recall that pn is charac-
terized by the variational inequality

8x 2 S : hx � pnjxn � pni � 0: (3)

The expressions xn* x and xn! x denote respectively
the weak and strong convergence of (xn)n� 0 to x. W

and S denotes respectively the sets of weak and strong
cluster points of (xn)n� 0. Finally, Id denotes the iden-
tity operator on H.

Basic Convergence Properties

By way of preamble, some immediate consequences of
(1) are stated below.

Proposition 1 The following assertions hold.
i) (xn)n� 0 is bounded.
ii) 8 x 2 S : (kxn � xk)n�0 converges.
iii) (d(xn, S))n� 0 is nonincreasing.
iv) 8 x 2 S : xn ! x if and only if lim kxn � xk D 0

if and only if S \S 6D ;.

Weak Convergence

In general, Fejér monotone sequences do not converge,
even weakly (consider for instance the {0}-Fejérian se-
quence ((� 1)nx0)n� 0 with x0 6D 0). By virtue of Propo-

sition 1i),W 6D ; and a necessary condition for (xn)n� 0

to converge weakly to a point in S is W � S. A remark-
able consequence of Fejér monotonicity is that this con-
dition is also sufficient. To see this, take y1 and y2 in W,
say xkn * y1 and xln * y2, and x 2 S. By Proposition
1ii),

lim kxkn � xk2 D lim kxln � xk2 :

Therefore, by expanding,

lim kxknk
2 � lim kxlnk

2 D 2 hxjy1 � y2i :

It follows that

S � fx 2H : hxjy1 � y2i D ˛g ; (4)

where ˛ = (limkxknk2 � kxlnk2)/2. Thus, (y1, y2)2 S2

) ˛ = hy1| y1 � y2i = hy2 | y1 � y2i ) y1 = y2. Con-
sequently, the bounded sequence (xn)n� 0 cannot have
more than one weak cluster point in S. This fundamen-
tal property will be recorded as:

Proposition 2 (xn)n� 0 converges weakly to a point in
S if and only if W � S.

Two additional properties are worth mentioning in
connection with weak convergence.
� Let affS be the closed affine hull of S. If y1 6D y2, then

(4) asserts that S is contained in a closed affine hy-
perlane. If affS D H ;W reduces to a singleton and
(xn)n� 0 therefore converges weakly.

� Suppose that xn * x 2 S and let x 2 H. Then the
identities

8n 2 N : kxn � xk2

D kxn � xk2 C 2 hxn � xjx � xi C kx � xk2

together with Proposition 1ii) imply that
(kxn�xk)n� 0 converges.

Strong Convergence

As evidenced by the classical counterexample of [13],
xn * x 2 S » xn ! x 2 S. Accordingly, strong
convergence conditions for Fejér monotone sequences
must be identified.
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First, consider the projected sequence (pn)n� 0. It
follows from (1) and (3) that for every (m, n) 2N2

kpn � pnCmk
2

D kpn � xnCmk
2 C 2 hpn � xnCmjxnCm � pnCmi

C kxnCm � pnCmk
2

� d(xn ; S)2 � d(xnCm; S)2

C 2 hpn � pnCm jxnCm � pnCmi

� d(xn ; S)2 � d(xnCm; S)2:

Consequently, since (d(xn, S))n� 0 converges by Propo-
sition 1iii), (pn)n� 0 is a Cauchy sequence. This estab-
lishes:

Proposition 3 (pn)n� 0 converges strongly.

This result, which is of interest in its own right, also
leads to a simple criterion for the strong convergence of
(xn)n� 0 to a point in S. Indeed, suppose that lim d(xn,
S) = 0. Then, thanks to Proposition 1iii), d(xn, S)! 0,
i. e., xn � pn! 0. On the other hand, by Proposition 3,
pn ! x with x 2 S since S is closed. One thus obtains:

Proposition 4 (xn)n� 0 converges strongly to a point in
S if and only if lim d(xn, S) = 0.

Going back to (4), assume now that (y1, y2) 2S2. Then
˛ = (ky1k2 � ky2k2)/2 and (4) therefore becomes

S �
�
x 2H :

�
x �

y1 C y2
2

ˇ̌
ˇ̌ y1 � y2

�
D 0

	

D fx 2H : kx � y1k D kx � y2kg : (5)

In words, if (xn)n� 0 possesses two distinct strong clus-
ter points y1 and y2, S is contained in the closed affine
hyperplane whose elements are equidistant from y1 and
y2. If affS D H , it results from (5) that (xn)n� 0 pos-
sesses at most one strong cluster point. This happens
in particular when the interior of S is nonempty (Slater
condition). In this case, however, a sharper result holds,
namely (xn)n� 0 converges strongly [22].

Linear Convergence

Proposition 1iii) asserts that (d(xn, S))n� 0 is nonin-
creasing. Assume now that it decreases at a linear rate,
say

9� 2 ]0; 1[ 8n 2 N : d(xnC1; S) � �d(xn ; S): (6)

Then, in view of Proposition 4, xn ! x 2 S. On the
other hand, for every (m, n) 2 N2, (1) yields

kxn � xnCmk

� kxn � pnk C kxnCm � pnk
� 2d(xn ; S):

Thus kxn � xk � 2d(xn ; S) and one reaches the follow-
ing conclusion.

Proposition 5 Suppose that (6) holds. Then (xn)n� 0

converges linearly to a point x 2 S: 8n 2 N : kxn � xk
� 2�nd(x0; S)

Geometric Construction

In order to make the above theoretical convergence re-
sults more readily applicable in concrete problems, it
will henceforth be assumed that (xn)n� 0 has been gen-
erated by the following algorithm.

0 Take x0 2H and set n = 0.
1 Generate a closed affine half-space Hn such

that S � Hn :

2 Compute the projection Pnxn of xn onto Hn
and take �n 2 [0; 2]:

3 Set xn+1 = xn + �n(Pnxn � xn):
4 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 1
General Fejérian scheme

The relaxation parameter �n determines the posi-
tion of the update xn + 1 on the closed segment between
the current iterate xn and its reflection rn = 2Pnxn � xn
with respect to Hn (see Fig. 1.). In some problems, it
is possible to significantly accelerate the progression of
the iterates towards a solution by proper choice of the
relaxation sequence (�n)n� 0 [5].

Hereafter, two properties of the relaxation sequence
will be considered, namely

X
n�0

�n(2 � �n) D C1 (7)

and

(�n)n�0 lies in ["; 2 � "]; where " 2 ]0; 1[ : (8)
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Fejér Monotonicity in Convex Optimization, Figure 1
A Fejérian iteration

Now fix x 2 S. Then, for every n 2 N,

kxnC1 � xk2

D kxn � xk2 C �2n kPnxn � xnk2

C 2�n hxn � xjPnxn � xni
� kxn � xk2 � �n(2 � �n)d(xn ;Hn)2: (9)

Consequently, (xn)n� 0 is S-Fejérian and
X
n�0

�n(2 � �n)d(xn ;Hn)2 < C1: (10)

Furthermore, if (�n)n� 0 lies in [0, 2 � "] for some
" 2] 0, 1[, then the series

P
n� 0kxn + 1 � xnk2 andP

n�0 hx � xnjxnC1 � xni converge [6,15].
In view of (10), the next two convergence results

are immediate consequences of Proposition 2 and 4, re-
spectively.

Proposition 6 (xn)n� 0 converges weakly to a point in
S if one of the conditions below is fulfilled.
i) (10))W � S.
ii) (7) is in force and lim d(xn, Hn) = 0)W � S.
iii) (8) is in force and

P
n� 0d(xn, Hn)2 < + 1 )

W � S.

Proposition 7 (xn)n� 0 converges strongly to a point in
S if one of the conditions below is fulfilled.
i) (10)) lim d(xn, S) = 0.
ii) (7) is in force and lim d(xn, Hn) = 0) lim d(xn, S)

= 0.
iii) (8) is in force and

P
n� 0d(xn, Hn)2 < +1) lim

d(xn, S) = 0.

To investigate linear convergence, assume that

9� 2 ]0; 1[ 8n 2 N : d(xn ;Hn) � �d(xn ; S) (11)

and that (8) holds. Then x D pn in (11) supplies

d(xnC1; S)2 � kxnC1 � pnk2

� d(xn ; S)2 � "2d(xn ;Hn)2

� (1 � "2�2)d(xn ; S)2:

Whence, Proposition 5 yields:

Proposition 8 Suppose that (8) and (11) hold. Then
(xn)n� 0 converges linearly to a point x 2 S: 8n 2
N : kxn � xk � 2�nd(x0; S) with � = (1 � "2�2)½.

Applications

Several convex optimization methods are now pre-
sented. They are shown to be Fejér monotone and their
convergence is established on the basis of the general
results stated above. For brevity, only weak convergence
is considered; however, strong and linear convergence
results can be derived in a like manner under suitable
assumptions. In each problem, the solution set S is as-
sumed to be nonempty.

Fixed Points of Nonlinear Operators

For every n 2 N, let Tn: H!H be a firmly nonexpan-
sive operator, i. e.,

8(x; y) 2H 2 :

hTnx � Tn yjx � yi � kTnx � Tn yk2 ; (12)

and let Fix Tn = {x2H: Tnx = x} be its fixed point set.
The problem under consideration is to find a common
fixed point of the family (Tn)n� 0, i. e.,

(
Find x 2H
s.t. 8n 2 N : Tnx D x:

(13)

Let S = \n� 0 Fix Tn and

Hn D fx 2H : hx � Tnxnjxn � Tnxni � 0g :

It then follows from (12) that S � Fix Tn � Hn. Thus,
Algorithm 1 takes the following form.
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0 Take x0 2H and set n = 0.
1 Take �n 2 [0; 2].
2 Set xn+1 = xn + �n(Tnxn � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 2
Common fixed point

Noting that d(xn, Hn) = k(Id� Tn) xnk, several con-
vergence results can be derived by direct application of
Propositions 6–8. In particular, in the case of a single
nonexpansive operator T (see (2)), the algorithm below
is pertinent.

0 Take x0 2H and set n = 0.
1 Take �n 2 [0; 1].
2 Set xn+1 = xn + �n(Txn � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 3
Fixed point

Proposition 9 If
P

n� 0 �n(1 � �n) = +1, any se-
quence generated by Algorithm 3 converges weakly to
a fixed point of T.

Indeed, the assignments Tn (Id + T)/2 and �n 2�n
in Algorithm 2 yield Algorithm 3 as Tn is firmly non-
expansive [3,5] and Fix Tn = Fix T. Next, observe that
(d(xn, Hn))n� 0 = (k(Id � T) xnk/2)n� 0 is nonincreas-
ing by (2). Hence, lim d(xn, Hn) = 0) (Id � T) xn!
0 and it results from the demiclosedness of Id � T [20]
that xkn * x ) (Id � T) x = 0. Thus, Proposition 9
follows from Proposition 6ii).

Zeros of MonotoneMaps

In connection with set-valued maps A, B:H�H a few
definitions and facts need to be recalled [2,27]. First,
A is characterized by its graph gr A = {(x, u) 2 H2: u
2 Ax}. The inverse A�1 of A has graph {(u, x) 2H2: (x,
u) 2 grA} and the linear combination A + � B (� 2R)
has graph

f(x; uC �v) : (x; u) 2 grA; (x; v) 2 gr Bg :

A is monotone if

8(x; u) 2 grA8(y; v) 2 grA :

hx � yju � vi � 0:

If A is monotone and if there exists no monotone map
B 6D A such that gr A � grB then A is maximal mono-
tone. In this case
� gr A is weakly-strongly closed: for every sequence

((yn, vn))n� 0 in H2

8̂
<̂
ˆ̂:

((yn ; vn))n�0 in grA

yn
n
* y

vn
n
! v

) (y; v) 2 grA: (14)

� For every � 2]0, +1[, the resolvent of A, JA� = (Id +
� A)�1, is a single-valued firmly nonexpansive oper-
ator defined on H [17,23].
Of broad interest is the problem of finding a zero of

a maximal monotone map A: H�H [23], i. e.,
(
Find x 2H
s.t. 0 2 Ax:

(15)

For every � 2] 0, + 1[, the solution set S = A�1 0
can be written as S = {x2H: x 2 x + � Ax} = Fix JA� .
Thus, given (�n)n� 0 in ] 0, +1[, the equilibrium prob-
lem (15) can be cast in the form of the common fixed
point problem (13) with (Tn)n� 0 = (JA�n )n� 0. Algo-
rithm 2 is then known as the (relaxed) proximal point
algorithm [17,23].

0 Take x0 2H and set n = 0.
1 Take �n 2 ]0;+1[ and �n 2 [0; 2].
2 Set xn+1 = xn + �n(JA�n xn � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 4
Proximal point

Proposition 10 Suppose that
(
(�n)n�0 is in [";C1[
(�n)n�0 is in ["; 2 � "]

where " 2 ]0; 1[ : (16)

Then any sequence generated by Algorithm 4 converges
weakly to a zero of A.

This result is a consequence of Proposition 6iii). In-
deed, for every n 2 N, define yn = xn + (xn + 1 � xn)/�n,
vn = (xn � xn + 1)/(�n �n) and note that vn 2 Ayn. Now
suppose d(xn,Hn)! 0. Then, thanks to (16), xn+ 1 � xn
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! 0 and, in turn, vn! 0 and yn � xn! 0. Hence, xkn
* x) ykn * x) 0 2 Ax by (14).

Weak convergence can also be achieved under vari-
ants of (16), e. g.,

P
n� 0 �

2
n = +1 and 8 n 2 N: �n = 1

[2]. Such results can be deduced from Proposition 6 as
well.

Zeros of the Sum of TwoMonotoneMaps

Take two maximal monotone maps A, B: H�H. An
extension of (15) that captures a wide body of optimiza-
tion and applied mathematics problems is [27]

(
Find x 2H
s.t. 0 2 Ax C Bx:

(17)

In instances when A + B is maximal monotone, one can
approach this problem via Algorithm 4. Naturally, for
this approach to be numerically viable, the resolvents
of A + B should be computable relatively easily. A more
widely applicable alternative is to devise an operator
splitting algorithm, in which the operators A and B are
employed in separate steps [16]. Two Fejérian splitting
algorithms are described below.

First, suppose that B is (single-valued and) co-
coercive in the sense that B�1 � ˛ Id is monotone for
some ˛ 2] 0, +1[, i. e.,

8(x; y) 2H 2 :

hBx � Byjx � yi � ˛ kBx � Byk2 : (18)

Given � 2] 0, 2˛], it follows from (18) that Id � �B is
nonexpansive. Moreover, the solution set S = (A + B)�1

0 can be written as S = {x 2 H: x � � Bx 2 x + �Ax}
= Fix T where T = JA� ı(Id � � B) is nonexpansive as
the composition of two nonexpansive operators. Algo-
rithm 3 can then be implemented by alternating a for-
ward step involving B with a backward (proximal) step
involving A.

0 Take � 2 ]0; 2˛]; x0 2H , and set n = 0.
1 Set xn+1/2 = xn � �Bxn and take �n 2 [0; 1].
2 Set xn+1 = xn + �n(JA� xn+1/2 � xn):
3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 5
Forward-backwardmethod

As a corollary of Proposition 9 we obtain:

Proposition 11 If
P

n� 0 �n(1 � �n) = + 1, any se-
quence generated by Algorithm 5 converges weakly to
a zero of A + B.

The second algorithm is centered around the operator
T = JA� ı(2JB� � Id) + Id � JB� , where � 2 ]0, +1[. This
operator possesses two nice properties: it is firmly non-
expansive and y 2 Fix T , JB� y 2 (A + B)�1 0 [16].
Whence, by putting Tn  T in Algorithm 2, one ob-
tains the Douglas–Rachford method [8,16].

0 Take � 2 ]0;+1[; x0 2H , and set n = 0.
1 Set xn+1/2 = JB� xn and take �n 2 [0; 2].
2 Set xn+1 = xn + �n

�
JA� (2xn+1/2 � xn) � xn+1/2

�
:

3 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 6
Douglas–Rachford method

As in Algorithm 5, B is activated at step 1 and A at
step 2. Convergence is established as in Proposition 9

Proposition 12 If
P

n� 0 �n(2 � �n) = + 1, any se-
quence generated by Algorithm 6 converges weakly and
the image of the weak limit under JB� is a zero of A + B.

Variational Inequalities

Let B: H ! H be a single-valued maximal monotone
operator, let ': H !]� 1, + 1] be a proper, lower-
semicontinuous, convex function, and let @': H�H

be its subdifferential, i. e.,

@'(x)

D
\
y2H
fu 2H : hy � xjui C '(x) � '(y)g :

Then @' is maximal monotone [2] and, upon taking A
= @' in (17), one arrives at the variational inequality
problem

8̂
<̂
ˆ̂:

Find x 2H
s.t. 8x 2H :

hx � xjBxi C '(x) � '(x):

(19)

In this context, the resolvent JA� reduces to Moreau’s
prox mapping [18]

prox'� : x 7! arg min
y2H

'(y)C
1
2�
ky � xk2 :
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As a special instance of (17), the variational inequality
problem (19) can be solved via the forward-backward
method (Algorithm 5) and Proposition 11 then yields:

Proposition 13 Suppose that (18) is in force. Take
�2]0, 2˛], x0 2H, and let

8n 2 N :

xnC1 D xn C �n
�
prox'� (xn � �Bxn) � xn

�
; (20)

where (�n)n� 0 is in [0, 1] and
P

n� 0 �n(1� �n) = +1.
Then (xn)n� 0 converges weakly to a solution of (19).

A noteworthy situation is when ' = $Q, where $Q is the
indicator function of a nonempty closed convex set Q,
i. e.,

$Q : x 7!

(
0 if x 2 Q;
C1 if x … Q:

(21)

It follows that @$Q = NQ, where NQ is the normal cone
to Q, i. e.,

NQx D
\
y2Q

fu 2H : hy � xjui � 0g ;

if x 2Q, andNQ x = ; otherwise. In addition, (19) reads
(
Find x 2 Q
s.t. 8x 2 Q : hx � xjBxi � 0;

(22)

and prox�Q� = PQ is the projector onto Q.

Differentiable Optimization

A standard convex programming problem is to mini-
mize a proper, lower-semicontinuous, convex function
f:H! ]�1, +1] over a nonempty closed convex set
Q�H, i. e.,

Find x D argmin
x2Q

f (x): (23)

In view of (21), (23) is equivalent to finding a global
minimizer of $Q + f , i. e., by Fermat’s rule, to finding
a zero of @($Q + f ). If 0 lies in the interior ofQ� {x 2H:
f (x) < +1}, then @($Q + f ) = @$Q + @ f [2] and (23) is
therefore of the form (17) with A =NQ and B = @ f . This
occurs in particular when f is finite and continuous at
a point in Q.

Now suppose that f is differentiable. Then @ f =
{r f } is single-valued and (23) can further be reduced
to (22) with B = r f . The forward-backward scheme
(20) then becomes the projected gradient algorithm

8n 2 N :

xnC1 D xn C �n
�
PQ
�
xn � �r f (xn)

�
� xn

�
:

Proposition 13 provides conditions for weak conver-
gence to a minimizer of f over Q.

Convex Feasibility Problems

Given a family (Si)i 2 I of intersecting nonempty closed
and convex subsets of H, the convex feasibility problem
reads [3,5,6,15]

Find x 2 S D
\
i2I

Si : (24)

At iteration n, select a nonempty finite index set In � I
and, for every i 2 In, let pi, n be an approximate projec-
tion of xn onto Si, i. e., the projection of xn onto a closed
affine half-space Hi, n containing Si. Then

Hi;n D fx 2H : hx � pi;njxn � pi;ni � 0g :

Let

Hn D

8<
:x 2H :

X
i2In

wi;n hx � pi;njxn � pi;ni � 0

9=
;

where the weights (wi, n)i2In are in ]0, 1] and satisfyP
i2Inwi, n = 1. Then S � \i2In Si � \i2InHi, n � Hn

and Pnxn = xn + Ln(xn + 1/2 � xn), where xn + 1/2 =
P

i2In
wi, npi, n and

Ln D

8̂
ˆ̂̂<
ˆ̂̂̂
:

X
i2In

wi;n kpi;n � xnk2




xnC 1
2
� xn





2 if xnC 1

2
¤ xn

1 else.

(25)

Algorithm 1 then turns into Algorithm 7.
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0 Take x0 2H and set n = 0.
1 Take a nonempty finite set In � I:
2 Compute approximate projections (pi;n)i2In of

xn onto (Si)i2In :
3 Take (wi;n)i2In in ]0; 1] such thatP

i2In wi;n = 1:
4 Set xn+1/2 =

P
i2In wi;n pi;n; Ln as in (25):

5 Take �n 2 [0; 2Ln]:
6 Set xn+1 = xn + �n(xn+1/2 � xn):
7 Set n = n + 1 and go to step 1.

Fejér Monotonicity in Convex Optimization, Algorithm 7
Convex feasibility

Weak convergence to a point in S follows from
Proposition 6 under various assumptions on the con-
trol sequence (In)n� 0 and the approximate projections
((pi, n)i2In )n� 0 [5,6,15].

Nondifferentiable Optimization

Suppose that f is subdifferentiable in (23), i. e.,

8x 2H : @ f (x) ¤ ;;

and that its minimum value f over Q is known. Then
(23) can be viewed as a special case of (24) with two
sets, namely S1 = Q and S2 D fx 2 H : f (x) � f g.
Now take

H2;n D
n
x 2H : hx � xnjuni � f � f (xn)

o

where un 2@ f (xn). Then S2 �H2, n and

p2;n D

8̂
<
:̂
xn C

f � f (xn)
kunk

2 un if xn … S2

xn otherwise

is called a subgradient projection of xn onto S2 [3,5]. If
Algorithm 7 is implemented by alternating a relaxed
subgradient projection onto S2 with an exact projection
onto S1, i. e.,

8n 2 N : xnC1 D PQ
�
xn C �n

�
p2;n � xn

��
;

one obtains the subgradient projection method of [21].
Weak convergence to a solution of (23) under the as-
sumptions of uniform boundedness of @ f on bounded
sets, (�n)n� 0 is in [0, 2], and (8), follows from Proposi-
tion 6iii [3,5].

Inconsistent Convex Feasibility Problems

When\i 2 ISi = ; and I is finite, (24) can be replaced by
the minimization problem

Find x D arg min
x2H

1
2

X
i2I

wid(x; Si )2 (26)

where (wi)i 2 I is in ]0, 1] and
P

i 2 Iwi = 1. Let (Pi)i 2 I

be the projectors onto (Si)i 2 I , let T =
P

i 2 IwiPi, and
let S be the solution set of (26). Then T is firmly non-
expansive and S = Fix T [5]. By reiterating a previous
argument, one obtains:

Proposition 14 Take x0 2 H, (�n)n� 0 in [0, 2] such
that

P
n� 0 �n(2 � �n) = +1, and let

8n 2 N : xnC1 D xn C �n

 X
i2I

wiPi xn � xn

!
:

Then (xn)n� 0 converges weakly to a solution of (26).

Historical Notes and Comments

In 1922, L. Fejér considered the following problem [12]:
given a closed subset S � Rp and a point y 62 S can one
find a point x 2 Rp such that

8x 2 S : kx � xk < ky � xk :

Inspired by this work, T.S. Motzkin and I.J. Schoenberg
adopted in their 1954 paper [19] the term Fejér mono-
tone to describe sequences satisfying (1). In this paper
(see also [1]), an algorithm was developed to solve sys-
tems of linear inequalities in Rp by successive projec-
tions onto the half-spaces defining the polyhedral so-
lution set S. The concept of Fejér monotonicity was
shown to be an adequate tool to study convergence of
this algorithm. Basic facts such as (5) and (9) can al-
ready be found in [19] and [1], respectively.

In the 1960s, I.I. Eremin extended the use of Fe-
jér monotonicity to more general convex problems in
Hilbert spaces. A summary of his publications cover-
ing the period 1961–1967 is given in [9]. By the end
of the 1960s, most results on Fejér monotonicity in
Hilbert spaces were essentially known and one can find
them scattered in the Soviet literature in the context of
specific convex programming problems. Thus, (4) ap-
pears in [10], Proposition 2 in [4], Propositions 4 and 5
in [14], and Proposition 8 in [14] and [21]. It should be
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noted that Proposition 2 has been implicitly rediscov-
ered many times and that it seems to originate in [24].

Recently, Fejér monotonicity has been reserved
a featured role in several convex optimization pa-
pers [3,6,15,25,26]. It has also proven a valuable tool
in more applied disciplines such as biology, economics,
and engineering [5,11]. Some extensions of the notion
of Féjer monotonicity are discussed in [7].

See also

� Generalized Monotone Multivalued Maps
� Generalized Monotone Single Valued Maps
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
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The financial decisions of an organization (i. e. firm,
bank, insurance company, etc.) are usually considered
in the context of optimization. Concerning the case of
a firm and for a long term period, one meets two types
of decisions: decisions related to the optimal allocation
of funds, and decisions related to the optimal financial
structure. In the short term, one considers decisions re-
lated to the management of working capital, and refers
to the optimization of stocks, cash, accounts receiv-
able and short term debts. The financial theory analyzes
these decisions (short and long terms), but always from
an optimization perspective (for example, theory of cost
of capital, portfolio theory, options theory, etc.). This
perspective has led some researchers to propose tech-
niques of operations research to solve financial decision
problems. The classical modeling of decision problems
in operations research consists in formulating an opti-
mization (maximization or minimization) problem un-
der specific constraints. In fact, it is a best choice prob-
lem.

However, recently, these financial problems have
been examined from a more comprehensive and more
realistic perspective which overcomes the restrictive

framework of optimization [80,84]. For example, in
capital budgeting decision making, K. Bhaskar and P.
McNamee [6] pose the following questions:
a) In assessing investment proposals, do the decision

makers have a single objective or multiple objec-
tives?

b) If decision makers do have multiple objectives,
which are those and what is the priority structure
of the objectives?

In another similar study, Bhaskar [5] refers that mi-
croeconomic theory has largely adopted a single objec-
tive function which is the principle of utility maximiza-
tion for the consumer unit and profit maximization for
firms. To attack the single objective function principle
for firms, Bhaskar [5] addresses three categories of crit-
icism:
a) there exist alternatives to the profit maximization

approach which are based on equally simple hy-
potheses and which can better explain reality;

b) the profit maximization or any other equally simple
hypothesis is too naive to explain the complex pro-
cess of decision making;

c) the real-world firms do not have suitable informa-
tion to enable them to maximize their profits. Fur-
thermore, several other theories of the firm have
been postulated which have proposed different ob-
jectives than that of the traditional microeconomic
theory.

One can cite the revenue maximizing model [3], the
manager’s utility model [74], the satisficing model [64]
and the behavioral models [13].

On the basis of the above remarks it is possible to
distinguish three main reasons which have motivated
a change of view in the modeling of the financial prob-
lems:
1) Formulating the problem in terms of seeking the

optimum, financial decision makers (i. e. financial
analysts, portfolio managers, investors, etc.) get in-
volved in a very narrow problematic, often irrele-
vant to the real decision problem.

2) The different decisions (financial ones) are taken
by the people (i. e. financial managers) and not by
the models; the decision makers get more and more
deeply involved in the decision making process and,
in order to solve problems, it becomes necessary to
take into consideration their preferences, their ex-
periences and their knowledge.
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3) For financial decision problems such as the choice of
investment projects, the portfolio selection, the eval-
uation of business failure risk, etc., it seems illusory
to speak of optimality, since multiple criteria must
be taken into consideration.

In this article, our basic aim is to examine the contribu-
tion of the multicriteria analysis to the study and to the
solution of some financial decision problems. Section
2 presents the basic principles of multicriteria analysis.
The multicriteria character of some financial problems
and some real world applications of the multicriteria
analysis in the field of financial management are given
in section 3. Finally, some discussion and the advan-
tages which resulted by the application of multicriteria
analysis in the field of financial management, are given
in section 4.

Basic Principles of Multicriteria Analysis

Multicriteria analysis, often called multiple criteria de-
cision making (MCDM) by the American School and
multicriteria decision aid (MCDA) by the European
School, is a set of methods which allow the aggrega-
tion of several evaluation criteria in order to choose one
or more alternatives (i. e. investment projects, financial
assets at variable revenue, financial assets at fixed rev-
enue, dynamic firms, etc.). It also deals with the study
of the activity of decision aid to a well-identified deci-
sion maker (i. e. individual, firm, organization, etc.).

The development of multicriteria decision aid
(hence we use this term in the text) began in 1971.
Its principal objective is to provide the decision maker
with tools in order to enable him to advance in solving
a decision problem (for example, the selection of invest-
ment projects for a firm), where several, often conflict-
ing multiple criteria must be taken into consideration.

Methods

The specialists in the field distinguish several categories
of methods in MCDA. The boundaries between these
categories are, of course, rather fuzzy. B. Roy [58] pro-
poses the following three categories of methods:
1) unique synthesis criterion approach disregarding

any incomparability;
2) outranking synthesis approach, accepting incompa-

rability; and

3) interactive local judgement approach with trial-
error iterations.

In this paper, the classification proposed in [53] is
adopted. It distinguishes four categories:
1) multi-objective mathematical programming;
2) multi-attribute utility theory;
3) outranking relations approach; and
4) preference disaggregation approach.
Multi-objective mathematical programming is charac-
terized by the fact that an action (or alternative) a is
represented by a vector of real variables (x1, . . . , xl). The
set A of the feasible solutions is defined by a set of linear
constraints: A = {x 2 Rl: A � X � b, x � 0} with A a ma-
trix of dimensions m × l and b a vector-matrix m × 1.
The chosen vector must give satisfaction to relatively
several numerical criteria, m in number, and noted as
C1, . . . , Cm, which are linear functions of x. It is pos-
sible to distinguish three different methods inside this
approach:
1) the efficient solutions procedure;
2) the goal programming;
3) the compromise programming.
A synthesis of the studies realized on this category of
methods can be found in [69,72] and [77].

Multi-attribute utility theory (MAUT) is an exten-
sion of the classical utility theory. It seeks to give a rep-
resentation of the preferences of a decision maker by
means of a utility function, aggregating several evalua-
tion criteria: u(g) = u(g1, . . . , gn). In other words, the
problem is to choose the action a which maximizes the
utility function of the decision maker: u[g (a)] = max
u[g (a)].

The criteria (attributes) can be certain or probabilis-
tic (each gi(a) is associated with a probability distri-
bution). In general, one can decompose a multicrite-
ria utility function in real functions u1, . . . , un concern-
ing the independence of criteria. Thus, different utility
function models are obtained. The most studied form
of utility function, from a theoretical point of view, is
the additive form:

u(g1; : : : ; gn) D u1(g1)C � � � C un(gn);

where u1, . . . , un are the marginal utilities defined on
the scales of criteria. For the study of the condition of
independence in utility between criteria (substitution
rate), one can refer to [34]. The latter and [77] present
syntheses of works on the construction of multicriteria
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utility functions both, under certainty and under uncer-
tainty.

The outranking relations approach was developed in
Europe with the elaboration of the ELECTRE methods
(ELimination Et Choix Traduisant la REalité). The con-
cept of outranking in ELECTRE methods is due to Roy,
who is the founder of these methods. The outranking
relation allows to conclude that an action a 2 A (dis-
crete set) outranks an action b 2 A if there are enough
arguments to confirm that a is at least as good as b,
while there is no essential reason to refute this state-
ment. In the ELECTRE methods the aggregation of cri-
teria requires to define the threshold notions of pref-
erence and indifference, concordance and discordance.
In fact, a outranks b if there exists a sufficient majority
of criteria for which a is better classified than b (con-
cordance) and if the unfavorable deviations for the rest
of the criteria (discordance) are not too high. Thus, this
modeling can bring into evidence the cases of incompa-
rability when the multicriteria evaluation of two actions
is very differentiated. A detailed presentation of all out-
ranking methods can be found in [61,63] and [72].

The approach of the disaggregation of preferences is
often used in MCDA as a mean for the modeling of the
preferences of a decision maker or a group of decision
makers. This approach uses the regression methods.
The introduction of regression methods in MCDA is
effected because of the development of the social judge-
ment theory. Multiple regression can, in general, detect,
identify or ‘capture’ the judgement policy of a decision
maker (i. e. disaggregation of the preferences). This one,
particularly if it is in relation with a certain number of
past decisions, might be the expression of a global pref-
erence. The approach by multiple regression is quite
close to the MAUT; their differences are placed at the
level of obtaining the marginal utilities ui(gi) and the
weights pi. For example, for the additive utility func-
tion:

u(g) D
X
i

piui(gi );

the marginal utilities ui(gi) and the weights pi are ob-
tained by direct interrogation of the decision maker
(aggregation methods) as far as it concerns the MAUT
approach, and by indirect interrogation of the deci-
sion maker (disaggregation methods) as far as it con-
cerns the multiple regression approach. The principal

drawback which prevents the closeness of the two ap-
proaches is related to the linearity of the models pro-
posed by multiple linear regression. A rather exhaus-
tive bibliography of the methods of the disaggregation
of preferences can be found in [32] and [53].

Decision Aid Activity

Concerning the activity of decision aid, Roy [58,60]
proposes a methodology of systematic intervention of
multicriteria analysis in the decision process. In brief,
this methodology comprises four levels:
I) Object of the decision and spirit of recommenda-

tion or participation.
II) Analyzing consequences and developing criteria.
III) Modeling comprehensive preferences and opera-

tionally aggregating performances.
IV) Investigating and developing the recommenda-

tion.
It is important to emphasize that these four levels do
not necessarily follow one another in the above men-
tioned order. The activity of decision aid does not nec-
essarily constitute a sequential process; interactions be-
tween the decision maker and the analyst can occur.
This general methodology has contributed to the de-
velopment of several multicriteria methods which have
been applied successfully to real cases. Among these
methods the well-known are the ELECTRE methods
developed by Roy and his collaborators.

Multicriteria Character of Financial Problems
and Some Real-World Applications

The operational research techniques were the first to be
used in the solution of some financial problems. I. Eke-
land [19] wonders

why finance, rather curiously, has remained so
long away from the techniques of operational re-
search (i. e. optimization techniques), except for
those concerning portfolio selection models.

According to the same author, the Capital Asset Pricing
Model (CAPM) is a static optimization model based on
the principle according which, the best portfolio (i. e.
optimal portfolio) is the one which maximizes the ex-
pected return for a given level of risk, in the period
of time considered. For R.W. Ashford et al. [2], the
techniques of operational research can be applied to
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working capital management as well as to the eval-
uation of investment projects. Among the techniques
used for the management of working capital, one could
mention:
� inventory control for the management of stocks;
� dynamic programming, linear programming,

stochastic programming and visual and interac-
tive techniques of simulation for the management
of cash;

� the Markov process and the discriminant analysis
for the management of accounts receivable;

� dynamic programming, linear programming, and
stochastic programming for the management of
short-term debts (current liabilities).

Among the techniques used in the evaluation of in-
vestment projects, one could mention the simulation
methods [23] and those of mathematical statistics [24]
which take into consideration the risk factor. Sim-
ulation methods and linear programming (i. e. the
LONGER program, [51]) are also used in financial
planning (i. e. elaboration of investment and financing
plans). Under these circumstances, the solution of fi-
nancial problems is easy to obtain. It is based on the
fact that the problem is well posed, well-formulated re-
garding the reality involved and on an evaluation cri-
terion (i. e. monocriteria paradigm). But in reality, the
modeling of financial problems is based on a different
kind of logic. In that case, their solution should take
into consideration the following elements (i. e. multi-
criteria paradigm, cf. [59]):
� multiple criteria;
� conflict situation between the criteria;
� complex evaluation process, subjective and ill-

structured;
� introduction of financial decision makers in the

evaluation process.
MCDA has already contributed in a significant man-
ner to the solving of several financial problems such as
venture capital investment, business failure risk, credit
granting, bond rating, country risk, political risk, evalu-
ation of the performance and viability of organizations,
choice of investments, financial planning and portfolio
management.

The multicriteria character of these financial prob-
lems can be easily demonstrated. We will limit here the
analysis on the choice of investment projects and port-
folio management. International literature could actu-

ally provide very important case studies for the rest of
the financial problems [36,80,84].

Investment Decision

The choice of investment projects entails an important
decision for every firm, public or private, large or small
one. In fact, considering its duration, its amount and
its irreversible character an investment decision is re-
garded as a major and strategic one. Therefore, the pro-
cess of an investment decision should be conveniently
modeled. If one considers that, in principle, the in-
vestment decision process consists of four main stages:
perception, formulation, evaluation and choice, the fi-
nancial theory intervenes only in the stages of evalu-
ation and choice [8]. With its empirical financial cri-
teria (i. e. the payback method, the accounting rate of
return) and sophisticated ones, based on discount tech-
niques (i. e. the net present value, the internal rate of
return, the index of profitability, the discounted pay-
back method, etc.), the financial theory proposes either
a ranking from the better to worst when there are many
investment projects in competition or an acceptance
or refusal if there is only one investment project. Al-
though the tools of the financial theory should be im-
proved so that they could take into account time, infla-
tion and risk (i. e. analytical methods, simulation meth-
ods, games theory, CAPM, etc.), there are still prob-
lems concerning the evaluation and selection of invest-
ment projects. Among the most important ones, one
could mention the reduction of the investment notion
in a time series of monetary flows (i. e. inflows, out-
flows), the choice of the discount rate, the conflicts be-
tween financial criteria (i. e. net present value versus
internal rate of return), etc. According to the finan-
cial theory, the discount rate (sometimes rate of return)
plays the role of acceptance or rejection rate (a cut off
rate) of an investment project in the case where the cri-
terion of internal rate of return is used. Thus, one can
see that the investment decision of a firm depends on
one variable only, which is the discount rate. As far as
the conflicts between criteria are concerned, one often
ascertain that the criteria which are supposed to express
the goal of the profitability of projects, could lead to
divergent rankings (for example, the net present value
and the index of profitability or even the net present
value and the internal rate of return). In consequence,
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the financial approach of investment decision seems
limited and unrealistic. It is limited because it remains
in the stages of evaluation and choice, and it is unreal-
istic because it is based only on financial criteria.

MCDA, on the other hand, contributes in a very
original way to the investment decision process. Ini-
tially, it intervenes in the whole process of investment,
from the stages of perception and formulation to the
stages evaluation and choice. Concerning the stages of
perception and formulation, MCDA contributes to the
identification of possible actions (i. e. investment op-
portunities) and to the definition of a set of potential
actions (i. e. possible variants, each variant constituting
an investment project in competition with others). This
set of projects can be global, fragmented, stable or evo-
lutionary. Then, it is necessary to choose a reference
problematic which is well-adapted to the investment
decision problem (i. e. choice, sorting, ranking).
� Choice problematic P.˛: help in choosing the best

investment project or in developing a selection pro-
cedure for investment projects.

� Sorting problematic P.ˇ: help in sorting investment
projects according to norms or in building an as-
signment procedure for investment projects.

� Ranking problematic P.� : help in ranking the in-
vestment projects according to a decreasing prefer-
ence order or in building an ordering procedure for
investment projects.

Concerning the stages of evaluation and choice, MCDA
offers a methodological frameworkmuchmore realistic
than the financial theory, by introducing in the study
of investment projects both quantitative and qualitative
criteria. Criteria such as the urgency of the project, the
coherence of the objectives of the projects with those
of the general policy of the firm [21], the social and
environmental aspects should be taken into considera-
tion in an investment decision. Therefore, MCDA con-
tributes to show the best investment projects accord-
ing to the problematic chosen, to solve the conflicts be-
tween criteria satisfactorily, to set up the relative im-
portance of criteria in the decision making process and
to make known the preferences and the investors’ sys-
tem of values. It is very interesting to mention that
many authors have already used MCDA methods in
the evaluation of investment projects (list non exhaus-
tive): ELECTRE II and ORESTE methods [14]; MAUT
methods [21]; multi-objective mathematical program-

ming [5,35,41]; the Analytic Hierarchy Process (AHP)
method [38]; PROMETHEE method [55,81].

Finally, in order to examine if the firms apply in
reality multiple criteria in their investment decisions,
we present the results of the empirical study of Bhaskar
and McNamee [6]. The two authors, by studying large
United Kingdom companies, have shown that most
companies appear to have more than one objective
when an investment is being appraised (96%). The
most common number of objectives that companies
had was eight. Concerning the objectives priority, most
companies (77%) had profitability as the primary ob-
jective. The next most important objective was com-
pany’s growth. Other criteria less important than the
two above but, which play a role in the investment de-
cisions are the risk, the liquidity, the environment, the
age of assets, the flexibility, the depth of skills, etc. With
these empirical results an answer has been given to the
questions posed in the introduction by the two authors.

Portfolio Management

In the field of portfolio management it is possible to
cite the pioneering work of H.M. Markowitz [46] who,
by developing the optimization model mean-variance
(M-V), is the founder of the classical approach of the
portfolio management. According to [19], the prob-
lem of portfolio choice in the model (M-V) is a mul-
ticriteria one, because the investor will try simultane-
ously to maximize the return and minimize the risk;
but determining the acceptance level of risk, one comes
back to maximize the return, which is a classical mon-
ocriteria problem. After this bicriteria, and even more
the monocriteria (i. e. market model, CAPM) portfo-
lio choice consideration, the development of multi-
factor models has been started where there are more
types of risk and not only market risk [57]. Thus,
the problem of portfolio selection becomes multidi-
mensional. The necessity of having multidimensional
methods (i. e. statistics and econometrics) for the se-
lection of stocks has been presented by specialist re-
searchers in finance [33]. The multidimensional nature
of risk in portfolio management has also been demon-
strated by specialist researchers in multicriteria analy-
sis. See [76,77] and [10] on the ‘Prospect Ranking Vec-
tor (PRV)’ method. Today an arsenal of multidimen-
sional andmulticriteria methods such as factor analysis,
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goal programming, AHP, ELECTRE, MINORA, ADE-
LAIS, etc. have been already applied in the field of port-
folio management [9,25,27,28,29,37,40,47,48,62,82,86].

The multicriteria nature of the problem of portfo-
lio selection is well presented in [37]. The authors study
the problem of the international portfolio selection. Ac-
cording to them, the classical optimization model of
portfolio selection used in a national context can have
even more chance of being sub-optimal in a situation
of international diversification. In fact, in an interna-
tional context, the M-V model does not always con-
stitute a suitable method because, it does not incor-
porate all the criteria that the portfolio managers and
investors use in their stock investment decisions. For
such decisions, the authors propose new criteria such
as: the return of the last five years on a monthly basis,
the standard deviation of the return calculated on the
last five years, the total cost of transactions, the country
risk (or political risk), the direct available coverage for
foreign currencies and the exchange risk. The multicri-
teria methodology used (i. e. ELECTRE IS, ELECTRE
III) has the advantage of offering the portfolio manager
a large set of investment opportunities, and also gives
him the flexibility of choosing the relative importance
of the different criteria during the process of portfolio
selection. Finally, the authors believe that the use of an
optimization model under constraints changes the na-
ture of the portfolio selection problem because a con-
straint does not play the same role as a criterion in
all decision problems. To show this new direction of
research in portfolio management, it is convenient to
mention the special issue of the Canadian journal ‘L’
Actualité Economique}, which is dedicated on the con-
tribution of multicriteria analysis in the study of finan-
cial markets [36].

Some Real-World Applications

In this paragraph two applications of MCDA are briefly
presented. The first one concerns the evaluation of the
venture capital investment and, the second one the
evaluation of the business failure risk.

Venture Capital Investment

Venture capital constitutes today an important source
of financing for small and medium size firms. It plays,
also, an interesting role in the development of the busi-

ness’ spirit. The crucial problem for venture capital in-
vestment is the choice of evaluation criteria and their
aggregation in a global operational model, which will
serve as a basis for the rational and automatic selec-
tion of viable firms. The earlier evaluation models (i. e.
descriptive and statistical) can not explain the invest-
ment decisions in venture capital, since the latter relies
much more on subjective and qualitative elements than
on objectives and quantitative ones [83]. Moreover, the
complexity of the evaluation of venture capital invest-
ment problem has been mentioned in the evaluation
procedures of projects by two French venture capital
firms [80].

Study Context

The data sample coming from two French venture cap-
ital firms, IDI and SIPAREX, was used as the applica-
tion object of MCDA. Although these two firms use
project evaluation procedures, their problem remains
that of the absence of a model able of supporting their
decisions in venture capital investment. In fact, the
variables used in the evaluation procedure are both fi-
nancial variables (i. e. profitability ratios, solvency ra-
tios, liquidity ratios, etc.), and qualitative variables (i. e.
market trend, information security, quality of manage-
ment, market niche/position, etc.). But, although there
are, in both venture capital firms, techniques for the
treatment of financial variables, there is no explicit
model for the elaboration and modeling of the quali-
tative variables. Therefore, it is at this stage of analysis
that the evaluation problem becomes complex. More-
over, the complexity of the evaluation of venture capi-
tal investment problem is also underlined in other stud-
ies [18,26,54,71,83] among others). The role of the ven-
ture capitalist goes beyond that of the simple contribu-
tor to the funds of the firm.

Multicriteria Method and Results

The multicriteria system MINORA (Multicriteria IN-
teractive Ordinal Regression Analysis) was proposed
for the evaluation of firms to the two venture capi-
tal firms. It belongs to the fourth category of MCDA
methods, which is the approach of the disaggregation
of preferences. The MINORA system is both based on
the iterative utilization of an ordinal regression method
and on an appropriate man-machine dialogue. Its aim
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is to construct multicriteria decision models which are
as consistent as possible with the judgement policy of
a decision maker. The decision maker (here the ven-
ture capitalist) expresses his judgement policy by rank-
ing some firms, among those he knows well on the ba-
sis of previous decisions. The system, then, by the use
of the ordinal regression method UTA (UTilitś Addi-
tives [31], estimates optimally the additive utility func-
tion(s), on multiple criteria, which is (are) as consistent
as possible with the decision maker’s ranking. The util-
ity function model is estimated iteratively and interac-
tively. It allows, first, the aggregation of all the criteria
(i. e. financial and/or qualitative) by giving their rela-
tive importance, and second, the automatic and global
evaluation of each firm. With the help of the decision
makers of the two venture capital firms, two evaluation
models were elaborated (one for each venture capital
firm). This paper presents only the global model of IDI.
� The evaluation model for IDI
IDI evaluates firms for financing according to twelve
criteria. The utility function model was then estimated
in the fourth stage of interaction and appeared perfectly
consistent with the objectives of IDI. The equation for
the global model is the following:

u(g) D 0:008u1(g1)

C 0:072u2(g2)C 0:006u3(g3)C 0:197u4(g4)

C 0:105u5(g5)C 0:232u6(g6)C 0:009u7(g7)

C 0:094u8(g8)C 0:047u9(g9)C 0:071u10(g10)

C 0:097u11(g11)C 0:062u12(g12);

where the evaluation criteria are the following:

g1) the sensitivity of sales to the inflation rate;
g2) the sensitivity of value added to the sales varia-

tions;
g3) the sensitivity of labor productivity (value added

per capita) to wage cost increase (wage per capita);
g4) the supplier credit in days;
g5) the available net income;
g6) the quality of management;
g7) the research and development effort;
g8) the extent of diversification;
g9) the market trend;
g10) the market niche/position;
g11) the cash-out method (opportunities for exit);
g12) the world market share.

The model described above is the best adapted to ex-
press the preferences, the knowledge and the experi-
ences of the venture capitalist concerning the quality
of the firms and their final evaluation. A detailed pre-
sentation of the multicriteria method and the results of
the application in the two venture capital firms IDI and
SIPAREX can be found in [80].

The Business Failure Risk

According to a general definition, failure is the situ-
ation that a firm cannot pay lenders, preferred stock
shareholders, suppliers, etc., or a bill is overdrawn, or
the firm is bankrupt according to law. Today, there
is a complete arsenal of evaluation methods for the
business failure risk [16]. Since the late 1980s, methods
close to a qualitative definition of business failure have
been developed. These are multicriteria methods which
present undeniable advantages in matter of evaluation
for the business failure risk [84].

Study Context

The study concerns the evaluation of failure risk of
firms financed by a Greek bank of industrial develop-
ment. This bank finances with stock equity and long
term credit the development of Greek firms and con-
tributes to the renovation of industrial and commercial
firms on a national and regional level. As in the previ-
ous case of the venture capital investment, there is no
model able to provide help to the bank credit managers
in the financing of firms.

Multicriteria Method and Results

ELECTRE TRImethod was proposed for the evaluation
of business failure risk, which is particularly suitable for
multicriteria sorting problems. It belongs to the third
category of MCDA methods, which is the approach of
outranking relations [61,75]. From a finite set of actions
(i. e. firms) evaluated by quantitative and/or qualitative
criteria and from a set of categories previously defined
(i. e. reference actions or reference profiles), ELECTRE
TRI proposes two different procedures of assignment
which allow the classification of all the actions in these
categories. In consequence, ELECTRE TRI consists of
establishing an outranking relation between the actions
to be assigned and the reference profiles. The eventual
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differences between the two assignment procedures, the
pessimistic and the optimistic one, come from the in-
comparability situations between an action and one or
several reference profiles [17,75].

For the case of the evaluation of the business fail-
ure risk, three categories of risk were determined by the
credit managers of the Greek bank:

C1) the failed firms (9 in number);
C2) the risky firms; uncertain category of firms to be

studied further (10 in number);
C3) the healthy firms (20 in number).

These 39 firms were evaluated by seven criteria, five fi-
nancial ratios and two strategic criteria. The criteria are
the following:

x1) Earnings before interests and taxes/Total assets,
x2) Net income/Stockholder’s equity,
x3) Total debts/Total assets,
x4) Financial expenses/Sales,
x5) Administrative and general expenses/Sales,
x6) Managers work experience,
x7) Market niche/position.

From the reference profiles and the thresholds of dis-
crimination (preference model established by the credit
managers of the bank), ELECTRE TRI provided good
percentages of classification, which were of the order
of 82.05% and 89.74% for the optimistic and the pes-
simistic procedures respectively. The pessimistic pro-
cedure gave better results and proved more adaptable
to the problem of evaluation of business failure risk
(it did not give serious classification errors of the type
C1 ! C3 or C3 ! C1). For a detailed presentation of
the multicriteria method and the results, see [84].

Concerning other financial problems which present
a multicriteria character and on which a MCDA
method has been applied, it is possible to provide a list
of published works (non exhaustive).
� Acquisitions of firms: [68].
� Bankruptcy risk: [1,17,67,78,79].
� Country risk: [7,11,12,49,52,70].
� Evaluation of performance of organizations

– Insurance: [45].
– Banks: [43,44,85].
– Firms: [4,15,30,39,42,66,87,88].

� Financial planning: [20,22,73].
� Venture capital: [50,56,65].

Concluding Remarks

This article has shown the contribution of the MCDA
to the solution of some financial decision problems (i. e.
venture capital, business failure risk, investment choice,
portfolio management, etc.). In the past, all these prob-
lems were approached with the use of financial the-
ory in a very narrow framework, that of optimization.
Some researchers took advantage of the optimal char-
acter of these problems in order to propose operational
research techniques (i. e. classical or monocriteria mod-
eling) for their solution. The use of MCDA methods
provides many advantages in financial management,
among which one could mention the following:
� the possibility of structuring complex evaluation

problems;
� the introduction of both quantitative (i. e. financial

ratios) and qualitative criteria in the evaluation pro-
cess;

� the transparency in the evaluation, allowing good
argumentation in financial decisions;

� the introduction of sophisticated scientific methods
in the field of financial management.

In conclusion, MCDAmethods seem to have a promot-
ing future because they offer a highly methodological
and realistic framework to decision problems.

See also

� Bi-objective Assignment Problem
� Competitive Ratio for Portfolio Management
� Decision Support Systems with Multiple Criteria
� Estimating Data for Multicriteria Decision Making

Problems: Optimization Techniques
� Financial Optimization
� Fuzzy Multi-objective Linear Programming
�Multicriteria Sorting Methods
�Multi-objective Combinatorial Optimization
�Multi-objective Integer Linear Programming
�Multi-objective Optimization and Decision Support

Systems
�Multi-objective Optimization: Interaction of Design

and Control
�Multi-objective Optimization: Interactive Methods

for Preference Value Functions
�Multi-objective Optimization: Lagrange Duality
�Multi-objective Optimization: Pareto Optimal

Solutions, Properties
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�Multiple Objective Programming Support
� Outranking Methods
� Portfolio Selection and Multicriteria Analysis
� Preference Disaggregation
� Preference Disaggregation Approach: Basic

Features, Examples From Financial Decision
Making

� Preference Modeling
� Robust Optimization
� Semi-infinite Programming and Applications in

Finance
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Finance is concerned with the study of capital flows
over space and time. The theory of financial economics
is a combination of many different theories among
which the theories of finance and economics, mathe-
matical programming, and utility theory are credited
with the biggest contributions.

The current state ofmodern financial economic the-
ory is based upon the fundamental contributions of
economists in the decade of the 1950s. Here we review
some of the major developments. For a more complete
historical breakdown, see [32].

The first major breakthrough was by K. Arrow
and G. Debreu, who, in a series of publications
(cf. [1,2,4,12,13]), introduced an important extension
to the existing economic theory. Their contributions
brought competitive equilibrium theory to a new level
and allowed for the development of modern economic
and finance theory. Specifically, Arrow and Debreu
applied the techniques of convexity and fixed point
theory to a model that followed the neoclassical eco-
nomic foundations of: market clearing, uncertainty,
and individual rationality and then they derived new
fundamental economic properties from these models
(e. g., [3,14]).

F. Modigliani and M. Miller [28], in turn, showed
that the capital structure of a firm, that is, the financial
framework of the firm, usually measured by the debt
to equity ratio, does not affect the value of a firm. In
their work, for the first time, the idea of financial arbi-
trage was used by stating that any investor can use risk-
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less arbitrage in order to avoid the financial structure
of a firm. Their work serves as the base for most of the
research on capital structure.

The other theoretical breakthrough was by H.M.
Markowitz in 1952, the founder of modern portfolio
theory. Markowitz [25] proposed that one of the prin-
cipal objectives of investors, in addition to the maxi-
mization of the returns of their portfolios, is to diver-
sify away as much risk as possible. He claimed that in-
vestors choose assets in a manner so that the risk of
their portfolio matches their risk preferences. He sug-
gested that individuals who cannot bear risk will invest
in assets with low risk, whereas people more comfort-
able with risk will accept investments of higher risk. His
work suggested that the trade-off between risk and re-
turn is distinct for each investor; however, the prefer-
ences of all people lie upon a fictitious curve which is
usually called the ‘frontier of efficient portfolios’. Along
this curve lie all the diversified portfolios that have
the highest return for a given risk, or the lowest risk
for a given return. Markowitz’s model was based on
mean-variance portfolio selection, where the average
and the variability of portfolio returns were determined
in terms of the mean and covariance of the correspond-
ing investments.

Many versions and extensions of Markowitz’s
model have appeared in the literature (cf. [19], and
the references therein). The first important simplifi-
cation of Markowitz’s model was suggested by W.F.
Sharpe [35], through a model known as the diagonal
model, in which ‘the individual covariances between all
securities are assumed to be zero’. According to this
model, the variance-covariance matrix has zeros in all
positions other than the diagonal.

The most significant extension of the models by
Markowitz [25] and Sharpe [35], was the Capital Asset
Pricing Model (CAPM), which was based on the work
of Sharpe [36], J. Lintner [24], and J. Mossin [29]. In
this model the concept of a risk-free asset and market
portfolio were introduced. A risk-free asset is an asset
with a positive expected rate of return and a zero stan-
dard deviation. A market portfolio, on the other hand,
is a portfolio on the efficient frontier of the Markowitz
model which is considered to be desirable by all in-
vestors. The CAPM assumes that all investors will se-
lect a portfolio that will be a linear combination of the
risk-free asset and the market portfolio, and, hence, the

equilibrium prices of all assets can be expressed as a lin-
ear combination of the risk-free price and the price of
the market portfolio. Since some of the assumptions
governing the CAPM were not realistic (such as the ab-
sence of transaction costs), the model was extended and
improved several times in the years that followed. It is,
nevertheless, one of the major breakthroughs in mod-
ern economic and finance theory and forms the basis
for most of the financial models.

Most of the major extensions of the CAPMoccurred
in the decade of the seventies, where a series of papers
either relaxed some of its assumptions, or derived em-
pirical results by applying it to a series of problems.
Among the most significant contributions of that time
were: the extension to a multiperiod economy by R.C.
Merton [27] and the consumption CAPMbyD.T. Bree-
den [6] (which, however, failed empirically due to the
difficulty in observing and computing consumption).

The dissatisfaction with the empirical tests of the
CAPM led to more advanced models, such as the Ar-
bitrage Pricing Theory (APT) by S.A. Ross [34]. The
APT’s main contribution was the inclusion of multiple
risk factors and the generalization of the CAPM, which
was considered to be a special case of APT with only
a single risk factor. In particular, Ross assumed that the
rate of return of every security can be expressed as a lin-
ear combination of some ‘basic’ risk factors.

Another major development in modern financial
economic theory was the derivation of an accurate op-
tion pricing model by F. Black and M. Scholes [5],
which revolutionized the pricing of financial instru-
ments and the entire financial industry. Note that an op-
tion is, in general, the right to trade an asset for a prea-
greed amount of capital. If the right is not exercised af-
ter a predetermined period of time, the option expires
and the holder loses the money paid for holding that
right. A major part of the subsequent literature focused
on different approaches to, simplifications of, and vari-
ations of the Black–Scholes Model (BSM). A significant
simplification of the BSM was done by J.C. Cox, Ross,
and M. Rubinstein [11] (see [27]).

Furthermore, the mean-variance portfolio analysis
that was introduced and mathematically formulated by
Markowitz [25,26] and later simplified by the diago-
nal model of Sharpe [35], was further extended by G.A.
Pogue [33] and J.C. Francis [18], with the introduction
of variance-covariance matrices for both assets and li-
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abilities, applied to the asset-liability management of
banks.

Most of the aforementioned models and theo-
ries were subsequently extended and improved. The
APT of Ross was refined by G. Chamberlain [7] and
G. Connor [8], and the Black–Scholes model was
further explored and significantly generalized (see,
e. g., [10,15,17]).

Themajority of the literature in financial economics
has been based on the assumption that investors can-
not affect the prices at which they buy or sell. Each in-
vestor is considered to be an isolated case, who tries
to maximize his utility function, subject to the prices
that the market provides him. All the participants in the
economy, be they buyers or sellers, have as a goal the
maximization of their profits and the minimization of
their losses. The prices are derived through the market
where investors constantly buy and sell commodities.
The analysis of market equilibrium tries to determine
the prices at which different products will be bought
and sold, and also the amount of each product that each
participant in the economy will hold in an equilibrium
state.

Market equilibrium analysis has its roots in the
last half of the nineteenth century. The work of H.
Gossen [21], W. Jevons [23], and L. Walras [39] initi-
ated the analysis of equilibrium theory. Subsequently,
in the 1930s the study of market equilibrium became
more formal and solid. The work of A. Wald [37,38]
and J.R. Hicks [22] provided, for the first time, proofs of
different qualitative properties of the equilibrium, along
with a detailed study of the conditions under which
an equilibrium could be modeled and derived. Further-
more, the work of Arrow [1] and G. Debreu [12] started
a new era in equilibrium analysis by bringing uncer-
tainty into equilibrium theory, which led to the current
status of market equilibrium theory.

The basic assumption that governs most of the ex-
isting models that address the theory of market equi-
librium is that of perfect competition. Perfect competi-
tion prohibits any participant in the economy (buyer
or seller) from having control over the prices of differ-
ent products or over the actions of other participants.
The price of a product is considered to be a variable, the
value of which is determined by the combined actions
of all the buyers and sellers. Buyers are, hence, ‘price
takers’, in that they modify their holdings of a product

according to the price, ignoring the effects that their
behavior may have on that price. Moreover, perfect
competition assumes that all participants in the econ-
omy have perfect information about the products avail-
able, the current price, and the bids of a specific prod-
uct. Furthermore, the number of the participants in the
economy is assumed to be large enough so that the mar-
ket activity regarding a specific product will be small
compared to the transactions in the overall market.

For definiteness, we present a financial equilib-
rium model due to A. Nagurney [30] (see, also, [32],
and the references therein). The model relaxes the
CAPM assumptions of homogeneous expectations
(cf. [24,29,36]), without imposing restrictions as to the
nature of different sectors (e. g., [20]).

The mathematical framework that is utilized to
develop the multi-sector, multi-instrument financial
equilibrium model is finite-dimensional variational in-
equality theory. Themethodology of finite-dimensional
variational inequalities was first suggested for the mod-
eling, analysis, and computation of multi-sector, multi-
instrument financial equilibrium problems by Nagur-
ney, J. Dong, and M. Hughes [31] and was further
explored by Nagurney [30]. For complete references,
qualitative results, as well as a plethora of financial
equilibrium models and computational approaches,
see [32].

AMulti-Sector, Multi-Instrument Financial
EquilibriumModel

Consider a single country economy with multiple in-
struments and with multiple sectors. We let i denote
a typical instrument, with the total number of instru-
ments available in the economy, denoted by I. We let j
denote a typical sector in the economy, with the num-
ber of sectors denoted by J.

Let ri denote the (nonnegative) price of instrument
i, and group the prices of all the instruments into the
column vector r 2 RI

C. Denote the volume of instru-
ment i that sector j holds as an asset, by Xj

i , and group
the (nonnegative) assets in the portfolio of sector j into
the column vector Xj 2 RI

C. Further, group the assets
of all sectors in the economy into the column vector
X 2 RJI

C. Similarly, denote the volume of instrument i
that sector j holds as a liability, by Y j

i , and group the
(nonnegative) liabilities in the portfolio of sector j into
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the column vector Yj 2 RI
C. Finally, group the liabili-

ties of all sectors in the economy into the column vector
Y 2 RJI

C.
Assume that the total volume of each balance sheet

side of each sector is exogenous. Recall that a balance
sheet is a financial report that demonstrates the status of
a company’s assets, liabilities, and the owner’s equity at
a specific point of time. The left-hand side of a balance
sheet contains the assets that a sector holds at a partic-
ular point of time, whereas the right-hand side accom-
modates the liabilities and owner’s equity held by that
sector at the same point of time. According to account-
ing principles, the sum of all assets is equal to the sum
of all the liabilities and the owner’s equity. Moreover,
we assume that the sectors under consideration act in
a perfectly competitive environment.

Since each sector’s expectations are formed by refer-
ence to current market activity, a sector’s expected util-
ity maximization can be written in terms of optimizing
the current portfolio. Sectors may trade, issue, or liqui-
date holdings in order to optimize their portfolio com-
positions.

We assume that each sector j tries to maximize his
utility function, which we denote as Uj(Xj, Yj, r). We
also assume that the utility function of every sector is
concave, continuous, and twice continuously differen-
tiable. Furthermore, the accounts of each sector must
balance. We denote the total financial volume held by
sector j by Sj. Therefore, the optimization problem that
each sector j faces is given by:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max U j(X j;Y j; r)

s.t.
IX

iD1

X j
i D S j ;

IX
iD1

Y j
i D S j;

X j
i � 0; Y j

i � 0;
i D 1; : : : ; I;

where the price vector r is an exogenous vector in the
optimization problem of every sector j; j = 1, . . . , J.

We now discuss the feasible set of the sectors. For
each sector j; j = 1, . . . , J, we let

eX j �

(
X j 2 RI

C :
IX

iD1

X j
i D S j

)

denote the constraint set of his assets. Similarly, we let

eY j �

(
Y j 2 RI

C :
IX

iD1

Y j
i D S j

)

denote the constraint set for his liabilities. Then, the
feasible set for a sector j is a Cartesian product, denoted
by � j, where

� j � feX j �eY jg:

Let eX denote the feasible set for the assets of all the sec-
tors, where:

eX � eX1 � : : : � eX j � : : : �eXJ :

Similarly, for the liabilities, let eY denote the feasible set
of the liabilities of all the sectors, that is,

eY � eY1 � : : : �eY j � : : : �eY J :

Also, define � � feX �eYg.
We now present the optimality conditions for a sec-

tor’s utility maximization problem, given above. We
then give the economic conditions determining the in-
strument prices (in equilibrium).

Optimality Conditions

The necessary and sufficient conditions for an optimal
portfolio for sector j are that the vector of assets and lia-
bilities, (Xj�, Yj�) 2 � j, satisfies the following system of
equalities and inequalities: For each instrument i, i = 1,
. . . , I, we must have the following Kuhn–Tucker condi-
tions being satisfied, at an equilibrium price vector r�:

�
@U j(X j�;Y j�; r�)

@X j
i

� �1
j � 0;

�
@U j(X j�;Y j�; r�)

@Y j
i

� �2
j � 0;

X j
i
�

 
�
@U j(X j�;Y j�; r�)

@X j
i

� �1
j

!
D 0;

Y j
i
�

 
�
@U j(X j�;Y j�; r�)

@Y j
i

� �2
j

!
D 0;

where �1
j , �

2
j are the Lagrange multipliers associated

with the constraints. Obviously, a similar set of equali-
ties and inequalities holds for every other sector in the
single country economy.
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Economic System Conditions

Moreover, the economic system conditions that ensure
market clearance at a positive instrument price (and
a possible excess supply of the instrument at a zero
price) are: For each instrument i, i = 1, . . . , I, we must
have that:

JX
jD1

(X j
i
�
� Y j

i
�
)

(
D 0 if r�i > 0;
� 0 if r�i D 0:

This system of equalities and inequalities states that if
the price of a financial instrument is positive, then the
market must clear for that instrument and if the price
is zero, then either there is an excess supply of that in-
strument in the economy or the market clears.

Let K be the feasible set for all the asset and liability
holdings of all the sectors, and all the prices of all the
instruments where K � {� × RI

C}.
Combining the above, we present the following def-

inition of equilibrium.

Definition 1 (financial equilibrium) A vector (X�, Y�,
r�) 2 K is an equilibrium of the single country, multi-
sector, multi-instrument financial model if and only if it
satisfies the system of equalities and inequalities above,
for all sectors j, j = 1, . . . , J, and for all instruments i, i =
1, . . . , I, simultaneously.

The necessary and sufficient conditions for optimal
portfolios, along with the economic conditions for the
instrument prices, are now utilized in obtaining the
variational inequality formulation of the financial equi-
librium conditions.

Theorem 2 (variational inequality formulation) A
vector of assets and liabilities of the sectors, and instru-
ment prices, (X�, Y�, r�) 2 K, is a financial equilibrium
if and only if it satisfies the variational inequality prob-
lem:

JX
jD1

IX
iD1

"
�
@U j(X j�;Y j�; r�)

@X j
i

#
� [X j

i � X j
i
�
]

C

JX
jD1

IX
iD1

"
�
@U j(X j�;Y j�; r�)

@Y j
i

#
� [Y j

i � Y j
i
�
]

C

IX
iD1

JX
jD1

[X j
i
�
� Y j

i
�
] � [ri � r�i ] � 0;

8(X;Y ; r) 2 K:

We now put the variational inequality into standard
form. We first define the J-dimensional column vector
U with components: {U1, . . . , UJ} and let rX U denote
the JI-dimensional vector with components: {rX1 U1,
. . . , rXJUJ} with rX jUj denoting the gradient of Uj

with respect to the vector Xj. The expression rY U is
defined accordingly. We let n = 2JI + I. We define the
n-dimensional column vector x� (X, Y , r)2K, and the
n-dimensional column vector F(x) with components:

F(x) D

0
BBBBBB@

F1(x)
:::

Fb(x)
:::

Fn(x)

1
CCCCCCA
D

0
BBBBBB@

�rXU(X;Y ; r)
�rYU(X;Y ; r)PJ

jD1(X
j
1 � Y j

1 )
:::PJ

jD1(X
j
I � Y j

I )

1
CCCCCCA

n�1

:

Consequently, the variational inequality may be rewrit-
ten as:
� Determine x� 2 K satisfying:

˝
F(x�)>; x � x�

˛
� 0; 8x 2 K:

Other financial equilibrium models, including models
with hedging instruments such as futures and options,
as well as, international financial equilibrium models
can be found in [32], and the references therein.

See also

� Equilibrium Networks
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Oligopolistic Market Equilibrium
� Spatial Price Equilibrium
� Traffic Network Equilibrium
�Walrasian Price Equilibrium
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There is great need for an integrative approach to fi-
nancial analysis and planning. The globalization of fi-
nancial markets and the introduction of complex prod-
ucts such as exotic derivatives have increased volatility
and risks. Strides in computers and information tech-
nology has eliminated any delays between the occur-
rence of an event and the impact on the markets —
within the home country and internationally. The do-
main of financial planning provides a rich source of
applications for optimization models and related tools.
Such tools as simulation, estimation, stochastic pro-
cesses, decision support, and artificial intelligence have
become indispensable in several domains of financial
operations [36]. With the continued growth of com-
plex financial instruments and an increased acceptance
of operations research tools by practitioners, optimiza-
tion models are positioned to play a significant role in
financial planning. There is a wealth of literature avail-
able regarding the role of optimization models in finan-
cial planning. See [12,16,23,32,35,37,38].

The primary purpose of this article is to present
an overview of an integrative optimization-based fi-
nancial planning model. In financial applications, the
planner must provide recommendations from among
a large of number of alternatives in which there is
considerable uncertainty. The financial planner must
therefore model the decisional environment as well
as the stochastic elements in a dynamic fashion. The
model presented here encompasses several popular ap-
proaches to the problem of investment strategies, in-
cluding stochastic programs and dynamic stochastic
control [4]. The financial planning model results in
large stochastic optimization problems and efficient al-
gorithms are now available for solving these nonlinear
programs. A brief review of the various algorithms is
also presented.

Single-PeriodModels

The most widely used methods for portfolio selection
are based on the mean/variance approach [20]. Mean-
variance optimization is a mathematical tool that cre-
ates a portfolio of assets with the maximum expected

return for a given level of risk or with the minimum
risk for a given expected return. Over the years, a num-
ber of researchers have extended and refined the orig-
inal model to include transactions costs, trading size
and turnover constraints and other practical require-
ments [30]. Several researchers have provided efficient
procedures for estimating the variance/covariance ma-
trix of returns required by the model, based on factor,
index or scenario analysis [10].

While mean-variance analysis provides a powerful
framework for asset allocation, it suffers from several
limitations. The Markowitz model treats expected re-
turns, standard deviations, and correlations as popula-
tion parameters. These population parameters are not
available, and therefore statistical estimates are used.
The estimation errors thus introduced can distort the
optimization results and could result in major errors in
asset allocation.

Single-period models cannot capture long-term in-
vestment goals. They do not have the ability to con-
sider opportunity costs that should influence decisions
on strategic placement of funds; investment opportu-
nities with maturities exceeding a single period can-
not be included; neither can the impact of anticipated
exogenous supply/demand for funds be properly as-
sessed [21]. Single-period models tend to produce high
portfolio turnovers and opportunistic asset trades. They
cannot accurately account for the effect of transaction
costs. Purchases of asset categories with high transac-
tion costs are disfavored unless they promise high im-
mediate returns. Multiperiod models, properly formu-
lated, can overcome many of these limitations. This is
the focus of our discussion in the next section.

MultiperiodModels

We address financial planning over long horizons
via multistage stochastic programming. The stochas-
tic program brings together all major financial-related
decisions in a single and consistent structure. It inte-
grates investment strategies (also known as asset allo-
cation strategies), liability decisions (e. g., borrowings)
and savings strategies (or re-investment decisions) in
a comprehensive fashion. As such, the system forms
the basis for assessing and managing risks for large in-
stitutional organizations, including banks, savings and
loans, insurance companies, pension plans, and gov-
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ernment entities. Several noteworthy applications of
stochastic programming for financial planning include
the Russell–Yasuda investment system for insurance
companies [6], the Towers Perrin investment system
for pension plans [22], the integrated simulation and
optimization system for the Metropolitan Life Insur-
ance Company [35], and the integrated product man-
agement system [12]. In each case, asset investment de-
cisions are combined with liability choices in order to
maximize the investor’s wealth over time.

We describe a generalized network model for mul-
tiperiod investment planning [23]. While some real-
world issues are difficult to accommodate within the
network context and must be handled as general lin-
ear constraints, the network provides a visual reference
for the financial planning system. We divide the en-
tire planning horizon T into two discrete time inter-
vals T1 and T2 where T1 = {0, . . . , �} and T2 = {� + 1,
. . . , T}. The former corresponds to periods in which in-
vestment decisions are made. Period � defines the date
of the planning horizon; we focus on the investor’s po-
sition at the beginning of period � . Decisions occur at
the beginning of each time stage. Much flexibility exists.
An active trader might see his time interval as short as
minutes, whereas a pension plan advisor will be more
concerned with much longer planning periods such as
the dates between the annual Board of Director’s meet-
ing. It is possible for the steps to vary over time — short
intervals at the beginning of the planning period and
longer intervals towards the end. T2 handles the hori-
zon at time � by calculating economic and other factors
beyond period � up to period T. The investor cannot
render any active decisions after the end of period � .

Asset investment categories are defined by set
A = {1, . . . , I}, with category 1 representing cash.
The remaining categories can include broad investment
groupings such as stocks, bonds, and real estate. The
categories should track well-defined market segment.
Ideally, the co-movements between pairs of asset re-
turns would be relatively low so that diversification can
be done across the asset categories.

In our approach, uncertainty is represented by
a number of distinct realizations. Each complete real-
ization of all uncertain parameters gives rise to a sce-
nario; we denote by S the discrete set of all scenarios.
Several scenarios may reveal identical values for the un-
certain quantities up to a certain period – i. e., they

Financial Optimization, Figure 1
Scenario tree

share common information history up to that period
(see Fig. 1). Scenarios that share common information
up to a specific period must yield the same decisions
up to that period. We will address the representation of
the information structure through a condition known
as nonanticipativity.

We assume that the portfolio is rebalanced at the be-
ginning of each period. Alternatively, we could simply
make no transaction except reinvest any dividend and
interest – a buy and hold strategy. For convenience, we
also assume that the cashflows are reinvested in the gen-
erating asset category and all the borrowing is done on
a single period basis.

For each i 2 A, t 2 T1, and s 2 S, we define the fol-
lowing parameters and decision variables.

Parameters

� rsi;t = 1 + �si;t, where �
s
i;t is the percent return for as-

set i, time period t, under scenario s (projected by
the stochastic modeling subsystem). 
 s is the prob-
ability that scenario s occurs,

PS
sD1
 s = 1.

� w0 is the wealth in the beginning of time period 0.
� � i, t are the transaction costs incurred in rebalancing

asset i at the beginning of time period t (symmet-
ric transaction costs are assumed, i. e., cost of selling
equals cost of buying).

� ˇs
t is the borrowing rate in period t under scenario s.
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Decision Variables

� xsi;t is the amount of money in asset category i, in
time period t, under scenario s, after rebalancing.

� vsi;t is the amount of money in asset category i, in the
beginning of time period t, under scenario s, before
rebalancing.

� ws
t is the wealth at the beginning of time period t,

under scenario s.
� psi;t is the amount of asset purchased for rebalancing

in period t, under scenario s.
� dsi;t is the amount of asset i sold for rebalancing in

period t, under scenario s.
� bst is the amount borrowed in period t, under sce-

nario s.
With these definitions in place, we can present the

deterministic equivalent of the stochastic asset alloca-
tion problem.

Model SP

max Z D
SX

sD1


s f (ws
� ) (1)

such that
X
i

xsi;0 D w0; 8s 2 S; (2)

X
i

xsi;� D ws
� ; 8s 2 S; (3)

vsi;t D rsi;t�1x
s
i;t�1;

8s 2 S; t D 1; : : : ; �; i 2 A;
(4)

xsi;t D vsi;t C psi;t(1 � �i;t) � ds
i;t ;

8s 2 S; i ¤ 1; t D 1; : : : ; �
(5)

xs1;t D vs1;t C
X
i¤1

ds
i;t(1 � �i;t)

�
X
i¤1

psi;t � bst�1(1C ˇ
s
t�1)C bst

8s 2 S; t D 1; : : : ; �;

(6)

xsi;t D xs
0

i;t

for all scenarios s; s0

with identical past up to time t:

(7)

The generalized network model is presented in
Fig. 2. The nonlinear objective function (1) can take
several different forms. If the classical mean-variance
function is employed, then (1) becomes max Z = �

Mean(w� ) � (1 � �) Var(w� ), where Mean(w� ) is the
average total wealth and Var(w� ) is the variance of the
total wealth across the scenarios at the end of period � .
Parameter � indicates the relative importance of vari-
ance as compared with the expected value. This ob-
jective leads to an efficient frontier of wealth at pe-
riod � . An alternative to mean-variance is the von Neu-
mann–Morgenstern expected utility of wealth at period
� . Here, the objective becomes

max Z D
SX

sD1


s Utility(ws
� );

where Utility(W) is the von Neumann–Morgenstern
utility function [15]. The two objective functions are
equivalent under certain conditions on the distribution
of returns and the shape of the utility function [17].

Constraint (2) guarantees that the total initial in-
vestment equals the initial wealth. Constraint (3) rep-
resents the total wealth in the beginning of period � .
This constraint can be modified to include assets, liabil-
ities, and investment goals. Themodified result is called
the surplus wealth [21]. Most investors make allocation
decisions without reference to liabilities or investment
goals. J.M.Mulvey employs the notion of surplus wealth
to the mean-variance and the expected utility models
to address liabilities in the context of asset allocation
strategies. Constraint (4) depicts the wealth vsi;t accu-
mulated at the beginning of period t before rebalancing
in asset i. The flow balance constraint for all assets ex-
cept cash for all periods is given by constraint (5). This
constraint guarantees that the amount invested in pe-
riod t equals the net wealth for asset. Constraint (6) rep-
resents flow balancing constraint for cash. Nonantici-
pativity constraints are represented by (7). These con-
straints ensure that the scenarios with the same past will
have identical decisions up to that period. While these
constraints are numerous, solution algorithms take ad-
vantage of their simple structure.

Model SP is a split variable formulation of the
stochastic asset allocation problem. This formulation
has proven successful for solving the model using tech-
niques such as progressive hedging algorithm of [27]
and quadratic diagonal approximation of [25]. Split
variable formulation is also found beneficial by direct
solvers that use the interior point method [19]. By sub-
stituting constraint (7) back in constraint (2) to (6), we
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Financial Optimization, Figure 2
Generalized network model for each scenario s 2 S

obtain a compact formulation of the stochastic alloca-
tion problem. Constraints for this formulation exhibit
a dual block diagonal structure. This formulation may
be better for some direct solvers [19].

Scenario Generation

Scenario analysis offers an effective, and easily under-
stood tool for addressing the stochastic elements in
a multistage financial model. We define a scenario as
a single deterministic realization of all uncertainties
over the planning horizon. Ideally, the process con-
structs scenarios that represent the universe of possi-
ble outcomes. This objective differs from generation of
a single scenario, say for forecasting and trading strate-
gies. We are interested in constructing a ‘representative’
set of scenarios that are both optimistic and pessimistic
within a risk analysis framework. Such an effort was un-
dertaken by Towers Perrin (one of the largest actuarial
firms in the world) using a system called CAP:Link [22].
The system entails a cascading of a set of submod-
els, starting with the interest rate component. Towers
Perrin employs a version of the Brennan–Schwartz [5]
two-factor interest rate model. The other submodels are
driven by the interest rates and other economic factors.
Towers Perrin has implemented the system in over 14
countries in Europe, Asia, and North America.

Scenario generation requires the estimation of the
input parameters for the modeling of the economic fac-
tors. The ability to choose the ‘correct’ or ‘best’ set of

parameters is essential if such models are to have prac-
tical value. A variety of techniques are available for esti-
mating the economic factors required for projected re-
turns and liabilities. See [24] and [1] for a discussion of
some these techniques. See also [8,9] for a treatment of
the robustness of scenario generation.

Solution Techniques

In this section we review a number of algorithms avail-
able to solve the asset allocation models. We focus on
solutions to multistage stochastic programs possessing
discrete-time decisions with a modest number of sce-
narios – typically under 1000 to 3000 – and nonlin-
ear objective functions addressing risk aversion. The
model’s size depends on the number of decision vari-
ables and the form of the nonanticipativity rules. If
Model SP is selected, the model becomes a convex pro-
gramwhose size hinges on the number of scenarios that
are placed in S.

Direct Solvers

The simplest approach when the objective is linear is
to use an efficient linear programming solver. Although
simpler to handle, LP does not represent risk aversion
well. See [19] for a solution of the multistage asset al-
location problem with a linear objective function us-
ing OB1 and MINOS. OB1 is a primal-dual interior
point algorithm for solving linear programs [18]. MI-
NOS is a nonlinear programming code that can also
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solve LP [28]. On a compact formulation, MINOS out-
performed OB1 on several test problems. The split for-
mulation, however, significantly reduced the time re-
quired by OB1 to yield the fastest solution times.

When the objective is nonlinear, a general purpose
nonlinear programming code can be used for solution.
However, the nonlinear interior point methods have
advantages over these codes. For example, in mean-
variance applications, the covariance matrix can be fac-
tored to convert the mean-variance function into a sep-
arable function. This is achieved by amodest increase in
the number of constraints. R.J. Vanderbei and T.J. Car-
penter [34] show that nonlinear interior point meth-
ods can take advantage of the separable structure de-
spite the increase in the number of constraints. A sim-
ilar transformation is possible with the expected utility
objectives as discussed in [3].

Primal-dual interior point algorithms can be spe-
cialized to solve nonlinear stochastic optimization
problems. See [7] for an extension of a primal-dual in-
terior point procedure for linear programs to the case
of convex separable quadratic objectives. The extension
is tested on the asset allocation problems of [26] and
compared to MINOS. The primal-dual interior point
method compared favorably with MINOS, especially
for the larger test problems. In the direct solution of
nonlinear programs via interior point methods, the pri-
mary computational step is the factorization of the nor-
mal equations ADA|, where A is the coefficient matrix
and D is a diagonal matrix [18]. This factorization is
typically done by means of the Cholesky (LL|) method.
A major difficulty when applying these algorithms to
stochastic optimization problems has to do with the
sparsity structure of A. Several efficient approaches are
now (2000) available to address the sparsity issue, the
most recent being the tree dissection method [2].

Ideas of using parallel computing for stochastic pro-
grams have been around for quite some time [29]; [14].
More recently (1993), E. Rothberg [31] developed an
extremely efficient method for carrying out sparse ma-
trix factorization in a parallel environment. Rothberg’s
factorization coupled with tree dissection concepts pro-
vides some very encouraging results for stochastic pro-
grams. Initial evidence indicates that parallel direct
solvers will be able handle stochastic programs with
over 10,000 scenarios within several minutes of runtime
in a parallel environment.

Decomposition Algorithms

Considerable progress has been made in the design
of efficient decomposition algorithms for solving mul-
tistage stochastic programs. A number of decompo-
sition algorithms are based on the augmented La-
grangian function, such as the progressive hedging al-
gorithm (PHA) and the diagonal quadratic approxi-
mation (DQA). PHA applies to the variable split form
of the multistage stochastic program. The nonantici-
pativity constraints are placed in the objective func-
tion as penalty and multiplier terms, and are progres-
sively enforced by an iterative procedure. Mulvey and
H. Vladimirou [27] compare the performance of the
progressive hedging algorithm to alternative solution
strategies on a set of linear and nonlinear portfolio
management problems. The general purpose optimizer
MINOS [28] solve these test problems in their compact
form. This is the most efficient program formulation
for MINOS because it results in the smallest constraint
matrix, i. e. the size of the basis is minimized. The lin-
ear problems were also solved using the primal-dual
interior code (OB1) of [18]. For nonlinear test cases,
they employ an extension of the primal-dual interior
point method to convex, separable optimization pro-
grams [7]. The staircase formulation obtained by partial
variable splitting is employed in these terms. On linear
problems the progressive hedging algorithm was faster
than MINOS. It was also faster than OB1 when the
compact form was used. Interior point outperformed
PHA for staircase structures. On nonlinear problems,
PHA maintains its superiority over MINOS, particu-
larly on large test problems. The progressive hedging
algorithm also fares well against interior point algo-
rithm on nonlinear problems, outperforming it in sev-
eral cases.

DQA forms an augmented Lagrangian function by
dualizing nonanticipativity constraints. The DQA al-
gorithm approximates the Lagrangian at the current
iterate by a quadratic and separable term [25]. The
outer loop revises the dual variable by the method of
multipliers, whereas the inner loop consists of sep-
arable quadratic or convex terms. DQA is a flex-
ible scheme which can be implemented in many
ways, in particular, in a parallel distributed environ-
ment. Mulvey and A. Ruszczynski [25] compare the
performance of DQA with highly specialized meth-
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ods for linear two-stage problems. The most success-
ful methods found so far are based on Benders de-
composition, suggested for stochastic programming
in [33]. MSLiP [11] is a recent (1990) implemen-
tation of this idea, which allows for solving linear
multistage problems in a nested formulation. Mulvey
and Ruszczynski [25] show that the specialized de-
composition techniques MSLiP and DQA outperform
MINOS.

Conclusions and Future Directions

The proposedmultistage financial planning model pro-
vides a general framework for integrating all asset and
liability decisions for a large financial entity – such as an
insurance company, bank, or pension plan – as well as
for individual investors. This comprehensive approach
measures the risk and rewards of alternative invest-
ment strategies. Without an integrative asset-liability
model, investors are unable to properly measure risks
to their wealth. The usual asset-only approach inade-
quately evaluates the impact of investments on wealth
and achieving investment goals. The main lesson is that
investment models must be tailored to individual cir-
cumstances. The multistage stochastic program pro-
vides an ideal vehicle for developing a financial plan
that fits the investor’s needs.

Future research should continue along several di-
mensions. First, we must increase the size of solvable
stochastic programs so that additional scenarios can
be handled in a practical fashion. There is no fun-
damental reason why we cannot address 10,000 to
100,000 scenarios using parallel and distributed com-
puters. Certainly, the raw computing power will be
available. Whether or not direct solvers or decompo-
sition algorithms are best is a matter for future re-
search.There are a number of algorithmic items to ex-
plore. One is to take further advantage of the struc-
ture of the multistage stochastic program within a par-
allel interior-point algorithm. For instance, we can con-
duct the Cholesky factorization using modern sparse
matrix calculations on parallel or distributed comput-
ers. Rothberg’s approach [31] seems to be a potential
winner. Solving the stochastic program as quickly as
possible will increase the chances that individual in-
vestors and institutions will apply the models. In the
case of decomposition methods, the sparse matrix cal-

culations are key for techniques such as DQA which
use an interior-point algorithm for solving subprob-
lems. Any substantial progress on this issue leads to
immediate gains in the decomposition algorithm. Also,
the restarting issue for interior-point algorithms re-
mains.

Another computational issue involves generating
scenarios. In particular, out-of-sample testing will be
critical in order to compute valid bounds on the model
recommendations. When it applies, dynamic stochas-
tic control can be useful. The control system assists in
the selection of the scenarios – for instance, by generat-
ing importance estimates for adding (or deleting) sce-
narios as they affect the solution to the control prob-
lem. These scenarios should be linked to the stochas-
tic program. Of course, embedding a stochastic pro-
gram within a simulation system such as carried out
in [35] to evaluate the precision of the recommenda-
tions is possible. The approach requires large computa-
tional resources and may be impractical. Linking sim-
ulation and optimization models, however, will be in-
creasingly important, as multistage stochastic programs
become more widespread in practice.

A third issue deals with the automatic calibration
of scenario generation systems using a nonlinear pro-
gram. For example, the two-factor interest rate model
possesses seven parameters, including the correlation
coefficient for the Weiner terms. Setting these parame-
ters requires considerable effort. There are several com-
peting objectives: minimizing deviations on the sum-
mary statistics with respect to historical values; meet-
ing expectations regarding future asset returns such as
stocks and bonds; and avoiding trends that are clearly
unrealistic. The estimation approaches developed in
[24] and [1] address some these issues, but more work
is needed to fully understand both modeling and com-
putational issues of automatic calibration of scenar-
ios.

See also

� Competitive Ratio for Portfolio Management
� Financial Applications of Multicriteria Analysis
� Portfolio Selection and Multicriteria Analysis
� Robust Optimization
� Semi-infinite Programming and Applications in
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First we review briefly some facts about 2-valued dis-
crete functions (two-atom Boolean algebras). Then we

proceed with various n-valued extensions and general-
izations which are not necessarily always Boolean. The
most general class of systems to be discussed are Pi-
algebras. The logic connectives of these algebras are
partial nonassociative noncommutative general alge-
braic groupoids [13,30].

Associative connectives, such as various families of
t-norms and t-conorms [10] which are widely used
in fuzzy logics are the special instances of PI-algebra
groupoid connectives. References to some applications
of Pi-logic algebras conclude this entry.

Although the primitives of PI-algebras are only par-
tially defined they are functionally complete. Hence one
can represent any finite discrete function by PI-normal
forms.

Definition 1 A finite discrete function of k arguments
f (x1, . . . , xk) is a mapping from the k-fold Cartesian
product of a set A to itself. In symbols: f : A × � � � × A
! A, where A is a finite set containing n elements, A =
{a0, . . . , an� 1}.

For typographic convenience, we shall map the ele-
ments ofA into the finite subsetN of nonnegative num-
bers by the assignment ai = i, namely A = {0, . . . , n� 1}.
This does not imply that the ordering of natural num-
bers is always relevant to our algebraic considerations.
These numbers should just be considered as more con-
venient labels than, say, ai for the elements of a finite
set A.

Boolean 2-Valued Logic Algebras

A Boolean 2-valued function is a discrete function that
takes its values from the two-element set {0, 1}. We can
form 16 different two-argument functions on the set
{0, 1}. The ten nontrivial of these are shown below.

Finite Complete Systems of Many-valued Logic Algebras, Ta-
ble 1
Two-argument connectives of the 2-valued logic

x y ^ _ !  � ˚ ¹ ¸ # j

0 0 0 0 1 1 1 0 0 0 1 1
0 1 0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 0 0 0 0 0
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Some of these operations, also called logic algebra
connectives, play an important role in logic. Hence they
are given special names to stress their meaning and sig-
nificance.

When ‘1’ is interpreted as ‘True’ and ‘0’ as ‘False’,
then _ represents logical AND, ^ (nonexclusive) logi-
cal OR,˚ exclusive logical OR (i. e. XOR). The connec-
tive� is logical equivalence which captures the equiva-
lence of two propositions, and! is an implication op-
erator which captures the validity (truth-value) of the
conditional ‘If __ then __’.

The connectives, together with some inference rules
(e. g. modus ponens, see � Checklist paradigm seman-
tics for fuzzy logics), make a system of classical propo-
sitional logic.

Let us recall that any Boolean function can be ex-
pressed by the conjunctive normal form (CNF) or dis-
junctive normal form (DNF). Let us introduce the no-
tation x� D (x ^ �) _ (x ^ �), where x denotes the
negation of x, and � is a parameter equal either to 0 or
1. Then it is obvious that

x� D

(
x when � D 1;
x when � D 0:

x� is called literal.

Theorem 2 (Normal forms theorem) Every Boolean
function f (x1, . . . , xn) can be represented by their canon-
ical (full) CNF and DNF normal forms.
i) The disjunctive normal form:

_
f (�1;:::;�n )D1

x�11 ^ � � � ^ x�nn :

ii) The conjunctive normal form:
^

f (�1;:::;�n )D0

x�11 _ � � � _ x�nn :

A clause in a DNF consists either of a literal or of
a conjunction of literals. In a CNF, on the other hand,
a clause consists either of a literal or of a disjunction of
literals.

Because we can express any Boolean function by
formulas formed by means of the sets of connectives
CNF-Cset (= {^, _, :}), DNF-Cset (= {_, ^, :}), we
call these sets complete sets of connectives.

A Repertory of Complete Many-Valued
Logic Normal Forms

Important structural relationships that provide the al-
gebraic backbone of various logics are contained in
their normal forms. It is possible to generalize from
two-valued normal forms tomany-valued normal forms
in various ways. We shall discuss here one such gener-
alization, namely partial functionally complete Pinkava
algebras (Pi-algebras) which offer some interesting in-
sights and have also a significant practical value. The
systems were discovered in 1971 by V. Pinkava [24,25]
as a significant generalization of the systems used by
Pinkava in his previous work [21].

Many-Valued Families
of the Pinkava Logic Algebras

Definition 3 ([30,35]) The Pinkava n-valued family of
logical calculi Pi = {A,�, ˘,ˇ, ,!} consists of the par-
tially defined connectives operating on the value-set {0,
. . . , n �1}:

vi Þ v j D

8̂
<̂
ˆ̂:

0 if vi D 0;
1 if vi ¤ 0 & v j D 1;
undefined otherwise;

vi�v j D

8̂
<̂
ˆ̂:

0 if vi D 0;
vj if vi ¤ 0 & vj D 1;
undefined otherwise;

v1 ˇ v2 D

(
vj if vi D 0;
undefined otherwise;

v,! D v C 1 (mod n);

�� D

(
1 if v D �;
0 if v ¤ �;

where i, j 2 {1, 2}.

Note that the carrier and the characteristic functions can
also be generated in the Pinkava logic calculi by the con-
nectives. For example, the characteristic function� can
be generated by ˘, [13].

Theorem 4 (Complete normal forms) Any n-valued
logic function that is obtained by a completion of the par-
tially defined Pinkava connectives of the type {ˇ �, ˘,
,!} defined above is functionally complete and can be
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expressed in the following canonical normal form:

f (v1; : : : ; vn) D
K

f (v1;:::;vn)¤0

�
c��

�
Þn

sD1 ˛s (vs)
��
:

General Pi-Algebras

Families of Pi-Algebras
and their Functionally Complete Normal Forms

The Pinkava logic calculi can be further general-
ized [11,13,14]. These generalizations are called Pi-
algebras. The connectives involved are partial nonasso-
ciative noncommutative general (algebraic) groupoids
in their most general form.Associative connectives, such
as the t-norms and t-conorms [10,44] are special in-
stances of them (see also � Boolean and fuzzy rela-
tions).

Definition 5 (Families of Pi-algebras) Let Pi be an al-
gebra with carrier P such that PI = hP, ˘, �, ˇ, ˚i,
where [13]:
1) hP, ˘i is an arbitrary groupoid with zero z˘, without

divisors of zero, and with the almost absorbing ele-
ment a˘ such that a˘ ˘ p = p ˘ a˘ = a˘ for every p
2 P, p 6D z˘.

2) hP,ˇ i is an arbitrary groupoid with unit eˇ.
3) hP,�i is an arbitrary groupoid with a right zero zr �

and a right unit er �.
4) ˚ is a discrete cyclic shift function ˚ :P! P satisfy-

ing the following conditions: Given a discrete cyclic
order of P, then for every p 2 P it holds that p 4 ˚
(p) and ˚0(p) = p, ˚k + 1(p) = ˚(˚k(p)).

In the above definition a 4 b means that a is a direct
predecessor of b.

Definition 6 Let p1, p2 2 P, and ˚ be a cyclic shift
function. Then the advance ı from p1 to p2 with respect
to˚ is the least ordinal such that˚ı (p1) = p2. We write
ı˚ (p1) = p2. The advance ı� denotes the inverse of ı.

Theorem 7 (Canonical normal forms) Let the ad-
vances ı1, ı2 be defined by the formulas ı1 := (a˘, er �),
ı2 := (z�, eˇ). Then any function f on the carrier P in
a Pi-algebra can be expressed in its canonical normal
form:

f (v1; v2; : : :)

D
K
f¤eˇ

˚ı2
n
˚ı
�

2 (c� )�
�
Þcard P

sD1 ˚
ı1 [�˛s (vs)]

�o
:

The argument scope of the outer connective of the
normal form is ˇf8 f (v1;v2;:::): f¤(eˇ)g. This means that
the values eˇ are omitted.

Theorem 8 (Functional completeness) Any Pi-
algebra is functionally complete if, given the advance ı1
= ı(a˘, er �), it also holds that ı1 = ı(z˘, z�).

Theorem 9 If the right zero zr � is also the zero and the
right unit er � is also the unit of the groupoid hP,�i, then
the following normal form is also functionally complete:

f (v1; v2; : : :)

D
K
f¤eˇ

˚ı2
n
˚ı
�

2 (c� )�
�
�n

sD1˚
ı1 [�˛s (vs)]

�o
:

The Taxonomy of the PI-Algebras
of Many-Valued Logics

The main theoretical question that the PI-algebras an-
swer is: ‘Which features of two-valued Boolean logic
structures disappear and which are preserved and car-
ried over into the extensions and generalizations to
many-valued logics’? The Pi-logic algebras are partial
systems that put under one roof a wide variety of fam-
ilies of functionally complete many-valued logical sys-
tems. Thus they offer a useful framework in which vari-
ous generalizations and extensions can be carried out.
They also provide a sound base for a useful classifi-
cation of many-valued logics by their various proper-
ties. This approach, based on PI-normal forms, use-
fully complements another way of classifying the many-
valued logic connectives by groups of logic transfor-
mations (see� Checklist paradigm semantics for fuzzy
logics).

Special Subfamilies of n-Valued PI-Systems

Because the Pinkava connectives are only partially de-
fined, it is possible by imposing further restrictions on
these connectives to define subclasses of the function-
ally complete Pinkava systems. For example, consider
the restrictions
a) (v,!1 � v,!2 ),! n � 1 = v1 ˇ v2;
b) (v,!n�1

1 ˇ v,!n�1
2 ),! = v1 � v2.

They make the subclass {˘, �, ,!} functionally com-
plete. Imposing some other restrictions we can ob-
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tain other subclasses of functionally complete connec-
tives. For example, the Post system, the Aizenberg–
Rabinovich system, the Zhegalkin algebra, and lattice-
type many-valued logic systems can be so obtained.
For further details see e. g. [13,38]. A partial taxon-
omy of various subclasses of the Pinkava systems can
be found in [13, Fig. 8.1] or in [11 p. 279, Fig. 1].
Several important subclasses of the Pinkava systems
are presented in [26]. For the subclasses that are gen-
eralizations of the Sheffer function, see [32]. The sys-
tems particularly suitable for minimizations appear
in [33].

PI-Algebras and a New Variety
of 2-Valued Normal Forms

It is illuminating to look at two-valued well-known spe-
cial instances of logic connectives and classify them in
terms of Pi-algebra connective types. This reveals that
there are other canonical normal forms in addition to
DNF and CNF. For instance, theˇ, which is partial, of-
fers two distinct completions: either Boolean (inclusive)
OR _ or exclusive-OR (nonequivalence) ˚. Although
the connectives� and ˘ are identical in the two-valued
case, both forming Boolean^, they extend each to a dis-
tinct partial connective for n > 2. This is because each
of these connectives plays a different role in the normal
form, serving a different purpose.

In order to explore more fully the richness of Pi-
algebras, one has to look at their taxonomy in the gen-
eral many-valued case. For a more detailed taxonomy
see [13, Fig. 8.1.2] or [11].

Two highlights emerge from this approach:
1) Even in the simple two-valued case, the nor-

mal forms of generalized Pi-algebras subsume not
only the conjunctive and disjunctive normal form
but also the implication, equivalence, exclusive-
or and other normal forms in one unifying pat-
tern.

2) Two distinct general n-valued connectives may ‘col-
lapse’ into a single connective when one sets n =
2. Viewed the other way, a two-valued connective
may ‘bifurcate’ into two distinct types of connec-
tives when more than two values are used. This bi-
furcation of structures and concepts is an interesting
phenomenon that accompanies fuzzification of two-
valued structures.

Theoretical and Practical Importance
of PI-algebras

The Requirement of Functional Completeness

The functional completeness is of primary interest to
a scientist or an engineer engaged in practical applica-
tions of many-valued logic. In such applications it is of-
ten desirable to have the means for generating all possi-
ble finite discrete functions by means of a complete set
of many valued logic connectives.

For example, it is desirable to have a set of logic gates
that can generate any combinatorial switching circuit. In
pattern recognizers implemented by many-valued logic
networks, the set of basic ‘cognitive elements’ has to be
complete, otherwise some patterns may be misclassi-
fied. The completeness is necessary in order to have
the means for representation of all the possible discrete
functions over a finite set of elements.

Similarly, in biological or psychological and medi-
cal models based on abstract classification of patterns
by logic nets the choice of an incomplete set of connec-
tives as the representational base of the model might
yield a bias towards assumptions that are not contained
in the experimental data. For example, in ethological
models of instincts the representation using an incom-
plete set of connectives would represent the a priori
assumption that certain forms of instincts do not ex-
ist. Yet the data might contain the evidence for these,
but this evidence is not representable and will be dis-
carded by an unfortunate choice of the incomplete set
of connectives. In models of neuro-psychological disor-
ders this might cause a priori exclusion of some impair-
ments of the substratum structures, diminishing the
predictive usefulness of such models.

The complexity of the normal forms as well as the
complexity of the minimized many-valued logic (MVL)
expressions depends on the character of the discrete
function (i. e. the data) to be represented, the choice
of an appropriate many-valued logic system of connec-
tives, and the number of the discrete values of the value
set A. Hence, only by the choice of an appropriate MVL
system may we achieve an optimal representation in
each specific application domain.

The choice of a suitable system is usually an itera-
tive process, which requires a comparative evaluation
of several systems, performed in order to optimize the
choice. In order to assess whether a chosen system is
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functionally complete, a set of conditions sufficient to
determine the completeness is required. Alternatively,
a set of rules has to be given that would make it pos-
sible to generate complete systems of required addi-
tional properties directly. The constructive conditions
for completeness given above for the normal forms of
PI-algebras are such rules.

Other conditions for completeness of the same of
greater generality are not so suitable for this purpose
because the number of conditions necessary to test for
completeness increases rapidly with increasing number
of values n of a many-valued logic system. E. Post was
first to give the general conditions for completeness of
2-valued logics (n = 2). These were later generalized by
S.W. Jablonskij (S.V. Yablonskii) [9], J. Slupecki [45],
A. Salomaa [43] and others. The most general condi-
tions known at present are those given by I. Rosen-
berg [41,42] which are the generalization of the Post
conditions for any n-valued finite case.

In all these later cases (unlike for PI-algebras initi-
ated by Pinkava), the number of conditions increases
astronomically with increasing n. For n = 2 (Post) there
are 5 conditions that the logic system has to satisfy. For
n = 3 (Jablonskij) there are 18 conditions. For a seven-
valued MVL system (n = 7), there are 7,848,984 condi-
tions to be tested. The general formula for any finite n
� 2 is given by Rosenberg in [42]. This formula shows
that, for large n, the number is rather prohibitive, hence
of no practical value. On the other hand, PI-algebras
can generate an infinite number of finite functionally
complete systems of connectives for any finite n. This
is so because the Pinkava complete sets of connectives
are only partially specified and the completion of the
‘blanks’ by any values does not invalidate their com-
pleteness.

Satisfiability Problem in Computational
and Descriptive Complexity Theory

Central Importance of the Satisfiability
Problem of Boolean Formulas
in Complexity Theory

The main goal in the complexity theory of algorithms
is to distinguish problems that can be solved efficiently
from those that cannot be. A computational solution to
a problem is practically feasible if it belongs to the com-

plexity class P, that can be computed by a deterministic
algorithm in time bounded by a polynomial function of
the size of the input data.

The central problem of complexity theory in com-
puter science and a major problem of contemporary
logic and mathematics is whether the class P is equal
to the class NP. Problems solvable by nondeterministic
algorithms in polynomial time belong to the class NP.

Problems in the class NP are computationally
tractable only if they are of polynomial complexity, that
is if P = NP.

A successful proof of the conjecture that P 6D NP
would on the other hand indicate that the NP class is of
computationally not tractable exponential complexity.

The class NP contains many practical problems that
can be characterised by the following property: There
is no known way to compute a solution in polynomial
time, but there is a known way to check in polynomial
time whether a potential (e. g. guessed) solution is an
actual solution.

The satisfiability problem [19,20] that concerns
Boolean formulas [5] is closely related to the question
about computational complexity of many other com-
putational problems [6,7].

We say that a Boolean formula is satisfiable if there
exists at least one way of assigning values to its variables
so as to make it true. Finding the answer ‘yes’ or ‘no’ to
this question is called the [2]. If the Boolean formula of
our concern is written solely in the CNF we have the
SAT-CNF problem. SAT-k-CNF is obtained by restrict-
ing SAT-CNF to Boolean formulas in k-CNF, where k-
CNF is composed of clauses, each of which contains at
most k literals [2].

It follows from Cook’s theorem [3] that the ques-
tion whether or not P = NP is equivalent to asking
whether there is a polynomial time deterministic algo-
rithm (PTDA) recognizing the set of satisfiable Boolean
propositional formulas (the SAT problem), or equiva-
lently, a PTDA recognizing the set of propositional tau-
tologies TAUT [19]. This demonstrates the central im-
portance of the SAT problem for computational com-
plexity theory.

In 1971 S.A. Cook [3] proved that every problem X
2 NP is polynomially Turing reducible [1,2] to the ques-
tion about the complexity of TAUT-DNF, i. e. the set of
propositional tautologies coded in DNF. In symbols: X
�

p
T TAUT-DNF.
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This is related to one of the open (as of 1999) funda-
mental problems of logic [19]: Is there a propositional
proof system P in which every tautology has a polyno-
mial size proof? At present it is known only [4] that
there exists a propositional proof system in which ev-
ery tautology has a polynomial size of proof if and only
if NP = co NP, i. e. the class NP is closed under comple-
mentation.

The relation �p
T is a pre-order (see � Boolean and

fuzzy relations) hence it provides the means for com-
paring the relative computational difficulty of prob-
lems [1]. Because it is a pre-order, it may contain vari-
ous equivalence classes (see � Boolean and fuzzy rela-
tions) of problems.

The statement: ‘The SAT problem is NP-complete’
is referred to as the Cook–Levin theorem in the litera-
ture. Using the reducibility relation �p

T together with
this theorem yields a useful technique for providing
proofs of the NP-completeness of other problems. We
say that a problem X is NP-complete [1,2] if
� X 2 NP; and
� Y �p

T X for every problem Y 2 NP.
There is a great number of computational prob-

lems in the graph and set theories, theNP-completeness
of which can be proven by reducing the SAT prob-
lem directly or indirectly to each of them. For ex-
ample dominating set, vertex cover, clique, 3-SAT, 3-
colorability [20]. SAT can be reduced to the clique prob-
lem, which in turn is reducible to the vertex cover prob-
lem. The vertex cover problem is reducible to the dom-
inating set problem. Similarly, there is another chain of
reductions: SAT to 3-SAT to 3-colorability. These re-
duction chains form a part of the semilattice generated
by the reducibility relation.

Open Problems in the Complexity Theory
of PI-algebras (1999)

Computational complexity of PI-logic algebras and
normal forms is an uncharted territory. There is an in-
finite number of ways in which the partially specified
but functionally complete PI-logic normal forms can be
made fully specified, and a large variety of algebraic re-
strictions that can be placed upon them to generate par-
ticular fully defined systems.

Despite of their partial nature, the PI-normal form
have well defined length even before their algebraic

properties are completely specified. Hence one may ex-
pect that they will play some role in placing the upper
bound on descriptive complexity [8] of propositional
systems. This may be a promising direction of research
in the future. It should also be noted that the gener-
alized PI-normal forms allow for description of trans-
formations from lattice based connectives to ring based
connectives. Indeed, both are special instances of PI-
logic algebras (see Theorem 7 and [13]). That might
help to build a bridge between methods for analysis of
algebraic propositional systems [40] with notions of de-
scriptive complexity [8].

Applications of PI-Algebras

In addition to their theoretical significance, the func-
tionally complete PI-systems have found a num-
ber of practical applications in various fields: in
medicine, clinical behavioral sciences and neurol-
ogy [12,22,23,34,36]; in data analysis and classifica-
tion [37,39]; analysis of logical paradoxes [29,38]; au-
tomata theory and systems science [17,31,38]; design
of MVL-switching circuits [11]; in dynamic computer
protection also applicable to distributed an parallel sys-
tems [13,15,16]; logic and theorem proving [18,35]; op-
timization of discrete functions [27,33] and fuzzy log-
ics [28].

See also

� Alternative Set Theory
� Boolean and Fuzzy Relations
� Checklist Paradigm Semantics for Fuzzy Logics
� Inference of Monotone Boolean Functions
� Optimization in Boolean Classification Problems
� Optimization in Classifying Text Documents
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značnoj logike. Trudy Mat Inst Steklov 51:5–142

10. Klement EP, Mesiar R (1997) Triangular norms. In: Mesiar
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A constraint qualification (CQ) is a condition imposed
on the analytical description of a given set which can
be the constraint set of an optimization problem. CQs
are essential in order to establish optimality conditions,
but they play also a crucial role in duality theory and
perturbation analysis for optimization problems, and in

the study of error bounds and stability for algebraic sys-
tems like systems of equations or/and inequalities. The
notion first order constraint qualification is used if a CQ
is formulated in terms of first order derivatives or gen-
eralized derivatives of the data functions defining the
(constraint) set, or if it is related to optimality or stabil-
ity conditions involving first order terms of the original
data. Roughly speaking, first order constraint qualifica-
tions establish a link between the geometry of the given
set and certain kinds of first order approximations of
the analytical data.

A canonical form of constraints for which con-
straint qualifications have been studied is, for example,
the constraint system of a mathematical programming
problem, i. e.,

(
gi (x) � 0; i 2 I D f1; : : : ;mg;
g j(x) D 0; j 2 J D fmC 1; : : : ; rg;

(1)

where gi : Rn ! R (i = 1, . . . , r) are given functions,
possibly restricted to some subset X � Rn.

Another canonical form are abstract constraints,

G(x) 2 C; (2)

where G maps a Banach space X into a Banach space
Y , and C is a nonempty closed convex cone in Y .
Many of the results reported below similarly hold (with
some technical modifications) under the weaker as-
sumption that C � Y is an arbitrary closed convex
set [4,5,8,40,42]. The inclusion (2) is suitable to repre-
sent also constraints of abstract optimal control prob-
lems, semi-infinite programs, semidefinite optimiza-
tion problems, and others, see, e. g., [5]. Obviously, (1)
is a special case of (2), put X = Rn, Y = Rr, C = {y : yi �
0, i 2 I; yj = 0, j 2 J} and G = (g1, . . . , gr).

The notion ‘constraint qualification’ was introduced
by H.W. Kuhn and A.W. Tucker [22] in developing the
theory of nonlinear programming. However, under the
name regularity conditions, description-depending as-
sumptions were known already in classical variational
and extremum problems. To illustrate the meaning of
first order CQs, let us consider a simple example:

Example 1
(
min 1

2 x
2 C y

s.t. x � y D 0:



1056 F First Order Constraint Qualifications

The classical Lagrange conditions x + u = 0, 1 � u = 0,
x � y = 0 are necessary (and sufficient, in this example)
for the optimality of the point (x; y) D (�1;�1) with
associated multiplier u D 1. On the other hand, if the
constraint is equivalently written as

1
2
(x � y)2 D 0;

then the corresponding Lagrange conditions become
x + u(x � y) = 0, 1 � u(x � y) = 0, (x � y)2/2 = 0, which
are contradictory. Trivially, in the first description of
the feasible set, the linearization adequately represents
the possibilities for variation near (x; y), in the second
description, the linearization is inadequate in this re-
spect.

Optimality Conditions

First order necessary optimality conditions in dual
form require certain CQs to hold. Consider the opti-
mization problem

(P)

(
min f (x)
s.t. x 2 M;

where M is the solution set of (1). First suppose that
X = Rn, f : Rn ! R, and gi (8i) are continu-
ously differentiable. For x 2 M define Ix :D
fi 2 I : gi (x) D 0g, write h 2 TM(x) (tangent cone) if
h D limk!1 �k(xk � x, where �k > 0, xk 2M (8k) and
xk ! x, and write h 2 KM(x) (linearization cone) if
hh;Dgi(x)i � 0 for i 2 Ix and

˝
h;Dgj(x)

˛
D 0 for j 2

J.
Then the Karush–Kuhn–Tucker conditions (KKT),
8̂
ˆ̂<
ˆ̂̂:

9u 2 Rr : D f (x)C
X
i2I[J

uiDgi (x) D 0;

x 2 M;
ui � 0; ui gi (x) D 0; i 2 I;

are necessary for x being a local minimizer of (P), pro-
vided that, for example, one of the following CQs is sat-
isfied (see, e. g., [2]):
� Abadie CQ: TM(x) D KM(x).
� Kuhn–Tucker CQ: For every h 2 KM(x) there is

a continuously differentiable function y: [0, ı)!M,
ı > 0, such that y(0) D x and ẏ(0) D h.

� Mangasarian–Fromovitz CQ (MFCQ, [28]): Dgj(x),
j 2 J, are linearly independent, and for some
h ¤ 0, there holds hh;Dgi(x)i < 0, i 2 Ix , and˝
h;Dgj(x)

˛
D 0, j 2 J.

� Linear Independence CQ (LICQ): Dgi (x), i 2 I [ J,
are linearly independent.
There holds (see, e. g., [2]): LICQ ) MFCQ )

Kuhn–Tucker CQ) Abadie CQ; the converse impli-
cations are not true, in general. For further CQs in this
respect, see [2,38]. If no inequalities appear (i. e., I = ;),
the above CQs are classical for optimality conditions in
Euler–Lagrange form. Note that Abadie’s CQ is auto-
matically satisfied at each point of M if gi are affine-
linear for all indices i 2 I [ J.

Now suppose that (P) is a convex program, i. e.,
gi, i 2 I, are convex (but not necessarily differen-
tiable) functions and gj are affine-linear functions with
gradients aj, j 2 J. Then the following CQs are of-
ten used for optimality conditions of Karush–Kuhn–
Tucker type (in subdifferential terms) and saddle-point
conditions ([16,36,41]):
� Basic CQ at x 2 M: Each normal direction h, i. e.,
hh; x � xi � 0 for all x 2 M, has a representation
h D

P
i2Ix �i di C

P
j2J � j a j for some � 2 Rm, �i

� 0, di 2 @gi (x) (for i 2 Ix ), where @gi (x) denotes
theMoreau–Rockafellar subdifferential of gi at x.

� Weak Slater CQ: 9x0 2M such that gi(x0) < 0, i 2 IN ,
where IN := {i 2 I: gi is not affine-linear}.

� Strong Slater CQ: 9x0 2M such that gi(x0) < 0, i 2 I,
is satisfied, and aj, j 2 J, are linearly independent.

The latter naming of CQs is taken from [16]. If no equa-
tions appear, the strong Slater CQ becomes the well-
known and classical Slater CQ [2,36,41]. There holds:
weak Slater CQ) basic CQ; and for a given x 2 M,
the basic CQ is equivalent to a nonsmooth form of the
Abadie CQ [16]. If the gi, i 2 I, are differentiable, then
the strong Slater CQ is equivalent to the MFCQ being
satisfied at any x 2M [33,34]. There are certain forms of
first order optimality conditions which do not require
a CQ, see, e. g., [2,3,32,38].

Next, consider

(bP)
(
min f (x)
s.t. x 2 M;

whereM is the solution set of (2), and f is defined on the
Banach space X. Let f , G be continuously differentiable.
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Denote by Y� the dual space of Y . Then the conditions
8̂
ˆ̂̂<
ˆ̂̂̂
:

9u 2 Y� : D f (x)C hu;DG(x)i D 0;
hu; yi � 0; 8y 2 C;
G(x) 2 C;
hu;G(x)i D 0;

are necessary for x being a local minimizer of (bP), pro-
vided that, for example, the following CQ is satisfied
(see, e. g., [5,34,42]):
� Robinson CQ: 0 2 intfG(x)C DG(x)X � Cg, where

‘int’ denotes the topological interior.
Because the core of a convex set includes its interior,

0 2 corefG(x) C DG(x)X � Cg is a consequence of
the Robinson CQ. In fact, the latter is also sufficient for
Robinson’s CQ to hold, and both CQs are also equiva-
lent to RC[G(x)C DG(x)X � C] D Y , for details one
may consult [5,33,42]. If (bP) is specialized to (P), then
the Robinson CQ and MFCQ are equivalent [34]. Un-
der convexity assumptions on f and G in (bP), an exten-
sion of the strong Slater CQ plays a crucial role for first
order optimality characterizations [37] (see also [40]):
0 2 int(G(x) � C), which becomes G(x) 2 intC if intC
6D ;. In the case of differentiable data, the latter CQ is
equivalent to the Robinson CQ [33,40].

For many other classes of optimization problems,
first order CQs in connection with optimality condi-
tions have been intensively studied. Among them we
refer to CQs in composite optimization [38], optimal
control problems [7,17,31], nonsmooth (nonconvex)
programs [7,38], mathematical programs with equilib-
rium constraints [27], semidefinite programs [39], and
semi-infinite programs [5,15,31,32]. Certain first order
CQs, in particular, Robinson’s CQ and the MFCQ play
an important role in the theory of second order op-
timality conditions (and second order stability analy-
sis), see � Second order constraint qualifications and,
e. g., [3,4,8,39,40].

Duality

If (P) is a convex program, then first order CQs are
closely related to the existence of optimal solutions
of the Lagrange dual problem (D) associated with (P)
and to properties of the perturbation function v(u) :=
inf{f (x): gi(x) � ui, i 2 I, gj(x) = uj, j 2 J}, like con-
tinuity or subdifferentiability [10,36,37]. An important

CQ is
� Calmness: v(0) is finite and the Moreau–Rockafellar

subdifferential @v(0) of v(�) is nonempty.
Under calmness, the dual problem (D) is solv-

able and v(0) coincides with the optimal value of
(D) [10,36,37]. The strong Slater CQ implies calmness.
If v(0) is finite, then the following three conditions are
mutually equivalent:
i) For (1) the strong Slater CQ holds;
ii) v(�) is continuous at 0;
iii) the set of solutions of the dual problem (D) is

nonempty and bounded.

For more details see, e. g., [1,33,36]; for generalizations
to convex problems (bP) with abstract constraints of the
type (2) see, e. g., [33,37,40].

Now suppose that (P) has continuously differen-
tiable data f , gi, and x is a stationary solution solution
of (D), i. e., x satisfies together with some multiplier u
the KKT condition. Then, obviously, LICQ implies that
the multiplier u associated with x is unique. In [25] is
shown that a strengthened form ofMFCQ, the so-called
strict MFCQ, is necessary and sufficient for the unique-
ness of the Lagrange multiplier. Another basic result is
the following: MFCQ holds at x if and only if the set of
all multipliers associated with x is bounded (Gauvin’s
theorem [13]).

Extensions of Gauvin’s theorem to the general
problem (bP) with smooth data can be found, e. g.,
in [8,34,42]. For recent surveys of several aspects of CQs
and duality, see [5,40].

The above relations are also important theoretical
tools for establishing solution techniques which use La-
grangians or dual schemes (see, e. g., [16,29,38]), for
convergence analysis of path following methods (see,
e. g., [14]), for regularity properties guaranteeing finite
termination of algorithms [6,11], and for several stabil-
ity subjects (see the next section).

Stability

If the data couples (f , g) of (P) or (f , G) of (bP), respec-
tively, are embedded in a family F of data, where a ‘dis-
tance’ between two elements of F should be available,
then the question arises how changes of the data in F
affect existence of solutions (local or global optimiz-
ers, stationary solutions, critical points), and whether
‘small’ data perturbations lead to ‘small’ changes of the
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optimal value and solution set, or not. A ‘good’ stabil-
ity behavior is often sensitive to the description of the
constraint set and needs a CQ.

For example, consider a parametric smooth pro-
gram with finite-dimensional variables x and canoni-
cal perturbations (t, a, b) in a finite-dimensional space,
namely,

(P(t; a; b))

8̂
<̂
ˆ̂:

min f (t; x)� ha; xi
s.t. gi (t; x) � bi ; i 2 I;

g j(t; x) D b j; j 2 J;

(3)

with respect to x, where I, J are as above and f , gi are
twice continuously differentiable with respect to (t, x).
Given an initial parameter triple (t; 0; 0) and a KKT
point z D (x; u) of the initial problem, then strong sta-
bility of z (i. e., the existence of a locally unique and
Lipschitzian solution z(t, a, b) of the perturbed KKT
system near z) necessarily requires LICQ to hold at
x [23], while LICQ together with some strong second
order optimality condition characterizes strong stabil-
ity [9,21,23,35].

MFCQ and the strong Slater CQ are very impor-
tant to get other stability properties like strong stabil-
ity, pseudoregularity, upper Lipschitz (or Hölder) con-
tinuity, or upper semicontinuity of the optimal and/or
stationary solution maps under perturbations (see also
the next section). LICQ and MFCQ, respectively, play
an essential role for existence, representations and es-
timates of directional derivatives (studied in differ-
ent forms: standard one-sided directional derivative,
semiderivative, Dini type, Hadamard type, and others)
of the optimal value function. For an introduction into
these interrelations, see [1,5,9,12,19,24,38], while [5,40]
also survey extensions to the class (bP), under the Robin-
son CQ.

In the study of structural (or global) stability of fea-
sible sets and nonlinear finite/semi-infinite programs,
including one-parametric deformations, MFCQ and its
extensions turn out to be fundamental in these settings,
in particular, they characterize the global stability of
compact feasible sets, for surveys see [14,18].

If one is interested in directional stability of optimal
values or optimal solutions under data perturbations,
another type of CQs often comes into play: directional
regularity conditions which are imposed on the con-
straint set of the initial problem P((t; 0; 0)). A typical

example is the
� Gollan CQ at a feasible x in direction d: Dgj(t; x), j
2 J, are linearly independent, and for some h 6D 0,
there holds

˝
(h; d);Dgi (t; x)

˛
< 0, i 2 I(t;x), and˝

(h; d);Dgj(t; x)
˛
D 0, j 2 J.

For this CQ and a natural extension to abstract con-
straints in Banach spaces, see [4,5,40], in which direc-
tional differentiability and second order expansion of
the optimal-value function as well as Lipschitz/Hölder
stability and first order expansion of optimal solutions
under directional regularity conditions are studied.

Metric Regularity

Metric regularity of a parametric constraint system
refers to a certain local error bound for the distance
of some point x to the solution set in terms of the
residuum of the data at x and is closely related to first
order CQs. Consider for example system (1) with X =
Rn under right-hand side perturbations b,

(
gi(x) � bi ; i 2 I;
g j(x) D b j; j 2 J;

(3)

where I and J are as above. Denote by S(b) the solu-
tion set mapping of this system. If gi, 8i 2 I, are con-
tinuously differentiable, and if x 2 S(0), then MFCQ
at x implies that (4) is metrically regular at (x; 0), i. e.,
there exist a neighborhood U of (x; 0) and a constant
L D L(x) such that for (x, b) 2 U,

dist(x; S(b)) � L





�
(gi(x) � bi)C; i 2 I
g j(x) � b j; j 2 J

�



 ; (5)

where c+ := max {c, 0} for c 2 R, and k � k is any norm
in Rr. This was shown in [34], the converse assertion
is also true [8,34]. In the Banach space context of the
system (2) with right-hand side perturbations, the same
equivalence holds when replacing MFCQ by the Robin-
son CQ, see again [8,34].

If gi, i 2 I, are convex (not necessarily differen-
tiable), and gj, j 2 J, are affine-linear, then the strong
Slater CQ implies that (4) is metrically regular at each
(x; 0), x 2 S(0), see [33]. The converse direction is also
true [8]. In fact, in both [8] and [33], the authors prove
these results for convex inclusions in the Banach space
setting (2) using a suitable generalized form of the Slater
CQ.Moreover, under the strong Slater CQ, the estimate
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(5) even holds for all x in X and all b near 0, where the
number L D L(x) is bounded on bounded sets [33].

Note that under mild assumptions on the
parameter-dependence, the same CQs imply metric
regularity under more general perturbations (like in
(3), for example), for details see again [8,24,33,34].

Error Bounds

The role of (first order) CQs for deriving local and
global error bounds will be now discussed for a system
of convex inequalities, i. e., suppose in (1) that J = ;,
and gi, i 2 I, are convex (not necessarily differentiable)
functions. Denote the solution set again byM.

Given x 2 M, the system (1) is calledmetrically reg-
ular� at x (or simplymetrically regular at x [26,30]; the
asterisk is used to avoid confusions with the above no-
tion for parametric systems), if there exist a neighbor-
hood U of x and a constant L D L(x) such that for
x 2 U,

dist(x;M) � Lmax fgi (x)C : i 2 Ig : (6)

In [26] was shown that for differentiable functions gi, i
2 I, the Abadie CQ holds at x 2 M if and only if (1) is
metrically regular� at x [26]. For the nondifferentiable
case, it follows by a similar idea of proof that the basic
CQ is equivalent to metric regularity�.

If M is bounded and the strong Slater CQ holds,
then (6) is satisfied for all x 2 Rn, with some
uniform constant L [33]. This property is called
a global error bound, or, an ‘error bound in Hoffman’s
sense’ [20,26,30]. If M is unbounded then additional
asymptotic CQs are required to guarantee the existence
of a global error bound. For a survey of asymptotic CQs
and their interrelations, see [20].

CQs like Abadie’s CQ, MFCQ and the (strong)
Slater CQ are also essential in deriving local and global
error bounds for approximate solutions of convex and
nonconvex mathematical programs and other varia-
tional problems. These questions are for some classes
of programs closely related to the existence of so-called
weak sharp minima introduced in [6,11]. For a gen-
eral survey of error bounds in the sense just discussed
see [30], for the special case of quadratic convex pro-
grams see [26].

In contrast to other applications of CQs, the rela-
tions between CQs and error bounds are still not clar-

ified completely and require strong additional effort in
research.

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� Inequality-constrained Nonlinear Optimization
� Kuhn–Tucker Optimality Conditions
� Lagrangian Duality: Basics
� Rosen’s Method, Global Convergence, and Powell’s

Conjecture
� Saddle Point Theory and Optimality Conditions
� Second Order Constraint Qualifications
� Second Order Optimality Conditions for Nonlinear

Optimization
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Introduction

The general flow-shop problem [4,60,68], denoted as
n/m/Cmax in the literature, involves n jobs, each re-
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quiring operations on m machines, in the same ma-
chine sequence. The processing time for each opera-
tion is pij, where i 2 f1; 2; : : : ; ng denotes a job and
j 2 f1; 2; : : : ;mg a machine. The problem is to deter-
mine the sequence of these n jobs that produces the
smallest makespan assuming no preemption of oper-
ations. In the simplest case, all jobs are available and
ready to start at time zero and the setup times on ma-
chines are assumed to be sequence-independent and
included in pij. In more realistic situations, however,
jobs are released at different times, thus requiring dy-
namic scheduling and the setup times are sequence-
dependent.

The makespan problem for flow shops has been the
most studied by far in the literature. (The makespan
Cmax is equivalent to the completion time of the last job
to leave the system.) This is partly because:
� Makespan is a simple and useful criterion for heavily

loaded shops when long-term utilization should be
maximized.

� Makespan is the only objective function simple
enough to have available some analytic results for
multimachine problems and to make some branch-
and-bound methods practical for medium-sized
problems.

The minimization of the makespan objective is to a cer-
tain extent equivalent to the maximization of the uti-
lization of the machines. The models, however, tend to
be of such complexity that makespan results are already
relatively hard to obtain. Even harder to analyze are the
flow time and the due-date-related objectives.

Variations

There are a number of variations for the flow shop
scheduling problem [60,68]. Some of them are pre-
sented in the following.

The permutation flow shop problem (PFSP).
A constraint that may appear in the flow-shop en-
vironment is that the queues in front of each ma-
chine operate according to the first in, first out disci-
pline, which implies that the order (or permutation) in
which the jobs go through the first machine is main-
tained throughout the system. This problem can be
formulated as follows. Each of n jobs from the job
set j D f1; 2; : : : ; ng, for n > 1, has to be processed
on m machines 1; 2; : : : ;m in the order given by the

indexing of the machines. Thus, job j; j 2 J, consists
of a sequence of m operations; each of them corre-
sponding to the processing of job j on machine i dur-
ing an uninterrupted processing time pi j � 0. (It is as-
sumed that a zero processing time on a machine cor-
responds to a job performed by that machine in an in-
finitesimal time.) Machine i; i D 1; 2; : : : ;m, can ex-
ecute at most one job at a time, and it is assumed
that each machine processes the jobs in the same or-
der. We represent the job processing order by the per-
mutation 
 D (
(1); : : : ; 
(n)) on the set j, and we
let P denote the set of all permutations on j. We wish
to find the optimal processing order 
� 2 P of jobs
minimizing the maximum completion time Cmax(
)
(makespan) [65,68].

The flow shop scheduling problem with limited
machine availability. In such a problem, n jobs have to
be scheduled on m machines under the makespan cri-
terion and under the assumption that the machines are
not available during the whole planning horizon [6].

No-wait or no-idle flow shop scheduling prob-
lems with deteriorating jobs. Deterioration of a job
means that its processing time is a function of its ex-
ecution start time. A simple linear deterioration func-
tion is assumed and some dominating relationships be-
tween machines can be satisfied. No-wait requirement
is another phenomenon which may occur in flow shops
and implies that the starting time of a job at the first
machine has to be delayed to ensure that the job can
go through the flow shop without having to wait for
any machine. The “no-idle” constraint means that each
machine, once it commences its work, has to process
all operations assigned to it without any interruption.
In [102] it is shown that for the problems to minimize
makespan or weighted sum of completion time, poly-
nomial algorithms still exist, although these problems
are more complicated than the classical ones. In [101]
the general, no-wait and no-idle flow shop schedul-
ing problem with decreasing linear deterioration under
dominant machines is considered.

A hybrid flow shop consists of a series of produc-
tion stages, each of which has several machines operat-
ing in parallel. Some stages may have only onemachine,
but at least one stage must have multiple machines. The
flow of jobs through the shop is unidirectional. Each job
is processed by one machine in each stage and it must
go through one or more stage. Machines in each stage
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can be identical, uniform or unrelated. An extended
survey of the problem is presented in [57].

In [45] the stochastic flow shop problem is pre-
sented and analyzed.

Exact Algorithms
for the Flow Shop Scheduling Problem

Branch and bound is a general method for solving many
types of combinatorial problems. The basic idea of
branching is to conceptualize the problem as a decision
tree. From each decision choice point, called a node,
for a partially completed solution there grow a number
of new branches, one for each possible decision. These
in turn become new nodes for branching again and so
on. Leaf nodes, which cannot branch any further, rep-
resent complete solutions or dead ends. A number of
branch-and-bound procedures have been proposed for
the solution of the flow shop scheduling problem and
its variations [16,19,36,83,95,106,107]. Dynamic pro-
gramming approaches for the solution of the flow shop
scheduling problem have been proposed in [92,105].

Heuristic Algorithms
for the Flow Shop Scheduling Problem

Since the last few decades, pure flow shop schedul-
ing problems have been largely studied. Since the flow
shop minimization problem is NP-hard [87], a num-
ber of heuristic and metaheuristic algorithms have
been proposed for the solution of the problem. High-
performance heuristics have been proposed to mini-
mize the makespan [15,21,61] or the maximum tar-
diness [96]. Some additional characteristics have been
studied for the makespan criterion: non-sequence-
dependent setup and removal times [69,91], minimum
time lags [91], and more recently job-precedence con-
straints [14]. Studies on hybrid flow shop scheduling
problems are relatively recent. The main results deal
with the makespan criterion, and are often limited to
two stages; nevertheless, some work has been done on
lateness criteria [38,43]. A number of heuristics algo-
rithms were proposed in [13]. A worst-case analysis of
heuristics is presented in [85].

In [6] a heuristic approach is proposed to approxi-
mately solve the problem that consists in scheduling the
jobs two by two according to an input sequence, and
using a polynomial algorithm. This algorithm is an ex-

tension of the geometric approach developed for the
two-job shop scheduling problem. An algorithm that
constructs heuristics that use a lower bound to find
a feasible solution for the general m-stage flow shop
scheduling problem with multiple operations and time
lags is described in [75]. A greedy algorithm for the so-
lution of the permutation flow shop model with vari-
able processing times is presented in [28]. A two-
stage heuristic algorithm for the flow-shop problem
with multiple processors is presented in [90]. A bilevel
programming heuristic is presented in [48]. A simple
heuristic is presented in [55].

A two-phase heuristic is presented in [89]. In the
first phase, an initial job sequence is generated using
one of the available well-known and efficient heuris-
tics, while in the second phase the sequence generated
is improved in terms of the makespan using a pair ex-
change mechanism with directionality constraint. The
n-job two-machine flow shop scheduling problem is
studied in [99] with the criterion ofminimizing the sum
of job completion times. The scheduling problem is
first formulated mathematically. Three heuristic meth-
ods are then invented to find near optimal schedules.
Three lower bound generation schemata are designed
to compute three different lower bounds, of which the
tightest one is used. To further reduce the search space,
some dominance properties are proved. Then a branch-
and-bound algorithm is developed to obtain an optimal
schedule. In [100] the flow shop scheduling problem,
with the criterion of minimizing the sum of job com-
pletion times is addressed. Two heuristic approaches
are proposed to deal with this problem. The first ap-
proach focuses on reducing machine idle times and the
second one places efforts on reducing both the machine
idle times and the job queue times.

Complete reviews of the heuristic and metaheuris-
tic algorithms for the solution of the flow-shop prob-
lem and some of its variations are presented in [11,20,
39,60,68,78,97].

Metaheuristic Algorithms
for the Flow Shop Scheduling Problem

Several metaheuristic algorithms have been proposed
for the solution of the flow shop scheduling problem.
In the following an analytical presentation of these al-
gorithms is given:
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� Simulated annealing [1,3,50] plays a special role
within local search for two reasons. First, it appears
to be quite successful when applied to a broad range
of practical problems. Second, some threshold-
accepting algorithms such as simulated annealing
have a stochastic component, which facilitates a the-
oretical analysis of their asymptotic convergence.
Simulated annealing [2] is a stochastic algorithm
that allows random uphill jumps in a controlled
fashion in order to provide possible escapes from
poor local optima. Gradually the probability al-
lowing the objective function value to increase is
lowered until no more transformations are possi-
ble. Simulated annealing owes its name to an anal-
ogy with the annealing process in condensed-matter
physics, where a solid is heated to a maximum
temperature at which all particles of the solid ran-
domly arrange themselves in the liquid phase, fol-
lowed by cooling through careful and slow reduc-
tion of the temperature until the liquid is frozen
with the particles arranged in a highly structured lat-
tice andminimal system energy. This ground state is
reachable only if the maximum temperature is suf-
ficiently high and the cooling sufficiently slow. Oth-
erwise a metastable state is reached. The metastable
state is also reached with a process known as
quenching, in which the temperature is instanta-
neously lowered. Its predecessor is the so-called
Metropolis filter. Simulated annealing algorithms
for the flow shop scheduling problem are presented
in [27,35,40,46,47,52,58,62,63,82,88,94,98,103].

� Tabu search (TS) was introduced by Glover [30,31]
as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well-established
approximation technique, which can compete with
almost all known techniques and which, by its flexi-
bility, can beat many classic procedures. It is a form
of local neighbor search. Each solution S has an as-
sociated set of neighborsN(S). A solution S0 2 N(S)
can be reached from S by an operation called amove.
TS can be viewed as an iterative technique which ex-
plores a set of problem solutions, by repeatedlymak-
ing moves from one solution S to another solution
S0 located in the neighborhood N(S) of S [32]. TS
moves from a solution to its best admissible neigh-
bor, even if this causes the objective function to de-

teriorate. To avoid cycling, solutions that have been
recently explored are declared forbidden or tabu for
a number of iterations. The tabu status of a so-
lution is overridden when certain criteria (aspira-
tion criteria) are satisfied. Sometimes, intensification
and diversification strategies are used to improve the
search. In the first case, the search is accentuated
in the promising regions of the feasible domain. In
the second case, an attempt is made to consider so-
lutions in a broad area of the search space. TS al-
gorithms for the flow shop scheduling problem are
presented in [5,7,8,12,26,27,37,40,46,63,66,86,104].

� Genetic algorithms (GAs) are search procedures
based on the mechanics of natural selection and nat-
ural genetics. The first GA was developed by John
H. Holland [42] in the 1960s to allow computers
to evolve solutions to difficult search and combi-
natorial problems, such as function optimization
and machine learning. GAs offer a particularly at-
tractive approach for problems like the flow shop
scheduling problem since they are generally quite
effective for rapid global search of large, nonlin-
ear and poorly understood spaces. Moreover, GAs
are very effective in solving large-scale problems.
GAs [34] mimic the evolution process in nature.
GAs are based on an imitation of the biological pro-
cess in which new and better populations among dif-
ferent species are developed during evolution. Thus,
unlike most standard heuristics, GAs use informa-
tion about a population of solutions, called individ-
uals, when they search for better solutions. A GA is
a stochastic iterative procedure that maintains the
population size constant in each iteration, called
a generation. The basic operation is the mating of
two solutions in order to form a new solution. To
form a new population, a binary operator, called
crossover, and a unary operator, called mutation,
are applied [72,73]. Crossover takes two individu-
als, called parents, and produces two new individ-
uals, called offspring, by swapping parts of the par-
ents. GAs for the flow shop scheduling problem are
presented in [5,9,10,17,18,53,59,64,79,80,81,82].

� Scatter search [33] may be viewed as an evolution-
ary (population-based) algorithm that constructs
solutions by combining others. It derives its foun-
dations from strategies originally proposed for com-
bining decision rules and constraints in the context
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of integer programming. The goal of this method is
to enable the implementation of solution procedures
that can derive new solutions from combined ele-
ments in order to yield better solutions than those
procedures that base their combinations only on
a set of original elements. Scatter search algorithms
for the flow shop scheduling problem are presented
in [44,65].

� Variable neighborhood search is a metaheuris-
tic for solving combinatorial optimization prob-
lems whose basic idea is systematic change of the
neighborhood within a local search [41]. Variable
neighborhood search algorithms for the flow shop
scheduling problem are presented in [47,63].

� The use of artificial neural networks to find good
solutions to combinatorial optimization problems
has recently attracted some attention. A neural net-
work consists of a network [67] of elementary nodes
(neurons) that are linked through weighted con-
nections. The nodes represent computational units,
which are capable of performing a simple compu-
tation, consisting of a summation of the weighted
inputs, followed by the addition of a constant called
the threshold or bias, and the application of a non-
linear response (activation) function. The result of
the computation of a unit constitutes its output. This
output is used as an input for the nodes to which it
is linked through an outgoing connection. The over-
all task of the network is to achieve a certain net-
work configuration, for instance, a required input–
output relation, by means of the collective compu-
tation of the nodes. This process is often called self-
organization. A neural networks algorithm for the
flow shop scheduling problem is presented in [86].

� An improvement heuristic based on an adaptive
learning approach is proposed and applied to
the general flow-shop problem. The approach uses
a single-pass or a constructive heuristic and tries
to find improvements iteratively by perturbing the
data using a weight factor, allowing a nondeter-
ministic local neighborhood search. The weights are
modified using strategies similar to neural-networks
training, i. e., weights are reinforced if the solution
improves [4].

� Artificial immune system (AIS) is an intelligent
problem-solving technique that has been used in
scheduling problems for about 10 years. AISs are

computational systems inspired by theoretical im-
munology, observed immune functions, principles
and mechanisms in order to solve problems. Na-
ture and in particular biological systems have always
been fascinating to the human expert owing to their
complexity, flexibility and sophistication. The ner-
vous system inspired the evolution of an artificial
neural network, in the very similar manner immune
systemmotivated the emergence of the AIS. The AIS
can be defined as an abstract or metamorphic com-
putational system using ideas gleaned from the the-
ories and component of immunology [22,23]. AIS
algorithms for the flow shop scheduling problem are
presented in [25,51].

� Particle swarm optimization (PSO) is a popu-
lation-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart [49]
as a simulation of the social behavior of social or-
ganisms such as bird flocking and fish schooling.
PSO uses the physical movements of the individuals
in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global
and local exploration abilities. PSO algorithms for
the flow shop scheduling problem are presented
in [7,8,54,56,93].

� The ant colony optimization (ACO) metaheuris-
tic is a relatively new technique for solving combi-
natorial optimization problems. Based strongly on
the ant system metaheuristic developed by Dorigo,
Maniezzo and Colorni [24], ant colony optimiza-
tion is derived from the foraging behavior of real
ants in nature. The main idea of ACO is to model
the problem as the search for a minimum cost path
in a graph. Artificial ants walk through this graph,
looking for good paths. Each ant has a rather sim-
ple behavior so that it will typically only find rather
poor-quality paths on its own. Better paths are
found as the emergent result of the global cooper-
ation among ants in the colony. An ACO algorithm
consists of a number of cycles (iterations) of solution
construction. During each iteration a number of
ants (which is a parameter) construct complete so-
lutions using heuristic information and the collected
experiences of previous groups of ants. These col-
lected experiences are represented by a digital ana-
logue of trail pheromone which is deposited on the
constituent elements of a solution. Small quantities
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are deposited during the construction phase, while
larger amounts are deposited at the end of each iter-
ation in proportion to solution quality. Pheromone
can be deposited on the components and/or the con-
nections used in a solution depending on the prob-
lem. ACO algorithms for the flow shop scheduling
problem are presented in [29,70,71,84].

� Greedy randomized adaptive search procedure
(GRASP) [74] is an iterative two-phase search
method which has gained considerable popularity
in combinatorial optimization. Each iteration con-
sists of two phases, a construction phase and a local
search procedure. In the construction phase, a ran-
domized greedy function is used to build up an ini-
tial solution. This randomized technique provides
a feasible solution within each iteration. This solu-
tion is then exposed for improvement attempts in
the local search phase. The final result is simply the
best solution found over all iterations. GRASP al-
gorithms for the flow shop scheduling problem are
presented in [76,77].
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This article consists of three parts: first, a historical in-
troduction to the topic, next an overview of the most
frequent forecasting methods and finally a short de-
scription of modern computer-aided techniques as they
are used nowadays (2000) for instance for forecasts on
financial markets.

Introduction

Prediction ideas and information about uncertain fu-
ture events in general are as old as humanity. Scientific
forecasts are based on predetermined patterns, regular-
ities or conformities with a (natural) law. A theoretical
basis is made up of its components, the parameters of
the model and the conditions for the system.

Predictions of future events are called forecasts and
are concerned with the question of what the world ‘will’
look like [6]. Any organization must be able to make
forecasts concerning their work which aim to reduce
the uncertainty of the environment. For example, busi-
ness firms, in particular, require forecasts for a large
number of events and conditions in all phases of their
operation and forecasts are indispensable for planning
and strategy in everyday life.
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For centuries, the nature of forecasting was the field
of philosophers, who studied problems of inductive in-
ference analytically in order to obtain instruments for
qualitative and quantitative forecasting.

When asking the question of whether the future can
be predicted, or whether it is arbitrary and random, we
first noticed certain regularities in the behavior of na-
ture. These regularities were most obvious in the fields
of physics and astronomy in which it was possible to
make conditional forecasts. They were given their firm
mathematical basis by I. Newton, in the seventeenth
century. We still use his theory of gravity which is able
to predict the motion of (celestial) bodies.

At the turn into the twentieth century, psychology
began to use experimental methods to investigate learn-
ing in humans and other organisms. In doing so, psy-
chologists acquired knowledge about which behavior
could be forecasted and how to reduce uncertainty as
much as possible. During the twentieth century, the
topic of forecasting in general became increasingly im-
portant, especially after quantitative methods had been
developed. Various forecasting methods were given pri-
ority in economics and even more recently the com-
puter has provided research tools, engendering the field
of machine learning. Systematic research on trade cy-
cles and on crises management are the first economic
forecasts, at the same time as early psychological inves-
tigations.

One of the first aims of economics was to become
a science which could make forecasts with the help of
induction. The true measure of the value of economists
is often seen as the accuracy of the forecasts they
make [14].

J.H. Holland, K. Holyoak, R. Nisbett and P. Thagard
in 1986 [18] gave an excellent overview of the various
insights of researchers in psychology, philosophy and
artificial intelligence. Also borrowing from several other
disciplines such as engineering, statistics, biology and
game theory, including experimental economics [20]
they systematically developed principles providing co-
herence of a diverse set of findings on the nature of in-
ductive processes for prospective events in the future.

ForecastingMethods andModels

Obviously there are several possibilities of classification
because of various methodological approaches. Using

a fundamental division, we will generate two groups of
forecasting methods:
i) qualitative methods and
ii) quantitative methods.

Another main distinction consists of a generaliza-
tion of similar situations which can be
i) data based (usually given in the form of a time se-

ries, a chronological sequence of observed data with
respect to a certain variable) expecting that history
repeats itself in a certain way and

ii) theory based, where we assume that external factors
determine events.

It is natural to start with qualitative forecasting meth-
ods predicting future events with a certain subjective
probability: on the one hand we tend to make forecasts
for similar events on the basis of a certain generaliza-
tion, on the other hand we try to predict new events
for those situations where little or no historical data
are available and for events where we expect changes
within the data patterns. Generalization ideas - in a log-
ical and methodological sense - are made on the basis
that events will have properties in a certain analogy to
the past and tend towards the direction of objective pro-
cesses.

Here we want to recommend a well known classifi-
cation by S. Makridakis and S.C.Wheelwright [21]. Our
aim is to discuss a selected subset of these frequently
used methods.

Expert Systems

In questions about future events, a systematic discus-
sion of a group of five to twelve experts (expert systems)
usually yields forecasts with a better hit-rate than indi-
vidual predictions. This belongs to the class of judge-
mental forecast. Using this method, credibility is one of
the most desirable features of a forecast [10].

The Delphi method, developed by members of the
RAND Corporation in the 1960s [11], avoids face-to-
face effects by using a procedure based on a ques-
tionnaire technique. Delphi therefore guarantees three
basic characteristics: anonymity, interaction with con-
trolled feedback, and statistical group responses.

Subjective Curve Fitting

A frequently used method is subjective curve fitting and
extrapolation, which is used in economics, for exam-
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ple, for forecasts on the development of products with
certain life cycles or seasonal fluctuations. Experimen-
tal findings show that there are several gestaltsoriented
rules dominating expectation formations [4,5]. Subjec-
tive curve fitting differs to some extent between the dif-
ferent subjects; frequently we are not only interested in
individual expectations of a single forecasting subject
but also interested in the so-called average opinion of
a whole group as a good predictor for future events. For
example it is a well known hypothesis that the average
expected rate of inflation has an essential influence on
various economic variables.

Technological Comparison

A sensible method is technological comparison [2] and
[15]. Obviously, we should enlarge, compare or com-
bine these qualitative methods with quantitative ones
(combined forecasts), knowing that even models which
best fit the available data are not necessarily the most
accurate ones in predicting beyond this data [23].

Expectations and Decision

The simplest way of modeling expectations of future
events, which is used frequently in economic theory,
is to assume that conditions prevailing today will be
maintained in all subsequent periods analogously. In
cases where no causal explanation from other variables
seems to be appropriate we could simply use extrapola-
tion methods with the given data base to enable at least
a short term forecast. These methods are successfully
used
i) for seasonally adjusted data; and
ii) for cases where a continuation of the historical trend

is to be expected.

Statistical Procedures

The next step is to use statistical procedures which are
in some sense learning and in another sense adaptive
methods. Quantitative forecasting methods, theory and
data based, using knowledge from mathematical statis-
tics started to be successful in the early 1960s beginning
with ideas of R.G. Brown on smoothing methods.

In particular, exponential smoothing is frequently
used for producing short term forecasts [8,9]. Brown
suggested estimating the average of a time series and

used it as an extrapolation for the forecast. With each
new data set and observation respectively, we are able to
revise the mean square error (MSE) applying exponen-
tial smoothing to the squares of the error in the most
recent forecast. Several techniques have been proposed
using exponential smoothing but it is evident that all the
history of a process cannot be described by one and the
same simple model.

Moving AverageModel

In 1970 G.E. Box and G.M. Jenkins introduced more
sophisticated forecasting models which were the first to
take into account the nature of the data and the manner
of the stochastic process to be forecasted. They asked
not only the question of what to forecast and what data
to collect, but also what data to analyze and in what
context to embed the forecast. Their moving average
models [7], enable a successful application. They popu-
larized an approach that combines the moving average
and the autoregressive approaches in [7]. The classes
of autoregressive (integrated) moving averages (ARMA
and ARIMA) processes have been successfully intro-
duced by them and their models are some of the most
frequently used tools for stochastic analysis.

Several ways to model multiple time series are de-
scribed in [16]. Further ARIMA models are given in
[23,24]; [13] gives an excellent comparison of these
models using performance methods.

When enlarging the statistical methods with sensi-
ble associations and connections, econometric methods
should be considered, if causal relationship and changes
in causal variables are expected and can be estimated.

Regression Analysis

Usually it would be sensible to figure out a certain a pri-
ori relationship between the given data sets such that
statistical methods of regression analysis can be used. In
its simplest form, the classical linear regression model is
used to determine an equation relating two sets of data
with each other:
i) the set of observations of the explanatory or inde-

pendent variables (the predictors); and
ii) the set of the associated responses, the observations

of the dependent variables.
This task often seems to be easy at first sight, but when
all details are concerned it becomes a high leveled task.



Forecasting F 1071

Obviously there are some future values which can easily
be forecasted, e. g. the fuel consumption for a certain
period as a relation of velocity.

As our example from the field of finance will
demonstrate, there are, however, enough reasons to as-
sume more complicated situations caused by complex
systems and/or error terms. For example, demand as
the variable of interest can be seen as a function of the
price which takes the role of the predictor.

Econometric Models

Obviously, the standard model using the single regres-
sion equation has been extended in various ways. For
example,
i) disturbances are allowed to be autocorrelated and to

have different variances (heteroskedastic);
ii) by regressors measured with errors or in dynamic

situations (with dependences on lagged values)
stochastic regressors arise.

As proposed already at the foundation of the Econo-
metric Society in Cleveland in 1930 we also use nowa-
days (2000) econometric models which are not only
data based, but also theory oriented.

In econometrics, the single equation regression
model is enlarged and complex systems of simultane-
ous equation models are used, including several equa-
tions and also several dependent variables. These mod-
els are implemented as applied econometrics software
and build, for instance, the basis for national budget
calculations, usually containing several hundred equa-
tions.

Modern Computer Aided Techniques

To predict future movements of financial markets,
technical analysts use time series and apply the statis-
tical and econometrical methods described above. We
enlarge the methods by new techniques which are able
to recognize certain relationships from examples by
generalization with the help of new computer technolo-
gies. The methods used in this application are a compo-
sition of artificial neural networks, genetic algorithms
(see � Genetic algorithms) and fuzzy logic. Obviously
we are not able to go into details, but we try to give
a short characterization for our application.

Neural Networks

These are inspired by the functionality of nerve cells
in the brain. Like humans, they can learn to recognize
patterns by repeated exposure to many different ex-
amples. They can be used to detect salient characteris-
tics whether they are handwritten characters, profitable
loans or good trading decisions. Neural networks learn
to recognize even regularities in data that are inexact
or incomplete. A neural network finds this relationship
by means of a learning cycle where a large amount of
samples are presented repeatedly to the network. Neu-
ral networks cannot guarantee an optimal solution to
a problem. However, properly configured and trained
neural networks can often make consistently good clas-
sifications, generalizations or decisions in a statistical
sense. Neural networks are widely used to identify pat-
terns in the data of financial markets.

Fuzzy Logic

This is a strategy that is not based on amathematical de-
scription of a special system or market but is intended
to model the behavior of a human investor. The ex-
pert’s knowledge is specified in terms of linguistic rules
in which linguistic expressions are associated with fuzzy
sets. Fuzzy set methods tend to overcome the vagueness
of causality. They can be used to explain financial mar-
kets’ developments using fundamental rules as shown
in Fig. 1.

Fuzzy logic is a superset of conventional (Boolean)
logic that has been extended to handle the concept of
partial truth – truth values between ‘completely true’
and ‘completely false’. [25,26]. In other words, a fuzzy
system is a collection of ‘membership functions’ and
rules that are used to reason about data. In our exam-
ple the ranges of the interest rates of Germany and the
USA gives forecasts for the exchange rate between these
currencies. Fuzzy logic enables us to model and predict
market developments on the basis of the experience of
financial experts.

Genetic Algorithms

A genetic algorithm allows us to optimize any given
function. Genetic algorithms are search procedures
based on themechanisms of natural selection, mutation



1072 F Forecasting

Forecasting, Figure 1
Fuzzy Logic rules to predict the US Dollar/Euro fixingj

Forecasting, Figure 2
Genetic algorithm used for optimizing a rulebasis to forecast the US Dollar/Euro fixing

and recombination. A population consisting of chro-
mosomes (i. e., solutions for a function) is created ran-
domly. In the next step each chromosome is evaluated
and given a certain fitness value. The fitness value rep-
resents the feasibility and the optimality of a given so-
lution. Depending on their fitness value a certain per-
centage of the population is selected and deleted. The
surviving individuals are recombined and mutated. Af-
ter the population has been evaluated and the forecast
adjustment based on past data has been decided, the se-
lection process starts again.

The genetic algorithm is used to optimize the cer-
tainty of each rule in the fuzzy logic rulebase. As shown
in Fig. 2 the fitness function of the genetic algorithm
consists of a fuzzy logic rulebase and several mathemat-
ical objects to calculate the forecast error. The forecast
error is used to evaluate the individuals. All rules are ap-
plied to historic financial data and their forecast error is
summed up over the whole horizon.

Rules which are only partly true get lower certainty
values until their certainty corresponds to their actual
influence. Currency markets tend to follow certain reg-
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ularities, detected by expert knowledge or, for example,
the purchasing power theorem.

A similar procedure is applied to neural networks
in order to optimize the topology of the neural network
itself as well as a data mining approach to identify the
input parameters. The genetic algorithm allows us to
cancel out useless time series. When forecasting finan-
cial markets an appropriate and adaptive input param-
eter selection is necessary.

In our case the inputs are knowledge of economic
data to receive forecasts for future developments of fi-
nancial markets.

One goal in system theory is, in order to integrate
the ideas of several disciplines, to have a successful
instrument for analyzing forecasting processes includ-
ing learning and discovery in direction optimality. This
process of searching for the best value that can be real-
ized or attained is based on the events of subjects whose
actions are not able to be forecasted with total certainty.

Finally, we are able to summarize this as follows, us-
ing the different stages we took into account:
� historical comparison based on repeatedly observed

similar events and on statistical data, e. g. business
fluctuations, Harvard’s barometers, chart extrapola-
tions;

� time series analysis, based on proceedings on math-
ematical statistics;

� econometric forecasting models, including stepwise
regression models, as well as vector autoregressive
models (VAR);

� modern techniques, mainly computer aided, and
software which is available as adaptive models,
learning models, artificial neural networks (ANN),
fuzzy set models and evolutionary algorithms.

See also

� Continuous Global Optimization: Applications
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Consider a system ofm linear inequalities in n real vari-
ables

Ax � b; (1)

where x = (x1, . . . , xn)| 2 Rn is the vector of unknowns
and A, b are a given real matrix and vector. Let X =
{x 2 Rn : Ax � b} be the solution set of the system, and
let X[k] denote the projection of X onto the linear space
spanned by the last n � k coordinates:

X[k] D f(xkC1; : : : ; xn) 2 Rn�k :

9(x1; : : : ; xk) 2 Rk

s.t. (x1; : : : ; xn) 2 Xg:

The Fourier–Motzkin method [3,4,5,8,10,12,14,15] suc-
cessively eliminates variables x1, . . . , xn�1 from (1) and
computes matrices A[k] and vectors b[k] such that

X[k] D
n
x[k] 2 Rn�k : A[k]x[k] � b[k]

o
;

k D 1; : : : ; n � 1;

where x[k] = (xk+1, . . . , xn)|.

In order to eliminate variable x1, we first multiply
each of the m inequalities of (1) by an appropriate pos-
itive scalar to make each entry in the first column of
A equal to ˙ 1 or 0. We can thus assume without loss
of generality that the original system of inequalities has
the form

C1 � x1 C ˛i (x[1]) � 0; i 2 MC;

�1 � x1 C ˛i (x[1]) � 0; i 2 M�;

0 � x1 C ˛i (x[1]) � 0; i 2 M0;

where ˛i(x[1]) = ˛i2x2+ � � � + ˛inxn+ ˇi are given affine
forms of x[1] = (x2, . . . , xn)| 2 Rn� 1 and M+, M�, M0

are disjoint sets of (indices of) inequalities partitioning
the entire set of inequalities in (1):

MC [M� [M0 D f1; : : : ;mg:

It is easy to see that for each fixed x[1], the inequalities
with indices i 2M+ [M� can be satisfied by some real
x1 if and only if each upper bound � ˛i(x[1]), i 2 M+

on x1 exceeds each lower bound ˛j(x[1]), j 2M� on the
same variable, i. e., � ˛i(x[1]) � ˛j(x[1]) for all i 2 M+

and j 2 M�. Combining these |M+| |M�| inequalities
with the remaining |M0| inequalities of (1) that do not
depend on x1, we arrive at the system of |M+| |M�| +
|M0| linear inequalities

˛i (x[1])C ˛ j(x[1]) � 0; (i; j) 2 MC �M�;
˛i (x[1]) � 0; i 2 M0;

whose solutions set is X[1]. The above system can be
written as A[1]x[1] � b[1] with appropriate matrix A[1]

and vector b[1]. This gives X[1] = {x[1] 2 Rn�1 : A[1]x[1]

� b[1]}. Eliminating variable x2 from A[1]x[1] � b[1] we
obtain a similar description X[2] = {x[2] 2 Rn�2 : A[2]x[2]

� b[2]} for the second projection and so on. After n �
1 steps of the above procedure we have n � 1 matri-
ces A[k] and vectors b[k] such that X[k] = {x[k] 2 Rn�k :
A[k]x[k] � b[k]}, k = 1, . . . , n� 1.

Solution of Systems of Linear Inequalities
and Linear Programming Problems

If the solution set X = {x 2 Rn: Ax � b} is nonempty,
then so are all the projections X[k] � Rn�k, k = 1, . . . ,
n � 1, and vice versa. In particular, if Ax� b is feasible,
then

X[n�1] D
˚
x[n�1] 2 R : A[n�1]x[n�1] � b[n�1]

�
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is a nonempty interval on the scalar variable x[n�1]

= xn. Given A[n�1] and b[n�1], we can easily find
a point xn 2 X[n�1]. Then, substituting xn D xn into
A[n�2]x[n�2] � b[n�2], we obtain a new feasible system
of linear inequalities whose solution set is the inter-
val
˚
xn�2 2 R : (xn�1; xn) 2 X[n�2]�. Solving this one-

variable system yields a point x[n�2] D (xn�1; xn) 2
X[n�2], which can be substituted in A[n� 3]x[x� 3] �

b[n�3] etc. By repeating such backward substitutions,
the Fourier–Motzkin method can compute a solution
(x1; : : : ; xn) to any feasible system of linear inequalities
Ax � b. ‘Historically, it is the ‘pre-linear programming’
method to solve linear inequalities’ [14].

Now suppose that the input system is infeasible, i. e.
X = {x 2 Rn: Ax � b = ;}. As was pointed out in [10],
the Fourier–Motzkin method can then find nonnega-
tive real multipliers p1, . . . , pm such that

pA D 0; pb D �1; p D (p1; : : : ; pm) � 0: (2)

To see this, observe that each inequality in A[1]x[1] �
b[1] is a positive combination of at most two inequalities
of the original system. Since a nonnegative combina-
tion of nonnegative combinations of some inequalities
is a nonnegative combination of the same inequalities,
we conclude that each inequality in each system A[k]x[k]

� b[k], k = 1, . . . , n � 1, is a nonnegative combination
of the input inequalities. Considering that A[n�1]x[n�1]

� b[n�1] is an infeasible system of linear inequalities
in one variable, A[n�1]x[n�1] � b[n�1] is easily seen to
contain one or two inequalities whose positive com-
bination yields the infeasible inequality 0 � xn � �1.
This is equivalent to (2). In particular, the Fourier–
Motzkin method provides a simple algorithmic proof
of the Farkas lemma (cf. � Farkas lemma; � Farkas
lemma: Generalizations): (1) is feasible if and only if (2)
is infeasible.

The Fourier–Motzkin method can also be used to
solve the general linear programming problem

�� D max
˚
c>x : Ax � b; x 2 Rn� : (3)

For instance, we can eliminate n variables x = (x1, . . . ,
xn) from Ax� b, xn+ 1 � c|x� 0 to determine the inter-
val X[n] = {xn+1 : xn+1 � ��}. Then, letting xn+ 1 = �� and
solving the resulting system yields an optimal solution.

It should be mentioned that there are far more ef-
ficient linear programming algorithms. Note, however,

that (3) calls for projecting X = {x 2 Rn: Ax � b} on
a one-dimensional subspace. After an appropriate lin-
ear transformation, the Fourier–Motzkin method can
project X = {x 2 Rn: Ax � b} on any given subspace
in Rn.

Complexity of the Fourier–MotzkinMethod

Letmk denote the number of inequalities in the kth sys-
tem A[k]x[k] � b[k] generated by the Fourier–Motzkin
method. Since m1 = |M+| |M�| + |M0| � m2, we have
mk � m2

k�1 for all k. So the number of inequalities is at
most squared at each step of the method, which implies
thatmk is bounded by a doubly exponential function in
k, saymk �m2k . The following example shows that with
sufficiently many variables, the kth step of the method
can produce

mk D m2k(1�o(1))

inequalities.

Example 1 [14] Let n = 2k + k + 2 and consider a system
of linear inequalities Ax� bwhich contains as left-hand
sides m D 8

�n
3

�
linear forms ˙xi1 ˙ xi2 ˙ xi3 for all 1

� i1 < i2 < i3 � n. By induction on j = 1, . . . , k it is easy
to show that after eliminating the first j variables, the
resulting system includes among its left-hand sides all
the forms˙ xi1 ˙ � � � ˙ xis with k + 1 � i1 < � � � < is �
n and s = 2j + 2. In particular, for j = k we have at least
22kC2 =m2k(1�o(1)) inequalities in A[k]x[k] � b[k].

Let us now return to the first step of the algorithm
where we replace Ax � b by the |M+| |M�|+|M0| new
inequalities A[1]x[1] � b[1]. As was pointed out already
by J.B.J. Fourier, ‘it nearly always happens that a rather
large number of these new inequalities are redundant’
and ‘their removal greatly simplifies the problem’ [8]. If
the redundant inequalities are systematically removed
at each step of the algorithm, the number mk of in-
equalities generated by kth step of the Fourier–Motzkin
method is bounded by an exponential function in k. As-
sume without loss of generality that X = {x 2 Rn: Ax �
b} is full-dimensional, then each projection X[k] is also
full-dimensional andmk is the number of facets of X[k].
Therefore mk is bounded by the total number of i-faces
of X for i� n � k � 1. Hence

mk �

kC1X
iD1

 
m
i

!
�

mkC1

(k C 1)!
for m!1:
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(This rough estimate can be improved by using the up-
per bound theorem [11]; in particular, mk cannot grow
faster thanmbn/2c.) In the example below, X[k] has

mk �
mkC1

(k C 1)kC1

facets.

Example 2 Let s� 2 be a natural number. Consider the
system ofm = (k+ 1) s linear inequalities

yi j � xi ; i D 1; : : : ; k; j D 1; : : : ; s;

x1 C � � � C xk � zl ; l D 1; : : : ; s;

where xi, yij, and zl are real variables. The elimination
of x1, . . . , xk results in sk+1 = (m/(k + 1))k+1 inequalities

y1 f (1) C � � � C yk f (k) � zl ; l D 1; : : : ; s;

where f ranges over the set of all sk mappings from {1,
. . . , k} to {1, . . . , s}. None of the inequalities above is
redundant. For instance,

y11 C � � � C yk1 � z1

is violated by y11 = � � � = yk1 = 0 and z1 = � � � = zs = 1,
whereas all the other inequalities can be satisfied by giv-
ing the remaining variables yij a high value.

Since detecting the redundancy of an inequality can be
done via linear programming (or by maintaining a list
of vertices and extreme directions of X[k] with the dou-
ble description method [4,13], see also [9,15] and ref-
erences herein), the Fourier–Motzkin method runs in
exponential space and time. It is natural to ask whether
given X = {x 2 Rn: Ax � b} and a number k 2 {1, . . . , n
� 1}, an irredundant description for X[k] = {x[k] 2 Rn�k:
A[k]x[k] � b[k]} can be computed in output-polynomial
time, i. e. by an algorithm that runs in time polynomial
in the total input and output size. This question is open
even in the bit model of computation for rational A and
b, when redundant inequalities can be detected in poly-
nomial time. A related problem is the generation of all
vertices for X = {x 2 Rn: Ax� b}. The vertex generation
problem (or its dual, the convex hull problem) can also
be solved by the double description method, see e. g.
[1], but the question as to whether there is an output-
polynomial vertex generation algorithm remains open.

Finally, we mention that the Fourier–Motzkin
method can be modified to a quantifier-elimination
method for arbitrary semilinear sets

X[k] D f(xkC1; : : : ; xn) 2 Rn�k :

(Q1x1 2 R) � � � (Qkxk 2 R)
F(x1; : : : ; xn) trueg; (4)

where Q1, . . . , Qk 2 {9, 8} are existential and/or uni-
versal quantifiers and F(x1, . . . , xn) is a given Boolean
function ofm threshold predicates

Fi (x) D

(
true if a>i x � bi ;
false otherwise;

with given coefficients ai 2 Rn and bi 2 R, i = 1, . . . , m.
In particular, if Q1, . . . , Qk are all existential quantifies
and F = F1 ^ � � � ^ Fm, we obtain the previously con-
sidered problem of projecting the polyhedral set X = {x
2 Rn: a>i x � bi, i = 1, . . . , m} onto the space spanned
by the last n � k coordinates. In general, (4) can be
transformed into an equivalent quantifier-free repre-
sentation X[k] = {(xk+1,. . . , xn) : G(xk+1,. . . , xn) true},
where G is some Boolean formula whose atoms are new
threshold predicates of (xk+1,. . . , xn) 2 Rn�k. This can
be done, for instance, as follows [6,7]. To eliminate the
rightmost quantifier Qkxk 2 R, write each threshold in-
equality involving xk in the form xk � ˛i(x(k)) or xk �
˛i(x(k)), where the ˛i0 are given affine forms of the re-
maining variables x(k) = (x1, . . . , xk� 1, xk + 1, . . . , xn).
Replace the infinite range xk 2 R by the finite set S of
sample points xk = (˛i(x(k)) + ˛j(x(k)))/2 and xk =˙1.
Now it is easy to see that the expression (9xk 2 R)F(x1,
. . . , xn) is equivalent to the quantifier-free disjunction
_xk2S F(x1, . . . , xn) and that (8xk 2 R)F(x1, . . . , xn) can
be replaced by the equivalent conjunction ^xk2SF(x1,
. . . , xn). Quantifies Qk� 1xk� 1, . . . , Q1x1 can be elimi-
nated in the same way. For a discussion of faster algo-
rithms that eliminate blocks of consecutive identically
quantified variables see [2].

See also

� Linear Programming
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A fractional combinatorial optimization problem
(FCOP) is a combinatorial optimization problem with
an objective function which is a ratio of two (nontriv-
ial) functions. Instances of a FCOP can be expressed in
the general form:

(
max f (x)

g(x) ;

for x 2 X;
(1)

where X � {0, 1}p is a set of (vectors representing)
certain combinatorial structures, and f and g are real-
valued functions defined on X . Numbers f (x), g(x),
and f (x)/g(x) are usually called the cost, the weight,
and the mean-weight cost of structure x. A minimiza-
tion FCOP is equivalent to the corresponding max-
imization problem, if the cost function f can be re-
placed with function � f . The FCOPs which appear in
the literature on combinatorial optimization include:
the minimum ratio spanning-tree problem [2,13,14];
the maximum profit-to-time ratio cycle problem and
the equivalent minimum cost-to-time ratio cycle prob-
lem [1,3,6,11,12,13,14]; the minimum mean cycle prob-
lem [1,10,11]; the maximum mean-weight cut prob-
lem [16]; the maximum mean cut problem [5,9]; and
the fractional 0–1 knapsack problem [7,8].

Consider, as an example, theminimum cost-to-time
ratio cycle problem (MRCP). An instance of this prob-
lem consists of a directed graph G = (V , E), where E =
{e1, . . . , em} is the set of edges, and numbers ci and ti
associated with each edge ei, for i = 1, . . . , m. The ob-
jective is to find a simple cycle � in G which minimizes
the ratio of

P
{ci : ei 2 � } to

P
{ti : ei 2 � }. To ex-

press this instance of the MRCP in the form (1), let X
� {0, 1}m be the set of the characteristic vectors of the
simple cycles in G, and for x = (x1, . . . , xm) 2 {0, 1}m,
let f (x) = � (c1x1 + � � � + cmxm) and g(x) = t1x1 + � � � +
tmxm. The MRCP models the following tramp steamer
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problem [1,12]:V is the set of ports which can be visited
by our cargo ship; E�V ×V is the set of possible direct
port-to-port trips; numbers ci and ti are the cost and the
transit time of trip ei 2 E, respectively; and the objective
is to find a closed tour for the ship which minimizes the
daily cost (or, equivalently, maximizes the daily profit).

A FCOP such that the denominator of the objec-
tive function g(x1, . . . , xp) = x1 + � � � + xp is commonly
called a uniform fractional combinatorial optimization
problem. The minimum mean cycle problem (which is
a special case of the MRCP with all numbers ti equal to
1) is a uniform FCOP. A FCOP such that f (x1, . . . , xp)
= a1x1 + � � � + apxp and g(x1, . . . , xp) = b1x1 + � � � + bpxp
is called a linear fractional combinatorial optimization
problem. All FCOPs mentioned above are linear.

Generic methods for FCO usually follow the para-
metric approach to fractional optimization. Let ı 2 R be
a parameter. Problem:

(
max f (x)� ı � g(x);
for x 2 X;

(2)

is called the parametric problem corresponding to the
fractional problem (1). Let h(ı) denote the optimum
objective value of problem (2). From now on assume
that f (x) > 0, for some x 2 X , and g(x) > 0, for all x 2
X . Function h is continuous, convex, piecewise linear
and strictly decreasing on (� 1, + 1). It has exactly
one root ı� and this root is the optimum objective value
of problem (1). The main generic methods for FCO
are the binary search method, the Newton method, and
Megiddo’s parametric search. They all can be viewed as
methods for finding the root of function h.

The Binary SearchMethod (BSM)

This method maintains an interval [˛, ˇ] containing
the root ı� of function h, and reduces this interval by
half in each iteration by checking the sign of h((˛+
ˇ)/2. Thus to apply the BSM, one needs an algorithm
A0 which for a given ı 2 R calculates the sign of the
optimum objective value of problem (2). For a linear
FCOP such that all numbers |ai| and |bi| are integers
not greater than U (an integral linear FCOP), the BSM
finds an optimum solution in O(log(pU)) iterations.
This follows form the fact that if numbers f (x0)/g(x0)
and f (x00)/g(x00) are not equal, they must differ by at
least 1/(pU)2. Hence, as soon as the length of the search

interval [˛, ˇ] becomes less than 1/(pU)2, it contains
only one value f (x)/g(x), which must be equal to ı�.

The NewtonMethod (NM)

This generic method for fractional optimization, also
called the Newton–Raphson method or the Dinkelbach
method [4], is an application of the classical Newton
method to the problem of finding the root ı� of func-
tion h. The NM computes an increasing sequence ı1,
ı2, . . . of lower bounds on ı�. During iteration i, a so-
lution x(i) of problem (2) for ı = ıi is computed, and
ıi + 1 is set to f (x(i))/g(x(i)) (see Fig. 1). The NM finds an
optimum solution of a FCOP in a finite number of it-
erations, because function h consists of a finite number
(� |X|) of linear segments. The NM solves a uniform
FCOP in at most p + 1 iterations, because function h
corresponding to such a problem consists of at most p
linear segments (since function g yields at most p differ-
ent values). Other bounds on the number of iterations
of the NM for FCO can be derived from the fact that for
each iteration i, except the last one,

h(ıiC1)
h(ıi)

C
g(x(iC1))
g(x(i))

� 1; (3)

which implies that sequence (h(ıi) � g(x(i))) decreases to
0 at a geometric rate. Using this fact one can show that
the NM solves an integral linear FCOP in O(log(pU))
iterations, and any linear FCOP in O(p2 log2p) itera-

Fractional Combinatorial Optimization, Figure 1
The Newtonmethod for FCO
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tions [16,17]. The NM gives the asymptotically fastest
known algorithm for the maximum mean-weight cut
problem [16,17]. Its running time is O(nm2 log n) for
a graph with n nodes andm edges.

Megiddo’s parametric search (MPS)

LetA1 be an algorithm asA0 above but with the follow-
ing additional property: The value of each computed
arithmetic expression on each possible execution path
of algorithm A1 is a linear function of parameter ı.
Such an algorithm A1 is called a linear algorithm for
a parametric problem. MPS [13,14] solves a FCOP by
following the computation of algorithm A1 for ı = ı�.
All values calculated during this computation are lin-
ear functions of (unknown) ı� and are stored as such.
Thus each comparison amounts to calculating the sign
of the value of an expression s � t ı�, where s and t are
known numbers, and can be resolved by running algo-
rithm A0 for ı = s/t (s/t � ı�, h(s/t) � 0). If the run-
ning times of both A1 and A0 are at most T, then the
overall running time of MPS is O(T2). If algorithm A0

runs in time T0 and algorithm A1 is parallel and runs in
time T1 on P processors, thenMPS can be implemented
in such a way that the overall (sequential) running time
is O(T1P + T0T1 log P): At the kth (parallel) step of the
computation of A1 for ı = ı�, the required signs of Pk

(� P) expressions sk, j � tk, j ı�, j = 1, . . . , Pk, can be
found by at most log Pk + 1 executions of algorithm A0.
The first execution is for ı equal to the median of the
numbers sk, j/tk, j, and its result gives the signs of half of
the expressions. MPS gives, for example, the asymptot-
ically fastest known algorithms for the minimum ratio
spanning-tree problem and the minimum cost-to-time
ratio cycle problem [14]. Their running times are O(m
log2 n log log n) and O(n3 log n log log n), respectively,
for a graph with n nodes and m edges. An extension
of MPS to cases when only approximate algorithms A0

are practical is proposed in [7] and applied there to the
fractional 0–1 knapsack problem.

For some FCOPs, there are specialized algorithms
which do not follow any of the above three generic
methods. The most prominent examples are the O(mn)
[10] and O(m

p
n log(nU)) [15] algorithms for the

maximum mean cycle problem (the latter one is for the
integral case). A detailed treatment of methods for FCO
can be found in [17].
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In various applications of nonlinear programming a ra-
tio of two functions is to be maximized or minimized.
In other applications the objective function involves
more than one ratio of functions. Ratio optimization
problems are commonly called fractional programs.

One of the earliest fractional programs (though not
called so) is an equilibrium model for an expanding
economy introduced by J. von Neumann [50] in 1937.
The model determines the growth rate as the maximum
of the smallest of several output-input ratios. At a time
when linear programming hardly existed, the author
already proposed a duality theory for this nonconcave
program.

However, apart from a few isolated papers like von
Neumann’s, a systematic study of fractional program-
ming began much later. In 1962 A. Charnes and W.W.
Cooper published their classical paper [19] in which
they show that a linear fractional program can be re-
duced to a linear programwith help of a nonlinear vari-
able transformation.

The study of fractional programs with only one ra-
tio has largely dominated the literature in this field un-
til about 1980. Many of the results then known are
presented in the first monograph on fractional pro-
gramming by S. Schaible [57] (1978). Since then two
other monographs solely devoted to fractional pro-
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gramming appeared, authored by B.D. Craven [23]
and I.M. Stancu-Minasian [68]. Each of these includes
a chapter on multi-ratio fractional programs.

Fractional programs have often been studied in
the broader context of generalized convex program-
ming [4]. Ratios of convex and concave functions as
well as composites of such ratios are not convex in gen-
eral, even in the case of linear ratios. But often they
are generalized convex in some sense. From the be-
ginning, fractional programming has benefited from
advances in generalized convexity, and vice versa; see
B. Martos [45]. This is demonstrated by the fact that
the proceedings of each of the five international sym-
posia on generalized convexity contain contributions
on fractional programming; see [16,27,41,63,66]. Frac-
tional programming overlaps also with global optimiza-
tion. Several types of ratio optimization problems have
local, nonglobal optima. For an extensive survey of frac-
tional programming, see [60].

The survey [60] also contains the largest bibliogra-
phy on fractional programming so far (1999). It has al-
most twelve-hundred entries. For a separate, rich bibli-
ography see [68].

Clearly, fractional programming is a dynamic,
growing area of research. It has been encouraging to
observe that over the years research on theory and so-
lution methods has increasingly more focused on those
ratios which are of particular interest in applications.
Since these are spread over a wide range of fields, sur-
veys on fractional programming applications have been
much needed. In the single-ratio case, a first detailed
survey appeared in [57] and became a basis for [58,62]
and for surveys by others. A more recent, detailed sur-
vey of single-ratio fractional programming applications
is found in [68]. For the multi-ratio case, the surveys
in [60,61,62] may be consulted. As various classes of
fractional programs are presented below, the relevance
of each class will be indicated.

Classification

Let f , g, hk (k = 1, . . . , m) denote real-valued functions
which are defined on a set C in the n-dimensional Eu-
clidean space Rn. Consider

q(x) D
f (x)
g(x)

(1)

over the set

S D fx 2 C : hk(x) � 0; k D 1; : : : ;mg ; (2)

assuming that g(x) > 0 on C. The nonlinear program

(P) sup fq(x) : x 2 Sg (3)

is called a (single-ratio) fractional program. In some ap-
plications more than one ratio appears in the objective
function. Examples discussed in this article are

sup
�
min
1�i�p

qi(x) : x 2 S
	

(4)

and

sup

( pX
iD1

qi (x) : x 2 S

)
; (5)

where qi(x) equals the ratio of the numerator f i(x) and
the denominator gi(x) satisfying gi(x) > 0 on C. Prob-
lem (4) is sometimes referred to as a generalized frac-
tional program [62] while (5) is called a sum-of-ratios
fractional program. Both problems (4) and (5) are re-
lated to the multi-objective fractional program

max
˚
(q1(x); : : : ; qp(x)) : x 2 S

�
: (6)

So far, the functions in the numerator and denom-
inator were not specified. If f , g and hk are affine func-
tions (linear plus a constant) and C is the nonnegative
orthant of Rn, then (P) is called a linear fractional pro-
gram. It is of the following form:

sup
�
c>x C ˛
d>x C ˇ

: Ax � b; x � 0
	
; (7)

where c, d 2 Rn, ˛, ˇ 2 R, the superscript | denotes the
transpose, A is anm × nmatrix and b 2 Rm.

In generalization of a linear fractional program, we
call (P) a quadratic fractional program if C is the non-
negative orthant, f , g are quadratic and the hk are affine.

Problem (P) is said to be a concave fractional pro-
gram if the numerator f is concave on C and g, hk are
convex on C, where C is a convex set. In addition, it
is assumed that f is nonnegative on S if g is not affine.
Note that the objective function of a concave fractional
program (3) is generally not a concave function. In-
stead, it is composed of a concave and a convex func-
tion. Even under these restrictive concavity/convexity
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assumptions fractional programs are generally noncon-
cave programs.

The focus in fractional programming is the objec-
tive function and its ratio-structure. The feasible region
is generally assumed to be convex or a convex polyhe-
dron.

Single-ratio Fractional Programs

Consider the problem

(P) sup fq(x) : x 2 Sg ; (8)

where q(x) equals the ratio of the numerator f (x) and
the denominator g(x) with g(x) > 0 on C.

Applications

Fractional programs arise in management decision
making as well as outside of it. They also occur some-
times indirectly in modeling where initially no ratio is
involved. The purpose of the following overview is to
demonstrate the diversity of problemswhich can be cast
in the form of a single-ratio fractional program. Amore
comprehensive coverage which also includes the refer-
ences for the models below is given in [60]. For other
surveys of applications of (8) see [23,57,58,62,68].

Economic Applications

The efficiency of a system is sometimes characterized
by a ratio of technical and/or economical terms. Maxi-
mizing the efficiency then leads to a fractional program.
Some applications are given below.

Maximization of Productivity

P.C. Gilmore and R.E. Gomory [35] discuss a stock cut-
ting problem in the paper industry for which under the
given circumstances it is more appropriate to minimize
the ratio of wasted and used amount of raw material
rather than just minimizing the amount of wasted ma-
terial. This stock cutting problem is formulated as a lin-
ear fractional program. In a case study, J.A. Hoskins
and R. Blom [38] use fractional programming to opti-
mize the allocation of warehouse personnel. The objec-
tive is to minimize the ratio of labor cost to the volume
entering and leaving the warehouse.

Maximization of Return on Investment

In some resource allocation problems the ratio
profit/capital or profit/revenue is to be maximized.
A related objective is return per cost maximization. Re-
source allocation problems with this objective are dis-
cussed in more detail in [47]. In these models the term
‘cost’ may either be related to actual expenditure or may
stand, for example, for the amount of pollution or the
probability of disaster in nuclear energy production.
Depending on the nature of the functions describing re-
turn, profit, cost or capital, different types of fractional
programs are encountered. For example, if the price per
unit depends linearly on the output and cost and capi-
tal are affine functions, then maximization of the return
on investment gives rise to a concave quadratic frac-
tional program (assuming linear constraints). In loca-
tion analysis maximizing the profitability index (rate of
return) is in certain situations preferred to maximizing
the net present value, according to [5] and [8] and the
cited references.

Maximization of Return/Risk

Some portfolio selection problems give rise to a con-
cave nonquadratic fractional program of the form (11)
below which expresses the maximization of the ratio of
expected return and risk. For related concave and non-
concave fractional programs arising in financial plan-
ning see [60]. Markov decision processes may also lead
to the maximization of the ratio of mean and standard
deviation.

Minimization of Cost/Time

In several routing problems a cycle in a network is to
be determined which minimizes the cost-to-time ra-
tio or maximizes the profit-to-time ratio. Also the av-
erage cost objective used within the theory of stochas-
tic regenerative processes [3] leads to the minimization
of cost per unit time. A particular example occurring
within this framework is the determination of the op-
timal ordering policy of classical periodic and continu-
ous review single item inventory models, e. g., [31]. An-
other example of this framework are maintenance and
replacement models. Here the ratio of the expected cost
for inspection, maintenance and replacement and the
expected time between two inspections is to be mini-
mized, e. g., [6,30].
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Maximization of Output/Input

Charnes, Cooper and E. Rhodes [22] use a linear frac-
tional program as a model to evaluate the efficiency
of decision making units (data envelopment analysis
(DEA)). Given a collection of decision making units,
the efficiency of each unit is obtained from the maxi-
mization of a ratio of weighted outputs and inputs sub-
ject to the condition that similar ratios for every deci-
sion making unit are less than or equal to unity. The
variable weights are then the efficiency of each member
relative to that of the others. For an extensive treatment
of DEA see [21].

In the management literature there has been an in-
creasing interest in optimizing relative terms such as
relative profit. No longer are these terms merely used
to monitor past economic behavior. Instead the opti-
mization of rates is getting more attention in decision
making processes for future projects; e. g., [5,37].

Noneconomic applications

In information theory the capacity of a communica-
tion channel can be defined as the maximal transmis-
sion rate over all probabilities. This is a concave non-
quadratic fractional program. The eigenvalue problem
in numerical mathematics can be reduced to the maxi-
mization of the Rayleigh quotient, and hence gives rise
to a quadratic fractional program which is generally
not concave. An example of a fractional program in
physics is given by J.E. Falk [29]. He maximizes the
signal-to-noise ratio of a spectral filter which is a con-
cave quadratic fractional program.

Indirect Applications

There are a number of management science problems
that indirectly give rise to a concave fractional program.
A concave quadratic fractional program arises in loca-
tion theory as the dual of a Euclidean multifacility min-
imax problem. In large scale mathematical program-
ming, decomposition methods reduce the given linear
program to a sequence of smaller problems. In some
of these methods the subproblems are linear fractional
programs. The ratio originates in the minimum-ratio
rule of the simplex method.

Fractional programs are also met indirectly in
stochastic programming, as first shown in [20] and [13].

This will be illustrated by two models below [57,68].
First, consider the stochastic mathematical program:

max
˚
a>x : x 2 S

�
; (9)

where the coefficient vector a is a random vector with
a multivariate normal distribution and S is a (determin-
istic) convex feasible region. It is assumed that the de-
cision maker replaces (9) by a decision problem

max
˚
Pfa>x � kg : x 2 S

�
; (10)

i. e., he wants to maximize the probability that the ran-
dom variable a|x attains at least a prescribed level k.
Then (9) reduces to

max
�
e>x � k
p
x>Vx

: x 2 S
	
; (11)

where e is the mean vector of the random vector a and
V its variance-covariance matrix. Hence the maximum
probability model of the concave program (9) gives rise
to a concave fractional program. If in (9) the linear ob-
jective function is replaced by other types of nonlin-
ear functions, then the maxi- mum probability model
leads to various other concave fractional programs as
demonstrated in [57,68].

Consider a second stochastic program

max f f0(x)C � f1(x) : x 2 Sg ; (12)

where f 0, f 1 are concave functions on the convex fea-
sible region S, f 1 > 0 and � is a random variable with
a continuous cumulative distribution function. Then
the maximum probability model for (12) gives rise to
the fractional program

max
�
f0(x) � k
f1(x)

: x 2 S
	
: (13)

For a linear program (12) the deterministic equivalent
(13) becomes a linear fractional program. If f 0 is con-
cave and f 1 linear, then (13) is still a concave fractional
program. However, if f 1 is also a (nonlinear) concave
function, then (13) is no longer a concave fractional
program. Obviously a quadratic program (12) reduces
to a quadratic fractional program. For more details on
(12), (13) see [57,68].

Stochastic programs (9) and (12) are met in a wide
variety of planning problems. Whenever the maximum
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probability model is used as a deterministic equivalent,
such decision problems lead to a fractional program of
one type or another. Hence, fractional programs are en-
countered indirectly in many different applications of
mathematical programming, although initially the ob-
jective function is not a ratio.

With the recent advent of various interior point
methods for linear programming problems fractional
programming has been given more attention as well.
For instance, K.M. Anstreicher [2] showed that Kar-
markar’s projective algorithm is fundamentally an algo-
rithm for linear fractional programming on a simplex.

M. Gaudioso and M.F. Monaco [34] use quadratic
fractional programs as subproblems in an algorithm for
convex nondifferentiable programs. These arise as du-
als of search direction subproblems.

Theoretical and Algorithmic Results

Most of the algorithms known so far solve linear, or
more generally, concave fractional programs (8). At
least five different strategies are found in the literature
and are reviewed below.

Solving Problem (P) Directly

Concave (linear) fractional programs share some im-
portant properties with concave (linear) programs, due
to the generalized concavity (and in addition, general-
ized convexity in the linear case) of the objective func-
tion q(x) = f (x)/g(x) [4,45]:
1) a local maximum is a global maximum;
2) a maximum is unique if either the numerator is

strictly concave or the denominator is strictly con-
vex;

3) a solution of the Karush–Kuhn–Tucker optimality
conditions is a maximum, assuming f , g, hk are dif-
ferentiable on the open set C;

4) a maximum is attained at an extreme point of the
convex polyhedron S of a linear fractional program
(provided an optimal solution exists).

Because of the properties 1) and 3), it is possible to solve
concave fractional programs by several of the stan-
dard concave programming algorithms. Indeed, it was
shown that certain concave programming methods can
be applied to programs with a quasiconcave objective
function [45]; for example, the Frank–Wolfe lineariza-
tion method [23,45]. M. Boncompte and J.E. Martinez-

Legaz [14] proposed a cutting plane method for con-
cave fractional programs, based on the upper subdif-
ferentiability of the objective function. If (P) is a linear
fractional program, then property 4) can be used to cal-
culate a maximum x by determining a finite sequence
of extreme points xi of S with increasing values q(xi)
converging to x. Thus a simple simplex-like procedure
can solve linear fractional programs [45].

Solving an Equivalent Problem (Peq)

Some of the concave programming algorithms are not
suitable for generalized concave programs [45]. Thus
the choice of concave programming algorithms to solve
concave fractional programs directly is limited. How-
ever, it can be shown that every concave fractional pro-
gram is transformable into a concave program: the vari-
able transformation

y D
x

g(x)
and t D

1
g(x)

(14)

reduces (P) to

(Peq) sup
n
t f
� y
t

�
: (y; t) 2eS

o
(15)

with the regioneS represented by the relations

thk

� y
t

�
� 0; tg

� y
t

�
� 1;

y
t
2 C; t > 0; (16)

and this is a concave program [55]. If (y; t) is an optimal
solution of (Peq), then x D y/t is an optimal solution of
(P). Such a transformation was originally suggested by
Charnes and Cooper [19] who showed that with help of
(14) a linear fractional program can be reduced to a lin-
ear program. Because of the transformability into a con-
cave program, concave fractional programs can indi-
rectly be solved by any concave programming method,
applying the algorithm to the equivalent program (Peq).
Hence through transformation (14) one gains access to
all convave programming algorithms.

To solve (Peq) rather than (P) may be particularly
appropriate when the numerator f and the denomina-
tor g have a certain algebraic structure. For example,
the maximum probability model (11) or certain port-
folio selection models have an affine numerator and
a denominator which is the square root of a convex
quadratic form. In this case (Peq) reduces to a concave
quadratic program, and hence (P) can directly be solved
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by one of the standard quadratic programming tech-
niques [59]. In the special case of a linear fractional pro-
gram (7) transformation (14) yields the linear program

sup
n
c>yC ˛t : (y; t) 2bS

o
(17)

with the feasible regionbS represented by the relations

Ay � bt � 0; d>y C ˇt D 1; y � 0; t > 0:

Hence (7) can be solved by the simplex method [19].
For a comparison with other linear fractional program-
ming methods see [60].

Solving a Dual Problem (D)

One of the disadvantages of solving (P) directly is that
duality concepts of concave programming cannot be
used since basic duality relations are no longer valid for
these nonconcave programs. However, transformation
(14) enables us to gain access to concave programming
duality. Thus a dual fractional program can be defined
as one of the classical duals of the equivalent concave
program (Peq) [55]. For instance, the Lagrangian dual
of (Peq) gives rise to the dual fractional program

(D) inf
�
sup
x2C

�
f (x)� u>h(x)

g(x)
: u � 0

		
; (18)

where h = (h1, . . . , hm)|. As in concave programming,
several duality relationships can be established between
(P) and (D) [55].

Various duals have been suggested in different ap-
proaches [57,59]. However, not much effort has been
devoted to algorithmically using duality. In [56] the
dual is used to calculate bounds in an iterative proce-
dure for concave fractional programs. Much remains to
be done to take full advantage of fractional program-
ming duality in algorithms.

For the dual (D) to be a computationally attractive
alternative to (P) or (Peq), the fractional program (P)
should have a certain amount of algebraic structure in
f , g and hk. Otherwise it may well be easier to solve (P)
rather than a dual of (P). If (P) is a concave quadratic
fractional program with an affine denominator, then
the dual can be written as a linear program with one
additional concave quadratic constraint [59,65].

One advantage of a dual method is that in addi-
tion to an optimal solution of (P) also the sensitivity

of the maximal value of q(x) with regard to right-hand
side changes can be calculated. The dual variables ui

in an optimal solution turn out to be propertional to
the marginal values of q(x) at x [57,58,59]. Sensitivity
and parametric analysis for fractional programming has
been extensively discussed; see [18,23,57,58] and the
cited references.

Solving a Parametric Problem (Pq)

There is a rich class of algorithms based on the follow-
ing parametric problem associated with (P):

(Pq) max f f (x) � qg(x) : x 2 Sg ; (19)

where q 2 R is a parameter. The program (Pq) is some-
times numerically more tractable than the program (P).
For example, (Pq) is a parametric quadratic (linear)
program if (P) is a quadratic (linear) fractional pro-
gram, and (Pq) is a parametric concave program if (P)
is a concave fractional program. M. Sniedovich [67] an-
alyzed the relationship between (Pq) and classical opti-
mization techniques applied to (P).

In the following it is assumed that S is compact and
f , g are continuous on S. Let F(q) denote the optimal
value of the objective function of (Pq). F(q) is a strictly
decreasing, convex function which has a unique zero
q D q. An optimal solution x of (Pq)) is also an optimal
solution of (P) with q D f (x)/g(x). Thus solving (P) is
equivalent to finding the unique root of the nonlinear
equation F(q) = 0. With the properties of F(q) in view,
T. Ibaraki [39] applied various classical search tech-
niques to calculate the zero q D q. These interval-type
algorithms generate a succession of intervals with de-
creasing amplitude containing q D q. Computational
results are reported in [39,62]. The application of New-
ton’s method is commonly referred to as the algorithm
by W. Dinkelbach, who first proposed such a proce-
dure [28]. Its equivalence to Newton’s method was seen
later by Ibaraki. A very efficient version of Dinkelbach’s
method was suggested in [51] improving an earlier vari-
ant in [56].

Interior Point Algorithms

In addition to the four more classical strategies above,
recently new techniques have emerged which are of
the interior point type. The first such method, devel-
oped for linear fractional programs, is due to Anstre-
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icher [2]. In 1994, R.W. Freund and F. Jarre [32]
proposed a method for concave fractional programs.
A polynomial convergence is established and some nu-
merical results are reported.

Most of the computational work in single-ratio frac-
tional programming compares and tests algorithms that
use the parametric program (Pq). Much more work is
needed to compare computationally the various four
approaches above with each other and with the very re-
cent polynomial time interior point methods. Also new
methods need to be developed for certain nonconcave
fractional programs arising in applications; e. g., [59].

This section on single-ratio fractional programming
concludes with a brief discussion of integer fractional
programming. In some of the economic applications
above the variables are restricted to be integers, if in-
divisible goods are involved. Also, a number of combi-
natorial fractional programs with 0–1 variables are of
interest; for instance fractional location problems [5].

Integer Fractional Programming

This is an important, but somewhat neglected field
within fractional programming. In [5] A.I. Barros gives
an overview of some of the advances. Here the para-
metric procedure by N. Megiddo [46] stands out par-
ticularly. T. Radzik [53] provided a detailed survey of
the advances in combinatorial fractional programming.
The survey includes many of his own complexity re-
sults on Dinkelbach’s and Megiddo’s parametric proce-
dures. Among others, Radzik shows that Dinkelbach’s
algorithm solves a combinatorial linear fractional pro-
gram in a strongly polynomial number of iterations, re-
gardless of the constraint structure. Some of the results
in [53] are specialized to cases such as the problem of
profit-to-time cycles and maximum mean-weight cuts.
In the same survey also open problems in combinato-
rial fractional programming are identified.

Leaving the single-ratio case now, the three multi-
ratio fractional programs in (4), (5) and (6) will be ad-
dressed below. Among these, so far best researched is
the following.

Maximization of the Smallest of Several Ratios

Consider the Problem

sup
�
min
1�i�p

qi(x) : x 2 S
	
; (20)

where qi(x) = f i(x)/gi(x) and

S D fx 2 C : hk(x) � 0; k D 1; : : : ;mg :

It is assumed that C � Rn is nonempty, convex and hk
are real-valued convex functions onC. Before analyzing
(20), some applications of this model are outlined.

Applications

In mathematical economics problem (20) may arise
when the growth rate of an expanding economy is de-
termined [50]:

growth rate D max
x

�
min
1�i�p

outputi (x)
inputi (x)

�
; (21)

where x denotes a feasible production plan of the econ-
omy. In management science simultaneous maximiza-
tion of rates such as those discussed earlier can lead to
(20). This is so if either in a worst-case approach the
model

min
1�i�p

fi(x)
gi (x)

! sup (22)

is used or with the help of prescribed ratio goals ri

max
1�i�p

ˇ̌
ˇ̌ fi(x)
gi (x)

� ri

ˇ̌
ˇ̌! inf (23)

is employed. In both cases essentially a max-min frac-
tional program (20) is to be solved. Examples of the sec-
ond approach are found in financial planning with dif-
ferent financial ratios or in the allocation of funds under
equity considerations. Furthermore (20) was recently
used in location analysis; see [5] for details. A third area
of application of model (20) is numerical mathematics.
Given the values Fi of a function F(t) in finitely many
points ti of an interval for which an approximating ratio
of two polynomialsN(t, x1) andD(t, x2) with coefficient
vectors x1, x2 is sought. If the best approximation is de-
fined in the sense of the L1-norm, then the following
problem is to be solved:

max
i

ˇ̌
ˇ̌N(ti ; x1)
D(ti ; x2)

� Fi

ˇ̌
ˇ̌! inf (24)
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with variables x1, x2. Like (23), this problem can be re-
duced to a max-min fractional program (20).

Theoretical and Algorithmic Results

Several authors, including von Neumann [50], have
introduced dual programs for problem (20) employ-
ing different approaches; see [60]. In most duality ap-
proaches the following assumptions are made: C is
nonempty, convex and compact, �f i, gi, hk are lower
semicontinuous, �f i, gi, hk are convex, gi are positive
on C, f i are nonnegative on S, if at least one gi is not
affine, and the feasible region S is nonempty. Let F =
(f 1, . . . , f p)|, G = (g1, . . . , gp)| and h = (h1, . . . , hm)|.
The following dual is derived in [40] with help of the
Farkas lemma (cf. � Farkas lemma; � Farkas lemma:
Generalizations):

inf
u�0;

v�0;v¤0

�
sup
x2C

�
v>F(x) � u>h(x)

v>G(x)

		
: (25)

Under the assumptions above the optimal values in
(20) and (25) coincide, and duality relations much like
those in concave and linear programming hold [40]; see
also [25].

The primal max-min program (20) is associated
with a dual min-max fractional program (25). Such
a symmetry is not obvious in single-ratio fractional
programming duality theory; see (18). Symmetry be-
tween the primal and dual exists also in the following
sense: in both problems a local optimum is a global
optimum. This follows from the fact that the primal
objective function is semistrictly quasiconcave and the
dual objective function is semistrictly quasiconvex [4].
The dual objective function usually involves infinitely
many ratios in contrast to the primal one. However, this
asymmetry disappears in case of a linear problem (20)
where f i, gi, hk are affine and C is the (unbounded) non-
negative orthant of Rn. Then only finitely many ratios
need to be considered in the dual objective function.
In the linear case it can further be shown that in ad-
dition to the usual complementary slackness between
variables in one problem and constraints in the other
one, complementary slackness also exists between cer-
tain variables in one and ratios in the other one [25].
Hence in the linear case of (20) there exist complete

symmetry as well as a close relationship between the
primal and the dual fractional program.

Regarding solution methods for (20), an extension
of Dinkelbach’s algorithm to (20) was introduced by
J.P. Crouzeix, J.A. Ferland and Schaible in [26]. It
proved to have attractive convergence properties and
became the starting point for the design of similar
methods surveyed in [24]. Several of these interval-type
methods have been compared and tested. M. Gugat [36]
proposed a fast interval-type algorithm for (20) which
always converges superlinearly. Boncompte and Mar-
tinez–Legaz [14] used a cutting plane approach, orig-
inally suggested in [52] for a more general class of
quasiconcave problems, employing upper subdifferen-
tiability of the objective function in (20). A computa-
tional comparison with the Dinkelbach-type method
in [26] is carried out too. A different cutting plane
method incorporating the ideas of [52] and [67], again
for a more general class of problems than generalized
fractional programs, is discussed in [7]. In case of prob-
lem (20) the method in [7] reduces to the Dinkelbach-
type method in [26]. Thus the latter can also be viewed
as a cutting plane method.

Most of the algorithms above solve the primal prob-
lem (20). In the linear case the Dinkelbach-type algo-
rithm in [26] can also be applied to the dual because of
symmetry between (P) and (D). Recently a ‘dual’ algo-
rithm for (20) was proposed in the nonlinear case [10].
It can be viewed as an extension of the Dinkelbach-
type algorithm in [26] applied to the dual of a general-
ized linear fractional program. In [9] a new dual of (20)
was proposed as well as an efficient method to solve it.
Less restrictive assumptions ensure superlinear conver-
gence of this new ‘dual’ algorithm. An extensive com-
putational comparison of the Dinkelbach-type method
in [26] with the two dual methods was performed by
Barros, J.B.G. Frenk, Schaible and S. Zhang; see [5,9,10].
The test problems involve quadratic ratios.

Freund and Jarre [33] proposed an interior point
method for solving (20) which extends their method
in [32] for single-ratio problems. Furthermore, A.S. Ne-
mirovsky and Yu.E. Nesterov [48,49] developed several
interior point algorithms for (20) which converge in
polynomial time. The studies above contain thorough
complexity analyses. Summarizing, one can say that
max-min fractional programs have been researched
quite extensively.
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Maximizing a Sum of Ratios

Consider the multi-ratio fractional program

sup

( pX
iD1

qi(x) : x 2 S

)
; (26)

where qi(x) = f i(x)/gi(x), gi(x) > 0.

Applications

Model (26) arises naturally in decision making when
several rates are to be optimized simultaneously and
a compromise is sought which optimizes a weighted
sum of these rates. In light of the applications in the
single-ratio case, numerators and denominators may
represent profit, cost, capital, risk or time, for exam-
ple. Model (26) also includes the case where some ratios
are not proper quotients, i. e., gi(x) = 1. This describes
situations where a compromise is sought between ab-
solute and relative terms like profit and return on in-
vestment (profit/capital) or return and return/risk. Ad-
ditional applications of (26) are surveyed in [61]. To
mention a few, Y. Almogy and O. Levin [1] analyze
a multistage stochastic shipping problem and show that
a deterministic equivalent of this stochastic problem
leads to (26). M.R. Rao [54] discusses various models in
cluster analysis. The problem of optimal partitioning of
a given set of entities into a number of mutually exclu-
sive and exhaustive groups (clusters) gives rise to var-
ious mathematical programming problems, depending
on which optimality criterion is used. If the objective is
to minimize the sum of the average squared distances
within groups, then a minimum of a sum of ratios is to
be determined. H. Konno and M. Inori [42] formulated
a bond portfolio optimization problem in the form (26).

Theoretical and Algorithmic Results

As seen earlier, the case of ratios of concave and convex
functions is of particular interest in applications. Fortu-
nately, it lends itself to a relatively easy analysis of mod-
els (8) and (20). A local maximum is a global one, dual-
ity relations can be established and several efficient so-
lution techniques are available. Unfortunately, for the
sum-of-ratios problem none of this is true any longer
if in (26) all ratios f i(x)/gi(x) are quotients of concave
and convex functions. In particular, a local maximum is
usually not a global one, even in the case of linear ratios.

More often the objective function is not quasiconcave.
I.A. Bykadorov [15] studied certain generalized concav-
ity properties of sums of linear ratios and, more gener-
ally, of sums of ratios of polynomials. Only some lim-
ited theoretical results are known for the sum of con-
cave ratios; see [23] and the surveys [60,61]. In the case
of linear ratios, C.H. Scott and T.R. Jefferson [64] pro-
posed a duality concept for (26) using geometric pro-
gramming duality.

Given the small theoretical basis, it is not surpris-
ing that algorithmic advances have been rather limited
too. Several strategies have been proposed and are sur-
veyed in [61]. The best tested method can be found
in [43]. Separating numerators and denominators with
help of additional variables, problem (26) is embedded
into a higher-dimensional space with a concave objec-
tive function. A global minimum is then found through
approximation techniques. Computational experience
with the related multiplicative program in [43] shows
that the method works quite well for up to about four
terms. However, for more terms in the sum it looses its
efficiency fast. Much work is still necessary to develop
efficient algorithms for (26), even in the case of linear
ratios.

Multi-objective Fractional Programming

The problem of simultaneously maximizing several ra-
tios leads to amulti-objective fractional program

max
˚
(q1(x); : : : ; qp(x)) : x 2 S

�
; (27)

where qi(x) = f i(x)/gi(x), gi(x) > 0. Such a model arises
when in contrast to the previous two models (20) and
(26) a unifying objective is not considered. Instead, the
decision-maker is to be provided with some or all ef-
ficient (Pareto optimal) alternatives. These are feasible
solutions such that no ratio can be further increased
without decreasing at least one of the other ratios. Ap-
plications, for instance in financial planning or pro-
duction planning, can easily be envisioned in light of
the applications of fractional programming described
earlier; see also [44,60,68] and references therein. In
case of concave ratios problem (27) can be seen as
a special case of a semistrictly quasiconcave multi-
objective programming problem; e. g., [17] and articles
in [16,27,41,63,66]. Duality for multi-objective frac-
tional programs has been studied by several authors,
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usually for concave or linear ratios; see [11,68]. For
such problems also equivalences to multi-objective pro-
grams without ratios have been established [68]. These
are formed with help of the numerator and denomina-
tor functions.

Another topic, important from a theoretical and al-
gorithmic point of view, is the question whether the set
E of efficient (Pareto optimal) solutions is connected.
Only partial answers were available until very re-
cently [60]. Meanwhile connectedness has been shown
for continuous concave fractions over a compact con-
vex feasible region. This is a consequence of amore gen-
eral result in [12] for semistrictly quasiconcave objec-
tive functions. Several solution methods for the calcu-
lation of (weakly, proper) efficient solutions have been
proposed for linear and concave ratios; see [44,68] and
cited references. It is noted that the calculation of E
may simplify the solution of the difficult sum-of-ratios
problem [60] since an optimal solution of (26) is an
efficient solution. Such an approach seems to be par-
ticularly promising in case of two ratios. In summary,
some good progress has been made in the analysis of
concave multi-objective fractional programs. However
more work is needed.

Conclusion

Many interesting problems inside and outside manage-
ment decision making gives rise to the optimization of
one or several ratios. Much effort has been devoted to
the analysis of such nonconcave programs. However,
the theoretical basis is still not broad enough, espe-
cially for sum-of-ratios problems and, to a lesser ex-
tend, for multi-objective fractional programs. The com-
putational experience with fractional programs is also
quite limited. Major progress has been made for con-
cave single-ratio andmax-min fractional programs. But
much more work is necessary for the other fractional
programs of interest in applications.

See also

� Bilevel Fractional Programming
� Fractional Combinatorial Optimization
� Quadratic Fractional Programming: Dinkelbach

Method
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Introduction

One of the classes of 0-1 optimization problems is the
maximization (or minimization) of a sum of ratios of

linear 0-1 functions:

max
x2f0;1gn

f (x) D
mX
jD1

aj0 C aTj x

b j0 C bTj x
; (1)

s.t. Dx � c ; (2)

where aj 2 Rn , b j 2 Rn , aj0 2 R, b j0 2 R, D 2 Rk�n

and c 2 Rk . Problem (1)–(2) is referred to as fractional
0-1 programming problem [21], or hyperbolic 0-1 pro-
gramming problem [1,20].

Note that if for some j and x in the feasible region (2)
the term b j0 C bTj x is equal to zero, then problem (1)–
(2) may not have a finite optimum. Therefore, it is usu-
ally assumed that

b j0CbTj x ¤ 0 ; for all x 2 f0; 1gn and j D 1; : : : ;m :
(3)

Furthermore, sometimes we can make a stricter as-
sumption and require that all denominators in (1) are
positive, i. e.,

b j0CbTj x > 0 ; for all x 2 f0; 1gn and j D 1; : : : ;m :
(4)

A special simplified class of (1)–(2) is the so-called
single-ratio fractional (hyperbolic) 0-1 programming
problem:

max
x2f0;1gn

f (x) D
a0 C

Pn
iD1 ai xi

b0 C
Pn

iD1 bi xi
: (5)

Problem (1) can be generalized if instead of linear 0-1
functions we consider 0-1 polynomials:

max
x2f0;1gn

f (x) D
X
j

a j0 C
P

S2A j
a jS

Q
i2S xi

b j0 C
P

T2B j
b jT

Q
i2T xi

; (6)

where Aj and Bj are families of subsets of f1; 2; : : : ; ng.
In general case, problems of type (1), (5) and (6) can

be considered subject to various 0-1 linear and nonlin-
ear constraints. A specific class of fractional 0-1 pro-
gramming problems, where fractional terms appear not
in the objective function, but in the set of constraints, is
discussed in [2]:

max
x2f0;1gn

g(x) D
mX
iD1

wixi ; (7)
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s.t.
msX
jD1

˛s
j0 C

Pn
iD1 ˛

s
ji xi

ˇs
j0 C

Pn
iD1 ˇ

s
ji xi
� ps ; s D 1; : : : ;K ; (8)

where K is the number of fractional constraints.
Finally, we should note here that in contrast to (1)–

(2), (6) and (7)–(8), problem (5) received most of
the attention in the literature. Detailed surveys on
single-ratio fractional combinatorial optimization can
be found in [14,19].

Applications

Applications of constrained and unconstrained ver-
sions of problems (1)–(2), (5), (6), (7)–(8) arise in
scheduling [16], query optimization in data bases and
information retrieval [7], service systems design and fa-
cility location [3,20], graph theory [11], data mining [2]
and other areas [19].

Consider, for example, a problem discussed in [3].
We have a set of customers’ regions with Poisson de-
mand rates ai(i D 1; : : : ; n). These regions can be as-
signed to a service facility with an exponential service
rate b. If we define a 0-1 variable xi corresponding to
each region i such that xi D 1 if region i is serviced by
the service facility (and xi D 0, otherwise) then the ser-
vice facility can be described as an M/M/1 queue with
arrival rate � D

Pn
iD1 ai xi and service rate b. If we as-

sume steady-state conditions (� < b) then the average
waiting time for each customer is equal to

1
b � �

D
1

b �
Pn

iD1 ai xi
; (9)

and the total average waiting time is given by
Pn

iD1 ai xi
b �

Pn
iD1 ai xi

: (10)

Next suppose that the customers’ region i contributes
profit pi and the penalty for delay per unit time/per cus-
tomer is t. Then in order tomaximize the profit we need
to solve the following nonlinear knapsack problem

max
x2f0;1gn

nX
iD1

pi xi � t �
Pn

iD1 ai xi
b �

Pn
iD1 ai xi

; (11)

s.t.
nX

iD1

ai xi � b : (12)

Another interesting application of fractional 0-1
programming can be found in graph theory [11]. Let
G D (V ; E) be an undirected graph. The density d(G)
of G is defined as the maximum ratio of the number of
edges eH to the number of nodes nH over all subgraphs
H � G, i. e.

d(G) D max
H
G

eH
nH

; (13)

where eH and nH are the number of edges and nodes
in the subgraph H. Obviously, the problem of finding
d(G) can be formulated as the following fractional 0-1
programming problem:

d(G) D max
x2f0;1gn ; x¤0

Pn
iD1

Pn
jD1 ai jxi x j

2
Pn

jD1 x j
; (14)

where ai j are the elements of the adjacency matrix of
G and n is the number of nodes in G. A similar formu-
lation can also be given for the arboricity � (G) which
is defined as the minimum number of edge-disjoint
forests into which G can be decomposed [11].

Complexity Issues

Constrained problems (1) and (5) where we optimize
a single- or multiple-ratio fractional 0-1 function sub-
ject to linear 0-1 constraints, as well as problem (7)–
(8) are obviously NP-hard since general linear 0-1 pro-
gramming is their special case if we set b ji D 0 and
b j0 D 1 for j D 1; : : : ;m and i D 1; : : : ; n.

An unconstrained single-ratio fractional 0-1 pro-
gramming problem (5), can be solved in polynomial
time, see [7], if condition (4) holds. If the denomi-
nator can take both negative and positive values, i. e.,
only (3) holds, single-ratio problem (5) is known to be
NP-hard [7]. In other words, the sign of the denomi-
nator is “the borderline between polynomial and NP-
hard classes” [7]. Another simple proof of this fact is
given in [1]. Recall the classical SUBSET SUM prob-
lem: Given a set of positive integers S D fs1; : : : ; sng
and a positive integer K, does there exist a vector
x 2 f0; 1gn , such that

nX
iD1

si xi D K ? (15)
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This problem is known to be NP-complete [4]. With
the instance of the SUBSET SUM problem we associate
the following unconstrained single-ratio fractional 0-1
programming problem:

max
x2f0;1gn

1
1 � 2(

Pn
iD1 si xi � K)

: (16)

It is easy to observe that (3) holds and the solution
of (16) is equal to 1 if and only if the SUBSET SUM
has a solution, which implies the necessary result. Fur-
thermore, it can be easily shown that finding an approx-
imate solution of (5) within any positive multiple of the
(negative) optimal value is NP-hard [7].

For multiple-ratio problem (1) with (4) satisfied, the
number of ratios (m D 1, or m � 2) defines complex-
ity of the problem. For m D 1 we have a classical poly-
nomially solvable single-ratio case, while for m D 2,
that is the 2-ratio case, the problem becomes NP-hard
(see [18] or [13]).

Some other aspects of the complexity of uncon-
strained single- and multiple-ratio fractional 0-1 pro-
gramming problems (1) and (5), including complexity
of uniqueness, approximability and local search, are ad-
dressed in [12,13].

Mixed Integer Reformulation

Li [9] and Wu [21] suggested a straightforward lin-
earization technique for (1) based on a simple well-
known idea: a polynomial mixed 0-1 term z D xy,
where x is a 0-1 variable, and y is a continuous vari-
able taking any positive value, can be represented by
the following linear inequalities: (1) y � z � K � Kx;
(2) z � y; (3) z � Kx; (4) z � 0, where K is an upper
bound on y.

Assume that (4) is satisfied. Define a new variable y j
for each ratio in (1) that is

y j D
1

b j0 C
Pn

iD1 b ji xi
: (17)

Then fractional 0-1 programming problem (1) can
be equivalently expressed as:

max
x2f0;1gn

mX
jD1

aj0 y j C
mX
jD1

nX
iD1

ajiu ji

s.t. Dx � c

b j0 y j C
nX

iD1

b jiu ji D 1 j D 1; : : : ;m

yj � Kj(1 � xi ) � uji � Kjxi
j D 1; : : : ;m; i D 1; : : : ; n

0 � uji � y j j D 1; : : : ;m; i D 1; : : : ; n ;
(18)

where a new variable ui j is introduced for each nonlin-
ear term y jxi , and Kj is an upper bound on y j .

Additional, though similar in spirit to (18), linear
mixed 0-1 reformulations as well as other related issues
are carefully discussed in [20].

Solution Techniques

Most of the research efforts have been focused on
solving various classes of single-ratio problem (5).
Among developed solution techniques we should men-
tion branch-and-bound [15], cutting plane [5], enu-
meration [6] and approximation algorithms [8]. How-
ever, most popular methods for solving single-ratio
fractional 0-1 programming (and general fractional
combinatorial) problems are based on the parametric
approach [10,11,14].

For some classes of multiple-ratio fractional 0-1
programming problems, there are developed special-
ized algorithms [2,3,16,17,20]. More recent examples
include a highly efficient cutting-plane algorithm for
solving problem (11)–(12) [3] and a heuristic for solv-
ing special classes of fractionally constrained problems
of type (7)–(8) [2]. Reported computational experi-
ments involved test instances with the size of up to
10,000 variables.

Unfortunately, the fractional programming prob-
lem becomes substantially more difficult if we introduce
additional ratios in the objective function. General mul-
tiple-ratio problem (1)–(2) can be solved utilizing stan-
dard branch-and-bound methods after reformulation
into linear mixed 0-1 programming problem via tech-
niques discussed in [9,20,21]. An improved branch-
and-bound algorithm based on node tightening is de-
veloped in [20].
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In 1956, M. Frank and P. Wolfe [5] published an article
proposing an algorithm for solving quadratic program-
ming problems. In the same article, they extended their
algorithm to the following problem:

min
x2S

f (x); (1)

where f (x) is a convex and continuously differentiable
function on Rn. The set S is a nonempty and bounded
polyhedron of the form S = {x 2 Rn : Ax � b, x �
0}, where A is a m × n matrix and b 2 Rm. The al-
gorithm belongs to the class of feasible direction meth-
ods for nonlinear programming problems. Starting from
a feasible solution, algorithms in this class solve (1) by
iteratively generating a feasible direction that leads to
another feasible solution with an improved objective
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function value. The Frank–Wolfe (FW) algorithm for
(1) can be stated as follows:

0 Select x1 2 S and set k = 1:
1 Let yk = arg miny2Sr f (xk)>y:

IF r f (xk)>(yk � xk) � 0
THEN stop and xk is an optimal solution
ELSE go to Step 2.

2 Let �k = arg min0�	�1 f (x
k + �(yk � xk)):

Set xk+1 = xk + �k(yk � xk) and k = k + 1;
Go to Step 1.

The Frank–Wolfe algorithm

The problem in Step 1 is generally referred to as the
direction finding problem, for the vector dk = (yk � xk)
is a feasible direction at xk. Since rf (xk) is a constant
vector with respect to y, the direction finding problem
is a linear program and can be solved using the sim-
plex algorithm. Doing so implies that dk always points
toward an extreme point since yk is always an extreme
point of S. When xk satisfies the stopping criterion, it
must be globally optimal because the following holds
for all x 2 S:

f (x) � f (xk)Cr f (xk)>(x � xk)

� f (xk)Cr f (xk)>(yk � xk) � f (xk):

The three inequalities follow from the convexity of f (x),
the fact that yk solves the direction finding problem, and
the stopping criterion, respectively.

When xk does not satisfy the stopping criterion,
rf (xk)|(yk� xk)< 0 and the algorithm proceeds to Step
2. In this step, �k is a solution to a line search prob-
lem which has only one a decision variable and can
be solved by a number of algorithms such as bisec-
tion search, golden section method and an inexact line
search technique using, e. g., Armijo’s rule [1]. It is im-
portant to note that the new solution, xk+1, has a better
objective value. To demonstrate, consider the first or-
der Taylor series expansion of f (x) around the point xk,
i. e.,

f (xk C �(yk � xk))

D f (xk)C �r f (xk)>(yk � xk)

C �



yk � xk




˛(xk ;�(yk � xk));

where lim	! 0˛(xk; �(yk � xk)) = 0. Since rf (xk)|(yk

� xk) < 0, the above expansion implies that there ex-
ists a sufficiently small b� 2 (0; 1) such that f (xk C
b�(yk � xk)) < f (xk). Using the fact that �k solves the
line search problem, the following must hold:

f (xkC1) D f (xk C �k(yk � xk))

� f (xk Cb�(yk � xk)) < f (xk):

Thus, xk+1 has a better objective value.
Using standard techniques in nonlinear program-

ming, it can be shown that the sequence of FW iterates,
xk, converges to an optimal solution. This also holds
under a weaker assumption that f (x) is pseudoconvex.
In [14], W.B. Powell and Y. Sheffi eliminate the line
search problem in Step 2 and show that the FW algo-
rithm still converges to an optimal solution as long as
�k satisfies the following conditions:

1X
kD1

�k and lim
k!1

�k D 0:

For example, one suitable choice is �k = 1/k.
The main advantage of the FW algorithm is in its

simplicity. It is easy to understand and implement on
a computer. Computer programs for the simplex and
the line search algorithms already exist and are gener-
ally available. When the constraint matrix A has a net-
work structure (see, e. g., [7,11], and [2]), more effi-
cient network algorithms can be used to solve the di-
rection finding problem and the overall computational
time can be reduced. In addition, the FW algorithm
does not require much computer storage or memory.
However, this feature may be less important as the com-
puter memory becomes available in abundance and at
a cheaper price.

The main disadvantage of the FW algorithm is its
slow convergence rate. (See Fig. 1.) During the early it-
erations, the algorithm tends to decrease the objective
function rather dramatically. However, the FW iterates
tend to zigzag as they slowly approach an optimal so-
lution. In [17], Wolfe shows that the sequence xk con-
verges geometrically to the optimal solution, if it is in
the relative interior of S and f (x) is strongly convex. On
the other hand, if the optimal solution is on the bound-
ary of S, the convergence may be slower.

In practice, there are several modifications that can
accelerate the convergence of the FW algorithm. The
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Frank–Wolfe Algorithm, Figure 1
The problem is: min {kw � xk2: x 2 S} where S is the convex
hull of E1, E2, and E3. The Frank–Wolfe algorithm generates
feasible directions that point toward either E1 or E2. It dra-
matically reduces the objective function during the first two
iterations and zigzags toward the optimal solution, x�, after-
ward

first modification is due to Wolfe [17]. It involves gen-
erating in Step 1 an additional feasible direction,bdk D

zk � xk , where zk = arg maxz 2 Srf (xk)| z. The direc-
tion bdk is generally referred to as the‘away’ direction
since it is constructed from the worst extreme point
with respect to minimizing the objective function. Be-
tween the original and the away directions, only one is
selected for the line search problem in Step 2. Although
the away direction generally leads to a faster conver-
gence in practical applications (see, e. g., [3]), J. Guélat
and P.Marcotte [8] showed that the resulting algorithm
still converges geometrically to an optimal solution un-
der appropriate assumptions. The second modification
is based on the parallel tangents (PARTAN)method in-
troduced in [15]. During the kth iteration, the PARTAN
direction, pk, is defined to be (xk � xk� 2) when k � 3.
When the FW algorithm zigzags, pk intuitively points
toward an optimal solution. (See Fig. 2.)

When integrated together, the PARTAN variant
(see [4] and [10]) of the FW algorithm alternates be-
tween the original and the PARTAN directions when
performing line searches. More formally, the original
Step 2 of the FW algorithm is replaced with the follow-
ing steps:

Frank–Wolfe Algorithm, Figure 2
The PARTAN direction, pk = (xk � xk � 2), points toward an
optimal solution

2 Let �k = arg min0�	�1 f (x
k + �(yk � xk)):

Set zk = xk + �k(yk � xk).
go to Step 3.

3 (PARTAN step)
IF k = 1
THEN set xk+1 = zk
ELSE let

˛k =arg min0�˛�˛k
max

f (xk�1+˛(zk�xk�1));

where ˛k
max is the maximal stepsize in the

direction (zk � xk�1),
set xk+1 = xk�1 + ˛k (zk � xk�1);
set k = k + 1;
return to Step 1:

Finally, the last modification for accelerating the
FW algorithm involves using some or all of the ex-
treme points generated during the current and prior it-
erations. Instead of performing a line search in Step 2,
a typical modification (see, e. g., [6,9,16] and [12]) ei-
ther requires a heuristic, approximate, or exact solution
to the following problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f

 kX
iD1

ˇi yi
!

s.t.
kX

iD1

ˇi D 1;

ˇi � 0; i D 1; : : : ; k:

(2)

The feasible region of (2) is the convex hull of {y1, . . . ,
yk}, each of which is an extreme point of S. Thus, (2)
is an approximation to (1) and this approximation im-
proves as more extreme points are added to (2). Since
the number of extreme points of S is finite, an optimal
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solution to (2) should also solve (1) after a finite number
of iterations. When (2) is solved exactly (or nearly so),
the resulting algorithm is generally known as the simpli-
cial decomposition or column generation technique and
is related to the Dantzig–Wolfe decomposition.

In the above three modifications, the direction find-
ing problems are linear programs with the same struc-
ture. In 1994, A. Migdalas [13] introduced an extension
called the regularized Frank–Wolfe algorithm in which
the direction finding problem has a nonlinear term in
the objective function to control the distance between
yk and xk. For example, one version of the regularized
direction finding problem is:

yk D argmin
y2S
r f (xk)>yC

1
2
(y � xk)>Dk(y � xk);

where Dk is a positive definite matrix.

See also

� Rosen’s Method, Global Convergence, and Powell’s
Conjecture
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The ever growing number of wireless communications
systems deployed around the globe has made the opti-
mal assignment of a limited radio frequency spectrum
a problem of primary importance. At issue are planning
models for permanent spectrum allocation, licensing,
regulation [20] and network design to include; aero-
nautical mobile, land mobile, maritime mobile, broad-
cast, land fixed (point-to-point) and satellite. Further at
issue are on-line algorithms for dynamically assigning
frequencies to users within an established network. In
particular, land cellular mobile systems have been well
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studied (I. Katzela and M. Naghshineh [9] reference
nearly 100 works in cellular dynamic channel assign-
ment).

Frequency assignment problems are typically mod-
eled in graph theoretical terms. That is, a graph G(V , E)
is considered with verticesV(G) = {v1, . . . , vn} and edges
E(G). Each vertex in V(G) represents a transmitter and
two vertices (vi, vj) are adjacent (have an edge between
them) if the corresponding transmitters are not permit-
ted to share the same frequency. The frequency contin-
uum is partitioned into channels (frequencies) of even
width and numbered consecutive integer values. A fre-
quency assignment is then a mapping f of the nonzero
positive integers Z+ to the vertices of the graph such
that no two adjacent vertices receive the same value:

f : V ! ZC

s.t. (vi ; v j) 2 E(G), f (vi) ¤ f (v j):

This formulation, where adjacent vertices cannot share
the same frequency is termed co-channel constrained
and was shown by B.H. Metzger [12] to be equiva-
lent to the well-studied graph coloring problem. Typi-
cally, the objective is to find an assignment of frequen-
cies (colors) to the transmitters (vertices) that mini-
mizes the number of frequencies (colors) used. The
minimum number �(G) for which a �(G)-coloring
exists for G is called the chromatic number. Since
graph K-colorability for arbitrary K is known to be an
NP-complete problem [6], co-channel constrained fre-
quency assignment is also NP-complete.

Consider the restriction that two adjacent vertices
may not receive frequencies that are the same or dif-
fer by exactly k. This FAP is said to be adjacent chan-
nel constrained and when k = 0 is simply the co-
channel problem. Adjacent channel constraints model
harmonic interference (signals that are integer multi-
ples of the fundamental or carrier frequency). In gen-
eral, a set T may be defined which contains zero and
a subset of the positive integers such that no two adja-
cent vertices may receive assignments whose absolute
difference is contained in T,

f : V ! ZC

s.t. (vi ; v j) 2 E(G),
ˇ̌
f (vi) � f (vj)

ˇ̌
… T:

This FAP formulation was introduced byW.K. Hale [7]
and is termed T-coloring. When T = {0}, the co-channel

constrained FAP or graph coloring problem results.
M.B. Cozzens and F.S. Roberts [4] define the number
of unique colors used in a T-coloring as the order and
the total bandwidth used (maximum color minus the
minimum color) as the span. Hence for any T-coloring,
two optimality criteria exist: minimum order, denoted
by �T(G), and minimum span, denoted by spT(G). For
the co-channel constrained FAP �T(G) = spT(G) how-
ever, in general, this is not true. Cozzens and Roberts
show that for any graph and any T the minimum or-
der is equivalent to the chromatic number; �T(G) =
�(G). Hence, T-coloring research has primarily been
focused on characterizing the minimum span using nu-
merous assumptions about the structure of G and value
of T [2,4,5,11,13,16], and [17].

In many situations, the potential for interference
between transmitters may occur on several different
levels, where each level is defined by a separate set of
edges on the common set of vertices. The kth edge set
is denoted by the graph Gk, k = 0, . . . , K. The family of
graphs thus defined and which share an identical vertex
set are sometimes referred to, in unison, as amultigraph
and denoted by G(V , G0, . . . , GK). Since each level rep-
resents a unique interference mechanism, a family of T-
sets must be also defined as T(0), . . . , T(K). Interference
occurs on the kth level when any 2 vertices adjacent in
the kth edge set receive frequencies that differ by a value
in T(k). In graph coloring nomenclature, the multilevel
FAP is denoted by

f : V ! ZC;

(x; y) 2 E(Gk), j f (x)� f (y)j … T(k);

8(x; y) 2 V ; x ¤ y; k D 0; : : : ;K;

where the family of graphs are nested such thatG0� � � �

� GK and the T-sets are reverse nested, as 0 2 T(0) �
� � � � T(K). Cozzens and D.I. Wang develop bounds on
the minimum span for general multigraph T-colorings
in [5]. Excellent reviews on T-coloring and frequency
assignment for single graphs and multigraphs may be
found in [14] and [15].

Since the simplest FAP has been shown to be NP-
complete, it is generally hopeless to pursue exact solu-
tion methods. Approximate heuristic techniques have
been the focus of most research and most of these
techniques fall under the scope of sequential heuristics.
There are three fundamental approaches to sequentially
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coloring the vertices of a graph:
� (frequency exhaustive) Given an ordering of the ver-

tices, attempt to color each vertex, sequentially, the
smallest feasible color. This approach is also called
a greedy coloring.

� (requirement exhaustive) Given an ordering of the
vertices, attempt to assign the first color to each ver-
tex, sequentially. When all vertices have been con-
sidered, attempt to assign the second color to the
unassigned vertices, then the third and so on, fol-
lowing the same vertex ordering.

� (uniform) Given an ordering of the vertices, attempt
to color each vertex, sequentially, the color that has
been least used.

The efficiency of each approach is quite dependent
upon what ordering the vertices are placed in. There are
many rules by which the vertices of a graph can be or-
dered. In a smallest-last ordering, the vertex of smallest
degree in V is denoted v1. This vertex is then deleted
from the graph and the next smallest degree vertex v2
is found and deleted, and so on until all vertices have
been deleted. The smallest-last vertex order is then {vn,
vn� 1,. . . , v1}. The largest-first vertex order sorts the ver-
tices of the graph according to their degree in G: largest
to smallest. D. Brelaz [3] introduced a vertex order-
ing specified by the saturation degree of the vertices,
from highest saturation degree to lowest. The satura-
tion degree of a vertex is defined to be the number of
different colors that exist on the vertices that are adja-
cent. The vertex with the highest saturation degree is
‘most denied’ since it has fewer colors to choose from.
J.A. Zoellner and C.L. Beall [21] compared the three se-
quential approaches with several different vertex order-
ing rules and found that, all else being equal, frequency
exhaustive methods typically yields smaller spans. Hale
[8] expanded upon these results by defining a gener-
alized structure for all sequential coloring algorithms
which consists of three fundamental steps:
1) order the vertices;
2) select the next vertex to color;
3) select the color.
Hale’s procedure is general. It cover all types of vertex
orderings in step 1 and allows for each of the three se-
quential techniques in step 3. Step 2 is added to allow
the coloring sequence to adapt during the process. Hale
introduced new sequential techniques for step 2 that are
adaptive variants of the saturation degree. A very good

review of frequency assignment heuristics can be found
in [10].

Approximate solutions may also be obtained by us-
ing more traditional polyhedral methods on relaxation
problems of the integer program (IP) formulation of
the FAP. A. Wisse [19] developed a minimum order IP
formulation for the FAP which relies on a list coloring
model, that is, the frequencies which may be assigned
are restricted to a finite list (set), designated by F, of
cardinality m. Furthermore, I is designated as the index
set for all transmitters (vertices) and n the cardinality of
I. Define two binary decision variables as

xi f D

(
1 if transmitter i assigned freq f ;
0 else;

y f D

(
1 if freq f used at least once;
0 else:

The IP which results is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min z D
X
f2F

y f

s.t.
X
f2F

xi f D 1; 8i 2 I;

X
i2I

xi f � ny f ; 8 f 2 F;
X

g: j f�gj…T

x jg � 1 � xi f ;

8 f 2 F; 8(vi ; v j) 2 E(G);
xi f 2 f0; 1g; 8i 2 I; 8 f 2 F
y f 2 f0; 1g; 8 f 2 F:

A minimum span FAP IP formulation may be had by
deleting variable yf and adding �, defined to be the
maximum frequency assigned,
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min �

s.t.
X
f2F

xi f D 1; 8i 2 I;

X

g: j f�gj…T

x jg � 1 � xi f ;

8 f 2 F; 8(vi ; v j) 2 E(G);X
f2F

f xi f � �; 8i 2 I;

xi f 2 f0; 1g; 8i 2 I; 8 f 2 F;
� 2 F:
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Of course a solution to either IP formulation would be
exact, however efficient methods for finding solutions
to this formulation do not yet exist for problems of
large dimension. Linear relaxations of these formula-
tions where 0 � xif � 1, have been successfully devel-
oped and yield fairly good solutions for some moder-
ate size problems [1]. A potential reductionmethod [18]
has also been developed that utilizes the transformation
xif = 2xif � 1, that is, xif 2 {�1, +1}. As a result, any fea-
sible solution to the transformed IPs must satisfy x|x =
mn where x is a vector of xif in Zmn

C . The polyhedron
P formed from the linear relaxation of x and y or � in
the constraints of the IPs is then incorporated into the
problem by minimizing a logarithmic potential func-
tion over the polyhedron as

min
P

"
nm � x>x �

1
N

NX
kD1

wk log sk

#
;

where N is the number of constraints, wk are nonneg-
ative real valued weights, and sk is the slack of con-
straint k. A sequence of iterative solutions are obtained
in a three step process which begins with a nonopti-
mal feasible solution x0. An interior point method is
applied to a quadratic approximation of the potential
function within an ellipsoid centered on the current
feasible point xi. This yields a decent direction	x. The
potential function is then minimized within the ellip-
soid along the line xi+ ˛	x and yields the next iterate
xi+1. The iterate solution is then rounded to an integer
value. The algorithm stops when the rounded solution
is feasible to the original problem. This algorithm was
tested and was found to suffer from slow convergence.
As a result, an alternate quadratic assignment formu-
lation was developed which proved to be much faster.
Define a new binary valued decision variable

qi f jg D

8̂
<̂
ˆ̂:

1 if xi f D 1; x jg D 1; and
(vi ; v j) 2 E(G); j f � gj 2 T;

0 else:

Then the assignment F! x has no interference if

nX
iD1

mX
fD1

nX
jD1

mX
gD1

xi f x jg qi f jg D 0;

which is equivalent to

1
2 x
>Qx D 0;

where Q is a mn × mn matrix containing qifjg . Thus the
new potential function, with the added quadratic term,
is minimized over the polyhedron as

min
P

"
1
2
x>Qx �

1
N

NX
kD1

wk log sk

#
:

Interior point solutions of this potential function con-
verged much more quickly than those of the first for-
mulation.

See also

� Assignment and Matching
� Assignment Methods in Clustering
� Bi-objective Assignment Problem
� Communication Network Assignment Problem
� Graph Coloring
�Maximum Constraint Satisfaction: Relaxations and

Upper Bounds
�Maximum Partition Matching
� Quadratic Assignment Problem
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Some of the main indicators of progress in the math-
ematical sciences have been the occurrences of new
types of numbers. One of the more recent cases are the
complex numbers. Much of modern science cannot be
imagined without their use.

Their introduction into mathematics first had been
motivated by the wish to solve the equation

P(z) D 0; (1)

where P(z) is a polynomial.
If one considers only real numbers, such simple

equations like P(z) = z2 + 1 = 0 have no solutions. In
the field of complex numbers however (1) always at
least one solution, if P is a nonconstant polynomial with
complex coefficients. This fact is known as the funda-
mental theorem of algebra. It was first proved rigor-
ously by C.F. Gauss in 1799. Since then a large number
of proofs have been found. In this article I give some
examples for the main types of proofs: analytic, topo-
logical and algebraic.

Analytic Proofs

Possibly the simplest proof, being based on the Liouville
theorem [3]: Every bounded entire function is a con-
stant.

Assume now that the nonconstant polynomial P(z)
has no zero. Since |P(z)|!1 for |z|!1, the function
f (z) = 1/P(z) is bounded and thus a constant by Liou-
ville’s theorem. But then also P(z) is constant, a contra-
diction.

Another, still simple, proof is based on the argument
principle: The number of zeros of a holomorphic func-
tion f inside a simple closed curve � can be expressed
by the integral

1
2
 i

Z

�

f 0(z)
f (z)

dz:

Let P(z) be a polynomial of degree n � 1. Choosing for
� the circle around the origin with radius R > 0, we ob-
tain for the number N of zeros of P(z):

N D
1

2
 i

Z

�

P0(z)
P(z)

dz :
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Since

P0(z)
P(z)

D
n
z
C O

�
1
jzj2

�
; jzj ! 1;

we obtain N = n for R � R0. Thus P(z) has n zeros
(counted with multiplicity).

Topological Proofs

Closely related to the second analytic proof, presented
above, is the proof by the concept of homotopy [2].

If X and Y are two topological spaces, then two con-
tinuous maps '0, '1: X ! Y are called homotopic if
there exists a continuous map

' : X � [0; 1]! Y

such that

'(x; 0) D '0(x);

'(x; 1) D '1(x):

We choose X = {z 2 C: |z| = 1}, Y = C � 0. Let
P(z) = zn+ an�1zn� 1 + � � � +a0 = zn+ Q(z), say n � 1,
a0 6D 0).

For sufficiently large R the two maps

'0 : X ! Y ; z 7�! (Rz)n;

'1 : X ! Y ; z 7�! P(Rz)

are homotopic. A homotopy is in fact given by '(z, t) =
(Rz)n + t Q(Rz), z 2 X, t 2 [0, 1]. If there is no zero of
P(z) inside the circle |z| = R, '1 and thus also '0 would
be homotopic with the constant map

'c : X ! Y ; z 7�! a0;

which can be shown to be false by topological means.

Algebraic Proofs

Since there is no purely algebraic system of axioms for
the field of complex numbers there cannot be a purely
algebraic proof. However there is a proof which as the
only result from analysis uses the intermediate value
theorem [1], which we reproduce here.

A statement equivalent to the fundamental theorem
is that C is the algebraic closure of R. We start by show-
ing that every nonconstant polynomial P(z) with real
coefficients has a complex zero. We proceed by induc-
tion.

Let n be the degree of P(z).
i) If n is odd, the claim is an immediate consequence

of the intermediate value theorem.
ii) Let n = 2tu with odd u, t > 0, and assume the claim

has been proven for t � 1.
We select a splitting field S for P(z) over C. Then we
have a decomposition

P(z) D (z � a1) � � � (z � an) in S[z]:

For an arbitrary real number c we form the expres-
sions bij(c) = aiaj + c(ai + aj) and the polynomial Q(z)
=
Q

1� i < j� n (z � bij(c)). The coefficients of Q(z) are
symmetric polynomials in a1, . . . , an over R and thus
real. The degree of Q(z) is n(n � 1)/2 = 2t�1u(2tu� 1)
= 2t�1v for an odd number v. By the induction hypoth-
esis Q(z) has at least one zero in C. Thus bij(c) is in C
for a pair of subscripts (i, j) that may depend on c. If
this construction is carried out for all natural numbers
c with 1 � c � 1 + n(n� 1)/2 one finds c and c0 belong-
ing to the same pair of subscripts, i. e. there is a pair (i, j)
with bij(c) 2 C and bij(c0) 2 C. If one solves the system
of equations

bi j(c) D ai a j C c(ai C aj);

bi j(c0) D ai a j C c0(ai C aj)

one obtains ai D a/2 ˙
p
a2 � 4b2/2 2 C. Thus P(z)

has a complex zero.
Let now P(z) 2 C[z] be irreducible and t a zero of

P(z) in a splitting field of P(z) over C. Then P(z) is the
irreducible polynomial of t over C. Since t is algebraic
over C and C is algebraic over R, t is algebraic over R.
We denote the irreducible polynomial of t over R by
U(z). Then P(z)/U(z) in C[z].

U(z) has at least one zero in C. Since C is normal
over R, U(z) splits into linear factors in C[z]. Thus P(z)
is linear and t 2 C.

See also

� Gröbner Bases for Polynomial Equations
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Poznań, Poland

MSC2000: 90C70, 90C29

Article Outline

Keywords
Flexible Programming
MOLP with Fuzzy Coefficients
Flexible MOLP with Fuzzy Coefficients
Conclusions
See also
References

Keywords

Multi-objective linear programming under
uncertainty; Fuzzy sets; Uncertainty modeling;
Multicriteria decision making; Interactive procedures

Fuzzy multi-objective linear programming extends the
linear programming model (LP) in two important as-
pects:
� multiple objective functions representing different

points of view (criteria) used for evaluation of fea-
sible solutions,

� uncertainty inherent to information used in the
modeling and solving stage.
A general model of the FMOLP problem can be pre-

sented as the following system:

[ec1x; : : : ;eckx]!emin (1)

such that

eaixe�ebi ; i D 1; : : : ;m; (2)

x � 0; (3)

whereec1 D [ecl1; : : : ;ecln (l = 1, . . . , k), x = [ x1, . . . , xn]|,
eai D [eai1; : : : ;eain (i = 1, . . . , m). The coefficients with
the sign of wave are, in general, fuzzy numbers, i. e. con-
vex continuous fuzzy subsets of the real line. The wave

over min and relation � ‘fuzzifies’ their meaning. Con-
ditions (2) and (3) define a set of feasible solutions (de-
cisions) X. An additional information completing (1) is
a set of fuzzy aspiration levels on particular objectives,
thought of as goals, denoted byeg1; : : : ;egk .

There are three important special cases of the above
problem that gave birth to the following classes of prob-
lems:
� flexible programming;
� multi-objective linear programming (MOLP) with

fuzzy coefficients;
� flexible MOLP with fuzzy coefficients.

In flexible programming, coefficients are crisp but
there is a fuzzified relation e� between objective func-
tions and goals, and between left- and right-hand sides
of the constraints. This means that the goals and con-
straints are fuzzy (‘soft’) and the key question is the de-
gree of satisfaction. In MOLP with fuzzy coefficients all
the coefficientsare, in general, fuzzy numbers and the
key question is a representation of relation � between
fuzzy left- and right-hand sides of the constraints. Flex-
ible MOLP with fuzzy coefficients concerns the most
general form (1)–(3) and combines the two key ques-
tions of the previous problems.

The two first classes of FMOLP problems use dif-
ferent semantics of fuzzy sets while the third class com-
bines the two semantics. In flexible programming, fuzzy
sets are used to express preferences concerning satisfac-
tion of flexible constraints and/or attainment of goals.
This semantics is especially important for exploiting in-
formation in decision making. The gradedness intro-
duced by fuzzy sets refines the simple binary distinc-
tion made by ordinary constraints. It also refines the
crisp specification of goals and ‘all-or-nothing’ deci-
sions. Constraint satisfaction algorithms, optimization
techniques and multicriteria decision analysis are typi-
cally involving flexible requirements which can be rep-
resented by fuzzy relations.

In MOLP with fuzzy coefficients, the semantics of
fuzzy sets is related to the representation of incom-
plete or vague states of information under the form
of possibility distributions. This view of fuzzy sets en-
ables representation of imprecise or uncertain informa-
tion in mathematical models of decision problems con-
sidered in operations research. In models formulated in
terms of mathematical programming, the imprecision
and uncertainty of information (data) is taken into ac-
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count through the use of fuzzy numbers or fuzzy in-
tervals instead of crisp coefficients. It involves fuzzy
arithmetic and other mathematical operations on fuzzy
numbers that are defined with respect to the famous
Zadeh’s extension principle.

In flexible MOLP with fuzzy coefficients, the uncer-
tainty and the preference semantics are encountered to-
gether. This is typical for decision analysis and opera-
tions research where, in order to deal with both uncer-
tain data and flexible requirements, one can use a fuzzy
set representation.

Below, we make a tutorial characterization of
the three classes of problems and solution meth-
ods. For more detailed surveys see, e. g., [16,18,20,27,
30,32,36,37].

Flexible Programming

Flexible programming has been considered for the first
time in [41] with respect to single-objective linear pro-
gramming. It is based on a general Bellman–Zadeh
principle [2] defining the concept of fuzzy decision as an
intersection of fuzzy goals and fuzzy constraints. A fuzzy
goal corresponding to objective clx is defined as a fuzzy
set in X; its membership function �l : X! [0, 1] char-
acterizes the decision maker’s aspiration of making clx
‘essentially smaller or equal to gl’. A fuzzy constraint
corresponding to aixe�bi is also defined as a fuzzy set
in X; its membership function �i! [0, 1] characterizes
the degree of satisfaction of the ith constraint.

In order to define the membership function �i (x)
for the ith fuzzy constraint, one has to know the tol-
erance margin di � 0 for the right-hand side bi (i =
1, . . . ,m);

�i (x) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 for aix � bi ;
strictly decreasing from 1 to 0

for bi < aix < bi C di ;
0 for aix � bi C di :

(4)

Specifying a membership level ˛, ˛ 2 [0, 1], in [41]
the set of feasible solutions ofeach fuzzy constraint has
been restricted to the crisp set

Xi
˛ D fx : �i (x) � ˛g ; i D l ; : : : ;m:

Then, the set of feasible solutions of a flexible program-
ming problem is X˛ = \m

iD1 Xi
˛ . The single objective

function is replaced by the fuzzy goal

�G (x) D
minx2X0fcxg

cx
:

To get an optimal solution one has to determine the op-
timal pair (˛�, x�) such that

minf˛�; �(x�)g D supmin/

�
˛;max

x2X˛
f�G(x)g

�
: (5)

If the optimal ˛� was determined a priori, the prob-
lem(5) could be reduced to a crisp mathematical pro-
gramming problem where the objective was to find x�

that maximizes �G (x) on the set X�˛ . In the general case
an iterative algorithm is necessary when beginning with
any ˛1 2 [0, 1], the values ˛k and maxx2X1k {�G (x)}
converge to the optimum step by step.

H.J. Zimmermann [46] has proposed a more in-
tegrative approach to flexible programming allowing
consideration of multiple goals and constraints on
a common ground. An aspiration level gl and a toler-
ance margin dl � 0 have to be assumed for the lth goal
(l = 1, . . . , k) when assessing the membership function
�l(x) as:

�l (x) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 for clx � gl ;
strictly decreasing from 1 to 0

for gl < clx < gl C dl ;
0 for clx � gl C dl :

(6)

According to the Bellman–Zadeh principle, the set
of fuzzy decisions is characterized by an aggregation of
the component membership functions. If a conjunctive
minimum operator were used for the aggregation, the
membership function would be:

�D(x) D min
l ;i
f�l (x); �i(x)g: (7)

Then, the problem of finding the best decision (solu-
tion) boils down to the following optimization prob-
lem:

(
�D(x) ! max
s.t. x � 0:

(8)

The value of the aggregated function �D(x) can be
interpreted as the overall degree of satisfaction of the
decision maker with k fuzzy goals and m fuzzy con-
straints.
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In case of minimum operator (7), problem (8) be-
comes:

8̂
ˆ̂̂<
ˆ̂̂̂
:

v ! max
s.t. v � �l (x); l D 1; : : : ; k;

v � �i (x); i D 1; : : : ;m;
x � 0:

(9)

In [46,47], Zimmermann has applied linear mem-
bership functions (4), (6) in problem (9) thus getting an
ordinary LP problem. He also proposed to use the prod-
uct operator instead of minimum, however, then (8) be-
comes nonlinear even if linear membership functions
are used. A comprehensive review of various proposi-
tions for modeling the functions �D(x) can be found
in [39,48].

Knowing the membership functions �l(x)(l =
1,. . . , k) for fuzzy goals, one can define a Pareto optimal
solution in the space of membership values, calledan
M-Pareto optimal solution [32]. Some other refine-
ments of the Zimmermann’s approach have been pro-
posed in [1,11].

Definition 1 A solution x� is said to be M-Pareto op-
timal if and only if there does not exist another x 2 X
such that�l(x)��l(x�), l = 1, . . . , k, with strict inequal-
ity holding for at least one l.

The concept of M-Pareto optimal solutions was at the
origin of several interactive methods proposed for flex-
ible programming (see [30,32]). In these methods, the
decision maker determines membership functions for
fuzzy goals and then specifies reference levels for the
membership functions, denoted by �l (l = 1, . . . , k).
Assuming some minimum levels for membershipfunc-
tions of fuzzy constraints, denoted by ti (i = 1, . . . , m),
one gets the following optimization problem:
8̂
<̂
ˆ̂:

max
l
f�l � �l (x)g ! min

s.t. �i (x) � ti ; i D 1; : : : ;m;
x � 0;

which is equivalent to
8̂
ˆ̂̂<
ˆ̂̂̂
:

v ! min
s.t. v � �l � �l (x); l D 1; : : : ; k;

�i (x) � ti ; i D 1; : : : ;m;
x � 0:

(10)

Again, problem (10) becomes an ordinary LP prob-
lem when all membership functions are linear. This ap-
proach is interactive in the sense that the reference lev-
els can be changed from one iteration to another, as well
as the membership functionsof fuzzy goals.

MOLPwith Fuzzy Coefficients

All fuzzy coefficients of the FMOLP problem are given
in a convenient form of L-R fuzzy numbers [13]. An L-
R (flat) fuzzy numberea D (aL; aR ; ˛L ; ˛R)LR is defined
by the membership function:

�ã(r) D

8̂
<̂
ˆ̂:

L
�
aL � r
˛L

�
for r � aL;

1 for aL � r � aR ;

R
�
r� aR
˛R

�
for r � aR ;

where L and R are symmetric bell-shaped reference
functions which are strictly decreasing in [0, 1] and
such that L(0) = R(0) = 1, L(1) = R(1) = 0; [aL, aR] is an
interval of the most possible values, and ˛L and ˛R are
nonnegative left and right ‘spreads’ ofea, respectively.

Experience indicates that an expert can describe the
precise form of a fuzzy number only rarely. Therefore,
as a practical way of getting suitable membership func-
tions of fuzzy coefficients, H. Rommelfanger [26] has
proposed that the expert begins with the specification
of some prominent membership levels ˛ and associates
them with special meanings. After that the expert is
expected tospecify values which belong to the selected
membership levels.

˛ = 1: �ã(r) D 1 means that value r certainly belongs
to the set of possible values;

˛ = �: �ã(r) � �means that the expert estimates that
value r with �ã(r) � � has a good chance of
belonging to the set of possible values;

˛ = ": �ã(r) < " means that value r with �ã(r) < "

has only a very little chance of belonging to the
set of possible values, i. e. the expert is willing
to neglect the corresponding values of r with
�ã(r) < ".

For example, it is reasonable to assume that � = 0.6,
" = 0.1.

For the sake of clarity, let us assume that the refer-
ence functions of all fuzzy coefficients are of two kinds
only: L and R. It should be specified, moreover, that all
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arithmetic operations on fuzzy numbers taking place in
(1), (2) are extended operations in the sense of Zadeh’s
extension principle [45]:

fã�b̃(r) D sup
rDy�z

T( fã(y); fb̃(z)); r 2 R; (11)

where 
 is a real operation 
: R × R! R and T: [0, 1]
× [0, 1]! [0, 1] is any given t-norm.

For any x� 0, the left-hand side of the ith constraint
and the value of the lth objective function can be sum-
marized to the following fuzzy numbers:

eaix D
�
aLi x; a

R
i x; ˛

L
i x; ˛

R
i x
�
LR ; i D 1; : : : ;m;

eclx D
�
cLl x; c

R
l x; �

L
l x; �

R
l x
�
LR ; l D 1; : : : ; k:

In the literature the min t-norm is generally applied.
Then,

aLi x D
nX

jD1

aLi jx j; cLl x D
nX

jD1

cLl j x j; (12)

aRi x D
nX

jD1

aRi jx j; cRl x D
nX

jD1

cRl j x j; (13)

˛L
i x D

nX
jD1

˛L
i j x j; � L

l x D
nX
jD1

� L
l jx j; (14)

˛R
i x D

nX
jD1

˛R
i jx j; �R

l x D
nX
jD1

�R
l jx j: (15)

Obviously, the spreads of these fuzzy numbers extend
when number and values of variables increase. The sim-
ple addition of the spreads of fuzzy coefficients corre-
sponds to the assumption that their uncertainty comes
fromindependent sources. This is not realistic in many
practical situations. For getting a more realistic ex-
tended addition of the left-hand sides of fuzzy con-
straints and of fuzzy objectives, Rommelfanger and T.
Keresztfalvi [29] recommend the use of Yager’s param-
eterized t-norm:

Tp(t1; : : : ; ts)

D max

8<
:0; 1 �

 sX
iD1

(1 � ti)p
!1/p

9=
; ;

t1; : : : ; ts 2 [0; 1]; p > 0: (16)

Then, aLi x, a
R
i x, cLl x, c

R
l x are calculated according to (12)

and (13), however, the spreads ˛L
i x, ˛

R
i x, �

L
l x, �

R
l x are

calculated according to a new, less cumulative formula:

˛L
i x D

0
@

nX
jD1

�
˛L
i j x j

�q
1
A

1/q

;

˛R
i x D

0
@

nX
jD1

�
˛R
i jx j

�q
1
A

1/q

;

� L
i x D

0
@

nX
jD1

�
� L
i jx j

�q
1
A

1/q

;

�R
i x D

0
@

nX
jD1

�
�R
i jx j

�q
1
A

1/q

;

where q = p/(p� 1)� 1.
Coming back to MOLP problem with fuzzy coeffi-

cients, we haveto answer the question how to interpret
the relation between fuzzy left- and right-hand side of
the constraints. If constraints (2) were transformed to
equality constraints (by addition of slack variables on
the left) thenthe equality relation could be interpreted
in terms of weak inclusion of fuzzy sets [12,21]:

eaix �ebi ; i D 1; : : : ;m: (17)

It says that the region of possible values of the left-hand
side should be contained in the tolerance region of the
right-hand side. The LP problem with constraints (17)
is called robust programming problem.

Each constraint (18) is then reduced to four deter-
ministic constraints:

aLi x � bLi ; aRi x � bRi ;

aLi x� ˛
L
i x � bLi � ˇ

L
i ;

aRi xC ˛
L
i x � bRi C ˇ

R
i ;

for i D 1; : : : ;m;

(18)

where ebi D (bLi ; b
R
i ; ˇ

L
i ; ˇ

R
i )LL or ebi D (bLi ; b

R
i ;

ˇL
i ; ˇ

R
i )RR , i = 1,. . . ,m.

In order to transform fuzzy objectives into deter-
ministic equivalents, one can consider a ‘middle’ value
ofeclx at some level � 2 [0, 1], l = 1, . . . , k. The ‘middle’
can be understood [8] as a weighted combination of the
most possible values cLl x and cRl x, and of the smallest
and the greatest (extreme) values at possibility level �.
Thus, the objectives (1) become:

[z1(x); : : : ; zk(x)]! min; (19)
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where zl(x) = w1cLl � w2�
L
l xL
�1(�) + w3cRl x + w4

�R
l xR

�1(�), l = 1, . . . , k; w1, w2, w3, w4 are nonnega-
tive weights, e. g. w1 = w3 = 0.3, w2 = w4 = 0.2. The
deterministicobjectives (19) are linear even if reference
functions L and R are nonlinear.

There exist approaches proposing a substitution of
each objective by several deterministic objectives corre-
sponding to extreme values of several �-level sets [9,28].

Finally, let us mention a comparison technique of
fuzzy numbers, which is based on the compensation
of area determined by the membership functions of
two fuzzy numbers being compared. This technique,
which has been characterized in [17] and [5], and then
in [31] and [15], can be used directly to transform
the comparison of fuzzy left- and right-hand side of
the constraints, and of the fuzzy objectives and fuzzy
goals into nonparametric deterministic equivalents. Al-
though this technique seems intuitive, it has a convinc-
ing theoretical foundation.

Indeed, the semantics of fuzzy numbers consid-
ered in the MOLP problem with fuzzy coefficients is
related to the representation of incomplete or vague
states of information under the form of possibility dis-
tributions. This view of fuzzy numbers is concordant
with the Dempster interpretation of fuzzy numbers as
imprecise probability distributions [10]. In this per-
spective, the comparison of two fuzzy numbers can
be substituted by the comparison of their mean val-
ues defined consistently with the well-known defini-
tion of expectation in probability theory. The idea ex-
ploited in [14] relies on the mathematical fact that,
with respect to a fuzzy number, the possibility mea-
sure corresponds to an upper probability distribu-
tion, while the necessity measure, to a lower proba-
bility distribution of the corresponding random vari-
able. Then it is reasonable to define the mean value
of a fuzzy number as a closed interval whose bounds
are expectations of upper and lower probability distri-
butions. The comparison of two fuzzy numbers boils
down to the comparison if arithmetic means of these
bounds, which is computationally equivalent to the
above mentioned technique based on area compensa-
tion, as shown in [15].

In consequence of application of all these compar-
ison techniques, the MOLP problem with fuzzy co-
efficients is transformed to an associate deterministic
MOLP problem, as (19), (18), (3) above, which should,

preferably, be solved by one of existing interactive pro-
cedures (see, e. g., [43]).

FlexibleMOLP with Fuzzy Coefficients

This problem combines the two semantics of fuzzy sets
considered separately in flexible programming and in
MOLP with fuzzy coefficients. This means that in addi-
tion to fuzzy coefficients in the objective functions and
on the both sides of the constraints, the degree of sat-
isfaction of fuzzy constraints and fuzzy goals is consid-
ered in fuzzy set terms.

A crucial question which has to be answered while
solving a flexible MOLP problemwith fuzzy coefficients
is how to express the minimal conditions on the satis-
faction of fuzzy constraints in deterministic terms.

In most of existing approaches, the minimal condi-
tions on the satisfaction of fuzzy constraints (2) are ex-
pressed by one or two deterministic linear constraints
which substitute the original fuzzy constraints. To give
an idea of these crisp surrogates, let us present them in
common terms from the most pessimistic to the most
optimistic attitude. We assume the following form of
the fuzzy left- and right-hand side of the ith constraint:

eaix D (aLi x; a
R
i x; ˛

L
i x; ˛

R
i x)LR ;

ebi D (bi ; 0; ˇi )LR;

a) (see [3,40])

aRi xC ˛
R
i xR

�1(�) � bi ; � 2 [0; 1];

b) (see [22,25,44])
8̂
<̂
ˆ̂:

aRi x � bi
aRi xC ˛

R
i xR

�1(") � bi C ˇi R�1(");
" 2 [0; 1];

c) (see [4])

aRi xC ˛
R
i xR

�1(�) � bi C ˇi R�1(�);

� 2 [0; 1];

d) (see [8,34,35])
8̂
ˆ̂̂<
ˆ̂̂̂
:

aLi x � bi � ˛L
i xL
�1(�)C ˇi R�1(�);

� 2 [0; 1]; optimistic;
aRi xC ˛

R
i xR

�1(�) � bi C ˇi R�1(�);
� 2 [0; 1]; pessimistic;
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e) (see [23])
8̂
<̂
ˆ̂:

aRi x � bi C ıˇi ;

ı C " 2 [0; 1]; ı � 0; " � 0;
aRi xC (1 � " � ı)˛R

i x � bi C (1 � ")ˇi ;

f) (see [33,19])

aLi x� ˛
L
i xL
�1(˛) � bi C ˇi R�1(˛);

˛ 2 [0; 1]:

In all these approaches, the parameters ˛, ı, ", �, � ,
�, � can be used by the decision maker to control the
degree of satisfaction of fuzzy constraints in an interac-
tive way.

Figure 1 shows results of conditions a)–f) applied
on a common fuzzy constraint. Although it is the case
in Fig. 1, the reference functions L and R need not be
linear in the above conditions.

Another interpretation of fuzzy constraints has
been given in [24]. The ith fuzzy constraint is replaced
by the pessimistic condition proposed in [34] and by
a new objective:

aRi xC ˛
R"
i x � bi C ˇ"i ; (20)

�i (x)! max; (21)

where membership function �i(x) is defined according
to (4). More detailed discussion of the interpretation of
fuzzy constraints can be found in [30].

If fuzzy goals are specified as L-R fuzzy numbers
egl D (gl ; 0; vl )LL (l = 1, . . . , k), then the satisfying con-
ditions

eclxe�eg l ; l D 1; : : : ; k; (22)

can be treated as additional fuzzy constraints. In accor-
dance to the chosen interpretation of the fuzzy inequal-
ity relation, (22) can be substituted by one or two crisp
inequalities listed above or by (20) and (21). Another
proposal has been made by R. Slowinski in [34,35]; the
degree of satisfaction of fuzzy goals is represented there
by the levels of intersection of left reference functions
ofeclx with right reference functions of gl (l = 1, . . . , k):

L

 
cLl x � gl
� L
l xC vl

!
! max; l D 1; : : : ; k: (23)

These crisp objectives substitute the fuzzy ones. In the
case of linear reference functions L, functions (23) be-
come linear fractional:

cLl x � gl
� L
l xC vl

! min; l D 1; : : : ; k: (24)

The crisp objectives (24) and the optimistic and pes-
simistic conditions d) on the satisfaction of fuzzy con-
straints have been used in the FLIP method presented
in [8,34,35,39]. They constitute an associate deter-
ministic multi-objective linear-fractional programming
(MOLFP) problem. In FLIP, the MOLFP problem is
solved using an interactive sampling procedure. In each
calculation step of this procedure, a sample of nondom-
inated points (Pareto optimal solutions) of the MOLFP
problem is generated and then shown to the decision
maker who is asked to select the one that fits best
his/her preferences. If the selected point is not the final
compromise, it becomes a central point of a nondomi-
nated region that is sampled in the next calculation step.
In this way, the sampled part of the nondominated set is
successively reduced (focusing phenomenon) until the
most satisfactory efficient point (compromise solution)
is reached. An important advantage of the method pre-
sented above is that the only optimization procedure
to be used is a linear programming one. Moreover, it
has a simple scheme and allows retractions to the points
abandoned in previous iterations.

The interaction with the decision maker takes place
at two levels: first when fixing the safety parameters and
then in the course of the guided generation and evalu-
ation of the nondominated points of the MOLFP prob-
lem.

Let us precise that the fuzzy goals gl (l = 1, . . . , k)
do not influence the set of nondominated points of the
MOLFP problem; they rather play the role of a visual
reference than that of a preferential information influ-
encing the set of generated proposals for the compro-
mise solution.

An important feature of any software implement-
ing a fuzzy multi-objective programming method is the
presentation of candidate solutions in the interactive
process. In the FLIP software, the Pareto optimal so-
lutions of the MOLFP problem are shown not only nu-
merically but also graphically, in terms of mutual po-
sitions of fuzzy numbers corresponding to original ob-
jectives and aspiration levels on the one hand, and to
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FuzzyMulti-objective Linear Programming, Figure 1
Results of conditions a)–f) applied on a common fuzzy constraint
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left- and right-hand side of original constraints on the
other hand [6]. In this way, the decision maker gets
quite a complete idea of the quality of each proposed
solution.

The quality is evaluated taking into account the fol-
lowing characteristics:
� scores of fuzzy objectives in relation to the goals;
� dispersion of values of the fuzzy objectives due to

uncertainty;
� safety of the solution or, using a complementary

term, the risk of violation of the constraints.
So, the definition of the best compromise involves

not only the scores on particular objectives but also the
safety of the corresponding solution. It is possible due
to visual interaction that needs graphical display of ob-
jectives and constraints for any analyzed solution. The
comparison of fuzzy left- and right-hand side of the
constraints, as well as evaluation of dispersion of the
values of objectives, is practically infeasible on the ba-
sis of numerals only. The graphical presentation of pro-
posed solutions is not only a ‘user friendly’ interface but
the best way for a complete characterization of these so-
lutions.

There exists an implementation of FLIP in Visual
Basic in the MS-Excel environment; it allows a user to
define all safety parameters and the parameter p of the
Yager’s formula (16) for the aggregation of fuzzy objec-
tives and of fuzzy left-hand sides of fuzzy constraints.
The candidates for the best compromise solution are
displayed there both numerically and graphically.

Conclusions

Fuzzy multi-objective linear programming methods
have often been proposed in view of specific applica-
tions (see, e. g., [6,18,30,34,39,44]). This means that the
many proposals described in this article are based on
different assumptions that are verified in different prac-
tical situations. The choice of a procedure for an ac-
tual decision problem should take into account these
assumptions. In any case, the interactive process should
enable the best use of the decision maker’s knowledge
of the problem. Fuzzy multi-objective linear program-
ming can also be seen as a tool for an interactive robust-
ness analysis of MOLP problems. It gives an insight into
sensitivity of proposed solutions on changes of partic-
ular coefficients within some intervals and on changes

of preferences as to degrees of satisfaction of the con-
straints.
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Synonyms

Indices

i = orders
j = product-stock tanks
s = products
k = components
l = component tanks
n = event points

Sets

I = orders
Ij = orders which can be performed in product-stock

tank j
Is = orders which order product s
J = product-stock tanks
Ji = product-stock tanks which are suitable for per-

forming order i
Js = product-stock tanks which can store product s
N = event points within the time horizon
S = products
Sj = products which can be stored in product-stock

tank j
K = components
Kl = components which can be stored in component-

stock tank l
L = component stock tanks
Lk = component-stock tanks which can store compo-

nent k

Parameters

Vmax(j) = maximum capacity of product-stock
tank j

Vmin(j) = minimum amount of product stored in
tank j if tank j is utilized
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Vinitial(j,s) = amount of product s stored in tank j
initially

Vin(l,k) = amount of component k stored in com-
ponent tank l initially

Vcomp(l) = maximum capacity of component
tank l

Recipe(s,k) = the proportion of component k to in
product s

l(i) = lifting rate of order i
Bflow = flow rate of product being produced

and transferred to product-stock tanks
Prod_srt(i) = time by which order i can start
Prod_end(i) = time by which order i is due
U1 = lower bound on the amount of product

lifted
U2 = upper bound on the amount of product

lifted
U3 = upper bound of a small-sized order
U4 = upper bound of a medium-sized order
U5 = lower bound of a large-sized order
flowmin = minimum flow rate of component

tanks
flowmax = maximum flow rate of component

tanks
H = time horizon

Variables

uv(i,j,n) = binary variables that assign the be-
ginning of order i in tank j at event
point n

y(s,j,n) = binary variables that assign product s
being stored in tank j at event point n

sv(s,j,n) = binary variables that assign product s
being produced and transferred to
tank j at event point n

xv(s,n) = 0-1 continuous variables that assign
product s being produced at event
point n

yv(k,l,n) = binary variables that assign compo-
nent k being extracted from compo-
nent-stock tank l at event point n

Ts(i,j,n) = starting time of order i in tank j at
event point n

Te(i,j,n) = finishing time of order i in tank j
while it starts at event point n

lift(i,j,n) = amount of product being lifted for
order i from tank j at event point n

Pst(s,j,n) = amount of product s in tank j at event
point n before new product is trans-
ferred from the blender

Tbs(s,j,n) = starting time of product s being pro-
duced and transferred to product-
stock tank j at event point n

Tbf(s,j,n) = finishing time of product s being pro-
duced and transferred to product-
stock tank j at event point n

Blnd(s,j,n) = amount of product s being trans-
ferred from blender to tank j at event
point n

comp(k,l,n) = amount of component k being trans-
ferred to the blender at event point n

bc(k,l,n) = amount of component k in compo-
nent tank l at event point n

cracking(k,l,n) = amount of component k being trans-
ferred from separation units to com-
ponent tank l at event point n

Introduction

Gasoline blending is a crucial step in refinery opera-
tion as gasoline can yield 60–70% of a refinery’s profit.
The process involves mixing various stocks, which are
the intermediate products from the refinery, along with
some additives, such as antioxidants and corrosion in-
hibitors, to produce blends with certain qualities [1].
In the past few decades, a substantial amount of work
has been dedicated to process operations [3,4,7,8,9].
A variety of support systems have been developed to
address planning and scheduling of blending opera-
tions. StarBlend [13], for example, which is developed
by Texaco, uses a multiperiod blending model written
in GAMS that facilitates the incorporation of future re-
quirements into current blending decisions. Glismann
and Gruhn [5,6] proposed amixed-integer linear model
(MILP), which is based on a resource-task network rep-
resentation, to solve the task of short-term scheduling
of blending processes. The recipe optimization prob-
lem is then formulated as a nonlinear program and the
results are returned to the scheduling problem, so that
an overall optimization can be achieved. A fuzzy lin-
ear formulation was applied to the blending facilities
by Djukanovic et al. [2], in order to address the prob-
lem of uncertainty of input information within the fuel
scheduling optimization. Singh et al. [14] addressed the
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 1
Graphic overview of the gasoline blending and distribution system

problem of blending optimization for in-line blending
for the case of stochastic disturbances in feedstock qual-
ities. They presented a real-time optimization method
that can provide significantly improved profitability.

The objective of this work is to propose a newmath-
ematical model that addresses the simultaneous opti-
mization of the short-term scheduling problem of gaso-
line blending and distribution as described in the fol-
lowing section.

Definition
The overall oil-refinery system is decomposed into
three parts as depicted in Fig. 1. The first part (prob-
lem 1, Fig. 1) involves the crude-oil unloading, mix-
ing and inventory control (Jia et al. [10]), the second
part (problem 2, Fig. 1) consists of the production unit
scheduling, which includes both fractionation and re-
action processes, and the third part (problem 3, Fig. 1),
which is addressed in this work, depicts the finished
product blending and shipping end of the refinery.
The gasoline blending system consists of four pieces
of equipment all linked together through various pip-

ing segments, flow meters and valves. They are com-
ponent-stock tanks, blend header, product-stock tanks
and lifting ports. Components from the component-
stock tanks are fed to the blend header according to the
recipes. Thus, different products can be produced and
then stored in their suitable product-stock tanks. The
final step is to lift those products during the specified
time periods in order to satisfy all the orders. The ob-
jective is to determine the following variables: (1) start-
ing and finishing time of orders taking place in each
product-stock tank; (2) the amount and type of product
being lifted for each order from tanks; (3) starting and
finishing times of the product being transferred from
the blender to the tanks; (4) the amount and type of
component being transferred from component tanks to
the blender, so as to process all the orders in specific
time periods.

The scheduling problem as described above is mod-
eled in the next section following a continuous-time
representation. It gives rise to an MILP formulation
that can be efficiently solved using commercially avail-
able solvers.
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Formulation

It is assumed that perfect mixing is achieved at the
blend header and that the changeover time between dif-
ferent products in the storage tanks is negligible.

Material Balance Constraints
for Product-Stock Tank j

Constraint (1a) expresses that the amount of product s
in tank j at event point n+1 (Pst(s,j,n+1)) is equal to
that at event point n adjusted by any amounts trans-
ferred from the blender (Blnd(s,j,n)) or lifted at event
point n (

P
i2Is lift(i; j; n)). Constraint (1b) states that

the amount of product s being lifted from tank j at the
last event point N should not exceed the amount of
product s stored in tank j.

Pst(s; j; n C 1) D Pst(s; j; n)C Blnd(s; j; n)

�
X
i2Is

lift(i; j; n); 8s 2 S; j 2 Js ; n 2 N; n ¤ N

(1a)

Pst(s; j; n)C Blnd(s; j; n) �
X
i2Is

lift(i; j; n) ;

8s 2 S; j 2 Js ; n D N (1b)

Capacity Constraints

Constraint (2) imposes a volume capacity limitation of
product s in tank j at event point n.

Vmin( j) 
 y(s; j; n) � Pst(s; j; n)C Blnd(s; j; n)

� Vmax( j) 
 y(s; j; n) ; 8s 2 S; j 2 Js ; n 2 N
(2)

Allocation Constraints

According to constraint (3a), uv(i,j,n) is equal to 1 if
the amount of product being lifted from tank j for or-
der i is not zero at event point n, that is, lift(i; j; n) ¤ 0;
uv(i,j,n) equals 0 otherwise. U1 and U2 correspond
to lower and upper bounds on the amount of prod-
uct lifted, respectively, and are chosen according to
the smallest order and the maximum capacities of the
tanks.

U1 
 uv(i; j; n) � lift(i; j; n) � U2 
 uv(i; j; n) ;

8i 2 I; j 2 Ji ; n 2 N (3a)

To avoid task splitting, constraints (3b)–(3d) state that
order i should be processed only once if it is a small
order and at most twice if it is a medium-sized order.
Otherwise, it can be processed at most three times. For
different problems, U3 and U4 are chosen accordingly
to define small and medium-sized orders. Constraint
(3e) expresses that for large orders which are defined as
greater than or equal to U5, the minimum order split-
ting is 25Mbbl.

X
n

X
j2J i

uv(i; j; n) D 1 ;

8
X
s

Prod_ord(i; s) � U3; i 2 I; n 2 N (3b)

X
n

X
j2J i

uv(i; j; n) � 2 ;

8
X
s

Prod_ord(i; s) � U4; i 2 I; n 2 N (3c)

X
n

X
j2J i

uv(i; j; n) � 3 ;8i 2 I; n 2 N (3d)

25 
 uv(i; j; n) � lift(i; j; n) ;

8
X
s

Prod_ord(i; s) � U5; i 2 I; j 2 Ji ; n 2 N

(3e)

Constraint (4) forces sv(s,j,n) to be equal to 1 when
Blnd(s,j,n) is not zero; otherwise sv(s,j,n) equals 0.

Vmin( j) 
 sv(s; j; n) � Blnd(s; j; n)

� Vmax( j) 
 sv(s; j; n) ; 8s 2 S; j 2 Js ; n 2 N
(4)

Demand Constraints

Constraints (5a) and (5b) state that order i can be pro-
cessed at most once in one tank during the time hori-
zon under consideration and that the amount of prod-
uct being lifted from all the product-stock tanks should
be equal to the amount ordered (

P
s Prod_ord(i; s)).

X
n

uv(i; j; n) � 1 ; 8i 2 I; j 2 Ji ; n 2 N (5a)

X
n

X
j2J i

lift(i; j; n) D
X
s

Prod_ord(i; s) ;

8s 2 S; i 2 I; n 2 N (5b)
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Sequence Constraints
Constraints (6a)–(6c) state that order i starting in tank j
at event point n+1 should start after the finishing time
of the same order processed in the same tank which has
started at event point n. Constraints (6d) and (6e) ex-
press that order i should start and finish during the spe-
cific time period based on the order requirement. These
constraints are relaxed if uv(i,j,n) is zero, which means
order i is not executed in tank j at event point n.

Ts(i; j; n C 1) � Te(i; j; n) � H 
 (1 � uv(i; j; n)) ;

8 i 2 I j; j 2 J; n 2 N; n ¤ N (6a)

Ts(i; j; n C 1) � Ts(i; j; n) ;

8i 2 I j; j 2 J; n 2 N; n ¤ N (6b)

Te(i; j; n C 1) � Te(i; j; n) ;

8i 2 I j; j 2 J; n 2 N; n ¤ N (6c)

Ts(i; j; n) � Prod_srt(i) 
 uv(i; j; n) ;

8i 2 I j; j 2 J; n 2 N (6d)

Te(i; j; n) � Prod_end(i)C H 
 (1 � uv(i; j; n)) ;
8i 2 I j; j 2 J; n 2 N (6e)

Duration Constraints
If order i is processed in tank j at event point n, that
is, uv(i; j; n) D 1, then both ends of constraint (7a) are
equal, so the duration is given by lift(i; j; n)/l(i), where
l(i) is the lifting rate of order i. If uv(i; j; n) D 0, then
the duration is zero according to constraint (7b).

lift(i; j; n) �
P

s Prod_ord(i; s) 
 (1 � uv(i; j; n))
l(i)

� Te(i; j; n) � Ts(i; j; n) �
lift(i; j; n)

l(i)
;

8i 2 I j; j 2 J; n 2 N (7a)

Te(i; j; n) � Ts(i; j; n)

�

P
s2S j

Prod_ord(i; s) 
 uv(i; j; n)

l(i)
;

8i 2 I j ; j 2 J; n 2 N (7b)

Blending Stage Consideration

The consideration of the blending stage requires the in-
corporation of the constraints described in the follow-
ing constraints.

Material Balance Constraints for the Blender

To avoid the introduction of bilinear terms in the mass-
balance equations and to keep the model linear, the
idea of component mixing used by Quesada and Gross-
mann [12] together with the assumption of constant
production recipe is used. On the basis of these assump-
tions, constraint (8) is introduced to express that the re-
quired amount of component k to produce product s at
event point n (

P
s(Recipe(s; k) 


P
j2Js Blnd(s; j; n)))

should be equal to the total amount of component k
being transferred from all the component tanks at that
event point (

P
l2Lk

comp(k; l ; n)).

X
s

(Recipe(s; k) 

X
j2Js

Blnd(s; j; n))

D
X
l2Lk

comp(k; l ; n) ; 8s 2 S; k 2 K; n 2 N

(8)

Material Balance Constraints for Component Tank l

The amount of component k in tank l at event point n+1
(bc(k,l,n+1)) is equal to that at event point n (bc(k,l,n))
adjusted by any amounts transferred from separation
units (cracking(k,l,n)) or delivered to the blender at
event point n(comp(k; l ; n)). This relation is expressed
by constraint (9a). Constraint (9b) imposes the upper
and the lower bounds on the flow rates of component k
transferred from tank l to the blender.

bc(k; l ; nC 1) D bc(k; l ; n)C cracking(k; l ; n)

� comp(k; l ; n);8k 2 Kl ; n 2 N (9a)

flowmin 
 yv(k; l ; n) � comp(k; l ; n)

� flowmax 
 yv(k; l ; n) ;
8k 2 K; l 2 Lk ; n 2 N (9b)

Allocation Constraints for Product-Stock Tank j

Constraint (10) states that product s cannot be trans-
ferred to product-stock tank j and distributed at the
same event point n.
X
s2S j

sv(s; j; n)Cuv(i; j; n) � 1; 8i 2 I j; j 2 J; n 2 N

(10)
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Gasoline Blending and Distribution Scheduling: An MILP Model, Table 1
Distribution data for an example with ten orders

Order o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

Product and amount (Mbbl) N411 W43 W43 N411 W43 N411 W43 N4132 W43 N5175
Time by which an order can start (hr) 0 0 24 24 48 48 96 118 144 150.5
Due date (hr) 24 24 48 48 72 72 120 190 168 185.5
Lifting rate (Mbbl/hr) 50 50 50 50 50 50 50 8 50 5

Time horizon
(hr)

192

Product-stock
tank

pt1 pt2 pt3 pt4 pt5 pt6 pt7 pt8 pt9 pt10 pt11

Products that
can be stored

E4W4 E4W4 E4W4 W4 E4N5 E4W4 E4W4 N4N5 N4N5 N4N5 N4N5 N4N5

Initial product
and amount
(Mbbl)

E490.20 – W414.08 N587.51 W428.49 W457.59 N413.79 N412.36 N523.96 N485.11 N412.36

Maximum
capacity (Mbbl)

92 92 94 91 92 84 94 92 92 91 82

Minimum
capacity (Mbbl)

0.92 0.92 0.94 0.91 0.92 0.84 0.94 092 0.92 0.91 0.82

Allocation Constraints for Blender

According to constraint (11a), xv(s,n) equals 1 if prod-
uct s is produced and transferred to at least one tank
at event point n, whereas xv(s,n) equals 0 if product s
is not transferred to any of the tanks at event point n.
Constraint (11b) expresses that only one product can
be produced in the blender at the same event point n.

sv(s; j; n) � xv(s; n) �
X
j2Js

sv(s; j; n) ;

8s 2 S; n 2 N (11a)

X
s

xv(s; n) � 1 ; 8s 2 S; n 2 N (11b)

Sequence Constraints

Similar to constraints (6a)–(6c), constraints (12a)–
(12c) state that product s should start being transferred
to tank j at event point (n+1) after the finishing time for
the same product transferred to the same tank which
started at event point n, whereas constraints (12d) and
(12e) represent the requirement of all the transfers to

happen within the time horizon H.

Tbs(s; j; nC1) � Tbe(s; j; n)�H 
 (1� sv(s; j; n)) ;

8s 2 Sj ; j 2 J; n 2 N; n ¤ N (12a)

Tbs(s; j; n C 1) � Tbs(s; j; n) ;
8s 2 Sj; j 2 J; n 2 N; n ¤ N (12b)

Tbe(s; j; n C 1) � Tbe(s; j; n) ;

8s 2 Sj; j 2 J; n 2 N; n ¤ N (12c)

Tbs(s; j; n) � H ; 8s 2 Sj; j 2 J; n 2 N (12d)

Tbe(s; j; n) � H ; 8s 2 Sj; j 2 J; n 2 N (12e)

If the blender provides product s for more than one
product-stock tank at event point n, then the starting
and finishing times for all the tanks should be the same.

Tbs(s; j; n)C H 
 (1 � sv(s; j; n))

� Tbs(s; j0; n) � H 
 (1 � sv(s; j0; n)) ;

8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13a)
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Gasoline Blending and Distribution Scheduling: An MILPModel, Table 2
Blending data for an example with ten orders

Component A C7 C6 M C4 C5 CR AR CG

Tanks that can be
stored in

ct10 ct9 ct8 ct53,54
ct15,52

ct51 ct57,58
ct60

ct4 ct13 ct55 ct11 ct7,12,17
ct56,59

Recipe of
products

N4 0 0.0767 0 0 0.14 0.2742 0.4018 0 0.1073
N5 0 0 0.0419 0 0.0121 0.5178 0 0.0443 0.384
E4 0 0 0 0 0.2729 0 0.3897 0 0.3078
W4 0.6527 0 0 0 0.1591 0 0.1882 0 0

Amount of
component (Mbbl)
and tank that it is
and initially stored
in

26.46 ct10 67.90 ct9 59.44 ct8 7.30 ct15
5.75 ct52
3.10 ct53
28.29 ct54

0.59 ct51 0.29 ct57
8.90 ct58
1.64 ct60

19.35 ct13
27.38 ct4

13.84 ct55
25.63 ct11

4.25 ct59
53.41 ct56
49.34 ct51
34.58 ct7

Blending rate
(Mbbl/hr)

50

Tbs(s; j; n) � H 
 (1 � sv(s; j; n))

� Tbs(s; j0; n)C H 
 (1 � sv(s; j0; n)) ;

8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13b)

Tbe(s; j; n)C H 
 (1 � sv(s; j; n))

� Tbe(s; j0; n) � H 
 (1 � sv(s; j0; n)) ;
8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13c)

Tbe(s; j; n) � H 
 (1 � sv(s; j; n))

� Tbe(s; j0; n)C H 
 (1 � sv(s; j0; n)) ;

8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13d)

Constraints (14a) and (14b) express that product
transfer and distribution should be performed consec-
utively in the same product-stock tank j.

Ts(i; j; nC 1) � Tbe(s; j; n) � H 
 (1� sv(s; j; n)) ;

8i 2 I j; s 2 S j; j 2 J; n 2 N; n ¤ N (14a)

Tbs(s; j; nC 1) � Te(i; j; n)�H 
 (1� uv(i; j; n)) ;

8i 2 I j; s 2 S j; j 2 J; n 2 N; n ¤ N (14b)

According to constraint (15), two different prod-
ucts s and s0 being transferred to the same or differ-
ent product-stock tanks have to be transferred consec-
utively according to the allocation constraint for the

blender.

Tbs(s; j; nC1) � Tbe(s0; j0; n)�H
 (1� sv(s0; j0; n)) ;

8s 2 Sj ; s0 2 Sj; s ¤ s0; j 2 J; j0 2 J; n 2 N; n ¤ N
(15)

Duration Constraints

The minimum run length of 6h is imposed on the
blender by constraint (16a):

X
j2Js

Blnd(s; j; n) � 6
Bflow ; 8s 2 S; n 2 N (16a)

Constraint (16b) defines the duration of product s being
transferred to the tanks at event point n as the difference
between the finishing time (Tbe(s; j; n)) and the start-
ing time (Tbs(s; j; n)), if it takes place in tank j. Con-
straint (16c) expresses that the duration of transferring
product s from the blender to tank j corresponds to the
amount of product s being transferred divided by the
flow rate. The purpose of having an artificial variable
(arti(s; n)) is to find a feasible solution in case a larger
flow rate is required.

(Tbe(s; j; n) � Tbs(s; j; n)) � H 
 (1 � sv(s; j; n))
� duration(s; n)

� (Tbe(s; j; n)�Tbs(s; j; n))CH
 (1� sv(s; j; n)) ;

8s 2 Sj ; j 2 J; n 2 N (16b)
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Gasoline Blending and Distribution Scheduling: An MILP Model, Figure 2
Gantt chart for the example with ten orders
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 3
Gantt chart for the example with 16 orders
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Gasoline Blending and Distribution Scheduling: An MILP Model, Figure 4
Gantt chart for the example with 23 orders
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 5
Gantt chart for the example with 30 orders
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Gasoline Blending and Distribution Scheduling: An MILP Model, Figure 6
Gantt chart for the example with 37 orders
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 7
Gantt chart for the example with 45 orders
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Gasoline Blending and Distribution Scheduling: An MILP Model, Table 3
Computational results for the blending and distribution system

Orders
Contin-
uous
variables

0-1
variables

Con-
straints

1st integer solution 2nd integer solution Optimal solution

Nodes Itera-
tions

CPU
time (s)

Objec-
tive
value

Nodes Itera-
tions

Objec-
tive
value

Nodes Itera-
tions

CPU
time (s)

10 1706 420 7130 21 1495 6.15 0 N/A N/A N/A 21 1495 6.15
16 4205 1032 18737 20 3614 29.03 0 N/A N/A N/A 20 3614 29.03

23 5974 1470 26746 40 13474 210.24 0 N/A N/A N/A 40 13474 210.24
30 9056 2232 40793 80 24906 627.13 0 N/A N/A N/A 80 24906 627.13
37 13955 3444 63308 828 177746 4081.49 4.934 1338 244258 0.793 1353 246176 5016.51
45 25454 6289 116452 361 194954 7406.48 6.645 4138 838195 5.094 4280 874051 20351.18

duration(s; n) D

P
s2S j

Blnd(s; j; n)

Bflow
� arti(s; n) ;

8s 2 Sj ; j 2 J; n 2 N (16c)

Objective Function

The objective of the scheduling problem is to minimize
the sum of artificial variables in the duration constraints
on the blender so as to determine a feasible solution
with a flow rate as close to Bflow as possible. The for-
mulation, however, is general to accommodate different
objective functions targeting the optimization of pro-
duction. However, in most realistic cases [11] the ob-
jective of this stage of refinery operation is to satisfy all
the orders without any delays.

objective D
X
s

X
n

arti(s; n) ; 8s 2 S; n 2 N (17)

Case

The case study considered here is based on realistic data
provided by Honeywell Hi-Spec Solutions. The distri-
bution problem consists of 45 orders of four different
products that are stored in 11 product-stock tanks. The
incorporation of the blending stage adds the consid-
eration of nine components and 20 component tanks.
Smaller-scale instances of the problem are constructed
to test the proposed formulation involving the consid-
eration of 10, 16, 23, 30, and 37 orders. The detailed
data for the case often orders are presented in Tables 1
and 2. GAMS/CPLEX 7.0 was used for the solution
of the resulting MILP formulation. The computational
characteristics of the models are tabulated in Table 3.

The optimal solution with zero integrality gap as well as
the first and second integer solutions are shown. Note
that since the objective corresponds to the summation
of artificial variables used to relax the flow-rate con-
straints, if a solution has a nonzero objective this in-
dicates that one of these constraints has been violated
at the cost of the objective function. For the case study
examined, however, as shown in Table 3, even the full-
scale problem involving 45 orders converged to a fea-
sible solution requiring 4280 nodes in approximately
5h CPU time which is a reasonable time for the solu-
tion of the integrated scheduling of blending and dis-
tribution problem with a time horizon of 8 days. The
resulting Gantt–charts of the six cases examined are
shown in Figs. 2–7. Compared with the commonly used
Gantt chart for scheduling purposes, the difference here
is that the number below the line corresponds to the or-
der number, whereas the number above the line corre-
sponds to the amount of product lifted from this partic-
ular tank. Note that different orders can be performed
in the same tank at the same time as shown in Figs. 3–7.

Conclusions

In this work, a continuous-time formulation was pre-
sented for the short-term scheduling of a gasoline
blending and distribution system. It was shown that the
resulting model can be solved efficiently even for real-
istic large-scale problems. The main advantage of the
proposed approach is the full utilization of the time
continuity. This results in smaller models in terms of
variables and constraints since only the real events have
to be modeled.



Gauss, Carl Friedrich G 1127

References

1. DeWitt CW, Lasdon LS, Waren AD, Brenner DA, Melhem SA
(1989) Omega: an improved gasoline blending system for
Texaco. Interfaces 19:85

2. Dujkanovic M, Babic B, Milosevic B, Sobajic DJ, Pao YH
(1996) Fuzzy linear programming based optimal fuel
scheduling incorporating blending/transloading facilities.
IEEE Trans Power Syst 11:1017

3. Floudas CA, Lin X (2004) Continuous-Time versus Discrete-
Time Approaches for Scheduling of Chemical Processes:
A Review. Comput Chem Eng 28:2109

4. Floudas CA, Lin X (2005) Mixed Integer Linear Program-
ming in Process Scheduling: Modeling, Algorithms, and
Applications. Ann Oper Res 139:131

5. Glismann K, Gruhn G (2001) Short-term planning of blend-
ing processes: scheduling and nonlinear optimization of
recipes. Chem Eng Tech 24:246

6. Glismann K, Gruhn G (2001) Short-term scheduling and
recipe optimization of blending processes. Comput Chem
Eng 25:627

7. Ierapetritou MG, Floudas CA (1998) Effective Continuous-
Time Formulation for Short-Term Scheduling. 1. Multipur-
pose Batch Processes. Ind Eng Chem Res 37:4341

8. Ierapetritou MG, Floudas CA (1998) Effective Continuous-
Time Formulation for Short-Term Scheduling. 2. Contin-
uous and Semicontinuous Processes. Ind Eng Chem Res
37:4360

9. Ierapetritou MG, Hene TS, Floudas CA (1999) Effective
Continuous-Time Formulation for Short Term Scheduling.
3. Multiple Intermediate Due Dates. Ind Eng Chem Res
38:3446

10. Jia Z, Ierapetritou MG, Kelly JD (2003) Refinery short-term
scheduling using continuous time formulation – crude oil
operations. Ind Eng Chem Res 42:3085

11. Kelly JD. Honeywell Hi-Spec Solutions. Personal communi-
cation

12. Quesada I, Grossmann IE (1995) Global optimization of bi-
linear process network with multicomponent flows. Com-
put Chem Eng 19:1219

13. Rigby B, Lasdon LS, Waren AD (1995) The evolution of Tex-
aco blending systems - from omega to starblend. Inter-
faces 25:64

14. Singh A, Forbes JF, Vermeer PJ, Woo SS (2000) Model-
based real-time optimization of automotive gasoline
blending operations. J Process Control 10:43

Gauss, Carl Friedrich

DUKWON KIM

University Florida, Gainesville, USA

MSC2000: 01A99

Article Outline

Keywords
See also
References

Keywords

Fundamental theorem of algebra; Method of least
squares; Gaussian elimination

C.F. Gauss (1777–1855) worked in a wide variety of
fields in both mathematics and physics including num-
ber theory, group theory, analysis, differential geom-
etry, geodesy, magnetism, astronomy, and optics. His
work has had an immense influence in many areas.

In 1788, Gauss began his education at the Gymna-
sium with the help of L. Büttner and R. Bartels, where
he learned High German and Latin. After receiving
a stipend from the Duke of Brunswick–Wolfenbüttel,
Gauss entered Brunswick Collegium Carolinum in
1792. At the academy, Gauss independently discovered
Bode’s law, the binomial theorem and the arithmetic-
geometric mean, as well as the law of quadratic reci-
procity and the prime number theorem [1,4].

Gauss left Göttingen in 1798 without a diploma,
but by this time he had made one of his most impor-
tant discoveries: the construction of a regular 17-gon by
ruler and compasses [2,3]. This was the most major ad-
vance in this field since the time of Greek mathematics
and was published in his famous work ‘Disquisitiones
Arithmeticae’ [1, Sect. VII].

On July 16, 1799, in his absence, he was awarded his
Doctor of Philosophy degree at the university in Helm-
stedt. His dissertation is a proof of the fundamental the-
orem of algebra (FTA) [2,3]. The fundamental theorem
of algebra states that

Theorem 1 Every polynomial equation of degree n has
n roots in the complex numbers.

Gauss is usually credited with the first proof of the FTA.
He is undoubtedly the first to spot the fundamental flaw
in earlier proofs, namely the fact that they were assum-
ing the existence of roots and then trying to deduce
properties of them. His proof of 1799 is topological in
nature and has some rather serious gaps. It does not
meet our present-day standards required for a rigor-
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ous proof. He published the book ‘Disquisitiones Arith-
meticae’ in the summer of 1801. There were seven sec-
tions, all but the last section, referred to above, being
devoted to number theory.

In 1814, the Swiss accountant J.R. Argand published
a proof of the FTA which may be the simplest of all the
proofs. His proof is based on d’Alembert’s idea in 1746.
Argand simplifies d’Alembert’s idea using a general the-
orem on the existence of a minimum of a continuous
function.

Two years after Argand’s proof appeared Gauss
published in 1816 a second proof of the FTA. Gauss
uses Euler’s approach but instead of operating with
roots which may not exist, Gauss operates with inde-
terminates. This proof is complete and correct. A third
proof by Gauss also in 1816 is, like the first, topological
in nature. Gauss introduced in 1831 the term ‘complex
number’.

In 1849 Gauss produced the first proof that a poly-
nomial equation of degree n with complex coefficients
has n complex roots. The proof is similar to the first
proof given by Gauss. However it adds little since it is
straightforward to deduce the result for complex coeffi-
cients from the result about polynomials with real coef-
ficients.

It is worth noting that despite Gauss’s insistence
that one could not assume the existence of roots which
were then to be proved reals he did believe, as did every-
one at that time, that there existed a whole hierarchy of
imaginary quantities of which complex numbers were
the simplest. Gauss called them a shadow of shadows.

The different proofs of the FTA are Gauss’s most
important contributions as a rigorist, that is to say,
as a representative of logical strictness in method of
proof [1]. Since this theorem has great significance in
both algebra and function theory, it influenced many
other related areas, including mathematical optimiza-
tion.

Gauss used infinite sequences and series in his
daily work, not only in mathematics but in astronomy,
geodesy, and physics. As an eleven-year-old, Gauss was
already studying Newton’s binomial theorem, which
includes the infinite geometric series as a special case.
He investigated the conditions under which an infinite
binomial series has a logical meaning. He also thought
about the theoretical formulation of the notion of lim-
iting value [3]. In an unfinished article written around

1800, ‘Fundamental concepts in the principles of series’,
he formulated the notion of the limit of a sequence in a
fashion far ahead of the times.

Gauss introduced there the notions of upper bound
and least upper bound G; he also introduced the no-
tions of lower bound and greatest lower bound g. Fur-
thermore he introduced the ‘final upper bound’ H and
the ‘final lower bound’ h. If H = h, then their common
value was called the absolute limit (limiting value) of the
sequence. His definitions nearly agree with the present-
day definitions of upper bound G, lower bound g, limit
superiorH, limit inferior h, and the condition H = h for
the existence of the limiting value [3,4].

Gauss’s great interest in astronomy, and his later
interest in geodesy, compelled him to seek a ratio-
nal method for determining the magnitude of obser-
vational errors. In turn, the theory of observational er-
rors forced him to deal with the modes of thought and
concepts of the calculus of probabilities. This work had
great significance in the development of numerous ar-
eas in both the calculus of probabilities and mathe-
matical statistics. Furthermore this theory forced re-
searchers to make clear the conditions under which the
law of the normal distribution is applicable. This law is
often called Gauss’s distribution law.

In 1823 Gauss published his great work ‘Theoria
combinationis observationum erroribus minimus ob-
noxiae’ (‘A theory for the combination of observations,
which is connected with least possible error’). It is a
systematic and generalized presentation of his earlier
theory of observational errors. Here he develops the
method of least squares [3,4] withmathematical rigor as,
in general, the most suitable way of combining observa-
tions, independent of any hypothetical law concerning
the probability of error.

The term ‘determinant’ was first introduced by
Gauss in ‘Disquisitiones Arithmeticae’ (1801) while dis-
cussing quadratic forms [3]. He used the term be-
cause the determinant determines the properties of the
quadratic form. However the concept is not the same as
that of our determinant. In the same work Gauss lays
out the coefficients of his quadratic forms in rectangu-
lar arrays. He describes matrix multiplication (which he
thinks of as composition so he has not yet reached the
concept of matrix algebra) and the inverse of a matrix
in the particular context of the arrays of coefficients of
quadratic forms.
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Gaussian elimination, which first appeared in the
text ‘Nine Chapters of the Mathematical Art’ written in
200 BC, was used by Gauss in his work which studied
the orbit of the asteroid Pallas. Using observations of
Pallas taken between 1803 and 1809, Gauss obtained a
system of six linear equations in six unknowns. Gauss
gave a systematic method for solving such equations
which is precisely Gaussian elimination on the coeffi-
cient matrix [1].

Gauss’s career was marked by distinct periods dur-
ing which he immersed himself first in astronomy, then
in geodesy, and then in physics. Yet he regarded himself
first and last as ‘entirely a mathematician’. More Gauss
was an outstanding example of the few creative thinkers
who were equally at home in both pure mathematics
and applied mathematics. Gauss was always trying to
find new applications of mathematics. He kept many
little notebooks in which he wrote down ideas and sug-
gestions as they occurred to him. Always alert to pos-
sibilities of applying mathematical theories to practical
problems, he foresaw the use of mathematics not only
in science and technology, but also in such fields as eco-
nomics, statistics, finance, and so on.

During his long and active career, Gauss published
a considerable number of books and articles in jour-
nals. But upon his death in 1855, many unpublished ar-
ticles, notes, and manuscripts were found in his desk.
When his complete ‘Collected Works’ were finally pub-
lished later, it had taken a group of German scientists
nearly seventy years to edit his writings. Even today the
name of Gauss occurs throughout mathematics and re-
lated areas over and over again. We have the Gaussian
equations in spherical trigonometry; the hypergeomet-
ric series is also called the Gaussian series; the normal
probability curve is known as the Gaussian curve; Gaus-
sian period is a period of congruent roots in the division
of the circle; addition and subtraction logarithms are
also known as Gaussian logarithm; in higher geometry
we speak of Gauss’s theorem and Gauss curvature; cer-
tain formulas for approximations are known as Gaus-
sian approximation methods.

To appreciate the genius of a man like Gauss we
must also see him in perspective, through the eyes of
his colleagues, his students, his friends, and in terms
of posterity’s verdict. No other mathematician of the
nineteenth century ever received as much acclaim and
recognition as that given to Gauss.
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Least squares optimization appears most often in pa-
rameter estimation problems involving nonlinear mod-
els. In this problem the object is to minimize the
squared distance between an observed and a fitted value
from a model with adjustable parameters. For a single
equation model the formulation becomes

min



S(�) D
nX


D1

�
y
 � f (�; x
)

�2
; (1)

where � are the adjustable model parameters, y
 is the
observed value of the the dependent variable (assumed
to contain error) at the � data point, x
 are the ob-
served values of the independent variables (assumed er-
ror free) at the � data point, and n is the total number
of data points observed.

This is a very common and well studied problem.
As a result many different solution methods exist. In
particular two of the earlier developed methods, New-
ton’s method and the Gauss–Newton approach will be
discussed and the relationship between the two will be
presented.

Newton’s Method

Newton’s method is derived based on a second order
Taylor series expansion of the objective function around
the current ‘guess’ of the solution � i:

Qi (�) D S(�i )C q>(� � �i)

C
1
2
(� � �i )>H(� � �i )

(2)

with

ql D
@S
@�l
D �2

nX

D1

e

@ f

@�l

; (3)

Hl k D
@2S
@�l@�k

D �2
nX


D1

e

@2 f

@�l@�k

C 2
nX

D1

@ f

@�l

@ f

@�k

;

(4)

where e
 = y
 � f
 and f
 = f (x
, �). In order to find
a stationary point of (2) the first order derivatives are
equated to zero:

@Qi

@�
D qi CHi (� � �i) D 0: (5)

IfH is nonsingular, then the solution of (5) for � can be
written as:

� D �i �H�1i qi : (6)

Themethod is implemented in a iterative fashion where
the value of � from (6) is used as the next ‘guess’ of the
solution. The iterations continue until a convergence
criterion is reached. Theoretically this should be based
on the first order derivatives being equal to zero. But
for practically purposes and numerical reasons the cri-
terion is most often based on the change in the param-
eter values. For example:

j�iC1 � �i j

j�i j C �1
� �2; (7)

where �1 and �2 are arbitrary small constants.

Properties of Newton’s Method

Newton’s method has the following properties [11]:
� Converges in one iteration if S(�) is quadratic, as is

the case when the model f (� , x) is linear in the pa-
rameters.

� Requires that both the first and second derivatives of
S(�) are computed.

� Inversion of the Hessian matrix of S(�) is required
at each iteration (O(n3) operation).

� The iteration is undefined when H is singular.
� H is required to be positive definite for the step to

reduce the value of the objective function.
� Outside the neighborhood of the minimum, conver-

gence is not guaranteed.
Many of these properties, especially the requirement of
second derivatives, makes this method impractical for
most physically significant problems.

Gauss–NewtonMethod

The method developed by C.F. Gauss [7] attempts to
overcome some of the drawbacks to the original New-
ton approach. A closer look at (4) shows that for small
errors (e
) the first term in the equation is approxi-
mately zero:

� 2
nX


D1

e

@2 f

@�l@�k

	 0 for e
 � 1: (8)
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Therefore the Hessian matrix Hi can be approximated
as:

Hi 	 H�i D 2
nX

D1

@ f

@�l

@ f

@�k

: (9)

A step in the solution method then takes the form:

�iC1 D �i �H�i
�1qi : (10)

This method can be viewed as linearizing the nonlinear
model, and then solving the resulting linear regression
to determine the starting point for the next iteration [4].
The Gauss–Newton method has the following proper-
ties [12]:
� Only first derivatives of S(�) need to be computed at

each iteration.
� The approximated Hessian matrix H � is intrinsi-

cally positive definite and due to the structure, in-
version is much easier.

� The approximation is exact if the errors e
 tend to
zero at the minimum.

� Outside the neighborhood of the minimum, conver-
gence is not guaranteed.

These properties offer improvements over the Newton
method especially in the computational effort required.

Comparisons Between Newton
and Gauss–NewtonMethod

Various comparisons have been made between these
two methods:
1) If the model fits the data well (i. e., all e
 are small

at the solution), then the Gauss–Newton method of-
ten requires no more iterations than the Newton
method [1].

2) If the model does not fit the data well (i. e., some e

do not tend to zero at the solution), then the Newton
method will require fewer iterations than the Gauss–
Newton, but the computation times will be similar
[6].

Both of these methods are similar in that they fall under
the category of gradient based approaches. In general,
a gradient method is iterative in which the step at each
iteration is defined as:

�iC1 D �i � �iRiqi ; (11)

where qi is defined earlier, �i is the steplength, and
Ri is a matrix which should be positive definite. In

the Newton method Ri is the inverse Hessian H� 1,
while Gauss–Newton uses the approximation H � � 1.
As mentioned earlier, the inverse Hessian is not always
positive definite, while the approximation is, except in
the case that the Jacobian matrix, q, is rank deficient. In
the implementation of both methods, the steplength �i
is taken as 1.

Variable Steplength

One of the obvious extensions of the method involves
a selection of the steplength other than one. At each
iteration, the search direction given by the Gauss–
Newton step is downhill due to the positive definiteness
of the approximate Hessian. But the step does not nec-
essarily result in a reduction of the objective function S,
since overshooting the minimum is possible. Therefore
a steplength � should be chosen such that at least:

S(�iC1) � S(�i ): (12)

One such method can be found in [3]. First define the
function � i(�) as:

�i (�) � S(�i � �Riqi ): (13)

The value of � i(0) is defined as S(� i). An initial value
of �o is chosen and the value of � i(�o) is calculated. If
� i(�o) is greater than� i(0), then obviously this value of
� is not acceptable. Even if the value of � is acceptable,
the following process may still offer an improvement.

The function � i(�) can be approximated by
a quadratic function which matches at � = 0, � = �0,
and the slope at � = 0. The function takes the form:

�i (�) 	 a C b�C c�2 (14)

with the coefficients defined as:

a D �i (0) D S(�i );

b D
d�i

d�

ˇ̌
ˇ̌
�D0
D �q>i Riqi ;

c D
�i (�o) � a � b�o

(�o)2
:

The object is to minimize this approximation over �.
A stationary point occurs at:

�� D
�b
2c
: (15)
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This calculation can be used in an iterative fashion un-
til an acceptable value of � is found which reduces the
objective function. Reference [3] contains a detailed im-
plementation of this iterative calculation.

Gauss–Newton Example

This example of the Gauss–Newton approach with
a variable steplength is found in [3]. This example con-
sists of a two parameter single equation model of the
form:

y D exp
�
��1x1 exp

�
�
�2

x2

�	
: (16)

The parameters, � , represent the Arrhenius constants
for a first order irreversible reaction:

A
k
! B

with x1 representing the reaction time, x2 the reaction
temperature, and y the fraction of A remaining. The
data for the example can be found in the table below.

� x1(hr) x2(K) y
1 0:10 100 0:980
2 0:20 100 0:983
3 0:30 100 0:955
4 0:40 100 0:979
5 0:50 100 0:993
6 0:05 200 0:626
7 0:10 200 0:544
8 0:15 200 0:455
9 0:20 200 0:255
10 0:25 200 0:167
11 0:02 300 0:566
12 0:04 300 0:317
13 0:06 300 0:034
14 0:08 300 0:016
15 0:10 300 0:066

The objective is to minimize the least squares func-
tion:

min



S(�) D
15X

D1

�
y � f
(�)

�2
: (17)

The gradients, q, of the objective function take the
form:

q1 D 2
15X

D1

e
 f
 exp
�
�
�2

x
2

�
x
1; (18)

q2 D �2
15X

D1

e
 f

�1x
1
x
2

exp
�
�
�2

x
2

�
; (19)

and the approximate Hessian matrix is given by:

H�l k D 2
15X

D1

@ f

@�l

@ f

@�k

; l ; k D 1; 2; (20)

where:

@ f

@�1
D f
 exp

�
�
�2

x
2

�
x
1; (21)

@ f

@�2
D f


�1x
1
x
2

exp
�
�
�2

x
2

�
: (22)

The initial guess for the parameter values is taken
as:

�1 D

�
�1;1
�1;2

�
D

�
750
1200

�
:

Using this initial guess the value of the objective func-
tion, gradients, and approximated Hessian were calcu-
lated.

S(�1) D 1:090441;

q1 D
�
�0:002230450
0:006863795

�
;

H�1 D
�

0:2689478 �0:7730614
�0:7730614 2:310325

�
� 10�5:

The search step direction �1, is calculated from �
H��11 q1. This is generally accomplished by solving the
linear system:

�H�1 �1 D q1: (23)

Many different numerical techniques exist for the solu-
tion of (23), see [5] or [13] for examples. The calcula-
tion results in:

�1 D

�
�644:9785
�512:9099

�
:
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Initially using a stepsize �0 = 1, the following values for
the parameters are:

�0 D

�
105:0215
687:0901

�
:

An objective value of S(�0) = 0.9133969 results, which is
less than S(�1). Even though this is an acceptable value,
still a different stepsize may give a better result. Using
the approximation given in (14) with the following val-
ues of the parameters for the fit:

�i(� D 0) D 1:090441;
�i(� D 1) D 0:9133969;
d�i

d�

ˇ̌
ˇ̌
�D0
D �2:081916:

The parabola has a minimum, given by (15), at
a steplength � � = 0.5464714. The resulting values of
the parameters using this steplength are:

�1 D

�
397:5376
919:7092

�
:

An objective value of S(�1) = 0.3345645 results, which
is a large improvement over S(�0). This value of the pa-
rameter set, �1, is accepted as �2, and the iterations con-
tinue. The results of the iterations can be found in the
table below.

i S(�i ) �i;1 �i;2

1 1:090411 750 1200
2 0:3345645 397:5376 919:7092
3 0:05765885 646:0847 938:5288
4 0:04038005 810:6260 965:7625
5 0:03980731 818:3628 962:1228
6 0:03980599 813:4583 960:9063

The value of the parameters and the objective func-
tion at the sixth iteration are accepted as the solution to
the problem. The final values of the gradients and the
approximate Hessian are:

q D
�
�0:218524
0:631308

�
� 10�6;

H� D
�

0:271890 �0:957336
�0:957336 3:50371

�
� 10�5:

The above calculation benefited from that fact that
the initial guess for the parameter values was relatively
close to the solution. Take now the same example, but
using the following parameter values as the starting
point of the calculation:

�1 D

�
100
2000

�
:

This is obviously a ‘worse’ starting point than the pre-
vious calculation. Using these parameter values the fol-
lowing results:

S(�1) D 5:299502;

q1 D
�
�0:0007098080
0:0002442936

�
;

H�1 D
�

0:7036033 �0:2354773
�0:2354773 0:07896382

�
� 10�7;

�1 D

�
�134608:0
�432361:0

�
;

�0 D

�
�134508:0
�430361:0

�
:

Using the value of �0, calculated with �0 = 1, it is not
possible to calculate the value of the objective func-
tion since the resulting exponentials are very large. The
value of �was repeatedly halved until a reasonable value
of the objective function was obtained. The value �0 =
2� 8 = 0.00390625 resulted in:

�0 D

�
�425:8140
311:0039

�
:

An objective value of S(�0) = 0.3366272 × 1020 results,
which is not acceptable. The stepsize needs to be ad-
justed such that the objective function decreases. This
is accomplished in the same way as outlined previously.
The parabolic approximation reaches a minimum at
� � 	 5 × 10� 25. This is too small to be practical, so
a value of �1 = �0 /4 will be used. This results in S(�1) =
5.471375. Again this is not acceptable since it is larger
than S(�1). The value of � is iterated on until an ac-
ceptable value is determined. Finally after three more
iterations, �4 = 0.0000619701, which produces:

�4 D

�
91:65955
1973:211

�
:

An objective value of S(�4) = 5.299135 results, which is
just less than the original value of 5.299502, but given
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the criterion in (12) is acceptable. �4 is accepted as �2
and the iterations continue.

The solution, in this case, is obtained after 25 itera-
tions. This illustrates the major downfall of the Gauss–
Newtonmethod, that without a ‘good’ initial guess con-
vergence to the solution is slow at best and not guaran-
teed. In fact without using a variable stepsize, the algo-
rithm would have blown up after just one iteration.

Modifications and Applications

A very large number of different variations on the ba-
sic Gauss–Newton algorithm exist. For the most part,
these variations include methods to determine the step-
size, and approaches which actually improve the accu-
racy of the approximated Hessian matrix. For examples
of different variations see [10] or [8]. Others have done
comparisons and numerical experiments with popular
variations to test their applicability to a wide range of
problems [2,15]. The algorithm has also been applied
to what is referred to as weighted least squares (WLS)
in which each term in the objective function receives
a different coefficient:

min



S(�) D
nX


D1

w

�
y
 � f (�; x
)

�2
; (24)

where w
 is the weighting for the �th data point, see
[14] and [9] for examples.

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� ABS Algorithms for Optimization
� Gauss, Carl Friedrich
� Generalized Total Least Squares
� Least Squares Orthogonal Polynomials
� Least Squares Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
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Introduction

The aim of cluster analysis is to establish a set of clus-
ters such that the data points in a cluster are more sim-
ilar to one another than they are to those in other clus-
ters. The clustering problem is old, can be traced back
to Aristotle, and has already been studied quite exten-
sively by 18th century naturalists such as Buffon, Cu-
vier, and Linne [19]. Since then, clustering has been
used in many disciplines, such as market research, so-
cial network analysis, and geology, thus reflecting its
broad appeal and utility as a key step in exploratory
data analysis [26]. In market research for instance, clus-
ter analysis is widely used when working with multi-
variate data from surveys and test panels. Market re-
searchers use cluster analysis methods to segment and
determine target markets, and position new products.
Cluster analysis is also used in the service of market
approaches to the establishment of business enterprise
value. Johnson [28] addresses the potential role and
utility of cluster analysis in transfer pricing practices.
Given the importance of clustering, a substantial num-
ber of books, such as [11,20,27,39], as well as review pa-
pers, such as [58] have been published on this subject.

In biology, clustering provides insights into tran-
scriptional networks, physiological responses, gene
identification, genome organization, and protein struc-
ture. Genome-wide measurement of mRNA expression
levels is an efficient way of gathering comprehensive
information on genetic functions and transcriptional
networks. However, extracting useful information from
the resulting data sets first involves organizing genes
by their pattern and/or intensity of expression in or-
der to define those that are co-regulated. Such in-
formation provides a basis for extracting regulatory
motifs for transcription factors driving the diverse ex-
pression patterns, allowing assembly of predictive tran-

scriptional networks [2]. This information also pro-
vides insights into the functions of unknown genes,
since functionally related genes are often co-regulated
[55]. Furthermore, clustered array data provides iden-
tification of distinct categories of otherwise indistin-
guishable cell types, which can have profound implica-
tions in processes such as disease progression [50]. In
sequence analysis, clustering is used to group homol-
ogous sequences into gene families. Examining char-
acteristic DNA fragments helps in the identification of
gene structures and reading frames. In protein struc-
ture prediction, clustering the ensemble of low energy
conformers is used to identify the top suggested protein
structures.

Two common similarity metrics are correlation
and Euclidean distance. The latter is often popular,
since it is intuitive, can be described by a familiar
distance function, and satisfies the triangular inequal-
ity. Clustering methods that employ asymmetric dis-
tance measures [33,41] are probably more difficult
to intuitively comprehend even though they may be
highly suited to their intended applications. The ear-
liest work on clustering emphasized visual interpre-
tations for the ease of study, resulting in methods
that utilize dendograms and color maps [5]. Other
examples of clustering algorithms include: (a) Sin-
gle-Link and Complete-Link Hierarchical Clustering
[27,49], (b) K-Means Algorithm and its family of vari-
ants, such as the K-Medians [21,34,37,60,61], (c) Re-
formulation Linearization-based Clustering [1,46],
(d) Fuzzy Clustering [3,9,44,47], (e) Quality Clus-
ter Algorithm (QTClust) [23], (f) Graph-Theoretic
Clustering [17,57,59], (g) Mixture-Resolving Cluster-
ing Method [7,26], (h) Mode Seeking Algorithms [26],
(i) Artificial Neural Networks for Clustering [4,31] such
as the Self-Organizing Map (SOM) [32] and a vari-
ant that combines the SOM with hierarchical cluster-
ing, the Self-Organizing Tree Algorithm (SOTA) [22]
(j) Information-Based Clustering [8,48,54], (k) Stochas-
tic Approaches [30,36,38]. Some of these methods, such
as the K-Means and Information Clustering, are opti-
mization-based approaches, in which the clustering is
represented as an unknown parameter vector of a cost
function. The process then seeks to obtain the best clus-
tering by minimizing this cost function. Other classes
of clustering methods such as competitive learning may
not have a straightforward cost function. For instance,
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in the SOM, cluster centers are arbitrarily chosen ini-
tially, after which random data points are selected and
placed into the nearest cluster, whose center is updated
accordingly after each selection. Clustering ceases when
the cluster centers become stationary.

Recently, Tan et al. [51,52] presents a novel op-
timization-based Mixed-Integer Nonlinear Program-
ming (MINLP) clustering algorithm, the Global
Optimal Search with Enhanced Positioning (EP_
GOS_Clust), which is robust yet intuitive. This algo-
rithm is significant in that it is able to progressively
identify and weed out outlier data points. In addition,
it involves a pre-clustering process that is rigorous and
has a clearly-defined decision criterion. This is notable
as the results of many clustering methods based on
function optimization schemes often vary depending
on the random initialization or starting heuristics. The
EP_GOS_Clust also contains a convenient method to
predict the optimal cluster number. The algorithm is
compared with several approaches commonly used in
clustering biological microarray data, namely K-meth-
ods, QTClust, SOM, and SOTA. By comparing the in-
tra-cluster and inter-cluster error sums, as well as the
strength of biological coherence based on Gene Ontol-
ogy resources and expression pattern correlation, the
EP_GOS_Clust is shown to compare favorably against
other methods. The following sections will describe this
novel clustering approach in more detail.

Formulations

Notation and Pre-Clustering

The measure of distance for a gene i, for i D 1; : : : ; n
having k features (or dimensions), for k D 1; : : : ; s is
defined as aik. Each gene is to be assigned to only one
(hard clustering) of c possible clusters, each with cen-
ter zjk, for j D 1; : : : ; c. The binary variables wij indi-
cates whether gene i falls within cluster j (wi j D 1, if
yes; wi j D 0, if no).

Pre-clustering the data is important to expedite the
computational resources required to solve the hard
clustering problem by (i) identifying genes with simi-
lar experimental responses, and (ii) removing outliers
deemed not to be significant to the clustering process.
A straightforward pre-clustering approach to provide
just the adequate amount of discriminatory character-
istics so that the genes can be pre-clustered properly is

to reduce the quantities represented in the k-dimen-
sional expression vectors into a set of representative
variables fC; o;�g. The (C) variable represents an in-
crease in expression level compared to the previous
time point, the (�) variable represents a decrease in
expression level from the previous time point, and the
(o) variable represents an expression level that does not
vary significantly across the time points. The expression
data can also be pre-clustered by creating a rank-or-
dered list of gene proximities based on Euclidean dis-
tance or correlation. Genes that demonstrate an ob-
vious level of proximity, such as a separation of only
at most 1% of the maximum inter-gene distances, are
then grouped together. The pre-clusters are the prox-
imity genes that form a complete clique, that is, there is
a link between every gene within the same pre-cluster.
With this choice, a maximal clique search can be per-
formed by using various levels of pre-clustering crite-
ria. Clearly, when the criterion is overly lenient, a large
number of pre-clusters are formed, but most of the
genes will belong tomultiple pre-clusters, and the num-
ber of maximal cliques formed is small. On the other
hand, an unnecessarily strict cut-off results in a small
number of pre-clusters, thus not accurately reflecting
the extent of relatedness between the data. In pre-clus-
tering over a range of cut-off values, we can then select
the appropriate criterion as the point where the maxi-
mum number of complete cliques is formed [53].

HardClustering byGlobal Optimization The global
optimization approach seeks to minimize the Euclidean
distances between the data points and the centers of
their assigned clusters as:

Minimize
wi j;z jk

nX
iD1

cX
jD1

sX
kD1

wi j
�
aik � z jk

�2

s.t.
cX

jD1

wi j D 1 ; 8i D 1; : : : ; n

wi j are binary variables, z jk are

continuous variables :
(Problem 1)

There are two sets of variables in the problem, wij and
zjk. While the bounds of wij are clearly 0 and 1, that of
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zjk is obtained by observing the range of aik values.

zLjk D min faikg ; 8k D 1; : : : ; s

zUjk D max faikg ; 8k D 1; : : : ; s :

The pre-clustering work suggests that some of the genes
need only be restricted to some number of known clus-
ters, since it can be determined (for instance by distance
and correlation metrics) that certain genes are exceed-
ingly dissimilar from some of the pre-clusters and thus
have virtually zero probability of being clustered there.
This restriction can be described by introducing an ad-
ditional binary parameter suiti j . A data point deemed
to belong uniquely to just one cluster will only have
suiti j D 1 for only one value of j and zero for the oth-
ers, whereas a data point restricted to a few clusters will
have suiti j D 1 for only those clusters. This reduces the
computational demands of the problem. The introduc-
tion of the suiti j parameters also obviates the need for
constraints that prevent the redundant re-indexing of
clusters. Together with the necessary first-order opti-
mality condition (i. e., the vector distance sum of all
genes within a cluster to the cluster center should be
intuitively zero), the formulation becomes:

Minimize
wi j;z jk

nX
iD1

sX
kD1

a2i k

�

nX
iD1

cX
jD1

sX
kD1

(suiti j)(aikwi jz jk )

s.t. (suiti j)

 
z jk

nX
iD1

wi j �

nX
iD1

aikwi j

!

D 0 ; 8 j;8k
cX

jD1

(suiti j)wi j D 1 ; 8i

1 �
nX

jD1

(suiti j)wi j � n � c C 1

wi j D 0 � 1 ; 8i;8 j

zLjk � z jk � zUjk ; 8 j;8k :

(Problem 2)

The first set of constraints are the necessary optimality
conditions, the second demand that each gene can be-
long to only one cluster, and the third state that there is

at least one and no more than (n � c C 1) data points
in a cluster. Note also that the

Pn
iD1

Ps
kD1 a

2
i k term in

the objective function of Problem 2 is a constant and
can be dropped, though for the sake of completeness
we will retain the term throughout the subsequent for-
mulations in the paper. Problems 1 and 2 are Mixed In-
teger Nonlinear Programming (MINLP) problems with
bilinear terms in the objective function and the first set
of constraints. To handle the nonlinearities formed by
the product of variables wij and zjk, new variables yijk
along with additional constraints [12] are defined as fol-
lows:

yi jk D wi jz jk (1)

z jk � zUjk
�
1 � wi j

�
� yi jk � z jk � zLjk

�
1 � wi j

�
(2)

zLjkwi j � yi jk � zUjkwi j; 8i;8 j;8k : (3)

The introduction of yijk and the additional constraints
reduces the formulation to an equivalent Mixed-Integer
Linear Programming (MILP) problem, but results in an
inordinately large number of variables. Thus, there is
a need for new approaches to address large datasets.

The GOS Algorithm for Clustering The introduc-
tion of the bilinear variable yijk results in a large num-
ber of variables to be considered. In a problem with
over 2000 data points, each having 24 features, to be
placed into over 380 clusters, the number of variables to
be considered numbers over 18 million. Without intro-
ducing the yijk variables will leave the problem in a non-
linear form. Mixed-integer nonlinear programming
(MINLP) problems are considered extremely difficult.
Theoretical advances and prominent algorithms for
solving MINLP problems are addressed in [12,13,15].

The MINLP clustering formulation described in
Problem 2 can be solved by a variant of the General-
ized Benders Decomposition (GBD) algorithm [14], de-
noted as the Global Optimum Search (GOS). The pri-
mal problem results from fixing the binary variables to
a particular 0-1 combination. Here, wij is fixed and zjk
is solved from the resultant linear programming (LP)
problem. In addition, the solution also includes the rel-
evant Lagrange multipliers. The master problem is es-
sentially the problem projected onto the y-space (i. e.,
that of the binary variables). To expedite the solution
of this projection, the dual representation of the mas-
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ter is used. This dual representation is in terms of the
supporting Lagrange functions of the projected prob-
lem. It is assumed that the optimal solution of the pri-
mal problem as well as its Lagrange multipliers can be
used for the determination of the support function. In
the master problem, the zjk solution from the accompa-
nying primal is taken and the master is solved for the
wij variables.

The two sequences of upper and lower bounds are
then iteratively updated until they converge in a finite
number of iterations. With each successive iteration,
a new support function is added to the list of constraints
for the master problem. Thus in a sense, the support
functions for the master problem build up with each
iteration, forming a progressively tighter envelope and
gradually pushing up the lower bound solution until it
converges with the upper bound solution.

With fixed starting values for wij, the primal prob-
lem becomes:

Minimize
z jk

nX
iD1

sX
kD1

a2i k �
nX

iD1

cX
jD1

sX
kD1

aikw�i jz jk

s.t. z jk
nX

iD1

w�i j �
nX

iD1

aikw�i j D 0 ; 8 j;8k

zLjk � z jk � zUjk ; 8 j;8k :

(Problem 3.1)

The primal problem is a Linear Programming (LP)
problem. All the other constraints drop out since they
do not involve zjk, which are the variables to be solved
in the primal problem. Besides zjk, the Lagrange multi-
pliers �m

jk for each of the constraints above is obtained.
The objective function is the upper bound solution.
These are inputted into the master problem, which be-
comes:

min
wi j;
B

�B

such that �B �

nX
iD1

sX
kD1

a2i k �
nX

iD1

cX
jD1

sX
kD1

aikwi jz�jk

C

cX
jD1

sX
kD1

�m�
jk

 
z�jk

nX
iD1

wi j

�

nX
iD1

aikwi j

!
; m D 1;M

cX
jD1

wi j D 1 ; 8i

1 �
nX

jD1

wi j � n � c C 1 ; 8 j

wi j D 0 � 1 ; 8i;8 j :
(Problem 3.2)

The master problem solves for wi j and �B , and results
in a lower bound solution (i. e., the objective function).
The master problem is a Mixed Integer Linear Pro-
gramming (MILP) problem. The wi j solutions are cy-
cled back into the primal problem and the process is
repeated until the solution converges. Thus, there is no
longer a need for the variables yi jk , which substantially
reduces the number of variables to be solved. Also, after
every solution of the master problem, where a solution
set for wi j is generated, an integer cut is added for sub-
sequent iterations to prevent redundantly considering
that particular solution set again. The cut is expressed
as:

nX

i2fnjwi jD1g

wi j �

nX

i2fnjwi jD0g

wi j � n � 1 : (4)

Determining theOptimal Number ofClusters Most
clustering algorithms do not contain screening func-
tions to determine the optimal number of clusters. Yet
this is important to evaluate the results of cluster analy-
sis in a quantitative and objective fashion. On the other
hand, while it is relatively easy to propose indices of
cluster validity, it is difficult to incorporate these mea-
sures into clustering algorithms and appoint thresholds
on which to define key decision values [18,27]. Some of
the indices used to compute cluster validity include the
Dunn’s validity index [10], the Davis–Bouldin valid-
ity index [6], the Silhouette validation technique [43],
the C index [24], the Goodman–Kruskal index [16], the
Isolation index [39], the Jaccard index [25], and the
Rand index [42]. We note that the optimal number of
clusters occurs when the inter-cluster distance is maxi-
mized and the intra-cluster distance is minimized. We
adapt the concept of a clustering balance [29], where
it has been shown to have a minimum value when
intra-cluster similarity is maximized and inter-cluster
similarity is minimized. This provides ameasure of how
optimal is a certain number of clusters used for a partic-
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ular clustering algorithm. We introduce the following:

Global Center, zok D
1
n

nX
iD1

aik ; 8k (5)

Intra-cluster error sum,

� D

nX
iD1

cX
jD1

sX
kD1

wi j


aik � z jk



2
2

(6)

Inter-cluster error sum,

� D

cX
jD1

sX
kD1



z jk � zok


2
2 :

(7)

Jung et al. [29] proposed a clustering balance parame-
ter, which is the ˛-weighted sum of the two error sums.

Clustering Balance, " D ˛�C (1 � ˛)� : (8)

We note here that the rightful ˛-ratio is 0.5. There are
two ways to come to this conclusion. We note that the
factor ˛ should balance the contributive weights of the
two error sums to the clustering balance. At extreme
cluster numbers, that is, the largest and smallest num-
ber possible, the sum of the intra-cluster and inter-clus-
ter error sums at both cluster numbers should be bal-
anced. In the minimal case, all the data points can be
placed into a single cluster, in the case of which the in-
ter-cluster error sum is zero and the intra-cluster er-
ror sum can be calculated with ease. In the maximal
case, each data point forms its own cluster, in the case
of which the intra-cluster error sum is zero and the in-
ter-cluster error sum can be easily found. Obviously the
intra-cluster error sum in the minimal case and inter-
cluster error sum in the maximal case are equal, sug-
gesting that the most appropriate weighting factor to
use is in fact 0.5. The second approach uses a clustering
gain parameter proposed by Jung et al. [29], which is
given by:

� D

cX
jD1

sX
kD1

�
nj � 1

� 

zok � z jk


2
2 : (9)

Jung et al. [29] showed the clustering gain to have
a maximum value at the optimal number of clusters,
and demonstrated that the sum total of the clustering
gain and balance parameters is a constant. This is only
shown to be only possible if the ˛-ratio is 0.5 [51]. These
derivations suggest that for any clustering algorithm in-

cluding that using the GOS algorithm, one can deduce
the optimal number of clusters by performing multiple
repetitions of the clustering process over a suitably large
range of cluster numbers and watching for the cluster-
ing gain or clustering balance turning points.

Proposed Algorithm

The GOS formulation appears to be a suitable cluster-
ing algorithm. But for it to be effective, the formulation
must be provided with a good initialization point. Also,
we want to expeditiously incorporate the approach to
predict the optimal number of clusters into a cluster-
ing algorithm. With these considerations in mind, we
propose the following GOS clustering algorithm with
enhanced data point positioning (EP_GOS_Clust).

Gene Pre-Clustering We pre-cluster the original
data by proximity studies to reduce the computational
demands by (i) identifying genes with very similar re-
sponses, and (ii) removing outliers deemed to be in-
significant to the clustering process. To provide just
adequate discriminatory characteristics, pre-clustering
can be done by reducing the expression vectors into
a set of representative variables or by pre-grouping
genes that are close to one another by correlation or
some other distance function.

Iterative Clustering We let the initial clusters be de-
fined by the genes pre-clustered previously, and find the
distance between each of the remaining genes and these
initial clusters and as a good initialization point placed
these genes into the nearest cluster. For each gene, we
allow its suitability in a limited number of clusters based
on the proximity study. In the primal problem of the
GOS algorithm, we solve for zjk. These, together with
the Lagrange multipliers, are used in the master prob-
lem to solve for wij. The primal gives an upper bound
solution and the master a lower bound. The optimal so-
lution is obtained when both bounds converge. Then,
the worst-placed gene is removed and used as a seed
for a new cluster. This gene has already been subjected
to a membership search so there is no reason for it to
belong to any one of the older clusters. The iterative
steps are repeated and the clusters build up gradually
until the optimal number is attained. Figure 1 shows
a schematic of EP_GOS_Clust.
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 1
Schematic of EP_GOS_Clust algorithm

Gene Clustering: A Novel Decomposition-Based Clustering Approach, Table 1
Comparison of cluster correlation. The shaded row contains the results for EP_GOS_Clust and the top three performers in
each column are marked with an asterisk

Correlation coefficient
Optimal Cluster Number Average Maximum Minimum Standard deviation

Clustering
Method

EP_GOS_Clust 237 0.617* 0.938* 0.264* 0.128*
KMedians 445 0.615 0.937 0.197 0.134
KCityBlk 665 0.398 0.760 -0.159 0.149
KCorr 665 0.630* 0.931 0.239* 0.119*
KMeans 775 0.614 0.959* 0.072 0.131
GOS I 295 0.590 0.933 0.202 0.148
KAvePair 452 0.567 0.909 0.156 0.141
SOTA 540 0.604 0.925 0.378* 0.122*
SOM 485 0.623* 0.968* 0.202 0.156
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 2
Intra-cluster error sum

Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 3
Inter-cluster error sum

Case Study

Experimental Data

As a study, we use experimental microarray data de-
rived from a study in the role of the Ras/protein kinase
A pathway (PKA) on glucose signaling in yeast [56].
These experiments analyzed mRNA levels in samples

extracted from cells at various times following stimula-
tion by glucose or following activation of either Ras2
or Gpa2, which are small GTPases involved in the
metabolic and transcriptional response of yeast cells
to glucose [45]. These experiments were performed in
wild type cells and cells defective in PKA activity. Clus-
tering these microarray data has proven to be a critical
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 4
Error sum difference

Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 5
Optimal cluster number

step in using the data to develop a predictive model of
a topological map of the signaling network surrounding
the Ras/PKA pathway [35].

Levels of RNA for each of the 6237 yeast genes
in each of the RNA samples from the above exper-
iments were measured using Affymetrix microarray

chips and analyzed by the Affymetrix software.We used
the Affymetrix MicroArray Suite 5.0, which analyzes
the consensus of intensities of hybridization of an RNA
to the collection of perfect match probes for a gene on
the array, relative to the intensities of hybridization to
single mismatch probes, to further determine whether
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Table 2
Gene Ontology comparison. The table compares the � log10(P) values of the clusters, which reflect the level of annotative
richness, as well as the proportion of yeast genes that fall into biologically significant clusters. The latter is important in
‘presenting’ the maximal amount of relevant genetic information for follow-up work in areas such as motif recognition and
regulatory network studies

� log10(P) Comparison
Average Standard deviation In clusters with� log10

(P) values� 4
In clusters with
� log10(P) values� 3

Clustering
Method

EP_GOS_Clust 4.40* 0.37 32.82* 64.92*
KMedians 4.27* 0.34* 30.83* 62.23*
KCityBlk 3.69 0.49 27.53 56.68
KCorr 4.15* 0.39 32.59* 60.08*
KMeans 3.45 0.41 25.11 55.20

GOS I 3.84 0.42 28.19 57.75
KAvePair 3.77 0.48 25.18 54.43
SOTA 3.67 0.31* 30.20 58.86
SOM 3.94 0.35* 30.47 59.24

a signal for a specific RNA in a sample was reliable (P
or present), unreliably low (A or absent), or ambigu-
ous (M). Before clustering the array data, we filtered
the data to remove unreliable data. In particular, we
retained all genes for which all the time points were
present (4105 genes), all the genes for which greater
than 50% of the time points were present, and all the
genes for which the present/absent calls exhibited a bi-
ologically relevant pattern (e. g. PAAA for the four time
points in the experiment, suggesting repression of gene
expression over the course of the experiment). In all, we
retained 5652 genes.

Description of Comparative Study

The clustering algorithms to be compared are
(a) K-Means, (b) K-Medians, (c) K-Corr, where the
Pearson correlation coefficient is the distance metric,
(d) K-CityBlock, where the distance metric is the city
block distance, or the ‘Manhattan’ metric, which is akin
to the north-south or east-west walking distance in
a place like New York’s Manhattan district, (e) K-Ave-
Pair, where the cluster metric is the average pair-wise
distance between members in each cluster, (f) QTClust,
(g) SOM, (h) SOTA, (i) GOS I, where genes with up
to 7 different feature points are pre-clustered, initial
clusters are defined by uniquely-placed genes, and each
gene is placed into its nearest cluster as the initialization
point, and (j) EP_GOS_Clust, for which genes are pre-
clustered if they have 2 or less different feature points

and can be uniquely clustered. Since the K-family ap-
proaches are sensitive to the initialization point, we run
each 25 times and use only the best result.

Results and Discussion

A good clustering procedure should minimize the in-
tra-cluster error sum and maximize the inter-cluster er-
ror sum. We look also at the difference between error
sums, which is somewhat indicative of the efficacy of
a particular clustering algorithm, since methods using
intra-cluster error sum as the cost function would prob-
ably outperform methods using inter-cluster error sum
as a performance indicator. From Fig. 2, 3 and 4, we can
see that EP_GOS_Clust compares very favorably com-
pared to the other clustering algorithms. Also, as seen
from Fig. 5, EP_GOS_Clust predicts the lowest number
of optimal clusters. Together with the quality of the er-
ror sum comparisons, we infer the superior ‘economy’
of EP_GOS_Clust in producing tighter data groupings
by utilizing a lower number of clusters, as it is actu-
ally possible to achieve tight groupings by using a large
number of clusters, even with an inferior clustering al-
gorithm.

EP_GOS_Clust is also capable of uncovering
strongly correlated clusters with high levels of biolog-
ical coherence. Tables 1 and 2 shows that it performs
consistently well when compared against the signifi-
cance of cluster biological coherence uncovered by the
other clustering methods. We find our clusters to ex-
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hibit good correlation and a high level of functional co-
herence strength across all cluster sizes, which indicates
that EP_GOS_Clust shows good consistency and lack of
size-bias. Also, it can be seen that EP_GOS_Clust com-
pares very well with other clustering methods in pro-
ducing highly correlated clusters, even against methods
such as K-Corr that already explicitly uses correlation
as a metric for clustering and the correlation hunting
SOM. In addition, EP_GOS_Clust conveniently isolates
errant data points and refines the existing groupings as
the clustering progresses.
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Introduction

Some methods are reviewed to solve the resulting com-
plementarity problem and two novel algorithms are de-
scribed. The use of complementarity problems provides
more flexibility to solve optimization problems, as well
as a number of other advantages [10].

The existence of a general solution procedure for
the linear complementarity problem (LCP) permits the
incorporation of this algorithm recursively in an opti-
mization algorithm and so avoids the use of active set
strategies to handle inequality constraints and the use
of second-order information on the objective function.
This is often beneficial in the presence of nonconvex
functions [10].

There exist many traditional approaches to solve the
LCP. An algorithm was formulated early for the solu-
tion of LCPs [5,6]. Later, it was shown that if a LCP has
a solution, then there exists a linear program, which,
for a suitable objective function, will have an optimal
solution that is also a solution to the LCP [2]. This
was further generalized [7,8,9] so that for certain classes
of LCPs the problem could be specified and solved as
a linear program. A characterization of LCP was for-
mulated [11] showing the equivalence of its solution to
a solution of an appropriate parametric linear program
with one scalar parameter.

A number of interior point algorithms to solve
the LCPs have been presented, such as an interior
point potential reduction algorithm [4] with P-matri-
ces, positive semidefinite matrices and skew-symmetric
matrices, an interior point algorithm which uses the
affine scaling algorithm, to solve nonconvex (indefi-
nite or negative definite) quadratic programming prob-
lems [14]. A fully polynomial-time approximation al-
gorithm for computing a solution of the LCP with
row-sufficient matrices can also be formulated [15].
This algorithm is a fully polynomial-time approxima-

tion scheme for finding an �-approximate stationary
point of the general LCP.

Here we shall briefly describe some particular meth-
ods and indicate two extensions of these algorithms
which apply to more general matrices.

Definitions

In this section some definitions will be given and they
will be used in the next sections [3].

Definition 1 Given M, an n � n matrix, and q, an n-
dimensional vector. Let N be the index set of the
variables, i. e., N D 1; 2; : : : ; n; the formulation of the
LCP, LCP(q,M), is then as follows:

Mx C q � 0 ; (1)

x � 0 ; (2)

xT (Mx C q) D 0 : (3)

Definition 2 A matrix M 2 Rn�n is said to be
a P-matrix (P0-matrix) if all its principal minors are
positive (nonnegative). The class of such matrices is de-
noted P (P0).

Definition 3 A square matrix is called a Z-matrix if
its off-diagonal entries are all nonpositive. A Z-matrix
which is also a P-matrix (P0-matrix) is called a K-ma-
trix (K0-matrix).

Definition 4 AmatrixM 2 Rn�n is said to be column-
sufficient if it satisfies the implication

[zi(Mz)i � 0 for all i]! [zi(Mz)i D 0 for all i] :

(4)

The matrix M is called row-sufficient if its transpose is
column -sufficient. If M is both column-sufficient and
row-sufficient, then it is called sufficient.

Definition 5 A square matrix M is a skew-symmetric
matrix if its transpose is also its negative:

AT D �A : (5)

Definition 6 If M is a positive definite matrix, then
there exists a vector z such that

Mz > 0 ; z > 0 (6)



Generalizations of Interior Point Methods for the Linear Complementarity Problem G 1147

Definition 7 If M is a positive semidefinite matrix,
then there exists a vector z such that

Mz � 0 ; z > 0 : (7)

Definition 8 A potential function is

P(x;˝) D n log(cTx)�
nX

jD1

log x j; x 2 int(�˝) (8)

where int(�˝ ) indicates the interior of the set �˝ which
is the set of all feasible solutions of the dual.

Formulation

The aim of this section is to describe two modern im-
plementations with interior point methods. In the first
subsection an interior reduction algorithm to solve the
LCP is presented, with particular matrix classes, [4],
while in the following subsection an interior point po-
tential algorithm to solve the general LCP is presented.

An Interior Point Reduction Algorithm
to Solve the LCP

There exist many interior point algorithms to solve
LCPs. A particularly interesting approach is an interior
point potential reduction algorithm for the LCP [4].
The complementarity problem is viewed as a minimiza-
tion problem, where the objective function is the prod-
uct of the solution vector x and the slack vector of the
inequalities y.

The objective of the algorithm formulated is to find
an �-complementarity solution in time bounded by
a polynomial in the input size. This algorithm is formu-
lated to solve LCP(q,M) which will have a solution, such
as when the matrixM is a P-matrix. It is then extended
to matrices M which are only positive semidefinite and
to skew-symmetric matrices.

Consider a LCP, that is, given a rational matrix
M 2 Rn�n and a rational vector q 2 Rn , find vectors
x; y 2 Rn such that

y D Mx C q ; (9)

x; y � 0 ; (10)

xT y D 0 ; (11)

which can be regarded as a quadratic programming
problem

Minimize xT y (12)

subject to y D Mx C q (13)

x; y � 0 : (14)

Given the problem Eqs. (12)–(14) the aim is to find
a point with xT y < � for a given � > 0.

The algorithm proceeds by iteratively reducing the
potential function:

f (x; y) D � ln(xT y) �
X
j

ln(x j y j) : (15)

Apply a linear scaling transformation to make the coor-
dinates of the current point all equal to 1 and then take
a gradient step in the transformed space using the gra-
dient of the transformed potential function. The step
size can be determined either by the algorithm or by
line search to minimize the value of the potential func-
tion. Finally transform the solution point back to the
original space.

Consider the potential function Eq. (15) under scal-
ing of x and y, given any feasible interior point (x0,y0)
if the matrices X and Y are diagonal matrices with the
elements on the diagonal given by the values of (x0,y0).

Define a linear transformation of the space by

x̄ D X�1x; ȳ D Y�1 y : (16)

and let W D XY , wj D (x0j )
T (y0j ) so that (w D w1;

w2; � � � ;wn) and M D Y�1MX: Consider the trans-
formed problem as follows:

Minimize x̄TW ȳ (17)

subject to ȳ D M̄x̄ C q̄ (18)

x̄; ȳ � 0 : (19)

Feasible solutions of the original problem are mapped
into feasible solutions of the transformed problem:

ȳ D Y�1(Mx C q) D M̄x̄ C q̄ : (20)
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Assume that the current point is indeed (e,e) and the
potential function has the form

f (x; y) D � ln(xTWy) �
nX

jD1

ln(x jwj y j) : (21)

The gradient of f is given by

rx f (x; y) D
�

xTWy
Wy � X�1e ; (22)

ry f (x; y) D
�

xTWy
Wx � Y�1e ; (23)

and indicate by g the gradient vector evaluated at the
current point (e,e).

Denote by (�x; �y) the projection of r f (e; e) on
the linear space˝ defined by�y D M�x.

Thus we define the following problem:

Minimize k�x � gk2 C k�y � gk2 (24)

subject to �y D M�x : (25)

It follows that [4]

�x D (I CMTM)�1(I CMT )g ; (26)

�y D M(I CMTM)�1(I CMT )g : (27)

It is possible determine the reduction � f in the value
of f in moving from x D y D e to a point of the form
x̃ D e � t�x, ỹ D e � t�y, where t > 0. It is desired
to choose t so as to achieve a reduction of at least n– k for
some k > 0, at every iteration. Since this is shown to be
possible, [4], the result follows if the matrix is positive
definite, positive semidefinite or skew-symmetric.

An Interior Point Potential Algorithm
to Solve General LCPs

In this subsection a “condition-based” iteration com-
plexity will be formulated regarding the solution of var-
ious LCPs. This parameter will characterize the degree
of difficulty of the problem when a potential reduction
algorithm is used. The condition number derived will
of course depend on the data of the problem (M,q).

Consider the primal–dual potential function of
a LCP as stated in Eqs: (9)–(11), for any interior feasible

point, (x; y) 2 F, and � > 0, which may be represented
so:

� (x; y) D �nC�(x; y) D (nC�) ln(xT y)�
nX
jD1

ln(x j y j):

(28)

Suppose the iterations have started from an inte-
rior feasible point (x0,y0), with � (x0; y0) D � 0 a se-
quence of interior feasible points can be generated
fxk ; ykg, (k D 0; 1; : : :) terminating at a point such that
(xk)T (yk) � �. Such a point is found when

� (xk ; yk) � � ln(�)C n ln(n) (29)

since by the arithmetic–geometric inequality
n ln((xk)T(yk)) �

Pn
jD1 ln(x j y j) � n ln(n) � 0.

The fact that � (xT y) � � 0 implies that xT y �
� 0/� and therefore the boundedness of f(x; y) 2 F j
xT y � � 0/�g guarantees the boundedness of f(x; y) 2
int(F) j xT y � � 0g, where int() indicates the relative
interior of its argument.

To obtain a reduction in the potential function the
scaled gradient projection method may be used. The
gradient vectors of the potential function with respect
to x and y are

r�x D (
n C �
xT y

)y � X�1e ; (30)

r�y D (
nC �
xT y

)x � Y�1e : (31)

At the kth iteration the following linear program is
solved, subject to an ellipsoid constraint:

Minimize Z D rT�xk dx Cr
T�yk dy (32)

subject to dy D Mdx (33)

1 > ˛2 � k(Xk)�1dxk2 C k(Xk)�1dxk2 : (34)

Denote by (dT
x ; dT

y )T the minimal solution of Eqs. (32)–
(34) and let

pk D

 
pkx
pky

!
D

 nC�
(xk )T (yk )X

k(yk CMT
) � e
nC�

(xk )T (yk )Y
k(xk � 
) � e

!
(35)


 D
�
(Yk)2 CM(Xk)2MT

��1 �
Yk � MXk

�

�

�
Xk yk �

�
(xk)T (yk)
nC �

�
e
�

(36)
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then there results
�
(Xk)�1dx
(Yk)�1dy

�
D ˛

pk

kpkk
: (37)

By the concavity of the log function and certain elemen-
tary results it can be shown [17] that

� (xk C dx ; yk C dy) � � (xk; yk) �

� ˛kpkk C
˛2

2

�
nC �C

1
(1 � ˛)

�
: (38)

Letting

˛ D min
�
jjpk jj

nC �C 2
;

1
n C �C 2

	
�

1
2

(39)

results in

� (xk C dx ; yk C dy) � � (xk; yk) �

�min
�

jjpk jj2

(2nC �C 2)
;

1
2(nC �C 2)

	
: (40)

The expression for kpkk is indicated by (35) and can be
considered the potential reduction at the kth iteration
of the objective function. For any x,y let

g(x; y) D
n C �
xT y

Xy � e (41)

H(x; y) D 2I�(XMT�Y)(Y2CMX2MT )�1(MX�Y)
(42)

which is a positive semidefinite matrix. Thus

kpkk D gT (xk; yk)H(xk ; yk)g(xk; yk) (43)

which may also be indicated as kg(x; y)k2H D gT (x; y)
H(x; y)g(x; y).

Define a condition number for the LCP(q,M) as

�(M; q; �) D inffjjg(x; y)jj2H j x
T y

> �;� (x; y) � � 0; (x; y) 2 int(F)g : (44)

The condition number �(M,q,�) represents the degree
of difficulty for the potential reduction algorithm in
solving the LCP(q,M). The larger the condition num-
ber that results, the easier can the problem be solved.
The condition number for LCPs provides a criterion to
subdivide given instances of LCP(q,M) into classes and

those that can be solved in polynomial time may be in-
dicated.

Corollary 1 An instance of a LCP(q,M) is solvable in
polynomial time if �(M; q; �) > 0 and 1/�(M; q; �) is
bounded above by a polynomial in ln(1/�) and n.

This corollary is slightly different to corollary 1 in [16].
Further the following definitions are important:

CX
(M; q) D f
 j xT y � qT
 < 0; x � 
 > 0;

y CMT
 > 0 for some (x; y) 2 int(F)g (45)

Definition 9 Let G be a set of LCP(q,M) such that the
following conditions are satisfied:

G D f(M; q) j int(F) 6D ;;
CX

(M; q) D ;g : (46)

Lemma 1 Let
PC(M; q) be empty for a LCP(q,M).

Then for � � n C
p
2n, �(M; q; �) � 1.

Lemma 2 Let f
 j xT y � qT
 > 0; x � 
 > 0; y C
MT
 > 0 for some (x; y) 2 int(F)g be empty for
a LCP(q,M). Then for 0 < � � n �

p
(2n), there results

�(M; q; �) � 1.

With these properties it can be shown that for many
classes of matrices �(M; q; �) > 0 or that the conditions
indicated in the lemmas are satisfied, so the LCP is solv-
able in polynomial time.

Further, the potential reduction algorithm will
solve, under general conditions, the LCP(q,M) whenM
is a P-matrix and when M is a row-sufficient matrix.
Thus,

Theorem 1 Let � (x0; y) � O(n ln(n)) and M be
a P-matrix. Then the potential reduction algorithm ter-
minates at xT y < � in O(n2 maxfj � j/�(n); 1g ln(1/�))
iterations and each iteration uses at most O(n3) arith-
metic operations.

The bound indicates that the algorithm is a polynomial-
time algorithm if j � j/�(n) is bounded above by a poly-
nomial in ln(1/�) and n.

Theorem 2 Let � > 0 and be fixed. For a row-sufficient
matrix M and f(x; y) 2 F j � (x; y) � � 0g bounded,
then �(M; q; �) > 0.

Since for the LCP(q,M) defined by this class of matri-
ces the condition number is bounded away from zero,
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the potential reduction algorithm will solve this class of
problems.

Methods and Applications

Depending on the algorithm proposed, any penalty
function algorithm or any linear programming algo-
rithm will ensure, given the conditions imposed on the
problem, a polynomial-time solution is achieved.

Often computationally, the most efficient method is
the Newton method with a penalty or a barrier param-
eter. However, the actual method of solution is left to
the interested reader, who can refer to the original con-
tributions, since too many problem -dependent factors
are involved.

Models

The aim of this section is to treat the methods described
in “Formulation” under some more general conditions.

An Interior Point Newton Method
for the General LCP

This algorithm finds a Karush–Kuhn-Tucker point
for a nonmonotone LCP with a primal interior point
method using Newton’s method with a convex barrier
function, under some mild assumptions.

Consider a bounded LCP:

Mu C q � v D 0 (47)

u; v � 0 (48)

uTv D 0 (49)

and suppose that the LCP solution set S D fu; vjMuC
q � v D 0; u; v � 0; uTv D 0g is bounded above by
a vector (mT

1 ;mT
2 )T 2 R2n . Define two diagonal posi-

tive matrices

D1 > Diag(2m1) (50)

D2 > Diag(2m2) (51)

to obtain the following LCP

y D D�12 v D D�12 (MuC q)
D (D�12 MD1)x C D�12 q (52)

1
2
e � x; y � 0 (53)

xT y D 0 (54)

which without loss of generality will be indicated as

Mx C q � y D 0 (55)

x; y � 0 (56)

xT y D 0 : (57)

Assume that there exists an approximate interior point
solution, as is usual with interior point methods, with
variables 0 < xi ; yi � �; � < n�2 8i D 1; 2; : : : ; n
and consider the following barrier function for the
optimization problem for the LCP (55)–(57).

Minimize  (x; y; �) D xT y � �
nX

iD1

ln(xi yi ) (58)

subject to Mx � yC q D 0 (59)

x; y <
1
2
e (60)

x; y > 0 (61)

where e 2 Rn is the vector of unit elements and ˇ > 0
is an arbitrary small parameter.

To convert the optimization problem (58)–(61) into
a convex programming problem, consider as a barrier
parameter, which is successively reduced, then the gra-
dient of this function is:

(rx (x; y))i D
xi y2i � (ˇ � �)yi

xi yi C ˇ
; (62)

(rx (x; y))i D
x2i yi � (ˇ � �)xi

xi yi C ˇ
: (63)

It is easy to show that if the barrier parameter at any
iteration k will satisfy the following inequality

� >
(xi yi C ˇ)2

y2i C ˇ
; (64)

then the Hessian matrix of the function (58) is positive
denite for the conditions imposed. Thus the optimiza-
tion problem (58)–(61) is a convex programming prob-
lem and it may be solved by one of the methods above,
which is also suitable to a further generalization [1].
Here it will be solved as a convex quadratic program-
ming [12]. Rewrite the optimization problem (58)–(61)
as:

Min  (x; y; �) D xT y ��
nX

iD1

ln(xi yi C ˇ) ; (65)
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subject to

0
BBBBB@

M �I
I 0
0 I
�I 0
0 �I

1
CCCCCA

�
x
y

�
C b � 0 : (66)

Where bT D (qT ; 0; 0; 12 e
T ; 12 e

T).
Indicate the constraint matrix as the matrix A of di-

mension 5n � 2n. Also, idicate with zT D (xT ; yT ) 2
R2n .

The algorithm considered is a primal method with
a log barrier function. It will follow a central path and
will take small steps [12] and it can be shown that from
an approximate global minimum, an exact global mini-
mum can be simply derived [12].

Let˘ denote the feasible region of Eq. (66) and de-
note the interior of this feasible region by int(˘ ), i. e.,
Az > b by relaxing as is usual in the Interior point al-
gorithms, the equality constraints.

Make the following assumptions:
� rank(A) D 2n,
� ˘ is compact,
� int(˘ ) 6D ;.
� xi yi > " 8i D 1; 2; : : : ; n.
Define the potential function

h(z; �) D  (x; y; �) � �
mX
iD1

ln(aTi z � bi ) : (67)

The following lemmas are straight forward adaptations
of the original results.

Lemma 3 For any fixed choice of � > 0, that meets
the condition (64), the function (67) is strictly convex on
int(˘ ).

Lemma 4 For any fixed choice of � > 0, that meets the
condition (64), the function (67) has a unique minimum.

Let �(�) be the minimum of h(z; �) for a fixed �. As
�! 0 there must be an accumulation point by com-
pactness. This point must be an approximate global
minimum.

Lemma 5 Let ẑ be an accumulation point of �(�). As
�! 0 then ẑ is an approximate global minimum for
problem (65)–(66).

Generalization of an Interior Point Reduction
Algorithm to Solve General LCPs

The condition number for LCPs provides a criterion
to subdivide given instances of LCP(q,M) into classes.
These results will now be extended.

Consider a LCP(q,M) Eqs. (9)–(11) with a nonsin-
gular coefficient matrix M, for which, moreover, (I–
M) is nonsingular and the solution set of LCP(q,M) is
bounded from above. This LCP can be indicated so:

Mu C q � v D 0 ; (68)

u; v � 0 ; (69)

uTv D 0 ; (70)

where u; v; q 2 Rn . Suppose that the LCP solution set
S D fu; vj Mu C q � v D 0; u; v � 0; uTv D 0g is
bounded above by a vector (mT

1 ;mT
2 )T 2 R2n .

Apply the transformation defined by Eqs. (50) and
(51), so that there results

y D D�12 v D D�12 (MuC q)

D (D�12 MD1)x C D�12 q ; (71)

1
2
e � x; y � 0 ; (72)

xT y D 0 ; (73)

which will be indicated as

Mx C q � y D 0 ; (74)

x; y � 0 ; (75)

xT y D 0 : (76)

For the potential reduction algorithm to solve general
LCPs, it is required that x > 0 and y > 0.

Lemma 6 For a nonsingular M the matrices
M̂ D D1MD2, (I � M̂), (I � XYM̂) and (�Y C M̂X)
are all nonsingular.

Corollary 2 Under the conditions of Lemma 3
(Y CMX) is nonsingular.

The following additional lemma is also required.
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Lemma 7 For all LCP(q,M) with nonsingular ma-
trices M and (I–M) transformed to the form given
by Eqs. (71)–(73) so that for any feasible solution
(x; y) 2 int(F) so that 0 < X < I; 0 < Y < I, there re-
sults g(x; y) D nC�

xT y Xy � e 6D 0.

Theorem 3 For all LCP(q,M) with nonsingular ma-
trices M and (I–M) transformed to the form given
by Eqs. (71)–(73) so that for any feasible solution
(x; y) 2 int(F) there results 0 < X < I; 0 < Y < I, the
condition number for the LCP �(M; q; �) > 0 for some
� > 0.

For notational simplicity assume that the transformed
matrix M̂ is indicated by M without loss of gener-
ality. �(M; q; �) D 0 if kg(x; y)k2H D 0. Assume that
kg(x; y)k2H D 0 and expand it in terms of its factors.

2g(x; y)T g(x; y) � g(x; y)T

[(XMT � Y)(Y2 CMX2MT )�1(MX � Y)]
� g(x; y) D 0 (77)

It is easy to show that this will never happen under the
conditions of the theorem. Hence, for any matrix that
satisfies the assumed conditions the condition number
is strictly positive and so a solution to the LCP may be
obtained straightforwardly by this method. This pro-
vides a partial characterization and extension of the ma-
trix class G defined in [16].

Cases

Algorithms should be tested extensively for their com-
putational efficiency on a wide series of cases, so that
suitable comparisons can be made.

One hundred and forty random instances of LCPs
were solved for four different sizes (30, 50, 100, 250),
with three types of matrices: positive semidefinite, neg-
ative semidefinite and indefinite. In Table 1 the num-
ber of problems solved for each type of matrix with
the parametric LCP algorithm [11] and with an interior
point algorithm with the Newtonmethod are indicated.

The instances with positive (semi)definite matri-
ces are easy to solve in fact. The instances with nega-
tive (semi)definite and indefinite classes are considered
hard to solve, but both algorithms have no trouble with
these classes, except that the first seems to be more hap-

Generalizations of Interior Point Methods for the Linear
Complementarity Problem, Table 1
Results for 140 linear complementarity problems (LCPs) of
different matrix classes and sizes

Type PSD NSD INDF
Size PLCP IPNM PLCP IPNM PLCP IPNM
30 6 6 12 12 28 28
50 3 3 3 3 26(3) 29

100 6 6 6 6 16 16
250 5 5 7(4) 11 15 15

Total 20 20 28(32) 32 85(88) 88

PSD positive semidefinite matrix, NSD negative
semidefinite matrix, INDF indefinite matrix, PLCP
parametric LCP algorithm, IPMN interior point algo-
rithm with the Newton method.

Generalizations of Interior Point Methods for the Linear
Complementarity Problem, Table 2
Timing results for 140 LCPs of different matrix classes and
sizes (seconds)

Type PSD NSD INDF
Size PLCP IPNM PLCP IPNM PLCP IPNM
30 0.06 0.04 0.08 0.06 0.07 0.07

50 0.28 0.18 0.38 0.32 0.33 0.32
100 3.47 1.42 7.00 3.37 5.18 2.78
250 109.37 22.56 121.51 95.12 111.99 87.45

hazard, rather than being subject to numerical difficul-
ties.

Both routines seem to be only slightly affected by the
type of matrix, but the interior point algorithm with the
Newton method is more efficient, as confirmed in Ta-
ble 2, where the average time for solving the instances
is given in seconds.

Conclusions

Interior point methods to solve the LCP are now well
established and allow polynomial solutions to be ob-
tained for such problems with suitable matrix classes.
Moreover these routines can be used as a subroutine in
general iterative optimization problems.

Evidently research is being actively conducted to
generalize the applicable matrix classes for which solu-
tions can be obtained in polynomial time and space.
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Introduction

The generalized assignment problem (GAP) seeks the
minimum cost assignment of n tasks to m agents such
that each task is assigned to precisely one agent subject
to capacity restrictions on the agents.

The formulation of the problem is:

min
mX
iD1

nX
jD1

ci jxi j (1)

subject to
nX

jD1

ai jxi j � bi i D 1; : : : ;m (2)

mX
iD1

xi j D 1 j D 1; : : : ; n (3)

xi j 2 f0; 1g i D 1; : : : ;m;

j D 1; : : : ; n
(4)

where ci j is the cost of assigning task j to agent i, ai j is
the capacity used when task j is assigned to agent i,
and bi is the available capacity of agent i. Binary vari-
able xi j equals 1 if task j is assigned to agent i, and 0
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otherwise. Constraints 3 are usually referred to as the
semi-assignment constraints.

The formulation above was first studied by Srini-
vasan and Thompson [80] to solve a transportation
problem. The term generalized assignment problem for
this setting was introduced by Ross and Soland [74].
This model is a generalization of previously proposed
model by DeMaio and Roveda [17] where the capacity
absorption is agent independent (i. e., ai j D aj; 8i).

The classical assignment problem, which provides
a one to one pairing of agents and tasks, can be solved
in polynomial time [47]. However, in GAP, an agent
may be assigned to multiple tasks ensuring each task
is performed exactly once, and the problem is NP-
hard [28]. Even the GAP with agent-independent re-
quirements is anNP-hard problem [23,53].

The GAP has a wide spectrum of application areas
ranging from scheduling (see [19,84]) and computer
networking (see [5]) to lot sizing (see [31]) and facility
location (see [7,30,74,75]). Nowakovski et al. [64] study
the ROSAT space telescope scheduling where the prob-
lem is formulated as a GAP and heuristic methods are
proposed. Multiperiod single-source problem (MPSSP)
is reformulated as a GAP by Freling et al. [25]. Janak
et al. [38] reformulate the NSF panel-assignment prob-
lem as a multiresource preference-constrained GAP.
Other applications of GAP include lump sum capi-
tal rationing, loading in flexible manufacturing sys-
tems (see [45]), p-median location (see [7,75]), max-
imal covering location (see [42]), cell formation in
group technology (see [79]), refueling nuclear reac-
tors (see [31]), R & D planning (see [92]), and routing
(see [22]). A summary of applications and assignment
model components can be found in [76].

Extensions

Multiple-Resource Generalized Assignment Problem

Proposed by Gavish and Pirkul [29], multi-resource
generalized assignment problem (MRGAP) is a special
case of the multi-resource weighted assignment model
that is previously studied by Ross and Zoltners [76].
In MRGAP a set of tasks has to be assigned to a set
of agents in a way that permits assignment of multi-
ple tasks to an agent subject to a set of resource con-
straints. This problem differs from the GAP in that,
an agent consumes a variety of resources in perform-

ing the tasks assigned to it. Although most of the prob-
lems can be modeled as GAP, multiple resource con-
straints are frequently required in the effective model-
ing of real life problems. MRGAP may be encountered
in large models dealing with processor and database lo-
cation in distributed computer systems, trucking indus-
try, telecommunication network design, cargo loading
on ships, warehouse design and work load planning in
job shops.

Gavish and Pirkul [29] introduce and compare var-
ious Lagrangian relaxations of the problem and suggest
heuristic solution procedures. They design an exact al-
gorithm by incorporating one of these heuristics along
with a branch-and-bound procedure.

Mazzola and Wilcox [58] modify Gavish and Pirkul
heuristic and develop a hybrid heuristic for MRGAP.
Their algorithm defines a three phase heuristic which
first constructs a feasible solution and then systemat-
ically tries to improve the solution. As an enhanced
version of MRGAP, Janak et al. [38] study the NSF
panel-assignment problem. In this setting, each task
(i. e., proposal) has a specific number of agents (i. e., re-
viewers) assigned to it and each agent has a lower and
upper bound on the number of tasks that can be done.
The objective is to optimize the sum of a set of prefer-
ence criteria for each agent on each task while ensuring
that each agent is assigned to approximately the same
number of tasks.

Multilevel Generalized Assignment Problem

The Multilevel Generalized Assignment Problem
(MGAP) is first introduced by Glover et al. [31] to
provide a model for the allocation of tasks in a manu-
facturing environment. MGAP differs from the classical
GAP in that, agents can perform tasks at different effi-
ciency levels, implying both different costs and different
resource requirements. Each task must be assigned to
one and only one agent at a level and each agent has
limited amount of single resource. Important manufac-
turing problems, such as lot sizing, can be formulated
as MGAP.

Laguna et al. [46] use a neighborhood structure
for defining moves based on ejection chains and de-
velop a Tabu Search (TS) algorithm for this problem.
French and Wilson [26] develop two heuristic solu-
tion methods for MGAP from the solution methods
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for GAP. Procedures for deriving an upper bound on
the solution of the problem are also described. Ce-
selli and Righini [11] present a branch-and-price al-
gorithm based on decomposition of the MGAP into
a master problem and a pricing sub-problem, where
the former is a set-partitioning problem and the latter
is a multiple-choice knapsack problem. This algorithm
is the first exact method proposed in the literature for
the MGAP. To provide a flexible assignment tool to
the decision maker, Hajri-Gabouj [37] develops a fuzzy
genetic multi-objective optimization algorithm to solve
a nonlinear MGAP.

Dynamic Generalized Assignment Problem

In The GapModel, the sequence in which the agent per-
forms the tasks is not considered. This sequence is es-
sential when each task is performed to meet a demand
and earliness or tardiness incurs additional cost. Dy-
namic generalized assignment problem (DGAP) is sug-
gested to track customer demand while assigning tasks
to agents. Kogan et al. [44], for the first time, add the
impact of time to the GAP model assuming that each
task has a due date. They formulate the continuous-
time optimal control model of the problem and derive
analytical properties of the optimal behavior of such
a dynamic system. Based on those properties, an effi-
cient time-decomposition procedure is developed.

Kogan et al. [43] extend the DGAP to cope with
stochastic environment and multiple agent-task rela-
tionships. They prove that this stochastic, continuous-
time generalized assignment problem is strongly
NP-hard and reduce the model to a number of classi-
cal deterministic assignment problems stated at discrete
time points. A pseudo-polynomial time combinatorial
algorithm is developed to approximate the solution.
The well-known application of such a generalization is
found in the stochastic environment of the flow shop
scheduling of parallel workstations and flexible man-
ufacturing cells as well as dynamic inventory manage-
ment.

Bottleneck Generalized Assignment Problem

Bottleneck generalized assignment problem (BGAP),
is the min-max version of the well-known (min-sum)
generalized assignment problem. In the BGAP, the
maximum penalty incurred by assigning each task

to an agent is minimized. Min-sum objective func-
tions are commonly used in private sector applications,
while min-max objective function can be applied to
the public sector. BGAP has several important applica-
tions in scheduling and allocation problems. Mazzola
and Neebe [57] propose two min-max formulations
for the GAP: the Task BGAP and the Agent BGAP.
Martello and Toth [56] present an exact branch-and-
bound algorithm as well as approximate algorithms
for BGAP. They introduce relaxations and produce,
as sub-problems, min-max versions of the multiple-
choice knapsack problem which can be solved in poly-
nomial time.

Generalized Assignment Problem
with Special Ordered Set

GAP is further generalized to include cases where items
may be shared by a pair of adjacent knapsacks. This
problem is called the generalized assignment prob-
lem with special ordered sets of type 2 (GAPS2). In
other words, GAPS2 is the problem of allocating tasks
to time-periods, where each task must be assigned to
a time-period, or shared between two consecutive time-
periods. Farias et al. [15] introduce this problem which
can also be applied to production scheduling. They
study the polyhedral structure of the convex hull of the
feasible space, develop three families of facet-defining
valid inequalities, and show that these inequalities cut
off all infeasible vertices of the LP relaxation. A branch-
and-cut procedure is described and facet-defining valid
inequalities are used as cuts. Wilson [86] modifies and
extends a heuristic algorithm developed previously for
the GAP problem to solve GAPS2. He argues that, any
feasible solution to GAP is a feasible solution to GAPS2,
hence a heuristic algorithm for GAP can also be used as
a heuristic algorithm to GAPS2. A solution produced by
a GAP heuristic will be close to GAPS2 optimality if it is
close to the LP relaxation bound of GAP. The heuristic
uses a series of moves starting from an infeasible, but in
some senses optimal solution and then attempts to re-
store feasibility with minimal degradation to the objec-
tive function value. An existing upper bound for GAP
is also generalized to be used for GAPS2.

French and Wilson [27] develop an LP-based
heuristic procedure to solve GAPS2. They modify
a heuristic for GAP to be used for GAPS2 and show
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that, while Wilson [86] heuristic is straightforward for
large instances of the problem, and Farias et al. [15]
solve smaller instances of the problem by an exact
method, their heuristic solves fairly large instances of
the problem rapidly and with a consistently high degree
of solution quality.

Stochastic Generalized Assignment Problem

In GAP, stochasticity may arise because the actual
amount of resource needed to process the tasks by
the different agents may not be known in advance
or the presence or absence of individual tasks may
be uncertain. In such cases, there is a set of poten-
tial tasks in which, each task may or may not re-
quire to be processed. Dyer and Frieze [20], analyze the
generalized assignment problem under the assumption
that all coefficients are drawn uniformly and indepen-
dently from [0; 1] interval. Romeijn and Piersma [72]
analyze a probabilistic version of GAP as the num-
ber of tasks goes to infinity while the number of ma-
chines remains fixed. Their model is different from
Dyer and Frieze [20] since it doesn’t have the ad-
ditional assumptions that the cost and resource re-
quirement parameters are independent of each other
and among machines. They first derive a tight condi-
tion on the probabilistic model of the parameters un-
der which, the corresponding instances of the GAP
are feasible with probability one. Next, under an addi-
tional sufficient condition, the optimal solution value
of the GAP is characterized through a limiting value.
It is shown that the optimal solution value, normal-
ized by dividing by the number of tasks, converges
with probability one to this limiting value. Toktas et
al. [82], consider the uncertain capacities situation and
derive two alternative approaches to utilize determinis-
tic solution strategies while addressing capacity uncer-
tainty. Albareda-Sambola et al. [1] assume that a ran-
dom subset of the tasks would require to be actually
processed. Tasks are interpreted as customers that may
or may not require a service. They construct a convex
approximation of the objective function and present
three versions of an exact algorithm to solve this prob-
lem based on branch-and-bound techniques, optimal-
ity cuts, and a special purpose lower bound. An assign-
ment of tasks can be modified once the actual demands
are known. Different penalties are paid for reassigning

tasks and for leaving unprocessed tasks with positive
demand.

Bi-Objective Generalized Assignment Problem

Zhang and Ong [91] consider the GAP from a multi-
objective point of view, and propose an LP-based
heuristic to solve the bi-objective generalized assign-
ment problem (BiGAP). In BiGAP, each assignment
has two attributes that are to be considered. For exam-
ple, in production planning, these attributes may be the
cost and the time caused by assigning jobs to machines.

Generalized Multi-Assignment Problem

Proposed by Park Et Al. [66], the generalized multi-
assignment problem (GMAP) consists of tasks that may
be required to be duplicated at several agents. In other
words, each task is assigned to r j agents instead of one.
Park et al. [66] develop a Lagrangian dual ascent algo-
rithm for the GMAP that is combined with the subgra-
dient search and used as a lower bounding scheme for
the branch-and-bound procedure.

Methods

Determining whether an instance of a GAP has a fea-
sible solution is an NP-complete problem. Hence,
unless P D NP, GAP admits no polynomial-time
approximation algorithm with fixed worst-case perfor-
mance ratio. Nevertheless there are numerous approxi-
mation algorithms for GAP in the literature which actu-
ally address a different setting where the available agent
capacities are not fixed and the weighted sum of cost
and available agent capacities is minimized. For some
of these algorithms, a feasible solution is required as an
input. For details, see [14,24,65,78]. Excluding this set-
ting for GAP, the solution approaches proposed in the
literature are either exact algorithms or heuristics. For
expository surveys on the algorithms, see [10,54,60].

Exact Algorithms

The optimal solution to the GAP is obtained using
an implicit enumerative procedure either via branch-
and-bound scheme or branch-and-price scheme in the
literature. Branch-and-bound method consists of an
upper bounding procedure, a lower bounding proce-
dure, a branching strategy, and a searching strategy. It
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is known that good bounding procedures are crucial
steps in branch-and-bound method. Branch-and-price
proceeds similar to branch-and-bound but obtains the
bounds by solving the LP-relaxations of the subprob-
lems by column generation. For more details on the
valid inequalities and facets for the GAP that are used
in the solution procedures, see [16,32,33,40,55,67].

The first branch-and-bound algorithm for the GAP
is proposed by Ross and Soland [74]. Considering
a minimization problem, they obtain the lower bounds
by relaxing the capacity constraints. Martello and
Toth [53] propose removing the semi-assignment con-
straints where the problem decomposes into a se-
ries of knapsack problems. Due to the quality of the
bounds obtained, this algorithm is frequently used in
the literature for benchmarking purposes. Chalmet and
Gelders [12] introduce the Lagrangian relaxation of the
semi-assignment constraints. Fisher et al. [23] use this
technique with multipliers set by a heuristic adjustment
method to obtain the lower bounds in the branch-and-
bound procedure. Tighter bounds resulted from this
method, significantly reduce the solution time. Guig-
nard and Rosenwein [34] design a branch-and-bound
algorithm with an enhanced Lagrangian dual ascent
procedure that solves a Lagrangian dual at each enu-
meration node and adds a surrogate constraint to the
Lagrangian relaxed model. This algorithm effectively
solves generalized assignment problems with up to 500
variables. Drexl [19] presents a hybrid branch-and-
bound/dynamic programming algorithm where the up-
per bounds are obtained via an efficient Monte Carlo
type heuristic. Numerous lower bounds are proposed
and their benchmark results are presented. Nauss [62]
proposes a branch-and-bound algorithm where lin-
ear programming cuts, Lagrangian relaxation, and sub-
gradient optimization are used to derive good lower
bounds; feasible-solution generators with the heuristic
proposed by Ronen [73] are used to derive good up-
per bounds. Nauss [63] uses similar branch-and-bound
techniques to solve the elastic generalized assignment
problem (EGAP) as well.

The first branch-and-price algorithm for the gen-
eralized assignment problem is proposed by Savels-
bergh [77]. A combination of the algorithms proposed
by Martello and Toth [53] and Jörnsten and Nas-
berg [39] is used to calculate the upper bound and the
pricing problem is proved to be a knapsack problem.

Barnhart et al. [6] reformulate the GAP by applying
Dantzig-Wolfe decomposition to obtain a tighter LP re-
laxation. In order to solve the LP relaxation of the re-
formulated problem, pricing is done by solving a se-
ries of knapsack problems. Pigatti et al. [67] propose
a branch-and-cut-and-price algorithm with a stabiliza-
tion mechanism to speed up the pricing convergence.
Ceselli and Righini [11] present a branch-and-price al-
gorithm for multilevel generalized assignment problem
that is based on decomposition and a pricing subprob-
lem that is a multiple-choice knapsack problem.

Heuristics

Large instances of the GAP are computationally in-
tractable due to the NP-hardness of the problem.
This calls for heuristic approaches whose benefits are
twofold; they can be used as stand-alone algorithms to
obtain good solutions within reasonable time and they
can be used to obtain the upper bounds in exact so-
lution methods such as the branch-and-bound proce-
dure. Although the variety among the heuristics is high,
they mostly fall into one of the following two categories:
greedy heuristics and meta-heuristics.

Klastorin [41] proposes a two phase heuristic algo-
rithm for solving the GAP. In phase one, the algorithm
employs a modified subgradient algorithm to search for
the optimal dual solution and in phase two, a branch-
and-bound approach is used to search the neighbor-
hood of the solution obtained in phase one.

Cattrysse et al. [9] use column generation tech-
niques to obtain upper and lower bounds. In their
method, a column represents a feasible assignment of
a subset of tasks to a single agent. Themaster problem is
formulated as a set partitioning problem. New columns
are added to the master problem by solving a knapsack
problem for each agent. LP relaxation of the set parti-
tioning problem is solved by a dual ascent procedure.

Martello and Toth [54] present a greedy heuristic
that assigns the jobs to machines based on a desirability
factor. This factor is defined as the difference between
the largest and second largest weight factors. The algo-
rithm iteratively considers, among the unassigned jobs,
the one having the highest desirability factor (or regret
factor) and assigns it to its maximum profit agent. This
iterative process establishes an initial solution which
would be improved in the next step of the algorithm
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by simple interchange arguments. This heuristic can be
used in a problem size reduction procedure by fixing
variables to one or to zero.

Relaxation heuristics are developed by Lorena and
Narciso [49] for maximization version of GAP. Feasible
solutions are obtained by a subgradient search in a La-
grangian or surrogate relaxation. Six different heuristics
are derived particularizing relaxation, the step size in
the subgradient search and the method used to obtain
the feasible solution. In a Lagrangian heuristic for GAP,
Haddadi [35] introduces a substitution variable in the
model which is defined as the multiplication of the orig-
inal variables by their corresponding constraint coef-
ficients. The constraints defining these new variables
are then dualized in the Lagrangian relaxation of the
problem and the resulted relaxation is decomposed into
two subproblems: the knapsack problem and the trans-
portation problem. Narciso and Lorena [61] use relax-
ation multipliers with efficient constructive heuristics
to find good feasible solutions.

A breadth-first branch-and-bound algorithm is de-
scribed by Haddadi and Ouzia [36] in which a standard
subgradient approach is used in each node of the de-
cision tree to solve the Lagrangian dual and to obtain
an upper bound. The main contribution in this study is
a new heuristic that is applied to exploit the solution of
the relaxed problem by solving a GAP of smaller size.

Romeijn and Romero Morales [70] study the opti-
mal value function from a probabilistic point of view
and develop a class of greedy algorithms. A family of
weight functions is designed to measure desirability of
assigning each job to a machine which is used by the
greedy algorithms. They derive conditions under which
their algorithm is asymptotically optimal in a proba-
bilistic sense.

Meta-heuristics are widely used to solve GAP in the
literature. They are either adapted by themselves for
GAP or are used in combination with other heuristics
and meta-heuristics.

Variable depth search heuristic (VDSH) is a gen-
eralization of local search in which the size of the
neighborhood adaptively changes to traverse a larger
search space. VDSH is a two phase algorithm. In the
first phase, an initial solution is developed and a lower
bound is obtained. In the second phase, a nested itera-
tive refinement process is applied to improve the qual-
ity of the solution. VDSH is introduced by Amini and

Racer [2] to solve the GAP. In their method, the im-
provement phase consists of a two level nested loop.
The major iteration creates an action set correspond-
ing to each neighborhood structure alternative. Possible
neighborhood structures for GAP are: reassign (shift)
a task from one agent to another, swap the assignment
of two tasks, and permute the assignment of a subset
of the tasks. Then, a subsequence of operations that
achieves the highest saving is obtained through per-
forming someminor iterations. A new solution is estab-
lished based on that and another major operation starts.

Amini and Racer [3] develop a hybrid heuristic
(HH) around the two well known heuristics: VDSH
(see [2,69]) and Heuristic GAP (HGAP) (see [54]). Pre-
vious studies show that HGAP dominates VDSH in
terms of solution time, while VDSH obtains solutions
of better quality within reasonable time. A computa-
tional comparison is conducted with the leading alter-
native heuristic approaches. Another hybrid approach
is by Lourenço and Serra [52] where a MAX-MIN Ant
System (MMAS) (see [81]) is applied with GRASP for
the GAP.

Yagiura et al. [90] propose a variable depth search
(VDS) method for GAP. Their method alternates be-
tween shift and swap moves to explore the solution
space. The main aspect of their method is that, in-
feasible solutions are allowed to be considered. How-
ever in some of the problem instances, the feasible
space is small or contains many small separate regions
and the efficiency of the algorithm is affected. In an-
other study, Yagiura et al. [89] improve VDS by incor-
porating branching search processes to construct the
neighborhoods. They show that appropriate choices of
branching strategies can improve the performance of
VDS. Lin et al. [48] make further observations on the
VDSH method through a series of computational ex-
periments. They consider six greedy strategies for gen-
erating the initial feasible solution and designed several
simplified strategies for the improvement phase of the
method.

Osman [68] develops a hybrid heuristic which com-
bines simulated annealing and tabu search. This algo-
rithm takes advantage of the non-monotonic oscillation
strategy of tabu search as well as the simulated anneal-
ing philosophy.

Yagiura et al. [87] propose a tabu search algorithm
for GAP which utilizes an ejection chain approach. An
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ejection chain is an embedded neighborhood construc-
tion that compounds simple moves to create more com-
plex and powerful moves. The chain considered in their
study is a sequence of shift moves in which every two
successive moves share a common agent. Searching into
the infeasible region is allowed incurring a penalty pro-
portional to the degree of infeasibility. An adaptive ad-
justment mechanism is incorporated for determining
appropriate values of the parameters to control their
influence on the problem. Yagiura et al. [88] improve
their previous method by adding a path relinking ap-
proach which is a mechanism for generating new so-
lutions by combining two or more reference solutions.
The main difference of this method with the previous
one is the way it generates starting solutions for ejection
chains. It is shown that, by this simple change in the al-
gorithm, the improvement in its performance is drastic.

Asahiro et al. [4] develop two parallel heuristic
algorithms based on the ejection chain local search
(EC) presented by Yagiura et al. [87]. One is a simple
parallelization called multi-start parallel EC (MPEC)
and the other one is cooperative parallel EC (CPEC).
In MPEC, each search process independently explores
search space while in CPEC search processes share par-
tial information to cooperate with each other. They
show that their proposed algorithms outperform EC by
Yagiura [87].

Diaz and Fernandez [18], devise a flexible tabu
search algorithm for GAP. Allowing the search to ex-
plore infeasible region and adaptively modification of
the objective function are the sources of flexibility. The
modification of the objective function is caused by the
dynamic adjustment of the weight of the penalty in-
curred for violating feasibility. The main difference of
this method with the tabu search method of Yagiura
et al. [87,88] in exploring the infeasible region is that,
in this method, no solution is qualitatively preferred to
others in terms of its structure.

Chu and Beasley [13] develop a genetic algo-
rithm for GAP that incorporates a fitness-unfitness
pair evaluation function as a representation scheme.
This algorithm uses a heuristic to improve the cost
and feasibility. Feltl and Raidl [21] add new features
to this algorithm including two alternative initializa-
tion heuristics, a modified selection and replacement
scheme for handling infeasible solutions more appro-
priately and a heuristic mutation operator.

Wilson [85] proposes another algorithm for GAP
which is operating in a dual sense. Instead of genetically
improving a set of feasible solutions as in a regular GA,
this algorithm tries to genetically restore feasibility to
a set of near optimal ones. The method starts with po-
tentially optimal but infeasible solutions and then im-
proves feasibility while keeping optimality. When the
feasible solution is obtained, the algorithm uses local
search procedures to improve the solution.

Lorena et al. [50] propose a constructive genetic
algorithm (CGA) for GAP. In CGA, unlike classical
GA, problems are modeled as bi-objective optimiza-
tion problems, which consider the evaluation of two
fitness functions. The evolution process is conducted
to attain the two objectives conserving schemata that
survive to an adaptive threshold test. The CGA al-
gorithm has some new features compared to GA in-
cluding population formation by schemata, recombina-
tion among schemata, dynamic population, mutation
in structure and the possibility of using heuristics in
schemata and/or structure representation.

Lourenço and Serra [51] present two metaheuris-
tic algorithms for GAP. One is a MIN-MAX ant sys-
tem which is combined with local search and tabu
search heuristics. The other one is a greedy random-
ized adaptive search heuristic (GRASP) studied with
several neighborhoods. Both of these algorithms con-
sist of three main steps: (i) constructing a solution by
either a greedy randomized or an ant system approach,
(ii) improving these initial solutions by applying local
search and a tabu search, (iii) updating the parameters.
These three steps are repeated until a stopping criterion
is verified.

Monfared and Etemadi [59] use a neural network
based approach for solving the GAP. They investi-
gate four different methods to structure the energy
function of the neural network: exterior penalty func-
tion, augmented Lagrangian, dual Lagrangian and in-
terior penalty function. They show that augmented La-
grangian can produce superior results with respect to
feasibility and integrality while maintaining feasibility
and stability measures.

Problem generators and benchmark instances play
an important role in comparing/developing new meth-
ods. Romeijn and Romero Morales [71] propose a new
stochastic model for the GAP which can be used to ana-
lyze the random generators in the literature. They com-
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pare the random generators by Ross and Soland [74],
Martello and Toth [53], Trick [83], Chalmet and
Gelders [12], Racer and Amini [69] and conclude these
random generators are not adequate because they tend
to generate easier problem instances when the number
of machines increases. Cario et al. [8] compare GAP
instances generated under two correlation-induction
strategies. Using two exact and four heuristic algo-
rithms from the literature, they show how solutions are
affected by the correlation between costs and the re-
source requirements.

Conclusions

This review presents the applications, extensions, and
solution methods for the generalized assignment prob-
lem. As the GAP receives more attention, it will bemore
likely to see large sets of classical benchmark instances
and comparative results on solution approaches.
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The generalized Benders decomposition, GBD, [7] is
a powerful theoretical and algorithmic approach for
addressing mixed integer nonlinear optimization prob-
lems, as well as problems that require exploitation of
their inherent mathematical structure via decomposi-
tion principles. A comprehensive analysis of the Gen-
eralized Benders Decomposition approach along with
a variety of other approaches for mixed integer non-
linear optimization problems and their applications are
presented in [3].

Formulation

[7] generalized the approach proposed by [1], for ex-
ploiting the structure of mathematical programming
problems stated as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 f0; 1g ;

under the following conditions:
C1) X is a nonempty, convex set and the functions

f : Rn � Rq ! R;

g : Rn � Rq ! Rp

are convex for each fixed y 2 Y = {0, 1}q, while the
functions h: Rn × Rl ! Rm are linear for each fixed
y 2 Y = {0, 1}q.

C2) The set

Zy D

8<
:z 2 Rp :

h(x; y) D 0;
g(x; y) � 0

for some x 2 X

9=
;

is closed for each fixed y 2 Y.
C3) For each fixed y 2 Y \ V, where

V D

8<
:y :

h(x; y) D 0;
g(x; y) � 0;

for some x 2 X

9=
;

one of the following two conditions holds:
i) the resulting problem has a finite solution and has

an optimal multiplier vector for the equalities and
inequalities.

ii) the resulting problem is unbounded, that is, its
objective function value goes to �1.

It should be noted that the above stated formulation is,
in fact, a subclass of the problems for which the GBD
of [7] can be applied. This is due to the specification
of y 2 {0, 1}, while [7] investigated the more general
case of Y � Rq, and defined the vector of y variables
as ‘complicating’ variables in the sense that if we fix y,
then:
a) the problem may be decomposed into a number

of independent problems, each involving a different
subvector of x; or

b) the problem takes a well known special structure for
which efficient algorithms are available; or

c) the problem becomes convex in x even though it is
nonconvex in the joint x-y domain, that is, it creates
special structure.
Case a) may lead to parallel computations of the

independent subproblems. Case b) allows the use of
special-purpose algorithms (e. g., generalized network
algorithms), while case c) invokes special structure
from the convexity point of view that can be useful for
the decomposition of nonconvex optimization prob-
lems. (e. g., [4]).

In the sequel, we concentrate on Y = {0, 1}q due to
our interest in (MINLP; cf. also � Mixed integer non-
linear programming) models. Note also that the analy-
sis includes the equality constraints h(x, y) = 0 which
are not treated explicitly in [7].

Condition C2) is not stringent and it is satisfied if
one of the following holds (in addition to C1), C3)):
i) x is bounded and closed and h(x, y), g(x, y) are con-

tinuous on x for each fixed y 2 Y.
ii) there exists a point zy such that the set

˚
x 2 X : h(x; y) D 0; g(x; y) � zy

�

is bounded and nonempty.



1164 G Generalized Benders Decomposition

Note though that mere continuity of h(x, y), g(x, y) on
X for each fixed y 2 Y does not imply that condition
C2) is satisfied. For instance, if X = [1,1] and h(x, y)
= x + y, g(x, y) = �1/x, then zy = (�1, 0) which is not
closed since for x!1, g(x, y)!�1.

Note that the set V represents the values of y for
which the resulting problem is feasible with respect to
x. In others words, V denotes the values of y for which
there exists a feasible x 2 X for h(x, y) = 0, g(x, y) � 0.
Then the intersection of y and V, Y \ V, represents the
projection of the feasible region of the original problem
onto the y-space.

Condition C3) is satisfied if a first order constraint
qualification holds for the resulting problem after fixing
y 2 Y \ V.

The basic idea in generalized Benders decomposi-
tion, GBD, is the generation, at each iteration, of an up-
per bound and a lower bound on the sought solution
of the MINLP model. The upper bound results from
the primal problem, while the lower bound results form
the master problem. The primal problem corresponds
to the original problem with fixed y-variables (i. e., it is
in the x-space only) and its solution provides informa-
tion about the upper bound and the Lagrange multi-
pliers associated with the equality and inequality con-
straints. The master problem is derived via nonlinear
duality theory, makes use of the Lagrange multipliers
obtained in the primal problem, and its solution pro-
vides information about the lower bound, as well as
the next set of fixed y-variables to be used subsequently
in the primal problem. As the iterations proceed, it is
shown that the sequence of updated upper bounds is
nonincreasing, the sequence of lower bounds is non-
decreasing, and that the sequences converge in a finite
number of iterations.

Theoretical Development

This Section presents the theoretical development of
the generalized Benders decomposition, GBD. The pri-
mal problem is analyzed first for the feasible and infea-
sible cases. Subsequently, the theoretical analysis for the
derivation of the master problem is presented.

The Primal Problem

The primal problem results from fixing the y variables
to a particular 0–1 combination, which we denote as yk

where k stands for the iteration counter. The formula-
tion of the primal problem P(yk), at iteration k is:

P(yk)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
x

f (x; yk)

s.t. h(x; yk) D 0
g(x; yk) � 0
x 2 X � Rn :

Note that due to conditions C1) and C3i), the solu-
tion of the primal problem P(yk) is its global solution.

We will distinguish the two cases ‘feasible primal’
and ‘infeasible primal’, and describe the analysis for
each case separately.
� Feasible primal.

If the primal problem at iteration k is feasible, then
its solution provides information on xk, f (xk, yk)
which is the upper bound, and the optimal multi-
plier vectors �k, �k for the equality and inequal-
ity constraints. Subsequently, using this information
we can formulate the Lagrange function as

L(x; y; �k ; �k) D f (x; y)

C �k>h(x; y)C �k>g(x; y):

� Infeasible primal.
If the primal is detected by the NLP solver to be in-
feasible, then we consider its constraints

h(x; yk) D 0;

g(x; yk) � 0;

x 2 X � Rn ;

where the set X, for instance, consists of lower and
upper bounds on the x variables. To identify a feasi-
ble point we can minimize an l1 or l1 sum of con-
straint violations. An l1-minimization problem can
be formulated as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x2X

pX
iD1

˛i

s.t. h(x; yk) D 0
gi (x; yk) � ˛i ; i D 1; : : : ; p;
˛i � 0; i D 1; : : : ; p;

Note that if
Pp

iD1 ˛i = 0, then a feasible point has
been determined.
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Also note that by defining as

˛C D max (0; ˛)

and

gCi (x; y
k) D max

�
0; gi (x; yk)

�
;

the l1-minimization problem is stated as:
8̂
<̂
ˆ̂:
min
x2X

PX
iD1

gCi

s.t. h(x; yk) D 0:

An l1-minimization problem can be stated simi-
larly as:
8<
:
min
x2X

max
1;:::;p

gCi (x; y
k)

s.t. h(x; yk) D 0:

Alternative feasibility minimization approaches aim
at keeping feasibility in any constraint residual once
it has been established. An l1-minimization in these
approaches takes the form:
8̂
ˆ̂<
ˆ̂̂:

min
x2X

X
i2I0

gCi (x; y
k)

s.t. h(x; yk) D 0
gi (x; yk) � 0; i 2 I;

where I is the set of feasible constraints and I0 is the
set of infeasible constraints. Other methods seek fea-
sibility of the constraints one at a time while main-
taining feasibility for inequalities indexed by i 2 I.
This feasibility problem is formulated as:
8̂
ˆ̂<
ˆ̂̂:

min
x2X

X
i2I0

wi gCi (x; y
k)

s.t. h(x; yk) D 0
gi (x; yk) � 0; i 2 I;

and it is solved at any one time.
To include all mentioned possibilities [2] formu-
lated a general feasibility problem (FP) defined as:

(FP)

8̂
ˆ̂<
ˆ̂̂:

min
x2X

X
i2I0

wi gCi (x; y
k)

s.t. h(x; yk) D 0
gi (x; yk) � 0; i 2 I:

The weights wi are nonnegative and not all are zero.
Note that with wi = 1, i 2 I0, we obtain the l1-
minimization. Also in the l1-minimization, there
exist nonnegative weights at the solution such that
X

wi D 1

and wi = 0 if gi(x, yk) does not attain the maximum
value.
Note that infeasibility in the primal problem is de-
tected when a solution of (FP) is obtained for which
its objective value is greater than zero.
The solution of the feasibility problem (FP) pro-
vides information on the Lagrange multipliers for
the equality and inequality constraints which are de-
noted as �

k
, �k respectively. Then, the Lagrange

function resulting from on infeasible primal prob-
lem at iteration k can be defined as:

Lk(x; y; �
k
; �k) D �

k>
h(x; y)C �k>g(x; y):

It should be noted that two different types of La-
grange functions are defined depending on whether
the primal problem is feasible or infeasible. Also, the
upper bound is obtained only from the feasible pri-
mal problem.

The Master Problem

The derivation of the master problem in the GBD
makes use of nonlinear duality theory, and is charac-
terized by the following three key ideas:
i) projection onto the y-space;
ii) dual representation of V; and
iii) dual representation of the projection of the original

problem on the y-space.
In the sequel, the theoretical analysis involved in these
three key ideas is presented.

Projection Onto the y-Space

The original problem can be written as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
y

inf
x

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X
y 2 Y D f0; 1gq ;

(1)
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where the min operator has been written separately for
y and x. Note that it is infimum with respect to x since
for given y the inner problem may be unbounded. Let
us define �(y) as:

�(y) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

inf
x

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X:

(2)

Note that �(y) is parametric in the y variables and there-
fore, from its definition corresponds to the optimal
value of the original problem for fixed y (i. e., the pri-
mal problem P(yk) for y = yk).

Let us also define the set V as:

V D

8<
:y :

h(x; y) D 0;
g(x; y) � 0

for some x 2 X

9=
; : (3)

Then, problem (1) can be written as:

8<
:
min
y

�(y)

s.t. y 2 Y \ V;
(4)

where �(y) and V are defined by (2) and (3) respec-
tively.

Problem (4) is the projection of the original prob-
lem onto the y-space. Note also that in (3) y 2 Y \ V
since the projection needs to satisfy the feasibility con-
siderations.

Having defined the projection problem onto the y-
space, we can now state the theoretical result of [7].

Theorem 1 (Projection)
i) If (x�, y�) is optimal in the original problem, then y�

is optimal in (4).
ii) If the original problem is infeasible or has unbounded

solution, then the same is true for (4) and vice versa.

Note that the difficulty in the original problem is due to
the fact that �(y) and V are known only implicitly via
(2) and (3).

To overcome the aforementioned difficulty we have
to introduce the dual representation of V and �(y).

Dual of V

The dual representation of V will be invoked in terms
of the intersection of a collection of regions that contain
it, and it is described in the following theorem, due to
[7].

Theorem 2 (Dual of V) Assuming conditions C1) and
C2), a point y 2 Y belongs also to the set V if and only if
it satisfies the (finite) system:

0 � inf L(x; y; �; �); 8�;� 2 �;

� D

(
� 2 Rm ; � 2 Rp : � � 0;

pX
iD1

�i : D 1

)
(5)

Note that (5) is an infinite system because it has to be
satisfied for all �;� 2 �. The dual representation of the
set V needs to be invoked so as to generate a collection
of regions that contain it (i. e., system (5) and system
(5) corresponds to the set of constraints that have to be
incorporated for the case of infeasible primal problems.

Note that if the primal is infeasible and we make use
of the l1-minimization of the type:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
x

X
i2I

˛i

s.t. h(x; yk) D 0
gi (x; yk) � ˛i ; i 2 I;
x 2 X;

(6)

then the set � results from a straightforward applica-
tion of the KKT gradient conditions to problem (6) with
respect to ˛i.

Having introduced the dual representation of the set
V, which corresponds to infeasible primal problems, we
can now invoke the dual representation of �(y).

Dual Representation of N(y)

The dual representation of �(y) will be in terms of the
pointwise infimum of a collection of functions that sup-
port it, and it is described in the following theorem, due
to [7].
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Theorem 3 (Dual of �(y))

vy D

8̂
ˆ̂̂<
ˆ̂̂̂
:

inf
x

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X

D sup
	;
�0

inf
x2X

L(x; y; �; �);

8y 2 Y \ V;

L(x; y; �; �)

D f (x; y)C �>h(x; y)C �>g(x; y):

(7)

The equality of �(y) and its dual is due to having the
strong duality theorem satisfied because of conditions
C1), C2) and C3).

Substituting (7) for �(y) and (5) for y 2 Y \ V into
problem (4), (which is equivalent to (1)), we obtain:

8̂
<
:̂
min
y2Y

sup
	;
�0

inf
x2X

L(x; y; �; �)

s.t. 0 � inf
x2X

L(x; y; �; �):

Using the definition of supremum as the lowest upper
bound and introducing a scalar �B we obtain:

(M)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y;
B

�B

s.t. �B � inf
x2X

L(x; y; �; �);

8�;8� � 0;
0 � inf

x2X
L(x; y; �; �);

8
�
�;�

�
2 �;

where

L(x; y; �; �) D f (x; y)

C �>h(x; y)C �>g(x; y);

L(x; y; �; �) D �
>
h(x; y)C �>g(x; y);

which is called the master problem.
If we assume that the optimum solution of �(y) in

(2) is bounded for all y 2 Y \ V, then we can replace
the infimum with a minimum. Subsequently, the mas-

ter problem will be as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y;
B

�B

s.t. �B � min
x2X

L(x; y; �; �);

8�;� � 0;
0 � min

x2X
L(x; y; �; �);

8
�
�;�

�
2 �;

where L(x, y, �, �) and L(x; y; �; �) are defined as be-
fore.

Note that the master problem involves, an infinite
number of constraints and hence we would need to
consider a relaxation of the master (e. g., by dropping
a number of constraints) which will represent a lower
bound on the original problem. Note also that the mas-
ter problem features an outer optimization problem
with respect to y 2 Y and inner optimization problems
with respect to x which are in fact parametric in y. It is
this outer-inner nature that makes the solution of even
a relaxed master problem difficult.

The inner minimization problems

min
x2X

L(x; y; �; �); 8�; 8� � 0;

min
x2X

L(x; y; �; �); 8
�
�;�

�
2 �;

are functions of y and can be interpreted as support
functions of �(y). (�(y) is a support function of �(y)
at point yo if and only if �(y) = �(y) and �(y)� �(y),
8y 6D yo.) If the support functions are linear in y, then
the master problem approximates �(y) by tangent hy-
perplanes and we can conclude that �(y) is convex in y.
Note that �(y) can be convex in y even though the orig-
inal problem is nonconvex in the joint x-y space (see
[5]).

In the sequel, we will define the aforementioned
minimization problems in terms of the notion of sup-
port functions, that is:

�(y;�;�) D min
x2X

L(x; y; �; �);

8�; 8� � 0;

�(y;�;�) D min
x2X

L(x; y; �; �);

8
�
�;�

�
2 �:
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Algorithmic Development

In the previous Section we discussed the primal and
master problem for the GBD.We have the primal prob-
lem being a (linear or) nonlinear programming, NLP,
problem that can be solved via available local NLP
solvers (e. g., MINOS 5.3). The master problem, how-
ever, consists of outer and inner optimization prob-
lems, and approaches towards attaining its solution are
discussed in the following.

How to Solve the Master Problem

The master problem has as constraints the two inner
optimization problems (i. e., for the case of feasible pri-
mal and infeasible primal problems) which however
need to be considered for all � and all � � 0 (i.e fea-
sible primal) and all (�;�) 2 � (i. e., infeasible). This
implies that the master problem has a very large num-
ber of constraints.

The most natural approach for solving the master
problem is relaxation [7]. The basic idea in the relax-
ation approach consists of the following:
i) ignore all but a few of the constraints that cor-

respond to the inner optimization problems (e. g.,
consider the inner optimization problems for spe-
cific or fixed multipliers (�1, �1) or (�

1
; �1));

ii) solve the relaxed master problem and check
whether the resulting solution satisfies all of the ig-
nored constraints. If not, then generate and add to
the relaxed master problem one or more of the vio-
lated constraints and solve the new relaxed master
problem again;

iii) continue until a relaxed master problem satisfies all
of the ignored constraints, which implies that an
optimal solution at the master problem has been
obtained or until a termination criterion indicates
that a solution of acceptable accuracy has been
found.

General Algorithmic Statement of GBD

Assuming that the problem has a finite optimal value,
[7] stated the general algorithm for GBD listed below.

Note that a feasible initial primal is needed in Step 1.
However, this does not restrict the GBD since it is pos-
sible to start with an infeasible primal problem. In this
case, after detecting that the primal is infeasible, Step 3b
is applied in which a support function � is employed.

Note that Step 1 could be altered, that is instead of
solving the primal problemwe could solve a continuous
relaxation of the original problem in which the y vari-
ables are treated as continuous bounded by zero and
one:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X
0 � y � 1:

(8)

If the solution of (8) is integral, then we terminate. If
there exist fractional values of the y variables, then these
can be rounded to the closest integer values and sub-
sequently these can be used as the starting y1 vector
with the possibility of the resulting primal problem be-
ing feasible or infeasible.

Note also that in Step 1, Step 3a and Step 3b a rather
important assumption is made, that is we can find the
support functions � and � for the given values of the
multiplier vectors (�,�) and (�;�). The determination
of these support functions can not be achieved in gen-
eral since these are parametric functions of y and result
from the solution of the inner optimization problems.

Their determination in the general case requires
a global optimization approach as the one proposed by
[5,6]. There exist however, a number of special cases for
which the support functions can be obtained explicitly
as functions of the y variables. We will discuss these
special cases in the next Section. If however, it is not
possible to obtain explicitly expressions of the support
functions in terms of the y variables, then assumptions
need to be introduced for their calculation. These as-
sumptions, as well as the resulting variants of GBD will
be discussed in the next Section. The point to note here
is that the validity of lower bounds with these variants
of GBD will be limited by the imposed assumptions.

Note that the relaxed master problem (see Step 2) in
the first iteration will have as a constraint one support
function that corresponds to feasible primal and will be
of the form:

8<
:

min
y2Y;
B

�B

s.t. �B � �(y;�1; �1):
(9)
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1 Let an initial point y1 2 Y \ V (i.e., by fix-
ing y = y1, we have a feasible primal). Solve
the resulting primal problem P(y1) and ob-
tain an optimal primal solution x1 and opti-
mal multipliers; vectors �1; �1. Assume that
you can find, somehow, the support func-
tion �(y;�1; �1) for the obtained multipliers
�1; �1. Set the counters k = 1 for feasible and
l = 1 for infeasible and the current upper
bound UBD = v(y1). Select the convergence
tolerance � � 0.

2 Solve the relaxed master problem:

(RM)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

min
y2Y;�B

�B

s.t. �B � �(y;�k ; �k);
k = 1; : : : ;K;

0 � �(y : �l
; �l );

l = 1; : : : ; �:

Let (ŷ; �̂B) be an optimal solution of the
above relaxed master problem. �̂B is a lower
bound on the original problem, that is the
current lower bound is LBD = �̂B . If UBD �
LBD � �, then terminate.

3 Solve the primal problem for y = ŷ, that is the
problem P(ŷ). Then we distinguish two cases:
feasible and infeasible primal:

3a Feasible Primal P(ŷ).
The primal has v(ŷ) finite with an opti-
mal solution x̂ and optimal multiplier vec-
tors �̂; �̂. Update the upper bound UBD =
minfUBD; v(ŷ)g. If UBD � LBD � �, then
terminate. Otherwise, set k = k + 1, �k = �̂,
and �k = �̂. Return to Step 2, assuming we
can somehow determine the support func-
tion �(y;�k+1; �k+1).

3b Infeasible Primal P(ŷ).
The primal does not have a feasible solution
for y = ŷ. Solve a feasibility problem (e.g.,
then l1-minimization) to determine the mul-
tiplier vectors �̂; �̂ of the feasibility problem.
Set l = l + 1; �

l
= �̂, and �l = �̂. Return to

Step 2, assuming we can somehow determine
the support function �(y;�

l+1
; �l+1).

In the second iteration, if the primal is feasible and
(�2, �2) are its optimal multiplier vectors, then the re-

laxed master problem will feature two constraints and
will be of the form:

8̂
<̂
ˆ̂:

min
y2Y;
B

�B

s.t. �B � �(y;�1; �1)
�B � �(y;�2; �2):

(10)

Note that in this case the relaxed master problem
(10), will have a solution that is greater or equal to the
solution of (9). This is due to having the additional con-
straint. Therefore, we can see that the sequence of lower
bounds that is created from the solution of the relaxed
master problems is nondecreasing. A similar argument
holds true in the case of having infeasible primal in the
second iteration.

Note that since the upper bounds are produced by
fixing the y variables to different 0–1 combinations,
there is no reason for the upper bounds to satisfy any
monotonicity property. If we consider however the up-
dated upper bounds (i. e., UBD = mink �(yk)), then the
sequence for the updated upper bounds is monotoni-
cally nonincreasing since by their definition we always
keep the best (least) upper bound.

The termination criterion for GBD is based on the
difference between the updated upper bound and the
current lower bound. If this difference is less than or
equal to a prespecified tolerance " � 0 then we termi-
nate. Note though that if we introduce in the relaxed
master integer cuts that exclude the previously found
0–1 combinations then the termination criterion can be
met by having found an infeasible master problem (i. e.,
there is no 0–1 combination that makes it feasible).

Finite Convergence of GBD

[7] proved finite convergence of the GBD algorithm
which is as follows:

Theorem 4 (Finite convergence) If C1), C2) and C3)
hold and Y is a discrete set, then the GBD algorithm ter-
minates in a finite number of iterations for any given � >
0 and even for � = 0.

Variants of GBD

In the previous Section we discussed the general algo-
rithmic statement of GBd and pointed out a key as-
sumption made with respect to the calculation of the
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support functions �(y;�,�) and �(y;�;�) from the fea-
sible and infeasible primal problems respectively. In
this section, we will discuss a number of variants of
GBD that result from addressing the calculation of the
aforementioned support functions either rigorously for
special cases or making assumptions that may not pro-
vide valid lower bounds in the general case.

Variant 1 of GBD: V1-GBD

This variant of GBD is based on the following assump-
tion that was denoted by [7] as Property (P):

Theorem 5 (Property (P)) For every � and � � 0, the
infimum of L(x, y, �, �) with respect to x 2 X (i. e., the
support �(y;�, �)) can be taken independently of y so
that the support function �(y;�, �) can be obtained ex-
plicitly with little or no more effort than is required to
evaluate it at a single value of y. Similarly, the support
function �(y;�;�), (�;�) 2 � can be obtained explic-
itly.

[7] identified the following two important classes of
problems where Property (P) holds:
� Class 1: f , h, g are linearly separable in x and y.
� Class 2: Variable factor programming.

In class-1 problems, we have

f (x; y) D f1(x)C f2(y);

h(x; y) Dh1(x)C h2(y);

g(x; y) Dg1(x)C g2(y):

In class-2 problems, we have

f (x; y) D�
X
i

f i(xi)yi ;

g(x; y) j D
X
i

xiyi � c:

In [8] problems, we have

f (x; y) D
X
k

X
i

f i(xi(k))yi C
X
i

gi (yi);

g(x; y) j D�
X
i

xi(k)yi � L(k):

In the sequel, we will discuss the v1-GBD for class-
1 problems since this by itself defines an interest-
ing mathematical structure for which other algorithms
(e. g., outer approximation) has been developed.

V1-GBD Under Separability

Under the separability assumption, the support func-
tions �(y;�k, �k) and �(y;�

l
; �l ) can be obtained as ex-

plicit functions of y since:

�(y;�k; �k) D min
x2X

L(x; y; �k�k)

Dmin
x2X
f f (x; y))C �k>h(x; y)C �k>g(x; y)g

Dmin
x2X
f f1(x)C f2(y)

C �k>(h1(x)C h2(y))C �k>(g1(x)C g2(y))g

D f2(y)C �k>h2(y)C �k>g2(x)

Cmin
x2X

[ f1(x)C �k>h1(x)C �k>g1(x)]:

Note that due to separability we end up with an ex-
plicit function of y and a problem only in x that can be
solved independently.

Similarly, the support function �(y;�
l
; �l ) is

�(y;�
l
; �l ) D min

x2X
L(x; y; �

l
; �l )

Dmin
x2X
f�

l>
h(x; y)C �l>g(x; y)g

Dmin
x2X
f�

l>
(h1(x; y)C h2(x; y))

C �l> �g1(x; y)C g2(x; y)
�
g

D�
l>
h2(y)C �l>g2(y)

Cmin
x2X

h
�
l>
h1(x)C �l>g1(x)

i
:

Note that to solve the independent problems in x,
we need to know the multiplier vectors (�k, �k) and
(�

l
; �l ) from feasible and infeasible primal problems

respectively.
Under the separability assumption, the primal

problem for fixed y = yk takes the form

8̂
<̂
ˆ̂:

min
x2X

f1(x)C f2(yk)

s.t. h1(x) D �h2(yk)
g1(x) � �g2(yk):

Now, we can state the algorithmic procedure for the v1-
GBD under the separability assumption.

Note that if in addition to the separability of x and
y, we assume that y participates linearly (i. e., conditions
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1 Let an initial point y1 2 Y\V. Solve the pri-
mal P(y1) and obtain an optimal solution x1,
and multiplier vectors �1, �1. Set the counters
k = 1, l = 1, and UBD = v(y1). Select the con-
vergence tolerance � � 0.

2 Solve the relaxed master problem8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y;
B

�B

s.t. �B � f2(y) + �k>h2(y)
+�k>g2(y) + Lk

1 ;

k = 1; : : : ;K;

0 � �B�
l>
h2y + �l>g2(y) + Ll

1;

l = 1; : : : ; �;

where

Lk
1 = min

x2X
f f1(x) + �k>h1(x) + �k>g1(x)g,

Lk
1 = min

x2X
f f1(x) + �

l>
h1(x) + �l>g1(x)g

are solutions of the above stated independent
problems.
Let (ŷ; �̂B) be an optional solution. �̂B is a
lower bound, that is LBD = �̂B . If UBD �
LBD � �, then terminate.

3 As in GBD.

Algorithm for v1-GBD

for outer approximation algorithm), then we have

f2(y) D c>y;

h2(y) D Ay;

g2(y) D By;

in which case the relaxed master problem of Step 2
of v1-GBD will be a linear 0–1 programming problem
with an additional scalar �B, which can be solved with
available solvers (e. g., CPLEX, ZOOM, SCICONIC).

If the y variables participate separably but in a non-
linear way, then the relaxed master problem is of 0–1
nonlinear programming type.

Note that due to the strong duality theorem we do
not need to solve the problems for Lk

1 , L
l
1 since their op-

timum solutions are identical to the ones of the corre-
sponding feasible and infeasible primal problems with
respect to x respectively.

Variant 2 of GBD: V2-GBD

This variant of GBD is based on the assumption that we
can use the optimal solution xk of the primal problem
P(yk) along with the multiplier vectors for the determi-
nation of the support function �(y;�k, �k).

Similarly, we assume that we can use the optimal
solution of the feasibility problem (if the primal is in-
feasible) for the determination of the support function
�(y;�k ; �k).

The aforementioned assumption fixes the x vec-
tor to the optimal value obtained from its correspond-
ing primal problem, and therefore eliminates the inner
optimization problems that define the support func-
tions. It should be noted that fixing x to the solution of
the corresponding primal problem may not necessarily
produce valid support functions in the sense that there
would be no theoretical guarantee for obtaining lower
bounds can be claimed in general.

The v2-GBD algorithm can be stated as follows:

1 Let an initial point y1 2 Y \ V.
Solve the primal problem P(y1) and obtain an
optimal solution x1 and multiplier vectors �1,
�1. Set the counters k = 1, l = 1, and UBD =
v(y1). Select the convergence tolerance � � 0.

2 Solve the relaxed master problem:8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y�B

�B

s.t. �B � L(xk ; y; �k ; �k);
k = 1; : : : ;K;

0 � L(xl ; y; �
l
; �l );

l = 1; : : : ; �;

L(xk ; y; �k ; �k)
= f (xk ; y) + �k>h(xk ; y) + �k>g(xk ; y),

L(xl ; y; �
l
; �k)

= �
k>

h(xl ; y) + �k>g(xl ; y)

are the Lagrange functions evaluated at the op-
timal solution xk of the primal problem.
Let (ŷ; �̂B) be an optimal solution. �̂B is a
lower bound, that is LBD = �̂B . If UBD �
LBD � �; then terminate.

3 As in GBD.

Algorithm for v2-GBD
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Note that since y 2 Y = {0� 1 }, the master problem
is a 0–1 programming problem with one scalar vari-
able �B. If the y variables participate linearly, then it
is a 0–1 linear problem which can be solved with stan-
dard branch and bound algorithms. In such a case, we
can introduce integer cuts of the form:
X
i2B

yi �
X
i2NB

yi � jBj � 1;

where B = {i: yi = 1}, NB = {i: yi = 0}, |B| is the cardinal-
ity of B, which eliminate the already found 0–1 com-
binations. If we employ such a scheme, then an alter-
native termination criterion is that of having infeasible
relaxed master problems. This of course implies that all
0–1 combinations have been considered.

It is of considerable interest to identify the condi-
tions which if satisfied make the assumption in v2-GBD
a valid one. The assumption in a somewhat different re-
stated form is that:

�(y;�k; �k ) D min
x2X

L(x; y; �k ; �k )

� L(xk ; y; �k; �k ); k D 1; : : : ;K;

�(y;�
l
; �l ) D min

x2X
L(x; y; �

l
; �l )

� L(xl ; y; �
l
; �l ); l D 1; : : : ; �;

that is, we assume that the Lagrange function evalu-
ated at the solution of the corresponding primal are
valid underestimators of the inner optimization prob-
lems with respect to x 2 X.

Due to condition C1) the Lagrange functions L(x, y,
�k, �k), L(x; y; �

l
; �l ) are convex in x for each fixed y

since they are linear combinations of convex functions
ix x.

L(x, y, �k, �k), L(xl ; y; �
l
; �l ) represent local lin-

earizations around the points xk and xk of the support
functions �(y;�k, �k), �(y;�

l
; �l ) respectively. There-

fore, the aforementioned assumption is valid if the pro-
jected problem �(y) is convex in y. If however, the pro-
jected problem �(y) is convex in y. If however, the pro-
jected problem �(y) is nonconvex, then the assump-
tion does not hold, and the algorithm may terminate at
a local (not global) solution or even at a nonstationary
point.

Note that in the above analysis we did not assume
that Y = {0, 1}l, and hence the argument is applicable
even when the y-variables are continuous.

It is also very interesting to examine the validity of
the assumption made in v2-GBD under the conditions
of separability of x and y and linearity in y (i. e., OA
conditions). In this case we have:

f (x; y) D c>yC f1(x);

h(x; y) D AyC h1(x);
g(x; y) D ByC g1(x):

Then, the support function for feasible primal becomes

�(y;�k ; �k) D c>yC �k>(Ay)

C �k>(By)Cmin
x2X

f1(x)C �k>h1(x)C �k>g1(x);

which is linear in y and hence convex in y. Note also
that since we fix x = xk, the minx 2 X is in fact an eval-
uation at xk. Similarly the case for �(y;�

k
; �k ) can be

analyzed.
Therefore, the assumption in v2-GBD holds true if

separability and linearity hold which covers also the
case of linear 0–1 y variables. This way under condi-
tions C1), C2), C3) the v2-GBD determined the global
solution for separability in x and y and linearity in y
problems.

Variant 3 of GBD: V3-GBD

This variant was proposed in [4] and denoted as global
optimum search, GOS, and was applied to continuous
as well as 0–1 set Y. It uses the same assumption as the
one in v2-GBD but in addition assumes that:
i) f(x, y), g(x, y) are convex functions in y for every

fixed x; and
ii) h(x, y) are linear functions in y for every x.
This additional assumption was made so as to create
special structure not only in the primal but also in the
relaxed master problem. The type of special structure in
the relaxed master problem has to do with its convexity
characteristics.

The basic idea in GOS is to select the x and y vari-
ables in a such a way that the primal and the relaxed
master problem of the v2-GBD satisfy the appropriate
convexity requirements and hence attain their respec-
tive global solutions.

We will discuss v3-GBD first under the separability
of x and y and then for the general case.
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V3-GBD Under Separability

Under the separability assumption we have:

f (x; y) D f1(x)C f2(y);

h(x; y) D h1(x)C h2(y);

g(x; y) D g1(x)C g2(y):

The additional assumption that makes v3-GBD dif-
ferent from v2-GBD implies that
i) f2(y), g2(y) are convex in y; and
ii) h2(y) are linear in y.
Then, the relaxed master problem will be:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y;
B

�B

s.t. �B � f2(y)C �k>h2(y)C �k>g2(y)
C
�
f1(xk)C �k>h1(xk)C �k>g1(xk)

�
;

k D 1; : : : ;K;

0 � �
l>
h2(y)C �l>g2(y)

C
h
�
l>
h1(xl )C �l>g1(xl )

i
;

l D 1; : : : ; L:

Note that the additional assumption makes the
problem convex in y if y represent continuous variables.
If y 2 Y = {0, 1}, and the y-variables participate linearly
(i. e., f2, g2 are linear in y), then the relaxed master is
convex. Therefore, this case represents an improvement
over v3-GBD, and application of v3-GBD will result in
valid support functions, which implies that the global
optimum of the original problem will be obtained.

V3-GBDWithout Separability

The global optimum search, GOS, aimed at exploiting
and invoking special structure for nonconvex nonsepa-
rable problems
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x; y)
s.t. h(x; y) D 0

g(x; y) � 0
x 2 X � Rn

y 2 Y � Rq;

under the conditions C1), C2), C3) and the additional
condition:
i) f(x, y), g(x, y) are convex functions in y for every

fixed x;

ii) h(x, y) are linear functions in y for every x.
Hence both the primal and the relaxed problems attain
their respective global solutions.

Note that since x and y are not separable, then the
GOS cannot provide theoretically valid functions in the
general case, but only if the �(y) is convex (see the Sec-
tion v2-GBD).

The global optimization approach (GOP) of [5,6]
overcomes this fundamental difficulty and guarantees
�-global optimality for several classes of nonconvex
problems.

GBD in Continuous and Discrete-Continuous
Optimization

We mentioned in the Section Formulation that the
original problem represents a sub-class of the prob-
lems for which the generalized Benders decomposition,
GBD, can be applied. This is because we considered
the y 2 Y set to consist of 0–1 variables, while [7] pro-
posed an analysis for Y being a continuous, discrete or
continuous-discrete set.

The main objective in this section is to present the
modifications needed to carry on the analysis for con-
tinuous Y and discrete-continuous Y set.

The analysis presented for the primal problem re-
mains the same. The analysis though for the Master
problem changes only in the dual representation of the
projection of the original problem (i. e., v(y)) on the y-
space. In fact, Theorem 3 is satisfied if in addition to the
two conditions mentioned in C3) we have that:
iii) for each fixed y, v(y) is finite, h(x, y), g(x, y) and

f(x, y) are continuous on X, X is closed and the
"-optimal solution of the primal problem P(y) is
nonempty and bounded for some " � 0.
Hence, Theorem 3 has as assumptions: C1) and C3),

which now has i), ii) and iii). The algorithmic proce-
dure remains the same, while the theorem for the fi-
nite convergence becomes finite "-convergence and re-
quires additional conditions, which are described in the
following theorem:

Theorem 6 (Finite "-convergence) Let
i) Y be a nonempty subset of V;
ii) X be a nonempty convex set;
iii) f , g be convex on X for each fixed y 2 Y;
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iv) h be linear on X for each fixed y 2 Y;
v) f , g, h be continuous on X × Y;
vi) the set of optimal multiplier vectors for the primal

problem be nonempty for all y 2 Y, and uniformly
bounded in some neighborhood of each such point.

Then, for any given � > 0 the GBD terminates in a finite
number of iterations.

Assumption i) (i. e., Y � V) eliminates the possibility
of Step 3b, and there are many applications in which Y
� V holds (e. g., variable factor programming). If how-
ever, Y6�V, then we may need to solve step 3b infinitely
many successive times. In such a case, to preserve fi-
nite �-convergence, we can modify the procedure so as
to finitely truncate any excessively long sequence of suc-
cessive executions of Step 3b and return to Step 3a with
by equal to the extrapolated limit point which is assumed
to belong to Y \ V. If we do not make the assumption
Y�V, then the key property to seek is that V has a rep-
resentation in terms of a finite collection of constraints
because if this is the case then Step 3b can occur at most
a finite number of times. Note that if in addition to C1),
we have that X represents bounds on the x-variables or
X is given by linear constraints, and h, g satisfy the sep-
arability condition, then V can be represented in terms
of a finite collection of constraints.

Assumption vi) requires that for all y 2 Y there ex-
ist optimal multiplier vectors and that these multiplier
vectors do not go to infinity, that is they are uniformly
bounded in some neighborhood of each such point. [7]
provided the following condition to check the uniform
boundedness:

If X is a nonempty, compact, convex set and there
exists a point x 2 X such that

h(x; y) D 0;

g(x; y) < 0;

then the set of optimal multiplier vectors is uniformly
bounded in some open neighborhood of y.
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In the context of economics and optimization, a funda-
mental role is nowadays recognized to generalized con-
cavity which has been widely studied starting from the
pioneering work of K. Arrow and A.C. Enthoven [1].

The study of generalized concavity of a vector val-
ued function is not so deep as in the scalar case; never-
theless some classes with related properties have been
suggested in order to obtain sufficient optimality con-
ditions and the connectedness of the set of all efficient
points.

In this order of ideas, since there are different ways
in generalizing to the multi-objective case the defi-
nitions of generalized concave functions given in the
scalar case, we introduce the following classes of gen-
eralized concave vector valued functions, referring to
bibliography for further deepenings.

Let X be a convex subset of the n-dimensional space
Rn and let F be a vector function from X to Rs. Assume
that Rs is partially ordered by the convex closed cone
U with vertex at the origin 0 2 U and with nonempty
interior (i. e. intU 6D;). Set U0 = U \ {0}.

Definition 1 The function F is said to beU-concave if:

F(x1 C �(x2 � x1))

2 F(x1)C �(F(x2) � F(x1))CU;

for all � 2 (0, 1) and all x1, x2 2 S.

Definition 2 The function F is said to be U-
quasiconcave if:

x1; x2 2 S; F(x2) 2 F(x1)CU

imply

F(x1 C �(x2 � x1)) 2 F(x1)C U

for all � 2 (0, 1).

Definition 3 The function F is said to be U0-
quasiconcave if:

x1; x2 2 S; F(x2) 2 F(x1)CU0

imply

F(x1 C �(x2 � x1)) 2 F(x1)C U0

for all � 2 (0, 1).

Definition 4 The function F is said to be intU-
quasiconcave if:

x1; x2 2 S; F(x2) 2 F(x1)C intU

imply

F(x1 C �(x2 � x1)) 2 F(x1)C intU

for all � 2 (0, 1).

In [12], D.T. Luc suggests another class of quasiconcave
functions which results less general than the one given
in Definition 2, but which plays an important role in
establishing the connectedness of the set of all efficient
points.

Definition 5 The function F is said to be Luc U-
quasiconcave if:

y 2 Rs ; x1; x2 2 S; F(x1); F(x2) 2 yC U

imply

F(x1 C �(x2 � x1)) 2 yC U

for all � 2 (0, 1).
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In the scalar case, that is, when s = 1 and U = R+, Defi-
nitions 1, 2 and 5, 3 and 4 reduce to the ordinary defini-
tions of concavity, quasiconcavity and semistrictly qua-
siconcavity, respectively.

Inclusion relationships among the previous classes
of functions are given in the following Theorem:

Theorem 6
i) if F is U-concave, then F is Luc U-quasiconcave;
ii) if F is Luc U-quasiconcave, then F is U-

quasiconcave;
iii) if F is U-concave and U is a pointed cone, then F is

intU-quasiconcave;
iv) if F is U-concave and U is a pointed cone, then F is

U0-quasiconcave.

Proof i
i) Assume that F(x1), F(x2) 2 y + U; it follows (1 �

�)F(x1) 2 (1� �)y + U and �F(x2) 2 �y+U, so that
(1� �)F(x1) + �F(x2) 2 (1� �)y + �y +U = y + U.

ii) It is sufficient to choose y = F(x1).
iii) Assume that F(x2) 2 F(x1) + intU, that is, F(x2) �

F(x1) 2 intU. Since F is U-concave we have F(x1 +
�(x2 � x1)) 2 F(x1) + �(F(x2) � F(x1)) + U. The
thesis follows taking into account that for a pointed
cone the property intU + U = intU holds.

iv) The proof is similar to the one given in iii). �

Remark 7 When U is the Paretian cone U = Rs
C, com-

ponentwise generalized concavity implies generalized
concavity. For instance:
� if any component of F is quasiconcave then F is U-

quasiconcave;
� if any component of F is strongly quasiconcave then

F is either intU-quasiconcave or U0-quasiconcave;
� if any component of F is upper semicontinuous

and semistrictly quasiconcave then F is either intU-
quasiconcave or U0-quasiconcave.

It can be proven that F is Rs
C-concave (Luc Rs

C-
quasiconcave) if and only if all its components are con-
cave (quasiconcave); such a property does not hold for
the other given classes of generalized concave func-
tions, so that the inclusion relationships stated in i) and
ii) of Theorem 6 are strict.

In the particular case of a continuous bicrite-
ria function (s = 2, U = R2

C), the class of Luc U-
quasiconcave functions collapses to the class of U-
quasiconcave functions [8].

Remark 8 The following examples point out that
the classes of intU-quasiconcave and U0-quasiconcave
functions are not comparable.

Consider the function F: R! R3, F(x) = (x, x2�x,
�x2+x) and the Paretian cone U = R3

C. F is intU-
quasiconcave since there do not exist x, y 2 R such
that F(y) > F(x); on the other hand, F is not U0-
quasiconcave since F(1) = (1, 0, 0) 2 F(0) + R3

C \ {0},
but F(1/2) 62 F(0) + R3

C \ {0}.
Consider now the function F: R ! R2, F(x) = (x,

f (x)) with f (x) = 0 if x � 1, f (x) = x � 1 if x > 1 and the
Paretian cone U = R2

C. It is easy to verify that F is U0-
quasiconcave, but F is not U-quasiconcave since F(2) =
(2, 1) 2 F(0) + intR2

C, and F(1) = (1, 0) 62 F(0) + intR2
C.

Remark 9 In the scalar case an upper semicontinu-
ous and semistrictly quasiconcave function is also qua-
siconcave; this property is lost for a vector valued func-
tion as is shown in the following example, so that the
two classes are not comparable: consider the function F:
R!R2 defined as F(x) = (x sin 1/x,�x sin 1/x) if x 6D 0;
F(x) = 0 if x = 0. F is continuous and U0-quasiconcave
but it is not U-quasiconcave at x = 0.

Remark 10 As is known, in the scalar case there exists
a characterization of quasiconcave functions in the dif-
ferentiable case; unfortunately such a characterization
cannot be extended in the vector case (for further de-
veloping see [7]).

Consider a differentiable vector valued function F. As
for the quasiconcave case, there are different ways to
extend the concept of pseudoconcavity introduced by
O.L. Mangasarian [14]. With the aim to state some suf-
ficient optimality conditions, we introduce the follow-
ing two classes of functions, where JF(x) denotes the Ja-
cobian matrix of F evaluated at x.

Definition 11 F is said to be U-weakly pseudoconcave
if:

x1; x2 2 S; F(x2) 2 F(x1)C U0

imply

JF (x1)d 2 U0; d D
x2 � x1
kx2 � x1k

:

Definition 12 F is said to be U-pseudoconcave if:

x1; x2 2 S; F(x2) 2 F(x1)C U0
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imply

JF(x1)d 2 intU; d D
x2 � x1
kx2 � x1k

:

When s = 1 andU = R+, Definitions 11, 12 reduce to the
ordinary definition of a pseudoconcave function.

Obviously, a function which is U-pseudoconcave
is U-weakly quasiconcave too; a linear function is U-
concave and U-weakly pseudoconcave with respect to
every cone U with vertex at the origin 0 2 U but it is
notU-pseudoconcave. As a consequence the class ofU-
pseudoconcave functions is properly contained in the
class of U-weakly pseudoconcave functions.

Remark 13 When U is the Paretian cone U = Rs
C, we

have:
� if any component of F is pseudoconcave then F is

Rs
C-weakly pseudoconcave;

� if any component of F is strictly pseudoconcave
then F is either Rs

C-weakly pseudoconcave or Rs
C-

pseudoconcave.

Efficiency

Consider the following vector optimization problem:

(P) U �max F(x); x 2 S � X;

where X is an open set of Rn, F: X! Rs, and U 2 Rs is
a nontrivial cone with vertex at the origin 0 2 U, intU
6D ;.

A point x0 2 S is said to be:
� weakly efficient if F(x) 62 F(x0) + intU, for all x 2 S;
� efficient if F(x) 62 F(x0) + U0, for all x 2 S;
� strictly efficient if F(x) 62 F(x0) + U, for all x 2 S, x 6D

x0.
If the previous conditions are verified in I \ S, where
I is a suitable neighborhood of x0, then x0 is said to be
a local weakly efficient point a local efficient point and
a local strictly efficient point, respectively.

In the scalar case (s = 1, U = R+), the definitions
of a (local) weakly efficient point and an (local) efficient
point reduce to the ordinary definition of a (local) max-
imum point, while a (local) strictly efficient point re-
duces to the ordinary definition of a (local) strict maxi-
mum point. Obviously (local) strictly efficiency implies
(local) efficiency and (local) efficiency implies (local)
weakly efficiency.

The concept of efficiency was originally introduced
by V. Pareto in the early 1900s when he used the pos-
itive orthant Rs

C to generate the order; therefore when
U = Rs

C efficient points are often called Pareto points.
As in the scalar case, vector generalized concavity

plays an important role in investigating relationships
between local and global optima. Following [14], the
assumption of convexity of the feasible region can be
weakened requiring that S is star-shaped at the point
x0.

A set S � X is said to be star-shaped at x0 2 S if for
every x 2 S it results:

[x; x0] D ftx C (1 � t)x0 : t 2 [0; 1]g � S:

Since optimality results involve a feasible point, from
now on we will consider generalized concavity at
a point x0; this means that all the given definitions hold
with x1 = x0. The following theorem shows that, under
suitable assumption of generalized concavity, local effi-
ciency implies global efficiency.

Theorem 14 Let us consider problem (P) where S is
a star-shaped set at x0.
i) if x0 is a local weakly efficient point and F is intU-

quasiconcave at x0, then x0 is a weakly efficient point
for (P);

ii) if x0 is a local efficient point and F is U0-
quasiconcave at x0, then x0 is an efficient point for
(P);

iii) if x0 is a strict local efficient point and F is U-
quasiconcave at x0, then x0 is a strictly efficient point
for (P);

iv) if x0 is a local efficient point and F is U-
pseudoconcave at x0, then x0 is an efficient point for
(P).

Proof i) Assume that there exists x� 2 S such that
F(x�) 2 F(x0) + intU. Since F is intU-quasiconcave at
x0, we have F(x0 + �(x� � x0)) 2 F(x0) + intU for all �
2 (0, 1) and such a relation implies, choosing � small
enough, the non local weakly efficiency of x0.

ii), iii) follow with similar arguments.
iv) Assume that there exists x� 2 S such that F(x�) 2

F(x0) + U0. Since F is U-pseudoconcave at x0, we have
JF(x0)d 2 intU, d = (x� � x0)/kx� � x0k, that is

lim
t!0C

F(x0 C td) � F(x0)
t

2 intU
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and this implies the existence of a suitable � > 0 such
that F(x0 + td) � F(x0) 2 intU for all t 2 (0, �).

Set t = �kx� � x0k; we have F(x0+�(x��x0))2 F(x0)
+ intU for all � 2 (0, �/kx� � x0k) and this contradicts
the local efficiency of x0. �
Corollary 15 Let us consider problem (P) where S is
locally star shaped at x0.
i) If U is a pointed cone and F is U-concave at x0, then

a local efficient point x0 is an efficient point too.
ii) If F is linear, then a local efficient point x0 is an effi-

cient point too.

Optimality Conditions

Now we point out the role played by vector general-
ized concavity in stating sufficient optimality condi-
tions. With this aim consider the necessary optimality
conditions stated in the following Theorem:

Theorem 16 Let us consider problem (P) where F is dif-
ferentiable at x0.
i) If x0 is a local interior efficient point for (P), then

9˛ 2 U� n f0g : ˛> JFx0 D 0; (1)

where U� denotes the positive polar cone of U.
ii) If x0 is a local efficient point for (P) then

JFx0 (v) … intU; 8v 2 T(S; x0); v ¤ 0: (2)

Here, T(S, x0) is the Bouligand tangent cone, defined as:

T(S; x0) D

8<
:v :

9f˛ng � R; fxng � S;
˛n !1; xn ! x0;
˛n(xn � x0)! v

9=
; :

The following theorem points out the different roles
played by weakly pseudoconcavity and pseudoconcav-
ity:

Theorem 17 Let us consider problem (P) where S is
a star shaped set and F is differentiable at x0.
i) if (1) holds and F is U-pseudoconcave at x0, then x0

is an efficient point for (P);
ii) if (1) holds with ˛ 2 intU� and F is U-weakly pseu-

doconcave at x0, then x0 is an efficient point for (P);
iii) if (2) holds and F is U-pseudoconcave at x0, then x0

is an efficient point for (P);
iv) if JFx0 (v) 62U

0, for all v 2 T(S, x0) and F is U-weakly
pseudoconcave at x0, then x0 is an efficient point for
(P).

Proof i) Assume that there exists x� 2 S such that
F(x�) 2 F(x0) + U0. Since F is U-pseudoconcave at x0,
we have JFx0 (d) 2 intU, d = (x� � x0)/kx� � x0k, so that
˛|(JFx0 (d)) > 0 and this contradicts (1).

ii) Assume that there exists x� 2 S such that F(x�)
2 F(x0) + U0. Since F isU-weakly pseudoconcave at x0,
we have JFx0 (d) 2 U0, d = (x� � x0)/kx� � x0k, so that
˛|(JFx0 (d)) > 0 and this contradicts (1).

iii), iv) follow immediately. �
When F is a linear vector valued function, Theorem
17ii) can be specified by means of the following theo-
rem:

Theorem 18 Consider problem (P) where F is linear
and U is a pointed cone.

An interior point x0 is an efficient point for (P) if and
only if there is ˛ 2 intU� such that ˛|JFx0 = 0.

F. John Generalized Conditions

Now we stress the role of vector generalized concavity
in stating the sufficiency of F. John condition.

With this aim consider the vector problem (P) in the
following form:

(P)

(
U �max F(x);

x 2 S D fx 2 X : G(x) 2 Vg ;

where X � Rn is an open set, F: X ! Rs, G: X ! Rm

are differentiable functions and U � Rs, V � Rm are
closed, pointed, convex cones with vertices at the origin
and nonempty interiors.

Denote with U�, V� the positive polar cones of U
and V , respectively, and let x0 be a feasible point such
that G(x0) = 0.

The following F. John necessary optimality condi-
tions hold:

Theorem 19 If x0 is a local efficient point for (P), then

9(˛F ; ˛G) ¤ 0; ˛F 2 U�; ˛G 2 V� :

˛>F JFx0 C ˛
>
G JGx0

D 0:
(3)

The following theorem points out the role of gener-
alized concavity in stating sufficient optimality condi-
tions:

Theorem 20 Let us consider the vector optimization
problem (P) where S is a star shaped set at x0 and F, G
are differentiable at x0.
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i) if F is U-weakly pseudoconcave at x0, G is V-
quasiconcave at x0, and (3) holds with ˛F 2 intU�,
then x0 is an efficient point for (P).

ii) if F is U-pseudoconcave at x0, G is V-quasiconcave
at x0, and (3) holds with ˛F 2 U� \ {0}, then x0 is an
efficient point for (P).

Proof i) Suppose that there exists x� 2 S such that
F(x�) 2 F(x0) + U0. Since F is U-weakly pseudocon-
cave at x0 and G is V-quasiconcave at x0 we have, re-
spectively, JFx0 (x

� � x0) 2 U0, JGx0
(x� � x0) 2 V and

thus ˛>F JFx0 (x
� � x0) > 0, ˛>G JGx0

(x� � x0)� 0 since ˛F
2 intU� and ˛G 2 V�. Consequently ˛>F JFx0 (x

� � x0)
+ ˛>G JGx0

(x� � x0) > 0 and this contradicts (3).
ii) similar to the one given in i). �

Connectedness of the Efficient Points Sets

A vector maximization problem normally has a contin-
uum of optimal alternatives and it may be necessary to
select one or several of these which are best with respect
to some additional auxiliary criterion, so that a desir-
able property is connectedness since it provides a pos-
sibility of continuous moving from one efficient point
to any other along optimal alternatives only. Consider
problem (P) where F = (f 1, . . . , f s) is a continuous func-
tion and U is the Paretian cone; denote with S(a) the
upper level set associated to the point a 2 Rs, that is
S(a) = {x 2 S: F(x) 2 a + U}. The following fundamen-
tal result was given by A.R. Warburton [16].

Theorem 21
i) if f 1, . . . , f s are quasiconcave functions on the closed

convex set S and S(a) is compact for each a 2 f 1(S) ×
� � � × f s(S), then the set of all weakly Pareto points is
nonempty and connected;

ii) if f 1, . . . , f s are strongly quasiconcave functions on
the closed convex set S and S(a) is compact for each a
2 f 1(S) × � � � × f s(S), then the set of all Pareto points
is nonempty and connected.

Obviously the compactness of sets S(a) is verified when
S is a compact set; in this last case for a bicriteria
and three criteria, Theorem 21ii) holds, requiring the
weaker assumption of semistrictly quasiconcavity in-
stead of strongly quasiconcavity [9,15].

In [12], Luc extends Theorem 21i) with respect to
a pointed closed convex cone requiring that F is U-
continuous.

F is said to beU-continuous at x 2 S if for any neigh-
borhood H of F(x), there exists a neighborhood I of x
such that F(y) 2 H � U for all y 2 I \ S.

Theorem 22 Assume that F is a U-continuous Luc U-
quasiconcave function on S and the set of all weakly ef-
ficient points of S(a) is compact for each a 2 Rs. Then
the set of all weakly efficient points is nonempty and con-
nected.

See also

� Invexity and its Applications
� Isotonic Regression Problems
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Introduction

Generalized Disjunctive Programming (GDP) [13] is
an extension of disjunctive programming [1,2] that
provides an alternate way of modeling mixed-integer

linear programming (MILP) andmixed-integer nonlin-
ear programming (MINLP) problems. The general for-
mulation of a (GDP) is as follows:

minZ D
X
k2K

ck C f (x)

s:t: r(x) � 0

_
j2Jk

2
4

Yjk

g jk (x) � 0
ck D � jk

3
5 k 2 K (GDP)

˝(Y) D True

x 2 Rn ; c 2 Rm ; Y 2 ftrue; f al segm

where Yjk are the Boolean variables that decide whether
a given term j in a disjunction k 2 K is true or false, and
x are the continuous variables. The objective function
involves the term f (x) for the continuous variables and
the charges ck that depend on the discrete choices in
each disjunction k 2 K. The constraints r(x) � 0 must
hold regardless of the discrete choices, and g jk (x) � 0
are conditional constraints that must hold when Yjk is
true in the j-th term of the k-th disjunction. The cost
variables ck correspond to the fixed charges, and their
value equals to � jk if the Boolean variable Yjk is true.
˝(Y) = True are logical relations for the Boolean vari-
ables expressed as propositional logic. An important
particular case is the one where the functions f (x), r(x)
and gjk(x) are all linear. For the nonlinear case it is
assumed for the derivation of basic methods that the
functions are convex, although in practical applications
these often correspond to nonconvex functions.

Mixed-Integer Programming Reformulations

Problem (GDP) can be reformulated as the following
“big-M”MINLP problem,

minZ D
X
k2K

X
j2Jk

� jk y jk C f (x)

s:t: r(x) � 0
g jk (x) � Mjk (1 � y jk ) ; j 2 Jk ; k 2 K (BM)X
j2Jk

y jk D 1; k 2 K

Ay � a
0 � x � xU ; y jk 2 f0; 1g; j 2 Jk ; k 2 K

where the Boolean variables are replaced by binary
variables yjk, the disjunctions are replaced by “Big-M”
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constraints which involve a parameter Mjk and bi-
nary variables yjk. The propositional logic statements
˝(Y) = True are replaced by the linear constraints
Ay � a as described by Williams [19]. Here we assume
that x is a non-negative variable with finite upper bound
xU . An important issue in model (BM) is how to specify
a valid value for the Big-M parameter Mjk. If the value
is too small, then feasible points may be cut off. IfMjk is
too large, then the continuous relaxation might be too
loose yielding weak lower bounds. Therefore, finding
the smallest valid value for Mjk is the desired selection.
For linear constraints one can use the upper and lower
bound of the variable x to calculate the maximum value
of each constraint, which then can be used to calculate
a valid value of Mjk. For nonlinear constraints one can
in principle maximize each constraint over the feasible
region, which is a non-trivial calculation. It is also im-
portant to note that if the binary variables yjk are spec-
ified as continuous, 0 � y jk � 1, and the functions
f (x), r(x) and gjk(x) are assumed to be convex, the relax-
ation of problem (BM) reduces to a convex NLP prob-
lem, that provides a valid lower bound to the solution
of problem (GDP).

The MINLP hull reformulation of problem (GDP)
is based on the following proposition by Lee and Gross-
mann [11]:

Proposition 1 The convex hull of each disjunction k 2
K in problem (GDP),

_
j2Jk

2
4

Yjk

g jk (x) � 0
c D � jk

3
5 (Dk)

0 � x � xU ; c � 0

where g jk (x) � 0 are convex inequalities, is a convex set
and is given by,

x D
X
j2Jk

� jk ; c D
X
j2J

y jk� jk

0 � � jk � y jk xUjk ; j 2 JkX
j2Jk

y jk D 1; 0 � y jk � 1; j 2 Jk (CHk)

y jk g jk (� jk/y jk ) � 0; j 2 Jk
x; c; � jk � 0; j 2 Jk

The proof is based on an extension of the work by
Stubbs and Mehrotra [16]. In (CHk), vjk are disaggre-

gated variables that are assigned to each term of the
disjunction fk 2 Kg, and yjk can be regarded as the
weight factors that determine the feasibility of the dis-
junctive term. Note that when yjk is 1, then the j’th term
in the k’th disjunction is enforced and the other terms
are ignored. The constraints y jk g jk (v jk /y jk ) are con-
vex if gjk(x) is convex as discussed in Hiriart-Urruty
and Lemaréchal [8]. Formal proofs can be found in [15]
and [16].Note that the convex hull (CHk) reduces to the
result by Balas [2] if the constraints are linear. Based
on the convex hull relaxation (CHk), Lee and Gross-
mann [11] proposed the following MINLP hull refor-
mulation of (GDP):

minZ D
X
k2K

X
j2Jk

� jk y jk C f (x)

s:t: r(x) � 0

x D
X
j2Jk

� jk ;
X
j2Jk

y jk D 1 ; k 2 K (HR)

0 � � jk � y jk xUjk ; j 2 Jk ; k 2 K

yjk g jk (� jk/y jk ) � 0; j 2 Jk ; k 2 K

Ay � a

0 � x; � jk � xU ; y jk D 0:1; j 2 Jk ; k 2 K :

The relaxation of problem (HR) where 0 � y jk � 1,
reduces to a convex NLP problem that yields a valid
lower bound to the optimal solution of problem (GDP).
Also, this relaxation, which can also be regarded as
a generalization of the disjunctive problem studied by
Ceria and Soares [4], can be interepreted as one where
the convex hulls of each of the disjunctions are intere-
sected.

The following proposition holds for problems (PR)
and (BM) as proved by Grossmann and Lee [7].

Proposition 2 LetZR
HR be the optimal value of prob-

lem (HR) where the binary variables are relaxed as 0 �
y jk � 1, and let ZR

BM be the optimal value of prob-
lem (BM) where the binary variables are relaxed as 0 �
y jk � 1. Then, ZR

BM � ZR
HR.

Hence, problem (HR) has the useful property that the
lower bound of its relaxation is greater than or equal to
the lower bound predicted from the relaxation of prob-
lem (BM). In some problems this translates into a sig-
nificantly tighter formulations [13,14]). The trade-off,
however, is that in the reformulation (HR) the number
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of constraints and variables is larger than the one in the
reformulation (BM).

It is also important to point out that for
the computer implementation of the constraint
y jk g jk (� jk /y jk ) � 0 in problem (HR), an approxi-
mation is required for the nonlinear functions, gjk(x)
in order to avoid the division by zero when y jk D 0.
Furman et al. [5] have proposed the following approxi-
mation, which has the interesting feature that it is exact
for y jk D 0 and y jk D 1,

((1 � ")y jk C ")(g jk(� jk/((1 � ")y jk C ")))

� "g jk (0)(1 � y jk ) � 0 :

Furthermore, it can be shown that this inequality is
convex for any value of ". Note also that this expression
reduces to the original one as "! 0.

Solution Algorithms for GDP

The most direct way of solving problem (GDP) is by
reformulating it as an MINLP (or MILP for the linear
case). In both cases the big-M and hull reformulation
are the two extreme choices. The latter generally yields
tighter relaxations, but involves solving a larger prob-
lem. For the linear case LP-based branch and cut meth-
ods can be used [10], including special cutting plane
techniques [14]. For the nonlinear case, MINLP meth-
ods such as branch and bound, outer-approximation,
Generalized Benders, extended cutting plane or hybrid
methods can be used [6].

Logic-based method for solving linear problems
(GDP) include the branch and bound method by Beau-
mont [3], which branches on the constraints of the
disjunctions. Raman and Grossmann [13] developed
a branch and bound method which solves GDP prob-
lem in hybrid form, by exploiting the tight relax-
ation of the disjunctions and the tightness of the well-
behaved mixed-integer constraints. For the nonlinear
case a disjunctive branch and bound method based on
the hull relaxation has been proposed by Lee and Gross-
mann [11] that is coupled with logic inference tech-
niques [9]. Also, for the special case of two-term dis-
junctions in (GDP), which typically arise in process net-
work problems, Türkay and Grossmann [17] have pro-
posed outer-approximation and Generalized Benders
Decomposition algorithms. Some of these algorithms
have been implemented in LOGMIP, a computer code

based on GAMS [18]. Finally, for the nonconvex case
a disjunctive branch and bound method coupled with
a spatial branch and bound search has been reported
in [12].
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Problem

Consider two matrices A 2 Rn�m and B 2 Rk�m , each
row being a point in one of two classes in the feature
space. The generalized eigenvalue proximal support vec-
tor machine (GEPSVM) consists in finding two hyper-
planes each one being closer to one set of points and
farther from another set of points. Let x0w � � D 0 be
a hyperplane in Rm . In order to satisfy the previous
condition for all points in A, the hyperplane can be ob-
tained by solving the following optimization problem:

min
w;�¤0

kAw � e�k2

kBw � e�k2
: (1)

The hyperplane for B can be obtained by minimiz-
ing the inverse of the objective function in (1). Now, let

G D [A � e]0[A � e];

H D [B � e]0[B � e]
(2)

and

z D [w0 �]0 : (3)

Then (1) becomes

min
z2Rm

z0Gz
z0Hz

: (4)

The expression in (4) is the Raleigh quotient of the
generalized eigenvalue problem Gz D �Hz. When H
is positive definite, the stationary points are obtained
at and only at the eigenvectors of (4), where the value
of the objective function is given by the eigenvalues.
The Raleigh quotient is bounded, and it ranges over
the interval determined by minimum and maximum
eigenvalues [4].H is positive definite under the assump-
tion that the columns of [B � e] are linearly indepen-
dent. The reciprocal of the objective function in (4) has
the same eigenvectors and reciprocal eigenvalues. Let
zmin D [w01 �1]0 and zmax D [w02 �2]0 be the eigen-
vectors related to the eigenvalues of the smallest and
largest modulo, respectively. Then x0w1 � �1 D 0 is the
closest hyperplane to the set of points in A and the fur-
thest from those in B and x0w2 � �2 D 0 is the clos-
est hyperplane to the set of points in B and the fur-
thest from those in A. GEPSVM finds application in
many supervised learning problems [3]. For example,
a bank prefers to classify customer loan requests as
“good” or “bad” depending on their ability to pay back
the loan. The Internal Revenue Service tries to discover
tax evaders starting from the characteristics of known
evaders. As another example, a built-in system in a car
could detect if a walking pedestrian is going to cross the
street. More applications can be found in biology and
medicine. The tissues that are prone to cancer can be
detected with high accuracy, or new DNA sequences or
proteins can be tracked down to their origins. Given its
amino acid sequence, finding out how a protein folds
provides important information about its expression
level. An unlabeled point x is associated to the class yi
related to the closest hyperplane Pi. Therefore, a point
x is classified using its distance for the corresponding
hyperplane:

yi D argminiD1;2fdist(x; Pi )g ; (5)

where

dist(x; Pi ) D
jx0wi � �i j

kwik
: (6)
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Kernel Formulation

To obtain greater separability between classes, nonlin-
ear embedding of data to a higher-dimensional space
is required. This nonlinear mapping can be done im-
plicitly by kernel functions, which represent the inner
product of the elements in a nonlinear space. Kernel
functions can be described as follows:

K(xi ; x j) D h�(xi) � �(x j); �(xi) � �(x j)i ; (7)

where �(x) is the embedding function.
Using kernels, we can express the problem in terms

of inner products between elements, and therefore the
computationally expensive calculation of the feature, in
the embedded space, is avoided. Some commonly used
kernel functions are

Linear K(xi ; x j) D x0i � x j

Polynomial K(xi ; x j) D (x0i � x j C 1)d

Gaussian K(xi ; x j) D exp
�
�
k xi � x j k

2

�

�
:

Using the kernel function, each element of the ker-
nel matrix is

K(A; B)i; j D K(Ai ; Bj) : (8)

Let

C D
�

A
B

�
:

Then problem (1) becomes

min
u;�¤0

kK(A;C)u � e�k2

kK(B;C)u � e�k2
: (9)

A point x is classified using its distance for the corre-
sponding hyperplane in the feature space:

yi D argminiD1;2fdist(x; Pi )g ; (10)

where

dist(x; Pi ) D
jK(x;C)ui � �i j

kuik
: (11)

The associated eigenvalue problem has matrices of or-
der nC k C 1 and rank at most m. This means a regu-
larization technique is needed since the problem can be
singular.

Algorithm

Let G and H be as defined in (2). Note that even if A
and B are full rank, matrices G and H are always rank-
deficient. The reason is that G and H are matrices of
order mC 1, and their rank can be at most m. The
added complexity due to the singularity of the matrices
means that special care must be given to the solution of
the generalized eigenvalue problem. Indeed, if the null
spaces of G and H have a nontrivial intersection, i. e.,
Ker(A)

T
Ker(B) ¤ 0, then the problem is ill posed and

a regularization technique is needed to solve the eigen-
value problem. Mangasarian et al. [2] proposes to use
Tikhonov regularization applied to a twofold problem:

min
w;�¤0

kAw � e�k2 C ıkzk2

kBw � e�k2
(12)

and

min
w;�¤0

kBw � e�k2 C ıkzk2

kAw � e�k2
; (13)

where ı is the regularization parameter and the new
problems are still convex. The minimum eigenvalues-
eigenvectors of these problems are approximations of
the minimum and maximum eigenvalues-eigenvectors
of (4). The solutions (wi ; �i); i D 1; 2 to (12) and (13)
represent the two hyperplanes approximating the two
classes of training points. The same regularization tech-
nique can be applied to the nonlinear formulation.

Another Algorithm

It is possible to solve the problem without regulariza-
tion. In practice, if ˇG � ˛H is nonsingular for every ˛
and ˇ, it is possible to transform the problem into an-
other problem that is nonsingular and that has the same
eigenvectors of the initial one. We start with the follow-
ing theorem whose proof can be found in [5], p. 288.

Theorem 1 Consider the generalized eigenvalue prob-
lem Gx D �Hx and the transformed G�x D �H�x de-
fined by

G� D �1G � ı1H; H� D �2H � ı2G (14)

for each choice of scalars �1, �2, ı1, and ı2 such that the
2 � 2matrix

˝ D

�
�2 ı1
ı2 �1

�
(15)
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is nonsingular. Then the problem G�x D �H�x has the
same eigenvectors of the problem Gx D �Hx. An associ-
ated eigenvalue �� of the transformed problem is related
to an eigenvalue � of the original problem by

� D
�2�
� C ı1

�1 C ı2��
:

In the linear case, Theorem 1 can be applied. By setting
�1 D �2 D 1 and ı̂1 D �ı1; ı̂2 D �ı2, the regularized
problem becomes

min
w;�¤0

kAw � e�k2 C ı̂1kBw � e�k2

kBw � e�k2 C ı̂2kAw � e�k2
: (16)

If ı̂1and ı̂2 are nonnegative, ˝ is nondegenerate. The
spectrum is now shifted and inverted so that the mini-
mum eigenvalue of the original problem becomes the
maximum of the regularized one, and the maximum
becomes the minimum eigenvalue. Choosing the eigen-
vectors related to the new minimum and maximum
eigenvalue, we obtain the same solution of the original
problem.

This regularization works for the linear case if we
suppose that in each class of the training set there is
a number of linearly independent rows that is at least
equal to the number of the features. This is often the
case and, if the number of points in the training set is
much greater than the number of features, Ker(G) and
Ker(H) have both dimension 1. In this case, the proba-
bility of a nontrivial intersection is zero.

In the nonlinear case the situation is different. Guar-
racino et al. [1] propose to generate the two proximal
surfaces

K(x;C)u1 � �1 D 0; K(x;C)u2 � �2 D 0 (17)

by solving the following problem

min
u;�¤0

kK(A;C)u � e�k2 C ıkK̃Bu � e�k2

kK(B;C)u � e�k2 C ıkK̃Au � e�k2
; (18)

where K̃A and K̃B are diagonal matrices with the diag-
onal entries from the matrices K(A,C) and K(B,C). The
perturbation theory of eigenvalue problems [6] pro-
vides an estimation of the distance between the original
and the regularized eigenvectors. If we call z an eigen-
vector of the initial problem and z(ı) the corresponding
one in the regularized problem, then jz � z(ı)j D O(ı),
which means their closeness is in the order of ı.
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with continuous and discrete variables occur quite
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engineering design, chemical engineering, location-
allocation, inventory control, production planning,
and scheduling etc. These applications are extensively
surveyed in Floudas and Pardalos [11] and Floudas [9].
Biegler and Grossmann [3] provided a retrospective
on optimization techniques that have been applied
in process systems engineering. They indicated that
design and synthesis problems have been dominated
by nonlinear programming (NLP) and mixed-integer
nonlinear programming (MINLP) models. Although
MINLP programs appear in many chemical engineer-
ing problems, they are often nonconvex and no direct
optimization method is available to guarantee global
optimality [21]. With the increasing reliance on math-
ematical programming based approaches in chemical
engineering problems, the need for finding global opti-
mum is paramount.

The developed methods for GGP problems with
continuous and discrete variables can be divided into
two approaches.
(i) Stochastic methods: The stochastic methods in-

volve random elements in their search and rely on
a statistical argument to prove their convergence.
For instance, Salcedo et al. [23] proposed an im-
proved random search algorithm for solving non-
linear optimization problems. Cardoso et al. [5]
solved nonconvex nonlinear integer programming
problems with simulated annealing. Yiu et al. [30]
developed a hybrid descent approach based on
a simulated annealing algorithm and a gradient-
based method to solve multidimensional noncon-
vex continuous optimization problems. Hussain
and Al-Sultan [15] proposed a hybrid algorithm
for nonconvex function minimization by utilizing
the genetic technique to generate search directions.
These stochastic methods mentioned above can
not guarantee to find the global optimum. There-
fore, the quality of the solution is not ensured.
Moreover, the probability of finding the global so-
lution decreases when the problem size increases.

(ii) Deterministic methods: Mathematical methods
that generate convex underestimators for twice
differentiable constrained nonconvex optimization
problems are of primary importance in determin-
istic global optimization [9]. The ˛ BB global op-
timization algorithm [1,2,9] is a power approach
for constructing such convex underestimators for

nonconvex functions [10]. In a general survey of
optimization techniques ([3,13,14]), many deter-
ministic methods for convex MINLP problems
have been reviewed. The methods include Branch
and Bound (BB) ([17,24]), Generalized Benders
Decomposition (GBD) [12],Outer-Approximation
(OA) ([6,7,22]), Extended Cutting Plane Method
(ECP) [28], and Generalized Disjunctive Program-
ming (GDP) [16]. One possible approach to cir-
cumvent the nonconvex objective function or the
nonconvex constraints in MINLP models is trans-
formation. Floudas ([8,9]), Floudas and Parda-
los [11] and Maranas and Floudas [20] proposed
exponential transformation methods to treat GGP
problems with continuous and discrete variables.
The core concept of their methods is to convert
the problem into a new problem where both the
constraints and the objective are decomposed into
the difference of two convex functions. By uti-
lizing exponential variable transformations, each
signomial term z D x˛1 x

ˇ
2 , where x1 and x2 are

positive, can be transferred into an exponential
term z0 D e˛ ln x1Cˇ ln x2 . However, the exponential
transformation technique can only be applied to
strictly positive variables and is thus unable to deal
with nonconvex GGP problems with continuous
and discrete free variables.

Although positive variables are adopted frequently to
represent engineering and scientific systems, it is also
common to introduce free variables to model the sys-
tem behavior, such as stresses, temperatures, electrical
currents, velocities and accelerations, etc. In general,
the values accepted by themachines are under a discrete
space. For instance, a controller can only increase tem-
perature from a fixed initial point to a set of fixed points
at a fixed interval. Consequently, deriving a global op-
timum for the GGP problem with continuous and dis-
crete free variables is essential for real applications. Li
and Tsai [18] proposed a technique for treating free
continuous variables in GGP problems. Pörn et al. [21]
introduced different convexification strategies for
MINLP problems with both polynomial and nega-
tive binomial terms in the constraints. They suggested
a simple translation, xC � D ex , to treat a free variable
x. However, inserting the transformed result into the
original signomial term will bring additional signomial
terms and therefore increasing the computation bur-
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den. This study proposes a method for solving a GGP
problem with continuous and discrete free variables to
obtain a global optimal solution. The GGP problem is
first transformed into another one containing only pos-
itive variables. Then the transformed problem is refor-
mulated as a convex mixed-integer program. A global
optimum of the GGP problemwith continuous and dis-
crete free variables can finally be found within the tol-
erable error. Furthermore, this study develops several
convexification strategies for signomial terms so that
the efficiency of the optimization approach can be en-
hanced. The right choice of transformation for convex-
ification of nonconvex signomial terms might signifi-
cantly decrease the solution time [4]. By employing the
proposed rules, certain classes of signomial terms can
be determined as convex terms and do not require any
transformation. Moreover, some nonconvex signomial
terms with specific features can be transformed into
convex terms in accordance with the proposed rules by
replacing some variables, thereby making the resulting
problem a computationally efficient model.

Formulation

The mathematical formulation of a GGP problem with
continuous and discrete free variables is expressed as
follows:

GGP:
Minimize f (X;Y)
subject to gt(X;Y) � 0 t D 1; : : : ; T,

X D (x1; : : : ; xp; xpC1 : : : ; xn);
xi � xi � xi ,
Y D (y1; : : : ; yq ; yqC1 : : : ; ym);
y
j
� y j � y j ,

where xi 2 <C for 1 � i � p; xi are bounded
free variables for p C 1 � i � n; y j are positive inte-
ger/discrete variables for 1 � j � q; y j are bounded
free variables for qC 1 � j � m; f (X;Y) and gt(X;Y)
are mixed-integer signomial functions, xi and xi are
lower and upper bounds of the continuous variable
xi , and y

j
and y j are lower and upper bounds of the

integer/ discrete variable y j , respectively.

Methods

Treating Free Variables. Li and Tsai [18] proposed
a technique for treating free continuous variables in

GGP problems. By integrating Li and Tsai method with
the approach of dealing with free discrete variables de-
scribed below, a GGP problem with continuous and
discrete free variables can be equivalently transform
into a mixed-integer GGP program with positive vari-
ables. The following illustrates how to convert free dis-
crete variables into non-positive discrete variables.

Let: y j D yCj � y�j ; yCj ; y
�
j � 0;

for j D qC 1; � � � ;m :

And a nonlinear term yˇ j
j is expressed as

yˇ j
j D (yCj )

ˇ j C (�1)ˇ j (y�j )
ˇ j ;

ˇ j 2 integer, for j D qC 1; : : : ;m:

If yCj > 0 and y�j D 0, then y j is positive. Otherwise,
if y�j > 0 and yCj D 0, then y j is negative. To prohibit
from yielding positive values for yCj and y�j simultane-
ously, we have the following remark.

Remark 1 A free discrete variable y j can be expressed
as y j D yCj � y�j ; y

C
j ; y
�
j � 0, and yCj and y�j will not

be positive concurrently by the following inequalities.

(i) � y�j � y j � M� j � y�j ;

(ii) M(� j � 1)C yCj � y j � yCj :

M is a sufficiently large positive number and � j 2 f0; 1g:
By means of changing variables, the GGP problem

with free variables can be equivalently solved with an-
other one having non-negative variables. The next is to
deal with discrete variables containing zero, consider
the following propositions:

Proposition 1 [21] For positive discrete variables y j 2˚
dj1; dj2; � � � ; djm j

�
where dj;iC1> dji > 0 for i D

1; 2; � � � ;mj � 1, a product term y˛11 y˛22 � � � y˛mm where
˛1; ˛2; � � � ; ˛m are real constants can be transformed
into a function e˛1z1C���C˛mzm where z j D ln dj1 CPmj�1

iD1 uji (ln dj;iC1 � ln dj1);
Pmj�1

iD1 uji � 1 for u ji 2

f0; 1g.

Proof Let y j D ez j and z j D ln y j , expressing y j as
y j D dj1 C

Pmj�1
iD1 uji (dj;iC1 � dj1);

Pmj�1
iD1 uji � 1;

where uji 2 f0; 1g.
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We then have y˛11 y˛22 � � � y˛mm D e˛1z1C���C˛mzm and
z j D ln dj1 C

Pm j�1
iD1 uji(ln dj;iC1 � ln dj1);

Pm j�1
iD1 uji

� 1, for uji 2 f0; 1g. �

Because some variables y j in Proposition 1 may have
zero value, Proposition 1 needs to be modified as the
following proposition:

Proposition 2 For positive discrete variables y j 2˚
dj1; dj2; � � � ; djm j

�
where dj;iC1> dji > 0 for i D

1; 2; � � � ;mj � 1, 1 � j � q, and non-negative
discrete variables y j 2

˚
0; dj1; dj2; � � � ; djm j

�
where

dj;iC1 > dji > 0 for i D 1; 2; � � � ;mj � 1; qC 1 � j �
m, a product term s D y˛11 y˛22 � � � y

˛q
q y˛qC1

qC1 � � � y
˛m
m can

be expressed as

(i) 0 � s � s̄

 m jX
iD1

uji

!
; for qC 1 � j � m;

(ii) s̄

0
@

mX
jDqC1

m jX
iD1

uji�(m � q)

1
AC e˛1z1C���C˛mzm � s

� s̄

0
@(m � q) �

mX
jDqC1

m jX
iD1

uji

1
ACL(e˛1z1C���C˛mzm );

where y j D dj1C
Pmj�1

iD1 uji (dj;iC1�dj1); z j D ln dj1CPmj�1
iD1 uji(ln dj;iC1 � ln dj1);

Pmj�1
iD1 uji � 1; uji 2

f0; 1g, for 1 � j � q, and y j D
Pmj

iD1 ujid ji ; z j DPmj
iD1 uji (ln dji );

Pmj
iD1 uji � 1; uji 2 f0; 1g for qC1 �

j � m; L(e˛1z1C���C˛mzm ) is a piecewisely linearized ex-
pression of e˛1z1C���C˛mzm , and s̄ is the upper bound of s.

Proof If there is y j D 0 for some j (q C 1 � j � m),
then

Pmj
iD1 uji D 0 and s D 0 by (i).

If y j > 0 for all j D qC 1; � � � ;m, then
Pmj

iD1 uji D

1 for j D q C 1; � � � ;m. Therefore we havePm
jDqC1

Pmj
iD1 uji � (m � q) D 0 if all variables in

the signomial term are not zero, and this implies s D
e˛1z1C���C˛mzm according to (ii). �

Remark 2 For a non-negative discrete variable y, y 2
fd1; d2; � � � ; dmg ; 0 � d1 < d2 < � � � < dm , the expo-
nential term y˛ where ˛ is a real constant can be repre-
sented as

y˛ D d˛1 C
m�1X
iD1

ui (d˛iC1�d
˛
1 ) where

m�1X
iD1

ui � 1;

ui 2 f0; 1g:

According to the above discussions, free discrete vari-
ables in GGP can be converted into positive discrete
variables. In addition, Li and Tsai method [18] can deal
with the free continuous variables. Consequently, the
GGP program with continuous and discrete free vari-
ables can be transformed into a GGP programwith only
positive variables. In order to obtain a global optimum
of the transformed GGP program, it is required to be
converted into a convex mixed-integer problem which
is solvable by the conventional convex mixed-integer
techniques to derive a globally optimal solution.

Convexification Strategies. Convexification strate-
gies for signomial terms are important techniques for
global optimization problems. Sun et al. [25] proposed
a convexification method for a class of global optimiza-
tion problems with monotone functions under some
restrictive conditions. Wu et al. [29] developed a more
general convexification and concavification transfor-
mation for solving a general global optimization prob-
lem with certain monotone properties. With different
convexification approaches, an MINLP problem can be
reformulated into another convex mixed-integer pro-
gram solvable to obtain an approximately global op-
timum. Björk et al. [4] proposed a global optimiza-
tion technique based on convexifying signomial terms.
They discussed that the right choice of transforma-
tion for convexifying nonconvex signomial terms has
a clear impact on the efficiency of the optimization
approach. Tsai et al. [26] also suggested convexifica-
tion techniques for the signomial terms with three vari-
ables. This study presents generalized convexification
techniques and rules to transform a nonconvex GGP
program with continuous and discrete variables into
a convex mixed-integer program. Consider the follow-
ing propositions:

Lemma 1 For a twice-differentiable function f (X) D

c
nQ

iD1
x˛ii ; X D (x1; x2; � � � ; xn) ; c; xi ; ˛i 2 <; 8i; l et

Hi (X) be the ith principal minor of a Hessian matrix
H(X) of f (X). The determinant of Hi(X) can be ex-
pressed as detHi(x) D

(�c)i
 

iQ
j2J i

˛ j x
i˛ j�2
j

!0
B@

nQ
j…J i

J i¤˚

xi˛ j
j

1
CA
 
1 �

P
j2J i

˛ j

!
:

Remark 3 If c � 0, xi � 0 and ˛i � 0 (for all i), then
detHi(x) � 0.
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Remark 4 If c < 0; xi � 0; ˛i � 0 (for all i), and,
1 �

Pn
iD1 ˛ j � 0, then detHi(x) � 0.

Proposition 3 A twice-differentiable function f (X) D

c
nQ

iD1
x˛ii is convex for c; xi � 0, ˛i � 0; i D 1; 2; � � � ; n.

Proof By Lemma 1 and Remark 3, detHi(x) D

(�c)i
 

iQ
j2J i

˛ j x
i˛ j�2
j

!0
B@

nQ
j…J i

J i¤˚

xi˛ j
j

1
CA
 
1 �

P
j2J i

˛ j

!

� 0 for i D 1; 2; � � � ; n, when c; xi � 0; ˛i � 0; i D
1; 2; � � � ; n. Since detHi(x) � 0 for all i, Hi (X) is posi-
tive semi-definite and f (X) is convex. �

Proposition 4 A twice-differentiable function f (X) D

c
nQ

iD1
x˛ii is convex for c < 0; xi ; ˛i � 0 (for i D

1; 2; � � � ; n), and 1 �
nP

iD1
˛i � 0.

Proof By Lemma 1 and Remark 4, detHi(x) D

(�c)i
 

iQ
j2J i

˛ j x
i˛ j�2
j

!0
B@

nQ
j…J i

J i¤˚

xi˛ j
j

1
CA
 
1 �

P
j2J i

˛ j

!

� 0 for i D 1; 2; � � � ; n, when c < 0; xi ; ˛i � 0, and
1�

Pn
iD1 ˛i � 0. Since detHi (x) � 0 for all i, Hi(X) is

positive semi-definite and f (X) is convex. �

For a given signomial term s, if s can be converted into
a set of convex terms satisfying Proposition 3 and 4,
then the whole solution process is more computation-
ally efficient. Under this condition, s does not necessi-
tate the exponential transformation. For instance, s D
x�11 x�22 x�13 with x1; x2; x3 � 0 is a convex term requir-
breaking no transformation by Proposition 3, and s D
�x0:21 x0:72 with x1; x2 � 0 is also a convex term by
Proposition 4.

Remark 5 A product term z D u f (x) is equivalent to
the following linear inequalities:

(i) M(u � 1)C f (x) � z � M(1 � u)C f (x);

(ii) � Mu � z � Mu;

where u 2 f0; 1g, z is an unrestricted in sign variable,
and M D max f (x) is a large constant.

Remark 6 The product term u1u2 � � �um where ui 2

f0; 1g for i D 1; 2; � � � ;m can be replaced by a variable
u expressed as

(i) 0 � u � ui ; for i D 1; 2; � � � ;m;

(ii) u �
mX
iD1

ui � mC 1:

Following the above discussions, herein we take a sig-
nomial term with three variables for instance to de-
scribe the strategy of convexification. The strategy can
also be extended to convexity a signomial term contain-
ing n variables.

Consider a signomial term cx˛1 x
ˇ
2 x

�
3 composed of

three positive variables, the term cx˛1 x
ˇ
2 x

�
3 can be con-

vexified by the following rules:

Rule 1 If c> 0; ˛; ˇ; � < 0, then cx˛1 x
ˇ
2 x

�
3 is already

a convex term by Proposition 3.

Rule 2 If c> 0; ˛; ˇ < 0, and � > 0, then let
cx˛1 x

ˇ
2 x

�
3 D cx˛1 x

ˇ
2 z
��
1 where z1 D x�13 . The term

cx˛1 x
ˇ
2 z
��
1 is convex by Rule 1.

Rule 3 If c> 0; ˛ < 0, and ˇ; � > 0, then let
cx˛1 x

ˇ
2 x

�
3 D cx˛1 z

�ˇ
1 z��2 where z1 D x�12 ; z2 D x�13 .

The term cx˛1 z
�ˇ
1 z��2 is convex by Rule 1.

Rule 4 If c> 0 and ˛; ˇ; � > 0, then let cx˛1 x
ˇ
2 x

�
3 D

ce˛ ln x1Cˇ ln x2C� ln x3 .

Rule 5 If c < 0, ˛; ˇ; � � 0, and ˛C ˇ C � � 1, then
cx˛1 x

ˇ
2 x

�
3 is already a convex term by Proposition 4.

Rule 6 If c < 0; ˛; ˇ > 0; ˛ C ˇ < 1, then let
cx˛1 x

ˇ
2 x

�
3 D cx˛1 x

ˇ
2 z

1�˛�ˇ
1 where z1 D x� /(1�˛�ˇ )3 . The

term cx˛1 x
ˇ
2 z

1�˛�ˇ
1 is convex by Rule 5.

Rule 7 If c < 0; 0 < ˛ < 1, then let cx˛1 x
ˇ
2 x

�
3 D

cx˛1 z
(1�˛)/2
1 z(1�˛)/22 where z1 D x2ˇ /(1�˛)2 and z2 D

x2� /(1�˛)3 . The term cx˛1 z
(1�˛)/2
1 z(1�˛)/22 is convex by

Rule 5.

Rule 8 If c < 0 and “˛; ˇ; � < 0 or ˛; ˇ; � � 1”, then
let cx˛1 x

ˇ
2 x

�
3 D cz

1
3
1 z

1
3
2 z

1
3
3 where z1 D x3˛1 ; z2 D x3ˇ2 ,

and z3 D x3�3 . The term cz
1
3
1 z

1
3
2 z

1
3
3 is convex by Rule 5.
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Rule 9 If ˛; ˇ > 0; x1 2 Z; x3 D 1 and ˛ C ˇ > 1,
then let cx˛1 x

ˇ
2 D c

�
d˛11 C

Pm1�1
iD1 u1i(d˛1;iC1 � d˛11)

�
xˇ2

for i 2 f1; 2; � � � ;m1 � 1g . By Remark 5, the prod-
uct term u1i xˇ2 can be transformed into linear inequal-
ities.

By applying the proposed rules, we can determine cer-
tain classes of signomial terms are convex and do
not necessitate any transformation. Besides, we can
transform a nonconvex signomial term into a convex
term accordance with the proposed rules by replac-
ing some variables, thereby decreasing the number of
concave functions requiring to be estimated and mak-
ing the resulting problem a computationally efficient
model.

In order to be a valid transformation in the global
optimization procedure, the transformation should be
selected such that the signomial terms are not only con-
vexified but also underestimated [4,21,27]). If the trans-
formations are appropriately selected, the correspond-
ing approximate signomial term will underestimate the
original convexified signomial term by applying piece-
wise linear approximations to the inverse transforma-
tion functions. We examine the proposed rules can sat-
isfy the underestimating condition as follows:

In Rule 2, let ẑ1 be the approximate transforma-
tion variable obtained from piecewise linear function
of z1 D x�13 . The inverse transformation z1 D
x�13 (x3> 0) is convex and z1 will be overestimated
(ẑ1> z1). When inserting the approximate variable in
the signomial term, we find the underestimating prop-
erty cx˛1 x

ˇ
2 ẑ
��
1 � cx˛1 x

ˇ
2 z
��
1 is fulfilled since c> 0 and

z1 has a negative power in the convexified term. Sim-
ilarly, Rules 3 and 4 meet the underestimating condi-
tion.

In Rule 6, let ẑ1 be the approximate transfor-
mation variable obtained from piecewise linear func-
tion of z1 D x� /(1�˛�ˇ )3 . The inverse transforma-
tion z1 D x� /(1�˛�ˇ )3 (x3> 0; �

1�˛�ˇ > 1 or �
1�˛�ˇ �

0) is convex and z1 will be overestimated (ẑ1> z1).
When inserting the approximate variable in the sig-
nomial term, we find the underestimating property
cx˛1 x

ˇ
2 ẑ

1�˛�ˇ
1 � cx˛1 x

ˇ
2 z

1�˛�ˇ
1 is fulfilled since c < 0

and z1 has a positive power in the convexified term.
Similarly, Rules 7 and 8 satisfy the underestimating
property.

From above discussions, we observe the proposed
rules not only convexity but underestimate the convex-
ified signomial term. Consequently, utilizing the trans-
formations in the global optimization of a GGP prob-
lems, the feasible region of the convexified problem
overestimates the feasible region of the original non-
convex problem.

Case Studies

Case1Minimize x31x1:52 x33 C x5:52 x3 C x51

subject to

3x1 C 2x2 � x3 � 7;

� 5 � x1 � 2; 0 � x2 � 4; �5 � x3 � �1;

x1; x2 2 Z ; x3 2 <:

This problem is a nonconvex GGP program with
continuous and discrete free variables. Current expo-
nential transformation methods [8,9,11,20]) developed
for solving mixed-integer GGP problems can not be
adopted to treat this kind of problems. By employing
the proposed method, we first utilize a straightforward
substitution for the free variables to make the GGP
problem with only non-negative variables. By Li and
Tsai [18], let the free continuous variable x3 D �x�3 ,
x�3 � 0.

The free discrete variable can be transformed by Re-
mark 1, x1 D xC1 �x�1 ; x

C
1 ; x�1 � 0. The original prob-

lem becomes as follows:

Minimize � (xC1 )
3x1:52 (x�3 )

3 C (x�1 )
3x1:52 (x�3 )

3�

x5:52 x�3 C (xC1 )5 � (x�1 )
5

subject to 3xC1 � 3x�1 C 2x2 C x�3 � 7;

0 � xC1 � 2; 0 � x�1 � 5:0 � x2 � 4;

1 � x�3 � 5; xC1 ; x
�
1 ; x2 2 Z; x�3 2 <:

Then, we use the proposed convexification rules to
transform all signomial terms into convex terms as fol-
lows:

(i) z1 D (xC1 )3x1:52 (x�3 )
3 and z2 D (x�1 )

3x1:52 (x�3 )
3

are transformed by Rule 4 and Proposition 2.

(ii) � x5:52 x�3 is convexified as � x5:52 x�3 D �(u21C
25:5u22 C 35:5u23 C 45:5u24)x�3 D �z3 � 25:5z4
� 35:5z5 � 45:5z6 by Rule 9.
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(iii) (xC1 )
5 and � (x�1 )

5 are treated directly as
(xC1 )

5 D uC11 C 25uC12;�(x
�
1 )

5 D �u�11
� 25u�12 � 35u�13 � 45u�14 � 55u�15 by Remark 2.

Subsequently, the transformed program is presented as
a convex mixed-integer program below:

Minimize

� z1 C z2 � z3 � 25:5z4 � 35:5z5 � 45:5z6 C z7 � z8
subject to

3xC1 � 3x�1 C 2x2 C x�3 � 7;

� x�1 � x1 � 5�1 � x�1 ;

5(�1 � 1)C xC1 � x1 � xC1 ;

xC1 D uC11 C 2uC12; yC1 D uC12 � ln 2;

x�1 D u�11 C 2u�12 C 3u�13 C 4u�14 C 5u�15;
y�1 D u�12 � ln 2C u�13 � ln 3C u�14 � ln 4C u�15 � ln 5;

uC11 C uC12 � 1; u�11 C u�12 C u�13 C u�14 C u�15 � 1;

x2 D u21 C 2u22 C 3u23 C 4u24;

y2 D u22 � ln 2C u23 � ln 3C u24 � ln 4;

u21 C u22 C u23 C u24 � 1;

y�3 D L(ln x�3 );
0 � z1 � z̄(uC11 C uC12);

0 � z1 � z̄(u21 C u22 C u23 C u24);

z̄(uC11 C uC12 C u21 C u22 C u23 C u24 � 2)

C e3y
C

1 C1:5y2C3y�3 � z1;

z1 � z̄ (2 � (uC11 C uC12 C u21 C u22 C u23 C u24))

C L(e3y
C

1 C1:5y2C3y�3 );

0 � z2 � z̄(u�11 C u�12 C u�13 C u�14 C u�15);

0 � z2 � z̄(u21 C u22 C u23 C u24);

z̄(u�11 C u�12 C u�13 C u�14 C u�15 C u21 C u22 C u23
C u24 � 2)C e3y

�

1 C1:5y2C3y�3 � z2;
z2 � z̄(2 � (u�11 C u�12 C u�13 C u�14 C u�15 C u21
C u22 C u23 C u24))C L(e3y

�

1 C1:5y2C3y�3 );

5(u�211)C x�3 � z3 � x�3 ; 0 � z3 � 5u21;

5(u�221)C x�3 � z4 � x�3 ; 0 � z4 � 5u22;

5(u�231)C x�3 � z5 � x�3 ; 0 � z5 � 5u23;

5(u�241)C x�3 � z6 � x�3 ; 0 � z6 � 5u24;
z7 D uC11 C 25uC12;

z8 D u�11 C 25u�12 C 35u�13 C 45u�14 C 55u�15;

(0; 0; 0; 1; 0; 0; 0) � (xC1 ; x
�
1 ; x2; x

�
3 ; y

C
1 ; y
�
1 ; y2; y

�
3 )

� (2; 5; 4; 5; ln 2; ln 5; ln 4; ln 5);

where ui j; uCi j ; u
�
i j; �1 2 f0; 1g; and z̄ D 125;000:

Solving the original problem without any variable
transformation and convexification by LINGO [19],
a local optimum obtained is (x1; x2; x3) D (�5; 0;�5)
and the objective value is –3125. However, solving
the above transformed convex mixed-integer program
within the tolerable error 0.001, the globally optimal so-
lution obtained is (x1; x2; x3) D (�2; 4;�3:266) and
the objective value found is –4491.16.

Case2Minimize x0:51 x2 C 3 ln x1 subject to

� x1 C x2 � 5
x0:51 y � x2 � 6;

x1 2 f0:1; 0:5; 0:7; 1:2g;�6 � x2 � 4; y 2 f0; 1g:

This problem contains a discrete variable, a free
continuous variable and a binary variable which can-
not be treated by the exponential-based methods. The
nonlinear terms x0:51 x2, 3 ln x1 and x0:51 y are noncon-
vex functions. By Remarks 2, 5 and 6, the problem can
be equivalently transformed into a linear mixed-integer
programming problem as follows.

Minimize
0:10:5x2 C (0:50:5 � 0:10:5)s1 C (0:70:5 � 0:10:5)s2C

(1:20:5 � 0:10:5)s3 C 3(ln 0:1C (ln 0:5 � ln 0:1)u1C

(ln 0:7 � ln 0:1)u2 C (ln 1:2 � ln 0:1)u3)

subject to

� x1 C x2 � 5; x1 D 0:1C (0:5 � 0:1)u1C

(0:7 � 0:1)u2 C (1:2 � 0:1)u3;
u1 C u2 C u3 � 1; 0:10:5yC (0:50:5 � 0:10:5)z1C

(0:70:5 � 0:10:5)z2 C (1:20:5 � 0:10:5)z3 � x2 � 6;

0 � zi ; zi � ui ; zi � y; zi � ui C y � 1;

i D 1; 2; 3; �6ui � si � 6ui ; 6(ui � 1)C

x2 � si � 6(1 � ui )C x2; i D 1; 2; 3;

s1; s2; s3 are unrestricted in sign variables;
u1; u2; u3 2 f0; 1g;�6 � x2 � 4:

The transformed program can be solved to locate
the globally optimal solution (x1; x2; y) D (0:1;�6; 0).
The objective value is –8.805.
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Conclusions

This paper proposes a generalized method to solve
the globally optimal solutions of GGP problems with
continuous and discrete free variables. The techniques
of dealing with free variables aim to change variables
and to convert the logical relationship among the vari-
ables in a product term into a set of linear inequalities,
which can be merged conveniently into the GGP mod-
els. Compared with current GGP methods, the pro-
posed method is capable of dealing with free variables
of a GGP problem and is guaranteed to converge to
a global optimum. In addition, several computationally
efficient convexification rules for signomial terms are
presented to enhance the efficiency of the optimization
approach.
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The study of multivalued generalized monotone opera-
tors is a recent(as of 1999) subject. The first to introduce
such a notion seem to have been L.G. Mitjuschin and
W.M. Polterovich [16] who defined multivalued quasi-
monotone operators in demand theory. The same con-
cept was also defined by A. Hassouni [10] and D.T. Luc
[14]. Later, Luc [15] and J.P. Penot and P.H. Quang [20]
proceeded to define new kinds of generalized mono-
tonicity for multivalued operators. Alarge part of this
effort has been devoted to the definition of appropriate
concepts so that generalized convex nonsmooth func-
tions are characterized by the generalized monotonicity
of their subdifferentials [18].

As it stands today, the theory is not at the stage of
development of the corresponding theory for single val-
ued operators (see� Generalized monotone single val-
ued maps). More concepts have to be introduced and
probably some of the already existing ones have to be

modified so that a nice correspondence such as the one
exhibited in the first theorem of � Generalized mono-
tone single valued maps can be established, without im-
posing any additional assumptions. This concerns both
generalized monotonicity of multivalued operators and
generalized convexity of nonsmooth functions, as some
notions of generalized convexity involve subdifferen-
tials.

This article presents various definitions of gen-
eralized monotonicity for multivalued operators and
generalized convexity for nonsmooth functions. Also,
various characterizations of generalized convexity of
a function through the corresponding generalized
monotonicity of the subdifferential are surveyed. Some
characterizations have a ‘mixed’ form, i. e., they involve
both the function and its subdifferential.

The next section contains the definition of the sub-
differential for lower semicontinuous functions, along
with the necessary notation. Then the less known cor-
respondence between the convexity of a function and
the monotonicity of its subdifferential is presented. In
the main part of the article, this correspondence is ex-
tended to cover the various cases of generalized convex-
ity and generalized monotonicity.

The Subdifferential

There is a host of nonequivalent subdifferentials for
nonconvex functions. The interested reader may find
a thorough exposition of the various concepts in [19].
The most common, the Clarke–Rockafellar subdiffer-
ential, is the one that will be used here, although many
of the results hold also for a large number of other
subdifferentials; see for instance [1,18,19]. Generalized
monotonicity of bifunctions is used in [13] to char-
acterize generalized convex functions through various
generalized derivatives.

In this article, X denotes a Banach space, X� its dual,
and f : X ! R [ { +1} a lower semicontinuous (lsc)
function with nonempty domain dom(f ) = {x 2 X: f (x)
6D +1}. The function f is called radially continuous if
its restriction to line segments is continuous. The value
of a functional x� 2 X� at a point x 2 X will be denoted
by hx�, xi. Given x, y 2X, (x, y) is the open line segment
{tx+ (1�t)y: t 2 (0, 1)}. The line segments [x, y], [x, y)
and (x, y] aredefined analogously.
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The Clarke–Rockafellar generalized derivative of f at
x0 2 dom(f ) in the direction d 2 X is given by

f "(x0; d)

D sup
">0

lim sup
x! f x0
t&0

inf
d02B"(d)

f (x C td0) � f (x)
t

:

Here, t & 0 is used to denote the fact that t > 0 and t
! 0, and x! f xo means that both x! xo and f (x)!
f (xo).

The (Clarke–Rockafellar) subdifferential of f at x0 2
dom(f ) is defined by

@ f (x0)

D
n
x� 2 X� : hx�; di � f "(x0; d); 8d 2 X

o
;

while for x0 2 X \ dom(f ), @ f (x0) = ;.
Even for x0 2 dom(f ), the subdifferential @f (x0) may

be empty. Whenever the function f is locally Lipschitz,
one has @f (x0) 6D ;, for all x0 2 dom(f ). In this case f "

coincides with the Clarke generalized derivative:

f o(x0; d) D lim sup
x!x0
t&0

f (x C td) � f (x)
t

:

In case f is convex, @f coincides with the classical
Fenchel–Moreau subdifferential

@ f (x0)
D fx� 2 X� : hx�; di � f (x0 C d) � f (x0)g :

TheMonotone Case

Let T: X! 2X� be a multivalued operator with domain

D(T) D fx 2 X : T(x) ¤ ;g :

The operator T is called:
� monotone, if for all x, y 2 X and

x� 2 T(x); y� 2 T(y)

one has

hy� � x�; y � xi � 0; (1)

� strictly monotone, if for all x 6D y the above inequality
is strict.

It is well known that the subdifferential of a convex
function is amonotone operator. However, the fact that
convex functions are characterized by the monotonic-
ity of their Clarke–Rockafellar subdifferentials is a rel-
atively recent result. In addition, there exists a ‘mixed’
characterization of convexity, involving both the func-
tion and its subdifferential:

Theorem 1 Let f be lsc. The following are equivalent:
i) The function f is convex.
ii) For all x, y 2 dom(f ) and all x� 2 @f (x) one has:

hx�; y � xi � f (y) � f (x): (2)

iii) The subdifferential @ f is a monotone operator.

The implication i))ii) follows from the equality of the
Clarke–Rockafellar and the Fenchel–Moreau subdiffer-
ential for convex functions. The implication ii))iii) is
shown in every textbook on monotone operators. Fi-
nally, the implication iii))i) is shown in [4].

An analogous theorem holds for strictly convex
functions (see � Generalized monotone single valued
maps for definitions of the various kinds of convexity
and generalized convexity):

Theorem 2 Let f be lsc. Consider the following asser-
tions:
i) The function f is strictly convex.
ii) For all distinct x, y 2 dom(f ) and

x� 2 @ f (x);

one has

hx�; y � xi < f (y)� f (x):

iii) The subdifferential @ f is a strictly monotone opera-
tor.

Then i))ii))iii). If, in addition, @f (x) 6D ; for all x 2
dom(f ), then iii))i).

For the proof, see [8].

The Quasimonotone Case

The concepts of quasimonotone, semistrictly quasi-
monotone and strictly quasimonotone maps are direct
generalizations of the corresponding concepts for sin-
gle valued maps (see � Generalized monotone single
valued maps and [9,12]). A multivalued operator T: X
! 2X� is called:
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� quasimonotone [14], if for all x, y 2 X and all x� 2
T(x), y� 2 T(y), the following implication holds:

hx�; y � xi > 0 ) hy�; y � xi � 0;

� semistrictly quasimonotone [5], if it is quasimono-
tone and for any distinct

x; y 2 D(T)

one has the implication:

9x� 2 T(x) : hx�; y � xi > 0

)9z 2
�
x C y
2

; y
�
; 9z� 2 T(z) :

hz�; y � xi > 0;

(3)

� strictly quasimonotone [5], if it is quasimonotone
and for any distinct x, y 2 D(T), there exists z 2 (x,
y) and z� 2 T(z)such that hz�, y�xi 6D 0.

It can be shown [5] that relation (3) is equivalentto the
following: if hx�, y� xi > 0 for some x� 2 T(x), then the
set of all z 2 (x, y) for which there exists z� 2 T(z) such
that hz�, y� xi > 0, is dense in [x, y].

In the single valued case, whenever T is a gradi-
ent, its quasimonotonicity, semistrict quasimonotonic-
ity and strict quasimonotonicity is equivalent to qua-
siconvexity, semistrict quasiconvexity and strict quasi-
convexity of the underlying function, respectively (see
� Generalized monotone single valued maps for the
corresponding definitions, and [3] for properties of
such functions). Analogous results hold formultivalued
operators which are subdifferentials. The next theorem
gives two equivalent characterizations of quasiconvex-
ity: one ‘mixed’, andone through the quasimonotonic-
ity of the subdifferential.

Theorem 3 Let f be lsc. The following are equivalent:
i) The function f is quasiconvex.
ii) For all x, y 2 dom(f ), the following implication holds:

9x� 2 @ f (x) : hx�; y � xi > 0

) 8z 2 [x; y] : f (z) � f (y):
(4)

iii) The operator @f is quasimonotone.

The equivalence i),iii) is shown in [14, Thm. 3.2],
while the equivalence i),ii) is shown in [1, Thm. 2.1].
In [1] it is also shown that, in case f is radially contin-
uous, implication (4) is equivalent to the following im-
plication:

9x� 2 @ f (x) : hx�; y � xi > 0 ) f (x) � f (y):

A ‘mixed’ characterization exists also for semistrictly
quasiconvex functions [5], but a continuity assumption
stronger than lower semicontinuity is needed:

Theorem 4 Let f be lsc. If f is semistrictly quasiconvex,
then for all x, y 2 dom(f ) one has:

9x� 2 @ f (x) : hx�; y � xi > 0
) 8z 2 [x; y) : f (z) < f (y):

(5)

The converse also holds if in addition f is radially con-
tinuous.

Radial continuity is an often used, weak continuity as-
sumption. In fact, it is not as weak as it seems. Since X is
a Banach space, it can be shown that a lsc quasiconvex
function which is radially continuous is also continuous
[8].

Characterization of strict or semistrict quasiconvex-
ity via the generalized monotonicity of the subdifferen-
tial requires an even stronger continuity assumption:

Theorem 5 A locally Lipschitz function f is strictly
(respectively semistrictly) quasiconvex, if and only if its
subdifferential is strictly (respectively semistrictly) quasi-
monotone.

For the proof, see [5].

The Pseudomonotone Case

The definition of pseudomonotonicity for multivalued
operators was given by J.C. Yao [21] and generalizes
the corresponding definition for single valued opera-
tors (see � Generalized monotone single valued maps
and [11]). An operator

T : X ! 2X
�

is called pseudomonotone if for all x, y 2 X one has:

9x� 2 T(x) : hx�; y � xi � 0

) 8y� 2 T(y) : hy�; y � xi � 0:

Equivalently, an operator T is pseudomonotone if and
only if the following implication holds:

9x� 2 T(x) : hx�; y � xi > 0
) 8y� 2 T(y) : hy�; y � xi > 0:

(6)

Obviously, a pseudomonotone operator T is quasi-
monotone. If in addition the domain D(T) is con-
vex, then relation (6) implies that T is also semistrictly
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quasimonotone. Also, it is clear that a monotone oper-
atoris pseudomonotone.

An operator T : X ! 2X� is called strictly pseu-
domonotone [21], if for all distinct x, y 2 X one has:

9x� 2 T(x) : hx�; y � xi � 0

) 8y� 2 T(y) : hy�; y � xi > 0:

It is clear that a strictly pseudomonotone operator is
pseudomonotone, and that a strictly monotone oper-
ator is strictly pseudomonotone. Finally, it can easily
be shown [8] that a strictly pseudomonotone operator
with convex domain is strictly quasimonotone.

In summary, between the various concepts of gen-
eralized monotonicity, the following implications hold
(some of which assume convexity of the domain):

qm
*

m ) pm ) sstr:qm
* * *

str:m ) str:pm ) str:qm

Here, ‘str.’ and ‘sstr.’ stands for ‘strictly’ and
‘semistrictly’, respectively, and ‘m’, ‘pm’ and ‘qm’ for
‘monotone’, ‘pseudomonotone’ and ‘quasimonotone’,
respectively. These implications are exactly the same as
those holding for singlevalued operators (see � Gener-
alized monotone single valued maps).

In contrast to quasiconvex functions and their vari-
ants, pseudoconvex functions have to be redefined in
the nonsmooth case. The reason is that the usual defini-
tion of pseudoconvexity makes explicit reference to the
derivative of the function (however, there exists a defi-
nition which does not mention the derivative explicitly
[17]; see also [3] for details).

A function f is called pseudoconvex, if for all x, y 2
dom(f ) the following implication holds:

9x� 2 @ f (x) : hx�; y � xi � 0

) 8z 2 [x; y) : f (z) � f (y):
(7)

Note that the above definition, expresses a ‘mixed’
property in the spirit of relation (4); actually, (7) is
stronger than (4), and hence any pseudoconvex func-
tion is quasiconvex. In particular, a pseudoconvex func-
tion f has a convex domain. If in addition f is radially
continuous, then it is semistrictly quasiconvex [8].

The definition of pseudoconvexity given here differs
slightly from the definition introduced in [20]. There,
a function f is called pseudoconvex if it satisfies the im-
plication

9x� 2 @ f (x) : hx�; y � xi � 0 ) f (x) � f (y): (8)

A pseudoconvex function (as defined by relation (7))
obviously satisfies (8). The converse is not always true;
however, if f is radially continuous, or if its domain is
convex, then (8) implies that f is quasiconvex (see [20]
and [6], respectively). It follows immediately that f sat-
isfies (7), i. e., it is pseudoconvex.

The following theorem connects pseudoconvexity
of a function to pseudomonotonicity of its subdifferen-
tial (see [8] and [20] for the proof of the first and the
second assertion, respectively):

Theorem 6 If f is pseudoconvex, then @f is pseu-
domonotone.Conversely, if @f is pseudomonotone and f
is radially continuous, then f is pseudoconvex.

A function f is called strictly pseudoconvex [8] if for all
x, y 2 dom(f ) one has:

9x� 2 @ f (x) : hx�; y � xi � 0

) 8z 2 [x; y) : f (z) < f (y):
(9)

For radially continuous functions, relation (9) is equiv-
alent to

9x� 2 @ f (x) : hx�; y � xi � 0 ) f (x) < f (y): (10)

Indeed, if relation (10) holds, then f is pseudoconvex,
hence it is semistrictly quasiconvex. Consequently, if
hx�, y� xi � 0 for some

x� 2 @ f (x);

then f (x)< f (y) implies that f (z)< f (y) for all z 2 [x, y),
i. e. (9) holds.

We have the following connection to strict pseu-
domonotonicity:

Theorem 7 If f is strictly pseudoconvex, then @f is
strictly pseudomonotone. Conversely, if @f is strictly
pseudomonotone and its values are nonempty on
dom(f ), then f is strictly pseudoconvex.

For the proof of the first assertion, see [20]; the second
assertion is shown in [8].
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As a corollary of the last theorem, it can be shown
[8] that a locally Lipschitz, strictly pseudoconvex func-
tion f is strictly quasiconvex. Hence, between the vari-
ous kinds of generalized convexity, the following impli-
cations hold (some implications need extra continuity
assumptions): qcx

*

cx ) pcx ) sstr:qcx
* * *

str:cx ) str:pcx ) str:qcx

Here, ‘cx’, ‘pcx’ and ‘qcx’ stands for ‘convex’, ‘pseu-
doconvex’ and ‘quasiconvex’, respectively. Thus, the
same implications hold as those fordifferentiable func-
tions (see the corresponding diagram in � Generalized
monotone single valued maps). In addition, each type
of generalized convex function is characterized by the
corresponding generalized monotonicity of the subd-
ifferential, exactly as in the case of differentiable func-
tions (the first theorem in � Generalized monotone
single valued maps).

See also

� Fejér Monotonicity in Convex Optimization
� Generalized Monotone Single Valued Maps
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Set-valued Optimization
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In the analysis and solution of complementarity prob-
lems and variational inequalities, it is commonly as-
sumed that the defining map is monotone. This is not
surprising since in the special case of an underlying
optimization problem usually convexity is assumed,
and convexity of the objective function corresponds to
monotonicity of its gradient.

For several decades much effort has been devoted
to generalizing convexity in various ways, often with
the view of nonconvex optimization inmind [1]. On the
other hand, only recently a systematic study of general-
izations of monotonicity has emerged. Since the arti-
cle [14] in 1990 about two hundred publications have
appeared. They deal with either concepts and charac-
terizations of generalized monotonicity or with uses in
variational inequalities and related models [23].

In this survey characterizations of generalized
monotonicity for different subclasses of maps are pre-
sented. The need for such criteria is obvious, given that
the defining inequalities are often hard to verify.

The article is organized as follows. The next sec-
tion provides a brief review of some basic generalized
monotonicity concepts and their relationships. This is
followed by a presentation of criteria for generalized-
monotonicity in case of differentiable, affine and non-
differentiable (locally Lipschitz) maps in the subsequent
sections.

This article on concepts and characterizations of
generalized monotone maps in the single valued case is
complemented by one on multi valuedmaps. In a third
article in this volume the use of generalized monotonic-
ity in variational inequalities and more general models

is surveyed. For amore detailed survey of applications
see [11].

Seven Kinds of (Generalized)Monotonicity

Seven basic kinds of convex/generalized convex func-
tions are [1]:
� convex (cx), strictly convex (str.cx);
� pseudoconvex (pcx), strictly pseudoconvex

(str.pcx);
� quasiconvex (qcx), semistrictly quasiconvex

(sstr.qcx) and strictly quasiconvex (str.qcx).
Strongly convex and strongly pseudoconvex functions
[1] are not considered here.

These functions are related to each other as follows:

qcx
*

cx ) pcx ) sstr:qcx
* * *

str:cx ) str:pcx ) str:qcx

For the sake of completeness, the related definitions
are presentedbelow.

Consider f : C! R where C � Rn is convex.
� f is convex (cx) if for all x, y 2 C and t 2 (0, 1),

f
�
tx C (1 � t)y

�
� t f (x)C (1 � t) f (y); (1)

� f is strictly convex (str.cx) if (1) is a strict inequality
for x 6D y.

� f is quasiconvex (qcx) if for all x, y 2 C such that f (x)
� f (y), t 2 (0, 1),

f
�
tx C (1 � t)y

�
� f (y); (2)

� f is strictly quasiconvex (str.qcx) if (2) is a strict in-
equality for x 6D y;

� f is semistrictly quasiconvex (sstr.qcx) if for all x, y 2
C such that f (x) < f (y) the inequality (2) is strict.

For the remaining two types of generalized convex
functions one assumes differentiability of f on the open
convex set C �Rn, although more general definitions
are available [1]:
� f is pseudoconvex (pcx) if for all x, y 2 C

(y � x)>r f (x) � 0 ) f (y) � f (x); (3)

� f is strictly pseudoconvex (str.pcx) if for all x, y 2 C,
x 6D y thesecond inequality in (3) is strict.
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Different kinds of generalized convexity preserve differ-
ent properties of convex functions. E.g., the characteris-
tic of a pseudoconvex function is that a stationary point
is a global minimum. Furthermore, for a semistrictly
quasiconvex function a local is a global minimum and
for a quasiconvex function the lower level sets are con-
vex. The qualifier ‘strictly’ indicates that a global mini-
mum is unique. In contrast to convex functions, inflec-
tion points are admissible for all types of generalized
convex functions.

Note that in [1] the terminology of quasiconvex and
pseudoconvex functions was harmonized, resulting in
renaming former ‘strongly quasiconvex’ functions as
strictly quasiconvex and ‘strictly quasiconvex’ functions
as semistrictly quasiconvex.

It is well known that a differentiable convex func-
tion is characterized by a monotone gradient. Corre-
spondingly, a strictly convex function is characterized
by a strictly monotone gradient. Accordingly, gener-
alized monotonicity concepts have been introduced in
such a way that incase of a gradient map F = rf gener-
alized monotonicity of F corresponds to some kind of
generalized convexity ofthe underlying function f . The
definitions of (generalized) monotone maps are listed
below.

Consider F : C! Rn where C � Rn.
� F ismonotone (m) on C if for all x, y 2 C

(y � x)>
�
F(y)� F(x)

�
� 0; (4)

� F is strictly monotone (str.m) on C if for all x, y 2 C,
x 6D y

(y � x)>
�
F(y)� F(x)

�
> 0; (5)

� F is pseudomonotone (pm) on C if for all x, y 2 C,

(y � x)>F(x) � 0 ) (y � x)>F(y) � 0; (6)

which is equivalent to

(y � x)>F(x) > 0 ) (y � x)>F(y) > 0;

� F is strictly pseudomonotone (str.pm) on C if for all
x, y 2 C, x 6D y,

(y � x)>F(x) � 0 ) (y � x)>F(y) > 0; (7)

� F is quasimonotone (qm) if for all x, y 2 C,

(y � x)>F(x) > 0 ) (y � x)>F(y) � 0; (8)

� F is strictly quasimonotone (str.qm) on C if F is
quasimonotone on C and for all x, y 2 C, x 6D y there
exists z = tx + (1�t)y, t 2 (0, 1), such that

(y � x)>F(z) ¤ 0; (9)

� F is semistrictly quasimonotone (sstr.qm) on C if F is
quasimonotone on C and for x, y 2 C, x 6D y,

(y � x)>F(x) > 0 ) (y � x)>F(z) > 0 (10)

for some z = tx + (1 � t)y, t 2 (0, 1/2).
If F is continuous, quasimonotonicity does not have
to be required explicitly for strictly/semistrictly quasi-
monotone maps since it is implied by (9), (10), respec-
tively. In terms of references for the concepts above, see
[13] for pseudomonotone maps, [14] for quasimono-
tone and strictly pseudomonotone maps and [9] for
strictly quasimonotone and semistrictly quasimono-
tone maps.

The following diagram was derived in [9,13,14] for
general maps which are not necessarily gradient maps:

qm
*

m ) pm ) sstr:qm
* * *

str:m ) str:pm ) str:qm

Now consider the special case of a gradient map F
= r f , where f is differentiable on the open convex set
C � Rn. In analogy to monotone maps it can be shown
[9,13,14]:

Theorem 1 The map F = rf is quasimonotone (re-
spectively, semistrictly quasimonotone, strictly quasi-
monotone, pseudomonotone, strictly pseudomonotone)
if and only if the function f is quasiconvex (respectively,
semistrictly quasiconvex, strictly quasiconvex, pseudo-
convex, strictly pseudoconvex).

Note that in the case of semistrictly quasiconvex func-
tions Theorem 1 provides the first successful character-
ization in terms of the gradient. Before, the existence of
such a characterization was doubted [17].

There are several studies where similar results are
obtained for nondifferentiable functions in which the
gradient is replaced by the subdifferential (see, e. g.,
� Generalized monotone multivalued maps).



1200 G Generalized Monotone Single Valued Maps

Given the geometric properties of generalized con-
vex functions mentioned above [1], it is not difficult to
derive the geometric properties describing generalized
monotonicity of gradient maps; e. g. [2,3,15].

New generalized monotone maps can be con-
structed from existing ones. As an example from [20],
consider z = Ax + b, where A is an m × n matrix and
b 2 Rm. Let D � Rm and C = {x 2 Rn:Ax + b 2 D}.
Then the map F(x) = A|G (Ax + b) is quasimono-
tone (pseudomonotone) on C if G is quasimonotone
(pseudomonotone) on D. Moreover, F is strictly pseu-
domonotone on C if G is strictly pseudomonotone on
D and A hasfull rank.

The Differentiable Case

In this section it is assumed that F:C! Rn is differen-
tiable and C�Rn is an open convex set. Let JF (x) be the
Jacobian of F. First order characterizations of general-
ized monotone maps have been established in [15]. In
case of gradient maps they extend classical second order
characterizations of generalized convex functions.

Let x 2 C, v 2 Rn, v 6D 0 and consider the following
conditions:
A) v|F(x) = 0 implies v|JF(x)v� 0;
A+) v|F(x) = 0 implies v|JF(x)v> 0;
B) v|F(x) = v|JF(x)v = 0 and the condition v>F(x C

btv) > 0 for somebt < 0 implies that there exists
et > 0 such that x Cetv 2 C, v>F(x C tv) � 0 for
all 0 � t �et;

C) v|F(x) = v|JF(x) v = 0 implies that there existset >
0 such that x Cetv 2 Cv>F(x C tv) � 0 for all
0 � t �et.

The following can be shown:

Theorem 2 Let F: C! Rn be differentiable on the open
convex set C � Rn.
i) F is quasimonotone if and only if A) and B) hold for

all x 2 C and v 2 Rn;
ii) F is pseudomonotone if and only if A) and C) hold

for all x 2 C and v 2 Rn;
iii) F is strictly pseudomonotone if A+) holds for all x 2

C and v 2 Rn.

More recently, it was shown in [4] that for continuously
differentiable maps v|F(x) = 0 in B) and C) can be re-
placed by the less restrictive assumption F(x) = 0, and
i) and ii) are still true. An immediate consequence of

this stronger characterization is that for a nonvanish-
ing map on an open convex set there is no difference
between quasimonotonicity and pseudomonotonicity.
Both are characterized by condition A). However, this
is no longer true in closed convex sets (see [10, Example
3.1]).

The Affine Case

In this section we focus on the special case of affine
maps. Let F(x) = Mx + q where M is an n × n matrix
and q 2 Rn. Consider F on an open convex set C � Rn.
For general differentiable maps we have F = rf if and
only if JF(x) is symmetric for all x. Hence for an affine
map F(x) = Mx + q we have F = rf if and only if M is
symmetric. In this case f (x) = (x|Mx)/2 + q|x. There-
fore first order characterizations of generalized mono-
tone affine maps correspond to second order character-
izations of generalized convex quadratic functions.

For affine maps conditions B) and C) are always sat-
isfied. Hence, specializing Theorem 2 we have

Theorem 3 The map F(x) = Mx + q is quasimonotone
on an open convex set C � Rn if and only if F is pseu-
domonotone on C if and only if for all x 2 C and v 2
Rn

v>(Mx C q) D 0 ) v>Mv � 0:

As a result, quasimonotonicity in a neighborhood of
a point x such that Mx C q D 0 implies monotonic-
ity on Rn.

As mentioned earlier, one can construct new gener-
alized monotone maps with the help of a given one as
follows. Given the linear map G(z) = Mz, if G is quasi-
monotone (pseudomonotone) on the nonnegative or-
thant Rm

C, then the map F(x) = (A|MA)x is quasimono-
tone (pseudomonotone) on Rn

C, for any nonnegative m
× nmatrix A.

Recently a matrix-theoretic characterization of gen-
eralized monotone affine maps was obtained [6]. The
departure point for its derivation is Theorem 3. The fol-
lowing notation is needed to describe the results.

For the affine map F(x) =Mx+ q one considers

B D
1
2
(M CM>); P D

1
2
M>B�M;

where B† is the Moore–Penrose pseudo-inverse of B,
n+, n� and n0 is the number of positive, negative and



Generalized Monotone Single Valued Maps G 1201

zero eigenvalues of B, respectively,

r D dim (ker(M)) ;

f (x) D(Mx C q)>B�(Mx C q);

S Dfx 2 Rn : f (x) � 0g ;

T D
˚
x 2 Rn : x>Px � 0

�
;

C � Rn is convex with C 6D ;.
One has [6]:

Theorem 4 F is quasimonotone on C (and pseu-
domonotone on (C)) if and only if one of the following
conditions holds:
i) n� = 0, i. e., B is positive semidefinite and F ismono-

tone on Rn;
ii1) n� = 1, r = n0 + 1, �q 62M (int C), q 2 B (Rn)�M

(Rn), P is positive semidefinite, S isa closed convex
set and C � S;

ii2) n� = 1, r = n0, �q 62M(int C), q 2 B(Rn) = M(Rn),
T = T+ [ (�T+) where T+ is a closed convex cone,
int T+ 6D ;, and for x such that Mx D q either
C � �x C TC or C � �x � TC.

Hence the maximal domain of quasimonotonicity is:
� Rn in case i);
� S in case ii1), and
� �x C TC or �x � TC in case ii2).

From Theorem 4 a characterization of quasimono-
tone (pseudomonotone)affine maps on convex cones
can be derived, and further specialized to the nonnega-
tive orthant [6].

It should be noted that in the special case M| = M,
case ii1) does not occur and Theorem 4 reduces to clas-
sical characterizations of generalized convex quadratic
functions [7,18,19,21,22]; see also [1]. Case ii1) does not
occur either if M is nonsingular. Hence it arises only if
M is not symmetric and singular.

Theorem 4 characterizes pseudomonotone affine
maps on open convex sets. However in applications,
e. g. in complementarity problems and variational in-
equalities, pseudomonotonicity on closed and convex
sets is needed. Such characterizations have very recently
been derived in [5] with an approach different from the
one in [6]. It involves an extension of Martos’ concept
of positive subdefinite matrices [18] to the nonsymmet-
ric case. Among others, [5] generalizes previous results
on pseudomonotone matrices for linear complemen-
tarity problems, e. g. [8].

The Nondifferentiable Case

Finally, characterizations of certain nondifferentiable
generalizedmonotone maps [16] are presented in this
section.

Let F: C! Rn be locally Lipschitz where C � Rn is
open convex. The criteria below make use of the gener-
alized Jacobian in the senseof Clarke. Given x 2 C, let
L(x) be the set of all limits DF(xi) where xi! x, F is dif-
ferentiable at xi 2 C and DF (xi) is the Jacobian. Define
@F(x) to be the convex hull of L(x). Finally, for x 2 C
and v 2 Rn set

DCF(x; v) D sup
˚
v>Av : A 2 @F(x)

�
;

D�F(x; v) D inf
˚
v>Av : A 2 @F(x)

�
:

In generalization of Theorem 2i) one has:

Theorem 5 The locally Lipschitz map F is quasimono-
tone on C if and only if for all x 2 C, v 2 Rn

A0) v|F(x) = 0 implies D+F(x;v)� 0, and
B0) v|F(x) = 0, 0 2 {v|Av: A 2 @F(x)} and v>F(x C

btv) > 0 for somebt < 0 imply that there existset > 0
such that v| F(x + tv) � 0 for all t 2 [0;et].

In light of [4], a stronger sufficient condition can be ob-
tained which however is no longer necessary [16], in
contrast to the differentiable case.

Theorem 6 The map F is quasimonotone on C if for all
x 2 C, v 2 Rn, v 6D 0
A00) v|F(x) = 0 implies D�F(x;v)� 0, and
B00) F(x) = 0, D�(x;v) = 0 and v>F(x Cbtv) > 0 for

somebt < 0 imply that there existset > 0 such that
v| F(x + tv) � 0 for all t 2 [0;et].

In analogy to the differentiable case (see Theorem
2), corresponding characterizations can be obtained
for pseudomonotone maps, replacing B0), B00) by
a stronger condition. Furthermore, criteria for strict
pseudomonotonicity are derived in [16].

Very recently, generalized monotonicity criteria for
locally Lipschitz maps have been extended to the class
of general continuous maps [12]. In this study Clarke’s
generalized Jacobian is replaced by an ‘approximate Ja-
cobian’.

Conclusion

In this survey we have presented various character-
izations of generalized monotone maps. Details are
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shown mainly for quasimonotone and pseudomono-
tone maps. In retrospect, it becomes clear how the main
characterization in the differentiable case (Theorem 2)
specializes in the affine case (Theorems 3, 4) and how
it can be extended in the nondifferentiable case (Theo-
rem 5).

See also

� Fejér Monotonicity Inconvex Optimization
� Generalized Monotone Multivalued Maps
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Set-valued Optimization
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This article on generalized monotone maps focuses on
some of their uses in variational inequalities and equi-
librium problems. Definitions and properties of var-
ious types of generalized monotone maps are found
in � Generalized monotone single valued maps and
� Generalized monotone multivalued maps. These ar-
ticles form the background of the present survey.

Variational inequalities appear in various forms and
arise in a wide range of problems in the natural and
social sciences, for example [22]. The simplest varia-
tional inequality problem (VIP) is the following: Given
a nonempty closed convex subset K of Rn and a map F:
K! Rn, find an element x0 2 K such that

(F(x0))> (x � x0) � 0 for all x 2 K: (1)

The prime example of a variational inequality stems
from a minimization problem. Given a differentiable
function f : K ! R, if x0 2 K minimizes f , then x0 is
a solution of the VIP (1) with F = r f .

As shown by G.J. Hartman and G. Stampacchia
[17], (1) has a solution if K is compact and F is
continuous. This result found many applications and
holds also, with the same assumptions, in infinite-
dimensional Banach spaces (cf. [26, Prop. 77.8]). How-
ever, in infinite-dimensional problems this form of the
theorem is not useful. The reason for this is that in
almost all interesting applications the assumptions of
(strong) compactness of the set K and of continuity of
the operator F are too strong to be met. A decisive step
forward was made by F. Browder who relaxed both as-
sumptions, at the cost of imposing another assumption,
namely monotonicity [7]. Specifically, letX be a real Ba-
nach space with dual X�, and K a nonempty, weakly
compact and convex subset of X. Given an operator T:
K ! X�, consider the following VIP: find x0 2 K such
that

hTx0; x � x0i � 0 for all x 2 K; (2)

where h�, �i is the duality pairing between X� and X. As
shown by Browder, the VIP (2) has a solution if T is
hemicontinuous and monotone. We recall that an op-
erator T is called hemicontinuous if its restriction to line
segments is continuous when X� is equipped with the
w�-topology. The operator is called monotone if for all
x, y 2 K one has

hTy � Tx; y � xi � 0:

It is interesting to note that in the standard ex-
ample of a variational inequality problem where X =
Rn and T is the gradient of a function f : K ! R the
operator T is monotone if and only if f is convex.
This shows that monotonicity is a natural assumption
for VIP. But it also shows that it may be too rigid
in many applications. This led to the consideration of
variational inequality problems and their extensions
with generalized monotone operators. The first to con-
sider generalized monotonicity in connection with vari-
ational inequalities was H. Brezis [5]. Then S. Kara-
mardian [19], coming from convex and generalized
convex optimization [1], began a tradition of intro-
ducing concepts of generalized monotonicity which,
unlike the one of Brezis, preserve the connection be-
tween monotonicity and convexity. They ensure that
in case of a gradient map, the gradient is general-
ized monotone (for instance, pseudomonotone, strictly
pseudomonotone, quasimonotone, strictly quasimono-
tone, semistrictly quasimonotone) if the underlying
function is generalized convex (i. e., respectively, pseu-
doconvex, strictly pseudoconvex, quasiconvex, strictly
quasiconvex, semistrictly quasiconvex [1]). For defini-
tions and properties of these concepts see � General-
ized monotone single valued maps and � Generalized
monotone multivalued maps for single- and multival-
ued generalized monotone maps, respectively.

In the next section, results on the existence of solu-
tions for the variational inequality problem with gen-
eralized monotone operators are presented. A general-
ization of these results to vector valued variational in-
equality problems is given in the third section. Finally,
the last section surveys results on the existence of solu-
tions for equilibrium problems, both in the scalar and
in the vector case. To begin, consider the following no-
tation and definitions.

Let X be a real Banach space. Given x, y 2 X, ]x, y[
and [x, y] denote the open line segment and the closed
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line segment joining x and y, respectively; the segments
]x, y], and [x, y[ are defined analogously. A multivalued
operator T: K ! 2X� \{;} is called upper hemicontinu-
ous if for all x, y 2 K, the restriction of T to [x, y] is
upper semicontinuous with respect to the w�-topology
on X�.

For any nonempty subset D of X, a point x0 2 X is
called an inner point of D [14,25] if for all u 2 X� the
following implication holds:

hx; ui � hx0; ui ; 8x 2 D

) hx; ui D hx0; ui ; 8x 2 D:

The set of inner points of D is denoted by inn D. The
concept of an inner point is a generalization of the con-
cept of a relative algebraic interior point. Indeed, in case
X is finite dimensional, the two concepts coincide. In
the general case, any relative algebraic interior point
is an inner point; in case of a closed convex set, inner
points have the following properties [14,25]:

Theorem 1 Let K 6D ; be a closed and convex subset of
X. Then one has:
i) inn K � K;
ii) if K is separable, then inn K 6D ;;
iii) if x1 2 K, x0 2 inn K, then

]x1; x0] � inn K;

in particular, inn K is convex.

There are many important examples of closed convex
subsets K which contain inner points, without contain-
ing any relative algebraic interior points [14].

Scalar Variational Inequalities

LetX be a real Banach space, andK a nonempty, closed,
convex subset of X. Let further T: K ! 2X� \ {;} be
a multivalued operator with nonempty values. The VIP
for such an operator is the following: find x0 2 K such
that

8x 2 K 9x� 2 Tx0 : hx�; x � x0i � 0: (3)

This problem is closely related to the so-called dual
variational inequality problem (DVIP), which is the fol-
lowing: find x0 2 K such that

8x 2 K 8x� 2 Tx : hx�; x � x0i � 0: (4)

Indeed, it is well known that, if x0 is a solution of DVIP,
then it is also a solution of VIP, provided that T is up-
per hemicontinuous [20]. For this reason, most proofs
of existence of a solution for VIP establish first the ex-
istence of a solution of DVIP.

R.W. Cottle and J.C. Yao [8] were the first to
show an existence result for a solution of a VIP with
a single valued pseudomonotone operator, hereby ex-
tending Karamardian’s result [19] for complementarity
problems in finite-dimensional spaces. Later, Yao [24]
generalized this result to multi valued pseudomono-
tone operators; I.V. Konnov [20] generalized it further
to include semistrictly quasimonotone operators; see
� Generalized monotone multivalued maps. The most
general result in this direction with no assumptions (ex-
cept coercivity) was derived for properly quasimono-
tone operators [12]. The operator T is called properly
quasimonotone if for all x1, . . . , xn 2 K and all y 2 co{x1,
. . . , xn} there exists i 2 {1, . . . , n} such that hx�, y �
xii � 0 for all x� 2 Txi. The name of this property is
justified by the fact that a lower semicontinuous func-
tion f : K ! R is quasiconvex if and only if its Clarke-
Rockafellar subdifferential is properly quasimonotone
[12]. For such operators, the following theorem holds
[11]:

Theorem 2 Let T: K ! 2X�\{;} be a properly quasi-
monotone operator. Suppose that K is weakly compact,
or alternatively that the following coercivity condition
holds: there exists a weakly compact subset W of K and
x0 2W such that

8x 2 KnW 9x�0 2 Tx0 :
˝
x�0 ; x0 � x

˛
< 0: (5)

Then the DVIP (4) has a solution. Consequently, if T is
upper hemicontinuous, then the VIP (3) also has a solu-
tion.

A semistrictly quasimonotone operator (or, a fortiori,
a pseudomonotone operator) is properly quasimono-
tone [11]. Thus, the above result generalizes the corre-
sponding results in [20] and [24].

For the still more general case of a quasimonotone
operator, even for single valued operators, one needs
a mild assumption on the domain [14]. For multivalued
operators one needs still stronger assumptions [9]:

Theorem 3 Let T: K ! 2X�\ {;} be a quasimonotone
operator. Suppose that:
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a) K is weakly compact, or alternatively that coercivity
condition (5) holds;

b) inn K 6D ;;
c) T has compact values.
d) T is upper hemicontinuous.
Then the VIP (3) has a solution.

Vector Variational Inequalities

The VIP has been generalized in various ways. One
of these generalizations proposed by F. Giannessi [13]
suggests to consider the variational inequality in a mul-
tidimensional space rather than the real number field.
This is the so-called vector variational inequality prob-
lem (VVIP). The VVIP is closely related, just as its
scalar counterpart, to the least element problem and the
complementarity problem [23].

In the VVIP, apart from the Banach space X and its
closed, convex subset K, one considers a Banach space
Y and the space L(X, Y) of all continuous linear oper-
ators from X to Y . The space Y is ordered by a cone C.
In this case, the expression ‘the element x 2 Y is non-
negative’ can have two different meanings: either x 2 C
or x 62 �int C. It further increases the applicability, es-
pecially to economics, without much additional effort if
one allows this cone to ‘move’; thus, instead of a cone
one considers a multivalued mapping C: K ! 2Y such
that for each x 2 K, C(x) is a closed convex cone with
nonempty interior. Let further T: K ! 2L(X, Y) \ {;} be
a multivalued operator. The VVIP is the following: find
x0 2 K such that

8y 2 K 9A 2 Tx0 :

A(y � x0) … � intC(x0):
(6)

In the scalar case Y = R, C(x) = R+ one has L(X,
Y) = X�, and VVIP becomes VIP. In the general case,
monotonicity and generalized monotonicity have to be
newly defined. The operator T is called:
� monotone if for all x, y 2 K one has:

8A 2 Tx 8B 2 Ty :

(B � A)(y � x) 2 C(x);

� pseudomonotone if for all x, y 2 K the following im-
plication holds:

9A 2 Tx : A(y � x) … � intC(x)

) 8B 2 Ty : B(y � x) … � intC(x);

� quasimonotone if for all x, y 2 K the following im-
plication holds:

9A 2 Tx : A(y � x) … �C(x)

) 8B 2 Ty : B(y � x) … � intC(x):

We now recall some topological notions. The strong
operator topology (SOT) on L(X, Y) is the weakest
topology such that for each x 2 X, the function L(X, Y)
3 A! Ax 2 Y is continuous. An operator A 2 L(X, Y)
is called completely continuous if it maps weakly con-
vergent sequences into strongly convergent sequences.
Examples of completely continuous operators are com-
pact operators. The following result proved in [10] gen-
eralizes many existence results in the literature as well
as Theorem 3:

Theorem 4 Suppose that the following assumptions
hold:
i) the operator T is upper hemicontinuous with respect

to the SOT topology;
ii) the graph of the multifunction

x ! Y n (� intC(x))

is sequentially closed in X × Y in the (weak) ×
(strong) topology;

iii) K is weakly compact;
iv) for each x 2 K, Tx consists of completely continuous

operators;
v) T is pseudomonotone, or
v’) T is quasimonotone, its values are norm compact

and inn K 6D ;.
Then the VVIP (6) has a solution.

As in the scalar case, the assumption ‘K is compact’ may
be replaced by a coercivity condition.

Equilibrium Problems

The remainder of this article deals with problems more
general than VIP. Given a nonempty setK and a bifunc-
tion f : K × K! R, the equilibrium problem (EP) [4,6]
for f is the following: find x0 2 K such that

f (x0; y) � 0 for all y 2 K: (7)

A great variety of problems can be formulated as
an EP including problems of optimization, saddle point
theory, game theory, fixed point theory and VIP [4]. For
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instance, if K is a nonempty closed, convex subset of
a Banach space X and T: K! 2X� \ {;} is a multivalued
operator with weakly compact values, let f be defined as

f (x; y) D max fhx�; y � xi : x� 2 Txg : (8)

It is easy to see that x0 2 K is a solution of the EP
(7) if and only if it is a solution of the VIP (2). Because
of this correspondence, one is led to define concepts of
generalized monotonicity for bifunctions. A bifunction
f is called:
� monotone [4] if for all x, y 2 K one has:

f (x; y)C f (y; x) � 0;

� pseudomonotone [3] if for all x, y 2 K the following
implication holds:

f (x; y) � 0 ) f (y; x) � 0;

� quasimonotone [3] if for all x, y 2 K the following
implication holds:

f (x; y) > 0 ) f (y; x) � 0:

It is easy to see that amulti valued operator ismono-
tone (respectively, pseudomonotone, quasimonotone)
if and only if the bifunction defined by relation (8)
is monotone (respectively, pseudomonotone, quasi-
monotone). Equilibrium problems with generalized
monotone bifunctions in the above sense were consid-
ered in [3]. There the following result was proved:

Theorem 5 Let X be a real topological Hausdorff vector
space and K � X be nonempty, convex and closed. Let
further f : K × K! R be a bifunction such that f (x, x)�
0 for all x 2 K. Consider the following assumptions:
i) f (�, y) is hemicontinuous (i. e., continuous on every

line segment in K) for all y 2 K;
ii) f (x, �) is semistrictly quasiconvex [1] and lower semi-

continuous for all x 2 K;
iii) there exists a compact subset B � X and y0 2 B \ K

such that f (x, y0) < 0 for all x 2 K\ B (coercivity);
iv) for all x 2 K, if f (x, y) = 0 and f (x, y1) > 0, then f (x,

z) > 0 for all z 2 ]y, y1[;
v) the algebraic interior of K is nonempty.
If f is pseudomonotone and assumptions (i–iii) hold,
then the EP (7) has a solution. Likewise, if f is quasi-
monotone and all assumptions i)–v) hold, then (7) has
a solution.

The above theorem generalizes older results by Brezis,
L. Nirenberg and Stampacchia [6] and is related to
more recent results with monotone bifunctions by E.
Blum and W. Oettli [4].

Just like vector variational inequalities, vector equi-
librium problems have also been considered where the
bifunction takes values in a locally convex vector space
ordered by a cone [2]. As shown by Oettli [21] for
the pseudomonotone case, vector equilibrium prob-
lems can also be treated by considering two real valued
bifunctions, rather than one vector valued one. Oettli’s
approach can even be applied to the quasimonotone
case [15]. For this, let X be a real Hausdorff topological
vector space, K � X be nonempty and convex, and f , g:
K × K! R be two bifunctions. The bifunction f is said
to be pseudomonotone with respect to the bifunction g
[21] if for all (x, y) 2 K × K the following implication
holds:

f (x; y) � 0 ) g(y; x) � 0:

The bifunctions f , g are said to be a quasimonotone
pair [15] if for all (x, y) 2 K × K the following implica-
tion holds:

f (x; y) > 0 ) g(y; x) � 0:

If f = g, then the above definitions reduce to those of
pseudomonotone and quasimonotone bifunctions, re-
spectively.

The following rather technical, but very useful result
was proved in [21] for the pseudomonotone case and in
[15] for the quasimonotone case:

Theorem 6 Consider the following assumptions:
i) f (x, x) � 0 for all x 2 K;
ii) the set �(y) = {x 2 K: g(y, x) � 0} is closed in K for

all y 2 K;
iii) for all x, y, z 2 K, if f (x, y) < 0 and f (x, z) � 0, then

f (x, u) < 0 for all u 2 ]y, z[;
iv) there exist a compact subset D of K and y� 2 D such

that for all x 2 K\D one has f (x, y�) < 0;
v) the set {u 2 [x, z]: g(u, y) � 0} is closed for all x, z 2

K;
vi) the relative algebraic interior of K is nonempty.
Suppose that f is pseudomonotone with respect to g and
assumptions i)–iv) hold, or that the bifunctions f , g are
a quasimonotone pair and all assumptions i)–vi) hold.
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Then at least one of the following problems has a solution
x0 2 K:

f (x0; y) � 0 for all y 2 K;

g(y; x0) � 0 for all y 2 K:

By choosing the bifunctions f and g appropriately, a va-
riety of results can be produced. For instance, let X and
K be as before, and let Z be a real Hausdorff locally con-
vex space. Finally, let C� Z be a proper, convex, closed
cone with nonempty interior int C. Define the relations
�, <, — and 6< on Z by

x � y , y � x 2 C;

x < y , y � x 2 intC;

x — y , y � x … C;

x 6< y , y � x … intC:

Given a bifunction H:K × K! Z, consider the vec-
tor equilibrium problem (VEP): find x0 2 K such that

H(x0; y) 6< 0 for all y 2 K: (9)

Theorem 6 can now be applied to show the exis-
tence of a solution for VEP. This is done as follows.
Since the cone C has a nonempty interior by assump-
tion, the dual cone C� has a w�-compact base B. (Recall
that a (closed) base B of a cone W is a convex subset
ofW such that 0 62 B and W = [t�0tB.) Define the real
valued bifunctions f and g on K as follows:

f (x; y) D max
�2B

�
�
H(x; y)

�
;

g(x; y) D min
�2B

�
�
H(x; y)

�
:

Applying Theorem 6 to these bifunctions, one ar-
rives at the following result [15]:

Theorem 7 Suppose that the bifunction H satisfies the
following assumptions, for all x, y, z in K:
i) H(x, x) 6< 0;
ii) the set {x 2 K: H(y, x) 6> 0} is closed in K;
iii) if H(x, y) < 0 and H(x, z) � 0, then H(x, u) < 0 for

all u 2 ]y, z[;
iv) the sets {u2 ]x, z[: H(u, y) 6> 0} and {u 2 ]x, z[: H(u,

y) 6< 0} are closed;
v) there exist a compact subset D of K and y� 2 D such

that for all x 2 K\D we have H(x, y�) < 0 (coerciv-
ity);

vi) H(x, y) > 0) H(y, x) � 0 (quasimonotonicity of
H);

vii) if H(u, y) < 0 for some u 2 ]x, y[, then H(u, x) > 0.
Then the VEP (9) has a solution.

The above result considerably strengthens a corre-
sponding result in [2].

As another example for using Theorem 6, consider
the Banach spaces X, Y , the multivalued operator T and
the cone-valued map C as in the previous section on
VVIP. For each x 2 K, choose a w�-compact base B(x)
of the dual cone C�(x). Now define the bifunctions f
and g as follows:

f (x; y) D max
�2B(x)
A2Tx

�
�
A(y � x)

�
;

g(x; y) D min
�2B(y)
A2Tx

�
�
A(y � x)

�
:

Then, applying Theorem 6, one can show Theorem
4 as a corollary, for a set K with nonempty relative alge-
braic interior. Other variants of Theorem 4 can also be
deduced [15].

In conclusion, this article demonstrates that gener-
alized monotonicity rather than monotonicity is suf-
ficient to establish the existence of solutions for VIP,
VVIP, EP and VEP. A more extensive survey can be
found in [16].

Finally, the reader interested in recent results on the
relevance of generalized monotone VIP for the general
economic equilibrium is referred to [18].
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A network is composed of two types of entities: arcs and
nodes. The nodes represent locations or terminals, and
the arcs represent one-way links connecting pairs of
nodes. The arc (i, j) links node i to node j and the flow is
from i to j. The structure of a network can be displayed
by a drawing, as illustrated in Fig. 1. The structure of
a network may also be represented by a node-arc inci-
dence matrix A, where Aik is 1 if arc k is directed away
from node i, Aik is �1 if arc k is directed toward node
i, and Aik is 0 otherwise. Any matrix A in which each
column has exactly two nonzero entries, a + 1 and a �
1, is called a node-arc incidence matrix. The minimum
cost network flow problem is a linear program, say

min
x

˚
c0x : Ax D b; l � x � u

�
;

whereA is a node-arc incidence matrix. The generalized
network problem, as its name implies, is a generaliza-

1

2

3

4

Generalized Networks, Figure 1
Example network with nodes 1, 2, 3, 4 and arcs (1, 2), (1, 3),
(2, 3), (2, 4), (3, 2), (3, 4)

tion of the minimum cost network flow problem, also
referred to as the pure network problem.

Let f denote the flow in arc (i, j) in a pure network.
A characteristic of this model is that the f units which
depart node i must arrive at node j. Many real applica-
tions violate this assumption. In a pipeline distribution
network, liquid or gas will be lost due to leakage. In
a network carrying a perishable commodity, a certain
percentage of the commodity will be lost as it moves
along the arcs. For these cases, flowmay be lost as it tra-
verses certain arcs. However, if an arc represents hold-
ing money in a savings account over a period of time,
the value at the end of the period will equal the initial
investment plus the interest earned. An arc in a gener-
alized network permits flow to increase, decrease, or re-
main the same as it traverses the arc. This is illustrated
in Fig. 2 for the arc (i, j). Each end of the arc has a con-
stant (multiplier) associated with it, which determines
the gain or loss during traversal. For the pure network
arc, the +1 and �1 correspond to the coefficients in the
node-arc incidence matrix.

Generalized networkmodels are also used to change
units in a flow model. The arcs illustrated in Fig. 3 con-
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Generalized Networks, Figure 2
Different types of generalized network arcs

Generalized Networks, Figure 3
Generalized network arcs to convert currency

Generalized Networks, Figure 4
Sample generalized network

vert fromUS dollars to pound sterling, and from pound
sterling to French francs. That is, dollars which depart
New York are converted to pounds when they arrive
at London. Pounds leaving London are converted to
francs when they arrive at Paris. This is also useful to
convert from machine-hours to units of finished parts
or pallets to truck loads.

In its most general form, the generalized network
problem is a linear programwith the special feature that
each column of the constraint matrix has at most two
nonzero entries. Let G be an m×n matrix with full row
rank having this feature. Let c, l, and u be n-component
vectors, and r an m-component vector. Let Y = {x: Gx
= r, l � x � u}, and assume that Y 6D ;. The general-
ized network problem is to find an n-component vector
ex, such that cex D minx fcx : Gx D r; l � x � ug. For
the generalized network model illustrated in Fig. 4, G
is

nodesnarcs 1 2 3 4 5
1 1 1 0 0 0
2 �2 0 �1 0:5 0
3 0 �1 �1 0 2
4 0 0 0 1 �1

For each arc, an arbitrary orientation has been as-
signed so that an arc is defined by the following tuple:
(from node, to node, from-node multiplier, to-node
multiplier, cost, lower bound, upper bound).

Some authors and computer codes require that the
from-node multiplier be 1. The above model can be
converted to this form via the variable substitution
xk D akxk for k = 1, . . . , n, where ak is the from-node
multiplier for arc k. However, this restriction causes
some difficulty if the generalized network solver is ever
adapted to solve the integer generalized network model.
The code developed by J.L. Kennington and R.A. Mo-
hamed [8] (RAMSES) allows for arbitrary multipliers
on both ends of each arc. Other authors assume that
the lower bounds are all zero. The above model can
be converted to this form via the variable substitution
xk D xk � lk for k = 1, . . . , n, where lk is the lower
bound for arc k.

Many of the computer codes that have been devel-
oped for the generalized network problem are special-
izations of the primal simplex algorithm. These special-
izations exploit the graphical structure of the basis and
solve systems of equations on a graph rather than with
standard matrix operations. Let B be a nonsingular m ×
m submatrix ofG, and N be the submatrix composed of
the remaining n � m columns of G. By imposing sim-
ilar partitions on c, x, and u, the generalized network
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problem is represented as

8̂
ˆ̂̂<
ˆ̂̂̂
:

min cBxB C cNxN

s.t. BxB C NxN D r;
l B � xB � uB;

l N � xN � uN :

Any solution (xB, xN) in which xNi 2 {l
N
i , u

N
i } and x

B

= B�1(r � NxN) is called a basic solution with respect
to the basis B. A feasible solution that is also basic is
called a basic feasible solution BFS. Each iteration of the
primal simplex algorithm corresponds to moving from
one BFS to another BFS so that the objective function
value never increases, proceeding until an optimum is
reached.

The dual variables associated with a BFS are given
by 
 = cBB�1 and the reduced costs are given by � = c �

 G. The optimality conditions for a given primal-dual
pair are

8̂
<̂
ˆ̂:

� j > 0 ) x j D l j;
� j D 0 ) l j � x j � uj;

� j < 0 ) x j D uj;

for each j. Using this notation, an iteration of the primal
simplex algorithm is as in the table above.

By re-ordering the rows and columns of B, it can be
displayed in block diagonal form as follows:

B D

0
BB@
B1

: : :

Bp

1
CCA :

For example, the basis

B D

0
BBBBBBBBBBBBBBB@

1 2 0 0 0 0 0 0 0 0
�1 0 1 1 �2 0 0 0 0 0
0 0 0 0 0 1 2 2 0 0
0 0 0 0 0 0 4 0 �1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 �1 0
0 0 �1 0 0 0 0 0 0 0
0 0 0 �2 0 0 0 0 0 0
0 �2 0 0 1 0 0 0 0 3

1
CCCCCCCCCCCCCCCA

can be displayed as B equals

1 2
�1 1 1 �2

2 1 3
�1

�2
1

1
�1
�1 4

2 2 1



1212 G Generalized Networks

Generalized Networks, Figure 5
A display of the basis B

with p = 2 and row order 1, 2, 10, 8, 9, 5, 6, 7, 4, and 3.
A display of the graph corresponding to B is illustrated
in Fig. 5. The direction of the arcs was selected arbitrar-
ily.

A connected network having exactly one cycle (such
as the upper component in Fig. 5) is called a one-tree.
An arc which is incident to a single node (such as the arc
corresponding to the last column of B) is called a root
arc. A connected network on k nodes having k � 1 reg-
ular arcs and one root arc is called a rooted tree (such
as the lower component in Fig. 5). It has been known
from at least the 1960s that the connected components
of a generalized network are either one-trees or rooted
trees ([5,7]). This structure can be exploited in solving
the systems 
B = cB and By =N�q needed in the simplex
algorithm, the details of which appear in [6].

In software implementations of the primal simplex
algorithm, the basis of a generalized network is main-
tained using a special data structure. Using the rooted

Generalized Networks, Table 1
Label for the basis illustrated in Fig. 5

Node Pred Thrd Card Last
Node

1 10 2 1 1
2 1 8 3 9
3 3 4 4 6
4 3 7 2 7
5 10 1 1 5
6 3 3 1 6
7 4 6 1 7
8 2 9 1 8
9 2 10 1 9
10 2 5 2 5

tree illustrated in Fig. 5, one may imagine a line around
the contours of the tree as illustrated in Fig. 6a, which
is known as a depth-first search. For this example, the
nodes in this search are ordered 3, 4, 7, 4, 3, 6, 3. An
order called pre-order is obtained by eliminating all du-
plicate occurrences (i. e. 3, 4, 7, 6). The label which gives
the next node in the pre-order is called the thread.

Three additional labels are generally used to main-
tain the basis. The predecessor of node v, denoted p(v)
is the first node encountered on the path from v to the
root. For root nodes, we adopt the convention p(v) =
v. If the arc linking v and p(v) were deleted, then there
would be two trees, one containing v and the other ex-
cluding v. The tree containing v is said to be rooted at
v. The cardinality of v is defined to be the number of
nodes in the tree rooted at v. The last node of v is de-
fined to be the last node in the tree rooted at v when the
nodes are taken in thread (pre-order) order.

The data structure used to represent a rooted tree
is extended for the one-tree in an obvious way. The
cycle in the one-tree plays the role of the root node.
The predecessor label of the nodes in the cycle point
to the next node in the cycle. That is, beginning with
any node in the cycle, say v, the sequence v, p(v),
p(p(v)), . . . identifies all nodes in the cycle. The conven-
tion adopted for the thread is that traversal around the
cycle using the thread is in the opposite direction to that
using the predecessor. The pre-order for a one-tree is
illustrated in Fig. 6b and the four labels for the basis
illustrated in Fig. 5 are given in Table 1. Using these
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Generalized Networks, Table 2
Survey of generalized network codes, where A stands for As-
sembly and F for FORTRAN

Code Lang Authors
NETG F F. Glover,
1973 D. Klingman,

J. Stutz
- F W. Langley

1973
- F D. Adolphson,

1981 L. Heum
GENNET F G. Brown,

1984 R. McBride
GWHIZNET A J. Tomlin

1984
GRNET F M. Engquist
1985 M. Chang

LPNETG F J. Mulvey,
1985 S. Zenios
- F I. Ali,

1986 A. Charles,
T. Song

GRNET-K F M. Chang,
(parallel) M. Engquist,
1987 M. Finkel,

R. Meyer
PGRNET F R. Clark,
(parallel) R. Meyer,
1987 M. Chang

GNO/PC C W. Nulty,
1988 M. Trick

GRNET-A A M. Chang,
1988 M. Cheng,

C. Chen
GENFLO F M. Ramamurti
1989

GRNET2 F R. Clark,
(serial) R. Meyer,
1989 M. Chang

TPGRNET F R. Clark,
(parallel) R. Meyer
1989

NETPD F N. Curet
1994

RAMSES C J. Kennington,
1997 R. Mohamed

Generalized Networks, Figure 6
Depth-first search illustrated

labels and the ideas presented in [2], all operations of
the primal simplex algorithm can be performed directly
on the basis forest composed of rooted trees and one-
trees.

Since the generalized network problem is a specially
structured linear program, any of the LP algorithms can
be used to solve the network problem. By utilizing the
structure of the network, however, any of the LP algo-
rithms can be specialized to reduce the solution time.
A specialization of the dual simplex algorithm may be
found in [8] and a primal-dual procedure may be found
in [4]. The relaxation method of Bertsekas has also been
extended for the generalized network case (see [3]). The
interior point algorithm (see [9]) could also be special-
ized for this problem.

The first specialized software for the generalized
network problem was developed in the early 1970’s.
A partial list of codes which have been developed may
be found in Table 2. An extensive list of applications of
the generalized network model may be found in [1] and
in [10].
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The complementarity problem and its generalizations
are now established as an important class of applied
mathematical problems. For these problems, there ex-
ists a body of theoretical results, algorithms for com-
puting solutions and many applications from engineer-
ing to economics and from theoretical physics to com-
puter science. A recent survey, [6], describes some of
this progress, including applications in some major in-
dustrial research laboratories in the United States. Cov-
ered there are models for elasto-hydrodynamic lubrica-
tion of bearings (automotive industry) and spatial price
equilibrium (telecommunications firm). The applica-
tion of complementarity allowed engineers and ana-
lysts to comprehend and solve a new range of problems
which had been out of reach. It is now well documented
that other approaches do not adequately model these
application problems while complementarity handles
them.

Two main generalizations of the nonlinear comple-
mentarity problem were made:
� Generalization of the ordering to that of a cone (see

[3]).
� Generalization to several functions per index (see

[1], and [7]).
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The first of these generalizations was applied to
solve an elasto-hydrodynamic lubrication problem in
[5], while the second was applied in [7] to solve a more
complex mixed lubrication problem. These particular
problems were studied in the past without complemen-
tarity models, but it is now recognized that the earlier
attempts were incomplete, and failed to comprehend
the main features of the physical situation.

In recent years, the second generalized complemen-
tarity problem above has been reconsidered and a re-
lated problem, the generalized order complementar-
ity problem has been studied. It was known for some
time that under certain conditions on the functions in-
volved, there exists a solution to the linear generalized
complementarity problem. See [1]. Recently, more ex-
tensive results have been obtained. For example, B.P.
Szanc [8] developed a theory and algorithms for non-
linear functions of the class P, thereby extending the
work of G.J. Habetler and M.M. Kostreva [2]. Results
for the infinite-dimensional version of the generalized
order complementarity problem are presented in [4].

The nonlinear complementarity problem is as fol-
lows: Given f : Rn ! Rn, find x 2 Rn satisfying x � 0,
f (x)� 0, and x| f (x) = 0. The most general set of condi-
tions known for existence and uniqueness of solutions
for this problem (even removing the requirement for
continuity of f ) are in [2].

Considering the generalized complementarity with
cone ordering, let K be a pointed, solid cone in Rn and
let

K� D
˚
y 2 Rn : x>y � 0 for all x 2 K

�
;

and let f : Rn ! Rn. The generalized complementarity
problem (f , K) is to find x 2 Rn satisfying x 2 K, f (x) 2
K�, and x| f (x) = 0.

Finally, the generalization with multiple functions
per index is as follows: f ij:Rn!R, find x 2Rn satisfying
xj � 0, f ij(x) � 0, i 2 Ij, j = 1, . . . , n, xj �

Q
f ij(x) = 0, i 2

Ij, j = 1, . . . , n. Here the product of the variable xj with
the product of functions (|Ij| of them), plays the role of
the complementarity condition.
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This article deals with the solution ofmixed integer non-
linear programming (MINLP) problems of the form

(P)

8̂
<̂
ˆ̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0
x 2 X; y 2 Y integer:

Throughout the following general assumptions are
made:
A1) f and g are twice continuously differentiable and

convex functions;
A2) X and Y are nonempty compact convex (polyhe-

dral) sets; and
A3) a constraint qualification holds at the solution of

every NLP subproblem obtained by fixing the in-
teger variables y.

MINLP problems arise in a range of engineering appli-
cations (see, e. g., [8] and [10] and references therein).

A class of methods for MINLP problems is dis-
cussed, which provide an alternative to nonlinear
branch and bound (cf. � MINLP: Branch and bound
methods) [3]. These algorithms are based on the con-
cept of defining an MILP master problem. Relaxations
of such a master problem are then used in constructing
algorithms for solving the MINLP problem.

The methods presented here are a generalization of
outer approximation proposed by M.A. Duran and I.E.
Grossmann [4] (see also [14]) and of LP/NLP based
branch and bound of I. Quesada and Grossmann [13].

The next section presents the reformulation of (P)
as an MILP master program. Based on this reformula-
tion two algorithms are presented in the following sec-
tions which solve a finite sequence of NLP subproblems
and MILP or MIQP master problems, respectively. The
final section shows how the re-solution of these master
problems can be avoided by updating their branch and
bound trees.

Outer Approximation of (P)

In this section the MINLP model problem (P) is refor-
mulated as an MILP problem using outer approxima-
tion. The reformulation employs projection onto the
integer variables and linearization of the resulting NLP
subproblems by means of supporting hyperplanes. The
convexity assumption allows an MILP formulation to
be given where all supporting hyperplanes are collected
in a single MILP.

In order to improve the readability of the material,
the reformulation is first done under the simplifying as-
sumption that all integer assignments y 2 Y are feasi-
ble. Next a rigorous treatment of infeasible subprob-
lems is outlined, correcting an inaccuracy in [4] and
[14], which could cause the algorithm to cycle. Finally,
the two parts are combined and the correctly reformu-
lated MILP master program is presented.

The reformulation presented in the next section af-
fords new insight into Outer Approximation. It can be
seen, for example, that it suffices to add the lineariza-
tions of strongly active constraints to the master pro-
gram. This is very important since it reduces the size of
the MILP master program relaxations that are solved in
the outer approximation algorithms.

When All y 2 Y Are Feasible

In this subsection the simplifying assumption is made
that all y 2 Y are feasible. The first step in reformulating
(P) is to define the NLP subproblem

NLP(y j)

8̂
<̂
ˆ̂:

min
x

f (x; y j)

s.t. g(x; y j) � 0
x 2 X

in which the integer variables are fixed at the value y
= yj. By defining v(yj) as the optimal value of the sub-
problem NLP(yj) it is possible to express (P) in terms of
a projection on to the y variables, that is

min
y j2Y

(v(y j)): (1)

The assumption that all y 2 Y are feasible implies that
all subproblems are feasible. Let xj denote an optimal
solution of NLP(yj) for yj 2 Y (existence of xj follows by
the compactness of X). Because a constraint qualifica-
tion holds at the solution of every subproblem NLP(yj)
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for every yj 2 Y , it follows that (1) has the same optimal
value as the problem

min
y j2Y

(u(y j)); (2)

where u(yj) is the optimal value of the following LP
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x

f j C (r f j)>
 
x � x j

0

!

s.t. 0 � g j C [r g j]>
 
x � x j

0

!

x 2 X:

(3)

In fact, it suffices to include those linearizations of con-
straints about (xj, yj) which are strongly active at the so-
lution of the corresponding subproblem. Here f j = f (xj,
yj) and r f j = r f (xj, yj), etc.

It is convenient to introduce a dummy variable � 2
R into (3), giving rise to the equivalent problem

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
x;�

�

s.t. � � f j C (r f j)>
 
x � x j

0

!

0 � g j C [r g j]>
 
x � x j

0

!

x 2 X:

The convexity assumption A1) implies that (xi, yi) is
feasible in the inner optimization problem above for all
yi 2 Y , where xi is an optimal solution to NLP(yj). Thus
an equivalent MILP problem

(MY )

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;y;�

�

s.t. � � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8y j 2 Y
x 2 X; y 2 Y integer

is obtained. That is, (MY) has one set of linearizations of
the objective and constraint functions per integer point
yj 2 Y .

Infeasible Subproblems

Usually, not all y 2 Y give rise to feasible subproblems.
Defining the sets

T D
˚
j : x j optimal solution toNLP(y j)

�
;

V D fy 2 Y : 9x 2 X with g(x; y) � 0g :

Then V is the set of all integer assignments y that give
rise to feasible NLP subproblems and T is the set of
indices of these integer variables. Then (P) can be ex-
pressed as a projection on to the integer variables

min
y j2V

(v(y j)):

In this projection the setV replaces Y in (1). The equiv-
alent MILP problem is now given by

(MV )

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;y;�

�

s.t. � � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8 j 2 T
x 2 X; y 2 V integer

obtained from (MY) by replacing Y by V .
It remains to find a suitable representation of the

constraint y 2 V by means of supporting hyperplanes.
The master problem given in [4] is obtained from prob-
lem (MV) by replacing y 2 V by y 2 Y . Duran and
Grossmann 1986 justify this step by arguing that a rep-
resentation of the constraints y 2 V is included in the
linearizations in problem (MV). However, it is not diffi-
cult to derive anMINLP problemwhere this would lead
to an incorrect master problem [5], [11, p. 79].

In order to derive a correct representation of y 2 V
it is necessary to consider howNLP solvers detect infea-
sibility. Infeasibility is detected when convergence to an
optimal solution of a feasibility problem occurs. At such
an optimum, some of the nonlinear constraints will be
violated and other will be satisfied and the norm of the
infeasible constraints can only be reduced by making
some feasible constraints infeasible. A suitable frame-
work for nonlinear feasibility problems in the context of



1218 G Generalized Outer Approximation

outer approximation is

F(yk)

8̂
ˆ̂<
ˆ̂̂:

min
x

X

i2J?

wk
i g
C
i (x; y

k)

s.t. g j(x; yk) � 0; j 2 J;
x 2 X:

The constraints in F(yk) have been divided into two
sets: one that can be satisfied and another that cannot
be satisfied. Infeasible subproblems now correspond to
solutions of F(yk) with

P
i2J? wk

i g
C
i (x, yk) > 0. Most

common feasibility problems such as l1 and l1 as well
as the feasibility filter [6] fit into this framework. The
following lemma shows how solutions of F(yk) can be
used to construct a representation of y 2 V .

Lemma 1 If NLP(yk) is infeasible, so that xk solves F(yk)
with

X

i2J?

wk
i (g

k
i )
C > 0; (4)

then y = yk is infeasible in the constraints

0 � gki C (r gki )
>

�
x � xk

y � yk

�
; 8i 2 J?

0 � gkj C (r gkj )
>

�
x � xk

y � yk

�
; 8 j 2 J;

for all x 2 X. The proof of this Lemma can be found in
[5, Lemma 1].

The General Case

This subsection completes the derivation of the MILP
master program by combining the developments of the
previous two subsections. Let the integer assignment yk

produce an infeasible subproblem and denote

S D
n
k : NLP(yk) infeasible; xk solves F(yk)

o
:

Note that S is the complement of the set T defined in
the previous subsection. It then follows directly from
Lemma 1 that the constraints

0 � gk C [r gk]>
�
x � xk

y � yk

�
; 8k 2 S;

exclude all integer assignments yk for which NLP(yk) is
infeasible. Thus a general way to correctly represent the

constraints y 2 V in (MV ) is to add linearizations from
F(yk) when infeasible subproblems are obtained, giving
rise to the following MILP master problem:

(M)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
x;y;�

�

s.t. � � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8 j 2 T

0 � gk C [r gk]>
 
x � xk

y � yk

!

8k 2 S
x 2 X; y 2 Y integer:

The development of the preceding two subsections pro-
vides a proof of the following result:

Theorem 2 If assumptions A1), A2) and A3) hold, then
(M) is equivalent to (P) in the sense that (x�, y�) solves
(P) if and only if it solves (M).

Problem (M) is an MILP problem, but it is not prac-
tical to solve (M) directly, since this would require all
subproblems NLP(yj) to be solved first. This would be
a very inefficient way of solving problem (P). Therefore,
instead of attempting to solve M directly, relaxations of
(M) are used in an iterative process that is the subject of
the next section.

Linear Outer Approximation

This section describes, how relaxations of the master
program (M), developed in the previous section can
be employed to solve the model problem (P). The re-
sulting algorithm is termed linear outer approximation.
It is shown to iterate finitely between NLP subprob-
lems and MILP master program relaxations. This al-
gorithm is seen to be less efficient if curvature infor-
mation is present in the problem. A worst-case exam-
ple, in which linear outer approximation visits all in-
teger assignments has been derived in [5]. This exam-
ple motivates the introduction of a second order term
into the MILP master program relaxations, resulting
in a quadratic outer approximation algorithm which is
considered in the next section.
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Each iteration of the linear outer approximation al-
gorithm chooses a new integer assignment yi and at-
tempts to solve NLP(yi). Either a feasible solution xi is
obtained or infeasibility is detected and xi is the solu-
tion of a feasibility problem F(yi) (other pathological
cases are eliminated by the assumption that the set X
is compact). The algorithm replaces the sets T and S in
(M) by the sets

Ti D
˚
j � i : x j solution toNLP(y j)

�
;

Si D
n
k � i : xk solution to F(yk)

o
:

It is also necessary to prevent any yj, j2Ti, from becom-
ing the solution of the relaxed master problem. This can
be done by including a constraint

� < UBDi ;

where

UBDi D min
˚
f j : j 2 Ti�

is an upper bound on the optimum. Thus the following
master problem is defined

(Mi)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
x;y;�

�

s.t. � < UBDi

� � f j Cr( f j)>
 
x � x j

y � y j

!

0 � g j Cr[g j]>
 
x � x j

y � y j

!

8 j 2 Ti

0 � gk Cr[gk]>
 
x � xk

y � yk

!

8k 2 Si

x 2 X; y 2 Y integer:

The algorithm solves (Mi) to obtain a new integer as-
signment yi+1, and the whole process is repeated itera-
tively. A detailed description of the algorithm is as fol-
lows.

Nonlinear Programming

NLP - subproblem

Mixed Integer Linear

Programming
MILP master program

MILP infeasible?

Yes

STOP

NLP generates
supporting
hyperplanes

fix the
integer
variables

add new
supporting
hyperplanes

MILP finds
new integer
assignment

No

Generalized Outer Approximation, Figure 1
Illustration of linear outer approximation

Initialization: y0 given:
set i = 0; T�1 = ;; S�1 = ;; UBD�1 =1
REPEAT
1: Solve NLP(yi) at F(yi) as appropiate. Let the so-

lution be xi :

2: Liniarize objective and constraint functions
about (xi ; yi ). Set Ti = Ti�1 [ fig or Si =
Si�1 [ fig as appropriate.

3: IF (NLP(yi) feasible AND f i < UBDi�1)
THEN
update current best point by setting x� = xi ;

y� = yi ; UBDi = f i
ELSE Set UBDi = UBDi�1:

4: Solve the current relaxation (Mi) of the master
program (M), giving a new yi+1. Set i = i + 1.

UNTIL ((Mi ) is infeasible)

Algorithm 1: Linear outer approximation

The figure below illustrates the different stages of
the algorithm.

The algorithm also detects whether or not (P) is in-
feasible. If UBD = 1 on exit, then all integer assign-
ments that are visited by the algorithm are infeasible
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(i. e. Step 3 is not invoked). The use of upper bounds
on � and the definition of the sets Ti and Si ensure
that no yi is replicated by the algorithm. This enables
a proof to be given that the algorithm terminates after
a finite number of steps, provided that there is only a fi-
nite number of integer assignments.

Theorem 3 If assumptions A1), A2) and A3) hold, and
if |Y| <1, then Algorithm 1 terminates in a finite num-
ber of steps at an optimal solution of (P) or with an indi-
cation that (P) is infeasible.

A proof of this theorem can be found in [5]. Below
a brief outline of the proof is given: The optimality of
xi in NLP(yi) implies that � � f i for any feasible point
in (3). The upper bound � < f i therefore ensures that
the choice y = yi in (Mk) has no feasible points x 2 X.
Therefore the algorithm is finite. The optimality of the
algorithm follows from the convexity of f and g which
ensures that the linearizations are supporting hyper-
planes.

Quadratic Outer Approximation

Curvature can often play an important role in optimiza-
tion. If this is the case, then an algorithm based on lin-
ear representations of the problem functions can be in-
efficient. In [5], a worst-case example is given for which
linear outer approximation visits all integer points. This
motivates the introduction of a curvature information
into the master programs. In the remainder of this sec-
tion it is shown how this can be achieved for linear
outer approximation by including a second order La-
grangian term into the objective function of the MILP
master programs.

These considerations have led to the development
of a new algorithm based on the use of second order
information. The development of such an algorithm
seems contradictory at first sight, since quadratic func-
tions do not provide underestimators of general convex
functions. However, the derivation of the previous sec-
tion allows the inclusion of a curvature term into the
objective function of the MILP master problem. This
quadratic term influences the choice of the next iterate
by the algorithm without surrendering the finite con-
vergence properties which rely on the fact that the fea-
sible region of the master problem is an outer approxi-
mation of the feasible region of the MINLP problem P.

The resulting algorithm is referred to as quadratic outer
approximation and is obtained by replacing the relaxed
master problem (Mi) by theMIQP problem (Qi) in Step
4 of Algorithm 1. Introducing the quadratic term

qi(x; y) D
1
2

�
x � xi

y � yi

�>
r2Li

�
x � xi

y � yi

�
;

where

Li D L(xi ; yi ; �i ) D f (xi ; yi)C (�i )>g(xi ; yi )

is the usual Lagrangian function.
The new master problem (Qi) can be defined as

(Qi )

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
x;y;�

�C qi(x; y)

s.t. � < UBDi

� � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8 j 2 Ti

0 � gk C [r gk]>
 
x � xk

y � yk

!

8k 2 Si

x 2 X; y 2 Y integer:

Numerical experience in [11, Chapter 6] indicates that
adding a curvature term reduces the number of iter-
ations of outer approximation if general integer vari-
ables are present. However, the iteration count is not
reduced for problems involving binary variables only.
As a consequence these preliminary results indicate that
quadratic outer approximation only improves the com-
putation times for problems with general integer vari-
ables, as MIQP problems are usually more expensive to
solve than MILP problems.

Avoiding Resolving the Master Problems

This section presents a new approach to the solution
of successive master program relaxations. It has been
proposed by Quesada and Grossmann [13] for a class
of problems whose objective and constraint functions
are linear in the integer variables and is called LP/NLP
based branch and bound algorithm. Their approach is
generalized here to cover problems with nonlinearities
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Generalized Outer Approximation, Figure 2
Progress of LP/NLP based branch and bound

in the integer variables. In addition a new algorithm
QP/NLP based branch and bound is proposed based on
the quadratic master program (Qi) which takes curva-
ture information into account.

The motivation for the LP/NLP based branch and
bound algorithm is that outer approximation usually
spends an increasing amount of computing time in
solving successive MILP master program relaxations.
Since the MILP relaxations are strongly related to one
another this means that a considerable amount of infor-
mation is re-generated each time a relaxation is solved.
The new approach avoids the re-solution of MILP mas-
ter program relaxations by updating the branch and
bound tree. This section makes extensive use of branch
and bound terminology; see the extensive literature on
branch and bound (e. g., [1,2,8,9,12]) for the relevant
definitions.

Instead of solving successive relaxations of (M), the
new algorithm solves only one MILP problem which
is updated as new integer assignments are encountered
during the tree search. Initially an NLP-subproblem is
solved and the initial master program relaxation (M0) is
set up from the supporting hyperplanes at the solution
of the NLP-subproblem. The MILP problem (M0) is
then solved by a branch and bound process with the ex-
ception that each time a node (corresponding to an LP
problem) gives an integer feasible solution yi, say, the
process is interrupted and the corresponding NLP(yi)
subproblem is solved. New linearizations from NLP(yi)
are then added to every node on the stack, effectively
updating the branch and bound tree. The branch and
bound process continues in this fashion until no prob-
lems remain on the stack. At that moment all nodes are
fathomed and the tree search is exhausted.
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Initialization: y0 given;
set i = 1; T�1 = ;; S�1 = ;

Set up the initial master program:
Solve NLP(y0). Let the solution be x0:
Linearize objective and constraint functions about (x0; y0):
Set T0 = f0g:
Set x� = x0; y� = y0; UBD0 = f 0.

Place (M0) with its integer restrictions relaxed on the stack.
WHILE (stack is not empty) DO BEGIN
1: Remove a problem (P0) from the stack and solve the LP giving (x0; y0; �0): �0 is a lower bound for all

NLP child problems whose root is the current problem.
2: IF (y0 integer) THEN

Set yi = y0;
Solve NLP(yi) or F(yi):
Let the solution be xi :

Linearize objective and constraint functions about (xi ; yi ):
Set Ti = Ti�1 [ fig or Si = Si�1 [ fig:
Add linearizations to all pending problems on the stack.
IF (NLP(yi)feasible AND f i < UBDi) THEN
Update best point x� = xi ; y� = yi ; UBDi+1 = f i :
ELSE Set UBDi+1 = UBDi :

ENDIF
Place (P0) back on stack; set i = i + 1:
Pruning: Remove all problems from stack with �0 > UBDi+1:

ELSE
Branch on an integer variable and add two new problems to the stack.
ENDIF

END (WHILE-LOOP)

Algorithm 2: LP/NLP based branch and bound

Unlike ordinary branch and bound a node cannot
be assumed to have been fathomed, if it produces an
integer feasible solution, since the previous solution at
this node is cut out by the linearizations added to the
master program. Thus only infeasible nodes can be as-
sumed to be fathomed. In the case of MILP master pro-
grams there exists an additional opportunity for prun-
ing. Since the LP nodes are outer approximations of
the MINLP subproblem corresponding to their respec-
tive subtree a node can be regarded as fathomed if its
lower bound is greater than or equal to the current up-
per bound UBDi.

As in the two outer approximation algorithms the
use of an upper bound implies that no integer assign-
ment is generated twice during the tree search. Since
both the tree and the set of integer variables are fi-
nite the algorithm eventually encounters only infeasi-

ble problems and the stack is thus emptied so that the
procedure stops. This provides a proof of the following
consequence to Theorem 3.

Corollary 4 If assumptions A1), A2) and A3) hold, and
if |Y| <1, then Algorithm 2 terminates in a finite num-
ber of steps at a solution of (P) or with an indication that
(P) is infeasible.

The figure below illustrates the progress of Algorithm
2. In i), the LP relaxation of the initial MILP has been
solved and two branches added to the tree. The LP that
is solved next (indicated by an 
 ) does not give an in-
teger feasible solution and two new branches are intro-
duced. The next LP in ii) produces an integer feasible
solution indicated by a box. The corresponding NLP
subproblem is solved and in iii) all nodes on the stack
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are updated (indicated by the shaded circles) by adding
the linearizations from the NLP subproblem including
the upper bound UBDi which cuts out the current as-
signment yi. Then, the branch and bound process con-
tinues on the updated tree by solving the LP marked
by a 
.

If curvature information plays an important part
in the problem (P), then it may be beneficial to add
a quadratic term qi(x, y) to the master problem. This
gives rise to QP/NLP based branch and bound algo-
rithm. It differs from Algorithm 2 in two important
aspects. The first difference is that QP rather than LP
problems are solved in the tree search. The second dif-
ference is a consequence of the first. Since QP problems
do not provide lower bounds on the MINLP problems
(P), the pruning step in Algorithm 2 cannot be applied.

In preliminary numerical experiments in [11, Chap-
ter 6] and [7] it has been observed that the LP and
QP version of Algorithm 2 are usually faster than their
counterparts based on Algorithm 1, often beating the
latter by a factor of 2. A detailed numerical comparison
of the two approaches is still outstanding.

See also

� Chemical Process Planning
� Extended Cutting Plane Algorithm
� Generalized Benders Decomposition
�MINLP: Application in Facility Location-allocation
�MINLP: Applications in Blending and Pooling

Problems
�MINLP: Applications in the Interaction of Design

and Control
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Branch and Bound Methods
�MINLP: Design and Scheduling of Batch

Processes
�MINLP: Generalized Cross Decomposition
�MINLP: Global Optimization with ˛BB
�MINLP: Heat Exchanger Network Synthesis
�MINLP: Logic-based Methods
�MINLP: Outer Approximation Algorithm
�MINLP: Reactive Distillation Column Synthesis
�Mixed Integer Linear Programming: Mass and Heat

Exchanger Networks
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Generalized primal-relaxed dual approach (GPRD) in
the context of global optimization employs the Ben-
ders’ idea of partitioning (see [2]) in order to exploit the
structure of global optimization problems with com-
plicating variables (variables which, when temporar-
ily fixed, render the remaining optimization problem
much simpler, see [4]). For the class of global optimiza-
tion problem considered by the GPRD approach, fix-
ing the values of the complicating variables reduces the
given problem to a convex program, parameterized by
the values of the complicating variables. In order to ap-
proximate the solution of this class of problems effi-
ciently, the GPRD approach uses the primal and relaxed
dual problems with fixed complicating variables to pro-
vide sharper upper and lower bounds of the solution re-
spectively, following the original ideas in [2,4] and [9].

It however adopts a different way of construct-
ing relaxed dual problems by generalizing the original
method used in the GOP algorithms (see [3]) so that it
can handle a wider range of global optimization prob-
lems including nonsmooth ones.

Let k, p, n,m be some positive integers. Let X and Y
be two closed sets in Rn and Rm respectively. Let f , gi,
hj (1� i� k and 1 � j � p) be continuous functions on
Rn × Rm. Let g = (g1, . . . , gk)| and h = (h1, . . . , hp)|.

Let us consider the following global optimization
problem:

(OP) � D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0;
h(x; y) D 0;
x 2 X; y 2 Y ;
1 � i � k; 1 � j � p;

where X and Y are nonempty closed convex sets in Rn

and Rm respectively. It is assumed that for any fixed y 2

Y , or x 2 X, 1 � i � k, and 1� j� p, f (�, y), gi(�, y), f (x,
�), gi(x, �) are convex functions, and hj (�, y), hj(x, �) are
affine functions. It is also assumed that for any fixed y 2
V = {y 2 Y : there is an x 2 X: g(x, y) � 0 and h(x, y) =
0}, the partial primal problem (OP) is stable in the sense
that its perturbation function has a nonempty subgradi-
ent at zero point; see [1]. This assumption holds when,
for instance, the Slater’s constraint qualification holds
for (OP) at every fixed y 2 V , though it is more general
than the Slater’s.

Although the problem (OP) appears to address only
a limited class of global optimization programs, it is
shown in [5] that very broad mathematical program-
ming problems can indeed be reformulated in this form
by using a simple variable transformation. Further-
more, it is shown in [6] that for any fixed y 2 Y the
reformulated problems are always stable.

It follows from the stability assumption that for any
fixed y0 2 V there exist Lagrange multipliers (�0, �0) 2
Rp × Rk

+ and x0 2 X such that the triplet (x0, �0, �0) is
the solution of the following saddle problem:

8̂
<̂
ˆ̂:

g(x0; y0) � 0;
h(x0; y0) D 0;
�>0 g(x0; y0) D 0;

and for any (x, �, �) 2 X × Rp × Rk
+

(SP) L(x0; y0; �; �) � L(x0; y0; �0; �0)
� L(x; y0; �0; �0);

where the Lagrange function of the primal problem
(OP) is defined by

L(x; y; �; �) D f (x; y)C �>h(x; y)C �>g(x; y):

The solution (x0, �0,�0) of (SP) can be found by solving
the following partial primal problem:

(PP) min
x2X;

g(x;y0)�0;
h(x;y0)D0

f (x; y0);

which is a convex minimization problem.
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For a given y0 2 V , the GPRD approach finds an
upper bound for the solution of (OP) by solving (PP):

�C(y0) D min
x2X;

g(x;y0)�0;
h(x;y0)D0

f (x; y0):

The problem (PP) is in general easier to solve as it is
convex. The GPRD approach then estimates a lower
bound for the solution of (OP) by solving the follow-
ing relaxed dual problem:

(RD)
��(U;H)

D min
y2V

max
(	t ;
t )2U

min
x2X

H(	t ;
t)(x; y);

where U = {(�t, �t) 2 Rp × Rm
+ : 1 � t � N}, and the

mapping H: U ! C0(X × Y) is such that the function
H(	t ;
t)(�, �) is continuous and satisfies that for any fixed
(�t, �t) 2 U,

L(x; y; �t ; �t)

D f (x; y)C �>t h(x; y)C �
>
t g(x; y)

� H(	t ;
t )(x; y); 8(x; y) 2 X � Y :

In the GPRD approach, the set U is usually constructed
to include the multipliers (�, �) obtained from solving
the problem (PP) above.

The generalized primal-relaxed dual algorithm is to
construct, for n = 0, 1, . . . , a sequence of elements yn
2 Y , sets Un, and functions H(	t ;
t)

n for each (�t, �t) 2
Un such that �+ (yn) � ��(Un, Hn)! 0 as n! 0. The
selections of Un and H(	t ;
t)

n are clearly not unique but
they have to be constructed so that the global solutions
of the relaxed-dual problems (RD) can be solved effi-
ciently. In the literatureUn is set to be the unit of all the
Lagrange multipliers (�, �) of the partial primal prob-
lems (PP) with y = ym (m = 1, . . . , n). Assume that the
selection H(	t ;
t)

n is given for any (�t, �t) 2 Un. Then
the generalized primal-relaxed dual algorithm reads:

1 Given y0 2 V ; and � > 0:
2 Given yn 2 V ; solve (PP) for y = yn to obtain

xn and Lagrange multiplies (�n ; �n):
3 Solve (RD) to obtain yn+1; where Un =
[n

m=1f(�m; �m)g:
4 Stop if �+(yn) � ��(Un ;Hn) < �:

Otherwise go to Step 2 with n = n + 1:

PRD Algorithm for (OP)

It is shown in [7] that the PRD algorithm converges
to the global solutions of (OP) under some mild as-
sumptions.

There are many possible choices for the mapping
role H. In the literature the following results have
been reported. In Geoffrion’s original work in [4],
H(	m ;
m)

n (x, y) = L(x, y, �m, �m) (1 � m � n). It is in
general difficult to solve (RD) computationally with this
choice ofHn. In the pioneer work [3],Hn takes the form
of

H(	m ;
m )
n (x; y)

D L(xm ; ym ; �m ; �m)

Crx L(xm ; y; �m ; �m)(x � xm)
CryL(xm ; ym ; �m ; �m)(y � ym)

(m D 1; : : : ; n);

where xm, ym, �m, �m are obtained from the previous
iterations of the PRD algorithm and rxL(x, y, �, �) (or
ryL(x, y, �, �)) is the gradient of the Lagrange func-
tion L at x (or y) for a fixed (y, �, �) (or (x, �, �)).
The resulting PRD algorithm has been referred to as
GOP algorithm and has been widely used in various
global optimization problems (see, e. g., [8] for a sur-
vey). Important progress has been made in developing
efficient ways of solving (RD) for the GOP algorithm,
see, also [8].

The GOP algorithm is only applicable to smooth
optimization problems where the objective functions
and the constraints are differentiable. Nonsmooth op-
timization problems occur in many important real ap-
plications. In [7] the GPRD approach is applied to
a class of nonsmooth global optimization problems
where

f D F Cmax
e2E

Fe

and

gi D Gi Cmax
e2E

Ge
i ; i D 1; : : : ; k;

where E = {1, . . . , d}, and the smooth C1 functions F, Fe,
G = (G1, . . . , Gk)|,Ge = (Ge

1, . . . , G
e
k)

| satisfy all the con-
ditions in (OP) for e = 1, . . . , d. The resulting algorithm,
referred to as EGOP, reads:



1226 G Generalized Primal-relaxed Dual Approach

1 Given y0 2 V , and � > 0.
2 Given yn 2 V , solve (PP) for y = yn to obtain

xn and Lagrange multipliers (�n ; �n).
3 Solve (RD) to obtain yn+1, where Un =
[n

m=1f(�m; �n)g and for any (�m; �m) 2 Un ,

H(�m ;�m)
n (x; y)

= LS(xm ; ym ; �m; �m)
+rx LS(xm ; y; �m ; �m)(x � xm)
+ryLS(xm ; ym ; �m ; �m)(y � ym)

+max
e2E

(Fe(xm; ym)+rxFe (xm; y)(x�xm)

+ryFe(xm; ym)(y � ym))

+
kX
i=1

�i
m max

e2E
(Ge

i (xm; ym))

+rxGe
i (xm; y)(x � xm)

+ryGe
i (xm ; ym)(y � ym);

where the smooth part of the Lagrange is de-
fined by LS(x; y; �; �) = F(x; y) + �>h(x; y) +
�>G(x; y).

4 Stop if �+(yn) � ��(Un ;Hn) < �. Otherwise go
to Step 2 with n = n + 1.

EGOP Algorithm for (OP)

This algorithm is identical with the GOP algorithm
in the smooth case where Fe = 0, Ge = 0 for e = 1, . . . , d.
The EGOP covers a wider range of global optimization
problems, and it is shown in [7] to be convergent un-
der essentially the same assumptions which ensure the
convergence of the GOP algorithm.

Penalty implementation of the PRD algorithm has
also been considered in the literature to explore another
way of coping with possible infeasible primal or relaxed
dual subproblems in the algorithm. In [7], the EGOP
algorithm is applied to the following two penalty prob-
lems:

(NPOP)� min
(x;y)2X�Y

P(x; y);

where

P(x; y) D f (x; y)C �
kX

jD1

max
�
0; g j(x; y)

�

C �

pX
jD1

ˇ̌
hj(x; y)

ˇ̌
; � > 0 :

and
(SPOP)M min

(x;y)2X�Y
P(x; y);

where

P(x; y) D f (x; y)CM
kX

jD1

max
�
0; g j(x; y)

�2

CM
pX

jD1

ˇ̌
hj(x; y)

ˇ̌2
; M > 0:

The convergence of the two penalty implementations
of EGOP algorithm is established in [7], where it is
shown that the sequences {(xn, yn)} generated by the
EGOP algorithm for the penalty problems (NPOP)�
and (SPOP)M converge to the solutions of the (OP)
when � is large enough orM tends to infinite.

See also

� ˛BB Algorithm
� Global Optimization in Phase and Chemical

Reaction Equilibrium
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Introduction

In generalized semi-infinite optimization problems,
a finite-dimensional decision variable x is subject to in-
finitely many inequality constraints, that is, in

GSIP : minimize f (x) subject to x 2 M ;

the feasible set is described by

M D fx 2 Rn jg(x; y) � 0 for all y 2 Y(x)g ;

with the index set

Y(x) D fy 2 Rm jv`(x; y) � 0; ` 2 Lg :

All defining functions f ; g; v`; ` 2 L D f1; : : : ; sg are
assumed to be real valued and at least continu-
ous on their respective domains. Moreover, the set-
valued mapping Y : Rn � Rm is assumed to be locally
bounded, that is, for each x̄ 2 Rn there exists a neigh-
borhoodU of x̄ such that

S
x2U Y(x) is bounded inRm.

In applications such as design centering, robust
optimization, and (reverse) Chebyshev approximation
([13,32]), often finitely many semi-infinite constraints
gi (x; y) � 0; y 2 Yi (x); i 2 I; describe the feasible set

M of GSIP, along with finitely many equality con-
straints in the definitions of M and Y(x). In order to
avoid technicalities this article focuses on the basic case
of a single semi-infinite constraint (see [13,32] for more
general formulations).

As opposed to a standard semi-infinite optimiza-
tion problem, the possibly infinite index set Y(x) of
the semi-infinite inequality constraint is allowed to vary
with x in a GSIP. For surveys and detailed studies about
standard semi-infinite optimization see [10,15,25]. In
contrast to standard semi-infinite programs, the feasi-
ble set of GSIP is not necessarily a closed set, and it
might possess a stable disjunctive structure ([32]).

Powerful optimality conditions are based on a thor-
ough analysis of these topological structures. This arti-
cle mainly deals with first-order optimality conditions
and will, thus, begin with a discussion of different first-
order properties of the feasible set.

Definitions

The key to understanding the topological features in the
feasible set of GSIP lies in the bilevel structure of semi-
infinite programming ([27,32]). In fact, it is not hard to
see that the semi-infinite constraint in GSIP is equiva-
lent to

'(x) :D max
y2Y(x)

g(x; y) � 0 ;

which means that the feasible set M of GSIP is the
lower-level set of some optimal value function:

M D fx 2 Rnj'(x) � 0g : (1)

The usual convention “max; D �1” is consistent
here, as an empty index set Y(x) corresponds, loosely
speaking, to “the absence of restrictions” at x and,
hence, to the feasibility of x.

The function � is the optimal value function of the
so-called lower-level problem

Q(x) : max
y2Rm

g(x; y) subject to v`(x; y) � 0; ` 2 L :

In contrast to the upper-level problem, which consists
in minimizing f over M, in the lower-level problem x
plays the role of an n-dimensional parameter, and y is
the decision variable. Themain computational problem
in semi-infinite programming is that the lower-level
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problem has to be solved to global optimality, even if,
for example, only a stationary point of the upper-level
problem is sought.

Topological Properties

The alternative description of the feasible set in (1)
shows that the topological properties of M are deter-
mined by the continuity properties of �, whereas first-
and second-order optimality conditions will rely on the
first- and second-order properties of �. The proper-
ties of optimal value functions have been studied exten-
sively in parametric optimization ([2]; for a brief intro-
duction see [32]).

The optimal value function � can be shown to be at
least upper semicontinuous, so that points x 2 Rn with
'(x) < 0 belong to the topological interior ofM. On the
other hand, for investigations of the local structure ofM
or of local optimality conditions one is only interested
in feasible points from the boundary @M ofM. Hence it
suffices to consider the zeros of �, that is, points x 2 Rn

for which Q(x) has maximal value '(x) D 0. We de-
note the globally maximal points of Q(x) for arbitrary
x 2 Rn by

Y?(x) D fy 2 Y(x)jg(x; y) D '(x)g

and for the special case of x 2 M \ @M by

Y0(x) D fy 2 Y(x)jg(x; y) D 0g :

The set Y0(x) is also called the upper-level active in-
dex set of GSIP.

Note that M is closed if for all x 2 Rn the index set
Y(x) is nonempty and theMangasarian–Fromovitz con-
straint qualification (MFCQ) holds at some element of
Y0(x) ([13,32]). IfM is not closed, there may exist infea-
sible boundary points x 2 @M, that is, boundary points
with '(x) > 0.

The Reduction Ansatz

For theoretical as well as numerical purposes it is of cru-
cial importance to keep track of the elements of Y?(x)
for varying x. These points solve the lower-level prob-
lem so that for functions g and v`; ` 2 L; which are
continuously differentiable with respect to y, they sat-

isfy the first-order necessary optimality condition of
Karush–Kuhn–Tucker: let

L(x; y; �) D g(x; y) � �>v(x; y) ;

denote the Lagrangian of Q(x) with multiplier vec-
tor � 2 Rs . Then for x̄ 2 M and each ȳ 2 Y?(x̄) such
that MFCQ holds at ȳ in Q(x̄), there exist multipli-
ers �̄ � 0 with DyL(x̄; ȳ; �̄) D 0 and �̄` � v`(x̄; ȳ) D 0,
` 2 L. Here DyL denotes the gradient of L with re-
spect to y as a row vector. Note that the multiplier
vector �̄ is uniquely determined if instead of MFCQ
the stronger linear independence constraint qualifica-
tion (LICQ) holds at ȳ.

Keeping track of the elements of Y?(x) can now
be achieved, for example, by means of the implicit
function theorem, if the functions g and v`; ` 2 L; are
C2 with respect to y. For x̄ 2 M a local maximizer ȳ
of Q(x̄) is called nondegenerate in the sense of Jon-
gen/Jonker/Twilt ([19]), if LICQ, strict complementary
slackness and a second-order sufficiency condition are
satisfied. The Reduction Ansatz ([14,16,35]) is said to
hold at x̄ 2 M if all global maximizers of Q(x̄) are non-
degenerate. The set Y?(x̄) can then only contain finitely
many points, say, Y?(x̄) D f ȳ1; : : : ; ȳ pgwith p 2 N . By
a result from [8] the local variation of these points with
x can be described by the implicit function theorem.

In fact, for x locally around x̄ there exist contin-
uously differentiable functions yi (x); 1 � i � p; with
yi (x̄) D ȳ i such that yi (x) is the locally unique local
maximizer ofQ(x) around ȳ i . It turns out that the func-
tions 'i(x) :D g(x; yi (x)) are even C2 in a neighbor-
hood of x̄. Their gradients are

D'i(x̄) D DxL(x̄; ȳ i ; �̄ i) ; (2)

where �̄ i is the uniquely determined multiplier vector
corresponding to ȳ i .

A major consequence of the Reduction Ansatz is
the so-called Reduction Lemma ([16]): if the Reduction
Ansatz holds at x̄, then for all x from a neighborhood U
of x̄ one has

'(x) D max
1�i�p

'i(x) :

In view of (1) this means that locally around a feasible
boundary point x̄ 2 M \ @M, the feasible setM can be
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described by finitely many C2�constraints, that is,GSIP
locally looks like a smooth finite optimization problem:

M \ U D fx 2 U j 'i(x) � 0; i D 1; : : : ; pg : (3)

In particular, locally around x̄ set M is closed, and it
does not possess a stable disjunctive structure at x̄.

First-Order Properties of the Feasible Set

Since the Reduction Ansatz cannot be expected to
hold generically everywhere in M \ @M, the first-order
structure of M is also studied under considerably
weaker assumptions. For the first-order approximation
ofM one defines the contingent cone � ?(x̄;M) toM at
x̄ as follows: d̄ 2 � ?(x̄;M) if and only if there exist se-
quences of scalars (t�)�2N and of vectors (d�)�2N such
that

t� & 0; d� ! d̄(� !1) and x̄C t�d� 2 M

for all � 2 N:

The contingent cone is a closed cone, not necessarily
convex, containing first-order information aboutM. In
view of (1) the contingent cone toM at x̄ should be re-
lated to a level set of a first order approximation of �
at x̄. Unfortunately, the differentiability properties of �
can be very weak, so that lower and upper directional
derivatives of � at x̄ in direction d̄ in the Hadamard
sense ([4]) come into play:

' 0�(x̄; d̄) D lim inf
t&0;d!d̄

'(x̄ C td) � '(x̄)
t

and

' 0C(x̄; d̄) D lim sup
t&0;d!d̄

'(x̄ C td) � '(x̄)
t

:

� is called directionally differentiable at x̄ (in the
Hadamard sense) if for each direction d ¤ 0 one has
' 0�(x̄; d) D ' 0C(x̄; d) D: '

0(x̄; d). The outer lineariza-
tion cone ofM at x̄ can now be defined as

L?(x̄;M) D fd 2 Rnj' 0�(x̄; d) � 0g

and the inner linearization cone by

L(x̄;M) D fd 2 Rn j' 0C(x̄; d) < 0g :

For x̄ 2 @M \ M the chain of inclusions

L(x̄;M) � � ?(x̄;M) � L?(x̄;M) (4)

holds ([22,33]). A good first-order description of M
around x̄ can thus be obtained if the linearization cones
L(x̄;M) and L?(x̄;M) do not differ toomuch from each
other.

For example, in standard semi-infinite program-
ming the index set mapping Y(x) � Y is constant, and
the theorem of Danskin ([6]) then says that � is direc-
tionally differentiable with

' 0(x̄; d) D max
y2Y0(x̄)

Dx g(x̄; y)d

for all d 2 Rn . The linearization cones

L(x̄;M) D
\

y2Y0(x̄)

fd 2 RnjDx g(x̄; y)d < 0g

and

L?(x̄;M) D
\

y2Y0(x̄)

fd 2 Rn jDx g(x̄; y)d � 0g

thus differ only by the strictness of inequalities, and
they do not possess a disjunctive structure.

If inGSIP the Reduction Ansatz holds at x̄, using (2)
it is not hard to see that � is directionally differentiable
with

' 0(x̄; d) D max
1�i�p

DxL(x̄; ȳ i ; �̄ i )d

for all d 2 Rn . The linearization cones

L(x̄;M) D
p\

iD1

fd 2 RnjDxL(x̄; ȳ i ; �̄ i )d < 0g

and

L?(x̄;M) D
p\

iD1

fd 2 RnjDxL(x̄; ȳ i ; �̄ i )d � 0g

again differ only by the strictness of inequalities.
Under weaker assumptions than the Reduction

Ansatz the situation in GSIP becomes more involved
since � does not even have to be directionally differ-
entiable. The following estimates for the upper and
lower directional derivatives from [9,23] are known to
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be tight: for x̄ 2 @M \ M such that MFCQ is satisfied
at each y 2 Y0(x̄) one has for each d 2 Rn

sup
y2Y0(x̄)

min
�2KKT(x̄;y)

DxL(x̄; y; �) d � ' 0�(x̄; d)

� ' 0C(x̄; d) � max
y2Y0(x̄)

max
�2KKT(x̄;y)

DxL(x̄; y; �)d :

Here

KKT(x; y) D f� 2 Rs j� � 0;DyL(x; y; �) D 0;

�` � v`(x; y) D 0; ` 2 Lg

denotes the set of Karush–Kuhn–Tucker multipliers at
y in Q(x).

At least this yields estimates for the linearization
cones:

\
y2Y0(x̄)

\
�2KKT(x̄;y)

fd 2 Rn jDxL(x̄; y; �) d < 0g

� L(x̄;M) � � ?(x̄;M) � L?(x̄;M)

�
\

y2Y0(x̄)

[
�2KKT(x̄;y)

fd 2 RnjDxL(x̄; y; �)d � 0g :

However, the estimate for the inner linearization
cone is rather poor in many situations in which the
problem data are endowed with a special structure.
In [31] analogous estimates are given without the as-
sumption of MFCQ in Y0(x̄).

A disjunctive structure of� ?(x̄;M) is intimately re-
lated to the nonuniqueness of the lower-level Karush–
Kuhn–Tucker multipliers. This becomes clearer un-
der the assumption that the lower-level problems
Q(x); x 2 U; are convex for some neighborhood U of
x̄, and that Y(x̄) possesses a Slater point. Due to results
from [11,18,26] the multiplier set KKT(x̄) then does
not depend on y 2 Y0(x̄), and � is directionally differ-
entiable at x̄ with

' 0(x̄; d) D min
�2KKT(x̄)

max
y2Y0(x̄)

DxL(x̄; y; �) d

for all d 2 Rn . This yields

L(x̄;M) D
[

�2KKT(x̄)

\
y2Y0(x̄)

fd 2 Rn jDxL(x̄; y; �) d < 0g

and

L?(x̄;M) D
[

�2KKT(x̄)

\
y2Y0(x̄)

fd 2 Rn j

DxL(x̄; y; �) d � 0g :

Now both the inner and outer linearization cones
possess a disjunctive structure, and they only differ by
the strictness of inequalities. Moreover it becomes obvi-
ous that the occurrence of a stable disjunctive structure
in GSIP is caused by nonunique lower-level Karush–
Kuhn–Tucker multipliers. For more details on lower-
level problems with a special structure see [27,29,32].

Constraint Qualifications

In what follows let the functions f , g, and v` ; ` 2 L; be
continuously differentiable. It is well known ([3]) that
at a local minimizer x̄ of f on M the following primal
first-order necessary optimality condition holds:

fd 2 Rn jD f (x̄)d < 0g \ � ?(x̄;M) D ; : (5)

To obtain a more explicit condition from (5) one
needs an explicit description of � ?(x̄;M). A good can-
didate would be the outer linearization cone L?(x̄;M),
which contains the contingent cone by (4). Even in fi-
nite optimization simple examples show, however, that
� ?(x̄;M) can be a proper subset of L?(x̄;M). In this
case one cannot replace the contingent cone in (5) by
the outer linearization cone.

On the other hand, in view of (4) it is always pos-
sible to replace the contingent cone in (5) by the in-
ner linearization cone. However, the resulting optimal-
ity condition may be trivially satisfied since L(x̄;M) can
be void itself.

These observations give rise to the following defini-
tions.

Definition 1 The extended Mangasarian–Fromovitz
constraint qualification (EMFCQ) holds at x̄ 2 M if
L(x̄;M) ¤ ;, and the extended Abadie constraint qual-
ification (EACQ) holds at x̄ 2 M if � ?(x̄;M) D
L?(x̄;M).

Note that EMFCQ coincides with MFCQ for finite dif-
ferentiable optimization problems ([24]). Furthermore,
it is obvious that EACQ coincides with the Abadie con-
straint qualification (ACQ, [1]) for finite differentiable
optimization problems. Whereas in finite optimization
MFCQ is stronger than ACQ, for GSIP this is not nec-
essarily the case as an example in [33] shows (see, how-
ever, [31]). For extensions of the Karush–Kuhn–Tucker
constraint qualification to GSIP see [12]. Explicit for-
mulations of EMFCQ under different structural as-
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sumptions on the lower-level problem Q(x̄) can eas-
ily be obtained from the descriptions of L(x̄;M) given
above.

Formulation

An important difference to finite or standard semi-
infinite programming is that, for GSIP, there does not
exist a single first-order necessary optimality condition,
but the explicit formulation of the condition heavily
depends on the structure of the lower-level problem.
In fact, from the abstract primal first-order optimality
condition (5) one can derive explicit dual conditions
by replacing the contingent cone by an appropriate lin-
earization cone and then cast the resulting conditions
on certain infinite inequality systems in a dual formu-
lation by means of theorems of the alternative, like, for
example, the lemma of Gordan ([5,17]).

First-Order Optimality Conditions. In what fol-
lows, such optimality conditions are given for the struc-
tures discussed above. Recall that optimality conditions
are trivial at interior points ofM.

Theorem 1 ([16]) Let x̄ 2 @M \ M be a local min-
imizer of GSIP, at which the Reduction Ansatz holds.
Moreover, let there exist a d0 2 Rn such that

DxL(x̄; ȳ i ; �̄ i ) d0 < 0 for all 1 � i � p ;

(i. e. EMFCQ holds at x̄). Then there exist multipli-
ers �i � 0, i D 1; : : : ; p, with jf1 � i � pj�i > 0gj � n
such that

D f (x̄)C
pX

iD1

�i DxL(x̄; ȳ i ; �̄ i ) D 0 :

Theorem 2 ([29,32]) Let x̄ 2 @M \M be a local mini-
mizer of GSIP, let the lower-level problems Q(x); x 2 U,
be convex for some neighborhood U of x̄, and let Y(x̄)
possess a Slater point. Then for each choice � 2 KKT(x̄)
such that there exists a d0 with

DxL(x̄; y; �) d0 < 0 for all y 2 Y0(x̄) ; (6)

there exist yi 2 Y0(x̄) and multipliers �i � 0,
i D 1; : : : ; p, with jf1 � i � pj�i > 0gj � n, such that

D f (x̄)C
pX

iD1

�i DxL(x̄; yi ; �) D 0 :

If EMFCQ holds at x̄, then at least one such choice �
exists.

Theorem 3 ([27,32]) Let x̄ 2 @M \ M be a local min-
imizer of GSIP, and let MFCQ hold at all y 2 Y0(x̄).
Moreover, let there exist a d0 2 Rn such that

DxL(x̄; y; �) d0 < 0

for all � 2 KKT(x̄; y) ; y 2 Y0(x̄) ;

(which is sufficient for EMFCQ at x̄). Then there exist
yi 2 Y0(x̄), � i 2 KKT(x̄; yi ), and multipliers �i � 0,
i D 1; : : : ; p, with jf1 � i � pj�i > 0gj � n, such that

D f (x̄)C
pX

iD1

�i DxL(x̄; yi ; � i) D 0 :

Note that, under the convexity assumption on the
lower-level problem, Theorem 2 provides a whole
family of optimality conditions (parametrized by
� 2 KKT(x̄)) and, thus, takes a possible disjunctive
structure of M at x̄ into account. On the other hand,
in the absence of a nice lower-level structure, Theo-
rem 3 yields a much weaker condition (which cannot
be strengthened without further assumptions, as exam-
ples show).

First-order necessary optimality conditions for
GSIP have been derived under several other structural
assumptions and other theoretical approaches as well.
In fact, without the assumption of EMFCQ, Fritz John-
type optimality conditions can be derived ([32]), and
there also exist optimality conditions without the as-
sumption of any regularity condition, either in the
upper- or in the lower-level problem ([20,31,32]). Con-
ditions under other constraint qualifications are in-
vestigated in [12]. Furthermore, other theoretical ap-
proaches to optimality conditions are the linearization
approach from [27] and conditions based on quasid-
ifferentiable calculus ([7,27,30]). First-order sufficient
optimality conditions forGSIP are examined in [32,34].

Second-Order Optimality Conditions

Second-order necessary and sufficient optimality con-
ditions can be obtained in a straightforward manner
under the Reduction Ansatz. One must simply write
down the corresponding condition for the reduced fi-
nite optimization problem with the feasible set from
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(3). Unfortunately, the Hessians of the optimal value
functions 'i(x) D g(x; yi (x)); 1 � i � p; have a more
complicated structure than the gradients from (2), due
to the appearance of so-called shift terms. In fact, one
has

D2
x'i(x̄) D D2

xL(x̄; ȳ i ; �̄ i )�

 
D2

yxLi (x̄; ȳ i ; �̄ i)
�DxvLi

0
(x̄; ȳ i )

!>

�

 
D2

yLi (x̄; ȳ i ; �̄ i ) �D>y vLi
0
(x̄; ȳ i )

�DyvLi
0
(x̄; ȳ i) 0

!�1

�

 
D2

yxLi (x̄; ȳ i ; �̄ i )
�DxvLi

0
(x̄; ȳ i )

!
;

where DxvLi
0
stands for the matrix with rows Dxv`;

` 2 Li
0 :D f` 2 Lj v`(x̄; ȳ i ) D 0g.

Second-order conditions are also known under
weaker assumptions, for example without the strict
complementary slackness assumption of the Reduction
Ansatz ([16]), and in connection with second-order
epiregularity ([13,28], see also [4]). A second-order sta-
bility analysis for GSIP is given in [21].

Conclusions

First- and second-order optimality conditions are not
only of theoretical importance, but also of high signifi-
cance for the design of efficient numerical methods for
GSIP. A review of such methods, including methods
of feasible directions, KKT methods, and discretization
methods, is given in [13].

See also

� Bilevel Optimization: Feasibility Test and Flexibility
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� Parametric Optimization: Embeddings, Path
Following and Singularities

� Second Order Constraint Qualifications
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One important application of nonlinear least squares
concerns with data fitting or parameter estimations. In
ordinary least squares for data fitting, it is assumed that
the errors in independent variables are either zero or
negligible. Although there are situations in which errors
in independent variables are zero or negligible, there
exist many cases such as experiments and observations
where this isnot so and use of the ordinary least squares
may lead to bias in the estimated values of parameter
vector and variance values [8]. Generalized total least
squares problems are formulated from data fitting if er-
rors in all variables are taken into account. Suppose that
we have chosen a model function y = �(x, t) to fit a set
of data y1, . . . , ym sampled at m points t1, . . . , tm, where
x 2 Rn is an adjustable parameter vector. The gener-
alized total least squares problem concerning with this
data fitting determines an optimal value of x and � such
that the function

f (x; �) D
1
2

mX
jD1

[wj(�(x; � j) � y j)2 C v j(� j � t j)2]

D
1
2
[r>Wr C e>Ve]

is minimized, where (�(x, � j), � j), j = 1, . . . , m, are true
but unknown values of pair (y, t),W = diag(w1, . . . ,wm),
V = diag(v1, . . . , vm), wj � 0, vj � 0, j = 1, . . . , m, are
weighting factors, r and e are two m-vectors with com-
ponents rj = �(x, � j)� yj, ej = � j� tj, j = 1, . . . , m, re-
spectively.

Generalized total least squares problems can be
solved by directly applying any method for ordinary
nonlinear least squares or general minimization prob-
lems. Since these methods minimize the objective func-
tion f (x, �) with respect to (n+m) variables x and � , and
do not allow for the use of the special structureof the
function, direct use of these methods will not be effi-
cient. Assuming that the functions rj(x, �), j = 1, . . . ,
m, hence the function f (x, �) is twice continuously dif-
ferentiable, the first and the second order derivatives of
f (x, �) are defined by

r f D
�
rx f
r� f

�
D

�
AWr

Ve C DWr

�
;

r2 f D
�
r2

xx f r2
x� f

r2
�x f r2

�� f

�
;
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where

r2
xx f D AWA> C

mX
jD1

wjr jr2
xx r j;

r2
x� f D AWD C

mX
jD1

wjr jr2
x� r j;

r2
�� f D V C DWDC

mX
jD1

wjr jr2
�� r j;

A D
�
rx r1 � � � rx rm

�
;

D D diag
h
@r1
@�1
� � � @rm

@�m

i
:

The (m× m)-matrix r2
�� f is a diagonal matrix with di-

agonal elements

vj C wj

�
@r j
@� j

�2

C wjr j
@2r j
@�2j

:

In developing algorithms for generalized total least
squares, it is important to exploit the special structures
of the function f (x, �) and its derivatives, and in par-
ticular, the fact that variables x and � can be treated
separately. W.E. Demming [2], M. O’Neill, I.G. Sin-
clair and J. Smith [5], D.R. Powell and J.R. Macdonald
[6] proposed approximate Newton methods for polyno-
mial data fitting. These methods evaluate the second or-
der derivatives r2

xx f and r2
�� f analytically or numeri-

cally, but ignore the mixed partial derivatives r2
x� f and

r2
�x f . When analytical derivatives are used, approxi-

mate Newton methods are not very efficient because
of the unreasonable approximations. When derivatives
are evaluated from difference quotient and compensa-
tions for ignoring mixed parts are made, the behav-
ior of these methods is improved, because in this case
the methods are equivalent to using one Newton step
to separate problem variables and then the separated
problem is solved using Newton method.

An optimization problem is separable if the opti-
mization with respect to some of the variables is eas-
ier than with respect to others. Generalized total least
squares problems are a kind of separable optimization
problems. W.H. Southwell [7] uses the first order nec-
essary condition to separate the vector x and the vector
� and then the separated problem is solvedusing New-
ton method. Gauss-Newton and quasi-Newton meth-
ods can also be used to solve the separated problems.

When Newton method is applied to solve a gener-
alized total least squares problem, the solution of the
Newton equation
�
r2

xx f r2
x� f

r2
�x f r2

�� f

� �
ıx
ı�

�
D �

�
rx f
r� f

�

gives a correction (ıx, ı�) to (x, �), that is,

xC D x C ıx; �C D � C ı�;

where x+, �+ denote the new iterate. When the fitting
function �(x, t) is a polynomial in the form

�(x; t) D
nX

iD1

xi pi (t);

where pi(t), i = 1, . . . , n, are a set of orthogonal polyno-
mials, then off-diagonal elements of the (n × n)-matrix
r2

xx f are all zeros. Thus both the matrices r2
xx f and

r2
�� f are diagonal. By assuming the elements of matri-

ces r2
x� f and r2

�x f are negligible, approximate New-
ton methodsapproximate the Hessian matrix r2f by
the simple diagonal matrix
�
r2

xx f
r2
�� f

�
:

Since r2
xx f and r2

�� f are diagonal, the solution ıx and
ı� can be easily given by

ıxi D �

Pm
jD1 wjr j pi (� j)Pm
jD1 wj pi (� j)2

; i D 1; : : : ; n;

ı� j D �
v j e j C wj

@�(x;� j)
@� j

r j

v j C wj

�
@�(x;� j)
@� j

�2
C wjr j

@2�(x;� j)
@�2j

;

j D 1; : : : ;m:

Polynomials pi(t), i = 1, . . . , n, orthogonal over a set of
points � j, j = 1, . . . ,m, can be generated using the recur-
rence relation

p1(t) D 1; p2(t) D t � ˛1;

pi (t) D (t � ˛i�1)pi�1(t)� ˇi�1pi�2(t);

i D 3; : : : ; n;

where

˛i�1 D

Pm
jD1 wj� j pi�1(� j)2Pm
jD1 wjpi�1(� j)2

;

ˇi�1 D

Pm
jD1 wj� j pi�1(� j)pi�2(� j)Pm

jD1 wj pi�2(� j)2
:
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Approximate Newtonmethods begin iteration from
the initial point x(1) = 0 and � (1)j = tj, j = 1, . . . ,m. At each
iteration, the polynomials pi(t), i = 1, . . . , n, orthogonal
over the set of points � (k)j , j = 1, . . . , m, are first calcu-
lated from the recurrence relation, then iteration

x(kC1) D x(k) C ıx(k); � (kC1) D � (k) C ı� (k)

is implemented to generate a new iterate. The process
is repeated until convergence is reached. If the resulting
fitting polynomial is required to express in the form of
power series

�(x; t) D
nX

iD1

ci t i�1 D
nX

iD1

xi pi (t);

the coefficients ci can be calculated from

ci D
nX

kDi

xk�iC1kC1; 1 � i � n;

where

�i k D

(
1 if i D k;
0 if i > k or i; k < 2;

�iC1kC1 D �i k � ˛k�1�iC1;k � ˇk�1�iC1k�1;

i < k:

Powell and Macdonald extended the method to
more general case where �(x, t) is a general nonlinear
function of both the variables x and t. In this case, the
(n × n)-matrix r2

xx f is no longer diagonal, and the cor-
rection ıx needs the solution of the equations

r2
xx f ıx D �rx f :

By taking account of the omitted parts of the mixed
partial derivatives r2

x� f and r2
�x f , they use ‘uncon-

ventional formulas’, rather than analytical derivatives
or usual difference approximations, to approximate
derivatives in rxf and r 2

xx f so that the omission parts
can be compensated to some degree. In fact, their ap-
proximate Newtonmethod is equivalent, in some sense,
to the separated Newton method.

Approximate Newton methods require evaluations
of second order derivatives for problem functions. Ig-
noring all the second order terms in r2

xx f , r2
x� f , r2

�x f
and r2

�� f , an approximation to r2f is directly obtained

from the first order derivatives of functions rj and ej, j =
1, . . . ,m. The iteration scheme x(k+1) = x(k)+ ı x(k), � (k+1)

= � (k)+ ı� (k) with ıx(k) and ı� (k) given by

�
AkWkA>k AkWDk

DkWA>k V C DkWDk

� �
ıx
ı�

�

D �

�
AkWr(k)

Ve(k) C DkWr(k)

�

gives the Gauss–Newton method for generalized total
least squares. Special structure of the system can be ex-
ploited to get savings in finding its solution. Define Pk

= V+ DkWDk. From the bottom part of the system we
have

ı� D �P�1k
�
Ve(k) C DkWr(k) C DkWA>k ıx

�
:

Since Pk is a diagonal matrix, once ıx is obtained, ı�
can be directly obtained by substitutions. Substituting
ı� into the top part of the system we obtain

�
AkWA>k � AkWDkP�1k DkWA>k

�
ıx

D AkW
1
2 b(k)

with

b(k) DW
1
2

�
�
�r(k) C DkP�1k (Ve(k) C DkWr(k))

�
:

This equation can be expressed as

AkW
1
2UkW

1
2A>k ıx D AkW

1
2 b(k)

where Uk = I �W l/2DkP�1k DkW1/2 is a diagonal matrix
with diagonal elements vj/[vj+ wj(@r(k)j / @� j)2] > 0, j = 1,
. . . , m. The solution ıx(k) can be generated by first per-
forming a QR factorization to the matrix U1/2

k W1/2A>k

U
1
2
k W

1
2A>k D Q

�
R
0

�

and then back substitutions in

Rıx D QU�
1
2

k b(k):

The Gauss–Newton method is locally convergent
and convergence behavior depends upon the closeness
of the Gauss–Newton matrix to the true Hessian matrix
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r2f at the solution. In order to introduce global conver-
gence for Gauss–Newton method, line search technique
or trust region strategy can be used. Let

Jk D

"
AkW

1
2 0

DkW
1
2 V

1
2

#

Then
�
AkWA>k AkWDk

DkWA>k V C DkWDk

�
D Jk J>k

and the Gauss–Newton matrix is at least positive
semidefinite, often positive definite, (ıx(k), ı� (k)) is a de-
scent direction of f (x, �) at (x(k)), � (k)). A line searcha-
long the direction determines a steplength ˛k satisfying
some descent conditions and the new iteration point is

x(kC1) D x(k) C ˛kıx(k);

� (kC1) D � (k) C ˛kı�
(kC1):

P.T. Boggs, R.H. Byrd and R.B. Schnabel [1] use
trust region technique in their modification of Gauss–
Newton method for generalized total least squares
problems. The modification is a generalization of the
Levenberg–Marquardt method, in which the trust re-
gion subproblem
(
min qk(ız) D



J>k ız C h(k)


2

s.t. kızk � 	k

is solved, where�k is the trust region radius,

z D
�
x
�

�
; h(k) D

 
W

1
2 r(k)

V
1
2 e(k)

!
:

The solution, denoted by ız(�), of the subproblem sat-
isfies the system of equations

Bk

�
ıx
ı�

�
D �

�
AkWr(k)

Ve(k) C DkWr(k)

�
;

kız(�)k D 	k ;

�> 0, unless k ız(0) k � �k, where Bk denotes the ma-
trix
�
AkWA>k C �I AkWDk

DkWA>k V C DkWDk C �I

�
:

Let Pk D V C DkWDk C �I. From the buttom part of
the system, we get

ı� D �P�1k [Ve(k) C DkWr(k) C DkWA>k ıx]:

Substituting it into the top part we have

(AkW
1
2UkW

1
2A>k C �I)ıx D AkW

1
2 b(k);

Uk D I �W
1
2 DkP

�1
k DkW

1
2 ;

b(k) DW
1
2

� [�r(k) C DkP
�1
k (Ve(k) C DkWr(k))]:

Since this system is the normal equation of the linear
least squares problem

min








"
U

1
2
k W

1
2A>k

�
1
2 I

#
ıx C

"
U�

1
2

k b(k)

0

#




 ;

the solution ıx(k) can be obtained by performing a QR

factorization to the matrix U
1
2
k W

1
2A>k , a sequence of

plane rotations to eliminate �1/2I and back substitu-
tions.

For a given value �(`), ıx(�(`)) is obtained from the
solution of the system and then ı �(�(`)) from substitu-
tion. If
ˇ̌
ˇ�(�(`))

ˇ̌
ˇ D

ˇ̌
ˇ



ız(�(`))




 �	k

ˇ̌
ˇ � �	k

is satisfied, ız(�(`)) is accepted as an approximate solu-
tion of the trust region subproblem where � 2 (0, 1)is
a preset tolerance. Otherwise, �(`) is updated to give
a new value �(`+1) and a solution ız(�(`+1)) is recom-
puted from the system.Moré’s updating formula [4]

�(`C1) D �(`) �
�(�(`))
r�(�(`))



ız(�(`))




	k

can be used to generate �(`+1), where r�(�(`)) is eval-
uated from difference approximation

r�(�(`)) D
�(�(`)) � �(�(`�1))
�(`) � �(`�1) :

For generalized total least squares problems, the
parameter vector x and the variable vector � can be
treated separately. The first order necessary condition
for a point to be a solution of the problem can be used
to eliminate the � dependence in the function f (x, �).
Consider the system of equations

r� f D Ve C DWr D 0:

These contain m nonlinear equations with m un-
knowns, each of which only contains one unknown � j
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for fixed value of x

vj(� j � t j)C wj(�(x; � j) � y j)
@�(x; � j)
@� j

D 0;

j D 1; : : : ;m:

When these equations can be algebraically solved to
give an explicit solution expression �(x), substitution
it into the function f (x, �) allows the parameter vector
x to be determined by directly using any conventional
method to minimize the function f (x, �(x)) which now
is a function of the parameter vector x. However, in
most cases, it is impossible or difficult to get an explicit
form of the solution �(x) and each equation mustbe
solved numerically for each given value of x by mini-
mizing the functions

 (x; � j) D
1
2
[wj(�(x; � j) � y j)2 C v j(� j � t j)2];

j D 1; : : : ;m;

to get an approximate solution, �(x) say, to the solu-
tion �(x) so that the values of function f (x, �(x)) and its
derivatives with respect to x can be evaluated from the
values x and �(x).

Assume thatr2
�� f (x�, ��) is positive definite, then it

follows from the implicit function theorem [3] that there
exist open neighborhoods N(x�), N(��) of x�, �� such
that for any x 2 N(x�), a unique � satisfying the sys-
tem exists in N(��), this being the vector �(x). Further-
more, �(x) is continuously differentiable and r2

�� f (x,
�(x)) is positive definite for all x 2 N(x�). Substituting
�(x) into the function f (x, �) we get a separable mini-
mization problem

min f (x; �(x));

which is defined only in terms of x and reduces the
problem dimension from m + n to n. The separation is
particularly efficient since in most cases,m is very large.
Using the chain rule, the differentiability of �(x) and the
fact that r� f = 0 we get derivatives of the function f (x,
�(x))

g(x) Drx f Crx�r� f D rx f ;

G(x) Dr2
xx f Cr

2
x� frx�

Dr2
xx f � r

2
x� f [r

2
�� f ]

�1r2
�x f :

Since the positive definiteness of the matrix G(x) is im-
plied by that of the matrix r2f , if r2f is positive defi-

nite at the solution (x�, ��), the matrix G(x�) is positive
definite, too.

The separated Newton method minimizes the func-
tion f (x, �(x)) using Newton iteration

Gkıx(k) D �g(k); x(kC1) D x(k) C ıx(k)

to generate a sequence {x(k)}, whereGk and g(k) are eval-
uated at x(k) and �(x(k)). �(x(k)) is an approximate solu-
tion of the system r� f = 0 obtained using Newton iter-
ation

�
(sC1)
j D �

(s)
j �

 0(x(k); � (s)j )

 00(x(k); � (s)j )
;

s D 1; 2; : : : ; j D 1; : : : ;m:

When
ˇ̌
ˇ� (sC1)

j � �
(s)
j

ˇ̌
ˇ � �;

�
(sC1)
j is accepted as � j(x(k)) where � > 0 isa preset small

constant. The values tj and � j(x(k�1)), j = 1, . . . , m, can
be used as starting values of these iterations for k = 1
and k � 2, respectively.

A careful observation shows that the difference be-
tween the Powell–Macdonald method and the sepa-
rated Newton method is that for given value x(k), the
former carries out only one Newton iteration for the
system r� f = 0 while the later one solves the system
quite exactly by repeated doing the iteration.

The separated Newton method still requires the
evaluation of secondorder derivatives. Ignoring second
order terms in all derivatives r2

xx f , r2
x� f , r2

�x f and
r2
�� f , we get an approximation to G

Mk D AkW
1
2UkW

1
2A>k ;

Uk D (I C V�1DkWDk )�1:

Then the iteration

Mkıx(k) D �g(k); x(kC1) D x(k) C ıx(k)

is the separated Gauss–Newton method [8]. The prop-
erty that the convergence of Gauss–Newton method
for ordinary least squares depends on the closeness of
the Gauss–Newton matrix to true Hessian matrix is
applicable to the separated Gauss–Newton method. If
M(x�) = G(x�), the method is locally convergent and
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rate of convergence is quadratic. IfM(x�) 6D G(x�), the
method may not converge and if it converges, the rate is
at best linear. In order to force global convergence, line
search or trust region techniques can be incorporated.

For large residual problems, the Gauss–Newton ma-
trix M is not a good approximation to G and quasi-
Newton updates can be used to generate better ap-
proximations. When quasi-Newton updates, for exam-
ple BFGS update, are used, the separated problem is re-
garded as a general minimization problem, the special
structure of the problem function is not exploited and
approximations are not directly obtained from the first
order derivatives. The vectors ı(k) and � (k) used in up-
dating formulas can be defined by

ı(k) D ıx(k) D x(kC1) � x(k);

� (k) D g(x(kC1); �(x(kC1))) � g(x(k); �(x(k)))

Alternative definitions for �(k) can be derived by us-
ing thespecial structure of the derivatives. Two com-
mon used definitions for � (k) are

� (k) D AkC1WA>kC1ıx
(k) C AkC1WDkC1ı�

(k)

C (AkC1 � Ak)r(kC1);

� (k) D AkC1W(r(kC1) � r(k))

C (AkC1 � Ak)Wr(kC1);

where ı� (k) = �(x(k+1))� �(x(k)). Numerical experi-
ments favors the last definition of � (k) [9].

Based on the separated Gauss–Newton method and
the separated BFGS method, separated hybrid method
is a simple generalization of the hybrid method for or-
dinary nonlinear least squares problems, where a test
[9] is derived to determine what step should be cho-
sen at each iteration. When the test chooses the Gauss–
Newton step, the approximation Bk to Gk is set to the
Gauss– Newton matrix Mk and when the test chooses
the BFGS step, the matrix Bk is obtained from Bk�1 us-
ing BFGS updating formula.

When separated methods are used to solve gener-
alized total least squares problems, computational sav-
ings can be obtained if we initially ignore errors in tj,
j = 1, . . . , m, and just solve an ordinary nonlinear least
squares problem. Whenreasonable reduction in the ob-
jective function has been achieved, errors in all vari-
ables are then considered and separated methods are
applied. This modification of any separated method is

effective in solving generalized total least squares prob-
lems.

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� ABS Algorithms for Optimization
� Gauss–Newton Method: Least Squares, Relation to

Newton’s Method
� Least Squares Orthogonal Polynomials
� Least Squares Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
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Introduction

The theory as well the applications of variational in-
equalities (VIs) and the nonlinear complementarity
problem (NCP) have proved to be a very powerful tool
for studying a wide range of problems arising in me-
chanics, physics, optimization, and applied sciences.
A survey on the developments of VI and NCP is in [7].
In recent years, considerable interest has been shown
in developing various extensions and generalizations
of the VI problem. An important class of such gen-
eralizations, introduced in [2], is the so-called gen-
eralized variational inequality (GVI). This class has
many important and significant applications in various
fields such as mathematical physics and control the-
ory, economics, and transportation equilibrium (see,
e. g., [1,11]). For example, it is known that the traf-
fic equilibrium problem can be formulated as a VI
when the travel cost between any two given nodes for
a given flow is fixed [4]. However, the traffic conditions
may vary and the travel cost between two given nodes
may not be fixed, but within a cost interval. In this
case the corresponding problem can be formulated as
a GVI. Moreover, GVI provides a unifying framework
for many general problems such us fixed-point, opti-
mization, and complementarity problems. In what fol-
lows we give an overview of recent developments con-
cerning the issue of existence of a solution and equiva-
lent reformulations.

Problem Formulation and Framework

In its general form, the GVI problem can be stated as
follows:

find x� 2 X and u� 2 F(x�) such that

hu�; y � x�i � 0 8 y 2 X ;

where
� h�; �i denotes the usual inner product in Rn ,
� X � Rn is a nonempty closed and convex set,
� Rn � Rn is a set-valued map, i. e., an operator that

associates with each x 2 Rn a set F(x) � Rn .
If F is a single valued function, then the GVI problem
reduces to the classical VI, which is to find x� 2 X such
that

hF(x�); y � x�i � 0 8 y 2 X :

In connection with the set-valued map F : Rn �
Rn a few definitions need to be recalled. First, F is char-
acterized by its graph:

graph (F) D f(x; u) 2 Rn �Rn : u 2 F(x)g :

The image of X under F is

F(X) D
[
x2X

F(x) ;

the inverse of F is defined by

F�1(u) D fx : u 2 F(x)g;

and the domain of F is the set

dom (F) D fx 2 Rn : F(x) ¤ ;g :

Throughout we assume that dom (F) � X. Over the
past two decades, most effort has been concentrated on
the question of the existence of solutions to GVI prob-
lems. The study of the existence of solutions of GVI in-
volves several continuity properties of set-valued maps.
We recall these conditions in the sequel.
� A set-valued map F : Rn � Rn is said to be upper

semicontinuous (u.s.c.) at x 2 Rn if for each open
set V � F(x) there exists a neighborhood U of x
such that F(U) � V ; F is u.s.c. on a set X � Rn if
it is u.s.c. at every point in X.

� A set-valued map F : Rn � Rn is upper hemicon-
tinuous on X � Rn ; if its restriction to line seg-
ments of X is upper semicontinuous.
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The study of the existence of solutions of GVI in-
volves also some monotonicity-type properties for set-
valued maps. In what follows we recall the definitions.

(M1) F is quasimonotone on X if, for every pair of dis-
tinct points x; y 2 X and every u 2 F(x), v 2 F(y),
we have:

hv; x � yi > 0 H) hu; x � yi � 0 :

(M2) F is properly quasimonotone on X if, for any
x1; : : : ; xn 2 X and any �1; : : : ; �n > 0 withPn

iD1 �i D 1, there exists j 2 f1; : : : ; ng such that
for all u j 2 F(x j) and x D

Pn
iD1 �i x i , we have:

hu j; x � x ji � 0 :

(M3) F is pseudomonotone on X if, for every pair of
distinct points x; y 2 X and every u 2 F(x); v 2
F(y), we have:

hv; x � yi � 0 H) hu; x � yi � 0 :

(M4) F is monotone on X if, for every pair of distinct
points x; y 2 X and every u 2 F(x); v 2 F(y), we
have:

hu � v; x � yi � 0 :

(M5) F is strictly monotone on X if, for every pair of
distinct points x; y 2 X and every u 2 F(x); v 2
F(y), we have:

hu � v; x � yi > 0 :

(M6) F is strongly monotone onX with constant ˇ > 0
if, for every pair of distinct points x; y 2 X and ev-
ery u 2 F(x); v 2 F(y), we have:

hu � v; x � yi � ˇkx � yk2 ;

where k � k denotes the classical euclidean norm.
(M7) F is maximal monotone on X if it is monotone

on X and its graph is not properly contained in the
graph of any other monotone operator on X.

The relationships among these kinds of monotonicity
are represented in Fig. 1.

strongly
monotone

maximal
monotone

strictly
monotone monotone

pseudomonotone

properly
quasimonotone

quasimonotone

Generalized Variational Inequalities: A Brief Review, Figure 1
Relationships among generalized monotonicity conditions

Existence andUniqueness

In recent years the existence of solutions to GVIs has
been investigated extensively. In what follows we pro-
vide some of the most fundamental results. The basic
result on the existence of a solution to the GVI problem
requires the set X to be compact and convex and the
map F to be u.s.c. From this basic result many others
can be derived by replacing the compactness of X with
additional coercivity conditions on F.

Existence of Solutions: Bounded Domain

This section presents some existence results for solu-
tions of GVI in the case of a compact domain. The fol-
lowing existence theorem exploits the formulation of
GVI as a fixed-point problem.

Theorem 1 ([8]) If X is compact and F is u.s.c. on X
with compact and convex values, then GVI has a solu-
tion.

Theorem 2 ([12]) If X is compact and F is upper hemi-
continuous and properly quasimonotone on X with com-
pact and convex values, then GVI has a solution.
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Existence of Solutions: Unbounded Domain

The existence of solutions of GVI on unbounded do-
mains is guaranteed by the same conditions as for
bounded domains, together with a coercivity condition.
In the literature various coercivity conditions have been
considered. In particular (see [5]):

(C1)

9 R > 0; 8x 2 XŸXR ; 8u 2 F(x) ;
9 y 2 XR : hu; y � xi < 0 ;

(C2)

9 R > 0; 8 x 2 XŸXR ; 9 y 2 XR ;

8 u 2 F(x) : hu; y � xi < 0 ;

(C3)

9 R > 0; 8 x 2 XŸXR ; 9 y 2 XR ;

9 v 2 F(y) : hv; y � xi < 0 ;

(C4)

X1 \ (F(X))� D f0g ;

where

XR D fx 2 X : kxk � Rg

and

(F(X))� D fd 2 Rn : hu; di � 0;8u 2 F(X)g

is the polar cone of F(X). Further, the recession cone
X1, for X closed and convex, is defined by

X1 D fd 2 Rn : x C t d 2 X; 8 t � 0; x 2 Xg :

Some basic relationships among these coercivity
conditions are summarized in the following result.

Theorem 3 ([5])
� (C2)H) (C1).
� If F has convex values, then (C2) and (C1) are equiv-

alent.
� If F is pseudomonotone on X, then (C3)H) (C2).
� (C4)H) (C3).
� If F is upper hemicontinuous and pseudomonotone

on X, then (C2), (C3) and (C4) are equivalent.

� If F has convex values and it is upper hemicontinu-
ous and pseudomonotone on X, then (C1), (C2), (C3),
and (C4) are equivalent.

The coercivity conditions allow us to exhibit a suffi-
ciently large ball intersecting with X such that no point
outside this ball is a solution of the GVI; then one can
establish the existence of a solution stated below.

Theorem 4 ([5]) If F is upper hemicontinuous and
pseudomonotone on X with compact and convex values,
then the following statements are equivalent:
� GVI has a nonempty and compact solution set.
� (C1) holds;
� (C2) holds.
� (C3) holds.
� (C4) holds.

In what follows we state an existence theorem for which
we require neither the upper semicontinuity of F, nor
the compactness, nor the convexity of F(x), but we need
the maximal monotonicity of F.

Theorem5 ([15]) Assume that F is maximalmonotone
on Rn. Then the solution set of GVI is nonempty and
compact if and only if (C4) holds.

In general, GVI can have more than one solution. The
following theorem gives conditions under which GVI
can have at most one solution.

Theorem 6
� If F is strictly monotone on X, then GVI has at most

one solution.
� If F is u.s.c., strongly monotone on X, and has

nonempty convex and compact values, then GVI has
a unique solution.

GVI and Related Problems

As stated, the theory of GVI is a powerful unifying
methodology that contains as special cases several well-
known problems such as fixed-point, optimization, and
complementarity problems. In what follows we de-
scribe these equivalent formulations of the GVI prob-
lem. Such formulations can be very beneficial for both
analytical and computational purposes. Indeed we can
apply classic results of these problems to treat the GVI.
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GVI and Fixed-Point Problems

In what follows we exploit the formulation of GVI as
a fixed-point problem. We recall that x� is a fixed point
of the set-valued map F : X � Rn if

x� 2 X and x� 2 F(x�) :

The fixed-point reformulation is very relevant for the
GVI problem. Indeed we can apply Kakutani’s fixed-
point theorem, which is instrumental for proving the
existence result on a bounded domain. We define the
following set-valued map:


 : X � conv (F(X))� X � conv (F(X))

(x; u) 7! � (u) � F(x) ;

where � (u) D argminx2Xhu; xi is the set of con-
strained minimizers of the map hu; xi on X and
conv (F(X)) denotes the convex hull of F(X). Assum-
ing that X is compact, � (u) results in being nonempty.
It easy to see that the problem of finding a fixed point
(x�, u�) of
, i. e.,

x� 2 K; u� 2 F(x�); x� 2 argmin
x2K
hu�; xi ;

is equivalent to GVI.
It is worth noting that the GVI problem can also be

formulated as an inclusion as follows:

find x� 2 K such that 0 2 F(x�)C NK(x�) ;

i. e., finding a zero of the set-valued map F C NK in the
domain X, where the normal cone NX(x) to the set X at
point x 2 X is given by:

NX(x) D fd 2 Rn : hd; y � xi � 0 8 y 2 Xg :

GVI and Optimization Problems

Let us consider the constrained optimization problem:
(
min f (x)
x 2 X ;

(1)

where
� X is a closed and convex subset of Rn ,
� The objective function f is defined on an open

neighborhood of X, denoted˝ .

It is well known that if f is continuously differen-
tiable, then the classical VI with F D r f is a necessary
optimality condition for (1). The VI gives also a suffi-
cient condition if f is pseudoconvex on X, i. e.,

f (x) > f (y) H) hr f (x); y � xi < 0 ;

for all x; y 2 X.
Therefore, if f is continuously differentiable and

pseudoconvex on X, the VI with F D r f is equivalent
to the optimization problem (1). In what follows we ex-
tend these results in terms of GVI when f : ˝ ! R is
a locally Lipschitz continuous function, that is, for each
point x 2 ˝ there exists a neighborhood U of x such
that f is Lipschitz continuous on U. To this end we re-
call some basic facts about Clarke calculus for a locally
Lipschitz continuous function, see [3]. The Clarke’s
generalized derivative of f at x in the direction v, de-
noted by f 0(x;v), is given by

f 0(x; v) D lim sup
y!x
t#0

f (yC t v) � f (y)
t

:

The generalized gradient of f at x, denoted by @ f (x), is
defined as follows:

@ f (x) D f� 2 Rn : h�; vi � f 0(x; v) 8 v 2 Rng :

A generalized derivative can be obtained from the gen-
eralized gradient:

f 0(x; v) D maxfh�; vi : � 2 @ f (x)g :

We can extend the definition of pseudocon-
vexity for a locally Lipschitz continuous function
f : ˝ ! R, [16]: f is pseudoconvex on ˝ if, for all
x; y 2 ˝, there exists � 2 @ f (x) such that

h�; y � xi � 0 H) f (x) � f (y) :

Let us now consider the GVI with Clarke gradient op-
erator F D @ f . We can state the following result.

Theorem 7 ([3]) A GVI with F D @ f provides neces-
sary optimality conditions for problem (1).

In general, a GVI does not give sufficient optimality
conditions. However, as shown in [16], when f is pseu-
doconvex on ˝ , the GVI gives sufficient optimality
conditions too. Consequently, as for the single-valued
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case, if f is pseudoconvex on ˝ , a GVI with F D @ f is
equivalent to the optimization problem (1). The above
discussion focused on the GVI with gradient operator;
however, an arbitrary set-valued map, in general, is not
a gradient map. A powerful tool in dealing with the GVI
problem by way of its equivalent optimization reformu-
lation is given by the so-called gap functions. Specifi-
cally, we say that a function ' : Rn �Rn ! R [ fC1g
is a gap function for GVI if
� '(x; u) � 0 for all (x; u) 2 graph (F),
� x� is a solution of GVI if and only if x� 2 X and

there exists u� 2 F(x�) such that '(x�; u�) D 0.
Hence, the GVI problem can be rewritten as the follow-
ing constrained optimization problem:
(
min '(x; u)
(x; u) 2 graph (F) :

An example of a gap function, proposed in [6], is:

'(x; u) D sup
y2X
hu; x � yi; (x; u) 2 Rn �Rn : (2)

The function '(x; �) is convex and closed for every
fixed x 2 Rn and '(�; u) is affine for every fixed u 2 Rn

(see [6]). It is worth noting that � represents a duality
gap in the Mosco duality scheme [14] for GVI. Let us
consider this more general GVI problem: find x� 2 Rn

and u� 2 F(x�) such that

hu�; x � x�i � �(x�) � �(x) 8 x 2 Rn ; (3)

where � : Rn ! R [ fC1g is a proper, lower semi-
continuous convex function. The dual problem of (3)
is defined as: find v� 2 Rn and y� 2 �F�1(�v�) such
that

hy�; v � v�i � ��(v�) � ��(y) 8 v 2 Rn ;

where ��(v) D supx2Rn fhv; xi � �(x)g is the Fenchel
conjugate of '.

Theorem 8 ([15]) The gap function (2) measures the
duality gap of Mosco’s duality scheme:

�(x)C ��(�u)C hu; xi D

(
'(x; u) if x 2 X
C1 otherwise:

The gap function � is not differentiable in general.
Moreover, when graph (F) is unbounded, it is in gen-
eral not finite valued. These drawbacks can be avoided

by using a regularized gap function. Let us consider

'G(x; u) D max
y2X

�
hu; x � yi �

1
2
kx � yk2G

�
;

where (x; u) 2 Rn �Rn ; G is a symmetric positive
definite matrix, and k � kG is the norm in Rn defined
by kxkG D

p
hx;G xi. This function, introduced in [6]

for generalized quasivariational inequalities, i. e., GVIs
where set X depends on solution x, is a gap function for
GVI and is called a regularized gap function. Since

 G(x; u; y) D hu; x � yi �
1
2
kx � yk2G

is strongly concave with respect to y, there is a unique
maximizer over X denoted by y(x; u). If we denote the
projection operator onto set X with respect to the norm
k � kG by˘X;G(�); it is easy to check that this maximizer
is

y(x; u) D ˘X;G(x � G�1 u) :

Therefore, the regularized gap function

'G(x; u) D hu; x � y(x; u)i �
1
2
kx � y(x; u)k2G

is finite valued everywhere. Moreover, the regularized
gap function is continuously differentiable, and its gra-
dient is given by

rx'G(x; u) D uC G [y(x; u) � x] ;

ru'G(x; u) D x � y(x; u) :

Therefore, using the regularized gap function we obtain
an equivalent differentiable optimization reformulation
of the GVI problem. Gap functions can be used in the
design of numerical algorithms for solving the GVI.

GVI and Complementarity Problems

It is well known that, when X is a closed convex cone
and F : X ! Rn , the VI problem is equivalent to the
NCP problem, which consists in finding x� 2 X such
that

F(x�) 2 X� and hF(x�); x�i D 0 ;

where

X� D fd 2 Rn : hu; di � 0;8u 2 Xg
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is the negative polar cone of X. Such a relationship is
preserved in the GVI problems. First, let us consider an
extension of the NCP problem, see [17], that can be de-
fined as follows.

Let X be a closed convex cone of Rn and F a set-
valued map. The generalized complementarity prob-
lem (GCP) is to find x� 2 X such that there exists
u� 2 F(x�) satisfying the following properties:

u� 2 X� and hu�; x�i D 0 :

As in the single-valued case, both problems GVI and
GCP have the same solution set if the underlying set X
is a closed convex cone.
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In this article we describe the main moment prob-
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The StandardMoment Problem

Let g1, . . . , gn and h be given real-valued Borel measur-
able functions on a fixed measurable space X := (X, A).
We would like to find the best upper and lower bound
on

�(h) :D
Z
X
h(t)�(dt);

given that � is a probability measure on X with pre-
scribed moments
Z

gi(t) �(dt) D yi ; i D 1; : : : ; n:

Here we assume � such that
Z
X
jgi j �(dt) < C1; i D 1; : : : ; n;

and
Z
X
jhj �(dt) < C1:

For each y := (y1, . . . , yn) 2 Rn, consider the optimal
quantities

L(y) :D L(yjh) :D inf


�(h);

U(y) :D U(yjh) :D sup


�(h);

where � is a probability measure as above with

�(gi ) D yi ; i D 1; : : : ; n:

If there is no such probability measure � we set L(y) :=
+1, U(y) := �1.

If h := �S the characteristic function of a given mea-
surable set S of X, then we agree to write

L(yj�S ) :D LS (y); U(yj�S ) :D US (y):

Hence, LS(y)� �(S)�US(y). Consider g: X! Rn such
that g(t) := (g1(t), . . . , gn(t)). Set also g0(t) := 1, all t 2 X.
Here we basically present J.H.B. Kemperman’s (1968)
geometric methods for solving the above main moment
problems [13] which were related to and motivated by
[18,20,24]. The advantage of the geometric method is
that many times is simple and immediate giving us the
optimal quantities L, U in a closed-numerical form, on
the top of this is very elegant. Here the �-field A con-
tains all subsets of X.

The next result comes from [22,23,25].

Theorem 1 Let f 1, . . . , f N be given real-valued Borel
measurable functions on a measurable space˝ (such as
g1, . . . , gn and h on X). Let� be a probability measure on
˝ such that each f i is integrable with respect to �. Then
there exists a probability measure �0 of finite support on
˝ (i. e., having nonzero mass only at a finite number of
points) satisfying
Z
˝

fi(t) �(dt) D
Z
˝

fi(t) �0(dt);

all i = 1, . . . , N.

One can even achieve that the support of �0 has at most
N+ 1 points. So from now on we can talk only about
finitely supported probability measures.

Call

V :D conv g(X)

(conv stands for convex hull), where g(X) := {z 2 Rn: z
= g(t) for some t 2 X} is a curve in Rn (if X = [a, b]� R
or if X = [a, b] × [c, d]� R2).

Let S� X, and letM+ (S) denote the set of all prob-
ability measures on X whose support is finite and con-
tained in S.

The next results come from [13].

Lemma 2 Given y 2 Rn, then y 2 V if and only if 9� 2
M+(X) such that

�(g) D y

(i. e. �(gi) :=
R
X gi(t) �(dt) = yi, i = 1, . . . , n).

Hence L(y|h) < +1 if and only if y 2 V (note that by
Theorem 1,

L(yjh) D inf
˚
�(h) : � 2 MC(X); �(g) D y

�

and

U(yjh) D sup
˚
�(h) : � 2 MC(X); �(g) D y

�
):

Easily one can see that

L(y) :D L(yjh)

is a convex function on V , i. e.

L(�y0 C (1 � �)y00) � �L(y0)C (1 � �)L(y00);
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whenever 0 � � � 1 and y0, y00 2 V . Also U(y) := U(y|
h) = � L(y| � h) is a concave function on V .

One can also prove that the following three proper-
ties are equivalent:
i) int(V) := interior of V 6D �;
ii) g(X) is not a subset of any hyperplane in Rn;
iii) 1, g1, . . . , gn are linearly independent on X.

From now on we assume that 1, g1, . . . , gn are lin-
early independent, i. e. int(V) 6D �.

Let D� denote the set of all (n + 1)-tuples of real
numbers d� := (d0, . . . , dn) satisfying

h(t) � d0 C
nX

iD1

di gi(t); all t 2 X: (1)

Theorem 3 For each y 2 int (V) we have that

L(yjh) (2)

D sup

(
d0 C

nX
iD1

di yi : d� D (d0; : : : ; dn) 2 D�
)
:

Given that L(y| h) > � 1, the supremum in (2) is even
assumed by some d� 2 D�.

If L(y|h) is finite in int(V), then for almost all y 2 int(V)
the supremum in (2) is assumed by a unique d� 2 D�.
Thus L(y| h) < + 1 in int(V) if and only if D� 6D ;.
Note that y := (y1, . . . , yn) 2 int(V) � Rn if and only if
d0 +

Pn
i = 1 diyi > 0 for each choice of the real constants

di not all zero such that d0+
Pn

iD1 digi(t) � 0, all t 2
X. (The last statement comes from [8 p. 5] and [12 p.
573].)

If h is bounded then D� 6D ;, trivially.

Theorem 4 Let d� 2 D� be fixed and set

B(d�)

:D

(
z D g(t) : d0 C

nX
iD1

di gi (t) D h(t); t 2 X

)
(3)

Then for each point

y 2 conv B(d�) (4)

the quantity L(y|h) is found as follows. Set

y D
mX
jD1

p j g(t j)

with

g(t j) 2 B(d�);

and

p j � 0;
mX
jD1

p j D 1: (5)

Then

L(yjh) D
mX
jD1

p jh(t j) D d0 C
nX

iD1

di yi : (6)

Theorem 5 Let y 2 int(V) be fixed. Then the following
are equivalent:
i) 9� 2 M+ (X) such that �(g) = y and �(h) = L(y|h),

i. e. infimum is attained.
ii) 9d� 2 D� satisfying (4).

Furthermore for almost all y 2 int(V) there exists at
most one d� 2 D� satisfying (4).

In many situations the above infimum is not attained so
that Theorem 4 is not applicable. The next theorem has
more applications. For that, set

�(z) :D lim inf
ı!0

inf
t
fh(t) : t 2 X; jg(t)� zj < ıg : (7)

If "� 0 and d� 2 D�, define

C"(d�)

:D

(
z 2 g(T) : 0 � �(z) �

nX
iD0

di zi � "

)
; (8)

and

G(d�) :D
1\
ND1

convC 1
N
(d�): (9)

It is easily proved that C"(d�) and G(d�) are closed; fur-
thermore B(d�)� C0(d�)� C"(d�), where B(d�) is de-
fined by (3).

Theorem 6 Let y 2 int(V) be fixed.
i) Let d� 2 D� be such that y 2 G(d�). Then

L(yjh) D d0 C d1y1 C � � � C dn yn : (10)
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ii) Assume that g is bounded. Then there exists d� 2 D�

satisfying

y 2 convC0(d�) � G(d�)

and

L(yjh) D d0 C d1 y1 C � � � C dn yn : (11)

iii) We further obtain, whether or not g is bounded, that
for almost all y 2 int(V) there exists at most one d� 2
D� satisfying y 2 G(d�).

The above results suggest the following practical simple
geometric methods for finding L(y|h) and U(y|h), see
[13].

The Method of Optimal Distance

Call

M :D convt2X(g1(t); : : : ; gn(t); h(t)):

Then L(y|h) is equal to the smallest distance between
(y1, . . . , yn, 0) and (y1; : : : ; yn ; z) 2 M. Also U(y|h) is
equal to the largest distance between (y1, . . . , yn, 0) and
(y1; : : : ; yn ; z) 2 M. Here, M stands for the closure of
M. In particular we see that L(y|h) = inf{yn + 1 : (y1, . . . ,
yn, yn + 1) 2M} and

U(yjh)

D sup fynC1 : (y1; : : : ; yn ; ynC1) 2 Mg :
(12)

Example 7 Let � denote probability measures on [0,
a], a > 0. Fix 0 < d < a. Find

L :D inf



Z
[0;a]

t2 �(dt)

and

U :D sup



Z
[0;a]

t2 �(dt)

subject to
Z
[0;a]

t �(dt) D d:

So consider the graphG := {(t, t2): 0� t� a}. CallM :D
convG D convG.

A direct application of the optimal distance method
here gives us L = d2 (an optimal measure � is supported
at d with mass 1), and U = da (an optimal measure �
here is supported at 0 and a with masses (1 � d/a and
d/a, respectively).

The Method of Optimal Ratio

We would like to find

LS (y) :D inf�(S)

and

US (y) :D sup�(S);

over all probability measures � such that

�(gi ) D yi ; i D 1; : : : ; n:

Set S0 := X � S. CallWS :D convg(S),WS0 :D convg(S0)
and W :D convg(X), where g := (g1, . . . , gn).

Finding LS(y).
1) Pick a boundary point z of W and ‘draw’ through z

a hyperplane H of support toW.
2) Determine the hyperplane H0 parallel to H which

supports WS0 as well as possible, and on the same
side as H supportsW.

3) Denote

Ad :DW \ H D WS \ H

and

Bd :DWS0 \ H0:

Given that H0 6D H, set Gd :D conv(Ad [ Bd ). Then
we have that

LS (y) D
	(y)
	

; (13)

for each y2 int(V) such that y2Gd. Here,�(y) is the
distance from y to H0 and � is the distance between
the distinct parallel hyperplanes H, H0.
Finding US(y). (Note that US(y) = 1 � LS0(y).)

1) Pick a boundary point z ofWS and ‘draw’ through z
a hyperplane H of support toWS. Set Ad :=WS \H.

2) Determine the hyperplane H0 parallel to H which
supports g(X) and hence W as well as possible, and
on the same side as H supports WS. We are inter-
ested only in H0 6D H in which case H is between H0

andWS.
3) Set Bd :=W \H0 =WS0 \H0. Let Gd as above. Then

US (y) D
	(y)
	

; (14)

for each y 2 int(V), where y 2 Gd, assuming that H
and H0 are distinct. Here,�(y) and � are defined as
above.
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Examples here of calculating LS(y) and US(y) tend
to be more involved and complicated, however the ap-
plications are many.

The ConvexMoment Problem

Definition 8 Let s � 1 be a fixed natural number and
let x0 2 R be fixed. By ms(x0) we denote the set of
probability measures � on R such that the associated
cumulative distribution function F possesses an (s �
1)th derivative F(s�1) (x) over (x0, +1) and furthermore
(�1)s F(s�1) (x) is convex in (x0, +1).

Description of the Problem

Let gi, i = 1, . . . , n; h are Borel measurable functions
from R into itself. These are assumed to be locally inte-
grable on [x0, +1) relative to Lebesgue measure. Con-
sider � 2ms(x0), s � 1 such that

�(jgi j) :D
Z

R
jgi (t)j �(dt) < C1;

i D 1; : : : ; n (15)

and

�(jhj) :D
Z

R
jh(t)j �(dt) < C1: (16)

Let c := (c1, . . . , cn) 2 Rn be such that

�(gi ) D ci ; i D 1; : : : ; n; � 2 ms(x0): (17)

We would like to find L(c) := inf
 � (h) and

U(c) :D sup


�(h); (18)

where � is as above described.
Here, the method will be to transform the above

convex moment problem into an ordinary one handled
by the first section, see [14].

Definition 9 Consider here another copy of (R, B); B
is the Borel �-field, and further a given function P(y, A)
on R × B.

Assume that for each fixed y 2 R, P(y, �) is a proba-
bility measure on R, and for each fixed A 2 B, P(�, A) is
a Borel-measurable real-valued function on R. We call
P aMarkov kernel. For each probability measure � onR,

let � := T� denote the probability measure on R given
by

�(A) :D (T�)(A) :D
Z

R
P(y;A) �(dy):

T is called aMarkov transformation.

In particular: Define the kernel

Ks(u; x) :D

(
s(u�x)s�1
(u�x0)s

if x0 < x < u;
0 elsewhere:

(19)

Notice Ks (u, x) � 0 and
R
R Ks (u, x) = dx = 1, all u >

x0. Let ıu be the unit (Dirac) measure at u. Define

Ps(u;A) :D

8<
:
ıu(A) if u � x0;Z
A
Ks(u; x) dx if u > x0:

(20)

Then

(T�)(A) :D
Z

R
Ps(u;A)�( du) (21)

is a Markov transformation.

Theorem 10 Let x0 2 R and natural number s � 1
be fixed. Then the Markov transformation (21) � = T�
defines a 1-1 correspondence between the set m� of all
probability measures � on R and the set ms(x0) of all
probability measures � on R as in Definition 8. In fact
T is a homeomorphism given that m� and ms(x0) are
endowed with the weak�-topology.

Let �: R! R be a bounded and continuous function.
Introducing

��(u) :D (T�)(u) :D
Z

R
�(x) � Ps(u; dx); (22)

then
Z
�d� D

Z
�� d�: (23)

Here �� is a bounded and continuous function from R
into itself.

We obtain that

��(u) D

8̂
ˆ̂<
ˆ̂̂:

�(u) if u � x0;Z 1

0
�((1 � t)uC tx0)sts�1 dt

if u > x0:

(24)
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In particular

1
s!
(u � x0)s��(u)

D
1

(s � 1)!

Z u

x0
(u � x)s�1�(x) dx:

(25)

Especially, if r > � 1 we get for �(u) := (u � x0)r that

��(u) D
�
r C s
s

��1
(u � x0)r , for all u > x0. Here r ! :=

1� 2 � � � r and
�
r C s
s

�
:D

(r C 1) � � � (rC s)
s!

:

Solving the ConvexMoment Problem

Let T be the Markov transformation (21) as described
above. For each � 2 ms (x0) corresponds exactly one �
2 m� such that � = T�. Call g�i := Tgi, i = 1, . . . , n and
h� := Th. We have
Z

R
g�i d� D

Z
R
gi d�

and
Z

R
h� d� D

Z
R
h d�:

Notice that we get

�(g�i ) :D
Z

R
g�i d� D ci ; i D 1; : : : ; n: (26)

From (15), (16) we get that
Z

R
T jgi j d� < C1; i D 1; : : : ; n;

and
Z

R
T jhj d� < C1: (27)

Since T is a positive linear operator we obtain |Tgi| �
T|gi|, i = 1, . . . , n, and |Th| � T|h|, i. e.
Z

R

ˇ̌
g�i
ˇ̌
d� < C1; i D 1; : : : ; n;

and
Z

R
jh�j d� < C1:

That is, g�i , h
� are �-integrable.

Finally

L(c) D inf
�
�(h�) (28)

and

U(c) D sup
�

�(h�); (29)

where � 2m� (probability measure onR) such that (26)
and (27) are true.

Thus the convex moment problem is solved as
a standard moment problem (see the first section).

Remark 11 Here we restrict our probability measures
on [0, +1) and we consider the case x0 = 0. That is �
2ms(0), s� 1, i. e. (� 1)s F(s� 1) (x) is convex for all x >
0 but � ({0}) = � ({0}) can be positive, � 2m�. We have

��(u) D su�s �
Z u

0
(u � x)s�1 � �(x) � dx;

u > 0:
(30)

Further ��(0) = �(0), (�� = T�). Especially,

if �(x) D xr

then ��(u) D
�
r C s
s

��1
� ur;

(r � 0):

(31)

Hence the moment

˛r :D
Z C1
0

xr�( dx) (32)

is also expressed as

˛r D

�
r C s
s

��1
� ˇr ; (33)

where

ˇr :D
Z C1
0

ur �(du): (34)

Recall that T� =�, where � can be any probability mea-
sure on [0, +1).

Here we restrict our probability measures on [0, b],
b > 0 and again we consider the case x0 = 0. Let � 2
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ms(0) and
Z
[0;b]

xr �(dx) :D ˛r ; (35)

where s� 1, r > 0 are fixed.
Also let � be a probability measure on [0, b] unre-

stricted, i. e. � 2m�. Then ˇr D

�
r C s
s

�
˛r , where

ˇr :D
Z
[0;b]

ur �(du): (36)

Let h: [0, b]!R+ be an integrable function with respect
to Lebesgue measure. Consider � 2 ms (0) such that

Z
[0;b]

h d� < C1: (37)

i. e.
Z
[0;b]

h� d� < C1; � 2 m�: (38)

Here h� = Th, � = T� and
Z
[0;b]

h d� D
Z
[0;b]

h� d�:

Letting ˛r be free, we have that the set of all possible
(˛r , �(h)) = (�(xr), �(h)) coincides with the set of all

 �
rC s
s

��1
� ˇr ; �(h�)

!

D

 �
rC s
s

��1
� �(ur); �(h�)

!
;

where � as in (37) and � as in (38), both probability
measures on [0, b]. Hence, the set of all possible pairs
(ˇr , �(h)) = (ˇr , �(h�)) is precisely the convex hull of
the curve

� :D f(ur ; h�(u)) : 0 � u � bg : (39)

In order one to determine L(˛r) the infimum of all�(h),
where � is as in (35) and (37), one must determine the
lowest point in this convex hull which is on the vertical
through (ˇr, 0). For U(˛r) the supremum of all �(h), �
as above, onemust determine the highest point of above
convex hull which is on the vertical through (ˇr , 0).

For more on the above see again §1.

Infinite Many Conditions Moment Problem

See also [16].

Definition 13 A finite nonnegative measure � on
a compact and Hausdorff space S is said to be inner reg-
ular when

�(B) D sup f�(K) : K � B; K compactg (40)

holds for each Borel subset B of S.

Theorem 14 See [16]. Let S be a compact Hausdorff
topological space and ai: S! R(i 2 I) continuous func-
tions (I is an index set of arbitrary cardinality), also let ˛i
(i 2 I) be an associated set of real constants. Call M0(S)
the set of finite nonnegative inner regular measures � on
S which satisfy the moment conditions

�(ai ) D
Z
S
ai (s) �(ds) � ˛i ; all i 2 I: (41)

Also consider the function b: S! R which is continuous
and assume that there exist numbers di � 0 (i 2 I), all
but finitely many equal to zero, and further a number q
� 0 such that

1 �
X
i2I

di ai (s) � qb(s); all s 2 S: (42)

Finally assume that M0(S) 6D ; and call

U0(b) D sup f�(b) : � 2 M0(S)g : (43)

(�(b) :=
R
S b(s) �(ds)). Then

U0(b)

D inf

(X
i2I

ci˛i :
ci � 0;

b(s) �
P

i2I ci ai(s) all s 2 S

)
;

(44)

here all but finitely many ci, i 2 I, are equal to zero.
Moreover, U0(b) is finite and the above supremum is as-
sumed.

Remark 15 In general we have: let S be a fixed measur-
able space such that each 1-point set {s} is measurable.
Further let M0(S) denote a fixed nonempty set of finite
nonnegative measures on S.

For f : S! R a measurable function we denote

L0( f ) :D L( f ;M0(S))

:D inf
�Z

S
f (s) �(ds) : � 2 M0(S)

	
:

(45)
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Then we have

L0( f ) D �U0(� f ): (46)

Now one can apply Theorem 14 in its setting to find
L0(f ).

Applications and Discussion

The above described moment theory optimization
methods have a lot of applications in many sciences.
Tomention a few of them: physics, chemistry, statistics,
stochastic processes and probability, functional anal-
ysis in mathematics, medicine, material science, etc.
Optimization moment theory could be also considered
the theoretical part of linear finite or semi-infinite pro-
gramming (here we consider discretized finite nonneg-
ative measures).

The above described methods have in particular im-
portant applications: in the marginal moment prob-
lems and the related transportation problems, also in
the quadratic moment problem, see [17].

Other important applications are in tomography,
crystallography, queueing theory, rounding problem in
political science, and martingale inequalities in proba-
bility. At last, but not least, optimization moment the-
ory has important applications in estimating the speeds:
of the convergence of a sequence of positive linear oper-
ators to the unit operator, and of the weak convergence
of nonnegative finite measures to the unit-Dirac mea-
sure at a real number, for that and the solutions of many
other important optimal moment problems please see
[2].

Final Conclusion

Optimization moment theory is a very active area of
mathematical probability theory with a lot of applica-
tions in other subjects, and with a lot of researchers
from around the world in it contributing new useful re-
sults, continuously during all of the 20th century.
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The general routing problem (GRP) is a routing prob-
lem defined on a graph or network where a minimum
cost tour is to be found and where the route must in-
clude visiting certain required vertices and traversing
certain required edges. More formally, given a con-
nected, undirected graphGwith vertex setV and (undi-
rected) edge set E, a cost ce for traversing each edge e
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2 E, a set VR � V of required vertices and a set ER �
E of required edges, the GRP is the problem of finding
a minimum cost vehicle route, starting and finishing at
the same vertex, passing through each v 2 VR and each
e 2 ER at least once ([13]).

The GRP contains a number of other routing prob-
lems as special cases. When ER = ;, the GRP re-
duces to the Steiner graphical traveling salesman prob-
lem (SGTSP) ([4]), also called the road traveling sales-
man problem in [7]. On the other hand, when VR = ;,
the GRP reduces to the rural postman problem (RPP)
([13]). When VR = V , the SGTSP in turn reduces to
the graphical traveling salesman problem or GTSP ([4]).
Similarly, when ER = E, the RPP reduces to the Chinese
postman problem or CPP ([5,8]).

The CPP can be solved optimally in polynomial
time by reduction to a matching problem ([6]), but
the RPP, GTSP, SGTSP and GRP are all NP-hard.
This means that the computational effort to solve such
a problem increases exponentially with the size of the
problem. Therefore exact algorithms are only practical
for a GRP if it is not too large, otherwise a heuristic al-
gorithm is appropriate. The GRP was proved to be NP-
hard in [10].

In [3], an integer programming formulation of the
GRP is given, along with several classes of valid inequal-
ities which induce facets of the associated polyhedra
under mild conditions. Another class of valid inequal-
ities for the GRP is introduced in [11] and in [12] it is
shown how to convert facets of the GTSP polyhedron
into valid inequalities for the GRP polyhedron. These
valid inequalities form the basis for a promising branch
and cut style of algorithm described in [2] which can
solve GRPs of moderate size to optimality.

In [9], a heuristic algorithm for the GRP is de-
scribed. The author adapts Christofides’ heuristic for
the TSP to show that when the triangle inequality holds
in the graph, the heuristic has a worst-case ratio of
heuristic solution value to optimum value of 1.5.

There are many vehicle routing applications of the
GRP. In these cases, the edges of the graph are used
to represent streets or roads and the vertices represent
road junctions or particular locations on a map. In any
practical application there are likely to be many addi-
tional constraints which must also be taken into ac-
count such as the capacity of the vehicles, time-window
constraints for when the service may be carried out,

the existence of one-way streets and prohibited turns
etc.

Many applications are for the special cases when ei-
ther ER = ; or VR = ;. However, there are some types of
vehicle routing applications where the problem is most
naturally modeled as a GRP with both required edges
and required vertices. For example, in designing routes
for solid waste collection services, collecting waste from
all houses along a street could be modeled as a required
edge and collecting waste from the foot of a multistory
apartment block could be modeled as a required vertex.
Other examples include postal delivery services where
some customers with heavy demand might be mod-
eled as required vertices, while other customers with
homes in the same street might be modeled together as
a required edge. School bus services are other examples
of GRPs where a pick-up in a remote village could be
modeled as a required vertex, but if the school bus must
pick-up at some point along a street (and is not allowed
to perform a U-turn in the street) then that may best be
modeled as a required edge.

Further details about solution methods and appli-
cations for various network routing problems can be
found in [1].
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� Vehicle Scheduling
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Genetic algorithms (GAs) comprise a class of stochas-
ticglobal optimization methods based on several strate-
gies from biological evolution. The basic genetic algo-
rithm was developed by J.H. Holland and his students
([5,6,7,8]), and was based on the observation that selec-
tion (either natural or artificial) can produce highly op-

timized individuals in a relatively short number of gen-
erations. This is true despite the fact that the space of all
gene mutations through which a population must sort
is astronomical. For instancethe genome of the yeast
Saccharomyces cerevisiae, which is the simplest eukary-
ote, contains just over 6000 genes, each of which can
occur in several mutant forms. Despite this, S. cere-
visiae can reoptimize itself to survive and flourish in
many new environments in a relatively short number
of generations. This is equivalent to having a com-
puter search for a near-optimal solution to a 6000-
dimensional problem where each of the 6000 variables
can take on any one of a large number of values.

The most important notion from natural systems
that the GA employs is the use of a population of in-
dividuals which go through a selection step to produce
offspring and pass on their genetic material.Optimality
or fitness is measured by how many offspring an indi-
vidual produces. A second notion is the use of crossover
in which individuals share genetic information and pass
the shared information onto their offspring. A third
borrowing from nature is the idea ofmutation, the con-
sequence of which is that the transfer of genetic infor-
mationis prone to random errors. This helps maintain
the level of genetic diversity in a population.

The implementation of a simple GA (SGA) which
uses these ideas is straightforward. The description that
follows uses a binary encoding, but all of the ideas fol-
low identically for integer or even real number encod-
ings. The most important idea is that one works with
a population of individuals which will interact through
genetic operators to carry out an optimization process.
An individual is specified by a chromosome C which is
a bit string of lengthNc that can be decoded to give a set
ofN parameters xi which are the natural parameters for
the optimization application. Each parameter xi is en-
coded by ni bits so that

PN
i ni = Nc. In what follows,

chromosome and bit string are synonymous. A fitness
function f (x1, . . . , xN), which is the function to be op-
timized, is used to rank the individual chromosomes.
An initial population of Npop individuals is formed by
choosing Npop bit strings at random, and evaluating
each individual’s fitness. (Decode C! (x1, . . . , xN), cal-
culate f (x1, . . . , xN).)Subsequent generations are formed
as follows. All parents (members of the current gener-
ation) are ranked by fitness and the highest fitness in-
dividual is placed directly into the next generation with
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no change. (This step of keeping the most-fit individual
intact is termed elitism and is a purely heuristic addi-
tion. It insures that good solutions to the problem at
hand are not lost until better ones are found.) Next,
pairs of parents are selected and their chromosomes are
crossed over to form chromosomes of the remaining in-
dividuals in the next generation. A parent’s probability
of being selected increases with its fitness. So for a min-
imization application, the parent with the current low-
est value of f (x1, . . . , xN) has the highest chance of being
selected for mating. Crossover consists of taking some
subset of the bits from parent 1 and the complementary
set of bits from parent 2 and combining them to form
the chromosome of child 1. A childis simply a mem-
ber of the next generation. The remaining bits from the
two parents are combined to form the chromosome of
child 2. Additionally, during replication there is a small
probability of a bit flip or mutation in a chromosome.
This serves primarily to maintain diversity and prevent
premature convergence. Convergence occurs when the
population becomes largely homogeneous – most in-
dividuals have almost the same values for all of their
parameters. Premature convergence occurs when the
population converges early in a run, before significant
amount of searching has been performed. The most
common cause is a poor choice of the scaling of the
fitness function. It should be noted that ‘premature’
and ‘early’ are loosely defined. To bound the magni-
tude of the effect of mutations, the binary chromo-
somes are usually Gray coded. An integer that is repre-
sented as a Gray coded binary number has the property
that most single bit flips change the value of the deci-
mal integer represented by the chromosome by ˙1. In
sum, the algorithm consists of successively transform-
ing one generation of individuals into the next using the
operations of selection, crossover and mutation. Since
the selection process is biased towards individuals with
higher fitness, individuals are produced that come ever
closer to being optimal solutions to the function of in-
terest.

It is important to emphasize that crossover is
the key feature that distinguishes the GA from other
stochastic global search methods. If crossover is inef-
fective, GA degenerates into a random walk search be-
ing executed separately by each individual in the popu-
lation. The random walk is generated by the mutation
operator.

The GA is presented below as pseudocode:

PROCEDURE genetic algorithm()
Initialize population;
FOR (g = 1 to Ngen generations) DO

FOR (i = 1 to Npop individuals) DO
Evaluate fitness of individual i: fi(g):

END FOR;
Save best individual to population g + 1;
FOR (i = 2 to Npop) DO

Select 2 individuals;
Crossover: create 2 new individuals;
Mutate the new individuals;
Move new individuals to population g+1;

END FOR;
END FOR;

END genetic algorithm;

Pseudocode for the Simple Genetic Algorithm

Selection commonly uses a roulette wheel procedure.
Each individual is assigned a slice of the unit circle pro-
portional to its fitness (f (x1, . . . , xN)).One then chooses
pairs of random numbers to select the next two individ-
uals to be mated. A typical crossover operator takes the
chromosomes from apair of individuals and chooses
a common cut point along them. One child gets the
portion of the first parent’s chromosome to the left of
thecut point, and the portion of the second parent’s
chromosome to the right of the cut point. The chromo-
some of the second child is comprised of the remaining
fragments of the two parent chromosomes. In the most
commonmutation operator each bit in the binary chro-
mosome has an equal and low probability being flipped
from 1 to 0 or vice versa.Many variants on these opera-
tors have been used.

The important variables in the GA method are the
population size, Npop, the total number of generations
allowed, Ngen, the number of bits used to represent
a real variable, and the mutation rate. The total CPU
time used in an optimization run is proportional to
Npop × Ngen × T(f ), where T(f ) is the time required to
evaluate the fitness function f (x1, . . . , xN). This leads
to a trade-off between having large, diverse popula-
tions that explore parameter space widely, and having
smaller populations that explore longer. In practice, the
choice is problem dependent.



1256 G Genetic Algorithms

The simple GA and a large number of variants
have been successfullyused to find near-optimal solu-
tions to many engineering and scientific applications.
([2,3,4,6,9,10,11]) Although much effort has gone into
formally analyzing the GA to understand why it is so
robust, the most important formal result is the Schema
theorem ([6,7,8]). Schemata are strings made up of the
characters 1, 0 and 
 which is the ‘don’t care’ charac-
ter. These schemata are building blocks out of which
the strings representing individuals’ chromosomes can
be constructed. For instance the string 11100 contains
schema such as 111, 1100 and 1 
 10. The schema theo-
rem provides a powerful statement about the behavior
of schemata in a chromosome. Mathematically, it states

m(H; g C 1)

� m(H; g)
f (H)
f

�
1 � pc

ı(H)
l � 1

� pm
o(H)
pm

�
; (1)

wherem(H, g) is the number of examples of a schemaH
that exist in the population at generation g; f (H) is the
average fitness of chromosomes containing H; f is the
average fitness of all chromosomes; pc is the probability
that crossover will occur at a particular mating; pm is
the probability that a particular bit will be mutated; l
is the length of the chromosome; ı(H) is the length of
the schema in bits; and o(H) is the order of the schema,
defined to be the number of fixed (as opposed to don’t
care) positions in the schema.

The factors outside the brackets in (1) indicate that
a particular schema will increase its representation in
the population at a rate proportional to its fitness rela-
tive to the average fitness. Good schemata will increase
their representation exponentially and bad schemata
will decrease their representation likewise. The terms
inside the bracket serve to decrease this exponential
convergence by disrupting the selection-based pres-
sure. Both crossover and mutation can disrupt good
schemata. The longer a schema is, the more likely it is to
be disrupted by crossover, and disappear from the pop-
ulation. In the same fashion, schemata with many fixed
positions are more likely to be disrupted by mutations.

The competition between selection which drives the
population towards convergence on a good solution
and crossover and mutation which drive the popula-
tion towards more diverse states are the keys to the
GA. Crossover is especially important for keeping the

method from being trapped in local minima. One con-
sequence of the parameter shuffling brought about by
the crossover operator is that the GA is most efficient at
optimizing functions that are at least partially separa-
ble. One individual can find a state where half of the pa-
rameters of the fitness function are optimized and a sec-
ond individual can find a state where the other half are
optimized. If these individuals crossover at the correct
point, one of theirchildren will have the parameter val-
ues that globally optimize the function.

As with most other heuristic global optimization
methods, no definitive statements can be made about
the global optimality of GA-generated solutions.

A family of algorithms that are very similar to the
GA, called evolution strategieswere developed indepen-
dently and virtually simultaneously in Germany by I.
Rechenberg ([1,12]).
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Genetic algorithms (GAs; cf. also � Genetic algo-
rithms) have been used for a large number of model-
ing applications in chemical and biological fields [5,9].
At least three factors contribute to this. First, GAs pro-
vide an easy-to-use global search and optimization ap-
proach. Second, they can easily handle noncontinu-
ous functions. Finally, they are relatively robust even

for moderately high-dimensional problems. All of these
have contributed to the use of the GA for the important
but computationally demanding field of protein struc-
ture prediction.

Proteins carry out a wide variety of functions in liv-
ing cells, almost all of which require that the protein
molecules assume precise 3-dimensional shapes [2,3].
Enzymes are typical examples. They generally consist
of a large structure of 100–300 amino acids stabilizing
a small active site which is designed to carry out a spe-
cific chemical reaction such as cleaving a bond in a tar-
get molecule. Even slight changes in the structure of
the active site can destroy the protein’s ability to func-
tion. Many drugs act by fitting snugly into enzymes’ ac-
tive sites, causing them to shut down. Therefore, a de-
tailed understanding of the 3-dimensional structure of
a protein can enhance our understanding of its func-
tion. This can in turn help understand related disease
processes and can finally lead to disease cures. Unfortu-
nately the experimental determination of protein struc-
tures, using x-ray crystallography or solution NMR is
very difficult. Currently the structures of only a few
thousand of the estimated 100,000 proteins that are
used by the human body have been determined this
way. The alternative is to predict the structures com-
putationally.

The basic computational approach is simple to state,
although many details have yet to be worked out. It re-
lies on the experimental fact that a protein in solution
(as well as any other molecule) will tend to find a state
of low free energy. Free energy accounts for the inter-
nal energy (potential plus kinetic) of single molecules as
well as the entropy of the ensemble of molecules of the
same type. At absolute zero, the entropy contribution
to the energy, as well as the kinetic energy, go to zero,
leaving only the potential energy. Therefore, the most
likely shape or state of a protein at absolute zero is the
one of lowest potential energy. The simplest computa-
tional model then needs a method to search the space of
conformations and an energy function (approximating
the physical potential energy) which is minimized dur-
ing the search. (A protein’s conformation is the descrip-
tion of the 3-dimensional positions of all of the atoms
for a fixed set of atoms and atom-atom connections.
The configuration describes the atom-atom connectiv-
ity and only changes through chemical bond forming
or breaking.) The conformation which yields the lowest
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value of the energy function is a best estimate of con-
formation of the natural protein. It is possible to extend
this simple model to include the effects of finite tem-
perature, but these extensions are beyond the scope of
this article. In-depth discussions of molecular model-
ing, including energy functions for proteins and other
molecules can be found in [6,8,10], and [1].

Because proteins possess many degrees of freedom,
and the energy functions have many local minima,
global optimization methods that search efficiently and
are not prone to being caught in local minima are re-
quired. The GA is often used because it fits both of these
criteria.

Proteins [2] are long linear polymers composed of
well-conserved sequences of the 20 amino acids. Each
amino acid is in turn made up of a backbone

R
j

� (NH � C˛ � CO) �

where R stands for one of the 20 side groups that make
the amino acids unique. These range from a single hy-
drogen atom to chains having many degrees of free-
dom. The primary structure of the protein is simply the
sequence of amino acids. For many naturally occurring
proteins, this sequence carries sufficient information to
determine the final 3-dimensional or tertiary structure
of the protein. Experimentally, proteins that have been
denatured (caused to unfold by heating the solution or
changing its chemical composition) will spontaneously
refold to their active, or native conformation, when the
solution is returned to its original state.

There are two sets of coordinates often used for
specifying the conformation of a protein. The first are
the standard Cartesian coordinates for each atom. For
N atoms, this requires 3N � 6 numbers. The alternative
is to use internal coordinates which are the bond dis-
tances (distances between atoms bound together), the
bond angles (angles formed by a given atom and two
atoms bound to it), and the dihedral angles (the angle of
rotation about a center bond for a set of 4 atoms bound
as A � B � C � D). To a good first approximation, the
bond distances and bond angles are fixed at values that
are independent of the particular amino acid or protein.
Therefore, the conformation of a protein is determined
largely by the values of its dihedral angles. There are
on average about 15 atoms and about 3 dihedrals per

amino acid, requiring about N/5 degrees of freedom to
describe the conformation of an N-atom protein. The
dimension of conformation space for a moderate-size
protein of 100 amino acids ( 	 1500 atoms) is 	 4500
when using Cartesian coordinates vs. 	 300 when us-
ing internal coordinates with fixed bond distances and
angles.

In many protein structure prediction applications,
the simple GA approach is used. For each generation,
one calculates the fitness (energy) of each individual
in the population, selects pairs of individuals based on
their energy, performs crossover andmutation. The GA
chromosome directly codes for the values of the dihe-
dral angles. Both binary encoded and real number en-
coded chromosomes have been used with equal success.
For binary encoded dihedrals, one must decide on the
resolution of the GA search. The maximum one would
use is 10 bits per angle which gives a resolution of about
1/3 degree. Often as few as 5 or 6 bits will be sufficient,
especially if the GA-generated conformations will be
subjected to local gradient minimization.

For each GA individual, the chromosome is de-
coded to give the values of the dihedrals which are
passed to the energy function. This in turn returns an
energy which is used as the fitness for the subsequent
selection process.

Another encoding scheme that is often used is based
on the idea of a rotamer library. It is known from study-
ing the set of experimentally known structures that the
dihedral angles in many amino acid side chains take
on restricted sets of values. Also, the values of several
neighboring dihedrals are often correlated. It has then
been possible to develop libraries of preferred sidechain
conformations (called rotamers) for each amino acid.
This can be incorporated into the GA by having each
word in the chromosome simply determine which of
a set of rotamers to use for each amino acid in the se-
quence. The use of rotamer libraries in the GA frame-
work is illustrated in references [7,12,13,14], and [11].

The other major ingredient needed for a protein
structure prediction method is an energy function to be
minimized. This is a huge area of research which is be-
yond the scope of this article, but twomajor approaches
will be summarized. The first scheme uses physics-
based empirical potentials. These are functions of the
bond distances, bond angles, dihedral angles, and non-
bonded distances (distances between atoms not directly
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bound together). The functional forms are derived from
the results of accurate but computationally expensive
quantum mechanical calculations that are performed
on small molecular fragments such as individual amino
acids. The results are fitted to simple functions with
several free parameters. The parameter values are ei-
ther taken from the original quantum calculations or
from independent spectroscopic experiments. Various
methods are used to approximate the effect of the water
and salt environment around the protein. The advan-
tage of these potentials is that they are continuous and
very general. They can be constructed for any protein
and give reasonable energies for any conformation re-
quested. The disadvantage is that they are not yet suf-
ficiently accurate to give reliable structure predictions.
For many if not all of the proteins whose structure is
known, there are conformations that have much lower
calculated energy than that of the experimental confor-
mation.

The second approach is to use potentials based on
observations of known protein structures. Basically,
more probable conformations (ones that look more like
real proteins) will have lower energy values. For in-
stance certain sequences of amino acids almost always
assume a particular secondary structure. The secondary
structure of a protein describes the presence of multi-
amino acid helices, sheets and turns but not the ex-
act placement of the atoms in the secondary structure
elements or the spatial orientation of these elements.
These potentials have the advantage that they build on
our observations of proteins as entire molecules and in-
corporate long-range order. As with the empirical po-
tentials, though, they suffer from accuracy problems.
However, except for very small proteins (less than 20
amino acids) the structure-based potentials show the
most promise.

A common feature of GA-based protein structure
prediction methods is the use of hybrid approaches
combining standard GA with a local search method.
The GA is then used primarily to perform an efficient
global search which is biased towards regions of con-
formation space with low energy. This is a pragmatic
approach driven by the large number of degrees of free-
dom even when internal coordinates are used. A simple
and often used approach [5] is to subject GA-generated
conformations to gradient minimization. Another ap-
proach is to use a population of individuals which carry

out independent Monte-Carlo or simulated annealing
walks (cf. also � Simulated annealing methods in pro-
tein folding; � Monte-Carlo simulated annealing in
protein folding) for a number of steps and then undergo
selection, crossover and mutation [4,15,16].
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Introduction

Geometric programming is an important class of non-
linear optimization problems. Their source dates back
to the 1960s when Zener began to study a special type

of minimization cost problem for design in engineer-
ing, now known as geometric programming. The term
geometric programming is adopted because of the cru-
cial role that the arithmetic-geometric mean inequality
plays in its initial development.

Actually, the early work in geometric program-
ming was, for the most part, concerned with mini-
mizing posynomial functions subject to inequality con-
straints on such functions, which was called posyn-
omial geometric programming. In the past decade,
because a number of models abstracted from applica-
tion fields were not posynomial geometric program-
ming, the theory had to be generalized to a much
broader class of optimization problems called gener-
alized geometric programming, which has spawned
a wide variety of applications since its initial develop-
ment. Its great impact has been in the areas of (1) en-
gineering design [1,4,10,11]; (2) economics and statis-
tics [2,3,6,9]; (3) manufacturing [8,17]; (4) chemical
equilibrium [13,16]. Reference [19] focuses on solu-
tions for generalized geometric programming.

Formulation

[19] provides a global optimization algorithm for the
generalized geometric programming (GGP) problem
stated as:

GGP

8̂
ˆ̂̂<
ˆ̂̂̂
:

min G0(x)
s.t. Gm(x) � ım;m D 1; : : : ;M

x 2 X D fx : 0 < xl
i � xi � xui

i D 1; : : : ;Ng

where Gm(x) D
PTm

tD1 ımtcmt
QN

iD1 x
�mti
i , m D

0; 1; : : : ;M, and cmt are positive coefficients, Tm are
the given number of the terms in the function Gm(x),
ımt D C1 and �1; ım D C1 or �1; �mti are arbitrary
real constant exponents. In general, formulation GGP
corresponds to a nonlinear optimization problem with
a nonconvex objective function and constraint set.
In Gm(x), if ımt D C1 for all t; t D 1; : : : ; Tm , and
xi > 0; i D 1; : : : ;N, then the function Gm(x) is called
a posynomial. Note that if we set ımt D C1 for all
m D 0; 1; : : : ;M; t D 1; : : : ; Tm and ım D C1 for all
m D 1; : : : ;M, then the GGP formulation reduces
to the classical posynomial geometric programming
(PGP) formulation that laid the foundation for the the-
ory of the GGP problem.
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Local optimization approaches for solving the GGP
problem include three kinds of methods in general.
First, successive approximation by posynomials, called
“condensation,” is the most popular [14]. Second, Passy
and Wilde [15] developed a weaker type of duality,
called “pseudo-duality,” to accommodate this class of
nonlinear optimization. Third, some nonlinear pro-
grammingmethods are adopted to solve the GGP prob-
lem based on exploiting the characteristics of the GGP
problem [12].

Though local optimization methods for solving the
GGP problem are ubiquitous, global optimization algo-
rithms based on the characteristics of the GGP prob-
lem are scarce. Maranas and Floudas [13] proposed
such a global optimization algorithm based on the ex-
ponential variable transformation of GGP, the convex
relaxation, and branch and bound on some hyperrect-
angle region. Reference [19] proposes a branch-and-
bound optimization algorithm that solves a sequence
of linear relaxations over partitioned subsets in order
to find a global solution, and to generate the linear
relaxation of each subproblem and to ensure conver-
gence to a global solution, special strategies have been
applied. (1) The equivalent reverse convex program-
ming (RCP) formulation is considered. (2) A linear
relaxation method for the RCP problem is proposed
based on the arithmetic-geometric mean inequality and
the linear upper bound of the reverse convex con-
straints; this method is more convenient with respect to
computation than the convex relaxation method [13].
(3) A bound tightening method is developed that will
enhance the solution procedure, and, based on this
method, a branch-and-bound algorithm is proposed.

Methods and Applications

Transformation

In [5], Duffin and Peterson show that any GGP problem
can be transformed into the following reverse posyno-
mial geometric programming (RPGP):
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min x0
s.t. gm(x) � 1; m D 1; : : : ; p

gm(x) � 1; m D pC 1; : : : ; q
x 2 ˝0 D fx : 0 < xl

i � xi � xui <1
i D 0; : : : ; ng

where gm(x) are posynomials for m D 1; : : : ; q, and
n � N .

To see how such a reformulation is possible, first
consider the objective function in GGP. If the optimal
value of GGP is positive, the GGP problem is equivalent
to the following form:

(GGP1) :

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x0
s.t. x�10 G0(x) � 1;

Gm(x) � ım;m D 1; : : : ;M
x 2 X :

And if the optimal value of GGP is negative, then GGP
can be transformed into the following form:

(GGP2) :

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x0
s.t. x0G0(x) � �1 ;

Gm(x) � ım;m D 1; : : : ;M
x 2 X :

We can add a large constant to the objective function
of GGP in order to ensure that the optimal value of
(GGP) is positive, then derive the form GGP1. In this
method a probably lower bound estimation for the op-
timal value of GGP is needed.

Secondly we turn to consider the constraints. If the
primal constrained function Gm(x) is either a posyno-
mial or the negative of a posynomial, then it is obvious.
So we only consider the following constrained function:

Gm(x) D h1(x) � h2(x) � 1 ;

where each hi (x)(i D 1; 2) is a posynomial. Notice that
x satisfies the above inequality if and only if there exists
a single variable s > 0 such that (x, s) satisfies

h1(x) � s � h2(x)C 1 :

Now note that the above formulation is equivalent to
the following two constraints

s�1h1(x) � 1 and s�1h2(x)C s�1 � 1 ;

which are in a form consistent with the formulation
RPGP.

By applying the following exponent transformation

xi D exp zi ; i D 0; : : : ; n
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to the formulation RPGP, we can obtain the following
reverse convex programming (RCP) problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min exp(z0)
s.t. gm(z) � 1; m D 1; : : : ; p

gm(z) � 1; m D pC 1; : : : ; q
z 2 ˝ D fz : zLi � zi � zUi ;
i D 0; 1; : : : ; ng

where

gm(z) D
TmX
tD1

cmt exp

( nX
iD0

�mti zi

)
; m D 1; : : : ; q

Because each expf
Pn

iD0 �mti zig is convex, both the ob-
jective and constrained functions are convex.

The main difficulty for solving the RCP problem is
connected with the presence of the reverse convex con-
straints gm(z) � 1; m D pC 1; : : : ; q, which destroy
the convexity and possibly even the connectivity of the
feasible set and give rise to a nonconvex feasible region.

Linear Relaxation Programming

The principal construct in the development of a solu-
tion procedure for solving the RCP problem is the con-
struction of a linear relaxation programming of RCP
for obtaining the lower bound for this problem, as well
as for its partitioned subproblems [19] derives such
a linear relaxation by applying the arithmetic-geometric
mean inequality for the convex constraints and overes-
timating every reverse convex constraint in either the
initial bounds on the variables of the problem or mod-
ified bounds as defined for some partitioned subprob-
lem in a branch-and-bound scheme.

(1) Linear Relaxation for Convex Constraints The
arithmetic-geometric mean inequality that played such
a crucial role in developing the duality theory for
posynomial programming is also used to obtain lin-
ear relaxation programming. Recall that this inequality
states that for any vector ! > 0 and any nonnegative
weight vector "whose components sum to one, we have

X
t

!t �
Y
t

(
!t

"t
)"t

provided (!t/"t)"t is defined to be 1 when "t D 0. Give
a posynomial

gm(x) D
X
t

umt(x) D
X
t

cmt
Y
i

xmti
i

and "m � 0 with
P

t "mt D 1. Then a condensed
posynomial ḡm(x) is defined by

ḡm(x) D c̄m
Y
i

x�̄mi
i

where c̄m D
Q

t(cmt/"mt)"mt and �̄mi D
P

t �mti"mt .
Thus the condensed posynomial ḡm(x) is also

a posynomial, and it has a single posynomial term.
According to this method, the condensed single term
for the convex constraints gm(z) � 1 of RCP, where
zi D ln xi , is of the following form:

ḡm(z) D c̄m exp

 X
i

�̄mi zi

!
(1)

where the definitions of c̄m and �̄mi have been given in
the former.

To illustrate how the condensed term can be used to
obtain the linear relaxation, we consider the following
convex constraints gm(z) � 1;m D 1; : : : ; p and select
an arbitrary weight vector "m � 0 whose components
sum to one. We use the condensed constrained func-
tions to replace the above convex constraints:

ḡm(z) � 1; m D 1; : : : ; p : (2)

It follows that

ḡm(z) � gm(z)

for each m D 1; : : : ; p. Thus if in RCP the convex con-
straints are replaced by the condensed constraints, the
feasible region for RCP will be contained in the new
feasible region. Notice that the condensed constraints
(2) can be easily transformed into equivalent formula-
tions as linear constraints:

Lm(z) D
X
i

�̄mi zi C ln c̄m � 0; m D 1; : : : ; p :

(2) Linear Relaxation for Reverse ConvexConstraints
For reverse convex constraints such a linear relaxation
can be obtained by overestimating every convex func-
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tion gm(z) of the reverse convex constraint with a lin-
ear function Lm(z) for every m D pC 1; : : : ; q. The
method in [13] of underestimating a concave function
with a linear function is adopted, and we describe the
linear function as follows:

Lm(z) D
TmX
tD1

cmt

(
Amt C Bmt

 nX
iD0

�mti zi

!)

and

Amt D
YU
mt exp(YL

mt) � YL
mt exp(YU

mt)
YU
mt � YL

mt
;

Bmt D
exp(YU

mt) � exp(YL
mt)

YU
mt � YL

mt
;

YL
mt D

nX
iD0

min(�mti zLi ; �mti zUi ) ;

YU
mt D

nX
iD0

max(�mti zLi ; �mti zUi ) ;

and it follows that

Lm(z) � gm(z); m D pC 1; : : : ; q :

Thus if in (RCP) the reverse convex constraints are re-
placed by the overestimation linear constraints, the fea-
sible region for RCP will be contained in the new feasi-
ble region.

(3) Linear Relaxation Programming For the objec-
tive function of RCP, it is obvious that min exp(z0) is
equivalent to min z0. From the above discussion for the
two kinds of constraints respectively, [19] constructs
the corresponding linear relaxation programming on
the region˝ LRP(˝) as follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min z0
s.t. Lm(z) � 0; m D 1; : : : ; p

Lm(z) � 1; m D pC 1; : : : ; q
z 2 ˝ D fz : zLi � zi � zUi ;
i D 0; 1; : : : ; ng :

The following results establish some salient properties
of the linear relaxation programming LRP(˝) that are
essential in designing the proposed algorithm.

Lemma 1 Assume the minimum of LRP(˝) is LB�;
then exp(LB�) provides a lower bound of the optimal
value of the RCP problem.

Proof We denote the feasible region of RCP and
LRP(˝) D and P; then it is immediate that P � D by
the construction method. So based on the above as-
sumption, exp(LB�) is a lower bound of the minimum
of the RCP problem. �

Branch-and-Bound Algorithm

Reference [19] develops a branch-and-bound algorithm
to solve the RCP based on the former linear relaxation
method. This algorithm needs to solve a sequence of
linear relaxation programming problems over˝ or the
subsets of˝ in order to find a global solution. Further-
more, to ensure convergence to a global solution, a new
bound tightening method (BTM) is proposed and will
be applied to enhance the solution procedure.

The critical element in guaranteeing convergence to
a global minimum is the choice of a suitable branching
rule. In [18] three kinds of branching methods are pro-
vided. Reference [19] chooses the first method, a simple
and standard bisection rule. This method is sufficient
to ensure convergence since it drives all the intervals to
zero for the variables that are associated with the term
that yields the greatest discrepancy in the employed ap-
proximation along any infinite branch of the branch-
and-bound tree.

Branching rule:
Assume that the hyperrectangle ˝q is going to be

divided. Then the selection of the branching variable ze,
which possesses a maximum length in˝q and the parti-
tioning of˝q are done using the following rules, where
˝q D fz : zLj (˝

q) � z j � zUj (˝
q); j D 0; : : : ; ng. Let

e D argmax
n
zUj (˝

q) � zLj (˝
q)
o
;

and partition ˝q by bisecting the interval [zLe (˝q);
zUe (˝q)] into the subintervals [zLe (˝q); (zLe (˝q) C
zUe (˝q))/2] and [(zLe (˝q)C zUe (˝q))/2; zUe (˝q)].

In what follows we describe the BTM strategy pro-
posed by [19].

Assume that the subhyperectangle ˝q(s) (s is the it-
eration counter) is selected for further consideration. If
in the node q(s) the corresponding solution ẑ(˝q(s)) is



1264 G Geometric Programming

not feasible in some convex constraint, let

l D argmaxfgm(ẑ(˝q(s)))j

gm(ẑ(˝q(s))) D
TmX
tD1

umt(ẑ(˝q(s))) > 1g :

Compute the weight vector "̄l by "̄l i D ul i (ẑ)/gl (ẑ);
i D 1; : : : ; Tl , and then condense the function gl(z) us-
ing this weight vector as described in Sect. “Linear Re-
laxation Programming.” Then a new single term is ob-
tained, and therefore a new linear constraint is added to
the linear relaxation programming LRP(˝q(s)). Denote
this new linear relaxation programming and new added
condensed single term LRP(˝q(s)) and ḡl (z). And
from the discussion in Sect. “Linear Relaxation Pro-
gramming” we know ḡl (z) D c̄l exp(

P
i �̄l i zi ), where

c̄l D
Q

t(cl t/"̄l t)
"̄l t and �̄l i D

P
t �l t i "̄l t .

It is obvious that

ḡl (ẑ(˝q(s))) D gl (ẑ(˝q(s))) ;

and since gl (ẑ(˝q(s))) > 1, it follows that ẑ(˝q(s))
does not satisfy the new added constraint ḡl (z) � 1.
From the arithmetic-geometric mean inequality, we
have ḡl (z) � gl (z). Of course, the new single-term con-
straint ḡl (z) � 1 is equivalent to a linear constraint.
Hence, if z is feasible for RCP, it is certainly feasible for
LRP(˝q(s)), whose feasible region obviously does not
contain the point ẑ(˝q(s)). Clearly, this BTM technique
will enhance the solution procedure.

Based on the previous BTM technique, [19] con-
structs the global optimization algorithm. The basic
steps of the algorithm are summarized in the following
statement.

Algorithm Statement

step 0: (Initialization)

0.1: Assume a convergence tolerance ı>0, and
the initial weights "m;m D 1; : : : ; p. Set the iteration
counter s D 0, then Qs D Q0 D f1g; q(s) D q(0) D 1;
˝q(s) D ˝1 D ˝ . Set an initial upper bound U� D1.

0.2: Solve the problem LRP(˝q(s)), and denote the
solution and the minimum (ẑ(˝q(s)); LBq(s)).

0.3: If ẑ(˝q(s)) is feasible for RCP, then stop with
ẑ(˝q(s)) as the prescribed solution to the RCP problem,
else let LB(s) D LBq(s);

0.4: If ẑ(˝q(s)) is not feasible on some convex con-
straints, the BTM technique will be adopted.

step 1: (Partitioning step) Choose a branching vari-
able ze, then partition ˝q(s) to get ˝q(s):1 and ˝q(s):2.
Replace q(s) by node indices q(s):1; q(s):2 in Qs.

step 2: (Feasibility check for (RCP)) For each q(s):w,
where w D 1; 2, compute:

gm(w) D c̄m exp

 nX
iD0

min(�̄mi zLi ; �̄mi zUi )

!
;

for m D 1; : : : ; p

gm(w) D
TmX
tD1

cmt exp
�
YU
mt
�
;

for m D pC 1; : : : ; q

where c̄m ; �mi ;YU
mt have been defined in Sect. “Linear

Relaxation Programming.” If for somem 2 f1; : : : ; pg,
gm(z)>1, or for some m 2 fpC 1; : : : ; qg, gm(z) < 1,
then the node indices q(s):w will be eliminated. If
˝q(s):w (w D 1; 2) are all eliminated, then go to step 5.

step 3: (Updating upper bound) For undeleted sub-
hyperrectangle update

Amt ; Bmt ;YL
mt ;Y

U
mt :

Solve LRP(˝q(s):w ), where w D 1 or w D 2 or
w D 1; 2, and denote the solutions and optimal val-
ues (ẑ(˝q(s):w); LBq(s):w ). Then if ẑ(˝q(s):w) is feasible
for RCP, U� D minfU�; LBq(s):wg.

step 4: (Deleting step) If LBq(s):w > U� C ı, then
delete the corresponding node;

step 5: (Fathoming step) Fathom any nonimproving
nodes by setting QsC1 D Qs�fq 2 Qs : LBq � U��ıg.
If QsC1 D ;, then stop, and exp(U�) is the optimal
value, z�(�) (where � 2 �0) are the global solutions,
where �0 D f� : z�0 (�) D U�g. Otherwise, s D s C 1;

step 6: (Node-selection step) Set LB(s) D minfLBq :
q 2 Qsg, then select an active node q(s) 2

argminfLB(s)g for further considering;



Geometric Programming G 1265

step 7: (Bound tightening step) If in this node q(s),
ẑ(˝q(s)) is feasible in all convex constraints of RCP,
then return to step 1, else the BTM technique will be
adopted, and then return to step 1.

Theorem 1 (convergence result) The above algorithm
either terminates finitely with the incumbent solution be-
ing optimal to RCP or it generates an infinite sequence
of iterations such that along any infinite branch of the
branch-and-bound tree, any accumulation point of the
sequence LB(s) will be the global minimum of the RCP
problem.

Proof A sufficient condition for a global optimiza-
tion to be convergent to the global minimum, stated
in Horst and Tuy [7], requires that the bounding oper-
ation be consistent and the selection operation bound
improving.

A bounding operation is called consistent if at every
step any unfathomed partition can be further refined
and if any infinitely decreasing sequence of successively
refined partition elements satisfies:

lim
s!C1

(U� � LB(s)) D 0 ; (3)

where LB(s) is a lower bound inside some subhyperrect-
angle in stage s and U* is the best upper bound at iter-
ation s, not necessarily occurring inside the above same
subhyperrectangle. In the following we will demon-
strate that (3) holds.

Since the employed subdivision process is the bisec-
tion, the process is exhaustive. Consequently, from the
discussion in [13] (3) holds, and this means that the em-
ployed bounding operation is consistent.

A selection operation is called bound improving if
at least one partition element where the actual lower
bound is attained is selected for further partition af-
ter a finite number of refinements. Clearly, the em-
ployed selection operation is bound improving because
the partition element where the actual lower bound is
attained is selected for further partition in the immedi-
ately following iteration.

In summary, it is shown that the bounding op-
eration is consistent and that the selection operation
is bound improving; therefore, according to Theo-
rem IV.3. in Horst and Tuy [7], the employed global
optimization algorithm is convergent to the global min-
imum. �

Applications

Reference [19] reports the numerical experiment for
the deterministic global optimization algorithm de-
scribed above to demonstrate its potential and feasibil-
ity. The experiment is carried out with the C program-
ming language. The simplex method is applied to solve
the linear relaxation programming problems.

To illustrate how the proposed algorithm works,
first [19] gives a simple example to show the solving
procedure of the proposed algorithm.

Example 1:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x21 C x22
s.t. 0:3x1x2 � 1

x 2 X D f2 � x1 � 5;
1 � x2 � 3g :

First, transform the above problem into the RPGP
form as follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min x0
s.t. g1(x) D x�10 x21 C x�10 x22 � 1

g2(x) D 0:3x1x2 � 1
x 2 ˝0 D fx j 5 � x0 � 10;
2 � x1 � 5; 1 � x2 � 3g :

Let xi D exp zi (i D 0; 1; 2), then we can obtain the
following reverse convex programming problem (P) of
Example 1 :

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min exp(z0)
s.t. f1(z) D exp(�z0 C 2z1)

C exp(�z0 C 2z2) � 1
f2(z) D 0:3 exp(z1 C z2) � 1
z 2 ˝ D fz j
1:6094 � z0 � 2:3026;
0:6931 � z1 � 1:6094;
0 � z2 � 1:0986g :

In step 0, set ı D 10�3, s=0, U� D 1. For the
convex constraint function f1(z), choose the initial
weight as "1 D (1/2; 1/2) since it has two terms. Then
q(s) D 1;Qs D Q0 D f1g, ˝q(s) D ˝1 D ˝. Accord-
ing to the discussion in Sect. “Methods and Applica-
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tions“, the LRP(˝1) of problem P is formulated below:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:9356z1 C 1:9356z2 � 1:7416
z 2 ˝1 :

The solution and optimal value of LRP(˝1) are:

ẑ(˝1) D (1:6094; 0:6931; 0:2231) ;
LB1 D 1:6094 :

Since ẑ(˝1) is not feasible for problem P, then
LB(s) D LB(0) D 1:6094. Since ẑ(˝1) is not feasible
for f1(z) � 1, then the BTM technique will be adopted.
First, update the weight "1 according to the solution
ẑ(˝1), and derive "1 D (0:7191; 0:2809), then from for-
mula (1) in Sect. “Methods and Applications“, we ob-
tain a new linear constraint:

L3(z) D �z0 C 1:4382z1 C 0:5618z2 � �0:5938 :

The current linear relaxation programming denoted as
LRP(˝1) is:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:9356z1 C 1:9356z2 � 1:7416
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
z 2 ˝1 :

In step 1, divide the region ˝1 into the following
two regions:

˝2 D fz j 1:6094 � z0 � 2:3026 ;

0:6931 � z1 � 1:6094; 0 � z2 � 0:5493g ;

˝3 D fz j 1:6094 � z0 � 2:3026 ;
0:6931 � z1 � 1:6094; 0:5493 � z2 � 1:0986g ;

then the node set Q0 D f2; 3g.
In step 2, the two nodes inQ0 have not been deleted;

then go to step 3. After updating the parameters ac-

cording to the formula in Sect. “Linear Relaxation Pro-
gramming“ respectively, we can obtain the new func-
tion L2(z) in each node. Then we have LRP(˝2):

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:3633z1 C 1:3633z2 � 1:3450
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
z 2 ˝2

and we have LRP(˝3):

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 2:3613z1 C 2:3613z2 � 2:8946
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
z 2 ˝3 :

The solutions and optimal values are respectively

ẑ(˝2) D (1:7555; 0:6931; 0:2934) ;

LB2 D 1:7555

ẑ(˝3) D (1:9356; 0:6931; 0:8427) ;

LB3 D 1:9356 :

In step 4 the two nodes have not been deleted; then go
to step 5. Compute

Q1 D Q0 � fq 2 Q0 : LBq � U� � ıg D f2; 3g ;

and set s D 1. In step 6, the current lower bound is

LB(s) D LB(1) D minfLBq; q 2 Qsg

D minfLB2; LB3g D 1:7555 :

So wewill choose the active node as q(1) D 2 for further
consideration.

In step 7 in the node q(1), the BTM technique
is adopted. From formula (1) in Sect. “Methods
and Applications” we compute the new weight
"1 D (0:6899; 0:3101) according to the solution ẑ(˝2),
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and we obtain the following new linear constraint:

L4(z) D �z0 C 1:3797z1 C 0:6203z2 � 1:2919 :

The current linear relaxation programming denoted as
LRP(˝2) is:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:3633z1 C 1:3633z2 � 1:3450
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
L4(z) D �z0 C 1:3797z1 C 0:6203z2
� 1:2919
z 2 ˝2 :

Then return to step 1, divide the region˝2, and go into
a new circle. After 22 iterations, the procedure stops.
The global minimum of problem P is 1.9140, and the
global solution is

z� D (1:9140; 0:6933; 0:5107) :

Then the global minimum of example 1 is 6.7804, and
the global solution is x� D (2:0003; 1:6664).

Additionally, to test the algorithm, [19] chooses five
examples, all of which are taken from engineering, con-
cerning the detailed application context, please refer to
the releveant references.

Example 2 ([1]):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min x0
s.t. x�10 x�12 x�13 x5 C 5x�10 x

1
2
1 x4x5 � 1

x
1
3
2 x3 � x

1
2
4 � �1

�x5 � 2x0x1x2x43x�14 x5 � �1
x 2 X D fx j 30 � x0 � 40;
0:01 � x1 � 1;
0:0001 � x2 � 1;
15 � x3 � 20;
15 � x4 � 20;
0:1 � x5 � 1g :

Example 3 ([11]):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min x0
s.t. 0:274x3x44 C 2520:66x1x54 C x0x23

�x0x1x2x3 C 1 � 1
x1x�12 x3 � 1
x1x44 � 1
x3x34 � 1
x 2 X D fx j 10�12 � x0 � 2;
20 � x1 � 35;
120 � x2 � 160;
1 � x3 � 10;
10�6 � x4 � 1g :

Example 4 ([20]):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min x0
s.t. 3:7x�10 x0:851 C 1:985x�10 x1

C700:3x�10 x�0:752 � 1
0:7673x0:052 � 0:05x1 � 1
x 2 X D fx j 5 � x0 � 15;
0:1 � x1 � 5;
380 � x2 � 450g :

Example 5 ([20]):
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min x0
s.t. 4x1 � 4x20 � 1

�x0 � x1 � �1
x 2 X D fx j 0:01 � x0 � 15;
0:01 � x1 � 15g :

Example 6 ([5]):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min x0:83 x1:24

s.t. x1x�14 C x�12 x�14 � 1
�x�21 x�13 � x2x�13 � �1
x 2 X D fx j 0:1 � x1 � 1;
5 � x2 � 10;
8 � x3 � 15;
0:01 � x4 � 1g :

The following table summarizes the computational
results on the above five examples. In the table s denotes
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the number of the iteration, L denotes the longest node
number inQs described in the algorithm statement, and
ı denotes the convergence tolerance. The results show
that the algorithm of [19] can globally solve the GGP
problem effectively.

No. Solution
2 (37.0070,0.4489,0.0048,18.0348,16.0449,0.5667)
3 (0.0000, 32.7781,155.0000, 4.7288, 0.0027)
4 (11.9637, 0.8098, 442.0915)
5 (0.5, 0.5)
6 (0.1020, 7.0711, 8.3284, 0.2434)

no s L ı CPU time
2 131 28 10�3 4s
3 191 74 10�6 6s
4 138 39 10�6 5s
5 96 10 10�9 1s
6 146 42 10�6 6s
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Abstract

Global equilibrium search is a method that can be ap-
plied to a variety of hard optimization problems. The
algorithm utilizes ideas similar to those of the simu-
lated annealing method. The algorithm accumulates in-
formation about the search space in order to generate
new solutions for the subsequent stages. This method
has been successfully applied to well-known prob-
lems such as the multidimensional knapsack problem,
the job-shop scheduling problem, the unconstrained
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quadratic programming problem, the maximum satis-
fiability problem, etc.

The numerous discrete optimization problems that
arise in practice have such different characteristics that
development of a general purpose solution method is
clearly impracticable. One way of tackling this issue is
to develop a library of suitable solution methods, allow-
ing the practitioner to choose the most suitable for his
problem under his time constraints and quality require-
ments. In recent decades, heuristic approaches, such as
tabu search [1], simulated annealing (SA) [3], etc., have
gained a considerable amount of attention from the sci-
entific community for being the only practical tool that
can be applied to a wide range of difficult problems.
Global equilibrium search (GES) offers another highly
effective tool for solving large-scale optimization prob-
lems.

The method was introduced by Shylo [7] in 1999. It
shares ideas similar to those that inspired the SA tech-
nique, while providing, in practice, faster asymptotic
convergence to the optimal solution on a wide class of
optimization problems. Moreover, the GESmethod can
be used in an ensemble with other techniques, which
makes it more versatile than most of its predecessors.

Consider a discrete optimization problem of the fol-
lowing form:

minf f (x) : x 2 S : S � f0; 1gng (1)

where f is some quality function. Let us introduce a ran-
dom binary vector � that takes a value from a feasi-
ble set S according to the Boltzmann distribution, with
� � 0 being the temperature parameter:

Pf�(�) D xg D
exp(�� f (x))P
x2S exp(�� f (x))

: (2)

Consider the SA method applied to problem (1).
It can be shown easily that under certain conditions
(i. e., symmetric neighborhood structure) the station-
ary probabilities of the Markov chain associated with
the SA method are given by (2).

Set S can be split into two subsets in such a way that
one of them contains the feasible solutions for which
the jth component is 1, and another set will contain the
solution with the jth component equal to 0. Let us name
these two sets S1j and S0j . Obviously, S

1
j [ S0j D S. Then

the probability of the jth component of � being 1 can be
expressed as

p j(�) � Pf� j(�) D 1g D

P
x2S1j

exp(�� f (x))
P

x2S exp(�� f (x))
: (3)

The idea of the GES method is to use some subset
of known solutions bS to generate new solutions in the
successive stages of the algorithm. The distribution (3)
or any other equivalent formula [4] can be used for such
a generation (substituting S withbS in the formula):

bp j(�) � Pfb� j(�) D 1g D

P
x2bS 1

j
exp(�� f (x))

P
x2bS exp(�� f (x))

: (4)

If arg minf f (x) : x 2bS g is unique, then the average
Hamming distance between newly generated solutions
and the best solution in the setbS converges to zero as
� goes to infinity. However, the speed of such conver-
gence is not the same for different components of the
solutions generated, i. e., the speed of convergence of
the jth component depends on the quality of the solu-
tions S1j compared with the quality of solutions in S0j .
Simply put, the temperature parameter in (3) controls
the level of similarity of the newly generated solutions
with high-quality solutions inbS. The uniqueness of the
best solution x� inbS mentioned above should be main-
tained at all stages of the algorithm.

One of the limitations of the strategy described
above is that in order to implement it, there should exist
an easy way of generating random solutions from Swith
the distribution given by (4). Unfortunately, for some
problems, the structure of set S would make this hard
to achieve. For such cases, the local search based tech-
niques (i. e., SAmethod, tabumethod, GESmethod) are
not easily applicable.

Another issue with generating the random solution
x from S using (4) is that the components of the ran-
dom solution x are not independent random variables.
However, for the simplicity of an algorithm, this is usu-
ally ignored because the convergence property is more
important for the performance of the algorithm.

Whenever the new solution is added to set bS, it is
easy to recalculate the probabilities bp j if the denomina-
tor and numerator in (4) are stored separately. There-
fore, there is no need to store the whole set bS in the



1270 G Global EquilibriumSearch

Input: � – vector of temperature values, K – number of temperature stages,
maxn f ail – restart parameter, ngen – # of solutions generated during each
stage

Output:
1: xbest  construct random solution;bS=E=fxbestg
2: while stopping criterion = FALSE do
3: ifbS = ; then
4: x  construct random solution
5: xmax = x
6: bS = fxmaxg (set of known solutions)
7: E = fxmaxg (set of elite solutions)
8: end if
9: for n f ail = 0 to n f ail� do
10: xold = xmax
11: for k = 0 to K do
12: calculate generation probabilities(pk ;bS; �k )
13: for g = 0 to ngen do
14: x  generate solution(xmax , pk)
15: R search method(x) (R is some subset of encountered solutions)
16: bS =bS [ R
17: xmax = arg min f f (x) : x 2bSg
18: if f (xmax) < f (xbest) then
19: xbest = xmax
20: end if
21: update elite set(E,R)
22: end for
23: end for
24: if f (xold) > f (xmax) then
25: n f ail = 0
26: end if
27: bS = E
28: end for
29: P = P [ N(xbest; dp)
30: E = E � P
31: if RESTART-criterion= TRUE then
32: E = ;
33: end if
34: bS = E;
35: xmax = arg min f f (x) : x 2bSg
36: end while
37: return xbest

Global Equilibrium Search, Figure 1
Global equilibrium search method (general scheme)

memory! The notion ofbS is used below mainly for the
simplicity of discussion.

The performance of any GES-based algorithm is
dependent on the choice of the temperature sched-

ule. As with the SA method, there is no basic recipe
to provide an optimal schedule for the GES. The gen-
eral advice here is to choose the sequence of increas-
ing values �0 D 0; �1; �2 D �1˛; : : : ; �K D �K�1˛ (K
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is a number of temperature stages and ˛ > 0), in such
a manner that the algorithm will find the best solu-
tion from setbS almost for sure when generating solu-
tions with temperature parameter �K . However, there
is no need to provide a separate cooling schedule for
each problem solved. Simple scaling of the cost func-
tion ( f 0(x) D C � f (x), C > 0) can make one temper-
ature schedule suitable for a wide range of problems
from the same class. The choice of scaling factor can be
made, for example, in the initial stage of the algorithm,
when � D 0. Additionally, if we multiply the denomi-
nator and numerator of (4) by exp(� f (x�)), where x�

is the best solution frombS, then the convergence to the
best solution frombS is less dependent on the absolute
values of solution costs.

The general scheme of the GES method is presented
in Fig. 1. There are some elements that are included in
the scheme, but that were not discussed above: elite so-
lutions set, prohibition of certain solutions and restart-
ing the search. These elements are not necessary for
success of the GES method and can be easily excluded.
However, for some classes of problems they can provide
a significant performance improvement.

The main cycle (lines 2–36) is repeated until some
stopping criterion is satisfied. The algorithm execution
can be terminated when the best known record for the
given problem is improved, or when the running time
exceeds some limiting value. If the set of known solu-
tions S̃ is empty, then the initialization of the data set
is performed in lines 3–7. The cycle in lines 9–28 is ex-
ecuted until there is no improvement in nfail� consec-
utive cycles. The main element of the GES method is
the temperature cycle (lines 11–23). The probabilities
that guide the search are estimated using expression (4)
at the beginning of each temperature stage (line 12).
For each probability vector, ngen solutions are gener-
ated (lines 13–22). These solutions are used as initial
solutions for the local search procedure (line 15). The
subset of encountered solutions R is used to update set
bS (line 16).

Some set of the solutions can be stored in mem-
ory, in order to provide a fast initialization of the algo-
rithm’s memory structures (lines 27 and 34). Such a set
is referred to as an elite set in the algorithm pseudocode.
Certain solutions can be excluded from this set to avoid
searching the same areas multiple times. In lines 29 and
30, the solutions for which the Hamming distance to

xbest is less than parameter dp are excluded from the elite
set.

A number of successful applications of the GES
method have been reported in recent years [6]. The ap-
plication of the GES method for the multidimensional
knapsack problem is described in [8].

The GES based method was presented in [5] for
solving job-shop scheduling problems. To date, suit-
able exact solution methods are not able to find high-
quality solutions with reasonable computational effort
for the problems involving more than ten jobs and ten
machines. The computational testing of the GES algo-
rithm provided a set of new upper bounds for a wide
set of challenging benchmark problems [2]. The com-
parison with existing techniques for job-shop schedul-
ing asserts that the GESmethod has a great potential for
solving scheduling problems.

The application of GES for the unconstrained
quadratic programming problem was discussed in [4],
where GES was used in a combination with a tabu al-
gorithm. Such an ensemble proved to be an extremely
efficient tool for large-scale problems, outperforming
some of the best available solution techniques.

In conclusion, the universality of the GES method
together with its flexibility make it an optimization tool
worth considering.
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Probability-one homotopy methods are a class of algo-
rithms for solving nonlinear systems of equations that
are accurate, robust, and converge from an arbitrary
starting point almost surely. These new globally con-
vergent homotopy techniques have been successfully
applied to solve Brouwer fixed point problems, poly-
nomial systems of equations, constrained and uncon-
strained optimization problems, discretizations of non-
linear two-point boundary value problems based on
shooting, finite differences, collocation, and finite ele-
ments, and finite difference, collocation, and Galerkin
approximations to nonlinear partial differential equa-
tions.

Probability-OneGlobally
Convergent Homotopies

A homotopy is a continuous map from the interval [0,
1] into a function space, where the continuity is with re-
spect to the topology of the function space. Intuitively,
a homotopy �(�) continuously deforms the function
�(0) = g into the function �(1) = f as � goes from 0 to 1.
In this case, f and g are said to be homotopic. Homotopy
maps are fundamental tools in topology, and provide

a powerful mechanism for defining equivalence classes
of functions.

Homotopies provide a mathematical formalism for
describing an old procedure in numerical analysis, vari-
ously known as continuation, incremental loading, and
embedding. The continuation procedure for solving
a nonlinear system of equations f (x) = 0 starts with
a (generally simpler) problem g(x) = 0 whose solution
x0 is known. The continuation procedure is to track the
set of zeros of

�(�; x) D � f (x)C (1 � �)g(x) (1)

as � is increased monotonically from 0 to 1, starting at
the known initial point (0, x0) satisfying �(0, x0) = 0.
Each step of this tracking process is done by starting at
a point (e�;ex) on the zero set of �, fixing some �� > 0,
and then solving �(e�C	�; x) D 0 for x using a locally
convergent iterative procedure, which requires an in-
vertible Jacobian matrix Dx�(e�C 	�; x). The process
stops at � = 1, since f (x) D �(1; x) D 0 gives a zero x of
f (x). Note that continuation assumes that the zeros of �
connect the zero x0 of g to a zero x of f , and that the Ja-
cobian matrix Dx�(�, x) is invertible along the zero set
of �; these are strong assumptions, which are frequently
not satisfied in practice.

Continuation can fail because the curve � of zeros
of �(�, x) emanating from (0, x0) may:
1) have turning points,
2) bifurcate,
3) fail to exist at some � values, or
4) wander off to infinity without reaching � = 1.
Turning points and bifurcation correspond to singu-
lar Dx�(�, x). Generalizations of continuation known
as homotopy methods attempt to deal with cases 1) and
2) and allow tracking of � to continue through singu-
larities. In particular, continuation monotonically in-
creases �, whereas homotopy methods permit � to both
increase and decrease along � . Homotopy methods can
also fail via cases 3) or 4).

The map �(�, x) connects the functions g(x) and
f (x), hence the use of the word ‘homotopy’. In general
the homotopy map �(�, x) need not be a simple con-
vex combination of g and f as in (1), and can involve �
nonlinearly. Sometimes � is a physical parameter in the
original problem f (x; �) = 0, where � = 1 is the (nondi-
mensionalized) value of interest, although ‘artificial pa-
rameter’ homotopies are generally more computation-
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ally efficient than ‘natural parameter’ homotopies �(�,
x) = f (x; �). An example of an artificial parameter ho-
motopy map is

�(�; x) D � f (x;�)C (1 � �)(x � a); (2)

which satisfies �(0, a) = 0. The name ‘artificial’ reflects
the fact that solutions to �(�, x) = 0 have no physical
interpretation for � < 1. Note that �(�, x) in (2) has
a unique zero x = a at � = 0, regardless of the structure
of f (x; �).

All four shortcomings of continuation and homo-
topy methods have been overcome by probability-one
homotopies, proposed in 1976 by S.N. Chow, J. Mallet-
Paret, and J.A. Yorke [2]. The supporting theory, based
on differential geometry, will be reformulated in less
technical jargon here.

Definition 1 Let U � Rm and V � Rp be open sets,
and let �: U×[0, 1)×V ! Rp be a C2 map. � is said to
be transversal to zero if the p×(m+1+p) Jacobian matrix
D� has full rank on ��1(0).

The C2 requirement is technical, and part of the defini-
tion of transversality. The basis for the probability-one
homotopy theory is the parametrized Sard’s theorem,
[2]:

Theorem 2 Let �: U × [0, 1) ×V ! Rp be a C2 map.
If � is transversal to zero, then for almost all a 2 U the
map

�a(�; x) D �(a; �; x)

is also transversal to zero.

To discuss the importance of this theorem, takeU =Rm,
V = Rp, and suppose that the C2 map �: Rm × [0, 1) ×
Rp! Rp is transversal to zero. A straightforward appli-
cation of the implicit function theorem yields that for
almost all a 2 Rm, the zero set of �a consists of smooth,
nonintersecting curves which either:
1) are closed loops lying entirely in (0, 1) × Rp,
2) have both endpoints in {0} × Rp,
3) have both endpoints in {1} × Rp,
4) are unbounded with one endpoint in either {0} × Rp

or in {1} × Rp, or
5) have one endpoint in {0} × Rp and the other in {1} ×

Rp.
Furthermore, for almost all a 2 Rm, the Jacobian matrix
D�a has full rank at every point in ��1a (0). The goal is to

Globally Convergent Homotopy Methods, Figure 1
Zero set for
a(�, x) satisfying properties 1)–4)

construct a map �a whose zero set has an endpoint in
{0} ×Rp, and which rules out 2) and 4). Then 5) obtains,
and a zero curve starting at (0, x0) is guaranteed to reach
a point (1; x). All of this holds for almost all a 2 Rm,
and hence with probability one [2]. Furthermore, since
a 2 Rm can be almost any point (and, indirectly, so can
the starting point x0), an algorithm based on tracking
the zero curve in 5) is legitimately called globally con-
vergent. This discussion is summarized in the following
theorem (and illustrated in Fig. 1).

Theorem 3 Let f : Rp! Rp be a C2 map, �: Rm×[0, 1)×
Rp ! Rp a C2 map, and �a(�, x) = �(a, �, x). Suppose
that
1) � is transversal to zero.
Suppose also that for each fixed a 2 Rm,
2) �a(0, x) = 0 has a unique nonsingular solution x0,
3) �a(1, x) = f (x) (x 2 Rp).
Then, for almost all a 2 Rm, there exists a zero curve �
of �a emanating from (0, x0), along which the Jacobian
matrix D�a has full rank.

If, in addition,
4) ��1a (0) is bounded,
then � reaches a point (1; x) such that f (x) D 0). Fur-
thermore, if D f (x) is invertible, then � has finite arc
length.

Any algorithm for tracking � from (0, x0) to (1; x),
based on a homotopy map satisfying the hypothe-
ses of this theorem, is called a globally convergent
probability-one homotopy algorithm. Of course, the
practical numerical details of tracking � are nontriv-
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ial, and have been the subject of twenty years of re-
search in numerical analysis. Production quality soft-
ware called HOMPACK90 [6] exists for tracking � . The
distinctions between continuation, homotopymethods,
and probability-one homotopy methods are subtle but
worth noting. Only the latter are provably globally con-
vergent and (by construction) expressly avoid dealing
with singularities numerically, unlike continuation and
homotopy methods which must explicitly handle sin-
gularities numerically.

Assumptions 2) and 3) in Theorem 3 are usually
achieved by the construction of � (such as (2)), and
are straightforward to verify. Although assumption 1)
is trivial to verify for some maps, if � and a are involved
nonlinearly in � the verification is nontrivial. Assump-
tion 4) is typically very hard to verify, and often is a deep
result, since 1)–4) holding implies the existence of a so-
lution to f (x) = 0.

Note that 1)–4) are sufficient, but not necessary, for
the existence of a solution to f (x) = 0, which is why
homotopy maps not satisfying the hypotheses of the
theorem can still be very successful on practical prob-
lems. If 1)–3) hold and a solution does not exist, then
4) must fail, and nonexistence is manifested by � go-
ing off to infinity. Properties 1)–3) are important be-
cause they guarantee good numerical properties along
the zero curve � , which, if bounded, results in a globally
convergent algorithm. If � is unbounded, then either the
homotopy approach (with this particular �) has failed
or f (x) = 0 has no solution.

A few remarks about the applicability and limita-
tions of probability-one homotopy methods are in or-
der. They are designed to solve a single nonlinear sys-
tem of equations, not to track the solutions of a param-
eterized family of nonlinear systems as that parameter
is varied. Thus drastic changes in the solution behavior
with respect to that (natural problem) parameter have
no effect on the efficacy of the homotopy algorithm,
which is solving the problem for a fixed value of the
natural parameter. In fact, it is precisely for this case of
rapidly varying solutions that the probability-one ho-
motopy approach is superior to classical continuation
(which would be trying to track the rapidly varying so-
lutions with respect to the problem parameter). Since
the homotopy methods described here are not for gen-
eral solution curve tracking, they are not (directly) ap-
plicable to bifurcation problems.

Homotopy methods also require the nonlinear sys-
tem to be C2 (twice continuously differentiable), and
this limitation cannot be relaxed. However, requiring
a finite-dimensional discretization to be smooth does
not mean the solution to the infinite-dimensional prob-
lem must also be smooth. For example, a Galerkin
formulation may produce a smooth nonlinear system
in the basis function coefficients even though the ba-
sis functions themselves are discontinuous. Homotopy
methods for optimization problems may converge to
a local minimum or stationary point, and in this regard
are no better or worse than other optimization algo-
rithms. In special cases homotopy methods can find all
the solutions if there is more than one, but in general
the homotopy algorithms are only guaranteed to find
one solution.

Optimization Homotopies

A few typical convergence theorems for optimization
are given next (see the survey in [5] for more examples
and references). Consider first the unconstrained opti-
mization problem

min
x

f (x): (3)

Theorem 4 Let f : Rn ! R be a C3 convex map with
a minimum atex, kexk2 � M. Then for almost all a, kak2
< M, there exists a zero curve � of the homotopy map

�a(�; x) D �r f (x)C (1 � �)(x � a);

along which the Jacobianmatrix D�a(�, x) has full rank,
emanating from (0, a) and reaching a point (1;ex), where
ex solves (3).

A function is called uniformly convex if it is convex and
its Hessian’s smallest eigenvalue is bounded away from
zero. Consider next the constrained optimization prob-
lem

min
x�0

f (x): (4)

This is more general than it might appear because the
general convex quadratic program reduces to a problem
of the form (4).

Theorem 5 Let f : Rn ! R be a C3 uniformly convex
map. Then there exists ı > 0 such that for almost all a� 0
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with kak2 < ı there exists a zero curve � of the homotopy
map

�a(�; x) D �K(x)C (1 � �)(x � a);

where

Ki(x) D �
ˇ̌
ˇ̌@ f (x)
@xi

� xi
ˇ̌
ˇ̌
3

C

�
@ f (x)
@xi

�3

C x3i ;

along which the Jacobian matrix D�a(�, x) has full rank,
connecting (0, a) to a point (1; x), where x solves the con-
strained optimization problem (4).

Given F : Rn ! Rn, the nonlinear complementarity
problem is to find a vector x 2 Rn such that

x � 0; F(x) � 0; x>F(x) D 0: (5)

It is interesting that homotopy methods can be adapted
to deal with nonlinear inequality constraints and com-
binatorial conditions as in (5). Define G : Rn! Rn by

Gi(z) D � jFi (z) � zi j3 C (Fi(z))3 C z3i ;

i D 1; : : : ; n;

and let

�a(�; z) D �G(z)C (1 � �)(z � a):

Theorem 6 Let F : Rn ! Rn be a C2 map, and let the
Jacobian matrix DG(z) be nonsingular at every zero of
G(z). Suppose there exists r > 0 such that z > 0 and zk =
kzk1 � r imply Fk(z) > 0. Then for almost all a > 0 there
exists a zero curve � of �a(�, z), along which the Jacobian
matrix D�a(�, z) has full rank, having finite arc length
and connecting (0, a) to (1; z), where z solves (5).

Theorem 7 Let F : Rn ! Rn be a C2 map, and let the
Jacobian matrix DG(z) be nonsingular at every zero of
G(z). Suppose there exists r > 0 such that z� 0 and kzk1
� r imply zkFk(z) > 0 for some index k. Then there exists
ı > 0 such that for almost all a � 0 with kak1 < ı there
exists a zero curve � of �a(�, z), along which the Jacobian
matrix D�a(�, z) has full rank, having finite arc length
and connecting (0, a) to (1; z), where z solves (5).

Homotopy algorithms for convex unconstrained opti-
mization are generally not computationally competitive
with other approaches. For constrained optimization
the homotopy approach offers some advantages, and,
especially for the nonlinear complementarity problem,

is competitive with and often superior to other algo-
rithms. Consider next the general nonlinear program-
ming problem

8̂
<̂
ˆ̂:

min �(x)
s.t. g(x) � 0;

h(x) D 0;

(6)

where x 2 Rn, � is real valued, g is an m-dimensional
vector, and h is a p-dimensional vector. Assume that
� , g, and h are C2. The Kuhn–Tucker necessary opti-
mality conditions for (6) are (cf. also � Equality-con-
strained nonlinear programming: KKT necessary opti-
mality conditions):

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

r�(x)C ˇ>rh(x)C �>r g(x) D 0;
h(x) D 0;
g(x) � 0;
� � 0;
�>g(x) D 0;

(7)

where ˇ 2 Rp and � 2 Rm. The complementarity con-
ditions � � 0, g(x) � 0, �|g(x) = 0 are replaced by the
equivalent nonlinear system of equations

W(x; �) D 0; (8)

where

Wi(x; �) D � j�i C gi (x)j3 C �3
i �

�
gi (x)

�3
;

i D 1; : : : ;m:
(9)

Thus the optimality conditions (7) take the form

F(x; ˇ; �)

D

0
@
[r�(x)C ˇ>rh(x)C �>r g(x)]>

h(x)
W(x; �)

1
A D 0:

(10)

With z = (x, ˇ, �), the proposed homotopy map is

�a(�; z) D �F(z)C (1 � �)(z � a); (11)

where a 2 Rn+p+m. Simple conditions on � , g, and h
guaranteeing that the above homotopy map �a(�, z)
will work are unknown, although this map has worked
very well on some difficult realistic engineering prob-
lems.
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Globally Convergent Homotopy Methods, Table 1
Taxonomy of homotopy subroutines

x = f (x) F(x) = 0 �(a; �; x) = 0 algorithm
dense sparse dense sparse dense sparse

FIXPDF FIXPDS FIXPDF FIXPDS FIXPDF FIXPDS ordinary differential equation
FIXPNF FIXPNS FIXPNF FIXPNS FIXPNF FIXPNS normal flow
FIXPQF FIXPQS FIXPQF FIXPQS FIXPQF FIXPQS augmented Jacobian matrix

Frequently in practice the functions � , g, and h in-
volve a parameter vector c, and a solution to (6) is
known for some c = c(0). Suppose that the problem un-
der consideration has parameter vector c = c(1). Then

c D (1 � �)c(0) C �c(1) (12)

parametrizes c by � and � = �(x;c) = �(x;c(�)), g =
g(x;c(�)), h = h(x;c(�)). The optimality conditions in
(10) become functions of � as well, F(�, x, ˇ, �) = 0,
and

�a(�; z) D �F(�; z)C (1 � �)(z � a) (13)

is a highly implicit nonlinear function of �. If F(0, z(0))
= 0, a good choice for a in practice has been found to
be a = z(0). A natural choice for a homotopy would be
simply

F(�; z) D 0; (14)

since the solution z(0) to F(0, z) = 0 (the problem cor-
responding to c = c(0)) is known. However, for various
technical reasons, (13) is much better than (14).

Software

There are several software packages implementing both
continuous and simplicial homotopy methods; see [1]
and [6] for a discussion of some of these packages.
A production quality software package written in For-
tran 90 is described here. HOMPACK90 [6] is a For-
tran 90 collection of codes for finding zeros or fixed
points of nonlinear systems using globally convergent
probability-one homotopy algorithms. Three qualita-
tively different algorithms (ordinary differential equa-
tion based, normal flow, quasi-Newton augmented Ja-
cobian matrix) are provided for tracking homotopy
zero curves, as well as separate routines for dense and
sparse Jacobian matrices. A high level driver for the spe-

cial case of polynomial systems is also provided. HOM-
PACK90 features elegant interfaces, use of modules,
support for several sparse matrix data structures, and
modern iterative algorithms for large sparse Jacobian
matrices.

HOMPACK90 is logically organized in two differ-
ent ways: by algorithm/problem type and by subroutine
level. There are three levels of subroutines. The top level
consists of drivers, one for each problem type and algo-
rithm type. The second subroutine level implements the
major components of the algorithms such as stepping
along the homotopy zero curve, computing tangents,
and the end game for the solution at � = 1. The third
subroutine level handles high level numerical linear al-
gebra such as QR factorization, and includes some LA-
PACK and BLAS routines. The organization of HOM-
PACK90 by algorithm/problem type is shown in Ta-
ble 1, which lists the driver name for each algorithm and
problem type.

The naming convention is

FIXP

8<
:
D
N
Q

9=
;
�
F
S

	
;

where D 	 ordinary differential equation algorithm,
N 	 normal flow algorithm, Q 	 quasi-Newton aug-
mented Jacobian matrix algorithm, F 	 dense Jaco-
bian matrix, and S 	 sparse Jacobian matrix. Depend-
ing on the problem type and the driver chosen, the user
must write exactly two subroutines, whose interfaces
are specified in the module HOMOTOPY, defining
the problem (f or �). The module REAL_PRECISION
specifies the real numeric model with

SELECTED_REAL_KIND(13);

which will result in 64-bit real arithmetic on a Cray,
DEC VAX, and IEEE 754 Standard compliant hard-
ware.
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The special purpose polynomial system solver POL-
SYS1H can find all solutions in complex projective
space of a polynomial system of equations. Since a poly-
nomial programming problem (where the objective
function, inequality constraints, and equality con-
straints are all in terms of polynomials) can be formu-
lated as a polynomial system of equations, POLSYS1H
can effectively find the global optimum of a polyno-
mial program. However, polynomial systems can have
a huge number of solutions, so this approach is only
practical for small polynomial programs (e. g., surface
intersection problems that arise in CAD/CAM model-
ing).

The organization of the Fortran 90 code into mod-
ules gives an object oriented flavor to the package. For
instance, all of the drivers are encapsulated in a single
MODULE HOMPACK90. The user’s calling program
would then simply contain a statement like

USE HOMPACK90, ONLY : FIXPNF
Many scientific programmers prefer the reverse call
paradigm, whereby a subroutine returns to the calling
program whenever the subroutine needs certain infor-
mation (e. g., a function value) or a certain operation
performed (e. g., amatrix-vector multiply). Two reverse
call subroutines (STEPNX, ROOTNX) are provided for
‘expert’ users. STEPNX is an expert reverse call step-
ping routine for tracking a homotopy zero curve � that
returns to the caller for all linear algebra, all function
and derivative values, and can deal gracefully with sit-
uations such as the function being undefined at the re-
quested steplength.

ROOTNX provides an expert reverse call end game
routine that finds a point on the zero curve where g(�,
x) = 0, as opposed to just the point where � = 1. Thus
ROOTNX can find turning points, bifurcation points,
and other ‘special’ points along the zero curve. The
combination of STEPNX and ROOTNX provide con-
siderable flexibility for an expert user.

See also

� Parametric Optimization: Embeddings, Path
Following and Singularities

� Topology of Global Optimization
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Abstract

It is becoming apparent that convex financial planning
models are at times a poor approximation of the real
world. More realistic, and more relevant, models need
to dispense with normality assumptions and concavity
of the utility functions to be optimized. Moreover, the
problems are large scale but structured; consequently
specialized algorithms have been proposed for their
solution. The aim of this article is to discuss a non-
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convex portfolio-selection problem and describe algo-
rithms that can be used for its solution.

Background

Modern portfolio theory started in the 1950s with
H. Markowitz’s work [16,17]. Since then a lot of re-
search has been done in improving the basic models
and dispensing with the limiting assumptions of the
field. The aim of this article is to introduce the problem
of optimization of higher-order moments of a portfo-
lio. This model is an extension of the celebrated mean-
variance model of Markowitz [16,17]. The inclusion of
higher-order moments has been proposed as one possi-
ble augmentation to the model in order to make it more
applicable. The applicability of the model can be broad-
ened by relaxing one of its major assumptions, i. e. that
the rate of returns are normal. In order to solve the
portfolio-selection problem, we first need to address the
problem of scenario generation, i. e. the description of
the uncertainties used in the portfolio-selection prob-
lem. Both problems are non-convex, large-scale, and
highly relevant in financial optimization.

We focus on a single-period model where the deci-
sion maker (DM) provides as input preferences with re-
spect to mean, variance, skewness and possibly kurtosis
of the portfolio. Using these four parameters we then
formulate the multicriterion optimization problem as
a standard non-linear programming problem. This ver-
sion of the decision model is a non-convex linearly con-
strained problem.

Before we can solve the portfolio-selection prob-
lem we need to describe the uncertainties regarding the
returns of the risky assets. In particular we need to spec-
ify: (1) the possible states of the world and (2) the prob-
ability of each state. A common approach to this mod-
elling problem is the method of matching moments (see
e. g. [5,9,20]). The first step in this approach is to use the
historical data to estimate the moments (in this paper
we consider the first four central moments, i. e. mean,
variance, skewness and kurtosis). The second step is to
compute a discrete distribution with the same statisti-
cal properties as those calculated in the previous step.
Given that our interest is on real-world applications, we
recognize that there may not always be a distribution
that matches the calculated statistical properties. For
this reason we formulate the problem as a least-squares

problem [5,9]. The rationale behind this formulation
is that we try to calculate a description of the uncer-
tainty that matches our beliefs as well as possible. The
scenario-generation problem also has a non-convex ob-
jective function and is linearly constrained.

For the two problems described above we apply
a new stochastic global optimization algorithm that has
been developed specifically for this class of problems.
The algorithm is described in [19]. It is an extension
of the constrained case of the so-called diffusion algo-
rithm [1,4,6,7]. The method follows the trajectory of
an appropriately defined stochastic differential equa-
tion (SDE). Feasibility of the trajectory is achieved by
projecting its dynamics onto the set defined by the lin-
ear equality constraints. A barrier term is used for the
purpose of forcing the trajectory to stay within any
bound constraints (e. g. positivity of the probabilities,
or bounds on how much of each asset to own).

A review of applications of global optimization to
portfolio selection problems appeared in [13]. A de-
terministic global optimization algorithm for a mul-
tiperiod model appeared in [15]. This article comple-
ments the work mentioned above in the sense that we
describe a complete framework for the solution of a re-
alistic financial model. The type of models we consider,
due to the large number of variables, cannot be solved
by deterministic algorithms. Consequently, practition-
ers are left with two options: solve a simpler, but less
relevant, model or use a heuristic algorithm (e. g. tabu-
search or evolutionary algorithms). The approach pro-
posed in this paper lies somewhere in the middle. The
proposed algorithm belongs to the simulated-anneal-
ing family of algorithms, and it has been shown in [19]
that it converges to the global optimum (in a proba-
bilistic sense). Moreover, the computational experience
reported in [19] seems to indicate that the method is
robust (in terms of finding the global optimum) and re-
liable. We believe that such an approach will be useful
in many practical applications.

Models

Scenario Generation

From its inception stochastic programming (SP) has
found several diverse applications as an effective
paradigm for modelling decisions under uncertainty.
The focus of initial research was on developing effec-
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tive algorithms for models of realistic size. An area that
has only recently received attention is on methods to
represent the uncertainties of the decision problem.

A review of available methods to generate meaning-
ful descriptions of the uncertainties from data can be
found in [5]. We will use a least-squares formulation
(see e. g. [5,9]). It is motivated by the practical concern
that the moments, given as input, may be inconsistent.
Consequently, the best one can do is to find a distribu-
tion that fits the available data as well as possible. It is
further assumed that the distribution is discrete. Under
these assumptions the problem can be written as

min
!;p

nX
iD1

� kX
jD1

p jmi(! j) � �i

�2

s:t
kX

jD1

p j D 1p j � 0 j D 1; : : : ; k;

where �i represents the statistical properties of interest
and mi (�) is the associated ‘moment’ function. For ex-
ample, if �i is the target mean for the ith asset, then
mi(! j) D ! i

j i. e. the jth realization of the ith asset.
Numerical experiments using this approach for a mul-
tistage model were reported in [9] (without arbitrage
considerations). Other methods such as maximum en-
tropy [18] and semidefinite programming [2] enjoy
strong theoretical properties but cannot be used when
the data of the problem are inconsistent. A disadvan-
tage of the least-squares model is that it is highly non-
convex, which makes it very difficult to handle numer-
ically. These considerations lead to the development
of the algorithm described in Sect. “A Stochastic Opti-
mization Algorithm” (see also [19]) that can efficiently
compute global optima for problems in this class.

When using scenario trees for financial planning
problems it becomes necessary to address the issue of
arbitrage opportunities [9,12]. An arbitrage opportu-
nity is a self-financing trading strategy that generates
a strictly positive cash flow in at least one state and
whose payoffs are non-negative in all other states. In
other words, it is possible to get something for nothing.
In our implementation we eliminate arbitrage oppor-
tunities by computing a sufficient set of states so that
the resulting scenario tree has the arbitrage-free prop-
erty. This is achieved by a simple two-step process. In
the first step we generate random rates of returns; these

are sampled by a uniform distribution. We then test for
arbitrage by solving the system

xi
0 D e�r

mX
jD1

xi
j
 j ;

mX
jD1


 j D 1; 
 j � 0;

j D 1; : : : ;m i D 1; : : : ; n ;

(1)

where xi
0 represents the current (known) state of the

world for the ith asset and xi
j represents the jth real-

ization of the ith asset in the next time period (these
are generated by the simulations mentioned above).
r is the riskless rate of return. The 
 j are called the risk-
neutral probabilities. According to a fundamental re-
sult of Harisson and Kerps [10], the existence of the
risk-neutral probabilities is enough to guarantee that
the scenario tree has the desired property. In the sec-
ond step, we solve the least-squares problem with some
of the states fixed to the states calculated in the first step.
In other words, we solve the following problem:

min
!;p

nX
iD1

� kX
jD1

p jmi (! j)C
mX
lD1

plmi(!̂l ) � �i

�2

s:t
kCmX
jD1

p j D 1p j � 0 j D 1; : : : ; k C m :

(2)

In the problem above, !̂ are fixed. Solving the preced-
ing problem guarantees a scenario tree that is arbitrage
free.

Portfolio Selection

In this section we describe the portfolio-selection prob-
lem when higher-order terms are taken into account.
The classical mean–variance approach to portfolio
analysis seeks to balance risk (measured by variance)
and reward (measured by expected value). There are
many ways to specify the single-period problem. We
will be using the following basic model:

min
w
� ˛E[w]C ˇV [w]

s.t
nX

iD1

wi D 1 li � wi � ui i D 1; : : : ; n ;
(3)

where E[�] and V [�] represent the mean rate of return
and its variance respectively. The single constraint is
known as the budget constraint and it specifies the ini-
tial wealth (without loss of generality we have assumed
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that this is one). The ˛ and ˇ are positive scalars and
are chosen so that ˛ C ˇ D 1. They specify the DM’s
preferences, i. e. ˛ D 1 means that the DM is risk seek-
ing, while ˇ D 1 implies that the DM is risk averse. Any
other selection of the parameters will produce a point
on the efficient frontier. The decision variable (w) rep-
resents the commitment of the DM to a particular asset.
Note that this problem is a convex quadratic program-
ming problem for which very efficient algorithms exist.
The interested reader is referred to the review in [23]
for more information regarding the Markowitz model.

We propose an extension of the mean–variance
model using higher-order moments. The vector-
optimization problem can be formulated as a standard
non-convex optimization problem using two additional
scalars to act as weights. These weights are used to en-
force the DM’s preferences. The problem is then for-
mulated as follows:

min
w
� ˛E[w]C ˇV [w] � �S[w]C ıK[w]

s.t
nX

iD1

wi D 1 li � wi � ui i D 1; : : : ; n ;
(4)

where S[�] and K[�] represent the skewness and kurto-
sis of the rate of return respectively. � and ı are positive
scalars. The four scalar parameters are chosen so that
they sum to one. Positive skewness is desirable (since
it corresponds to higher returns, albeit with low proba-
bility), while kurtosis is undesirable since it implies that
the DM is exposed to more risk. The model in (4) can
be extended to multiple periods while maintaining the
same structure (non-convex objective and linear con-
straints). The numerical solution of (2) and (4) will be
discussed in the next section.

Methods

A Stochastic Optimization Algorithm

The models described in the previous section can be
written as:

min
x

f (x)

s:t Ax D b

x � 0 :

A well-known method for obtaining a solution to an
unconstrained optimization problem is to consider the

following ordinary differential equation (ODE):

dX(t) D �r f (X(t))dt : (5)

By studying the behaviour of X(t) for large t, it can be
shown that X(t) will eventually converge to a stationary
point of the unconstrained problem. A review of so-
called continuous-path methods can be found in [25].
A deficiency of using (5) to solve optimization prob-
lems is that it will get trapped in local minima. To al-
low the trajectory to escape from local minima, it has
been proposed by various authors (e. g. [1,4,6,7]) to
add a stochastic term that would allow the trajectory
to ‘climb’ hills. One possible augmentation to (5) that
would enable us to escape from local minima is to add
noise. One then considers the diffusion process:

dX(t) D �r f (X(t))dtC
p
2T(t)dB(t) ; (6)

where B(t) is the standard Brownian motion in Rn. It
has been shown in [4,6,7], under appropriate condi-
tions on f and T(t), that as t!1, the transition prob-
ability of X(t) converges to a probability measure ˘ .
The latter has its support on the set of global minimiz-
ers.

For the sake of argument, suppose we did not have
any linear constraints but only positivity constraints.
We could then consider enforcing the feasibility of the
iterates by using a barrier function. According to the al-
gorithmic framework sketched out above, we could ob-
tain a solution to our (simplified) problem by following
the trajectory of the following SDE:

dX(t) D �r f (X(t))dtC�X(t)�1dtC
p
2T(t)dB(t);

(7)

where � > 0 is the barrier parameter. By X-1 we will
denote an n-dimensional vector whose ith component
is given by 1/Xi . Having used a barrier function to deal
with the positivity constraints, we can now introduce
the linear constraints into our SDE@. This process has
been carried out in [19] using the projected SDE:

dX(t) D P[�r f (X(t))C�X(t)�1]dtC
p
2T(t)PdB(t);

(8)

where P D I � AT (AAT)�1A. The proposed algorithm
works in a similar manner to gradient-projection al-
gorithms. The key difference is the addition of a bar-
rier parameter for the positivity of the iterates and
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a stochastic term that helps the algorithm escape from
local minima.

The global optimization problem can be solved by
fixing � and following the trajectory of (8) for a suit-
ably defined function T(t). After sufficient time passes,
we reduce � and repeat the process. The proof that fol-
lowing the trajectory of (8) will eventually lead us to the
global minimum appears in [19]. Note that the projec-
tion matrix for the type of constraints we need to im-
pose for our models is particularly simple. For a con-
straint of the type

Pn
iD1 xi D 1 the projection matrix is

given by

Pi j D

(
� 1

n if i ¤ j;
n�1
n otherwise.

Other Methods

In this article we have focused on the numerical solu-
tion of a financial planning problem using a stochas-
tic algorithm. We end this article by briefly discussing
other possible approaches. Only stochastic methods
will be discussed; for deterministic methods we refer
the interested reader to [13].

Two-phase methods: Methods belonging to this
class, as the name suggests, have two phases: a local
and global phase. In the global phase, the feasible region
is uniformly sampled. From each feasible point a local
optimization algorithm is started. The later process is
the local phase. This basic algorithmic framework has
been modified to improve its performance by various
authors. Improving this type of method requires care-
ful selection of the sample points from which to start
the local optimizations. Inevitably there is some com-
promise between computational efficiency and theoret-
ical convergence. For a review of two-phase methods
we refer the reader to [21] and references therein.

Simulated annealing (SA): This family of algo-
rithms was inspired by the physical behaviour of atoms
in a liquid. The method was independently proposed
by Cerny[3] and Kirkpatrick et al. [11]. The method
is inspired by a fundamental question of statistical me-
chanics concerning the behaviour of the system in low
temperatures. For example, will the atoms remain fluid
or will they solidify? If they solidify, do they form
a crystalline solid or a glass? It turns out [11] that if
the temperature is decreased slowly, then they form

a pure crystal; this state corresponds to the minimum
energy of the system. If the temperature is decreased
too quickly, then they form a crystal with many defects.
SA algorithms generate a point from some distribution.
Whether to accept the new point or not is decided by
an acceptance function. The latter function is ‘temper-
ature’ dependent. At high temperatures the function is
likely to accept the new point, while at low tempera-
tures only points close to the global optimum value are
supposed to be accepted. As can be anticipated, the per-
formance of the algorithm depends on the annealing
schedule, i. e. how fast the temperature is reduced. Per-
formance also depends on how points are sampled, the
acceptance function and, of course, the stopping condi-
tions. An excellent review article for SA is [14].

Stochastic adaptive search methods: These types
of algorithms have strong theoretical properties but
present challenging implementation issues. A typical
algorithm from this class is the pure adaptive search
method. This method works like a pure random search
method but with the additional assumption of the abil-
ity to sample from a distribution that gives realizations
that are strictly better than the incumbent. There exist
many variants and combinations of this type of method,
and an excellent review of them is given in [24].

Genetic algorithms: This class of algorithms has
been inspired by concepts from evolutionary biology
and from aspects of natural selection. There are two
phases in these algorithms: generation of the popula-
tion and updating. During the generation phase, can-
didate points (offsprings) are generated by sampling
a p.d.f. This p.d.f. is usually specified from the origi-
nal or the previous generation (the parents). In the sec-
ond phase the population is updated. This update is
performed by applying a selection mechanism and per-
forming mutation operations on the population. There
are very few theoretical results concerning the con-
vergence properties of genetic algorithms. However, if
their success in applications is anything to go by, then
more attention needs to devoted to convergence as-
pects of the method. An excellent review of genetic al-
gorithms is given in [22].

Tabu search: This is another heuristic algorithm
that has been successfully used for global optimization
(especially combinatorial problems) but lacks theoret-
ical backing. This class of algorithms was proposed by
Glover, and a review of the method appeared in [8]. The
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algorithm has three phases: preliminary search, intensi-
fication, and diversification. In the first phase, the algo-
rithm takes the current configuration, examines neigh-
bouring solutions, and selects the one with the best
objective function value. This process is continued un-
til no improving state can be identified. At this stage the
possibility of returning to this point is ruled out by plac-
ing it into a list. This list is called the tabu list. In the
second phase (intensification), the tabu list is cleared
and the algorithm returns to the first phase. In the fi-
nal stage (diversification), the most frequent moves that
were placed into the tabu list during the first phase are
placed from the start into the list. The algorithm then
starts from a random initial point. In this phase the al-
gorithm is not allowed to make any moves that are in
the tabu list.
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Environmental Systems Analysis
and Optimization

The harmonized consideration of technical, economic
and environmental objectives in strategic planning and
operational decision making is of paramount impor-
tance, on a worldwide scale. Environmental quality is-
sues are of serious concern even in the most developed
countries, although direct pollution control expendi-
tures are typically in the 2–3 percent range of their gross
domestic product. The ‘optimized’ or at least ‘accept-
able’ solution of environmental quality problems re-
quires the combination of knowledge from a multitude
of areas, and requires an interdisciplinary effort.

In the past decades, mathematical programming
(MP) models have been applied also to the analysis
and management of environmental systems. The an-
notated bibliography [9] reviews over 350 works, in-
cluding some thirty books. Note further that the en-
gineering, economic and environmental science litera-
ture contains a very large amount of work that can serve
as a basis and therefore is closely related to such mod-
eling efforts. For instance, the classic textbook [28] re-
views the basic quantitative models applied in describ-
ing physical, chemical and biological phenomena of rel-
evance. A more recent exposition (with a somewhat
broader scope) is presented in, for instance, [11]. The
chapters in the latter edited volume discuss the follow-
ing issues:
� environmental crisis, as a multidisciplinary chal-

lenge;

� soil pollution;
� air pollution;
� water pollution;
� water resources management;
� pesticides;
� gene technology;
� landscape planning;
� environmental economics;
� ecological aspects;
� environmental impact assessment;
� environmental management models.
Environmental management models are discussed – in
the broader context of governmental planning and op-
erations – already in [8]. In addition to items listed
above, the (relevant) topics covered include also
� solid waste management;
� urban development;
� policy analysis.
Numerous further books can be mentioned; with vary-
ing emphasis on environmental science, engineering,
economics or systems analysis. Consult, e. g., [1,2,3,
4,6,10,13,15,16,17,18,19,23,24,25,29,31,32,33]. Most of
these works also provide extensive lists of additional
references.

In the framework of this short article there is no
room to go into any detailed discussion of environ-
mental models. Therefore we shall only emphasize one
important methodological aspect reflected by the ti-
tle: namely, the relevance of global optimization in this
context.

The predominant majority of MP models pre-
sented, e. g., in the books listed or in [9] belong to (con-
tinuous or possibly mixed integer) linear programming,
or to convex nonlinear programming, with additional –
usually rather simplified – considerations regarding
system stochasticity. At the same time, more detailed or
more realistic models of natural systems and their gov-
erning processes often possess high (explicit or hidden)
high nonlinearity. For instance, onemay think of power
laws, periodic or chaotic processes, and (semi)random
fluctuations, reflected by many natural objects on var-
ious scales: mountains, waters, plants, animals, and so
on. For related far-reaching discussions, consult, for
example, [5,7,20,21], or [30]. Since many natural ob-
jects and processes are inherently nonlinear, manage-
ment models that optimize the behavior of environ-
mental systems frequently lead to multi-extremal deci-
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sion problems. Continuous global optimization (GO)
is aimed at finding the ‘absolutely best’ solution of such
models, in the possible presence of many other (locally
optimal) solutions of various quality. See � Continu-
ous global optimization: Models, algorithms and soft-
ware and � Continuous global optimization: Applica-
tions for a number of textbooks andWWWsites related
to the subject of GO. Therefore, here we mention only
the handbook [14] and the WWW site [22].

We shall illustrate the relevance of GO by two very
general examples, adapted from [26]. The latter book
presents also a number of other case studies related
to environmental modeling and management, with nu-
merous additional references pertinent to this subject.

Model Calibration

The incomplete or poor understanding of environmen-
tal – as well as many other complex – systems calls
for descriptive model development as an essential tool
of the related research. The following main phases of
quantitative systems modeling can be distinguished:
� identification: formulation of principal modeling

objectives, determination (selection) of suitable
model structure;

� calibration: (inverse) model fitting to available data
and background information;

� validation and application in analysis, forecasting,
control, management.

Consequently, the ‘adequate’ or ‘best’ parameterization
of descriptive models is an important stage in the pro-
cess of understanding environmental systems. Interest-
ing, practically motivated discussions of the model cal-
ibration problem are presented also in [1,3,12,32].

A fairly simple and commonly applied instance of
the model calibration problem can be stated as follows.
Given
� a descriptive system model (e. g. of a lake, river,

groundwater or atmospheric system) that depends
on certain unknown (physical, chemical) parame-
ters; their vector is denoted by x;

� the set of a priori feasible parameterizations D;
� the model output values y(m)

t = y(m)
t (x) at time mo-

ments t = 1, . . . , T;
� a set of corresponding observations yt at t = 1, . . . , T;
� a discrepancy measure denoted by f which expresses

the distance between y(m)
t and yt .

Then the optimized model calibration problem can be
formulated as

(
min f (x) :D f fy(m)

t (x); ytg
s.t. x 2 D:

(1)

Frequently, D is a finite n-interval (a ‘box’); fur-
thermore, f is a continuous or somewhat more special
(smooth, Lipschitz, etc.) function. Additional structural
assumptions regarding f may be difficult to postulate,
due to the following reason. For each fixed parame-
ter vector x, the model output sequence {y(m)

t (x)} may
be produced by some implicit formulas, or by a com-
putationally demanding numerical procedure (such as
e. g., the solution of a system of partial differential equa-
tions). Consequently, althoughmodel (1)most typically
belongs to the general class of continuous GO prob-
lems, a more specific classification may be difficult to
provide. Therefore one needs to apply a GO procedure
that enables the solution of the calibration problem un-
der the very general conditions outlined above.

To conclude the brief discussion of this example,
note that in [26] several variants of the calibration prob-
lem statement are studied in detail. Namely, the model
development and solver system LGO is applied to solve
model calibration problems related to water quality
analysis in rivers and lakes, river flow hydraulics, and
aquifer modeling. (More recent implementations of
LGO are described elsewhere: consult, e. g., [27].)

‘Black Box’ Optimization
(in Environmental Systems)

As outlined above, the more realistic – as opposed to
strongly simplified – analysis of environmental pro-
cesses frequently requires the development of sophisti-
cated systems of (sub)models: these are then connected
to a suitable optimization modeling framework. For ex-
amples of various complexity, consult [1,2,10,19,32].
We shall illustrate this point by briefly discussing
a modeling framework for river water quality man-
agement: for additional details, see [26] and references
therein.

Assume that the ambient water quality in a river at
time t is characterized by a certain vector s(t). The com-
ponents in s(t) can include, for instance the following:
suspended solids concentration, dissolved oxygen con-
centration, biological oxygen demand, chemical oxy-
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gen demand, concentrations of micro-pollutants and
heavy metals, and so on. Naturally, the resulting water
quality is influenced by a number of factors. These in-
clude the often stochastically fluctuating (discharge or
nonpoint source) pollution load, as well as the regional
hydro-meteorological conditions (streamflow rate, wa-
ter temperature, etc). Some of these factors can be di-
rectly observed, while some others may not be com-
pletely known. In a typical model development pro-
cess, submodels are constructed to describe all physi-
cal, chemical, biological, and ecological processes of rel-
evance. (As for an example, one can refer to the classical
Streeter–Phelps differential equations that approximate
the longitudinal evolution of biological oxygen demand
in a river; consult [25,28].)

In order to combine such system description with
management models, one has to be able to evaluate all
decision considered. Each given decision x can be re-
lated, inter alia, to the location and sizing of industrial
and municipal wastewater treatment plants, the control
of nonpoint source (agricultural) pollution, the design
of a wastewater sewage collection network, the daily op-
eration of these facilities, and so on. The analysis fre-
quently involves the computationally intensive evalua-
tion of environmental quality – e. g., by solving a sys-
tem of (partial) differential equations – for each deci-
sion option considered. The quite (possibly) more real-
istic stochastic extensions of such models may also re-
quire the execution of Monte-Carlo simulation cycles.
Under such or similar circumstances, environmental
management models can be (very) complex consisting
of a number of ‘black box’ submodels. Consequently,
the following general conceptual modeling framework
may, and often will, lead to multi-extremal model in-
stances requiring the application of suitable GO tech-
niques:

minfTCEM(x)g;

EQmin � EQ(x) � EQmax;

TFmin � TF(x) � TFmax;

(2)

in which
� TCEM(x) is total (discounted, expected) costs of en-

vironmental management;
� EQ(x) is resulting environmental quality (vector);
� EQmin and EQmax are vector bounds on ‘acceptable’

environmental quality indicators;

� TF(x) are resulting technical system characteristics
(vector);

� TFmin and TFmax are vector bounds on ‘acceptable’
technical characteristics.

Numerous other examples could be cited: similarly to
the case considered above, they may involve the solu-
tion of systems of (algebraic, ordinary or partial dif-
ferential) equations, and/or the statistical analysis of
the environmental (model) system studied. For fur-
ther examples – including data analysis, combination
of expert opinions, environmental model calibration,
industrial wastewater management, regional pollution
management in rivers and lakes, risk assessment and
control of accidental pollution – in the context of
global optimization consult, e. g., [26], and references
therein.
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The reliable calculation of phase equilibrium for mul-
ticomponent mixtures is a critical aspect in the simu-
lation, optimization and design of a wide variety of in-
dustrial processes, especially those involving separation
operations such as distillation and extraction. It is also
important in the simulation of enhanced oil recovery
processes such as miscible or immiscible gas flooding.
Unfortunately, however, even when accurate models of
the necessary thermodynamic properties are available,
it is often very difficult to actually solve the phase equi-
librium problem reliably.

Background

The computation of phase equilibrium is often consid-
ered in two stages, as outlined by M.L. Michelsen [12,
13]. The first involves the phase stability problem, that
is, to determine whether or not a givenmixture will split
into multiple phases. The second involves the phase
split problem, that is to determine the amounts and
compositions of the phases assumed to be present. Af-
ter a phase split problem is solved it may be necessary
to do phase stability analysis on the results to deter-
mine whether the postulated number of phases was cor-
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rect, and if not repeat the phase split problem. Both the
phase stability and phase split problems can be formu-
lated as minimization problems, or as equivalent non-
linear equation solving problems.

For determining phase equilibrium at constant tem-
perature and pressure, the most commonly considered
case, a model of the Gibbs free energy of the system is
required. This is usually based on an excess Gibbs en-
ergy model (activity coefficient model) or an equation
of state model. At equilibrium the total Gibbs energy of
the system is minimized. Phase stability analysis may be
interpreted as a global optimality test that determines
whether the phase being tested corresponds to a global
optimum in the total Gibbs energy of the system. If it
is determined that a phase will split, then a phase split
problem is solved, which can be interpreted as finding
a local minimum in the total Gibbs energy of the sys-
tem. This local minimum can then be tested for global
optimality using phase stability analysis. If necessary
the phase split calculation must then be repeated, per-
haps changing the number of phases assumed to be
present, until a solution is found that meets the global
optimality test. Clearly the correct solution of the phase
stability problem, itself a global optimization problem,
is the key in this two-stage global optimization pro-
cedure for phase equilibrium. As emphasized in [10],
while it is possible to apply rigorous global optimization
techniques directly to the phase equilibrium problem,
it is computationally more efficient to use a two-stage
approach such as outlined above, since the dimension-
ality of the global optimization problem that must be
solved (phase stability problem) is less than that of the
full phase equilibrium problem.

In solving the phase stability problem, the conven-
tional solution methods are initialization dependent,
and may fail by converging to trivial or nonphysical
solutions or to a point that is a local but not a global
minimum. Thus there is no guarantee that the phase
equilibrium problem has been correctly solved. Because
of the difficulties that may arise in solving phase equi-
librium problems by standard methods (e. g., [12,13]),
there has been significant interest in the development
of more reliable methods. For example, the methods of
A.C. Sun and W.D. Seider [16], who use a homotopy
continuation approach, and of S.K. Wasylkiewicz, L.N.
Sridhar, M.F. Malone and M.F. Doherty [18], who use
an approach based on topological considerations, can

offer significant improvements in reliability. C.M. Mc-
Donald and C.A. Floudas [7,8,9,10] show that, for cer-
tain activity coefficient models, the phase stability and
equilibrium problems can be made amenable to solu-
tion by powerful global optimization techniques, which
provide a mathematical guarantee of reliability.

An alternative approach for solving the phase sta-
bility problem, based on interval analysis, that pro-
vides both mathematical and computational guarantees
of global optimality, was originally suggested by M.A.
Stadtherr, C.A. Schnepper and J.F. Brennecke [15], who
applied it in connection with activity coefficient mod-
els, as later done also in [11]. This technique, in par-
ticular the use of an interval Newton and generalized
bisection algorithm, is initialization independent and
can solve the phase stability problemwithmathematical
certainty, and, since it deals automatically with round-
ing error, with computational certainty as well. J.Z.
Hua, Brennecke and Stadtherr [3,4,5,6] extended this
method to problems modeled with cubic equation of
state models, in particular the Van der Waals, Peng–
Robinson, and Soave–Redlich–Kwong models. Though
interval analysis provides a general purpose and model
independent approach for guaranteed solution of the
phase stability problem, the discussion below will focus
on the use of cubic equation of state models.

Phase Stability Analysis

The determination of phase stability is often done us-
ing tangent plane analysis [1,12]. A phase at specified
temperature T, pressure P, and feed mole fraction vec-
tor z is unstable and can split (in this context, ‘unstable’
refers to both the thermodynamically metastable and
classically unstable cases), if the molar Gibbs energy of
mixing surface m(x, v) ever falls below a plane tangent
to the surface at z. That is, if the tangent plane distance

D(x; v) D m(x; v) � m0 �

nX
iD1

�
@m
@xi

�

0
(xi � zi )

is negative for any composition (mole fraction) vector
x, the phase is unstable. The subscript zero indicates
evaluation at x = z, n is the number of components, and
v is the molar volume of the mixture. A common ap-
proach for determining if D is ever negative is to min-
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imize D subject to the mole fractions summing to one

1 �
nX

iD1

xi D 0 (1)

and subject to the equation of state relating x and v:

P �
RT
v � b

C
a

v2 C ubv C wb2
D 0: (2)

Here a and b are functions of x determined by spec-
ified mixing rules. The ‘standard’ mixing rules are b
=
Pn

iD1 xibi and a =
Pn

iD1
Pn

jD1xixjaij, with ai j D
(1 � ki j)

pai a j . The ai(T) and bi are pure component
properties determined from the system temperature T,
the critical temperatures Tci, the critical pressures Pci

and acentric factors !i. The binary interaction parame-
ter kij is generally determined experimentally by fitting
binary vapor-liquid equilibrium data. Equation (2) is
a generalized cubic equation of state model. With the
appropriate choice of u and w, common models such
as Peng–Robinson (u = 2, w = �1), Soave–Redlich–
Kwong (u = 1, w = 0), and Van der Waals (u = 0, w = 0)
may be obtained. It is readily shown that the stationary
points in this optimization problem must satisfy

si (x; v) � si (z; v0) D 0; i D 1; : : : ; n � 1; (3)

where

si D
�
@m
@xi

�
�

�
@m
@xn

�
:

The (n + 1) × (n + 1) system given by equations (1),
(2) and (3) above can be used to solve for the stationary
points in the optimization problem.

The equation system for the stationary points has
a trivial root at (x, v) = (z, v0) and frequently has multi-
ple nontrivial roots as well. Thus conventional equation
solving techniques may fail by converging to the trivial
root or give an incorrect answer to the phase stability
problem by converging to a stationary point that is not
the global minimum ofD. This is aptly demonstrated by
the experiments of K.A. Green, S. Zhou and K.D. Luks
[2], who show that the pattern of convergence from dif-
ferent initial guesses demonstrates a complex fractal-
like behavior for even very simple models like Van der
Waals. The problem is further complicated by the fact
that the cubic equation of state (2) may have multiple
real volume roots v.

As an example of a system that causes numerical
difficulties, consider the binary mixture of hydrogen
sulfide (component 1) and methane (component 2) at
a temperature of 190 K and pressure of 40.53 bar (40
atm) modeled using the Soave–Redlich–Kwong equa-
tion of state, and with an overall feed composition of z1
= 0.0187. Figure 1 shows a plot of the reduced Gibbs en-
ergy of mixing m vs. x1 for this system (in the reduced
composition space where x2 = 1 � x1), and also shows
the tangent at the feed composition.

The corresponding tangent plane distance function
is shown in Fig. 2 and Fig. 3.

Note that this system has a region, around x1 of
0.03 to 0.05, where multiple real volume roots occur
and thus multiple values of m and D exist; only the
lowest values are physically significant. This system has
five stationary points, four minima and one maximum.
Conventional locally convergent methods are typically
used with multiple initial guesses, generally at or near

Global Optimization: Application to Phase Equilibrium Prob-
lems, Figure 1
Reduced Gibbs energy of mixing m versus x1 for the system
hydrogen sulfide and methane, showing tangent at a feed
composition of 0.0187

Global Optimization: Application to Phase Equilibrium Prob-
lems, Figure 2
Tangent plane distance D versus x1 for the example system
of Fig. 1. See Fig. 3 for enlargement of area near the origin
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Global Optimization: Application to Phase Equilibrium Prob-
lems, Figure 3
Enlargement of part of Fig. 2, showing area near the origin

the pure components (x1 = 0 and x1 = 1). When this is
done convergence will likely be to the local minimum
at the feed composition (0.0187) and to the local min-
imum around 0.88. The global minimum with D < 0
is missed, leading to the incorrect conclusion that the
mixture is stable.

Interval Analysis

Interval analysis makes possible themathematically and
computationally guaranteed solution of the phase sta-
bility problem. Since the mole fraction variables xi are
known to lie between zero and one, and it is easy to put
physical upper and lower bounds on the molar volume
v as well, a feasible interval for all variables is readily
identified. By applying an interval Newton/generalized
bisection approach to the entire feasible interval, enclo-
sures of all the stationary points of the tangent plane
distance D can be found by solving the nonlinear equa-
tion system (1)–(3), and the globalminimum of D thus
identified. This approach requires no initial guess, and
is applicable to any model for the Gibbs energy, not
just those derived from equations of state. For the bi-
nary system used as an example above, all five station-
ary points are easily found, and the global minimum at
x1 = 0.0767, v = 64.06 cm3/mol, and D = � 0.004 thus
identified [3,6].

The efficiency of the interval approach can depend
significantly on how tightly one can compute interval
extensions for the functions involved. The interval ex-
tension of a function over a given interval is an enclo-
sure for the range of the function over that interval.
When the natural interval extension, that is the func-
tion range computed using interval arithmetic, is used,
it may tightly bound the actual function range. How-

ever, it is not uncommon for the natural interval exten-
sion to provide a significant overestimation of the true
function range, especially for functions of the complex-
ity encountered in the phase stability and equilibrium
problems.

Some tightening of bounds can be achieved by tak-
ing advantage of information about function mono-
tonicity. Another simple and effective way to allevi-
ate this difficulty in this context is to focus on tight-
ening the enclosure when computing interval exten-
sions of mole fraction weighted averages, such as r DPn

iD1 xi ri , where the ri are constants. Due to the mix-
ing rules for determining a and b, such expressions oc-
cur frequently, both in the equation of state (2) itself,
as well in the derived model m(x, v) for the Gibbs en-
ergy of mixing and thus in equation (3). The natural
interval extension of r will yield the true range (within
roundout) of the expression in the space in which all
the mole fraction variables xi are independent. How-
ever, the range can be tightened by considering the con-
straint that the mole fractions must sum to one. One
approach for doing this is simply to eliminate one of
the mole fraction variables, say xn. Then an enclosure
for the range of r in the constrained space can be deter-
mined by computing the natural interval extension of
rn C

Pn�1
iD1 (ri � rn)xi . However, this may not yield the

sharpest possible bounds on r in the constrained space.
For constructing the exact (within roundout)

bounds on r in the constrained space, S.R. Tessier [17]
and Hua, Brennecke and Stadtherr [5] have presented
a very simple method, based on the observation that at
the extrema of r in the constrained space, at least n �
1 of the mole fraction variables must be at their up-
per or lower bound. This observation can be derived
by viewing the problem of bounding the range of r in
the constrained space as a linear programming prob-
lem. As shown in [5], when the constrained space inter-
val extensions for mole fraction weighted averages are
used, together with information about function mono-
tonicity, significant improvements in computational ef-
ficiency, nearly an order of magnitude even for small
(binary and ternary) problems, can be achieved in us-
ing the interval approach for solving the phase stability
problem.

For small problems, it is usually efficient to globally
minimize D by finding all of its stationary points, since
this does not require repeated evaluation of the range
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of D. However, in general, for making a determination
of phase stability or instability, finding all the station-
ary points is not really necessary, nor for larger prob-
lems, desirable. For example, if an interval is encoun-
tered over which the interval extension of D has a neg-
ative upper bound, this guarantees that there is a point
at which D < 0, and so one can immediately conclude
that the mixture is unstable without determining all the
stationary points. It is also possible to easily make use
of the underlying global minimization problem. Since
the objective function D has a known value of zero at
the mixture feed composition (tangent point), any in-
terval over which the interval extension ofD has a lower
bound greater than zero cannot contain the global min-
imum and can be discarded, even though it may contain
a stationary point (at which D will be positive and thus
not of interest). Thus, one can essentially combine the
interval-Newton technique with an interval branch and
bound procedure in which lower bounds are generated
using interval techniques.

Also, it should be noted that the global interval ap-
proach described here can easily be combined with ex-
isting local methods for determining phase stability and
equilibrium. First, some (fast) local method is used. If it
indicates instability then this is the correct answer as it
means a point at whichD < 0 has been found. If the local
method indicates stability, however, this may not be the
correct answer since the local method may have missed
the global minimum in D. Applying interval analysis
as described here can then be used to confirm that the
mixture is stable if that is the case, or to correctly deter-
mine that it is really unstable if that is the case.

Conclusion

As demonstrated in [3,4,5,6,11,15], interval analysis can
be used to solve phase stability and equilibrium prob-
lems efficiently and with complete reliability, provid-
ing a method that can guarantee with mathematical
and computational certainty that the correct result is
found, and thus eliminating computational problems
that are encountered with conventional techniques.
The method is initialization independent; it is also
model independent, straightforward to use, and can be
applied in connection with any equation of state or
activity coefficient model for the Gibbs free energy of
a mixture. There are many other problems in the anal-

ysis of phase behavior, and in chemical process analysis
in general [14], that likewise are amenable to solution
using this powerful approach.
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Many practically significant problems require to opti-
mize in a ‘black box’ situation, when the objective func-
tion is given by a code, but its structure is not known.
In some algorithms, developed for such a case, differ-
ent heuristic ideas are implemented. A disadvantage of
the heuristic algorithms is dependence of the results on
many parameters which choice is difficult because of
rather vague meaning of these parameters. To develop
a theory of global optimization the ‘black box’ should be
replaced by a ‘grey box’ corresponding to some model
of predictability/uncertainty of values of an objective
function.

A model of an objective function is an important
counterpart of any optimization theory (e. g., quadratic
models are widely used to construct algorithms for lo-
cal nonlinear optimization). The uncertainty on val-
ues of multimodal functions at the arbitrary points of
the feasible region is more essential than uncertainty
on the value of the objective function which will be
calculated at the current iteration of the local descent.
Therefore, the global optimization models that describe
the objective function with respect to information ob-
tained during the previous iterations are different from
polynomial models used in local optimization. Differ-
ent models may be used; e. g., a deterministic model,
defining the guaranteed intervals for unknown func-
tion values, or a statistical model, modeling the uncer-
tainty on function value bymeans of a random variable.
The choice of a model is crucial because it defines the
methodology of constructing the corresponding algo-
rithms. A Lipschitzian typemodel enables the construc-
tion of global optimization algorithms with guaranteed
(worst case) accuracy. However, the number of func-
tion evaluations in the worst case grows drastically with
the dimensionality of the problem and the prescribed
accuracy. In spite of this pessimistic theoretical result
many practical rather complicated problems have been
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solved heuristically. Because a heuristics is a human ex-
perience based methodology, oriented towards average
(typical, normal) conditions, it seems reasonable to de-
velop a theory formalizing the principle of rational be-
havior with respect to average conditions in global op-
timization. The average rationality is well justified for
playing a ‘game against nature’ whichmodels optimiza-
tion conditions better than an antagonistic game where
the principle of minimax (guaranteed result) is well jus-
tified. The method ology of average rationality was ap-
plied to develop the general theory of rational choice
under statistically interpreted uncertainty [4]. This gen-
eral theory was further specified to develop the theory
of global optimization based on statistical models of
multimodal functions [11].

To construct a statistical model of multimodal func-
tion f (x), x 2 A � Rn, the axiomatic approach is ap-
plied: the rationality of comparisons of likelihood of
different values of f (�) is postulated by simple, intu-
itively acceptable axioms, and it is proved that the in-
terpretation of an unknown value f (x) as a Gaussian
random variable �x is compatible with the axioms. The
parameters of �x (mean value m(x|(xi, yi)) and vari-
ance �2(x|(xi, yi)), where yi = f (xi) are known func-
tion values obtained during the search) are introduced
by axiomatic theory of extrapolation under uncertainty.
In the one-dimensional case both functions are very
simple: m(x|(xi, yi)) is piecewise linear (connecting the
neighboring trial points) and �2 (x|(xi, yi)) is piecewise
quadratic.

By means of further (more restrictive) assumptions,
the statistical models, corresponding to the stochas-
tic functions, may be specified. The one-dimensional
model corresponding to the Wiener process was intro-
duced in [3]. However, the specification of a model as
a stochastic function is not very reasonable: this nor-
mally involves additional very serious implementation
difficulties and does not help to choose the model ac-
cording to the a priori information on the problem.
Using a statistical model the algorithm is constructed
maximizing the probability to find better points than
those found during the previous search. Such a strat-
egy is justified also by the natural axioms of ratio-
nality of search. In the one-dimensional case the al-
gorithm is easy to implement. In the multidimen-
sional case, an auxiliary optimization problem must be
solved [8].

Although the algorithm is based on the statistical
model it is described without of use of randomization.
Therefore it may be investigated by usual deterministic
methods, e. g. the convergence of the algorithm in the
is proved under weak assumptions on the underlying
statistical model (continuity ofm(x|�), �2(x|�) and weak
dependence of both characteristics at point x on (xi, yi)
for relatively remote points xi [8]).

Themodels and algorithms of this approach are well
grounded theoretically because they are derived from
natural assumptions on rational behavior of an opti-
mizer. As a topic for further research, the theory of av-
erage complexity seems very prospective. It would be
important to evaluate the complexity of practically ef-
ficient algorithms constructed by the approach as well
as to obtain general bounds and compare them with
those obtained for Lipschitzian algorithms. The first re-
sults in this direction are interesting even for the one-
dimensional case: the limit distribution of error of pas-
sive random search in case of the Wiener model exists
or does not exist depending on a subtle interpretation of
the model [2]. Other important theoretical topics are:
developing dual (global-local) models for the multidi-
mensional case, and justification of multidimensional
statistical models oriented towards algorithms of the
branch and bound type (cf. also � Integer program-
ming: Branch and bound methods), whose auxiliary
computations would be essentially less time consum-
ing thanmaximization of the probability over the whole
feasible region at each iteration.

Many algorithms were constructed using different
statistical models and more or less theoretically justi-
fied ideas. For example, a Bayesian algorithm (cf. also
� Bayesian global optimization) is defined by mini-
mizing the average error with respect to the stochas-
tic function chosen for a model [5]. By interpolation,
the next calculation of a value of the objective function
is performed at minimum point of m(�|(xi, yi)) [1,6].
For the information-statistical method, an ad hoc one-
dimensional model is constructed [1,7]. The algorithms
may be generalized for the case with ‘noisy’ functions,
see for example the algorithm in [8,10].

The known results from the theory of stochastic
functions as well as axiomatic construction of statis-
tical models do not give numerically tractable models
which are completely adequate to describe local and
global properties of a typical global optimization prob-
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lem [1]. But in the framework of statistical models the
adequacy, e. g., to local prop erties of the objective func-
tion, might be tested as a statistical hypothesis. If the
statistical model is locally inadequate in a subset of the
feasible region, then the objective function is assumed
unimodal in this subset and a local minimum of f (x)
may be found by a local technique. An example of the
combination of global and local search with a stopping
rule corresponding to a high probability of finding the
global minimum is presented in [9].

In the case of one-dimensional global optimization
there are many competing algorithms including algo-
rithms based on statistical models [8]. The algorithms
representing different approaches may be compared
with sufficient reliability by means of experimental test-
ing. Since the codes in one-dimensional case are very
precise realizations of theoretical algorithms then in-
fluence of implementation specifics is insignificant (at
least with respect to multidimensional cases) and the
comparison results may be generalized from codes to
corresponding approaches. The results in [8] show that
the algorithm from [9] and its modification [8] out-
performs algorithms based on Lipschitzian type mod-
els even if a good estimate of the Lipschitz constant
is available. The comparison of multidimensional al-
gorithms is methodologically more difficult, partly be-
cause of very different stopping conditions. But gener-
ally speaking, the algorithms based on statistical models
are efficient with respect to the number of evaluations
of the objective function for the multimodal functions
up to 10–15 variables [8]. The auxiliary computations
require much computing time and computer memory.
Therefore, such algorithms are rational to use for the
problems, whose objective unction is expensive to eval-
uate. If an objective function is cheap to evaluate, the
gain obtained from a low number of function evalua-
tions may be less than the loss caused by the auxiliary
computations.

A detailed review of the subject is presented in [8];
further references may be found in [1].
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Batch processes are a popular method for manufactur-
ing products in low volume or that require several com-
plicated steps in the synthesis procedure. The growth
in the market for specialty chemicals has contributed to
the demand for efficient batch plants. Batch processes
are especially attractive due to their inherent flexibil-
ity. They can accommodate a wide range of production
requirements. Batch equipment can be reconfigured to
produce more than one product. Finally, certain pieces
of equipment in batch processes can be used for more
than one task.

An important area of concern in the design of batch
processes is their ability to accommodate changes in

production requirements and processing parameters.
The key issue is: given some degree of uncertainty in
a) the future demand for the products and b) the pa-
rameters that describe the chemical and physical steps
involved in the process, what is the appropriate amount
of flexibility the process should possess so as to main-
tain feasible operation while maximizing profits?

Manymethods have been proposed for the design of
batch plants under knownmarket conditions and nom-
inal operating conditions. Two major classes of batch
plant designs aremultiproduct plants and multipurpose
plants. In the multiproduct plant, all products follow
the same sequence of processing steps. Typically, one
product is produced at a time in what is termed a single-
product campaign (SPC). Multipurpose batch plants al-
low products to be processed using different sequences
of equipment, and in some cases products can be pro-
duced simultaneously.

While significant progress has been made in the de-
sign and scheduling of batch plants, until recently the
issues of flexibility and design under uncertainty have
received little attention. Among the first to address the
problem of batch plant design under uncertainty in
a novel way were [10], and [8]. They divided the vari-
ables in the design problem into five categories: struc-
tural, design, state, operating, and uncertain. Structural
variables describe the interconnections of the equip-
ment in the plant. Design variables describe the size
of the process equipment and are fixed once the plant
is constructed. State variables are dependent variables
and are determined once the design and operating vari-
ables are specified. Operating variables are those whose
values can be changed in response to variations in the
uncertain variables. Finally, the uncertain parameters
are the quantities that can have random values which
can be described by a probability distribution. Usu-
ally the uncertain parameters have normal distributions
and are considered to be independent of each other.
[8] also introduced the distinction between variations
which have short-term effects and those with long-term
effects. [18] extended this idea, suggesting a distinction
between ‘hard’ and ‘soft’ constraints in which the for-
mer must be satisfied for feasible plant operation, but
the latter may be violated, subject to a penalty in the ob-
jective function. They considered the time required to
produce a product as uncertain and developed a prob-
lem formulation.
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In [12], and [13] the authors addressed the prob-
lem of multiproduct batch plant design with uncertain-
ties in both demand for the products and in technical
parameters such as processing times and size factors.
They restricted their designs to one piece of equipment
per stage. [3] presented several variations on the prob-
lem of design with uncertain demands. They used inter-
val methods to develop different solution procedures,
including a two-stage approach and a penalty function
approach. Another type of batch plant is the multipur-
pose plant. [14] proposed a scenario-based approach for
the design of multipurpose batch plants with uncertain
production requirements. The multipurpose approach
resulted in a large scale MILP model for which efficient
techniques for obtaining good upper and lower bounds
were proposed. [15] developed a model for the multi-
product batch design problemwhich takes into account
uncertainties in the product demands and in equipment
availability. They considered the problem of design
feasibility separately from the maximization of profits
and presented an approach for achieving both criteria.
[16] addressed the problem of uncertain demands, and
used a scenario-based approach with discrete proba-
bility distributions for the demands. In addition, they
considered the scheduling problem as a second stage,
following the design problem. [6], and [7] considered
the multiproduct batch plant design problem based on
a stochastic programming formulation. They developed
a relaxation of the production feasibility requirement
and added a penalty term to the objective function to
account for partial feasibility. Through this analysis, the
problem can be reformulated as a single large scale non-
convex optimization problem. [2] extended this work
to the design of multipurpose batch plants and imple-
mented an efficient Gaussian quadrature technique to
improve the estimation of the expected profit. [5] iden-
tified special structures in the nonconvex constraints
for multiproduct and multipurpose batch design for-
mulations. These properties can be exploited to obtain
tight bounds on the global solution. This allows very
large scale design problems to be solved in reasonable
CPU time using the ˛BB method of [1].

Conceptual Framework

Most batch design problems are variations on the same
basic model of a batch plant. The plant consists of M

processing stages where each stage j contains Nj identi-
cal pieces of equipment. The volume of each unit, Vj, is
a design variable, and the number of units per stage, Nj,
may be a variable or a fixed parameter.

In the batch plant, NP products are to be made, and
the amount of each produced isQi. Each product is pro-
duced in a number of batches of identical size, Bi. Using
these definitions, a number of constraints on the design
of the plant can be imposed. These constraints are:
1) an upper limit on the batch size,
2) a lower limit on the amount of time between

batches,
3) an upper limit on the total processing time allowed,

and
4) a constraint on the production related to the de-

mand for each product. The basic form of these con-
straints is shown below, for a multiproduct batch
plant with single-product campaigns.

Constraints on Batch Size

The batch size for each product i cannot be larger than
the size of the pieces of equipment in each stage j. This
can be written

Bi �
Vj

Si j
;

i D 1; : : : ;NP; j D 1; : : : ;M:

The size factor, Sij, is the capacity required in stage j
to process one unit of product i.

Minimum Cycle Time

In order to make sure that each batch is processed sep-
arately in a given stage, one batch cannot begin pro-
cessing until the previous batch has been processed for
a certain amount of time. This is called the cycle time

TLi �
ti j
N j
;

i D 1; : : : ;NP; j D 1; : : : ;M:

The time factor, tij is the amount of time to process
one batch of product i in stage j.
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Constraints on Production Time

The amount of time needed to produce all of the
batches must be less than the total time available, H,

NPX
iD1

Qi

Bi
TLi � H:

Demand Constraints

The production for each product must meet the de-
mand.

Qi D Di :

Economic Objective Function

The objective is to maximize profits. The profit is calcu-
lated by subtracting the annualized capital costs from
the revenues:

Profit D
NPX
iD1

Qi � pi �
MX
jD1

˛ jN jV
ˇ j
j ;

where pi is the price of product i. The annualization fac-
tor for the cost of the units in stage j is ˛j.

In the case where the number of units per stage,
Nj is variable and/or the unit sizes, Vj, take only dis-
crete values, this problem is a mixed integer nonlinear
optimization problem (MINLP). If Nj is fixed and the
unit sizes are continuous, the problem is a nonlinear
program (NLP). In either case, the problem is noncon-
vex, therefore conventional mixed integer and nonlin-
ear solvers cannot be used robustly. Instead, global op-
timization techniques must be employed to guarantee
that the optimal solution is located.

Sources of Uncertainty

Within the mathematical framework for a multiprod-
uct batch plant there are a number of possible sources
of uncertainty. The most commonly studied are uncer-
tainty in the process parameters, like the size factors, Sij,
and the time factors, tij, and uncertainty in the product
demand, Di. In addition to these, [3] considered uncer-
tainty in the time horizon,H, and in the product prices,
pi.

Uncertainty in the process parameters is model in-
herent uncertainty, as classified by [11]. That is, un-
certainty in the process parameters affects the feasible

operation of the batch plant. Conversely, uncertainty
in the product demand is an external source of uncer-
tainty, therefore it only affects the objective function,
and not the feasibility of the plant design.

Uncertainty in Process Parameters

The size factors and processing times affect the feasi-
ble design and operation of the batch plant. The goal is
to design a plant that can operate feasibly, even if there
is some uncertainty in the values of these parameters.
The approach that is commonly followed is to consider
a number of different scenarios, where each scenario
corresponds to a set of parameter realizations. For ex-
ample, if the size factors, Sij, have some nominal value,
Si j , then one scenario is that all of the size factors are at
their nominal value. Similarly, if we have some knowl-
edge about the amount of uncertainty in the size fac-
tors, we can construct a lower extreme scenario, where
each size factor is at its lower bound, SLi j, and an up-
per extreme scenario, SUi j . The new set of size factors,
reflecting the different scenarios is represented by the
parameter Spi j . The scenarios can be weighted using the
factor, wp.

The set of constraints for the batch design problem
must be modified so that the design is feasible over the
whole set of scenarios, P:

Bi �
Vj

Sp
i j

; Tp
Li �

t pi j
N j
;

NPX
iD1

Qp
i

Bi
Tp
Li � H:

Uncertainty in Product Demand

Uncertainty in the demand for the products affects the
profitability of the plant. In this case, the product de-
mand is given by a probability distribution function
J(� i) where � i represents the uncertain demand for
product i. The calculation of the expected revenues re-
quires the integration over an optimization problem:

E


"
max
Qi

NPX
iD1

piQi

#

D

Z

2R(Vj;N j)

max
Qi

( NPX
iD1

piQi

)
J(�) d� : (1)
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The integration should be performed over the feasible
region of the plant, which is unknown at the design
stage. See [6] for a Gaussian quadrature approach to
discretize the integration. The range of uncertain de-
mands is covered by a grid, where each point on the grid
represents a set of demand realizations, and is assigned
a weight corresponding to its probability, !q Jq. The set
of quadrature points is represented by Q. The expected
revenues are now calculated as a multiple summation:

E


"
max
Qi

NPX
iD1

piQi

#

D

PX
pD1

1
wp

QX
qD1

!q Jq
NPX
iD1

piQ
qp
i :

In addition, the time horizon constraint must be
modified:

NPX
iD1

Qqp
i

Bi
Tp
Li � H; 8p 2 P; 8q 2 Q:

Global Optimization Approaches

The set of constraints for the design of a multiprod-
uct batch plant under uncertainty form a nonconvex
optimization problem. Global optimization techniques
must be used in order to ensure that the true optimal
design is located.

Following the analysis of [9], an exponential trans-
formation can be applied, reducing the number of non-
linear terms in the model.

Vj D exp(v j); 8 j 2 M;

Bi D exp(bi); 8i 2 NP;

Tp
Li D exp(t pLi); 8i 2 NP:

In [5] and [6] global optimization methods were de-
veloped to solve this problem, where the number of
units in each stage, Nj, is fixed. In this case, the cycle
time becomes a parameter, determined by,

t pLi D max
j

(
ln

 
t pi j
N j

!)
;

8i 2 NP; 8p 2 P:

The nonlinear optimization problem to be solved is
written as a minimization:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
bi ;v j;Q

qp
i

ı

MX
jD1

˛ jN j exp
�
ˇ jv j

�

�

PX
pD1

1
wp

QX
qD1

!q Jq
NPX
iD1

piQ
qp
i

C�

PX
pD1

1
wp

QX
qD1

!q Jq
NPX
iD1

pi
�
�
q
i � Qqp

i

�

s.t. v j � ln(Sp
i j)C bi

NPX
iD1

Qqp
i � exp(t

p
Li � bi ) � H

� Li � Qqp
i � �

q
i

ln(VL
j ) � v j � ln(VU

j )

min
j;p

ln

 
VL
j

Sp
i j

!
� bi � min

j;p
ln

 
VU
j

Sp
i j

!
:

(2)

Note that the time horizon constraint is the only non-
convex constraint remaining in the problem formula-
tion. A penalty term is added to the objective function
to account for unsatisfied demand, the penalty parame-
ter is � .

The GOP Approach

In [7] and [2] the GOP algorithm of [4,17] has been ap-
plied to solve design formulations for both multipur-
pose and multiproduct batch plants. GOP converges to
the global optimum solution by solving a primal prob-
lem and a number of relaxed dual problems in each it-
eration. In [7] it is observed that if the variables in the
batch design problem are partitioned so that y = {vj, bi}
and x = {Qqp

i }, then the problem is convex in y for every
fixed x, and linear in x for every fixed y. This satisfies
Condition A) of the GOP algorithm.

A property was developed in [7] that allows the
number of relaxed duals per iteration to be reduced
from 2NP�Q to 2NP, making the problem computation-
ally tractable.

˛BB Approach

The ˛BB approach of [1] was applied in [5] to solve
both multiproduct and multipurpose design formu-
lations. ˛BB is a branch and bound approach that
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converges to the global solution by solving a se-
quence of upper and lower bounding problems. The
lower bounding problem is formulated by subtracting
a quadratic term, multiplied by the constant ˛, from
each of the nonconvex terms, thus convexifying the
problem. Often, the size of the ˛ term must be esti-
mated, resulting in poor lower bounds in the first few
levels of the branch and bound tree. However, the non-
convex terms in the batch plant design formulation al-
low the exact value of ˛ to be calculated, resulting in
a tight lower bound on the global solution. This tech-
nique has been used to find the optimal design for
a multiproduct batch plant with 5 products in 6 stages.
This corresponds to a nonconvex NLPwith 15,636 vari-
ables, 3155 constraints, and 15,625 nonconvex terms.

Other Types of Batch Plants

In addition to the multiproduct batch plant with single-
product campaign illustrated in the preceding sections,
there are many other batch plant design formulations
that can be adapted to consider the issue of uncertainty
in design.

Mixed-Product Campaign

This is another example of a multiproduct batch plant.
In this case, storage of the intermediate products is al-
lowed between processing steps. In addition, batches of
different products can be alternated. This allows a re-
duction in the total production time. Rather than be-
ing limited by the largest cycle time for all stages, this
method calculates the total production time for each
stage:

Tqp;tot
j �

NPX
iD1

 
Qqp

i

Bi

!
t pi j:

The total time for each stage must be less than the total
time allowed:

H � Tqp;tot
j �

NPX
iD1

 
Qqp

i

Bi

!
t pi j:

This can be written

NPX
iD1

 
Qqp

i

Bi

!
t pi j � H:

Note that this constraint has the same form as the
time horizon constraint for the single-product cam-
paign formulation.

Multipurpose Batch Plant-Single Equipment
Sequence

In a multipurpose batch plant, the equipment can be
used for more than one function, therefore each prod-
uct may have a different route through the plant. In
the single equipment sequence case, there is one dis-
tinct route for each product. Production is carried out
in a sequence of campaigns L, and there may be more
than one product produced simultaneously in a cam-
paign, h. The time needed for each campaign, Ch, is
based on the maximum cycle time for all products in
the campaign,

LX
hD1

˛hiC
qp
h �

 
Qqp

i

Bi

!
Tp
Li ;

where

˛hi D

8̂
<̂
ˆ̂:

1 if product i is allowed
in campaign h;

0 else:

Finally, the sum of all campaign times must be less than
the total time available:

LX
hD1

Cqp
h � H:

Multipurpose Batch Plant-Multiple Equipment
Sequence

In this case, there are multiple routes through the plant
for each product i, PRi. The total amount of product i
produced is the sum over the production of i in each
route:

Qqp
i D

X
r2PRi

qqpr :

The time for campaign Ch is based on themaximum
cycle time for each route in the campaign,

LX
hD1

˛hrC
qp
h �

 
qqpr
Br

!
t pLr:
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The sum of all campaign times must be less than the
total time available,

LX
hD1

Cqp
h � H:

Note that in both of the multipurpose batch de-
sign formulations shown above, the constraints that are
added are either linear, or have the exact same form
of nonconvexities as shown for the multiproduct batch
design formulation. Therefore, the global optimization
techniques discussed in Section ‘Global Optimization
Approaches’ are applicable to these problems.
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The global optimization techniques are still quite un-
popular in the astronomical community, in particular,
among the double stars astronomers. Among the rea-
sons of their reticence one finds a long practice of man-
ual and graphical methods, ‘least squares’ adjustments
of a linearized objective function, differential correc-
tion, etc.

This article does not present, unfortunately, the
state of the art in orbits determination, even if a few
astronomers, mostly young ones, tries to convince the
others that a global minimization step is useful. This ar-
ticle presents a possible way to obtain the orbital pa-
rameters of double-lined spectroscopic visual binaries.

Astronomical Problem

The generic terms ‘binary star’ designate two stars that
are gravitationally linked together. Since J. Kepler, one
knows that such an interaction leads to an elliptic or-
bital motion of one star around each the other (Ke-
pler’s first law). The Kepler third law tells us that there
is a simple relation between the orbital period (P), the
semimajor axis of the relative orbit (a) and the mass
sum of the 2 stars (MA (the mass of the brighter star)
andMB (the mass of the fainter component)):

a3

P2 D MA CMB ;

where a is expressed in astronomical unit (1 A.U. is
equal to the average distance of the Earth from the Sun),
P is expressed in years and the masses in solar masses
(Mˇ). This relation is still, almost 400 years after Ke-
pler, the only direct and hypothesis-free method to es-
timate stellar masses.

A visual binary corresponds to a situation where the
2 stars are visually resolved and the orbital motion, pro-
jected on the plane orthogonal to the sight direction,
can be perceived. From the relative positions of B with
respect to A along time (t, x and y), one can extract
the 7 parameters characterizing the visual orbit. Among

these parameters, there are P and the angular value of a
(expressed in seconds of arc). The latter cannot be con-
verted into its linear value in A.U. unless the distance to
the binary system is known (or, equivalently, the paral-
lax of the system,$ , is known).

A binary star is spectroscopic if the motion of its
spectral lines is observable. This motion is due to the
Doppler effect: all lines issued from one star are shifted
toward the blue (red) side of the spectrum when that
star is moving toward (away from) the observer. The
wavelength shift between the laboratory wavelength,
�L, and the observed one, �O, is connected to the radial
velocity V through:

�O � �L

�L
D

V
c

where c stands for the speed of the light in the vacuum.
In a double-lined spectroscopic binary, lines from the
two components are seen in the spectrum.

The radial velocity curve ((t, VA), (t, VB)) of each
component along time shows a periodic variation. Lets
KA designates the amplitude of the radial velocity curve
of component A and KB the amplitude of component
B. There is a relation between the mass ratio and the K �
values:

KA

KB
D

MB

MA

The amplitudes are usually expressed in km/s.
Hence, if a binary star is simultaneously visual and

double-lined spectroscopic, one can extract the individ-
ual masses and the distance to the system with no extra
hypothesis.

Objective Function

To describe the observations of a double-lined spectro-
scopic visual binary requires at least 10 parameters. By
observations, one means the relative positions of the
fainter component with respect to the brighter star and
the radial velocities of both components. Why more
than 10 parameters could be necessary is beyond the
scope of this paper. Among the different possible sets
of 10 parameters, we select:
� a(0 0): the angular semimajor axis of the relative orbit

of the fainter component around the brighter star;
� i: the inclination of the orbital plane with respect to

the plane orthogonal to the direction sight;
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� !: the argument of the periastron;
� ˝ : the longitude of the ascending node;
� e: the eccentricity;
� P: the period;
� T: the periastron epoch (one of them);
� V0: the radial velocity of the system’s center of mass;
� $ : the parallax of the system;
� �: the ratio of the semimajor axis (relative to the

brighter component) to the sum of the two semima-
jor axes.

The most natural way to combine visual and spectro-
scopic observations is to use a least squares approach
and to seek the minimum of an expression like:

D(a; i; : : : ;$; �)

D

NvX
jD1

2
4
 o
x j �bx j

�x j

!2

C

0
@

o
y j �by j
�y j

1
A

23
5

C

NsAX
kD1

0
@

o
VAk �

bVAk

�VAk

1
A

2

C

NsBX
lD1

0
@

o
VBl �

bVBl

�VBl

1
A

2

(1)

where the hat (super) stands for the adjusted (observed)
quantity and � � are the a priori known (or estimated)
standard deviations of the observations.

In fact, yet this idea of combining the two aspects of
the orbit is unusual. Most of the time, astronomers keep
the separation when computing the orbital parameters.
Visual observers compute their own orbit and spectro-
scopists theirs: one group simply fixes some parameters
(w, e, P and T) to the values obtained by the other group
(e. g., [5]). A few papers only presents a simultaneous
adjustment of the ten parameters (e. g., [12,18]).

The reader could be puzzled by the fact that the
expression of D seems to be too kind to have numer-
ous local minima and to require a global optimization
method to be minimized. A description of how x, y, VA

and VB are computed is going to justify our approach.
The visual orbit requires

x DAX C FY ;

y D BX C GY ;

X D cos E � e;

Y D
p
1 � e2 sin E;

where X and Y (x and y) are the angular rectangular co-
ordinates, in the orbital (tangential) plane, of the fainter
component with respect to the brighter one; A, B, F and

G are the Thiele–Innes constants, expressed in terms of
a(0 0), i, ! and˝ as

A D a(00)(cos! cos˝ � sin! sin˝ cos i);

B D a(00)(cos! sin˝ C sin! cos˝ cos i);

F D a(00)(� sin! cos˝ � cos! sin˝ cos i);

G D a(00)(� sin! sin˝ C cos! cos˝ cos i):

E is the eccentric anomaly at time t, determined unam-
biguously by Kepler’s equation

E � e sin E D
2

P
(t � T):

For a spectroscopic orbit j (j = A or j = B), one needs

VA D V0 � KA(cos(! C v)C e cos!);

VB D V0 C KB(cos(! C v)C e cos!);

Kj D
2
a(km)

j sin i

86400 � 365:242198781P
p
1 � e2

;

tan
v
2
D

r
1C e
1 � e

tan
E
2
:

The angular separation in arcseconds is converted into
its linear value using

a(km) D
a(00)

$
� 1:49598 � 108;

a(km)
A D �a(km);

a(km)
B D (1 � �)a(km):

Global Search

In front of a low-dimension but highly nonlinear prob-
lem, what can be used to find the minimum of an ex-
pression such as D (equation (1))? Simulated annealing
([8,11]) has already been successfully applied to the de-
termination of the orbital parameters of visual binaries
[14]. In that case, only 7 parameters are required, but
the nature of the problem seems close enough to the
current one to be tempted to use the same approach.

The implementation of SA used for the visual prob-
lem gives satisfaction ([1,15]). Nevertheless, the in-
crease of the working space dimension is, by itself,
enough to justify the search for an improved algorithm
for the combined spectroscopic-visual problem.

Among the few SA implementations for continuous
functions, the one in ‘Numerical Recipes’ [16] was se-
lected. Although the published code behaves very well,
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some improvements (at least for our purpose) are pos-
sible. We are going to focus on modifications of the ba-
sic algorithm, mainly some improvements of the guess
generator. A rough pseudocode of the algorithm in [16]
is given below:

DO
use a simplex to get a new solution;
decrease the temperature;

WHILE (temperature> Tmin);

Suggested pseudocode after [16]

Let’s first remind that the guess generator proposed in
[16] is based on a thermally disturbed simplex [13].
When the temperature approaches 0, the generator re-
duces to theNelder–Mead algorithm and a local conver-
gence can be expected. W.H. Press et al. announce a lo-
cal convergence whereas V. Torczon [17] showed such
a convergence cannot be guaranteed with the Nelder–
Mead algorithm.

The major drawback of this algorithm is that the
simplex can degenerate (a vertex becomes a linear com-
bination of strictly less than the other n ones). If that
happens, only a subspace of the complete working space
can be visited and the risk of missing the minimum
raises.

To decide whether or not to reinitialize the simplex
can be based on the mean of the values at the n+1 ver-
tices. The mean is compared with the mean at the pre-
vious temperature. If the relative change is not impor-
tant enough or the generator stops at a local minimum,
a new simplex is generated. The best point ever met is
chosen as one of the vertices.

A natural way to initialize a simplex is to choose the
n remaining vertices such that each edge issued from
the (n+1)th point is parallel to a different axis of coor-
dinates. A refined version of that approach is adopted.
Instead of randomly choosing the value of the compo-
nent in the interval of accepted values for that compo-
nent, some ‘taboo’ restrictions are added.

The overall working space is divided in regions.
When a new simplex is generated, each cells contain-
ing a vertex are marked as taboo. The random selec-
tion of the value of a component is repeated until the
resulting cell (C) does not lie in a taboo region (TL).

Even if the best point ever met does not change between
two successive re-initializations, this procedure guar-
antees that the two simplices are different. That raises
the probability of visiting the overall space. Practically,
the taboo cells are kept in a circular linked list and dis-
carded when space for a new cell is required. The result-
ing pseudocode is given below:

DO
use a simplex to get a new solution;
IF initialization required
THEN adopt the best solution as the (n+1)th

vertex;
for the first n vertices (Vi)
DO

Vi = Vn+1;
DO
change the ith component of Vi ;
identify C;
WHILE (C in TL);
add C to TL;

OD;
FI;
decrease the temperature;

WHILE (temperature > Tmin);

Adopted pseudocode

Ingber’s algorithm ([6,7]) is used for the annealing sche-
dule. The initial temperature is set to 10hl og10(D)i where
hlog10(D)i stands for the mean of the logarithm of the
objective function over the first generated simplex.

Element Value Std. dev.
a(00) 0:072 0:0010
i(ı) 68 1:3
!(ı) 352 2:2
˝(ı) 262:0 0:53
e 0:38 0:016
P(yr) 1:7255 0:00098
T (Besselian yr) 1979:332 0:0099
V0(km/s) �9:78 0:13
!(00) 0:038 0:0012
	 0:349 0:0096
mass A(Mˇ) 1:5 0:18
mass B(Mˇ) 0:8 0:12

Orbital parameters of HIP111170 and their standard deriva-
tions
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Example 1 (HIP111170)

The double star HIP111170 ( = HR8851 = HD213429)
is a good example to illustrate how appropriate a si-
multaneous adjustment is whereas a disjoint one would
failed. The visual observations ([9,10]) are too few to
allow a visual orbit determination: 3.5 observations (2

Global Optimization in Binary Star Astronomy, Figure 1
Adjusted visual orbit of HIP 111170. The cross represents
component A

Global Optimization in Binary Star Astronomy, Figure 2
Adjusted spectroscopic orbits of HIP 111170

quantities) are necessary to adjust 7 parameters. Fortu-
nately, the spectroscopic data are more numerous and
the two radial velocity curves are well covered. From
amathematical point of view, two visual observations is
the minimum if the spectroscopic observations [3] are
well spread over the two curves.

The table above gives the orbital parameters used
for the figures. The obtained parallax is in quite good
agreement with the 0.03918˙0.0018300 after the Hip-
parcosmission [4].

Conclusion

Even when the observations seem very precise, the ob-
jective function describing the residual between the ob-
served and computed data has many local minima. As-
tronomers should be aware of that fact as they should be
aware of techniques to efficiently tackle such situations.
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Introduction

The cutting angle method (CAM) is a deterministic
method for solving different classes of global optimiza-
tion problems. It is a version of the generalized cutting
plane method, and it works by building a sequence of
tight underestimates of the objective function. The se-
quence of global minima of the underestimates con-
verges to the global minimum of the objective func-
tion. It can also be seen from the perspective of branch-
and-bound type methods, which iterate the steps of
branching (partitioning the domain), bounding the ob-
jective function on the elements of the partition, and
also fathoming (eliminating those elements of the par-
tition which cannot contain the global minimum).

The key element of CAM is the construction of tight
underestimates of the objective function and their effi-
cient minimization in a structured optimization prob-
lem. CAM is based on the theory of abstract convex-
ity [23], which provides the necessary tools for building
accurate underestimates of various classes of functions.
Such underestimates arise from a generalization of the
following classical result: each convex function is the
upper envelop of its affine minorants [21]. In abstract
convex analysis, the requirement of linearity of the mi-
norants is dropped, and abstract convex functions are
represented as the upper envelops of some simple mi-
norants, or support functions, which are not necessar-
ily affine. Depending on the choice of the support func-
tions, one obtains different flavours of abstract convex
analysis.



Global Optimization: Cutting Angle Method G 1305

By using a subset of support functions, one obtains
an approximation of an abstract convex function from
below. Such one-sided approximation, or underesti-
mate, is very useful in optimization, as the global min-
imum of the underestimate provides a lower bound on
the global minimum of the objective function. One can
find the global minimum of the objective function as
the limiting point of the sequence of global minima of
the underestimates. This is the principle of the cutting
angle method of global optimization [1,2,23].

The cutting angle method was first introduced for
global minimization of increasing positive homoge-
neous (IPH) functions over the unit simplex [1,2,23].
Then it was extended to a broader class of Lipschitz pro-
gramming problems [9,25]. In this Chapter, after pro-
viding the necessary theoretical background, we will de-
scribe versions of CAM for global minimization of IPH
and Lipschitz functions over a polytope (in particular
the unit simplex), and provide details of its algorithmic
implementation.

Definitions

Notation

� n is the dimension of the optimization problem;
� I D f1; : : : ; ng;
� xi is the ith coordinate of a vector x 2 Rn ;
� xk 2 Rn denotes the k-th vector of some sequence
fxkgKkD1;

� [l ; x] D
P

i2I li xi is the inner product of vectors l
and x;

� if x; y 2 Rn then x � y, xi � yi for all i 2 I;
� if x; y 2 Rn then x � y, xi > yi for all i 2 I;
� Rn

C :D fx D (x1; : : : ; xn) 2 Rn : xi � 0 for all
i 2 Ig (nonnegative orthant);

� RC1 denotes (�1;C1];
� em D (0; : : : ; 0; 1; 0; : : : ; 0) denotes the m-th unit

orth of the space Rn .
� S D fx 2 Rn

C :
P

i2I xi D 1g (unit simplex).

Abstract Convex Functions

Let X � Rn be some set, and let H be a nonempty set
of functions h : X ! V � [�1;C1]. We have the
following definitions [23].

Definition 1 A function f is abstract convex with re-
spect to the set of functions H (or H-convex) if there

exists U � H such that:

f (x) D supfh(x) : h 2 Ug; 8x 2 X :

Definition 2 The set U of H-minorants of f is called
the support set of f with respect to the set of func-
tions H:

supp( f ;H) D fh 2 H; h(x) � f (x) 8x 2 Xg :

Definition 3 H-subgradient of f at x is a function
h 2 H such that:

f (y) � h(y)� (h(x)� f (x)); 8y 2 X :

The set of all H-subgradients of f at x is called H-
subdifferential

@H f (x) D fh 2 H : f (y) � h(y)� (h(x)� f (x));

8y 2 Xg :

Definition 4 The set @�H f (x) at x is defined as

@�H f (x) D fh 2 supp( f ;H) : h(x) D f (x)g :

Proposition 1 [23], p.10. If the set H is closed under
vertical shifts, i. e., (h 2 H; c 2 R) implies h � c 2 H,
then @�H f (x) D @H f (x).

When the set of support functions H consists of all
affine functions, then we obtain the classical convexity.
Next we examine two other examples of sets of support
functions H.

IPH Functions

Recall that a function f defined on Rn
C is increasing if

x � y implies f (x) � f (y).

Definition 5 A function f : Rn
C ! R is called IPH

(Increasing Positively Homogeneous functions of de-
gree one) if

8x; y 2 Rn
C; x � y) f (x) � f (y);

8x 2 Rn
C;8� > 0 : f (�x) D � f (x) :

Let the set H1 be the set of min-type functions

H1 D fh : h(x) D min
i2I

ai xi ; a 2 Rn
C; x 2 Rn

Cg :

Proposition 2 [23] A function f : Rn
C ! RC1 is ab-

stract convex with respect to H1 if and only if f is IPH.
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Example 1 The following functions are IPH:
1) f (x) D

P
i2I ai xi with ai � 0;

2) pk (x) D
�P

i2I x
k
i
� 1

k (k > 0);
3) f (x) D

p
[Ax; x] where A is a matrix with non-

negative entries;
4) f (x) D

Q
j2J x

t j
j where J � I; t j > 0;

P
j2J t j D

1.

It is easy to check that
� the sum of two IPH functions is also an IPH func-

tion;
� if f is IPH, then the function � f is IPH for all � > 0;
� let T be an arbitrary index set and ( ft)t2T be a fam-

ily of IPH functions. Then the function finf(x) D
inft2T ft(x) is IPH;

� let ( ft)t2T be the same family and there exists a point
y � 0 such that supt2T ft(y) < C1 then the func-
tion fsup(x) D supt2T ft(x) is finite and IPH.
These properties allow us to give two more exam-

ples of IPH functions.

Example 2 The following maxmin functions are IPH:
1)

f (x) D max
k2K

min
j2J

X
i2I

a jk
i xi

where a jk
i � 0; k 2 K; j 2 J; i 2 I. Here J and K are

finite sets of indices;
2)

f (x) D max
k2K

min
j2Jk

X
i2I

a j
i xi (1)

where a j
i � 0; j 2 Jk ; k 2 K. Here Jk and K are

finite sets of indices.
Note that an arbitrary piecewise linear function f

generated by a collection of linear functions f 1; : : : ; f m

can be represented in the form (1) (see [5]); hence an
arbitrary piecewise linear function generated by non-
negative vectors is IPH.

Let l 2 Rn
C; l ¤ 0 and I(l) D fi 2 I : li > 0g. We

consider the function x 7! hl ; xi defined by the for-
mula l(x) D hl ; xi where the coupling function h�; �i is
defined as

hl ; xi D min
i2I(l )

li xi : (2)

Here I(l) D fi 2 f1; : : : ; ng j li > 0g. This function
is called a min-type function generated by the vector

l. We shall denote this function by the same symbol
l(x). Clearly a min-type function is IPH. It follows from
Proposition 2 that:
� A finite function f defined on Rn

C is IPH if and only
if

f (x) D maxfhl ; xi : l 2 H1; l � f g ; (3)

� Let x0 2 Rn
C be a vector such that f (x0) > 0 and

l D f (x0)/x0. Then

hl ; xi � f (x)

for all x 2 Rn
C and hl ; x0i D f (x0).

The vector f (x0)/x0 is called the support vector of
a function f at a point x0.

Lipschitz Functions

Definition 6 A function f : X ! R is called Lipschitz-
continuous in X, if there exists a number M > 0 such
that

8x; y 2 X : j f (x)� f (y)j � Mjjx � yjj :

The smallest such number is called the Lipschitz con-
stant of f in the norm jj � jj1.

Let the set H2 be the set of functions of the form

H2 D fh : h(x) D a � Cjjx � bjj;

x; b 2 Rn ; a 2 R;C 2 RCg :

Proposition 3 [23] A function f : Rn ! RC1 is H2-
convex if and only if f is a lower semicontinuous func-
tion. The H2-subdifferential of f is not empty if f is Lips-
chitz.

There is an interesting relation between IPH functions
and Lipschitz functions, which allows one to formulate
the problem of minimization of Lipschitz function over
the unit simplex as the problem of minimization of IPH
functions restricted to the unit simplex.

Theorem 1 (see [23,25]). Let f : S ! R be a Lip-
schitz function and let

M D sup
x;y2S;x¤y

j f (x)� f (y)j
kx � yk1

(4)

1The norm jj � jj can be replaced by any metric, or, more gen-
erally, any distance function based on Minkowski gauge. For ex-
ample, a polyhedral distance dP (x; y) D maxf[(x � y); hi] j1 �
i � mg, where hi 2 Rn; i D 1; : : : ;m is the set of vectors that
define a finite polyhedron P D

Tm
iD1fx j [x; hi ] � 1g.
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be the least Lipschitz constant of f in k � k1-norm, where
kxk1 D

P
i2I jxi j. Assume that

min
x2S

f (x) � 2M :

Then there exists an IPH function g : Rn
C ! R such that

g(x) D f (x) for all x 2 S.

Methods

We consider the problem of global minimization of an
H-convex function f on a compact convex set D � X,

minimize f (x) subject to x 2 D : (5)

We will deal with the two mentioned cases of f being
H1-convex (IPH) and H2-convex (Lipschitz).

Generalized Cutting Plane Method

A consequence of Propositions 2 and 3 is that we can
approximateH-convex functions from below using a fi-
nite subset of functions from supp( f ;H). Suppose we
know a number of values of the function f at the points
xk ; k D 1; : : : ;K. Then the pointwise maximum of the
support functions hk 2 @�H f (xK),

HK(x) D max
kD1;:::;K

hk(x) (6)

is a lower approximation, or underestimate of f . We
have the following generalization of the classical cutting
plane method by Kelley [16].

Kmax is the limit on the number of iterations of the
algorithm. The problem at Step 2.1 is called the auxil-
iary, or relaxed, problem. Its efficient solution is the key
to numerical performance of the algorithm. For convex
objective functions,HK is piecewise affine, and the solu-
tion to the relaxed problem is done by linear program-
ming. However, when we consider other abstract con-
vex functions, like IPH or Lipschitz, the relaxed prob-
lem is not linear, but it also has a special structure that
leads to its efficient solution.

Global Minimization of IPH Functions
over Unit Simplex

In this section we present an algorithm for the search
for a global minimizer of an IPH function f over the

Step 0. (Initialisation)
0.1 Set K = 1.
0.2 Choose an arbitrary initial point x1 2 D.

Step 1. (Calculate H-subdifferential)
1.1 Calculate hK 2 @�H f (xK).
1.2 Define HK(x) := max

k=1;:::;K
hk(x), for all x 2 D.

Step 2. (Minimize HK)
2.1 Solve the Problem

Minimize HK(x) subject to x 2 D:
Let x� be its solution.

2.2 Set K := K + 1; xK := x�.

Step 3. (Stopping criterion)
3.1 If K < Kmax and fbest � HK(x�) > � go to

Step 1.

Global Optimization: Cutting Angle Method, Algorithm 1
Generalized Cutting Plane Algorithm

unit simplex S, that is we shall study the following opti-
mization problem:

minimize f (x) subject to x 2 S (7)

where f is an IPH function defined on Rn
C. Note that

an IPH function is nonnegative on Rn
C, since f (x) �

f (0) D 0. We assume that f (x) > 0 for all x 2 S. It
follows from positiveness of f that I(l) D I(x) for all
x 2 S and l(x) D f (x)/x.

Since I(em) D fmg, then the vector l D f (em)/em

can be represented in the form l D f (em)em and

h f (em)em; xi D f (em)xm :

Remark 1 Note that HK(x) :D max
kD1;:::;K

min
i2I(l k )

l ki xi �

max
�
HK�1(x); min

i2I(l K )
l Ki xi

	
, which simplifies solution

to the auxiliary problem at Step 2.1.

This Algorithm reduces the problem of global min-
imization (7) to the sequence of auxiliary problems.
It provides lower and upper estimates of the global
minimum f * for the problem (7). Indeed, let �K D

minx2S HK(x) be the value of the auxiliary problem. It
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follows from (3) that

hl k; xi � min
i2I(l k )

l ki xi � f (x) for all x 2 S;

k D 1; : : : ;K :

Hence HK(x) � f (x) for all x 2 S and �K �

minx2S HK(x) � minx2S f (x): Thus �K is a lower es-
timate of the global minimum f *. Consider the number
�K D minkD1;:::;K f (xk) D : fbest . Clearly �K � f�,
so �K is an upper estimate of f *. It is shown in [23]
that �K is an increasing sequence and �K � �K ! 0
as K !C1. Thus we have a stopping criterion, which
enables us to obtain an approximate solution with an
arbitrary given tolerance.

Global Minimization of Lipschitz Functions

Method Based on IPH Functions By using Theo-
rem 1, global minimization of Lipschitz function over
the simplex S can be reduced to the global minimiza-
tion of a certain IPH function over S.

Let f : S ! R be a Lipschitz function and let

c � 2M �min
x2S

f (x) ; (8)

where M is defined by (4). Let f1(x) D f (x) C c. It
follows from Theorem 1 that the function f 1 can be ex-
tended to an IPH function g. The problem

minimize g(x) subject to x 2 S (9)

is clearly equivalent to the problem

minimize f1(x) subject to x 2 S : (10)

Thus we apply the cutting angle method to solve prob-
lem (10). Clearly functions f and f 1 have the same min-
imizers on the simplex S. If the constant c in (8) is
known, CAM is applied for the minimization of a Lips-
chitz function f over S with no modification. If c is un-
known, we can assume that c is a sufficiently large num-
ber, however numerical experiments show that CAM is
rather sensitive to the choice of c, in particular, when c
is very large, the method converges very slowly. In or-
der to estimate c we need to know an upper bound on
the least Lipschitz constant M and a lower estimate of
the global minimum of f .

If the feasible domain is not the unit simplex S but
a polytope, it can be embedded into S with a simple

change of variables. Solution to the constrained auxil-
iary problem in Step 2.1 of the algorithm was investi-
gated in [8].

Direct Method Consider H2-convex functions,
which, by Proposition 3 include all Lipschitz functions.
Let dP be a polyhedral distance function. As a conse-
quence of H2-convexity, we can approximate Lipschitz
functions from below using underestimates of the form

HK(x) D max
kD1;:::;K

hk(x)

D max
kD1;:::;K

( f (xk) � CdP(x; xk)) ;
(11)

where C � M, and M is the Lipschitz constant of f
with respect to the distance dP. Then we apply the Al-
gorithm 1 to function f in the feasible domain D. The
auxiliary problem as Step 2.1 becomes

minimize max
kD1;:::;K

( f (xk) � CdP (x; xk))

subject to x 2 D :

The same considerations about the convergence of
the algorithm as those for Algorithm 2 are applied. Note

Step 0. (Initialisation)
0.1 Take points xm = em , m = 1; : : : ; n. Set K = n.

0.2 Calculate l k = f (xk)/xk , k = 1; : : : ;K:

Step 1. (Calculate H-subdifferential)
1.1 Define HK(x) := max

k=1;:::;K
min
i2I(l k )

l ki xi , for all

x 2 S.

Step 2. (Minimize HK)
2.1 Solve the Problem

Minimize HK(x) subject to x 2 S:
Let x� be its solution.

2.2 Set K := K + 1; xK := x�.
2.3 Compute l K = f (xK)/xK

Step 3. (Stopping criterion)
3.1 If K < Kmax and fbest � HK(x�) > � go to

Step 1.

Global Optimization: Cutting Angle Method, Algorithm 2
Cutting Angle Algorithm for IPH functions
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that in the univariate case the underestimate HK in (11)
is exactly the same as the saw-tooth underestimate in
Piyavski-Shubert method [20,26] if dP is symmetric.

For minimization of Lipschitz functions, an esti-
mate of the Lipschitz constant is required in both cases,
when transforming f to an IPH function, or using Al-
gorithm 1 directly. The crucial part in both methods is
the efficient solution to the auxiliary problem in Step
2.1. The next section presents a very fast combinato-
rial algorithm for enumeration of all local minimizers
of functions HK .

The Auxiliary Problem

The Step 2.1 (find the global minimum of HK(x)) is
the most difficult part of the cutting angle method. This
problem is stated in the following form:

minimize HK(x) subject to x 2 S (12)

where

HK(x) D max
k�K

min
i2I(l k )

l ki xi D max
k�K

hk(x) ; (13)

K � n, l k D f (xk)/xk are given vectors, k D 1; : : : ;K.
Note that xk D ek ; k D 1; : : : ; n:

Proposition 4 [2,3] Let K > n, l k D l kk e
k ; k D

1; : : : ; n; l k > 0; jI(l k)j � 2; k D n C 1; : : : ;K.
Then each local minimizer of the function HK(x) defined
by (13) over the simplex S is a strictly positive vector.

Corollary 1 Let {xk} be a sequence generated by Algo-
rithm 2. Then xk � 0 for all k > n.

Let ri(S) D fx 2 S : xi > 0 for all i 2 Ig be the relative
interior of the simplex S. It follows from Proposition 4
and Corollary 1 that we can solve the problem (12) by
sorting the local minima of the functionHK over the set
ri (S). We now describe some properties of local min-
ima ofHK on ri (S), which will allow us to identify these
minima explicitly.

It is well known that functions hk and HK are direc-
tionally differentiable. Let f 0(x; u) denote directional
derivative of the function f at the point x in the direc-
tion u. Also let

R(x) D fk : hk(x) D HK(x)g ;

Qk(x) D fi 2 I(l k) : l ki xi D hk(x)g :
(14)

Proposition 5 (see, for example, [13]). Let x � 0.
Then

(hk)0(x; u) D min
i2Qk (x)

l ki ui ;

(HK)0(x; u) D max
k2R(x)

(hk)0(x; u) D max
k2R(x)

min
i2Qk (x)

l ki ui :

Let x 2 S. The cone

K(x; S) D fu 2 Rn : 9˛0 > 0

such that x C ˛u 2 S 8˛ 2 (0; ˛0)g

is called the tangent cone at the point x with respect to
the simplex S. The following necessary conditions for
a local minimum hold (see, for example, [13]). Suppose
x 2 ri(S). Then K(x; S) D fu :

P
i2I ui D 0g:

Proposition 6 Let x 2 S be a local minimizer of the
function HK over the set S. Then (HK)0(x; u) � 0 for all
u 2 K(x; S).

Applying Propositions 5 and 6 we obtain the following
result.

Proposition 7 [2,3] Let x � 0 be a local minimizer of
the function HK over the set ri (S), such that HK(x) > 0.
Then there exists an ordered subset fl k1 ; l k2 ; : : : ; l kng of
the set fl1; : : : ; l Kg such that
1)

x D

 
d
l k11
; : : : ;

d
l knn

!
where d D

1P
i2I

1
l kii

; (15)

2)

max
k�K

min
i2I(l k )

l ki
l k ii
D 1; (16)

3) Either ki D fig for all i 2 I or there exists m 2 I
such that km � nC 1; if km � n then km D m;

4) if km � n C 1 and l kmi ¤ 0 then l kmi > l k ii for all
i 2 I; i ¤ m :

Solution of the Auxiliary Problem

It follows from Propositions 4 and 7 that we can find
a global minimizer of the function HK defined by (13)
over the unit simplex using the following procedure:
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� sort all subsets fl k1 ; : : : ; l kng of the given set
l1; : : : ; l K vectors, such that (16) holds and l kmi >

l k ii ; i ¤ m if km � nC 1; i 2 I(l km ) and km D m if
km � n;

� for each such subset, find the vector x defined
by (15);

� choose the vector with the least value of the function
HK among all the vectors described above.
Thus, the search for a global minimizer is reduced

to sorting some subsets, containing n elements of the
given set fl1; : : : l Kg with K > n. Fortunately, Proposi-
tion 7 allows one to substantially diminish the number
of sorted subsets.

The subsets L D fl k1 ; : : : ; l kng can be visualized
with the help of an n � n matrix whose rows are given
by the participating support vectors

L D

0
BBBB@

l k11 l k12 : : : l k1n
l k21 l k22 : : : l k2n
:::

:::
: : :

:::

l kn1 l kn2 : : : l knn

1
CCCCA
: (17)

The conditions 2) and 4) of Proposition 7 are then easily
interpreted as follows. Condition 4) implies that the di-
agonal elements of matrix L are smaller than elements
in their respective columns, and condition 2) implies
that the diagonal of L is not dominated by any other
support vector l k 62 L (zero entries of matrix L are ex-
cluded from compaisons). Thus we obtain a combina-
torial problem of enumerating all combinations L that
satisfy conditions 2) and 4).

However it is impractical to enumerate all such
combinations directly for large K. Fortunately there is
no need to do so. It was shown in [6,7,8] that the re-
quired combinations can be put into a tree structure.
The leaves of the tree correspond to the local minimiz-
ers of HK , whereas the intermediate nodes correspond
to the minimizers of Hn ;HnC1; : : : ;HK�1.The incre-
mental algorithm based on the tree structure makes
computations very efficient numerically (as processing
of queries using trees requires logarithmic time of the
number of nodes). It is possible to enumerate several
billions of local minimizers of HK (e. g., when n D 5
and K D 100; 000) in a matter of seconds on a standard
Pentium IV based workstation.

The direct method of minimization of Lipschitz
functions involves solution to a different auxiliary prob-

lem, that of minimizing HK given in (11), with dP being
a simplicial distance function. It turns out that a very
similar method of enumeration of local minimizers of
HK , by putting them in a tree structure, also works [9].
There is a counterpart of Proposition 7, with the differ-
ence that the support vectors are defined by

l ki D
f (xk)
C
� xk

i ; (18)

and the local minima and minimizers of HK are identi-
fied through

d D HK(x�) D
C(Trace(L)C 1)

n
;

x�i D
d
C
� l k ii ; i D 1; : : : ; n;

(19)

where constant C is chosen greater or equal to the Lips-
chitz constantM of f in the simplicial distance dP. Thus
both versions of CAM, for IPH and for Lipschitz func-
tions, share the same algorithm, but with different defi-
nitions of support vectors.

The actual algorithms for enumeration of local
minima of HK and maintaining the tree structure, as
well as treatment of linear constraints, are presented
in [7,8,9]. The algorithms involve a crucial fathoming
step, and can be seen as branch-and-bound type algo-
rithms [9,12,23].

Conclusions

Cutting angle methods are versions of the general-
ized cutting plane method for IPH, Lipschitz and other
classes of abstract convex functions. The main idea
of this deterministic method is to replace the original
problem of minimizing f with a sequence of relaxed
problems with special structure. The objective func-
tions in the relaxed problems provides tight lower esti-
mates of f , and the sequence of their solutions converge
to the global minimum of f . Efficient solution to the re-
laxed problemmakes CAM very fast on a class of global
optimization problems.

Optimization is not the only field such underesti-
mates are applied. Versions of CAM are also used for
non-uniform random variate generation [10] and mul-
tivariate data interpolation [11].

Both versions of CAM described here have been
successfully applied to a number of real life problems,
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including very difficult molecular geometry prediction
and protein folding problems [12,17]. A software li-
brary GANSO for global and non-smooth optimiza-
tion, which includes the cutting angle method, is avail-
able from http://www.ganso.com.au.
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generalization is based on the so-called envelope repre-
sentation of the objective function.

We begin with the simplest case of a convex differ-
entiable function f in order to introduce this approach.
For such a function the tangent hyperplane T = {xr
f (y)(x � y)+ f (y) = 0} is simultaneously a support hy-
perplane. That is, the inequality f (x) � f (y)+ r f (y)(x
� y) holds for each x. This inequality can be expressed
also in the following form: the affine function

hy(x) D r f (y)(x � y)C f (y) (1)

is a support function for the function f . Thus the func-
tion f can be represented as the pointwise maximum of
the functions of the form hy:

f (x) D max
y

hy(x):

One of the main results of convex analysis asserts that
an arbitrary lower semicontinuous convex function f
(perhaps admitting the value +1) is the upper envelope
(UE) of the set of all its affine minorants:

f (x) D sup
�
h(x) : h is an affine function;

h � f

	
:

(The inequality h � f stands for h(x) � f (x) for all x.)
The supremum above is attained if and only if the sub-
differential of f at the point x is nonempty. Since affine
functions are defined by means of linear functions, one
can say that convexity is‘linearity + envelope represen-
tation’.

As it turns out the contribution of‘envelope repre-
sentation’ to the convexity is fairly large. This obser-
vation stimulated the development of the rich theory
of‘convexity without linearity’. (See [12,14,19] and ref-
erences therein.) In particular, functions which can be
represented as UE of subsets of a set of sufficiently sim-
ple functions are studied in this theory.

We need the following definition. Let H be a set of
functions. A function f is called abstract convex (AC)
with respect toH (orH-convex) if f is the UE of a subset
from H, that is

f (x) D sup fh(x) : h 2 H; h � f g : (2)

The set H is called the set of elementary functions.
For applications we need sufficiently simple elementary
functions.

Many results from convex analysis related to var-
ious kinds of convex duality can be extended to ab-
stract convex analysis Abstract convexity sheds some
new lights to the classical Fenchel–Moreau duality and
the so-called level sets conjugation (see [19]). The set s(f ,
H) = {h 2 H:h � f }, presented in (2), is called the sup-
port set of f . The mapping f 7�! s(f , H) is called the
Minkowski duality ([9]). The support set accumulates
a global information of a function f in terms of the set of
elementary functionsH and it can be useful in the study
of global optimization problems involving the function
f .

One of the main notions of convex analysis, which
plays the key role for applications to optimization, is
the subdifferential. There are two equivalent definitions
of the subdifferential of a convex function. The first of
them is based on the global behavior of the function.
A linear function l is called a subgradient (i. e. a mem-
ber of the subdifferential) of the function f at a point y
if the affine function h(x) = l(x)� (l(y)� f (y)) is a sup-
port function with respect to f , that is h(x) � f (x) for
all x. The second definition has a local nature and is
connected with local approximation of the function: the
subdifferential is a closed convex set of linear functions
such that the directional derivative u 7�! f 0x (u) at the
point x is presented as the UE of this set. For a differen-
tiable convex function these two definitions reflect re-
spectively support and tangent sides of the gradient.

The various generalizations of the second definition
have led to development of the rich theory of nons-
mooth analysis. The natural field for generalizations of
the first definition is AC.

A function h 2 H is called the subgradient (or H-
subgradient) of an H-convex function f at a point y if
f (x)� h(x)� (h(y)� f (y)) for all x. The set @H f (y) of all
subgradients of f at y is referred to as the subdifferential
of the function f at the point y.

Let H0 be the closure of the set H under vertical
shifts, that is

H0 D
�
h0 : h0(x) D h(x) � c;

h 2 H; c 2 R

	
:

Clearly h 2 @H0 f (y) if and only if f (y) = max{h0(y):h0 �
f , h0 2H0}. Thus ifH is already closed under shifts then

@H f (y) D fh 2 s( f ;H) : h(y) D f (y)g : (3)
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Thus the subdifferential is not empty if and only if the
supremum in (2) is attained.

Sometimes (3) is used for the definition of the sub-
differential for an arbitrary set of elementary functions
H (not necessary closed under shifts).

Many methods of convex minimization are based
on the local properties of the convex subdifferential
(more precisely, on the directional derivative). How-
ever there are some methods which exploit only the
support property of the subdifferential. The conceptual
schemes of these methods can be easily extended for AC
functions. One of these methods is presented below.

Consider the following problem

f (x)! min; x 2 X; (4)

where X is a compact set. Assume that f is AC with re-
spect to a set of elementary functions H. We consider
the following algorithm based on the generalized cut-
ting plane idea, which is a nonlinear generalization of
the classical cutting plane method.

0 Let k := 0:Choose an arbitrary initial point x0 2
X;

1 Calculate a subgradient in the form (3) that is an
element hk 2 s( f ;H) such that hk(xk) = f (xk);

2 Find a global optimum y� of the problem

max
0�i�k

hi(x)! min; x 2 X. (5)

3 Let xk+1 = y�; k := k + 1. Go to step 1:

Conceptual scheme (generalized cutting plane method)

Convergence of the sequence constructed by this
procedure to a global minimizer has been proved under
very mild assumptions by D. Pallaschke and S. Rolewicz
[12]. Upper and lower estimates of the optimal value of
the problem (4) can be computed, which lead to an ef-
ficient stopping criterion (compare with [2]).

There are two major difficulties in the numerical
implementation of the Algorithm. The first is the cal-
culation of a subgradient. In general it is very difficult
to find it numerically, however it is possible in several
important particular cases. The second difficulty is the
solution of the auxiliary problem (5). This is a linear

programming problem in the case of the set H of affine
functions, but for sets of more complicated functions
the problem (5) is essentially of a combinatorial nature
or a problem of convex maximization.

The simplest example of this approach is Lipschitz
programming. If f is a Lipschitz function we can, for ex-
ample, take as H the set of functions h of the form h(x)
= � a kx � xok � c, where a is a positive and c is a real
number, xo 2 X. In order to find an H-subgradient we
should take a > L where L is the Lipschitz constant of
the function f ; thus we need to know an upper estimate
of this constant; this is a special piece of global infor-
mation about this function. With such H the problem
(4) can be reduced to a sequence of special problems of
concave minimization. Some known algorithms of Lip-
schitz programming fall within the described approach
[11,21].

For fairly large classes of functions defined on the
cone Rn

C of all n-vectors with nonnegative coordinates
it is possible to take as H a set of functions which in-
cludes as its main part a min-type function of the form

l(x) D min
i2T (l )

li xi ; x 2 Rn
C;

with T (l) D fi : li > 0g :
(6)

We define the infimum over empty set to be zero. If l is
a strictly positive vector and c a positive number then
the set {x: mini lixi � c} is a complement to a ‘right
angle’. Exploiting min-type functions instead of linear
functions allows us to separate a point from the (not
necessary convex) set by the complements of ‘right an-
gles’.

Various classes of elementary functions arise, based
on the set L of all functions of the form (6) with l 2 Rn

C.
In particular, L itself and sets

H1 D fh : h(x) D l(x) � c; l 2 L; c 2 Rg ;

H2 D fh : h(x) D min(l(x); c); l 2 L; c 2 Rg

are convenient for applications. The classes of AC with
respect toH1 andH2 functions are quite large [14]. The
first of them consists of all increasing (with respect to
the usual order relation) functions f such that the func-
tion of a real variable t ! f (tx), t 2 [0, +1), is con-
vex for all x 2 Rn

C. This class contains all homogeneous
functions of degree ı � 1, their sums and UE of sets of
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such functions. In particular it contains all polynomials
with nonnegative coefficients. The second class consists
of all increasing functions f such that f (tx) � tf (x) for
all x 2 Rn

C and t 2 [0, 1]. Concave increasing functions
f with f (0) � 0 and UE of sets of such functions belong
to this class. Also, positively homogeneous functions of
degree ı � 1, their sums and UE of sets of such func-
tions belong to it.

For minimizing AC functions with respect to Hi (i
= 1, 2) we need again to calculate the Hi-subgradients
in the form (5) and then to reduce the problem (4) to
a sequence of auxiliary problems. A version of the gen-
eralized cutting plane method in such a case is called
‘cutting angle method’ ([2,14]).

A.M. Rubinov et al. ([1,14,16,17]) have demon-
strated that for AC functions generated by various
classes of min-type functions it is possible to find sub-
gradients very easily. In particular, only the number
f (x) (resp. f 0(x, x)) is required for the calculation of an
element of @H2 f (x) (resp. @H1 f (x)), without any addi-
tional information about a global behavior of the func-
tion f . Thus the main problem with implementation of
the cutting angle method is to solve the auxiliary sub-
problem, which is a problem of the mixed integer pro-
gramming of a special kind in this case.

Let L be the set of all functions (6) with l 2 Rn
C. It

can be shown ([14,16]) that a function f defined on Rn
C

is L-convex if and only if f is IPH (increasing and pos-
itively homogeneous of degree one).IPH functions can
serve for the miminization of a Lipschitz function over
the unit simplex Sn = {x 2Rn

C:
P

ixi = 1}. First ([14,15]),
for each Lipschitz function g defined on Sn there exists
a constant c>0 such that the functioneg(x) D g(x)C c
can be extended to an IPH function defined on Rn

C. Sec-
ond, the auxiliary problem (5) for problem (4) with an
IPH function f and X = Sn, has a special structure and
can be efficiently solved for fairly large n (see [14, Chap.
9] and references therein). Thus, the minimization of
a Lipschitz function over the unit simplex can be effi-
ciently accomplished by the cutting angle method.

Numerical experiments demonstrate that a combi-
nation of the cutting angle method with a local search
is very efficient, since the cutting angle method allows
one to leave a local minimizer fairly quickly.

Envelope representation is useful also in the study
of some theoretical problems arising in optimization.
Many interesting examples of such applications can be

found in the books [12,14,19]. In particular, a general
scheme of penalty and augmented Lagrangian based on
the notion of the subdifferential is presented in [12]. I.
Singer [19] demonstrated that Fenchel–Moreau duality
leads to a unified theory of duality results for very gen-
eral optimization problems. It can be shown [18] that
AC forms the natural framework for the study of solv-
ability theorems (generalizations of Farkas’ lemma; cf.
� Farkas lemma;� Farkas lemma: Generalizations). In
contrast with numerical methods based on applications
of subdifferentials, the study of solvability theorems is
based on application of support sets. AC serves also for
the study of some problems of quasiconvex minimiza-
tion (see for example [10,13,20]).

A subsetH of a set X of functions is called the supre-
mal generator ([9]) of X if each function from X is AC
with respect to H. There exist very small supremal gen-
erators of very large classes of functions. The following
two examples of such supremal generators are useful for
nonsmooth optimization.
1) Recall that a function f is called positively homoge-

neous (PH) of degree k if p(�x) = �kp(x) for � > 0.
It can be shown ([14]) that the set of all functions of
the form

h(x) D �a

 nX
iD1

x2i

! 1
2

C

nX
iD1

li xi ; (7)

where a � 0, l1, . . . , ln are real numbers is a supre-
mal generator of the set PH1 of all lower semicon-
tinuous PH functions of degree one defined on n-
dimensional space Rn. Since each function (7) is
concave it follows that the set of all concave PH func-
tions of degree one is a supremal generator of PH1.

2) It can be shown ([3,4,9,14]) that the set H of all
quadratic functions h of the form

h(x) D �a
nX

iD1

x2i C
nX

iD1

li xi C c; (8)

where a � 0, l1, . . . , ln, c are real numbers is a supre-
mal generator of the set of all lower semicontinuous
functions f :Rn ! R [ {+1} minored by H in the
following sense: there exists h 2H such that f � h.

Supremal generators are a convenient tool in the study
of nonsmooth optimization problems. A local approxi-
mation of the first (resp. second) order of a nonsmooth
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function is fulfilled very often by various kinds of gen-
eralized derivatives of the first (resp. second) order,
which are PH functions of the first (resp. second) de-
gree. Practical applications of these derivatives to opti-
mization are based on their representation in terms of
linear (resp. quadratic) functions.

Linearization of lower semicontinuous PH func-
tions of the first degree can be accomplished by supre-
mal generators of the space PH1, consisting of concave
functions. Each finite concave function g 2 PH1 can be
presented as min

n
l(x) : l 2 @g(0)

o
where @g(0) is the

superdifferential (in the sense of convex analysis) of this
function g at the origin. Hence each function g 2 PH1

can be linearized by the operation sup min.
The second order approximation of a nonsmooth

function f at a point x can be accomplished by the sub-
jet, that is the set

@2;� f (x)

D

8<
:(r g(x);r

2g(x)) :
f � g has a

local minimum x
with g 2 C2(Rn)

9=
; :

(Here r g(x) (resp. r2 g(x)) stands for the gradient
(resp. Hessian) of a function g at a point x.) LetH be the
set of all functions of the form (8). It can be shown (see
[5,6]) that the subjet @2,�f (x) is nonempty if and only if
theH-subdifferential @H f (x) is not empty. AC with re-
spect toH can also serve for supremal representation of
the second order generalized derivatives of nonsmooth
functions in terms of quadratic functions (see[5]).

See also

� Dini and Hadamard Derivatives in Optimization
� Nondifferentiable Optimization
� Nondifferentiable Optimization: Cutting Plane

Methods
� Nondifferentiable Optimization: Minimax Problems
� Nondifferentiable Optimization: Newton Method
� Nondifferentiable Optimization: Parametric

Programming
� Nondifferentiable Optimization: Relaxation

Methods
� Nondifferentiable Optimization: Subgradient

Optimization Methods
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Introduction

The filled function methods describe a class of global op-
timization methods for attacking the problem of find-
ing a global minimizer of a function f : X ! < over
a certain subset X � <n . Each variant of such meth-
ods replaces the objective function f (x) by a specific
auxiliary function that is associated with a local min-
imum and some parameters in every iteration, and is
minimized through some local search strategies. The
term “filled function” means that every auxiliary func-
tion can fill the region of attraction at a certain neigh-
borhood of a local minimum of the objective function.

The definition of a filled function involves some
basic concepts. The term “basin” was introduced first
in [1]. A basin of a function f (x) at an isolated min-
imizer x�1 denotes a connected domain B�1 which con-
tains x�1 and in which starting from any point the steep-
est descent trajectory of f (x) converges to x�1 , but out-
side of which the steepest descent trajectory of f (x) does
not converge to x�1 . Accordingly, a hill of a function f (x)
at a maximizer x�1 is a basin of � f (x) at the point x�1 .

In addition, the basin B�2 at a minimizer x�2 is lower
(or higher) than the basin B�1 at another minimizer x�1
if the following inequality holds:

f (x�2 ) < f (x�1 ) (or f (x�2 ) � f (x�1 )) :

Definitions

The first kind of filled function method was proposed
in [5] for the unconstrained optimization problem

min
x2<n

f (x) :

The corresponding filled function involved two param-
eters, and was defined by

P(x; x�1 ; r; �) D
1

rC f (x)
exp

�
�
kx � x�1 k2

�2

�
; (1)

where x�1 is a minimizer of the objective function f (x),
and r and � are parameters such that rC f (x�1 ) > 0; � >
0. In order to demonstrate the principle of the filled
function method, people usually assume that the func-
tion f (x) is twice continuously differentiable and coer-
cive, i. e., its Hessian is continuous and the following
condition holds:

lim
kxk!C1

f (x) D C1 : (2)

It is also assumed that the function f (x) has only a finite
number of minimizers in a closed domain˝ � <n that
contains all global minimizers of f (x).

Under certain other conditions concerning the pa-
rameters r and �, the function P(x; x�1 ; r; �) defined
in (1) has three properties as follows:
(a) x�1 is a maximizer of P(x; x�1 ; r; �) and the whole

basin B�1 at x�1 becomes a part of a hill of
P(x; x�1 ; r; �) at x�1 .

(b) P(x; x�1 ; r; �) has no minimizers or saddle points in
any higher basin of f (x) than B�1 at x�1 .

(c) f (x) has a lower basin B than B�1 at x�1 , then there
is a point x0 in such a basin B that minimizes
P(x; x�1 ; r; �) on the line through x0 and x�1 .

A function satisfying the above three properties is said
to be a filled function of f (x) at the local minimizer x�1 .
Note that the above definition just lists the main prop-
erties required for a filled function, in which the num-
ber of parameters is not an important factor (see the
discussion about categories of filled functions below).
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Usually, when people develop a variant of the filled
function method, property c in the above definition
may be replaced by a similar one. For example, it was
replaced in [21] by

(c1) If f (x) has a basin B�2 at x�2 that is lower than
B�1 , then there is a point x0 2 B�2 that minimizes
P(x; x�1 ; r; �) on the line through x�1 and x00, for
every x00 in some neighborhoods of x�2 .

Note that property c1 is much stronger than that re-
quired in [5] since aminimizer is required for lines con-
necting the current minimizer with every point in some
neighborhoods of a next better minimizer.

In addition, for the unconstrained global optimiza-
tion problem, in [16] two classes of continuously dif-
ferentiable filled functions with multiplicative and ad-
ditive structures, respectively, were proposed which as-
sumed the existence of a local minimizer in a lower
basin but not just on lines.

Under such assumptions as the objective function
f : <n ! < is coercive, continuously differentiable and
has finite local minimizers, another stronger variant of
the filled functions can be found in [18], where the con-
cept of a basin at a local minimizer was extended to that
of a G-basin. A subset B� � <n is said to be a G-basin
of f (x) corresponding to a local minimizer x� if it is
a connected domain with the following properties:

(i) f (x) � f (x�) for any x 2 B�;
(ii) x̄ 2 B� is a local minimizer of f (x) if and only if

f (x̄) D f (x�).
The definition in [18] requires that a filled function

p(x) is differentiable and satisfies some modifications of
conditions a and b as follows:

(a0) x�1 is a strictly local maximizer of p(x).
(b0) For any x ¤ x� satisfying f (x) � f (x�), x is not

a stationary point of p(x).
Furthermore, any lower local minimizer x̄ of f (x) than

a nonglobal minimizer x� is also a local minimizer of
the filled function and is lower than every point on the
boundary of the box set ˝ which contains all global
minimizers of f (x). For points higher than x� in˝ , the
farther they are from x� implies a lower value of the
filled function.

Recently, in order to take advantages of filled func-
tions and reduce the difficulty in adjusting the value of

parameters, the concept a locally filled function was in-
troduced in [9,22], which was based on the concept of
a local basin.

Given a bounded and closed convex set ! � ˝ and
a basin B1 of the objective function f (x) at a local mini-
mizer x�1 , if the set

B1(!) :D ! \ B1 ¤ ; ;

then B1(!) is called a local basin associated with x�1
and !. Furthermore, a continuously differential func-
tion P(x) is said to be a locally filled function associated
with ! at a local minimizer x1� of f (x) if the following
conditions hold:

(a2) x�1 is an interior point of ! and a strict local max-
imizer of P(x).

(b2) If B1(!) is a local basin containing the point x�1 ,
then P(x) does not have any local minimizer or
saddle point in B1(!).

(c2) If there exist local basins lower than B1(!), then
at least one of such local basins, e. g., B2(!), sat-
isfies the following condition: There is a point
x2 2 B2(!) such that P(x) decreases strictly along
the segment connecting x�1 and x2, that is,
P((1 � ˛)x�1 C ˛x2) is decreasing strictly with re-
spect to ˛ 2 [0; 1].

In [9,22], the difference between a filled function and
a locally filled function was illustrated by such a func-
tion y D f (x) defined on the interval [–0.5,0.5] as

f (x) D z1(sin(12
x)C 1:5) ;

where the variable z1 was defined by

z1 D log(z2 C 10�5)C 10 ;

z2 D

 �
x �

1
4

�2 �
x C

1
4

�2

C 10�4
!
x2 :

Note that x� D 0:2366 is one of its local minimizers. An
auxiliary function

Q(x; x�;A) D �[ f (x)� f (x�)] exp
�
Akx � x�k2

�

does not satisfy the definition of the filled function on
[–0.5,0.5] for the parameter A D 16, but it satisfies all
conditions associated with a locally filled function for
the parameter A D 16 and the choice of the interval
! D [�0:1; 0:3].
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Methods

If the objective function f : <n ! < is coercive, then
its global minimizer can be found in a suitable large
bounded closed set ˝ � <n which should be explored
completely. In general, let us denote the feasible re-
gion for minimizing f : X � <n !< by ˝ , and as-
sume that for any point x 2 @˝, f (x) > miny2˝ f (y).

The basic outline of filled function methods can be
described as follows:

Step 1 Choose an initial point x1 2 ˝ . Denote the
maximum of the iteration number and the index of
the iterative process by Iter_No and k, respectively.
Set k D 0.

Step 2 Minimize the function f (x) in ˝ starting from
the point x1 2 ˝ and obtain a local minimizer x�1
of f (x). Denote the basin of the objective function f
at x�1 by B�1 .

Step 3 Choose two suitable parameters r and �, and
construct a filled function P(x; x�1 ; r; �) associated
with x�1 and f , for example, which is defined by (1).

Step 4 Minimize the filled function P(x; x�1 ; r; �) and
find another point x2 in a lower basin B�2 of f than
B�1 if such a point x2 exists for a suitable choice of
parameters r and �.

Step 4.1 If a lower basin B�2 of f than B�1 at x�1 is found,
then a new local minimizer x�2 can be obtained by
any local search strategy. Furthermore, perform the
replacement of variables such as

x�2 ! x�1 ; B�2 ! B�1 ; k C 1! k ;

and go to step 3 (The method continues searching
for a global minimum by minimizing another filled
function corresponding to the local minimizer x�2 ).

Step 4.2 Otherwise, either the parameters should be
adjusted again by an internal updating strategy, or
no better local minimizer than x�1 can be found
in˝ .

Step 5 If the iterative index k > Iter_No, or no better
local minimizer of f can be found in ˝ , the cur-
rent best local minimizer will be regarded as a global
minimizer of f in˝ .

In the above outline of filled function methods, how to
choose parameters in a filled function is an important
issue, and it may be implemented through an internal

iterative process for minimizing P(x; x�1 ; r; �) approx-
imately in order to find a lower basin of f or an in-
creasing direction x̄ � x�1 for P(x; x�1 ; r; �) at a point
x̄. An algorithmic implementation and some practical
considerations can be found in [5].

Until now people have proposed many kinds of
filled functions, for which some are general, while many
others are specific [3,5,6,7,8,10,11,12,13,14,15,17,20,
21,23]. These filled functions can be classified into four
categories.

Two-Parameter Filled Functions

A two-parameter filled function was presented in (1).
Although the first filled function method was proposed
to deal with unconstrained optimization problems, the
two-parameter filled function method had been ex-
tended to find a constrained global minimizer [3].

The constrained optimization problem can be for-
mulated as follows:

Minimize f (x);

subject to gi(x) � 0; i 2 I ;
hj(x) D 0; j 2 E ;

(3)

where I and E are indices sets corresponding to
inequalities and equalities, respectively. The two-
parameter filled function for problem (3) is defined by

PF(x; x�1 ; r; �) D
1

rC F(x)
exp

�
�
kx � x�1 k2

�2

�
; (4)

where

F(x) D f (x)C
X
i2I
�i maxf0;�gi(x)gC

X
j2E

� j jhj(x)j

(5)

is an exact penalty function for the constrained mini-
mization problem (3), and � 2 <jIjCC, � 2 <

jEj
CC. Since

the function defined by (4) is a nonsmooth filled func-
tion, the definitions such as basin and filled function
should be modified accordingly, see [3].

Two-parameter filled functions have two disadvan-
tages. One is that the changes of both the filled function
and its gradient (if available) are affected by the term
exp(�kx � x�1 k2/�2). When kx � x�1 k2 is large, it is dif-
ficult to distinguish these changes, so some pseudo-
minimizers, or saddle points or higher minimizers of
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the filled functions may be located. The other is that
the coordination between r and � is very difficult; even
a global minimizer x� may be lost for an improper set-
ting of parameters.

Several modified two-parameter filled functions
were proposed in [7] as follows:

P̃(x; x�1 ; r; �) D
1

rC f (x)
exp

�
�
kx � x�1 k

�2

�
;

G(x; x�1 ; r; �) D ��
2 log[rC f (x)]� kx � x�1 k

2 ;

G̃(x; x�1 ; r; �) D ��
2 log[rC f (x)]� kx � x�1 k :

A more general form of filled functions with two pa-
rameters can be found in [20]:

P(x; r;A) D  (rC f (x))exp(�Aw(kx� x�k k
ˇ )) ; (6)

where ˇ � 1, A > 0, the parameter r is chosen such
that r C f (x) > 0 for all x 2 ˝ , and the functions
 (t); w(t) have the following properties:

(i)  (t) and w(t) are continuously differentiable for
t 2 (0;C1).

(ii) For t 2 (0;C1),  (t) > 0;  0(t) < 0 and
 0(t)/ (t) is monotonically increasing.

(iii) w(0) D 0 and for any t 2 (0;C1), w(t) > 0;
w0(t) � c > 0.

Note that choices for the functions  (t) and w(t)

can be 1/ta(a > 0), csch(t), exp (1/t) � 1; : : : and
t; sinh(t); et � 1; : : :, respectively. The general form of
filled functions in (6) includes the class of generalized
filled functions considered in [24], which are special
two-parameter filled functions.

Since the above filled functions may tend to zero
or –1 as kxk ! C1 for some objective functions f (x)
or F(x), they do not approximate a coercive objective
function properly. In such a case, a coercive filled func-
tion may be preferred. In [8] the concept of a globally
convexized filled function for a twice continuously dif-
ferentiable function f : ˝ ! < was introduced.

A continuous function U(x) is a globally convexized
filled function if it has three properties:

(a) U(x) has no stationary point in the region

S1 D fx j f (x) � f (x�1 ); x 2 ˝g ;

except a prefixed point x0 2 S1 that is a minimizer
of U(x).

(b) U(x) has a minimizer in the region (if it exists)

S2 D fx j f (x) < f (x�1 ); x 2 ˝g :

(c) lim
kxk!C1

U(x) D C1.

Two successful globally convexized filled functions can
be found in [8] as follows:

U1(x; x�1 ; x0;A; h) D kx � x0k
� arctanfA[ f (x)� f (x�1 )C h]g ;

U2(x; x�1 ; x0;A; h) D kx � x0k

� tanhfA[ f (x)� f (x�1 )C h]g :

In general, such globally convexized filled functions
may be expressed by

U(x; x�1 ; x0;A; h) D �(kx�x0k)�(A[ f (x)� f (x
�
1 )Ch])

for a large enough A > 0 and a suitable parameter h
such that

0 < h < f (x�1 ) � f (x�) ;

where x� is a global minimizer of f (x), x�1 is not a global
but is a local minimizer of f (x), and �(t) and '(t) are
continuously differentiable univariate functions satisfy-
ing the following conditions [8]:

(i) �(0) D 0, �0(t) � ˛ > 0;8t � 0.
(ii) �(0) D 0, �(t) is monotonically increasing for all

t 2 < (or for t 2 (�t1;C1), where t1 > 0).
(iii) �0(t) > 0;8t 2 < (or �0(t) > 0;8t 2 (�t1;C1),

where t1 > 0).
(iv) When t !C1, �0(t) is monotonically decreas-

ing to 0 at least as fast as 1/t.
Note that choices for these two functions can be t,

tan(t), et � 1; : : : for �(t) and arctan t; tanh(t); 1 �
e�t ; : : : for �(t).

Single-Parameter Filled Functions

In order to reduce the difficulty in coordination be-
tween r and � in a two-parameter filled function, several
single-parameter filled functions were proposed in [7]:

Q(x; x�1 ;A) D �[ f (x) � f (x�1 )] exp
�
Akx � x�1 k

2� ;
Q̃(x; x�1 ;A) D �[ f (x) � f (x�1 )] exp

�
Akx � x�1 k

�
;

rE(x; x�1 ;A) D �r f (x) � 2A[ f (x)� f (x�1 )](x � x�1 );

r Ẽ(x; x�1 ;A) D �r f (x) � A[ f (x)� f (x�1 )]
x � x�1
kx � x�1 k

:
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More and more single-parameter filled functions
appeared afterwards. For example,

H(x; x�1 ; a) D
1

ln[1C f (x) � f (x�1 )]
� akx � x�1 k

2

was proposed in [11], which is defined only for the re-
gion where f (x) � f (x�1 ) � 1. The L function

L(x; x�1 ; a) D ��kx � x�1 k
2 � [ f (x) � f (x�1 )]

1/m

and the mitigated L2 function

ML2(x; x�1 ; a) D ��
�

1
kx � x�1 kp

�
�[ f (x)� f (x�1 )]

1/m

were proposed in [12] and [13], respectively, where
m > 1 is a prefixed natural number, � is a positive pa-
rameter, and ' is a mitigator. A function y : < ! < is
said to be amitigator if it is a twice continuously differ-
entiable function in its domain and has the following
properties:
(i) y(0) D 0, y0(t) > 0, and y00(t) < 0 for all t > 0.
(ii) lim

t!C1
y(t) exists.

Note that the ML2 function can reduce the negative
definite effect in the Hessian of a single-parameter
filled function such as the L function significantly. The
numerical results and generalizations can be found
in [12,13,14,15].

A more general form for the single-parameter filled
functions can be expressed by

Q(x;A) D ��( f (x)� f (x�k ))exp(Aw(kx � x�k k
ˇ )) ;

where ˇ � 1, A > 0, and the functions '(t) and w(t)
have the following properties [20]:

(i) '(t) is continuously differentiable for t � 0.
(ii) �(0) D 0, �0(t) > 0; 8t � 0.
(iii) �0(t)/�(t) is monotonically decreasing for

t 2 (0;C1).
(iv) w(0) D 0 and for any t 2 (0;C1), w(t) > 0;

w0(t) � c > 0.

Note that the choices for these functions can be t,
at � 1(a > 1), sinh(t); : : : for '(t) and t; sinh(t); et �
1; : : : for w(t).

In order to avoid the influence of the exponential
term, a general single-parameter filled function can be
set by

U(x;A) D ��( f (x)� f (x�k )) � Aw(kx � x�k k
ˇ ) ;

where the function �(t) is continuous on [0;C1) and
is differentiable in (0;C1). Furthermore, the functions
�(t) and w(t) have the following properties [20]:

(i) �(0) D 0;
(ii) �0(t) > 0 is monotonically decreasing for

t 2 (0;C1) and limt!0C �
0(t) D C1;

(iii) w(0) D 0 and for any t 2 (0;C1), w(t) > 0;
w0(t) � c > 0.

Nonsmooth Filled Functions

It is well known that the constrained optimization
problem can be formulated as a nonsmooth opti-
mization problem by using the exact penalty func-
tion; see [3] or (3)–(5). With use of the methods of
nonsmooth analysis, a nonsmooth unconstrained op-
timization problem was studied in [10], which involved
a modified filled function as follows

PF (x; x�1 ; r; �)

D ln
�
1C

1
rC F(x)

�
exp

�
�
kx � x�1 k2

�2

�
; (7)

where F(x) is a weak semismooth objective function
and x�1 is a local minimizer of F(x).

For a composite function F(x) in the form

F(x) D f (x)C h(c(x)) ;

where f (x) and c(x) D (c1(x); : : : ; cm(x))T are smooth
functions and h : Rm ! R is convex but nons-
mooth [2], a kind of two-parameter filled function

P(x; r;A) D  (r C f (x))exp(�Akx � x�k k
2)

was considered in [20], where the function  (t) has
properties such as:
(i)  (t) > 0 for t � 0.
(ii)  (t) is monotonically decreasing for t � 0.
(iii)  (t1) �  (t2) � c2(t2 � t1) for t2 > t1 � 0, where

c2 > 0 is a constant.
In addition, for the single-parameter filled functions,
we can also consider some general forms as follows:

U(x;A) D ��( f (x)� f (x�k ))exp(Akx � x�k k
2) ;

or

Ũ(x;A) D ��( f (x)� f (x�k )) � Akx � x�k k
2 ;

where A > 0 is a parameter, and the function '(t) is
required to satisfy certain conditions [20]:
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(i) �(0) D 0, �(t) is monotonically increasing for
t � 0;

(ii) c1(t2 � t1) � �(t2) � �(t1) � c2(t2 � t1) for
t2 > t1 � 0, where 0 < c1 � c2 are constants.

Note that even for a continuously differential uncon-
strained optimization problem, there may exist a non-
smooth filled function. For example, a two-parameter
nonsmooth filled function

P(x; x�1 ; �; �) D f (x�1 ) �min[ f (x�1 ); f (x)]
� �kx � x�1 k

2

C �fmax[0; f (x)� f (x�1 )]g
2

(8)

was introduced in [21], where f (x) is coercive and Lip-
schitz continuous with a constant L in <n .

Discrete Filled Functions

After the concept of the filled functions was introduced
for continuous global optimization by Ge [5], some
people tried to transform discrete global optimization
problems into continuous ones and then to solve them
by the continuous filled function methods [6,17,23].

For the discrete case, since the third property of
a continuous filled function usually does not hold, such
an extension is not trivial. Difficulties may also oc-
cur when continuous optimization methods are applied
to deal with discrete optimization problems where the
gradient vectors are unavailable or expensive to com-
pute.

Discrete filled functions are related to the concept of
the discrete neighborhood. The discrete neighborhood
for a point x 2 Zn is usually defined by

N (x) D fx; x ˙ ei j i D 1; 2; : : : ; ng ;

where ei is the ith unit vector (i. e., the n-dimensional
vector with the ith component equal to 1 and all other
components equal to 0). On the basis of the local search
approach and the two-parameter filled function defined
by (1), Zhu [23] proposed an approximate algorithm
for a class of nonlinear integer programming problems

min
x2˝\Zn

f (x) ;

where˝ is a bounded closed box with all vertices inte-
gral. The algorithm is a direct method, which tries to
improve a current discrete local minimal solution by
minimizing an associated filled function. In [23], the

author used two examples to illustrate the numerical
performance of the algorithm proposed there.

In addition, based on the concept of 1/5-neighbor-
hood of an integer point x such as

N (x) D
�
y 2 <n j ky � xk1 �

1
5

	
;

Ge and Huang [6] investigated unconstrained nonlin-
ear integer programming, constrained nonlinear inte-
ger programming, and mixed nonlinear integer pro-
gramming problems. For such cases, the authors tried
to use a penalty function to transform a nonlinear inte-
ger programming problem into a global optimization
problem, which can be solved by the filled function
method if the objective function is twice continuously
differentiable in <n , and its gradient and Hessian ma-
trix are bounded. In particular, when the constraints are
equalities, all constrained functions are assumed to be
twice continuously differentiable.

The unconstrained nonlinear integer programming
model in [6] has the form:

Minimize f (x) ;

subject to jxi j � bi ; i D 1; 2; : : : ; n

x 2 Zn ;

(9)

where each bi is an integer. Under certain conditions, if
x� is a global minimizer of a penalty function

�1(x; k) D f (x)� k
nX

iD1

cos 2
xi

in the box fx j jxi j � bi ; i D 1; 2; : : : ; ng and x� is in
a 1/5-neighborhood of an integer point x̄, then x̄ is a so-
lution of problem (9).

For some integer m < n, if the second constraint
in (9), x 2 Zn , is replaced by xi 2 Z(i D m;m C
1; : : : ; n), then the corresponding problem is called
the mixed nonlinear integer programming problem, for
which a similar function

�2(x; k) D f (x)� k
nX

iDm

cos 2
xi

can be used as a penalty function.
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Similarly, for a constrained nonlinear integer pro-
gramming problem

Minimize f (x) ;

subject to ci(x) D 0; i D 1; 2; : : : ; p ;

minf0; ci(x)g D 0; i D pC 1; : : : ; q ;

jxi j � bi ; i D 1; 2; : : : ; n

x 2 Zn ;

(10)

some results can be derived by using the following
penalty function:

�3(x; r; k) D f (x)C r
pX

iD1

c2i (x)

C r
qX

iDpC1

�
minf0; ci(x)g

�2

� k
nX

iD1

cos 2
xi :

The minimization of �3(x; r; k) can be dealt with by the
filled function method proposed for constrained opti-
mization problems [3].

For the discrete optimization problem

min
x2X�Zn

f (x) ;

where f is a Lipschitz function, X is a bounded and
(strictly) pathwise connected domain, Ng et al. [17]
modified the definition of continuous filled functions
in order to allow them to be applied to discrete cases.
Now we give a definition of a discrete filled function as
follows:

Given a discrete local minimizer x� of a function
f : X � Zn ! R, let B� be the discrete basin of f
at x� over X. A function F : X ! R is said to be
a discrete filled function of f at x� if it satisfies the
following conditions:

(a) x� is a strict local maximizer of F over X;
(b) F has no discrete local minimizers in B� or

in any discrete basin of f higher than B�;
(c) If f has a discrete basin B�� at x�� that is

lower than B�, then there is a discrete point
x0 2 B�� that minimizes F on a discrete path
fx�; : : : ; x0; : : : ; x��g in X.

On the basis of the two-parameter nonsmooth filled
function defined by (8) at a local minimizer x�1 , a two-
phase algorithm was proposed to solve a discrete global
optimization problem in [17]. In phase 1, a discrete
steepest descent method was applied to find a local min-
imizer x�1 of f over X, which was called the local search.
Phase 2 searched for a minimum of the discrete filled
function defined by (8) on a discrete path in X via some
special search directions, which was called global search.
The global search would identify a point x0 in a discrete
basin lower than the discrete basin B�1 of f at x�1 . The
algorithm stopped when minimizing a discrete filled
function did not yield a better solution than the current
best local minimizer.

Summary

Many existing filled function methods require the as-
sumption that the objective function has only a fi-
nite number of local minimizers. In addition, they also
require that these local minima have different objec-
tive values. The assignment of single/two parameters in
a filled function is a very important issue for ensuring
the existence of a specific point for the filled function,
by which a better local minimum of the original objec-
tive function can be found in a lower basin if it exists.
Note that even for a local minimizer existing in a lower
basin, how to find it is still a reduced optimization prob-
lem.

Furthermore, it is hard to find a general stopping
criterion for the filled function methods, i. e., to check
whether a feasible point obtained by any of the filled
function methods is a global minimizer or not. All these
drawbacks indicate that research on the filled function
methods will be fascinating in the future. People may
consider extensive approaches to solve global optimiza-
tion problems, for example, by using modified func-
tions which include some nonfilled functions [19], or by
using locally filled functions which are integrated with
techniques in cluster analysis [9,22].
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Introduction

Given the wide variety of different global optimiza-
tion techniques, every time we have a new optimiza-
tion problem we must select the best technique for
solving this problem. This selection problem is made
more complex by the fact that most techniques for solv-
ing global optimization problems have parameters that
need to be adjusted to the problem or to the class of
problems. For example, in gradient methods, one can
select different step sizes.

When we have a single or few parameters to choose,
it is possible to empirically try many values and come
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up with an (almost) optimal value. Thus, in such situ-
ations, we can identify an optimal version of the cor-
responding technique. In other approaches, such as
methods like convex underestimators (described in de-
tail in the next section), instead of selecting the value of
single number-valued parameter, we have to select the
auxiliary function. It is not practically possible to test all
possible functions, so it is not easy to identify an opti-
mal version of the corresponding technique [9].

This entry presents the work of Floudas and
Kreinovich [9,10] on the functional forms of convex
underestimators for twice continuously differentiable
functions. They consider the problem of selecting the
best auxiliary function within a given global optimiza-
tion technique. Specifically, they showed that in many
such selection situations, natural symmetry require-
ments enables one to either analytically solve the prob-
lem of finding the optimal auxiliary function, or at least
reduce this problem to the easier-to-solve problem of
finding a few parameters.

In particular, they showed that we can thus explain
both the ˛BB method [1,2,6,16] and the generalized
˛BB recently proposed in [4,5]. A recent review article
on these deterministic global optimization approaches
can be found in [8].

Selecting Convex Underestimators:
The ˛BBMethod

It is well known that convex functions are compu-
tationally easier to minimize than non-convex ones
(see [7]). This relative easiness is not only an empirical
fact, it also has a theoretical justification (see [13,19]).

Because of this relative easiness, one of the ap-
proaches for minimization of a non-convex function
f (x) D f (x1; : : : ; xn) (under certain constraints) over
a box [xL; ; xU ] D [xL1 ; xU1 ] � : : : � [xLn ; xUn ] is to first
minimize its convex “underestimator”, i. e., a convex
function L(x) � f (x). Since L(x) is an underestimator,
the minimum of L(x) is a lower bound for the minimum
of f (x). By selecting L(x) as close to f (x) as possible, we
can get estimates for min f (x) which are as close to the
actual minimum as possible.

The quality of approximation improves when the
boxes become smaller. To get more accurate bounds on
min f (x), we can bisect the box [xL, xU] into sub-boxes
whithin a regular branch-and-bound framework, and

use the above technique to estimate min f (x) after con-
sidering the result of each node and utilizing fathoming
of branches where appropriate.

A known efficient approach to designing a convex
underestimator is the ˛BB global optimization algo-
rithm [1,2,6,16], in which we select an underestimator
L(x) D f (x)C ˚(x), where

˚(x) D �
nX

iD1

˛i � (xi � xLi ) � (x
U
i � xi ) : (1)

Here, the parameters ˛i are selected in such a way that
the resulting function L(x) is convex and still not too
far away from the original objective function f (x). For
a thorough presentation of ways to select these param-
eters, see [1,2,3,11].

In many optimization problems, the ˛BB tech-
niques are very efficient, but in some non-convex opti-
mization problems, it is desirable to improve their per-
formance. One way to do that is to provide a more gen-
eral class of methods, with more parameters to tune.
In the ˛BB techniques, for each coordinate xi , we have
a single parameter ˛i affecting this coordinate. Chang-
ing ˛i is equivalent to a linear re-scaling of xi. Indeed,
if we change the unit for measuring xi to a new unit
which is �i times smaller, then all the numerical val-
ues become �i times larger: xi ! yi D gi(xi), where
gi (xi) D �i � xi . In principle, we can have two different
re-scalings:
� xi ! yi D gi (xi) D �i � xi on the interval [xLi, xi],

and
� xi ! zi D hi(xi) D �i � xi on the interval [xi, xUi].
If we substitute the new values yi D gi (xi) and zi D
hi (xi) into the formula (1), then we get the following
expression

˚(x) D �
nX

iD1

˛i �
�
gi (xi)� gi (xLi )

�
�
�
hi(xUi )�hi(xi)

�
:

(2)

For the above linear re-scalings, we get

e̊(x) D �
nX

iD1

ęi � (xi � xLi ) � (x
U
i � xi) ;

where ęi D ˛i � �i � �i .
From this viewpoint, a natural generalization is to

replace linear re-scalings gi(xi) and hi(xi) with non-
linear ones, that is, to consider convex underestimators
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of the type L(x) D f (x) C ˚(x), where ˚(x) is de-
scribed by the formula (2) with non-linear functions
gi(xi) and hi(xi). Now, instead of selecting a number
˛i for each coordinate i, we have an additional free-
dom of choosing arbitrary non-linear functions gi(xi)
and hi(xi). The question of which are the best choices
is naturally posed. In [4,5], several different non-linear
functions were tried, and it turned out that among
the tested functions, the best results were achieved for
the exponential functions gi (xi) D exp(�i � xi ) and
hi(xi) D � exp(��i � xi). For these functions, the ex-
pression (2) can be somewhat simplified: indeed,

˛i �
�
gi(xi) � gi (xLi )

�
�
�
hi (xUi ) � hi (xi)

�

D ˛i � (e�i �xi � e�i �x
L
i ) � (�e��i �x

U
i C e��i �xi )

D ęi � (1 � e�i �(xi�x
L
i )) � (1 � e�i �(x

U
i �xi )) ;

where ęi
def
D ˛i � e�i �(x

U
i �x

L
i ):

Two related questions naturally arise and are ad-
dressed in the work of Floudas and Kreinovich [9,10]:
� first, a practical question: an empirical choice is

made by using only finitely many functions; is this
choice indeed the best – or there are other, even bet-
ter functions gi(xi) and hi(xi), which we did not dis-
cover because we did not try them?

� second, a theoretical question: how can we explain
the above empirical fact?

Shift Invariance

The starting point for measuring each coordinate xi is
often a matter of arbitrary choice. If a selection of the
functions gi(xi) and hi(xi) is “optimal” (in some intu-
itive sense), then the results of using these optimal func-
tions should not change if we simply change the start-
ing point for measuring xi, that is, replace each value xi
with a new value xi C s, where s is the shift in the start-
ing point. Indeed, otherwise, if the “quality” of the re-
sulting convex underestimators changes with shift, we
could apply a shift and get better functions gi(xi) and
hi(xi) – which contradicts the assumption that the se-
lection of gi(xi) and hi(xi) is already optimal.

The “optimal” choices gi(xi) and gi(xi) can be de-
termined from the requirement that each component
˛i � (gi (xi) � gi (xLi )) � (hi(xUi ) � hi(xi)) in the sum (2)
be invariant under the corresponding shift, that is, that
they satisfy the following definition.

Definition 1 A pair of smooth functions (g(x),h(x))
from real numbers to real numbers is shift-invariant if
for every s and ˛, there exists ę(˛; s) such that for every
xL, x, and xU , we have

˛ �
�
g(x) � g(xL)

�
�
�
h(xU) � h(x)

�

D ę(˛; s) � �g(x C s) � g(xL C s)
�

�
�
h(xU C s) � h(x C s)

�
:

(3)

At first glance, shift invariance is a reasonable but weak
property. It turns out, however, that this seemingly
weak property actually almost uniquely determines the
optimal selection of exponential functions. Proposi-
tion 1 applies.

Proposition 1 If a pair of functions (g(x), h(x)) is shift-
invariant, then this pair is either exponential or linear,
i. e., each of the functions g(x) and h(x) has the form
g(x) D AC C � exp(� � x) or g(x) D AC k � x.

For a proof, see [9] or [10].

Sign Invariance

In addition to shift, another natural symmetry is chang-
ing the sign. If we require that the expression (2) re-
main invariant under a replacement of x by –x, then
we get the relation between g(x) and h(x) : h(x) D
�g(�x). So, if a pair (g(x), h(x)) is shift-invariant and
sign-invariant, then:
� either g(x) D exp(� � x) and h(x) D � exp(�� � x),
� or g(x) D h(x) D x.
In other words, the optimal generalized ˛BB scheme is
either the original ˛BB [1,2,6,16], or the scheme with
exponential functions described in [4,5].

Scale Invariance

Sign-invariance can be perceived as a special case of
scale-invariance. Scale-invariance addresses a change
in the unit for measuring x, that is, transformations
x ! � � x.

We have already shown that there are only two
shift-invariant solutions: exponential and linear func-
tions. Out of these two solutions, only the linear so-
lution – corresponding to the original ˛BB – is scale-
invariant. Thus, if we also require scale-invariance, we
restrict ourselves only to original techniques and miss
the (often better) exponential generalizations.
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Although imposing both shift- and scale-invariance
leads to restrictions, one could still choose to employ
only the latter, formally expressed as follows:

Definition 2 A pair of smooth functions (g(x),h(x))
from real numbers to real numbers is scale-invariant if
for every � and ˛, there exists ę(˛; �) such that for ev-
ery xL, x, and xU , we have

˛ �
�
g(x) � g(xL)

�
�
�
h(xU) � h(x)

�

D ę(˛; �) � �g(� � x) � g(� � xL)
�
�
�
h(� � xU )

� h(� � x)
� (4)

The following proposition applies. For a proof, see [9].

Proposition 2 If a pair of functions (g(x), h(x)) is scale-
invariant, then this pair is either exponential or linear,
i. e., each of the functions g(x) and h(x) has the form
g(x) D A � x� or g(x) D AC k � ln(x).

From the theoretical viewpoint, these functions may
look as good as the exponential functions coming from
shift invariance, but in practice, they do not work so
well. The problem with these solutions is that they do
not preserve smoothness. Both linear and exponen-
tial functions which come from shift-invariance are in-
finitely differentiable for all x and hence, adding the
corresponding term˚(x) will not decrease the smooth-
ness level of the objective function. In contrast, the
functions g(x) D x� which come from scale invari-
ance are not infinitely differentiable at x D 0 or when
� is not integer. So, if we use scale invariance to select
a convex underestimator, we end up with a new param-
eter � which only attains integer-valued values and is,
thus, less flexible than the continuous-valued parame-
ters coming from scale-invariance.

Generalization of Shift Invariance

Instead of the expression (2), we can consider an even
more general expression

˚(x) D �
nX

iD1

˛i � ai (a; xL) � bi(xi ; xUi ) : (5)

What can be concluded from shift-invariance in this
more general case?

Definition 3 A pair of smooth functions (a(x, xL),
b(x, xU)) from real numbers to real numbers is shift-

invariant if for every s and ˛, there exists ę(˛; s) such
that for every xL, x, and xU , we have

˛ � a(x; xL) � b(x; xU )

D ę(˛; s) � a(x C s; xL C s) � b(x C s; xU C s) :
(6)

Regarding such functions, Floudas and Kreinovich [9]
proved the following proposition:

Proposition 3 If a pair of functions (a(x, xL), b(x, xU))
is shift-invariant, then

a(x; xL) � b(x; xU ) D A(x � xL) � B(xU � x) � e� �x
L

for some functions A(x) and B(x) and for some real num-
ber � .

Comment. If we additionally require that the expression
a(x; xL)�b(x; xU ) be invariant under x ! �x, then we
conclude that B(x) D A(x).

Another shift-invariance result comes from the fol-
lowing observation. Both the ˛BB expression

�(x � xL) � (xU � x)

and the generalized expression

�(1 � e� �(x�x
L )) � (1 � e� �(x

U�x))

have the form a(x� xL) � a(xU � x) with a(0) D 0. The
differences x�xL and xU�x come from the fact that we
want these expressions to be shift-invariant. The prod-
uct formmakes sense, since we want the product to be 0
on each border x D xL and x D xU of the correspond-
ing interval [xL, xU].

On the other hand, it is well known that optimizing
a product is more difficult than optimizing a sum; since
we will be minimizing the expression f (x)C˚(x), it is
therefore desirable to be able to reformulate it in terms
of the easier-to-minimize sum, e. g., as b(x � xL) C
b(xU � x)C c(xU � xL) for some functions b and c (for
minimization purposes, c does not depend on x and is
thus a constant). It is worth mentioning that both the
˛BB expression and its exponential generalization al-



Global Optimization: Functional Forms G 1327

low such representation. Note that:

� (x � xL) � (xU � x)

D
1
2
� (x � xL)2 C

1
2
� (xU � x)2 �

1
2
� (xU � xL)2;

and

� (1 � e� �(x�x
L )) � (1 � e� �(x

U�x))

D �1C e� �(x�x
L ) C e� �(x

U�x) � e� �(x
U�xL ) :

Interestingly, the above two expressions are the only
ones which have this easiness-to-compute property:

Definition 4 We say that a smooth function a(x) from
real numbers to real numbers describes an easy-to-
compute underestimator if a(0) D 0, a0(0) ¤ 0, and
there exist smooth functions b(x) and c(x) such that for
every x, xL, and xU , we have

a(x�xL)�a(xU�x) D b(x�xL)Cb(xU�x)Cc(xU�xL):

(7)

The condition a0(0) ¤ 0 comes from the fact that oth-
erwise, for small �x def

D x � xL and xU � x, each value
a(x�xL) will be quadratic in x�xL, the resulting prod-
uct will be fourth order, and we will not be able to com-
pensate for quadratic non-convex terms in the original
objective function f (x) – which defeats the purpose of
using f (x)C ˚(x) as a convex underestimator.

Proposition 4 The only functions which describe easy-
to-compute underestimators are a(x) D k�x and a(x) D
k � (1 � e� �x).

This is another shift-invariance related result that is also
proven in [9]. It selects linear and exponential functions
as “the best” in some reasonable sense. Floudas and
Kreinovich [9] proved that any “natural” shift-invariant
optimality criterion on the set of all possible underesti-
mator methods selects either a linear or an exponential
function.

Final Remarks

The work of Floudas and Kreinovich [9,10] has a much
further-reaching effect than on the case of ˛BB-
based convex underestimation mainly discussed here.
A symmetry-based approach leads to optimal tech-
niques also in the cases of optimal bisection (for se-
lecting box-splitting strategies) and optimal selection

of penalty and barrier functions. Other empirically op-
timal techniques can also be explained by symmetry-
based arguments. These include the “epsilon-inflation”
technique [15,18], results in simulated annealing and
genetic algorithms [17], as well as optimal selection of
probabilities in swarm optimization [12,14].
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Introduction

Various deterministic global optimization algorithms
that utilize a branch and bound framework make use
of convex underestimators of the functions under con-
sideration. For a recent review of such approaches,
see [7]. For arbitrarily nonconvex C2-continuous func-
tions f (x), defined in domain X D [xL; xU ], the ˛BB
underestimator [1,2,3,6,10] is typically used. This is

constructed by adding to the original function the fol-
lowing separable relaxation term, �(x;˛):

�(x;˛) D �
nX

iD1

˛i (xi � xLi )(x
U
i � xi ) ; (1)

where ˛i � 0; i D 1; 2; : : : ; n. The resulting underesti-
mator of f (x) would thus be

L˛BB(x;˛) D f (x)C �(x;˛) : (2)

Since the relaxation term is separable, the follow-
ing relationship exists among the Hessian matrices of
L˛BB(x;�), f (x) and �(x;˛):

r2L˛BB(x;˛) D r2 f (x)C 2A ; (3)

where A D r2�(x;˛) D diag f˛1; ˛2; : : : ; ˛ng. The ad-
dition of the relaxation term corresponds to a diagonal
shift of the Hessian matrix. Therefore, if we select large
enough values for the ˛i parameters, the nonconvexi-
ties in the original function can be overpowered and the
resulting underestimator L˛BB(x;˛) becomes convex.

A number of rigorous methods have been devised
in order to select appropriate values for these param-
eters [1,2,3,8]. Extensive computational testing of the
algorithm [3] showed that the most efficient of those
methods is the one based on the scaled Gerschgorin the-
orem. According to this method, it suffices to select

˛i D max

2
640;�12

0
B@hi i �

nX
jD1
j¤i

max
n
jhi jj;

jhi jj
o (xUj � xLj )

(xUi � xLi )

1
CA

3
75 ; (4)

where hvu and hvu are lower and upper bounds of
@2 f /@xv xu that can be calculated by interval analysis.

The g-˛BB approach was developed in [4,5] and of-
fers an alternative convex underestimation functional
form than the one originally proposed in the ˛BB the-
ory. The new relaxation scheme suggests subtraction of
a similar separable term that is of exponential, rather
than quadratic, nature.

The New Relaxation Term

In this section, we present the new relaxation function.
It shares most of the characteristics of the relaxation
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function, �(x;˛), used in the original ˛BB underesti-
mator described above. However, it possesses novel ad-
ditional properties that enable it to derive convex un-
derestimators that are tighter to the original function.
Thus, the new underestimators can help expedite the
branch and bound process of the overall global opti-
mization framework.

The new relaxation function is defined as follows:

˚(x; �) D �
nX

iD1

(1� e�i (xi�x
L
i ))(1� e�i (x

U
i �xi )) ; (5)

where � D (�1; �2; : : : ; �n)T is a vector of nonnegative
parameters. As will be explained later, these parame-
ters play a similar role as the ˛i’s in the original ˛BB
method.

The gradient of ˚(x;�) is

r˚(x; �) D �

0
BBBB@

��1e�1(x1�x
L
1 ) C �1e�1(x

U
1 �x1)

��2e�2(x2�x
L
2 ) C �2e�2(x

U
2 �x2)

:::

��n e�n(xn�x
L
n ) C �n e�n(x

U
n �xn )

1
CCCCA

and its Hessian is defined by the diagonal matrix

r2˚(x; �) D diag
n
�2i e

�i (xi�xLi ) C �2i e
�i (xUi �xi ) :

i D 1; 2; : : : ; n
o
:

Note that r2˚(x; �) is a function of x as opposed to
the Hessian matrix of �(x;˛), used in ˛BB, which is
constant throughout the domain X.

The new relaxation function ˚(x;�) has the follow-
ing important properties:
P1: ˚(x; �) � 0, for all x 2 [xL ; xU ].
P2: ˚(x; �) D 0 at the corner points of the interval

[xL; xU ].
P3: ˚(x;�) is a convex function.
P4: ˚(x;�) achieves its minimum at the middle point,

xmid, of X and its maximum at the corner points.
P5: The diagonal element of r2˚(x; �) is a convex

function and achieves its minimum at the mid-
dle point and its maximum at the endpoints of
[xLi ; x

U
i ].

The New Underestimating Function

The new underestimating function, L1(x;�), is formed
by adding ˚(x;�) to the nonconvex function f (x), that

is,

L1(x; �) D f (x)C ˚(x; �) : (6)

The Hessian of L1 is

r2L1(x; �) D r2 f (x)Cr2˚(x; �) :

The underestimator L1(x; �) has the following impor-
tant properties:
U1: L1(x;�) is an underestimator of f (x).
U2: L1(x;�) matches f (x) at all corner points of X.
U3: The maximum separation distance between the

nonconvex function f (x) and its underestimator
L1(x;�) is bounded.

U4: The underestimators constructed over supersets of
the current set are always less tight than the un-
derestimator constructed over the current box con-
straints.
Since the function ˚(x;�) is convex for every x 2 X

and � � 0, all nonconvexities in the original function
f (x) can be eliminated, provided that the parameters � i
have the appropriate values. The selection of these val-
ues is presented in the next section.

Selection of Appropriate Parameter Values

The initial values for the � i parameters are selected by
solving the following system of nonlinear equations:

`i C �
2
i C �

2
i e
�(xUi �x

L
i ) D 0; i D 1; 2 : : : ; n ; (7)

where `i � 0; i D 1; 2; : : : ; n. The parameters `i con-
vey second-order characteristics of the original non-
convex function into the construction process of the
underestimator. Candidate values for these parameters
can be selected as follows:

`i D �2˛i ; i D 1; 2 : : : ; n ; (8)

where ˛i � 0; i D 1; 2; : : : ; n are the parameters that
correspond to the original ˛BBmethod, as given by (4).
Akrotirianakis and Floudas [4] proved that such a se-
lection for the � i parameters always results in an un-
derestimator that is tighter than the one resulting from
the original method, i. e., (2). However, this new under-
estimator is not necessarily convex. Furthermore, they
proved that there always exists some selection of � i pa-
rameters that results in a convex underestimator.
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Therefore, they developed a systematic procedure
that determines values for all parameters � i that not
only guarantee the convexity of the underestimating
function L1(x;�) but also ensure that L1(x;�) is at least
as tight as the underestimating function L˛BB(x;˛). This
procedure is an iterative scheme that is based on inter-
val analysis and consecutive partitions of the domain X.
Before we present the scheme, let us present two addi-
tional results from [4] that are relevant:

Theorem 1 Let � D (�
1
; �

2
; : : : ; �

n
)T be the solution

of system (7), with `i defined by (8). Then, the two un-
derestimators L1(x; �) and L˛BB(x;˛), where

˛ D

 
4(1 � e0:5�1(x

U
1 �x

L
1 ))2

(xU1 � xL1 )2
; : : : ;

4(1� e0:5�n (x
U
n �xLn ))2

(xUn � xLn )2

!T

; (9)

have the same maximum separation distance from f (x).

Theorem 2 Let ˛ D (˛1; ˛2; : : : ; ˛n)T be the values of
the ˛ parameters as computed by (4). Then, the two un-
derestimators L1(x; �) and L˛BB(x;˛), where

� D

 
2 log(1C

p
˛1(xU1 � xL1 )/2)

xU1 � xL1
; : : : ;

2 log(1C
p
˛n(xUn � xLn )/2)

xUn � xLn

!T

; (10)

have the same maximum separation distance from f (x).

The main result of the above two theorems is that
for any � 2 [�; �] there exists an ˛ 2 [˛; ˛], such that
the underestimators L1(x;�) and L˛BB(x;˛) have the
same maximum separation distance from the noncon-
vex function f (x). From all these pairs of underestima-
tors, the only one that is known to be convex a pri-
ori is L˛BB(x;˛), since this is the one resulting from
the classical ˛BB method. However, as will be apparent
from the examples presented later, the underestimators
L˛BB(x;˛) and L1(x;�) are convex within a large portion
of the intervals [˛; ˛] and [�; �]; respectively. On the
basis of the above observations, it is natural to search
for a vector � in the interval [�; �] or for a vector ˛ in
the interval [˛; ˛], so that at least one of the underesti-
mators L1(x;�) and L˛BB(x;˛) is convex.

The algorithm described below was developed in [4]
for the appropriate selection of values for the � param-
eters, so that the corresponding underestimator is both
a convex function and at least as tight as the underesti-
mator used by the classical ˛BB method. It searches for
a vector � 2 [�; �] so that the corresponding ˛ 2 [˛; ˛]
produces an underestimating function L˛BB(x;˛) that is
convex. The search starts by setting � D � and ˛ D ˛
and then checking whether L˛BB(x;˛) is convex. This
is done by using the scaled Gerschgorin method to de-
termine lower bounds on the eigenvalues of the Hes-
sian matrix r2L˛BB(x;˛). For those lower bounds that
are negative, the intervals of the corresponding vari-
ables are bisected, thereby generating a number of sub-
domains that are stored in a list, denoted by �1. Then,
the algorithm checks whether r2L˛BB(x;˛) is posi-
tive semidefinite in each of those subdomains using
again the scaled Gerschgorin method. If the size of
the list, �1, exceeds a certain number of nodes, then
r2L˛BB(x;˛) is most likely not positive semidefinite.
The values of all � i’s have to then be increased by a pre-
specified positive quantity, � > 0, and the correspond-
ing values of the new ˛i’s are calculated. The algorithm
now tries to verify whether r2L˛BB(x;˛), with the new
increased ˛ parameters, is positive semidefinite. It con-
tinues in this manner until the list �1 becomes empty.
In that case, the corresponding ˛ values make the Hes-
sian matrix, r2L˛BB(x;˛), positive semidefinite for all
x 2 X and consequently L˛BB(x;˛) is a convex underes-
timator. The main reason for using the underestimator
L˛BB(x;˛) instead of the underestimator L1(x;�) is that
it is easier to verify the positive definiteness of the ma-
trix r2L˛BB(x;˛) than that of the matrix r2L1(x; �).
For more details see Alg. 1

Termination of the above algorithm is guaranteed
by the fact that L˛BB(x;˛) is known, a priori, to be con-
vex underestimator.

Computational Results

Because an iterative procedure is needed to determine
appropriate values for the � i parameters, the construc-
tion of the new underestimators requires more com-
putational effort than that required for the classical
˛BB method. However, within a global optimization
framework, actual computational savings may be real-
ized since the tighter underestimators produced by the
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Algorithm:

Step 1 (initialization): Set K = 1; J = 1, Jmax = 2n + 1 � = 1:1 XJ = X�1 = fXJg and 
i;K = 

i
.

Step 2: For alli = 1; 2� � �; n, use (9) to calculate the ˛i;K that correspond to 
i;K , and form the underestimator
L˛BB(x;˛K).

Step 3: If the maximum separation distance of L˛BB(x;˛K) from f (x) is less than the maximum separation
distance of L˛BB(x;˛) from f (x) then go to step 4.
Otherwise, adopt as an underestimator the classical ˛BB underestimator, L˛BB(x;˛), and stop.

Step 4: Check whether L˛BB(x;˛K) is convex:
Repeat

Step 4.1: Remove the last element from the list�1 of unexplored subdomains. Let us name that subdomain
Xl ast .

Step 4.2: Form the interval Hessian [r2L˛BB(x;˛K)] with x 2 Xl ast .
Step 4.3: Use (4) and (8) to find lower bounds on each eigenvalue of the interval Hessian

[r2L˛BB(x;˛K)] in Xl ast .
Step 4.4: Form the set I� = fi : `i < 0g.
Step 4.5: If I� ¤ ;, bisect all intervals [xLi;l ast; x

U
i;l ast] with i 2 I�, and add them at the end of the list �1.

Step 4.6: Set J = J + 2jI�j � 1, where jI�j represents the cardinality of the set I� (i. e., a total of 2jI�j new
subdomains have been generated and added to the list and one node has been removed).

Until (�1 = ; or J = Jmax).
Step 5: If�1 = ; then stop. The Hessian r2L˛BB(x;˛K) is positive semidefinite for all x 2 X and L˛BB(x;˛K)

is a convex underestimator. Also the underestimator L˛BB(x;˛K) is tighter than the underestimator
L˛BB(x;˛) obtained by the classical ˛BB method.
Otherwise, increase the values of all 
i;K; i = 1; 2; : : : ; n by setting 
i;K+1 = �
i;K . Set K = K + 1 and go to
step 2.

Global Optimization: g-˛BB Approach, Algorithm 1

new method could expedite the branch and bound pro-
cess through faster fathoming and visits to fewer tree
nodes.

A detailed computational comparison between the
new underestimators and the ones used by the classi-
cal ˛BB method was performed by Akrotirianakis and
Floudas [5]. They concluded that the new underesti-
mators usually perform better than the classical ˛BB
method, in terms of both the overall CPU time and
the number of nodes generated by the enumeration
tree. It was also observed that the new underestima-
tors perform better when the problem involves many
arbitrarily nonconvex terms in the objective or con-
straints.

In the same study, Akrotirianakis and Floudas [5]
also presented a hybrid optimization framework where
underestimators L1(x; �) were used to construct the re-

laxation in every node of the branch and bound tree.
A stochastic random-linkage algorithm [9] was then
employed to solve these relaxations and the method
exhibited improved computational efficiency. Interest-
ingly enough, the method located the actual global op-
timum in all case studies, despite the lack of theoretical
guarantees owing to the fact that the underestimators
L1(x; �) are not necessarily convex.

As an illustration, we present here two examples
from [5]:

Example 1
This example involves a nonconvex function that de-
scribes the molecular conformation of pseudoethane. It
is taken from [11], where the global minimum potential
energy conformation of small molecules is studied. The
Lennard-Jones potential is expressed in terms of a sim-
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Global Optimization: g-˛BB Approach, Figure 1
Function f1(x) and comparison of underestimators L˛BB(x;˛) and L˛BB(x;˛)

ple dihedral angle. The potential energy of the molecule
is given by the following function:

f1(x) D 588600
(3r20�4cos(
)r

2
0�2(s in2(
)cos(x�

2	
3 )�cos2(
))r20)6

� 1079:1
3r20�4cos(
)r

2
0�2(s in2(
)cos(x�

2	
3 )�cos2(
))r20)3

C 600800
(3r20�4cos(
)r

2
0�2(s in2(
)cos(x)�cos2(
))r

2
0)6

� 1071:5
(3r20�4cos(
)r

2
0�2(s in2(
)cos(x)�cos2(
))r

2
0)3

C 481300
(3r20�4cos(
)r

2
0�2(s in2(
C

2	
3 )cos(x)�cos2(
))r20)6

� 1064:6
(3r20�4cos(
)r

2
0�2(s in2(
C

2	
3 )cos(x)�cos2(
))r20)3

;

where r0 is the covalent bond length (r0 D 1:54A), � is
the covalent bond angle (� D 109:5o) and x is the dihe-
dral angle (x 2 X D [0; 2
]). Figure 1 depicts the graph
of f 1(x).

The value of the ˛ parameter computed by the clas-
sical ˛BB method using (4) is ˛ D 77:124 and the cor-
responding value for the � parameter, obtained by (10),
is � D 1:0673. Also, by solving (7) for � we obtain
� D 0:8521 and the corresponding value for the ˛
parameter, obtained by (9), is ˛ D 18:579. The iter-
ative algorithm checks whether there exist values of
� 2 [�; �] and ˛ 2 [˛; ˛] such that the underestima-
tor L˛BB(x;˛) is convex. After 16 iterations it concludes
that if ˛ D ˛, then L˛BB(x;˛) is a convex underestima-
tor of f 1(x). Furthermore, if � D � , then L1(x;�) is also

a convex underestimator of f 1(x). Note that the values
of � and ˛ did not have to increase at all.

The resulting minima of the two underestima-
tors L˛BB(x;˛) and L˛BB(x;˛) are �762:2377 and
�184:4244, respectively. Figure 1 depicts these two un-
derestimators and reveals the improvement in tight-
ness.

Example 2 This example is taken from [2] and exam-
ines the following two-dimensional nonconvex func-
tion:

f2(x) D cos(x1) sin(x2) �
x1

x22 C 1
;

where x1 2 [�1; 2] and x2 2 [1; 1]. The above func-
tion possesses three minima and its graph is depicted
in Fig. 2. The values of the ˛ parameters computed
by the classical ˛BB method using (4) are ˛1 D 1:921
and ˛2 D 10:921. Using (10), we can determine the
corresponding value for the � parameters; these are
�1 D 0:75 and �2 D 1:46. Also, by solving (7) for
�i ; i D 1; 2, we obtain �

1
D 0:672 and �

2
D 1:267. Us-

ing (9), we can determine the corresponding values for
the ˛ parameters; these are ˛1 D 1:3456 and ˛2 D 6:5.

The iterative algorithm checks whether there ex-
ist values of �i 2 [�

i
; � i]; i D 1; 2 and ˛i 2

[˛ i ; ˛ i ]; i D 1; 2, such that the underestimator
L˛BB(x;˛) is convex. After eight iterations it concludes
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Global Optimization: g-˛BB Approach, Figure 2
Function f2(x) and comparison of underestimators L˛BB(x;˛) and L˛BB(x;˛)

that if ˛ D (1:8325; ˛2), then L˛BB(x;˛) is a convex
underestimator of f 2(x). Also, if � D (0:74; �

2
), then

L1(x;�) is also a convex underestimator of f 2(x). Note
that only the value of �1 had to be increased from its
original value, �

1
, and the increase was only by 10%.

The resulting minima of the two underestima-
tors L˛BB(x;˛) and L˛BB(x;˛) are � 15.88469 and
� 10.22767, respectively. Figure 2 depicts these two un-
derestimators and reveals the improvement in tight-
ness.
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Generalized geometric GGP or signomial programming
(GGP) problems are characterized by an objective func-
tion and constraints which are the difference of two
posynomials. A posynomial G(x) is simply the sum of
a number of posynomial terms or monomials gk(x), k =
1, . . . , K, multiplied by some positive real constants ck, k
= 1, . . . , K. Each monomial gk(x) is in turn the product
of a number of positive variables each of them raised to
some real power,

gk(x) D xd1;k1 � � � xdN;kn ; k D 1; : : : ;K;

where d1, k, . . . , dN , k 2 R and are not necessarily inte-
gers. The term ‘geometric programming’ was adopted
because of the key role that the well-known arithmetic-
geometric inequality played in the initial developments.
Generalized geometric problems were first introduced
and studied by U. Passy and D.J. Wilde [28] and G.J.
Blau and Wilde [8] when existing (posynomial) geo-
metric programming (GP) formulations failed to ac-
count for the presence of negatively signed monomi-
als in models for important engineering applications.
These applications are extensively reviewed in [31] and
[16]. Chemical engineering applications include heat
exchanger network design [14], chemical reactor design
[8,9], optimal condenser design [4], oxygen production
[21], membrane separation process design [12], opti-
mal design of cooling towers [16], chemical equilibrium
problems [29], optimal control [23], batch plant mod-
eling [20,33], optimal location of hydrogen supply cen-
ters [3] and many more.

By grouping together monomials with identical
sign, the generalized geometric problem can be formu-
lated as the following nonlinear optimization problem:

GGP

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
t

G0(t) D GC0 (t) � G�0 (t)

s.t. Gj(t) D GCj (t) � G�j (t) � 0;
j D 1; : : : ;M;
ti � 0; i D 1; : : : ;N;

where

GCj (t) D
X

k2KCj

c jk
NY
iD1

t˛i jki ;

j D 0; : : : ;M;

G�j (t) D
X
k2K�j

c jk
NY
iD1

t˛i jki ;

j D 0; : : : ;M;

where t = (t1, . . . , tN) is the positive variable vector;
GCj , G

�
j , j = 0, . . . , M, are positive posynomial func-

tions in t; ˛ijk are arbitrary real constant exponents;
and cjk are positive coefficients. Also, the sets KCj , K

�
j

count how many positively/negatively signed monomi-
als form posynomials GCj , G

�
j respectively. In general,

formulation GGP corresponds to a nonlinear optimiza-
tion problemwith nonconvex objective function and/or
constraint set. Note that if we set K�j = 0 for all j = 0,
. . . , M then the mathematical model for GGP reduces
to the (posynomial) geometric programming (GP) for-
mulation which laid the foundation for the theory of
generalized geometric problems.

Unlike (posynomial) problems (GP), the problems
GGP remain nonconvex in both their primal and dual
representation and no known transformation can con-
vexify them. They may involve multiple local min-
ima and/or nonconvex feasible regions and therefore
are much more difficult problems to solve. Local opti-
mization approaches for solving GGP problems include
bounding procedures based on posynomial condensa-
tion [2,5,13,15,23]; iterative solution of KKT conditions
[9,25,32]; and adaptations of general purpose nonlin-
ear programmingmethods [1,7,10,19,24,26,31].A com-
putational comparison of available codes for signomial
programming is given in [12,32]. While local optimiza-
tion methods for solving GGP problems are ubiqui-
tous, application of specialized global optimization al-
gorithms on GGP problems is scarce. J.E. Falk [17] pro-
posed such a global optimization algorithm based on
the exponential variable transformation of GGP and
the convex relaxation and branch and bounding on the
space of exponents of negative monomials (j = 1, . . . ,
M and k 2 K�j ). Based on these ideas, C.D. Maranas
and C.A. Floudas [27] proposed an alternative parti-
tioning in the typically smaller space of variables i =
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1, . . . , N. The proposed branch and bound type algo-
rithm attains finite �-convergence to the global mini-
mum through the successive refinement of a convex re-
laxation of the feasible region and/or of the objective
function and the subsequent solution of a series of non-
linear convex optimization problems. The efficiency of
the proposed approach is enhanced by eliminating vari-
ables through monotonicity analysis, by maintaining
tightly bound variables through rescaling, by further
improving the supplied variable bounds through con-
vex minimization. The proposed approach was applied
to a large number of test examples, in particular robust
stability analysis problems.

Robust Stability Analysis

Robust stability analysis of nonlinear systems involves
the identification of the largest possible region in the
un- certain model parameter space for which the con-
troller manages to attenuate any disturbances in the
system. The stability of a feedback structure is deter-
mined by the roots of the closed loop characteristic
equation:

det (I C P(s; q)C(s; q)) D 0;

where q is the vector of the uncertain model parame-
ters, and P(s), C(s) the transfer functions of the plant
and controller, respectively. After expanding the deter-
minant we have:

P(s; q) D an(q)sn

C an�1(q)sn�1 C � � � C a0(q) D 0;

where the coefficients ai(q), i = 0, . . . , n, are typically
multivariable polynomial functions. The ‘zero exclu-
sion condition’ (ZEC) implies that a system with char-
acteristic equation P(q, s) = 0 is stable only if it does not
have any roots on the imaginary axis for any realization
of the qs in the uncertain model parameter space Q:

0 … P( j!; q); 8q 2 Q; and 8! 2 [0;1]:

A stability margin km can then be defined as follows:

km( j!) D inf fk : P( j!; q(k)) D 0; 8q 2 Qg :

Robust stability for this model is then guaranteed if and
only if

km � 1:

Geometrically, km expands the initial uncertain param-
eter regionQ as much as possible without loosing stabil-
ity. Note that, typically real parameter uncertainty is ex-
pressed as bounds on the real parameters of the model.

Checking the stability of a particular system with
characteristic equation P(j!, q) involves the solution of
the following nonconvex optimization problem.

(S)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
qi ;k�0;!�0

k

s.t. Re[P( j!; q)] D 0
Im[P( j!; q)] D 0
qNi �	q�i k � qi
� qNi C	qCi k;

i D 1; : : : ; n;

where qN is a stable nominal point for the uncertain
parameters and �q+, �q� are estimated bounds. Note
that it is important to be able to always locate the global
minimum of (S), otherwise the stability margin might
be overestimated. This overestimation can sometimes
lead to the erroneous conclusion that a system is stable
when it is not. Because for most problems without time
delays ai(q), i = 0, . . . , n, are multivariable polynomial
functions, formulation (S) corresponds to a generalized
geometric problem. Next, an illustrative robust stability
example is highlighted.

This example was studied in [18] and [30]. The
plant has three uncertain parameters and the charac-
teristic equation is:

P(s; q1; q2; q3) D s4 C (10C q2 C q3)s3

C (q2q3 C 10q2 C 10q3)s2

C (1 � q2q3 C q1)s C 2q1 :

The nominal values of the parameters of the system are

qN1 D 800; qN2 D 4; qN3 D 6;

and the bounded perturbations are:

	qC1 D 	q�1 D 800;

	qC2 D 	q�2 D 2;

	qC3 D 	q�3 D 3:
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After eliminating ! the zero exclusion formulation be-
comes:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min k
s.t. 10q22q33 C 10q32q23 C 200q22q23

C100q32q3 C 100q2q33 C q1q2q23
Cq1q22q3 C 1000q2q23 C 8q1q23
C1000q22q3 C 8q1q22 C 6q1q2q3
C60q1q3 C 60q1q2
�q21 � 200q1 � 0

800 � 800k � q1 � 800C 800k
4 � 2k � q2 � 4C 2k
6 � 3k � q3 � 6C 3k:

The stability margin is found to be km = 0.3417, which
implies that the system is unstable. Furthermore, the
first instability occurs at:

q�1 D 1073:4;

q�2 D 3:318;

q�3 D 4:975:
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Global Optimization of Heat Exchanger Networks, Figure 1
Head exchanger network superstructure
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The cost of energy represents an important part of
the total operating cost of many processing plants.
Therefore, the recovery of energy through heat ex-
changer networks (HENs) has played an important role
in industry, and has been a major concern of design
engineers for the last two decades (for reviews, see
[5,10,11]). Design approaches based on mathematical
programming techniques and models have been devel-
oped and applied in the synthesis and the optimiza-
tion of HENs (see for instance [3,12,18]). The synthesis
of HENs with a mathematical modeling framework in-
volves the optimization of a superstructure like the one
in Fig. 1 [18], and represents a difficult global optimiza-
tion problem from a deterministic point of view [20].

Nonconvexities are introduced into mathematical
models forHENs by the fractional powers of linear frac-
tional terms that appear in heat transfer area cost terms,

Area Cost D C
� q
U	T

�ˇ
:

Here the variables are the heat transfer rate, q, and the
logarithmic mean temperature difference driving force,
�T or LMTD, U is the heat transfer coefficient, and C
and ˇ are cost coefficient and exponent, respectively.
Other sources of nonconvexities in mathematical pro-
gramming models for heat exchanger networks arise
due to the logarithmic mean temperature difference
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driving force, which can be given rigorously

LMTD D
�
dth � dtc

�

log
h
d th
d tc

i ;

or by an approximation like the ones due to W.R. Pa-
terson [13]

LMTD D
1
3

�
1
2
(dth C dtc)

�
C

2
3

p
dthdtc

or J.J.J. Chen [2]

LMTD D
�
(dth)(dtc)(dth C dtc)

2

� 1
3

:

Here, dth and dtc are the temperature differences at
the hot and cold extremes in the heat exchanger. Non-
convexities in mathematical models of HENs also may
appear in the form of bilinear terms that are used to
model the nonisothermal mixing of process streams.
For instance, the energy balance for modeling the non-
isothermal mixing of process streams 1 and 2 to pro-
duce stream 3 would require the inclusion of the fol-
lowing bilinear equation in the mathematical model:

f1t1 C f2t2 D f3t3;

in which f stands for heat capacity flowrate, and t for
stream temperature.

The issue of determining a global optimum solu-
tion for problems involving heat exchanger networks
was first considered in [17]. Since then, representative
global optimization problems in heat exchanger net-
works have been posed, see for instance [4]. Never-
theless, deterministic global optimization algorithms,
and their application to the optimization of certain
classes of NLP and MINLP models in heat exchanger
networks appeared only until the 1990s in [1,6,9,14,
15,16,20,21,22].

Most of the applications of deterministic global op-
timization algorithms for the solution of nonconvex
problems involving HENs are based on a branch and
bound framework [7,8]. Within the branch and bound
approach for global optimization, lower bounds of the
global minimum value of the objective function are
computed by solving a convex relaxation of the origi-
nal nonconvex problem over subsections of the search
region. For the development of the convex relaxations

for nonconvex problems in HENs, the following prop-
erties are exploited.

Property 1 ([19,20,21,22]) Let � and�T be continuous
positive variables with �T > 0. Also, let U, C, ˛ and ˇ
be positive constants, with ˇ > 0, and ˛ = (ˇ + 1)/ˇ.
Then, the function

C
�
�˛

U	T

�ˇ

is convex. Furthermore, if q is a positive variable, and
S is a convex subset in R2

C, the convex optimization
problem in (2) can be used to compute a rigorous lower
bound for the solution of the problem in (1), i. e., the
problem in (2) is a valid convex relaxation of the prob-
lem in (1):

8̂
<̂
ˆ̂:

GloMin C
� q
U�T

�ˇ
s.t. (q; 	T) � S

0 � qL � q � qU ;

(1)

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min C
�

˛

U�T

�ˇ

s.t. � � (qL)
1
˛

C
(qU )

1
˛ �(qL)

1
˛

qU�qL (q � qL)

(q; 	T) � S;
0 � qL � q � qU ; � � 0:

(2)

Property 2 ([19]) Let dth, dtc and �T, be continuous
positive variables. Also, let T1 and T2, be positive con-
stants such that T1 � T2 > 0. Then the following in-
equalities are convex:

	T �
�
dth � dtc

�

log
h
d th
d tc

i ;

	T �
�
dth � (T1 � T2)

�

log
h

d th
(T1�T2)

i ;

	T �
�
(T1 � T2) � dtc

�

log
h
(T1�T2)

d tc

i

Property 3 ([19]) Let dth, dtc and �T, be continuous
positive variables. Also, let T1 and T2, be positive con-
stants such that T1 � T2 > 0. Then the following in-
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equalities, which are based on the Paterson approxima-
tion [13] for the LMTD, are convex:

	T �
1
3

�
(dth C dtc)

2

�
C

2
3

p
dthdtc;

	T �
1
3

�
(dth C T1 � T2)

2

�
C

2
3

p
dth(T1 � T2);

	T �
1
3

�
(T1 � T2 C dtc)

2

�
C

2
3

p
(T1 � T2)dtc:

Property 4 ([19]) Let dth, dtc and �T, be continuous
positive variables. Also, let T1 and T2, be positive con-
stants such that T1 � T2 > 0. Then the following in-
equalities, which are based on the Chen approximation
[2] for the LMTD, are convex:

	T �
�
(dth)(dtc)(dth C dtc)

2

� 1
3

;

	T �
�
(dth)(T1 � T2)(dth C T1 � T2)

2

� 1
3

;

	T �
�
(T1 � T2)(dtc)(T1 � T2 C dtc)

2

� 1
3

:

Property 5 ([19]) Let dth, dtc be continuous positive
variables, and let �T be the logarithmic mean temper-
ature difference,�T = [dth � dtc/log[dth/dtc]. Also, as-
sume that r is a constant determined by the ratio of
two particular values of dth and dtc. Then, the follow-
ing bounding inequality is valid, and holds as an equal-
ity along the line determined by the ratio r = dth/dtc:

	T � P(r)dth C Q(r)dtc;

where

P(r) D

(
0:5 if r D 1;
1/r�1Clog(r)

[log(r)]2 if r ¤ 1;

Q(r) D

(
0:5 if r D 1;
r�1�log(r)
[log(r)]2 if r ¤ 1:

Several other useful properties and their application in
the development of convex relaxations for HENs prob-
lems can be found in [1,6,14,19], and [20,21,22]

As an illustrative example of the use of the above
properties, and the application of global optimization
techniques in heat exchanger networks, consider the

Global Optimization of Heat Exchanger Networks, Figure 2
Heat exchanger network for the illustrative problem

Global Optimization of Heat Exchanger Networks, Figure 3
Global optimumHEN design of the illustrative problem

determination of the global optimal design of the HEN
shown in Fig. 2 [14]; stream data and cost information
are included in Table 1. This problem was originally
solved in [14] and [21] using the arithmetic mean tem-
perature difference driving force (AMTD), and assum-
ing isothermal mixing of process streams (t5 = t6).

Figure 3 shows the global optimum solution of the
nonconvex model (P) associated with the illustrative
problem. A design with a total network cost of $36,199
is determined. Note that model (P) does not assume
isothermal mixing, utilizes the approximation by Chen
[2], and enforces a minimum approach temperature of
5 degrees. The global optimization of model (P) was
performed with the branch and contract algorithm pro-
posed in [21,23]; the convex model (R) was used in
the computation of rigorous lower bounds of the total
network cost. The solution process required 7 branch
and bound nodes, and approximately 37 cpu seconds of
a Pentium I processor running at 133Mhz. Alternative
suboptimal solutions for the illustrative problem based
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Global Optimization of Heat Exchanger Networks, Table 1
Problem data for illustrative example

Tin Tout F
Stream (K) (K) (kW K�1)
H1 575 395 5.555
H2 718 398 3.125
C1 300 400 10
C2 365 � 4.545
C3 358 � 3.571

Cost of Heat Exchanger 1 ($yr�1) = 270[A1(m2)]
Cost of Heat Exchanger 2 ($yr�1) = 720[A2(m2)]
Cost of Heat Exchanger 3 ($yr�1) = 240[A3(m2)]
Cost of Heat Exchanger 4 ($yr�1) = 900[A4(m2)]
U1 =U1 = 0:1 kW m�2 K�1
U3 =U4 = 1:0 kW m�2K�1

on the rigorous LMTD include network designs with
total costs of $38,513, $39,809, $41,836, and $47,681.

NonconvexModel (P)

Indices
1, 2, 3, 4 = index for heat exchangers
1h, 2h, 3h, 4h = hot side of heat exchangers
1c, 2c, 3c, 4c = cold side of heat exchangers

Parameters

U1, U2, U3, U4 = overall heat transfer coefficients

Positive Variables

t = stream temperature
dt = temperature difference at end of heat exchanger
�T = approximation of the logarithmic mean

temperature difference
q = heat transfer rate
f = heat capacity flowrate

Objective Function

min 270
q1

U1	T1
C 720

q2
U2	T2

C 240
q3

U3	T3
C 900

q4
U4	T4

:

Model Constraints
q1 D 5:555(t1 � 395);

q1 D f1(t5 � 300);

q2 D 3:125(t2 � 398);

q2 D f2(t6 � 300);

q3 D 4:545(t3 � 365);

q3 D 5:555(575 � t1);

q4 D 3:571(t4 � 358);

q4 D 3:125(718 � t2);

q1 C q2 D 1000;

q1 C q3 D 999:9;

q2 C q4 D 1000;

f1 C f2 D 10;

dt1h D t1 � t5;

dt1c D 95;

dt2h D t2 � t6;

dt2c D 98;

dt3h D 575 � t3;

dt3c D t1 � 365;

dt4h D 718 � t4;

dt4c D t2 � 358;

	T1 D
�
(dt1h)(dt1c)(dt1h C dt1c)

2

� 1
3

;

	T2 D
�
(dt2h)(dt2c)(dt2h C dt2c)

2

� 1
3

;

	T3 D
�
(dt3h)(dt3c)(dt3h C dt3c)

2

� 1
3

;

	T4 D
�
(dt4h)(dt4c)(dt4h C dt4c)

2

� 1
3

;

f1t5 C f2t6 D 4000;

0 � qLi � qi � qUi ; i D 1; 2; 3; 4;

0 � tLj � t j � tUj ; j D 1; 2; 3; 4; 5; 6;

dtk � 5; k D 1h; 1c; 2h; 2c; 3h; 3c; 4h; 4c

0 � f L1 � f1 � f U1 ; 0 � f L2 � f2 � f U2 :
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ConvexModel (R)

Objective Function

min 270
[�1]2

U1	T1
C 720

[�2]2

U2	T2

C 240
[�3]2

U3	T3
C 900

[�4]2

U4	T4
:

Model Constraints

�i � (qLi )
1
2 C

(qUi )
1
2 � (qLi )

1
2

qUi � qLi
(qi � qLi );

i D 1; 2; 3; 4;

q1 D 5:555(t1 � 395);

q1 D y15 � 300 f1;

q2 D 3:125(t2 � 398);

q2 D y26 � 300 f2;
q3 D 4:545(t3 � 365);

q3 D 5:555(575� t1);

q4 D 3:571(t4 � 358);

q4 D 3:125(718� t2);

q1 C q2 D 1000;

q1 C q3 D 999:9;
q2 C q4 D 1000;

f1 C f2 D 10;

dt1h D t1 � t5;

dt1c D 95;

dt2h D t2 � t6;

dt2c D 98;
dt3h D 575 � t3;

dt3c D t1 � 365;

dt4h D 718 � t4;

dt4c D t2 � 358;

	T1 �
�
(dt1h)(dt1c)(dt1h C dt1c)

2

� 1
3

;

	T2 �
�
(dt2h)(dt2c)(dt2h C dt2c)

2

� 1
3

;

	T3 �
�
(dt3h)(dt3c)(dt3h C dt3c)

2

� 1
3

;

	T4 �
�
(dt4h)(dt4c)(dt4h C dt4c)

2

� 1
3

;

z11 D t5 � 300;

z22 D t6 � 300; y15 C y26 D 4000;

y15 � tL5 f1 C f L1 t5 � f L1 t
L
5 ;

y15 � tU5 f1 C f U1 t5 � f U1 tU5 ;

y15 � tL5 f1 C f U1 t5 � f U1 tL5 ;

y15 � tU5 f1 C f L1 t5 � f L1 t
U
5 ;

y26 � tL6 f2 C f L2 t6 � f L2 t
L
6 ;

y26 � tU6 f2 C f U2 t6 � f U2 tU6 ;

y26 � tL6 f2 C f U2 t6 � f U2 tL6 ;

y26 � tU6 f2 C f L2 t6 � f L2 t
U
6 ;

z11 �
1
f1

0
B@
q1 C

q
qL1 qU1q

qL1 C
q
qU1

1
CA

2

;

z22 �
1
f2

0
B@
q2 C

q
qL2 q

U
2q

qL2 C
q
qU2

1
CA

2

;

z11 �
q1
f L1
C qU1

�
1
f1
�

1
f L1

�
;

z11 �
q1
f U1
C qL1

�
1
f1
�

1
f U1

�
;

z22 �
q2
f L2
C qU2

�
1
f2
�

1
f L2

�
;

z22 �
q2
f U2
C qL2

�
1
f2
�

1
f U2

�
;

z11 �
1

f L1 f U1

�
f U1 q1 � qL1 f1 C qL1 f

L
1
�
;

z11 �
1

f L1 f U1

�
f L1 q1 � qU1 f1 C qU1 f U1

�
;

z22 �
1

f L2 f U2
( f U2 q2 � qL2 f2 C qL2 f

L
2 );

z22 �
1

f L2 f U2

�
f L2 q2 � qU2 f2 C qU2 f U2

�
;

0 � qLi � qi � qUi ; i D 1; 2; 3; 4;

0 � tLj � t j � tUj ; j D 1; 2; 3; 4; 5; 6;

dtk � 5; k D 1h; 1c; 2h; 2c; 3h; 3c; 4h; 4c;

0 � f L1 � f1 � f U1 ; 0 � f L2 � f2 � f U2 ;

y15; y26; z11; z22 � 0:
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The hit and run algorithms fall into the category of se-
quential random search methods (cf. also � Random
search methods), or stochastic methods. These meth-
ods can be applied to a broad class of global optimiza-
tion problems. They seem especially useful for prob-
lems with black-box functions which have no known
structure. These problems often involve a very large
number of variables, and may include both continuous
and discrete variables.

The concept of hit and run is to iteratively generate
a sequence of points by taking steps of random length
in randomly generated directions. R.L. Smith, in 1984
[12], showed that this method can be used to generate
points within a set S that are asymptotically uniformly
distributed. The hit and run method was originally ap-
plied to identifying nonredundant constraints in linear
programs [1,3], and in stochastic programming [2].

Hit and run was first applied to optimization in
[16], and the name improving hit and run (IHR) was
adopted. The term ‘improving’ was intended to indi-
cate that the sequence of points were improving with
regard to their objective function values. The IHR al-
gorithm couples the idea of pure adaptive search [8,15]
with the hit and run generator to produce an easily im-
plemented sequential random search algorithm. Pure
adaptive search (PAS, see also� Random search meth-
ods) predicts that points uniformly generated in im-
proving level sets has, on the average, a linear number
of iterations in terms of dimension. One way to approx-
imate PAS, would be to use hit and run to generate ap-
proximately uniform points, and then select those that
land in improving level sets. This is the idea behind im-
proving hit and run.

In addition to IHR, a family of methods have been
developed that are based on hit and run. Other vari-
ations include: adding an acceptance probability with
a cooling schedule, varying the choice of direction,
varying the length of step, and modifying the sampling
method to include amixture of continuous and discrete
variables.

Hit and Run Based Algorithms

The underlying concept of hit and run based algorithms
is that, if hit and run could generate a uniformly dis-
tributed point in an improving level set, then PAS pre-
dicts that we need only a linear number of such points.
The point generated by just one iteration of hit and run
is far from uniform and may not be in the improv-
ing set, so the number of function evaluations is not
expected to be linear in dimension, but in [16] it was
shown that the expected number of function evalua-
tions for IHR on the class of elliptical programs (e. g.
positive definite quadratic programs) is polynomial in
dimension, O(n5/2). The number of function evalua-
tions includes those points that are rejected because
they do not fall into the improving level set. This the-
oretical performance result motivates the use of hit and
run for optimization. Numerical experience indicates
that IHR has been especially useful in high-dimensional
global optimization problems when there are many lo-
cal minima embedded within a broad convex structure.

The general framework for a hit and run based op-
timization algorithm for solving a global optimization
problem,
(
min f (x)
s.t. x 2 S;

where f is a real-valued function on S, is stated below.

PROCEDURE hit and run optimization method()
InputInstance();
Generate an initial solution X0;
Set Y0 = f (X0);
Set k = 0;
DO until stopping criterion is met;

Generate a random direction Dk ;
Generate a random steplength �k ;
Evaluate candidate point Wk = Xk + �kDk ;
Update the new point,

Xk+1 =

(
Wk if candidate point accepted
Xk if rejected

Set Yk+1 = min(Yk , f (Xk+1));
OD;
RETURN(Best solution found, Yk+1);

END hit and run optimization method;

Pseudocode for a hit and run based optimisation algorithm
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Improving hit and run uses the most basic hit and
run generator, which is to generate a direction vector
Dk that is uniformly distributed on a hypersphere, and
then generate a steplength �k which is generated uni-
formly on the intersection of Dk with the feasible set S.
In many applications, Smay be an n-dimensional poly-
tope described by linear constraints, in which case the
intersection of a direction with S is easily computed us-
ing a slight modification of a minimum ratio test (see
[16] for details). This is the most basic hit and run gen-
erator, but several variations have been developed.

One variation is to add an acceptance probability
with a cooling schedule to the hit and run generator,
as in simulated annealing (cf. � Simulated annealing).
This was developed in [10] and called the hide-and-seek
algorithm. Just as IHR was motivated by pure adap-
tive search, hide-and-seek was motivated by adaptive
search [9] (see also � Random search methods). Adap-
tive search generates a series of points according to
a sequence of Boltzman distributions, with parameter
T changing on each iteration. The theory predicts that
adaptive search with decreasing temperature parame-
ter T will converge with probability one to the global
optimum, and the number of improving points have
the same linear bound as PAS. Hide-and-seek uses the
basic hit and run generator, but accepts the candidate
point with the Metropolis criterion and parameter T. It
is interesting to consider the two extremes of the accep-
tance probability: if the temperature is fixed at infinity,
then all candidate points are accepted, and the hit and
run generator approximates pure random search with
a uniform distribution; at the other extreme if the tem-
perature is fixed to zero, then only improving points
are accepted, and we have improving hit and run. H.E.
Romeijn and Smith derived a cooling schedule which
essentially starts with hit and run, and approaches IHR.
They proved that hide-and-seek will eventually con-
verge to the global optimum, even though it may expe-
rience deteriorations in objective function values. They
also present computational results on several test func-
tions, which compare favorably with other algorithms
in the literature.

A second variation to the basic hit and run gener-
ator is to modify the direction distribution. Thus far,
we have only described choosing a direction according
to a uniform distribution on an n-dimensional hyper-
sphere, which has also been termed hyperspherical di-

rection (HD) choice. In [16] and [10], the direction dis-
tribution is defined more generally; the direction may
be generated from a multivariate normal distribution
with mean 0 and covariance matrixH. If theHmatrix is
the identity matrix, then the direction distribution is es-
sentially the uniform distribution on a hypersphere. In
[4] a nonuniform direction distribution is derived that
optimizes the rate of convergence of the algorithm. Al-
though exact implementation of the optimal direction
distribution may be very difficult, it motivates an adap-
tive direction choice rule called artificial centering hit
and run.

Another choice for direction distribution is the co-
ordinate direction (CD) method, in which the direc-
tion is chosen uniformly from the n coordinate vec-
tors (spanning Rn). Both HD and CD versions of di-
rection choice were presented and applied to identify-
ing nonredundant linear constraints in [1]. They were
also tested in the context of global optimization in [14].
Computationally, CD can outperform HD on specific
problems where the optimum is properly aligned, how-
ever HD is guaranteed to converge with probability one,
while it is easy to construct problems where CD will
never converge to the global optimum. A simple ex-
ample is given in [5] where local minima are lined up
on the coordinate directions, and it is impossible for
the CD algorithm to leave the local minimum unless
it accepts a nonimproving point. For such an exam-
ple, in [5] it is shown that the CD algorithm coupled
with a nonzero acceptance probability for nonimprov-
ing points will converge with probability one. Experi-
mental results were also reported.

A third variation to the basic hit and run generator
modifies it to be applicable to discrete domains [7,11].
Hit and run as described so far has been defined on
a continuous domain. An extension to a discrete do-
main was accomplished by superimposing the discrete
domain onto a continuous real number system. It was
motivated by design variables such as fiber angles in
a composite laminate, or diameters in a 10-bar truss,
where the discrete variables have a natural continuous
analog. Two slightly different modifications have been
introduced.

In [11] the candidate points were generated us-
ing Hit and run on the expanded continuous domain,
where the objective function of a nondiscrete point is
equal to the objective function evaluated at its nearest
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Global Optimization: Hit and RunMethods, 1
Two schemes to modify hit and run to disrete domains

discrete value. In this way, the modified algorithm oper-
ates on a continuous domain where the objective func-
tion is a multidimensional step function, with plateaus
surrounding the discrete points. This modification still
converges with probability 1 to the global optimum, as
proven in [11].

The diagram in Fig. 1 illustrates this method. Start-
ing from point X1, hit and run on the continuous do-
main generates a candidate point such as A. The ob-
jective function at A is set equal to that of its nearest
discrete point B, forcing f (A) = f (B). If the candidate
point is accepted, then X2 = A, and another candidate
point (shown as C) is generated.

A second scheme to modify hit and run to oper-
ate on discrete domains is to similarly generate a point
on a continuous domain, and then round the gener-
ated point to its nearest discrete point in the domain on
each iteration [6,7,13]. Again starting from point X1 in
Fig. 1, suppose A is generated. In this version, the can-
didate point is taken as the nearest discrete neighbor,
in this example B. The objective function is evaluated at
B, f (B), and if the point is accepted, then X2 = B. The
difference in this variation is illustrated by noting that
the next candidate point is generated from B instead of
from A, see point D in Fig. 1. Also note that only dis-
crete points are maintained. In [6,7] it is shown that this

second scheme dominates the first scheme in terms of
average performance for the special class of spherical
programs, and numerical results have been promising.

Another modification to the basic hit and run gen-
erator is in the way the steplength is generated. Instead
of generating the point uniformly on the whole line
segment, the line segment can be restricted to a fixed
length, or adaptively modified. S. Neogi [6] refers to
this as full-line length, restricted line length, or adap-
tive stepsize. In [6] the adaptive stepsize is coupled with
an acceptance probability to maintain a fixed probabil-
ity of generating an improving point. See [6] for a more
detailed discussion of this variation of a simulated an-
nealing algorithm based on the hit and run generator.

The many variations of hit and run have been nu-
merically tested on many test functions and applied to
real applications. All of the papers referenced in this ar-
ticle include numerical results, but the details are left to
the individual papers. Overall, the theoretical motiva-
tions and numerical experience leads us to believe that
hit and run is a promising approach to global optimiza-
tion.

See also

� Random Search Methods
� Stochastic Global Optimization: Stopping Rules
� Stochastic Global Optimization: Two-phase

Methods

References
1. Berbee HCP, Boender CGE, Rinnooy Kan AHG, Scheffer CL,

Smith RL, Telgen J (1987) Hit-and-run algorithms for the
identification of nonredundant linear inequalities. Math
Program 37:184–207

2. Birge JR, Smith RL (1984) Random procedures for nonre-
dundant constraint identification in stochastic linear pro-
grams. Amer J Math Management Sci 4:41–70

3. Boneh A, Golan A (1979) Constraints’ redundancy and fea-
sible region boundedness by random feasible point gen-
erator. Third European Congress Oper. Res., EURO III, Ams-
terdam, 9-11 April 1979

4. Kaufman DE, Smith RL (1998) Direction choice for accel-
erated convergence in hit-and-run sampling. Oper Res
46(1):84–95

5. Kristinsdottir BP (1997) Analysis and development of ran-
dom search algorithms. PhD Thesis Univ. Washington

6. Neogi S (1997) Design of large composite structures using
global optimization and finite element analysis. PhD Thesis
Univ. Washington



1346 G Global Optimization: Interval Analysis and Balanced Interval Arithmetic

7. Neogi S, Zabinsky ZB, Tuttle ME (1994) Optimal design
of composites using mixed discrete and continuous vari-
ables. Proc. ASME Winter Annual Meeting, Symp. Pro-
cessing, Design and Performance of Composite Materials,
vol 52. Dekker, New York, pp 91–107

8. Patel NR, Smith RL, Zabinsky ZB (1988) Pure adap-
tive search in Monte Carlo optimization. Math Program
4:317–328

9. Romeijn HE, Smith RL (1994) Simulated annealing and
adaptive search in global optimization. Probab Eng Inform
Sci 8:571–590

10. Romeijn HE, Smith RL (1994) Simulated annealing for con-
strained global optimization. J Global Optim 5:101–126

11. Romeijn HE, Zabinsky ZB, Graesser DL, Neogi S (1999) Sim-
ulated annealing for mixed integer/continuous global op-
timization. J Optim Th Appl 101(1)

12. Smith RL (1984) Efficient Monte Carlo procedures for gen-
erating points uniformly distributed over bounded re-
gions. Oper Res 32:1296–1308

13. Zabinsky ZB (1998) Stochastic methods for practical global
optimization. J Global Optim 13:433–444

14. Zabinsky ZB, Graesser DL, Tuttle ME, Kim GI (1992) Global
optimization of composite laminate using improving hit
and run. In: Floudas CA, Pardalos PM (eds) Recent Ad-
vances in Global Optimization. Princeton Univ. Press,
Princeton, 343–365

15. Zabinsky ZB, Smith RL (1992) Pure adaptive search in
global optimization. Math Program 53:323–338

16. Zabinsky ZB, Smith RL, McDonald JF, Romeijn HE, Kaufman
DE (1993) Improving hit and run for global optimization.
J Global Optim 3:171–192

Global Optimization:
Interval Analysis
and Balanced Interval Arithmetic
JULIUS ŽILINSKAS1, IAN DAVID LOCKHART BOGLE2

1 Institute of Mathematics and Informatics,
Vilnius, Lithuania

2 Centre for Process Systems Engineering,
Department of Chemical Engineering,
University College London, London, UK

MSC2000: 65K05, 90C30, 90C57, 65G30, 65G40

Article Outline

Keywords and Phrases
Introduction
Methods / Applications

Interval Analysis in Global Optimization

Underestimating Interval Arithmetic
Random Interval Arithmetic
Balanced Interval Arithmetic

See also
References

Keywords and Phrases

Global optimization; Interval arithmetic; Interval
computations

Introduction

Mathematically the global optimization problem is for-
mulated as

f � D min
X2D

f (X) ;

where a nonlinear function f (X), f : Rn ! R, of con-
tinuous variables X, is an objective function; D 2 Rn

is a feasible region; n is a number of variables. A global
minimum f * and one or all global minimizers X*:

f (X�) D f �

should be found. No assumptions on unimodality are
included in the formulation of the problem. Most often
an objective function is defined by an analytical formula
or an algorithm, which evaluates the value of the ob-
jective function using the values of variables and arith-
metic operations. � Continuous global optimization:
models, algorithms and software.

One of the classes of methods for global optimiza-
tion are methods based on interval arithmetic. Interval
arithmetic [10] provides bounds for the function val-
ues over hyper-rectangular regions defined by intervals
of variables. The bounds may be used in global opti-
mization to detect the sub-regions of the feasible region
which cannot contain a global minimizer. Such sub-
regions may be discarded from the subsequent search
for a minimum.

Interval arithmetic provides guaranteed bounds but
sometimes they are too pessimistic. Interval arithmetic
is used in global optimization to provide guaranteed
solutions, but there are problems for which the time
for optimization is too long. A disadvantage of interval
arithmetic is the dependency problem [5]: when a given
variable occurs more than once in interval computa-
tion, it is treated as a different variable in each occur-
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rence. This causes widening of computed intervals and
overestimation of the range of function values.

Analysis of both overestimating and underestimat-
ing intervals is useful to estimate how much inter-
val bounds overestimate the range of function values.
Moreover inner interval arithmetic operations may be
used instead of standard interval arithmetic operations
in some cases when dependency of operands is known
or operands are known to be monotonic. Although
monotonicity cannot easily be determined in advance,
inner and standard interval arithmetic operations may
be chosen randomly building random interval arith-
metic, estimating the range of real function values from
a sample of random intervals.

Methods / Applications

Interval Analysis in Global Optimization

Interval arithmetic is proposed in [10]. Interval arith-
metic operates with real intervals x D

�
x; x

�
D

fx 2 Rjx � x � xg, defined by two real numbers
x 2 R and x 2 R, x � x. For any real arithmetic op-
eration x ı y the corresponding interval arithmetic op-
eration x ı y is defined as an operation whose result
is an interval containing every possible number pro-
duced by the real operation with the real numbers from
each interval. The interval arithmetic operations are de-
fined as:

x C y D
h
x C y; x C y

i
;

x � y D
h
x � y; x � y

i
;

x � y D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

h
x y; xy

i
; x > 0 ; y > 0 ;h

x y; xy
i
; x > 0 ; 0 2 y ;h

xy; x y
i
; x > 0 ; y < 0 ;�

x y; x y
�
; 0 2 x ; y > 0 ;h

min(xy ; xy) ;

max(xy; xy)
i
; 0 2 x ; 0 2 y ;h

xy; xy
i
; 0 2 x ; y < 0 ;h

xy; xy
i
; x < 0 ; y > 0 ;h

xy; xy
i
; x < 0 ; 0 2 y ;h

xy; xy
i
; x < 0 ; y < 0 ;

x/ y D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

h
x/ y; x/y

i
; x > 0 ; y > 0 ;h

x/ y; x/y
i
; x > 0 ; y < 0 ;h

x/y; x/y
i
; 0 2 x ; y > 0 ;�

x/ y; x/ y
�
; 0 2 x ; y < 0 ;h

x/y; x/ y
i
; x < 0 ; y > 0 ;h

x/y; x/ y
i
; x < 0 ; y < 0 :

An interval function can be constructed replacing
the usual arithmetic operations by interval arithmetic
operations in the formula or the algorithm for calcu-
lating values of the function. An interval value of the
function can be evaluated using the interval function
with interval arguments. The resulting interval always
encloses the range of real function values in the hyper-
rectangular region defined by the vector of interval
arguments:

n
f (X) jX 2 X; X 2 Rn ; X 2 Rn

o
� f

�
X
�
;

where f : Rn ! R, f : [R;R]n ! [R;R]. Because of
this property the interval value of the function can be
used as the lower and upper bounds for the function in
the region which may be used in global optimization.

The first version of interval global optimization al-
gorithm was oriented to minimization of a rational
function by bisection of sub-domains [12]. Interval
methods for global optimization were further devel-
oped in [3,4,11], where the interval Newton method
and the test of strict monotonicity were introduced.
A thorough description including theoretical as well as
practical aspects can be found in [5] where a very ef-
ficient interval global optimization method involving
monotonicity and non-convexity tests and the special
interval Newton method is described. � Interval global
optimization.

A branch and bound technique is usually used to
construct interval global optimization algorithms. An
iteration of a classical branch and bound algorithm
processes a yet unexplored sub-region of the feasi-
ble region. Iterations have three main components:
selection of the sub-region from a candidate list to
process, bound calculation, and branching. In inter-
val global optimization algorithms bounds are calcu-
lated using interval arithmetic. All interval global opti-
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mization branch and bound algorithms use the hyper-
rectangular partitions and branching is usually per-
formed bisecting the hyper-rectangle into two. Variants
of interval branch-and-bound algorithms for global
optimization where the bisection was substituted by
the subdivision of subregions into many subregions in
a single iteration step have been investigated in [2]. The
convergence properties have been investigated in detail.
An extensive numerical study is presented in [8].� Bi-
section global optimization methods; � Interval analy-
sis: Subdivision directions in interval branch and bound
techniques.

The tightness of bounds is a very important factor
for efficiency of branch and bound based global op-
timization algorithms. An experimental model of in-
terval arithmetic with controllable tightness of bounds
to investigate the impact of bound tightening in inter-
val global optimization was proposed in [14]. The ex-
perimental results on efficiency of tightening bounds
were presented for several test and practical problems.
Experiments have shown that the relative tightness of
bounds strongly influences efficiency of global opti-
mization algorithms based on the branch and bound
approach combined with interval arithmetic.

Underestimating Interval Arithmetic

Kaucher arithmetic [6,7] defining underestimates is
useful to estimate how much interval bounds overes-
timate the range of function values. Kaucher arithmetic
operations (ıu) are defined as:

x Cu y D
h
x C y _ x C y

i
;

x �u y D
h
x � y _ x � y

i
;

x �u y D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

h
x y _ xy

i
; x > 0 ; y > 0

or x < 0 ; y < 0 ;h
x y; x y

i
; x > 0 ; 0 2 y ;h

xy _ x y
i
; x > 0 ; y < 0

or x < 0 ; y > 0 ;h
x y; xy

i
; 0 2 x ; y > 0 ;

[0; 0] ; 0 2 x ; 0 2 y ;�
xy; x y

�
; 0 2 x ; y < 0 ;h

xy; xy
i
; x < 0 ; 0 2 y ;

x/u y D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

h
x/y _ x/ y

i
; x > 0 ; y > 0

or x < 0 ; y < 0 ;h
x/y _ x/ y

i
; x > 0 ; y < 0

or x < 0 ; y > 0 ;�
x/ y; x/ y

�
; 0 2 x ; y > 0 ;h

x/y; x/y
i
; 0 2 x ; y < 0 ;

where [a_ b] D [min(a; b);max(a; b)]. Underestimat-
ing interval arithmetic guarantees to underestimate:

f
u

�
X
�
�
n
f (X) jX 2 X;

o
� f

�
X
�
:

An interval defined by Kaucher arithmetic is a worst
case estimate and can be the degenerate interval [0; 0].
A regularized version of Kaucher arithmetic proposed
in [13] assumes regularity of the dependency between
variables. In the underestimation assuming regular-
ity of the dependency between variables, multiplica-
tion operation (�ur) is defined differently fromKaucher
arithmetic:

x Cur y D x Cu y ;

x �ur y D x �u y ;

x �ur y D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

h
min(x y; xy); �(x; x; y; y)

i
;

x > 0 ; y > 0 or x < 0 ; y < 0 ;h
�(x; x; y; y);max(x y; xy)

i
;

x > 0 ; y < 0 or x < 0 ; y > 0 ;h
�(x; x; y; y); �(x; x; y; y)

i
;

otherwise ;

x
ı
ur y D x

ı
u y ;

where

�(x1; x2; y1; y2) D

8̂
<̂
ˆ̂:

x2y1 ; (x2�x1)y2�x1(y2�y1)
2(x2�x1)(y2�y1)

> 1 ;
x1y2 ;

(x2�x1)y2�x1(y2�y1)
2(x2�x1)(y2�y1)

< 0 ;
(x2 y2�x1 y1)2

4(x2�x1)(y2�y1)
; otherwise :

In [1,9] inner interval arithmetic is defined. If the
operands in the interval operations to calculate the
function values are known to be monotonic then stan-
dard interval arithmetic operations may be combined
with inner interval operations to tighten resulting in-
tervals without losing the guarantee of enclosure [1]. If
it is known that operands in subtraction or division are
dependent or are monotonic and have the same mono-
tonicity (either both are monotonically increasing or
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both monotonically decreasing) then inner interval op-
erations may be used instead of standard interval op-
erations. If it is known that operands in summation or
multiplication are monotonic and do not have the same
monotonicity (one is monotonically increasing and an-
other is monotonically decreasing) then inner interval
operations may be used instead of standard interval
operations.

The difference between inner interval operations
(ıin) and underestimating interval operations (ıu) con-
cerns the result of multiplication:

x Cin y D x Cu y ;

x �in y D x �u y ;

x �in y D

8̂
<
:̂

h
max(x y; xy);min(x y; xy)

i
;

0 2 x; 0 2 y;
x �u y; otherwise ;

x
ı
in y D x

ı
u y :

Random Interval Arithmetic

It is difficult computationally to find which operands
are dependent, to be certain they are monotonic, and to
determine their monotonicity (intervals of the deriva-
tives of all operands need to be found). Random inter-
val arithmetic proposed in [1] is obtained by choosing
standard or inner interval operations randomly with the
same probability at each step of the computation. The
range of function values is estimated using a number of
sample intervals evaluated using random interval arith-
metic. The estimation is based on the assumptions that
the distribution of the centres of the evaluated inter-
vals is normal with a very small relative standard de-
viation and the distribution of the radii is normal but
taking only positive values. The mean value of the cen-
tres �centres, the mean value of the radii �radii and the
standard deviations of the radii �radii of the random in-
tervals are used to evaluate an approximate range of the
function

[�centres ˙ (�radii C ˛�radii)] ; (1)

where ˛ is between 1 and 3 depending on the number of
samples and the desired probability that the exact range
is included in the estimated range. It is suggested in [1]
that a compromise between efficiency and robustness
can be obtained using ˛ D 1:5 and 30 samples. Experi-

mental results presented in [1] for some functions over
small intervals show that random interval arithmetic
provides tight estimates of the ranges of the consid-
ered function values with probability close to 1. How-
ever, in the experiments, the intervals of variables of the
function considered were small. In the case of large in-
tervals of variables, and particularly for multi-variable
functions, the obtained estimates for a range of func-
tion values frequently do not fully enclose the range of
function values.

For the application of random interval arithmetic to
global optimization it is important to extend these ideas
to the case of functions defined over large multidimen-
sional regions. Balanced random interval arithmetic
proposed in [16] extending the ideas of [1], is obtained
by choosing standard and inner interval operations at
each step of the computation randomly with prede-
fined probabilities for the standard and inner opera-
tions. A number of sample intervals are evaluated. It is
assumed that the distribution of centres of the evaluated
balanced random intervals is normal and that the distri-
bution of radii is folded normal, also known as absolute
normal, because the radii cannot be negative. The range
of values of the function in the defined region is esti-
mated using the mean values (�) and the standard devi-
ations (�) of centres and radii of the evaluated balanced
random intervals:

[�centres˙ (3:0�centres C �radii C 3:0�radii)] : (2)

The ranges of values of the objective function esti-
mated using balanced random interval arithmetic can
be used in the general branch and bound framework
building a stochastic global optimization algorithm.
The performance of such an algorithm has been eval-
uated experimentally on market model estimation [17]
and on chemical engineering problems. When speed of
optimization is more important than guaranteed reli-
ability, such an algorithm is a good alternative to the
algorithm with standard interval arithmetic because it
is several times faster.

Balanced Interval Arithmetic

The exact range of function values lies between the
results of overestimating and underestimating interval
arithmetic. Estimates of the ranges of function values
estimated from the results of standard interval arith-
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metic and inner interval arithmetic were investigated
in [15]. There, balanced interval arithmetic is defined
as the weighted mean of the overestimating and under-
estimating intervals of the function:

pc � f
�
X
�
C (1 � pc) � f

u

�
X
�
; (3)

where the predefined coefficient 0 � pc � 1 defines
the balance between overestimating and underestimat-
ing intervals.

The ranges of the values of several functions es-
timated using balanced interval arithmetic and using
balanced random interval arithmetic have been experi-
mentally compared [15]. The results of the experiments
have shown that ranges estimated using balanced inter-
val arithmetic compete with ranges estimated using bal-
anced random interval arithmetic. However balanced
interval arithmetic is not based on the assumptions of
normal distributions and does not require several sam-
ples.

The ranges of values of the objective function esti-
mated using balanced interval arithmetic can be used
in the general branch and bound framework building
a deterministic global optimization algorithm. When
the predefined coefficient pc is less than 1, the algo-
rithm may be faster than the algorithm with standard
interval arithmetic.

For each interval function, there exists ˛, 0 � ˛ �
1, for whichn

f (X) jX 2 X;
o
� ˛ � f

�
X
�
C (1 � ˛) � f

u

�
X
�

for all possible sub-regions of the feasible region,
X � D. The algorithm guarantees the exact solution
if pc � ˛.
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Microclusters are [11] aggregates of atoms, ions, or
molecules, sufficiently small that a significant propor-
tion of these units is present on their surfaces. They
correspond to systems that are neither single entities
nor continua composed by an infinite number of units,
but lie somewhere in between bridging the gap between
single atoms or molecules and bulk matter. Typically,
microclusters consist of two to several hundred atoms.
A key word pertaining to the novel features of micro-
clusters is size effects [26]. The microscopic size of mi-
croclusters gives rise to unique properties in two ways.
First, a large percentage of a cluster’s atoms are on or
close to the surface, and surface atoms do not arrange
themselves in the same way as do atoms in bulk mat-
ter, but instead they tend to avoid being exposed on
the surface. Assuming a spherical shape, the fraction of
the number of surface atoms is 4/n1/3. For n = 102 this
number is 86%, for n = 103 is 40% and for n = 104 is
still 20%. For example, in a cluster of 55 argon atoms
at least 42 atoms are on the surface in some sense. This
effect completely overwhelmsthe tendency of atoms to
arrange themselves in a regular crystalline array as they
normally do in bulk matter. For instance, the ordering
of silicon atoms in the Si10 cluster is completely differ-
ent from the ordering in the silicon crystalline struc-
ture. It appears that clusters consisting of specific num-
bers of atoms are extremely stable, as they show up
more prominently in the mass spectrum than neigh-
boring cluster sizes. These numbers of particles that en-
hance stability are called magic numbers and they are
substance specific [2]. For instance [3], xenium clus-
ters consisting of N = 13, 19, 23, 25, . . . are particularly
stable, although for sodium clusters the magic numbers
are N = 8, 20, 40, 58, 92, . . . .

The study of the topography of the potential en-
ergy function of a microcluster in the internal config-
urational space was and still remains a central prob-

lem in this area of research [11,13]. This problemcan
be succinctly stated as follows: Given N particles inter-
acting with two-body central forces, find their configu-
ration(s) in the three-dimensional Euclidean space in-
volving the global minimum total potential energy.

This can be expressed mathematically as follows:

V D
N�1X
iD1

NX
jDiC1

�(ri j);

where

ri j D
q
(xi � x j)2 C (yi � y j)2 C (zi � z j)2;

x1 D y1 D z1 D y2 D z2 D z3 D 0:

Here, V is the total potential energy of the microclus-
ter as the summation of all two-body interaction terms,
�(rij) is the potential energy term corresponding to the
interaction of particle i with particle j, and rij is the Eu-
clidean distance between i and j. Note that in the dou-
ble summation, j spans from i + 1 to N so that we avoid
double counting pair interactions and the interaction
of a particle with itself. Furthermore, by specifying x1
= y1 = z1 = 0, we fix the first particle at (0, 0, 0) elimi-
nating all three translational degrees of freedom of the
microcluster. By further imposing y2 = z2 = z3 = 0 we
eliminate the rotational degrees of freedom as well. Pair
potentials that have been used in cluster studies include
the following [11]:
1) �(r) = (n �m)�1 [nr�m �mr�n] (Mie);
2) �(r) = 4 �{(�/r)12 � (�/r)6} (Lennard–Jones);
3) �(r) = [1 � ea(1� r)]2 � 1 (Morse);
4) �(r) = Ae�ar2 � Be�br2 (Gaussian);
5) �(r) = z˛zˇ /r + Ae�r/� (Born–Meyer);
Lennard–Jones and Morse potential models are the
most popular selections to describe the force field.

Even under simplifying assumptions about the in-
teraction energy, the minimization of the total potential
energy is very difficult to solve because it corresponds to
a nonconvex optimization problem involving numer-
ous local minima. Hoare [11] claimed that the num-
ber of local minima of an n—atom microcluster grows
as exp(n2). In fact, L.T. Wille [34] has shown that the
complexity of determining the global minimum energy
of a cluster of particles interacting via two-body forces
belongs to the class NP. In other words, there is no
known algorithm that can solve this problem in nonex-
ponential time [22]. A geometrical, possibly topological
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proof that a local minimum is both unique and global is
not likely to be found because there still exist unsolved
problems in the theory of sphere packings where diffi-
culties are without any doubt less acute [4,5,6,10], than
those in the minimization problem at hand.

Existing methods use physical intuition, approxi-
mation procedures, mimicking of physical phenom-
ena, random searches, lattice optimization/relaxation,
or local/global optimization approaches. M.R.Hoare, in
a series of papers [12,13,14,15,16], proposed a method
of finding minima of the total potential function of an
5 � N � 66 particle Lennard–Jones cluster based on
a growth scheme involving the following steps: First,
a particular compact seed structure involving a small
number of atoms is selected which is likely to appear in
the N-particle structure. At each iteration an extra par-
ticle is placed at all packing vertices and the resulting
structures are tested for geometrical uniqueness. The
distinct structures are then relaxed and a local opti-
mization procedure locates and records the local min-
ima involved. Each of the minima then serve as a new
seed structure in repetition of the procedure. Finally,
all of the generated distinct local minima are tabulated
in decreasing order of binding energies. A number of
‘growth rules’ are incorporated in the procedure that
alleviates the computational effort. Using this method,
Hoare generated a large number of local minima for
structures from 5 to 66 particles. However, no claim for
complete enumeration of all local minima, and thus de-
tection of the global minimum, can be made. In fact, it
has been reported [32] that solutions of low-symmetry
are not likely to be found with this method.

Piela’s method [25] is based on the simple idea of
smoothly deforming the potential energy hypersurface
[29], in such a way as to make shallow potential wells
disappear gradually, while the deeper ones grow at their
expense. As the potential wells evolve they change their
position and size. One then eventually ends up with
a single potential well that has absorbed all the others
which hopefully corresponds to the global minimum.
A local optimization procedure then can easily find the
single local minimum corresponding to the global one
as well. The hypersurface is deformed using the diffu-
sion equation, with the original shape of the hypersur-
face representing the initial concentration distribution.
The main advantage of this method is that you do not
have to explore the myriads of local optima, nor do you

have to know their position beforehand. However, the
approach depends on the conjecture that shallow po-
tential wells disappear faster than deeper ones. In fact,
it has been observed that when the global minimum lies
on a narrow potential well of large depth, it might dis-
appear faster than a wider, originally shallower, poten-
tial well.

Simulated annealing [18] variations has been widely
used either alone, or in conjunction with some other
method(s). A large number of researchers have been
using this method for finding the global minimum of
the potential energy function. Wille [32,33] solved the
potential minimization problem for up to 25 particles,
interacting under two-body Lennard–Jones forces and
he found two new minima for N = 24 that were better
than the one reported in [11]. P. Ballone and P. Mi-
lani [1] using a semi-empirical many-body potential,
solved for the ground-geometries of carbon clusters in
the range 50 � M � 72 and found that all the struc-
tures of low energies are hollow spheres with nearly
graphitic atomic arrangement. D. Hohl and R.O. Jones
[17] applied the same methodology also to phosphorus
clusters P2 to P8, arriving to arather counterintuitive
most stable structure for P8. In [23] a combined sim-
ulated annealing and a quasi-Newton-like conjugate-
gradient method is used for determining the structure
of mixed argon-xenon clusters interactingwith two-
body Lennard–Jones forces. In [30,31] the binding en-
ergy of Nickel Lennard–Jones clusters is studied using
the simulated annealing method in a canonical ensem-
ble Monte-Carlo technique. The simulated annealing
method can be viewed as a method for stochastically
tracing the annealing process by Monte-Carlo simu-
lation. D. Shalloway [27,28] presented a deterministic
method for annealing the objective function by tracing
the evolution of a multiple-Gaussian-packet approxi-
mation and using notions from renormalization group
theory. This method has been applied to microcluster
conformation problems and it appears that in most of
the test problems was able to identify the global mini-
mum.

Lattice optimization techniques have been very ef-
ficient in generating structures involving the lowest
known potential energy. In [7] it is proposed that the
most energetically favored microclusters in the range
20 � N � 50 are the onesthat involve interpenetrat-
ing icosahedra (polyicosahedra) or (PIC). For N � 55
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a double icosahedral (DIC) growth scheme was intro-
duced [8] and for 55 � N � 147 [9] a third layer icosa-
hedral structure using two different surface arrange-
ments was presented. Using these notions, J.A. Northby
[24] derived optimal configurations for Lennard–Jones
microclusters in the range 13�N � 147 based on a lat-
tice optimization/relaxation algorithm. First a heuris-
tic procedure is employed for finding a set of lattice
local minimizers assuming icosahedral- (IC) or face-
centered (FC) arrangements. Then, the currently best
lattice minimizers are relaxed by using a local optimiza-
tion algorithm. G.L. Xue [35] improved on Northby’s
method [24] by reducing the time complexity of the
algorithm. Furthermore, by relaxing every lattice local
minimizer a number of better optimal configurations
were found in the range 13� N � 147. However, it ap-
peared that the best local lattice does not always relax to
the structure involving thelowest total Lennard–Jones
potential energy. A parallel implementation [19] al-
lowed results on minimum energies for clusters of up to
N = 1,000 atoms. Also by employing a parallel version
of a two-level simulated annealing algorithm [36,37,38]
solutions for clustersizes as large as N = 100,000 have
been reported.

C.D. Maranas and C.A. Floudas [20,21] introduced
deterministic global optimization to the microcluster
minimum potential energy problem. It was shown that
the problem is convex only if both the first and second
derivatives of the pairwise potential energy model with
respect to the Euclidean distance are positive. This left
only a narrow convex envelope for both Lennard–Jones
and Morse potential energy models. To widen this en-
velope, the sum of squares of all Cartesian coordinates
multiplied by a positive parameter ˛ were added to
the original objective function. It was shown that there
exists a value for ˛ such that the augmented objec-
tive function is convex. An upper bound for this value
was identified. Based on these developments a branch
and bound algorithm was devised based on the con-
vex lower bounding of the objective function through
the use of the ˛ parameter. The algorithm was imple-
mented for finding the global minimum configuration
of small Lennard–Jones and Morse microclusters. For
larger ones lower and upper bounds were derived by
using a relaxation procedure. Later, these ideas sparked
the development of the ˛BB algorithm for general non-
convex optimization problems.
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A general mathematical problem encountered in var-
ious applications is to find the configuration of r un-
known points in Rn (quite often n � 3) satisfying

a number of constraints on their mutual distances and
their distances to m fixed points, while minimizing
a given function of these distances. Often the unknown
points represent the locations of facilities to be con-
structed to serve the users located at the fixed points,
so as to minimize a cost function (travel time, trans-
port cost for customers, etc.) or to maximize the global
attraction (utility, number of customers, etc.). Also the
unknown pointsmay represent the cluster centers while
the fixed points are the objects to be classified into
groups (clusters). The biggest challenge occurs when
the unknown points represent the objects (atoms, parti-
cles) whose interactions depend upon their mutual dis-
tances: the objective function in these problems is then
interpreted as a “potential energy function” that should
attain a global minimum at the unknown configuration.

For many years, combinatorial geometric reason-
ing and nonlinear programming methods have been
the basic tools in the study of these problems. How-
ever, since most nonconvex problems are characterized
by the existence of many local nonglobal minimizers,
other more suitable methods have to be used to effi-
ciently cope with this difficulty.

Global optimization methods began to be intro-
duced in these fields more than two decades ago [9,15].
Subsequently, dc optimization techniques were used to
tackle facility location with nonconvex objective func-
tions and nonconvex constraints [5,6,12,13,19,20,21].

Single Facility Location

The first location problem, introduced by Weber
(1909), was to find the location of a facility so as to min-
imize the sum of its weighted distances to a given set
of users located in a plane. Over the years this uncon-
strained convex minimization problem has been fur-
ther and further generalized, leading to more and more
complex models of location.

Minisum andMaxisum

Suppose a new facility is designed to serve m users lo-
cated at a1; : : : ; > am 2 R2

C. Certain users, henceforth
called the “attraction points,” are interested in having
the facility located as close to them as possible. Oth-
ers, called the “repulsion points,” would like the facil-
ity to be located as far away from them as possible. Let
J1, J2 denote the index sets of attraction and repulsion
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points, respectively. For each user j D 1; : : : ;m a func-
tion qj(t) is known that measures the cost of travel-
ing a distance t away from aj; also, hj(x) is a function
of the distance from user j to point x 2 R2. It is as-
sumed that the function qj(t) is concave increasing with
q j(t)! C1 as t !1, while hj(x) is a convex func-
tion such that hj(x)!C1 as kxk ! C1. So if x is
the unknown location of the facility, then to take ac-
count of the interest of attraction points, one should try
to minimize the sum

P
j2J1 q j(hj(x)), whereas from the

point of view of repulsion points one should try to max-
imize the sum

P
j2J2 q j(hj(x)). Under these conditions,

a reasonable objective of the decision maker may be to
locate the facility so as to minimize the quantity
X
j2J1

q j(hj(x)) �
X
j2J2

q j(hj(x))

over Rn
C. Denoting the right derivative of qj(t) at 0 by

qj+(0) and assuming qCj (0) < C18 j, it can easily be
seen that each function g j(x) :D Kjh j(x)C q j[hj(x)] is
convex for Kj � qCj (0), and so we come up with the dc
optimization problem

minfG(x) � H(x)jx 2 Rn
Cg ; (1)

where G(x),H(x) are convex functions defined by

G(x) D
X
j2J2

g j(x)C
X
j2J1

Kjh j(x) ;

H(x) D
X
j2J1

g j(x)C
X
j2J2

Kjh j(x) :

Problems with the above objective function are called
minisum problems.

In other circumstances, instead of minimizing the
cost, one may seek to maximize the total attraction
X
j2J1

q j[hj(x)] �
X
j2J2

q j[hj(x)] ;

where each qj is a convex decreasing function. Assuming
qCj (0) > �1, the problem is then

maxfG̃(x)� H̃(x)jx 2 Rn
Cg ; (2)

where G̃(x); H̃(x) are now the convex functions

G̃(x) D
X
j2J1

g j(x)C
X
j2J2

Kjh j(x) ;

H̃(x) D
X
j2J2

g j(x)C
X
j2J1

Kjh j(x) :

Obviously, any maxisum problem can be converted
into aminisum one and vice versa. Most problems stud-
ied in the literature are minisum, under much more re-
stricted assumptions than in the above setting (see [16]
and references therein). Weber’s classical formulation
corresponds to the case J2 D ¿ (no repulsion points)
and hj(x) D kx � a jk; q j(t) D wjt;wj � 0;8 j. The
cases J2 ¤ ; with qj(t) nonlinear have begun to be in-
vestigated only recently, motivated by growing con-
cerns about the environment.

Maximin andMinimax

When siting emergency services, like a fire station, one
does not want to maximize the overall attraction but
rather to guarantee for every user a minimal attraction
as large as possible. The problem, often referred to as
the p-center problem, can be formulated as

max
n

min
jD1; ::: ;m

q j[hj(x)]jx 2 Rn
C

o
; (3)

where qj(t) are convex decreasing functions (minimax
problem). Assuming jqCj (0)j <18 j as previously, we
have the dc representation q j[hj(x)] D g j(x)�Kjh j(x);
hence

min
jD1; ::: ;m

q j[hj(x)]

D

nX
jD1

g j(x) � max
jD1; ::: ;n

h
Kjh j(x)C

X
i¤ j

gi (x)
i
;

and so (3) is again a dc optimization problem.
By contrast, when siting an obnoxious facility, one

wants to minimize the maximal attraction to an user, so
the optimization problem to be solved is

max
˚
min jD1; ::: ;k q j[hj(x)]jx 2 Rn

C

�
; (4)

where qj(t) are concave increasing functions (minimax
problem). Again, assuming jqCj (0)j <18 j, we have
the dc representation q j[hj(x)] D Kj(x) � g j(x), and
so

max
jD1;:::;m

q j[hj(x)]

D max
jD1; ::: ;n

h
Kjh j(x)C

X
i¤ j

g j(x)
i
�

mX
jD1

g j(x) ;
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i. e., the minmax location problem (4) is again a dc op-
timization problem.

A special maximin location problem worth men-
tioning is the design centering problem encountered
in engineering design. Given a compact convex set
B � Rn containing 0 in its interior andm compact con-
vex sets Dj; j D 1; : : : ;m contained in a compact con-
vex set C � Rn , find x 2 C so as to maximize

r(x) D min
jD0;1; ::: ;m

r j(x) ;

where r j(x) D minfp(y � x) : y 2 Djg; p : Rn ! RC
is the gauge of B and D0 D Rn n C. It can be shown [17]
that the function r0(x) is concave while r1(x); : : : ;
rm(x) are convex, so this can be viewed as a maximin
problem in which each Dj is a user and rj(x) is the dis-
tance from point x to user j.

Constrained Location

In the real world many factors may set restrictions on
the facility sites. Therefore, practical location problems
are often constrained.

Location on Union of Convex Sets

The most simple type of restriction is that the facility
can be located only in one of several given convex re-
gions C1; : : : ;Ck [8]. If Ci D fx : ci (x) � 0g, with ci(x)
being convex functions, then the constraint x 2 [k

iD1Ci

can be expressed as

min
iD1; ::: ;k

ci(x) � 0 ;

which is a dc constraint.

Location on Area with Forbidden Regions

In other circumstances, the facility can be located only
outside some forbidden regions that are, for instance,
open convex sets Co

i D fx : ci(x) < 0g;with ci(x) being
convex functions (see, e. g., [2]). Since the constraint
x … [k

iD1C
o
i is equivalent to miniD1; ::: ;k ci(x) � 0, this

is again a dc constraint.

General Constrained Location Problem

The most general situation occurs when the constraint
set is a compact, not necessarily convex, set. However,
a striking result of dc analysis shows that even in this

general case the constraint can be expressed as a dc in-
equality [12,22].

Of course the corresponding dc optimization prob-
lem is very hard. Although a method (the relief indi-
cator method [18]) exists for dealing with general non-
convex constraints, so far it only works in low dimen-
sion.

Multiple Source

When more than one facility is to be located, the objec-
tive function depends upon whether these facilities pro-
vide the same service or different services to the users.

If there are r � 2 facilities providing the same ser-
vice, these facilities are called sources. Each user is then
served by the closest source. So if xi is the unknown lo-
cation of the ith facility and X D (x1; : : : ; xr) 2 (R2)r ,
then the overall attraction is

X
jin J1

q j[h̃ j(X)] �
X
j2J2

q j[h̃ j(X)] ; (5)

where h̃ j(X) D minfhj(xi) : i D 1; : : : ; rg and q j; hj

are as previously. Since h̃ j(X) D
Pr

iD1 hj(xi) �
maxiD1; ::: ;r

P
i¤l h j(xi), the first term in (5) is the dc

function

X
j2J1

g j(X)�
X
j2J1

Kj

" rX
iD1

hj(xi)C max
lD1; ::: ;r

X
i¤l

h j(xi)

#
;

where Kj � jqCj (0)j and

g j(X) D q j[h̃ j(X)]CKj

� rX
iD1

hj(xi )Cmax
lD1;:::;r

X
i¤l

h j(xi)
�

is a convex function. Similarly for the second term
in (5). Hence the objective function in the r source
problem is a dc function on (R2)r .

The multisource problem is usually referred to
as the generalized Weber problem, or also the r-me-
dian problem when J2 D ;. Traditionally it is often
viewed as a location-allocation problem and formu-
lated as amixed 0-1 integer programming problem (see,
e. g., [16]).

Clustering

In many practical situations we have a set of objects of
a certain kind that we want to classify into r � 2 groups
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(clusters), each including elements close to each other
in some well-defined sense. In the simplest case, this
gives rise to the following problem: for a given finite
set of points a1; : : : ; am 2 Rn , find r cluster centers
xi 2 Rn ; i D 1; : : : ; r, such that the sum of the min-
ima over i 2 f1; : : : ; rg of the “distance” between each
point aj and the cluster centers xi ; i D 1; : : : ; r, is min-
imized. If d(a, x) denotes the distance from a to x, then
the problem is

min

( mX
jD1

min
iD1;:::;r

d(a j ; xi) : xi 2 [0; b]

)
: (6)

Formally, this is nothing but the r-median problem,
i. e., the generalized Weber problem with J2 D ;.

If d(a; x) D
Pn

iD1 jai � xi j, then, using the equal-
ity jai � xi j D minfyi : � yi � ai � xi � yig, prob-
lem (6) can be written as

mX
jD1

min
lD1; ::: ;r

 nX
iD1

y jli

!

� y jl � a j � xl � y jl

j D 1; : : : ;m; l D 1; : : : ; r ;

which is a concave minimization problem under linear
constraints. One way to cope with the large dimension
of this problem is to replace it with the equivalent bilin-
ear program

min
mX
jD1

rX
lD1

t jl y jl

s:t: � y jl � a j � xl � y jl j D 1; : : : ;m; l D 1; : : : ; r
rX

lD1

t jl y jl ; t jl � 0;
rX

lD1

t jl D 1 :

and to solve the latter approximately to a local optimum
by alternately fixing t and y.

When d(a; x) D
qPn

iD1(ai � xi )2, the problem is
no longer a concave minimization but can be re-
duced to a dc program by easy manipulations. In [1]
results of solving the generalized Weber problem
with m D 10;000; p D 2, and m D 1;000; p D 3, by dc
methods are reported. Alternatively, (6) can also be
transformed into a monotonic optimization and solved
by recently developed monotonic optimization meth-
ods [23,24]. For this observe that d(a; x) D (d(a; x)C

Pn
iD1 xi) �

Pn
iD1 xi , and since u(a; x) D d(a; x) CPn

iD1 xi and
Pn

iD1 xi are both increasing functions, it
follows that d(a,x) is a dm (difference of monotonic)
function, and, hence, (6) is a monotonic optimization
problem.

Multiple Facility

When the r � 2 facilities to be located provide differ-
ent services, aside from the costs due to interactions
between facilities and users, one should also consider
the costs due to pairwise interactions between facilities.
The latter costs can be expressed by functions of the
form �i l [hi l (xi ; xl )], where again hi l (xi ; xl ) are convex
nonnegative valued functions and �i l (t) are concave in-
creasing functions on [0;C1) with finite right deriva-
tives at 0. The total cost one would like to minimize is
then

rX
iD1

Fi(xi )C
X
i<l

�i l [hi l (xi ; xl )] ; (7)

where Fi(xi ) D
P

j2J1 q ji[hj(xi)] �
P

j2J2 q ji[hj(xi)]
and q ji ; hj are as in minisum single facility problems.

As we saw above, each function Fi(xi) is dc, hence
each function �i l [hi l (xi ; xl )] is dc, too, and (7) is again
a dc function on (R2)r . In the special case when there
are no repulsion points (every Fi (xi) is convex) and the
pairwise interactions between facilities �i l (t) are con-
vex, this is simply a convex function. Also, in the ab-
sence of interactions between facilities (�i j(:) D 0 8i j),
the minimization of function (7) splits into r indepen-
dent single facility minisum problems.

Molecular Conformation

A variant of the multifacility problem that has risen to
attract much research in recent years is the so-called
molecular conformation problem encountered in com-
putational biology, computational chemistry, and pro-
tein folding. This is the problem of determining ground
states or stable states of certain classes of molecular
clusters and proteins and can be stated as follows [14].
Given a cluster of N atoms (in three-dimensional
space), we wish to locate their centers x1; : : : ; xN so
as to minimize the potential energy function

VN (x1; : : : ; xN) D
X

1�i< j�N

v(kxi � x jk) ;
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where k:k is the euclidean norm and v(r) the inter-
atomic pair potential. This can be viewed as a multifa-
cility problem in which there is no user but many facil-
ities (the number N may be rather large; see, e. g., [14]).
In models used for computation, the pair potentials of
interest include the following:

v(r) D r�12 � 2r�6 (Lennard-Jones) ;

v(r) D
h
1 � e˛(1�r)

i2
� 1 (Morse) ;

v(r) D
z˛zˇ

r
C Ae

�r
� (Born-Meyer) :

Using representation theorems in dc optimization, it
can be seen that these functions are dc (at least for
r � ", where " is an arbitrary small positive number).

Distance Geometry

A related problem that also has applications in molec-
ular conformation, and other questions such as survey-
ing and satellite ranging, data visualization, and pattern
recognition, etc., is the multidimensional scaling prob-
lem or distance geometry problem. It consists in finding
r objects x1; : : : ; xr inRn such that the quantity

Vr(x1; : : : ; xr) D
X
i< j

wi j

�
ı2i j � kx

i � x jk2
�2

(8)

is smallest, where � D (ıi j);W D (wi j) are symmetric
matrices of order r such that

ıi j D ı ji � 0; wi j D wji � 0 (i < j);

ıi i D wii D 0 (i D 1; : : : ; r) :

By writing this problem as

min
X
i< j

wi jkxi � x jk2 � 2
X
i< j

wi jıi jkxi � x jk

s.t. xi 2 Rn(i D 1; : : : ; r)
(9)

or, alternatively, as

min
X
i; j

wi j t2i j

ˇ̌
ˇ̌
ˇ
�ti j � ı2i j � kx

i � x jk2 � ti j (8i < j)
xi 2 Rn ; i D 1; : : : ; r

(10)

we again obtain a dc optimization problem that is also
a monotonic optimization problem.
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The harmonic retrieval (HR) problem is an ubiqui-
tous problem that arises in various applications, such
as signal modeling and direction-of-arrival. It consists
of estimating the parameters of multiple sinusoids from
noisy data. The data is modeled as

y(t) D
KX

kD1

a�k sin(2
 f �k t)C n(t);

t D 1; : : : ;N;

(1)

where a�k , f
�
k , and �

�
k are the amplitude, frequency, and

phase of the kth sinusoid, respectively. It is assumed
that the number of sinusoids, K, is known and all fre-
quencies satisfy 0 < f �k < 0.5, k = 1, . . . , K, and f �k 6D
f �j for k 6D j. In addition, the noise, n(t), is assumed to
be zero-mean, white Gaussian noise (WGN) with vari-
ance �2

n . Given the data, y(t) for t = 1, . . . , N, the goal
is to estimate the sinusoid parameters, �� = [a�1 , . . . , a�K ,
f �1 , . . . , f �K].

The conventional FFT or periodogram-based meth-
ods [4, Chapt. 1]are only able to solve the HR prob-
lem when frequencies are spaced more than 1/N cy-
cles/sample apart, where N is the number of available
data points. To tackle the problem where the difference
between any two frequencies is smaller than the thresh-
old 1/N, high resolution techniques must be used [4,
Chapt. 5]. The sinusoidal parameter estimation problem
is based on solving the least squares (LS) problem (P):

(P) b�LS �D argmin



J(�); (2)

where

J(�)

D

NX
tD1

(
y(t)�

KX
kD1

ak sin(2
 fk t C �k)

) 2

;
(3)

and � = [a1, . . . , aK , f 1, . . . , f K , �1, . . . , �K]. We can
see from (3) that the objective function is nonconvex,
which suggests that a global optimization method rep-
resents the most appropriate procedure for determin-
ingb�LS.

Two methods that have been proposed for solving
(P) are the one proposed in [8], for which we will re-
fer to as Stoica’s method and the Iterative Quadratic
Maximum Likelihood method (briefly: IQML method)
[1]. Both methods can not guarantee convergence un-
less the initial conditions are sufficiently close to the
global minimum. Stoica’s method first generates ini-
tial estimates using the overdetermined Yule–Walker
method. Then, it improves on these estimates by us-
ing a periodogram-based procedure and a simplified
Gauss–Newton algorithm to iteratively maximize the
likelihood function. In [8], it was shown experimen-
tally that Stoica’s method requires extremely large data
records. The well known IQML method is an itera-
tive quadratic maximization algorithm that attempts
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to determine the maximum likelihood (ML) estimates
in terms of a prediction polynomial. This algorithm,
as our experiments show, produces poor estimates for
short data records and/or low signal-to-noise ratio
(SNR). The IQML algorithm is also noted to sometimes
fail to converge and the estimated frequencies are al-
most always inconsistent [9].

Taking a different approach, we will apply the global
optimization algorithm of interval methods (IM) to
the HR problem (2). Interval method type algorithms
[3,6,7] have proven to be an excellent and reliable pro-
cedure for solving global optimization problems involv-
ing nonconvex objective functions. One of the reasons
one chooses interval methods is because they are ap-
plicable to most optimization problems regardless of
convexity and differentiability of the objective function,
or knowledge of its Lipschitz constant. Additionally,
for continuous objective functions, its convergence to
a global optimum interval has been proven [3]. In us-
ing the IM method for solving the LS estimates of (2),
convergence is very slow.

One way to overcome the problem of slow con-
vergence is to decompose the problem whereby opti-
mization occurs over smaller dimensions and in paral-
lel. This can be accomplished through combining the
expectation-maximization algorithm (briefly: EM algo-
rithm) [2] with the interval method. This proposed
combination of the EM algorithm with the interval
method is defined as the expectation-maximization in-
terval method (EMIM) algorithm. The EM algorithm
represents a computationally efficient method for solv-
ing estimation problems. For the HR problem, the EM
algorithm decomposes the HR problem into K sub-
problems, where K is the number of sinusoids. The K
subproblems, which are nonconvex optimization prob-
lems, are then solved using an IM global optimization
method. This results in an algorithm that is able to con-
verge to the global minimum interval with significantly
reduced computational complexity, in comparison with
using the IM algorithm alone for solving (P).

Interval Arithmetic

Interval methods are a class of global optimization al-
gorithms that utilize interval arithmetic. An interval
which contains the global minimum is found by par-
titioning the search space into regions, where at each

iteration, regions are selected for further search by ad-
ditional partitioning. Those partitions that cannot con-
tain the global minimum are discarded. Amajor advan-
tage of interval methods is their ability to find the global
minimum of nonconvex differentiable or nondifferen-
tiable objective functions.

Interval arithmetic [6] was developed to automati-
cally estimate and control numerical errors caused by
finite precision of computer arithmetic. The INTLIB li-
brary [5] is used to implement interval arithmetic as
used in the IM algorithm. A real interval number X
= [a, b] consists of the set set{x: a � x � b} of real
numbers. Additional notations used here are: the upper
bound (ub) of X = b, the lower bound (lb) of X = a, the
mid-point of X is m(X) = (a + b)/2, and the width of X
is w(X) = b� a. Furthermore, w(X) = max{w(Xi)}iDn

iD1
where X = [X1, . . . , Xn]|. The general interval arith-
metic operational rules is defined as X�Y = {x�y:x 2
X, y 2 Y}, where X and Y are real interval numbers
and� represents the arithmetic operations of plus, mi-
nus, multiplication, and division. For additional infor-
mation on interval arithmetic see [6,7].

The unconstrained global optimization problem can
be described as

min
x2D

g(x); (4)

where g(x): Rn R, x 2 Rn and D 2 Rn represents the
feasible region. The main tool for solving the problem
in (4) is the concept of inclusion function. A function
G(X): In ! I is an inclusion function of the objective
function g(x), if x 2 Y implies that g(x) 2G(Y) and that
the isotonicity property is met (i. e. X � Y implies that
F(X) � G(Y)). The inclusion function with isotonic-
ity property provides the theory for the use of interval
methods as a global optimization procedure. In short,
inclusion functions represent the range of function val-
ues of f over the interval X.

The optimization procedure for the interval method
involves continually bisecting a box Xi from an initial
box, X0, until G(Xi), the inclusion function, contains
the global minimum given that w(G(Xi)) � �. What
differentiates this method from the method of exhaus-
tive search is that regions of the objective are discarded
from evaluation if the lbG(Xi) in the list, L, is greater
than the minimum between the past or present value
of ubG(Xj) given that i 6D j. The algorithm of E.R.
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GlobalOptimizationMethods forHarmonic Retrieval, Table 1
A pseudocode for interval methods

PROCEDURE interval method
Set Y := X;
Calculate G(Y), y :=lbG(Y), g̃ :=ub G(m)
where m =mid Y
Initialize list L := f(Y ; y)g.

REPEAT until convergence
Choose a coordinate direction k, parallel to Yi ,
and of max length.
Bisect Y to obtain boxes V1, V2, where
Y = V1 [ V2.
Calculate G(V1) and G(V2) and vi :=lb G(Vi )
for i = 1,2.
Place (G(Vi ), vi ) at end of list.
Choose pair (Ỹ ; ỹ) from L such that ỹ � z,
8(Z; z).
Discard pairs from list, (Z; z), if z > g̃.
Terminate if !(Z) < �, 8Z, in L.
Denote first pair of list by (Y ; y).
Compute m := mid Y and
g̃ = min( g̃; ub G(m)).

RETURN
END interval method

Hansen [3,7] is the particular interval method that will
be used for locating the LS estimates of the HR prob-
lem and is outlined in Table 1. In [7], it was proven
that convergence to the global minimum was achieved
if w(G(X))! 0 as w(X)! 0.

Interval Method for Solving HR

To apply the IM to solving the HR problem, the objec-
tive function (3) must be placed in its inclusion form:

J(
)

D

NX
tD1

"
y(t)�

KX
kD1

Ak sin(2
Fk t C ˚k)

#2

;
(5)

where 
 = [A1, . . . , AK , F1, . . . , FK , ˚1, . . . , ˚K] and
Ak, Fk, and ˚k are the interval counterparts of ak, f k,
and �k, respectively. Throughout this paper capital let-
ters represent interval variables that correspond to its
real variable equivalent. The initial interval, 
0, is cho-
sen such that it encompasses the global minimum. This
is accomplished by choosing an interval that is deter-

Global Optimization Methods for Harmonic Retrieval, Fig-
ure 1
Objective function of a single sinusoid

mined from a priori information or from other high
resolution HR methods [4]. The IM of Hansen’s, de-
scribed in previous section, is used to determine the
global minimum,
�, of (5). The objection function (5)
for a single frequency, phase and amplitude held con-
stant, is plotted in Fig. 1). It can easily see that this rep-
resents a very difficult but practical problem for global
optimization.

Simulations

In this section, a numerical experiment will be demon-
strated to show the performance of the IM for solving
the HR problem (P). The experiments consist of esti-
mating the sinusoid parameters for the following data,

y(t) D 1:0 sin(2
(0:2)tC 0:0)C n(t);
t D 1; : : : ; 35;

(6)

where n(t) is white Gaussian noise. We choose the ini-
tial box for the IM algorithm to be 
 = [A, F, ˚]|

= [[0.71.2], [0.10.3], [00.4]]|. The signal-to-noise-ratio
(SNR) is defined as

10 log

" KX
kD1

0:5
(a�k )

2

�2
n

#
;

where �2
n is the variance of the noise. The results of

this simulation, shown in Table 2, is described in terms
of sample mean and standard deviation based on 50
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GlobalOptimizationMethods forHarmonic Retrieval, Table 2
IM estimates

IM: N = 35 (50 MC runs)
SNR 10 5 0

a� = 1:0 1:0155 1:0447 1:0633
˙0:0518 ˙0:0913 ˙0:1365

f � = :20 0:1995 0:1993 0:1989
˙6:591 �
10�4

˙0:0012 ˙0:0017

�� = 0 0:0654 0:0839 0:1193
˙0:0564 ˙0:0975 ˙0:1319

GlobalOptimizationMethods forHarmonic Retrieval, Table 3
IQML Estimates

IQML: N = 35 (50 MC runs)
SNR 10 5 0

a� = 1:0 1:0080 0:9862 0:8919
˙0:0533 ˙0:1479 ˙0:3230

f � = :20 0:1998 0:1970 0:1728
˙7:623 �
10�4

˙0:0202 ˙0:0839

�� = 0 0:0141 �0:0126 0:5288
˙0:0949 ˙0:2852 ˙1:1429

Monte-Carlo (MC) runs. This results are based on the
midpoints of 
. Note that the final estimates, b� , are
very close to the true value of �� with a small standard
deviation. In comparison with IQML, see Table 3, the
IM fares considerably better in both mean and standard
deviation. This is particularly notable when comparing
the frequency component, which represents the most
important feature of harmonic retrieval.

The convergence rate of the IM is sensitive to the
order, K, of the HR problem. In fact, the dimension-
ality of the parameter space, In, increases at a rate of
3K. Thus, as n increases, the convergence rate becomes
prohibitively slow. The curse of dimensionality can be
mitigated through decomposition and parallelizing the
problem by utilizing the EM algorithm as described in
the next section.

EMIM

The detailed development of the EM algorithm [2] is
well-known, and will be outlined here as part of the de-

velopment of the EMIM algorithm for solving the HR
problem. To determine the LS estimates of the sinu-
soidal parameters, the EM algorithm first decomposes
the observed data y(t) into its signal components (E
step) and then estimates the parameters of each signal
component separately (M step). The algorithm iterates
back and forth between the E step andM step, using the
current estimate to decompose the observed data better
and thus improve the next parameter estimate.

For the HR problem, the incomplete data is the ob-
served data, y(1), . . . , y(N). The complete data is mod-
eled as the following K data records:

yk(t) D a�k sin(2
 f �k t C �
�
k )C nk(t);

k D 1; : : : ;K;

where nk(t) = ˇk[y(t)�
PK

kD1 a
�
k sin(2
f

�
k t + �

�
k )]. The

ˇk’s are arbitrary real-valued scalars satisfying
PK

kD1ˇk

= 1 and ˇk � 0. Thus
PK

kD1 nk(t) = n(t), for t = 1, . . . ,N.
The EM algorithm, beginning with n = 0, is represented
by the following two steps:
E) For k = 1, . . . , K, compute

b� (n)k (t) Dba(n)k sin(2
bf (n)k tCb�(n)
k )

C ˇk

"
y(t)�

KX
lD1

ba(n)l sin(2
bf (n)l t Cb�(n)
l )

#
:
(7)

M) For k = 1, . . . , K,

b� (nC1)
k D arg min

ak ; fk ;�k
J(n)k ; (8)

where

J(n)k D

NX
tD1

(b� (n)k (t)� ak sin(2
 fk t C �k))2: (9)

The parameter vector b� (n)k
�
D [ba(n)k ;

bf (n)k ;
b�(n)

k ]> is the

estimate for ��k
�
D [a�k ; f

�
k ; �

�
k ]
> after n iterations. In

the original HR problem, we have to search the (3 ×
K)-dimensional parameter space to find the minimum
value of the least squares objective function. But after
the EM algorithm decomposes the HR problem into
K smaller subproblems, we only have to solve K sub-
problems each of which requires the search of a 3-
dimensional parameter space to find the global optimal
point(s). This results in a significant reduction in com-
putational complexity.
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To solve the minimization problem in M step, we
resort to using the IM for finding the final interval that
contains the point minimizing the objective function.
Since IM has been proven to converge to the global
optimum for continuous objective functions [3], this
algorithm will not be trapped in the local extremum.
Needed in the IM algorithm is the inclusion function
of the objective function (6), which is constructed by
forming the natural interval extension [3,7] of Jk:

J (n)k D

NX
tD1

�
b� (n)k (t)� Ak sin(2
Fk t C ˚k)

�2
; (10)

where Ak, Fk, and ˚k are the interval counterparts of
ak, f k, and �k, respectively. The initial value b� (0)k D

[ba(0)k ;
bf (0)k ;

b�(0)
k ]> are arbitrarily guessed or can come

from other high-resolution estimation methods. The
initial interval 
k, 0 = [Ak, 0, Fk, 0, ˚k, 0]| for the M)
step is the region over which the minimization is car-
ried out. This initial interval 
k, 0 is used at the begin-
ning of each M) step of the EMIM algorithm. At the
(n + 1)st iteration of EMIM, the IM partitions 
k, 0

iteratively to find the final interval estimate b
(nC1)
k .

The m(b
(nC1)
k ) D b� (nC1)

k will be used as the parame-
ter estimate to computeb� (nC1)

k (t) for the next iteration
of the EMIM algorithm. The process is repeated untilPK

kD1




b� (nC1)
k �b� (n)k




 � �, where � is chosen by the
user.

Consider the case where b� (0)i D
b� (0)j and ˇi = ˇj.

It is straightforward to see that b� (n)i (t) D b� (n)j (t) and
Ji = Jj in the E)-step and M)-step, respectively. Thus,
b
(nC1)

i D b
(nC1)
j for all n which means that the final

estimates for � i and � j will be the same. In order to
avoid this problem, ˇi must not equal ˇj or b� (0)i must
not equalb� (0)j in order to fully exploit the capability of
the EMIM algorithm.

Simulations

Our experiments consist of estimating the sinusoidal
parameters for the following data,

y(t) D 1:0 sin(2
(0:2)t C 0:0)

C 1:0 sin(2
(0:22)t C 0:0)C n(t);
t D 1; : : : ; 35;

where n(t) is white Gaussian noise. Since |0.2 � 0.22|
< 1/35 = 0.02857, the periodogram cannot be used to

determine the frequencies. We choose the initial box for
the EMIM algorithm to be:

[
1;0; 
2;0]>

D [A1;0; F1;0; ˚1;0;A2;0; F2;0; ˚2;0]>

D [[0:7 1:2]; [0:1 0:3]; [0 0:4];

[0:7 1:2]; [0:1 0:3]; [0 0:4]]>

and ˇ1 = 0.09, ˇ2 = 0.91. The signal-to-noise-ratio
(SNR) is defined as

10 log

" KX
kD1

0:5
(a�k )

2

�2
n

#
;

where �2
n is the variance of the noise. If no a priori in-

formation about the possible values of the sinusoid pa-
rameters is available, the full range of possible values
for the frequency, the phase, and the amplitude must
be used as the initial intervals. Utilizing the full range
will impose no difficulty when very fast computing en-
gines are used. However, other high resolution tech-
niques can be used to yield a smaller and more cogent
initial interval.

Using 50 MC runs, we computed the sample means
and standard deviations for the EMIM and the IQML
algorithms. (See Table 4 and Table 5, respectively). As
for the EMIM, the mid-points of the final interval es-
timates are considered as the final estimates, thus the

GlobalOptimizationMethods forHarmonic Retrieval, Table 4
EMIM estimates

EMIM: N = 35; � = 10�6 (50MC runs)
SNR 10 5 0

a�1 = 1:0 1:0305 1:0235 1:0263
˙0:0992 ˙0:1389 ˙0:1622

f �1 = :20 0:1993 0:1993 0:1969
˙2:209 �
10�4

˙4:119 �
10�4

˙0:0110

��1 = 0 0:0631 0:0851 0:1369
˙0:0764 ˙0:1152 ˙0:1609

a�2 = 1:0 1:0284 1:0501 1:0995
˙0:0744 ˙0:1036 ˙0:1054

f �2 = :22 0:2192 0:2194 0:2182
˙0:0012 ˙0:0016 ˙0:0051

��2 = 0 0:0746 0:0757 0:1314
˙0:1177 ˙0:1224 ˙0:1662
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GlobalOptimizationMethods forHarmonic Retrieval, Table 5
IQML estimates

IQML: N = 35 (50 MC runs)
SNR 10 5 0

a�1 = 1:0 0:9549 0:6615 0:7404
˙0:3283 ˙0:2908 ˙0:2778

f �1 = :20 0:1963 0:1707 0:1404
˙0:0137 ˙0:0476 ˙0:0836

��1 = 0 0:3332 0:9323 0:5472
˙0:6117 ˙1:0843 ˙1:0659

a�2 = 1:0 0:9013 0:7567 0:8582
˙0:3732 ˙0:2683 ˙0:2788

f �2 = :22 0:2428 0:2559 0:2721
˙0:0685 ˙0:0867 ˙0:0985

��2 = 0 �0:0886 �0:0079 0:3123
˙0:4852 ˙0:7185 ˙0:8358

sample mean and variance can be calculated accord-
ingly. Note that the EMIM generates estimates which
have mean values very close to the true parameter
values and relatively very small variances. As for the
IQML, its variance for each value of SNR is significantly
larger than the corresponding EMIM. Clearly, EMIM
outperforms IQML by providing estimates that are less
biased with smaller variances.

Conclusion

In comparison between the two types of IM algorithms
with the IQML method, it was shown that both the
IM and EMIM algorithms represent a powerful tool
for solving the HR problem. Furthermore, it has been
noted that by decomposing the problem by the EMIM
algorithm does not degrade the performance of using
the IM.

We have shown experimentally that the IM and
EMIM algorithms are robust for very short data records
and low SNR. Nevertheless, if the dimensionality is low
or convergence to the ML estimates is desired, then the
IM algorithm can be used. For either EMIM or IM, con-
vergence time can be improved by generating initial in-
terval of smaller widths by using other high resolution
HR methods. Furthermore, using a multi-processor
computer to implement the decomposed sub-problems
in parallel can also reduce the execution time.
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The problem of finding a solution of a system of equa-
tions and/or system of inequalities is one of the main re-
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search subjects in numerical analysis and optimization.
The source of systems of equations and/or inequalities
contains many ‘real-world’ problems ([2,7]), the non-
linear complementarity problem (cf. also � General-
ized nonlinear complementarity problem), the varia-
tional inequality problem (cf. also � Variational in-
equalities) over a convex set, Karush-Kuhn-Tucker sys-
tems, the feasibility problem, the problem of computing
a Brouwer’s fixed point ([10,15]).

In general, a system of nonlinear equations and/or
inequalities is given by

(SNE)

8̂
<̂
ˆ̂:

hi(x) D 0; i 2 I;
g j(x) � 0; j 2 J;

x 2 X;

where I, J are finite index sets, X � Rn is a convex set,
and hi (i 2 I), gj (j 2 J) are nonlinear functions defined
on a suitable set containing X.

Solution methods for (SNE), which are based on
convex and nonsmooth optimization techniques, and
fixed point algorithms can be found in [2,3,4,5,14,15],
and references given therein.

In order to apply global optimization methods for
solving (SNE), one defines a vector function h: Rn !

R|I| having components hi(x)(i 2 I), a function

f (x) D maxfkh(x)k ;
˚
g j(x) : j 2 J)

��
;

where k � k is any vector norm on R|I|, and considers the
following global optimization problem

(GOP) f � D min f f (x) : x 2 Xg :

In particular, the function f in (GOP) can be defined by

f (x) D max
˚
fjhi (x)j : i 2 Ig ;

˚
g j(x) : j 2 J)

��
:

In general, a vector x� 2 Rn is a solution of (SNE) if
and only if it is a global optimal solution of (GOP) and
f � = f (x�) = 0. Thus, finding a solution of (SNE) can
be replaced by computing a global optimal solution of
(GOP). In the case that I = ;, i. e., (SNE) is a system of
inequalities, global optimization algorithms to (GOP)
will terminate whenever a feasible point x 2 X is found
satisfying f (x) � 0. While applying a global optimiza-
tion algorithm to (GOP), if it is pointed out that f � > 0

(e. g., a lower bound � of f � can be computed such that
� > 0), then obviously (SNE) has no solution.

There are three main classes of (SNE), which can be
solved by implementable methods in global optimiza-
tion:
i) The functions hi (i 2 I) and gj (j 2 J) are all d.c. (a

function is called d.c. if it can be expressed as the
difference of two convex functions, see�D.C. pro-
gramming).

ii) The functions hi (i 2 I) and gj (j 2 J) are all Lips-
chitzian with Lipschitz constants Li (i 2 I) and Mj

(j 2 J), respectively.
iii) The corresponding problem (GOP) can be replaced

by a convex relaxation problem.
For class i), the function f in (GOP) is d.c., and one can
find an explicit form of f as the difference of two convex
functions, so that d.c. programming techniques can be
applied ([9,11,12,18,19]).

For class ii), if in the definition of f , `p-norms are
used, i. e.

kh(x)kp D

8̂
ˆ̂<
ˆ̂̂:

 X
i2I

jhi (x)jp
! 1

p

; 1 � p <1

max
i2I
jhi(x)j ; p D1;

then f is Lipschitzian with Lipschitz constant L =
max {

P
i 2 ILi, {Mj: j 2 J}}. Algorithms for solv-

ing Lipschitz optimization problems can be found in
[6,7,8,9,10,12,16,17].

Techniques for the construction of convex relax-
ation problems for some special cases of class iii) are
given in [13].
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Multiplicative functions, products of real-valued func-
tions f i, i = 1, . . . , p, are generally nonconvex functions
even though each f i is convex. As a result, most multi-
plicative programming problems containing

Qp
iD1 f i(x)

in the objective and/or constraints are nonconvex min-
imization; and hence we need global optimization to
look for a global minimum in stacks of local minima.
Fortunately, however, the number p of f is in multiplica-
tive functions encountered in practical applications is
rather small in comparison with the number n of vari-
ables; e. g. two or three in geometrical optimization
[10] and at most five in multiple objective optimization
[1]. As will be seen later, this enables us to embed the
troublesome nonconvexity into a small subspace of di-
mension p. Exploiting such a property, called low-rank
nonconvexity [6], a number of researchers have devel-
oped efficient algorithms since the late 1980s years to
solve various subclasses of multiplicative programming
problems, including the linear multiplicative program

(
min (c>1 xC c10)(c>2 xC c20)
s.t. x 2 D;

(1)

where D� Rn is a polytope and c>i x + ci0 > 0 for any x
2 D; the convex multiplicative program

8̂
<̂
ˆ̂:
min

pY
iD1

fi(x)

s.t. x 2 D;

(2)

where D is a compact convex set and the f is are convex
functions positive-valued on D; the generalized convex
multiplicative program

8̂
<̂
ˆ̂:
min

pX
iD1

f2i�1(x) f2i(x)C g(x)

s.t. x 2 D;

(3)

whereD and the f is are the same as in (2) and g is a con-
vex function; and the convex program with an addi-

tional convex multiplicative constraint
8̂
ˆ̂̂<
ˆ̂̂̂
:

min g(x)
s.t. x 2 D

pY
iD1

fi(x) � 1;
(4)

where D, the f is and g are the same as in (3). As long as
p is a small number, all of these nonconvex programs
can be solved in a practical amount of time even if n
exceeds a few hundreds.

Linear Multiplicative Program

Problem (1), though simple looking, is NP-hard (cf.
also � Complexity theory; � Complexity classes in
optimization) as shown in [11]. There are two ma-
jor methods, each of which is based on a variant of
parametric simplex algorithms for linear programming
[12].

The first method introduces a parameter � � 0 and
transforms (1) into an equivalent problem:

8̂
<̂
ˆ̂:

min � f1(x)
s.t. x 2 D

f2(x) � �; � � 0;

(5)

where f i(x) = c>i x + ci0, i = 1, 2. To solve (5), we need
only to solve

min f f1(x) : x 2 D; f2(x) � �g (6)

for all � � �min = min{f 2(x): x 2 D}, using the paramet-
ric right-hand side simplex algorithm (cf. also � Para-
metric linear programming: Cost simplex algorithm).
We then have a set of optimal solutions x(�) to (6) and
the analytical expression of

�(�) D � f1(x(�));

which is a piecewise quadratic function over � � �min.
Let

�� 2 argmin f�(�) : � � �ming :

Then x(��) is an optimal solution to (1).
This parametric method, proposed by K. Swarup

[13] in the middle 1960s, was originally used for find-
ing a locally optimal solution to (1). Strangely, it had
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not been appreciated as an efficient global optimization
tool until the second parametric method was developed
by H. Konno and T. Kuno [4] more than twenty years
later.

The second method also introduces a parameter �
� 0, but in a deferent way:

(
min F(x; �) � � f1(x)C f2(x)

�

s.t. x 2 D; � � 0:
(7)

For any x we have

min fF(x; �) : � � 0g D 2
p

f1(x) f2(x):

Therefore, (7) is equivalent to (1); moreover, (7) is
equivalent to finding a minimum point �� of a function

 (�) D min fF(x; �) : x 2 Dg (8)

over � > 0. Since the right-hand side of (8) is a linear
program, we can locate �� using the parametric objec-
tive simplex algorithm. In fact, noting that � = �/(� +
1/�) maps� = {�: � > 0} to a unit interval {�: 0 < � < 1},
we solve

min
˚
�c>1 xC (1 � �)c>2 x : x 2 D

�
(9)

parametrically over � 2 (0, 1). Let x(�) denote an opti-
mal solution to (9). Then

�� 2 argmin f f1(x(�)) f2(x(�)) : � 2 (0; 1)g

gives �� D
q

	�

(1�	�) ; and x(��) is an optimal solution
to (1).

Under some probabilistic assumptions, the average
number of simplex pivots needed to solve a linear pro-
gram with a single parameter is known to be polyno-
mial in the problem input length [12]. Hence, (1) can
also be solved in polynomial time on the average, which
contrasts sharply with the result of the worst-case anal-
ysis.

ConvexMultiplicative Program

The above parametric methods for (1) can be extended
to more general classes of multiplicative programming
problems. For example, (7) is directly applicable to the
special case of (2) where p = 2; but it is difficult to design
an algorithm for solving (7) parametrically when the f is

are nonlinear functions. One effective approach in this
case is branch and bound on the set of parameter val-
ues � = {�: � > 0} [7] (cf. also � Integer programming:
Branch and bound methods).

Let F denote the family of functions of the form:

˛� C
ˇ

�
;

where ˛, ˇ 2 R. The function  defined by (8) is
a pointwise minimum of some functions in F such that
˛ = f 1(x) and ˇ = f 2(x) for x 2 D. The family F pos-
sesses the following properties:
i) Any two points (�s,  s), (� t ,  t) 2 R2, with 0 < �s <

� t , uniquely determine

 s�s �  t�t

�2s � �
2
t

� C
 s /�s �  t/�t
1/�2s � 1/�2t

/� 2 F ;

ii) Any function in F is Lipschitz continuous over � �
� 0 for any � 0 > 0;

iii) Two distinct functions in F have at most one inter-
section point over � > 0.

Suppose [�s, � t]�� is an interval containing ��. Since
f 1 and f 2 are convex, F(�, �) is also a convex function
for any � > 0; and hence  (�s) and  (� t) can be com-
puted by convex programming. For (�s,  (�s)) and (� t ,
 (� t)), let us construct a function in F according to i):

u(�; �s ; �t)

D
 (�s)�s �  (�t)�t

�2s � �
2
t

� C
 (�s)/�s �  (�t)/�t

1/�2s � 1/�2t
/�:

From iii) we have

u(�; �s ; �t) �  (�); 8� 2 [�s ; �t]:

Let �m 2 arg min {u(�; �s, � t): � 2 [�s, � t]} and

u2(�) D

(
u(�; �s ; �m) if 0 < � � �m ;
u(�; �m ; �t) if � � �m :

Then u2 underestimates  over [�s, � t] and is better
than u1 = u(�; �s, � t) in the sense:

u1(�) � u2(�) �  (�); 8� 2 [�s ; �t]:

In this way, as improving the underestimator of  suc-
cessively, we can generate the sequence of minimum
points of uks convergent to ��.
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The parametrization (7) can further be extended to
(2) with p� 2 [8] as follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min F(x; �) �
pX

iD1

�i f i(x)

s.t. x 2 D;
pY

iD1

�i � 1; � � 0:

(10)

Karush–Kuhn–Tucker conditions with respect to � im-
ply the equivalence between (2) and (10). Let

 (�) D min fF(x; �) : x 2 Dg :

Then (10) reduces to a problem with p variables:8̂
<̂
ˆ̂:

min  (�)

s.t.
pY

iD1

�i � 1; � � 0:
(11)

The objective function is concave and coordinatewise
nondecreasing; and its value at any � � 0 can be com-
puted by convex programming.

An alternative approach to (2) with p � 2 [14] is
a generalization of (5):8̂

ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
pY

iD1

�i

s.t. x 2 D;
fi(x) � �i ; i D 1; : : : ; p;
� � 0:

(12)

LetW 2 Rn × Rp denote the feasible region of (12) and

˝ D
˚
� 2 Rp : 9x; (x; �) 2 W

�
:

Then (12) also reduces to a problem with p variables:8̂
<̂
ˆ̂:
min

pX
iD1

log �i

s.t. � 2 ˝:

(13)

The objective function is concave; the feasible region˝
is a projection of the convex setW and hence a convex
set.

Both (11) and (13) are concave minimization prob-
lems (cf. also�Concave programming); however, even
general-purpose algorithms such as branch and bound
and outer approximation (cf. also � Generalized outer
approximation) [3] can handle them very efficiently
when p is less than five.

Other Multiplicative Programs

In a way similar to (11), problem (3) can reduce to
a concave minimization problem with 2p variables [5]
through a parametrization:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
pX

iD1

�2i�1( f2i�1(x))2 C �2i ( f2i(x))2

2

Cg(x)
s.t. x 2 D

�2i�1�2i � 1; i D 1; : : : ; p;
� � 0:

(14)

Let  (�) denote the optimal value of (14) with fixed �.
Then (14) reduces to

8̂
<̂
ˆ̂:

min  (�)
s.t. �2i�1�2i � 1; i D 1; : : : ; p;

� � 0:

(15)

The objective function is concave and coordinatewise
nondecreasing. For problem (4), we can use the follow-
ing parametrization [9]:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min g(x)
s.t. x 2 D

fi(x) � �i ; i D 1; : : : ; p;
pY

iD1

�i � 1; � � 0:

(16)

Let  (�) denote the optimal value of (16) with fixed �.
Then (16) is equivalent to

8̂
<̂
ˆ̂:

min  (�)

s.t.
pY

iD1

�i � 1; � � 0:
(17)

The objective function  is convex; but the feasible re-
gion is a d.c. set (difference of two convex sets). Thus,
we can solve (3) and (4) by solving smaller-size prob-
lems (15) and (17), respectively. For a more complete
survey of the algorithms, see the article by Konno and
Kuno in [2].

We have seen that the parametric approach offers
an efficient tool to handle multiplicative programming
problems. This approach is not specific to the mul-
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tiplicative structure but can be extended to a much
wider class of nonconvex minimization problems, in-
cluding minimum concave-cost flow problems, facil-
ity location, multilevel programming and so forth. The
textbook [6] shows how the parametric approach can
be generalized to a broad class of problems.

See also

� Linear Programming
�Multiparametric Linear Programming
�Multiplicative Programming
� Parametric Linear Programming: Cost Simplex

Algorithm
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Introduction

Various deterministic global optimization algorithms
that utilize a branch and bound framework make use
of convex underestimators of the functions under con-
sideration. This entry presents the work of Meyer and
Floudas [11] on the convex underestimation of C2-con-
tinuous functions. The work extends and refines the
convex underestimation approach used in the ˛BB
global optimization algorithm [1,2,3,4,10]. A recent re-
view of deterministic global optimization approaches
can be found in [6].

Let f : Rn ! R be a smooth nonconvex C2-con-
tinuous function. Its convex underestimator � : Rn 2

x ! R is defined as:

�(x) :D f (x) � q(x) (1)

where q : Rn ! R is some perturbation function.
In the classical ˛BB approach, a series of simplifica-

tions are made to yield an efficient convexification pro-
cedure. The first of these simpifications is the imposi-
tion of a quadratic structure on the perturbation func-
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tion:

q(x) :D
nX

iD1

˛i (xi � xi)
�
xi � xi

�
: (2)

To ensure that q(x) is nonnegative, ˛ is assumed to be
nonnegative. Observe that q(x), a quadratic function
with a diagonal Hessian matrix r2q(x) :D 2 diag(˛)
has an eigenvalue–eigenvector structure that is uniform
over the entire domain x with eigenvectors that are
aligned with the coordinate axes. In the work of Ad-
jiman et al. [2], a second simplification is introduced
in which the interval extension, Hx, is used instead
of r2f (x) itself. The interval extension of the matrix
r2 f (x) 2 Rn�n is a matrix of intervals of R. Each el-
ement Hx

i,j of the matrix Hx is defined in such a way
that

@2 f
@xi@x j

ˇ̌
ˇ̌
x
2 Hx

i j for all x 2 x:

Computing the tightest possible interval extension is in
itself a global optimization problem. In practice, an in-
terval extension can be calculated using interval arith-
metic [12,14,16]. The overestimation made in the in-
terval calculations may result in a significant loss of ac-
curacy. Adjiman et al. [2] applied the work of [5,7,8,
9,13,15,17,18], and devised various methods to com-
pute ˛ vectors that guarantee the convexity of the un-
derestimators. The tightness of the underestimators is
dependent on the particular ˛ calculation method used.
Extensive computational testing [1] showed that the
method based on the scaled Gerschgorin theorem per-
forms better in practice.

In the work of Meyer and Floudas [11], the form of
the ˛BB perturbation function and the way in which
it is calculated are reexamined, a novel spline based
method for convex underestimation is proposed and
an efficient means of computing these tighter underes-
timators is elucidated.

An ˛ Spline Underestimator

The size of the domain x affects the result of every step
in the ˛ calculation and strongly influences the tight-
ness of the resulting convex underestimator. In partic-
ular, reducing x reduces the mismatch between the as-

sumed quadratic functional form and the ideal form;
it reduces the overestimation in the interval extension
of the Hessian matrix; and the maximum separation
distance has been shown to be a quadratic function of
interval length [10]. It is therefore useful to construct
a convex underestimator using a number of different
˛ vectors, each applying to a subregion of the full do-
main x.

Let f (x) : Rn ! R be a C2-continuous function.
For each variable xi 2 R, let the interval [xi ; xi ] be par-
titioned into Ni subintervals. The endpoints of these
subintervals are denoted with x0i ; x

1
i ; � � � ; x

Ni
i , where

xi D x0i < x1i < � � � < xk
i < � � � < xNi

i D xi . In this no-
tation, the kth interval is [xk�1

i ; xk
i ]. A smooth convex

underestimator of f (x) over x is defined by (1). The new
perturbation function, q(x), would be:

q(x) :D
nX

iD1

qki (xi) for xi 2
h
xk�1
i ; xk

i

i
; (3)

qki (xi) :D ˛
k
i

�
xi � xk�1

i

�

�
�
xk
i � xi

�
C ˇk

i xi C �
k
i : (4)

In each interval [xk�1
i ; xk

i ], ˛
k
i � 0 is chosen such

that r2�(x), the Hessian matrix of �(x), is pos-
itive semi-definite for all members of the set˚
x 2 x : xi 2 [xk�1

i ; xk
i ]
�
. qki (xi) is the quadratic func-

tion associated with variable i in interval k. The func-
tion q(x) is a piecewise quadratic function contructed
from the functions qki (xi).

The continuity and smoothness properties of q(x)
are produced in a spline-like manner. For q(x) to
be smooth the qki functions and their gradients must
match at the endpoints xk

i . In addition, we require that
q(x) D 0 at the vertices of the hyperrectangle x. To sat-
isfy these requirements, the following conditions are
imposed for all i D 1; : : : ; n:

q1i
�
x0i
�
D 0

qki
�
xk
i

�
D qkC1

i

�
xk
i

�
8k D 1; : : : ;Ni � 1

qNi
i

�
xNi
i

�
D 0

dqki
dxi

ˇ̌
ˇ̌
ˇ
xki

D
dqkC1

i

dxi

ˇ̌
ˇ̌
ˇ
xki

8k D 1; : : : ;Ni � 1

(5)
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Expanding these equations for each i D 1; : : : ; n,
one obtains the following system of equations:

ˇ1
i x

0
i C �

1
i D 0

ˇk
i x

k
i C �

k
i D ˇ

kC1
i xk

i C �
kC1
i

8k D 1; : : : ;Ni � 1

ˇ
Ni
i xNi

i C �
Ni
i D 0

�˛k
i

�
xk
i � xk�1

i

�
C ˇk

i D ˛
kC1
i

�
xkC1
i � xk

i

�
C ˇkC1

i

8k D 1; : : : ;Ni � 1
(6)

which can be represented as:

2
6666666666666666664

�x0i �1
x1i �x

1
i 1 �1

: : :
: : :

: : :
: : :

xk
i �x

k
i 1 �1

: : :
: : :

: : :
: : :

xNi
i 1

�1 1
�1 1

: : :
: : :

�1 1

3
7777777777777777775

2
6666666666666666664

ˇ1
i
ˇ2
i
:::

ˇk
i
:::

ˇ
Ni
i
�1i
�2i
:::

�
Ni
i

3
7777777777777777775

D

2
6666666666666666664

0
0
:::

0
:::

0
s1
s2
:::

sNi�1
i

3
7777777777777777775

(7)

where ski D �˛
k
i (x

k
i � xk�1

i ) � ˛kC1
i (xkC1

i � xk
i ).

The solution of the above linear system of equations
is:

ˇ1
i D

PNi�1
kD1 ski

�
xk
i � xNi

i

�

xNi
i � x0i

ˇk
i D ˇ

1
i C

k�1X
jD1

s ji 8k D 2; : : : ;Ni (8)

� k
i D �ˇ

1
i x

0
i �

k�1X
jD1

s ji x
j
i 8k D 1; : : : ;Ni

For a rigorous proof of the continuity, smoothness,
convexity and underestimation properties of underesti-
mator �(x), see [11].

Nonconcave Perturbation

Consider a function f (x) which is convex in one subdo-
main and concave in another. In the ˛ spline approach,
�(x) can be convex even if the ˛ values are negative in
the regions in which f (x) is strictly convex. In the classi-
cal ˛BB underestimator, the underestimation property
is guaranteed by the concavity of q(x), as given in (2).
The concavity of q(x) is, in turn, a result of the non-
negativity of the ˛ values. In this section, we discuss
how the underestimation property of �(x) can bemain-
tained when some ˛ values are negative.

The underestimation property, �(x) � f (x) for all
x 2 x, is ensured by the following condition:

min
x2x

q(x) � 0 (9)

Instead of solving minimization problems, the key
idea is to adjust the ˛’s to prevent the creation of lo-
cal minima at any nonvertex point in x by prohibit-
ing the occurrence of stationary points on convex re-
gions of the perturbation function. This is illustrated
in Fig. 1. In Fig. 1a, a concave perturbation function
is depicted. The non-negativity of this function follows
from its concavity. In Fig. 1b, a perturbation function is
shown which is convex over the domain marked with
a bold line.

The point x� is a stationary point of q in this
convex region and we note that q (x�) is negative. In
Fig. 1c, the perturbation function is again convex over
the marked region but there is no stationary point in
this region. This function is non-negative over the en-
tire domain [x; x].

Using this idea, Meyer and Floudas [11] derived
a tight convex underestimator by starting with q(x),
with non-negative ˛ values as defined in Sect. “An
˛ Spline Underestimator”, and making the zero ˛’s
negative, one at a time, while maintaining the convexity
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Global Optimization: p-˛BB Approach, Figure 1
(a) Concave, (b) nonconcave, and (c) nonnegative nonconcave perturbation functions

of �(x) and avoiding the generation of stationary points
on the convex portions of q(x). For the rest of this sec-
tion we will assume that f : x! R is a univariate func-
tion, x D [x; x] � R. The separable structure of the ˛
spline function allows the techniques developed here to
be applied to the multivariate case.

Note that the ˇ and � parameters defining q(x) are
functions of the ˛’s and the endpoints, x0; : : : ; xN . The
following formula, derived from (8), is an expression
for ˇk in terms of ˛1; : : : ; ˛N .

ˇk D
1

xN � x0

k�1X
jD1

�
� ˛ j �x j � x j�1� �x j � x0

�

� ˛ jC1 �x jC1 � x j� �x j � x0
��

C
1

xN � x0

N�1X
jDk

�
� ˛ j �x j � x j�1� �x j � xN�

� ˛ jC1 �x jC1 � x j� �x j � xN��

(10)

Suppose that having calculated ˇ 2 RN for some
given ˛ 2 RN , we wish to modify some element ˛j.
Meyer and Floudas [11] derived formulae that may be
used to update the ˇ’s following such an ˛ update. Un-
der the substitution ˛ j ! ˜̨ j , the elements ˜̌1; : : : ; ˜̌N

that satisfy (8)may be expressed in terms of ˇ1; : : : ; ˇN ,
˛j and ˜̨ j using the following update formulae:

˜̌k � ˇk D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1� �x j�1 � x0

�

C
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1� �x j � x0

�

D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 C x j � 2x0

�
if j < k

(11)

˜̌k � ˇkD
1

xN � x0
�
˛ j � ˜̨ j

� �
x j � x j�1� �x j�1 � x0

�

C
1

xN � x0
�
˛ j � ˜̨ j��x j � x j�1��x j � xN�

D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 C x j � x0 � xN� if j D k

(12)

˜̌k � ˇk D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 � xN�

C
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j � xN�

D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 C x j � 2xN� if j > k

(13)

A stationary point x� of the function q : R! R is
one that satisfies:

dq
dx

ˇ̌
ˇ̌
x�
D 0, ˛k

�
xk C xk�1 � 2x�

�
C ˇk D 0

in some interval x� 2 [xk�1; xk]. It follows that an
interval k contains no stationary point if either 1

2 (x
k C

xk�1Cˇk /˛k ) > xk or 1
2 (x

k C xk�1Cˇk/˛k ) < xk�1.
Meyer and Floudas [11] derived conditions on ˛j

that guarantee the absence of such stationary points.
Their results are summarized in the following three
Lemmas, which correspond to cases j < k, j D k and
j > k, respectively.

Lemma 1 Consider two intervals [x j�1; x j] and
[xk�1; xk] where j < k. Let the sequence of ˛ values
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defining qk(x) be

f˛1; : : : ; ˛ j; : : : ; ˛k ; : : : ; ˛N�1g ;

where ˛k < 0. Let q̃k(x) be the function defined by the
sequence of ˛ values

f˛1; : : : ; ˜̨ j; : : : ; ˛k ; : : : ; ˛N�1g ;

where ˜̨ j < 0. There exists no stationary point of q̃k(x)
on the interval [xk�1; xk] if either of the following
bounds on ˜̨ j hold:

˜̨ j >
�
xN � x0

� �
�˛k �xk � xk�1�C ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2x0

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2x0

�
�
x j � x j�1

� �
x j C x j�1 � 2x0

� ;

or

˜̨ j <
�
xN � x0

� �
˛k �xk � xk�1�C ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2x0

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2x0

�
�
x j � x j�1

� �
x j C x j�1 � 2x0

� :

Lemma 2 Consider an interval [xk�1; xk]. Let
f˛1; ˛2; : : : ; ˛N�1g be the sequence of ˛ values deter-
mining qk(x). Let q̃k(x) be the function defined by the
sequence of ˛ values

f˛1; : : : ; ˛k�1; ˜̨ k ; ˛kC1; : : : ; ˛N�1g

where ˜̨ k < 0. A stationary point of q̃(x) does not exist
on the interval [xk�1; xk] if either of the following condi-
tions hold:

˜̨ k >
��

xk � xk�1
� �
xk C xk�1 � 2x0

� if � � 0

˜̨ k >
��

xk � xk�1
� �
xk C xk�1 � 2xN

� if � > 0
(14)

where

� D ˇk �xN � x0
�

C ˛k
�
xk � xk�1

� �
xk�1 C xk � x0 � xN

�
:

Lemma 3 Consider two intervals [x j�1; x j] and
[xk ; xk�1] where j > k. Let ˛k < 0, and f˛1; : : : ;

˛k ; : : : ; ˛ j ; : : : ; ˛N�1g be the sequence of ˛ values de-
termining qk(x). Let q̃k(x) be the function defined by
the sequence of ˛ values f˛1; : : : ; ˛k ; : : : ; ˜̨ j ; : : : ; ˛N�1g

where ˜̨ j < 0. A stationary point of q̃k(x) does not ex-
ist on the interval [xk�1; xk] if either of the following
bounds on ˜̨ j hold:

˜̨ j >
�
xN � x0

� �
˛k �xk � xk�1�C ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2xN

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2xN�
�
x j � x j�1

� �
x j C x j�1 � 2xN

� ;

˜̨ j < �
�
xN � x0

� �
˛k �xk � xk�1� � ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2xN

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2xN�
�
x j � x j�1

� �
x j C x j�1 � 2xN

� :

When q(x) is concave on a set of intervals and is guar-
anteed to have no stationary point on the remainder of
the intervals, q(x) is monotonically nondecreasing be-
tween x0 and a global maximum x� and monotonically
nonincreasing between x� and xN . Under the afore-
mentioned conditions, the perturbation function q(x)
is always non-negative and, thus, �(x) is a valid under-
estimator of f (x) [11].

Illustrative Example

As an illustration, we present here an example from
Meyer and Floudas [11]. It involves the well-known
Lennard–Jones potential energy function:

f (x) D
1
x12
�

2
x6

in the interval [x; x] D [0:85; 2:00]. The first term of
this function is a convex function and dominates when
x is small, while the second term is a concave function
which dominates when x is large. The minimum eigen-
value of this function in an interval [x; x] can be calcu-
lated explicitly as follows:

min f 00 D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

156
x14
�

84
x8

if x � 1:21707

� 7:47810 if [x; x] 3 1:21707
156
x14
�

84
x8

if x � 1:21707 :
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Global Optimization: p-˛BB Approach, Figure 2
Lennard–Jones convex underestimators with (a) concave and (b) nonconcave perturbations

Global Optimization: p-˛BB Approach, Table 1
Parameters for 2 subinterval perturbation for Lennard–Jones
function

k xk min f 00 ˛k ˇ k �k

0 0.850
1 1.425 �7.47810 3.73905 1.62764 �1.38349
2 2.000 �3.84462 1.92231 �1.62764 3.25528

Global Optimization: p-˛BB Approach, Table 2
Parameters for 16 subinterval perturbation of Lennard–
Jones function

k xk min f 00 ˛k ˇ k �k

0 0.850000
1 0.921875 326.18127 0.00000 1.78326 �1.51577
2 0.993750 81.99112 0.00000 1.78326 �1.51577
3 1.065625 13.55346 0.00000 1.78326 �1.51577
4 1.137500 �4.27629 2.13815 1.62958 �1.35200
5 1.209375 �7.46047 3.73024 1.20779 �0.87222
6 1.281250 �7.47810 3.73905 0.67093 �0.22296
7 1.353125 �6.71098 3.35549 0.16101 0.43038
8 1.425000 �5.21291 2.60645 �0.26750 1.01021
9 1.496875 �3.84462 1.92231 �0.59301 1.47405
10 1.568750 �2.78248 1.39124 �0.83117 1.83055

11 1.640625 �2.00473 1.00236 �1.00321 2.10044
12 1.712500 �1.44791 0.72395 �1.12729 2.30401
13 1.784375 �1.05201 0.52600 �1.21713 2.45786
14 1.856250 �0.77029 0.38515 �1.28262 2.57472
15 1.928125 �0.56887 0.28443 �1.33074 2.66405
16 2.000000 �0.42385 0.21192 �1.36642 2.73284

Global Optimization: p-˛BB Approach, Table 3
Parameters defining nonconcave perturbations for the
Lennard–Jones potential

k xk min f 00 ˛k ˇ k �k

0 0.850000
1 0.921875 326.18127 0.00000 0.00000 0.00000
2 0.993750 81.99112 �7.37920 0.53038 �0.48894
3 1.065625 13.55346 �6.77673 1.54784 �1.50004
4 1.137500 �4.27629 2.13815 1.88124 �1.85532
5 1.209375 �7.46047 3.73024 1.45945 �1.37553
6 1.281250 �7.47810 3.73905 0.92259 �0.72627
7 1.353125 �6.71098 3.35549 0.41267 �0.07294
8 1.425000 �5.21291 2.60645 �0.01584 0.50689

9 1.496875 �3.84462 1.92230 �0.34135 0.97074
10 1.568750 �2.78248 1.39124 �0.57951 1.32724
11 1.640625 �2.00473 1.00236 �0.75155 1.59713
12 1.712500 �1.44791 0.72395 �0.87563 1.80069
13 1.784375 �1.05201 0.52600 �0.96547 1.95454
14 1.856250 �0.77029 0.38515 �1.03096 2.07140
15 1.928125 �0.56887 0.28443 �1.07909 2.16074
16 2.000000 �0.42385 0.21192 �1.11476 2.22952

The classical ˛BB underestimator for this function
and interval is f (x) � 7:47810

2 (x � x)
�
x � x

�
. Bisecting

the domain and applying (8), we obtain a convex un-
derestimator defined by the parameters in Table 1.

Partitioning the domain into 16 equal sized subin-
tervals and applying (8), we obtain the convex under-
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estimator �(x) with the parameters defining q(x) of Ta-
ble 2.

The potential energy function, the classical ˛BB un-
derestimator, and the �(x) underestimators are shown
in Fig. 2a. In this figure, the ˛ spline underestimator
based on 2 subregions is denoted as �(2), while that
based on 16 subregions is denoted as �(16).

Figure 2b depicts the strengthening of an underes-
timation function through the use of nonconcave per-
turbations. A negative ˛ value has been assigned to two
of the three regions in which the second derivative is
strictly positive, as shown in Table 3. The resulting un-
derestimator is depicted as ��(x), while the notation
�+(x) is used to depict the underestimator with no neg-
ative ˛’s (same as �(16) in Fig. 2a).
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The prediction of the behavior of fluid mixtures is
a fundamental aspect of chemical process engineering.
The physico-chemical problem of computing solutions
to the phase and chemical equilibrium problem is cen-
tral to the design, control and operation of many im-
portant processes. These include distillation (standard
and azeotropic), extraction trains, petroleum reservoirs
and applications involving gases at high pressure. The
ubiquity of the flash calculation in chemical engineer-
ing is just one example of its prevalence. Because the
properties of many fluids vary in a complex fashion,
the thermodynamic models that have arisen to describe
their behavior create some difficulties in their applica-
tion. These challenges will be explored in this article.

Problem Statement

The equilibrium condition is characterized by an ex-
tremum of some thermodynamic condition. Most com-
monly, the focus is on systems that attain equilibrium
states under conditions of constant pressure (P) and
temperature (T) where the global minimum value of
the Gibbs free energy describes the true equilibrium
state. The problem may be stated as follows:

Given C components participating in up to P po-
tential phases under isothermal and isobaric con-
ditions find the number of phases and the distri-
bution of components in those phases that yield
the global minimum of the Gibbs free energy.

The requisite material balance constraints must also be
satisfied. In what follows, all quantities associated with
the Gibbs free energy are treated as dimensionless by
dividing by RT, where R is the universal gas constant.
The total Gibbs free energy is given by the summation
of the molar Gibbs free energies for each phase:

G D
X
k2P

nk gk D
X
k2P

Gk ;

where nk is the total number of mols present in phase k;
gk andGk are respectively themolar and totalGibbs free

energy of phase k. The composition variables can be de-
fined intensively in terms of mol fractions (x � {xki }),
or extensively, as the number of mols of component i
in phase k (n� {nk

i }). It is easy to move from one form
to the other via the relation nk

i = nkxki . g
k is naturally

expressed with intensive variables while extensive vari-
ables are appropriate for Gk. The equilibrium solution
must also satisfy the linear material balance constraints.

Thermodynamic Models

Turning to the available thermodynamic models avail-
able to predict fluid phase behavior, these typically lead
to expressions for the molar Gibbs functions that are
mathematically complex, nonlinear and nonconvex. In
this section, the analysis is presented for the molar
Gibbs function.

Liquid Phases

Many liquid phases are only partially miscible (referred
to as phase splitting). Nonideality is often expressed
through the employment of excess functions which at-
tempt to correlate the deviation of the system from ide-
ality. The excess Gibbs free energy is simply the amount
by which the Gibbs free energy is above that of an ideal
solution:

gE(x) D g(x) � gI(x)

with

gI(x) D
X
i2C

xi�ıi C
X
i2C

xi ln xi ;

where �°
i is the chemical potential of pure component i

referred to the standard state. gI(x) is convex. A num-
ber of different expressions of increasing complexity are
now summarized for the excess Gibbs functions The
only variables are the mol fractions xi and all other
quantities are parameters particular to the thermody-
namic model. References to these equations and their
parameters can be found in [21].

TheWilson Equation

Because the molar Gibbs free energy is convex in this
case, this equation is the only model described here that
cannot be used to predict phase splitting.

gE(x) D �
X
i2C

xi ln
X
j2C

�i j x j:



1378 G Global Optimization in Phase and Chemical Reaction Equilibrium

Regular Solutions

This equation is bilinear:

gE(x) D
X
i2C

X
j2C

Ai jxi x j:

The NRTL Equation

This widely used model consists of a summation of bi-
linear fractional terms:

gE(x) D
X
i2C

xi

P
j � jiG ji x jP
j G ji x j

:

The next three models are nonconvex in form. They
are grouped together because it has been shown in [16]
how they can be transformed into the difference of two
convex functions (d.c. form), allowing the application
of standard branch and bound global optimization al-
gorithms.

The UNIQUAC Equation

The excess Gibbs function is composed of a residual
part and a combinatorial part, denoted gEC(x), defined
as:

gEC(x) D
X
i2C

xi
h
1 �

z
2
qi
i
ln

ri xiP
j r jx j

C
X
i2C

z
2
qi xi ln

qi xiP
j q jx j

:

The excess Gibbs function is then given as:

gE(x) D gEC(x)C
X
i2C

q0i xi ln

P
j q0jx jP

j q
0
j� ji x j

:

The next two models represent the behavior of
molecules in mixtures by aggregating the properties of
constituent functional groups (represented by the index
set G = {g} = {l}).

The UNIFAC Equation

The combinatorial part is the same as for the UNI-
QUAC equation:

gE(x) D gEC(x)C
X
i2C

xi
X
g2G

�g i

�

(
Qg ln

P
j x jq jP

j x j
P

l Ql�l j�l g
� ln� (i)

g

)
:

The ASOG Equation

gE(x) D
X
i2C

xi ln
siP
j x j s j

C
X
i2C

xi
X
g2G

�g i

�

(
ln

P
j x j

P
l �l jP

j x j
P

l �l j ag l
� ln� (i)

g

)
:

Of all the above methods, the NRTL, UNIQUAC and
UNIFAC are currently the most commonly used. No-
tice that some of the correlations are of high mathe-
matical complexity. While this is necessary in order to
predict multiple liquid phases, it can lead to problems
where extraneous and erroneous additional phases are
predicted. An example is given in [19] where the NRTL
equation mathematically predicts three liquid phases
when the physical mixture has only two phases.

Vapor Phases

Deviation from ideality in vapor phases is often ex-
pressed through the use of fugacity coefficients:

g(x; z) � gI(x) D ln�(x; z);

where �(x, z) is the fugacity coefficient of the mixture.
The standard state is usually assumed to be an ideal gas
at T and unit fugacity. The compressibility z = pv/RT
measures deviation from the ideal gas law, and an ex-
pression for it is required to calculate �(x, z). For an
ideal gas, z = 1; otherwise, z is often obtained from an
equation of state (EOS) which correlates the tempera-
ture, pressure, volume and the composition of nonideal
mixtures. This equation of state then becomes an addi-
tional constraint (typically nonlinear and nonconvex)
that must be obeyed over all compositions. One possi-
ble generalized equation of state can be written in its
standard form as:

z � ˛B �
z � ˛B
z � B

C
A

z C ˇB
D 0; (1)

A D
X
i2C

X
j2C

Ai jxi x j; B D
X
i2C

Bi xi ; (2)

where ˛ and ˇ are constants that depend on the equa-
tion of state employed. The more important equations
of state include the van der Waals (˛ = ˇ = 0), Soave–
Redlich–Kwong (˛ = 0, ˇ = 1), and Peng–Robinson
(˛ D

p
2 � 1, ˇ D

p
2 C 1). See [26] for a thorough

review. Note that (1) is composed of the sum of a linear
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fractional and a bilinear fractional function, and that (2)
defines A as a bilinear function. This means that when
an equation of state is used, an additional level of com-
plexity is added to the problem in the form of noncon-
vex and nonlinear constraints.

As is demonstrated in several standard texts [26],
the overall mixture fugacity coefficient can be obtained
using (1) as:

ln�(x; z)

D (z � 1)� ln (z � B)C
1

(˛ C ˇ)
A
B
ln

z � ˛B
zC ˇB

:

This function is highly nonlinear and nonconvex, con-
sisting of a bilinear fractional function (A/B) multiply-
ing the logarithm of a linear fractional function.

Obtaining Equilibrium Solutions

Here the global minimum of the total Gibbs function is
sought subject to the material balance constraints. Be-
cause the total Gibbs function is used, extensive vari-
ables are appropriate. Following [23], assume there are

 phase classes characterized by a separate thermody-
namic model. 
EOS represents the phase class where an
EOS is used. Before solving the problem, P� , the num-
ber of phases consistent with phase class 
 , must be se-
lected. P =[�P� . The solution will then yield Peq

� � P�
where Peq

� is the number of phases of class 
 present in
nonzero amounts at equilibrium. Consider a potential
LLV mixture: if the NRTL is used to model two liquid
phases, and the Peng–Robinson equation for a single
vapor phase, then 
1 = NRTL, P�1 = 2; 
2 = PR, P�2
= 1. If the actual physical mixture at equilibrium is cal-
culated as LV, then Peq

�1 = Peq
�2 = 1. The phase rule [26]

gives an upper bound on the number of possible phases.
The optimization formulation can now be written as:

(G)

8̂
<
:̂
min
n2N

G D
X
p2�

X
k2P	

Gk

s.t. EOSk D 0; 8k 2 P�EOS ;

where

N D

(
n :

X
k

nk
i D nT

i ; 8i; nk
i � 0; 8i; k

)
:

Here, nTi is the total number of moles of component i in
the mixture. Note that the equation of state in (G) com-

prising (1) and (2) is assumed to be written in extensive
form.

Equation Based Approaches

Even though (G) is naturally expressed as an optimiza-
tion problem, equation based approaches are by far the
most prevalent due to their use in commercial chemical
process simulators. The first order necessary optimality
conditions of (G) reduce to a set of nonlinear equations,
corresponding to the condition of equality of chemical
potentials (�k

i ):

�k
i D �

k0
i ; 8i 2 C; 8k; k0 2 P: (3)

All chemical engineering undergraduates encounter the
direct iteration K-value method for solving (3), known
as the single stage flash calculation. A general descrip-
tion is supplied by [12]. The inside-out algorithm of
[2] is of especial prominence due to its superior perfor-
mance to other methods. Because these equations are
nonconvex, there may be several solutions which satisfy
them, and these methods are prone to failure, especially
at conditions close to the critical point (which is called
the plait point for liquid phases).

Local Optimization

Given the problems associated with the equation based
approaches, various attempts to solve (G) using local
optimization have been attempted. A steepest descent
method was used in [27] and is known as the RAND
method. Various methods were compared to an im-
plementation of Wolfe’s quadratic programming algo-
rithm in [5]. A variable projection method was used
in [3]. Several other variants of Newton based meth-
ods have been employed (see [17] for a brief summary).
None of these methods—typically Newton or quasi-
Newton algorithms—removes the possibility of con-
verging to a local optimum, or a trivial solution (sad-
dle point where the mol fractions in two phases of the
same class
 are the same), and are highly dependent on
starting point. A major problem is that P� is unknown
and must be guessed, and therefore, the incorrect num-
ber of phases Peq

� is easily obtained with these methods.
Another key problem in these approaches is the devel-
opment of numerical singularities when phases coalesce
or split as the algorithm progresses [22].
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Global Optimization

The above facts motivate the employment of global op-
timization techniques because if an approach can be
guaranteed to obtain the global optimum solution of
(G), then a sufficiency condition for phase equilibrium
is automatically supplied. The first use of global opti-
mization to solve (G) was undertaken in [17], where it
was shown how the GOP algorithm [4] could be used in
cases where the NRTL equation was used to model liq-
uid phase behavior. New variables were introduced so
that the formulation of (G) would consist of a biconvex
objective function and a bilinear constraint set, satisfy-
ing the requirements of the GOP to guarantee global
optimality. For the UNIQUAC equation, a branch and
bound global optimization algorithm described in [10]
was implemented to determine the global minimum of
(G) [15]. A key aspect of the work in [17] was the math-
ematical transformation of the nonconvex expressions
for the Gibbs free energies into formswith special struc-
ture, namely the difference of two convex function (d.c.
form). Similar transformations and this same algorithm
can be also applied to the UNIFAC, ASOG and modi-
fied Wilson equations, as shown in [16]. These were the
first approaches to guarantee convergence to the global
solution of (G), regardless of the supplied initial point.

Verifying Equilibrium Solutions

The tangent plane criterion provides an alternative suf-
ficiency condition for a candidate equilibrium solution
to correspond to a global minimum of the Gibbs free
energy [7]. A candidate solution must satisfy the neces-
sary condition for equilibrium—that is, satisfy (3). Sta-
bility requires that the tangent hyperplane constructed
using the chemical potential values of the candidate so-
lution (denoted ��i ) at no point lies above the molar
Gibbs surface for all phase classes used to model the
mixture. Stated in optimization terms, if the global min-
imum of the tangent plane distance function, D� , for
each phase class 
 used to represent the behavior of
the mixture, is nonnegative 8
 , then the candidate so-
lution corresponds to a global minimum of the Gibbs
free energy [1]. The phase stability problem is defined
for a phase class 
 as:

(S)

8<
:
min
x2X

D� D g� �
X
i2C

xi��i

s.t. EOS(x; z) D 0 if 
EOS � 
;

where X = {x:
P

ixi = 1, xi � 0, 8i}. Clearly, (1) and
(2) are required for (S) when 
EOS � 
 .g� is obtained
from the appropriate thermodynamic models described
earlier. Therefore, it is seen that the approach involves
verifying that a candidate solution is the equilibrium
one.

Equation Based Approaches

As with (G), the first order necessary optimality condi-
tions of (S) reduce to a set of nonlinear equations:

��i � �
�
i D K; s.t. x 2 X; (4)

whereK is a constant. The EOSmust be satisfied if
EOS

� 
 . If a nonnegative solution to this set of equations
is obtained, then the postulated solution is assumed to
be stable. Standard direct iteration methods have been
used [20] as well as homotopy continuation methods
[24] to solve (4). However, no guarantee of obtaining
all stationary points can be provided with the typical
equation based approach. However, an interval New-
ton method has been used in [11] to �-enclose all sta-
tionary points. This work can be considered a ‘global’
method for equation solving. It should be noted that
a branch and bound global optimization algorithm [13]
has been used to obtain all homogeneous azeotropes in
mixtures [9]; because the condition of azeotropy adds
a single linear constraint (equality of mol fractions in
all phases) to (3), this approach can in principle be used
to guarantee obtaining all �-global solutions to both (3)
and (4).

Global Optimization

The advantage of a global optimization approach is
that if a nonnegative solution is found, then it can be
definitively asserted that the candidate solution is the
globally stable equilibrium one, unlike available local
algorithms. It is shown in [18] how global optimiza-
tion can be used to solve (S), using the GOP algorithm
for the NRTL equation, and a branch and bound algo-
rithm for the UNIQUAC equation. For the modified
Wilson, ASOG and UNIFAC equations, it was shown
in [16] how this same branch and bound algorithm
could be used after transforming the expressions for
g(x) into d.c. form. It has been shown how the formula-
tions for (G) and (S) involving equations of state can
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be transformed into biconvex form allowing the ap-
plication of a number of global optimization algo-
rithms [14], although no implementation was under-
taken. An important recent extension of global opti-
mization to the case of equations of state is supplied
in [8] where the nonlinear terms are validly underes-
timated within the framework of a branch and bound
algorithm.

Combining Approaches

From the above development, it is apparent that:
1) To obtain a candidate equilibrium solution, either

solve (G) or (3); and
2) To verify a candidate as the equilibrium solution, ei-

ther solve (S) or (4).
Approach 1) is problematic because the a priori selec-
tion of P� represents a formidable challenge. If too few
phases are allowed, then convergence to constrained
minima can occur; if too many are assumed, then nu-
merical problemsmay arise, or convergence to trivial or
local extrema may occur. Therefore, the concept of us-
ing the tangent plane criterion to provide initial guesses
for (G) or (3) has been shown to greatly increase re-
liability with a tolerable increase in computational ef-
fort. In addition, when solving (G) or (3), the num-
ber of composition variables is NV = |C||P|, while for
(S) or (4), NV = |C|. The performance of the RAND
method was found to considerably improve when com-
bined with a phase-splitting algorithm [6]. The semi-
nal work of M.L. Michelsen [20] proposed an iterative
approach whereby the solution from the tangent plane
criterion is used to initialize the search for the equilib-
rium solution. This is implemented using a direct sub-
stitution method (K-value approach) as well as an op-
timization method. The calculations are computation-
ally efficient and reported to be quite reliable, although
there is the danger of predicting a stable phase distribu-
tion, when, in fact, this is not the case. In a comparative
study for liquid-liquid phase splitting [25], Michelsen’s
method was found to be the most reliable. A similar it-
erative approach using homotopy continuation meth-
ods to solve (4) have also been used in [24]. However,
there are a number of difficulties associated with these
approaches. First, no guarantee of obtaining all station-
ary points can be provided. Second, since the solutions
obtained from the stability problem are then used to

initiate the search for a solution with a lower Gibbs free
energy, these guesses may lead to local optima, or even
infeasible equilibrium solutions. Therefore, no guaran-
tees can be made of having obtained the equilibrium
solution, even though overall reliability is significantly
increased.

Global Optimization

When solving (G) using global optimization, the maxi-
mum allowable number of phases P� ,8
 , must be con-
sidered for rigorous determination of phase and chem-
ical equilibrium. This leads to high computational ef-
fort when often the global solution is generated early in
the global optimization search [19]. For these reasons,
an algorithm known as GLOPEQ (global optimization
for the phase and chemical equilibrium problem) was
implemented in [19]. An iterative approach was pro-
posed based on the fact that solving (S) to global op-
timality to verify a candidate solution is vastly prefer-
able to solving (G). GLOPEQ therefore leads to signifi-
cant computational savings over other global optimiza-
tion approaches. It should be noted that the approach
described in [8] can be incorporated into GLOPEQ,
extending its applicability and giving the first global
optimization method for both nonideal liquid and va-
por phases. The key difference between GLOPEQ and
the other local iterative approaches is that global opti-
mization is used at each step of the algorithm, allowing
a guarantee to be made of obtaining the true equilib-
rium solution no matter the starting point.

Reaction Equilibria

If reaction occurs in the mixture, then the permissible
regions N and X must be adjusted. See [23] for an ele-
gant analysis of the tangent plane criterion for reacting
mixtures. Note that N and X remain linear and they do
not affect the global optimization approach for solving
(G) or (S).

General Comments on Efficiency

Clearly local approaches, while less reliable, are more
efficient than global optimization approaches. Because
of the relatively heavy computational burden of global
optimization, these approaches are more justified for
off-line analysis as they could not be practically used in
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a chemical process simulator. Having said that, compu-
tational times of seconds for highly nonideal mixtures
of up to eight components [8] provide a great deal of
promise for improving the robustness of the equilib-
rium calculation without resulting in excessive solution
times.

See also

� ˛BB Algorithm
� Continuous Global Optimization: Models,

Algorithms and Software
� Generalized Primal-relaxed Dual Approach
� Global Optimization: Application to Phase

Equilibrium Problems
� Global Optimization in Batch Design Under

Uncertainty
� Global Optimization in Generalized Geometric

Programming
� Global Optimization Methods for Systems of

Nonlinear Equations
� Interval Global Optimization
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Global Optimization with ˛BB
� Optimality Criteria for Multiphase Chemical

Equilibrium
� Smooth Nonlinear Nonconvex Optimization
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Introduction

Multi-layered dielectric structures are relevant in many
applications that seek to influence electromagnetic ra-
diation across the infrared, optical and X-ray spec-
tra. Anti-reflection coatings, components for integrated
optics and semiconductor lasers are based on multi-
layered dielectric designs; they are generally modeled
using the transfer matrix method that has been in
widespread use for the past thirty years [5,26]. In
many cases optical designs can be devised by deduc-
tive reasoning, but, as design objectives have become
more elaborate, robust numerical optimization tech-
niques have become increasingly relevant. Baumeister
reported the first refinement technique for multilayer
dielectric in 1958 [3].

The synthesis of multi-layered dielectric structure
designs requires a robust global optimization approach.
The mathematical model that describes the optical
properties of these structures is highly non-linear and

presents any solver the task of sifting through count-
less local minima. Early approaches relied on stochastic
global methods. The lack of deterministic methods in
the literature highlights the challenging mathematical
task of identifying minimizing convex approximations.
As far as the authors know, the only deterministic ap-
proach proposed to date is limited in scope due to ap-
proximations that are made to derive model equations
such that the problem has a unique solution.

This encyclopedia entry examines the problem of
multilayer dielectric design, which has been treated
with a range of algorithms over the past 20 years.
Stochastic approaches are reviewed including Simu-
lated Annealing, Genetic Algorithms and a Multi-Level
approach. A deterministic minimization approach is
also discussed. The study may be considered a review
and critical comparison of techniques for electromag-
netic filter design.

Formulation

Statement of Physical Problem

Multilayered dielectric structures have two modes of
operation: in passive mode, a structure reflects or trans-
mits light from an external source as a function of the
input wavelength and direction; in active mode, a struc-
ture creates light internally and distributes the emis-
sion both spectrally and spatially. Figure 1 illustrates
these two modes of operation. Here, a(
)i (�; zi ) and
ā(
)i (�; zi ) are the forward and backward propagating
amplitudes in Region i respectively. The superscript in
brackets (� D fs; pg) indicates the polarization, which
is described as either Transverse Electric (s) or Trans-
verse Magnetic (p).

In the passive geometry, amplitudes are equated
with real measurable quantities: ja1(�; z1)j2 D 1,
jā1(�; z1)j2 D R(�), jaN (�; zN )j2 D T(�) and
jāN(�; zN )j2 D 0, where R(�) and T(�) are the reflec-
tivity and transmissivity of the structure respectively.
In active mode ja1(�; z)j2 D 0, jā1(�; z1)j2 D Pb(�),
jaN(�; zN )j2 D Pf(�), jāN(�; zN )j2 D 0 where Pf and Pb
are the forward and backwards emission powers. The
source amplitudes, ai(�; zi ) D A(�) and ā2(�; zi ) D
Ā(�) are dependent on the type of emission source and
will not be elaborated upon here. For more information
on these issues, the reader should refer to [10] and [4].
In both operation modes, the structure interacts with
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Global Optimization of Planar Multilayered Dielectric Struc-
tures, Figure 1
Schematic of a multilayer dielectric structure highlighting
the nomenclature . . .

light as a function of its wavelength, �, and the op-
tical angle parameter, � D ni sin �i , which is related
to the propagation angle, �i , in region i. Note that �
is invariant throughout the structure unlike �i , which
varies with the refractive index, ni, due to Snell’s law
(ni sin �i D constant).

The following analysis considers only the passive
mode of operation, although the approach is readily
adaptable to describe problems involving the active
mode. Therefore, R(�) and T(�) are usually part of
some expression to be minimized. The design variables
to be optimized are the refractive indices, ni, and layer
thicknesses, di, throughout the structure. The optimiza-
tion problem is posed as follows: a single valued objec-
tive function FfR(�;n; d); T(�;n; d)g involving the re-
flectivity and transmissivity must be minimized subject
to unknown variables n D fnig and d D fdig where
i 2 f1; : : : ; Ng. The problem is typically bounded,
defining a variable space of finite extent: for example,
the unknown variables here are constrained to upper,
nU , dU and lower, nL , dL bounds. This is summarized
as,

min
n;d

FfR(�; n; d); T(�; n; d)g

s:t: n� nU � 0
nL � n � 0

d � dU � 0

dL � d � 0 :

(1)

The use of the transfer matrix method to describe the
propagation of light through multi-layer planar dielec-
tric materials is well-established [5,26]. Oulton and Ad-

jiman [28] present an alternative and more compact
representation highlighting the mathematical details of
the model and symmetries that are useful for writing ef-
ficient code and deriving compact analytical gradients
for local optimization.

Consider the schematic for a general multilayered
structure in Fig. 1. The transfer matrix, T(
)

ji (�), relates
the electromagnetic field amplitudes in regions i and j
at zi as follows, 

a(
)j (�; zi )
ā(
)j (�; zi )

!

D

 
X(
)C

j; i (�) X(
)�
j; i (�)

X(
)�
j; i (�) X(
)C

j; i (�)

! 
a(
)i (�; zi )
ā(
)i (�; zi )

!

D T(
)
ji (�)

 
a(
)i (�; zi )
ā(
)i (�; zi )

!
(2)

X(
)˙
j; i D

1
2

 
C(
)
i; j ˙

1

C(
)
i; j

!
: (3)

The coupling coefficients, C(
)
i; j are

C(s)
i; j D

s
ˇ j

ˇi

C(p)
i; j D

nj

ni

s
ˇi

ˇ j
:

(4)

Here, ˇi D k0
q
n2i � �2 is related to � and � through

k0 D 2
/�, the wavenumber of the incident light. ˇi is
the component of the wavenumber normal to the pla-
nar layers and is sometimes referred to as the propaga-
tion constant. Note that T(
)

ji (�) is symmetric with only
two independent elements.

To describe propagation across region j, of thick-
ness dj D z j � zi , the amplitudes, aj(�; z j) and
ā j(�; z j) at zj are related to the amplitudes, aj(�; zi)
and ā j(�; zi) at zi by the transfer matrix, P j(�), which
is independent of polarization for isotropic materials.

 
a(
)j (�; z j)
ā(
)j (�; z j)

!

D

�
eiˇ jd j 0
0 e�iˇ jd j

� 
a(
)j (�; zi)
ā(
)j (�; zi)

!

D P j(�)

 
a(
)j (�; zi )
ā(
)j (�; zi )

!
:

(5)
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In order to relate the fields at the interfaces between re-
gions i C 2 and i C 1 at ziC1 and regions i C 1 and i
at zi, interface and propagation matrices are multiplied
together such that,

�
aiC1(�; ziC1)
āiC1(�; ziC1)

�
D M(
)

iC1; i (�)
�

ai(�; zi )
āi(�; zi )

�
(6)

where M(
)
iC1; i(�) D PiC1(�)T(
)

iC1; i (�). In the general
formulation, the amplitudes can be expressed as a vec-
tor of plane wave modes corresponding to the vari-
ous angles of propagation within the planar dielectric
medium.When considering N values of � (angles of in-
cidence), the transfer matrix,M(
)

iC1; i will be a 2N � 2N
matrix. Notice, however, that due to Snell’s law and the
law of reflection M(
)

iC1; i is sparse with only 4N compo-
nents along the diagonals of each quadrant of M(
)

iC1; i .
Therefore there are only 2N independent components.
From here on, the parameter � will be dropped from
the mathematical expressions for brevity.

Analytical Gradients for Effective Optimization

The efficiency and accuracy of local optimization can
be enhanced by using analytically determined gradi-
ents. Methods for determining the gradients of trans-
fer matrices have been presented in the literature [29],
but here the new formalism allows a compact analyti-
cal evaluation which leads to simplified coding and ef-
ficient strategies for calculating large numbers of gradi-
ents for one structure.

Consider the derivative of the standard mode
matching matrix equation with respect to the variable,
� i for an optical structure with N layers:

@

@�i

 
a(
)N (zN)
ā(
)N (zN)

!
D
@M(
)

N; 1

@�i

 
a(
)1 (z1)
ā(
)1 (z1)

!

CM(
)
N; 1

@

@�i

 
a(
)1 (z1)
ā(
)1 (z1)

!
:

(7)

Given any two constant boundary condition ampli-
tudes the matrix equation can be solved for the deriva-
tives of the unknown amplitudes. Consider now the
derivative of the matrix with respect to the variables of
a given layer.

The derivative with respect to di is the easiest to
evaluate as only one phase matrix, Pi, needs to be dif-

ferentiated. The matrix derivative is:

@M(
)
N; 1

@di
D M(
)

N; idM
(
)
d i M

(
)
i; 1

D ikz iM(
)
N; i

�
1 0
0 �1

�
M(
)

i; 1 :

(8)

Differentiation with respect to the refractive index, ni,
is much more complicated as it involves the product of
three matrices and must be evaluated using the Leib-
niz rule. In the current representation, transfer matrix
symmetries can be exploited to give a concise form as in
Eq. (8), which can be written for the two polarizations
as follows:

@M(
)
N; 1

@ni
D M(
)

N; idM
(
)
ni

M(
)
i; 1 (9)

where,

dM(s)
ni
D

ni k20
ˇ2
i

�
iˇi di 1

2

˚
e2iˇi d i � 1

�
1
2

˚
e�2iˇi d i � 1

�
�iˇi di

�

dM(p)
ni
D

ni k20
ˇ2
i0

@ iˇi di 1
2
ˇ 2
i �k

2
x

k20n
2
i

˚
e2iˇi d i � 1

�

1
2
ˇ 2
i �k

2
x

k20n
2
i

˚
e�2iˇi d i � 1

�
�iˇi di

1
A :

(10)

These are extremely concise forms for the matrix
derivatives of fairly complicated expressions where
each gradient only requires the evaluation of a supple-
mentary transfer matrix, dM(
)

�i
and one additional ma-

trix evaluation.
The reflectivity, R and transmissivity, T, involve

the absolute square of the field amplitudes. Given the
derivative of the amplitude, ai(zi), the derivative of its
absolute square is given by,

dR
d�i
D

d(ai (zi)ai(zi )�)
d�i

D 2<fai(zi )g<
�
dai (zi )
d�i

	

C 2=fai(zi )g=
�
dai (zi )
d�i

	
:

(11)

Methods and Applications

By the early 1990s, a range of optimization methods
were being used to generate optical multi-layer filter de-
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signs. Dobrowolski and co-workers reviewed ten meth-
ods for computational speed and effectiveness at reach-
ing an optimum solution to determine which would be
best suited to these highly non-linear problems [11].
Amongst these were both global and local methods but,
at this time of limited computer power, no particular
approach was deemed superior over the fixed calcula-
tion time of 2 hours. The authors rated a local gradient-
based modified Gauss-Newton method highly for its
consistency over the problems investigated. The obser-
vation that the global optimization methods performed
on a par with local methods, despite the clear limitation
in fixed calculation time, was also noted.

Computing power today is not as great an is-
sue and the use of global optimization techniques for
multi-layered optical design has attracted a great deal
of attention (see references throughout this Section).
Global algorithms can be broadly divided into two
categories: deterministic and stochastic. Deterministic
methods guarantee a global solution, usually at the
expense of calculation time, whereas stochastic meth-
ods converge rapidly to solutions with only a prob-
abilistic guarantee of global optimality in finite time.
Liberti and Kucherenko investigated these contrast-
ing philosophies by comparing the deterministic spa-
tial Branch and Bound (sBB) and Stochastic Multi Level
Single Linkage (MLSL)methods for a range of test func-
tions [24]. The authors concluded that the stochas-
tic method, in the cases studied, converged faster to
a global optimum with a high degree of probability, but
the deterministic method could perform better in cases
where specific theoretical assumptions about a prob-
lem’s analytical structure could be taken into account.
In general, deterministic methods require preparation
for a particular problem, whereas stochastic methods
can be more readily adapted for black-box scenarios.
Nevertheless, stochastic approaches cannot guarantee
global optimality in finite time.

In this section, a range of global optimization ap-
proaches are reviewed. It is most useful that in the
study of these methods, some authors have examined
the same numerical synthesis problem: the design of
an anti-reflection coating to operate in the far in-
frared [1,6,11,25,28,36,44]. The objective is to minimize
a Germanium (Ge: refractive index nGe D 4:2) and
Zinc Oxide (ZnS: refractive index nZnS D 2:2) multi-
layered structure to achieve a normal incidence reflec-

tivity, R(� D 0) 7! 0 for N	 D 47 equidistant wave-
lengths in the spectral band 7:7 � � � 12:3 μm. The in-
cident medium is air and the substrate which the struc-
ture is built on has refractive index nSub D 4.

The objective function, F(d; �i ; Ri), was chosen to
be the same as that used by authors in the literature to
allow comparative studies.

F(d; �i ; Ri ) D

"
1
N	

N�X
iD1

Ri(�i )2
#�1/2

: (12)

In the following studies, the optimum layer thicknesses
for reproducing the best designs are omitted for brevity,
so the reader should consider the relevant references for
this information.

Multi-Level Approaches

In Multi-Level (ML) approaches (e. g., [20,21,23,24,
28]), different starting points are generated by a higher-
level algorithm, and the problem is solved from each
starting point by a lower-level local optimization al-
gorithm. This approach is very general because it re-
quires no tuning. It has been applied by Oulton and
Adjiman [28] to the design of multi-layered dielec-
tric device design by using a deterministic sampling of
the parameter space and local nonlinear programming
(NLP) solver. The approach is able to rank many lo-
cal solutions for post-optimization analysis. It is also
non-adaptive at the global level in that the algorithm
depends only on the current state and not on pre-
viously calculated states. This brings two advantages:
firstly, non-adaptive methods are deemed superior to
adaptive ones in multi-processor applications, which is
certainly a benefit for computationally intensive global
optimization problems. Secondly, non-adaptive algo-
rithms have freedom over the specification of conver-
gence criteria. Since the optimization algorithm in [28]
essentially operates by batch local optimization, it can
be halted according to criteria such as the number of
global iterations or after a set time limit. Rigorous cri-
teria are also applicable to the ML strategy [20,21,23]:
as the algorithm progresses the probability that the cur-
rent best local solution is the global one increases, pri-
marily due to the global search coverage guaranteed
through the appropriate choice of the sampling ap-
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proach; for instance, Oulton and Adjiman used a Sobol’
sequence [33], a deterministic Low Discrepancy Se-
quence (LDS) which provides a good coverage of the
variable space. The Sobol’ LDS was selected because its
construction is based on i) homogeneity as the num-
ber of sample points, n 7! 1, ii) good distribution
for small n and iii) fast computational algorithm. All
these features, but particularly ii), make this LDS most
applicable to the current problem. There are a variety
of LDSs that are constructed on differing requirements
such as Holton, Faure, Niederreiter and Sobol’ amongst
others [7,18,27,33].

Simulated Annealing

Simulated annealing (SA) has been applied to a vari-
ety of electromagnetic multilayer design problems in
the infra-red, ultra-violet and X-ray spectra [6,8,9,15,
22,41,42]. SA [22] operates by randomly changing an
initial design in small steps and accepting the changes
based on an evaluation of the new design performance
according to criteria that become increasingly stringent
as the algorithm progresses. Changes are always ac-
cepted if they result in a better design. On the other
hand, a worse design is accepted with a probability
based on a Boltzmann distribution. The probability of
acceptance is tuned by changing the Boltzmann tem-
perature according to a user-specified schedule. Wider
exploration of the variable space at the start of the op-
timization is achieved by setting a high temperature,
which essentially allows the algorithm to accept worse
designs and thereby move between local regions of at-
traction. A cooling schedule restricts the algorithm’s
ability to investigate adjacent local regions and forces
convergence to a local optimum. In this case, it is clear
that convergence to the global optimum will be depen-
dent on the initial design and especially on the cooling
schedule.

The first reports on SA applied to multilayer design
highlighted mainly the technique’s ability to avoid lo-
cal minima [41], although adaptations to avoid deep lo-
cal minima were also reported [8]. These reports were
for structure in the visible to near infrared spectra. The
method has recently seen use in the design of reflec-
tors for UV [15] and X-ray [9] spectra. These have
applications that include neutron optics, X-ray astro-
physics and synchrotron radiation. In this region of the

spectrum, matter interacts with electromagnetic radia-
tion differently requiring a modified transfer matrix de-
scription that accounts for surface roughness and inter-
diffusion (See [9] and references therein). Wu et al. have
applied simulated annealing to a different optics prob-
lem involving diffraction gratings [42]. This important
design problem concerns the efficient coupling of light
into and out of waveguides and optical interconnects.

Boudet et al. [6] use SA to synthesize multilayer de-
signs for the problem given in the introduction to this
section. Results for NL D 17 (triangle) and NL D 20
(filled triangle) are shown in Fig. 2b along with results
generated using other approaches. The merits of the
method are discussed in Sect. “A Comparison of Meth-
ods for an Infrared Filter Design”.

Genetic and Memetic Algorithms

Evolutionary or Genetic Algorithms (GA) are the pre-
ferred method in the optics community [2,14,16,17,19,
25,39,43,44,45,46,47]. GAs operate on the principle that
the evolution of a random population of parameteriza-
tions, subject to iterative rules of reproduction and mu-
tation, will converge to a region of attraction contain-
ing the global optimum [17]. Members of the popula-
tion with high performance are given a greater likeli-
hood of reproducing thereby generating a better popu-
lation than the one before. Mutation prevents the algo-
rithm converging too quickly and provides the mecha-
nism by which the variable space can be explored more
fully. Usually, local optimization is required to refine
the final solution. In the case of the Memetic algorithm,
local optimization is performed on each new member
of the population. This approach could therefore be
considered as a multi level approach (see earlier Sec-
tion).

Eisenhammer et al. [14] optimized the performance
of heat mirrors for solar cells: these are high pass filters
that transmit optical solar radiation but reflect thermal
radiation, which would otherwise be lost by the solar
cell. Their designs differ slightly from typical dielectric
multilayers since they incorporate metals, which help
to reflect thermal frequencies. Bagnoud and Salin [2]
and Yakovelev and Tempea [43] have applied GAs to
the design of chirpped mirrors, which are used to make
ultra-fast lasers with fempto-second pulses. These so-
phisticated mirrors are designed to have a reflectance
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over a broad range of frequencies and, in addition, must
also be compensated to ensure stability of the reflection
phases. Yakovelev and Tempea [43] used a memetic
algorithm and report fast convergence compared with
the standard GA. Hoorfar et al. [19] developed the GA
approach by considering the choice of dielectric ma-
terials from a list of candidates for the multilayer de-
sign. The authors thereby treat the mixed parameter ap-
proach (i. e. discrete and continuous optimization pa-
rameters) to which the GA approach appears amenable.
Other authors have developed the technique still fur-
ther by considering multiple objective and constraint
functions [39]. The standard infrared filter design prob-
lem introduced by Aguilera et al. [1] has been treated by
Martin et al. [25,44,46]: the results of these studies are
shown in Fig. 2b along with those of other global opti-
mization approaches.

Needle Optimization

Most optimization strategies for multilayer design
problems consider the variation of layer thickness di
and layer refractive index ni. Variations of the stan-
dard techniques including multiple objective functions
and mixed parameter optimization have also been dis-
cussed in this article. However, few methods con-
sider the variation in the number of layers of a mul-
tilayer design problem. The needle optimization ap-
proach tackles the problem exactly from this perspec-
tive [32,34,35,37,38,40]. Firstly, the optimum position
for introducing a needle like layer perturbation to
a structure is determined: this usually corresponds to an
insertion point that gives optimum convergence of the
objective function. Tikhonov Jr et al. [35] provide an al-
gorithm for locating this optimum position before nee-
dle insertion. For some objective functions, this is an-
alytically determined, but, for flexibility, numerical ap-
proaches are available also [34,40]. Following insertion
of a needle, the new design is used as the starting point
for a local optimization. The needle insertion and local
optimization procedure is repeated until no more re-
finement is possible within the constraints of the prob-
lem at hand.

An alternative approach to this problem, which has
not yet been explored, would be to formulate the prob-
lem as Mixed-Integer Program, in which the existence
or otherwise of each putative layer would be repre-

sented by a binary variable. This problem could be
solved locally using standard techniques, and many of
the global methods discussed here could be applied.

Deterministic Methods

Deterministic algorithms generally require the non-
linear set of model equations to be analyzed to obtain
a convex problem which underestimates the minimum
of the original design problem. Using one of various
search approaches, such as Branch and Bound, it is pos-
sible to converge to a feasible global minimum by suc-
cessively solving such problems, which produce tighter
and tighter bounds on the solution along an infeasible
design path. These methods are reviewed extensively
elsewhere in the Encyclopedia.

Due to the complexity of the highly coupled transfer
matrix equations, it is difficult to find appropriate con-
vex estimators. However, Tikhonravov and Dobrowol-
sky [36] treat the above problem using an approxi-
mate infeasible path approach, reducing the problem to
a quadratic programming problem with linear inequal-
ity constraints with one global optimum solution. Fea-
sible solutions are obtained by local optimization of the
resulting design. In their method, the reflection calcu-
lation is approximated for � D 0 by i) assuming con-
tinuous variation of the refractive index profile, and ii)
assuming only a small reflectivity, R(0). In the scope of
general multilayer optimization problems, these con-
ditions are fairly restrictive, but they are applicable to
the filter design problem posed by Aguilera et al. [1].
Strictly, this is not a deterministic global optimization
method because it is based on solving an approximate
problem to global optimality, and there is no guaran-
tee that this corresponds to the global solution of the
original problem. Tikhonravov and Dobrowolsky [36]
perform the local optimization of a discretized struc-
ture to find a feasible solution. One interesting aspect
of their approach is the proof of an optimal relation-
ship between the minimum objective function and the
optical thickness of a filter for a given set of material
parameters. Although solutions along this line may not
exist, the condition marks the limit of global optimality.
The limiting condition of optimality is plotted in Fig. 2
and marks a theoretical boundary above which all so-
lutions must lie. This is useful as a benchmark for the
development of deterministic global optimization algo-
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Global Optimization of Planar Multilayered Dielectric Structures, Table 1
Details of solvers and their implementations in this study. (a) [25]; (b) [6]; (c) [44]; (d) [28]. * Value estimated based on 1600
generations and 100 members per population. ** Value estimated based on computation time and CPU type, taking into
account details from [25]. � Number of function evaluations depends on number of layers design and fixed computation
time of 5hrs

Function Evals. CPU Time Language CPU
(a) 160,000* 6–10 Hrs C++ HP Apollo Series
(b) �100,000** 5 Hrs C++ HP Apollo 715/75
(c) 150,000 Unknown C++ Unknown
(d) 150,000–250,000
 5 Hrs MatLab/C++ Intel PIV 2GHz

Global Optimization of Planar Multilayered Dielectric Structures, Table 2
Comparison of optimum solutions found using ML [28] and GA [44]. The ML algorithm performed between approximately
150; 000 and 250; 000 function evaluations, depending on the number of layers, while the GA algorithm used between
150; 000 and 650; 000 function evaluations (specific number is unknown)

Number of Layers 15 17 23 26 27 36
GA Merit Function (%) 0.855 0.697 0.577 0.523 0.553 0.494

Optical Thickness (μm) 20.34 27.04 40.17 50.99 44.98 71.15

ML Merit Function (%) 0.675 0.638 0.556 0.531 0.535 0.507
Optical Thickness (μm) 31.26 38.19 45.19 56.28 52.10 64.47

rithms and for assessing the performance of stochastic
methods.

A Comparison of Methods
for an Infrared Filter Design

It is very difficult to compare the general performance
of optimization approaches. In the following study,
methods are compared through their performance in
solving the infrared filter design problem that was de-
scribed in the introduction to this Section. In each case,
the same problem with precisely the same objective
function is considered. In addition, past authors have
terminated their solvers after a set number of iterations
to allow a fair comparison with other methods. How-
ever, this can be a confusing measure of convergence as,
in the case of GAs, a global optimummay not have been
reached and in the case of SA, the cooling schedule may
limit the effectiveness of the method. Consequently, the
reader will note that there is no consensus over the
global optimum between any of the optimization meth-
ods. Nevertheless, it is important to place each solver
on an equal footing, and the number of function evalu-
ations will be used as a measure of this. Table 1 shows
information specific to each solver used in the study.

It should be noted here, that only past studies of this
problem using the methods discussed are compared in
this study. Other studies that treat this problem can be
found in [1,11,12,30,31] amongst others.

Yang and Kao [44] have provided an extensive study
on this problem analyzing designs with varying layer
number. The same approach was taken to generate data
for the ML approach following the strategy in [28].
A direct comparison of optima found by GA [44] and
ML methods is shown in Table 2 as a function of the
number of design layers. Here, GA was allowed 150,000
function evaluations before stopping, whereas ML was
allowed 5 hours, which, depending on the number lay-
ers, allows between 150,000 and 250,000 function eval-
uations. Both methods operate equally well, but, ML
tends to locate slightly better solutions at the expense
of optical thickness (this is equivalent the sum of the
layer thicknesses multiplied by the respective refractive
indices). This is to be expected due to the slightly larger
number of function evalualtions allowed for structures
with lower numbers of layers.

The trade-off between the optical thickness of a filter
and its reflectivity has been examined by Dombrowol-
sky et al. [13]. Based on a quasi-deterministic quadratic
approach [36] to the anti-reflection coating design, they
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Global Optimization of Planar Multilayered Dielectric Structures, Figure 2
(a) Positions of all local solutions found using ML approach for 17 and 20 layers in the 5 hour calculation time. (b) Compar-
ison of optimum solutions of GA [25], SA [6], ML [28] and optimum locus for this problem [13]. Note that for the GA and SA
algorithms, the maximum optical thickness of the filter is 32 µm, whereas, the ML algorithm has no upper limit. The top 10
solutions for the ML approach are shown

Global Optimization of Planar Multilayered Dielectric Struc-
tures, Figure 3
New results of the ML approach generated by varying the
number of layers from 15 to 30. Through post optimization
analysis, the top 50 results nearest the optical locus [13]were
identified

specify a locus merit function against optical thickness.
This represents a theoretical limit on optimality for
a given anti-reflection bandwidth. This can be tested in
this instance: Fig. 2a shows the locus of solutions for
merit function, F , against optical thickness using the
ML approach [28]. Here, dots represent the solutions

for the 17 layer structure and crosses, solutions of the
20 layer structure for the ML approach. It is clear that
all solutions appear on or above the optimal locus rep-
resented by the broken line. Note however, that the op-
timal locus does not guarantee that solutions should be
found on or near it. Figure 2b shows these results along-
side optical designs using GA [25] and SA [6]. Here, it is
important to note that the GA and SA approaches limit
the total optical thickness to 32 μm, whereas the ML al-
gorithm is free to locate solutions over a larger range.
Despite this, all methods appear comparable, with per-
haps the GA appearing superior over SA. The effective-
ness of the ML approach in identifying solutions near
the optimal locus can actually be assessed after opti-
mization.

An advantage of the ML approach is the ability to
perform post optimization analysis on local minima
making the optimization problem highly adaptive. This
is appealing because supplementary design criteria can
be taken into account without having to alter the ob-
jective function directly; the optimization is usually ex-
tremely sensitive to the form of the objective function.
This can be quite effective since ML generates between
100 and 200 local solutions in the 5 hour calculation
time, depending on the number of layers in a design.
For example, further analysis of the local optima in the
current example allows solutions near the optimal locus
to be identified. New results were generated using the
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same approach as in [28] for designs ranging in layer
number from 15–30. The top 50 solutions nearest the
optimal locus were then filtered out from the complete
set and are plotted in Fig. 3. Clearly, solutions very close
to the optimal locus highlight the effectiveness of ML.
However, the reduced number of function evaluations
for structures with larger numbers of periods limits the
effectiveness of the search. It is also interesting to note,
that this analysis identifies gaps along the optimal locus.
This suggests that, in some cases, extra layers are redun-
dant when seeking to optimize both layer thickness and
merit function.

Conclusions

The design of multi-layered dielectric optical struc-
tures can be formulated as a highly nonlinear optimiza-
tion problem in which the thickness and refractive in-
dex of each layer is to be optimized, based on an ap-
propriate objective function. This problem is known
to have a large number of local minima, and several
global optimization algorithm have been proposed to
tackle it. These algorithms are mostly stochastic search
algorithms (Simulated Annealing, Genetic Algorithms
and Memetic Algorithms) or deterministic algorithms
with a probabilistic guarantee of convergence (Multi-
Level Algorithm). A deterministic approach with guar-
anteed global optimality has also been proposed based
on an approximation of the design problem. The per-
formance of several of these algorithms has been com-
pared for a specific problem.

Future work on this design problem must continue
to address the challenges posed by the large number of
local optima which exist. The design formulation can
also be extended to include the number of layers as one
of the design variables. An early and encouraging effort
in this direction is the needle optimization algorithm.
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Introduction

The multiple-minima problem, i. e., the large number
of minima associated with the potential functions used
to represent the conformational energy of a polypep-
tide chain, is one of the greatest obstacles to overcome
in order to compute the three-dimensional structure
of a protein. Despite much effort and a large num-
ber of interesting ideas and approaches, progress to-
ward the solution of this problem has been very slow.
An exhaustive search of the conformational hyper-
surface of a large polypeptide is not computationally
feasible even with today’s supercomputers. Originally,
the challenge was to locate the global energy mini-
mum of small oligopeptides such as the pentapeptide
Metenkephalin [1,17,20,26,45,46,48,55,57,58,59,72,73,
79,91].

Since the global minimum of a potential function
for a specific sequence is not known a priori, the only
possibility of locating the global minimum of the po-
tential energy is to carry out a large number of inde-
pendent tests and determine if there is convergence to
a unique conformation. This approach has been used in
the test studies ofMet-enkephalin in which hundreds of
independent runs using different techniques have led to
a unique lowest energy conformation, shown in Fig. 1,
for the Empirical Conformational Energy Program
for Peptides (ECEPP/2 [44,50,89], and ECEPP/3 [49])

Global Optimization in Protein Folding, Figure 1
Lowest-energy conformation of Metenkephalin using the
ECEPP/2 force field [27]

potential energy functions. Similar results have been
achieved for other test cases corresponding to larger se-
quences [1,23,39,56,62,77,78,80,81,94]. More recently,
we have focused our efforts on the development of
searching techniques that combine molecular dynam-
ics with a coarse-grained representation of the protein
structure. This approach to the protein folding prob-
lem is more rigorous since it accounts for entropic con-
tributions and, on the other hand, is computationally
more advantageous due to the simplified treatment of
the complexities of the amino acid geometry. Our lab-
oratory has made considerable progress in this area of
research during the past few years, and we present a de-
scription of some of the successful methods that we
have developed.

The Build-up Procedure

While systematic and exhaustive enumeration of all
possible conformations is not practically feasible for
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polypeptides and proteins, attempts have been made to
develop algorithms that lead to a truncated systematic
search of the conformational space of these molecules.
One of these methods, developed in our laboratory,
the build-up procedure, [9,71,85,86,88,91] assumes that
short-range interactions play a dominant role in deter-
mining the conformation of a polypeptide chain. Thus,
the method starts by locating the low-energy confor-
mations of small fragments of the chain by an exhaus-
tive energy minimization procedure. Then, a selection
of the minima is carried out, keeping those that lie
within an appropriate chosen upper bound (the cutoff
energy) of the lowest-energy fragment. Subsequently,
the limited set of minima for one fragment is combined
with the set of another fragment to form larger peptides
which are also subjected to energy-minimization. This
process is repeated until the whole chain is eventually
built up from its constituent parts. At successive stages
of the algorithm, more and more long-range interac-
tions come into play.

Outline of the Procedure

1. The smallest fragment that the build-up procedure
uses to construct a polypeptide conformation is the
single amino acid. The ECEPP/2 minimum-energy
conformations of terminally blocked single residues
were reported by M. Vásquez, G. Némethy and H.A.
Scheraga [90]. The conformations were ordered by
increasing energy using a cutoff energy of 5 kcal/mol
and were classified according to the code defined
by S.S. Zimmerman, M.S. Pottle, G. Némethy and
H.A. Scheraga [98]. The ECEPP/3 force field pro-
duces the same energy minima for all blocked amino
acids with the exception of the proline and hydrox-
yproline residues.

2. All possible dipeptides for a given molecule are gen-
erated from single-residue data (for a peptide with
n residues there are n�1 dipeptides). After energy-
minimization, the dipeptides are sorted and are used
to construct tripeptides.

3. Subsequent steps to form larger fragments of the
polypeptide chain involve joining two fragments
with one or more residues in common, e. g. after
generating conformations for the tripeptides, these
can be used to construct tetrapeptides from two
tripeptides having two residues in common. This

process is continued until the whole polypeptide
chain is built.

Drawbacks of the Procedure

One of the major difficulties of the build-up proce-
dure is that the number of conformations of fragments
that must be energy-minimized and stored at each step
increases exponentially. A partial solution, aside from
using an energy cut-off, is to retain only those min-
ima whose backbone conformations differ significantly:
e. g. when several local minima have almost identical
backbone but different side-chain conformations, only
the lowest-energy minimum is kept while the degen-
erate ones are discarded. This approach drastically re-
duces the number of conformations to be stored at each
stage of the procedure; however, it may lead to prob-
lems at later stages because the side-chain rotamers that
are most favorable energetically in smaller fragments
are not necessarily favored in the whole polypeptide
chain. Another difficulty associated with the procedure
is that atomic overlaps can occur when two fragments
are joined in an arbitrary manner. These overlaps lead
to conformations with extremely high energy for which
minimization is usually not computationally feasible.
A set of algorithms designed to surmount these prob-
lems was presented by K.D. Gibson and H.A. Scher-
aga [9].

Applications

The build-up procedure has been used extensively in
a number of studies of different molecules, among them
Metenkephalin [91], Gramicidin S [6,51], Melittin [71],
bovine pancreatic trypsin inhibitor [92,93] and colla-
gen [41,42,43]. The method appears to work well for
small oligopeptides and fibrous proteins but, except in
a few cases, its application to larger molecules becomes
unmanageable for polypeptide chains containing 10 or
more amino acid residues.

The Self Consistent Electrostatic FieldMethod

Among all the interactions that lead to protein folding,
electrostatic interactions are the only ones character-
ized as long-range. Therefore, they undoubtedly must
play an important role in folding. The dominant effects
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of electrostatic interactions in proteins are well recog-
nized [60]. Among these effects, it is worth mentioning:
� The orientation of the CO and NH dipoles in ˛-he-

lices are very favorable electrostatically [95] leading
to a large dipole moment associated with this type of
secondary structure.

� The electric field produced by an ˛-helix constitutes
a very important stabilizing factor of the native con-
formations of proteins containing this type of sec-
ondary structure [11].

� The relative orientations of ˛-helices and ˇ-sheets
in proteins are favorable electrostatically [4,12,25].

Based on this evidence, L. Piela and H.A. Scher-
aga [62], hypothesized that that the native conforma-
tion of a protein arises when the electrostatic interac-
tions are near optimal, or equivalently, that the native
conformation must have approximately optimal orien-
tations of its group dipoles in the electric field gener-
ated by the whole molecule and its surrounding solvent.
Based on this assumption (which was later confirmed
through rigorous calculations on an extensive set of
proteins [82]), a conformational search method, named
the Self-Consistent Electric Field (SCEF) method, was
developed. The SCEF procedure was implemented as
follows:
1. Given an arbitrary starting conformation of the

molecule, minimize the total (e. g. ECEPP/3) confor-
mational energy to reach the nearest local minimum.

2. For this minimized conformation, the electric field
due to the whole molecule is calculated at each CO
and NH group of the peptide units, and also in the
middle of the C0-N peptide bond.

3. The direction of the electric field with respect to the
CO and NH bond dipole moments provides infor-
mation as to which peptide units are badly oriented.
This electrostatic analysis of the alignment between
the permanent dipoles and the electric field, is used
to generate a diagnostic rotation. The diagnostic ro-
tation is the variation that must be applied to a given
torsional angle to obtain the best alignment of the
worst oriented peptide-unit dipoles with respect to
the electric field, e. g., if the electrostatic analysis in-
dicates that the dipole moment of the peptide bond
between residues i and i+1 is the worst oriented, the
diagnostic rotation will describe a change of the cor-
responding backbone dihedral angles  i and �iC1

required to align the dipole moment of the unit.

4. Carry out the diagnostic rotation.
5. Use the new conformation of the molecule as the

starting point in step 1:
� if a new local minimum is reached, then repeat

the procedure from step 2 for the new local min-
imum;

� if the same local minimum is found, then step 3
must be repeated, but using the diagnostic rota-
tion for the next worst-oriented dipole.

6. Steps 1–5 are repeated until self-consistency is
achieved, i. e., until further application of the pro-
cedure does not change the conformation of the
molecule.

Computation of the Electric Field
and Dipole Moments

If r represents the position vector assigned to the dipole
moment i of a group of atoms, then the electric field,
E(r), is computed as:

E(r) D (1 /� )
X
k

0
qk(r � rk)

ı
jr � rk j3 (1)

where � is the dielectric constant, qk indicates the
charge on atom k with position vector rk and the prime
in the summation sign indicates that the atoms which
contribute to the ith dipole moment as well as those
other atoms covalently bonded to them should be ex-
cluded from the computation.

The electric field is computed at three points, ri, CO,
ri, NH, and ri. These are reference points with respect
to which the dipole moments of the CO bond, �CO

i ,
the NH bond, �NH

i , and the whole ith peptide unit, �i ,
respectively, are calculated. These dipole moments are
computed according to the following relations:

�CO
i D qC(r i;C � r i;CO)C qO(r i;O � r i;CO) (2)

�NH
i D qN(r i;N � r i;NH)C qH(r i;H � r i;NH) (3)

�i D qC(r i;C � r i)C qO(r i;O � r i)

C qN(r i;N � r i)C qH(r i;H � r i ) (4)

ri, CO, ri, NH, and ri are chosen so that the bond
quadrupole moments of the CO and NH bonds, QCO,
QNH, respectively, vanish, i. e., the three points satisfy
the following relations:

QCO D qC jr i;C � r i;COj2C qO jr i;O � r i;COj2 D 0 (5)
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QNH D qN jr i;N� r i;NHj2CqHjr i;H� r i;NHj2 D 0 (6)

and,

r i D (r i;C � r i;N)/2 : (7)

Degree of Alignment of a Dipole Moment
with the Electric Field

The process of aligning a particular dipole moment, �X
i

(with X being CO or NH), with the electric field can be
accomplished by rotations of the backbone dihedral an-
gles  i, and �iC1 (see Fig. 2). When such a rotation is
carried out, only the electric field components perpen-
dicular to the rotation axis will change:

E?k(r i;CO) D E(r i;CO) � [E(r i;CO) � e i;k]e i;k (8)

E?k(r i;NH) D E(r i;NH) � [E(r i;NH) � e i;k]e i;k (9)

where ei, k for k D 1; 2 denotes the unit vector along
the axes of rotation,  i, and �iC1, respectively. Further-
more, in writing these equations it was assumed that the
points ri, CO and ri, NH are sufficiently close to the rota-
tion axis.

Global Optimization in Protein Folding, Figure 2
SCEF peptide unit i with the atomic charges used in the
ECEPP force field

The energy, E, of a dipole in an electric field is
a given by:

E D �� � E : (10)

Assuming that the electric field in the neighborhood
of the ith peptide group is relatively uniform, a lower
bound for the energy gain due to a rotation is repre-
sented by:

�Ei D �ECO
i C�ENH

i (11)

where the individual energy gains, �ECO
i (< 0) and

�ENH
i (< 0), to align the dipole and the field vectors are,

�EX
i D �j�

X
i;?kj jE?k(r i;X)j C

�
�X

i;?k � E?k(r i;X)
�

(12)

with

�X
i;?k D �

X
i � (�X

i � e i;k)e i;k : (13)

The value of�Ei given by Eq. (11) is used as a measure
of the deviation from perfect alignment in the electric
field of the ith peptide unit.

Best-possible Alignment of a Dipole Moment
with the Electric Field

From an analysis of the �Eis, it is possible to detect
which peptide unit is the most unfavorably oriented in
the electric field. The SCEF method provides a mech-
anism to compute the rotation that should lead to an
improved orientation of this peptide unit with respect
to the electric field. To accomplish this, the electric
field E(r i ) at the ith peptide unit can be viewed as the
sum of two contributions generated by the portions
of the polypeptide chain on both sides of the ith unit:
(a) EN (r i ) generated by the part of the molecule con-
taining theN-terminus; and (b)EC (r i ) generated by the
part of the molecule containing the C-terminus,

E(r i) D EN(r i)C EC (r i ) : (14)

The components of �i, EN (r i ) and EC (r i ) paral-
lel to an axis of rotation do not change with rotations
about this axis. On the other hand, the perpendicular
components of these vectors with respect to a given
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axis, say ei, k, do change with rotations about the axis
and they are given by:

�i;?k D �i � e i;k(�i � e i;k) (15)

EN;?k(r i ) D EN (r i ) � e i;k
�
EN (r i ) � e i;k

�
(16)

EC;?k(r i ) D EC (r i ) � e i;k
�
EC (r i) � e i;k

�
: (17)

If �i;?k does not lie along E?k D EN;?k C EC;?k ,
perfect alignment between the vectors can be obtained
by a single rotation about ei, k. For k= 1, a rotation about
the  i axis produces a change of EN;?1 to E0N;?1. Sim-
ilarly for k D 2, a rotation about the �iC1 axis leads
to a change of EC;?2 to E0C;?2. Therefore, alignment is
achieved if either one of the following equations is sat-
isfied: for k D 1 ( i axis),

�i;?1�(E0N;?1CEC;?1) D j�i;?1j jE0N;?1CEC;?1j (18)

for k D 2 (�iC1 axis),

�i;?2�(EN;?2CE0C;?2) D j�i;?2j jEN;?2CE0C;?2j: (19)

From geometrical considerations (see Fig. 3), the so-
lution of Eq. (18) (similarly for Eq. (19)) is found to sat-
isfy the relation:

j˛j D arccos(c/b) (20)

where b D jEN;?1j, c D d1/2 with d D b2 � a2 sin2 �C ,
a D jEC;?1j, and �C is the angle between EC;?1 and
�i;?1. Equation (20) has various numbers of solutions.
If they exist, these solutions correspond to rotations of

Global Optimization in Protein Folding, Figure 3
SCEF: solution of alignment Eq. (18)

the dipole moment �i;?1 with different energies. The
value leading to the lowest energy represents the solu-
tion to the alignment Eq. (18). This rotation of  i leads
to an energy gain given by,

�Ei;N D ��i;?1 � (E0N;?1 � EN;?1) : (21)

Expressions similar to Eq. (20) and (21) have been
derived for the rotation around the �iC1 axis (k D 2)
and for the corresponding energy gain, �Ei;C .

It should be mentioned that, in reality, the solution
given by Eq. (20) produces an approximate alignment
of �i;?1 with the corresponding electric field compo-
nent. The reason is that the derivation of these equa-
tions was based on the assumptions that (a) the center
of the peptide unit is on the  i axis of rotation, and
(b) the electric field is homogeneous. While, in reality,
these conditions are not satisfied, the results obtained
from these expressions are reasonably accurate [62].

Finally, after both rotations about the  i and �iC1

axis have been computed, the SCEF method has to
decide which rotation should be implemented. The
method selects the rotation associated with the more
negative energy gain (�Ei;N or �Ei;C). In those cases
where no solution is found for  i and �iC1, another
unfavorable peptide unit is chosen.

Applications

The procedure was tested on a 19-residue poly(L-ala-
nine) chain [62] with acetyl-and N-methyl amide ter-
minal blocking groups. The starting conformations
were a series of partially ˛-helical conformations repre-
senting different degrees of distortion from the canon-
ical right-handed ˛-helix. The right-handed ˛-helical
conformation corresponds to the global energy mini-
mum of the ECEPP/2 (and ECEPP/3) potential func-
tion. In the four cases reported, the procedure was
able to achieve the conformation corresponding to the
global energy minimum in a very short computation
time.

Figure 4a shows the starting conformation of one of
the tests. The conformation contains only 1.5 ˛-helical
turns at each terminus and 70.6% of the native hydro-
gen bonds are broken. In subsequent iterations of the
SCEF procedure, the right-handed ˛-helix shown at the
bottom of Fig. 4b, was completely recovered.
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Global Optimization in Protein Folding, Figure 4
SCEF method: application to poly(L-alanine)

The SCEF procedure was also used [76] in a re-
strictive search of the conformational space of the
58-residue protein bovine pancreatic trypsin inhibitor
(BPTI). In this application, the algorithm led to a series

of conformations with up to 50 kcal/mol lower than the
starting conformation.

TheMonte Carlo-MinimizationMethod

The Monte Carlo-Minimization (MCM) [26], [27]
method developed by Z. Li and H.A. Scheraga was mo-
tivated by experimental studies indicating that proteins
are not static structures but instead undergo fluctua-
tions. For a protein to be stable, its native conformation
must be stable not only to small perturbations but also
against larger-scale thermal fluctuations. Based on these
considerations, Li and Scheraga developed a stochastic
approach for global optimization of polypeptides and
proteins that combines the power of the Metropolis
Monte Carlo method [40] in global combinatorial opti-
mization and that of conventional energy minimization
to find local minima. The underlying working hypoth-
esis of the method is that protein folding can be consid-
ered as aMarkov process, with (a) Boltzmann transition
probabilities, and (b) this Markov process should lead
to a unique absorbing state [3] that corresponds to the
native state for a natural biologically active protein. For
this absorbing state, equilibrium is reached after a suf-
ficiently long time and the stationary probability of oc-
currence approaches unity.

The Metropolis Monte Carlo method can simulate
the thermal processes, by taking into account both ran-
dom fluctuations and energetic considerations. How-
ever, straightforward applications of the Metropolis
Monte Carlo method to polypeptides has proven to be
quite inefficient [10,57,74] mainly because (a) a high-
dimensional conformational space has to be sampled
by making small increments of the variables in each
step, and (b) The large energy barriers in the confor-
mational space tend to confine the sampling to a very
restrictive region of the space. To overcome these diffi-
culties, theMCMmethod includes conventional energy
minimization as a second important feature. Thus, the
MCM method generates a Markov walk on the hyper-
lattice of all discrete energy minima, with Boltzmann
transition probabilities.

The procedure implemented in theMCM algorithm
is as follows:
� Given an energy-minimized conformation, Cmin

curr,
with total energy Emin

curr, a Monte Carlo sampling
strategy is used to generate a perturbed conforma-
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Global Optimization in Protein Folding, Figure 5
	� maps for the five residues of Metenkephalin showing the backbone dihedral angles of 18 random starting conforma-
tions (indicated by the numbers 1 to 18) for theMCMmethod. The backbonedihedral angles of the globalminimumachieved
by the MCMmethod in all the runs (see Fig. 1) are indicated by 0

tion Cpert. The sampling strategy consists of ran-
dom changes, involving k dihedral angles of the to-
tal number Ndieh used to described the molecule.
The number of changes are generated with prob-
abilities 2�k (k D 1; 2; : : : ;Ndieh). This probability
selection implies that fluctuations involving more
degrees of freedom are sampled with successively
lower probabilities. This sampling strategy satisfies
the ergodicity requirements, i. e., any local mini-
mum is accessible from any other one after a finite
number of random sampling steps. Furthermore,
in order to improve the average acceptance ratio,
random changes involving backbone dihedral an-
gles are sampled more frequently than those of side
chains. This type of sampling strategy led to an av-
erage acceptance ratio of approximately 20% at 0°C
for Metenkephalin.

� The randomly generated conformation, Cpert, is
then subjected to conventional energy minimization
until it reaches the nearest local minimum of the

potential energy function (ECEPP/2 or ECEPP/3).
Minimization of the energy is carried out with
the Secant Unconstrained Minimization Solver
(SUMSL) algorithm [8]. The resulting conforma-
tion, Cmin

pert , has a total energy Emin
pert and is usually free

of atomic overlaps.
� The energies of the conformations Cmin

pert and Cmin
curr

are compared, and the Metropolis criterion is used
to decide which conformation is to be kept, i. e.,
if the energy difference �E D Emin

pert � Emin
curr < 0, or

(when �E > 0) if e��E/RT is greater than a ran-
domly generated number between 0 and 1, the new
conformation, Cmin

pert replaces the current Cmin
curr; oth-

erwise, Cmin
pert is discarded.

Applications

The MCM procedure was successfully applied to study
the conformational preference of the pentapeptide
Metenkephalin [26,27]. In its initial application [26], 13
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of 18 random starting conformations of this oligopep-
tide converged to the global minimum, shown in Fig. 1,
within the time of the simulations. Using a different
sampling strategy [27], the 5 remaining runs also con-
verged to the same lowest energy structure. Figure 5
shows the values of the backbone dihedral angles, � and
 for the 18 starting conformations.

As a further development, we extended the concept
of MCM to include biasing the perturbations to elec-
trostatic interaction, giving the Electrostatically Driven
Monte Carlo (EDMC) method, which is described in
the next section. More recently, we took advantage
of grouping the conformations obtained in the search
into families which are updated on the fly and, using
the properties of the families in the subsequent steps
of the search, this resulted in the conformation-family
Monte Carlo (CFMC)method [65]. The CFMCmethod
was used to search the conformational space of the
B-domain of staphylococcal protein A in the united-
residue representation [65] and for crystal structure
prediction of small molecules [63].

The Electrostatically Driven
Monte CarloMethod

The Electrostatically Driven Monte Carlo (EDMC)
method, introduced by D.R. Ripoll and H.A. Scher-
aga, is a procedure for iteratively searching the confor-
mational hypersurface of relatively small polypeptide
molecules. The EDMC method incorporates the best
features of the SCEF and MCMmethods and combines
them with a set of new techniques to produce a more
efficient search of the conformational space.

The search for the the global energy minimum of
a molecule proceeds as a “quasi-random walk” along
a conformational pathway. As with the MCM method,
this pathway is defined, in principle, by an infinite se-
quence of energy-minimized conformations encoun-
tered over an unbounded number of iterative steps of
the algorithm. In practice, however, a finite number of
iterations is specified for a given run. The underlying
assumption behind the EDMC method is that (a) the
electrostatic interactions should lead to conformations
representing an improvement of the charge distribu-
tion, i. e. the new conformations are expected to have
lower electrostatic and total energies; and (b) thermal
fluctuations, on the other hand, are expected to intro-

duce disorder within the molecule. These thermal ef-
fects could force the molecule to adopt conformations
that are higher in energy, but may allow it to escape
from stable local minima of relatively high energy.

The implementation of these ideas is accomplished
as follows: Thermal effects are associated with random
changes in the molecular conformation, i. e. a small
set of randomly-chosen variables was altered randomly.
On the other hand, the reordering effect of the elec-
trostatic interactions was viewed as a tendency of all
permanent dipole moments associated with the pep-
tide units of the polypeptide, to attain their best possi-
ble alignment in the local electric field produced by the
rest of the molecule. Additionally, a series of new fea-
tures [77], included in the latest implementation of the
EDMCmethod, has helped to accelerate the search and
to optimize the process of generation of new conforma-
tions.

The Procedure

The first accepted conformation on the conformational
pathway followed by the EDMC method is usually an
unfolded state of the polypeptide chain (i. e. the initial
values of the variables describing the molecular confor-
mation are assigned randomly); its energy is minimized
to relieve possible atomic overlaps. The subsequent ac-
cepted conformations are obtained by a variety of tech-
niques described below. An iteration of the procedure
is defined as a set of manipulations of the currently ac-
cepted conformation that leads to its replacement by
a newly generated conformation.

The strategy used to produce new conformations
within an iteration of the method is based upon a com-
bination of movements associated with the electrostatic
interactions and thermal motion.
(a) An important technique that the EDMC method

uses to generate new conformations is based on an
electrostatic analysis similar to that produced by
the SCEF method [62], but extended to consider
the permanent dipole moments of polar side-
chains. As a first step of an iteration, this electro-
static analysis of the currently accepted conforma-
tion (the initial energy–minimized conformation
or the accepted conformation from the previous it-
eration) is carried out to determine the alignment
of the permanent dipoles with the local electric
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field produced by the whole molecule. As a result,
diagnostic rotations that could improve the local
dipole alignments with the electric field are pro-
duced for all permanent dipole moments. These di-
agnostic rotations are incorporated into a predic-
tion list of possible conformational changes. The
information contained in this list is used to gener-
ate new conformations in a subsequent search for
states of lower energy.

(b) Since it may happen that none of these predic-
tions leads to an acceptable conformation, a ran-
dom and/or biased sampling technique is also used
to generate additional conformations. The follow-
ing procedure is followed:
1. Specification of the mode in which the variable

dihedral angles of the selected residues are to be
altered:
i) Select all variables at random;
ii) Select the backbone variables randomly

within specific regions of the � �  map;
iii) Select all variables from pre-computed

low-energy conformations of the tri-pep-
tides included in the sequence;

iv) Select backbone variables compatible with
regular structures ˇ-sheets or ˛-helices).

2. Random selection of i) the number of residues
to be affected by the changes, and ii) their po-
sitions in the sequence.

The latest implementation of the algorithm [77] in-
cludes a technique to produce a cluster analysis of the
accepted minima. The conformations are grouped into
clusters using rms distance criteria and ranked on the
basis of their total energies. Furthermore, every gener-
ated conformation, even if rejected, is associated with
an existing cluster or family, but added to it only if its
energy is lower than the one corresponding to the best
member of that family.During an iteration, randomly
generated conformations can also be produced by per-
turbing low-energy conformations included in any of
the clusters (except the one containing the current ac-
ceptedminima) using the protocol described in item (b)
above.

A conformation generated by any of these two pro-
cedures (a or b) is subjected to minimization of the to-
tal energy where the backbone and side-chain dihedral
angles of the molecule are considered as variables. The
energy-minimization procedure is carried out with the

SUMSL algorithm [8]. The value of the potential en-
ergy constitutes the basis for either the acceptance or
rejection of the new minimum-energy conformation.
A newly generated conformation must fulfill two cri-
teria to be accepted:
1. If a generated conformation is found to correspond

to an accepted minimum that has already been
encountered more than a pre-defined number of
times (usually 5–10), then it is automatically ex-
cluded from further consideration. This analysis of
the long–term behavior of the search provides one
of the criteria to ensure that the search does not be-
come trapped in a set of local minima of the confor-
mational space.

2. If a conformation satisfies the previous condition, its
energy Enew is compared with the energy, Ecurr, of the
current accepted conformation, and the Metropolis
criterion [40], as described for the MCM method, is
applied.
When the energy of the new conformation passes

both tests successfully, the conformation is accepted,
replacing the current one, and a new iteration begins.

Backtrack

The number of conformations generated within a given
iteration is limited (usually 100 to 200 conformations).
It may happen that neither the set of electrostatic pre-
dictions, nor the set of randomly generated confor-
mations produces an acceptable conformation. Under
these circumstances, the algorithm then assumes that
the current local minimum is quite stable and a new
procedure named backtrack is triggered. The backtrack
procedure attempts to displace the search to a differ-
ent region of the conformational hypersurface by sub-
stantially altering the processes of generation and ac-
ceptance of conformations.

The backtrack procedure involves the following:
a) A new set of conformations is generated by chang-

ing a large number of variables simultaneously. In
particular, the procedure tends to select the vari-
ables associated mainly with the backbone of the
polypeptide chain; and,

b) the temperature parameter, T, used in the Metropo-
lis acceptance criterion is (i) raised abruptly to a very
high value, or (ii) steadily increased by means of
a pre-defined heating scheme.
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The backtrack procedure is applied until the ac-
ceptance test is satisfied, or until the number of gen-
erated conformations reaches a predetermined maxi-
mum value. In the rare event that the latter situation
occurs, the run is terminated since it is assumed that it
is practically impossible to escape from the current re-
gion of the conformational space. On the other hand,
when a conformation from the backtrack procedure is
accepted, the temperature parameter is reset to its origi-
nal user-specified value, and the generation mechanism
is switched back to the standard protocol described
above.

The objective of the modified generation procedure
during backtrack is to produce conformations substan-
tially different from the current minima, while rais-
ing the temperature has the effect of increasing the
probability of acceptance of conformations with ener-
gies much higher than the current local minimum. The
backtrack mechanism has been shown to be an effective
technique to help the search avoid being trapped in sta-
ble, high-energy regions of the conformational space.

The EDMC method has some similarities with sim-
ulating annealing, proposed by S. Kirkpatrick, C.D.
Gelatt and M.P. Vecchi [15], since both make use of
high temperatures to surmount large energy barriers.
The difference is that the EDMC procedure concen-
trates the search in the low-energy regions of the con-
formational space using energy minimization and a low
temperature value. High temperatures are used rarely
during backtrack to escape from stable or already vis-
ited regions. Once this is accomplished, the tempera-
ture parameter is reset to its initial (low) value. A search
using simulated annealing, on the other hand, starts
with a high temperature value and this parameter is
gradually reduced during the simulation. The expecta-
tion is that, given a sufficiently high initial temperature
and a good annealing schedule, the search will over-
come large energy barriers and will become localized
in the low-energy region containing the global mini-
mum.

Applications

The multiple-minima problem has been found to be
computationally tractable by the EDMCmethod on ex-
isting computers for polypeptides sequences consisting
of up to 20 amino acid residues.

Global Optimization in Protein Folding, Figure 6
Lowest-energy conformation of the membrane-bound por-
tion of melittin for the ECEPP/3 force field determined by
the Conformational Space Annealing [23] and the EDMC [77]
methods

In applications to Metenkephalin [79], oxy-
tocin [39], arginine-vasopressin [39], decaglycine [80],
a 19-residue chain of poly(L-alanine) [78], and the
20-residue membrane-bound portion of melittin [77]
(see Fig. 6), the EDMC algorithm converged to unique
conformations presumed to be the global energy min-
ima for those particular sequences.

In other applications, to a seven-residue pep-
tide epitope [75], and a twelve-residue analogue of
mastoparan and mastoparan X [7], the method identi-
fied very low-energy conformations, but it is not certain
that the global energy minima were attained in these
cases.

Lately, the EDMC method has been applied to the
36-residue villin headpiece subdomain [81], and the
45-residue fragment B-domain of staphylococcal pro-
tein A [94]. In both applications, unrestricted global
searches that started from randomly generated confor-
mations encountered in their paths low-energy basins
that included native-like conformations. To our knowl-
edge, the application to the B-domain of staphylococ-
cal protein A was, at the time, the first all-atom sim-
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ulation in which such a large protein was ever folded
from random initial conformations without resort to
knowledge-based information.

The EDMC method has also been used in restric-
tive searches of the conformational space of larger
molecules. In an application to the 58-residue protein
BPTI [76], the algorithm produced the lowest energy
conformation known for BPTI using the ECEPP/2 or
ECEPP/3 potential. In addition, the EDMCmethod has
also been used to search the conformational properties
of a non-oncogenic p21 protein [30] and a molecular
switch designed as a biological logic gate [2].

The Diffusion Equation Method
and OtherMethods Based on the Deformation
of the Potential-Energy Surface

The diffusion equation method (DEM) is a determinis-
tic approach that attempts to solve the multiple-min-
ima problem by deforming the potential energy hyper-
surface. The basic idea of the method, introduced by
Piela et al.[61], is to deform the multivariable func-
tion that represents the potential energy in such a man-
ner as to make the shallow wells disappear gradually,
while other potential wells grow at their expense. Un-
der the assumption that the shallower wells will dis-
appear more easily than the deep wells, it is possi-
ble to envision an iterative procedure that, applied to
the potential function, will change its shape, making
most of the minima become shallower until they dis-
appear, while leaving a single absorbing minimum re-
lated to the lowest minimum of the original function.
At this point of the deformation process, a simple lo-
cal minimization algorithm should be able to retrieve
the position of the unique minimum from any starting
point. However, since the deformation of the poten-
tial should likely have altered the location of all min-
ima, the global minimum of the original function is
not the same as the minimum of the deformed surface.
Its location can, in principle, be attained by slowly re-
versing the deformation and using standard local min-
imization procedures. Piela et al. showed that the de-
formation of the hypersurface can be carried out with
the aid of the diffusion equation. In this context, the
original shape of the potential function has the mean-
ing of an initial concentration (or temperature) distri-
bution.

The diffusion equation method which must be
solved to obtain a deformed potential-energy surface is
given by Eq. (22).

r2F(x1; x2; : : : ; xn ; t) D
@F(x1; x2; : : : ; xn ; t)

@t
(22)

where x1; x2; : : : ; xn are variables describing the con-
formation of a molecule, r2 D

�
@2/@x21 ; @2/@x22 ; : : : ;

@2/@x2n
�
is the Laplacian operator, the variable t rep-

resents time and can be identified with the extent of
deformation, and F is the deformed potential-energy
function. Additionally, Eq. (22) is solved with the ini-
tial condition F(x1; x2; : : : ; xn ; 0) D f (x1; x2; : : : ; xn),
where f (x1; x2; : : : ; xn) is the original (undeformed)
potential-energy function. The function F usually rep-
resents a concentration or a temperature distribution.
If the function f (x1; x2; : : : ; xn) is bounded, a solution
of Eq. (22) exists for any positive value of t.

The procedure described above represents a spon-
taneous mass transport (or flow of heat) in a medium
for an initial distribution of concentration (or temper-
ature) given by the function f (x1; x2; : : : ; xn) (which in
our case represents the conformational energy). Gov-
erned by the diffusion equation and independent of the
initial conditions, the concentration (or temperature),
will evolve with time in such a manner that it will be-
come constant for t D1. However, it is expected that
the concentration (or temperature) will exhibit a sin-
gle minimum for certain (very large) values of t. This
single minimum should represent the last trace of the
potential well corresponding to the global minimum of
the original hypersurface f (x1; x2; : : : ; xn). The defor-
mation and its subsequent reversal to retrieve the posi-
tion of the original minimum is illustrated in Fig. 7.

Application of the DEM consists of the following
steps:
� Solve Eq. (22) using F(x; 0) D f (x) as the initial

condition or apply the operator T(t) for a suffi-
ciently large value of t (t0); then, use a local min-
imization to locate the position x�t0 of the unique
minimum on the deformed surface. This is the start-
ing point to be used in the reversing procedure.

� Apply the reversing procedure described above.
� For a reversing procedure involving m steps, the

position x�0 obtained by minimizing F(x�t0�(m�1)�t ;

t0 D 0) should correspond, hopefully, to the posi-
tion of the global minimum of the function f .
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Global Optimization in Protein Folding, Figure 7
TheDEMmethod: Illustration of the deformation of the origi-
nal potential f (x) D x4 C 2x3 C 0:9x2 by the operator T(t) D
exp

�
td2/dx2

�
, and of the reversing procedure. The deforma-

tion applied by the operator T(t0 D 0:25) leads to a curve
with a unique minimum that is achievable from any point of
the space with a simple minimization. The reversing proce-
dure is shown by the arrows directed downward. Each step
of the reversing procedure is followed by minimization sym-
bolized in the figure by aball movingdownhill from themin-
imum position of the upper curve and always reaching the
position of theminimum in the lower curve. In the final step,
the global minimum of the original function is found

Among other applications, the DEM has been applied
to:
� A cluster of 55 Lennard-Jones atoms for which the

global minimum was found [16].
� A single terminally blocked alanine [17].
� The pentapeptide Met-enkephalin [17] for which

the method led to practically the same global-min-
imum backbone structure obtained by other meth-
ods. The test, however, was carried out under more
restrictive conditions since only the backbone dihe-
dral angles � and  were considered as variables.

� Prediction of the crystal structures of hexasulfur and
benzene molecules [96,97].

Although the DEM method is, in theory, a determin-
istic approach, we found [96,97] that it must be com-
bined with aMonte Carlo search to work formore com-

plex systems. When the potential-energy surface is de-
formed to contain just a single minimum, it is so flat
that, to the numerical accuracy, it is effectively constant.
Thus, deformation cannot be carried out to leave only
one minimum. Moreover, the position of a minimum
on a highly deformed surface is too far from that on
the original energy surface. During the process of re-
versal, the single minimum splits into multiple minima
and it is not clear which one of those should be chosen
to continue the reversal. In our successful application
to crystal-structure prediction [96,97] we, therefore, in-
troduced the MCM search both on the deformed po-
tential-energy surface and during reversal.

Taking advantage of the concept of the deforma-
tion of potential-energy surfaces, we developed sev-
eral other methods for the search of the global mini-
mum of the energy of polypeptide and proteins. The
distance scaling method (DSM) [70] developed by J.
Pillardy and L. Piela, (as well as its predecessor, the
shift method (SM) [68]) attempts to solve the mul-
tiple-minima problem using transformations of the
atom–atom distances that lead to smoothing of the
potential energy hypersurface. These methods have
subsequently evolved into the Self-Consistent Basin-
to-Deformed-Basin Mapping (SCBDBM) method, in
which the coupling between the basin containing the
global energy minimum to the corresponding basin in
the deformed potential-energy surface is established.
The SCBDBM involves some Monte Carlo search on
the deformed potential-energy surface and during the
process of reversal. All three methods have been ap-
plied successfully to clusters of argon atoms and water
molecules [67,68,69,70] and to the prediction of crys-
tal structures [97]. The SCBDBM method was also ap-
plied [66] in searches for low-energy minima of poly-
L-ananine chains of up to 100 amino-acid residues in
length and the 10–55 fragment of the B-domain of
staphylococcal protein A using a united-residue rep-
resentation of the polypeptide chain. As opposed to
DEM, the SM, DSM, and SCBDBM approaches, al-
though not so elegant from the theoretical point of
view, involve simple transformations of the potential-
energy surface and are, therefore, much better for prac-
tical use than DEM, which requires solving a parabolic
differential equation in multiple dimensions and with
complicated boundary conditions, which is a highly
non-trivial task.
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Another approach related to deformation of the
potential-energy surface has been developed by K.A.
Olszewski, L. Piela and H.A. Scheraga [55] and
termed Self-Consistent Mean Torsional Field (SCMTF)
method. It is based on the idea that the ground-state
solution of the Schroedinger equation contains infor-
mation about the location of the global minimum.
Their implementation uses a mean field approxima-
tion to solve a set of coupled Schroedinger equa-
tions in a dihedral-angle space. Each equation de-
scribes the changes of a single dihedral angle in the
averaged field of the others. This approach was suc-
cessful in finding the lowest-energy conformations of
Met-enkephalin [55], and decaglycine and eikosaala-
nine chains [56].

The Conformational Space AnnealingMethod

One of the most efficient methods to search the con-
formational space of polypeptide chains developed in
our laboratory is the Conformational Space Annealing
(CSA) method [19,21,22,24], which combines the ideas
of genetic algorithms, the build-up procedure, random
search, and local minimization. The CSA method be-
gins with a randomly-generated population of confor-
mations which are energy minimized to generate the
first bank of conformations. The first bank is meant
to represent a sparse sampling of the conformational
space that captures short-range interactions. From the
initial population, a number of conformations (called
seeds) are selected as parents for the trial popula-
tion. These “seed” conformations are altered in a non-
random fashion to create new trial conformations. As
in any genetic algorithm, the trial population is gen-
erated by the use of genetic operators: mutations and
crossovers. Unlike traditional genetic algorithms, the
mutation operator applied in CSA does not change the
value of the selected variable randomly; instead it uses
values of the corresponding variables in the initial pop-
ulation (the first bank) or in the current population of
conformations as a pool of random numbers. A copy
of the first bank is used as a source of “random” vari-
ables, which are not uniformly distributed but their dis-
tribution is determined by intramolecular interactions
at this stage, mainly by steric overlap. The crossover op-
erators copy a set of variables representing a continuous
segment of the polypeptide chain of various size taken

from a randomly selected conformation in the current
population to a selected parent conformation (seed).
This is described in detail in the next section. Atten-
tion is paid to assure that all trial conformations are sig-
nificantly different from each other and from the par-
ent conformations. After generation, all trial conforma-
tions are energy minimized. The next step of the CSA
algorithm is the update of the current population (the
bank) without increasing its size. Each trial conforma-
tion is compared to each existing conformation of the
bank. If the trial conformation is similar to an existing
conformation of the bank, only the lower-energy con-
formation out of these two is preserved. If the trial con-
formation is not similar to any existing conformation
in the bank it represents a new distinct region of con-
formational space. Then it replaces the highest-energy
conformation in the bank, if its energy is lower than the
highest energy in the bank, otherwise it is discarded.
The distance between conformations i and j is defined
as the difference of their dihedral angles. If the distance,
Dij, is less than or equal to some predefined cutoff value,
Dcut, conformations i and j are considered similar, oth-
erwise they are considered different. CSA achieves its
efficacy by beginning with a large Dcut value to essen-
tially search all possible structures, and then gradually
reduces (“anneals”) Dcut by reducing the minimum dis-
tance between the conformations of the bank and fo-
cusing the search in low-energy regions of conforma-
tional space. After updating the current population, the
seed conformations are selected from the set of confor-
mations not selected as seeds previously; additionally
attention is paid to cover the conformational space as
broadly as possible by selecting conformations not sim-
ilar to each other as seed conformations.

The CSA method was shown to be very efficient
in finding the global minimum of the ECEPP/3 poten-
tial energy function for Metenkephalin [22] and melit-
tin [24]; it was also implemented as a standard search
technique with the coarse-grained UNRES force field
developed in our laboratory (see next section).

Hierarchical Approach

Another approach developed in our laboratory [38,87]
starts with a coarse-grained representation of a protein
and provides atomistic details at the end. It can be sum-
marized in the following three stages:
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Global Optimization in Protein Folding, Figure 8
The UNRES model of polypeptide chains. The interaction
sites are side-chain centroids of different sizes (SC) and
the peptide-bond centers (p) indicated by shaded circles,
whereas the ˛-carbon atoms (small empty circles) are in-
troduced only to assist in defining the geometry. The vir-
tual C˛–C˛ bonds have a length of 3.8 Å, corresponding to
a trans peptide group; � and � , denoting the virtual-bond
angle and virtual-bond dihedral angle, respectively, are vari-
able. Each side chain is attached to the corresponding ˛-car-
bon with a “bond length”, bSCi , variable “bond angle”, ˛SCi ,
formed by SCi and the bisector of the angle defined by C˛

i�1,
C˛
i , and C˛

iC1, and with a variable “dihedral angle” ˇSCi of
counterclockwise rotation about the bisector, starting from
the right side of the C˛

i�1, C
˛
i , C

˛
iC1 frame

1 Extensive simulations with using the coarse-grained
UNRES model [28,29,35,36,37,53,54] developed in
our laboratory and subsequent selection of struc-
tures with the lowest free energy.

2 Conversion of selected coarse-grained structures to
all-atom structures.

3 Exploration of the conformational space of all-atom
structures in the neighborhood of geometries ob-
tained in Stage 2.
In the UNRES model, a polypeptide chain is rep-

resented as a sequence of ˛-carbon atoms (C˛) with
attached united side chains (SC) and united peptide
groups (p), each of which is positioned in the middle
between two consecutive C˛ atoms, as shown in Fig. 8.

All three stages are executed using physics-based
potentials; therefore, energy is the determinant of each
of them. Stage 1 is the key point of the approach, be-
cause it provides the widest range of exploration of the
conformational space. Consequently, we have put most
of our effort in the development of the coarse-grained
UNRES force field. To execute stage 2, we developed an
approach in which the peptide groups are positioned
first within an ˛-carbon trace to minimize their energy
of local and electrostatic interactions [13] and, subse-
quently, the side-chain atoms are added to minimize
the energy of the chain given a coarse-grained geom-
etry [14]. The all-atom ECEPP/3 [49] force field is used
in stage 3.

The effective energy function is a sum of dif-
ferent terms corresponding to interactions between
the SC (USCiSC j ), SC and p (USCi p j), and p (Upi p j)
sites, as well as local terms corresponding to bend-
ing of virtual-bond angles � (Ub), side-chain rotamers
(Urot), virtual-bond torsional (Utor) and double-tor-
sional (Utord) terms, virtual-bond-stretching (Ubond)
terms, correlation terms (U (m)

corr) pertaining to coupling
between backbone-local and backbone-electrostatic in-
teractions [29] (where m denotes the order of correla-
tion), and a term accounting for the energetics of disul-
fide bonds (USS). Each of these terms is multiplied by
an appropriate weight, w. The energy function is given
by Eq. (23).

U D wSC
X
i< j

USCiSC j C wSCp
X
i¤ j

USCi p j

C wpp
X
i< j�1

Uel
pi p j
C wtor

X
i

Utor(�i)

C wtord
X
i

Utord(�i ; �iC1)C wb
X
i

Ub (�i)

C wrot
X
i

Urot(˛SCi ; ˇSCi )

C

6X
mD3

w(m)
corrU

(m)
corr

C wbond

nbondX
iD1

Ubond(di )C wSS
X
i

USS ;i :

(23)

The expression for the effective energy in the
UNRES model was derived based on the physics of in-
teractions, as a cluster-cumulant [18] expansion of the
effective free energy of a protein plus the surround-
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ing solvent, in which the secondary degrees of freedom
had been averaged out [29,31,35]. Most of the expres-
sions were parameterized based on energy surfaces of
models systems computed by ab initio molecular quan-
tum mechanics [35,53]; some of them were parameter-
ized based on the statistics from the PDB [36,37]. The
energy-term weights (the w’s in Eq. (23)) were deter-
mined [54] by using the method of hierarchical opti-
mization of the potential-energy landscape developed
in our laboratory [28], in which the energy of selected
training proteins decreases with increasing native-like-
ness.

Using the Conformational Space Annealing (CSA)
method [19,21,22] to search for the global energy min-
imum of the UNRES energy function, we achieved
considerable success in the Community Wide Experi-
ments of Techniques for Protein Structure Prediction
(CASP). In CASP3, we made the best prediction for
target T0061 (protein HDEA), predicting its 60-residue
segment within 4.2 Å C˛ RMSD from the experimen-
tal structure (PDB code: 1BG8) [34]. The experimental
and predicted structures are superposed in Fig. 9.

At that time, our force field did not contain suf-
ficient correlation terms and was unable to account
for ˇ-sheet formation. After introducing correlation
terms [29], in the CASP4 –CASP6 experiments wewere
able to predict significant portions of the structures of
˛ C ˇ and ˇ proteins [52,64]. In the CASP6 experi-
ment [52], we predicted complete structures of five pro-
teins and large portions of structure of other protein
without ancillary information from protein structural
databases. The largest ˛-helical protein, the whole of
which except for a short C-terminal fragment was pre-
dicted in CASP6 was target T0198 (235 residues; we
predicted the topology of its 208-residue ˛-helical part)
and the largest ˛ C ˇ protein was T0230 (97 residues).

We extended our hierarchical approach to treat
oligomeric proteins [83,84] and to proteins containing
disulfide bonds [5]; the second extension includes the
energy-based prediction of disulfide-bond topology.

Recently [33] we extended the implementation of
the UNRES force field to mesoscopic dynamics. The
corresponding simulations led us to the conclusion that
conformational entropy makes a major contribution to
the probability of occurrence of a family of conforma-
tions. A particular single conformation can have a very
low potential energy but no chance to appear at room

Global Optimization in Protein Folding, Figure 9
Superposition of the crystal (dark grey) and predicted (light
gray) structures of HDEA. The C˛ atoms of the fragment in-
cluded between residues D25 to I85 were superposed. The
RMSD is 4.2 Å. Helices 3, 4 and 5 are indicated as H-3, H-4 and
H-5, respectively

temperature if it belongs to a very narrow basin in the
potential-energy surface. On the contrary, higher-en-
ergy conformations could form a very broad basin and,
consequently, make an overwhelming contribution to
the statistical ensemble at room temperature. Conse-
quently, in our latest work [32] we have reformulated
energy-based protein-structure prediction as a search
of the basin with the lowest free energy at physiological
temperatures, by using techniques based on molecular
dynamics, such as replica-exchange molecular dynam-
ics [47] to search conformational space.
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Introduction

In their effort to locate the global solution, deterministic
global optimization algorithms, like the ˛BB [1,2,6,14],
employ a branch and bound framework. During this
process, convex underestimation techniques are used to
formulate relaxed convex problems that can be solved
to optimality with the use of local solvers, thus provid-
ing valid lower bounds for the original problem. The
tightness of the underestimators used is of fundamental
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importance for the computational performance of these
algorithms, since a tighter relaxation can lead to faster
fathoming and less nodes of the branch and bound tree
to be visited [7]. A recent review article on deterministic
global optimization approaches can be found in [8].

In the case of arbitrary nonconvex functions that do
not exhibit an exploitable mathematical structure, the
˛BB general underestimator [3,6] can be used:

L(x) D f (x)�
VX

vD1

˛v (xv � xLv )(x
U
v � xv) : (1)

Originally introduced in [14], this underestimator
derives from the function by subtracting a positive
quadratic (˛v � 08v). Given sufficiently large values
of the ˛v parameters, all nonconvexities in the orig-
inal function f (x) can be overpowered, resulting into
a convex underestimator L(x) that is valid for the en-
tire domain [xL; xU ]. A number of rigorous methods
have been devised in order to select appropriate values
for these parameters [2,3,13]. Extensive computational
testing of the algorithm [1] showed that the most effi-
cient of those methods is the one based on the scaled
Gherschgorin theorem. According to this method, it
suffices to select:

˛v D max

(
0;�

1
2

�
hvv �

VX
uD1
u¤v

max
˚
jhvuj;

jhvuj
o (xUu � xLu )
(xUv � xLv )

�) (2)

where hvu and hvu are lower and upper bounds of
@2 f /@xvxu that can be calculated by interval analysis.

One could use alternatively a new class of general
purpose convex underestimators that has been devel-
oped by Akrotirianakis and Floudas [4,5]. These under-
estimators are derived in a similar fashion, by subtract-
ing an exponential term from the original function, that
is:

L1(x) D f (x)�
VX

vD1

�
1 � e�v (xv�x

L
v )
� �

1 � e�v (x
U
v �xv )

�
:

(3)

An iterative systematic procedure is used to determine
the values of the �v parameters so as the underesti-
mating function to be convex. The procedure ensures

also that the resulting underestimator L1(x) is tighter
than L(x), the one that results from the original method.
Floudas and Kreinovich [9,10] have in fact shown that
these two functional forms (original quadratic and ex-
ponential) are the only optimal ones, since they are the
only ones to be shift-, sign- and scale-invariant.

Maranas and Floudas [14] showed that the maxi-
mum separation distance between the original function
f (x) and the underestimator L(x) of (1) is a quadratic
function of interval length. Because of this, as well as
because of potentially less overestimation in the inter-
val extension of the Hessian matrix elements hvu , the
underestimator would become tighter with shrinkage
of the domain under consideration. This was firstly ex-
ploited in Meyer and Floudas [15], where a piecewise
approach was utilized. The method proposed partition-
ing of the domain intomany subdomains and construc-
tion of the corresponding ˛BB underestimator for each
one of them. These underestimators, although not valid
for the entire domain, are much tighter in their respec-
tive subdomains. A hyperplane is subsequently added
to each one of these underestimators and is selected in
such a way, so that the combination of all these con-
vex pieces results into an overall convex underestimator
that is continuous and smooth (C1-continuity).

This entry describes the work of [11,12] on the de-
velopment of tight convex underestimators. The con-
struction of these underestimators is based on a piece-
wise application of the ˛BB underestimator, in a similar
fashion with the p-˛BB approach [15], but, instead of
adding hyperplanes, we identify those supporting line
segments that have to be combined with convex parts
of the original underestimators so as to form a C1-
continuous convex underestimator that is valid for the
overall domain under consideration. One can also con-
sider only the lines defined by these linear segments,
thus coming up with a piecewise linear underestimator
that can easily be incorporated in the NLP relaxation as
a set of linear constraints.

In their work, Gounaris and Floudas [12] also
demonstrated how one can make use of the high quality
results of the approach in the univariate case so as to ex-
tend its applicability to functions with a higher number
of variables. This is achieved by proper projections of
the multivariate ˛BB underestimators into select two-
dimensional planes. Furthermore, since the method
utilizes projections into lower-dimensional spaces, they
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explored ways to recover some of the information lost
in this process. In particular, they apply the method af-
ter having transformed the original problem in an or-
thonormal fashion. This leads to the construction of
even tighter underestimators, through the accumula-
tion of additional valid linear cuts in the relaxation.

Theoretical Results for Univariate Functions

Let f (x) be a univariate function that needs to be
underestimated in D D [xL; xU ]. We select an in-
teger N > 1 and partition the complete domain in
N segments of equal length. Thus, the i-th subdo-
main would be defined as Di D [xi�1; xi], where:
xi D xL C i

N (x
U � xL); i D 0; 1; : : : ;N .

For every subdomain Di ,i D 1; 2; : : : ;N , we con-
struct the corresponding ˛BB underestimator:

Pi (x) D f (x)� ˛ i (x � xi�1)(xi � x)

˛ i D max
�
0;�

1
2
f 00

(Di )

	 (4)

where f 00
(Di )

is a lower bound of the second derivative
that is valid for the entire subdomain Di .

Note that although an underestimator Pi }(x) can be
defined outside its respective subdomain, its convexity
is only guaranteed for x 2 [xi�1; xi ].

We define P(x); x 2 [xL; xU ] to be the following
branched function:

P(x) D Pi (x); if xi�1 � x � xi : (5)

Function P(x) is a piecewise convex valid underes-
timator of f (x). Since it is not convex, a convexifica-
tion technique has to be employed. The proposed tech-
nique involves the identification of those supporting
line segments that are required for an overall underesti-
mator U(x). The technique is based on two algorithms,
called “inner” and “outer”, which are described in detail
in [11].

The underestimator U(x) consists of the identified
linear parts, as well as convex parts of the underesti-
mators Pi(x), therefore it is a C1-continuous branched
function. This might pose some computational compli-
cations if the lower bounding (relaxation) problem is
to be solved by local optimization solvers that require
C2-continuity. In order to avoid this problem, one can
take into account only the lines defined by the line seg-
ments. According to this alternative, we first identify

the linear segments needed for the construction of un-
derestimator U(x), but we consider those as lines de-
fined in [xL; xU ]. Let there be K such lines denoted
as Tk(x); k D 1; 2; : : : ;K and arranged in order of as-
cending slope. If applicable, this set can be augmented
with lines that are tangential to P1 and PN at the respec-
tive domain edges xL and xU .

Each of these lines Tk is a valid underestimator of
function f (x) across the whole domain. We define the
function V(x) to be the pointwise maximum of all these
lines. V(x) is convex, since it is the pointwise maxi-
mum of linear functions and it is obviously an under-
estimator, since it consists of pieces of other underes-
timators. At the expense of some tightness (in the re-
gions where underestimator U(x) consisted of convex
parts), we now have a piecewise linear underestimator
V(x) that can be incorporated in the relaxation as a set
of linear constraints. The whole lower bounding prob-
lem can now be formulated as a linear programming
problem (LP).

Tightness of Univariate Underestimator

It is apparent that as the level of partitioning increases,
the underestimator P(x) comes closer to the function,
and therefore convex underestimators U(x) and V(x)
approach the convex envelope of f (x). Gounaris and
Floudas [11] proved the following two theorems that
are relevant with the tightness of the resulting underes-
timators in the univariate case:

Theorem 1. There is some finite partitioning level N,
for which the convex underestimator U(x) is the convex
envelope of function f (x).

Theorem 2. There is some finite partitioning level N,
for which underestimator V(x) is �-close to underestima-
tor U(x), that is:

max
x2D
fU(x) � V (x)g < � (6)

where: � > 0 is an arbitrarily small constant.

Since these univariate underestimators are very tight,
the remaining question is whether we can exploit them
so as to construct underestimators of functions in
higher dimensions. Gounaris and Floudas [12] pre-
sented some extensions of the method for application
on multivariate functions that involve dimension re-
duction of the problem through proper projections into
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lower-dimensional spaces. These extensions are de-
scribed in Sect. “Extension to Multivariate Functions”.

Extension to Multivariate Functions

Let f (x) be a function of V variables that needs to be
underestimated in a box domain D D [xL1 ; xU1 ] � � � � �
[xLV ; x

U
V ]. We choose integers Nv > 1; v D 1; 2; : : : ;V

and partition each range [xLv ; xUv ] in Nv segments of
equal length. Thus, the j-th segment of the vth set would
be defined as [x j�1

v ; x j
v], where: x

j
v D xLv C

j
Nv
(xUv �

xLv ); j D 0; 1; : : : ;Nv . The completeV-dimensional do-
main D has now been partitioned into N D

QV
vD1 Nv

box subdomains of equal measures. Let Di be such a V-
dimensional subdomain. It is uniquely defined by a set
of indices iv ; 1 � iv � Nv ;8v D 1; 2; : : : ;V . Thus, the
ith subdomain would be defined as Di D [xi1�1

1 ; xi1
1 ] �

� � � � [xiV�1
V ; xiV

V ].
For every subdomain Di, i D 1; 2; : : : ;N, we con-

struct the corresponding ˛BB underestimator [1,2,
3,6,14]:

Pi (x) D f (x)�
VX

vD1

˛ i
v (xv � xiv�1

v )(xiv
v � xv )

˛ i
v D max

(
0;�

1
2

�
h(i)vv �

VX
uD1
u¤v

max
n
jh(i)vuj;

jh(i)vuj
o (xiu

u � xiu�1
u )

(xiv
v � xiv�1

v )

�)
(7)

where h(i)vu and h(i)vu are respectively lower and upper
bounds of @2 f /@xv xu that are valid for the entire sub-
domain Di.

Note that although an underestimator Pi(x) can be
defined outside its respective subdomain, its convexity
is only guaranteed for x 2 Di .

We select variable w; 1 � w � V , which we des-
ignate to be the active variable, and enumerate all
Mw D N/Nw permutations of indices iv ; v ¤ w. Ev-
ery such permutation m; 1 � m � Mw , corresponds
to a subdomain Dwm D [xLw ; xUw ] �

QV
vD1
v¤w

[xiv�1
v ; xiv

v ],
which can be further divided into Nw subdomains
Dwmj D [x j�1

w ; x j
w ] �

QV
vD1
v¤w

[xiv�1
v ; xiv

v ]; j D 1; 2;
: : : ;Nw . These subdomains, belong to the set of the
original subdomains Di (for iw D j) and therefore each
one has an underestimator Pwmj(x) associated with it,

that is:

Pwmj(x) D f (x)� ˛ i
w (xw � x j�1

w )(x j
w � xw )

�

VX
vD1
v¤w

˛ i
v (xv � xiv�1

v )(xiv
v � xv)

(8)

where index i satisfies Di D Dwmj and parameters
˛ i
v ; v D 1; 2; : : : ;V are calculated according to (7).
For every such subdomain Dwmj ; j D 1; 2; : : : ;Nw ,

we define the following univariate function:

Gwmj(xw) D min
xv
8v¤w

Pwmj(x); x j�1
w � xw � x j

w : (9)

Since they correspond to the minimum of a convex
function over a subset of its variables, these functions
are convex. Furthermore, each one is defined over a dif-
ferent segment of [xLw ; xUw ]. Therefore, each one can be
considered as a convex piece of an overall piecewise con-
vex underestimator. The latter is fully suitable for appli-
cation of the convex underestimation method for uni-
variate functions which was described in the previous
sections.

Let Vwm(xw) be the piecewise linear underestima-
tor obtained by the univariate method, and let it be the
pointwise maximum of Kwm associated lines, that is:

Vwm(xw) Dmax fTwmk (xw);8k D 1; 2; : : : ;Kwmg ;

xLw � xw � xUw
(10)

Without loss of generality, let us assume that the
lines Twmk are arranged in order of ascending slope,
that is, slope(Twm(k�1)) < slope(Twmk ); k D 2;
3; : : : ;Kwm , and that the set already includes the po-
tential augmented tangents at the domain edges, desig-
nated earlier as T0 and TK+ 1.

Univariate underestimator Vwm(xw) could, in prin-
ciple, be considered as a multivariate function that is
dependent to only one variable, xw, and defined over
the whole multidimensional (dimension V) subdomain
Dwm. That is:

Vwm(xw)! Vwm(x), x 2 Dwm (11)

Function Vwm(x) is piecewise affine and consists of
segments of V-dimensional hyperplanes. Since these
hyperplanes depend only on the wth variable, they are
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parallel to all standard basis vectors ev with the excep-
tion of ew (to which they are parallel only if the slope
of the corresponding line Twmk is zero). This function
is a valid underestimator for the original function f (x)
across the whole subdomain Dwm.

Applying the aforementioned procedure for ev-
ery permutation m D 1; 2; : : : ;Mw , we come up with
a collection of such underestimating segments, each
of which is a valid underestimator for the function
f (x) across a subset of its original domain D. In or-
der to develop a convex underestimator that would be
valid for the whole domain, we have to combine all
these segments. Let m D 0 denote the combination of
all permutations m D 1; 2; : : : ;Mw . This combination
can be achieved back in the projection space, by com-
puting the lower hull of the set of all underestimators
Vwm(xw). In fact, one needs to consider only the ver-
tex points of each underestimator Vwm(xk) (that is the
points of intersection between two lines Twm(k�1) and
Twmk), as well as their end points

�
xLw ; Twm1(xLw )

�
and�

xUw ; Twm(Kwm )(xUw )
�
. Any standard 2d convex hull al-

gorithm (e. g., Graham-Scan) can be used for this pur-
pose. The lower hull is a convex piecewise linear func-
tion Vw0(xw), and it is the pointwise maximum of Kw0

lines, that is:

Vw0(xw) Dmax fTw0k(xw);8k D 1; 2; : : : ;Kw0g ;

xLw � xw � xUw :
(12)

By construction, this function is a convex underes-
timator of all piecesGwmj(xw) for all permutations, that
is:

Vw0(xw) �Gwmj(xw); xw 2 [x j�1
w ; x j

w];
8 j D 1; 2; : : : ;Nw ;8m D 1; 2; : : : ;Mw :

(13)

Therefore, function Vw0(xw), if considered as Vw0(x), is
a valid underestimator for function f (x) across its whole
original domain D.

For any selection of the active variable w, the
method will yield a convex (piecewise affine) underes-
timator which would be valid for the whole domain of
interest, D. However, the method can be independently
applied for every variable being active (one at a time),

leading to a collection of valid underestimators. The
pointwise maximum of all these is itself a valid convex
underestimator, and is tighter (or equally tight) to the
original function than any of its predecessors. Thus, the
resulting underestimator is:

V (x) D max fVw0(x);8w D 1; 2; : : : ;Vg ; x 2 D :

(14)

Note that the underestimator V(x) is also piece-
wise hyperplanar, and can be represented in the prob-
lem relaxation as a set of linear constraints. Since we
do not know explicitly which hyperplanes Tw0k(xw)!
Tw0k(x); k D 1; 2; : : : ;Kw0;w D 1; 2; : : : ;V contribute
some part of theirs to the overall underestimator V(x),
all of them should be included in this relaxation, despite
the fact that some may end up being redundant.

Since our method produces piecewise affine under-
estimators L � V , the resulting convex relaxation is
just a linear programming problem (LP), which takes
the form of (15).

min

;x

�

s:t: � � T(0)
w0k(xw)

(
8k D 1; 2; : : : ;K(0)

w0
8w D 1; 2; : : : ;V

)

T(q)
w0k(xw ) � 0

8̂
<
:̂
8k D 1; 2; : : : ;K(q)

w0
8w D 1; 2; : : : ;V
8q D 1; 2; : : : ;Q

9>=
>;

(15)

Domain Rotation

The methodology presented in Section 4 involves the
minimization of underestimators Pwmj(x), over all their
variables with the exception of one, variable xw, which is
designated as “active”. Whenever such a projection into
spaces of lower dimensionality is involved, there is the
possibility that some useful information is lost. Some of
this lost information will be recovered if we opt to ap-
ply the methodology for every variable being “active”,
one at a time, which basically calls for projecting into V
different two-dimensional planes, each one being paral-
lel to a different basis vector ev ; v D 1; 2; : : : ;V . How-
ever, since there is a finite number of variables in our
problem, there is a limited number of planes to which
we can project. If we want to enhance further the col-
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Global Optimization: Tight Convex Underestimators, Figure 1
Univariate functions f1�4 with underestimators V(x) for three different partitioning levels (N D 24, 36 and 48)

lection of underestimators that we will eventually accu-
mulate in the relaxation (thus improve our chances for
better tightness/lower bound), we will have to project
into additional planes, that do not correspond to some
variable that is “natural” to the problem, rather than to
some linear combination of theirs.

This can be achieved by applying an orthonormal
transformation to the problem’s variable space, that is:

x ! x0 D R � x : (16)

This transformation has to be orthogonal, which
means that it should preserve the lengths of vectors
and the angles between vectors. Furthermore, it should
be an orientation-preserving transformation. A V � V
matrix R that could provide such a transformation is
called a rotation matrix and has to be a member of the

special orthogonal group, that is:

R 2 SO(V ),
�

R�1 D RT

jRj D C1 :
(17)

In their work, Gounaris and Floudas [12] discuss
the selection of a suitable such matrix. They rigorously
address the issue of selecting a suitable “rotated” do-
main and some suitable level of partitioning, and they
also present a method to calculate appropriate values
for the ˛ parameters in the transformed counterpart of
the problem.

Examples

Figure 1 depicts the plots for four nonlinear univariate
functions. In particular, for functions: f1(x) D (3x �
1:4)sin(18x)C1:7, f2(x) D x2�cos(18x), f3(x) D (xC
sinx)e�x and f4(x) D �

P5
kD1 ksin[(k C 1)x C k].
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Global Optimization: Tight Convex Underestimators, Figure 2
Piecewise planar underestimators of bivariate functions

The underestimators presented correspond to par-
titioning in N D 24; 36 and 48 subdomains (increasing
tightness).

Figure 2 depicts plots for four nonlinear bivari-
ate functions. For each case, N1 � N2 is the level of
partitioning used and �' is the resolution of domain
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rotation. Some additional information regarding the
improvement of lower bound, as well as the number
of linear cuts that have to be accumulated in the relax-
ation, is also included.
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A large number of decision problems in the world of
applications may be formulated as searching for a con-
strained global optimum (minimum, for certainty)

'� D '(y�)

D min f'(y) : y 2 D; gi (y) � 0; 1 � i � mg ;

where the domain of search (DS)

D D
˚
y 2 RN : � 2�1 � y j � 2�1; 1 � j � N

�
;

RN is the N-dimensional Euclidian space and the objec-
tive function '(y) (henceforth denoted gm+1(y)) and the
left-hand sides gi(y), 1 � i � m, of the constraints are
Lipschitzian (with respective constants Li, 1 � i � m +
1) and may be multi-extremal.

If DS is set defined by the hyperparallelepiped

S D
˚
w 2 RN : aj � wj � b j; 1 � j � N

�
;
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then, by introducing the transformation

y j D
wj � (aj C b j)/2

�
;

� D max
˚
b j � aj : 1 � j � N

�
;

and the extra constraint

g0(y) D max
� ˇ̌

y j
ˇ̌
�

b j � aj

2�
: 1 � j � N

	
� 0;

it is possible to keep up the initial presentation D for DS
(which is assumed to be the standard one) not altering
the relations of Lipschitzian properties in dimensions.

The assumption of the divided functions gi, 0 � i �
m + 1, differences being bounded by the respective con-
stants Li (Lipschitzian property), which may be inter-
preted as a mathematical description of a limited power
of change in real systems, provides a basis for estimat-
ing '� and y�; by exploring DS with finite number of
trials depending on the desired accuracy of search. This
Lipschitzian approach ([2,5,9,20]) requires, in general,
substantially less trials than the plain uniform grid tech-
nique owing to the thorough selection of each subse-
quent trial with the account of all the previously com-
puted functions’ values.

Such a selection turns into solving some auxiliary
multidimensional optimization problem (MOP) of in-
creasing multi-extremality (along with the accumula-
tion of trial outcomes) at each step of the search pro-
cess. But the case N = 1 is effectively solvable and,
therefore, it is of interest to present MOP by its one-
dimensional equivalent.

A possible way to do so ([1,7,11,12,14,15,18]) is to
employ single-valued Peano curves y(x) continuously
mapping the unit interval [0, 1] on the x-axis onto the
hypercube D and, thus, yielding the equality

'� D '(x�)

D min
�
'(y(x)) : x 2 [0; 1];

gi(y(x)) � 0; 0 � i � m

	
:
(1)

These curves, first introduced in [4,8], are ‘filling’ the
cube, i. e. they pass through every point of D, and this
gave rise to the term space filling curves (SFC); see sur-
vey [10].

The construction of SFC can be explained by fol-
lowing the scheme from [4]. Divide D into 2N equal hy-
percubes of ‘first-partition’ by cutting D with the set of

N mutually orthogonal hyperplanes (each plain is par-
allel to one of the coordinate ones and passes through
the middle points of D edges orthogonal to this hyper-
plane). Then divide (in the above manner) each of the
obtained first-partition cubes into 2N second-partition
cubes. Continuing this process, i. e. consequently cut-
ting each cube of a current partition into 2N cubes of the
subsequent partition, yields hypercubes of anyMth par-
tition with the edge-length equal 2�M . The total num-
ber of cubes in theMth partition is equal 2MN .

Next, cut the interval [0, 1] into 2N equal parts.
Then, once again, cut each of these parts into 2N smaller
(equal) parts, etc. Designate d(M, v) the subinterval of
Mth partition, where v is the coordinate of the left end-
point of this interval. The length of d(M, v) is equal
2�MN . Assume that v 2 d(M, v), but the right endpoint
of this subinterval (if it is not equal 1) does not belong
to it.

Establish a mutually single-valued correspondence
between all subintervals of any particularMth partition
and all subcubes of Mth partition. Henceforth, the no-
tation D(M, v) will stay for the subcube corresponding
to the subinterval d(M, v) and vice versa. Assume this
correspondence to satisfy the following conditions:
� D(M + 1, v0) � D(M, v00) if and only if d(M + 1, v0)
� d(M, v00).

� d(M, v0) and d(M, v00) have a common endpoint
(which is either v0 or v00) if and only if D(M, v0) and
D(M, v00) have a common face (i. e. these subcubes
are contiguous).

Now, a single-valued continuous map y(x) is set by in-
troducing the third requirement
� If x 2 d(M, v), then y(x) 2 D(M, v), forM � 1.
Note that for any integer M � 1 and any given x 2 [0,
1] there is just one subinterval meeting the condition x
2 d(M, v); the continuity is the consequence of the first
two conditions.

Approximation of SFC

The center yc(x) of the subcubeD(M, v) containing y(x)
may be interpreted as an approximation to y(x); the in-
equalities

max
nˇ̌
ˇycj (x) � y j(x)

ˇ̌
ˇ : 1 � j � N

o
� 2�(MC1);

x 2 [0; 1];
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reflect the accuracy attainable for any particular preset
value ofM.

A constructive way to establishing the above
correspondence is described and substantiated in
[3,12,15,19] and, in short, can be presented as follows.
Introduce the auxiliary hypercube

	 D
˚
y 2 RN : � 0:5 � yi � 1:5; 1 � i � N

�

and designate �(s), 0� s� 2N � 1, the subcubes of the
first partition of�. The centers of�(s) (to be referred as
u(s)) are N-dimensional binary vectors defined by the
relations

ui(s) D (ˇi C ˇi�1) mod 2;

1 � i < N; uN D ˇN�1;
(2)

where ˇi, 0 � i < N, are digits in binary presentation of
s:

s D ˇN�12N�1 C � � � C ˇ020: (3)

Owing to this numeration, any two centers u(s) and u(s
+ 1), 0 � s < 2N � 1, have just one different coordinate,
which means that the corresponding subcubes�(s) and
�(s + 1) are contiguous.

Next, let the binary form of v in d(M, v) be

0 � v D
MNX
iD1

˛i2�i < 1:

Then the identity d(M, v) = d(z1, . . . , zM), where

z j D
NX
iD1

˛( j�1)NCi2i ; 1 � j � M; (4)

provides the possibility to interpret d(z1, . . . , zM), as the
zMth subinterval of the interval d(z1, . . . , zM�1) divided
into 2N equal parts (the numeration streams from left
to right along the x-axis). Note that the above identity
implies D(M, v) = D(z1, . . . , zM).

Now, mapping � onto D by the linear transforma-
tion and assuming that D(z1) = D(s) if D(s) is the image
of�(s), we obtain the numeration (in the first partition
ofD) satisfying the above conditions. Then by mapping
� onto each subcube D(z1) of the first partition, we get
the desired numeration in the second partition of D,
whereD(z1, z2) =D(z1, s) ifD(z1, s) is the image of�(s),
and so on. To ensure that D(z1, 2N � 1) andD(z1 + 1, 0)

would also have a common face (and, in general, the
last subcube in the first partition of D(z1, . . . , zM) and
the first subcube in the first partition of D(z1, . . . , zM+
1) would also be contiguous) we add some mechanism
in the above numeration procedure to provide the nec-
essary juxtapositioning.

Introduce the integer l = l(z1, . . . , zM) indicating the
number of the only coordinate which has to be different
for the center of the initial subcube D(z1, . . . , zM , 0) and
the last subcube D(z1, . . . , zM , 2N � 1) of the next par-
tition of D(z1, . . . , zM) and the binary vector w = w(z1,
. . . , zM) indicating the position of the center of the sub-
cube D(z1, . . . , zM , 0). To do so we employ the integer
function

l(s) D

8̂
<̂
ˆ̂:

1 if s D 0 or s D 2N � 1;

min
n
j : 2 � j � N; ˇ j�1 D 1

o
;

otherwise;

(5)

where ˇj�1 is from (3), and the binary vector-function

wi(s C 1) D wi(s) D

(
ui (s); i D 1;
ui (s); 2 � i � N;

(6)

where s is supposed to be the odd number, ui stays for
logical negation of ui, and w(0) = u(0). The amended
procedure for successive numeration in subsequent
partitions includes the operations:
� permutation of uN and ut in u(zj) from (2) and of

wN and wt in w(zj) from (6) with t = l(zj�1), where
zj�1 is from (4), 1 < j �M, and l(zj�1) is from (5); t
= N if j = 1. New vectors are to be referred as ut(zj)
and wt(zj);

� addition

utq
i (z j) D (ut

i (z j)C qi) mod 2; 1 � i � N;

wtq
i (z j) D (wt

i (z j)C qi) mod 2; 1 � i � N;

where q = w(zj�1), 1 < j�M, and q = (0, . . . , 0) 2 RN

if j = 1;
� transformation

l t(z j) D

8̂
<̂
ˆ̂:

N; l(z j) D t;
t; l(z j) D N;
l(z j); l(z j) ¤ N and l(z j) ¤ t;

where t is from the above permutation.
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The successively computed values utq(zj), wtq(zj), lt(zj)
are used instead of the initial values u(zj), w(zj), l(zj), 1
� j �M, to obtain the approximation

yc(x) D
MX
jD1

(utq(z j) � p)2� j; x 2 d(M; v);

with p = (2�1, . . . , 2�1) 2 RN .
The important property of reducing dimensionality

through SFC is that functions gi(y(x)), 0 � i � m + 1,
from (1) corresponding to Lipschitzian functions from
the initial MOP satisfy the uniform Hölder conditions
([7,11,15,19])

ˇ̌
gi(y(x0)) � gi (y(x00))

ˇ̌
� Ki(

ˇ̌
x0 � x00

ˇ̌
)

1
N ;

x0; x00 2 [0; 1];

with respective coefficients Ki D 4Li
p
N , 0 � i � m +

1.
Problem (1) can further be reduced to an uncon-

strained case by employing the index approach (IA)
([7,13,17,18]) which makes no use of penalties and,
thus, does not require any adjustments of penalty co-
efficients. Within IA functions gi(y(x)) from (1) may
not be defined throughout [0, 1]; they have to be com-
putable only at the points x 2 [0, 1] meeting the condi-
tions gk(y(x)) � 0, 1 � k < i (this property is to be re-
ferred as partial computability of problem functionals).
Therefore, within IA the outcome of each trial is given
by a dyad

f (x) D g�(y(x)); � D �(x) D �(y(x)); (7)

where � is the number of the first constraint violated at
the point x; this number is to be referred as the index of
the corresponding point.

The unconstrained equivalent of (1) is

 (x�) D min f (x) : x 2 [0; 1]g ;

where

 (x) D
g�(y(x))

K�

�

(
0; � D �(x) � m;
'�

K�
; � D �(x) D mC 1;

and x� is a solution to (1). The algorithm presented be-
low solves (1) byminimizing (x). It substitutes the un-
known values '� and Ki, 0� i�m+1, by their running
estimates; it also surmounts the discontinuity inherent
to  (x).

Algorithm

The first trial is to be executed at an arbitrary interior
point x1 2 (0, 1). The choice of any subsequent point
xk+1, k � 1, is due to the rules:
1) Renumber the points x1, . . . , xk of the previous trials

by subscripts in the increasing order of the coordi-
nate, i. e.

0 D x0 < � � � < xk < xkC1 D 1;

and associate them with the computed values zi =
f (xi), 1 � i � k, from (7); values z0 and zk+1 are un-
defined.

2) Collect in the sets

I� D fi : 1 � i � k; � D �(xi)g ;
0 � � � mC 1;

all subscripts corresponding to the points with equal
indices; it is assumed that �(x0) = �(xk+1) = � 1 and
I�1 = {0, k + 1}.

3) Construct the unions

S� D I�1 [ � � � [ I��1; 0 � � � mC 1;

and

T� D I�C1 [ � � � [ ImC1 [ ImC2;

0 � � � mC 1;

of subscripts corresponding to the trial points with
the indices less than � and exceeding � respectively;
Im+2 = ; by the definition.

4) Compute the running lower bounds

�� D max( ˇ̌
z j � zi

ˇ̌

(x j � xi)
1
N
: i; j 2 I� ;

i < j

)
(8)

for respective Hölder coefficients of the functions
g�(y(x)), 0 � � �m + 1. If I� contains less than two
elements or if �� from (8) is equal zero, assume that
�� = 1.

5) Find the values

z�� D

(
�"� ; T� ¤ ;;
min fzi : i 2 I�g ; T� D ;;

for all nonempty sets I� , 0 � � � m + 1; vector " =
("0, . . . , "m) is the input of the algorithm.
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6) Compute characteristics R(i), 1 � i � k + 1, where

R(i) D 	i

C
(zi � zi�1)2

r2�2
�	i

�
2(zi C zi�1 � 2z�� )

r��
;

i � 1; i 2 I� ;

R(i) D 2	i �
4(zi � z�� )

r��
;

i 2 I� ; i � 1 2 S� ;

R(i) D 2	i �
4(zi�1 � z�� )

r��
;

i � 1 2 I� ; i 2 S� ;

	i D (xi � xi�1)
1
N :

Proper choice of the parameter r > 1 allows to use
the product r�� as an upper bound for K� .

7) Select integer t from

R(t) D max fR(i) : 1 � i � k C 1g

and execute the subsequent trial at the point

xkC1 D
xt C xt�1

2

� sign(zt � zt�1)
�
jzt � zt�1j

��

�N
�
1
2r

if �(xt) = �(xt�1); otherwise, i. e. if �(xt�1) 6D �(xt),
the second term is omitted.

The concept of "-reserved solution y", where

'(y") D min

8<
:'(y) :

y 2 D;
gi(y) � �"i ;
0 � i � m

9=
;

and "i > 0, 0 � i � m, provides interpretation for "
from Step 5). The sequence of points {xk} selected by
the Steps 1)–7) in the interval [0, 1] generates the cor-
responding sequence {yk} = {y(xk)} in D.

Convergence Conditions

([15,16,17] [18]). Assume that the following is true:
� the problem (1) has an "-reserved solution;
� functions gi(y), 0 � i � m + 1, admit Lipschitzian

continuations throughout D;
� from some Step onwards, the values �� , 0 � � � m

+ 1, from (8) satisfy the inequalities

r�� > 16L�
p
N; 0 � � � mC 1:

Then any limit point y of the sequence {yk} generated
by the above algorithm satisfies the conditions:

'(y) D inf

8<
:'(y

k) :
k 2 N1;

gi (yk) � 0;
0 � i � m

9=
; � '(y");

where N1 is the set of positive integers.
As long as in applications SFC y(x) is to be approx-

imated by yc(x) corresponding to some Mth partition,
it is important to notice that the substantiation of the
above convergence conditions implies the relation

2�M �
1
p
N

min
0���m

�
"�

L�

�
;

which means that the existence of an "-reserved solu-
tion may be interpreted as some kind of the regularity
conditions (cf. [6]).

Dimensionality reduction through SFC causes some
loss of the information on the closeness of trial points is
the initial multidimensional space. Two close points in
Dmay have substantially nonclose pre-images in [0, 1].
To overcome this obstacle, it is possible either to store
all pre-images of each trial point (close points in D al-
ways have some close pre-images; see [12]) or to use
some sets of shifted SFC to provide the better transfer
of metric information (see [17]).

GOSF based on the reduction to one dimension by
using SFC and on the reduction to unconstrained prob-
lems by employing IA admits effective parallelization
(see [16,19]).
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Weber’s problem and all its variations with positive
weights is clearly one of the most extensively studied
problems in the area of continuous location theory. It
frequently arises in planning situations where a single
central facility must be located so as to minimize the
total cost associated with serving a number of demand
centers. In all these cases, the underlying assumption,
that the associated service costs are directly propor-
tional to the Euclidean distance of the demand center
from the central facility, has been adopted.

Weber’s problem with attraction and repulsion can
be stated as follows: Given a number of ‘attractive’ or
‘repulsive’ points located on a 2D-plane, find the posi-
tion of a single facility inside an arbitrary region P such
that the sum of the weighted distances of all points from
the single facility is at its global minimum.

This problem can be formulated as the following
nonlinear optimization problem:

min
(x;y)2P

X

i2IC

wi

q
(x � xi)2 C (y � yi )2

�
X
i2I�

wi

q
(x � xi)2 C (y � yi)2;

where I+, I� are the sets of attractive (users) and repul-
sive (residents) points, respectively; wi, i 2 I+ the pos-
itive weight of the ith attractive point and �wi, i 2 I�

the negative weight of the ith repulsive point; (xi, yi) are
the coordinates of the ith attractive or repulsive point;
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and P is the region where where the single facility must
be situated.

The unconstrained version of this problem has
been shown to involve a number of important proper-
ties. The first property provides a sufficient condition
for having finite solutions or solutions at infinity. Z.
Drezner and G.O. Wesolowsky [6] by using the well-
known triangle inequality relation proved the follow-
ing:

Property 1 For the unconstrained problem, if W > 0
then the global optimum location is finite; ifW < 0 then
the global optimum location is at infinity, where

W D
X

i2IC

wi �
X
i2I�

wi :

The second property deals with the localization of all lo-
cal minimum solutions. LetR be the radius of the small-
est circle enclosing all points. The square of this radius
R can be obtained through the solution of the following
nonlinear optimization problem:

8̂
<̂
ˆ̂:

min
xc ;yc ;R2

R2

s.t. (xc � xi)2 C (yc � yi )2 � R2;

8i 2 IC [ I�;

which is convex in the combined space of the coordi-
nates of the center of the circle (xc, yc) and the square of
the radius of the circle R2 enclosing all points. Drezner
and Wesolowsky [6] proved the following localization
property, which generalizes the majority theorem [24]
for Weber’s problem.

Property 2 For the unconstrained problem, all local
minima and therefore the global minimum are inside
a disc with a radius equal to

� D
R

p
1 � ˛2

where

˛ D
W�

WC
;

WC D
X

i2IC

wi ; W� D
X
i2I�

wi :

Note that the boundary of this disc is attainable.

The case ˛ = 1 or, equivalently, W = 0 is accounted
for by finding the optimal solution at infinity and com-
paring it with the best finite solution. Drezner and
Wesolowsky [6] by using asymptotic analysis showed
the following:

Property 3 For the unconstrained problem, if W = 0
the best solution at infinity is �(A2 + B2)1/2 where:

A D
X

i2IC

wixi �
X
i2I�

wixi ;

B D
X

i2IC

wi yi �
X
i2I�

wi yi :

The following property examines whether a demand
point corresponds to a local minimum [6].

Property 4 For the unconstrained problem, if there is
a point i such that

wi � (Wx CWy)1/28̂
<̂
ˆ̂:

> 0; then point i is a local minimum;
< 0; then point i is not a local minimum;
D 0; then both possibilities are open;

where

Wx D
X

i; j2IC;i¤ j

wi(xi � x j)p
(xi � x j)2 C (yi � y j)2

�
X

i; j2I�;i¤ j

wi(xi � x j)p
(xi � x j)2 C (yi � y j)2

;

Wy D
X

i; j2IC;i¤ j

wi(yi � y j)p
(xi � x j)2 C (yi � y j)2

�
X

i; j2I�;i¤ j

wi(yi � y j)p
(xi � x j)2 C (yi � y j)2

:

P.-C. Chen and others [5] and F. Plastria [14] de-
rived independently the following sufficient condition
for a demand point to be the global minimum solution.

Property 5 For the unconstrained problem, if there is
a point i� 2 I+ such that

wi� �
X

i2IC[I�;i¤i�

wi ;

then (xi� , yi�) is the global optimum location.
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It is quite straightforward to show that if all weights
are positive then the expression for the weighted sum
of the Euclidean distances is convex [13] and there-
fore the single local minimum corresponds to the global
minimum. This means that the total expression for the
sum of weighted Euclidean distances is a difference of
two convex functions. As it has been noted earlier the
presence of negative weights greatly complicates the lo-
cation of the global minimum solution by introduc-
ing concave contributions in the objective function.
This special class of difference of two convex func-
tions (DC) optimization problems has recently (1990)
received considerable attention [7]. The next theorem
introduces a set of conditions for convexity of F(x, y) at
some point (x, y).

Property 6 F(x, y) is convex at (x, y) if
X

i2IC[I�

Wi

ri
� 0;

and
X

i2IC[I�

X

j2IC[I�;
j>i

WiWj

r3i r
3
j

�
�
(x � xi )(y � y j)C (x � x j)(y � xi)

�2
� 0;

where ri D
p
(x � xi)2 C (y � yi )2, i 2 I+ [ I� and

Wi D

(
wi ; i 2 IC;
�wi ; i 2 I�:

A proof of this property can be found in [11].
A special case of this problem, involving three

points with weights equal to one, was first posed by P.
Fermat in the seventeenth century and it was solved ge-
ometrically by E. Toricelli. E. Weiszfeld [23] first pro-
posed a simple iterative algorithm but with no con-
vergence proof. Later, H.W. Kuhn [8,9,10] proved that
Weiszfeld’s algorithm was convergent assuming no it-
erate coincided with any of the demand points. L.M.
Ostresh [12] and E. Balas and others [1] proposed mod-
ifications of the Weiszfeld algorithm where by perturb-
ing the current point, if it coincided with a demand
point, was global convergence guaranteed. C.Y. Wang
[22] proved that Weiszfeld’s algorithm has linear rate
of convergence under certain conditions and sublin-
ear otherwise. More recently (1980s), P.H. Calamai and

A.R. Conn [2,3,4] and M.L. Overton [13] introduced
second order methods which involved local quadratic
convergence and global convergence under conditions.
G.L. Xue [25,26], and Xue and J.B. Rosen [15] proved
unconditional global convergence and conditional lo-
cal quadratic convergence for a second order algorithm
and computational comparisons were carried out be-
tween Weiszfeld’s algorithm and Newton’s algorithm
on a parallel machine.

Most papers address only positive weights reflecting
the inherent assumption that all points ‘attract’ the cen-
tral facility. However, in real world there exists an abun-
dance of example problems where certain points ‘repel’
the central facility. For example nuclear plants, sewage
treatment plants, or polluting industrial units may be
desired to be as close as possible to their customers so
that transportation costs are minimized but at the same
time environmental considerations require that these
facilities be as far as possible from residential areas and
fragile ecological systems. This need to locate a facility
away from certain points can be quantified through the
use of negative weights as shown in [16,19]. A negative
weight means that the value of the objective function is
increased as the facility approaches the corresponding
point. Therefore, the global optimum location of a fa-
cility is now the one that balances the repulsion and the
attraction acting on the central facility. It is interesting
to note that the introduction of negative weights greatly
increases the complexity of the problem.

Weber’s problem with some negative weights was
first considered by L.-N. Tellier [17], who studied the
case of two attractive and one repulsive point. Later,
Tellier and D. Pollanski [18] analyzed exhaustively all
different cases involving three demand points and de-
rived statistical conclusions regarding the types of pos-
sible solutions. Drezner and Wesolowsky [6] proved
a number of theoretical results and proposed a heuris-
tic algorithm for locating the global minimum solu-
tion. However, it was Chen and others [5] who first
presented an exact outer approximation algorithm for
Weber’s problem with attraction and repulsion by ex-
ploiting the d.c. structure of the problem. In addition,
they [5] extend their procedure to exponentially decay-
ing repulsion and facility location within a set of dis-
joint convex polygons. Later, Maranas and Floudas [11]
proposed a branch and bound type global optimization
algorithm for solving Weber’s problems with attraction
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and repulsion. The approach was based on the iterative
solution of a set of convex and concave lower bound-
ing problems. Convergence to an �-global minimum
was proven and examples were solved with as many as
10,000 points. By analyzing the computational results
they observed that for any given number of pointsN the
difficulty of the problem increases as we introducemore
repulsive points. This trend continues until about equal
numbers of attractive and repulsive points are reached.
Then, a sharp decrease in computational requirements
is observed as more repulsive points are added. In fact,
it is easier to solve problems involving more repulsive
points than attractive ones. The standard deviation of
the total number of required iterations and function
evaluations is fairly small for all ratios of attractive to
repulsive points with the sole exception of the N+ = N�

=N/2 case where the standard deviation is substantially
increased. For a given ratio of attractive to repulsive
points the CPU requirements increase almost linearly
with N reflecting the fact that most of CPU time is spent
on function evaluations.

A generalization of Weber’s problem is the maxi-
mization of the sum of decreasing convex functions of
arbitrary metrics. H. Tuy and F.A. Al-Khayyal [20] pro-
posed the first algorithm for finding global solutions
to the problem by reducing it to a sequence of uncon-
strained nondifferentiable convex minimization prob-
lems. Later, they [21] extended this work to account for
repulsion as well and proposed a d.c. reformulation of
the problem which enabled them to develop a global
optimization procedure.
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Abstract

Awell-studied problem in the area of computational bi-
ology is the sequence alignment problem. Three mixed-
integer linear optimization models have been devel-
oped to address the global pairwise sequence alignment
problem in a mathematically rigorous fashion. These
formulations, in addition to their rigor, allow for (a) the
natural introduction of functionally important conser-
vation constraints, (b) the creation of a rank-ordered
list of the highest scoring alignments and (c) the refine-
ment of alignments by using pairwise interaction scores
from simplified force fields. The third model, a path se-
lection approach, employs some of the algorithmic ad-
vantages of dynamic programmingmethods, to outper-
form other optimization models.

Keywords and Phrases

Sequence alignment; Integer linear optimization;
Global pairwise alignment; Rank-order list of
alignments

Introduction

Sequence alignment methods aim to both identify re-
lated protein sequences and determine the best align-
ment between them. This approach provides a rough
measure of evolutionary distance andmay indicate pos-
sible relationships between the protein structure and
function of similar sequences. Multiple scoring matri-
ces have been developed based on the techniques of the
percent of accepted mutations (PAM) [3] and protein
blocks (BLOSUM) [5] to quantify this evolutionary dis-
tance between aligned residues.

The pairwise sequence alignment problem is most
commonly addressed through either (i) global align-
ment or (ii) local alignment techniques. The goal of
global alignment algorithms is to determine the highest
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scoring overall alignment spanning the length of both
sequences. One widely used approach for this prob-
lem is a dynamic programming approach proposed by
Needleman and Wunsch [10].

Proteins may share sequence similarity in some re-
gions, but not in others. Local alignment algorithms are
more suited to these problems and strive to align only
the highest scoring subsequence match. Smith andWa-
terman extended the dynamic programming approach
for global pairwise sequence alignment problems to ad-
dress the local alignment problem [14]. Dynamic pro-
gramming approaches are computationally inadequate
for large scale database searches, so a number of heuris-
tic algorithms for local pairwise sequence alignment
have been proposed [1,2,11,12].

Several researchers have studied the effect of includ-
ing information about near-optimal alignments. The
investigation of the suboptimal paths and scores al-
lows for an evaluation of the reliability of portions of
a sequence alignment. A review of several approaches
to this problem and their impact can be found else-
where [17].

In some cases, an alignment between two sequences
can be improved by constraining the problem to in-
clude biologically important information in the overall
alignment. One example of this is the required conser-
vation of certain residues that form a motif necessary
for function. This problem has been addressed recently
by dynamic programming algorithms [4,15].

Models

Several integer linear optimization (ILP) models have
been developed to rigorously and completely address
the problem of global pairwise sequence alignment
in a general fashion. A comparison of the three ap-
proaches, a template-based model, a template-free
model, and a path selection model are presented in the
following sections. The formulation of the problem as
an integer linear optimization problem provides a de-
terministic guarantee of identifying the global maxi-
mum alignment [6], allows for the introduction of inte-
ger cut constraints, provides a framework for the intro-
duction of functionally-specific constraints, and shows
promise for the optimal identification of pairwise inter-
actions.

Template-Based Model

Consider two protein sequences S1, S2 of lengthsM and
N respectively, where M > N. Let the index i represent
each position in Sequence S1 and the index j represent
each position in S2, as shown in Eqs. 1–2.

i 2 1; 2 : : :M (1)

j 2 1; 2 : : :N (2)

The template-based optimization model assigns each
amino acid of both sequences to a template to generate
the optimal alignment. Equation 3 defines a template
length K as the sum of the length of the larger sequence
and the parameter N_GAPSm , representing the maxi-
mum number of allowed gaps. This model requires the
introduction of an index k, representing the position in
the template, as defined by Eq. 4.

K D M C N_GAPSm (3)

k 2 1; 2 : : : K (4)

The assignment of an amino acid to a template position
requires the definition of the binary variables, yik and
zjk, as shown in Eqs. 5–6.

yik D

8<
:

1 if amino acid i of S1 is assigned to
template positionk

0 otherwise
(5)

z jk D

8<
:

1 if amino acid j of S2 is assigned to
template position k

0 otherwise
(6)

A position in the template may not have an amino
acid assigned to it in the overall alignment. Therefore,
Eqs. 7–8 introduce additional binary variables to repre-
sent these alignment gaps.

ygk D

8<
:

1
if template position k is a gap
for Sequence S1

0 otherwise
(7)

zgk D

8<
:

1 if template position k is a gap
for Sequence S2

0 otherwise
(8)

The objective function of this optimization model max-
imizes the alignment score, which is the sum of a scor-
ing matrix value for each matching amino acid pair mi-
nus any associated penalties for gaps inserted in the
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sequence. The scoring matrix will assign a weight, wij,
to any template position k that contains the amino acid
in position i of Sequence S1 and also the amino acid in
position j of S2.

For an affine gap penalty model with no penalties
for gaps that begin or end a sequence, the objective
function can then be posed as shown in Eq. 9. The con-
tribution of the scoring matrix at positions i; j,wij, is
considered only if position i of Sequence 1 is assigned
to position k of the template, yik, and if position j of Se-
quence 2 is assigned to position k of the template, zjk.
The gap opening existence terms of Sequence 1, goS1k ,
and Sequence 2, goS2k , are weighted by the gap open-
ing penalty value of wo to assess the penalty for the
first residue of any gap in a sequence. The existence of
a gap extension variable of either sequence, gl S1k and
gl S2k , produces a penalty of wl for each occurrence. The
active gl S1k and gl S2k variables that are contained within
a beginning or an ending gap are counteracted by the
product of gbS1k , gbS2k , geS1k , or geS2k withwl . Gap open-
ing penalties at the beginning or end of a sequence are
explicitly omitted through only summing over the re-
duced index, such that 2 � k � K � 1.

max
X
i

X
j

X
k

wi j � yik � z jk �
K�1X
kD2

(goS1k C goS2k ) � wo

�

K�1X
kD2

�
(gl S1k � gbS1k � geS1k )

C (gl S2k � gbS2k � geS2k )
�
� wl

(9)

The objective function of Eq. 9 requires the lineariza-
tion of the product of two binary variables and is sub-
ject to numerous constraints. The details of the model
are available elsewhere [8].

Template-Free Model

Unlike the previously described mixed-integer linear
programming formulation of the global pairwise se-
quence alignment problem in Sect. “Template-Based
Model”, the optimization model presented here does
not assign the amino acids of each sequence to a tem-
plate. However, information about the maximum num-
ber of allowable gaps is still included in this model,
through the variable K in Eq. 3.

In the template-free model, a binary variable, zij, is
defined in Eq. 10 to represent the alignment of posi-
tion i in S1 to position j in S2. A method to handle gaps
in the sequence still must be introduced into the model
to account for the evolutionary changes that lead to
residue insertions and deletions. Aligning a gap residue
to another gap residue is not allowed. This observation
leads to two possibilities of gap occurrences. A gap can
either be in Sequence 1, across from a residue j in Se-
quence 2 or in Sequence 2, across from a residue i in
Sequence 1. These possibilities are modeled with the bi-
nary variables zgi and yg j , defined by Eq. 11–12.

zi j D

8<
:

1 if position j in S2 aligns with
positioni in S1

0 otherwise
(10)

zgi D

8<
:

1 if no position j in S2 aligns
to the residue in position i of S1

0 otherwise
(11)

yg j D

8<
:

1 if no position i in S1 aligns
to the residue in position j of S2

0 otherwise
(12)

The objective function in Eq. 13 maximizes the sum
of the weights of the residue-residue alignments minus
the sum of the gap penalties, plus the appropriate terms
that remove the penalties from the gaps at the begin-
ning and ends of the sequences. The scoring matrix val-
ues at any given pair of positions, wij are included when
the binary variables indicating a sequence alignment
that matches positions i and j, zij, are activated. For an
affine gap penalty model, the variables representing the
existence of a gap opening, goS1j and goS2i , and the ex-
istence of a gap extension, gl S1j and gl S2i , are multiplied
by their respective weights, wo and wl . If a gap residue
is present at the beginning or ending of a sequence, it
will be accounted for in an active value for one of gbS1j ,
geS1j , gbS2i , geS2i to remove the penalty assigned by the
previous terms.

max
X
i j

wi jzi j

�
X
j

(wo � goS1j C wl � gl S1j )
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�
X
i

(wo � goS2i C wl � gl S2i )

C

N�1X
j>1

wl � (gbS1j C geS1j ) (13)

C

M�1X
i>1

wl � (gbS2i C geS2i )

C wo � (geS11 C geS21 )

C wo � (geS1M C geS2N )

The objective function of Eq. 13 is subject to numerous
constraints. The details of these constraints are avail-
able elsewhere [9].

Path Selection Model

Let us introduce a binary variable Nij that repre-
sents the alignment of the residue at position i in Se-
quence 1 to the residue at position j in Sequence 2.
This binary variables performs a similar role as zij in
Sect. “Template-FreeModel”. The typical assignment of
this match assesses a weight, wij, based on a scoring ma-
trix developed through evolutionary analysis of protein
sequences.

A successful sequence alignment will have many ac-
tive Nij variables, which we will designate as nodes.
Let the binary variable yi i0 j j0 represent the existence of
a connecting path between node Nij and a neighbor-
ing node Ni 0 j0 . Associated with this connecting path,
is a weight parameter, Cii 0 j j0 , which can be calculated
in advance from the scoring matrix w and any position
dependent gap penalty form that is specified a priori.
An example of the representation of the node and path
variables is illustrated in Fig. 1.

Once these variables have been defined, the ob-
jective function of the optimal sequence alignment is
merely the sum of the product of the variable for the
existence of the path, yi i 0 j j0 , and the path weight, Cii 0 j j0

as shown in Eq. 14.

max
X
i

X
i 0>i

X
j

X
j0> j

yi i 0 j j0 � Cii 0 j j0 (14)

The variable yi i 0 j j0 is defined only as the existence of
a contact between two neighboring nodes, where each
node Ni 0; j0 that has an incoming connecting path ac-
tivated must also have an outgoing path. In effect, this
constraint can be thought of as a “mass” balance around

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Figure 1
(a) Alignment of two hypothetical sequence fragments.
(b) A node and path representation of the alignment prob-
lem as formulated by the mathematical model. Note the
three active paths connecting the four selected node vari-
ables

the node. This constraint is specified for all nodes ex-
cept those that are allowed to begin or end an alignment
by Eq. 15.

X
i<i 0

X
j< j0

yi i 0 j j0 �
X
i 00>i 0

X
j00> j0

yi 0 i 00 j0 j00 D 0

8 1 < i0 < M; 1 < j0 < N
(15)

Equation 16 requires an alignment that matches the
first residue in one of the two sequences to a residue
in the other sequence. This constraint invalidates any
alignment that aligns the first residue in both sequences
to a gap, a physically meaningless alignment and allows
for the path weights, Cii 0 j j0 , to be precalculated.
X
i 0>1

X
j

X
j0> j

yiD1;i 0 j j0 C
X
i

X
i 0>i

X
j0> j

yi i 0; jD1; j0

�
X
i 0>1

X
j0>1

yiD1;i 0; jD1; j0 D 1
(16)

If one sequence ends in a gap, the terminal residues
of the other sequence must be prevented from aligning
to earlier residues in a physically unrealistic way. Equa-
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tion 17 allows exactly one active node Ni; j involving
a terminal residue in either Sequence 1 or Sequence 2.

X
i<M

X
j

X
j0> j

yi;i 0DM; j j0 C
X
i

X
i 0>i

X
j<N

yi i 0 j; j0DN

�
X
i<M

X
j<N

yi;i 0DM; j; j0DN D 1

(17)

It is more efficient and more meaningful to restrict
the search to within a maximum alignment length, K.
Equations 18–19 require the sum of the sequence length
and the number of gaps created by the alignment to
be less than the maximum alignment length for Se-
quences 1 and 2 respectively.

X
i

X
i 0>i

X
j

X
j0> jC1

( j0 � j) � yi i 0 j j0 C

X
i

X
i 0>i

X
j0>1

( j � 1) � yi i 0; jD1; j0 C

X
i

X
i 0>i

X
j<N

( j0 � N) � yi i 0 j j0DN CM � K

(18)

X
i

X
i 0>iC1

X
j

X
j0> j

(i0 � i) � yi i 0 j j0 C

X
i 0>1

X
j

X
j0> j

( j � 1) � yiD1;i 0 j j0 C

X
i<M

X
j

X
j0> j

( j0 � N) � yi;i 0DM; j j0 C N � K

(19)

Equations 14–19 form the general mathematical model
for the path selection approach to the global pairwise
sequence alignment problem. Any of the three models
presented can be expanded to include functionally-spe-
cific constraints, integer cut constraints, and pairwise
interactions. Only the constraints necessary to include
these features in the path selection model will be pre-
sented here.

Functionally-Specific Constraints

For some sequence alignment problems, specific
residues are related to the function of a protein and
should be maintained in a meaningful sequence align-
ment. This idea can be enforced in a mathematically
rigorous way. These constraints can only be defined if
the node existence variables, Nij, are connected to the

path existence variables, yi i 0 j j0 . One way to accomplish
this is by summing over a pair of indices within the path
variables, as shown in Eqs. 20–21.

X
i<i 0; j< j0

yi i 0 j j0 D Ni 0 j0 8i0 > 1; j0 > 1 (20)

X
i 0>i; j0> j

yi i 0 j j0 D Ni j 8i D 1 or j D 1 (21)

Constraints enforcing residue identity can then be
written in terms of theNij variables. If position i� in Se-
quence 1 must be conserved to maintain function, then
Eq. 22 enforces this requirement.

X
j;AAi�DAA j

Ni� j D 1 (22)

Integer Cut Constraints

This alignment model can be further extended by in-
troducing integer cut constraints. After each solve of
the above model, the previous solution is excluded from
the feasible solution space by Eq. 23. A is the set of ac-
tive variables in the solution to be excluded, I is the set
of inactive variables and card(A) is the cardinality of set
A, or the number of members of set A.

X
(i i 0 j j0)2A

yi i 0 j j0 �
X

(i i 0 j j0)2I

yi i 0 j j0 � card(A) � 1 (23)

Pairwise Interaction Scores

A score can also be assigned for the alignment of a pair
of amino acids i; i0 in one sequence to a specific pair of
amino acids j; j0 in the second sequence. One promis-
ing application of these pairwise interactions scores is
the ability to better evaluate the fitness of an alignment
between a protein of known structure and an unknown
protein with remote sequence homology. A number of
recently developed C˛-based distance dependent force
fields [7,13,16] are a good source for these scores be-
cause they allow some flexibility between the backbones
of these two structures.

A pairwise interaction score requires the definition
of the variable zi i 0 j j0 , representing the successful align-
ment of both i; j (Nij) and i0; j0 (Ni 0 j0 ). This variable is
initially introduced in Eq. 24 as the product of two node
existence binary variables.

zi i 0 j j0 D Ni j � Ni 0 j0 8i; i0; j; j0 (24)
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Equation 24 is nonlinear and must be linearized us-
ing standard optimization techniques by Eqs. 25–27,
which replace Eq. 24.

X
i j

zi i 0 j j0 � Ni 0 j0 8i0; j0 (25)

X
i 0 j0

zi i 0 j j0 � Ni j 8i; j (26)

Ni j C Ni 0 j0 � 1 � zi i 0 j j0 8i; i0; j; j0 (27)

Let the score of a pairwise interaction be denoted as
Pi i 0 j j0 . The objective function of Eq. 14 is expanded to
include an additional contribution as shown in Eq. 28.

max
X
i

X
i 0>i

X
j

X
j0> j

yi i 0 j j0 �Cii 0 j j0Czi i 0 j j0 �Pi i 0 j j0 (28)

The ability of the sequence alignment models to eas-
ily allow for pairwise interaction scores illustrates their
true power and flexibility. The model is guaranteed to
converge to the optimal solution even for problems of
this type. This guarantee suggests the effectiveness that
could be achieved by incorporating such a model into
a fold recognition framework.

Results and Discussion

The mixed-integer linear programming models of
Sect. “Models” can address generic sequence alignment
problems of a reasonable size. This method will be illus-
trated on an alignment of G-protein coupled receptors
with the use of integer cut constraints and an alignment
of pancreatic trypsin inhibitors demonstrating the use
of functionally-relevant conservation constraints. All
the alignments are calculated using the BLOSUM62
scoring matrix and an affine gap model with a gap
opening penalty of 11 and a gap extension penalty of 1.

G-protein Coupled Receptors

G-protein coupled receptors are a type of membrane
protein that regulate material and ion transport across
a cell membrane, a reason they are a popular target
for drug development. The alignment of the seventh
transmembrane helix of bovine rhodopsin (34 amino
acids) to the seventh transmembrane helix of H1R (35

Sequence 1:
KNCCNEHLHM FTIWLGYINS TLNPLIYPLC NENFK
Sequence 2:
SDFGPIFMTI PAFFAKTSAV YNPVIYIMMN KQFR

ITERATION: 1 OBJECTIVE: 26 (9 matches)
1234567890 1234567890 1234567890 12345678

S1: KNCCNEHLHM F-TI--WLGY INSTLNPLIY PLCNENFK
| || || || | |

S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR

--------------------------------------------------
ITERATION: 2 OBJECTIVE: 25 (8 matches)

1234567890 1234567890 1234567890 12345678
S1: KNCCNEHLHM FTIWLGYINS T---LNPLIY PLCNENFK

| | || || | |
S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR
--------------------------------------------------
ITERATION: 3 OBJECTIVE: 25 (7 matches)

1234567890 1234567890 1234567890 12345678
S1: KNCCNEHLHM FTI---WLGY INSTLNPLIY PLCNENFK

| || || | |
S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR
--------------------------------------------------
ITERATION: 4 OBJECTIVE: 25 (7 matches)

1234567890 1234567890 1234567890 12345678
S1: KNCCNEHLHM FT---IWLGY INSTLNPLIY PLCNENFK

| || || | |
S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Figure 2
A rank-ordered list of the top four optimal alignments of the
helix 7 region of the human histamine receptor (Sequence 1)
to the helix 7 region of the bovine rhodopsin (Sequence 2)
for a template length of 50 residues

amino acids), the first human histamine receptor, will
be considered to illustrate alignment uncertainty [9].
Figure 2 shows the the regions of uncertainty in the se-
quence alignment using integer cut constraints. There
is a strong conservation of alignment at the ends of
the selected sequence, including the preservation of the
highly conserved NPxxY motif. The central regions of
the aligned sequences shows more variability. This ob-
servation could be a result of less structural conserva-
tion in the region, or less sequence similarity required
for structural (and functional) conservation.

A comparison of the computational resources re-
quired for this problem is presented in Table 1. A larger
template length results in a more complex optimization
problem to be solved. The path selection model signif-
icantly outperforms the other formulations, especially
for the larger template lengths.
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Sequence 1:
MLKYTSISFL LIILLFSFTN ANPDCLLPIK TGPCKGSFPR YAYDSSEDKC
VEFIYGGCQA NANNFETIEE CEAACL

Sequence 2:
RPDFCLEPPY TGPCKARIIR YFYNAKAGLC QTFVYGGCRA KRNNFKSAED
CMRTCGGA

OBJECTIVE: 141 (26 exact matches)
1234567890 1234567890 1234567890 1234567890 1234567890

S1: MLKYTSISFL LIILLFSFTN ANPD-CLLPI KTGPCKGSFP RYAYDSSEDK
|| || | ||||| || |

S2: ---------- ---------- -RPDFCLEPP YTGPCKARII RYFYNAKAGL

S1: CVEFIYGGCQ ANANNFETIE ECEAACL--
| | |||| | ||| | | |

S2: CQTFVYGGCR AKRNNFKSAE DCMRTCGGA

Global Pairwise Protein Sequence Alignment via Mixed-Integer Linear Optimization, Figure 3
Optimal alignment of bombyx mori kazal-type serine proteinase inhibitor 1 (Sequence 1) to bovine pancreatic trypsin in-
hibitor (Sequence 2), given the requirement of cysteine conservation and a template length of 100

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Table 1
Computational performance of the template-based (TB),
template-free (TF) and path selection (PS) models for helix 7
of the G-protein coupled receptor proteins (run times in sec-
onds on an Intel Pentium3.2 GHz processor, usingCPLEX 9.0)

K TB TF PS Objective
40 1000+ 35.21 1.30 26,25,25,25
45 1000+ 177.8 5.27 26,25,25,25
50 1000+ 1000+ 14.71 26,25,25,25

Serine Protease Inhibitors

Serine protease inhibitors are responsible for regulat-
ing serine proteases, proteins necessary for hydrolyzing
peptides. One well-studied protein within this class is
the bovine pancreatic trypsin inhibitor (BPTI). Its na-
tive three-dimensional structure is stabilized by 3 disul-
fide bonds that are conserved across the class of serine
protease inhibitors. An alignment of BPTI (58 amino
acids) to the bombyx mori (domestic silkworm) kazal-
type serine protease inhibitor (76 amino acids) has pre-
viously been investigated in the context of introducing
constraints for the functionally important conservation
of the disulfide bonds [8]. The results of such an align-
ment are presented in Fig. 3. The six conserved cysteine
residues necessary for the formation of the three disul-

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Table 2
Computational performance of the template-based (TB),
template-free (TF) and path selection (PS) models for the
alignment of bombyx mori kazal-type serine proteinase in-
hibitor 1 to bovine pancreatic trypsin inhibitor (run times
in seconds on an Intel Pentium 3.2GHz processor, using
CPLEX 9.0)

K TB TF PS Objective
80 886.4 0.36 0.64 141
90 1000+ 80.3 1.74 141

100 1000+ 912.4 2.77 141

fide bridges that stabilize the functional protein are ap-
parent from this alignment.

A comparison of the computational resources re-
quired for this problem is presented in Table 2. Even
with the inclusion of the conservation constraints, the
path selection model still solves this alignment example
quite rapidly for large template lengths. Although the
template-free approach slightly outperforms the path
selection approach for short template length restric-
tions, it does not scale very well with increases in tem-
plate length. Similar to the first example, the template-
free approach solves the problem significantly faster
than the template-based approach, but the path selec-
tion approach is superior to both of the mixed-integer
linear programming techniques.
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A supply chain (SC) may be defined as an integrated
process where several business entities such as suppli-
ers, manufacturers, distributors, and retailers work to-
gether to plan, coordinate and control the flow of ma-
terials, parts, and finished goods from suppliers to cus-
tomers. This chain is concerned with two distinct flows:
a forward flow of materials and a backward flow of in-
formation. Similarly, a global supply chain (GSC) may
be defined as a SC where one or more of these busi-
ness entities operate in different countries. For many
years, researchers and practitioners have concentrated
on the individual processes and entities within the SC.
Within the past few years, however, there has been an
increasing effort in optimizing the entire SC. This arti-
cle intends to highlight some of the early results from
the 1960s to 1995 that have led to today’s SC research
and most of the recent results that address the design
and management of GSC networks (as of 2000).

Within manufacturing and logistics research, the
current stream of SC research is largely built on prior
work in the area of multi-echelon inventory models.
The early works [4,5] and [14] form the basis for most
of the research done in this area. See [13] and [3] for ex-
tensive reviews of multi-echelon inventory models. For
detailed and more recent discussions of multi-echelon
models, see [12,19,20].
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As companies began to realize the benefits of op-
timizing the SC as a single entity, researchers began
utilizing operations research (OR) techniques to bet-
ter model supply chains. See [2] for an extensive review
of the literature in SC modeling. Typically, a SC model
tries to determine:
� the transportation modes to be used;
� the suppliers to be selected;
� the amount of inventory to be held at various loca-

tions in the chain;
� the number of warehouses and plants to be used;

and
� the location and capacities of these warehouses and

plants.
However, as a result of the globalization of the econ-
omy, the models have become more complex. GSC
models now often try to include factors such as ex-
change rates, international interest rates, trade barriers,
taxes and duties, market prices, and duty drawbacks.
All of these factors are generally difficult to include in
mathematical models because of the uncertainty and
nonlinearity they introduce.

See [21] and [7] for extensive reviews on GSC
models. [21] concentrates on strategic production-
distribution models whereas [7] focus on the integra-
tion of SC network optimization with real options pric-
ing methods. This article complements these reviews by
giving a chronological listing of the models in both ar-
eas.

In [15] an international facility location model is
presented. This is one of the first mathematical pro-
grams that includes financial aspects in GSC modeling.
The authors develop a large scale nonlinear mixed in-
teger programming problem (MIP). The objective func-
tion takes into account the expected profit and the vari-
ance of the profit, where the variance of the profit is
multiplied by a risk aversion factor. Plant capacities,
market demands and financial constraints are included
in the model. The formulation considers production
and transportation costs, exchange rate fluctuations, in-
ternational interest rates, market prices, import tariffs,
and export taxes.

In [9] a deterministic model is proposed for maxi-
mizing the after tax profit of a large scale international
distribution network. Transportation costs, fixed setup
costs, variable production and purchasing costs, and
fixed vendor costs are included in the model. Themodel

enforces production capacity constraints, demand lim-
its, material requirements at each plant, supplier capac-
ity constraints, balance constraints at plants and dis-
tribution centers, feasible flow constraints, and offset
trade requirements. The model is run sequentially over
a fixed time horizon and computational results are pre-
sented for various problem sizes.

In [6] the differences are analyzed between an in-
ternational SC model and a single-country model, and
a dynamic, nonlinear MIP model is developed. The in-
clusion of features such as duties, tariffs, tax rates, and
exchange rates produce models that are very difficult to
solve optimally even for small size problems.

In [8] a normative model is presented for the opera-
tions of a global company. Plant location, capacity and
product mix, and material and cash flow determina-
tion are the decisions included in the model. The model
consists of a master problem and a set of subproblems.
The master problem is amultiperiod stochastic program
and the subproblems are single period stochastic pro-
grams. These problems are linked through a set of sub-
models such as a stochastic SC model, a financial flow
model, a stochastic exchange rate model, and a price-
demand model.

In [17] a stochastic dynamic programming (DP)
model is developed that treats the SC as equivalent to
owning a financial option instrument. The value of the
option depends on the real exchange rate. The authors
consider production switching between two manufac-
turing plants located in different countries depending
on the real exchange rate. The model does not consider
characteristics such as multiple products or different SC
stages. The model becomes intractible for more than
one exchange rate process.

In [1] a comprehensive, multiperiod, multicom-
modity MIP model is proposed which is used to opti-
mize the SC of Digital Equipment Corporation (DEC).
The objective of the model is to minimize a function
of total production and distribution cost, savings from
credit, and an additional term which contains produc-
tion and transportation times. The total cost includes
fixed and variable costs of production, transportation
cost, material handling, inventory, and overhead costs.
The savings from credit are due to reexporting prod-
ucts. The model enforces constraints on demand satis-
faction, production and throughput capacities at each
facility, and bounds on decision variables. In addition,
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international constraints such as duty drawback, duty
relief, and offset trade are included. The authors de-
scribe how DEC used this model to manage their GSC.

In [18] a multiperiod stochastic DP is introduced
that allows the firm to switch among several production
modes to maximize profit. The production modes they
consider are exporting from the home country, a joint
venture with local partners, and establishing a wholly
owned subsidiary for a foreign firm. It concludes by
identifying cases in which one of these modes would be
preferred to the others.

In [16] a stochastic DP formulation is developed
for the valuation of global manufacturing strategy op-
tions. A hierarchical approach is proposed. First, the ex-
change rates are modeled by multinomial approxima-
tions. Then, options for alternative product and SC net-
work designs are determined based on the firm’s global
manufacturing strategy. Finally, anMIP model for each
exchange rate within every period is solved and the
value of several manufacturing options is determined.
The expected profit for each policy option is found by
solving a stochastic DP using the values of the manu-
facturing policies.

In [11] the problem of operating a network of plants
that are partially-owned subsidiaries of a multinational
corporation is analyzed. Using real data, a model of
three subsidiaries and four countries is developed for
one industry and the effects of coordination under var-
ious macroeconomic conditions are discussed.

In [10] optimal policies for operating a network
of plants located in different countries is studied. It
is assumed that production costs are stochastic and
are influenced by factors such as exchange rates, infla-
tion, taxes, and tariffs. There is a one-time charge for
switching (production volume changes between coun-
tries) and variable production costs are either concave
or piecewise linear convex at each plant. It is also as-
sumed that demand is deterministic and stationary.
Under these assumptions a two-country, single market
stochastic DP model is developed. The authors show
that the optimal policy is always a barrier policy when
switching costs are linear or step functions. (A barrier
policy is a policy in which each plant operates either at
a minimum or a maximum output level.)

The literature on GSC management is quite re-
cent and the models developed usually do not consider
most of the uncertainties that international corpora-

tions face. Each model addresses a limited number of
the aspects of managing a GSC. There is an ongoing ef-
fort to develop more comprehensive and practical GSC
design models that will accommodate the needs of the
rapidly changing global economy.

See also

� Inventory Management in Supply Chains
� Nonconvex Network Flow Problems
� Operations Research Models for Supply Chain

Management and Design
� Piecewise Linear Network Flow Problems

References

1. Arntzen BC, Brown GG, Harrison TP, Trafton LL (1995)
Global supply chain management at Digital Equipment
Corporation. Interfaces 25(1):69–93

2. Beamon BM (1998) Supply chain design and analysis:
Models and methods. Internat J Production Economics
55:281–294

3. Bhatnagar R, Chandra P, Goyal SK (1993) Models for multi-
plant coordination. Europ J Oper Res 67:141–160

4. Clark AJ, Scarf H (1960) Optimal policies for amulti-echelon
inventory problem. Managem Sci 6(4):475–490

5. Clark AJ, Scarf H (1962) Approximate solutions to a sim-
ple multi-echelon inventory problem. In: Arros KJ, Karlin
S, Scarf H (eds) Stud. Appl. Probab. and Management Sci.,
Stanford Univ. Press, Palo Alto, CA, pp 88–110

6. Cohen MA, Fischer M, Jaikumar R (1989) Internat. manu-
facturing and distribution networks: A normative model
framework. In: Ferdows K (ed) Managing Internat. Manu-
facturing. North-Holland, Amsterdam, pp 67–93

7. Cohen MA, Huchzermeier A (1998) Global supply chain
management: A survey of research and applications. In:
Tayur S, Ganeshan R, Magazine M (eds) Quantitative Mod-
els for Supply Chain Management. Kluwer, Dordrecht

8. Cohen MA, Kleindorfer PR (1993) Creating value through
operations: The legacy of Elwood S. Buffa. In: Sarin RK (ed)
Perspectives in Oper. Management (Essays in Honor of El-
wood S. Buffa), Kluwer, Dordrecht, pp 3–21

9. CohenMA, Lee HL (1989) Resource deployment analysis of
global manufacturing and distribution networks. J Manu-
facturing Oper Management 2:81–104

10. Dasu S, Li L (1997) Optimal operating policies in the
presence of exchange rate variability. Managem Sci
43(5):705–722

11. Dasu S, de la Torre J (1997) Optimizing an international
network of partially owned plants under contiditions of
trade liberalization. Managem Sci 43(3):313–333



Global Terrain Methods G 1437

12. Diks EB, de Kok AG, Lagodimos AG (1996) Multi-echelon
systems: A service measure perspective. Europ J Oper Res
95:241–263

13. Federgruen A (1993) Centralized planning models for
multi-echelon inventory systems under uncertainty. In:
Graves S, Rinnooy Kan AHG, Zipkin P (eds) Logistics
of Production and Inventory, North-Holland, Amsterdam,
pp 133–173

14. Geffrion AM, Graves GW (1974) Multicommodity distribu-
tion system design by Benders Decomposition. Managem
Sci 20(5):822–844

15. Hodder JE, Dincer MC (1986) A multifactor model for in-
ternational plant location and financingunder uncertainty.
Comput Oper Res 13(5):601–609

16. Huchzermeier A, Cohen MA (1996) Valuing opera-
tional flexibility under exchange rate risk. Oper Res
44(1):100–113

17. Kogut B, Kulatilaka N (1994) Operating flexibility, global
manufacturing, and the option value of a multinational
network. Managem Sci 40(1):123–139

18. Kouvelis P, Sinha V (1995) Exchange rates and the choice
of production strategies: Supplying ForeignMarkets. Duke
Univ., Durham, NC

19. Tayur S, Ganeshan R, Magazine M (1998) Quantitative
models for supply chain management. Kluwer, Dordrecht

20. van Houtum GJ, Inderfurth K, Zijm WHM (1996) Materials
coordination in stochastic multi-echelon systems. Europ J
Oper Res 95:1–23

21. Vidal CJ, Goetschalckx M (1997) Strategic production-
distribution models: A critical review with emphasis on
global supply chain models. Europ J Oper Res 98:1–18

Global Terrain Methods
ANGELO LUCIA

Department of Chemical Engineering,
University of Rhode Island, Kingston, USA

Article Outline

Introduction
Formulation

Problem Statement
Geometrical Foundation

Methods
1) Moving Downhill
2) Acceleration to Singular Points
3) Moving Uphill
4) Eigenvalue-Eigenvector Computations
5) Effective Bookkeeping
6) Termination
7) Advanced Techniques

Parametric Disconnectedness
Non-differentiable Points and Manifolds
Integral Path Bifurcations
Gauss Curvature
Finding Integral Path Tangent Bifurcations
Finding Integral Path Pitchfork Bifurcations
Finding All Branches Associated with a Bifurcation Point

Cases
1) Nonlinear Objective Functions with Simple Bounds
2) Systems of Nonlinear Algebraic Equations
3) Nonlinear Objective Functions with Simple Bounds
and Linear Constraints

References

Introduction

Global terrain methods [5,6,7] are a class of methods
for solving nonlinear programming problems that are
based on the simple concept of intelligently following
valleys up and down on the terrain or landscape of three
times continuously differentiable or C3 objective func-
tion surfaces. They belong to the class of integral path
or path following methods [1,2,3,4,8] and can also be
used to solve systems of nonlinear equations formu-
lated as nonlinear least-squares problems. The overall
approach is based on the reliable and efficient computa-
tion of minima, saddle points, and singular points and
a terrain-following algorithm to efficiently move from
one stationary point to another or to a boundary of the
feasible region. What makes global terrain methods su-
perior to other path following methods is the Newton-
based predictor-corrector method used to move uphill
on the objective function landscape.

Formulation

The problem under consideration is that of finding
a number of minima, saddle points, and singular points
of a C3 objective function, � D �(z), defined on Rn

subject to bounds on variables, c(z), where z are the op-
timization variables. Let F D F(z) denote the gradient
of ' and J(z) denote the n � n symmetric Jacobian ma-
trix of F (or Hessian matrix of ').

Problem Statement

The problem can be stated in the form

Find fz�k g : z
�
k � c(z�) such that O(FTF) D 0 ; (1)
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where fz�k g denotes a set of minima, saddle points,
and/or singular points, and the constraints are given by

� z�i � zLi and z�i � zUi ; (2)

where zLi and z
U
i are the lower and upper bounds on the

variable zi .
Note that O(FTF) D JTF D 0 implies that either

F(z�k ) D 0 ; (3)

det J D 0 with null space vector F ¤ 0 : (4)

If z�k
 satisfies Eq. (3), it is either a minimum or a saddle
point of ' whereas if z�k satisfies Eq. (4), it is a singular
point of J. To distinguish between minima and saddle
points, the Hessian matrix of FTF is required, which is

H D JT J C˙FiGi ; (5)

where Fi is the ith element function of F and where Gi

is the corresponding element Hessian matrix of Fi . If all
eigenvalues of H are positive, z�k is a minimum of '. If
at least one eigenvalue of H is negative, z�k is a saddle
point of '.

Geometrical Foundation

Figure 1 shows the contours of FTF along with the ter-
rain path for a simple two dimensional reactor example.
To understand the underlying geometric foundation on
which global terrain methods are built, consider two
neighboring contours or level curves along the curved
valley shown in Fig. 1. Note that the distance, �, be-
tween any two neighboring level curves in the normal-
ized gradient direction is largest exactly in the valley
and that this distance decreases in magnitude as points
move out of the valley along the same neighboring level
curves (i. e., the contours become more tightly packed
together). Therefore the norm of JTFmust be smaller at
any point in the valley than at any neighboring point on
any given level curve since the same change in the least-
squares function results from the largest change in dis-
tance. Thus the valley connecting the stationary points
shown in Fig. 1 can be characterized as the collection
of local minima in the norm of JTF over a set of level
curves. This same constrained extremum in the gradi-
ent norm also characterizes ridges, ledges and other dis-
tinct features of the objective function landscape in any
n-dimensional space.

Global Terrain Methods, Figure 1
Contours of a least squares surface

Valleys, ridges, ledge, etc. can be defined mathemat-
ically by a set of solutions, V , to a sequence of general
nonlinearly, constrained optimization problems

V D fmin gT g such that FTF D L ; for all L 2 �g ;

(6)

where F and J are defined as before and where
g D 2JTF, L is any given value (or level) of the least-
squares objective function, and � is some collection of
contours. That is, for any given level curve, we find the
point on L that corresponds to a local minimum in gT g.
The collection of minima for all levels gives all (or part)
of a valley, ridge, or ledge. Equation (6) forms the geo-
metrical backbone for global terrain methods and plays
an important role in the development of predictor-
corrector algorithms used to implement those ideas.
Moreover, � is actually a computational by-product of
the terrain-following approach.

It is useful to simultaneously monitor behavior on
the landscape of FTF and the objective function land-
scape, noting that minima and saddle points on ' are
minima on FTF while singular points on ' are saddle
points on FTF. Valleys on both surfaces closely align.

Methods

Terrain-following methods are comprised of a se-
quence of sub-problems that unfold dynamically dur-
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ing the course of solving a nonlinear programming
problem. Since global terrain methods move up and
down the landscape of FTF, these sub-problems in-
clude
1) Reliable downhill equation solving.
2) Reliable and efficient computation of singular

points.
3) Efficient uphill movement comprised of predictor-

corrector calculations.
4) Reliable and efficient eigenvalue-eigenvector com-

putations.
5) Effective bookkeeping.
6) A termination criterion to decide when the compu-

tations have finished.
7) Advanced techniques to deal with bifurcations and

non-differentiable points.

1) Moving Downhill

Downhill computations use a trust region method and
are capable of finding minima, saddle points, and some-
times singular points on an objective function surface.
In finding the first point, say z�1 , initiation of down-
hill computations is arbitrary. On subsequent downhill
sub-problems, calculations always begin in the direc-
tion of the smallest negative eigenvalue of H.

The basic downhill iteration is defined as follows

� D �ˇ�N C (ˇ � 1)g ; (7)

where �N D J�1F is the Newton direction and
ˇ 2 [0; 1] is determined by the following simple rules.
If jj�N jj � R, then ˇ D 1, where R is the trust region
radius. If jj�N jj > R and jjFjj � R, then ˇ D 0. Other-
wise, ˇ is the unique value in Eq. (7) on [0,1] that satis-
fies jj�jj D R. The new iterate is accepted if it reduces
jjFjj. Otherwise, the new iterate is rejected, the trust re-
gion radius is reduced and the calculations are repeated
until a reduction in jjFjj occurs. Downhill movement is
terminated when either jjFjj � ", where " is a conver-
gence tolerance, or jjFjj / jj�N jj � �, where � is some
small number (typically 10�6). This latter condition im-
plies that the Newton step is very large in compari-
son to the gradient and the computations are converg-
ing to a singular point. The algorithm then switches to
quadratic acceleration.

2) Acceleration to Singular Points

During downhill movement, quadratic acceleration is
used if jjFjj/jj�N jj � �. Quadratic acceleration is also
used during uphill calculations to converge to singular
points and is defined by

� D �H�1 JTF : (8)

During acceleration, norm reduction in F is not en-
forced because H can have eigenvalues of mixed sign.

3) Moving Uphill

Uphill movement is initiated in the eigen-direction as-
sociated with the smallest positive eigenvalue of the
Hessian matrix H and consists of two basic parts –
Newton predictor steps and successive quadratic pro-
gramming (SQP) corrector steps.

Uphill Predictor Steps Predictor steps follow a valley
uphill but will ‘drift’ from the valley – as shown in the
slight zigzag in the terrain path in Fig. 1, which shows
this ‘drift’ (followed by corrector steps). Uphill Newton
steps are defined by

�p D ˛�N ; (9)

where�N D J�1F and the step size ˛ 2 (0; 1].

Uphill Corrector Steps Corrector steps (again see
Fig. 1) are used intermittently to force iterates back to
a valley and are invoked when the condition

� D 57:295 arccos
��
�T

N c
�
/(jj�N jj jjvjj)

�
� 
 ; (10)

is satisfied, where v is the current estimate of the eigen-
vector associated with the smallest positive eigenvalue
ofH and
 is 5 degrees. Corrector steps are formulated
as

min gT g such that FTF D L ; (11)

where L is the current value of FTF. Corrector steps are
iterative and are considered converged when the neces-
sary conditions

FTF � L D 0 ; (12)

Hg � �g D 0 ; (13)



1440 G Global Terrain Methods

are satisfied. Corrector steps are computed using a suc-
cessive quadratic programming (SQP) method; how-
ever, other methods can be used for this purpose. The
SQP formulation for the problem defined by Eq. (11) is
given by

min gTH�c C
1
2
�T

c M�c such that

gT�c D �(FTF � L) ;
(14)

where M is the Hessian matrix of the Lagrangian
function. The Lagrangian function is defined by
L D gT g � �(FTF � L), where � is a Lagrange mul-
tiplier and where M is approximated by the rule
M D HTH � �H.

4) Eigenvalue-Eigenvector Computations

It is not always necessary to find all eigenvalues and
eigenvectors of H to decide whether to begin the next
phase of the computations uphill or downhill – partic-
ularly for problems with large n. Often it is sufficient
to compute a subset of eigenvalues and eigenvectors,
which can be conveniently performed using the inverse
power method. The inverse power method solves the
inverse form of

Hv � �v D 0 ; (15)

by constructing the iteration

vkC1 D �kH�1vk ; (16)

�kC1 D
vTkC1vkC1

vTkC1H�1vkC1
; (17)

where the calculations alternate between Eqs. (16)
and (17) until jjvkC1 � �kH�1vk jj < ", where " is some
pre-specified tolerance. Note that an estimate of v is
necessary to begin the inverse power method. Once the
first eigenvalue, say �1, and its corresponding eigen-
vector, v1, have been determined, the Hessian matrix
is deflated using symmetric orthonormal projection to
give an (n � 1) � (n � 1) symmetric matrix whose ba-
sis spans the space orthogonal to v1. The inverse power
method is used to find the next eigenvalue, �2, and its
associated eigenvector, v2, and then v2 is lifted to Rn .
This procedure of deflation by orthonormal projection
to form an (n � j) � (n � j) symmetric matrix whose

basis spans the space orthogonal to {v1; v2; : : : ; v j} fol-
lowed by the inverse power method and the lifting of
vjC1 to Rn is continued until as many eigenvalues and
eigenvectors as desired are determined.

5) Effective Bookkeeping

Another important aspect of global terrain methods
is that it is possible to avoid calculating the same z�k
more than once by effective bookkeeping. This is ac-
complished by storing solution information that in-
cludes the set of solutions, the solution types (i. e., min-
imum, saddle point, or singular point), corresponding
values of ' and FTF, and the current set of eigen-
connections (i. e., the smallest positive eigenvalue and
associated eigenvector for minima and saddles, and the
largest negative eigenvalue and associated eigenvector
for singular points). Following the determination of the
first stationary or singular point, z�1 , uphill movement
proceeds in theC/� eigen-direction associated with the
smallest positive eigenvalue of H. Assume that two new
stationary or singular points, z�2 and z�3 , have been de-
termined by these uphill calculations. The next move
will be downhill from z�2 in the eigen-directions, v2, as-
sociated with the largest negative eigenvalue, �2, ofH at
z�2 . However since z�2 and z�3 are connected by path to
z�1 , care must be exercised so as not follow the path back
to z�1 . To do this, nearest neighbors are determined by
finding k such that

jjz�2 � z�k jj is minimum for all k ¤ 2 : (18)

Let j be the index for which Eq. (18) is satisfied. Fol-
lowing this, the direction d2 D z�2 � z�j is defined. Cor-
rect downhill movement away from z�2 is defined by
whichever inequality

vT2 d2 < 0 or � vT2 d2 < 0 ; (19)

is satisfied. Note that the selection of the proper condi-
tion in Eq. (19) guarantees that initial movement from
z�2 will be in the direction away from the nearest solu-
tion z�j . Equations (18) and (19) can be easily general-
ized to give

jjz�i � z�k jj is minimum for all k ¤ K ; (20)

vTi di < 0 or � vTi di < 0 ; (21)

where d2 D z�i � z�j , j is the index that satisfies Eq. (20),
and K is the current number of solutions.
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6) Termination

Termination occurs when either the desired number of
points {z�k } have been calculated or a certain number
of bounds are encountered. The first termination cri-
terion is straightforward. In the normal case, termina-
tion occurs when two bounds have been encountered.
When bifurcations have been detected, then the num-
ber of bounds that must be encountered for termination
to occur is nb C 2, where nb is the number of distinct
bifurcations.

7) Advanced Techniques

For any global terrain method to be effective it must
also to address issues such as parametric disconnected-
ness, integral path bifurcations, and non-differentiable
points or manifolds.

Parametric Disconnectedness

Following solutions parametrically is the basis for many
homotopy-continuation methods. However, when
parametric solutions exist on disconnected branches
of solution curves, continuation methods can have
difficulties. Global terrain methods are completely un-
affected by parametric disconnectedness since they
operate in variable and not parameter space.

Non-differentiable Points and Manifolds

There are many engineering applications that ex-
hibit non-differentiable points and/or manifolds as
a consequence of inherent switching contained in
the objective function. At the ‘switch’ points, non-
differentiability can occur and there can be families of
‘switch’ points that form manifolds. Non-differentiable
points or manifolds are easily detected because they of-
ten exhibit retrograde curvature as well as other quali-
tative changes in model behavior that can be readily
monitored.

Figure 2 illustrates a case in which there is a non-
differentiable manifold. In this figure, z1 D C10; z2 D
C18; z3 D C21; z1Cz2Cz3 D 1, which is why the feasible
region is triangular shaped, and 0 � zi � 1; i D 1; 2; 3.
This curved manifold of non-differentiable points de-
notes the boundary between qualitatively different
types of behavior for the case where � D min[�1; �2]

at each z and is usually not mentioned in discussions of
optimization of physical models. However, it is impor-
tant in computations. The global terrain methodology
has no difficulties finding stationary and singular points
on FTF in this case because it monitors all aspects of the
' thereby allowing switching take place on the fly and
the correct stationary and singular points to be easily
found.

Integral Path Bifurcations

There are many applications in which integral paths
either split into two or become tangent to a contour.
These occurrences are called integral path bifurcations
and can significantly impact the reliability of global ter-
rain methods. Fortunately, Gauss curvature can pro-
vide a deterministic measure of the presence of bifur-
cation points.

It is often easier to understand integral bifurcations
from a geometrical perspective. Consider Fig. 3 where
z1 D C18; z2 D C19; z3 D C22; z1 C z2 C z3 D 1,
and 0 � zi � 1; i D 1; 2; 3. Note that there is a pitch-
fork bifurcation at the point denoted by the point b
on the integral path that runs from the two minima
and the saddle point of FTF in the center of the trian-
gle toward the saddle point and minimum very close
to the hypotenuse of the triangular region. If the inte-
gral path bifurcation at b goes undetected, then the sad-
dle point and minimum closest to the hypotenuse will
not be found because corrector iterations will force it-
erates to turn toward the left or right hand branches of
the pitchfork that end at the corners of the hypotenuse.
Note, however, that the level curves begin to flatten in
the neighborhood of the bifurcation point as the path
moves toward the hypotenuse. This flattening, together
with an eigenvector exchange from JTF to a vector in
the tangent subspace of the level constraint, is a neces-
sary condition for integral path pitchfork bifurcations,
like the one that occurs at b. Moreover, flattening is rel-
atively easy to measure by calculating (Gauss) curvature
along a contour.

Gauss Curvature

To measure Gauss or Gauss–Kronecker curvature, it is
necessary to calculate eigenvalues of the Hessian ma-
trix, H, projected onto the tangent subspace of the level
constraint, which is orthogonal to the gradient at any
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Global Terrain Methods, Figure 2
An Objective Function & Gradient Surface with a Non-Differentiable Manifold (left) b (FT1F1); (right) a Composite FTF

Global Terrain Methods, Figure 3
Integral Path Bifurcation on Objective Function & Gradient Surfaces (left) Landscape of'; (right) Landscape of FTF

given point along the integral path. Gauss–Kronecker
curvature corresponds to the determinant of this pro-
jected Hessian matrix. When the number of unknowns
is two, this curvature is called Gauss curvature. De-

creasing Gauss or Gauss–Kronecker curvature in a par-
ticular part of the feasible region indicates that the level
curves are flattening and provides a strong reason to
check for an exchange in the ‘minimum’ eigenvector of
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H and, if warranted, to search for an integral path bi-
furcation.

Current implementation of these ideas measures
flattening by calculating a few of the smallest eigen-
values (and eigenvectors) of the projection of H onto
the tangent subspace at each iteration of the calcula-
tions. Without a theoretical basis that defines how of-
ten Gauss curvature should be measured, intermittent
measurement seems ad hoc at best since very small re-
gions of decreasing Gauss curvature could go unde-
tected.

Finding Integral Path Tangent Bifurcations

This type of bifurcation point can be detected by mea-
suring Gauss curvature and by comparing vectors along
the flow of an integral path and vectors in the tan-
gent subspace of the level sets for points on the path.
When Gauss curvature decreases and the flow of the
integral path becomes collinear to the tangent subspace,
a tangent bifurcation point has occurred. Generally, this
shows up as a ‘jump’ in the path to a point a con-
siderable distance away on a neighboring level curve.
Between these two points the value of the constrained
minimum defining the path is degenerate andH has re-
peated eigenvalues.

Finding Integral Path Pitchfork Bifurcations

When flattening occurs but the flow of the integral path
is not collinear to the tangent subspace of the level
constraint, an eigenvalue exchange is sought. This ex-
change in the minimum eigenvalue ofH from one asso-
ciated with JTF to one associated with the tangent sub-
space of a level curve is easily determined by monitor-
ing the eigenvalue associated with the terrain path and
the smallest eigenvalue of the matrix H projected onto
the tangent subspace. Once an eigenvalue exchange is
detected, the algorithm searches for a possible bifur-
cation point by locating a maximum in the norm of
JTF on the level curve, say L�, where the eigenvalue ex-
change has been detected. This is because as contours
flatten, the distance between these level curves becomes
smaller and smaller, which is an indication that the na-
ture of jjJTFjj on L� has changed from a constrained
minimum to a constrained maximum. See the discus-
sion in [7]. Therefore, an approximate bifurcation point

is calculated by solving the NLP problem

max gT g such that FTF D L� : (22)

Note that Eq. (22) is very similar to Eq. (11). Thus
the numerical methodology needed to solve Eq. (22)
already exists in the form of the corrector algorithm.
However, it is important to note that predictor iter-
ates rarely land exactly on the contour corresponding to
a pitchfork bifurcation because finite step sizes are used
in the predictor-corrector calculations. They generally
land close and thus the solution to Eq. (22) is usually
a very good approximation of the bifurcation point –
since all that is really needed to follow all branches of
a pitchfork bifurcation is knowledge at a point follow-
ing the eigenvector exchange. Moreover, because con-
tours in the neighborhood of a pitchfork bifurcation
point can be very flat, solving Eq. (22) can be challeng-
ing in some cases. Extreme flatness creates numerical
problems because it implies that the Kuhn–Tucker con-
ditions for Eq. (22) have a near singular coefficient ma-
trix. Therefore, good step size control should be used
when solving Eq. (22).

Finding All Branches Associated
with a Bifurcation Point

Once a bifurcation point is located, all branches from
the bifurcation must be followed in order to increase
the probability of finding all relevant solution informa-
tion. Locating these branches is reasonably straightfor-
ward. Tangent bifurcation points are characterized by
collinearity and provide only a single branch for further
exploration that, as noted, manifests itself by a ‘jump’ to
a widely different point on a neighboring level curve.
Pitchfork bifurcation points, on the other hand, pro-
vide three branches of further exploration defined by
the gradient to the level curve L�, and C/� the ‘mini-
mum’ eigenvector ofH projected onto the tangent sub-
space at the bifurcation on L�. Each of these vectors is
easily computed. The gradient vector at a bifurcation,
which corresponds to the middle part of the pitchfork,
is a readily available byproduct of the calculations. The
‘minimum’ eigenvector ofH on the tangent subspace at
L� is also easily determined. What is difficult is locating
the valleys that correspond to the pair of minima of gT g
on L�. For this a careful initialization of our corrector
algorithm is required to solve Eq. (11) with L D L�.
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Cases

There are several problem cases that are encompassed
by the global terrain-following formulations and meth-
ods presented in earlier sections. These cases include
1) Nonlinear objective functions with simple bounds

on variables.
2) Systems of nonlinear algebraic equations.
3) Nonlinear objective functions with simple bounds

and linear constraints.

1) Nonlinear Objective Functions
with Simple Bounds

This is the case on which the developments in the for-
mulation and methods sections are based and no fur-
ther discussion is necessary.

2) Systems of Nonlinear Algebraic Equations

For a system of algebraic equations, F D 0 is usually
given and ' is irrelevant. The function of interest be-
comes the traditional nonlinear least squares function,
FTF, and the terrain methodology follows the strategies
outlined in previous sections.

3) Nonlinear Objective Functions
with Simple Bounds and Linear Constraints

Nonlinear programming problems that involve linear
equality constraints are easily handled by global ter-
rain methods by using the linear constraints to elimi-
nate optimization variables. Form linear constraints, m
optimization variables can be eliminated. However, it
is important to understand that the gradient and Hes-
sian matrix of ' must be adjusted to accommodate this
variable elimination. This can be done by either using
projection methods or by explicitly doing the elimina-
tion before formulating the optimization problem to be
solved by the terrain methodology.

If projection is used then F is replaced by PTF,
where P is the n � m orthonormal projection matrix
whose columns are orthogonal to all rows of the Jaco-
bian matrix of the linear constraints. That is, if JLEQ is
the m � n Jacobian of the m linear equality constraints,
then the projection matrix P satisfies JLEQP D 0. Addi-
tionally, the Hessian matrix of �; J, must reflect implicit
elimination and is easily computed to be PT JP. These
projections of F and J permit the use of the terrain

methodology in Rn�m while still allowing any bounds
on all variables to be enforced.

References

1. Baker J (1986) An algorithm for the location of transition
states. J Comput Chem 7:385–395

2. Cerjan CJ, Miller WH (1981) On finding transition states.
J Chem Phys 75:2800–2806

3. Diener I (1987) On the global convergence of path-
followingmethods to determine all solutions to a system of
nonlinear equations. Math Prog 39:181–188

4. Jongen HT, Stein O (2004) Constrained global optimization:
adaptive gradient flows. In: Floudas CA, Pardalos P (eds)
Frontiers in Global Optimization. Kluwer Acad, Boston

5. Lucia A, DiMaggio PA, Depa P (2004) A geometric method-
ology for global optimization. J Global Optim 29:297–314

6. Lucia A, Yang F (2002) Global terrain methods. Comput
Chem Eng 26:529–546

7. Lucia A, Yang F (2003) Multivariable terrain methods. AIChE
J 49:2553–2563

8. Page M, McIver JW (1988) On evaluating the reaction path
Hamiltonian. J Chem Phys 88:922–935

Graph Coloring
GC

JUE XUE

Department Management Sci.,
City University Hong Kong, Kowloon, Hong Kong

MSC2000: 90C35

Article Outline

Keywords
See also
References

Keywords

Graph; Coloring; Optimization; Approximation;
Algorithms

A graphG = (V , E) consists of a vertex set V and an edge
set E � V × V . If e = (i, j) ( 2 E) is an edge of G, then e
is incident to i and j, and i and j are adjacent. Similarly,
if two edges are incident to the same vertex, they are
adjacent.
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A vertex coloring of G = (V , E) is an assignment
of k colors to members of V (a coloring) so that ad-
jacent vertices have different colors (G is k-colorable).
The graph coloring problem (GC) is to find the mini-
mum number k such that G is k-colorable.

When a positive integer weight wi is associated with
every i 2 V and a color assignment satisfies:
� every vertex i gets wi different colors,
� 8(i, j) 2 E, i and j get wi + wj different colors,
then this color assignment is a weighted coloring. The
weighted graph coloring problem asks for the minimum
number of colors needed for a weighted coloring of G.

An edge coloring and a total coloring of a given
graph can be defined in a similar way:
� An edge coloring assigns colors to edges so that ad-

jacent edges have different colors.
� A total coloring assigns colors to vertices and edges

so that any pair of adjacent vertices, adjacent edges,
and a vertex and any incident edge will have differ-
ent colors.

The edge coloring problem or the total coloring prob-
lem asks for the minimum number of colors needed
for an edge coloring or a total coloring, respectively
[12,28,30]. Although the weighted graph coloring, edge
coloring, and total coloring problems seem different
from GC, they can be transformed into a GC [33,42].
Further generalizations of GC tend to change the struc-
ture of a coloring solution, and they move closer to
other well-known combinatorial optimization prob-
lems [16,37].

GC is well-known in graph theory and combina-
torial optimization. It starts with the famous four-
coloring conjecture [24,38] which says four colors are
enough to color any geographic map so that every
country gets a color different from those used by its
neighbors. Although the four-coloring conjecture is
now considered a theorem [1,2], the process to prove
or disprove it has inspired many interesting ques-
tions [32], and has helped the development of several
branches of science, for example, the GC and the graph
theory [27]. The interest in GC also comes from its
vast number of applications in solving real world prob-
lems. For example, GC can be used to model problems
in timetabling, scheduling, computer science, informa-
tion systems, telecommunications, and other indus-
trial applications [9,11,39]. Typically, a graph is con-
structed with its vertices representing items of interest

and edges representing some undesirable binary rela-
tionship.

GC has several mathematical programming formu-
lations. For example, one can use an integer variable xik
= 1 to indicate when a vertex i is colored by k, and xik
= 0 otherwise. One can also use an integer variable yk =
1 to indicate color k is assigned to at least one vertex of
G, and yk = 0 otherwise. Then, the solution to the fol-
lowing mathematical programming problem provides
an optimal (minimum) coloring of G:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
jV jX
kD1

yk

s.t.
jV jX
kD1

xik D 1; 8i 2 V ;

xik C x jk � 1; 8(i; j) 2 E;
yk � xik ; yk ; xik 2 f0; 1g;
8i 2 V ; k D 1; : : : ; jV j ;

where |V| is the cardinality of the set V . In this prob-
lem, the objective function equals the number of colors
used. The constraints ensure that every vertex is col-
ored, that no adjacent vertices get the same color, and
that the counting of used colors is correct.

For a feasible coloring, one can group the vertices
into subsets based on their colors. Thus, vertices of each
subset will be mutually nonadjacent. Such a subset of
vertices is called a stable set, a color class, or an indepen-
dent set [5,8,35,41]. Using the concept of a stable set,
one can formulate GC as a set partitioning problem.

Let S1, . . . , St be all the stable sets of G. Let AS be
a 0� 1 matrix whose rows are the characteristic vectors
of the Sjs. One can use a variable sj = 1 to indicate that
all members of Sj have the same color, and sj = 0 oth-
erwise. Then the solution to the following problem also
provides an optimal (minimum) coloring of G:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
tX

jD1

s j

s.t. sAS D E1;
s j 2 f0; 1g; j D 1; : : : ; t;

where s = (s1, . . . , st), and E1 D (1; : : : ; 1) is of dimension
|V|.
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Other mathematical formulations of GC based
on quadratic programming, semidefinite programming
etc. are also available. Different formulations have their
own distinctive advantages in understanding the prob-
lem structure and in designing solution methods to
solve the problem [22,33,34].

Checking whether G is k-colorable for an arbitrary
integer k is an NP-complete problem [14,23]. It re-
mainsNP-complete even for fixed k� 3 [14,40]. There-
fore, it is unlikely that the solution time of GC can
be bounded by any polynomial function (polynomial
time) [13]. However, GC can be solved in polynomial
time for graphs of some special structures. For example,
polynomial algorithms exist for perfect graphs, Meyniel
graphs, and triangulated graphs [3,4,15,17,19,41].

Let us define the performance guarantee of an ap-
proximation method to be the worst ratio between
the approximation solution value and the correspond-
ing optimal solution value over all graphs of size |V|.
Then, O(|V| log |V|) seems to be the first performance
guarantee provided by a polynomial time GC heuris-
tic [20]. This performance guarantee has being im-
proved over the years. Let k be the optimal (mini-
mum) number of colors needed to color a graph, and
let � be the maximum degree (number of edges inci-
dent to a vertex) among all vertices. The two recent per-
formance guarantees achieved by polynomial approxi-
mation algorithms for GC are O(|V|(log log|V|)2/(log
|V|)3) and min{O(�1� 2/k), O(|V|1� 3 /(k + 1))} [18,22].
On the other hand, it is known that unless P = NP,
it is NP-hard to approximate an optimal graph color-
ing within a performance guarantee of O(|V|�), � > 0
[14,15].

Available solution methods for GC can be divided
into approximation algorithms and exact algorithms.
These methods find a feasible graph coloring and an op-
timal graph coloring, respectively [29].

A popular way to find an approximation solution to
GC is the sequential greedy coloring heuristic (SGCH).
In a SGCH, the vertices are ordered in a sequence and
are colored one at a time according to the sequence. Ev-
ery vertex is colored by the smallest (first) feasible color.
It is not hard to see that the initial vertex sequence de-
cides the resulting graph coloring of a SGCH.

It is also known that there exists at least one se-
quence under which a SGCH will find an optimal col-
oring. However, finding an optimal vertex sequence is

NP-hard. Extensive work aimed at finding ‘good’ ver-
tex sequences can be found in the literature [10,32].
Once a feasible coloring is available, further improve-
ment can be made using various methods, including:
interchange, iterative improvement, and other search-
ing techniques (such as simulated annealing and tabu
search) [36].

To date, the most popular and efficient way to find
an optimal solution to GC is through a branch and
bound (BB), or implicit enumeration, algorithm. A BB
algorithm typically consists of two parts: the forward
phases and the backtrack phases. A forward phase starts
from a partial coloring (e. g. ;) and colors the remain-
ing vertices to find a feasible graph coloring. For exam-
ple, a SGCH can be used in place of a forward phase.
A backtrack phase will decide the starting point of the
next forward phase so that an alternative feasible graph
coloring can be found.

Now let us consider how a simple BB algorithm [7]
finds an optimal coloring of G = (V , E). Let UB be the
value of a current best coloring (initially set UB =1).
Suppose the first forward phase applies a SGCH to ver-
tex sequence (v1, . . . , v|V|) and finds a feasible coloring
ofG. The number of colors used by the feasible coloring
will be the new UB. Apparently, UB is an upper bound
on the value of any feasible coloring that one needs to
search for.

Since SGCH assigns the smallest feasible color to ev-
ery vertex, a backtrack phase can be carried out by scan-
ning the vertices in the reverse order of (v1, . . . , v|V|).
That is, finding the first vertex vj that can be recolored
by an alternative feasible color < UB, not used for vj be-
fore. The new forward phase will start from the partial
coloring of {v1, . . . , vj � 1} and applies a SGCH to (vj,
. . . , v|V|), up to a vi whose smallest feasible color is UB,
or to v|V| that has a feasible color < UB. In the latter
case, a better coloring is found. Then the BB algorithm
will backtrack and repeat the above until it backtracks
to vertex v1 (the algorithm terminates).

Various improvement measurements are designed
and tested for the above basic BB method. They include
‘look ahead’, ‘dynamic reordering’, choosing an appro-
priate feasible color (instead of the ‘smallest’) to color
a vertex, using tighter lower and upper bounds, and
a column generation approach [6,21,26,31,33]. These
improvements have greatly reduced the search tree size
and enhanced our ability to solve GC optimally. The



Graph Coloring G 1447

state-of-the-art method for solving GC on randomly
generated graphs seems to be limited to graphs of 100
vertices [21,31,42,43].
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A graph is said to be planar if it can be drawn on the
plane in such a way that no two of its edges cross. Given
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a graph G = (V , E) with vertex set V and edge set E, the
objective of graph planarization is to find a minimum
cardinality subset of edges F � E such that the graph G0

= (V , E \ F), resulting from the removal of the edges in
F from G, is planar. This problem is also known as the
maximum planar subgraph problem. A related and sim-
pler problem is that of finding a maximal planar sub-
graph, which is a planar subgraphG0 = (V , E0) of G such
that the addition of any edge e 2 E \ E0 to G0 destroys its
planarity.

Graph planarization is known to be NP-hard [21].
The proof of NP-completeness of its decision version is
based on a transformation from the Hamiltonian path
problem restricted to bipartite graphs. Although ex-
act methods for solving the maximum planar subgraph
problem have been recently proposed, most algorithms
to date attempt to find good approximate solutions.

In this article, we survey graph planarization and re-
lated problems. In the next section, we describe vari-
ants and applications of the basic problem formulated
above. Next, we describe the branch and cut algorithm
of M. Jünger and P. Mutzel [16]. We then review work
on heuristics based on planarity testing and those based
on two- phase procedures. Finally, computational re-
sults are considered.

Variants and Applications

An application of graph planarization arises in the de-
sign of integrated circuits, in which a graph describing
the circuit has to be decomposed into aminimum num-
ber of layers, each of which is a planar graph [19]. Other
applications arise from variants of the basic graph pla-
narization problem.

One such variant is the maximum weighted planar
graph problem, in which positive weights are associ-
ated with the edges of the graph and one seeks a pla-
nar subgraph of maximum weight. Note that the ba-
sic graph planarization problem is a special case of the
maximum weighted planar graph problem, in which all
edge weights are equal to one. An application of this
problem to facility layout is described in [13]. A graph
is built in which the vertices represent the facilities and
the edges define the relationships between them. The
weight of each edge is the desirability that the two fa-
cilities that define the edge be adjacent in the design.
A maximum weighted planar subgraph corresponds to

a feasible layout with maximum benefit. In this paper,
the authors also propose simulated annealing and tabu
search heuristics for the approximate solution of the
maximum weighted planar graph problem. Construc-
tive heuristics based on maintaining a triangulated sub-
graph while making node and edge insertions are given
in [8,11], and [20].

Another related variant is that of drawing a given
graph such that the number of edge crossings is mini-
mized. The crossing number problem has practical ap-
plications in circuit design and graph drawing, such
as in CASE tools [27] and automated graphical dis-
play systems. One particular case is that of minimizing
straight-line crossings in layered graphs. A GRASP and
path relinking approach for the two-layer case is given
in [17], where one can also find a survey of the litera-
ture. Algorithms for graph drawing are reviewed in [6].

In the planar augmentation problem, one wants to
determine the minimum number of edges that need to
be added to a planar graph such that the resulting graph
is still planar and at least k-connected, where k is usu-
ally fixed to two or three. This variant has applications
in automatic graph drawing, as well as in the design of
survivable networks [24].

An Exact Algorithm

An exact branch and bound algorithm for the weighted
graph planarization problem was introduced in [10],
but was limited to small dense graphs. Only recently
(1999) has there been a leap in the performance of ex-
act methods for graph planarization with the Jünger–
Mutzel branch and cut algorithm [16], which we de-
scribe next.

Given a graphG = (V , E), their approach uses facet-
defining inequalities for the planar subgraph polytope
PLS(G). Let xe be a 0–1 variable associated with each
edge e 2 E, such that xe = 1 if and only if edge e appears
in the maximum planar subgraph of G. Furthermore,
let x(F) =

P
e 2 Fxe, for F � E.

Trivial inequalities 0 � xe � 1 are implicitly han-
dled by the linear programming (LP) solver. The in-
equality x(E) � 3|V| � 6 is added to the initial lin-
ear program. Let x be the optimal solution of the LP
relaxation associated with some node of the enumer-
ation tree. For 0 � � � 1, let E� = {e 2 E} xe � 1 �
�} and consider the graph G� = (V , E�), to which the
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Hopcroft–Tarjan planarity-testing algorithm [14] is ap-
plied. The algorithm stops if it finds an edge set F which
induces a nonplanar graph in G. If the inequality x(F)
� |F| � 1 is violated, it is added to the set of con-
straints of the current LP. The back edge of the path
which proved the nonplanarity of the graph induced in
G by F is removed and the planarity-testing algorithm
proceeds, eventually identifying other forbidden sub-
graphs of the graph G� . Although these forbidden sub-
graphs do not necessarily define facets of PLS(G), they
must contain facet-defining subgraphs. Facet-defining
inequalities are identified as follows. Once a forbidden
set F is found, where the inequality x(F) � |F| � 1 is
violated, one successively deletes each edge f 2 F and
applies the planarity-testing algorithm. If the graph in-
duced by F \ {f } is planar, then edge f is returned to
F. In at most |F| steps, F is reduced to a smaller edge
set which induces a minimal planar subgraph, leading
to the facet-defining inequality x(F) � |F| � 1 still vio-
lated by the current LP solution. Another simple heuris-
tic searches for violated Euler facet-defining inequali-
ties x(F) � 3|V 0| � 6 or x(F) � 2|V 0| � 4, where (V 0,
F) is, respectively, a clique or a complete bipartite sub-
graph of G.

After an LP has been solved, its solution is exploited
by the planarity-testing algorithm, to produce a feasi-
ble solution for the graph planarization problem. Such
feasible solutions are used as lower bounds that are used
not only for fathoming nodes in the branch and cut tree,
but also for fixing variables using their reduced costs
during a cutting plane phase. Other heuristics are im-
plemented to enhance the practical performance of the
algorithm.

Branching is done if no cutting plane has been
found for the current infeasible solution. The variable
chosen for branching is one with fractional value clos-
est to 1/2, among those with maximum cost coefficient
in the objective function.

Heuristics Based on Planarity Testing

The first linear time algorithm for planarity testing was
proposed by J. Hopcroft and R.E. Tarjan [14]. T. Chiba,
I. Nishioka and I. Shirakawa [4] used the basic ideas of
this approach to devise an algorithm for finding a max-
imal planar subgraph of G = (V , E) with time com-
plexity O(|V||E|). Later, J. Cai, X. Han and Tarjan [3]

proposed another version of the above planarity testing
algorithm. This new algorithm is based on processing
edges instead of paths. It leads to another algorithm to
find a maximal planar subgraph, with improved O(|E|
log |V|) time complexity.

A. Lempel, S. Even and I. Cederbaum [18] have pro-
posed another approach to planarity testing. Although
its original complexity was O(|V|2), K. Booth and G.
Lueker [2] have shown that it can be implemented in
linear time using PQ-trees. A few algorithms for find-
ing a maximal planar subgraph based on this planarity
testing approach have been proposed in the literature.
However, Jünger, S. Leipert and Mutzel [15] show that
attempts following this strategy are forced to fail.

Another approach for finding a maximal planar
subgraph of a given graph works as follows. Start with
an empty subgraph and successively add the edges of
the original graph, whenever such addition maintains
the planarity of the subgraph under construction. Us-
ing any of the planarity testing algorithms above de-
scribed, such approach can be implemented inO(|V||E)
time complexity. An incremental planarity testing algo-
rithm, based on an O(log|V) time-per-operation strat-
egy for the problem of maintaining a planar graph un-
der edge additions, was proposed by G. Di Battista and
R. Tamassia [7]. Hence, their algorithm leads to a more
efficient implementation of the incremental approach
for finding a maximal planar subgraph with O(|E| log
|V|) time complexity.

Two-Phase Heuristics

The heuristics described in this section are based on
the separation of the computation into two phases. The
first phase consists in devising a linear permutation
of the nodes of the input graph, followed by placing
them along a line. The second phase determines two
sets of edges that may be represented without cross-
ings above and below that line, respectively. Y. Takefuji
and K.C. Lee [25] were the first to propose a heuris-
tic using this idea. They use an arbitrary sequence of
nodes in the first phase and apply a parallel heuristic
using a neural network for the second phase. Takefuji,
Lee, and Y.B. Cho [26] claimed superior performance
of the two-phase approach of Takefuji and Lee [25]with
respect to the heuristics described in the previous sec-
tion.
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Their approach was later extended and improved
by O. Goldschmidt and A. Takvorian [12]. In the first
phase, these authors attempt to use a linear permuta-
tion of the nodes associated with an Hamiltonian cycle
of G. Two strategies are used:
i) a randomized algorithm [1] that almost certainly

finds a Hamiltonian cycle if one exists; and
ii) a greedy deterministic algorithm that seeks a Hamil-

tonian cycle.
In the latter, the first node in the linear permutation is
a minimum degree node in G. After the first k nodes of
the permutation have been determined, say v1, . . . , vk,
the next node vk+1 is selected from the nodes adjacent to
vk in G having the least adjacencies in the subgraph Gk

of G induced by V\{v1, . . . , vk}. If there is no node of Gk

adjacent to vk in G, then vk+1 is selected as a minimum
degree node in Gk.

LetH = (E, I) be a graphwhere each of its nodes cor-
responds to an edge of the input graph G. Nodes e1 and
e2 of H are connected by an edge if the corresponding
edges of G cross with respect to the linear permutation
of the nodes established during the first phase. A graph
is called an overlap graph if its nodes can be placed in
one-to-one correspondence with a family of intervals
on a line. Two intervals are said to overlap if they cross
and none is contained in the other. Two nodes of the
overlap graph are connected by an edge if and only if
their corresponding intervals overlap. Hence, the graph
H as constructed above is the overlap graph associated
with the representation of G defined by the linear per-
mutation of its nodes.

The second phase of the heuristic of Goldschmidt
and Takvorian consists in two-coloring a maximum
number of the nodes of the overlap graph H, such
that each of the two color classes B (blue) and R

(red) forms an independent set. Equivalently, the sec-
ond phase seeks a maximum bipartite subgraph of the
overlap graph H, i. e. a bipartite subgraph having the
largest number of nodes. This problem is equivalent to
drawing the edges of the input graph G above or be-
low the line where its nodes have been placed, accord-
ing to their linear permutation. A greedy algorithm is
used to construct a maximal bipartite subgraph of the
overlap graph. This algorithm finds a maximum inde-
pendent set B � E of the overlap graph H = (E, I), re-
duces the overlap graph by removing from it the nodes
inB and all edges incident to nodes inB, and then finds

a maximum independent set R� E\B in the remaining
overlap graph H0 = (E\B, I0). The two independent sets
so obtained induce a bipartite subgraph of the original
overlap graph, not necessarily with a maximum num-
ber of nodes.

The linear permutation obtained in the first phase
affects the size of the planar subgraph found in the sec-
ond phase of the above heuristic. Moreover, it is not
clear that the permutation produced by the greedy algo-
rithm is the best. To produce possibly better permuta-
tions, randomization and local search have been intro-
duced in the greedy algorithm by M.G.C. Resende and
C.C. Ribeiro [22] in the form of a greedy randomized
adaptive search procedure (GRASP).

A GRASP [9] is an iterative process, in which each
iteration consists of two phases: construction and local
search. The construction phase builds a feasible solu-
tion, whose neighborhood is explored by local search.
The best solution over all GRASP iterations is returned
as the result.

In the construction phase, a feasible solution is built,
one element at a time. At each construction iteration,
the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy
function that estimates the benefit of selecting each el-
ement. The adaptive component of the heuristic arises
from the fact that the benefits associated with every el-
ement are updated at each iteration of the construction
phase to reflect the changes brought on by the selection
of the previous elements. The probabilistic component
of a GRASP is characterized by randomly choosing one
of the best candidates in the list, but usually not the
top candidate. This way of making the choice allows for
different solutions to be obtained at each iteration, but
does not necessarily jeopardize the power of GRASP’s
adaptive greedy component.

The solutions generated by a GRASP construction
are not guaranteed to be locally optimal, even with re-
spect to simple neighborhood definitions. Hence, it is
almost always beneficial to apply a local search to at-
tempt to improve each constructed solution. A local
search algorithm works in an iterative fashion by suc-
cessively replacing the current solution by a better so-
lution from its neighborhood.

Resende and Ribeiro [22] proposed an extension
of the above described heuristic of Goldschmidt and
Takvorian, in which a GRASP is used for finding
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a linear permutation of the nodes. In the construction
phase of this GRASP, the greedy algorithm used in the
first phase by Goldschmidt and Takvorian is random-
ized: instead of selecting the node of minimum degree
among those yet unselected, the selection is made from
a set of low degree nodes. The local search phase of
this GRASP explores the neighborhood of the current
permutation by swapping the positions of two nodes
at a time, attempting to reduce the number of possible
edge crossings.

Incorporating the second phase of the Gold-
schmidt–Takvorian heuristic to the above GRASP for
finding a linear permutation of the nodes results in
a GRASP for graph planarization.

Each iteration of this GRASP produces three edge
sets: B (blue edges), R (red edges), and P (the remain-
ing edges, which are referred to as the pale edges). By
construction, B, R, and P are such that no red or pale
edge can be colored blue. Likewise, pale edges cannot
be colored red. However, if there exists a pale edge p 2
P such that all blue edges that cross with p (letbBp � B
be the set of those blue edges) do not cross with any red
edge r 2 R, then all blue edges b 2 bBp can be colored
red and p can be colored blue. In case this reassignment
of colors is possible, then the size of the planar subgraph
is increased by one edge. This post-optimization proce-
dure is incorporated at the end of each GRASP itera-
tion.

Computational Results

Detailed results on a set of 75 test problems described
in the literature [5,12] are reported in [22]. The de-
scription of the code used can be found in [23]. Here,
we summarize computational results illustrating the ef-
fectiveness of the two-phase heuristics described in the
previous section, as well as that of the exact branch and
cut algorithm. These results are based on a Fortran im-
plementation of the GRASP heuristic of Resende and
Ribeiro [22], on the original code of the branch and
cut algorithm of Jünger and Mutzel [16], and on pub-
lished results for the heuristics of Takefuji and Lee [25]
and Goldschmidt and Takvorian [22] (using the greedy
algorithm for building the linear permutation of the
nodes).

We give, in the table below, results comparing the
four approaches on a subset of the test problems de-

scribed in [12]. For each instance, the table lists the
number of nodes, the number of edges, and the size
of the planar subgraphs produced by each algorithm.
A time limit of 1000 seconds (on a SUN SPARCstation
10/41) was imposed on the runs of the branch and cut
algorithm and the best solution found was returned as
a heuristic solution when optimality was not attained in
that time limit. This time limit was reached on instances
G12–G19.

The results in this table show that the Goldschmidt–
Takvorian algorithm is a substantial improvement over
the neural network approach of Takefuji and Lee. The
GRASP consistently outperforms both other two-phase
heuristics, not only for the problems reported in this
table, but also for all of the remaining instances consid-
ered in [22].

Problem Nodes Edges T-L G-T R-R J-M
G1 10 22 20 20 20 20
G2 45 85 80 80 82 82
G3 10 24 21 21 24 24
G4 10 25 22 21 24 24
G5 10 26 22 21 24 24
G6 10 27 22 21 24 24
G7 10 34 23 22 24 24
G8 25 69 58 60 69 69
G9 25 70 59 60 69 69
G10 25 71 58 59 69 69
G11 25 72 60 59 69 69
G12 25 90 61 62 67 68
G13 50 367 70 131 135 125
G14 50 491 100 136 143 133
G15 50 582 101 142 144 138
G16 100 451 92 180 196 187
G17 100 742 116 219 236 213
G18 100 922 115 237 246 223
G19 150 1064 127 297 311 290

A comparison of GRASP with the branch and cut
algorithm depends heavily on the instances. The results
reported in [22] can be separated into two groups. On
49 of the 55 instances in the first group, the GRASP
either matched or produced better solutions than the
branch and cut algorithm. On 30 of those 55 instances,
the GRASP solution was strictly better than the branch
and cut solution. Note that, on these instances, the
branch and cut algorithm was forced to stop because
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of the 1000 second time limit. However, on all the re-
maining 20 instances, the branch and cut algorithm
performs remarkably well and outperforms all other al-
gorithms.

See also

� Feedback Set Problems
� Generalized Assignment Problem
� Graph Coloring
� Greedy Randomized Adaptive Search Procedures
� Optimization in Leveled Graphs
� Quadratic Assignment Problem
� Quadratic Semi-assignment Problem
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Introduction

Due to its fundamental nature and versatile modelling
power, the Graph Realization Problem is one of the
most well-studied problems in distance geometry and
has received attention in many communities. In that
problem, one is given a graph G D (V ; E) and a set
of non-negative edge weights fdi j : (i; j) 2 Eg, and the
goal is to compute a realization of G in the Euclidean
space Rk for a given dimension k � 1, i. e. to place
the vertices of G in Rk such that the Euclidean dis-
tance between every pair of adjacent vertices vi ; v j is
equal to the prescribed weight di j . The Graph Re-
alization Problem and its variants arise from appli-
cations in very diverse areas, the two most promi-
nent of which being molecular conformation (see,
e. g., [13,15,16,19,32]) and wireless sensor network lo-
calization (see, e. g., [2,8,14,22,24]). In molecular con-
formation, one is interested in determining the spatial
structure of a molecule from a set of geometric con-
straints; in wireless sensor network localization, one is
interested in inferring the locations of sensor nodes in
a sensor network from connectivity-imposed proxim-
ity constraints. Thus, in these contexts, an algorithm
that finds a realization of the vertices in the required
dimension will have interesting biochemical and engi-
neering consequences. Unfortunately, unless P D NP,
there is no efficient algorithm for solving the Graph
Realization Problem for any fixed k � 1 ([23]; see
also [3,4]). Nevertheless, many heuristics have been
developed for the problem over the years, and vari-
ous approaches have been taken to improve their effi-
ciency (see, e. g., [1,2,13,14,15,18,20]). However, these
approaches have their limitations. Specifically, either
they solve the original problem only for a very restricted
family of instances, or it is not clear when the algorithm
would solve the original problem. Thus, an interesting
question arises: given a relaxation of the Graph Realiza-
tion Problem, can one derive reasonably general condi-
tions under which the relaxation is exact?

We begin by examining a semidefinite program-
ming (SDP) relaxation proposed by [10] in Section
Formulation. We introduce the notion of unique k-
realizability and show that the SDP relaxation is exact
if and only if the input instance is uniquely k-realizable,
where k is the given dimension. The notion of unique k-
realizability is attractive, as it has a straightforward ge-
ometric interpretation and is also very suitable for the
algorithmic treatment of the Graph Realization Prob-
lem.

Although we have formulated the Graph Realiza-
tion Problem as a feasibility problem, it is clear that
one can also formulate various optimization versions
of it. One particularly useful objective is to maximize
the sum of the distances between certain pairs of non-
adjacent vertices. Such an objective essentially stretches
apart pairs of non-adjacent vertices, and is more likely
to flatten a high-dimensional realization into a lower di-
mensional one. Indeed, such a device has been proven
to be very useful for finding low-dimensional real-
izations both in theory (see, e. g., [6,7]) and in prac-
tice (see, e. g., [9,29,30]). In Section Applications, we
show how these ideas can be incorporated into the SDP
model and demonstrate a connection between SDP the-
ory and tensegrity theory in discrete geometry.

Formulation

We begin by introducing the semidefinite program-
ming (SDP) relaxation proposed by [10]. Let G D

(V ; E) be a graph, and let k � 1 be an integer. Let
V1 D f1; : : : ; ng and V2 D fnC1; : : : ; nCmg be a par-
tition of V . The vertices in V1 (resp. V2) are said to be
unpinned (resp. pinned). Specifically, let a D (ai)i2V2

be given, where ai 2 Rk for all i 2 V2. Then, the
vertex i 2 V2 is constrained to be at ai, while there
are no such restrictions on the vertices in V1. For our
purposes, we may assume that V2 6D ;, since we can
always pin one vertex at the origin. We may also as-
sume that E0 D f(i; j) : i; j 2 V2g � E, since the
distance between any two pinned vertices is trivially
known. Now, let E1 D f(i; j) 2 E : i; j 2 V1g be
the set of edges between two unpinned vertices, and let
E2 D f(i; j) 2 E : i 2 V2; j 2 V1g be the set of
edges between a pinned and an unpinned vertex. Let
d D (d2i j)(i; j)2E1 (resp. d̄ D (d̄2i j)(i; j)2E2 ) be a set of
weights on the edges in E1 (resp. E2). We are then in-
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terested in finding vectors x1; : : : ; xn 2 Rk such that:

kxi � x jk
2 D d2i j for (i; j) 2 E1

kai � x jk
2 D d̄2i j for (i; j) 2 E2

(1)

Here, k � k is the Euclidean norm, i. e. kxk D�Pk
iD1 x

2
i
�1/2 for x 2 Rk . We say that p D (p1; : : : ;

pn) 2 Rkn is a realization of (G; (d; d̄); a) inRk if it sat-
isfies (1). One may obtain a semidefinite relaxation of
(1) as follows. Let X D [x1 x2 : : : xn] be the k�nmatrix
that needs to be determined. Then, for all (i; j) 2 E1, we
have:

kxi � x jk
2 D (ei � e j)TXTX(ei � e j)

D (ei � e j)(ei � e j)T � (XTX)

and for all (i; j) 2 E2, we have:

kai � x jk
2 D

�
ai
�e j

�T

[Ik X]T[Ik X]
�

ai
�e j

�
D

�
ai
�e j

��
ai
�e j

�T

�

�
Ik X
XT XTX

�

Here, ei is the ith standard basis vector of Rn , Ik is
the k-dimensional identity matrix, and � is the Frobe-
nius inner product on the space of symmetric matrices,
i. e. A � B D tr(ATB) D

Pn
i; jD1 ai jbi j for symmetric

n�nmatrices A and B. Thus, problem (1) becomes that
of finding a symmetric matrix Y 2 Rn�n and a matrix
X 2 Rk�n that satisfy the following system:

(ei � e j)(ei � e j)T � Y D d2i j
for (i; j) 2 E1�

ai
�e j

��
ai
�e j

�T

�

�
Ik X
XT Y

�
D d̄2i j

for (i; j) 2 E2

Y D XTX

(2)

By relaxing Y D XTX to Y � XTX and using
Schur’s complement (see, e. g., [11]), we obtain the fol-
lowing relaxed problem:

sup 0

subject to Ei j � Z D d2i j for (i; j) 2 E1

Ēi j � Z D d̄2i j for (i; j) 2 E2

Z � 0; Z1:k;1:k D Ik
(3)

where Z1:k;1:k is the k � k principal submatrix of Z in-
dexed by the first k rows (columns),

Ei j D

�
0

ei � e j

��
0

ei � e j

�T

and Ēi j D

�
ai
�e j

��
ai
�e j

�T

Note that this formulation forces any feasible solu-
tion matrix to have rank at least k. To derive the dual of
(3), let (�i j)(i; j)2E1 and (wi j)(i; j)2E2 be the dual multipli-
ers of the constraints on E1 and E2, respectively. Then,
the dual of (3) is given by:

inf Ik � V C
X

(i; j)2E1

�i jd2i j

C
X

(i; j)2E2

wi j d̄2i j

subject to U �
�

V 0
0 0

�
C

X
(i; j)2E1

�i jEi j

C
X

(i; j)2E2

wi j Ēi j � 0

�i j 2 R for all (i; j) 2 E1;
wi j 2 R for all (i; j) 2 E2

(4)

Note that the dual is always feasible, as V D 0,
�i j D 0 for all (i; j) 2 E1 and wi j D 0 for all (i; j) 2 E2

is a feasible solution. Moreover, this solution has a dual
objective value of 0. Thus, by the SDP strong duality
theorem, if the primal is also feasible, then there is no
duality gap between (3) and (4). Moreover, if Z is fea-
sible for (3) and U is optimal for (4), then by comple-
mentarity, we have rank(Z)Crank(U) � kCn. In par-
ticular, since rank(Z) � k, we must have rank(U) � n.

We are interested in deriving the conditions under
which the relaxation (3) is exact for (2). Towards that
end, let us first introduce a definition:

Definition 1 We say that an instance (G; (d; d̄); a) is
uniquely k-realizable if (i) there is a unique realization
p D (p1; : : : ; pn) of (G; (d; d̄); a) in Rk , and (ii) there
does not exist p01; : : : ; p0n 2 Rl , where l > k, such that:

kp0i � p0jk
2 D d2i j for (i; j) 2 E1






�

ai
0

�
� p0j






2

D d̄2i j for (i; j) 2 E2

p0i 6D
�

pi
0

�
for some 1 � i � n
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For the motivation of this definition, see [25]. We re-
mark that Definition 1 can be viewed as a new notion of
rigidity which takes into account both the combinato-
rial and the geometric aspects of the Graph Realization
Problem.

At this point it is fair to ask whether Definition 1
is vacuous, i. e. whether uniquely k-realizable instances
exist at all. It is not hard to see that they do exist for
all k � 1. In fact, there exists a family of uniquely k-
realizable instances in which the number of edges scales
linearly with the number of vertices ([25]). This refutes
a common belief in the literature (see, e. g., [2,5]) that
the graph of any uniquely k-realizable instance must
have ˝(n2) edges.

Having established the existence of uniquely k-re-
alizable instances, we are now ready to state the main
theorem of this section. For a proof, see [25,27].

Theorem 1 Let G D (V ; E) be connected, and let d, d̄
and a be given. Then, the following are equivalent:
(1) The instance (G; (d; d̄); a) is uniquely k-realizable.
(2) The max-rank solution matrix of (3) has rank k.
(3) The solution matrix of (3) satisfies Y D XTX.

Although unique k-realizability is a useful notion in de-
termining the solvability of the Graph Realization Prob-
lem, it is not stable under perturbation. Indeed, there
exist instances that are uniquely k-realizable, but may
no longer be so after small perturbation of the un-
pinned vertices; see [27]. This motivates us to define
another notion called strong k-realizability:

Definition 2 We say that an instance (G; (d; d̄); a) is
strongly k-realizable if (4) has a rank–n optimal dual
slack matrix.

Note that if an instance is strongly k-realizable, then it
is uniquely k-realizable by complementarity and Theo-
rem 1, since the rank of any solution to (3) is equal to k.

Given an instance I D (G; (d; d̄); a), we say that the
instance (G0; (d0; d̄0); a) is a sub–instance of I if G0 is
a subgraph of G that includes all the pinned vertices,
and (d0; d̄0) is the restriction of (d; d̄) on G0 . As indi-
cated by the following theorem, the notion of strong
k-realizability is very useful in identifying the uniquely
k-realizable sub–instances of a given instance. Its proof
can be found in [25,27].

Theorem 2 Suppose that a given instance I contains
a sub–instance I 0 that is strongly k-realizable. Then, in

any solution to (3), the submatrix that corresponds to I 0
has rank k.

Applications

It is often observed in practice that by “stretching apart”
pairs of non-adjacent vertices, one is more likely to flat-
ten a high-dimensional realization into a lower dimen-
sional one. We now formalize this observation using
elements of tensegrity theory (see, e. g., [12,21]).We be-
gin with some definitions:

Definition 3 A tensegrity G(p) is a graph G D (V ; E)
together with a configuration p D (p1; : : : ; pn) 2 Rkn

such that each edge is labelled as a cable, strut, or bar;
each vertex is labelled as pinned or unpinned; and ver-
tex i 2 V is assigned the coordinates pi 2 Rk for
1 � i � n.

The label on each edge is intended to indicate its func-
tionality. Cables (resp. struts) are allowed to decrease
(resp. increase) in length (or stay the same length),
but not to increase (resp. decrease) in length. Bars are
forced to remain the same length. As before, a pinned
vertex is forced to remain where it is. Given a graph
G D (V ; E) and a set d of weights on the edges, if
(i; j) is a cable (resp. strut), then di j will be the upper
(resp. lower) bound on its length. If (i; j) is a bar, then
di j will simply be its length.

An important concept in the study of tensegrities is
that of an equilibrium stress:

Definition 4 An equilibrium stress for G(p) is an as-
signment of real numbers !i j D ! ji to each edge
(i; j) 2 E such that for each unpinned vertex i of G,
we have:

X
j:(i; j)2E

!i j(pi � p j) D 0 (5)

Furthermore, we say that the equilibrium stress
! D f!i jg is proper if !i j D ! ji � 0 (resp. � 0) if
(i; j) is a cable (resp. strut).

Clearly, the zero stress ! D 0 is a proper equilibrium
stress, but it is not too interesting. On the other hand,
suppose that G(p) has a non-zero equilibrium stress,
and that at least one of the incident edges of vertex i has
a non-zero stress. Then, Eq. (5) implies that the set of
vectors fp j � pi : (i; j) 2 Eg is linearly dependent, and
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hence those vectors span a lower dimensional space.
Thus, it would be nice to have conditions that guarantee
the existence of a non-zero proper equilibrium stress. It
turns out that the concept of an unyielding tensegrity is
useful for that purpose.

Definition 5 Let G D (V ; E) be a graph, and let p
and q be two configurations of G. We say that G(p)
dominates G(q) (denoted by G(p) D G(q)) if for every
pinned vertex i, we have pi D qi , and for every edge
(i; j) 2 E, we have:

kpi � p jk

8<
:
�

D

�

9=
; kqi � q jk if (i; j) is a

8<
:

cable
bar
strut

9=
;

We call G(p) an unyielding tensegrity and p an un-
yielding configuration if any other configuration q with
G(p) D G(q) satisfies kpi � p jk D kqi � q jk for all
(i; j) 2 E.

We are now ready to state the following theorem due
to [6], which plays a crucial role in the characterization
of the so-called 3-realizable graphs (informally, a graph
G is 3-realizable if, given any set d of edge weights,
whenever (G; d) is realizable at all, then it can also be
realized inR3; for further details, see [7]):

Theorem 3 If G(p) is an unyielding tensegrity with ex-
actly one strut or cable, then G(p) has an equilibrium
stress that is non-zero on at least one edge.

Belk’s proof of Theorem 3 uses the Inverse Function
Theorem and hence is not constructive. It turns out that
the problem of computing an unyielding configuration
p of a graph G can be formulated as an SDP. What is
even more interesting is that the optimal dual multi-
pliers of the SDP will give rise to a non-zero proper
equilibrium stress for G(p). Consequently, we obtain
a constructive proof of Theorem 3. In fact, the SDP-
based proof yields more information than that offered
by Belk’s proof.

Specifically, let V1;V2; E1; E2 be as before, and set
Ec
1 D f(i; j) 62 E : i; j 2 V1g and Ec

2 D f(i; j) 62 E :
i 2 V2; j 2 V1g. Let C1; S1 be disjoint subsets of Ec

1 ,
and let C2; S2 be disjoint subsets of Ec

2 . The pairs in Ci

are intended to be cables, and those in Si are intended
to be struts. We remark that we do not assume the sets
C1;C2; S1; S2 to be non-empty.

Now, consider the following SDP, where we aug-
ment the formulation (3) with an objective function:

sup
X

(i; j)2S1

Ei j � Z C
X

(i; j)2S2

Ēi j � Z

�
X

(i; j)2C1

Ei j � Z �
X

(i; j)2C2

Ēi j � Z

subject to Ei j � Z D d2i j for (i; j) 2 E1

Ēi j � Z D d̄2i j for (i; j) 2 E2

Z � 0; Z1:k;1:k D Ik
(6)

The dual of (6) is given by:

inf Ik � V C
X

(i; j)2E1

�i jd2i j

C
X

(i; j)2E2

wi jd̄2i j

subject to U � �
X

(i; j)2S1

Ei j �
X

(i; j)2S2

Ēi j

C
X

(i; j)2C1

Ei j C
X

(i; j)2C2

Ēi j

C

�
V 0
0 0

�
C

X
(i; j)2E1

�i jEi j

C
X

(i; j)2E2

wi j Ēi j � 0

(7)

We then have the following theorem due to [26]:

Theorem 4 Let G D (V ; E), d, d̄ and a be given such
that:
(1) there is at least one pinned vertex, and
(2) the graph Gnfn C 2; : : : ; n C mg is connected.

Consider the SDP (6), where we assume that:
(3) it is strictly feasible, and
(4) the objective function is not vacuous, i. e. at least one

of the sets C1;C2; S1; S2 is non-empty.
Let x̄ D (x̄1; : : : ; x̄n) 2 Rl n be the positions of the

unpinned vertices in Rl (for some l � k), obtained from
the optimal primal matrix Z̄, and let f�̄i j; w̄i jg be the op-
timal dual multipliers. Suppose that we assign the stress
�̄i j (resp. w̄i j) to the bar (i; j) 2 E1 (resp. (i; j) 2 E2),
a stress of 1 to all the cables in C1 [ C2, and a stress of
�1 to all the struts in S1 [ S2. Then, the resulting assign-
ment yields a non-zero proper equilibrium stress for the
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tensegrity G0(x̄; ā), where G0 D (V ; E[C1[C2[S1[S2)
and ā D (ānC1; : : : ; ānCm), where:

āi D
�

ai
0

�
2 Rl

The intuition behind the proof of Theorem 4 is sim-
ple. Suppose that (6) and (7) achieve the same optimal
value, and that the common optimal value is attained
by the primal matrix Z̄ and the dual matrix Ū . Then,
the desired result should follow from one of the condi-
tions for strong duality, namely the identity Z̄Ū D 0.
Of course, strong duality for SDP does not necessar-
ily hold, and even when it does, there is no guarantee
that the optimal value is attained by any matrix (see,
e. g., [17] for some examples). Thus, some additional
technical assumptions are needed, and items (2) and (3)
in the statement of Theorem 4 turn out to be sufficient.
In fact, the conclusion of Theorem 4 remains valid if we
replace (3) by the following:

(30) the optimal value of (7) is attained by some dual
feasible matrix

We remark that in most applications of Theorem 4,
there will only be one pinned vertex, namely anC1 D 0.
Thus, primal strict feasibility can be ensured if the given
weights d admit a realization whose vertices are in gen-
eral position, and the connectivity condition is simply
the statement that G is connected. However, the strict
feasibility assumption (or the dual attainment assump-
tion) does weaken the applicability of Theorem 4. In
particular, Theorem 4 is not as general as Theorem 3,
although this can be fixed (see [25] for details).

Besides strict feasibility, it is also assumed that the
given instance has at least one pinned vertex. Such an
assumption is necessary in order to ensure that the en-
tries of Z̄ are bounded, but one can no longer argue
that the net stress exerted on a pinned vertex is zero.
However, if there is only one pinned vertex in the given
instance, then the net stress exerted on it will be zero.
Thus, one may assume without loss of generality that
the given instance has one pinned vertex.

Finally, observe that the assumptions in the state-
ment of Theorem 4 buy us some additional information
that is not offered by Theorem 3. Specifically, the equi-
librium stress obtained in Theorem 4 is non-zero on all
the cables and struts, and the magnitudes of the stress
on all the cables and struts can be prescribed (by assign-

ing appropriate weights to each summand in the primal
objective function).

Relation to the Maximum Variance Unfolding
Method

The idea of stretching apart pairs of non-adjacent ver-
tices has also been used in the artifical intelligence com-
munity to detect and discover low-dimensional struc-
ture in high-dimensional data. For instance, in [29] (see
also [30]), the authors proposed the so-called Maxi-
mum Variance Unfolding (MVU) method for the prob-
lem of manifold learning. The idea is to map a given set
of high-dimensional vectors p1; : : : ; pn 2 Rl to a set
of low-dimensional vectors q1; : : : ; qn 2 Rk (where
1 � k � l are given) with maximum total variance,
while at the same time preserves the local distances.
More precisely, consider an n-vertex connected graph
G D (V ; E), where the set E of edges represents the
set of distances that need to be preserved. The desired
set of low-dimensional vectors can then be obtained by
solving the following quadratic program:

maximize
nX

iD1

kxik2

subject to
nX

iD1

xi D 0

kxi � x jk
2 D kpi � p jk

2

for (i; j) 2 E

xi 2 Rk for 1 � i � n

(8)

To explain the rationale behind the above formu-
lation, we observe that the first constraint centers the
solution vectors at the origin and eliminates the trans-
lational degree of freedom.Moreover, it implies that the
objective function of (8) can be written as:

nX
iD1

kxik2 D
1
2n

nX
i; jD1

kxi � x jk
2

Thus, we see that the MVU method attempts to
“unfold” the manifold by pulling the data points as far
apart as possible while preserving the local distances.
We remark that such a technique has also been used
for the problem of sensor network localization (see,
e. g., [9,31]). Now, using the ideas in Section Formu-
lation, we can formulate a semidefinite relaxation of (8)



Graph Realization via Semidefinite Programming G 1459

as follows:

sup I � X

subject to eeT � X D 0

Ei j � X D kvi � v jk2 for (i; j) 2 E

X � 0
(9)

Here, e D (1; 1; : : : ; 1), Ei j D (ei � e j)(ei � e j)T ,
and ei is the ith standard basis vector of Rn . It turns
out that problem (9) and its dual are closely related to
the problem of finding the fastest mixing Markov pro-
cess on a graph, as well as to various spectral meth-
ods for dimensionality reduction. We shall not elabo-
rate on these results here and refer the interested reader
to [28,33] for further details. Instead, we will show that
the MVU problem (9) can be viewed as a problem of
finding an unyielding configuration of a certain tenseg-
rity. To begin, suppose that we are given an n-vertex
connected graph G D (f1; : : : ; ng; E) and a configura-
tion p D (p1; : : : ; pn) 2 Rl n of the vertices. Consider
the tensegrity G0(p0), where G0 is obtained from G by
adding a new vertex n C 1 and connecting it to all the
vertices ofG, and p0 D (p; 0) 2 Rl (nC1), i. e. vertex nC1
is located at the origin. Furthermore, we label the edges
in E as bars and the edges in S � f(nC1; i) : 1 � i � ng
as struts. Suppose that we pin vertex nC1 at the origin,
i. e. anC1 D 0. Now, consider the following SDP:

sup
X

i :(nC1;i)2S

ĒnC1;i � Z

subject to Ei j � Z D kpi � p jk
2 for (i; j) 2 E

Z � 0; Z1:k;1:k D Ik
(10)

where:

Ei j D

�
0

ei � e j

��
0

ei � e j

�T

and ĒnC1;i D

�
0
�ei

��
0
�ei

�T

It is clear that (10) is an instance of (6). Moreover,
it can be shown ([25]) that the positions x̄ 2 Rl n of
the unpinned vertices obtained from the optimal pri-
mal matrix Z̄ are automatically centered at the origin,

even though such a constraint is not explicitly enforced.
Thus, we see that problem (10) is equivalent to the
MVU problem (9).

From the above discussion, we see that the formula-
tion (6) is more general than the MVU formulation (9).
Moreover, the flexibility in the formulation (6) often al-
lows one to achieve the desired dimensionality reduc-
tion which the MVU formulation cannot achieve. For
instance, consider the case where the input graph G is
a tree. It is not hard to show that there is a placement
of struts such that all the optimal solutions to (6) have
rank 1 and hence they all give rise to one-dimensional
realizations. On the other hand, the MVU formulation
may yield a two-dimensional realization; see [25] for an
example.
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Optimization problems that involve a large finite num-
ber of alternatives often arise in industry, government
and science. In these problems, one is given a finite
solution set X and a real-valued function f : X ! R,
and one seeks a solution x� 2 X with f (x�) � f (x),
8x 2 X. Common examples include designing efficient
telecommunication networks and constructing cost ef-
fective airline crew schedules. To find the optimal so-
lution in a com binatorial optimization problem it is
theoretically possible to enumerate the solutions and
evaluate each with respect to the stated objective. How-
ever, from a practical perspective, it is infeasible to fol-
low such a strategy of complete enumeration because
the number of combinations often grows exponentially
with the size of problem.

Much work has been done over the last five decades
to develop optimal seeking methods that do not ex-
plicitly require an examination of each alternative. This
research has given rise to the field of combinatorial
optimization (see [55]), and an increasing capability
to solve ever larger real-world problems. Nevertheless,
most problems found in industry and government are
either computationally intractable by their nature, or
sufficiently large so as to preclude the use of exact
algorithms. In such cases, heuristic methods are usu-
ally employed to find good, but not necessarily guar-
anteed optimal solutions. The effectiveness of these
methods depends upon their ability to adapt to a par-
ticular realization, avoid entrapment at local optima,
and exploit the basic structure of the problem, such
as a network or a natural ordering among its compo-
nents. Furthermore, restart procedures, controlled ran-
domization, efficient data structures, and preprocess-
ing are also beneficial. Building on these notions, var-
ious heuristic search techniques have been developed
that have demonstrably improved our ability to obtain

good solutions to difficult combinatorial optimization
problems. The most promising of such techniques in-
clude simulated annealing [35], tabu search [27,28,29],
genetic algorithms [30] and GRASP (greedy random-
ized adaptive search procedures) [21,22].

In this article, we review GRASP. The components
of a basic GRASP heuristic are addressed and enhance-
ments proposed to the basic heuristic are discussed. The
paper concludes with a brief literature review of appli-
cations of GRASP.

A Basic GRASP

A GRASP is a multistart or iterative process, in which
each GRASP iteration consists of two phases, a con-
struction phase, in which a feasible solution is produced,
and a local search phase, in which a local optimum in
the neighborhood of the constructed solution is sought.
The best overall solution is kept as the result. The pseu-
docode below illustrates a GRASP procedure for mini-
mization in which maxitr GRASP iterations are done.

x� =1;
FOR k = 1; : : : ;maxitr DO

construct (g(�); ˛; x);
local ( f (�); x);
IF f (x) < f (x�) DO

x� = x;
END IF;

END FOR

Procedure grasp(f (�); g(�);maxitr; x�)

In the construction phase, a feasible solution is it-
eratively constructed, one element at a time. The basic
GRASP construction phase is similar to the semigreedy
heuristic proposed independently by J.P. Hart and A.W.
Shogan [31]. At each construction iteration, the choice
of the next element to be added is determined by order-
ing all candidate elements (i. e. those that can be added
to the solution) in a candidate list C with respect to
a greedy function g: C! R. This function measures the
(myopic) benefit of selecting each element. The heuris-
tic is adaptive because the benefits associated with ev-
ery element are updated at each iteration of the con-
struction phase to reflect the changes brought on by
the selection of the previous element. The probabilistic
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component of a GRASP is characterized by randomly
choosing one of the best candidates in the list, but not
necessarily the top candidate. The list of best candidates
is called the restricted candidate list (RCL). This choice
technique allows for different solutions to be obtained
at each GRASP iteration, but does not necessarily com-
promise the power of the adaptive greedy component
of the method. Let ˛ 2 [0, 1] be a given parameter. The
pseudocode below describes a basic GRASP construc-
tion phase.

x = ;;
Initialize candidate set C;
WHILE C ¤ ; DO

s = minfg(t) : t 2 Cg;
s̄ = maxfg(t) : t 2 Cg;
RCL= fs 2 C : g(s) � s + ˛(s̄ � s)g;
Select s, at random, from the set RCL;
x = x [ fsg;
Update candidate set C;

ENDWHILE

Procedure construct(g(�); ˛; x)

The pseudocode shows that the parameter ˛ con-
trols the amounts of greediness and randomness in the
algorithm. A value ˛ = 0 corresponds a greedy construc-
tion procedure, while ˛ = 1 produces random construc-
tion.

As is the case for many deterministic methods, the
solutions generated by a GRASP construction are not
guaranteed to be locally optimal with respect to sim-
ple neighborhood definitions. Hence, it is almost al-
ways beneficial to apply a local search to attempt to
improve each constructed solution. A local search al-
gorithm works in an iterative fashion by successively
replacing the current solution by a better solution in
the neighborhood of the current solution. It termi-
nates when no better solution is found in the neigh-
borhood. The neighborhood structure N for a problem
P relates a solution s of the problem to a subset of so-
lutions N(s). A solution s is said to be locally optimal
if there is no better solution in N(s). The key to suc-
cess for a local search algorithm consists of the suitable
choice of a neighborhood structure, efficient neighbor-
hood search techniques, and the starting solution.

While such local optimization procedures can re-
quire exponential time from an arbitrary starting point,
empirically their efficiency significantly improves as
the initial solution improves. Through the use of cus-
tomized data structures and careful implementation, an
efficient construction phase can be created which pro-
duces good initial solutions for efficient local search.
The result is that often many GRASP solutions are gen-
erated in the same amount of time required for the local
optimization procedure to converge from a single ran-
dom start. Furthermore, the best of these GRASP so-
lutions is generally significantly better than the single
solution obtained from a random starting point. The
pseudocode below describes a basic local search proce-
dure.

H = fy 2 N(x) : f (y) < f (x)g;
WHILE jHj > 0 DO

Select x 2 H;
H = fy 2 N(x) : f (y) < f (x)g;

ENDWHILE

Procedure local(f (�);N(�); x)

It is difficult to formally analyze the quality of so-
lution values found by using the GRASP methodol-
ogy. However, there is an intuitive justification that
views GRASP as a repetitive sampling technique. Each
GRASP iteration produces a sample solution from an
unknown distribution of all obtainable results. The
mean and variance of the distribution are functions
of the restrictive nature of the candidate list. For ex-
ample, if the cardinality of the restricted candidate
list is limited to one, then only one solution will be
produced and the variance of the distribution will be
zero. Given an effective greedy function, the mean so-
lution value in this case should be good, but prob-
ably suboptimal. If a less restrictive cardinality limit
is imposed, many different solutions will be produced
implying a larger variance. Since the greedy function
is more compromised in this case, the mean solution
value should degrade. Intuitively, however, by order
statistics and the fact that the samples are randomly
produced, the best value found should outperform the
mean value. Indeed, often the best solutions sampled
are optimal.



Greedy Randomized Adaptive Search Procedures G 1463

An especially appealing characteristic of GRASP is
the ease with which it can be implemented. Few param-
eters need to be set and tuned, and therefore develop-
ment can focus on implementing efficient data struc-
tures to assure quick GRASP iterations. Finally, GRASP
can be trivially implemented in parallel. Each processor
can be initialized with its own copy of the procedure,
the instance data, and an independent random number
sequence. The GRASP iterations are then performed in
parallel with only a single global variable required to
store the best solution found over all processors.

Enhancements to the Basic GRASP

A number of enhancements to the basic GRASP, pre-
sented in the previous section, have been proposed in
the literature. In this section we review the use path re-
linking, long-term memory, the proximate optimality
principle, and bias functions in a GRASP. We discuss
a parallelization scheme and the use of GRASP in hy-
brid metaheuristics.

Path Relinking

M. Laguna and R. Martí [43] adapted the concept of
path relinking for use within a GRASP. To test their
concept, they im plemented a GRASP with path relink-
ing for the 2-layer straight line crossing minimization
problem. A small set of high-quality, or elite, solutions
is stored to serve as guiding solutions for path relink-
ing. Each GRASP iteration produces a locally optimal
solution x�. A solution y� is chosen at random from
the elite set and a path of solutions linking x� to y� is
constructed by applying a series of changes to the orig-
inal solution. For example, let x� = (1, 0, 0, 0) and y� =
(0, 1, 0, 1). A path relinking of x� and y� is x� = (1, 0, 0,
0)! (0, 0, 0, 0)! (0, 1, 0, 0)! (0, 1, 0, 1) = y�. Each
of these path solutions is evaluated for solution qual-
ity. Laguna and Martí report that often improvements
to the incumbent are found in this path relinking.

Long-TermMemory

Long-term memory is the basis for tabu search. Besides
path relinking, which can thought of as a form of long-
term memory, other uses of long term memory have
been proposed for use in a GRASP. C. Fleurent and F.
Glover [26] observe the fact that the basic GRASP does

not make use of information gathered in previous it-
erations and propose a long term memory scheme to
address this issue. M. Prais and C.C. Ribeiro [64] pro-
pose a scheme to learn an appropriate value for the RCL
parameter ˛.

Fleurent and Glover introduced a way to use long-
term memory in multistart heuristics such as GRASP.
Their scheme maintains a set S of elite solutions to
be used in the construction phase. To become an elite
solution a solution s must be either better than the
best member of S, or better than the worst member
of S and sufficiently different from the other elite so-
lutions. For example, one can count identical solution
vector components and set a threshold for rejection.
A strongly determined variable is one that cannot be
changed without eroding the objective or changing sig-
nificantly other variables. A consistent variable is one
that receives a particular value in a large portion of the
elite solution set. Let I(e) be a measure of the strongly
determined and consistent features of choice e, i. e. I(e)
becomes larger as e resembles solutions in elite set S.
The intensity function I(e) is used in the construction
phase as follows. Recall that g(e) is the greedy func-
tion. Let E(e) = F(g(e), I(e)) be a function of the greedy
and the intensification functions. For example, E(e) =
� g(e) + I(e). The intensification scheme biases selec-
tion from the RCL to those elements e with a high
value of E(e) by setting the probability of selecting e
to be p(e) = E(e)/

P
s 2 RCLE(s). The function E(e) can

vary with time by changing the value of �, e. g. ini-
tially � is set to a large value and when diversification
is called for, � is decreased. A procedure for changing
the value of � is given by Fleurent and Glover. See also
[11] for an application of this long-term memory strat-
egy.

Reactive GRASP

The term ‘reactive GRASP’ was introduced by Prais and
Ribeiro [64] for a GRASP that reacts to solutions pro-
duced by different settings of the RCL parameter ˛ and
seeks to adjust ˛ to give the GRASP an appropriate level
of greediness and randomness. At each GRASP itera-
tion, the value of ˛ is chosen from a discrete set of val-
ues {˛1, . . . , ˛m}. The probability of selecting the value
˛k is p(˛k), for k = 1, . . . ,m. Reactive GRASP adaptively
changes the probabilities {p(˛1), . . . , p(˛m)} to favor
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values that produce good solutions. Consider applying
Reactive GRASP to a minimization problem. Initially
the probabilities are set as p(˛k) = 1/m, for i = 1, . . . ,
m, so that the values are selected uniformly. To adap-
tively redefine the probabilities, define F(S�) to be the
value of the best solution found so far and let Ai be the
average value of the solutions obtained with ˛i. Prais
and Ribeiro propose a period of warm-up iterations to
initialize the Ai values. Periodically (say every N˛ itera-
tions) the quantities qi = (F(S�)/Ai)ı are computed for
i = 1, . . . , m and the probabilities are updated to p(˛i)
= qi/

Pm
jD1 qj, for i = 1, . . . , m. Observe that the more

suitable a value ˛i is, the larger the value of qi is and,
consequently, the higher the value of p(˛i), making ˛i
more likely to be selected. The parameter ı can be used
as an attenuation parameter. See also [16] for an appli-
cation of reactive GRASP.

Proximate Optimality Principle

The proximate optimality principal is based on the
idea that ‘good solutions at one level are likely to be
found close to good solutions at an adjacent level’ [29].
Fleurent and Glover [26] provide a GRASP interpreta-
tion of this principle. They suggest that imperfections
introduced during steps of GRASP construction can be
‘ironed-out’ by applying local search during (and not
only at the end of) GRASP construction. Because of ef-
ficiency considerations, a practical implementation of
POP to GRASP is to apply local search during a few
points in the construction phase and not during each
construction iteration. See also [11] for an application
of the proximate optimality principle.

Global Convergence

In [52] it was pointed out that GRASP with a fixed
nonzero RCL parameter ˛ is not asymptotically con-
vergent to a global optimum. During construction,
a fixed RCL parameter may rule out a candidate that is
present in all optimal solutions. Several remedies have
been proposed to get around this problem. The most
straightforward is the use of a randomly selected ˛ [72].
In this approach, the parameter is selected at random
from the continuous interval [0, 1] at the start of each
GRASP iteration. That value is used during the entire it-
eration. Since a subset of the iterations are random, the

algorithm becomes asymptotically globally convergent.
Reactive GRASP, as described above, can also be made
asymptotically globally convergent by making ˛m = 1,
i. e. allowing the choice of a value that produces a ran-
dom GRASP iteration. J.L. Bresina [13] introduced the
concept of a bias function to select a candidate element
to be included in the solution. Bresina’s method, which
is directly applicable to GRASP construction, also al-
lows for purely random construction and is therefore
asymptotically globally convergent. At each construc-
tion step, the elements in the candidate set C are ranked
by their greedy function values. A bias value bias(r)
is assigned to the rth ranked element. Bresina pro-
poses several bias functions. In logarithmic bias, bias(r)
= 1/log(r + 1). In linear bias, bias(r) = 1/r. In poly-
nomial bias of order n, bias(r) = 1/rn. In exponen-
tial bias, bias(r) = 1/er . Finally, in random bias, bias(r)
= 1. During construction, the probability of selecting
the rth ranked candidate is bias(r) /

PjCj
iD1 bias(i). See

also [11] for an application of this bias function strat-
egy.

Parallel GRASP

Parallel implementation of GRASP is straightforward.
Two general strategies have been proposed. In search
space decomposition, the search space is partitioned
into several regions and GRASP is applied to each in
parallel. An example of this is the GRASP formaximum
independent set [23,69] where the search space is de-
composed by fixing two vertices to be in the indepen-
dent set. In iteration parallelization, the GRASP itera-
tions are partitioned and each partition is assigned to
a processor. See [54,56,57,58,67] for examples of par-
allel implementations of GRASP. Some care is needed
so that different random number generator seeds are
assigned to the different iterations. This can be done
by running the random number generator through an
entire cycle, recording all Ng seeds in a seed array. It-
eration i is started with seed(i). GRASP has been im-
plemented on distributed architectures. In [58] a PVM-
based implementation is described. TwoMPI-based im-
plementations are given in [4,50]. A.C.F. Alvim [4]
proposes a general scheme for MPI implementations.
A master process manages seeds for slave processors. It
passes blocks of seeds to each slave processor and awaits
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the slaves to indicate that they have finished processing
the block and need another block. Slaves also pass back
to the master the best solution found for each block of
iterations.

GRASP in Hybrid Metaheuristics

GRASP has been used in hybrid metaheuristic schemes.
Laguna and J.L. González-Velarde [41] proposed
a GRASP in which local search is done by tabu search.
See also [16,46] for implementations of GRASP using
tabu search as the local search procedure. Simulated an-
nealing can also be used as a GRASP local search proce-
dure if the initial temperature is low so that it remains
near the neighborhood of the constructed solution. R.K.
Ahuja, J.B. Orlin and A. Tiwari [3] use GRASP con-
struction as a mechanism for generating the initial pop-
ulation in a genetic algorithm. GRASP is used in [45] in
a genetic algorithm to implement a type of crossover
called perfect offspring.

Applications of GRASP

We now turn our attention to a number of GRASP
implementations that have appeared in the literature,
covering a wide range of applications. An early tuto-
rial on GRASP appears in [22]. We group the work
into two categories, applications to operations research
problems and to industrial applications.

Operations Research Problems

Applications of GRASP to operations research prob-
lems can be classified into eight categories: scheduling
problems, routing problems, logic, partitioning prob-
lems, location problems, graph theoretic problems,
assignment problems, and nonconvex network flow
problems.

GRASP has been applied to several scheduling
problems, including operations sequencing in discrete
parts manufacturing [7], flight scheduling [18], just-in-
time scheduling in parallel machines [41], printed wire
assembly scheduling [9,19], single machine schedul-
ing with sequence dependent setup costs and delay
penalties [24], field technician scheduling [79], flow-
shop with setup costs [76,77], and bus-driver schedul-
ing [45].

Applications of GRASP to routing problems include
vehicle routing with time windows [38], vehicle rout-
ing [32], aircraft routing [5], inventory routing prob-
lem with satellite facilities [10], and permanent virtual
circuit (PVC) routing [66].

Problems in logic have been approached with
GRASP. These include the satisfiability problem [68],
maximum satisfiability [58,71,72], and inference of log-
ical clauses from examples [15].

GRASP has been applied to partitioning problems,
including graph two partition [40] and number parti-
tioning [6].

Applications of GRASP to location problems in-
clude p-hub location [36], pure integer capacitated
plant location [14], location with economies of scale
[33], single source capacitated plant location [16], lo-
cation of concentrators in network access design [74],
and maximum covering [67].

GRASP has been used for finding approximate
solutions to a number of graph theoretic problems,
including set covering [21], maximum independent
set [23,69], maximum clique with weighted edges
[48], graph planarization [73,75], 2-layer straight line
crossing minimization [43], sparse graph coloring
[42], maximum weighted edge subgraph [47], the
Steiner tree problem in graphs [49,50], feedback ver-
tex set in directed graphs [60], maximum clique [1,61],
and the capacitated minimum spanning tree prob-
lem [2].

Several assignment problems have been approached
with GRASP. A GRASP was introduced for the
quadratic assignment problem in [44]. A parallel ver-
sion of this GRASP is described in [57]. Fortran subrou-
tines for dense and sparse quadratic assignment prob-
lems can be found respectively in [70] and [59]. A mod-
ified local search for the GRASP for quadratic assign-
ment problems is proposed in [65]. GRASP has been
used to generate the initial population of a genetic algo-
rithm for the quadratic assignment problem [3]. Long
term memory schemes have been adapted to a GRASP
for the quadratic assignment problem in [26]. AGRASP
for the biquadratic assignment problem is described
in [51]. GRASP has been applied to two multidimen-
sional assignment problems [53,78] and to the radio
link frequency assignment problem [62]. A GRASP
for the generalized assignment problem was proposed
in [46].
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GRASP has been used for finding approximate so-
lutions to a concave-cost network flow problem [34].

Industrial Applications

Industrial applications of GRASP can be classi-
fied into seven categories: manufacturing, transporta-
tion, telecommunications, automatic drawing, electri-
cal power systems, military, and biology.

GRASP has been applied to several manufactur-
ing problems, including operations sequencing in dis-
crete parts manufacturing [7], cutting path and tool
selection in computer-aided process planning [17],
manufacturing equipment selection [8], component
grouping [37], and printed wire assembly schedul-
ing [9,19].

Applications of GRASP in transportation include
flight scheduling and maintenance base planning [18],
intermodal trailer assignment [20], and aircraft routing
in response to groundings and delay [5].

In telecommunications, GRASP has been applied
to the design of SDH mesh-restorable networks [63],
the Steiner tree problem in graphs [49,50], permanent
virtual circuit (PVC) routing [66], location of concen-
trators in network access design [74], traffic schedul-
ing in satellite switched time division multi-access
(SS/TDMA) systems [64], location of points of pres-
ence (PoPs) [67], and to the multicriteria radio link fre-
quency assignment problem [62].

GRASP has been applied to automatic drawing
problems, including seam drawing in mosaicing of
aerial photographic maps [25], graph planarization
[73,75], and 2-layer straight line crossing minimization
[43].

GRASP has been applied to other industrial prob-
lems. An application to electrical power systems is trans-
mission expansion planning [12]. A military applica-
tion of GRASP is in multitarget multisensor tracking
[53]. GRASP has been applied in biology for protein
structure prediction [39].

Conclusion

We have surveyed the literature on greedy randomized
adaptive search procedures (GRASP) in the 1990s. In
these years many enhancements to the basic GRASP
introduced in 1988 have been proposed. The number

and variety of applications has grown and continues to
grow.

See also

� Feedback Set Problems
� Generalized Assignment Problem
� Graph Coloring
� Graph Planarization
� Heuristics for Maximum Clique and Independent

Set
�Maximum Satisfiability Problem
� Quadratic Assignment Problem
� Quadratic Semi-assignment Problem

References

1. Abello J, Pardalos PM, Resende MGC (1999) On maximum
clique problems in very large graphs. In: Abello J, Vitter J
(eds) External memory algorithms and visualization. 50DI-
MACS, Amer Math Soc, pp 119–130

2. Ahuja RK, Orlin JB, Sharma D (1998) New neighborhood
search structures for the capacitated minimum spanning
tree problem. Techn Report Dept ISE Univ Florida

3. Ahuja RK, Orlin JB, Tiwari A (2000) A greedy genetic algo-
rithm for the quadratic assignment problem. ComputOper
Res 27:917–934

4. Alvim ACF (Apr. 1998) Parallelization strategies for the
metaheuristic GRASP. MSc Thesis Dept Computer Sci
Catholic Univ Rio de Janeiro

5. Argüello MF, Bard JF, Yu G (1997) A GRASP for aircraft rout-
ing in response to groundings and delays. J Combin Optim
1:211–228

6. Argüello MF, Feo TA, Goldschmidt O (1996) Randomized
methods for the number partitioning problem. Comput
Oper Res 23(2):103–111

7. Bard JF, Feo TA (1989) Operations sequencing in discrete
parts manufacturing. Managem Sci 35:249–255

8. Bard JF, Feo TA (1991) An algorithm for the manufacturing
equipment selection problem. IIE Trans 23:83–92

9. Bard JF, Feo TA, Holland S (1996) A GRASP for scheduling
printed wiring board assembly. IIE Trans 28:155–165

10. Bard JF, Huang L, Jaillet P, Dror M (1998) A decomposition
approach to the inventory routing problem with satellite
facilities. Transport Sci 32:189–203

11. Binato S, Hery WJ, Loewenstern D, Resende MGC (1999)
Approximate solution of the job shop scheduling problem
using GRASP. Techn Report AT&T Lab Res

12. Binato S, Oliveira GC, Araújo JL (1998) A greedy random-
ized adaptive search procedure for transmission expan-
sion planning. IEEE Trans Power Systems

13. Bresina JL (1996) Heuristic-biased stochastic sampling. In:
Proc. AAAI-96, pp 271–278



Greedy Randomized Adaptive Search Procedures G 1467

14. Delmaire H, Díaz JA, Fernández E, Ortega M (1997) Com-
paring new heuristics for the pure integer capacitated
plant location problem. Techn Report Dept Statist and
Oper Res Univ Politecn Catalunya, Barcelona, no. DR97/10

15. Deshpande AS, Triantaphyllou E (1998) A greedy random-
ized adaptive search procedure (GRASP) for inferring log-
ical clauses from examples in polynomial time and some
extensions. Math Comput Modelling 27:75–99

16. Díaz JA, Fernández E (1998) A hybrid GRASP-tabu search
algorithm for the single source capacitated plant location
problem. Techn Report Dept Statist and Oper Res Univ Po-
litecn Catalunya, Barcelona

17. Feo TA, Bard JF (1989) The cutting path and tool selection
problem in computer-aided process planning. J Manufac-
turing Systems 8:17–26

18. Feo TA, Bard JF (1989) Flight scheduling and maintenance
base planning. Managem Sci 35:1415–1432

19. Feo TA, Bard J, Holland S (1995) Facility-wide planning and
scheduling of printed wiring board assembly. Oper Res
43:219–230

20. Feo TA, González-Velarde JL (1995) The intermodal trailer
assignment problem: Models, algorithms, and heuristics.
Transport Sci 29:330–341

21. Feo TA, Resende MGC (1989) A probabilistic heuristic for
a computationally difficult set covering problem. Oper Res
Lett 8:67–71

22. Feo TA, Resende MGC (1995) Greedy randomized adaptive
search procedures. J Global Optim 6:109–133

23. Feo TA, Resende MGC, Smith SH (1994) A greedy random-
ized adaptive search procedure for maximum indepen-
dent set. Oper Res 42:860–878

24. Feo TA, Sarathy K, McGahan J (1996) A GRASP for
single machine scheduling with sequence dependent
setup costs and linear delay penalties. Comput Oper Res
23:881–895

25. Fernández E, Martí R (1999) GRASP and tabu search for
seam drawing in mosaicking of aerial photographic maps.
J Heuristics 5:181–197

26. Fleurent C, Glover F (1999) Improved constructive multi-
start strategies for the quadratic assignment problem us-
ing adaptive memory. INFORMS J Comput 11:198–204

27. Glover F (1989) Tabu search – Part I. ORSA J Comput
1:190–206

28. Glover F (1990) Tabu search – Part II. ORSA J Comput
2:4–32

29. Glover F, Laguna M (1997) Tabu search. Kluwer, Dordrecht
30. Goldberg DE (1989) Genetic algorithms in search, opti-

mization and machine learning. Addison-Wesley, Reading
31. Hart JP, Shogan AW (1987) Semi-greedy heuristics: An em-

pirical study. Oper Res Lett 6:107–114
32. Hjorring CA (1995) The vehicle routing problem and local

search metaheuristics. PhD Thesis, Univ. Auckland
33. Holmqvist K, Migdalas A, Pardalos PM (1997) Greedy ran-

domized adaptive search for a location problem with

economies of scale. In: Bomze IM et al (eds) Develop-
ments in Global Optimization. Kluwer, Dordrecht, pp 301–
313

34. Holmqvist K, Migdalas A, Pardalos PM (1998) A GRASP
algorithm for the single source uncapacitated minimum
concave-cost network flow problem. In: Pardalos PM,
Du D-Z (eds) Network design: Connectivity and facili-
ties location. DIMACS 40. Amer. Math. Soc., Providence,
pp 131–142

35. Kirkpatrick S (1984) Optimization by simulated annealing:
Quantitative studies. J Statist Phys 34:975–986

36. Klincewicz JG (1992) Avoiding local optima in the p-hub
location problem using tabu search and GRASP. Ann Oper
Res 40:283–302

37. Klincewicz JG, Rajan A (1994) Using GRASP to solve
the component grouping problem. Naval Res Logist
41:893–912

38. Kontoravdis G, Bard JF (1995) A GRASP for the vehicle rout-
ing problem with time windows. ORSA J Comput 7:10–23

39. Krasnogor N, Pelta DA, RussoW, Terrazas G (1998) A GRASP
approach to the protein structure prediction problem.
Techn Report LIFIA Lab Univ La Plata

40. Laguna M, Feo TA, Elrod HC (1994) A greedy randomized
adaptive search procedure for the two-partition problem.
Oper Res 42:677–687

41. Laguna M, González-Velarde JL (1991) A search heuristic
for just-in-time scheduling in parallel machines. J Intelli-
gent Manufacturing 2:253–260

42. Laguna M, Martí R (1998) A GRASP for coloring sparse
graphs. Techn Report Graduate School Business, Univ Col-
orado

43. Laguna M, Martí R (1999) GRASP and path relinking for 2-
layer straight line crossing minimization. INFORMS J Com-
put 11:44–52

44. Li Y, Pardalos PM, Resende MGC (1994) A greedy ran-
domized adaptive search procedure for the quadratic as-
signment problem. In: Pardalos PM, Wolkowicz H (eds)
Quadratic Assignment and Related Problems. DIMACS 16.
Amer. Math. Soc., Providence, pp 237–261

45. LourençoHRamalhinho, Paixao JP, Portugal R (1998)Meta-
heuristics for the bus-driver scheduling problem. Techn
Report Dept Economics and Management Univ Pompeu
Fabra, Barcelona

46. Lourenço H Ramalhinho, Serra D (May 1998) Adaptive ap-
proach heuristics for the generalized assignment prob-
lem. Techn Report Dept Economics andManagement Univ
Pompeu Fabra, Barcelona

47. Macambira EM, Meneses CN (1998) A GRASP algorithm for
the maximum weighted edge subgraph problem. Techn
Report Dept Statist and Computation Univ Ceará, Fort-
aleza, CE 60740-000

48. Macambira EM, Souza CC de (Oct. 1997) A GRASP for the
maximum clique problem with weighted edges. In: Proc.
XXIX Brazilian Symp. Operations Research, p 70 In Por-
tuguese



1468 G Greedy Randomized Adaptive Search Procedures

49. Martins SL, Pardalos PM, Resende MGC, Ribeiro CC (1999)
Greedy randomized adaptive search procedures for the
Steiner problem in graphs. In: Pardalos PM, Rajasejaran
S, Rolim J (eds) Randomization methods in algorith-
mic design. DIMACS 43. Amer. Math. Soc., Providence,
pp 133–145

50. Martins SL, Ribeiro CC (1998) A parallel GRASP for the
Steiner problem in graphs. Proc. Irregular’98, In: Lecture
Notes Computer Sci, vol 1457. Springer, Berlin, pp 285–
297

51. Mavridou T, Pardalos PM, Pitsoulis LS, ResendeMGC (1997)
A GRASP for the biquadratic assignment problem. Europ J
Oper Res 105:613–621

52. Mockus J, Eddy E, Mockus A, Mockus L, Reklaitis GV (1997)
Bayesian discrete and global optimization. Kluwer, Dor-
drecht

53. Murphey RA, Pardalos PM, Pitsoulis LS (1998) A greedy
randomized adaptive search procedure for the multitar-
get multisensor tracking problem. In: Pardalos PM, Du D-
Z (eds) Network design: Connectivity and facilities loca-
tion. DIMACS 40. Amer. Math. Soc., Providence, pp 277–
301

54. Murphey RA, Pardalos PM, Pitsoulis LS (1998) A parallel
GRASP for the data association multidimensional assign-
ment problem. In: Pardalos PM (ed) Parallel processing of
discrete problems. IMA vol Math Appl, vol 106. Springer,
Berlin, pp 159–180

55. Papadimitriou CH, Steiglitz K (1982) Combinatorial opti-
mization: Algorithms and complexity. Prentice-Hall, Engle-
wood Cliffs

56. Pardalos PM, Pitsoulis L, Mavridou T, Resende MGC (1995)
Parallel search for combinatorial optimization: Genetic al-
gorithms, simulated annealing and GRASP. In: Ferreira A,
Rolim J (eds) Parallel Algorithms for Irregularly Structured
Problems, Proc. 2nd Internat. Workshop –Irregular’95,
Lecture Notes Computer Sci. Springer, Berlin, pp 317–
331

57. Pardalos PM, Pitsoulis LS, Resende MGC (1995) A paral-
lel GRASP implementation for the quadratic assignment
problem. In: Ferreira A, Rolim J (eds) Parallel Algorithms for
Irregularly Structured Problems – Irregular’94. Kluwer, Dor-
drecht, pp 111–130

58. Pardalos PM, Pitsoulis LS, Resende MGC (1996) A parallel
GRASP forMAX-SAT problems. In: Lecture Notes Computer
Sci, vol 1180. Springer, Berlin, pp 575–585

59. Pardalos PM, Pitsoulis LS, Resende MGC (1997) Algo-
rithm 769: Fortran subroutines for approximate solution of
sparse quadratic assignment problems using GRASP. ACM
Trans Math Softw 23:196–208

60. Pardalos PM, Qian T, Resende MGC (1998) A greedy ran-
domized adaptive search procedure for the feedback ver-
tex set problem. J Combin Optim 2(3)

61. Pardalos PM, Resende MGC, Rappe J (1998) An exact par-
allel algorithm for the maximum clique problem. In: De
Leone R et al (eds) High performance algorithms and

software in nonlinear optimization. Kluwer, Dordrecht, pp
279–300

62. Pasiliao EL (1998) A greedy randomized adaptive search
procedure for the multi-criteria radio link frequency as-
signment problem. Techn Report Dept ISE Univ Florida

63. Poppe F, Pickavet M, Arijs P, Demeester P (1997) De-
sign techniques for SDH mesh-restorable networks. Proc.
European Conf. Networks and Optical Communications
(NOC’97), Volume 2: Core and ATM Networks, pp 94–101

64. Prais M, Ribeiro CC (2000) Reactive GRASP: An application
to amatrix decompositionproblem in TDMA traffic assign-
ment. INFORMS J Comput 12(3):164–176

65. Rangel MC, Abreu NMM de, Boaventura-Netto PO, Boeres
MCS (1998) A modified local search for GRASP in the
quadratic assignment problem. Techn Report Production
Engin Program, COPPE, Federal Univ Rio de Janeiro

66. Resende LIP, Resende MGC (1997) A GRASP for frame relay
PVC routing. Techn Report AT&T Lab Res

67. Resende MGC (1998) Computing approximate solutions of
the maximum covering problem using GRASP. J Heuristics
4:161–171

68. Resende MGC, Feo TA (1996) A GRASP for satisfiabil-
ity. In: Johnson DS, Trick MA (eds) Cliques, Coloring and
Satisfiability: The Second DIMACS Implementation Chal-
lenge. DIMACS 26. Amer. Math. Soc., Providence, pp 499–
520

69. Resende MGC, Feo TA, Smith SH (1998) Fortran subrou-
tines for approximate solution of maximum independent
set problems using GRASP. ACM TransMath Softw 24:386–
394

70. Resende MGC, Pardalos PM, Li Y (1996) Algorithm 754:
Fortran subroutines for approximate solution of dense
quadratic assignment problems using GRASP. ACM Trans
Math Softw 22:104–118

71. Resende MGC, Pitsoulis LS, Pardalos PM (1997) Approx-
imate solution of weighted MAX-SAT problems using
GRASP. In: Gu J, Pardalos PM (eds) Satisfiability problems.
DIMACS 35. Amer. Math. Soc., Providence, pp 393–405

72. ResendeMGC, Pitsoulis LS, Pardalos PM (2000) Fortran sub-
routines for computing approximate solutions ofMAX-SAT
problems using GRASP. Discrete Appl Math 100:95–113

73. Resende MGC, Ribeiro CC (1997) A GRASP for graph pla-
narization. Networks 29:173–189

74. Resende MGC, Ulular O (1997) SMART: A tool for AT&T
Worldnet access design – Location of Cascade 9000 con-
centrators. Techn Report AT&T Lab Res

75. Ribeiro CC, Resende MGC (1999) Algorithm 797: For-
tran subroutines for approximate solution of graph pla-
narization problems using GRASP. ACM Trans Math Softw
25:341–352

76. Ríos-Mercado RZ, Bard JF (1998) Heuristics for the flow line
problem with setup costs. Europ J Oper Res 110:76–98

77. Ríos-Mercado RZ, Bard JF (1999) An enhanced TSP-based
heuristic for makespan minimization in a flow shop with
setup costs. J Heuristics 5:57–74



Gröbner Bases for Polynomial Equations G 1469

78. Robertson AJ (1998) A set of greedy randomized adaptive
local search procedure (GRASP) implementations for the
multidimensional assignment problem

79. Xu J, Chiu S (1996) Solving a real-world field technician
schedulingproblem. Proc. Internat. Conf.Management Sci.
and the EconomicDevelopment of China, Hong-Kong, July
1996. pp 240–248

Gröbner Bases
for Polynomial Equations

P. O. LINDBERG1, LARS SVENSSON2

1 Linköping University, Linköping, Sweden
2 KTH, Stockholm, Sweden

MSC2000: 12D10, 12Y05, 13P10

Article Outline

Keywords
What is a Gröbner Basis
What are Gröbner Bases good for
Using Gröbner Bases
and Learning more About them

See also
References

Keywords

Polynomial equations; Zeros; Gröbner basis

Polynomial equations (in several variables) arise in
many areas connected to management science. They
could describe the feasible set of an optimization prob-
lem, the Karush–Kuhn–Tucker conditions for the same
problem, or maybe constraints on the positions of the
links of a robot arm in a flexible manufacturing system.

There are many analogies between polynomial
equations and their special case, linear equations.
� One might want to solve the equations, i. e. find

one or all solutions, determine whether a solution is
unique or determine whether the system in incon-
sistent.

� One might want to answer more abstract questions,
such as whether a given equation is a consequence
of a given set of equations (cf. � Farkas lemma;
� Farkas lemma: Generalizations).

For linear equations a fundamental concept is that of
a (linear) basis and the fundamental tool is that of Gaus-
sian elimination, by which one can construct a basis
from a given set of vectors. Similarly, for polynomi-
als there is the corresponding concepts of a Gröbner
basis and the Buchberger algorithm, which for a given
set of polynomials constructs a Gröbner basis. In par-
ticular one can convert a system of polynomial equa-
tions to triangular form, which allows for a solution
by back substitution. In Gaussian elimination, the vari-
ables/columns have an ordering that influences the end
result. Similarly, for Gröbner bases we need an order,
not only for the variables, but for monomials, i. e. the
simplest possible polynomials, such as x31x4, that are
products of variables. In this short note we will review
Gröbner basis for polynomial equations.

Before defining a Gröbner base we will give an ex-
ample.

Example 1 Suppose we want to find the local optima of
the following optimization problem ([4, Problem 337];
also used in [3]), by solving the KKT-conditions:

(P)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x) D 9x21 C x22 C 9x23
s.t. g1(x) D 1 � x1x2 � 0

g2(x) D 1 � x2 � 0
g3(x) D x3 � 1 � 0:

The KKT conditions for (P) are:

(KKT)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

18x1 � �1x2 D 0
2x2 � �1x1 � �2 D 0
18x3 C �3 D 0
�1(1 � x1x2) D 0
�2(1 � x2) D 0
�3(x3 � 1) D 0:

Further suppose we use a lexicographical order of
the monomials such that x1> x2> x3> �1> �2> �3. Then,
computing the Gröbner basis for the set of polynomi-
als in the above system and forming the corresponding
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equation system, we get

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

18x1 � x2�1 D 0
x2�1 � 36x3 C 18�2 D 0
x2�2 � �2 D 0
2x2 � �1 � �2 D 0
18x3 � �3 D 0
�31 � 36�1 � 18�22 C 36�2 D 0
�1�2 C �

2
2 � 2�2 D 0

�32 C 14�22 � 32�2 D 0
�23 C 18�3 D 0:

This system has an obvious triangular structure,
that we have tried to display graphically. The last equa-
tion contains only �3. Then comes equations in �2 (and
possibly �3) and so on. In a similar way as in Gaus-
sian elimination, the system can thus be solved by back
substitution. In each step, one then has to solve a sin-
gle variable polynomial equation, giving possibly sev-
eral solutions, each of which is substituted into the pre-
ceding equations. Thus the solution process evolves in
a tree-like structure. It might happen, that one has to
solve for a variable that is already computed. Then of
course the solutions have to agree, else they are dis-
carded.

The above type of structure will always occur if there are
finitely many solutions. It might happen, though, that
the system allows a manifold of solutions. In this case
it might e. g. happen that the last equation contains two
variables or that you in the back substitution process
comes to an equation with two (ormore) undetermined
variables. These equations then give a parametrization
of the manifold.

What is a Gröbner Basis

In Gaussian elimination the variables are ordered and
the basic reduction rule is to replace the equations f =
0, g = 0 by f = 0, g � cf = 0 where the constant c is
chosen so that the leading terms in g and cf coincide.

In systems of polynomial equations we do some-
thing quite similar. First we extend the ordering of the
variables to a total ordering of all monomials in a way
such thatm0 < m00)mm0 <mm00 for all monomialsm,
m0 andm00 and so that 1 is the least one.

The basic reduction rule is now to replace the equa-
tions f = 0, g = 0 by f = 0, g � cmf = 0 where the con-
stant c and the monomialm are chosen so that the lead-
ing terms of g and cmf coincide. This implies that h =
g � cmf is ‘smaller’ than g in the ordering. If such a re-
duction of g with f is possible and h = g � cmf we will
write g!f h.

Definition 2 A finite set G of polynomials is aGröbner
basis if for every polynomial q there exist a unique r and
a finite reduction chain q! g1 q1 ! g2 � � � ! gk qk =
r for some g1, . . . , gk in G and such that r cannot be
reduced further. The unique polynomial r is called the
normal form of qmodulo G.

Given a finite set of vectors we can use Gaussian elimi-
nation to compute a basis of vectors spanning the same
linear space. Given a finite set P of polynomials (and an
admissible monomial ordering), one can use the Buch-
berger algorithm to compute a Gröbner basis G, span-
ning the same ‘space’ of polynomials as P. (By the space
of polynomial spanned by P is meant the ideal gener-
ated by P, i. e. the set of finite linear combinations q1p1
+ � � � + qsps where the pi-s are in P and the qi-s are ar-
bitrary polynomials.) We say that G is a Gröbner basis
for P. Moreover, the common zeros of P are the same
as those of G.

What are Gröbner Bases good for

Roughly speaking, all questions concerning a system of
polynomial equations f 1 = � � � = f s = 0 can be answered
if we have a corresponding Gröbner basis. Here we list
just a few of them.
� Is the system solvable?
� If the system is solvable, how many solutions are

there, and which are they?
� Howmany real solutions are there? (in case the coef-

ficients are real). Here we can also allow for inequal-
ities.

� Is it possible to eliminate some of the variables?
� Given some polynomial f , does f vanish whenever f 1
� � � f s does? This can be used for automated proofs
in geometry.

� Given some polynomial f , does there exist polyno-
mials q1, . . . , qs such that f = q1f 1+ � � � + qsf s?

� Is it possible to describe the algebraic relations be-
tween the f i-s, i. e. the set of polynomials q in s vari-
ables such that q(f 1, . . . , f s) is the zero polynomial.
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� Can a given polynomial f be written as f = q(f 1, . . . ,
f s) for some polynomial q in s variables, and in case
it can, is it possible to compute q?

� Can we compute a vector space basis for the vector
space of polynomials modulo f 1 � � � f s?

Using Gröbner Bases
and Learningmore About them

Essentially all major mathematical computer packages
with symbolic capabilities contain modules for Gröbner
bases. The main examples are Maple and Mathematica.
For a short but more detailed introduction to Gröbner
bases, see [3]. The book [2] gives a rather short intro-
duction to the field. One standard textbook is [1]

See also

� Contraction-mapping
� Fundamental Theorem of Algebra

� Global Optimization Methods for Systems
of Nonlinear Equations

� Interval Analysis: Systems of Nonlinear
Equations

� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Systems of Equations: Application to the
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of All Azeotropes
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Even though dynamic programming [2] was origi-
nally developed for the solution of problems which
exhibit discrete types of decisions, it has also been
applied to continuous formulations. In this article,
the application of dynamic programming to the solu-
tion of continuous-time optimal control problems is
discussed. By discretizing the problem, applying the
dynamic programming equations, then returning to
the continuous domain, a partial differential equation
results, the Hamilton–Jacobi–Bellman equation (HJB
equation). This equation is often referred to as the con-
tinuous-time equivalent of the dynamic programming

algorithm. In this article, the HJB equation will first be
derived. A simple application will be presented, in ad-
dition to its use in solving the linear quadratic con-
trol problem. Finally, a brief overview of some solu-
tion methods and applications presented in the litera-
ture will be given.

Problem Formulation

The dynamic programming approach will be applied to
a system of the following form:

(
ż(t) D f (z(t); u(t));
z(0) D z0; 0 � t � T;

(1)

where z(t) 2 Rn is the state vector at time t with time
derivative given by ż(t); u(t) 2 U � Rm is the control
vector at time t,U is the set of control constraints, and T
is the terminal time. The function f (z(t), u(t)) is contin-
uously differentiable with respect to z and continuous
with respect to u. The set of admissible control trajecto-
ries are given by the piecewise constant functions, {u(t):
u(t) 2 U, 8t 2 [0, T]}. It is assumed that for any admis-
sible control trajectory, that a state trajectory zu(t) exists
and is unique.

The objective is to determine a control trajectory
and the corresponding state trajectory whichminimizes
a cost function of the form:

h(zu(T))C
Z T

0
g(zu(t); u(t)) dt; (2)

where the functions g, and h are continuously differen-
tiable with respect to both z and u.

Derivation

The derivation of the Hamilton–Jacobi–Bellman equa-
tion is taken from [3]. The time horizon is first dis-
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cretized into N equally spaced intervals with:

ı D
T
N
:

Also, the state and control are represented by:

zk D z(kı); k D 0; : : : ;N;

uk D u(kı); k D 0; : : : ;N:

The continuous-time system is approximated by:

zkC1 D zk C f (zk; uk)ı:

The cost function is rewritten as:

h(zN)C
N�1X
kD0

g(zk ; uk)ı:

The dynamic programming algorithm is now applied
with the following definitions:
� J�(t, z) is the optimal cost-to-go for the continuous

problem;
� bJ�(t; z) is the optimal cost-to-go for the discrete ap-

proximation.
The dynamic programming equations then take the
form:

bJ�(Nı; z) D h(z); (3)

bJ�(kı; z)
D min

u2U

h
g(z; u)ı CbJ�((k C 1)ı; zC f (z; u)ı)

i
;

k D 0; : : : ;N � 1: (4)

It is assumed thatbJ�(t; z) has the necessary differentia-
bility requirements to write the following Taylor series
expansion:

bJ�((k C 1)ı; zC f (z; u)ı)

DbJ�(kı; z)CrtbJ�(kı; z)ı
CrzbJ�>(kı; z) f (z; u)ı C o(ı); (5)

where o(ı) represents second order terms which satisfy
o(ı)/ı! 0 as ı! 0. Substituting (5) into (4) results in:

bJ�(kı; z) D min
u2U

h
g(z; u)ı CbJ�(kı; z)

CrtbJ�(kı; z)ı CrzbJ�>(kı; z) f (z; u)ıC o(ı)
i
:

(6)

Dividing (6) by ı andbJ�(kı; z), and taking the limit as
ı! 0 with the assumption that

lim
k!1
ı!0
kıDt

bJ�(kı; z) D J�(t; z)

results in

0 D min
u2U

�
g(z; u)Crt J�(t; z)

Crx J�>(t; z) f (z; u)
�
; 8t; z; (7)

with the boundary condition

J�(T; z) D h(z):

This partial differential equation is known as the
Hamilton–Jacobi–Bellman equation (HJB equation).

Sufficiency Theorem

This theorem is presented in [3]. SupposeV(t, z) is a so-
lution to the HJB equation, that is, V is continuously
differentiable with respect to z and t and satisfies:

0 D min
u2U

�
g(z; u)CrtV (t; z)

CrxV>(t; z) f (z; u)
�
; 8z; t; (8)

V (T; z) D h(z); 8z: (9)

Suppose also that ��(t, z) attains the minimum in (8)
for all t and z. Let z�(t) be the state trajectory obtained
from the given initial condition z(0) when the control
trajectory u�(t) = ��(t, z�(t)) is used. (That is, z�(0) =
z(0), ż� D f (z�(t); ��(t; z�(t)))); one also assumes that
this differential equation has a unique solution starting
at any pair (t, z) and that the control trajectory is piece-
wise continuous in time.) ThenV is the unique solution
of the HJB equation and is equal to the optimal cost-to-
go function

V (t; z) D J�(t; z); 8z; t:

Furthermore, the control trajectory, u�(t) is optimal for
all t 2 [0, T].

Example

Consider the simple dynamic system:

ż(t) D u(t)
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with the control bounded by u(t) 2 [� 1, 1] and time
over the range t 2 [0, T]. The cost function is given as:

1
2
z(T)2:

Writing the HJB equation for this system gives

0 D min
u2[�1;1]

�
rtV(t; z)CrzV(t; z)u

�
; 8t; z;

with the boundary condition,

V(T; z) D
1
2
z2:

The obvious choice of a control policy is to drive the
state to zero as fast as possible and keep it there. This
corresponds to the policy:

��(t; z) D � sgn(z) D

8̂
<̂
ˆ̂:

1 if z < 0;
0 if z D 0;
�1 if z > 0:

The cost associated with this policy for a given initial
time and state is:

J�(t; z) D
1
2
(max f0; jzj � (T � t)g)2 :

This function satisfies the terminal condition J�(T, z) =
z2/2. Also,

rt J�(t; z) D max f0; jzj � (T � t)g ;

rz J�(t; z) D sgn(z)max f0; jzj � (T � t)g :

Substituting these expressions into the HJB equation
results in

0 D min
u2[�1;1]

�
1C sgn(z)u

�
max f0; jzj � (T � t)g ;

which can be shown to hold for all (t, z). The minimum
is attained for u =� sgn(z), and one therefore concludes
from the sufficiency theorem presented above that J�(t,
z) is indeed the optimal cost-to-go function.

Linear-Quadratic Problem

Consider a general n-dimensional time-invariant linear
system

ż(t) D Az(t)C Bu(t)

with a cost function defined by

z>(T)QTz(T)

C

Z T

0
z>(t)Qz(t)C u>(t)Ru(t) dt;

where the matrices Q and QT are symmetric positive
semidefinite, and the matrix R is symmetric positive
definite. The HJB equation is written as

0 D min
u2Rm

�
z>Qz C u>Ru

CrtV(t; z)CrzV>(t; z)(Az C Bu)
�
;

V (T; z) D z>QTz: (10)

Try a solution of the form:

V (t; z) D z>K(t)z;

where K(t) is a symmetric n × nmatrix. One then has

rzV (t; z) D 2K(t)z;

rtV(t; z) D z>K̇(t)z:

Substituting the above expressions into (10) results in

0 D min
u2Rm

�
z>Qz C u>RuC z>K̇(t)z

C2z>K(t)AzC 2z>K(t)Bu)
�
: (11)

The minimum is obtained when the gradient with re-
spect to u is zero. This results in

2B>K(T)z C 2Ru D 0

or

u D �R�1B>K(t)z:

Substituting this expression into (11), the following re-
sults:

0 D z>
�
K̇(t)C K(t)AC A>K(t)

�K(t)BR�1B>K(t)C Q
�
z:

Therefore, K(t) must satisfy the following matrix differ-
ential equation:

K̇(t) D �K(t)A� A>K(t)

C K(t)BR�1B>K(t) � Q;

with the terminal condition

K(T) D QT :
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This equation is known as the continuous-time Riccati
equation.

Solution Methods and Applications

In the general case of a nonlinear system, the solu-
tion can not be determined analytically and numerical
methods need to be relied on. The numerical solution
of the Hamilton–Jacobi–Bellman equation is not triv-
ial due to its partial differential nature. Additionally the
HJB equation and accompanying numerical methods
have been used to solve a wide variety of problems.

See [4] for many applications in the area of optimal
control, and for an advocate solution by the method of
characteristics. This classical technique for the solution
of partial differential equations can be found in many
textbooks. See [6] for remarks about the application
of the HJB equation to minimum time optimal con-
trol problems. See [1] for an approximate method for
the solution of the time-invariant HJB equation. The
method consists of a reduction to a set on linear par-
tial differential equations and an approximation via the
Galerkin spectral method. It also presents an extensive
review of various approximation approaches and an ap-
plication for the voltage regulation of a power genera-
tor. See [7] for an alternating direction algorithm for the
solution of HJB equations. See [5] for an application for
the optimal path timing of robot manipulators and for
the approximate solution of the resulting HJB equation
using finite difference methods.

The aforementioned references are a subset of the
various solution methods for and applications of the
Hamilton–Jacobi–Bellman equation.
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Variational expressions, also called for historical rea-
sons variational principles, play a significant role in me-
chanics. They have their origin in the study of problems
of analytical mechanics, which have extensively been
studied in previous centuries, a time where scientists
used to workmultidisciplinary. Today, variational prin-
ciples provide the basis for a correct and efficient mod-
eling of a variety of physical phenomena, for instance,
they provide the theoretical basis of the finite element
method [19].

Variational equalities are the commonly met form
of variational expressions. Having in mind problems
which can be obtained from the minimization of
a smooth (i. e., sufficiently differentiable) potential en-
ergy function, one may consider the variation of this
function at a given point. A necessary condition for this
function to attain a critical point is that every varia-
tion of the function in the neighborhood of this point is
equal to zero. Thus, one formulates a variational equal-
ity problem. In mechanics, the differential of a poten-
tial energy function has the physical meaning of (stored
or consumed) work. Let us consider a problem in elas-
tostatics. In a formulation based on displacements, all
variations of the system ’s variables around a sought
point are called virtual displacements. For obvious rea-
sons the variational equality is called in this case prin-
ciple of virtual work: for small virtual displacements
around the equilibrium the virtual work of the system
is equal to zero. Analogously, one arrives at the princi-
ples of complementary virtual work, or at mixed vari-
ational principles (the latter being derived from saddle
point theorems). At this point it should be mentioned
that a variational formulation may also be written for
certain classes of problems which does not possess a po-
tential.

The introduction of inequality constraints in the
studied problem, or the assumption of nondifferen-
tiable (nonsmooth) potential energy functions, lead
to variational inequalities or more complicated varia-
tional problems. Intuitively speaking, either not all vir-
tual variations of the problem variables around a given
point are permitted (the case of inequality constraints,
for instance, unilateral contact constraints), or, a lin-
ear approximation of the potential energy function
is no more sufficient (the case of nondifferentiable
or nonsmooth energy). Convex problems have cer-
tain theoretical and numerical advantages. They are
connected with monotone operators. This is the case,
e. g., of small displacement and deformation elasto-
statics with monotone material laws or interface and
boundary conditions. These problems lead to varia-
tional inequalities and, in some cases, to convex (pos-
sibly nonsmooth) energy minimization problems (con-
vex superpotentials in the sense of J.-J. Moreau [10]).
The techniques of convex analysis and minimization
can be used for their effective solution. Unilateral
contact problems [10,15,17] and problems of elasto-
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plasticity [7,17] have been studied within this frame-
work.

Hemivariational inequalities are connected with
nonconvex and possibly nonsmooth energy functions.
In elastostatics, convexity is usually lost if the effects
of large displacements or deformations are considered.
Moreover, falling branches in material, interface or
boundary laws lead to nonconvex potentials. The latter
laws may be of a phenomenological nature and may be
used for modeling of delamination and strength degra-
dation effects, fracture, etc. Several methods have been
developed for the study of nonconvex problems. The
notion of the generalized gradient in the sense of F.H.
Clarke has been used by P.D. Panagiotopoulos for the
construction of hemivariational inequalities [16,17,18].
Following the example of nonsmooth analysis, he called
this new field nonsmooth mechanics. A short introduc-
tion to this theory and its applications in mechanics
is outlined in this article. The interested reader may
also consult�Nonconvex energy functions: Hemivari-
ational inequalities and the monographs [14,18].

One should mention that the study of hemivari-
ational inequalities provides an interesting field for
mathematicians and engineers alike. For engineers sev-
eral types of hemivariational inequalities have been
used for the study and the efficient numerical treat-
ment of yet unsolved or partially solved problems,
e. g., in nonmonotone semipermeability problems, in
modeling of delamination of simple and multilayered
plates, in the theory of composite structures and adhe-
sive joints, etc. Several of these concrete practical ap-
plications can not be treated by more naive, without
mathematical justification engineering methods. Fur-
thermore, the potential of this research field can be
estimated if one thinks that nonconvex energy func-
tions are connected with instabilities, complex dynam-
ics, fractals and chaos. Certainly, a lot of work remains
to be done in this area.

Abstract Hemivariational Inequality

The derivation of hemivariational inequalities is based
on the mathematical notion of the generalized gradient
of Clarke (denoted here by @). In contrast to the varia-
tional inequalities, the hemivariational inequalities are
not equivalent to minimum problems, but they give rise
to substationarity problems. A hemivariational inequal-

ity problem reads: find u 2 V such as to satisfy the in-
equality

a(u; v � u)C
Z

˝

j0(u; v � u) d˝ � (l ; v � u);

8v 2 V : (1)

In the abstract form used here, let V be a real Hilbert
space, V 0 be its dual space and such that V � L2(˝)
� V 0, with continuous and dense injections. The prob-
lem is defined in ˝ , which is an open bounded subset
of Rn. Furthermore let (�, �) be the L2(˝) product and
the duality pairing, k � k the norm of V and | � |2 the
L2(˝)-norm. Note that (�, �) extends uniquely fromV ×
L2 (˝) to V × V 0. Further, let V � L2(˝) be compact
and V \ L1(˝) be dense in V for the V-norm, and
have a Galerkin base. The bilinear form a(�, �): V × V
! R is symmetric continuous and coercive, i. e. there
exists c > 0 constant such that

a(v; v) � c kvk2 ; 8v 2 V : (2)

Moreover j: R ! R denotes a locally Lipschitz func-
tion which is defined by the following procedure: let ˇ
2 L1loc(R) and consider

ˇ
(�) D esssupj�1��j�
 ˇ(�1) (3)

and

ˇ
(�) D essinfj�1��j�
 ˇ(�1): (4)

They are increasing and decreasing functions of �, re-
spectively and thus the limits for �! 0+ exist. We de-
note them by ˇ(�) and ˇ(�) respectively and we define
the multivalued function

b̌(�) D [ˇ(�); ˇ(�)]: (5)

If ˇ (�˙ 0) exists for every � 2R, then a locally Lipschitz
function j: R! R can be determined (up to an additive
constant) such that b̌(�) D @ j(�). Finally, in relation
(1) j0 (u, v � u) denotes the generalized gradient of the
nonconvex and nonsmooth locally Lipschitz potential j.
By definition one has the following connection with the
generalized gradient, in the sense of Clarke:

j0(u; v) D fmax hw; vi : w 2 @CL j(u)g : (6)

Speaking in terms of mechanics one identifies relation
(1) to be a virtual work expression in inequality form.
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The first term is the internal work, the second term is
the energy contribution of the nonlinear elements mod-
eled by the nonconvex superpotential j and the right-
hand side term represents the loading contribution. De-
tailed formulations of variational problems, up to the
hemivariational inequality (1) for concrete applications
follow in the next section.

Elastostatics with Nonlinear Boundary Conditions

A variational formulation is a statement that a solution
of an operator equation subjected to certain boundary
and/or initial conditions makes an expression involv-
ing variations of the quantities of the problems equal
to zero or nonnegative. Thus one may distinguish be-
tween the bilateral or equality problems and the uni-
lateral or inequality problems. Certain variational prin-
ciples for a deformable body with nonlinear boundary
interaction effects are derived in this section in order to
demonstrate the hemivariational inequalities and their
relation to classical equations and convex variational
inequalities. Let˝ 2 R3 be an open bounded subset oc-
cupied by a deformable body in its undeformed state.
On the assumption of small deformations we can write
the relation:

Z

˝

�i j(u)"i j(v � u) d˝

D

Z

˝

fi(vi � ui ) d˝ C
Z

�

�i jn j(vi � ui ) d�;

8v 2 V ; (7)

for u 2V . HereV denotes the function space of the dis-
placements which will be defined further. Relation (7)
is the expression of the principle of virtual work for the
body when it is considered free, without constraints on
its boundary � . For the derivation of (7) the following
steps are followed. The elastostatic equilibrium equa-
tion is first considered:

�i j; j C fi D 0; (8)

where the f i is the volume force vector. Relation (8)
is multiplied by the virtual variation vi � ui and then
an integration over ˝ is performed. On the assump-
tion of appropriately smooth functions, the Green –

Gauss theorem is applied. One recalls here the strain-
displacement relation (small deformation theory):

"i j D
1
2
(ui; j C uj;i ): (9)

Let a linearly elastic body be assumed, i. e., the consti-
tutive material relation reads:

�i j D Ci jhk"hk ; (10)

where C = { Cijhk }, i, j, h, k = 1, 2, 3, is the elasticity
tensor which satisfies the well-known symmetry and el-
lipticity properties

Ci jhk D Cjihk D Ckhi j; (11)

Ci jhk"i j"hk � c"i j"hk; 8" D f"i jg: (12)

The bilinear form of linear elasticity ˛(�, �) reads in this
case:

˛(u; v) D
Z

˝

Ci jhk"i j(u)"hk(v) d˝: (13)

For further reference one splits the last term in (7) into
the work of the normal and of the tangential tractions
to the boundary. Then (7) may also be written in the
form:

Z

˝

�i j"i j(v � u) d˝

D

Z

˝

fi(vi � ui ) d˝ C
Z

�

SN(vN � uN ) d�

C

Z

�

STi (vTi � uTi ) d�; 8v 2 V : (14)

Single-Valued Boundary Laws
and Variational Equalities

Let us assume first that on � the classical boundary
conditions SN = 0 and uTi = 0, i = 1, 2, 3, hold. Then
(14) with (13) leads to the following variational equal-
ity:

8̂
<
:̂

Find u 2 V0 D fv : v 2 V ; vTi D 0 on � g

s.t. ˛(u; v) D
Z

˝

fivi d˝; 8v 2 V0:
(15)
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Analogously, one treats all linear or nonlinear bound-
ary conditions which can be expressed in an equality
form. Relation (15), under appropriate smoothness as-
sumptions, imply that the governing equations of the
mechanical problem (8) and the assumed boundary
conditions hold in a weak (integral or energetic) form.

Multivalued, Monotone Laws
and Variational Inequalities

Let us assume now that on � the general monotone
multivalued boundary condition

� S 2 @ j(u) (16)

holds. Here j(u) is assumed to be a convex superpoten-
tial and @denotes the subdifferential of convex analysis.
Moreover, all (normal and tangential) contributions of
boundary displacements u and tractions S are included
in (16), which holds as a multidimensional boundary
condition at each point of the boundary � . Relation
(16) is, by definition of the subdifferential, equivalent
to:

j(v)� j(u) � �Si (vi � ui); 8v D fvig 2 R3: (17)

By using (17) and (7) one gets the variational inequality:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

Find u 2 V with j(u) <1;
s.t. ˛(u; v � u)

C

Z

�

( j(v) � j(u)) d�

�

Z

˝

fi(vi � ui ) d˝;

8v 2 V with j(v) <1:

(18)

It is trivial to formulate analogous variational inequal-
ities for more simple one-dimensional laws. This is the
case where independent contact laws and tangential
(e. g., due to friction) mechanisms are assumed on the
boundary � . One should mention in passing that uni-
lateral contact relations are included in this formula-
tion by means of the indicator function in the place of
j(u). The indicator function is defined by IUad (u) = 0 if
u 2 Uad and +1 otherwise, and includes the inequal-
ity constraints that describe the no-penetration require-
ments.

Multivalued, Nonmonotone Laws
and Hemivariational Inequalities

In this case the basic building element is the defini-
tion of boundary conditions and material laws based
on Clarke subdifferential (6). For instance, let on � the
nonmonotone, possibly multivalued boundary condi-
tion

� S 2 @CL j(u) (19)

hold, where j is a locally Lipschitz superpotential func-
tional. Combining (7) with the inequality

j0(u; v � u) � �Si (vi � ui);

8v D fvig 2 R3; (20)

which defines on � the condition (19), one gets the fol-
lowing hemivariational inequality:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

Find u 2 V
s.t. ˛(u; v � u)C

C

Z

�

j0(u; v � u) d�

�

Z

˝

fi(vi � ui ) d˝;

8v 2 V :

(21)

If instead of (19) one assumes on � that:

� SN 2 @CL jN (uN);�ST 2 @CL jT (uT); (22)

then one gets analogously the hemivariational inequal-
ity:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

Find u 2 V
s.t. ˛(u; v � u)

C

Z

�

j0N (uN ; vN � uN ) d�

C

Z

�

j0T (uT ; vT � uT ) d�

�

Z

˝

fi(vi � ui ) d˝;

8v 2 V :

(23)
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The last type of variational expressions involving j0(�, �)
or j0N (�, �) and j0T (�, �) have been called hemivariational
inequalities by Panagiotopoulos, who introduced and
studied them in mechanics [14,16,17,18]. Note that in
the more general case in which j or jN and jT are not
locally Lipschitz j0(�, �) in (21) and j0N (�, �), j

0
T(�, �) in

(23) are replaced by j"(�, �) and j"N (�, �), j
"
T (�, �). More-

over a combination of monotone subdifferential laws
(cf. (6)) and nonmonotone laws (cf. (19)) for differ-
ent (nonoverlapping) parts of the boundary � is possi-
ble. One then gets variational-hemivariational inequal-
ity problems.

The solution of variational problems, like the vari-
ational equalities, or the hemivariational inequalities
derived previously, satisfies the operator equations of
the problem, e. g. the equation of equilibrium, and the
boundary conditions of the problem in a weak sense.
This means, roughly speaking, that these relations are
satisfied in an integral form, on the body or the bound-
ary of the structure respectively. Analogous considera-
tions are familiar within the weak formulations used in
the finite element method.

Inequality or Nonsmooth Mechanics

A boundary value problem is called bilateral (resp. uni-
lateral) if it leads to variational equality (resp. varia-
tional, or hemivariational inequality) formulations. The
unilateral problems are called inequality problems too.
Inequality problems in mechanics usually character-
ize structures with variable mechanical behavior, i. e.
where the material or boundary law depends on the
direction of the stress or boundary traction variation.
Due to their connection with nonsmooth energy func-
tions, all inequality problems belong to the area called
by Panagiotopoulos nonsmooth mechanics [11,12].

Discretized Hemivariational Inequalities
for Nonlinear Material Laws

In order to make the subject more accessible to engi-
neers a discretized hemivariational inequality is formu-
lated in this section. A finite element discretization is
assumed. All relations are written in an elementary ma-
trix analysis form. An elastic structure with both clas-
sical, linearly elastic and degrading elements is consid-
ered.

The stress equilibrium equations read:

Gs D
�
G Gn

� � s
sn

�
D p (24)

where G is the equilibrium matrix of the discretized
structure which takes into account the stress contribu-
tion of the linear s and nonlinear sn elements and p is
the loading vector.

The strain-displacement compatibility equations
take the form:

e D
�
e
en

�
D G>u D

�
G>

G>n

�
u; (25)

where e, u are the deformation and displacement vec-
tors respectively.

The linear material constitutive law for the structure
reads:

s D K0(e � e0); (26)

where K0 is the natural and stiffness flexibility matrix
and e0 is the initial deformation vector.

The nonlinear material law is considered in the
form:

sn 2 @CL�n(en): (27)

Here �n(�), is a general nonconvex superpotential and
summation over all nonlinear elements gives the total
strain energy contribution of them as:

˚n(en) D
qX

iD1

�(i)
n (en): (28)

Finally classical support boundary conditions complete
the description of the problem.

The discretized form of the virtual work equation
reads:

s>(e� � e)C s>n (e
�
n � en) D p>(u� � u);

8 e�; u�; e�n : (29)

Entering the elasticity law (26) into the virtual work
equation (29), and using (25) we get:

u>GK>0 G
>(u� � u)� (pC GK0e0)>(u� � u)

C s>n (e
�
n � en) D 0;8u� 2 Vad; (30)
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where K = G>K>0 G denotes the stiffness matrix of the
structure, p D pCGK0e0 denotes the nodal equivalent
loading vector and Vad includes all support boundary
conditions of the structure.

Further one considers the nonlinear elements (27)
in the inequality form:

s>n (e
�
n � en) � ˚ o

n (e
�
n � en); 8e�n ; (31)

where ˚ o
n(e�n � en) is the directional derivative of the

potential ˚n. Thus the following discretized hemivari-
ational inequality is obtained:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Find kinematically admissible
displacements u 2 Vad

s.t. u>K(u� � u) � p>(u� � u)
C˚ o

n (u�n � un) � 0;
8u� 2 Vad:

(32)

Equivalently a substationarity problem for the total po-
tential energy can be written:

(
Find u 2 Vad

s.t. ˘ (u) D statv2Vad f˘ (v)g :
(33)

Here the potential energy reads ˘ (v) D 1
2v
>Kv �

p>v C ˚n(v), where the first two terms (quadratic po-
tential) are well-known in the structural analysis com-
munity.

Other Applications inMechanics

Hemivariational inequalities have been used for the
modeling and solution of delamination effects in com-
posite and multilayered plates, in composite structures,
for nonmonotone friction and skin effects and for non-
linear mechanics applications (for instance, in the anal-
ysis of semi-rigid joints in steel structures). Details
can be found in [9,11,12,17,18] and in the citations
given there. Another area of applications are noncon-
vex problems arising in elastoplasticity (cf. [4,5,6]).
Some nonconvex problems in elastoplasticity have been
treated by hemivariational inequality techniques in
[17,18]. Mathematical results which are useful for the
study of hemivariational inequalities can also be found
in [2,3,13,14].

Numerical Algorithms

A number of algorithms based on nonsmooth and non-
convex optimization concepts, on engineering meth-
ods or heuristics and on combination of these two ap-
proaches have been tested till now for the numerical so-
lution of hemivariational inequality problems. Both fi-
nite elements and boundary elements have been used,
the latter for boundary only nonlinear problems; see
� Nonconvex energy functions: Hemivariational in-
equalities and [1,8,9,17].

See also

� Generalized Monotonicity: Applications to
Variational Inequalities and Equilibrium Problems

� Hemivariational Inequalities: Eigenvalue Problems
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� Quasidifferentiable Optimization: Algorithms for

Hypodifferentiable Functions
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Methods
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Conditions
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Dynamic Systems
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Formulations
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Problems
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The theory of hemivariational inequalities has been cre-
ated by P.D. Panagiotopoulos et al. (see [3,5,6,7]) for
studying nonconvex and nonsmooth energy functions
under nonmonotone multivalued laws. In this setting
many relevant models lead to nonsmooth eigenvalue
problems. A typical example is provided by the analy-
sis of hysteresis phenomena. To illustrate it we present
here the loading and unloading problems with hystere-
sismodes.

Consider a plane linear elastic body ˝ with the
boundary � whose mechanical behavior is described by
the virtual displacement variable u and the scalar pa-
rameter � which determines the magnitude of the ex-
ternal loading on the system. The variable umust satisfy
certain boundary or support conditions. For the sake of
simplicity we assume that u = 0 on � , so the space of
kinematically admissible displacements u is the Sobolev
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space H1
0(˝), that is the closure of C10 (˝) with respect

to the L2-norm of the gradient. Let us suppose that there
exist a fundamental (pre-bifurcation) solution � 7�!
u0(�) and another solution � 7�! u(�) = u0(�) + z(�)
that coincide for � < �0. Then one has lim	!	0 z(�) = 0
and the hysteresis bifurcation mode has the expression

u1(�0) :D lim
	!	0

kz(�)k�1 z(�): (1)

Using the principle of virtual works together with phys-
ically realistic assumptions on the data � and S (see e. g.
[7]), we obtain the relation

a(u1(�0); v)C hS(u1(�0)); vi

� �0

Z

˝

u1(�0)vdx D 0; 8v 2 H1
0(˝): (2)

It is justified to accept that a generalized nonmonotone
reaction-displacement (� S, u) holds in˝ expressed by
the next law

Z

˝

jo(u1(�0); v) dx � hS(u1(�0)); vi ;

8v 2 H1
0(˝); (3)

where j: R ! R stands for a locally Lipschitz function
with the generalized gradient @j and the generalized di-
rectional derivative

jo(x; y) D max fhz; yi : z 2 @ j(x)g

(see [2]). Relations (2) and (3) yield the following eigen-
value problem in hemivariational inequality form: Find
(u = u(�), �) 2 H1

0(˝) × R such that

a(u; v)C
Z

˝

jo(u; v) dx � �
Z

˝

uv dx;

8v 2 H1
0(˝): (4)

Additional information concerning problems of type
(4) can be found in [3,5,6,7].

Relation (4), as well as other models, motivates the
study of abstract eigenvalue problems for hemivaria-
tional inequalities. The specific case of Problem (4) can
be reformulated as follows: given a Banach space V em-
bedded in L2(˝), i. e. the space of square-integrable
functions on ˝ � RN , a continuous symmetric bilin-
ear form a: V × V! R and a locally Lipschitz function

j: R! R with an appropriate growth condition for its
generalized gradient, find u 2 V and � 2 R such that

a(u; v)C
Z

˝

jo(u; v) dx � �
Z

˝

uvdx;

8v 2 V : (5)

Note that this last mathematical model can also be used
to formulate various other problems in Mechanics like
unilateral bending problems in elasticity.

A general approach for studying the abstract eigen-
value problem (5) is the nonsmooth critical point the-
ory as developed by K.-C. Chang [1]. In that paper the
minimax principles in the critical point theory are ex-
tended from the smooth functionals (see [8]) to the case
of locally Lipschitz functionals. In this respect we asso-
ciate to Problem (5), for each �, the locally Lipschitz
functional I	: V! R,

I	(u) D
1
2
a(u; u)C

Z

˝

j(u) dx �
�

2

Z

˝

u2 dx;

8u 2 V : (6)

Note that a critical point u of I	, i. e. 0 2 @I	 (u), is a so-
lution of (5) because

@I	(u) � a(u; �)� �(u; �)L2

C @

Z

˝

j(u) dx � a(u; �)� �(u; �)L2 C
Z

˝

@ j(u) dx

(see [2]). Thus, to solve (5), it suffices to establish the
existence of nontrivial critical points of the functional
I	 introduced in (6). To this end we proceed along the
lines in [4] by arguing in an abstract framework.

Given a Banach space V and a bounded domain ˝
in Rm,m� 1, let T: V! Ls(˝ ;RN) be a compact linear
operator, where Ls(˝ ;RN) stands for the Banach space
of all Lebesgue measurable functions f : ˝ ! RN for
which |f |s is integrable with 1 < s <1. Let F: V! R be
a locally Lipschitz function and let G: ˝ ×RN ! R be
a (Carathéodory) function such that G(x, y) is measur-
able in x 2 ˝ , locally Lipschitz in y 2 RN and G(x, 0) =
F(0) = 0, x 2˝ . The hypotheses below are imposed
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H1) |w| � c(1 + | y | s� 1), 8w 2 @yG(x, y), x 2 ˝ , y 2
RN , with a constant c > 0;

H2) i) F(v) � r hz, vV i � ˛ k v�V � ˛0, 8v 2 V , z 2
@F(v);

ii) G(x, y) � r hw, y i � � b |y |�0 � b0, for a.e.
x 2 ˝ , y 2 RN , w 2 @yG(x, y), with positive
constants r, ˛, ˛0, b, b0, � , �0, where 1 � �0

< min { � , r�1, s };
H3) any bounded sequence { vn } � V for which there

is zn 2 @F(vn) converging inV� contains a conver-
gent subsequence in V ;

H4) i) lim infv! 0F(v kvk
�p
V > 0;

ii)

lim inf
v!0

F(v) kvk�pV

C j˝j
(s�p)/p

kTkp lim inf
y!0

G(x; y) jyj�p

> 0

uniformly with respect to x, 1 � p < s;
H5)

lim inf
t!C1

F(tv0)t�1/r

< � lim inf
t!C1

t�1/r
Z

˝

G(x; tTv0) dx

for some v0 2 V .
The following statement is our main result in studying
the abstract eigenvalue problem (5).

Theorem 1 Assume that the hypotheses H1)–H5) hold.
Then there exists a nontrivial critical point u 2 V of I: V
! R defined by

I(v) D F(v)C
Z

˝

G(x; (Tv)(x)) dx ; v 2 V :

Moreover, there exists z 2 @F(u) and w 2 Ls(s� 1)(˝ ;RN)
such that

w(x) 2 @yG(x; (Tu)(x)) a.e. x 2 ˝;

hz; viV C
Z

˝

hw(x); (Tv)(x)i dx D 0 ; v 2 V :

Conversely, if u 2 V verifies the relations above, corre-
sponding to some z and w, and the function G(x, �) is
regular at (Tu) (x) (in the sense of F.H. Clarke [2]) for
each x 2˝ , then u is a critical point of I.

The foregoing locally Lipschitz functional I satisfies the
Palais–Smale condition in the sense of Chang [1]. In-
deed, let (vn) be a sequence in V with I(vn)�M and for
which there exists a sequence Jn 2 @I(vn) with Jn! 0 in
V�. Then from H2) and taking into account that

Jn D zn C T�wn ;

zn 2 @F(vn);

wn(x) 2 @yG(x; (Tvn)(x)) a.e. x 2 ˝;

we infer that

M C r kvnkV � F(vn) � r hzn ; vniV

C

Z

˝

(G(x; (Tvn)(x))� r hwn(x); (Tvn)(x)i) dx

� ˛ kvnk�V C C1 kvnk�0V C C2;

with real constants C1, C2, provided that n is large
enough. It is clear that the estimate above implies that
the sequence (vn) is bounded in V . Then a standard ar-
gument based on the assumption H3) allows to con-
clude that (vn) possesses a strongly convergent subse-
quence. Namely, the boundedness of (vn) implies that
(Tvn) is bounded in Ls(˝ ;RN). Thus (wn) is bounded in
Ls/s� 1)(˝ ;RN) due essentially to the assumption H1).
Since T� is a compact operator and Jn ! 0 we de-
rive that (zn) has a convergent subsequence in V�. This
fact combined with the boundedness of (vn) allows to
use the hypothesis H3). The claim that the locally Lips-
chitz functional I verifies the Palais –Smale condition is
proved.

Assumption H4) insures the existence of some con-
stants ı > 0, A > 0 and B > 0, with

A� B j˝j(s�p)/p kTkp > 0;

such that

F(v) � AkvkpV ; kvkV � ı; (7)

and

G(x; y) � �B jyjp ; 8x 2 ˝; jyj � ı:

Combining the inequality above with H1) one obtains
that

Z

˝

G(x; (Tv)(x)) dx � �(A� �) kvkpV ;

kvkV � �; (8)
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for some � > 0 and 0 < � � ı. Indeed, assumption H1)
and Lebourg ’s mean value theorem imply that G fulfills
the following growth condition

jG(x; y)j � a1 C a2 jyjs ;8x 2 ˝; y 2 RN ;

with constants a1, a2 � 0. The two estimates above for
G(x, y) show that

G(x; y) � �B jyjp � (a1ı�s C a2) jyjs ;

8x 2 ˝; y 2 RN :

Then one deduces from the continuity of T that one has
Z

˝

G(x; (Tv)(x))dx

�
�
�B j˝j(s�p)/p kTkp

� (a1ı�s C a2) kTks kvk
s�p
V

�
kvkpV ;

8v 2 V :

Since s > p we see that the numbers � > 0 and � > 0 can
be chosen so small that relation (8) be verified.

By (7) and (8) we arrive at the conclusion that there
exist positive numbers �, � such that

I(v) � �; kvkV D �: (9)

The formula

@t(t�1/rG(x; t y))

D
1
r
t�1�1/r[r

˝
@yG(x; t y); t y

˛
� G(x; t y)];

the absolute continuity property and H2ii) show that

t�1/rG(x; t y) � G(x; y)

D

tZ

1

@� (��1/r (G(x; � y)d� � C jyj�0 C C0

for a.e. x 2 ˝ , y 2 RN , t > 1, where C, C0 are positive
constants. Then one obtains

I(t�v0) � (t�)1/r

�

2
4F(t�v0)(t�)�1/r C C kv0k�0V �

�0�1/r

CC0�
�1/r C ��1/r

Z

˝

G(x; �(Tv0)(x)) dx

3
5

for all t > 1, � > 1, with new positive constants C, C0. In
view of H5) and since �0 < 1/r, we can find � sufficiently
large such that

C kv0k�0V �
�0�1/r C C0�

�1/r

C ��1/r
Z

˝

G(x; �(Tv0)(x)) dx

< � lim inf
�!C1

F(�v0)��1/r :

With such fixed number � , we see that there exists ar-
bitrarily large t satisfying

F(t�v0)(t�)�1/r C C kv0k�0V �
�0�1/r C C0�

�1/r

C ��1/r
Z

˝

G(x; �(Tv0)(x)) dx < 0:

We deduce that

I(tnv0) � 0 (10)

for a subsequence tn!1. The properties (9) and (10)
permit to apply themountain pass theorem in the nons-
mooth version of Chang [1]. This yields the desired crit-
ical point u of I. The other assertions of the first part of
Theorem are direct consequences of the last statement.

The converse part of Theorem follows from the next
formula

@

Z

˝

G(x; u(x)) dx D
Z

˝

@yG(x; u(x)) dx;

8u 2 Ls(˝ ;RN);

which is valid under the growth condition in H1) and
the regularity assumption for G (see [2]). The proof of
Theorem is thus complete.

In the case of problem (4) we choose V = H1
0(˝),

the compact linear operator T: H1
0(˝)! Ls(˝) equal

to the embedding H1
0(˝)� Ls(˝) with 2 < s < 2m(m �

2)�1 ifm� 3,

F(v) D
1
2

Z

˝

(jrvj2 � �v2) dx; 8v 2 H1
0(˝);

where for simplicity we take a(u, v) =
R
˝ r u � r v dx,

and G(x, t) = j(t). A significant possible choice for j is
the following one

j(t) D �
jtjs

s
C

tZ

0

ˇ(�) d�; t 2 R; (11)

where ˇ 2 L1l oc (R) verifies t ˇ(t) � 0 for t near 0, | ˇ(t)
| � c(1 + |t |� ), t 2 R, with constants c > 0, 0 � � < 1.
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Corollary 2 Let j: R! R be given by (11). If �1 denotes
the first eigenvalue of � � on H1

0(˝), then for every �
< �1 the problem (5) with a as above, has a nontrivial
eigenfunction u 2 H1

0(˝) which solves in addition the
nonsmooth Dirichlet problem containing both superlin-
ear and sublinear terms

	uC �uC jujs�2 u 2 [ˇ(u(x)); ˇ(u(x))]

a.e. x 2 ˝; u D 0 on @˝;

where the notations in [1] are used.

The argument consists in verifying the assumptions
H1)–H5) for the functional I = I	, for � < �1, with I	
described in (6). To this end it is sufficient to take r 2
(1/s, 1/2), p = � = 2, �0 = � + 1 and v0 2 H1

0(˝) { 0 }.
Applying Theorem one finds the stated result.

Other related results and applications for eigenvalue
problems in the form of hemivariational inequalities
are given in [3,4,5,6,7] and the references therein.
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Let V = H1(˝ ;RN), N � 1, be a vector valued Sobolev
space of functions square integrable together with their
first partial distributional derivatives in ˝ , ˝ being
a bounded domain in Rm, m > 2, with sufficiently
smooth boundary � . Assume that V is compactly
imbedded into Lp(˝ ;RN) (1 < p < 2m/m � 2), [12]).
We write k � kV and k � kLp(˝ ;RN ) for the norms in V
and Lp(˝ ;RN), respectively. For the pairing over V� ×
V the symbol h �, � iV will be used, V� being the dual of
V .

Let A: V ! V� be a bounded, pseudomonotone
operator. This means that A maps bounded sets into
bounded sets and that the following conditions hold
[3,5]:
i) The effective domain of A coincides with the whole

V ;
ii) If un ! u weakly in V and lim supn!1 h Aun, un
� uV i � 0, then lim infn!1 hAun, un � vV i � h
Au, u � v iV for any v 2 V .
Note that i) and ii) imply that A is demicontinuous,
i. e.

iii) If un! u strongly in V , then Aun! Au weakly in
V�.

Moreover, we assume that V is endowed with a direct
sum decomposition V D bV C V0, where V0 is a finite-
dimensional linear subspace, with respect to which A is
semicoercive, i. e. 8u 2 V there existbu 2 bV and � 2 V0

such that u DbuC � and

hAu; uiV � c(


bu

V )



bu

V ; (1)

where c: R+ ! R stands for a coercivity function with
c(r) ! 1 as r ! 1. Further, let j: RN ! R be a lo-
cally Lipschitz function fulfilling the unilateral growth
conditions ([16,21]):

j0(�; �� �) � ˛(r)(1C j�j� );

8�; � 2 RN ; j�j � r; r � 0; (2)

and

j0(�;��) � k j�j ; 8� 2 RN ; (3)

where 1 � � < p, k is a nonnegative constant and ˛ :R+

! R+ is assumed to be a nondecreasing function from
R+ into R+. Here, j0(�;�) stands for the directional Clarke
derivative

j0(�; �) D lim sup
h!0
	!0C

j(� C hC ��) � j(� C h)
�

; (4)

by means of which the Clarke generalized gradient of j
is defined by [6]

@ j(�) :D
˚
� 2 RN : j0(�; �) � � � �; 8� 2 RN� ;

�; � 2 RN :

Remark 1 The unilateral growth condition (2) is the
generalization of the well known sign condition used
for the study of nonlinear partial differential equations
in the case of scalar-valued function spaces (cf. [27,28]).

Consider the problem of finding u 2V such as to satisfy
the hemivariational inequality

hAu � g; v � uiV C
Z

˝

j0(u; v � u) d˝ � 0;

8v 2 V : (5)

It will be assumed that g 2 V� fulfills the compatibility
condition

hg; �iV <
Z

˝

j1(�) d˝; 8� 2 V0 n f0g; (6)
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where j1: RN ! R [ { +1 } stands for the recession
functional given by (cf. [2,4,10])

j1(�) D lim inf
�!�

t!C1

[� j0(t�;��)]; � 2 RN : (7)

Because of (1), the problem to be considered here
will be referred to as a semicoercive hemivariational in-
equality.

The notion of hemivariational inequality has been
first introduced by P.D. Panagiotopoulos in [22,23] for
the description of important problems in physics and
engineering, where nonmonotone, multivalued bound-
ary or interface conditions occur, or where some non-
monotone, multivalued relations between stress and
strain, or reaction and displacement have to be taken
into account. The theory of hemivariational inequali-
ties (as the generalization of variational inequalities, cf.
[7]) has been proved to be very useful in understand-
ing of many problems of mechanics involving non-
convex, nonsmooth energy functionals. For the gen-
eral study of hemivariational inequalities and their ap-
plications, see [13,14,15,17,18,19,20,21,24,26] and the
references quoted there. Some results in the area of
static, semicoercive inequality problems can be found
in [9,10,25].

To prove the existence of solutions to (5), the
Galerkin method combined with the pseudomonotone
regularization of the nonlinearities will be applied.

Let us start with the following preliminary results.
The regularization ej0R(�; �), R > 0, of the Clarke direc-

tional derivative j0(�;�) will be defined as follows: for any
�, � 2 RN , set

ej0R(�; �) D
8<
:
j0(�; �) if j�j � R;

j0
�
R �
j�j
; �
�

if j�j > R:
(8)

Lemma 2 Suppose that (2) and (3) are fulfilled. Then
for R > 0,

ej0R(�; � � �) � ę(r)(1C j�j� ); 8� 2 RN ;

8� 2 RN ; j�j � r; r � 0: (9)

ej0R(�;��) � k j�j ; 8� 2 RN ; (10)

where ę: RC ! RC is a nondecreasing function inde-
pendent of R.

Proof To establish (9) and (10) it suffices to consider
the case | � | � R and to invoke the estimates

ej0R(�; � � �) D j0
�
R
�

j�j
; � � �

�

� j0
�
R
�

j�j
; �� R

�

j�j

�

C
j�j � R

R
j0
�
R
�

j�j
;�R

�

j�j

�

� ˛(j�j)(1C R� )C
j�j � R

R
kR

� ˛(r)(1C j�j� )C k j�j ;

8�; � 2 RN ; j�j � r; r � 0;

and

ej0R(�;��) D j0
�
R
�

j�j
;��

�

�
j�j

R
j0
�
R
�

j�j
;�R

�

j�j

�
�
j�j

R
kR D k j�j ;

respectively. The proof is complete.

For any R > 0, the following regularization of the primal
problem can be formulated:

(PR)Find (uR ; �R) 2 V � Lq(˝ ;RN);

1/p +1/q = 1, such that

hAuR � g; v � uRiV

C

Z

˝

�R � (v � uR) d˝ D 0; 8v 2 V ; (11)

�R 2 �R(uR); (12)

where

�R(uR) :D

8<
: 2 Lq(˝ ;RN) :

Z

˝

 � v d˝

�

Z

˝

ej0R(uR ; v)d˝; 8 v 2 Lp(˝ ;RN)

9=
; :

In order to show that (PR) has solutions, the follow-
ing auxiliary result is to be applied.
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Lemma 3 Suppose that (1)-(3) and (6) hold. Then there
exists R0 > 0 such that for any R > R0 the set of all u 2 V
with the property that

hAu � g; uiV �
Z

˝

ej0R(u;�u) d˝ � 0 (13)

is bounded in V, i. e. there existsM > 0 (possibly depend-
ing on R > R0), such that (13) implies

kukV �M: (14)

Proof Suppose on the contrary that this claim is not
true, i. e. there exists a sequence { un }1nD1 � V with the
property that

hAun � g; uniV �

Z

˝

ej0R(un ;�un) d˝ � 0; (15)

where k un kV!1 as n!1. By the hypothesis, each
element un can be represented as

un Dbun C en�n ; (16)

where bun 2 bV , en � 0, � n 2 V0, k �n kV = 1, and
hAun ; uniV � c(



bun



V )


bun




V ). Taking into account

(3) it follows that

0 � hAun � g; uniV �

Z

˝

ej0R(un ;�un) d˝

� c(


bun




V )


bun




V � kgkV�



bun



V

� en hg; �niV � k
Z

˝

junj d˝

� c(


bun




V )


bun




V � kgkV� (



bun



V C en)

� k1


bun




V � enk1 k�nkV ; (17)

where k1 = const. The obtained estimates imply that {
en } is unbounded. Indeed, if it would not be so, then
due to the behavior of c(�) at infinity, fbung had to be
bounded. In such a case the contradiction with k un kV
! 1 as n ! 1 results. Therefore one can suppose
without loss of generality that en ! + 1 as n ! 1.
The next claim is that

1
en
bun ! 0 strongly in V : (18)

Indeed, if f


bun




V g is bounded, then (18) follows im-

mediately. If


bun




V ! 1 then c(



bun



V ) ! C1.

From (17) one has

k1 C kgkV� �
�
c(


bun




V ) � kgkV� � k1

� 

bun



V

en
:

Thus, the boundedness of the sequence
( �

c(


bun




V ) � kgkV� � k1

� 

bun



V

en

)1

nD1

results, which in view of

c(


bun




V ) � kgkV� � k1 ! C1 as n!1

implies the assertion (18). The obtained results give rise
to the following representation of un:

un D en
�

1
en
bun C �n

�
;

wherebun/en ! 0 strongly in V and �n! � in V0 as n
!1 for some � 2 V0 with k � kV = 1 (recall that V0

has been assumed to be finite dimensional). Moreover,
the compact imbedding V � Lp(˝ ;RN) permits one to
suppose thatbun/en ! 0 and �n! � a.e. in˝ .

Further, (15), together with the fact that A is semi-
coercive, leads to

0 � hAun � g; uniV �

Z

˝

ej0R(un ;�un)d˝

�
�
c(


bun




V ) � kgkV�

� 

bun



V � en hg; �niV

C en

�

Z

˝

�ej0R
�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�
d˝:

Hence

hg; �niV �
�
c(


bun




V ) � kgkV�

� 1
en



bun



V

C

Z

˝

�ej0R
�
en
�bun

en
C �n

�
;�
bun

en
� �n

�
d˝:

(19)

Now observe that either

�
c(


bun




V ) � kgkV�

� 1
en



bun



V ! 0 as n!1;
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if f


bun




V g is bounded, or

�
c(


bun




V ) � kgkV�

� 1
en



bun



V � 0

for sufficiently large n, if


bun




V ! 1 as n ! 1.

Therefore, for any case

lim inf
n!1

�
c(


bun




V ) � kgkV�

� 1
en



bun



V � 0:

Moreover, by (10) the estimate follows:

� ej0R
�
en
�bun

en
C �n

�
;�
bun

en
� �n

�

� �k
ˇ̌
ˇ̌bun

en
C �n

ˇ̌
ˇ̌ : (20)

This allows the application of Fatou ’s lemma in (19),
from which one is led to

hg; �iV � lim inf
n!1Z

˝

�
�ej0R

�
en
�bun

en
C �n

�
;�
bun

en
� �n

��
d˝

�

Z

˝

lim inf
n!1

�
�ej0R

�
en
�bun

en
C �n

�
;�
bun

en
� �n

��
d˝:

(21)

Taking into account (8) and upper semicontinuity
of j0(�, �), one can easily verify that

lim inf
n!1

�
�ej0R

�
en(
bun

en
C �n);�

bun

en
� �n

��

� � j0
�
R
�

j� j
;��

�
;

which leads to

hg; �iV �
Z

˝

� j0
�
R
�

j� j
;��

�
d˝: (22)

Since j1(�) is lower semicontinuous and V0 is finite di-
mensional, from (6) it follows that a ı > 0 can be found
such that for any � 2 V0 with k �V k = 1,

hg; �iV C ı <
Z

˝

j1(�) d˝: (23)

With the help of Fatou ’s lemma (permitted by (20)) we
arrive at

lim inf
R!1

Z

˝

� j0
�

R
j� j
� ;��

�
d˝ �

Z

˝

j1(�) d˝:

The upper semicontinuity of j0(�;�) allows us to con-
clude the existence of R
 > 0 and "
 > 0 such that
Z

˝

� j0
�

R
j� 0j

� 0;�� 0
�

d˝ �
Z

˝

j1(�) d˝ �
ı

2

for each R > R
 and � 0 2 V0 with k � � � 0 kV < "
 . As
the sphere {v 2 V0: kvkV = 1 } is compact in V0, there
exists R0 > 0 such that
Z

˝

� j0
�

R
j� j
� ;��

�
d˝ �

Z

˝

j1(�) d˝ �
ı

2
;

for any � 2 V0 with k � kV = 1, R > R0. This combined
with (23) contradicts (22). Accordingly, the existence
of a constant M > 0 has been established such that (13)
implies (14), whenever R > R0. The proof of Lemma 3 is
complete.

Proposition 4 Let us assume all the hypotheses stated
above. Then for any R > R0 the problem (PR) possesses at
least one solution. Moreover, if (uR, �R) is a solution of
(PR), then

kuRkV � M (24)

for some constant M not depending on R > R0.

Proof Let � be the family of all finite-dimensional
subspaces F of V , ordered by inclusion. Denote by iF :
F ! V the inclusion mapping of F into V and by i�F :
V� ! F� the dual projection mapping of V� into F�,
F� being the dual of F. The pairing over F� × F will be
denoted by h �, � iF . Set AF := i�F ° A ° iF and gF := i�Fg.

Fix R > R0. For any F 2 � consider a finite-
dimensional regularization of (PR):

(PF) Find (uF ; �F ) 2 F � Lq(˝ ;RN) 2 F

such that

hAuF � g; viV C
Z

˝

�F � v d˝ D 0;8v 2 F; (25)

�F 2 �R(uF): (26)
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The first task is to show that for each F 2�, (PF) has
solutions. Notice that � R (�) has nonempty, convex and
closed values and if  2 � R (v), v 2 Lp (˝ ;RN), then

k kLq(˝ ;RN ) � KR ; (27)

for some KR > 0 depending on the Lipschitz constant
of j in the ball { � 2 RN : | � | � R }. Moreover, from
the upper semicontinuity of ej0R(�; �) and Fatou ’s lemma
it follows immediately that � R is upper semicontinu-
ous from Lp (˝ ;RN) to Lq (˝ ;RN), Lq (˝ ;RN) being en-
dowed with the weak topology.

Further, let �F : Lq (˝ ;RN)! F� be the operator that
to any  2 Lq(˝ ;RN) assigns �F  2 F� defined by

h�F ; viF :D
Z

˝

 � v d˝ for any v 2 F: (28)

Note that �F is a linear and continuous operator from
the weak topology of Lq (˝ ;RN) to the (unique) topol-
ogy on F�. ThereforeGF : F! 2F� , given by the formula

GF(vF) :D �F�R(vF) for vF 2 F; (29)

is upper semicontinuous.
By the pseudomonotonicity of A it follows that AF :

F ! F� is continuous. Thus, AF + GF � gF : F ! 2F�

is an upper semicontinuous multivalued mapping with
nonempty, bounded, closed and convex values. More-
over, for any vF 2 F and  F 2 GF(vF) one has

hAFvF C  F � gF ; vFiF

� hAvF � g; vFiV �
Z

˝

ej0R(vF ;�vF) d˝: (30)

Hence, in view of Lemma 3, for R > R0 there exists M >
0 not depending on F 2� such that the condition k vF
kV = M + 1 implies

hAFvF C  F � gF ; vFiF � 0: (31)

Accordingly, one can invoke [1, Corol. 3, p. 337] to de-
duce the existence of uF 2 F with

kuFkV �MC 1 (32)

such that 0 2 AFuF + GF(uF) � gF. This implies that for
some �F 2 � R(uF) it follows that  F = �F(�F) and (uF ,
�F) is a solution of (PF).

In the next step it will be shown that (PR), R > R0,
has solutions.

For F 2�, let

WF :D
[

F02�;
F0�F

8̂
<̂
ˆ̂:
uF0 2 V :

(uF0 ; �F0 )
satisfies (PF0 )
for some

�F0 2 Lq(˝ ;RN)

9>>=
>>;
:

The symbol weakcl (WF) will be used to denote the clo-
sure ofWF in the weak topology of V . From (32) one
gets

weakcl(WF) � BV (O;MC 1); 8F 2 �;

where BV (O, M + 1) := {v 2 V kvkV �M + 1 }. Thus,
the family { weakcl(WF ): F 2 � } is contained in the
weakly compact set BV (O, M + 1) of V . Further, for
any F1, . . . , Fk 2�, k = 1, 2, . . . , the inclusionWF1 \ � � �

\WFk �WF results, with F = F1 + � � � + Fk. Therefore,
the family {weakcl(WF ): F 2� } has the finite intersec-
tion property. This implies that \F 2� weakcl (WF) is
not empty. From now on, let uR 2 BV (0, M + 1) belong
to this intersection.

Fix v 2 V arbitrarily and choose F 2� such that uR,
v 2 F. Thus, there exists a sequence {uFn } �WF with
uFn ! uR weakly in V . Let �Fn 2 � R(uFn ) denote the
corresponding sequence for which (uFn , �Fn ) is a solu-
tion of (PFn ) (for simplicity of notation, the symbols {un
} and { �n } will be used instead of uFn and �Fn , respec-
tively). Therefore

hAun � g;w � uniV C

Z

˝

�n � (w � un) d˝ D 0;

8 w 2 Fn: (33)

Since k �n kLq(˝ ;RN ) � KR and Lq (˝ ;RN) is reflexive,
it can also be supposed that for some �R 2 Lq(˝ ;RN),
�n ! �R weakly in Lq(˝ ;RN). By the hypothesis, the
imbedding V � Lp(˝ ;RN) is compact, so un ! uR
strongly in Lp (˝ ;RN). Consequently, by the upper
semicontinuity of � R from Lp (˝ ;RN) to Lq (˝ ;RN)
(L;q (˝ ;RN) being endowed with the weak topology) it
follows immediately that �R 2 � R(uR), i. e. (12) holds.
Moreover,

R
˝ �n �(uR � un)d ˝ ! 0 as n!1 and

(33) with w = uR lead to lim hAun, un � uR iV = 0. Ac-
cordingly, the pseudomonotonicity ofA allows the con-
clusion that hAun, un iV!hAuR, uR iV and Aun!AuR
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weakly inV�. Finally, substituting w = v in (33) and let-
ting n!1 give in conclusion (11) with v 2 V chosen
arbitrarily. Thus the existence of solutions of (PR) has
been established.

Let us proceed to the boundedness of solutions {uR
}R>R0 of (PR). Suppose on the contrary that this claim is
not true. Then according to (11) and (12) there would
exist a sequence Rn!1 such that k uRn kV !1 as n
!1, and

hAuRn � g; uRn iV �

Z

˝

fj0Rn
(uRn ;�uRn ) d˝ � 0: (34)

From now on, for simplicity of notations, instead of the
subscript ‘Rn’ we write ‘n’. Eq. (34) allows us to follow
the lines of the proof of Lemma 3. First, analogously one
arrives at the representation

un D en
�

1
en
bun C �n

�
;

withbun/en ! 0 strongly in V and �n ! �0 in V0 as n
!1 for some �0 2 V0 with k �0 kV = 1. Secondly, the
counterpart of (21) can be obtained in the form

hg; �iV � lim inf
n!1

Z

˝�
�fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

��
d˝:

(35)

But

fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�

D j0
�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�
;

if
ˇ̌bun C en�n

ˇ̌
� Rn and

fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�

D j0
0
@ Rnˇ̌
ˇ 1
en
bun C �n

ˇ̌
ˇ

�
1
en
bun C �n

�
;�

1
en
bun � �n

1
A ;

if
ˇ̌bun C en�n

ˇ̌
> Rn :. Therefore we easily conclude, us-

ing (7), that

lim inf
n!1

�fj0Rn

�
en
�

1
en
bun C �n

�
;�

1
en
bun � �n

�

� j1(�0):

Consequently, by Fatou ’s lemma,

hg; �0iV �
Z

˝

j1(�0) d˝;

contrary to (6). Thus, the boundedness of {uR }R>R0 fol-
lows and the proof of Proposition 4 is complete.

The next result is related to the compactness property
of { �R: R > R0 } in L1 (˝ ;RN).

Proposition 5 Let a pair (uR, �R) 2 V × Lq (˝ ;RN) be
a solution of (PR). Then the set
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂
�R 2 Lq(˝ ;RN) :

(uR ; �R)
is a solution of

(PR)
for some uR 2 V ;

R > R0

9>>>>>=
>>>>>;

is weakly precompact in L1 (˝ ;RN).

Proof According to the Dunford–Pettis theorem [8] it
is sufficient to show that for each " > 0 a ı > 0 can be
determined such that for any ! �˝ with meas ! < ı,

Z

!

j�R j d˝ < "; R > R0: (36)

Fix r > 0 and let � 2 RN be such that | � | � r. Then, by
(9), from �R � (�� uR) � ej0R(uR ; � � uR) it results that

�R � � � �R � uR C ę(r)(1C juR j
� ) (37)

a.e. in˝ . Let us set

� �
r
p
N
(sgn�R1 ; : : : ; sgn�RN );

where �Ri , i = 1, . . . , N, are the components of �R and
where sgny = 1 if y > 0, sgn y = 0 if y = 0, and sgny =
� 1 if y < 0. It is not difficult to verify that | � | � r for
almost all x 2˝ and that

�R � � �
r
p
N
j�R j :

Therefore, by (37) the estimate follows

r
p
N
j�R j � �R � uR C ę(r)(1C juR j

� ):
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Integrating this inequality over ! �˝ yields
Z

!

j�R j d˝ �
p
N
r

Z

!

�R �uR d˝C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p kuRk

�
Lp(˝) d˝: (38)

Thus, from (24) one obtainsZ

!

j�R j d˝

�

p
N
r

Z

!

�R � uR d˝ C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p�� kuRk

�
V d˝

�

p
N
r

Z

!

�R � uR d˝ C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p��M� d˝ (39)

(k � kLp(˝ ;RN ) � � k � kV ).
Further, it will be shown thatZ

!

�R � uR d˝ � C (40)

for some positive constant C not depending on ! �˝
and R > R0. Indeed, from (10) one can easily deduce that

�R � uR C k juR j � 0 a.e. in˝:

Thus it follows thatZ

!

(�R � uR C k juR j) d˝

�

Z

˝

(�R � uR C k juR j) d˝;

and consequently
Z

!

�R � uR d˝ �
Z

˝

�R � uR d˝ C 2k1 kuRkV :

But Amaps bounded sets into bounded sets. Therefore,
by means of (11) and (24),

Z

˝

�R � uR d˝ D �hAuR � g; uRiV

� kAuR � gkV� kuRkV � C0; C0 D const;

and consequently, (40) easily follows. Further, from
(39) and (40), for r > 0,

Z

!

j�R j d˝ �
p
N
r

C C
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p��M� d˝: (41)

This estimate is crucial for obtaining (36). Namely, let "
> 0. Fix r > 0 with
p
N
r

C <
"

2
(42)

and determine ı > 0 small enough to fulfill
p
N
r
ę(r)meas!

C

p
N
r
ę(r)(meas!)(p��)/p��M� �

"

2
;

provided that meas ! < ı. Thus, from (41) it follows
that for any ! �˝ with meas ! < ı,

Z

!

j�R j d˝ � "; R > R0: (43)

Finally, { �R }R>R0 is equi-integrable and its precom-
pactness in L1 (˝ ;RN) has been proved [8].

Now the main result will be formulated.

Theorem 6 Let A: V ! V� be a pseudomonotone,
bounded operator, j: RN ! R a locally Lipschitz func-
tion. Suppose that (1)-(3) and (6) hold. Then there exist
u 2 V and � 2 L1 (˝ ;RN) such that

hAu � g; v � uiV C
Z

˝

� � (v � u) d˝ D 0;

8v 2 V \ L1(˝ ;RN); (44)
(
� 2 @ j(u) a.e. in˝;
� � u 2 L1(˝):

(45)

Moreover, the hemivariational inequality holds:

hAu � g; v � uiV C
Z

˝

j0(u; v � u)d˝ � 0;

8v 2 V ; (46)
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where the integral above is assumed to take +1 as its
value if j0(u;v � u) 62 L1(˝).

Proof The proof is divided into a sequence of steps.
Step 1. From Propositions 4 and 5 it follows that

from the set { uR, �R }R>R0 of solutions of (PR) a se-
quence { uRn , �Rn } can be extracted with Rn!1 as n
!1 (for simplicity of notations it will be denoted by
(un, �n)), such that

hAun � g; v � uniV

C

Z

˝

�n � (v � un) d˝ D 0;8v 2 V ; (47)

and
8̂
<̂
ˆ̂:

�n 2 �Rn (un);
un ! u weakly in V ;
�n ! � weakly in L1(˝ ;RN)

(48)

for some u 2 V and � 2 L1 (˝ ;RN).
The boundedness of {Aun } in V� (recall that A has

been assumed to be bounded and that k un kV � M)
allows the conclusion that for some B 2 V�,

Aun ! B weakly in V� (49)

(by passing to a subsequence, if necessary). Thus, (47)
implies that the equality

hB � g; viV C
Z

˝

� � v d˝ D 0 (50)

is valid for any v 2 V \ L1(˝ ;RN).
Step 2. Now it will be proved that � 2 @j(u) a.e in

˝ , i. e. the first condition in (45) is fulfilled. Since V is
compactly imbedded into Lp (˝ ;RN), due to (48) one
may suppose that

un ! u strongly in Lp(˝ ;RN): (51)

This implies that for a subsequence of {un } (again de-
noted by the same symbol) one gets un ! u a.e. in ˝ .
Thus, from Egoroff ’s theorem it follows that for any "
> 0 a subset ! �˝ with meas ! < " can be determined
such that un ! u uniformly in ˝ \ ! with u 2 L1

(˝ \ !;RN). Let v 2 L1 (˝ \ !;RN) be an arbitrary

function. From the estimate
Z

˝n!

�n � v d˝ �
Z

˝n!

fj0Rn (un ; v) d˝

D

Z

˝n!

j0(un ; v) d˝; (for large n)

(un remains pointwise uniformly bounded in˝ \! and
Rn !1 as n!1) combined with the weak conver-
gence in L1(˝ ;RN) of �n to �, (51) and with the upper
semicontinuity of

L1(˝ n !;RN ) 3 un 7�!

Z

˝n!

j0(un ; v) d˝;

it follows that
Z

˝n!

� � v d˝ �
Z

˝n!

j0(u; v) d˝;

8v 2 L1(˝ n !;RN ):

But the last inequality allows us to state that � 2 @j(u)
a.e. in ˝ \ !. Since meas ! < " and " was chosen arbi-
trarily,

� 2 @ j(u) a.e. in˝; (52)

as claimed.
Step 3. Now it will be shown that � � u 2 L1(˝),

i. e. the second condition in (45) holds. For this pur-
pose we shall need the following truncation result for
vector-valued Sobolev spaces.

Theorem 7 ([20]) For each v 2 H1(˝ ;RN) there exists
a sequence of functions { "n } � L1(˝) with 0 � "n � 1
such that

f(1� "n)vg � H1(˝ ;RN) \ L1(˝ ;RN)

(1 � "n)v! v strongly in H1(˝ ;RN):
(53)

Remark 8 For the truncation procedure of the form
(53) in the case of a scalar-valued Sobolev space
Wp, m(˝) the reader is referred to [11].

According to the aforementioned theorem, for u 2 V
one can find a sequence { "k } 2 L1(˝) with 0 � "k �
1 such that euk :D (1 � "k)u 2 V \ L1(˝ ;RN) and
euk ! u in V as k!1. Without loss of generality it
can be assumed thateuk ! u a.e. in˝ . Since it is already
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known that � 2 @j(u), one can apply (3) to obtain � � (�
u) � j0(u; �u) � k |u |. Hence

� �euk D (1 � "k)� � u � �k juj : (54)

This implies that the sequence f� �eukg is bounded from
below and � �euk ! � � u a.e. in˝ . On the other hand,
due to (50) one gets

C � h�BC g;eukiV D

Z

˝

� �euk d˝

for a positive constant C. Thus, by Fatou ’s lemma � � u
2 L1(˝), as required.

Step 4. Now the inequality

lim inf
n!1

Z

˝

�n � un d˝ �
Z

˝

� � u d˝ (55)

will be established. It can be supposed that un ! u a.e.
in ˝ , because un ! u strongly in Lp(˝ ;RN). Fix v 2
L1(˝ ;RN) arbitrarily. Since �n 2 � Rn (un), Eq. (9) im-
plies

�n � (v � un) � fj0Rn (un ; v � un)

� ę(kvkL1(˝ ;RN ))(1C junj
� ): (56)

From Egoroff ’s theorem it follows that for any " > 0
a subset ! �˝ withmeas! < " can be determined such
that un! u uniformly in ˝ \ !. One can also suppose
that ! is small enough to fulfill

R
! ę(kvkL1(˝ ;RN ))(1C

junj
� ) d˝ � ", n = 1, 2, . . . , and

R
! ˛(kvkL1(˝ ;RN ))(1

+ k u� ) d˝ � ". Hence
Z

˝

fj0Rn (un ; v � un) d˝

�

Z

˝n!

fj0Rn (un ; v � un) d˝ C "

D

Z

˝n!

j0(un ; v � un) d˝ C " (for large n);

which by Fatou ’s lemma and upper semicontinuity of
j0(�; �) yields

lim inf
n!1

Z

˝

�fj0Rn (un ; v � un) d˝

�

Z

˝

� j0(u; v � u) d˝ � 2":

By arbitrariness of " > 0 and (56) one obtains

lim inf
n!1

Z

˝

�n � un d˝

�

Z

˝

� � v d˝ �
Z

˝

j0(u; v � u) d˝;

8v 2 V \ L1(˝ ;RN): (57)

By substituting v D euk :D (1 � "k)u (witheuk as de-
scribed in the truncation argument of Theorem 7) into
the right-hand side of (57) one gets

lim inf
n!1

Z

˝

�n � un d˝

� lim inf
k!1

Z

˝

� �euk d˝

� lim sup
k!1

Z

˝

j0(u;euk � u) d˝: (58)

Taking into account thateuk ! u a.e. in˝ ,

j0(u;euk � u) D "k j0(u;�u) � "kk juj � k juj

and j� � uj � � �euk D (1 � "k)� � u � �k juj, Fatou ’s
lemma and the dominated convergence can be used to
deduce

lim sup
k!1

Z

˝

j0(u;euk � u) d˝ � 0;

and

lim
k!1

Z

˝

� �euk d˝ D
Z

˝

� � u d˝:

Finally, combining the last two inequalities with (58)
yields (55), as required.

Step 5. The next claim is that

hB � g; uiV C
Z

˝

� � u d˝ D 0: (59)

Indeed, (50) implies

hB � g;eukiV C

Z

˝

� �euk d˝ D 0; (60)
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with feukg as in Step 3. Since � � u 2 L1(˝) and�k juj �
� � euk D (1 � "k)� � u � j� � uj ; by the dominated
convergence,
Z

˝

� �euk d˝ !
Z

˝

� � u d˝:

It means that (59) has to hold by passing to the limit as
k!1 in (60).

Step 6. In this step it will be shown that the pseu-
domonotonicity of A and (47) imply (44). Indeed, (47)
with v 2 V \ L1(˝ ;RN) and (49) allows to state that

lim sup
n!1

hAun ; un � uiV � hB � g; v � uiV

C

Z

˝

� � v d˝ � lim inf
n!1

Z

˝

�n � un d˝:

Substituting v Deuk witheuk as in Step 3 and taking into
account (55) one arrives at lim supn!1 hAun, un � u
iV � 0 (by the application of the limit procedure as k
!1). Therefore the use of pseudomonotonicity of A
is allowed and yields h Aun, un iV ! hAu, u iV and Aun
! B = Auweakly inV� as n!1. Finally, (47) implies
(44), as claimed.

Step 7. In the final step of the proof it will be shown
that (44) and (45) imply (46). For this purpose, choose
v 2 V \ L1(˝ ;RN) arbitrarily. From (2) one has � � (v
� u) � j0(u;v � u) � ˛(kvkL1 (˝ ;RN ))(1 + |u|� ) with � �
(v� u)2 L1(˝) and ˛ (k vL1(˝ ;RN ))(1 + |u |� ) 2 L1(˝).
Hence j0(u;v � u) is finite integrable and consequently,
(46) follows immediately from (44).

Now consider the case j0(u;v � u) 2 L1(˝) with
v 62 V \ L1(˝ ;RN). According to Theorem 7 there
exists a sequence evk D (1 � "k)v such that fevkg �
V \ L1(˝ ;RN) andevk ! v strongly in V . Since

hAu � g;evk � uiV C
Z

˝

j0(u;evk � u) d˝ � 0;

so in order to establish (46) it remains to show that

lim sup
k!1

Z

˝

j0(u;evk � u) d˝ �
Z

˝

j0(u; v � u) d˝:

For this purpose let us observe thatevk�u D (1�"k)(v�
u)C"k(�u) which combined with the convexity of j0(u;
�) yields the estimate

j0(u;evk � u) � (1 � "k) j0(u; v � u)C "k j0(u;�u)

�
ˇ̌
j0(u; v � u)

ˇ̌
C k juj :

Thus the application of Fatou ’s lemma gives the asser-
tion. Finally, the proof of Theorem 6 is complete.

Remark 9 The analogous result to that of Theorem 6
can be formulated for the hemivariational inequality
(46) in which

R
˝(�) d ˝ is replaced by the boundary

integral
R
� (�) d � , provided the imbedding H1(˝) �

Lp(� ) is compact (1 < p < (2m � 2)/(m � 2), [12]).

Example 10 Let us consider a linear elastic body which
in its undeformed state occupies an open, bounded,
connected subset˝ ofR3.˝ is referred to a fixed Carte-
sian coordinate system 0x1x2x3 and its boundary � is
assumed to be Lipschitz regular; n = (ni) denotes the
outward unit normal vector to � . We decompose �
into two disjointed parts � F and � S such that � D
� F [ � S . As usual, the symbols u: ˝ ! R3 and � :˝
! S3 are used to denote the displacement field and the
stress tensor field, respectively. Here S3 stands for the
space of all real-valued 3 × 3 symmetric matrices.

Consider the boundary value problem:
i) The equilibrium equations:

�i j; j C bi D 0 in˝: (61)

ii) The displacement—strain relation:

"i j(u) D
1
2
(ui; j C uj;i ) in˝: (62)

iii) Hook’s law:

�i j D Ci jk l"k l (u) in˝: (63)

iv) The surface traction conditions

�i jn j D Fi on �F : (64)

v) The nonmonotone subdifferential boundary condi-
tions

� S 2 @ j(u) on �S : (65)

Here, S = (Si) = (� ijnj) is the stress vector, and @j(�) is
the generalized gradient of Clarke of a locally Lipschitz
function j: R3!R; the summation convention over re-
peated indices holds and the elasticity tensor C = (Cijkl)
is assumed to satisfy the classical conditions of elliptic-
ity and symmetry [24].

Let V = H1(˝ ;R3). By making use of the standard
technique (cf. [24]), Eqs. (61)-(65) lead to the problem
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of finding u 2 V such as to satisfy the hemivariational
inequality

Z

˝

Ci jk l"i j(u)"k l (v � u) d˝ �
Z

˝

bi(vi � ui ) d˝

�

Z

�F

Fi(vi � ui ) d� C
Z

�S

j0(u; v � u) d� � 0;

8v 2 V : (66)

Define A: V! V� by

hAu; viV D
Z

˝

Ci jk l "i j(u)"k l (v) d˝; u; v 2 V ;

and let V0 := R = { � 2 V : "ij(�) = 0, i, j = 1, 2, 3 }
denote the space of all rigid-body displacements. Then
(1) holds (for details see [24, p. 121]). Accordingly, if
(2) (with � < 4) and (3) are fulfilled and, moreover, the
compatibility conditionZ

˝

bi�i d˝ C
Z

�F

Fi�i d� <

Z

�S

j1(�) d�

is valid for any � 2 R \ { 0 }, then the hypotheses of
the theorem mentioned in Remark 9 are satisfied. Con-
sequently, the existence of solutions to the hemivaria-
tional inequality (66) is ensured.
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Introduction

The Traveling Salesman Problem (TSP) is one of the
most representative problems in combinatorial opti-
mization. If we consider a salesman who has to visit
n cities [46], the Traveling Salesman Problem asks for
the shortest tour through all the cities such that no
city is visited twice and the salesman returns at the
end of the tour back to the starting city. Mathemati-
cally, the problem may be stated as follows: Let G D
(V ; E) be a graph, where V is a set of n nodes and
E is a set of arcs, let C D [ci j] be a cost matrix as-
sociated with E, where cij represents the cost of going
from city i to city j, (i; j D 1; : : : ; n), the problem
is to find a permutation (i1; i2; i3; : : : ; in) of the in-
tegers from 1 through n that minimizes the quantity
ci1 i2 C ci2 i3 C : : :C cin i1 .

We speak of a Symmetric TSP, if for all pairs (i, j),
the distance cij is equal to the distance cji. Otherwise, we
speak of theAsymmetric TSP [7]. If the triangle inequal-
ity holds (ci j � ci i1Cci1 j; 8i; j; i1), the problem is said
to be metric. If the cities can be represented as points
in the plain such that cij is the Euclidean distance be-
tween point i and point j, then the corresponding TSP is
called the Euclidean TSP. Euclidean TSP obeys in par-
ticular the triangle inequality ci j � ci i1 C ci1 j for all
i; j; i1.

An integer programming formulation of the Trav-
eling Salesman Problem is defined in a complete graph

G D (V ; E) of n nodes, with node set V D f1; : : : ; ng,
arc set E D f(i; j)ji; j D 1; : : : ; ng, and nonnegative
costs cij associated with the arcs [8]:

c� D min
X
i2V

X
j2V

ci jxi j (1)

s.t.X
j2V

xi j D 1; i 2 V (2)

X
i2V

xi j D 1; j 2 V (3)

X
i2S

X
j2S

xi j � jSj � 1; 8S � V ; S ¤ ; (4)

xi j 2 f0; 1g; for all i; j 2 V ; (5)

where xi j D 1 if arc (i, j) is in the solution and 0
otherwise. In this formulation, the objective function
clearly describes the cost of the optimal tour. Con-
straints (2) and (3) are degree constraints: they spec-
ify that every node is entered exactly once and left ex-
actly once. Constraints (4) are subtour elimination con-
straints. These constraints prohibit the formation of
subtours, i. e. tours on subsets of less than V nodes. If
there was such a subtour on a subset S of nodes, this
subtour would contain jSj edges and as many nodes.
Constraints (4) would then be violated for this subset
since the left-hand side of (4) would be equal to jSj
while the right-hand side would be equal to jSj � 1.
Because of degree constraints, subtours over one node
(and hence, over n � 1 nodes) cannot occur. For more
formulations of the problem see [34,60].

The Traveling Salesman Problem (TSP) is one of the
most famous hard combinatorial optimization prob-
lems. It has been proven that TSP is a member of the
set of NP-complete problems. This is a class of diffi-
cult problems whose time complexity is probably ex-
ponential. The members of the class are related so that
if a polynomial time algorithm was found for one prob-
lem, polynomial time algorithms would exist for all of
them [41]. However, it is commonly believed that no
such polynomial algorithm exists. Therefore, any at-
tempt to construct a general algorithm for finding op-
timal solutions for the TSP in polynomial time must
(probably) fail. That is, for any such algorithm it is pos-
sible to construct problem instances for which the ex-
ecution time grows at least exponentially with the size
of the input. Note, however, that time complexity here
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refers to the worst case behavior of the algorithm. It can
not be excluded that there exist algorithms whose aver-
age running time is polynomial. The existence of such
algorithms is still an open question. Since 1950s many
algorithms have been proposed, developed and tested
for the solution of the problem. Algorithms for solving
the TSP may be divided into two categories, exact algo-
rithms and heuristic–metaheuristic algorithms.

Heuristics for the Traveling Salesman Problem

There is a great need for powerful heuristics that find
good suboptimal solutions in reasonable amounts of
computing time. These algorithms are usually very sim-
ple and have short running times. There is a huge num-
ber of papers dealing with finding near optimal solu-
tions for the TSP. Our aim is to present the most in-
teresting and efficient algorithms and the most impor-
tant ones for facing practical problems. In the 1960s,
1970s and 1980s the attempts to solve the Traveling
Salesman Problem focused on tour constructionmeth-
ods and tour improvement methods. In the last fifteen
years, metaheuristics, such as simulated annealing,
tabu search, genetic algorithms and neural networks,
were introduced. These algorithms have the ability to
find their way out of local optima. Heuristics and meta-
heuristics constitute an increasingly essential compo-
nent of solution approaches intended to tackle diffi-
cult problems, in general, and global and combinatorial
problems in particular.

When a heuristic is designed, the question which
arises is about the quality of the produced solution.
There are three different ways that one may try to an-
swer this question.
1. Empirical. The heuristic is applied to a number of

test problem instances and the solutions are com-
pared to the optimal values, if there are known, or
to lower bounds on these values [33,35].

2. Worst Case Analysis. The idea is to derive bounds
on the worst possible deviation from the optimum
that the heuristic could produce and to devise bad
problem instances for which the heuristic actually
achieves this deviation [42].

3. Probabilistic Analysis. In the probabilistic analy-
sis it is assumed that problem instances are drawn
from certain simple probability distributions, and it
is, then, proven mathematically that particular solu-

tion methods are highly likely to yield near-optimal
solutions when the number of cities is large [43].

Tour Construction methods build up a tour step
by step. Such heuristics build a solution (tour) from
scratch by a growth process (usually a greedy one) that
terminates as soon as a feasible solution has been con-
structed. The problem with construction heuristics is
that although they are usually fast, they do not, in gen-
eral, produce very good solutions. One of the simplest
tour construction methods is the nearest neighbor-
hood in which, a salesman starts from an arbitrary city
and goes to its nearest neighbor. Then, he proceeds
from there in the same manner. He visits the nearest
unvisited city, until all cities are visited, and then re-
turns to the starting city [65,68].

An extension of the nearest neighborhood method
is the double-side nearest neighborhood method
where the current path can be extended from both of
its endnodes. Some authors use the name Greedy for
Nearest Neighborhood, but it is more appropriately re-
served for the special case of the greedy algorithm of
matroid theory [39]. Bentley [11] proposed two very
fast and efficient algorithms, the K-d Trees and the
Lazily Update Priority Queues. In his paper, it was the
first time that somebody suggested the use of data struc-
tures for the solution of the TSP. A priority queue con-
tains items with associated values (the priorities) and
support operations that [40]:
� remove the highest priority item from the queue and

deliver it to the user,
� insert an item,
� delete an item, and
� modify the priority of an item.
The insertion procedures [68] take a subtour of V
nodes and attempt to determine which node (not al-
ready in the subtour) should join the subtour next
(the selection step) and then determine where in the
subtour it should be inserted (the insertion step). The
most known of these algorithms is the nearest inser-
tion algorithm. Similar to the nearest insertion proce-
dure are the cheapest insertion [65], the arbitrary in-
sertion [12], the farthest insertion [65], the quick in-
sertion [12], and the convex hull insertion [12] algo-
rithms.

There is a number of heuristic algorithms that are
designed for speed rather for quality of the tour they
construct [40]. The three most known heuristic algo-
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rithms of this category are the Strip algorithm, pro-
posed by Beardwood et al. [10], the Spacefilling Curve
proposed by Platzmann and Bartholdi [58] and the Fast
Recursive Partitioning heuristic proposed by Bent-
ley [11]. The saving algorithms are exchange proce-
dures. The most known of them is the Clarke-Wright
algorithm [17]. Christofides [12,65] suggested a proce-
dure for solving the TSP based on spanning trees. He
proposed a method of transforming spanning trees to
Eulerian graphs.

The improvement methods or local search meth-
ods start with a tour and try to find all tours that are
“neighboring” to it and are shorter than the initial tour
and, then, to replace it. The tour improvements meth-
ods can be divided into three categories according to
the type of the neighborhood that they use [64]. Ini-
tially, the constructive neighborhood methods, which
successively add new components to create a new so-
lution, while keeping some components of the current
solution fixed. Some of these methods will be presented
in the next section where the most known metaheuris-
tics are presented. Secondly, the transition neighbor-
hood methods, which are the classic local search algo-
rithms (classic tour improvement methods) and which
iteratively move from one solution to another based
on the definition of a neighborhood structure. Finally,
the population based neighborhood methods, which
generalize the two previous categories by considering
neighborhoods of more than one solution.

The most known of the local search algorithms is
the 2-opt heuristic, in which two edges are deleted and
the open ends are connected in a different way in or-
der to obtain a new tour [48]. Note that there is only
one way to reconnect the paths. The 3-opt heuristic
is quite similar with the 2-opt but it introduces more
flexibility in modifying the current tour, because it uses
a larger neighborhood. The tour breaks into three parts
instead of only two [48]. In the general case, ı edges
in a feasible tour are exchanged for ı edges not in that
solution as long as the result remains a tour and the
length of that tour is less than the length of the previ-
ous tour. Lin-Kernighan method (LK) was developed
by Lin and Kernighan [37,49,54] and for many years
was considered to be the best heuristic for the TSP.
The Or-opt procedure, well known as node exchange
heuristic, was first introduced by Or [56]. It removes
a sequence of up-to-three adjacent nodes and inserts it

at another location within the same route. Or-opt can
be considered as a special case of 3-opt (three arcs ex-
changes) where three arcs are removed and substituted
by three other arcs. TheGENI algorithmwas presented
by Gendreau, Hertz and Laporte [22]. GENI is a hybrid
of tour construction and local optimization.

Metaheuristics
for the Traveling Salesman Problem

The last fifteen years an incremental amount of meta-
heuristic algorithms have been proposed. Simulated
annealing, genetic algorithms, neural networks, tabu
search, ant algorithms, together with a number of hy-
brid techniques are the main categories of the meta-
heuristic procedures. These algorithms have the abil-
ity to find their way out of local optima. A number of
metaheuristic algorithms have been proposed for the
solution of the Traveling Salesman Problem. The most
important algorithms published for each metaheuristic
algorithm are given in the following:
� Simulated Annealing (SA) belongs [1,2,45,64] to

a class of local search algorithms that are known
as threshold accepting algorithms. These algorithms
play a special role within local search for two rea-
sons. First, they appear to be quite successful when
applied to a broad range of practical problems. Sec-
ond, some threshold accepting algorithms such as
SA have a stochastic component, which facilitates
a theoretical analysis of their asymptotic conver-
gence. Simulated Annealing [3] is a stochastic al-
gorithm that allows random uphill jumps in a con-
trolled fashion in order to provide possible escapes
from poor local optima. Gradually the probability
allowing the objective function value to increase is
lowered until no more transformations are possi-
ble. Simulated Annealing owes its name to an anal-
ogy with the annealing process in condensed mat-
ter physics, where a solid is heated to a maximum
temperature at which all particles of the solid ran-
domly arrange themselves in the liquid phase, fol-
lowed by cooling through careful and slow reduc-
tion of the temperature until the liquid is frozen
with the particles arranged in a highly structured lat-
tice and minimal system energy. This ground state
is reachable only if the maximum temperature is
sufficiently high and the cooling sufficiently slow.
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Otherwise a meta-stable state is reached. The meta-
stable state is also reached with a process known
as quenching, in which the temperature is instan-
taneously lowered. Its predecessor is the so-called
Metropolis filter. Simulated Annealing algorithms
for the TSP are presented in [15,55,65].

� Tabu search (TS) was introduced by Glover [24,25]
as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well established
approximation technique, which can compete with
almost all known techniques and which, by its flexi-
bility, can beat many classic procedures. It is a form
of local neighbor search. Each solution S has an as-
sociated set of neighbors N(S). A solution S0 2 N(S)
can be reached from S by an operation called amove.
TS can be viewed as an iterative technique which ex-
plores a set of problem solutions, by repeatedly mak-
ing moves from one solution S to another solution
S0 located in the neighborhood N(S) of S [31]. TS
moves from a solution to its best admissible neigh-
bor, even if this causes the objective function to de-
teriorate. To avoid cycling, solutions that have been
recently explored are declared forbidden or tabu for
a number of iterations. The tabu status of a so-
lution is overridden when certain criteria (aspira-
tion criteria) are satisfied. Sometimes, intensification
and diversification strategies are used to improve the
search. In the first case, the search is accentuated in
the promising regions of the feasible domain. In the
second case, an attempt is made to consider solu-
tions in a broad area of the search space. The first
Tabu Search algorithm implemented for the TSP
appears to be the one described by Glover [23,29].
Limited results for this implementation and vari-
ants on it were reported by Glover [26]. Other Tabu
Search algorithms for the TSP are presented in [74].

� Genetic Algorithms (GAs) are search procedures
based on the mechanics of natural selection and nat-
ural genetics. The first GAwas developed by John H.
Holland in the 1960s to allow computers to evolve
solutions to difficult search and combinatorial prob-
lems, such as function optimization and machine
learning [38]. Genetic algorithms offer a particularly
attractive approach for problems like traveling sales-
man problem since they are generally quite effec-
tive for rapid global search of large, non-linear and

poorly understood spaces. Moreover, genetic algo-
rithms are very effective in solving large-scale prob-
lems. Genetic algorithms mimic the evolution pro-
cess in nature. GAs are based on an imitation of the
biological process in which new and better popu-
lations among different species are developed dur-
ing evolution. Thus, unlike most standard heuris-
tics, GAs use information about a population of so-
lutions, called individuals, when they search for bet-
ter solutions. A GA is a stochastic iterative proce-
dure that maintains the population size constant in
each iteration, called a generation. Their basic oper-
ation is the mating of two solutions in order to form
a new solution. To form a new population, a bi-
nary operator called crossover, and a unary opera-
tor, called mutation, are applied [61,62]. Crossover
takes two individuals, called parents, and produces
two new individuals, called offsprings, by swapping
parts of the parents. Genetic algorithms for the TSP
are presented in [9,51,59,64,67].

� Greedy Randomized Adaptive Search Procedure -
GRASP [66] is an iterative two phase search method
which has gained considerable popularity in com-
binatorial optimization. Each iteration consists of
two phases, a construction phase and a local search
procedure. In the construction phase, a randomized
greedy function is used to build up an initial solu-
tion. This randomized technique provides a feasi-
ble solution within each iteration. This solution is
then exposed for improvement attempts in the local
search phase. The final result is simply the best solu-
tion found over all iterations. Greedy Randomized
Adaptive Search Procedure algorithms for the TSP
are presented in [50,51].

� The use of Artificial Neural Networks to find good
solutions to combinatorial optimization problems
has recently caught some attention. A neural net-
work consists of a network [57] of elementary nodes
(neurons) that are linked through weighted con-
nections. The nodes represent computational units,
which are capable of performing a simple compu-
tation, consisting of a summation of the weighted
inputs, followed by the addition of a constant called
the threshold or bias, and the application of a non-
linear response (activation) function. The result of
the computation of a unit constitutes its output. This
output is used as an input for the nodes to which
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it is linked through an outgoing connection. The
overall task of the network is to achieve a certain
network configuration, for instance a required in-
put–output relation, by means of the collective com-
putation of the nodes. This process is often called
self–organization. Neural Networks algorithms for
the TSP are presented in [4,6,53,69].

� The Ant Colony Optimization (ACO)metaheuris-
tic is a relatively new technique for solving com-
binatorial optimization problems (COPs). Based
strongly on the Ant System (AS) metaheuristic de-
veloped by Dorigo, Maniezzo and Colorni [19], ant
colony optimization is derived from the foraging
behaviour of real ants in nature. The main idea of
ACO is to model the problem as the search for
a minimum cost path in a graph. Artificial ants walk
through this graph, looking for good paths. Each ant
has a rather simple behavior so that it will typically
only find rather poor-quality paths on its own. Bet-
ter paths are found as the emergent result of the
global cooperation among ants in the colony. An
ACO algorithm consists of a number of cycles (it-
erations) of solution construction. During each it-
eration a number of ants (which is a parameter)
construct complete solutions using heuristic infor-
mation and the collected experiences of previous
groups of ants. These collected experiences are rep-
resented by a digital analogue of trail pheromone
which is deposited on the constituent elements of
a solution. Small quantities are deposited during
the construction phase while larger amounts are de-
posited at the end of each iteration in proportion
to solution quality. Pheromone can be deposited
on the components and/or the connections used in
a solution depending on the problem. Ant Colony
Optimization algorithms for the TSP are presented
in [16,18,19,70].

� One way to invest extra computation time is to ex-
ploit the fact that many local improvement heuris-
tics have random components, even if in their ini-
tial tour construction phase. Thus, if one runs the
heuristic multiple times he will get different results
and can take the best. The Iterated Lin Kernighan
algorithm (ILK) [54] has been proposed by John-
son [39] and it is considered to be one of the best
algorithms for obtaining a first local minimum. To
improve this local minimum, the algorithm exam-

ines other local minimum tours ‘near’ the current
local minimum. To generate these tours, ILK first
applies a random and unbiased nonsequential 4-opt
exchange to the current local minimum and then
optimizes this 4-opt neighbor using the LK algo-
rithm. If the tour obtained by this process is bet-
ter than the current local minimum then ILKmakes
this tour the current local minimum and continues
from there using the same neighbor generation pro-
cess. Otherwise, the current local minimum remains
as it is and further random 4-opt moves are tried.
The algorithm stops when a stopping criterion based
either on the number of iterations or the computa-
tional time is satisfied. Two other approaches are the
Iterated 3-opt and the Chained Lin-Kernighan [5],
where random kicks are generated from the solution
and from these new points the exploration for a bet-
ter solution is continued [40].

� Ejection Chain Method provides a wide variety of
reference structures, which have the ability to gener-
ate moves not available to neighborhood search ap-
proaches traditionally applied to TSP [63,64]. Ejec-
tion Chains are variable depth methods that gener-
ate a sequence of interrelated simple moves to cre-
ate a more complex compound move. An ejection
consists of a succession of operations performed
on a given set of elements, where the mt operation
changes the state of one or more elements which are
said to be ejected in themtC1 operations. Of course,
there is a possibility to appear changes in the state
of other elements, which will lead to other ejections,
until no more operations can be made [27]. Other
Ejection Chain Algorithms are presented in [20,21].

� Scatter Search is an evolutionary strategy originally
proposed by Glover [28,30]. Scatter Search operates
on a set of reference solutions to generate a new
set of solutions by weighted linear combinations of
structured subset of solutions. The reference set is
required to be made up of high quality and diverse
solutions and the goal is to produce weighted cen-
ters of selected subregions that project these centers
into regions of the solution space that are to be ex-
plored by auxiliary heuristic procedures.

� Path Relinking [28,30], combines solutions by gen-
erating paths between them using local search
neighborhoods, and selecting new solutions en-
countered along these paths.
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� Guided Local Search (GLS), originally proposed by
Voudouris and Chang [71,72], is a general optimiza-
tion technique suitable for a wide range of combina-
torial optimization problems. The main focus is on
the exploitation of problem and search–related in-
formation to effectively guide local search heuristics
in the vast search spaces of NP-hard optimization
problems. This is achieved by augmenting the objec-
tive function of the problem to be minimized with
a set of penalty terms which are dynamically manip-
ulated during the search process to steer the heuris-
tic to be guided. GLS augments the cost function of
the problem to include a set of penalty terms and
passes this, instead of the original one, forminimiza-
tion by the local search procedure. Local search is
confined by the penalty terms and focuses attention
on promising regions of the search space. Iterative
calls are made to local search. Each time local search
gets caught in a local minimum, the penalties are
modified and local search is called again tominimize
the modification cost function. Guided Local Search
algorithms for the TSP are presented in [71,72].

� Noising Method was proposed by Charon and
Hudry [13] and is a metaheuristic where if it is
wanted to minimize the function f 1, this method do
not take the true values of f 1 into account but it con-
siders that they are perturbed in some way by noises
in order to get a noised function f 1noised. During the
run of the algorithm, the range of the perturbing
noises decreases (typically to zero), so that, at the
end, there is no significant noise and the optimiza-
tion of f 1noised leads to the same solution as the one
provided by a descent algorithm applied to f 1 with
the same initial solution. This algorithm was applied
to the Traveling Salesman Problem by Charon and
Hudry [14].

� Particle Swarm Optimization (PSO) is a popu-
lation-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart as
a simulation of the social behavior of social organ-
isms such as bird flocking and fish schooling [44].
PSO uses the physical movements of the individuals
in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global and
local exploration abilities. PSO algorithms for the
solution of the Traveling Salesman Problem are pre-
sented in [32,47,73].

� Variable Neighborhood Search (VNS) is a meta-
heuristic for solving combinatorial optimization
problems whose basic idea is systematic change of
neighborhood within a local search [36]. Variable
Neighborhood Search algorithms for the TSP are
presented in [52].
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Introduction

Heuristic search [7,9] is a common technique for find-
ing a solution in a decision tree or graph containing one
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or more solutions. Many applications in operations re-
search and artificial intelligence rely on heuristic search
as their primary solution method.

Heuristic search techniques can be classified into
two broad categories: depth-first search (DFS) and best-
first search (BFS). As a consequence of its better infor-
mation base, BFS usually examines fewer nodes but oc-
cupies more storage space for maintaining the already
explored nodes.

Depth-First Search

DFS expands an initial state by generating its immedi-
ate successors. At each subsequent step, one of the most
recently generated successors is selected and expanded.
At terminal states, or when it can be determined that
the current state does not lead to a solution, the search
backtracks, that is, the node expansion proceeds with
the next most recently generated state. Practical imple-
mentations use a stack data structure for maintaining
the states (nodes) on the path to the currently explored
state. The space complexity of the stack, O(d), increases
only linearly with the search depth d.

Backtracking is the most rudimentary variant of
DFS. It terminates as soon as any solution has been
found; hence, there is no guarantee for finding an
optimal (least-cost) solution. Moreover, backtracking
might not terminate in graphs containing cycles or
when the search depth is unbounded.

Depth-first branch and bound (DFBB) [6] employs
a heuristic function to eliminate parts of the search
space that cannot contain an optimal solution. It con-
tinues after finding a first solution until the search space
is completely exhausted. Whenever a better solution is
found, the current solution path and its value are up-
dated. Inferior subtrees, i. e., subtrees that are known to
be worse than the current solution, are eliminated.

The alpha-beta algorithm [2] used in game tree
searching is a variant of DFBB that operates on trees
with alternating levels of AND and OR nodes [5]. Be-
cause the strength of play correlates to the depth of the
search, much effort has been spent on devising efficient
parallel implementations (� parallel heuristic search).

Best-First Search

BFS sorts the sequence of node expansions according to
a heuristic function. The A* search algorithm [7] uses

a heuristic evaluation function f (n) = g(n)+ h(n) to de-
cide which successor node n to expand next. Here, g(n)
is the cost of the path from the initial state to the cur-
rent node n and h(n) is the estimated completion cost
to a nearest goal state. If h does not overestimate the re-
maining cost, A* is guaranteed to find an optimal (least-
cost) solution: it is said to be admissible. It does so with
a minimal number of node expansions [9]—no other
search algorithm (with the same heuristic h) can do bet-
ter. This is possible, because A* keeps the search graph
in memory, occupying O(wd) memory cells for trees of
width w and depth d.

Best-first frontier search [4] also finds an optimal
solution, but with a much lower space complexity than
A*. It only keeps the frontier nodes in memory and dis-
cards the interior (closed) nodes. Care must be taken
to ensure that the search frontier does not contain gaps
that would allow the search to leak back into interior re-
gions. The memory savings are most pronounced in di-
rected acyclic graphs. In the worst case, that is, in trees
of width w, it still saves a fraction of 1/w of the nodes
that BFS would need to store.

Iterative-deepening A* (IDA*) [3] simulates A*’s
best-first node expansion by a series of DFSs, each with
the cost-bound f (n) increased by the minimal amount.
The cost-bound is initially set to the heuristic estimate
of the root node, h (root). Then, for each iteration, the
bound is increased to the minimum value that exceeded
the previous bound. Like A* , IDA* is guaranteed to
find an optimal solution [3], provided the heuristic es-
timate function h is admissible and never overestimates
the path to the goal. IDA* obeys the same asymptotic
branching factor as A* [7], if the number of newly
expanded nodes grows exponentially with the search
depth [3]. This growth rate, the heuristic branching fac-
tor, depends on the average number of applicable op-
erators per node and the discrimination power of the
heuristic function h.

Applications

Typical applications of heuristic search techniques may
be found in many areas—not only in the fields of ar-
tificial intelligence and operations research, but also in
other parts of computer science.

In the two-dimensional rectangular cutting-stock
problem [1], we are given a set Rs = {(li ,wi), i = 1,. . . ,m}
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of m rectangles of width wi and length li that are to
be cut out of a single rectangular stock sheet S. Assum-
ing that S is of width W and that the theoretically un-
bounded length is L, the problem is to find an optimal
cut with minimal length expansion. Since the elements
Ri are cut after the cutting pattern has been determined,
we can look at the problem as a bin-packing or vehicle-
routing problem, which are also known to be nondeter-
ministic polynomial-time (NP) complete [8].

Very large scale integration (VLSI) floorplan opti-
mization is a stage in the design of VLSI chips, where
the dimensions of the basic building blocks (cells) must
be determined, subject to the minimization of the to-
tal chip layout area. This can be done with a BFS or
a DFBB approach. Again, only small problem cases can
be solved optimally, because VLSI floorplan optimiza-
tion is also NP-complete.

In the satisfiability problem, it must be determined
whether a Boolean formula containing binary vari-
ables in conjunctive normal form is satisfiable, that is,
whether an assignment of truth values to the variables
exists for which the formula is true.

The 15-puzzle benchmark in single-agent game-tree
search consists of 15 square tiles located in a square
tray of size 4 × 4. One square, the “blank square,” is
kept empty so that an orthogonally adjacent tile can
slide into its position, thus leaving an empty position
at its origin. The problem is to re-arrange a given ini-
tial configuration with the fewest number of moves into
a goal configuration without lifting one tile over an-
other. While it would seem easy to obtain any solution,
finding optimal (shortest) solutions is NP-complete.
The 15-puzzle spawns a search space of 16! 	 2�1013

states.
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Throughout this article, G = (V , E) is an arbitrary undi-
rected and weighted graph unless otherwise specified,
where V = (1, . . . , n} is the vertex set of G and E � V ×
V is its edge set. For each vertex i 2 V , a positive weight
wi is associated with i, collected in the weight vector w
2 Rn. For a subset S � V , the weight of S is defined as
W(S) =

P
i 2 S wi, and G(S) = (S, E \ S × S) is the sub-

graph induced by S. The cardinality of S, i. e., the num-
ber of its vertices, will be denoted by |S|.

A graph G = (V , E) is complete if all its vertices are
pairwise adjacent, i. e. 8i, j 2 V with i 6D j, we have (i,
j) 2 E. A clique C is a subset of V such that G(C) is
complete. The clique number of G, denoted by !(G)
is the cardinality of the maximum clique. The maxi-
mum clique problem asks for cliques of maximum car-
dinality. The maximum weight clique problem asks for
cliques of maximum weight. Given the weight vector
w 2 Rn, the weighted clique number is the total weight
of the maximum weight clique, and will be denoted by
!(G, w).

We should distinguish a maximum clique from
a maximal clique. A maximal clique is one that is
not a proper subset of any other clique. A maximum
(weight) clique is a maximal clique that has the maxi-
mum cardinality (weight).

An independent set (also called stable set or vertex
packing) is a subset of V whose elements are pairwise
nonadjacent. The maximum independent set problem
asks for an independent set of maximum cardinality.
The size of a maximum independent set is the stability
number of G, (denoted by ˛(G)). The maximum weight
independent set problem asks for an independent set
of maximum weight. Given the weight vector w 2 Rn,
the weighted stability number, denoted ˛(G, w), is the
weight of the maximum weight independent set.

The complement graph of G= (V , E) is the graph
G D (V ; E), where E D f(i; j) : i; j 2 V ; i ¤
j and (i; j) … Eg. It is easy to see that S is a clique
of G if and only if S is an independent set of G. Any
result or algorithm obtained for one of the two prob-
lems has its equivalent forms for the other one. Hence
˛(G) D !(G), more generally, ˛(G;w) D !(G;w).

The maximum clique and independent set prob-
lems are well-known examples of intractable combi-
natorial optimization problems [18]. Apart from the
theoretical interest around these problems, they also
find practical applications in such diverse domains as

computer vision, experimental design, information re-
trieval, fault tolerance, etc. Moreover, many important
problems turn out to be easily reducible to them, and
these include, for example, the Boolean satisfiability
problem, the subgraph isomorphism problem, and the
vertex covering problem. The maximum clique prob-
lem has also a certain historical value, as it was one of
the first problems shown to beNP-complete in the now
classical paper of R.M. Karp on computational com-
plexity [64].

Due to their inherent computational complexity,
exact algorithms are guaranteed to return a solution
only in a time which increases exponentially with
the number of vertices in the graph, and this makes
them inapplicable even to moderately large problem
instances. Moreover, a series of recent theoretical re-
sults show that the problems are in fact difficult to solve
even in terms of approximation. Strong evidence of this
fact came in 1991, when it was proved in [32] that
if there is a polynomial time algorithm that approxi-
mates the maximum clique within a factor of 2l og1��n ,
then any NP-hard problem can be solved in ‘quasipoly-
nomial’ time (i. e., in 2l ogO(1)n time). The result was
further refined in [6,7] one year later. Specifically, it
was proved that there exists an � > 0 such that no
polynomial time algorithm can approximate the size
of the maximum clique within a factor of n� , unless
P = NP. Developments along these lines can be found
in [14,15,49].

In light of these negative results, much effort has re-
cently been directed towards devising efficient heuris-
tics formaximum clique and independent set, for which
no formal guarantee of performance may be provided,
but are anyway of interest in practical application. Lack-
ing (almost by definition) a general theory of how these
algorithms work, their evaluation is essentially based on
massive experimentation. In order to facilitate compar-
isons among different heuristics, a set of benchmark
graphs arising from different applications and prob-
lems has recently been constructed in conjunction with
the 1993 DIMACS challenge on cliques, coloring and
satisfiability [63].

In this article we provide an informal survey of re-
cent heuristics for maximum clique and related prob-
lems, and up-to-date bibliographic pointers to the rele-
vant literature. A more comprehensive review and bib-
liography can be found in [18].
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Sequential Greedy Heuristics

Many approximation algorithms in the literature for
the maximum clique problem are called sequential
greedy heuristics. These heuristics generate a maximal
clique through the repeated addition of a vertex into
a partial clique, or the repeated deletion of a vertex from
a set that is not a clique. Decisions on which vertex to be
added in or moved out next are based on certain indica-
tors associated with candidate vertices as, for example,
the vertex degree. There is also a distinction between
heuristics that update the indicators every time a vertex
is added in or moved out, and those that do not. Ex-
amples of such heuristics can be found in [62,89]. The
differences among these heuristics are their choice of
indicators and how indicators are updated. A heuristic
of this type can run very fast.

Local Search Heuristics

Let us define CG to be the set of all the maximal cliques
of G. Basically, a sequential greedy heuristic finds one
set in CG, hoping it is (close to) the optimal set, and
stops. A possible way to improve our approximation
solutions is to expand the search in CG. For example,
once we find a set S 2 C G, we can search its ‘neigh-
bors’ to improve S. This leads to the class of the local
search heuristics [2]. Depending on the neighborhood
structure and how the search is performed, different lo-
cal search heuristics result.

A well-known class of local search heuristics in the
literature is the k-interchange heuristics. They are based
on the k-neighbor of a feasible solution. In the case of
the maximum clique problem, a set C 2 CG is a k-
neighbor of S if |C M S| � k, where k � |S|. A k-
interchange heuristic first finds a maximal clique S 2
CG, then it searches all the k-neighbors of S and re-
turns the best clique found. Clearly, the main factors
for the complexity of this class of heuristics are the size
of the neighborhood and the searches involved. For ex-
ample, in the k-interchange heuristic, the complexity
grows roughly with O(nk).

A class of heuristics designed to search various sets
of CG is called the randomized heuristics. The main in-
gredient of this class of heuristics is the part that finds
a random set in CG. A possible way to do that is to in-
clude some random factors in the generation of a set of
CG. A randomized heuristic runs a heuristic (with ran-

dom factors included) a number of times to find differ-
ent sets over CG. For example, we can randomize a se-
quential greedy heuristic and let it run N times. The
complexity of a randomized heuristic depends on the
complexity of the heuristic and the number N.

An elaborated implementation of the randomized
heuristic for the maximum independent set problem
can be found in [33], where local search is combined
with randomized heuristic. The computational results
in it indicated that the approach was effective in find-
ing large cliques of randomly generated graphs. A dif-
ferent implementation of a randomized algorithm for
the maximum independent set problem can be found
in [5].

Advanced Search Heuristics

Local search algorithms are only capable of finding lo-
cal solutions of an optimization problem. Powerful vari-
ations of the basic local search procedure have been de-
veloped which try to avoid this problem, many of which
are inspired from various phenomena occurring in na-
ture.

Simulated Annealing

In condensed-matter physics, the term ‘annealing’
refers to a physical process to obtain a pure lattice struc-
ture, where a solid is first heated up in a heat bath un-
til it melts, and next cooled down slowly until it solidi-
fies into a low-energy state. During the process, the free
energy of the system is minimized. Simulated anneal-
ing, introduced in 1983 by S. Kirkpatrick, C.D. Gelatt
and M.P. Vecchi [65], is a randomized neighborhood
search algorithm based on the physical annealing pro-
cess. Here, the solutions of a combinatorial optimiza-
tion problem correspond to the states of the physical
system, and the cost of a solution is equivalent to the
energy of the state.

In its original formulation, simulated annealing
works essentially as follows. Initially, a tentative solu-
tion in the state space is somehow generated. A new
neighboring state is then produced from the previous
one and, if the value of the cost function f improves,
the new state is accepted, otherwise it is accepted with
probability exp{� f /�}, where � f is the difference of
the cost function between the new and the current state,
and � is a parameter usually called the temperature in
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analogy with physical annealing, which is varied care-
fully during the optimization process. The algorithm
proceeds iteratively this way until a stopping condition
is met. One of the critical aspects of the algorithm re-
lates to the choice of the proper ‘cooling schedule,’ i. e.,
how to decrease the temperature as the process evolves.
While a logarithmic slow cooling schedule (yielding an
exponential time algorithm) provably guarantees the
exact solution, faster cooling schedules, producing ac-
ceptably good results, are in widespread use. Introduc-
tory textbooks describing both theoretical and practical
issues of the algorithm are [1,66].

E. Aarts and J. Korst [1], without presenting any ex-
perimental result, suggested the use of simulated an-
nealing for solving the independent set problem, using
a penalty function approach. Here, the solution space
is the set of all possible subsets of vertices of the graph
G, and the problem is formulated as one of maximizing
the cost function f (V 0) = |V 0| � � |E0|, where |E0| is the
number of edges in G(V 0), and � is a weighting factor
exceeding 1.

M. Jerrum [61] conducted a theoretical analysis of
the performance of a clique-finding Metropolis process,
i. e., simulated annealing at fixed temperature, on ran-
dom graphs. He proved that the expected time for the
algorithm to find a clique that is only slightly bigger
than that produced by a naive greedy heuristic grows
faster than any polynomial in the number of vertices.
This suggests that ‘true’ simulated annealing would be
ineffective for the maximum clique problem.

Jerrum’s conclusion seems to be contradicted by
practical experience. In [56], S. Homer and M. Peinado
compare the performance of three heuristics, namely
the greedy heuristic developed in [62], a random-
ized version of the Boppana–Halldórsson subgraph-
exclusion algorithm [24], and simulated annealing,
over very large graphs. The simulated annealing algo-
rithm was essentially that proposed by Aarts and Korst,
with a simple cooling schedule. This penalty function
approach was found to work better than the method in
which only cliques are considered, as proposed in [61].
The algorithms were tested on various random graphs
as well as on DIMACS benchmark graphs. The authors
ran the algorithms over an SGI workstation for graphs
with up to 10,000 vertices, and on a Connection Ma-
chine for graphs with up to 70,000 vertices. The overall
conclusion was that simulated annealing outperforms

the other competing algorithms; it also ranked among
the best heuristics for maximum clique presented at the
1993 DIMACS challenge [63].

Neural Networks

Artificial neural networks (often simply referred to as
‘neural networks’) are massively parallel, distributed
systems inspired by the anatomy and physiology of the
cerebral cortex, which exhibit a number of useful prop-
erties such as learning and adaptation, universal ap-
proximation, and pattern recognition (see [50,52] for
an introduction).

In the mid 1980s, J.J. Hopfield and D.W. Tank [57]
showed that certain feedback continuous neural mod-
els are capable of finding approximate solutions to dif-
ficult optimization problems such as the traveling sales-
man problem [57]. This application was motivated by
the property that the temporal evolution of these mod-
els is governed by a quadratic Liapunov function (typi-
cally called ‘energy function’ because of its analogy with
physical systems) which is iteratively minimized as the
process evolves. Since then, a variety of combinatorial
optimization problems have been tackled within this
framework. The customary approach is to formulate
the original problem as one of energy minimization,
and then to use a proper relaxation network to find
minimizers of this function. Almost invariably, the al-
gorithms developed so far incorporate techniques bor-
rowed from statistical mechanics, in particular mean
field theory, which allow one to escape from poor local
solutions. We mention the articles [69,82] and the text-
book [88] for surveys of this field. In [1], an excellent in-
troduction to a particular class of neural networks (the
Boltzmann machine) for combinatorial optimization is
provided.

Early attempts at encoding the maximum clique and
related problems in terms of a neural network were al-
ready done in the late 1980s in [1,12,44,83], and [84]
(see also [85]). However, little or no experimental re-
sults were presented, thereby making it difficult to eval-
uate the merits of these algorithms. In [68], F. Lin and
K. Lee used the quadratic zero-one formulation from
[78] as the basis for their neural network heuristic. On
random graphs with up to 300 vertices, they found their
algorithm to be faster than the implicit enumerative al-
gorithm in [26], while obtaining slightly worse results
in terms of clique size.
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T. Grossman [45] proposed a discrete, determinis-
tic version of the Hopfield model for maximum clique,
originally designed for an all-optical implementation.
Themodel has a threshold parameter which determines
the character of the stable states of the network. The
author suggests an annealing strategy on this parame-
ter, and an adaptive procedure to choose the network’s
initial state and threshold. On DIMACS graphs the al-
gorithm performs satisfactorily but it does not compare
well with more powerful heuristics such as simulated
annealing.

A. Jagota [58] developed several variations of the
Hopfield model, both discrete and continuous, to ap-
proximate maximum clique. He evaluated the per-
formance of his algorithms over randomly generated
graphs as well as on harder graphs obtained by gen-
erating cliques of varying size at random and taking
their union. Experiments on graphs coming from the
Solomonoff–Levin, or ‘universal’ distribution are also
presented in [59]. The best results were obtained us-
ing a stochastic steepest descent dynamics and a mean-
field annealing algorithm, an efficient deterministic
approximation of simulated annealing. These algo-
rithms, however, were also the slowest, and this moti-
vated Jagota et al. [60] to improve their running time.
The mean-field annealing heuristic was implemented
on a 32-processor Connection Machine, and a two-
temperature annealing strategy was used. Addition-
ally, a ‘reinforcement learning’ strategy was developed
for the stochastic steepest descent heuristic, to auto-
matically adjust its internal parameters as the process
evolves. On various benchmark graphs, all their algo-
rithms obtained significantly larger cliques than other
simpler heuristics but ran slightly slower. Compared
to more sophisticated heuristics, they obtained signifi-
cantly smaller cliques on average but were considerably
faster.

M. Pelillo [80] takes a completely different approach
to the problem, by exploiting a continuous formulation
of maximum clique and the dynamical properties of the
so-called relaxation labeling networks. His algorithm is
described in the next section.

Genetic Algorithms

Genetic algorithms are parallel search procedures in-
spired from the mechanisms of evolution in natural

systems [45,55]. In contrast to more traditional op-
timization techniques, they work on a population of
points, which in the genetic algorithm terminology, are
called chromosomes or individuals. In the simplest and
most popular implementation, chromosomes are sim-
ply long strings of bits. Each individual has an associ-
ated ‘fitness’ value which determines its probability of
survival in the next ‘generation’: the higher the fitness,
the higher the probability of survival. The genetic algo-
rithm starts out with an initial population of members
generally chosen at random and, in its simplest ver-
sion, makes use of three basic operators: reproduction,
crossover and mutation. Reproduction usually consists
of choosing the chromosomes to be copied in the next
generation according to a probability proportional to
their fitness. After reproduction, the crossover operator
is applied between pairs of selected individuals to pro-
duce new offsprings. The operator consists of swapping
two ormore subsegments of the the strings correspond-
ing to the two chosen individuals. Finally, the mutation
operator is applied, which randomly reverses the value
of every bit within a chromosome with a fixed probabil-
ity. The procedure just described is sometimes referred
to as the ‘simple’ genetic algorithm [45].

One of the earliest attempts to solve the maximum
clique problem using genetic algorithms was done in
1993 by B. Carter and K. Park [27]. After showing
the weakness of the simple genetic algorithm in find-
ing large cliques, even on small random graphs, they
introduced several modifications in an attempt to im-
prove performance. However, despite their efforts they
did not get satisfactory results, and their general con-
clusion was that genetic algorithms need to be heavily
customized in order to be competitive with traditional
approaches, and that they are computationally very ex-
pensive. In a later study [79], genetic algorithms were
proven to be less effective than simulated annealing. At
almost the same time, T. Bäck and S. Khuri [8], work-
ing on the maximum independent set problem, arrived
at the opposite conclusion. By using a straightforward,
general-purpose genetic algorithm called GENEsYs and
a suitable fitness function which included a graded
penalty term to penalize infeasible solutions, they got
interesting results over random and regular graphs with
up to 200 vertices. These results indicate that the choice
of the fitness function is crucial for genetic algorithms
to provide satisfactory results.
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A.S. Murthy et al. [74] also experimented with a ge-
netic algorithm using a novel ‘partial copy crossover’,
and a modified mutation operator. However, they pre-
sented results over very small (i. e., up to 50 vertices)
graphs, thereby making it difficult to properly evaluate
the algorithm.

T.N. Bui and P.H. Eppley [25] obtained encourag-
ing results by using a hybrid strategy which incorpo-
rates a local optimization step at each generation of the
genetic algorithm, and a vertex-ordering preprocessing
phase. They tested the algorithm over some DIMACS
graphs getting results comparable to that in[39]

Instead of using the standard binary representation
for chromosomes, J.A. Foster and T. Soule [36] em-
ployed an integer-based encoding scheme. Moreover,
they used a time weighting fitness function similar in
spirit to those in [27]. The results obtained are inter-
esting, but still not comparable to those obtained using
more traditional search heuristics.

C. Fleurent and J.A. Ferland [35] developed
a general-purpose system for solving graph coloring,
maximum clique, and satisfiability problems. As far
as the maximum clique problem is concerned, they
conducted several experiments using a hybrid genetic
search scheme which incorporates tabu search and
other local search techniques as alternative mutation
operators. The results presented are encouraging, but
running time is quite high.

In [53], M. Hifi modifies the basic genetic algorithm
in several aspects:
a) a particular crossover operator creates two new dif-

ferent children;
b) the mutation operator is replaced by a spe-

cific heuristic feasibility transition adapted to the
weighted maximum stable set problem.

This approach is also easily parallelizable. Experimen-
tal results on randomly generated graphs and also some
(unweighted) instances from the DIMACS testbed [63]
are reported to validate this approach.

Finally, E. Marchiori [71] has developed a sim-
ple heuristic-based genetic algorithm which consists
of a combination of the simple genetic algorithm and
a naive greedy heuristic procedure. Unlike previous ap-
proaches, here there is a neat division of labor, the
search for a large subgraph and the search for a clique
being incorporated into the fitness function and the
heuristic procedure, respectively. The algorithm out-

performs previous genetic-based clique finding proce-
dures over various DIMACS graphs, both in terms of
quality of solutions and speed.

Tabu Search

Tabu search, introduced independently by F. Glover
[41,42] and P. Hansen and B. Jaumard [48], is a mod-
ified local search algorithm, in which a prohibition-
based strategy is employed to avoid cycles in the search
trajectories and to explore new regions in the search
space. At each step of the algorithm, the next solution
visited is always chosen to be the best legal neighbor of
the current state, even if its cost is worse than the cur-
rent solution. The set of legal neighbors is restricted by
one or more tabu lists which prevent the algorithm to
go back to recently visited solutions. These lists are used
to store historical information on the path followed by
the search procedure. Sometimes the tabu restriction is
relaxed, and tabu solutions are accepted if they satisfy
some aspiration level condition. The standard example
of a tabu list is one which contains the last k solutions
examined, where kmay be fixed or variable. Additional
lists containing the last modifications performed, i. e.,
changes occurred when moving from one solution to
the next, are also common. These types of lists are re-
ferred to as short-term memories; other forms of memo-
ries are also used to intensify the search in a promising
region or to diversify the search to unexplored areas.
Details on the algorithm and its variants can be found
in [43] and [51].

In 1989, C. Friden et al. [37] proposed a heuristic for
the maximum independent set problem based on tabu
search. The size of the independent set to search for
is fixed, and the algorithm tries to minimize the num-
ber of edges in the current subset of vertices. They used
three tabu lists: one for storing the last visited solutions
and the other two to contain the last introduced/deleted
vertices. They showed that by using hashing for imple-
menting the first list and choosing a small value for the
dimensions of the other two lists, a best neighbor may
be found in almost constant time.

In [38,86], three variants of tabu search for maxi-
mum clique are presented. Here the search space con-
sists of complete subgraphs whose size has to be max-
imized. The first two versions are deterministic algo-
rithms in which no sampling of the neighborhood is
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performed. The main difference between the two algo-
rithms is that the first one uses just one tabu list (of the
last solutions visited), while the second one uses an ad-
ditional list (with an associated aspiration mechanism)
containing the last vertices deleted. Also, two diversi-
fication strategies were implemented. The third algo-
rithm is probabilistic in nature, and uses the same two
tabu lists and aspiration mechanism as the second one.
It differs from it because it performs a random sampling
of the neighborhood, and also because it allows formul-
tiple deletion of vertices in the current solution. Here
no diversification strategy was used. In [38,86] results
on randomly generated graphs were presented and the
algorithms were shown to be very effective. P. Soriano
and M. Gendreau [87] tested their algorithms over the
DIMACS benchmark graphs and the results confirmed
the early conclusions.

R. Battiti and M. Protasi [13] extended the tabu
search framework by introducing a reactive local search
method. They modified a previously introduced reac-
tive scheme by exploiting the particular neighborhood
structure of the maximum clique problem. In general
reactive schemes aim at avoiding the manual selection
of control parameters by means of an internal feed-
back loop. Battiti and Protasi’s algorithm adopts such
a strategy to automatically determine the so-called pro-
hibition parameter k, i. e., the size of the tabu list. Also
an explicit memory-influenced restart procedure is ac-
tivated periodically to introduce diversification. The
search space consists of all possible cliques, as in the
approach by Friden et al., and the function to be maxi-
mized is the clique size. The worst-case computational
complexity of this algorithm is O(max{n, m}), where
n and m are the number of vertices and edges of the
graph respectively. They noticed, however, that in prac-
tice, the number of operations tends to be proportional
to the average degree of the vertices of the comple-
ment graph. They tested their algorithm over many DI-
MACS benchmark graphs obtaining better results then
those presented at the DIMACS workshop in competi-
tive time.

Continuous Based Heuristics

In 1965, T.S. Motzkin and E.G. Straus [73] established
a remarkable connection between the maximum clique
problem and a certain quadratic programming prob-

lem. Let G = (V , E) be an undirected (unweighted)
graph and let � denote the standard simplex in the n-
dimensional Euclidean space Rn:

	 D
˚
x 2 Rn : xi � 0 for all i 2 V ; e>x D 1

�
;

where the letter e is reserved for a vector of appro-
priate length, consisting of unit entries (hence e>x =P

i 2 Vxi).
Now, consider the following quadratic function,

sometimes called the Lagrangian of G:

g(x) D x>AGx; (1)

where AG = (aij) is the adjacency matrix of G, i. e. the
symmetric n × n matrix where aij = 1 if (i, j) 2 E and
aij = 0 if (i, j) 62 E, and let x� be a global maximizer of g
on�. In [73] it is proved that the clique number of G is
related to g(x�) by the following formula:

!(G) D
1

1 � g(x�)
:

Additionally, it is shown that a subset of vertices S is
a maximum clique of G if and only if its characteris-
tic vector xS, which is the vector of � defined as xSi =
1/|S| if i 2 S and xSi = 0 otherwise, is a global maximizer
of g on �. In [40,81], the Motzkin–Straus theorem has
been extended by providing a characterization of max-
imal cliques in terms of local maximizers of g on�.

One drawback associated with the original Motz-
kin–Straus formulation relates to the existence of spuri-
ous solutions, i. e., maximizers of g which are not in the
form of characteristic vectors [77,81]. In principle, spu-
rious solutions represent a problem since, while provid-
ing information about the cardinality of the maximum
clique, they do not allow us to easily extract its vertices.

During the 1990s, there has been much interest
around theMotzkin–Straus and related continuous for-
mulations of the maximum clique problem. They sug-
gest in fact a fundamentally new way of solving the
maximum clique problem, by allowing us to shift from
the discrete to the continuous domain in an elegant
manner. As pointed out in [76], continuous formula-
tions of discrete optimization problems turn out to be
particularly attractive. They not only allow us to exploit
the full arsenal of continuous optimization techniques,
thereby leading to the development of new algorithms,
but may also reveal unexpected theoretical properties.
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In [77], P.M. Pardalos and A.T. Phillips developed
a global optimization approach based on the Motzkin–
Straus formulation and implemented an iterative clique
retrieval process to find the vertices of the maximum
clique. However, due to its high computational cost
they were not able to run the algorithm over graphs
with more than 75 vertices.

Pelillo [80] used relaxation labeling algorithms to
approximately determining the size of the maximum
clique using the original Motzkin–Straus formulation.
These are parallel, distributed algorithms developed
and studied in computer vision and pattern recogni-
tion, which are also surprisingly related to replicator
equations, a class of dynamical systems widely stud-
ied in evolutionary game theory and related fields [54],
Heuristics for maximum clique and independent set.
The model operates in the simplex � and possesses
a quadratic Liapunov function which drives its dynami-
cal behavior. It is these properties that naturally suggest
using them as a local optimization algorithm for the
Motzkin–Straus program. The algorithm is especially
suited for parallel implementation, and is attractive for
its operational simplicity, since no parameters need
to be determined. Extensive simulations over random
graphs with up to 2000 vertices have demonstrated the
effectiveness of the approach and showed that the algo-
rithm outperforms previous neural network heuristics.

In order to avoid time-consuming iterative proce-
dures to extract the vertices of the clique, L.E. Gibbons,
D.W. Hearn and Pardalos [39] have proposed a heuris-
tic which is based on a parameterized formulation of
the Motzkin–Straus program. They consider the prob-
lem of minimizing the function:

h(x) D
1
2
x>AGx C

 nX
iD1

xi � 1

!2

on the domain:

S(k) D

(
x 2 Rn :

nX
iD1

x2i �
1
k
; xi � 0; 8i

)
;

where k is a fixed parameter. Let x� be a global mini-
mizer of h on S(k), and let V(k) = h(x�). In [39] it is
proved that V(k) = 0 if and only if there exists an in-
dependent set S of G with size |S| � k. Moreover, the
vertices of G associated with the indices of the posi-

tive components of x� form an independent set of size
greater than or equal k.

These properties motivated the following procedure
to find a maximum independent set of G or, equiv-
alently, a maximum clique of G. Minimize the func-
tion h over S(k), for different values of k between pre-
determined upper and lower bounds. If V(k) = 0 and
V(k+ 1) 6D 0 for some k, then the maximum clique of
G has size k, and its vertices are determined by the pos-
itive components of the solution. Since minimizing h
on S(k) is a difficult problem, they developed a heuristic
based on the observation that by removing the nonneg-
ativity constraints, the problem is that of minimizing
a quadratic form over a sphere, a problemwhich is solv-
able in polynomial time. However, in so doing a heuris-
tic procedure is needed to round the approximate solu-
tions of this new problem to approximate solutions of
the original one. Moreover, since the problem is solved
approximately, we have to find the value of the spherical
constraint 1k which yields the largest independent set.
A careful choice of k is therefore needed. The resulting
algorithm was tested over various DIMACS benchmark
graphs [63] and the results obtained confirmed the ef-
fectiveness of the approach.

The spurious solution problem has been solved
in [16]. Consider the following regularized version of
function g:

bg(x) D x>AGx C
1
2
x>x (2)

which is obtained from (1) by substituting the adja-
cency matrix AG of G with

bAG D AG C
1
2
I;

where I is the identity matrix. Unlike the Motzkin–
Straus formulation, it can be proved that all maximiz-
ers ofbg on � are strict, and are characteristic vectors
of maximal/maximum cliques in the graph. In an ex-
act sense, therefore, a one-to-one correspondence exists
between maximal cliques and local maximizers ofbg in
� on the one hand and maximum cliques and global
maximizers on the other hand. In [16,20], replicator
equations are used in conjunction to this spurious-
free formulation to find maximal cliques of G. Note
that here the vertices comprising the clique are directly
given by the positive components of the converged vec-
tors, and no iterative procedure is needed to determine
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them, as in [77]. The results obtained over a set of ran-
dom as well as DIMACS benchmark graphs were en-
couraging, especially considering that replicator equa-
tions do not incorporate anymechanism to escape from
local optimal solutions. This suggests that the basins
of attraction of the global solution with respect to the
quadratic functions g andbg are quite large; for a thor-
ough empirical analysis see also [23]. One may won-
der whether a subtle choice of initial conditions and/or
a variant of the dynamics may significantly improve the
results, but experiments in [22] indicate this is not the
case.

In [19] the properties of the following function are
studied:

bg˛(x) D x>AGx C ˛x>x:

It is shown that when ˛ is positive all the properties
enjoyed by the standard regularization approach [16]
hold true. Specifically, in this case a one-to-one cor-
respondence between local/global maximizers in the
continuous space and local/global solutions in the dis-
crete space exists. For negative ˛’s an interesting pic-
ture emerges: as the absolute value of ˛ grows larger, lo-
cal maximizers corresponding to maximal cliques dis-
appear. In [19], bounds on the parameter ˛ are de-
rived which affect the stability of these solutions. These
results have suggested an annealed replication heuris-
tic, which consists of starting from a large negative
˛ and then properly reducing it during the optimiza-
tion process. For each value of ˛ standard replicator
equations are run in order to obtain local solutions of
the corresponding objective function. The rationale be-
hind this idea is that for values of ˛ with a proper
large absolute value only local solutions correspond-
ing to large maximal cliques will survive, together with
various spurious maximizers. As the value of ˛ is re-
duced, spurious solutions disappear and smaller max-
imal cliques become stable. An annealing schedule is
proposed which is based on the assumption that the
graphs being considered are random. In this respect,
the proposed procedure differs from usual simulated
annealing approaches, which mostly use a ‘black-box’
cooling schedule. Experiments conducted over several
DIMACS benchmark graphs confirm the effectiveness
of the proposed approach and the robustness of the
annealing strategy. The overall conclusion is that the
annealing procedure does help to avoid inefficient lo-

cal solutions, by initially driving the dynamics towards
promising regions in state space, and then refining the
search as the annealing parameter is increased.

The Motzkin–Straus theorem has been generalized
to the weighted case in [40]. Note that the Motzkin–
Straus program can be reformulated as a minimization
problem by considering the function

f (x) D x>(I C AG)x;

where AG is the adjacency matrix of the complement
graph G. It is straightforward to see that if x� is a global
minimizer of f in �, then we have: !(G) = 1/f(x�).
This is simply a different formulation of the Motzkin–
Straus theorem. Given a weighted graphG = (V , E) with
weight vector w, let M(G, w) be the class of symmetric
n × nmatrices B = (bij)i, j 2 V defined as 2bij � bii + bjj if
(i, j) 62 E and bij = 0 otherwise, and bi i D 1/wi for all i
2 V .

Given the following quadratic program, which is in
general indefinite,

(
min f (x) D x>Bx
s.t. x 2 	;

(3)

in [40] it is shown that for any B 2M(G, w) we have:

!(G;w) D
1

f (x�)
;

where x� is a global minimizer of program (3). Further-
more, denote by xS the weighted characteristic vector of
S, which is a vector with coordinates xSi = wi/W(S) if
i 2 S and xSi = 0 otherwise. It can be seen that a sub-
set S of vertices of a weighted graph G is a maximum
weight clique if and only if its characteristic vector xS is
a global minimizer of (3). Notice that the matrix ICAG
belongs toM(G, e). In other words, the Motzkin–Straus
theorem turns out to be a special case of the preceding
result.

As in the unweighted case, the existence of spurious
solutions entails the lack of one-to-one correspondence
between the solutions of the continuous problem and
those of the original, discrete one. In [21] these spuri-
ous solutions are characterized and a regularized ver-
sion which avoids this kind of problems is introduced,
exactly as in the unweighted case (see also [17]). Repli-
cator equations are then used to find maximal weight
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cliques in weighted graphs, using this formulation. Ex-
periments with this approach on both random graphs
and DIMACS graphs are reported. The results obtained
are compared with those produced by a very efficient
maximum weight clique algorithm of the branch and
bound variety. The algorithm performed remarkably
well especially on large and dense graphs, and it was
typically an order of magnitude more efficient than its
competitor.

Finally, wemention the work byMassaro and Pelillo
[72], who transformed the Motzkin–Straus program
into a linear complementarity problem [31], and then
solved it using a variation of Lemke’s well-known algo-
rithm [67]. The preliminary results obtained over many
weighted and unweighted DIMACS graphs show that
this approach substantially outperforms all other con-
tinuous based heuristics.

Miscellaneous

Another type of heuristics that finds amaximal clique of
G is called the subgraph approach (see [11]). It is based
on the fact that a maximum clique C of a subgraph
G0 � G is also a clique of G. The subgraph approach
first finds a subgraph G0 � G such that the maximum
clique of G0 can be found in polynomial time. Then
it finds a maximum clique of G0 and use it as the ap-
proximation solution. The advantage of this approach
is that in finding the maximum clique C � G0, one has
(implicitly) searched many other cliques of G0 (CG0 �

CG). Because of the special structure of G0, this implicit
search can be done efficiently. In [11], G0 is a maxi-
mal induced triangulated subgraph of G. Since many
classes of graphs have polynomial algorithms for the
maximum clique problem, the same idea also applies
there. For example, the class of edge-maximal triangu-
lated subgraphs was chosen in [9,90], and [91]. Some of
the greedy heuristics, randomized heuristics and sub-
graph approach heuristics are compared in [90] and
[91] on randomly generated weighted and unweighted
graphs.

Various new heuristics were presented at the 1993
DIMACS challenge devoted to clique, coloring and sat-
isfiability [63]. In particular, in [10] an algorithm is pro-
posed which is based on the observation that finding
the maximum clique in the union of two cliques can be
done using bipartite matching techniques. In [46] re-

stricted backtracking is used to provide a trade-off be-
tween the size of the clique and the completeness of the
search. In [70] an edge projection technique is proposed
to obtain a new upper bound heuristic for the max-
imum independent set problem. This procedure was
used, in conjunction with the Balas–Yu branching rule
[11], to develop an exact branch and bound algorithm
which works well especially on sparse graphs.

See [3] for a new population-based optimization
heuristic inspired by the natural behavior of human or
animal scouts in exploring unknown regions, and ap-
plied it to maximum clique. The results obtained over
a few DIMACS graphs are comparable with those ob-
tained using continuous-based heuristics but are infe-
rior to those obtained by reactive local search.

Recently, DNA computing [4] has also emerged as
a potential technique for the maximum clique problem
[75,92]. The major advantage of DNA computing is its
high parallelism, but at present the size of graphs this
algorithm can handle is limited to a few tens.

Additional heuristics for the maximum clique/
independent set and related problems on arbitrary or
special class of graphs can be found in [28,29,30,34].

Conclusions

During the 1990s, research on the maximum clique and
related problems has yielded many interesting heuris-
tics. This article has provided an expository survey on
these algorithms and an up-to-date bibliography (as of
2000). However, the activity in this field is so extensive
that a survey of this nature is outdated before it is writ-
ten.

See also

� Graph Coloring
� Greedy Randomized Adaptive Search Procedures
� Replicator Dynamics in Combinatorial

Optimization
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We formulate a generalized local maximum principle
which gives necessary conditions for optimality of ab-
normal trajectories in optimal control problems. The
results are based on a hierarchy of primal construc-
tions of high-order approximating cones (consisting of
tangent directions for equality constraints, feasible di-
rections for inequality constraints, and directions of
decrease for the objective) and dual characterizations
of empty intersection properties of these cones (see
� High-order necessary conditions for optimality for
abnormal points). Characteristic for the theorem is that
the multiplier associated with the objective is nonzero.

We consider an optimal control problem in Bolza
form with fixed terminal time:

(OC) Minimize the functional

I(x; u) D
TZ

0

L(x(t); u(t); t) dt C `(x(T)) (1)
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subject to the constraints

ẋ(t) D f (x(t); u(t); t);

x(0) D 0; q(x(T)) D 0;
u(�) 2 U D fu 2 Lr1(0; T) : u(t) 2 Ug :

The terminal time T is fixed and we make the following
regularity assumptions on the data: L: Rn × Rm ×[0, T]
! R and f : Rn × Rm ×! [0, T] Rn are C1 in (x, u) for
every t 2 [0, T]; both functions and their derivatives are
measurable in t for every (x, u) and the functions and all
partial derivatives are bounded on compact subsets of
Rn ×Rm × [0, T]; `:Rn!R and q:Rn!Rk are C1 and
the rows of the Jacobian matrix qx (i. e. the gradients
of the equations defining the terminal constraint) are
linearly independent; U � Rm is a closed and convex
set with nonempty interior. Let

H(�0; �; x; u; t) D �0L(x; u; t)C � f (x; u; t) (2)

be the Hamiltonian for the control problem. If the
input-trajectory pair (x�, u�) is optimal for problem
(OC), then the local maximum principle [7] states that
there exist a constant �0 � 0, an absolutely continuous
function �:[0,T]! (Rn)� (which we write as a row vec-
tor), which is a solution to the adjoint equation

�̇ D �Hx (�0; �(t); x�(t); u�(t); t);

with terminal condition

�(T) D �0`x(x�(T))C �qx(x�(T)); (3)

(for some row vector � 2 (Rk)�) such that (�0, �(t)) 6D
0 for all t 2 [0, T] and the following local minimum
condition holds for all u 2 U:

hHu(�0; �(t); x�(t); u�(t); t); u � u�(t)i � 0: (4)

Input-trajectory pairs (x�, u�) for which multipli-
ers �0 and � exist such that these conditions are sat-
isfied are called (weak) extremals. If �0 > 0, then it is
possible to normalize �0 = 1 and the extremal is called
normal while extremals with �0 = 0 are called abnor-
mal. Although the terminology abnormal, which has
its origins in the calculus of variations [4], seems to
suggest that these type of extremals are an aberration,
for optimal control problems this is not the case. The
phenomenon is quite general and abnormal extremals

cannot be excluded from optimality a priori. For in-
stance, there exist optimal abnormal trajectories for the
standard problem of stabilizing the harmonic oscilla-
tor time-optimally in minimum time, a simple time-
invariant linear system.

In the abnormal case conventional necessary condi-
tions for optimality provide conditions which only de-
scribe the structure of the constraints. For example, if
there are no control constraints, then these conditions
only involve the equality constraint defined by the dy-
namics and terminal conditions as zero set of an op-
erator F: Z ! Y between Banach spaces. If F0(z�) is
not onto, but ImF0(z�) is closed (and this is always the
case for the optimal control problem) then the standard
Lagrange multiplier type necessary conditions for opti-
mality (which imply the local maximum principle [7])
can be satisfied trivially by choosing a multiplier which
annihilates the image of F0(z�) and setting all other
multipliers to zero.) The corresponding necessary con-
ditions are independent of the objective and describe
only the structure of the constraint yielding little infor-
mation about the optimality of the abnormal trajectory.

Much of the difficulty in analyzing abnormal points
in extremum problems can be traced back to the fact
that the equality constraint is typically no longer a man-
ifold near abnormal points, but intersections of man-
ifolds are common. Hence, in order to develop neces-
sary and/or sufficient conditions for optimality of ab-
normal extremals, it is imperative to analyze different
branches of the zero-set of F. Finding these branches
is at the heart of the matter. Generalizing a result of
E.R. Avakov [2,3] in [10] a high-order generalization of
the classical Lyusternik theorem is given which for gen-
eral p 2 N describes the structure of p-order tangent
directions to an operator equality constraint in a Ba-
nach space for nonregular operators under a more gen-
eral surjectivity assumption involving the first p deriva-
tives of the operator. Based on these results p-order tan-
gent cones to the equality constraint can explicitly be
calculated along critical directions which comprise the
low order terms. Combining these cones with standard
constructions of high-order cones of decrease for the
functional and high-order feasible cones to inequality
constraints, all taken along critical directions, general-
ized necessary conditions for optimality for extremum
problems in Banach spaces can be derived which al-
low to incorporate the objective with a nonzero mul-
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tiplier. Characteristic of these results is that they are
parametrized by critical directions as it is ‘natural’ near
abnormal points.

In [12] (see � High-order necessary conditions for
optimality for abnormal points) an abstract formula-
tion of these results is presented forminimization prob-
lems in Banach spaces. The main result gives a dual
characterization for the empty intersection property of
the various approximating cones along critical direc-
tions, but primal arguments using the cones themselves
are often equally effective. In this article we formulate
these abstract results for the optimal control problem,
but we only consider the so-called weak or local version
of the maximum principle. This result is weaker than
the Pontryagin maximum principle [15] in the sense
that the Pontryagin maximum principle asserts that the
Hamiltonian of the control problem is indeed mini-
mized over the control set at every time along the refer-
ence trajectory by the reference control. The local ver-
sion only gives the necessary conditions for optimality
for this property. However, it is well-known how to use
an argument of A. Ya. Dubovitskii to derive the Pon-
tryagin maximum principle from the local version [7,
Lecture 13] and a preliminary strong version of the re-
sults of this article is given in [9].

Other theories of necessary conditions which are
tailored to abnormal processes include a method
known as ‘weakening equality constraints’ introduced
in [14] and developed further in [5]. References [2,3]
are along the lines of the results described here and
give necessary conditions for optimality of abnormal
extremals based on quadratic approximations. Simi-
larly, both weak and strong versions of a second or-
der generalized maximum principle are given by the
authors in [8]. While mostly optimization related tech-
niques are used in these papers, on a different level [1]
uses differential geometric techniques to develop a the-
ory of the second variation for abnormal extremals.
They give both necessary and sufficient conditions for
so-called corank-1 abnormal extremals (extremals for
which there exists a unique multiplier) in terms of the
Jacobi equation and related Morse indices and nullity
theorems. Second order necessary conditions for op-
timality in the type of accessory problem results with-
out normality assumptions have first been given in [6].
Also, the results in [16] are derived without making
normality assumptions.

Regularity in the Equality Constraint

We model the optimal control problem (OC) in the
framework of optimization theory as a minimization
problem in a Banach space under equality and inequal-
ity constraints. Let Wn

11(0, T) denote the Banach space
of all absolutely continuous functions x: [0, T] ! Rn

with norm jxj D kx(0)k C
R T
0 kẋ(s)k ds and let

Wn
11(0; T) D Wn

11(0; T) \ fx 2 Wn
11(0; T) : x(0) D 0g :

Then the problem is to minimize the functional I
over a class A of input-trajectory pairs (x; u) 2
Wn

11(0; T) � Lm
1(0; T) which is defined by equal-

ity constraints and the convex inequality constraint
u 2 U. The equality constraints can be modeled as
F D

˚
(x; u) 2 Wn

11(0; T) � Lm
1(0; T) : F(x; u) D 0

�
where F is the operator

F : Wn
11(0; T) � Lm

1(0; T)!Wn
11(0; T) � Rk

with F(x, u) given by
0
@x(�)�

(�)Z

0

f (x(s); u(s); s) ds; q(x(T))

1
A :

It is easy to see that the operator F has continuous
Fréchet derivatives of arbitrary order. For instance,
F0(x, u) acting on (�; �) 2 Wn

11(0; T)�Lm
1(0; T) is given

by
0
@�(t)�

tZ

0

fx�C fu� ds; qx (x(T))�(T)

1
A :

All partial derivatives of f are evaluated along a refer-
ence input-trajectory pair (x, u) 2 A. The formulas for
higher order derivatives are given by equally straight-
forward multilinear forms.

We first describe the image of the operator F0(x�,
u�) for a reference input-trajectory pair (x�, u�). De-
note the fundamental matrix of the variational equation
by ˚(t, s), i. e.

@

@t
˚(t; s) D fx(x(t); u(t); t)˚(t; s);

˚(s; s) D Id:

Furthermore, let R� Rn denote the reachable subspace
of the linearized system

ḣ(t) D fx hC fuv; h(0) D 0; (5)
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at time T. It is well-known that R is a linear subspace of
Rn and that R = Rn if and only if equation (5) is com-
pletely controllable. In general we have that

Lemma 1 ImF0(x�, u�) consists of all pairs (a; b) 2
Wn

11(0; T) � Rk such that

b 2 qx(x�(T))

0
@

TZ

0

˚(T; s)ȧ(s) ds C R

1
A : (6)

In particular, ImF0(x�, u�) is closed and of finite codi-
mension.

The following characterizations of the nonregularity of
the operator F and its codimension are well-known.

Proposition 2 The codimension of F0(x�, u�) is
equal to the number of linearly independent solu-
tions to �̇(t) D ��(t) fx(x�(t); u�(t); t) which satisfy
�(t)f u(x�(t), u�(t), t) � on [0, T] and for which �(T)
is orthogonal to ker qx(x�(T)).

Proposition 3 The operator F is nonregular at � = (x�,
u�) if and only if � is an abnormal weak extremal which
satisfies Hu(0, �(t), x�(t), u�(t), t)� 0 on [0, T].

Critical Directions

We describe the set of critical directions along which
high-order tangent approximations to the equality con-
straint F can be set up. Let Z D Wn

11(0; T) � Lm
1(0; T)

and suppose an admissible process z� = (x�, u�) 2 A

and a finite sequence Hp�1 = (h1, . . . , hp � 1) 2 Zp�1
are given. The following operators allow to formalize
high-order approximations to an equality constraint at
nonregular points (see, � High-order necessary condi-
tions for optimality for abnormal points). For k = 1, . . . ,
p� 1, the directional derivatives rkF(z�)(Hk) of F at z�
along the sequence Hk = (h1, . . . , hk) are given by

kX
rD1

1
r!

0
@ X

j1C���C jrDk

F(r)(z�)(hj1 ; : : : ; hjr )

1
A (7)

and we let Gk[F](z�;Hk� 1) denote the Fréchet-
derivatives of the (k� 1)th directional derivative of F at
z� along Hk� 1. Thus formally G1[F](z�) = F0(z�) and

in general for k� 2, Gk = Gk[F](z�;Hk� 1): Z! Y , v!
Gk(v), is given by

Gk(v) D
k�1X
rD1

1
r!

�

0
@ X

j1C���C jrDk�1

F(rC1)(z�)(hj1 ; : : : ; hjr ; v)

1
A :

(8)

We also denote by Rq[F](z�;H`) those terms in the Tay-
lor expansion of F(z� +

Pp
iD1"

ihi) which are homoge-
neous of degree q � 2, but only involve vectors from
H`. The general structure of these remainders is given
by

qX
rD2

1
r!

0
BBBBB@

X
j1C���C jrDq;
1� jk�`;
1�k�r

F(r)(z�)(hj1 ; : : : ; hjr )

1
CCCCCA
: (9)

Let

Yi D

iX
kD1

ImGk[F](z�;Hk�1); i D 1; : : : ; p: (10)

The following conditions are necessary for the existence
of a p-order tangent vector along Hp� 1 [10]:
i) the first p � 1 directional derivatives of F along

Hp� 1 vanish,

r i F(z�)(Hi) D 0;8i D 1; : : : ; p � 1;

ii) the compatibility conditions

Rp�1Ci[F](z�;Hp�1) 2 Yi ;

i D 1; : : : ; p � 1;

are satisfied.
In these equations all partial derivatives of f are eval-
uated along the reference trajectory. These conditions
are also sufficient if the operator F is p-regular at z� in
direction of the sequence Hp� 1 in the sense of the fol-
lowing definition.

Definition 4 Let F: Z! Y be an operator between Ba-
nach spaces. We say the operator F is p-regular at z� in
direction of the sequence Hp� 1 2 Zp� 1 if the following
conditions are satisfied:



1524 H High-order Maximum Principle for Abnormal Extremals

A1) F: Z ! Y is (2p � 1)-times continuously Fréchet
differentiable in a neighborhood of z�.

A2) The subspaces Yi, i = 1, . . . , p, are closed.
A3) The map Gp = Gp[F](z�;Hp� 1),

Gp : Z ! Y1 �
Y2
Y1
� � � � �

Y
Yp�1

v 7! Gp(v) D
�
G1(v); 
1G2(v); : : : ; 
p�1Gp(v)

�
;

where 
 i: Yi + 1 ! Yi + 1/Yi denotes the canonical
projection onto the quotient space, is onto.

In the sense of this definition 1-regularity corresponds
to the classical Lyusternik condition while 2-regularity
is similar to Avakov’s definition [3]. Under these as-
sumptions vectors hp exist which extend Hp� 1 to p-
order tangent vectors to F at z� [10,12].

For the critical directions for the objective I we fo-
cus on the least degenerate critical case and therefore
make the following assumption:
iii) I0(z�) is not identically zero andr iI(z�)(Hi) = 0 for

i = 1, . . . , p � 1.
The assumption that the first p � 1 directional deriva-
tives vanish is directly tied in with optimality. If there
exists a first nonzero directional derivative r jI(z�)(Hj)
with j < i which is positive, then z� indeed is a local
minimum for any curve z(") = z� +

Pp
iD1"

ihi + o("p),
" > 0, and none of the directions Hp� 1 is of any use in
improving the value. We restrict to " � 0 since we also
want to include inequality constraints. On the other
hand, if r jI(z�)(Hj) < 0, then Hj is indeed a direction
of decrease and arbitrary high-order extensions of this
sequence will give better values. Thus the reference tra-
jectory is not optimal.

We also need to define the critical directions for the
inequality constraintU in the optimal control problem.
More generally, we define a p-order feasible set to an
inequality constraint in a Banach space.

Definition 5 Let S� Z be a subset with nonempty in-
terior. We call v a p-order feasible vector for S at z� in
direction ofHp� 1 = (h1, . . . , hp� 1) 2 Zp� 1 if there exist
an "0 > 0 and a neighborhood V of v so that for all 0<"
� "0,

z� C
p�1X
iD1

"i hi C "
pV � S:

The collection of all p-order feasible vectors v for S at
z� in direction of the sequence Hp� 1 will be called the
p-order feasible set to S at z� in direction of the sequence
Hp� 1 and will be denoted by FS(p)(S;z�, Hp� 1).

It follows from this definition that FS(p)(S;z�, Hp� 1) is
open. It is also clear that FS(p)(S;z�, Hp� 1) is convex,
if S is. Furthermore, if hj 2 FS(j)(S;z�, Hj� 1) for some
integer j < p, then any vector v is allowed as a p-order
feasible direction and thus trivially FS(p)(S;z�, Hp � 1)
= X.

For the optimal control problem and Hp� 1 = ((�1,
�1), . . . , (�p� 1, �p� 1)) let Vp� 1 = (�1, . . . , �p� 1) 2
Lm1(0, T)p denote the sequence of controls. Then the
critical feasible directions for the convex inequality
constraintU in Lm1(0, T) consist of all Hp� 1 for which
iv) FS(p)(U;u�, Vp� 1) is nonempty.

Definition 6 We call a directionHp� 1 a p-regular crit-
ical direction for the extremum problem at z� if the op-
erator F is p-regular at z� alongHp� 1 and if conditions
(i–iv) are satisfied.

p-Order Local Maximum Principle

Theorem 7 below gives a generalized p-order version
of the maximum principle obtained from a dual char-
acterization of the fact that if (x�, u�) is optimal, then
the p-order tangent cones to the set {F = 0}, the p-order
feasible cone to U and the p-order cone of decrease
for the functional I cannot intersect. Notice that we
write covectors like  as row vectors. This is consistent
with a multiplier interpretation of the adjoint variable.
Also we denote partial derivatives by subscripts. For in-
stance, if r if (Hi) denotes the ith directional derivative
of f = f (x, u, t) with respect to the sequence Hi, then
(r if (Hi))x denotes its partial derivative in x. For exam-
ple, suppose H1 = (�1, �1). Then

r1 f (H1) D fx(x; u; t)�1 C fu(x; u; t)�1

and thus

�
r1 f (H1)

�
x D fxx (x; u; t)�1 C fux(x; u; t)�1

and

�
r1 f (H1)

�
u D fxu(x; u; t)�1 C fuu(x; u; t)�1:
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Theorem 7 (p-order local maximum principle) Sup-
pose the admissible process (x�, u�) is optimal for the
optimal control problem (OC). Then for every p-regular
critical direction Hp� 1 there exist a number �0 =
�0(Hp� 1) � 0, vectors ai = a(Hp� 1) 2 (Rk)�, i = 0,
. . . , p � 1, and absolutely continuous functions  (�) =
 (Hp� 1)(�) and �i(�) = �i(Hp� 1)(�), i = 1, . . . , p � 1,
from [0, T] into (Rn)�, which satisfy the following condi-
tions along the optimal trajectory (x�(t), u�(t), t):
a) nontriviality condition: �0 and the functional �:

Lm1(0, T)! R, � 7�! �(�), given by

TZ

0

*
�0Lu C  fu C

p�1X
iD1

�i
�
r i f (Hi)

�
u ; �

+
dt (11)

do not both vanish identically.
b) extended adjoint equation

 ̇(t) D ��0Lx� (t) fx�
p�1X
iD1

�i (t)
�
r i f (Hi)

�
x (12)

with terminal condition

 (T) D �0`x (x�(T))C a0qx (x�(T))

C

p�1X
iD1

ai
�
r i q(x�(T);Hi)

�
x : (13)

c) orthogonality conditions on the additional multipli-
ers: The functions �i(�), i = 1, . . . , p � 1, satisfy

�̇i (t) D ��i(t) fx ; �i (t) fu � 0;

�i (T) D aiqx (x�(T))
(14)

and for j = 1, . . . , i � 1, the following conditions are
satisfied for a.e. t 2 [0, T]:

�i (t)
�
r j f (Hj)

�
x D 0; (15)

�i (t)
�
r j f (Hj)

�
u D 0; (16)

ai
�
r j q(x�(1);Hj)

�
x D 0; (17)

d) separation condition: for all vectors � 2 FS(p)(U;u�,
Vp� 1) we have that

0 � �0Rp[`](Hp�1)C a0Rp[q](Hp�1)

C

p�1X
iD1

aiRpCi [q](Hp�1)

C

TZ

0

*
�0Lu C  fu C

p�1X
iD1

�i (t)
�
r i f (Hi)

�
u ; �

+
dt

C

TZ

0

�0Rp[L](Hp�1)C  (t)Rp[ f ](Hp�1)

C

p�1X
iD1

�i (t)RpCi[ f ](Hp�1) dt:

(18)

Corollary 8 The separation condition d) implies the fol-
lowing p-order local minimum condition: along (x�(t),
u�(t), t) we have for every u 2 U and a.e. t 2 [0, T]:

0 �

*
�0Lu C  (t) fu

C

p�1X
iD1

�i (t)
�
r i f (Hi)

�
u ; u � u�(t)

+
: (19)

In the case of a Lagrangian minimization problem
which has no control constraints, or more generally if
the control takes values in the interior of the control set,
the functional � vanishes identically. In this case we can
normalize �0 = 1 and we obtain the following Corollary:

Corollary 9 (p-order local maximum principle for
Lagrangian problems) Consider the optimal control
problem (OC) without control constraints (U = Rm) and
suppose the admissible process (x�, u�) is optimal. Then
for every p-regular critical direction Hp� 1 there exist
vectors ai = a(Hp� 1) 2 (Rk)�, i = 0, . . . , p� 1, and abso-
lutely continuous functions  (�) =  (Hp� 1)(�) and �i(�)
= �i(Hp� 1)(�), i = 1, . . . , p � 1, from [0, T] into (Rn)�,
which satisfy the conditions b)–d) of Theorem 7 along the
optimal trajectory (x�(t), u�(t), t) for �0 = 1. In particu-
lar, we thus have

Lu C  (t) fu C
p�1X
iD1

�i (t)
�
r i f (Hi)

�
u � 0:
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Example 10 We illustrate Theorem 7 with an example.
Consider the problem to minimize the functional I(x,
u) given by

TZ

0

h
(x1 � 1)2 C xp

2 C (x3 C 1)2 � 2
i
dt (20)

over all (x; u) 2 W3
11(0; T) � L21(0; T) subject to the

dynamics

ẋ(t) D

0
@

0
xp
1

˛xp�1
2 x3

1
AC

0
@

0 1
�1 0
0 �1

1
A
�
u1
u2

�
; (21)

initial condition x(0) = 0 and terminal constraints x1(T)
= 0 and x3(T) = 0. Here p is an integer, p � 2, and ˛
is an arbitrary real number. For simplicity we have not
imposed any control constraints.

It can easily be seen that the reference trajectory �
= (x�, u�) � (0, 0) is an abnormal extremal for each
problem. In fact, setting �(t) = (�, 0, �) with � 6D 0 and
�0 = 0 defines an adjoint vector for � such that Hu �

0. Hence F0(0, 0) is nonregular.
Theorem 7 can be used to eliminate � from opti-

mality for any p� 2. We choose Hp� 1 of the form

Hp�1 D ((�1; �1); (0; 0); � � � ; (0; 0)) (22)

with (�1, �1) 2 F0(0, 0). With this choice of directions
the compatibility conditions ii) simplify considerably
and reduce to the first condition only which becomes

TZ

0

�
�
[2]
1

�p�1 �
�
[3]
1

�
ds D 0:

Here the superscripts denote the components of the
vector �1. We satisfy this by choosing �[3]1 = � �[1]1 �

0 (i. e., �[2]1 � 0). Then choosing a nonzero �[2]1 with
zero boundary conditions defines a nontrivial vector
Hp� 1 of the form (22) for which conditions i) and ii)
in the definition of p-regular critical directions are sat-
isfied. Furthermore, it is easily seen that the operator F
is p-regular in direction ofHp� 1 at � . Finally, these di-

rections are also critical for the objective: we have I0(0,
0)(�1, �1) = 0 and furthermore

r2I(0; 0)(H2) D
1
2
I00(0; 0)((�1; �1); (�1; �1))

D

TZ

0

�
�
[1]
1

�2
C
�
�
[3]
1

�2
ds D 0

provided p > 2. Since no other I-derivatives arise in the
directional derivatives r iI(0, 0)(Hi) for i = 3, . . . , p � 1,
the direction Hp � 1 = ((�1, �1);(0, 0); � � � ;(0, 0)) with
�
[1]
1 = �[3]1 � 0 and a nonzero �[2]1 is a nonzero p-regular

critical direction for the problem to minimize I subject
to F = 0 for any p� 2.

We thus can apply Theorem 7. Since there are no con-
trol constraints we can normalize the multipliers so that
�0 = 1. The additional multipliers �i, i = 1, . . . , p� 1, are
associated with elements in the dual spaces of the quo-
tients Yi + 1/Yi (see � High-order necessary conditions
for optimality for abnormal points). But here Yi = Im
F0(0, 0) for i = 1, . . . , p � 1, and Yp is the full space.
Thus we have �i � 0 for i = 2, . . . , p � 1 and the only
nonzero multipliers are  and �p� 1 which for simplic-
ity of notation we just call �. Now (14) states that � is
an adjoint multiplier for which the conditions of the lo-
cal Maximum Principle for an abnormal extremal are
satisfied. This multiplier is unique and of the form �(t)
= (�, 0, �), but � 2 R could be zero. For the extended
adjoint equation and minimum condition (19) we need
to evaluate the directional derivatives rp� 1f (x, u)(Hi).
Straightforward, but a bit tedious calculations show that

�
r p�1 f (0; 0)(Hi)

�
x D

0
B@
0 0 0
0 0 0

0 0
�
�
[2]
1

�p�1

1
CA

and
�
r p�1 f (0; 0)(Hi)

�
u � 0:

Thus the extended minimum condition reduces to  B
� 0, the minimum condition of the weak maximum
principle. Hence also  2(t)� 0 and  1(t) =  3(t). But
now the extended adjoint equation is given by

 ̇(t) D (2; 0;�2)� �

0
B@
0 0 0
0 0 0

0 0
�
�
[2]
1

�p�1

1
CA
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and thus

4 D  ̇1(t)� ̇3(t)��
�
�
[2]
1 (t)

�p�1
D ��

�
�
[2]
1 (t)

�p�1
:

But we can certainly choose �[2]1 nonconstant to violate
this condition. This contradiction proves that � can-
not be optimal for the problem to minimize I for any
p� 2.

Conclusion

Theorem 7 is based on p-order approximations. If these
remain inconclusive, higher order approximations can
easily be set up. If the operator F is p-regular in di-
rection of Hp� 1, then given a p-regular tangent di-
rection, it is possible to set up higher order approx-
imations of arbitrary order. In fact, only a system of
p linear equations needs to be solved in every step.
These results provide a complete hierarchy of pri-
mal constructions of higher-order approximating di-
rections and dual characterizations of empty intersec-
tion properties of approximating cones which can be
used to give necessary conditions for optimality for in-
creasingly more degenerate structures. For these results
see [13].

See also

� Dynamic Programming: Continuous-time Optimal
Control

� Hamilton–Jacobi–Bellman Equation
� Pontryagin Maximum Principle
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We consider the problem of minimizing a functional I:
X ! R in a Banach space X under both equality and
inequality constraints. The inequality constraints are of
two types, either described by smooth functionals f : X
!R as P = {x 2X: f (x)� 0} or described by closed con-
vex sets C with nonempty interior. The equality con-
straints are given in operator form as Q = {x 2 X : F(x)
= 0} where F: X ! Y is an operator between Banach
spaces. Models of this type are common in optimal con-
trol problems.

The standard first order Lagrange multiplier type
necessary conditions for optimality at the point x� state
that there exist multipliers �0, . . . , �m, y� which do
not all vanish identically such that the Euler–Lagrange
equation

�0I0(x�)C
mX
jD1

� j f 0j (x�)C F 0�(x�)y� D 0; (1)

is satisfied (see for instance [7,9]). This article addresses
the case when the Fréchet-derivative F0(x�) of the op-
erator defining the equality constraint is not onto, i. e.
the regular case. In this case the classical Lyusternik
theorem [14] does not apply to describe the tangent
space to Q and (1) can be satisfied trivially by choos-
ing a nonzero multiplier y� from the annihilator of Im

F0(x�) while setting all other multipliers zero. This gen-
erates so-called abnormal points for which the stan-
dard necessary conditions for optimality only describe
the degeneration of the equality constraint without any
relation to optimality. Here we describe an approach
to high-order necessary conditions for optimality in
these cases which is based a high-order generalization
of the Lyusternik theorem [12]. By using this theo-
rem one can determine the precise structure of poly-
nomial approximations to Q at x� when the surjectiv-
ity condition on F0(x�) is not satisfied, but when in-
stead a certain operator Gp which takes into account
all derivatives up to and including order p is onto.
The order p is chosen as the minimum number for
which the operator Gp becomes onto. If Gp is onto,
then the precise structure of q-order polynomial ap-
proximations to Q at x� for any q � p can be de-
termined. This leads to the notion of high-order tan-
gent cones to the equality constraint Q at points x� in
a nonregular case. Combining these with high-order
feasible cones for the inequality constraints and high-
order cones of decrease, a generalization of theDubovit-
skii–Milyutin theorem is formulated. From this theorem
generalized necessary conditions for optimality can be
deduced which reduce to classical conditions for nor-
mal cases, but give new and nontrivial conditions for
abnormal cases.

First results of this type have been obtained for
quadratic approximations (p = 2) in [3,4,5] and [11].
Some of these conditions have been analyzed further
also in connection with sufficient conditions for opti-
mality, [1,2]. In [10] also quadratic approximations for
problems with inequality constraints are considered.
For the regular case when F0(x�) is onto second or-
der approximating sets were introduced in [6] to derive
second order necessary conditions for optimality, while
higher order necessary conditions for optimality in this
case are given, for instance, in [8] or [15]. These, how-
ever, are not the topic of this article.

A High-Order Formulation
of the Dubovitskii–Milyutin Theorem

Let X and Y be Banach spaces. Let I: X! R be a func-
tional, F: X ! Y an operator, f j: X ! R, j = 1, . . . , m,
functionals and let C � X be a closed convex set with
nonempty interior. We assume that I, the functionals f j
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and the operator F are sufficiently often continuously
Fréchet-differentiable and consider the problem

(P)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x

I

s.t. x 2 A D
�
\m

jD1Pj

�
\ Q \ C;

Pj D
˚
x 2 X : f j(x) � 0

�

Q D fx 2 X : F(x) D 0g :

We define high-order polynomial approximations
to the admissible domain A. We denote sequences (h1,
. . . , hk) 2 Xk by Hk with the subscript giving the length
of the sequence.

Definition 1 Let Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1 and
set x(") :D x� +

Pp�1
iD1 "

ihi. We callHp� 1 a (p� 1)-order
approximating sequence to a set S � X at x� 2 Clos S,
respectively we call x:"! x("), a (p � 1)-order approx-
imating curve, if there exist an "0 > 0 and a function r
defined on [0, "0] with values in X, r: [0, "0]! X, with
the property that

x(")C r(") D x� C
p�1X
iD1

"i hi C r(") 2 S (2)

and

lim
"!0

kr(")k
"p�1

D 0: (3)

We call a (p � 1)-order approximating sequence/curve
(p� 1)-order feasible if S is an inequality constraint, re-
spectively (p � 1)-order tangent if S is an equality con-
straint.

Let x� 2 F and assume as given a (p � 1)-order ap-
proximating sequence Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1

with corresponding (p � 1)-order approximation x(")
:
D x� +

Pp�1
iD1 "

ihi. It is implicitly assumed that x� has
not been ruled out for optimality. Then we extend the
existing (p � 1)-order approximations to p-order ap-
proximations and derive the corresponding necessary
conditions for optimality. The following definitions are
direct generalizations of standard existing definitions
[7].

Definition 2 We call v0 a p-order vector of decrease for
a functional I: X! R at x� 2 X in direction of the se-
quence Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1 if there exist

a neighborhood V of v0 and a number ˛ < 0 so that for
all v 2 V we have

I

 
x� C

p�1X
iD1

"i hi C "
pv

!

D I(x(")C "pv) � I(x�)C ˛"p: (4)

The collection of all p-order vectors of decrease for I at
x� in direction of the sequence Hp� 1 will be called the
p-order set of decrease to I at x� in direction of the se-
quenceHp� 1 and will be denoted by DS(p)(I;x�,Hp� 1).

Definition 3 We call v0 a p-order feasible vector for an
inequality constraint P at x� 2 X in direction of Hp� 1

if there exist an "0 > 0 and a neighborhood V of v0 so
that for all 0 < "� "0

x� C
p�1X
iD1

"i hi C "
pV D x(")C "pV � P: (5)

The collection of all p-order feasible vectors v0 for P
at x� in direction of the sequence Hp� 1 will be called
the p-order feasible set to P at x� in direction of the se-
quenceHp� 1 and will be denoted by FS(p)(P;x�,Hp� 1).

Note that by definition the p-order set of decrease to I
and the p-order feasible set to P, both at x� in direction
of the sequence Hp� 1, are open.

Definition 4 We call hp a p-order tangent vector to an
equality constraint Q at x� in direction of the sequence
Hp� 1 ifHp = (h1, . . . , hp) 2 Xp is a p-order approximat-
ing sequence to the set Q at x� 2 Q. The collection of
all p-order tangent vectors to Q at x� in direction of the
sequence Hp� 1 will be called the p-order tangent set to
Q at x� in direction of the sequence Hp� 1 and will be
denoted by TS(p)(Q;x�, Hp� 1).

These approximating sets can be embedded into cones
in the extended state-space X × R. This has the ad-
vantage that many classical results like the Minkowski–
Farkas lemma or the annihilator lemma can be directly
applied in calculating dual cones (see also [11]). Let us
generally refer to p-order sets of decrease, feasible sets
and tangent sets as p-order approximating sets and de-
note them by AS(p)(Z;x�, Hp� 1). Then we define the
corresponding approximating cones as follows:

Definition 5 Given a p-order approximating set
AS(p)(Z;x�, Hp� 1) to a set Z � X at x� in direction
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of the sequence Hp� 1, the p-order approximating cone
to Z at x� in direction of Hp� 1, AC(p)(Z;x�, Hp� 1),
is the cone in X × R generated by the vectors (v, 1) 2
AS(p)(Z;x�,Hp� 1) × R.

Thus we talk of the p-order cone of decrease for the func-
tional I, p-order feasible cones for inequality constraints
and p-order tangent cones for equality constraints, all at
x� in direction of the sequence Hp� 1.

Definition 6 Let C � Z be a cone in a Banach space
Z with apex at 0. The dual (or polar) cone to C consists
of all continuous linear functionals � 2 Z� which are
nonnegative on C, i. e.

C� D f� 2 Z� : h�; vi � 0; 8v 2 Cg : (6)

Then we have

Theorem7 [11,13] (p-order Dubovitskii–Milyutin the-
orem). Suppose the functional I attains a local minimum
for problem (P) at x� 2 A. Let Hp� 1 = (h1, . . . , hp� 1) 2
Xp� 1 be a (p � 1)-order approximating sequence such
that the p-order cone of decrease for the functional I, the
p-order feasible cones for the inequality constraints Pj,
j = 1, . . . , m, and C, and the p-order tangent cone to
the equality constraint Q, all at x� in direction of the
sequence Hp� 1, are nonempty and convex. Then there
exist continuous linear functionals

�0 D (�0; �0) 2
�
DC(p)(I; x�;Hp�1)

��
;

� j D (� j; � j) 2
�
FC(p)( f j; x�;Hp�1)

��
;

for j = 1, . . . , m,

˝ D (�mC1; �mC1) 2
�
FC(p)(C; x�;Hp�1)

��

and

˚ D (�mC2; �mC2) 2
�
TC(p)(Q; x�;Hp�1)

��
;

all depending on Hp� 1, such that

mC2X
jD0

� j � 0;
mC2X
jD0

� j � 0 (7)

hold. Furthermore, not all the �j, j = 0, . . . , m + 2, vanish
identically.

High-Order Directional Derivatives

We describe a formalism to calculate higher derivatives
[12,13] which will be needed to describe high-order ap-
proximating cones. Let F: X ! Y be an operator be-
tween Banach spaces which is sufficiently often contin-
uously Fréchet differentiable in a neighborhood of x� 2
X and consider the Taylor expansion of F along a curve

�(") D x� C
mX
iD1

"i hi :

We have

F(�(")) D F(x�)C
mX
iD1

"ir i F(x�)(h1; : : : ; hi)Cer(");

where r iF(x�)(h1, . . . , hi) is given by

iX
rD1

1
r!

0
@ X

j1C���C jrDi

F(r)(x�)(hj1 ; : : : ; hjr )

1
A (8)

ander(") is a function of order o("m) as "! 0. Note that
r iF(x�)(h1, . . . , hi) simply collects the "i-terms in this
expansion. These terms, which we call the ith-order di-
rectional derivatives of F along the sequence Hi = (h1, . . . ,
hi), 1 � i � m, are easily calculated by straightforward
Taylor expansions. For example,

r1F(x�)(H1) D F 0(x�)h1;

r2F(x�)(H2) D F 0(x�)h2 C
1
2
F 00(x�)(h1; h1):

The higher-order directional derivative r iF(x�) is ho-
mogeneous of degree i in the directions in the sense that

r i F(x�)("h1; : : : ; "i hi) D "ir i F(x�)(h1; : : : ; hi):

In particular, no indices j1 and j2 with j1 + j2 > i can
occur together as arguments in any of the terms in
r iF(x�). Thus all vectors hj whose index satisfies 2j
> i appear linearly in r iF(x�) and are multiplied by
terms which are homogeneous of degree i � j. In fact,
there exist linear operators Gk = Gk[F](x�;Hk� 1), k 2
N, depending on the derivatives up to order k of F
in the point x� and on the vectors Hk� 1 = (h1, . . . ,
hk� 1), which describe the contributions of these com-
ponents. We have G1[F](x�) = F0(x�) and in general
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Gk = Gk[F](x�;Hk� 1): Z! Y , v! Gk(v), is given by

Gk(v) D
k�1X
rD1

1
r!

�

0
@ X

j1C���C jrDk�1

F(rC1)(x�)(hj1 ; : : : ; hjr ; v)

1
A :

(9)

These operators Gk[F](x�;Hk� 1) are the Fréchet-
derivatives of the (k � 1)th directional derivative of F
at x� along Hk� 1. Note that these terms are homoge-
neous of degree k � 1. For simplicity of notation we
often suppress the arguments. For example, we write

G1(v) D F 0(x�)v; G2(v) D F 00(x�)(h1; v);

G3(v) D F 00(x�)(h2; v)C
1
2
F 000(x�)(h1; h1; v):

Given an order p 2 N, it follows that we can separate
the linear contributions of the vectors hp, . . . , h2p� 1 in
derivatives of orders p through 2p � 1 and for i = 1, . . . ,
p, we have an expression of the form

r p�1Ci F(x�)(Hp�1Ci) D
iX

kD1

Gk[F](x�;Hk�1)hpCi�kCRp�1Ci [F](x�;Hp�1):

Here among the terms which are homogeneous of de-
gree p � 1 + i the sum gives the terms which contain
one of the vectors hp, . . . , hp� 1 + i, and the remainder R
combines all other terms which only include vectors of
index � p � 1. The general structure of the remainder
Rq[F](z�;H`) for arbitrary q � 2 and ` is given by

qX
rD2

1
r!

0
BBBBB@

X
j1C���C jrDq;
1� jk�`;
1�k�r

F(r)(x�)(hj1 ; : : : ; hjr )

1
CCCCCA
: (10)

Thus Rq(H`) consists of the terms which are homoge-
neous of degree q, but only involve vectors fromH`. For
example, R3[F](z�;H2) is given by

F 00(z�)(h1; h2)C
1
6
F(3)(z�)(h1; h1; h1):

Note that the remainders only have contributions from
derivatives of at least order two. These operators allow
to formalize high-order approximations to an equality
constraint at nonregular points [13].

High-Order Tangent Cones

We first describe the set of critical directions along
which high-order tangent approximations to the equal-
ity constraint Q can be set up. For a given admissible
process z� 2 A and a finite sequence Hp� 1 = (h1, . . . ,
hp� 1) 2 Xp� 1, let

Yi D

iX
kD1

ImGk[F](x�;Hk�1); i D 1; : : : ; p:

It is clear that the first p � 1 directional derivatives of F
along Hp� 1 must vanish,

r i F(z�)(Hi) D 0; 8i D 1; : : : ; p � 1; (11)

if Hp� 1 is a (p � 1)-order tangent direction. But addi-
tional compatibility conditions of the form

Rp�1Ci[F](x�;Hp�1) 2 Yi ; i D 1; : : : ; p� 1; (12)

are necessary as well if we want to extend Hp� 1 to a p-
order tangent direction Hp = (Hp� 1;hp). Conditions
(11) and (12) are indeed sufficient for the existence of
p-order approximations along Hp� 1 under the follow-
ing regularity condition:

Definition 8 Let F: X! Y be an operator between Ba-
nach spaces. We say the operator F is p-regular at x� in
direction of the sequence Hp� 1 2Xp� 1 if the following
conditions are satisfied:
A1) F: X! Y is (2p � 1)-times continuously Fréchet

differentiable in a neighborhood of x�;
A2) the subspaces Yi, i = 1, . . . , p, are closed;
A3) the map Gp = Gp[F](x�;Hp� 1)

Gp : X ! Y1 �
Y2
Y1
� � � � �

Y
Yp�1

;

v 7! Gp(v) D (G1(v); : : : ; 
p�1Gp(v));

where 
 i: Yi + 1 ! Yi + 1/Yi denotes the canonical
projection onto the quotient space, is onto.

In the sense of this Definition, 1-regularity corresponds
to the classical Lyusternik condition while 2-regularity
is similar to Avakov’s definition [5].

Theorem 9 [12] Let Hp� 1 be a sequence so that
r iF(x�)(Hi) = 0 for i = 1, . . . , p � 1, and suppose the
operator F is p-regular at x� in direction of Hp� 1. Then
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TS(p)(Q;x�, Hp� 1) is nonempty if and only if for i = 1,
. . . , p � 1, the compatibility conditions

Rp�1Ci [F](x�;Hp�1) 2 Yi

are satisfied. In this case TS(p)(Q;x�, Hp� 1) is the closed
affine subspace of X given by the solutions to the linear
equation

Gp[F](x�;Hp�1)(v)CRp�1[F](x�;Hp�1) D 0; (13)

where Rp� 1[F](x�, Hp� 1) 2 Z is the point with compo-
nents

�
Rp[F](x�;Hp�1); 
1RpC1[F](x�;Hp�1); : : : ;


p�1R2p�1[F](x�;Hp�1)
�
:

This formulation of the result clearly brings out the ge-
ometric structure of the p-order tangent sets as closed
affine linear subspaces of X generated by the kernel of
Gp, kerGp.

Corollary 10 [12] Let Hp� 1 be a sequence such that the
operator F is p-regular at x� in direction of Hp� 1. Sup-
pose the first (p � 1) directional derivatives r iF(x�)(Hi)
vanish for i = 1, . . . , p � 1, and the compatibility condi-
tions Rp� 1 + i[F](x�;Hp� 1) 2 Yi are satisfied for i = 1,
. . . , p. Then the p-order tangent cone to Q = {x 2 X: F(x)
= F(x�)} at x� in direction of Hp� 1, TC(p)(Q;x�, Hp� 1),
consists of all solutions (w, � ) 2 X ×R+ (i. e. � > 0) of the
linear equation

Gp[F](w)C �Rp�1[F](x�;Hp�1) D 0:

For applications to optimization problems we need the
subspace of continuous linear functionals which anni-
hilate Gp. Since the operator Gp is onto, it follows by the
annihilator lemma or the closed-range theorem [9] that

(kerGp)? D Im(G�p );

where G�p :

Z� D Y�1 � (
Y2
Y1

)� � � � � � (
Y

Yp�1
)� ! X�;

denotes the adjoint map. Let

�i : (
YiC1

Yi
)� ! Y?iC1

i

denote the canonical isomorphism. Here?i + 1 denotes
the annihilator in Yi + 1, i. e.

Y?iC1
i D

˚
y� 2 Y�iC1 : hy

�; vi D 0; 8v 2 Yi
�

and we formally set Y0 = {0}, so that Y?1
0 Š Y�1 . Then

we have:

Proposition 11 [11,13] A functional � 2 X� lies in
(kerGp)? if and only if it can be represented in the form

� D

pX
iD1

G�i [F](x�;Hi�1)y�i (14)

for some functionals y�i 2 Y
?i
i�1, i = 1, . . . , p.

Proposition 12 [11,13] The dual or polar p-order tan-
gent cone consists of all linear functionals (�, �) 2 X� ×
R which can be represented in the following form: There
exist functionals y�i 2 Y

?i
i�1, i = 1, . . . , p, and a number r

� 0 such that

� D

pX
iD1

G�i [F](x�;Hi�1)y�i ;

� D

pX
iD1

˝
y�i ; Rp�1Ci [F](x�;Hp�1)

˛
C r:

High-Order Cones of Decrease

We now consider critical directions for the objective I
and determine the p-order sets of decrease of a func-
tional I: X! R. These results also apply to p-order fea-
sible sets to inequality constraints defined by smooth
functionals. We assume as given a (p � 1)-order se-
quence Hp� 1 and we calculate the p-order set of de-
crease of I at x� along Hp� 1. Trivial cases arise if there
exists a first nonzero directional derivative r iI(x�)(Hi)
of I with i � p � 1. In this case we have either
DS(p)(I;x�, Hp� 1) = ; if r iI(x�)(Hi) > 0 or DS(p)(I;x�,
Hp� 1) = X if r iI(x�)(Hi) < 0. In the first case the
sequence Hp� 1 cannot be used to exclude optimality
of x� since indeed x� is a local minimum along the
approximating curve generated by Hp� 1. In the sec-
ond case hi is an ith-order direction of decrease along
Hi� 1 and thus every vector v 2 X is admissible as
a pth order component. The only nontrivial case arises
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if r iI(x�)(Hi) = 0 for all i with i � p � 1 and if I0(x�)
6D 0.

Proposition 13 [13] Suppose I0(x�) 6D 0 and for all i
with i� p� 1 we haver iI(x�)(Hi) = 0. Then the p-order
cone of decrease for the functional I at x� in direction of
Hp� 1, DC(p)(I;x�, Hp� 1), consists of all vectors (w, � ) 2
X × R which satisfy

I0(x�)w C �Rp[I](x�;Hp�1) < 0:

Thus DC(p)(I;x�,Hp� 1) is nonempty, open and convex.
The dual or polar cone to DC(p)(I;x�, Hp� 1) can easily
be calculated using the Minkowski–Farkas lemma [7].

High-Order Feasible Cones to Inequality
Constraints Given by Smooth Functionals

In this section we give the form of the p-order feasible
cones, FC(p)(P;x�, Hp� 1), for inequality constraints P
described by smooth functionals,

P D fx 2 X : f (x) � 0g :

Similar like for sets of decrease, if there exists a first in-
dex i � p � 1 such that r if (x�)(Hi) 6D 0, then the con-
straint will either be satisfied for any p-order vector v 2
X if r if (x�)(Hi) < 0 or it will be violated if r if (x�)(Hi)
> 0. This leads to the definition of p-order active con-
straints.

Definition 14 The inequality constraint P is said to be
p-order active along the sequence Hp� 1 if for all i, i = 1,
. . . , p � 1, we have r if (x�)(Hi) = 0.

Only p-order active constraints enter the necessary
conditions for optimality derived via p-order approx-
imations along an admissible sequence Hp� 1; p-order
inactive constraints generate zero multipliers since
DS(p)(P;x�, Hp� 1) = X (p-order complementary slack-
ness conditions) and can be ignored for high-order ap-
proximations.

Proposition 15 If the constraint P = { x 2 X: f (x) �
0} is p-order active along the sequence Hp� 1, then the
p-order feasible cone, FC(p)(P;x�, Hp� 1), consists of all
vectors (w, � ) 2 X × R+ which satisfy

f 0(x�)w C �Rp[ f ](x�;Hp�1) < 0:

Hence, if f 0(x�) 6D 0, then FC(p)(P;x�, Hp� 1) is
nonempty, open and convex.

High-Order Feasible Cones
to Closed Convex Inequality Constraints

Let C � X be a closed convex set with nonempty in-
terior. Again we assume that Hp� 1 is a (p � 1)-order
feasible sequence. Note that it follows from Definition
3 that FS(p)(C;x�, Hp� 1) is open (since any vector in
the neighborhood V of v also lies in FS(p)(C;x�,Hp� 1)).
It is also clear that FS(p)(C;x�, Hp� 1) is convex, since
C is. Thus FC(p)(C;x�, Hp� 1) is an open, convex cone.
Furthermore, if there exists an integer j < p so that hj
2 FS(j)(C;x�, Hj� 1), then any vector v is allowed as
a p-order feasible direction and thus trivially FS(p)(C;x�,
Hp� 1) = X, i. e. the convex constraint x 2 C is not p-
order active. In this case the necessary conditions for
optimality along Hp� 1 are exactly the same as without
C.

The dual or polar cone FC(p)(C;x�, Hp� 1)� can be
identified with all supporting hyperplanes to FS(p)(C;x�,
Hp� 1) at x�. More precisely, it consists of all linear
functionals (�, �) 2 X� ×R which satisfy

h�; vi C � � 0; 8v 2 FS(p)(C; x�;Hp�1):

Corollary 16 [13] Let C�X be a closed convex set with
nonempty interior and suppose the p-order feasible set
FS(p)(C;x�, Hp� 1) is nonempty. If (�, �) 2 FC(p)(C;x�,
Hp� 1)�, then � is a supporting hyperplane to C at x�.

GeneralizedNecessary Conditions for Optimality

We now give generalized necessary conditions for op-
timality for problem (P) based on general p-order ap-
proximations. We assume as given a sequence Hp� 1 =
(h1, . . . , hp� 1) 2 Xp� 1 with the following properties:
P1) The first p � 1 directional derivatives of F along

Hp� 1 vanish,

r i F(x�)(Hi) D 0; 8i D 1; : : : ; p � 1;

the compatibility conditions

Rp�1Ci[F](x�;Hp�1) 2 Yi

are satisfied for i = 1, . . . , p � 1, and the opera-
tor F is p-regular at x� in direction of the sequence
Hp� 1.
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P2) Either the first nonvanishing derivative
r iI(x�)(Hi) is negative or r iI(x�)(Hi) = 0 for i
= 1, . . . , p � 1.

P3) If the jth constraint is not p-order active, then the
first nonzero derivative r if (x�)(Hi) is negative.

P4) FS(p)(C;x�, Hp� 1) is nonempty.
These conditions guarantee respectively that the cor-
responding p-order approximating cones to the con-
straints or the functional I are nonempty and convex.
The next theorem generalizes the classical first order
necessary conditions for optimality for a mathemati-
cal programming problem with convex inequality con-
straints [7, Thm. 11.4].

Theorem17 If x� is optimal for problem (P), then given
any sequence Hp� 1 = (h1, . . . , hp� 1) 2 Xp� 1 for which
conditions P1)–P4) are satisfied, there exist Lagrange
multipliers � i � 0, i = 0, . . . , m, functionals y�i 2 Y?i

i�1,
i = 1, . . . , p, and a supporting hyperplane h�, vi + � �
0 for all v 2 FS(p)(C;x�, Hp� 1), all depending on the se-
quence Hp� 1, such that the multipliers � i, i = 0, . . . , m,
and � do not all vanish, and

� � �0I0(x�)C
mX
jD1

� j f 0j (x�)C
pX

iD1

G�i y
�
i ; (15)

� � �0Rp[I](x�;Hp�1)

C

mX
jD1

� jRp[ f j](x�;Hp�1)

C

pX
iD1

˝
y�i ; Rp�1Ci [F](Hp�1)

˛
: (16)

Furthermore, the following p-order complementary
slackness conditions hold:
� �0 = 0 if DS(p)(I;x�, Hp� 1) = X;
� � j = 0 if FS(p)(Pj;x�, Hp� 1) = X;
� � = 0 if FS(p)(C;x�, Hp� 1) = X.

Remark 18 This theorem gives the formulation for the
case which is nondegenerate in the sense that the op-
erator Gp is onto and it is this condition which im-
plies the nontriviality of the multipliers � j, j = 0, . . . ,
m, and �. If Gp is not onto, but ImGp is closed, while
all the other conditions remain in effect, then a degen-
erate version of this theorem can easily be obtained by
choosing a nontrivial multiplier ey� 2 (ImGp)?. This
then gives rise to nontrivial multipliers y�i 2 Y

?i
i�1 which

have the property that
Pp

iD1G
�
i y
�
i � 0. Thus (15) still

holds if we set � j = 0, for j = 0, . . . , m, and � = 0. Thus
the difference is that it can only be asserted that not all
of the multipliers � j, j = 0, . . . ,m, y�i 2 Y

?i
i�1, i = 1, . . . , p,

and � do vanish.

See also

� Kuhn–Tucker Optimality Conditions
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The formulation of Hilbert’s thirteenth problem [8]
reads: ‘impossibility of solving the general equation of
degree 7 bymeans of any continuous functions depend-
ing only on two variables’ [21].

On this basis, D. Hilbert proposed that the complex-
ity of functions is specified essentially by the number
of variables. However, as turned out later, this proposal
being valid for analytic functions is not true in the gen-
eral case. In particular, complexity of r times continu-
ously differentiable functions of n variables depends not
on the number of variables n but on the ratio n/r.

It is known that the equation of third degree can be
reduced by translation to

X3 C pX C q D 0;

which has the solution (S. del Ferro, 16th century)

X D

2
4�q

2
C

s
4p3 C 27q2

4(27)

3
5

1/3

C

2
4�q

2
�

s
4p3 C 27q2

4(27)

3
5

1/3

:

The equation of fourth degree can be solved by super-
position of addition, multiplication, square roots, cube
roots and fourth roots.

To try to solve algebraic equations of higher degree
(a vain hope according to N.H. Abel and E. Galois), the

idea of W. Tschirnhausen in 1683 [24] was to adjoin
a new equation, i. e., to

P(X) D 0

one adjoins

Y D Q(X);

where Q is a polynomial of degree strictly less than that
of P, chosen expediently. In this way one can show that
the roots of an equation of degree 5 can be expressed
via the usual arithmetic operations in terms of radicals
and of the solution �(x) of the quintic equation

X5 C xX C 1 D 0

depending on the parameter x. Similarly for the equa-
tion of degree 6, the roots are expressible in the same
way if we include also a function �(x, y), a solution of
a 6th-degree equation depending on two parameters x
and y.

For degree 7 we would have to include also a func-
tion �(x, y, z), solution of the equation

X7 C xX3 C yX2 C zX C 1 D 0:

Hence the natural question: Can �(x, y, z) be expressed
by superposition of algebraic functions of two variables
[10]?

A great number of papers are devoted to the rep-
resentability of functions as superpositions of functions
depending on a smaller number of variables and sat-
isfying certain additional conditions such as algebraic-
ity, analyticity and smoothness. Hilbert was aware of
the fact that superpositions of discontinuous functions
represent all functions of a larger number of variables.
He also knew about the existence of analytic functions
of three variables that cannot be represented by any fi-
nite superpositions of analytic functions of two vari-
ables [8].

In the statement of his 13th problem, Hilbert pro-
ceeded from a result of Tschirnhausen [24], according
to which a root of an algebraic equation of degree n > 5,
i. e., a function f (x1, . . . , xn) determined by an equation

f n C x1 f n�1 C � � � C xn D 0; (1)

can be expressed as a superposition of algebraic func-
tions of n� 4 variables [21]. Hilbert assumed that the
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number n� 4 cannot be reduced for n = 6, 7, 8 and also
proved that in order to solve an equation of degree n =
9 it suffices to have functions of n � 5 variables [9]. A.
Wiman [26] extended the latter result to n > 9, while
N. Chebotarev [6] reduced the number of variables in-
volved in the representation of functions to n � 6 for n
� 21 and to n � 7 for n � 121.

Chebotarev was the first to attempt to find topo-
logical obstructions to the representability of algebraic
functions as superpositions of algebraic functions, but
his proofs were not convincing [5,17]. Using topologi-
cal notions related to the behavior of a many-valued al-
gebraic function on and near a branching manifold, it is
proved that algebraic functions cannot be represented
by complete superpositions of integral algebraic func-
tions. Completeness means that the represented func-
tion must involve all the branches of the many-valued
functions and not only one of them as, for example, in
the formulas expressing solutions to equations of the
3rd and the 4th degree [21].

Certain topological obstructions to the representa-
tion by a complete superpositions of algebraic func-
tions were constructed in this way [2]. V. Lin [15] es-
tablished the following, most complete, result: In any
neighborhood of the origin for n � 3 the root f (x1, . . . ,
xn) of equation (1) is not a complete superposition of
entire algebroid functions of fewer than n � 1 variables
and single-valued holomorphic functions of an arbi-
trary number of variables. Thus, from the standpoint of
complete superpositions of entire algebraic functions,
even fourth-degree equations cannot be solved without
using functions of three variables [21].

Hilbert had had another motivation for his thir-
teenth problem: nomography, the method of solving
equations by drawing a one-parameter family of curves.
This problem, arising in the methods of computation
of Hilbert’s time, inspired the development of Kol-
mogorov’s notion of "-entropy [20]. Applications of "-
entropy have its crucial role in theories of approxima-
tion now used in computer science [22].

In Kolmogorov "-entropy, a natural characteristic of
a function class F is

H"(F) D log2 N"(F);

where N"(F) is the minimum number of points in an "-
net in F. Broadly speaking, the "-entropy of a function
class F is the amount of information needed to specify

with accuracy " a function of the class F. A main prob-
lem in "-entropy is estimates for the rate of growth of
H"(F) as "! 0 for Lipschitz functions, classes of ana-
lytic functions and functions possessing a given num-
ber of derivatives. A.N. Kolmogorov showed that the "-
entropy of r times continuously differentiable functions
of n variables grows as "�n/r [20].

Since a digital computer can store only a finite set
of numbers, functions must be replaced by such finite
sets. Therefore, studies in "-entropy are important for
the correct estimation of the possibilities of computa-
tional methods for approximately representing func-
tions, their implementation on computers and their
storage in the computer memory.

Also "-entropy has many other applications [23].
An "-net of Lipschitz functions of n variables is con-
structed to design global optimization algorithms. This
"-net is based on the Kolmogorov’s minimal "-net
of one-dimensional Lipschitz functions and is en-
coded in terms of monotone functions of k-valued
logic. This construction gives a representation of an n-
dimensional global optimization problem by a minimal
number of one-dimensional ones without loss of infor-
mation [13].

Let us briefly recall the history of the solution of
the Hilbert’s thirteenth problem by Kolmogorov and V.
Arnol’d. Hilbert’s problem was first solved on the basis
of ideas by using technique developed by A. Kronrod
[14]. In this way Kolmogorov proved that any contin-
uous function of n � 4 variables can be represented as
a superposition of continuous functions of three vari-
ables [11]. For an arbitrary function of four variables
the representation has the form

f (x1; x2; x3; x4)

D

4X
rD1

hr[x4; gr1(x1; x2; x3); g
r
2(x1; x2; x3)]:

The question whether an arbitrary continuous func-
tion of three variables can be represented as a super-
position of continuous functions of two variables re-
mained open. The method reduced the representabil-
ity of functions of three variables as superpositions of
functions of two variables to a representability prob-
lem for functions defined on universal trees of three-
dimensional space [21].
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Contrary to the expectations of Hilbert and of his
contemporary mathematicians, in 1957 Arnol’d [1],
who was a student of Kolmogorov, solved the latter
problem and gave the final solution to Hilbert’s thir-
teenth problem in the form of a theorem asserting that
any continuous function of n � 3 variables can be rep-
resented as a superposition of functions of two variables
[21].

A few weeks later Kolmogorov showed that any
continuous function f of n variables can be represented
as a superposition

f (x1; : : : ; xn) D
2nC1X
qD1

�q

2
4

nX
pD1

� pq(xp)

3
5 (2)

of continuous functions of one variable and the oper-
ation of addition [12]. In Kolmogorov’s representation
(2) the inner functions �pq are fixed and only the outer
functions �q depend on the represented function f .

The results of [11] do not follow from the theorem
presented in [12] in their exact statements, but their
essence (in the sense of the possibility of representing
functions of several variables by means of superposi-
tions of functions of a smaller number of variables and
their approximation by superpositions of a fixed form
involving polynomials in one variable and addition) is
obviously contained in it [12]. The method for prov-
ing the theorem is more elementary than that in [1,11]
and reduces to direct constructions and calculations. In
Kolmogorov’s opinion, the proof of the theorem was
his most technically difficult achievement [21].

Thorough proofs of Kolmogorov’s theorem and the
lemmas of his paper [12] were published in [16,18,20]
and others. G. Lorenz [16] noted that the outer func-
tions �q can be replaced by a single function �. D.
Sprecher [18] reduced all the inner functions to trans-
lations and extensions of a single function  with the
property that there exits " > 0 and � > 0 such that any
continuous function of n variables can be represented
as

f (x1; : : : ; xn) D
2nC1X
qD1

�[�p (xp C "q)C q)]: (3)

B. Fridman [7] proved that the inner functions �pq

in (2) can be chosen so that they satisfy a Lipschitz con-
dition. Sprecher [19] extended this result to the repre-

sentation (3) (the function  can be chosen to satisfy
a Lipschitz condition).

It follows from Kolmogorov’s representation (2)
and Bari’s representation [3] of any continuous func-
tion of one variable as a sum of three superpositions of
absolutely continuous functions

P
f k ° gk that all con-

tinuous functions of any number of variables can be
represented by means of superpositions of absolutely
continuous functions of one variable and the operation
of addition [21].

In the opposite direction are the results of A. Vi-
tushkin [25] and L. Bassalygo [4]. When we deal with
superpositions of formal series or analytic functions it
can be shown that, for example, almost every entire
function has at an arbitrary point of C3 a germ which
is not expressible by superposition of series in two vari-
ables. So there are many more entire functions of three
variables than of two [10]. The result of Vitushkin is
that there exist r times continuously differentiable func-
tions of n variables that cannot be expressed in terms of
finite superpositions of s � 1 times continuously differ-
entiable functions of k < n variables if n/r > ks [25], rep-
resentability depends on n/r. Bassalygo proved that for
any three functions  k continuous on a square there
exists a continuous function f which cannot be repre-
sented as

P
�k °  k for any continuous �k [4].

See also
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Did you ever watch how a spider catches a fly or
a mosquito? Usually, a spider hides at the edge of its
net. When a fly or a mosquito hits the net, the spider
will pick up each line in the net to choose the tense one
and then goes rapidly along the line to its prey. Why
does the spider chooses the tense line? Some biologists
explain that the line gives the shortest path from the spi-
der to its prey.

Did you heard the following story about a wise gen-
eral? He had a duty to capture a town behind a moun-
tain. When he and his soldiers reached the top of the
mountain, he found that his enemy had already ap-
proached the town very closely from another way. His
dilemma was how to get in the town before the enemy
arrive. It was a challenging problem for the general. The
general solved the problem by asking each soldier to
roll down the mountain in a blanket. Why is this faster?
Physicists tell us that a free ball rolling down a moun-
tain always chooses the most rapid way.

Do you know the tale of a horse match of Tian Gi?
It is a story set in BC time. Tian Gi was a general in one
of several small counties of China, called Qi. The King
of Qi knew that Tian Gi had several good horses and
ordered Tian Gi to have a horse match with him. The
match consisted of three rounds. In each round, each
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side chose a horse to compete with the other side. Tian
Gi knew that his best horse could not compete with the
best one of the King, his second best horse could not
compete with the second best one of King, and his third
best horse could not compete with the third best one
of the King. Therefore, he did not use his best horse
against the best horse of the King. Instead, he put his
third best horse in the first round against the best one
of the King, his best horse in the second round against
the second best one of the King, and his second best
horse in the third round against the third best one of
the King. The final result was that although he lost the
first round of the match, he won the last two rounds.
Tian Gi’s strategy was the best to win this match. To-
day, economists tell us that many economic systems
and social systems can be modeled into games. Each
contestant in the game tries to maximize certain ben-
efits.

Optimality is a fundamental principle, establishing
natural lows, ruling biologic behaviors, and conducting
social activities. Therefore, optimization started from
the earliest stages of human civilization. Of course,
before mathematics was well established, optimization
could be done only by simulation. One may find many
wise men’s stories in the human history about it. For
example, to find the best way to get out of a mountain,
someone followed a stream, and to find the best way to
get out from a desert, someone set an old horse free and
followed the horse’s trace.

In the 19th century or even today, simulation is still
used for optimizing something. For example, to find
a shortest path on a network, one may make a net with
rope in a proportional size and pull the net tightly be-
tween two destinations. The tense rope shows the short-
est path. To find an optimal location of a school for
three villages, one may drill three holes on a table and
put a piece of rope in each hole. Then tie three rope-
ends above the table together and hang a one-kg-weight
on each rope-end under the table. When this mechani-
cal system is balanced, the knot of the three rope-pieces
points out the location of the school.

The history of optimization in mathematics can be
divided into three periods.

In the first period, one did not know any gen-
eral method to find a maximum/minimum point of
a function. Only special techniques were found to max-
imize/minimize some special functions. A typical func-

tion is the quadratic function of one variable

y D ax2 C bx C c:

The study of quadratic functions was closely related to
the study of constantly-accelerating movement. What
is the highest point that a stone is thrown out with cer-
tain initial speed and certain angle? What is the far-
thest point where a stone thrown with certain initial
speed can reach when throwing angle varies? These
were questions considered by some physicists and gen-
erals. In fact, the stone-throwing machine was an im-
portant weapon in military.

Today (as of 2000), computing maximum/
minimum points of a quadratic function is still an
important technique of optimization, existing in ele-
mentary mathematics books. The technique had been
also extended to other functions such as

y D
x2 C x C 1
x2 C 2x C 3

:

Actually, multiplying both sides by x2+ 2x+3 and sim-
plifying, we obtain

(y � 1)x2 C (2y � 1)x C (3y � 1) D 0:

Since x is a real number, we must have

(2y � 1)2 � 4(y � 1)(3y � 1) � 0:

Therefore,

�8y2 C 12y � 3 � 0;

that is,

2(3 �
p
3) � y � 2(3C

p
3):

It is interesting to note that with this technique we ob-
tained the global maximum and minimum of y.

A new period started in 1646 by P. de Fermat. He
proposed, in his paper [5], a general approach to com-
pute local maxima/minima points of a differentiable
function, that is, setting the derivative of the function to
be zero. Today, this approach is still included in almost
all textbooks of calculus as an application of differenti-
ation. In this period, optimization existed scattered and
disorderly in mathematics. Because optimization had
not become an important branch of applied mathemat-
ics, some mathematicians did not pay so much atten-
tion to results on optimization and some contributions
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were even not put in any publication. This left many
mysteries in the history of optimization.

For example, who is the first person who proposed
the Steiner tree? It was one such mystery. To obtain
a clear view, let us explain it in a little detail.

In the same paper mentioned above, Fermat also
studied a problem of finding a point to minimize the
total distance from it to three given points in the Eu-
clidean plane. Suppose three given points are (x1, y1),
(x2, y2), and (x3, y3). Then the total distance from
a point (x, y) to these three points is

f (x; y) D
3X

iD1

q
(x � xi)2 C (y � yi )2:

By Fermat’s general method, the minimum point of f (x,
y) must satisfy the following equations

@ f
@x
D

3X
iD1

x � xip
(x � xi )2 C (y � yi)2

D 0;

@ f
@y
D

3X
iD1

y � yip
(x � xi )2 C (y � yi)2

D 0:

However, obtaining x and y from this system of equa-
tions seems hopeless. Therefore, Fermatmentioned this
problem again in a letter to A. Mersenne that it would
be nice if a clear solution could be obtained for this
problem.

E. Torricelli, a student of G. Galilei, obtained
a clever solution with a geometric method. He showed
that if three given points form a triangle without an an-
gle of at least 120°, then the solution is a point at which
three segments from it to three given points produce
three angles of 120°. Otherwise, the solution is the given
point at which the triangle formed by the three given
points has an angle of at least 120°.This result can also
be proved by the mechanic system described at the be-
ginning of this article. In the first case, the knot of the
three rope-pieces stays not at any given point and hence
the balance condition of the three forces of equal mag-
nitude yields the condition on the angles. In the second
case, the knot falls in one of the three holes, and the
condition on the angle guarantees that the knot would
not move away from the hole.

Fermat’s problem was extensively studied later and
was generalized to four points by J.Fr. Fagnano in 1775
and to n points by P. Tedenat and S. L’Huiller in 1810.

Fagnano pointed out that it is very easy to find the so-
lution of Fermat’s problem for four points. When four
given points form a convex quadrilateral, the solution
of Fermat’s problem is the intersection of two diago-
nals, i. e., the intersection of two diagonals minimizes
the total distance from one point to four given points.
Otherwise, there must be one of the given points ly-
ing inside the triangle formed by the other three given
points; this given point is the solution.

On March 19, 1836, H.C. Schumacher wrote a let-
ter to C.F. Gauss. In his letter, he mentioned a paradox
about Fermat’s problem: Consider a convex quadrilat-
eral ABCD. It has been known that the solution of Fer-
mat’s problem for four pointsA, B,C, andD is the inter-
section E of diagonals AC and BD. Suppose extending
DA and CB can obtain an intersection F. Now, moving
A and B to F. Then E will also be moved to F. However,
when the angle at F is less than 120°, the point F can-
not be the solution of Fermat’s problem for three given
points F, D, and C.What happens?

On March 21, 1836, Gauss wrote a letter to Schu-
macher in which he explained that the mistake of Schu-
macher’s paradox occurs at the place where Fermat’s
problem for four points A, B, C, and D is changed to
Fermat’s problem for three points F, C, and D. When
A and B are identical to F, the total distance from E
to four points A, B, C, and D equals 2EF + EC + ED,
not EF + EC + ED. Thus, the point E may not be the
solution of Fermat’s problem for F, C, and D. More
importantly, Gauss proposed a new problem. He said
that it is more interesting to find a shortest network
rather than a point. Gauss also presented several pos-
sible connections of the shortest network for four given
points.

Unfortunately, Gauss’ letter was discovered only in
1986. From 1941 to 1986, many publications have fol-
lowed R. Courant and H. Robbins who in their popular
book [2] called Gauss’ problem as the Steiner tree prob-
lem. The Steiner tree has become a popular and impor-
tant name. If you search ‘Steiner tree’ with ‘yahoo.com’
on the internet, then you will receive a list of 4675 web-
pages on Steiner trees. We have no way to change back
the name from Steiner trees to Gauss trees. It may be
worthmentioning that J. Steiner, a geometrician in 19th
century whose name is used for the shortest networks,
has not been found so far to have any significant con-
tribution to Steiner trees.
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G.B. Dantzig, who first proposed the simplex
method to solve linear programming in 1947, stated in
[4]: ‘What seems to characterize the pre- 1947 era was
lack of any interests in trying to optimize’. Due to the
lack of interests in optimization, many important works
appeared before 1947 were ignored. This happened not
only for Steiner trees, but also to other areas of opti-
mization, including some important contributions in
linear and nonlinear programming.

The discovery of linear programming started a new
age of optimization. However, in [4], Dantzig made
the following comment: ‘Linear programming was un-
known prior to 1947’. This is not quite correct; there
were some late exceptions. J.B.J. Fourier (of Fourier se-
ries fame) in 1823 and the well-known Belgian math-
ematician Ch. de la Vallée Poussin in 1911 each wrote
a paper about it. Their work had as much influence on
post- 1947 developments as would finding in an Egyp-
tian tomb an electronic computer built in 3000 BC. L.V.
Kantorovich’s remarkable 1939monograph on the sub-
ject was also neglected for ideological reasons in the
USSR. It was resurrected two decades later after the ma-
jor developments had already taken place in the West.
An excellent paper by F.L. Hitchcock in 1941 on the
transportation problem was also overlooked until after
others in the late 1940s and early 1950s have indepen-
dently rediscovered its properties.

He also recalled how he made his discovery: ‘My
own contribution grew out of my World War II expe-
rience in the Pentagon. During the war period (1941–
1945), I had become an expert on programming-
planning methods using desk calculators. In 1946 I was
mathematical advisor to the US Air Force Comptroller
in the Pentagon. I had just received my PhD (for re-
search I had done mostly before the war) and was look-
ing for an academic position that would pay better than
a low offer I had received from Berkeley. In order to
entice me to not take another job, my Pentagon col-
leagues, D. Hitchcock and M. Wood, challenged me to
see what I could do to mechanize the planning pro-
cess. I was asked to find a way to more rapidly com-
pute a time-staged development, training and logistical
supply program. In those days mechanizing planning
meant using analog devices or punch-card equipment.
There were no electronic computers’.

This challenge problem made Dantzig discover his
great work in linear programming without electronic

computer. But, we have to point out that it is due to
the rapid development of computer technology that ap-
plications of linear programming can be made so wide
and so great, and areas of optimization can have so fast
growing.

In 1951, A.W. Tucker and his student H.W. Kuhn
published the Kuhn–Tucker conditions. This is con-
sidered as an initial point of nonlinear programming.
However, A. Takayama has an interesting comment on
these condition: ‘Linear programming aroused interest
in constraints in the form of inequalities and in the the-
ory of linear inequalities and convex sets. The Kuhn–
Tucker study appeared in the middle of this interest
with a full recognition of such developments. However,
the theory of nonlinear programming when constraints
are all in the form of equalities has been known for
a long time – in fact, since Euler and Lagrange. The
inequality constraints were treated in a fairly satisfac-
tory manner already in 1939 by Karush. Karush’s work
is apparently under the influence of a similar work in
the calculus of variations by Valentine. Unfortunately,
Karush’s work has been largely ignored’. Yet, this is an-
other work that appeared before 1947 and it was ig-
nored. In the 1960s, G. Zoutendijk, J.B. Rosen, P.Wolfe,
M.J.D. Powell, and others published a number of al-
gorithms for solving nonlinear optimization problems.
These algorithms form the basis of contemporary non-
linear programming.

In 1954, L.R. Ford and D.R. Fulkerson initiated the
study on network flows. This is considered as a start-
ing point on combinatorial optimization although Fer-
mat is the first one who studied a major combina-
torial optimization problem. In fact, it was because
of the influence of the results of Ford and Fulker-
son, that interests on combinatorial optimization were
growing, and so many problems, including Steiner
trees, were proposed or re-discovered in history. In
1958, R.E. Gomory published the cutting planemethod.
This is considered as an initiation of integer program-
ming, an important direction of combinatorial opti-
mization.

In 1955, Dantzig published his paper [3] and E.M.L.
Beale proposed an algorithm to solve similar problems.
They started the study on stochastic programming. R.J-
B. Wets in the 1960s, and J.R. Birge and A. Prékopa in
the 1980s made important contributions in this branch
of optimization.
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Now, optimization has merged into almost every
corner of economics. New branches of optimization
appeared in almost every decade, global optimization,
nondifferential optimization, geometric programming,
large scale optimization, etc. No one in his/her whole
life is able to study all branches in optimization. Each
researcher can only be an expert in a few branches of
optimization.

Of course, the rapid development of optimization
is accomplished with recognition of its achievements.
One important fact is that several researchers in opti-
mization have received the Nobel Prize in economics,
including Kantorovich and T.C. Koopmans. They re-
ceived the Nobel Prize on economics in 1975 for their
contributions to the theory of optimum allocation of re-
sources. H.M. Markowitz received the Nobel Prize on
economics in 1990 for his contribution on the quadratic
programming model of financial analysis.

Today, optimization has become a very large and
important interdisciplinary area between mathematics,
computer science, industrial engineering, and manage-
ment science. The ‘International Symposium on Math-
ematical Programming’ is one of major conferences on
optimization. From the growing number of papers pre-
sented in this conference we may see the projection of
growing optimization area:

1949) Chicago, USA, 34 papers;
1951) Washington DC, USA, 19 papers;
1955) Washington DC, USA, 33 papers;
1959) Santa Monica, USA, 57 papers;
1962) Chicago, USA, 43 papers;
1964) London, UK, 83 papers;
1967) Princeton, USA, 91 papers;
1970) The Hague, The Netherlands, 137 papers;
1973) Stanford, USA, about 250 papers;
1976) Budapest, Hungary, 327 papers;
1979) Montreal, Canada, 458 papers;
1982) Bonn, FRG, 554 papers;
1985) Cambridge, USA, 589 papers;
1988) Tokyo, Japan, 624 papers.
(This data is quoted from [1].)

With the current fast growth of computer technology
optimization it is expected to continue its great speed
of developments. These developments may contain in-
clude a deep understanding of the successful heuristics
for combinatorial optimization problems with nonlin-

ear programming approaches. It may also include dig-
ital simulations to some natural optimization process.
As many mysteries and open problems still exist in op-
timization, it will still be an area receiving a great atten-
tion.
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The linear program

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b;

x � 0

(1)

may have an optimal solution, be primal infeasible or
be dual infeasible for a particular set of data c 2 Rn, b
2 Rm, and A 2 Rm × n. In fact the problem can be both
primal and dual infeasible for some data where (1) is
denoted dual infeasible if the dual problem

8̂
<̂
ˆ̂:

max b>y
s.t. A>yC s D c;

s � 0

(2)

corresponding to (1) is infeasible. The vector s is the so-
called dual slacks.

However, most methods for solving (1) assume that
the problem has an optimal solution. This is in partic-
ular true for interior point methods. To overcome this
problem it has been suggested to solve the homogeneous
and selfdual model

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min 0
s.t. Ax � b� D 0;

�A>yC c� � 0;
b>y � c>x � 0;
x � 0; � � 0;

(3)

instead of (1). Clearly, (3) is a homogeneous LP and is
selfdual which essentially follows from the constraints
form a skew-symmetric system. The interpretation of
(3) is � is a homogenizing variable and the constraints
represent primal feasibility, dual feasibility, and re-
versed weak duality.

The homogeneous model (3) was first studied by
A.J. Goldman and A.W. Tucker [2] in 1956 and they
proved that (3) always has a nontrivial solution (x�, y�,

��) satisfying
8̂
ˆ̂̂<
ˆ̂̂̂
:

x�j s
�
j D 0; 8 j

x�j C s�j > 0; 8 j;
���� D 0;
�� C �� > 0;

(4)

where s� := c �� � A> y� � 0 and �� := b> y� � c>

x� � 0. A solution to (3) satisfying the condition (4) is
said to be a strictly complementary solution. Moreover,
Goldman and Tucker showed that if (x�, ��, y�, s�, ��)
is any strictly complementary solution, then exactly one
of the two following situations occurs:
� �� > 0 if and only if (1) has an optimal solution. In

this case(x�, y�, s�)/�� is an optimal primal-dual so-
lution to (1).

� �� > 0 if and only if (1) is primal or dual infeasible.
In the case b> y� > 0 (c> x� < 0) then (1) is primal
(dual) infeasible.

The conclusion is that a strictly complementary solu-
tion to (3) provides all the information required, be-
cause in the case �� > 0 then an optimal primal-dual
solution to (1) is trivially given by (x, y, s) = (x�, y�,
s�)/��. Otherwise, the problem is primal or dual infea-
sible. Therefore, the main algorithmic idea is to com-
pute a strictly complementary solution to (3) instead of
solving (1) directly.

Y. Ye, M.J. Todd, and S. Mizuno [6] suggested to
solve (3) by solving the problem

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min n0z
s.t. Ax � b� � bz D 0;

�A>y C c� C cz � 0;
b>y � c>x C dz � 0;
b>y � c>x � d� D �n0;
x � 0; � � 0;

(5)

where

b :D Ax0 � b�0;

c :D �c�0 C A>y0 C s0;

d :D c>x0 � b>y0 C �0;

n0 :D (x0)>s0 C �0�0;

and

(x0; �0; y0; s0; �0) D (e; 1; 0; 1)
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(e is an n vector of all ones). It can be proved that
the problem (5) always has an optimal solution. More-
over, the optimal value is identical to zero and it is easy
to verify that if (x, � , y, z) is an optimal strictly com-
plementary solution to (5), then (x, � , y) is a strictly
complementary solution to (3). Hence, the problem (5)
can solved using any method that generates an optimal
strictly complementary solution because the problem
always has a solution. Note by construction then (x, � ,
y, z) = (x0, �0, y0, 1) is an interior feasible solution to
(5). This implies that the problem (1) can be solved by
most feasible-interior point algorithms.

X. Xu, P.-F. Hung, and Ye [4] suggest an alternative
solution method which is also an interior point algo-
rithm, but specially adapted to the problem (3).The so-
called homogeneous algorithm can be stated as follows:
1) Choose (x0, �0, y0, s0, �0) such that (x0, �0, s0, �0)>

0. Choose "f , "g > 0 and � 2 (0, 1) and let � := 1� � .
2) k := 0.
3) Compute:

rkp :D b� k � Axk ;

rkd :D c� k � A>yk � sk ;

rkg :D �
k C c>xk � b>yk ;

�k :D
(xk)>sk C � k�k

nC 1
:

4) If k (rkp ;r
k
d ;r

k
g ) k � "f and �k � "g , then terminate.

5) Solve the linear equations

Adx � bd� D �rkp;

A>dy C ds � cd� D �rkd ;

�c>dx C b>dy � d� D �rkg ;

Skdx C Xkds D � Xksk C ��k e;

�kd� C � kd� D � � k�k C ��k ;

for (dx, d� , dy, ds, d�) where Xk := diag(xk) and Sk :=
diag(sk).

6) For some � 2 (0, 1), let ˛k be the optimal objective
value to8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

max �˛

s.t.

0
BBBB@

xk

� k

sk

�k

1
CCCCA
C ˛

0
BBBB@

dx
d�
ds
d�

1
CCCCA
� 0;

˛ � ��1:

7)
0
BBBBB@

xkC1

� kC1

ykC1

skC1

�kC1

1
CCCCCA

:D

0
BBBBB@

xk

� k

yk

sk

�k

1
CCCCCA
C ˛k

0
BBBBB@

dx
d�
dy

ds
d�

1
CCCCCA

8) k = k+ 1.
9) goto 3)
The following facts can be proved about the algorithm
8̂
<̂
ˆ̂:

rkC1
p D (1 � (1 � �)˛k )rkp;
rkC1
d D (1 � (1 � �)˛k )rkd ;
rkC1
g D (1 � (1 � �)˛k )rkg ;

and

((xkC1)>skC1 C � kC1�kC1)

D (1 � (1 � �)˛k)((xk)>sk C � k�k);

which shows that the primal residuals (rp), the dual
residuals (rd), the gap residual (rg), and the comple-
mentary gap (x>s + ��) all are reduced strictly if ˛k > 0
and at the same rate. This shows that (xk, �k, yk, sk, �k)
generated by the algorithm converges towards an opti-
mal solution to (3) (and the termination criteria in step
4) is ultimately reached). In principle the initial point
and the stepsize ˛k should be chosen such that

min
j
(xk

j s
k
j ; �

k�k) � ˇ�k ; for k D 0; 1; : : : ;

is satisfied for some ˇ 2 (0, 1) because this guarantees
(xk, �k, yk, sk, �k) converges towards a strictly comple-
mentary solution. Finally, it is possible to prove that the
algorithm has the complexity O(n3.5L) given an appro-
priate choice of the starting point and the algorithmic
parameters.

Further details about the homogeneous algorithm
can be seen in [3,5]. Issues related to implementing the
homogeneous algorithm are discussed in [1,4].

See also

� Entropy Optimization: Interior Point Methods
� Interior Point Methods for Semidefinite

Programming
� Linear Programming: Interior Point Methods
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� Linear Programming: Karmarkar Projective
Algorithm

� Potential Reduction Methods for Linear
Programming

� Sequential Quadratic Programming: Interior Point
Methods for Distributed Optimal Control Problems

� Successive Quadratic Programming: Solution by
Active Sets and Interior Point Methods
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Let V be an `-dimensional affine space over the field K.
An arrangement of hyperplanes, A, is afinite collection
of codimension one affine subspaces in V , [5].

Some Examples

1) A subset of the coordinate hyperplanes is called
a Boolean arrangement.

2) An arrangement is in general position if at each point
it is locally Boolean.

3) The braid arrangement consists of the hyperplanes
{xi = xj:1� i < j� `}. It is the set of reflecting hyper-
planes of the symmetric group on ` letters.

4) The reflecting hyperplanes of a finite reflection
group is a reflection arrangement.

Combinatorics

An edge X of A is a nonempty intersection of elements
of A. Let L(A) be the set of edges partially ordered by
reverse inclusion. Then L is a geometric semilattice with
minimal element V , rank given by codimension, and
maximal elements of the same rank, r(A). The Moe-
bius function on L is defined by �(V) = 1 and for X>
V ,
P

V � Y � X�(Y) = 0. The characteristic polynomial
of A is �(A, t) =

P
X 2 L�(X)tdimX . The ˇ-invariant of

A is ˇ(A) D (�1)r(A)�(A; 1). For a generic arrange-
ment of n hyperplanes �(A; t) D Pr(A)

kD0 (�1)
k�n

k

�
t`�k .

For the braid arrangement �(A, t) = t(t�1)(t� 2) � � �
(t�(`� 1)). Similar factorizations hold for all reflection
arrangements involving the (co)exponents of the reflec-
tion group. Given a p-tuple of hyperplanes, S = (H1,
. . . , Hp), let \ S = H1 \ � � � \ Hp and note that \ S
may be empty. We say that S is dependent if \ S 6D ;
and codim(\ S)< |S|. Let E(A) be the exterior algebra
on symbols (H) for H 2 A where product is juxtaposi-
tion. Define @: E! E by @1 = 0, @(H) = 1 and for p �
2, @(H1 � � �Hp) D

Pp
kD1(�1)

k�1(H1 � � �cHk � � �Hp). Let
I(A) be the ideal of E(A) generated by {S: \ S = ;} [
{@S:S is dependent}. The Orlik–Solomon algebra of A is
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A(A) = E(A)/I(A). See also connections with matroid
theory [3].

Divisor

The divisor of A is the union of the hyperplanes, N(A).
If K = R or K = C, then N has the homotopy type of
a wedge of ˇ(A) spheres of dimension r(A)� 1, [4].
The singularities of N are not isolated. The divisor of
a general position arrangement has normal crossings,
but this is not true for arbitrary A. Blowing up N along
all edges where it is not locally a product of arrange-
ments yields a normal crossing divisor.

Complement

The complement of A isM(A) = V� N(A).
1) If K = Fq, then M is a finite set of cardinality |M| =
�(A, q).

2) If K = R, then M is a disjoint union of open con-
vex sets (chambers) of cardinality (�1)`�(A, � 1). If
r(A) = `, M contains ˇ(A) chambers with compact
closure, [7].

3) If K = C, then M is an open complex (Stein) mani-
fold of the homotopy type of a finite CW complex.

Its cohomology is torsion-free and its Poincaré polyno-
mial is Poin(M, t) = (�t)`�(A, � t�1). The product
structure is determined by the isomorphism of graded
algebras H�(M)' A(A). The fundamental group of M
has an effective presentation but the higher homotopy
groups of M are not known in general. The comple-
ment of a Boolean arrangement is a complex torus. In
a general position arrangement of n> ` hyperplanes M
has nontrivial higher homotopy groups. For the braid
arrangement, M is called the pure braid space and its
higher homotopy groups are trivial. The symmetric
group acts freely onM with orbit space the braid space
whose fundamental group is the braid group. The quo-
tient of the divisor by the symmetric group is called
the discriminant, which has connections with singular-
ity theory.

Ball Quotients

Examples of algebraic surfaces whose universal cover is
the complex ball were constructed as ‘Kummer’ covers
of the projective plane branched along certain arrange-
ments of projective lines, [2].

Logarithmic Forms

For H 2 A choose a linear polynomial ˛H with H =
ker ˛H and let Q(A) D

Q
H2A ˛H . Let ˝

p[V] denote
all global regular (i. e., polynomial) p-forms on V . Let
˝p(V) denote the space of all global rational p-forms on
V . The space ˝p(A) of logarithmic p-forms with poles
along A is

˝ p(A) D f! 2 ˝ p(V) : Q! 2 ˝ p[V];

Q(d!) 2 ˝ pC1[V]g :

The arrangement is free if˝1(A) is a free module over
the polynomial ring. A free arrangement A has integer
exponents {b1, . . . , b`} so that �(A, t) =

Q
`
kD1(t�bk).

Reflection arrangements are free. This explains the fac-
torization of their characteristic polynomials.

Hypergeometric Integrals

Certain rank one local system cohomology groups of M
may be identified with spaces of hypergeometric inte-
grals, [1]. If the local system is suitably generic, these
cohomology groups may be computed using the alge-
bra A(A). Only the top cohomology group is nonzero
and it has dimension ˇ(A). See [6] for connections with
the representation theory of Lie algebras and quantum
groups, and with the Knizhnik–Zamolodchikov differen-
tial equations of physics.

See also

� Hyperplane Arrangements in Optimization
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A finite set S of hyperplanes inRd defines a dissection of
Rd into connected sets of various dimensions. We call
this dissection the arrangementA(S) of S.

Given a vector � = (�1, . . . , �d) 2 Rd � {0} and
a number �0 2 R, we may define a hyperplane H and
associated halfspaces H�, H+ by

H D
n
x 2 Rd : � � x D �0

o
;

H� D
n
x 2 Rd : � � x < �0

o
;

HC D
n
x 2 Rd : � � x > �0

o
:

Clearly,H,H�,H+ are disjoint andH [H� [H+ = Rd.
We may now specify the location of a point relative

to the set of hyperplanes S = {H1, . . . , Hn}. For a point p
and 1 � j � n, define

s j(p) D

8̂
<̂
ˆ̂:

�1 if p 2 H�j ;
0 if p 2 Hj;

C1 if p 2 HCj :

The vector s(p) = (s1(p), . . . , sn(p)) is called the position
vector of p.

Clearly there are at most 3n possible position vec-
tors, however, in general most of these will not occur.
We say that points p and qlie on the same face if s(p) =
s(q). The nonempty set of points with position vector r
is called the face f (r):

f (r) D
n
p 2 Rd : s(p) D r

o

The nonempty sets of this form are called the faces of
the arrangement A(S). The position vector of a face f (r)
= g is defined to be r,

s( f (r)) D r:

A face f is called a k-face if its dimension is k. Spe-
cial names are used to denote k-faces for special val-
ues of k: a 0-face is called a vertex, a 1-face is called
an edge, a (d�1)-face is called a facet, and a d-face is
called a cell. A face is said to be a subface of another
face g if the dimension of f is one less than the dimen-
sion of g and f is contained in the boundary of g; it fol-
lows that si(f ) = 0 unless si (f ) = si (g) for 1 � i � n.
If f is a subface of g, then we also say that f and g are
incident (upon each other) or that they define an inci-
dence.

An arrangement A(S) of n � d hyperplanes is
called simple if any d hyperplanes of S have a unique
point in common and if any d + 1 hyperplanes have
no point in common. If n < d, we say that A(S)
is simple if the common intersection of the n hy-
perplanes is a (d�n)-flat. For more details see [3,4]
and [5].

As an application of hyperplane arrangements in al-
gorithm design for optimization problems, see [1].In
it the problem of minimizing the Euclidean distance
function on Rn subject to m equality constraints and
upper and lower bounds (box constraints) is consid-
ered. A parametric characterization in Rm of the family
of solutions to this problem is provided, thereby show-
ing equivalence with a problem of search in an arrange-
ment of hyperplanes in Rm. This characterization and
the technique for constructing arrangements due to H.
Edelsbrunner, J. O’Rourke and R. Seidel are used to de-
velop an exact algorithm for the problem. The algo-
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rithm is strongly polynomial running in time
(nm) for
each fixed m.
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Introduction

Kinetic phenomena drive the macroscopic behavior of
biological, chemical, and physical systems. The lack of
mechanistic understanding of these kinetic phenomena
is still the major bottleneck for a more widespread ap-
plication of model-based techniques in process design,
optimization, and control. In recent years, kinetic phe-
nomena have become of increasing importance given
the rapidly developing capabilities for the numerical
treatment of more complex models on the one hand
and the need for predictive models on the other.

Despite this demand, kinetic modeling of process
systems is still a challenge. This contribution presents
systematic work processes to derive and validate mod-
els that capture the underlying physicochemical mech-
anisms of an observed behavior. The work process of
model-based experimental analysis (orMEXA for short)

is introduced in the next section. The key factor in the
procedure is an incremental strategy for model structure
refinement tailored for the identification of reaction ki-
netics and transport phenomena [30]. While identifica-
tion of kinetic models from experimental data can, in
principle, be performed by application of standard sta-
tistical tools of nonlinear regression [2] and model dis-
crimination [39], this direct approach in general leads
to a large number of NLP or even MINLP problems
being solved [16,21,34,37] that may be computation-
ally prohibitive and in particular does not reflect the
underlying physics. In contrast, the incremental iden-
tification approach discussed here presents a physically
motivated and adapted divide-and-conquer strategy to
the complex optimization problem of kinetic model
identification. Applications of this approach in the ar-
eas of (bio)chemical reactions [6,12,13,15,32], multi-
component diffusion [3,5], and heat transfer in fluid
flow [22,25] are discussed.

Methods and Applications

Model-Based Experimental Analysis

The typical work flow of the MEXA procedure is as fol-
lows (Fig. 1):
1. An initial experiment with a suitable measurement

system is designed on the basis of a priori knowledge
and intuition.

2. A first mathematical model of experiment and mea-
surement system is proposed.

3. Numerical simulation studies are performed to ex-
plore the expected behavior of the experiment.

4. The model is then employed for rigorous experimen-
tal design [41] to gain maximum information with
respect to the goal of the investigation.
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IdentificationMethods for Reaction Kinetics and Transport, Figure 1
Model-based experimental analysis [30]

5. The designed experiment is performed and at least
some of the variables of interest are observed using
appropriate measurement techniques.

6. Formulation and solution of inverse problems refers
to combinations of state, parameter, and unknown
input estimation as well as model structure identifi-
cation and selection.

7. Typically, the first model does not reflect the stud-
ied phenomena with sufficient detail and accuracy.
Therefore, iterative model refinement, intertwined
with iterative improvement of the experimental and
measurement techniques, must be carried out to im-
prove the predictive capabilities of the model based
on the extended understanding gained.

Work processes consisting of the steps design of exper-
iments, data analysis, and modeling date back to at least
the 1970s [26]. However, the development and bench-
marking of such work processes has only recently been
formulated as an important research objective, e. g., by
the Collaborative Research Center CRC 540 “Model-
based Experimental Analysis in Fluid Multi-Phase Re-
active Systems” (http://www.sfb540.rwth-aachen.de/)
at RWTH Aachen University as well as by Asprey and
Macchietto [1]. The power of these work processes de-
pends on the specific strategies employed for system-
atically improving both the model structure and the ex-
perimental setup in every refinement step duringmodel

identification. While experimental design is the focus of
the work of Asprey and Macchietto [1], the research in
CRC 540 is complementary and emphasizes the strat-
egy for model structure refinement as discussed in what
follows.

Incremental vs. Simultaneous Model Identification

Incremental Modeling and Identification The key
idea of the incremental approach for model structure
refinement is to follow the incremental steps of system-
aticmodel development [29] also in model identification
(Fig. 2).

Therefore, the main steps of model development
and their connection to incremental identification are
outlined next.

Model B In model development, balance envelopes
and their interactions are determined first, the spa-
tiotemporal resolution of the model is decided, and
the extensive quantities x to be balanced are se-
lected. The balance equation is formulated as a sum
of generalized fluxes, e. g.,

@x
@t
D �r � Jf C Js ; (1)

dx
dt
D A(x)C B(x)w : (2)

http://www.sfb540.rwth-aachen.de/
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IdentificationMethods for Reaction Kinetics and Transport, Figure 2
Incremental modeling and identification [30]

Equation (1) exemplifies a balance for a distributed
quantity x flowing with the flux Jf and being gener-
ated/consumed according to the source/sink term
Js. Note that further generalized fluxes may arise
through initial or boundary conditions. A lumped
quantity is balanced in Eq. (2), where A,B are
matrix functions of appropriate dimensions de-
scribing, e. g., inter- and intraphase transport and
source/sink terms. Note that no constitutive equa-
tions are considered yet to specify the generalized
fluxes J(�)1 (here: Jf, Js, w) as a function of the inten-
sive thermodynamic state variables.
In incremental model identification, the unknown
generalized fluxes J(�) are estimated directly from
the balance equation. For this purpose, measure-
ments of the states x(�) with sufficient resolution in
time t and/or space z are assumed. The unknown
flux J(�) in the balance equation is then determined
as a function of time and space coordinates – with-
out the need for specifying a constitutive equation.

Model BF In model development, constitutive equa-
tions are specified for each flux term in the balances
on the next decision level:

J(�) D J(x(�);rx(�); : : : ; k(�)) : (3)

This could be, e. g., correlations for interfacial fluxes
or reaction rates.

1The (�)-argument summarizes the spatial and/or respective
temporal dependency of the quantity.

Similarly, in incremental model identification on
level BF, flux model candidates (3) are selected or
generated to relate the flux to rate coefficients, to
measured states, and to their derivatives. The flux
estimates obtained on level B are now interpreted as
inferential measurements. These can then be used,
together with the real measurements, to determine
a rate coefficient k(�) as a function of time and space.
Often, the flux model can directly be solved for the
rate coefficient function k(�).

Model BFR In model development, the rate coeffi-
cients introduced in the correlations on the level
BF – such as a reaction rate or heat and mass trans-
fer coefficients – often themselves depend on the
states. Consequently, a model relating rate coeffi-
cients and states has to be chosen on yet another
level BFR

k(�) D k(x(�);rx(�); : : : ; �) : (4)

This cascaded decision process can continue as long
as the submodels considered involve not only con-
stant parameters � but also functions of the states.
Mirroring this step in incremental model identifi-
cation, a model for the rate coefficients is identi-
fied. This model (4) is assumed to only depend on
themeasured states and constant parameters. These
parameters � can be computed from the estimated
rate coefficients k(�) and the measured states x(�) by
solving an algebraic regression problem.
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Such a structured approach duringmodel identification
renders the individual decisions in the modeling and
identification process completely transparent: the mod-
eler is in full control of the model refinement process.

Simultaneous Model Identification In the previous
section, it was shown that there exists a natural hi-
erarchy in models of kinetic phenomena. Classic ap-
proaches to model identification, however, neglect this
inherent structure. These simultaneous approaches as-
sume that the model structure is correct and consider
only the fully specified model (Fig. 2). Models for the
flux expression (Model BF) and the phenomenologi-
cal coefficients (Model BFR) have to be specified a pri-
ori.

In practical situations, these models are initially un-
certain. Now, all assumptions on the process will si-
multaneously influence the results of the model iden-
tification procedure. The estimates may be biased if the
parameter estimation is based on a model containing
structural errors [42]. The theoretically optimal prop-
erties of a maximum likelihood approach [2] are there-
fore lost in the presence of structural model mismatch.
Initialization and convergence may be difficult since the
whole problem is solved in one step [18]. More impor-
tantly, it may be difficult in a simultaneous approach
to identify which part of the model introduced the er-
ror.

Furthermore, several candidate model structures
may exist for each kinetic phenomenon. The aggre-
gation of such submodels with the balance equations
will inevitably lead to a multitude of candidate mod-
els. Alternatively, general approximation schemes like
neural nets can be used, often leading to several hun-
dred unknown parameters. Both approaches may be
prohibitive due to computational cost, especially when
more complex or even distributed parameter systems
are considered.

Discussion of Identification Approaches The incre-
mental approach splits the identification procedure into
a sequence of inverse problems, thereby reducing un-
certainty and computational complexity. It thus has the
potential to overcome a number of the disadvantages of
the simultaneous approach:
� Avoid combinatorial complexity: Rather than pos-

tulating large numbers of nested model structures,

a structured, fully transparent process is used in
the incremental model refinement strategy. An un-
controlled combinatorial growth of the number of
model candidates is avoided.

� Reduce uncertainty: In the incremental approach,
any decision on the model structure relates to a sin-
gle physicochemical phenomenon. Submodel selec-
tion is guided by the previous estimation step, which
provides input–output data inferred from the mea-
surements. Identifiability can also be assessed more
easily on the level of the submodel.

� Computational advantages: The decomposition in-
herent in incremental model refinement avoids the
solution of many difficult output least-squares prob-
lems with (partial-)differential-algebraic constraints
and potentially large data sets. Rather, an often lin-
ear inverse problem must be solved first. All the fol-
lowing problems are nonlinear regression problems
with algebraic constraints – regardless of the com-
plexity of the overall model. This decomposition not
only facilitates initialization and convergence, but it
also allows for incremental testing of model valid-
ity at every decision level for the submodels. Largely
intractable estimation problems may become com-
putationally feasible.

Still, it should be kept in mind that the incremental
and the simultaneous methods were derived for dif-
ferent purposes: the incremental approach is aimed at
gross elimination of candidate models and/or system-
atic derivation of suitable candidate model structures,
whereas the simultaneous approach gives the best pa-
rameter estimates once the correct model structure is
known [6].

Multistep approaches to model identification have
been applied rather intuitively in the past. The sequence
of flux estimation and parameter regression is, e. g.,
commonly employed in reaction kinetics as the so-
called differential method [19]. More recently, a two-
step approach has been applied for the hybrid mod-
eling of fermentation processes [36,38]. First reaction
fluxes are estimated from measured data, then neural
networks and fuzzy models are employed to correlate
the fluxes with the measurements. Mahoney et al. [28]
estimate the crystal growth rate directly from the popu-
lation balance equations using a method of characteris-
tics approach and indicate the possibility of correlating
it with solute concentration next.



Identification Methods for Reaction Kinetics and Transport I 1553

Though the incremental refinement approach is
rather intuitive, a successful implementation requires
tailored ingredients such as
� high-resolution field measurement techniques for

state variables,
� algorithms for model-free flux estimation by inver-

sion of the balance equations,
� methodologies for the generation, assessment, and

selection of the most suitable model structures, and
� model-based experimental design methods.
A detailed discussion of these areas in relation to in-
cremental model identification can be found in [30].
Various aspects are highlighted in the following case
studies. Here, the progress in the development of the
incremental model identification approach is reported
for challenging kinetic modeling problems of gradually
increasing complexity from (bio)chemical reactions to
diffusion in liquids and to heat transfer at falling liquid
films. In addition, the incremental approach has been
successful in the identification of hybrid process mod-
els [24].

Case Studies

(Bio)chemical Reaction Kinetics The identification
of the mechanism and kinetics of chemical reactions is
one of the most relevant and still not yet fully satisfacto-
rily solved tasks in process systems modeling [8]. In bi-
ological systems, the situation is often even more severe
due to the complexity of living systems. The incremen-
tal identification approach has been applied for a va-
riety of reaction systems [6,12,13,15,32]. Here, selected
features are discussed to elucidate the general proper-
ties of this problem class.

Model B: Reaction flux estimation in lumped systems
For illustration, we assume a well-mixed and
isothermal homogenous reaction system. The bal-
ance equation for the mole number ni of species i is
then

dni

dt
D f ini � f outi C f ri ; i D 1; : : : ; nc ; (5)

where f i in, f iout are, respectively, the molar flow
rates into and out of the reactor and f ir is the un-
known reaction flux of species i. It is worth noting
that the fluxes enter the balance equations linearly
and the equations are decoupled for each species.

All reaction fluxes f ir can thus be estimated in-
dividually by numerical differentiation of concen-
tration data for each measured species on level B
from material balances only. Tikhonov-Arsenin fil-
tering [31] or smoothing splines [6] with regulariza-
tion parameter choice based on the L-curve or gen-
eralized cross-validation have been shown to give
reliable estimates.

Model BF: Estimation of reaction rates and stoichiom-
etry If the reaction stoichiometry is unknown, tar-
get factor analysis (TFA) [11] is used to test possible
stoichiometries and to determine the number of rel-
evant reactions. The reaction rates r(t) can then be
calculated from the typically nonsquare linear equa-
tion system relating reaction fluxes f ir(t) and rates
by the stoichiometric matrix N:

f r D v(t)NTr(t) ; (6)

with v(t) denoting the reactor volume.
Model BFR: Estimation of kinetic coefficients On the

next level, concentrations are determined either
from smoothed measurements using nonparamet-
ric methods [40] or unmeasured concentrations are
reconstructed from stoichiometry and mass bal-
ances [13]. Since a complete set of concentration
and rate data is now available, candidate reaction
rate laws of the general form

r(t) D m(c(t); �) (7)

can now be discriminated by nonlinear algebraic re-
gression [42].

Model identification may not immediately result in reli-
able model structures and parameters because of a lack
of information content in the data. Iterative improve-
ment with optimally chosen experimental conditions as
suggested in the MEXA work process can then be em-
ployed [13].

The incremental identification method has been
worked out for arbitrary reaction schemes with re-
versible or irreversible as well as dependent or inde-
pendent reactions. Theminimum type of concentration
measurements required to guarantee identifiability has
been assessed theoretically.

The incremental identification strategy has been
used in a benchmark study considering a homogeneous
reaction system [13]. Computational effort for model
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identification could be reduced by almost two orders of
magnitude using the structured search in the incremen-
tal method. The inclusion of data-driven model sub-
structures in hybrid models is straightforward, as al-
ready exemplified for neural networks [15] and sparse
grids [14]. The basic framework can easily be extended
to nonisothermal systems, and even multiphase trans-
port has been considered [12,23]. An application study
to a biochemical reaction system is presented in [32].

Multicomponent Diffusion While phase equilib-
rium models are available even for complex multicom-
ponent mixtures [17], there is a lack of experimentally
validated diffusion models in particular for multicom-
ponent liquid mixtures [9]. The incremental identifi-
cation of diffusive mass transport models is therefore
outlined in this section. The application is based on the
recently introduced Raman diffusion experiment [4,7].
Here, one-dimensional interdiffusion of two initially
layered liquid mixtures is observed by 1D-Raman spec-
troscopy. Concentration profiles ci of all species are ob-
tained with high resolution in time and space [20].

Model B: Estimation of 1D-diffusion fluxes For the 1D-
diffusion process, the mass balance equation for
each species i can be given as

@ci
@t
D �

@Ji
@z

; i D 1; : : : ; nc � 1 : (8)

The determination of the diffusive flux Ji falls into
the class of interior flux estimation in distributed
parameter systems [30]. While interior fluxes can-
not be determined in 2D or 3D situations without
specification of a constitutive model, the model-free
flux estimation is possible in the one-dimensional
situation considered here. Only one nonzero mass
flux component has to be determined from differ-
entiated concentrations measured along a line in
the direction of the diffusive flux. Such a strategy
has been followed in [3,5].
The Raman concentration measurements were first
differentiated with respect to time by means of
spline smoothing [33] and subsequently integrated
over the spatial coordinate to render a diffusive flux
estimate without specifying a diffusion model:

Ji(z; t) D �
Z z

0

@ci (�; t)
@t

d� : (9)

This technique directly carries over to multicompo-
nent diffusion [5] provided concentration measure-
ments are available for every species. In particular,
there is only a linear increase in complexity due to
the natural decoupling of the multicomponent ma-
terial balances (8).

Model BF: Estimation of diffusion flux models A flux
model has to be introduced on the next level. For
example, generalized Fick or Maxwell–Stefan mod-
els could be selected as candidates. In case of binary
mixtures, the Fick diffusion coefficient can, e. g., be
determined at any point in time and space:

D(z; t) D �
J(z; t)

@c(z; t)/@z
: (10)

Positivity requirements may now be used, e. g., to
assess model assumptions on this level.

Model BFR: Estimation of model parameters The esti-
mated diffusion coefficient data can now be corre-
lated with the measured concentrations to obtain
a diffusion model:

D(z; t) D m(c(z; t); �) : (11)

Error-in-variables methods [10] and statistical
model discrimination techniques [35] are employed
to decide on the most appropriate model for the
concentration dependence of the diffusion coef-
ficient. This concentration dependency has been
shown to be even identifiable from a single Raman
diffusion experiment [3]. An application in food
science has recently been presented in [27].
In case of multicomponent diffusion, the last two
levels have to be merged because all species con-
centration gradients are determined by the diffu-
sive flux of any species due to the cross effects of
multicomponent diffusion [3,5]. The merged steps
BF and BFR then allow for efficient initialization of
these complex estimation problems.

Heat Transfer at Falling Films Liquid falling films
are a challenging benchmark problem for general fluid
multiphase reaction systems as they show all the rele-
vant features of this problem class. Here, the first steps
in the application of the incremental approach to heat
transfer in falling films are considered [22,25].

Model B: Boundary flux estimation in distributed sys-
tems In order to study its heat transfer character-
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istics, a laminar-wavy falling film is heated by re-
sistance heating using a supporting wall as heater.
Infrared thermography is employed to measure
a transient 2D temperature field on the backside of
the wall. An inverse heat conduction problem for
the three-dimensional wall has to be solved to deter-
mine the boundary heat flux between the wall and
the falling film as the first step of the incremental
approach:

@T
@t
D a�T ; (12)

� �rTj� D w(z� ; t) ; (13)

� �rTj� D q(z�; t) ; (14)

with � and � being the parts of the surface with
unknown and with known boundary heat fluxes
w(z� ; t) and q(z�; t), respectively. The boundary
flux estimation problem is solved by means of
a multigrid finite-element discretization of the heat
conduction Eq. (12) in conjunction with the conju-
gate gradient method. Gradient computation is per-
formed using the adjoint method. This framework
allows for the solution of the discretized problem
involving about three million variables on a desk-
top computer [22].

These results show that the identification of kinetic
phenomena may become feasible even in complex flow
problems using the structured search strategy of the in-
cremental approach. A generalization of the presented
problem to work out the full incremental identification
concept for heat transfer problems in falling films is
currently in progress [25].
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It is generally accepted that the notion‘ill-posed prob-
lem’ originates from a considered concept of well-
posedness: A problem is called ill-posed if it is not well-
posed. There are a lot of different notions of well-
posedness (cf. [15,23,27,35,38] and [40]), which cor-
respond to certain classes of variational problems and
numerical methods and take into account the‘quality’
of the input data, in particular their exactness. For
a comparison of different concepts of well-posedness
see [12,15] and [35].

For instance, Tikhonov well-posedness [35,38] is
convenient if we deal with methods generating feasible
minimizing sequences, and it is not appropriate to anal-
yse stability of exterior penalty methods.
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We shall proceed from two concepts of well-
posedness which are suitable for wide classes of prob-
lems and methods.

The first concept is destined to the problem

min fJ(u) : u 2 Kg ; (1)

where K is a nonempty closed subset of a Banach space
V with the norm k � k and J :V!R[ {+1} is a proper
lower-semicontinuous functional.

Definition 1 (cf. [27]) The sequence {un} � V is said
to be a generalizedminimizing sequence (Levitin–Polyak
minimizing sequence) for (1) if

lim
n!1

d(un ;K) D 0

and

lim
n!1

J(un) D inf
u2K

J(u);

with

d(u;K) D inf
v2K
ku � vk

distance function.

Definition 2 (1) is called well-posed (Levitin–Polyak
well-posed) if
i) it is uniquely solvable, and
ii) any generalized minimizing sequence converges to

u� = arg min{J(u):u 2 K}.

The second concept (cf. [20,23]) concerns (1) with

K D fu 2 U0 : B(u) � 0g ; (2)

U0 � V a convex closed set, B:U0 ! Y a convex con-
tinuous mapping into a Banach space Y , and J:U0! R
a convex continuous functional. The relation ‘�’ in (2)
and the convexity of B are defined according to a posi-
tive cone in Y .

In this case, the study of the dependence of a so-
lution on data perturbations is often more natural and
simpler than the analysis of the convergence of a gener-
alized minimizing sequence.

We suppose that U0 is exactly given and a violation
of the condition u 2U0 does not arise. For a fixed ı > 0,
the set of variations is defined by

˚ı D
n
'ı � (Jı ; Bı ) : kJ � JıkC(U0) � ı;

sup
u2U0

kB(u) � Bı (u)kY � ı
o
; (3)

where Jı :U0 ! R, Bı :U0 ! Y are assumed to be con-
tinuous. Then, the problem

min fJı(u) : u 2 U0; Bı(u) � 0g (4)

corresponds to an arbitrary but fixed variation 'ı 2˚ı .
The set of optimal solutions of (4) will be denoted by
U�('ı).

Definition 3 Problem (1), (2) is called well-posed if
i) it is uniquely solvable,
ii) there exists a constant ı0 > 0 such that for any ı 2

(0, ı0) and any 'ı 2˚ı the setU�('ı)is nonempty,
iii) limı! 0d(u�, U�('ı)) = 0 for arbitrary 'ı 2 ˚ı .

Depending on the pecularities of the problem consid-
ered, the ‘quality’ of data as well as the requirements to
an approximation, other norms in (3) and additional
assumptions w.r.t. Jı , Bı can be considered (for in-
stance, convexity of Jı , Bı). For a relaxation of the in-
equalities in (3) see [39,40].

Of course, the Definitions 2 and 3 are not equiva-
lent, and in the framework of the chosen concept of
well-posedness the problem is called ill-posed if any
condition is violated in the corresponding definition
used.

Example 4 Problem (1), (2) with

V D R3; Y D R3;

J(u) D u2;
U0 D

˚
u 2 R3 : 0 � uk � 2

�
;

B(u)

D

�
u1 C u2 �

1
2
; u3 �

1
2
;�u1 � u2 � u3 C 1

�>

is well-posed according to Definition 2, but it is ill-
posed according to Definition 3. This example reflects,
in particular, the situation that an arbitrary small data
perturbation may lead to an unsolvable problem.

Example 5 The unconstrained problem

minimize J(u) D
1X
kD1

k�1u2
k over V D l2
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is ill-posed according to both Definitions 2 and 3. To
verify that take

un D (�1; 0; : : : ; 0;
n
1; 0 : : :); ın D

1
n
;

Jın D
1X

kD1;
k¤n

k�1u2
k Cmaxfn�1u2

n ; n
�1g:

If it is supposed that V is a reflexive Banach space, Y
= C(T) (with T a compact set), that Problem (1), (2)
is uniquely solvable and that Slater’s condition is valid,
then the condition

lim
ı!C0

sup
u2Wı

ku � u�k D 0;

with

Wı D fu 2 U0 : J(u) � J(u�)C ı;
max
t2T

B(u)(t) � ıg

is necessary and sufficient for this problem to be well-
posed according toDefinition 3 (with convex Jı , Bı) (cf.
[20]).

Let us mention also concepts of well-posedness us-
ing different notions of hyper- or epiconvergence. As an
example, identifying the functions with their epigraphs,
in [9] for the class of Problem (1) the closeness of data
is measured in the Attouch–Wets metric defined on the
data space. Here, Problem (1) is said to be well-posed if
it is uniquely solvable and its solution depends contin-
uously (in V) on the data perturbation (for details see
[35]). These concepts are closely related to the classical
idea of Hadamard of the continuous dependence of the
solution on the data.

Some notions of well-posedness do not suppose
uniqueness of a solution of the problem considered (cf.
[35,40]). A correspondinggeneralization of Definition 2
leads to the following conditions:
i) the optimal set U� is nonempty,
ii) each generalized minimizing sequence has a subse-

quence converging to an element of U�,
or (the weaker condition)

ii’) d(un, U�)! 0 for each generalized minimizing se-
quence {un}.

If the problem is ill-posed, the following difficulties oc-
cur:

1) using approximate data one cannot be sure that a so-
lution of the ‘perturbed’ problem is close to the solu-
tion (or to the solution set) of the original problem;

2) in the majority of the numerical methods it is pos-
sible that the calculated minimizing sequence does
not converge (in a suitable sense) to a solution of the
problem.

It may also happen that standard solution methods
break down for such problems.

Example 6 Problem (1), (2) with

V D R2; Y D C[0; 1]; J(u) D �u1;
U0 D

˚
u 2 R2 : u2 � 0

�
;

and

Bu(t) D u1 �
�
t �

1
p
2

�2

u2:

Obviously, solutions of this linear semi-infinite prob-
lem are points u� 2 U� � {(0, a): a� 0}. Choosing a fi-
nite grid T0 on [ 0, 1] with

t0 D argmin
� ˇ̌
ˇ̌t � 1
p
2

ˇ̌
ˇ̌ : t 2 T0

	

and t0 ¤ 1/
p
2, then for the approximate problem

(with T0 instead of [0, 1]), the ray
(
u 2 R2 : u1 D

�
t0 �

1
p
2

�2

u2; u2 � 0

)

is feasible and J(u)!�1 on this ray if kuk !1.

This example shows the typical behavior of ill-posed
semi-infinite problems: Although the original problem
is solvable, the discretized ones may be not solvable,
even if dense grids are used. Due to unsolvability of
the discretized problems, the direct application of dis-
cretization and exchange methods for solving semi-
infinite programs is impossible. Moreover, the assump-
tions required for the application of reduction methods
are violated in this example, too. (For the conceptual
description of the methods mentioned see [16]).

Nevertheless, it is well-known that some classical
methods, applied to ill-posed problems, possess stabi-
lizing qualities: They generate minimizing sequences
with better convergence properties than those proper-
ties which are guaranteed for an arbitrary minimizing
sequence.
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For instance, for the ill-posed problem (1), where J
is a convex functional of the class C1, 1 andK is a convex
closed subset of a Hilbert space V , the gradient projec-
tion method (with a constant steplength parameter and
an inexact calculation of the gradient pk 	 r J(uk) at
each step k) converges weakly to some element of U� if
U� 6D ; and k pk � r J(uk) k � �k,

P
1
kD1 �k <1 (cf.

[33]).
In [20] it is shown that penalty methods applied to

a finite-dimensional convex programming problem, for
which the conditions ii), iii) in Definition 3 may be vi-
olated, converge to the unique solution of this problem
if the exactness of the data is improved within the solu-
tion process by a special rule, depending on the change
of the penalty parameter.

Stable methods for solving convex ill-posed varia-
tional problems are mainly based on Tikhonov’s reg-
ularization approach (cf. [29,39,40]) and the proximal
point approach (cf. [30,37]). Nowadays the direct appli-
cation of these approaches (when multiple regulariza-
tion of the original problem is performed and the regu-
larized problems are solved with high accuracy) loses its
importance in comparison with techniques using reg-
ularization inwards of the basic numerical algorithm
which is suitably chosen for solving well-posed prob-
lems of the corresponding class of problems.

Let us briefly describe these techniques under the
assumption that V is a Hilbert space. Suppose a certain
basic method (for instance, discretization or penaliza-
tion method) generates the sequence of auxiliary prob-
lems

Ji (u)! min; u 2 Ki � V ;

then in the Tikhonov approach successively the auxil-
iary problems

Ji (u)C ˛i ku � uk2 ! min; u 2 Ki ;

(˛i > 0; lim˛i D 0; u 2 V a fixed element)
(5)

are solved, whereas the proximal point approach leads
to the following sequence of auxiliary problems

Ji (u)C �i


u � ui�1

2 ! min; u 2 Ki ; (6)

with 0 < �i < �, ui� 1 an approximate solution of (6)
at the stage i := i� 1 and u0 2 V an arbitrary starting
point.

We refer to (5) and (6) as Tikhonov’s iterative reg-
ularization method and proximal-like method, respec-
tively.

Usually, dealing with a convex variational problem,
the functions Ji are convex and the sets Ki are convex
and closed. Therefore, the objective functions in the
Problems (5) and (6) are strongly convex, and hence,
these problems are uniquely solvable (if Ki 6D ;). It
should be emphasized that, inasmuch �i! 0 is not nec-
essary for the convergence of the proximal-like meth-
ods (in particular, �i � � > 0 can be chosen), they pos-
sess a better stability and provide a better efficiency of
fast convergent methods solving the regularized auxil-
iary problems.

Theoretical foundations for the construction and
the convergence analysis of Tikhonov’s iterative regu-
larization methods have been developed in [32,40]. We
refer to some methods coupling Tikhonov’s regular-
ization with gradient projection methods [8], Newton
methods [7], augmented Lagrangian [2] and penalty
methods [40]. In the latter paper the stability of regu-
larized penalty methods for Problem (1), (2) with Y =
Rn is proved without assuming convexity of J and B. For
applications of Tikhonov’s regularization in the frame-
work of successive discretization of ill-posed variational
problems see [28,40].

Proximal-like methods have been intensively de-
veloped during the last two decades. Starting with the
papers [3] and [36], where the proximal method of
multipliers has been investigated, regularized variants
of different penalty methods (cf. [1,5,6,19]), steepest
descent method [18], Newton methods [34,41] and
quasi-Newton methods [10] have been suggested. In
[21] proximal regularization is coupled with penaliza-
tion and successive discretization for solving ill-posed
convex semi-infinite problems, and in [22] a proximal
method with successive discretization has been stud-
ied for solving elliptic variational inequalities. There
is a couple of papers in which proximal regularization
is used to obtain new decomposition (splitting) algo-
rithms ([11,14,17]) and new bundle algorithms for non-
differentiable optimization problems ([4,10,24,25,31]).
In some papers mentioned a nonquadratic proximal
regularization is carried out by means of the Bregman
function [13].

General schemes for the investigation of proximal-
like methods have been developed in [20,26] and [37].
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The scheme in [20] includes a generalization of (6),
where the proximal iterations are repeated for fixed
Ji, Ki until they providean‘appropriate’ decrease of the
functional Ji.

See also

� Sensitivity and Stability in NLP
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The study of the properties of the image of a real-valued
functionis an old one; recently, it has been extended to
multifunctions and to vector-valued functions. How-
ever, in most cases the properties of the image have
not been the purpose of study and their investigation
has occurred as an auxiliary step toward other achieve-
ments (see, e. g., [4,16,17]).

Traces of the idea of studying the images of func-
tions involved ina constrained extremum problem go
back to the work of C. Carathéodory (in 1935, [3,
Chap.5]). In the 1950s R. Bellman [1], with his cel-
ebrated maximum principle, proposed – for the first
time in the field of optimization – to replace the given

unknown by a new one which runs in the image; how-
ever, alsohere the image is not the main purpose. Only
in the late 1960s and 1970ssome Authors, indepen-
dently from each other, have brought explicitly such
a study into the field of optimization [2,6,7,10,11].

The approach consists in introducing the space, call
it image space (IS), where the images of the functions
of the given optimization problem run. Then, a new
problem is defined in the IS, which is equivalent to
the given one. In a certain sense, such an approach
has some analogieswith what happens in the measure
theory when one goes fromMengoli–Cauchy–Riemann
measure to the Lebesgue one.

The approach will now briefly be described. Assume
we are given the integers m and p with m � 0 and 0 �
p � m, the subset X of a Hilbert space H whose scalar
product is denoted by h�, �i, and the functions f :X !
R, gi:X ! R, i = 1, . . . , m. Consider the minimization
problem:

(P)

8̂
<̂
ˆ̂:

min f (x);
s.t. gi(x) D 0; i 2 I0;

gi(x) � 0; i 2 IC; x 2 X;

where I0 := {1, . . . , p}, I+ := {p + 1, . . . , m}, and p = 0
) I0 = ;, p = m) I+ = ;; m = 0) I := I0 [ I+ = ;.
Here and in the sequel, all the considered extrema and
integrals are supposed to exist; the discussion of their
existence goes beyond the scope of this paper. Let us
set g(x) := (g1(x), . . . , gm(x)), Op := (0, . . . , 0) 2 Rp, C :=
Op×R

m�p
+ and R := {x 2X:g(x)2C}, with the stipulation

that C = Rm
C when p = 0 and C = Om := (0, . . . , 0) 2 Rm

when p =m;m = 0 does not require to define C.
A particular case of (P), call it (P)iso, is a classic

isoperimetric type problem defined in the following
way. Let ACn(T) denote the class of absolutely contin-
uous n-vector functions x(t) := (x1(t), . . . , xn(t)) on T :=
[a, b] � R with square integrable derivatives. By suit-
ably defining the scalar product – and, consequently,
the norm – such a class is a Hilbert space; set H = A

Cn(T) and

f (x) D
Z

T

 0(t; x(t); ẋ(t)) dt;

gi (x) D
Z

T

 i (t; x(t); ẋ(t)) dt; i 2 I;
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where  iR1+2n ! R, i 2 {0} [ I, are given integrands.
Fixed endpoints conditions can be included in the defi-
nition of X. We point out that the problems which can
be reduced to the format of (P) share the characteris-
tic of having a finite-dimensional image. Hence, certain
problems, for instance of geodesic type, are not covered
by (P); the image analysis of them is outside the scope
of the present writing.

The IS approach arises naturally in as much as an
optimality condition for (P) is achieved through the im-
possibility of a system. More precisely, by paraphrasing
the very definition of global minimum we can say that
a feasible x 2 X is a global minimum point for (P) if and
only if the system (in the unknown x):

(S)

(
'(x; x) :D f (x) � f (x) > 0;
g(x) 2 C; x 2 X;

is impossible, or

(S0) H \K(x) D ;;

where H := {(u, v) 2 R ×Rm: u > 0, v 2 C} andK(x) :D
f(u; v) 2 R � Rm : u D '(x; x); v D g(x); x 2 Xg D
F(X), where F := (', g). It is easy to see that (S0) holds if
and only if

(S00) H \ [K(x) � closH ] D ;;

where the difference is in vector sense and clos denotes
closure. K(x) is called the image of (P) and K(x) �
closH its conic extension. The replacement of the im-
age with its conic extension – which corresponds to
modifying f and g – does not affect the optimality con-
ditions and has several advantages. For instance, if f
and�g are convex (or, more generally, (f ,�g) is convex
like [6,20]), thenK(x)� closH is convex even ifK(x)
is not. Note that a change of x produces merely a trans-
lation of K(x) with respect to the u-axis. Hence, the
properties of the image can be studied independently
of the choice of x.

The analysis in the IS must be viewed as a prelimi-
nary and auxiliary step – and not as a concurrent anal-
ysis – for studying (P). If this aspect is understood, then
the IS analysis may be highly fruitful. In fact, in the IS
we may have a sort of ‘regularization’: The conic exten-
sion of the image of (P) may be convex or continuous or
smooth when (P) (and its image) do not enjoy the same

property, so that convex or continuous or smooth anal-
ysis can be developed in the IS but not in H. (P) at H =
Rn and (P)iso have their unknowns in a finite and in an
infinite-dimensional spaces, respectively; while the im-
ages of both problems run in a finite-dimensional space;
hence, in the given spaces, namely Rn andACn(T), they
require substantially differentmathematical tools, while
in the IS they can be treated in the same way.

It is easy to show that (P) is equivalent to the follow-
ing image problem:

IP

(
max u
s.t. (u; v) 2K(x); v 2 C:

A maximum point, say (bu;bv), of IP is the image –
through the pair (', g)—of a minimum point, saybx, of
(P), and we have f (x)�bu D f (bx), whatever x 2 X may
be. If IP is replaced by the other one:

IP(�)

8̂
ˆ̂̂<
ˆ̂̂̂
:

max u
s.t. (u; v) 2 K(x);

vi D �i ; i 2 I0;
vi � �i ; i 2 IC;

then the maximum, which is now a function of � := (�1,
. . . , �m), gives the so-called perturbation function (called
also optimal value function) of (P), and, with obvious
notation, we have f (x) �bu(�) D f (bx(�)).

If in (P) minimization is replaced by maximization,
then the entire image space analysis remains unchanged
provided ' receives the new definition as '(x; x) :D
f (x) � f (x).

To prove directly whether or not (S0) (or (S00) and
hence (S)) holds is generally impracticable. An indirect
way of showing it consists in proving that H andK(x)
lie in two disjoint level sets, respectively. This separa-
tion approach is exactly equivalent to finding a theo-
rem of the alternative (cf. � Theorems of the alterna-
tive and optimization and [6]) related to (S); only the
mathematical languages are different. The separation
scheme enjoys mainly a geometrical appeal, while in
studying alternative the algebraic characters are dom-
inant. In general terms, a separation scheme begins by
introducing a familyW of functionals such that the in-
tersection of the positive level sets equals H. If a w 2
W is found whose nonpositive level set containsK(x),
then (S) holds and x is a solution of (P).
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Let us consider the column vector v = (v1, . . . , vm)>

and the row vectors � = (�1, . . . , �m), � = (�1, . . . , �m).
A particular, but wide, family of type W is offered by
the class of parabolic-exponential functions w:R1+m !

R, defined by

Wpe : w D w(u; v;�;�) :D uC �(v;�;�);

where � 2 C� = Rp × Rm�p
C , � 2 Rm

C, and

�(v;�;�)

:D �
X
i2I0

(�i v2i � �i vi )C
X

i2IC

�i vi exp(��i vi );

where 
 marks positive polar, and �, � are parameters
which describe the family. At � = 0, this family col-
lapses to that of linear functions:

W` : ` D `(u; v;�) :D uC h�; vi ; � 2 C�;

where h�, �i marks the usual scalar product. It is easy to
check that the family Wpe (and hence W`) fulfills the
above mentioned intersection property (with respect to
�,�). Starting from such a separation scheme, it is pos-
sible to develop most of the theory of constrained ex-
trema as will be briefly shown.

The intersection of the positive level sets of the ele-
ments of Wpe is not open, since H is not open. There-
fore, an element of H may be a limit point of elements
ofK(x) or the Bouligand tangent cone toK(x) at 01+m
may intersect H even when (S0) holds, so that no ele-
ment ofWpe may exist which shows separation between
H and K(x). This drawback can be overcome by en-
larging the family Wpe. For instance, in the linear case,
W` is replaced by the family `(u, v;� , �) := � u + � v,
� � 0, � 2 C�, (� , �) 6D 0; at p = 0, this is the family
considered in � Theorems of the alternative and opti-
mization. Of course, such a relaxation does not guar-
antee any longer (S0), even if K(x) is included in the
nonpositive level set of `, since at � = 0 the nonposi-
tive level set of ` intersects H, the intersection contain-
ing the positive u axis. As a consequence, the separa-
tion scheme would be useless. A way of remedying this
consists in cutting off the set of problems whose images
can be included in the nonpositive level set of ` at � = 0
only. Such an exclusion, which is extended to the (lin-
ear)approximations of (P), is done by imposing suitable
conditions on f and g, which are called constraint qual-
ifications if they implicate only g and are called regular-

ity conditions if they implicate both f and g (cf. � The-
orems of the alternative and optimization; [12]).

Now, let us show some consequences of the sepa-
ration scheme. A first result is a sufficient condition.
From the very definition of w, we see that the existence
of vectors � 2 C� and � 2 Rm

C, such that K(x) �
lev�0 w(u; v;�;�) (where lev� 0 denotes nonpositive
level set) is sufficient for x to be a solution of (P). Hence,
to achieve a sufficient condition in terms of X, f and g
it is enough to replace, in the above inclusion, u and v
with their expressions:

Theorem 1 Let x 2 R. If there exist � 2 C� and � 2
Rm
C, such that

f (x) � f (x)C �(g(x);�;�) � 0; 8x 2 X; (1)

then x is a global minimum point of (P).

Let us introduce the function L(x; �, �) := f (x)�
�(g(x);�, �). It is a generalization of the classic La-
grangian function, which is found at � = 0. At p = m,
L becomes the so-called augmented Lagrangian func-
tion. At p =m and � = 0,L becomes the classic Courant
penalty function. (See [5, p.12], where such a function
has been introduced under the name ‘sensitized’; see
also [15].) Obviously, (1) holds if and only if f (x) �
L(x;�;�), 8x 2 X. Under the equality

�(g(x);�;�) D 0; (2)

we have f (x) D L(x;�;�); then (1), which is the alge-
braic form of a separation condition, can be rewritten
in a different (but equivalent) form, which corresponds
to a saddle-point condition. At � = 0, (2) collapses to
the orthogonal condition

D
�; g(x)

E
D 0; (3)

which is classically known as complementarity condi-
tion [6,12], due to the role it has played in some algo-
rithms. The fundamental condition (2), which subtends
the entire theory of constrained extrema, will be proved
within the next theorem.

Theorem 2 Let x 2 X. If there exist � 2 C� and � 2
Rm
C, such that

L(x;�;�) � L(x̄;�;�) � L(x;�;�);
8x 2 X; 8� 2 C�; 8� 2 Rm

C;
(4)

then x is a global minimum point of (P).
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Proof It is enough to prove that (1), (4).
()) x 2 R; � 2 C� ) �(g(x̄);�;�) � 0; the

reverse of this inequality is implied by (1) at x D x.
Thus (2) follows. Because of (2), (1) is equivalent to the
second of inequalities (4). It is easy to show that

g(x) 2 C , �(g(x);�;�) � 0;

8� 2 C�; 8� 2 Rm
C:

(5)

In fact, the implication) is trivial; the reverse impli-
cation follows quickly by reasoning ab absurdo. (2) and
(5) imply the inequality

�(g(x);�;�) � �(g(x);�;�);

8� 2 C�; 8� 2 Rm
C;

(6)

which is equivalent to the first of (4).
(() The first of (4) is equivalent to (6) which

implies x 2 R, so that �(g(x);�;�) � 0. The
strict inequality contradicts (6) since, 8i 2 IC,
�i gi (x) exp(��i gi(x)) can be made arbitrarily small so
that the same happens to �(g(x);�;�). Hence (2) holds
here too. Taking into account (2), it is easy to see that
the second of inequalities (4) implies (1).

At � = 0, (4) is the classic saddle-point sufficient condi-
tion and (2) becomes (3). Note that Theorem 2 does not
contain any assumption on X, f and g.

Example 3 Let us set H = R, X = ]�1, +1[, p = 0,m =
1, f (x) = log(x + 1), g(x) = x. At � = 0, (4) is equivalent
to the system of (� � �)x � 0 and

log
�
x C 1
x C 1

�
� �(x � x);

8x 2 ]�1;C1[ ; 8� � 0;

which is impossible. Hence, the classic saddle-point
condition is not satisfied. At � > 0, (4) can be satis-
fied. In fact, at x D 0, (4) is equivalent to log(x C 1) �
�x exp(��x), 8x 2 ]� 1, +1[, which is true if � D 1
and � is large enough. Hence, Theorem 2 can now be
applied to state that x D 0 is a global minimum point
of (P).

Example 4 Let us set X � H = AC2(T), where T := [0,
�] is the domain of the elements x = (x1, x2) 2 H; x1 =
x1(t) and x2 = x2(t), t 2 T, are the parametric equations
of a curve � inR2; given a positive real `, � must be such
that the length of � be `. X is now the set of pairs x =

(x1, x2) 2 H, such that x1(0) = x2(0) = 0, x2(t)� 0, 8t 2
T, each xi is regular in the sense of Jordan and closed.
Moreover, we set p =m = 1, T = [0, 2
], and

f (x) D
Z

x1 dx2; g(x) D
Z q

dx21 C dx22 � `:

Consider the problem

P(`)

(
max f (x);
s.t. g(x) D 0; x 2 X:

The solution of this classic isoperimetric problem is
well known:

x1(t; `) D
`

2

cos

�
t �




2

�
;

x2(t; `) D
`

2


h
1C sin

�
t �




2

�i
;

t 2 T D [0; 2
];

or, in nonparametric form, x21 + x22 � x2 `/
 = 0, and the
maximum is `2/4
 . If in P(l) we replace g(x) = 0 with
g(x) = �, so that we consider P(` + �), then 8x 2 X we
have

max
(u;v)2K(x)

vD�

(u) D f (x) �
(`C �)2

4

:

It follows that K(x) is included in a convex (with re-
spect to u-axis) parabola; hence H and K(x) can be
separated by a line, so that (1) and (4) can be verified
at � = 0. Any x 2 X (and not necessarily an opti-
mal one) allows to carry on the analysis in the image
space. Of course, in general, it is impossible to have an
explicit form ofK(x). In the present example, to show
explicitly a part ofK(x), namely the perturbation func-
tion, we have exploited the knowledge of the maximum
point.

Let us stress that the sufficient condition (1), as well as
(4), is an important result; however, in general, it is not
necessary and it is difficult to be verified since the in-
equality must be fulfilled 8x 2 X. Therefore, it is use-
ful to weaken the analysis, by replacing K(x) withan
‘approximation’ which be ‘easier’ to handle. A natural
way of doing this consists in approximating K(x) at
F(x) :D ('(x; x); g(x)) by means of its tangent cone
(e. g., in the sense of Bouligand [4,6]); in general a cone
is obviously easier than any set. For the sake of sim-
plicity, now we will consider a particular case of (P)
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and adopt a separation scheme less general than above,
which however embeds the classic theory [12]; for more
general results see [6,7,9,10,11,13,14,18,19,20].

Consider the particular case where p = 0 (so that
C = Rm

C; the presence of bilateral constraints makes
the analysis extremely difficult, unless f and g are as-
sumed to fulfill conditions which make applicable Dini
or Lyusternik implicit function theorems) and X is
open. Denote by C the set of sublinear real-valued func-
tions (i. e., positively homogeneous of degree one and
convex) defined on H; f is superlinear if and only if �
f is sublinear. f is said to be C-differentiable at x if and
only if 9DC f : X � X ! R, such that DC(x; �) 2 C,
and

lim
z!0

1
kzk

[�(x; z)

:D f (x C z) � f (x) �DC f (x; z)] D 0; (7)

where k � k is the norm in H generated by the scalar
product and z belongs to a neighborhood, say Z, of x.
DC f is said to be the C-derivative of f at x. If DC f is
linear (the linear functions are obviously elements of
C), then f is differentiable [7]. It is easy to see that a C-
differentiable function is directionally differentiable in
any direction z (in the sense that there exists the limit
of [ f (x C ˛z) � f (x)]/˛ as ˛ # 0); the vice versa is not
true, as shown by the following example(which gener-
alizes the so-called Peano function showed by G. Peano
to detect a famous mistake by Lagrange):

Example 5 H = X = R = R2, x = (x1, x2), x̄ D 0, kzk =
kzk2, f (x) = (x21 + x22)1/2 if x 6> 0 and f (x) = ˛(x2/x21)(x22
+ x22)1/2 if x > 0, where ˛:R+ \ {0} ! R is defined by
˛(t) = 1 if 0 < t � 1 or t � 3, ˛(t) = 3 � 2t if 1 < t
� 2 and ˛(t) = 2t � 5 if 2 < t < 3. In this Example, at
x D x the directional derivative exists and is f 0(x̄; z) D
(z21Cz22)

1
2 , while it is not possible to verify (7). Note that

f is continuous, but not locally Lipschitz, and f 0(0;z) >
0, 8z 2 R2.

Example 6 H = X = R = R, f : R!R+ with f (x) = j x j +
x2 if x 2Q and f (x) = j x j + 2x2 if x 62Q,Q being the set
of rational numbers. f is C-differentiable at x D 0 with
C-derivativeDC f (0; z) D jzj. Note that f is continuous
at x D 0 only.

The C-subdifferential of a C-differentiable function f at
x 2 X is defined by

@C f (x) :D
�
z� 2 H0 : DC f (x; z) � hz�; zi ;

8z 2 Z

	
;

where H0 is the continuous dual of H; z� is called the
C-subgradient of f at x. When f is convex, then @C f (x)
collapses to the classic subdifferential which is de-
noted simply by @ f (x); hence, @C f (x) is nothing more
than the subdifferential of DC f (x; z) or @C f (x; z) D
@DC f (x; z). When DC f (x; z) is linear, then @C f (x) is
a singleton and collapses to the classic differential. In
the latest example @C f (0) D [�1; 1]. Consider the fur-
ther example: H = X = R = R, f (x) = x2 sin 1/x if x 6D
0 and f (0) = 0. We find DC f (0; z) D 0, 8z 2 Z (in-
deed f is differentiable), so that @C f (0) D f0g, while the
Clarke subdifferential [4] is [�1, 1]. Now consider the
following regularity condition:

(RC) T(K(x)) \ f(u; v) 2H : v D 0g D ;;

where T(K(x)) is the Bouligand tangent cone ofK(x)
at x. Several conditions on f and g are well known
(mainly when H = Rn) which guarantee (RC). Con-
sider for instance the case where H = Rn and f ,
g are derivable. (RC) holds if the gradients r gi(x),
i 2 fi 2 I : gi (x) D 0g are linearly independent. (RC)
holds if g is affine. (RC) holds if g is concave and 9bx 2
X such that g(bx) > 0. For additional conditions see
� Theorems of the alternative and optimization; [6,12].

The approximation of (P), we want to discuss in the
present particular case p = 0, consists in replacing f and
� gi, i 2 I, with their C-derivatives. More precisely, in-
stead of the map F = (', g), we consider now the super-
linear map

FC(x; z)

:D (�DC f (x; z); gi (x)CDC gi(x; z) i 2 I);

which is the first order expansion of the (�C)-
differentiable map F.K(x) is now replaced by the cone
KC(x) :D FC(x; X � x). (S0) is now replaced by

(S000) H \KC(x) D ;;

which holds if x is a minimum point of (P) (but not
necessarily vice versa due to the above approximation
of K(x); hence, from the necessity and sufficiency of
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(S0) we jump to the sole necessity of (S000), since H and
KC(x) are linearly separable; hence (S000) can be proved
by means of the subclass of Wpe at � = 0. As a conse-
quence the Lagrangian function L (which, as we have
seen above, is, up to a formal transformation, the sep-
aration function w) will be used at � = 0; thus we set
L(x;�) := L(x;�, 0). This leads to the following neces-
sary condition, whose proof can be found in [7].

Theorem 7 Let the functions f , � gi, i 2 I, be C-
differentiable, and assume that (RC) be fulfilled. If x is
a minimum point of (P), then 9� 2 Rm, such that

inf
z2B

DCL(x; z;�) � 0; (8)

g(x) � 0; � � 0; (9)
D
�; g(x)

E
D 0; (10)

where DCL(x; z;�) is the C-derivative of L at x D
x; � D �, and B := {z: k z k = 1}.

(8) is equivalent to

0 2 @C f (x)C
X
i2I

�i@C(�gi (x)); (11)

which becomes

0 2 @ f (x)C
X
i2I

�i@(�gi (x)); (12)

if, in particular, X, f and � g are convex. When f and
g are differentiable on X, then (8) collapses to V L = 0
along x D x, whereV L is the first variation of L, and in
case (P)iso becomes

� 0x (t; x; x
0;�) �

d
dt
� 0x0 (t; x; x

0;�) D 0; (13)

where � :=  0�
P

i 2 I �i  i is the integrand of L. If X
= H = Rn, then (8) collapses to

L0x (x;�) D 0; (14)

where L0x is the gradient of L with respect to x.

Note that (13) is the classic Euler equation and (14)
is the classic Lagrange equation; � is the vector of La-
grange multipliers which turns out to be the gradient of
the hyperplane (w = 0 at � = 0) which separates the two
sets of (S00).

Now, let us go back to the separation scheme which
led to the sufficient condition (1). The choice of proving
(S0) indirectly through separation has a lot of interest-
ing consequences which go beyond the initial purpose.
One of them is the introduction of a (nonlinear) dual
space: that of functionals w. When we restrict ourselves
to Wpe, then the dual space is isomorphic to R2m (to
Rm at � = 0; this is the classic duality scheme in finite-
dimensional optimization). Such an isomorphism is the
characteristic of constrained extremum problems hav-
ing finite-dimensional image (independently of the di-
mension of the space where the unknown runs).

Having recognized that we have introduced a dual
space, to define a dual problem is immediate. Indeed,
looking at (1), since the inequality must be fulfilled 8x
2 X, it is straightforward, for each � and �, to search
for maxx2X w('(x; x); g(x);�;�) and then to find �, �
which make such a maximum as small as possible and,
hopefully, not greater than zero. Hence, we are led to
study the problem:

(P�) max
	2C�;
2Rm

C

min
x2X

L(x;�;�);

which we call generalized dual problem of (P); any pair
(��, ��) which solves (P�) is a dual variable [6,19]. At
� = 0, (P�) is the classic dual problem of (P) [12]; in-
deed, the classic duality theory starts by defining (P�)
as a dual problem, independently of the separation
scheme and hence of the other theories like the saddle-
point one. It is easy to show that the maximum in (P�)
is � of the minimum in (P); the difference between the
latter and the former is called duality gap; it is now clear
that a positive duality gap corresponds to a lack of sep-
aration between H andK(x) at the minimum point x.

Another important topic which can be derived by
the separation scheme is the penalization theory. Seem-
ingly independent of the other topics of Optimization,
it is indeed strictly related to them, since it can be drawn
from the separation scheme, as will be now briefly out-
lined (recall the remark after Theorem 1). Consider
again the family Wpe within which select a sequence,
say {wr := w(u, v;�r , �r)}1rD1, of separation functions,
such that the positive level set (with respect to (u, v)) of
wr+1 be strictly included in that of wr. Then, we can try
to ‘fulfill (1) asymptotically’ or to set up the sequence of
problems:

(Pr ) min
x2X

L(x;�r; �r ); r D 1; 2; : : : :
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Under suitable conditions, a limit point of {xr}11 (xr be-
ing a solution of (Pr) is a solution of (P). See [6,15] for
details.

Let us stress the fact that the separation scheme and
its consequences come down from (S), and do not ‘see’
(P); they are unacquainted with the fact that the impos-
sibility of (S) expresses optimality for (P). Therefore, it
is obvious that the separation approach can be applied
to every kind of problem which leads to the impossibil-
ity of a system like (S). In fact, such an approach can
be applied to vector optimization and to variational in-
equalities [8], and to generalized systems [14,19].

See also

� Vector Optimization
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The nonlinear complementarity problem (see [3,15]) is
to find a point x 2 Rn such that

x � 0; F(x) � 0; hx; F(x)i D 0; (1)
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where F : Rn ! Rn and h�, �i denotes the usual inner
product in Rn. A popular approach for solving the non-
linear complementarity problem (NCP) is to construct
amerit function f such that solutions of NCP are related
in a certain way to the optimal set of the problem
(
min f (x)
s.t. x 2 C:

Of practical interest is the case when the set C has
simple structure and smoothness properties of F and
dimensionality n of the variables space are preserved.
There is a number of ways to reformulate the NCP as an
equivalent optimization problem (for a survey, see [7]).

Unconstrained Implicit Lagrangian

The first smooth unconstrained merit function was
proposed by O.L. Mangasarian and M.V. Solodov [12].
This function is commonly referred to as the implicit
Lagrangian; it has the following form:

M˛(x) D hx; F(x)i

C
1
2˛
�
k(x � ˛F(x))Ck2 � kxk2

�

C
1
2˛
�
k(F(x) � ˛x)Ck2 � kF(x)k2

�

where ˛ > 1 is a parameter and (�)+ denotes the orthog-
onal projection map onto the nonnegative orthant Rn

C,
i. e. the ith component of the vector (z)+ is max{0, zi}. It
turns out that M˛(x) is nonnegative on Rn provided ˛
> 1, and is zero if and only if x is a solution of the NCP.
If F is differentiable on Rn, then so isM˛ (�) and its gra-
dient vanishes at all solutions of NCP for ˛ > 1. Hence,
one can attempt to solve the NCP by means of solving
the smooth unconstrained optimization problem

(
min M˛(x)
s.t. x 2 Rn :

(2)

The implicit Lagrangian owes its name to the way the
function was first derived in [12]. Consider the con-
strained minimization problem (MP)
(
min hx; F(x)i
s.t. x � 0; F(x) � 0

which is related to the NCP (1) in the sense that its
global minima of zero coincide with the solutions of

NCP. Because of the special structure of the MP (the
objective function is the inner product of the func-
tions defining constraints), for every feasible x such that
hx; F(x)i D 0 it can be observed that x plays the role of
the Lagrange multiplier [2] for the constraint F(x) � 0,
while F(x) plays a similar role for the constraint x �
0. Keeping in mind this observation, consider the aug-
mented Lagrangian [1] for the above MP:

L˛(x; u; v) D hx; F(x)i

C
1
2˛
�
k(�˛F(x)C u)Ck2 � kuk2

�

C
1
2˛
�
k(�˛x C v)Ck2 � kvk2

�
;

where u2Rn and v2Rn are Lagrangemultipliers corre-
sponding to the constraints F(x) � 0 and x � 0 respec-
tively. Since it is known a priori that at any solution x of
MP (and NCP) one could take u D x and v D F(x), it
is intuitively reasonable to ‘solve’ for multipliers u and v
in terms of the original variables. Replacing u by x and
v by F(x) in the augmented Lagrangian, one obtains the
implicit Lagrangian functionM˛(x).

The parameter ˛ must be strictly bigger than one,
because it can be checked that M1(x) = 0 for all x 2 Rn.
Another interesting property is that the partial deriva-
tive of the implicit Lagrangian with respect to ˛ is also
nonnegative for all x, and is zero if and only if x is
a solution of the NCP [11]. However, a merit function
based on this derivative is nonsmooth.

Restricted Implicit Lagrangian

When the implicit Lagrangian is restricted to the non-
negative orthant Rn

+, where nonnegativity of x is explic-
itly enforced, the last two terms in the expression for
M˛(x) can be dropped. Thus the restricted implicit La-
grangian is obtained:

N˛(x)6 D hx; F(x)iC
1
2˛
�
k(x � ˛F(x))Ck2 � kxk2

�
;

where ˛ > 0. In this form, the function was introduced
in [12]. It is also equivalent to the regularized gap func-
tion proposed by M. Fukushima [6] in the more gen-
eral context of variational inequality problems (cf. also
� Variational inequalities).

The restricted implicit Lagrangian is nonnegative
for all x 2 Rn

C provided the parameter ˛ is positive, and
its zeroes coincide with solutions of the NCP. It also
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inherits the differentiability of F. Thus the NCP can be
solved via the bound constrained optimization problem

(
min N˛(x)
s.t. x � 0:

(3)

Note that since it is known a priori that every solu-
tion of the NCP is nonnegative, one may also consider
a bound constrained problem with the functionM˛(x).
However, for the constrained reformulations the func-
tion N˛(x) is probably preferable because it is some-
what simpler.

Regularity Conditions

It should be emphasized that only global solutions of
optimization problems (2) and (3) are solutions of the
underlying NCP (1). On the other hand, standard iter-
ative methods are guaranteed to find stationary points
rather than global minima of optimization problems. It
is therefore important to derive conditions which en-
sure that these stationary points are also solutions of
NCP. One such condition is convexity. However, the
implicit Lagrangian is known to be convex only in the
case of strongly monotone affine F, and provided pa-
rameter ˛ is large enough [17]. Clearly, this is very re-
strictive. Thus other regularity conditions were investi-
gated.

For the unconstrained problem (2), the first suf-
ficient condition was given by N. Yamashita and
Fukushima [24]. They established that if the Jacobian
rF(x) is positive definite at a stationary point x of (2),
then x solves the NCP. This result was later extended
in [8] to the case when rF(x) is a P-matrix. Finally, F.
Facchinei and C. Kanzow [5] obtained a certain regu-
larity condition which is both necessary and sufficient
for a stationary point point of the unconstrained im-
plicit Lagrangian to be a solution of NCP (it is similar
to the condition stated below for the restricted case).

For constrained problem (3), Fukushima [6] first
showed the equivalence of stationary points to NCP so-
lutions under the positive definiteness assumption on
the Jacobian of F. A regularity condition which is both
necessary and sufficient, was given by Solodov [20]:
a point x 2 Rn

C is said to be regular if r F(x)> reverses
the sign of no nonzero vector z 2 Rn satisfying

zP > 0; zC D 0; zN < 0; (4)

where

C :D fi : xi � 0; Fi(x) � 0; xi Fi(x) D 0g ;

P :D fi : xi > 0; Fi (x) > 0g ;

N :D fi : xi � 0; Fi(x) < 0g :

Recall [4] that the matrix r F(x)> is said to reverse the
sign of a vector z 2 Rn if

zi [rF(x)>z]i � 0; 8i 2 f1; : : : ; ng: (5)

Therefore a point x 2 Rn
C is regular if the only vector z

2 Rn satisfying both (4) and (5) is the zero vector.
A stationary point of (3) solves the NCP if and only

if it is regular in the sense of the given definition.

Derivative-FreeDescent Methods

When F is differentiable, so are the functions M˛(x)
and N˛(x). Therefore, any standard optimization algo-
rithm which makes use of first order derivatives can be
applied to problems (2) and (3). However, taking ad-
vantage of the underlying structure one can also devise
special descent algorithms which do not use derivatives
of F. This can be especially useful in cases when deriva-
tives are not readily available or are expensive to com-
pute.

In [24], it was shown that when F is strongly mono-
tone and continuously differentiable, then the direction

d(x) D (ˇ � ˛)(x � (x � ˛F(x))C)

C (1 � ˛ˇ)(F(x) � (F(x) � ˛x)C)

is a descent direction for M˛(�) at x 2 Rn, provided ˇ
> 0 is chosen appropriately. A descent method based
on this direction with appropriate line search, converges
globally to the unique solution of the NCP [24]. In [13],
it was established that the rate of convergence is actually
at least linear.

For the restricted implicit Lagrangian, a descent
method with the direction

d(x) D (x � ˛F(x))C � x

was proposed in [6]. The algorithm was proven to be
convergent for the strongly monotone NCP (no rate of
convergence has been established however). In [26], by
using adaptive parameter ˛, this method was further
extended to monotone (not necessarily strongly mono-
tone) and Lipschitz continuous (not necessarily differ-
entiable) functions.
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Error Bounds

The implicit Lagrangian also appears useful for provid-
ing bounds on the distance from a given point to the
solution set of the NCP. In particular, if F is affine then
there exists a constant c > 0 such that (see [11])

dist(x; S) � cM˛(x)1/2

for all x close to S, where S denotes the solution set. This
inequality is called a local error bound. X.-D. Luo and
P. Tseng [10] proved that, in the affine case, this bound
is global (i. e. it holds for all x 2 Rn) if and only if the
associated matrix is of the class R0.

For the nonlinear case, Kanzow and Fukushima [9]
showed thatM˛(x)1/2 provides a global error bound if F
is a uniform P-function which is Lipschitz continuous.

In the context of error bounds, the following rela-
tion established in [11] is useful: for all x 2 Rn,

˛�1(˛ � 1) kr(x)k2 � M˛(x) � (˛ � 1) kr(x)k2

where

r(x) D x � (x � F(x))C

is the natural residual [14]. Therefore the implicit La-
grangian M˛(x) provides a local/global error bound if
and only if so does the natural residual r(x).

For the restricted implicit Lagrangian, one only has
the following relation:

2˛N˛(x) � kr(x)k2 :

Thus, in principle, N˛(x) may provide a bound in cases
when the natural residual does not.

For a general discussion of error bounds see [16].

Extensions

The implicit Lagrangian can be extended to the con-
text of generalized complementarity problems and vari-
ational inequality problems via its relation with the reg-
ularized gap function. As observed by J.-M. Peng and
Y.X. Yuan [19], the function M˛(x) can be represented
as a difference of two regularized gap functions with
parameters 1/˛ and ˛. Since the regularized gap func-
tion can also be defined for variational inequalities,
one might consider a similar expression in this more
general context. Peng [18] established the equivalence
of the variational inequality problem to unconstrained

minimization of a difference of regularized gap func-
tions. This result was further extended by Yamashita,
K. Taji and Fukushima [25] who obtained similar re-
sults for differences of regularized gap functions whose
parameters are not necessarily the inverse of each other.
For algorithms based on this approach, see [22].

For a unified treatment of extensions of the implicit
Lagrangian and the regularized gap function for the
generalized complementarity problems see [23].

Yet another context where the implicit Lagrangian
can be used is optimization reformulation of the ex-
tended linear complementarity problem[21].

See also

� Kuhn–Tucker Optimality Conditions
� Lagrangian Duality: Basics
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Introduction

The role of convex analysis in optimization is well
known. One of the major properties of a convex func-
tion is its representation as the upper envelope of
a family of affine functions. More specifically, every
lower semicontinuous proper convex function can be
expressed as the supremum of the family of affine
functions, majorized by it [4]. The subject of ab-
stract convexity arose precisely by generalizing this
idea (see [5,6]). A function is said to be abstract con-
vex if and only if it can be represented as the up-
per envelope of a class of functions, usually called el-
ementary functions. One of the first studies in abstract
convexity concerned the analysis of increasing and posi-
tively homogeneous (IPH) functions. It was initially car-
ried out for functions defined overRn

CC andRn
C, where

Rn
CC :D int Rn

C, and later on extended to an arbitrary
closed convex cone in [1] and an arbitrary topological
vector space in [3]. This study was further extended
to include increasing and convex-along-rays (ICAR)
functions over Rn

C. The study of IPH and ICAR func-
tions has given rise to the subject ofmonotonic analysis,
the study of increasing functions enjoying some addi-
tional properties, which has important applications in
global optimization (see [5] for more details). The sys-
tematic study of this subject was started in [1] and [2]
by J. Dutta, J. E. Martinez-Legaz, and A. M. Rubinov,
where they analyzed IPH and ICAR functions defined
on a cone. In the present article, we extend this anal-
ysis to the study of ICAR functions defined over an
arbitrary topological vector space. We want to empha-
size that the role of IPH functions in monotonic anal-
ysis is the same as the role of sublinear functions in
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convex analysis, whereas ICAR functions play the role
of convex functions. We define elementary functions,
which can be considered as generalizations of min-type
functions, and demonstrate that ICAR functions are ab-
stract convex with respect to the class of such elemen-
tary functions. This leads us to develop suitable notions
of subdifferential for ICAR functions. Finally, we study
the class of decreasing and convex-along-rays (DCAR)
functions.

Let H be a set of functions h : X �! RC1
defined on a set X. Recall (see [6]) that a function
f : X �! RC1 is called abstract convex with re-
spect to H (H-convex) if there exists a set U � H such
that f (x) D supfh(x) : h 2 Ug. Let supp( f ;H) :D
fh 2 H : h � f g be the support set of a func-
tion f : X �! RC1 with respect to H. The func-
tion coH f : X �! RC1 defined by coH f (x) :D
supfh(x) : h 2 supp( f ;H)g is called the H-convex hull
of f . Clearly, f is H-convex if and only if f D coH f .
Let f : X �! RC1 be a proper function and x0 2
dom f D fx 2 X : f (x) < C1g. The set

@H f (x0) :D fh 2 H : f (x) � f (x0)C h(x)� h(x0)

for all x 2 Xg

is called theH-subdifferential of f at the point x0. Obvi-
ously, @H f (x0) is nonempty if f (x0) D maxfh(x0) : h 2
supp( f ;H)g.

Let (X,Y) be a pair of sets with a coupling func-
tion ' : X � Y �! RC1. Denote by FX the union of
the set of all functions f : X �! RC1 and the function
�1, where�1(x) D �1 for all x 2 X: The Fenchel–
Moreau conjugation corresponding to ' is the mapping
f �! f ' defined on FX by

f '(y) D sup
x2X
f'(x; y)� f (x)g; y 2 Y :

Let ' 0 be the function defined on Y � X by
' 0(y; x) D '(x; y). Then the Fenchel–Moreau con-
jugation corresponding to ' 0 is the mapping g �! g'0

defined on FY by

g'
0

(x) :D sup
y2Y
f'0(y; x) � g(y)g

D sup
y2Y
f'(x; y) � g(y)g :

In the case where Y is a set of functions defined on
set X, for each y 2 Y and � 2 R, consider the func-
tion hy;� (x) :D y(x) � �; x 2 X. Denote by HY the

set fhy;� : y 2 Y ; � 2 Rg. Let ' : X � Y �! RC1 de-
fined by '(x; y) D y(x). The following result is well
known (see, e. g., [5], Theorem 8.8):

Theorem 1 Let f 2 FX. Then f ''0 D coHY f . In par-
ticular, f ''0 D f if and only if f is HY-convex.

ICAR Functions

Let X be a topological vector space. A set K � X is
called conic if�K � K for all � > 0.We assume thatX is
equipped with a closed convex pointed cone K (the let-
ter means that K \ (�K) D f0g). The increasing prop-
erty of our functions will be understood to be with re-
spect to the ordering � induced on X by K:

x � y () y � x 2 K :

A function f : X �! RC1 is called convex along rays
(shortly CAR) if the function fx(˛) D f (˛x) is con-
vex on the ray [0;C1) for each x 2 X. Similarly, f is
called increasing along rays (shortly IAR) if the func-
tion fx(˛) D f (˛x) is increasing on the ray [0;C1) for
each x 2 X. Also the function f : X �! RC1 is called
increasing if x � y H) f (x) � f (y) and it is called
decreasing if x � y H) f (x) � f (y). In the sequel,
we shall study the increasing convex-along-rays (ICAR)
and decreasing convex-along-rays (DCAR) functions.
Consider the coupling function l : X � X �! R̄C de-
fined by

l(x; y) D maxf� � 0 : �y � xg ;

with the conventions max; :D 0 and max R :D C1.
This function is introduced and examined in [3]. We
shall include some properties of l for the sake of com-
pleteness.

Proposition 1 For every x; x0; y 2 X and � > 0, one
has

l(�x; y) D � l(x; y) ; (1)

l(x; � y) D
1
�
l(x; y) ; (2)

l(x; x) D 1 () x … �K ; (3)

x � x0 H) l(x; y) � l(x0; y) ; (4)

x 2 K; y 2 �K H) l(x; y) D C1 : (5)
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Proof 1 We only prove (3). Note that, since 0 2 K,
we have l(x; x) � 1 for all x 2 X. If x … �K, then
�x � x for some � > 0. This implies that � � 1. Thus,
l(x; x) D 1. Conversely, let l(x; x) D 1. Assume, to-
ward a contradiction, that x 2 �K. Then, �x � x for
all � > 1, and so l(x; x) D C1 > 1, which contradicts
the assumption that l(x; x) D 1. Hence, x … �K. �

In view of the above proposition, for example, when
x D y 2 K, the maximum in the definition of l(x,y) is
actually attained. The following proposition gives us
a necessary condition for which l(x,y) is finite.

Proposition 2 If y … �K, then l(x; y) < C1 for all
x 2 X.

Proof 2 If l(x; y) D C1, then there exists a sequence
�n �! C1 such that y � (1/�n)x. Hence y � 0. �

By ([3], Remark 2.1), ly : X �! R̄C is an IPH function
for each y 2 X. We also have the following proposition:

Proposition 3 Let y … �K: The function
ly : X �! R̄C is upper semicontinuous.

Proof 3 Fix x 2 X. Let fxng � X be such that
xn �! x. Set � D l im ly(xn). If � D 0, then, by the
nonnegativity of ly, we have ly(x) � �. Let � > 0. It fol-
lows from y … �K that � < C1. Consider the subse-
quence fnsgs�1 such that ly(xns) > 0 and ly(xns) �! �.
We have xns � ly(xns)y 2 K for all s � 1. Since K is
closed, we get x � �y 2 K and so, by the definition of l,
l(x; y) � �. Hence ly is upper semicontinuous. �

Set X0 D X n (�K) and L0 D fly : y … �Kg. Fix y 2 X0.
Let l : X �! R̄C defined by

l(x) :D ly(x) :

We have �l(x) D l(�x) for all � 2 [0;C1). (Note that
ly(x) < C1 for all x 2 X). For each x 2 X, consider
the function l x : RC �! RC defined by

l x(t) :D l(tx) D ly(tx) :

It is not difficult to check that lx is increasing and con-
tinuous. Hence the function l is ICAR, IAR, and con-
tinuous along rays.

Proposition 4 Let f : X �! RC1 be increasing and
IAR. Then f (x) D f (0) for all x � 0.

Proof 4 Fix x 2 X such that x � 0. It follows from
x � 0 and the monotonicity of f that f (x) � f (0). On
the other hand, since f is IAR, we have

f (x) D fx(1) � fx(0) D f (0) :

Hence f (x) D f (0). �

We give an example of an increasing function that is
not IAR.

Example 1 Consider the function f : R3 �! R de-
fined by

f (x) D min
1�i�3

xi ; 8 x 2 R3 :

Recall that x � y if and only if xi � yi for all 1 � i � 3.
It is easy to see that f is increasing but, if we set
x D (�2; 3; 4), then fx : [0;C1) �! R is not increas-
ing. Therefore, f is not IAR.

The following functions are samples of ICAR and IAR
functions.

Example 2 Consider the functions f : Rn �! R and
g : Rn �! R defined by

f (x) D

(
max1�i�n xi x … Rn

�;

0 otherwise:

and

g(x) D exp( f ) :

It is easy to check that f and g are ICAR and IAR with
respect to coordinatewise ordering onRn .

Let W D L0 [ f0g, where 0(x) D 0 for all x 2 X. Con-
sider the set H D fl � � : l 2 W; � 2 Rg. We have the
following result:

Theorem 2 Let f : X �! RC1 be a function. Then f
is ICAR, IAR, and lscAR if and only if it is H-convex.

Proof 5 It is clear that each function h 2 H is
ICAR, IAR, and continuous along rays. Therefore each
H-convex function is ICAR, IAR, and lscAR. Con-
versely, let f : X �! RC1 be an ICAR, IAR, and
lscAR function. Consider y 2 X. Since f y is in-
creasing, convex, and lsc, it follows from ([5],
Lemma 3.1) that there exists a set Vy � RC �R such
that f y(t) D supv2Vy

fv1t � v2g, for each t � 0, where
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v D (v1; v2) 2 Vy . First, we suppose that y … �K. For
v D (v1; v2) 2 Vy , we set

hv(x) D v1 ly(x) � v2; x 2 X :

Clearly hv 2 H. Let v1 D 0 or ly(x) D 0. Since f is IAR,
we have

f (x) D fx(1) � fx(0) D f (0) D f y(0)

� �v2 D hv(x); for all x 2 X :

Suppose now that v1 > 0 and ly(x) > 0. (Note that
ly(x) < C1). Since x � ly(x)y 2 K and f is increas-
ing, it follows that

hv(x) � f y(ly(x)) D f (ly(x)y) � f (x) :

Thus, hv (x) � f (x) for all x 2 X, that is, hv 2
supp( f ;H), where

supp( f ;H) D fh 2 H: h(x) � f (x); 8x 2 Xg :

Therefore

supfhv(y); v 2 Vyg � supfh(y) : h 2 supp( f ;H)g

� f (y) : (6)

On the other hand, in view of (3), we have

f (y) D f y(1) D sup
v2Vy

(v1 � v2) D sup
v2Vy

(v1 ly(y) � v2)

D sup
v2Vy

hv(y) :

Thus, f (y) D supfh(y) : h 2 supp( f ;H)g. We now as-
sume that y 2 �K. By Proposition 4, we have f (y) D
f (0). It follows from the proof of ([5], Lemma 3.1) that
v1 D 0 for all v 2 Vy . Consider v 2 Vy . We set

hv(x) D �v2; x 2 X :

Then

f (x) D fx(1) � f (0) D sup
v2Vy

�v2 � hv(x);

for all x 2 X

and

f (y) D f (0) D sup
v2Vy

�v2 D sup
v2Vy

hv(y) : (7)

Hence fhv : v 2 Vyg � supp( f ;H), and in view of (6)
and (7), we get f (y) D supfh(y) : h 2 supp( f ;H)g.
This completes the proof. �

It follows from ([3], Proposition 3.3) that there exists
a bijection  from X0 [ f0g onto W. Therefore we can
identify W with Y D X0 [ f0g by means of the map-
ping  .
We define the coupling function ' : X � Y ! RC1

by

'(x; y) D

(
ly(x) y 2 X0;
0 y D 0:

(8)

Combining Theorem 1 with Theorem 2, one gets:

Theorem 3 A function f : X �! RC1 is ICAR, IAR,
and lscAR if and only if f D f ''0 :

Subdifferentiability of ICAR Functions

Consider the subdifferential @W of f : X �! RC1 at
point x0 2 dom f :

@W f (x0) D fh 2 W : f (x) � f (x0)C h(x)� h(x0)

8x 2 Xg :

We have the following result:

Proposition 5 Let f : X �! RC1 be an ICAR and
IAR function and x0 2 X0. If �x0 2 dom f for some
� > 1; then @W f (x0) is nonempty and we have

f� lx0 : � 2 @ fx0(1)g � @W f (x0) ; (9)

where fx0 (˛) D f (˛x0). Moreover, if f is strictly increas-
ing at point x0 (i. e., x 2 X; x � x0 and x ¤ x0 imply
f (x) < fx0) and f x0 is strictly increasing at point ˛ D 1,
by replacing @W with @L0 ; then equality holds in (9).

Proof 6 Since the increasing convex function fx0 is
continuous at 1, it has a subgradient � � 0 at this point.
Thus

� t � �1 � fx0(t) � fx0 (1) for all t � 0 : (10)

Let x 2 X be arbitrary. If lx0 (x) D 0, then by setting
t D lx0 (x) D 0 in (10), we have

� lx0 (x) � �1 � fx0(0) � fx0(1) :
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Since lx0 (x0) D 1 and f is IAR, we get

� lx0 (x) � � lx0 (x0) � f (x)� f (x0) :

Assume now that lx0 (x) > 0. We have lx0 (x)x0 � x. In
view of the monotonicity of f , one has

f (x) � f (lx0 (x)x0) D fx0 (lx0 (x))

� fx0 (1)C � lx0 (x) � � :

Thus

f (x)� f (x0) � � lx0 (x) � � lx0 (x0) ;

which shows that � lx0 2 @W f (x0). This implies that
@W f (x0) ¤ ; and we have (9). Now, let fx0 be strictly
increasing at ˛ D 1 and f be strictly increasing at x0. In
this case � is different from zero in the left-hand side
of (9). Consider l 2 @L0 f (x0). Then there exists y 2 X0

such that l D ly . We have

f (x)� f (x0) � ly(x)� ly(x0); for all x 2 X : (11)

We will show that ly(x0) > 0. Reasoning by contradic-
tion, let us assume that ly(x0) D 0. It follows from (11)
that fx0(t)� fx0(1) � 0 for all t � 0. Since fx0 is strictly
increasing at point 1, we get a contradiction. Thus
ly(x0) > 0. Since ly(x0)y � x0, one has

f (x0) � f (ly(x0)y) � f (x0)C ly(ly(x0)y) � ly(x0)

D f (x0)C ly(x0)ly(y) � ly(x0) ;

D f (x0) :

Hence f (x0) D f (ly(x0)y). Since f is strictly increasing
at x0, we get ly(x0)y D x0 or y D x0/(ly(x0)). More-
over, for all t � 0, by (11), we have

fx0(t) D f (tx0) � f (x0)C ly(tx0) � ly(x0) ;

D fx0 (1)C ly(x0)(t � 1) ;

which shows that ly(x0) 2 @ fx0 (1): We set � D ly(x0).
Then l D lx0/� D � lx0 . This completes the proof. �

Proposition 6 Let f : X �! RC1 be an ICAR and
IAR function. If x 2 X0 is a point such that the one-sided
derivative f 0(x; x) D 0, then x is a global minimizer of f
over X.

Proof 7 Since the function f x is convex and f 0x(1) D
f 0(x; x) D 0, we have fx(1) D mint2[0;C1) fx(t). Thus

fx(1) � fx(0). On the other hand, since f is IAR,
f (x) D fx(1) � fx(0) D f (0). Hence f (x) D f (0) D
minx2X f (x). �

Recall that, by ([3], Proposition 3.3) , we can identify L0

with X0 by means of the mapping  0. Let us denote by
@X0 f (x0) the set ( 0)�1(@L0 f (x0)). Then

@X0 f (x0)
D fy 2 X0 : ly(x)�ly(x0) � f (x)� f (x0);8x 2 Xg :

Proposition 7 Let f : X �! R be an ICAR and IAR
function. Then

@X0 f (0) D fy 2 X0 : ly(x) � ( fx)0C(0); 8x 2 X0g ;

where ( fx)0C is the right derivative of the function f x
given by fx(˛) D f (˛x).

Proof 8 For each y 2 X0, one has

y 2 @X0 f (0) () ly(x) � ly(0) � f (x) � f (0);

8x 2 X
() ly(˛x) � fx(˛) � fx(0);

8x 2 X0; 8˛ > 0

() ly(x) �
fx(˛) � fx(0)

˛
;

8x 2 X0; 8˛ > 0

() ly(x) � ( fx)0C(0); 8x 2 X0 :

The second of equivalence is a consequence of Proposi-
tion 1 and ([3], Remark 2.1). �

DCAR Functions

In this section, we shall study decreasing convex-along-
rays (DCAR) functions defined on X. To this end, we
introduce the coupling function u : X � X �! R̄ de-
fined by

u(x; y) D maxf� 2 R : x � �yg :

Let x; x0; y 2 X be arbitrary and � > 0. It is easy to
check that the function u has the following properties:
(1) x � x0 H) u(x0; y) � u(x; y),
(2) u(�x; y) D �u(x; y),
(3) u(x; y) D C1 H) y 2 K.

We have also u(�x;�y) D l(x; y). For each y 2 X,
consider the cone

Qy D fx 2 X : 0 � u(x; y) � C1g :
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Lemma 1 Let y 2 X and x; x0 2 Qy. The following in-
equality holds:

u(x C x0; y) � u(x; y)C u(x0; y) : (12)

Proof 9 Let A D f˛ 2 R : ˛x � yg, B D fˇ 2 R : ˇx0

� yg and C D f� 2 R : �(x C x0) � yg. In view of the
transitive property of the relation �, we get AC B � C
and this yields (12). �
It follows from the properties of u and Lemma 1 that Qy

is a downward convex cone. Fix y 2 X. We define the
function ry : X �! R̄C by

ry(x) D

(
u(x; y) x 2 Qy ;

0 otherwise :
(13)

By the properties of u, we get ry is a decreasing
and positively homogenous function of degree one. Let
y … K and set r D ry . It is not difficult to see that
the function rx : RC �! RC defined by rx (t) D r(tx)
is increasing, convex, and continuous. Thus, for each
y … K, the function ry is DCAR, IAR, and continuous
along rays.

Example 3 Let X D Rn and K be the cone Rn
C of

all vectors in Rn with nonnegative coordinates. Let
I D f1; 2; : : : ; ng: Each vector x 2 Rn generates the fol-
lowing sets of indices:

IC(x) D fi 2 I : xi > 0g ;

I0(x) D fi 2 I : xi D 0g ;

I�(x) D fi 2 I : xi < 0g :

Let x 2 Rn and c 2 R: Denote by c
x the vector with co-

ordinates
� c
x

�
i
D

(
c
xi
; i … I0(x);

0; i 2 I0(x):

Then, for each x; y 2 Rn
C; we have

ry(x) D

8<
:
mini2I�(y)

xi
yi
; x 2 Qy ;

0; x … Qy ;

where

Qy D

�
x 2 Rn : I0(y) [ I�(y) � I0(x)[ I�(x);

max
i2IC(y)

xi
yi
� min

i2I�(y)

xi
yi

	
:

Example 4 Consider the function g : Rn �! R de-
fined by

g(x) D

(
�min1�i�n xi x … Rn

C ;

0 otherwise :

It is easy to check that g is DCAR and IAR.

Now, let

U D fry : y 2 (X n K)g [ f0g

and

HU D fh � � : h 2 U; � 2 Rg :

It is clear that each HU-convex function is DCAR, IAR,
and lscAR.The proof of the following theorem is similar
to that of Theorem 2, and therefore we omit its proof.

Theorem 4 Let f : X �! RC1 be a DCAR, IAR, and
lscAR function. Then f is HU-convex.

Corollary 1 The function f : X �! RC1 is HU-
convex if and only if it is DCAR, IAR, and lscAR.

References
1. Dutta J, Martinez-Legaz JE, Rubinov AM (2004) Monotonic

analysis over cones: I. Optimization 53:129–146
2. Dutta J, Martinez-Legaz JE, Rubinov AM (2004) Monotonic

analysis over cones: II. Optimization 53:529–547
3. Mohebi H, Sadeghi H (2007) Monotonic analysis over or-

dered topological vector spaces: I. Optimization 56(3):
305–321

4. Rockafellar RT (1970) Convex Analysis. Princeton University
Press, Princeton, NJ

5. Rubinov AM (2000) Abstract Convex Analysis and Global
Optimization. Kluwer, Dordrecht

6. Singer I (1997) Abstract Convex Analysis. Wiley, New York

Increasing and Positively
Homogeneous Functions
on Topological Vector Spaces
HOSSEIN MOHEBI

Mahani Mathematical Research Center,
and Department of Mathematics,
University of Kerman, Kerman, Iran

MSC2000: 26A48, 52A07, 26A51



Increasing and Positively Homogeneous Functions on Topological Vector Spaces I 1577

Article Outline

Keywords and Phrases
Introduction
Characterizations of Nonnegative IPH Functions
Abstract Convexity of Nonnegative IPH Functions
Abstract Concavity of DPH Functions
References

Keywords and Phrases

Monotonic analysis; IPH functions; Downward sets;
Upward sets; Abstract convexity

Introduction

We study IPH (increasing and positively homogeneous
of degree one) functions defined on a topological vec-
tor space X that is equipped with a closed convex
pointed cone K (see [7]). The theory of IPH func-
tions defined on a closed convex cone K in a topo-
logical vector space X is well developed [2]. There are
two main results of this theory, which have a cen-
tral role. First, each IPH function p defined on K can
be represented as the Minkowski gauge of a normal
closed along rays (Definitions 1 and 2) subset U of
K, namely, U D fx 2 K : p(x) � 1g. Conversely, the
Minkowski gauge of a normal closed along rays set is
an IPH function. The second result is based on ideas
of abstract convexity: each IPH function defined on K
can be represented as the upper envelope of a set of so-
calledmin-type functions. This result can be considered
as a certain form of a dual representation of IPH func-
tions. IPH functions can be useful for the description
of radiant and coradiant downward sets and, through
them, can have applications to the study of some NTU
games arising in mathematical economics [1,13] and to
the analysis of topical functions, which are used in the
analysis of discrete event systems [3,4,5]. Some of the
results related to monotonic analysis on the space Rn

with respect to the coordinatewise order relation can be
found in [5,6,10,11]. IPH functions defined on Rn are
examined in [5].Nevertheless, as it turned out, the main
results from [5] can be extended for arbitrary topolog-
ical vector spaces. Such extension is one of the main
topics of this article. The study of some problems in
a more general framework clarifies and simplifies the
main ideas and approaches. The results obtained can

be used, for example, in the study of vector optimiza-
tion problems.

Let X be a topological vector space. We assume that
X is equipped with a closed convex pointed cone K
(the latter means that K \ (�K) D f0g). The increas-
ing property of our functions will be understood to be
with respect to the ordering � induced on X by K:

x � y () y � x 2 K :

We use the following notations:

R D (�1; C1);

R̄ D R [ f�1g [ fC1g;

RC1 D (�1; C1];

RC D [0; C1);

R̄C D [0; C1];

R� D (�1; 0];
R̄� D [�1; 0] :

We accept the following conventions:

1
0
D1;

1
1
D 0 : (1)

A function p : X �! R̄ is called positively homoge-
neous if p(�x) D �p(x) for all x 2 X and � � 0. Func-
tion p is called increasing if x � y H) p(x) � p(y).
We shall study IPH (increasing and positively homo-
geneous of degree one) functions p such that 0 2
dom p :D fx 2 X : �1 < p(x) < C1g, and hence
we have p(0) D 0.

The following definitions can be found in [9].

Definition 1 A nonempty subset W of X is called
closed along rays if (x 2 W; �n > 0; �nx 2 W; n D
1; 2; : : : ; �n �! �; � > 0) H) �x 2 W .

Definition 2 A nonempty subset A of K is called nor-
mal if x 2 A; x0 2 K and x0 � x imply x0 2 A.

Definition 3 A nonempty subset B of K is called
conormal if x 2 B, x0 2 K and x � x0 imply x0 2 B.

A normal subset A of K is radiant, that is, x 2 A
and 0 < � < 1 imply �x 2 A. A conormal sub-
set B of K is coradiant, that is, x 2 B and � > 1
imply �x 2 B. A set W � X is called downward
if (x 2 W; x0 � x) H) x0 2 W . (In particular, the
empty set is downward). Similarly, a set V � X is called
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upward if (x0 2 V ; x0 � x) H) x 2 V . Let W � X be
a radiant set. The Minkowski gauge �W : X �! R̄C of
this set is defined by

�W (x) D inff� > 0:
x
�
2 Wg : (2)

The Minkowski cogauge �V : X �! R̄C of a coradiant
set V � X is defined by

�V (x) D supf� > 0:
x
�
2 Vg : (3)

It is easy to check that the Minkowski gauge of a down-
ward set and the Minkowski cogauge of an upward set
are IPH.

Consider the function l : K � K �! R̄C defined by

l(x; y) D maxf� 2 RC : �y � xg :

This function is introduced and examined in [2]. To
motivate our study, we characterize the IPH functions
defined on K.

Theorem 1 ([2], Theorem 16) Let p : K �! RC be
a function. Then p is IPH if and only if p(x) �
l(x; y)p(y) for all x; y 2 K; with the convention
(C1) � 0 D 0.

Characterizations of Nonnegative IPH Functions

Carrying forward the motivation from Theorem 1,
we shall now proceed to develop a similar type of
property for IPH functions p : X �! R̄C. To achieve
this, we need to introduce the coupling function
l : X � X �! R̄C defined by

l(x; y) :D maxf� � 0 : �y � xg (4)

(we use the conventions max ; :D 0 and maxRC :D
C1). The next proposition gives some properties of
the coupling function l.

Proposition 1 For every x; x0; y 2 X and � > 0, one
has

l(�x; y) D � l(x; y) ; (5)

l(x; � y) D
1
�
l(x; y) ; (6)

l(x; y) D C1 H) y 2 �K ; (7)

l(x; x) D 1 () x … �K; (8)

x 2 K; y 2 �K H) l(x; y) D C1 ; (9)

x � x0 H) l(x; y) � l(x0; y) ; (10)

y � y0 H) l(x; y) � l(x; y0) : (11)

Proof We only prove parts (7) and (10). Let l(x; y) D
C1 for some x; y 2 X. By (4) there exists a sequence
f�ngn�1 such that �n �! C1 and y � 1/�nx for all
n � 1. Since K is a closed cone, we get y � 0. This
proves (7). To prove (10), let x � x0; �x;y D f� �

0 : �y � xg and �x0;y D f� � 0 : � y � x0g. It is
clear that �x;y � �x0;y (notice that if �x0;y D ;, then
�x;y D ;). Hence l(x; y) � l(x0; y). �

Example 1 Let X D Rn and K be the cone Rn
C of

all vectors in Rn with nonnegative coordinates. Let
I D f1; 2; : : : ; ng. Each vector x 2 Rn generates the fol-
lowing sets of indices:

IC(x) D fi 2 I : xi > 0g;

I0(x) D fi 2 Ixi D 0g; I�(x) D fi 2 I : xi < 0g :

Let x 2 Rn and c 2 R: Denote by c/x the vector with
coordinates

� c
x

�
i
D

(
c
xi
; i … I0(x) ;

0; i 2 I0(x) :

Then, for each x; y 2 Rn ; we have

l(x; y) D

(
mini2IC(y)

xi
y i
; x 2 KCy ;

0 ; x … KCy ;

where

KCy D fx 2 Rn : 8 i 2 IC(y) [ I0(y); xi � 0;

max
i2IC(y)

xi
yi
� min

i2I�(y)

xi
yi

	
:

We also need to introduce the coupling function u : X�
X �! R̄C defined by

u(x; y) :D minf� � 0 : x � �yg (12)

(with the convention min; :D C1).
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The following proposition gives some properties of
the coupling function u.

Proposition 2 For every x; x0; y 2 X and � > 0, one
has

u(�x; y) D �u(x; y) ; (13)

u(x; � y) D
1
�
u(x; y) ; (14)

u(x; y) D 0 () x 2 �K ; (15)

u(x; x) D 1 () x … �K ; (16)

x � x0 H) u(x; y) � u(x0; y); (17)

y � y0 H) u(x; y) � u(x; y0) : (18)

Example 2 Let X D Rn and K be the cone Rn
C of all

vectors in Rn with nonnegative coordinates. Then, for
each x; y 2 Rn , we have

u(x; y) D

(
maxi2IC(y)

xi
y i
; x 2 cCy ;

0; x … cCy ;

where

cCy D fx 2 Rn : 9 i 2 IC(y) s.t. xi � 0 and

8 i 2 I�(y) [ I0(y); xi � 0g:

Theorem 2 Let p : X �! R̄C be a function. Then the
following assertions are equivalent:
(i) p is IPH.
(ii) p(x) � �p(y) for all x; y 2 X, and � > 0 such that

�y � x.
(iii) p(x) � l(x; y)p(y) for all x; y 2 X; with the con-

vention (C1) � 0 D 0.
(iv) p(x) � u(x; y)p(y) for all x; y 2 X; with the con-

vention (C1) � 0 D C1.

Proof It is clear that (i) implies (ii). To prove the
implication (ii) �! (iii), notice first that, due to (7),
l(x; y) D C1 implies that y 2 �K and so p(y) D 0.
Then, by the convention (C1) � 0 D 0, we have
p(x) � l(x; y)p(y). If l(x; y) D 0, then, by the non-
negativity of p, we get p(x) � l(x; y)p(y). Finally, let
0 < l(x; y) < C1. Then in view of (4) and the closed-
ness of K, we have x � l(x; y)y, and so (ii) implies

(iii). We shall now prove the implication (iii) �!
(i). Consider x; y 2 X such that y � x. By (4) we get
l(x; y) � 1. Then (iii) yields that p(x) � p(y). Hence
p is increasing. Let x 2 X; � > 0 and l(x; �x) D C1.
It follows from (6) and (7) that x; �x 2 �K. Since
p is increasing, we get �p(x) D p(�x) D 0. Let
x … �K and set y D �x. Then, by (6) and (8), we
have l(x; �x) D 1/�. Thus p(x) � 1/�p(�x), and so
�p(x) � p(�x). By replacing � with 1/� and x with
�x, we obtain p(�x) � �p(x). This proves that p
is positively homogeneous. We next prove the im-
plication (i) �! (iv). Let u(x; y) D 0. By (15) we
get x � 0. Then p(x) D 0, and so p(x) � u(x; y)p(y).
If u(x; y) D C1, then, in view of the convention
(C1) � 0 D C1, we have p(x) � u(x; y)p(y). We
now assume that 0 < u(x; y) < C1. Then, in view
of (12) and the closedness of K, we get x � u(x; y)y.
Hence p(x) � u(x; y)p(y). Finally, the proof of the im-
plication (iv) �! (i) can be done in a manner analo-
gous to that of the implication (iii) �! (i). �

We shall now describe a class of elementary functions
with respect to which the IPH functions are supremally
generated. Given y 2 X, let us set ly(x) :D l(x; y) for
all x 2 X. Thus, by (4),

ly(x) D maxf� � 0 : �y � xg; 8 x 2 X: (19)

Remark 1 The function ly : X �! R̄C is an IPH func-
tion for each y 2 X. It obviously follows from (5)
and (10).

Let L be the set of all supremally generating elementary
functions, defined by (19), that is,

L :D fly : y 2 Xg : (20)

Consider the mapping  : X �! L defined by

 (y) D ly ; y 2 X:

We have the following proposition:

Proposition 3 The mapping  : X �! L is onto.
Moreover, it is antitone:

y1 � y2 H) ly2 � ly1 (21)

and antihomogeneous (positively homogeneous of de-
gree � 1):

l	y D ��1 ly 8 y 2 X; 8 � > 0 : (22)
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Proof By the definition of L,  is obviously onto. Im-
plications (21) and (22) follow from (11) and (6), re-
spectively. �

The following example shows that the mapping is not
one-to-one.

Example 3 Let X D R2 and K D R2
C. Consider the

distinct points y1 D (a; b) and y2 D (c; d), where
a; b; c and d are negative numbers. By the results ob-
tained in Example 1, we have KCy1 D KCy2 D X. Since
IC(y1) D IC(y2) D ;, it follows that ly1 (x) D ly2 (x) D
C1 for every x 2 X. Thus, ly1 D ly2 .

Let X0 D X n (�K) and L0 D fly : y 2 X0g. We can get:

Proposition 4 The mapping  0 D  jX0 is a bijection
from X0 onto L0, where  |X 0 is the restriction of  to X0.

Proof Since, by the definition of L0,  0 is obviously
onto, we only have to prove that  0 is one-to-one.
To this aim, assume that y1; y2 2 X0 are such that
ly1 D ly2 . By (8), we have 1 D l(y1; y1) D l(y1; y2).
Hence, by (4), we get y2 � y1. By symmetry it fol-
lows that y1 � y2. Since K is pointed, we conclude that
y1 D y2. �

Recall (see [8]) that a function p : X �! R̄C is called
abstract convex with respect to the set L or L-convex
if and only if there exists a set W � L such that
p(x) D supl2W l(x). If W � L0, then using  0 we can
identify W with some subset of X. In terms of X,
p is L0-convex if there exists a subset Y � X0 such that
p(x) D supy2Y ly(x). It follows from Remark 1 that
L consists of nonnegative IPH functions, hence each
L-convex function is IPH.

Theorem 3 Let p : X �! R̄C be a function and L be
the set described by Eq. (20). Then p is IPH if and only if
there exists a set Y � X such that

p(x) D max
y2Y

ly(x) 8 x 2 X

(with the convention max ; :D 0). In this case, one can
take Y D fy 2 X : p(y) � 1g. Hence, p : X �! R̄C is
IPH if and only if it is L-convex.

Proof We shall only show that every IPH function
p : X �! R̄C satisfies p(x) D maxy2Y ly(x), for all
x 2 X, with

Y D fy 2 X : p(y) � 1g :

It is clear that Y \ (�K) D ;. For any x; y 2 X with
p(y) � 1, it follows from Theorem 2 that p(x) � ly(x).
This means that p � ly for all y 2 Y , and so
p � maxy2Y ly . If p(x) D 0, then, by nonnegativity of
the function ly, we have maxy2Y ly(x) D 0 D p(x). As-
sume now that 0 < p(x) < C1. Since p(x/p(x)) D 1,
we get x/p(x) 2 Y . Moreover, it follows from (6) that
p(x) D l(x; x/p(x)). Therefore, p(x) D maxy2Y ly(x).
Finally, suppose that p(x) D C1. It follows from the
positive homogeneity of p that (1/�)x 2 Y for all � > 0.
Then, maxy2Y ly(x) � l(1/	)x (x) D � for all � > 0. This
means that maxy2Y ly(x) D C1 D p(x). This com-
pletes the proof. �

The IPH functions are also infimally generated by the
elementary functions uy : X �! R̄C; y 2 X; defined
by

uy(x) :D u(x; y) D minf� � 0 : x � �yg; 8 x 2 X:

In view of (13) and (17), it is clear that the function uy
is IPH. Set

U :D fuy : y 2 Xg : (23)

We define the mapping ' : X �! R̄C by

'(y) :D uy ; y 2 X :

We omit the proof of the following results, which are
similar to those of Propositions 3 and 4.

Proposition 5 The mapping ' : X �! U is onto.
Moreover, it is antitone and antihomogeneous (posi-
tively homogeneous of degree -1).

Let U 0 D fuy : y 2 X0g:We can get:

Proposition 6 The mapping ' 0 D 'jX0 is a bijection
from X0 onto U 0, where ' |X 0 is the restriction of ' to
X0.

A function p : X �! R̄C is called abstract concave with
respect to the set U, or U-concave, if there exists a set
W � U such that p(x) D infu2W u(x). Since U consists
of nonnegative IPH functions, we get each U-concave
function is IPH.

The proof of the following theorem can be done in
a manner analogous to the one of Theorem 3.

Theorem 4 Let p : X �! R̄C be a function and U be
the set described by (23). Then p is IPH if and only if
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there exists a set W � U such that

p(x) D min
u y2W

uy(x) 8 x 2 X :

In this case, one can take W D fuy : y 2 X; p(y) � 1g.
Hence p : X �! R̄C is IPH if and only if it is U-
concave.

Abstract Convexity of Nonnegative IPH Functions

We are now going to develop an abstract convexity
(resp. abstract concavity) approach to IPH functions.
The set L (resp. U) will play the role of the conjugate
space in the usual linear model, while IPH functions
will be regarded as analogous to sublinear functions.
The well-known dual object related to a sublinear func-
tion is the so-called polar function (see, for example,
[12,14]).We now give an analog of this concept for IPH
functions and define also a related notion of polar set of
a setW � X.

Definition 4 The lower polar function of p : X �!
R̄C is the function p0 : L �! R̄C defined by

p0(ly) D sup
x2X

ly(x)
p(x)

; ly 2 L (24)

(with the conventions 0/0 D 0 and1/1 D 0).

Theorem 5 Let p : X �! R̄C be a function. Then

p0(ly) �
1

p(y)
8 ly 2 L ; (25)

and p is IPH if and only if

p0(ly) D
1

p(y)
8 ly 2 L : (26)

Proof By (8), (9), and (24) we have p0(ly) �

ly(y)/p(y) � 1/p(y) for every y 2 X. Let p be an
IPH function and x; y 2 X be arbitrary. Suppose that
0 < p(x) < C1 and 0 < p(y) < C1. It follows from
Theorem 2 that

ly(x)
p(x)

�
1

p(y)
: (27)

If p(x) D 0, then, by part (iii) of Theorem 2, we
have ly(x) D 0 or p(y) D 0, which in both cases (27)
holds. In view of (1), (27) holds in the other cases.

Therefore, p0(ly) D supx2X ly(x)/p(x) � 1/p(y). This,
together with (25), yields that p0(ly) D 1/p(y). To
prove the converse, let x; y 2 X be arbitrary. It
follows from (26) that ly(x)/p(x) � 1/p(y). Thus,
ly(x)p(y) � p(x). Since x and y are arbitrary, by The-
orem 2 (the implication (iii) H) (i)), we conclude
that p is IPH. �

The set supp(p; L) D fly 2 L : ly(x) � p(x) 8 x 2 Xg
is called the support set of the function p : X �! R̄C
with respect to set L. If p is finite-valued or IPH, then,
in view of (9), we get supp(p; L) � L0, and using  0 we
can identify supp(p; L) with some subset of X. Let us
denote by supp(p; X) the set ( 0)�1(supp(p; L)). Then

supp(p; X) D fy 2 X : ly � pg :

We shall call supp(p; X) the X � support of p.

Proposition 7 Let p : X �! R̄C be a function. Then,
p is IPH if and only if

supp(p; X) D fy 2 X : p(y) � 1g : (28)

Proof Let p be an IPH function. We have

supp(p; X) D fy 2 X : ly(x) � p(x) 8 x 2 Xg

D fy 2 X : p0(ly) � 1g :

Then (26) immediately yields (28). To prove the con-
verse, let x; y 2 X be arbitrary. If p(y) D 0; then it
is clear that p(y)ly(x) � p(x). Let 0 < p(y) < C1.
Then, by hypothesis, we have r D y/p(y) 2 supp(p; X).
Thus lr(x) � p(x), and by (6) we get ly(x)p(y) � p(x).
Finally, let p(y) D C1. By (28), y 2 supp(p; X).
Thus, ly(x) � p(x). If p(x) D 0, then the nonnegativ-
ity of ly yields that ly(x) D 0, and so ly(x)p(y) � p(x).
Clearly the latter inequality holds for p(x) D C1.
Let 0 < p(x) < C1. Then r D x/p(x) 2 supp(p; X).
Therefore, lr(y) � p(y) and by (6), p(x)lx(y) � p(y).
Hence, by Theorem 2, p is IPH, which completes the
proof. �

Proposition 8 For any set W � X, the following asser-
tions are equivalent:
(i) W is upward, coradiant and closed along rays.
(ii) There exists an IPH function p : X �! R̄C such

that supp(p; X) DW. Furthermore, function p of
(ii) is unique, namely, p is the Minkowski cogauge
�W of W.
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Proof (i) H) (ii). Let p D �W . It is clear that p is
positively homogeneous. Moreover, sinceW is upward,
p is increasing. By [9, Proposition 5.6], sinceW is closed
along rays and coradiant, one has

W D fy 2 X : p(y) � 1g : (29)

Whence in view of (28),W D supp(p; X).
(ii) H) (i). LetW D supp(p; X) for an IPH func-

tion p : X �! R̄C. By (28) W is coradiant, upward,
and closed along rays. Finally, the uniqueness of p in
(ii) follows from the following equalities, the last one
of which uses the convention sup ; D 0 and is a conse-
quence of (29):

p(y) D supf� > 0 : � � p(y)g

D sup
n
� > 0 : 1 � p(

y
�
)
o

D supf� > 0 :
y
�
2 Wg

D �W (y):

This completes the proof. �

For a function p : X �! R̄C, the L-subdifferential at
a point x0 2 X is defined as follows:

@L p(x0) D fly 2 L : p(x) � p(x0) � ly(x) � ly(x0)g:

If @L p(x0) � L0, then the set @X p(x0) D ( 0)�1

(@L p(x0)) will be called X-subdifferential of p at x0 (note
that @X p(x0) � X0). Thus

@X p(x0) D fy 2 X : p(x) � p(x0) � ly(x)� ly(x0)g:

(30)

The following simple statement will be useful in the se-
quel.

Proposition 9 Let p : X �! R̄ be an IPH function
and x 2 dom p be a point such that p(x) ¤ 0. Then,
r D x/p(x) … �K.

Proof Let p(x) > 0. Then p(r) D 1 > 0. Since p is
an IPH function, we get r … �K: If p(x) < 0; then
p(�r) D �1. Then, in view of the monotonicity of p,
we get �r … K or r … �K. This completes the proof. �

Theorem 6 Let p : X �! R̄C be an IPH function
and x 2 dom p be a point such that p(x) ¤ 0. Let
r D x/p(x). Then lr 2 @L p(x), and hence @L p(x) is
nonempty.

Proof It follows from Proposition 9 and (7) that
r … �K and l(y; r) < C1 for all y 2 X. Clearly
p(x) 2 f� � 0 : �r � xg. Then, by the defini-
tion of l, we have l(x; r) � p(x) > 0. We shall now
show that lr(y) � p(y) for any y 2 X. To this
end, let y 2 X be arbitrary. If l(y; r) D 0, then
lr(y) � p(y). Let 0 < l(y; r) < C1. We have
l(y; r)r � y. Since p is IPH, we get l(y; r)p(r) � p(y).
Because of p(r) D 1, we get lr(y) � p(y). Since
y 2 X was arbitrary, we conclude that lr(x) D p(x)
and lr(y) � p(y) for all y 2 X. This yields that
lr 2 @L p(x). �

Remark 2 Let int K ¤ ;. Consider nonzero IPH func-
tion p : X �! R̄C and x 2 X such that p(x) D 0. We
can show @L p(x) ¤ ;. Indeed, since p 6� 0, there ex-
ists r 2 int K such that p(r) > 0 (see [2], Proposi-
tion 6). Set r0 D r/p(r). It is clear that p(r0) D 1, and
so, by (28), r0 2 supp(p; X), that is, lr0(t) � p(t) for
all t 2 X. It follows from the nonnegativity of lr0 that
lr0(x) D p(x) D 0. Hence, lr0 2 @L p(x).

We next define the upper polar function p0 : U �! R̄C
of the function p : X �! R̄C by

p0(uy) D inf
x2X

uy(x)
p(x)

; uy 2 U (31)

(with the conventions 0/0 D C1 and
C1/C1 D C1).

The proof of the following result can be done in
a manner analogous to that of Theorem 5.

Theorem 7 Let p : X �! R̄C be a function. Then

p0(uy) �
1

p(y)
; 8 uy 2 U ; (32)

and p is IPH if and only if

p0(uy) D
1

p(y)
; 8 uy 2 U : (33)

We shall now study the structure of support sets from
above, which are characterized by the elementary func-
tions uy rather than by the functions ly (which charac-
terize support sets from below). We shall denote the
support set from above, or upper support set, of the
function p : X �! R̄C with respect to set U as

SuppC(p;U) D fuy 2 U : uy � pg :
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In what follows, we state the counterpart of Proposi-
tion 7 for the support set from above.

Proposition 10 Let p : X �! R̄C be a function. Then

SuppC(p;U) D fuy 2 U : p0(uy) � 1g : (34)

Furthermore, p is IPH if and only if

SuppC(p;U) D fuy 2 U : p(y) � 1g : (35)

Proof Equality (34) follows easily from the defini-
tions of SuppC(p;U) and p0. Furthermore, if p is IPH,
then (35) follows from (33) and (34). To prove the
converse, let x; y 2 X be arbitrary. If 0 < p(y) < C1,
then uy/p(y) 2 SuppC(p;U). Thus, uy/p(y)(x) � p(x).
By (14) we get p(y)u(x; y) � p(x). If p(y) D C1,
we have p(x) � u(x; y)p(y) (here we use the con-
vention (C1) � 0 D C1). Finally, let p(y) D 0. It is
clear that uy 2 SuppC(p;U). Thus, uy(x) � p(x). If
uy(x) D 0, then, in view of the nonnegativity of p, we
get p(x) D 0, and so p(x) � u(x; y)p(y). Now, sup-
pose that 0 < uy(x) < C1. It follows from p(�y) D 0
for all � > 0 that u	y 2 SuppC(p;U) for all � > 0, and
in view of (14), we get (1/�)uy(x) D u	y(x) � p(x)
for all � > 0. This means that p(x) D 0. Therefore,
p(x) � u(x; y)p(y). Hence, by Theorem 2 (implication
(iv) H) (i)), p is IPH. �

For the function p : X �! R̄C, in a manner analogous
to the case of L-subdifferential, we now define theU-su-
perdifferential of p at x0 as follows:

@CU p(x0) :D fuy 2 U : uy(x)�uy(x0) � p(x)�p(x0)g:

One can prove the following result forU-superdifferen-
tial in a manner analogous to the proof of Theorem 6,
and therefore we omit its proof.

Theorem 8 Let p : X �! R̄C be an IPH function
and x 2 dom p be a point such that p(x) ¤ 0. Let
r D x/p(x). Then ur 2 @

C
U 0 p(x).

Definition 5 Let U � X. Then the left polar set of W
is defined by

Wol D fx 2 X : l(x; y) � 1 8 y 2 Wg :

Analogously, we define the right polar set of V � X.

Definition 6 Let V � X. Then the right polar set of V
is defined by

Vor D fy 2 X : l(x; y) � 1 8 x 2 Vg :

In the following theorem, we assume that int K ¤ ;.

Theorem 9 Let W; V � X and V \ int K ¤ ;. Then
the following assertions are true:
(i) One has W DWolor if and only if W is upward,

coradiant and closed along rays.
(ii) One has V D Vorol if and only if V is downward,

radiant, and closed along rays.

Proof Since Xol D Xor D ;; ;ol D ;or D X, and X
is upward, downward, radiant, coradiant and closed in
itself, both statements are true when W D V D X. For
the rest of the proof we shall assume that W ¤ X and
V ¤ X.
(i) Let W � X and Wor ¤ ;. By the definition of

Wor , Remark 1, and Proposition 3, Wor is cora-
diant, upward, and closed along rays. Therefore,
W D Wolor implies that W is coradiant, upward,
and closed along rays. To prove the converse, we
shall first show that W � Wolor . Let y 2 W .
Since for any x 2 Wol we have ly(x) � 1, it
is clear that y 2 Wolor . We shall now show that
Wolor � W . Let y 2 Wolor . By Proposition 8
we have W D supp(p; X) for some IPH function
p : X �! R̄C. Let x 2 X and � 2 (p(x);C1) be
arbitrary. For every y0 2 W D supp(p; X), since
ly0(x) � p(x) < �, using (5), one gets ly0(x/�) D
��1 ly0(x) < 1, whence x/� 2 Wol . Therefore,
ly(x) D � ly(x/�) < �. Hence, ly(x) � p(x). This
proves that ly � p, that is, y 2 supp(p; X) DW .

(ii) Suppose that Vol is a nonempty set. Then, by
the definition of Vol, Proposition 3, and Re-
mark 1, Vol is downward, radiant, and closed
along rays. Therefore, V D Vorol implies that
V is downward, radiant, and closed along rays.
To prove the converse, we shall first show that
V � Vorol . Let x 2 V . Since for any y 2 Vor we
have ly(x) � 1, it follows that x 2 Vorol . We shall
now show that Vorol � V . Let x 2 Vorol . Consider
the Minkowski gauge �V : X �! R̄C. It follows
from [9], Proposition 5.1 that

V D ft 2 X : �V (t) � 1g : (36)



1584 I Increasing and Positively Homogeneous Functions on Topological Vector Spaces

Thus, if �V (x) D 0, then x 2 V . Assume that
�V (x) > 0. Since V \ int K ¤ ;, we get�V (x) < C1.
Set r D x/�V (x). By (28), r 2 supp(�V ; X). Then
lr(t) � �V (t) for each t 2 X. In view of (36), we obtain
lr(t) � 1 for all t 2 V , that is, r 2 Vor . Thus, lr(x) � 1,
and so by (6) and (8), �V (x) � 1 (note that �V (x) > 0
implies that x … �K). This proves that x 2 V , which
completes the proof. �

Abstract Concavity of DPH Functions

Recall that a function q : X �! R̄ is called decreas-
ing if x � y H) q(x) � q(y). If p is an IPH function,
then the functions q(x) D p(�x) and q�(x) D �p(x)
are DPH (decreasing and positively homogeneous of
degree one). Hence, DPH functions can be investigated
by using the properties of IPH functions. In this section,
we shall study DPH functions separately. To this end,
we need to introduce the function g : X � X �! R̄ de-
fined by

g(x; y) :D minf� 2 R : �y � xg (37)

(with the conventions min; :D C1 and minR :D
�1).

The following proposition can be easily proved:

Proposition 11 For every x; x0; y 2 X and � > 0, one
has

g(�x; y) D �g(x; y) ; (38)

g(x; �y) D
1
�
g(x; y) ; (39)

x � x0 H) g(x; y) � g(x0; y) ; (40)

g(x; y) D �1 H) y 2 K ; (41)

g(x; x) D 1 () x … K : (42)

It is worth noting that in (37) we cannot restrict the def-
inition of g to � � 0 because we shall lose property (42).

For each y 2 X, we consider the cones
Cy ;CCy and C�y defined by

Cy D fx 2 X : g(x; y) 2 R�1g ; (43)

CCy D fx 2 Cy : g(x; y) > 0g ; (44)

C�y D fx 2 Cy : g(x; y) 2 R̄�g : (45)

It is easy to check that C�y is an upward convex cone and
CCy is a downward cone. Each element y 2 X generates
the following functions:

fCy (x) D

(
g(x; y); x 2 CCy
C1; otherwise;

(46)

and

f �y (x) D

(
g(x; y); x 2 C�y
C1; otherwise:

(47)

Let F be the set of all functions defined by (46) and (47).

Remark 3 The function f �y is DPH for each y 2 X.

The proof of the following proposition is similar to that
of Proposition 9, and therefore we omit its proof.

Proposition 12 Let q : X �! R̄ be a DPH function
and x 2 dom q be a point such that q(x) ¤ 0. Then
r D x/q(x) … K.

Proposition 13 Let q : X �! R̄ be a DPH func-
tion and x 2 dom q be a point such that q(x) ¤ 0.
Let r D x/q(x). Then the superdifferential @CF q(x) is
nonempty and the following assertions are true:
1. If q(x) > 0; then fCr 2 @

C
F q(x).

2. If q(x) < 0; then f �r 2 @
C
F q(x).

Proof We only prove part (i). Since q(x) 2 f� 2
R : �r � xg, by (37), we get g(x; r) � q(x). In view
of (39) and (42), we have

g(x; r) D q(x)g(x; x) D q(x) > 0

(note that since q(x) ¤ 0, it follows from Proposi-
tion 12 that x … K). By (44) and (46) we have x 2 CCr
and fCr (x) D g(x; r) � q(x). We shall now show that
fCr (y) � q(y) for every y 2 X. Let y 2 X be arbitrary.
If y … CCr , then fCr (y) D C1 � q(y). Assume that
y 2 CCr . Then g(y; r)r � y. Since q is DPH, we get
g(y; r)q(r) � q(y). It follows from q(r) D 1 and (46)
that fCr (y) � q(y). This yields that fCr (x) D q(x) and
fCr (y) � q(y) for each y 2 X. Hence fCr 2 @

C
F q(x). �

It follows from the preceding proposition that we do
not need functions of the form (47) in the study of non-
positive DPH functions. For each r 2 X, we can con-
sider the function sr : X �! R̄� defined by

sr (x) D

(
g(x; r); x 2 C�r
0; x … C�r ;

(48)
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instead of the function f �r defined by (47). Let S be the
set of all functions defined by (48). Since C�r is an up-
ward set, we get that set S consists of nonpositive DPH
functions; hence each S-concave function is DPH. We
shall now give an infimal representation of DPH func-
tions.

Proposition 14 Let q : X �! R� be a nonzero func-
tion. Then q is DPH if and only if it is S-concave.

Proof We only prove the part if. Let W 0 D
suppC(q; S). We shall show that W 0 ¤ ;. Consider
x 2 X such that q(x) < 0. Set r D x/q(x). It fol-
lows from Proposition 12 and (41) that r … K and
g(y; r) > �1 for all y 2 X. Since q(x) 2 f� 2
R : �r � xg, by (37) we get g(x; r) � q(x) < 0. Then
x 2 C�r , and by (48) we obtain sr (x) � q(x). We shall
now show that sr (y) � q(y) for each y 2 X. Let y 2 X
be arbitrary. If y … C�r , then sr(y) D 0 � q(y). Assume
that y 2 C�r . Then (�g(y; r))(�r) D g(y; r)r � y.
Since q is DPH, we get �g(y; r)q(�r) � q(y). It fol-
lows from q(�r) D �1 and y 2 C�r that sr(y) � q(y).
Thus sr 2 W 0 D suppC(q; S) and sr(x) D q(x). Fi-
nally, if q(x) D 0, then s(x) D 0 for each s 2 W 0. Hence
q(x) D mins2W 0 s(x), that is, q is S-concave. �

In the sequel, we introduce the function h : X � X �!
R̄ defined by

h(x; y) :D maxf� 2 R : �y � xg (49)

(we use the conventions max ; :D �1 and maxR :D
C1). The next proposition gives some properties of
the coupling function h. We omit its easy proof.

Proposition 15 For every x; x0; y 2 X and � > 0, one
has

h(�x; y) D �h(x; y) ; (50)

h(x; � y) D
1
�
h(x; y) ; (51)

h(x; y) D C1 H) y 2 �K ; (52)

h(x; x) D 1 () x … �K ; (53)

x � x0 H) h(x; y) � h(x0; y) ; (54)

x 2 K; y 2 �K H) h(x; y) D C1 : (55)

For each y 2 X, consider the cones

Ky D fx 2 X : h(x; y) 2 RC1g (56)

and

K�y D fx 2 Ky : h(x; y) < 0g : (57)

Clearly, K�y is a downward cone. Each element y 2 X
generates the function g�y : X �! R̄� defined by

g�y (x) D

(
h(x; y); x 2 K�y
�1; x … K�y :

(58)

Let G� be the set of all functions defined by (52). We
conclude this section by a result on negative IPH func-
tions.

Theorem 10 Let p : X �! R̄� be an IPH function
and x 2 dom p be a point such that p(x) ¤ 0. Let
r D x/p(x). Then g�r 2 @G� p(x), and hence @G� p(x) is
nonempty.

Proof It is clear that p(x) < 0. Since p(x) 2 f� 2
R : �r � xg, by (49) we get h(x; r) � p(x). In view of
Proposition 15, we have

h(x; r) D p(x)h(x; x) D p(x) < 0

(note that since p(x) ¤ 0; it follows from Proposi-
tion 9 that x … �K). By (51) and (52) we have x 2 K�r
and g�r (x) D h(x; r) � p(x). We shall now show that
g�r (y) � p(y) for every y 2 X. Let y 2 X be arbitrary.
If y … K�r , then g�r (y) D �1 � p(y). Assume that
y 2 K�r . Then (�h(y; r))(�r) D h(y; r)r � y. Since p
is IPH, we have �h(y; r)p(�r) � p(y). It follows from
p(�r) D �1 and (52) that g�r (y) � p(y). This yields
that g�r (x) D p(x) and g�r (y) � p(y) for each y 2 X.
Hence g�r 2 @G� p(x). �
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The Problem

An inequality-constrained nonlinear programming
problem may be posed in the form

8<
:
min
x2Rn

f (x)

s.t. c(x) � 0;
(1)

where f (x) is a nonlinear function and c(x) is an m-
vector of nonlinear functions with ith component ci(x),
i = 1, . . . ,m. We shall assume that f and c are sufficiently
smooth. Let x� denote a solution to (1). We are mainly
concerned about smoothness in the neighborhood of
x�. In such a neighborhood we assume that both the
gradient of f (x) denoted by g(x) and the m × n Jaco-
bian of c(x) denoted by J(x) exist and are Lipschitz con-
tinuous. As is the case with the unconstrained problem
a solution to this problemmay not exist. Typically addi-
tional assumptions are made to ensure a solution does
exist. A common assumption is to assume that the ob-
jective f (x) is bounded below on the feasible set. How-
ever, even this is not sufficient to assure a minimizer
exists but it is obviously a necessary condition for an
algorithm to be assured of converging. If the feasible
region is compact then a solution does exist. We shall
only be concerned with local solutions.

First Order Optimality Conditions

The problem is closely related to the equality-con-
strained problem. If it was known which constraints
were active (exactly satisfied) at a solution and which
were slack (strictly positive) then the optimality condi-
tions for (1) could be replaced by the optimality condi-
tions for the equality case. Note that this does not imply
the inequality problem could be replaced by an equality
problem when it comes to determining a solution by an
algorithm. The inequality problem may have solutions
corresponding to different sets of constraints being ac-
tive. Also an equality problem may have solutions that
are not solutions of the inequality problem. Nonethe-
less this equivalence in a local neighborhood enables us
to determine the optimality conditions for this prob-
lem from those of an equality-constrained problem. In
order to study the optimality conditions it is necessary
to introduce some notation.

Letbc(x) and c(x) denote the constraints active and
slack at x respectively. Likewise, letbJ(x) and J denote
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their respective Jacobians. Assume that bJ(x�) is full
rank. Points at which the Jacobian of the active con-
straints is full rank are said to be regular. It follows from
the necessary conditions for the equality case that

g(x�) �bJ(x�)>b� D 0;
bc(x�) D 0;

c(x�) > 0;

whereb� is vector of Lagrange multipliers. These equa-
tions may be written in the form:

g(x�) � J(x�)>�� D 0;

c(x�) � 0;

��Tc(x�) D 0;

where�� is the extended set of Lagrangemultipliers. The
set is extended by defining amultiplier to be zero for the
slack constraints at x� c(x�).

The above first order optimality conditions are not
the only necessary conditions. Unlike the equality case
there may be a feasible arc that moves off one or more
of the active constraints along which the objective is re-
duced. In other words we need some characterization
that is necessary for the active set to be binding. The
key to identifying the binding set is to examine the sign
ofb�.

It follows from the definition ofb� that

b� D (bJbJ>)�1bJ g; (2)

where the argument x� has been dropped for simplicity.
Note that (2) implies that




b�



 is bounded.

Define p as

bJp D ıe C e j;

where ı > 0, e denotes the vector of ones and ej is the
unit columnwith one in the jth position. It follows from
the assumption on the continuity of the Jacobian that
x� + ˛ p is feasible for 0 � ˛ � ˛ is sufficiently small.
From the mean value theorem we have

f (x� C ˛p) D f (x�)C ˛p>g(x� C �˛p);

where 0 � � � 1. The Lipschitz continuity of g implies
M exists such that

p>g(x� C �˛p) � p>g(x�)C ˛M:

It follows that

f (x� C ˛p) � f (x�)C ˛(p>g(x�)C ˛M):

From the necessary conditions on x� we get

p>g(x�) D p>bJ>b�;

which implies

f (x� C ˛p) � f (x�)C ˛(p>bJ>b�C ˛M):

Using the definition of p gives

f (x� C ˛p) � f (x�)C ˛(ıe>b�Cb� j C ˛M):

It follows from the boundedness of b� that if b� j < 0
then for ı sufficiently small there exists ˛ such that for
0 < ˛ � ˛,

f (x� C ˛p) < f (x�):

Consequently, a necessary condition for x� to be a min-
imizer under the assumptions made is that b� � 0.
Equivalently, �� � 0.

For different assumptions such asbJ not being full
rank the condition need not hold as the following
simple case illustrates. Suppose we have an equality-
constrained problem with c(x) = 0 then an equivalent
inequality-constrained problem is
8̂
<̂
ˆ̂:

min
x2Rn

f (x)

s.t. c(x) � 0;
�c(x) � 0:

It follows that all constraints are active at a solution.
We know in this case there are no necessary conditions
on the Lagrange multipliers. Clearly the Jacobian of the
active constraints is not full rank. Geometrically what
breaks down is that there is no perturbation from x�

that moves feasible with respect to one constraint with-
out violating at least one other constraint.

The condition c(x�)> �� = 0 is a complementarity
condition. At least one of (ci(x�), ��i ) must be zero. It
is possible for both to be zero. If there is no index for
which both are zero then c(x�) and �� are is said to sat-
isfy strict complementarity.

IfbJ(x�) is full rank then it follows from (2) that ��

is an isolated point.
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The function L(x, �),

L(x; �) D F(x)� �>c(x);

is known as the Lagrangian. The optimality condition

g(x�) � J(x�)>�� D 0

is equivalent to rx L(x�, ��) = 0. It is also equivalent to
Z(x�)> g(x�) = 0, where the columns of Z(x) are a basis
for the null space of the rows ofbJ(x). The vector Z(x)>
g(x) is called the reduced gradient.

Clearly Lagrange multipliers play a significant role
in defining the solution of an inequality-constrained
problem. There is a significant difference in that role
between linear and nonlinear constraints. In the case
of linear constraints the numerical value of the multi-
plier plays no role in defining x� only the sign of the
multiplier is significant. For nonlinear constraints the
numerical value as well as the sign is of significance.
To appreciate why it first necessary to appreciate that
for problems that are nonlinear in either the constraints
or the objective, curvature of the functions are relevant
in defining x�. More precisely the curvature of the La-
grangian. It easily seen that curvature of the objective
is relevant since for unconstrained problems no solu-
tion would exist otherwise. To appreciate that curva-
ture in c(x) is relevant note that any problem can be
transformed into a problem with just a linear objective
by adding an extra variable. For example, add the con-
straint xn + 1 � f (x) � 0 and minimize xn + 1 instead of
f (x). Since we have established the curvature of f (x) is
relevant that relevance must still be there even though
f (x) now appears only within a constraint. It is harder
to appreciate that it is the relative curvature of the vari-
ous constraints and objective that is of significance.

Second Order Optimality Conditions

We shall now assume that the problem functions
are twice continuous differentiable. From the uncon-
strained case it is known that a necessary condition is
that r2 f (x�) is positive semidefinite. Obviously a gen-
eralization of this condition needs to hold for (1). Again
the Lagrangian will be shown to play a key role.We start
by examining the behavior of f (x) along a feasible arc
emanating from x�. Although the first order optimality
conditions make the first order change in the objective

along a feasible arc nonnegative, it could be zero. Con-
sequently, the second order change needs to be nonneg-
ative for arcs where this is true.

We restrict our interest to feasible arcs that remain
on the set of constraints active at x�. If x(˛) represents
a twice differentiable arc, with x(0) = x�, that lies on the
active set thenbc(x(˛)) D 0. Define p� d(x(0))/d ˛ and
h� d2(x(0))/d ˛2. We have

d
d˛
bci (x(˛)) D r(bci (x(˛))> d

d˛
x(˛);

d2

d˛2
bci (x(˛)) D d

d˛
x(˛)>r2bci(x(˛)) d

d˛
x(˛)

Crbci (x(˛))> d2

d˛2
x(˛):

Sincebc(x(˛)) D 0 it follows that

d2

d˛2
bci (x(0)) D rbci(x�)>hC p>r2bci (x�)p D 0: (3)

Similarly we get

d2

d˛2
f (x(0)) D g(x�)>hC p>r2 f (x�)p:

Since

d
d˛

f (x(0)) D g(x�)>p D 0

(otherwise there would be a descent direction from x�)
we require that

g(x�)>hC p>r2 f (x�)p � 0:

Substituting for g(x�) using the first order optimality
conditions gives

h> J(x�)>�� C p>r2 f (x�)p � 0:

It follows from (3) and the definition of the extended
multipliers that we require

�

mX
iD1

��i p
>r2ci (x�)pC p>r2 f (x�)p � 0:

From the definition of L(x�, ��) and bJ(x�)p D 0
this condition is equivalent to requiring that Z(x�)>r2

L(x�, ��) Z(x�) be positive semidefinite. This matrix is
called the reduced Hessian of the Lagrangian. Since the
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condition is on the second derivatives it is termed a sec-
ond order optimality condition. It can now be appreci-
ated that the numerical value of the Lagrange multipli-
ers play a role in defining the solution of a nonlinearly-
constrained problem. Note that when there are n active
constraints then there is no feasible arc that remains
on the active set and the second order optimality con-
dition is empty. WhenbJ has n rows then the reduced
Hessian has zero dimension. For convenience we can
define symmetric matrices of zero dimension to be pos-
itive definite.

Necessary and sufficient conditions for x� to be
a minimizer are complex. However, sufficient condi-
tions are easy to appreciate. We have established no fea-
sible descent direction exists that moves off any of the
active constraints. Consequently, ifb� > 0 then f (x) in-
creases along any feasible arc emanating from x� that
moves off a constraint. We now only need to be sure
the same is true for all arcs emanating from x� that re-
maining on the active set. This is assured if

d2

d˛2
f (x(0)) D g(x�)>hC p>r2 f (x�)p > 0;

which impliesZ(x�)>r2 L(x�,��) Z(x�) is positive def-
inite. Assuming that x� is a regular point, strict com-
plementarity hold, the first order necessary conditions
hold, and the reduced Hessian at x� is positive definite
then x� is a minimizer and an isolated point.

Algorithms

Algorithms for inequality problems have a combina-
torial element not present in algorithms for equality-
constrained problems. The simplest case of linear pro-
gramming (LP) illustrates the point. Under mild as-
sumptions the solution of an LP is given by the solution
of a set of linear equations, i. e. a vertex of the feasi-
ble region. The difficult issue is determining which of
the constraints define those equations. If there are m
inequality constraints and n variables there are m!/n!
(n� m)! choices of active constraints. Even for modest
values of m and n the possible choices are astronomi-
cal. This clearly rules out methods based on exhaustive
search.

One class of methods to solve inequality problems
are so-called active set methods, an example being the
simplex method for LP. First a guess is made of the

active set (called the working set) and then an estimate
to the solution of the resulting equality-constrained
problem is computed (in the case of LP or quadratic
programming (QP) this would be precise) and at the
new point a new guess is made of the active set. The es-
timate of the solution of the equality-constrained prob-
lem is usually made by finding a point that satisfies an
approximation to the first order necessary conditions.
Unless an intelligent guess is made of the active set such
algorithms are doomed to fail. Typically after the initial
active set such algorithms generate subsequent working
sets automatically. For linearly-constrained problems
this is usually a very simple procedure. Assuming the
current iterate is feasible an attempt is made to move
to the new estimate of the solution. If this is infeasible
the best (or a point better than the current iterate) is
found along the direction to the new estimate. The con-
straints active at the new feasible point are then used
to define the working set. Usually the active set will be
the working set but occasionally we need to move off
a constraint that is currently active. How to identify
such a constraint is usually straightforward and can be
done by examining an estimate to the Lagrange multi-
pliers (obtained from the solution to the approximation
of the first order necessary conditions). More complex
strategies are possible that move off several constraints
simultaneously.

An initial feasible point is found by solving an LP.
One consequence of this strategy is that it is only nec-
essary to consider working sets for which the objective
function has a lower value than at the current iterate.
Once we are in a neighborhood of the solution the
working set does not change if strict complementarity
holds at the solution and x� is a regular point. Typically
the change in the working set at each iteration of active
set methods for linearly-constrained problems is small
(usually one), which results in efficiencies when com-
puting the estimate to the new equality-constrained
problem. In practice active set methods work well and
usually identify the active set at the solution with very
little difficulty. For an LP the number of iterations re-
quired to identify the active set usually grows linearly
with the size of the problem. However, pathological
cases exist in which the number of iterations is astro-
nomical and real LP problems do arise where the num-
ber of iterates required is much greater than the typical
case. Nonetheless algorithms for linearly-constrained
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problems based on active set methods are highly suc-
cessful.

For nonlinear problem the issue of identifying the
active set at the solution is usually less significant since
even when the active set is known the number of itera-
tions required to solve a problem may be large. A more
relevant issue is that not knowing the active set causes
some problems such as making the linear algebra rou-
tines much more complicated. For small problems this
is of little consequence but in the large scale case it com-
plicates the data structures required.

Nonlinearly-constrained problems are usually an
order of magnitude more complicated to solve than
linearly-constrained problems. One reason is that algo-
rithms for problems with nonlinear constraints usually
do not maintain feasible iterates. If a problem has just
one nonlinear equality constraint then generating each
member of a sequence that lies on that constraint is it-
self an infinite process. Methods that generate infeasible
iterates need to have some means of assessing whether
a point is better than another point. For feasible-point
algorithms this is a simple issue since the objective pro-
vides a measure of merit. A typical approach is to define
a merit function, which balances a change in the ob-
jective against the change in the degree of infeasibility.
A commonly usedmerit function is

M(x; �) D f (x)C �
mX
iD1

maxf0;�ci(x)g;

where � is a parameter that needs to be sufficiently
large. Usually it will not be known what ‘sufficiently’
large is so this parameter is adjusted as the sequence of
iterates is generated. Note thatM(x, �) is not a smooth
function and has a discontinuity in its derivative when
any element of c(x) is zero. In particular it is not con-
tinuous at x� when a constraint is active at x�. Were
this not the case then constrained problems could be
transformed to unconstrained problems and solved as
such. While transforming a constrained problem into
a simple single smooth unconstrained problem is not
possible the transformation approach is the basis of
a variety of methods. A popular alternative to direct
methods is to transform the problem into that of solv-
ing a sequence of smooth linearly-constrained prob-
lems. This is the method at the heart of MINOS (see
[8,9]) one of the most widely used methods for solving

problems with nonlinear constraints. Other transfor-
mation methods transform the problem to that of solv-
ing a sequence of unconstrained or bounds-constrained
problem. Transformation methods have an advantage
of over direct methods when developing software. For
example, if you have a method for solving large scale
linearly-constrained problems then it can be used as
a kernel in an algorithm to solve large scale nonlinearly-
constrained problems.
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The goal in a classification problem is to uncover a sys-
tem that places examples into two or more mutually
exclusive groups. Identifying a classification system is
beneficial in several ways. First of all, examples can
be organized in a meaningful way, which will make

the exploration and retrieval of examples belonging to
specific group(s) more efficient. The tree-like directory
structure, used by personal computers in organizing
files, is an example of a classification system which en-
ables users to locate files quickly by traversing the di-
rectory paths. A classification system can make the re-
lations between the examples easy to understand and
interpret. A poor classification strategy, on the other
hand, may propose arbitrary, confusing or meaningless
relations. An extracted classification system can be used
to classify new examples. For an incomplete or stochas-
tic system, its structure may pose questions whose an-
swers may generalize the system or make it more accu-
rate.

A special type of classification problem, called the
Boolean function inference problem, is when all the ex-
amples are represented by binary (0 or 1) attributes and
each example belongs to one of two categories. Many
other types of classification problems may be converted
into a Boolean function inference problem. For exam-
ple, a multicategory classification problem may be con-
verted into several two-category problems. In a similar
fashion, example attributes can be converted into a set
of binary variables.

In solving the Boolean function inference problem
many properties of Boolean logic are directly applica-
ble. A Boolean functionwill assign a binary value to each
Boolean vector (example). See [22] for an overview of
Boolean functions. Usually, a Boolean function is ex-
pressed as a conjunction of disjunctions, called the con-
junctive normal form (CNF), or a disjunction of con-
junctions, called the disjunctive normal form (DNF).
CNF can be written as:

k̂

jD1

0
@_

i2� j

xi

1
A ;

where xi is either the attribute or its negation, k is the
number of attribute disjunctions and �j is the jth index
set for the jth attribute disjunction. Similarly, DNF can
be written as:

k_
jD1

0
@^

i2� j

xi

1
A :

It is well known that any Boolean function can be writ-
ten in CNF or DNF form. See [20] for an algorithm con-
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verting any Boolean expression into CNF. Two func-
tions in different forms are regarded as equivalent as
long as they assign the same function values to all the
Boolean vectors. However, placing every example into
the correct category is only one part of the task. The
other part is to make the classification criteria mean-
ingful and understandable. That is, an inferred Boolean
function should be as simple as possible. One part of
the Boolean function inference problem that has re-
ceived substantial research efforts is that of simplifying
the representation of Boolean functions, while main-
taining a general representation power.

Inference of Monotone Boolean Functions

When the target function can be any Boolean function
with n attributes, all of the 2n examples have to be exam-
ined to reconstruct the entire function. When we have
a priori knowledge about the subclass of Boolean func-
tions the target function belongs to, on the other hand,
it may be possible to reconstruct it using a subset of the
examples. Often one can obtain the function values on
examples one by one. That is, at each inference step, an
example is posed as a question to an oracle, which, in
return, provides the correct function value. A function,
f , can be defined by its oracle Af which, when fed with
a vector x = hx1, . . . , xni, returns its value f (x). The in-
ference of a Boolean function from questions and an-
swers is known as interactive learning of Boolean func-
tions. In many cases, especially when it is either difficult
or costly to query the oracle, it is desirable to pose as few
questions as possible. Therefore, the choice of examples
should be based on the previously classified examples.

The monotone Boolean functions form a subset of
the Boolean functions that have been extensively stud-
ied not only because of their wide range of applica-
tions (see [2,7,8] and [24]) but also their intuitive in-
terpretation. Each attribute’s contribution to a mono-
tone function is either nonnegative or nonpositive (not
both). Furthermore, if all of the attributes have nonneg-
ative (or nonpositive) effects on the function value then
the underlying monotone Boolean function is referred
to as isotone (respectively antitone). Any isotone func-
tion can be expressed in DNF without using negated
attributes. In combinatorial mathematics, the set of iso-
tone Boolean functions is often represented by the free
distributive lattice (FDL). To formally define monotone

Boolean function, consider ordering the binary vectors
as follows [21]:

Definition 1 Let En denote the set of all binary vectors
of length n; let x and y be two such vectors. Then, the
vector x = hx1, . . . , xni precedes vector y = hy1, . . . , yni
(denoted as x � y) if and only if xi � yi for 1 � i �
n. If, at the same time x 6D y, then x strictly precedes y
(denoted as x � y).

According to this definition, the order of vectors in E2

can be listed as follows:

h11i � h01i � h00i

and

h11i � h10i � h00i :

Note that the vectors h01i and h10i are in a sense in-
comparable.

Based on the order of the Boolean vectors, a nonde-
creasing monotone (isotone) Boolean function can be
defined as follows [21]:

Definition 2 ABoolean function f is said to be an non-
decreasing monotone Boolean function if and only if for
any vectors x, y 2 En, such that x � y, then f (x) � f (y).

A nonincreasing monotone (antitone) Boolean function
can be defined in a similar fashion. As the method used
to infer an antitone Boolean function is the same as that
of a isotone Boolean function, we will restrict our atten-
tion to the isotone Boolean functions.

When analyzing a subclass of Boolean functions, it
is always informative to determine its size. This may
give some indications of how general the functions are
and how hard it is to infer them. The number of iso-
tone Boolean functions, � (n), defined on En is some-
times referred to as the nth Dedekind number after R.
Dedekind, [6] who computed it for n = 4. Since then it
has been computed for up to E8.
� � (1) = 3;
� � (2) = 6;
� � (3) = 20;
� � (4) = 168 [6];
� � (5) = 7, 581 [4];
� � (6) = 7, 828, 354 [28];
� � (7) = 2, 414, 682, 040, 998 [5];
� � (8) = 56, 130, 437, 228, 687, 557, 907, 788 [29].
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Wiedeman’s algorithm [29] employed a Cray-2 proces-
sor for 200 hours to compute the value for n = 8. This
gives a flavor of the complexity of computing the ex-
act number of isotone Boolean functions. The compu-
tational infeasibility for larger values of n provides the
motivation for approximations and bounds. The best
known bound on � (n) is due to D. Kleitman, [12] and
Kleitman and G. Markowsky, [13]:

� (n) � 2(
n
bn/2c)

�
1Cc log n

n

�
;

where c is a constant and bn/2c is the integer part of n/2.
This bound, which is an improvement over the first

bound obtained by G. Hansel, [11], are also based on
the Hansel chains described below. Even though these
bounds can lead to good approximations for � (n),
when n is large, the best known asymptotic is due to
A.D. Korshunov, [15]:

� (n) �

(
2(

n
n/2)e f (n) for even n;

2(
n

n/2�1/2)C1eg(n) for odd n;

where

f (n) D

 
n

n/2 � 1

!�
1

2n/2
C

n2

2nC5 �
n

2nC4

�
;

g(n)

D

 
n

n/2 � 3/2

!�
1

2(nC3)/2 �
n2

2nC6 �
n

2n C 3

�

C

 
n

n/2 � 1/2

!�
1

2(nC1)/2 C
n2

2nC4

�
:

I. Shmulevich [24] achieved a similar but slightly infe-
rior asymptotic for even n in a simpler and more el-
egant manner, which led to some interesting distribu-
tional conjectures regarding isotone Boolean functions.

Even though the number of isotone Boolean func-
tions is large, it is a small fraction of the number of gen-
eral Boolean functions, 22n. This is the first hint towards
the feasibility of efficiently inferring monotone Boolean
functions. Intuitively, one would conjecture that the
generality of this class was sacrificed. That is true, how-
ever, a general Boolean function consists of a set of ar-
eas where it is monotone. In fact, any Boolean function
q(x1, . . . , xn) can be represented by several nondecreas-
ing gi (x) and nonincreasing hj(x) monotone Boolean

functions in the following manner [17]:

q(x) D
_
i

0
@gi (x)

^
j

h j(x)

1
A :

As a result, one may be able to solve the general
Boolean function inference problem by considering
several monotone Boolean function inference problems.
Intuitively, the closer the target function is to a mono-
tone Boolean function, the fewer monotone Boolean
functions are needed to represent it and more success-
ful this approach might be. In [17] the problem of joint
restoration of two nested monotone Boolean functions
f 1 and f 2 is stated. The approach in [17] allows one
to further decrease the dialogue with an expert (oracle)
and restore a complex function of the form f 1 & : f 2,
which is not necessarily monotone.

The Shannon Function and the Hansel Theorem

The complexity of inferring isotone Boolean functions
was mentioned in the previous section, when realizing
that the number of isotone Boolean functions is a small
fraction of the total number of general Boolean func-
tions. In defining the most common complexity mea-
sure for the Boolean function inference problem, con-
sider the following notation. Let Mn denote the set of
all monotone Boolean functions, and A = {F} be the set
of all algorithms which infer f 2 Mn, and ' (F, f ) be
the number of questions to the oracle Af required to in-
fer f . The Shannon function ' (n) can be introduced as
follows [14]:

'(n) D min
F2A

�
max
f2Mn

'(F; f )
�
:

An upper bound on the number of questions
needed to restore amonotone Boolean function is given
by the following equation (known as the Hansel theo-
rem) [11]:

'(n) D

 
n
bn/2c

!
C

 
n

bn/2c C 1

!
:

That is, if a proper question-asking strategy is applied,
the total number of questions needed to infer any
monotone Boolean function should not exceed ' (n).
The Hansel theorem can be viewed as the worst-case
scenario analysis. Recall, from the previous section, that
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all of the 2n questions are necessary to restore a general
Boolean function. D.N. Gainanov [9] proposed three
other criteria for evaluating the efficiency of algorithms
used to infer isotone Boolean functions. One of them is
the average case scenario and the two others consider
two different ways of normalizing the Shannon func-
tion by the size of the target function.

Hansel Chains

The vectors in En can be placed in chains (sequences of
vectors) according to monotonicity. The Hansel chains
is a particular set of chains that can be formed using
a dimensionally recursive algorithm [11]. It starts with
the single Hansel chain in E1:

H1 D fh0i ; h1ig:

To form the Hansel chains in E2, three steps are re-
quired, as follows:

1 Attach the element ‘0’ to the font of each vector
in H1 and get chain C2 min = fh00i; h01ig.

2 Attach the element ‘1’ to the front of each vec-
tor in H1 and get chain C2 max = fh10i; h11ig.

3 Move the last vector in C2 max, i.e. vector h11i,
to the end of C2 min: H2;1 = fh00i; h01i; h11ig;
H2;2 = fh10ig.

To form the Hansel chains in E3, these steps are re-
peated:

1 C3;1 min = fh000i; h001i; h011ig;
C3;2 min = fh010ig.

2 C3;1 max = fh100i; h101i; h111ig;
C3;2 max = fh110ig.

3 H3;1 = fh000i; h001i; h011i; h111ig;
H3;2 = fh100i; h101ig;
H3;3 = fh010i; h110ig.

Note that since there is only one vector in the
C3, 2 max chain, it can be deleted after the vector h110i
is moved to C3, 2 min. This leaves the three chains listed
in Table 1. In general, the Hansel chains in En can be
generated recursively from the Hansel chains in En� 1

by following the three steps described above.
A nice property of the Hansel chains is that all the

vectors in a particular chain are arranged in increasing

Inference of Monotone Boolean Functions, Table 1
Hansel chains for E3

chain # vector in-chain index vector
1 1 000

2 001
3 011
4 111

2 1 100
2 101

3 1 010
2 110

order. That is, if the vectors Vj and Vk are in the same
chain thenVj <Vk (i. e.,Vj strictly precedesVk when j <
k). Therefore, if the underlying Boolean function is iso-
tone, then one can classify vectors within a chain easily.
For example, if a vector Vj is negative (i. e., f (Vj) = 0),
then all the vectors preceding Vj in the same chain are
also negative (i. e., f (Vk) = 0 for any k < j). Similarly,
if a vector Vj is positive, then all the vectors succeed-
ing Vj in the same chain are also positive. The mono-
tone ordering of the vectors in Hansel chains motivates
the composition of an efficient question-asking strategy
discussed in the next section.

Devising a Smart Question-Asking Strategy

The most straightforward question-asking strategy,
which uses Hansel chains, sequentially moves from
chain to chain. Within each chain one may also sequen-
tially select vectors to pose as questions. After an answer
is given, the vectors (in other chains also) that are classi-
fied as a result of monotonicity are eliminated from fur-
ther questioning. Once all the vectors have been elim-
inated, the underlying function is revealed. The maxi-
mum number of questions for this method, called the
sequential Hansel chains question-asking strategy, will
not exceed the upper limit ' (n), given in the Hansel
theorem, as long as the chains are searched in increas-
ing size.

Although the sequential question-asking strategy is
easy to implement and effective in reducing the total
number of questions, there is still room for improve-
ments. N.A. Sokolov [25] introduced an algorithm that
sequentially moves between the Hansel chains in de-
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Inference of Monotone Boolean Functions, Table 2
Iteration 1

chain # index of
vectors
in the
chain

vector vector
classi-
fied

middle
vector
in the
chain

reward P if
the vector
is positive

reward N if
the vector
is negative

selected middle
vector with
the largest
min(P;N)

answer other
vectors
deter-
mined

1 1 000
2 001  4 2  1
3 011 1
4 111 1

2 1 100  4 2
2 101 1

3 1 010  4 2
2 110

creasing size and performs a middle vector search of
each chain. His algorithm does not require storing all
the Hansel chains since at each iteration it only requires
a single chain. This advantage is obtained at the cost of
asking more questions than needed.

In an entirely different approach, Gainanov [9] pre-
sented a heuristic that has been used in numerous al-
gorithms for inferring a monotone Boolean function,
such as in [3] and in [18]. This heuristic takes as input
an unclassified vector and finds a border vector (maxi-
mal false or minimal true) by sequentially questioning
neighboring vectors. The problem with most of the in-
ference algorithms based on this heuristic is that they
do not keep track of the vectors classified, only the re-
sulting border vectors. Note that for an execution of
this heuristic, all of the vectors questioned are not nec-
essarily covered by the resulting border vector, imply-
ing that valuable information may be lost. In fact, sev-
eral border vectors may be unveiled during a single ex-
ecution of this heuristic, but only one is stored. Many
of these methods are designed to solve large problems
where it might be inefficient or even infeasible to store
all of the information gained within the execution of the
heuristic. However, these methods are not efficient (not
even for small size problems), in terms of the number
of queries they require.

One may look at each vector as carrying a ‘reward’
value in terms of the number of other vectors that will
be classified concurrently. This reward value is a ran-
dom variable that takes on one of two (one if the two
values are the same) values depending on whether the

vector is a positive or a negative example of the target
function. The expected reward is somewhere between
these two possible values. If one wishes to maximize
the expected number of classified vectors at each step,
the probabilities associated with each of these two val-
ues need to be computed in addition to the actual val-
ues. Finding the exact probabilities is hard, while find-
ing the reward values is relatively simple for a small set
of examples.

This is one of the underlying ideas for the new infer-
ence algorithm termed the binary search-Hansel chains
question-asking strategy. This method draws its motiva-
tion, for calculating and comparing the ‘reward’ values
for the middle vectors in each Hansel chain, from the
widely used binary search algorithm (see, for instance,
[19]).Within a given chain, a binary search will dramat-
ically reduce the number of questions (to the order of
log2 while the sequential search is linear). Once the ‘re-
ward’ values of all the middle vectors have been found,
the most promising one will be posed as a question to
the oracle. Because each vector has two values, select-
ing the most promising vector is subjective and several
different evaluative criteria can be used.

The binary search-Hansel chains question-asking
strategy can be divided into the following steps:
1) Select the middle vector of the unclassified vectors

in each Hansel chain.
2) Calculate the reward values for each middle vector.

That is, calculate the number of vectors that can be
classified as positive (denoted as P) if it is positive
and negative (denoted as N) if it is negative.
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Inference of Monotone Boolean Functions, Table 3
Iteration 2. The vector h100i is chosen and based on the answer, the class membership of the vectors h100i and h000i is
determined

chain # index of
vectors
in the
chain

vector vector
classi-
fied

middle
vector
in the
chain

reward P if
the vector
is positive

reward N if
the vector
is negative

selected middle
vector with
the largest
min(P;N)

answer other
vectors
deter-
mined

1 1 000  4 1 0
2 001 1
3 011 1
4 111 1

2 1 100  2 2  0
2 101 1

3 1 010  2 2
2 110

3) Select the most promising middle vector, based on
the (P, N) pairs of the middle vectors, and ask the
oracle for its membership value.

4) Based on the answer in Step 3, eliminate all the vec-
tors that can be classified as a result of the previous
answer and the property of monotonicity.

5) Redefine the middle vectors in each chain as neces-
sary.

6) Unless all the vectors have been classified, go back
to Step 2.

The inference of a monotone Boolean function on E3 by
using the binary search-Hansel chains question-asking
strategy is illustrated below. The specifics of Iteration
1, described below, are also shown in Table 2. At the
beginning of first iteration, the middle vectors in each
Hansel chain (as described in Step 1) are selected and
marked with the ‘ ’ symbol in Table 2. Then, accord-
ing to Step 2, the reward value for each one of these
middle vectors is calculated. For instance, if h001i (the
second vector in chain 1) has a function value of 1, then
the three vectors h000i, h001i and h010i are also classi-
fied as positive. That is, the value of P for vector h001i
equals 4. Similarly, h000i will be classified as 0 if h001i
is classified as 0 and thus its reward value N equals 2.

Once the ‘reward’ values of all the middle vectors
have been evaluated, the most promising middle vec-
tor will be selected based on their (P, N) pairs. Here we
choose the vector whose min (P, N) value is the largest
among the middle vectors. If there is a tie, it will be bro-
ken randomly. Based on this evaluative criterion, vector

2 is chosen in chain 1 and is marked with ‘ ’ in the
column ‘selected middle vector with the largest min (P,
N)’. After receiving the function value of 1 for vector
h001i, its value is placed in the ‘answer’ column. This
answer is used to eliminate all of the vectors succeed-
ing h001i. The middle vector in the remaining chains
are updated as needed. At least one more iteration is
required, as there still are unclassified vectors.

After the second iteration, no unclassified vectors
are left in chains 1 and 2, and the middle of these chains
need not be considered anymore. Therefore, an ‘X’ is
placed in the column called ‘middle vector in the chain’
in Table 4. At the beginning of the third iteration, the
vector h010i is chosen and the function value of the re-
maining two vectors h010i and h110i are determined.
At this point all the vectors have been classified and the
question-asking process stops.

The algorithm posed a total of three questions in or-
der to classify all the examples. The final classifications
listed in Table 5. corresponds to the monotone Boolean
function x2 _ x3.

Conclusions

This paper described some approaches and some of
the latest developments in the problem of inferring
monotone Boolean functions. As it has been described
here, by using Hansel chains in the sequential question-
asking strategy, the number of questions will not exceed
the upper bound stated in the Hansel theorem. How-
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Inference of Monotone Boolean Functions, Table 4
Iteration 3

chain # index of
vectors
in the
chain

vector vector
classi-
fied

middle
vector
in the
chain

reward P if
the vector
is positive

reward N if
the vector
is negative

selected middle
vector with
the largest
min(P;N)

answer other
vectors
deter-
mined

1 1 000 0
2 001 1 X
3 011 1
4 111 1

2 1 100 0 X
2 101 1

3 1 010  2 1  1
2 110 1

Inference of Monotone Boolean Functions, Table 5
The resulting class memberships

chain # vector in- vector function
chain index value

1 1 100 0
2 101 1

2 1 010 1
2 110 1

3 1 000 0
2 001 1
3 011 1
4 111 1

ever, by combining the binary search of Hansel chains
with the notion of an evaluative criterion, the number
of questions asked can be further reduced. At present,
the binary search-Hansel chains question-asking strat-
egy is only applied to Hansel chains with a dimension
of less than 10. However, it is expected that this method
can be applied to infer monotone Boolean functions of
larger dimensions with slight modifications.
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In economics or biology there is no natural end time
for a process. Nations as well as species have a very
long future to consider. A mathematical abstraction for
this phenomenon is the concept of infinite time hori-
zon simply defined as an unbounded time interval of
the form [0, + 1). The study of competing agents in
a dynamic deterministic setting over a long time period
can be cast in the framework of an infinite horizon dy-
namic game. This game is defined by the following ‘ob-
jects’:
� A system evolving over an infinite horizon is char-

acterized by a state x 2 X � Rm0 . Some agents also
called the players i = 1, . . . , p can influence the
state’s evolution through the choice of an appropri-
ate control in an admissible class. The control value
at a given time n for player i is denoted ui(n) 2 Ui �

Rmi.
� The state evolution of such a dynamical system may

be described either as a difference equation, if dis-
crete time is used, or a differential equation in a con-
tinuous time framework. For definiteness we fix our
attention here on a stationary difference equation
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and merely remark that similar comments apply for
the case when other types of dynamical systems are
considered.

x(nC 1) D f (x(n); u1(n); : : : ; up(n))

for n = 0, 1, . . . , where f: Rm0× . . . × Rmp ! Rm0 is
a given state transition function.

� We assume that the agents can observe the state of
the system and remember the history of the system
evolution up to the current time n, that is, the se-
quence

hn D fx(0);u(0); : : : ;u(n � 1); x(n)g ;

where u(n) denotes the controls chosen by all play-
ers at period n (i. e., u(n) = (u1(n), . . . , up(n))). A pol-
icy or a strategy is a way for each agent, to adapt
his/her current control choice to the history of the
system, that is a mapping � i: (n, hn) ! Ui which
tells player i which control ui(n) 2 Ui to select given
that the time period is n and the state history is hn.

� Once such a model is formulated the question arises
as to what strategy or policy should each agent adopt
so that his/her decision provides him/her with the
most benefit. The decision to adopt a good strategy
is based on a performance criterion defined over the
life of the agent (in this case [0, + 1)), that is, for
each time horizon N the payoff to player i is deter-
mined by

J iN (x;u) D
NX

nD1

ˇn
i gi(x(n);u(n));

where x and u denote the state and control evolu-
tions over time, gi: Rm0× � � � × Rmp ! R is a given
reward function and ˇi 2 [0, 1] is a discount factor
for each player i = 1, . . . , p.

Two categories of difficulties have to be dealt with when
one studies infinite horizon dynamic games:
� the consideration of an unbounded time horizon

gives rise to the possibility of having diverging val-
ues for the performance criterion (i. e., tending to +
1 on all possible evolutions). This happens typically
when there is no discounting (ˇi = 1). A related is-
sue is the stability vs. instability of the optimally con-
trolled system.

� A second category of difficulties are associated with
the consideration of all possible actions and reac-
tions of the different agents over time, since an infi-
nite time horizon will always give any agent enough
time to correct his/her strategy choice, if neces-
sary.

The first difficulty is already present in a single agent
system where the problem reduces to a dynamic opti-
mization problem and is typically cast in the framework
of the calculus of variations or optimal control in either
discrete or continuous time. The second type of diffi-
culty arises typically in nonzero-sum games.

Unbounded Cost

To introduce the difficulties involved in studying in-
finite horizon problems we first consider the single
player case. The single player case is the most studied of
these problems with a relatively rich history beginning
with the seminal paper of F. Ramsey [8]. Therefore we
shall introduce the subject with the Ramsey model, us-
ing simpler notations than the one introduced above.
In Ramsey’s work a continuous time model for the eco-
nomic growth of a nation is developed and analyzed. In
discrete time, the dynamics for Ramsey’s model is de-
scribed by the difference equation

xnC1 D xn C f (xn) � cn

with a fixed initial condition x0. Here, xn � 0 denotes
the amount of capital stock at the end of the time pe-
riod n; f (xn) is a nonnegative valued function, known
as the production function, which is defined for all pos-
itive xn and represents the rate at which capital stock
is produced given a stock level xn; and cn> 0 represents
the rate at which the nation consumes the capital stock.
Since a nation usually does not consume at a rate faster
than it produces we also have the inequality constraint

0 � cn � f (xn) for all n D 1; 2; : : : :

The performance of the system is measured as an accu-
mulation of social welfare over the time scale. Thus, up
to a fixed time N, this is represented by the sum

JN (fcng) D
NX

nD1

U(cn);

in which U(cn) is called a social utility function and rep-
resents the ‘rate of enjoyment’ of society at a consump-
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tion rate cn. The goal of a decision maker in this model
is to determine cn, n = 1, 2, . . . , so that

lim
N!C1

JN (fcng) D lim
N!C1

NX
nD1

U(cn)

is maximized. An immediate concern in attempting to
solve such a problem is that the performance crite-
rion is well defined. That is, for a given feasible ele-
ment {xn, cn}, n = 1, 2, . . . , is the above infinite se-
ries convergent? Additionally, if there exists feasible
elements for which the convergence is assured how
does one know if the supremum is finite. Ramsey was
aware of these two difficulties and these issues were ad-
dressed in his work. In dealing with this lack of preci-
sion two ideas have arisen. The first of these is to in-
troduce the notion of discounting to ‘level the playing
field’ by scaling units to present value terms. This mani-
fests itself through a positive weighting scheme. Specif-
ically the performance criterion is modified through
the introduction of a constant ‘discount rate’, ˇ, be-
tween 0 and 1. That is, the above infinite series is
replaced by

lim
N!C1

JN (fcn)g D lim
N!C1

NX
nD1

ˇnU(cn):

It is now an easy matter to see that if the sequence
{U(cn)} is bounded then the infinite series converges.
Moreover, if all feasible sequences {cn} are bounded and
U(�) is a continuous function it is easy to see that the
supremum (as well as the infimum) over all such se-
quences is bounded above and the optimization prob-
lem is well defined. A criticism of discounting voiced by
Ramsey is that it weights a decision makers preference
toward the present at the expense of the past. Conse-
quently Ramsey seeks another approach. This alternate
idea was that the rate at which a nation consumes is
bounded and that ideally the best system would be one
in which the rate is as large as possible. Thus Ramsey
introduced the notion of a ‘maximal sustainable rate of
enjoyment’ which he referred to as bliss. The notion of
bliss, denoted by B, is defined now as an optimal steady
state problem. That is,

B D max fU(c) : c D f (x); x � 0g
D max fU(c) : c � 0g :

With this idea, the performance index is replaced by
a new performance given as

lim
N!C1

JN (fcng) D lim
N!C1

NX
nD1

B � U(cn);

and the goal is to choose {cn} as a minimizer instead of
a maximizer. Observe that B� U(cn) � 0 for all n so
that the above limit is bounded below by zero. Thus,
if bliss is attained by some feasible sequence (that is,
cn D c for all n sufficiently large with B D U(c), then
the performance criterion is finite for at least one fea-
sible element {xn, cn} and the minimization problem is
well defined. Using the notion of bliss, Ramsey solved
this problem using classical variational analysis (i. e.,
the Euler–Lagrange equation from the calculus of vari-
ations) to arrive at what is now referred to as Ramsey’s
rule of economic growth. Finally we remark that the so-
lution, say {x�n , c�n}, obtained by Ramsey asymptotically
approaches fx; cg, where x the unique solution to the
equation c D f (x).

The approach adopted by Ramsey in his model has
become a prototype for studying more complex prob-
lems. In particular, the notion of bliss and the optimal
steady state problem combined with the idea that bliss
is obtained in finite time is now referred to as a reduc-
tion to finite costs. Finally the asymptotic convergence
to the optimal steady state is referred to as an asymp-
totic turnpike property.

Since Ramsey ‘solved’ his problem through an ap-
plication of necessary conditions he did not directly
address the question of existence of an optimal solu-
tion. He assumed that the solution to the necessary
condition was in fact a solution. However, in 1962, S.
Chakravarty [4] gave a simple example in which the so-
lution of Ramsey’s rule was not a minimizer but a maxi-
mizer! This led to the quest for the existence of optimal
solutions for these problems. As the performance ob-
jective is unbounded, the traditional notion of a mini-
mizer is no longer valid. Thus, new types of optimality
were introduced in the 1960s by C.C. von Weizäcker
[10] to deal with this problem. These notions are now
known as overtaking optimality, weakly overtaking op-
timality, and finite optimality. The most useful and
strongest of these three types of optimality is overtak-
ing optimality. In words, a sequence {x�n , c�n} is over-
taking optimal if when compared with any other fea-
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sible sequence {xn, cn} the finite horizon performance
criterion, JN({c�n}) is larger than JN({cn}) to within an
arbitrarily small margin of error for all N sufficiently
large.

The introduction of new types of optimality led
to new important results concerning these problems.
The first necessary conditions for these types optimal-
ity were given in 1974 by H. Halkin [5] in which the
classical Pontryagin maximum principle was extended.
Of particular notice in this result was the fact that the
classical transversality condition found in correspond-
ing finite horizon problems does not necessarily hold.
This fact led to many results which insure some sort of
boundary condition holds at infinity. The first general
existence theorem for these optimization problems was
given byW.A. Brock and H. Haurie [1] in 1976. During
the 1980s these major results were extended in a vari-
ety of directions and many of these results are discussed
in [3].

Nonzero-Sum Infinite Horizon Games

We now turn our attention to p-player games. We use
from now on the general notations introduced in the
introduction. To simplify a little the exposition we shall
use a simplified paradigm where each player is control-
ling his/her own dynamical system. Hence each player
enjoys his/her own state and control, say {xi(n), ui(n)}
for i = 1, . . . , p and n = 1, 2, . . . , and has a performance
criterion, say JiN(x, u), which is described in discrete
time up to the end of period N as

J iN (x;u) D
NX

nD1

gi (x(n);u(n)):

Here we use the notation

x(n) D f(x1(n); : : : ; xp(n))g

and

u(n) D f(u1(n); : : : ; up(n))g:

From the notation we see that each players performance
measure depends not only on their own decision but
also those of the other players. This coupling may also
occur in the dynamical system as well. In discrete time
these systems may be represented by a system of p dif-

ference equations

xi(nC 1) D fi(x(n);u(n))

for n = 0, 1, . . . and i = 1, . . . , p.
The goal of each of the players is to ‘play’ the game

so that their decisions provide them with the best per-
formance possible. This action is in conflict with the
other players and therefore generally it is not possible
for the players to minimize or maximize their perfor-
mance. The way one defines optimality in a game de-
pends on the mood of play, i. e. if the players behave in
a cooperative or in a noncooperative fashion.

Cooperative Solution

If players cooperate they will want to reach an undom-
inated solution, also called a Pareto solution after its
originator, V. Pareto [7], who introduced the concept
in 1896. A pair {x, u} is called a cooperative solution if
there does not exist a feasible point {y, v} satisfying Ji(x,
u) � Ji(y, v) for all players i = 1, . . . , p with at least one
strict inequality for one of the players. It is well known
that such an equilibrium can be obtained by solving an
appropriate single player game in which the payoff is
a weighted sum of the payoffs of all of the players

Jr(x;u) D
X

jD1;:::;p

r j J i (x;u);

r j � 0; j D 1; : : : ; p:

In this way the problem is reduced to the case of infinite
horizon optimization and the remarks made earlier ap-
ply.

Noncooperative Solutions

If players do not cooperate one may consider that they
will be satisfied of the outcome if, for each player,
his/her strategy is the best response he/she can make
to the strategies adopted by the other players. This is
the concept of equilibrium, introduced in 1951 by J.F.
Nash [6] in the context of matrix games. In general,
the search for a Nash equilibrium can not be reduced to
an optimization problem. Since each players decision is
his/her best decision under the assumption that the de-
cisions of the other players are fixed, the search for an
equilibrium is equivalent to the search for a fixed-point
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of a reaction mapping that associates with each strat-
egy choice by the p players the set of optimal responses
by each of them. To better understand this concept it
is preferable to consider first a game defined in its nor-
mal form. Let � j 2 � j design the strategies of player j.
Let Vj(�1, . . . , �p) 2 R be the payoff to player j associ-
ated with the strategy choices � D (�1; : : : ; �p) of the p
players. �� is a Nash equilibrium if

Vj(��1 ; : : : ; � j; : : : ; �
�
p ) � Vj(��);

8� j 2 � j; j D 1; : : : ; p:

Now we introduce the product strategy set � DQp
jD1 � j and the mapping

� : � � � ! R;

�(�1; �2) D
pX

jD1

Vj(�11 ; : : : ; �
2
j ; : : : ; �

1
p):

Finally let us define the point to set mapping � : � !
2� defined by

� (�) D

(
�̃C : �(�; �C) D sup

�02�

�(�; �0)

)
:

� is the best response mapping for the game. A fixed-
point of � is a strategy vector �� such that

�� 2 � (��):

�� is a fixed-point of � if and only if it is a Nash equi-
librium.

In a dynamic setting the concept of strategy is
closely related to the information structure of the game.
We have assumed, in the beginning that the players can
remember the whole (state and control) history of the
dynamical system they contribute to control. This is the
most precise information that can be available to the
players at each instant of time. On the other end we can
assume that the only information available to a player
is the initial state of the system x0 = x(0) and the cur-
rent time t. A strategy � j for player j will thus be an
open-loop control {uj(n)}n = 0, . . . , 1. An equilibrium
in this class of strategies is called an open-loop Nash
equilibrium. An intermediate case is the one where each
player can observe the state of the system at each time

period but does not recall the previous history of the
system, neither the state nor the control values. A (sta-
tionary) strategy � j for player jwill thus be a closed-loop
control or a feedback control � j:x 7�! uj = � j(x). An
equilibrium in this class of strategies is called a feedback
Nash equilibrium. In the economics literature, feedback
strategies are also calledMarkov strategies to emphasize
the lack of memory in the information structure.

For a single agent deterministic system, i. e. an op-
timal control problem, the information structure does
not really matter. The agent will not be able to do bet-
ter than the optimal open-loop control, even if he/she
has a perfect memory. In a two-player zero-sum dy-
namic game this will also be the case. In a nonzero-sum
game the different information structures lead to differ-
ent types of equilibria.

A criticism of the open-loop Nash equilibrium is
that it is not necessarily subgame perfect in the sense of
R. Selten [9]. This means that if a player deviates from
the equilibrium control for a while and then decides to
play again ‘correctly’, then the previously defined equi-
librium is not an equilibrium any more. A feedback
Nash equilibrium can be made subgame perfect if one
uses dynamic programming to characterize it. A mem-
ory strategy Nash equilibrium can also be made sub-
game perfect. Furthermore, the possibility to remem-
ber past actions or state values permit the player to de-
fine a so-called communication equilibrium where, be-
fore the play the agents communicate with each other
and decide to use a specific memory strategy equilib-
rium. The memory permits the inclusion of threats that
would support a cooperative outcome. The cooperative
outcome becomes also a Nash equilibrium outcome.
This type of results have been known as the ‘folks the-
orem’ in economics. The infinite horizon is essential to
obtain this type of result.

Nevertheless, the open-loop concept still has wide
interest for a variety of reasons. In infinite horizon
games the notion of overtaking Nash equilibrium is de-
fined analogously to the concept in the single-player.
These ideas have just recently begun to be studied ex-
tensively with the first existence theory for open-loop
Nash equilibria and a corresponding turnpike theory
being given in 1996 in [2]. Finally, from a practical set-
ting, the numerical computation of a feedback Nash
equilibrium is much less understood than the compu-
tation of an open-loop Nash equilibrium. The analo-
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gous theory for feedback (or closed-loop) equilibria is
still waiting to be developed.

In closing, the theory of infinite horizon dynamic
games is for the most part still in its infancy and much
remains to be studied and researched. One important
open question concerns the existence of overtaking
feedback Nash equilibria and another is that once such
an equilibrium is known to exist can a robust numeri-
cal procedure for computation of equilibrium be devel-
oped.
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This article concerns optimization in two senses. The
first is that information-based complexity (IBC) is the
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study of the minimal computational resources to solve
continuous mathematical problems. (Other types of
mathematical problems are also studied; the problems
studied by IBC will be characterized later.) J.F. Traub
and A.G. Werschulz [14] provide an expository intro-
duction to the theory and applications of IBC, with over
400 recent papers and books. A general formulation
with proofs can be found in [13].

The second is that the computational complexity of
optimization problems is one of the areas studied in IBC.
S.A. Vavasis [16 pag. 135] calls this information-based
optimization. We will discuss information-based com-
plexity and information-based optimization in turn.

Information-Based Complexity

To introduce computational complexity, we first define
the model of computation. The model of computation
states which operations are permitted and how much
they cost. The model of computation is based on two
assumptions:
1) We can perform arithmetic operations and compar-

isons on real numbers at unit cost.
2) We can perform an information operation at cost c.

Usually,� 1.
We comment on these assumptions. The real number
model (Assumption 1) is used as an abstraction of the
floating-point model typically used in scientific compu-
tation. Except for the possible effect of roundoff errors
and numerical stability, complexity results will be the
same in these two models.

The real number model should be contrasted with
the Turing machine model, typically used for discrete
problems. The cost of an operation in a Turing ma-
chine model depends on the size of the operands, which
is not a good assumption for floating point numbers.
For a full discussion of the pros and cons of the Tur-
ing machine and real number models see [14 Chapt.
8]. Whether the real number or Turing machine model
is used can make an enormous difference. For exam-
ple, L.G. Khachiyan [3] shows that linear program-
ming is polynomial in the Turing machine model. In
1982, Traub and H. Woźniakowski [15] showed that
Khachiyan’s algorithm is not polynomial in the real
number model and conjectured that linear program-
ming is not polynomial in this model. This conjecture
is still open.

The purpose of information operations (Assump-
tion 2) is to replace the input by a finite set of num-
bers. For integration, the information operations are
typically function evaluations.

Computational Complexity
of High-Dimensional Integration

We illustrate some of the important ideas of IBC with
the example of high-dimensional integration.

We wish to compute the integral of a real-valued
function f of d variables over the unit cube in d di-
mensions. Typically, we have to settle for computing
a numerical approximation with an error ". To guaran-
tee an "-approximation we have to know some global
information about the integrand. We assume that the
class F of integrands has smoothness r. One such class
is Fr, which consists of those functions having contin-
uous derivatives of order through r, these derivatives
satisfying a uniform bound.

A real function of a real variable cannot be entered
into a digital computer. We evaluate f at a finite num-
ber of points and we call the set of values of f the local
information, for brevity information, about f . An algo-
rithm combines the function values into a number that
approximates the integral.

In the worst-case setting we want to guarantee an
error at most " for every f 2 F. The computational
complexity, for brevity complexity, is the least cost of
computing the integral to within " for every f . We
want to stress that the complexity depends on the prob-
lem and on ", but not on the algorithm. Every pos-
sible algorithm, whether or not it is known, and all
possible points at which the integrand is evaluated are
permitted to compete when we consider least possible
cost.

It can be shown that if F = Fr, then the complexity
of our integration problem is of order "�dr. If r = 0, e. g.,
if our set of integrands consists of uniformly bounded
continuous functions, the complexity is infinite. That is,
it is impossible to solve the problem to within ". Let r be
positive and in particular let r = 1. Then the complexity
is of order "� d. Because of the exponential dependence
on d, we say the problem is computationally intractable.
This is sometimes called the curse of dimensionality.

We will compare this d-dimensional integration
problem with the well-known traveling salesman prob-
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lem (TSP), an example of a discrete combinatorial
problem. The input is the location of the n cities and
the desired output is the minimal route; the city lo-
cations are usually represented by a finite number
of bits. Therefore the input can be exactly entered
into a digital computer. The complexity of this prob-
lem is unknown but conjectured to be exponential
in the number of cities. That is, the problem is con-
jectured to be computationally intractable and many
other combinatorial problems are conjectured to be in-
tractable.

Most problems in scientific computation which in-
volve multivariate functions belonging to Fr have been
proven computationally intractable in the number of
variables in the worst-case setting. These include non-
linear equations [10], partial differential equations [19],
function approximation [7], integral equations [19],
and optimization [6]. Material on the computational
complexity of optimization will be presented in the sec-
ond half of this article.

Very high-dimensional integrals occur in many
disciplines. For example, problems with dimension
ranging from the hundreds to the thousands occur
in mathematical finance. Path integrals, which are of
great importance in physics, are infinite-dimensional,
and therefore invite high-dimensional approximations.
This motivates our interest in breaking the curse of di-
mensionality. Since this is a complexity result, we can-
not get around it by a clever algorithm. We can try
to break the curse by settling for a stochastic assur-
ance rather than a worst-case deterministic assurance.
Examples of stochastic assurance are provided by the
randomized and average case settings which we will
consider below. We can also try to break the curse by
changing the class of inputs. A good example of this oc-
curs in mathematical finance.

Mathematical Finance

The valuation of financial instruments often requires
the calculation of very high-dimensional integrals. Di-
mensions of 360 and higher are not unusual. Further-
more, since the integrals can be very complicated re-
quiring between 105 and 106 floating point operations
per integrand evaluation, it is important to minimize
the number of evaluations. Extensive numerical testing
shows that these problems do not suffer from the curse

of dimensionality. A possible explanation is given by I.
Sloan andWoźniakowski [11], who show that the curse
can be broken by changing the class of integrands to
capture the essence of the mathematical finance prob-
lem. See [14 Chapt. 4] for a survey of high-dimensional
integration and mathematical finance.

General Theory

In general, IBC is defined by the assumptions that the
information concerning the mathematical model is
� partial,
� contaminated, and
� priced.
Referring to the integration example, the mathematical
input is the integrand and the information is a finite
set of function values. It is partial because the integral
cannot be recovered from function values. For a partial
differential equation the mathematical input consists of
the functions specifying the initial value and/or bound-
ary conditions. Generally, the mathematical input is re-
placed using a finite number of information operations.
These operations may be functionals on the mathemat-
ical input or physical measurements that are fed into
a mathematical model.

In addition to being partial the information is often
contaminated by, for example, round-off or measure-
ment error ([8]). If the information is partial or con-
taminated it is impossible to solve the problem exactly.
Finally, the information is priced. As examples, func-
tions can be costly to evaluate or information needed
for oil exploration models can be obtained by set-
ting off shocks. With the exception of certain finite-
dimensional problems, such as roots of systems of poly-
nomial equations and problems in numerical linear al-
gebra, the problems typically encountered in scientific
computation have information that is partial and/or
contaminated and priced.

As part of our study of complexity we investigate
optimal algorithms, that is, algorithms whose cost is
equal or close to the complexity of the problem. This
has sometimes led to new solution methods. The rea-
son that we can often obtain the complexity and an op-
timal algorithm for IBC problems is that partial and/or
contaminated information permits arguments at the in-
formation level. This level does not exist for combinato-
rial problems where we usually have to settle for trying
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to establish a complexity hierarchy and trying to prove
conjectures such as P 6D NP.

A powerful tool at the information level is the no-
tion of the radius of information, R. The radius of in-
formation measures the intrinsic uncertainty of solving
a problem using given information. We can compute
an "-approximation if and only if R� ". The radius de-
pends only on the problem being solved and the avail-
able information; it is independent of the algorithm.
The radius of information is defined in all IBC settings.

Information-BasedOptimization

We turn to the application of IBC concepts to informa-
tion-based optimization.

In their seminal book, A.S. Nemirovsky and D.B.
Yudin [6] study a constrained optimization problem.
They wish to minimize a nonlinear function subject to
nonlinear constraints. Let f = [f 0, . . . , f m], where f 0 de-
notes the objective function and f 1, . . . , f m denote con-
straints. Let F be the product ofm+ 1 copies of Fr. Then

comp(") D 


 �
1
"

�d/r
!
:

Thus this problem suffers from the curse of dimension-
ality.

Vavasis [16 Chapt. 6] reports on the worst-case
complexity of minimizing an objective function with
box constraints. He assumes objective functions de-
fined on the unit cube in d dimensions and takes F as
the class of continuous functions with uniform Lips-
chitz constant L. For global minimization,

comp(") D 


 �
L
2"

�d
!
:

Thus global minimization is intractable.
In contrast to global minimization, the problem of

computing a local minimum is tractable with suitable
conditions on F. Let F consist of continuously differen-
tiable real functions on [0, 1]d whose gradients satisfy
a uniform Lipschitz condition with constant M. Then
4d(M/")2 function and gradient evaluations are suffi-
cient.

As discussed above, there are two ways one can at-
tempt to break the curse of dimensionality: by settling

for a stochastic assurance, or by changing the class of
inputs. For the constrained optimization problem, we
first describe changing the class of functions, and then
turn to weakening the assurance.

Nemirovsky and Yudin [6] take F = Fconv to be the
class of convex functions that satisfy a Lipschitz condi-
tion with a uniform constant on a bounded convex set
D. Then

comp(") D 

�
log

1
"

�
;

where the constant in the 
-notation depends polyno-
mially on the dimension d of D and m, the number of
constraints. Thus, convexity breaks the curse of dimen-
sionality.

The worst-case deterministic assurance may be
weakened to a stochastic assurance; we report on the
randomized and average case settings.

Nemirovsky and Yudin [6] show that randomiza-
tion does not break the curse of dimensionality for com-
puting the minimum value of the nonlinear constrained
problem. G.W. Wasilkowski [17] establishes an even
more negative result if an "-approximation to the value
of x that minimizes f 0 is sought. He permits random-
ization and shows that for all " < 1/2, this problem is
unsolvable even if d = 1.

The results considered so far use a sequential model
of computation. One could also ask about the complex-
ity under a parallel model of computation. If we have k
processors running in parallel, how much can the com-
putation of the minimum be sped up? Clearly, the best
possible speedup is k. Nemirovsky [5] considers this
problem for the case F = Fconv, showing that

comppar("; k) D ˝

 �
d

ln(2kd)

�1/3

ln
�
1
"

�!
;

where the˝-constant is independent of k and ". Hence
we find that

comp(")
comppar("; k)

D O

 �
ln(2kd)

d

�1/3
!
;

which is much less than k. Thus parallel computation is
not very attractive for this problem.

The average case setting looks more promising than
the randomized setting, but since it is technically very
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difficult, the results to date are quite limited. In the aver-
age case setting we want to guarantee that the expected
error is at most " and we minimize the expected cost.

In the average case setting, an a priori measure must
be placed on F. Typically, this measure is Gaussian; in
particular, Wiener measures are used. Since the distri-
bution of the random variable minx f (x) is difficult to
obtain, the average case analysis of the global optimiza-
tion problem is very difficult. Only partial results have
been obtained.

Let d = 1 and F � Cr[0, 1]. Assume that F is en-
dowed with the r-fold Wiener measure. Wasilkowski
[18] shows that approximately ("�1

p
ln "�1)1/(rC1/2)

function evaluations suffice. This is better than the
worst case, where some "� 1/r function values are
needed.

Stronger results have been obtained for the case of
d = 1 and r = 0, i. e., optimization for continuous scalar
functions, equipped with the Wiener measure. K. Ritter
[9] considers the case of nonadaptive methods, showing
that

compnon(") D 


 �
1
"

�2
!
:

Moreover, the optimal evaluation points are equidistant
knots. More recently (1997), J.M. Calvin [1] investigates
adaptive methods for this problem, showing that for any
ı 2 (0, 1),

compad(") D O

 �
1
"

�1/(1�ı)
!
:

The study of optimization in the average case setting
is a very promising area for future research. Important
open problems include:
� obtaining multivariate results,
� obtaining lower bounds,
� obtaining better upper bounds.
We now restrict our attention to the special optimiza-
tion problem of linear programming (LP), which we
discuss in the worst-case setting.

In 1979, Khachiyan [3] studied an ellipsoid algo-
rithm and proved that LP is polynomial in the Tur-
ing machine model. In 1982, Traub and Woźniakowski
[15] showed that the cost of this ellipsoid algorithm is
not polynomial in the real-number model, and conjec-

tured that the LP problem is not polynomial in the real-
number model. This nicely illustrates the difference be-
tween the cost of an algorithm and the complexity of
a problem, since the result concerning the cost of the
ellipsoid algorithm leaves open the question of prob-
lem complexity. The Traub–Woźniakowski conjecture
remains open.

A related open question is whether LP can be solved
in strongly polynomial time. (Note that the underlying
models of computation are different: the real-number
model versus the Turing machine model.) This ques-
tion is also still open, with results known only for spe-
cial cases. In 1984, N. Megiddo [4] showed that LP can
be solved in linear time if the number of variables is
fixed, while in 1986, É. Tardos [12] showed that many
LP problems that arise from combinatorial applications
can be solved in strongly polynomial time.

We now discuss the computation of fixed points,
which we include here because the result involves el-
lipsoid methods. The problem is to compute the fixed
point of f (x); that is, to solve the nonlinear equation x
= f (x) for any f 2 F, where F is the class of functions on
[0, 1]d having a Lipschitz constant of q, with q 2 (0, 1).

The simple iteration algorithm xi+ 1 = f (xi), with x0
= 0, can compute an "-approximation with at most

nsi("; q) D
�
ln 1/"
ln 1/q

�

evaluations of f . Thus the simple iteration algorithm
behaves poorly if q is close to one.

Z. Huang, Khachiyan, and K. Sikorski [2] show
that an inscribed ellipsoid algorithm computes an "-
approximation with

ne("; q) D O
�
d
�
ln

1
"
C ln

1
1 � q

��

function evaluations. Thus their algorithm is excellent
for computing fixed points of functions with q close to
unity; that is, almost noncontracting functions.
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Let M be a given n × n matrix, and let q be a given n
vector. The linear complementary problem (LCP; cf. also
� Linear complementarity problem) is to find a vector
x which satisfies the following system:

8̂
<̂
ˆ̂:

x � 0;
Mx C q � 0;
x>(Mx C q) D 0:

(1)

When some or all the variables are required to be inte-
gers, the problem is called integer linear complementary
problem (ILCP).

Suppose that for each i (i = 1, . . . , k), the variable xi
is required to be integer among

xi 2 f0; : : : ; ni g;

while for each i (i = k+ 1, . . . , n), the variable xi is con-
tinuous and

0 � xi � ˇi :
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The problem can be formulated as the feasibility prob-
lem which finds a solution x and z such that

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

0 � Mix C qi � Bi (1 � zi );
0 � ni zi � xi ; i D 1; : : : ; k;
xi 2 f0; : : : ; nig; i D 1; : : : ; k;
0 � ˇi zi � xi ; i D k C 1; : : : ; n;
0 � xi � ˇi ; i D k C 1; : : : ; n;
z 2 f0; 1gn;

(2)

whereMi is the ith row ofM, qi is the ith component of
q and Bi is the optimal value of the following problem:
8̂
<̂
ˆ̂:

max Mix C qi
s.t. xi 2 f0; : : : ; nig; i D 1; : : : ; k;

0 � xi � ˇi ; i D k C 1; : : : ; n;

which can be solved analytically.
It has been shown [2] that if the region (2) is empty,

the associated (ILCP) has no solution. Otherwise, if
(x; z) satisfies (2), then x solves the (ILCP).

Obviously, when all the variables of LCP are zero-
one integers, the (ILCP) is formulated as a zero-one in-
teger feasibility problem of the form:

8̂
ˆ̂̂<
ˆ̂̂̂
:

Find x; z
s.t. 0 � Mix C qi � Bi (1 � zi);

0 � zi � xi ; i D 1; : : : ; n;
x; z 2 f0; 1gn;

(3)

where

Bi D max fMix C qi : x 2 f0; 1gng :

It is worth noting that the minimum norm solution of
the zero-one (ILCP) can be obtained by solving the fol-
lowing linear zero-one integer problem:

8̂
<
:̂
min

nX
iD1

xi

s.t. (x; z) satisfies (3):
(4)

We note that there are many algorithms for solving the
problem with practical size.

Integer variables without known upper bounds
make the problem much harder. Let us consider the
(ILCP) defined below:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Find x
s.t. x � 0;

Mx C q � 0;
x>(Mx C q) D 0;
xi is integer for i D 1; : : : ; k:

This problem can be rewritten in the form:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

Find ˛; y; z
s.t. 0 � My C ˛q � e � z;

0 � ˛;
0 � y � z;
z 2 f0; 1gn;
yi /˛ is integer for i D 1; : : : ; k;

(5)

where e is a vector of all ones. If (˛; y; z) solves (5), i. e.,
for each i = 1, . . . , k, yi /˛ is integer, x D y/˛ solves
its associated (ILCP). See [3] and [2] for a proof of the
equivalence.

The (ILCP) arises in several contexts such as poly-
matrix games in pure strategies, economic equilibrium
with discrete activity levels and spatial price equilib-
rium in discrete commodities. See [2], for details.

Let us consider the polymatrix game. Suppose that
each player i (i = 1, . . . , n) has a finite number mi of
strategies, and the partial payoffs to player i, resulting
from choices by him/her and player j, are given by mi×
mj matrices Aij (i, j = 1, . . . , n). The elements of Aij are
assumed to be positive without loss of generalities.

Let

Xi> D (Xi
1; : : : ; X

i
mi
); i D 1; : : : ; n;

be a vector where each component Xi
s expresses the

probability of i playing his sth strategy. It has been
shown [1] that finding equilibria of polymatrix games
is equivalent to find solutions of the linear complemen-
tarity problem defined below.

Let

vi D (Xi)>
X
j¤i

Ai jX j; i D 1; : : : ; n:
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Also, let us define

x> D
�
X1>; : : : ; Xn>; v1; : : : ; vn

�
;

q> D (

Pn
iD1 mi‚ …„ ƒ

0; : : : ; 0;
n‚ …„ ƒ

�1; : : : ;�1);

and

M D

0
BBBBBBBBBBBBB@

0 A12 � � � A1n �e 0 � � � 0
A21 0 � � � A2n 0 �e � � � 0
:::

:::
:::

:::
:::

:::

An1 An2 � � � 0 0 0 � � � �e
e> 0 � � � 0 0 0 � � � 0
0 e> � � � 0 0 0 � � � 0
:::

:::
:::

:::
:::

:::

0 0 � � � e> 0 0 � � � 0

1
CCCCCCCCCCCCCA

;

where e is a vector of all ones whose dimension is
given by context. Then, the above polymatrix game can
be equivalently written as (1). Moreover, suppose that
some players, i (i = 1, . . . , k), can select only one pure
strategies, while the other players, i (i = k+ 1, . . . , n), can
select mixed strategies. For each player i (i = 1, . . . , k),
the vector Xi is required to be zero-one integer, which
results (ILCP).
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Introduction

Owing to the exponential growth of traffic demand,
there is an emerging challenge as well as an opportunity
for service providers to employ Internet Protocol (IP)
backbone networks carried on top of optical transport
networks, forming IP over optical infrastructure. This
technology is poised to take over most of broadband
operational services as an integrated transport platform
for the following reasons. Optical networks offer the ca-
pability to carry numerous wavelength signals or chan-
nels simultaneously without interaction between each
wavelength, known as wavelength division multiplex-
ing (WDM) [14,16,18].

Also WDM optical switches are known to be reli-
able, support high speed, and are economical, which
makes them an attractive selection for the default mod-
ern transport network. Moreover, new emerging ser-
vices that require high bandwidth and reliability (such
as Internet Protocol TV – IPTV [2]) are consider-
ing optical networks as the underlying network to di-
rectly carry the traffic. However, to best efficiently uti-
lize WDM networks, network operators face a number
of management and operation challenges, which often
require complex mathematical models and advanced
optimization techniques. This article focuses on these
challenges and briefly review how integer linear pro-
gramming (ILP) formulation and algorithms have been

developed and applied to the domain of optical net-
works.

Motivations and Challenges
in OptimizationModels

The management and operation of WDM networks in-
volve a number of challenges, which should address
the physical topology formation, logical topology for-
mation, survivability and fault management. Design-
ing a new transport network is very complex, as it
requires one to make decisions on where to place op-
tical nodes so as to provide survivability, connectiv-
ity, and cost-effectiveness. Once the physical topol-
ogy has been fixed, the logical topology of the back-
bone is decided by setting up lightpaths from one op-
tical node to another. In transport networks, provid-
ing survivability and fault management is the most im-
portant task. Especially, routing should rapidly recover
from any failure in the logical topology, because even
a short outage reflects amassive amount of traffic loss in
high-speed transport networks. The management and
operation of these complex challenges benefit greatly
from using mathematical modeling and optimization
techniques.

Today’s backbone mostly takes a form of a lay-
ered IP over optical network. For survivability, it is
extremely important to address the practical issue of
how IP routing and protection schemes can effectively ex-
ploit the lower layer path diversity. IP layer failures are
known to occur most frequently, while fiber span fail-
ures are catastrophic in that they lead tomultiple simul-
taneous upper layer failures. Moreover, some of the IP
layer failures can be only addressed in the IP layer, as
lower layer (optical) survivability mechanisms cannot
detect failures occurring at higher (IP or applications)
layers. In order to rapidly recover from network-wide
failures and provide persistent end-to-end path quality,
service providers may set up two diverse paths: the ser-
vice (primary) path and the restoration (backup) path.
Any failure in the service path can be hidden, as traffic
can be instantly rerouted to the restoration path. Obvi-
ously, the efficacy of the restoration path depends heav-
ily on how disjoint these two paths are (under the most
frequent single failures). Therefore, it is important to
understand how the layering employed in the network
affects the correlation of failures among paths.
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This demonstrates the importance of protection
against failures in layered networks arising out of
shared risk resource groups (SRRG). An example of
SRRG is multiple IP links sharing a common optical
component, including ducts or conduits through which
multiple optical links are routed under the ground. To
effectively deliver high-quality services to customers,
network providers are required to incorporate this
SRRG information into their routing and protection
schemes, which has become one of themost challenging
problems in networking practice. Note that the SRRG-
diverse constraint involves multiple link failure mod-
els, in the form of shared risk link groups (SRLGs) and
shared risk node groups (SRNGs). Most of previous
studies in IP-over-WDMnetworks considered only two
possible alternatives of routing and protection schemes:
protection at the optical layer or restoration at the IP
layer [7,11,15,16,17].

Path-Protection (Diverse) Routing Problem

Finding a backup path that is disjoint for each work-
ing or “primary” path, in general, has been recognized
as path-protection schemes and has been widely studied
in optical networks. Medard et al. [12] focused on the
problem of identifying two redundant trees from a sin-
gle source to a set of destinations that can survive any
single link failure (i. e., the elimination of any vertex in
the graph leaves each destination vertex connected to
the source via at least one of the directed trees). El-
linas et al. [5] focused on the problem of identifying
two diverse paths that are SRRG failure resilient. They
were the first to theoretically prove that if an arbitrary
set of links can belong to a common SRLG, then the
problem of finding SRLG-diverse paths between a given
source and destination is NP-complete for unicast traf-
fic. Subsequently, Zang et al. [22] proposed heuristic al-
gorithms for the combined problem of finding SRLG-
diverse paths and wavelength assignment for one-to-
one (unicast) traffic. Most recently, Cha et al. [2] stud-
ied the SRLG-diverse routing for one-to-many (multi-
cast) traffic, where they focused on the combined prob-
lem of minimizing the network cost of multicasting
traffic from dual sources to multiple destinations while
providing path protection against a single SRLG fail-
ure.

Minimum Color Problem

Coudert et al. [4] proposed new techniques for the min-
imum color path problem for multiple failure toler-
ance from a SRRG failure. The consequence minimum
color st-cut problemwas also shown to be NP-complete
and hard to approximate. Each SRRG is associated with
a so-called color in a colored graph Gc D (V ; E;C),
where C is a family of subsets of E. The minimum color
path problem is to find a path from a node s to a node
t that minimizes the number of different colors of its
links. This problem was proven to bee NP-complete
in [21] and polynomial in the special case where all the
edges of each color have a common extremity. Many
insightful theoretical results of this problem were re-
ported in [4].

Definition 1 [4] LetG D (V ; E;C) be a colored graph,
whereC is a partition of E. Theminimum color cut con-
sists in finding a minimal set of colors disconnecting G.
Let s; t 2 V be two distinct vertices inG. The minimum
color st-cut problem is to find a minimal set of colors
disconnecting s from t.

Theorem 1 [4] The minimum color st-cut is NP-hard.

Coudert et al. [4] proved this theorem by proposing the
reduction of each set of the set cover instance to a color
of the minimum st-cut instance.

Theorem 2 [4] The minimum color st-cut problem
is not approximable within a factor o(log n) unless
NP � TIME(nO(log log n)).

Theorem 3 [4] When the edges of each color induce
a connected subgraph the minimum color st-cut and the
minimum color cut problems are polynomial.

Theorem 4 [4] The minimum color st-cut is k-approx-
imable when the number of connected components of the
subgraph induced by edges of each color is bounded by k.

Define a nonnegative variable for each node, where
some edge e between nodes i and j institutes a cut if
xi ¤ x j . If any edge of color c institutes a cut, then c is
a color cut. Let a binary variable yc be associated with
each color c, where yc D 1 when the color c is selected
to be in a set of color cut, and yc D 0 otherwise. The
minimum color st-cut problem can be formulated as
a mixed integer linear program as follows:

min
X
c2C

yc (1)
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subject to yc � jxi � x jj8c 2 C ;8i; j 2 c ; (2)

xi � 0 8i 2 V ; (3)

xs D 0 ; xt D 1 : (4)

Finding the Dual Link Problem

The problems related to finding a pair of link or node
disjoint paths in single cost networks have been stud-
ied since the mid 1980s [19]. The min–sum problem
of dual link is to minimize the sum of the costs of the
two disjoint paths and can be solved using a polynomial
time algorithm called the shortest pair of paths [19].
In a recent study, the min–sum problem was shown to
be a special case of the min–cost flow problem [2]. In
contrast to the min–sum problem, the min–max prob-
lem, whose objective is to minimize the length of the
longer one of the two paths was proven to be NP-
complete [10]. The min–min problem, whose objective
is to minimize the length of the shorter one of the two
paths, can also be proven to be NP-complete [20] by
using the reduction of a the well-known 3-satisfiability
(3SAT) problem. The proof can be described as fol-
lows [20]. An instance of 3SAT is a boolean formula
that is the AND ofm clauses Cj( j D 1; : : : ;m). A clause
is theOR of three literals, each of which is an occurrence
of variable xi(i D 1; : : : ; n) or its negation. A truth as-
signment is a function � : fxig ! ftrue; falseg. Cj is
satisfied by � if it contains a literal with truth value.
The question of 3SAT is to determine whether there is
a truth assignment that satisfies allm clauses simultane-
ously. With the 3SAT approach, Xu et al. [20] proposed
the following theorem.

Theorem 5 [20] The problem of finding two node/link-
disjoint paths between a pair of source and destination
nodes in a directed/undirected network with minimum
cost for the shorter one is NP-complete.

SRRG-Diverse Routing Problem

The SRRG-diverse routing problem can be consid-
ered to be a generalization of the link-diverse/disjoint
routing problem. In a multicast context, the link-
disjoint path-protection problem can be viewed as a di-
verse routing problem of identifying two redundant
trees from a single source to a set of destinations

that can survive any single link failure [6,12]. The di-
verse routing problem has been previously shown to
be NP-complete [1,7,8]. During the past few years,
there has been increasing interest in the diverse rout-
ing problem with SRRG-diverse constraints as SRRG-
diversity requirements play a very crucial role in real
life network provisioning problems. An example of
real life problems is finding a pair of diverse paths
at the optical layer, which involves the search of two
SRLG-diverse paths as each link at the OXC (op-
tical cross connect) layer may be related to several
SRLGs. Many recent studies have shown that the gen-
eralized SRLG (or SRRG) diverse routing is a special
case of the diverse routing problem, which is also NP-
complete [5,8,11,13,22]. Among those studies, the di-
verse routing problem of unicast (one-to-one) traffic
with SRLG-diverse constraints has been proven to be
NP-complete [5]. In later studies, the diverse routing
problem was extended to many special cases (e. g., di-
verse routing under both wavelength capacity and path
length constraints [22], multicast routing under SRLG-
diverse constraint [3]).

Cha et al. [3] proposed a generalized case of the
SRRG-diverse routing problem where there are two
source nodes. The problem can be formally defined as
follows. Let G D (V ; E) be an undirected graph rep-
resenting the backbone network. We denote the set of
network nodes by V , while E is the set of duplex com-
munications links (edges). Let the number of nodes and
edges be n and m, respectively. There is a set of two
source nodes, denoted by S � V , and there is a set of
destination nodes, denoted by D � V . Denote B as a set
of SRLGs. Each link (i; j) 2 E in the graph has a cost
function (ci j) associated with it and belongs to a subset
of SRLGs in B. Note that the cost ci j is the sum of the
port cost at nodes i and j and the transport cost relative
to the distance of link (i; j). This problemwas proven to
be NP-hard in [3] by using a reduction from the SRLG-
diverse path problem [5].

Theorem 6 The two-source SRRG-diverse routing
problem is strongly NP-hard.

This theorem was proven in [3] where this problem was
claimed to be a generalization of the problem of finding
SRLG-diverse paths between a source and a destination
in a given graph (SRG (shared risk group)-diverse rout-
ing) proposed in the paper by Ellinas et al. [5]. We add
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two nodes (jSj) in the graph and two links connecting
each of the two new nodes with the source with the costs
of 0. Assume that the two new links do not share any
SRLGs. We then add jDj nodes and 2 
 jDj edges. Each
of these nodes is connected to the destination node by
two edges that do not share any SRLGs. Then the trans-
formation is complete and clearly polynomial.

The ILP of the two-source SRRG-diverse routing
problem can be formulated as follows. Define the fol-
lowing decision variables. Ys

i; j = 1 if link (i; j) is used
by the multicast tree rooted at source node s; 0 other-
wise. Xs

i; j;d D 1 if link (i; j) is used by the multicast tree
rooted at source node s to destination d; 0 otherwise.
Zs
b;d D 1 if the path from source s to destination d uses

an SRLG b; 0 otherwise. The ILP formulation is given by

min
X
s2S

X
(i; j)2E

Ys
i; j ci; j (5)

subject to Ys
i; j � Xs

i; j;d 8(i; j) 2 E;

8s 2 S;8d 2 D ;
(6)

X
f jj(i; j)2Eg

Xs
i; j;d �

X
f jj( j;i)2Eg

Xs
j;i;d

D � s
i;d 8i 2 V ;8s 2 S ;8d 2 D ;

(7)

Zs
b;d � Xs

i; j;d 8(i; j) 2 b;8s 2 S;8d 2 D;

8b 2 B ; (8)

X
s2S

Zs
b;d � 1 8d 2 D;8b 2 B ; (9)

Xs
i; j;d ;Y

s
i; j; Z

s
b;d 2 f0; 1g 8s 2 S;8d 2 D;

8(i; j) 2 E;8b 2 B ; (10)

where � s
i;d D

8<
:

1 if i D s ;
�1 if i D d ;
0 otherwise :

(11)

The constraints in (6) ensure that an edge must be
selected by themulticast tree when it is used by themul-
ticast tree to carry any traffic. The flow constraints in
(7) ensure the flow conservation at each node, allowing
each destination to have a flow path from the source.
More precisely, � s

i;d is the net flow capacity generated,
carried, or destined at node i for destination d by the
multicast tree rooted at node s, which should have the

value of 1 if node i is the source,�1 if node i is the desti-
nation (acting as a sink), and 0 otherwise (whether node
i belongs to the multicast tree or not). The constraints
in (8) ensure that a SRLG must be selected by the path
from a source to a destination when a link that belongs
to the SRLG is used by the path. The constraints in (9)
state that Wb

d is greater than or equal to the number of
number of distinct sources that uses bundle b to reach
d; that is, if b is used in only one or none of the sources
to reach b, the value is greater than or equal to zero.

Shared Path-Protection Problem

Sahasrabuddhe et al. [17] proposed fault management
in IP over WDM networks using techniques which are
protection at the WDM layer and restoration at the IP
layer. “Protection” refers to preprovisioned failure re-
covery (i. e., set up a backup lightpath for every pri-
mary lightpath), whereas “restoration” refers to more
dynamic recovery (i. e., overprovision the network so
that after a fiber failure, the network should still be able
to carry all the traffic it was carrying before the fiber
failure). Typically, their protection scheme focuses on
shared path protection against single fiber span failures,
where multiple independent primary paths share the
backup path capacity to minimize the total capacity re-
quired in the network.

Given E as a set of unidirectional fiber links in the
network, F as a set of bidirectional fibers in the network,
Ri j as a set of alternate routes for node pair i j, and W
as the maximum number of wavelengths on a link, the
ILP of the shared path-protection routing problem can
be formulated as follows. Define the following decision
variables. wk is the number of wavelengths used by pri-
mary lightpaths on link k, sk is the number of spare
wavelengths used on link k, and Vi j is the number of
primary lightpaths between node pair i j.mw

k D 1 if one
or more backup lightpaths are using wavelength w on
link k; 0 otherwise. �wi j;r D 1 if the rth route between
node pair i j utilizes wavelength w before any fiber fail-
ures; 0 otherwise. ıb;wi j;p D 1 if a primary on route be-
tween node pair i j is protected by route between the
node pair by employing wavelength; 0 otherwise. The
ILP of the shared path-protection routing problem is
rather complicated as it considers end-to-end lightpath
assignment on the physical links, physical diversity of
the primary and backup paths, and sharing backup path



ILPs for Routing and Protection Problems in Optical Networks I 1615

capacity for failure-independent primary paths. There-
fore, the key ILP is formulated as follows (please refer
to [17] for the complete set of equations):

min
EX

kD1

(wk C sk) (12)

subject to
X
i j

X
p2Ri j : f2p

X
b2Ri j :k2b

ı
b;w
i j;p � 1

1 � f � F; 1 � k � E; 1 � w � W ;

(13)

wk C sk � W 1 � k � E ; (14)

X
r2Ri j

WX
wD1

�wi j;r D Vi j 8i j ; (15)

X
i j

X
r2Ri j;k2r

WX
wD1

�wi j;r D wk 1 � k � E ; (16)

WX
wD1

mw
k D sk 1 � k � E ; (17)

�X
i j

X
r2Ri j;k2r

�wi j;r

�
C mw

k � 1 1 � k � E;

1 � w � W ; (18)

WX
wD1

�wi j;r D
X

b2Ri j;b¤p

WX
wD1

ı
b;w
i j;p 8i j;8p 2 Ri j;

1 � w � W : (19)

The objective of ILP is to minimize the total capac-
ity used given in (12). The crux of the formulation is at
the set of constraints in (13), which ensure that that two
backup lightpaths share wavelength w on link k only if
the corresponding primary paths are fiber-disjoint. The
above ILP formulation includes constraints for setting
up lightpaths with shared path protection, where the
number of channels on each link is bounded by (14),
the number of primary lightpaths between a node pair
is defined by (15), the number of primary lightpaths
traversing a link is defined by (16), the spare capacity
of each link is defined by (17), the usage of primary or
backup lightpaths on a wavelength is defined by (18),
and every primary lightpath is ensured to be protected
by a backup lightpath by (19). In addition, multicom-
modity flow constraints (omitted here) are added to en-
sure the amount of traffic sourced fromnode to destina-
tion node is covered by the capacity of the wavelength.

Note that additional constraints on the number of re-
ceivers and transmitters used can be incorporated in the
model [17].

Path-Restoration Problem

Path-restoration techniques have been frequently em-
ployed to provide highly capacity efficient (close to)
real-time restoration of a network failure. In contrast
to the path-protection routing, the operation mode of
the path restoration only uses the full bandwidth from
the primary while finding an alternative path. The path-
restoration routing problem can involve different net-
work layers: physical (optical) and IP. The optical path
restoration directly replaces the prefailure capacity at
the transmission carrier signal level, which has no per-
formance effects in the upper layers. On the other hand,
the IP path restoration dynamically reroutes the sig-
nals around failures using routing table updates or dy-
namic call-routing. An interior gateway protocol (IGP)
is widely used to dynamically find an alternative path
and perform load sharing in traffic distribution.

Optical Path Restoration Problem

Iraschko and Grover [9] studied the path-restoration
routing problem, where the task is to deploy a set of
replacement signal paths between two end nodes of
the failed span, capable of yielding the maximum total
amount of replacement capacity, while respecting the
finite number of spare links on each span. They assume
that, given failure scenarios, a predefined set of distinct
eligible routes are precomputed for end node pairs (i. e.,
primary paths). Then, the goal of the path-restoration
routing problem is to maximize the total of all restora-
tion flow assignments for those primary paths, using
only the commodities selected by the failure scenario
and only the surviving spans in the reserve network.
It also requires that all flow assignments made over
all routes, for all simultaneously restored node pairs,
should not exceed the spare capacity of any span in the
reserve network. The outcome of such optimized de-
sign will require minimal capacity for the reserve net-
work.

The ILP of the path-restoration routing problem
can be formulated as follows. Define the following deci-
sion variables and parameters. Let i represent a failure
scenario, such as a single span cut or a node loss. Di
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is the number of end node pairs that have lost one or
more units of demand owing to the failure i and r is the
index to indicate these node pairs, r 2 (1 � � �Di). Xr

i is
the number of demand units lost by an end pair r under
failure i. Finally, the network is G(N; E; s), where N is
the set of nodes, E is the set of spans, and s is the vector
of spare capacities on each span s j . The ILP formulation
is given by

max
D jX
rD1

Pr
iX

pD1

f r;pi (20)

subject to
Pr
iX

pD1

f r;pi D Xr
i 8r 2 (1 � � �Di ) ; (21)

D jX
rD1

Pr
iX

pD1

ı
r;p
i; j f

r;p
i � s j 8 j 2 E ; (22)

f r;pi � 0; integer 8(r; p) ; (23)

where f r;pi is a whole number assignment of flow to the
pth route available for restoration of node pair r un-
der failure scenario i. Pr

i is the total number of eligi-
ble restoration routes available to node pair r for the
restoration of failure i. ır;pi; j D 1 if span j is in the pth
eligible route for restoration of node pair r in the event
of failure scenario i; 0 otherwise.

IP Path–Restoration Problem

In the IP-layer communication, as apposed to the
abovementioned optical path restoration problem, the
path-restoration problem is defined differently on the
basis of the WDM protection model from Sect. “Shared
Path-Protection Problem” (for the complete model,
see [17]). The key ILP model for this IP path restora-
tion problem is given by

max
X
sd

X
i j

�
i j
sd (24)

subject to
X
j

X
r2Ri j

�wi; j;r � Transwi

8i; 1 � w � W ; (25)

X
i

X
r2Ri j

�wi; j;r � Recwj 8 j; 1 � w � W ; (26)

X
i j

X
r2Ri j;k2r

�wi j;r � 1 1 � k � E; 1 � w � W ; (27)

where the objective function in (24) is to minimize
the average hop distance before a fault, the constraints
in (25) and (26) ensure that node i uses at most Transwi
transmitters and node j uses at most Recwj receivers on
wavelength w, and the constraints in (27) ensure that
the wavelength w on link j is used either by a primary
lightpath or by backup lightpaths.

Concluding Remarks

In this article, we reviewed how ILP formulations are
used in WDM optical networking. In optical networks,
preprovisioning the networks to support fast restora-
tion of failures is critical, which means to set up physi-
cally disjoint backup paths (links) for the primary paths
(links). Here, ILP formulations are valuable in finding
the global optimal backup paths among all the pos-
sible alternative paths for traffic demands of interest.
A set of constraints in ILP can be set up to represent
the restoration flow balance constraint, the link capac-
ity flow constraint, and physical diversity of the primary
and backup paths.
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One of the byproducts of World War II was the dis-
covery that the routing of ship convoys, and other hu-
man activities like transportation, production, alloca-
tion, etc. could be modeled mathematically, i. e. the of-
ten intricate choices that they involve could be cap-
tured into a system of equations and inequalities and
could be optimized according to some agreed upon cri-
terion. The simplest such model, involving only lin-
ear functions, became known as linear programming.
Parallel developments have led to the discovery of the
computer, which made it practical to solve linear pro-
grams of a realistic size. A few years later the theory was
extended to systems involving nonlinear convex func-
tions. Convexity was needed to ensure that any local
optimum is a global optimum.

An amazing variety of activities and situations can
be adequately modeled as linear programs (LPs) or
convex nonlinear programs (NLPs). Adequately means
that the degree of approximation to reality that such
a representation involves is acceptable. However, as the
world that we inhabit is neither linear nor convex, the
most common obstacle to the acceptability of these
models is their inability to represent nonconvexities or
discontinuities of different sorts. This is where integer
programming comes into play: it is a universal tool for
modeling nonconvexities of various kinds.

To illustrate, imagine a factory that produces two
items and whose capacity is determined by the four lin-
ear constraints represented in Fig. 1. These inequalities,
along with x1 � 0, x2 � 0 (only nonnegative amounts
can be produced), define the feasible set, shown as the
shaded area. Since the latter is a convex polyhedron,
if profit is a linear function of the amounts produced,
then an optimal (i. e. profit-maximizing) production
plan will correspond to one of the vertices of the poly-
hedron.

Imagine now that the following reasonable con-
dition is imposed: for each item there is a threshold
quantity below which it is not worth producing it. The
threshold is b units for item 1 and d units for item 2.
Furthermore, at least one of the two items must be pro-
duced. As shown in Fig. 2., the feasible set now consists
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Integer Programming, Figure 1
Feasible set without tresholds

Integer Programming, Figure 2
Feasible set with tresholds

of three separate pieces: the two lines [b, c] and [d, e],
and the shaded area (polyhedron) whose vertices are f ,
g, h, i. Depending on the slope of the objective function,
the optimummay now occur at any of the points b, c, d,
e, g, h, i. The problem has become qualitatively differ-
ent. The ‘threshold’ conditions, of the form ‘either x1 =
0 or else x1 � b’, and ‘either x2 = 0 or x2 � d’, as well as
the condition ‘at most one of x1 = 0 and x2 = 0 can hold’,
cannot be modeled by linear or convex programming
techniques. The same is true of a host of other ‘logical’
conditions: disjunctions (‘either this or that’; ‘at least
one of several constraints must hold’, ‘at most one of
several variables can be positive’), implications (‘if this
action is taken, then that action must be taken’), prece-
dence relations (‘this event must precede that’, ‘this ac-
tion cannot start until some others are completed’), etc.
Yet, it is quite obvious that conditions of this type are
in no way exceptional; on the contrary, their presence
is pervasive in many real world situations.

A linear (nonlinear) programming problem whose
variables are restricted to integer values is called a linear

(nonlinear) integer programming problem, or simply
an integer program (IP, linear unless otherwise stated).
If only some of the variables are restricted to integer
values, we have a mixed integer program (MIP). Such
a problem can be stated as
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min cx
s.t. Ax � b

x � 0
x j integer
j 2 N1 � N;

where A is a given m × n matrix, c and b are given vec-
tors of conformable dimensions, N := {1, . . . , n} and x
is a variable n-vector. The ‘pure’ integer program (IP)
is the special case of MIP when N1 = N. If, in addition,
all entries ofA, b, c are integer, then the slack or surplus
variables can also be restricted to integers.

Integer programming as a field started in the mid-
1950s. A number of excellent textbooks are available for
its study [15,16,17,20].

Scope and Applicability

Applications of integer programming abound in all
spheres of decision making. Some typical real-world
problem areas where integer programming is particu-
larly useful as a modeling tool, include facility (plant,
warehouse, hospital, fire station) location; scheduling
(of personnel, production, other activities); routing
(of trucks, tankers, aircraft); design of communication
(road, pipeline, telephone, computer) networks; capi-
tal budgeting; project selection; analysis of capital de-
velopment alternatives. Various problems in science
(physics: the Ising spin glass problem; genetics: the se-
quencing of DNA segments) and medicine (optimiz-
ing tumor radiation patterns) have been successfully
modeled as integer programs. In engineering (electri-
cal, chemical, civil and mechanical) the sphere of appli-
cations is growing steadily.

By far the most important special case of integer
programming is the (pure or mixed) 0–1 program-
ming problem, in which the integer-constrained vari-
ables are restricted to 0 or 1. This is so because a host of
frequently occurring nonconvexities, such as the ones
listed above, can be formulated via 0–1 variables. If
the constraint set of the production planning problem
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shown in Fig. 1. is

ai1x1 C ai2x2 � bi ; i D 1; : : : ; 4;

x1 � 0; x2 � 0;

then the conditions

x1 � 0 or x1 � b;

x2 � 0 or x2 � d;

x1 > 0 or x2 > 0;

imposed in the variant shown in Fig. 2., can be formu-
lated by introducing two 0–1 variables, ı1 and ı2, and
the constraints

bı1 � x1 � cı1;

dı2 � x2 � eı2;

ı1C ı2 � 1; ı1; ı2 2 f0; 1g:

Next we present a few well-known pure and mixed in-
teger models.

The fixed charge problem asks for the minimization,
subject to linear constraints, of a function of the formP

i ci (xi), with

ci(xi) :D

(
fi C ci xi if xi > 0;
0 if xi D 0:

Whenever xi is bounded by Ui and f i > 0 for all i, such
a problem can be restated as a (linear) MIP by setting

ci(xi) D ci xi C fi yi ;

xi � Ui yi ;

yi 2 f0; 1g for all i:

Clearly, when xi > 0 then yi is forced to 1, and when xi
= 0 the minimization of the objective function drives yi
to 0.

The facility location problem consists of choosing
among m potential sites (and associated capacities) of
facilities to serve n clients at a minimum total cost:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
mX
iD1

nX
jD1

ci jxi j C
mX
iD1

fi yi

mX
iD1

xi j D dj ; j D 1; : : : ; n;

nX
jD1

xi j � ai yi ; i D 1; : : : ;m;

xi j � 0; i D 1; : : : ;m; j D 1; : : : ; n;
yi 2 f0; 1g; i D 1; : : : ;m

Here dj is the demand of client j, ai is the capacity of
a potential facility to be located at site i, cij is the per-
unit cost of shipments from facility i to client j, and f i
is the fixed cost of opening a facility of capacity ai at lo-
cation i. In any feasible solution, the indices i such that
yi = 1 designate the chosen locations for the facilities to
be opened.

Variants of this problem include the uncapacitated
facility location problem (where dj = 1 for all j and the
constraints involving the capacities can be replaced by
xij � yi, i = 1, . . . , m, j = 1, . . . , n), the warehouse
location problem (which considers cheap bulk ship-
ments from plants to warehouses and expensive pack-
aged shipments to retailers), and various emergency fa-
cility location problems (where one chooses locations to
minimize the maximum distance traveled by any user
of a facility, rather than the sum of travel costs).

The knapsack problem is an integer program with
a single constraint:

max fcx : ax � b; x � 0 integerg ;

where c and a are positive n-vectors, while b is a positive
scalar. When the variables are restricted to 0 or 1, we
have the 0–1 knapsack problem.

A variety of situations can be fruitfully modeled as
set covering problems: Given a set M and a family of
weighted subsets S1, . . . , Sn of M, find a minimum-
weight collection C of subsets whose union is M. If A
is a 0– 1 matrix whose rows correspond to the elements
of M and whose columns are the incidence vectors of
the subsets S1, . . . , Sn, and c is the n-vector of subset-
weights, the problem can be stated as8̂
<̂
ˆ̂:

min cx
Ax � 1
x 2 f0; 1gn;

where the right-hand side of the inequality is the m-
vector of 1s. This model and its close relative, the set
partitioning problem (in which � is replaced by = ) has
been (and is being) widely used in airline, bus, and train
crew scheduling (each row represents a leg of a trip that
has to be covered; each column stands for a potential
duty period of a crew). Another application is in med-
ical diagnostics (each column represents a diagnostic
test, each row stands for a pair of diseases, with a 1 in
column j if the pair’s reactions to the tests are differ-
ent, and a 0 if they are the same; the goal being to select
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a minimum-cost battery of tests guaranteed not to yield
identical outcomes for any two diseases).

Combinatorial Optimization

A host of interesting combinatorial problems can be
formulated as 0–1 programming problems defined
on graphs, undirected or directed, vertex-weighted or
edge-weighted. The joint study of these problems by
mathematical programmers and computer scientists,
starting from around 1960, has led to the develop-
ment of the burgeoning field called combinatorial op-
timization [7]. Some typical problems of this field
are: edge matching (finding a maximum-weight col-
lection of pairwise non-adjacent edges) and edge cov-
ering (finding a minimum-weight collection of edges
that together cover every vertex); vertex packing (find-
ing a maximum-weight independent set, i. e. collection
of pairwise non-adjacent vertices) and vertex covering
(finding a minimum-weight collection of vertices that
together cover every edge); maximum clique (finding
a maximum cardinality complete subgraph) and min-
imum vertex coloring (partitioning the vertices into
a minimum number of independent sets, i. e. coloring
the vertices with aminimumnumber of colors such that
all adjacent pairs differ in color); the traveling salesman
problem (finding a cycle of minimum total edge-weight
that meets every vertex).

We will briefly discuss two of the above problems,
which in a sense span the universe of combinatorial op-
timization. At one end of the spectrum, the matching
problem on a graph G = (V , E) can be stated as
8̂
<̂
ˆ̂:

max x(E)
s.t. x(ı(v)) � 1; v 2 V ;

x � 0; xe integer; e 2 E;

where for F � E, x(F) =
P

e 2 Fxe, and ı (v) is the set
of edges incident with v. Its weighted version asks for
maximizing

P
e 2 Ewexe, where we is the weight of edge

e. This problem has the nice property that the integral-
ity condition can be omitted if the above nonnegativity
and degree constraints are supplemented with the in-
equalities

x(�(S)) �
jSj � 1

2
for all S � V ; jSj odd;

where �(S) is the set of edges with both ends in S.

In other words, the ‘odd set inequalities’, along with
the nonnegativity and degree constraints, fully describe
the convex hull of incidence vectors of matchings. The
discovery of this remarkable phenomenon in the mid-
1960s ([8]) has started a massive pursuit of facets of the
convex hull of other combinatorial polyhedra, and can
be viewed as the inaugural step in the development of
the field called polyhedral combinatorics. Close relatives
of the matching problem are the perfect matching prob-
lem (in which a maximum or minimum-weight match-
ing is sought, when it exists, that leaves no vertex un-
matched), the 2-matching problem (in which the degree
constraints have right-hand side 2) and more generally,
the b-matching, or degree-constrained subgraph prob-
lem (in which the degree constraint for vertex v has the
positive integer bv as right-hand side). In each of these
cases, a complete description of the convex hull of fea-
sible integer points is available in the form of a class
of inequalities similar to the above ones, which makes
these problems polynomially solvable.

At the other end of the spectrum, one of the hard-
est andmost thoroughly investigated combinatorial op-
timization problems is the traveling salesman problem
(TSP) already mentioned, in which a salesman is look-
ing for a cheapest tour of n cities, given the cost of travel
between all pairs of cities. This is the prototype model
for situations dealing with the optimal sequencing of
objects (e. g., items to be processed on a machine in the
presence of sequence-dependent setup costs). The stan-
dard formulation on a complete directed graph with
node set N and arc costs cij is

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
X
i2N

X
j2Nnfig

ci jxi j

s.t.
X

j2Nnfig

xi j D 1; i 2 N;

X
i2Nnf jg

xi j D 1; j 2 N;

X
i2S

X
j2Snfig

xi j � jSj � 1

for S � N; 2 � jSj � n � 1;
xi j 2 f0; 1g; i; j 2 N; i ¤ j:

The first two sets of equations define an assignment
problem whose solutions are spanning unions of di-
rected cycles. The third set, consisting of inequalities
called subtour elimination constraints, exclude all cy-
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cles with fewer than n = |N| arcs. The number of so-
lutions – tours – is factorial in the number of nodes.
Problems with random costs can be solved even for
thousands of nodes, but some cost structures that oc-
cur in practice tend to give rise to very hard problems
even at small sizes: a class of machine scheduling prob-
lems at chemical plants turn out to be hard to solve as
TSPs on 30–50 node directed graphs. The TSP has be-
come a test bed for the development of, and experimen-
tation with, various approaches to combinatorial opti-
mization. A summary of results until the mid- 1980s is
to be found in [12].

A generalization of the TSP, in which the salesman
does not have to visit all the cities, but gets a prize
for every city that he does visit, is called the prize col-
lecting traveling salesman problem (PCTSP). It asks for
a cheapest tour of just enough cities to collect a re-
quired amount of prize money. This is the model used
for scheduling the daily ‘rounds’ of a steel rolling mill,
an operation that combines the tasks of selecting the
items for the next round with that of putting them in
the proper sequence. On a directed graph with loops, it
can be formulated as the problem of finding a directed
cycle of minimum arc cost subject to an upper bound
on the sum of loop penalties on nodes not included in
the cycle:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
X
i2N

X
j2Nnfig

ci jxi j

s.t
X

j2Nnfig

xi j C yi D 1; i 2 N

X
i2Nnf jg

xi j C y j D 1; j 2 N

X
i2S

X
j2Snfig

xi j C
X

i2Snfkg

yi � y` � jSj � 1

for S � N; 2 � jSj � n � 1;
k 2 S; ` 2 N n S;X
i2N

wi yi � U;

xi j 2 f0; 1g; yi 2 f0; 1g; 8i; j:

The first two sets of equations are satisfied by any span-
ning union of cycles and loops, while the third set of
constraints excludes multiple cycles. Finally, the last in-
equality bounds at U the weighted sum of loop vari-
ables.

Solution Methods

Unlike linear programs, which are polynomially solv-
able, integer programming problems, including 0–1
programming and most combinatorial optimization
problems, are notoriously difficult: in the language
of computational complexity theory, they are NP-
complete. Polynomial time integer programming algo-
rithms do not exist. However, sometimes an integer
program can be solved as a linear program, in the sense
that solving the linear programming relaxation (L) of
the integer program (i. e. the problem obtained by re-
moving the integrality conditions), one obtains an inte-
ger solution. In particular, this is the case when all the
basic solutions of (L) are integer. For an arbitrary inte-
ger vector b, the constraint set Ax � b, x � 0, if feasi-
ble, is known [10] to have only integer basic solutions
if and only if the matrix A is totally unimodular (i. e. all
square submatrices of A have a determinant equal to 0,
1 or �1).

The best-known instances of total unimodular-
ity are the vertex-edge incidence matrices of directed
graphs, and of undirected bipartite graphs. As a con-
sequence, shortest path and network flow problems on
arbitrary directed graphs, as well as edge matching (or
covering) and vertex packing (or covering) problems
on undirected bipartite graphs, are in fact linear pro-
grams, as are all those integer programswhose LP relax-
ation has as its coefficient matrix the incidence matrix
of a directed graph, or that of an undirected bipartite
graph, with arbitrary integer right-hand sides.

Apart from this important but very special class of
problems, the difficulty in solving integer programs, as
already mentioned, lies in the nonconvexity of the fea-
sible set, which makes it impossible to establish global
optimality from local conditions. The two principal ap-
proaches to solving integer programs try to circumvent
this difficulty in two different ways.

The first approach, which until the late 1980s was
the standard way of solving integer programs, is enu-
merative (branch and bound, implicit enumeration). It
partitions the feasible set into successively smaller sub-
sets tied together as nodes of a branch and bound tree,
calculates bounds on the objective function value over
each subset, and uses these bounds to discard certain
subsets (nodes) from further consideration. The lower
bounds (in a minimization problem) typically come
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from solving the linear programming relaxation cor-
responding to the given node, the upper bounds come
from integer solutions found at some of the nodes. The
procedure ends when each subset has either produced
a feasible solution, or was shown to contain no better
solution than the one in hand. The efficiency of the pro-
cedure depends crucially on the strength of the bounds.
Two early prototypes of this approach are due to A.H.
Land and A.G. Doig [11] and E. Balas [1].

The second approach, known as the cutting plane
method, is a convexification procedure: it approximates
the convex hull of the set of feasible integer points by
a sequence of inequalities that cut off (hence the term
‘cutting planes’) part of the linear programming poly-
hedron, without removing any feasible integer point.
The first finitely convergent procedure of this type,
which uses modular arithmetic to derive valid cutting
planes for pure integer programs, is due to R.E. Gomory
[9]. V. Chvátal [6] has shown that the procedure can
be viewed as one of integer rounding, in which positive
multiples of Ax � b, x � 0 are added up and the co-
efficients of the resulting inequality are rounded down
to the nearest integer. The resulting inequalities form
the elementary closure of Ax � b, x � 0. The proce-
dure can then be applied to the elementary closure, and
so on. The number of times the procedure needs to be
iterated in order to obtain the convex hull of feasible in-
teger points is called the Chvátal rank of the given poly-
hedron. No bound is known on the Chvátal rank of an
arbitrary integer polyhedron (convex hull of feasible in-
teger points). By contrast, the matching polyhedron has
Chvátal rank one, since the odd set inequalities can be
obtained from the degree inequalities by integer round-
ing.

The Gomory–Chvátal procedure has been extended
to mixed integer programming and has been enhanced
by the use of subadditive functions and group theory.

A different approach comes from disjunctive pro-
gramming [2,3], or linear programming with logical
conditions (conjunctions, disjunctions and implica-
tions involving inequalities). In this approach, which
uses the tools of convex analysis, like polarity and pro-
jection, 0–1 programming (pure or mixed) is viewed as
optimization over the (nonconvex) union of (convex)
polyhedra, i. e. a set of the form [i 2 QPi, where Pi =
{x: Aix � bi}, i 2 Q. There is a compact characteriza-
tion of the convex hull PD := conv [i 2 QPi in a higher-

dimensional space, whose projection onto the original
space yields all the valid cutting planes. Thus ˛x � ˇ
is a valid inequality for [i 2 QPi if and only if ˛ � ui Ai

and ˇ � ui bi for some ui � 0, i 2 Q. A central result of
this approach is that an important class of disjunctive
programs, called facial, which includes pure and mixed
0–1 programs, are sequentially convexifiable. For a 0–1
program (pure or mixed) with n 0–1 variables and a lin-
ear programming relaxation P0, this means that one can
impose the 0–1 condition on x1 and generate the con-
vex hull P1 of P00 [ P01, where P00 := {x 2 P0: x1 =
0}, P01 := {x 2 P0: x1 = 1}; then impose the 0–1 con-
dition on x2 and generate the convex hull P2 of P10 [

P11, where P10 := {x 2 P1: x2 = 0}, P11 := {x 2 P1: x2 =
1}; etc., and at the end of n steps, the convex hull Pn

of Pn� 1, 0 [ Pn � 1, 1 turns out to be the convex hull of
{x 2 P0: xj 2 {0, 1}, j = 1, . . . , }. This property does not
hold for arbitrary integer programs, and is thus a main
distinguishing feature of 0–1 programs. If one defines
the disjunctive rank of a polyhedron as the number of
times the above procedure has to be iterated in order to
generate all of its facets, it follows that an arbitrary 0–1
programming polyhedron has disjunctive rank n.

Although these results date back to 1974, it was
not until the early 1990s that they were implemented
into an efficient computational tool called lift-and-
project ([4]). The name conveys the idea of a higher-
dimensional representation of the convex hull (lift-
ing), which is then projected back to generate cutting
planes. In the meantime, L. Lovász and A. Schrijver
[13] (see also [18]) developed a closely related proce-
dure which derives higher-dimensional representations
of a 0–1 programming polyhedron by multiplying the
constraint set of P0 with the inequalities xj � 0 and 1
� xj � 0, j 2 N, then linearizing the resulting quadratic
forms, and projecting them back into the original space.
As in the disjunctive programming approach, n iter-
ations of this procedure yield the convex hull of the
0– 1 programming polyhedron. However, the quadratic
forms obtained during the procedure can also be used
to derive positive semidefiniteness constraints that are
stronger than the inequalities obtained by linearization.

Semidefiniteness constraints aside, a streamlined
version of the Lovász–Schrijver procedure, in which P0

is multiplied at every iteration by just one pair of in-
equalities xj � 0, 1 � xj � 0, rather than by all pairs,
was shown in [4] to be equivalent to the disjunctive
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programming procedure for 0–1 polyhedra, in that the
linearized version of the quadratic constraints obtained
by multiplication is exactly the same as the higher-
dimensional representation of the convex hull used in
disjunctive programming. The paper [4] also showed
how to use a cut generating linear program (CGLP)
to obtain lift-and-project (or disjunctive) cuts that are
deepest in a well defined sense. Most importantly, these
cuts can be generated in a subspace, i. e. using only
a subset of the variables, and then lifted to the full space.
It was this aspect which has led to a computational
breakthrough. Earlier attempts to implement cutting
plane procedures of whatever type for general integer or
0–1 programs foundered on the phenomenon known as
‘stalling’: in the process of generating a sequence of cut-
ting planes and reoptimizing the linear program, after
a while the new cuts tended to become shallower and
the process tended to run into numerical difficulties.
Now the possibility of lifting cuts generated in a sub-
space has opened the door to combining the enumer-
ative and convexifying approaches into a branch and
cut procedure, which generates cutting planes as long
as they ‘work’, but branches whenever the cut generat-
ing ‘stalls’. This was made possible by the fact that cuts
generated at a node of the search tree can be lifted to
be valid at any node. The outcome was a robust proce-
dure, considerably more efficient than either a branch
and bound or a cutting plane algorithm by itself [5].

Besides these two basic approaches (enumerative
and convexifying), two further procedures need to be
mentioned that do not belong to either category, but
can be combined with either of them. Both procedures
essentially decompose the problem, one of them by par-
titioning the variables, the other by partitioning the
constraints. The first one, known as column generation,
starts with a subset of the columns and generates the
missing columns as needed, by pricing them out. It is an
extension to integer programming of well-known linear
programming decomposition techniques. The second
one, known as Lagrangian relaxation, works with a sub-
set of the constraints, while assigning Lagrange multi-
pliers to the remaining constraints and taking them into
the objective function.

Each of the approaches outlined above aims at solv-
ing the integer program exactly. However, due to the
NP-completeness of the problem, approximationmeth-
ods and heuristics play an increasingly important role

in this field. Some highly efficient heuristics are known
for several special structures. As to the general problem,
heuristics have so far been less uniformly successful.

The State of the Art

Until about 1985, most of the integer programming
problems encountered in practice were too large to
be solved in useful time by existing algorithms and
codes. This situation has drastically changed during the
decade of the 1990s. MIPLIB is a collection of inte-
ger programming problems that various people have
tried to solve over the last two decades or so, often
unsuccessfully. It contains scores of instances varying
in structure, size and computational toughness. A few
years ago even those instances that could be solved
took a very long time. Today a large majority of these
problems have been solved and can be solved in use-
ful time. A number of tools are available for this pur-
pose. Among academic codes, we mention MIPO [5],
MINTO [14] and ABACUS [19]. The best-known com-
mercial codes are CPLEX, XPRESS and OSL.
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This article highlights some of the recent results in the-
oretical integer programming that have been obtained
by studying integer programs using tools from com-
mutative algebra and algebraic geometry. The main
computational tool involved in the discussion here is
the Gröbner basis of a special polynomial ideal called
a ‘toric ideal’ [29]. For connections between Gröbner
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bases of toric ideals and polytopes see [29] and for
Gröbner basis theory for general polynomial ideals see
[1] and [11]. Toric ideals and more generally, ‘lattice
ideals’ [32], have been the subject of much research in
the past decade. The discussion in this article follows
a specific route through the work done in this area. All
effort will be made to include references needed for de-
tails and further reading.

Toric Ideals and Integer Programming

We will be concerned with integer programs of the
form IPA, c(b) := min{c � x: Ax = b, x 2 Nn} where A
is a fixed d × n integer matrix of rank d. HereN denotes
the nonnegative integers. The right-hand side vector b
will be assumed to lie in the monoid posZ(A) := {Ax: x
2Nn} which guarantees that IPA, c(b) is always feasible.
Let kerZ(A) denote the (n � d)-dimensional saturated
lattice {u 2 Zn: Au = 0}. For simplicity we assume that
kerZ(A) \ Nn = {0} which implies that Pb := conv{x 2
Nn: Ax = b} is a polytope for all b 2 posZ(A). For b 2
posZ(A) and a v 2 Pb \ Nn the set of lattice points in
Pb is precisely the congruence class in Nn of v modulo
kerZ(A).

The toric ideal of A is the d-dimensional binomial
prime ideal

IA :D
�
xu
C

� xu
�

: u :D uC � u� 2 kerZ(A);
uC; u� 2 Nn

�

in k[x] := k[x1, . . . , xn] where k is a field. The cost vector
c lies in Rn and for each polynomial f =

Pl
iD1 kix

˛i 2 IA
the initial term of f with respect to c, denoted as inc(f ),
is the sum of those terms in f for which c � ˛i is maxi-
mal. The initial ideal of IA with respect to c is then the
ideal inc(IA) := hinc(f ): f 2 IAi � k[x]. We will assume
unless stated otherwise that the cost vector c is such that
inc(IA) is amonomial ideal, i.e, inc(IA) can be generated
bymonomials. Such a c is said to be generic with respect
to IPA, the family of all integer programs IPA, c(b) as b
and c vary. Equivalently, c is generic with respect to IPA

if and only if each integer program in the family IPA,
c := {IPA, c(b): b 2 posZ(A)} has a unique optimal solu-
tion. Note that each lattice point ˛ 2 Nn is a solution
to a unique integer program in IPA, c since ˛ lies in PA˛

and in no other polytope of the form Pb. The following
theorem relates inc(IA) to IPA, c.

Lemma 1 The lattice point ˛ 2 Nn is a nonoptimal so-
lution to IPA, c(A˛) if and only if the monomial x˛ lies in
the initial ideal inc(IA).

Proof The lattice point ˛ 2 Nn is a nonoptimal solu-
tion to IPA, c(A˛) if and only if there exists ˇ in PA˛

\ Nn such that c � ˛ > c � ˇ. This is equivalent to the
statement that x˛ � xˇ is a nonzero element of IA with
inc(x˛ � xˇ ) = x˛ .

The standard monomials of inc(IA) are precisely all the
monomials in k[x] that do not lie in inc(IA).

Corollary 2 Amonomial x� 2 k[x] is a standard mono-
mial of inc(IA) if and only if � is the unique optimal so-
lution to the integer program IPA, c(A� ).

By Corollary 2, there is a bijection between the standard
monomials of inc(IA) and the elements of the monoid
posZ(A).

The Conti–Traverso Algorithm

In [9], P. Conti and C. Traverso gave an algorithm to
solve integer programs using Gröbner bases of toric
ideals. A Gröbner basis with respect to c, of the toric
ideal IA, is any finite subset H of IA such that inc(IA) =
hinc(f ): f 2 Hi. A Gröbner basis H is reduced if it has
the additional property that for each f 2 H, the coef-
ficient of inc(f ) is the identity in k and inc(f ) does not
divide any term in another element g of H. Reduced
Gröbner bases are unique.

Let Gc denote the reduced Gröbner basis of IA with
respect to c. Then Gc has the form {x˛i � xˇi : i = 1, . . . ,
t} where ˛i � ˇi 2 kerZ(A), ˛i, ˇi 2 Nn and supp(˛i) \
supp(ˇi) = ; for all i = 1, . . . , t. For p 2 Zn, supp(p) :=
{i 2 [n] := {1, . . . , n}: pi 6D 0} denotes the support of p. If
x˛i � xˇi 2 Gc then we always assume that c � ˛i > c � ˇi.

Lemma 3 If Gc = {x˛i � xˇi : i = 1, . . . , t} is the reduced
Gröbner basis of IA with respect to c then
i) {x˛i : i = 1, . . . , t} is the minimal generating set of the

initial ideal inc(IA); and
ii) for each binomial x˛i � xˇi 2 Gc, ˇi is the unique

optimal solution to the integer program IPA, c(A˛i).

Proof Part i) follows from the definition of reduced
Gröbner bases. For each binomial x˛i � xˇi 2 Gc we
have A˛i = Aˇi, ˛i, ˇi 2 Nn and c � ˛i > c � ˇi. If ˇi

is a nonoptimal solution to IPA, c(A˛i) then xˇi lies in
inc(IA) by Lemma 1 and hence some x˛ j for j = 1, . . . , t
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will divide xˇi contradicting the definition of a reduced
Gröbner basis.

The conditions in Lemma 3 are in fact also sufficient
for a finite subset of binomials in IA to be the reduced
Gröbner basis of IA with respect to c. Given f 2 IA, the
normal form of f with respect to Gc is the unique re-
mainder obtained upon dividing f by Gc. See [11] for
details on the division algorithm in k[x]. The structure
of Gc implies that the normal form of a monomial xv

with respect to Gc is a monomial xv0 such that both v
and v0 are solutions to IPA, c(Av). The Conti–Traverso
algorithm for IPA, c can be summarized as follows.

Input: The matrix A and cost vector c.
Pre-processing:

1 Find a generating set for the toric ideal IA.
2 Compute the reduced Gröbner basis, Gc ,

of IA with respect to the cost vector c.
To solve IPA;c (b):

3 Find a solution v to IPA;c (b):
4 Compute the normal form xv� of the mono-

mial xv with respect to the reduced Gröbner
basis Gc .
Then v� is the optimal solution to IPA;c(b).

Conti-Traverso algorithm: How to solve programs in IPA, c

Proof In order to prove the correctness of this algo-
rithm, it suffices to show that for each solution v of
IPA, c(b), the normal form of xv moduloGc is the mono-
mial xv� where v� is the unique optimal solution to
IPA, c(b). Suppose xw is the normal form of the mono-
mial xv. Then w is also a solution to IPA, c(b) since the
exponent vectors of all monomials xw0 obtained during
division of xv by Gc satisfy b = Av = Aw0, w0 2 Nn. If w
6D v�, then xw � xv� 2 IA and inc(xw � xv�) = xw since c
� w > c � v�. This implies that xw 2 inc(IA) and hence can
be further reduced by Gc contradicting the definition of
the normal form.

Computational Issues

The Conti–Traverso algorithm above raises several
computational issues. In Step 1, we require a generating
set of the toric ideal IA which can be a computationally
challenging task as the size of A increases. The origi-
nal Conti–Traverso algorithm starts with the ideal JA :=

hxjta j� � ta j+ : j = 1, . . . , n, t0t1 � � � td � 1i in the larger
polynomial ring k[t0, . . . , td, x1, . . . , xn] where aj = aCj �
a�j is the jth column of the matrix A. The toric ideal IA
= JA \ k[x] and hence the reduced Gröbner basis of IA
with respect to c can be obtained by elimination (see [11
Chapt. 3]). Although conceptually simple, this method
has its limitations as the size of A increases since it re-
quires d + 1 extra variables over those present in IA and
the Buchberger algorithm for computing Gröbner bases
[8] is sensitive to the number of variables involved. Two
different algorithms for computing a generating set for
IA without introducing extra variables can be found in
[5] and [18] respectively.

Once the generating set of IA has been found, one
needs to compute the reduced Gröbner basis Gc of
IA. This can be done by any computer algebra package
that does Gröbner basis computations like Macaulay2,
Maple, Reduce, Singular or Cocoa to name a few. Co-
coa has a dedicated implementation for toric ideals [6].
As the size of the problem increases, a straightforward
computation of reduced Gröbner bases of IA can be-
come expensive and even impossible. Several tricks can
be applied to help the computation, many of which are
problem specific.

In Step 3 of the Conti–Traverso algorithm above
one requires an initial solution to IPA, c(b). The original
Conti–Traverso algorithm achieves this indirectly dur-
ing the elimination procedure. Theoretically this task
can be as hard as solving IPA, c(b), although in practice
this depends on the specific problem at hand. The last
step – to compute the normal form of a monomial with
respect to the current reduced Gröbner basis – is (rela-
tively speaking) a computationally easy task.

In practice, one is often only interested in solving
IPA, c(b) for a fixed b. In this situation, the Buchberger
algorithm can be truncated to produce a sufficient set of
binomials that will solve this integer program [35]. This
idea was originally introduced in [36] in the context of
0 – 1 integer programs in which all the data is nonnega-
tive. See also [10]. A ‘nontoric algorithm’ for solving in-
teger programs with fixed right-hand sides was recently
proposed in [4].

Test Sets in Integer Programming

A geometric interpretation of the Conti–Traverso algo-
rithm above and more generally of the Buchberger al-
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gorithm for toric ideals can be found in [34]. A test set
for IPA, c is a finite subset of vectors in kerZ(A) such that
for an integer program IPA, c(b) and a nonoptimal solu-
tion v to this program, there is some u in the test set
such that c � v > c � (v � u). By interpreting a binomial
x˛i � xˇi 2 Gc as the vector ˛i � ˇi 2 kerZ(A), it can be
seen thatGc is the unique minimal test set for the family
IPA, c. A closely related test set for integer programming
is the set of neighbors of the origin introduced by H.E.
Scarf [26].

The binomial x˛i � xˇi 2 Gc can also be viewed as
the directed line segment [˛i, ˇi] directed from ˛i to
ˇi. For each b 2 posZ(A) we now construct a directed
graph Fb, c as follows: the vertices of this graph are the
solutions to IPA, c(b) and the edges of this graph are all
possible directed line segments from Gc that connect
two vertices of this graph. Then Gc is a necessary and
sufficient set of directed line segments such that Fb, c

is a connected graph with a unique sink (at the optimal
solution) for each b2 posZ(A). This geometric interpre-
tation of Gc can be used to solve several problems. By
reversing the directions on all edges in Fb, c, one obtains
a directed graphwith a unique root. One can enumerate
all lattice points in Pb by searching this graph starting
at its root. This idea was used in [33] to solve a class
of manufacturing problems. The graphs Fb, c provide
a way to connect all the feasible solutions to an inte-
ger program by lattice moves. This idea was applied to
statistical sampling in [13].

Universal Gröbner Bases

A subset UA of IA is a universal Gröbner basis for IA
if UA contains a Gröbner basis of IA with respect to
all (generic) cost vectors c 2 Rn. The Graver basis of
A [16] is a finite universal Gröbner basis of IA that
can be described as follows. For each � 2 {+, �}n, let
H� be the unique minimal generating set (over N) of
the semigroup kerZ(A) \ Rn

� . Then the Graver basis,
GrA := [�H� \{0}. An algorithm to compute GrA can
be found in [30]. It was shown in [34] that all reduced
Gröbner bases of IA are contained in GrA which implies
that there are only finitely many distinct reduced Gröb-
ner bases for IA as c varies over generic cost vectors.
Let UGBA denote the union of all the distinct reduced
Gröbner bases of IA. Then UGBA is a universal Gröbner
basis of IA that is contained in the Graver basis GrA. The

following theorem from [30] characterizes the elements
of UGBA and thus allows one to test whether a binomial
x˛i � xˇi 2 GrA belongs UGBA. A second test can also
be found in [30]. A vector u 2 Zn is said to be primitive
if the g.c.d. of its components is one.

Theorem 4 For a primitive vector u 2 kerZ(A), the bi-
nomial xuC � xu� belongs to UGBA if and only if the
line segment [u+, u�] is a primitive edge in the polytope
PAuC .

The degree of a binomial x˛i � xˇi 2 IA, is defined to
be
P
˛ij+

P
ˇij. The degree of the universal Gröbner

basis UGBA is then simply the maximum degree of any
binomial in UGBA. This number is an important com-
plexity measure for the family of integer programs that
have A as coefficient matrix. The current best bound for
the degree of UGBA is as follows. See [29, Chapt. 4] for
a full discussion.

Theorem 5 The degree of a binomial x˛i � xˇi 2
UGBA, is at most (n � d)(d + 1)D(A) where D(A) is the
maximum absolute value of the determinant of a d × d
submatrix of A.

It has been conjectured that this bound can be im-
proved to (d + 1)D(A) and some partial results in this
direction can be found in [17].

The universal Gröbner bases of several special in-
stances of A have been investigated in the literature,
a few of which we mention here. For the family of 1
× nmatrices A(n) := [1, . . . , n] it was shown in [12] that
the Graver basis of A(n) is in bijection with the primi-
tive partition identities with largest part n. A matrix A 2
Zd × n is unimodular if the absolute values of the deter-
minants of all its nonsingular maximal minors are the
same positive constant. For u 2 kerZ(A), the binomial
xuC � xu� 2 IA is a circuit of A if u is primitive and
has minimal support with respect to inclusion. Let CA

denote the set of circuits of A. Then in general, CA �

UGBA � GrA. If A is unimodular, then all of the above
containments hold at equality although the converse is
false: there are nonunimodular matrices for which CA

= GrA. If An is the node-edge incidence matrix of the
complete graph Kn then the elements in UGBAn can be
identified with certain subgraphs of Kn. Gröbner bases
of these matrices were investigated in [23]. The integer
programs associated with An are the b-matching prob-
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lems in the literature [24]. See [29, Chapt. 14] for some
other specific examples of Gröbner bases.

Variation of Cost Functions
in Integer Programming

We now consider all cost vectors in Rn (not just the
generic ones) and study the effect of varying them. As
seen earlier IA has only finitely many distinct reduced
Gröbner bases as c is varied over the generic cost vec-
tors. We say that two cost vectors c1 and c2 are equiv-
alent with respect to IPA if for each b 2 posZ(A), the
integer programs IPA;c1 (b) and IPA;c2 (b) have the same
set of optimal solutions. The Gröbner basis approach
to integer programming allows a complete character-
ization of the structure of these equivalence classes of
cost vectors.

Theorem 6 [30]
i) There exists only finitely many equivalence classes of

cost vectors with respect to IPA.
ii) Each equivalence class is the relative interior of

a convex polyhedral cone in Rn.
iii) The collection of all these cones defines a complete

polyhedral fan in Rn called the Gröbner fan of A.
iv) Let db denote any probability measure with support

posZ(A) such that
R
b b db <1.

Then the Minkowski integral St(A) =
R
b Pb db is an (n�

d)-dimensional convex polytope, called the state polytope
of A. The normal fan of St(A) equals the Gröbner fan
of A.

Gröbner fans and state polytopes of graded polynomial
ideals were introduced in [25] and [2] respectively. For
a toric ideal both these entities have self contained con-
struction methods that are rooted in the combinatorics
of these ideals [30]. For a software system for comput-
ing Gröbner fans of toric ideals see [21].

We call Pb for b 2 posZ(A) a Gröbner fiber of A if
there is some xuC � xu� 2 UGBA such that b = Au+

= Au�. Since there are only finitely many elements in
UGBA the matrix A has only finitely many Gröbner
fibers. Then the Minkowski sum of all Gröbner fibers
of A is a state polytope of A. For a survey of algorithms
to construct state polytopes and Gröbner fans of graded
polynomial ideals see [29, Chapt. 2; 3]. The Gröbner fan
of A provides a model for global sensitivity analysis for
the family of integer programs IPA, c.

We now briefly discuss a theory analogous to the
above for linear programming based on results in [7]
and [14]. For a comparison of integer and linear pro-
gramming from this point of view see [30]. Let LPA, c(b)
:= min{c � x: Ax = b, x � 0} where A and c are as be-
fore and b is any vector in the rational polyhedral cone
pos(A) := {Ax: x � 0}. We define two cost vectors c1
and c2 to be equivalent with respect to LPA if the linear
programs LPA;c1 (b) and LPA;c2 (b) have the same set of
optimal solutions for all b 2 pos(A). Let A := {a1, . . . ,
an} be the vector configuration in Zd consisting of the
columns of A. For a subset � �A, we let pos(�) denote
the cone generated by � . A polyhedral subdivision � of
A is a collection of subsets of A such that {pos(�): �
2 �} is a set of cones in a polyhedral fan whose sup-
port is pos(A). The elements of� are called the faces or
cells of �. For convenience we identify A with the set
of indices [n] and any subset of A by the corresponding
subset � � [n]. A cost vector c 2 Rn induces the regular
subdivision �c of A [7,14] as follows: � is a face of �c

if there exists a vector y 2 Rd such that aj � y = cj when-
ever j 2 � and aj � y < cj otherwise. A cost vector c2Rn is
said to be genericwith respect to LPA if every linear pro-
gram in the family LPA, c has a unique optimal solution.
When c is generic for LPA, the regular subdivision �c is
in fact a triangulation called the regular triangulation of
A with respect to c.

Two cost vectors c1 and c2 are equivalent with re-
spect to LPA if and only if �c1 = �c2 . The equivalence
class of c with respect to LPA is hence {c0 2 Rn: �c0 =
�c} which is the relative interior of a polyhedral cone
in Rn called the secondary cone of c, denoted as Sc. The
cone Sc is n-dimensional if and only if c is generic with
respect to LPA. The set of all equivalence classes of cost
vectors fit together to form a complete polyhedral fan in
Rn called the secondary fan of A. This fan is the normal
fan of a polytope called the secondary polytope of A. See
[7] for construction methods for both the secondary fan
and polytope of A.

We conclude this section by showing that the Gröb-
ner and secondary fans of A are related. The Stanley–
Reisner ideal of �c is the square-free monomial ideal
hxi1 � � � xir : {i1, . . . , ir} is a nonface of�ci � k[x].

Theorem 7 [28] The radical of the initial ideal inc(IA)
is the Stanley–Reisner ideal of the regular triangulation
�c.
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Corollary 8 [28]
i) The Gröbner fan of A is a refinement of the secondary

fan of A.
ii) A secondary polytope of A is a summand of a state

polytope of A.

Corollary 8 reaffirms the view that integer program-
ming is an arithmetic refinement of linear program-
ming.

Group Relaxations in Integer Programming

We now investigate group relaxations of integer pro-
grams in the family IPA, c from an algebraic point of
view. The results in this section are taken from [19,20]
and [32], sometimes after an appropriate translation
into polyhedral language. See these papers for the al-
gebraic motivations that led to these results.

The group relaxation of IPA, c(b) [15] is the program
Group� (b) :D min fec� � x� : A� x� C A�x� D b;
x� � 0; x D (x� ; x� )Zng, where A� , the submatrix of
A whose columns are indexed by � � [n], is the op-
timal basis of the linear program LPA, c(b) andec� D
c� � c�A�1� A� . Here the cost vector c has also been par-
titioned as c D (c� ; c� ) using the set � � [n].

Definition 9 Suppose L is any sublattice of Zn, w 2 Rn

and v 2 Nn. The lattice program LatL;w (v) defined by
this data is
8̂
<̂
ˆ̂:

min w � u
s.t. u � v mod L;

u 2 Nn :

Lattice programs are a generalization of integer pro-
grams: IPA;c (b) D LatL;c(v) where L = kerZ(A) and v
is any feasible solution to IPA, c(b). Gröbner basis meth-
ods for integer programs can be extended to solve lat-
tice programs (see [20,32]). Given the lattice L and
a cost vector w, we first construct the lattice ideal IL D˝
x˛ � xˇ : ˛ � ˇ 2 L; ˛; ˇ 2 Nn ˛ � k[x]. We then
compute the reduced Gröbner basis of IL with respect
to w denoted as Gw (IL). (If w does not induce a total
order on Nn via the inner product w � x, x 2 Nn, then
we use a tie breaking term order to refine the order in-
duced by w.) For a particular lattice program LatL;w (v),
the optimal solution is the exponent vector of the nor-
mal form of xv with respect to Gw(IL).

Let � � [n] and 
� : Zn ! Zj� j be the coordinate
projection map where the coordinates indexed by � are
eliminated. Consider the lattice L� := 
� (L) where L
= kerZ(A). Given a basis {b1, . . . , bn� d} of L, the set
{
� (b1), . . . , 
� (bn � d)} forms a basis for L� . Further,

� : L! L� is an isomorphism whenever rank(A� ) =
|� |.

Proposition 10 [32] Let v be a feasible solution to
IPA, c(b) and A� be the optimal basis of LPA, c(b). Then
the group relaxation Group� (b) of IPA, c(b) is the lat-
tice program LatL� ;ec� (
� (v)) where ec� D 
� (c �
c� (A� )�1A) D c� � c�A�1� A� .

The program Group� (b) can be solved by Gröbner ba-
sis methods as explained earlier or by dynamic pro-
gramming [15]. The optimal solution x�� to Group� (b)
is then lifted to the unique vector x� D (x�� ; x�� ) 2 Zn

by solving the equation A�x� C A� x�� D b. If all com-
ponents of x�� are nonnegative then x� is the optimal
solution to IPA, c(b). Otherwise c � x� is a lower bound
to the optimal value of IPA, c(b).

When Group� (b) fails to solve IPA, c(b), L. Wolsey
[37] suggested using extended group relaxations of
IPA, c(b). We introduce a more general set of extended
group relaxations of IPA, c(b) inspired by the following
close relationship between the linear programs in LPA, c

and the regular triangulation �c.

Proposition 11 [30] The optimal solutions x to
LPA, c(b) are the solutions to the problem: Find x 2 Rn

such that Ax = b, x � 0, and supp(x) is a subset of a face
of�c.

Proposition 11 says that the set � in Group� (b) is
a maximal face of�c.

Definition 12 Consider the integer program IPA, c(b)
and a feasible solution v to this program. Let � be
a face of �c and � be any maximal face of �c contain-
ing � . Then the group relaxation of IPA, c(b) with re-
spect to � denoted as Group� (b) is the lattice program
LatL� ;ec� (
� (v)) whereec� :D 
� (c � c�A�1� A).

The extended group relaxations in [37] are precisely
those Group� (b)s where � is a subset of the maximal
face � of �c that gives the optimal basis of LPA, c(b).
Clearly, one such relaxation will solve IPA, c(b). How-
ever, we consider all relaxations of IPA, c(b) of the form
Group� (b) as � varies over all faces of �c in order to
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avoid keeping track of which b is being considered and
what the optimal basis of LPA, c(b) is.

It was shown in [32] that the lattice program
Group� (b) is related to the localization of the initial
ideal inc(IA) at the prime ideal p� := hxj: j 62 �i in k[x].
Since group relaxations are always defined with respect
to a face � of �c, we are guaranteed that rank(A� ) =
|� | which allows a unique lifting of the optimal solution
of Group� (b) to a vector in the same congruence class
modulo L as the solutions to IPA, c(b).

Theorem13 [20] Suppose u0 2 Nj� j is the optimal solu-
tion to the group relaxation Group� (b). Then there exists
a unique u 2 Zn such that A(u � v) = 0 for any feasible
solution v to IPA, c(b) and 
� (u) = u0. If u � 0 then it is
the optimal solution to IPA, c(b).

A group relaxation Group� (b) is easiest to solve when �
is a maximal face of�c. In this situation, the lattice ideal
IL� is zero dimensional and hence their Gröbner bases
are easier to compute than otherwise. We call such
group relaxations the Gomory relaxations of IPA, c(b).
In general one is most interested in those group relax-
ations Group� (b) that solve IPA, c(b) with |� | as large
as possible. In the rest of this section we study sev-
eral structural properties of these ‘least tight’ extended
group relaxations that solve programs in IPA, c. We first
need a diversion into combinatorics.

For m 2 Nn, we define support of xm 2 k[x] to be
supp(m).

Definition 14 For a monomial xm 2 k[x] and � � [n],
we say that (xm, �) is an admissible pair of a monomial
idealM if
i) supp(m) \ � = ;; and
ii) every monomial in xm � k[xj: j 2 �] is a standard

monomial ofM.

There is a natural partial order on the set of all admissi-
ble pairs ofM given by (xm, �) � (xm0 , � 0) if and only if
xm divides xm0 and supp(xm0/xm) [ � 0 � � .

Definition 15 An admissible pair (xm, �) ofM is called
a standard pair of M if it is a minimal element in the
poset of all admissible pairs with respect to the above
partial order.

The standard pairs of M induce a unique covering of
the set of standard monomials of M which we refer to
as the standard pair decomposition of M. This decom-
position was introduced in [31] to study the associated

primes ofM and their multiplicities and thus the arith-
metic degree [3] of M. When M is the initial ideal of
a toric ideal stronger conclusions can be drawn. In our
exposition below we bypass much of the algebraic re-
sults associated with the standard pair decomposition
of M, but instead use these results to motivate appro-
priate definitions to continue our discussion of group
relaxations.

Definition 16
i) For � � [n], we define themultiplicity of � , denoted

as mult(�), to be the number of standard pairs of the
form (xm, �) in the standard pair decomposition of
M.

ii) The sum of the multiplicities of � as � varies over
the subsets of [n] is called the arithmetic degree of
M, denoted as arithdeg(M).

In the rest of this section we letM = inc(IA).

Proposition 17 [29, Sect. 12.D]
i) If (xm, �) is a standard pair of inc(IA) then � is a face

of�c.
ii) The standard pair (1, �) occurs in the standard pair

decomposition of inc(IA) if and only if � is a maximal
face of�c. In this case, mult(�) is the normalized vol-
ume of � in�c.

The normalized volume of a maximal face � 2 �c is
the quotient |det(A� )|/T where T is the g.c.d. of all
|det(A� 0 )| as � 0 varies over the maximal faces of �c.
We note that the converse to Proposition 17i) is false.
If � is a nonmaximal face of �c then there may not be
a standard pair of the form (xm, �) in the standard pair
decomposition of inc(IA).

The standard pair decomposition of in c(IA) reduces
the problem of solving integer programs in IPA, c to
solving systems of linear equations: if ˇ is the optimal
solution to the program IPA, c(b), then the monomial
xˇ is covered by some standard pair (xu, �). Thinking
of u as a vector in Nj� j (by adding zero components if
necessary), we get ˇ� D u and ˇ� is the unique solu-
tion to the linear system A�x� D b � A�u. Therefore,
if the standard pairs of inc(IA) are known a priori, then
one can set up arithdeg(inc(IA))-many systems of lin-
ear equations – one for each standard pair. For each b 2
posZ(A), one then solves for ˇ� as above. Whenever the
ˇ� obtained this way is both integral and nonnegative,
we have found the optimal solution to IPA, c(b). Hence
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arithdeg(inc(IA)) can be seen as a complexity measure
of IPA, c. See [22] for another preprocessing of IPA, c that
reduces solving IPA, c(b) to solving a sequence of sub-
problems involving super additive functions.

Theorem 18 [20]
i) The integer program IPA, c(b) is solved by the group

relaxation Group� (b) if and only if the monomial xˇ ,
where ˇ is the optimal solution to IPA, c(b), is covered
by a standard pair (x˛ , � 0) of inc(IA) for some � 0 � � .

In order to state the main results, we need yet an-
other interpretation of group relaxations of programs
in IPA, c.

Let �A: Nn! Zd be the linear map x 7�! Ax. Then
Pb is the convex hull of ��1A (b) for each b 2 posZ(A).
Consider a matrix B 2 Zn × (n� d) such that the columns
of B form a basis for kerZ(A) (as an Abelian group). For
v 2 ��1A (b) we can identify ��1A (b) with the lattice points
in the polytope

Qv :D
n
u 2 Rn�d : Bu � v

o
; (1)

via the bijection Qv \ Zn � d ! ��1A (b) such that u!
v � Bu. Under this bijection, v 2 ��1A (b) corresponds
to 0 2 Qv. We refer to Qv as a Scarf formulation of Pb

= conv(��1A (b)). If v, v0 2 ��1A (b), then Qv and Qv0 are
simply lattice translates of each other.

Proposition 19 If v is a feasible solution to IPA, c(b),
then IPA, c(b) is equivalent to

min
n
�(cB) � u : u 2 Qv \ Zn�d

o
(2)

Proof A lattice point v� is the optimal solution to
IPA, c(b):
, there exists u� 2 Zn� d such that v� = v � Bu�

� 0 and c(v � Bu�) < c(v � Bu) for all u 6D u� 2 Zn � d

with v � Bu� 0
, there exist u� 2 Qv \ Zn� d such that � (cB) � u�

< � (cB) � u for all u 2 Qv \ Zn � d

, u� is the optimal solution of the integer program
(2).

We will refer to the integer program (2) as a Scarf for-
mulation of IPA, c(b). Using the optimal solution u� of
the Scarf formulation (2), we define the following sub-
polytope of Qv:

Qv (u�) :D
n
u 2 Rn�d :

Bu � v; �(cB) � u � �(cB) � u�g :
(3)

Theorem 20 Let v 2 Nn be a feasible solution to
IPA, c(b). Then u� is the optimal solution to (2) if and
only if u� is the unique lattice point in Qv(u�). In partic-
ular, v is the optimal solution to IPA, c(b) if and only if 0
is the unique lattice point in Qv(0) = {u 2 Rn� d: Bu� v,
� (cB) � u � 0}.

Proof A vector u� 2 Zn � d is the optimal solution to
(2) if and only if u� is in Qv and there is no u 2 Qv

\ Zn � d such that � (cB) � u < � (cB) � u�. Since c is
a generic cost vector, this is equivalent to u� being the
unique lattice point in Qv(u�). The second statement
follows immediately.

Corollary 21 A monomial xv is a standard monomial
of inc(IA) if and only if 0 is the unique lattice point in
Qv(0).

Let B� denote the submatrix of B whose rows are in-
dexed by the set � � [n].

Lemma 22 Suppose � is a maximal face of �c and �
a subface of � . Thenec�B� D cB whereec� D 
� (c �
c� (A� )�1A).

Proof Since the support of c� c� (A� )�1A is contained
in � ,ec�B� D (c � c� (A� )�1A)B D cB.

Theorem 23 Let v be a feasible solution to IPA, c(b), and
suppose that � is a maximal face of �c and � a subface
of � . Then the group relaxation Group� (b) is the integer
programmin

˚
�(cB) � u : B�u � 
� (v); u 2 Zn�d�.

Proof Since L� D
˚
B�u : u 2 Zn�d�, we have:

LatL� ;ec� (
� (v))

:D min
�
ec� � w : w � 
� (v) (mod L� );

w 2 Nj� j

	

D min

8<
:ec� � w :

w 2 Nj� j;
w D 
� (v) � B�u;

u 2 Zn�d

9=
;

D min
�
ec� � w : 
� (v) � B�u � 0;

u 2 Zn�d

	

D min
�
ec� � (
� (v) � B�u) : B�u � 
� (v);

u 2 Zn�d

	

D min
�
(�ec�B� ) � u : B�u � 
� (v);

u 2 Zn�d
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D min
�
�(cB) � u :

B�u � 
� (v);
u 2 Zn�d

	

by Lemma 22.

We will denote the polyhedron obtained from Qv by
removing the inequalities corresponding to � by Q�v .
By the above theorem, solving the group relaxation of
IPA, c(b) with respect to � 2 �c is equivalent to mini-
mizing the linear functional � (cB) � u over the lattice
points in Q�v . Now we can characterize which group re-
laxations will solve IPA, c(b).

Corollary 24
i) Let v be a feasible solution to IPA, c(b). Then

Group� (b) solves IPA, c(b) if and only if the pro-
grams min{�(cB) � u: u 2 Qv \ Zn � d} and
min

˚
�(cB) � u : u 2 Q�v \ Zn�d� have the same op-

timal solutions.
ii) If v is optimal for IPA, c(b), then Group� (b) solves

IPA, c(b) if and only if 0 is the unique lattice point in
Q�v (0) :D fu 2 Rn�d : B�u � 
� (v);�(cB) �u � 0g.

For a polyhedron P = {x 2 Rp: Tx� t} we say that an in-
equality Tix� ti is essential if the relaxation of the poly-
hedron obtained by removing Tix � ti contains a new
lattice point.

Theorem 25 [19] An admissible pair (xv, �) is a stan-
dard pair of inc(IA) if and only if 0 is the unique lattice
point in Q�v (0) and all of the inequalities in the system
B�u � 
� (v) are essential.

Using the above characterization of the standard pairs
of inc(IA) we obtain a combinatorial interpretation
formult(�) and arithdeg(inc(IA)).

Corollary 26
i) The multiplicity of � is the number of polytopes of the

form Q�v (0) :D fu 2 Rn�d : B�u � v; �(cB) � u �
0g where v 2 Nj� j, 0 is the unique lattice point in
Q�v (0) and all inequalities in B�u � v are essential.

ii) The arithmetic degree of inc(IA) is the total number
of such polytopes Q�v (0) as � ranges over the subsets
of [n].

The result that mult(�) is the normalized volume of �
when � is a maximal face of �c is a special case of the
above more general interpretation of multiplicity. See
[19].

Corollary 27 For the initial ideal inc(IA), the following
are equivalent:

i) The initial ideal inc(IA) has no standard pairs of the
form (xm, �) where � is a nonmaximal face of�c.

ii) For a face � 2�c, if there exists a v 2 Nj� j such that
Q�v (0) contains the origin as its unique lattice point
and all inequalities are essential then � is a maximal
face of�c and Q�v (0) is a simplex.

iii) All programs in IPA, c can be solved by group relax-
ations with respect to maximal faces of�c.

iv) The arithmetic degree of inc(IA) is vol(conv(A)).

Proposition 17 shows that the set of all � in �c that in-
dex standard pairs of inc(IA) is a sub poset (with respect
to inclusion) of the face lattice of �c. We denote this
subposet by Std(�c). Note that both (face lattice of) �c

and Std(�c) have the same maximal elements. We now
show that the elements of Std(�c) come in chains.

Theorem 28 [19] Let � , |� | < d be a nonmaximal face
of�c such that � 2 Std(�c). Then there exists some � 0 2
�c such that � 0 2 Std(�c) with the property that
i) � 0 � � and
ii) |� 0| = |� | + 1.

See [19] for a proof of this theorem. The tools needed
in the proof are polyhedral and depend heavily on the
polyhedral interpretation of a standard pair as given in
Theorem 25. In terms of group relaxations, Theorem
28 is saying that whenever there is a b 2 posZ(A) that
is solved by a ‘least tight’ Group� (b), then there exists
a b0 2 posZ(A) that is solved by a ‘least tight’ Group�

0(b)
where
i) � 0 � � and
ii) |� 0| = |� | + 1.
Hence the ‘least tight’ extended group relaxations that
solve the programs in IPA, c form saturated chains in the
poset Std(�c).

Since a maximal face of �c has dimension d, the
length of a maximal chain in Std(�c), which we denote
as length(Std(�c)), is at most d. However, when n � d
which is the the corank of A is small compared to d,
length(Std(�c)) has a stronger upper bound as shown
below. We need the following result [27, Corol. 16.5a]:

Theorem 29 Let Ax � b be a system of linear inequali-
ties in n variables, and let c 2 Rn. If max{c � x: Ax � b, x
2 Zn} is finite, then max{c � x: Ax � b, x 2 Zn} = max{c �
x: A0 x � b0, x 2 Zn} for some subsystem A0x � b0 of Ax
� b with at most 2n � 1 inequalities.
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Theorem 30 The length of a maximal chain in Std(�c)
is at most min(d, 2n� d � (n � d + 1)).

Proof Suppose v is the optimal solution to IPA, c(b)
which is equivalent to min{� (cB) � u: Bu � v, u 2
Zn� d}. By Theorem 29, we need at most 2n� d � 1 in-
equalities to describe the same integer program. This
means we can remove at least n � (2n� d � 1) inequal-
ities from Bu � v without changing the optimal solu-
tion. Therefore by Theorem 23, IPA, c(b) can be solved
by a group relaxation with respect to a � 2 �c of size
at least n � (2n� d � 1). This implies that the maximal
length of a chain in Std(�c) is at most d � (n � (2n� d

� 1)) = 2n� d � (n� d + 1).

Corollary 31 If A 2 Zd × n has corank two, then
length(Std(�c))� 1.

Proof In this situation, 2n� d � (n � d + 1) = 4 � (4�
2+ 1) = 4 � 3 = 1.

Corollary 32 All programs in the family IPA, c can be
solved by group relaxations with respect to a � 2 �c of
size at least max(0, n � (2n� d � 1)).

We conclude by remarking that the bound in Theorem
30 is sharp. See [19] for details.
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Branch and bound

Overview

An integer programming problem (IP) is an optimiza-
tion problem in which some or all of the variables are
restricted to take on only integer values. The exposition
presented here will focus on the case in which the ob-
jective and constraints of the optimization problem are
defined via linear functions. In addition, for simplicity,
it will be assumed that all of the variables are restricted
to be nonnegative integer valued. Thus, the mathemati-
cal formulation of the problem under consideration can
be stated as:

(IP)

8̂
<̂
ˆ̂:

max c>x
s.t. Ax � b

x 2 Zn
C;
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where A 2 Rm × n, b 2 Rm and c 2 Rn. For notational
convenience, let S denote the constraint set of problem
(IP); i. e.,

S :D
˚
x 2 Zn

C : Ax � b
�
:

The classical approach to solving integer programs
is branch and bound [39]. The branch and bound
method is based on the idea of iteratively partitioning
the set S (branching) to form subproblems of the origi-
nal integer program. Each subproblem is solved – either
exactly or approximately – to obtain an upper bound
on the subproblem objective value. The driving force
behind the branch and bound approach lies in the fact
that if an upper bound for the objective value of a given
subproblem is less than the objective value of a known
integer feasible solution (e. g., obtained by solving some
other subproblem) then the optimal solution of the
original integer program cannot lie in the subset of S as-
sociated with the given subproblem. Hence, the upper
bounds on subproblem objective values are, in essence,
used to construct a proof of optimality without exhaus-
tive search.

One concept that is fundamental to obtaining upper
bounds on subproblem objective values is that of prob-
lem relaxation. A relaxation of the optimization prob-
lem

max
˚
c>x : x 2 S

�

is an optimization problem

max
˚
c>R x : x 2 SR

�
;

where S� SR and c>x� c>R x for all x 2 S. Clearly, solv-
ing a problem relaxation provides an upper bound on
the objective value of the underlying problem. Perhaps
the most common relaxation of problem (IP) is the
linear programming relaxation formed by relaxing the
integer restrictions and enforcing appropriate bound
conditions on the variables; i. e., cR = c and SR = { x 2
Rn : Ax � b, l � x � u }.

A formal statement of a general branch and bound
algorithm [48] is presented in Table 1. The notation L
is used to denote the list of active subproblems {IPi},
where IP0 = (IP) denotes the original integer program.
The notation zi denotes an upper bound on the optimal
objective value of IPi, and zi p denotes the incumbent

Integer Programming: Branch and Bound Methods, Table 1
General branch and bound algorithm

1 (Initialization): Set L = fIP0g; z̄0 = +1; and
zi p =1:

2 (Termination): If L = ;; then the solu-
tion x� which yielded the incumbent objective
value zi p is optimal. If no such x� exists (i.e.,
zi p = �1), then (IP) is infeasible.

3 (Problem selection and relaxation): Select and
delete a problem IPi from L. Solve a relax-
ation of IPi . Let zRi denote the optimal objective
value of the relaxation, and let xiR be an opti-
mal solution if one exists. (Thus, zRi = c>xiR ;

or zRi = �1:)
4 (Fathoming and Pruning):
i) If zRi � zi p go to Step 2.
ii) If zRi > zi p and xiR is integral feasible, up-

date zi p = zRi : Delete from L all problems with
z̄i � zi p: Go to Step 2.

5 (Partitioning): Let fSi jg j=kj=1 be a partition of the
constraint set Si of the problem IPi : Add prob-
lems fIPi jg

j=k
j=1 to L, where IPi j is IPi with fea-

sible region restricted to Si j and z̄i j = zRi for
j = 1; : : : ; k:
Go to Step 2.

objective value (i. e., the objective value corresponding
to the current best integral feasible solution to (IP)).

The actual implementation of a branch and bound
algorithm is typically viewed as a tree search, where
the problem at the root node of the tree is the origi-
nal (IP). The tree is constructed in an iterative fashion
with new nodes formed by branching on an existing
node for which the optimal solution of the relaxation
is fractional (i. e., some of the integer restricted vari-
ables have fractional values). Typically, two child nodes
are formed by selecting a fractional valued variable and
adding appropriate constraints in each child subprob-
lem to ensure that the associated constraint sets do not
include solutions for which this chosen branching vari-
able assumes the same fractional value.

The phrase fathoming a node is used in reference to
criteria that imply that a node need not be explored fur-
ther. As indicated in Step 4, these criteria include:
a) the objective value of the subproblem relaxation at

the node is less than or equal to the incumbent ob-
jective value; and
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b) the solution for the subproblem relaxation is integer
valued.

Note that a) includes the case when the relaxation is
infeasible, since in that case its objective value is �
1. Condition b) provides an opportunity to prune the
tree; effectively fathoming nodes for which the objective
value of the relaxation is less than or equal to the up-
dated incumbent objective value. The tree search ends
when all nodes are fathomed.

A variety of strategies have been proposed for intel-
ligently selecting branching variables, for problem par-
titioning, and for selecting nodes to process. However,
no single collection of strategies stands out as being
best in all cases. In the remainder of this article, some
of the strategies that have been implemented or pro-
posed are summarized. An illustrative example is pre-
sented. Some of the related computational strategies –
preprocessing and reformulation, heuristic procedures,
and the concept of reduced cost fixing – which have
proved to be highly effective in branch and bound im-
plementations are considered. Finally, there is a discus-
sion of recent linear programming based branch and
bound algorithms that have employed interior point
methods for the subproblem relaxation solver, which is
in contrast to using the more traditional simplex-based
solvers.

Though branch and bound is a classic approach for
solving integer programs, there are practical limitations
to its success in applications. Often integer feasible so-
lutions are not readily available, and node pruning be-
comes impossible. In this case, branch and bound fails
to find an optimal solution due to memory explosion
as a result of excessive accumulation of active nodes. In
fact, general integer programs are NP-hard; and conse-
quently, as of this writing (1998), there exists no known
polynomial time algorithm for solving general integer
programs [30].

In 1983, a breakthrough in the computational pos-
sibilities of branch and bound came as a result of the
research by H. Crowder, E.L. Johnson, and M.W. Pad-
berg. In their paper [22], cutting planes were added
at the root node to strengthen the LP formulation be-
fore branch and bound was called. In addition, fea-
tures such as reduced cost fixing, heuristics and pre-
processing were added within the tree search algo-
rithm to facilitate the solution process. See � Inte-
ger programming: Cutting plane algorithms for de-

tails on cutting plane applications to integer program-
ming.

Since branch and bound itself is an inherently par-
allel technique, there has been active research activity
among the computer science and operations research
communities in developing parallel algorithms to im-
prove its solution capability.

Most commercial integer programming solvers use
a branch and bound algorithm with linear program-
ming relaxations. Unless otherwise mentioned, the de-
scriptions of the strategies discussed herein are based
on using the linear programming relaxation.

See [48] for references not listed here; [51] also in-
cludes useful material about branch and bound.

Partitioning Strategies

When linear programming relaxation is employed, par-
titioning is done via addition of linear constraints. Typ-
ically, two new nodes are formed on each division.
Suppose xR is an optimal solution to the relaxation
of a branch and bound node. Common partitioning
strategies include:
� Variable dichotomy [23]. If xRj is fractional, then two

new nodes are created, one with the simple bound
xj � b xRj c and the other with xj � d xRj e; where
b � c and d � e denote the floor and the ceiling of
a real number. In particular, if xj is restricted to be
binary, then the branching reduces to fixing xj = 0
and xj = 1, respectively. One advantage of simple
bounds is that they maintain the size of the basis
among branch and bound nodes, since the simplex
method can be implemented to handle both upper
and lower bounds on variables without explicitly in-
creasing the dimensions of the basis.

� Generalized-upper-bound dichotomy (GUB di-
chotomy) [8]. If the constraint

P
j 2 Q xj = 1 is

present in the original integer program, and xRi , i
2 Q, are fractional, one can partition Q = Q1 [ Q2

such that
P

j2Q1 xRj and
P

j2Q2 xRj are approxi-
mately of equal value. Then two branches can be
formed by setting

P
j2Q1 xj = 0 and

P
j2Q2 xj = 0,

respectively.
� Multiple branches for bounded integer variable. If xRj

is fractional, and xj 2 { 0, . . . , l }, then one can cre-
ate l + 1 new nodes, with xj = k for node k, k = 0,
. . . , l. This idea was proposed in the first branch and
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bound algorithm by A.H. Land and A.G. Doig [39],
but currently (1998) is not commonly used.

Branching Variable Selection

During the partitioning process, branching variables
must be selected to help create the children nodes.
Clearly the choice of a branching variable affects the
running time of the algorithm. Many different ap-
proaches have been developed and tested on different
types of integer programs. Some common approaches
are listed below:
� Most/least infeasible integer variable. In this ap-

proach, the integer variable whose fractional value
is farthest from (closest to) an integral value is cho-
sen as the branching variable.

� Driebeck–Tomlin penalties [25,57]. Penalties give
a lower bound on the degradation of the objective
value for branching each direction from a given vari-
able. The penalties are the cost of the dual pivot
needed to remove the fractional variable from the
basis. If many pivots are required to restore primal
feasibility, these penalties are not very informative.
The up penalty, when forcing the value of the kth
basic variable up, is

uk D min
j:ak j<0

(1 � fk)c j
�ak j

;

where f k is the fractional part of xk, c j is the reduced
cost of variable xj, and the akj are the transformed
matrix coefficients from the kth row of the optimal
dictionary for the LP relaxation. The down penalty
dk is calculated as

dk D min
j:ak j>0

fk c j
ak j

:

Once the penalties have been computed, a variety
of rules can be used to select the branching vari-
able (e. g., maxk max(uk, dk), or maxk min(uk, dk)).
A penalty can be used to eliminate a branch if the
LP objective value for the parent node minus the
penalty is worse than the incumbent integer solu-
tion. Penalties are out of favor because their cost is
considered too high for their benefit.

� Pseudocost estimate. Pseudocosts provide a way to
estimate the degradation to the objective value by
forcing a fractional variable to an integral value. The
technique was introduced in 1970 byM. Benichou et

al. [10]. Pseudocosts attempt to reflect the total cost,
not just the cost of the first pivot, as with penalties.
Once a variable xk is labeled as a candidate branch-
ing variable, the pseudocosts are computed as:

Uk D
zk � zuk
1 � fk

and Dk D
zk � zdk

fk
;

where zk is the objective value of the parent, zuk is the
objective value resulting from forcing up, and zdk is
the objective value from forcing down. (If the sub-
problem is infeasible, the associated pseudocost is
not calculated.) If a variable has been branched upon
repeatedly, an average may be used.
The branching variable is chosen as that with the
maximum degradation, where the degradation is
computed as: Dk f k + Uk (1 � f k). Pseudocosts are
not considered to be beneficial on problems where
there is a large percentage of integer variables.

� Pseudoshadow prices. Similar to pseudocosts, pseu-
doshadow prices estimate the total cost to force
a variable to an integral value. Up and down pseu-
doshadow prices for each constraint and pseu-
doshadow prices for each integer variable are speci-
fied by the user or given an initial value. The degra-
dation in the objective function for forcing an in-
teger variable xk up or down to an integral value
can be estimated. The branching variable is chosen
using criteria similar to penalties and pseudocosts.
See [27,40] for precise mathematical formulations
on this approach.

� Strong branching. This branching strategy arose in
connection with research on solving difficult in-
stances of the traveling salesman problem and gen-
eral mixed zero-one integer programming prob-
lems [2,12,13]. Applied to zero-one integer pro-
grams within a simplex-based branch and cut set-
ting, strong branching works as follows. Let N and
K be positive integers. Given the solution of some
linear programming relaxation, make a list of N bi-
nary variables that are fractional and closest to 0.5
(if there are fewer than N fractional variables, take
all fractional variables). Suppose that I is the index
set of this list. Then, for each i 2 I, fix xi first to 0
and then to 1 and performK iterations (starting with
the optimal basis for the LP relaxation of the cur-
rent node) of the dual simplex method with steepest
edge pricing. Let Li, Ui, i 2 I, be the objective values
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that result from these simplex runs, where Li cor-
responds to fixing xi to 0 and Ui to fixing it to 1.
A branching variable can be selected based on the
best weighted-sum of these two values.

� Priorities selection. Variables are selected based on
their priorities. Priorities can be user-assigned, or
based on objective function coefficients, or on pseu-
docosts.

Node Selection

Given a list of active problems, one has to decide which
subproblem should be selected to be examined next.
This in turn will affect the possibilities of improving the
incumbent, the chance of node fathoming, and the to-
tal number of problems needed to be solved before op-
timality is achieved. Below, various strategies given in
[7,10,11,20,27,29,31,47] are presented.
� Depth-first search with backtracking. Choose a child

of the previous node as the next node; if it is pruned,
choose the other child. If this node is also pruned,
choose the most recently created unexplored node,
which will be the other child node of the last suc-
cessful node.

� Best bound. Among all unexplored nodes, choose
the one which has the best LP objective value. In
the case of maximization, the node with the largest
LP objective value will be chosen. The rationale is
that since nodes can only be pruned when the relax-
ation objective value is less than the current incum-
bent objective value, the node with largest LP objec-
tive value cannot be pruned, since the best objective
value corresponding to an integer feasible solution
cannot exceed this largest value.

� Sum of integer infeasibilities. The sum of infeasibili-
ties at a node is calculated as

s D
X
j

min( f j; 1 � f j):

Choose the node with either maximum orminimum
sum of integer infeasibilities.

� Best estimate using pseudocosts. This technique was
introduced [10] along with the idea of using pseu-
docosts to select a branching variable. The individ-
ual pseudocosts can be used to estimate the resulting
integer objective value attainable from node k:

�k D zk �
X
i

min(Di fi ;Ui (1 � fi));

where zk is the value of the LP relaxation at node k.
The node with the best estimate is chosen.

� Best estimate using pseudoshadow prices. Pseu-
doshadow prices can also be used to provide an esti-
mate of the resulting integer objective value attain-
able from the node, and the node with the best esti-
mate can then be chosen.

� Best projection [29,47]. Choose the node among all
unexplored nodes which has the best projection.
The projection is an estimate of the objective func-
tion value associated with an integer solution ob-
tained by following the subtree starting at this node.
It takes into account both the current objective func-
tion value and a measure of the integer infeasibility.
In particular, the projection pk associated with node
k is defined as

pk D zk �
sk (z0 � zi p)

s0
;

where z0 denotes the objective value of the LP at the
root node, zip denotes an estimate of the optimal in-
teger solution, and sk denotes the sum of the integer
infeasibilities at node k.
The projection is a weighting between the objective
function and the sum of infeasibilities. The weight
(z0 � zi p)/s0 corresponds to the slope of the line be-
tween node 0 and the node producing the optimal
integer solution. It can be thought of as the cost to
remove one unit of infeasibility. Let nk be the num-
ber of integer infeasibilities at node k. A more gen-
eral projection formula is to let wk = � nk + (1 � �)
sk, where � 2 [0, 1], and define

pk D zk �
wk(z0 � zi p)

w0
:

Example 1 Here, a two-variable integer program is
solved using branch and bound. The most infeasible in-
teger variable is used as the branching variable, and best
bound is used for node selection. Consider the problem

IP0

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max 13x1 C 8x2
s.t. x1 C 2x2 � 10

5x1 C 2x2 � 20
x1 � 0; x2 � 0;
x1; x2 integer:
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Initially, L consists of just this problem IP0. The solu-
tion to the LP relaxation is x01 = 2.5, x02 = 3.75, with value
zR0 = 59.5. The most infeasible integer variable is x1, so
two new subproblems are created, IP1 where x1 � 3 and
IP2 where x1 � 2, and L = {IP1, IP2 }.

Both problems in L have the same bound 59.5, so as-
sume the algorithm arbitrarily selects IP1. The optimal
solution to the LP relaxation of IP1 is x11 = 3, x12 = 2.5,
with value zR1 = 59. The most infeasible integer variable
is x2, so two new subproblems of IP1 are created, IP3

where x2 � 3 and IP4 where x2 � 2, and now L = {IP2,
IP3, IP4 }.

The algorithm next examines IP2, since this is the
problem with the best bound. The optimal solution to
the LP relaxation is x21 = 2, x22 = 4, with value zR2 = 58.
Since x2 is integral feasible, zi p can be updated to 58 and
IP2 is fathomed.

Both of the two problems remaining in L have best
bound greater than 58, so neither can yet be fathomed.
Since these two subproblems have the same bound 59,
assume the algorithm arbitrarily selects IP3 to examine
next. The LP relaxation to this problem is infeasible,
since it requires that x satisfy x1 � 3, x2 � 3 and 5x1
+ 2x2 � 20 simultaneously. Therefore, zR3 = � 1, and
this node can be fathomed by bounds since zR3 � zi p .

That leaves the single problem IP4 in L. The solu-
tion to the LP relaxation of this problem is x41 = 3.2,
x42 = 2, with value zR4 = 57.6. Since zR4 � zi p , this sub-
problem can also be fathomed by bounds. The set L is
now empty, so x2 is optimal for the integer program-
ming problem IP0.

The progress of the algorithm is indicated in Fig. 1.
Each box contains the name of the subproblem, the so-
lution to the LP relaxation, and the value of the solu-
tion.

Preprocessing and Reformulation

Problem preprocessing and reformulation has been
shown to be a very effective way of improving inte-
ger programming formulations prior to and during
branch and bound [14,15,18,19,22,24,33,34,35,54]. Be-
low, some commonly employed preprocessing tech-
niques are listed. For more details on these procedures,
see the references.
1) Removal of empty (all zeros) rows and columns. De-

tection of implicit bounds and implicit slack vari-
ables.

Integer Programming: Branch and Bound Methods, Figure 1
Branch and bound example

2) Removal of rows dominated by multiples of other
rows, including pairs of rows for which the support
of one is a subset of the support of the other.

3) Strengthen the bounds within rows by comparing
individual variables and coefficients to the right-
hand side. Additional strengthening may be possible
for integral variables using rounding.

4) Use variable bounds to determine upper and lower
bounds for the left-hand side of a constraint,
and compare these bounds to the right-hand side.
Where possible, conclude that a constraint is incon-
sistent, redundant, or forces the fixing of some or all
variables in its support. Several of these row-driven
operations can be dualized to columns.

5) Aggregation: Given an equality constraint where the
bound on some variable is implied by the satis-
faction of the bounds on the other variables, this
variable can be substituted out, and the constraint
deleted. Note that free variables always satisfy this
condition. Note also that in order to control fill-in
(and coefficient growth), not all such substitutions
may be desirable. For integral variables, there is the
added restriction that they can be eliminated only
if their integrality is implied by the integrality of
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the remaining variables. For integer programming
problems, an added advantage of aggregation rela-
tive to LP ’s, is that the reduction in the number of
equality constraints increases the relative dimension
of the underlying polytope.

6) Coefficient reduction: Consider a constraint
P

j 2 K

aj xj � b in which all aj � 0 and all xj � 0. If xj is
a 0–1 variable and aj > b, for some j 2 K, replace aj
by b. A stronger version of this procedure is possible
when the problem formulation involves other con-
straints of appropriate structure.

7) Logical implications and probing:
a) Logical implications: Choose a binary variable xk

and fix it to 0 or 1. Perform 4. This analysis may
yield logical implications such as xk = 1 implies
xj = 0, or xk = 1 implies xj = 1, for some other
variable xj. The implied equality is then added as
an explicit constraint.

b) Probing: Perform logical implications recur-
sively. An efficient implementation of probing
appears to be very difficult. Details of compu-
tational issues regarding probing are discussed
in [33], and [54].

Heuristics

Heuristic procedures provide a means for obtaining in-
teger feasible solutions quickly, and can be used repeat-
edly within the branch and bound search tree. A good
heuristic – one that produces good integer feasible solu-
tions – is a crucial component in the branch and bound
algorithm since it provides an upper bound for reduced
cost fixing (discussed later) at the root, and thus allows
reduction in the size of the linear program that must
be solved. This in turn may reduce the time required
to solve subsequent linear programs at nodes within
the search tree. In addition, a good upper bound in-
creases the likelihood of being able to fathom active
nodes, which is extremely important when solving large
scale integer programs as they tend to create many ac-
tive nodes leading to memory explosion.

Broadly speaking, five ideas are commonly used in
developing heuristics. The first idea is that of greed-
iness. Greedy algorithms work by successively choos-
ing variables based on best improvement in the objec-
tive value. Kruskal’s algorithm [37], which is an exact
algorithm for finding the minimum-weight spanning
tree in a graph, is one of the most well-known greedy

algorithms. Greedy algorithms have been applied to
a variety of problems, including 0–1 knapsack prob-
lems [36,41,53], uncapacitated facility location prob-
lems [38,56], set covering problems [3,4], and the trav-
eling salesman problem [52].

A second idea is that of local search, which involves
searching in a local neighborhood of a given integer fea-
sible solution for a feasible solution with a better objec-
tive value. The k-interchange heuristic is a classic ex-
ample of a local search heuristic [38,44,46]. Simulated
annealing is another example, but with a bit of a twist.
It allows, with a certain probability, updated solutions
with less favorable objective values in order to increase
the likelihood of escaping from a local optimum [16].

Randomized enumeration is a third idea that is used
to obtain integer feasible solutions. One such method is
that of genetic algorithms (cf. � Genetic algorithms),
where the randomness is modeled on the biological
mechanisms of evolution and natural selection [32]. Re-
cent work on applying a genetic algorithm to the set
covering problem can be found in [9].

The term primal heuristics refers to certain LP-
based procedures for constructing integral feasible so-
lutions from points that are in some sense good, but fail
to satisfy integrality. Typically, these nonintegral points
are obtained as optimal solutions of LP relaxations. Pri-
mal heuristic procedures involve successive variable fix-
ing and rounding (according to rules usually governed
by problem structure) and subsequent re-solves of the
modified primal LP [6,12,14,34,35].

The fifth general principle is that of exploiting the
interplay between primal and dual solutions. For exam-
ple, an optimal or heuristic solution to the dual of an
LP relaxation may be used to construct a heuristic so-
lution for the primal (IP). Problem dependent crite-
ria based on the generated primal-dual pair may sug-
gest seeking an alternative heuristic solution to the dual,
which would then be used to construct a new heuris-
tic solution to the primal. Iterating back-and-forth be-
tween primal and dual heuristic solutions would con-
tinue until an appropriate termination condition is sat-
isfied [21,26,28].

It is not uncommon that a heuristic involves more
than one of these ideas. For example, pivot-and-
complement is a simplex-based heuristic in which bi-
nary variables in the basis are pivoted out and replaced
by slack variables. When a feasible integer solution is
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obtained, the algorithm performs a local search in an
attempt to obtain a better integer feasible solution [5].
Obviously, within a branch and bound implementa-
tion, the structure of the problems that the implemen-
tation is targeted at influences the design of an effective
heuristic [2,12,13,14,22,26,34,35,43].

Continuous Reduced Cost Implications

Reduced cost fixing is a well-known and important idea
in the literature of integer programming [22]. Given an
optimal solution to an LP relaxation, the reduced costs
c j are nonpositive for all nonbasic variables xj at lower
bound, and nonnegative for all nonbasic variables at
their upper bounds. Let xj be a nonbasic variable in
a continuous optimal solution having objective value
zLP, and let zi p be the objective value associated with an
integer feasible solution to (IP). The following are true:
a) If xj is at its lower bound in the continuous solution

and zLP � zi p � �c j , then there exists an optimal
solution to the integer program with xj at its lower
bound.

b) If xj is at its upper bound in the continuous solution
and zLP � zi p � c j , then there exists an optimal
solution to the integer program with xj at its upper
bound.

When reduced cost fixing is applied to the root node
of a branch and bound tree, variables which are fixed
can be removed from the problem, resulting in a re-
duction in the size of the integer program. A vari-
ety of studies have examined the effectiveness of re-
duced cost fixing within the branch and bound tree
search [12,14,22,34,35,49,50].

SubproblemSolver

When linear programs are employed as the relaxations
within a branch and bound algorithm, it is common to
use a simplex-based algorithm to solve each subprob-
lem, using dual simplex to reoptimize from the optimal
basis of the parent node. This technique of advanced
basis has been shown to reduce the number of simplex
iterations to solve the child node to optimality, and thus
speedup the overall computational effort. Recently with
the advancement in computational technology, the in-
crease in the size of integer programs, and the success
of interior point methods (cf. also � Linear program-
ming: Interior point methods) to solve large scale lin-
ear programs [1,45] there are some branch and bound

algorithms employing interior point algorithms as the
linear programming solver [17,42,43,55]. In this case,
advanced basis is no longer available and care has to
be taken to take advantage of warmstart vectors for the
interior point solver so as to facilitate effective compu-
tational results. In [42,43], a description of the ideas
of ‘advanced warmstart’ and computational results are
presented.

See also

� Branch and Price: Integer Programming with
Column Generation

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
� Integer Programming Duality
� Integer Programming: Lagrangian Relaxation
� LCP: Pardalos-Rosen Mixed Integer Formulation
�Mixed Integer Classification Problems
�Multi-objective Integer Linear Programming
�Multi-objective Mixed Integer Programming
�Multiparametric Mixed Integer Linear

Programming
� Parametric Mixed Integer Nonlinear Optimization
� Set Covering, Packing and Partitioning Problems
� Simplicial Pivoting Algorithms for Integer

Programming
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
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Branch and cut methods are exact algorithms for inte-
ger programming problems. They consist of a combina-
tion of a cutting plane method (cf. � Integer program-
ming: Cutting plane algorithms) with a branch and
bound algorithm (cf. � Integer programming: Branch
and bound methods). These methods work by solving
a sequence of linear programming relaxations of the
integer programming problem. Cutting plane methods
improve the relaxation of the problem to more closely
approximate the integer programming problem, and
branch and bound algorithms proceed by a sophisti-
cated divide-and-conquer approach to solve problems.
The material in this entry builds on the material con-
tained in the entries on cutting plane and branch and
bound methods.

Perhaps the best known branch and cut algorithms
are those that have been used to solve traveling sales-
man problems. This approach is able to solve and prove
optimality of far larger instances than other methods.
Two papers that describe some of this research and
also serve as good introductions to the area of branch
and cut algorithms are [21,32]. A more recent work on
the branch and cut approach to the traveling salesman
problem is [1]. Branch and cut methods have also been
used to solve other combinatorial optimization prob-
lems; recent references include [8,10,13,23,24,26]. For
these problems, the cutting planes are typically derived
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from studies of the polyhedral combinatorics of the cor-
responding integer program. This enables the addition
of strong cutting planes (usually facet defining inequal-
ities), which make it possible to considerably reduce the
size of the branch and bound tree. Farmore detail about
these strong cutting planes can be found in � Integer
programming: Cutting plane algorithms.

Branch and cut methods for general integer pro-
gramming problems are also of great interest (see, for
example, the papers [4,7,11,16,17,22,28,30]). It is usu-
ally not possible to efficiently solve a general integer
programming problem using just a cutting plane ap-
proach, and it is therefore necessary to also to branch,
resulting in a branch and cut approach. A pure branch
and bound approach can be sped up considerably by
the employment of a cutting plane scheme, either just
at the top of the tree, or at every node of the tree.

For general problems, the specialized facets used
when solving a specific combinatorial optimization
problem are not available. Some useful families of gen-
eral inequalities have been developed; these include cuts
based on knapsack problems [17,22,23], Gomory cut-
ting planes [5,12,19,20], lift and project cutting planes
[3,4,29,33], and Fenchel cutting planes [9]. All of these
families of cutting planes are discussed in more detail
later in this entry.

The software packages MINTO [30] and ABACUS
[28] implement branch and cut algorithms to solve in-
teger programming problems. The packages use stan-
dard linear programming solvers to solve the relax-
ations and they have a default implementation avail-
able. They also offer the user many options, including
how to add cutting planes and how to branch.

Example 1 Consider the integer programming prob-
lem
8̂
ˆ̂̂<
ˆ̂̂̂
:

min �5x1 � 6x2
s.t. x1 C 2x2 � 7

2x1 � x2 � 3
x1; x2 � 0 and integer:

This problem is illustrated in Fig. 1. The feasible inte-
ger points are indicated. The linear programming re-
laxation (or LP relaxation) is obtained by ignoring the
integrality restrictions; this is given by the polyhedron
contained in the solid lines.

Integer Programming: Branch and Cut Algorithms, Figure 1
A branch-and-cut example

The first step in a branch and cut approach is to
solve the linear programming relaxation, which gives
the point (2.6, 2.2), with value � 26.2. There is now
a choice: should the LP relaxation be improved by
adding a cutting plane, for example, x1 + x2 � 4, or
should the problem be divided into two by splitting on
a variable?

Assume the algorithmmakes the second choice, and
further assume that the decision is to split on x2, giving
two new problems:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min �5x1 � 6x2
s.t. x1 C 2x2 � 7

2x1 � x2 � 3
x2 � 3
x1; x2 � 0 and integer;

and
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min �5x1 � 6x2
s.t. x1 C 2x2 � 7

2x1 � x2 � 3
x2 � 2
x1; x2 � 0 and integer:
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The optimal solution to the original problem will be
the better of the solutions to these two subproblems.
The solution to the linear programming relaxation of
the first subproblem is (1, 3), with value � 23. Since
this solution is integral, it solves the first subproblem.
This solution becomes the incumbent best known fea-
sible solution. The optimal solution for the linear pro-
gramming relaxation of the second subproblem is (2.5,
2), with value � 24.5. Since this point is nonintegral, it
does not solve the subproblem. Therefore, the second
subproblem must be attacked further.

It is possible to branch using x1 in the second sub-
problem; instead, assume the algorithm uses a cutting
plane approach and adds the inequality x1 + 2x2 � 6.
This is a valid inequality, in that it is satisfied by ev-
ery integral point that is feasible in the second sub-
problem. Further, this inequality is a cutting plane: it
is violated by (2.5, 2). Adding this inequality to the re-
laxation and resolving gives the optimal solution (2.4,
1.8), with value � 22.6. The subproblem still does not
have an integral solution. However, notice that the opti-
mal value for this modified relaxation is larger than the
value of the incumbent solution. The value of the op-
timal integral solution to the second subproblem must
be at least as large. Therefore, the incumbent solution is
better than any feasible integral solution for the second
subproblem, so it actually solves the original problem.

Of course, there are several issues to be resolved
with this algorithm, including the major questions of
deciding whether to branch or to cut and deciding how
to branch and how to generate cutting planes. Notice
that the cutting plane introduced in the second sub-
problem is not valid for the first subproblem. This in-
equality can be modified to make it valid for the first
subproblem by using a lifting technique, which is dis-
cussed later in this entry.

A Standard Form

To fix notation, the following problem is regarded as
the standard form mixed integer linear programming
problem in this entry:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min c>x
s.t. Ax � b

x � 0
xi integer; i D 1; : : : ; p:

Here, x and c are n-vectors, b is anm-vector, and A is an
m × nmatrix. The first p variables are restricted to be in-
teger, and the remainder may be fractional. If p = n then
this is an integer programming problem. If a variable is
restricted to take the values 0 or 1 then it is a binary
variable. If all variables are binary then the problem is
a binary program.

Primal Heuristics

In the example problem, it was possible to prune the
second subproblem by bounds, once an appropriate
cutting plane had been found. The existence of a good
incumbent solution made it possible to prune in this
way. In this case, the solution to the linear program-
ming relaxation of the first subproblem was integral,
providing the good incumbent solution. In many cases,
it takes many stages until the solution to a relaxation
is integral. Therefore, it is often useful to have good
heuristics for converting the fractional solution to a re-
laxation into a good integral solution that can be used
to prune other subproblems. Primal heuristics are dis-
cussed further in � Integer programming: Branch and
bound methods.

Preprocessing

A very important component of a practical branch and
cut algorithm is preprocessing to eliminate unnecessary
constraints, determine any fixed variables, and simplify
the problem in other ways. Preprocessing techniques
are discussed in � Integer programming: Branch and
bound methods.

Families of Cutting Planes

Perhaps the first family of cutting planes for general
mixed integer programming problems were Chvátal-
Gomory cutting planes [15,19,20]. These inequalities
can be derived from the final tableau of the linear pro-
gramming relaxation, and they are discussed in more
detail in � Integer programming: Cutting plane algo-
rithms. These cuts can be useful if they are applied in
a computationally efficient manner [5,12]. Gomory cuts
can contain a large number of nonzeros, so care is re-
quired to ensure that the LP relaxation does not be-
come very hard with large memory requirements. The
cuts are generated directly from the basis inverse, so
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care must also be taken to avoid numerical difficul-
ties.

One of the breakthroughs in the development of
branch and cut algorithms was the paper by H.P. Crow-
der, E.L. Johnson, and M.W. Padberg [17]. This paper
showed that it was possible to solve far larger general
problems than had previously been thought possible.
The algorithm used extensive preprocessing, good pri-
mal heuristics, and cutting planes derived from knap-
sack problems with binary variables. Any inequality in
binary variables can be represented as a knapsack in-
equality

P
i 2 N ai xi � b with all ai > 0 for some sub-

set N of the variables, eliminating variables or replacing
a variable xj by 1 � xj as necessary. The facial struc-
ture of the knapsack polytope can then be used to derive
valid inequalities for the problem. For example, ifR�N
with

P
i 2 R ai > b then

P
i 2 R xi � |R | � 1 is a valid in-

equality. Further, if R is a minimal such set, so deleting
any member of R leaves the sum of coefficients smaller
than b, then the inequality defines a facet of the corre-
sponding knapsack polytope. Other inequalities can be
derived from the knapsack polytope. These inequalities
have been extended to knapsacks with general integer
variables and one continuous variable [11] and to bi-
nary problems with generalized upper bounds [34].

Another family of useful inequalities are lift-and-
project or disjunctive inequalities. These were originally
introduced by E. Balas [2], and it is only in the last few
years that the value of these cuts has become appar-
ent for general integer programming problems [3,4].
Given the feasible region for a binary programming
problem S := { x: Ax � b, xi = 0, 1, 8i }, each variable
can be used to generate a set of disjunctive inequal-
ities. Let S0j := { x: Ax � b, 0� xi � 1, 8i, xj = 0 } and
S1j := {x: Ax � b, 0 � xi � 1, 8i, xj = 1 }. ThenS � S0j [
S1j , so valid inequalities for S can be generated by finding
valid inequalities for the convex hull of S0j [ S1j . These
inequalities are generated by solving linear program-
ming problems. Because of the expense, the cuts are
usually only generated at the root node. Nonetheless,
they can be very effective computationally.

Other general cutting planes have been developed.
The paper[16] describes several families and discusses
routines for identifying violated inequalities. Fenchel
cutting planes, which are generated using ideas from
Lagrangian duality and convex duality, are introduced
in [9].

When to Add Cutting Planes

The computational overhead of searching for cutting
planes can be prohibitive. Therefore, it is common to
not search at every node of the tree. Alternatives include
searching at every eighth node, say, or at every node at
a depth of a multiple of eight in the tree.

Generally, at each node of the branch and bound
tree, the linear programming relaxation is solved, cut-
ting planes are found, these are added to the relax-
ation, and the process is repeated. Usually, there comes
a point at which the process tails off, that is, the solu-
tion to one relaxation is not much better than the so-
lutions to the recent relaxations. It is then advisable to
stop work on this node and branch. Tailing off is a func-
tion of lack of knowledge about the polyhedral struc-
ture of the relaxation, rather than a fundamental weak-
ness of the cutting plane approach [32]. In some imple-
mentations, a fixed number of rounds of cutting plane
searching are performed at a node, with perhaps several
rounds performed at the root node, and fewer rounds
performed lower in the tree.

The cut-and-branch variant adds cutting planes
only at the root node of the tree. Usually, an implemen-
tation of such amethod will expend a great deal of effort
on generating cutting planes, requiring time far greater
than just solving the relaxation at the root. The benefits
of cut-and-branch include
� all generated cuts are valid throughout the tree, since

they are valid at the root.
� bookkeeping is reduced, since the relaxations are

identical at each node.
� no time is spent generating cutting planes at other

nodes.
Cut-and-branch is an excellent technique for many
general integer programs, but it lacks the power of
branch and cut for some hard problems. See [16] for
more discussion of the relative computational perfor-
mance of cut-and-branch and branch and cut.

Lifting Cuts

A cut added at one node of the branch and cut tree may
well not be valid for another subproblem. Of course, it is
not necessary to add the cut at any other node, in which
case the cut is called a local cut. This cut will then only
affect the current subproblem and its descendants. The
drawback to such an approach is in the potential mem-
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ory requirement of needing to store a different version
of the problem for each node of the tree. In order to
make a cut valid throughout the tree (or global), it is
necessary to lift it.

Lifting can be regarded as a method of rotating
a constraint. Returning to the example problem once
again, the constraint x1 + 2x2 � 6 is valid if x2 � 2. To
extend this constraint to be valid when x2 � 3, consider
the inequality

x1 C 2x2 C ˛(x2 � 2) � 6:

It is desired to take ˛ as large as possible while ensuring
that this is a valid inequality. If x2 = 3 then x1 � 1, so
the inequality is valid for x2 = 3 provided ˛ � � 1. If
x2 = 1, the inequality is valid provided ˛ �� 2. Finally,
the inequality is valid when x2 = 0 provided ˛ � � 2.5.
Combining these conditions gives that the valid range
is � 2� ˛ �� 1. The two extreme choices ˛ =� 1 and
˛ = � 2 give the valid inequalities x1 + x2 � 4 and x1 �
2, respectively. Other valid choices for ˛ give inequali-
ties that are convex combinations of these two. In this
way, valid inequalities for one node of the tree can be
extended to valid inequalities at any node.

See [11] for more discussion of lifting in the case of
general mixed integer linear programming problems. It
is often not possible to lift inequalities for such prob-
lems because the upper and lower bounds on the coeffi-
cients conflict. Of course, if an inequality is valid at the
root node then it is valid throughout the tree so there
is no need to lift. This is one of the reasons why gen-
eral inequalities such as Chv átal-Gomory cuts or lift-
and-project cuts are often more successfully employed
in a cut-and-branch approach.

The method of calculating coefficients in the case of
binary problems is now outlined – see [31] for more de-
tails. The inequality generated at a node in the tree will
generally only use the variables that are not fixed at that
node. Lifting can be used to make the inequality valid at
any node of the tree. It is necessary to apply the lifting
process for each variable that has been fixed at the node,
examining the opposite value for that variable. For ex-
ample, if the inequality

X
j2J

a jx j � h for some subset J � f1; : : : ; ng

is valid at a node where xi has been fixed to zero, the
lifted inequality takes the form
X
j2J

a jx j C ˛i xi � h

for some scalar ˛i. This scalar should be maximized
in order to make the inequality as strong as possible.
Now, maximizing ˛i requires solving another integer
program, so it may be necessary to make an approxi-
mation. This process has to be applied successively to
each variable that has been fixed at the node. The or-
der in which the variables are examined may well affect
the final inequality, and other valid inequalities can be
obtained by lifting more than one variable at a time.

Implementation Details

Many details of tree management can be found in� In-
teger programming: Branch and bound methods. This
includes node selection, branching variable selection,
and storage requirements, among other issues. Typi-
cally, a branch and bound algorithm stores the solution
to a node as a list of the indices of the basic variables.
Branch and cut algorithms may require more storage if
cuts are added locally, because it is then necessary to be
able to recreate the current relaxation at any active node
with just the appropriate constraints. If cuts are added
globally, then it suffices to store a single representation
of the problem.

It is possible to fix variables using information about
reduced costs and the value of the best known feasible
integral solution, as described in � Integer program-
ming: Cutting plane algorithms. Once variables have
been fixed in this way, it is often possible to fix addi-
tional variables using logical implications. In order to
fully exploit the fixing of variables, parent node recon-
struction [32] is performed as follows. Once a parent
node has been selected, it is not immediately divided
into two children, but is solved again using the cutting
plane algorithm.When the cutting plane procedure ter-
minates, the optimal reduced cost vector has been re-
constructed and this is used to perform variable fixing.

Many branch and cut implementations use a pool
of cuts [32]. This is typically a set of constraints that
have been generated earlier and either not included in
the relaxation or subsequently dropped because they no
longer appeared to be active. It is easy to check these
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cuts for violation and this is usually done before more
involved separation routines are invoked. The pool of
cuts also makes it possible to reconstruct the parent
node more efficiently, partly because difficulties with
tailing off are reduced.

Solving Large Problems

The difficulty of a particular integer programming
problem is not purely a function of the size of the prob-
lem. There are problems in the MIPLIB test set [6] with
just a few hundred variables that prove resistant to stan-
dard solution approaches. The difficulty is caused by an
explosion in the size of the tree.

For some problems, difficulties are caused by the
size of the LP relaxation, and interior point methods
may be useful in such cases. Interior point methods
are superior to simplex methods for many linear pro-
gramming problems with thousands of variables. How-
ever, restarting is harder with an interior point method
than with a simplex method when the relaxation is
only slightly changed. Therefore, for very large prob-
lems, the first relaxation at the top node of the tree can
be solved using an interior point method, and subse-
quent relaxations can be solved using the (dual) simplex
method. For some problems, the relaxations are just too
large to be handled with a simplex method. For exam-
ple, the relaxations of the quadratic assignment problem
given in [25] were solved using interior point methods.
Interior point methods also handle degeneracy better
than the simplex method. Therefore, the branch and
cut solver described in [1] occasionally uses an interior
point method to handle some subproblems.

One way to enable the solution of far larger prob-
lems is to use a parallel computer. The nature of branch
and cut and branch and bound algorithms makes it pos-
sible for them to exploit coarse grain parallel computers
efficiently: typically, a linear programming relaxation is
solved on a node of the computer. It is possible to use
one node to manage the distribution of linear programs
to nodes. Alternatively, methods have been developed
where a common data structure is maintained and all
nodes access this data structure to obtain a relaxation
that requires solution, for example [18]. For a discus-
sion of parallel branch and cut algorithms, see [7,27].
It is also possible to generate cutting planes in parallel;
see, for example, [14].

Conclusions

Branch and cut methods have been successfully used
to solve both specialized integer programming prob-
lems such as the traveling salesman problem and ve-
hicle scheduling, and also general integer program-
ming problems. In both cases, these methods are the
most promising techniques available for proving op-
timality. For specialized problems, cutting planes are
derived using the polyhedral theory of the underlying
problem. For general mixed integer linear program-
ming problems, important components of an efficient
implementation include preprocessing, primal heuris-
tics, routines for generating cutting planes such as lift-
and-project or Gomory ’s rounding procedure or cuts
derived from knapsack problems, and also routines for
lifting constraints to strengthen them. This is an active
research area, with refinements and developments be-
ing continuously discovered.
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Cutting plane methods are exact algorithms for integer
programming problems. They have proven to be very
useful computationally in the last few years, especially
when combined with a branch and bound algorithm
(cf. � Integer programming: Branch and bound meth-
ods) in a branch and cut framework (cf.� Integer pro-
gramming: Branch and cut algorithms). These methods
work by solving a sequence of linear programming re-
laxations of the integer programming problem. The re-
laxations are gradually improved to give better approx-
imations to the integer programming problem, at least
in the neighborhood of the optimal solution. For hard
instances that cannot be solved to optimality, cutting
plane algorithms can produce approximations to the
optimal solution in moderate computation times, with
guarantees on the distance to optimality.

Cutting plane algorithms have been used to solve
many different integer programming problems, includ-
ing the traveling salesman problem [1,15,33], the lin-

ear ordering problem [16,29,30], maximum cut prob-
lems [4,28,36], and packing problems [18,31]. See [22]
for a survey of applications of cutting plane methods,
as well as a guide to the successful implementation
of a cutting plane algorithm. G.L. Nemhauser and L.
Wolsey [32] provide an excellent and detailed descrip-
tion of cutting plane algorithms and the other material
in this entry, as well as other aspects of integer pro-
gramming. The book [34] and also the more recent ar-
ticle [35] are excellent sources of additional material.

Cutting plane algorithms for general integer pro-
gramming problems were first proposed by R.E. Go-
mory in [12,13]. Unfortunately, the cutting planes pro-
posed by Gomory did not appear to be very strong,
leading to slow convergence of these algorithms, so the
algorithms were neglected for many years. The devel-
opment of polyhedral theory and the consequent intro-
duction of strong, problem specific cutting planes led to
a resurgence of cutting plane methods in the 1980s, and
cutting plane methods are now the method of choice
for a variety of problems, including the traveling sales-
man problem. Recently, there has also been some re-
search showing that the original cutting planes pro-
posed by Gomory can actually be useful. There has also
been research on other types of cutting planes for gen-
eral integer programming problems. Current research
is focused on developing cutting plane algorithms for
a variety of hard combinatorial optimization problems,
and on solving large instances of integer programming
problems using these methods. All of these issues are
discussed below.

Example 1 Consider, for example, the integer pro-
gramming problem
8̂
ˆ̂̂<
ˆ̂̂̂
:

min �2x1 � x2
s.t. x1 C 2x2 � 7

2x1 � x2 � 3
x1; x2 � 0 and integer:

This problem is illustrated in Fig. 1. The feasible inte-
ger points are indicated. The linear programming re-
laxation (or LP relaxation) is obtained by ignoring the
integrality restrictions; this is given by the polyhedron
contained in the solid lines. The boundary of the convex
hull of the feasible integer points is indicated by dashed
lines.
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Integer Programming: Cutting Plane Algorithms, Figure 1
A cutting plane example

If a cutting plane algorithm were used to solve this
problem, the linear programming relaxation would first
be solved, giving the point x1 = 2.6, x2 = 2.2, which has
value � 7.4. The inequalities x1 + x2 � 4 and x1 � 2
are satisfied by all the feasible integer points but they
are violated by the point (2.6, 2.2). Thus, these two in-
equalities are valid cutting planes. These two constraints
can then be added to the relaxation, and when the re-
laxation is solved again, the point x1 = 2, x2 = 2 results,
with value � 6. Notice that this point is feasible in the
original integer program, so it must actually be optimal
for that problem, since it is optimal for a relaxation of
the integer program.

If, instead of adding both inequalities, just the in-
equality x1 � 2 had been added, the optimal solution
to the new relaxation would have been x1 = 2, x2 = 2.5,
with value � 6.5. The relaxation could then have been
modified by adding a cutting plane that separates this
point from the convex hull, for example x1 + x2 � 4.
Solving this new relaxation will again result in the opti-
mal solution to the integer program. This illustrates the
basic structure of a cutting plane algorithm:
� Solve the linear programming relaxation.
� If the solution to the relaxation is feasible in the in-

teger programming problem, STOP with optimality.

� Otherwise, find one or more cutting planes that sep-
arate the optimal solution to the relaxation from
the convex hull of feasible integral points, and add
a subset of these constraints to the relaxation.

� Return to the first step.
Typically, the first relaxation is solved using the primal
simplex algorithm. After the addition of cutting planes,
the current primal iterate is no longer feasible. How-
ever, the dual problem is only modified by the addition
of some variables. If these extra dual variables are given
the value 0 then the current dual solution is still dual
feasible. Therefore, subsequent relaxations are solved
using the dual simplex method.

Notice that the values of the relaxations provide
lower bounds on the optimal value of the integer pro-
gram. These lower bounds can be used to measure
progress towards optimality, and to give performance
guarantees on integral solutions.

Totally Unimodular Matrices

Consider the integer program

min
˚
c>x : Ax D b; 0 � x � u; xinteger

�
;

where A is an m × n matrix, c, x, and u are n-vectors,
and b is an m-vector. A cutting plane method attempts
to refine a linear programming relaxation until it gives
a good approximation of the convex hull of feasible in-
teger points, at least in the region of the optimal solu-
tion. In some settings, the solution to the initial linear
programming relaxation min {c> x: Ax = b, 0 � x � u
} may give the optimal solution to the integer program.
This is guaranteed to happen if the constraint matrix
A is totally unimodular, that is, the determinant of ev-
ery square submatrix of A is either 0 or ˙ 1. Exam-
ples of totally unimodular matrices include the node-
arc incidence matrix of a directed graph, the node-
edge incidence matrix of a bipartite undirected graph,
and interval matrices (where each row of A consists
of a possibly empty set of zeroes followed by a set of
ones followed by another possibly empty set of zeros).
It therefore suffices to solve the linear programming re-
laxation of maximum flow problems and shortest path
problems on directed graphs, the assignment problem,
and some problems that involve assigning workers to
shifts, among others.
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Chvátal–Gomory Cutting Planes

Onemethod of generating cutting planes involves com-
bining together inequalities from the current descrip-
tion of the linear programming relaxation. This pro-
cess is known as integer rounding, and the cutting
planes generated are known as Chv átal-Gomory cut-
ting planes. Integer rounding was implicitly described
by Gomory in [12,13], and described explicitly by V.
Chv átal in [7].

Consider again the example problem given earlier.
The first step is to take a weighted combination of the
inequalities. For example,

0:2(x1 C 2x2 � 7)C 0:4(2x1 � x2 � 3)

gives the valid inequality for the relaxation:

x1 � 2:6:

In any feasible solution to the integer programming
problem, the left hand side of this inequality must take
an integer value. Therefore, the right hand side can be
rounded down to give the following valid inequality for
the integer programming problem:

x1 � 2:

This process can be modified to generate additional in-
equalities. For example, taking the combination 0.5 (x1
+ 2x2 � 7) + 0 (2x1 � x2 � 3) gives 0.5 x1 + x2 � 3.5,
which is valid for the relaxation. Since all the variables
are constrained to be nonnegative, rounding down the
left hand side of this inequality will only weaken it,
giving x2 � 3.5, also valid for the LP relaxation. Now
rounding down the right hand side gives x2 � 3, which
is valid for the integer programming problem, even
though it is not valid for the LP relaxation.

Gomory originally derived constraints using the op-
timal simplex tableau. The LP relaxation of the simple
example above can be expressed in equality form as:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min �2x1 � x2
s.t. x1 C 2x2 C x3 D 7

2x1 � x2 C x4 D 3
xi � 0; i D 1; : : : ; 4:

Notice that if x1 and x2 take integral values, then so
must x3 and x4. Solving this LP using the simplex al-
gorithm gives the optimal tableau

7:4 0 0 0:8 0:6
2:2 0 1 0:4 �0:2
2:6 1 0 0:2 0:6

The rows of the tableau are linear combinations of
the original objective function and constraints, and cut-
ting planes can be generated using them. The objective
function row implies that 0.8x3 + 0.6x4 � 0.4 in any in-
tegral feasible solution. It can be seen that this is equiv-
alent to requiring that 2x1 + x2 � 7, by substituting for
x3 and x4 from the equality form given above. It is also
possible to generate constraints from the other rows of
the tableau. For example, the first constraint row of the
tableau is equivalent to the equality 2.2 = x2 + 0.4x3 �
0.2x4. The fractional part of the right-handside of this
equation is 0.4x3 + 0.8x4. This must be at least as large
as the fractional part of the left hand side in any feasible
integral solution, giving the valid cutting plane 0.4x3 +
0.8x4 � 0.2, which is equivalent to x1 � 2.5. Similarly,
the final row of the tableau can be used to generate the
constraint 0.2x3 + 0.6x4 � 0.6, or equivalently 7x1 � x2
� 13. In practice, the cut added to the tableau should
be expressed in the nonbasic variables, here x3 and x4,
since the tableau will then be in standard form for the
dual simplex algorithm.

Gomory ’s cutting plane algorithm solves an inte-
ger program by solving the LP relaxation to optimal-
ity, generating a cutting plane from a row of the tableau
if necessary, adding this additional constraint to the re-
laxation, solving the new relaxation, and repeating until
the solution to the relaxation is integral. It was shown in
[13] that if a cutting plane is always generated from the
first possible row, then Gomory ’s cutting plane algo-
rithm will solve an integer program in a finite number
of iterations.

Unfortunately, this finite convergence appears to be
slow. However, it was shown in [3,6] that Gomory ’s
cutting plane algorithm can be made competitive with
other methods if certain techniques are used, such as
adding many Chv átal-Gomory cuts at once.

It follows from the finite convergence of Gomory ’s
cutting plane algorithm that every valid inequality for
the convex hull of feasible integral points is either gen-
erated by repeated application of integer rounding or
is dominated by an inequality generated in such a way.
There are many different ways to generate a given in-
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equality using integer rounding. The Chv átal rank of
a valid inequality is the minimum number of successive
applications of the integer rounding procedure that are
needed in order to generate the inequality; it should be
noted that a rank 2 inequality can be generated by ap-
plying the integer rounding procedure to a large num-
ber of rank 1 and rank 0 inequalities, for example.

It was shown in [26] that Gomory cutting planes
can be generated even when an interior point method
is used to solve the LP relaxations, because much of the
information in the simplex tableau can still be obtained
easily.

Strong Cutting Planes From Polyhedral Theory

The resurgence of interest in cutting plane algorithms
in the 1980s was due to the development of polyhedral
combinatorics and the consequent implementation of
cutting plane algorithms that used facets of the convex
hull of integral feasible points as cuts. A facet is a face of
a polytope that has dimension one less than the dimen-
sion of the polytope. Equivalently, to have a complete
linear inequality description of the polytope, it is neces-
sary to have an inequality that represents each facet.

In the example above, the convex hull of the set of
feasible integer points has dimension 2, and all of the
dashed lines represent facets. The valid inequality x1 +
2x2 � 7 represents a face of the convex hull of dimen-
sion 0, namely the point (1, 3).

If a complete description of the convex hull of the
set of integer feasible points is known, then the inte-
ger problem can be solved as a linear programming
problem by minimizing the objective function over this
convex hull. Unfortunately, it is not easy to get such
a description. In fact, for anNP-complete problem [11]
(cf. also � NP-complete problems and proof method-
ology), such a description must contain an exponential
number of facets, unless P = NP.

The paper [22] contains a survey of problems that
have been solved using strong cutting plane algorithms.
Typically in these algorithms, first a partial polyhedral
description of the convex hull of the set of integer fea-
sible points is determined. This description will usu-
ally contain families of facets of certain types. Separa-
tion routines for these families can often be developed;
such a routine will take as input a point (for example,
the optimal solution to the LP relaxation), and return

as output violated constraints from the family, if any
exist.

The prototypical combinatorial optimization prob-
lem that has been successfully attacked using cutting
plane methods is the traveling salesman problem. In this
problem, a set of cities is provided along with distances
between the cities. A route that visits each city exactly
once and returns to the original city is called a tour.
It is desired to choose the shortest tour. This problem
has many applications, including printed circuit board
(PCB) production: a PCB needs holes drilled in certain
places to hold electronic components such as resistors,
diodes, and integrated circuits. These holes can be re-
garded as the cities, and the objective is to minimize the
total distance traveled by the drill.

The traveling salesman problem can be represented
on a graph, G = (V , E), where V is the set of vertices
(or cities) and E is the set of edges (or links between
the cities). Each edge e 2 E has an associated cost (or
length) ce. If the incidence vector x is defined by

xe D

(
1 if edge e is used;
0 otherwise;

then the traveling salesman problem can be formulated
as

min
nX

cexe : x the incidence vector of a tour
o
:

Notice that for a tour, at each vertex the sum of the edge
variables must be two; this is called a degree constraint.
This leads to the relaxation of the traveling salesman
problem:
8̂
ˆ̂<
ˆ̂̂:

min
X

cexe
s.t.

X
e2ı(v)

xe D 2 for all vertices v

xe D 0 or 1 for all edges e:

Here, ı(v) denotes the set of all edges incident to ver-
tex v. All tours are feasible in this formulation, but it
also allows infeasible solutions corresponding to sub-
tours, consisting of several distinct unconnected loops.
To force the solution to be a tour, it is necessary to in-
clude subtour elimination constraints of the form

X
e2ı(U)

xe � 2
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for every subset U � V with cardinality 2 � |U | � |V
|/2, where ı(U) denotes the set of edges with exactly one
endpoint in U. Any feasible solution to the relaxation
given above which also satisfies the subtour elimina-
tion constraints must be the incidence vector of a tour.
Unfortunately, the number of subtour elimination con-
straints is exponential in the number of cities. This led
G.B. Dantzig et al. to propose a cutting plane algorithm
in [9], where the subtour elimination constraints are
added as cutting planes as necessary.

The degree constraints and the subtour elimination
constraints, together with the simple bounds 0 � xe �
1, are still not sufficient to describe the convex hull of
the incidence vectors of tours. This approach of [9] has
been extended in recent years by the incorporation of
additional families of cutting planes – see, for example,
[1,15,33].

Thus, cutting plane algorithms can be used even
when the integer programming formulation of the
problem has an exponential number of constraints.
Similar ideas are used in papers on the matching prob-
lem [10,14], maximum cut problems [4,28,36], and the
linear ordering problem [16,30], among others. The pi-
oneering work of J. Edmonds on the matching problem
gave a complete description of the matching polytope,
and this work was used in subsequent algorithms; it was
also an inspiration to future work on many other prob-
lems and even to the formulation of complexity theory
and the concept of a ‘good’ algorithm.

Alternative General Cutting Planes

A knapsack problem is an integer programming prob-
lem with just one linear inequality constraint. A gen-
eral integer programming problem can be regarded as
the intersection of several knapsack problems, one for
each constraint. This observation was used in [8,19,20]
to solve general integer programming problems. The
approach consists of finding facets and strong cutting
planes for the knapsack problem and adding these con-
straints to the LP relaxation of the integer program as
cutting planes.

There has been interest recently in other families of
cutting planes for general integer programming prob-
lems. Two such families of cuts are lift-and-project cuts
[2] and Fenchel cuts [5]. To find a cut of this type, it
is generally necessary to solve a linear programming
problem.

These alternative general cutting planes are not usu-
ally strong enough on their own to solve an integer pro-
gramming problem, and they are most successfully em-
ployed in branch and cut algorithms for integer pro-
gramming; they are discussed in more detail in � Inte-
ger programming: Branch and cut algorithms.

Fixing Variables

If the reduced cost of a nonbasic variable is sufficiently
large at the optimal solution to an LP relaxation, then
that variable must take its current value in any optimal
solution to the integer programming problem. Tomake
this more precise, suppose the binary variable xj takes
value zero in the optimal solution to an LP relaxation
and that the reduced cost of this variable is rj. The op-
timal value of the relaxation gives a lower bound z on
the optimal value of the integer programming problem.
The value zUB of the best known feasible integral so-
lution provides an upper bound on the optimal value.
Any feasible point in the relaxation with xj = 1 must
have value at least zC r j , so such a point cannot be op-
timal if r j > zUB � z. Similar tests can be derived for
nonbasic variables at their upper bounds. It is also pos-
sible to fix variables when an interior point method is
used to solve the relaxations [26].

Once some variables have been fixed in this man-
ner, it is often possible to fix further variables using log-
ical implications. For example, in a traveling salesman
problem, if xe has been set equal to one for two edges
incident to a particular vertex, then all other edges inci-
dent to that vertex can have their values fixed to zero.

Solving Large Problems

It is generally accepted that interior point methods
are superior to the simplex algorithm for solving suf-
ficiently large linear programming problems. The situ-
ation for cutting plane algorithms for large integer pro-
gramming problems is not so clear, because the dual
simplex method is very good at reoptimizing if only
a handful of cutting planes are added. Nonetheless, it
does appear that interior point cutting plane algorithms
may well have a role to play, especially for problems
with very large relaxations (thousands of variables and
constraints) and where a large number of cutting planes
are added simultaneously (hundreds or thousands). LP
relaxations of integer programming problems can expe-
rience severe degeneracy, which can cause the simplex
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method to stall. Interior point methods suffer far less
from the effects of degeneracy.

In [27], an interior point cutting plane algorithm is
used for a maximum cut problem on a sparse graph,
and the use of the interior point solver enables the so-
lution of far larger instances than with a simplex solver,
because of both the size of the problems and their de-
generacy.

A combined interior point and simplex cutting
plane algorithm for the linear ordering problem is de-
scribed in [30]. In the early stages, an interior point
method is used, because the linear programs are large
and many constraints are added at once. In the later
stages, the dual simplex algorithm is used, because just
a few constraints are added at a time and the dual
simplex method can then reoptimize very quickly. The
combined algorithm is up to ten times faster than either
a pure interior point cutting plane algorithm or a pure
simplex cutting plane algorithm on the larger instances
considered.

The polyhedral combinatorics of the quadratic as-
signment problem are investigated in [21]. It was found
necessary to use an interior point method to solve the
relaxations, because of the size of the relaxations.

Provably Good Solutions

Even if a cutting plane algorithm is unable to solve
a problem to optimality, it can still be used to generate
good feasible solutions with a guaranteed bound to opti-
mality. This approach for the traveling salesman prob-
lem is described in [23]. The value of the current LP
relaxation provides a lower bound on the optimal value
of the integer programming problem. The optimal so-
lution to the current LP relaxation (or a good feasible
solution) can often be used to generate a good integral
feasible solution using a heuristic procedure. The value
of an integral solution obtained in this manner provides
an upper bound on the optimal value of the integer pro-
gramming problem.

For example, for the traveling salesman problem,
edges that have xe close to one can be set equal to one,
edges with xe close to zero can be set to zero, and the
remaining edges can be set so that the solution is the
incidence vector of a tour. Further refinements are pos-
sible, such as using 2-change or 3-change procedures to
improve the tour, as described in [25].

This has great practical importance. In many situa-
tions, it is not necessary to obtain an optimal solution,
and a good solution will suffice. If it is only necessary to
have a solution within 0.5% of optimality, say, then the
cutting plane algorithm can be terminated when the gap
between the lower bound and upper bound is smaller
than this tolerance. If the objective function value must
be integral, then the algorithm can be stopped with an
optimal solution once this gap is less than one.

Equivalence of Separation and Optimization

The separation problem for an integer programming
problem can be stated as follows:

Given an instance of an integer programming
problem and a point x, determine whether x is in
the convex hull of feasible integral points. Fur-
ther, if it is not in the convex hull, find a sepa-
rating hyperplane that cuts off x from the convex
hull.

An algorithm for solving a separation problem is called
a separation routine, and it can be used to solve an in-
teger programming problem.

The ellipsoid algorithm [17,24] is a method for solv-
ing linear programming problems in polynomial time.
It can be used to solve an integer programming problem
with a cutting plane method, and it will work in a poly-
nomial number of stages, or calls to the separation rou-
tine. If the separation routine requires only polynomial
time then the ellipsoid algorithm can be used to solve
the problem in polynomial time. It can also be shown
that if an optimization problem can be solved in poly-
nomial time then the corresponding separation prob-
lem can also be solved in polynomial time.

There are instances of any NP-hard problem that
cannot be solved in polynomial time unless P =
NP.Therefore, a cutting plane algorithm cannot always
generate good cutting planes quickly forNP-hard prob-
lems. In practice, fast heuristics are used, and these
heuristics may occasionally be unable to find a cutting
plane even when one exists.

Conclusions

Cutting plane methods have been known for almost as
long as the simplex algorithm. They have come back
into favor since the early 1980s because of the develop-
ment of strong cutting planes from polyhedral theory.
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In practice, cutting plane methods have proven very
successful for a wide variety of problems, giving prov-
ably optimal solutions. Because they solve relaxations of
the problem of interest, they make it possible to obtain
bounds on the optimal value, even for large instances
that cannot currently be solved to optimality.
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One of the more elegant and satisfying ideas in the the-
ory of optimization is linear programming duality. The
dual of a linear programming problem is not only in-
teresting theoretically but has great practical value, be-
cause it provides sensitivity analysis, bounds on the op-
timal value, and marginal values for resources.

It is natural to want to extend duality to integer pro-
gramming in order to obtain these same benefits. The
matter is not so simple, however. Linear programming
duality actually represents several concepts of duality
that happen to coincide in the case of linear program-
ming but diverge as one moves to other types of opti-
mization problems. The benefits also decouple, because
each duality concept provides some of them but not
others.

Five types of integer programming duality are sur-
veyed here. None is clearly superior to the others, and
their strengths and weaknesses are summarized in at
the end of the article.

Linear ProgrammingDuality

A brief summary of linear programming duality will
provide a foundation for the rest of the discussion. Con-
sider the linear programming (primal) problem,

8̂
<̂
ˆ̂:

max cx
s.t. Ax � b

x � 0;

(1)

where A is an m × n matrix. The dual problem may be
stated8̂

<̂
ˆ̂:

min ub
s.t. uA � c

u � 0;

(2)
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where u is a vector of dual variables. This is a strong
dual because its optimal value is the same as that of the
primal problem, unless both primal and dual are infea-
sible. (An unbounded or infeasible maximization prob-
lem is regarded as having optimal value 1 or � 1,
respectively, and analogously for minimization prob-
lems.)

The linear programming dual brings at least three
important benefits.
a) (Bounds) The value of any feasible dual solution

provides an upper bound on the optimal value of
the primal problem. For any x and y that are pri-
mal and dual feasible, respectively, ub � uAx � cx.
The first inequality is due to the fact that Ax � b
and u � 0, and the second is due to the fact that uA
� c and x � 0. By finding a dual feasible solution,
one can estimate how much a primal feasible solu-
tion falls short of optimality. Although this property
is less important for linear programming, where ro-
bust solution algorithms are available, it is essential
for integer programming.

b) (Sensitivity analysis) Due to a), the dual solution
provides a partial sensitivity analysis. Let u be an op-
timal solution of the dual problem (2), so that ub
is the optimal value of both primal and dual. If the
right-hand side of the constraint in (1) is perturbed
by�b, so that it becomes Ax� b +�b, then the dual
(2) becomes

8̂
<̂
ˆ̂:

min u(bC	b)
s.t. uA � c

u � 0:

(3)

Because only the objective function changes, u is
feasible in (3) as well as (2). So u(bC	b) is an upper
bound on the optimal value of the perturbed primal
problem. The (possibly negative) change in the op-
timal value ub of the original problem is bounded
above by u	b. The change is in fact equal to u	b
if the perturbation �b lies within easily computable
ranges.

c) (Complementary slackness) Due to b), the marginal
values of resources are readily available. If the right-
hand side bi of a particular constraint of (1) rep-
resents a resource constraint, then a change �bi in
the amount of resource available raises the optimal
profit by at most ui	bi . In particular there is a com-

Integer Programming Duality, Figure 1
The shaded polyhedron is the feasible set of a linear pro-
gramming problem with optimal solution (x1, x2) = (2.8, 1.3)
and optimal value 69. The dashed lines represent a pertur-
bation of the right-hand sides. The black dots represent fea-
sible solutions of the corresponding integer programming
problem, which has optimal solution (x1, x2) = (2, 1) and op-
timal value 50

plementary slackness property, which says that a sur-
plus resource has no marginal value. If x is optimal
in (1), then u(b � Ax) D 0.
Consider for example the linear programming

problem
8̂
ˆ̂̂<
ˆ̂̂̂
:

max 20x1 C 10x2
s.t. x1 C 4x2 � 8

2x1 � 2x2 � 3
x1; x2 � 0;

(4)

which is graphed in Fig. 1. The optimal dual solution
is (u1, u2) = (6, 7). If the two constraints represent two
resource limitations, then the resources have marginal
values of at most 6 and 7, respectively. If one less unit of
each resource is available (represented by dashed lines
in Fig. 1.), then the change in the objective function
value is bounded above by � 6 � 7 = � 13. In fact, the
profit decreases by exactly 13.

Integer Programming

Integer programmingmodifies the linear programming
problem (1) by requiring the variables to take integral
values:

8̂
<̂
ˆ̂:

max cx
s.t. Ax � b

x � 0 and integer:

(5)



Integer Programming Duality I 1659

In mixed integer/linear programming (MILP) some
variables are continuous and some are integral. For ease
of exposition, the discussion here is restricted to pure
(unmixed) integer programming.

The example problem (4)may bemodified to obtain
the integer programming problem,

8̂
ˆ̂̂<
ˆ̂̂̂
:

max 20x1 C 10x2
s.t. x1 C 4x2 � 8

2x1 � 2x2 � 3
x1; x2 � 0 and integers:

(6)

Figure 1 illustrates this problem as well.
In linear programming, a constraint with slack at

the optimal solution is redundant. It may be omitted
without changing the optimal solution. The example
shows that this is untrue for integer programming. Both
constraints in (6) contain slack at the solution (x1, x2)
= (2, 1). Yet removing either would result in a different
solution.

The concept of a marginal value is problematic in
integer programming. Let the value function v�(b) in-
dicate the optimal value of (1) or (5) for a given right-

Integer Programming Duality, Figure 2
Upper bounds on the optimal value of an integer program-
ming problem provided by the superadditive and branch
and bound duals, as a function of the right-hand side pertur-
bation�b1. The value function indicates the exact optimal
value for each�b1

hand side b. In linear programming the marginal value
of resource i is essentially the partial derivative of v�(b)
with respect to bi. Yet in integer programming v�(b)
is a step function with respect to any bi, as illustrated
by the dotted line in Fig. 2. So it is unclear what would
be meant by a marginal value. However, there may be
a complementary slackness property of some kind, de-
pending on the duality in question.

Surrogate Duality

One general scheme for formulating integer program-
ming duals is to define a family of relaxations of the
original problem that are parameterized by dual vari-
ables. The dual problem is then the problem of finding
the tightest relaxation. It will be seen that the linear pro-
gramming dual does exactly this.

One instance of this scheme is surrogate duality
[9,10,11]. The integer programming problem (5) can be
relaxed by replacing the constraints Ax � b with a sur-
rogate constraint, i. e., a nonnegative linear combina-
tion of the inequalities in Ax� b. This yields a surrogate
relaxation of (1):

8̂
<̂
ˆ̂:

max cx
s.t. uAx � ub

x � 0 and integer:

(7)

This is a relaxation in the sense that its feasible set con-
tains that of (5). Its optimal value �(u) is therefore an
upper bound on that of (5) for any u� 0. The surrogate
relaxation may bemuch easier to solve than the original
problem because it has only one constraint (other than
nonnegativity). The surrogate dual problem is to find
a u that gives the best bound:

(
min �(u)
s.t. u � 0:

(8)

The surrogate relaxation of a linear programming prob-
lem (1) is (7) without the integrality constraint. From
strong linear programming duality, its optimal value is
�(u) = min˛{˛ub: ˛uA � ˛c, ˛ � 0}. So the surro-
gate dual (8) becomes precisely the linear programming
dual (2).
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Integer Programming Duality, Figure 3
Plot of � (1, u) for a surrogate dual problem

Surrogate duality can be illustrated with the integer
programming problem (6). The surrogate relaxation is

8̂
<̂
ˆ̂:

min 20x1 C 10x2
s.t. (1C 2u)x1 C (4 � 2u)x2 � 8C 3u

x1; x2 � 0 and integers:

Because there are only two constraints and only the ra-
tio u2/u1 matters, u1 is set to 1 and u2 replaced with u.
A plot of �(1, u) appears in Fig. 3.

The primary utility of the surrogate dual is to pro-
vide an upper bound on the optimal value of the origi-
nal problem. In the example, the dual attains its optimal
value of 60 when 1 < u � 20/17. This is better than the
bound of 69 provided by the linear programming relax-
ation. But there is a duality gap of 60 � 50 = 10.

One might speculate that the surrogate multipliers
indicate the relative importance of the two constraints,
but it is unclear what this means. One can say, how-
ever, that omitting a constraint with a vanishing multi-
plier does not raise the optimal value above that of the
surrogate dual. Vanishing multipliers therefore identify
redundant constraints when there is no duality gap.

The surrogate dual (8) must be solved by a search
method that does not require gradient or subgradient
information. Possible algorithms are discussed in [16].
The dual problem need not be solved to optimality, be-
cause only an upper bound is sought in any case.

Lagrangian Duality

Another form of relaxation duality, Lagrangian dual-
ity [5,6,7], removes some of the more troublesome con-
straints from (5) but inserts into the objective function
a penalty for violating them. Thus the constraints are
partitioned into ‘hard’ constraints A1x � b1 and ‘easy’
constraints A2x � b2:

8̂
ˆ̂̂<
ˆ̂̂̂
:

max cx
s.t. A1x � b1

A2x � b2

x � 0 and integer:

(9)

The hard constraints are dualized to obtained the La-
grangian relaxation:

8̂
<̂
ˆ̂:

max cx C u(b1 � A1x)
s.t. A2x � b2

x � 0 and integer:

(10)

This is a relaxation in the sense that its optimal value
�(u) is an upper bound on the optimal value of (5). For
any x that is feasible in (9), cx � cx + u(b1 � A1x) be-
cause u � 0 and b1 � A1x � 0. The Lagrangian dual
problem is

(
min �(u)
s.t. u � 0:

(11)

If all the constraints of (9) are dualized, then the La-
grangian dual is no improvement over the linear pro-
gramming dual. In this case �(u) = max {(c � uA) x +
ub: x� 0, integer }. So �(u) is ubwhen c� uA� 0 and is
1 otherwise. The Lagrangian dual problem (2) is now
the problem of minimizing ub subject to c � uA � 0
and u � 0, which is precisely the linear programming
dual (2). (It follows that linear programming duality is
a special case of Lagrangian duality.)

The Lagrangian dual is therefore useful only when
some constraints are not dualized. These constraints
must be carefully chosen so that the integer program-
ming problem (5) is easy to solve. It may, for example,
decouple into smaller problems or have other special
structure.

As an example of Lagrangian duality, suppose that
the first constraint of (6) is dualized. The Lagrangian
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relaxation is8̂
<̂
ˆ̂:

max 20x1 C 10x2 C u(8 � x1 � 4x2)
s.t. 2x1 � 2x2 � 3

x1; x2 � 0 and integers:

The optimal solution of the Lagrangian dual is u = 6,
with value �(u) = 62, slightly worse than the surrogate
bound of 60 but still better than the linear program-
ming bound of 69.

The Lagrangian and surrogate duals can be com-
pared in general if the surrogate relaxation dualizes the
same constraints as the Lagrangian relaxation. In this
case it can be shown that the surrogate duality gap is
never larger than the Lagrangian duality gap [7], and it
tends to be smaller. The Lagrangian relaxation has the
advantage, however, that it is often easier to solve than
the surrogate relaxation that dualizes the same con-
straints. Moreover, �(u) is convex and piecewise linear.
A subgradient optimization method can be used to find
a global minimum of �(u) by finding a local minimum.
In fact, if �(u) = cxu + u(b�Axu), then b�Axu is a sub-
gradient of �(u) at u.

When there is no duality gap, the Lagrangian mul-
tipliers ui can be viewed as sensitivities to right-hand
side perturbations, with respect to at least one optimal
solution. It can be shown that there is no duality gap
if and only there exists a feasible solution x of (5) and
u � 0 that satisfy �(u) D cxCu(b1�A1x) and comple-
mentary slackness: u(b1�A1x) D 0. However, solution
of the Lagrangian dual does not necessarily yield a so-
lution x with these properties. Further search may be
required.

Superadditive Duality

So far the linear programming dual has been viewed as
a relaxation dual, of either the surrogate or Lagrangian
type. It can also be viewed as representing the classical
duality of vectors and linear functionals. For this pur-
pose the dual of (1) is written:8̂

<̂
ˆ̂:

min f (b)
s.t. f (A) � c

f 2 F:

(12)

Here f is a linear functional defined by a nonnegative
row vector u, so that f (b) = ub and f (A) = uA. The min-
imization is over the set F of all such functionals.

A similar dual of the integer programming problem
(5) can be written as (12), but with minimization over
a broader class F of functions. It can be shown that if F
is the class of superadditive nondecreasing functions f
with f (0) = 0, then (12) is a strong integer programming
dual. This superadditive dual [2,15,20,24] provides sen-
sitivities to right-hand side perturbations. It is also pos-
sible, at least in principle, to construct a function f that
solves the dual, by means of a cutting plane algorithm.

A superadditive function f is one that satisfies f (a +
b) � f (a) + f (b) for all vectors a, b. The superadditive
dual satisfies weak duality because if x is feasible in (5)
and f is feasible in (12), then

cx �
X
j

f (a j)x j �
X
j

f (a jx j) � f (Ax) � f (b);

where aj is row j of A. The first inequality follows from
f (A) � c. The second is due to superadditivity of f and
the fact that multiplication by a nonnegative integer xj
creates a sum of zero or more terms (also f (0) = 0). The
third is due to superadditivity. The fourth follows from
the fact that f is nondecreasing and Ax � b.

Strong duality can be established by exhibiting
a dual feasible solution f for which there is no duality
gap. Let a rounding function be a function of the form

R(d) D bMkbMk�1 � � � bM1dc � � � cc; (13)

where each Mi is a nonnegative matrix and b ˛ c is ˛
rounded down. A Chvátal function has the form uR,
where u � 0 and R is a rounding function. Because
Chvátal functions clearly belong to F, it suffices to ex-
hibit a Chvátal function uR for which uR(b) is the opti-
mal value of (5).

This is done by generating Chvátal-Gomory cuts.
A rank 1 Chvátal-Gomory cut for Ax � b, x � 0 is an
inequality of the form b mA c x � b mb c, where m �
0 defines a linear combination of the rows of Ax � b.
Rank 2 cuts are obtained by applying the same opera-
tion to rank 1 cuts, and so forth. Chvátal showed that
the integer hull of any polyhedron (i. e., the convex hull
of its integral points) is described by finitely many cuts
of finite rank.

This implies that for some rounding function R,
R(A)x � R(b) and x � 0 describe the integer hull of
P = {x� 0: Ax� b }. So the optimal value of the integer
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programming problem (5) is the optimal value of
8̂
<̂
ˆ̂:

max cx
s.t. R(A)x � R(b)

x � 0:

(14)

The linear programming dual of (14) is
8̂
<̂
ˆ̂:

min uRb
s.t. uR(A) � c

u � 0:

(15)

If u solves problem (15), then its optimal value uR(b)
is the optimal value of (14) and therefore of the origi-
nal integer programming problem (5). Thus f D uR is
a Chvátal function that solves the dual problem (12).

The dual solution provides sensitivity analysis with
respect to right-hand sides. Due to weak duality,
uR(b C 	b) is an upper bound on the optimal value
when the right-hand side in (5) is perturbed to b + �b.
There is a form of complementary slackness, because
for any optimal solution x of (5), (uR(A) � c)x D 0.

Consider again the example problem (6). It will be
seen below that R is

R(d) D

6664
� 2
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3 0
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Problem (14) is
8̂
ˆ̂̂<
ˆ̂̂̂
:

max 20x1 C 10x2
s.t. x1 C 2x2 � 4

x1 � x2 � 1
x1; x2 � 0:

The solution of (15) is u D (10 10). So if the right-
hand side of (6) is perturbed by �b = (�b1, �b2), the
new optimal value of (6) is bounded above by

(10 10)

6664
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3 0

0 0 1
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0
@

4
5

1
10

1
5

2
5

0 1
2

1
A
�
8C	b1
3C	b2

�7775
7775 :

For instance, if each resource is reduced by one (�b =
(� 1, � 1)), then the new optimal value is at most 50. In
fact it is exactly 50. Figure 2 plots uR(b C 	b) against
�b1 for comparison with the value function v�(b +�b).
Note that there is complementary slackness, because
(uR(A)� c)x D [(20 10) � (20 10)](2; 1) D 0.

Solving the Superadditive Dual

A solution of the dual problem (12) can be constructed
in stages that correspond to Chvátal ranks [3,14,23]. It
is assumed without practical loss of generality that the
components of A, b and c are rational numbers.

The first stage proceeds as follows. Let x1, . . . , xp be
the vertices of P0 = P. For each xk consider the cone Ck

of directions d for which xk maximizes dx subject to x
2 P0. To describe Ck, let Ax � b be the constraints of
Ax� b that are active at xk (i. e., the constraints aix� bi
for which aixk = bi), and let �Ix � 0 be the active con-
straints of � x � 0 (the constraints � xj � 0 for which
xkj = 0). Then Ck is the cone spanned by the rows of A
and �I.

It suffices to identify a Hilbert basis [8] for Ck; i. e.,
a set of directions d1, . . . , dq such that every integer vec-
tor in Ck is a nonnegative integer combination of d1,
. . . , dq. Assume without loss of generality that the com-
ponents of A are integers (the inequalities Ax � b can
be multiplied by appropriate integers to achieve this).
Then the integer vectors d1, . . . , dq in the set
˚
�A� �I : 0 � � � e; 0 � � � e

�

form a Hilbert basis for Ck, where e is a row vector of
ones.

The next step is to generate rank 1 Chvátal-Gomory
cuts associated with xk. First note that each inequality
of the form djx� djxk supports P0 at xk and is therefore
a nonnegative linear combination of the rows of Ax �
b, �Ix � 0. Thus one can write

d j D mjA� pj I: (17)

The multipliers mj and pj can be obtained by solving
(17). The valid inequalities djx � b djxk c are clearly
rank 1 cuts for Ax � b, � x � 0. Rank 1 cuts are gener-
ated in this fashion for all the vertices xk.

Now let P1 be defined by all of the rank 1 cuts gen-
erated, plus x � 0. Let the rows of M1 be the vectors
mj corresponding to rank 1 cuts that define facets of P1.
Then P1 = {x� 0: bM1 A c x � bM1 b c }.

This same procedure is now applied to the vertices
of P1 to obtainM2 and P2, and so forth until all the ver-
tices of Pk are integral. At this point (13) is the desired
rounding function R, and f D uR solves the dual (12).

The Hilbert bases and inequalities djx � b djxk c for
problem (6) appear in Table 1. (The origin need not be
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Integer Programming Duality, Figure 4
The black dots indicate a Hilbert basis for the cone spanned
by (1, 4) and (1,� 1)

considered as a vertex.) At vertex x1 = (2.8, 1.3), for ex-
ample, the two constraints x1 + 4x2 � 8 and 2x1 � 2x2
� 3 are active, and so the cone C1 is spanned by (1, 4)
and (1, � 1). The Hilbert basis consists of the integer
vectors of the region depicted in Fig. 4.

The polyhedra P1 and P2 are shown by dashed and
dotted lines, respectively, in Fig. 5. Their facets (other
than x � 0) and the corresponding vectors mj appear
in Table 2. The vectors M1 and M2 that appear in the
rounding function (16) can be read from Table 2.

Another Functional Dual

It is practical to solve the superadditive dual only when
the problem is small or has special structure. An al-
ternative is to derive a dual solution for (12) from the
branch and bound tree that solves the primal problem,
as proposed in [18] on the basis of work in [24]. This
maneuver sacrifices an independently computed upper
bound on the optimal value, but it provides useful sen-
sitivity analysis in a more practical fashion than the su-
peradditive dual. It might be called a ‘branch and bound
dual’.

Integer Programming Duality, Table 1
Hilbert basis vectors dj and rank 1 cuts djx � b djxk c corre-
sponding to vertices xk of an integer programming problem

xk d j d jx � [d jxk]
(2:8; 1:3) (1;�1) x1 � x2 � 1

(1; 0) x1 � 2
(1; 1) x1 + x2 � 4
(1; 2) x1 + 2x2 � 5
(1; 3) x1 + 3x2 � 6
(1; 4) x1 + 4x2 � 8
(2; 3) 2x1 + 3x2 � 9

(1:5; 0) (0;�1) �x2 � 0
(1;�1) x1 � x2 � 1
(1;�2) x1 � 2x2 � 1

(0; 2) (�1; 0) �x1 � 0
(0; 1) x2 � 2
(0; 2) 2x2 � 4
(0; 3) 3x2 � 6
(1; 3) x1 + 3x2 � 6

Integer Programming Duality, Table 2
Polyhedra P1, P2 and vectorsmj corresponding to their facets

Pi Facet mj

P1 x1 + 3x2 � 6 ( 45
1
10 )

x1 � 2 ( 15
2
5 )

x1 � x2 � 1 (0 1
2 )

P2 x1 + 2x2 � 4 ( 23
1
3 0)

x1 � x2 � 1 (0 0 1)

Integer Programming Duality, Figure 5
The polyhedra P0 (solid line), P1 (dashed line), and P2 (dotted
line) for an integer programming problem
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Integer Programming Duality, Figure 6
A branch and bound tree with information relevant to the branch and bound dual and the inference dual

Rather than superadditive functions, the feasible set
F in (12) will contain functions of the form

f (d) D minfyd C y0; maxf f1(d); f2(d)gg; (18)

where y � 0 and f 1 and f 2 are either identically zero or
of the form (18). Weak duality is easily shown. Strong
duality is shown by constructing a solution as follows.

At each node t of the branch and bound tree for (5),
one solves the linear relaxation

8̂
<̂
ˆ̂:

max cx
s.t. Ax � b (u)

�x � �Lt (˛)
x � Ut (ˇ);

(19)

where the lower and upper bounds Lt ,Ut are defined by
branching, and associated dual variables are shown on
the right. By weak linear programming duality, vt(b) D
ub�˛LtCˇUt is an upper bound on the optimal value
of (19) with perturbed right-hand side d = b + �b. If

(19) is infeasible, let u, ˛, ˇ be the dual solution of the
phase I problem in which the objective function is the
sum of negative constraint violations. In this case vt(b)
is �1 if ub � ˛ C ˇ < 0 and is1 otherwise.

Now if t1, t2 are the successor nodes of node t in the
search tree,

wt(b) D minfvt(b);maxfwt1(b);wt2(b)gg

is an upper bound on the optimal value of (19) with
right-hand side b D b C 	b and integral x. (At leaf
nodes, the max expression is omitted.) The recursively
computed function w0 associated with the root node
solves the dual problem (12) because w0(b) is the op-
timal value of (5).

The dual solution w0 for the example problem (6) is
indicated in the branch and bound tree for this problem
depicted in Fig. 6. A plot of w0(b +�b) as a function of
�b1 appears in Fig. 2.
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Inference Duality

Still another interpretation of the linear programming
dual views it as an inference problem. It wishes to find
the smallest upper bound z� on the objective function
that can be inferred from the constraints. This dual of
(1) can be written

(
min z
s.t.

�Ax�b
x�0

�
imply cx � z:

(20)

A corollary of the classical Farkas lemma states that the
constraints Ax � b, x � 0 imply cx � z if and only if
they are infeasible or some surrogate uAx � ub domi-
nates cx � z; i. e., uA � c and ub � z. So the inference
dual (20) seeks the smallest ub for which uA � c and
u � 0 (assuming the constraints are feasible), which is
precisely the linear programming dual.

The inference dual can be generalized to integer
programming if the implication in (20) is interpreted
differently [4,13]. Constraints Ax� b, x� 0 imply cx�
z if and only if all integer (rather than all real) vectors x
that satisfy the former also satisfy the latter. There is ob-
viously no duality gap, because the maximum value z�

of cx is the smallest upper bound on cx implied by the
constraints. As will be seen, inference duality allows cal-
culation of sensitivity ranges for all problem data (not
just right-hand sides) by solving linear programming
problems.

To solve the dual (20) is in effect to exhibit a proof
that the value of cx is at most z�. In linear program-
ming, a proof is a nonnegative linear combination of
constraints, and the optimal dual multipliers u encode
the desired proof. A method of proof suitable for inte-
ger programming is developed in [12], but for present
purposes it suffices to reconstruct a proof from the
branch and bound tree that solves the primal problem.
Actually it will be proved that cx is at most z� +�z (for
any �z � 0), to provide a more flexible analysis.

The proof is by contradiction. Assume, contrary to
the claim, that the optimal value of (5) is strictly more
than z� +�z. Then each branch of the tree can be seen
as leading to a contradiction. At any given leaf node t
let zLB be the value of the best integral solution found
so far (zLB = � 1 if none has been found). One of the
following cases obtains.
a) The linear relaxation (19) is infeasible. Then the

dual solution (u, ˛, ˇ) proves infeasibility; i. e., utA

� ˛ + ˇ � 0 and utb � ˛tLt + ˇt Ut < 0. So the
constraints utAx � utb, Lt � x � Ut , x � 0 are also
infeasible. In other words, the bounds Lt � x � Ut

are inconsistent with the surrogate utAx � utb.
b) The solution of (19) is integral with value zt , where

zt > zLB . So the constraints
8̂
ˆ̂̂<
ˆ̂̂̂
:

�cx < �zt �	z
Ax � b
�x � �Lt

x � Ut

(21)

are infeasible. If (ut , ˛t , ˇt) is the dual solution of
(19), the multipliers (1, ut , ˛t , ˇt) prove infeasibility
of (21). This means that the bounds Lt � x � Ut

are inconsistent with the surrogate (utA � c)x <

utb � zt �	z.
c) The optimal value z of (19) satisfies z � zLBt , where

zLBt is the current lower bound (the tree is pruned at
this node). Here the bounds Lt � x � Ut are incon-
sistent with the surrogate (utA � c) x < utb � zLBt �
�z.

Thus there is a contradiction at every leaf node, because
the bounds Lt � x�Ut are inconsistent with some sur-
rogate at every leaf node.

The key to sensitivity analysis is that a contradiction
remains at every leaf node, and the proof remains valid,
so long as the bounds remain inconsistent with the sur-
rogates after perturbation of the data. To analyze how
much perturbation is possible, the following observa-
tion is helpful. The bounds L � x � U are inconsistent
with inequality dx� ı if and only if there exists a vector
d � 0 such that

(
dL � d(U � L) > ı
d � d; d � 0:

(22)

Now let (5) be perturbed as follows:
8̂
<̂
ˆ̂:

max (c C	c)x
s.t. (AC	A)x � bC	b

x � 0 and integer:

(23)

Thus the violated surrogate in case a) becomes ut(A +
�A) x � ut(b + �b), and similarly in cases b) and c).
Using (22), the optimal value of (23) rises no more than
�z (�z � 0) if the perturbation satisfies the following
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Integer Programming Duality, Table 3
Properties of five integer programming duals

Type of dual Strong duality? Computational
bounds?

Sensitivity analysis? Complementary
slackness?

Surrogate No Yes Very limited, even if no du-
ality gap

No

Lagrangian No Yes For RHS, if no duality gap Yes, if no duality gap
Superadditive Yes Not practical For RHS only Yes
Branch and
bound

Yes No For RHS only No

Interface Yes No Bounds for all problem date No

for some qt � 0 at every leaf node t,
8̂
<̂
ˆ̂:

(qt C	qt)Lt � qt(Ut � Lt)
� ut(AC	A)C zt

qt � qt C	qt; qt � 0:

(24)

Here

qt D utA� ut
0c;

	qt D ut	A� ut
0	c;

(ut
0; zt) D

8̂
<̂
ˆ̂:

(0; �) in case a);
(1; zt C	z) in case b);
(1; zLBt C	z) in case c):

This can be checked by linear programming. Note that
the perturbations �A, �b, �c are not restricted to be
nonnegative. Ranges for any perturbation can be com-
puted by minimizing and maximizing it subject to (24)
with all other perturbations set to zero.

The dual solutions in Fig. 6 suffice to generate the
inequalities (24) for the example problem (6). Leaf
nodes 2, 3 and 4 respectively illustrate cases b), c) and
a). For instance, the inequalities for leaf node t = 2 are

� 2	c1 �	c2 � 2q21 � q22 � 0;

q21 � �20 �	c1; q21 � 0;
q22 � �10 �	c2; q22 � 0:

At leaf nodes 3 and 4 one must assume some large but
finite upper bound on variables xj for which Uj is oth-
erwise infinite. The resulting sensitivity range for b1 is
given below, along with the ranges yielded by the super-
additive dual, the branch and bound dual, and the true
value function (the last three from Fig. 2).

� inference dual: �1 <�b1 < 1;
� superadditive dual: �1 <�b1 < 0.375;
� branch and bound dual: �1 <�b1 < 1;
� maximum range: �1 <�b1 < 2.
No perturbation within the maximum range causes the
optimal value to rise above 50. The various forms of
sensitivity analysis generally provide more conservative
ranges (the same is true of classical linear program-
ming). This example shows that the superadditive dual,
although the hardest to compute, does not necessarily
provide the sharpest analysis. The inference dual, un-
like the others, provides ranges for all problem data:

�
�1

�1

�
<	b <

�
1
1
2

�
;

�
� 1

3 C � � 1
3 C �

0 0

�
�	A <

�
1 1

1 1

�
;

(0 0) �	c < (1 1):

By setting�z to 10 rather than zero in (24), one obtains
ranges within which perturbations do not increase the
optimal value more than 10, and so forth.

Like branch and bound duality, inference duality is
computationally impractical if the branch and bound
tree is too large, although it requires fewer data from
the tree. It does not provide an explicit approximation
of the value function as superadditive and branch and
bound duality do. However, only inference duality pro-
vides easily computable sensitivity ranges, not only for
right-hand sides but for all problem data.

Conclusions

Table 3 summarizes the properties of the various duals.
The surrogate and Lagrangian duals are used primarily
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for computational purposes, because they provide in-
dependent bounds on the optimal value. The remain-
ing duals are useful for sensitivity analysis. The super-
additive and branch and bound duals provide a more
complete analysis of right-hand side sensitivity. The lat-
ter requires a branch and bound solution of the prob-
lem but considerably less computation. Inference dual-
ity requires a branch and bound solution and provides
only sensitivity ranges, but ranges can be obtained for
all problem data by solving linear programming prob-
lems.

One can also formulate a dual based on congruence
relations [21] that is not discussed here. H.P. Williams
provides an interesting discussion of this and some
other duals (surrogate, Lagrangian, superadditive) in
[22]. General treatments of Lagrangian and superaddi-
tive duality may be found in [17,19], with a brief discus-
sion of surrogate duality in the former. Excellent pre-
sentations of Lagrangian duality appear in [6] and [1,
Chap. 6].

See also

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Bound Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
� Integer Programming: Lagrangian Relaxation
� Simplicial Pivoting Algorithms for Integer

Programming
� Time-dependent Traveling Salesman Problem
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Relaxation is important in optimization because it pro-
vides bounds on the optimal value of a problem. One
of the more popular forms of relaxation is Lagrangian
relaxation, which is used in integer programming and
elsewhere.

A problem is relaxed by making its constraints
weaker, so that the feasible set is larger, or by approx-
imating the objective function. In the case of a mini-
mization problem, the optimal value of the relaxation is
a lower bound on the optimal value of the original prob-
lem. For a maximization problem it is an upper bound.
The art of relaxation is to design a relaxed problem that
is easy to solve and yet provides a good bound.

Purpose of Relaxation

Relaxation bounds are useful for two reasons. First, they
can indicate whether a suboptimal solution is close to
the optimum. If a minimization problem, for example,
is hard to solve, one might settle for a suboptimal solu-
tion whose value is close to a known lower bound. An
optimal solution would not be much better.

Second, relaxation bounds are useful in accelerating
a search for an optimal solution. In a solution of an inte-
ger programming problem, for example, one normally
solves a relaxation of the problem at each node of the
branch and bound tree. Suppose again that the objec-
tive is to minimize. If the value of the relaxation at some
node is greater than or equal to the value of a feasible so-
lution found earlier in the search, then there is no point
in branching further at that node. Any optimal solution

found by branching further will have a value no better
than that of the relaxation and therefore no better than
that of the solution already found. Lagrangian relax-
ation is often used in this context, because it may pro-
vide better bounds than the standard linear program-
ming (LP) relaxation.

Lagrangian Relaxation

Lagrangian relaxation is named for the French math-
ematician J.L. Lagrange, presumably due to the occur-
rence of what we now call Lagrange multipliers in his
calculus of variations [2]. Because this form of relax-
ation changes the objective function as well as enlarging
the feasible set, it is necessary to broaden the concept of
relaxation somewhat.

Consider the problem ofminimizing a function f (x)
subject to x 2 S, where x is a vector of variables and S the
set of feasible solutions. The epigraph of the problem is
the set of all points (z, x) for which x 2 S and z � f (x).
This is illustrated in Fig. 1. The problem of minimizing
f 0(x) subject to x2 S0 is a relaxation of the original prob-
lem if its epigraph contains the epigraph of the original
problem. That is, a) S � S0 and b) f (x) � f 0(x) for all x
2 S. Relaxation is therefore conceived as enlarging the
epigraph; enlarging the feasible set is a special case. It
is clear that the optimal value of a relaxation still pro-
vides a lower bound on the optimal value of the original
problem.

Integer Programming: Lagrangian Relaxation, Figure 1
Epigraph of an optimization problemmin {f (x): x2 S } (darker
shaded area) and of a relaxation min { f 0(x): x 2 S0 } (darker
and lighter shaded areas)



Integer Programming: Lagrangian Relaxation I 1669

Lagrangian relaxation is available for problems in
which some of the constraints are inequalities or equa-
tions. Such problems may be written as

minimize f (x) (1)

subject to g(x) � 0 (2)

x 2 S: (3)

Here, g(x) is a vector of functions (g1(x), . . . , gm(x)), and
(2) is a family of m constraints gi(x) � 0. There is no
loss of generality in omitting equality constraints hi(x)
= 0 from this formulation, because they can be written
as two inequality constraints, hi(x) � 0 and � hi(x) �
0. The constraints (3) may take any form, inequality or
otherwise.

The Lagrangian relaxation is formed by ‘dualizing’
the constraints (2):

(
min f (x)C �g(x)

x 2 S:
(4)

Here, � = (�1, . . . , �m) is a vector of nonnegative La-
grange multipliers that correspond to the inequality
constraints. The aim of dualization is to remove the
hardest constraints from the constraint set, so that the
relaxed problem is relatively easy to solve.

The Lagrangian relaxation is in fact a relaxation be-
cause its epigraph contains the epigraph of the original
problem (1)-(3). This can be verified by checking con-
ditions a) and b):
a) The feasible set of the original problem is a subset of

the feasible set of the relaxation, because the relax-
ation omits some of the original constraints.

b) If x is feasible in the original problem, then f (x) �
f (x) + � g(x). This is because � � 0 and, due to the
feasibility of x, g(x)� 0.

The LagrangianDual

A relaxation can be constructed simply by eliminat-
ing the constraints (2) rather than dualizing them.
One might ask what is the advantage of dualization.
One rationale is that when the Lagrange multipliers
are properly chosen, the penalties �igi(x) in the objec-
tive function hedge against infeasibility. To the extent
that constraints gi(x) � 0 are violated and the bound

thereby weakened, the objective function will be penal-
ized, restoring the quality of the bound.

Fortunately one can search for a proper choice
of multipliers. The Lagrangian relaxation is actually
a ‘family’ of relaxations, parameterized by the vector �
of multipliers. This provides the possibility of searching
over values of � to find a relaxation that gives a good
lower bound on the optimal value.

The problem of finding the best possible relaxation
bound is the Lagrangian dual problem. If �(�) is the
optimal value of the relaxation (4), the Lagrangian dual
of (1)-(3) is the problem of maximizing �(�) subject to
� � 0.

Under certain conditions the best relaxation bound
is equal to the optimal value of the original problem (1)-
(3) [1]. Generally, however, it falls short. The amount
by which it falls short is the duality gap.

The Lagrangian dual problem has three attractive
features:
� It need not be solved to optimality. Any feasible so-

lution provides a valid lower bound.
� Its objective function �(�) is always a concave func-

tion of �. One need only find a local maximum,
which is necessarily a global maximum as well.

� Its solutions have a complementary slackness prop-
erty. If certain �i’s are positive in an optimal solu-
tion of the dual problem, then the corresponding
constraints gi(x) � 0 are satisfied as equations in
some optimal solution of the primal problem (1)-
(3).

A serious drawback of the Lagrangian dual is that sim-
ply evaluating the objective function �(�) for a given �
normally requires solution of an optimization problem.
The relaxation must be carefully chosen so that this is
practical. Moreover the function � is typically nondif-
ferentiable.

Why is the Lagrangian dual a ‘dual’? Perhaps be-
cause it generalizes the LP dual, which is the Lagrangian
dual of an LP problem. To see this, consider the LP
problem min {cx: Ax� a, x� 0 }. Its Lagrangian dual is
to maximize

�(�) D min
x�0
fcx C �(a � Ax)g

D min
x�0
f(c � �A)x C �ag

over � � 0. So �(�) is � 1 if some component of c
� �A is negative and is �a otherwise. This means that
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maximizing �(�) over � � 0 is equivalent to maximiz-
ing �a subject to �A � c and � � 0, which is precisely
the LP dual.

The duality relationship holds more convincingly,
however, between two problem-solving strategies: solu-
tion of strengthenings and solution of relaxations [12].
Methods that solve strengthenings include branching
methods, local search heuristics, and other techniques
that enumerate solutions or partial solutions by fixing
some or all of the variables. Solution of each strength-
ening provides an upper bound on the optimal value,
and the goal is to find the smallest upper bound. If the
search is exhaustive, the smallest upper bound is equal
to the optimal value.

The dual strategy is to solve relaxations of the prob-
lem in order to find the largest possible lower bound
on the optimal value. There is no obvious way to enu-
merate relaxations, however, unless they are somehow
parametrized, in which case one can enumerate values
of the parameters. The Lagrangian dual is one way of
doing this but by no means the only. Another is the sur-
rogate dual [7,8,9], in which the relaxed constraint set
is a nonnegative linear combination of inequality con-
straints, and relaxations are parametrized by the vector
of multipliers in the linear combination. The dual ap-
proach also differs from the primal in that an exhaustive
enumeration normally does not guarantee that the best
bound obtained is equal to the optimal value. There is
usually a duality gap.

Integer Programming

The application of Lagrangian ideas to integer pro-
gramming dates back at least to H. Everett [4]. In this
arena the optimization problem (1)-(3) becomes,

8̂
ˆ̂̂<
ˆ̂̂̂
:

min cx
s.t. Ax � a

Bx � b
x j integer for all j:

(5)

The ‘hard’ constraints Ax � a are dualized in the La-
grangian relaxation,

8̂
<̂
ˆ̂:

min cx C �(Ax � a)
s.t. Bx � b

x j integer for all j;

(6)

and �(�) is the minimum value of this problem for
a given �. The optimal value zLD of the Lagrangian dual
is a lower bound on the optimal value zIP of (5). It will
be seen shortly that the bound zLD is at least as good
as the bound zLP obtained by solving the LP relaxation
of (5). (The LP relaxation is the result of dropping the
integrality constraints.)

In the context of integer programming, the La-
grangian function �(�) is not only concave but piece-
wise linear. This is because �(�) is the maximum of a set
of linear functions cx + �(Ax � a) over all integral val-
ues of x that satisfy Bx � b.

A fundamental property of the Lagrangian dual is
that zLD is equal to the optimal value zC of

8̂
<̂
ˆ̂:

min cx
s.t. Ax � a

x 2 conv(S);

(7)

where S is the set of integer points satisfying Bx� b, and
conv(S) is the convex hull of S [6]. The Lagrangian dual
can therefore be written as an LP problem, if a linear
description of conv(S) is available.

The reasoning behind this fact goes as follows. Be-
cause the feasible set of (7) is that of an LP problem, the
optimal value of its Lagrangian dual is equal to zC. To
see that it is also equal to zLD, thereby proving zC = zLD,
it suffices to show that the Lagrangian relaxation of (7)
always has the same optimal value as the Lagrangian re-
laxation of (5). But this is true because the former is the
same problem as the latter, except that the constraints
in former are x 2 conv(S) and in the latter are x2 S. This
substitution has no effect on the optimal value because
the objective function is linear.

It can now be seen that the bound zLD is always at
least as good as zLP. Let CIP be the problem (7) corre-
sponding to (5), and let CLP be the problem (7) corre-
sponding to the LP relaxation of (5). CLP ’s feasible set
contains that of CIP, and its optimal value is therefore
less than or equal to zLD. But because CLP is identical to
(5) ’s LP relaxation, zLP � zLD.

When Bx � b happens to describe a polyhedron
whose vertices have integral coordinates, CIP and CLP

are the same problem. In this case zLD = zLP.
To sum up,

zLP � zLD D zC � zIP ;
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Integer Programming: Lagrangian Relaxation, Figure 2
Feasible set of an integer programming problem (large dots)
and its linear programming relaxation (area shaded by small
dots). The point (2, 0) is the optimal solution, and (2.5, 0) is
the solution of the LP relaxation

where the first inequality is an equation when Bx � b
describes an integral polyhedron.

As an example consider the integer programming
problem (Fig. 2):

8̂
ˆ̂̂<
ˆ̂̂̂
:

min �2x1 � x2
s.t. 4x1 C 5x2 � 10

0 � x j � 3
x j integer; j D 1; 2:

(8)

The optimal solution is x = (2, 0), with value zIP = � 4.
Dualizing the first constraint decouples the variables:

�(�) D min
0�x j�3
x j integer

f�2x1 � x2 C �(4x1 C 5x2 � 10)g

D min
0�x j�3
x j integer

f(4� � 1)x1 C (5�C 1)x2 � 10�g:

Because of the decoupling, �(�) is easily computed:

�(�) D

8̂
<̂
ˆ̂:

17� � 9 if 0 � � � 1
5 ;

2� � 6 if 1
5 � � �

1
2 ;

�10� if � � 1
2 :

It is evident in Fig. 3 that � is a concave, piecewise lin-
ear function. The optimal value of the Lagrangian dual
is zLD = �(1/2) = � 5, resulting in a duality gap of zIP �

Integer Programming: Lagrangian Relaxation, Figure 3
The Lagrangian function �(�) for an integer programming
problem. The optimal value of the Lagrangian dual problem
is �(1/2) =�5

zLD = 1. The optimal value of the LP relaxation is like-
wise � 5, so that in the present case zLP = zLD. This is
predictable because Bx � b consists of the bounds 0 �
xj � 3, which define an integral polyhedron.

In practical applications, the Lagrangian relaxation
is generally constructed so that it can be solved in poly-
nomial time. It might be a problem in which the vari-
ables can be decoupled, as in the above example, or
whose feasible set is an integral polyhedron. Popular
relaxations include assignment or transportation prob-
lems, which can be solved quickly.

A notable example is the traveling salesman problem
on n cities:

minimize
X
i j

ci jxi j (9)

subject to

X
j

xi j D 1; all i; (10)
X
i

xi j D 1; all j; (11)

X
i…V

X
j2V

xi j � 1; all nonempty V � f2; : : : ; ng; (12)

xi j � 0; xi j integral; all i; j: (13)
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If the assignment constraints (10) are dualized, the La-
grangian relaxation minimizes

X
i j

ci j xi j C
X
i

�i (
X
j

xi j � 1)

D
X
i j

(ci j C �i)xi j �
X
i

�i

subject to (11)-(13). This is equivalent to finding
a minimum-cost spanning arborescence that is rooted
at node 1, which can be done in polynomial time [3].
Alternatively, the Lagrangian relaxation can be solved
as an LP problem without the integrality constraints,
because the same optimal value results [3]. See [10,14]
for a survey of efforts along this line.

Solving the Dual

Subgradient optimization is a popular method for solv-
ing the Lagrangian dual, because subgradients of � (and
gradients when they exist) can be readily calculated.

Let X(�) be the set of optimal solutions of the La-
grangian relaxation (4) when � D �. If X(�) is a single-
ton fxg, then the gradient of � at � is simply the vector
g(x). This is because for values of � in a neighborhood
of �, �(�) is the linear function f (x)C �g(x).

More generally, for any x 2 X(�), g(x) is a subgra-
dient of � at �. In fact, every subgradient of � at � is
a convex combination of subgradients that correspond
to the solutions in X(�).

In the integer programming case, the subgradients
of � at � are Ax � a for each x 2 X(�), and convex
combinations thereof. Consider the example (8), where

X(�) D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

f(3; 3)g if 0 � � < 1/5;
f(3; 3); (3; 0)g if � D 1/5;
f(3; 0)g if 1/4 < � < 1/2;
f(3; 0); (0; 0)g if � D 1/2;
f(0; 0)g if � > 1/2:

Thus at � = 0, � has the gradient (slope) of 4(3) + 5(3)�
10 = 17. At � = 1/5, the subgradients of � are 17, 2, and
their convex combinations; i. e., all slopes in the interval
[2, 17]. This can be seen in Fig. 3.

Further Reading and Extensions

A lucid geometrical exposition of Lagrangian duality
may be found in [1, Chap. 6]. A widely read treatment

of its application to integer programming is [5]. A re-
cent tutorial is [11], which also surveys methods for
solving the dual. [13, Sect. III.2.6] describes somemeth-
ods for strengthening the Lagrangian relaxation. There
is a vast literature on applications and enhancements.

The idea of the Lagrangian dual need not be lim-
ited to the use of Lagrange multipliers. A dual prob-
lem can be solved over any parametrized family of re-
laxations. The dual problem might be solved by a local
search heuristic over the parameter space.

See also

� Branch and Price: Integer Programming with
Column Generation

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Bound Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
� Integer Programming Duality
� Lagrange, Joseph-Louis
� Lagrangian Multipliers Methods for Convex

Programming
� LCP: Pardalos-Rosen Mixed Integer Formulation
�Mixed Integer Classification Problems
�Multi-objective Integer Linear Programming
�Multi-objective Mixed Integer Programming
�Multi-objective Optimization: Lagrange Duality
�Multiparametric Mixed Integer Linear

Programming
� Parametric Mixed Integer Nonlinear Optimization
� Set Covering, Packing and Partitioning Problems
� Simplicial Pivoting Algorithms for Integer

Programming
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Time-dependent Traveling Salesman Problem
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Introduction

Integrated planning and scheduling of events in pro-
duction systems are among the most important fac-

Integrated Planning and Scheduling, Figure 1
Time relation between planning and scheduling

tors that affect the efficient operation of these systems.
The main objective of integrated planning and schedul-
ing is the allocation of resources that change dynam-
ically over the time domain, and the coordination of
the activities that are required to satisfy customer de-
mand. One difference between planning and schedul-
ing is the time scale over which the actions for these
factors are triggered. During the planning phase, alloca-
tion of available resources and satisfaction of the given
demand are made for a medium-term horizon that is
usually expressed in months. During the scheduling
phase, however, short-term allocation of available re-
sources and the timing of the production of specific
orders are the main decisions and these involve time
scales of days to weeks.

During both planning and scheduling phases, the
time horizon to be planned is divided into time slots.
The main difference between planning and scheduling
problems in terms of execution times is the length of
time scales. Whereas the time scale for the planning
phase is longer, the time scales for the scheduling phase
are shorter as shown in Fig. 1.

For a realistic case, the time period for the plan-
ning phase is measured in weeks or months, there-
fore, total production and the inventory of each prod-
uct at the end of each time period are the only perfor-
mance issues for the system. For scheduling, however,
the length of the time slots is measured in hours. There-
fore in addition to the production quantity, the produc-
tion sequence of each product becomes important dur-
ing scheduling .

Traditionally planning and scheduling have been
performed separately on the shop floor, but this decom-
position of two activities leads to decreased efficiency
of the operations performed in the production centers.
Moreover, medium-term plans may result in infeasible
projections if they are made without consideration of



1674 I Integrated Planning and Scheduling

short-term performance requirements, and conversely,
short-term plans may cause myopic decisions without
consideration of long-term performance issues.

Ideally, an integrated model is required in which
planning and scheduling can be considered simultane-
ously. This model should include both medium-term
capacity utilization and production level values and
short-term production sequence and machine assign-
ment decisions. Due to simultaneous consideration of
medium- and short-term decisions, the representation
of time slots is one of the primary concerns in inte-
grated planning and scheduling problems.

Representation of Time Slots

The first decision that should be taken during the mod-
eling of the planning and scheduling of a system is the
representation of time. Time can be represented in in-
tegrated planning and scheduling problems using dis-
crete or continuous formulations [2]. The choice of
time representation is related to whether an event in the
system can take place only at predefined times or at any
instant. If the events can take place only at predefined
times, then a discrete time representation is required.

Discrete Time Model: In a discrete time model, the
whole planning horizon is divided into predefined time
intervals. This representation assumes that an event can
occur only at the boundaries of each time interval [4].
Therefore, during the solution of the model, no plan-
ning horizons, other than the boundaries of a finite
number of time slots, are considered, and this simplifi-
cation makes the model more tractable. To express the
exact behavior of the system during the planning hori-
zon, however, the length of the time slots should be kept
as short as possible, which may cause an explosive in-
crease in the number of variables. On the other hand,
increasing the length of time slots may give infeasible
results.

Continuous Time Model: In the continuous time
model an event can occur at any instant within the
whole planning horizon. This makes the model more
dependable and flexible and the total number of vari-
ables decreases. The representation of some constraints
becomes more complex, however, and this decreases
the tractability of the model [2].

Mixed Time Representation: Amixed time represen-
tation that includes both discrete and continuous time

has also been studied [3]. In this situation, the time slots
are fixed and the durations of the processes are kept
constant in discrete time. The durations of the process
task are expressed as variables in the mixed time repre-
sentation. This is accomplished by setting the durations
of the process tasks to be multiples of a fixed time grid.

ProblemDefinition

In this section, the model given by Dogan and Gross-
mann [1] is examined in detail. Given that several prod-
ucts are to be produced in a single production unit,
the planning horizon is divided into planning periods
of one week and each week-long planning period is di-
vided into N time slots, where there are N products to
be produced. At the end of each week, the demand is
determined for each product. The production level in
the system is constant and it is also a cost issue for the
model. Transition time of production with respect to
production sequence is given within this system.

The problem is the determination of products that
should be produced each week and the sequencing of
the production of these items. During sequencing, the
production time, the amount and production duration
are determined for each product. In addition, the in-
ventory levels should be determined for each time pe-
riod.

The MILP Model:
The objective of the model is the maximization

of profit.
X
i

X
t

pi t Si t � cinv
X
i

X
t

Areai t

�
X
i

X
t

coperi t Xi t �
X
i

X
k

X
l

X
t

ctransi k Zik l t

�
X
t

X
i

X
k

ctransi k TRTikt (1)

In the objective function, pi t is the price of product i
in time period t, Si t is the amount of sales of product i in
time period t, cinv is the inventory cost,Areai t is the area
below the inventory versus time graph for product i at
time period t, coperi t is the operating cost for product i in
time period t, Xit is the amount of the product i pro-
duced in time period t, ctransi k is the transition cost from
product i to product k, Zik l t is a binary variable that in-
dicates that production of product i is followed by prod-
uct k in time slot l of the time period t, and TRTikt is
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a binary variable that denotes production of product i
is followed by product k at the end of time period t.

The first term of the objective function gives the rev-
enue generated, the second term is the inventory cost,
the third term is the total operation cost, the fourth
term is the transition cost within each week, and the
last term is the transition cost between each week.

The assignment of production orders and corre-
sponding processing times for each order are given by
the following:

X
i

Wi l t D 1 8l ; t (2)

0 � �̃i l t � HtWil t 8i; l ; t (3)

�i t D
X
l

�̃i l t 8i; t (4)

X̃i l t D ri �̃i l t 8i; l ; t (5)

Xit D
X
l

X̃i l t 8i; t (6)

In Eqs. (2)–(6),Wil t is a binary variable that denotes
the production of product i in the time slot l of the time
period t, �̃i l t is the production time of product i, in time
slot l of the time period t,Ht is the length of time period
t, Xit is the total production time of the product i in
the time period t, and X̃i l t is the production amount of
product i in time slot l of the time period t.

Equation (2) states that only one product can be
produced in the each time slot. According to Eq. (3), the
production time of product i, at time slot l of the time
period t will be zero, if this product is not assigned to
time slot l of time period t. Equation (4) states that the
total production time of the product i, at time period t
is equal to the sum of the production time of this prod-
uct during time slots of the corresponding time period.
Equation (5) represents the total production amount of
product i, during time slot l of the time period t, and
Eq. (6) calculates the total production of product i, dur-
ing the time period t.

The transition from one product to another product
is expressed by the following constraint:

Zik l t �Wil t CWk;lC1;t � 1 8i; k; l ; t (7)

Equation (7) ensures that if product k is produced
after product i, in the time period l, then Zik l t will be
equal to 1, otherwise it will be 0.

An important consideration is the starting and end-
ing times for each task in the production schedule. The
following constraints are used to calculate them:

Tel t D Tsl t C
X
i

�̃i l t C
X
i

X
k

�i k Zik l t 8l ; t (8)

TRTikt �Wil t CWk;l l ;tC1 � 1

8i; k; t; l D N; l l D 1 (9)

Tel t C
XX

�i kTRTikt D Tsl l tC1

8t; l D N; l l D 1 (10)

Tel t D TslC1t 8l ¤ N; t (11)

TeNt � HTt 8t (12)

In Eq. (8), Tel t is the end of the time slot l of the
time period t, Tsl t is the start time of the time slot l
of the time period t and �i k is the transition time be-
tween product i and product k. Equation (8) states that
the end of time slot l of time period l is equal to the
start time plus the total processing time for the prod-
ucts produced in that slot and the total transition time.
In Eq. (9), TRTikt is equal to 1, if at the end of period t
production of product i takes place, and at the begin-
ning of the time period t+1 production of product k
takes place.

Equations (10) and (11) ensure the connectivity be-
tween consecutive time periods. In Eq. (12), HTt is the
length of the time period t and Eq. (12) also ensures that
the end time of the last time slots in each time period
cannot be greater than the length of the corresponding
time period.

The inventory levels for each product are updated
with the following constraints:

INVit D INVi0 C
X
l

ri �̃i l t 8i; t D 1 (13)

INVit D INVOit�1 C
X
l

ri �̃i l t 8i; t ¤ 1 (14)

INVOit D INVit � Si t 8i; t (15)

Areai t � INVOit�1Ht C ri�i tHt 8i; t (16)

In Eq. (13), INVit is the inventory level of the
product i at time period t and INVi0 is the initial in-
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ventory of product i. Equation (13) updates the in-
ventory of each product in the first time period. In
Eq. (14), INVOit�1 is the inventory of product i at time
period t–1 after demand of that product is satisfied.
Equation (14) establishes the inventory and production
quantity relationship for all periods other than initial
time period. According to Eq. (15), the amount of in-
ventory of product i after demand of it is satisfied is
equal to total inventory of product iminus sales of this
product for each time period. In Eq. (16) Areai t is the
area below the inventory versus time plot for product i
at time period t. As the exact area is nonlinear the equa-
tion overestimates this area.

The demand for products is incorporated into the
integrated planning and scheduling model with the fol-
lowing constraints:

Si t � di t 8i; t (17)

NYit D
X
l

Wi l t 8i; l ; t (18)

YOPit �Wil t 8i; l ; t (19)

YOPit � NYit � NYOPit 8i; t (20)

NYit � N �

" X
i

YOPit

!
� 1

#
� M (1 �Wi1t)

8i; t
(21)

NYit � N �

" X
i

YOPit

!
� 1

#
� M (1 �Wi1t)

8i; t
(22)

In Eqs. (17)–(22), the di t is the demand for the
product i at time period t, NYit is the number of time
slots during which product i is produced in the time
period t, YOPit is a binary variable that shows whether
product i is produced during time period t and M is
a sufficiently large number. In Eq. (17), the lower bound
of demand satisfied is ensured. In Eq. (18), the num-
ber of time slots during which product i is produced
within the time period t is found. Equation (19) en-
sures that if production of product i at time slot l of
time period t takes place, then YOPit will be equal to

Integrated Planning and Scheduling, Figure 2
An example of degenerate solution

1. In Eqs. (21) and (22) the occurrence of a degenerate
solution is prevented. According to the model formula-
tion, if production of a product takes place inmore than
one time slot in the given time period, these time slots
should be consecutive. If the production takes place in
non-consecutive time slots, then the solution obtained
will be suboptimal because of the existence of transi-
tion costs. The reason for degeneracy in this consecu-
tive production is illustrated in Fig. 2.

As seen in Fig. 2 both solutions give the same objec-
tive value since the total production time of all products
is the same and therefore, without Eqs. (21) and (22)
the model formulation will be highly degenerate.

Solution Strategy

The integrated planning and scheduling model pre-
sented in Eqs. (1)–(22) gives rise to a complex
mixed-integer programming problem. In the model,
inventory and demand satisfaction trends are ob-
served weekly because these two performance issues are
planned in the medium-term time horizon. Timing and
assignment constraints, however, are applied for each
time slot within a week. An important assumption in
this model is the production center. It is assumed that
there is only one production center that carries out all
of the planning and scheduling activities but the model
is intractable even for this specific case of the problem.
This intractability is not specific to this formulation as
most planning and scheduling models that include re-
alistic details are intractable. Two approaches are con-
sidered for addressing the intractability of the problem.
In the first approach, an integrative model is first for-
mulated and then, with respect to some defined crite-
rion, a decomposition scheme is applied to the model.
In the second approach, a simple modeling technique
such as single-item capacitated or incapacitated lot siz-
ing is formulated and then a superposition of all the en-
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tire simple models is derived to apply to the planning
and scheduling scheme.

In the first approach, both planning and scheduling
problems are considered in an integrative manner and
the quality of the result depends on the decomposition
scheme. The aim of the decomposition is to decrease
of the intractability of the model by removing from the
formulation those details that make the model com-
putationally complex. These details are the scheduling
constraints that ensure feasibility on the shop floor. In
this approach, an iterative solution is applied to make
the problem computationally tractable while generating
feasible schedules.

According to this method, an integrative planning
and scheduling model is first constructed and then the
details that make the model difficult to solve are re-
moved or aggregated on the time domain or with re-
spect to common parts. This high-level model is solved
to obtain a temporary solution that is then applied with
respect to the scheduling criteria. If the obtained solu-
tion is feasible on the shop floor, it is accepted. Oth-
erwise, the system returns to the high-level model and
changes it to make it to produce a feasible plan. The
success of the results of the high-level plan depends on
the accuracy of this model. If the model is not accu-
rate enough to produce a feasible solution, much iter-
ation can be done, although this is undesirable for the
dependability and tractability of the model.

To avoid the direct solution of the integrated MILP
planning and scheduling model, a bilevel decompo-
sition algorithm that applies a hierarchical decom-
position scheme has been proposed by Dogan and
Grossmann [1]. In this scheme, the original model is
decomposed into two separate models. The first model
is the upper-level planning model that determines the
products to be produced and the level of production
and inventory in each time period. The second model
is the lower-level planning and scheduling model that is
modeled initially. In the lower-level problem, the orig-
inal model formulation is solved by only applying it to
the products that the upper-level planning model has
decided to produce.

The upper-level planning problem is an MILP
model and it is used to predict an upper bound for
the original model formulation. This is obtained by ig-
noring the detailed sequencing constraint that is im-
portant for scheduling model. The result of the lower-

level model, which is obtained by using the result of the
upper-level model, creates a lower bound for the global
optimum. As the lower-level model which is solved
with respect to the result of high-level planning prob-
lem is a sub-problem of the original model, the result
produced is feasible.

The proposed algorithm is applied in an iterative
manner. The upper bound found by the upper-level
planning problem and the lower-bound found by the
detailed planning and scheduling model are compared.
If the difference between these bounds is less than some
predefined tolerance value, the algorithm terminates.
Otherwise, some integer and logic cuts are added to the
upper-level planning model to obtain a more refined
solution for the original model.

Zhu and Majozi [6] proposed another decomposi-
tion algorithm to address the intractability of a plan-
ning and scheduling model for multipurpose batch
plants. They classified the economic concerns of the
model as part of the planning problem and sequenc-
ing concerns of the model as a part of the schedul-
ing problem. The proposed decomposition scheme of
the detailed planning and scheduling problem is based
on the assumption of a block angular structure for the
model. With respect to the block angular structure of
the model, there should be two types of blocks in the
model. The first type is the constraints that are com-
mon for all plants in the system. In the multi-plant
model, the first blocks are concerned with the allo-
cation of resources, such as raw materials and labor.
The second type of blocks concern the set of con-
straints that are specific to each plant. These second-
type blocks intersect with the sequence of resources al-
located by the constraints of the first block. In the con-
text of the planning and scheduling problem, the first
type of blocks represent the planning problem and the
second type of blocks represent the scheduling problem
for each plant, separately. The proposed solution lies
in the extraction of the block angular structure of the
integrated model. After this step, the model is decom-
posed into two separate parts: The first part consists of
only planning blocks. Within these constraints, the al-
locations of common resources are planned so that they
can be classified as part of the model for the planning
problem. The second part consists of only scheduling
blocks, which include separate sets of constraints for
each plant. In this second part the aim is to obtain the
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optimal schedule for each plant and therefore it is clas-
sified as a scheduling problem.

To apply this decomposition scheme successfully,
the integrated model must satisfy two main conditions.
The first condition is the convexity of the constraints.
If that is the case, the feasible region of the integrated
model will form a convex set. Therefore, the schedules
obtained from the separate scheduling block problems
for a given optimal resource allocation will provide the
global optimal solution of the integrated model. The
second condition to be satisfied is the block angular de-
composability of the integrated model formulation. It is
necessary to show that all scheduling constraints can be
separated into a non-intersecting set of constraints in
order to satisfy this condition. This makes the schedul-
ing part of the decomposition scheme, plant specific.
On the shop floor this structure can be achieved if man-
ufacturing of the products begin and end in the same
plant.

After the model has been decomposed, an iterative
solution approach is applied to get the feasible and near
optimal schedule. First the planning problem that in-
cludes A blocks is solved and the allocation of the com-
mon resources to the each plant is obtained. Then this
result is incorporated into separate scheduling mod-
els to produce detailed schedules for each plant. If the
results of the scheduling problems do not match the
targets of the planning problem, the planning prob-
lem is resolved with the results obtained from schedul-
ing problem. This procedure continues until the dif-
ferences between the results of the planning problem
and scheduling problems converge to a small threshold
value.

In the second approach, superposition of the simple
and frequently studied models such as lot-sizing models
is used. Pocket and Wolsey [5] proposed a single item
decomposition method to deal with the intractability
problem. In this method, a capacitated lot-sizing prob-
lem is solved for each finished product individually.
This model is solved to satisfy the demand for the
end product and the inventory and production quan-
tity of the end product are also monitored during the
solution process. The proposed model is solved only
for single product and multi-product cases, however,
and as some products may share common resources,
there may be infeasibilities when the schedules are com-
bined. The superpositioning of individual models is re-

quired in order to address this problem. The bill of
materials (BOM) should be used during the superpo-
sition since each end product is produced by using
many intermediate products. The single-item decom-
position technique begins by solving a capacitated lot-
sizing model for each product, which is the master pro-
duction scheduling (MPS) model [5]. After the solution
of the MPS, the batch size of each product during the
planning horizon is obtained. The batch sizes are de-
composed into batches of intermediate products by us-
ing the BOM. A rough cut capacity planning (RCCP)
is executed in parallel to roughly check the feasibility of
the MPSmodel with respect to the capacity available. In
cases of infeasibility, the MPS model is revisited or the
capacity of the rare resource is increased.

Conclusions

The execution of planning and scheduling tasks sep-
arately on the shop floor causes infeasible and sub-
optimal decisions. To prevent these problems, it is
necessary to optimize the planning and scheduling
tasks simultaneously but models in which planning
and scheduling are integrated can become computa-
tionally intractable because of the highly complex struc-
ture of the model. To deal with this problem, two ap-
proaches can be used. In the first approach the detailed
planning and scheduling model is decomposed into
simpler ones, and these models are solved iteratively
with the detailed original model until a feasible solution
that has satisfactory objective value is obtained. In con-
trast, in the second approach, a single model is solved
for each product individually and then superposition of
these models is used to determine the feasibility of the
results with respect to some shared resources.
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The problem of optimizing a linear function of an un-
known symmetric positive semidefinite matrix, subject
to finitely many linear equations and inequalities, is
called the semidefinite programming (SDP) problem. As
is clear from the above definition, the SDP problem is
a generalization of the very well known linear program-
ming (LP) problem.

Parallel to the great success of LP in applications, at
the time of this writing, there is a tremendous amount
of activity and excitement regarding the applications of
SDP. Even at these early stages of the development, the
applications are far-reaching.

The SDP problem brings together many fields of en-
gineering, computer science and mathematics. The the-
ory and practice of SDP both draw from and contribute

to a very large number of fields. For applications in
combinatorial optimization see [4], for eigenvalue op-
timization see [8], and for applications in engineering,
system and control theory see [22]. Also see the spe-
cial issue of Mathematical Programming dedicated to
SDP [14], as well as the Handbook on Semidefinite Pro-
gramming [18] and the proceedings of a Fields Institute
workshop [15].

Preliminaries

Let a symmetric n � n matrix X with real entries be
given. Then X is positive semidefinite, denoted X � 0, if
uTXu � 0 for all u 2 Rn . X is positive definite, denoted
X 
 0, if uTXu > 0 for all u 2 Rnnf0g. To define lin-
ear functions of this variable X, one equips the space of
n � n matrices with an inner-product: hC; Xi denotes
the trace of (CTX). Using this notation, one can define
a specific form of the SDP problem. Let a symmetric
n � n matrix C, a column vector b, and m symmetric
n � n matrices A1;A2; : : : ;Am be given. Then the fol-
lowing is the primal form of SDP:

(P) min hC; Xi ;
hAi ; Xi D bi ; i 2 f1; : : : ;mg ;

X � 0 :

Any SDP problem can be put into the above form. The
dual of (P) can be defined (similarly to the LP dual) as
follows:

(D) max bT y ;
mX
iD1

yiAi C S D C;

S � 0 :

Without loss of generality, it can be assumed that the
matrices A1;A2; : : : ;Am are linearly independent. If
they are linearly dependent, then either the system
hAi ; Xi D bi ; i 2 f1; : : : ;mg has no solution, or there
are some redundant equations which can be eliminated.
In the first case, (P) is infeasible. In the second case, all
redundant equations and corresponding Ai, bi can be
eliminated, to arrive at an equivalent problem satisfy-
ing the assumption. Under this assumption, for any so-
lution, (y, S), of the equation

Pm
iD1 yiAi C S D C, the

S part of the solution uniquely identifies y. Sometimes,
in interior-point algorithms, it is convenient to refer
only to S when one mentions a feasible solution of (D).
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Even though one writes “min” and “max” in the def-
initions of (P) and (D), the optimum values of these
problems may not be attained, and even if they are at-
tained, primal and the dual objective values may not
equal each other. Thus, the duality theory for SDP is
quite a bit more complicated than that for LP. (See [16]
and the references therein, for a discussion of various
duals and duality theorems.)

However, if we assume that there exists

X(0) 
 0

such that

hAi ; X(0)i D bi ; i 2 f1; : : : ;mg

and that there exists (y(0), S(0)) such that
mX
iD1

y(0)i Ai C S(0) D C; S(0) 
 0 ;

then the duality theory guarantees that the optimum
values of both problems (P) and (D) are attained and
that they are equal.

Now, we introduce the very general notion of in-
terior-point methods. These are the methods of solv-
ing convex optimization problems by generating a se-
quence which lies in the relative interior of a convex
set defined by the “difficult” constraints. In this defini-
tion, one envisions an abstract formulation of convex
optimization problems in which one has a maximal set
of linear equality constraints and some convex set con-
straint. The convex set constraint is the “difficult” con-
straint.

The basic idea of interior-point methods goes
back at least to Frisch [3] (1950s) and to Fiacco and
McCormick [2] (1960s). However, the current mod-
ern interior-point algorithms have their origins in Kar-
markar’s groundbreaking work [6].

The general definition above does not refer to the
fact that much of the interest is in the algorithms that
can be proven to generate approximately optimal so-
lutions in polynomially many iterations in the dimen-
sion of the problem and a desired accuracy, prescribed
as a part of the input. The amount and the type of work
required per iteration will be described shortly. Certain
practical variants of such interior-point algorithms turn
out to be very fast and robust for a wide range of ap-
plications. Indeed, as in just like any other optimiza-
tion problem, the algorithms which perform very well

in extensive computational tests spark great interest
for theoretical investigations in the area to further our
comprehension of the efficiency of the interior-point
methods as well as our understanding of the degree of
difficulty of certain SDP problems for interior-point ap-
proaches.

At the time of this writing, the most popular al-
gorithms are the primal–dual ones. These algorithms
work almost equally hard in improving both the pri-
mal and the dual solutions. However, for certain appli-
cations, primal-only (or dual-only) algorithms, which
work almost exclusively on the primal problem and
use the dual to only generate bounds on the optimum
value, are indispensable. This is usually due to the spe-
cial structure of the problem at hand. The main ingre-
dients of interior-point methods for SDP will be illus-
trated for primal-dual algorithms.

Interior-point algorithms can be classified with re-
spect to many criteria. A rather obvious criterion is
the initial iterate (X(0), y(0), S(0)). All interior-point al-
gorithms start with X(0) 
 0, S(0) 
 0, and keep all it-
erates positive definite. If the algorithm allows X(0) or
(y(0), S(0)) not to satisfy the corresponding equality con-
straints, then the algorithm is called an infeasible-start
interior-point algorithm. In this article, the illustration
of the details of the methods will be done mostly for
feasible starting points.

IfX is feasible in (P) and (y, S) is feasible in (D), then

hC; Xi � bT y D hX; Si � 0 :

In the above, hX; Si D 0 if and only if both X and (y, S)
are optimal in their respective problems. For the above
reasons, hX; Si is called the duality gap.

Next, some important concepts used in the mak-
ing of an interior-point algorithm are mentioned. Once
the initial iterate, (X(0), y(0), S(0)), such that X(0) 
 0,
S(0) 
 0, is given, one needs to generate a search direc-
tion (dx, dy, ds) along which to move. Then a step size
˛ > 0 describing howmuch tomove in the given search
direction must be determined. Practical methods allow
two different step sizes: one for the primal iterate X(k),
and the other for the dual iterate (y(k), S(k)). Below, the
main steps of a very basic interior-point algorithm for
SDP are given. For this description and the rest of the
article a common step size ˛, for both iterates, is used.

The way in which the search directions and the step
sizes are determined has a very significant impact on
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InputInstance(C;A1 ; : : : ;Am ; b;X(0); y(0); S(0); �);
iteration counter k := 0;
WHILE hX(k); S(k)i > � DO

find a search direction (dx ; dy ; ds);
find a step size ˛ > 0 such that

X(k) + ˛dx � 0; S(k) + ˛ds � 0;
set (X(k+1); y(k+1); S(k+1)) :=

(X(k); y(k); S(k)) + ˛(dx ; dy ; ds);
set k := k + 1;

ENDfWHILEg;
OUTPUT(X(k); y(k); S(k))

Interior Point Methods for Semidefinite Programming, Algo-
rithm 1
Main steps of an interior-point algorithm

the performance of interior-point methods. Two of the
main theoretical foundations for choosing the search
direction are mentioned below.

Path-Following Algorithms

Many practical algorithms are influenced by this foun-
dation. One first picks a barrier function, F(X). This
is a function which is defined on the set of symmet-
ric, positive-definite matrices such that for every se-
quence of matrices from this set, converging to a point
on the boundary of the set, the value of F tends to in-
finity. For improved theoretical and/or practical perfor-
mance, one must enforce further conditions on the bar-
rier function. For the purposes of this article, the barrier
function (which does possess many of the such desired
properties) is

F(X) :D � ln det X ;

the negation of the logarithm of the determinant of X.
Consider the family of optimization problems parame-
terized by � > 0:

(P
) min hC; Xi C �F(X) ;

hAi ; Xi D bi ;8i ;

X � 0 :

The unique minimizer of this optimization prob-
lem defines a point (X(�), y(�), S(�)) on the pri-
mal–dual central path. Here, y(�) and S(�) represent
the dual variables for the equality and the semidefi-
niteness constraints of (P
), respectively. As �! 0,

(X(�), y(�), S(�)) converges to the optimal solutions of
(P) and (D).

The primal–dual central path can be expressed
more explicitly. (X(�), y(�), S(�)) is the unique solu-
tion of the following system

hAi ; Xi D bi ; 8i; X 
 0 ;
mX
iD1

yiAi C S D C ;

S D �X�1 :

Path-following algorithms choose the search direc-
tion to approximately follow this path. They are usually
based on Newton’s method or are related to it. For a re-
view of such search directions, see [7] and [19].

Potential Reduction Algorithms

For these algorithms, one defines a potential function,
based on a barrier function, to measure how good
a given point is with respect to the duality gap and the
proximity to the central path:

�(X; S) :D (nC q) lnhX; Si C F(X)C F(S) :

One chooses q :D 
(
p
n) for (current) the best theo-

retical complexity results and q :D 
(n) or larger for
better practical performance. In this setting, the search
directions are usually obtained by computing a steepest-
descent direction for the potential function '(X, S) and
projecting it onto the appropriate linear subspace to
satisfy the equality constraints in (P) and (D).

Step Size

Once the search direction (dx, dy, ds) is computed, then
a practical interior-point algorithm usually calculates
˛ as a constant fraction of the maximum step size
that keeps the next iterate positive definite. In a path-
following algorithm for robustness of the performance,
or good theoretical results, one might want to confine
all (or some) of the iterates into a neighborhood of the
central path. In a potential reduction algorithm, one
usually chooses the value of ˛ as the minimizer of '
along the given search direction. There are many other
possibilities, see the potential reduction survey [20] and
the references therein (such as [11] and [12]).

Currently, interior-point methods provide the
fastest algorithms in theory with respect to the worst-
case complexity bounds proven so far. In the current
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practice, interior-point methods also provide the fastest
and most robust solution techniques for general SDP
problems. One such theoretical result can be summa-
rized as follows.

Theorem: Let X(0), y(0), S(0), a feasible solution of (P)
and (D), and � > 0 such that

n ln
�
hX(0); S(0)i

n

�
CF(X(0))CF(S(0)) �

p
n ln(1/�)

be given. Then (certain variants of) the potential-
reduction interior-point algorithm described above will
generate in O

�p
n ln(1/�)

�
iterations feasible interior

points X, S such that

hX; Si � �hX(0); S(0)i :

In the above theorem, the function

n ln
�
hX; Si
n

�
C F(X)C F(S)

is a proximity measure. It is nonnegative for every pair
of interior points (X, S). It is equal to zero if and only if
(X, S) lies on the central path (for � :D hX; Si/n).

Alizadeh [1], and Nesterov and Nemirovskii [10]
independently generalized interior-point methods to
SDP problems. The above theorem is a specialization
of a more general result for convex programming prob-
lems from [10]. A similar result was independently ob-
tained for SDP [1].

Search Directions

In obtaining search directions, both path-following and
potential reduction approaches end upwith some linear
system of equations, defined by the input of the prob-
lem, the current iterate (X(k), S(k)) and some other pa-
rameters of the algorithm. The resulting system has the
following structure:

hAi ; dx i D r(P)i ; 8i ;
mX
iD1

(dy)iAi C ds D r(D) ; Edx CFds D r(XS) ;

where r(P) is anm-vector representing the primal resid-
ual (infeasibility of X(k)), r(D) is an n � n symmetric
matrix representing the dual residual (infeasibility of

(y(k), S(k))), and E and F are linear operators on n � n
symmetric matrices. The operators E and F vary from
one algorithm to the next and depend on the current
iterate, as well as some other parameters of the under-
lying algorithm. The choice of E and F can have pro-
found theoretical and/or practical effects on the perfor-
mance of the algorithm. Finally, r(XS) denotes an n � n
symmetric matrix, a residual related to the desired value
of hX; Si for the next iterate as well as the desired value
of the proximity measure for the next iterate.

In solving such systems to determine the search di-
rections, many tools from numerical analysis become
relevant. Moreover, one must exploit the existing struc-
ture of the problem at hand to be able to efficiently solve
the large-scale instances.

As shown in [10], many of the fundamental ideas of
interior-point methods can be applied to general con-
vex programming problems. For primal–dual interior-
point algorithms for general convex programming
problems, see also [9] and [21]. The most general the-
oretical results in this direction rely on the existence
of very special barrier functions for every convex set
(see [10], also see [5] for connections of interior-point
methods to many other branches of mathematics via
the barrier functions for SDP and more general convex
optimization problems).

Another important issue is that of the initial point
and the detection of infeasibility in interior-point meth-
ods. For such problems, the quality of the initial point
and the value of the condition measures (measuring in
the input space how far a given instance is from the
boundary separating feasible and infeasible instances,
etc. [17]) for the given instance are good attributes for
evaluating the performance of the methods.
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Interval analysis can provide valuable tools in several
aspects of chemical process design, including steady-
state process simulation and optimization, and the ini-
tial synthesis and screening of process alternatives. The
discussion below highlights the use of interval analy-
sis in these areas. For a general description of prob-
lems and issues in chemical engineering design, see [8]
and [7].

Process Simulation

Process simulators are used to compute the perfor-
mance of a chemical process given its design (the pro-
cess simulation problem), or to compute a design that
meets given performance specifications (the process de-
sign problem). In either case, the central problem in
steady-state process simulation is the solution of an
n × n system of nonlinear algebraic equations f(x) =
0, where n may be very large (hundreds of thousands
or more) and the equation system represents a math-
ematical model of the process, including material and
energy balances, thermodynamic equilibrium relation-
ships, and other equations needed to describe the pro-
cess.

For solving the process model, Newton and quasi-
Newton methods are widely used, but may not reliably
converge, especially since a good initial guess is often
hard to obtain. To improve convergence in these cir-
cumstances, various approaches have been used. These
include trust region techniques, such the dogleg method
[4], and homotopy continuationmethods (e. g., [10]).
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An additional difficulty is that in process simula-
tion there are invariably upper and lower bounds on the
variables, xL � x � xU , violation of which may cause
some functions to become undefined. Bounds are of-
ten dealt with in an ad hoc manner involving trunca-
tion or reflection of the correction step. A more natu-
ral way of dealing with bounds is to use a mathematical
programming approach (e. g., [1]), in which the bounds
become an integral part of the problem. While a num-
ber of the techniques noted above demonstrate excel-
lent global convergence properties in practice, none of-
fer a rigorous mathematical guarantee of convergence.

A further difficulty in solving the nonlinear equa-
tion systems arising in process simulation is that they
may have multiple solutions. With the exception of ho-
motopy based methods, none of the techniques men-
tioned above are designed for findingmultiple solutions
when they exist. While in practice homotopy based
methods are frequently able to locate all solutions to
a problem, they offer no guarantee that all solutions
have been found, except in special cases.

All of the difficulties noted above, namely the lack
of good initial guesses, the presence of variable bounds,
and the possibility of multiple solutions, can be dealt
with using interval analysis. For example, R.E. Swaney
and C.E. Wilhelm [11] use a technique, based on re-
peated solution of linear programs, which, through
the use of bounds generated using interval analysis
within a branch and bound framework, provides rig-
orous global convergence to a solution of the process
model.

C.A. Schnepper andM.A. Stadtherr [5] use an inter-
val Newton approach. This can rigorously enclose any
and all solutions to the process model, and is essen-
tially initialization independent, since it requires only
initial intervals for the variables, and some of these
bounds may be specified as part of the problem. Both
serial and parallel implementations are described in [5],
and provision is made for efficient handling of sparse
matrices. Several example problems were successfully
solved, ranging in size from 3 to 177 variables, includ-
ing problems with multiple solutions. Performance on
the larger problems was unpredictable, with two prob-
lems of over one hundred variables being solved very ef-
ficiently, even with very large initial bounds on the vari-
ables, but one problem of 50 variables being unsolvable
due to excessive computation time. However, for this

50-variable problem, once smaller, more intelligently
chosen (using knowledge of boiling points and critical
temperatures) initial intervals were used, the problem
was easily and efficiently solved.

Process Optimization

Perhaps the most natural formulation for a process de-
sign problem is as an optimization problem. The pro-
cess simulation problem is then viewed as an optimiza-
tion problem with zero degrees of freedom. A typi-
cal process optimization problem features a nonlin-
ear objective function, nonlinear equality constraints
(the process model), nonlinear inequality constraints,
and upper and lower bounds on variables. Frequently
these nonlinear programming problems are nonconvex
as well, prompting interest in global optimization tech-
niques to deal with the potential for multiple extrema.

Several approaches to global optimization in pro-
cess engineering have been proposed, including both
deterministic and nondeterministic methods. Among
the deterministic techniques used are branch and
bound, cutting plane, primal-dual decomposition, and
interval analysis. The work of R. Vaidyanathan and
M.M. El-Halwagi [9] provides a good example of the
use of interval analysis in this context. This is an inter-
val branch and bound approach that is guaranteed to
yield the global solution. The procedure is accelerated
by using a ‘distrust region’ method for eliminating in-
feasible portions of the search space and by use of local
methods for some purposes.

R.P. Byrne and I.D.L. Bogle [3] and Byrne [2] also
use an interval branch and bound approach, but treat
the interval lower bounding process as a convex pro-
gramming problem. In [2] it is also shown how this
interval-based approach can be applied in the context
of modular process optimization software. Since mod-
ular software predominates commercially, this work is
of particular interest.

Process Synthesis

Before the process simulation and optimization prob-
lems discussed above can be formulated, it is neces-
sary to synthesize and screen process alternatives. These
provide the base case problems for later process simu-
lation and optimization studies. When there is uncer-
tainty in design specifications, or when the design spec-
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ification covers a range of values, then interval analysis
can be a particularly useful tool in process synthesis.

For example, see [6] for a problem involving the
processing of high level nuclear waste. In this problem,
the waste to be processed is characterized by intervals of
composition, as are the requirements for a stable glass
product. In [6], an interval propagation scheme that ex-
ploits the structure of the problem and a simple pro-
cess model is developed, and it is demonstrated how to
use this to screen process alternatives and to infer other
knowledge about the process design.

Conclusion

Interval analysis provides tools that can be used to
solve process simulation problems with complete re-
liability, providing a method that can guarantee with
mathematical and computational certainty that the cor-
rect result is found, and thus eliminating computa-
tional problems that are encountered with conventional
techniques. The method is essentially initialization in-
dependent, deals with variable bounds naturally, and
also guarantees the enclosure of multiple solutions if
present. In process optimization, similar guarantees can
also be provided that the global extremum has been
found. There are many other problems in chemical pro-
cess design, for instance inmany aspects of process syn-
thesis, that likewise are amenable to solution using this
powerful approach.
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Optimization can involve differential equations, for in-
stance in the formulation of constraints. Interval anal-
ysis provides methods for computing interval-valued
functions, for example polynomials with interval coef-
ficients, guaranteed to contain solutions to differential
equations. Methods have been developed for initial and
boundary value problems for both ordinary (ODE) and
partial (PDE) differential equations [1]–[32].

For the initial value problem in ODEs, the Cauchy–
Peano approach of classical analysis can be made into
a constructive method using interval analysis. With in-
terval arithmetic and interval extensions to standard
functions, we can computationally verify sufficient con-
ditions for existence of solutions, as well as construct
upper and lower bounds on solutions. The techniques
of automatic differentiation provide for efficient use of
and (using interval arithmetic) bounding of remainder
terms in Taylor series expansions, making interval Tay-
lor series an effective method for initial value problems
in ODEs [5,13,21]. See especially [33].

Many problems in differential equations, both ini-
tial and boundary value problems for ODEs and PDEs,
can be reformulated as integral equations. Interval anal-
ysis provides means for using fixed-point theory and Pi-
card–Lindelöf-type iteration constructively on such re-
formulations [3,4,9,15], [17]–[29].

For initial value problems, it was noticed early
on [12] that local coordinate transformations are often
needed to prevent excessive growth (‘the wrapping ef-
fect’) of the widths of interval enclosures. It has been

a continuing project to improve on such transforma-
tions [6,8,12,13,14,16,17,21,28,30,32,33].

Variable-precision interval computation provides
a means of controlling computational error in ill-posed
problems [1,2,7,8]. Using interval methods, we can, in
principle (with enough computing), find solutions to
prescribed accuracy for differential equations [28].

Some examples will illustrate the kinds of results ob-
tainable by interval methods.

Example 1 A problem that occurs in chemical reactor
theory involves the differential equation

y00 C
1
x
y0 C be(�

1
jyj

)
D 0; 0 � x � 1; b > 0;

with boundary values y0(0) = 0 and y(1) = t > 0.
It turns out there may be one or more solutions de-

pending on the values of t and b. Using interval meth-
ods, it can be proved easily [20] that, for every t, b > 0,
we have

y(t) 2 tC b
�
e�

1
t
(1 � x2)

4
;
(1 � x2)

4

�

for all solutions y and all 0� x � 1.

Example 2 Consider the nonlinear hyperbolic PDE

ux y D 1C (ux C uy)u

with initial conditions u(x, 0) = 0 and u(0, y) = 0.
Using interval methods, we can prove [23] that for

all 0 � x � 0.5 and all 0 � y � 0.5, the solution u(x, y)
is contained in the interval-valued function

xy C [0:1666; 0:2144](x2y3 C x3y2):

This means that we have guaranteed lower and up-
per bounds on the solution, namely

xy C 0:1666(x2y3 C x3y2) � u(x; y)

� xy C 0:2144(x2y3 C x3y2)

for all x and y in [0, 0.5].

Example 3 Consider the initial value problem [21]

x0 D ct2 C xb with x(0) D a:

Suppose there is uncertainty about the values of a, b and
c, and all we know is that 0 � a � 0.1, 0.2 � b � 0.38,
3.3 � c � 3.6.
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In a single iteration of the integral equation repre-
sentation of the problem, we find that every solution
satisfies

1:1t3 � x(t) � 0:1C t C 1:2t3

for all t 2 [0, 0.6] and all a, b, c in the given ranges.
Moving coordinate systems for initial value problems

help reduce the growth of interval bounds from one
expansion step to the next. The wrapping effect arises
from a rotation of the vector field associated with the
differential equations. Such a rotation cannot be fol-
lowed by interval vector bounds, which are boxes with
faces parallel to the coordinate planes. This wrapping
effect can be partially controlled in a number of ways
with varying degrees of success. R.E. Moore [16] sug-
gested the use of the ‘connection matrix’. F. Krückeberg
[12] devised an algorithm he called the 3PM process.
R.J. Lohner [13] suggests the use of parallepipeds and
also QR-decomposition for matrix transformations of
enclosing hyper-rectangles.

Among the sample programs given in [10 Appendix
D] there is ‘AWA’, (AnfangsWert Aufgabe) for initial
value problems ([10, pp. 248–251]). AWA implements
the ideas of Lohner concerning control of the wrapping
effect. Five options are provided:
0) interval vector;
1) parallelepiped;
2) QR-decomposition;
3) intersections of 0) and 1);
4) intersections of 0) and 2).

For an example using AWA, we considered
a Volterra model of conflicting populations

x01 D 2x1(1 � x2);
x02 D �x2(1 � x1);

with initial conditions x1(0) = 1 and x2(0) = 3.
Automatic differentiation software is incorporated

in AWA which automatically introduces auxiliary vari-
ables T1, T2, . . . as needed, and derives recursion rela-
tions for generating Taylor coefficients (x1)k and (x2)k,
k � 1, line-by-line from a compiler code list, see [31].
For the example above, the automatically derived recur-
sion relations for derivatives of any order would look

like the following:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

T1 D 1 � x2; so (T1)k D �(x2)k ;

T2 D x1T1; so (T2)k D
kX

jD0

(x1) j(T1)k� j;

(x1)1 D 2T2; so (x1)kC1 D
2

kC1 (T2)k ;
T3 D 1 � x1; so (T3)k D �(x1)k ;

T4 D x2T3; so (T4)k D
kX

jD0

(x2) j(T3)k� j;

(x2)1 D �T4; so (x2)kC1 D �
1

kC1 (T4)k :

The interval Taylor expansion about some t0 is then,
for i = 1, 2:

(xi)(t0 C h) D

8<
:

K�1X
jD0

(xi) j(t0)h j

9=
;C Ri hK ;

where the remainder coefficients Ri, i = 1, 2, are com-
puted from the above recursion relations with interval
inputs (also found automatically) for x1 = (x1)0 and x2
= (x2)0.

Using the program AWA given on the diskette for
C-XSC, we obtained the following results using the op-
tions described.

Using nine terms in the Taylor expansions, K = 9,
and continuing the solution to t = 10, using a relatively
large stepsize h = 0.1, we obtained different results for
two options, both containing the exact solution.

Option 0) produced

x2(10) 2 [0:347636 : : : ; 0:350002 : : :];

whereas option 1) produced the narrower enclosure

x2(10) 2 [0:34875 : : : ; 0:34888 : : :]:

The optimal choices of all the various program
parameters and the method of coordinate transfor-
mation and how they depend on a particular initial
value problem are matters that are still being studied.
See [5,13,14,33].

J.S. Ely [7] developed a variable precision interval
package (VPI), using the programming language C++,
and applied it to the study of the following ill-posed
partial differential equation from the theory of vortex
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dynamics ([8]):

@z�(p; t)
@t

D
1

4
 i
P.V.

Z
B(q) cot

�
z(p; t) � z(q; t)

2

�
dq

with initial condition z(p, 0) = p, and the integral taken
over [0, 2
].

Here, z(p, t) is a 2
 periodic, complex function of
two real variables p and t, z� denotes complex conjuga-
tion, B(q) = 1 +A cos(q), and P.V. stands for the Cauchy
principal value of the singular integral.

In order to obtain satisfactory results on this diffi-
cult problem, in particular to determine the time of on-
set of turbulence, and to rule out rounding errors as the
cause of the observed behavior of the computer sim-
ulation, as many as 896 bits were used in the interval
arithmetic. To improve efficiency, trigonometric trans-
formations were used for a reformulation of the differ-
ential equation. Further speed-ups were obtained using
parallel programming for a distributed network of com-
puters, and in another version a Cray supercomputer.
The results [7,8] settled a long-standing controversy
concerning the reliability of the mathematical model in
the face of previously unknown effects of rounding er-
ror. It is certainly not obvious in advance how many
bits are needed for such a difficult problem. The point
is that with interval computation we can see, from the
widths of interval results, how accurately the answers
have been determined. If we have not yet obtained de-
sired accuracy, we can repeat the computations carry-
ing more bits. This can be automated so that, in the
words of O. Aberth [1]: ‘We expect the computer to do
whatever is necessary to obtain such answers’.

See [3] for further discussion of interval methods for
differential equations, and some nontrivial applications
(e. g.: existence proofs for bifurcations, computer as-
sisted proofs in dynamics, globally convergent domain
decomposition methods).
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Most of the square matrices appearing in practice un-
dergo quantization that can be coarse and are repre-
sented by finite precision numbers. Hence, the underly-
ing unquantized matrices belong to real (complex) in-
terval matrices whose entries are closed intervals (rect-
angles). Interval matrices can also be used to model un-
structured matrix perturbations. This self contained ar-
ticle focuses on eigenvalue bounds of interval matrices
and provides proofs to all theorems and lemmas.

http://bt.nscl.msu.edu/pub/
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The organization of this article is as follows. In Sec-
tion 1 we study the eigenvalues of (n × n)-dimensional
real symmetric interval matrices and show that the ex-
act real interval of variation of their first and last eigen-
values can be found by considering two sets of vertex
matrices each of cardinality 2n� 1. In addition, we give
a counterexample that falsify the conjecture that for n�
3 the interval(s) of variation of the other eigenvalues is
attained at vertex matrices. We also remark that this re-
sult can be applied to real skew-symmetric interval ma-
trices, as well as to finding the interval of variation of the
real part of the eigenvalues of a class of interval matrices
whose endpoints are real symmetric matrices. In Sec-
tion 2 we study the eigenvalues of (n × n)-dimensional
Hermitian interval matrices and show that the exact
real interval of variation of their first and last eigenval-
ues can be found by considering two sets of vertex ma-
trices each of cardinality 2(n2Cn�2)/2. The above men-
tioned counterexample also falsifies the conjecture that
for n � 3 the interval(s) of variation of the other eigen-
values is attained at vertex matrices. We also remark
that this result can be applied to skew-Hermitian inter-
val matrices, as well as to finding the interval of varia-
tion of of the real part of the eigenvalues of a class of
interval matrices whose endpoints are Hermitian ma-
trices with their imaginary part fixed. Finally, in Section
3 we present rectangular bounds for the eigenvalues of
complex interval matrices.

In signal processing, control, and statistics real sym-
metric and Hermitian interval matrices represent, e. g.,
the quantized sampled covariance matrices of vector
stochastic processes and their eigenvalues represent the
variances of their decorrelated elements.

In a recent global optimization algorithm, see [1],
real symmetric interval matrices were used to tightly
bound the sets of Hessian matrices resulting from the
objective function’s nonconvex addends and then their
minimal eigenvalues were used to tightly convexify
them.

Eigenvalues of general interval matrices are useful
to study robust stability margins of analog and dis-
crete systems, and convergence rates in numerical anal-
ysis. The reader interested in additional work in this
area is referred to [7] and the references therein, [5];
and, [4,6,10], where Toeplitz and Hankel interval ma-
trices were studied. Genetic algorithms are promising
for solving the above problems for large n.

Real Symmetric IntervalMatrices

A real (n × n)-dimensional symmetric interval matrix
S D S[S; S], where S and S are both real symmetric
matrices is defined by

S �

8<
:S D [sk`] :

S D S>;
[sk` � sk` � sk`];
k; ` D 1; : : : ; n

9=
; ; (1)

where the superscript | denotes transposition. Further,
let S � S denote the set of all vertex matrices such that
if S = [sk`] 2 S, then sk` D sk` or sk` D sk`. Note that
|S| = 2(n2Cn)/2, where |S| denotes the cardinality of S.

It is well known that all the eigenvalues of a real
symmetric matrix S are real, see e. g. [11]. So let �1(S)�
� � � � �n(S) be the ordered eigenvalues of S and �(S)�
{�k(S): k = 1, . . . , n}. Further, let �k(S)� {�: � = �k(S),
S 2 S}, �(S)� {�: � 2 �(S), S 2 S},

(
�k(S) � min(�k(S));
�k(S) � max(�k(S)):

(2)

Because S is a compact set (i. e., closed and bounded
in Rm, where m = (n2+ n)/2 is the number of free pa-
rameters of S) and the eigenvalues of a matrix depend
continuously upon its entries [9 Appendix D], it fol-
lows from [14 Thm. 4.16] that �k(S) and �k(S) are at-
tained. That is, there exist matrices Sk ; Sk 2 S that sat-
isfy �k(S) D �k(Sk); �k(S) D �k(Sk), where k = 1,
. . . , n.

The purpose of this Section is to study the problem
of computing the possibly overlapping eigenvalue in-
tervals �k(S) D [�k(S); �k(S)], where k = 1, . . . , n.

We have shown in [3] and [7] that the four end-
points of �1(S) and �n(S) are attained by considering
two subsets of S each of size at most 2n� 1, see Theorem
below.

Regarding �k(S) for k = 2, . . . , n � 1 and n > 2
we present below a (3 × 3)-dimensional real symmet-
ric interval matrix S and a matrix So 2 S for which
�2(S) � �2(So) > �2(S). That is, for k 6D 1, n the end-
points of �k(S) are not necessarily attained at vertex
matrices of S.

It is well known that if S 2 S, �1(S) and �n(S) are at-
tained at the minimal and maximal values, respectively,
of the set {x| Sx: k x k = 1, x 2 Rn} [11 Thm. 5.2], where
k x k denotes the Euclidean norm of the vector x. Note
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that because x|Sx = (� x)|S(� x) we can let x1 � 0.
Hence, the endpoints of�1(S) are given by

�1(S) D min
S2S

min
x2Rn ;
kxkD1;
x1�0

x>Sx (3)

and

�1(S) D max
S2S

min
x2Rn ;
kxkD1;
x1�0

x>Sx (4)

Similarly, one can give expressions for the endpoints
of �n(S), or, alternatively use the relation �n(S) =
��1(� S).

Expanding x|Sx, where x 2 Rn and S 2 S we obtain

x>Sx D
nX

kD1

skkx2k C 2
nX

kD1

nX
`DkC1

sk`xkx`: (5)

Since x1 � 0, x may vary in 2n� 1 closed orthants
wherein the sign pattern of its elements is preserved.
Let Op � Rn, p = 1, . . . , 2n� 1, denote the set of unit-
length real vectors x with x1 � 0 that belong to the pth
orthant, where the orthants are ordered according to
the binary order of the signs of the last n� 1 elements
of x and a negative (nonnegative) element corresponds
to ‘0’ (‘1’).

Hence we obtain the following subset of S:

S �

8<
:S :

S D argminS2S x>Sx;
some x 2 Oo

p;

p D 1; : : : ; 2n�1

9=
;

D
˚
Sp : p D 1; : : : ; 2n�1

�
; (6)

where Sp D [spk`],O
o
p denotes the interior ofOp, and

spk` D

8̂
<̂
ˆ̂:

skk if k D `;
sk` if (xkx` > 0) ^ (k ¤ `);
sk` if (xkx` < 0) ^ (k ¤ `):

(7)

Similarly as above, by maximizing x|Sx over S 2 S and
some x 2Oo

p one arrives at S
p and S, where Sp

2 S � S
and

ˇ̌
S
ˇ̌
D jSj.

Theorem 1

�1(S) D �1(S); �1(S) D �1(S);

and

�n(S) D �n(S); �n(S) D �n(S):

Proof We will prove that �1(S) D �1(S). The rest of
the proof is similar and will therefore be omitted. Be-
cause the minimization in (3) is over a compact set (i. e.,
{x, S: x 2 Rn, k x k = 1, S 2 S}) and x|Sx is a real con-
tinuous function of x and S, it follows that x|Sx attains
its minimal value for some xo 2 Op and So 2 S. By ex-
panding the quadratic form xo|So xo as in (5) it can be
seen that xo>Soxo � xo>Spxo � xp>Spxp , where xp

denotes the unit length eigenvector of Sp 2 S corre-
sponding to �1(Sp). Moreover, because xo and So solve
the optimization problem (3) it follows that xo>Soxo �
xp>Spxp . Hence xo>Soxo D xp>Spxp and therefore
�1(S) D �1(S).
Note that similar results as in Theorem 1 hold for real
skew-symmetric interval matrices, see [13].

Remark 2 Let S[S; S] be defined as before with S D
S> and S D S

>
. Define the real interval matrix

B[S; S] � S[S; S] by B � fB D [bk`] : [sk` �
bk` � sk`]; k; ` D 1; : : : ; ng. Using Bendixon’s the-
orem [11 Thm. 5.3] (i. e., for B 2 B, min<�(B) �
�(B0) and max<�(B) � �(B0), where B0 � (BCB>)

2 ,
and <;= denote the real and imaginary parts, respec-
tively), it follows that min<�(B[S; S]) D �(S) and
max<�(B[S; S]) D �(S). Hence, using Theorem 1 we
obtain that min<�(B) D �(S) and max<�(B) D
�(S), see also [12].
Example 3 Let the 3-dimensional real symmetric ma-
trix S D [S; S] be given by

S D

0
@

2 1 �7
1 3 �1
�7 �1 �1

1
A ;

S D

0
@

6 2 �2
2 11 7
�2 7 5

1
A :

Here S contains 26 = 64 vertex matrices, i. e., |S| = 64.
Using MatLab we obtain that �(S) D �(Sv ) D 10:1549,
where

Sv D

0
@

6 1 �7
1 11 �1
�7 �1 5

1
A :
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Next, results of 105 computer runs produced the follow-
ing matrix So 2 S,

So D

0
@

5:2054 1:6556 �6:8321
1:6556 10:9244 1:9721
�6:8321 1:9721 4:6703

1
A

with �2(So) D 11:3514. Hence �2(S) � �2(So) >

�2(S).
Next, considering � S = {S: � S 2 S} we obtain that

S1 � � So 2 � S satisfies �2(S1) D ��2(�So) and con-
sequently �2(�S) � �2(S1) < �2(�S), where � S has
a similar meaning as � S.

Hence, the endpoints of�2(S) need not be attained
at vertex matrices of S.

Hermitian Interval Matrices

An (n × n)-dimensional Hermitian interval matrixH D
H[H;H], where H and H are both Hermitian matrices
is defined by

H � fH : H D H�;

[<hk` � <hk` � <hk`; =hk` � =hk` � =hk`];

k; ` D 1; : : : ; n; k � `g;
(8)

where I hkk = 0, k = 1, . . . , n, � denotes the Hermi-
tian operator (i. e. conjugation followed by transposi-
tion). Further, let H � H denote the set of all vertex
matrices such that if H = [hk`] 2 H, then hk` D hk`
or hk` D hk`. Note that the cardinality of H is |H| =
2n2 . It is well known that the eigenvalues of an Her-
mitian matrix H are real, see e. g. [11]. So let �1(H)
� �2(H) � � � � � �n(H) be the ordered eigenvalues
of H and �(H) = {�k(H): k = 1, . . . , n}. Further, let
as before �k(H) � f� : � D �k(H); H 2 Hg ; �(H) �
f� : � 2 �(H); H 2 Hg, �k(H) � min(�k(H)), and
�k(H) � max(�k(H)).

Because H is a compact set (i. e., closed and
bounded in Rn2 , where n2 is the number of free real
parameters of H) and the eigenvalues of a matrix de-
pend continuously upon its entries [9, Appendix D], it
follows from [14, Thm. 4.16] that �k(H) and �k(H) are

attained. That is, there exist matrices Hk ;Hk 2 H that
satisfy �k(H) D �k(Hk), �k(H) D �k(Hk), where k =
1, . . . , n.

The purpose of this Section is to study the problem
of computing the possibly overlapping eigenvalue in-
tervals �k(H) D [�k(H); �k(H)], where k = 1, . . . , n.
We have shown in [2] and [7] that the four endpoints
of �1(H) and �n(H) are attained by considering two
subsets of H each of size at most 2(n2Cn�2)/2, see Theo-
rem 4 below.

Regarding �k(H) for k = 2, . . . , n � 1 and n � 3,
since real-symmetric interval matrices are a special case
of Hermitian interval matrices, it follows from Exam-
ple 3 that for k 6D 1, n the endpoints of �k(H) are not
necessarily attained at vertex matrices of H.

It is well known that if H 2 H, �1(H) and �n(H)
are attained at the minimal and maximal values, respec-
tively, of the set {x� Hx: kxk = 1, x 2 Cn}, see [11 Thm.
5.2]. Note that because x�Hx = (ei�x)�H(ei�x) for all
� we can choose x1 2 R+, where R+ = {x 2 R: x � 0}.
Hence, the endpoints of�1(H) are given by

�1(H) D min
H2H

min
x2Cn ;
kxkD1;
x12RC

x�Hx (9)

and

�1(H) D max
H2H

min
x2Cn ;
kxkD1;
x12RC

x�Hx: (10)

Similarly, one can give expressions for the endpoints
of �n(H), or, alternatively use the relation �n(H) =
��1(�H). Since x1 2 R+, x 2 Cn may vary in 22n� 2

closed orthants contained in R2n� 1 wherein the sign
pattern of its elements is preserved. Let Op, p = 1, . . . ,
22n� 2, denote the set of unit-length real vectors x with
x1 2 R+ that belong to the pth orthant, where the or-
thants are ordered according to the binary order of the
signs of the vector (<x2;=x2; : : : ;<xn ;=xn) 2 R2n�2

and a negative (nonnegative) element corresponds to ‘0’
(‘1’).

Expanding x�Hx, where x = u + iv, u, v 2 Rn and
H = B+ jC 2 H, B = B| 2 Rn × n, C = �C| 2 Rn × n, and
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noting that diag(C) = 0 we obtain

x�Hx D b11u2
1

C

nX
kD2

bkk(u2
k C v2k)

C 2
nX
`D2

[b1`u1u` C c1`(�u1v`)]

C 2
nX

kD2

nX
`DkC1

[bk`(uku`

C vkv`)C ck`(�ukv` C vku`)]: (11)

Hence, minimizing x�Hx over H = [hk`] = [bk`+ ick`]
2 H and some x 2 Oo

p we obtain that only part of the
entries bk` and ck` can be chosen at vertex points, i. e.,

bp
k` D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

hkk if k D `;
<h1` if (u` > 0) ^ (` > k D 1);
<h1` if (u` < 0) ^ (` > k D 1);
<hk` if (uku` > 0; vkv` > 0)

^(` > k > 1);
<hk` if (uku` < 0; vkv` < 0)

^(` > k > 1):

(12)

and

cpk` D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

0 if k D `;
=h1` if (v` < 0) ^ (` > k D 1);
=h1` if (v` > 0) ^ (` > k D 1);
=hk` if (ukv` < 0; vku` > 0)

^(` > k > 1);
=hk` if (ukv` > 0; vku` < 0)

^(` > k > 1):

(13)

LetH p � H denote the set of all vertex matrices that
satisfy (12) and (13). Using (12) and (13) one can set in
B and C their diagonal, first column, first row, and if `
> k > 1 either an entry of B or of C, see [2] for more
details. Hence, since the number of free parameters in
H is n2, it follows that

ˇ̌
H p ˇ̌ D 2

(n2�3nC2)
2 . Further,

let H p D

�
Hp` : ` D 1; : : : ; 2

(n2�3nC2)
2

	
and H D

˚
H p : p D 1; : : : ; 22n�2

�
hence jH j D 2

(n2Cn�2)
2 . Sim-

ilarly as above, by maximizing x�Hx over H 2 H and

some x 2 Oo
p we arrive at H p

and H , where H p �

H �H ,
ˇ̌
ˇH p

ˇ̌
ˇ D ˇ̌H p ˇ̌, and

ˇ̌
ˇH

ˇ̌
ˇ D jH j.

Theorem 4

�1(H) D �1(H ); �1(H) D �1(H )

and

�n(H) D �n(H ); �n(H) D �n(H ):

Proof We will prove that �1(H) D �1(H ). The rest
of the proof is similar and will therefore be omitted.
Because the minimization in (3) is over a compact set
(i. e., {x, H: x 2 Cn, kxk = 1, H 2 H}) and x�Hx is a real
continuous function of x and H, it follows that x�Hx
attains its minimal value for some xo 2Op and Ho 2H.
By expanding xo �Hxo as in (11) and noting that xo is
constant, it can be seen that there is an Hp` 2 H p for
which xo�Hoxo � xo�Hp`xo � xp`�Hp`xp`, where xp`

denotes the unit-length eigenvector ofHp` correspond-
ing to �1(Hp`). Moreover, because xo and Ho solve the
optimization problem (9), it follows that xo�Hoxo �
xp`�Hp`xp`. Hence xo�Hoxo D xp`�Hp`xp` and there-
fore �1(H) D �1(H ).

Note that similar results as in Theorem 4 hold for skew-
Hermitian interval matrices.

Remark 5 This remark is similar to Remark 2. Let
H[H;H] be defined as before with H D H�, H D H�,
and =H D =H. Define the complex interval matrix
A[H;H] � H[H;H] by

A �

8<
:A D [ak`] :

[<hk` � <ak` � <hk`;

=ak` D =hk`];
k; ` D 1; : : : ; n

9=
; :

Using Bendixon’s theorem and Theorem 4, it fol-
lows that min<�(A[H;H]) D �(H) D �(H ) and
max<�(A[H;H]) D �(H) D �(H ).

Complex Interval Matrices

In this Section we present rectangular bounds on the
eigenvalues of a complex interval matrix by extending
similar results for a real interval matrix [13]. A com-
plex interval matrix, denoted by A, is defined by A
� B + iC, where B �

˚
B : B � B � B; B 2 Rn�n�,

C �
˚
C : C � C � C; C 2 Rn�n�, i2 = � 1, and
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B; B;C;C 2 Rn�n are fixed matrices. Further, let A D
BC iC, A D BC iC, and Ac D

(ACA)
2 .

Let � = �r + i�i (�r, �i 2 R1) and x = u + iv (u, v 2
Rn × 1, k x k = 1) be an eigenvalue and the correspond-
ing unit length eigenvector of some matrix A 2 A. First,
note that k x k = 1 implies

kxk2 D x�x D u>uC v>v D 1: (14)

Let A = B+ iC, B 2 B, C 2 C. Since Ax = �x we obtain

(�r C i�i )x D (BC iC)(uC iv)

D Bu � CvC i(BvC Cu):

Premultiplying the above equation by x� = u|� iv|,
equating the real and imaginary parts, and noting that
x�x = 1 we obtain

�r D u>Bu � u>CvC v>BvC v>Cu

and

�i D �v>BuC v>CvC u>BvC u>Cu:

We have that u>Bu D u>B0u � �(B0)u>u and
v>Bv D v>B0v � �(B0)v>v, see [11], where

B0 �
BC B>

2
: (15)

Note that similar results pertain to the real matrix C.
Hence, using (14) we obtain

�r � �(B0) � u>CvC v>Cu: (16)

Choose Bc D
(BCB)

2 and Cc D
(CCC)

2 , then

�(B0) D max
kxkD1;x2Rn

x>Bx

D max
kxkD1;x2Rn

�
x>BcxC x>(B � Bc)x

�

� �(B0c)C max
kxkD1;x2Rn

jxj>�B jxj

D �(B0c)C �(�
0
B); (17)

where |x|� abs(x) taken elementwise,

�B � B � Bc ; (18)

and both�0B and B
0
c have similar meaning as B0 defined

in (15).

To obtain the final form of the upper bound on �r,
�r , it remains to carry out the following derivation:

� u>CvC v>Cu

D �u>CcvC v>Ccu � u>(C � Cc)vC v>(C � Cc)u

� max
k(u>;v>)kD1

(�u>CcvC v>Ccu)

C max
k(u>;v>)kD1

(juj>�C jvj C jvj>�C juj)

� max
k(u>;v>)kD1

�
u
v

�> � 0 �Cc

Cc 0

��
u
v

�

C max
k(u>;v>)kD1

�
juj
jvj

�> � 0 �C

�C 0

��
juj
jvj

�

� �(C00c )C �(�
00
C);

(19)

where�C has similar meaning as�B defined in (18),

C00c �

 
0 �CcCC>c

2
Cc�C>c

2 0

!
;

�00C �

�
0 �0C
�0C 0

�
;

(20)

and �0C has similar meaning as B0 defined in (15).
Hence, using (16), (17), and (19) we finally obtain

�r � �r D �(B0c)C �(�
0
B)C �(C

00
c )C �(�

00
C): (21)

The lower bound on �r , �r , can be obtained by noting
that �� = ��r � i�i is an eigenvalue of �A 2 �A =
�B + i(�C), where �B D fB : � B � B � �B; B 2
Rn�ng and, �C D fC : � C � C � �C;C 2 Rn�ng

using (21) and then replacing the roles of B and C by
�B and �C we obtain

�r � �r D �(B0c ) � �(�
0
B)C �(C

00
c ) � �(�

00
C): (22)

The upper and lower bounds on �i can be similarly ob-
tained by noting that � i� = �i� i�r is an eigenvalue of
� iA 2 � iA = C + i(� B), using (21) and (22), respec-
tively, and then replacing the roles of B and C by C and
� B. We thus obtain

Theorem 6 Let A = B + iC be as defined above, Ac D
(ACA)

2 D Bc C iCc be the central matrix of A, and � =
�r+ i�i be any eigenvalue of the matrix A 2 A, then

�r � �r � �r and �i � �i � �i ;
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where

�r D �(B0c) � �(�
0
B)C �(C

00
c ) � �(�

00
C);

�r D �(B0c)C �(�
0
B)C �(C

00
c )C �(�

00
C);

�i D �(C
0
c) � �(�

0
C) � �(B

00
c ) � �(�

00
B);

�i D �(C0c)C �(�
0
C) � �(B

00
c )C �(�

00
B);

all the primed matrices (i. e., B0c , C0c , �0B, and �
0
C) have

similar meaning as B0 defined in (15); �B is as in (18)
and �C has similar meaning; and, C0c and �00C are as
in (20) with B00c and�00B having similar meaning, respec-
tively.

Corollary 7 Note the following consequences:
i) if �r < 0, then the interval matrix A is Hurwitz sta-

ble.
ii) if the rectangle

n
(x; y) : �r � x � �r ; �i � y � �i

o

is contained in the open unit disk, then A is Schur
stable.

Some computational simplifications for Theorem 6 can
be obtained by using the following lemmas.

Lemma 8 Let Cc
00 be as defined in (20), then �(C00c ) D

��(C00c ) D �( (Cc�C>c )
2 ), where �(A) = {|�|: � 2 �(A)}

denotes the spectral radius of the matrix A.

Proof Let G = (Cc� C>)c /2 and Gv = � v (note that
since G is skew symmetric, � is purely imaginary, see
[11]); the eigenvalues of C0c are ˙ i� with correspond-
ing eigenvectors (v|, � iv|)|, which gives the desired
result.

Note that this Lemma can also be applied to B00c .

Lemma 9 Let

D �
�
0 S
S 0

�
;

where S 2 Rn × n and S = S|, then �(D) D ��(D) D
�(S).

Proof 4 The eigenvectors of D are (w|,˙ w|)|, where
w is an eigenvector of S. Hence the eigenvalues of D are
˙�, with � an eigenvalue of S, which gives the desired
result.

Note that this Lemma can also be applied to �00B and
�00C.
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Interval Analysis: Intermediate Terms, Table 1

v1 = x1,
v2 = x2,

(i) v3 = v21,
(ii) v4 = v22,
(iii) v5 = v4v3,
(iv) v6 = v3 � v5,
(v) v7 = v6 + v4.

Interval Analysis: Intermediate Terms, Table 2

OP p q r
5 3 1 �

5 4 2 �

4 5 4 3
21 6 3 5
20 7 6 4

In global optimization algorithms, the computer must
repeatedly evaluate an objective function, as well as,
possibly, inequality and equality constraints. Such func-
tions are given as algebraic expressions or as subrou-
tines or sections of computer code. When such com-
puter code is executed, operations are applied to the
independent variables, producing intermediate terms.
These intermediate terms are, in turn, combined to pro-
duce other intermediate terms, or, eventually, the ob-
jective function value. For example, consider the prob-
lem

(
min �(x) D x21 � x21x22 C x22
over the box x D ([�1; 1]; [�1; 1])>:

(1)

To evaluate �, the computer may start with the inde-
pendent variable values v1 = x1 and v2 = x2 internally
produce quantities v3, v4, v5, and v6, to finally produce
the dependent variable value �(x) = v7. Table 1 indi-
cates how this may be done.

A list such as in Table 1 may be represented as a ta-
ble of addresses of variables and operations. For exam-
ple, if the operation xp x2q corresponds to operation
code 5, xp  xqxr corresponds to operation code 4, xp
 xq + xr corresponds to operation code 20, and xp 
xq � xr corresponds to operation code 21, then the set
of relations in Table 1 is represented by Table 2.

Such a sequence of operations is called a code list,
but is sometimes called other things, such as a tape. As-
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Interval Analysis: Intermediate Terms, Table 3

v1 = x1
v2 = x2

(i) v3 = v21 ,
(ii) v4 = v22 ,
(iii) v5 = v4v3,
(iv) v6 = v3 � v5,
(v) v7 = v6 + v4,
(vi) v8 = 2v1,
(vii) v9 = v8v4,
(viii) v10 = v8 � v9,
(ix) v11 = 2v2,
(x) v12 = v3v11,
(xi) v13 = �v12,
(xii) v14 = v13 + v11,

� = v7,
@�
@x1

= v10,
@�
@x2

= v14.

suming the axioms of real arithmetic hold for evalua-
tion, code lists for a given algebraic expression or por-
tion of a computer program are not unique.

The concept of a code list is familiar to computer
science students who have worked with compilers,
since a compiler produces such lists while translating
algebraic expressions into machine language. However,
code lists and access to the intermediate expressions
are of particular importance in interval global optimiza-
tion, for the following reasons.
� Code lists provide a convenient internal representa-

tion for the objective and constraints, to be used for
automatic differentiation, for both point and inter-
val evaluation of objectives, gradients, and Hessian
matrices.

� The values of the intermediate quantities can be
used within the optimization algorithm in processes
that reduce the size of the search region.

� Symbolic manipulation can reduce the overestima-
tion, or interval dependency that would otherwise
occur with interval evaluations.

Details are given below.

Use In Automatic Differentiation

A code list can be used either as a pattern to specify the
computations in the forward mode of automatic differ-

entiation or as a symbolic representation of the system
of equations to be solved in the backward mode. See [7]
for an in-depth look at the forward mode of automatic
differentiation, and see [3] for somewhat more recent
research on the subject. See [6, pp. 37–39] for some ex-
amples and additional references. Also see�Automatic
differentiation: Introduction, history and rounding er-
ror estimation.

Use In Constraint Satisfaction Techniques.

Since each intermediate variable in the code list is con-
nected to one or two others via an elementary, invert-
ible operation, narrow bounds on one such intermedi-
ate variable can be used to obtain narrow bounds on
others. For example, suppose that the code list in Ta-
ble 1 has been symbolically differentiated, to get the
code list in Table 3. Then, if the subbox x = ([0.5, 1],
[� 1, � 0.5])| is to be considered for possible inclusion
of optima, the derivative code list in Table 3 can be eval-
uated by forward substitution to obtain the interval set
of intermediate values in Table 4. Furthermore, since
(1) is an unconstrained problem, an optimum must oc-
cur where @�/ @x1 = 0 and @�/ @x2 = 0. In particular,
any global optimizer x� must have

v10(x�) D 0: (2)

Using (2) in line (viii) of the derivative code list in Ta-
ble 5,

v9 D v8 � v10;

whence

ṽ9  [1; 2] � 0;
v9  ev9 \ v9 D [1; 2] :

Now, using (vii) of Table 5,

ev4  v9
v8
D

[1; 2]
[1; 2]

D [0:5; 2];

v4  ev4 \ v4 D [0:5; 1]:

Now using (ii) of Table 5 gives

ev2  pv4 [�
p
v4 (3)

� [0:70; 1] [ [�1;�0:70];

v2  ev2 \ v2 D [�1;�0:70]:
(4)

The last computation represents a narrowing of the
range of one of the independent variables.
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Interval Analysis: Intermediate Terms, Table 4

v1 = [:5; 1],
v2 = [�1;�:5],
v3 = [:25; 1],
v4 = [:25; 1],
v5 = [:0625; 1],
v6 = [�:75:9375],
v7 = [�:5; 1:9375],
v8 = [1; 2],
v9 = [:25; 2],
v10 = [�1; 1:75],
v11 = [�2;�1],
v12 = [�2;�:25],
v13 = [:25; 2],
v14 = [�1:75; 1],
� 2 [�:5; 1:9375],
@�
@x1
2 [�1; 1:75],

@�
@x2
2 [�1:75; 1].

Interval Analysis: Intermediate Terms, Table 5

v1 = x1,
v2 = x2,

(i) v3 = v21 ,
(ii) v4 = v22 ,
(iii) v5 = v3v2,
(iv) v6 = v31 ,
(v) v7 = v6 + v4,
(vi) v8 = v7 + 1,
(vii) v8 + v5 = 0,
(viii) v8 � 3v5 = 0

(A similar computation could also have been carried
out to obtain narrower bounds on v1.)

If, in addition, an upper bound � D 0 for the global
optimum of � is known, then

v7 2 [�1; 0] \ [�0:5; 1:9375] D [�0:5; 0]:

This can now be used in Table 3, (v), along with new
intermediate variable bounds, wherever possible, to ob-
tain

ev4  v7 � v6 D [�0:5; 0] � [�0:75; 0:9375]

D [�1:4375; 0:75];

v4  v4 \ev4 D [0:5; 0:75]:

Now using Table 3, (vii),

ev9  [1; 2][0:5; 0:75] D [0:5; 1:5];

v9  ev9 \ v9 D [1; 1:5];

then using (viii) and v10 = 0 gives v8 = [1, 1.5]. Finally,
using Table 3, (vi), gives

v1  [0:5; 0:75] \ [0:5; 1] D [0:5; 0:75]: (5)

Now, evaluating � in (1) (or redoing the forward substi-
tution represented in Table 4) at (x1, x2) = ([0.5, 0.75],
[�1, �0.70]) gives

� 2 [:5:75]2 � [:5:75]2[�1;�:7]2 C [�1;�:7]2

D [:25:5625] � [:25:5625][:49; 1]C [:49; 1]

D [:25:5625]C [�:5625;�:1225]C [:49; 1]

D [:1775; 1:44];

contradicting the known upper bound � D 0. This
proves that there can be no global optimizer of (1)
within ([0.5, 1], [�1, �0.5])|. (Note that, in fact, there
are no global optimizers in ([�1, 1], [�1, 1])| if the
problem is considered to be unconstrained.)

The above procedure is easily automated, as is done
in, say, GlobSol [2,6],UniCalc [1], or other interval con-
straint propagation software.

This example illustrates a more general technique,
associated with constraint propagation and logic pro-
gramming. See [4] for an introduction to this view of
the subject, and see [5] for alternate techniques of in-
terval constraint satisfaction.

Use In Symbolic Preprocessing.

To understand how symbolic analysis based on the code
list may help, consider the following example:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Find all solutions to
f (x) D 0; f D ( f1; f2)>

within the box x D ([�2; 0]; [�1; 1])>

where f1(x1; x2) D x31 C x21x2 C x22 C 1
f2(x1; x2) D x31 � 3x21x2 C x22 C 1:

(6)

A possible code list is
There is much interval dependency in this system, both
in the individual equations (since each variable occurs
in various terms), and between the equations (since the
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equations share common terms). However, examina-
tion of the code list in Table 5 reveals that a change of
variables can make the system more amenable to inter-
val computation. Seeing that (vii) and (viii) are linear in
v5 and v8 = v4 + v6+ 1, define

(
y1 D v5 D x21x2;
y2 D v4 C v6 D x31 C x22 :

(7)

Then the system becomes
(
y2 C y1 C 1 D 0;
y2 � 3y1 C 1 D 0:

(8)

Thus, the linear system (8) may be solved easily for y1
and y2. The interval bounds may then be plugged into
(7) to obtain x1 and x2. There is no overestimation in
any of the expressions for function components or par-
tial derivatives in either (8) or (7).

Additional research should reveal how to automate
this change of variables process.
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Nondifferentiable problems arise in various places in
global optimization. One example is in l1 and l1 op-
timization. That is,

min
x
�(x) D min kFk1 D min

x

mX
iD1

j fi(x)j (1)
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and

min
x
�(x) D min kFk1 D min

x

�
max
1�i�m

j fi(x)j
	
; (2)

where x is an n-vector, arise in data fitting, etc., and �
has a discontinuous gradient. In other problems, piece-
wise linear or piecewise quadratic approximations are
used, and the gradient or the Hessian matrix are dis-
continuous. In fact, in some problems, even the objec-
tive function can be discontinuous.

Much thought has been given to nondifferentia-
bility in algorithms to find local optima, and various
techniques have been developed for local optimization.
Some of these techniques can be used directly in inter-
val global optimization algorithms. However, the power
of interval arithmetic to bound the range of a point-
valued function, even if that function is discontinuous,
can be used to design effective algorithms for nondif-
ferentiable or discontinuous problems whose structure
is virtually identical to that of algorithms for differen-
tiable or continuous problems.

Posing As Continuous Problems

Several techniques are available for re-posing problems
as differentiable problems, in particular for Problem (1)
and Problem (2). One such technique, suggested in [2,
p. 74] and elsewhere, involves rewriting the forms |e|,
max{e1, e2}, and min{e1, e2} occurring in variable ex-
pressions in the objective and constraints in terms of
additional constraints, as follows:
� Replace an expression |e| by a new variable xn + 1 and

the two constraints xn + 1 � 0 and x2nC1 = e2.
� Replace max{e1, e2} by

e1 C e2 C je1 � e2j
2

:

� Replace min{e1, e2} by

e1 C e2 � je1 � e2j
2

:

Alternately, as explained in [1] and elsewhere, the
entire Problems (1) and (2) can be replaced by con-
strained problems. In particular, (1) can be replaced by

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
mX
iD1

vi

s.t. vi � fi(x); i D 1; : : : ;m;
vi � � fi(x); i D 1; : : : ;m;

(3)

where the vi are new variables.
Likewise, (2) can be replaced by
8̂
<̂
ˆ̂:

min v
s.t. v � fi(x); i D 1; : : : ;m;

v � � fi(x); i D 1; : : : ;m;

(4)

where v is a new variable.

A Special Method for Minimax Problems

In [4], a special interval algorithm for (2) is presented.

Treating As Continuous Problems

Due to inclusion properties of interval arithmetic,
interval algorithms based on a particular degree of
smoothness can be effective, essentially unchanged
when less smoothness is present. In particular,
� If the objective function is discontinuous, algo-

rithms designed for continuous objective functions
can be used effectively.

� If the function is nonsmooth (that is, if the gradient
has discontinuities), then algorithms based on sec-
ond order information can often be used effectively.

For a brief discussion and further references for these
general algorithms, see � Interval analysis: Uncon-
strained and constrained optimization. For a more in-
depth discussion of how continuous algorithms can be
used for discontinuous problems, see [3, Chap. 6]. The
main ideas are highlighted below.

Minima of �: Rn ! R1 can still be located when
the objective � is discontinuous because bounds on the
range of � are all that is necessary to do a branch and
bound search. For a simple example, suppose

�(x) D

(
x2 if x � 1;
1C x if x > 1;

(5)

and suppose the interval [�2, 2] is to be searched
for global minima. For illustration purposes, suppose
�(0.25) = 0.125 has been evaluated, so that 0.125 is an
upper bound on the global optimum, and suppose the
subinterval x = [0.5, 1.5] is to be analyzed. To obtain an
interval enclosure for the range of � over x, we take

�(x) 2 [0:5; 1:0]2[(1C [1:0; 1:5])

D [0:25; 1:0][[2:0; 2:5] D [0:25; 2:5];



Interval Analysis: Nondifferentiable Problems I 1701

where a [ b is the smallest interval that contains both a
and b. Thus, since 0.125 < [0.25, 2.5], a minimum of �
cannot possibly occur within the interval [0.5, 1.5].

Similar considerations apply if the gradient r� is
discontinuous. In such cases, the gradient test (see
� Interval analysis: Unconstrained and constrained op-
timization) will keep boxes that either contain zeros of
the gradient or critical points corresponding to gradient
discontinuities where the gradient changes sign.

When the gradient is discontinuous, interval New-
ton methods can still be used for iteration, as well as to
verify existence. (See [3, (6.4) and (6.5), p. 217] for a for-
mula; see � Interval Newton methods for an introduc-
tion to interval Newton methods; see � Interval fixed
point theory for an explanation of interval fixed point
theory.) Application to problems with discontinuous
gradients is based on extended interval arithmetic (with
infinities) and astute computation of slope bounds; see
[3, pp. 214–215] for details.

Example 1 Consider

f (x) D
ˇ̌
x2 � x

ˇ̌
� 2x C 2 D 0: (6)

This function has both a root and a cusp at x = 1, with
a left derivative of � 3 and a right derivative of � 1 at x
= 1. If 1 2 x, then a slope enclosure is given by S(f , x, x)
= [�1, 1](x + x � 1) � 2.

Interval Analysis: Nondifferentiable Problems, Figure 1
The concept of a slope range for a nondifferentiable function

Consider using the interval Newton method

ex x̌(k) �
f (x̌(k))

S( f ; x(k); x̌(k))
;

x(kC1)  x(k) \ex;
with x̌(k) equal to the midpoint x̌ D 0:9 of x(k), and x(0)

= [0.7, 1.1], where S( f ; x(k); x̌(k)) is a bound on the slope
enclosure of f at x̌. (See Fig. 1 for the concept of slope
range.)

An initial slope enclosure is then S(f , [0.7, 1.1], 0.9)
= [�3, �1],

ex D :9 � :29
[�3;�1]

D [:996; 1:19];

and S( f ; [0:7; 1:1]; 0:9) D [�3;�1]. If this interval
Newton method is iterated, then on iteration 3, exis-
tence of a root within x(3) was proven, since x(3) �
intx(2), where intx(2) is the interior of x(2). For details,
see [3, pp. 224–225].
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Introduction

There are many applications of optimization for dy-
namical systems, including parameter estimation from
time series data, determination of optimal operating
profiles for batch and semibatch processes, optimal
start-up, shutdown, and switching of continuous sys-
tem, etc. To address such problems, one approach is to
discretize any control profiles that appear as decision
variables. There are then basically two types of methods
available: (1) the complete discretization or simultane-
ous approach [20,28], in which both state variables and
control profiles are discretized, and (2) the control pa-
rameterization or sequential approach [3,26], in which
only the control profiles are discretized. In this article,
only the sequential approach is considered. Since these

problems are often nonconvex and thus may exhibit
multiple local solutions, the classical techniques based
on solving the necessary conditions for a local mini-
mummay fail to determine the global optimum. This is
true even for a rather simple temperature-control prob-
lem with a batch reactor [12]. Therefore, there is an in-
terest in global optimization algorithms which can rig-
orously guarantee optimal performance.

There has been significant recent work on this prob-
lem. For example, Esposito and Floudas [6,7] used the
˛BB approach [1,2] to address the global optimization
of dynamic systems. In this method, convex underesti-
mating functions are used in connection with a branch-
and-bound framework. A theoretical guarantee of at-
taining an �-global solution is offered as long as rig-
orous underestimators are used, and this requires that
sufficiently large values of ˛ be used. However, this is
difficult in this context because determining proper val-
ues of ˛ depends on the Hessian of the function being
underestimated, and this matrix is not available in ex-
plicit functional form when the sequential approach is
used. Thus, as discussed in more detail by Papamichail
and Adjiman [21], this approach does not provide
a theoretical guarantee of global optimality. Alterna-
tive approaches have been given by Chachuat and Lat-
ifi [4] and by Papamichail and Adjiman [21,22] that do
provide a theoretical guarantee of �-global optimality;
however, this is achieved at a high computational cost.
Singer and Barton [25] have described a branch-and-
bound approach for determining a theoretically guar-
anteed �-global optimumwith significantly less compu-
tational effort. In this method, convex underestimators
and concave overestimators are used to construct two
bounding initial value problems (IVPs), which are then
solved to obtain lower and upper bounds on the trajec-
tories of the state variables [24]. However, the bound-
ing IVPs are solved using standard numerical methods
that do not provide guaranteed error estimates, and so
this approach does not provide fully guaranteed results
from a computational standpoint.

In this article we discuss an approach [8,9] for the
deterministic global optimization of dynamical systems
based on interval analysis. A key feature of the method
is the use of a verifying solver [10] for parametric or-
dinary differential equations (ODEs), which is used to
produce guaranteed bounds on the solutions of dy-
namic systems with interval-valued parameters. This is
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combined with a technique for domain reduction based
on using Taylor models [19] in an efficient constraint
propagation scheme. The result is that problems can be
solved to global optimality with both mathematical and
computational certainty.

Formulation

In this section we give the mathematical formulation
of the nonlinear dynamic optimization problem to be
addressed. Assume the system is described by the non-
linear ODE model ẋ D f (x, 
). Here x is the vector of
state variables (length n) and 
 is a vector of adjustable
parameters (length p), which may be a parameteriza-
tion of a control profile �(t). The model is given as an
autonomous system; a nonautonomous system can eas-
ily be converted into autonomous form by treating the
independent variable (t) as an additional state variable
with derivative equal to 1. The objective function ' is
expressed in terms of the adjustable parameters and the
values of the states at discrete points t
,� D 0; 1; : : : ; r.
That is, � D �

�
x
(
);
 ; � D 0; 1; : : : ; r

�
, where

x
(
) D x(t
;
). If an integral appears in the ob-
jective function, it can be eliminated by introducing an
appropriate quadrature variable.

The optimization problem is then stated as

min
�;x


�
�
x
(
);
 ; � D 0; 1; : : : ; r

�
(1)

subject to ẋ D f (x;
) ;

x0 D x0(
) ;

t 2 [t0; tr] ;


 2 � :

Here � is an interval vector that provides upper and
lower parameter bounds (uppercase will be used to
denote interval-valued quantities, unless noted other-
wise). We assume that f is (k � 1) times continu-
ously differentiable with respect to the state variables
x, and (qC 1) times continuously differentiable with
respect to the parameters 
 . We also assume that ' is
(qC 1) times continuously differentiable with respect
to the parameters 
 . Here k is the order of the trunca-
tion error in the interval Taylor series (ITS) method to
be used in the integration procedure, and q is the or-
der of the Taylor model to be used to represent param-
eter dependence. When a typical sequential approach
is used, an ODE solver is applied to the constraints

with a given set of parameter values, as determined
by the optimization routine. This effectively eliminates
x
; � D 0; 1; : : : ; r, and leaves a bound-constrained
minimization in the adjustable parameters 
 only. The
method discussed here can also be extended to opti-
mization problems with general state path constraints,
and more general equality or inequality constraints on
parameters. This is done by adapting the constraint
propagation procedure (CPP) discussed below to han-
dle the additional constraints.

Methods

Taylor Models

Makino and Berz [13] have described a remainder
differential algebra (RDA) approach that uses Taylor
models for bounding function ranges. This represents
an approach for controlling the “dependency problem”
of interval arithmetic, which leads to overestimation of
function ranges. In the RDA approach, a function is
represented using a model consisting of a Taylor poly-
nomial and an interval remainder bound.

One way of forming a Taylor model of a function
is by using a truncated Taylor series. Consider a func-
tion f : x 2 X � Rm ! R that is (qC 1) times par-
tially differentiable on X and let x0 2 X . The Taylor
theorem states that for each x 2 X, there exists a � 2 R
with 0 < � < 1 such that

f (x) D
qX

iD0

1
i!

h
(x � x0) �

�ii
f (x0)

C
1

(qC 1)!

h
(x � x0) �

�iqC1
f
�
x0 C (x � x0)�

�
;

(2)

where the partial differential operator [g �
�
]k is

[g �
�

]k

D
X

j1C���C jmDk
0� j1;��� ; jm�k

k!
j1! � � � jm !

g j11 � � � g
jm
m

@k

@x j1
1 � � � @x

jm
m
:

(3)

The last (remainder) term in (2) can be quantita-
tively bounded over 0 < � < 1 and x 2 X using inter-
val arithmetic or other methods to obtain an interval
remainder bound Rf . The summation in (2) is a qth
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order polynomial (truncated Taylor series) in (x � x0)
which we denote by p f (x � x0). A qth order Taylor
model Tf for f (x) then consists of the polynomial pf
and the interval remainder bound Rf and is denoted by
Tf D (p f ; R f ). Note that f 2 Tf for x 2 X and thus Tf

encloses the range of f over X.
In practice, it is more useful to compute Taylor

models of functions by performing Taylor model op-
erations. Arithmetic operations with Taylor models can
be done using the RDA operations described byMakino
and Berz [13,14], which include addition, multiplica-
tion, reciprocal, and intrinsic functions. Therefore, it is
possible to compute a Taylor model for any function
representable in a computer environment by simple
operator overloading through RDA operations. When
RDA operations are performed, only the coefficients of
pf are stored and operated on; however, rounding er-
rors are bounded and added to Rf . It has been shown
that, compared with other rigorous bounding meth-
ods, the Taylor model can be used to obtain sharper
bounds for modest to complicated functional depen-
dencies [13,19].

An interval bound on a Taylor model T D (p; R)
over X is denoted by B(T), and is found by de-
termining an interval bound B(p) on the polyno-
mial part p and then adding the remainder bound;
that is, B(T) D B(p)C R. The range bounding of the
polynomials B(p) D P(X � x0) is an important issue,
which directly affects the performance of Taylor model
methods. Unfortunately, the exact range bounding of
an interval polynomial is nondeterministic polyno-
mial-time hard, and direct evaluation using interval
arithmetic is very inefficient, often yielding only loose
bounds. Thus, various bounding schemes [15,19] have
been used, mostly focused on exact bounding of the
dominant parts of P, i. e., the first- and second-order
terms. However, exact bounding of a general inter-
val quadratic is also computationally expensive (in the
worst case, exponential in the number of variables m).
Lin and Stadtherr [8] have adopted a very simple com-
promise approach, in which only the first-order and the
diagonal second-order terms are considered for exact
bounding, and other terms are evaluated directly. That
is,

B(p) D
mX
iD1

�
ai (Xi � xi0)2 C bi (Xi � xi0)

�
CQ ; (4)

where Q is the interval bound of all other terms, and is
obtained by direct evaluation with interval arithmetic.
In (4), since Xi occurs twice, there exists a dependency
problem. For jai j � !, where! is a small positive num-
ber, (4) can be rearranged so that each Xi occurs only
once; that is,

B(p) D
mX
iD1

"
ai
�
Xi � xi0 C

bi
2ai

�2

�
b2i
4ai

#
CQ : (5)

In this way, the dependence problem in bounding the
interval polynomial is alleviated so that a sharper bound
can be obtained. If jai j < !, direct evaluation can be
used instead.

Verifying Solver for Parametric ODEs

When a traditional sequential approach is applied to
the optimization of nonlinear dynamical systems, the
objective function ' is evaluated, for a given value of

 , by applying an ODE solver to the constraints to
eliminate the state variables x. In the global optimiza-
tion approach discussed here, a sequential approach
based on interval analysis is used. This approach re-
quires the evaluation of bounds on ', given some pa-
rameter interval� . Thus, an ODE solver is needed that
can compute bounds on x
, � D 0; 1; : : : ; r, for the
case in which the parameters are interval-valued. Inter-
val methods (also called validated methods or verified
methods) for ODEs [16] provide a natural approach
for computing the desired enclosure of the state vari-
ables at t
; � D 0; 1; : : : ; r. An excellent review of in-
terval methods for IVPs has been given by Nedialkov
et al. [17]. Much work has been done for the case in
which the initial values are given by intervals, and there
are several software packages available that deal with
this case. However, less work has been done on the case
in which parameters are also given by intervals. In the
global optimization method discussed here, a verifying
solver for parametric ODEs [10], called VSPODE, is
used to produce guaranteed bounds on the solutions of
dynamic systems with interval-valued initial states and
parameters. In this section, we review the key ideas be-
hind the method used in VSPODE, and outline the pro-
cedures used. Additional details are given by Lin and
Stadtherr [10].

Consider the parametric ODE system

ẋ D f (x;
); x0 2 X0; 
 2 � ; (6)
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where t 2 [t0; tr] for some tr > t0. The interval vec-
tors X0 and � represent enclosures of initial values
and parameters, respectively. It is desired to de-
termine a verified enclosure of all possible solu-
tions to this initial value problem. We denote by
x(t; t j; X j ;�) the set of solutions x(t; t j; X j;�) D˚
x(t; t j; x j;
) j x j 2 X j;
 2 �

�
; where x(t; t j; x j;
)

denotes a solution of ẋ D f (x;
) for the initial con-
dition x D x j at t D t j. We will outline a method for
determining enclosures X j of the state variables at each
time step j D 1; : : : ; r, such that x(t j ; t0; X0;�) � X j .

Assume that at tj we have an enclosure X j of
x(t j ; t0; X0;�), and that we want to carry out an inte-
gration step to compute the next enclosure X jC1. Then,
in the first phase of the method, the goal is to find
a step size hj D t jC1 � t j > 0 and an a priori enclosure
(coarse enclosure) eX j of the solution such that a unique
solution x(t; t j; x j;
) 2 eX j is guaranteed to exist for all
t 2 [t j; t jC1], all x j 2 X j , and all 
 2 � . One can ap-
ply a traditional interval method, with high-order en-
closure, to the parametric ODEs by using an ITS with
respect to time. That is, hj and X j are determined such
that for X j � eX0

j ,

eX j D

k�1X
iD0

[0; hj]iF[i](X j;�)C [0; hj]kF[k](eX0
j ;�)

� eX0
j :

(7)

Here eX0
j is an initial estimate of eX j , k denotes the

order of the Taylor expansion, and the coefficients
F[i] are interval extensions of the Taylor coefficients
f [i] of x(t) with respect to time. Satisfaction of (7)
demonstrates [5] that there exists a unique solution
x(t; t j; x j;
) 2 eX j for all t 2 [t j; t jC1], all x j 2 X j , and
all 
 2 � .

In the second phase of the method, a tighter
enclosure X jC1 � eX j is computed such that x(t jC1;
t0; X0;�) � X jC1. This is done by using an ITS ap-
proach to compute a Taylor model Tx jC1 of x jC1 in
terms of the parameter vector 
 and initial state vector
x0, and then obtaining the enclosure X jC1 D B(Tx jC1)
by bounding Tx jC1 over 
 2 � and x0 2 X0. To de-
termine enclosures of the ITS coefficients f [i](x j;
) an
approach combining RDA operations with the mean
value theorem is used to obtain the Taylor models

T f [i] . Now using an ITS for x jC1 with coefficients given
by T f [i] , one can obtain a result for Tx jC1 in terms
of the parameters and initial states. In order to ad-
dress the wrapping effect [16], results are propagated
from one time step to the next using a type of Tay-
lor model in which the remainder bound is not an
interval but a parallelepiped. That is, the remainder
bound is a set of the form P D fAv j v 2 Vg, where
A 2 Rn�n is a real and regular matrix. If A is orthog-
onal, as from a QR-factorization, then P can be inter-
preted as a rotated n-dimensional rectangle. Complete
details of the computation of Tx jC1 were given by Lin
and Stadtherr [10].

The approach outlined above, as implemented in
VSPODE, has been tested by Lin and Stadtherr [10],
who compared its performance with results obtained
using the popular VNODE package [18]. For the test
problems used, VSPODE provided tighter enclosures
on the state variables than VNODE, and required sig-
nificantly less computation time.

Deterministic Global Optimization Method

In this section, we summarize a method for the de-
terministic global optimization of dynamical systems,
based on the use of the tools described above. As noted
previously, when a sequential approach is used, the
state variables are effectively eliminated using the ODE
constraints, in this case by employing VSPODE, leav-
ing a bound-constrained minimization of �(
) with
respect to the adjustable parameters (decision vari-
ables) 
 . The optimization method discussed here
can be thought of as a type of branch-and-bound
method, with a CPP used for domain reduction. There-
fore, it can also be viewed as a branch-and-reduce al-
gorithm. The basic idea is that only those parts of
the decision variable space � that satisfy the con-
straint c(
) D �(
) �b� � 0, where b� is a known up-
per bound on the global minimum found using local
minimization, need to be retained. To perform this do-
main reduction, a CPP can be used.

Partial information expressed by a constraint can
be used to eliminate incompatible values from the do-
main of its variables. This domain reduction can then
be propagated to all constraints on that variable, where
it may be used to further reduce the domains of other
variables. This process is known as constraint propaga-
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tion. It is applied to a sequence of subintervals of � ,
which arises in a bisection process. For a subinterval
� (k), the Taylor model T�k of the objective function '
over� (k) is computed. To do this, Taylor models of x
,
the state variables at times t
; � D 1; : : : ; r, in terms of

 are determined using VSPODE. Note that T�k then
consists of a qth order polynomial in the decision vari-
ables 
 , plus a remainder bound. The part of � (k) that
can contain the global minimum must satisfy the con-
straint c(
) D �(
) �b� � 0. In the CPP outlined here,
B(Tc) is determined and then there are three possible
outcomes (in the following, an underline is used to in-
dicate the lower bound of an interval, and an overline is
used to indicate the upper bound):

1. If B(Tc ) > 0, then no 
 2 � (k) will ever satisfy
the constraint; thus, the CPP can be stopped and
� (k) discarded. Testing for this outcome amounts to
checking if the lower bound of T�k , B(T�k ), is greater
than b�. If so, then � (k) can be discarded because it
cannot contain the global minimum and need not be
tested further.

2. If B(Tc) � 0, then every 
 2 � (k) will always satisfy
the constraint; thus,� (k) cannot be reduced and the
CPP can be stopped. This amounts to checking if the
upper bound of T�k , B(T�k ), is less thanb�. This also
indicates, with certainty, that there is a point in� (k)

that can be used to updateb�, which can then be done
using a local optimization routine.

3. If neither of the previous two cases occur, then part
of the interval� (k) may be eliminated. To do this, an
approach [8,9] based on the range bounding strategy
for Taylor models is used, as given by (5). If insuffi-
cient reduction of� (k) occurs, then it is bisected and
the resulting subintervals are added to the sequence
of subintervals to be processed.

Complete details of the optimization method based
on these ideas were given by Lin and Stadtherr [8,9].
It can be implemented either as an �-global algo-
rithm, or, by incorporating interval-Newton steps in
the method, as an exact (� D 0) algorithm. The latter
requires the application of VSPODE to the first- and
second-order sensitivity equations. An exact algorithm
using interval-Newton steps was implemented by Lin
and Stadtherr [8] for the special case of parameter esti-
mation problems. However, this has not been fully im-
plemented for more general cases.

Cases

Lin and Stadtherr [8,9] have tested the performance of
the algorithm discussed above on a variety of test prob-
lems. In this section we summarize the results for two
of these problems. Both example problems were solved
using an Intel Pentium 4 3.2 GHzmachine running Red
Hat Linux. The VSPODE package [9], with a k D 17 or-
der ITS, q D 3 order Taylor model, and QR approach
for wrapping, was used to integrate the dynamical sys-
tems in each problem. Using a smaller value of k will
result in the need for smaller step sizes in the integra-
tion and so will tend to increase computation time. Us-
ing a larger value of q will result in somewhat tighter
bounds on the states, though at the expense of addi-
tional complexity in the Taylor model computations.

Catalytic Cracking of Gas Oil

This problem involves parameter estimation in a model
representing the catalytic cracking of gas oil (A) to
gasoline (Q) and other side products (S), as described
by Tjoa and Biegler [27] and also studied by several oth-
ers [4,7,22,25]. The reaction is

A
k1 ��

k3 ��
��

��
��

��
Q

k2����
��

��
�

S

Only the concentrations of A and Qwere measured.
This reaction scheme involves nonlinear reaction kinet-
ics. A least-squares objective was used for parameter es-
timation, resulting in the optimization problem

min
�
� D

20X

D1

2X
iD1

�bx
;i � x
;i
�2

subject to ẋ1 D �(�1 C �3)x21 ;

ẋ2 D �1x21 � �2x2 ;
t 2 [0; 0:95] ;

x
 D x(t
) ;

x0 D (1; 0)T ;


 2 [0; 20] � [0; 20] � [0; 20] ;

wherebx
 is given experimental data. Here the state vec-
tor, x, is defined as the concentration vector (A, Q)T

and the parameter vector, 
 , is defined as (k1, k2, k3)T.
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For the �-global algorithm, with a relative conver-
gence tolerance of �rel D 10�3, 14.3 s was required to
solve this problem. For the exact (� D 0) global algo-
rithm using interval-Newton, 11.5 s was required. For
this problem, the exact algorithm required less com-
putation than the �-global algorithm. However, this
may or may not be the case for other problems [8].
Papamichail and Adjiman [22] solved this problem
to �-global optimality in 35,478 s (Sun UltraSPARC-
II 360 MHz; Matlab), and Chachuat and Latifi [4]
obtained an �-global solution in 10,400 s (unspecified
machine; prototype implementation). Singer and Bar-
ton [25] solved this problem to �-global optimality for
a series of absolute tolerances, so their results are not
directly comparable. However, the computational cost
of their method on this problem appears to be quite
low. These other methods all provide for �-convergence
only.

Singular Control Problem

This example is a nonlinear singular optimal control
problem originally formulated by Luus [11] and also
considered by Esposito and Floudas [7], Chachuat and
Latifi [4], and Singer and Barton [25]. This problem is
known to have multiple local solutions. In autonomous
form and using a quadrature variable, this problem is
given by

min

(t)
� D x5(t f )

subject to ẋ1 D x2 ;

ẋ2 D �x3� C 16x4 � 8 ;

ẋ3 D � ;

ẋ4 D 1 ;

ẋ5 D x21 C x22
C 0:0005(x2 C 16x4 � 8 � 0:1x3�2)2 ;

x0 D (0;�1;�
p
5; 0; 0)T ;

t 2 [t0; t f ] D [0; 1] ;

� 2 [�4; 10] :

(8)

The control �(t) is parameterized as a piecewise con-
stant profile with a specified number of equal time in-
tervals. Five problems are considered, corresponding to
one, two, three, four, and five time intervals in the pa-
rameterization. Each problem was solved to an abso-
lute tolerance of �abs D 10�3. Computational results [9]

are presented in Table 1. This shows, for each prob-
lem, the globally optimal objective value �� and the
corresponding optimal controls 
*, as well as the CPU
time (in seconds) and number of iterations required.
Chachuat and Latifi [4] solved the two-interval prob-
lem to �-global optimality using four different strate-
gies, with the most efficient requiring 502 CPU seconds,
using an unspecified machine and a “prototype” im-
plementation. Singer and Barton [25] solved the one-,
two-, and three-interval cases with �abs D 10�3 using
two different problem formulations (with and with-
out a quadrature variable) and two different implemen-
tations (with and without branch-and-bound heuris-
tics). The best results in terms of efficiency were
achieved with heuristics and without a quadrature
variable, with CPU times of 1.8, 22.5, and 540.3 s
(1.667 GHz AMD Athlon XP2000+) for the one-, two-
, and three-interval problems, respectively. This com-
pares with CPU times of 0.02, 0.32, and 10.88 s (3.2
GHz Intel Pentium 4) for the method discussed here.
Even accounting for the roughly factor of 2 differ-
ence in the speeds of the machines used, the method
described here appears to be well over an order of
magnitude faster. The four- and five-interval prob-
lems were solved [9] in 369 and 8,580.6 CPU sec-
onds, respectively, and apparently had not been solved
previously using a method rigorously guaranteed to
find an �-global minimum. It should be noted that
the solution to the three-interval problem, as given in
Table 1, differs from the result reported by Singer and
Barton [25], which is known to be a misprint [23].

Conclusions

In this article, we have described an approach for the
deterministic global optimization of dynamical sys-
tems, including parameter estimation and optimal con-
trol problems. This method [8,9] is based on inter-
val analysis and Taylor models and employs a type of
sequential approach. A key feature of the method is
the use of a new verifying solver [10] for parametric
ODEs, which is used to produce guaranteed bounds
on the solutions of dynamic systems with interval-
valued parameters. This is combined with techniques
for domain reduction based on using Taylor mod-
els in an efficient constraint propagation scheme. The
result is that problems can be solved to global op-
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Interval Analysis for Optimization of Dynamical Systems, Table 1
Results [9] for the singular control problem

Time intervals '* �* CPU time (s) No. of iterations
1 0.4965 (4.071) 0:02 9
2 0.2771 (5.575,�4.000) 0:32 71
3 0.1475 (8.001,�1.944, 6.042) 10:88 1; 414
4 0.1237 (9.789,�1.200, 1.257, 6.256) 369:0 31; 073
5 0.1236 (10.00, 1.494,�0.814, 3.354, 6.151) 8; 580:6 493; 912

timality with both mathematical and computational
certainty. On parameter estimation problems, an ex-
act (� D 0) algorithm, using interval-Newton steps,
can be applied at a cost comparable to, and per-
haps less than, that of the �-global algorithm. The
new approach can provide significant improvements in
computational efficiency, potentially well over an or-
der of magnitude, relative to other recently described
methods.
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Introduction

The ability of interval arithmetic (IA) [21,22,23,24] to
automatically compute reliable solution bounds in nu-

merical computations makes it an ideal mechanism
for solving continuous nonlinear global optimization
problems. To date, most efforts at developing paral-
lel IA methods for global optimization have used the
branch and bound (B&B) global search strategy [1,4,8].
The sequential B&B-based IA global optimization al-
gorithm [10,17] executes a tree-like search process
which is naturally parallelized and amenable to mas-
sive coarse-grained data parallelism (i. e. workload scal-
able [14]).

Several noteworthy advances in parallel algorithms
for global optimization using interval arithmetic have
occurred over the past few years [7,15,26]. In addition,
new software packages have been developed as a re-
sult of recent implementations of new or existing paral-
lel IA global optimization algorithms [13,29]. A paral-
lel programming language expressing a message-driven
model is utilized in one implementation, resulting in
a significantly different computational flow than is typ-
ical with the more classic and popular message-passing
(e. g. MPI, PVM) and shared-memory (e. g. pthreads)
parallel implementations [20]. Recently, the ubiquity of
multi-core processor architectures has opened up new
possibilities for exploiting thread-level parallelism.

In the sections that follow, a sequential (B&B) IA
global optimization algorithm is presented along with
relevant IA and parallel computing definitions. Next,
a general formulation of a parallel IA global opti-
mization algorithm (PIAGO) based on the B&B global
search strategy is presented. In the methods section,
a survey of recent algorithmic advances, novel imple-
mentations, and pertinent language and programming
environments is discussed. Finally, some concluding re-
marks are made along with thoughts on fertile future
research avenues.

Definitions

Interval Arithmetic

A “box” is an n-dimensional interval:

X D
˚
Ex : x i � xi � xi ; i D 0; 1; : : : ; n � 1

�

D ([x0; x0]; [x1; x1]; : : : ; [xn�1; xn�1])T

D (x0; x1; : : : ; xn�1)T :

Boldface letters and capital letters are used to de-
note interval quantities and vectors, respectively (as
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proposed in [17]). The midpoint of X is denoted, m(X).
The width of X is denoted, w(X). The greatest lower
bound and the least upper bound for the interval x is
denoted x and x, respectively.

Sequential IA Branch and Bound

A canonical sequential (B&B) IA global optimization
algorithm, SIAGO, iterates over a prioritized list of
boxes, representing current candidate subregions (of
the initial search space) for containing global min-
imizer(s). The prioritized list, Q, is typically imple-
mented as a heap data structure (see Algorithm 1). In
each iteration, a box, X, is removed from Q. If w(X)
and w( f (X)) are less than the prescribed tolerances, �x
and � f , respectively, then X is placed on the solution
list, S; Otherwise, X is subdivided into smaller boxes,
X0; X1; : : : ; Xk�1. Each of the k boxes, Xi, is subjected
to a set of deletion/reduction tests. Surviving Xi boxes
are placed onto Q.

The boolean operator, Delete(), takes as input a box,
X, and a floating point number, U� (the upper bound
on the smallest function value known thus far), and re-
turns TRUE if and only if one of the following tests re-
turns TRUE:
� f (X) > U�

� ifX is strictly feasible (i. e. does not lie on the bound-
ary of the feasible space) and 0 62 ri f (X) (the gra-
dient) for some i D 0; : : : ; n � 1,

� if X is strictly feasible and the Hessian, r2 f (X), is
not positive semi-definite anywhere in X

� interval Newton’s method can eliminate all of X.
These tests are known as the midpoint test, mono-

tonicity test, Hessian test, and Newton test, respectively.
More elaborate versions of SIAGO exist today (e. g.
Newton’s method box reduction, unique critical point
existence tests) [10,16] but have little effect on the sur-
vey in Sect. “Methods” of parallel IA global optimiza-
tion algorithms1.

Formulation

The following two facts about SIAGO (see Algorithm 1)
reveal a potential for scalable parallelism.

First, Delete() can be performed independently on
different feasible subregions and therefore can be done

1SIAGO efficiency can affect experimental parallel speedup
measurements as noted in Sect. “Superlinear Speedup”

U� =1, Q.insert(X); // initial box while
true do
repeat
if Q.empty then S.print, Halt Q.remove(X)

until f (X) � U�; // cut-off test

ifWithinTol(X; �x ; � f ;U�) then
S.insert(X)

else
Subdivide(X; X0; X1; : : : ; Xk�1) for i=0 to k-1
do
if not Delete(Xi ;U�) then
U� = min( f (m(Xi));U�) Q.insert(Xi )

end
end

end
end

Interval Analysis: Parallel Methods for Global Optimization,
Algorithm 1
SIAGO

in parallel. This allows for “massive” data parallelism as
sub-boxes can be distributed across all processors.

Actually, some dependence exists for the midpoint
test (seeU� in Algorithm 1). However, this dependence
only affects the “sharpness” of this test and not the cor-
rectness. In practice, newly discovered lower U� val-
ues are shared among all participating processors via
broadcasts or shared memory (see Sect. “Parallel Com-
puter Models”).

Second, if a feasible region is not deleted (and not
reduced via interval Newton’s method), the procedure,
Subdivide(), will divide it into k subregions which to-
gether entirely cover the whole feasible region. The
workload has just grown by k.

Such workload growth makes possible workload
scalability [14]. This means that the workload can scale
to match the parallel computing power (i. e. CPU uti-
lization is optimized). In fact, the workload growth of
SIAGO is potentially exponential and for high dimen-
sional problems can overtake the parallel computing
power and memory resources.

The exponential workload growth of SIAGO is no
surprise in that the global optimization problem in
general is NP-hard (i. e. no algorithm has yet been
found which is better than simply performing a com-
plete space search for the solution, requiring exponen-
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tial time in the worst case). IA allows one to remove
(or reduce using interval Newton’s method) potentially
large “chunks” of the search space with the hope of
pruning/squeezing one’s way to a solution.

Parallel Computer Models

A parallel version of SIAGO is implementable on two
basic categories of parallel computers: shared mem-
ory multiprocessors (including multi-core processors
common today) and distributed memorymulticomput-
ers. Although multiprocessors are easier to program
than multicomputers (one doesn’t have to worry about
communication primitives), multicomputers have been
the most popular choice for PIAGO for several rea-
sons. First, multicomputers are more scalable. Second,
there are freely-available, robust, easy-to-use parallel
programming language extensions such as Parallel Vir-
tual Machine (PVM) and the Message Passing Interface
(MPI). Third, multicomputers are more cost effective
(e. g. a simple cluster of workstations (COW) with in-
expensive gigabit Ethernet). Fourth, the massive work-
load generated by PIAGO implementations on hard
global optimization problems (for which PIAGO al-
gorithms were designed to solve) keeps each proces-
sor busy working on a local subregion of the search
space. If an effective workload management scheme is
adopted (see Sect. “Workload Management”), CPU uti-
lization will be maximized and communication will not
be a limiting factor.

PIAGO

A generalized distributed memory parallel IA global
optimization algorithm (PIAGO) has the following
form:

Initialize/Startup all processors
Perform SIAGO in parallel

manage workload
broadcast improved U� values

Detect global termination state
Terminate all processors

Interval Analysis: Parallel Methods for Global Optimization,
Algorithm 2
PIAGO

WorkloadManagement

Workload in PIAGO algorithms is characterized at any
given time by the set of boxes remaining to be processes
or searched. PIAGO methods distinguish themselves
primarily in the manner they manage workload (see Al-
gorithm 2). In SIAGO, workload resides on a single pri-
ority queue of boxes, Q. In PIAGO, workload can be
centrally managed on a single “master” node (proces-
sor), or it can be distributed among all nodes with each
processor managing its own local Q. Hybrid schemes
can also be employed consisting of a centrally managed
global priority search queue on the master node work-
ing in concert with local search queues on each slave
node.

Distributed Management In this scheme, workload
is distributed either statically to all processors at the
beginning of the computation (static load balancing)
or dynamically during computation (dynamic load
balancing). With dynamic load balancing, processors
coordinate and redistribute workload during computa-
tion in order to maximize CPU utilization and mini-
mize total execution time. Workload state information
(e. g. local search queue size) is continually (but not
necessarily frequently) broadcast among all processors.

Dynamic load balancing is generally scalable. How-
ever, each processor must communicate (by request,
event, or at programmed time intervals) workload state
information in order to make effective workload bal-
ancing decisions. Too much state information being
broadcast frequently detracts from box processing and
may saturate the machine’s bandwidth. Stale informa-
tion concerning a processor’s state risks poor load bal-
ancing decisions beingmade on an inaccurate depiction
of the current global state.

Centralized Management In this scheme (some-
times called master/slave), one master node is respon-
sible for managing (scheduling) the workload. Slave
(worker) nodes request work (or are “pushed” work)
from the master. The master node is responsible for
scheduling the workload in a way that maximizes CPU
utilization and (hopefully) minimizes total execution
time.

One advantage of centralized control is that work-
load can be prioritized globally (e. g. boxes, X, ordered
on a priority queue based on minimum f (X)). Global
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termination detection is easy: The computation is done
when the master node has no more workload and all
slave processors are idle. Load balancing is achieved
through effective scheduling.

Centralized workload management is not scalable,
in the theoretical sense. In practice, a centralized
scheme is successful provided the master node does not
become a “bottleneck”. Communication between one
master node and a large set of worker nodes can be-
come intensive and exhaust the communication band-
width of the parallel machine. Moreover, memory and
CPU resources on one processor are limited (relative to
the total CPU power and memory of the parallel ma-
chine) and can easily become saturated if stressed with
too much workload or communication.

Hybrid Workload Management Hybrid schemes al-
low each worker processor to manage its own local Q
while still maintaining a master process responsible for
handling work requests from idle processors. The ben-
efits of the hybrid approach over the pure centralized
approach are two-fold:
� fewer requests for work (to the master) are required

since each worker must first complete its local work-
load (including self-generated workload resulting
from box splitting) before it becomes idle

� the potential memory bottleneck at the master is
mitigated since the local memory resources on each
worker are utilized.

The main disadvantage of the hybrid approach versus
the centralized approach is the sacrifice of total (global)
workload ordering. The master node “running out of
boxes” or a worker process generating too much work
to be held in local memory are two other issues that
need to be addressed.

The main advantages of the hybrid approach com-
pared to the distributed approach are two-fold:
� a better approximation to a total workload ordering
� fewer possible retransmissions for work as the mas-

ter node is (usually) guaranteed to have boxes.
Because the hybrid approach still uses a master node for
scheduling workload, this method inherits the scalabil-
ity weakness of its centralized parent.

Load Balancing

One necessary condition for load balancing is ensur-
ing no worker processor sits idle. A second goal of load

balancing in PIAGO algorithms is the distribution of
“quality” boxes among the worker processors. A qual-
ity box is defined as a box more likely to contain a min-
imizer (or near minimizer). It is natural to expect that
global minima will be discovered more quickly if par-
ticipating processors focus their efforts on subregions
of the workspace that more likely to contain minimiz-
ers. Early improvements to the SIAGO algorithm rec-
ognized this fact and (efficiently) sorted boxes, X, on
increasing f (X) using a priority search queue, Q.

Superlinear Speedup

Speedup is defined as Sm D T1/Tm , where T1 is the
sequential execution time (e. g. SIAGO on one pro-
cessor) and Tm is the parallel execution time (e. g.
PIAGO on m processors). Theoretically, superlinear
speedup (i. e. Sm > p) of an efficient algorithm is
not possible [6]. In practice, however, superlinear
speedup has been reported often for B&B algorithms in
general and PIAGO algorithms in particular [2,5,7,13,
15,18,20,25,26].

One reason why superlinear speedup may be
achieved in practice is that the sequential algorithm
may be inefficient. Some of the earliest PIAGO im-
plementations reported large superlinear speedups. For
example, a superlinear speedup of 170 is reported on
32 nodes in [25]. Using a priority search queue ordered
on lowest f (X) [9], Leclerc [18] reports only sublinear
speedup of approximately 1/2 for the same problem.

In [2] a theorem is presented that “clearly indicates
that no substantial superlinear speedup is possible, as-
suming that the best-first strategy is used”. Here, best-
first strategy refers to the same lowest f (X) ordering of
boxes on the search queue used by Leclerc. Note, the
theorem does not claim that the best-first strategy is
best strategy to use. It only claims that if the best-first
strategy is used for both the the sequential version and
the parallel version, then superlinear speedup is not ex-
pected.

In fact, most of the superlinear speedups that have
been reported recently are just slightly above linear.
This can be explained by the combination of one or
more of the following factors:
� high memory utilization in the sequential case may

result in poor caching and possible paging thus ex-
tending execution time
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� non-deterministic timing anomalies (race condi-
tions) that occur in parallel executions may not have
been “smoothed out” by averaging the results of
many execution runs

� the partial breadth-first search that parallelization
introduces into the computation may indeed accel-
erate finding global solutions for some problems.

Methods

Following is a survey of PIAGO methods that have
evolved over the past 15 years. Performance compar-
isons of the the various methods based on execu-
tion times are difficult to make. For example, differ-
ences in implementation hardware, the problems be-
ing solved, and IA software used, will affect execution
times.

Instead, most articles report speedup as a mea-
sure of the efficiency of the parallel algorithm. How-
ever, speedup is also dependent on the several fac-
tors including box ordering on the search queue,
memory utilization, non-deterministic parallel “race
condition” effects, implementation hardware, and the
specific problem being solved (see Sect. “Superlinear
Speedup”). For these reasons, no effort is made to com-
pare the various algorithms with regard to reported ef-
ficiency.

Various acceleration techniques or general im-
provements to SIAGO are not considered. It is assumed
that such improvements would benefit most if not all of
the methods surveyed.

Finally, no discussion of global termination detec-
tion is made. Although this is an interesting topic [28],
the methods (both centralized and distributed) are few,
well analyzed, and not affected by the particular na-
ture of B&B IA global optimization algorithms. More-
over, the contribution of global termination detection
to the total execution time for hard problems is negligi-
ble.

The key component differentiating the various
PIAGO algorithms is workload management (see
Sect. “Workload Management”). Each considered PI-
AGO algorithm is categorized into one of distributed,
centralized, or hybrid categories. A discussion of the
workload management scheme is given along with rel-
evant comments concerning scalability, code complex-
ity, and communication costs.

Distributed Approaches

As mentioned in “Distributed Management”, dis-
tributed workload approaches are generally scalable.
Asynchronous non-blocking communication is more
efficient, but also more difficult to program. By ei-
ther interleaving messaging probing (e. g. MPI_Iprobe)
within the main computation loop (see Algorithm 1)
or dedicating a separate thread to the task of receiving
messages, one can use efficient non-blocking commu-
nication in the approaches that follow. No further dis-
cussion of synchronous versus asynchronous commu-
nication is made.

Let P0; P1; : : : ; Pm�1 represent m processors on
a parallel machine. Let fW0; fW1; : : : ; AWm�1 represent
recorded workload state information for each proces-
sor. A given processor can query the (approximate) cur-
rent workload queue size or minimum f (X) on proces-
sor j using fWj .Qsize or fWj .Qlbf (the lower bound on
the function over all boxes in the queue), respectively.

The Leclerc Approach This approach [18,19] is fully
distributed and utilizes the best-first queuing strategy.
It uses the load balancing procedure listed in Proce-
dure loadbalance with the function WorkloadBalanced
returning TRUE when the processor’s Q is empty (i. e.
no work). This is a simple demand-driven load balanc-
ing scheme. The lowest f (X) value for boxes on each
processor’s local Q are broadcast at regular intervals to
all processors and recorded in eW .

// Load balance on processor, Pi
E = fig if not WorkloadBalanced(Q, eW) then

repeat
Pb = min(fWi :Qlbf); i … E Request fraction
of boxes from Pb if no boxes received then

E = E [ fbg
end

until boxes received
end

Interval Analysis: Parallel Methods for Global Optimization,
Procedure
loadbalance(i)

The Hu, Kearfott, Xu, and Yang Approach This ap-
proach [13] is similar to the one used by Leclerc, but
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with an initial static assignment of one box to each
processor on startup. One box is requested, instead of
a fraction of boxes, when a processor becomes idle.
From the paper it is unclear to which processor(s) a re-
quest for workload is made. It is also unclear whether
workload state information, eW , is maintained.

The Caprani and Madsen Approach This simple,
yet promising approach [3] uses static load balancing
rather than dynamic load balancing. First, a “good”
U� is computed on one processor. Next, a “sufficient
number” (e. g. 10m) of sub-boxes are generated using
SIAGO and placed into m sets of “approximately equal
difficulty”. The m sets along with U� are statically dis-
tributed onto m processors. SIAGO is performed on
each processor with no communication.

The Eriksson and Lindström Approach Here [5],
load balancing is considered on a specialized paral-
lel computer—an Intel iPSC/2 hypercube. No work-
load state information, eW , is maintained. In order to
load balance qualitatively as well as quantitatively, a hy-
brid of two load balancing strategies is used: receiver-
initiated and sender-initiated.

The receiver-initiated load balancer is conceptually
similar to Procedure loadbalance. But, rather than a se-
lection based onmin(fWi :Qlbf), an un-prioritized linear
search (for a non-idle node) along a ring is performed.
This ensures no processor stays idle for very long.

The sender-initiated load balancer seeks to balance
qualitatively. Here, the “best” box on the Q (i. e. the one
with the lowest f (X)) is “pushed” to a random proces-
sor each time G boxes have been split. The frequency of
a push operation, G, on a particular processor is decre-
mented by one when the pushed box gets placed at the
front of the Q of the randomly selected processor; oth-
erwise, G is incremented by one. The net effect is that
if truly “good” boxes are being pushed, then they will
continue to be pushed at a high frequency; otherwise,
pushes will occur less often.

The Gau and Stadther Approach Here [7] two fun-
damental algorithms are proposed. First is the syn-
chronous work stealing (SWS) approach. This ap-
proach is very similar to the approaches by Hu,
Kearfott, Xu, and Yang, and Leclerc. The difference is
that largest Q length is used instead of lowest f (X).

Next, an asynchronous diffusive load balancing
(ADLB) scheme is proposed. A group of “nearest neigh-
bors” is defined. Neighbors exchange workload infor-
mation. Then, boxes are either “pushed” or “pulled”
to/from neighbors depending on workload distribution
inequities as determined by each processor. The mech-
anism is analogous to heat or mass diffusion.

In theory this approach should be able to handle
qualitative issues regarding workload. However, this is
not considered in the paper.

TheMartínez, Casado, Alvarez, andGarcía Approach
This recent approach [20] is most novel for it’s imple-
mentation language—Charm++. The execution model
of Charm++ is message-driven (i. e. the arrival of mes-
sages “triggers” associated computations). This model
is similar to a data flow machine.

Essentially a process (chare) runs on each processor.
This process responds to (is triggered by) messages to
either process a box, Process-Box, or updateU�, update-
U�. A Process-Boxmessage can either:
� reject the box with no messages generated
� subdivide the box generating two Process-Box mes-

sages sent to two random processors
� send a message to the main chare to enqueue a new

solution.
Messages can be prioritized so that update-U� mes-

sages take precedence over Process-Box messages. This
should help improve the efficiency of the parallel algo-
rithm. Also, Process-Boxmessages can be prioritized on
lowest f (X) in order to load balance qualitatively.

Data flow solutions are truly elegant. Load balanc-
ing quantitively and qualitatively is achieved via ran-
domness and built-in message prioritization.

Centralized Approaches

The Henriksen and Madsen Approach An early im-
plementation of a PIAGO algorithm using a cen-
tralized workload manager is that of Henriksen and
Madsen [11]. A master node maintains the priority
workload queue, Q, and schedules work to each slave
processor. When a slave node splits a box, it keeps only
one box and sends the remainder back to the master, to
be inserted into Q. U� is also maintained at the master.

The algorithm is load balanced (both quantitively
and qualitatively) and has the advantage of total order-
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ing of boxes. However, its weakness is poor scalability.
The master quickly becomes a memory bottleneck and
communication “hotspot” on parallel machines with 32
or more nodes [2].

To be fair, however, such an algorithm is better
suited to shared memory multiprocessors, and in par-
ticular, multi-core processors (e. g. AMD Opteron, In-
tel Core 2 Duo). Though multi-core processors don’t
offer as great an opportunity for massive parallelism
(usually 16 cores or less on a processor), they are ubiq-
uitous today and inexpensive. Therefore, one can envi-
sion Henriksen and Madsen’s approach being used on
a distributed memory multicomputer in which the in-
dividual processors are multi-core. A more scalable al-
gorithm would be used on the multicomputer architec-
ture as a whole, but the centralized approach could be
used as a multithreaded PIAGO application running on
each multi-core processor.

The advantage of this hierarchical workload man-
agement approach is a better approximation to the best-
first strategy. In addition, more efficiency would be ob-
tained with the centralized implementation on each
multi-core processor, since shared memory is faster
than message passing. The main disadvantage would be
code complexity.

Hybrid Approaches

As was mentioned in Sect. “Centralized Approaches”,
pure centralized approaches, though offering total or-
dering of the workload Q, are not scalable. Hybrid ap-
proaches are theoretically not scalable either. However,
some of the scalability issues are mitigated by leverag-
ing local memory on worker processors. Three hybrid
approaches are considered.

The Berner Approach Here [2], a master node han-
dles requests from idle processors. A dynamically ad-
justed variable, max, is used to “throttle” the workload
on the worker processors as well as help ensure themas-
ter does not run out of work. Processors withmore than
max boxes on the local Q will send “some of them” to
the master.

The Ibraev Approach This approach [15] is a varia-
tion on the Berner approach, with the master (leader)
node continually “floating” to the processor that dis-
covers a better f (X). Workers discovering a possibly

lower f (X) “challenge” the current leader. The current
leader makes a determination as to the next leader and
broadcasts the index of the new leader along with the
improved f (X) to all processors.

In this approach, no effort is made to approximate
a totally ordered global Q. Rather, the approach seeks
only to ensure that work requests are made to the pro-
cessor with the best quality boxes.

The Tapamo and Frommer Approach Tapamo and
Frommer [26] propose a variation of the Berner ap-
proach which allows non-idle processors to serve re-
quests. The master node keeps track of the lengths of
each processor’s local Q. When one or more processors
become idle, the master then instructs non-idle proces-
sors (in decreasing order of Q length) to concurrently
satisfy requests from idle processors.

Workload state information (i. e. localQ sizes) must
be sent to the master at some frequency. The same is-
sues regarding this frequency are present in the various
distributed approaches (See Sect. “Distributed Manage-
ment”). Delay is introduced due to the indirection of
requests having to “pass” through the master node.

Conclusions

The pure centralized workload management scheme is
clearly impractical to implement on large distributed
memory multicomputers due to issues of scalabil-
ity. Fully distributed algorithms are scalable but some
would question their efficiency based on concerns that
the following phenomena may significantly impact per-
formance:
� frequent broadcasting of workload state
� repeated retransmissions for workload due to idle Pb

in Procedure loadbalance
� a global best-fit exploration of boxes is not being

performed (i. e. perhaps the best quality boxes are
not being evenly distributed).

Hybrid methods were apparently developed to resolve
one or more of the perceived deficiencies of distributed
methods and the scalability problem of the pure cen-
tralized method. Though hybrid methods have reduced
bottleneck potential, they still suffer from poor scalabil-
ity.

A closer examination of the apparent deficiencies of
the distributed methods is worth making. Efficient (up
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to practically constant-time) broadcast primitives have
been implemented [27,12]. Thus, it would seem, that
frequent broadcasting of workload state may not sig-
nificantly effect performance. Moreover, the frequency
of broadcast can easily be throttled if required.

A good estimate of the workload state on each pro-
cessor for large problems is reasonable to expect. Thus,
a high probability exists that the first or possibly second
request will fall on a non-idle processor with “good”
work. Retransmissions may in fact be few.

Finally, a global best-fit exploration of boxes is not
being performed using distributed schemes. However,
such a totally ordered exploration is not being done
using any of the hybrid methods either. An argument
claiming hybrid methods yield better approximations
to a global ordering is difficult to make.

A complete and fair assessment of the various
PIAGO algorithms (in particular distributed methods
versus hybrid methods) should cover a wide range of
difficult global optimization test problems. The same
efficient SIAGO algorithm (e. g. using best-first order-
ing) should be used in each and a common hardware
platform should be utilized. Furthermore, multiple runs
of each test case should be run and averaged in order
to “smooth out” non-deterministic parallel computa-
tion effects. To date no such comprehensive analysis
has been performed.

See also

� Interval Analysis: Intermediate Terms
� Interval Analysis: Subdivision Directions in Interval
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� Interval Global Optimization
� Interval Newton Methods
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The selection of subdivision direction is one of the
points where the efficiency of the basic � branch-
and-bound algorithm for unconstrained global opti-
mization can be improved (see � Interval analysis: un-

constrained and constrained optimization). The tradi-
tional approach is to choose that direction for subdivi-
sion in which the actual box has the largest width. If the
inclusion function �(x) is the only available informa-
tion about the problem

min
x2x0

�(x) ;

then it is usually the best possible choice. If, however,
other information like the inclusion of the gradient
(r�), or even the inclusion of the Hessian (H) is cal-
culated, then a better decision can be made.

Subdivision Directions

All the rules select a direction with a merit function:

k :D arg
n

max
iD1

D(i); (1)

where D(i) is determined by the given rule. If many
such optimal k indices exist then the algorithm can
chose the smallest one, or it can select an optimal di-
rection randomly.

Rule A. The first rule was the interval-width oriented
rule. This rule chooses the coordinate direction with

D(i) :D w(x i): (2)

This rule is justified by the idea that, if the original inter-
val is subdivided in a uniform way, then the width of the
actual subintervals goes to zero most rapidly.

The algorithm with Rule A is convergent both with
and without the monotonicity test [8]. This rule allows
a relatively simple analysis of the convergence speed (as
in [8], Chapter 3, Theorem 6).

Rule B. E. Hansen described another rule (initiated by
G. W. Walster [5]). The direct aim of this heuristic di-
rection selection rule is to find the component for which
Wi D maxt2x i � (m1; : : : ;mi�1; t;miC1; : : : ;mn) �
mint2x i � (m1; : : : ;mi�1; t;miC1; : : : ;mn) is the
largest (where mi D (x i C x i )/2 is the midpoint of the
interval x i ). The factor Wi, that should reflect how
much ' varies as xi varies over x i , is then approximated
by w(r�i(x))w(x i) (where r�i(x) denotes the ith com-
ponent of r�(x)). The latter is not an upper bound for
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Wi (cf. [5] page 131 and Example 2 in Section 3 of [4]),
yet it can be useful as a merit function.

Rule B selects the coordinate direction, for which (1)
holds with

D(i) :D w(r�i (x))w(x i ): (3)

It should be noted that the basic bisection algorithm
represents only one way in which Rule B was applied
in [5]. There the subdivision was, e. g., also carried out
for many directions in a single iteration step.

Rule C. The next rule was defined by Ratz [9]. The
underlying idea was to minimize the width of the inclu-
sion: w(	(x)) D w(	(x) � 	(m(x))) 	 w(r	(x)(x �
m(x))) D

Pn
iD1 w(r	 i (x)(x i � m(x i ))). Obviously,

that component is to be chosen for which the term
w(r�i(x)(x i � m(x i))) is the largest. Thus, Rule C can
also be formulated with (1) and

D(i) :D w(r	 i (x)(x i � m(x i ))): (4)

The important difference between (3) and (4) is that in
Rule C the width of the multiplied intervals is maxi-
mized, not the multiplied widths of the respective inter-
vals (and these are in general not equal). After a short
calculation, the right-hand side of (4) can be written
as maxfjminr	 i (x)j; jmaxr	 i(x)jgw(x i). This cor-
responds to the maximum smear defined by R.B. Kear-
fott (used as a direction selection merit function solv-
ing systems of nonlinear equations [6,7]) for the case
� : Rn ! R. It is easy to see that the Rules B and C
give the same merit function value if and only if either
r	

i
(x) D 0 or r	 i (x) D 0.

Rule D. The fourth rule, Rule D is derivative-free like
Rule A, and reflects the machine representation of the
inclusion function 	(x) (see [5]). It is again defined by
(1) and by

D(i) :D
�

w(x i) if 0 2 x i ;

w(x i)/ < x i > otherwise ;
(5)

where < x > is the mignitude of the interval x:
< x >:D minx2x jxj.

This rule may decrease the excess width w(	(x)) �
w(�u(x)) of the inclusion function (where �u(x) is the

Rule A

-3

0

3

-3 0 3

Rule B

-3

0

3

-3 0 3

Interval Analysis: Subdivision Directions in Interval Branch
and Bound Methods, Figure 1
Remaining subintervals after 250 iteration steps of the
model algorithm with the direction selection Rules A, and B
for the Three-Hump-Camel-Back problem [3]

range of ' on x) that is caused in part by the floating
point computer representation of real numbers. Con-
sider the case when the component widths are of similar
order, and the absolute value of one component is dom-
inant. The subdivision of the latter component may re-
sult in a worse inclusion, since the representable num-
bers are sparser in this direction.
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Rule E. Similar to Rule C, the underlying idea of
Rule E is to minimize the width of the inclusion, but
this time based on second order information (suggested
by Ratz [10]):

D(i) :D w((x i � m(x i ))(r�i(m(x))

C
1
2

nX
jD1

(H i j(x)(x i � m(x i))) : (6)

Many interval optimization codes use � automatic
differentiation to produce the gradient and Hessian val-
ues. For such an implementation the subdivision selec-
tion Rule E requires not much overhead.

Properties of Direction Selection Rules

Both the theoretical and numerical properties of sub-
division direction selection rules have been studied ex-
tensively [1,3,4,10,11]. The exact definitions, theorems
and details of numerical comparison tests can be found
in these papers. Denote the global minimum value
by ��.

Theoretical Properties

In [4] the property of balanced direction selection has
been defined. A subdivision direction selection rule is
balanced basically if the B&B algorithm with this di-
rection selection rule will not be unfair with any co-
ordinate direction: each direction will be selected an
infinite number of times in each infinite subdivision
sequence of the leading boxes generated by the opti-
mization algorithm. A global minimizer point x0 2 x0

is called hidden global minimizer point, if there ex-
ists a subbox x0 � x0 with positive volume for which
x0 2 x0 and 	(x0) D �� while there exists an other
global minimizer point x00 of the same problem such
that 	(x00) < �� holds for each subbox x00 � x0 with
positive volume that contains x00 [11]. Now the follow-
ing statements can be made:
1. The basic branch-and-bound algorithm converges

in the sense that lims!1 w(xs) D 0 if and only if
the interval subdivision selection rule is balanced [4]
(where xs is the leading box of the algorithm in the
iteration step number s).

2. Assume that the subdivision direction selection rule
is balanced. Then the basic B&B algorithm con-
verges to global minimizer points in the sense that

Rule C

-3

0

3

-3 0 3

Rule D

-3

0

3

-3 0 3

Interval Analysis: Subdivision Directions in Interval Branch
and Bound Methods, Figure 2
Remaining subintervals after 250 iteration steps of the
model algorithm with the direction selection Rules C, and D
for the Three-Hump-Camel-Back problem [3]

lims!1 	(xs) D ��, the set of accumulation points
A of the leading box sequence is not empty, and A
contains only global minimizer points.

3. Assume that the optimization algorithm con-
verges for a given problem in the sense that
lims!1 	(xs) D ��. Then either the algorithm pro-
ceeds on the problem as one with a balanced
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direction-selection rule, or there exists a box y
such that �(x) D �� for all x 2 y, and w(y i ) > 0
(i D 1; 2; : : : ; n) for all coordinate directions that
are selected only a finite number of times.

4. The subdivision selection Rules A and D are bal-
anced, and thus the related algorithms converge to
global minimizer points.

5. Either the subdivision selection Rules B and C
choose each direction an infinite number of times
(they behave as balanced), or the related algorithms
converge to a positive width subinterval of the
search region x0 that contains only global minimizer
points.

6. Sonja Berner proved that the basic algorithm is con-
vergent with Rule E in the sense of lims!1 	(xs) D
��, if an additional condition holds for the inclusion
function [1].

7. If the branch-and-bound algorithm with any of the
direction selection Rules A–E converges to a global
minimizer point, then it converges to all non-hidden
global minimizer points [11].

Numerical Properties

The numerical comparison tests were carried out on
a wide set of test problems and in several computa-
tional environments. The set of numerical test prob-
lems contained the standard global optimization test
problems [3,4], the set of problems studied in [5],
and also some additional ones [10,11]. The comput-
ing environments include IBM RISC 6000-580 and HP
9000/730 workstations and Pentium PC-s. The pro-
grams were coded in FORTRAN-90, PASCAL-XSC,
and also in C++. The tests were carried out both with
simple natural interval extension and withmore sophis-
ticated inclusion functions involving centered forms.
The derivatives were handcoded in some test [4], while
they were generated by automatic differentiation in the
others [3,10,11]. The range of the investigated algo-
rithms included simple B&B procedures and also opti-
mization codes with many acceleration devices (like the
� interval Newton method).

The conclusions were essentially the same: the Rules
B, C, and E had similar, substantial efficiency improve-
ments against Rules A and D, and these improvements
were the greater the more difficult the solved problem
was. The average performance of Rule D was the worst.

Rule C was usually the best, closely followed by Rule B
and E. It seems that the use of Rule E is justified only if
the second derivatives are calculated also for other pur-
poses. The numerical results were diverse, thus if the
user has a characteristic problem set, then it is worth to
test all the subdivision direction selection rules to find
the most fitting one.

A computationally intensive numerical study [2]
has proven that the most efficient subdivision direction
selection rules are not those that minimize the width of
the objective function inclusions for the result subin-
tervals (which was the common belief), but those that
maximize the lower bound of the worse subinterval ob-
tained or minimize the width of the intersection of the
result subintervals. The decisions of these a posteriori
rules coincide the most with the a priori Rules B, C,
and E. These findings confirm the earlier mentioned
numerical efficiency results.
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A system of nonlinear equations can be represented in
vector form as f (x) = 0, where the components are f i(x)
= f i(x1, . . . , xn) = 0, i = 1, . . . , n.

Sometimes we seek one solution; sometimes we are
interested in locating all solutions.

A naive interval approach can be used to search
a box (an interval vector) V for solutions. Using re-
peated bisections in various coordinate directions, we
can chisel off parts of V that cannot contain a solution.
That is, if f (W) does not contain the zero vector for
some W in V , then we can delete W as containing no
solutions to f (x) = 0. The remaining parts of V contain
all the solutions, if any, that were in the initial V .

For differentiable systems, there are much more ef-
ficient methods for finding a solution or the set of all so-
lutions. Even so, the naive approach does have its uses.
In practice it often pays to combine a number of tech-
niques.

One approach to solving f (x) = 0 is to formulate an
equivalent fixed-point problem, and use iterative meth-
ods to solve it. We can define

g(x) D x C Y f (x)

for any linear mapping Y . If Y is nonsingular, then f (x)
= 0 is equivalent to g(x) = x.

If g is continuous and S is a compact, convex subset
of Rn, and g maps S into itself, then g has a fixed point
in S and so f (x) = 0 has a solution in S.

An interval vector V is a compact, convex set, so
g(V) � V implies f (x) = 0 for at least one point x in
V .

Classical iterative methods consider sequences of
points generated by

x(kC1) D g(x(k))

starting from some initial point x(0).
If we denote the Jacobian matrix for the system by

f 0(x), then choosing Y = � f 0(x)�1, we will have New-
ton’s method. If we take Y as an approximation to �
f 0(x)�1, then we obtain a Newton-like method.

Interval versions of Newton’s method, however,
also involve intersections, as we will see.

An interval Newton method for finite systems of
nonlinear equations was introduced by R.E. Moore
[11,12]. Subsequently, many improvements have been
made, e. g., [4,6,7,8,10,13,16,17,18].

In order to explain as clearly as possible, consider
the one-dimensional case. We have the mean value the-
orem for continuously differentiable f :

f (x) D f (x(0))C f 0(�)(x � x(0))

for some � between x(0) and x.
We have f (x) = 0 if x satisfies

x D x(0) � [ f 0(�)]�1 f (x(0)):

Now the ordinary Newton method replaces the un-
known � by x(0).

The initial idea was to use an interval for � and use
interval computation throughout the iterations. If we
start with an interval, say X(0), that contains x(0) and
happens to also contain a solution, say x, of f (x) = 0,
then X(0) also contains � and therefore x is contained in

N(X(0)) D x(0) � [ f 0(X(0))]�1 f (x(0))

(N for Newton), where f 0(X(0)) � {f 0(x):x 2 X(0)}. The
first idea was to iterate X(k+ 1) = N(X(k)), but this turns
out not to converge in all cases.

Then the following idea was proposed, [12]. Since
a solution x in X(0) is also in N(X(0)), it follows that x is
also contained in the intersection: X(0) \ N(X(0)).

Therefore, we iterate

X(kC1) D X(k) \ N(X(k))
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with

N(x(k)) D y(k) � [ f 0(X(k))]�1 f (y(k));

choosing y(k) in X(k) , say the midpoint of X(k) .
With this modification, the interval Newton

method does what we want, as will be explained. From
the above arguments we have proved that for an inter-
val X,
1) if N(X) \ X is empty, then there is no solution in X.

If we divide by an interval containing zero, we may
obtain one, or the union of two, semi-infinite intervals
for N(X). The intersection with the finite interval X in
the interval Newton method, reduces the result to a fi-
nite interval, or the union of two finite intervals, or the
empty set.

During the iterations, if X(k) turns out to be the
union of two intervals, we put one on a list and pro-
ceed to further iterate with the other one. This idea was
first presented in E.R. Hansen [6].

We can also prove that [5,6]:
2) if N(X) � X, then there exists a unique solution in

N(X).
The existence follows for the compact, convex in-

terval X, and from the continuity of f 0 . The uniqueness
follows from the boundedness of N(X) � X. If there
were two solutions in N(X), then f 0(y) would be zero
for some y in X and N(X) would be unbounded.

If f is twice continuously differentiable, then we can
also prove the following [16]:
3) if N(X)� X, then the interval Newton method con-

verges quadratically to the unique solution in X, as
does the ordinaryNewtonmethod from any starting
point in X.
‘Quadratically’ here means there is a constant C

such that w(X(k+ 1)) < Cw(X(k))2, k = 1, 2, . . . , where
w(X) denotes the width of an interval X; thus, w([a, b])
= b� a.

We illustrate the different behaviors of the ordinary
Newtonmethod and the interval Newtonmethod in the
following figures. Fig 1 shows that the ordinary Newton
method cannot find the middle solution unless we start
very close to it.

The first three iterations of the ordinary Newton
method

xkC1 D xk �
f (xk)
f 0(xk)

Interval Analysis: Systems of Nonlinear Equations, Figure 1
The ordinary Newtonmethod

for f (x) = x3� x+ 0.2, starting with x(0) = � 0.375, are
shown in Fig 1. The algorithm produces x(1) = 0.528 . . . ,
x(2) = � 0.584 . . . , x(3) = � 22.569 . . . . In order to con-
verge to the middle root, we need an initial guess x(0)

very close to that root.
The interval Newtonmethod finds all three solutions

on the starting interval X(0) = [� 1.2, 1.2] without diffi-
culty. We choose that starting interval because the roots
of a polynomial

p(z) D anzn C � � � C a1z C a0

with an 6D 0 are well-known to lie in the complex disk

jzj � max

(
1; janj�1

X
k<n

jak j

)
;

so, for the example p(x) = x3� x+ 0.2, the real roots are
known to satisfy

�1:2 � x � 1:2:

If the intersection N(X(k)) \ X(k) splits into two in-
tervals, we list one and analyze the other. See Fig 2 and
Fig 3

We used the usual recursive algorithm for evaluat-
ing the polynomial and its derivative, namely

p an
p0  0
FOR i = n � 1 TO 0 STEP �1 DO

p0  xp0 + p
p ai + xp

END DO
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Interval Analysis: Systems of Nonlinear Equations, Figure 2
The interval N([� 1.2, 1.2])\ [� 1.2, 1.2] splits into [� 1.2,�
0.0602 . . . ][ [ 0.0375 . . . , 1.2].We list the first and analyze the
second. See Fig 3

Of course, for the interval Newtonmethod, the eval-
uations are carried out in interval arithmetic with out-
ward rounding. The real coefficients are entered as de-
generate intervals, for example

0 � [0; 0]; 1 � [1; 1]; 0:2 � [0:2; 0:2]:

Recalling that we began with the initial interval X(0)

= [� 1.2, 1.2], we find that the midpoint of X(0) is y(0) =
[0, 0] and so:

N(X(0)) D y(0) � [p0(X(0))]�1p(y(0))

D [0; 0] �
1

[�5:32; 3:32]
[0:2; 0:2]

D (�1;�0:06024 : : :] [ [0:03759 : : : ;1):

When we intersect this union with X(0), we obtain

[�1:2;�0:06024 : : :] [ [0:030759 : : : ; 1:2]:

The calculation of p0([ � 1.2, 1.2]) was as follows:

p0([�1:2; 1:2])

D [3; 3]([�1:2; 1:2][�1:2; 1:2])� [1; 1]
D [3; 3][�1:44; 1:44]� [1; 1]

D [�4:32; 4:32] � [1; 1]

D [�5:32; 3:32]:

Referring to Fig 2 and Fig 3, we see that the interval
Newtonmethod first splits the starting interval X(0) into

Interval Analysis: Systems of Nonlinear Equations, Figure 3
The interval being analyzed, X = [0.0375 . . . , 1.2], is shown
enlarged for clarity. Again N(X) \ X splits into two intervals
[0.0375 . . . , 0.436 . . . ][ [0.6738 . . . , 1.2]. We list the first and
analyze the second. See Fig 4

Interval Analysis: Systems of Nonlinear Equations, Figure 4
We analyze the interval X = [0.6738 . . . , 1.2]. This time we
haveN(X)� X , becauseN(X) = [0.724 . . . , 0.911 . . . ], so wewill
have convergence to the unique solution in X

two subintervals [� 1.2, � 0.0602 . . . ] and [0.0375 . . . ,
1.2], then it splits the second one again into two subin-
tervals [0.0375 . . . , 0.436 . . . ] and [0.6738 . . . , 1.2].

The intervals

[�1:2; 0:0602 : : :] and [0:0375 : : : ; 0:0436 : : :]

were listed for later analysis, and the interval [0.6738
. . . , 1.2] was analyzed. With X(0) = [0.6738 . . . , 1.2], the
method produced

N(X(0)) D [0:724 : : : ; 0:911 : : :] � X(0);

so there is a unique solution in that X(0).
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We can prove the following:
4) If N(X) � X and we carry out the interval compu-

tations with outward rounding after a fixed number
of digits (or bits), the iterations

X(kC1) D N(X(k)) \ X(k); k D 0; 1; : : : ;

with X(0) = X form a nested sequence of intervals
containing the solution until, after a finite number
of iterations we can stop with X(k+ 1) = X(k) .
This follows from the fact that there are only finitely

many different machine numbers of a given ‘precision’,
that is with a given finite number of digits (bits). In the
example at hand, the final results were as follows. For
X(0) = [0.6738 . . . , 1.2], after four iterations:

THERE IS A ROOT IN

[0:8788850662; 0:8788850663]:

The program then removed a new X(0) = [0.037 . . . ,
0.436] from the list. It turned out that N(X(0)) = [0.2007
. . . , 0.213 . . . ]� X(0), so there is a unique solution in the
new X(0). After three iterations, we obtained:

THERE IS A ROOT IN

[0:2091488484; 0:2091488485]:

Finally, the program removed the last remaining in-
terval on the list, namely [� 1.2, � 0.06 . . . ], which
is then taken as a new X(0). This time the intersection
came into play because

N(X(0)) D (�1;�0:809 : : :] [ [�0:04 : : : ;1):

The intersection of this union with X(0) = [� 1.2,� 0.06
. . . ] gave the single interval

X(1) D N(X(0)) \ X(0) D [�1:2;�0:809 : : :]:

After four iterations, we obtained the result:
THERE IS A ROOT IN

[�1:0880339147;�1:0880339146]:

A final message was printed out (which happens when
the list becomes empty after the last one taken out is
analyzed):

THERE ARE NOMORE ROOTS IN

[�1:2; 1:2]:

The following additional examples were carried out,
using a program implementing the interval Newton
method just described, in C-XSC [9], and run on an In-
tel 486 processor.

1) Find the real roots in [�3, 3] of

p(x)

D x3 � 1:5201x2 C 0:770201x � 0:1300755:

This polynomial is the expanded form of

p(x) D (x � 0:5)(x � 0:51)(x � 0:5101);

thus the roots are fairly closely packed.
When we entered p(x) as

x
x
x � 1:5201
x
x C 0:770201
x � 0:1300755;

the program SES (Single Equation Solver, in C-XSC [9])
produced three roots in the intervals (shown outwardly
rounded to six places):

[0:510099; 0:510101];

[0:509999; 0:510001];

[0:499999; 0:500001]:

Sadly, when we entered p(x) as

xb3 � 1:5201
xb2C 0:770201
x � 0:1300755;

the program SES produced a false result, a ‘root’ in the
interval [0.168885, 0.168886].

Unfortunately, one must be cautious when using
a programmed implementation (‘software’) even for
a method that is guaranteed. It can be very difficult to
prove the correctness of a computer program, partic-
ularly when it still has bugs, such as the implementa-
tion of xb3 in an early version of SES. Hopefully, it
has been fixed in later versions. Usually extensive test-
ing of a program before its release will uncover most
such bugs. The subject of proving correctness of com-
puter programs is a difficult and active area of research
in computer science.

Here are some additional examples run in C-XSC.
They were all independently checked with another pro-
gram written from scratch and run on another com-
puter. This is another way to test a computer imple-
mentation of a computational method.
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2) Find all the roots in [.01, 1.0] of

f (x) D x2 C sin
�
1
x

�
:

The program found 30 roots from right to left, be-
coming more and more closely packed. The first four
digits of the last three roots found were .0109, .0106,
.0102.

The last root lies in the interval (shown to 11 digits)

[:01026804972; :01026804973]:

The CPU time was 0.16 seconds using C-XSC on
a 486 processor.
3) An example suggested by E.A. Galperin, see [14], is

f (x) D x2 C sin
�

1
xp

�
; p D 1; 2; 3:

We ran the program to find all roots in [ 0.1, 1.0] for
the cases p = 1, 2, 3.

Three roots were found right to left for p = 1; thirty-
one roots for p = 2; and 318 roots for p = 3. The last root
found for p = 3 lies in the interval

[0:10003280626; 0:10003280628]:

To find all the 318 closely packed roots in the case p =
3, the CPU time was 1.5 seconds using C-XSC on a 486
processor.

The method generalizes to n dimensions. Interval
Newton methods for n-dimensional nonlinear systems
have some remarkable properties; among them are the
following:
1) If N(X)\ X is empty, then there is no solution in X;
2) IfN(X)�X, then there is a unique solution inN(X);
3) IfN(X)� X, then the interval Newton method, with

X(0) =X, converges quadratically to the unique solu-
tion inX, as does the ordinary Newtonmethod from
any starting point in X.

4) If N(X) � X, with outward rounding in the inter-
val computation of N(X), then the interval New-
ton method converges in a finite number of itera-
tions, because of the intersection, to an interval vec-
tor containing the unique solution in X, using the
stopping criterion: STOP when X(k+1) = X(k) .
The general form of such algorithms is

X(kC1) D N(X(k)) \ X(k);

where the interval Newton operator N is defined in var-
ious ways.

The original way, [12], was

N(X(k)) D m(X(k)) � f 0(X(k))�1 f (m(X(k)));

where m(X(k)) is the midpoint of X(k). Newer versions
(see e. g. [4,7,10,18]) avoid having to find the inverse of
the Jacobian matrix f 0(X) for an interval vector X.

Krawczyk’s variation [10] was to define N(X) as

N(X) D y � Y f (y)C fI � YF 0(X)gZ;

where y is the midpoint of the interval vector X, I is the
identity matrix, Y is a nonsingular real matrix, such as
an approximation to the inverse of f 0(m(X)), and Z =
X� y.

In cases 2) and 3) above, the subsequent iterations
converge to the solution (quadratically, if Y converges
to [f 0(m(X))]�1 as the width ofX goes to zero); and with
outward rounding in a computer implementation, the
iterations will stop at a finite value of k with the stop-
ping criterion: STOP if X(k+ 1) = X(k).

For a technique for searching for a safe starting re-
gion X(0) satisfying 2) from which convergence to a so-
lution is guaranteed, see [13,16]. The technique in-
volves starting with a large initial box and using bisec-
tions in a depth-first search in suitable directions to find
a sub-box that satisfies property 2) above.

To find enclosures of all solutions in a given ini-
tial box, we form a list of ‘sub-boxes’ (interval vec-
tors) in a way analogous to that explained in the one-
dimensional example. When the intersection N(X) \
X produces two sub-boxes, we can list one and analyze
(continue iterations with) the other, or we can list them
both and choose some other box on the list to analyze
next. Such an interval method lends itself to paralleliza-
tion. We can distribute sub-boxes remaining on the list
to processors in a network, and gain a speed-up factor.
This is particularly important for applications to global
optimization; see e. g. [8,15].

Numerical Example

A solution was sought for the following nine-dimen-
sional system obtained from P. Rabinowitz (private
communication). The system concerns finding weights
and argument spacings for a certain type of multidi-
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mensional integration formula

x1 C x3 C x5 C 2x7 D 1;

x1x2 C x3x4 C 2x5x6 C 2x7x8 C 2x7x9 D
2
3
;

x1(x2)2 C x3(x4)2 C 2x5(x6)2

C 2x7(x8)2 C 2x7(x9)2 D
2
5
;

x1(x2)3 C x3(x4)3 C 2x5(x6)3

C 2x7(x8)3 C 2x7(x9)3 D
2
7
;

x1(x2)4 C x3(x4)4 C 2x5(x6)4

C 2x7(x8)4 C 2x7(x9)4 D
2
9
;

x5(x6)2 C 2x7x8x9 D
1
9
;

x5(x6)4 C 2x7(x8)2(x9)2 D
1
25
;

x5(x6)3 C x7x8(x9)2 C x7(x8)2x9 D
1
15
;

x5(x6)4 C x7x8(x9)3 C x7(x8)3x9 D
1
21
:

A solution was sought in the unit 9-cube.We started
with an initial box slightly larger than the unit 9-cube
in case there was a solution on the boundary. A depth-
first search for a safe starting region was carried out and
was successful after 168 bisections in a certain sequence
of coordinate directions determined by the program as
the process proceeded, see [16]. Finally, a solution was
quickly bounded in a small box (9-dimensional interval
vector here). The reader is invited to try a favorite non-
interval nonlinear systems solver to find a solution of
this system. Better still, find all the solutions and prove
there are no more, as the interval method did.

An alternative approach using interval analysis to
solve nonlinear systems is computing the topological de-
gree of the mapping f over a box (n-dimensional inter-
val vector). See [1,2].

For access to voluminous literature, available soft-
ware, current research efforts, conferences, etc. in the
area of interval computation, see [21].
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Interval algorithms for constrained and unconstrained
optimization are based on adaptive, exhaustive search
of the domain. Their overall structure is virtually iden-
tical to Lipschitz optimization as in [4], since interval
evaluations of an objective function � over an inter-
val vector x correspond to estimation of the range of
� over x with Lipschitz constants. However, there are
additional opportunities for acceleration of the process
with interval algorithms, and use of outwardly rounded
interval arithmetic gives the computations the rigor of
a mathematical proof.

The interval algorithms are both complicated and
accelerated by the presence of constraints, as is ex-
plained below.

See [5,2] or [3] for further details of concepts in this
article.

The basic problem is
8̂
<̂
ˆ̂:

min �(x)
s.t. c(x) D 0

g(x) � 0;

(1)

where �: x � Rn ! R, c: x ! Rm1 , and g: x ! Rm2 ,
where x is an interval vector

x D ([x1; x1]; : : : ; [xn ; xn])
>:

The values m1 = 0 and m2 = 0 will be allowed, in which
case the problem is considered to be unconstrained. It is
emphasized here that, in problem (1), a global optimum,
that is, the lowest possible value of � over the feasible
set, is sought.

The Basic Branch and Bound Algorithm
for UnconstrainedOptimization

The overall outline of an interval branch and bound al-
gorithm for unconstrained global optimization is given
in Table 1.

One way that a box is rejected in step 2b) of this
algorithm is by using a bound on the range of the func-
tion � over the interval vector (box) x. In particular,
suppose the value �(x) at a point x is known. Then �(x)

http://cs.utep.edu/interval-comp/main.html
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Interval Analysis: Unconstrained and Constrained Optimization, Table 1

INPUT: an initial box x0:
OUTPUT: a list C of boxes that have been proven to contain critical points and a list U of boxes with

small objective function values, but which could not otherwise be resolved.
1. Initialize a list of boxes L by placing the initial search region x0 in L.
2. DOWHILE L ¤ ;.

a) Remove the first box x from L. (The boxes in L are in general in a particular order, depend-
ing on the actual algorithm.)

b) (Process x) Do one of the following:
– reject x;
– reduce the size of x;
– determine that x contains a unique critical point, then find the critical point to high

accuracy;
– subdivide x to make it more likely to succeed at rejecting, reducing, or verifying unique-

ness.
c) Do the following to the box(es) resulting from Step 2b):

– If x was rejected, do nothing.
– If more then one box was derived from x, insert all but one of them into L. Call the

remaining box derived from x x̃.
– If there is a x̃ that has been proven to contain critical point, insert it into C:
– If there is a x̃ that is small, but has not been proven to contain feasible point, insert it

into U:

END DO

is an upper bound for the global optimum. (In fact, if
� has been evaluated at various points, then the mini-
mum of the resulting values is a usable upper bound on
the global optimum.) Now suppose a lower bound � on
the range of � over a box (or more generally, a region)
x� Rn can be computed, and that � > �(x). Then there
cannot be any global optimizers of � within x. The value
� can be obtained through an interval function value.
This process is illustrated in the following figure.

The lower bound � for the objective over the box x
need not be obtained via interval computations. Indeed,
if a Lipschitz constant Lx for � is known over x, and
�(x̌) is known for x̌, the center of x, then, for anyex 2 x,

�(ex) � �(x̌) � 1
2Lx kw(x)k ;

where w(x) is the vector of widths of the components of
the interval vector x. However, getting rigorous bounds
on Lipschitz constants can require more human ef-
fort than the interval computation, and often results
in bounds that are not as sharp as those from inter-
val computation. (However, heuristically obtained ap-

Interval Analysis: Unconstrained and Constrained Optimiza-
tion, Figure 1
The midpoint test: Rejectingex because of a high objective
value

proximate Lipschitz constants, as employed in the cal-
culations in [4], have been highly successful at solv-
ing practical problems, albeit not rigorously.) Simi-
larly, automated computations for Lipschitz constants
as presently formulated result in bounds that are prov-
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ably not as sharp as interval computations. Further-
more, use of properly rounded interval arithmetic, if
used both in computing � and �(x), allows one to con-
clude with mathematical rigor that there are no global
optima of � within x.

Use of this lower bound for � is sometimes called
the midpoint test, since the points x at which �(x) is
evaluated are often taken to be the vectors of midpoints
of the boxes x produced during the subdivision process.
(Actually, some implementations use the output of an
approximate or local optimizer as x, to get an upper
bound on the global optimum that is as low as possi-
ble.)

The simplest possible branch and bound algo-
rithms need to contain both a box rejection mechanism
and a subdivision mechanism. A common subdivision
mechanism is to form two sub-boxes by bisecting the
widest coordinate interval of x (with possible scaling
factors). Heuristics and scaling factors, as well as sev-
eral references to the literature, appear in [3, §4.3.2,
p. 157 ff]. Alternatives to bisection, such as trisection,
forming two boxes by cutting other than at a midpoint,
etc. have also been discussed at conferences and studied
empirically [1].

Acceleration Tools

Early and simple algorithms contain only the midpoint
test mechanism and bisection mechanism described
above. Such algorithms produce as output a large list
U of small boxes (with diameters smaller than a stop-
ping tolerance) and no list C of boxes that contain ver-
ified critical points. The list U in such algorithms con-
tains clusters of boxes around actual global optimizers.
Some Lipschitz constant-based algorithms are of this
form. Note, however, that such algorithms are of lim-
ited use in high dimensions, since the number of boxes
produced increases exponentially in the dimension n.

Interval computations provide more powerful tools
for accelerating the algorithm. For a start, if an interval
extension of the gradient r�(x) is computable then 0 62
r�(x) implies that x cannot contain a critical point, and
x can be rejected. This tool for rejecting a box x is some-
times called the monotonicity test, since 0 62 (r�(x))i
implies � is monotonic over x in the ith component xi,
where (r�(x))i represents the ith component of the in-
terval evaluation of the gradient r�.

Perhaps themost powerful interval acceleration tool
is interval Newton methods, applied to the system r �
= 0. Interval Newton methods can result in quadratic
convergence to a critical point in the sense that the
widths of the coordinates of the image of x are propor-
tional to the square of the widths of the coordinates of x.
Interval Newton methods also can prove existence and
uniqueness of a critical point or nonexistence of a crit-
ical point in x. Thus, the need to subdivide a relatively
large x is often eliminated, making a previously imprac-
tical algorithm practical. See � Interval Newton meth-
ods and� Interval fixed point theory.

For a more detailed algorithm, and for a discussion
of parallelization of the branch and bound process, see
� Interval analysis: Parallel methods for global opti-
mization.

Differences Between Unconstrained
and ConstrainedOptimization

If m1> 0 or m2> 0 in problem (1), then the problem is
one of constrained optimization. Themidpoint test can-
not be applied directly to constrained problems, since
�(x) is guaranteed to be an upper bound on the global
optimum only if the constraints c(x) = 0 and g(x) � 0
are also satisfied at x. If there are only inequality con-
straints and none of the inequality constraints are ac-
tive at x, then an interval evaluation of g(x) will rigor-
ously verify g(x)< 0, and x can be used in the midpoint
test. However, if there are equality constraints (or if one
or more of the inequality constraints is active), then an
interval evaluation will yield 0 2 c(x) (or 0 2 gi(x) for
some i), and it cannot be concluded that x is feasible.
In such cases, a small box x̌ can be constructed about
x, and it can be verified with interval Newton methods
that x̌ contains a feasible point. The upper bound of the
interval evaluation �(x̌) then serves as an upper bound
on the global optimum, for use in the midpoint test. For
details and references, see� Interval analysis: Verifying
feasibility.

On the other hand, constraints can be beneficial in
eliminating infeasible boxes x. In particular, 0 62 c(x) or
g(x)> 0 implies that x can be rejected.

It is sometimes useful to consider bound constraints
of the form xi � xi and xj � xj separately from the
general inequality constraints g(x) � 0. Such bound
constraints can generally coincide with the limits on
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the search region x0, but are distinguished from sim-
ple search bounds. (It is possible for an unconstrained
problem to have no optima within a search region, but
it is not possible if all of the search region limits rep-
resent bound constraints.) See [3, §5.2.3, p. 180 ff] for
details.

Example 1 Consider
(
min �(x) D �(x1 C x2)2

s.t. c(x) D x2 � 2x1 D 0:
(2)

Example (2) represents a constrained optimization
problem with a single equality constraint and no bound
constraints or inequality constraints. To apply the mid-
point test in a rigorously verified algorithm, a box must
first be found in which a feasible point is verified to ex-
ist. Suppose that a point algorithm, such as a general-
ized Newton method, has been used to find an approxi-
mate feasible point, say x̌ D ( 14 ;

1
2 )
>. Now observe that

r c � (� 2, 1)|. Therefore, as suggested in � Inter-
val analysis: Verifying feasibility, x2 can be held fixed at
x2 = 1/2. Thus, to prove existence of a feasible point in
a neighborhood of x̌, an interval Newtonmethod can be
applied to f (x1) = c(x1, 0.5) = 0.5� 2x1. We may choose
initial interval x1 = [ 0.25� �, 0.25+ �] with � = 0.1, to
obtain

x1 D [�:15;�:35];

ex1 D 0:25 �
0
�2
D [0:25; 0:25] � x1;

This computation proves that, for x2 = 0.5, there is a fea-
sible point for x1 2 [0.25, 0.25]. (See� Interval Newton
methods and � Interval fixed point theory.) We may
now evaluate � over the box ([� 0.25, � 0.25], [0.5,
0.5])| (that is degenerate in the second coordinate, and
also happens to be degenerate in the first coordinate for
this example). We thus obtain

�([0:25; 0:25]; [0:5; 0:5]) D
�
�

9
16
;�

9
16

�
;

and � 9/16 has been proven to be an upper bound on
the global optimum for example problem (2).
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Introduction

Constrained optimization problems are of the form
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min �(x)
s.t. ci (x) D 0; i D 1; : : : ;m;

g j(x) � 0; j D 1; : : : ; q1;
xik � xik ; k D 1; : : : ; q2 � �;
xik � xik ; k D �C 1; : : : ; q2;

(1)

where �: Rn! R, ci: Rn! R, and gj: Rn! R.
In interval branch and bound algorithms for finding

global optima for problem (1), a search box of the form

x D
�
(x1; : : : ; xn)> 2 Rn :

xi � xi � xi ;

1 � i � n

	
(2)

is generally given, where some of the sides in (2) cor-
respond to bound constraints of problem (1), and the
other sides merely define the extent of the search re-
gion. If there are no constraints ci and gj, then the box x
is systematically tessellated into sub-boxes. The branch
and bound algorithm, in its most basic form, proceeds
as follows: Over each sub-boxex, �(x̌) is computed for
some x̌ 2ex, and the range of � overex is bounded (e. g.
with a straightforward interval evaluation). If there are
no constraints ci and gj, then the value �(x̌) represents
an upper bound on the minimum of �. The minimum
such value � is kept as the tessellation and search pro-
ceed; if any boxex has a lower range bound greater than
�, it is rejected as not containing a global optimum. See
[1,2], or [3] for details of such algorithms.

The situation is more complicated in the con-
strained case. In particular, the values �(x̌) cannot be
taken as upper bounds on the global optimum unless
it is known that x̌ is feasible. More generally, an upper
bound on the range of � over a small box x̌ can be taken
as an upper bound for the global optimum provided it
is proven that there exists a feasible point of problem
(1) within x̌. This article outlines how this can be done.

General Feasibility: the Fritz John Conditions

An interval Newton method (see � Interval Newton
methods) can sometimes be used to prove existence of
a feasible point of problem (1) that is a critical point of
�. In particular, the interval Newton method can some-
times prove existence of a solution to the Lagrangemul-
tiplier or Fritz John system within x̌. For the Fritz John
system, it is convenient to consider the q2 bound con-
straints in the same form as the q1 general inequality
constraints, so that there are q = q1 + q2 general inequal-
ity constraints of the from gj(x)� 0.With that, the Fritz
John system can be written as

F(x; u; v) D
0
BBBBBBBBBBBBBB@

u0r�(x)C
Pq

jD1 ujr g j C
Pm

iD1 virci (x)
u1g1
:::

uq gq
c1(x)
:::

cm(x)�
u0 C

Pq
jD1 uj C

Pm
iD1 v

2
i

�
� 1

1
CCCCCCCCCCCCCCA

D 0;

(3)

where uj � 0, j = 1, . . . , q, the vi are unconstrained, and
the last equation is one of several possible normaliza-
tion conditions. For details, see [1, §10.5] or [2, §5.2.5].

However, computational problems occur in prac-
tice with the system (3). It is more difficult to find
a good approximate critical point (for an appropri-
ate small box x̌) of the entire system (3) than it is to
find a point where the inequality and equality con-
straints are satisfied. Furthermore, if an interval New-
ton method is applied to (3) over a large box, the cor-
responding interval Jacobi matrix or slope matrix typi-
cally contains singular matrices and hence is useless for
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existence verification. This is especially true if it is dif-
ficult to get good estimates for the Lagrange multipliers
uj and vi. For this reason, the techniques outlined below
are useful.

Feasibility of Inequality Constraints

Proving feasibility of the inequality constraints is some-
times possible by evaluating the gj with interval arith-
metic: If g j(x̌) � 0), then every point in x̌ is feasible with
respect to the constraint gj(x) � 0; see [3]. However,
if x̌ corresponds to a point at which gj is active, then
0 2 g j(x̌), and no conclusion can be reached from an
interval evaluation. In such cases, feasibility can some-
times be proven by treating gj(x) = 0 as one of the equal-
ity constraints, then using the techniques below.

Infeasibility

An inequality constraint gj is proven infeasible over x̌
if g j(x̌) > 0, and an equality constraint ci is infeasible
over x̌ if either ci(x̌) > 0 or ci (x̌) < 0. See [3].

Feasibility of Equality Constraints

The equality constraints

c(x) D (c1(x); : : : ; cm(x))> D 0;

c: Rn ! Rm, n � m, can be considered an underde-
termined system of equations, whereas interval New-
ton methods generally prove existence and/or unique-
ness for square systems. However, fixing n �m coordi-
nates x̌i 2 x̌i allows interval Newton methods to work
withec : Rm ! Rm , to prove existence of a feasible
point within x̌. In principle, indices of the coordinates
to be held fixed are chosen to correspond to coordi-
nates in which c is varying least rapidly. For a set of test
problems, the most successful way appears to be choos-
ing those coordinates corresponding to the rightmost
columns after Gaussian elimination with complete piv-
oting has been applied to the rectangular matrix c0(x̌)
for some x̌ 2 x̌. Figure 1 illustrates the process in two
dimensions.

Certain complications arise. For example, if bound
constraints or inequality constraints are active, then ei-
ther the point x̌ must be perturbed or else the bound or
inequality constraints must be treated as equality con-
straints. Handling this case by perturbation is discussed
in [2, p. 191ff].

Interval Analysis: Verifying Feasibility, Figure 1
Proving that there exists a feasible point of an underdeter-
mined constraint system

For the original explanation of the Gaussian
elimination-based process, see [1, §12.4]. In [2, §5.2.4],
additional background, discussion, and references ap-
pear.
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Interval constraint processing is an alternative technol-
ogy designed to process sets of (generally nonlinear)
continuous or mixed constraints over the real numbers.
It associates propagation and search techniques devel-
oped in artificial intelligence and methods from interval
analysis.

Interval constraints are used in the design of the
constraint solving and optimization engines of most
modern constraint programming languages and have
been used to solve industrial applications in areas like
mechanical design, chemistry, aeronautics, medical di-
agnosis or image synthesis.

The term interval constraint is a generic term de-
noting a constraint (that is a first order atomic for-
mula such as an equation, inequation or more gener-
ally a relation) in which variables are associated with
intervals. These intervals denote domains of possible
values for these variables. In general, intervals are de-
fined over the real numbers but the concept is general
enough to address other constraint domains (e. g. non

negative integers, Booleans, lists, sets, etc.). When de-
fined over the real numbers, interval constraint sets are
often called continuous or numerical constraint satisfac-
tion problems.

The main idea underlying interval constraint pro-
cessing—also called interval propagation—is, given
a set of constraints S involving variables {v1, . . . , vn}
and a set of floating point intervals {I1, . . . , In} rep-
resenting the domains of possible values of variables,
to isolate a set of {n}-ary canonical boxes (Cartesian
products of Iis subintervals whose bounds are either
equal or consecutive floating point numbers) approx-
imating the constraint system solution space. To com-
pute such a set, a search procedure navigates through
the Cartesian product I1× � � � × In alternating pruning
and branching steps.

The pruning step uses a relational form of interval
arithmetic [1,11]. Given a set of constraints over the re-
als, interval arithmetic is used to compute local approx-
imations of the solution space for a given constraint.
This approximation results in the elimination of val-
ues from the domains of the variables and these do-
main modifications are propagated through the whole
constraint set until reaching a stable state. This stable
state is closely related to the notion of arc consistency
[9,10], a well-known concept in artificial intelligence.
The branching step consists in a bisection-based divide-
and-conquer procedure on which a number of strate-
gies and heuristics can be applied.

Interval constraints were first introduced by J.G.
Cleary in [5]. The initial goal was to address the in-
correctness of floating point numerical computations
in the Prolog language while introducing a relational
form of arithmetic more adapted to the language for-
mal model. These ideas, clearly connected to the con-
cepts developed in constraint logic programming [6,7],
were then implemented in BNR-Prolog [12]. Since then,
many other constraint languages and systems have used
interval constraints as their basic constraint solving en-
gine, for example CLP(BNR) [4], Prolog IV [13] or Nu-
merica [16].

In the interval framework, the basic data structure
is a set of ordered pairs of numbers taken in a finite set
of particular rational numbers augmented with the two
infinities (this set generally coincides with a set of IEEE
floating point numbers). Such a pair, called a floating
point interval or, more concisely, an interval, denotes,
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as expected, the set of real numbers in between the
lower and upper bounds. Operations and relations over
the reals can be lifted to intervals (using floating point
operations and outward rounding) so as to keep nu-
merical errors under control. In particular, correctness
of computations is guaranteed by a fundamental theo-
rem due to R.E. Moore [11].

Assuming a finite set of intervals closed under in-
tersection, every relation � over R can be approximated
with its interval enclosure (i. e. the intersection of all in-
tervals containing it). The approximation of any {n}-ary
relation is then defined as the Cartesian product of its
projection approximations. These Cartesian products
of intervals are called boxes. The set of boxes, partially
ordered by inclusion, is the complete lattice made of the
fixed points of the closure operator that maps {n}-ary
relations over R to their approximations. The intersec-
tion of all boxes containing an n-ary relation defines an
outer approximation notion. A dual notion of inner ap-
proximation can be defined as the union of all boxes
contained in the relation.

Given a finite set of constraints S and an initial n-
ary box X representing the domains (intervals) for all
variables occurring in S, every constraint in S repre-
sents an n-ary relation � (modulo an appropriate cylin-
drification). The main idea is then to compute a box
approximating the solution set defined by S and X. In
the interval constraint framework, this approximation
is generally computed by applying the following algo-
rithm, called here NC3 to reflect its similarity to the arc
consistency algorithm AC3 [10].

The call to the function narrow in NC3 is an algo-
rithmic narrowing process. Every constraint c in S and
its corresponding relation � is associated with an op-
erator Nc, called constraint narrowing operator, map-
ping boxes to boxes and verifying the properties of cor-
rectness, contractance, monotonicity and idempotence,
that is for every boxes X, X0

1) X \ � � Nc(X);
2) Nc(X)� X;
3) X � X0 implies Nc(X)� Nc(X0)
4) Nc(Nc(X)) = Nc(X).
When such operators are associated with the con-
straints of a set S, the function narrow(X, c) simply re-
turns Nc(X). The algorithm stops when a stable state
is reached, i. e. no (strict) narrowing is possible with
respect to any constraint. The result of the main step

function NC3()
input: S, a (nonempty) constrain system,

X, a (nonempty) box
output: X0 � X
Queue all constraints from S in Q
REPEAT

select a constraint c from Q
%Narrow down X with respect to c
X0  narrow(X; c)
% if X0 is empty, S is inconsistent
IF X0 = ; THEN return ;
%Queue the constraints whose variables’
% domains have changed. Delete c from Q
Let S0 = fc 2 S : 9v 2 var(c); X0v � Xvg

Q  Q [ S0nfcg
X  X0

UNTIL Q is empty
return X

END % NC3

NC3: A generic narrowing algorithm

is to remove (some) incompatible values from the do-
mains of the variables occurring in c. Furthermore, it
can be shown that NC3 terminates, is correct (the final
box contains all solutions of the initial system included
in {X}, confluent (selection of constraints in the main
loop is strategy independent) and computes the greatest
common fixed point of the constraint narrowing oper-
ators that is included in the initial box [2].

Over the real numbers, different constraint narrow-
ing operators can be defined, resulting in different local
consistency notions. A system is said to be locally con-
sistent (with respect to a family of constraint narrowing
operators), if the Cartesian product of the domains of
its variables is a common fixed point of the constraint
narrowing operators associated with its constraints.
The main local consistency notions used in continu-
ous constraint satisfaction problems are: first order lo-
cal consistencies deriving from arc consistency (hull (or
2B) consistency [4,8], box consistency [3], and higher
order local consistencies deriving from k-consistency
(3B, kB-consistency [8], box(2)-consistency [14]).

More precisely, let apx(c) denote the smallest box
enclosing the relation associated with a constraint c.
The family of constraint narrowing operatorsN defined
as: For all box X and all constraint c, Nc(X) = apx(X
\ c) is the support of hull consistency. These opera-
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tors can be computed for very simple constraints, of-
ten named primitive constraints (e. g. x + y = z, sin(x)
= y, . . . ) and complex constraints are decomposed into
primitive constraints, eventually adding fresh variables.

The definition of box consistency involves the intro-
duction of projection constraints. Given a multivariate
constraint c over the reals, the projection constraint of
c with respect to a variable v is obtained by computing
an interval extension of the constraint and by replacing
every variable but v with the interval corresponding to
its domain. The constraint narrowing operator associ-
ated with this projection constraint computes the great-
est interval [a, b] such that [a, a+ and (b�, b], where a+

(resp. b�) denotes the successor (resp. the predecessor)
of a (resp. b), verify the projection constraint. Besides
the fact that this technique does not require the addi-
tion of any additional variable, these operators can be
computed with an algorithm mixing interval Newton
methods (cf.� Interval Newton methods), propagation
and bisection-based search.

Higher-order local consistencies are based on their
first order counterparts. Operationally, the idea is to
improve the enclosures accuracy by eliminating subin-
tervals of the locally consistent domains that can be
detected locally inconsistent. The general procedure
is as follows: Consider a hull consistent interval con-
straint system (S, X). An equivalent 3B-consistent sys-
tem is a system (S, X0) such that, for every variable
v, if Xv

0 = [a, b], the system (S, X0v [a;aC])(resp. (S,
X0v [b�;b])) is hull consistent, where X

0
v I denotes the

Cartesian product X0 where Xv
0 is replaced with I.

Box(2)-consistency is defined in the same manner with
respect to box consistency. The computational cost of
higher-order local consistencies is generally high, but
the local gain in accuracy was shown to outperform
most existing techniques in several challenging prob-
lems (see, for example the circuit design problem in
[14]).

Finally, the above mentioned interval constraint
techniques are also used for unconstrained and con-
strained optimization problems (see for example
[15,16]).

See also

� Automatic Differentiation: Point and Interval
� Automatic Differentiation: Point and Interval

Taylor Operators

� Bounding Derivative Ranges
� Global Optimization: Application to Phase

Equilibrium Problems
� Interval Analysis: Application to Chemical

Engineering Design Problems
� Interval Analysis: Differential Equations
� Interval Analysis: Eigenvalue Bounds of Interval

Matrices
� Interval Analysis: Intermediate Terms
� Interval Analysis: Nondifferentiable Problems
� Interval Analysis: Parallel Methods for Global

Optimization
� Interval Analysis: Subdivision Directions in Interval

Branch and Bound Methods
� Interval Analysis: Systems of Nonlinear Equations
� Interval Analysis: Unconstrained and Constrained

Optimization
� Interval Analysis: Verifying Feasibility
� Interval Fixed Point Theory
� Interval Global Optimization
� Interval Linear Systems
� Interval Newton Methods

References

1. Alefeld G, Herzberger J (1983) Introduction to interval
computations. Acad. Press, New York

2. Benhamou F, Granvilliers L (1997) Automatic generation of
numerical redundancies for non-linear constraint solving.
Reliable Computing 3(3):335–344

3. Benhamou F, McAllester D, Van Hentenryck P (1994)
CLP(intervals) revisited. Proc. of ILPS’94, MIT, Cambridge,
MA, pp 1–21

4. Benhamou F, Older WJ (1997) Applying interval arithmetic
to real, integer and Boolean constraints. J Logic Program-
ming 32(1):1–24

5. Cleary JG (1987) Logical arithmetic. Future Computing Sys-
tems 2(2):125–149

6. Colmerauer A (1990) An introduction to Prolog III. Comm
ACM 33(7):69–90

7. Jaffar J, Lassez JL (1987) Constraint logic programming.
Proc. 14th ACM Symp. Principles of Programming Lan-
guages (POPL’87), ACM, New York, pp 111–119

8. Lhomme O (1993) Consistency techniques for numeric
CSPs. In: Bajcsy R (ed) Proc. 13th IJCAI. IEEE Computer Soc.
Press, New York, pp 232–238

9. Mackworth A (1977) Consistency in networks of relations.
Artif Intell 8(1):99–118

10. Montanari U (1974) Networks of constraints: Fundamental
properties and applications to picture processing. Inform
Sci 7(2):95–132



1736 I Interval Fixed Point Theory

11. Moore RE (1966) Interval analysis. Prentice-Hall, Engle-
wood Cliffs, NJ

12. Older W, Vellino A (1993) Constraint arithmetic on real
intervals. In: Benhamou F, Colmerauer A (eds) Constraint
Logic Programming: Selected Research. MIT, Cambridge,
MA

13. PrologIA (1994) Prolog IV: Reference manual and user’s
guide

14. PugetJ-F, Van Hentenryck P (1998) A constraint satisfac-
tion approach to a circuit design problem. J Global Optim
13:75–93

15. Van Hentenryck P, McAllester D, Kapur D (1997) Solving
polynomial systems using a branch and prune approach.
SIAM J Numer Anal 34(2):797–827

16. Van Hentenryck P, Michel L, Deville Y (1997) Numerica:
A modeling language for global optimization. MIT, Cam-
bridge, MA

Interval Fixed Point Theory

R. BAKER KEARFOTT

Department Math., University Louisiana at Lafayette,
Lafayette, USA

MSC2000: 65G20, 65G30, 65G40, 65H20

Article Outline

Keywords
Classical Fixed Point Theory and Interval Arithmetic
The Krawczyk Method and Fixed Point Theory
Interval Newton Methods and Fixed Point Theory
Uniqueness
Infinite-Dimensional Problems
See also
References

Keywords

Fixed point iteration; Automatic result verification;
Interval computations; Global optimization

Interval methods (interval Newton methods and the
Krawczyk method) can be used to prove existence and
uniqueness of solutions to linear and nonlinear finite-
dimensional and infinite-dimensional systems, given
floating-point approximations to such solutions. (See
� Interval Newton methods; and [6,8].) In turn, these

existence-proving interval operators have a close rela-
tionship with the classical theory of fixed-point itera-
tion. This relationship is sketched here.

Classical Fixed Point Theory
and Interval Arithmetic

Various fixed point theorems, applicable in finite-
or infinite-dimensional spaces, state roughly that, if
a mapping maps a set into itself, then that mapping has
a fixed point within that set. For example, the Brouwer
fixed point theorem states that, ifD is homeomorphic to
the closed unit ball inRn and P is a continuous mapping
such that P maps D into D, then P has a fixed point in
D, that is, there is an x 2 D with x = P(x).

Interval arithmetic can be naturally used to test the
hypotheses of the Brouwer fixed point theorem. An in-
terval extension P of P has the property that, if x is
an interval vector with x � D, then P(x) contains the
range {P(x): x 2 x}, and an interval extension P can
be obtained simply by evaluating P with interval arith-
metic. Furthermore, with outward roundings, this eval-
uation can be carried out so that the floating point in-
tervals (whose end points are machine numbers) rigor-
ously contain the actual range of P. Thus, if P(x) � x,
one can conclude that P has a fixed point within x.

Another fixed point theorem, Miranda’s theorem,
follows from the Brouwer fixed point theorem, and is
directly useful in theoretical studies of several interval
methods. Miranda’s theorem is most easily stated with
the notation of interval computations: Suppose x � Rn

is an interval vector, and for each i, look at the lower
ith face xi of x, defined to be the interval vector all of
whose components except the ith component are those
of x, and whose ith component is the lower bound xi of
the ith component xi of x. Define the upper ith face xi
of x similarly. Let P: x! Rn, P(x) = (P1(x), . . . , Pn(x))
be continuous, and let P = (P1, . . . , Pn) be any interval
extension of P. Miranda’s theorem states that, if

Pi (xi)Pi(xi) � 0; (1)

then P has a fixed point within x.

The KrawczykMethod and Fixed Point Theory

R.E. Moore provided one of the earlier careful analyses
of interval Newton methods in [5]. There, theKrawczyk
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method was analyzed as follows: The chord method is
defined as

P(x) D x � Y f (x); (2)

where the iteration matrix is normally taken to be Y D�
f 0(ex)��1 for some Jacobi matrix f 0(ex) with ex 2 x,

where solutions of f (x) = 0, f : D� Rn! Rn are sought.
Amean value extension is then used:

P(x) 2 P(x̌)C P0(x)(x � x̌);

whence

K(x; x̌) D P(x)

D P(x̌)C P0(x)(x� x̌)

D x̌ � Y f (x̌)C
�
I � Y f 0(x)

�
(x� x̌)

(3)

is an interval extension of P. Thus, the fact that the
range of P obeys

fP(x) : x 2 xg � P(x) D K(x; x̌)

coupled with the Brouwer fixed point theorem implies
that, if

K(x; x̌) � x;

then there exists a fixed point of P, and hence solution
x� 2 K(x; x̌), f (x�) = 0.

By analyzing the norm norm k I � Yf 0(x) k, Moore
further concludes, basically, that if


I � Y f 0(x)



 < 1;

then any solution x� 2 x must be unique; for an exact
statement and details, see [5].

Interval NewtonMethods and Fixed Point Theory

Traditional interval Newton methods are of the form

N( f ; x; x̌) D x̌ C v; (4)

where v is an interval vector that contains all solutions
v to point systems Av D � f (x̌), for A 2 f0(x), where
f0(x) is either an interval extension to the Jacobi ma-
trix of f over x or an interval slope matrix; see � In-
terval Newton methods. [7, Thm. 5.1.7] asserts that, if
N( f ; x; x̌) � int x, where f0(x) is a ‘Lipschitz set’ for f,
intx denotes the interior of x, and x̌ 2 int(x), then there

is a solution of f (x) = 0 within N( f ; x; x̌), and this so-
lution is unique within x. Classical fixed point theory is
used in the succinct proof of this general theorem.

When the interval Gauss–Seidel method is used to
find the solution set bounds v, a very clear correspon-
dence to Miranda’s theorem can be set up. This is done
in [3].

Uniqueness

In classical fixed point theory, the contractive mapping
theorem (a nongeneric property) is often used to prove
uniqueness. For example, suppose P is Lipschitz with
Lipschitz constant L < 1, that is,

kP(x) � P(y)k � L kx � yk for some L < 1: (5)

Then x = P(x) and y = P(y) implies k x � y k = k P(x)
� P(y) k � L k x � y k, which can only happen if x = y.
(This argument appears in many elementary numerical
analysis texts, such as [4].)

An alternate proof of uniqueness involves nonsin-
gularity (i. e., regularity) of the mapping f for which we
seek x with f (x) = 0. In particular, if f (x) = Ax is linear,
corresponding to a nonsingular matrix A, then f (x) = 0
and f (y) = 0 implies

0 D f (x) � f (y) D Ax � Ay D A(x � y); (6)

whence nonsingularity of A implies x � y = 0, i. e. x = y.
Without interval arithmetic, the argument in (6)

cannot be generalized easily to nonlinear systems. Ba-
sically, invertibility implies uniqueness, and one must
somehow prove invertibility. However, with interval
arithmetic, uniqueness follows directly from an equa-
tion similar to (6), and regularity can be proven di-
rectly with an interval Newton method. In particular,
if the image under the interval Newton method (4) is
bounded, then every point matrix A 2 f0(x) must be
nonsingular. (This is because the bounds on the so-
lution set to the linear system f0(x)v D � f (x̌) must
contain the set of solutions to all systems of the form
Av D � f (x̌), A 2 f0(x).) Then, the mean value theorem
implies that, for every x 2 x, y 2 x,

f (x) � f (y) D A(x � y) for some A 2 f0(x): (7)

This is in spite of the fact that, in (7), A is in general
not equal to any f 0(x) for some x 2 x. In fact, (7) follows
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from considering f componentwise:

fi(y) D fi(x)C
�
r fi(ci )

�> (y � x);

for some ci, different for each i, on the line connecting x
and y; the matrix A 2 f0(x) can be taken to have its ith
row equal to (r f i(ci))|. Thus, because of the nonsin-
gularity of A in (7), f (x) = 0, f (y) = 0 implies 0 = A(x �
y and x = y.

Summarizing the actual results,

N( f ; x; x̌) � int x; (8)

where N( f ; x; x̌) is as in (4), then classical fixed-point
theory combined with properties of interval arithmetic
implies that there is a unique solution to f (x) = 0 in
N( f ; x; x̌), and hence in x.

If slope matrices are used in place of an interval Ja-
cobi matrix f0(x), then (7) no longer holds, and (8) no
longer implies uniqueness. However, a two-stage pro-
cess, involving evaluation of an interval derivative over
a small box containing the solution and evaluation of
a slopematrix over a large box containing the small box,
leads to an even more powerful existence and unique-
ness test than using interval Jacobi matrices alone. This
technique perhaps originally appeared in [9]. A state-
ment and proof of the main theorem can also be found
in [3, Thm. 1.23, p. 64].

Infinite-Dimensional Problems

Many problems in infinite-dimensional spaces (e. g.
certain variational optimization problems) can be writ-
ten in the form of a compact operator fixed point equa-
tion, x = P(x), where P: S! S is some compact opera-
tor operating on some normed linear space S. In many
such cases, P is approximated numerically from a finite-
dimensional space of basis functions {� i: i = 1, . . . , n}
(e. g. splines or finite element basis functions � i), and
the approximation error can be computed. That is, P(x)
= Pn(y) + Rn(y), where y 2 Rn is an approximation to x
2 S, and Rn(y) is the error that is computable as a func-
tion of y. Thus, a fixed point iteration can be set up of
the form

y ePn(y) � Pn(y)C Rn(y); (9)

where y 2 Rn. (The dimension n can be increased as
iteration proceeds.)

For (9), the Schauder fixed point theorem is an
analogue of the Brouwer fixed point theorem; see [1,
p. 154]. Furthermore, interval extensions can be pro-
vided to both Pn and Rn, so that an analogue to finite-
dimensional computational fixed point theory exists. In
particular, if

ePn(y) � int y; (10)

then there exists a fixed point of P within the ball in S
centered at the midpoint of y and with radius equal to
the radius of y. (For these purposes,

y D
nX

iD1

ai�i

can be identified with the interval vector (a1, . . . , an)|

corresponding to the coefficients in the expansion.) For
details, see [6, Chap. 15]. Also see [2] for a theoretical
development and various examples worked out in de-
tail.
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We give an overview of the general ideas involved
in solving constrained and unconstrained global op-
timization problems using interval arithmetic. We in-
clude a discussion of a few prototype optimization algo-
rithms and enumerate some applications in engineer-
ing, chemistry, manufacturing, economics and physics.

Introduction

Let I be the set of real compact intervals, R the set of
reals,m a positive integer, X 2 Im, and f : X!R the ob-
jective function. We assume that a global minimum f �

of f exists over X. Let X� be the set of global minimizers
of f over X. Then the global unconstrained optimization
problem is written down concisely as

min
x2X

f (x) (1)

which means that f � or X� is to be determined. The
global constrained optimization problem arises if a more
general set M � Rm, the so-called feasible domain, is
considered. Solution methods for global constrained
problems use the tools for global unconstrained prob-
lems, but additionally, further concepts are needed such
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as numerical proofs of the guaranteed existence of fea-
sible points in subareas of the working domain. There-
fore we separate the treatment of the constrained case
from the treatment of the unconstrained case.

The first interval techniques for treating global opti-
mization problems were established by [13,20,30,31,46,
64,65,66,67,71,72,74,81,98,103,104,105], etc. Although
some of these references were focusing on special prob-
lems like convex or signomial programming, they pro-
vided concepts which would give insight into more gen-
eral problems where they were later applied.

The overview that we provide in this article, can
only cast a quick glance at the various topics that will be
considered. Their thorough investigation may be found
in [33,39,47,48,49,56,70,90,95,100].

Solving an optimization problem such as (1) re-
quires, in general, the repetitive comparison of con-
tinua of values and the choosing of an optimum value.
Since interval computation is a tool for handling con-
tinua, it provides competitive methods for solving
global optimization problems. Simple prototype algo-
rithms for unconstrained problems are discussed in or-
der not to get too sophisticated. We choose three vari-
ants, on the one hand in order to keep track of the his-
torical origins, on the other hand in order to show how
small changes in the prototypes influence their conver-
gence behavior. These prototypes are based on ideas of
S. Skelboe [103], R.E. Moore [74], N.S. Asaithambi, Z.
Shen andMoore [2], E.R. Hansen [30,31], and K. Ichida
and Y. Fujii [46]. We do not have the space to provide
prototype algorithms for constrained problems as well
in this article. Thus we only discuss parts which we have
to add to the unconstrained prototypes in order to get
a procedure for constrained problems.

In general, interval algorithms for solving global op-
timization problems consist of
i) the main algorithm,
ii) accelerating devices.

The main algorithm is a sequential deterministic al-
gorithm where branch and bound techniques are used.
(An algorithm is called sequential if the nth step of the
computation depends on the former steps. A method
is deterministic if stochastic methods are avoided. By
branch and bound principles is meant that the whole
area X or M is not searched uniformly for the global
minimizers; instead some parts (branches) are pre-
ferred. The branching depends on the bounding. It is

required that for any box Y of the working area a lower
bound for f over Y is known or computable.)

Interval arithmetic is used for point i) to achieve the
bounds needed for the branch and bound techniques (f
need not be Lipschitz, convex, etc.) and for point ii) to
remove superfluous parts of the domains X orM.

The contents of this article is as follows: In the next
two sections we introduce the interval tools which are
required in the article. In section 4, three algorithms
for solving (1) are presented. They are seemingly very
similar, but their convergence properties, which are dis-
cussed in section 5, are different. The three algorithms
are also of interest for historical reasons. A survey of ac-
celeration devices, which aim to speed up the computa-
tion, is given in section 6. It is shown in section 7 that
interval analysis is an excellent means for dealing with
problems which have an unbounded domain or a nons-
mooth objective function. In section 8, the constrained
case is touched upon. Applications of these methods are
collected in the final section 9.

Interval Arithmetic

The interval tools which are needed for the explanation
of the basic features of interval methods in global opti-
mization are described in this section. A thorough in-
troduction to the whole area of interval arithmetic can
be found, for example, in [1,4,52,74,102], etc. More ad-
vanced readers will enjoy [79]. The development of in-
terval tools appropriate for dealing with optimization
problems is presented in [88,90]; cf. also the Appendix
of [86].

The interval arithmetic operations are defined by

A 
 B D fa 
 b : a 2 A; b 2 Bg for A; B 2 I; (2)

where the symbol 
may denote +, �, �, or /. In general,
A/B is not defined if 0 2 B. (But see the sections on ‘in-
terval Newton methods’ and ‘global optimization over
unbounded domains’ below.) The meaning of (2) is the
following: If some unknown reals ˛, ˇ are included in
known intervals, say ˛ 2 A, ˇ 2 B, then it is guaranteed
that the desired result ˛ 
 ˇ, which is in general un-
known, is contained in the known interval A 
 B. Defi-
nition (2) is equivalent to the following rules,

[a; b]C [c; d] D [aC c; bC d];

[a; b]� [c; d] D [a � d; b � c];
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[a; b] � [c; d]
D [min(ac; ad; bc; bd);max(ac; ad; bc; bd)];
[a; b]
[c; d]

D [a; b] � [
1
d
;
1
c
] if 0 … [c; d]:

Therefore, the interval arithmetic operations can
easily be realized on a computer. The algebraic prop-
erties of (2) are different from those of real arithmetic
operations. The distributive law, for instance, does not
hold for (2). A summary of the algebraic behavior of
interval arithmetic is given in [85].

The main interval arithmetic tool applied to opti-
mization problems is the concept of an inclusion func-
tion. Let again X 2 Im and f : X ! R. The set of com-
pact intervals contained in X is denoted by I(X). Let
f (Y) D f f (x) : x 2 Yg for Y 2 I(X) be the range of
f over Y . A function F is called an inclusion function for
f if

f (Y) � F(Y) for any Y 2 I(X):

The left and the right endpoint of F(Y) will be denoted
by minF(Y) and maxF(Y), respectively.

Inclusion functions can be constructed in any pro-
gramming language in which interval arithmetic is sim-
ulated or implemented via natural interval extensions:
Firstly, let g be any function pre-declared in some pro-
gramming language (like sin, cos, exp, etc.). Then the
corresponding pre-declared interval function IG is de-
fined by

IG(Y) D g(Y)

for any Y 2 I contained in the domain of g:

Since the monotonicity intervals of pre-declared func-
tions g are well known it is easy to realize the interval
functions IG on a computer. Nevertheless, the influence
of rounding errors may be considered, see [30], for in-
stance.

Secondly, let f (x) be any function expression in the
variable x 2 Rm. So, f (x) may be an explicit formula or
described by an algorithm not containing logical con-
nectives at the moment. For simplicity, we assume that
f (x) is representable in a programming language. Let Y
2 Im or let Y be an interval variable over Im. Then the
expression which arises if each occurrence of x in f (x)
is replaced by Y , if each occurrence of a pre-declared
function g in f (x) is replaced by IG, and if the arithmetic

operations in f (x) are replaced by the corresponding in-
terval arithmetic operations, is called the natural inter-
val extension of f (x) to Y , and it is denoted by f (Y), see
[71]. Due to (2) and the definition of the IG’s we get the
inclusion principle for (programmable) functions

a 2 Y implies f (a) 2 f (Y): (3)

Therefore, f (Y), seen as a function in Y , is an inclu-
sion function for the function f (x).

For example, if f (x) = x1 sin x2 � x3 for x 2 R3, then
f (Y) = Y1 2 Y2 � Y3 is the natural interval extension of
f (x) to Y 2 I3.

If logical connectives occur in an expression, the ex-
tensions are similar, cf. [55,87].

Due to the algebraic properties of interval arith-
metic, different expressions for a real function f can
lead to interval expressions which are different as func-
tions. For example, if f 1(x) = x � x2 and f 2(x) = x(1
� x) for x 2 R, then f 1(Y) = Y � Y2 = [�1, 1] and
f 2(Y) = Y(1 � Y) = [0, 1] for Y = [0, 1]. For compar-
ison, f (Y) D [0; 14 ]. In general, the problem arises as to
how to find expressions of a given function that lead to
natural interval extensions that are as good as possible.
A partial solution to this problem can be found in [88].

A measure of the quality of an inclusion function F
for f : X! R is the so-called excess width ([71]), defined
as w(F(Y)) � w( f (Y)) for all Y 2 I(X), where w([a, b])
= b � a is the width of an interval. F is called of order ˛
> 0 if

w(F(Y)) � w( f (Y)) D O(w(Y˛)) for Y 2 I(X);

where the width of a box Y = Y1 × � � � × Ym is defined
by w(Y) = maxi = 1, . . . , m w(Yi). In order to obtain good
computational results it is necessary to choose inclusion
functions having as high an order ˛ as possible, when
w(Y) is small, see for example [88].

The endpoints of the intervals must be machine
numbers, if interval arithmetic is implemented on
a machine. This leads to a special topic called machine
interval arithmetic. It can be considered as an approxi-
mation to interval arithmetic on computer systems.

Machine interval arithmetic is based on the inclu-
sion isotonicity of the interval operations in the follow-
ing manner: Let us again assume that ˛, ˇ are the un-
known exact values at any stage of the calculation, and
that only including intervals are known, ˛ 2 A, ˇ 2 B.
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Then A, B might not be representable on the machine.
Therefore A and B are replaced by the smallest machine
intervals that contain A and B,

A � AM ; B � BM :

A machine interval is an interval which has left and
right endpoints that are machine numbers. From (2) it
follows that

A 
 B � AM 
 BM :

The interval AM 
 BM need not be a machine interval
and it is therefore approximated by (AM 
 BM)M which
is the smallest interval representable on the machine
and which contains AM 
 BM . This leads to the inclu-
sion principle of machine interval arithmetic:

˛ 2 A; ˇ 2 B implies ˛ 
 ˇ 2 (AM 
 BM)M : (4)

Thus, the basic principle of interval arithmetic is re-
tained in machine interval arithmetic, that is, the ex-
act unknown result is contained in the corresponding
known interval, and rounding errors are under control.

We sum up: When a concrete problem has to be
solved then our procedure is as follows: Firstly, the the-
ory is done in interval arithmetic, secondly, the calcula-
tion is done in machine interval arithmetic, and finally,
the inclusion principle provides the transition from in-
terval arithmetic to machine interval arithmetic.

Many software packages for interval arithmetic are
meanwhile available, which work under Fortran 77,
Fortran 90, Pascal, C, C++, Prolog, etc. A good survey
can be found, for instance, in [57].

Interval NewtonMethods

Interval Newton methods are excellent methods for
determining all zeros of a continuously differentiable
vector-valued function �: X!Rm where X 2 Im. These
methods are important tools for nonlinear optimiza-
tion problems since they can be used for computing all
critical points of the objective function, f , by applying
the methods to J�(x), where � is the gradient function
of f and J� the Jacobian of �, or for solving the Karush–
Kuhn–Tucker or John conditions in constrained opti-
mization.

The interval Newton method was introduced by
Moore [71] and it has been further extensively devel-
oped by many researchers. The latest state of art for in-
terval Newton methods may be found in [79]. See also

� Interval Newton methods. The extensive treatment
of the interval Newton method is not part of this in-
troductory article so that we sketch it in an extremely
simplified manner just in order to make the aim of the
method understandable. For a detailed treatment see,
for instance, [1,33,79,90,93], etc.

Interval Newton methods are closely connected to
solving systems of linear interval equations. An unfor-
tunate notation is widely used to describe this situa-
tion since it uses the notation of interval arithmetic in
a doubtful manner which can lead to misunderstand-
ings. I.e., let A 2 Im ×m, B 2 Im then the solution of the
linear interval equation (with respect to x or X)

Ax D B or AX D B

is not an interval vector X0 that satisfies the equation,
AX0 = B, as one would expect. The solution is defined
as the set

X D fx 2 Rm : ax D b for some a 2 A; b 2 Bg :

Thus, for example, the solution of the linear interval
equation

[1; 2]x D [1; 2]

is X = [1/2, 2]. In general, the solution set is not a box if
m � 2.

It is therefore the aim of interval arithmetic solu-
tionmethods to find at least a box which contains
the solution set.

Accordingly, if c 2 Rm, then the solution of the lin-
ear interval equation

A(x � c) D B or A(X � c) D B

with respect to x or X is defined to be the set

X :D c C Y :D fc C y : y 2 Yg

where Y is the solution of the interval equation Ay = B.
The following prototype algorithm aims to deter-

mine the zeros of �: X ! Rm in X 2 Im. Let J(Y) be
an inclusion function for the Jacobian matrix J�(x) for
Y 2 I(X).



Interval Global Optimization I 1743

1. Set X0 := X.
2. For n = 0; 1; : : :

a) choose xn 2 Xn ,
b) determine a superbox Zn+1 of the solution

Yn+1 of the linear interval equation with re-
spect to Y , J(Xn)(xn � Y) = �(xn),

c) set Xn+1 := Zn+1 \ Xn .

The interval Newton algorithm

Since we use it later we emphasize that one iteration
of the interval Newton algorithm is just the execution of
a), b) and c) for a particular value of n.

Interval Newton methods are distinguished by the
particular choice of the superbox Zn + 1. For example,
if Zn + 1 is the box hull of Yn + 1, that is, the small-
est box containing Yn + 1, then the method is called
the interval Newton method (in the proper sense). If
Zn + 1 is obtained by using interval Gauss–Seidel steps
combined with preconditioning as will be explained in
the sequel, the method is named after Hansen and S.
Sengupta [35]. Krawczyk’s method [60] and Hansen–
Greenberg’s methods [34] are also widely used. Con-
vergence properties exist under certain assumptions.
The following general properties are useful for under-
standing the principle of application of the algorithm,
see [1,71,73,79]:
1) If a zero, �, of � exists in X then � 2Xn for all n. This

means that no zero is ever lost! This implies that:
2) If Xn is empty for some n then � has no zeros in X.
3) If Zn + 1 is obtained by Gauss–Seidel or Gauss elim-

ination, possibly combined with preconditioning as
mentioned below then
i) if Zn + 1 � Xn for some n then � has a zero in X,
ii) Zn + 1 � int Xn for some n then � has a unique

zero in X (where int means topological interior).
4) Under certain conditions one obtains

w(XnC1) � ˛(w(Xn))2

for some constant ˛ � 0.
A very promising realization of the interval Newton al-
gorithm is the Hansen–Sengupta version [35]where the
linear system occurring in the Newton iteration step is
solved by a preconditioning step and by relaxation steps
(Gauss–Seidel).

Now we discuss just one iteration of the Hansen–
Sengupta variant and suppress the index n when writ-

ing down the formulas that occur in the nth iteration.
That is, we write

J(X)(x � Y) D �(x) (5)

instead of

J(Xn)(xn � Y) D �(xn)

and, accordingly, we search for a superset Z of the solu-
tion set of (5), where X, J(X), x and �(x) are given. The
solution set of (5) is also denoted by Y .

The Preconditioning Step

It was already argued by Hansen and R.R. Smith [37]
that (5) was best solved by pre-multiplying by an ap-
proximate inverse of the midpoint of J(X). If the ap-
proximate inverse is B, we obtain

BJ(X)(x � Y) D B�(x)

or

M(x � Y) D b (6)

whereM = BJ(X) and b = B�(x). In this manner the sys-
tem has been modified to a system that is almost diago-
nally dominant provided the widths of the Jacobian en-
tries are not too large and it is then amenable to Gauss–
Seidel type iterations. It is obvious that the solution set
of (6) contains the solution set of (5) such that no solu-
tion is lost in the above transformation. During the last
years much research has been focusing on the precon-
ditioning step, cf. for example, [59].

The Relaxation Steps (Gauss–Seidel)

The relaxation procedure for linear interval equations
was developed in [36]. It consists mainly in the inter-
pretation of the well-known noninterval Gauss–Seidel
iteration procedure in an interval context. But much
care is taken in the interval realization if division
through intervals that contain zero occurs. We do not
have the space for a complete discussion and refer, for
example, to [33,90,93].

Instead of a relaxation iteration, interval Gauss
elimination can be used. This is nothing more than the
well-known Gauss elimination performed in an inter-
val setting. Interval Gauss elimination is not as robust
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as the interval Gauss–Seidel steps. It is, however, more
effective under certain conditions (for instance, if the
Jacobian or the preconditioned Jacobian matrix is diag-
onally dominant, see [79]). Practical experiences show
that it is best to combine Gauss–Seidel steps with Gaus-
sian elimination, cf. [33,79,90].

There is no urgent need for discussing convergence
properties of the interval Newton algorithm since only
single iterations are incorporated into the optimization
algorithms, cf. the sections on ‘accellerating and related
devices’ and ‘applications’ below, and hence the con-
vergence theory of the latter is applicable, cf. the sec-
tions on ‘convergence properties of the prototype al-
gorithms’ and ‘applications’ below. Only if it is already
certain or very likely that the computation is approach-
ing a global minimizer does it make sense to switch to
the complete interval Newton algorithm and enjoy fi-
nally the quadratic convergence property (cf. property
4). Such a situation occurs, for example, if the objective
function, in the unconstrained case, or the Lagrangian
in the constrained case, is convex.

Three Prototype Algorithms
for the Unconstrained Problem

The algorithms are designed to determine f � or X� or
both as will be described later. They have the box X, the
inclusion function F for f : X ! R and some accuracy
parameters which may occur in the termination crite-
ria, as input parameters. The termination criteria will
depend on the actual case and will not be specified here,
but see, for example, item c) in the section on ‘conver-
gence properties of the prototype algorithms’. For his-
torical reasons, we go back to the roots of interval arith-
metic optimization theory. We start with Moore’s al-
gorithm [71], which used uniform subdivision, but we
already incorporate the first branch and bound steps
as proposed by Skelboe [103], and finally we land at
Hansen’s algorithm [30,31], which was the first algo-
rithm which featured convergence to both, to f � and
to X�.

Algorithm 1 initializes a list L = L1 consisting of
one pair (X, y), see Step 3. Then the list is modified and
enlarged at each iteration, see Steps 8 and 9. At the nth
iteration a list L = Ln consisting of n pairs is present,

Ln D ((Zni ; zni ))niD1 where zni D min F(Zni):

1. Calculate F(X).
2. Set y := minF(X).
3. Initialize list L = ((X; y)).
4. Choose a coordinate direction k parallel to

an edge of maximum length of X = X1	: : :	

Xm , i.e. k 2 fi : w(X) = w(Xi)g.
5. Bisect X normal to direction k obtaining

boxes V1, V2 such that X = V1 [ V2.
6. Calculate F(V1), F(V2).
7. Set vi := minF(Vi) for i = 1; 2.
8. Remove (X; y) from the list L.
9. Enter the pairs (V1; v1) and (V2; v2) into the

list such that the second members of all pairs
of the list do not decrease.

10. Denote the first pair of the list by (X; y).
11. If the termination criteria hold, go to 13.
12. Go to 4.
13. End.

Algorithm 1: Moore–Skelboe

The leading pair of the list Ln will be denoted by

(Xn ; yn) D (Zn1; zn1):

The boxes Xn are called the leading boxes of the algo-
rithm. It is assumed that the termination criteria of Step
11 are not satisfied during the whole computation such
that the algorithm will not stop. In this case an infinite
sequence of lists is produced.

Algorithm 1 was mainly established to determine
f �. Now, Ichida and Fujii [46] and Hansen [30,31] fo-
cused on the boxes Zni in order to get reasonable in-
clusions for X�. While midpoint tests (cf. [2,30,31,46])
have no impact on the convergence properties of Al-
gorithm 1, they are now important when getting inclu-
sions of X�. Midpoint tests are incorporated as follows:
Let f n be the lowest function value which has been cal-
culated up to the completion of the list Ln. (If no func-
tion values are available thenmini = 1, . . . , n max F(Xi) can
be taken as f n.) Then all pairs (Zni, zni) of L are dis-
carded that satisfy

fn < zni :

This gives a reduced list Ln . Let Un = [ Zni for all Zni

of the reduced list. Then two different procedures are
known:
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� Algorithm 2 [46] emerges from Algorithm 1 by
keeping track of Ln instead of Ln (and thus having
Un available at each iteration).

� Algorithm 3 [30,31] is like Algorithm 2, but the re-
duced lists Ln are ordered with respect to the age or
the widths of the boxes.

Variants of the three prototypes occur if the ordering of
the lists and the bisection directions are changed, cf. the
next two sections.

Convergence Properties
of the Prototype Algorithms

The results presented in this section are proven in
[77,86,89].

Let us first consider Algorithm 1. As in the previous
section, we denote the leading pairs of Algorithm 1 by
(Xn, yn). One can show that
a) w(Xn)! 0 as n!1.
This fact seems to be self-evident but it is not. For exam-
ple, small modifications of the basic algorithm do not
satisfy a) as is the case with the cyclic bisection method
[74]. From the assumption

w(F(Y)) � w( f (Y))! 0 as w(Y)! 0

(Y 2 I(X)) (7)

it follows that
b)

yn � f � for any n;

yn ! f � as n!1;

f � � yn � w(F(Xn)) (error estimate):

Assumption (7) is not very restrictive. It is almost
always satisfied if natural interval extensions are used.
However, (7) does not imply continuity, Lipschitz con-
dition on f , etc. Let F now satisfy

w(F(Y))! 0 as w(Y)! 0: (8)

Clearly, (8) implies (7) and the continuity of f . Then
c) w(F(Xn))! 0 as n!1
(that is, the error estimate tends to 0 and can thus be
used for termination criteria),
d) each accumulation point of the sequence (Xn) is

a global minimizer.

The convergence order of the approach yn ! f � is de-
scribed by the following two results:

e) Let any ˛ > 0 and any converging sequence of reals
be given. Then, to any f , there exists an inclusion
function of order ˛ for which (yn) converges slower
than the given sequence.

This result indicates that the convergence can be arbi-
trarily slow and that no worst case exists, which is usu-
ally taken in order to establish formulas for the con-
vergence speed or convergence order. If, however, only
isotone inclusion functions (F is called isotone if Y �
Z implies F(Y)� F(Z)) are considered then the follow-
ing estimate of the convergence speed is valid. Practi-
cally this estimate characterizes the complete conver-
gence theory since it is always possible to find isotone
inclusion functions with small effort.

f) If F is isotone and of order ˛, then

f � � yn D O(n
�˛
m ):

In [16] some variants of this assertion are proven.
Algorithms 2 and 3 have nearly the same behavior

as Algorithm 1 if the convergence to f � is considered.
Their properties with respect to a determination of X�

are as follows:
Let (Un) be the sequence of unions produced by Al-

gorithm 2. If (8) is assumed, then

g) the sequence (Un) is nested and converges (with re-
spect to the Hausdorff metrics for compact sets) to
a superset D � X�. The probability, that D is not
equal to X� is zero, however.

Let now (Un) be the sequence of unions produced
by Algorithm 3. If (8) is assumed, then

h) the sequence (Un) is nested and converges to X�.

Therefore, Hansen’s Algorithm 3 is the only one of
the three which features a satisfactory and guaranteed
convergence to f � and X�. This algorithm will therefore
play the main role in our further considerations.

Accelerating and Related Devices

Algorithm 3 and its predecessors which we have treated
so far are based on the exhaustion principle, that is, the
principle of removing areas (subboxes of X) which can-
not contain a global minimizer. In the same manner we
realize that the branch and bound principle forms the
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overlying structure, that is, areas are processed which
have the largest chance to contain a global minimizer.
This is a time-consuming process and it is therefore
important to combine the principle mentioned with
techniques for speeding up the computations. In this
section we deal with only a few of these techniques
in order to demonstrate how they may be combined
with the basic algorithm. Much research is done in or-
der to find an optimal combination of the basic algo-
rithms and the acceleration devices, cf. for instance,
[26,31,33,48,49,93,95,96].

In the following we give an overview of several ac-
celeration devices and other tools that are used to im-
prove the computational efficiency of unconstrained in-
terval based global optimization. Most of them are also
developed for constrained optimization.

The Monotonicity Test

It can be applied if f is differentiable and if an inclusion
function for r f is available ([30,31,72]). It allows one
to automatically recognize that f is strictly monotone in
one of the variables in the subbox Y � X on which the
algorithm is focusing. Then Y can be discarded from
the list if Y lies in the interior of X or otherwise Y can be
replaced by an edge piece of Y . This can be done since
the parts removed do not contain a global minimizer.
I. e., let Gi be an inclusion function of @f /@xi for i = 1,
. . . , m. If now 0 62 Gi(Y) just for one index i, then f is
strictly monotone in the variable xi over Y such that Y
can be discarded or replaced by an edge piece as men-
tioned before. (For the application of the test it is al-
ready sufficient that f is locally Lipschitz, cf. the next
section).

The Interval Newton Method

If f is twice continuously differentiable and if an in-
clusion function for the Hessian matrix function, f ,
exists then the interval Newton algorithm can be ap-
plied to f 0 in order to get boxes that contain all zeros
of f 0. Together with the monotonicity test, the inter-
val Newton algorithm counts as one of the most effec-
tive tools for solving optimization problems. The main
advantage is not only the localization of the zeros of
f 0, but also a computationally very successful perfor-
mance. This is based on the properties mentioned in
the section on ‘interval Newton methods’ which result

in reducing or splitting the search area. Finally, the con-
traction shows quadratic convergence under reasonable
conditions.

Interval Newton methods can be applied in two dif-
ferent manners:
i) The method is applied to f 0 in X (necessarily com-

bined with some splittings of the search area) un-
til all critical points of f are included in sufficiently
small boxes Z, for example where w(Z) < �. Then
the search for the global minimizers is restricted to
these remaining boxes Z and to the facet of X. This
approach is, however, not too effective since these
zeros can be saddle points, local maximizers, or even
local but not global minimizers. Hence the following
procedure is used generally:

ii) Each iteration of the optimization algorithm is com-
bined with the monotonicity test and one or two
interval Newton iterations. I. e., after having X bi-
sected into the subboxes V1 and V2, cf. Step 5 of
Algorithm 3, the midpoint test, the monotonicity
test and one interval Newton iteration is applied to
V1 and V2 in order to diminish the size of V1, V2

or to discard them. This procedure avoids superflu-
ous and costly interval Newton iterations in boxes
in which f is strictly monotone or which have too
large function values.

The interval Newton can be improved by using slopes
whenever possible, cf. [79]. See also ‘use of good inclu-
sion functions’ below.

Finding a Function Value as Small as Possible

The smaller the smallest known or computed function
value is at the nth iteration themore effective is themid-
point test, that is, boxes are removed earlier than with-
out these values.

There are many possible techniques for getting
lower function values such as statistical and line search
methods, bundle methods (line search in the nons-
mooth case), descent methods, Newton-like methods,
where the application of the methods depends on the
differentiability of the objective function. Many of these
variations lead to so-called globally convergent meth-
ods. This does not mean that a global solution is found,
however, it does mean that a local solution is always
found. Good results in finding small function values
have been attained with generating a not very dense set
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of points and to use them as starting points for the glob-
ally convergent methods mentioned above.

Bisections

The computations can be accelerated by a good choice
of
A) the next box of the list to be bisected; and
B) the bisection direction of that box.

These two topics did not draw too much attention in
the first years of interval optimization. They were con-
sidered as a tiresome task for completing the algorithms
rather than topics important for the success of the algo-
rithms. Meanwhile it has been recognized how impor-
tant the right choice of box and bisection direction is
for keeping computation time and costs low. The right
choice of bisection direction is equally important for
the global zero search of systems of functions.

Strategies for choosing the next box include uniform
subdivision [71], bisecting a box which has a minimal
lower bound, cf. Algorithms 1 and 2, bisecting that box
which has been longest on the list [31], bisecting a box
which has maximum width [31], last in-first out [79],
that is, the youngest boxes are always processed first
which keeps the list length short under certain circum-
stances.

When a box has been selected for getting bisected
one has to choose the bisection direction. Historically,
the first three criteria were uniform subdivision [71]
(that is, bisections were done in allm directions), cyclic
bisection [74] (that is, the bisection directions change
cyclically, i. e., the first box gets bisected normal to the
first coordinate direction, the second normal to the sec-
ond coordinate direction, etc.), and bisection normal to
one of the longest box edges [31].

It turned out that using the box width as the only
criterion for deciding the bisection direction could be
very ineffective. For a typical example, see [91]. The
conclusion from such examples is that the choice of the
bisection direction should consider the behavior of the
function f over the box as well. Hence, formulas for de-
ciding a bisection direction are built up using bounds
for the box width of the objective function and bounds
for the first and second partial derivatives. Natural in-
terval extensions of noninterval scaling formulas are
also used. Our own tests and experiments show that
an optimum bisection strategy does not exist and that

it is reasonable to use several bisection strategies each
pursuing another heuristic aim. This led to systematic
investigations of bisections and also trisections by sev-
eral authors, mainly [15,18,53,54,96,97,106]. For fur-
ther strategies see [93], where also a survey of conver-
gence properties of some of the strategies can be found,
and [92].

Use of Good Inclusion Functions, Slope Arithmetic

The better the inclusion functions are, the more effec-
tive are the tests like midpoint test, monotonicity test,
etc., cf. for instance, [88]. The derivatives can frequently
be replaced by slopes which leads to inclusions with
smaller width, There is also an automatic slope arith-
metic available which is comparable to automatic dif-
ferentiation, cf. ‘autoimatic differentiation’ below. The
interested reader is referred to [1,40,61,62,79,88,101].

The Nonconvexity Test

The aim of this test is to verify that the objective func-
tion is nowhere convex in some subbox Y 2 I(X) by
computationally checking whether the Hessian of the
objective function does not satisfy some standard con-
ditions of convexity. Then the interior of Y cannot con-
tain a minimizer. f 2 C2 is assumed. The first such test
seems to date back to [64].

Thin Evaluation of the Hessian Matrix

If interval Newton steps are incorporated they will be
applied to � = f 0 where the matrix J�(Y) = Hf (Y) is
required and Hf (Y) is the natural interval extension of
the Hessianmatrix. By certain rearrangements ofHf (Y)
and a special method of getting an interval extension,
where not all real entries are replaced by intervals, it
is possible to obtain an interval matrix which is thin-
ner, hence better (cf. ‘use of good inclusion functions’
above) than Hf (Y). A detailed discussion and formulas
can be found in [33,90].

Constraint Logic Programming

(also known as constraint solving) involves techniques
where, among others, equations (for example, the
Karush–Kuhn–Tucker or F. John conditions) are pri-
marily not evaluated numerically but seen as con-
straints for or as relations between the variables (a con-
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cept overtaken from artificial intelligence). The relation
is then used to shrink the search domain. For exam-
ple, the equation (constraint) y � x2 = 0 immediately
enables the halfspace defined by y < 0 to be removed
from the working area. There are several methods based
on that idea which are best embedded in appropriate
languages, where symbolic manipulation such as PRO-
LOG is available. For example, a method called rela-
tional interval algebra is embedded in the computer
language CLP having PROLOGasmetalanguage (cf. [7]
or [83]). In this connection it is also opportune to auto-
matically add redundant constraints in order to accel-
erate the computations (see, for example, [5] or [82]).

Another approach is called branch and prune ([41]).
The pruning concept aims to shrink the search area by
several tests. The crucial property which is searched for
is the so-called box consistency which has been intro-
duced in [6] and is also known in connection with dis-
crete combinatorial search problems. The box consis-
tency is primarily used to indicate the existence of so-
lutions in the considered subarea and is some kind of
a substitution of interval Newton techniques. An inter-
esting means for proving box consistency is the bound
consistency which requires the checking of the facets of
the box instead of the box itself. The branch and prune
algorithm is embedded in NUMERICA, which is de-
signed as a modeling language for global optimization
and related problems, cf. [41].

There are several other approaches that are based on
constrained logical programming such as the use of re-
lational manipulations or of set-valued operations, see
for example, [3] or [45] and the references listed there.

Automatic Differentiation

This technique seems to go back to [108]. It helps to re-
duce costs when computing derivatives or their inclu-
sion functions, or expressions like (x � c)|f 0(c), (Y �
c)f 0(Y), (x � c) f 0(Y), (Y � c)|f 0(Y)(Y � c), etc., where
x, c 2 X, Y 2 I(X). There are two modes of automatic
differentiation, a forward and a reverse. Bothmodes use
recursive techniques for evaluating function values and
chain rules of differentiation. In the forward mode all
intermediate values of the function are simultaneously
determined with the corresponding intermediate values
of derivative, Hessian, etc, and all these intermediate
values are computed from values calculated in former

steps. The reverse mode requires some structural plan-
ing of the formulas similar to the construction of Kan-
torovich graphs of functional expressions, where a new
variable is assigned to each node. The differentiation fi-
nally starts backwards from the function in dependency
of the variables introduced. Both modes have advan-
tages.

Our own experiences, however, show that in case
of interval expressions like (Y � c) f 0(Y) or in case of
computing generalized gradients, it is not always wise
to use automatic differentiation. The reason is that in
such cases information about dependencies between in-
tervals can be lost so that the widths of the resulting in-
terval values increase unnecessarily.

For a detailed description of automatic differentia-
tion cf. for instance, [23,24,29,84].

Parallel Computations

for global optimization were investigated and imple-
mented primarily by [8,12,21,22].

Global Optimization Over Unbounded Domains
and Nonsmooth Optimization

Global Optimization over Unbounded Domains

Almost all methods for solving global optimization
problems need the assumption that a bounded do-
main which contains the solution points is known. The
boundedness is necessary for the numerical computa-
tion as well as for guaranteeing the convergence prop-
erties. If an a-priori box X as search area for the global
solutions is not known, it is possible to extend the pre-
vious algorithms, especially Algorithm 3 in such a man-
ner, that they can operate over unbounded boxes as well
cf. [90,94]. It is not even necessary, to change the algo-
rithms formally, one only has to define midpoint and
width of infinite intervals (both values have to be finite)
and an arithmetic for infinite intervals. This arithmetic
should provide intervals with minimal widths in order
to get reasonable inclusion functions. It would go to
far to present this arithmetic here, but a short exam-
ple could be illustrative: This arithmetic assigns to the
quotient [0, 1]/[0, 1] the value [0, 1], whereas by
an arithmetic which is called Kahan–Novea–Ratz arith-
metic in [55] the value [�1, 1] results. Most of the
convergence properties of the section on ‘convergence
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properties of the prototype algorithms’ remain valid
under slight modifications of the assumptions since
one can interpret the algorithms as algorithms in (R)m

where R is the two-point compactification of the real
axis, R. Thus compact intervals are generated by the
algorithms and that is all one needs for convergence
proofs. For details see [90,94] or the survey in [93].

Nonsmooth Optimization
Abroad spectrum ofmathematical programming prob-
lems can be reduced to nondifferentiable problems
without constraints or with simple constraints. The use
of exact nonsmooth penalty functions in problems of
nonlinear programming, maximum functions to esti-
mate discrepancies in constraints, piecewise smooth
approximation of technical-economic characteristics in
practical problems of optimal planning and design,
minimax compromise function in problems of multi-
criterion optimization, all generate problems of non-
smooth optimization. Thus, the objective function, f ,
of the optimization problem may look like f (x) =
max{f 1(x), . . . , f n(x)} where f i 2 C1, or like f (x) =
�f 0(x) +

Pk
iD1 max(0, f i(x)) which is a typical objec-

tive function arising from penalty methods where f 0, f i
2 C1 and � > 0 is a (reciprocal) penalty factor.

Interval methods have no difficulties at all to handle
nonsmooth problems, a fact which was discovered in
[87] and rediscovered in [55] with great emphasis. The
construction of inclusion functions does not depend at
all on the smoothness of a function. The application of
monotonicity tests and other devices where gradients
are used (for instance, local noninterval methods, cf.
‘finding a function value as small as possible’ in the sec-
tion on ‘accellerating and related devices’) is still pos-
sible as long as the function is locally Lipschitz, which
means that, at any argument, x of the function, f , an
open neighborhood of x, say Ux, exists in which f satis-
fies a Lipschitz condition. It follows by a theorem of H.
Rademacher that f is differentiable almost everywhere
in Ux. Let ˝ be the set of points in Ux at which f is
not differentiable, and let S be any other set of Lebesque
measure 0. Then the generalized gradient (also called
subdifferential) of f at x is defined as

@ f (x)

D conv
n
lim
n!1

r f (xn) : xn ! x; xn … S [˝
o

where conv denotes the convex hull, cf. [14]. Let (x, y)
� Rm denote the open line segment between x and y.
A theorem of G. Lebourg says that, if y 2 Ux with (x, y)
� Ux is given then some u 2 (x, y) exists such that

f (y) � f (x) 2 (y � x)>@ f (u): (9)

Locally, (9) can be approximated by means of the Lip-
schitz constant. Globally, (9) can be used to find inclu-
sion functions of f of a mean value type explicitly: If
G(Y) is a (not necessarily bounded) box that contains
@f (u) for any u 2 Y , then

F(Y) D f (c)C (Y � c)>G(Y) for Y 2 I(X);

where c denotes the midpoint of Y (any other point of
Y may also be chosen), is an inclusion function of f and
appropriate for its use in the Algorithms 1 to 3. Fur-
thermore, G(Y) can be used for the monotonicity test:
If only one component of G(Y) does not contain zero,
then f is strictly monotone with respect to the corre-
sponding direction.

Algorithms 1 to 3 as well as the monotonicity test
therefore can be applied to problem (1) without mod-
ifications, if the objective function of f is locally Lip-
schitz. It is, however, only possible to apply the in-
terval Newton algorithm for a very restricted class of
functions since second ‘derivatives’ of locally Lipschitz
functions are are not yet explored satisfactory. With
the aid of the infinite interval arithmetic mentioned in
the subsection above one can admit also unbounded
subdifferentials and handle them. For the construc-
tion of inclusion functions of the objective function
and the subdifferential and for numerical tests (with
bounded and unbounded search areas) see, for in-
stance, [27,28,55,87,90,94]. For further results in con-
nection with estimates of the penalty factor see [111].

ConstrainedOptimization

The principles which were developed in the previous
sections are also useful for constrained problems, that
is,

min
x2M

f (x) (10)

where M � Rm means the feasible set defined by con-
straints

gi (x) � 0; i D 1; : : : ; k;

hj(x) D 0; j D 1; : : : ; s:
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For simplicity, we assume that M � X for some X
2 Im and that the functions f , gi and hj are defined on
X. For a successful treatment of problem (10) we need
inclusion functions F, Gi and Hj of f , gi and hj, respec-
tively which satisfy (8) and which have the property that

(
w(Gi (Y))! 0 as w(Y)! 0;
w(Hj(Y))! 0 as w(Y)! 0

(11)

for i = 1, . . . , k, j = 1, . . . , s, and Y 2 I(X).
Then a very effective means of interval arithmetic is

the infeasibility test which is applicable to any Y 2 I(X):
If either

Gi (Y) > 0 for some i 2 f1; : : : ; kg

or if

0 62 Hj(Y) for some j 2 f1; : : : ; sg

then all points of Y are infeasible. (The notation [a, b]
> 0 or [a, b] � 0 is used to indicate that a > 0 or b � 0
holds, respectively.) Hence the box Y can never contain
a solution of (10) such that Y can be discarded from any
procedure for solving (10). Conversely, if

Gi (Y) � 0 for i D 1; : : : ; k;

and

Hj(Y) D 0 for j D 1; : : : ; s;

then all points of Y are feasible (feasibility test). This
is due to the inclusion principle, (3), by which a 2 Y
implies gi(a) 2 Gi(Y) as well as hj(a) 2 Hj(Y) for all
indices i and j, that is, gi(a) � 0 and hj(a) = 0 for all i
and j. This gives, in fact, the guarantee that every point
a 2 Y is feasible. However, if equality constraints are
present in (10) it is extremely unlikely that conditions
like Hj(Y) = 0 are satisfied such that the feasibility test
is rather an academic tool if s > 0.

There are principally twomain possibilities for solv-
ing the constrained problem. The first possibility is to
transform the problem to an unconstrained problem
within a penalty setup and apply the methods of the for-
mer sections together with the feasibility, respectively
infeasibility, test in order to have the guarantee to be in
M or to discard infeasible areas. The second possibility
is a direct approach where Algorithm 3 is enriched by
feasibility and infeasibility test and adapted to handle
the constrained case. We will now give a brief discus-
sion of these possibilities.

The Penalty Approach

There are two kinds of penalty functions which are usu-
ally preferred. The first one is the so-called L1-exact
penalty function, �(x) = �f (x) +

Pk
iD1 max(0, gi(x))

+
Ps

jD1|hj(x)|, cf. also the subsection ‘nonsmooth op-
timization’ in the previous section. The second one, al-
ready introduced by R. Courant, is defined as  (x) =
�f (x) +

Pk
iD1 max(0, gi(x))2 +

Ps
jD1(hj(x))

2. In both
cases, � is a penalty factor. For details, and how penalty
methods are applied to solve constrained optimization
problems, cf. [25]. (Augmented Lagrangian functions
could also be taken for the penalty approach.)When lo-
cally solving (10) with standard noninterval methods, �
has the advantage that there exists a � so that the local
minimizers of � are also local minimizers of (10), but
has the disadvantage of being nonsmooth. The use of
 has the advantage of dealing with a smooth function
(provided f and the constraints are smooth), but the
disadvantage, that the minimizers of might attain the
solutions of (10) only asymptotically as � tends to zero.
If f and the constraint functions are smooth there exists
a value � in both cases of penalty functions so that the
global minimizers of � and  are also global solutions
of (10) when solving (10) with interval methods. The
explicit determination of this number � is still under
investigation, cf. [111]. On the other hand, the knowl-
edge of the value is not necessary if only convergence
is expected because infeasible areas are removed by the
infeasible test which has to be incorporated in the pro-
totype algorithm such as Algorithm 3. The knowledge
of the value of � accelerates the computation. A further
discussion would be too extensive for this article.

The Direct Approach

Algorithm 3 is also appropriate as a base algorithm for
dealing with the constrained case. In order to consider
the constraints, one just has to add the feasibility and
infeasibility test and to apply the latter test as a box
deleting device to the boxes V1 and V2 after Step 5 of
the algorithm. If it turns out that the box is feasible,
it should be marked as feasible by a flag or a Boolean
value. The remaining boxes of the list are indeterminate,
that is, the tests executed up to the current state of the
computation have not yet been able to decide whether
the box is feasible or not. It can happen that boxes Vi

which are feasible (respectively, infeasible) are not rec-
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ognized as feasible (respectively, infeasible) by the feasi-
bility (respectively, infeasibility) test. This is due to the
excess width (see the section ‘interval arithmetic’ above)
which, for instance, can cause that 0 2 Gi(V) for some
box V occurs even if 0 < gi (V) holds. The continued
processing of the indeterminate boxes of the list by the
steps of Algorithm 3, however, reduces the box widths
to zero so that their excess widths also tend to zero as
long as (11) is assumed. This implies also that the union
of the boxes of L tends, as the computation proceeds, to
M with respect to the Hausdorff metrics (cf. [90]) if one
dropped the midpoint test.

The midpoint test itself helps to discard feasible as
well as indeterminate boxes which contain no global
minimizer. The execution is as in the unconstrained
case: Let f n be the lowest function value which has been
calculated up to the completion of the list Ln. Then all
pairs (Zni, zni) of L are discarded that satisfy

fn < zni :

It is important for the correctness of the algorithm that
only function values of points x 2 M are admitted.
Hence, if x is taken from a feasible box of the list, x
is certainly feasible. If the list contains only indetermi-
nate boxes no direct access to feasible points of M is at
hand. This is regularly the case if equality constraints
are present. But without the knowledge of points x 2M
the midpoint test cannot be executed. Two possibilities
are known for overcoming this hurdle. The first pos-
sibility is the so-called �-inflation. It accepts that the
constraints are satisfied within a tolerance of �. If �-
inflation, which is widely used in noninterval computa-
tions, is applied then the reliability of the computation
is lost. Thus this possibility is avoided as far as possible
in interval computations.

The second possibility to overcome the difficulties
arising by equality constraints is based on the appli-
cation of Moore’s test for the existence of solutions of
equations [73]. Hansen and G.W.Walster [38] were the
first who suggested to apply this test to constrained op-
timization. It is used in the following manner: If Y is an
indetermined box under processing and one looks for
a feasible point in Y , the equality constraints and the
inequality constraints which are active with respect to
Y are combined to a system of equations. Then interval
Newton iterations are applied to this system in Y , not
to solve the system but only to prove the existence of

a solution within Y by a contraction of the Newton op-
erator. Then all boxes (Zni, zni) of the list (feasible or in-
determined) can be discarded that satisfy max f (Y) < zni
since max f (Y) is an upper bound for a function value
of a feasible point. If the system of equations shows
more variables than equations, some variables are re-
placed by constants.

The existence test in Y is best done in the follow-
ing manner: Apply a local simple noninterval optimiza-
tion algorithm to the objective function  (x) =

Pk
iD1

max(0, gi(x))2 +
Ps

jD1 (hj(x))2 (this is the Courant
penalty function for f (x) = 0, cf. the first subsection in
this section) in order to come near a feasible point, say
c. Put a small box which has to lie in Y around c and
apply the existence test to the system in the box (even-
tually cleaned up by meanwhile inactive inequality con-
straints). If the test is positive, the existence of a feasible
point in the box and hence in Y is guaranteed. How-
ever, it is not at all a proof that Y is infeasible if the test
fails.

An improvement is due to [58] where techniques to
search for points c 2 Y are designed so that the chances
of finding a nearby feasible point is optimal. Also the
number of variables can be larger than the number of
equations in the underlying system.

The convergence of the union of the list boxes to
the set of global minimizers can be shown if the test for
the existence of feasible points is applied systematically
and successfully to the boxes of the list (as far as they are
indeterminate). Other convergence proofs can be found
in [8,90].

In order to not only get a convergent but also a fast
convergent algorithm, acceleration devices and related
techniques are again extremely important for practical
computations. Well-known techniques are the follow-
ing:
i) Interval Newton iterations. They are applied to the

F. John conditions to enclose the stationary points,
similar as to the unconstrained case. Since the num-
ber of equations exceeds the number of variables by
1 in the F. John conditions, an additional equation
is added which does not influence obtaining the
stationary points, cf. [39]. As in the unconstrained
case, the interval Newton iterations are not exe-
cuted until termination, but they merge with the
steps of the optimization algorithm. Again, if an it-
eration shows the existence of a F. John point, it is
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a feasible point and can be used for the midpoint
test.
In contrast to several authors we do not count the
interval Newton iterations as basic steps of an opti-
mization algorithm, since they do not influence the
convergence, only the convergence speed of the al-
gorithm.

ii) Monotonicity and nonconvexity test, cf. the section
on ‘accellerating and related devices’. These tests
are best applied to feasible boxes, but there are also
exemptions of this suggestion, cf. [70,93]. Also lin-
earization of the constraints supplementing the in-
feasibility test is used [33].

iii) Good inclusion functions, slope arithmetic, auto-
matic differentiation, bisections, parallel algorithms,
constrained logic programming, are already men-
tioned in the section on ‘accellerating and related
devices’.

iv) Local search devices. In order to get soon func-
tion values of feasible points, local noninterval op-
timization procedures are applied to the function
 , as defined above, related to the current box un-
til one reaches a feasible point or until one is near
a feasible point. In the latter case the existence test
has to be applied at this approximation w. r. to
a small surrounding box in order to guarantee the
existence. In case of full-dimensional feasible do-
mains, the local search can be continued with � in-
stead  , but one has to take care not to leave the
domainM.

It turned out that the performance of the algorithm was
greatly influenced by how the steps of the optimiza-
tion algorithm and the acceleration devices were com-
bined. Several investigations dealing with this matter
have been done, cf. for example, [8,18,19,26,38,39,49,
56,95,100,109,110].

Applications

Global optimization using interval arithmetic has been
applied to optimization problems in a variety of science,
engineering and social science areas. Below we briefly
describe representative examples from several areas.

Chemistry and Chemical Engineering

Many optimization problems in the fields of chem-
istry and chemical engineering can be investigated ef-

fectively using the tools described in the previous sec-
tions.

As a first example we consider the diagram of
a chemical process showing the processing units and
the connections between them. This depicts the flow
of chemical components through the system and it is
often referred to as process flowsheeting and the asso-
ciated optimization problems are called process flow-
sheeting problems. They require the solution of large
sparse differential-algebraic systems. In [99] a paral-
lel interval Newton algorithm combined with bisection
techniques is applied to solve a number of simple prob-
lems of this type where the parallelization is required
in order to complete the computations within a reason-
able timeframe.

The reliable prediction of phase stability in a chem-
ical process simulation has been considered by [42,43].
It is pointed out that conventional methods that are ini-
tialization dependent may converge to trivial or non-
physical solutions or to a nonglobal local minimum.
It is furthermore shown that these difficulties can be
avoided using a cubic equation of the state model com-
bined with interval tools. Their technique is initializa-
tion independent and it solves the phase stability prob-
lem with complete reliability. In [44] the approach is
further developed with respect to computational effi-
ciency. An enhanced method is presented based on
sharpening the range of the interval functions that oc-
cur in the algorithm. It is shown that the computation
time can be reduced by nearly an order of magnitude in
some cases.

The paper [69] addresses the problem of minimiz-
ing the Gibbs free energy in the m-component mul-
tiphase chemical and phase equilibrium problem in-
volving different thermodynamic models. The solution
method is based on the tangent-plane criterion of Gibbs
and it is reduced to a finite sequence of local opti-
mization steps in K(m � 1)-dimensional space where
K � m is the number of phases, and global optimiza-
tion steps in (m � 1)-dimensional space. The algo-
rithm developed in the lower-dimensional space uses
techniques from interval analysis. Some promising re-
sults are reported for the algorithm. A parallel inter-
val algorithm for the problem was developed in [9].
Chemists performing photoelectron spectroscopy col-
lide photons with atoms or molecules. These collisions
result in the ejections of photoelectrons. The chemist is
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left with a photoelectron spectrumwhich is a plot of the
number of photoelectrons ejected as a function of the
kinetic energy of the photoelectron. A typical spectrum
consists of a number of peaks. The chemist would like
to resolve the individual peaks in the spectrum. In the
paper [76] a test problem is constructed as a sum of two
Gaussian functions involving a number of parameters.
These parameters are found using interval techniques
of global optimization.

Physics, Electronics and Mechanical Engineering
A wide variety of problems in physics, electronics and
mechanical engineering can be formulated as optimiza-
tion problems amenable to the techniques described in
the previous sections. We provide some representative
examples below.

An early application is found in [68] who applies
interval global optimization to electronic switching sys-
tems for efficiency reasons.

In [10] interval global optimization is used to deter-
mine rigorous bounds on Taylor maps of general opti-
cal systems. It is also pointed out that stability for stor-
age rings and other weakly nonlinear systems can be
guaranteed using their developments.

In [78] Hansen’s method is applied to a demagni-
fying system for electron beam lithography device for
finding all real minimizers of a real valued objective
function of several variables.

Computer-aided simulation tools for liquid crystal
displays have been developed in recent years. These
tools calculate the molecule orientation of the liquid
crystal material by minimizing an energy function. The
results of such simulations are used to optimize note-
book computer displays. In the paper [80] interval
global optimization is used to calculate all minimizing
molecule configurations.

Interval global optimization is applied to the opti-
mal design of a flat composite plate and a composite
stiffened panel structure in [63]. The methodology is to
generate a feasible suboptimal interval which is used to
examine the manufacturing tolerance in the design op-
timization.

Economics
Global optimization using interval analysis has also
found applications in economics. Two examples are
presented below.

A model of copyable products such as software is
considered by [107] who based their model on the
model developed by I.E. Besanko and W.L. Winston
[11]. In the paper [107] this model is solved for a glob-
ally optimal result using an interval branch and bound
method.

In [50] another problem in economics is consid-
ered. The problem is to minimize an econometric func-
tion
X

(yt � b̌1 � b̌2Xt2 � b̌2
2Xt3)2

where the data are artificially generated for the vari-
ables. Several tests are performed and it is shown that
interval methods are competitive with other methods
such as simulated annealing.

See also

� ˛BB Algorithm
� Automatic Differentiation: Point and Interval
� Automatic Differentiation: Point and Interval

Taylor Operators
� Bounding Derivative Ranges
� Continuous Global Optimization: Applications
� Continuous Global Optimization: Models,

Algorithms and Software
� Global Optimization in the Analysis and

Management of Environmental Systems
� Global Optimization: Application to Phase

Equilibrium Problems
� Global Optimization in Batch Design Under

Uncertainty
� Global Optimization in Generalized Geometric

Programming
� Global Optimization Methods for Systems of

Nonlinear Equations
� Global Optimization in Phase and Chemical

Reaction Equilibrium
� Interval Analysis: Application to Chemical

Engineering Design Problems
� Interval Analysis: Differential Equations
� Interval Analysis: Eigenvalue Bounds of Interval

Matrices
� Interval Analysis: Intermediate Terms
� Interval Analysis: Nondifferentiable Problems
� Interval Analysis: Parallel Methods for Global

Optimization



1754 I Interval Global Optimization

� Interval Analysis: Subdivision Directions in Interval
Branch and Bound Methods

� Interval Analysis: Systems of Nonlinear
Equations

� Interval Analysis: Unconstrained and Constrained
Optimization

� Interval Analysis: Verifying Feasibility
� Interval Constraints
� Interval Fixed Point Theory
� Interval Linear Systems
� Interval Newton Methods
�MINLP: Branch and Bound Global Optimization
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�MINLP: Global Optimization with ˛BB
�Mixed Integer Nonlinear Programming
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In many applications the coefficients of real linear sys-
tems are, due to measurement or approximation errors,
not known exactly. Therefore, the family of real linear
systems

A � x D b; (1)

where A, b satisfy the inequalities

jAc � Aj � �; jb � bc j � ı (2)

is considered. The absolute value and comparisons are
used entrywise. The matrices Ac, A, � 2 Rn × n are real
n × n matrices, bc, b, ı 2 Rn, and �, ı, which describe
the perturbation bounds, are assumed to be nonnega-
tive. This family of real linear systems is called an in-
terval linear system, because each matrix A, right-hand
side b is contained in the interval matrix A := [Ac � �,
Ac +�], interval vector b := [bc � ı, bc + ı], respectively.

Ac and bc are called the centers of the interval linear sys-
tem.

The corresponding solution set X is defined as the
union of all solutions of this family, that is

X :D fx 2 Rn : x;A; b satisfy (1), (2)g : (3)

Naturally, the main interest is to determine the exact
range of each component of the solution set, that is to
calculate the exact or optimal componentwise bounds

min fxi : x 2 Xg ; max fxi : x 2 Xg (4)

for i = 1, . . . , n. The minima and maxima exist provided
A is regular, that is all matrices A 2 A are nonsingular.
Otherwise, A is called singular, and X is unbounded or
empty.

In general, the solution set X is not convex and has
a complicated shape: see Fig. 1 which is taken from
a book of A. Neumaier [18, p. 97]. Hence, calculating
bounds for the solution set X is a global optimization
problem. Moreover, X needs not to be connected or
bounded. This is shown by the simple one-dimensional
equation A � x = 1, A 2 [� 1, 1] with solution set X =
(�1, � 1] [ [1,1).

From the point of view of complexity theory, J.
Rohn [25] has proved that the problem of calculating
bounds for the solution set is NP-hard. Roughly speak-
ing, he has shown that there is no polynomial time algo-
rithm which calculates bounds of the solution set with
overestimation less than any given positive constant.

Interval Linear Systems, Figure 1
A projection of a three-dimensional solution set
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This is true, even if the interval matrix A is strongly reg-
ular, i. e. if the spectral radius �(|(Ac)�1| ��) is less than
one. If A is strongly regular, then the regularity of A
follows immediately by observing that for A 2 A there
holds

A D Ac � e� D Ac � (I � (Ac)�1 � e�); (5)

where
ˇ̌e�ˇ̌ � �. Hence, singularity of A is equiva-

lent to the fact that (Ac)�1 � e� has the eigenvalue 1.
Since �(|(Ac)�1| � �) < 1 it follows that A is regular.
By Perron–Frobenius theory, strong regularity implies
that the radius matrix � is not too large. For further
NP-hardness results related to other interval problems
see [27].

During the last three decades the problem of calcu-
lating componentwise bounds forX, not necessarily op-
timal bounds, has received much attention, and many
methods were developed. No attempt can be made in
this short survey to review all different approaches. But
the literature given in this section shall serve as a guide
for further reading.

The first algorithm for calculating optimal compo-
nentwise bounds was given by W. Oettli and W. Prager
[19,20]. There the solution set X is described as the set
of feasible solutions of a special system of nonlinear in-
equalities:

X D fx 2 Rn : jAcx � bc j � � � jxj C ıg (6)

But in each orthant this system is a convex poly-
hedron. Hence, in each orthant optimal bounds can
be calculated by using linear programming techniques.
Unfortunately, there are 2n orthants, and therefore this
method needs for each instance a priori exponential
time, and can work only for problems of very small size.

Recently, based on the result of Oettli and Prager,
in [9] a more efficient method for calculating optimal
bounds is presented. This method uses linear program-
ming techniques in only those orthants which are inter-
sected by the solution set X.

Starting with the pioneering book of R.E. Moore
[15], a large number of methods were proposed using
the tools of interval arithmetic. Many algorithms can
be found for example in the monographs [2,16], and
[18]. These methods are polynomial time algorithms,
calculate only componentwise (not optimal) bounds,
and work under special assumptions: in almost all cases
strong regularity of A is required.

In interval arithmetic the elementary operations for
intervals x D [x; x]; y D [y; y] 2 IR are defined by

x 
 y D fx 
 y : x 2 x; y 2 yg (7)

where 
 2 {+, �, �, /}, and in case of division 0 62 y is
assumed. By a simple monotonicity argument it follows
that

x 
 y D [min S;max S]; (8)

where the set S is defined by

S :D fx 
 y; x 
 y; x 
 y; x 
 yg:

Interval operations between real matrices, interval ma-
trices, real vectors and interval vectors are defined as in
the real case, only the real operations are replaced by
the corresponding interval operations (7).

For example, if R= (rij)2Rn × n is a real n × nmatrix,
and b 2 IRn, then R � b is defined as follows: the real
coefficients rij are replaced by the point intervals rij = rij
= [rij, rij] and

(R � b)i :D
nX

jD1

ri j � b j :

By definition (7), for all i the equation

(R � b)i D

8<
:

nX
jD1

ri j � b j : b 2 b

9=
;

holds. Therefore R �b is the smallest interval vector con-
taining the set {R � b: b 2 b}. But in general, R �b overes-
timates the latter set.

Example 1 Let

R D
�
1 3
1 1

�
; b D

�
[1; 2]
[1; 4]

�
;

then R �b = ([4, 14], [2, 6])|, but {R � b: b 2 b} is the
convex hull of the set {(4, 2)|, (13, 5)|, (5, 3)|, (14, 6)|},
see Fig. 2.

In many interval methods for calculating bounds of X
the interval linear system is first preconditioned by an
appropriate matrix R, which in most cases is an approx-
imate inverse of the center Ac. This yields the precondi-
tioned interval linear system

(R � A) � x D R � b: (9)
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Interval Linear Systems, Figure 2

with interval matrix R �A and interval right hand side
R � b.

From the discussion above it follows that R �A, R �b
overestimate the sets {R � A: A 2 A}, {R � b: b 2 b}, re-
spectively. Therefore, the solution set X0 of the precon-
ditioned interval linear system (9) contains but over-
estimates the solution set X. However, for small � the
interval matrix R �A is close to the identity matrix and
diagonal dominant. Hence, only small overestimations
will occur.

Bounds for the solution set X0 of the precondi-
tioned interval linear system (9) are then calculated
by using interval Gaussian elimination (cf. for exam-
ple [1,7]), interval Gauss–Seidel iteration (cf. for exam-
ple [6,17,22]), or fixed point iteration (cf. for example
[14,28]). In general, these bounds are not optimal for
X0, and the overestimation depends on the method.

But recently E.R. Hansen [5], and Rohn [26] have
presented a polynomial time algorithm for calculating
optimal bounds for the solution set X0 of the precondi-
tioned interval system (9). Only two matrix inversions
are required.

Preconditioning of interval linear systems was first
suggested by Hansen and R. Smith [7]. Later, R.B. Kear-
fott [11,12] introduced the so-called width optimal pre-
conditioners by using linear programming techniques.

Preconditioning requires the computation of an ap-
proximate inverse. For sparse linear systems the in-
verse in general is full. Therefore, the approaches de-
scribed above are not applicable for large dimensions.
But recently, S.M. Rump [29,30] generalized his iter-
ation method (cf. [28]) to sparse nonlinear systems
without preconditioning with a full inverse. His idea,
roughly spoken, was to replace the inverse by a lower
bound of the smallest singular value of the center ma-
trix.

Last, an interval method not using precondition-
ing should be mentioned. This method is a branch and
bound scheme proposed by S.P. Shary [31].

In the following, twomethods are described inmore
detail. First, in the next section 2 Rump ’s method [28]
is presented. This method is implemented in several
programming packages like ACRITH [8], ARITHMOS
[3], PASCAL-XSC [4], and PROFIL [13]. Moreover, as
mentioned above, the method can be modified for solv-
ing sparse interval linear systems and nonlinear sys-
tems. Then, in the last section the method presented in
[9] for calculating optimal bounds of X is described.

An Iterative Interval Method

It is assumed that A, b satisfy the inequalities (2), R is
an approximate inverse of Ac, and x̌ is an approximate
solution of Ac x = bc. No assumptions about the qual-
ity of these approximations are made. It is well known
from numerical linear algebra that defect iteration with
the iteration function

f (x) :D x C R � (b � A(x̌ C x))

D R � (b � Ax̌)C (I � RA)x (10)

can be used to improve the quality of the approxima-
tion x̌. This function is continuous, and if for a given
interval vector x the condition f (x) � x holds, then by
Brouwer ’s fixed point theorem there existsbx 2 x with
f (bx) D bx. Using (10) yields R � (b � A(x̌ Cbx)) D 0.
If R is nonsingular, then A(x̌ Cbx) D b implying that
x̌Cbx 2 x̌Cx is the exact solution of Ax = b. Moreover,
by using a contradiction argument, it can be shown that
the solution x̌ C bx is unique and R, A are nonsingu-
lar provided that f (x) is contained in int(x), the interior
of x.

An immediate consequence is that if the condition

R � (b � A � x̌)C (I � R � A) � x � int(x) (11)

is satisfied, then f (x)� int(x) holds for all A 2 A, b 2 b.
Hence X � x̌Cx. Notice that (11) can be easily checked
by using interval arithmetic.

The remaining problem is to find an appropriate
box x satisfying (11). The following iteration starting
with x0 :D R � (b� A � x̌) can be used:

yk :D xk � [1 � �; 1C �]C [��;�] � e;

xkC1 :D x0 C (I � R � A) � yk :
(12)
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The values �,� > 0 are called inflation parameters, and e
is the vector with 1 in each component. The main prop-
erty of this iteration is that (cf. [30]) for every starting
box x0 holds

9k 2 N : xkC1 � int(yk)

m

�(jI � R � Aj) < 1;

where � denotes the spectral radius of the absolute value
of I � R �A. This means that after a finite number of
steps bounds x̌ C xkC1 of X are calculated, provided
the spectral radius �(|I � RA|) < 1; this means that A is
strongly regular. For practical applications it is recom-
mended to execute at most k = 10 iteration steps, and
� should be greater than the smallest positive floating
point number. Obviously, by using this parameters we
get an 0(n3) polynomial time algorithm.

Example 2 To demonstrate how this algorithm works,
the following interval linear system with centers

Ac D

�
1:2 1:2
�1:2 1:2

�
; bc D

�
1:5
3:5

�
;

and perturbation bounds

� D

�
0:2 0:2
0:2 0:2

�
; ı D

�
0:5
0:5

�

is considered.
This system is a slight modification of an example

of Rohn [23]. We have chosen � = 0.05 and � equal to
the smallest positive machine number. In the follow-
ing, five (appropriately rounded) decimal digits are dis-
played. The two-dimensional interval vector with com-
ponents equal to [� 1, 1] is denoted by [�1, 1].

The spectral radius �(|I � R �A|)	 0.3333 < 1 where
R 	 (Ac)�1, and therefore the iteration (12) will com-
pute a box containing the solution set X in finitely steps.

The approximate solution of the center system is
x̌ D (�0:83333; 2:0833)> yielding the starting box
x0 :D R � (b � A � x̌) D 0:9028 � [�1; 1].

Iteration (12) yields

y0 D 0:9480 � [�1; 1]; x1 D 1:2188 � [�1; 1];

y1 D 1:2797 � [�1; 1]; x2 D 1:3294 � [�1; 1];

y2 D 1:3959 � [�1; 1]; x3 D 1:3681 � [�1; 1]:

Hence, for k = 2 it follows x3 � int(y2), and the solution
set X is contained in

x̌ C y2 D
�
[�2:2014; 0:5348]
[0:7152; 3:4514]

�
(13)

For numerical results of this method and its generaliza-
tion to sparse systems, see [29,30]. There, examples up
to 1000000 variables including the ‘Harwell test cases’
are presented.

Optimal Bounds

As pointed out in the introduction, a polynomial time
algorithm may overestimate the solution set X drasti-
cally or may fail. Therefore, in this section amethod (cf.
[9]) which produces optimal bounds of X if and only if
A is regular is described.

An immediate consequence of (6) is that the solu-
tion set X is the finite union of convex polyhedrons. To
see this, let {� 1, 1}n denote the set of all sign vectors
with components equal to 1 or � 1. For a sign vector
s 2 {� 1, 1}n let D(s) denote the diagonal matrix with
diagonal s and Rn(s) := {x 2 Rn: D(s) � x � 0}. Then the
intersection X(s) := X \ Rn(s) of the solution set with
the orthant corresponding to s is given by the following
system of linear inequalities

(Ac �� � D(s)) � x � bc C ı

(Ac C� � D(s)) � x � bc � ı

D(s) � x � 0:

(14)

Therefore, for a fixed orthant Rn(s) optimal bounds
of X(s) can be calculated by minimizing and maxi-
mizing each coordinate xi subject to the constraints
(14). These are linear programming problems which
can be solved in polynomial time, implying that opti-
mal bounds ofX(s) can also be calculated in polynomial
time.

Now, one can get optimal bounds of X by calculat-
ing optimal bounds of X(s) for each orthant Rn(s). Un-
fortunately, there are 2n orthants, and this approach can
work only for very small dimension n.

For interval linear systems with � = 0, ı = 0 the so-
lution set X is by definition equal to the exact solution
of the corresponding real linear system, and therefore
X will be in one orthant (with exception of degenerated
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cases). With growing radii�, ı the solution set may in-
tersect more orthants. But in many cases only few or-
thants will intersect the solution set.

Then most of the computing time of the above ap-
proach will be spent for checking that X \ Rn(s) is
empty for almost all orthants. Therefore, the question
arises if it is possible to construct an algorithm which
picks up exactly those orthants where X \ Rn(s) is
nonempty. In the following such an algorithm is pre-
sented. This approach heavily relies on the following
topological alternative statement, which says that for
nonempty X exactly one of the following two state-
ments is true:
i) X is compact and connected, and A is regular;
ii) X is unbounded, each topologically connected com-

ponent of X is unbounded, and A is singular.
An immediate consequence is that the solution set

X cannot be the union of bounded and unbounded
topologically connected components. Therefore, each
method which only calculates optimal bounds of
a topologically connected component of X suffices to
solve the problem. To do this, the representation graph
G = (V , E) of the solution set X with the set of nodes

V D fs 2 f�1; 1gn : X(s) ¤ ;g ; (15)

and the set of edges

E D
�
fs; tg : s; t 2 V ; s and t differ in

exactly one component

	
(16)

is defined.
Now the following basic relationship between the

solution set and its representation graph can be proved:
a) Each nonempty topologically connected compo-

nent bX of X can be represented in the form

bX D [fX(s) : s 2 Ug ; (17)

where U is the node set of a connected component
of G.

b) If X is nonempty and bounded, then G = (V , E) is
a connected graph, and

X D [fX(s) : s 2 Vg : (18)

This property gives the possibility to apply to the
implicitly defined representation graph G the well-
known graph search method (see for example [21]) for
calculating a connected component:

1) Compute a starting node s 2 V by solving the mid-
point system Acx = bc. The vector s is defined as the
sign vector of this solution, and stored in a list L.

2) Put a sign vector s 2 L, and solve the linear program-
ming problems

(
min fxi : x 2 X(s)g ;
max fxi : x 2 X(s)g

(19)

for i = 1, . . . , n.
If a problem is unbounded, then an unbounded
topologically connected component of X is found.
Hence, each other topologically connected compo-
nent of X is unbounded, A is singular and the
method is stopped. Otherwise, the linear program-
ming problems calculate optimal bounds of X(s),
which are also stored. By definition of the edge set
E, it follows immediately that

t :D (s1; : : : ; si�1;�si ; siC1; : : : ; sn) (20)

is adjacent to s, if and only if one of the lp ’s in (19)
has the exact bound equal to zero. All neighbored
nodes t of s are stored in list L, except those which
have been already treated. Then we proceed by go-
ing to 2), and repeat this process until L is empty.
It follows that this algorithm terminates in a finite

number of steps, and either calculates optimal bounds
of the solution set and proves regularity of A, or shows
that X is unbounded and A is singular. The algorithm
searches only in those orthants which have a nonempty
intersection with the solution set, and avoids all other
ones. Therefore, |V| calls of a polynomial time algo-
rithm are needed, where |V| is the number of nonempty
intersections of the solution set with the orthants.

In many cases in practice, due to physical or eco-
nomical requirements, only few variables will change
the sign implying that only few orthants will be inter-
sected by the solution set. In those cases the method
works efficiently. Nevertheless, due to the mentioned
NP-hardness results of Rohn, there are also cases where
an exponential computing time occurs.

Example 3 In order to see how this algorithm behaves
in detail, the example of the previous section is dis-
cussed. The solution x̌ D (�0:8333; 2:0833)> gives the
sign vector s = (� 1, 1) which is stored in L.

Now we take this sign vector from list L (then L is
empty) and solve the lp ’s (19) which gives the optimal
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bounds of X(s)
�
[�1:9167;�0:0595]
[1:3095; 3:1667]

�
: (21)

No optimal bound has a value equal to zero, which im-
plies that s = (� 1, 1) has no neighbor with respect to
the edge set E. It follows that X(s) is a topologically con-
nected component and X = X(s). Therefore, (21) gives
the optimal bounds of X.

Following, the original example of Rohn [24] is dis-
cussed, which differs from the previous one by chang-
ing

Ac :D
�

500:5 500:5
�500:5 500:5

�
;

� :D
�
499:5 499:5
499; 5 499:5

�
:

Thus very large perturbations � are allowed, and the
spectral radius � (|(Ac)�1| � �) = 1.9960. Hence the it-
eration method of the previous section cannot work,
because A is not strongly regular. The solution x̌ D
(�0:001998; 0:004995)> gives s = (� 1, 1)| and L = {s}.

Now s is removed from list L (then L is empty) and
the lp ’s (19) yield the following optimal bounds of X(s):

�
[�3:9950; 0]

[0:001002; 3:9980]

�
: (22)

One optimal bound of the first component has a value
equal to zero. Therefore, by (20) t = (� s1, s2)| = (1, 1)|

is adjacent to s and list L := {t}.
Now we take t from list L (then L is empty), and the

lp ’s (19) yield the optimal bounds of X(t):
�

[0; 1:9950]
[0:0030; 2:0000]

�
: (23)

Only the lower optimal bound of the first component
is equal to zero. This gives the adjacent sign vector s
= (� t1, t2) = (� 1, 1)|. But this is the sign vector al-
ready treated, and therefore not stored in list L. Since
list L is empty, the algorithm is finished, and the opti-
mal bounds (22) and (23) together deliver the optimal
bounds

�
[�3:9950; 1:99950]
[0:001002; 3:9980]

�
(24)

for the solution set X.

By comparing the bounds (21) and (13), we see that
the optimal bounds (21) clearly improve the bounds
(13) calculated by the iteration method of the previ-
ous section. This overestimation is mainly due to the
preconditioning with the midpoint inverse. However,
the bounds (13) give additionally the information that
the solution set X intersects at most 2 orthants.Thus, an
a priori estimation on the computing time for the ex-
act method in this section is given: the above method
has only to search in two orthants. Hence, first using
in the strongly regular case a polynomial time method,
provides rough bounds for X as well as a bound for the
computing time which is needed for calculating exact
bounds.

Several other examples up to dimension n = 50 can be
found in [9] and [10].
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Introduction

Interval Newton methods combine the classical Newton
method, the mean value theorem, and interval analy-
sis. The result is an iterative method that can be used
both to refine enclosures to solutions of nonlinear sys-
tems of equations, to prove existence and uniqueness of
such solutions, and to provide rigorous bounds on such
solutions, including tight and rigorous bounds on crit-
ical points of constrained optimization problems. In-
terval Newton methods can also prove nonexistence
of solutions within regions. Such capabilities can be
used in isolation, for example, to provide rigorous er-
ror bounds for an approximate solution obtained with
floating point computations, or as an integral part of
global branch and bound algorithms.

Univariate Interval NewtonMethods

Suppose f : x D [x; x] ! R has a continuous first
derivative on x, suppose that there exists x� 2 x such
that f (x�) = 0, and suppose that x̌ 2 x. Then, since the
mean value theorem implies

0 D f (x�) D f (x̌)C f 0(�)(x� � x̌);

we have x� D x̌ � f (x̌)
f 0(�) for some � 2 x. If f0(x) is any

interval extension of the derivative of f over x, then

x� 2 x̌ �
f (x̌)
f0(x)

for any x̌ 2 x: (1)

(Note that, in certain contexts, a slope set for f centered
at x̌ may be substituted for f0(x); see [1] for further ref-
erences.) Equation (1) forms the basis of the univariate

interval Newton operator:

N(f; x; x̌) D x̌ �
f (x̌)
f0(x)

: (2)

Because of (1), any solutions of f (x) = 0 that are in x
must also be in N(f; x; x̌). Furthermore, local conver-
gence of iteration of the interval Newton method (2)
is quadratic in the sense that the width of N(f; x; x̌) is
roughly proportional to the square of the width of x.
Furthermore, if an interval derivative extension (in
contrast to an interval slope) is used for f0(x), then

N(f; x; x̌) � int(x);

where int(x) represents the interior of x, implies that
there is a unique solution of f (x) = 0 within N(f; x; x̌),
and hence within x.

Multivariate Interval NewtonMethods

Multivariate interval Newton methods are analogous to
univariate ones in the sense that they obey an iteration
equation similar to equation (2), and in the sense that
they have quadratic convergence properties and can be
used to prove existence and uniqueness. However, mul-
tivariate interval Newton methods are complicated by
the necessity to bound the solution set of a linear sys-
tem of equations with interval coefficients.

Suppose now that f : Rn!Rn, suppose x is an inter-
val vector (i. e. a box), and suppose that x̌ 2 Rn . (If in-
terval derivatives, rather than slope sets, are to be used,
then further suppose that x̌ 2 x.) Then a general form
for multivariate interval Newton methods is

N( f ; x; x̌) D x̌ C v; (3)

where v is an interval vector that contains all solutions
v to point systems Av D � f (x̌), for A 2 f0(x), where
f0(x) is an interval extension to the Jacobi matrix of f
over x. (Under certain conditions, f0 may be replaced by
an interval slope matrix.) As with the univariate inter-
val Newton method, under certain natural smoothness
conditions,
� N( f ; x; x̌) must contain all solutions x� 2 x with

f (x�) = 0. (Consequently, ifN( f ; x; x̌)\x D ;, then
there are no solutions of f (x) = 0 in x.)

� For x containing a solution of f (x) = 0 and the
widths of the components of x sufficiently small, the
width of N( f ; x; x̌) is roughly proportional to the
square of the widths of the components of x.
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� If N( f ; x; x̌) � int(x), where int(x) represents the
interior of x, then there is a unique solution of f (x)
= 0 within N( f ; x; x̌), and hence within x.

For details and further references, see [1, §1.5].
Finding the interval vector v in the iteration formula

(3), that is, bounding the solution set to the interval lin-
ear system

f0(x)v D � f (x̌);

is a major aspect of the multivariate interval Newton
method. Finding the narrowest possible intervals for
the components of v is, in general, anNP-hard problem.
(See � Complexity classes in optimization.) However,
procedures that are asymptotically good in the sense
that the overestimation in v decreases as the square of
the widths of the elements of f0 can be based on first
preconditioning the interval matrix f0(x) by the inverse
of its matrix of midpoints or by other special precon-
ditioners (see [1, Chapt. 3]), then applying the interval
Gauss–Seidel method or interval Gaussian elimination.

Existence-Proving Properties

The existence-proving properties of interval Newton
methods can be analyzed in the framework of classi-
cal fixed-point theory. See � Interval fixed point the-
ory, or [1, §1.5.2]. Of particular interest in this context
is a variant interval Newton method, not fitting directly
into the framework of formula (3), that is derived di-
rectly by considering the classical chord method (New-
ton method with fixed iteration matrix) as a fixed point
iteration. Called the Krawczyk method, this method has
various nice theoretical properties, but its image is usu-
ally not as narrow as other interval Newton methods.
See [1, p. 56].

Uniqueness-proving properties of interval Newton
methods are based on proving that each point matrix
formed elementwise from the interval matrix f0(x) is
nonsingular.

Example 1 For an example of a multivariate interval
Newton method, take

f1(x) D x21 � x22 � 1;

f2(x) D 2x1x2;

with

x D
�

[0:9; 1:2]
[�0:1; 0:1]

�
; x̌ D

�
1:05
0

�
:

An interval extension of the Jacobi matrix for f is

f0(x) D
�
2x1 �2x2
2x2 2x1

�
;

and its value at x is
�

[1:8; 2:4] [�0:2; 0:2]
[�0:2; 0:2] [1:8; 2:4]

�
:

The usual procedure (although not required in this spe-
cial case) is to precondition the system

f0(x)v D � f (x̌);

say, by the inverse of the midpoint matrix

Y D
�
2:1 0
0 2:1

��1
D

�
0:476 0
0 0:476

�

to obtain

Yf0(x)v D �Y f (x̌);

i. e., rounded out,
�

[0:85; 1:15] [�:096; :096]
[�:096; :096] [0:85; 1:15]

�
v

D

�
[�:0488; 0:487]

0

�
:

(Rigor is not lost by taking floating point approxi-
mations for the preconditioner, but the interval arith-
metic should be outwardly rounded.) The interval
Gauss–Seidel method can then be used to compute
sharper bounds on v D x � x̌, beginning with v D�
[�0:15; 0:15]
[�0:1; 0:1]

�
. That is,

ev1 � [�0:0488;�0:0488] � [�0:096; 0:096]v2
[0:85; 1:15]

� [�0:0688;�0:034]:

Thus, the first component of N( f ; x; x̌) is

x̌ C v � [0:9833; 1:016]:

In the second step of the interval Gauss–Seidel method,

ev2 D 0 � [�0:096; 0:096]ev1
[0:085; 1:15]

� [�0:00778; 0:00778];
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so, rounded out, N( f ; x; x̌) is computed to be

�
[0:981; 1:016]

[�0:00778; 0:00778]

�
�

�
[0:9; 1:2]
[�0:1; 0:1]

�
:

This last inclusion proves that there exists a unique so-
lution to f (x) = 0 within x, and hence, withinN( f ; x; x̌).
Furthermore, iteration of the procedure will result in
bounds on the exact solution that become narrow
quadratically.
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A supply chain (SC) can be defined as an integrated sys-
tem, where various firms work together, including sup-
pliers of raw materials, manufacturers, distributors and
retailers. Their efforts are concentrated on transform-
ing the rawmaterials into final products that satisfy cus-
tomer requirements, and delivering these products to
the right place, at the right time. A SC contains two ba-
sic, integrated processes:
a) production planning and inventory management

(IM); and
b) distribution and logistics processes [6].
This article gives a brief review of literature on single-
stage IM and multistage IM models. The objective is
to provide an overview of this research and empha-
size current achievements in this field. Inventories exist
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throughout the SC in the form of raw materials, work-
in-process, and finished goods. Typical relevant inven-
tory costs are: inventory carrying costs, order costs, and
shortage costs. These costs often tend to conflict, in
other words, decreasing one generally requires increas-
ing another. The main motivation for keeping invento-
ries is to cope with the uncertainty of external demand,
supply and lead-time [18]. Keeping inventories is im-
portant to increase customer service level and reduce
distribution costs, but it is estimated [5] that invento-
ries cost approximately 20% to 40% of their value per
year. Thus, managing inventories in a scientific manner
to maintain minimal levels required for meeting service
objectives makes economic sense. K. Arrow [2] presents
an interesting discussion of the motives of a firm for
holding inventories. There are several opportunities for
streamlining SC inventories. It is important to under-
stand that for a given service level the lowest inventory
investment results when the entire SC is considered as
a single system. Such coordinated decisions at Xerox
and Hewlett Packard reduced their inventory levels by
over 25% [9].

Single Stage InventoryManagementModels

The simplest inventory model is the deterministic eco-
nomic order quantity (EOQ) model presented by F.
Harris [12]. He recognized this problem in 1913 in his
work at Westinghouse. The model determines the con-
stant order quantity that minimizes the average an-
nual cost of purchasing and carrying inventory, as-
suming deterministic and constant demand rate, no
shortages, and zero order lead-times. A number of im-
portant scholars turned their attention to mathemat-
ical inventory models during the 1950s. A collection
of mathematical models by Arrow, S. Karlin and H.E.
Scarf [3] influenced later work in this area. At about
the same time, H.M. Wagner and T.M. Whitin [24]
developed a solution algorithm to the dynamic lot-
sizing problem subject to time varying demand. Their
model assumes periodic, deterministic demand over
a finite planning horizon, no capacity restrictions on
production, and zero inventory at the beginning and
the end of the planning horizon. This problem is for-
mulated as a mixed integer linear program (MILP)
and can be represented as a fixed-charge network flow
problem. The Wagner–Whitin algorithm is best illus-

trated using a shortest-path graph representation. Al-
though the Wagner–Whitin model gives an optimal so-
lution, in practice other heuristic lot-sizing algorithms
are adopted. See [18] for a survey on the EOQ lot-sizing,
silver-meal, least unit cost heuristics, etc. These models
trade-off productivity losses frommaking small batches
and the opportunity costs of tying up capital in inven-
tory due to large batches. U.S. Karmarkar [14] extends
the lot-sizing model to include lead-time related costs.
Inventory control models subject to uncertain demand
are basically of two types: periodic review models and
continuous review models. Periodic review models exist
for one planning period or for multiple planning pe-
riods. The single-period, stochastic inventory model is
known as the newsboy model. The case of single pe-
riod models with fixed order cost and initial invento-
ries, leads to the optimality of (s, S) optimal policies.
These policies state that if inventory position is less than
s, then order up to S, otherwise do not order. The pe-
riodic review models with an infinite horizon are for-
mulated in a dynamic programming framework [23].
Continuous review systems under uncertain demand
track demands as they occur and the inventory position
is always known. These models lead to the (Q, R) pol-
icy, under which a fixed amount of Q units is ordered
each time the inventory position reaches a certain level
R. The model typically assumes either backordering or
lost sales when shortages occur.

Multistage InventoryManagementModels

Coordinating decisions at different levels of an organi-
zation comes as a need to reduce operating costs. This
coordination can be seen in terms of integrating differ-
ent decision types e. g., facility location, inventory plan-
ning, distribution, etc., or linking decisions within the
same function at different stages in the SC. Multistage
inventory management models (MSIM models) con-
centrate on integrating IM policies in different stages
of the SC. The typical MSIM problem analyzed in the
literature is a two-level system composed of a number
of retailers being served by a central warehouse. The de-
mand at each retailer is satisfied using on-hand inven-
tory. When insufficient inventory is available, a back-
order typically occurs, and demand must be satisfied
later using inventory from the warehouse. The model
decides on the inventory level at each retailer and the
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warehouse, such that a set of prespecified criteria is
satisfied at minimum inventory-related costs. The first
MSIM model was developed by A. Clark and Scarf [7].
They consider a system with a single product and N fa-
cilities, where facility i supplies facility i + 1, for i = 1,
. . . ,N � 1. The model considers a periodic review of the
inventory level and assumes fixed lead-times, a finite
planning horizon, backordering of demand shortages
and variable order cost. The aim is to find IM policies to
be applied in each of the echelons, such that system cost
is minimized. They show that under the above assump-
tions an optimal policy for the system can be found
by decomposing the problem into N separate single-
location problems and solving the problem recursively.
The above model was extended to incorporate an infi-
nite horizon and lead time uncertainty. A generaliza-
tion of the system described above is the multi-echelon
arborescence system, where each location has a unique
supplier. A.F. Veinott [23] provides an excellent sum-
mary of these early modeling efforts. One of the earliest
continuous reviewMSIMmodels was presented by C.C.
Sherbrooke [21]. He considers a two-stage system with
several retailers and a single warehouse that supplies
to these retailers. He introduces the well-known MET-
RIC approximation to determine the optimal level of
inventory in the system. The METRIC approximation
assumes a Poisson distribution of demand and constant
replenishment lead-times. S.C. Graves [11] extends the
METRIC approximation by estimating the mean and
the variance of the outstanding retailer orders. He fits
the negative binomial distribution to these parameters
to determine the optimal inventory policy. S. Axsäter}
[4] provides an exact solution to the problem and shows
that the METRIC approximation provides an underes-
timate, whereas Graves ’ two-parameter approximation
[11] overestimates the retailer backorders. The above
studies use the one-for-one ordering policy (S � 1, S),
i. e., an order is placed as soon as a demand occurs.
This policy is appropriate for items with high value and
a low demand rate. Axsäter [4] shows that the mod-
els used for the one-for-one ordering policy can be ex-
tended in the case of batch ordering with only one re-
tailer. Analysis of batch ordering policies in arbores-
cent systems (when the number of retailers is greater
than one) is similar to Sherbrooke ’s model. B.L. Deuer-
meyer and L.B. Schwarz [8] were the first to analyze
such a system. They estimate the mean and the vari-

ance of lead-time demand to obtain average inventory
levels and backorders at the warehouse, assuming that
lead-time demand is normally distributed. The retailer
lead-time demand is also approximated using a normal
distribution. In addition to reviewing the literature in
the area, [15,17] and [22] also provide several exten-
sions to the Deuermeyer and Schwarz model.In [10]
the concept of stability in a capacitated, multi-echelon
production-inventory system under a base-stock policy
is introduced. W.L. Maxwell and others [16] extend the
analysis to multiproduct, continuous review and deter-
ministic demand, MSIM problems. Their model tends
to schedule the orders for each of the products over an
infinite horizon so as to minimize the long-run average
cost. The authors define a new class of policies in which
each product uses a stationary interval of time between
successive orders. Their model finds a lot-sizing rule
that is within 6% of the average cost of the optimal pol-
icy. R. Roundy [19] develops a similar multistage, mul-
tiproduct lot-sizing model. Under the assumption that
the ratio of the order intervals of any two products is
an integer power of two, it is shown that the solution is
within 2% of optimality.

D. Sculli and others [20] extend the analysis of
MSIM systems for the case when two suppliers are
used to replenish stock of a single item. They calcu-
late the mean and the standard deviation of the effec-
tive lead time demand and interarrival time when re-
plenishment orders are placed at the same time with
the two suppliers, in a continuous review system. The
lead-time distribution of each supplier is assumed to
be normal. R. Ganeshan [9] presents a near-optimal
(s, Q) inventory policy for a production/distribution
network with multiple suppliers replenishing a central
warehouse, which distributes to a large number of re-
tailers. The model concentrates on inventory analysis
at the retailers and the warehouse, and demand process
at the warehouse. The model finds a near-optimal order
quantity and a reorder point at both the retailer and the
distribution center (DC) under stochastic demand and
lead-time, subject to customer service constraints. The
main contribution of this model is the integration of the
above components for analyzing simple supply chains.
P. Afentakis and others [1] develop a procedure for op-
timally solving medium size lot-scheduling problems in
multistage structures with periodic review of the inven-
tory and dynamic deterministic demand. They formu-
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late the problem in terms of echelon stock, which sim-
plifies its decomposition by Lagrangian relaxation. An
efficient branch and bound algorithm is used to solve
the problem.

M.C. van der Heijden and others [13] consider
the periodic review, order-up-to (R, S) inventory sys-
tem under stochastic demand. They propose a new ap-
proach to calculate the mean physical stock. The stan-
dard approximation appears to yield inaccurate results
in the case of low service levels. Low service levels usu-
ally occur at intermediate nodes in optimal solutions
for multi-echelon systems.

Conclusions

With the trend toward just-in-time deliveries and re-
duction of inventories, many firms are reexamining
their inventory and logistics policies. Some firms are al-
tering their inventory, production and shipping poli-
cies, and others are working on coordinating inven-
tory decisions throughout their SC, with the goal of
reducing costs and improving service. Single stage IM
models give some insights on how to manage inven-
tories under certain demand and lead-time considera-
tions, while MSIMmodels take the analysis further, co-
ordinating inventory decisions throughout the SC. This
article reviews the literature on single-stage and multi-
stage inventory management models, with an emphasis
on achievements in this field.

See also

� Global Supply Chain Models
� Nonconvex Network Flow Problems
� Operations Research Models for Supply Chain

Management and Design
� Piecewise Linear Network Flow Problems
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Lagrangian conditions are often necessary, but not suf-
ficient, for a minimum of an optimization problem in
continuous variables. Sufficiency holds under convex
assumptions, which are however often not satisfied in
applications. Invexity is a less restrictive assumption
than convexity, under which Lagrangian conditions are
sufficient for a minimum, and also related duality re-
sults hold. It also provides a structure, showing rela-
tions with various other kinds of generalized convexity.

Consider a constrained minimization problem

(P1)

8̂
<̂
ˆ̂:

min f (x);
s.t. g j(x) � 0;

j D 1; : : : ;m;

where the functions f and gj are differentiable. Define
the Lagrangian L(�; �) := f (�) + ˙ �j gj(�), where � =
(�1, . . . , �m) is a vector of nonnegative Lagrange multi-
pliers. When p is a feasible point, define also a reduced
Lagrangian L(p)(�; �) obtained by omitting constraints

inactive at p (thus, when gj(p) < 0.) Aminimum point p
for (P1), assuming some regularity for the constraints,
is then a Karush–Kuhn–Tucker (KKT) point, namely
one where the gradient of the Lagrangian with respect
to x satisfies L(p)0(p; �) = 0 for some � � 0. However,
a KKT point is not generally a minimum point. It is,
in particular, if the functions f and each gk are convex.
However, convexity often does not hold in applications,
and less restrictive conditions are sought when a KKT
point is a minimum.

A differentiable vector function F := (f , g1, . . . , gm),
with gradient F0, is called invex if, for some scale func-
tion �, and all x and p,

(INV) F(x) � F(p) � F 0(p)�(x; p):

This property was first called �-convex byM.A. Hanson
[11].

Usually, at a given p, �(x, p) = (x� p) + o(k x� p k).
In particular, F is convex if � (x, p) = x � p. If F is invex
and � � 0, then it follows that L(p)(�; �) is invex, so if x
is a feasible point, then

f (x) � f (p) � L(p)(x; �)� L(p)(p; �)
� L0(p)(p;�)�(x; p) D 0;

from KKT, so that p is a minimum point of (P1). This
minimum is global if (INV) holds globally, otherwise
local. (But how can (INV) be verified, as a global prop-
erty?)

By a similar argument, since L(�;v) is invex when v
� 0, duality holds for (P1) and theWolfe dual problem:

(D1)

8̂
<̂
ˆ̂:

max f (u)C
X

vj g j(u)

s.t. f 0(u)C
X

v j g0j(u) D 0;

v1 � 0; : : : ; vm � 0;

if KKT holds for (P1) and the invex property holds (see
[17]). Duality means that f (x)� f (u) +

P
vjgj(u) when-

ever x and u, v are feasible for their respective problems,
and also that the optimum objectives are equal. Con-
sider also theMond–Weir dual [18]:

(D2)

8̂
ˆ̂̂<
ˆ̂̂̂
:

max f (u)
s.t. f 0(u)C

X
v j g0j(u) D 0;

v1 � 0; : : : ; vm � 0;X
v j g j(u) � 0:
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Assume that F is invex. If x is feasible for (P1) and (x,
u) for (D2), then

f (x)� f (u) � f 0(u)�(x; u)

D �
X

� j g0j(u)�(x; u)

�
X

(�v j g j(x)C v j g j(u) � 0;

and this, with KKT, proves duality.
If the vector function F is locally Lipschitz, rather

than differentiable, then (INV) is replaced by general-
ized invex (see [6]):

(INV2) F(x)� F(p) � Fı(p; �(x; p)):

where F °(p, d) denotes Clarke ’s generalized directional
derivative (see [2]) of F at p in direction d. Most prop-
erties of (INV) extend to (INV2). In particular, if F1,
F2, � � � are (generalized) invex functions with the same
scale function �, then so also are maxj Fj(�), any element
of the convex hull co Fj(�), and (if it exists) limj Fj(�). But
the assumption of the same � is necessary here.

Suppose now that the following V-invex property
(see [14]) holds for g0(�) := f (�) � f (p) and for the ac-
tive constraints gj(�) (those for which gj(p) = 0):

8x : g j(x) � g j(p) � ˇ j(x; p)g0j(p)�(x; p):

Note that �(�, �) is a vector function, the same for each
j, and the weight ˇj(�, �) is a positive scalar function. If
KKT holds, and if x is feasible for (P1), then setting �j

:= �j/ ˇj, the minimum follows from

f (x)� f (p) � L(p)(x;�) � L(p)(p;�)

�
X

ˇ j� j g0j(p)�(x; p) D 0:

In the problem (P1), set Gj(x) := rj(x) gj(x), where
rj(�) > 0; then g( x) � 0 if and only if Gj(x) � 0 (j =
1, . . . , m), and f (x) � f (p) if and only if G0(x) � 0. So
(P1) is equivalently formulated in terms of the weighted
constraint functions Gj. For each active constraint gj(x)
� 0 with gj invex,

Gj(x) � Gj(p) D Gj(x) � ˇ j(x; p)G0j(p)�(x; p);

where the weight ˇj(x, p) = rj(x)/rj(p). Thus the Gj have
the V-invex property. Note also that if n and d are real
functions with n(�) � 0 and d(�) > 0, and n and � d are
invex with the same same scale function, then [14] the

ratio n(�)/d(�) is V-invex with the same scale function,
and weight ˇ(x, p) = d(p)/d(x).

Invexity for (P1) can also be relaxed to the require-
ment, called Type I in [12]:

f (x)� f (p) � f 0(p)�(x; p);

� g j(p) � g0j(p)�(x; p); 8 j 2 J;

where J is the set of indices of constraints active at p. If
this property holds at a KKT point p, and gj(x)� 0 (8j),
then

f (x) � f (p) � �
X
j2J

� j g0j(p)�(x; p) � 0;

thus p is a minimum for (P1).
Invexity is related as follows to some other proper-

ties. The vector function F: Rn ! Rr is convexifiable if
H := F ı ��1 is convex, for some invertible transforma-
tion �: Rn! Rn. For 0 < ˛ < 1,

(CL) (1 � ˛)F(p)C ˛F(x)

D (1 � ˛)H(�(p))C ˛H(�(x))
� H((1 � ˛)�(p)C ˛�(x))

D F(�(˛; x; p))

if H is convex, where

(K) �(˛; x; p) :D ��1((1 � ˛)�(p)C ˛�(x)):

This reduces, for a convex function F, to �(˛, x, p) = (1
� ˛) p + ˛ x. If � is differentiable, then also

(K2)
@

@˛
�(˛; x; p)j˛D0

D ��1
0(�(p))[�(x)� �(p)] � �(x; p):

Hence, letting ˛ # 0, invexity follows. Thus,

Convexifiable ) (CL)C (K) ) Invex;

with the second implication assuming differentiable
functions. The name ‘invex’ was given [4], from invari-
ant convex, since invex preserves that part of the con-
vex property that is invariant to the transformation �.
(See also [1].) The property (CL), together with the ex-
istence of (@/ @˛) �(˛, x, p)|˛ = 0, was called protoconvex
in [10]. It holds, in particular, if �(˛, x, p) = p + ˛ � (x�
p) holds in (CL). If F is locally Lipschitz, then (CL) and
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(K2) for all x and p in a domain imply generalized invex.
Note that invex does not imply convexifiable. A coun-
terexample (see [8] is F(x) := (� x1x2 + 1, � x1x2 + 1).

Suppose that f is invex, with scale function �, and
that � is a differentiable invertible transformation of the
domain space. An application of the chain rule shows
that f ı � is also invex, with a new scale function

�̂(˛; ˇ) D �0(�(˛))�1�(�(ˇ); �(˛)):

This invariance of invexity to domain transformations
extends to two relaxed properties (see [15,18]), defined
by:
� quasi-invex:

f (x) � f (p) ) f 0(p)�(x; p) � 0;

� pseudo-invex

f (x) < f (p) ) f 0(p)�(x; p) < 0:

These reduce to quasiconvex (respectively pseudocon-
vex; see [16,19]) when �(x, p) = x � p. If f is quasi-
invex (respectively, pseudo-invex) with scale function
�, then f ı � is quasi-invex (respectively pseudo-invex)
with scale functionb�. Note that each pseudoconvex real
function is invex, but not conversely.

In (P1), if f is pseudo-invex, and each gj is quasi-
invex, all with the same scale function �, then KKT is
sufficient for a minimum. For each active constraint,

g j(x) � 0 D g j(p) ) g0j(p)�(x; p) � 0:

Then
P
�j gj0(p) �(x, p)� 0, hence KKT gives f 0(p) �(x,

p) � 0. From pseudoconvexity, f (x) � f (p), proving
the minimum. There are various results (see [18,21])
showing sufficiency of KKT for a minimum, when var-
ious combinations of the functions f and gj have speci-
fied pseudo-invex and quasi-invex properties, all with
the same scale function �. Some further examples of
pseudo-invex functions are given in [15] (they called �-
pseudoconvex.)

The property (CL) is called convex-like (see [13]). If
� � Rn is a convex set, F is (CL), and Q is the orthant
RmC1
C , then F(� ) + Q is a convex set. For, taking x, p 2
� and q, r 2 Q, with 0 < ˛ < 1,

(1 � ˛)[F(p)C q]C ˛[F(x)C r]

� [F(�(˛; x; p)C (1 � ˛)qC ˛r] 2 Q:

From this follows (see [3,8,13]) the basic alternative the-
orem that

(BAT)
:(9x 2 � ) : F(x) < 0

, (90 ¤ � � 0) : �F(�) � 0:

Consider (P1) with inactive constraints omitted. If
(CL) holds, then (from (BAT)) (P1) reaches aminimum
at p if and only if there are nonnegative multipliers �
and �, not both zero, for which

�[ f (x) � f (p)]C �g(x) � 0; 8x:

If Slater’s constraint qualification holds, that g(c) < 0 for
some c, then � = 1 can be assumed. If f and g are direc-
tionally differentiable, then the directional derivatives
satisfy

f 0(p; d)C �g0(p; d) � 0

for each direction d. If f and g are Lipschitz functions
and (CL) holds, then

0 2 @( f C �g)(p); �g(p) D 0;

is necessary and sufficient for a minimum, where
@denotes here Clarke ’s subdifferential [2].

When is a vector function invex at a point p? As-
sume now twice differentiable functions, and expand

F(x) D F(p)C F 0(p)v C
1
2
v>F 00(p)�v C � � � ;

�(x; p) D v C
1
2
v>Q�v C � � � ;

where v = x � p, and v|F00(p)�v means that component
j of F has second order term v|Fj

00(p) v, and similarly
for v|Q�v; denote the matrix component k of Q� by Qk.
Then ([5]), by substituting in (INV), local invexity im-
plies that

F 00(p)s �
X
k

F 0(p)skQk

is positive semidefinite, for each s. Conversely, if each of
these matrices is positive definite, then F is locally invex
at p.

Some further classes of invex functions are de-
scribed as follows (see [9]). LetX0 be an open domain in
Rn, let A: X0!Rm be convex, and let B: X0!R be dif-
ferentiable and satisfy B(X0) � (0,1). Then A(�)/B(�)
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is invex if also B is convex with A(X) � � Rm
C, or if B

is concave with A(X0) � Rm
C. If g: X0 ! Rm is differ-

entiable, and g0(a) d < 0 for some direction d, then g is
invex at the point a.

Let �: Rn ! Rn be an invertible C2 mapping; let r:
R+! R+ be strictly increasing, with r(0) = 0, r0(0) = 0,
and r00(0) < 0 on some interval. Then r and h(�) := r ı k
� k are pseudoconvex, and h ı � is pseudo-invex (hence
also quasi-invex).

The invex property, and also pseudo-invex, quasi-
invex and V-invex, are also applicable when the
spaces Rn and Rm are replaced by infinite-dimensional
normed spaces of functions, such as occur in optimal
control (see [3,8]) and continuous programming (see
[7,20]). The definitions, and proofs of basic proper-
ties (see [3,7,8]), are unchanged, interpreting a � b as
a � b 2 Q, where the order cone Q is a closed con-
vex cone. Examples of spaces of control functions are
the spaces C(Rr) (respectively, PC(I, Rr)) of continu-
ous (respectively, piecewise continuous) functions from
an interval I into Rr , with the uniform norm, and the
space L2(I, Rr) of square-integrable functions from I
into Rr). Consider, for example, an integral objective
function f (x) :D

R T
0 �(x(t); ẋ(t); t) dt, where f 2

C1(0, T), � is differentiable, and ẋ(t) D ( d
d t )x(t). As-

sume boundary conditions x(0) = x0, x(T) = xT . De-
note �x (x(t); ẋ(t); t) :D ( @

@x )�(x(t); t), and similarly
�ẋ . Then the gradient f 0(p) of f at p 2 C1[0, T) is given
by

f 0(p)z D
Z T

0
�x (p(t); ṗ(t); t)z(t) dt

D

Z T

0

�
�x (p(t); ṗ(t); t)�

d
dt
�ẋ (p(t); ṗ(t); t)

�

� z(t) dt

after integrating by parts. Then f is imvex if, for some
scale function �,

f (x)� f (p)

�

Z T

0

�
�x (p(t); ṗ(t); t)�

d
dt
�ẋ (p(t); ṗ(t); t)

�

� �(x(t); p(t); t) dt:

For a constraint  (x(t), t)� 0 (8t 2 [0, T]), the analog
of the term

P
�j gj(x) in the Lagrangian is

Z T

0
�(t) (x(t); t) dt;

and invexity requires that
Z T

0
�(t)

�
 (x(t); t)�  (p(t); t)

�
dt

�

Z T

0
�(t) x(p(t); t)�(x(t); p(t); t) dt:

There are converse KKT and duality properties for such
infinite-dimensional problems (see e. g. [8,20]), using
invexity quite similarly to finite-dimensional problems.

See also

� Generalized Concavity in Multi-objective
Optimization

� Isotonic Regression Problems
� L-convex Functions and M-convex Functions
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Problem Statement

Given a finite set X with an ordering 4, a real function
g on X and a positive weight function w on X, the iso-
tonic regression problem is to find a function g� which

minimizes
X
x2X

[g(x) � f (x)]2w(x);

among the class F of isotonic functions f defined on X,
i. e.

F D f f : 8x; y 2 X and x � y) f (x) � f (y)g :

The function g� is called isotonic regression, and it exists
and is unique [5].

Isotonic regression can be viewed as a least squares
problem under order restrictions; here, order restric-
tions on parameters can be regarded as requiring that
the parameter, as a function of an index, will be isotonic
(the adjective ‘isotonic’ is used as a synonym for ‘order
preserving’) with respect to an order on the index set.

If4 is reflexive, transitive, antisymmetric and every
pair of elements are comparable, the problem is called
simple order isotonic regression.

A very important result in the theory of isotonic
regression, is that the increasing function f closest to
a given function g on X in the (weighted) least squares
sense, can be constructed graphically. A geometrical in-
terpretation of isotonic regression over a simple order
finite set X = {x1, . . . , xn} is the following. Let Wj =P j

iD1 w(xi) and Gj =
P j

iD1 g(xi) w(xi); the points Pj

= (Wj, Gj) obtained plotting the cumulative sums Gj

against the cumulative sums Wj, j = 0, . . . , n (W0 = 0,
G0 = 0), constitute the cumulative sum diagram (CSD)
of a given function g with weights w. The isotonic re-
gression of g is given by the slope of the greatest convex
minorant (GCM) (i. e., the graph of the supremum of
all convex functions whose graphs lie below the CSD)
of the CSD; the slope of the segment joining Pj� 1 to Pj

is just g(xj), j = 1, . . . , n, while the slope of the segment
joining Pi� 1 to Pj, i� j is the weighted average

Avfxi ; : : : ; x jg D

P j
rDi g(xr)w(xr)P j

rDi w(xr)
:

Therefore, the value of the isotonic regression g� at the
point xj is just the slope of the GCM at the point P�j =

(Wj,G�j ), whereG�j =
P j

iD1g
�(xi)w(xi). Note that, if P�j

is a ‘corner’ of the graph, g� is the slope of the segment
extending to the left. An illustrative example is shown
in Fig. 1.
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Isotonic Regression Problems, Figure 1
Example of CSD and GCM

Other isotonic regression problems are based on
a less restrictive kind of order: partial order and quasi-
order. In the partial order isotonic regression problem
the binary relation 4 on X is reflexive, transitive and
antisymmetric, but there may be noncomparable ele-
ments. In the quasi-order isotonic regression problem,
the ordering relation satisfies only the first two condi-
tions.

The isotonic regression problem arises in both
statistics and operations research. Applications in
statistics are discussed in [2,10] and [14]. Applications
in operations research can be found in [11] and [15].

The problem under consideration is also of theoret-
ical interest being one of the very few quadratic prob-
lems known for which strongly polynomial solution al-
gorithms exist (an algorithm is said to be strongly poly-
nomial if the number of elementary arithmetic opera-
tions it requires is a polynomial in the problem param-
eter and not just the size of the input data). That is why
many researcher in the area of order restricted statisti-
cal inference have paid a great deal of attention to the
problem of developing algorithms for isotonic regres-
sion. Most of the algorithms proposed involve averag-
ing g over suitably selected subsets S of X on each of
which g�(x) is constant.

The Pool Adjacent Violators Algorithm

The first and the most widely used algorithm for the
simply ordered isotonic regression is the pool adjacent
violators algorithm (PAV) proposed by M. Ayer et al.
[1] in 1955.

This algorithm follows directly from the geometri-
cal interpretation of isotonic regression. As it is said be-
fore, the solution of the problem under consideration is
given by the left derivative of the greatest convex func-
tion lying below the CSD. If, for some index i, g(xi� 1)
> g(xi), then the graph of the part of the GCM between
the points P�i�2 and P�i is a straight line segment. Thus
the CSD could be altered by connecting Pi� 2 with Pi

by a straight line segment, without changing the GCM.
The PAV algorithm is based on this idea of successive
approximation to the GCM. (See Fig. 2 for a geometri-
cal interpretation of ‘pooling’ adjacent violators.)

In describing the algorithm, an arbitrary set of con-
secutive elements of X will be referred to as a block. The

Isotonic Regression Problems, Figure 2
Geometrical interpretation of pooling adjacent violators
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aim is to find the solution blocks, that is a partitioning
of X into sets on each of which the isotonic regression
function g� is constant.

The PAV algorithm starts from the initial block
class � consisting of the singleton sets {xi}, 1 � i �
n. At each stage of the algorithm, a new block class is
obtained from the previous block class by joining the
blocks together until the final partition is reached. If
g(x1) � � � � � g(xn), then the initial partition is also the
final partition, and g�(xi) = g(xi), i = 1, . . . , n.

Otherwise, select any of the pairs of violators of the
ordering; that is, select an index i such that g(xi) >
g(xi + 1).‘Pool’ these two values of g: i. e., join the two
points xi and xi + 1 in a block {xi, xi + 1} ordered be-
tween {xi� 1} and {xi + 2}, and associate to this block
the average value Av {xi, xi + 1} and the weight w(xi)
+ w(xi + 1). After each step in the algorithm, the aver-
age values associated with the blocks are examined to
see whether or not they are in the required order. If
so, the final partition has been reached, and the value
of g� at each point of a block is the ‘pooled’ value as-
sociated with the block. If not, a pair of adjacent vi-
olating blocks is selected, and pooled to form a single
block, with associated weight the sum of their weights
and associated average value the weighted average of
their average values, completing another step of the al-
gorithm.

A pseudocode for PAV algorithm is presented be-
low, where B is the first block in � and B+ is the block
that follows B in the blocks partition.

� = ffx1g; : : : ; fxngg
REPEAT

set B and B+
WHILE B+ ¤ 0

IF AvB � AvB+ THEN
� = � n fB; B+g [ fB [ B+g

B = B [ B+
g�(x) = AvB, 8x 2 B

ELSE
B = B+

ENDIF
B+ = succ(B)

ENDWHILE
UNTIL there are no violating blocks

A pseudocode for PAV algorithm

S.J. Grotzinger and C. Witzgall [9] have shown that
the computational complexity of the PAV algorithm
is O(n).

Minimum Lower Set Algorithm

The first algorithm proposed for partially order isotonic
regression is theminimum lower sets (MLS) due to H.D.
Brunk [4].

For describing this algorithm, as for most of the al-
gorithms for general partial order, it is convenient to
introduce the concept of ‘level set’ that generalizes the
concept of ‘block’. In order to define this set, important
concepts are lower and upper set. A set L � X is called
lower set if 8x 2X and 8y 2 Lwith x4 y) x 2 L. A set
U � X is called upper set if 8x 2 X and 8y 2 U with x
4 y) x 2 U. Finally, S � X is called level set if there
are a lower set L� X and an upper set U � X such that
S = L \ U.

The isotonic regression with respect to any partial
order is constant on level sets. TheMLS algorithm com-
putes the isotonic regression function by partitioning X
into l level sets S1, . . . , Sl such that AvS1 < � � � < AvSl.
In doing that, the algorithm performs l steps in each
of which searches for the largest level set of minimum
average Si among the level sets Li + 1 \ LCi , where LCi
is the complement of Li. The isotonic regression values
are given by the weighted average of the observations in
each of the level set that belong to the solution partition.

In the following a pseudocode for MLS algorithm is
given, where L is the lower set family of X.

M.J. Best and N. Chakravarti [3] have proved that
the MLS algorithm is of computational complexity
O(n2).

select L1 � X : AvB1 = AvL1
= minfAvL : L 2 Lg

i = 1
REPEAT

i = i + 1
select L2 � X : AvBi = Av(L2 \ LC1 )

= minfAv(L \ LC1 ) : L 2 Lg
L1 = L2

UNTIL X is exhausted
g�(x) = AvBj ; 8x 2 Bj ; j = 1; : : : ; i

A pseudocode for MLS algorithm
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Other Algorithms

Several other algorithms are available for solving the
isotonic regression problem as well as its various spe-
cial cases. Their description are provided in [2,3,6,7,8,
10,11,12,13,15], among others.

Best and Chakravarti, in their paper [3], have
pointed out that several of the proposed algorithms are
active set quadratic programming methods and that this
methodology provides a unifying framework for study-
ing algorithms for isotonic regression.

See also

� Regression by Special Functions
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C.E. Shannon’s seminal discovery [7] (1948) of his en-
tropy measure in connection with communication the-
ory has found useful applications in several other prob-
abilistic systems. E.T. Jaynes has further extended its
scope by discovering the maximum entropy principle
(MaxEnt) [1] (1957) which is inherent in the process
of optimization of the entropy measure when some in-
complete information is given about a system in the
form of moment constraints. MaxEnt has, over the past
four decades, given rise to an interdisciplinary method-
ology for the formulation and solution of a large class
of probabilistic systems. Furthermore, MaxEnt’s natu-
ral kinship with the Bayesian methods of analyses has

further bolstered its importance as a viable tool for sta-
tistical inference.

Entropy and Uncertainty

The word entropy first originated in the discipline of
thermodynamics, but Shannon entropy has a much
broader meaning since it deals with the more perva-
sive concept of information. The word entropy itself
has now crept into common usage to mean transforma-
tion of a quantity, or phenomenon, from order to disor-
der. This implies an irreversible rise in uncertainty. In
fact, the word uncertainty would have been more un-
ambiguous as to its intended meaning in the context of
information theory, but for historic reasons, the usage
of the word entropy has come to stay in the literature.

Uncertainty arises both in probabilistic phenomena
such as in the tossing of a coin and, equally well, in de-
terministic phenomena where we know that the out-
come is not a chance event, but we are merely fuzzy
about the possibility of the specific outcome. What is
germane to our study of MaxEnt is only probabilistic
uncertainty. The concept of probability that is used in
this context is what is generally known as the subjec-
tive interpretation as distinct from the objective inter-
pretation based on frequency of outcome of an event.
The subjective notion of probability considers a prob-
ability distribution as representing a state of knowledge
and hence it is observer dependant.

The underlying basis for an initial probability as-
signment is given by the Laplace’s principle of insuf-
ficient reason. According to this, if in an experiment
with n possible outcomes, we have no information ex-
cept that each probability pi � 0 and

Pn
iD1pi = 1,

then the most unbiased choice is the uniform distribu-
tion: (1/n, . . . , 1/n). Laplace’s principle underscores the
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choice of maximum uncertainty based on logical rea-
soning only.

Why ChooseMaximumUncertainty?

We shall now consider the example of a die in order to
highlight the importance of maximum uncertainty as
a preamble to our later discussion ofMaxEnt. When the
only information available is that the die has six faces,
the uniform probability distribution (1/6, . . . , 1/6), sat-
isfying the natural constraint

nX
iD1

pi D 1; p1 � 0; : : : ; p6 � 0; (1)

represents the maximum uncertainty. If, in addition, we
are also given the mean number of points on the die,
that is, if we are given that

p1 C 2p2 C 3p3 C 4p4 C 5p5 C 6p6 D 4:5; (2)

the choice of distributions is restricted to the incom-
plete information given by both (1) and (2), and, conse-
quently, the maximum uncertainty encountered at the
first stage is reduced. Since there are only two indepen-
dent equations in six variables, there is an infinity of
probability distributions satisfying the constraints. Out
of all such distributions, one can anticipate the exis-
tence of a distribution giving rise to the maximum un-
certainty Smax. The importance of Smax can be deduced
from a careful consideration of the process by which
uncertainty is reduced (or never increased) by provid-
ing more and more information in terms of moment
constraints. If we use any distribution from amongst
the infinity of distributions satisfying the constraints
that is different from the one corresponding to Smax,
it would imply that we would be using some informa-
tion in addition to those given by (1) and (2). But scien-
tific objectivity would behoove that we should use only
the information that is given to us, and scrupulously
avoid using any extraneous information. The principle
of maximum uncertainty can, accordingly, be stated as:

Out of all probability distributions consistent
with a given set of constraints, the distribution
with maximum uncertainty should be chosen.

At first glance, it may seem paradoxical that while the
goal is reduction of uncertainty, we are actually trying

to maximize it. However, what we are ensuring by the
principle of maximum uncertainty is that we are maxi-
mally uncertain about what we do not know.

Shannon Entropy

The conclusion from the example of the die is that in
making inferences based on incomplete information,
the probability distribution that has the maximum un-
certainty permitted by the available information should
be used. It is therefore necessary to have a quantita-
tive measure of uncertainty in a probability distribu-
tion. A unique function was defined by Shannon [7] to
measure uncertainty. Let p = (p1, . . . , pn) be a probabil-
ity distribution satisfying the natural constraint

nX
iD1

pi D 1: (3)

Shannon’s measure of entropy (uncertainty) for this
distribution is given by

S D �
nX

iD1

pi ln pi (4)

Shannon arrived at this unique measure by first stat-
ing the desirable properties that such a measure should
have. Since not all this long list of properties are in-
dependent, he considered a smaller independent set of
properties and deduced the uniqueness of (4). Similarly,
A.I. Kinchin [5] assumed a different independent set
and arrived at the same measure.

The Shannon entropy measure is the basis for
Jaynes’ maximum entropy principle. Of particular im-
portance is the property of concavity of the measure
which guarantees the existence of a maximum entropy
distribution with all pi � 0. Shannon’s work in infor-
mation theory did not involve optimization and as such
he did not make use of the concavity property whereas
here, it is central to the development.

Jaynes’ Maximum Entropy Formalism

Wewill now present Jaynes’ maximum entropy formal-
ism based on discrete multivariate distributions of the
random variable X and state some important results
arising from it.

The ensemble,

(X; p) D ((x1; p1); : : : ; (xn ; pn));
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where n is finite, represents all the possible realizations
ofX and their probabilities of occurrence. p is estimated
by maximizing the Shannon measure (4) subject to the
natural constraint (3) and the moment constraints

nX
iD1

pi gr i D ar ; r D 1; : : : ;m; pi � 0: (5)

The Lagrangian is given by

L D �
nX

iD1

pi ln pi � (�0 � 1)

 nX
iD1

pi � 1

!

�

mX
rD1

�r

 nX
iD1

pi gr i � ar

!
(6)

where �0, . . . , �m are the (m + 1) Lagrange multipliers
corresponding to the (m + 1) constraints of (3) and (5).

@L
@pi
D 0) � ln pi � �0 �

mX
rD1

�r gr i D 0 (7)

or,

pi D exp(��0 � �1g1i � � � � � �m gmi ); (8)

for i = 1, . . . , n. The m multipliers are determined by
substituting for pi from (8), in (3) and (5) so that

nX
iD1

exp

0
@��0 �

mX
jD1

� j g ji

1
A D 1 (9)

and

nX
iD1

gr i exp

0
@��0 �

mX
jD1

� j g ji

1
A D ar ; (10)

for r = 1, . . . ,m, or

exp(�0) D
nX

iD1

exp

0
@�

mX
jD1

� j g ji

1
A (11)

and

ar exp(�0) D
nX

iD1

gr i exp

0
@�

mX
jD1

� j g ji

1
A ; (12)

for r = 1, . . . ,m so that

ar D

Pn
iD1 gr i exp

�
�
Pm

jD1 � j g ji
�

Pn
iD1 exp

�
�
Pn

jD1 � j g ji
� ; (13)

r = 1, . . . , m. Equation (11) gives �0 as a function of �1,
. . . , �m. Equations (13) give a1, . . . , am as functions of
�1, . . . , �m.

Based on the above formalism, we can derive the fol-
lowing results which are useful in applications.
� The Lagrange multiplier �0 is a convex function of
�1, . . . , �m.

� The value of the maximum entropy Smax = �0 + �1a1
+ � � � + �mam.

� Smax is a concave function of a1, . . . , am.
� The Lagrange multipliers �1, . . . , �m are the partial

derivatives of Smax with respect to a1, . . . , am, respec-
tively.

� An alternative proof that MaxEnt gives globally
maximum values of entropy, that is, Smax �S � 0,
can be given on the basis of Shannon’s inequality

nX
iD1

qi ln
qi
pi
� 0 (14)

where q is the probability distribution with entropy
S.

� Jaynes’ formalism also leads to Jaynes’ entropy con-
centration theorem that asserts that the constrained
maximum probability distribution is the one that
best represents our state of knowledge about the be-
havior of the system and that MaxEnt is the pre-
ferred method of inferring that distribution. The
conclusion is based on (14) and the chi-square test.

� Jaynes’ formalism is applicable to continuous-
variate probability distributions also.

� In our earlier discussion, we had stated that the
statement of the Laplace’s principle of insufficient
reason was based purely on logic. We can now
show that uniform distribution results fromMaxEnt
when only the natural constraint (3) is specified.

Applications of MaxEnt and Conclusions

As the very first application, Jaynes demonstrated the
power of MaxEnt by deriving all the principal distribu-
tions of statistical mechanics without reference to the
classical methods of derivation [1]. An important appli-
cation that closely followed the application of MaxEnt
to statistical mechanics, was the correspondence that
M. Tribus [9,10] established with the laws of thermo-
dynamics. This application, incidentally, clarified the
connection between the Shannon entropy and ther-
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modynamic entropy. He also demonstrated that most
of the statistical distributions that are commonly en-
countered can be derived from MaxEnt by making use
of appropriate moment constraints, which, later, came
to be known as characterizing moments. Thus, he es-
tablished the integral link between information theory
and statistics. For example, the normal distribution is
a maximum-entropy distribution resulting from maxi-
mizing the Shannon entropy with respect to the char-
acterizing moments of mean and variance.

These remarkable successes set in motion the ap-
plications of MaxEnt in several other disciplines. To
name only a few, MaxEnt has been applied to prob-
lems in urban and regional planning, transportation,
business, economics, finance, statistical inference, op-
erations research, queueing theory, nonlinear spec-
tral analysis, pattern recognition and image process-
ing, computerized tomography, risk analysis, popula-
tion growthmodels, chemical reactions andmany other
areas. These are all problems that are inherently prob-
abilistic in nature or, alternatively, where the MaxEnt
model is made to fit by artificially interpreting prob-
abilities as proportions. References to these problems
can be found in [2,3,4].

For the past ten years, the direction of research into
MaxEnt has gone in the direction of using the princi-
ple in conjunction with Bayes theorem. There has been
a series of workshops conducted under this heading
which appears in the series [6].

Also of great interest is the concept of minimum
entropy which is found useful in recognizing patterns
contained in an information structure. However, re-
search in this direction has been hampered by the com-
putational complexity in determining the quantity be-
cause it results from the global minimization of a con-
cave function which is a NP-hard problem.

Closely associated with MaxEnt are the methods of
optimization based on Kullback–Leibler measure [8]
to measure distance between two probability distribu-
tions. However, the school dedicated to the use of Max-
Ent steers clear of this approach since it does not in-
volve the concept of entropy.

See also

� Entropy Optimization: Interior Point Methods
� Entropy Optimization: Parameter Estimation

� Entropy Optimization: Shannon Measure of
Entropy and its Properties

�Maximum Entropy Principle: Image Reconstruction
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The job-shop problem may be formulated as follows.
Given are n jobs j = 1, . . . , n and m machines M1, . . . ,
Mm. Job j consists of a sequence

O1 j; : : : ;On j; j

of nj operations which must be processed in the given
order, i. e. Oi + 1, j cannot start before Oij is completed
for i = 1, . . . , nj�1. Associated with each operation Oij

there is a processing time pij and a machine �ij 2 {M1,
. . . , Mm}. Oij must be processed for pij time units on
machine �ij. Each job can be processed by at most one
machine at a time and each machine can process only
one operation at a time. If not stated differently pre-
emptions of operations are not allowed. One has to find
a feasible schedule which minimizes the makespan.

It is assumed that all processing times are nonnega-
tive integers and that all jobs andmachines are available
at starting time zero. Furthermore, if not stated differ-
ently, machine repetition is allowed, i. e. �i + 1, j = �ij is
possible.

For a precise formulation of the job-shop problem,
let O be the set of all operations, let p(k) be the process-
ing time of operation k 2 O, and define (k, l) 2 C if and
only if k =Oij and l = Oi + 1, j for some job j and some i =
1, . . . , nj� 1. Finally, letM(k) be the machine on which
operation kmust be processed.

Then the job-shop problem may be formulated
as disjunctive linear program (cf. � Linear program-
ming):

minmax
k2O
fs(k)C p(k)g (1)

such that

s(k)C p(k) � s(l)

for all k; l 2 O; (k; l) 2 C; (2)

s(k)C p(k) � s(l) or s(l)C p(l) � s(k)

for all k; l 2 O; k ¤ l ; M(k) D M(l); (3)

s(k) � 0 for all k 2 O: (4)

s(k) represents the starting time of operation k. Due to
(2) all operations of the same job are processed in the

right order. The constraints (3) make sure that a ma-
chine cannot process two operations at the same time.

The job-shop problem may be represented by
a mixed graph G = (O, C, D) with vertex set O, the set
C of (directed) arcs, and a set D = {{k, l}: k, l 2 O; k 6D
l;M(k) =M(l)} of (undirected) edges. Furthermore, the
processing time p(k) is associated with each vertex k 2
O. The arcs are called conjunctions and the edges are
called disjunctions.

The basic scheduling decision is to define a process-
ing order of the operations on each machine, i. e. to fix
precedence relations between these operations.

In the mixed graph model this is done by orienting
edges, i. e. by turning disjunctions into conjunctions.
A set S of these oriented edges is called an orientation.
An orientation S is called a complete orientation if
� every edges becomes oriented; and
� the resulting directed graph G(S) = (O, C [ S) has

no cycles.
A complete orientation S defines a feasible schedule

which is calculated in the following way. For each oper-
ation k let l(k) be the length of a longest path to vertex
k in G(S). A path to k is a sequence of vertices v1, . . . ,
vr = k with (vi, vi + 1) is an arc for i = 1, . . . , r �1. The
length of a path P to k is the sum of all processing times
of operations in P excluding operation k. Choose l(k) as
the starting time of operation k. It is not difficult to see
that this schedule is feasible. Furthermore, the length of
the longest path in G(S) defines the makespan of this
schedule. A corresponding path is called critical path.

On the other hand a feasible schedule s D (s(k))k2O
defines a complete orientation S and the critical path
length in G(S) is not greater than the makespan of the
schedule s. Thus, one may restrict attention to sched-
ules defined by complete orientations.

There are only a few special cases of the job-shop
problem which are polynomially solvable (cf. � Com-
plexity classes in optimization). They will be discussed
next.

Complexity Results

The two-machine job-shop problem in which each job
has at most two operations can be solved by a simple
extension of Johnson’s algorithm for the two machine
flow-shop problem [16]. Let Ii be the set of jobs with
operations onMi only (i = 1, 2), and let I1, 2 (I2, 1) be the
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set of jobs which are processed first on M1 (M2) and
then onM2 (M1). Order the latter two sets by means of
Johnson’s algorithm and the former two sets arbitrarily.
Then one obtains an optimal schedule by executing the
jobs on M1 in order (I12, I1, I21) and on M2 in order
(I21, I2, I12).

In [15] the two-machine job-shop problem with
unit-time operations (pij = 1) and no machine repeti-
tion is solved in time linear in the total number of oper-
ations, through a rule that gives priority to the longest
remaining job. Despite the fact that this algorithm is
fast it is not polynomial if we represent each job j by
the machine which processes the first operation O1j and
the number nj of operation of j. However, there ex-
ists a clever implementation of this algorithm which is
polynomial ([17,26]). Surprisingly, the problem is NP-
hard if we allow repetition of machines [12].

This, however, is probably as far as one can get if the
number of jobs is not fixed but part of the input. Two-
machine job-shop problems with nj � 3 or pij 2 {1, 2}
are NP-hard as well as three machine problems with nj
� 2 or pij = 1 ([18,19]).

The job-shop problem with two jobs may be for-
mulated as a shortest path problem in the plane with
regular objects as obstacles [2]. Figure 1 shows a short-
est path problem with obstacles which corresponds to
a job-shop problem with two jobs with n1 = 4 and n2 =
3. The processing times of the operations of job 1 (job 2)
are represented by intervals on the x-axis (y-axis) which
are arranged in the order in which the corresponding
operations are to be processed. Furthermore, the inter-
vals are labeled by the machines on which the corre-
sponding operations must be processed.

A feasible schedule corresponds to a path from 0
to F consisting of segments which are either paral-
lel to one of the axes or diagonal, and avoids the in-
terior of any rectangular obstacle. If one defines the
length of the diagonal parts of the path to be equal
to the projections of these parts on one of the axes
then the length of the path corresponds to the length
of the schedule. It can be shown that this geometric
problem can be formulated as a shortest path prob-
lem in an acyclic network with O(r2) arcs where r =
max{n1, n2} and that this network can be calculated
in time O(r2 log r) which is also the complexity for
solving the problem [7]. The corresponding preemp-
tive problem can be solved in O(r3) time by allowing

Job-shop Scheduling Problem, Figure 1
Path problem with obstacles

the paths to go horizontally or vertically through the
obstacles [24].

The two-machine job-shop problem with a fixed
number k of jobs has been solved with time complex-
ity O(n2k) [9]. However, the three machine job-shop
problem with k = 3 is NP-hard [25] (cf. also � Com-
plexity theory). If one allows preemption even the two-
machine problem with k = 3 is NP-hard [12]. This
is very surprising because the corresponding problem
without preemption is polynomially solvable.

Branch and Bound Algorithms

Effective branch and bound algorithms (cf. � Integer
programming: Branch and bound methods) have been
developed for the job-shop scheduling problem from
the 1990s onwards ([3,11,13,20]). Rather than a de-
scription of each of these algorithms in detail some
of the main concepts, like lower and upper bounds,
branching rules, and immediate selection are presented.

Most of the branch and bound algorithms use the
mixed graph model. The nodes of the enumeration tree
correspond to orientations of edges representing sets
of feasible schedules. Branching is done by adding fur-
ther orientations in different ways. The leaves of the
enumeration tree correspond to complete orientations
while the root is defined by the empty orientation.
Given an orientation S one may define heads and tails.
A head r(k) of operation k is a lower bound for an ear-
liest possible starting time of k. A tail q(k) of operation
k is a lower bound for the time period between the fin-
ishing time of operation k and the optimal makespan.
A simple way to derive a head r(k) would be to calcu-
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late the length of a longest path to k in G(S). Similarly,
a tail q(k) could be calculated as the length of a longest
path starting in k excluding p(k).

Let P be a critical path inG(S) and L(S) be the length
of P. Amaximal sequence u1, . . . , ul of successive opera-
tions in P to be processed on the same machine is called
a block if it contains at least two operations.

The following block theorem is used in connection
with branch and bound algorithms. It also plays an
important role when defining neighborhoods for local
search methods.

Theorem 1 (block theorem) Let S be a complete ori-
entation. If there exists another complete orientation S0

such that L(S0)< L(S), then in S0 at least one operation of
some block B of G(S) has to be processed before the first
or after the last operation of B.

Upper Bounds

Each feasible solution provides an upper bound. At the
root of the enumeration tree some time is invested for
calculating a good upper bound to start with. This is ac-
complished by applying tabu search using an appropri-
ate neighborhood. Some branch and bound algorithms
also calculate heuristically a feasible solution satisfying
the given orientation in each vertex of the enumeration
tree. If this solution provides a better upper bound than
the current one then the current bound is updated. Fur-
thermore, informations provided by the heuristic solu-
tion are used for the branching process.

Lower Bounds

Lower bounds are calculated for each node of the enu-
meration tree, i. e. for the set of solutions feasible with
respect to the current orientation S. Lower bounds may
be calculated constructively or destructively. Construc-
tive lower bounds are calculated by solving relaxations
of the problem. The destructive methods work as fol-
lows. For a given integer U one tries to prove that there
exists no feasible solution with value Cmax � U. In this
case U + 1 is a valid lower bound. In case of a failure
one repeats the test for a smaller U-value. Binary search
can be applied to find a large lower bound.

The length of a critical path in G(S) provides a con-
structive lower bound which can be calculated fast.
Good bounds are provided by certain one-machine
relaxations denoted as head-body-tail problem: Given

a set of jobs j = 1, . . . , n with release times (heads) r(j),
processing times p(j), and tails q(j) to be processed on
a single machine. Find a schedule with starting times
s(j) satisfying the release times such that maxnjD1 {s(j) +
p(j) + q(j)} is minimized.

Unfortunately the one-machine head-body-tail
problem is NP-hard. However, the preemptive version
of this problem can be solved in time O(n log n) by ap-
plying the following scheduling rules:
� Take the release times and completion times as de-

cision points.
� Schedule jobs in increasing order of decision points

preferring an available job with longest tail.
By applying this algorithm to all operations to be pro-
cessed onMk one gets a lower bound Lk (k = 1, . . . , m).
The best of all these Lk-values is chosen.

Other constructive lower bounds are based on
two job relaxations [10] and cutting plane approaches
(cf. also � Integer programming: Cutting plane algo-
rithms) [3].

For destructive methods one assumes that U is a fic-
tive upper bound and wants to prove that no feasible
schedule satisfying Cmax�U exists. FromU one derives
the time window [r(k), d(k)] with d(k) = U �q(k) in
which each operation kmust be processed if U is valid.
For each job j = 1, . . . , n let Sj the set of schedules for j
which are feasible with respect to its time window. The
feasibility problem can be reduced to a zero-one linear
program as follows. For each schedule � 2 Sj (j = 1, . . . ,
n) one defines a(� , i, t) = 1 if � requires machine Mi

in time-period [t �1, t] and a(� , i, t) = 0 otherwise. Let
xj � a 0–1 decision variable that indicates whether job j
is scheduled according to schedule � . Then there exists
no feasible schedule if and only if the following linear
program has an optimal solution value �� > 1 (see [20]).

min� (5)

such that
X
�2S j

x j� D 1; j D 1; : : : ; n; (6)

nX
jD1

X
�2S j

a(�; i; t)x j� � �;

i D 1; : : : ;m; t D 1; : : : ;U; (7)

x j� 2 f0; 1g; j D 1; : : : ; n; � 2 S j: (8)
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Due to (6) exactly one schedule is chosen from each
set Sj. The left-hand side of (7) counts the number of
jobs to be processed on machine Mi in time-period
[t�1, t]. Thus, one has a feasible schedule if and only
if �� = 1. To check infeasibility one uses the continuous
version of (5) to (8) where (8) is replaced by

x j� � 0; j D 1; : : : ; n; � 2 S j:

A second destructive lower bound based on immediate
selection will be discussed later.

Branching

The simplest branching scheme is to choose a not yet
oriented edge and orient it in the two possible ways.
Another more sophisticated branching scheme is based
on the block theorem. There is a branch to several chil-
dren of the same father node in the enumeration tree.
The idea behind such a branching is to orient many
edges when branching (see [11]). In [20] a time oriented
branching schemes has been used.

Immediate Selection

By branching disjunctions are oriented. There is an-
other method to orient disjunctions which is due to
[13]. This method is called immediate selection. It uses
an upper bound UB for the optimal makespan and sim-
ple lower bounds based on heads r(k) and tails q(k) of
operations k.

Let I be a set of n operations to be processed on the
same machine and consider a strict subset J � I and an
operation c 2 I \ J. If condition

min
j2J[fcg

r( j)C
X

j2J[fcg

p( j)Cmin
j2J

q( j) � UB (9)

holds, then all operations j 2 Jmust be processed before
operation c if we want to improve the current upper
bound UB. This follows from the fact that the left-hand
side of (9) is a lower bound for all schedules in which c
does not succeed all jobs in J. Due to integrality, (9) is
equivalent to

min
j2J[fcg

r( j)C
X

j2J[fcg

p( j)Cmin
j2J

q( j) > UB � 1

or
min

j2J[fcg
r( j)C

X
j2J[fcg

p( j) > max
j2J

d( j); (10)

where d(j) := UB � q(j)� 1.

(J, c) is called a primal pair if (9) or, equivalently,
(10) holds. The corresponding arcs j! c with j 2 J are
called primal arcs. Similarly, (c, J) is called a dual pair
and arcs c! j are called dual arcs if

min
j2J

r( j)C
X

j2J[fcg

p( j) > max
j2J[fcg

d( j) (11)

holds. In this case all operations j 2 J must be processed
after operation c if we want to improve the current so-
lution value UB.

It can be shown [9] that all primal and dual arcs for
the set I can be calculated in O(n2) time.

Immediate selection is applied to speed up a branch
and bound algorithm. For each machine the set I of all
operations to be processed on this machine is consid-
ered and all corresponding primal and dual arcs are cal-
culated. Then heads and tails are recalculated and the
whole process is repeated until there are no new primal
or dual arcs to be added.

By this method the orientation S is increased step by
step. A possible outcome of this process is that one de-
duces a graph G(S) which contains cycles. This implies
that there exists no feasible solution with makespan �
UB.

Immediate selection and a corresponding cycle
check is applied to each node of the enumeration tree.
If the cycle check is positive, one can backtrack.

Immediate selection is also used to calculate a lower
bound by the destructive method.

Heuristic Procedures

Using a branch and bound algorithm and immediate
selection J. Carlier and E. Pinson [13] were able to
solve the notorious 10 × 10 benchmark problem in [21]
for the first time. Recently (2000), 15 × 15 benchmark
problems have been solved [6]. Problems of dimension
n × n for n > 15 are still out of the reach if one is
interested in optimal solutions. Thus, the only way to
find solutions for larger job-shop problems is to apply
heuristics, which provide solutions which are not too
far away from the optimum. Some of these heuristics
will be discussed next.

Priority Rule Based Heuristics

These are probably most frequently applied due to their
ease of implementation and low computation times.
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The idea of a priority heuristic is to schedule opera-
tions step by step each as early as possible. In each step
among all unscheduled operations with the property
that their conjunctive predecessors are scheduled a can-
didate with the highest priority is chosen to be sched-
uled next. For extended summaries and discussions of
priority rules see [5,14,23].

Shifting Bottleneck Heuristic

(See [1,4].) This is one of the most powerful heuristics
for the job-shop scheduling problem. In each iteration
a machine Mi is chosen and all disjunctions between
operations to be processed on Mi are oriented. This is
done according to the exact solution of the head-body-
tail problem forMi. Thus, after k steps the disjunctions
for k machines are oriented. Let Mk the set of these k
machines. Before choosing a new machine Mi 62Mk in
the next step the orientations for the machines in Mk

are updated by applying the head-body-tail algorithm
to each of the machines in Mk in a given machine or-
der. As amachineMi 62Mk added toMk in the next step
a bottleneck machine is chosen. A bottleneck machine is
a machineMi 62Mk with a largest head-body-tail prob-
lem solution value. It is important to note that before
each application of the solution procedure for a head-
body-tail problem heads and tails are updated accord-
ing to the current orientation.

Local Search

An important class of heuristics are local search meth-
ods like iterative improvement, simulated annealing (cf.
� Simulated annealing), tabu search and genetic algo-
rithms (cf. � Genetic algorithms). All these methods
have been applied to the job-shop problem (see [27] for
an excellent survey).

The local search techniques are based on the con-
cept of local improvement. Given an existing solution
or representation of such a solution, a modification is
made in order to obtain a different (usually better) so-
lution.

For the job-shop problem solutions are represented
by complete orientations. To modify a solution one
usually restricts to critical paths (which must be de-
stroyed for improving the current makespan). One pos-
sibility for modifications is to choose an arc (v, w) on

a critical path such that v and w are processed on the
same machine and replace (v, w) by the reverse arc (w,
v). It can be shown that the corresponding new orien-
tation is complete again, i. e. no cycles are created by
such a reversal. Other modifications are based on the
block theorem. One modifies an orientation by shifting
an operation of some block at the beginning or the end
of the block. Such modifications are not defined if the
resulting selections are not complete, i. e. contain cy-
cles.

One of the best local search methods in terms of so-
lution quality and computation time is a tabu search
procedure described in [22].

See also

�MINLP: Design and Scheduling of Batch Processes
� Stochastic Scheduling
� Vehicle Scheduling
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L.V. Kantorovich was born in St. Petersburg, Russia,
on January 6, 1912 and died on April 7, 1986. Kan-
torovich shared the 1975 Nobel Prize for Economics
with T. Koopmans for their work on the optimal allo-
cation of scarce resources [4,5].

Kantorovich was educated at Leningrad State Univ.,
receiving his doctorate in mathematics (1930) there
at the age of 18. He became a professor at Leningrad
in 1934, a position he held until 1960. He headed
the department of mathematics and economics in
the Siberian branch of the U.S.S.R. Academy of Sci-
ences from 1961 to 1971 and then served as head of
the research laboratory at Moscow’s Institute of Na-
tional Economic Planning (1971–1976). Kantorovich
was elected to the prestigious Academy of Sciences of
the Soviet Union (1964) and was awarded the Lenin

Prize in 1965. For detailed interesting information on
the life and scientific views of Kantorovich, see his pa-
per [2]

Kantorovich was one of the first to use linear pro-
gramming as a tool in economics. His most famous
work is [1]. The characteristic of Kantorovich’s work is
a combination of theoretical and applied research. His
first works concerned delicate problems of set theory.
Later he became one of the first Soviet specialists on
functional analysis. In the 1930s he laid down the foun-
dations of the theory of semi-ordered spaces which con-
stitutes now a vast chapter of functional analysis bor-
dering algebra and measure theory. At the same time
he anticipated the ideas of the future theory of general-
ized functions which became current only in the 1950s.
Kantorovich obtained beautiful results on approxima-
tion theory. The approach to Sobolev’s embedding the-
orem suggested by Kantorovich (based on his estima-
tions of integral operators) is well known.

See also

� History of Optimization
� Linear Programming
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In the mid 1960s R. Solomonoff [16], A.N. Kolmogorov
[11] and G. Chaitin [4] independently invented the field
now generally known as Kolmogorov complexity. It is
also known variously as algorithmic complexity, algo-
rithmic information, algorithmic entropy, Solomonoff-
Kolmogorov-Chaitin complexity, descriptional complex-
ity, shortest program length, algorithmic randomness
and others. An extensive history of the field can be
found in [14].

The Kolmogorov complexity formalizes the notion
of amount of information necessary to uniquely de-
scribe a digital object. A digital object means one that
can be represented as a finite binary string, for exam-
ple, a genome, an Ising microstate, or an appropriately
coarse-grained representation of a point in some con-
tinuum state space. In particular, the Kolmogorov com-
plexity of a string of bits is the length of the short-
est computer program that prints that string and stops
running. The Kolmogorov complexity of an object is
a form of absolute information of the individual ob-
ject. This is not possible to do by Shannon’s informa-
tion theory. Unlike Kolmogorov complexity, informa-
tion theory is only concerned with the average infor-
mation of a random source [14].

Solomonoff was addressing the problem: How do
we assign a priori probabilities to hypotheses when we

begin an experiment? He represented a scientist’s ob-
servations as a series of binary digits and weighted to-
gether all the programs for a given result into a proba-
bility measure. The scientist seeks to explain these ob-
servations through a theory, which can be regarded as
an algorithm capable of generating the series and ex-
tending it, that is, predicting future observations. For
any given series of observations there are always sev-
eral competing theories and the scientist must choose
among them. The model demands that the smallest al-
gorithm, the one consisting of the fewest bits, be se-
lected. Stated another way, this rule is the familiar for-
mulation of Occam’s razor: Given differing theories
of apparently equal merit, the simplest is to be pre-
ferred [6].

Thus in the Solomonoff model a theory that enables
one to understand a series of observations is seen as
a small computer program that reproduces the observa-
tions and makes predictions about possible future ob-
servations. The smaller the program, the more compre-
hensive the theory and the greater the degree of under-
standing. Observations that are random cannot be re-
produced by a small program and therefore cannot be
explained by a theory. In addition the future behavior
of a random system cannot be predicted. For random
data the most compact way for the scientist to commu-
nicate his or her observations is to publish them in their
entirety [6].

Kolmogorov and Chaitin independently suggested
that computers be applied to the problem of defining
what is meant by a random finite binary string of 0s and
1s [5]. In the traditional foundations of the mathemati-
cal theory of probability, as expounded by Kolmogorov
in his classic [10], there is no place for the concept of
an individual random string of 0s and 1s. Yet it is not
altogether meaningless to say that the string

001110100001110011010000111110

is more random than the string

000000000000000000000000000000

for we may describe the second string as thirty 0s, but
there is no shorter way to specify the first string than by
just writing it all out [5].

We believe that the random strings of a given length
are those that require the longest programs. Those
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strings of length n that can be obtained by putting into
a computer program much shorter than n are the non-
random strings. The more possible it is to compress
a binary string into a short program calculation, the less
random is the string.

Solomonoff, Kolmogorov and Chaitin saw that the
notion of ‘computable’ lay at the heart of their ques-
tions. They arrived at equivalent notions, showing that
these two questions are fundamentally related.

The Kolmogorov complexity of a string is low if
it can easily be obtained by a computation, whereas it
will be high if it is difficult to obtain it [1]. The dif-
ficulty is measured by the length of the shortest pro-
gram that computes the string on a universal Turing
machine. The use of Turing machines to determine the
length of the shortest program that computes a par-
ticular bit-string is intuitive: since a universal Turing
machine can simulate any other Turing machine, the
length of the program computing string s on Turing
machine T, can only differ from the program comput-
ing the same string on Turing machine T0 by a finite
length l(T, T0), the length of the prefix code necessary to
simulate T on T0. As this difference is constant (for each
string s), the length of the shortest program to compute
string s on a universal Turing machine is constant in
the limit of infinitely long strings s and the Kolmogorov
complexity of string s is defined as

K(s) D min fjpj : s D AT (p)g ;

where |p| stands for the length of program p and AT(p)
represents the result of running program p on Turing
machine T.

This measure can be illustrated by a few exam-
ples. A blank tape (the string with all zeros) is clearly
a highly regular string and correspondingly its Kol-
mogorov complexity will be low. Indeed, the program
needed to produce this string can be very short: print
zero, advance, repeat. The same is true, of course, for
every string with a repetitive pattern.

Another way of viewing algorithmic regularity is
by saying that an algorithmically regular string can be
compressed to amuch smaller size: the size of the small-
est program that computes it. More interesting is the
regularity of a string that can be obtained by the ap-
plication of a finite but nontrivial algorithm, such as
the calculation of the transcendental number 
 . The
string representing the binary equivalent of 
 certainly

appears completely random, yet the minimal program
necessary to compute it is finite. Thus, such a string
is also classified as algorithmically regular (though not
quite as regular as the blank tape) [1].

Kolmogorov complexity also provides a means to
define randomness in this context. According to the
Kolmogorov measure, a string r is declared random if
the size of the smallest program to compute r is as long
as r itself, i. e.,

K(r) 	 jrj :

Why should this definition of randomness be
preferable to any other we might come up with? The
answer to that was provided by P. Martin-Loef, who
was a postdoc of Kolmogorov. Roughly, he demon-
strated that the definition ‘an n-bit string s is random
if and only if K(s) � n’ ensures that every such individ-
ual random string possesses with certainty all effectively
testable properties of randomness that hold for strings
produced by random sources on the average [9].

The algorithmic definition of randomness provides
a new foundation for the theory of probability. By no
means does it supersede classical probability theory,
which is based on an ensemble of possibilities, each of
which is assigned a probability. Rather, the algorithmic
approach complements the ensemble method by giving
precise meaning to concepts that had been intuitively
appealing but that could not be formally adopted [6].

The Kolmogorov complexity of a string s is also de-
fined as the negative base-2 logarithm of the string’s al-
gorithmic probability P(s) [2,18]. This in turn is defined
as the probability that a standard universal computer
T, randomly programmed, would embark on a com-
putation yielding s as its sole output, afterward halt-
ing. The algorithmic probability P(s) may be thought
of a weighted sum of contributions from all programs
that produce s, each weighted according to the negative
exponential of its binary length.

Turning to the sum of P(s) over outputs, the sum
P

s

P(s) is not equal to unity, because, as is well known, an
undecidable subset of all universal computations fail to
halt and so produce no output. Therefore

P
s P(s) is an

uncomputable irrational number less than 1. This num-
ber, called Chaitin’s Omega [7], has many remarkable
properties [8], such as the fact that its uncomputable
digit string is a maximally compressed form of the in-
formation required to solve the halting problem [2].
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Though very differently defined, Kolmogorov com-
plexity is typically very close to ordinary statistical en-
tropy �

P
p log p in value. To take a simple example, it

is known that almost allN-bit strings drawn from a uni-
form distribution (of statistical entropy N bits) have
Kolmogorov complexity nearly N bits. More generally,
in any concisely describable ensemble of digital objects,
i. e., a canonical ensemble of Ising microstates at a given
temperature, the ensemble average of the objects’ Kol-
mogorov complexity closely approximates the whole
ensemble’s statistical entropy [2,18]. In the case of con-
tinuous ensembles, the relation between Kolmogorov
complexity and statistical entropy is less direct because
it depends on the choice of coarse-graining. Some of the
conceptual issues involved are discussed in [17].

The basic flaw in the Kolmogorov construction (as
far as physical complexity is concerned) is the absence
of a context [1]. This is easily rectified by providing
the Turing machine with a tape u, which represents the
physical ‘universe’, while the Turing machine with u as
input computes various strings from u.

The conditional Kolmogorov complexity of a string
s is defined as the length of the shortest program that
computes s given string u [12]

K(sju) D min fjpj : s D AT(p; u)g ;

where the notation AT(p, u) is introduced as the re-
sult of the computation running p on Turing machine
T with u as input tape. The conditional complexity
measures the remaining randomness in string s, i. e., it
counts those bits that are not correlated with bits in u.
In other words, the program p is the maximally com-
pressed string containing those bits that cannot be com-
puted from u, as well as the instructions necessary to
compute those bits of s that can be obtained from u.

The latter part of the program is of vanishing length
in the limit of infinitely long strings, which implies that
the program pmainly contains the remaining random-
ness of s. The mutual complexity is defined by

K(s : u) D K(s) � K(sju);

which clearly just measures the number of bits that
mean something in the universe u.

Let us consider K(s : u) in more detail. Its mean-
ing becomes clearer if instead of considering a string s
obtained by Turing machine T with universe u, the en-
semble of strings S that can be obtained from a universe

uwith T is considered. This ensemble can be thought of
as a probabilistic mixture subject to random bit-flips.

In other words, the output tapes to be connected to
a heat bath can be imagined. In that case, an entropy
H(S) can be associated with the ensemble of strings S.
Consider a Turing machine operating on u, a specific
universe. Obtaining s from u then constitutes a mea-
surement on the universe U and consequently not only
reduces the conditional entropy of S given u, but also
the conditional entropy of U given s.

Note that the universe is assumed here to be fully
known, i. e., there is only one tape u in the ensemble U.
While this must not strictly be so, sometimes it is con-
venient to assume that there is no randomness in the
universe. Also, the length of the smallest program that
computes s from u, averaged over the possible realiza-
tions of s, then just equals the conditional entropy of S
given u [1].

It is known that the average Kolmogorov complex-
ity over an ensemble of strings just equals the entropy
of the ensemble. Then

H(Sju) D hK(sju)iS D �
X
s

p(sju) log p(sju) (1)

and

hK(s) � K(sju)iS D H(S) � H(Sju):

Note that (1) is not strictly a conditional entropy,
as no average over different realizations of the universe
takes place. Indeed, it looks just like a conventional
Shannon entropy only with all probabilities being prob-
abilities conditional on u.

Determining the Kolmogorov complexity of a string
is a difficult problem. For this reason, Kolmogorov
complexity remained more of a curiosity than a practi-
cal mathematical tool. In the last few years, mainly due
to P. Vitanyi and M. Li, a significant progress in using
Kolmogorov complexity has been made [14].

In particular, several successful applications of Kol-
mogorov complexity in the theory of computation are
made and the general pattern of the incompressibility
method emerged [14]. The incompressibility method
and Kolmogorov complexity is truly a versatile math-
ematical tool. The incompressibility method is a basic
general technique such as the ‘pigeon hole argument’,
the ‘countingmethod’ or the ‘probabilistic method’. It is
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a sharper relative of classical information theory (abso-
lute information of individual object rather than aver-
age information over a random ensemble) and yet sat-
isfies many of the laws of classical information theory,
although with a slight error term. Applications of Kol-
mogorov complexity have been given in a number of
areas, including [14]:
� randomness of individual finite objects or infinite

strings, Martin–Loef tests for randomness, Gödel’s
incompleteness result, information theory of indi-
vidual objects;

� universal probability, general inductive reasoning,
inductive inference, prediction, mistake bounds,
computational learning theory, inference in statis-
tics;

� the incompressibility method, combinatorics, graph
theory, Kolmogorov 0–1 laws, probability theory;

� theory of parallel and distributed computation, time
and space complexity of computations, average case
analysis of algorithms, language recognition, string
matching, routing in computer networks, circuit
theory, formal language and automata theory, paral-
lel computation, Turing machine complexity, com-
plexity of tapes, stacks, queues, average complexity,
lower bound proof techniques;

� structural complexity theory, oracles;
� logical depth, universal optimal search, physics and

computation, dissipationless reversible computing,
information distance and picture similarity, ther-
modynamics of computing, statistical thermody-
namics and Boltzmann entropy.

Based on the Turing model of computation, the field of
Kolmogorov complexity probably will need to be mod-
ified to account for the new quantum modes of compu-
tation. From recent studies there appear more facts that
this modification is likely to be based on notions that go
beyond the framework of space-time (for example [15])
and sought within the world view, which considers nat-
ural systems not as separate entities but as integrated
parts of a undivided whole [3].

An attempt to contribute to such a modification is
made in [13]. The results are based on a mathematical
structure, called a web of relations, that is a collection
of hierarchical formations of integer relationships. The
web of relations allows to introduce a concept of struc-
tural complexity to measure the complexity of a binary
string in terms of corresponding hierarchical forma-

tions of integer relationships. Importantly, the concept
of structural complexity is based on the integers only
and does not rely on notions that derive from space-
time.
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A theorem stating that a compact closed set can be rep-
resented as the convex hull of its extreme points. First
shown by H.Minkowski [4] and studied by some others
([1,2,5]), it was named after the paper by M. Krein and
D. Milman [3]. See also, for example, [6,7,8].

Theorem 1 Let C � Rn be convex and compact, let S =
ext(C) be the set of extreme points of C.

Then conv(S) = C, i. e. the convex hull of the extreme
points of C coincides with the set C.

Proof Since S � C, conv(S) � conv(C) = C. So we are
left to show that C � conv(S). We prove this by induc-
tion.

Let d = dim C. For d = �1(C = ;), d = 0 and d = 1
the proof is trivial.

Let us assume that the theorem is true for all convex
compact sets of dimension d � 1 � 0. If x 2 C, but not
in conv(S), there exists a line segment in C such that x
is in the interior of it (since x is not an extreme point).
This line segment intersects the (relative) boundary of
C in two points u and v. At least one of them is not
extremal, else x 2 conv(S). Assume u 62 S. Since u is on

the (relative) boundary of C there exists a supporting
hyperplane H of C, that contains u. So u 2 C \ H =
conv(ext(C \ H)) (by induction, since dim(C \ H) �
d�1). But ext(C \ H) = ext(C) \ H and so u 2 ext(C)
\ H � ext(C).

An analogous result holds for v. Since x 2 [u, v], x =
�u + (1 � �)v with � 2 ]0, 1[ and so x 2 conv(ext(C)).
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In this article we discuss necessary conditions for lo-
cal optimality for an optimization problem in terms of
a system of equations and inequalities which form the
well-known Kuhn–Tucker KT conditions. Under suit-
able convexity assumptions about the objective func-
tion and the feasible domain, the Kuhn–Tucker condi-
tions are sufficient even for global optimality. However,
in the nonconvex case sufficiency is no longer guaran-
teed. The material of this article has been adapted from
[2] and [4].

First, we consider the nonlinear optimization prob-
lem with inequality constraints,

min
x2S

f (x); (1)

where S = {x: gi(x) � 0, i = 1, . . . , p} � Rn. We may as-
sume that all the functions in the optimization problem
are continuously differentiable on an open set contain-
ing S.

A vector d 2 Rn is called a feasible direction at x� if
there exists �� > 0 such that x� + �d 2 S for every 0 < �
� ��. Let Z(x�) denote the set of all feasible directions
at x�. A local minimum point x� 2 S satisfies d| rf (x�)
� 0 for every feasible direction d 2 Z(x�).

Let

I(x�) :D fi 2 f1; : : : ; pg : gi (x�) D 0g

be the index set of the active constraints at x�. Recall
that d| rgi(x�)< 0 implies gi(x� + �d) < gi(x�) for 0 <
� � �i , for some �i > 0, and d| rgi(x�) > 0 implies
gi(x� + �d) > gi (x�), 0 < � � e�i , for some e�i > 0.
Moreover, each constraint which is not active in x�, i. e.,
for which we have gi(x�) < 0, does not influence Z(x�),
because gi (x) � 0 holds in a neighborhood of x�. It
follows that {d: d| rgi(x�) < 0, i 2 I(x�)}� Z(x�)� {d:
d| rgi(x�)� 0, i 2 I(x�)} =: L(x�).

It is easy to see that for linearly constrained prob-
lems, where gi(x) = a|

i x � bi, ai 2 Rn \ {0}, bi 2 R, we
have Z(x�) = L(x�). On the other hand, one can readily
construct examples of nonlinear constraints such that

Z(x�) D
˚
d : d>r gi (x�) < 0; i 2 I(x�)

�
:

Now {d: d| rgi(x�) < 0} is an open set whereas L(x�)
is closed. Recall that the closure cl M of a set M �
Rn is the smallest closed set containing M. Because of
the continuity of the inner product d|rgi(x�), we see
that d| rf (x�) � 0 for every d 2 Z(x�) implies that d|

rf (x�)� 0 for every d 2 cl Z(x�). Hence, the condition
d| rf (x�) � 0 for every d 2 cl Z(x�) is as well nec-
essary for x� to be a local minimum point. Clearly, by
the discussion so far, we have cl Z(x�) � L(x�). One
would expect that also cl {d: d| rgi(x� < 0, i 2 I(x�)} =
L(x�), and hence cl Z(x�) = L(x�). Indeed, this is true,
apart from a few rather pathological cases. An example
of such a pathological case is S = {x 2 R: g1(x) := x2 �
0} and x� = 0. Here we have S = Z(x�) = cl Z(x�) = {0},
but L(x�) = {d 2 R: d � 2 � 0� 0} = R.

The constraints of the optimization problem
minx 2 S f (x) are said to be regular in x� 2 S when L(x�)
= cl Z(x�). Every condition which ensures regularity in
this sense is called a constraint qualification. Three of
the most well-known constraint qualifications are given
in the next theorem.

Theorem 1 Each of the following conditions is a con-
straint qualification:
� gi(x) = a|

i x � bi, ai 2 Rn \ {0}, bi 2 R (i = 1, . . . , p;
linear constraints).

� gi(x) is convex (i = 1, . . . , p), and there exists x satis-
fying gi (x) < 0, . . . , p; Slater condition).

� The vectors rgi(x�), i 2 I(x�) are linearly indepen-
dent.

The first two conditions ensure regularity in every x� 2
S whereas the third requires knowledge of x�.

Finally, one applies the well-known Farkas lemma
(cf. � Farkas lemma). This states that, whenever d|

rf (x�) � 0 for every d satisfying d| rgi(x�) � 0, i 2
I(x�), there exists �i � 0, i 2 I(x�) such that

r f (x�)C
X

i2I(x�)

�ir gi (x�) D 0:

Since I(x�) is not known in advance, one formulates
this equation in the following equivalent form:

Theorem 2 Let f , gi be continuously differentiable on
an open set containing S, and let x� be a local minimum
point such that the constraints are regular in x�. Then
the following KT conditions hold:
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� gi(x�) � 0, i = 1, . . . , p;
� there exist �i � 0 such that �igi(x�) = 0, i = 1, . . . , p;
� rf (x�)+

Pp
iD1 �i rgi(x

�) = 0.

Theorem 3 The KT conditions are sufficient for a con-
strained global minimum at x� provided that the func-
tions f (x) and gi(x), i = 1, . . . , p, are convex.

Proof By convexity of f (x) and gi(x) we have

f (x) � f (x�)C (x � x�)>r f (x�);

g(x) � g(x�)C (x � x�)>r g(x�):

Multiplying the last inequalities by �i and adding to
the first one we obtain:

f (x)C
pX

iD1

�i gi (x)

� f (x�)C
pX

iD1

�i gi (x�)

C (x � x�)>
"
r f (x�)C

pX
iD1

�ir gi (x�)

#
:

Since the last two terms vanish because of the KT
conditions, this implies f (x) � f (x�) �

Pp
i21 �igi(x) �

f (x�) for all x 2 S, that is x� is a global minimum.

Note that no constraint qualification is required in the
above Theorem.

Consider now problems with inequality and equal-
ity constraints

min
x2S

f (x);

where

S D
�
x : gi (x) � 0 (i D 1; : : : ; p);

hi(x) D 0 (i D 1; : : : ; t)

	
:

Theorem 4 Let f , gi (i = 1, . . . , p), hi (i = 1, . . . , t) be
continuously differentiable in an open set containing S,
and let x� be a local minimum point. Further, assume
that the vectors rgi(x�) (i 2 I(x�)), rhi(x�) (i = 1, . . . ,
t) are linearly independent. Then the following KT con-
ditions hold:
� gi(x�) � 0 (i = 1, . . . , p), hi(x�) = 0 (i = 1, . . . , t).
� There exist �i � 0 (i = 1, . . . , p) and �i 2 R (i = 1, . . . ,

t) such that

r f (x�)C
pX

iD1

�ir gi (x�)C
tX

iD1

�irhi(x�) D 0;

�i gi (x�) D 0 (i D 1; : : : ; p):

When the functions f , gi (i = 1, . . . , p) are convex, and
the functions hi(x) are affine then the above two condi-
tions are again sufficient for x� to be a global minimum.

Next, we consider the situation when Kuhn–Tucker
theory is applied to nonconvex programming. We il-
lustrate some difficulties arisen from nonconvexity by
the following simple examples of concave minimization
problems.

Example 5 Consider the problem
(
min �(x21 C x22)
s.t. x1 � 1:

The KT conditions for this problem are

x�1 � 1 �D 0; �1(x�1 � 1) D 0; �1 � 0;

�1 � 2x�1 D 0; �2x�2 D 0:

It is easy to see that the KT conditions are satisfied at x�

= (0, 0) with �1 = 0 and at x� = (1, 0) with �1 = 2. The
first is a global maximum. The second is neither a local
minimum nor a local maximum. The problem has no
local minima. Moreover, inf{f (x): x 2 S} = �1 since f
is unbounded from below over S.

Example 6
(
min 2x � x2

s.t. 0 � x � 3:

The KT conditions for this problem are

�1(x� � 3) D 0; �2x� D 0;

2(1 � x�)C �1 � �2 D 0;
�1 � 0; �2 � 0:

Since the objective function is strictly concave local
minima occur at the endpoints of the interval [0, 3]. The
point x� = 3 is the global minimizer. The endpoints sat-
isfy the KT conditions (x� = 0 with �1 = 0, �2 = 2 and
x� = 3 with �1 = 4, �2 = 0). However, we can easily see
that the KT conditions are also satisfied at x� = 1 (with
�1 = �2 = 0) and that this is a global maximum point.

These examples show that for minimization problems
with nonconvex functions KT points may not be local
minima.

Next, we consider the complexity of the prob-
lem of deciding existence of a Kuhn–Tucker point for
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quadratic programming problems. When the feasible
domain is unbounded, we prove that the decision prob-
lem is NP-hard.

Most classical optimization algorithms compute
points that satisfy the Kuhn–Tucker KT conditions.
When the feasible domain is not bounded it is not easy
to check existence of a KT point. More precisely, con-
sider the following quadratic problem

(
min f (x) D c>x C 1

2 x
>Qx

s.t. x � 0
(2)

where Q is an n × n symmetric matrix, and c 2 Rn. The
Kuhn–Tucker optimality conditions for this problem
become the following so-called linear complementarity
problem (denoted by LCP(Q, c)): Find x 2 Rn (or prove
that no such an x exists) such that

Qx C c � 0; x � 0; x>(Qx C c) D 0:

Hence, the complexity of finding (or proving existence)
of Kuhn–Tucker points for the above quadratic prob-
lem is reduced to the complexity of solving the corre-
sponding LCP.

Theorem 7 The problem LCP(Q, c), where Q is sym-
metric, is NP-hard.

Proof Consider the LCP(Q, c) problem in Rn+3 defined
by

Q(nC3)�(nC3) D

0
BB@

�In en �en 0n
e>n �1 �1 �1
�e>n �1 �1 �1
0>n �1 �1 �1

1
CCA

and c|
n+3 = (a1, . . . , an, � b, b, 0), where ai, i = 1, . . . , n,

and b are positive integers, In is the (n × n)-unit matrix
and the vectors en 2 Rn, 0n 2 Rn are defined by

e>n D (1; : : : ; 1); 0>n D (0; : : : ; 0):

Define now the following knapsack problem: Find a fea-
sible solution to the system

nX
iD1

ai xi D b; xi 2 f0; 1g (i D 1; : : : ; n):

This problem is known to beNP-complete [1]. Next
we will show that LCP(Q, c) is solvable if and only if the
associated knapsack problem is solvable.

Obviously, if x solves the knapsack problem, then y
= (a1x1, . . . , anxn, 0, 0, 0)| solves LCP(Q, c).

Conversely, assume the point y solves LCP(Q, c)
given above. Since Qy + c � 0, y � 0 we obtain yn+1
= yn+2 = yn+3 = 0. This in turn implies that

Pn
iD1 yi = b

and 0 � yi � ai. Finally, if yi < ai, then y| (Qy + c) = 0
enforces yi = 0. Hence, x = (y1/a1, . . . , yn/an) solves the
knapsack problem.

Therefore, even in quadratic programming, the
problem of ‘deciding whether a Kuhn–Tucker point ex-
ists’ is NP-hard.
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J.L. Lagrange (1736–1813) made significant contribu-
tions to many branches of mathematics and physics,
among them the theory of numbers, the theory of equa-
tions, ordinary and partial differential equations, the
calculus of variations, analytic geometry and mechan-
ics. By his outstanding discoveries he threw the first
seeds of thought that later nourished C.F. Gauss and
N.H. Abel.

During the first thirty years of his life he lived in
Turin (France, now Italy) and, as a boy, his tastes were
more classical than scientific. His interest in mathemat-
ics began while he was still in school when he read
a paper by E. Halley on the uses of algebra in optics.
He then began a course of independent study, and ex-
celled so rapidly in the field of mathematical analysis
that by the age of nineteen he was appointed profes-
sor at the Royal Artillery School and helped to found
the Royal Academy of Science in 1757. His ideas had
greatly impressed L. Euler, one of the giants of Euro-

peanmathematics. Euler and Lagrange, together, would
join the first rank of the eighteenth century mathemati-
cians, and their careers and research where often re-
lated [5].

In 1759 Lagrange focused his research in analysis
and mechanics and wrote ‘Sur la Propagation du son
dans les fluides’, a very difficult issue for that time [4].
From 1759 to 1761 he had his first publications in the
‘Miscellanea of the Turin Academy’. His reputation was
established.

Lagrange developed a new calculus which would en-
rich the sciences, called calculus of variations. In its sim-
plest form the subject seeks to determine a functional
relationship y = f (x) such that an

R b
a g(x, y) dx could

produce a maximum or a minimum. It was viewed
as a mathematical study of economy or the ‘best in-
come’ [4]. That was Lagrange’s earliest contribution to
the optimization area.

In 1766, Lagrange was appointed the Head of the
Berlin Academy of Science, succeeding Euler. In of-
fering this appointment, Frederick the Great wanted
to turn his Academy into one of the best institutes of
its day, proclaiming that the ‘greatest mathematician
in Europe’ should live near the ‘greatest king in Eu-
rope’ [1]. During this period, he had a prosperous time,
developing important works in the field of calculus, in-
troducing the strictness in the calculus differential and
integral. Later (1767) he published a memoir on the ap-
proximation of roots of polynomial equations bymeans
of continued fractions; in 1770 he wrote a paper con-
sidering the solvability of equations in terms of permu-
tations on their roots.

After Frederick’s death, Lagrange left Berlin and be-
came a member of the Paris Academy of Science by the
invitation of Louis XVI (1787). He remained in Paris
for the rest of his career, making a lengthy treatise on
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the numerical solution of equations, representing a sig-
nificant portion of his mathematical research. His pa-
pers on solution of third - and fourth-degree polyno-
mial equations by radicals received considerable atten-
tion. His methods, laid in the early development of
group theory to solving polynomials, were later taken
by E. Galois. Lagrange’s name was attached to one of
the most important theorems of group theory [3]:

Theorem 1 If o is the order of a subgroup g of a group
G of order O, then o is a factor of O.

In 1788 he published his masterpiece, the treatise
‘Méchanique Analytique’, which summarized and uni-
fied all the work done in the field of general mechan-
ics since the time of I. Newton. This work, notable for
its use of theory of differential equations, transformed
mechanics into a branch of mathematical analysis. As
W. Hamilton later said, ‘he made a kind of scientific
poem’ [6].

In 1793, Lagrange headed a commission, which in-
cluded P.S. Laplace and A. Lavoisier, to devise a new
system of weights and measures. Out of this came the
metric system.

Lagrange developed the method of variation of pa-
rameters in the solution of nonhomogeneous linear dif-
ferential equations. In the determination of maxima
and minima of a function, say f (x, y, z, w), subject to
constraints such as g(x, y, z, w) = 0 and h(x, y, z, w) =
0, he suggested the use of Lagrange multipliers to pro-
vide an elegant algorithm. By this method two undeter-
mined constants � and � are introduced, forming the
function F � f + �g + �h, from the related equations
Fx = 0, Fy = 0, Fz = 0, Fw = 0, g = 0, and h = 0, the mul-
tipliers � and � are then eliminated, and the problem is
solved. This procedure and its variations have emerged
as a very important class of optimization method [1,2].

One can characterize Lagrange’s contribution to op-
timization as his formalist foundation. Most of his re-
sults were retained and developed further by the follow-
ing generations, who gave to his theory a different and
practical course.

By the end of his life, Lagrange could not think fu-
turistically for the mathematics. He felt that other sci-
ences such as chemistry, physics and biology would at-
tract the ablest minds of the future. His pessimism was
unfounded. Much more was to be forthcoming with

Gauss and his successors, making the nineteenth cen-
tury the richest in the history of mathematics.
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Lagrange and penalty function methods provide a pow-
erful approach, both as a theoretical tool and a compu-
tational vehicle, for the study of constrained optimiza-
tion problems. However, for a nonconvex constrained
optimization problem, the classical Lagrange primal-
dual method may fail to find a minimum as a zero du-
ality gap is not always guaranteed. A large penalty pa-
rameter is, in general, required for classical quadratic
penalty functions in order that minima of penalty prob-
lems are a good approximation to those of the original
constrained optimization problems. It is well-known
that penalty functions with too large parameters cause
an obstacle for numerical implementation. Thus the
question arises how to generalize classical Lagrange and
penalty functions, in order to obtain an appropriate
scheme for reducing constrained optimization prob-
lems to unconstrained ones that will be suitable for suf-
ficiently broad classes of optimization problems from
both the theoretical and computational viewpoints.

One of the approaches for such a scheme is as fol-
lows: an unconstrained problem is constructed, where
the objective function is a convolution of the objec-
tive and constraint functions of the original problem.
While a linear convolution leads to a classical Lagrange
function, different kinds of nonlinear convolutions lead
to interesting generalizations. We shall call functions
that appear as a convolution of the objective func-
tion and the constraint functions, Lagrange-type func-
tions. It can be shown that these functions naturally
arise as a result of a nonlinear separation of the im-
age set of the problem and a cone in the image-space
of the problem under consideration (see [4]). The class
of Lagrange-type functions includes also augmented
Lagrangians, corresponding to the so-called canonical
dualizing parameterization. However, augmented La-
grangians constructed by means of some general du-
alizing parameterizations cannot be included in this
scheme.

Consider the following problem P( f ,g):

min f (x) subject to x 2 X; g(x) � 0 ;

where X is a metric space, f is a real-valued function
defined on X, and g maps X into Rm , that is, g(x) D
(g1(x); : : : ; gm(x)), where gi are real-valued functions
defined on X. We assume that the set of feasible solu-
tions X0 D fx 2 X : g(x) � 0g is nonempty and that
the objective function f is bounded from below on X.

Let˝ be a set of parameters and h : R1Cm�˝ ! R
be a function. Let � 2 R. Then the function

L(x; !) D h( f (x)��; g(x);!)C�; x 2 X; ! 2 ˝ ;

(1)

is called a Lagrange-type function for problem P( f ,g)
corresponding to h and �, and h is called a convolution
function.

If h is linear with respect to the first variable, more
specifically:

h(u; v;!) D uC �(v;!) ;

where � : Rm �˝ ! R is a real-valued function, then
the parameter � can be omitted. Indeed, for each � 2 R,
we have

L(x; !) D f (x)C �(g(x);!) :

However in general nonlinear situation the pres-
ence of � is important and different � lead to Lagrange-
type functions with different properties.

One of the possible choices of the number � is
� D f (x�) where x� is a reference point, in particular
x� is a solution of P( f ,g) (see [4]). Then the Lagrange-
type function has the form

L(x; !) D h( f (x)� f (x�); g(x);!)C f (x�) ;

x 2 X; ! 2 ˝ :

The Lagrange-type function (1) is a very general
scheme and includes linear Lagrange functions, classi-
cal penalty functions, and augmented Lagrange func-
tions as special cases.

Let ˝ D Rm
C and p be a real-valued function de-

fined on R1Cm . Define

h(u; v;!) D p(u; !1v1; : : : ; !mvm) : (2)

The Lagrange-type function has the form

Lp(x; !) D p( f (x)��; !1g1(x); : : : ; !m gm(x))C� :

We can obtain fairly good results if the function p
enjoys some properties. In particular, we assume that
(i) p is increasing;
(ii) p(u; 0m) � u; for all u 2 R. (Here 0m is the

origin of Rm .) One more assumption is useful for
applications.
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(iii) p is positively homogeneous (p(�x) D �p(x) for
�> 0).

If both (i) and (iii) hold, then p is called an IPH func-
tion. Let p be a real-valued function defined on R1Cm

and h be a convolution function defined by (2). Then
(a) If p enjoys properties (i) and (ii), then

sup
w2˝

h(u; v;w) � u; 8u 2 R; v 2 Rm
� :

(b) If p is an IPH function and p(u; ei)> 0, where ei is
the i-th unit vector, i D 1; : : : ;m, then

sup
w2˝

h(u; v;w) D C1; 8v … Rm
� :

We now give some examples of Lagrange-type func-
tions. First two examples correspond to functions of the
form (2).
1) Let p(u; v) D uC

Pm
iD1 vi . Then Lp(x; !) D f (x)CPm

iD1 !i gi (x) coincides with the classical Lagrange
function.

2) Let p(u; v) D u C
Pm

iD1 v
C
i where vC D max(v; 0).

Then Lp(x; !) D f (x) C
Pm

iD1 !i gi (x)C coin-
cides with the classical (linear) penalty function. If
p(u; v) D uC

Pm
iD1(v

C
i )

2, then Lp(x; !) D f (x)CPm
iD1 !i (gi (x)C)2 is a quadratic penalty function.

We now give the definition of a penalty-type func-
tion. Let ˝ be a set of parameters and h : R1Cm �

˝ ! R be a convolution function with the prop-
erty:

h(u; v;!) D u; u 2 R; v 2 Rm
� ; ! 2 ˝ :

Then the Lagrange-type function L(x,!), corre-
sponding to h, is called a penalty-type function.
Next two examples cannot be presented in the
form (2).

3) Augmented Lagrangians
Let � : Rm ! R be an augmenting function, i. e.,
�(0) D 0 and �(z)> 0; for z ¤ 0; and ˝ �

f(y; r) : y 2 Rm ; r � 0g be a set of parameters
satisfying (0; 0) 2 ˝ and (y; r) 2 ˝ implying
(y; r0) 2 ˝ , for all r0 � r. Let h : Rm � ˝ ! R
be the convolution function defined by

h(u; v; (y; r)) D inf
zCv�0

(u � [y; z]C r�(z))

D uC inf
zCv�0

(�[y; z]C r�(z)) :

Then the Lagrange-type function, corresponding
to � D 0, coincides with the augmented La-
grangian [5], that is,

L(x; (y; r)) D h( f (x); g(x); (y; r))

D inf
zCg(x)�0

( f (x)� [y; z]C r�(z)) :

4) Morrison-type functions. Let˝ D RC and

h(u; v; !) D ((u � !)C)2 C �(vC1 ; : : : ; v
C
m ) ;

where � is an augmenting function. Then the Lagrange-
type function corresponding to �= 0 has the form

L(x; !) D (( f (x)�!)C)2C�(g1(x)C; : : : ; gm(x)C) :

Functions of this kind have been introduced by
Morrison [6].

Consider problem P( f ,g), a convolution function
h : R1Cm � ˝ ! R and the corresponding Lagrange-
type function

L(x; !) D h( f (x)� �; g(x);!)C � :

The dual function q : ˝ ! R̄ D R [ f�1;C1g
of P( f ,g) with respect to h and � is defined by

q(!) D inf
x2X

h( f (x)� �; g(x);!)C �; ! 2 ˝ :

Consider the dual problem to P( f ,g) with respect to
h and �:

max q(!); subject to ! 2 ˝ :

We are interested in the following questions: Find
conditions under which
1) the weak duality holds, i. e.,

M( f ; g) :D inf
x2X0

f (x) � sup
!2˝

q(!) :D M�( f ; g) ;

2) the zero duality gap property holds, i. e.,

inf
x2X0

f (x) D sup
!2˝

q(!) ;

3) an exact Lagrange parameter exists, i. e., the weak
duality holds and there exists !̄ 2 ˝ such that

inf
x2X0

f (x) D inf
x2X

L(x; !̄) ;
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4) a strong exact parameter exists: there exists an exact
parameter !̄ 2 ˝ such that

argminP( f ; g) :D argminx2X0
f (x)

D argminx2XL(x; !̄) ;

5) a saddle point exists and generates a solution of
P( f ,g). The first part of this question means that
there exists (x�; !�) 2 X �˝ such that

L(x; !�) � L(x�; !�) � L(x�; !);

x 2 X ; ! 2 ˝ :
(3)

The second part means that (3) implies x� 2

argmin P( f ; g).
The weak duality allows one to estimate from below

the optimal value M( f ,g) by solving the unconstrained
problem infx2X L(x; !). The zero duality gap property
allows one to find M( f ,g) by solving a sequence of un-
constrained problems infx2X L(x; !t) where f!tg � ˝ .
The existence of an exact Lagrange parameter !̄ means
thatM( f ,g) can be found by solving one unconstrained
problem infx2X L(x; !̄). The existence of a strong exact
parameter !̄ means that the solution set of P( f ,g) is the
same as that of minx2X L(x; !̄).

Let h : R1Cm � ˝ ! R be a convolution function
such that

sup
!2˝

h(u; v;!) � u; for all (u; v) 2 R �Rm
� : (4)

Then the weak duality holds.
Condition (4) can be guaranteed if

h(u; v;w) D p(u;w1v1; : : : ;wmvm) ;

(u; v) 2 R1Cm ;w 2 Rm
C ;

and p : R1Cm ! R is an IPH function satisfying

p(1; 0m) � 1; p(�1; 0m) � �1 :

Assume that � is a lower estimate of the function f
over the setX, i. e., f (x)�� � b> 0, for all x 2 X. Then,
in order to establish the weak duality, we need only to
consider convolution functions defined on [b;C1) �
Rm �˝ such that

sup
!2˝

h(u; v;!) � u; 8(u; v) 2 [b;C1)�Rm
� : (5)

To investigate the zero duality gap property, we fur-
ther assume that, for any � 2 (0; b), there exists ı > 0
such that

inf
!2˝

h(u; v;!) � u � �; 8u � b; r(v) � ı ; (6)

and that, for each c> 0, there exists !̄ 2 ˝ such that

h(u; v; !̄) � cr(v); 8u � b; v 2 Rm ; (7)

where r : Rm ! R is such that r(v) � 0() v 2 Rm
� :

Assume further that

( f 1) The function f is uniformly positive on X0, i. e.,

inf
x2X0

f (x) D M( f ; g)> 0 ;

( f 2) The function f is uniformly continuous on an
open set containing the set X0;

( g) The mapping g is continuous and the set-valued
mapping

D(ı) D fx 2 X : r(g(x)) � ıg

is upper semi-continuous at the point ı D 0.

Theorem 1 Under the assumptions (5)–(7) and ( f 1),
( f 2) and (g), the zero duality gap property holds
for P( f ,g) with respect to the Lagrange-type function
L(x; !), corresponding to h and �= 0.

Let b � 0. Define a convolution function h : [b;C1)�
Rm ! R by

h(u; v;!) D p(u; !1v1; : : : ; !mvm) ;

where p : RC �Rm ! R is an increasing function sat-
isfying

p(u; 0m) � u; for all u � 0 : (8)

Consider the P( f ,g) with uniformly positive objec-
tive function f on X. Let L be the Lagrange-type func-
tion defined by

L(x; !) D p( f (x); !1g1(x); : : : ; !m gm(x)) ;

where p is defined onRC�Rm . Define the perturbation
function ˇ(y) of P( f ,g) by

ˇ(y) D inff f (x) : x 2 X; g(x) � yg; y 2 Rm :
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Theorem 2 Let p be a continuous increasing function
satisfying (7). Let the zero duality gap property with re-
spect to p holds. Then the perturbation function ˇ is
lower semi-continuous at the origin.

Further assume that p satisfies the following property:
there exist positive numbers a1; : : : ; am such that, for
all u> 0; (v1; : : : ; vm) 2 Rm , we have

p(u; v1; : : : ; vm) � max(u; a1v1; : : : ; amvm) : (9)

Theorem 3 Assume that p is an increasing convolution
function that possesses properties (8) and (9). Let per-
turbation function ˇ of problem P(f ,g) be lower semi-
continuous at the origin. Then the zero duality gap prop-
erty with respect to p holds.

Remark 1 The perturbation function ˇ depends on
P( f ,g) and doesn’t depend on the exogenous function
p. It is worth noting that Theorems 2 and 3 estab-
lish equivalence relations between the zero duality gap
property with respect to different p from a broad class
of convolution functions.

Remark 2 If p is a linear function, then the lower
semicontinuity does not imply the zero duality gap
property, so we need to impose a condition that does
not hold for linear functions. This is the role of (9).
The results similar to Theorem 2 and Theorem 3
hold also for penalty type functions, where p(u,v) is
a function defined on RC � Rm

C and L(x; !) D
p( f (x); !1g1(x)C; : : : ; gm(x)C). In such a case (9)
should be valid only for u> 0, v 2 Rm

C. This require-
ment is very weak and is valid formany increasing func-
tions including the function p(u; v) D uC

Pm
iD1 vi .

Let the Lagrange-type function be of the following
form

L(x; !) D f (x)C �(g(x);!); x 2 X; ! 2 ˝ :

Consider set K of functions � : Rm �˝ ! R with
the following two properties
(i) �(�; !) is lower semi-continuous for all ! 2 ˝ ;
(ii) sup!2˝ �(v;!) D 0, for all v 2 Rm

� :

Consider a point (x�; !�) 2 X �˝ such that

L(x�; !�) D min
x2X

L(x; !�) ; (10)

�(g(x�);!�) D 0 : (11)

Theorem 4 Let � 2 K: If (10) and (11) hold for
x� 2 X0 and !� 2 ˝ , then !� is an exact Lagrange
parameter.

The most advanced theory has been developed for two
special classes of Lagrange-type functions. One of them
is augmented Lagrangians (see article in encyclopedia).
The other class consists of penalty-type functions for
problems with a positive objective and a single con-
straint. This penalty-type functions are composed by
convolutions functions of the form (2) with IPH func-
tions p.

Remark 3 Consider problem P( f ,g) withm constraints
g1; : : : ; gm . We can convert these constraints to a single
one by many different ways. In particular, the system
g1(x) � 0; : : : ; gm(x) � 0 is equivalent to the single
inequality f1(x) :D

Pm
iD1 g

C
i (x) � 0. The function f 1

is non-smooth. If all functions gi(x) are smooth then
a smoothing procedure can be applied to f 1 (see [13]
for details). Problems with a single constraint are con-
venient to be dealt with frommany points of view.

Let P( f , f 1) be a problem with a positive objective f and
a single constraint f 1. We consider here only IPH func-
tions sk defined on R2

C by:

sk (u; v) D (uk C vk)1/k ; u; v � 0 : (12)

(Many results that are valid for sk can be extended
also for IPH functions p : R2

C ! RC with properties
p(1, 0) = 1, limu!C1 p(1; u) D C1.)

A penalty-type function LCk corresponding to sk has
the form LCk (x; d) D ( f (x)kCdk fC1 (x)k)1/k . Here dk is
a penalty parameter. It can be shown that the exact pa-
rameter does not exist if k> 1 for the ‘regular’ problems
in a certain sense, so we will here consider only the clas-
sical penalty function with k=1 and lower order penalty
functions with k < 1. It can be shown that the existence
of an exact parameter for k � 1 implies the existence of
exact parameters for k0 with 0 < k0 < k. One of the
main questions that can be studied in the framework of
this class of penalty-type functions is the size of exact
penalty parameters. Generally speaking, we can dimin-
ish the size of exact parameter using the choice of k and
some simple reformulations of the problem P( f , f 1) in
hand.

For the function LCk an explicit value of the least
exact penalty parameter can be expressed through the
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perturbation function. Let ˇ(y) be the perturbation
function of the problem P( f , f 1). Note that ˇ(0) D
M( f ; f1) and ˇ is a decreasing function, so ˇ(y) �
M( f ; f1). For the sake of simplicity, we assume that
ˇ(y) < M( f ; f1) for all y> 0. Let

d̄k D sup
y> 0

(M( f ; f1)k � ˇk(y))1/k

y
: (13)

Then the least exact parameter exists if and only if
the supremum in (13) is finite and the least exact pa-
rameter is equal to d̄k. For k= 1 the existence easily fol-
lows from the calmness results of Burke [1].

Let f c(x) = f (x) + c with c> 0 and dc,k be the least
exact parameter for problem P( f c, f 1). Then it can be
proved that dc;k ! 0 as c! C1.

Assume that functions f and f 1 are Lipschitz. Since
k < 1 the function LCk is not locally Lipschitz at points
x where f 1(x) = 0 , so we need to have a special smooth-
ing procedure in order to apply numerical method for
the unconstrained minimization of this function. Such
a procedure is described in [14]. This procedure can be
applied for different types of lower order penalty func-
tions.

Another approach for constructing a Lipschitz
penalty function with a small exact parameter is also of
interest (see [11] and references therein).

Let � be a strictly increasing continuous concave
function defined on [a;C1) where a> 0. Assume that
�(a) � 0 and limy!C1 �(y) D 0 where � 0C is the right
derivative of the concave function � . Consider the func-
tion f �;c(x) D �( f (x) C c) and the classical penalty
function for LC1;�;c (x; d) D �( f (x)C c)Cd f1(x) for the
problem P( f �;c ; f1). Let d�;c be the least exact parame-
ter of LC1;�;c (assuming that this parameter exists). Then
we can assert that d�;c ! 0 as c ! 0 under very mild
assumptions.
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The Primal Problem
and the LagrangianDual Problem

For a given primal optimization problem (P) it is pos-
sible to construct a related dual problem which de-
pends on the same data and often facilitates the anal-
ysis and solution of (P). This section focuses on the La-
grangian dual, a particular form of dual problem which
has proven to be very useful in many optimization ap-
plications.

A general form of primal problem is

(P)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x)
s.t. g(x) � 0;

h(x) D 0;
x 2 S;

where f is a scalar function of the n-dimensional vector
x, and g and h are vector functions of x. S is a nonempty
subset of Rn. It is convenient to associate dual variables
with the constraints as follows: components of the dual
vector u correspond to components of the vector con-
straint g(x) � 0, and similarly the components of v are
associated with components of the constraint h(x) = 0.

There is a great deal of flexibility in defining prob-
lem (P). For example, any or all of the explicit con-
straints g(x) � 0 and h(x) = 0 could be incorporated
in the definition of the set S. This, of course, governs
the number and type of dual variables. As will be seen
in the examples, defining S is the first step in defining
a Lagrangian dual of (P). To illustrate the basic duality
results, certain assumptions regarding the functions f ,
g and h and the set S will be made to simplify the pre-

sentation below. For more thorough treatments, see the
references.

Given (P), define the Lagrangian function L(x, u, v)
= f (x)+ u| g(x) + v| h(x). The Lagrangian dual problem
is then

(D)

(
max �(u; v)
s.t. u � 0;

where, for fixed (u, v), the dual function � is defined in
terms of the infimum of the Lagrangian function with
respect to x 2 S:

�(u; v) D inf
x2S

L(x; u; v):

Below are five examples of primal problems and
their duals. The first is a geometrical example, three are
classes of optimization problems: linear programs, con-
vex programs, and quadratic programs, and the final
example is an integer program.

Example 1 (geometrical problem) In this two-variable
example, a linear function is to be minimized over the
intersection of the unit disk and the nonnegative or-
thant. The optimal solution is at the origin with objec-
tive value zero.

(P1)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x1 C x2
s.t. x21 C x22 � 1;

�x1 � 0;
�x2 � 0;

Letting S = {(x1, x2): x21 + x22 � 1}, the dual problem is

(D1)

(
max �(u)
s.t. u � 0;

where

�(u) D min
x21Cx22�1

(1 � u1)x1 C (1 � u2)x2:

Note that min replaces inf in the definition of � since
it is clear that the infimum exists and is finite for this
example.

Example 2 (linear programming) Duality is an impor-
tant topic in any treatment of linear programming. This
example shows that the Lagrangian dual of a primal lin-
ear program is equivalent to the dual linear program as
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it is usually formulated in textbooks. Letting the primal
be

(P2)

8̂
<̂
ˆ̂:

min c>x
s.t. b � Ax � 0;

x � 0;

and choosing S = {x: x � 0}, the Lagrangian dual is

(D2)

(
max �(u)
s.t. u � 0

where

�(u) D inf
x�0

c>x C u>(b � Ax):

This reduces to

�(u) D b>u C

(
0 if (c � A>u) � 0;
�1 otherwise:

Assuming there are nonnegative values of u such that
c � A|u, these would be the only viable choices for the
maximization of �(u) and therefore (D2) takes the form
familiar from linear programming duality:
8̂
<̂
ˆ̂:

max b>u
s.t. A>u � c;

u � 0:

Example 3 (differentiable convex programming) One of
the first nonlinear duals was developed by P.Wolfe [27]
for the primal problem

(P3)

8̂
<̂
ˆ̂:

min f (x)
s.t. g(x) � 0;

x 2 S;

where S is an open convex set, and f and g are differ-
entiable convex functions defined on S. The Lagrangian
function is L(x, u) = f (x) + u| g(x), and it is further
assumed that �(u) 6D � 1 for all u � 0. With these as-
sumptions the Lagrangian function is convex in x and
has a minimum where its gradient is zero. That is, the
requirement � (u) = minx 2 S L(x, u) is the same as re-
quiring rx L(x, u) = 0. Thus the dual problem may be
written

(D3)

8̂
<̂
ˆ̂:

max L(x; u)
s.t. rx L(x; u) D 0;

u � 0:

Example 4 (convex quadratic programming) An im-
portant special case of the preceding example is the
problem

(P4)

8̂
<̂
ˆ̂:

min 1
2 x
>Hx C d>x

s.t. Ax � b;
x 2 Rn ;

where H is a given symmetric positive definite n × n
matrix and d is a given vector in Rn. Applying the re-
sults for (P3) above and using the equality constraints
of (D3) to eliminate x, the dual of can be written

(D4)

8̂
<̂
ˆ̂:

max �(u) D � 1
2u
>(AH�1A>)u

�u>(bC AH�1d) � 1
2d
>H�1d

s.t. u � 0:

Thus, the dual of (P4) is also a quadratic program in the
dual variables u.

Example 5 (integer program) The following numerical
example of a linear problem with binary variables will
be used to illustrate various dual properties in the fol-
lowing sections.

(P5)

8̂
<̂
ˆ̂:

min 20 � x1 � 5x2 � 7x3
s.t. x1 C 3x2 C 4x3 � 5;

x j 2 f0; 1g; j D 1; 2; 3:

For this problem, let S be defined by the binary restric-
tions on the components of x. Then L(x, u) = 20� x1�
5x2� 7x3+ u(x1 + 3x2 + 4x3� 5) and the dual problem
is

(D5)

(
max �(u)
s.t. u � 0;

where
8̂
<̂
ˆ̂:

�(u) D min (u � 1)x1 C (3u � 5)x2
C(4u � 7)x3 � 5uC 20

s.t. x j 2 f0; 1g; j D 1; 2; 3:

Weak and Strong Duality

For a given primal problem (P) and associated dual
problem (D), a fundamental relationship showing that
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the two objective function values bound each other is
given by the following weak duality result:

Theorem 6 If x is feasible to (P) and (u; v) is feasible to
(D), then

f (x) � �(u; v):

Proof

�(u; v) D inf
x2S

L(x; u; v)

� f (x)C u>g(x)C v>h(x) � f (x):

The first inequality follows since x 2 S and the second
from u>g(x) � 0 and h(h(x) D 0. �

If the optimal primal and dual objective values are
equal, strong duality is said to hold for the primal and
dual pair. The following theorem illustrates such a re-
sult for the the pair (P3) and (D3).

Theorem 7 Let x� be an optimal solution for (P3) and
assume the function g satisfies some constraint qualifi-
cation. Then there exists a vector u� such that (x�, u�)
solves (D3) and

f (x�) D L(x�; u�):

Proof Under the assumptions there exists a u� � 0
such that (x�, u�) satisfies the Karush–Kuhn–Tucker
conditions:

rx L(x�; u�) D 0;
u�T g(x�) D 0;

from which it follows that

f (x�) D L(x�; u�)

and that (x�, u�) is feasible to (D3). Using this and the
weak duality theorem gives

L(x�; u�) � L(x; u)

for any (x, u) satisfying the constraints of (D3). The re-
sults of the theorem follow. �

The references contain additional strong duality results,
including cases where differentiability is not required.
However, as will be seen in examples below, it often
happens that there is a difference, known as the dual-
ity gap, between the optimal values of the primal and
dual objective functions.

Properties of the LagrangianDual Function

The Lagrangian dual function enjoys two useful proper-
ties: it is concave and, although it is not necessarily dif-
ferentiable, it is relatively straightforward to compute
a subgradient at any dual feasible point.

Theorem 8 � (u, v) is concave.

Proof For fixed x, L(x, u, v) is linear in (u, v) and thus
�(u, v) is the infimum of a (possibly infinite) collection
of functions linear in (u, v). �

It is important to note that the above result is true under
very general conditions. In particular, it is true when the
set S is discrete.

Since � (u, v) is concave, it is known that at least
one linear supporting function exists at each (u, v). Col-
lectively, the gradients of all linear supports at (u, v) is
called the set of subgradients of � at (u, v).

For any (u, v) for which �(u, v) is finite, denote S(u,
v) as the solution set of the minimization defining �(u,
v).

Theorem 9 For fixed (u; v), let x 2 S(u; v). Then
(g(x); h(x)) is a subgradient of � at (u; v).

Proof For any (u, v)

�(u; v) D inf
x2S

f (x)C u>g(x)C v>h(x)

� f (x)C u>g(x)C v>h(x)

D f (x)C (u � u)>g(x)C u>g(x)

C (v � v)>h(x)C v>h(x):

Hence

�(u; v) � �(u; v)C g(x)>(u � u)C h(x)>(v � v):

�

If S(u; v) is a single point x, then there is only one sub-
gradient of � at (u; v) in which case � is differential at
(u; v), i. e., r�(u; v) D (g(x); h(x)).

From the above, � is always concave and it is rela-
tively easy to calculate a slope at any point. Much use of
this is made in algorithms for large scale integer pro-
grams. Also, the fact that the maximum value of the
dual provides a lower bound to the optimal objective
function value in methods (such as branch and bound)
for solving the primal problem. While strong duality
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generally holds for convex programs, this is rarely true
for integer programs.

Revisiting the examples of the first section, for Ex-
ample 1 the Karush–Kuhn–Tucker conditions can be
employed to derive

�(u) D �
p
(1 � u1)2 C (1 � u2)2:

There is no duality gap for this problem, the dual maxi-
mum occurs at (u1, u2) = (1, 1) where � is zero, in agree-
ment with the primal minimum. The dual function is
differentiable except at its maximizing point. The dual
function of Example 2, a linear program, is linear and
thus it is concave and differentiable everywhere. Simi-
larly, in Example 4, since H is positive definite, H�1 is
also positive definite and the dual function is again con-
cave and differentiable everywhere. For Example 5, the
integer program, values of u feasible to the dual prob-
lem, S(u) and �(u) are given in Table 1. S(u) is the triple
(x1(u), x2(u), x3(u)).

Figure 1 is a graph of the function �(u). Again, �(u)
is a concave function and it is differentiable except at

u D 1;
5
3
;
7
4
:

The maximum dual value is

�

�
5
3

�
D 11

1
3
;

which indicates a duality gap of size 2/3 since the opti-
mal value of (P5) is f (1, 0, 1) = 12.

By contrast, Theorem 8 does not apply in Example
3 because the objective of (D3), a Lagrangian function,
depends on both x and u, rather than the dual variables
alone. Lagrangian functions are generally not concave.

Lagrangian Duality: BASICS, Table 1
Values of the dual function for Example 5

u S(u) 
(u)
0 < u < 1 (1; 1; 1) 7 + 3u
1 f(1; 1; 1)[ (0; 1; 1)g 8 + 2u
1 < u < 5/3 (0; 1; 1) 8 + 2u
5/3 f(0; 1; 1)[ (0; 0; 1)g 13 � u
5/3 < u < 7/4 (0; 0; 1) 13 � u
7/4 f(0; 0; 1)[ (0; 0; 0)g 20 � 5u
7/4 < u (0; 0; 0) 20 � 5u

Lagrangian Duality: BASICS, Figure 1
�(u) for Example 5

Geometrical Interpretations
of Lagrangian Duality

The Resource-Payoff Space

One interpretation of the dual problem is provided via
the resource-payoff set RP for problem (P). To illustrate
geometrically, assume that (P) has just one inequality
constraint g(x) � 0 and there are no explicit equality
constraints. Then the resource-payoff set for the prob-
lem is the set of points defined by

RP D f(g(x); f (x)) : x 2 S)g :

That is, RP is a mapping of all x 2 S into the (g, f )-plane.
In this plane, the Lagrangian equated to a constant �
has the form f + ug = � , which defines a line of slope
�u and intercept � . For any u � 0, the dual function
�(u) is defined by minimizing f (x) + ug(x) over x 2 S.
Thus � (u) is the intercept of a linear support to the
resource-payoff set at {(g(x), f (x)): x 2 S(u)}. To illus-
trate, consider the problem

(P6)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x21 C x22
s.t. 1 � x1 � x2 � 0;

�x1 � 0;
�x2 � 0:

The optimal solution is x�1 = x�2 = 1/2 and f (x�1 , x�2 )
= 1/2. Letting S = {(x1, x2): x1 � 0, x2 � 0}, and g(x1,
x2) = 1� x1 � x2, the resource-payoff set is a subset of
R2 defined by RP = {(g(x1, x2), f (x1, x2)): x1 � 0, x2 �
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Lagrangian Duality: BASICS, Figure 2
RP set for (P6)

0}. It can be verified that RP consists of all points in R2

between the curves (g � 1)2 and (g � 1)2/2 for g � 1 as
shown in Fig. 2.

The two linear supports of RP shown have slopes
of �2 and �1, corresponding to u values of 2 and 1.
With u = 2, (x1(u), x2(u)) is the singleton (1, 1) and
(g(x(u)), f (x(u))) = (�1, 2). The line with slope�2 pass-
ing through the point (g, f ) = (�1, 2) intersects the f -
axis at the origin. Thus �(2) = 0 < f (x�), illustrating the
weak duality theorem.

For u = 1, (x1(u), x2(u)) = (1/2, 1/2) and (g(x(u)),
f (x(u))) = (0, 1/2). Since this point lies on the f -axis
it follows that �(1) = 1/2 = f (x�). This illustrates the
strong duality theorem.

As an alternative consider Example 5, the binary
linear programming problem. Since S is discrete, RP
consists of the eight points in R2 listed in the last two
columns of Table 2. The optimal solution to the prob-
lem is x� = (1, 0, 1), f (x�) = 12. The resource-payoff set
for this example is shown in Fig. 3. The lines in the fig-
ure trace out the lower envelope of the resource-payoff
set and are found by minimizing the Lagrangian func-
tion over S using u1 = 7/4, u2 = 5/3 and u3 = 1. The lines
with slope �7/4, �5/3, and �1 intersect the f -axis at

11
1
4
; 11

1
3
; 10;

respectively. Thus

�

�
7
4

�
D 11

1
4
; �(1) D 10; �

�
5
3

�
D 11

1
3
:

Lagrangian Duality: BASICS, Table 2
Values of g and f for Example 5

x1 x2 x3 g(x1; x2; x3) f (x1; x2; x3)
x1 + 3x2 + 4x3 � 5 20� x1�5x2�7x3

0 0 0 �5 20
0 0 1 �1 13
0 1 0 �2 15
0 1 1 2 8
1 0 0 �4 19
1 0 1 0 12
1 1 0 �1 14
1 1 1 3 7

Lagrangian Duality: BASICS, Figure 3
The set RP for Example 5

The duality gap for this problem, as noted earlier, is

f (x�) � �(u�) D 12 � 11
1
3
D

2
3
:

These two examples illustrate a sufficient condition
for there to be no duality gap. There is no gap if the
point (g(x�), f (x�)) lies on the lower envelope of the
resource-payoff set, and there is a linear support of slope
� u� 0 at that point with intercept f (x�).

This condition is satisfied for (P6), but not for (P5).
However, if the constraint in (P5) is replaced by g(x) =
x1 + 2 x2 + 4 x3� 4 � 0, the condition is satisfied. The
effect of this constraint change can be seen in Table 2
and Fig. 3. In the table, the g column entries would be
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increased by 1, and thus f (x�) = 13, with x� = (x�1 , x�2 ,
x�3 ) = (0, 0, 1). In Fig. 3, the f -axis would be shifted one
unit to be left. In this case, note that (g(x�), f (x�)) now
lies on the lower envelope of the set RP. Furthermore,
an optimal dual variable is any value u� 2 [5/3, 7/4].

Gap Function

Another geometrical interpretation can be given for the
primal problem

(P7)

8̂
<̂
ˆ̂:

min f (x)
s.t. Ax D b;

x � 0;

where f is assumed convex and differentiable. In what
follows, let S = {x 2 Rn: Ax = b, x� 0} which is assumed
to be a compact subset of Rn.

For any feasible x, define the gap function by

G(x) D max
y2S
r f (x)>(x � y)

D �min
y2S
r f (x)>(y � x):

The gap function has several interesting properties.
Letting y(x) be the solution of the linear program defin-
ingG(x), note first that the gap function at x is the nega-
tive of the directional derivative of f at x in the direction
(y(x) � x). Second, it can be used to construct a lower
bound on the optimal solution f (x�) of (P7). To see this,
consider the convexity inequality

f (y) � f (x)Cr f (x)>(y � x); 8y 2 S:

Minimizing both sides over y 2 S implies

f (x�) � f (x)� G(x); 8x 2 S:

By the weak duality result, a lower bound for f (x�)
can also be obtained by evaluating the dual objective at
any dual feasible solution. The next theorem employs
the Wolfe dual of (P7) to show that the bound given
above is equivalent to obtaining the maximum dual ob-
jective value for a given x.

Let v and u be the dual variables associated with Ax
= b and x � 0, respectively. The Lagrangian function of
(P7) is L(x, v, u) = f (x) + v|(b� Ax) � u|x. Then, for
the given x, the maximum dual objective value is

d(x) D max
(v;u)2D(x)

L(x; v; u);

whereD(x) is the set of all multipliers such that (x, v, u)
is feasible to the Wolfe dual:

D(x) D f(v; u) : rx L(x; v; u) D 0 and u � 0g :

Theorem 10 For any x 2 S, G(x) = f (x) � d(x).

Proof First it is verified that D(x) is nonempty so that
d(x) is well defined. This will be true if there exists
a v such that A| v � r f (x). By adaptation of Farkas’
lemma (cf. also� Farkas lemma;� Farkas lemma: Gen-
eralizations) such a v exists if and only if the alternative
system

r f (x)>z < 0; Az D 0; z � 0

has no solution. However Az = 0, z � 0 imply that x +
� z 2 S for all � � 0. Since S is assumed to be compact,
the only possibility is z = 0 and the alternative system
has no solution. Thus D(x) is nonempty.

The dual constraints imply that u| x = r f (x)| x �
v| Ax, so

d(x) D

8<
:
max
v

f (x) � r f (x)x C v>b

s.t. A>v � r f (x):

By linear programming duality

(
max b>v
s.t. A>v � r f (x)

D

8̂
<̂
ˆ̂:

min r f (x)>y
s.t. Ay D b

y � 0;

and it follows that

d(x) D f (x)Cmin
y2S
r f (x)>(y � x)

D f (x)� G(x):

�

Expressing the duality gap in terms of x allows a simple
interpretation of weak and strong duality in the convex
case. Figure 4 illustrates the gap function in one variable
with S being the interval [a, b]. Let x = x1. The linear
function

f (x1)Cr f (x1)>(y � x1)

is the tangent line shown. It has aminimum in S at y(x1)
= a which, by convexity, must lie below f (x�). Hence
the weak duality result holds: f (x�) � f (x1)� G(x1) =
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Lagrangian Duality: BASICS, Figure 4
A one variable interpretation of weak and strong duality

d(x1). Strong duality occurs when x1 = x� and the min-
imum of the linear function (i. e., the tangent at x�) has
the value f (x�). In this case G(x�) = 0. If x� were at an
interior point of S, and/or if x1 is infeasible to S, this
same interpretation holds provided only that f (x1) and
r f (x1) are defined.

Summary

This section has illustrated basic results and geometri-
cal interpretations of Lagrangian duality. The reference
list below is a selection of texts and journal articles on
this topic for further reading.
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Optimization problems concern the minimization or
maximization of functions over some set of condi-
tions called constraints. The original treatment of con-
strained optimization problems was to deal only with
equality constraints via the introduction of Lagrange
multipliers which found their origin in basic mechan-
ics. Modeling real world situations often requires using
inequality constraints leading to more challenging op-
timization problems. Lagrange multipliers are used in
optimality conditions and play a key role to devise algo-
rithms for constrained problems. What will be summa-
rized here are the basic elements of various algorithms

based on Lagrangian multipliers to solve constrained
optimization problems, and particularly convex opti-
mization problems. A standard formulation of an op-
timization problem is:

(O) min f f (x) : x 2 X \ Cg ;

where X is a certain subset of Rn and C is the set of con-
straints described by equality and inequality constraints

C D
�
x 2 Rn :

gi(x) � 0; i D 1; : : : ;m;
hi (x) D 0; i D 1; : : : ; p

	
:

All the functions in problem (O) are real valued func-
tions on Rn, and the set X can described more abstract
constraints of the problem. A point x 2 X \ C is called
a feasible solution of the problem, and an optimal solu-
tion is any feasible point where the local or global mini-
mum of f relative toX \C is actually attained. By a con-
vex problem we mean the case where X is a convex set,
the functions f , g1, . . . , gm are convex and h1, . . . , hp are
affine. Recall that a set S � Rn is convex if the line seg-
ment joining any two different points of S is contained
in it.

Let S be a convex subset of Rn. A real valued func-
tion f : S! R is convex if for any x, y 2 S and any � 2
[0, 1],

f (�x C (1 � �)y) � � f (x)C (1 � �) f (y) :

Convexity plays a fundamental role in optimization
(even in nonconvex problems). One of the key fact is
that when a convex function is minimized over a con-
vex set, every local optimal solution is global. Another,
fundamental point is that a powerful duality theory can
be developed for convex problems, which as we shall
see, is also at the root of the development and analysis
of Lagrangian multiplier methods.

Augmented Lagrangians

The basic idea of augmented Lagrangian methods for
solving constrained optimization problems, also called
multiplier methods, is to transform a constrained prob-
lem into a sequence of unconstrained problems. The
approach differs from the penalty-barrier methods, [13]
from the fact that in the functional defining the uncon-
strained problem to be solved, in addition to a penalty
parameter, there are also multipliers associated with the
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constraints. Multiplier methods can be seen as a com-
bination of penalty and dual methods. The motivation
for these methods came from the desire of avoiding ill-
conditioning associated with the usual penalty-barrier
methods. Indeed, in contrast to penalty methods, the
penalty parameter need not to go to infinity to achieve
convergence of the multiplier methods. As a conse-
quence, the augmented Lagrangian has a ‘good’ condi-
tioning, and the methods are robust for solving nonlin-
ear programs. Augmented Lagrangians methods were
proposed independently by M.R. Hestenes [16] and
M.J.D. Powell [26] for the case of equality constraints,
and extended for the case of inequality constraints by
R.T. Rockafellar [27].Many other researchers have con-
tributed to the development of augmented Lagrangian
methods, and for an excellent treatment and compre-
hensive study of multiplier methods, see [7] and refer-
ences therein.

Quadratic Lagrangian

We start by briefly describing the basic steps involved
in generating a multiplier method for the equality con-
strained problem

(E) min f f (x) : hi(x) D 0; i D 1; : : : ; pg :

Here f and hi are real valued functions on Rn and no
convexity is assumed (which will not help anyway be-
cause of the nonlinear equality constraints). Also for
simplicity we let X = Rn. The ordinary Lagrangian as-
sociated with (E) is

l(x; y) D f (x)C
pX

iD1

yi hi(x):

One of the oldest and simplest way to solve (E) is by se-
quential minimization of the Lagrangian ([2]). Namely,
we start with an initial multiplier yk and minimize l(x,
yk) over x 2 Rn to produce xk. We then update the mul-
tiplier sequence via the formula:

ykC1
i D yki C sk hi(xk); i D 1; : : : ; p;

where sk is a stepsize parameter. The rational behind
the above method is that it can be simply interpreted
as a gradient-type algorithm to solve an associated dual
problem. Unfortunately, such a method while simple
requires too many assumptions on the problem’s data

to generate points converging rapidly toward an opti-
mal solution. Thus this primal-dual framework is not in
general particularly attractive. However, combining the
primal-dual idea to the one of penalty leads to another
class of algorithms called multiplier methods. In these
methods one uses instead of the classical Lagrangian
l(x, y) a ‘penalized’ Lagrangian of the form:

Pc (x; y) D f (x)C
pX

iD1

yi hi(x)C
c
2

pX
iD1

h2i (x);

where c > 0 is a penalty parameter. Then, starting with
an initial multiplier yk and penalty parameter ck, the
augmented Lagrangian Pc is minimized with respect to
x and at the end of each minimization, the multipli-
ers (and sometimes also the penalty parameter) are up-
dated according to some scheme and we continue the
process until convergence. More precisely, the method
of multipliers generates the sequences {yk} � Rm, {xk}
� Rn as follows. Given a sequence of nondecreasing
scalars ck > 0, compute

xkC1 2 argmin
n
Lck (x; y

k) : x 2 Rn
o
;

ykC1
i D yki C ckhi (xkC1); i D 1; : : : ; p:

The rational behind the updating of the multipliers
yk is that if the generated sequence xk converges to a lo-
cal minimum then the sequence yk will converge to the
corresponding Lagrange multiplier y�. Under reason-
able assumptions, this happens without increasing the
parameter ck to infinity and thus avoids the difficulty
with ill-conditioning. The above scheme provides with
the key steps in devising a multiplier method for equal-
ity constrained optimization problems. We now turn to
the case of problems with inequality constraints:

(I) min f f (x) : gi (x) � 0; i D 1; : : : ;mg :

One simple way to treat this case is to transform the
inequality constraints to equality using squared vari-
ables and then apply the multiplier framework previ-
ously outlined. Thus, we convert problem (I) to the
equality constrained problem in the variables (x, z):
(
min f (x)
s.t. gi (x)C z2i D 0; i D 1; : : : ;m;

where z 2 Rm are additional variables. The quadratic
augmented Lagrangian to be minimized with respect to
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(x, z) thus takes the form:

Qc(x; z; y) D f (x)C
mX
iD1

yi (gi (x)C z2i )

C
c
2

mX
iD1

(gi(x)C z2i )
2:

The key observation here is that the minimization with
respect to z can be carried out analytically. One can
verify via simple calculus that for fixed (x, y), minz2Rm

Qc(x, z, y) = Lc(x, y), with

Lc (x; y) D f (x)C
1
2c

mX
iD1

�
max 2f0; yi C cgi(x)g � y2i

�
:

Summarizing, the multiplier method for the inequality
constrained problem (I) consists of the following two
steps:

xkC1 2 argmin
n
Lck (x; y

k) : x 2 Rn
o
;

ykC1 D maxf0; yk C ck g(xkC1)g:

For the general optimization problem (O), namely
the case of mixed equality and inequality constraints,
Lagrangian multiplier methods can be developed in
a similar fashion. Convergence results to a local min-
imum for the above schemes can be established under
second order sufficiency assumptions, ([7,28]). In the
case of convex programs, namely when in problem (I)
the functions f , g1, . . . , gm are assumed convex func-
tions, (or more generally in problem (O), if we also as-
sume hi affine and X convex), much stronger conver-
gence results can be established under mild assump-
tions ([29]). A typical result is as follows.

Assumption 1 The set of optimal solutions of the con-
vex problem (I) is nonempty and compact and the set
of multiplier is nonempty and compact.

The assumption on the optimal set of multipliers is
guaranteed under the standard Slater constraint qual-
ification:

9x̂ : gi (bx) � 0; i D 1; : : : ;m:

Under assumption 1, one can prove that the se-
quence yk converges to some Lagrange multiplier y�

and any limit point of the sequence xk is an optimal
solution of the convex program. Note that we do not
require that ck is sufficiently large and convergence is
obtained from any starting point y0 2 Rm.

The multiplier method for inequality constrained
problems was derived by using slack variables in the
inequality constraints and then by applying the multi-
plier method which was originally devised for problems
having only equality constraints. An alternative way of
constructing an augmented Lagrangian method is via
the proximal framework.

Proximal Minimization

Consider the convex optimization problem

(C) min fF(x) : x 2 Rng ;

where F:Rn! (�1, +1] is a proper, lower semicon-
tinuous convex function. One method to solve (C) is
to ‘regularize’ the objective function using the proximal
map of J.-J. Moreau [22]. Given a real positive num-
ber c, a proximal approximation of f is defined by:

Fc(x) D inf
u

˚
F(u)C (2c)�1 kx � uk2

�
: (1)

The resulting function Fc enjoys several important
properties: it is convex and differentiable with gradient
which is Lipschitz with constant (c�1) and when min-
imized possesses the same set of minimizers and the
same optimal value than problem (C). The quadratic
regularization process of the function f leads to an it-
erative procedure for solving problem (C), called the
proximal point algorithm [21,30]. The method is as fol-
lows: given an initial point x0 2 Rn a sequence {xk} is
generated by solving:

xkC1 D argmin
�
F(x)C

1
2ck




x � xk




2
	
; (2)

where {ck}1kD1 is a sequence of positive numbers.
One of the most powerful application of the prox-

imal algorithm is when applied to the dual of an op-
timization problem. Indeed, as shown by Rockafellar
[27,29], a direct calculation shows that Lc can be written
as

Lc (x; y) D max
	2Rm

C

�
l(x; �)�

1
2c
k� � yk2

	
; (3)
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where the maximum is attained uniquely at �i = max
{0, yi + c gi(x)}, i = 1, . . . , m. Here l: Rn × Rm

+ ! R
denotes the usual Lagrangian associated with the in-
equality constrained problem (I) and Rm

C stands for
the nonnegative orthant. This shows that the quadratic
augmented Lagrangian is nothing else but the Moreau
proximal regularization of the ordinary Lagrangian,
and the quadratic multiplier method can be interpreted
as applying the proximal minimization algorithm on
the dual problem associated with (I):

(D) sup fd(y) : y � 0g ;

where d(y) := infx l(x, y) is the dual functional. This
interplay between the proximal algorithm and multi-
plier methods is particularly interesting since it offers
the possibility of designing and analyzing the conver-
gence properties of the later from the former, and also
leads to consider useful potential extensions of multi-
plier methods which are discussed next.

Modified Lagrangians

One of the main disadvantages of the quadratic mul-
tiplier methods for inequality constrained problems is
that even when the original problem is given twice con-
tinuously differentiable, the corresponding functional
Lc is not. Indeed, note that with twice continuously dif-
ferentiable data {f , gi}, the augmented Lagrangian Lc
is continuously differentiable in x. However, the Hes-
sian matrix of Lc is discontinuous for all x such that
gi(x) =� c�1 yi. This may cause difficulties in designing
an efficient unconstrained minimization algorithm for
Lc and motivates the search for alternative augmented
Lagrangian to handle inequality constrained problems,
which we call here modified Lagrangians. These La-
grangians possess better differentiability properties to
allow the use of efficient Newton-like methods in the
minimization step. Modified Lagrangians can be found
in several works, [1,15,19,20]. An approach originally
developed in [19] proposed a class of methods which
uses instead of Lc a modified Lagrangian of the form:

Bc (x; y) :D f (x)C c�1
mX
iD1

yi (cgi (x));

where  is a scalar penalty function which is at least C2

and satisfies some other technical conditions. For each

choice of  we then have a multiplier method which
consists of the sequence of unconstrained minimization
problems

xkC1 2 arg min
x2Rn

Bck (x; yk);

followed by the multiplier updates

ykC1
i D yki  

0(ck gi (xkC1); i D 1; : : : ;m:

The multiplier updating formula can be simply ex-
plained as follows. Suppose the functions in problem
(I) are given differentiable, then xk + 1 minimizes Bck (x,
yk) means that rx Bck (xk + 1, yk) = 0, i. e.,

r f (xkC1)C
mX
iD1

yki  
0(ck gi (xkC1)r gi (xkC1) D 0;

and using the multiplier updates defined above the
equation reduces to:

r f (xkC1)C
mX
iD1

ykC1
i r gi (xkC1) D 0;

showing that (xk + 1, yk + 1) also satisfies the optimal-
ity conditions for minimizing the classical Lagrangian,
namely rx l(xk + 1, yk + 1) = 0. Interesting special cases
of the generic method described above includes the ex-
ponential method ([23,35]) with the choice  (t) = et �
1 and the modified barrier method [24] which is based
on the choice  (t) = � ln(1� t). More examples and
further analysis of these methods can be found in [25].

Another way of constructing modified Lagrangians
is in view of the results from the previous section,
to try alternative proximal regularization terms which
could lead to better differentiability properties of the
corresponding augmented Lagrangian functional. This
approach was considered in [32], who suggested new
classes of proximal approximation of a function given
by

F	(x) :D inf
u
f f (u)C ��1D(u; x)g: (4)

Here, D(�, �), which replaces the quadratic proximal
term in (1), is a measure of ‘closeness’ between x, y sat-
isfying D(x, y) � 0 with equality if and only if x = y.
One generic form for D is the use of a ‘proximal-like’
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term defined by

D(x; y) :D d'(x; y) :D
nX

iD1

yi'(y�1i xi);

where ' is a given convex function defined on the non-
negative real line and which satisfies some technical
conditions ([33]). The motivation of using such func-
tional emerges from the desire of eliminating nonneg-
ativity constraints such as the ones present in the dual
problem. Thus, by mimicking (2) and (3) with the prox-
imal term d' , one can design a wide variety of modified
Lagrangians methods with an appropriate choice of '.
The basic steps of the modifiedmultipliers method then
emerging can be described as follows: Given a sequence
of positive numbers {ck}, and initial points xk 2 Rn, yk

2 Rm
C (the positive orthant) generate iteratively the next

points by solving

xkC1 2 argmin
n
Mck (x; y

k) : x 2 Rn
o
; (5)

followed by the multiplier updates

ykC1 2 argmax
y�0
fy0g(xkC1) � c�1k d'(y; yk)g; (6)

whereMc is the modified Lagrangian defined by

Mc(x; y) D sup

2Rm

C

fl(x; �)� c�1d' (�; y)g (7)

i. e., the proximal-like regularization of the usual La-
grangian l(x, �) associated with problem (I). In the
equation (6), g(x) denotes the column vector (g1(x), . . . ,
gm(x))0 2 Rm and the prime denotes transposition. The
method is viable since both (6) and (7) can be solved
analytically, and the computational analysis and effort
should concentrate on (5). This method of multipliers
is nothing else but a proximal-like algorithm applied to
the dual problem (D) ([17]) i. e., starting with y0 2 Rm

C,
generate a sequence {yk} by solving

ykC1 D argmax
y�0
fd(y) � c�1k d'(y; yk)g:

The above scheme gives rise to a rich family of nu-
merical methods, which includes (with an appropriate
choice of ') several classes of nonquadratic multiplier
methods ([7,24,35]). One of the main advantage of us-
ing these modified multiplier methods is that in con-
trast with the usual quadratic augmented Lagrangian

function, the modified Lagrangian for various choices
of d' is twice continuously differentiable if the prob-
lem’s data f , g are. Thus, this opens the possibility of
using Newton methods for solving efficiently (5).

Under assumption 1 and appropriate condition on
the kernel ' one can prove convergence results for these
modified multiplier methods similar to the one obtains
in the quadratic case ([17]). There has been consider-
able recent research on modified Lagrangian methods
and for further results see [3,4,5,11,18,25].

The Lagrangian functional plays a central role in the
analysis and algorithmic development of constrained
optimization problems. Lagrangian based methods
and the related proximal framework have been used
in other optimization contexts, such as convexifica-
tion of nonconvex optimization problems [6,28], de-
composition algorithms [9,12,31,34], semidefinite pro-
gramming [10] and in many other applications, see
e. g., [8,14] where more references can be found.

See also

� Convex Max-functions
� Decomposition Techniques for MILP: Lagrangian

Relaxation
� Integer Programming: Lagrangian Relaxation
� Lagrange, Joseph-Louis
�Multi-objective Optimization: Lagrange Duality
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Abstract

The Laplace method has found many applications in
the theoretical and applied study of optimization prob-
lems. It has been used to study: the asymptotic behav-
ior of stochastic algorithms, ‘phase transitions’ in com-
binatorial optimization, and as a smoothing technique



Laplace Method and Applications to Optimization Problems L 1819

for non–differentiable minimax problems. This article
describes the theoretical foundation and practical ap-
plications of this useful technique.

Background

Laplace’s method is based on an ingenious trick used by
Laplace in one his papers [19]. The technique is most
frequently used to perform asymptotic evaluations to
integrals that depend on a scalar parameter t, as t tends
to infinity. Its use can be theoretically justified for inte-
grals in the following form:

I(t) D
Z
A
exp

�
� f (x)
T(t)

	
d�(x) :

Where f : Rn ! R, T : R ! R, are assumed to
be smooth, and T(t) ! 0 as t tends to1.A is some
compact set, and � is some measure on B (the ��field
generated by A). We know that since A is compact,
the continuous function f will have a global minimum
inA. For simplicity, assume that the global minimum
x* is unique, and that it occurs in the interior A. Un-
der these conditions, and as t tends to infinity, only
points that are in the immediate neighborhood of x*

contribute to the asymptotic expansion of I(t) for large
t. The heuristic argument presented above can be made
precise. The complete argument can be found in [2],
and in [4]. Instead we give a heuristic but didactic argu-
ment that is usually used when introducing the method.

Heuristic Foundations of the Method

For the purpose of this subsection only, assume that f is
a function of one variable, and thatA is given by some
interval [a; b]. It will be instructive to give a justification
of the method based on the one dimensional integral:

K(t) D
Z b

a
exp

�
�
f (x)
t

	
dx :

Suppose that f has a unique global minimum, say c,
such that c 2 (a; b). As t is assumed to be large, we
only need to take into account points near c when eval-
uating K(t). We therefore approximate K(t) by K(t; �).
The latter quantity is given by:

K(t; �) D
Z cC�

c��
exp

�
�
f (x)
t

	
dx :

Expanding f to second order, and by noting that
f 0(c) D 0, we obtain the following approximation:

K(t; �) Ð
Z cC�

c��
exp

(
�
f (c)C 1

2 f
00(c)(x � c)2

t

)
dx

D exp
�
�
f (c)
t

	 Z cC�

c��
exp

�
�
f 00(c)(x � c)2

2t

	
dx :

The limits of the integral above can be extended to in-
finity. This extension can be justified by the fact only
points around c contribute to the asymptotic evaluation
of the integral.

K(t; �)

Ð exp
�
�
f (c)
t

	 Z C1
�1

exp
�
�
f 00(c)(x � c)2

2t

	
dx

D exp
�
�
f (c)
t

	 s
2
 t
f 00(c)

:

In conclusion we have that:

lim
t!1

K(t) D exp
�
�
f (c)
t

	 s
2
 t
f 00(c)

:

Rigorous justifications of the above arguments can be
found in [4]. These types of results are standard in the
field of asymptotic analysis. The same ideas can be ap-
plied to optimization problems.

Applications

Consider the following problem:

F� D min f (x)

s:t gi (x) � 0 i D 1; : : : ; l :
(1)

Let S denote the feasible region of the problem above,
and assume that it is nonempty, and compact, then:

lim
t#0
�� ln c(t) D F� : (2)

Where,

c(t) ,
Z
S
exp

�
� f (x)

t

	
d�

D

Z
Rn

exp
�
� f (x)

t

	
Ix (S)d�:

(3)
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� is any measure on (Rn ;B). A proof of Eq. (2) can be
found in [16].

The relationship in Eq. (3) can be evaluated us-
ing the Laplace method. The link between the Laplace
method and optimization has been explored in:
� Stochastic methods for global optimization.
� Phase transitions in combinatorial optimization.
� Algorithms for worst case analysis.
These application areas will be explored next.

Stochastic Methods for Global Optimization

Global optimization is concerned with the computation
of global solutions of Eq. (1). In other words, one seeks
to compute F*, and if possible obtaining points from the
following set:

S� D fx 2 S j f (x) D F�g :

Often the only way to solve such problems is by us-
ing a stochastic method. Deterministic methods are
also available but are usually applicable to low dimen-
sional problems. When designing stochastic methods
for global optimization, it is often the case that the algo-
rithm can be analyzed as a stochastic process. Then in
order to analyze the behavior of the algorithm we can
examine the asymptotic behavior of the stochastic pro-
cess. In order to perform this analysis we need to define
a probability measure that has its support in S*. This
strategy has been implemented in [3,6,7,8,9,10,16].

A well known method for obtaining a solution to an
unconstrained optimization problem is to consider the
following Ordinary Differential Equation (ODE):

dX(t) D �r f (X(t))dt : (4)

By studying the behavior of X(t) for large t, it can be
shown that X(t) will eventually converge to a station-
ary point of the unconstrained problem. A review of, so
called, continuous-path methods can be found in [22].
More recently, application of this method to large scale
problems was considered by Li-Zhi et al. [13]. A defi-
ciency of using Eq. (4) to solve optimization problems
is that it will get trapped in local minima. In order to
allow the trajectory to escape from local minima, it has
been proposed by various authors (e. g. [1,3,7,8,12,16])
to add a stochastic term that would allow the trajectory
to “climb” hills. One possible augmentation to Eq. (4)

that would enable us to escape from local minima is to
add noise. One then considers the diffusion process:

dX(t) D �r f (X(t))dt C
p
2T(t)dB(t) : (5)

Where B(t) is the standard Brownian motion in Rn .
It has been shown in [3,7,8], under appropriate condi-
tions on f , that if the annealing schedule is chosen as
follows:

T(t) , c
log(2C t)

; for some c � c0 ; (6)

where c0 is a constant positive scalar (the exact value
of c0 is problem dependent). Under these conditions,
as t ! 1, the transition probability of X(t) converges
(weakly) to a probability measure ˘ . The latter, has its
support on the set of global minimizers. A characteriza-
tion of˘ was given byHwang in [11]. It was shown that
˘ is the weak limit of the following, so called, Boltz-
mann density:

p(t; x) D
�
exp

�
�
f (x)
T(t)

	� �Z
Rn

exp
�
�
f (x)
T(t)

	
dx
��1
:

(7)

Discussion of the conditions for the existence of˘ , can
be found in [11]. A description of ˘ in terms of the
Hessian of f can also be found in [11]. Extensions of
these results to constrained optimization problems ap-
pear in [16].

Phase Transitions in Combinatorial Optimization

The aim in combinatorial optimization is to select from
a finite set of configurations of the system, the one
that minimizes an objective function. The most fa-
mous combinatorial problem is the Travelling Sales-
man Problem (TSP). A large part of theoretical com-
puter science is concerned with estimating the com-
plexity of combinatorial problems. Loosely speaking,
the aim of computational complexity theory is to clas-
sify problems in terms of their degree of difficulty. One
measure of complexity is time complexity, and worst
case time complexity has been the aspect that received
most attention. We refer the interested reader to [15]
for results in this direction. We will briefly summarize
results that have to do with average time complexity,
the Laplace method, and phase transitions.
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Most of complexity theory is concerned with
worst case complexity. However, many useful methods
(e. g. the simplex method) will require an exponential
amount of time to converge only in pathological cases.
It is therefore of great interest to estimate average case
complexity. The physics community has recently pro-
posed the use of tools from statistical mechanics as one
way of estimating average case complexity. A review in
the form of a tutorial can be found in [14]. Here we just
briefly adumbrate the main ideas.

The first step in the statistical mechanics approach is
to define a probability measure on the configuration of
the system. This definition is done with the Boltzmann
density:

pt(C) D
exp

˚
� 1

t f (C)
�

P
C
exp

˚
� 1

t f (C)
� :

The preceding equation is of course the discrete version
of Eq. (7). Using the above definition, the average value
of the objective function is given by:

h fti D
X
C

pt(C) f (C) :

Tools and techniques of statistical mechanics can be
used to calculate ‘computational phase transitions’.
A computational phase transition is an abrupt change
in the computational effort required to solve a combi-
natorial optimization problem. It is beyond the scope of
this article to elaborate on this interesting area of opti-
mization. We refer the interested reader to the review
in [14]. The book of Talagrand [20] presents some rig-
orous results on this subject.

Worst Case Optimization

In many areas where optimization methods can be
fruitfully applied, worst case analysis can provide con-
siderable insight into the decision process. The funda-
mental tool for worst case analysis is the continuous
minimax problem:

min
x2X

˚(x) ;

where ˚(x) D maxy2Y f (x; y). The continuous min-
imax problem arises in numerous disciplines, includ-
ing n–person games, finance, economics and policy op-
timization (see [18] for a review). In general, they are
used by the decision maker to assess the worst-case

strategy of the opponent and compute the optimal re-
sponse. The opponent can also be interpreted as nature
choosing the worst-case value of the uncertainty, and
the solution would be the strategy which ensures the
optimal response to the worst–case. Neither the robust
decision maker nor the opponent would benefit by de-
viating unilaterally from this strategy. The solution can
be characterized as a saddle point when f (x; �) is convex
in x and f (�; y) is concave in y. A survey of algorithms
for computing saddle points can be found in [5,18].

Evaluating ˚(x) is extremely difficult due to the
fact that global optimization is required over Y . More-
over, this function will in general be non-differentiable.
For this reason, it has been suggested by many re-
searchers (e. g. [17,21]) to approximate ˚(x) with
˚(x; t) given by:

˚(x; t) D
Z
Y
exp

�
�
f (x; y)

t

	
dy :

This is of course another application of the Laplace
method, and it can easily be seen that:

lim
t#0
�t ln˚(x; t) D ˚(x) :

This idea has been implemented in [17,21] with consid-
erable success.

References
1. Aluffi-Pentini F, Parisi V, Zirilli F (1985) Global optimization

and stochastic differential equations. J Optim Theory Appl
47(1):1–16

2. Bender CM, Orszag SA (1999) Advanced mathematical
methods for scientists and engineers I. Asymptotic meth-
ods and perturbation theory, Reprint of the 1978 original.
Springer, New York

3. Chiang TS, Hwang CR, Sheu SJ (1987) Diffusion for global
optimization in Rn. SIAM J Control Optim 25(3):737–753

4. de Bruijn NG (1981) Asymptotic methods in analysis, 3rd
edn. Dover Publications Inc., New York

5. Dem0yanov VF, Malozëmov VN (1990) Introduction tomin-
imax. Translated from the Russian by Louvish D, Reprint of
the 1974 edn. Dover Publications Inc., New York

6. Gelfand SB, Mitter SK (1991) Recursive stochastic algo-
rithms for global optimization in Rd . SIAM J Control Optim
29(5):999–1018

7. Geman S, Hwang CR (1986) Diffusions for global optimiza-
tion. SIAM J Control Optim 24(5):1031–1043

8. Gidas B (1986) The Langevin equation as a global mini-
mization algorithm. In: Disordered systems and biological
organization (Les Houches 1985). NATO Adv Sci Inst Ser F
Comput Systems Sci, vol 20. Springer, Berlin, pp 321–326



1822 L Large Scale Trust Region Problems

9. Gidas B (1987) Simulations and global optimization. In:
Random media (Minneapolis, MN, 1985), IMA Vol Math
Appl, vol 7. Springer, New York, pp 129–145

10. Gidas B (1985) Metropolis-type Monte Carlo simulation al-
gorithms and simulated annealing. In: Topics in contem-
porary probability and its applications. Probab Stochastics
Ser. CRC, Boca Raton, FL, pp 159–232

11. Hwang CR (1980) Laplace’s method revisited: weak con-
vergence of probability measures. Ann Probab 8(6):1177–
1182

12. Kushner HJ (1987) Asymptotic global behavior for stochas-
tic approximation and diffusions with slowly decreasing
noise effects: global minimization via Monte Carlo. SIAM
J Appl Math 47(1):169–185

13. Li-Zhi L, LiqunQ, HonWT (2005) A gradient-based continu-
ous method for large-scale optimization problems. J Glob
Optim 31(2):271

14. Martin OC, Monasson R, Zecchina R (2001) Statistical me-
chanics methods and phase transitions in optimization
problems. Theoret Comput Sci 265(1–2):3–67

15. Papadimitriou CH (1994) Computational complexity.
Addison-Wesley, Reading, MA

16. Parpas P, Rustem B, Pistikopoulos E (2006) Linearly con-
strained global optimization and stochastic differential
equations. J Glob Optim 36(2):191–217

17. Polak E, Royset JO, Womersley RS (2003) Algorithms with
adaptive smoothing for finite minimax problems. J Optim
Theory Appl 119(3):459–484

18. Rustem B, Howe M (2002) Algorithms for worst-case de-
sign and applications to risk management. Princeton Uni-
versity Press, Princeton, NJ

19. Stigler SM (1986) Laplace’s 1774 memoir on inverse prob-
ability. Statist Sci 1(3):359–378

20. Talagrand M (2003) Spin glasses: a challenge for mathe-
maticians. Ergebnisse der Mathematik und ihrer Grenzge-
biete. 3. Folge (Results in Mathematics and Related Areas.
3rd Series). A Series of Modern. Surveys in Mathematics,
vol 46. Springer, Berlin

21. Xu S (2001) Smoothing method for minimax problems.
Comput Optim Appl 20(3):267–279

22. Zirilli F (1982) The use of ordinary differential equations in
the solution of nonlinear systems of equations. In: Nonlin-
ear optimization (Cambridge 1981). NATO Conf Ser II: Sys-
tems Sci. Academic Press, London, pp 39–46

Large Scale Trust Region Problems
LSTR

LAURA PALAGI

DIS, Universitá Roma ‘La Sapienza’, Rome, Italy

MSC2000: 90C30

Article Outline

Keywords
Algorithms Based on Successive Improvement
of KKT Points
Exact Penalty Function Based Algorithm (EPA)
D.C. Decomposition Based Algorithm (DCA)

Parametric Eigenvalue Reformulation
Based Algorithms
Inverse Interpolation Parametric

Eigenvalue Formulation (IPE)
Semidefinite Programming Approach (SDP)

Conclusion
See also
References

Keywords

Large scale trust region problem; Exact penalty
function; D.C. programming; Eigenvalue problem;
Semidefinite programming

The trust region (TR) problem consists in minimizing
a general quadratic function q: Rn! R of the type

q(x) D
1
2
x>Qx C c>x

subject to an ellipsoidal constraint x| Hx � r2 with the
symmetric matrix H positive definite and r a positive
scalar. By rescaling and without loss of generality, it can
be assumed for sake of simplicity H = I, hence the TR
problem is

(
min q(x)
s.t. kxk2 � r2;

(1)

where k � k denotes the `2 norm.
The interest in this problem initially arose in the

context of unconstrained optimization when q(x) is
a local quadratic model of the objective function which
is ‘trusted’ to be valid over a restricted ellipsoidal region
centered around the current iterate. However, it has
been shown later that problems with the same struc-
ture of (1) are at the basis of algorithms for solving
general constrained nonlinear programming problems
(e. g. [2,14,19,21,27,28] and references therein), and for
obtaining bounds for integer programming problems
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(e. g. [10,11,12,17,18,26]; cf. also � Integer program-
ming).

Many papers have been devoted to study the spe-
cific features of Problem (1). It is well known [7,22] that
a feasible point x� is a global solution for (1) if and only
if there exists a scalar �� � 0 such that the following
KKT conditions are satisfied:

(Q C ��I)x� D �c;

��(kx�k2 � r2) D 0;

and furthermoreQ + �� I< 0, where< denotes positive
semidefinitness of the matrix.

Note that a complete characterization of global min-
imizers is given without requiring any convexity as-
sumption on the matrix Q. Moreover, it has been
proved that an approximation to the global solution
can be computed in polynomial time (see, for exam-
ple, [1,24,25]). Hence Problem (1) can be considered an
‘easy’ problem from a theoretical point of view. These
peculiarities led to the development of ‘ad hoc’ algo-
rithms for finding a global solution of Problem (1). The
first ones proposed in [7,16,22] were essentially based
on the solution of a sequence of linear system of the type
(Q + �k I) x =� c for a sequence {�k}. These algorithms
produce an approximate global minimizer of Problem
(1), but rely on the ability to compute a Cholesky fac-
torization of the matrix (Q + �k I) at each iteration k,
and hence these methods are appropriate when form-
ing a factorization for different values of �k is realistic
in terms of both memory and time requirements. In-
deed, they are appropriate for large scale problems with
special structure, but in the general case, when no spar-
sity pattern is known, one cannot rely on factorizations
of the matrices involved.

Thus one concentrates on iterative methods of con-
jugate gradient type (cf. � Conjugate-gradient meth-
ods) that require only matrix-vector products. Among
the methods that have been proposed to solve large
scale trust region problems, the following two main cat-
egories can be identified:
� methods that produce a sequence of KKT points of

(1) with progressive improvement of the objective
function;

� methods that solve (1) via a sequence of parametric
eigenvalue problems.

Algorithms Based on Successive Improvement
of KKT Points

Methods in this class are based on special properties of
KKT points of Problem (1). Indeed one can prove the
following properties:
1) given a KKT point that is not a global minimizer, it

is possible to find a new feasible point with a lower
value of the objective function [5,13];

2) the number of distinct values of the objective func-
tion q(x) at KKT points is bounded from above by
2m + 2 where m is the number of negative eigenval-
ues of Q [13].

Exploiting these properties, a global minimizer of Prob-
lem (1) can be found, by applying a finite number of
times an algorithm that, starting from a feasible point,
locates a KKT point with a lower value of the objective
function.

An algorithmic scheme of methods in this frame-
work is summarized in the pseudocode of Table 1. The
procedure described above is well-posed in the sense
that it enters the ‘DO cycle’ a finite number of steps,
since by Property 2, the function can assume at most
a finite number of values at a KKT point.

To complete the scheme of Table 1 and obtain an
efficient algorithm for the solution of Problem (1), it re-
mains to specify how to move from a non global KKT

Large Scale Trust Region Problems, Table 1
A pseudocode for TR problem based on successive improve-
ment of KKT points

procedure TR-IMPROVE-KKT()
input instance (Q; c; r; x0);
Set k = 0; x = xk ; (starting point)
find a KKT point x̂ k s.t. q(x̂ k) � q(xk);
DO (until a global minimizer is found)
(escape from a nonglobal KKT point)
find x s.t. k x k� r; q(x) < q(x̂ k);

(update starting point)
set k = k + 1; xk = x;

(find a ‘better’ KKT point)
find a KKT point x̂ k s.t.
q(x̂ k) � q(xk);

OD;
RETURN (solution)

END TR-IMPROVE-KKT;
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point to a feasible point while improving the objective
function, and how to define a globally and ‘fast’ conver-
gent algorithm to locate a KKT point.

To check global optimality of a KKT point (i. e. to
check ifQ + � I < 0), one needs an estimate of the KKT
multiplier � corresponding to the point x, and has to
verify whether � � � �min(Q). To obtain � the follow-
ing multiplier function can be used

�(x) D �
1
2r2

x>(Qx C c); (2)

which is consistent, namely at a KKT point �(x) = �.
If �< � �min(Q), then (x, �) is a nonglobal KKT point
and a negative curvature direction for the matrix Q +
� I exists, namely a vector z such that z|(Q + � I) z <
0. To perform the step ‘escape from a non global KKT
point’, one can use such a direction. Roughly speaking
and without discussing the details (see [5,13]), a new
feasible point can be obtained by moving from x along
z itself or along a direction easily obtainable from z of
a computable quantity ˛. The efficiency of this step de-
pends on the ability of finding efficiently such a vec-
tor z. Hence a procedure that finds an approximation
of the minimum eigenvalue of (Q + � I) and of the
corresponding eigenvector is needed. In the large scale
setting, this can be done efficiently by using a Lanczos
method [3,23] which meets the requirement of limited
storage and needs only matrix-vector products.

In the algorithmic scheme of Table 1, it remains to
define how to find efficiently a KKT point for Problem
(1). Two different approaches have been recently (1998)
proposed to perform this step; one is based on a contin-
uously differentiable exact penalty function approach,
the other is based on a difference of convex function
approach. In both cases, the basic idea is to reformulate
the constrained Problem (1) in a different form that al-
lows one to use ideas typical of other fields of mathe-
matical programming. Both approaches, which are de-
scribed briefly in the sequel, treat indifferently the so
called ‘easy and hard’ cases of Problem (1) and require
only matrix vector products.

Exact Penalty Function Based Algorithm (EPA)

The main idea at the basis of a continuously differen-
tiable exact penalty function approach is the reformula-
tion of the constrained Problem (1) as an unconstrained

one. In particular, a continuously differentiable func-
tion P(x) can be defined [13] such that Problem (1) is
‘equivalent’ to the unconstrained problem

min
x2Rn

P(x):

The merit function takes full advantage of the struc-
ture of Problem (1) and it is a piecewise quartic func-
tion, whose definition relies on the particular multiplier
function (2). The analytic expression of P is

P(x) D q(x) �
"

4
�(x)2

C
"

4
max

�
0;

2
"
(kxk2 � r2)C �(x)

�2

;

where 0 < " < 2r4/[r2(k Q k + 1)+ kck2]. The function
P(x) has the following features:
� it has compact level sets;
� stationary (global minimum) points of P(x) are KKT

(global minimum) points of Problem (1) and vice
versa; moreover P(x) = q(x) at these points;

� the penalty parameter " need not be updated;
� for points such that kxk2 � r2 it results P(x)� q(x);
� P(x) is twice continuously differentiable in a neigh-

borhood of a KKT point that satisfies strict comple-
mentarity.

The unconstrained reformulation of Problem (1) can
be exploited to define an algorithm for finding a KKT
point while improving the value of objective func-
tion with respect to the initial one. Indeed any uncon-
strained method for the minimization of P(x) can be
used. Starting from a point x0, any of these algorithms
produce a sequence of the type

xkC1 D xk C ˛kdk ; (3)

where dk is a suitable direction, ˛k is a stepsize along dk.
The sequence {xk} need not to be feasible for Problem
(1). The boundedness of the level sets of P(x) guarantees
the boundedness of the iterates and that any conver-
gent unconstrained method obtains a stationary point
x for P such that P(x) < P(x0). Furthermore a station-
ary point of P(x) is a KKT point of Problem (1) and
P(x) D q(x). If, in addition, x0 is a feasible point, the
following relation holds:

q(x) D P(x) < P(x0) � q(x0);
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which means that x is a KKT point of Problem (1) with
a value of the objective function lower than the value at
the starting point.

As regard the efficiency of the algorithms, in terms
of rate of convergence and computational requirement,
a ‘good’ direction dk can be defined, by further exploit-
ing the features of the unconstrained reformulation. In-
deed, in a neighborhood of points satisfying the strict
complementarity assumption, P(x) 2 C2 and therefore
any unconstrained truncated Newton algorithm [4] can
be easily adapted in order to define globally convergent
methods which show a superlinear rate of convergence.
Methods in this class include conjugate gradient based
iterative method that requires only matrix-vector prod-
ucts and hence are suitable for large scale instances.

The resulting algorithmic scheme is reported in Ta-
ble 2.

In the nonconvex case (Q � 0) strict complemen-
tarity holds in a neighborhood of every global mini-
mizer of Problem (1) [13]. However, this may not be
true in a neighborhood of a KKT point and the func-
tion P(x) may be not twice differentiable there. Nev-
ertheless algorithms which exhibit superlinear rate of
convergence can be defined. In fact, drawing inspira-
tion from the results in [6], the direction dk is defined
as the approximate solution of one of the following lin-
ear systems:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

if


xk



2 � r2 < �"	
k

2 ; then
(Q C �k I)dk D �(Qxk C c);

if


xk



2 � r2 � �"	
k

2 ; then 
Q C �k I xk

(xk)> 0

! 
dk

zk

!
D

 
�Qxk � c
r2 �



xk


2
!
:

(4)

The solution of the linear systems (4), can be deter-
mined approximately by using the truncated Newton
method proposed in [8]. The direction dk satisfies suit-
able descent conditions with respect to the penalty
function P, which can be used to measure the progres-
sive improvement of the iterate. The stepsize ˛k can be
determined by any Armijo-type line search [9] that uses
P as merit function.

It is possible to prove that the sequence {xk} pro-
duced by (3) with dk obtained by (4) and {�(xk)} by
(2) converges to a KKT point (bx;b�). Moreover if the
KKT point (bx;b�) satisfies z>(Q Cb�I)z > 0 for all z:
z>bx D 0 whenever



bx

2 D r2 and b� > 0, then there

Large Scale Trust Region Problems, Table 2
A pseudocode for finding a KKT point by EPA

procedure KKT point by EPA()
Given x0 :k x0 k2� r2 and " > 0;
set �0 = �(x0) and k = 0;
DO (until a KKT point (xk; �k) is found)
set xk+1 = xk + ˛kdk

and �k+1 = �(xk+1);
k = k + 1;

OD;
RETURN(KKT point);

END KKT point by EPA;

exists a neighborhood of bx where the rate of conver-
gence of the algorithm is superlinear.

D.C. Decomposition Based Algorithm (DCA)

This algorithm is based on an appropriate reformula-
tion of Problem (1) as the minimization of the differ-
ence of convex functions [5]. DCA has been proposed
for solving large scale d.c. programming problems. The
key aspect in d.c. optimization (cf. � D.C. program-
ming) relies on the particular structure of the objec-
tive function to be minimized on Rn that is expressed as
f (x) = g(x)� h(x), with g and h being convex. One uses
the tools of convex analysis applied to the two compo-
nents g and h of the d.c. function. In particular d.c. du-
ality plays a fundamental role to understand how DCA
works. Indeed for a generic d.c. problem, DCA con-
structs two sequences {xk} and {yk} and it can be viewed
as a sort of decomposition approach of the primal and
dual d.c. problems. It must be pointed out that a d.c.
function has infinitely many d.c. decompositions that
give rise to different primal dual pairs of d.c. problems
and so to different DCA relative to these d.c. decompo-
sitions. Thus, choosing a d.c. decomposition may have
an important influence on the qualities (such as robust-
ness, stability, rate of convergence) of the DCA. This
aspect is related to regularization techniques in d.c. pro-
gramming.

In the special case of Problem (1), a quite appropri-
ate d.c. decomposition has been proposed, so that DCA
becomes very simple and it requires only matrix-vector
products. To apply DCA to Problem (1), a d.c. decom-
position of the objective function f (x) = q(x) + �F(x)
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must be defined, where �F(x) is the indicator function
for the feasible set, namely

�F (x) D

(
0 if kxk2 � r2;
1 otherwise:

From the computational point of view, the most effi-
cient decomposition that has been proposed is

g(x) D
1
2
� kxk2 C c>x C �F(x);

h(x) D
1
2
x>(�I � Q)x;

with � > 0 and such that (� I � Q) < 0. In this case
the sequence {yk} is obtained by the following rule yk =
(�I � Q) xk and xk + 1 is obtained as the solution of the
problem

min
x2Rn

1
2
� kxk2 C x>(c � yk)C �F (x):

Thus xk + 1 is the projection of (yk � c)/� onto the fea-
sible region kxk2 � r2. The scheme for obtaining KKT
points by DCA is reported in Table 3.

It has been proved [5] that algorithm DCA gener-
ates a sequence of feasible points {xk} with strictly de-
creasing value of the objective function and such that
{xk} converges to a KKT point.

In practice the convergence rate depends on the
choice of the parameter �. A possible choice (the best
one according to some numerical experimentations

Large Scale Trust Region Problems, Table 3
A pseudocode for finding a KKT point by DCA

procedure KKT POINT by DCA()
Given x0; � > 0 such that (�I � Q) 
 0;
DO (until a KKT point is found)
IF k (�I � Q)xk � c k� �r THEN
xk+1 = 1

�
[(�I � Q)xk � c]

ELSE xk+1 = r
(�I � Q)xk � c
k (�I � Q)xk � c k

END IF;
IF k xk+1 � xk k� tol exit;
set k = k + 1;

OD;
RETURN (KKT point);

END KKT POINT by DCA;

performed in [5]) consists in taking � as close as possi-
ble to the largest eigenvalue of the matrixQ, namely � =
max{�max(Q) + ", 10�3} with "> 0 and sufficiently small.
Actually only a low accuracy estimate of �max(Q), which
can be found by using a Lanczos method, is needed.

Parametric Eigenvalue Reformulation
Based Algorithms

The algorithms in this framework are based on the re-
formulation of the TR problem into a parametric eigen-
value problem of a bordered matrix. It must be noted
that, if the linear term is not present in the function
q(x), i. e. c = 0, Problem (1) is a pure quadratic prob-
lem that corresponds to finding the smallest eigenvalue
of thematrixQ. Indeed the intuitive observation behind
this idea is that given a real number t, one can write

1
2
t C q(x) D

1
2

�
1
x

�> �
t c>

c Q

��
1
x

�

and for a fixed t the goal is to minimize the function
q(x) over the set {x: kxk2 + 1 = r2 + 1}, that is to mini-
mize a pure quadratic form z| D(t) z/2 over a spherical
region where

D(t) D
�
t c>

c Q

�
:

This suggests that a solution of (1) may be found using
eigenpairs of the matrix D(t) where t is a parameter to
be adjusted. Indeed, in both the algorithms proposed in
this framework a key role is played by eigenpairs of the
matrix D(t). At each iteration the main computational
step is the calculation of the smallest eigenvalue and
a corresponding normalized eigenvector of the para-
metric matrix D(t). The evaluation of the eigenvalue-
eigenvector pair can be done by using Lanczos method
as a black box. Therefore methods can exploit sparsity
in the matrices and requires only matrix-vector mul-
tiplications. Moreover, only one element of the matrix
D(t) is changed at each iteration of both the algorithms
and so consecutive steps of Lanczos algorithm become
cheaper.

Both algorithms have to distinguish between the
easy and hard case of Problem (1). The hard case is
said to occur when the vector c is orthogonal to the
eigenspace associated to the smallest eigenvalue of Q,
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i. e. c|y = 0, for all y 2 Smin with

Smin D fx 2 Rn : Qx D �min(Q)xg :

Depending on whether the easy or the hard case occurs,
eigenpairs of the perturbed matrix D(t) satisfies differ-
ent properties. In the easy case, the smallest eigenvalue
�min (D(t)) is simple and such that �min (D(t)) < �min

(Q) for all values t. Moreover in this case the corre-
sponding eigenvector has the first component not equal
to zero and this plays a fundamental role in defining the
iteration of both the algorithms. In the hard case cau-
tion should be used, due to the fact that the first com-
ponent of the eigenvector corresponding to the smallest
eigenvalue of D(t) may be zero. Actually, any vector of
the form (0, y|)| with y 2 Smin is an eigenvector of the
matrix D(t) if and only if c? Smin.

The two algorithms in this framework are briefly de-
scribed below. Although the basic idea behind both the
algorithms is the same, namely inverse interpolation for
a parametric eigenvalue problem, the second one is em-
bedded in a semidefinite programming framework. So
the first one is referred to as ‘inverse interpolation para-
metric eigenvalue’ (IPE) approach and the second one
as ‘semidefinite programming approach’ (SDP).

Inverse Interpolation Parametric
Eigenvalue Formulation (IPE)

In [23] it is observed that if an eigenvector z of D(t)
corresponding to a given eigenvalue � can be normal-
ized so that its first component is one, that is z = (1,
x|)|, then a solution of the TR problem can be found
in terms of eigenpairs of D(t). This corresponds to the
easy case and indeed the pair (x, �) satisfies
�
t c>

c Q

��
1
x

�
D �

�
1
x

�
;

from which we get:
�

t � � D �c>x;
(Q � �I)x D �c:

�

For � < �min(Q), that holds in the easy case with � =
�min(D(t)), the matrix (Q�� I) is positive definite and
hence one can define the function

�(�) D �c>x D c>(Q � �I)�1c;

whose derivative is

�0(�) D c>(Q � �I)�2c D kxk2 :

For a given value of t, finding the smallest eigenvalue
�(t) := �min (D(t)) < �min(Q) and the corresponding
eigenvector of D(t) and then normalizing the eigenvec-
tor to have its first component equal to one (1, x|


(t))
|

will provide a mean to evaluate the function �(�) and
its derivative. If t can be adjusted so that the corre-
sponding x
(t) satisfies �0(�(t)) = k x
(t) k2 = r2 with t�
�(t) = � c| x
(t), and �(t) � 0 then (x, � �(t)) satisfies
the optimality conditions for Problem (1). Whereas if,
during the course of adjusting t, it happens that �(t) >
0 with k x
(t) k2 < r2 then the optimal solution of Prob-
lem (1) is actually unconstrained and can be found by
solving the system Qx = � c with any iterative method.

Hence using the parametric eigenvalue formulation,
the optimal value of (x�, ��) of Problem (1) can be
found by solving a sequence of eigenvalue problems ad-
justing iteratively the parameter t. In order to make this
observation useful, a modified Lanczos methods, the
implicit restarted Lanczos method [23], is used for com-
puting the smallest eigenvalue and the corresponding
eigenvector of D(t). Moreover a rapidly convergent it-
eration to adjust t has been developed, based on a two-
point interpolant method. Recalling that the goal is to
adjust t so that �(�) = t � � and �0(�) = r2, an in-
terpolation based iteration that exploits the structure of
the problem is proposed. The method is based upon an
interpolantb�(�) of �(�) of the form

b�(�) D �2

˛ � �
C ˇ(˛ � �)C ı:

The values of the parameters ˛, ˇ, � , ı appearing in the
interpolant functionb�(�) are determined using the val-
ues of two iterations (xk,�k), (xk� 1,�k� 1) according to
the following rules. The value ı is chosen so as to pro-
vide the current estimate ımin of �min(Q). In particular,
if k xk k < r or k xk� 1 k < r

ı D min

 
ımin;

(xk)>Qxk



xk


2

!
;

if k xk k > r and k xk� 1 k > r then

ı D min

 
(xk)>Qxk



xk


2 ;

(xk�1)>Qxk�1



xk�1


2

!
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Large Scale Trust Region Problems, Table 4
A pseudocode for TR based on (IPE)

procedure TR INTERPOL-PARAM-EIG()
input instace (Q; c; r; x0);
(initialization)
Find �min(Q) and its eigenvector x;
set k = 0; tk = 0; xk = x; �k = �min(Q).

DO
�
until j

k xk k2 �r2

r2
j� tol

�

construct the interpolar �̂(�);
find �̂ : �̂0(�̂) = r2, that is:

�̂ = ˛ �
�


2

r2 + ˇ

�1/2

;

set tk+1 = �̂ + �̂(�̂), that is:

tk+1 = �̂ + ı + ˇ(˛ � �̂) +

2

˛ � �̂
;

compute �k+1 = �min(D(tk+1))
and the corresponding normalized eigenvec-

tor
�
1; (xk+1)>

�>
;

set k = k + 1;
OD;
RETURN(solution)

END TR INTERPOLATION-PARAM-EIG;

and ımin =min(ımin, ı)��min(Q). The other coefficient
are chosen to satisfyb�(�k) D �c>xk ,b�0(�k) D



xk


2,

b�0(�k�1) D


xk�1



2.
An algorithmic scheme for finding the global min-

imizer of Problem (1) in the easy case, is reported in
Table 4.

It has been proved in [23] that there exists a neigh-
borhood of � �� such that if �0, �1 are in this neigh-
borhood, all the sequence {�k} is well defined, remains
in the neighborhood and converge superlinearly to���

with the corresponding iterates xk converging superlin-
early to x�.

Unfortunately, the iteration described above can
break down in the hard case. Indeed the iteration is
based on the ability to normalize the eigenvector of the
bordered matrix D(t). This is not possible when the
first component is equal to zero, that is in the hard
case. From the computational point of view, also a near-
hard case can be difficult and it is important to detect
these cases and to define alternative rules so as to ob-
tain a convergent iteration. This can be done, by using

again eigenpairs of the bordered matrix and additional
information such as the value of an upper bound �U on
the optimal value ��. When the hard case is detected
the new iteration should be used. The convergence of
this new iteration can be established but unfortunately
the rate of convergence is no longer superlinear.

Semidefinite Programming Approach (SDP)

In [20] a primal-dual simplex type method for Prob-
lem (1) has been proposed, which is essentially based on
a primal dual pair of semidefinite programming prob-
lems. Primal-dual pairs of SDP provide a general frame-
work for TR problem. The idea arises from the fact that
Problem (1) enjoys strict duality, that is there is no du-
ality gap and

q(x�) D min
x

max
	

L(x; �) D max
	

min
x

L(x; �);

where L(x, �) = q(x) + �(kxk2 � r2) denotes the La-
grangian function. By exploiting this feature it is possi-
ble to define a primal-dual pair of linear SDP problems
that are strictly connected with the TR problem. In par-
ticular, a dual for Problem (1) is

(
max (r2 C 1)�min(D(t))� t;
s.t. �min(D(t)) � 0:

(5)

The objective function in (5) is a real valued concave
function. When the constraint in Problem (1) is an
equality one, its dual problem (5) is an unconstrained
problem, and as an immediate consequence, the non
convex constrained TR problem is transformed into
a convex problem and hence it can be solved in polyno-
mial time by the results for general convex programs.

Problem (5) can be easily reformulated as a SDP
problem, by introducing an additional variable � 2 R:

8̂
<̂
ˆ̂:

max (r2 C 1)�� t;
s.t. D(t)� �I � 0;

� � 0:

(6)

Slater’s condition holds for Problem (6), and it is possi-
ble to write its Lagrangian dual that is:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min trace(D(0)X);
s.t. trace(X) � r2 C 1;

X11 D 1
X � 0:

(7)
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The algorithm parallels the dual simplex method for
linear programming. At each iteration it maintains dual
feasibility for Problem (6) and complementary slack-
ness, while iterating to get primal feasibility of Problem
(7) (X11 = 1) and reduce the duality gap.

Essentially these steps can be summarized as fol-
lows:
1) find a basic solution (t, �min(D(t))) of Problem (6);
2) find an approximate solution of Problem (7), by us-

ing the complementary slackness relation

trace((D(t)� �I)X) D 0;

an eigenvector z(t) = (z0(t), v(t)|)| corresponding
to �min(D(t)) is used and X = (r2 + 1) zz| so that
the constraint on the trace of X in Problem (7) is
satisfied;

3) use inverse interpolation to predict a value of the pa-
rameter t such that X11 = 1 and/or the duality gap

trace(D(0)X)� ((r2 C 1)� � t)

is decreasing.
Some differences occur depending on whether the easy
or the hard case happens. Let us denote by z(t) =
(z0(t), v(t)|)| the eigenvector of D(t) corresponding to
�min(D(t)).

In the easy case, the first component z0(t) 6D 0 and
the vector v(t)/z0(t) is the unique optimal solution of
(
min q(x)
s.t. kxk2 D 1�z0(t)2

z0(t)2
:

Hence, a value t� such that (1�z0(t�)2)/z0(t�)2 = r2

must be found and then the point x� = v(t�)/z0(t�) with
multiplier �� = � �min(D(t�)) is the unique solution
of Problem (1). The correct value of t can be found by
standard search procedures and the algorithm produces
an interval containing t� that is iteratively updated.

In the hard case, z0(t) may be zero. However there
is still a value t0 such that �min(D(t0)) = �min(Q) and
a corresponding eigenvector z(t0) exists with first com-
ponent not equal to zero. In order to obtain the value t0,
consider, without loss of generality, a diagonal Q with
elements �i in increasing order, so that �1 = �min(Q).
Assume that p is the multiplicity of �min(Q), and define

t0 D �min(Q)C
nX

kDpC1

ck
�k � �min(Q)

:

Then the smallest eigenvalue �min(D(t0)) = �min(Q)
with multiplicity p + 1.

Two cases can occur. If (1�z0(t0)2)/z0(t0)2 > r2 then
the value t�< t0. This case can be treated as the pre-
ceding easy case since there exists t < t0 such that the
eigenvalue �min(D(t)) is simple, it results �min(D(t))
< �min(Q), and the corresponding eigenvector satisfies
(1�z0(t)2)/z0(t)2 = r2. On the other hand, if z20(t0) �
1/(r2 + 1), then a primal step to the boundary of the
feasible region of Problem (7) is taken while improving
the objective function. In particular, let w 2 Smin with
kwk = 1, then the vector

x� D
v

z0(t0)
C

��
r2 �

1 � z20(t0)
z20(t0)

�
w
� 1

2

together with �� = � �min(Q)) satisfy the optimality
conditions for Problem (1) and t� = t0. Hence in the
hard case, a vector is found that allows to move to the
correct radius while improving the objective function.

Inverse interpolation on the value of the first
component z0 of the eigenvector corresponding to
�min(D(tk)) is used to predict a new value for tk + 1.

A brief scheme of the algorithm is in Table 5.

Large Scale Trust Region Problems, Table 5
A pseudocode for TR based on SDP

procedure TR PRIMAL-DUAL-SDP()
input instance (Q; c; r; x0);
(initialization)
Find �min(Q); set k = 0.
Set the interval of uncertainty

[tkl ; t
k
u] for t�, and [�k

l ; �
k
u] for q(x�);

DO (until a solution is found)
improve the parameter tk+1

using inverse interpolation
update the iterate

using �min(D(tk)) and its corresponding
eigenvector;

update the intervals
[tk+1l ; tk+1u ] and [�k+1

l ; �k+1
u ];

set k = k + 1; OD;
RETURN(solution)

END TR PRIMAL-DUAL-SDP;
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Conclusion

All the algorithms described above appear to be poten-
tially equivalent from the computational point of view.
They have been implemented in MATLAB [15] codes
and the results of the numerical testing are reported in
the corresponding papers.
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A large scale unconstrained optimization problem can
be formulated as the problem of finding a local mini-
mizer of a real valued function f : Rn!R over the space
Rn, namely to solve the problem

min
x2Rn

f (x); (1)

where the dimension n is large. The notion of ‘large
scale’ is machine dependent and hence it could be
difficult to state a priori when a problem is of large
size. However, today an unconstrained problem with
more than one thousand variables is usually considered
a large scale problem.

Besides its own theoretical importance, the growing
interest in the last years in solving problems of large size
derives from the fact that problems with a larger and
larger number of variables are arising very frequently

from real world as a result of modeling systems with
a very complex structure.

The main difficulty in dealing with large scale prob-
lems is the fact that effective algorithms for small scale
problems do not necessarily translate into efficient algo-
rithms when applied to solve large problems. Therefore
in most cases it is improper to tackle a problem with
a large number of variables by using one of the many
existing algorithms for the small scale case relying on
the growing powerful of the modern computers (see,
e. g., [11,13,34] for a review on the existing methods for
small scale unconstrained optimization).

A basic feature of an algorithm for large scale prob-
lems is a low storage overhead needed to make practi-
cable its implementation. Moreover, whenever a large
scale problem has some structure it should be exploited
to define reliable algorithms; in fact, often the structure
of a problem reflects in the sparsity of the Hessian ma-
trix of the function f which can be efficiently exploited.

Methods for unconstrained optimization differ ac-
cording to how much information on the function f is
available. In the framework of large scale unconstrained
optimization it is usually required that the user pro-
vides at least subroutines which evaluate the objective
function and its gradient for any point x. More effec-
tive methods can be obtained if second order deriva-
tives are known. When the derivatives are not available
they can be obtained by finite difference or by using
automatic differentiation. Throughout we assume that
the function f is twice continuously differentiable, i. e.
that the gradient g(x) = r f (x) and the Hessian matrix
H(x) = r2 f (x) of the function f exist and are contin-
uous. Moreover, we denote by kvk the Euclidean norm
of a vector v 2 Rn.

As in the small scale case, most of the large scale
unconstrained algorithms are iterative methods which
generate a sequence of points according to the scheme

xkC1 D xk C ˛kdk (2)

where dk 2 Rn is a search direction and ˛k 2 R is
a steplength obtained by means of a one-dimensional
search. Obviously, also in large scale optimization it is
important that an algorithm presents both the global
convergence (i. e. convergence of the sequence {xk} to-
wards a stationary point from any starting point) and
a good convergence rate.
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A basic method for solving large scale uncon-
strained optimization problems can be considered the
steepest descent method obtained by setting dk =� g(xk)
in (2). This method is based on the linear approxima-
tion of the objective function f and hence only first or-
der information are need. Due to its very limited stor-
age required by a standard implementation, steepest de-
scent method could be considered very attractive in the
large scale setting; moreover the global convergence can
also be ensured. However, its convergence rate is only
linear and therefore it is too slow to be used. A partic-
ular rule for computing the stepsize ˛k has been pro-
posed [39] and this led to a significant improvement of
the efficiency of the steepest descent method.

One of the most effective methods for solving un-
constrained problems is the Newton method (cf.�Un-
constrained nonlinear optimization: Newton–Cauchy
framework). It is based on the quadratic approximation
of f (xk + w) given by

�k(w) D f (xk)C g(xk)>w C 1
2w
>H(xk)w (3)

and it is defined by iterations of the form

xkC1 D xk C sk (4)

where the search direction sk is obtained by minimiz-
ing the quadratic model of the objective function (3)
over Rn. On the one hand, Newton method presents
quadratic convergence rate and it is scale invariant, but,
on the other hand, in its pure form it is not globally
convergent. Globally convergent modifications of the
Newton method has been defined following the line
search approach and the trust region approach (see,
e. g. [11,12,27]; cf. also � Large scale trust region prob-
lems), but the main difficulty, in dealing with large scale
problems, is represented by the possibility to efficiently
solve, at each iteration, linear systems which arise in
computing the search direction sk. In fact, the problem
dimension could be too large for any explicit use of the
Hessian matrix and iterative methods must be used to
solve systems of linear equations instead of factoriza-
tions of the matrices involved. Indeed, whereas in the
small scale setting the Newton direction sk is usually de-
termined by using direct methods for solving the linear
system

H(xk)s D �g(xk); (5)

when n is large, it is impossible to store or factor the full
n × nHessian matrix unless it is a sparse matrix. More-
over the exact solution, at each iteration, of the system
(5) could be too burdensome and not justified when xk
is far from a solution. In fact, since the benefits of us-
ing the Newton direction are mainly local (i. e. in the
neighborhood of a solution), it should not be necessary
a great computational effort to get an accurate solution
of system (5) when g(xk) is large.

On the basis of these remarks, in [8] the inexact
Newton methods were proposed. They represent the ba-
sic approach underlying most of the Newton-type large
scale unconstrained algorithms. The main idea is to ap-
proximately solve the system (5) still ensuring a good
convergence rate of the method by using a particular
trade-off rule between the computational burden re-
quired to solve the system (5) and the accuracy with
which it is solved. The measure of this accuracy is the
relative residual

krkk
kg(xk)k

; where rk D H(xk)sk C g(xk) (6)

and sk is an approximate solution of (5). The analysis
given in [8] shows that if the sequence {xk} generated
by (4) converges to a point x? and if

lim
k!1

krkk
kg(xk)k

D 0; (7)

then {xk} converges superlinearly to x?. This result is
at the basis of the truncated Newton methods which
represent one of the most effective approach for solv-
ing large scale problems. This class of methods was in-
troduced in [9] within the line search based Newton-
type methods. They are based on the fact that when-
ever the Hessian matrix H(xk) is positive definite, to
solve the Newton equation (5) is equivalent to deter-
mine the minimizer of the quadratic model (3). There-
fore, in these methods, a Newton-type direction, i. e.
an approximate solution of (5), is computed by apply-
ing the (linear) conjugate gradient (CG) method (cf.
� Conjugate-gradient methods) [23] to approximately
minimize the quadratic function (3). A scheme of a line
search based truncated Newton algorithm is the follow-
ing:
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Line search based truncated Newton algorithm

OUTER iterations
For k = 0; 1; : : :
Compute g(xk)
Test for convergence

INNER iterations
(Computation of the direction sk)
Iterate CG algorithm until
a termination criterion is satisfied
Compute a stepsize ˛k by a line search procedure
Set xk+1 = xk + ˛k sk

A scheme for a truncated Newton algorithm

Given a starting point x0, at each iteration k,
a Newton-type direction sk is computed by truncating
the CG iterates – the inner iterations – whenever a re-
quired accuracy is obtained. The definition of an effec-
tive truncation criterion represents a key aspect of any
truncated Newton method and a natural choice is rep-
resented by monitoring when the relative residual (6)
is sufficiently small. Moreover, by requiring that krkk /
kg(xk)k � �k with limk!1 �k! 0, the condition given
by (7) is satisfied and hence the superlinear conver-
gence is guaranteed [9]. In particular �k can be chosen
to ensure that, as a critical point is approached, more
accuracy is required. Other truncation criteria based on
the reduction of the quadratic model can be defined
[31]. Numerical experiences showed that a relatively
small number of CG iterations is needed, in most cases,
for obtaining a good approximation of the Newton di-
rection and this is one the main advantage of the trun-
cated Newton methods since a considerable computa-
tional savings can be obtained still ensuring a good con-
vergence rate. The performance of the CG algorithm
used in the inner iterations can be improved by using
a preconditioning strategy based either on the informa-
tion gained during the outer iterations or on some scal-
ing of the variables. Several different preconditioning
schemes have been proposed and tested [29,40]. Trun-
cated Newton methods can be modified to enable their
use whenever the Hessian matrix is not available; in
fact, the CGmethod only needs the product of the Hes-
sian matrix with a displacement vector, and this prod-
uct can be approximated by finite difference [35]. The
resulting method is called discrete truncated Newton
method. In [41] a Fortran package (TNPACK) imple-

menting a line search based (discrete) truncated New-
ton algorithm which uses a preconditioned conjugate
gradient is proposed. However, additional safeguard is
needed within truncated Newton algorithms since the
Hessian matrix could be not positive definite. In fact,
the CG inner iterations may break down before satis-
fying the termination criterion when the Hessian ma-
trix is indefinite. To handle this case, whenever a di-
rection of negative curvature (i. e. a direction dk such
that d>k H(xk) dk < 0) is encountered, the inner itera-
tions are usually terminated and a descent direction (i. e.
a direction dk such that g(xk)| dk < 0) is computed [9].
More sophisticated strategies can be applied for itera-
tively solving the system (5) when it is indefinite [6,15,
36,43]. In particular, the equivalent characterization of
the linear conjugate gradient algorithm via the Lanczos
method can be exploited to define a truncated Newton
algorithm which can be used to solve problems with in-
definite Hessian matrices [28]. In fact, the Lanczos algo-
rithm does not requires the Hessian matrix to be posi-
tive definite and hence it enables to obtain an effective
Newton-type direction.

A truncated Newton method which uses a non-
monotone line search (i. e. which does not enforce the
monotone decrease of the objective function values)
was proposed in [20] and the effectiveness of this ap-
proach was shown especially in the solution of ill-
conditioned problems. Moreover in the CG-truncated
scheme proposed in [20] an efficient strategy to handle
the indefinite case is also proposed.

A new class of truncated Newton algorithms for
solving large scale unconstrained problems has been
defined in [25]. In particular, a nonmonotone stabiliza-
tion framework is proposed based on a curvilinear line
search, i. e. a line search along the curvilinear path

x(˛) D xk C ˛2sk C ˛dk ;

where sk is a Newton-type direction and dk is a particu-
lar negative curvature direction which has some resem-
blance to an eigenvector of the Hessian matrix corre-
sponding to the minimum eigenvalue. The use of the
combination of these two directions enables, also in the
large scale case, to define a class of line search based al-
gorithms which are globally convergent towards points
which satisfy second order necessary optimality condi-
tions, i. e. stationary points where the Hessian matrix is
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positive semidefinite. Besides satisfying this important
theoretical property, this class of algorithms was also
shown to be very efficient in solving large scale uncon-
strained problems [25,26]. This is also due to the fact
that a Lanczos based iterative scheme is used to com-
pute both the directions without terminating the inner
iterations when indefiniteness is detected and, as result,
more information about the curvature of the objective
function are conveyed.

Truncated Newton methods have been also defined
within the trust region based methods. These methods
are characterized by iterations of the form (4) where, at
each iteration k, the search direction sk is determined
by minimizing the quadratic model of the objective
function (3) in a neighborhood of the current iterate,
namely by solving the problem

min
ksk��

�k(s); (8)

where � is the trust region radius. Also in this frame-
work most of the existing algorithms require the solu-
tion of systems of linear equations. Some approaches
are the dogleg methods [10,38] which aim to solve prob-
lem (8) over a one-dimensional arc and the method
proposed in [5] which solves problem (8) over a two-
dimensional subspace. However, whenever the prob-
lem dimension is large, it is impossible to rely on ma-
trix factorizations, and iterative methods must be used.
If the quadratic model (3) is positive definite and the
trust region radius is sufficiently large that the trust re-
gion constraint is inactive at the unconstrained mini-
mizer of the model, problem (8) can be solved by using
the preconditioned conjugate gradient method [42,44].
Of course, a suitable strategy is needed whenever the
unconstrained minimizer of the quadratic model is no
longer lying within the trust region and the desired so-
lution belongs to the trust region boundary. A simple
strategy to handle this case was proposed in [42] and
[44] and it considers the piecewise linear path connect-
ing the CG iterates, stopping at the point where this
path leaves the trust region. If the quadratic model (3)
is indefinite, the solution must also lie on the trust re-
gion boundary and the piecewise linear path can be
again followed until either it leaves the trust region, or
a negative curvature direction is found. In this latter
case, two possibilities have been considered: in [42] the
path is continued along this direction until the bound-

ary is reached; in [44] the minimizer of the quadratic
model within the trust region along the steepest de-
scent direction (the Cauchy point) is considered. This
class of algorithms represents a trust region version
of truncated Newton methods and an efficient imple-
mentation is carried out within the LANCELOT pack-
age [7]. These methods have become very important in
large scale optimization, due to both their strong the-
oretical convergence properties and good efficiency in
practice, but they are known to possess some draw-
backs. Indeed, they are essentially unconcerned with
the trust region until they blunder into its bound-
ary and stop. Moreover, numerical experiences showed
that very frequently this untimely stop happens during
the first inner iterations when a negative curvature is
present and this could deteriorate the efficiency of the
method. In order to overcome this drawback an alter-
native strategy is proposed in [16] where ways of con-
tinuing the process once the boundary of the trust re-
gion is reached are investigated. The key point of this
approach is the use of the Lanczos method and the fact
that preconditioned conjugate gradient and Lanczos
methods generate different bases for the same Krylov
space. Several other large scale trust region methods (cf.
� Large scale trust region problems) have been pro-
posed.

Another class of methods which can be successfully
applied to solve large scale unconstrained optimiza-
tion problems is the wide class of the nonlinear con-
jugate gradient methods [14,23]. They are extensions
to the general (nonquadratic) case of the already men-
tioned linear conjugate gradient method. They repre-
sent a compromise between steepest descent method
and Newtonmethod and they are particularly suited for
large scale problems since there is never a need to store
a full Hessian matrix. They are defined by the iteration
scheme (2) where the search direction is of the form

dk D �g(xk)C ˇkdk�1 (9)

with d0 = � g(x0) and where ˇk is a scalar such that
the algorithm reduces to the linear conjugate gradient
method if the objective function f is a strictly convex
quadratic function and ˛k in (2) is obtained by means
of an exact line search (i. e., ˛k is the one-dimensional
minimizer of f (xk + ˛ dk) with respect to ˛). The most
widely used formulas for ˇk are Fletcher–Reeves (FR)
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and Polak–Ribière (PR) formulas given by

ˇFR
k D

kg(xk)k2

kg(xk�1)k2
;

ˇPR
k D

g(xk)>
�
g(xk) � g(xk�1)

�

kg(xk�1)k2
:

Many efforts have been devoted to investigate the global
convergence for nonlinear conjugate gradient methods.
A widespread technique to enforce the global conver-
gence is the use of a regular restart along the steepest
descent direction every n iterations obtained by setting
ˇk = 0. However, computational experiences showed
that this restart can have a negative effect on the effi-
ciency of the method; on the other hand, in the large
scale setting, restarting does not play a significant role
since n is large and very few restarts can be performed.
Global convergence results have been obtained for the
Fletcher–Reeves method without restart both in the case
of exact line search [46] and when ˛k is computed by
means of an inexact line search [1]; then, the global
convergence was extended to methods with |ˇk| � ˇFR

k
[14]. As regards the global convergence of the Polak–
Ribière method, for many years it was proved with ex-
act line search only under strong convexity assump-
tions [37]. Global convergence both for exact and in-
exact line search can also be enforced by modifying
the Polak–Ribière method by setting ˇk = max{ˇPR

k , 0}
[14]; this strategy correspond to restart the iterations
along the steepest descent direction whenever a nega-
tive value of ˇk occurs. However, an inexact line search
which ensures global convergence of the Polak–Ribière
method for nonconvex function has been obtained in
[21]. As regards the numerical performance of these
two methods, extensive numerical experiences showed
that, in general, Polak–Ribière method is usually more
efficient than the Fletcher–Reeves method. An efficient
implementation of the Polak–Ribière method (with
restarts) is available as routine VA14 within the Har-
well subroutine library [22]. See, e. g., [34] for a de-
tailed survey on the nonlinear conjugate gradient meth-
ods.

Another effective approach to large scale uncon-
strained optimization is represented by the limited-
memory BFGS method (L-BFGS) proposed in [32]
and then studied in [24,30]. This method resembles

the BFGS quasi-Newton method, but it is particularly
suited for large scale (unstructured) problems because
the storage of matrices is avoided. It is defined by the
iterative scheme (2) with the search direction given by

dk D �Hk g(xk)

and where Hk is the approximation to the inverse Hes-
sian matrix of the function f at the kth iteration. In
the BFGS method the approximation Hk is updated by
means of the BFGS correction given by

HkC1 D V>k HkVk C �k sk s>k

where Vk = I � �k yk s>k , sk = xk + 1 � xk, yk = g(xk + 1)
� g(xk), and �k = 1/y>k sk. In the L-BFGS method, in-
stead of storing the matrices Hk, a prefixed number
(say m) of vectors pairs {sk, yk} that define them im-
plicitly are stored. Therefore, during the first m iter-
ations the L-BFGS and the BFGS methods are iden-
tical, but when k > m only information from the m
previous iterations are used to obtain Hk. The num-
ber m of BFGS corrections that must be kept can be
specified by the user. Moreover, in the L-BFGS the
product Hk g(xk) which represents the search direc-
tion is obtained by means of a recursive formula in-
volving g(xk) and the most recent vectors pairs {sk,
yk}. An implementation of L-BFGS method is avail-
able as VA15 routine within the Harwell subroutine li-
brary [22]. An interesting numerical study of L-BFGS
method and a comparison of its numerical perfor-
mance with the discrete truncated Newton method
and the Polak–Ribière conjugate gradient method are
reported in [30]. The results of a numerical experi-
ence with limited-memory quasi-Newton and trun-
cated Newton methods on standard library test prob-
lems and on two real life large scale unconstrained op-
timization applications can be found in [45]. A method
which combines the discrete Newton method and the
L-BFGS method is proposed in [4] to produce an ef-
ficient algorithm able to handle also ill-conditioned
problems.

Limited memory quasi-Newton methods represent
an adaptation of the quasi-Newton methods to large
scale unstructured optimization. However, the quasi-
Newton approach can be successfully applied to large
scale problems with a particular structure. In fact, fre-
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quently, an optimization problem has some structure
which may be reflected in the sparsity of the Hessian
matrix. In this framework, the most effective method
is the partitioned quasi-Newton method proposed in
[18,19]. It is based on the fact that a function f with
a sparse Hessian is a partially separable function, i. e. it
can be written in the form

f (x) D
neX
iD1

fi(x)

where the element functions f i depends only on a few
variables. Many practical problems can be formulated
(or recasted) in this form showing a wide range of ap-
plicability of this approach. The basic idea of the par-
titioned quasi-Newton method is to decompose the
Hessian matrix into a sum of Hessians of the element
functions f i. Each approximation to the Hessian of f i
is then updated by using dense updating techniques.
These small matrices are assembled to define an ap-
proximation to the Hessian matrix of f used to com-
pute the search direction. However, the element Hes-
sian matrices may not be positive definite and hence
BFGS formula cannot be used, and in this case a sym-
metric rank one formula is used. Global convergence
results have been obtained under convexity assumption
of the function f i [17]. An implementation of the parti-
tioned quasi-Newton method is available as VE08 rou-
tine of the Harwell subroutine library [22]. A compari-
son of the performance of partitioned quasi-Newton, L-
BFGS, CG Polak–Ribière and truncated discrete New-
ton methods is reported in [33].

Another class of methods which has been extended
to large sparse unconstrained optimization are tensor
methods [3]. Tensor methods are based on fourth or-
der model of the objective function and are particu-
larly suited for problems where the Hessian matrix has
a small rank deficiency.

To conclude, it is worthy to outline that in deal-
ing with large scale unconstrained problems with a very
large number of variables (more than 104) high per-
formance computer architectures must be considered.
See e. g. [2] for the solution of large scale optimization
problems on vector and parallel architectures.

The reader can find the details of the methods men-
tioned in this brief survey in the specific cited refer-
ences.

See also
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� QR Factorization
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In the field of nonlinear programming (in continuous
variables), convex analysis [20,21] plays a pivotal role
both in theory and in practice. An analogous theory
for discrete optimization (nonlinear integer program-
ming), called ‘discrete convex analysis’ [15,16], is devel-
oped for L-convex andM-convex functions by adapting
the ideas in convex analysis and generalizing the results
in matroid theory. The L- and M-convex functions are
introduced in [15] and [12,18], respectively.

Definitions of L- andM-Convexity

Let V be a nonempty finite set and Z be the set of inte-
gers. For any function g: ZV ! Z [{+1} define dom g

= {p 2 ZV : g(p) < +1}, called the effective domain of g.
A function g: ZV ! Z [ {+1} with dom g 6D ; is

called L-convex if

g(p)C g(q) � g(p _ q)C g(p ^ q) (p; q 2 ZV );

9r 2 Z : g(pC 1) D g(p)C r (p 2 ZV );

where p _ q = (max(p(v), q(v)) |v 2 V) 2 ZV , p ^ q =
(minp(v), q(v))|v 2 V) 2 ZV , and 1 is the vector in ZV

with all components being equal to 1.
A set D� ZV is said to be an L-convex set if its indi-

cator function ıD (defined by ıD(p) = 0 if p 2 D, and =
+1 otherwise) is an L-convex function, i. e., if
i) D 6D ;;
ii) p, q 2 D) p _ q, p ^ q 2 D; and
iii) p 2 D) p˙ 1 2 D.

A function f : ZV ! Z [ {+1} with dom f 6D ; is
calledM-convex if it satisfies
� M-EXC) For x, y 2 dom f and u 2 supp+(x� y),

there exists v 2 supp�(x � y) such that

f (x)C f (y) � f (x � �u C �v )

C f (yC �u � �v );

where, for any u 2 V , �u is the characteristic vector
of u (defined by�u(v) = 1 if v = u, and = 0 otherwise),
and

suppC(z) D fv 2 V : z(v) > 0g (z 2 ZV );

supp�(z) D fv 2 V : z(v) < 0g (z 2 ZV ):

A set B � ZV is said to be an M-convex set if its in-
dicator function is an M-convex function, i. e., if B sat-
isfies
� B-EXC) For x, y 2 B and for u 2 supp+(x � y), there

exists v 2 supp�(x � y) such that x � �u + �v 2 B
and y + �u � �v 2 B.

This means that an M-convex set is the same as the set
of integer points of the base polyhedron of an integral
submodular system (see [8] for submodular systems).

L-convexity and M-convexity are conjugate to each
other under the integral Fenchel–Legendre transforma-
tion f 7�! f � defined by

f �(p) D sup
˚
hp; xi � f (x) : x 2 ZV� ; p 2 ZV ;

where hp, xi =
P

v 2 V p(v) x(v). That is, for L-convex
function g and M-convex function f , it holds [15] that
g� is M-convex, f � is L-convex, g�� = g, and f �� = f .
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Example 1 (Minimum cost flow problem) L-convexity
and M-convexity are inherent in the integer minimum-
cost flow problem, as pointed out in [12,15]. LetG = (V ,
A) be a graph with vertex set V and arc set A, and let T
� V be given. For �: A! Z its boundary @�: V! Z is
defined by

@�(v)

D
X˚

�(a) : a 2 ıCv
�
�
X
f�(a) : a 2 ı�vg

(v 2 V );

where ı+v and ı�v denote the sets of out-going and in-
coming arcs incident to v, respectively. Forep : V ! Z
its coboundary ıep : A! Z is defined by

ıep(a) Dep(@Ca) �ep(@�a) (a 2 A);

where @+a and @�a mean the initial and terminal
vertices of a, respectively. Denote the class of one-
dimensional discrete convex functions by

C1 D f' : Z! Z [ fC1gj dom' ¤ ;;

'(t � 1)C '(t C 1) � 2'(t) (t 2 Z)g:

For 'a 2 C1 (a 2 A), representing the arc-cost in
terms of flow, the total cost function f : ZT! Z [ {+1}
defined by

f (x) D inf
�

8̂
<̂
ˆ̂:
X
a2A

'a(�(a)) :

@�(v) D �x(v)
(v 2 T);
@�(v) D 0
(v 2 V n T)

9>>=
>>;

(x 2 ZT)

is M-convex, provided that f > � 1 (i. e., f does not
take the value of � 1). For  a 2 C1 (a 2 A), repre-
senting the arc-cost in terms of tension, the total cost
function g: ZT! Z [ {+1} defined by

g(p) D infep

8<
:
X
a2A

 a(�(a)) :
� D �ıep;
ep(v) D p(v)
(v 2 T)

9=
;

(p 2 ZT )

is L-convex, provided that g > �1. The two cost func-
tions f (x) and g(p) are conjugate to each other in the
sense that, if  a = '�a (a 2 A), then g = f �.

Example 2 (Polynomial matrix) Let A(s) be an m × n
matrix of rank m with each entry being a polynomial
in a variable s, and let B � 2V be the family of bases of
A(s) with respect to linear independence of the column
vectors; namely, J � V belongs to B if and only if |J| =
m and the column vectors with indices in J are linearly
independent. Then f : ZV ! Z [ {+1} defined by

f (x) D

(
� degs detA[J] (x D �J ; J 2 B)
C1 (otherwise)

is M-convex, where �J 2 { 0, 1 }V is the characteristic
vector of J (defined by �J(v) = 1 if v 2 J, and = 0 other-
wise), A[J] denotes the m × m submatrix with column
indices in J 2B, and degs(�) means the degree as a poly-
nomial in s. The Grassmann–Plücker identity implies
the exchange property of f . This example was the moti-
vation of valuated matroids in [2,3], which in turn can
be identified with the negative of M-convex functions f
with dom f � { 0, 1}V .

For p = (p(v))v 2 V2 ZV denote by D(p) the diagonal
matrix of order n = |V| with diagonal elements sp(v) (v
2 V). Then the function g: ZV ! Z defined by

g(p) D max
˚
degs det(A � D(p))[J] : J 2 B

�

is L-convex [16], where (A � D(p)) [J] means the m ×
m submatrix of A � D(p) with column indices in J. We
have g = f �.

L-Convex Sets

An L-convex setD� ZV has ‘no holes’ in the sense that
D D D \ ZV , where D denotes the convex hull of D in
RV . Hence it is natural to consider the polyhedral de-
scription of D, ‘L-convex polyhedron’ (see [15,16]). For
any function � : V × V! Z [ {+1} with �(v, v) = 0 (v
2 V), define

D(�) D
�
p 2 RV : p(v) � p(u) � �(u; v)

(8u; v 2 V)

	
:

If D(�) 6D ;, D(�) is an integral polyhedron and D =
D(�)\ ZV is an L-convex set. If � satisfies triangle in-
equality:

�(u; v)C �(v;w) � �(u;w) (u; v;w 2 V );

then D(�) 6D ; and

�(u; v) D sup fp(v) � p(u) : p 2 D(�)g
(u; v 2 V ):
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Conversely, for any nonempty D� ZV ,

�(u; v) D sup fp(v) � p(u) : p 2 Dg
(u; v 2 V );

satisfies triangle inequality as well as �(v, v) = 0 (v 2
V), and if D is L-convex, then D D D(�). Thus there is
a one-to-one correspondence between L-convex set D
and function � satisfying triangle inequality. In partic-
ular, D � ZV is L-convex if and only if D = D(�)\ ZV

for some � satisfying triangle inequality. For L-convex
setsD1,D2�ZV , it holds that D1CD2 D D1 C D2\ZV

and D1 \ D2 D D1 \ D2.
It is also true that a function � satisfying triangle in-

equality corresponds one-to-one to a positively homo-
geneous M-convex function f (i. e., f (� x) = � f (x) for
x 2 ZV and 0 � � 2 Z). The correspondence f 7�! � is
given by

�(u; v) D f (�v � �u) (u; v 2 V);

whereas � 7�! f by

f (x) D inf
	8̂

<
:̂
X
u;v2V

�uv�(u; v) :

P
u;v2V

�uv(�v � �u) D x;

0 � �uv 2 Z
(u; v 2 V )

9>=
>;

(x 2 ZV ):

The correspondence between L-convex sets and posi-
tively homogeneous M-convex functions via functions
with triangle inequality is a special case of the conjugacy
relationship between L- and M-convex functions.

M-Convex Sets

AnM-convex set B� ZV has ‘no holes’ in the sense that
B D B \ ZV . Hence it is natural to consider the poly-
hedral description of B, ‘M-convex polyhedron’. A set
function �: 2V ! Z [ {+1} is said to be submodular if

�(X)C �(Y) � �(X [ Y)C �(X \ Y)

(X;Y � V );

where the inequality is satisfied if �(X) or �(Y) is equal
to +1. It is assumed throughout that �(;) = 0 and �(V)

< +1 for any set function �: 2V! Z[ {+1}. For a set
function �, define

P(�) D

8<
:x 2 RV :

x(X) � �(X)
(8X � V);
x(V ) D �(V)

9=
; ;

where x(X) =
P

v 2 X x(v). If � is submodular, P(�) is
a nonempty integral polyhedron, B = P(�) \ ZV is an
M-convex set, and

�(X) D sup fx(X) : x 2 P(�)g (X � V ):

Conversely, for any nonempty B � ZV , define a set
function � by

�(X) D sup fx(X) : x 2 Bg (X � V):

If B is M-convex, then � is submodular and B D P(�).
Thus there is a one-to-one correspondence between
M-convex set B and submodular set function �. In par-
ticular, B� ZV is M-convex if and only if B = P(�)\ ZV

for some submodular �. The correspondence B$ � is
a restatement of a well-known fact [4,8]. For M-convex
sets B1, B2 � ZV , it holds that B1C B2 D B1 C B2\ZV

and B1 \ B2 D B1 \ B2.
It is also true that a submodular set function � corre-

sponds one-to-one to a positively homogeneous L-con-
vex function g. The correspondence g 7�! � is given by
the restriction

�(X) D g(�X) (X � V )

(�X is the characteristic vector of X), whereas � 7�!
g by the Lovász extension (explained below). The cor-
respondence between M-convex sets and positively
homogeneous L-convex functions via submodular set
functions is a special case of the conjugacy relationship
between M- and L-convex functions.

For a set function �: 2V ! Z [ { +1}, the Lovász
extension [11] of � is a functionb� : RV ! R [ fC1g
defined by

b�(p) D
nX

jD1

(p j � p jC1)�(Vj) (p 2 RV );

where, for each p2RV , the elements ofV are indexed as
{v1, . . . , vn} (with n = |V|) in such a way that p(v1)� � � �
� p(vn); pj = p(vj), Vj = {v1, . . . , vj} for j = 1, . . . , n, and
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pn + 1 = 0. The right-hand side of the above expression
is equal to +1 if and only if pj � pj + 1 > 0 and �(Vj) =
+1 for some jwith 1� j� n� 1. The Lovász extension
b� is indeed an extension of �, sinceb�(�X) D �(X) for X
� V .

The relationship between submodularity and con-
vexity is revealed by the statement [11] that a set func-
tion � is submodular if and only if its Lovász extension
b� is convex.

The restriction to ZV of the Lovász extension of
a submodular set function is a positively homogeneous
L-convex function, and any positively homogeneous
L-convex function can be obtained in this way [15].

Properties of L-Convex Functions

For any g: ZV ! Z [ {+1} and x 2 RV , define g[� x]:
ZV ! R [ {+1} by

g[�x](p) D g(p) � hp; xi (p 2 ZV ):

The set of the minimizers of g[� x] is denoted as
argmin(g[� x]).

Let g: ZV ! Z [ {+1} be L-convex. Then dom g is
an L-convex set. For each p 2 dom g,

�p(X) D g(pC �X) � g(p) (X � V)

is a submodular set function with �p(;) = 0 and �p(V)
< +1.

An L-convex function g can be extended to a convex
function g : RV ! R [ fC1g through the Lovász ex-
tension of the submodular set functions �p for p 2 dom
g. Namely, for p 2 dom g and q 2 [0, 1]V , it holds [15]
that

g(pC q)

D g(p)C
nX
jD1

(q j � q jC1)(g(pC �Vj ) � g(p));

where, for each q, the elements of V are indexed as {v1,
. . . , vn} (with n = |V|) in such a way that q(v1) � � � � �
q(vn); qj = q(vj), Vj = {v1, . . . , vj} for j = 1, . . . , n, and
qn + 1 = 0. The expression of g shows that an L-convex
function is an integrally convex function in the sense
of [5].

An L-convex function g enjoys discrete midpoint
convexity:

g(p)C g(q) � g
��

pC q
2

��
C g

��
pC q
2


�

for p, q 2 ZV , where dpe (or bpc) for any p 2 RV denotes
the vector obtained by rounding up (or down) the com-
ponents of p to the nearest integers.

The minimum of an L-convex function g is charac-
terized by the local minimality in the sense that, for p 2
dom g, g(p) � g(q) for all q 2 ZV if and only if g(p + 1)
= g(p)� g(p + �X) for all X � V .

The minimizers of an L-convex function, if
nonempty, form an L-convex set. For any x 2 RV ,
argmin (g[� x]), if nonempty, is an L-convex set. Con-
versely, this property characterizes L-convex functions
under an auxiliary assumption.

A number of operations can be defined for L-convex
functions [15,16]. For x 2 ZV , g[� x] is an L-convex
function. For a 2 ZV and ˇ 2 Z, g(a + ˇ p) is L-convex
in p. For U � V , the projection of g to U:

gU (p0) D inf
n
g(p0; p00) : p00 2 ZVnU

o
(p0 2 ZU )

is L-convex in p0, provided that gU > �1. For  v 2 C1

(v 2 V),

eg(p) D inf
q2ZV

"
g(q)C

X
v2V

 v (p(v) � q(v))

#

is L-convex in p 2 ZV , provided that eg > �1. The
sum of two (or more) L-convex functions is L-convex,
provided that its effective domain is nonempty.

Properties of M-Convex Functions

Let f : ZV ! Z[ {+1} be M-convex. Then dom f is an
M-convex set. For each x 2 dom f ,

�x(u; v) D f (x � �u C �v ) � f (x) (u; v 2 V )

satisfies [16] triangle inequality.
An M-convex function f can be extended to a con-

vex function f : RV ! R [ fC1g, and the value of
f (x) for x 2 RV is determined by {f (y): y 2 ZV , bxc �
y � dxe. That is, an M-convex function is an integrally
convex function in the sense of [5].

The minimum of anM-convex function f is charac-
terized by the local minimality in the sense that for x 2
dom f , f (x)� f (y) for all y 2 ZV if and only if f (x)� f (x
� �u + �v) for all u, v 2 V [12,15,18].

The minimizers of an M-convex function, if
nonempty, form an M-convex set. Moreover, for any
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p 2 RV , argmin(f [�p]), if nonempty, is an M-convex
set. Conversely, this property characterizes M-convex
functions, under an auxiliary assumption that the effec-
tive domain is bounded or the function can be extended
to a convex function over RV (see [12,15]).

The level set of an M-convex function is not neces-
sarily an M-convex set, but enjoys a weaker exchange
property. Namely, for any p 2 RV and ˛ 2 R, S = {x 2
ZV : f [�p](x)� ˛} (the level set of f [�p]) satisfies: For x,
y 2 S and for u 2 supp+(x� y), there exists v 2 supp�(x
� y) such that either x � �u+ �v 2 S or y + �u� �v
2 S. Conversely, this property characterizes M-convex
functions [25].

A number of operations can be defined for M-con-
vex functions [15,16]. For p 2 ZV , f [� p] is an M-con-
vex function. For a 2 ZV , f (a � x) and f (a + x) are
M-convex in x. For U � V , the restriction of f to U:

fU (x0) D f (x0; 0VnU ) (x0 2 ZU )

(where 0V \ U is the zero vector in ZV \ U) is M-convex in
x0, provided that dom f U 6D ;. For 'v 2 C1 (v 2 V),

ef (x) D f (x)C
X
v2V

'v (x(v)) (x 2 ZV )

is M-convex, provided that domef ¤ ;. In particular,
a separable convex function ef (x) D P

v2V 'v (x(v))
with domef being an M-convex set is an M-convex
function. For twoM-convex functions f 1 and f 2, the in-
tegral convolution

( f1� f2)(x)

D inf
�
f1(x1)C f2(x2) :

x D x1 C x2
x1; x2 2 ZV

	

(x 2 ZV )

is either M-convex or else (f 1 � f 2)(x) = ˙1 for all x
2 ZV .

Sum of two M-convex functions is not necessarily
M-convex; such function with nonempty effective do-
main is calledM2-convex. Convolution of two L-convex
functions is not necessarily L-convex; such function
with nonempty effective domain is called L2-convex.
M2- and L2-convex functions are in one-to-one cor-
respondence through the integral Fenchel–Legendre
transformation.

L\- andM\-Convexity

L\- and M\-convexity are variants of, and essentially
equivalent to, L- andM-convexity, respectively. L\- and
M\-convex functions are introduced in [9] and [19], re-
spectively.

Let v0 be a new element not in V and define eV D
fv0g [ V . A function g: ZV ! Z[{+1} with dom g
6D ; is called L\-convex if it is expressed in terms of an
L-convex function eg : ZeV ! Z [ fC1g as g(p) D
eg(0; p). Namely, an L\-convex function is a function
obtained as the restriction of an L-convex function.
Conversely, an L\-convex function determines the cor-
responding L-convex function up to the constant r in
the definition of L-convex function.

An L\-convex function is essentially the same as
a submodular integrally convex function of [5], and
hence is characterized by discrete midpoint convex-
ity [9]. An L-convex function, enjoying discrete mid-
point convexity, is an L\-convex function.

Quadratic function

g(p) D
nX

iD1

nX
jD1

ai j pi p j (p 2 Zn)

with aij = aji 2 Z is L\-convex if and only if aij � 0 (i 6D
j) and

Pn
jD1 aij � 0 (i = 1, � � � , n). For { i 2 C1: i = 1,

. . . , n}, a separable convex function

g(p) D
nX

iD1

 i (pi) (p 2 Zn)

is L\-convex.
The properties of L-convex functions mentioned

above are carried over, mutatis mutandis, to L\-convex
functions. In addition, the restriction of an L\-convex
function g to U � V , denoted gU , is L\-convex.

A subset of ZV is called an L\-convex set if its indi-
cator function is an L\-convex function. A set E� ZV is
an L\-convex set if and only if

p; q 2 E )

�
pC q
2

�
;

�
pC q
2



2 E:

A function f : ZV ! Z [{+1} with dom f 6D ; is
calledM\-convex if it is expressed in terms of anM-con-
vex functionef : ZeV ! Z [ fC1g as

ef (x0; x) D
8<
:
f (x) if x0 C

X
u2V

x(u) D 0

C1 otherwise:
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Namely, an M\-convex function is a function obtained
as the projection of an M-convex function. Conversely,
an M\-convex function determines the corresponding
M-convex function up to a translation of dom f in the
direction of v0. A function f : ZV!Z[ {+1} with dom
f 6D ; is M\-convex if and only if (see [19]) it satisfies
� M\-EXC) For x, y 2 dom f and u 2 supp+(x � y),

f (x)C f (y)

� min
�
f (x � �u)C f (yC �u);

min
v2supp�(x�y)

f f (x � �u C �v )C f (yC �u � �v )g
�
:

Since M-EXC) implies M\-EXC), an M-convex func-
tion is an M\-convex function.

Quadratic function

f (x) D
nX

iD1

ai xi2 C b
X
i< j

xi x j (x 2 Zn)

with ai 2 Z (1 � i � n), b 2 Z is M\-convex if 0 � b
� 2 min1� i� n ai (cf. [19]). For {' i 2 C1: i = 0, . . . , n},
a function of the form

f (x) D '0

 nX
iD1

xi

!
C

nX
iD1

'i(xi) (x 2 Zn)

is M\-convex [19]; a separable convex function is a spe-
cial case of this (with '0 = 0). More generally, for {'X

2 C1: X 2 T} indexed by a laminar family T � 2V , the
function

f (x) D
X
X2T

'X(x(X)) (x 2 ZV )

is M\-convex [1], where T is called laminar if for any X,
Y 2 T, at least one of X \ Y , X \ Y , Y \ X is empty.

The properties of M-convex functions mentioned
above are carried over, mutatis mutandis, toM\-convex
functions. In addition, the projection of an M\-convex
function f to U � V , denoted f U , is M\-convex.

A subset of ZV is called anM\-convex set if its indi-
cator function is an M\-convex function. A set Q � ZV

is an M\-convex set if and only if Q is the set of integer
points of an integral generalized polymatroid (cf. [7] for
generalized polymatroids).

As a consequence of the conjugacy between L-
and M-convexity, L\-convex functions and M\-convex
functions are conjugate to each other under the integral
Fenchel–Legendre transformation.

Duality

Discrete duality theorems hold true for L-convex/
concave and M-convex/concave functions. A function
g: ZV ! Z [ {�1} is called L-concave (respectively,
L\-, M-, or M\-concave) if�g is L-convex (respectively,
L\-, M-, or M\-convex); dom g means the effective do-
main of �g. The concave counterpart of the discrete
Fenchel–Legendre transform is defined as

gı(p) D inf
˚
hp; xi � g(x) : x 2 ZV� (p 2 ZV ):

A discrete separation theorem for L-convex/
concave functions, named L-separation theorem [15]
(see also [9]), reads as follows. Let f : ZV ! Z [ {+1}
be an L\-convex function and g: ZV ! Z [ {� 1} be
an L\-concave function such that dom f \ dom g 6D ;
or dom f � \ dom g° 6D ;. If f (p) � g(p) (p 2 ZV ), there
exist ˇ� 2 Z and x� 2 ZV such that

f (p) � ˇ� C hp; x�i � g(p) (p 2 ZV ):

Since a submodular set function can be identified
with a positively homogeneous L-convex function, the
L-separation theorem implies Frank’s discrete separa-
tion theorem for a pair of sub/supermodular functions
[6], which reads as follows. Let �: 2V ! Z [ {+1} and
�: 2V ! Z [ {�1} be submodular and supermodu-
lar functions, respectively, with �(;) =�(;) = 0, �(V) <
+1, �(V)> �1, where � is called supermodular if��
is submodular. If �(X) � �(X) (X � V), there exists x�

2 ZV such that

�(X) � x�(X) � �(X) (X � V):

Another discrete separation theorem, M-separation
theorem [12,15] (see also [9]), holds true for M-con-
vex/concave functions. Namely, let f : ZV ! Z [ {+1}
be an M\-convex function and g: ZV ! Z [ {�1} be
an M\-concave function such that dom f \ dom g 6D ;
or dom f � \ dom g° 6D ;. If f (x) � g(x) (x 2 ZV ), there
exist ˛� 2 Z and p� 2 ZV such that

f (x) � ˛� C hp�; xi � g(x) (x 2 ZV ):

The L- and M-separation theorems are conjugate
to each other, while a self-conjugate statement can be
made in the form of the Fenchel-type duality [12,15], as
follows. Let f : ZV ! Z [ {+1} be an L\-convex func-
tion and g: ZV ! Z[ {�1} be an L\-concave function
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such that dom f \ dom g 6D ; or dom f � \ dom g° 6D
;. Then it holds that

inf
˚
f (p) � g(p) : p 2 ZV�

D sup
˚
gı(x) � f �(x) : x 2 ZV� :

Moreover, if this common value is finite, the infimum is
attained by some p2 dom f \ dom g and the supremum
is attained by some x 2 dom f � \ dom g°.

Example 3 Here is a simple example to illustrate the
subtlety of discrete separation for discrete functions.
Functions f : Z2 ! Z and g: Z2 ! Z defined by f (x1,
x2) = max(0, x1+ x2) and g(x1, x2) = min(x1, x2) can be
extended respectively to a convex function f : R2 ! R
and a concave function g : R2 ! R according to
the defining expressions. With p D ( 12 ;

1
2 ), we have

f (x) � hp; xi � g(x) for all x 2 R2, and a fortiori,
f (x) � hp; xi � g(x) for all x 2 Z2. However, there
exists no integral vector p 2 Z2 such that f (x)� hp, xi �
g(x) for all x 2 Z2. Note also that f is M\-convex and g
is L-concave.

Network Duality

A conjugate pair of M- and L-convex functions can be
transformed through a network ([12,16]; see also [23]).
Let G = (V , A) be a directed graph with arc set A and
vertex set V partitioned into three disjoint parts as V =
V+ [ V0 [ V�. For 'a 2 C1 (a 2 A) and M-convex f :
ZVC ! Z [ {+1}, defineef : ZV� ! Z [ f˙1g by

ef (y) D inf
�;x8̂

<
:̂
f (x)C

X
a2A

'a(�(a)) :
@� D (x; 0;�y)
2 ZVC[V 0[V�

� 2 ZA

9>=
>;
:

For a 2 C1 (a 2 A) and L-convex g: ZVC! Z[{+1},
defineeg : ZV� ! Z [ f˙1g by

eg(q) D inf
�;p;r8̂

<
:̂
g(p)C

X
a2A

 a(�(a)) :
� D �ı(p; r; q)

� 2 ZA

(p; r; q) 2 ZVC[V 0[V�

9>=
>;
:

Thenef is M-convex, provided thatef > �1, andeg is
L-convex, provided thateg > �1. If g = f � and  a =

'�a (a 2 A), theneg Def �. A special case (V+ = V) of the
last statement yields the network duality:

inf

8<
:˚(x; �) :

@� D x;
x 2 ZV ;

� 2 ZA

9=
;

D sup

8<
:� (p; �) :

� D �ıp;
p 2 ZV ;

� 2 ZA

9=
; ;

where ˚(x, �) = f (x)+
P

a 2 A 'a(�(a)), � (p, �) =
�g(p)�

P
a 2 A  a(�(a)) and the finiteness of inf ˚ or

sup � is assumed. The network duality is equivalent to
the Fenchel-type duality.

Subdifferentials

The subdifferential of f : ZV ! Z [ {+1} at x 2 dom
f is defined by {p 2 RV : f (y)� f (x)� hp, y � xi (8y 2
ZV )}. The subdifferential of an L2- or M2-convex func-
tion forms an integral polyhedron. More specifically:
� The subdifferential of an L-convex function is an in-

tegral base polyhedron (an M-convex polyhedron).
� The subdifferential of an L2-convex function is the

intersection of two integral base polyhedra (M-
convex polyhedra).

� The subdifferential of an M-convex function is an
L-convex polyhedron.

� The subdifferential of an M2-convex function is the
Minkowski sum of two L-convex polyhedra.

Similar statements hold true with L and M replaced re-
spectively by L\ and M\.

Algorithms

On the basis of the equivalence of L\-convex func-
tions and submodular integrally convex functions, the
minimization of an L-convex function can be done
by the algorithm of [5], which relies on the ellip-
soid method. The minimization of an M-convex func-
tion can be done by purely combinatorial algorithms;
a greedy-type algorithm [2] for valuated matroids
and a domain reduction-type polynomial time algo-
rithm [24] for M-convex functions. Algorithms for du-
ality of M-convex functions (in other words, for M2-
convex functions) are also developed; polynomial algo-
rithms [14,22] for valuated matroids, and a finite primal
algorithm [18] and a polynomial time conjugate-scaling
algorithm [10] for the submodular flow problem.
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Applications

A discrete analog of the conjugate duality framework
[21] for nonlinear optimization is developed in [15]. An
application of M-convex functions to engineering sys-
tem analysis and matrix theory is in [13,17]. M-convex
functions find applications also in mathematical eco-
nomics [1].

See also

� Generalized Concavity in Multi-objective
Optimization

� Invexity and its Applications
� Isotonic Regression Problems
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In this article we consider the general linear comple-
mentarity problem (LCP) of finding a vector x 2Rn such
that

Mx C q � 0; x � 0; x>Mx C q>x D 0

(or proving that such an x does not exist), where M is
an n × n rational matrix and q 2 Rn is a rational vec-
tor. For given data M and q, the problem is generally
denoted by LCP(M, q). The LCP unifies a number of
important problems in operations research. In partic-
ular, it generalizes the primal-dual linear programming
problem, convex quadratic programming, and bimatrix
games [1,2].

For the general matrix M, where S = {x: Mx + q �
0, x � 0} can be bounded or unbounded, the LCP can
always be solved by solving a specific zero-one, linear,
mixed integer problem with n zero-one variables. Con-
sider the following mixed zero-one integer problem:

(MIP)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
˛;y;z

˛

s.t. 0 � My C ˛q � e � z;
˛ � 0; 0 � y � z;
z 2 f0; 1gn:

Theorem 1 Let (˛�, y�, z�) be any optimal solution of
(MIP). If ˛� > 0, then x� = y�/˛� solves the LCP. If in the
optimal solution ˛� = 0, then the LCP has no solution.

The equivalent mixed integer programming formula-
tion (MIP) was first given in [3]. Every feasible point
(˛, y, z) of (MIP), with ˛ > 0, corresponds to a solution
of LCP. Therefore, solving (MIP), we may generate sev-
eral solutions of the corresponding LCP. J.B. Rosen [4]
proved that the solution obtained by solving (MIP) is
the minimum norm solution to the linear complemen-
tarity problem.
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From the early days of mathematical optimization peo-
ple were looking for simple rules that ensure that cer-
tain algorithms terminate in a finite number of steps.
Specifically, on combinatorial structures the lack of fi-
nite termination imply that the algorithm cycles, i. e.
periodically visits the same solutions. That is why
rules ensuring finite termination of algorithms on finite
structures are frequently referred to as anticycling rules.

One frequently used anticycling rule in linear opti-
mization (cf. � Linear programming) is the so-called
lexicographic pivoting rule [9]. The other large class
of anticycling procedures, the ‘least-index’ rules, is the
subject of this paper. least-index rules were designed for
network flow problems, linear optimization problems,
linear complementarity problems and oriented matroid
programming problems. These classes will be consid-
ered in the sequel.

Consistent Labeling For the Max-Flow Problem

Themaximal flow problem (see e. g. [11]; [24]) is one of
the basic problems of mathematical programming. The
problem is given as follows. A directed capacitated net-

work (N,A, u) is given, whereN, the set of nodes, is a fi-
nite set; A � N × N is the set of directed arcs; finally, u
2RA denotes the nonnegative capacity upper bound for
flows through the arcs. Let further s, t 2 N be specified
as the source and the sink in the network. A vector f 2
RA is a flow in the network, if the incoming flow at each
node, different from the source and the sink, is equal to
the flow going out from the node. The goal is to find
a maximal flow, namely a flow for which the total flow
flowing out of the source or, equivalently, flowing in to
the sink is the largest possible. The Ford–Fulkerson al-
gorithm is the best known algorithm to find such amax-
imal flow. It is based on generating augmenting path’s
subsequently. A path P connecting the source s and the
sink t is a finite subset of arcs, where the source is the
tail of the first arc; the sink is the head of the last arc;
finally, the tail of an arc is always equal to the head of
its predecessor. For ease of simplicity let us assume that
if (v1, v2) 2 A, then (v2, v1) 2 A as well. If the oppo-
site arc were not present, we can introduce it with zero
capacity.

0 Initialization.
Let f be equal to zero. Let a free capacity net-
work (N;A; u) be defined. Initially let
A = fa 2 A : ua > 0g and u = u.

1 Augmenting path.
Let P be a path from s to t in the free capacity
network.
IF no such path exists, THEN STOP;
A maximal flow is obtained.

2 Augmenting the flow.
Let # be the minimum of the arc capacities
along the path P. Clearly # > 0.
Increase the flow f on each arc of P by # .

3 Update the free-capacity network.
Decrease (increase) ua by # if the (opposite) of
arc a is on the path P.
Let A = fa 2 A : ua > 0g.
Go to Step 1.

The Ford–Fulkerson max-flow algorithm

At each iteration cycle the flow value strictly in-
creases. Thus, if the vector u is integral and the max-
flow problem is bounded, then the Ford–Fulkerson al-
gorithm provides a maximal flow in a finite number of
steps. However, if the vector u contains irrational com-
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ponents, then the algorithm does not terminate in a fi-
nite number of steps and, even worse, it might converge
to a nonoptimal flow. For such an example see [11,24].
An elegant solution for this problem is the consistent la-
beling algorithm of A.W. Tucker [28]. This most simple
refinement reads as follows:

Be consistent at any time during the algorithm, specifically
when building the augmenting path by using the labeling
procedure. Whenever a labeled but unscanned subset of
nodes is given during the procedure pick always the same
from the same subset to be scanned.
Particularly, if we assign an index to each node, then we are
supposed to choose always the least-indexed node among
the possibilities.

Tucker writes [28]: ‘Fulkerson (unpublished) con-
jectured that a consistent labeling procedure would be
polynomially bounded; a proof of this conjecture ap-
pears to be very difficult.’

Linear Optimization

Before discussing the general LO problem, first the lin-
ear feasibility problem is considered.

0 Initialization.
Let T(B) be an arbitrary basis tableau and fix
an arbitrary ordering of the variables.

1 Leaving variable selection.
Let KP be the set of the indices of the infeasible
variables in the basis.
IF KP = ;, THEN STOP;
the feasibility problem is solved.
ELSE, let p be the least-index in KP and then
xp will leave the basis.

2 Entering variable selection.
Let KD be the set of the column indices of the
negative elements in row p of T(B).
IF KD = ;, THEN STOP;
Row p of the tableau T(B) gives an evidence
that the feasibility problem is inconsistent and
row p of the inverse basis is a solution of the
alternative system.
ELSE, let q be the least-index in KD and then
xq will enter the basis.

3 Basis transformation.
Pivot on (p; q). Go to Step 1.

Pivot rule

Least-Index Rules for Feasibility Problem

The feasibility problem

Ax D b; x � 0;

and its alternative pair

b>y > 0; A>y � 0;

can be solved by a very simple least-index pivot al-
gorithm. A fundamental result, the so-called Farkas
lemma (cf. also� Farkas lemma;� Farkas lemma: Gen-
eralizations) [10] says that exactly one of the two alter-
native systems has a solution. This result is also known
as the theorem of the alternatives. When a simple finite
pivot rule gives a solution to either of the two alterna-
tives, an elementary constructive proof for the Farkas
lemma and its relatives is obtained. The above simple
finite least-index pivot rule for the feasibility problem is
a special case (see below) of Bland’s algorithm [5]. It is
taken from [19] where the role of pivoting, and specif-
ically the role of finite, least-index pivot rules in linear
algebra is explored.

The Linear Optimization Problem

The general linear optimization (LO), linear program-
ming (cf.� Linear programming), problemwill be con-
sidered in the standard primal form

min
˚
c>x : Ax D b; x � 0

�
;

together with its standard dual

max
˚
b>y : A>y � c

�
:

One of the most efficient, and for a long time the only,
practical method to solve LO problems was the sim-
plex method of G.B. Dantzig. The simplex method is
a pivot algorithm that traverses through feasible basic
solutions while the objective value is improving. The
simplex method is in practice one of the most efficient
algorithms but it is theoretically a finite algorithm only
for nondegenerate problems.

A basis is called primal degenerate if at least one of
the basic variables is zero; it is called dual degenerate
if the reduced cost of at least one nonbasic variable is
zero. In general, the basis is degenerate if it is either pri-
mal or dual, or both primal and dual degenerate. The
LO problem is degenerate, if it has a degenerate ba-
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sis. A pivot is called degenerate when after the pivot
the objective remains unchanged. When the problem
is degenerate the objective might stay the same in sub-
sequent iterations and the simplex algorithm may cy-
cle, i. e. starting from a basis, after some iterations the
same basis is revisited and this process is repeated end-
lessly. Because the simplexmethod produces a sequence
with monotonically improving objective values, the ob-
jective stays constant in a cycle, thus each pivot in the
cycle must be degenerate. The possibility of cycling was
recognized shortly after the invention of the simplex al-
gorithm. Cycling examples were given by E.M.L. Beale
[2] and by A.J. Hoffman [17]. Recently (1999) a scheme
to construct cycling LO examples is presented in [15].
These examples made evident that extra techniques are
needed to ensure finite termination of simplex meth-
ods. The first and widely used such tool is the class of
lexicographic pivoting rules (cf.� Lexicographic pivot-
ing rules). Other, more recent techniques are the least-
index anticycling rules and somemore general recursive
schemes.

Least-Index Pivoting Methods for LO

Cycling of the simplexmethod is possible only when the
LO problem is degenerate. In that case not only many
variables might be eligible to enter, but also to leave
the basis. The least-index primal simplex rule makes
the selection of both the entering and the leaving vari-
able uniquely determined. Least-index rules are based
on consistent selection among the possibilities. The first
such rule for the simplex method was published by R.G.
Bland [4,5].

The least-index simplex method is finite. The finite-
ness proofs are quite elementary. All are based on the
simple fact that there is a finite number of different ba-
sis tableaus. Further, orthogonality of the primal and
dual spaces on some recursive argumentation is used [4,
5,27]

It is straightforward to derive the least-index dual
simplex algorithm. The only restriction relative to the
dual simplex algorithm is, that when there are more
candidates to leave or to enter the basis, always the
least-indexed candidate has to be selected.

An interesting use of least index-resolution is used
in [18] by designing finite primal-dual type Hungarian
methods for LO. Note that finite criss-cross rules (cf.

0 Initialization
Let T(B) be a given primal feasible basis
tableau and fix an arbitrary ordering of the
variables.

1 Entering variable selection.
Let KD be the set of the indices of the dual in-
feasible variables, i.e. those with negative re-
duced cost.
IF KD = ;, THEN STOP;
The tableau T(B) is optimal and this way a pair
of solutions is obtained.
ELSE, let q be the least-index in KD and xq , will
enter the basis.

2 Leaving variable selection.
Let KP be the set of the indices of those can-
didate pivot elements in column q that satisfy
the usual pivot selection conditions of the pri-
mal simplex method.
IF KP = ;, THEN STOP;
the primal problem is unbounded, and so the
dual problem is infeasible.
ELSE, let p be the least-index in KP and then
xp will leave the basis.

3 Basis transformation.
Pivot on (p; q). Go to Step 1.

The least-index primal simplex rule

also � Criss-cross pivoting rules) [14,26] make maxi-
mum possible use of least-index resolution.

Least-index simplex methods are not polynomial,
they might require exponential number of steps to solve
a LO problem, as it was shown by D. Avis and V. Chvá-
tal [1]. Their example is essentially the Klee–Minty
polytope [21]. Another example, again on the Klee–
Minty polytope, is Roos’s exponential example [25] for
the least-index criss-cross method. Here the initial ba-
sis is feasible and, although it is not required, feasibility
happens to be preserved, thus the criss-cross method
reduces to a least index simplex method.

Linear Complementarity Problems

A linear complementarity problem (cf. � Linear com-
plementarity problem) (LCP) is given as follows:

�Mx C s D t; x; s � 0; x>s D 0:

Pivot algorithms are looking for a complementary basis
solution of the LCP. A basis is called complementary, if
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exactly one of the complementary variables xi and si for
all i is in the basis.

The solvability of LCP depends on the properties of
the matrix M. One of the simplest case is when M is
a P-matrix. The matrixM is a P-matrix if all of its prin-
cipal minors are positive. K.G. Murty [22] presented an
utmost simple finite pivot algorithm for solving the P-
matrix LCP. This algorithm is a least-index principal
pivot algorithm.

Two extremal behaviors, exponential in the worst
case and polynomial in average, of this finite pivot rule
is studied in [13].

Finite least-index pivot rules are developed for
larger classes of LCPs. All are least-index principal piv-
oting methods, some more classical feasibility preserv-
ing simplex type methods [7,8,23], others are least-
index criss-cross pivoting rules (cf.�Criss-cross pivot-
ing rules) [6,16,20]. More details are given in � Princi-
pal pivoting methods for linear complementarity prob-
lems.

0 Initialization.
Let T(B) be complementary basis tableau and
fix an arbitrary ordering of the variables. (We
can choose x = 0; s = t i.e., x nonbasic, s
basic.)

1 Leaving variable selection.
Let K be the set of the infeasible variables.
IF K = ; , THEN STOP;
a complementary solution for LCP is obtained.
ELSE, let p be the least-index in K.

2 Basis transformation.
Pivot on (p; p), i.e. replace the least-indexed
infeasible variable in the basis by its comple-
mentary pair.
Go to Step 1.

Murty’s Bard-type schema

Least-Index Rules and OrientedMatroids

The least-index simplex method was originally de-
signed for oriented matroid linear programming (cf.
also � Oriented matroids) [3,4]. It turned soon out,
that this is not a finite algorithm in the oriented matroid
context. The reason is the possibility of nondegenerate
cycling [3,12], a phenomenon what is impossible in the
linear case. An apparent difference between the linear

and the oriented matroid context is that for oriented
matroids none of the finite-, recursive- or least-index-
type rules yield a simplex method, i. e. a pivot method
that preserves feasibility of the basis throughout. This
discrepancy is also due to the possibility of nondegen-
erate cycling.
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Let c be the linear functional on the space of complex
polynomials defined by

c(xi) D

(
ci 2 C; i D 0; 1; : : : ;
0; i < 0:

It is said that {Pk} forms a family of (formal) orthogonal
polynomials with respect to c if 8k:
� Pk has the exact degree k,
� c(xiPk(x)) = 0 for i = 0, . . . , k � 1.
Such a family exists if, 8k, the Hankel determinant

H(0)
k D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

c0 c1 � � � ck�1
c1 c2 � � � ck
� � � � � � � � � � � �

ck�1 ck � � � c2k�2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

is different from zero. Such polynomials enjoy most
of the properties of the usual orthogonal polynomials,
when the functional c is given by

c(xi) D
Z b

a
x i d˛(x);

where ˛ is bounded and non decreasing in [a, b] (see [1]
for these properties). In this paper we study the polyno-
mials Rk such that

mX
iD0

�
c(xiRk(x))

�2

is minimized, wherem is an integer strictly greater than
k� 1 (since, form = k� 1, we recover the previous for-
mal orthogonal polynomials) and which can possibly
depend on k. They will be called least squares (formal)
orthogonal polynomials. They depend on the value ofm
but for simplicity this dependence will not be indicated
in our notations.

Such polynomials arise naturally in problems of
Padé approximation for power series with perturbed
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coefficients, and in Gaussian quadrature (as described
in the last section). Some properties of these polyno-
mials are derived, together with a recursive scheme for
their computation.

Existence and Uniqueness

Since the polynomials Rk will be defined apart from
a multiplying factor, and since it is asked that the de-
gree of Rk is exactly k we shall write

Rk(x) D b0 C b1x C � � � C bkxk

with bk = 1. We set

˚(b0; : : : ; bk�1) D
mX
iD0

[c(xiRk(x))]2

and we seek for the values of b0, . . . , bk� 1 that minimize
this quantity. That is, such that

@˚

@b j
D 0 for j D 0; : : : ; k � 1: (1)

Setting �n = (cn, . . . , cn +m)|, this system can be written

b0(�0; � j)C � � � C bk�1(�k�1; � j) D �(�k ; � j) (2)

for j = 0, . . . , k � 1. Thus Rk exists and is unique if and
only if the matrix Ak of this system is non singular. Set-
ting X = (1, x, . . . , xk� 1) and calling the right-hand side
of the preceding system � we see that

Rk(x) D

ˇ̌
ˇ̌Ak �

X xk

ˇ̌
ˇ̌

jAk j
:

If we set

Bk D

0
@
c0 � � � ck�1
� � � � � � � � �

cm � � � cmCk�1

1
A ;

then Ak = B>k Bk, � = B>k � k and we recover the usual so-
lution of a system of linear equations in the least squares
sense.

Computation

The polynomials Rk can be recursively computed by in-
verting the matrixAk of the above system (2) by the bor-
dering method, see [5]. This method is as follows. Set

AkC1 D

�
Ak uk

vk ak

�

where uk is a column vector, vk a row vector and ak
a scalar. We then have

A�1kC1 D

�
A�1k C A�1k ukˇ

�1
k vkA�1k �A�1k ukˇ

�1
k

�ˇ�1k vkA�1k ˇ�1k

�
;

where ˇk = ak � vkA�1k uk.
Instead of choosing the normalization bk = 1 we

could impose the condition b0 = 1. In that case we have
the system

b01(�1; � j)C � � � C b0k(�k; � j) D �(�0; � j) (3)

for j = 1, . . . , k, and the bordering method can be used
not only for computing the inverses of the matrices of
the system recursively but also for obtaining its solu-
tion, since the new right-hand side contains the previ-
ous one.

LetAk
0 be the matrix of (3) and dk0 be the right-hand

side. We then have

A0kC1 D

�
A0k u0k
v0k a0k

�
; d0kC1 D

�
d0k
f 0k

�

with

u0k D ((�kC1; �1); : : : ; (�kC1; �k))> ;

v0k D ((�1; �kC1); : : : ; (�k; �kC1)) ;
a0k D (�kC1; �kC1);

d
0

k D ((�0; �1); : : : ; (�0; �k))> ;

f 0k D (�0; �kC1):

Setting zk0 = (b10, . . . , bk0)| we have

z0kC1 D

�
z0k
0

�
C

f 0k � v0kz
0
k

ˇ0k

�
�A0�1k u0k

1

�

with ˇk
0 = ak0� vk0A0�1k uk0.

Of course the bordering method can only be used if
ˇk (or ˇk

0 in the second case) is different from zero. If it
is not the case, instead of adding one new row and one
new column to the system it is possible to add several
rows and columns until a non singular ˇk (which is now
a square matrix) has been found (see [3] and [4]).

Location of the Zeros

We return to the normalization bk = 1. As

c(xiRk(x)) D b0ci C � � � C bkciCk
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and @c(xiRk(x))/ @bj = ci + j, from (1) we obtain

mX
iD0

c(xiRk(x))ciC j D 0 for j D 0; : : : ; k � 1: (4)

This relation can be written as

c(Rk(x)(ci C ciC1x C � � � C ciCmxm)) D 0;

for i = 0, . . . , k � 1. Let us now assume that

ci D
Z b

a
x id˛(x); i D 0; 1; : : : ;

with ˛ bounded and nondecreasing in [a, b]. We have

ci C ciC1x C � � � C ciCmxm

D

mX
jD0

"Z b

a
yiC j d˛(y)

#
x j

D

Z b

a
yi
0
@

mX
jD0

x j y j
1
A d˛(y):

Set

w(x; �) D
Z b

a
y

0
@

mX
jD0

x j y j
1
A d˛(y):

Thus

w(x; i) D ci C ciC1x C � � � C ciCmxm

and it follows that

c(Rk(x)w(x; i)) D
Z b

a
Rk(x)w(x; i) d˛(x) D 0

for i = 0, . . . , k� 1, which shows that the polynomial Rk

is biorthogonal in the sense of [7,8]. Let us now study
the location of the zeros of Rk. For that purpose we shall
apply [7, Thm. 3], also given as [8, Thm. 5]. Set

d˚(x; �) D w(x; �)d˛(x)

and

Ik(�) D
Z b

a
xk d˚(x; �); k D 0; 1; : : : :

In our case, � takes the values �i = i � 1, i = 1, 2, . . . .
Thus

det
�
Ii (� j)

�
D det

�
(� j�1; �i )

�

and the condition of regularity of [7,8] is equivalent to
our condition for the existence and uniqueness of Rk.
According to [7,8], we now have to look at the interpo-
lation property of w. We have

w(xi ; � j) D (� j�1; Xi )

where Xi = (1, xi, . . . , xmi )
|, the xi’s being arbitrary dis-

tinct points in [a, b], and thus
ˇ̌
ˇ̌
ˇ̌
(�0; X1) � � � (�k�1; X1)
� � � � � � � � �

(�0; Xk) � � � (�k�1; Xk)

ˇ̌
ˇ̌
ˇ̌ D det(Xk�k)

with

Xk D

0
B@
X>1
:::

X>k

1
CA and �k D (�0; : : : ; �k�1):

The interpolation property holds if and only if
det(Xk� k) 6D 0, that is, if and only if the matrix Xk� k

has rank k. Thus, using the theorem of [7,8], we have
proved the following result:

Theorem 1 If Ak is regular and if Xk� k has rank k,
then Rk exists and has k distinct zeros in [a, b].

Remark 2 When 0 � a < b, it can be proved that
det(Xk� k) 6D 0 (see [2] for the details).

Applications

Our first application deals with Padé-type approxima-
tion. Let vk be an arbitrary polynomial of degree k and
let wk(t) = a0 + � � � + ak� 1tk� 1 be defined by

ai D c(x�i�1vk(x)); i D 0; : : : ; k � 1:

We set

evk(t) D tkvk(t�1) and ewk(t) D tk�1wk(t�1):

Let f be the formal power series

f (t) D
1X
iD0

ci t i :

Then it can be proved that

f (t)�
ewk(t)
evk(t) D O(tk) (t! 0):
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The rational functionewk (t)evk (t) is called a Padé-type approx-
imant of f and it is denoted by (k � 1/k)f (t), [1]. More-
over it can also be proved that

f (t)�
ewk(t)
evk(t) D

tk

evk(t) c
�

vk(x)
1 � xt

�
D

tk

evk(t)
� c
��

1C xt C � � � C xk�1tk�1 C
xk tk

1 � xt

�
vk(x)

�
:

That is,

f (t)evk(t)�ewk(t) D tk
1X
iD0

c(xivk(x))t i :

Thus if the polynomial vk, which is called the generating
polynomial of (k� 1/k), satisfies

c(xivk(x)) D 0 for i D 0; : : : ; k � 1;

then

f (t)�
ewk(t)
evk(t) D O(t2k):

In this case vk is the formal orthogonal polynomial Pk

of degree k with respect to c and ewk (t)evk (t) is the usual Padé
approximant [k � 1/k] of f .

As explained in [10], Padé approximants can be
quite sensitive to perturbations on the coefficients ci of
the series f . Hence the idea arises to take as vk the least
squares orthogonal polynomial Rk of degree k instead of
the usual orthogonal polynomial, an idea which in fact
motivated our study. Of course such a choice decreases
the degree of approximation, since the approximants
obtained are only of the Padé-type, but it can increase
the stability properties of the approximants and also
their precision since

Pm
iD0[c(x

ivk(x))]2 is minimized by
the choice vk = Rk. We give a numerical example that
illustrates this fact.

We consider the function

f (z) D
ln(1C z)

z
D

1X
iD0

ci zi

and we assume that we know the coefficients ci with
a certain precision. For example, we know approximate
values c�i such that
ˇ̌
ci � c�i

ˇ̌
� 10�8; i D 0; 1; : : : :

In the following table we compare the number of ex-
act figures given by the Padé approximant with those
of the least squares Padé-type approximant, both com-
puted with the same number of coefficients c�i . We can
see that the least squares Padé-type approximant has
better stability properties.

z Padé approx LS Padé-type approx
[7/8] [6/7] (m = 8)

1:5 6:7 7:7
1:9 5:7 7:0
2:1 5:2 6:7

Another application concerns quadrature methods.
We have already shown that if the functional c is given
by

ci D
Z b

a
x i d˛(x); i D 0; 1; : : : ; 0 � a < b;

with ˛ bounded and nondecreasing, then the corre-
sponding least squares orthogonal polynomial of de-
gree k, Rk, has k distinct zeros in [a, b]. We can
then construct quadrature formulas of the interpolatory
type.

If �1, . . . , �k are the zeros of Rk, we can approximate
the integral

I D
Z b

a
f (x) d˛(x)

by

Ik D A1 f (�1)C � � � C Ak f (�k) (5)

where

Ai D

Z b

a


(x)

 0(�i)(x � �i)

d˛(x)

and


(x) D
kY

jD1

(x � � j):

This corresponds to replacing the function f by its in-
terpolating polynomial at the knots �1, . . . , �k. The
truncation error of (5) is given by

I � Ik D ET D

Z b

a
f [�1; � � � ; �k ; x]Rk(x) d˛(x):
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Expanding the divided difference we see

f [�1; : : : ; �k; x]

D

kX
iD1

f [�1; � � � ; �kCi](x � �kC1) � � � (x � �kCi�1)

C f [�1; : : : ; �kCmC1; x](x � �kC1) � � � (x � �kCmC1)

for �k + 1, . . . , �k +m + 1 any points in the domain of defi-
nition Df of f . If 0 2Df , then we can choose

�kC1 D � � � D �kCmC1 D 0:

Setting

Mi D f [�1; : : : ; �kCi]

we get

f [�1; : : : ; �k ; x]

D

mC1X
iD1

Mixi�1 C xmC1 f [�1; : : : ; �kCmC1; x]

and hence, for the truncation error

ET D

mX
iD0

MiC1

 Z b

a
Rk(x)xi d˛(x)

!

C

Z b

a
f [�1; : : : ; �kCmC1; x]xmC1Rk(x) d˛(x)

with

mX
iD0

 Z b

a
Rk(x)xi d˛(x)

!2

minimised. Moreover, if f 2 Ck +m + 1([a, b]) and, since
xm + 1 is positive over [a, b], we obtain

Z b

a
f [�1; : : : ; �kCmC1; x]xmC1Rk(x) d˛(x)

D
cmC1

(k C mC 1)!
Rk(�) f (kCmC1)(�)

with �, � 2 [a, b], and, for the error,

ET D

mX
iD0

f (kCi)(�i )
(k C i)!

 Z b

a
Rk(x)xid˛(x)

!

C
cmC1

(k C mC 1)!
Rk(�) f (kCmC1)(�) (6)

with �i 2 [a, b], i = 0, . . . , m, �, � 2 [a, b]. We remark
that in the case where m = k � 1, Rk is the orthogonal
polynomial with respect to the functional c and so (5)
corresponds to a Gaussian quadrature formula. An ad-
vantage of the quadrature formulas (5) is that they are
less sensitive to perturbations on the sequence of mo-
ments ci, as is shown in the following numerical exam-
ple. Such a case can arise in some applications where the
formula giving the moments ci is sensitive to rounding
errors, see [11] for example.

Consider the functional c defined by

ci D
Z 1

0
xi dx D

1
i C 1

and perturb the coefficients in the following way

i c�i i c�i
0 1:00000011 6 0:14285700
1 0:50000029 7 0:12500000
2 0:33333340 8 0:11111109
3 0:25000101 9 0:10000000
4 0:20000070 10 0:09090899
5 0:16666600 11 0:08333300

We can construct from these coefficients the least
squares orthogonal polynomials and the corresponding
quadrature formulas (5). The precision of the numeri-
cal approximations of I =

R 1
0f (x) dx is given in the fol-

lowing table

f (x) k = 5; m = 4
Gauss quad.

k = 5; m = 6 least
sq. quad.

1/(x + 0:5) �2:2 � 10�5 �6:2 � 10�6
1/(x + 0:3) �2:1 � 10�4 �1:2 � 10�5

We can obtain other applications from the
following generalization. Instead of minimizingPm

iD0[c(x
iRk(x))]2 we can introduce weights and mini-

mize

˚�(b0; : : : ; bk�1) D
mX
iD0

pi
�
c(xiR�k (x))

�2

with pi > 0, i = 0, . . . , m. If we choose the inner product

(�i ; � j)� D
mX

kD0

pkciCkc jCk
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the solution of this problem can be computed as in the
previous case and all the properties of the polynomials
are still true. It can be seen, from numerical examples,
that if the sequence of moments ci has a decreasing pre-
cision, we can expect that the least squares Padé-type
approximants constructed with a decreasing sequence
of weights will give a better result. In the same way,
for the quadrature formulas (5), from the expression (6)
of the truncation error and the knowledge of the mag-
nitude of the derivatives, we can reduce this error by
choosing appropriate weights. Some other possible ap-
plications of least squares orthogonal polynomials will
be studied in the future.

See also
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Introduction

Historical Remarks

The linear least squares problem originally arose from
the need to fit a linear mathematical model to given ob-
servations. In order to reduce the influence of errors in
the observations one uses a greater number of measure-
ments than the number of unknown parameters in the
model.

The algebraic procedure of the method of least
squares was first published by A.M. Legendre [25]. It
was justified as a statistical procedure by C.F. Gauss
[13]. A famous example of the use of the least squares
principle is the prediction of the orbit of the asteroid
Ceres by Gauss in 1801. After this success, the method
of least squares quickly became the standard procedure
for analysis of astronomical and geodetic data.

Gauss gave the method a sound theoretical basis
in two memoirs: ‘Theoria Combinationis’ [11,12]. In
them, Gauss proves the optimality of the least squares
estimate without any assumptions that the random
variables follow a particular distribution.

Statistical Models

In the general univariate linear model the vector b 2
Rm of observations is related to the unknown param-
eter vector x 2 Rn by a linear relation

Ax D bC �; (1)

where A 2 Rm × n is a known matrix of full column
rank. Further, � is a vector of random errors with zero
means and covariance matrix �2 W 2 Rm ×m, where
W is known but �2 > 0 unknown. The standard linear
model is obtained forW = I.

Theorem 1 (Gauss–Markoff theorem) Consider the
standard linear model (1) with W = I. The best lin-
ear unbiased estimator of any linear function c|x is
c>bx, wherebx is obtained by minimizing the sum of the
squared residuals,

krk22 D
mX
iD1

r2i ; (2)

where r = b � Ax and k � k2 denotes the Euclidean
vector norm. Furthermore, E(s2) D �2, where s2 is the
quadratic form

s2 D
1

m � n
(b � Abx)>(b � Abx): (3)

The variance-covariance matrix of the least squares esti-
matebx is given by

V(bx) D �2(A>A)�1: (4)

The residual vectorbr D b � Abx satisfies A>br D 0, and
hence there are n linear relations among the m com-
ponents ofbr. It can be shown that the residualsbr, and
therefore also the quadratic form s2, are uncorrelated
withbx, i. e., cov(br;bx) D 0, cov(s2;bx) D 0.

If the errors in � are uncorrelated but not of equal
variance, then the covariance matrix W is diagonal.
Then the least squares estimator is obtained by solving
the weighted least squares problem

min kD(Ax � b)k2 ; D DW�
1
2 : (5)

For the general case with no restrictions on A and W,
see [23].

The assumption that A is known made in the linear
model is frequently unrealistic since sampling or mod-
eling errors often also affect A. In the errors-in-variables
model one instead assumes a linear relation

(AC E)x D bC r; (6)

where (E, r) is an error matrix whose rows are indepen-
dently and identically distributed with zero mean and
the same variance. An estimate of the parameters x in
the model (6) is obtained from the total least squares
(TLS) problem.

Characterization of Least Squares Solutions

Let S be set of all solutions to a least squares problem,

S D fx 2 Rn : kAx � bk2 D ming : (7)

Then x 2 S if and only if A|(b � Ax) = 0 holds. Equiv-
alently, x 2 S if and only if x satisfies the normal equa-
tions

A>Ax D A>b: (8)

SinceA| b2R(A|) =R(A| A) the normal equations are
always consistent. It follows that S is a nonempty, con-
vex subset of Rn. Any least squares solution x uniquely
decomposes the right-hand side b into two orthogonal
components

b D Ax C r; Ax 2 R(A) ? r 2N (A>);
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where R(A) and N(A|) denote the range of A and the
nullspace of A|, respectively.

When rank A < n there are many least squares so-
lutions x, although the residual b � Ax is still uniquely
determined. There is always a unique least squares so-
lution in S of minimum length. The following result ap-
plies to both overdetermined and underdetermined lin-
ear systems.

Theorem 2 Consider the linear least squares problem

min
x2S
kxk2 ; S D fx 2 Rn : kb � Axk2 D ming ; (9)

where A 2 Rm × n and rank(A) = r � min(m, n). This
problem always has a unique solution, which is distin-
guished by the property that

x ?N (A):

Pseudo-inverse and Conditioning

Singular Value Decomposition and Pseudo-inverse

Amatrix decomposition of great theoretical and practi-
cal importance for the treatment of least squares prob-
lems is the singular value decomposition (SVD) of A,

A D U˙V> D
nX

iD1

ui�i v>i : (10)

Here � i are the singular values of A and ui and vi the
corresponding left and right singular vectors.

Using this decomposition the solution to problem
(9) can be written x = A† b, where

A� D V
�
˙�1r 0
0 0

�
U> 2 Rn�m : (11)

Here A† is called the pseudo-inverse of A. It is the
unique matrix which minimizes kAX � IkF , where k
� kF denotes the Frobenius norm. Note that the pseudo-
inverse A† is not a continuous function of A, unless one
allows only perturbations which do not change the rank
of A.

The pseudo-inverse was first introduced by E.H.
Moore in 1920. R. Penrose [30] later gave the following
elegant algebraic characterization.

Theorem 3 (Penrose’s conditions) The pseudo-inverse
X = A† is uniquely determined by the four conditions:

1) AXA = A;
2) XAX = X;
3) (AX)| = AX;
4) (XA)| = XA.

It can be directly verified that A† given by (11) satisfies
these four conditions.

The total least squares problem (TLS problem) in-
volves finding a perturbation matrix (E, r) having min-
imal Frobenius norm, which lowers the rank of the ma-
trix (A, b). Consider the singular value decomposition
of the augmented matrix (A, b):

(A; b) D U˙V>; ˙ D diag(�1; : : : ; �nC1);

where �1 � � � � � �n + 1 � 0. Then, in the generic case,
(x, � 1)| is a right singular vector corresponding to
�n + 1 and min k (E, r) kF = �n + 1.

An excellent survey of theoretical and computa-
tional aspects of the total least squares problem is given
in [22].

Conditioning of the Least Squares Problem

Consider a perturbed least squares problem where eA D
AC ıA,eb D b C ıb, and let the perturbed solution be
ex D xC ıx. Then, assuming that rank(A) = rank(A + ı
A) = n one has the first order bound

kıxk2 �
1
�n

�
kıb1k2 C kıAk2 kxk2

�
C

1
�2
n
kıAk2 krk2 :

The condition number of a matrix A 2 Rm × n (A 6D
0) is defined as

�(A) D kAk2


A�

2 D

�1

�r
; (12)

where �1 � � � � � � r > 0, are the nonzero singular values
of A. Hence, the normwise relative condition number of
the least squares problem can be written as

�LS(A; b) D �(A)C �(A)2
krk2

kAk2 kxk2
: (13)

For a consistent problem (r = 0) the last term is zero.
However, in general the condition number depends on
the size of r and involves a term proportional to �(A)2.

A more refined perturbation analysis, which applies
to both overdetermined and underdetermined systems,
has been given in [34]. In order to prove any meaning-
ful result it is necessary to assume that rank(A + ı A)
= rank(A). If rank(A) = min(m, n), the condition � �
kA†k2 kıAk2 < 1 suffices to ensure that this is the case.
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Numerical Methods of Solution

The Method of Normal Equations

The first step in the method of normal equations for the
least squares problem is to form the cross-products

C D A>A 2 Rn�n ; d D A>b 2 Rn : (14)

Since the matrix C is symmetric, it is only necessary
to compute and store its upper triangular part. When
m� n this step will result in a great reduction in the
amount of data.

The computation of C and d can be performed
either using an inner product form (operating on
columns of A) or an outer product form (operating on
rows ofA). Row-wise accumulation ofC and d is advan-
tageous if the matrix A is sparse or held in secondary
storage. Partitioning A by rows, one has

C D
mX
iD1

ai �a>i � ; d D
mX
iD1

bi ai �; (15)

whereea>i denotes the ith row of A. This expresses C as
a sum of matrices of rank.

Gauss solved the symmetric positive definite system
of normal equation by elimination, preserving symme-
try, and solving for x by back-substitution. A different
sequencing of this algorithm is to compute the Cholesky
factorization

C D R>R; (16)

where R is upper triangular with positive diagonal ele-
ments, and then solve the two triangular systems

R>z D d; Rx D z; (17)

by forward- and back-substitution, respectively. The
Cholesky factorization, named after the French officer
A.L. Cholesky, who worked on geodetic survey prob-
lems in Africa, was published by C. Benoit [1]. (In sta-
tistical applications this method is often known as the
square-root method, although the proper square root of
A should satisfy B2 = A.)

The method of normal equations is suitable for
moderately ill-conditioned problems but is not a back-
ward stable method. The accuracy can be improved by
using fixed precision iterative refinement in solving the
normal equations.

Set x0 = 0, r0 = 0, and for s = 0, 1, . . . until conver-
gence do

rs D b � Axs ;

R>(Rıxs) D A>rs ;

xsC1 D xs C ıxs :

(Here, x1 corresponds to the unrefined solution of the
normal equations.)

The method of normal equations can fail when ap-
plied to weighted least squares problems. To see this
consider a problem with two different weights � and 1,

min
x






�
�A1

A2

�
x �

�
�b1
b2

�




2
; (18)

for which the matrix of normal equations is A|A = �2

A>1 A1 + A>2 A2. When � � 1 this problem is called
stiff . In the limit � ! 1 the solution will satisfy the
subsystem A1x = b1 exactly. If � > u� 1/2 (u is the unit
roundoff), the information in the matrix A2 may com-
pletely disappear when forming A|A. For possible ways
around this difficulty, see [4, Chap. 4.4].

Least Squares by QR Factorization

The QR factorization and its extensions are used exten-
sively in modern numerical methods for solving least
squares problems. Let A 2 Rm × n with rank(A) = n.
Then there are an orthogonal matrix Q 2 Rm ×m and
an upper triangular R 2 Rn × n such that

A D Q
�
R
0

�
(19)

Since orthogonal transformations preserve the Eu-
clidean length, it follows that

kAx � bk2 D


Q>(Ax � b)




2 (20)

for any orthogonal matrix Q 2 Rm ×m. Hence using the
QR factorization (19) the solution to the least squares
problem can be obtained from

Q>b D
�
d1
d2

�
; Rx D d1: (21)

An algorithm based on the QR decomposition by
Householder transformations was first developed in
a seminal paper by G.H. Golub [18]. Here, Q is com-
pactly represented as a product of Householder ma-
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trices Q = P1 � � � Pn, where Pk = I � ˇk uku>k . Only
the Householder vectors uk are stored, and advantage
is taken of the fact that the first k � 1 components of uk
are zero.

Golub’s method for solving the standard least
squares problem is normwise backward stable, see [24,
pp. 90ff]. Surprisingly, this method is stable also for
solving the weighted least squares problems (5) pro-
vided only that the equations are sorted after decreasing
row norms in A, see [8].

Due to storage considerations the matrix Q in a QR
decomposition is often discarded when A is large and
sparse. This creates a problem, since then it may not be
possible to form Q|b. If the original matrix A is saved
one can use the corrected seminormal equations (CSNE)

R>Rx D A>b; r D b � Ax;

R>Rıx D A>r; xc D x C ıx:

(Note that unless the correction step is carried out the
numerical stability of this method is no better than the
method of normal equations.) An error analysis of the
CSNE method is given in [2]. A comparison with the
bounds for a backward stable method shows that in
most practical applications the corrected seminormal
equations is forward stable.

Applying theGram–Schmidt orthogonalization pro-
cess to the columns of A produces Q1 and R in the fac-
torization

A D (a1; : : : ; an) D Q1R; Q1 D (q1; : : : ; qn);

where Q1 has orthogonal columns and R is upper
triangular. There are two computational variants of
Gram–Schmidt orthogonalization, the classical Gram–
Schmidt orthogonalization (CGS) and the modified
Gram–Schmidt orthogonalization (MGS). In CGS there
may be a catastrophic loss of orthogonality unless re-
orthogonalization is used. In MGS the loss of orthogo-
nality can be shown to occur in a predictable manner.

Using an equivalence between MGS and House-
holder QR applied to Awith a square matrix of zeros on
top, backward stable algorithm based on MGS for solv-
ing least squares problems have been developed, see [3].

Rank-Deficient and Ill-Conditioned Problems

The mathematical notion of rank is not always ap-
propriate in numerical computations. For example, if

a matrix A 2 Rn × n, with (mathematical) rank k < n, is
randomly perturbed by roundoff, the perturbed matrix
most likely has full rank n. However, it should be con-
sidered to be ‘numerically’ rank deficient.

When solving rank-deficient or ill-conditioned least
squares problems, correct assignment of the ‘numerical
rank’ of A is often the key issue. The numerical rank
should depend on a tolerance which reflects the error
level. Overestimating the rank may lead to a computed
solution of very large norm, which is totally irrelevant.
This behavior is typical in problems arising from dis-
cretizations of ill-posed problems, see [21].

Assume that the ‘noise level’ ı in the data is known.
Then a numerical rank k, such that �k > ı � �k + 1, can
be assigned to A, where � i are the singular values of A.
The approximate solution

x D
kX

iD1

ci
�i
vi ; c D U>b;

is known as the truncated singular value decomposition
solution (TSVD). This solution solves the related least
squares problem minx kAkx � bk2, where

Ak D

kX
iD1

ui�i v>i ; kA� Akk2 � ı;

is the best rank k approximation of A, The subspace

R(V2); V2 D (vkC1; : : : ; vn);

is called the numerical nullspace of A.
An alternative to TSVD is Tikhonov regularization,

where one considers the regularized problem

min
x
kAx � bk22 C �

2 kDxk22 ; (22)

for some positive diagonal matrix D = diag(d1, . . . ,
dn). The problem (22) is equivalent to the least squares
problem

min
x






�
�D
A

�
x
�
�0
b

�




2
; (23)

where the matrix A has been modified by appending the
matrix � D on top. An advantage of using the regular-
ized problem (23) instead of the TSVD is that its solu-
tion can be computed from aQR decomposition. When
� > 0 this problem is always of full column rank and has
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a unique solution. For D = I it can be shown that x(�)
will approximately equal the TSVD solution for � = ı.

Problem (23) also appears as a subproblem in trust
region algorithms for solving nonlinear least squares,
and in interior point methods for constrained linear
least squares problems. A more difficult case is when
the noise level ı is unknown and has to be determined
in the solution process. Such problems typically arise in
the treatment of discrete ill-posed problems, see [21].

Rank Revealing QR Factorizations

In some applications it is too expensive to compute the
SVD. In such cases so called ‘rank revealing’ QR factor-
izations, often are a good substitute.

It can be shown that for any 0 < k < n a column
permutation ˘ exists such that the QR decomposition
of A˘ has the form

A˘ D Q
�
R11 R12

0 R22

�
; (24)

where

�k(R11) �
1
c
�k ; kR22k2 � c�kC1; (25)

and c < (n + 1)/2. In particular, if A has numerical ı-
rank equal to k, then there is a column permutation
such that kR22 k2 � c ı. Such aQR factorization is called
a rank revealing QR factorization (RRQR). No efficient
numerical method is known which can be guaranteed
to compute an RRQR factorization satisfying (25), al-
though in practice Chan’s method [7] often gives satis-
factory results.

A related rank revealing factorization is the com-
plete orthogonal decomposition of the form

A D U
�
R11 R12

0 R22

�
V>; (26)

where U and V are orthogonal matrices, R11 2 Rk × k,
�k(R11) � �k/c, and
�
kR12k

2
F C kR22k

2
F
� 1
2 � c�kC1:

This is also often called a rank revealing URV factor-
ization. (an alternative lower triangular form ULV is
sometimes preferable to use.) If V = (V1V2) is parti-
tioned conformably the orthogonal matrix V2 can be
taken as an approximation to the numerical nullspace
N(A).

Updating Least Squares Solutions

It is often desired to solve a sequence of modified least
squares problems

min
x
kAx � bk2 ; A 2 Rm�n ; (27)

where in each step rows of data in (A, b) are added,
deleted, or both. This need arises, e. g., when data are
arriving sequentially. In various time-series problems
a windowmoving over the data is used; when a new ob-
servation is added, an old one is deleted as the window
moves to the next step in the sample. In other applica-
tions columns of the matrix Amay be added or deleted.
Such modifications are usually referred to as updating
(downdating) of least squares solutions.

Important applications where modified least
squares problems arise include statistics, optimiza-
tion, and signal processing. In statistics an efficient and
stable procedure for adding and deleting rows to a re-
gression model is needed; see [6]. In regression models
one may also want to examine the different models,
which can be achieved by adding or deleting columns
(or permuting columns).

Recursive Least Squares

Applications in signal processing often require near
real-time solutions. It is then critical that the modifi-
cation should be performed with as few operations and
as little storage requirement as possible.

Methods based on the normal equations and/or up-
dating of the Cholesky factorization are still often used
in statistics and signal processing, although these algo-
rithms lack numerical stability. Consider a least squares
problem where an observation w|x = ˇ is added. The
updated solution ex then satisfies the modified normal
equations

(A>AC ww>)ex D A>bC ˇw: (28)

A straightforward method for computingex is based on
updating the (scaled) covariance matrix C = (A| A)�1.
By the Sherman–Morrison formula one obtains eC�1 D
C�1 C ww>, and

eC D C �
1

1C w>u
uu>; u D Cw: (29)

From this follows the updating formula

ex D x C (ˇ � w>x)eu; eu D eCw: (30)
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The equations (29), (30) define a recursive least squares
(RLS) algorithm. They can, with slight modifications,
also be used for ‘deleting’ observations. The simplicity
of this updating algorithm is appealing, but a disadvan-
tage is its serious sensitivity to roundoff errors.

Modifying Matrix Factorizations

The first area where algorithms for modifying matrix
factorizations seems to have been systematically used
is optimization. Numerous aspects of updating various
matrix factorizations are discussed in [17].

There is a simple relationship between the problem
of updating matrix factorizations and that of updating
least squares solutions. If A has full column rank and
the R-factor of the matrix (A, b) is

�
R z
0 �

�
; (31)

then the solution to the least squares problem (27) is
given by

Rx D z; kAx � bk2 D �: (32)

Hence updating algorithms for the QR or Cholesky fac-
torization can be applied to (A, b) in order to give up-
dating algorithms for least squares solutions.

Backward stable algorithms, which require O(m2)
multiplications, exist for updating the QR decomposi-
tion for three important kinds of modifications:
� General rank one change of A.
� Deleting (adding) a column of A.
� Adding (deleting) a row of A.

In these algorithms, Q 2 Rm ×m is stored explicitly
as an m × m matrix. In many applications it suffices to
update the ‘Gram–Schmidt’ QR decomposition

A D Q1R; Q1 2 Rm�n ; (33)

where Q1 2 Rm × n consists of the first n columns of Q,
[10,31]. These only require O(mn) storage and opera-
tions.

J.R. Bunch and C.P. Nielsen [5] have developed
methods for updating the SVD

A D U
�
˙

0

�
V>;

where U 2 Rm ×m and V 2 Rn × n, when A is modified
by adding or deleting a row or column. However, their
algorithms require O(mn2) flops.

Rank revealing QR factorizations can be updated
more cheaply, and are often a good alternative to use.
G.W. Stewart [33] has shown how to compute and up-
date a rank revealing complete orthogonal decomposi-
tion from an RRQR decomposition.

Most updating algorithms can be modified in
a straightforward fashion to treat cases where a block
of rows/columns are added or deleted. which are more
amenable to efficient implementation on vector and
parallel computers.

Sparse Problems

The gain in operations and storage in solving the lin-
ear least squares problems where the matrix A is sparse
can be huge, making otherwise intractable problems
possible to solve. Sparse least squares problems of huge
size arise in a variety of applications, such as geodetic
surveys, photogrammetry, molecular structure, gravity
field of the earth, tomography, the force method in
structural analysis, surface fitting, and cluster analysis
and pattern matching.

Sparse least squares problems may be solved either
by direct or iterative methods. Preconditioned iterative
methods can often be considered as hybrids between
these two classes of solution. Below direct methods are
reviewed for some classes of sparse problems.

Banded Least Squares Problems

A natural distinction is between sparse matrices with
regular zero pattern (e. g., banded structure) and matri-
ces with an irregular pattern of nonzero elements.

A rectangular banded matrix A 2 Rm × n has the
property that the nonzero elements in each row lie in
a narrow band. A is said to have row bandwidth w if

w(A) D max
1�i�m

(li(A) � fi(A)C 1): (34)

where

fi(A) D min
˚
j : ai j ¤ 0

�
;

li(A) D max
˚
j : ai j ¤ 0

�

are column subscripts of the first and last nonzeros in
the ith row of A. For this structure to have practical sig-
nificance one needs to have w� n. Note that, although
the row bandwidth is independent of the row ordering,
it will depend on the column ordering. To permute the
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columns in A so that a small bandwidth is achieved the
method of choice is the reverse Cuthill–McKee order-
ing, see [15].

It is easy to see that if the row bandwidth of A is
w then the matrix of normal equations C = A|A has at
most upper bandwidth p = w � 1, i. e.,

j j � kj � w ) (A>A) jk D
mX
iD1

ai j aik D 0:

If advantage is taken of the band structure, the solution
of a least squares problem where A has bandwidth w by
the method of normal equations requires a total of

1
2 (mw(w C 3)C n(w � 1)(wC 2))C n(2w � 1)

flops.
Similar savings can be obtained for methods based

onGivens QR decomposition used to solve banded least
squares problem. However, then it is essential that the
rows of A are sorted so that the column indices f i(A),
i = 1, . . . , m, of the first nonzero element in each row
form a nondecreasing sequence, i. e.,

i � k ) fi(A) � fk(A):

Amatrix whose rows are sorted in this way is said to be
in standard form. Since the matrix R in the QR factor-
ization has the same structure as the Cholesky factor, it
must be a banded matrix with nonzero elements only
in the first p = w � 1 superdiagonals. In the sequential
row orthogonalization scheme an upper triangular ma-
trix R is initialized to zero. The orthogonalization then
proceeds row-wise, and R is updated by adding a row of
A at a time.

IfA has constant bandwidth and is in standard form
then in the ith step of reduction the last (n � li(A))
columns of R have not been touched and are still zero
as initialized. Further, the first (f i(A) � 1) rows of R
are already finished at this stage and can be read out to
secondary storage. Thus, as with the Cholesky method,
very large problems can be handled since primary stor-
age is needed only for the active part of R. The complete
orthogonalization requires about 2mw2 flops, and can
be performed in w(w + 3)/2 locations of primary stor-
age.

The Givens rotations could also be applied to one
or several right-hand sides b. Only if right-hand sides

which are not initially available are to be treated, need
the Givens rotations be saved. The algorithm can be
modified to also handle problems with variable row
bandwidth wi.

For the case when m� n a more efficient schemes
uses Householder transformations, see [24, Chap. 11].
Let Ak consist of the rows of A for which the first
nonzero element is in column k. Then, in step k of this
algorithm, the Ak is merged with Rk� 1, by computing
the QR factorization

Q>k

�
Rk�1

Ak

�
D Rk :

Note that this and later steps will not involve the first k
� 1 rows and columns of Rk� 1. Hence the first k � 1
rows of Rk� 1 are rows in the final matrix R.

The reduction using this algorithm takes about
w(w + 1)(m + 3n/2) flops, which is approximately half
as many as for the Givens method. As in the Givens al-
gorithm the Householder transformations can also be
applied to one or several right-hand sides b to produce c
= Q|b. The least squares solution is then obtained from
Rx = c1 by back-substitution.

It is essential that the Householder transformations
be subdivided as outlined above, otherwise interme-
diate fill will occur and the operation count increase
greatly, see the example in [32].

Block Angular Form

There is often a substantial similarity in the structure of
large sparse least squares problems. The matrices pos-
sess a block structure, perhaps at several levels, which
reflects a ‘local connection’ structure in the underlying
physical problem. In particular, the problem can often
be put in the following bordered block diagonal or block
angular form:

A D

0
B@
A1 B1

: : :
:::

AM BM

1
CA ; (35)

x D

0
B@

x1
:::

xMC1

1
CA ; b D

0
B@
b1
:::

bM

1
CA : (36)

From (35) it follows that the variables x1, . . . , xM are
coupled only to the variables xM + 1. Some applications
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where the form (35) arises naturally are photogramme-
try, Doppler radar positioning [27], and geodetic survey
problems [20].

Problems of block angular form can be efficiently
treated either by using normal equations of by QR
factorization. It is easily seen that the matrix R from
Cholesky or QR will have a block structure similar to
that of A,

R D

0
BBB@

R1 S1
: : :

:::

RM SM
RMC1

1
CCCA ; (37)

where the Ri 2 Rni�ni are upper triangular. This factor
can be computed by first performing a sequence of or-
thogonal transformations yielding

Q>i (Ai ; Bi ) D
�
Ri Si
0 Ti

�
; Q>i bi D

�
ci
di

�
:

Any sparse structure in the blocks Ai should be ex-
ploited. The last block row RM + 1, cM + 1 is obtained by
computing the QR decomposition

eQ>MC1
�
T d

�
D

�
RMC1 cMC1

0 dMC1

�
;

where

T D

0
B@
T1
:::

TM

1
CA ; d D

0
B@
d1
:::

dM

1
CA :

The unknown xM + 1 is determined from the triangular
system RM + 1 xM + 1 = cM + 1. Finally xM , . . . , x1 are com-
puted by back-substitution in the sequence of triangu-
lar systems Rixi = ci � Si xM + 1, i = M, . . . , 1. Note that
a large part of the computations can be performed in
parallel on theM subsystems.

Several modifications of this basic algorithm have
been suggested in [19] and [9].

General Sparse Problems

If A is partitioned by rows, then (15) can be used
to compute the matrix C = A| A. Make the ‘no-
cancellation assumption’ that whenever two nonzero
numerical quantities are added or subtracted, the result

is nonzero. Then it follows that the nonzero structure
of A| A is the direct sum of the nonzero structures of
ai � a>i � , i = 1, . . . , m, where a>i � denotes the ith row of A.
Hence the undirected graph G(A| A) representing the
structure of A|A can be constructed as the direct sum
of all the graphs G(ai � a>i � ), i = 1, . . . , m. The nonzeros
in row a>i � will generate a subgraph, where all pairs of
nodes are connected. Such a subgraph is called a clique.

From the graph G(A| A) the structure of the
Cholesky factor R can be predicted by using a graph
model of Gaussian elimination. The fill under the fac-
torization process can be analyzed by considering a se-
quence of undirected graphs Gi = G(A(i)), i = 0, . . . , n�
1, where A(0) = A. These elimination graphs can be re-
cursively formed in the following way. Form Gi from
G(i� 1) by removing the node i and its incident edges
and adding fill edges. The fill edges in eliminating node
v in the graph G are
˚
( j; k) : ( j; k) 2 AdjG(v); j ¤ k

�
:

Thus, the fill edges correspond to the set of edges re-
quired to make the adjacent nodes of v pairwise ad-
jacent. The filled graph GF(A) of A is a graph with n
vertices and edges corresponding to all the elimination
graphs Gi, i = 0, . . . , n � 1. The filled graph bounds the
structure of the Cholesky factor R,

G(R> C R) � GF (A): (38)

This also give an upper bound for the structure of the
factor R in the QR decomposition.

A reordering of the columns of AP ofA corresponds
to a symmetric reordering of the rows and columns
of A| A. Although this will not affect the number of
nonzeros in A| A, only their positions, it may greatly
affect the number of nonzeros in the Cholesky factor R.
Before carrying out the Cholesky or QR factorization
numerically, it is therefore important to find a permuta-
tion matrix P such that P|A| AP has a sparse Cholesky
factor R.

By far the most important local ordering method is
the minimum degree ordering In terms of the Cholesky
factorization this ordering is equivalent to choosing the
ith pivot column as one with the minimum number
of nonzero elements in the unreduced part of A| A.
This will minimize the number of entries that will be
modified in the next elimination step. Remarkably fast



Least Squares Problems L 1865

symbolic implementations of the minimum degree al-
gorithm exist, which use refinements of the elimination
graph model of the Cholesky factorization. See [16] for
a survey of the extensive development of efficient ver-
sions of the minimum degree algorithm.

Another important ordering method is substructur-
ing or nested dissection, which results in a nested block
angular form. Here the idea is to choose a set of nodesB

in the graph G(A|A), which separates the other nodes
into two sets A1 and A2 so that node variables inA1 are
not connected to node variables in A2. The variables
are then ordered so that those in A1 appear first, those
in A2 second, and those in B last. Finally the equations
are ordered so that those including A1 come first, those
including A2 next, and those only involving variables
in B come last. This dissection can be continued recur-
sively, first dissecting the regions A1 and A2 each into
two subregions, and so on.

An algorithm using the normal equations for solv-
ing sparse linear least squares problems is usually split
in a symbolical and a numerical phase as follows.
1) Determine symbolically a column permutation Pc

such that P>c A| APc has a sparse Cholesky factor R.
2) Perform the Cholesky factorization of P>c A| APc

symbolically to generate a storage structure for R.
3) Compute B = P>c A| APc and c = P>c A| b numeri-

cally, storing B in the data structure of R.
4) Compute the Cholesky factor R numerically and

solve R| z = c, Ry = z, giving the solution x = Pcy.
Here, steps 1 and 2 involve only symbolic computation
and apply also to a sparse QR algorithm. For details of
the implementation of the numerical factorization see
[15, Chap. 5]. For moderately ill-conditioned problems
a sparse Cholesky factorization, possibly used with iter-
ative refinement, is a satisfactory choice.

Orthogonalization methods are potentially more
accurate since they work directly with A. The number
of operations needed to compute the QR decomposi-
tion depends on the row ordering, and the following
heuristic row ordering algorithm should be applied to
A before the numerical factorization takes place:

First sort the rows after increasing f i(A), so that
f i(A)� f k(A) if i < k. Then for each group of rows with
f i(A) = k, k = 1, . . . , maxi f i(A), sort all the rows after
increasing Li(A).

In the sparse case, applying the usual sequence of
Householder reflections may cause a lot of intermedi-

ate fill-in, with consequent cost in operations and stor-
age. In the row sequential algorithm by J.A. George
and M.T. Heath [14], this problem is avoided by using
a row-oriented method employing Givens rotations.
Even more efficient are multifrontal methods, in which
Householder transformations are applied to a sequence
of small dense subproblems.

Note that in most sparse QR algorithms the orthog-
onal factor Q is not stored. The corrected seminormal
equations are used for treating additional right-hand
sides. The reason is that for rectangular matrices A the
matrix Q is usually much less sparse than R. In the mul-
tifrontal algorithm, however, Q can efficiently be rep-
resented by the Householder vectors of the frontal or-
thogonal transformations, see [26].

A Fortran multifrontal sparse QR subroutine, called
QR27, has been developed by P.Matstoms [28]. He [29]
has also developed a version of this to be used with
MATLAB, implemented as four M-files and available
from netlib.

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� ABS Algorithms for Optimization
� Gauss, Carl Friedrich
� Gauss–Newton Method: Least Squares, Relation to

Newton’s Method
� Generalized Total Least Squares
� Least Squares Orthogonal Polynomials
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods

References

1. Benoit C (1924) Sur la méthode de résolution des,
équationes normales, etc. (Procédés du commandant
Cholesky). Bull Géodésique 2:67–77

2. Björck Å (1987) Stability analysis of the method of semi-
normal equations for least squares problems. Linear Alg &
Its Appl 88/89:31–48

3. Björck Å (1994) Numerics of Gram–Schmidt orthogonaliza-
tion. Linear Alg & Its Appl 197-198:297–316

4. Björck Å (1996) Numerical methods for least squares prob-
lems. SIAM, Philadelphia

5. Bunch JR, Nielsen CP (1978) Updating the singular value
decomposition. Numer Math 31:111–129



1866 L Leibniz, Gottfried Wilhelm

6. Chambers JM (1971) Regression updating. J Amer Statist
Assoc 66:744–748

7. Chan TF (1987) Rank revealing {QR}-factorizations. LAA
88/89:67–82

8. Cox AJ, Higham NJ (1997) Stability of Householder QR
factorization for weighted least squares problems. Numer
Anal Report Manchester Centre Comput Math, Manch-
ester, England, 301

9. Cox MG (1990) The least-squares solution of linear equa-
tions with block-angular observation matrix. In: Cox MG,
Hammarling SJ (eds) Reliable Numerical Computation. Ox-
ford Univ. Press, Oxford, pp 227–240

10. Daniel J, Gragg WB, Kaufman L, Stewart GW (1976) Re-
orthogonalization and stable algorithms for updating the
Gram–Schmidt QR factorization. Math Comput 30:772–95

11. Gauss CF (1880) Theoria combinationis observationum er-
roribus minimis obnoxiae, pars posterior. In: Werke, IV.
Königl. Gesellschaft Wissenschaft, Göttingen, pp 27–53,
First published in 1823.

12. Gauss CF (1880) Theoria combinationis observationum er-
roribus minimis obnoxiae, pars prior. In: Werke, IV. Königl.
Gesellschaft Wissenschaft. Göttingen, Göttingen, pp 1–26,
First published in 1821.

13. Gauss CF (1963) Theory of themotion of the heavenly bod-
ies moving about the Sun in conic sections. Dover, Mine-
ola, NY (Translation by Davis CH); first published in 1809

14. George JA, Heath MT (1980) Solution of sparse linear least
squares problems using Givens, rotations. Linear Alg & Its
Appl 34:69–83

15. George JA, Liu JW-H (1981) Computer solution of large
sparse positive definite systems. Prentice-Hall, Englewood
Cliffs, NJ

16. George JA, Liu JW-H (1989) The evolution of the minimum
degree ordering algorithm. SIAM Rev 31:1–19

17. Gill PE, Golub GH, Murray W, Saunders MA (1974) Methods
for modifyingmatrix factorizations. Math Comput 28:505–
535

18. Golub GH (1965) Numerical methods for solving least
squares problems. Numer Math 7:206–216

19. Golub GH, Manneback P, Toint P (1986) A comparison be-
tween some direct and iterative methods for large scale
geodetic least squares problems. SIAM J Sci Statist Com-
put 7:799–816

20. Golub GH, Plemmons RJ (1980) Large-scale geodetic least-
squares adjustment by dissection and orthogonal decom-
position. Linear Alg & Its Appl 34:3–28

21. Hansen PC (1998) Rank-deficient and discrete ill-posed
problems. Numerical aspects of linear inversion. SIAM,
Philadelphia

22. Van Huffel S, Vandewalle J (1991) The total least squares
problem: Computational aspects and analysis. Frontiers in
Appl Math, vol 9. SIAM, Philadelphia

23. Kourouklis S, Paige CC (1981) A constrained approach to
the general Gauss–Markov, linearmodel. J Amer Statist As-
soc 76:620–625

24. Lawson CL, Hanson RJ (1974) Solving least squares prob-
lems. Prentice-Hall, Englewood Cliffs, NJ

25. Legendre AM (1805) Nouvelles méthodes pour la détermi-
nation des orbites des comètes. Courcier, Paris

26. Lu S-M, Barlow JL (1996)Multifrontal computationwith the
orthogonal factors of sparse matrices. SIAM J Matrix Anal
Appl 17:658–679

27. Manneback P, Murigande C, Toint PL (1985) Amodification
of an algorithm by Golub and Plemmons for large linear
least squares in the context of Doppler positioning. IMA J
Numer Anal 5:221–234

28. Matstoms P (1992) QR27-specification sheet. Techn. Re-
port Dept. Math. Linköping Univ.

29. Matstoms P (1994) Sparse QR factorization in MATLAB.
ACM Trans Math Softw 20:136–159

30. Penrose R (1955) A generalized inverse for matrices. Proc
Cambridge Philos Soc 51:406–413

31. Reichel L, Gragg WB (1990) FORTRAN subroutines for up-
dating the QR decomposition. ACM Trans Math Softw
16:369–377

32. Reid JK (1967) A note on the least squares solution of
a band system of linear equations by Householder reduc-
tions. Computer J 10:188–189

33. Stewart GW (1992) An updating algorithm for subspace
tracking. IEEE Trans Signal Processing 40:1535–1541

34. Wedin P-Å (1973) Perturbation theory for pseudo-inverses.
BIT 13:217–232

Leibniz, GottfriedWilhelm

SANDRA DUNI EKSIOGLU

Industrial and Systems Engineering Department,
University Florida, Gainesville, USA

MSC2000: 01A99

Article Outline

Keywords
See also
References

Keywords

Gottfried Wilhelm Leibniz; Integration;
Differentiation; Theory of envelops; Infinitesimal
calculus

G.W. Leibniz (1646–1716) was a well-known German
philosopher and mathematician. He is considered a de-
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scendant of German idealism and a pioneer of the En-
lightenment. Leibniz is known as the inventor of the
differential and integral calculus [7].

Leibniz’s contribution in philosophy is as significant
as in mathematics. In philosophy Leibniz is known for
his fundamental philosophical ideas and principles in-
cluding truth, necessary and contingent truths, possi-
ble worlds, the principle of sufficient reason (i. e., there
is a reason behind everybody’s action), the principle of
pre-established harmony (i. e., the universe is created
in such a way that corresponding mental and physi-
cal events occur simultaneously), and the principle of
noncontradiction (i. e., if a contradiction can be derived
from a proposition, this proposition is false). Leibniz
was fond on the idea that the principles of reasoning
could be organized into a formal symbolic system, an
algebra or calculus of thought, where disagreements
could be settled by calculations [4].

Leibniz was the son of a professor of moral philoso-
phy at Leipzig Univ. Leibniz learned to read from his fa-
ther before going to school. He taught himself Latin and
Greek by age 12, so that he could read the books in his
father’s library. He studied law at the Univ. of Leipzig
from 1661 to 1666. In 1666 he was refused the degree of
doctor of laws at Leipzig. He went to the Univ. of Alt-
dorf, which awarded him doctorate in jurisprudence in
1667 [1].

Leibniz started his career at the courts of Mainz
where he worked until 1672. The Elector of Mainz pro-
moted him to diplomatic services. In 1672 he visited
Paris to try to dissuade Louis XIV from attacking Ger-
man areas. Leibniz remained in Paris until 1676, where
he continued to practice law. In Paris he studied math-
ematics and physics under Chr. Huygens. During this
period he developed the basic features of his version of
the calculus. He spent the rest of his life, from 1676 until
his death (November 14, 1716) at Hannover [6].

Leibniz’s most important achievement in mathe-
matics was the discovery of infinitesimal calculus. The
significance of calculus is so important that it was
marked as the starting point of modern mathemat-
ics. Leibniz’s formulations were different from previous
investigation by I. Newton. Newton was mainly con-
centrated in the geometrical representation of calculus,
while Leibniz took it towards analysis. Newton consid-
ered variables changing with time. Leibniz thought of
variables x, y as ranging over sequences of infinitely

close values. For Newton integration and differentia-
tion were inverses, while Leibniz used integration as
a summation. At that time, neither Leibniz nor New-
ton thought in terms of functions, both always thought
in terms of graphs.

In November 1675 he wrote a manuscript using the
notation

R
f (x) dx for the first time [5]. In the same

manuscript he presented the product rule for differen-
tiation. The quotient rule first appeared two years later,
in July 1677. In 1676 Leibniz arrived in the conclusion
that he was in possession of a method that was highly
important because of its generality. Whether a function
was rational or irrational, algebraic or transcendental
(a word that Leibniz coined), his operations of finding
sums and differences could always be applied.

In November 1676 Leibniz discovered the familiar
notation d(xn) = nxn� 1 dx for both integral and frac-
tional n. Newton claimed that: ‘not a single previously
unsolved problem was solved here’, but the formalism
of Leibniz’s approach proved to be vital in the devel-
opment of the calculus. Leibniz never thought of the
derivative as a limit. This does not appear until the
work of J. d’Alembert. Leibniz was convinced that good
mathematical notations were the key to progress so
he experimented with different notation for coefficient
systems. His language was fresh and appropriate, incor-
porating such terms as differential, integral, coordinate
and function [8]. His notations which we still use today,
were clear and elegant. His unpublished manuscripts
contain more than 50 different ways of writing coeffi-
cient systems, which he worked on during a period of
50 years beginning in 1678.

Leibniz used the word resultant for certain com-
binatorial sums of terms of a determinant. He proved
various results on resultants including what is essen-
tially Cramer’s rule. He also knew that a determinant
could be expanded using any column, what is now
called Laplace expansion. As well as studying coefficient
systems of equations which led him to determinants,
Leibniz also studied coefficient systems of quadratic
forms which led naturally towards matrix theory [9].
He thought about continuity, space and time [2].

In 1684 Leibniz published details of his differen-
tiable calculus in ‘Acta Eruditorum’, a journal estab-
lished in Leipzig two years earlier. He described a gen-
eral method for finding maxima and minima, and
drawing tangents to curves. The paper contained the
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rules for computing the derivatives of powers, products
and quotient.

In 1686 Leibniz published a paper on the princi-
ples of new calculus [3] in ‘Acta Eruditorum’. Leibniz
emphasized the inverse relationship between differen-
tiation and integration in the fundamental theorem of
calculus.

In 1692 Leibniz wrote a paper that set the basis of
the theory of envelopes. This was further developed in
another paper published on 1694 where he introduced
for the first time the terms coordinates and axes of coor-
dinates.

Leibniz published many papers on mechanical sub-
jects as well [1]. In 1700 Leibniz founded the Berlin
Academy and was its first president.

Leibniz’s principal works are:
1) ‘De Arte Combinatoria’ (On the Art of Combina-

tion), 1666;
2) ‘Hypothesis Physica Nova’ (New Physical Hypothe-

sis), 1671;
3) ‘Dicours de Metaphysique’ (Discourse on Meta-

physics), 1686;
4) Unpublished Manuscripts on the Calculus of Con-

cepts, 1690;
5) ‘Nouveaux Essais sur L’entendement Humaine’

(New Essays on Human Understanding), 1705;
6) ‘Theodicee’ (Theodicy), 1710;
7) ‘Monadologia’ (The Monadology), 1714.

See also

� History of Optimization
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The linear complementarity problem (LCP) is a well
known problem in mathematical programming. Appli-
cations of the LCP to engineering, game theory, eco-
nomics, and many other scientific fields have been
found. The monograph of K.G. Murty [8] is a com-
pendium of LCP developments. One of the most sig-
nificant approaches to the solution of the linear com-
plementarity problem is called Lemke’s method or
Lemke’s algorithm. Two descriptions of the algorithm
[6,7] provide many algorithmic proofs and details for
the interested reader. Our treatment here is a sketch of
the algorithm, together with pointers to related work in
the literature.

There are some important related works for those
who wish to solve LCP. A. Ravindran [10] provided
a FORTRAN implementation of Lemke’s algorithm in
a set-up similar to the revised simplex method. C.B.
Garcia [2] described some classes of matrices for which
the associated LCPs can be solved by Lemke’s algo-
rithm. J.J.M. Evers [1] enlarged the range of application
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of Lemke’s algorithm, and showed that it could solve
the bimatrix game. P.M. Pardalos and J.B. Rosen [9]
presented a global optimization approach to LCP. D.
Solow and P. Sengupta [11] proposed a finite descent
theory for the linear complementarity problem. M.M.
Kostreva [4] showed that without the nondegeneracy
assumption, Lemke’s algorithm may cycle, and showed
that the minimum length of such a cycle is four.

The linear complementarity problem considered is:
Given an (n × n)-matrixM and an (n × 1) column vec-
tor q, problem LCP(q,M) is to find x (or prove that no
such x exists) in Rn satisfying

y D Mx C q; (1)

yi � 0; (2)

xi � 0; (3)

yi � xi D 0; (4)

for all i, i = 1, . . . , n.
Clearly these conditions are equivalent to y| x = 0.

The variables (yi, xi) are called a complementary pair of
variables. Lemke’s algorithm is organized relative to the
following extended system of equations:

y D Mx C qC x0d; (5)

where d is an (n × 1) column vector, and x0 � 0. Relative
to the vector d, it is only required that (q + x0d) � 0 for
some x0 � 0. It is assumed that the system of equations
(5) is nondegenerate, that is, any solution has at most n
+ 1 zero values among the variables (y, x, x0).

Lemke’s Algorithm

If q > 0, terminate with a complementary feasible solu-
tion, y = q, x = 0.

If q has some negative component, then on the first
pivot x0 is increased until for the first time y = q + x0
d � 0. When this occurs, some y variable, say yr be-
comes zero. The first pivot is to exchange the variables
x0 and yr . Now the variable x0 is basic, and the variables
yr and xr are two complementary non basic variables. If
a pivot can be made on variable xr (complement of the
most recently pivoted member of the complementary
pair), then it leads to another similar situation with an-

other pair of complementary variables. If a pivot cannot
be made, the sequence is terminated. If the variable x0
becomes non basic (zero), a solution is at hand. If not,
the pivoting continues uniquely, with each new set of
equations containing a non basic complementary pair
of variables, one of which is most recently made non
basic. Due to the unique choices of pivot row and pivot
column, finite termination must occur.

Under certain conditions, including the positive
semidefinite matrices, the condition of termination
without finding a pivot (also called secondary ray ter-
mination) can be shown to imply that the set {x: y =
Mx + q � 0, x � 0} is empty. Under such conditions,
Lemke’s algorithm is said to process the LCP: either it
is solved, or it is shown not to have a feasible solution.
The set of all LCPs which Lemke’s algorithm will pro-
cess is unknown, but some recent papers shed light on
its processing domain. Kostreva and M.M. Wiecek [5]
use a multiple objective optimization approach which
eventually results in a larger dimensioned LCP, while G.
Isac, Kostreva and Wiecek [3] point out a set of prob-
lems which is impossible for Lemke’s method to pro-
cess.

Example 1 Consider the LCP corresponding to the
quadratic programming problem

8̂
<̂
ˆ̂:

min x21 � 2x1x2 C x22 C 3x1 C x2
s.t. 3x1 C x2 � 4

x1 � 0; x2 � 0:

Then q = (�4, 3, 1)| andM = [(0,�3,�1)|, (3, 2,�2)|,
(1, �2, 2)|], and Lemke’s algorithm requires four piv-
ots to obtain the solution x� = (1, 1)|, using the vector
d = (1, 1, 1)|. It is noteworthy that the nondegeneracy
assumption is not satisfied in this example, but Lemke’s
algorithm works anyway.

See also

� Convex-simplex Algorithm
� Linear Complementarity Problem
� Linear Programming
� Parametric Linear Programming: Cost Simplex

Algorithm
� Sequential Simplex Method



1870 L Lexicographic Pivoting Rules

References
1. Evers JJM (1978) More with the Lemke complementarity

algorithm. Math Program 15:214–219
2. Garcia CB (1973) Some classes ofmatrices in linear comple-

mentarity theory. Math Program 5:299–310
3. Isac G, Kostreva MM, Wiecek MM (1995) Multiple objective

approximation of feasible but unsolvable linear comple-
mentarity problems. J Optim Th Appl 86:389–405

4. Kostreva MM (1979) Cycling in linear complementarity
problems. Math Program 16:127–130

5. Kostreva MM, Wiecek MM (1993) Linear complementarity
problems andmultiple objective programming. Math Pro-
gram 60:349–359

6. Lemke CE (1965) Bimatrix equilibrium points and mathe-
matical programming. Managem Sci 11:681–689

7. Lemke CE (1968) On complementary pivot theory in math-
ematics of the decision sciences. In: Dantzig GB, Veinott AF
(eds) Amer. Math. Soc.

8. Murty KG (1988) Linear complementarity, linear and non-
linear programming. Heldermann, Berlin

9. Pardalos PM, Rosen JB (1988) Global optimization ap-
proach to the linear complementarity problem. SIAM J Sci
Statist Comput 9:341–353

10. Ravindran A (1972) Algorithm 431-H. A computer routine
for quadratic and linear programming problems. Comm
ACM 15:818–820

11. Solow D, Sengupta P (1985) A finite descent theory for lin-
ear programming, piecewise linear minimization and the
linear complementarity problem. Naval Res Logist Quart
32:417–431

Lexicographic Pivoting Rules
LexPr

TAMÁS TERLAKY

Department Comput. & Software,
McMaster University, West Hamilton, Canada

MSC2000: 90C05, 90C20, 90C33, 05B35, 65K05

Article Outline

Keywords
Lexicographic Simplex Methods

Lexicographic Ordering
The Lexicographic Primal Simplex Method
The Use of Lexicographic Ordering
Lexicographic Ordering and Perturbation
Lexicographic Dual Simplex Method
Extensions

Lexicography and Oriented Matroids

See also
References

Keywords

Pivot rules; Anticycling; Lexicographic ordering; LP;
LCP; Oriented matroids

The general linear optimization (LO), linear program-
ming (cf.� Linear programming), problemwill be con-
sidered in the standard primal form

min
˚
c>x : Ax D b; x � 0

�
;

together with its standard dual

max
˚
b>y : A>y � c

�
:

One of the most efficient, and for a long time the only,
practical method to solve LO problems was the sim-
plex method of G.B. Dantzig. The simplex method is
a pivot algorithm that traverses through feasible basic
solutions while the objective value is improving. The
simplex method is practically one of the most efficient
algorithms but it is theoretically a finite algorithm only
for nondegenerate problems.

A basis is called primal degenerate if at least one of
the basic variables is zero; it is called dual degenerate
if the reduced cost of at least one nonbasic variable is
zero. In general, the basis is degenerate if it is either pri-
mal or dual, or both primal and dual degenerate. The
LO problem is degenerate, if it has a degenerate ba-
sis. A pivot is called degenerate when after the pivot
the objective remains unchanged. When the problem
is degenerate the objective might stay the same in sub-
sequent iterations and the simplex algorithm may cy-
cle, i. e. starting from a basis, after some iterations the
same basis is revisited and this process is repeated end-
lessly. Because the simplexmethod produces a sequence
with monotonically improving objective values, the ob-
jective stays constant in a cycle, thus each pivot in the
cycle must be degenerate. The possibility of cycling was
recognized shortly after the invention of the simplex al-
gorithm. Cycling examples were given by E.M.L. Beale
[2] and by A.J. Hoffman [10]. Recently (1999) a scheme
to construct cycling LO examples is presented in [9].
These examples made evident that extra techniques are
needed to ensure finite termination of simplex meth-
ods. The first and widely used such tool is the lexico-
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graphic simplex rule. Other techniques, like the least-
index anticycling rules (cf. � Least-index anticycling
rules) and more general recursive schemes were devel-
oped more recently.

Lexicographic SimplexMethods

First we need to define an ordering, the so-called lexico-
graphic ordering of vectors.

Lexicographic Ordering

An n-dimensional vector u = (u1, . . . , un) is called lexi-
cographically positive or, in other words, lexico-positive
if its first nonzero coordinate is positive, i. e. for a cer-
tain j � n one has ui = 0 for i < j and xu > 0. Observe,
that the zero vector is the only lexico-nonnegative vec-
tor which is not lexico-positive. The vector u0 is said to
be lexicographically smaller than a vector u1 when the
difference u1 � u0 of the two vectors is lexico-positive.
Further, if a finite set of vectors {u0, . . . , uk} is given,
then the vector u0 is said to be lexico-minimal in the
given set, when u0 is lexicographically smaller than ui

for all 1 � i� k.

The Lexicographic Primal Simplex Method

Cycling of the simplexmethod is possible only when the
LO problem is degenerate. In that case possibly many
variables are eligible to enter and to leave the basis. The
lexicographic primal simplex rule makes the selection
of the leaving variable uniquely determined when the
entering variable is already chosen.

The Use of Lexicographic Ordering

At start a feasible lexico-positive basis tableau is given.
A basis tableau is called lexico-positive if, except the re-
duced cost row, all of its row vectors are lexico-positive.
Any feasible basis tableau can be made lexico-positive
by a simple rearrangement of its columns. Specifically,
we can take the solution column as the first one, and
then take the current basic variables, in an arbitrary or-
der, followed by the nonbasic variables, again in an ar-
bitrary ordering.

The following lexicographic simplex pivot selection
rule was first proposed by Dantzig, A. Orden and P.
Wolfe [7].

0 Initialization.
Let T(B) be a given primal feasible lexico-
positive basis tableau.
(Fix the order of the variables.)

1 Entering variable selection.
Choose a dual infeasible variable, i.e. one with
negative reduced cost. Let its index be q.
IF no such variable exists, THEN STOP;
The tableau T(B) is optimal and this way a pair
of optimal solutions is obtained.

2 Leaving variable selection.
Collect in column q all the candidate pivot el-
ements that satisfy the usual pivot selection
conditions of the primal simplex method.
Let K = fi1; : : : ; ikg be the set of the indices of
the candidate leaving variables.
IF there is no pivot candidate,
THEN STOP;
The primal problem is unbounded, and so the
dual problem is infeasible.
IF there is a unique pivot candidate fpg = K to
leave the basis,
THEN go to Step 3.
IF there are more pivot candidates,
THEN look at the row vectors t i ; i 2 K, of
the basis tableau (note that by construction xi
is the first coordinate of t i).
Let p be the pivot row if t p is lexico-minimal
in this set of row vectors.

3 Basis transformation.
Pivot on (p; q). Go to Step 1.

The lexicographic primal simplex rule

The following two observations are important. First
note that lexicographic selection plays role only when
the leaving variable is selected. In that case some rows of
the tableau are compared in the lexicographic ordering.
If the basis variables were originally out right after the
solution column, as proposed in order to get a lexico-
positive initial tableau, then this comparison is already
decided when one considers only the columns corre-
sponding to the initial basis. This claim holds, because
those columns form a basis, thus the related row vectors
are linearly independent as well.

On the other hand, when the initial basis is the
unit matrix, then at each pivot the basis inverse can be
found, in the place of the initial unit matrix. When these
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two observations are put together, it can be concluded
that instead of using the rows of the basis tableau, the
rows of the basis inverse headed by the correspond-
ing solution coordinate, can be used in Step 2. to de-
termine the unique leaving variable. As a consequence
one do not need to calculate and store the complete ba-
sis tableau when implementing the lexicographic pivot
rule. The solution and the basis inverse provide all the
necessary information.

The lexicographic simplex method is finite. The
finiteness proof is based on the following simple prop-
erties: There is a finite number of different basis
tableaus. The first row of the tableau, i. e. the vec-
tor, having the objective value as its first coordinate
followed by the reduced cost vector, strictly increases
lexicographically at each iteration. This fact ensures
that no basis can be revisited, thus cycling is impossi-
ble.

Lexicographic Ordering and Perturbation

Independent of [7], A. Charnes [4] developed a tech-
nique of perturbation, that resulted in a finite simplex
algorithm. This algorithm turned out to be equiva-
lent to the lexicographic rule. The perturbation tech-
nique is as follows. Let � be a sufficiently small num-
ber. Let us replace bi by bi +

P
jaij�j for all i. If � is

small enough then the resulted problem is nondegen-
erate. Moreover, starting from a given primal feasible
basis, the primal simplex method applied to the new
problem produces exactly the same pivot sequence as
the lexicographic simplex method on the original prob-
lem.

In particular, when the problem is initialized with
a feasible basis solution, it suffices to use the perturba-
tion bi+ �i. This way only the basis part of the coefficient
matrix is used in Charnes’ perturbation technic.

An appealing property of the perturbation tech-
nique is that actually it is not needed to perform the
perturbation with a concrete �. It can be done symboli-
cally.

Lexicographic Dual Simplex Method

The dual simplex method is nothing else, than the pri-
mal simplex method applied to the dual problem, when
the dual problem is brought in the primal standard
form. This way it is straightforward to develop the lexi-

cographic, or the equivalent perturbation technique for
the dual simplex method.

Extensions

The lexicographic rule is extensively used in proving
finiteness of pivot algorithms, see e. g. [1] for an appli-
cation in a monotonic build-up scheme, [14] for fur-
ther references in LO and [5] for references when lexi-
cographic degeneracy resolution is applied for comple-
mentarity problems.

Lexicography and OrientedMatroids

Based on the perturbation interpretation, analogous
lexicographic techniques and lexicographic pivoting
rules were developed for oriented matroid program-
ming [3] (cf. also � Oriented matroids). These tech-
niques were particularly interesting, because nonde-
generate cycling [3,8] is possible in oriented matroids.
An apparent difference between the linear and the ori-
ented matroid context is that for oriented matroids
none of the finite – recursive or least index type – rules
yield a simplex method, i. e. a pivot method that pre-
serves feasibility of the basis throughout. This discrep-
ancy is also due to the possibility of nondegenerate cy-
cling.

Interestingly, in the case of oriented matroid pro-
gramming the finite lexicographic method of M.J. Todd
[15,16] is the only one which preserves feasibility of the
basis and therefore yields a finite simplex algorithm for
oriented matroids.

The equivalence of Dantzig’s self—dual paramet-
ric algorithm [6] and Lemke’s complementary pivot al-
gorithm [11,12] applied to the linear complementar-
ity problem (cf. also � Linear complementarity prob-
lem) defined by the primal and dual LO problem was
proved by I. Lustig [13]. Todd’s lexicographic pivot
rule is essentially a lexicographic Lemke method (or
the parametric perturbation method), when applied to
the specific linear complementary problem defined by
the primal-dual pair of LO problems. Hence, using the
equivalence mentioned above a simplex algorithm for
LO can be derived. However, it is more complicated to
present this method in the linear optimization than in
the complementarity context. Now Todd’s rule will be
sketched for the linear case.
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0 Initialization.
Let a lexico-positive feasible tableau T(B) be
given.

1 Entering variable selection.
Collect all the dual infeasible variables as the
set of candidate entering variables. Let their set
of indices be denoted by KD .
IF no such variable exists, THEN STOP;
The tableau T(B) is optimal and this way a pair
of optimal solutions is obtained.
IF there is a unique fqg = KD candidate to en-
ter the basis,
THEN go to Step 2.
IF there are more pivot candidates,
THEN let q be the index of that variable whose
column is lexico-minimal in the set KD . (Anal-
ogous to the dual lexicographic simplex selec-
tion rule).

2 Leaving variable selection.
Collect in column q all the candidate pivot el-
ements that satisfy the usual pivot selection
conditions of the primal simplex method.
Let KP be the set of the indexes of the candi-
date leaving variables.
IF there is no pivot candidate, THEN STOP;
the primal problem is unbounded, and so the
dual problem is infeasible.
IF there is a unique fpg = KP pivot candidate
to leave the basis,
THEN go to Step 3.
IF there are more pivot candidates,
THEN let p be the index of that variable whose
row is lexico-minimal in the set KP . (Analo-
gous to the primal lexicographic simplex selec-
tion rule.)

3 Basis transformation.
Pivot on (p; q). Go to Step 1.

Todd’s lexicographic Lemke rule (Phase II)

In Todd’s rule the perturbation is done first in the
right-hand side and then in the objective (with increas-
ing order of the perturbation parameter �). It finally
gives a two phase simplex method. For illustration only
the second phase [14] is presented here. Complete de-
scription of the algorithm can be found in [3,16].

This algorithm is not only a unique simplex method
for oriented matroids, but it is a novel application of
lexicography in LO as well.

See also
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� Pivoting Algorithms for Linear Programming

Generating Two Paths
� Principal Pivoting Methods for Linear

Complementarity Problems
� Probabilistic Analysis of Simplex Algorithms

References
1. Anstreicher KM, Terlaky T (1994) A monotonic build-up

simplex algorithm. Oper Res 42:556–561
2. Beale EML (1955) Cycling in the dual simplex algorithm.

Naval Res Logist Quart 2:269–275
3. Bjorner A, Las Vergnas M, Sturmfels B, White N, Ziegler

G (1993) Oriented matroids. Cambridge Univ. Press, Cam-
bridge

4. Charnes A (1952) Optimality and degeneracy in linear pro-
gramming. Econometrica 20(2):160–170

5. Cottle R, Pang JS, Stone RE (1992) The linear complemen-
tarity problem. Acad. Press, New York

6. Dantzig GB (1963) Linear programming and extensions.
Princeton Univ. Press, Princeton

7. Dantzig GB, Orden A, Wolfe P (1955) Notes on linear pro-
gramming: Part I – The generalized simplex method for
minimizing a linear form under linear inequality restric-
tions. Pacific J Math 5(2):183–195

8. Fukuda K (1982) Orientedmatroid programming. PhD The-
sis Waterloo Univ.

9. Hall J, McKinnon KI (1998) A class of cycling counter-
examples to the EXPAND anti-cycling procedure. Techn.
Report Dept. Math. Statist. Univ. Edinburgh

10. Hoffman AJ (1953) Cycling in the simplex method. Techn
Report Nat Bureau Standards 2974

11. Lemke CE (1965) Bimatrix equilibrium points and mathe-
matical programming. Managem Sci 11:681–689

12. Lemke CE (1968) On complementary pivot theory. In:
Dantzig GB, Veinott AF (eds) Mathematics of the Decision
Sci. Part I. Lect ApplMath 11. Amer. Math. Soc., Providence,
RI, pp 95–114

13. Lustig I (1987) The equivalence of Dantzig’s self-dual para-
metric algorithm for linear programs to Lemke’s algorithm
for linear complementarity problems applied to linear pro-
gramming. SOL Techn Report Dept Oper Res Stanford Univ
87(4)

14. Terlaky T, Zhang S (1993) Pivot rules for linear program-
ming: A survey on recent theoretical developments. Ann
Oper Res 46:203–233

15. Todd MJ (1984) Complementarity in oriented matroids.
SIAM J Alg Discrete Meth 5:467–485

16. Todd MJ (1985) Linear and quadratic programming in ori-
ented matroids. J Combin Th B 39:105–133



1874 L Linear Complementarity Problem

Linear Complementarity Problem
RICHARD W. COTTLE

Stanford University, Stanford, USA

MSC2000: 90C33

Article Outline

Keywords
Synonyms
Definition
Sources of Linear Complementarity Problems
Equivalent Formulations
The Importance of Matrix Classes
Algorithms for Solving LCPs
Software
Some Generalizations
See also
References

Keywords

Quadratic programming; Bimatrix games; Matrix
classes; Equilibrium problems

Synonyms

LCP

Definition

In its standard form, a linear complementarity problem
(LCP) is an inequality system stated in terms of a map-
ping f : Rn ! Rn where f (x) = q + Mx. Given f , one
seeks a vector x 2 Rn such that for i = 1, . . . , n,

xi � 0; fi(x) � 0; and xi fi(x) D 0: (1)

Because the affine mapping f is specified by the vector
q 2 Rn and the matrix M 2 Rn × n, the problem is or-
dinarily denoted LCP(q, M) or sometimes just (q, M).
A system of the form (1) in which f is not affine is
called a nonlinear complementarity problem and is de-
noted NCP(f ). The notation CP(f ) is meant to cover
both cases.

If x is a solution to (1) satisfying the additional non-
degeneracy condition xi C fi(x) > 0, i = 1, . . . , n, the
indices i for which xi > 0 or fi(x) > 0 form comple-
mentary subsets of {1, . . . , n}. This is believed to be the

origin of the term complementary slackness as used in
linear and nonlinear programming. It was this termi-
nology that inspired the name complementarity prob-
lem.

Sources of Linear Complementarity Problems

The linear complementarity problem is associated with
the Karush–Kuhn–Tucker necessary conditions of lo-
cal optimality found in quadratic programming. This
connection (as well as the more general connection of
nonlinear complementarity problems with other types
of nonlinear programs) was brought out in [1,2] and
later in [3]. Finding solutions to such systems was one
of the original motivations for studying the subject. An-
other was the finding of equilibrium points in bima-
trix and polymatrix games. This kind of application was
emphasized in [16] and [22]. These early contributions
also included essentially the first algorithms for this
class of problems. There are numerous applications of
the linear and nonlinear complementarity problems in
computer science, economics, various engineering dis-
ciplines, finance, game theory, and mathematics. One
application of the LCP is in algorithms for the non-
linear complementarity problem. Descriptions of (and
references to) these applications can be found in [5,27]
and [17]. The survey article [10] is a rich compendium
on engineering and economic applications of linear and
nonlinear complementarity problems.

Equivalent Formulations

Whether linear or nonlinear, the complementarity
problem expressed by the system (1) can be formu-
lated in several equivalent ways. An obvious one calls
for a solution (x, y) to the system

y � f (x) D 0; x � 0; x>y D 0: (2)

Another is to find a zero x of the mapping

g(x) D minfx; f (x)g; (3)

where the symbol min {a, b} denotes the component-
wise minimum of the two n-vectors a and b. A third
equivalent formulation asks for a fixed point of the
mapping

h(x) D x � g(x);

that is, a vector x 2 Rn such that x = h(x).
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The formulation given in (3) is related to the (often
nonconvex) optimization problem:

8̂
<̂
ˆ̂:

min x> f (x)
s.t. f (x) � 0

x � 0:

(4)

In such a problem, the objective is bounded below by
zero, thus any feasible solution of (4) for which the ob-
jective function x| f (x) = 0 must be a global minimum
as well as a solution of (1). As it happens, there are cir-
cumstances (for instance, the monotonicity of the map-
ping f ) under which all the local minima for the mathe-
matical programming problem (4) must in fact be solu-
tions of (3). See [28] for an extended discussion of this
matter.

Also noteworthy is a result in [8] showing that the
LCP is equivalent to solving a system of equations y =
'(x) where the mapping ':Rn!Rn is piecewise linear.
In particular, LCP(q, M) is equivalent to finding a vec-
tor u such that

qCMuC � u� D 0;

where (for i = 1, . . . , n, u+i = max {0, ui} and u�i =�min
{0, ui}.

The Importance of Matrix Classes

The extensive literature of the LCP exhibits several
main directions of study: the existence and unique-
ness (or number of) solutions, mathematical properties
of the problem, generalizations of the problem, algo-
rithms, applications, and implementations.

Much of the theory of the linear complementarity
problem is intimately linked in various ways to matrix
classes. For instance, one of the earliest theorems on the
existence of solutions to LCPs is due H. Samelson, R.M.
Thrall and O. Wesler [30]. Motivated by a problem in
structural mechanics, they showed that the LCP(q, M)
has a unique solution for every q 2 Rn if and only if
the matrix M has positive principal minors. (That is,
the determinant of every principal submatrix of M is
positive.) The class of such matrices has come to be
known as P, and its members are called P-matrices.
(The Samelson–Thrall–Wesler theorem characterizes
this class of matrices in terms of the LCP.) The class P
includes all positive definite (PD) matrices, i. e., those
square matricesM for which x|Mx > 0 for all x 6D 0. In

the context of the LCP, the term PD does not require
symmetry. An analogous definition (and usage) holds
for positive semidefinite (PSD) matrices, namely, M is
PSD if x| Mx � 0 for all x. Some authors refer to such
matrices as monotone because of their connection with
monotone mappings. PSD-matrices have the property
that associated LCPs (q,M) are solvable whenever they
are feasible, whereas LCPs (q,M) in whichM 2 PD are
always feasible and (since PD�PSD) are always solv-
able. This distinction is given a more general matrix
form in [25,26]. There Q is defined as the class of all
square matrices for which LCP(q, M) has a solution
for all q and Q0 as the class of all square matrices for
which LCP(q,M) has a solution whenever it is feasible.
Although the goal of usefully characterizing the classes
Q and Q0 has not yet been realized, much is known
about some of their special subclasses. Indeed, there are
now literally dozens of matrix classes for which LCP
existence theorems have been established. See [5,27]
and [17] for an abundance of information on this sub-
ject.

From the theoretical standpoint, the class of ‘suffi-
cient matrices’ [6] illustrates the intrinsic role of matrix
classes in the study of the LCP. A matrix M 2 Rn × n is
column sufficient if

[xi(Mx)i � 0 8i] ) [xi(Mx)i D 0 8i]

and row sufficient if M| is column sufficient. When M
is both row and column sufficient, it is called sufficient.
Row sufficient matrices always have nonnegative prin-
cipal minors, hence so do (column) sufficient matrices.
These classes include both P and PSD as distinct sub-
classes. The row sufficient matrices form a subclass of
Q0; this is not true of column sufficient matrices how-
ever. The column sufficient matrices M 2 Rn × n are
characterized by the property that the solution set of
LCP(q,M) is convex for every q 2Rn. In the same spirit,
a real n × n matrix M is row sufficient if and only if for
every q 2 Rn, the solutions of the LCP(q, M) are pre-
cisely the optimal solutions of the associated quadratic
program (4). Rather surprisingly, the class of sufficient
matrices turns out to be identical to the matrix class P�
introduced in [19]. See [13] and [34].

Algorithms for Solving LCPs

The algorithms for solving linear complementarity
problems are of two major types: pivoting (or, direct)
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and iterative (or, indirect). Algorithms of the former
type are finite procedures that attempt to transform the
problem (q,M) to an equivalent system of the form (q0,
M0) in which q0 � 0. Doing this is not always possible;
it depends on the problem data, usually on the matrix
class (such as P, PSD, etc.) to which M belongs. When
this approach works, it amounts to carrying out a prin-
cipal pivotal transformation on the system of equations

w D qCMz:

To such a transformation there corresponds an index
set ˛ (with complementary index set ˛ D f1; : : : ; ng n
˛) such that the principal submatrix M˛ ˛ is nonsingu-
lar. When this (block pivot) operation is carried out, the
system

w˛ D q˛ CM˛˛z˛ CM˛˛z˛;

w˛ D q˛ CM˛˛z˛ CM˛˛z˛

becomes

z˛ D q0˛ CM0˛˛w˛ CM0˛˛z˛;

w˛ D q0˛ CM˛0˛w˛ CM˛0˛z˛ ;

where

q0˛ D �M
�1
˛˛q˛;

q0˛ D q˛ �M˛˛M�1˛˛q˛;

M0˛˛ D M�1˛˛ ;
M0˛˛ D M˛˛M�1˛˛ ;

M0˛˛ D �M
�1
˛˛M˛˛ ;

M0˛˛ D M˛˛ � M˛˛M�1˛˛M˛˛ :

There are two main pivoting algorithms used in pro-
cessing LCPs. The more robust of the two is due to C.E.
Lemke [21]. Lemke’s method embeds the LCP (q, M)
in a problem having an extra ‘artificial’ nonbasic (inde-
pendent) variable z0 with coefficients specially chosen
so that when z0 is sufficiently large, all the basic vari-
ables become nonnegative. At the least positive value
of z0 for which this is so, there will (in the nondegen-
erate case) be (exactly) one basic variable whose value
is zero. That variable is exchanged with z0. Thereafter
the method executes a sequence of (almost complemen-
tary) simple pivots. In each case, the variable becom-
ing basic is the complement of the variable that be-

came nonbasic in the previous exchange. The method
terminates if either z0 decreases to zero (in which case
the problem is solved) or else there is no basic variable
whose value decreases as the incoming nonbasic vari-
able is increased. The latter outcome is called termina-
tion on a secondary ray. For certain matrix classes, ter-
mination on a secondary ray is an indication that the
given LCP has no solution. Lemke’s method is studied
from this point of view in [7].

The other pivoting algorithm for the LCP is called
the principal pivoting method (PPM), expositions of
which are given in [3] and [5]. The algorithm two ver-
sions: symmetric and asymmetric. The former executes
a sequence of principal (block) pivots or order 1 or 2,
whereas the latter does sequences of almost comple-
mentary pivots, each of which results in a block prin-
cipal pivot or order potentially larger than 2.

Iterative methods are often favored for the solu-
tion of very large linear complementarity problems. In
such problems, the matrix M tends to be sparse (i. e.,
to have a small percentage of nonzero elements) and
structured. Since iterative methods do not modify the
problem data, these features of large scale problems can
be used to advantage. Ordinarily, however, an iterative
method does not terminate finitely; instead, it generates
a convergent sequence of trial solutions. The older it-
erative LCP algorithms are based on equation-solving
methods (e. g.,Gauss–Seidel, Jacobi, and successive over-
relaxation); the more contemporary ones are varieties
of the interior point type. In addition to the usual con-
cerns about practical performance, considerable inter-
est attaches to the development of polynomial time al-
gorithms. Not unexpectedly, the allowable analysis and
applicability of iterative algorithms depend heavily on
the matrix class to which M belongs. Details on sev-
eral such algorithms are presented in [36,37], and the
monographs [5,27] and [17].

Software

For decades researchers have experimented with com-
puter codes for various linear (and nonlinear) comple-
mentarity algorithms. By the late 1990s, this activity
reached the stage where the work could be distributed
as something approaching commercial software. An
overview of available software for complementarity
problems (mostly nonlinear), is available as [35].
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Some Generalizations

Both linear and nonlinear complementarity problems
have been generalized in numerous ways. One of the
earliest generalizations, given in [14] and [18], is the
problem CP(K, f ) of finding a vector x in the closed
convex cone K such that f (x) 2 K� (the dual cone) and
x| f (x) = 0. Through this formulation, a connection can
be made between complementarity problems and vari-
ational inequality problems, that is, problems VI(X, f )
wherein one seeks a vector x� 2 X (a nonempty subset
of Rn) such that

f (x�)>(y � x�) � 0 for all y 2 X:

It was established in [18] that when X is a closed convex
cone, sayK, with dual coneK�, then CP(K, f ) and VI(X,
f ) have exactly the same solutions (if any). See [15] for
connections with variational inequalities, etc.

In [29] the generalized complementarity problem
CP(K, f ) defined above is considered as an instance of
a generalized equation, namely to find a vector x 2 Rn

such that

0 2 f (x)C @ K (x);

where  K is the indicator function of the closed con-
vex cone K and @ denotes the subdifferential operator
as used in convex analysis.

Among the diverse generalizations of the linear
complementarity problem, the earliest appears in [30].
There, for given n × n matrices A and B and n-vector
c, the authors considered the problem of the finding n-
vectors x and y such that

Ax C By D c; x; y � 0 and x>y D 0:

A different generalization was introduced in [4]. In this
sort of problem, one has an affine mapping f (x) = q +
Nx where N is of order

Pk
jD1 pj × n partitioned into k

blocks; the vectors q and y = f (x) are partitioned con-
formably. Thus,

y j D q j C N jx for j D 1; : : : ; k:

The problem is to find a solution of the system

y D qC Nx;

x; y � 0;

x j

p jY
iD1

y ji D 0; j D 1; : : : ; k:

In recently years, many publications, e. g. [9] and [24],
have further investigated this vertical linear comple-
mentarity problem (VLCP). Interest in the model which
is at the heart of [30] and is now called the horizon-
tal linear complementarity problem (HLCP)was revived
in [38] where it is used as the conceptual framework
for the convergence analysis of infeasible interior point
methods. (The problem also comes up in [20].) In some
cases, HLCPs can be reduced to ordinary LCPs. This
subject is explored in [33] which gives an algorithm for
doing this when it is possible. A further generalization
called extended linear complementarity problem (ELCP)
was introduced in [23] and subsequently developed in
[11,12] and [32]. To this collection of LCP variants can
be added the ELCP presented in [31]. The form of this
model captures the previously mentioned HLCP, VLCP
and ELCP.

See also
� Convex-simplex Algorithm
� Equivalence Between Nonlinear Complementarity

Problem and Fixed Point Problem
� Generalized Nonlinear Complementarity Problem
� Integer Linear Complementary Problem
� LCP: Pardalos–Rosen Mixed Integer Formulation
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If one has two systems of linear relations, where each
relation is either an linear equation (or linear equality
relation) or a linear inequality relation (of type >, �, <,
� or 6D), and exactly one of the two systems has a solu-
tion, then one says that the two given systems are each
others alternative. A mathematical theorem stating that
two systems are alternative systems is called a theorem
of the alternative, or also a transposition theorem. Many
such theorems are known. The table lists ten results of
this type, with their inventors and dates. The table is
a modified version of tables of H. Greenberg [16] and
in [8]. In each case the alternative systems are labelled
by a and b, respectively.

Consider by way of example the two systems 4a and
4b in the table. The corresponding theorem of the alter-
native is known as Farkas’ lemma. Assume that 4a has
a solution x, so Ax � b. Then we have for each non-
negative vector y that y|Ax � y|b. Hence, if y|A = 0
then we will have y|b� 0. Thus it follows that if 4a has
a solution then 4b does not have a solution. This is the
easy part of the proof of Farkas’ lemma. The proof of
the other implication is much harder. For a discussion
of several proof techniques, see � Farkas lemma.

In the above example we used that for y � 0 the in-
equality y|Ax � y|b is implied by the system Ax � b.
Note that the implied inequality y|Ax� y|b is obtained
from the separate inequalities in Ax � b by combin-
ing them in a linear fashion. Fixing y, one easily un-
derstands that the implied inequality has no solution x
if and only if y|A = 0 and y|b < 0. Together with y �
0 these are precisely the relations in the alternative sys-
tem 4b. Thus, it may be concluded that Farkas’ lemma
can be restated by saying that the system Ax � b is fea-
sible if and only if it does not imply (in a linear fashion)
the ‘contradiction’ 0|x < 0. The ‘if’-part is obvious: if the
system has an implied inequality 0|x < 0 then it must be
inconsistent. But the ‘only if’-part is a very deep result:
it states that if the system has no contradictory implied
inequality then it has a solution. The other theorems of
the alternative in the table admit a similar interpreta-
tion.

The relevance of a theorem of the alternative is the
following. Given some system S of relations the cru-

1 J.B.J. Fourier (1826) [4]
a Ax � 0; Bx < 0; Cx = 0
b y>A + v>B + w>C = 0,

y � 0; 0 ¤ v � 0
2 P. Gordan (1873) [7]
a Ax > 0
b y>A = 0; 0 ¤ y � 0
3 J.Farkas (1902) [3]
a Ax = b; x � 0
b y>A � 0; y>b < 0
4 Farkas (1902) [3]
a Ax � b
b y � 0; y>A = 0; y>b < 0
5 E. Stiemke (1915) [13]
a Ax = 0; x > 0
b y>A � 0; y>A ¤ 0
6 W.B. Carver (1912) [2]
a Ax < b
b y>A = 0; y � 0; y>b � 0; y ¤ 0
7 T.S. Motzkin (1936) [10]
a Ax � 0; Bx < 0
b y>A + v>B = 0; y � 0; v � 0; v ¤ 0
8 J. Ville (1938) [15]
a Ax > 0; x > 0
b y>A � 0; y � 0; y ¤ 0; or A>y ¤ 0
9 A.W. Tacket (1956) [14]
a Ax � 0; Ax ¤ 0; Bx � 0; Cx = 0
b y>A + v>B + w>C = 0; y > 0; v � 0
10 D. Gale (1960) [5]
a Ax � b
b y>A = 0; y>b = �1; y � 0

Ten pairs of alternative systems

cial question is whether the system has a solution or
not. Knowing the answer to this question one is able to
answer many other questions. For example, if one has
a linear optimization problem LO in the standard form

min
x

˚
c>x : Ax D b; x � 0

�
;

a given real number z is a strict lower bound for the
optimal value of the problem if and only if the system

Ax D b; c>x � z; x � 0;

has no solution, i. e. is infeasible. On the other hand,
a given real number z is an upper bound for the optimal



1880 L Linear Optimization: Theorems of the Alternative

value of the problem if and only if the system

Ax D b; c>x � z; x � 0;

has a solution, i. e. is feasible.
If a system S has a solution then this is easy to cer-

tify, namely by giving a solution of the system. The solu-
tion then serves as a certificate for the feasibility of S. If S
is infeasible, however, it is more difficult to give an easy
certificate. One is then faced with the problem of how
to certify a negative statement. This is in general a very
nontrivial problem that also occurs in many real life sit-
uations. For example, when accused for murder, how
should one prove his innocence? In circumstances like
these it may be impossible to find an easy to verify cer-
tificate for the negative statement ‘not guilty’. A practi-
cal solution is the rule ‘a person is innocent until his/her
guilt is certified’. Clearly, from the mathematical point
of view this approach is unsatisfactory.

Now suppose that there is an alternative system T
and there exists a theorem of the alternative for S and
T. Then we know that exactly one of the two systems
has a solution. Therefore, S has a solution if and only if
T has no solution. In that case, any solution of T pro-
vides a certificate for the unsolvability of S. Thus it is
clear that a theorem of the alternative provides an easy
to verify certificate for the unsolvability of a system of
linear relations.

The proof of any theorem of the alternative consists
of two parts. Assuming the existence of a solution of
one system one needs to show that the other system
is infeasible, and vice versa. It has been demonstrated
above for Farkas’ lemma that one of the two implica-
tions is easy to prove. This seems to be true for each the-
orem of the alternative: in all cases one of the implica-
tions is almost trivial, but the other implication is highly
nontrivial and very hard to prove. On the other hand,
having proved one theorem of the alternative the other
theorems of the alternative easily follow. In this sense
one might say that all the listed theorems of the alter-
native are equivalent: accepting one of them to be true,
the validity of each of the other theorems can be veri-
fied easily. The situation resembles a number of cities
on a high plateau. Travel between them is not too dif-
ficult; the hard part is the initial ascent from the plains
below [1].

It should be pointed out that Farkas’ lemma, or each
of the other theorems of the alternative, is equivalent

to the most deep result in linear optimization, namely
the duality theorem for linear optimization: this theo-
rem can be easily derived from Farkas’ lemma, and vice
versa (cf. also� Linear programming). In fact, in many
textbooks on linear optimization the duality theorem is
derived in this way [5,17], whereas in other textbooks
the opposite occurs: the duality theorem is proved first
and then Farkas’ lemma follows as a corollary [11]. This
phenomenon is a consequence of a simple, and basic,
logical principle that any duality theorem is actually
equivalent to a theorem of the alternative, as has been
shown in [9].

Both the Farkas’ lemma and the duality theorem for
linear optimization can be derived from a more general
result which states that for any skew-symmetric matrix
K (i. e., K = � K|) there exists a vector x such that

Kx � 0; x � 0; x C Kx > 0:

This result is due to Tucker [14] who also derives
Farkas’ lemma from it, whereas A.J. Goldman and
Tucker [6] show how this result implies the duality
theorem for linear optimization. For recent proofs, see
[12].

See also
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The linear ordering problem (LOP) has a wide range of
applications in several fields, such as scheduling, sports,
social sciences, and economics. Due to its combinato-
rial nature, it has been shown to be NP-hard [5]. Like
many other computationally hard problems, the linear
ordering problem has captured the researcher attention
for developing efficient solution procedures. A compre-
hensive treatment of the state-of-art approximation al-
gorithms for solving the linear order problem is con-
tained in [15]. The scope of this article is to introduce
the reader to this problem, providing its definition and
some of the algorithms proposed in literature for solv-
ing it efficiently.

ProblemDescription

The linear ordering problem (LOP) can be formulated
as follows: Given a complete digraph Dn = (Vn, En) on
n nodes and given arc weights c(i, j) for each arc (i, j) 2
En, find a spanning acyclic tournament in Dn such that
the sum of the weights of its arcs is as large as possible.

An equivalent mathematical formulation of LOP
([11]) is the following: Given a matrix of weights E
= {eij}m×m, find a permutation p of the columns (and
rows) in order to maximize the sum of the weights in
the upper triangle. Formally, the problem is to maxi-
mize

CE(p) D
m�1X
iD1

mX
jDiC1

epi p j ;

where pi is the index of the column (and row) occupy-
ing the position i in the permutation.

The best known among the applications of LOP oc-
curs in economics. In fact, it is equivalent to the so-
called triangulation problem for input-output tables. In
this economical application, the economy (regional or
national) is subdivided into sectors. An m × m input-
output matrix is then created, whose entry (i, j) repre-
sents the flow of money from the sector i to the sector
j. The sectors have to be ordered so that suppliers tend
to come first followed by costumers. This scope can be
achieved by permuting the rows and the columns of the
built matrix so that the sum of entries above the diag-
onal is maximized, which is exactly the objective of the
linear ordering problem.
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Review of Exact and Approximation Algorithms

The pioneer heuristic method for solving LOP has been
proposed by H.B. Chenery and T. Watanabe [3]. Their
method tries to obtain plausible rankings of the sec-
tors of an input-output table in the triangulation prob-
lem by ranking first those sectors that have a small
share of inputs from other sectors and of outputs
to final demand. An extensive discussion about the
heuristics proposed until 1981 can be found in [16],
while more recent work has been done in [2,11]. In
[11] a heuristic algorithm is proposed based on the
tabu search methodology and incorporating strategies
for search intensification and diversification are given.
For search intensification M. Laguna and others ex-
perimented with path relinking, a strategy proposed in
connection with tabu search by F. Glover and Laguna
[6] and still rarely used in actual implementations. In
[2] an algorithm is presented implementing a scatter
search strategy, which is a population-based method
that has been shown to lead to promising outcomes
for solving combinatorial and nonlinear difficult prob-
lems.

The development of exact algorithms for LOP can
be seen connected to the development of methods for
solving general integer programming problems, since
any such method can be slightly modified to solve the
triangulation problem. Most of those exact algorithms
belong either to the branch and bound family or to the
linear programming methods.

Branch and Bound Algorithms

One of the earliest published computational results us-
ing a branch and bound strategy is due to J.S. DeCani
in 1972 [4]. He originally studied how to rank n objects
on the basis of a number of paired comparisons. Since
k persons have to pairwise compare n objects according
to some criterion, a matrix E = {eij} is built, where eij
is the number of persons that prefer object i to object
j. The problem is to find a linear ranking of the objects
reflecting the outcome of the experiment as closely as
possible. In the branch and bound strategy proposed by
DeCani partial rankings are built up and each branch-
ing operation in the tree corresponds to inserting a fur-
ther object at some position in the partial ranking. At
level n of the tree a complete ranking of the objects is
found. The upper bounds are exploited in the usual way

for backtracking and excluding parts of the tree from
further consideration.

A further method for solving LOP is the lexico-
graphic search algorithm proposed in [9,10]. It lexico-
graphically enumerates all permutations of the n sec-
tors by fixing at level k of the enumeration tree the kth
position of the permutations. In more detail, if at level
k a node is generated, then the first k positions �(1),
. . . , �(k) are fixed. Based on this fixing several Helm-
städter’s conditions can be tested. If one of them is vio-
lated, then there is no relatively optimum having �(1),
. . . , �(k) in the first k positions. Therefore, the node cur-
rently under consideration can be ignored and a back-
tracking is performed. By using this method all rela-
tively optimum solutions are enumerated, since there
is no bounding according to objective function values.
At the end the best one among them is kept. Starting
from lexicographic search, [8] proposed a lexicographic
branch and bound scheme.

Other authors have proposed branch and bound
methods, such as [7,12], and [14].

Linear Programming Algorithms

All linear programming approaches are based on the
consideration that the triangulation problem can be
formulated as a 0–1 integer programming problem us-
ing the 3-dicycle inequalities. In [13] the LP relaxation
using the tournament polytope Pn

C is proposed and the
corresponding full linear program is solved in its dual
version. In [1] LP relaxation is used for solving schedul-
ing problems with precedence constraints. It is easy to
see that the scheduling problem of minimizing the to-
tal weighted completion time of a set of processes on
a single processor can be formulated as a linear order-
ing problem.

Other possibilities for theoretically solving linear
ordering problems are methods as dynamic program-
ming or by formulating the problem as quadratic as-
signment problem ([10]).

See also
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Linear programming (LP) is a fundamental optimiza-
tion problem in which a linear objective function is to
be optimized subject to a set of linear constraints. Due
to the wide applicability of linear programmingmodels,
an immense amount of work has appeared regarding
theory and algorithms for LP, since G.B. Dantzig pro-
posed the simplex algorithm in 1947. It is not surpriz-
ing that in a recent survey of Fortune 500 companies,
85% of those responding said that they had used linear
programming. The history, theory, and applications of
linear programming may be found in [3]. Several books
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have been published on the subject (see the references
section).

ProblemDescription

Consider the linear programming problem (in standard
form):

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b;

x � 0

(1)

where c 2 Rn, b 2 Pm and A is an m × n matrix of rank
m (i. e. we do not have any redundant constraints). The
feasible domain

P D fx 2 Rn : Ax D b; x � 0g

is a polytope. We assume that (1) has a finite optimal
solution. Let B be a submatrix of A formed by m lin-
early independent columns. We may assume that A =
[B, N], i. e. the first columns of A are linearly indepen-
dent. Then the linear system BxB = b has a unique solu-
tion. If x = (xB, 0) then Ax = b and x = (xB, 0) is called
a basic solution. The components of x associated with
the columns of B are called basic variables. If one of the
basic variables in a basic solution is zero, that solution is
called a degenerate basic solution. A basic solution that
is feasible (i. e. x � 0) is called a basic feasible solution.

The following theorem identifies the special impor-
tance of the basic feasible solutions.

Theorem 1 Assume that P in (1) is nonempty. Then
a feasible point x 2 P is a vertex of P if and only if x is
a basic feasible solution.

Existence of basic feasible solutions is established by
the following fundamental theorem of linear program-
ming.

Theorem 2 Given the linear programming problem (1),
the following statements are true:
1) If P is nonempty, there exists a basic feasible solution.
2) If (1) has an optimal solution, then there is an opti-

mal basic feasible solution.

Therefore, the linear programming problem can be
solved by searching among its basic feasible solutions
(i. e. vertices of P). Since there are at most
 
m
n

!

basic solutions, the above theorem gives a finite, but
a very inefficient algorithm. A more systematic search
among the basic feasible solutions, is given by the sim-
plex method, which was developed by Dantzing in
1947.

The Simplex Method

The simplex method has a simple geometric motivation
which is described by the following two phases.

I An initial vertex x0 of P (basic feasible solu-
tion) is computed.

II Starting from the vertex x0, a sequence of
vertices x0; : : : ; xN is computed such a way
that xi+1 is adjacent to xi , i = 0; : : : ;N�1, and
such that c>xi+1 < c>xi . The method termi-
nates if either none of the edges adjacent to xN
is decreasing the objective function (i.e., xN is
the solution) or if an unbounded edge adja-
cent to xN is found, improving the objective
function (i.e. the problem is unbounded).

Each step of the simplex method, moving from one
vertex to an adjacent one, is called pivoting. The inte-
ger N gives the number of pivot steps in the simplex
method. Phase I can be solved in a similar way to Phase
II. In problems of the canonical form:

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b;

x � 0; b � 0;

(2)

there is no need for Phase I, because an initial vertex
(x0 = 0) is at hand. We start by considering Phase II of
the simplex method, by assuming that an initial vertex
(basic feasible solution) is available. Let x0 be a basic
feasible solution with x10, . . . , xm0 its basic variables, and
let B = {AB(i): i = 1, . . . ,m} the corresponding basis. If Aj

denotes the jth column of A, (Aj 62 B), then

mX
iD1

xi jAB(i) D Aj: (3)

In addition,
mX
iD1

xi0AB(i) D b: (4)
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Multiply (3) by � > 0 and subtract the result from (4) to
obtain:

mX
iD1

(xi0 � �xi j)AB(i) C �Aj D b: (5)

Assume that x0 is nondegenerate. How much can we
increase � and still have a solution? We can increase �
until the first component of (xi0 � �xij) becomes zero
or equivalently

�0 D min
i

�
xi0
xi j

: xi j > 0
	
: (6)

If �0 = xl0/xlj, then column Al leaves the basis and Aj

enters the basis.
If a tie occurs in (6), then the new solution is degen-

erate. In addition, if all xij � 0, then we move arbitrarily
far without becoming infeasible. In that case the prob-
lem is unbounded.

Define the new point x00 by

x0i0 D

(
xi0 � �xi j; i ¤ l ;
�0; i D l ;

(7)

and

B0(i) D

(
B(i); i ¤ l ;
j; i D l :

It is easy to see that the m columns AB0(i) are linearly
independent. Let

mX
iD1

xiAB0(i) D xl A j C

mX
iD1
i¤l

xiAB(i)D0:

Using (3) we have:

mX
iD1
i¤l

(ai xi j C ai )AB(i) C al xl jAB(l ) D 0

and by linear independence of the columns AB(i) we
have

al D 0; ai(l C xi j) D 0! a1; : : : ; am D 0:

Hence, the new point x00 whose basic variables are given
by (7) is a new basic feasible solution. When the basic
feasible solution x0 is degenerate then some of the ba-

sic variables are zero. Therefore more than n�m of the
constraints xj � 0 are satisfied as equations (are active)
and so x0 satisfies more than n equations. From (6) it
follows that if xi0 = 0 and the corresponding xij > 0, then
�0 = 0 and therefore we remain at the same vertex.

Note that when a basic feasible solution x0 is degen-
erate, there can be an enormous number of basis associ-
ated with it. In fact, if x0 has k >m positive components,
then there may be as many as

� n�k
n�m

�
different bases. In

that case we may compute x0 as many times as there
are basis, but the set of variables that we label basic and
nonbasic are different.

The cost (value of objective function) as a basic fea-
sible solution x, with corresponding basis B is:

z0 D
nX

lD1

xi0 cB(i)

Suppose we bring column Aj into the new basis. The
following economic interpretation can be used to select
the pivot column Aj: For every unit of the variable xj
that enters the basis, an amount xij of each of the vari-
ables xB(i) must leave. Hence, a unit increase in the vari-
able xj results in a net change in the cost, equal to:

c j D c j � z j

(relative cost of column j), where zj =
Pm

iD1xijcB(i). It is
profitable to bring column j into the basis exactly when
c j < 0. Choosing the most negative c j corresponds to
a kind of steepest descent. However, many other selec-
tion criteria can be used (e. g., Blad’s rule, etc).

If all reduced costs satisfy c j � 0, then we are at an
optimal solution and the simplex method terminates.
Note that relations (1) can be expressed in matrix nota-
tion by:

BX D A or X D B�1A;

that is, the matrix X = (xij) is obtained by diagonalizing
the basic columns of A. Then

z j D
mX
lD1

xi j cB(i) or z> D c>B X D c>B B
�1A:

Suppose c D c � z � 0. Let y be a feasible point. Then,

c>y � z> y � c>B B
�1Ay D c>B B

�1b D c>x0

and therefore x0 is an optimal solution.
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Under the assumption of nondegeneracy with our
pivot selection, xl0 > 0 (see (6)) and

z0 D z0 �
xl0
xl j

(z j � c j) > z0 (z j � c j < 0):

Note that corresponding to any basis there is a unique
z0, and hence, we can never return to a previous basis.
Therefore, each iteration gives a different basis and the
simplex method terminator after N �

� n
m

�
pivots.
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An enormous amount of research on interior point al-
gorithms for linear programming (LP) has been con-
ducted since N.K. Karmarkar [8] announced his cele-
brated projective algorithm in 1984. Interior point algo-
rithms for LP are interesting for two different reasons.
First, many interior point methods are polynomial time
algorithms for LP. Consider a standard form problem:

LP

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b

x � 0;

where A is an m × n matrix. For the purpose of char-
acterizing the complexity of algorithms it is common
to assume that the data of LP is integral. If L is the
number of bits required to encode the data, then an
algorithm for LP is polynomial time if the number of
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operations required to solve LP is a polynomial func-
tion of n, m, and L. Throughout we use ‘operations’ to
refer to arithmetic operations in infinite precision, al-
though for an algorithm to be rigorously polynomial
time in the rational model of computation the number
of bits required to perform all computations should also
be polynomially bounded. Karmarkar’s projective algo-
rithm solves LP inO(nL) iterations andO(n4L) total op-
erations. This overall complexity is required to obtain
a solution of LP whose objective is within a tolerance
2� O(L) of optimality; an exact optimal solution can then
be obtained using a ‘rounding’ procedure in O(n3) op-
erations. Karmarkar also described a partial updating
procedure that reduced the overall complexity of his al-
gorithm to O(n3.5L) operations. The idea of partial up-
dating is to allow for some error in the specification of
the projection equations that are solved on each itera-
tion of the algorithm.

Interior point algorithms are also interesting be-
cause they perform well in practice. When the projec-
tive algorithm was first announced Karmarkar made
well-publicized claims that his algorithm was several
times faster than the simplex method in solving large
LP problems. It was eventually discovered that most of
Karmarkar’s claims were actually for an implementa-
tion of the affine scaling algorithm, a simplified version
of Karmarkar’s algorithm that avoids the use of projec-
tive transformations. Initial attempts to replicate Kar-
markar’s results were mainly failures, but eventually it
was convincingly established that interior point algo-
rithms are highly competitive with the simplex method
on large scale problems.

The announcement of Karmarkar’s algorithm led to
the development of a variety of different types of inte-
rior point methods for LP. The simplest of these are
affine scaling methods, which were independently de-
vised by E. Barnes [2] and R.J. Vanderbei, M.J. Meke-
ton, and B.A. Freedman [21]. It was eventually realized
that in fact the affine scaling method was discovered
by I.I. Dikin [3] in 1967. The affine scaling method is
not a polynomial time algorithm for LP, and it is now
known that the algorithm may not even converge if
the stepsize is too long [12]. Nevertheless its practical
performance is often quite good, as indicated by Kar-
markar’s early claims.

Another type of interior point method, the path fol-
lowing algorithm, was discovered by J. Renegar [17].

Renegar’s algorithm requires only O(
p
nL) iterations

to solve LP, as opposed to O(nL) iterations for Kar-
markar’s algorithm. By adapting Karmarkar’s partial
updating technique to the path following framework,
C.C. Gonzaga [5] and P.M. Vaidya [19] devised the first
algorithms for LP with overall complexities of O(n3L)
operations. The iterates of path following algorithms lie
in a small neighborhood of the central path or central
trajectory, which is defined to be the set of minimizers
of the logarithmic barrier function

f
(x) D
c>x
�
�

nX
iD1

ln(xi);

over {x: Ax = b, x > 0}, for � 2 (0,1). Later C. Roos
and J.-Ph. Vial [18], and Gonzaga [6] developed ‘long
step’ path following algorithms. These algorithms are
based on properties of the central path, but the iter-
ates are not constrained to remain in a small neighbor-
hood of the path. Long step path following algorithms
are very closely related to the classical sequential un-
constrained minimization technique (SUMT) of A.V.
Fiacco and G.P. McCormick [4].

A different class of interior point algorithms is based
on Karmarkar’s use of a potential function, a surrogate
for the original objective, to monitor the progress of his
projective algorithm. Gonzaga [7] and Y. Ye [23] de-
vised the first potential reduction algorithms. These al-
gorithms are based on reducing a potential function but
do not employ projective transformations. Ye’s poten-
tial reduction algorithm requires O(

p
nL) iterations,

like path following algorithms, and provides an O(n3L)
algorithm for LP when implemented with partial up-
dating.

All of the algorithms mentioned to this point are
based on solving LP, or alternatively the dual problem:

LD

8̂
<̂
ˆ̂:

max b>y
s.t. A>yC s D c

s � 0:

Algorithms for solving LP typically generate feasible so-
lutions to LD, and vice versa, but the algorithms are
not symmetric in their treatment of the two problems.
A different class of interior point methods, known as
primal-dual algorithms, is completely symmetric in the
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variables x and s. Primal-dual algorithms are based on
applying Newton’s method directly to the system of
equations:

PD(�)

8̂
<̂
ˆ̂:

Ax D b
A>yC s D c
x ı s D �e;

where e 2 Rn is the vector of ones, � is a positive
scalar, and x ı s is the vector whose ith component
is xisi. Solutions x > 0 and s > 0 to PD(�) are ex-
actly on the central paths for LP and LD, respectively.
Most primal-dual algorithms fit into the path following
framework. The idea of a primal-dual path following al-
gorithm was first suggested by N. Megiddo [13], and
complete algorithms were first devised by R.C. Mon-
teiro and I. Adler [15] and M. Kojima, S. Mizuno, and
Y. Yoshise [10]. It is widely believed that primal-dual
methods are in practice the best performing interior
point algorithms for LP.

One advantage of the system PD(�) is that New-
ton’s method can be applied even when the current x >
0 and s > 0 are not feasible in LP and LD. This in-
feasible interior point (IIP) strategy was first employed
in the OB1 code of I.J. Lustig, M.E. Marsten, and D.F.
Shanno [11]. The solution to the Newton equations
with � = 0 is referred to as the predictor, or primal-
dual affine scaling direction, while the solution with
� = x|s/n, for the current solutions x and s, is called
the corrector, or centering direction. The primal-dual
predictor-corrector algorithm alternates between the use
of these two directions. One implementation of the IIP
predictor-corrector strategy, due to S. Mehrotra [14],
has worked particularly well in practice. Despite the fact
that primal-dual IIP algorithms were very successfully
implemented it proved to be quite difficult to charac-
terize the convergence of these methods. The first such
analyses, by Kojima, Megiddo, and Mizuno [9], and Y.
Zhang [25], were followed by a large number of papers
giving convergence/complexity results for various IIP
algorithms. Ye, M.J. Todd, and Mizuno [24] devised
a ‘selfdual homogeneous’ interior point method that
has many of the practical features of IIP methods but at
the same time has stronger convergence properties. An
implementation of the homogeneous algorithm [22]
exhibits excellent behavior, particularly when applied
to infeasible or near-infeasible problems.

Many interior point algorithms for LP can be ex-
tended tomore general optimization problems. Primal-
dual algorithms generalize very naturally to the mono-
tone linear complementarity problem (LCP; cf. � lin-
ear complementarity problem); in fact many papers on
primal-dual algorithms (for example [25]) are written
in terms of the LCP. As a result these algorithms im-
mediately provide interior point solution methods for
convex quadratic programming (QP) problems. Inte-
rior point algorithms can also be generalized to apply
to quadratically constrained quadratic programming
(QCQP), optimization over second order cone (SOC)
constraints, and semidefinite programming (SDP); for
details on these and other extensions see [16]. The ap-
plication of interior point methods to SDP has particu-
larly rich applications, as described in [1], and [20], and
remains the topic of extensive research.
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In his groundbreaking paper [6], N.K. Karmarkar de-
scribed a new interior point method for linear program-
ming (LP). As originally described by Karmarkar, his
algorithm applies to a LP problem of the form:

KLP

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D 0

x 2 S;

where x 2 Rn, A is anm × nmatrix, and S is the simplex
S = {x 2 Rn: x � 0, e|x = n}. Throughout e denotes the
vector with each component equal to one. It is assumed
that e is feasible in KLP, and that the optimal objective
value in KLP is exactly zero. These assumptions may
seem restrictive, but it is easy to show that a standard
form LP problem:

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b

x � 0;

(1)
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can be converted into a problem of the form KLP by
combining the problem with its dual, and minimizing
the gap between the two problems.

In addition to the special form of the LP problem,
Karmarkar employed two novel ingredients in the spec-
ification of his algorithm. The first was the use of a pro-
jective transformation in the construction of the algo-
rithm’s iterative process. The algorithm is initialized at
x0 = e. For an iterate xk > 0, k� 0, let Xk be the diagonal
matrix with Xk

i i = xki , i = 1, . . . , n. On the kth iteration,
the algorithm uses a projective change of coordinates
Tk: S! S,

Tk (x) D
n(Xk )�1x
e>(Xk)�1x

;

to map the point xk to e. Under the assumption that the
optimal value in KLP is zero, KLP is equivalent to the
transformed problem:
8̂
<̂
ˆ̂:

min c>x
s.t. Ax D 0

x 2 S;

where x D Tk (x), c D Xkc and A D AXk . The algo-
rithm then takes a projected gradient step in the trans-
formed problem, and uses the inverse projective trans-
formation to define the next iterate in the original co-
ordinates:

xkC1 D T�1k

 
e � ˛

cp

cp



!
; (2)

where ˛ is a positive steplength and cp is the projection
of c onto the nullspace of A and e|.

Karmarkar’s second innovation was the use of a po-
tential function to monitor the algorithm’s progress.
Karmarkar’s potential function is:

f (x) D n ln(c>x) �
nX

iD1

ln(xi):

Karmarkar proved that on each iteration, the steplength
˛ in (2) can be chosen so that f (�) is reduced by an ab-
solute constant ı. It is then easy to show that the iter-
ates satisfy c| xk � e�kı/n c| x0 for all k. For any pos-
itive L, it follows that if c| x0 � 2O(L), then the algo-
rithm obtains an iterate xk having c| xk � 2�O(L) in k =

O(nL) iterations, each requiring O(n3) operations. For
a problem of the form KLP with integer data, it can be
shown that if c|xk � 2� O(L), where L is the number of
bits required to represent the problem, then an exact
optimal solution can be obtained from xk via a ‘round-
ing’ procedure. These facts together imply that Kar-
markar’s algorithm is a polynomial time algorithm for
linear programming, requiring O(n4L) operations for
a problemwith n variables, and integer data of bit size L.
Karmarkar also described a partial updating technique
that reduces the total complexity of his algorithm to
O(n3.5L) operations. Partial updating is based on using
a scaling matrix eXk which is an approximation of Xk,
and only ‘updating’ components eXk

i i which differ from
Xk

i i by more than a fixed factor.
Karmarkar’s algorithm created a great deal of inter-

est for two reasons. First, the algorithm was a polyno-
mial time method for LP. Second, Karmarkar claimed
that unlike the ellipsoid algorithm, the other well-
known polynomial time method for LP, his method
performed extremely well in practice. There was some
controversy at the time regarding these claims, and
eventually it was discovered that most of Karmarkar’s
computational results were based on the affine scaling
algorithm, a simplified version of his algorithm that
avoids the use of projective transformations. In any case
it soon became clear that the performance of interior
point algorithms for LP could be highly competitive
with the simplex method, the usual solution technique,
on large problems.

There is a great deal of research connected with
Karmarkar’s algorithm. Several authors ([1,3,4,5,9])
showed that the special form of KLP was unnecessary,
and instead the projective algorithm could be directly
applied to a standard form problem (1). This ‘stan-
dard form variant’ adds logic which maintains a lower
bound on the unknown optimal value in (1). Later it
was shown that the projective transformations could
also be eliminated, giving rise to so-called potential re-
duction algorithms for LP. The best known potential
reduction algorithm, due to Y. Ye [8], requires only
O(
p
nL) iterations, and with an adaptation of Kar-

markar’s partial updating technique has a total com-
plexity ofO(n3L) operations. The survey articles [2] and
[7] give extensive references to research connected with
Karmarkar’s algorithm, and related potential reduction
methods.
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The problem of determining the worst-case behavior of
the simplex algorithm remained an outstanding open
problem formore than two decades. In the beginning of
the 1970s, V. Klee and G.J. Minty [9] solved this prob-
lem by constructing linear examples on which an ex-
ponential number of iterations is required before opti-
mality occurs. In this article we present the Klee–Minty
examples and show how they can be used to show expo-
nential worst-case behavior for some well known pivot-
ing rules.

Introduction

The problem of determining the worst-case behavior of
the simplex algorithm remained an outstanding open
problem for more than two decades. In the beginning
of the 1970s, Klee and Minty in their classical paper
[9] showed that the most commonly used pivoting rule,
i. e., Dantzig’s largest coefficient pivoting rule [5], per-
forms exponentially bad on some specially constructed
linear problems, known today as Klee–Minty examples.
Later on, R.G. Jeroslow [8] showed similar behavior for
the maximum improvement pivoting rule. He showed
this result by slightly modifying Klee–Minty examples.

The Klee–Minty examples have been used by several
researchers to show exponential worst-case behavior
for the great majority of the practical pivoting rules. D.
Avis and V. Shvatal [1] and independently, K.G. Murty
[10, p. 439] showed exponential behavior for Bland’s
least index pivoting rule [2] and D. Goldfarb and W. Sit
[7] for the steepest edge simplex method [5]. Recently,
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C. Roos [13] established exponential behavior for Ter-
laky’s criss-cross method [14] and K. Paparrizos [11] for
a number of pivoting rules some of which use past his-
tory. Similar results have been derived by Paparrizos
[12] for his dual exterior point algorithm and K. Dosios
and Paparrizos [6] for a new primal dual pivoting rule
[3].

In this paper we present the Klee–Minty examples
and show some of their properties that are used in
deriving complexity results of the simplex algorithm.
These properties are then used to show exponential be-
havior for two pivoting rules; the least index and the
maximum coefficient pivoting rule.

The paper is self contained. Next section describes
a particular form of the simplex algorithm. The Klee–
Minty examples and their properties are presented in
Section 3. Section 4 is devoted to complexity results.

Simplex Algorithm

In describing our results we find it convenient to use the
dictionary form [4] of the simplex algorithm. We will
see in the next section that this form exhibits some ad-
vantages in describing the properties of the Klee–Minty
examples.

Consider the linear problem in standard form
8̂
<̂
ˆ̂:

max z D c>x
s.t. Ax D b;

x � 0;

(1)

where c, x 2 Rn, b2 Rm,A 2Rm×n and superscript T de-
notes transposition. Without loss of generality we may
assume that A is of full row rank, i. e., rank(A) = m (m
< n).

A basis for problem (1) is a set of indices B� {1, . . . ,
n} containing exactly m indices. The element of B, the
components of c and x and the columns of A indexed
by B are called basicwhile the remaining ones are called
nonbasic. The set of nonbasic indices is denoted by N,
N = {1, . . . , n}� B. We also denote by B(N) the subma-
trix of A containing the columns indexed by B(N). The
components of a vector x indexed by B(N) are denoted
by xB(xN).

With this notation at hand the equality constraints
of (1) are written in the form

BxB C NxN D b: (2)

If B is a nonsingular matrix we can set xN = 0 and com-
pute xB from (2). Then, we find xB = B�1b. The non
singular matrix B is called basic matrix or basis. The so-
lution xN = 0 and xB = B�1b is called basic solution. If, in
addition, it is xB = B�1b � 0, then xB, xN is a basic fea-
sible solution. Geometrically, a basic feasible solution of
(1) corresponds to a vertex of the polyhedral set of the
feasible region.

If B is nonsingular, we can express the basic vari-
ables xB as a function of the non basic variable xN . We
have from (2) that

xB D �B�1NxN C B�1b: (3)

Using (3), the objective function of problem (1) is writ-
ten in the form

z D c>B xB C c>N xN
D c>B (�B

�1NxN C B�1b)C c>N xN
D (�c>B B

�1N C c>N )xN C c>B B
�1b: (4)

At every iteration the simplex algorithm constructs the
system of equations (3) and (4).

Let the current feasible basis be B. The correspond-
ing system of equations is written in the form

z D (�c>B B
�1N C c>N )xN C c>B B

�1b;

xB D �B�1NxN C B�1b:
(5)

We denote the coefficients of xN and the constant terms
of (5) by H, i. e.,
�
c>N � c>B B

�1N c>B B
�1b

�B�1N B�1b

�
D H:

The top row of H, row zero, is devoted to the objective
function. Some times we call it cost row. The remaining
rows are numbered 1, . . . , m. The ith row, 1 � i � m,
corresponds to the basic variable xB[i], where B[i] de-
notes the ith element of B. Similarly, the jth column of
H, 1 � j � n�m, corresponds to the nonbasic variable
xN[j]. The last column ofH corresponds to the constant
terms. We denote the entries ofH by hij.

It is well known that if h0j � 0, for j = 1, . . . , n �
m, then xB, xN is an optimal solution to (1). In this case
the algorithm terminates. Otherwise, a nonbasic vari-
able xN[q] = xl such that h0, N[q] > 0 is chosen. Variable
xl is called entering variable. If the condition

hi;N[q] � 0; for i D 1; : : : ;m;
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holds, problem (1) is unbounded and the algorithm
stops. Otherwise, the basic variable xB[p] = xk, is deter-
mined by the following minimum ratio test

xB[p]
�hr;N[q]

D min
�
hi;n�mC1

�hi;N[q]
: 1 � i � m; hi;N[q] < 0

	
:

The basic variable xk is called leaving variable. Then,
the entering variable xl takes the place of the leaving
variable and vice versa, i. e., it is set

B[p] N[q] and N[q] B[p]:

Thus, a new basis B is constructed and the procedure
is repeated. Let H be the tableau corresponding to the
new basis B. It is easily seen that

hi j D

8̂
<̂
ˆ̂:

�
hp j
hpq

if i D p;
hiq
hpq

if i ¤ p; j D q;

hi j
hp j
hpq

otherwise:

(6)

Klee–Minty Examples

The Klee–Minty examples of order n are the linear
problems of the form

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max
nX

jD1

"n� j x j

s.t. x1 � 1

2
i�1X
jD1

"i� jx j C xi � 1;

i D 2; : : : ; n;
x j � 0; j D 1; : : : ; n;

(7)

where 0 < " � 1/3. In this section we will show that the
feasible region of (7) is a slightly perturbed cube of di-
mension n, see Fig. 1 and Fig. 2. The optimal solution is
(0, 0, . . . , 1) 2 Rn and the optimal value is 1. A cube of
dimension n has 2n vertices. In the next section we will
describe pivoting rules that force the simplex method
to pass through all the vertices of the Klee–Minty ex-
amples. These pivoting rules require 2n � 1 iterations
before optimality is reached and, hence, they are expo-
nential.

Linear Programming: Klee–Minty Examples, Figure 1
Feasible region of Klee–Minty example of order n = 2

Linear Programming: Klee–Minty Examples, Figure 2
Feasible region of Klee–Minty example of order n = 3

The standard form of linear problem (1) is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max
nX

jD1

"n� j x j

s.t. x1 C xnC1 D 1;

2
i�1X
jD1

"i� jx j C xnCi D 1;

i D 2; : : : ; n;
x j � 0; j D 1; : : : ; 2n;

(8)

where xn+i, 1� i� n, is the slack variable corresponding
to the ith inequality constraint of problem (7).

We will be interested in basic solutions of (8) such
that, for each j = 1, . . . , n either xj or xn+j is basic but
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not both. Such a basic solution is called distinguished.
A tableau corresponding to a dis- tinguished basis is
called distinguished tableau. In order to facilitate the
presentation it is convenient to introduce the set Q of
all zero-one n-sequences (a1, . . . , an) such that

aj D

(
0 if x j is nonbasic and xnC j is basic;
1 if xnC j is nonbasic and x j is basic:

We denote the distinguished basis corresponding to the
sequence (0, . . . , 0) bybB and the tableau corresponding
to bB by bH. We have bB D fn C 1; : : : ; 2ng. It is easily
verified that

bhi j D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

"n� j if i D 0; j � n;
�1 if 1 � i D j � n;
0 if 1 � i < j; j ¤ nC 1;
�2"i� j if i > j;
1 if i � n and j D n C 1:

(9)

Tableau bH is sometimes called initial.
A distinguished tableauH corresponding to (a1, . . . ,

an) 2 Q is constructed by starting from bH and pivoting
only on elements hpp such that ap = 1. Using this pro-
cedure and relations (6) and (9) we easily conclude that

hpp D �1 for p D 1; : : : ; n;

hi j D 0 for 1 � i � n � 1; i � j � n;
(10)

for each distinguished tableau H.

Lemma 1 Let B be an arbitrary distinguished basis and
H the corresponding tableau. Then

hi j C hp jhi p D �hi j; j < p < n; i � 2; (11)

h0 j C hp jh0 j D 0; j < p � n; i D 0: (12)

Proof It suffices to show the following induction hy-
pothesis. If the distinguished tableau H satisfies (11)
and (12) and a pivot operation is performed on hrr , 1
� r � n, resulting in tableau H, then H satisfies (11)
and (12) as well. Observe that relations (11) and (12)
are satisfied by the initial tableau bH.

So, assume that H satisfies (11) and (12) and a pivot
operation is performed on element hrr = �1. Then, we

have from (6) and (10)

hi j D

8̂
<̂
ˆ̂:

hi j C hr jhir ; i ¤ r; j ¤ r;
�hi j; i ¤ r; j D r;
hi j; otherwise:

(13)

Combining (13) and the induction hypothesis we have

hi j D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

�hi j if i D 0; j � r;
�hi j if i > r; j � r;
�hi j C hr jhir if i > r; j D nC 1;
�hi i C hr j hir if i D 0; j D n C 1;
�hi j; otherwise:

(14)

There are two cases to be considered, p � r and p > r.
From relations (14) we have, for p � r,

hi j D �hi j; hi p D �hi p; hp j D hp j

and for p > r

hi j D �hi j; hi p D hi j; hp j D �hp j:

In both cases,

hi j C hp jhi p D �hi j � hhi php j

D hi j D �hi j:

This proves (11). The proof of (12) is similar.

Lemma 1 shows that pivoting on element hpp of a distin-
guished tableau H is very easily performed. Just change
the signs of the entries hij such that i = p and j � p or i
> p and j � p and set

hi;nC1  hi;nC1 C hi php;nC1

for i = 0 or i > p.
Figure 3 illustrates the entries ofH that change value

when pivoting on hpp. In particular, the entries in areas
A and B just change sign.

Theorem 2 Let H be a distinguished tableau of problem
(8) and a = (a1, . . . , an) be the corresponding n-sequence.
Then the following relations hold.

For i = 1, . . . , n and j = 1, . . . , n we have

hi j D

(
�1; i D j;
0; i < j;

(15)
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Linear Programming: Klee–Minty Examples, Figure 3
Entries of a distinguished tableau H that change value after
pivoting on element hpp

while for i > j,

hi j D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�2"i� j;

i�1X
kD j

ak even;

2"i� j;

i�1X
kD j

ak odd:

(16)

For i = 0 and j = 1, . . . , n we have

h0 j D

8̂
ˆ̂̂<
ˆ̂̂̂
:

"n� j;

nX
kD j

ak even;

�"n� j;

nX
kD j

ak odd:
(17)

For i = 1, . . . , n and j = n + 1 we have

hi;nC1 D

8̂
<̂
ˆ̂:

1; i D 1;

1 �
i�1X
kD1

akhik ; 2 � i � n:
(18)

Proof The proof is by induction. We assume that dis-
tinguished tableau H satisfies (15)–(18), and show that
tableau H computed by pivoting on hpp satisfies (15)–
(18) as well. Observe that initial tableau bH satisfies (15)–
(18).

Let a D (a1; : : : ; an) be the sequence correspond-
ing to tableau H. Then

a j D

(
aj; j ¤ p;
1 � aj; j D p:

Proof of (15)–(16)}. Relations (15) have already
been shown. From Lemma 1 we have

hi j D hi j and
i�1X
kD j

ak D
i�1X
kD j

ak

for i� p or i > p and j > p. For i > p and j � p we have

i�1X
kD j

ak D
i�1X
kD j

ak � 2ap:

Hence, if
Pi�1

kD j a is odd (even),
Pi�1

kD j ak is even (odd).
Also, from Lemma 1 we have hi j D �hi j. Hence, (16)
holds in all cases.

Proof of (17). It is easily seen that

sign(h0 j) D sign(hmj); for i � n:

Now the proof comes from the proof of (16).
Proof of (18). If i � p we have hi;nC1 D hi;nC1.

Hence, (18) holds trivially from the induction hypothe-
sis. If i> p, then

hi;nC1 D hi;nC1C hp;nC1hi p

D 1 �
i�1X
kD1

akhik C

 
1 �

p�1X
kD1

akhpk

!
hi p

D 1 �
p�1X
kD1

ak(hik C hpkhi p)

C hi p � akhpphi p �

i�1X
kD1

akhik

D 1 �
p�1X
kD1

ahik � (1 � ap)hi p �

i�1X
kDpC1

akhik

D 1 �
i�1X
kD1

akhik :

Theorem 3 The feasible region of problem (8) is
a slightly perturbed cube.

Proof It suffices to show that the feasible region has
precisely 2n vertices. We show that each distinguished
tableau, H, is feasible and all the adjacent tableaux are
distinguished.
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From Theorem 2 we have

hi;nC1 D 1 �
i�1X
kD1

akhik

> 1 � 2"(1C "C "2 C � � � )

D 1 �
2"

1 � "
� 0:

We show that if xN[p] is entering, then xB[p] is leaving
variable. Let hip < 0 (i < p). We show that

hp;nC1

hpp
�

hi;nC1

�hi p
:

The last relation is equivalently written

�hi p(1 �
p�1X
kD1

akhpk) < 1 �
i�1X
kD1

akhik:

Using Lemma 1 we get

�hi p � 2
p�1X
kD1

akhik < 1 �
i�1X
kD1

akhik

or

0 < 1C hi p C

p�1X
kD1

akhik �

i�1X
kDp

akhik

D 1C
p�1X
kD1

akhik C (1 � ak)hi p C

i�1X
kDpC1

akhik :

We have already shown that the last relation holds.

Applications

Now, we are ready to show exponential behavior for
some pivoting rules. Let a 6D b be sequences of Q. We
write a < b if for the largest index j such that aj 6D bj it isPn

jD1ak even and
Pn

kD1bk odd.
Let now f (a) be the objective value at the vertex cor-

responding to a 2 Q. It is easily seen that f (a) < f (b), if
a < b. The immediate successor of a sequence a 2 Q is
the sequence (a1, . . . , ar, 1 � ap, ap+1, . . . , an), where p is
the smallest index such that

Pn
jDpaj is even.

Given a distinguished tableauH, a nonbasic variable
xN[q] is called eligible if h0, N[p] > 0.

A pivoting rule that forces the simplex algorithm to
pass through all vertices of Klee–Minty examples is the

following. For the ease of reference we call it generic piv-
oting rule. Let a 2 Q be the sequence corresponding to
H. The entering variable is xN[p], where p is the smallest
index such that

Pn
kDpak is even. From Theorem 2 we

see that h0, N[p] = "n�p > 0. Hence, xN[p] is eligible, and
the generic pivoting rule requires 2n � 1 iterations on
Klee–Minty examples of order n.

Smallest Index Rule

In the smallest index rule, the entering variable is the eli-
gible variable with the smallest index. We show that the
smallest index rule, called also Bland’s rule, performs
exponentially on the slightly modified Klee–Minty ex-
amples

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

max
nX

jD1

"n� jx2 j�1

s.t. x1 � 1

2
i�1X
jD1

"i� j x2 j�1 C x2i�1 � 1;

i D 2; : : : ; n;
x j � 0; j D 1; : : : ; n:

(19)

We introduce the slack variable x2i to the ith con-
straint of problem (19).

Theorem 4 The least index pivoting rule performs ex-
ponentially on example (19).

Proof We show that the simplex algorithm employ-
ing the least index pivoting rule requires 2n � 1 itera-
tions when applied to problem (19) and initialized with
the basis corresponding to the sequence (0, . . . , 0) 2 Q.
Clearly, all the bases generated by the algorithm are dis-
tinguished i. e. for each i either x2i�1 or x2i is basic but
not both. Let H be the current distinguished tableau
corresponding to the sequence a 2 Q. Let also p be the
smallest index such that

Pn
kDpak is even.

Then h0, N[p] > 0 and, hence, xN[p] is eligible. Because
of the indexing of the variable in problem (19), N[p]
= 2p or 2p � 1. If q is another index such that h0, N[q]

> 0 (
Pn

kDqak is even), then q > p and, hence, N[q] >
N[p]. Hence, the next basis corresponds to the immedi-
ate successor of a 2 Q. This completes the proof.
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Largest Coefficient Rule

In the largest coefficient rule the entering variable xN[p]

is chosen so that

h0;N[p] D max
˚
h0;N[ j] : h0;N[ j] > 0

�
:

This rule solves problem (7) in one iteration when the
initial basis is (0, . . . , 0) 2 Q.

We modify problem (7) as follows. We set

" D
1
�
;

x j D y j e2( j�1);
(20)

and divide the ith constraint by "2(i�1) and the objective
function by "2(n�1). Then, problem (7) is written in the
equivalent form

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max
nX

jD1

�n� j y j

s.t. 2
i�1X
jD1

�i� j y j C yi � �2(i�1);

i D 1; : : : ; n;
y j � 0; j D 1; : : : ; n;

(21)

where � = 1/� � 3.

Theorem 5 The largest coefficient rule performs expo-
nentially on problem (21).

Proof Problem (21) is a scaled version of problem (7).
Let xn+i be the slack of constraint i. Then, all the results
of the previous section, except those involving the RHS,
hold true for problem (21). Because of relation (20), cj
� 0 if and only if yj � 0. Hence, every distinguished
basis of (21) is feasible. Now, it suffices to show that the
generic and the largest coefficient rule coincide when
applied to problem (21). However, this statement holds
because � > 1.

See also

� Criss-cross Pivoting Rules
� Least-index Anticycling Rules
� Lexicographic Pivoting Rules
� Linear Programming
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Introduction

The G-group classification problem (discriminant prob-
lem) seeks to classify members of some population into
one ofG predefined groups based on the value of a scor-
ing function f applied to a vector x 2 <p of observed
attributes. The scoring function is constructed using
training samples drawn from each group. Of several
criteria available for selecting a scoring function, ex-
pected accuracy (measured either in terms of frequency
of misclassification or average cost of misclassification)
predominates. The scoring function f can be vector-
valued, but when two groups are involved it is almost
always scalar-valued, and scalar functions may be used
even when there are more than two groups.

As discussed in [8], statistical methods for con-
structing scoring functions revolve around estimating,
directly or indirectly, the density functions of the distri-
butions of the various groups. In contrast, a number of
approaches have been proposed that in essence ignore
the underlying distributions and simply try to classify
the training samples with maximal accuracy, hoping
that this accuracy carries over to the larger population.
The use of mathematical programming was suggested
at least as early as 1965 by Mangasarian [11]; interest
in it grew considerably with the publication of a pair of
papers by Freed and Glover in 1981 [3,4], which led to
parallel streams of research in algorithm development
and algorithm analysis.

Though nonlinear scoring functions can be con-
structed, virtually all research into mathematical pro-
gramming methods other than support vector ma-
chines [1] restricts attention to linear functions. This
is motivated largely by tractability of the mathemati-
cal programming problems, but is bolstered by the fact
that the Fisher linear discriminant function, the semi-
nal statistically derived scoring function, is regarded as
a good choice under a wide range of conditions. For the
remainder of this article, we assume f to be linear. Di-
rectlymaximizing accuracy on the training samples dic-

tates the use of a mixed integer program to choose the
scoring function (�Mixed Integer Classification Prob-
lems). The number of binary variables in such a formu-
lation is proportional to the size of the training sam-
ples, and so computation time grows in a nonpolyno-
mial manner as the sample sizes increase. It is therefore
natural that attention turned to more computation-
ally efficient linear programming classification models
(LPCMs). Erenguc and Koehler [2] give a thorough
survey of the spectrum of mathematical programming
classification models as of 1989, and Stam [14] pro-
vides a somewhat more recent view of the field. Com-
parisons, using both “real-world” data andMonte Carlo
experiments, of the accuracy of scoring functions pro-
duced by mathematical programming models with that
of statistically-derived functions has produced mixed
results [14], but there is evidence that LPCMs are more
robust than statistical methods to large departures from
normality in the population (such as populations with
mixture distributions, discrete attributes, and outlier
contamination).

Models

When G D 2 and f is linear and scalar-valued, clas-
sification of x is based without loss of generality on
whether f (x) < 0 or f (x) > 0. (If f (x) D 0; x can
be assigned to either group with equal plausibility. This
should be treated as a classification failure.) Barring the
degenerate case f � 0, the solution set to f (x) D 0
forms a separating hyperplane. Ideally, though not of-
ten in practice, each group resides within one of the
half-spaces defined by that hyperplane. An early pre-
cursor to linear programming models, the perceptron
algorithm [12], constructs an appropriate linear classi-
fier in finite time when the samples are separable, but
can fail if the samples are not separable.

There being no way to count misclassifications in an
optimization model without introducing integer vari-
ables, LPCMs must employ a surrogate criterion. A va-
riety of criteria have been tried, all revolving around
measurements of the displacement of the sample points
from the separating hyperplane. Let f (x) D w0x C w0

for some non-null coefficient vector w 2 <p and some
scalar w0. The euclidean distance from x to the separat-
ing hyperplane is easily shown to be j f (x)j

ı
kwk. So the

value of the scoring function at each training observa-
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tion measures (to within a scalar multiple) how far the
observation falls from the separating hyperplane. That
distance is in turn identified as either an internal devia-
tion or an external deviation depending on whether the
observation falls in the correct or incorrect half-space.
Figure 1 illustrates both types of deviation.

The “hybrid” model of Glover et al. [6] is sufficiently
flexible to capture the key features of most two-group
models. Let Xg be an Ng � p matrix of training obser-
vations from group g, and let 0 and 1 denote vectors of
appropriate dimension, all of whose components are 0
and 1 respectively. The core of the hybrid model, to be
expanded later, is:

min
2X

gD1

�
˛g � 10eg � ˇg � 10dg C �g eg0 � ıgdg0

�

s.t.X1wC w0 � 1C d1 � e1 C d10 � 1 � e10 � 1 � 0
X2wC w0 � 1 � d2 C e2 � d20 � 1C e20 � 1 � 0

w;w0 free; dg ; eg ; dg0; eg0 � 0 :

Variables dg and eg are intended to capture the internal
and external deviations respectively of individual ob-
servations from group g, while eg0 and dg0 are intended
to capture the maximum (or minimum) external and
internal deviations respectively across the sample from
group g. (The original hybrid model had d10 D d20 and
e10 D e20, which is unnecessarily restrictive.) The in-
tent of Glover et al. in presenting the hybrid model was
to subsume a number of previously proposed models,
and so the hybrid model should be viewed as a frame-
work. When applied, not all of the deviation variables
need be present. For example, omission of eg and dg

would yield a version of the “MMD”model [2], with eg0

Linear Programming Models for Classification, Figure 1
Two-Group Problem with Linear Classifier

the worst external deviation of any group g observation
if any is misclassified (in which case dg0 D 0) and dg0

the minimum internal deviation of any group g obser-
vation if none is misclassified (in which case eg0 D 0).
On the other hand, omission of eg0 and dg0 results in
a variation of the “MSID” model [2], with the objective
function penalizing individual external deviations (eg)
and rewarding individual internal deviations (dg). The
nonnegative objective coefficients ˛g , ˇg , �g , ıg must
be chosen so that the penalties for external deviations
exceed the rewards for internal deviations; otherwise,
the linear program becomes unbounded, as adding an
equal amount to both egn and dgn improves the objec-
tive value.

Pathologies

Due to their focus on minimizing error count, mixed
integer classification models tend to be feasible (the
trivial function f � 0 is often a feasible solution) and
bounded (one cannot do better than zero misclassifica-
tions). LPCMs, in contrast, tend to be “naturally” fea-
sible but may require explicit bounding constraints. If
the training samples are perfectly separable, a solution
exists to the partial hybrid model with egn D 0 for all g
and n and dgn > 0 for some g and n; any positive scalar
multiple of that solution is also feasible, and so the ob-
jective value is unbounded below. One way to correct
this is to introduce bounds on the coefficients of the ob-
jective function, say

�1 � w � C1:

Another potential problem has to do with what is vari-
ously referred to as the “trivial” or “unacceptable” solu-
tion, namely f � 0. Consider the partial hybrid model
above. The trivial solution (all variables equal to zero) is
certainly feasible, with objective value zero. Given the
requirement that the objective coefficients of external
deviation variables dominate those of internal deviation
variables, any solution with a negative objective value
must perfectly separate the training samples. Contra-
positively, then, if the training samples cannot be sep-
arated, the objective value cannot be less than zero, in
which case the trivial solution is in fact optimal. This is
undesirable: the trivial function does not classify any-
thing. The trick is to make the trivial solution subopti-
mal. Some authors try to accomplish this by fixing the
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constant term w0 of the classification function at some
nonzero value (typically w0 D 1). The trivial discrimi-
nant function w D 0 with nonzero constant term now
misclassifies one group completely, and is unlikely to
be the model’s optimal solution even when the training
samples cannot be separated. There is the possibility,
however, that the best linear classifier has w0 D 0, in
which case this approach dooms the model to finding
an inferior solution.

Other approaches include various attempts to make
w D 0 infeasible, such as adding the constraint kwk D
1. Unfortunately, trying to legislate the trivial solution
out of existence results in a nonconvex feasible region,
destroying the computational advantage of linear pro-
gramming. Yet another strategy for weeding out trivial
solutions is the introduction of a so-called normaliza-
tion constraint. The normalization constraint proposed
by Glover et al. for the hybrid model is

2X
gD1

NgX
nD0

dgn D 1:

Various pathologies have been connected to injudicious
use of normalization constraints [9,10,13], including:
unboundedness; trivial solutions; failure of the result-
ing discriminant function to adapt properly to rescal-
ing or translation of the data (the optimal discriminant
function after scaling or translating the data should be
a scaled or translated version of the previously optimal
discriminator, and the accuracy should be unchanged);
and failure to find a discriminant function with per-
fect accuracy on the training samples when, in fact, they
can be separated (which suggests that the discriminant
function found will have suboptimal accuracy on the
overall population). Indeed, Glover later changed the
normalization of the hybrid model to [5]

�N2 � 10X1wC N1 � 10X2w D 1

to avoid some of these pathologies.

Multiple Group Problems

The use of a scalar-valued scoring function in an LPCM
with G> 2 groups requires the a priori imposition of
both a specific ordering and prescribed interval widths
on the scores of the groups. This being impractical, at-
tention turns to vector-valued functions. Whether us-

ing methods based on statistics or mixed integer pro-
gramming, a common approach to the multiple group
problem is to develop a separate scoring function for
each group, and assign observations to the group whose
scoring function yields the largest value at that obser-
vation. The linear programming analog would be to
reward amounts by which the score fi(x) of an ob-
servation x from group i exceeds each f j(x); j ¤ i
(or max j¤i f j(x)) and penalize differences in the op-
posite direction. This induces a proliferation of devia-
tion variables (on the order of (G�1)

PG
gD1 Ng). Other

approaches may construct discriminant functions for
all pairs of groups, or for each group versus all oth-
ers, and then using a “voting” procedure to classify ob-
servations [15].

A good example of the use of a vector-valued scor-
ing function is the work of Gochet et al. [7]. They begin
with one scoring function per group, and in cases where
two of those functions wind up identical, add additional
functions to serve as tie-breakers. Their model is:

min
GX

gD1

GX
g¤hD1

10egh

s.t.Xg
�
wg � wh

�
C
�
wg0 � wh0

�
� 1C egh � dgh D 0

GX
gD1

GX
g¤hD1

10
�
dgh � egh

�
D q

wg;wg0 free; dgh ; egh � 0 :

The scoring function corresponding to group g is
fg(x) D w0gxCwg0. “Internal” and “external” deviations
now represent amounts by which the scores of observa-
tions generated by the correct functions exceed or fall
short of their scores from functions belonging to other
groups. The first constraint is repeated for every pair
of groups g; h D 1; : : : ;G; g ¤ h. The second con-
straint, in which q is an arbitrary positive constant, is
a normalization constraint intended to render infeasi-
ble both the trivial solution (all wg identical) and solu-
tions for which the total of the external deviations ex-
ceeds that of the internal deviations. If wg D wh and
wg0 D wh0 for some g ¤ h, the model is applied recur-
sively to the subsamples from only those groups (possi-
bly more than just g and h) that yielded identical scor-
ing functions. The additional functions generated are
used as tie-breakers.
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The number of constraints in an LPCM approximately
equals the number of training observations, while the
number of variables can range from slightly more than
the number of attributes to slightly more than the sum
of the number of observations and the number of at-
tributes, depending on which deviation variables are
included in the model. In practice, the number of ob-
servations will exceed the number of attributes; indeed,
if the difference is not substantial, the model runs the
risk of overfitting the scoring function (in the statis-
tical sense). When the number of deviation variables
is small, then, the LPCM tends to have considerably
more constraints than variables, and a number of au-
thors have suggested solving its dual linear program in-
stead, to reduce the amount of computation. Improve-
ments in both hardware and software have lessened the
need for this, but it may still be useful when sample
sizes reach the tens or hundreds of thousands (which
can happen, for example, when rating consumer credit,
and in some medical applications).

See also

� Deterministic and Probabilistic Optimization
Models for Data Classification

� Linear Programming
�Mixed Integer Classification Problems
� Statistical Classification: Optimization Approaches
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Let F be a field, whose elements are referred to as
scalars. A linear space V over F is a nonempty set on
which the operations of addition and scalar multiplica-
tion are defined. That is, for any x, y 2 V , we have x +
y 2 V , and for any x 2 V and ˛ 2 F we have ˛ x 2 V .
Furthermore, the following propertiesmust be satisfied:
1) x + y = y + x, 8 x, y 2 V .
2) (x + y) + z = x + (y + z), 8 x, y, z 2 V .
3) There exists an element 0 2 V , such that x + 0 = x,
8x 2 V .

4) 8 x 2 V , there exists �x 2 V such that x + (�x) = 0.
5) ˛ (x + y) = ˛ x + ˛ y, 8 ˛ 2 F, 8 x, y 2 V .
6) (˛ + ˇ)x = ˛x + ˇx, 8 ˛, ˇ 2 F, 8 x 2 V .
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7) (˛ˇ)x = ˛(ˇx), 8 ˛, ˇ 2 F, 8 x 2 V .
8) 1x = x, 8x 2 V .

The elements of V are called vectors, and V is also
called a vector space.

See also

� Affine Sets and Functions
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Stated in simplest terms, this article considers, in an ab-
stract mathematical framework, a curve fitting or esti-
mation problem where a given set of data points f is ap-
proximated or estimated by an element from a set K so
that the estimate of f is least affected by perturbations
in f .

Let X be a normed linear space with norm k � k and
K be any (not necessarily convex) nonempty subset of
X. For any f in X, let

d( f ;K) D inf fk f � hk : h 2 Kg (1)

denote the shortest distance from f to K. Let also, for f
in X,

P( f ) D PK( f ) D fh 2 K : k f � hk D d( f ;K)g :

The set-valued mapping P on X is called themetric pro-
jection onto K. It is also called the nearest point map-
ping, best approximation operator, proximity map, etc.
If P(f ) 6D ;, then each element in it is called a best ap-
proximation to (or a best estimate of) f from K. In prac-
tical curve fitting or estimation problems, f represents
the given data and the set K is dictated by the underly-
ing process that generates f . Because of random distur-
bance or noise, f is in general not inK, and it is required
to estimate f by an element of K. See [7,12] and other
references given there for a discussion of such prob-
lems and the use of various norms or distance func-
tions in approximation. An approximation problem or
a minimum distance problem such as (1) involves find-
ing a best approximation, investigating its uniqueness
and other properties, and developing algorithms for its
computation. If P(f ) 6D ; (respectively, P(f ) is a single-
ton) for each f 2 X, then K is called proximinal (respec-
tively, Chebyshev).

If K is proximinal, then we define a selection op-
erator, or simply a selection, to be any (single valued)
function T on X into K so that T(f ) 2 P(f ) for every
f 2 X. If K is Chebyshev, then clearly T = P and T is
unique. A continuous selection operator is a selection T
which is continuous. There is a vast literature available
on the existence and properties of continuous selections
including some survey papers. See, e. g., [1,2,3,6,8] and
other references given there. Amore difficult problem is
finding a Lipschitzian selection operator (LSO) i. e., a se-
lection T which satisfies

kT( f ) � T(h)k � c(T) k f � hk ; all f ; h 2 X; (2)

where c(T) (a positive constant depending upon T) is
the smallest value satisfying (2). An LSO T is called an
optimal Lipschitzian selection operator (OLSO) if c(T)
� c(T0) for all LSO T0. If the operator T in (2) is OLSO,
then (2) shows that the estimate T(f ) of f is least sensi-
tive to changes in the given data f . Consequently, T(f )
is the most desirable estimate of f . The concept of an
OLSO was introduced in [12] and the existence of an
LSO and OLSO was investigated in [13,14,15,16,17]. If
X is a Hilbert space and K � X is nonempty, closed and
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convex, then K is Chebyshev. Then T, which maps f to
its unique best approximation, is an LSO, i. e., T satis-
fies (2) with c(T) = 1. For a proof see [5, p. 100]. Since T
is unique, it is also trivially OLSO. For other spaces, the
results are not so straightforward.

In this paper we present several results which iden-
tify LSOs and OLSOs in approximation problems on
the space of bounded or continuous functions. We il-
lustrate these results by examples.

Lipschitzian Selection Operators

Let S be any set and B denote the Banach space of real
bounded functions f on S with the uniform norm kf k
= sup{|f (s)|: s 2 S}. Similarly, when S is topological, de-
note by C = C(S), the space of real bounded and contin-
uous functions on S, again, with the uniform norm k�k.
Let X = B or C in what follows. We let f 2 X, K � X and
d(f, K) as above. We let d(f ) = d(f, K) for convenience.
For f in X, define Kf = {k 2 K : k � f } and K0 f = {k 2 K
: k � f }. Let

f (s) D sup
˚
k(s) : k 2 K f

�
; s 2 S;

f (s) D inf
n
k(s) : k 2 K0f

o
; s 2 S:

We state three conditions below, they are identical for
X = B or C.
1) If k 2 K, then k + c 2 K for all real c.
2) If f 2 X, then f 2 K.
3) If f 2 X, then f 2 K.
If f and f are in K, then they are called the greatest
K-minorant and the smallest K-majorant of f , respec-
tively. Note that condition 2) (respectively, 3)) implies
that the pointwise maximum (respectively, minimum)
of any two functions in K is also in K. This can be easily
established by letting f = max{f 1, f 2} (respectively, f =
min{f 1, f 2}) where f 1, f 2 2 K. We call a g 2 K themaxi-
mal (respectively, minimal ) best approximation to f 2
X if g � g0 (respectively, if g � g0) for all best approxi-
mations g0 to f .

Theorem 1 Consider (1) with X = B or C, and any
K � X.
a) Assume K is not necessarily convex. Suppose that

conditions 1) and 2) hold for K. Then d( f ) D
k f � f k/2 and f 0 D f C d( f ) is the maximal best
approximation to f . Also k f 0 � h0 k � 2 k f � h k for

all f , h 2 X. The operator T defined T(f ) = f 0 is an
LSO with c(T) = 2.

b) Assume K is not necessarily convex. Suppose that
conditions 1) and 3) hold for K. Then a) holds with
f replaced by f and with f 0 = f � d(f ), which is the
minimal best approximation to f .

c) Assume K is convex. Suppose that conditions 1), 2)
and 3) hold for K. Then a) and b) given above apply.
In addition, d( f ) D (k f � f k)/2. A g in K is a best
approximation to f if and only if f � d( f ) � g �
f C d( f ). Moreover, if f 0 D ( f C f )/2, then f 0 is
a best approximation to f and k f 0 � h0 k � k f � h k
for all f , h 2 X. The operator T defined by T(f ) = f 0 is
an OLSO with c(T) = 1.

The following theorem shows that the existence of
a maximal (respectively, minimal) best approximation
to (1) implies condition 2) (respectively, 3)).

Theorem 2 Consider (1) with X = B or C, and any
K � X. Assume condition 1) holds for K. Assume that
the pointwise maximum (respectively, minimum) of two
function in K is also in K. Then condition 2) (respec-
tively, 3)) holds if the maximal (respectively, minimal)
best approximation to f exists. This best approximation
then equals f C d( f ) (respectively, f � d(f )).

The above theorems and the next one appear in [14,15].
Their proofs are available there. We now define another
approximation problem, closely related to (1). Let

d( f ) D d( f ;Kf ) D inf
˚
k f � hk : h 2 Kf

�
: (3)

The problem is to find a g 2 {h 2 Kf : k f � h k = d(f ,
Kf )}, called a best approximation to f from Kf .

Theorem 3 Consider (3) with X = B or C, and any K �
X which is not necessarily convex.
a) Suppose that conditions 1) and 2) hold for K. Then f

is the maximal best approximation to f and d( f ) D


 f � f



 D 2d( f ). The operator T defined by T( f ) D

f is the unique OLSO with c(T) = 1.
b) Assume condition 1) holds for K. Assume that the

pointwise maximum of two functions in K is also in
K. Then condition 2) holds if the maximum best ap-
proximation to f exists. This best approximation then
equals f .
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Examples and Applications

Example 4 (Approximation by quasiconvex functions.)
Let S� Rn be nonempty convex and consider B = B(S).
For C = C(S) assume S is nonempty, compact and con-
vex. A function h 2 B is called quasiconvex if

h(�sC (1 � �)t) � maxfh(s); h(t)g;

for all s; t 2 S; 0 � � � 1:
(4)

Equivalently, h in B is quasiconvex if one of the follow-
ing conditions holds [9,10]:
� {h� c} is convex for all real c;
� {h < c} is convex for all real c.
Let K be the set of all quasiconvex functions in B. It is
easy to show that K and K \ C are closed cones which
are not convex and both satisfy condition 1) above (K is
a cone if �h 2 K whenever h 2 K and �� 0.) The great-
est K-minorant of f is called the greatest quasiconvex
minorant of f . Using (4) it is easy to show that if f 2 B
then such a minorant f exits in B. The next proposition
shows that if f 2 C then f 2 C.

Let ˘ be the set of all convex subsets of S. Clearly, ',
S 2˘ . For any A � Rn, we denote by co(A) the convex
hull of A, i. e., the smallest convex set containing A.

Proposition 5 Let f 2 X and let

f 0(P) D inf f f (t) : t 2 SnPg ; P 2 ˘;

f (s) D sup
˚
f 0(P) : P 2 ˘; s 2 SnP

�
; s 2 S:

Then the following holds:
� If f 2 B (respectively, C) then f 2 B (respectively, C)

and is quasiconvex. It is the greatest quasiconvex mi-
norant of f .

� An h 2 B is the greatest quasiconvex minorant of
f 2 B if and only if

fh < cg D cof f < cg for all real c: (5)

� An h 2 B is the greatest quasiconvex minorant of
f 2 C if and only if (5) holds or, equivalently, {h �
c} = co{h � c} for all real c.

This proposition and its proof appear in [15]. The
proposition shows that condition 2) holds for K and
K \ C. Hence, Theorems 1a) and 3a) apply toX = B and
K, and also to X = C and K \ C. In particular, Theorem
1a) shows that in each of these two cases the operator T

mapping f to f is LSO with c(T) = 2. Now the example
given in [13, p. 332] shows that T is OLSO.

Example 6 (Approximation by convex functions.) Let
S � Rn be nonempty convex and consider B = B(S).
A function h 2 B is called convex if h(�s + (1 � �)t)
� � h(s) + (1 � �) h(t), for all s, t 2 S and all 0 � �� 1.
Clearly, a convex function is quasiconvex. Let K be the
set of all convex functions in B. It is easy to show that K
is a closed convex cone and satisfies condition 1). The
greatest K-minorant of f is called the greatest convex
minorant of f . It follows at once from the definition of
a convex function that if f 2 B then such a minorant f
exists in B. Condition 2) therefore holds for K. Hence,
Theorems 1a) and 3a) apply to X = B and K. In particu-
lar, the LSO T of Theorem 1a) mapping f to f with c(T)
= 2 can be shown to be an OLSO by using an example
as in [13, p. 334].

Now consider approximation of a continuous function
by continuous convex functions. For this case we let S�
Rn be a polytope which is defined to be the convex hull
of a finitely many points in Rn. It is compact, convex
and locally simplicial [11]. Let K � C = C(S) be the set
of continuous convex functions. It is easy to show that
K is a closed convex cone. Again condition 1) holds for
K. We assert that if f 2 C, then f is convex and con-
tinuous. This will establish that f is the greatest convex
minorant of f . To establish the assertion note that f is
convex since it is the pointwise supremum of convex
functions. Since S is locally simplicial, [11, Corol. 17.2.1;
Thm. 10.2] show that f is continuous on S. Thus, condi-
tion 2) holds for K. Hence Theorems 1a) and 3a) apply
to X = C and K. In particular, the LSO T of Theorem
1a) mapping f to f with c(T) = 2 can be shown to be
an OLSO by using the same example as in the bounded
case above since the sequence used in that example con-
sists of continuous functions [13].

Example 7 (Approximation by isotone functions.) Let S
be any set with partial order�. A partial order is a rela-
tion � on S satisfying [4, p. 4]:
� reflexivity, i. e., s � s for all s 2 S; and
� transitivity, i. e., if s, t, v 2 S, and s� t and t� v, then

s � v.
A partial order is antisymmetric if s� t and t � s imply
s = t. We do not include this antisymmetry condition in
the partial order for sake of generality. We consider B =
B(S) as before, and define a function k in B to be isotone
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if k(s) � k(t) whenever s, t 2 S and s � t. Let K � B be
the set of all isotone functions. It is easy to see that K
is a closed convex cone. It is nonempty since the zero
function is in K. It is easy to verify that conditions 1), 2)
and 3) apply to K. Thus the greatest isotone minorant
f and the smallest isotone majorant f of an f in B exist.
Theorem 1c) and 3a) apply and we conclude that the
operator T of Theorem 1c), mapping f to ( f C f )/2, is
OLSO with c(T) = 1 [15].

The next proposition gives explicit expressions for f
and f . We call a subset E of S a lower (respectively, up-
per) set if whenever t 2 E and v � t (respectively, t �
v), then v 2 E. For s in S, let Ls = {t 2 S, t � s} and Us =
{t 2 S, s � t}. Then, Ls (respectively, Us) is the smallest
lower (respectively, upper) set containing s, as may be
easily seen.
Proposition 8

f (s) D sup f f (t) : t 2 Lsg ;

f (s) D inf f f (t) : t 2 Usg :

For a proof, see [15].
Now we consider an application to C. Define S = ×

{[ai, bi]: 1 � i � n} � Rn, where ai < bi, and let � be
the usual partial order on vectors. Let C = C(S) and let
K be the set of isotone functions in C. It is easy to verify
that K is a closed convex cone. Furthermore, if f 2 C,
then f ; f 2 C. We conclude, as before, that Theorems
1c) and 3a) apply. Various generalizations of this prob-
lem exist. See, for example, [12, Sect. 5], [15, Ex. 4.3],
and [17].

As was observed in [16], the dual cone of K plays
an important role in duality and approximation from
K. Some properties of the cone K of isotone functions
on a finite partially ordered set S and its dual cone are
obtained in [18].

See also

� Convex Envelopes in Optimization Problems
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Discrete optimization problems are solved using a vari-
ety of state space search techniques. The choice of tech-
nique is influenced by a variety of factors such as avail-
ability of heuristics and bounds, structure of state space,
underlying machine architecture, availability of mem-
ory, and optimality of desired solution. The computa-
tional requirements of these techniques necessitates the
use of large scale parallelism to solve realistic problem
instances. In this chapter, we discuss parallel processing
issues relating to state space search.

Parallel platforms have evolved significantly over
the past two decades. Symmetric multiprocessors
(SMPs), tightly coupled message passing machines, and
clusters of workstations and SMPs have emerged as the
dominant platforms. From an algorithmic standpoint,
the key issues of locality of data reference and load bal-
ancing are key to effective utilization of all these plat-
forms. However, message latencies, hardware support
for shared address space and mutual exclusion, com-
munication bandwidth, and granularity of parallelism
all play important roles in determining suitable parallel
formulations. A variety of metrics have also been de-
veloped to evaluate the performance of these formula-
tions. Due to the nondeterministic nature of the com-
putation, traditional metrics such as parallel runtime
and speedup are difficult to quantify analytically. The
scalability metric, Isoefficiency, has been used with ex-
cellent results for analytical modeling of parallel state
space search.

The state spaces associated with typical optimiza-
tion problems can be fashioned in the form of either
a graph or a tree. Exploiting concurrency in graphs is
more difficult compared to trees because of the need

for replication checking. The availability of heuristics
for best-first search imposes constraints on parallel ex-
ploration of states in the state space. For the purpose
of parallel processing, we can categorize search tech-
niques loosely into three classes: depth-first tree search
techniques (a tree search procedure in which the deepest
of the current nodes is expanded at each step), best-first
tree search techniques (a tree search procedure in which
nodes are expanded based on a global (heuristic) mea-
sure of how likely they are to lead to a solution), and
graph search techniques (a search requiring additional
computation for checking if a node has been encoun-
tered before, since a node can be reached frommultiple
paths). Many variants of these basic schemes fall into
each of these categories as well.

Parallel Depth-First Tree Search

Search techniques in this class include ordered depth-
first search, iterative deepening A
 (IDA
), and
depth—first branch and bound (DFBB). In all of these
techniques, the key ingredient is the depth-first search
of a state space (cost-bounded in the case of IDA
 and
DFBB). DFS was among the first applications explored
on early parallel computers. This is due to the fact that
DFS is very amenable to parallel processing. Each sub-
tree in the state space can be explored independently
of other subtrees in the space. In simple DFS, there is
no exchange of information required for exploring dif-
ferent subtrees. This implies that it is possible to de-
vice simple parallel formulations by assigning a distinct
subtree to each processor. However, the space associ-
ated with a problem instance can be highly unstruc-
tured. Consequently, the work associated with subtrees
rooted at different nodes can be very different. There-
fore, a naive assignment of a subtree rooted at a dis-
tinct node to each processor can result in considerable
idling overhead and poor parallel performance. The
problem of designing efficient parallel DFS algorithms
can be viewed in two steps: the partitioning problem
and the assignment problem. The partitioning problem
addresses the issue of breaking up a given search space
into two subspaces. The assignment problem thenmaps
subspaces to individual processors.

There are essentially two techniques for partitioning
a given search space: node splitting and stack splitting.
In node splitting, the root node of a subtree is expanded
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to generate a set of successor nodes. Each of these nodes
represents a distinct subspace. While node splitting is
easy to understand and implement, it can result in
search spaces of widely varying sizes. Since the objective
of the assignment problem is to balance load while min-
imizing work transfers, widely varying subtask sizes are
not desirable. An alternate technique called stack split-
ting attempts to partition a search space into two by as-
signing some nodes at all levels leading up to the spec-
ified node. Thus if the current node is at level 4, stack
splitting will split the stack by assigning some nodes at
levels 1, 2, and 3 to each partition. In general, stack split-
ting results in a more even partitioning of search spaces
than node splitting.

We can now formally state the assignment problem
for parallel DFS as a mapping of subtasks to processors
such that:
� the work available at any processor can be parti-

tioned into independent work pieces as long as it is
more than some nondecomposable unit;

� the cost of splitting and transferring work to another
processor is not excessive (i. e. the cost associated
with transferring a piece of work is much less than
the computation cost associated with it);

� a reasonable work splitting mechanism is available;
i. e., if work w at one processor is partitioned in 2
parts  w and (1 �  )w, then 1� ˛ >  > ˛, where
˛ is an arbitrarily small constant;

� it is not possible (or is very difficult) to estimate the
size of total work at a given processor.

A number of mapping techniques have been proposed
and analyzed in literature [5,7,8,9,11,16]. These map-
ping techniques are either initiated by a processor with
work (sender initiated, the processor with work ini-
tiates the work transfer) or a processor looking for
work (receiver initiated, an idle processor initiates the
work transfer). In the global round robin request (GRR,
idle processors in the global round robin scheme re-
quest processors for work in a round-robin fashion us-
ing a single (global) counter) receiver initiated scheme,
a single counter specifies the processor that must re-
ceive the next request for work. This ensures that work
requests are uniformly distributed across all processors.
However, this scheme suffers from contention at the
processor holding the counter. Consequently, the per-
formance of this scheme is poor beyond a certain num-
ber of processors. A message combining variant of this

scheme (GRR-M, a variant of the global round robin
scheme in which requests for value of global counter
are combined to alleviate contention overheads) relies
on combining intermediate requests for the counter
into single request. This alleviates the contention and
performance bottleneck of the GRR scheme. The asyn-
chronous round robin balancing (ARR, i. e. each proces-
sor selects a target for work request in a round robin
manner using a local counter) uses one counter at each
processor. Each processor uses its counter to deter-
mine the next processor to query for work. While this
scheme balances work requests in a local sense, these
requests may become clustered in a global sense. In the
random polling scheme (RP, i. e. idle processors send
work requests to a randomly selected target processor),
each processor selects a random processor and requests
work. In near-neighbor load balancing scheme (NN, i. e.
an idle processor requests one of its immediate neigh-
bors for work), processors request work from their im-
mediate neighbors. This scheme has the drawback that
localized hot-spots may take a long time to even out.

In sender initiated schemes a processor with work
can give some of its work to a selected processor
[6,16]. This class of schemes includes the master-slave
(MS) and randomized allocation (RA) schemes. In the
MS scheme, a processor, designated master, generates
a fixed number of work pieces. These work-pieces are
assigned to processors as they exhaust previously as-
signed work. The master may itself become the bottle-
neck when the number of processors is large. Multilevel
master-slave algorithms have been used to alleviate this
bottleneck. Randomized allocation schemes are sender
initiated counterparts of RP schemes. In randomized
allocation, a processor sends a part of its work to a ran-
domly selected processor.

The performance and scalability of these techniques
is often dependent on the underlying architecture.
Many of these techniques are, in principle scalable, i. e.,
they result in linear speedup on increasing the number
of processors p as long as the size of the search space
grows fast enough with p. It is desirable that this re-
quired rate of growth of problem size (also referred to
as the iso-efficiency metric [10]) be as small as possible
since it allows the use of a larger number of processors
effectively for solving a given problem instance. In Ta-
ble 1, we summarize the iso-efficiency functions of var-
ious load balancing techniques.
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Scalability results of receiver initiated load balancing
schemes for various architectures

Arch
Scheme

Shared H-cube Mesh
(2D)

W/S
Cluster

ARR p2 log p p2 log2 p p2:5 log p p3 log p

NN p2 log p plog
1+1/˛

2 k
p

p p3 log p
GRR p2 log p p2 log p p2 log p p2 log p
GRR-M p log p p log2 p p1:5 log p
RP p log2 p p log2 p p1:5 log2 p p2 log2 p
Lower
Bound

p p log p p1:5 p2

IDA
 and DFBB search techniques use this basic
parallel DFS algorithm for searching state space. In
IDA
 , each processor has a copy of the global cost
bound. Processors perform parallel DFS with this cost
bound. At the end of each phase, the cost is updated
using a single global operation. Some schemes for al-
lowing different processors to work with different cost
bound have also been explored. In this case, a solution
cannot be deemed optimal until search associated with
all previous cost bounds has been completed. DFBB
technique uses a global current best solution to bound
parallel DFS. Whenever a processor finds a better solu-
tion, it updates this global current best solution (using
a broadcast in message passing machines and a lock-set
in shared memory machines). DFBB and IDA
 using
these parallel DFS algorithms has been shown to yield
excellent performance for various optimization prob-
lems [3,13,19].

In many optimization problems, the successors of
nodes tend to be strongly ordered. In such cases, naive
parallel formulations that ignore this ordering infor-
mation will perform poorly since they are likely to ex-
pand a much larger subspace than those that explore
nodes in the right order. Parallel DFS formulations for
such spaces associate priorities with nodes. Nodes with
largest depth and highest likelihood of yielding a solu-
tion are assigned the highest priority. Parallel ordered
DFS then expands these nodes in a prioritized fashion.

Parallel Best-First Tree Search

Best-first tree search algorithms rely on an open list (i. e.
a list of unexplored configurations sorted on their qual-

ity) to sort available states on the basis of their heuristic
solution estimate. If this heuristic solution estimate is
guaranteed to be an underestimate (as is the case in the
A
 algorithm), it can be shown that the solution found
by BFS is the optimal solution. The presence of a glob-
ally ordered open list makes it more difficult to paral-
lelize BFS. In fact, at the first look, BFS may appear in-
herently serial since a node with higher estimated so-
lution cost must be explored only after all nodes with
lower costs have been explored. However, it is possible
that there may be multiple nodes with the best heuris-
tic cost. If the number of such nodes is less than the
number of available processors, then some of the nodes
with poorer costs may also be explored. Since it is pos-
sible that these nodes are never explored by the serial
algorithm, this may result in excess work by the parallel
formulation resulting in deceleration anomalies. These
issues of speedup anomalies resulting from excess (or
lesser) work done by the parallel formulations of state
space search are discussed later.

A simple parallel formulation of BFS uses a global
open list. Each processor locks the list, extracts the best
available node and unlocks the list. The node is ex-
panded and heuristic estimates are determined for each
successor. The open list is locked again and all suc-
cessors are inserted into the open list. Note that since
the state space is a tree, no replication checking is re-
quired. The open list is typically maintained in the form
of a global heap. The use of a global heap is a source of
contention. If the time taken to lock, remove, and un-
lock the top element of the heap is taccess and time for
expansion is texp, then the speedup of the formulation
is bounded by (taccess + texp)/taccess. A number of tech-
niques have been developed to effectively reduce the ac-
cess time [17]. These techniques support concurrent ac-
cess to heaps stored in shared memory while maintain-
ing strict insertion and deletion ordering. While these
increase the upper bound on possible speedup, the per-
formance of these schemes is still bounded.

The contention associated with the global data
structure can be alleviated by distributing the open list
across processors. Now, instead of p processors shar-
ing a single list, they operate on k distinct open lists.
In the limiting case, each processor has its own open
list. A simple parallel formulation based on this frame-
work starts off with the initial state in one heap. As
additional states are generated, they are shipped off to
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the other heaps. As nodes become available in other
heaps, processors start exploring associated state space
using local BFS. While it is easy to keep all processors
busy using this framework, it is possible that some of
the processors may expand nodes with poor heuris-
tic estimates that are never expanded by the serial for-
mulation. To avoid this, we must ensure that all open
lists have a share of the best globally available nodes.
This is also referred to as quality equalization (the pro-
cess of ensuring that all processors are working on re-
gions of state-space of high quality). Since the quality of
nodes evolves with time, quality equalization must be
performed periodically. Several triggering mechanisms
have been developed to integrate quality equalization
with load balancing [1,19]. A simple triggering mecha-
nism tracks the best node in the system. The best node
in the local heap is compared to the best node in the
system and if it is considerably worse, an equalization
process is initiated. Alternately, an equalization process
may be initiated periodically. The movement of nodes
between various heaps may itself be fashioned in a well
defined topology. Lists may be organized into rings,
shared blackboards, or hierarchical structures. These
have been explored for several applications and archi-
tectures. Speedups in excess of 950 have been demon-
strated on 1024 processor hypercubes in the context of
TSPs formulated as best-first tree search problems [2].

Searching State Space Graphs

Searching state space graphs presents additional chal-
lenges since we must check for replicated states during
search. The simplest strategy for dealing with graphs is
to unroll them into trees. The overhead of unrolling
a graph into a tree may range from a constant to an
exponential factor. If the overhead is a small constant
factor, the resulting tree may be searched using parallel
DFS or BFS based techniques. However, for most graph
search problems, this is not a feasible solution.

Graph search problems rely on a closed list (i. e. a list
of all configurations that have been previously encoun-
tered) that keeps track of all nodes that have already
been explored. Closed lists are typically maintained as
hash tables for searching. In a shared memory context,
insertion of nodes into the closed list requires locking of
the list. If there is a single lock associated with the en-
tire list, the list must be locked approximately as many

times as the total number of nodes expanded. This rep-
resents a serial bottleneck. The bottleneck can be alle-
viated by associating multiple locks with the closed list.
Processors lock only relevant parts of the closed list into
which the node is being inserted.

Distributed memory versions of this parallel algo-
rithm physically distribute the closed list across the pro-
cessors. As nodes are generated, they are hashed to the
appropriate processor that holds the respective part of
the hash table. Search is performed locally at this pro-
cessor and the node is explored further at this processor
if required. This has two effects: if the hash function as-
sociated with the closed list is truly randomized, this has
the effect of load balancing using randomized alloca-
tion. Furthermore, since nodes are randomly allocated
to processors, there is a probabilistic quality equal-
ization for heuristic search techniques. These schemes
have been studied by many researchers [14,15]. As-
suming a perfectly random hash function, it has been
shown that if the number of nodes originating at each
processor grows as O(log p), then each processor will
have asymptotically equal number of nodes after the
hash operation [15]. Since each node is associated with
a communication, this puts constraints on the architec-
ture bandwidth. Specifically, the bisection width of the
underlying architecture must increase linearly with the
number of processors for this formulation to be scal-
able.

A major drawback of graph search techniques such
as BFS is that its memory requirement grows linearly
with the search space. For large problems, this mem-
ory requirement becomes prohibitive. Many limited-
memory variants of heuristic search have been devel-
oped. These techniques rely on retraction or delayed
expansion of less promising nodes to reduce memory
requirement. In the parallel processing context, retrac-
tions lead to additional communication and indexing
for parent-child relationships [4].

Anomalies in Parallel Search

As we have seen above, it is possible for parallel formu-
lations to do more or less work than the serial search
algorithm. The ratio of nodes searched by the paral-
lel and serial algorithms is called the search overhead
factor (i. e. the ratio of excess work done by a parallel
search formulation with respect to its serial formula-
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tion). A search overhead factor of greater than one in-
dicates a deceleration anomaly and less than one indi-
cates an acceleration anomaly. An acceleration anomaly
manifests itself in a speedup greater than p on p pro-
cessors. It can be argued however that in these cases,
the base sequential algorithm is suboptimal and a time-
multiplexed serialization of the parallel algorithm is in
fact a superior serial algorithm.

In DFS and related techniques, parallel formu-
lations might detect solutions available close to the
root on alternate branches, whereas serial formulations
might search large parts of the tree to the left before
reaching this node. Conversely, parallel formulations
might also expand a larger number of nodes than the se-
rial version. There are situations, in which parallel DFS
can have a search overhead factor of less than 1 on the
average, implying that the serial search algorithm in the
situation is suboptimal. V. Kumar and V.N. Rao [18]
show that if no heuristic information is available to or-
der the successors of a node, then on the average, the
speedup obtained by parallel DFS is superlinear if the
distribution of solutions is nonuniform.

In BFS, the strength of the heuristic determines
the search overhead factor. When strong heuristics are
available, it is likely that expanding nodes with lower
heuristic values will result in wasted effort. In general, it
can be shown that for any given instance of BFS, there
exists a number k such that expanding more than k
nodes in parallel from a global open list leads to wasted
computation [12]. This situation gets worse with dis-
tributed open lists since expanded nodes have locally
minimum heuristics that are not the best nodes across
all open lists. In contrast, the search overhead factor can
be less than one if there are multiple nodes with iden-
tical heuristic estimates and one of the processors picks
the right one.

Applications of Parallel Search Techniques

Parallel search techniques have been applied to a vari-
ety of problems such as integer and mixed integer pro-
gramming, and quadratic assignment for applications
ranging from path planning and resource location to
VLSI packaging. Quadratic assignment problems from
the Nugent–Eschermann test suites with up to 4.8 ×
1010 nodes have been solved on parallel machines in
days. Traveling salesman problems with thousands of
cities and mixed integer programming problems with

thousands of integer variable are within the reach of
large scale parallel machines. While the use of paral-
lelism increases the range of solvable problems, design-
ing effective heuristic functions is critical. This has the
effect of reducing effective branching factor and thus
inter-node concurrency. However, the computation of
the heuristic can itself be performed in parallel. The
use of intra-node parallelism in addition to inter-node
parallelism has also been explored. While significant
amounts of progress has been made in effective use of
parallelism in discrete optimization, with the develop-
ment of new heuristic functions, opportunities for sig-
nificant contributions abound.

See also

� Asynchronous Distributed Optimization
Algorithms

� Automatic Differentiation: Parallel Computation
� Heuristic Search
� Interval Analysis: Parallel Methods for Global

Optimization
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� Stochastic Network Problems: Massively Parallel
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In the classic unconstrained minimization problem,
a continuously differentiable real-valued function f is
given on a normed vector spaceX and the goal is to find
points inXwhere the infimum of f is achieved or closely
approximated. Descent methods for this problem start
with some nonoptimal point x0, search for a neighbor-
ing point x1 where f (x1) < f (x0), and so on ad infinitum.
At each stage, the search is typically guided by a local
model based on derivatives of f .

If f is convex and every local minimizer is therefore
automatically a global minimizer, then well-designed
descent methods can indeed generate minimizing se-
quences, i. e., sequences {xk} for which

lim
k!1

f (xk) D inf
x2X

f (x): (1)

On the other hand, nonconvex cost functions can
have multiple local minimizers and any of these may
attract the iterates of the standard descent schemes.
This behavior is examined here for a large class of
gradient-related descent methods, and for local min-
imizers that need not satisfy the usual nonsingular-
ity hypotheses. In addition, the analytical formulation
adopted yields nontrivial local convergence theorems in
infinite-dimensional normed vector spacesX. Such the-
orems are not without computational significance since
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they often help to explain emerging trends in algorithm
behavior for increasingly refined finite-dimensional ap-
proximations to underlying infinite-dimensional opti-
mization problems.

Differentials and Gradients

In a general normed vector space X, the first (Fréchet)
differential of f at a point x is a linear function f 0(x): X
! R1 that satisfies the following conditions:

ˇ̌

 f 0(x)

ˇ̌ defD sup
kukD1

ˇ̌
f 0(x)u

ˇ̌
<1; (2)

lim
kdk!0

j f (x C d) � f (x)� f 0(x)dj
kdk

D 0: (3)

Since f 0(x)d is linear in d, condition (2) holds if and only
if f 0(x)d is continuous in d. Condition (2) is automati-
cally satisfied in any finite-dimensional spaceX. The re-
maining condition (3) asserts that f (x)+ f 0(x)d asymp-
totically approximates f (x+d) with an o(kdk) error as d
approaches zero. At most one linear function can sat-
isfy these conditions in some norm on X. If conditions
(2) and (3) do hold in the norm k�k, then f is said to be
(Fréchet) differentiable at x (relative to the norm k�k). If
f is differentiable near x 2 X and if

lim
ky�xk!0

ˇ̌

 f 0(y) � f 0(x)


ˇ̌ D 0; (4)

then f is continuously differentiable at x. Note that in
finite-dimensional spaces, all norms are equivalent and
conditions (2)–(4) hold in any norm if they hold in
some norm. However, two norms on the same infinite-
dimensional space need not be equivalent, and continu-
ity and differentiability are therefore norm-dependent
properties at this level of generality.

In the Euclidean spaceX =Rn, f is continuously dif-
ferentiable if and only if the partial derivatives of f are
continuous; moreover, when f has continuous partial
derivatives, f 0(x) is specified by the familiar formula,

f 0(x)d D hr f (x); di ; (5)

where h�, �i is the standard Euclidean inner product and
rf (x) is the corresponding gradient of f at x, i. e.,

hx; yi D
nX

iD1

xi yi

and

r f (x) D
�
@ f
@x1

(x); : : : ;
@ f
@xn

(x)
�
:

When rf (�) is continuous, conditions (2)–(4) can be
proved for the linear function in (5) with a straightfor-
ward application of the chain rule, Cauchy’s inequality
and the one-dimensional mean value theorem. In ad-
dition, it can be shown that d = r f (x) is the unique
solution of the equations,

kdk D
ˇ̌

 f 0(x)

ˇ̌ (6)

and

f 0(x)d D
ˇ̌

 f 0(x)

ˇ̌ kdk ; (7)

where k�k and |k�k| are induced by the Euclidean inner
product on Rn.

The circumstances in the Euclidean space Rn sug-
gest a natural extension of the gradient concept in gen-
eral normed vector spaces X. Let f be differentiable at
x 2 X. Then any vector d 2 X that satisfies conditions
(6)–(7) will be called a gradient vector for f at x. Note
that the symbols k�k and |k�k| in (6)–(7) now signify the
norm provided on X and the corresponding operator
norm in (2). Depending on the space X, its norm k�k
and the point x, conditions (6)–(7) may have no solu-
tions for d, or a unique solution, or infinitely many so-
lutions.

In any finite-dimensional space X, linear functions
are continuous, the unit sphere {u 2X: kuk = 1} is com-
pact, the supremum in (2) is therefore attained at some
unit vector u, and the existence of solutions d for (6)–
(7) is consequently guaranteed. On the other hand, f
may have infinitely many distinct gradients at a point
x if the norm on X is not strictly convex. For example,
if X = Rn and kxk = max1� i� n|xi|, then f 0(x) is pre-
scribed by (5), and

ˇ̌

 f 0(x)

ˇ̌ D
nX

iD1

ˇ̌
ˇ̌ @ f
@xi

(x)
ˇ̌
ˇ̌ :

Moreover, d is a gradient vector for f at x if and only if

d D
ˇ̌

 f 0(x)

ˇ̌ u

and

ui 2 sgn
�
@ f
@xi

(x)
�
;
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where sgn(t) = {�1} or [�1, 1] or {1} for t < 0, t = 0 and
t > 0, respectively.

The existence of gradients can also be proved in re-
flexive infinite-dimensional spaces X where bounded
linear functions are weakly continuous and closed unit
balls are weakly compact. In nonreflexive spaces, condi-
tions (6)–(7) may not have solutions d; however, in any
normed vector space and for any fixed arbitrarily small
� 2 (0, 1), the relaxed conditions,

kdk D
ˇ̌

 f 0(x)

ˇ̌ (8)

and

f 0(x)d � (1 � �)
ˇ̌

 f 0(x)

ˇ̌ kdk ; (9)

always have solutions d. This follows easily from (2)
and the meaning of sup. The solutions of (8)–(9) will be
called �-approximate gradients of f at x. They occupy
a central position in the present formulation of the sub-
ject algorithms.

Gradient-Related Descent Methods

If f 0 (x) = 0, then x is called a stationary point of f . If
f 0 (x) 6D 0, then x is not stationary and the set {d 2 X:
f 0(x)d < 0} is a nonempty open half-space. An element
d in this half-space is called a descent vector since condi-
tion (3) immediately implies that f (x + td) < f (x) when t
is positive and sufficiently small. If d is a �-approximate
gradient at a nonstationary point x, then according to
(8)–(9),

f 0(x)(�d) � �(1 � �)
ˇ̌

 f 0

ˇ̌2 < 0:

Hence�d is a descent vector. In particular, if d is a gra-
dient at a nonstationary point x, then �d is a steepest
descent vector in the sense that

f 0(x)(�d) � f 0(x)v; (10)

for all v 2 X such that kvk = kdk.
Suppose that �, �1, and �2 are fixed positive num-

bers, with � 2 (0, 1) and �2 � �1 > 0. At each x 2 X, let
G�(x) denote the nonempty set of �-approximate gra-
dients for f at x and let G(x) be a nonempty subset of
the set of all multiples �d with � 2 [�1, �2] and d 2
G�(x), i. e.,

; ¤ G(x) �
[


2[
1;
2]

�G�(x): (11)

The corresponding set-valued mapping G(�) is referred
to here as a gradient-related set function with pa-
rameters �, �1 and �2. In the present development,
a gradient-related iterative descent method consists of
a gradient-related set function G(�), and a rule that se-
lects a vector dk 2 G(xk) at each iterate xk, and another
rule that determines the steplength parameter sk 2 (0, 1]
in the recursion,

xkC1 D xk � skdk ; (12)

once dk has been chosen. The sequences {xk} gener-
ated by this recursion are called gradient-related suc-
cessive approximations. (For related formulations, see
[3,4,10].) The convergence theorems described later in
this article depend only on basic properties of gradient-
related set functions and the steplengths sk, hence the
precise nature of the rule for selecting dk in G(xk) is
not important here. This rule may refer to prior iter-
ates {xi}i� k, or may even be random in nature. There
are also many alternative steplength rules that achieve
sufficient reductions in f at each iteration in (12) and
move the successive approximations xk toward regions
in the domain of f that are interesting in at least a local
sense [3,4,10].

Descent Method Prototypes

When gradients of f exist and f attains its infima on
lines inX, the steepest descent and exact line minimiza-
tion rules for d and s yield the prototype steepest descent
method,

xkC1 D xk � skdk ; (13)

where

sk 2 argmin
t>0

f (xk � tdk ) (14)

and dk is any solution of (6)–(7) for x = xk. Note that
the actual reduction in f achievable on a steepest de-
scent half-line {y 2 X: 9t > 0, y = x � td} may be
smaller than that attainable on other half-lines, since
(10) merely refers to norm-dependent local directional
rates of change for f at x. Thus the name of this method
is somewhat misleading.

Newtonian descent algorithms also amount to spe-
cial gradient-related descent methods near a certain
type of nonsingular local minimizer x�. These schemes
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employ variants of the restricted line minimization
steplength rule,

sk 2 arg min
t2(0;1]

f (xk � tdk); (15)

and replace the gradients dk in a steepest descent iter-
ation by descent vectors that approximate the Newton
increment,

dN (xk) D f 00(xk)�1 f 0(xk): (16)

Gradient-related descent vector approximations to
dN(xk) are generated in some neighborhood of x�

by various quasi-Newton auxiliary recursions, pro-
vided that the following (interdependent) nonsingular-
ity conditions hold:
i) f is twice continuously (Fréchet) differentiable at

x�;
ii) f 00(x�) satisfies the coercivity condition

( f 00(x�)v)v � c kvk2

for some c > 0 and all v 2 X;
iii) A bounded inverse map f 00(x)�1 exists for all x suf-

ficiently near x�;
iv) f 00(�)�1 is continuous at x�.

Near a nonsingular local minimizer, the local con-
vergence rates for Newtonian descent methods are gen-
erally much faster than the steepest descent conver-
gence rate [8,10]. On the other hand, near singular lo-
cal minimizers the Newton increments dN(xk) and their
quasi-Newton approximations are typically not con-
fined to the image sets G(xk) of some gradient-related
set functionG(�), andmay actually be undefined on con-
tinuous manifolds in X containing x�. Under these cir-
cumstances, the unmodified Newtonian scaling princi-
ples can degrade or even destroy local convergence. In
any case, the convergence properties of Newtonian de-
scent methods near singular local minimizers x� are not
well-understood, and are likely to depend on the higher
order structure of the singularity at x�.

The Armijo Steplength Rule

The line minimization steplength rules in (14) and (15)
can be very effective in special circumstances; however,
they are more often difficult or impossible to imple-
ment, and are not intrinsically ‘optimal’ in any gen-
eral sense when coupled with standard descent direc-
tion rules based on local models of f . By their very

nature, such schemes do not anticipate the effect of
current search direction and steplength decisions on
the reductions achievable in f in later stages of the
calculation. Therefore, over many iterations, the exact
line minimization rule may well produce smaller to-
tal reductions in f than other much simpler steplength
rules that merely aim for local reductions in f that are
‘large enough’ compared with |kf 0(x)k| at each itera-
tion. A. Goldstein and L. Armijo proposed the first
practical steplength rules of this kind in [1,8,9] for
steepest descent and Newtonian descent methods inRn.
These rules and other related schemes described in [10]
and [4] are easily adapted to general gradient-related it-
erations. The present development focusses on the local
convergence properties of the simple Armijo rule de-
scribed below; however, with minor modifications, the
theorems set forth here extend readily to the Goldstein
rule and other similar line search formulations.

Let G(�) be a gradient-related set function with pa-
rameters �, �1 and �2. Fix ˇ in (0, 1) and ı in (0, 1),
and for each x in X and d in G(x) construct s(x, d) 2 (0,
1] with the Armijo steplength rule,

s(x; d) D max t (17)

subject to

t 2 f1; ˇ; ˇ2; : : :g

and

f (x) � f (x � td) � ıt f 0(x)d:

When x is not stationary and �d is any descent vector,
the rule (17) admits precisely one associated steplength
s(x, d) 2 (0, 1]. This is true because ˇk converges to zero
as k!1 and

f (x) � f (x � td)

D ı f 0(x)td C (1 � ı) f 0(x)td C o(t)

� ı f 0(x)td

for t positive and sufficiently small, in view of (3).When
x is stationary, (17) yields s(x, d) = 1 trivially for every
vector d.

Fixed Points

Descent methods based on gradient-related set func-
tions and Armijo’s rule generate sequences {xk} that sat-
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isfy

xkC1 2 T(xk); k D 0; 1; : : : ; (18)

where

T(x) def
D fy : 9d 2 G(x); y D x � s(x; d)dg : (19)

The convergence theory outlined in the following
sections addresses the behavior of all such Armijo
gradient-related sequences near fixed points of the set-
valued map T(�): X! 2X. The roots of this theory lie
in Bertsekas’ convergence proof for steepest descent it-
erates near nonsingular local minimizers in Rn [2], and
subsequent modifications of this proof strategy for gra-
dient projection methods and singular local minimiz-
ers in finite-dimensional or infinite-dimensional vector
spaces with inner products [6,7]. For related nonlocal
theories, see [10] and [4].

By definition, x� is a fixed point of T(�) if and only if

x� 2 T(x�):

Since Armijo’s rule produces nonzero steplengths s(x,
d), it follows that x� is a fixed point of T(�) if and only if
x� is a stationary point of f . More precisely,

Proposition 1 Let T(�) be an Armijo gradient-related
iteration map in (19). Then for all x 2 X,

x 2 T(x), T(x) D fxg
, G(x) D f0g , f 0(x) D 0: (20)

According to Proposition 1, any Armijo gradient-
related sequence {xk} that intercepts a fixed point x� of
T(�) must terminate in x�. Conversely, if {xk}terminates
in a vector x�, then x� is a fixed point of T(�), and
hence a stationary point of f . On the other hand, Armijo
gradient-related sequences that merely pass near some
stationary point x� may or may not converge to x�.

Local Attractors: Necessary Conditions

A vector x� is said to be a local attractor for an Armijo
gradient-related iteration (18) if and only if there is
a nonempty open ball,

B(x�; �) D fx 2 X : kx � x�k < �g

with center x� and radius � > 0 such that every sequence
{xk} which satisfies (18) and enters the ball B(x�, �)
must converge to x�, i. e.,

9l ; xl 2 B(x�; �)) lim
k!1




xk � x�



 D 0: (21)

With Proposition 1 and another rudimentary result for
gradient-related set functions and Armijo steplengths,
it is readily shown that a local attractor must be a strict
local minimizer of f and an isolated stationary point of
f .

Proposition 2 Let � 2 (0, 1), �1 > 0, and ı 2 (0, 1) be
fixed parameter values in the gradient-related set func-
tion G(�) and Armijo rule (17), and put c1 = ı (1 � �)�1

> 0. Then for all x 2 X and d 2 G(x),

f (x)� f (x � s(x; d)d) � c1s(x; d)
ˇ̌

 f 0(x)

ˇ̌2 : (22)

Corollary 3 Let T(�) be the Armijo gradient-related it-
eration map in (19). If {xk} is generated by the corre-
sponding gradient-related iteration (18), then for all k =
0, 1, . . . ,

f (xkC1) � f (xk) (23)

and

f 0(xk) ¤ 0) f (xkC1) < f (xk): (24)

Since f is continuous, the claimed necessary conditions
for local attractors are now immediate consequences of
Proposition 1 and Corollary 3.

Theorem 4 A vector x� is a local attractor for an
Armijo gradient-related iteration (18) only if x� is an iso-
lated stationary point and a strict local minimizer of f ,
i. e., only if there is a nonempty open ball B(x�, ��) that
excludes every other stationary point x 6D x�, and also
excludes points x 6D x� at which f (x) � f (x�).

The conclusion in Theorem 4 actually applies more
generally to set-valued iteration maps T(�) prescribed
by any steplength rule that guarantees the fixed-point
characterization (20) and the descent property (23)–
(24). On the other hand, related converse assertions are
tied more closely to special properties of the Armijo
rule and its variants, and to certain local uniform
growth conditions on f and |kf 0(�)k|. If X is a finite-
dimensional space, and x� is a strict local minimizer
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and an isolated stationary point, then the requisite uni-
form growth conditions automatically hold near x� and
the full converse of Theorem 4 can be proved. If X is an
infinite-dimensional space, the growth conditions be-
come hypotheses in a weaker but still nontrivial partial
converse of Theorem 4. This is explained in greater de-
tail below.

Local Attractors: Sufficient Conditions

If x� is a strict local minimizer of f , then for some �� >
0 and all x in the closed ball,

B(x�; ��) D fx 2 X : kx � x�k � ��g ;

the quantity f (x) � f (x�) is strictly positive when x 6D
x�. In finite-dimensional spaces, it is possible to say
more. If dim X <1, then for each t 2 (0, ��] the corre-
sponding closed annulus,

A(t; ��) D fx : t � kx � x�k � ��g ; (25)

is compact. Since the function f (�)� f (x�) is continuous
and positive in A(t, ��), it must attain a positive mini-
mum value in this set, i. e.,

˛(t) def
D min

x2A(t;��)
f (x)� f (x�) > 0; (26)

for each t 2 (0, ��]. Put ˛(0) = 0 and note that for all
t1, t2, 0 < t1 < t2 � �� ) A(t1, ��) � A(t2, ��) )
˛(t1) � ˛(t2). This establishes the following uniform
growth property for strict local minimizers in finite-
dimensional spaces.

Lemma 5 Let X be a finite-dimensional normed vector
space. If x� is a strict local minimizer for f , then there is
a positive number �� and a positive definite nondecreas-
ing real-valued function ˛(�) on [0, ��] such that,

f (x) � f (x�) � ˛(kx � x�k); (27)

for all x 2 B(x�; ��).

In infinite-dimensional spaces, the uniform growth
condition (27) need not hold at every strict local
minimizer; however, when this condition is satisfied,
the minimizer x� has a crucial stability property for
gradient-related descent methods. More specifically,
suppose that (27) holds and T(�) is an Armijo iteration
map (19) with associated parameter �2 > 0. Since de-
scent directions can not exist at a local minimizer, the

vector x� must be a stationary point. Fix � 2 (0, ��] and
note that since f 0(�) is continuous and f 0(x�) = 0, there
is a �� 2 (0, �] for which

kx � x�k C �2
ˇ̌

 f 0(x)

ˇ̌ < � (28)

for all x 2 B(x�, ��). Now construct the corresponding
set,

I(�) D fx 2 B(x�; �) : f (x)� f (x�) < ˛(��)g : (29)

By Proposition 2, the simple descent property,

f (x � s(x; d)d) � f (x) (30)

holds for all x and all d 2G(x), hence the restriction (28)
and the properties of ˛(�) insure that I(�) is an invariant
set for T(�), i. e., T(x) � I(�) for all x 2 I(�). Moreover,
since f is continuous, the minimizer x� is clearly an in-
terior point of the set I(�), and this proves the following
stability lemma for Armijo gradient-related iterations
(or indeed, any gradient-related method with the de-
scent property (30)).

Lemma 6 Suppose that the uniform growth condition
(27) holds near a local minimizer x� for f . Let T(�) be an
Armijo gradient-related iteration map in (19). Then for
every � > 0 there is a corresponding � 2 (0, �] such that
for all sequences {xk} satisfying (18), and all indices l,

x l 2 B(x�; �)) 8k � l xk 2 B(x�; �): (31)

According to Lemma 6, the uniform growth condi-
tion (27) guarantees that an Armijo gradient-related
sequence {xk} will remain in any specified arbitrarily
small open ball B(x�, �) provided {xk} enters a suffi-
ciently small sub-ball of B(x�, �). This property alone
does not imply that {xk} converges to x�; however, it is
an essential ingredient in the local convergence proof
outlined below. This proof requires two additional
technical estimates for the Armijo rule and gradient-
related set functions, a local uniform growth condition
for |kf 0(�)k| analogous to (27), and a local uniform con-
tinuity hypothesis on f 0(�). The first pair of estimates
are straightforward consequences of the Armijo rule
and the one-dimensional mean value theorem. The last
two requirements are automatically satisfied in finite-
dimensional spaces, once again because closed bounded
sets are compact in these spaces.
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Proposition 7 Let � 2 (0, 1), �2 > 0, ˇ 2 (0, 1), and
ı 2 (0, 1) be fixed parameter values in the gradient-
related set function G(�) and Armijo rule (17), and put
c2 = ı(1��)��12 > 0. Then for all x 2 X and d 2 G(x),

f (x)� f (x � s(x; d)d) � c2s(x; d)2 kdk2 : (32)

Moreover, if s(x, d) < 1 and c3 = (1 � ı)(1 � �), then
there is a vector � in the line segment joining x to x �
ˇ�1s(x, d)d such that

ˇ̌

 f 0(�) � f 0(x)


ˇ̌ � c3

ˇ̌

 f 0(x)

ˇ̌ (33)

and

k� � xk � ˇ�1s(x; d) kdk : (34)

Lemma 8 Let X be a finite-dimensional normed vec-
tor space. If x� is an isolated stationary point for f , then
there is a positive number �� and a positive definite non-
decreasing real-valued function ˇ(�) on [0, ��] such that,

ˇ̌

 f 0(x)

ˇ̌ � ˇ(kx � x�k); (35)

for all x 2 B(x�; ��).

The proof of Lemma 8 is similar to the proof of
Lemma 5.

Now suppose that the growth conditions (27) and
(35) both hold in the ball B(x�; ��), and that f 0(�) is
uniformly continuous in this ball. By Lemma 6, there
is a positive number � 2 (0, ��/2] such that every se-
quence {xk} which satisfies (18) and enters the ball B(x�,
�), thereafter remains in the larger ball B(x�, ��/2). But
if {xk} is eventually confined to the ball B(x�, ��/2), then
the mean value theorem insures that the nonincreasing
real sequence {f (xk)} is bounded below and therefore
converges to some finite limit. In this case, the differ-
ences f (xk)� f (xk+1) converge to zero and Propositions
2 and 7 therefore yield,

lim
k!1

s(xk ; dk )
ˇ̌
ˇ



 f 0(xk)





ˇ̌
ˇ
2
D 0; (36)

and

lim
k!1

s(xk ; dk )



dk




 D 0; (37)

where dk 2 G(xk) and s(xk, dk) dk = xk+1 � xk for all k. It
follows easily from the remainder of Proposition 7 and
the growth condition (35) that

lim
k!1

ˇ̌
ˇ



 f 0(xk)





ˇ̌
ˇ D 0 (38)

and therefore

lim
k!1




xk � x�



 D 0: (39)

To see that (38) must hold, construct the index sets,  
= {k: s(xk, dk) = 1} and � = {k: s(xk, dk) < 1}. If  is an
infinite set, then,

lim
k2 
k!1

ˇ̌
ˇ



 f 0(xk)





ˇ̌
ˇ D 0;

by (36). On the other hand, if � is an infinite set, then

lim
k2 
k!1

ˇ̌
ˇ



 f 0(xk)





ˇ̌
ˇ D 0;

by (37), (33), (34), and the local uniform continuity of
f 0(�). This establishes (38) and proves the following local
convergence results.

Theorem 9 If the uniform growth conditions (27) and
(35) hold simultaneously in the closed ball B(x�; ��)
for some �� > 0, and if f 0(�) is uniformly continuous
in B(x�; ��) then x� is a local attractor for Armijo
gradient-related iterations (18).

Corollary 10 If X is a finite-dimensional normed vec-
tor space and x� is a strict local minimizer and an iso-
lated stationary point for f , then x� is a local attractor
for Armijo gradient-related iterations (18).

Nonsingular Attractors

The nonsingularity conditions i) and ii) and Taylor’s
formula imply that in some neighborhood of x�, the
objective function f is convex and satisfies the local
growth condition (27) with

˛(t) D a t2 (40)

for some a > 0. But if f is locally convex near x�, then

f (x) � f (x�) � f 0(x)(x � x�)

�
ˇ̌

 f 0(x)

ˇ̌ kx � x�k (41)

near x�, and therefore (27) and (40) imply (35) with

ˇ(t) D a t: (42)

These observations and Theorem 9 immediately yield
the following extension of the convergence result in [2]
for steepest descent processes in Rn.

Corollary 11 Every nonsingular local minimizer x� is
a local attractor for Armijo gradient-related iterations
(18).
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Singular Attractors and Local Convexity

The growth condition (27) alone does not imply local
convexity of f , or condition (35), or the local attractor
property. In fact, (27) can hold even if x� is the limit of
some infinite sequence of local minimizers for f . This is
readily demonstrated by the following simple function
F: R1! R1:

F(x) D x2
�
p
2 � sin

�
5

6
�
p
3 ln x2

��
: (43)

This function has a strict absolute minimizer at x� = 0,
with

(
p
2 � 1)x2 � F(x) � (

p
2C 1)x2

for all x 2R1. However, F also has infinitely many (non-
singular) local minimizers,

x˙m D ˙ exp
�
(1 � 8m)


8
p
3

�

form = 1, 2, . . . , and these local minimizers accumulate
at 0. Since each x˙m is a stationary point and not an ab-
solute minimizer, it follows that F is not convex in any
neighborhood of the absolute minimizer at x� = 0, that
(35) cannot hold at x�, and that x� is not a local attrac-
tor for gradient-related descent processes. Evidently, x�

= 0 is a singular minimizer for F; in fact, F00(x) does not
exist at x = 0. (Apart from a minor alteration in one
of its constants, (43) is taken directly from [6, Example
1.1]. The erroneous constant in [6] was kindly called to
the author’s attention by D. Bertsekas.)

The growth conditions (27) and (35) together still
do not imply convexity of f near x�, and indeed f may
not be convex in any neighborhood of a singular local
attractor. This is shown by another function F: R2 !

R1 from [6, Example 1.2], viz.

F(x) D x21 � 1:98x1 kxk2 C kxk4 ; (44)

where x = (x1, x2) and k�k is the Euclidean norm in R2.
This function has a singular absolute minimizer at x�

= 0, and F(x) and |kF0(x)k| grow like kxk4 and kxk3, re-
spectively, near 0. On the other hand, since every neigh-
borhood of 0 contains points x where F0(x)(x � 0) is
negative, it follows that F is not convex (or even pseu-
doconvex) near 0. Nevertheless, x� = 0 is a local attrac-
tor for Armijo gradient-related iterations, according to
Corollary 10.

Although f need not be convex near a singular lo-
cal attractor x�, there are many instances where some
sort of local convexity property is observed. (The func-
tion f (x) = x4 provides a simple illustration.) If the local
pseudoconvexity condition,

�( f (x)� f (x�)) � f 0(x)(x � x�); (45)

is satisfied for some � > 0 and all x in the ball B(x�; ��),
then

�( f (x)� f (x�)) �
ˇ̌

 f 0(x)

ˇ̌ kx � x�k

near x�, and condition (35) follows at once from (27),
with

ˇ(t) D �(��)�1˛(t)

for all t 2 [0, ��]. These considerations immediately
yield two additional corollaries of Theorem 9.

Corollary 12 Suppose that the uniform growth condi-
tion (27) holds in the closed ball B(x�; ��) for some ��

> 0. In addition, suppose that in B(x�; ��), f 0(�) is uni-
formly continuous and f satisfies the pseudoconvexity
condition (45). Then x� is a local attractor for Armijo
gradient-related iterations (18).

Corollary 13 IfX is a finite-dimensional normed vector
space, if x� is a strict local minimizer for f , and if f satis-
fies the pseudoconvexity condition (45), then x� is a local
attractor for Armijo gradient-related iterations (18).

Local Convexity and Convergence Rates

A local version of the convergence rate proof strategy in
[5] also works in the present setting when f 0(�) is locally
Lipschitz continuous and f satisfies the pseudoconvex-
ity condition (45) and the growth condition (27) near
x�. Under these circumstances, the worst-case conver-
gence rate estimate,

f (xk) � f (x�) D O(k�1); (46)

can be proved for Armijo gradient-related sequences
{xk} that pass sufficiently near x�. More refined order
estimates are possible if the first two hypotheses hold
and

f (x) � f (x�) � a kx � x�kr (47)
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for some a > 0 and r 2 (1,1), and all x 2 B(x�; ��). In
such cases, it it can be shown that

f (xk) � f (x�) D O(k�
r

(r�2) ) (48)

for r 2 (2,1), and

9� 2 [0; 1) f (xk) � f (x�) D O(�k) (49)

for r 2 (1, 2]. (The latter estimate is comparable to the
basic geometric convergence rate theorem for steepest
descent iterates near nonsingular local minimizers [2].)
The proof strategy in [5] can also produce still more
precise local convergence rate estimates that relate the
constants implicit in the order estimates (48) and (49)
to local Lipschitz constants for f 0(�) and parameters in
the gradient-related set functions G(�), the growth con-
dition (47), the pseudoconvexity condition (45), and
the Armijo steplength rule (17).

In the absence of local convexity assumptions, it is
harder to establish analogous asymptotic convergence
rate theorems; however, the analysis in [6] and [7]
has established O(k�2) rate estimates for Hilbert space
steepest descent iterations and a class of nonlinear func-
tions f that contains the example (44).

Concluding Remarks

In a finite-dimensional space any two norms are equiv-
alent and it can be seen that the gradient-related prop-
erty and the local attractor property are therefore
norm-invariant qualitative features of set-valued maps
G(�): X ! 2X and local minimizers x�. On the other
hand, even in finite-dimensional spaces, the Lipschitz
constants, growth rate constants, and gradient-related
set function parameters in the present formulation
are not norm-invariant, and this is reflected in norm-
dependent convergence rates and norm-dependent size
and shape parameters for the domains that are sent to
a local attractor x� by gradient-related iterations. These
facts have potentially important computational mani-
festations when gradient-related methods are applied
to large scale finite-dimensional problems that approxi-
mate some limiting problem in an infinite-dimensional
space. Note that infinite-dimensional spaces can sup-
port multiple nonequivalent norms, and a set-valued
function G(�) that is gradient-related in one norm
need not be gradient-related relative to some other

nonequivalent norm. Similarly, the local attractor prop-
erty for a minimizer x�, and indeed local optimality it-
self, are also typically norm-dependent at this level of
generality.

See also

� Conjugate-gradient Methods
� Large Scale Trust Region Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares: Trust Region Methods
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Introduction

In the last few years, the need for an integrated lo-
gistic system has become a primary objective of ev-
ery company manager. Managers recognize that there
is a strong relation between the location of facilities,
the allocation of suppliers, vehicles, and customers to
the facilities, and the design of routes around the facili-
ties. In a location routing problem (LRP), the optimal
number, the capacity, and the location of facilities are
determined, and the optimal set of vehicle routes from
each facility is also sought.

In most location models, it is assumed that the cus-
tomers are served directly from the facilities being lo-
cated. Each customer is served on his or her own route.
In many cases, however, customers are not served indi-
vidually from the facilities. Rather, customers are con-
solidated into routes that may contain many customers.
One of the reasons for the added difficulty in solving
these problems is that there are far more decisions that
need to be made by the model. These decisions include:
� How many facilities to locate,
� Where the facilities should be,
� Which customers to assign to which depots,
� Which customers to assign to which routes,
� In what order customers should be served on each

route.
In the LRP, a number of facilities are located among
candidate sites and delivery routes are established for
a set of users in such a way that the total system cost
is minimized. As Perl and Daskin [51] pointed out,
LRPs involve three interrelated, fundamental decisions:
where to locate facilities, how to allocate customers to
facilities, and how to route vehicles to serve customers.

The difference between the LRP and the classic ve-
hicle routing problem is that not only routing must be
designed but the optimal depot location must be si-
multaneously determined as well. The main difference
between the LRP and the classical location-allocation

problem is that, once the facility is located, the for-
mer requires a visitation of customers through tours
while the latter assumes that the customer will be visited
from the vehicle directly, and then the vehicle will re-
turn to the facility without serving any other customer
([47]). In general terms, the combined location routing
model solves the joint problem of determining the op-
timal number, capacity, and location of facilities serv-
ing more than one customer and finding the optimal
set of vehicle routes. In the LRP, the distribution cost
is decreased due to the assignment of the customers to
vehicles while the main objective is the design of the ap-
propriate routes of the vehicles.

Variants of the Location Routing Problem

Laporte et al. [39] considered three variants of LRPs, in-
cluding (1) capacity-constrained vehicle routing prob-
lems, (2) cost-constrained vehicle routing problems,
and (3) cost-constrained location routing problems.
The authors examined multidepot, asymmetrical prob-
lems and developed an optimal solution procedure that
enables them to solve problems with up to 80 nodes.
Chan et al. [11] solved a multidepot, multivehicle loca-
tion routing problem with stochastically processed de-
mands, which are defined as demands that are gener-
ated upon completing site-specific service on their pre-
decessors. Min et al. [47] synthesized the past research
and suggested some future research directions for the
LRP. An extended recent literature review is included
in the survey paper published by Nagy and Salhi [48].
They proposed a classification scheme and looked at
a number of problem variants. The most important ex-
act and heuristic algorithms were presented and ana-
lyzed in this survey paper.

Exact Algorithms for the Solution
of the Location Routing Problem

A number of exact algorithms for the problem was
presented by Laporte et al. [38]. Applications and for-
mulations and exact and approximation algorithms for
LRPs under capacity and maximum cost restrictions
are studied in the survey of Laporte [34]. Nonlinear
programming exact algorithms for the solution of the
LRP have been proposed in [20,61]. Dynamic program-
ming exact algorithms for the solution of the LRP have
been proposed in [5]. Integer programming exact al-
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gorithms for the solution of the LRP have been pro-
posed in [35,37,46]. Mixed integer goal programming
exact algorithms for the solution of the LRP have been
proposed in [65]. Two branching strategies have been
proposed in [36]. An iterative exact procedure has been
proposed in [9]. A branch-and-bound technique on the
LP relaxation has been proposed in [17].

Heuristic Algorithms for the Solution
of the Location Routing Problem

The LRP is very difficult to solve using exact algorithms,
especially if the number of customers or the candidate
for location facilities is very large due to the fact that
this problem belongs to the category of NP-hard prob-
lems, i. e. there are no known polynomial-time algo-
rithms that can be used to solve them. Madsen [43]
presented a survey of heuristic methods. Christofides
and Eilon [16] were the first to consider the problem
of locating a depot from which customers are served
by tours rather than individual trips. They proposed an
approximation algorithm for the solution of the prob-
lem. Watson-Gandy and Dohrn [63] proposed an al-
gorithm where the problem is solved by transform-
ing its location part into an ordinary location prob-
lem using the Christofides–Eilon approximation algo-
rithm. The routing part of the algorithm is solved us-
ing the Clarke and Wright algorithm. Jacobsen and
Madsen [31] proposed three algorithms. The first is
called a tree-tour heuristic. The second is called ALA–
SAV and is a three-phase heuristic, where in the first
phase a location–allocation problem is solved and in the
second and third phases a Clarke and Wright heuris-
tic is applied for solving the problem. Finally, the
third proposed algorithm is called SAV–DROP and is
a heuristic algorithm that combines the Clarke–Wright
method and the DROP algorithm. A two-phase heuris-
tic is presented in [4], where in the first phase the
set of open plants is determined and a priori routes
are considered, while in the second phase the routes
are optimized. Other two-phase heuristics have been
proposed in [7,12,13,30,33,42,49,50,58]. Cluster analy-
sis algorithms are presented in [6,18,60]. Iterative ap-
proaches have been proposed by [27,59]. Min ([46])
considered a two-level location–allocation problem of
terminals to customer clusters and supply sources us-
ing a hierarchical approach consisting of both exact and

heuristic procedures. Insertion methods have been pro-
posed in [15]. A partitioning heuristic algorithm is pro-
posed in [35], and a sweep heuristic is proposed in [21].

Metaheuristic Algorithms for the Solution
of the Location Routing Problem

Several metaheuristic algorithms have been proposed
for the solution of the LRP. In what follows, an ana-
lytical presentation of these algorithms is given.
� Tabu search (TS) was introduced by Glover [22,23]

as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well-established
approximation technique that can compete with al-
most all known techniques and that, by its flexibil-
ity, can beat many classic procedures. It is a form of
local neighbor search. Each solution S has an associ-
ated set of neighbors N(S). A solution S0 2 N(S) can
be reached from S by an operation called amove. TS
can be viewed as an iterative technique that explores
a set of problem solutions by repeatedly making
moves from one solution S to another solution S0 lo-
cated in the neighborhood N(S) of S [24]. TS moves
from a solution to its best admissible neighbor, even
if this causes the objective function to deteriorate.
To avoid cycling, solutions that have been recently
explored are declared forbidden or tabu for a num-
ber of iterations. The tabu status of a solution is
overridden when certain criteria (aspiration criteria)
are satisfied. Sometimes, intensification and diversi-
fication strategies are used to improve the search.
In the first case, the search is accentuated in the
promising regions of the feasible domain. In the
second case, an attempt is made to consider solu-
tions in a broad area of the search space. Tuzun and
Burke [62] proposed a two-phase tabu search archi-
tecture for the solution of the LRP. TS algorithms for
the LRP are also presented in [10,14,41,45,57].

� Simulated annealing (SA) [1,3,32] plays a special
role within local search for two reasons. First, SA ap-
pears to be quite successful when applied to a broad
range of practical problems. Second, some thresh-
old accepting algorithms such as SA have a stochas-
tic component, which facilitates a theoretical anal-
ysis of their asymptotic convergence. SA [2] algo-
rithms are stochastic algorithms that allow random
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uphill jumps in a controlled fashion in order to pro-
vide possible escapes from poor local optima. Grad-
ually the probability allowing the objective function
value to increase is lowered until no more transfor-
mations are possible. SA owes its name to an anal-
ogy with the annealing process in condensed-matter
physics, where a solid is heated to a maximum tem-
perature at which all particles of the solid randomly
arrange themselves in the liquid phase, followed by
cooling through careful and slow reduction of the
temperature until the liquid is frozen with the par-
ticles arranged in a highly structured lattice and
minimal system energy. This ground state is reach-
able only if the maximum temperature is sufficiently
high and the cooling sufficiently slow. Otherwise
a metastable state is reached. The metastable state
is also reached with a process known as quenching,
in which the temperature is instantaneously low-
ered. Its predecessor is the so-called Metropolis fil-
ter. Wu et al. [64] proposed an algorithm that di-
vides the original problem into two subproblems,
i. e., the location–allocation problem and the gen-
eral vehicle routing problem, respectively. Each sub-
problem is, then, solved in a sequential and iter-
ative manner by the SA algorithm embedded in
the general framework for the problem-solving pro-
cedure. SA algorithms for the LRP are presented
in [8,40,41].

� Greedy randomized adaptive search procedure
(GRASP) [56] is an iterative two-phase search
method that has gained considerable popularity in
combinatorial optimization. Each iteration consists
of two phases, a construction phase and a local
search procedure. In the construction phase, a ran-
domized greedy function is used to build up an ini-
tial solution. This randomized technique provides
a feasible solution within each iteration. This so-
lution is then exposed for improvement attempts
in the local search phase. The final result is sim-
ply the best solution found over all iterations.
Prins et al. [52] proposed a GRASP with a path-
relinking phase for the solution of the capacitated
location routing problem.

� Genetic algorithms (GAs) are search procedures
based on the mechanics of natural selection and
natural genetics. The first GA was developed by
John H. Holland in the 1960s to allow comput-

ers to evolve solutions to difficult search and com-
binatorial problems such as function optimization
and machine learning [28]. Genetic algorithms offer
a particularly attractive approach to problems like
location routing problems since they are generally
quite effective for the rapid global search of large,
nonlinear, and poorly understood spaces. Moreover,
GAs are very effective in solving large-scale prob-
lems. GAs [25] mimic the evolution process in na-
ture. They are based on an imitation of the biolog-
ical process in which new and better populations
among different species are developed during evo-
lution. Thus, unlike most standard heuristics, GAs
use information about a population of solutions,
called individuals, when they search for better so-
lutions. A GA is a stochastic iterative procedure that
maintains the population size constant in each iter-
ation, called a generation. Their basic operation is
the mating of two solutions to form a new solution.
To form a new population, a binary operator called
a crossover and a unary operator called a mutation
are applied [54,55]. Crossover takes two individuals,
called parents, and produces two new individuals,
called offspring, by swapping parts of the parents.
Marinakis and Marinaki [44] proposed a bilevel GA
for a real-life LRP. A new formulation based on
bilevel programming was proposed. Based on the
fact that in the LRP decisions are made at a strate-
gic level and at an operational level, we formulate the
problem in such a way that in the first level, the deci-
sions of the strategic level are made, namely, the top
manager finds the optimal location of the facilities,
while in the second level, the operational-level de-
cisions are made, namely, the operational manager
finds the optimal routing of vehicles. Other evolu-
tionary approaches for the solution of the LRP have
been proposed in [29,53].

� Variable neighborhood search (VNS) is a meta-
heuristic for solving combinatorial optimization
problems whose basic idea is systematic change of
a neighborhood within a local search [26]. VNS al-
gorithms for the LRP are presented in [45].

� The ant colony optimization (ACO)metaheuristic
is a relatively new technique for solving combinato-
rial optimization problems (COPs). Based strongly
on the ant system (AS) metaheuristic developed by
Dorigo, Maniezzo, and Colorni [19], ACO is derived
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from the foraging behavior of real ants in nature.
The main idea of ACO is to model the problem as
the search for a minimum cost path in a graph. Arti-
ficial ants walk through this graph looking for good
paths. Each ant has a rather simple behavior so that
it will typically only find rather poor-quality paths
on its own. Better paths are found as the emergent
result of the global cooperation among ants in the
colony. An ACO algorithm consists of a number of
cycles (iterations) of solution construction. During
each iteration a number of ants (which is a parame-
ter) construct complete solutions using heuristic in-
formation and the collected experiences of previous
groups of ants. These collected experiences are rep-
resented by a digital analog of trail pheromone that
is deposited on the constituent elements of a solu-
tion. Small quantities are deposited during the con-
struction phase while larger amounts are deposited
at the end of each iteration in proportion to solution
quality. Pheromone can be deposited on the com-
ponents and/or the connections used in a solution
depending on the problem. ACO algorithms for the
LRP are presented in [8].
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A nonnegative function f : Rn ! R1 is called a logcon-
cave (point) function if for every x, y 2 Rn and 0 < � <
1 we have the inequality

f (�xC (1 � �)y) �
�
f (x)

�	 � f (y)�1�	 :

A probability measure P defined on the Borel sets of
Rn is called logconcave if for any Borel sets A, B � Rn

and 0 < � < 1 we have the inequality

P (�AC (1 � �)B) �
�
P(A)

�	 �P(B)�1�	 ;

provided that �A + (1 � �)B is also a Borel set. If P is
a logconcave measure in Rn and A � Rn is a convex
set, then P(A + z) is a logconcave point function in Rn.
In particular, the probability distribution function F(z)
= P({x: x � z}) = P({x: x � 0} + z), of the probability
measure P, is a logconcave point function. If n = 1, then
also 1 � F(z) is logconcave.

The basic theorem concerning logconcave measures
[5,6] states that if the probability measure P is generated
by a logconcave probability density function f , i. e.,

P(C) D
Z
C
f (x) dx

for every Borel set C � Rn, then P is a logconcave mea-
sure.

Examples for logconcave probability distributions
are the multivariate normal, the uniform (on a convex
set) and for special parameter values the Wishart, the
beta, the univariate and some multivariate gamma dis-
tributions.

A closely related theorem [5] states that if f : Rn+m

! R1 is a logconcave function, then
Z

Rm
f (x; y) dy

is a logconcave function in Rn. This implies that the
convolution of two logconcave functions is also logcon-
cave [3,5].

Logconcave probability distributions play impor-
tant role in probabilistic constrained stochastic pro-
gramming problems. If the problem is:
8̂
<̂
ˆ̂:

min c>x
s.t. P(Tx � �) � p;

Ax D b; x � 0;

and the random vector � has continuous distribution
with logconcave probability density function, then the
set of feasible solutions is convex (for more general
results see [6]). On the other hand, if the problem is
solved by a barrier function method with logarithmic
penalty function, then the function, to be minimized in
each step, is convex.

The basic theorem of logconcave measures has the
following generalization [1,2]: If �1 � ˛ � 1, 0 < �
< 1, and the probability density function f : Rn ! R1

satisfies (x, y 2 Rn):

f (�xC (1 � �)y)

�
�
� f ˛(x)C (1 � �) f ˛(y)

� 1
˛ ;

then for any Borel sets A, B � Rn such that � A + (1 �
�)B is also a Borel set, we have

P (�AC (1 � �)B) (1)
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�
n
�
�
P(A)

��
C (1 � �)

�
P(B)

��o 1
�

; (2)

where � = ˛/(1 + n˛). The cases ˛, � = �1, 0,1 are
interpreted by continuity. Logconcavity corresponds to
the case ˛ = � = 0. If f , P satisfy the above inequalities,
then f is called an ˛-concave function and P a � -concave
probability measure. If ˛, � = � 1, then f and P are
called quasiconcave.

A nonnegative function f : Rn! R1 is called logcon-
vex in the convex set D 2 Rn if for every x, y 2 D and 0
< � < 1 we have the inequality

f (�xC (1 � �)y) �
�
f (x)

�	 � f (y)�1�	 :
Similarly, the probability measure P defined on the
Borel subsets of the convex set D � Rn is called logcon-
vex if for any Borel sets A, B�D we have the inequality

P (�AC (1 � �)B) �
�
P(A)

�	 �P(B)�1�	 :
It follows, by Hölder’s inequality, that the sum of log-
convex functions is also logconvex. This fact, in turn,
implies that if f is logconvex in D, then the function of
the variable t 2 Rn

g(t) D
Z
CCt

f (x) dx

is logconvex for any fixed Borel set C � Rn in the sense
that g(�t1 + (1 � �) t2) � [g(t1)]	 [g(t2)]1�	 provided
that C + t1 � D, C + t2 � D and 0 < � < 1.
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The univariate discrete probability distribution {pk: k 2
Z} is called logconcave if for every kwe have the inequal-
ity p2k � pk�1 pk+1. This inequality implies that if k = �i
+ (1 � �)j, where i, j, k are integers and 0 < � < 1, then
we have the inequality pk � p	i p

(1�	)
j . Examples are the

binomial, Poisson, hypergeometric, geometric distribu-
tions.

A classical theorem by M. Fekete [3] states that the
convolution of two logconcave univariate discrete dis-
tributions is also logconcave.

The multivariate discrete logconcavity [2] is not
a direct generalization of its univariate counterpart. The
discrete probability distribution {P(x): x 2 Zm} is said to
be logconcave if there exists a convex function g: Rm!

R such that

� log P(x) D g(x) for x 2 Zm:

If P(x) = 0, then by definition � log P(x) = +1.
The convolution theorem, mentioned above in con-

nection with logconcave univariate distributions, does
not carry over to the multivariate case. We know, how-
ever, that the trinomial distribution:

P(k1; k2) D
n!

k1!k2!(n � k1 � k2)!
� pk11 pk22 (1 � p1 � p2)n�k1�k2

is logconcave and the convolution of trinomial distri-
butions is also logconcave [5]. For the use of discrete
logconcavity in stochastic programming consult [6].

Other definitions and results, concerning multivari-
ate discrete logconcavity, can be found in [1,4].
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Introduction

Turkay and Grossmann [7] proposed a logic version of
the outer-approximation algorithm for MINLP by Du-

ran and Grossmann [2] for solving a special class of
generalized disjunctive programming (GDP) problems.
The problem arises in the optimization of process net-
works and involves two-term disjunctions in which the
first term is activated when a unit or node is selected,
while the second term enforces zero values to a subset of
the continuous variables. The specific form of the GDP
problem is as follows:

min Z D
X
k2K

ck C f (x)

s:t: r(x) � 0
2
4

Yk

gk (x) � 0
ck D �k

3
5 _

2
4

:Yk

Bkx D 0
ck D 0

3
5 k 2 K

˝(Y) D True

x 2 Rn ; c 2 Rm; Y 2 ftrue,falsegm ;

(GDP)

where Yk are the Boolean variables that decide whether
the first term or second term in a disjunction k 2 K is
true or false, and x are the continuous variables. The ob-
jective function involves the term f (x) for the continu-
ous variables and the charges ck that depend on the dis-
crete choices in each disjunction k 2 K. The constraints
r(x) � 0 must hold regardless of the discrete choices.
In contrast, gk(x) � 0 are conditional constraints that
must hold when Yk is true in the kth disjunction; oth-
erwise (:Yi ) a subset of the x variables is set to zero
with the proper definition of the matrix Bi. In partic-
ular, we define Bi D

�
bT
�
such that bTj D eT if x j D 0,

and bTj D 0T if x j ¤ 0. In this way only a subset of the
variables x is forced to zero (typically flows). The cost
variables ck correspond to the fixed charges, and their
value equals �k if the Boolean variable Yk is true; other-
wise they are zero. ˝(Y) D True are logical relations
for the Boolean variables expressed as propositional
logic. It is assumed for the derivation of basic methods
that the functions are convex, although in practical ap-
plications these often correspond to nonconvex func-
tions.

NLP andMaster Subproblems

Following the original algorithm [2], the logic-based
outer-approximation algorithm consists of solving NLP
subproblems and disjunctive or MILP master prob-
lems.
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As described in Turkay and Grossmann [7], for
fixed values of the Boolean variables, Yk D true and
Yk D false, the corresponding NLP subproblem is as
follows:

min Z D
X
k2K

ck C f (x)

s:t: r(x) � 0

gk(x) � 0
ck D �k

	
for Yk D true k 2 K

Bkx D 0
ck D 0

	
for Yk D false k 2 K

x 2 Rn ; ci 2 Rm ;

(NLPD)

Note that for every disjunction k 2 K only constraints
corresponding to the Boolean variable Yk that is true
are imposed, thus leading to a reduction in the size
of the problem. Also, fixed charges �k are only ap-
plied to these terms. Assuming that NF subproblems
(NLPD) are solved in which sets of linearizations
l D 1; : : :NF are generated for subsets of disjunction
terms Lk D fl jY l

k D trueg, one can define the following
disjunctive OA master problem:

MinZ D
X
k

ck C ˛

s:t: ˛ � f (xl )Cr f (xl )T(x � xl )
r(xl )Crr(xl )T(x � xl ) � 0

	
l D 1; : : :; L

2
664

Yk

gk(xl )Cr gk(xl )T(x � xl ) � 0
l 2 Lk

ck D �k

3
775 _

2
4
:Yk

Bkx D 0
ck D 0

3
5

k 2 K

˝(Y) D True
˛ 2 R; x 2 Rn ; c 2 Rm ; Y 2 ftrue, falsegm

(MGDP)

It should be noted that before applying the above mas-
ter problem it is necessary to solve various subprob-
lems (NLPD) so as to produce at least one linear ap-
proximation of each of the terms in the disjunctions.
As shown by Turkay and Grossmann [7], selecting the
smallest number of subproblems amounts to solving
a set covering problem, which is of small size and easy

to solve. In the context of a process flowsheet synthesis
problem, another way of generating the linearizations
in (MGDP) is by starting with an initial flowsheet and
suboptimizing the remaining subsystems.

The above problem (MGDP) can be solved by
the methods described by Beaumont [1], Raman and
Grossmann [6], and Hooker [4]. Turkay and Gross-
mann [4] have shown that if the convex hull represen-
tation of the disjunctions is used in (MGDP), then con-
verting the logic relations ˝(Y) into the inequalities
Ay � a leads to the following MILP problem:

MinZ D
X
k

yk yk C ˛

s:t: ˛ � f (xl )Cr f (xl )T(x � xl )
r(xl )Crr(xl )T(x � xl ) � 0

	
l D 1; : : :L

rxZk gk(x
l )TxZk CrxNk

gk(xl )Tx1Nk

�
h
�gk(xl )Crx gk(xl )Txl

i
yk

l 2 Lk ; k 2 K

xNk D x1Nk
C x2Nk

0 � x1Nk
� xUNk

yk
0 � x2Nk

� xUNk
(1 � yk)

Ay � a

x 2 Rn ; x1Nk
� 0; x2Nk

� 0; y 2 f0; 1gm

(MIPDF)

where the vector x is partitioned into the variables
(xzk ; xNk ) for each disjunction k according to the def-
inition of the matrix Bi (i. e., xz refers to nonzero rows
of this matrix). It is interesting to note that the logic-
based outer-approximation algorithm represents a gen-
eralization of the modeling/decomposition strategy of
Kocis and Grossmann [5] for the synthesis of process
flowsheets.

Steps of Algorithm

Assuming feasible NLP subproblems, the steps of the
proposed logic-based auter-approximation method are
as follows:

Step 1: Model the problem in generalized disjunctive
form as in (GDP).
Step 2: Identify the NF subproblems to be solved either
from inspection or from set covering problems.



1930 L Logic-Based Outer Approximation

Logic-Based Outer Approximation, Figure 1
Process network example

Step 3: Solve NLP subproblems (NLPD) for the NF sub-
problems determined in step 2. The lowest-cost solu-
tion of these NLPs yields an upper bound, ZU, for the
problem.
Step 4: Linearize the objective function and constraints
of the current NLP subproblem(s) and set up the MILP
master problem (MIPDF). The solution of this problem
gives the lower bound, ZL, for the problem.
Step 5: If jZU � ZLj � ", where " is a tolerance, then
stop. The solution with the current ZU is the optimal
solution. Otherwise go to step 6.
Step 6: Solve NLP subproblem (NLPD) by fixing the
Boolean variables predicted by the master problem.
The objective function value of the solution is ZNLP. If
ZNLP < ZU, then set ZU D ZNLP.
Step 7: Compare the upper bound ZU with the lower
bound ZL. If jZU � ZLj � ", then stop; the solution with
the current ZU is the optimal solution. Otherwise go to
step 4.

It should be noted that one can also derive a logic-
based version of Generalized Benders Decomposition
as described in [7]. The logic outer-approximation al-
gorithm described above has been implemented in
the computer code LOGMIP by Vecchietti and Gross-
mann [8], which can be accessed from http://www.
logmip.ceride.gov.ar

Example

Consider the following (GDP) problem from [7] that
deals with a simplified version of the synthesis of a pro-
cess network shown in Fig. 1.

The GDP model is as follows:
1. Objective function:

min Z D c1 C c2 C c3 C c4 C c5 C c6 C c7 C c8 C x2
� 10x3 C x4 � 15x5 � 40x9 C 15x10 C 15x14
C 80x17 � 65x18 C 25x19 � 60x20
C 35x21 � 80x22 � 35x25 C 122

2. Material balances at mixing/splitting points:

x1 � x2 � x3 D 0

x4 C x5 � x6 � x11 D 0

x13 � x19 � x21 D 0

x17 � x9 � x16 � x25 D 0

x11 � x12 � x15 D 0
x6 � x7 � x8 D 0

x23 � x20 � x22 D 0

x23 � x14 � x24 D 0

3. Specifications on the flows:

x10 � 0:8x17 � 0

x10 � 0:4x17 � 0

x12 � 5x14 � 0

x12 � 2x14 � 0

4. Disjunctions:

Unit 1:

2
4

Y1

exp(x4) � 1 � x2 � 0
c1 D 5

3
5

_

2
4
:Y1
x2 D x4 D 0
c1 D 0

3
5

Unit 2:

2
4

Y2
exp(x5/1:2) � 1 � x3 � 0

c2 D 8

3
5

_

2
4
:Y2
x4 D x3 D 0
c2 D 0

3
5

Unit 3:

2
4

Y3
1:5x9 � x8 C x10 D 0
c3 D 6

3
5

_

2
4
:Y3
x8 D x9 D x10 D 0
c3 D 0

3
5

http://www.logmip.ceride.gov.ar
http://www.logmip.ceride.gov.ar
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Unit 4:

2
4

Y4
1:5(x12 C x14) � x13 D 0
c4 D 10

3
5

_

2
4
:Y4
x12 D x13 D x14 D 0
c4 D 0

3
5

Unit 5:

2
4

Y5
x15 � 2x16 D 0
c5 D 6

3
5

_

2
4
:Y5
x15 D x16 D 0
c5 D 0

3
5

Unit 6:

2
4

Y6
exp(x20/1:5) � 1 � x19 � 0
c6 D 7

3
5

_

2
4
:Y6
x19 D x20 D 0
c6 D 0

3
5

Unit 7:

2
4

Y7
exp(x22) � 1 � x21 � 0
c7 D 4

3
5

_

2
4
:Y7
x21 D x22 D 0
c7 D 0

3
5

Unit 8:

2
4

Y8
exp(x18) � 1 � x10 � x17 � 0
c8 D 5

3
5

_

2
4
:Y8
x10 D x17 D x18 D 0
c8 D 0

3
5

5. Propositional Logic [˝ D (Yi )]:

Y1 ) Y3 _ Y4 _ Y5
Y2 ) Y13 _ Y4 _ Y5
Y3 ) Y1 _ Y2; Y3 ) Y8
Y4 ) Y1 _ Y2; Y4 ) Y6 _ Y7
Y5 ) Y1 _ Y2; Y5 ) Y8
Y6 ) Y4
Y7 ) Y4
Y8 ) Y3 _ Y5 _ (:Y3 ^ :Y5)

Logic-Based Outer Approximation, Table 1
Progress of iterations

Subproblem Objective value

NLPD1 73.277
NLPD2 103.584
NLPD3 113.789
MGDP 67.948
NLPD4 68.009

6. Specifications:

Y1_Y2
Y4_Y5
Y6_Y7

7. Variables:

xj; ci � 0; Yi D fTrue,Falseg
i D 1; 2; : : :; 8; j D 1; 2; : : :; 25

Applying LOGMIP to solve this problem, and starting
with three NLP subproblems at

NLPD1 : Y2 D Y3 D Y4 D Y5 D Y8 D True
NLPD2 : Y1 D Y3 D Y4 D Y7 D Y8 D True
NLPD2 : Y2 D Y4 D Y6 D Y7 D True

the predicted optimum solution is given by Z = 68.009.
Table 1 shows the progress of the iterations.
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Introduction

Let G(V ,E) be a simple undirected graph, V D
f1; 2; : : : ; ng. The adjacency matrix of G is a matrix
AG D (ai j)n�n , where ai j D 1 if (i; j) 2 E and ai j D 0
otherwise. The set of vertices adjacent to a vertex i 2 V
will be denoted by N(i) D f j 2 V : (i; j) 2 Eg and
called the neighborhood of the vertex i. We will also
consider the complementary graph Ḡ(V ; Ē) having the
same set of vertices V , but an edge (i; j) 2 Ē if and only
if i and j are not adjacent in G.

An independent set S is a subset of V such that no
two vertices of S are adjacent, i. e.,8i 2 SN(i)\S D ˛.
The set S is called amaximal independent set if any ver-
tex i 2 V n S has at least one adjacent vertex in S, i. e.,
8i 2 V n S N(i)\ S ¤ ˛. Finally, the set S is called
a maximum independent set if it has the largest car-
dinality among all independent sets of the graph. This
cardinality will be denoted by ˛(G) and called the inde-
pendence (or stability) number of the graph G.

In addition to the maximum cardinality stable sets,
we will consider the maximum weight independent sets.

Let there be a given vector w D (w1;w2; : : : ;wn)T of
nonnegative vertex weights. A maximum weight inde-
pendent set is such an independent set S � V that has
the largest weight ˛(G;w) D maxS

P
i2S wi .

Similarly, a clique Q of the graph G is a sub-
set of V such that any two vertices in it are adja-
cent, i. e., 8i 2 Q N(i) \ Q D Q n fig. The clique Q
is called maximal if for any vertex i 2 V n Q there
is at least one vertex in Q non-adjacent to i, i. e.,
8i 2 V n Q N(i)\ Q ¤ Q. If Q has the largest cardi-
nality among all cliques of the graph, it is called a max-
imum clique. The cardinality of a maximum clique will
be denoted by !(G) and called the clique number of the
graph G. A maximum weight clique is a clique having
the largest weight !(G;w) D maxQ

P
i2Q wi .

It is easy to see that independent sets of the graph G
correspond to cliques of Ḡ, and vise versa.

We will denote by �(G) the chromatic number of
the graph G (i. e. the minimum number of colors to
which the graph vertices can be colored without using
one color for any two adjacent vertices.) The number
�(Ḡ), giving the minimum number of cliques of G to
which the vertex set V can be partitioned, will be also
denoted by �̄(G) and called the clique partition number
of the graph G.

Next, for two graphs G1(V1, E1) and G2(V2, E2) we
define their strong product G1 � G2 as the graph, whose
vertex set is the Cartesian productV1 ×V2 and in which
a vertex (i, j) is adjacent to a vertex (i0; j0) if and only
if (i; i0) 2 E1 and ( j; j0) 2 E2. The strong product of k
copies of G will be denoted by Gk.

Formulation

Lovász Number as an Upper Bound
of Shannon Capacity

Let us consider the setV D f1; 2; : : : ; ng to be an alpha-
bet in which the adjacency means that the two letters
can be confused. Then any set of one-letter messages
that cannot be confused with each other corresponds
to an independent set of the graph and vise versa. Fur-
thermore, the maximum number of one-letter mes-
sages that cannot be confused with each other is equal
to ˛(G), and the maximum number of k-letter mes-
sages that cannot be confused with each other is equal
to ˛(Gk). It is easy to see that there are at least ˛(G)k k-
letter messages that cannot be confused with each other,
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so ˛(Gk ) � ˛(G)k . So,


(G) D sup
k

k
p
˛(Gk ) D lim

k!1

k
p
˛(Gk ) � ˛(G) : (1)

The value 
(G) is called the Shannon zero-error capac-
ity of the graph G [14]. Generally, it is extremely hard
to compute, and nowadays 
(G) is not even known for
the graph C7 (cycle of 7 vertices).

Thus, the independence number ˛(G) gives a lower
bound on 
(G). In 1979, L. Lovász defined a new non-
trivial upper bound on the Shannon zero-error capacity
of a graph in his seminal paper [11]. This function was
named later Lovász number (or #-function) of a graph.

First, define an orthonormal representation of the
graph G as a system (u1; u2; : : : ; un) of unit vectors in
a Euclidean space such that whenever two vertices i and
j are not adjacent, the vector ui is orthogonal to the vec-
tor uj. It is easy to see that such systems of vectors do
exist, e. g., any n orthonormal vectors from the space
Rn . The #-function is defined as the following mini-
max value:

#(G) D min
fc;(ui)g

max
i2V

1
(cTui)2

; (2)

where c ranges over unit vectors of the same dimension-
ality that the vectors ui are. The vector c was called by
Lovász the handle of the representation.

It can be shown that for a strong product of graphs,
#(G � H) � #(G)#(H). To show that ˛(G) � #(G) one
needs to observe that if S is a maximum independent
set of G, then 1 D c2 �

P
i2S(c

Tui )2 � ˛(G)/#(G).
From here it is obvious that 
(G) � #(G) as
˛(Gk ) � #(Gk ) � #(G)k .

Similarly, we introduce the weighted #-function:

#(G;w) D min
fc;(ui)g

max
i2V

wi

(cTui)2
; (3)

which gives an upper bound for ˛(G;w) � #(G;w).
In contrast to 
(G) and ˛(G,w), which are hard to

compute, #(G,w) can be computed with an arbitrary
precision in a polynomial time by either the ellipsoid
method or an interior point method due to its semidef-
inite programming formulation considered below (see
also [7,9,13]). This makes #-function attractive for es-
timating these intractable numbers.

The Sandwich Theorem

Other equivalent formulations implying a number of
interesting properties of #(G) were established in [7]
(see also the extensive survey [9]). To introduce them,
let us define three specific convex sets in Rn associated
with the graph:

STAB(G) D hull(fx 2 f0; 1gnjx j C xk � 1;

8( j; k) 2 Eg);

TH (G) Dfx � 0j
X
j2V

(cTuj)2x j � 1;

8 ort. lab. (uj) of G; kck D 1g;

QSTAB(G) Dfx � 0 j
X
j2Q

x j � 1;

8 cliques Q of Gg :

Let xS 2 f0; 1gn be the incidence vector of an inde-
pendent set S, that is, xSi D 1 if i 2 S, and xi D 0 oth-
erwise. Then, obviously, for any orthonormal represen-
tation (ui) and a unit vector c,
X
j2V

(cTuj)2xSj D
X
j2S

(cTuj)2 � 1 :

So, any x 2 STAB(G) satisfy the constraints of
TH (G). Let Q be any clique of G. Then we can con-
struct an orthonormal representation as follows. Let
all vectors (ui)i2VnQ be mutually orthogonal, and also
each of them be orthogonal to another unit vector c. We
set all (ui)i2Q to be equal to c. If we consider the con-
straint

P
j2V (c

Tuj)2x j � 1 over only such orthonormal
representations, we obtain the clique constraints defin-
ing the setQSTAB(G). Hence, we have

STAB(G) � TH (G) � QSTAB(G) : (4)

Obviously,

˛(G;w) D max
x
fwTx j x 2 STAB(G)g: (5)

Let us also denote

�(G;w) D max
x
fwTx j x 2 QSTAB(G)g: (6)

We will prove that

#(G;w) D max
x
fwTx j x 2 TH (G)g (7)
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and henceforth conclude that

˛(G;w) � #(G;w) � �(G;w): (8)

The double inequality (8) constitutes the famous sand-
wich theorem.

Let us denote by Sn the set of all n � n symmetric
matrices, and by SCn the set of all positive semidefinite
n � n matrices:

SCn D fA 2 Snj xTAx � 0 8x 2 Rng :

We also denote by z D (
p
w1;
p
w2; : : : ;

p
wn)T the

vector of square roots of the vertex weights. Consider
the following functions of the graph and vertex weights:

#2(G;w) Dmin
A2Sn

�max(A);

s.t. ai j D
p
wiwj; 8(i; j) … E ;

where �max(A) denotes the largest eigenvalue of A;

#3(G;w) D max
X2SCn

zTXz;

s.t. xi j D 0; 8(i; j) 2 E; tr(X) D 1 ;

where tr(X) D
Pn

iD1 xi i denotes the trace of the ma-
trix X;

#4(G;w) D max
fd;(v i )g

X
i2V

(dTvi)2wi ;

where (vi )i2V range over all orthonormal representa-
tions of the complementary graph Ḡ and kdk D 1.

Theorem 1

#(G;w) D#2(G;w) D #3(G;w) D #4(G;w)

Dmax
x
fwTx j x 2 TH (G)g :

Proof First we show that #(G;w) � #2(G;w). Con-
sider a matrix A 2 Sn such that ai j D pwiwj;8(i; j) …
E, and let t D �max(A). Then tI � A 2 SCn , and hence
there exists X 2 Rn�n such that tI � A D XTX. Let
xi 2 Rn be the i-th column of X. Then

xTi xi D t � wi ; 8i 2 V

and

xTi x
T
j D �

p
wiwj; 8i; j nonadjacent in G :

Note that rank(X) < n since the matrix tI � A has
a zero eigenvalue. This implies that there exists a unit
vector c 2 Rn orthogonal to all xi ; i 2 V . Consider the
vectors

ui D (
p
wi c C xi)/

p
t; i 2 V :

It is easy to see that

uT
i ui D

(wi cTc C xTi xi)
t

D 1

and for any two nonadjacent vertices i; j 2 V ,

uT
i u j D

(pwiwjcTc C xTi x j)
t

D 0 :

Hence, the vectors (ui) form an orthonormal represen-
tation of G and

#(G;w) � max
i2V

wi

(cTui )2
D max

i2V

wi

wi /t
D t D �max(A) :

Now, we show that #2(G;w) � #3(G;w). We
have zTXz � #3 � tr(X) for any X 2 SCn such that
xi j D 0 8(i; j) 2 E. This inequality is equivalent to
(W � #3I) � X � 0, where W D (pwiwj)n�n and “�”
denotes the Euclidian inner product in Rn�n , i. e.,
A � B D

P
i; j ai jbi j . From here it can be inferred

that the matrix #3I �W is a sum of some posi-
tive semidefinite matrix D 2 SCn and another sym-
metric matrix A D (ai j) 2 Sn such that if (i; j) … E,
then ai j D 0. This implies that #3I �W � A 2 SCn and
hence #3 � �max(W C A) � #2.

Next, we show that #3(G;w) � #4(G;w). Let
X D (xi j) 2 Rn�n be an optimum matrix for the pro-
gram defining #3. Since X 2 SCn , there exists a matrix
Y 2 Rn�n such that X D YTY . Let xi denote the i-th
column of X and yi denote the i-th column of Y . Con-
struct an orthonormal system of vectors (ui)i2V in Rn

such that there is the vector ui D yi
ı
kyik whenever

yi ¤ 0. Since yTi y j D xi j D 08(i; j) 2 E, the system
(ui) is an orthonormal representation of Ḡ. Further-
more, zTYTYz D zTXz D #3 and hence d D Yz/

p
#3

is a unit vector. Whenever yi ¤ 0,

dTvi D
zTYT yi

(
p
#3kyik)

D
zTxi

(
p
#3kyik)

:

Thus, kyikdTvi D zTxi
ıp

#3 ; 8i 2 V , and
X
i2V

kyik
p
widTvi D

1
p
#3

X
i2V

zTxi
p
wi

D
1
p
#3

zTXz D
p
#3 :
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Using the Cauchy–Schwarz inequality,

#3 D

 X
i2V

kyik
p
widTvi

!2

�

 X
i2V

kyik2
! X

i2V

wi(dTvi )2
!

D

 X
i2V

xi i

! X
i2V

wi(dTvi)2
!

D
X
i2V

wi(dTvi )2 � #4(G;w) :

Next, we prove that #4(G;w) � maxxfwTx j
x 2 TH (G)g. Let (vi)i2V and d be correspondingly
an optimum orthogonal representation of Ḡ and its
handle for the program defining #4. We show that
the vector

�
(dTvi)2

�
i2V belongs to TH (G). Con-

sider some orthonormal representation of G, (ui )i2V ,
ui 2 Rn , and let c 2 Rn be some unit vector. Thematri-
ces uivTi 2 Rn�n are mutually orthogonal and have the
unit norm with respect to the inner product “�”, i. e.,

(uivTi ) � (ujvTj ) D (uT
i u j)(vTi v j) D

(
1; if i D j;
0; if i ¤ j:

Now we may conclude that
X
i2V

(cTui)2(dTvi)2 D
X
i2V

((cdT) � (uivTi ))
2

� (cdT) � (cdT) D 1 :

Hence
�
(dTvi)2

�
i2V 2 TH (G) and

#4(G;w) D
X
i2V

wi(dTvi )2

� max
x
fwTx j x 2 TH (G)g :

The final step is to show that maxxfwTx j x 2
TH (G)g
� #(G;w). Let x� be a vector maximizing wTx over
TH (G). Choosing any orthonormal representation
(ui)i2V and a unit vector c, we have

wTx� �
�
max

i

wi

(cTui )2

�X
i2V

(cTui )2x�i

� max
i

wi

(cTui )2
� #(G;w) :

The four inequalities established above can hold if
and only if all the # ’s are equal. QED. �

Let us denote by �(G) the value of �(G,w) when
all vertex weights are 1’s. It is easy to see that
�(G) � �̄(G). Indeed, if we take a minimum clique par-
tition fQ1;Q2; : : : ;Q�̄g of G, then �̄(G) is equal to the
optimum value of the program:

max
x2Rn

X
i2V

xi ;

s.t.
X
i2Qk

xi � 1; k D 1; 2; : : : ; �̄; x � 0 :

This program has the same objective as the program for
�(G), but its set of constraints is a subset of constraints
of QSTAB(G). So, we may extend the sandwich in-
equality to

˛(G) � #(G) � �(G) � �̄(G) :

Omitting �(G) and applying the inequalities to the
complementary graph, we obtain

!(G) � #(Ḡ) � �(G) ; (9)

which expresses another famous form of the sandwich
theorem stating that a polynomial-time computable
number #(Ḡ) lies in between the two NP-hard num-
bers: the clique number and the chromatic number.

Lovász Number as a Dual Bound
of Quadratic Maximization

Consider the following quadratic formulation of the
maximum weight independent set problem:

˛(G;w) DmaxwTx

s.t. xi x j D 0; 8(i; j) 2 E;

x2i � xi D 0; i D 1; : : : ; n :

(10)

It has been shown by N.Z. Shor that the optimal
Lagrangian dual bound of program (10) is equal to
#(G,w) [15]. One can compute this bound for a max-
imization problem with a quadratic objective subject
to a set of linear and quadratic constraints minimiz-
ing a convex non-differentiable function defined over
a parametric (linearly dependent on Lagrangian multi-
pliers) set of negative semidefinite symmetric matrices.
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Indeed, the Lagrangian of program (10) is

L(x; �) D wTx C
nX

iD1

�i i (x2i � xi)C
X

(i; j)2E

�i j xi x j :

The considered optimization problem is equivalent to

max
x

min
�

L(x; �) ;

while the optimal Lagrangian dual bound is derived as

min
�

max
x

L(x; �) :

From here it follows that in the dual problem� should
always be chosen in such a way that the quadratic form
of L(x,�) is negative semidefinite with respect to x
(otherwise the inner maximization with respect to xwill
deliver infinity), while minimization with respect to �
turns out to be convex non-differentiable [15].

Applications

Perfect Graphs
A graph is called perfect if, for all its vertex-induced
subgraphs, the clique number is equal to the chromatic
number. In this case the inequalities (9) become the
equalities:

!(G) D #(Ḡ) D �(G) :

So, both the clique number and the chromatic number
can be computed in a polynomial time by means of the
#-function. It is also easy to see how the #-function can
be used to actually find a maximum clique of a perfect
graph. Indeed, a vertex i of a perfect graph G belongs
to some maximum clique if and only if #-function
of the subgraph induced by the neighborhood N(i) is
equal to #(G) � 1. Hence, we can obtain a maximum
clique of the graph successively selecting a vertex satis-
fying this condition and repeating the procedure with
the subgraph induced by its neighborhood. Moreover,
this simple algorithm can be improved [1,17]. Coloring
a perfect graph can be also performed in a polynomial
time (see, e. g., [7]).

A graph is perfect if and only if its complemen-
tary graph is perfect [7,10]. This means that for any
vertex-induced subgraph of a perfect graph there is also
the equality between the independence number and the
clique partition number. The strong perfect graph theo-
rem, proved recently [5], states that a graph is perfect if

and only if it does not include an odd hole or an odd
antihole as a vertex-induced subgraph. A polynomial-
time algorithm for recognizing perfect graphs was also
derived on the basis of the strong perfect graph theo-
rem [4].

Improving Upper Bounds
for Independence Number
It is worth to consider how well does #(G) approximate
the independence number ˛(G) for general graphs and
whether this approximation can be improved with-
out breaking the polynomial-time computability. It
turns out that for random graphs #(G)/˛(G) grows as
O(
p
n/ log n) [2,9]. So, #(G) does not allow for a fixed

approximation guarantee for ˛(G). Moreover, the max-
imum independent set problem is known to be hard to
approximate (see, e. g., [8]). However, there is a num-
ber of approaches to formulate increasingly tight ap-
proximations of ˛(G) based on the #-function. The
first one is the “lift-and-project” method by Lovász and
Shrijver [12]. The second approach is to express ˛(G)
as a copositive program and to use its approximations
via semidefinite programming [6]. Finally, we may try
to improve the dual bound of (10) and make it closer
to the optimum generating superfluous quadratic con-
straints [15,16].

In first two cases one obtains a sequence of semidef-
inite programs increasing in size, but having non-
increasing optimum values, and at some point the op-
timum value becomes equal to ˛(G). It comes as no
surprise that before achieving the value ˛(G), in the
general case, the size of the program increases exponen-
tially (otherwise it would imply P =NP). What is more
surprising is that any provable polynomial-time im-
provement of #(G) (i. e. a polynomial-time computable
function of a graph having a value less than #(G)
whenever ˛(G) < #(G)) would also imply P =NP [3].
Hence, unless P =NP, neither method can deliver, in
general case, a value closer to ˛(G) than #(G) before
the size of the program becomes exponential.

See also

� Copositive Programming
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Background

The interval-Newton method is a tool for solving a sys-
tem of nonlinear algebraic equations. It provides the
capability to enclose all solutions of the equation sys-
tem that occur within a specified search interval, and
to do so with mathematical and computational cer-
tainty. In the context of optimization, it is generally ap-
plied to the deterministic global optimization of bound-
constrained problems:

min
x
�(x) (1)

x 2 X(0): (2)

The objective �(x) is in general a nonconvex func-
tion that may have multiple local minima. The inter-
val vector (box) X(0) provides upper and lower bounds
on each component of the decision-variable vector x.
It is assumed here that these bounds are sufficiently
wide that the global minimum of �(x) will occur in
the interior of X(0). This means that the stationarity
condition r�(x) D 0 can be used in the search for
the global minimum. The interval-Newton method can
then be applied to enclose all stationary points, one
of which is the global minimizer. If only the global
minimizer is sought, then interval-Newton is typically
combined with some branch-and-bound scheme, so
that all stationary points need not actually be found.
However, in other applications, such as transition state
analysis [22,38] and computation of phase equilib-
rium [13,37], it may be useful to know all of the sta-
tionary points, and the interval-Newton approach pro-
vides this capability. For situations in which it is pos-
sible that the global minimum will lie on a boundary
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of X(0), then the “peeling” process described by Kear-
fott [19], in which interval-Newton is applied to each
of the lower dimensional subspaces that constitute the
boundary of X(0), can be used. For more general con-
strained problems, the interval-Newton method can be
applied to the solution of the Karush–Kuhn–Tucker
(KKT) conditions or the Fritz-John conditions. A thor-
ough discussion of the use of the interval-Newton
approach in global optimization has been given by
Hansen andWalster [11]. In recent years, this approach
has been used in a number of applications, includ-
ing computation of fluid phase equilibrium from activ-
ity coefficient models [27,36,37,40], cubic equation-of
state models [5,12,13,14,40] and statistical associating
fluid theory [39], computation of solid-fluid equilib-
rium [35,41], parameter estimation using standard least
squares [7,25] and error-in-variables [8,9], calculation
of adsorption in nanoscale pores from a density func-
tion theory model [26], transition state analysis [22]
and determination of molecular structures [24].

A drawback to the interval-Newton approach, as
well as to other approaches for deterministic global op-
timization, is the potentially high computational cost.
One way to improve the efficiency of the interval-
Newton method is to more tightly bound the solution
set of the linear interval equation system that is at the
core of this approach. In this article, we discuss the solu-
tion of this linear interval system and describe a bound-
ing strategy [21,23] based on the use of linear program-
ming (LP) techniques. Using this approach it is possi-
ble to exactly (within round out) determine the desired
bounds on the solution set of the linear interval system.
By providing tight interval bounds on the solution set,
the goal is to more quickly contract intervals that may
contain stationary points, as well as to more quickly
identify intervals that contain a unique stationary point
or no stationary point, thus leading to an overall im-
provement in computational efficiency.

Methods

Interval-Newton

Several good introductions to interval computations
are available [11,17,19,28]. A real interval X is defined
as the set of real numbers lying between (and including)
given upper and lower bounds; that is, X D [a; b] D
fx 2 < j a � x � bg. A real interval vector X D (X1;

X2; : : : ; Xn)T has n real interval components and can be
interpreted geometrically as an n-dimensional rectan-
gle or box. Note that in this context uppercase quanti-
ties are intervals, and lowercase quantities are real num-
bers. Basic arithmetic operations with intervals are de-
fined by X op Y D fx op y j x 2 X; y 2 Yg, where
op 2 fC;�;�;�g. Interval versions of the elemen-
tary functions can be similarly defined. It should be
emphasized that, when machine computations with in-
terval arithmetic operations are done, as in the proce-
dures outlined below, the endpoints of an interval are
computed with a directed (outward) rounding. That
is, the lower endpoint is rounded down to the next
machine-representable number and the upper end-
point is rounded up to the next machine-representable
number. In this way, through the use of interval, as op-
posed to floating-point arithmetic, any potential round-
ing error problems are avoided and rigorous enclosures
are maintained. Implementations of interval arithmetic
and elementary functions are readily available, and re-
cent compilers from SunMicrosystems directly support
interval arithmetic and an interval data type.

For an arbitrary function f (x), the interval exten-
sion, F(X), encloses all values of f (x) for x 2 X ; that
is, it encloses the range of f (x) over X. It is often com-
puted by substituting the given interval X into the func-
tion f (x) and then evaluating the function using inter-
val arithmetic. This so-called “natural” interval exten-
sion may be wider than the actual range of function
values, though it always includes the actual range. For
the case in which the function is a single-use expres-
sion, that is, an expression in which each variable oc-
curs only once, natural interval arithmetic will always
yield the true function range. For cases in which such
rearrangements are not possible, there are a variety of
other approaches that can be used to try to tighten in-
terval extensions [11,17,19,28,29].

Of interest here is the interval-Newton method and
its application to the stationarity condition r�(x) D 0.
Given an n � n nonlinear equation system f (x) D
r�(x) D 0 with a finite number of real roots in some
initial interval, this technique provides the capability to
find tight enclosures of all the roots of the system that
lie within the given initial interval. An outline of the
interval-Newton methodology is given here. More de-
tails are available elsewhere [11,19,34]. It should be em-
phasized that this technique is not equivalent to simply
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implementing the routine “point” Newton method in
interval arithmetic.

Given some initial interval X(0), the interval-New-
ton algorithm is applied to a sequence of subinter-
vals, which arises due to a bisection process. Consider
a subinterval X(k) in the sequence. Before application
of interval-Newton, measures are usually taken first
to try to eliminate, or at least shrink, this subinterval.
For example, one may apply a function range test. An
interval extension F(X(k)) of the function f (x) is cal-
culated. If there is any component of the interval ex-
tension F(X(k)) that does not include zero, then the in-
terval can be discarded, since no solution of f (x) D 0
can exist in this interval. The next subinterval in the se-
quence may then be considered. Otherwise, testing of
X(k) continues. A variety of other interval-based tech-
niques (e. g., constraint propagation) may also be ap-
plied to try to shrink X(k) before proceeding to the in-
terval-Newton procedure.

In the interval-Newton procedure, the linear inter-
val equation system

F 0(X(k))(N (k) � x(k)) D � f (x(k)); (3)

is solved for a new interval N (k), where F 0(X(k)) is an
interval extension of the Jacobian of f (x), and x(k) is
an arbitrary point in X(k). It has been shown [11,19,28]
that any root contained in X(k) is also contained in the
image N (k). This implies that if the intersection between
X(k) and N (k) is empty, then no root exists in X(k), and
also suggests the iteration scheme X(kC1) D X(k)\N (k).
In addition, it has also been shown [11,19,28] that,
if N (k) is in the interior of X(k), then there is a unique
root contained in X(k) and thus in N (k). Thus, after
computation of N (k) from Eq. (3), there are three pos-
sibilities: (1) X(k) \ N (k) D ¿, meaning there is no
root in the current interval X(k) and it can be discarded;
(2) N (k) is in the interior of X(k), meaning that there is
exactly one root in the current interval X(k); (3) neither
of the above, meaning that no conclusion can be drawn.
In the last case, if X(k)\N (k) is sufficiently smaller than
X(k), then the interval-Newton test can be reapplied to
the resulting intersection, X(kC1) D X(k) \ N (k). Oth-
erwise, the intersection X(k) \ N (k) is bisected, and the
resulting two subintervals are added to the sequence
of subintervals to be tested. If an interval containing
a unique root has been identified, then this root can be
tightly enclosed by continuing the interval-Newton it-

eration, which will converge quadratically to a desired
tolerance (on the enclosure diameter).

At termination, when the subintervals in the se-
quence have all been tested, either all the real roots of
f (x) D 0 have been tightly enclosed, or it is determined
that no root exists. Applied to nonlinear equation solv-
ing problems, this can be regarded as a type of branch-
and-prune scheme on a binary tree. It should be em-
phasized that the enclosure, existence, and uniqueness
properties discussed above, which are the basis of the
method, can be derived without making any strong as-
sumptions about the function f (x) for which roots are
sought. The function must have a finite number of roots
over the search interval of interest; however, no spe-
cial properties such as convexity or monotonicity are
required, and f (x) may have transcendental terms.

Solution of Linear Interval Equation Systems

Clearly, the solution of the linear interval system given
by Eq. (3) is essential to the interval-Newton approach.
To see the issues involved in solving such a system,
consider the general linear interval system Az D B,
where the matrix A and the right hand side vector B
are interval-valued. The solution set S of this system
is defined by S D

˚
z
ˇ̌
Ãz D b; Ã 2 A; b 2 B

�
. How-

ever, in general this set is not an interval and may have
a very complex polygonal geometry. Thus to “solve”
the linear interval system, one instead seeks an inter-
val Z containing S. Computing the interval hull (the
tightest interval containing S) is NP-hard [33], but
there are several methods for determining an interval
Z that contains but overestimates S. Various interval-
Newton methods differ in how they solve Eq. (3) for
N (k) and thus in the tightness with which the so-
lution set is enclosed. By obtaining bounds that are
as tight as possible, the overall performance of the
interval-Newton approach can be improved, since with
a smaller N (k) the volume of X(k) \ N (k) is reduced,
and it is also more likely either that X(k) \ N (k) D

¿ that N (k) is in the interior of X(k) will be satisfied.
Thus, intervals that may contain solutions of the non-
linear equation system are more quickly contracted,
and intervals that contain no solution or that contain
a unique solution may be more quickly identified, all of
which leads to a likely reduction in the number of bi-
sections needed.



1940 L LP Strategy for Interval-Newton Method in Deterministic Global Optimization

Frequently, N (k) is computed component-wise us-
ing an interval Gauss–Seidel approach, preconditioned
with an inverse-midpoint matrix. Though the inverse-
midpoint preconditioner is a good general-purpose
preconditioner, it is not always the most effective ap-
proach [18,19]. A hybrid preconditioning approach
(HP/RP) [10], which combines a simple pivoting
preconditioner with the standard inverse-midpoint
scheme, has been shown to be significantly more effi-
cient than the inverse-midpoint preconditioner alone
on some applications. However, it still may not yield
the tightest enclosure of the solution set, which, as
noted above, is in general an NP-hard problem. Nev-
ertheless, it is possible, using an LP-based strategy, to
compute exact component-wise bounds on the solu-
tion set required in the context of the interval-Newton
method, while avoiding exponential time complexity.
This method is described next.

LP Strategy for Interval-Newton Method

Many types of methods have been proposed for bound-
ing the solution set of a system of linear interval equa-
tions. One such method is based on the use of LP tech-
niques [1,3,15,17]. Consider again the linear interval
system Az D B. Oettli and Prager [31] showed that the
solution set S is determined by the constraints:

ˇ̌
Âz � B̂

ˇ̌
� �A jzj C�B; (4)

where Â is the component-wise midpoint matrix of
the interval matrix A, �A is the component-wise half-
width (radius) matrix of A, and similarly B̂ and �B are
the midpoint and radius of B. Eq. (4) is not directly use-
ful for computing bounds on the solution set because of
the absolute value operation on the right-hand side. In
general, the solution may lie in all 2n orthants for an
n-dimensional problem. In each orthant, each compo-
nent of z keeps a constant sign, and thus the absolute
value can be dropped. For a given orthant, define the
diagonal matrix D˛ by

(D˛) j j D

(
1 z j � 0
�1 z j � 0

j D 1; 2; : : : ; n: (5)

Thus jzj D D˛z and z D D˛ jzj. Eq. (4) becomes:
ˇ̌
Âz � B̂

ˇ̌
� �AD˛z C�B: (6)

This can be rearranged to the set of linear inequalities
�

Â��AD˛
�Â��AD˛

�
z �

�
B
�B

�
; (7)

where the underline and overline denote lower and
upper interval bounds, respectively. To determine the
tightest interval enclosing the solution set, one can
then solve, in each orthant, the set of 2n optimization
problems

max
z

z j; j D 1; 2; : : : ; n; (8)

min
z

z j; j D 1; 2; : : : ; n; (9)

each with the 2n linear inequality constraints given by
Eq. (7). These can be solved using linear programming
(LP) techniques. However, in general, there are 2n or-
thants and so the solution time complexity will be ex-
ponential, as expected since this problem is known to
be NP-hard.

In the context of the interval-Newton method, how-
ever, the exponential time complexity can be avoided.
This is because only that part of the solution set of
Eq. (3) that intersects X(k) needs to be found. Consider
the choice of the real point x(k) in Eq. (3). Here x(k) is
an arbitrary point in X(k) typically taken to be the mid-
point. However, if x(k) is chosen to be a corner of X(k)

instead, then the part of the solution set forN (k)�x(k) of
Eq. (3) that intersects X(k) lies in just one orthant. Thus,
in the context of interval-Newton, only 2n LP subprob-
lems, each with 2n constraints, needs to be solved. Fur-
thermore, the LP subproblems have properties that can
be exploited. First, all the 2n subproblems share the
same constraints; that is, they all have the same feasi-
ble region. Thus, an initial feasible basis for the LP sub-
problems needs to be found only once. Second, the ob-
jective function of each subproblem consists of just one
variable. This makes the problem much simpler since it
is not necessary, as it is in the general case, to calculate
the gain in objective value when choosing variables to
enter and exit the basis.

Lin and Stadtherr [23] have implemented the ap-
proach outlined above in the procedure LISS_LP (Lin-
ear Interval System Solver by Linear Programming),
and incorporated it in an interval-Newton method for
global optimization. Two key aspects of the implemen-
tation are:
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1. The choice of a corner of X(k) to be used in
the LP problem. For this purpose, a heuristic ap-
proach [23] was developed that incorporates ideas
from the pivoting preconditioner approach of Gau
and Stadtherr [10].

2. Determination of rigorous error bounds on the solu-
tion of the LP problems. This is done using a proce-
dure based on primal/dual relationships [16,23,30].
Complete details of the implementation are given by
Lin and Stadtherr [23]. We turn next to some ex-
amples that demonstrate the performance of the LP-
based strategy as implemented in LISS_LP.

Cases

Lin and Stadtherr [21,23] have tested the performance
of the LP-based interval-Newton strategy for global
optimization on a variety of problems. In this sec-
tion, we summarize the results on a group of param-
eter estimation problems. Each parameter estimation
case used was formulated using the error-in-variables
approach, with complete details given by Gau and
Stadtherr [8,9]. Comparisons are made to an interval
Gauss–Seidel method with a hybrid preconditioning
approach (HP/RP), which has been shown [10] to pro-
vide a substantial improvement in computational per-
formance relative to standard implementations of the
interval-Newton approach. Comparisons are made in
terms of the number of interval-Newton (I-N) tests re-
quired, i. e., the number of times Eq. (3) must be solved,
and in terms of the CPU time on a Sun Blade 1000
Model 1600 workstation. On a current (early 2007)
workstation, these CPU times would be approximately
an order of magnitude less.

Problem 1
This problem [6,20] involves estimation of binary pa-
rameters in the van Laar equation for activity co-
efficients. These two parameters are estimated from
vapor-liquid equilibrium data for the binary system of
methanol and 1,2-dichloroethane. Computational per-
formance results are shown in Table 1. When the LP-
based strategy (LISS_LP) is applied, the number of I-N
tests is substantially reduced relative to HP/RP, indicat-
ing its effectiveness in reducing the number of intervals
that must be tested. Essentially, by reducing the size of
N (k), the LP approach is able to more quickly identify
and discard intervals that do not contain a stationary

LP Strategy for Interval-Newton Method in Deterministic
Global Optimization, Table 1
Computational performance of LP-based method (LISS_LP)
and preconditioned interval Gauss–Seidel method (HP/RP)
on a Sun Blade 1000Model 1600

Problem
Variables
(n)

HP/RP LISS_LP
I-N
Tests

CPU
time (s)

I-N
Tests

CPU
time (s)

1 12 303589 664.4 156182 496.7
2 264 220 1357.3 81 504.9
3 22 9505 24.0 1258 12.7
4 32 144833 976.2 24817 837.2
5 59 55255 2315.9 9757 1692.4

point. However, the percent reduction in overall CPU
time is less than the percent reduction in I-N tests. This
occurs due to the overhead in solving the LP subprob-
lems.

Problem 2
In this problem [4], the rating parameters are esti-
mated for a steady-state heat exchanger network, which
consists of four heat exchangers. The four parameters
can be estimated from experimental measurements, in-
cluding six flow measurements and thirteen tempera-
ture measurements. In the version of the problem con-
sidered here, 20 data points were considered, leading
to an optimization problem involving 264 indepen-
dent variables. Due to the large number of variables,
sparse linear programming routines were implemented
in LISS_LP for this problem. In this case, both I-N tests
and CPU time are substantially reduced when the LP-
based method is used, as shown in Table 1, indicating
that the LP overhead is less significant on this relatively
large problem.

Problems 3 and 4
Both of these problems involve the estimation of ki-
netic parameters for an irreversible, first-order reaction
A ! B. In Problem 3 [6,20], data from an adiabatic
continuous-stirred-tank reactor (CSTR) is used, and in
Problem 4 [2] data from an isothermal batch reactor is
used. In both cases, the reaction rate constant k is given
by an Arrhenius expression

k D �1 exp
�
�
�2

T

�
; (10)
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in which two parameters, �1 and �2, must be deter-
mined from experimental measurements. Again, the
computational performance results (Table 1) show that
use of the LP-based strategy substantially reduces the
number of I-N tests required relative to HP/RP, but that
a comparable reduction in CPU time is not achieved.
For example, on Problem 4, the number of I-N tests is
reduced by nearly a factor of 6, but there is only about
a 15% reduction in CPU time. This reflects the fact that
an I-N test performed using the LP method requires
greater computational effort than an I-N test using the
HP/RP approach. However, on problems studied by Lin
and Stadtherr [21,23], this overhead was always offset
by a large reduction in the number of I-N tests, result-
ing in computational savings on all but very small prob-
lems.

Problem 5
In this problem, parameters are estimated in a model
of an isothermal pseudo-differential reactor for the cat-
alytic hydrogenation of phenol on a palladium cata-
lyst [32]. There are 28 experimental kinetic data points
of the partial pressure of phenol (P1), the partial pres-
sure of hydrogen (P2), and the initial reaction rate (r).
It is desired to fit this kinetic data to a semi-empirical
model of the form

r D
�1�

2
2 �3P1P2

2

(1C �1P1 C �2P2)3
; (11)

where �1, �2 and �3 are the parameters to be estimated.
This global optimization problem has 59 independent
variables. Due to the relatively large number of vari-
ables in this problem, a sparse linear programming rou-
tine was used in LISS_LP. As seen in Table 1, both I-N
tests and CPU time are reduced nicely compared to
HP/RP when the LP-based method is used. As in the
case of Problem 2, on this relatively large problem the
impact of the LP overhead appears to be less significant.

Conclusions

In this article, we have described an LP-based strat-
egy [21,23] for solving the linear interval equation
system arising in the context of the interval-Newton
approach for deterministic global optimization. The
method can obtain tighter bounds on the solution set
of the linear interval system than the preconditioned in-
terval Gauss–Seidel approach, and thus leads to a large

reduction in the number of subintervals that must be
tested during the interval-Newton procedure. However,
the difference between the overhead required to solve
the LP subproblems and that required to perform the
preconditioned Gauss–Seidel method may lead to rela-
tively smaller or larger improvements in overall com-
putational time, depending on the size of the prob-
lem. With sparse linear algebra in the LP subproblems,
the method can be successfully applied to deterministic
global optimization problems involving over two hun-
dred variables, providing a rigorous guarantee of global
optimality.
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A stochastic linear program with recourse (SLP) is
a mathematical program of the form

(
min c � x C Q(x)
s.t. Ax D b; x � 0;

where Q(x) D E�Q(x; �),

Q(x; �) D

(
min q; y(�)
s.t. W � y(�) D h � T � x; y � 0;

and E� denotes the mathematical expectation with re-
spect to �, x is an (n1 × 1) decision vector, and for each
�, y is (n2 × 1). A is (m1 × n1) and for each �, h is (m2

× 1). All other matrices and vectors have conformable
dimensions. Transposes are omitted for simplicity. The
random vector � is formed by the random components
of q, h and T �Q(x, �) is the second-stage value function
for a given � and Q(x) the expected value-function or
expected recourse.

In the case where random vectors are described by
discrete distributions, Q(x) is a piecewise linear con-
vex function of x, so that classical decomposition tech-
niques may apply. Let k = 1, . . . , K index the possible
realizations of �, let pk be their probabilities and yk be
the corresponding second stage decision variables. SLP
is then equivalent to the extensive form

(EF)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min cx C
KX

kD1

pkqk yk

s.t. Ax D b;
Tkx CWyk D hk ;

k D 1; : : : ;K;
x; yk � 0:

This extensive form possesses a dual block-angular
structure. It is thus well suited to application of Ben-
ders decomposition, which in the case of stochastic pro-
gramming is known as the L-shaped method. An abbre-
viated presentation is as follows. It is restricted to the
case where all second stage programs are bounded and
feasible for any choice of first-stage decision.

L-ShapedMethod for Two-Stage Stochastic
Programwith Bounded, Complete Recourse

Consider the master linear program

(MLP)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min cx C �
s.t. Ax D b;

E j x C � � e j; j D 1; : : : ; s;
x � 0;

with s optimality cuts (initially s = 0) and � a lower
bound on Q(x), (� is omitted when s = 0).

Using the solution xs, � s of (MLP) at iteration s, find
optimal solutions to the K subproblems,

8̂
<̂
ˆ̂:

min w D qk y
s.t. Wy D hk � Tkxs ;

y � 0;

with optimal simplex multipliers 
 s
k , k = 1, . . . , K.

Define Es + 1 =
PK

kD1 pk 
 s
kTk and es + 1 =

PK
kD1

pk
 s
khk.
If es + 1 � Es+ 1xs � � s, then stop as xs is an optimal

solution. Otherwise, set s = s + 1 and return to the mas-
ter program.

Finite convergence of the L-shaped method is
proved through classical convexity arguments. When
the second stage does not have complete recourse, some
first stage decisions may imply that no feasible recourse
exists for some k. Then, a number of feasibility cuts
are also needed. They are obtained through the opti-
mal simplex multipliers of some phase-1 problem. Al-
though these cuts should theoretically be generated for
all realizations k = 1, . . . , K, there are many situations
where the search for feasibility cuts can be limited to
one selected second-stage only [9].

The L-shaped method can be made more efficient
by performing some bunching to obtain optimal mul-
tipliers for several realizations of � at once (see the ex-
periments in [4]). Efficiency can sometimes be gained
by sending disaggregated cuts (also called multicuts)
instead of one fully aggregated cut at each iteration
[2]. Another way of improving the efficiency of the L-
shaped is to include a quadratic regularizing term in
the first-stage objective function. This additional term
is typically the square of the Euclidean distance between
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the decision x and the previous iterate point xs [8]. L-
shaped methods have also been combined with statis-
tical estimation, in particular to cope with continuous
random variables (see [5] and � Discretely distributed
stochastic programs: Descent directions and efficient
points).

A number of alternatives to the L-shaped tech-
niques have been proposed to solve SLP. One is to use
the Lagrangian finite generation method, also known
as scenario aggregation [7]. Another is to use interior
points techniques [1]. For a general presentation of
stochastic programming, see [3] or [6].
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Abstract

Maritime transportation is a heavily utilized mode
when large quantities of bulk products need to be trans-
ported over long distances. Often, inventories exist at
the loading and/or unloading ports of the sailing legs.
When the ship operator has the responsibility for both

the transportation of the fleet and the inventories at
the ports, the underlying planning problem is a mar-
itime inventory routing problem. Here we introduce
the reader to various applications within maritime in-
ventory routing and present some examples of research
contributions. First we consider and present a math-
ematical model for the basic problem where a single
product is transported and denote this problem the in-
ventory ship routing problem. There exist a lot of ex-
tensions and variants of the problem. These include,
among others, problems with inventories at only one
end, variable production/consumption rates, multiple
products, use of spot charters and problems that com-
bine inventory routing with other planning aspects.
Maritime inventory routing problems are very complex
and to the authors’ knowledge there exist no commer-
cial optimization-based systems for the shipping indus-
try yet. However, it is probably just a question of time
before they become available.

Introduction

In order to survive in a tough global market, many
companies have been forced to change their focus from
competition between companies to competition be-
tween supply chains. Supply chains of companies with
foreign sources of raw materials or with overseas cus-
tomers most often include maritime transportation.
Supply chain management and optimization are active
fields of research, and we can see applications in almost
all industries. So far the focus of such applications has
usually not been much on maritime transportation, so
there is a great potential and need for research in the
area.

A maritime inventory routing problem is defined
here as a combined ship routing and scheduling prob-
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lem and an inventory management problem. The ba-
sic inventory ship routing problem (ISRP) concerns the
transportation of a single product. The product is pro-
duced and stored in inventories at given loading ports
and is transported by sea to inventories at unload-
ing or consumption ports. Inventory capacities are de-
fined in all ports. Further, we assume that information
about production and consumption rates is given in
all ports. To transport the product between the given
production and consumption ports, the planners con-
trol a heterogeneous fleet of ships. The planning prob-
lem is to find routes and schedules for the fleet that
minimize the transportation costs without interrupting
production or consumption at the storages. Depend-
ing on the segment the fleet is operating in, the typical
planning period spans from 1 to 2 weeks up to several
months.

Most ship scheduling problems studied in the liter-
ature are so-called cargo routing problems [1]. In cargo
routing problems, each cargo is specified by a given
loading and unloading port. The quantity of the cargo
is given and normally there exist time windows for
loading and/or unloading. When planning routes and
schedules, the shipping company either seeks to min-
imize the transportation costs for carrying all con-
tracted cargoes or in addition to maximize profit for
optional spot cargoes that may be available. We refer
to [4] for a survey on maritime cargo routing problems.
The cargo routing problems deviate from the ISPRs in
a number of ways. The number of calls at a given port
during the planning horizon is not predetermined in
the ISRP, neither is the quantity to be loaded or un-
loaded at each port call. There is also no predefined
pickup and delivery pair in the ISRP. The combina-
tion of the inventory management and the ship routing
and scheduling makes the ISRP a very complex prob-
lem.

The inventory routing problem has been focused
on in the literature for a couple of decades. Dror and
Ball [8] defined the problem as a distribution prob-
lem in which each customer maintains a local inventory
of a product such as heating oil and consumes a cer-
tain amount of that product each day. Given a cen-
tral supplier (depot), the objective is to minimize the
annual delivery costs while attempting to ensure that
no customer runs out of the product at any time. The
asymmetry between each type of inventory (production

and consumption) with only one central supply node
(depot) will often be found in road-based inventory
routing problems, and more seldom in maritime trans-
portation (ISRP). In the road-based inventory routing
problem, the amount unloaded at each customer is of-
ten small compared to the total capacity of the vehicle.
This is also in contrast with the ISRP, where the ship is
often fully loaded and unloaded.

The objective of this article is to introduce the
reader to various real planning problems within mar-
itime inventory routing. The purpose is not to give
a comprehensive overview of such problems, but rather
to present examples of applications and research in the
area.

The rest of the article is organized as follows: The
first section defines the basic inventory ship routing
problem and the underlying mathematical model. Ex-
tensions of the basic ISRP are addressed next. Finally,
concluding remarks and future research follow.

The Basic ISRP

In order to give an introduction to the various real plan-
ning problems within maritime inventory routing, we
will start with a basic ISRP. First we describe the plan-
ning problem. Then we present an arc-flow formulation
of the problem . The final section is devoted to real ap-
plications of the basic ISRP.

Problem Description

The products transported in maritime inventory rout-
ing problems are usually bulk products, where large
quantities are transported and there are inventories at
both the loading and the unloading ports. In these
problems, the ship operators have a twofold responsi-
bility: transportation and inventory management at the
production and consumption sites. In such planning
situations, the routing and scheduling of the fleet have
to be synchronized with the inventory management at
both production and consumption sites.

In the basic ISRP a single (homogeneous) prod-
uct is transported. The product is produced at the
sources, called loading ports, and consumed at the des-
tinations, called unloading ports. Inventory storage ca-
pacities are given in all ports in addition to the pro-
duction or consumption rate of the product. Here, the
rate is assumed constant during the planning horizon.
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Maritime Inventory Routing Problems, Figure 1
Inventory levels during a planning period for a production and a consumption port

The number of calls at a given port during the plan-
ning period is not predetermined, nor is the quantity
to be loaded or unloaded at each port call. Figure 1
shows an example of a production/consumption and
loading/unloading pattern. For both port types, the port
is called at twice. However, the quantities loaded or
unloaded differ at each call. The reason for this might
be that the ports are visited by ships with different ca-
pacities loading/unloading full loads, or due to partial
loading/unloading. In loading ports, it is important to
ensure that the inventory level is not above the maxi-
mum inventory level when loading starts and not un-
der the minimum inventory level when the loading has
finished. In unloading ports, the opposite has to be
ensured. The inventory level at the beginning of the
planning period can be at any level, as indicated in
Fig. 1.

Therefore, the planning problem is to design routes
and schedules that minimize the transportation cost
without interrupting production or consumption. We
assume no inventory costs because the shipper owns
both the producing sources and the consuming destina-
tions. The ship operator controls a heterogeneous fleet
of ships. We assume that partial loading and unloading
is allowed, such that two ports of the same type (loading
or unloading) may be called at in succession. The ship
is not necessarily empty at the beginning of the plan-
ning horizon, but might have some load onboard. The
ship can be either at a port or at sea at the beginning of
the planning horizon. Figure 2 shows a simplified illus-
tration of the planning problem for a cement producer
in Norway with two production factories and five con-

Maritime Inventory Routing Problems, Figure 2
A simplified planning situation with seven ports and two
ships

sumption ports with inventories. The fleet consists of
two ships. Each port can be called at several times dur-
ing the planning period by the same ship or different
ships.

Mathematical Model

The model of the ISRP will be presented in a compact
and simplified way. In Sect. “Routing,” we describe the
flow network and the objective function. Then, the con-
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ditions for the loading and unloading, the time aspects
and the inventories are described in Sect. “Loading
and Unloading”, “Scheduling” and “Inventory Manage-
ment,” respectively. We base our notation and model
on those of Christiansen et al. [3].

In the upcoming formulation, we have assumed that
the ship may be partially loaded/unloaded, meaning
that multiple cargoes may be onboard a ship simultane-
ously. The model could have been simplified if we had
assumed full loads only or sailing between different port
types (from loading to unloading and vice versa).

Routing In the mathematical description of the net-
work each port is represented by an index i and the set
of ports is given by N . Let V , indexed by v, be the
set of available ships to be routed and scheduled. Not
all ships can visit all ports, and Nv = {feasible ports
for ship v} [{o(v),d(v)} is the set of ports that can be
visited by ship v. The terms o(v) and d(v) represent
the artificial origin port and artificial destination port
of ship v, respectively. Each port can be visited sev-
eral times during the planning horizon, andMi is the
set of possible calls at port i, while Miv is the set of
calls at port i that can be made by ship v. The port call
number is represented by an index m, and Mi is the
last possible call at port i within the planning period.
The set of nodes in the flow network represents the set
of port calls, and each port call is specified by (i,m),
i 2N ;m 2Mi . In addition, we specify flow networks
for each ship vwith nodes (i,m), i 2Nv ;m 2Miv .Av

contains all feasible arcs for ship v, which is a subset of
{i 2Nv ;m 2Miv} × {i 2Nv ;m 2Miv}. Finally, Cijv

represents the variable costs for sailing between port i
and port j with ship v. This includes port, channel and
fuel costs.

In the network flow part of the formulation we use
the following types of variables: the binary flow variable
ximjnv , v 2 V , (i;m; j; n) 2Av equals 1, if ship v sails
from node (i,m) directly to node (j,n), and 0 otherwise,
and the slack variable wim , i 2N , m 2Mi is equal to
1 if no ship takes port call (i,m), and 0 otherwise. The
routing formulation including the objective function is
as follows:

min
X
v2V

X
(i;m; j;n)2Av

Ci jv xim jnv ; (1)

subject to

X
v2V

X
j2Nv

X
n2M jv

xim jnv C wim D 1; 8i 2N ;m 2Mi ;

(2)

X
j2Nv

X
n2M jv

xo(v)1 jnv D 1; 8v 2 V ; (3)

X
i2Nv

X
m2Miv

xim jnv �
X
i2Nv

X
m2Miv

x jnimv D 0;

8v 2 V ; j 2Nvnfo(v); d(v)g; n 2M jv ;

(4)

X
i2Nv

X
m2Miv

ximd(v)1v D 1; 8v 2 V ; (5)

wim � wi(m�1) � 0; 8i 2N ;m 2Mi ; (6)

xim jnv 2 f0; 1g ; 8v 2 V ; (i;m; j; n) 2Av ; (7)

wim 2 f0; 1g ; 8i 2N ;m 2Mi : (8)

The objective function (1) minimizes the total costs.
Constraints (2) ensure that each port call is visited at
most once. Constraints (3)–(5) describe the flow on the
sailing route used by ship v. One or several of the calls in
a specified port can be made by a dummy ship, and the
highest call numbers will be assigned to dummy ships
in constraints (6). These constraints reduce the number
of symmetrical solutions in the solution approach. For
the calls made by a dummy ship, we get artificial start-
ing times and artificial inventory levels within the de-
fined upper and lower limits. Finally, the formulation
involves binary requirements (7) and (8) on the flow
variables and port call slack variables, respectively.

Loading and Unloading The capacity of ship v is
given by VCAPv. Variable limv, v 2 V , i 2 Nvnfd(v)g;
m 2 Miv gives the total load onboard ship v just af-
ter the service is completed at node (i;m), while vari-
able qimv , v 2 V , i 2 Nvnfd(v)g;m 2 Miv represents
the quantity loaded or unloaded at port call (i,m), when
ship v visits (i,m). It is assumed that nothing is loaded
or unloaded at the artificial origin o(v); qo(v)1v D 0.
However, the ships may have cargo onboard, L0v , at the
beginning of the planning horizon; lo(v)1v D L0v . Fur-
ther, constant Ii is equal to 1 if port i is a loading port,
�1 if port i is an unloading port and 0 if port i is o(v) or
d(v). Constraints related to the quantity onboard a ship
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can be formulated as follows:

xim jnv(limv C I j q jnv � l jnv) D 0;
8v 2 V ; (i;m; j; n) 2Av j j ¤ d(v);

(9)

qimv � limv �
X
j2Nv

X
n2M jv

VCAPv xim jnv ;

8v 2 V ; i 2Nv , m 2Miv jIi D 1;
(10)

0 � limv �
X
j2Nv

X
n2M jv

VCAPv xim jnv � qimv ;

8v 2 V ; i 2Nv ;m 2Miv jIi D �1:
(11)

Constraints (9) give the relationship between the bi-
nary flow variables and the ship load at each port call.
Constraints (10) and (11) give the ship capacity inter-
vals at the port calls for loading and unloading ports,
respectively.

Scheduling The time required to load or unload the
ship may constitute a major part of the total time in
many maritime transportation applications. It is there-
fore usual to calculate this as a function of the quantity
loaded/unloaded. The time spent loading/unloading
one unit of a cargo at port i is given by TQi. The term
TSijv represents the sailing time from port i to port j
with ship v. In some ports, there is a minimum required
time, TBi, between the departure of one ship and the ar-
rival of the next ship, due to small port area or narrow
channels from the port to the pilot station. The time
variable tim, (i 2N ;m 2Mi ) [ (i 2 o(v);8v;m D 1)
represents the time at which service begins at node
(i,m). It is assumed that the ship arrives at o(v) at
a given fixed time; to(v)1 D T0v . Finally, let T denote the
planning horizon. The scheduling constraints can now
be written as follows:

xim jnv(tim C TQi qimv C TSi jv � t jn) � 0;

8v 2 V ; (i;m; j; n) 2Av j j ¤ d(v),
(12)

tim � ti(m�1) �
X
v2V

TQi qi(m�1)v C TBiwim � TBi ;

8i 2N ;m 2Minf1g: (13)

Constraints (12) take into account the timing or
scheduling on the route. Note that waiting at a port is
allowed. Constraints (13) prevent service overlap in the
ports and ensure the order of real calls at the same port.
A ship must complete its service before the next ship
starts its service at the same port. If port i does not have

constraints regarding the minimum time between de-
parture of one ship and arrival of the next, TBi D 0. If
port i also allows the service of several ships simultane-
ously, constraints (13) will simply be tim � ti(m�1) � 0,
to ensure the order of calls at the port.

Inventory Management The levels of the inventory
have to be within a given interval at each port [SMNi,
SMXi ]. The production rate Ri is positive if port i is pro-
ducing the product, and negative if port i is consuming
the product. At the beginning of the planning horizon,
the inventory level at each port i is S0i . Finally, sim,
i 2N ;m 2Mi represents the inventory level when
service starts at port call (i,m). The inventory con-
straints of the formulation become

si1 � Ri ti1 D S0i ; 8i 2N ; (14)

si(m�1) �
X
v2V

Ii qi(m�1)v C Ri (tim � ti(m�1)) � sim

D 0 ; 8i 2N , m 2Minf1g; (15)

SMNi � sim � SMXi ; 8i 2N ;m 2Mi , (16)

SMNi � sim �
X
v2V

Ii qimv C Ri(T � tim) � SMXi ;

8i 2N ;m D Mi : (17)

The inventory level at the first call at each port is cal-
culated in constraints (14). From constraints (15), we
find the inventory level at any port call (i,m) from the
inventory level upon arrival at the port in the previous
call (i,m-1), adjusted for the loaded/unloaded quantity
at the port call and the production/consumption be-
tween the two arrivals. The general inventory limit con-
straints at each port call are given in (16). Constraints
(17) ensure that the level of inventory at the end of the
planning horizon is within its limits. It can easily be
shown by substitution that constraints (17) ensure that
the inventory at time T will be within the bounds even
if ports are not visited at their last calls.

A Real Application An application that is close to
the ISRP is a real ship planning problem for ammo-
nia transportation. Norsk Hydro Agri (now named
Yara) produces and consumes ammonia in its facto-
ries worldwide. The planners at the company are re-
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sponsible for keeping the inventory levels within the
predefined upper and lower limits at all Norsk Hy-
dro Agri factories around the world where they pro-
duce and consume ammonia. This requires the plan-
ners to design routes and schedules for their fleet of
heterogeneous ships transporting ammonia from pro-
duction ports to consumption ports. The problem is
described in detail in Christiansen [2]. The overall so-
lution approach is based on a column generation ap-
proach with columns for both the ship routes and the
inventory management sequences [5], where subprob-
lems are solved by dynamic programming for each port
and each ship [6]. Another solution approach to the
same problemwas developed by Flatberg et al. [9]. They
used an iterative improvement heuristic combined with
an linear program (LP) solver to solve this problem.
The heuristic is used to solve the combinatorial prob-
lem of finding the ship routes, and an LP model is used
to find the starting time of service at each call and the
loading/unloading quantities.

Extensions of the ISRP

Most of the real applications of maritime inventory
routing problems have a more complex structure than
the basic ISRP. We present here various extensions of
the ISRP that are described in the literature or have
been experienced in our research group. In many mar-
itime applications, several of the extensions are com-
bined.

One Central Supplier or Consumer

As mentioned in the introduction, the road-based in-
ventory routing problem often has a vehicle routing
problem (VRP) structure, where a central supplier (or
depot) serves a set of customers with a local inventory
and a consumption rate. We can imagine a lot of real
planning problems with such a structure, for instance,
in the gasoline business, delivering gasoline to gas sta-
tions from a refinery or central storage. Milk collection
at farms for transport to a dairy has the opposite struc-
ture, where the customers are producers and the depot
consumes the milk.

In the maritime sector, we can also find this VRP
structure for ship operators dealing with maritime in-
ventory routing problems. The Norwegian oil com-
pany Statoil will start its production of natural gas from

Snøhvit, Melkøya, north of Norway in 2008. Most of
the gas will be cooled down and transported as lique-
fied natural gas (LNG) by LNG tankers. At the mo-
ment the planning problem concerns one source pro-
ducing the gas and several consumption ports. Frich
and Horgen [10] presented a mixed integer program
(MIP) model of the planning problem where this spe-
cial VRP structure is exploited.

Similar maritime inventory routing problems can
be found, for instance, with the Arabian Gulf as the
source for the transportation of both LNG and heavier
oil products.

Inventory Constraints in Either Production Ports
or Consumption Ports

For the ISRP, the inventory management is considered
at both the loading and the unloading ports. However,
many real planning problems concern the design of
routes and schedules for a fleet of ships with inventory
constraints at just one of the port types. There exist for
instance ship operators engaged in vendor managed in-
ventory (VMI) contracts. Here, the ship operator mon-
itors its customers’ inventories and must ensure that
these are kept within predefined limits. Often, the cus-
tomers are concerned about inventories at only the un-
loading ports, while the ship operator has entered into
a contract to supply the product with given quantities
and time windows from the loading ports. The oppo-
site might also be the case, where the customers have
inventories at only loading ports. Then, the ship oper-
ator must also engage in contracts to deliver these vol-
umes with given quantities and time windows.

Variable Production or Consumption Rate

The production and consumption rates are assumed
constant for all port inventories during the planning
period in the ISRP. However, for many real planning
problems this assumption is too coarse, and the pro-
duction and consumption that may vary from day to
day have to be taken into account in the modeling. In-
cluding this aspect into the basic ISRP model would re-
sult in a more complicated model and it would become
harder to solve.

A maritime inventory routing problem for the LNG
business was considered by Grønhaug et al. [11]. Here
the production of LNG at the liquefaction plants and
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the consumption of LNG at the regasification terminals
have to be regarded as variable. In order to overcome
these complicating factors, a time discretized model
was developed, and it was solved by a column gener-
ation approach.

Also Ronen [16] used a time discretized model with
a variable production and consumption rate for an
inventory routing problem for refinery products. The
model focuses on the inventory and not the routing part
of the problem, as the model solution suggests ship-
ment sizes that are assumed to be an input for a cargo
routing problem at a later stage.

Multiple Products

Here we extend the ISRP to the multiproduct case. In
the ISRP several cargoes may be transported simulta-
neously in one ship, but the product is assumed to be
the same. This means that the product does not need to
be transported in separated compartments onboard the
ship or stored in separate stores at the ports.

The problem with multiple products is frequently
encountered by chemical and oil product transport
companies. Al-Khayyal and Hwang [1] gave a math-
ematical formulation for such a problem where the
products are assumed to require dedicated compart-
ments in the ship. For this problem there exist inven-
tory limits and production/consumption rates for each
product in each port. Hwang [13] used a combined La-
grangian relaxation and heuristic approach to solve test
instances of the problem.

The problem described in Ronen [16] also includes
multiple products. Sometimes the stowage onboard the
ship must also be considered in the inventory routing
problem; see, for instance, Haugen and Lund [12] for
the transportation of cement products.

Use of Spot Charters

In some cases the dedicated fleet of ships has insuf-
ficient transportation capacity to provide continuous
production at all sources and consumption at all desti-
nations. In such a case some of the loads can be serviced
by spot charters, which are ships chartered for a single
voyage.

The cement company described by Haugen and
Lund [12] is faced with limited vessel capacity. In some
periods the company makes use of spot charters, while

in peak periods additional road-based transportation
is necessary. In their solution approach, the consump-
tion inventories are sorted according to their impor-
tance and their location regarding what the cost effects
for additional trucks will be. It is ensured that the in-
ventories with highest priority are served by the fleet of
ships.

Combined Inventory Routing and Cargo Routing

The cargo routing problemwas introduced in the intro-
duction. For this problem, there exist predefined car-
goes with specified quantities and time windows. The
cargoes may be contracted or optional spot ones. Often
the companies facing an ISRP trade cargoes with other
operators in order to better utilize the fleet and to en-
sure there is product balance at their own plants.

In the real problem described by Christiansen [2],
the shipper trades ammonia with other operators.
These traded volumes are determined by negotiations.
The ship operator undertakes to load or unload ammo-
nia within a determined quantity interval and to arrive
at a particular port within a given time window. For
these external ports, no inventory management prob-
lem exists.

There also exist shipping companies that have VMI
contracts with some customers, but apart from that are
involved in ordinary cargo routing. This will give these
shipping companies a combined inventory and cargo
routing planning problem.

Combining Inventory Routing
with Other Planning Aspects

The ISRP concerns parts of a supply chain and focuses
on sea transportation and the inventories at both ends
of the sailing leg. In many real planning situations, it
is sensible to consider larger parts of the supply chain.
Persson and Göthe-Lundgren [15] studied a planning
problem that integrates both the shipment planning of
petroleum products from refineries to depots and the
production scheduling at the refineries. Shih [17] and
Liu and Sherali [14] presented two other maritime sup-
ply chain applications where coal is transported.

Rather than considering a larger part of the supply
chain, the ISRP may be combined with other planning
aspects. In Sect. “Multiple Products,” we referred to the
combined ISRP and stowage of different cement prod-



1954 M Maritime Inventory Routing Problems

ucts in various compartments onboard the ships. See
Haugen and Lund [12] for more information about the
case and solution approach.

Concluding Remarks

We have described the maritime inventory routing
problem, which is a combined inventory management
and a ship routing and scheduling problem. The so-
called basic ISRP and several extensions to the ISRP
were presented. In practice, planners are more often
faced with extensions of the ISRP and also the exten-
sions described in combination with each other.

As far as we know, no generic commercial optimiza-
tion-based decision support system exists for solving
maritime inventory routing problems. However, the
shipping industry is experiencing an increased need for
such systems owing to extended planning responsibility
and increased fleet sizes. We expect that such systems
will be available on the market in the years to come.

The basic VRP is computationally very hard. The
maritime inventory routing problem is even more de-
manding owing to the additional degrees of freedom.
Many of the extensions discussed in this article are
barely touched on in the operations research commu-
nity. This means that there exist a lot of research chal-
lenges, in the development of both exact methods and
heuristic solution methods.

Maritime transportation is faced with higher un-
certainty in its operations compared with many other
modes of transportation. This is due to greater depen-
dence on weather conditions and technology. For the
maritime inventory routing problem, we have also un-
certainties in the production and consumption at the
inventories. The consideration of these uncertainty as-
pects is another interesting topic of research.
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Introduction

Progress in digital data acquisition and storage tech-
nology has resulted in the growth of huge databases.
This has occurred in a variety of scientific and engi-
neering research applications [8] as well as medical do-
main [19,20]. Making sense out of these rapidly grow-
ing massive data sets gave birth to a “new” scientific
discipline often referred to as Data Mining. Defining
a discipline is, however, always a controversial task.
The following working definition of the area was re-
cently proposed [9]: Data mining is the analysis of (of-
ten large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways
that are both understandable and useful to the data
owner.

Clearly the term data mining if often used as a syn-
onym for the process of extracting useful information
from databases. However, the overall knowledge dis-
covery from databases (KDD) process is far more com-
plicated and convoluted and involves a number of ad-
ditional pre and post-processing steps [6]. Therefore,
in our definition data mining refers to the ensem-
ble of new, and existing, specific algorithms for ex-
tracting structure from data [8]. The exact definition
of the knowledge extraction process and the expected
outcomes are very difficult to characterize. However,
a number of specific tasks can be identified and, by and
large, define the key subset of deliverables from a data
mining activity. Two such critical activities are classifi-
cation and clustering.

A number of variants for these tasks can be identi-
fied and, furthermore, the specific structure of the data
involved greatly impacts the methods and algorithms
that are to be employed. Before we proceed with the ex-
act definition of the tasks we need to provide working
definitions of the nature and structure of the data.

Basic Definitions

For the purposes of our analysis we will assume that the
data are expressed in the form of n-dimensional fea-
ture vectors x 2 X � <n . Appropriate pre-processing
of the data may be required to transform the data into
this form. Although in many cases this transformations
can be trivial, in other cases transforming the data into
a “workable” form is a highly non-trivial task. The goal
of data mining is to estimate an explicit, or implicit,
function that maps points of the feature vector from the
input space, X � <n , to an output space, C, given a fi-
nite sample. The concept of the finite sample is impor-
tant because, in general, what we are given is a finite
representative subset of the original space (training set)
and we wish to make predictions on new elements of
the set (testing set). The data mining tasks can thus de
defined based on the nature of the mapping C and the
extent to which the train set is characterized.

If the predicted quantity is a categorical value and
if we know the value that corresponds to each elements
of the training set then the question becomes how to
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identify the mapping that connects the feature vector
and the corresponding categorical value (class). This
problem is known as the classification problem (super-
vised learning). If the class assignment is not known
and we seek to: (a) identify whether a small, yet un-
known, number of classes exist; (b) define the mapping
assigning the features to classes then we have a cluster-
ing problem (unsupervised learning).

A related problem associated with superfluous in-
formation in the feature vector is the so-called feature
selection problem. This is a problem closely related to
over-fitting in regression. Having a minimal number
of features leads to simpler models, better generaliza-
tion and easier interpretation. One of the fundamental
issues in data mining is therefore to identify the least
number of features, sub-set of the original set of fea-
tures, that best address the two issues previously de-
fined. The concept of parsimony (Occam’s razor) is of-
ten invoked to bias the search [1]: never do with more
what can be done with fewer.

Although numerous methods exist for addressing
these problems they will not be reviewed here. Nice
reviews of classification and were recently presented
in [8,9]. In this short introduction we will concentrate
on solution methodologies based on reformulating the
clustering, and classification questions as optimization
problems.

Mathematical Programming Formulations

Classification and clustering, and for that matter most
of the data mining tasks, are fundamentally optimiza-
tion problems. Mathematical programming method-
ologies formalize the problem definition and make use
of recent advances in optimization theory and appli-
cations for the efficient solution of the corresponding
formulations. In fact, mathematical programming ap-
proaches, particularly linear programming, have long
been used in data mining tasks.

The pioneering work presented in [13,14] demon-
strated how to formulate the problem of constructing
planes to separate linearly separable sets of points.

In this summary we will follow the formalism put
forth in [2] since it presented one of the most com-
prehensive approaches to this problem. One of the ma-
jor advantages of a formulation based on mathemati-
cal programming is the ease in incorporating explicit

problem specific constraints. This will be discussed in
greater detail later in this summary.

Classification

As discussed earlier the main goal in classification is to
predict a categorical variable (class) based on the values
of the feature vector. The general families of methods
for addressing this problem include [9]:

i) Estimation of the conditional probability of ob-
serving class C given the feature vector x.

ii) Analysis of various proximity metrics and based
the decision of class assignment based on proxim-
ity.

iii) Recursive input space partitioning to maximize
a score of class purity (tree-based methods).

The two-class classification problem can be formulated
as the search of a function that assigns a given input
vector x into two disjoint point sets A and B. The data
are represented in the form of matrices. Assuming that
the set A has m elements and the set B has k elements,
then A 2 <m�n ; B 2 <k�n , describe the two sets re-
spectively. The discrimination in based on the deriva-
tion of hyperplane

P D fxjx 2 <n ; xT! D �g

with normal and distance from the origin j� j
jj!jj2

. The op-
timization problem then becomes to determine! and �
such that the separating hyperplane P defines two open
half spaces

fxjx 2 <n ; xT! < �g

fxjx 2 <n ; xT! > �g

containing mostly points in A and B respectively. Un-
less A and B are disjoint the separation can only be sat-
isfied within some error. Minimization of the average
violations provides a possible approximation of the sep-
arating hyperplane [2]:

min
!;�

1
m
k(�A!Ce�Ce)Ck1C

1
k
k(�B!Ce�Ce)Ck1

In [2] a number of linear programming reformulations
are discussed exploring the properties of the structure
of the optimization problem. In particular an effective
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robust linear programming (RLP) reformulation was
suggested making possible the solution of large-scale
problems:

min
!;�;y;z

eT y
m
C

eTz
k

s.t. � A! C e� C e � y

B! � e� C e � z

y; z � 0:

In [17] it was demonstrated how the above formulation
can be applied repeatedly to produce complex space
partitions similar to those obtained by the application
of standard decision tree methods such as C4.5 [21] or
CART [4].

Clustering

The goal of clustering is the segmentation of the raw
data into groups that share a common, yet unknown,
characteristic property. Similarity is therefore a key
property in any clustering task. The difficulty arises
from the fact that the process is unsupervised. That is
neither the property nor the expected number of groups
(clusters) are known ahead of time. The search for the
optimal number of clusters is parametric in nature and
the optimal point in an “error” vs. “number of clusters”
curve is usually identified by a combined objective the
weighs appropriately accuracy and number of clusters.
Conceptually a number of approaches can be developed
for addressing clustering problems:

i) Distance-based methods, by far the most com-
monly used, that attempt to identify the best k-way
partition of the data by minimizing the distance of
the points assigned to cluster k from the center of
the cluster.

ii) Model-based methods assume the functional form
of a model that describes each of the clusters and
then search for the best parameter fit that models
each cluster by minimizing some appropriate likeli-
hood measure.

There are two different types of clustering: (1) hard
clustering; (2) fuzzy clustering. The former assigns
a data point to exactly one cluster while the latter as-
signs a data point to one of more clusters along with the
likelihood of the data point belonging to one of those
clusters.

The standard formulation of the hard clustering
problem is:

min
c

mX
iD1

min
l
kxi � clkn

That is given m points, x, in an n-dimensional space,
and a fixed number of cluster, k, determine the centers
of the cluster, c, such that the sum of the distances of
each point to a nearest cluster center is minimized. It
was shown in [3] that this general non convex problem
can be reformulated such that we minimize a bilinear
functions over a polyhedral set by introducing a selec-
tion variable ti l :

min
c;d;t

mX
iD1

kX
iD1

ti l (eTdi l )

s.t. � di l � xi � cl � di l
kX

lD1

ti l D 1

ti l � 0

i D 1; : : : ;m; l D 1; : : : ; k:

d is a dummy variable used to bound the components
of the difference x � c. In the above formulation the
1-norm is selected [3].

The fuzzy clustering problem can be formulated as
follows [5]:

min
w

mX
iD1

kX
lD1

w2
i lkx

i � clk2

s.t.
kX

lD1

wil D 1

wil � 1;

where xi ; i D 1; : : : ;m is the location descriptor for the
data point, cl ; l D 1; : : : ; k is the center of the cluster,
wil is the likelihood of a data point i being assigned to
cluster l.

Support Vector Machines

This optimization formalism bares significance resem-
blance to the Support Vector Machines (SVM) frame-
work [25]. SVM incorporate the concept of structural
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risk minimization by determining a separating hyper-
plane that maximizes not only a quantity measuring the
misclassification error but also maximizing the mar-
gin separating the two classes. This can be achieved
by augmenting the objective of the RLP formulation
earlier presented by an appropriately weighted mea-
sure of the separation between the two classes as
(1 � �)(eT yC eTz)C 	

2 k!k
2
2.

In [6] the concept of SVM is extended by introduc-
ing the Proximal support vector machines which clas-
sify points based on proximity to one of two parallel
planes that are pushed as far apart as possible. Non-
linear transformations were also introduced in [6] to
enable the derivation of non-linear boundaries in clas-
sifiers.

Multi-Class Support Vector Machines

Support vector machines were originally designed for
binary classification. Extending to multi-class problems
is still an open research area [10].

The earliest multi-class implementation is the one
against all [22] by constructing k SVM models, where
k is the number of classes. The ith SVM is classifies
the examples of class i against all the other samples in
all other classes. Another alternative builds one against
one [12] classifiers by building k(k�1)

2 models where
each is trained on data from two classes. The emphasis
of current research is on novel methods for generating
all the decision functions through the solution of a sin-
gle, but much larger, optimization problem [10].

Data Mining in the Presence of Constraints

Prior knowledge about a system is often omitted in data
mining applications because most algorithms do not
have adequate provisions for incorporating explicitly
such types of constrains. Prior knowledge can either en-
codes explicit and/or implicit relations among the fea-
tures or models the existence of “obstacles” in the fea-
ture space [24].

One of the major advantages of a mathematical
programming framework for performing data min-
ing tasks is that prior knowledge can be incorporated
in the definition of the various tasks in the form of
(non)linear constraints. Efficient incorporation of prior
knowledge in the form of nonlinear inequalities within
the SVM framework was recently proposed by [15]. Re-

formulations of the original linear and nonlinear SVM
classifiers to accommodate prior knowledge about the
problem were presented in [7] in the context of approx-
imation and in [16] in the context of classifiers.

Data Mining and Integer Optimization

Data mining tasks involve, fundamentally, discrete de-
cisions:
� How many clusters are there?
� Which class does a record belong to?
� Which features are most informative?
� Which samples capture the essential information?
Implicit enumeration techniques such as branch-and-
bound were used early on to address the problem of
feature selection [18].

Mathematical programming inspired by algorithms
for addressing various data mining problems are now
being revisited and cast as integer optimization prob-
lems. Representative formulations include feature se-
lection using Mixed-Integer Linear Programs [11] and
in [23] integer optimization models are used to address
the problem of classification and regression.

Research Challenges

Numerous issues can of course be raised. However, we
would like to focus on three critical aspects

i) Scalability and the curse of dimensionality. Data-
bases are growing extremely fast and problems of
practical interest are routinely composed of mil-
lions of records and thousands of features. The
computational complexity is therefore expected to
grow beyond what is currently reasonable and
tractable. Hardware advances alone will not address
this problem either as the increase in computational
complexity outgrows the increase in computational
speed. The challenge is therefore two-fold: either
improve the algorithms and the implementation of
the algorithms or explore sampling and dimension-
ality reduction techniques.

ii) Noise and infrequent events. Noise and uncertainty
in the data is a given. Therefore, data mining al-
gorithms in general and mathematical program-
ming formulations in particular have to account for
the presence of noise. Issues from robustness and
uncertainty propagation have to be incorporated.
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However, an interesting issue emerges: how do we
distinguish between noise and an infrequent, albeit
interesting observation? This in fact maybe a ques-
tion with no answer.

iii) Interpretation and visualization. The ultimate goal
of data mining is understanding the data and de-
veloping actionable strategies based on the conclu-
sions. We need to improve not only the interpreta-
tion of the derived models but also the knowledge
delivery methods based on the derived models. Op-
timization and mathematical programming needs
to provide not just the optimal solution but also
some way of interpreting the implications of a par-
ticular solution including the quantification of po-
tential crucial sensitivities.
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Introduction

Supply chain management (SCM) is the integration
of key business processes from end users through the
original suppliers to the customers that provides prod-
ucts, services and information that add value to all par-
ties [13,14,17]. It is therefore concerned with the orga-
nization, the planning and the qualitative and quanti-
tative determination of material and information flows
both in and between facilities (vendors, plants, sites and
distribution centres) and between these and the final
consumers. It is a set of important activities in all pro-
ducing facilities and in many organizations [6].

For some restricted production problems, such as
determining an optimal control to a chemical plant,
suitable experimental designs can be enacted, such as
EVolutionary OPeration (EVOP) [4], Taguchi meth-
ods [19], or more complex experimental designs such
as Latin squares, Greek squares and block designs [21].

In general, verification procedures, based on exper-
imental replication and design, cannot be used in the
applied sciences, as non-reversible and unpredictable
changes in the environment occur [18], and the out-
come of the plans cannot be imputed to the effect of the
decision taken rather than to an environmental change,
so there can be no evaluation of the relevance of a for-
mulated supply chain plan.

Thus more complex methodologies than those
based on experimental verification, such as intuition
experimental design or anecdotal evidence, must be
posited. The solution of any SCM problem must be un-
dertaken with respect to a set of principles and proce-
dures to ensure the formulation of expectationally valid

plans, i. e. robust valid feasible policies are determined.
To enable management to formulate good SCM

plans, the methodology proposed should be analysed
for its logical consistency, its statistical correctness and
its adequacy. Essentially, it must be shown that from
acceptable premises or axioms, by suitable deductions
a policy is formulated (syntactically correctness). Since
this policy cannot be tested, but only applied, it must
also be shown that in many other historical derivations
the policies that were formulated by this methodology
turned out to be applicable (semantically adequate).

A dynamic non-linear stochastic system formula-
tion of an SCM model must be estimated and applied.
Thus an optimization algorithm must be specified and
solved which determines simultaneously the adequate
functional form, its parameterization and the optimal
control [6].

Definitions

In this section some fundamental definitions will be
given.

A dynamical system is a precise mathematical ob-
ject [16], and given the flows of the activities of the phe-
nomenon, the input-output relationships must be de-
termined by appropriate estimation methods.

Not every relationship can be modelled by mathe-
matical system theory, since a representation which is
non-anticipatory is required [16], while the condition
that the functionals be sufficiently smooth which was
previously required may be waived.

Dynamical systems have been defined at a high level
of generality to refine concepts and perceive unity in
a diversity of applications, and by appropriate mod-
elling whole hierarchies of phenomena can be repre-
sented as systems defined at different levels.

Definition 1 ([16]) Adynamical system is a composite
mathematical object defined by the following axioms:
1. There is a given time set T, a state set X, a set of

input values U, a set of acceptable input functions
˝ D ! : ˝ ! U , a set of output values Y and a set
of output functions � D � : � ! Y .

2. (Direction of time). T is an ordered subset of the re-
als.

3. The input space˝ satisfies the following conditions:
(a) (Non-triviality). ˝ is non-empty.
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(b) (Concatenation of inputs). An input segment
!(t1;t2], ! 2 ˝ restricted to (t1; t2] \ T . If
!;!0 2 ˝ and t1 < t2 < t3, there is an !00 2 ˝
such that !00(t1;t2] D !(t1;t2] and !00(t2;t3] D !

0
(t2;t3].

4. There is a state transition function ' : T � T �
X � ˝ ! X whose value is the state x(t) D
'(t; �; x; !) 2 X resulting at time t 2 T from the
initial state x D x(�) 2 X at the initial time � 2 T
under the action of the input ! 2 ˝ . � has the fol-
lowing properties:
(a) (Direction of time). � is defined for all t � � , but

not necessarily for all t < � .
(b) (Consistency). '(t; t; x; !) D x for all t 2 T , all

x 2 X and all ! 2 ˝ .
(c) (Composition property). For any t1 < t2 < t3

there results:

'(t3; t1; x; !) D '(t3; t2; '(t2; t1; x; !); !)

for all x 2 X and all ! 2 ˝.
(d) (Causality). If !;!0 2 ˝ and !(�;t] D !

0
(�;t]

then '(t; �; x; !) D '(t; �; x; !0).
5. There is a given readout map � : T � X ! Y

which defines the output y(t) D �(t; x(t)). The
map (�; t]! Y given by � 7! �(�; '(�; �; x; !)),
� 2 (�; t], is an output segment, that is the restric-
tion �(�;t] of some � 2 � to (�; t].

The following mathematical structures in Definition 1
will be indicated by:
� The pair (t; x); t 2 T; x 2 X 8t is called an event;
� The state transition function '(xt; ut) is called a tra-

jectory.
Phenomena may also be modelled through dynamical
systems in the input/output sense, which reflect an ex-
perimental design or a simulative approach, long ap-
plied in science.

Definition 2 A dynamical system in an input/output
sense is a composite mathematical object defined as fol-
lows:
1. There are given sets T, U, ˝ , Y and � satisfying all

the properties required by Definition 1.
2. There is a set A indexing a family of functions

F D f f˛ : T �˝ ! Y ; ˛ 2 Ag;

each member ofF is written explicitly as f˛(t; !) D
y(t), which is the output resulting at time t from the

input ! under the experiment ˛. Each f ˛ is called an
input/output function and has the following proper-
ties:
(a) (Direction of time). There is a map $ : A! T

such that f˛(t; !) is defined for all t � $(˛).
(b) (Causality). Let �; t 2 T and � < t. If !;!0 2 ˝

and !(�;t] D !
0
(�;t], then f˛(t; !) D f˛(t; !0) for

all ˛ such that � D $(˛).

While the input/output approach may determine
a family of functions, which generally vary over the time
interval of realization and across instances, the state-
space approach represents the trajectories in the way in-
dicated, through a unique function. The latter approach
is intuitively more appealing, especially in applications.

The representations are equivalent. It is easy to
transform a given system from a state space for-
mulation into an input/output formulation and vice
versa [2,16], so each may be used as convenience sug-
gests.

It cannot be assumed generally that a dynamical sys-
tem satisfies the conditions of smoothness, nor that it
will meet the necessary and sufficient conditions for an
optimal control to exist. Thus in general, the dynamical
systems to be dealt with may have an awkward struc-
ture, but through the combined estimation and opti-
mization approach a sufficiently good approximation
may be obtained with the required characteristics [6].

A sufficiently general representation of a dynamical
system may be formulated by applying Definition 1, re-
calling the equivalence of an input/output system and
a system in state form:

xtC1 D '(xt; ut) ; (1)

yt D �(xt) ; (2)

where xt 2 X � Rr may simply be taken as an r-dimen-
sional vector in a Euclidean space X, indicating the state
of the system at time t, ut 2 U � Rq may be taken as
a q-dimensional vector in a Euclidean subspace U of
control variables and yt 2 Y � Rp is a p-dimensional
vector in a Euclidean space Y of output variables, in line
with Definitions 1 and 2.

The definition of a dynamical system is based on
defining an intermediary set of states and a transition
function or a family of functions. Neither of these con-
structions is unique, so if it is desired to represent
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a SCM system by such structures, equivalence of the
possible structures must be shown.

Definition 3 Given two states xt0 and x̂t0 belonging to
systems S and Ŝ which may not be identical but have
a common input space ˝ and output space Y , the two
states are said to be equivalent if and only if for all input
segments ![t0;t) 2 ˝ the response segment of S starting
in state xt0 is identical with the response segment of Ŝ
starting in state x̂t0 ; that is

xt0 Š x̂t0 , �(t; '(xt0; ![t0;t))) D �̂(t; '̂(x̂t0 ; ![t0;t)))

8t 2 T; t0 � t;8![t0;t) 2 S; Ŝ :
(3)

Systems S and Ŝ may be two models of a SCM system
solved with different control policies, or they may be
various alternative models of the phenomenon.

Definition 4 A system is in reduced form if there are
no distinct states in its state space which are equivalent
to each other.

Definition 5 Systems S and Ŝ are equivalent S � Ŝ if
and only if to every state in the state space of S there
corresponds an equivalent state in the state space of Ŝ
and vice versa.

Some important conditions are required to make the
representation of the SCM adequate.

The conditions of the system are:
� Reachability
� Controllability
� Observability
� Stability
These conditions are very important since they allow
trajectories to be defined, the initial point of trajecto-
ries to be determined and their stability properties to be
derived. Moreover they can be applied at any moment
in time to determine if the goals of the SCM are still at-
tainable and at what cost. Reachability, controllability
and stability are seldom formally examined and yet at
every period exogenous events can arise to nullify even
the best formulated plan, so these are important instru-
ments for SCM [6].

An important property which distinguishes dynam-
ical systems from their counterparts derived in compar-
ative statics is the distinction between systems which
are simply equivalent and those which are multiply

equivalent [6]. This distinction is crucial if dynamical
systems are considered, while with comparative static
models the distinction does not apply. This is one of the
many reasons that one should insist on solving SCM
dynamic estimation problems with a data-driven for-
mulation [6].

The dynamical system representation of a SCM sys-
tem permits one to verify its specification, whether the
optimal control which determines the final event is
reachable, if the system is controllable throughout the
sequence of events comprising the trajectory, if the sys-
tem is observable and finally if the given solution is
stable, so that small perturbations will not give rise to
explosive perturbations or to chaotic behaviour. In so
doing crucial questions which are important to man-
agement can be answered.

If these conditions are not verified, this will suggest
strategic changes to the SCM system or profound mod-
ification of policies, aspects which are difficult to deter-
mine in advance.

Computationally, these aspects are handled by
adding appropriate constraints in the mathematical
program [6].

Formulation

Consider the monitoring of a set of activities in time
of a supply chain at a given level of aggregation, which
may be at the department, plant or firm level, or a hi-
erarchical system developed through all these organiza-
tional structures. Although the accuracy of the repre-
sentation may depend on the sampling strategy and the
time interval, these aspects will not be considered here.

Thus a given finite-dimensional estimation and op-
timization problem will be considered which may well
be non-linear and dynamic.

Consider the data set of a phenomenon consisting
of measurements (yt; xt ; ut) over (t D 1; 2; : : : ; T) pe-
riods, where it is assumed that yt 2 Rp is a p-dimen-
sional vector, while xt 2 Rr is an r-dimensional vector
of explanatory or state variables of the dynamic pro-
cess of dimension. Also, ut is a q-dimensional vector of
control variables. It is desired to determine functional
forms ' : RrCq ! Rr and � : Rr ! Rp and a set of suit-
able coefficients 
 2 Rm such that:

Min J D
TX

tDTC1

c(xt; ut ; yt); (4)
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xtC1 D '(xt ; ut; yt ;wt) 8t D TC1; : : : ;T �1; (5)

yt D �(xt ; ut ; vt) 8t D T C 1; : : : ;T ; (6)

where wt and vt are stochastic processes also to be de-
termined.

Equation (4) is the objective function for the supply
chain and (5) and (6) are the system equations in state
space formulation and a similar representation may be
adopted for the the input-output formulation [16,20].

The system (4)–(6) could be estimated by a maxi-
mum likelihood method so as to minimize the random
errors, indicated bywt 2 Rr and vt 2 Rp , such that they
will have minimum variance and zero mean value, and
then on the quantified model the optimal control prob-
lem could be solved, usually through an appropriate op-
timization problem.

However, for this type of model with serially cor-
related disturbances, which are also correlated with the
control variables, its estimation will be biased and the
necessary least-squares properties to ensure an asymp-
totically correct estimate may only be fulfilled in ex-
ceptional cases. Thus the two-stage approach, indicated
above, is inappropriate [15].

It is important to apply a suitable data-driven statis-
tical method to determine the most appropriate statisti-
cal form and the most precise values of the parameters,
as when implemented correctly with regard to an ac-
curately specified functional form. Such a method will
provide estimates of parameters that satisfy the statisti-
cal properties [1,18].

Suppose that all the statistical properties that a given
estimate must fulfil are set up as constraints to themaxi-
mum likelihood problem to be solved; then the parame-
ters are defined implicitly by this optimization problem,
which can be inserted into the optimal control system
for policy determination, so that statistically correct es-
timates will always result. Thus the solution yielding the
best policy can be chosen, where T C 1; : : : ;T is the
forecast period, by solving an optimization formulation
of this complex problem. By recursing on the specifi-
cations, i. e. by changing the functional form, increas-
ingly better fits can be obtained. At each iteration, the
best combination of parameterization and policy is ob-
tained.

The unknowns to be determined are the input
and output variables considered and the parameters

of the functional form specified in the current it-
eration, indicated as 
 D f�1; �2g � Rm , respectively
for (5) and (6). Note that m may be much larger than
2r C qC pC 1, the number of variables present in
each system, since the system is non-linear.

The mathematical program will be formulated with
respect to the residual variables, but it is immediate that
for a given functional form, the unknown parameters
will be specified and thus the unknowns of the problem
will also be defined and available. Thus the mathemat-
ical program is fully specified for each functional form
to be considered.

Using the notation given above, the residual terms
are given from Eqs. (5) and (6) as:

wi D x̂iC1 � '(x̂i ; ûi ; ŷi : �1) i D 1; 2; : : : ;N ; (7)

vi D ŷiC1�(xi ; ui ; vi : �2) i D 1; 2; : : : ;N ; (8)

where :̂, as usual, indicates the historical values of a vari-
able, and thus suitable values of �1 and �2 must be de-
termined by the mathematical program such that all the
constraints expressed in terms of wi ; vi8i are specified.

Methods and Applications

Given an experimental data set obtained as a set of mea-
surements of the operation of a phenomenon, it is de-
sired to determine a suitable representation of it in the
form of a model, so as to determine a suitable control
law for the model which can then be extended to the
phenomenon and thus obtain a better performance [3].

Except in some simple cases, the representation as-
sumed by the model and the data that have been col-
lected will condition the results obtainable by enacting
the control law. For models that are non-linear in the
parameters, the interaction between the estimation of
these and the determination of an optimal control is
much more complex than the linear case requiring the
solution of constrained optimization problems which
will determine simultaneously the best estimates and
the optimal control.

Consider the availability of a given data set con-
taining a number of sets of time series data or cross-
sectional data. To determine from these data a suitable
model, a functional form must be selected and a set of
suitable parameters must be estimated which will satisfy
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all the conditions on the model and permit the determi-
nation of a suitable set of control variables, which will
define an optimal control with respect to a predefined
merit function.

Thus from the data set it is desired to derive a suffi-
ciently accurate model of the phenomenon, which can
then be used in control and in prediction.

Statistical estimation methods are important be-
cause, when implemented correctly with regard to an
accurately specified functional form, they will provide
estimates of parameters that have the following proper-
ties [1,18]:
1. The parameter estimates are unbiased.
� As the size of the data set grows larger, the esti-

mated parameters tend to their true values.
2. The parameter estimates are consistent, which will

then satisfy the following conditions:
� The estimated parameters are aymptotically un-

biased.
� The variance of the parameter estimate must tend

to zero as the data set tends to infinity.
3. The parameter estimates are asymptotically efficient.
� The estimated parameters are consistent.
� The estimated parameters have smaller asymp-

totic variance as compared to any other consis-
tent estimator.

4. The residuals have minimum variance, which is en-
sured by the following factors:
� The variance of the residuals must be minimum.
� The residuals must be homoscedastic.
� The residuals must not be serially correlated.

5. The residuals are unbiased (have zero mean).
6. The residuals have a non-informative distribution

(usually, a Gaussian distribution).
� If the distribution of the residuals is informa-

tive, the extra information could somehow be
obtained, reducing the variance of the residuals,
their bias etc., with the result that better estimates
are obtained.

In short, through correct implementation of statisti-
cal estimation techniques the estimates are as close as
possible to their true values, all the information that is
available is applied and the uncertainty surrounding the
estimates and the data fit is reduced to the maximum
extent possible. Thus the estimates of the parameters,
which satisfy all these conditions, are the ‘best’ possible
in a ‘technical’ sense [1].

To ensure that all the statistical properties which the
given estimates of the residuals must fulfil are satisfied
at every iteration, instead of solving an unconstrained
maximum likelihood or least-squares problem [15], the
required statistical properties of the estimates are set
up as constraints, together with the specification of the
model of the phenomenon, and this global optimization
problem is solved for all the undetermined variables.

The parameters of this model to be estimated are
defined implicitly through those constraints which de-
fine the statistical conditions. On solving the global op-
timization problem, the parameter estimates that result
will be defined for the optimal control system for the
policy determination so that statistically correct esti-
mates will always result.

The procedure adopted can be specified easily by us-
ing the same notation as above and by adding an ad-
ditional set of constraints which express the statistical
conditions that must be satisfied by the estimates.

Let

�(xiC1; xi ; ui ; yiC1; yi ;wi ; vi ; �1; �2) � 0
i D 1; 2; : : : ;N;N C 1; : : : ;T (9)

be the set of conditions to be satisfied to obtain esti-
mates, if they exist, which satisfy the statistical proper-
ties indicated above. Then the optimization problem to
be solved is:

Min J D
TX

iDNC1

c(xi ; ui ; yi ); (10)

xiC1 D '(xi ; ui ; yi ;wi : �1) i D 1; 2; : : : ;T ; (11)

yiC1 D �(xi ; ui ; vi : �2) i D 1; 2; : : : ;T ; (12)

0 � �(xiC1; xi ; ui ; yiC1; yi ;wi ; vi ; �1; �2)

i D 1; 2; : : : ;T : (13)

Thus the solution yielding the best policy can be cho-
sen by solving an optimization formulation of this com-
plex problem. By recursing on the specifications, i. e. by
changing the functional form, and increasing the num-
ber of independent variables considered, increasingly
better fits can be obtained, with regard to both the his-
torical data and the predicted optimal control policy.
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Models

Many models of industrial, extractive and financial ac-
tivities require the integration of key processes, but the
most essential aspect is to formulate precise informa-
tion where it is most needed [11,12].

Many optimization models solve satisfactorily sup-
ply chain problems, but apparently no model except
this one integrates information and allocation of goods
and operations dynamically.

This algorithm instead solves the combined prob-
lem, as has been shown elsewhere [6], while a theory-
driven modelling approach to the problem, using mod-
els consisting of two stages, an identification stage and
an optimization stage, can be shown to be dominated
by this data-driven approach.

At present, this seems to be the only viable approach
to solving such complex problems.

Cases

Some non-typical SCM problems are indicated here:
dynamical supply chain management problems for per-
foration oil wells and for finance. Industrial SCMmod-
els are given elsewhere [3,8,9,10].

Dynamic Supply Chain Management Problem
for Extraction Activities

The perforation of oil wells consists of a number of
operations to drive the bit head lower and lower while
ensuring normal functions on the equipment and the
operations. To this end complex measurements are exe-
cuted by software systems indicated as mudlogging sys-
tems. These measurements are designed to assist the
operator in controlling the perforation rate of the bit
head by monitoring a number of crucial operations pe-
riodically.

The settings of some of these operations affect the
rate of perforation, and therefore it is considered ex-
tremely useful to dispose of measurements of these
variables and have predictions over the next few peri-
ods of the possible advancement of the bit head, or of
the rate of perforation, and so enable an optimal con-
trol of the process to be formulated [5].

It should be mentioned that periodically the drilling
process must be halted so that the boring can be lined
with suitable materials. Also, one of the most important

elements of the process is to keep circulating around
the bit-head assembly a concentration of mud lubri-
cants, indicated as mud, which gives the name to the
measuring process. Recall that all these flows and oper-
ations occur in time, so it is considered crucial to spec-
ify dynamic models, unless it is desired to determine the
steady-state rates of the eventual process.

In fact oil drilling processes can be considered as
complex supply chain systems with many phases and
many operations.

The determination of optimal control policies in
processes for the extraction of oil from underground
require that they be formulated as formal procedures,
which are syntactically correct and semantically ade-
quate, so as to permit management to make the neces-
sary investments, not on hearsay or clever promotional
activities, but on the basis of rational knowledge and
confidence in the application.

Figure 1 shows an optimal SCM plan compared to
the actual historical plan implemented. The predicted
trajectory is superimposed on the actual time path of
the perforation process, thus respecting all the interrup-
tions and periods of halting.

In Table 1, six instances to determine optimal con-
trols are indicated, and each entry reflects the drilling
experience of the given well for that week with regard to
the given period. From the active perforation intervals
an intial period was selected randomly and the optimal

Mathematical Programming Methods in Supply Chain Man-
agement, Figure 1
Example of drilling for oil: real-time path (continuous) and
optimal control path (dashed) for the well
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Mathematical Programming Methods in Supply Chain Man-
agement, Table 1
Optimal predicted versus actual increment for 6 oil wells
over 192 periods (8 h) in metres

Well and week Optimal
increment

Real
increment

% difference

FT02D 9 114.0 73.3 35.70
FT02D 16 116.7 83.8 28.19
FT02D 23 73.7 13.45 81.75
GX01 3 94.8 72.2 23.84

GX01 11 57.9 18.8 67.53

control was defined for the next 192 periods (8 h). The
average predicted increment in depth attainable over
the actual one was more than 30% on average.

Dynamic Supply Chain Management Problem
for Finance

The prediction of future quotations on stock exchange
indices is important and consists of the basic instru-
ment to handle financial supply chain management sys-
tems. A financial supply chain system must consider
many types of financial intermediaries, many types of
stocks and stock indices and many types of operations.
Further, there are many possibilities for managing the
monetary holdings, so that a full SCM system is envis-
aged as defined above [7].

Consider the Dow-Jones Industrial Average (DJIA)
stock exchange index over a period of 3 years starting
in April 2001, as shown in Fig. 2, where the continu-
ous line indicates the actual quotations, week by week
over the period, while the 1-week-ahead predictions are
given by the dashed line. As can be easily seen, the two
curves almost coincide, which implies that the predic-
tions 1 week ahead are very good.

Instead, in Table 2 a period of 5 weeks is considered
from April 16, 2004 to May 14, 2004. The quotations
are given every Friday evening at closing time, while the
predictions are made on Fridays just after closing time.
Thus on April 9 predictions were made for the next 5
weeks, as indicated in the second row of the table. After
closing on April 16, 2004, predictions were made for 4
weeks only and are depicted in the third row of the table
and so on for the subsequent weeks. Finally, in the last
row the closing quotations for the week are given.

Mathematical Programming Methods in Supply Chain Man-
agement, Figure 2
Weekly time series of the Dow-Jones Industrial Average

Mathematical Programming Methods in Supply Chain Man-
agement, Table 2
Results for prediction of the Dow-Jones Industrial Average,
147 periods

Period 16/4 23/4 30/4 7/5 14/5
9/4 8652.86 8568.44 9304.81 13306.5 9958.15
16/4 .. 8646.28 8552.54 11514.3 11000.3
23/4 .. .. 8820.73 8806.51 4700.47
30/5 .. .. .. 8518.12 8361.19
7/5 .. .. .. .. 8343.35
Index 8712.88 8855.03 8538.03 8505.54 8432.25

This table allows one to determine with the appro-
priate portfolio model suitable financial policies to for-
mulate optimal financial SCM plans [7].

Conclusions

Optimal dynamic SCM policies may be obtained by
a correct application of statistical inference and mathe-
matical programming techniques.

It has been indicated that these policies are expecta-
tionally valid, which implies that they are syntactically
correct and semantically adequate.

Computational evidence has been presented and in-
dicated in the references.
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See also

� Generalizations of Interior Point Methods for the
Linear Complementarity Problem

� Simultaneous Estimation and Optimization of
Nonlinear Problems
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Introduction

A partial matrix is a matrix whose entries are specified
only on a subset of its positions; a completion of a par-
tial matrix is simply a specification of the unspecified
entries.Matrix completion problems are concerned with
determining whether or not a completion of a partial
matrix exists which satisfies some prescribed property.
We consider here the following matrix properties: pos-
itive (semi) definite matrices, distance matrices, com-
pletely positive matrices, contraction matrices, and ma-
trices of given rank; definitions are recalled below.

In what follows, x�, A� denote the conjugate trans-
pose (in the complex case) or transpose (in the real
case) of vector x and matrix A. A square real symmetric
or complex Hermitian matrix A is positive semidefinite
(psd) if x�Ax � 0 for all vectors x and positive definite
(pd) if x�Ax > 0 for all vectors x 6D 0; then we write: X<
0 (X
 0). Equivalently, A is psd (respectively, pd) if and
only if all its eigenvalues are nonnegative (respectively,
positive) and A is psd if and only if A = BB| for some
matrix B. A matrix A is said to be completely positive if
A = BB| for some nonnegative matrix B. An n × n real
symmetric matrix D = (dij) is a Euclidean distance ma-
trix (abbreviated as distance matrix) if there exist vec-
tors v1, . . . , vn 2 Rk (for some k� 1) such that, for all i, j
= 1, . . . , n, dij is equal to the square of the Euclidean dis-
tance between vi and vj. Finally, a (rectangular) matrix
A is a contraction matrix if all its singular values (that
is, the eigenvalues of A�A) are less than or equal to 1.

The set of positions corresponding to the specified
entries of a partial matrix A is known as the pattern of
A. If A is an n × m partial matrix, its pattern can be
represented by a bipartite graph with node bipartition
[1, n] [ [1,m] having an edge between nodes i 2 [1, n]
and j 2 [1,m] if and only if entry aij is specified.

When asking about existence of a psd completion of
a partial n × n matrix A, it is commonly assumed that
all diagonal entries of A are specified (which is no loss
of generality if we ask for a pd completion); moreover,
it can obviously be assumed that A is partial Hermitian,
which means that entry aji is specified and equal to aij 

whenever aij is specified. Hence, in this case, complete
information about the pattern ofA is given by the graph
G = ([1, n], E) with node set [1, n] and whose edge set
E consists of the pairs ij (1 � i < j � n) for which aij
is a specified entry of A. The same holds when dealing

with distance matrix completions (in which case diag-
onal entries can obviously be assumed to be equal to
zero).

An important common feature of the above matrix
properties is that they possess an ‘inheritance structure’.
Indeed, if a partial matrix A has a psd (pd, completely
positive, distance matrix) completion, then every prin-
cipal specified submatrix of A is psd (pd, completely
positive, a distance matrix); similarly, if a partial matrix
A admits a completion of rank � k, then every speci-
fied submatrix of A has rank� k. Hence, having a com-
pletion of a certain kind imposes certain ‘obvious’ nec-
essary conditions. This leads to asking which are the
patterns for the specified entries that insure that if the
obvious necessary conditions are met, then there will
be a completion of the desired type; therefore, this in-
troduces a combinatorial aspect into matrix completion
problems, as opposed to their analytical nature.

In this article we survey some results and provide
references for the various matrix completion problems
mentioned above, concerning optimization and com-
binatorial aspects of the problems. See [32,47] for more
detailed surveys on some of the topics treated here.

Positive Semidefinite Completion Problem

We consider here the following positive (semi) definite
completion problem (PSD): Given a partial Hermitian
matrixA = (aij)ij 2 S whose entries are specified on a sub-
set S of the positions, determine whether A has a psd (or
pd) completion; if, yes, find such a completion. (Here, S
is generally assumed to contain all diagonal positions.)

This problem belongs to the most studied matrix
completion problems. This is due, in particular, to its
many applications, e. g., in probability and statistics,
systems engineering, geophysics, etc., and also to the
fact that positive semidefiniteness is a basic property
which is closely related to other matrix properties like
being a contraction or distance matrix. Equivalently,
(PSD) is the problem of testing feasibility of the follow-
ing system (in variable X = (xij)):

X � 0; xi j D ai j (i j 2 S): (1)

Therefore, (PSD) is an instance of the following
semidefinite programming problem (P): Given Hermi-
tian matrices A1, . . . , Am and scalars b1, . . . , bm, decide
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whether the following system is feasible:

X � 0; Aj � X D b j ( j D 1; : : : ;m) (2)

(where A � X :=
Pn

i; jD1 aij 
 xij for two Hermitian (n ×
n)-matrices A and X).

The exact complexity status of problems (PSD) and
(P) is not known; in particular, it is not known whether
they belong to the complexity class NP. However, it is
shown in [60] that (P) is neither NP-complete nor co-
NP-complete if NP 6D co-NP. However, the semidefi-
nite programming problem and, thus, problem (PSD)
can be solved with an arbitrary precision in polyno-
mial time. This can be done using the ellipsoid method
(since one can test in polynomial time whether a ra-
tional matrix A is positive semidefinite and, if not, find
a vector x such that x�Ax < 0; cf. [24]), or interior point
methods (cf. [3,27,56]). There has been a growing in-
terest in semidefinite programming in the recent years
(1994), which is due, in particular, to its successful ap-
plication to the approximation of hard combinatorial
optimization problems (cf. the survey [20]). This has
prompted active research on developing interior point
algorithms for solving semidefinite programming prob-
lems; the literature is quite large, see [64,65] for exten-
sive information. Numerical tests are reported in [34]
where an interior point algorithm is proposed for the
approximate psd completion problem; it permits to find
exact completions for random instances up to size 110.

Moreover, it is shown in [59] that problem (P) can
be solved in polynomial time (for rational input data Aj,
bj) if either the number m of constraints, or the order n
of the matrices X, Aj in (2) is fixed (cf. also [9]). More-
over, under the same assumption, one can test in poly-
nomial time the existence of an integer solution and
find one if it exists [39].

Call a partial Hermitian matrix A partial psd (re-
spectively, partial pd) if every principal specified sub-
matrix of A is psd (respectively, pd). As mentioned in
the Introduction, being partial psd (pd) is an obvious
necessary condition for A to have a psd (pd) comple-
tion. In general, this condition is not sufficient; for in-
stance, the partial matrix:

A D

0
BB@

1 1 ? 0
1 1 1 ?
? 1 1 1
0 ? 1 1

1
CCA

(‘?’ indicates an unspecified entry) is partial psd, yet no
psd completion exists; note that the pattern of A is a cir-
cuit of length 4. Call a graph chordal if it does not con-
tain any circuit of length � 4 as an induced subgraph;
chordal graphs occur in particular in connection with
the Gaussian elimination process for sparse pd matri-
ces (cf. [21,61]). (An induced subgraph of a graph G =
(V , E) being of the form H = (U, F) where U � V and
F := {ij 2 E: i, j 2 U}.) It is shown in [23] that every
partial psd matrix with pattern G has a psd completion
if and only if G is a chordal graph; the same holds for
pd completions. This extends an earlier result from [16]
which dealt with ‘block-banded’ partial matrices; in the
Toeplitz case (all entries equal along a band), one finds
the classical Carathéodory–Fejér theorem from func-
tion theory.

The proof from [23] is constructive and can be
turned into an algorithm with a polynomial running
time [48]. Moreover, it is shown in [48] that (PSD) can
be solved in polynomial time when restricted to par-
tial rational matrices whose pattern is a graph having
a fixed minimum fill-in; the minimum fill-in of a graph
being the minimum number of edges needed to be
added in order to obtain a chordal graph. This result
is based on the above mentioned results from [39,59]
concerning the polynomial time solvability of (integer)
semidefinite programming with a fixed number m of
linear constraints in (2).

The result from [23] on psd completions of partial
matrices with a chordal pattern has been generalized
in various directions; for instance, considering gen-
eral inertia possibilities for the completions ([17,35]),
or considering completions with entries in a function
ring [37].

If A is a partial matrix having a pd completion, then
A has a unique pd completion with maximum deter-
minant (this unique completion being characterized by
the fact that its inverse has zero entries at all unspeci-
fied positions of A) [23]. In the case when the pattern
of A is chordal, explicit formulas for this maximum de-
terminant are given in [7]. The paper [52] considers the
more general problem of finding a maximum determi-
nant psd completion satisfying some additional linear
constraints.

Further necessary conditions are known for the ex-
istence of psd completions. Namely, it is shown in [8]
that if a partial matrix A = (aij) with pattern G and di-
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agonal entries equal to 1 is completable to a psd matrix,
then the associated vector x := (arccos(aij)/
)ij 2 E satis-
fies the inequalities:

X
e2F

xe �
X
e2CnF

xe � jFj � 1

for all F � C; C circuit in G; jFj odd: (3)

Moreover, any partial matrix with pattern G satisfying
(3) is completable to a psd matrix if and only if G does
not contain a homeomorph of K4 as an induced sub-
graph (then, G is also known as series-parallel graph)
[44]. (Here, K4 denotes the complete graph on 4 nodes
and a homeomorph of K4 is obtained by replacing the
edges of K4 by paths of arbitrary length.) The patterns
G for which every partial psd matrix satisfying (3) has
a psd completion are characterized in [6]; they are the
graphs G which can be made chordal by adding a set of
edges in such a way that no new clique of size 4 is cre-
ated. Although (3) can be checked in polynomial time
for rational x [5], the complexity of problem (PSD) for
series-parallel graphs (or for the subclass of circuits) is
not known. A strengthening of condition (3) (involving
cuts in graphs) is formulated in [44].

Another approach to problem (PSD) is considered
in [1,28], which is based on the study of the cone

PG :D
�
X D (xi j)i; j2V :

X � 0; xi j D 0
8i ¤ j; i j … E

	

associated to graphG = (V , E). Indeed, it is shown there
that a partial matrix Awith pattern G has a psd comple-
tion if and only if

X
i2V

ai i xi i C
X
i¤ j;
i j2E

ai jxi j � 0; 8X 2 PG : (4)

Obviously, it suffices to check (4) for all X extremal in
PG (i. e., X lying on an extremal ray of the cone PG).

Define the order of G as the maximum rank of an
extremal matrix in PG. The graphs of order 1 are pre-
cisely the chordal graphs [1,58] and the graphs of or-
der 2 have been characterized in [46]. One might rea-
sonably expect that problem (PSD) is easier for graphs
having a small order. This is indeed the case for graphs
of order 1; the complexity of (PSD) remains however
open for the graphs of order 2 (partial results are given
in [48]).

Euclidean DistanceMatrix Completion Problem

We consider here the Euclidean distancematrix comple-
tion problem (abbreviated as distancematrix completion
problem) (EDM): Given a graph G = (V = [1, n], E) and
a real partial symmetric matrix A = (aij) with pattern
G and with zero diagonal entries, determine whether A
can be completed to a distance matrix; that is, whether
there exist vectors v1, . . . , vn 2 Rk for some k � 1 such
that

ai j D


vi � v j



2 for all i j 2 E: (5)

(here, kvk D
qPk

hD1 v
2
h denotes the Euclidean norm

of v 2 Rk.) The vectors v1, . . . , vn are then said to form
a realization of A. A variant of problem (EDM) is the
graph realization problem (EDMk), obtained by letting
the dimension k of the space where one searches for
a realization of A be part of the input data.

Distance matrices are a central notion in the area
of distance geometry; their study was initiated by A.
Cayley in the 18th century and it was continued in par-
ticular by K. Menger and I.J. Schoenberg in the 1930s.
They are, in fact, closely related to psdmatrices. The fol-
lowing basic connection was established in [63]. Given
a symmetric (n × n)-matrix D = (dij)ni; jD1 with zero di-
agonal entries, consider the symmetric ((n � 1) × (n �
1))-matrix X = (xij)n�1i; jD1 defined by

xi j D
1
2
(din C djn � di j)

for all i; j D 1; : : : ; n � 1:
(6)

Then, D is a distance matrix if and only if X is psd;
moreover, D has a realization in the k-space if and only
if X has rank � k. Other characterizations are known
for distance matrices. As the literature on this topic is
quite large, see the monographs [11,13,14], where fur-
ther references can be found.

Problems (EDM) and (EDMk) have many impor-
tant applications; for instance, to multidimensional
scaling problems in statistics (cf. [49]) and to position-
location problems, i. e., problem (EDMk) mostly in di-
mension k � 3. A much studied instance of the lat-
ter problem is the molecular conformation problem in
chemistry; indeed, nuclear magnetic resonance spec-
troscopy permits to determine some pairwise inter-
atomic distances, the question being then to reconstruct
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the global shape of the molecule from this partial infor-
mation (cf. [13,41]).

In view of relation (6), problem (EDM) can be for-
mulated as an instance of the semidefinite program-
ming problem (P) and, therefore, it can be solved with
an arbitrary precision in polynomial time. Exploiting
this fact, some specific algorithms based on interior
point methods are presented in [2] together with nu-
merical tests. Moreover, problem (EDM) can be solved
in polynomial time when restricted to partial rational
matrices whose pattern is a chordal graph or, more gen-
erally, a graph with fixed minimum fill-in [48]; as in the
psd case, this follows from the fact (mentioned below)
that partial matrices that are completable to a distance
matrix admit a good characterization when their pat-
tern is a chordal graph.

While the exact complexity of problem (EDM) is
not known, it has been shown in [62] that problem
(EDMk) is NP-complete if k = 1 and NP-hard if k �
2 (even when restricted to partial matrices with entries
in {1, 2}). Finding �-optimal solutions to the graph re-
alization problem is also NP-hard for small � ([53]).
The graph realization problem (EDMk) has been much
studied, in particular in dimension k � 3, which is the
case most relevant to applications. The problem can be
formulated as a nonlinear global optimization problem:
f (v) such that v = (v1, . . . , vn)2Rkn, where the cost func-
tion f (�) can, for instance, be chosen as

f (v) D
X
i j2E

(


vi � v j



2 � ai j)2:

Hence, f (�) is zero precisely when the vi’s provide a re-
alization of the partial matrix A. This optimization
problem is hard to solve (as it may have many lo-
cal optimum solutions). Several algorithms have been
proposed in the literature; see, in particular, [13,19,
26,29,31,41,54,57]. They are based on general tech-
niques for global optimization like tabu and pattern
search [57], the continuation approach (which con-
sists of transforming the original function f (�) into
a smoother function having fewer local optimizers,
[53,54]), or divide-and-conquer strategies aiming to
break the problem into a sequence of smaller or easier
subproblems [13,29,31]. In [29,31], the basic step con-
sist of finding principal submatrices having a unique re-
alization, treating each of them separately and then try-
ing to combine the solutions. Thus arises the problem

of identifying principal submatrices having a unique re-
alization, which turns out to be NP-hard [62]. How-
ever, several necessary conditions for unicity of realiza-
tion are known, related with connectivity and generic
rigidity properties of the graph pattern [30,67]. Generic
rigidity of graphs can be characterized and recognized
in polynomial time only in dimension k � 2 ([42,51])
(cf. the survey [43] for more references).

Call a partial matrixA a partial distancematrix if ev-
ery specified principal submatrix of A is a distance ma-
trix. Being a partial distance matrix is obviously a nec-
essary condition for A to be completable to a distance
matrix. It is shown in [4] that every partial distance ma-
trix with pattern G is completable to a distance matrix
if and only if G is a chordal graph; moreover, if all spec-
ified principal submatrices of the partial matrix A have
a realization in the k-space, then A admits a completion
having a realization in the k-space.

As noted in [33], if a partial matrix Awith pattern G
is completable to a distance matrix, then the associated
vector x :D (pai j)i j2E must satisfy the inequalities:

xe �
X

f2Cnfeg

x f � 0

for all e 2 C; C circuit in G: (7)

The graphs G for which every partial matrix (respec-
tively, partial distance matrix) A with pattern G for
which (7) holds is completable to a distance matrix, are
the graphs containing no homeomorph of K4 as an in-
duced subgraph [45] (respectively, the graphs that can
be made chordal by adding edges in such a way that no
new clique of size 4 is created [33]). Note the analogy
with the corresponding results for the psd completion
problem; some connections between the two problems
(EDM) and (PSD) are exposed in [38,45].

Completion to Completely Positive
and Contraction Matrices

Call a matrix doubly nonnegative if it is psd and en-
trywise nonnegative. Every completely positive (cp, for
short) matrix is obviously doubly nonnegative. The
converse implication holds for matrices of order n � 4
(cf. [22]) and for certain patterns of the nonzero entries
in A (cf. [40]). The cp property is obviously inherited by
principal submatrices; call a partial matrix A a partial
cp matrix if every fully specified principal submatrix of
A is cp. It is shown in [15] that every partial cp matrix
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with graph pattern G is completable to a cp matrix if
and only if G is a so-called block-clique graph. A block-
clique graph being a chordal graph in which any two
distinct maximal cliques overlap in at most one node
or, equivalently, a chordal graph that does not contain
an induced subgraph of the form:

Recall that an (n ×m)-matrix A is a contraction ma-
trix if all eigenvalues of A�A are less than or equal to 1
or, equivalently, if the matrix

eA D
�
In A
A� Im

�
(8)

is positive semidefinite. Call a partial matrix A a par-
tial contraction if all specified submatrices of A are con-
tractions. As every submatrix of a contraction is again
a contraction, an obvious necessary condition for a par-
tial matrix A to be completable to a contraction matrix
is that A be a partial contraction. Thus arises the ques-
tion of characterizing the graph patterns G for which
every partial contraction with pattern G can be com-
pleted to a contraction matrix.

As we now deal with rectangular n × m partial ma-
trices A, their pattern is the bipartite graphGwith node
set U [ V , where U, V index the rows and columns
of A and edges of G correspond to the specified entries
of A. We may clearly assume to be dealing with par-
tial matrices whose pattern is a connected graph (as the
partial matrices associated with the connected compo-
nents can be handled separately). Below is an example
of a partial matrix A which is a partial contraction, but
which is not completable to a contraction matrix:

A D

 
? 1p

2
1p
2

1p
2

? 1p
2

!
:

In fact, the graph pattern displayed in this example is
in a sense present in every partial contraction which is
not completable to a contraction. Namely, it is shown in
[36] that the following assertions (i–iii) are equivalent
for a connected bipartite graph G with node bipartition
U [ V :

i) Every partial contraction with pattern G can be
completed to a contraction;

ii) G does not contain an induced matching of size 2
(i. e., if e := uv, e0 := u0v0 are edges in G with u 6D u0

2 U, v 6D v0 2 V , then at least one of the pairs uv0,
u0v is an edge in G; that is, G is nonseparable in the
terminology of [21]);

iii) The graph eG obtained from G by adding all edges
uu0 (u 6D u0 2 V) and vv0 (v 6D v0 2 V) is chordal.

(Note that the implication iii) ! i) is a consequence
of the result on psd completions from [23] mentioned
in the Section on the positive semidefinite completion
problem above, as eG is the graph pattern of the matrix
eA defined in (8).)

Rank Completions

In this section, we consider the problem of determining
the possible ranks for the completions of a given partial
matrix. For a partial matrix A, let mr(A) andMR(A) de-
note, respectively, the minimum and maximum possi-
ble ranks for a completion of A. If B, C are completions
ofA of respective ranks mr(A), MR(A), then changing B
into C by changing one entry of B into the correspond-
ing entry of C at a time permits to construct comple-
tions realizing all ranks in the range [mr(A), MR(A)].
Hence, the question is to determine the two extreme
values mr(A) and MR(A). As we see below, the value
MR(A) can, in fact, be expressed in terms of ranks of
fully specified submatrices of A and it can be computed
in polynomial time; this constitutes a generalization of
the celebrated Frobenius–König theorem (correspond-
ing to the case when specified entries are equal to 0). On
the other hand, determining mr(A) seems to be a much
more difficult task.

We first deal with the problem of findingmaximum
rank completions. Let A be an n ×m partial matrix with
graph pattern G, i. e., G is the bipartite graph (U [ V ,
E) whereU, V index respectively the rows and columns
of A, and the edges of G correspond to the specified en-
tries ofA, and letG denote the complementary bipartite
graph whose edges correspond to unspecified entries of
A. Note that computing MR(A) amounts to computing
the generic rank of A when viewing the unspecified en-
tries of A as independent variables over the field con-
taining the specified entries. For a subset X � U [ V ,
let AX denote the submatrix of A with respective row



Matrix Completion Problems M 1973

and column index sets {i 2 [1, n]: ui 62 X} and {j 2 [1,
m]: vj 62 X}. Call X a cover of G if every edge of G has at
least one end node in X; that is, if AX is a fully specified
submatrix of A. Clearly, we have: MR(A) � rank(AX)+
|X|. In fact, the following equality holds:

MR(A) D min
X cover of G

rank(AX)C jXj (9)

as shown in [12]. A determinantal version of the result
was given in [25]. In the special case when all specified
entries of A are equal to 0, then MR(A) coincides with
themaximum cardinality of amatching inG and, there-
fore, the minimax relation (9) reduces to the Frobe-
nius–König theorem (cf. [50] for details on the latter
result). Moreover, one can determine MR(A) and con-
struct a maximum rank completion of A in polynomial
time. This was shown in [55] by a reduction to matroid
intersection and, more recently, in [18] where a simple
greedy procedure is presented that solves the problem
by perturbing an arbitrary completion.

We now consider minimum rank completions. To
start with, note that mr(A) may depend, in general, on
the actual values of the specified entries of A (and not
only on the ranks of the specified submatrices of A). In-

deed, consider the partial matrix A D
�

? a b
d ? c
e f ?

�
where a,

b, c, d, e, f 6D 0. Then, mr(A) = 1 if ace = bdf and mr(A)
= 2 otherwise, while all specified submatrices have rank
1 in both cases. Thus arises the question of identifying
the bipartite graphs G for which mr(A) depends only
on the ranks of the specified submatrices of A for ev-
ery partial matrix A with pattern G; such graphs are
called rank determined. The graph pattern of the above
instance A is the circuit C6. Hence, C6 is not rank de-
termined. Call a bipartite graph G bipartite chordal if it
does not contain a circuit of length � 6 as an induced
subgraph. Then, if a bipartite graph is rank determined,
it is necessarily bipartite chordal [12]. It is conjectured
there that, conversely, every bipartite chordal graph is
rank determined. The conjecture was shown to be true
in [66] for the nonseparable bipartite graphs (i. e., the
bipartite graphs containing no inducedmatching of size
2; they are obviously bipartite chordal). Note that a par-
tial matrix A has a nonseparable pattern if and only if it
has (up to row/column permutation) the following ‘tri-
angular’ form:

Then, mr(A) can be explicitly formulated in terms
of the ranks of the specified submatrices of A; in the
simplest case, the formula for mr(A) reads:

mr
�
B ?
C D

�

D rank
�
B
C

�
C rank

�
C D

�
� rank(C):

It is shown in [12] that the above conjecture holds when
the patternG is a path, or whenG is obtained by ‘gluing’
a collection of circuits of length 4 along a common edge.

See also

� Interior Point Methods for Semidefinite
Programming

� Semidefinite Programming and Determinant
Maximization
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Matroids have been defined in 1935 as generalization
of graphs and matrices. Starting from the 1950s they
have had increasing interest and the theoretical results
obtained have been used for solving several difficult
problems in various fields such as civil, electrical, and
mechanical engineering, computer science, and mathe-
matics. A comprehensive treatment of matroids can not
be contained in few pages or even in only one book.
Thus, the scope of this article is to introduce the reader
to this theory, providing the definitions of some differ-
ent types of matroids and their main properties.
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Historical Overview

In 1935, H. Whitney in [38] studied linear dependence
and its important application in mathematics. A num-
ber of equivalent axiomatic systems formatroids is con-
tained in his pioneering paper, that is considered the
first scientific work about matroid theory.

In the 1950s and 1960s, starting from the Whit-
ney’s ideas, W. Tutte in [25,26,27,28,29,30,31,32,33]
built a considerable body of theory about the struc-
tural properties of matroids, which became popular in
the 1960s, when J. Edmonds in [5,6,7,8,9,10,11] intro-
duced matroid theory in combinatorial optimization.
From 1965 on, a growing number of researchers be-
came interested in matroids. In 1976, D.J.A. Welsh
([34]) published the first book onmatroid theory. In the
1970s, 1980s, and 1990s selected topics have been cov-
ered by a huge number of scientific publications, among
them [1,2,3,12,13,15,17,18,20,21,23,24,35,36,37]. [16]
provides an excellent historical survey, while [21] is
a good book for students.

Definition of aMatroid

Matroids are combinatorial structures often treated in
together with the greedy technique, which yields opti-
mal solutions when applied for solving simple problems
defined on matroids.

In order to provide the definition of a general ma-
troid, some notation and further definitions are needed.

Definition 1 An ordered pair S = (E, I), where E = {e1,
. . . , en} and I � 2E, is an independent system (SI) if and
only if

8A; B � E : B � A 2 I) B 2 I: (1)

E is also called ground set.

Note that the empty set is necessarily a member of I.

Definition 2 The members of I are called independent
sets.

Definition 3 The members of D = 2E \ I are called de-
pendent sets.

Definition 4 The members of the set

B D fA � E : A 2 I; 8 f 2 E n A : B [ f f g … Ig

are calledmaximal independent sets or bases.

In other words, a basis is an independent set which is
maximal with respect to set inclusion operation.

Definition 5 The members of the set

C D fC � E : C 2 D; 8 f 2 C : C n f f g 2 Ig

are called minimal dependent sets or circuits. A 1-
element circuit is a loop.

Definition 6 A matroid M is an independent system
(E, I) such that if A, B 2 I, |A| < |B|, then there is some
element x 2 B \ A such that A [ {x} 2 I.

We say thatM satisfies the exchange property.

Most combinatorial problems can be viewed as the
problem of finding an element in one of the above de-
fined sets corresponding to the optimal objective func-
tion value.

The word matroid is due to Whitney. He studied
matric matroids, in which the elements of E are the rows
of a givenmatrix and a set of rows is independent if they
are linearly independent in the usual sense.

The following theorems express two equivalent ax-
iomatic definitions of matroids in terms of bases and
circuits.

Theorem 7 A nonempty set B of subsets of E is the set
of bases for a matroid M = (E, I) if and only if for all B1,
B2 2 B, B1 6D B2, and x 2 B1 \ B2, there exists an element
y 2 B2 \ B1 such that

B1 [ fyg n fxg 2 B:

Theorem 8 A set C of subsets of E is the set of circuits
for a matroid M = (E, I) if and only if the following two
properties hold:
1) for all X 6D Y 2 C, X 6� Y;
2) for all X 6D Y 2 C and z 2 X \ Y, there exists Z 2 C

such that Z � X [ Y \ {z}.

Other alternative axiomatic characterizations of a ma-
troid need some further definitions.

LetM = (E, I) be a matroid.

Definition 9 For all A � E, let �: 2E N be a function
such that

�(A) D max fjXj : X � A; X 2 Ig :

� is called rank ofM.
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Note that the rank ofM is equal to the rank of E, which
is given by the cardinality of the maximal independent
subset of E. The rank is always well-defined, due to the
following proposition.

Proposition 10 If A is a subset of E and X and Y are
maximal independent subsets of A, then |X| = |Y|.

Proposition 10 claims that the maximal independent
subsets contained in A � E of a given matroid M = (E,
I) have the same cardinality. Choosing A = E, the fol-
lowing corollary holds.

Corollary 11 The bases of any matroid have the same
cardinality.

Definition 12 A subset A of E is called a closed ofM if

�(A[ fxg) D �(A)C 1; 8x 2 E n A;

i. e. if it is not possible to add to A any element without
increasing its rank.

Definition 13 The closure operator forM is a function
� : 2E! 2E such that for all A� E � (A) is the closed of
minimum cardinality that contains A, i. e.

�(A) D A[ fx 2 E n A : �(A[ fxg) D �(A)g :

Definition 14 A subset A of E covers M if and only if
it contains a basis ofM, i. e.

�(A) D �(E):

With these further definitions at hand, the follow-
ing theorems express three other equivalent axiomatic
characterizations of a matroid in terms of its rank.

Theorem 15 A function �: 2E ! N is a rank function
of a matroid M = (E, I) if and only if for all X � E and
for all y, z 2 E the following three properties hold:
1) �(;) = 0;
2) �(X) � �(X [ {y}) � �(X) + 1;
3) �(X) = �(X [ {y}) = �(X [ {z})) �(X [ {y, z}) =
�(X).

Theorem 16 A function �: 2E ! N is a rank function
of a matroid M = (E, I) if and only if for all X 6D Y � E
the following three properties hold:
1) 0� �(X) � |X|;
2) X � Y) �(X) � �(Y);

3) �(X [ Y) + �(X \ Y) � �(X) + �(Y).

Note that the second property of theorem 16 implies
that � is a monotonic function, while the third property
expresses its submodularity.

Theorem 17 A function � : 2E! 2E is a closure opera-
tor of a matroid M = (E, I) if and only if for all X 6D Y �
E and for all x, y 2 E the following four properties hold:
1) X � �(X);
2) Y � X) �(Y) � �(X);
3) �(X) = �(�(X));
4) y 62 �(X), y 2 �(X [ {x})) x 2 �(X [ {y}).

Definition 18 AmatroidM = (E, I) isweighted if there
is an associated weight function w that assigns a strictly
positive weight w(x) to each element x 2 E.

The weight function w extends to subsets A of E by
summation:

w(A) D
X
x2A

w(x):

Minor of Matroids: Restriction and Contraction

A minor of a matroid M = (E, I) is a ‘submatroid’ ob-
tained from deleting or contracting from the ground set
E one or more elements.

A loop is an element y of a matroid such that {y} is
not independent. Equivalently, {y} does not lie in any
independent set, nor in maximal independent sets.

Definition 19 Let M = (E, I) be a matroid. If an ele-
ment {x} is not a loop, the matroid M/x, called a con-
traction ofM, is defined as follows:
1) the ground set ofM/x is E \ {x};
2) a set A is independent in M/x if and only if A [ {x}

is independent inM.

The concept of matroid contraction can be dualized. In
fact, an element y is a coloop if it is contained in every
basis ofM.

Definition 20 Let M = (E, I) be a matroid. If an ele-
ment {x} is not a coloop, the matroidM \ x, called a re-
striction ofM, is defined as follows:
1) the ground set ofM\x is E\ {x};
2) a set A is independent in M\x if and only if it is in-

dependent inM.

The above definitions have been given in terms of re-
striction and contraction of only one element, but they
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can be easily extended to the restriction and contrac-
tion of a set X. The minors obtained will be denotedM\
X andM\X, respectively.

Representability of Matroids

One among the most common canonical examples of
matroids is the vectorial matroid, whose ground set E
is a finite set of vectors from a vector space, while the
independent sets are the linearly independent subsets
of vectors of E. A matroidM = (E, I) is representable on
a field F if there exists some vector space V over F, with
some finite set E of vectors ofV , so thatM is isomorphic
to the vectorial matroid of the set E. A binary matroid
is a matroid representable over GF(2), while a ternary
matroid is representable over GF(3).

In recent literature (as of 1999) the problem of clas-
sifying all the fields over which a given matroid is rep-
resentable and the inverse problem of characterizing all
the matroids that are representable on a given field have
had growing interest. An important result for matroid
representability is the following theorem.

Theorem 21 Amatroid M = (E, I) is representable over
any field if and only if it is representable over GF(2) and
over some field of characteristic other than two.

Amatroid as in the previous theorem is called regular.

Connectivity of Matroids

Connectivity is an important concept in matroid the-
ory.

Definition 22 A matroid M = (E, I) admits a k-
separation if there exists a partition (X,Y) of the ground
set E such that
1) |X| � k, |Y| � k;
2) �(X)+ �(Y) � �(E) � k � 1.

Definition 23 The smallest k such that a matroidM =
(E, I) admits a k-separation is called the connectivity of
M.

If k � 2, M is n-connected for any n � k; if k = 1, M is
disconnected; ifM admits any k-separations for all inte-
gers k,M has infinite connectivity.

An important result for matroid connectivity is the
following theorem.

Theorem 24 A matroid M = (E, I) is disconnected if
and only if there exists a partition (X, Y) of the ground

set E such that every circuit C of M is either a subset of X
or a subset of Y.

Examples of Matroids

In this section some of the most popular types of ma-
troids involved in combinatorial optimization will be
described.

UniformMatroid

Let E be a set of n elements and let I be the family of
subsets A of E such that |A| � k < n. Then M = (E, I) is
called the uniform matroid of rank k and is denoted by
Uk, n.

The sets of the bases and the circuits of Uk, n are

B D fX � E : jXj D kg

and

C D fX � E : jXj D k C 1g ;

respectively.
Moreover, for all A� E,

�(A) D

(
jAj if jAj � K;
K otherwise;

�(A) D

(
A if jAj � K;
E otherwise:

Graphic Matroid

If F is the set of forests of a graph G = (V , E), M = (E,
F) is called a graphic matroid. The circuits ofM are the
graph-theoretic circuits of G, while the rank of a subset
E1 of E is given by

�(E1) D jV j � c(E1);

where c(E1) is the number of connected components of
G1 = (V , E1).

Transversal Matroid

Let E be a finite set, C = {S1, . . . , Sm} a collection of sub-
sets of E, and let T = {e1, . . . , et}� E.

T is called a transversal of C if there exist distinct
integers j(1), . . . , j(t) such that ei 2 Sj(i), i = 1, . . . , t. Let
I be the set of all transversals of E, then M = (E, I) is
a transversal matroid.
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Partition Matroid

Let E be a finite set, ˘ = {E1, . . . , Ep} a partition of E,
that is a collection of disjoint subsets of E covering E,
and d1, . . . , dp p nonnegative integers. A subset A of E
is independent, i. e. A 2 I, if and only if |A \ Ej| � dj,
j = 1, . . . , p. The system M = (E, I) is a matroid, called
a partition matroid.

An example of a partition matroid can be obtained
by considering any digraph G = (V , E) and partitioning
the edges of the set E according to which node is the
head (or, equivalently, the tail) of each. Suppose that dj
= 1, j = 1, . . . , p; then a set A of edges is independent if
no two edges of A have the same head (or, equivalently,
the same tail).

Dual Matroids

LetM = (E, I) be a matroid, and let B be its set of bases.
The dual matroid M is the matroid on the ground

set E, whose bases are the complements of the bases of
M. Thus, a set A is independent in M if and only if A is
disjoint from some basis ofM. Note that M D M.

For a pair of matroids (M;M) and their rank func-
tions, the following propositions hold.

Proposition 25 Let M = (E, I) be a matroid, and let �
be its rank function. Let M D (E; I) be the dual matroid
of M; then

�(A) D jAj C �(E n A) � �(E);

for each A� E.

Proposition 26 Let M be the dual of the matroid M =
(E, I), let A be a subset of E and let A D E n A. If � and
� are the rank functions of M and M respectively, then
1)
ˇ̌
A
ˇ̌
� �(A) D �(E) � �(A);

2) �(E) � �(A) D jAj � �(A).

Proposition 27 Let M = (E, I) be a matroid, then
1) x is a loop in M if and only if x is a coloop in M and

vice versa;
2) If x is not a loop in M, then the dual of M/x is the

matroid Mnx;
3) If x is not a coloop in M, then the dual of M \ x is the

matroid M
x .

As example of the dual of a matroid, let us consider the
vectorial matroid. Suppose that the vectors represent-
ing M are the columns of an m × n matrix A and that

these vectors span Fm. Thus, A has rank m and is the
matrix of a linear transformation T from Fn onto Fm.
LetK be the kernel ofT, and B the matrix of a linear em-
bedding of U into Fn. Note that B is a n × (n � m) ma-
trix (whose columns are the basis for U) and has rank
n � m. Moreover, the columns of the (n � m) × n ma-
trix B| are indexed by the same set as the columns of A
and B|A = 0. B| is the dual matroid M of the vectorial
matroidM.

Greedy Algorithms onWeightedMatroids

Many combinatorial problems for which the greedy
technique gives an optimal solution can be formulated
in terms of finding a maximum-weight independent
subset in a weighted matroid. In more detail, there
is given a weighted matroid M = (E, I) and the ob-
jective is to find an independent set A 2 I such that
w(A) is maximized (also called an optimal subset ofM).
Since the weight w(x) of any element x 2 E is posi-
tive, a maximum-weight independent subset is always
a maximal independent subset.

In the minimum spanning tree problem, for exam-
ple, there are given a connected undirected graph G =
(V , E) and a length function w such thatw(e) is the pos-
itive length of the edge e. The objective is to find an
acyclic subset T of E that connects all of the vertices of
G and whose total length

w(T) D
X
e2T

w(e)

is minimized. This is a classical combinatorial problem
and can be formulated as a problem of finding an op-
timal subset of a matroid. In fact, consider the graphic
weighted matroidMG with weight functionw0 such that
w0(e) =w0 �w(e), wherew0 is larger than themaximum
length of any edge. It can be easily seen that for each e 2
E, w0(e)� 0 and that an optimal subset ofMG is a span-
ning tree of minimum total length in the original graph
G. In more detail, each maximal independent subset A
corresponds to a spanning tree and since

w0(A) D (jV j � 1) � w0 � w(A)

for any maximal independent subset A, the indepen-
dent subset that maximizes w0(A) must minimize w(A).

J.B. Kruskal in [14] and R.C. Prim in [22] proposed
two greedy strategies for solving efficiently the mini-
mum spanning tree, but in the following is reported the
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pseudocode of a greedy algorithm that works for any
weighted matroid. The algorithm GREEDY takes as in-
put a matroid M = (E, I) and a weight function w and
returns an optimal subset A.

set A = ;
sort E[M] = fx1; : : : ; xkg into nonincreasing order
by weight w
FOR i = 1 to t

IF A[ fxig 2 I[M]
set A = A[ fxig

return(A)

Greedy(M,w)

Like any other greedy algorithm, GREEDY always
makes the choice that looks best at the moment. In fact,
it considers in turn each element xi belonging to E[M],
whose element are sorted into nonincreasing order by
weight w and immediately adds x to the building set A
if A [ {xi} is still independent. Note that the returned
set A is always independent, because it is initialized to
the empty set, which is independent by definition of
a matroid, and then at each iteration an element xi is
added to A while preserving the A’s independence. A is
also an optimal subset of the matroid M and therefore,
a minimum spanning tree for the original graph G. To
prove its optimality, it is enough to show that weighted
matroids exhibit the two ingredients whose existence
guarantee that a greedy strategy will solve optimally the
given problem: the greedy-choice property and the opti-
mal substructure property. The proof that matroids ex-
hibit both these properties can be found in [4]. Gener-
ally speaking, the proof of the exhibition of the greedy-
choice property consists of showing that a globally op-
timal solution can be obtained by making a locally opti-
mal (greedy) choice. The proof examines a global opti-
mal solution. It shows that the solution can be modified
so that a greedy choice is made at the first step and that
this choice reduces the original problem into an equiv-
alent problem having smaller size. By induction, it is
proved that a greedy choice can be made at each step.
To show that making a greedy choice reduces the origi-
nal problem into a similar but smaller problem reduces
the proof of correctness to demonstrating that an op-
timal solution must exhibit optimal substructure. The
optimal substructure property is exhibited by a given

problem, if an optimal solution to the problem contains
within it optimal solutions to subproblems. The valid-
ity of this property guarantee the applicability of greedy
strategies as well as dynamic programming algorithms.

See also

� Oriented Matroids
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Maximum constraint satisfaction problems (MAX-
CSPs) generalize maximum satisfiability (MAX-SAT)
to include cases where the variables are no longer re-
stricted to binary (or Boolean) values.

MAX-CSP is NP-complete even in the special case
of binary CSPs. Therefore designing procedures to
compute upper bounds to the exact (unknown) opti-
mum value (maximum number of satisfied constraints)
is a relevant issue. Such bounds may be useful, in par-
ticular, to provide estimates of the quality of solutions
obtained from various heuristic approaches.

This article describes a systematic way of computing
upper bounds for large scale MAX-CSP instances such
as those arising from the so-called radio link frequency
assignment problem (RLFAP). After discussing the gen-
eral relaxation principle and the basic procedure from
which the bounds are derived, we present results of ex-
tensive computational experiments on series of 90 in-
stances of RLFAP including both real test problems and
randomly generated ‘realistic’ test problems (for sizes
ranging from 396 variables and about 1700 constraints
to 831 variables and about 4800 constraints).

These results clearly indicate that the proposed ap-
proach is practically useful to produce fairly accurate
upper bounds for such large MAX-CSP problems.
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Introduction

Constraint satisfaction problems (CSPs) may be viewed
as a generalization of satisfiability (SAT) to include
cases where, instead of taking binary values only (0–1
or true-false) the variables may take on a finite number
(> 2) of given possible values.

For an infeasible CSP, a relevant question, both the-
oretically and practically, is to determine an assignment
of values to variables such that the number of satisfied
constraints is the largest possible. This is the so-called
maximum constraint satisfaction problem (MAX-CSP),
which generalizes in a natural way maximum satisfia-
bility (MAX-SAT).

Since MAX-2SAT is NP-complete (see e. g. [12, pp.
259–260]) even the subclass of MAX-CSP correspond-
ing to binary CSPs (those problems with constraints in-
volving pairs of variables only) is NP-complete. There-
fore, for very large instances such as those arising from
practical applications (e. g. the RLFAP discussed be-
low) one can only hope for approximate solutions us-
ing some of the currently available heuristic approaches
such as: simulated annealing, tabu search, genetic algo-
rithms, or local search of various kinds.

However, for many applications, getting an approx-
imate solution without any information about the qual-
ity of this solution (e. g. measured by the difference be-
tween the cost of this solution and the optimal cost)
may be of little value.

We address in this paper the problem of computing
upper bounds to the optimum cost of MAX-CSP prob-
lems from which estimates on the quality of heuristic
solutions can be derived.

The article is organized as follows. Basic defini-
tions about CSPs and MAX-CSPs are recalled in the
second section. Modeling the so-called radio link fre-
quency assignment problem (RLFAP) in terms of CSP
and MAX-CSP is addressed in the third section. Then
we present a general class of relaxations for MAX-CSP
problems and its specialization to the computation of
MAX-CSP bounds for RLFAP. Finally results of exten-
sive computational experiments carried out on series
of both real test problems and realistic randomly gen-
erated test problems are presented. To our knowledge,
this is the first time extensive computational results of
this kind are reported for such large scale MAX-CSP
problems.

CSP andMAX-CSP

A constraint satisfaction problem (CSP) is defined by
specifying:
� a set of n variables x1, . . . , xn;
� for each variable xi, i 2 I = {1, . . . , n} the domain of

i, i. e. the (finite) set Di of possible values for xi;
� a set ofK constraints 'k, k = 1, . . . ,K. For each k2 [1,

K], constraint 'k is defined by its support set (i. e. the
subset Sk = supp('k) of indices of the variables in-
volved in the constraint) and an oracle which, given
any combination x[Sk ] of values for variables in Sk,
answers TRUE if 'k(x[Sk ]) D TRUE, i. e. if the com-
bination is allowed, FALSE otherwise. (For any S �
{1, . . . , n} and x 2 D1 × � � � × Dn, x[S] denotes the
vector x restricted to components in S.)

Given a CSP specified as above, we define a free assign-
ment as any n-tuple x 2 D = D1 × � � � × Dn. A feasible
assignment (or solution) is a free assignment such that
'k(x[Sk ]) = TRUE for all k = 1, . . . , K.

For simplicity, we restrict here to the case where
each variable takes scalar values only (i. e. real or integer
values), but we note that more general CSPs may be de-
fined with variables taking, for instance, vector values.

The arity of a constraint 'k is the cardinality of its
support set: |Sk| = |supp('k)|. A binary CSP is a con-
straint satisfaction problem in which |supp('k)|� 2 for
all k = 1, . . . , K.

The constraint hypergraph associated with a given
CSP is the hypergraph having vertex set I = {1, . . . , n}
and edge set {S1, . . . , SK}. In case of a binary CSP this is
a graph.

The two examples below are interesting special
cases of the general definition and show NP complete-
ness of arbitrary CSPs.

Example 1 (Satisfiability) SAT is easily recognized as
a special case of CSP where 8i: Di = {TRUE, FALSE}
and where there is a constraint 'k corresponding to
each clause Ck with 'k(x) = TRUE, clause Ck is satis-
fied under truth assignment x.

Example 2 (Hypergraph q-coloring; see [2, Chap. 19])
Let q > 1 be a given integer and H = [V , E] an hyper-
graph with vertex set V and edge set E. The problem is
to assign one out of q colors to each vertex of H so that
each edge of H has vertices of different colors. Clearly
this may be formulated as a CSP problem where there
is one variable xi for each vi 2 V , with domain Di = {1,
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. . . , q}, and one constraint 'k for each edge ek = {i1, . . . ,
ip} 2 E such that '(xi1 ; : : : ; xip ) D TRUE, no two
values in fxi1 ; : : : ; xipg are equal. Note that when H is
a graph (i. e. |ek| = 2 for all ek 2 E), the resulting CSP is
a binary CSP.

For an infeasible CSP, one basic question is to deter-
mine a ‘best possible’ or ‘least infeasible’ assignment. If
the criterion for quality (or degree of ‘feasibility’) of an
assignment x is taken to be the number �(x) of con-
straints satisfied under that assignment, we are led to
the so-calledMAX-CSP problem:
� Given: a CSP defined by its variables x1, . . . , xn, do-

mains D1, . . . , Dn, and constraints '1, . . . , 'K .
� Find: x 2 D1 × � � � × Dn such that

�(x) D
ˇ̌˚
k 2 [1;K] : 'k(x[Sk ]) D TRUE

�ˇ̌

is maximized.

Example 3 (MAX-SAT, MAX-2SAT) Clearly, MAX-
SAT is a special case of MAX-CSP when the given CSP
is a satisfiability problem. The associated decision prob-
lem is NP-complete even for the special case of MAX-
2SAT ([13]), showing that MAX-CSP is NP-complete
even for binary CSPs.

Heuristics for approximately solving the MAX-
SAT problem have been proposed by [17,19,23,27].
A branch and bound algorithm for MAX-SAT based
on probabilistic bounds is described in [3] with com-
putational results up to 100 binary variables and 1000
clauses. The branch and cut algorithm described in [20]
presents computational results for general Max-3SAT
problems up to 100 binary variables and 575 clauses.
For a recent survey on SAT and MAX-SAT, see [9].

For more general MAX-CSP problems, many
heuristic approaches have been investigated such as
tabu search ([4,7]), simulated annealing [5], genetic al-
gorithms [18]. Exact Algorithms for randomMAX-CSP
problems were proposed in [11]. However in the com-
putational experiments reported, the sizes of the prob-
lems for which exact optimal solutions were found are
rather small (144 variables with domains of cardinality
4 and 646 constraints for the largest problems solved in
[11]).

MAX-CSP and the Radio Link Frequency
Assignment Problem

Operating large radio link telecommunication net-
works gives rise to the so-called radio link frequency
assignment problem (RLFAP), which is to choose, for
each transmission link, a specific operating frequency
(among a given list of allowed values) while satisfying
a list of noninterference constraints, (most constraints
usually involving pairs of links). A CSP formulation of
RLFAP is as follows: With n denoting the number of
links, for each link i = 1, . . . , n, there is an associated
variable xi representing the frequency to be assigned to
link i. The domain Di of xi is the (finite) set of allowed
frequencies for link i (frequencies are expressed in Hz,
KHz, MHz or any other specified unit).

Any assignment x 2 S =D1 × � � � ×Dn is not allowed
because a number of constraints, called noninterference
constraints have to be satisfied.

We will only consider here the case of binary nonin-
terference constraints (i. e. involving only pairs of links),
which is relevant to many applications of interest (see
e. g. [15,16]). For a given pair of links i and j, two (ex-
clusive) types of constraints are possible:
� equality constraints of the form

(E)
ˇ̌
xi � x j

ˇ̌
D wi j;

� inequality constraints of the form

(I)
ˇ̌
xi � x j

ˇ̌
� wi j:

The real number wij which represents the requested
slack or minimum requested slack between the two as-
signed frequencies will be called the weight of the con-
straint.

An instance of RLFAP is therefore specified by n
(number of links), a list of domainsD1, . . . ,Dn and a list
of constraints i. e. a list of quadruples of the form (i, j,
wij, Tij) where: i, j are the indices of the two links in-
volved, wij is the weight of the constraint, and Tij its
type ((E) or (I)). The constraint graph associated with
an instance of RLFAP is defined as the undirected graph
Gwith node set {1, . . . , n} and with an edge (i, j) for each
constraint (i, j, wij, Tij). We denote K the total number
of constraints in an instance of RLFAP. Benchmarks of
the RLFAP involving real instances up to 916 variables
and 5744 constraints have been made publicly avail-
able in the context of the European Project CALMA
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(see [8,15]). In those practical instances, the number
of equality constraints (of type (E)) is never more than
n/2, and assignments satisfying all of them can easily
be found. We will denote S0 � S = D1 × � � � × Dn the
set of all such assignments. All assignments x 2 S \ S0

must be disregarded because they are physically mean-
ingless, therefore, from now on, we will only consider
assignments in S0 as possible solution to RLFAP.

An assignment in S0 which satisfies all constraints of
type (I) will be called feasible. The feasibility version of
RLFAP may therefore be stated as the following CSP:
� Given: an instance of RLFAP.
� Question: does there exist a feasible frequency as-

signment?
� Answer: yes or no and, if yes, output a feasible as-

signment x.
Efficient solution methods for RLFAP are of major in-
terest to numerous practical applications in the context
of civilian mobile communication networks as well as
of military networks. Since the available spectrum is
severely limited and the communication needs (traffic
requirements) are continuously increasing, a high pro-
portion of the instances of the RLFAP encountered in
applications turn out to be infeasible.

When faced with an instance which is either infeasi-
ble or which is presumably infeasible (e. g. because run-
ning a heuristic solution method just failed to produce
a feasible solution) a key question for the practitioner
becomes to determine a ‘best possible’ or ‘least infeasi-
ble’ assignment.

This leads to the ‘optimization version’ of the RL-
FAP in the form of the followingMAX-CSP:
� Given: an instance of RLFAP with n variables (links)

and K constraints.
� Question: determine x� 2 S0 such that �(x�) (num-

ber of satisfied constraints) is maximized:

�(x�) D max
x2S0
f�(x)g:

In view of the NP-completeness of MAX-CSP for
binary CSPs, guaranteed optimal solutions to the above
for large scale instances (such as those of the CELAR
benchmarks) cannot be reasonably expected from cur-
rently available techniques in combinatorial optimiza-
tion. A less ambitious, though practically relevant ob-
jective, addressed in the following section, is to try and
obtain good upper bounds to an optimal solution value.

We note here that in the case where an upper bound
b� is found such that b� < K, then we can deduce that
the given RLFAP has no feasible solution. Thus, an in-
teresting by-product of computing bounds will be to
produce proofs of infeasibility of a given instance of RL-
FAP. Clearly, such an information may be of consider-
able importance to the practitioner.

A General Class of Relaxations
for Computing MAX-CSP Bounds

MAX-CSP may be reformulated as the discrete opti-
mization problem

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max z D
KX

kD1

yk

s.t. gk(x) � yk ; 8k D 1; : : : ;K;
yk D 0 or 1; 8k;
x D (x1; : : : ; xn)> 2 S0:

(1)

In the above, for all k = 1, . . . , K, gk(x) � 1 if 'k(x[Sk ])
= TRUE, and gk(x) < 1 if 'k(x[Sk ]) = FALSE. Note that
in the case of RLFAP, this specializes to: gk(x) = |xi �
xj|/wk, where xi and xj are the two variables involved in
constraint k, and wk the weight of constraint k.

A relaxation of an optimization problem such as (1)
is obtained by replacing its solution set by a larger so-
lution set. Clearly if the relaxed problem can be solved
exactly (i. e. to guaranteed optimality) then its optimal
objective function value is an upper bound (in case of
maximization) to the optimum objective function value
of the original problem.

There exists a number of standard ways of relax-
ing an optimization problem such as (1), e. g. using La-
grangian relaxation (e. g. [10]) or considering the so-
called continuous relaxation of some of the variables
(e. g. relaxing the constraints on the yk variables in (1) to
0� yk � 1). However, in our treatment of RLFAP, those
standard relaxations have not been considered because
they do not give rise to easily solvable relaxed problems.
We therefore investigated a different approach accord-
ing to the following general principle.

The relaxations we consider are based on the iden-
tification of those parts of the constraint graph or hy-
pergraph which are responsible for the infeasibility of
the whole problem. Preliminary computational results
obtained in [25] have shown that, at least for MAX-CSP



Maximum Constraint Satisfaction: Relaxations and Upper Bounds M 1985

problems deriving from RLFAP, it is most often possi-
ble to identify in a given instance an infeasible induced
subproblem of sufficiently reduced size tomake the cor-
responding MAX-CSP bound computable in reason-
able time.

This suggests to consider relaxations of (1) formed
by subproblems induced by properly chosen subsets of
constraints. Thus, ifK0 �K = {1, . . . , K} is the subset of
constraints chosen, the induced relaxation considered
is:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max z D
KX

kD1

yk

s.t. gk(x) � yk ; 8k 2K0;
yk D 0 or 1; 8k D 1; : : : ;K;
x 2 S0:

(2)

Note that, in an optimal solution to (2)

k 2KnK0) yk D 1:

Therefore z, the optimum objective function value of
(2), may be rewritten as:

z D K �
ˇ̌
K0
ˇ̌
C z0;

where z0 is the optimum value of the problem:

R[K0]

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

max z0 D
X
k2K0

yk

s.t. gk(x) � yk ; 8k 2K0;
yk D 0 or 1; 8k 2K0;
x 2 S0:

Clearly, the constraint graph or hypergraph G0 cor-
responding to a relaxation R[K0] is deduced from the
constraint graph or hypergraph G by deleting all edges
associated with the constraints in K \ K0. Also observe
that if G0 has several distinct connected components,
then the solution of R[K0] decomposes into independent
subproblems, one for each connected component.

If the constraint graph or hypergraph G0 is of suffi-
ciently small size, then it is possible to solve R[K0] ex-
actly, and the optimum solution value obtained clearly
leads to an upper bound to the optimum value of the
original problem. When G0 is too large to get the ex-
act optimal solution value of R[K0] then we will content
ourselves with getting an upper bound to this exact op-
timal value (see the procedure SOLVE.RELAX below).

Clearly, any such upper bound still provides a valid up-
per bound to the original problem. Of course, in the
above approach, the quality of the bound derived from
R[K0] essentially depends on how to select the subset
K0. We now describe the selection procedure which has
been used in our computational experiments.

Building Relaxations
for RLFAP UsingMaximum Cliques

We now specialize the general relaxation scheme de-
scribed above to derive bounds for RLFAP. The pre-
sentation below improves and extends our preliminary
work in [25].

The basic idea of our selection procedure for choos-
ing K0 � K is that, for RLFAP, infeasibility is more
likely to occur on subsets of links which are all mutu-
ally constrained, i. e. on subsets of links which induce
a clique (complete subgraph) in the constraint graph.
Since for RLFAP the constraint graphs arising from
applications are always very sparse (less than 1% den-
sity for the CELAR instances), it is known that finding
a clique of maximum cardinality can be efficiently done
even using simple approaches such as implicit enumer-
ation.

In [6] an efficient implicit enumeration based algo-
rithm with good computational results for large sparse
graphs up to 3000 vertices is described; however, it as-
sumes very small maximum clique sizes (in the compu-
tational results presented in [6], maximum clique sizes
do not exceed 11, and the running times seem to in-
crease extremely fast with this parameter). Unfortu-
nately, in view of the fact that, for our large RLFAP
instances, the maximum clique sizes turned out to be
commonly in the range [12, 25], the above algorithm
could not be used.

We therefore worked out a different implementa-
tion of the implicit enumeration technique which al-
lowed us to find guaranteed maximum cliques for all
the test problems treated within acceptable computing
times (see results at the end of the paper). Using this
maximum clique algorithm, the procedure for building
a relaxation to MAX-CSP for RFLAP is as follows.

The heuristic solution method used in our experi-
ments to implement step b1) is a variant of local search
consisting in iteratively improving an initial starting
solution; at each iteration an exact tree search is car-
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ried out to find an optimal solution to a subprob-
lem involving only a few variables. In our computa-
tional experiments we observed that the impact of the
quality of the heuristic solutions produced at step b1)
on the quality of the relaxation obtained at the end
of BUILD.RELAX was practically negligible (the main
reason for this is that � is only used as a stopping crite-
rion in the process of successive extraction ofmaximum
cliques). The computational results shown below con-
firm that bounds of good average quality indeed result
from the above construction.

a Set: G = [X; U]  G (the initial con-
straint graph), i  0

b Current step:
1 Apply a heuristic algorithm to get a good

approximate solution to MAX-CSP on G.
Let � denote the number of constraints
satisfied in this solution.
IF � = jU j go to c) (end of the construc-
tion),
ELSE set: i  i + 1.

2 Look for a maximum clique on G. Let Ci
be the clique obtained, with node set
N(Ci ) and edge set E(Ci ).

3 Let G0 denote the subgraph of G induced
by X nN(Ci) (obtained fromG by deleting
all edges having at least one endpoint in
N(Ci )).
Set G  G0 and return to b).

c IF i = 0, the problem is feasible and step
b1) produces an assignment satisfying all
the constraints. Terminate.
ELSE the relaxation R[K0] obtained cor-
responds to the setK0 of all constraints in
[i

j=1E(Cj).

Procedure BUILD.RELAX

Solving the Relaxed Problem R[K0]

In order to solve the relaxed problem R[K0] we use
a basic procedure called FIND.SOLUTION(R[K0], �)
which, for any integer value � 2 [1, |K0|], answers YES
or NO depending on whether there exists a solution to
R[K0] with objective function value z� � or not. In case
of a YES answer, the procedure also exhibits the corre-
sponding solution. We assume that this procedure is ex-

act i. e. always finds the right answer. Clearly, any value
of � leading to a NO answer produces an upper bound
to the optimal solution value of R[K0].

The procedure SOLVE.RELAX(R[K0]) determines
a decreasing sequence of upper bounds to the optimal
value of R[K0] until either termination is obtained (at
step c)) or the maximum computation time has been
reached.

In the former case, the exact optimum solution
value to R[K0] is obtained; in the latter case, only an
upper bound to this optimal value is produced.

a Initialization: Set 
  jK0 j.
b Current step:

Apply FIND.SOLUTION(R[K0]; 
)
IF the answer is NO,
THEN set 
  
 � 1 and return to b).
ELSE perform step c).

c A YES answer has been obtained at step b): 
 is
the optimal solution value to R[K0]. Terminate.

Procedure SOLVE.RELAX(R[K0])

When G0, the constraint graph of R[K0] has sev-
eral distinct connected components corresponding to
subsets of constraints, K01, . . . , K0p, then solving
R[K0] decomposes into the solution of several smaller
subproblems R[K1

0], . . . , R[Kp
0]. In the procedure

SOLVE.RELAX, this decomposability may be exploited
in various possible ways. In our implementation, this is
done by organizing the computation into phases num-
bered t = 0, 1, . . . . The current upper bound value UB
is initialized by: UB |K0|. The current phase t con-
sists in running the procedure FIND.SOLUTION on
each of the subproblems R[K0j], j = 1, . . . , p, with the
parameter � = |K0j| � t. Each time a NO answer is ob-
tained, UB is updated by UB UB � 1. Clearly with
the above process, when a YES answer has been ob-
tained for some subproblem R[Kj

0] during phase t, this
subproblem should not be considered any more at later
phases t0 > t. The computation stops either at the end of
a phase during which a YES answer has been obtained
for all subproblems; or when a user-specified time limit
has been reached.

The basic procedure FIND.SOLUTION has been
implemented as a classical depth first tree search pro-
cess of the implicit enumeration type, (achieved by
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means of a recursive C function). Since getting the ex-
act answer (YES or NO) is essential to the derivation
of our bounds, the procedure FIND.SOLUTION is run
until full completion of the tree search (i. e. when all the
nodes of the tree have been explored implicitly or ex-
plicitly).

Computational Results

In order to validate the above described approach, sys-
tematic computational experiments have been carried
out on two series of test problems.

The first set was composed of 15 infeasible real
problems which arose from actual network engineering
studies carried out on three distinct large radio link net-
works (one in the 2GHz frequency range, one in the 2,
5GHz frequency range and one in the 4GHz frequency
range).

The second series concerned a set of 5 × 15 = 75 ‘re-
alistic’ test problems generated by applying some ran-
dom perturbation to the above 15 real problems. More
precisely, each problem of the second series is gener-
ated from one problem of the first series by changing
the weight wij of each inequality constraint of the form:
|xi � xj| � wij to: ewi j D wi j � (˛ C ˇ˚) where ˚ is
a pseudorandom number drawn from a uniform dis-

Maximum Constraint Satisfaction: Relaxations and Upper
Bounds, Table 1

Prob. n K NF Relaxation
# # var. # const.
1 680 2389 8 44 257
2 680 3367 16 38 339
3 680 4103 24 84 671
4 680 2725 8 74 490
5 680 2576 8 46 311
6 680 2470 8 44 284
7 831 3451 16 16 113
8 831 4802 24 33 248
9 396 1792 12 70 375
10 396 1792 12 70 375
11 396 1792 12 70 375
12 396 1792 12 70 375
13 396 1792 12 70 375
14 396 1792 12 70 375
15 396 1792 12 70 375

Maximum Constraint Satisfaction: Relaxations and Upper
Bounds, Table 2

Prob. HS Best upper bound
# obtained within

15s 5’ 1 h
1 2376 2387 2385 2383
2 3358 3367 3366 3365
3 4090 4102 4098 4098
4 2700 2720 2713 2708
5 2559 2571 2569 2564
6 2457 2467 2464 2459
7 3440 3450 3450 3450
8 4781 4800 4800 4799
9 1762 1786 1780 1777
10 1759 1786 1780 1776
11 1761 1786 1780 1778
12 1764 1786 1780 1776
13 1761 1786 1780 1775
14 1757 1786 1780 1775
15 1764 1786 1783 1777

tribution on [0, 1] and ˛, ˇ are chosen parameters (of
course the pseudorandom drawing is assumed to be in-
dependent from one constraint to the next).

Table 1 presents the characteristics of the 15 real test
problems treated, numbered 1 to 15 and provides for
each problem: number of variables (n), number of con-
straints (K), number of distinct frequencies used (NF)
and the main characteristics of the relaxed subproblem
obtained from the procedure BUILD.RELAX: number
of variables #var, and number of constraints #const.

Table 3 presents in a similar way the characteristics
of the 5 × 15 = 75 test problems deduced from the previ-
ous ones by random perturbation. The 5 instances cor-
responding to each basic problem i are numbered i1, . . . ,
i5. For each instance the values of the parameters ˛ and
ˇ used to generate the instance are displayed together
with the characteristics (number of variables, number
of constraints) of the relaxed subproblem produced by
BUILD.RELAX.

The computation times taken to construct the re-
laxed subproblems (using BUILD.RELAX) on the prob-
lems of Tables 1 and 3, are all between 5 minutes to 35
minutes with an average of about 12 minutes.

Table 2 shows the results obtained on the 15 real
test problems of Table 1 and Table 4 shows the results
for the 5 × 15 problems of Table 3. The computer used
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Maximum Constraint Satisfaction: Relaxations and Upper Bounds, Table 3

Prob. ˛ ˇ Relaxation
# #var. #const.
11 0; 5 1 42 257
12 0; 5 1 42 261
13 0; 8 0; 4 42 261
14 0; 8 0; 4 42 261
15 0; 8 0; 4 42 261
21 0; 5 1 38 339
22 0; 5 1 38 339
23 0; 8 0; 4 38 339
24 0; 8 0; 4 38 339
25 0; 8 0; 4 38 339
31 0; 5 1 54 671
32 0; 5 1 70 460
33 0; 8 0; 4 84 480
34 0; 8 0; 4 84 671
35 0; 8 0; 4 54 671
41 0; 5 1 74 490
42 0; 5 1 74 490
43 0; 8 0; 4 74 490
44 0; 8 0; 4 74 490
45 0; 8 0; 4 74 490
51 0; 5 1 46 311
52 0; 5 1 46 311
53 0; 8 0; 4 46 311
54 0; 8 0; 4 46 311
55 0; 8 0; 4 46 311
61 0; 5 1 44 284
62 0; 5 1 44 284
63 0; 8 0; 4 44 284
64 0; 8 0; 4 44 284
65 0; 8 0; 4 44 284
71 0; 8 0; 4 16 113
72 0; 8 0; 4 16 113
73 0; 8 0; 4 16 113
74 0; 8 0; 4 16 113
75 0; 8 0; 4 16 113
81 0; 5 1 33 248
82 0; 5 1 33 248
83 0; 5 1 33 248
84 0; 5 1 33 248
85 0; 5 1 33 248

Prob. ˛ ˇ Relaxation
# #var. #const.
91 0; 2 1; 6 12 375
92 0; 2 1; 6 12 66
93 0; 2 1; 6 48 66
94 0; 2 1; 6 24 264
95 0; 2 1; 6 36 132
101 0; 2 1; 6 36 375
102 0; 2 1; 6 12 198
103 0; 2 1; 6 48 66
104 0; 2 1; 6 24 264
105 0; 2 1; 6 36 132
111 0; 2 1; 6 36 375
112 0; 2 1; 6 12 198
113 0; 2 1; 6 48 66
114 0; 2 1; 6 24 264
115 0; 2 1; 6 36 132
121 0; 2 1; 6 24 375
122 0; 2 1; 6 12 132
123 0; 2 1; 6 48 66
124 0; 2 1; 6 24 264
125 0; 2 1; 6 36 162
131 0; 2 1; 6 36 375
132 0; 2 1; 6 12 198
133 0; 2 1; 6 48 66
134 0; 2 1; 6 24 264
135 0; 2 1; 6 36 132
141 0; 2 1; 6 36 375
142 0; 2 1; 6 12 198
143 0; 2 1; 6 48 66
144 0; 2 1; 6 24 264
145 0; 2 1; 6 36 132
151 0; 2 1; 6 24 375
152 0; 2 1; 6 12 132
153 0; 2 1; 6 48 66
154 0; 2 1; 6 24 264
155 0; 2 1; 6 36 132

was a PC Pentium 166 workstation with 32Mb RAM.
For each problem we provide: HS, the best heuristic so-
lution value obtained (number of satisfied constraints);
the best upper bounds obtained after 15 seconds, 5min-

utes and 1 hour. The results in Table 2 confirm that
our approach is practical to consistently produce good
bounds for real RLFAP instances within acceptable so-
lution times.
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Maximum Constraint Satisfaction: Relaxations and Upper Bounds, Table 4

Prob. HS Best upper bound
# obtained within

15 s 5’ 1 h
11 2376 2386 2383 2378
12 2376 2386 2383 2378
13 2376 2386 2383 2378
14 2376 2386 2383 2378
15 2376 2386 2383 2378
21 3358 3366 3365 3365
22 3358 3367 3365 3365
23 3358 3367 3366 3365
24 3358 3367 3365 3365
25 3358 3367 3366 3365
31 4081 4103 4101 4101
32 4081 4102 4101 4101
33 4086 4102 4098 4098
34 4086 4102 4098 4098
35 4088 4102 4101 4101
41 2700 2720 2713 2708
42 2700 2720 2713 2708
43 2700 2720 2713 2708
44 2700 2720 2713 2708
45 2700 2720 2713 2708
51 2559 2571 2569 2564
52 2559 2572 2569 2564
53 2559 2572 2569 2564
54 2559 2573 2569 2564
55 2559 2573 2569 2564
61 2457 2467 2464 2459
62 2457 2467 2464 2459
63 2457 2467 2464 2459
64 2457 2467 2464 2459
65 2457 2467 2464 2459
71 3438 3450 3450 3450
72 3437 3450 3450 3450
73 3421 3430 3430 3430
74 3414 3424 3424 3424
75 3436 3450 3450 3450
81 4780 4800 4800 4799
82 4783 4800 4800 4799
83 4778 4800 4800 4799
84 4781 4800 4800 4799
85 4781 4800 4800 4799

Prob. HS Best upper bound
# obtained within

15 s 5’ 1 h
91 1779 1791 1791 1791
92 1777 1791 1790 1789
93 1774 1788 1788 1785
94 1777 1790 1789 1789
95 1779 1789 1787 1787
101 1780 1789 1788 1787
102 1780 1791 1790 1788
103 1776 1788 1787 1785
104 1778 1790 1789 1789
105 1777 1789 1788 1788
111 1783 1789 1789 1789
112 1780 1791 1789 1788
113 1777 1788 1788 1786
114 1780 1790 1789 1789
115 1779 1789 1788 1787
121 1779 1790 1790 1789
122 1780 1791 1790 1789
123 1777 1788 1788 1786
124 1780 1790 1789 1787
125 1778 1789 1788 1787
131 1782 1789 1789 1788
132 1777 1790 1789 1789
133 1776 1788 1787 1786
134 1779 1790 1789 1789
135 1777 1789 1788 1788
141 1782 1789 1789 1788
142 1775 1791 1789 1789
143 1775 1788 1787 1786
144 1779 1791 1789 1789
145 1776 1789 1788 1788
151 1780 1790 1790 1789
152 1779 1791 1789 1788
153 1777 1788 1788 1788
154 1781 1790 1789 1788
155 1780 1789 1788 1788

From Tables 2 and 4, it is seen that for all the in-
stances treated, the difference between the heuristic so-
lution values HS and the best upper bounds obtained

are always quite small. More precisely for all the exam-
ples treated, the ratio R = (UB � HS)/UB is most of-
ten well below 1% (Problem 14 in Table 2 is the only
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one for which R > 1%). We note that since HS is only
a lower bound, R is a pessimistic estimate of the relative
difference between the best upper bound obtained and
the optimal, unknown, solution value.

Also, from Table 4, it is seen that the results ob-
tained appear to be fairly stable, in spite of the impor-
tance of the perturbations applied to generate the cor-
responding 75 instances. In addition to practical appli-
cability, and efficiency, this clearly shows good stability
and robustness in the behavior of our algorithms. To
our knowledge, this is the first time a systematic way
of deriving upper bounds to such large scale MAX-CSP
problems has been implemented and fully tested.

To conclude, let us mention that, in view of the
results obtained, the techniques described here have
been included in an industrial software tool for radio
network engineering developed by the French MOD
(DGA/CELAR).

See also

� Frequency Assignment Problem
� Graph Coloring
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Introduction

The MAXIMUM CUT problem (MAX-CUT) is one of the
simplest graph partitioning problems to conceptualize,
and yet it is one of the most difficult combinatorial opti-
mization problems to solve. The objective of MAX-CUT

is to partition the set of vertices of a graph into two sub-
sets, such that the sum of the weights of the edges hav-
ing one endpoint in each of the subsets is maximum.
This problem is known to be NP-complete [18,27];

however, it is interesting to note that the inverse prob-
lem, i. e., that of looking for the minimum cut in a graph
is solvable in polynomial time using network flow tech-
niques [1]. MAX-CUT is an important combinatorial
problem and has applications in many fields including
VLSI circuit design [9,32] and statistical physics [5]. For
other applications, see [16,21]. For a detailed survey of
MAX-CUT, the reader can refer to [33].

Organization

In this paper, we introduce the MAXIMUM CUT prob-
lem and review several heuristic methods which have
been applied. In Subsect. “C-GRASP Heuristic” we de-
scribe the implementation of a new heuristic based op-
timizing a quadratic over a hypercube. The heuristic
is designed under the C-GRASP (Continuous Greedy
Randomized Adaptive Search Procedure) framework.
Proposed by Hirsch, Pardalos, and Resende [23],
C-GRASP is a new stochastic metaheuristic for contin-
uous global optimization problems. Numerical results
are presented and compared with other heuristics from
the literature.

Idiosyncrasies

We conclude this section by introducing the symbols
and notations we will employ throughout this paper.
Denote a graph G D (V ; E) as a pair consisting of
a set of vertices V , and a set of edges E. Let the map
w : E 7! R be a weight function defined on the set of
edges. We will denote an edge-weighted graph as a pair
(G,w). Thus we can easily generalize an un-weighted
graph G D (V ; E) as an edge-weighted graph (G,w), by
defining the weight function as

wi j :D

(
1; if (i; j) 2 E ;
0; if (i; j) 62 E :

(1)

We use the symbol “b :D a” to mean “the expres-
sion a defines the (new) symbol b”. Of course, this
could be conveniently extended so that a statement like
“(1 � �)/2 :D 7” means “define the symbol � so that
(1 � �)/2 D 7 holds”. We will employ the typical sym-
bol Sc to denote the complement of the set S; further let
A n B denote the set-difference, A\ Bc . Agree to let the
expression x  y mean that the value of the variable y
is assigned to the variable x. Finally, to denote the cardi-
nality of a set S, we use | S |. We will use bold for words
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which we define, italics for emphasis, and SMALL CAPS

for problem names. Any other locally used terms and
symbols will be defined in the sections in which they
appear.

Formulation

Consider an undirected edge-weighted graph (G,w),
where G D (V ; E) is the graph, and w is the weight
function. A cut is defined as a partition of the vertex set
into two disjoint subsets S and S̄ :D V n S. The weight
of the cut (S; S̄) is given by the functionW : S � S̄ 7! R
and is defined as

W(S; S̄) :D
X

i2S; j2S̄

wi j : (2)

For an edge-weighted graph (G,w), amaximum cut
is a cut of maximum weight and is defined as

MC(G;w) :D max
8S
V

W(S;V n S) : (3)

We can formulate MAX-CUT as the following inte-
ger quadratic programming problem:

max
1
2

X
1�i< j�n

wi j(1 � yi y j) (4)

subject to:

yi 2 f�1; 1g; 8i 2 V : (5)

To see this, notice that each subset V � S :D fi 2
V : yi D 1g induces a cut (S; S̄) with corresponding
weight equal to

W(S; S̄) D
1
2

X
1�i< j�n

wi j(1 � yi y j) : (6)

An alternative formulation of MAX-CUT based on
the optimization of a quadratic over the unit hypercube
was given by Deza and Laurent in [12].

Theorem 1 Given a graph G D (V ; E) with jV j D n,
the optimal objective function value of the MAXIMUM

CUT problem is given by

max
x2[0;1]n

xTW(e � x) ; (7)

where W D [wi j]ni; jD1 is the matrix of edge weights, and
e :D [1; 1; : : : ; 1]T is the unit vector.

Proof 1 Let

f (x) :D xTW(e � x) (8)

denote the objective function from Eq. (7). To begin
with, notice that the matrix W has a zero diagonal,
i. e., wii D 0; 8i 2 1; 2; : : : ; n. This implies that f (x)
is linear with respect to each variable, and thus there
always exists an optimal solution, x� of (7) such that
x� 2 f0; 1gn . Therefore, we have shown that

max
x2[0;1]n

xTW(e � x) D max
x2f0;1gn

xTW(e � x): (9)

The next step is to show that there is a bijection be-
tween binary vectors of length n and cuts in G. Con-
sider any binary vector x̂ 2 f0; 1gn . Now suppose we
partition the vertex set V into two disjoint subsets
V1 :D fijx̂i D 0g and V2 :D fijx̂i D 1g. Then, evaluat-
ing the objective function we have

f (x̂) D
X

(i; j)2V1�V2

wi j; (10)

which is equal toW(V1,V2), the value of the cut defined
by the partition of V D V1

S
V2 (see Eq. (2) above).

Alternatively, consider any partition of V into two
disjoint subsets V1;V2 � V . That is

V D V1
[

V2 and V1
\

V2 D ; :

Now, we can construct the vector x̂ as follows:

x̂i D

(
1; if i 2 V1

0; if i 2 V2 :
(11)

Once again, evaluating the objective function on x̂, we
have

f (x̂) D
X

(i; j)2V1�V2

wi j : (12)

Hence f (x̂) DW(V1;V2) and we have the result.1 Alas,
we have shown the bijection between binary n-vectors

1Notice that the result holds even if (without the loss of gener-
ality) V1 D V and V2 D ;. In this case, a cut induced by (V1;V2)
will be a maximum cut if wi j � 0; 8i; j 2 V .
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and cuts in G. In summary, we have

max
x2[0;1]n

xTW(e � x)

D max
x2f0;1gn

xTW(e � x)

D max
VDV1

S
V2;V1

T
V2D;

X
(i; j)2V1�V2

wi j :

�

There are several classes of graphs for which MAX-
CUT is solvable in polynomial time [25]. These include
planar graphs [11], weakly bipartite graphs with non-
negative edge weights [20], and graphs without K5 mi-
nors [4]. The general problem however is known to be
APX-complete [31]. This implies that unless
P DNP, MAX-CUT does not admit a polynomial
time approximation scheme [30].

Methods

The MAXIMUM CUT problem is one of the most well-
studied discrete optimization problems [27]. Since the
problem isNP-hard in general, there has been an in-
credible amount of research done in which heuristic
techniques have been applied. Before we present the
new heuristic approach, we review some of the prior
work that has been done.

Review of Solution Approaches

There have been many semidefinite and continuous
relaxations based on this formulation. This was first
shown by Lovász in [28]. In 1995, Goemans and
Williamson [19] used a semidefinite relaxation to
achieve an approximation ratio of .87856. This impli-
cation of this work is significant for two reasons. The
first is of course, the drastic improvement of the best
known approximation ratio for MAX-CUT of 0.5 which
had not been improved in over 20 years [36]. Secondly,
and perhaps more significantly is that until 1995, re-
search on approximation algorithms for nonlinear pro-
gramming problems did not receive much attention.
Motivated by the work of Goemans and Williamson,
semidefinite programming techniques were applied to
an assortment of combinatorial optimization problems
successfully yielding the best known approximation
algorithms for GRAPH COLORING [7,26], BETWEEN-

NESS [10], MAXIMUM SATISFIABILITY [13,19], and
MAXIMUM STABLE SET [2], to name a few [29].

As noted in [16], the use of interior point methods
for solving the semidefinite programming relaxation
have proven to be very efficient. This is because meth-
ods such as the one proposed by Benson, Ye, and Zhang
in [6] exploit the combinatorial structure of the re-
laxed problem. Other algorithms based on the nonlin-
ear semidefinite relaxation include the work of Helm-
berg and Rendl [22] and Homer and Peinado [24].

The work of Burer et al. in [8] describes the im-
plementation of a rank-2 relaxation heuristic dubbed
circut. This software package was shown to com-
pute better solutions than the randomized heuristic of
Goemans and Williamson, in general [16]. In a re-
cent paper dating from 2002, Festa, Pardalos, Resende,
and Ribeiro [16] implement and test six random-
ized heuristics for MAX-CUT. These include variants
of Greedy Randomized Adaptive Search Procedures
(GRASP), Variable Neighborhood Search, and path-re-
linking algorithms [35]. Their efforts resulted in im-
proving the best known solutions for several graphs
and quickly producing solutions that compare favor-
ably with the method of Goemans andWilliamson [19]
and circut [8]. For several sparse instances, the
randomized heuristics presented in [16] outperformed
circut.

In [25], Butenko et al. derive a “worst-out” heuris-
tic having an approximation ratio of at least 1/3 which
they refer to as the edge contraction method. The also
present a computational analysis of several greedy con-
struction heuristics for MAX-CUT based on variations
of the 0.5-approximation algorithm of Sahni and Gon-
zalez [36]. With this, we now move on and describe the
implementation of a new heuristic for MAX-CUT based
on the new metaheuristic Continuous GRASP [23].

C-GRASP Heuristic

The Continuous Greedy Randomized Adaptive Search
Procedure (C-GRASP) is a new metaheuristic for con-
tinuous global optimization [23]. The method is an ex-
tension of the widely known discrete optimization algo-
rithm Greedy Randomized Adaptive Search Procedure
(GRASP) [15]. Preliminary results are quite promising,
indicating that C-GRASP is able to quickly converge to
the global optimum on standard benchmark test func-
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procedure GRASP(MaxIter;RandomSeed)
1 f �  0
2 X�  ;
3 for i = 1 to MaxIter do
4 X  ConstructionSolution(G; g; X; ˛)
5 X  LocalSearch(X;N(X))
6 if f (X) � f (X�) then
7 X�  X
8 f �  f (X)
9 end
10 end
11 return X�
end procedure GRASP

Maximum Cut Problem, MAX-CUT, Figure 1
GRASP for maximization

tions. The traditional GRASP is a two-phase procedure
which generates solutions through the controlled use
of random sampling, greedy selection, and local search.
For a given problem˘ , let F be the set of feasible solu-
tions for˘ . Each solution X 2 F is composed of k dis-
crete components a1; : : : ; ak . GRASP constructs a se-
quence {X}i of solutions for ˘ , such that each Xi 2 F.
The algorithm returns the best solution found after all
iterations. The GRASP procedure can be described as
in the pseudo-code provided in Fig. 1. The construction
phase receives as parameters an instance of the prob-
lemG, a ranking function g : A(X) 7! R (whereA(X) is
the domain of feasible components a1; : : : ; ak for a par-
tial solution X), and a parameter 0 < ˛ < 1. The con-
struction phase begins with an empty partial solution X.
Assuming that jA(X)j D k, the algorithm creates a list
of the best ranked ˛k components in A(X), and returns
a uniformly chosen element x from this list. The cur-
rent partial solution is augmented to include x, and the
procedure is repeated until the solution is feasible, i. e.,
until X 2 F.

The intensification phase consists of the implemen-
tation of a hill-climbing procedure. Given a solution
X 2 F, let N(X) be the set of solutions that can found
from X by changing one of the components a 2 X.
Then, N(X) is called the neighborhood of X. The im-
provement algorithm consists of finding, at each step,
the element X� such that

X� :D arg max
X02N(X)

f (X0) ;

where f : F 7! R is the objective function of the prob-
lem. At the end of each step we make the assignment
X�  X if f (X) > f (X�). The algorithm will eventu-
ally achieve a local optimum, in which case the solu-
tion X� is such that f (X�) � f (X0) for all X0 2 N(X�).
X� is returned as the best solution from the iteration
and the best solution from all iterations is returned as
the overall GRASP solution. GRASP has been applied
to many discrete problems with excellent results. For
an annotated bibliography of GRASP applications, the
reader is referred to the work of Festa and Resende
in [17].

Like GRASP, the C-GRASP framework is a multi-
start procedure consisting of a construction phase
and a local search [14]. Specifically, C-GRASP is de-
signed to solve continuous problems subject to box
constraints. The feasible domain is given as the n-
dimensional rectangle S :D fx D (x1; x2; : : : ; xn) 2
Rn : l � x � ug, where l ; u 2 Rn are such that
li � ui , for i D 1; 2; : : : ; n. Pseudo-code for the ba-
sic C-GRASP is provided in Fig. 2. Notice that the al-
gorithm takes as input the dimension n, upper and
lower bounds l and u, the objective function f , and
parameters MaxIters, MaxNumIterNoImprov,
NumTimesToRun, MaxDirToTry, and a number
˛ 2 (0; 1).

To begin with, the optimal objective function
value f � is initialized to �1. The procedure then en-
ters the main body of the algorithm in the for loop
from lines 2–21. The value NumTimesToRun is the
total number of C-GRASP iterations that will be per-
formed. To begin with, more initialization takes place
as the current solution x is initialized as a random point
inside the hyperrectangle, which is generated according
to a function UnifRand([l ; u)) which is uniform onto
[l,u)2. Furthermore, the parameter which controls the
discretization of the search space, h, is set to 1. Next,
the construction phase and local search phases are en-
tered. In line 9, the new solution is compared to the cur-
rent best solution. If the objective function value corre-
sponding to the current solution dominates the incum-
bent, then the current solution replaces the incumbent
and NumIterNoImprov is set to 0. This parameter

2This is the “typical” definition of a Uniform distribution.
That is, P : X 7! R is uniform onto [A,B), if, for any subinter-
val I � [A; B), the measure of P�1(I) equals the length of I.
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procedure C-GRASP(n; l ; u; f (�);MaxIters;MaxNumIterNoImprov;NumTimesToRun;
MaxDirToTry; ˛)

1 f �  �1
2 for j = 1 to NumTimesToRun do
3 x  UnifRand

�
[l ; u)

�
4 h 1
5 NumIterNoImprov 0
6 for Iter = 1 to MaxIters do
7 x  ConstructGreedyRandomized(x; f (�); n; h; l ; u; ˛)
8 x  LocalSearch(x; f (�); n; h; l ; u;MaxDirToTry)
9 if f (x) � f � then
10 x�  x
11 f �  f (x)
12 NumIterNoImprov 0
13 else
14 NumIterNoImprov NumIterNoImprov + 1
15 end if
16 if NumIterNoImprov � MaxNumIterNoImprov then
17 h h/2
18 NumIterNoImprov 0
19 end if
20 end for
21 end for
22 return x�
end procedure C-GRASP

Maximum Cut Problem, MAX-CUT, Figure 2
C-GRASP pseudo-code adapted from [23]

controls when the discretization measure h is reduced.
That is, after a total of MaxNumIterNoImprov iter-
ations occur in which no solution better than the cur-
rent best solution is found, h is set to h/2 and the loop
returns to line 6. By adjusting the value of h, the algo-
rithm is able to locate general areas of the search space
which contain high quality solutions, and then narrow
down the search in those particular regions. The best
solution after a total of NumTimesToRun iterations is
returned as the best solution.

The construction phase of the C-GRASP takes as in-
put the randomly generated solution x 2 S (see Fig. 2,
line 3). Beginning with all coordinates unfixed, the
method then performs a line search on each unfixed
coordinate direction of x holding the other n � 1 direc-
tions constant. The objective function values resulting
from the line search solution for each coordinate direc-
tion are stored in a vector, say V . An element vi 2 V
is then selected uniformly at random from the maxi-

mum (1 � ˛)100% elements of V , and the vi coordinate
direction is fixed. This process repeats until all n coor-
dinates of x have been fixed. The resulting solution is
returned as the C-GRASP solution from the current it-
eration. For a slightly more detailed explanation of this
procedure, the reader is referred to [23].

As for the local search phase, this procedure sim-
ulates the role of calculating the gradient of the ob-
jective function f (�). As mentioned earlier, gradients
are not used in C-GRASP because oftentimes, they are
difficult to compute and result in slow computation
times. Therefore, the gradient is approximated as fol-
lows. Given the construction phase solution x, the lo-
cal search generates a set of directions and determines
in which direction (if any) the objective function im-
proves.

The directions are calculated according to a bijec-
tive function T which maps the interval of integers
[1; 3n) \Z onto their balanced ternary representation.
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Maximum Cut Problem, MAX-CUT, Table 1
Parameters used for C-GRASP

˛ D 0:4 MaxDirToTry D 20

NumTimesToRun D 20 MaxIters D 1000
MaxNumIterNoImrpov = 1

Recall that n is the dimension of the problem under
consideration. That is, T : [1; 3n) \Z 7! f�1; 0; 1gN .
Clearly, as n!1, the number of search directions
grows exponentially. Therefore, only MaxDirToTry
directions are generated3 and tested on the current so-
lution. For each direction d, the point x̂ :D x C hd
is constructed and f (x̂) is computed. Recall that h is
the parameter which controls the density of the search
space discretization. If the constructed point x̂ 2 S
has a more favorable objective value than the cur-
rent point x, then x̂ replaces x, and the process con-
tinues. The phase terminates when a locally optimal
point x� 2 S is found. The point x� is said to be lo-
cally optimal if f (x�) � f (x� C hd)8d 2 f1; 2; : : : ;
MaxDirToTryg. Again, for a slightly more in depth
description of this procedure, the reader should see the
paper by Hirsch et al. [23].

Computational Results The proposed procedure
was implemented in the C++ programming language
and complied using Microsoft® Visual C++ 6.0. It was
tested on a PC equipped with a 1700MHz Intel® Pen-
tium® M processor and 1GB of RAM operating un-
der the Microsoft® Windows® XP environment. The
C-GRASP parameters used are provided in Table 1.
First, we tested the C-GRASP on 10 instances produced
by the Balasundarm–Butenko problem generator in [3].
Though these problems are relatively small, they have
proven themselves to be quite formidable against the
Multilevel Coordinate Search (MCS) black-box opti-
mization algorithm.We also tested the C-GRASP on 12
instances from the TSPLIB [34] collection of test prob-
lems for the TRAVELING SALESMAN PROBLEM. These
problems are also used as benchmark problems for test-
ing MAX-CUT heuristics [19].

For further comparison, all instances were tested us-
ing the rank-2 relaxation heuristic circut [8], as well
as with a simple 2-exchange local search heuristic which

3uniformly at random

procedure LocalSearch(G;MaxIter)
1 f �  �1
2 x�  ;
3 for j = 1 to MaxIter do
4 x  KruskalMST(x;G)
5 x  LocalImprove(x;G)
6 if f (x) � f � then
7 x�  x
8 f �  f (x)
9 end if
10 end for
11 return x�
end procedure LocalSearch

Maximum Cut Problem, MAX-CUT, Figure 3
The 2-exchange local search routine

is outlined in the pseudo-code provided in Fig. 3. The
method receives as input a parameter MaxIter indi-
cating the maximum number of iterations to be per-
formed and G D (V ; E) the instance of the problem
whereupon a maximum spanning tree is found using
Kruskal’s algorithm [1]. The spanning tree, due to its
natural bipartite structure provides a feasible solution
to which a swap-based local improvement method is
applied in line 5. The local improvement works as fol-
lows. For all pairs of vertices (u,v) such that u 2 S and
v 2 S̄, a swap is performed. That is, we place u 2 S̄
and v 2 S. If the objection function is improved, the
swap is kept; otherwise, we undo the swap and exam-
ine the next (u,v) pair. The local search was tested on
the same PC as the C-GRASP. The circut heuristic
was compiled using Compaq® Visual Fortran on a PC
equipped with a 3.60GHz Intel® Xeon® processor and
3.0 GB of RAM operating under the Windows® XP en-
vironement.

Table 2 provides computational results of the al-
gorithms on the 10 Balasundarum–Butenko instances
from [3]. The first three columns provide the instance
name, the number of vertices and the optimal solution.
The solutions from the heuristics are provided next.
The solutions from the Multilevel Coordinate Search
algorithm were provided in [3]. For all of these in-
stances, the time required by the C-GRASP, circut,
and the local search to find their best solutions was frac-
tions of a second. Computing times were not listed for
the MCS algorithm in [3]. Notice that the 2-exchange
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Maximum Cut Problem, MAX-CUT, Table 2
Comparative results from the Balasundaram–Butenko in-
stances from [3]

Name jVj Opt C-GRASP MCS circut LS
G5-1 5 126 126 125 125 126

G5-2 5 40 40 39 40 40
G8-1 8 1987 1802 1802 1987 1987
G8-2 8 1688 1631 1671 1688 1688

G10-1 10 1585 1585 1513 1585 1585
G10-2 10 1377 1373 1373 1377 1377
G15-1 15 399 389 389 399 399
G15-2 15 594 594 593 594 594
G20-1 20 273 267 273 273 273
G20-2 20 285 285 282 285 285

local search computed optimal solutions for each of
these instances, followed closely by circut which
found optimal cuts for all but one problem. As for the
continuous heuristics, the C-GRASP found optimal so-
lutions for 5 of the 10 instances while the MCS proce-
dure produced optimal cuts for only 1 instance. For the
5 instances where C-GRASP produced suboptimal so-
lutions, the average deviation from the optimum was
3.54%.

Table 3 shows results of the C-GRASP, local search,
and circut heuristics when applied to 12 instances
from the TSPLIB collection of test problems for the
TRAVELING SALESMAN problem [34]. The first two
columns provide the instance name and the size of the

Maximum Cut Problem, MAX-CUT, Table 3
Comparative results from TRAVELING SALESMAN PROBLEM instances [34]

Name jVj C-GRASP Time (s) LS Time (s) circut Time (s)
burma14 14 283 0:120 283 0.00 283 :046
gr17 17 24986 0:19 24986 0.00 24986 :047
bays29 29 53990 0:701 53990 0.01 53990 1:109

dantzig42 42 42638 1:832 42638 0.01 42638 1:75
gr48 48 320277 4:216 320277 0.00 320277 3:672
hk48 48 771712 2:804 771712 0.00 771712 2:516
gr96 96 105328 52:425 105328 0.01 105328 14:250
kroA100 100 5897368 66:445 5897368 0.01 5897368 2:359
kroB100 100 5763020 94:175 5763020 0.01 5763020 2:531
kroC100 100 5890745 66:545 5890745 0.01 5890745 2:500
kroD100 100 5463250 94:155 5463250 0.03 5463250 2:547
kroE100 100 5986587 69:64 5986587 0.03 5986587 2:500

vertex set |V |. Next the solutions are provided along
with the associated computing time required by the re-
spective heuristic. Notice that for all 12 instances, the
three heuristics all found the same solutions. Notice
that in terms of computation time, the simplest heuris-
tic, the 2-exchange local search seems to be the best
performing of the three methods tested. The rank-2 re-
laxation algorithm circut is also very fast requiring
only 2.99 s on average to compute the solution. On the
other hand, the C-GRASP method did not scale as well
as the others. We see that there is a drastic increase in
the solution time as the number of vertices increases
beyond 48.

This is not particularly surprising. The philosophi-
cal reasoning behind the slow computation time of the
C-GRASP relative to the discrete heuristics being that
the C-GRASP is a black-box method and does not take
into account any information about the problem other
than the objective function. To the contrary, the local
search and circut specifically exploit the combina-
torial structure of the underlying problem. This allows
them to quickly calculate high quality solutions.

Conclusions

In this paper, we implemented a new metaheuristic for
the MAXIMUM CUT problem. In particular, we pro-
posed the use of a continuous greedy randomized adap-
tive search procedure (C-GRASP) [23], for a contin-
uous formulation of the problem. To our knowledge,
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this is the first application of C-GRASP to continuous
formulations of discrete optimization problems. Nu-
merical results indicate that the procedure is able to
compute optimal solutions for problems of relatively
small size. However, the method becomes inefficient on
problems approaching 100 nodes. The main reason for
this is the fact that C-GRASP is a black-box method,
in that it does not take advantage of any information
about the problem structure. Recall that the only input
to the method is some mechanism to compute the ob-
jective function. A natural extension of the work pre-
sented here is to enhance the C-GRASP framework to
take advantage of the structure of the problem at hand.
Using a priori information about the problem being
considered, one could modify the algorithm to include
these properties which would presumably reduce the
required computation time.
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Generators
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Abstract

In decision making under uncertainty an important
step is uncertainty quantification. Game theory has
been traditionally used since it injects robustness into
the decision process. Another popular framework is
that of maximum entropy. The purpose of this article
is to briefly explain the two solution concepts and point
out situations in which they are identical.

Background

Consider the following optimization problem:

inf
x2X

F(x) ,
Z
˝

f (x; !) dP(!) ; (1)

where x is the decision vector, ! is a vector represent-
ing the random parameters that are distributed accord-
ing to the probability measure P. We are not concerned
here with the exact properties of f (�; �) for the problem
to be valid, the interested reader is referred to [2] where
the properties of this type of problem are made more
precise. Instead we give two well known and studied ex-
amples of this formulation. The first is the so called two-
stage recourse problem and the second is the chance
constrained formulation. The former can be formulated
as in Eq. (1) with the following definition for the objec-
tive function:

f (x1; !) , fd(x1)C fu(x1; !) ; (2)

and where

fu(x1; !)

, inf
x2(!)
f f2(x1; x2(!); !) j x2(!) 2 X2(!; x1)g :

(3)

In Eq. (2) the objective function is split into two parts,
the deterministic ( fd) and the uncertain part ( fu) of
the problem . The decision to be taken is x1. The full
consequences of following a particular strategy are not
known exactly since the true cost will depend on the



2000 M Maximum Entropy and Game Theory

solution of Eq. (3). The objective is therefore to find the
decision x1 that is best on average.

A different decision model is given by chance con-
strained programming problems. These can be formu-
lated as follows:

inf
x
f f (x) j Pr(g(x; !) � 0) � ˛g ;

where we optimize an objective function and impose
constraints that need to be satisfied with a probability
of above a certain threshold ˛.

These two models have been widely studied and
have found many applications where traditional opti-
mization is used. It is also evident that their usefulness
revolves around our ability to provide a reasonable de-
scription of the uncertainties.

In order to provide a description of the uncertain-
ties a technique based on moment matching can be
used. Under this framework we assume that the deci-
sion maker can not provide an exact description of the
distribution but only knows some of its moments. The
problem is to recover a meaningful probability measure
given this knowledge: suppose a vector of functions
m(!) D [m1(!) : : :mn(!)] and a vector of scalars
� D [�1 : : : �n] are given, the problem is to find a P
such that:

Z
˝

mi(!) dP(!) D �i ; i D 1; : : : ; n
Z
˝

dP(!) D 1 ;

P(!) � 0 ; a:e ;

(4)

where˝ is a compact subset ofRm . ByP wewill denote
the set of of all finite signed measures that are defined
on the �-field F of ˝ . The vector m(!) represents the
(generalized) moments of the distribution. The prob-
lem in Eq. (4) is the so called generalized Hausdorffmo-
ment problem. The aim is to recover a compactly sup-
ported distribution from a finite number of its general,
not necessarily power, moments. This is a variation of
the classical moment problem formulated by Stieltjes.
In [4] one can find a comprehensive summary of the
main results when ˝ D [0; 1]. Prekopa [13] provides
an excellent summary of results that are especially rele-
vant in stochastic optimization problems.

Methods

Solving optimization problems where the uncertainty
is only known through its moments requires some kind
of regularization in order to fix the probability measure
with which the optimization is to be done. Two popular
frameworks are game theoretic and maximum entropy
approaches. Under the game theory framework one se-
lects the distribution with the worst case realization of
the uncertainties. When a maximum entropy solution
is sought, one optimizes with respect to the distribution
with the maximum uncertainty.

Game Theory Approach

When P is unknown or not known exactly then the de-
cision maker assumes that if strategy x is followed then
the consequences of following this strategy will be de-
cided by some law of Nature. Motivated by the appli-
cation oriented requirement for robust decision mak-
ing, we assume that Nature is antagonistic. If we decide
to follow strategy x then Nature will follow strategy P*.
The latter is the solution of the following optimization
problem:

˚(x) D sup
P2P

Z

˝

f (x; !) dP(!) ; (5)

where˚(x) represents the value (outcome) of the game
if strategy x is followed. Obviously ˚(x) � F(x) for
given x 2 X and for all P 2 P. Therefore, after wemini-
mize Eq. (5) for xwe will be guaranteed to attain a value
which is as good as ˚(x) whatever strategy nature de-
cides to follow. The robustness property of the minimax
strategy originates from the latter property. We thus re-
formulate Eq. (1) as follows:

inf
x2X

sup
P2P

Z

˝

f (x; !) dP(!) : (6)

This approach has its origins in game theory and has
been used extensively in many areas of optimization.
See for example [9] for an excellent introduction to
game theory, applications of minimax especially in eco-
nomics and finance can be found in [14]. Numerical al-
gorithms to solve Eq. (6) have been proposed in [5,6].
The general idea of these algorithms is to solve the inner
maximization problem using results for general Cheby-
shev inequalities [4,17]. However these methods re-
quire several global optimization steps to be performed
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at each iteration in order to identify the support of the
measure that maximizes Eq. (5). Moreover it is usually
assumed that the max-function is convex. Algorithms
based on stochastic quasi-gradient methods were pro-
posed in [4,17]. Recently Shapiro et al. [15] proposed
the use of a reference distribution in order to refor-
mulate the minimax problem into a standard stochastic
programming problem. Bertsimas et al. [1] and Lassere
[11] proposed a semidefinite formulation of the inner
maximization problem in Eq. (6).

Maximum Entropy Formulation

The formulation of the moment problem using the
maximum entropy principle was initiated by Jaynes [8].
The derivations in this Section are more or less stan-
dard (see e. g. [12]).We will assume that a multivariate
continuous density is postulated, discrete distributions
share similar properties. Under these assumptions the
maxent formulation is given by:

inf
p2Pc

Q(p; h) D
Z
˝

p(!) ln
p(!)
h(!)

d!

s:t
Z
˝

mi(!)p(!) d! D �i i D 0 : : : n ;
(7)

where Pc denotes the restriction on P to all absolutely
continuous measures w.r.t d!, we will write � � � to
mean that � is absolutely continuous w.r.t �. The func-
tion in the objective function is the so called Kullback
Leibler divergence (see e. g. [3]) and serves as a kind
of distance metric between h(!) and p(!); the former
is a distribution that is assumed to be known. The ob-
jective is to find a p.d.f with the prescribed moments
that is as close to h as possible. If such a function is not
known then we take h(!) � 1 (i. e. the uniform dis-
tribution) and the problem becomes the classical max-
imum entropy formulation. The convex functional de-
fined by Q(p; h) is always strictly positive and is zero
if and only if p D h a.e. It is also worth mentioning
that in general Q(p; h) ¤ Q(h; p). These properties of
Q(p; h) are well known. We refer the interested reader
to [3] for more properties of the entropy function. We
assume that m0(!) D �0 D 1. Note that by consid-
ering general moments as opposed to power moments
allows us to impose fractile constraints, this property is
important in many applications.

While the problem in Eq. (7) is a convex optimiza-
tion problem it cannot be handled using standard nu-

merical algorithms. For this reason one considers the
dual of Eq. (7). The Lagrangian associated with Eq. (7)
is given by:

L(p; �) D
Z
˝

p(!) ln
p(!)
h(!)

d!

C

nX
iD0

�i

�Z
˝

mi (!)p(!) d! � �i

�
:

The dual problem of Eq. (7) is given by:

sup
	

D(�) D inf
p2Pc

L(p; �) : (8)

It is well known that the inner minimization on
Eq. (8) can be done explicitly using functional deriva-
tives [12,16]:

L(pC ıp; �)

D

Z
˝

(p(!)C ıp(!)) ln
�
p(!)
h(!)

�
1C

ıp(!)
p(!)

�	
d!

C

nX
iD0

�i

�Z
˝

mi(!)(p(!)C ıp(!)) d! � �i

�

D L(p; �)C
Z
˝

�
1C ln

�
p(!)
h(!)

�	
ıp(!) d!

C

nX
iD0

Z
˝

�imi(!)ıp(!) d! ;

where to get the last equality we assumed that ıp is
small, used the approximation ln(1 C �) 	 � (which
is valid for small �) and ignored second order terms.
The stationary points of the Lagrangian must therefore
satisfy:

p(!) D h(!) exp

 
�1 �

nX
iD0

�imi(!)

!
: (9)

Using the normalization condition we have:

Z D exp(1C�0) D
Z
˝

h(!) exp

 
�

nX
iD1

�imi(!)

!
d!:

Using the equation above we can write Eq. (9) as fol-
lows:

p(!) D
h(!)
Z exp

 
�

nX
iD1

�imi(!)

!
: (10)
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Finally, using Eq. (10) and the normalization constraint
in Eq. (8) we find the following explicit form for the
dual problem:

sup
	

D(�) D � lnZ �
nX

iD1

�i�i : (11)

The dual formulation given above is more useful than
the primal problem since the dual problem is amenable
to conventional optimization algorithms.

Relationships Between Game Theory
andMaximum Entropy

The minimax approach has proven to be a prudent
method for problems where the nature of the uncer-
tainty is not known exactly. We will approach the prob-
lem somewhat differently by dispensing the usual as-
sumptions of convexity but allowing the decisionmaker
to adopt mixed strategies. Such an approach (in the
context of Stochastic Programming) has been described
in Kolbin [10] but has not received much attention. The
advantage of allowing mixed strategies is that the prob-
lem exhibits a saddle point. Topsøe [18] showed that
if the decision problem has a specific structure (will be
outlined below) then the solution of the maximum en-
tropy problem and that of zero-sum games are dual to
each other. Recently Grünwald et al. [7] has further de-
veloped this approach so that it can be applied to more
general games. This generalization however has been
done at the expense of defining more general entropy
functionals; these do not, in general, render themselves
to numerical algorithms. We believe this relationship to
be very interesting and can under certain conditions be
used as an additional motivation for adopting the max-
imum entropy principle.

Let ˝ be a compact subset of Rn and let F be the
�-field generated by ˝ . We will use ! to denote a ran-
dom vector whose distribution is known to belong to
a family P. The following meaningless formulation of
a stochastic programming problem:

inf
x2X

f (x; !)

s:t gi (x; !) � 0 ; i D 1; : : : ; k

can be placed into a pertinent form by formulating it as
a two-person zero sum game G D (x; !; q). The first
player is the Decision Maker (DM) that selects vectors

x 2 X � Rm . The second player is Nature that selects
an event ! 2 F with probability P(!), it is further as-
sumed that the exact probability measure of Nature is
only known to belong to a certain family P. The func-
tion q represents the outcome of the game given the
strategies the two players decide to follow. Kolbin [10]
suggested the following form:

q(x; !) D f (x; !)C
kX

iD1

ˇi (gi(x; !)) ; (12)

where ˇi(a) is a continuous non-decreasing penalty
function that is 0 when a � 0. An example of
such a function is the max-penalty function given by:
ci maxfgi (x; !); 0g (ci is a penalty parameter).

The DM would like to minimize the outcome of the
game given by Eq. (12) whereas Nature being antago-
nistic would like to maximize this quantity:

inf
x2X

sup
P2P

H(x; P) D
Z
˝

q(x; !) dP(!) : (13)

For the game above to exhibit a saddle point convexity
assumptions need to be imposed on q. Many problems
of interest do not have this property and it is necessary
to resort to mixed strategies for the DM. Using our as-
sumptions that q is continuous, and the compactness of
˝ and X, it can be shown [10] that if we allow the DM
to follow mixed strategies then the game in Eq. (13) will
have a saddle point, i.e:

inf
K2K

sup
P2P

Z
˝�X

q(x; !) dP(!) dK(x)

D sup
P2P

inf
K2K

Z
˝�X

q(x; !) dP(!) dK(x)

D H(K�; P�) ;

(14)

where the set K represents the family of randomized
strategies of the DM.

Assume that the DM selects a probability measure
K 2 K and Nature selects P 2 P and both have their
support in ˝ (or X). Moreover assume that the objec-
tive function of the game has the following functional
form:

H(K; P) D
Z
˝

�p(!) ln k(!) d! ; (15)

where p(!) and k(!) are the Radon–Nikodym deriva-
tives w.r.t d! of P 2 P and K 2 K respectively.
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Topsøe [18] observed that under these conditions the
maximum entropy solution and the minimax solution
coincide. To see why this is the case, suppose that na-
ture selects a probability measure from the following
family:

Pc D

�
dP
d!
j P 2 P;

Z
˝

mi(!) dP(!) D �i ;

i D 1; : : : ; n P � d!
	
;

where P � d! is used to denote that P is absolutely
continuous w.r.t to d!. Kc , the family of admissible
strategies for the DM is defined in an analogous man-
ner. If Nature adopts a maximum entropy distribution,
then its strategy can be found by solving:

sup
p2Pc

M(p) D
Z
˝

�p(!) ln p(!) d! :

The optimal solution will be given by:

p�(!) D expf�1 � ��0 �
nX

iD1

��i mi(!)g :

The optimal strategy of the DM can then be obtained
by solving:

inf
k2Kc

Z
˝

�p�(!) ln k(!) d! :

Using the information inequality [3] we have:
Z
˝

�p�(!) ln k(!) d! �
Z
˝

�p�(!) ln p�(!) d! ;

(16)

the above inequality is satisfied as an inequality if and
only if k(!) D p�(!) a.e. Consequently the optimal
strategy for the DM is the same as Nature’s strategy.

Conversely, assuming that the game has the func-
tional form given in Eq. (15), then the minimax solu-
tion of the game in Eq. (14) is the same as the maximum
entropy solution. Indeed, by using the information in-
equality we have:

sup
p2Pc

Z
˝

�p(!) ln k(!) d!

�

Z
˝

�p�(!) ln k(!) d!

�

Z
˝

�p�(!) ln p�(!) d! D M(p�) ;

where p* is the distribution of maximum entropy. From
the above relationship it follows that:

M(p�) � inf
k2Kc

sup
p2Pc

Z
˝

�p(!) ln k(!) d! ; (17)

if we choose k D p� as the minimizer of the left hand
side of Eq. (14), then:

sup
p2Pc

Z
˝

�p(!) ln p�(!) d! D ���0 �
nX

iD1

��i �i

D M(p�) ;

it follows from above that:

inf
k2K

sup
p2Pc

Z
˝

�p(!) ln k(!) d! � M(p�) ; (18)

and therefore k D p� is indeed theminimizer of the left
hand side of Eq. (14). From the well known property of
minimax problems:

M(p�) D inf
k2K

sup
p2Pc

Z
˝

�p(!) ln k(!) d!

� sup
p2Pc

inf
k2K

Z
˝

�p(!) ln k(!) d! ;

and from:

sup
p2Pc

inf
k2K

Z
˝

�p(!) ln k(!) d!

� inf
k2K

Z
˝

�p�(!) ln k(!) d! D M(p�) ;

we conclude that the game has a saddle point at p D
k D p�.

For games in the form of Eq. (15), the relationship
between game theory and maximum entropy is most
useful both theoretically and practically. For games not
in the form described above can still be approached via
maximum entropy methods but the definition of the
entropy functional is given by amore general functional
form. Grünwald et al. [7] defined the generalized en-
tropy function as:

M(P) D inf
k2K

Z
˝�X

q(x; !) dP(!) dK(x) :

The maximum entropy problem becomes:

max
p2Pc

M(P) : (19)
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They showed that using the generalized definition of
entropy one could find the same results for both game
theory and maximum entropy problems. Even though
the formulation in Eq. (19) is very general, unfortu-
nately there is no general way to solve it. However, the
relationship between the two principles is worth further
investigation.
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Images can be used to characterize the underlying dis-
tribution of certain physical properties, such as density,
shape, and brightness, of an object under investigation.
In many applications where an image is required, only
a finite number of observations and/or indirect mea-
surements can be made. Image reconstruction is a pro-
cedure for processing the measurement data to con-
struct an image of the object. This section introduces
the basic concept of image reconstruction from projec-
tion data. Two types of entropy optimization mod-
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els, namely, the finite-dimensional model and vector-
space model, and three classes of entropy optimiza-
tion methodologies, namely, the discretization meth-
ods, Banach-space methods (e. g., MENT) and Hilbert-
space methods (e. g., finite element method) are in-
cluded. For more details about image reconstruction,
the reader is referred to [2,7,13] and the references
therein.

A very important scientific application of image re-
construction is in computerized tomography (CT) for
medical diagnosis. Physicians need to know, for exam-
ple, the location, shape, and size of a suspected tumor
inside a patient’s brain in order to plan a suitable course
of treatment. With computerized tomography, images
of cross-sections of a human body can be constructed
from data obtained by measuring the attenuation of X-
rays along a large number of straight lines (or strips)
through each cross-section. For ease of introduction,
we illustrate the basic ideas about image reconstruction
with the example of two-dimensional X-ray CT, with
the understanding that the discussion can be general-
ized to higher-dimensional settings.

In this example, the distribution to be determined is
that of the X-ray linear attenuation coefficient of hu-
man body tissues. The total attenuation of the X-ray
beam between a source and a detector is approximately
the integral of the linear attenuation coefficient along
the line between the source and the detector. The un-
known distribution of the X-ray linear attenuation co-
efficient is represented by a density function f of two
variables, which assumes zero-value outside a squared-
shape region. The squared region is usually referred to
as the support of the image.

Two basic types of entropy optimization mod-
els, namely, finite-dimensional model and vector-space
model, are commonly used to decide the density func-
tion f . The finite-dimensional models approximate the
density values over the support of the image at a fi-
nite number of grid points, while the density is ap-
proximated by a real-value function for the entire scan-
ning region in the vector-space models. The latter mod-
els were motivated to reconstruct the image with only
a small number of available projections.

In the finite-dimensional models, the support of the
density f is represented by n (given by the users) reg-
ularly spaced grid points, and the values of the density
function f at these points are denoted by f � (f 1, . . . ,

f n). Assume that m projections are made and the mea-
surement data d� (d1, . . . , dm) are obtained.

The relationship between the unknown density val-
ues f and the observed measurement d can be approxi-
mated by a linear relation

d 	 Af; (1)

where A = [aij] is a projection matrix.
Note that the approximation sign in (1) reflects pos-

sible errors in modeling and measurement. Also note
that, in the classical square pixel model, the image is
discretized by partitioning its support into a finite num-
ber of equi-sized square regions (called pixels or cells)
whose centers are those n sample points. By assuming
that the density function f is constant in each of the
equi-sized pixels, i. e., f = f j throughout pixel j, the value
of aij in the projection matrix is simply the length of the
intersection of the line corresponding to the ith projec-
tion with the pixel surrounding the jth sample point.

Once the projection matrix A is defined and the
measurement d is known, the problem is to find an f
satisfying (1). To cope with the errorsmentioned above,
G.T. Herman [6] suggested that (1) be replaced by an
‘interval constraint’ and a nonnegativity constraint be
added:

d � � � Af � dC �; (2)

f � O; (3)

where � = (�1, . . . , �m) is anm-vector of user-chosen tol-
erance levels. Note that (2) can be replaced by an equiv-
alent system of inequalities

A0f � d0; (4)

with twice as many one-sided inequalities [2,6].
For such an image reconstruction model, we can

adopt either the ‘feasibility approach’ to find a solution
to (2) and (3) directly, or the ‘optimization approach’
to find a solution that is not only feasible in the above
sense but also optimal with respect to a certain crite-
rion. In the literature, at least three different types of
optimization problems have been proposed, namely,
the entropy maximization problem, the quadratic min-
imization problem, and the maximum likelihood prob-
lem.
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The entropy optimization problem seeks to opti-
mize an entropic objective function subject to (2) and
(3) as follows.

Model 1:8̂
ˆ̂̂<
ˆ̂̂̂
:

max �

nX
jD1

f j ln f j

s.t. d � � � Af � dC �;
f � O:

(5)

Some researchers proposed models in which the f j’s are
normalized in such a way that

Pn
jD1 f j = 1, and the pro-

jection matrix and the measurement data differ from
those of Model 1. See, e. g., [4]. In this way, a solu-
tion that is consistent with the measurement data but
remains maximally noncommittal can be found. Note
that an optimal solution to such models can also be in-
terpreted as the most probable solution that is consis-
tent with the measurement data [3].

Other variations of Model 1 exist. Despite possible
modeling and measurement errors, one common prac-
tice is to replace (1) and inequalities (2), and (5) by
a system of equations: Af = d.

A different version of the finite-dimensional en-
tropy optimization model begins with the definition of
an error vector e = (e1, . . . , em)|, where

ei � di �
nX

jD1

ai j f j; i D 1; : : : ;m:

Assume that errors e1, . . . , em exist due to imprecise
measurement and are independent noise terms with
zero mean and known variance �2

i . S.F. Burch et al. [1]
observed that the strong law of large numbers implies
that

Q(f) �
1
m

mX
iD1

�Pn
jD1 ai j f j � di

�2

�2
i

! 1;

as m!1:

Thus, ifm is sufficiently large, the following entropy op-
timization problem with quadratic constraints can be
useful:

Model 2:8̂
ˆ̂̂<
ˆ̂̂̂
:

max �

nX
jD1

f j ln f j

s.t. 1
m (Af� d)>S2(Af� d) D 1;
f j � 0; j D 1; : : : ; n;

where S is a diagonal matrix with 1/� i being its ith di-
agonal element.

Concerns such as the smoothing effect, nonunifor-
mity, peakness, and exactness [14] of a constructed im-
age can also be addressed in this model with proper
modification of the objective functions and constraints.
So far, we have used the square pixel model to illustrate
the idea of entropy optimization for image reconstruc-
tion. Other models exist [2].

For an introduction to the concept of Shannon’s en-
tropy and related entropy optimization principles, i. e.,
principle of maximum entropy and principle of mini-
mum cross-entropy, see � Entropy optimization: Shan-
non measure of entropy and its properties. A large
amount of literature has been devoted to developing it-
erative methods for solving finite-dimensional entropy
optimization problems with linear and/or quadratic
constraints. For details and a unification of such meth-
ods, see [3].

The method currently employed in most CT sys-
tems is the ‘filtered back-projection’ method, which is
based on a finite-dimensional model. (See [5,10] for
details.) Compared to the iterative methods for solv-
ing entropy optimization problems, this method pro-
vides speed, which enables reconstruction of the im-
age while X-ray transmission data are being collected.
Hence the time between scanning and obtaining re-
constructed images is reduced. However, there are sit-
uations where iterative methods produce compara-
ble or better reconstructed images than the filtered
back-projection method, e. g., in image reconstruction
with few projections or in high-contrast image recon-
struction. The ever increasing computer speed and its
companion reduction in cost may increase the de-
sirability of employing iterative methods in CT sys-
tems.

In many situations, e. g., conducting diagnostic ex-
periments on plasma in magnetic confinement devices
or laser target impositions with measurements on fu-
sion reactor cores, only few projections are available,
e. g., less than 10. When the finite-dimensional en-
tropy optimization model is applied, it tends to pro-
duce ‘streaking’ artifacts. This motivated the use of the
vector-space model.

Take the two-dimensional X-ray CT problem as an
example. By assuming that the unknown density func-
tion f (x, y) is continuous over a compact support D
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such that

f (x; y) � 0 and
Z Z

D
f (x; y) dx dy D 1; (6)

G. Minerbo [9] defined the entropy of f (x, y) as

�( f ) D �
Z Z

D
f (x; y) ln[ f (x; y)A] dx dy;

where A is the area of D. Denote the set of continuous,
nonnegative functions with compact support in D by
C+ (D).

The scanning area is partitioned into parallel strips,
each of which is penetrated by an X-ray beam. Let � j, j =
1, . . . , J, be the J distinct projection angles with respect
to the X-axis of the scanning area. Also let M(j) be the
number of parallel beams associated with the jth pro-
jection or view, and Sj1 < � � � < SjM(j) be a set of abscissas
for the jth view. The projection data are assumed to be
in the form of the following ‘strip integrals’:

Pjm( f ) �
Z S j(mC1)

S jm

Z 1
�1

f (s cos � j � t sin � j; s sin � j C t cos � j) dt ds;

where m = 1, . . . , M(j) and j = 1, . . . , J. It is assumed
that, for j = 1, . . . , J,

Z 1
�1

f (s cos � j � t sin � j; s sin � j C t cos � j) dt D 0;

for s < Sj1 or s > SjM( j):

LetGjm denote the observed values of Pjm (f ), form = 1,
. . . ,M(j), and j = 1, . . . , J. Note that (6) implies Gjm � 0
and

PM( j)
mD1 Gjm = 1.

Then the vector-space model results in the follow-
ing optimization problem:

Model 3:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

sup
CC(D)

�( f )

s.t. Pjm( f ) D Gjm ;

m D 1; : : : ;M( j);
j D 1; : : : ; J:

(7)

A finite-dimensional unconstrained dual problem
can be derived by using the technique of Lagrange mul-
tipliers. An algorithm known as MENT [9] was pro-
posed. It was shown that the solutions produced by

MENT converge to a density function f � which satisfies
the constraint (7) with �(f �) = supCC(D) � (f ). How-
ever, the limiting density function f � is not continu-
ous. Actually, as pointed out in [8], f � is piecewise con-
stant and f � 62 C+(D). When few projections are avail-
able and the object being scanned has a simple structure
(or close to circular symmetry in density), some prelim-
inary computational results indicated the potential of
this approach.

Recognizing the fact that the supremum of Model
3 is not attained by any function f 2 C+ (D), M. Klaus
and R.T. Smith [8] defined an alternative formulation
in a richer class of functions than C+(D). More pre-
cisely, they replacedC+ (D) by L2C (D), the set of all non-
negative square integrable functions on D, as the set-
ting. Note that all piecewise-constant functions over D
are contained in L2C(D). Also recognizing that measure-
ments may not be consistent and even be flawed, they
considered an optimization problem where the objec-
tive function is the original entropy functional � (f ) mi-
nus a penalty term corresponding to the residual error
in meeting the measurement constraints, and the con-
straint is that the maximizer lies in a weakly compact
set that is determined by known physical information
about the density function of the object to be scanned.
A corresponding formulation becomes

Model 4:

sup
f2˝

G( f ) � �( f )� �
X
j;m

[Gjm � Pjm( f )]2;

where � > 0 is an adjustable penalty parameter and˝ is
a convex and weakly (sequentially) compact set of non-
negative functions in L2C (D), with a compact support in
D and containing physical information known a priori
about the object to be scanned, e. g., upper and lower
bounds on the density function. (A set ˝ of nonnega-
tive functions in L2C (D) is weakly (sequentially) com-
pact if and only if every sequence in ˝ has a weakly
convergent subsequence whose weak limit lies in ˝ ;
a sequence {f n(x, y)} converges weakly to f (x, y) if and
only if the sequence {hf n(x, y), g(x, y)i} converges to
hf (x, y), g(x, y)} for every g(x, y) 2 L2C (D), where hh1,
h2i �

R R
h1 (x, y) h2 (x, y) dxdy denotes the inner

product of h1 and h2 in the space of L2C (D).)
With the aid of the theory of Hilbert space, it can be

shown [8] that G has a unique maximizer in˝ , for any
given data Gjm,m = 1, . . . ,M(j), j = 1, . . . , J.
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Based on this alternative formulation, the density
function f (x, y) can be approximated by using the fi-
nite element method [11]. For simplicity, assume that D
= [�1, 1] × [� 1, 1]. First, we superimpose a fixed rect-
angular mesh on D, with uniform mesh size h = 1/n in
both the x and y directions. We also use the product of
piecewise linear functions in x and y as the finite ele-
ment space Sh. In this way, a basis for Sh has the form

 k(x; y) D  i (x) l (y); for k D 1; : : : ; (2nC 1)2;

where

l D
�
(k � 1) � (k � 1) (mod 2nC 1)

2nC 1

	
� n;

i D k � (l C n)(2n C 1) � n � 1;

and

 j(t) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0 if t � ( j � 1)h
or t � ( jC 1)h;

t�( j�1)h
h ; if ( j � 1)h � t � jh;

( jC1)h�t
h ; if jh � t � ( jC 1)h:

It is reasonable to expect that, in practice, one
should know a priori the minimum andmaximum den-
sities of the object being examined. Hence we focus on
a simple constraint set

˝ D

�
f 2 L2C(D) :

0 < a � f � b <1 a.e.;
f D 0 a.e., in R2 n D

	
:

The density function f (x, y) is then approximated in
Sh by

f (x; y) D
NX

kD1

ck k(x; y);

where N = (2n + 1)2 and ck’s are chosen as the optimal
solution of the following finite-dimensional optimiza-
tion problem:

8̂
ˆ̂̂<
ˆ̂̂̂
:

sup
c2RN

G

 NX
kD1

ck k (x; y)

!

s.t. 0 < a �
NX

kD1

ck k (x; y) � b:

This problem can be further reduced to
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

supc2RN �

 NX
kD1

ck k(x; y)

!

��
X
j;m

"
Gjm �

NX
kD1

ckPjm( k(x; y))

#2

s.t. 0 < a � ck � b; k D 1; : : : ;N:

Preliminary computational results reported in [11,
12] indicate some improvements of this alternative ap-
proach over the MENT algorithm when the object un-
der investigation does not have circular symmetry in
density and has a high density area near the edge of the
scanning region.

See also

� Entropy Optimization: Interior Point Methods
� Entropy Optimization: Parameter Estimation
� Entropy Optimization: Shannon Measure of

Entropy and its Properties
� Jaynes’ Maximum Entropy Principle
� Optimization in Medical Imaging
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The maximum flow problem seeks the maximum pos-
sible flow in a capacitated network from a specified
source node s to a specified sink node t without exceed-
ing the capacity of any arc. A closely related problem is
the minimum cut problem, which is to find a set of arcs
with the smallest total capacity whose removal separates
node s and node t. The maximum flow and minimum
cut problems arise in a variety of application settings
as diverse as manufacturing, communication systems,
distribution planning, matrix rounding, and schedul-
ing. These problems also arise as subproblems in the
solution of more difficult network optimization prob-
lems. In this article, we study the maximum flow and
minimum cut problems, briefly introducing the under-
lying theory and algorithms, and presenting some ap-
plications. See [2] for a wealth of additional material
that amplifies on this discussion.

Let G = (N,A) be a directed network defined by a set
N of n nodes and a set A of m directed arcs. We refer
to nodes i and j as endpoints of arc (i, j). A directed path
i1� i2 � � � � � ik is a set of arcs (i1, i2), . . . , (ik�1, ik). Each
arc (i, j) has an associated capacity uij denoting the max-
imum amount of flow on this arc. We assume that each
arc capacity uij is an integer, and let U =max {uij:(i, j) 2
A}. The network has two distinguished nodes, a source
node s and a sink node t. To help in representing a net-
work, we use the arc adjacency list A(i) of node i, which
is the set of arcs emanating from it, that is, A(i) = {(i, j)
2 A:j 2 N}.

The maximum flow problem is to find the maxi-
mum flow from the source node s to the sink node t
that satisfies the arc capacities and mass balance con-
straints at all nodes. We can state the problem formally
as follows.

max v (1)

subject to

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji

D

8̂
<̂
ˆ̂:

v for i D s;
0 for i … fs; tg;
�v for i D t;

(2)

0 � xi j � ui j for all (i; j) 2 A: (3)
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We refer to a vector x = {xij} satisfying (2) and (3) as
a flow and the corresponding value of the scalar variable
v as the value of the flow.We refer to the constraints (2)
as the mass balance constraints, and refer to the con-
straints (3) as the flow bound constraints.

In examining the maximum flow problem, we im-
pose two assumptions:
i) all arc capacities are integer; and
ii) whenever the network contains arc (i, j), then it also

contains arc (j, i).
The second assumption is nonrestrictive since we allow
arcs with zero capacity.

Sometimes the flow vector x might be required to
satisfy lower bound constraints imposed upon the arc
flows; that is, if lij � 0 specifies the lower bound on the
flow on arc (i, j) 2 A, we impose the condition xij � lij.
We refer to this problem as themaximum flow problem
with nonnegative lower bounds. It is possible to trans-
form amaximum flow problemwith nonnegative lower
bounds into a maximum flow problem with zero lower
bounds.

The minimum cut problem is a close relative of
the maximum flow problem. A cut [S; S] partitions the
node set N into two subsets S and S = N � S It consists
of all arcs with one endpoint in S and the other in S. We
refer to the arcs directed from S to S, denoted by (S; S),
as forward arcs in the cut and the arcs directed from S
to S, denoted by (S; S), as backward arcs in the cut. The
cut [S; S] is called an s � t-cut if s 2 S and t 2 S. We
define the capacity of the cut [S; S], denoted as u[S; S],
as
P

(i; j)2(S;S) ui j. A minimum cut in G is an s � t-cut
of minimum capacity. We will show that any algorithm
that determines a maximum flow in the network also
determines a minimum cut in the network.

The remainder of this article is organized as fol-
lows. To help in understanding the importance of the
maximum flow problem, we begin by describing sev-
eral applications. In the next section we present some
preliminary results concerning flows and cuts. We next
discuss two important classes of algorithms for solv-
ing the maximum flow problem: augmenting path algo-
rithms, and preflow-push algorithms. As described in
the next section, augmenting path algorithms augment
flow along directed paths from the source node to the
sink node. The proof of the validity of the augmenting
path algorithm yields the well-known max-flow min-
cut theorem, which implies that the value of a maxi-

mum flow in a network equals the capacity of a mini-
mum cut in the network. In the next section, we study
preflow-push algorithms that ‘flood’ the network so
that some nodes have excesses and then incrementally
‘relieve’ the flow from nodes with excesses by sending
flow from excess nodes forward toward the sink node or
backward toward the source node. In the final section,
we study implications of the max-flowmin-cut theorem
and prove some max-min results in combinatorics.

We would like to design maximum flow algorithms
that are guaranteed to be efficient in the sense that their
worst-case running times, that is, the total number of
multiplications, divisions, additions, subtractions, and
comparisons in the worst-case grow slowly in some
measure of the problem’s size. We say that a maximum
flow algorithm is an O(n3) algorithm, or has a worst-
case complexity of O(n3), if it is possible to solve any
maximum flow problem using a number of computa-
tions that is asymptotically bounded by some constant
times the term n3. We say that an algorithm is a poly-
nomial time algorithm if it’s worst-case running time
is bounded by a polynomial function of the input size
parameters. For a maximum flow problem, the input
size parameters are n,m, and log U (the number of bits
needed to specify the largest arc capacity). We refer to
a maximum flow algorithm as a pseudopolynomial time
algorithm if its worst-case running time is bounded by
a polynomial function of n, m, and U. For example, an
algorithm with worst-case complexity of O(nm log U)
is a polynomial time algorithm, but an algorithm with
worst-case complexity of O(nmU) is a pseudopolyno-
mial time algorithm.

Applications

The maximum flow problem arises in a variety of sit-
uations and in several forms. Sometimes, it arises di-
rectly in combinatorial applications that on the surface
might not appear to be maximum flow problems at all;
at other times, it occurs as a subproblem in the solu-
tion of more difficult network optimization problems.
In this section, we describe three applications of the
maximum flow problem.

Capacity of Physical Networks

An oil company needs to ship oil from a refinery to
a storage facility using the pipelines of its underlying
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distribution network. In this problem context, the re-
finery corresponds to a particular node s in the dis-
tribution network and the storage facility corresponds
to another node t. The capacity of each arc is the
maximum amount of oil per unit time that can flow
along it. The value of a maximum s� t flow deter-
mines the maximum flow rate from the source node s
to the sink node t. Similar applications arise in other
settings, for example, determining the transmission ca-
pacity between two nodes of a telecommunications net-
work.

Feasible Flow Problem

The feasible flow problem consists of finding a feasible
flow satisfying the following constraints:

X

f j : (i; j)2Ag

xi j�
X

f j : ( j;i)2Ag

x ji D b(i)for all i 2 N; (4)

0 � xi j � ui j for all (i; j) 2 A: (5)

We assume that
P

i 2 N b(i) = 0. The following dis-
tribution scenario illustrates how the feasible flow prob-
lem arises in practice. Suppose that merchandise avail-
able at several seaports is desired by other ports. We
know the stock of merchandise available at the ‘supply’
ports, the amount required at the other ports, and the
maximum quantity of merchandise that can be shipped
on a particular sea route. We wish to know whether we
can satisfy all of the demands by using the available sup-
plies.

We can solve the feasible flow problem by solving
a maximum flow problem defined on an augmented
network as follows. We introduce two new nodes,
a source node s and a sink node t. For each node i with
supply (that is, with b(i) > 0), we add an arc (s, i) with
capacity b(i), and for each node i with demand (that is,
with b(i) < 0), we add an arc (i, t) with capacity � b(i).
We refer to the new network as the transformed net-
work. We then solve a maximum flow problem from
node s to node t in the transformed network. It is easy
to show that the model (4)–(5) has a feasible solution
if and only if the maximum flow saturates all the arcs
emanating from the source node, that is, xsj = usj for all
arcs (s, j) 2 A(s). Moreover, if each b(i) and uij is inte-
ger, then model (4)–(5) always has an integer feasible

solution whenever it has a feasible solution (see Theo-
rem 3).

Sometimes in a feasible flow problem arcs have non-
negative lower bounds, that is, the flow bound con-
straints are lij � xij � uij instead of 0 � xij � uij, for
some constants lij � 0 for each (i, j) 2 A. By substituting
yij = xij � lij for xij, we can transform this problem to
the formulation (4)–(5). Then (5) reduces to 0 � yij �
(uij � lij) and (4) reduces to the same set of equations,
but with a different right-hand side vector b0.

Matrix Rounding Problem

This application is concerned with consistent rounding
of the elements, the row sums, and the column sums of
a matrix. We are given a p × q matrix of real numbers
D = {dij}, with row sums ˛i and column sums ˇj. We
can round any real number d to the next smaller integer
bdc or to the next larger integer dde, and the decision
to round up or round down is entirely up to us. The
matrix-rounding problem requires that we round the
matrix elements, and the row and column sums of the
matrix so that the sum of the rounded elements in each
row equals the rounded row sum, and the sum of the
rounded elements in each column equals the rounded
column sum. We refer to such a rounding as a consis-
tent rounding. The matrix-rounding problem arises is
several application contexts, for example, the rounding
of census data to disguise data on individuals.

Using a numerical example, we will show how to
transform a matrix rounding problem into a maximum
flow problem. Figure 1a) shows an instance of the ma-
trix rounding problem and Fig. 1b) gives the maximum
flow network G for this problem. The network G con-
tains a node i corresponding to each row i of the ma-
trix D, a node j corresponding to each column j of D,
a source node s, and a sink node t. The network con-
tains an arc (i, j) corresponding to the ijth element in
the matrix, an arc (s, i) for each row i (this arc repre-
sents the sum of row i), an arc (j, t) for each column j
(this arc represents the sum of column j). For any arc (i,
j), we define its upper bound uij = ddije and lower bound
lij = bdijc. Notice that the flow xij = dij is a real-valued
feasible flow x in the network. Since there is a one-to-
one correspondence between the consistent roundings
of the matrix and feasible integer flows in the corre-
sponding network, we can find a consistent rounding
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Maximum Flow Problem, Figure 1
Network for the matrix rounding problem

by solving a feasible flow problem on the correspond-
ing network. The feasible flow algorithm will produce
an integer feasible flow (because of Theorem 3), which
corresponds to a consistent rounding.

Preliminaries

In this section, we discuss some elementary properties
of flows and cuts. We will use these properties to prove
the celebrated max-flow min-cut theorem and to estab-
lish the correctness of the augmenting path algorithm
described in the next section.

Residual Network

The concept of residual network plays a central role in
the development of maximum flow algorithms. Given
a flow x, the residual capacity rij of any arc (i, j) 2 A
is the maximum additional flow that can be sent from
node i to node j using the arcs (i, j) and (j, i). (Recall
the assumption from the first Section that whenever the
network contains arc (i, j), it also contains the arc (j, i).)
The residual capacity rij has two components:
i) uij � xij, the unused capacity of arc (i, j);
ii) the current flow xji on arc (j, i), which we can cancel

to increase the flow from node i to node j.
Consequently, rij = uij � xij + xji. We refer to the net-
work G(x) consisting of the arcs with positive residual
capacities as the residual network (with respect to the
flow x). Figure 2 gives an example of a residual net-
work.

Flow across an s � t-Cut

Let x be a flow in the network. Adding the mass balance
constraint (2) for the nodes in S, we obtain the equation

v D
X
i2S

2
64

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji

3
75

D
X

(i; j)2(S;S)

xi j �
X

(i; j)2(S;S)

xi j: (6)

The second equality uses the fact that whenever
both the nodes p and q belong to the node set S and
(p, q) 2 A, the variable xpq in the first term within the
bracket (for node i = p) cancels the variable � xpq in
the second term within the bracket (for node j = q).
The first expression in the right-hand side of (6) de-
notes the amount of flow from the nodes in S to nodes
in S, and the second expression denotes the amount of
flow returning from the nodes in S to the nodes in S.
Therefore, the right-hand side denotes the total (net)
flow across the cut, and (6) implies that the flow across
any s� t-cut [S; S] equals v. Substituting xij � uij in the
first expression of (6) and xij � 0 in the second expres-
sion yields: v �

P
(i; j)2(S;S) ui j D u[S; S] implying that

the value of any flow can never exceed the capacity of
any cut in the network. We record this result formally
for future reference.

Lemma The value of any flow can never exceed the ca-
pacity of any cut in the network. Consequently, if the
value of some flow x equals the capacity of some cut
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Maximum Flow Problem, Figure 2
Illustrating the construction of a residual network; a) the original network, with arc capacities and a flow x; b) the residual
network

[S; S], then x is a maximum flow and the cut [S; S] is
a minimum cut.

Themax-flowmin-cut theorem, to be proved in the next
section, states that the value of some flow always equals
the capacity of some cut.

Generic Augmenting Path Algorithm

In this section, we describe one of the simplest and
most intuitive algorithms for solving the maximum
flow problem, an algorithm known as the augmenting
path algorithm.

Let x be a feasible flow in the networkG, and letG(x)
denote the residual network corresponding to the flow
x.We refer to a directed path from the source to the sink
in the residual network G(x) as an augmenting path.
We define the residual capacity ı (P) of an augment-
ing path P as the maximum amount of flow that can be
sent along it, that is, ı (P) = min setrij(i, j) 2 P. Since the
residual capacity of each arc in the residual network is
strictly positive, the residual capacity of an augmenting
path is strictly positive. Therefore, we can always send
a positive flow of ı units along it. Consequently, when-
ever the network contains an augmenting path, we can
send additional flow from the source to the sink. (Send-
ing an additional ı units of flow along an augmenting
path decreases the residual capacity of each arc (i, j) in
the path by ı units.) The generic augmenting path algo-
rithm is essentially based upon this simple observation.

The algorithm identifies augmenting paths in G(x) and
augments flow on these paths until the network con-
tains no such path. The algorithm below describes the
generic augmenting path algorithm.

We can identify an augmenting path P in G(x) by
using a graph search algorithm. A graph search algo-
rithm starts at node s and progressively finds all nodes
that are reachable from the source node using directed
paths. Most search algorithms run in time proportional
to the number of arcs in the network, that is,O(m) time,
and either identify an augmenting path or conclude that
G(x) contains no augmenting path; the latter happens
when the sink node is not reachable from the source
node.

BEGIN
x := 0;
WHILE G(x) contains a directed path from
node s to node t DO
BEGIN

identify an augmenting path P from s to t;
set ı := minfri j : (i; j) 2 Pg;
augment ı units of flow along P;
update G(x);

END;
END;

Generic augmenting path algorithm
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For each arc (i, j) 2 P, augmenting ı units of flow
along P decreases rij by ı units and increases rji by ı
units. The final residual capacities rij when the algo-
rithm terminates specifies a maximum (arc) flow in the
following manner. Since rij = uij � xij + xji, the arc flows
satisfy the equality xij � xji = uij � rij. If uij > rij, we can
set xij = uij � rij and xji = 0; otherwise, we set xij = 0 and
xji = rij � uij.

We use the maximum flow problem given in Fig. 3)
to illustrate the algorithm. Fig 3a) shows the residual
network corresponding to the starting flow x = 0, which
is identical to the original network. The residual net-
work contains three augmenting paths: 1 � 3 � 4, 1 �
2 � 4, and 1 � 2 � 3 � 4. Suppose the algorithm selects
the path 1 � 3 � 4 for augmentation. The residual ca-
pacity of this path is ı = min{r13, r34} = min{4, 5} = 4.
This augmentation reduces the residual capacity of arc
(1, 3) to zero (thus we delete it from the residual net-
work) and increases the residual capacity of arc (3, 1) to
4 (so we add this arc to the residual network). The aug-
mentation also decreases the residual capacity of arc (3,
4) from 5 to 1, and increases the residual capacity of arc
(4, 3) from 0 to 4. Figure 3b) shows the residual network
at this stage. In the second iteration, the algorithm se-
lects the path 1� 2� 3� 4 and augments 1 unit of flow;
Fig. 3c) shows the residual network after the augmenta-
tion. In the third iteration, the algorithm augments one
unit of flow along the path 1 � 2 � 4. Figure 3d) shows
the corresponding residual network. Now the residual
network contains no augmenting path and so the algo-
rithm terminates.

Does the augmenting path algorithm always find
a maximum flow? The algorithm terminates when the
search algorithm fails to identify a directed path inG(x)
from node s to node t, indicating that no such path ex-
ists (we prove later that the algorithm would terminate
finitely). At this stage, let S denote the set of nodes in N
that are reachable in G(x) from the source node using
directed paths, and S D N � S. Clearly, s 2 S and t … S.
Since the search algorithm cannot reach any node in
S and it can reach each node in S, we know that rij =
0 for each (i; j) 2 (S; S). Recall that rij = (uij � xij) +
xji, xij � uij, and xji � 0. If rij = 0, then xij = uij and
xji = 0. Since rij = 0 for each (i; j) 2 (S; S), by substi-
tuting these flow values in expression (6), we find that
v D u[S; S]. Therefore, the value of the current flow x
equals the capacity of the cut. Lemma 1 implies that x is

amaximum flow and [S; S] is aminimum cut. This con-
clusion establishes the correctness of the generic aug-
menting path algorithm and, as a byproduct, proves the
following max-flow min-cut theorem.

Theorem 2 The maximum value of the flow from
a source node s to a sink node t in a capacitated network
equals the minimum capacity among all s � t-cuts.

The proof of the max-flow min-cut theorem shows
that when the augmenting path algorithm terminates,
it also discovers a minimum cut [S; S], with S defined
as the set of all nodes reachable from the source node in
the residual network corresponding to the maximum
flow. For our previous numerical example, the algo-
rithm finds the minimum cut in the network, which is
[S; S] with S = {1}.

The augmenting path algorithm also establishes an-
other important result, the integrality theorem:

Theorem 3 If all arc capacities are integer, then the
maximum flow problem always has an integer maxi-
mum flow.

This result follows from the facts that the initial (zero)
flow is integer and all arc capacities are integer; con-
sequently, all initial residual capacities will be inte-
ger. Since subsequently all arc flows change by integer
amounts (because residual capacities are integer), the
residual capacities remain integer throughout the algo-
rithm. Further, the final integer residual capacities de-
termine an integer maximum flow. The integrality the-
orem does not imply that every optimal solution of the
maximum flow problem is integer. The maximum flow
problem might have noninteger solutions and, most
often, it has such solutions. The integrality theorem
shows that the problem always has at least one integer
optimal solution.

What is the worst-case running time of the algo-
rithm? An augmenting path is a directed path in G(x)
from node s to node t. We have seen earlier that each
iteration of the algorithm requires O(m) time. In each
iteration, the algorithm augments a positive integer
amount of flow from the source node to the sink node.
To bound the number of iterations, we will determine
a bound on the maximum flow value. By definition, U
denotes the largest arc capacity, and so the capacity of
the cut ({s}, S� {s}) is at most nU. Since the value of any
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Maximum Flow Problem, Figure 3
Illustrating the augmented path algorithm: a) the residual network G(x) for x = 0; b) the residual network after augmenting
four units along the path (1� 3� 4); c) the residual network after augmenting one unit along the path (1� 2� 3� 4); d) the
residual network after augmenting one unit along the path (1� 2� 4)

flow can never exceed the capacity of any cut in the net-
work, we obtain a bound of nU on the maximum flow
value and also on the number of iterations performed
by the algorithm. Consequently, the running time of
the algorithm is O(nmU), which is a pseudopolynomial
time bound. We summarize the preceding discussion
with the following theorem.

Theorem 4 The generic augmenting path algorithm
solves the maximum flow problem in O(nmU) time.

The augmenting path algorithm is possibly the simplest
algorithm for solving the maximum flow problem. Em-
pirically, the algorithm performs reasonably well. How-
ever, the worst-case bound on the number of iterations
is poor for large values of U. For example, ifU = 2n, the

bound is exponential in the number of nodes. More-
over, as shown by known examples, the algorithm can
indeed perform these many iterations. A second draw-
back of the augmenting path algorithm is that if the ca-
pacities are irrational, the algorithm might not termi-
nate. For some pathological instances of the maximum
flow problem, the augmenting path algorithm does not
terminate in a finite number of iterations and although
the successive flow values converge to some value, they
might converge to a value strictly less than the max-
imum flow value. (Note, however, that the max-flow
min-cut theorem is valid even if arc capacities are irra-
tional.) Therefore, if the augmenting path algorithm is
to be guaranteed to be effective in all situations, it must
select augmenting paths carefully.
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Researchers have developed specific implementa-
tions of the generic augmenting path algorithms that
overcome these drawbacks. Of these, the following
three implementations are particularly noteworthy:
i) the maximum capacity augmenting path algorithm

which always augments flow along a path in the
residual network with the maximum residual ca-
pacity and can be implemented to run in O(m2 log
U) time;

ii) the capacity scaling algorithm which uses a scal-
ing technique on arc capacities and can be imple-
mented to run in O(nm log U) time;

iii) the shortest augmenting path algorithm which aug-
ments flow along a shortest path (as measured by
the number of arcs) in the residual network and
runs in O(n2m) time.

These algorithms are due to J. Edmonds and R.M. Karp
[6], H.N. Gabow [9], and E.A. Dinic [5], respectively.
L.R. Ford and D.R. Fulkerson [8] and P. Elias, A. Fen-
stein and C.E. Shannon [7] independently developed
the basic augmenting path algorithm.

Generic Preflow-Push Algorithm

Another class of algorithms for solving the maximum
flow problem, known as preflow-push algorithms, is
more decentralized than augmenting path algorithms.
Augmenting path algorithms send flow by augment-
ing along a path. This basic operation further decom-
poses into the more elementary operation of sending
flow along individual arcs. Sending a flow of ı units
along a path of k arcs decomposes into k basic opera-
tions of sending a flow of ı units along each of the arcs
of the path. We shall refer to each of these basic opera-
tions as a push. The preflow-push algorithms push flows
on individual arcs instead of on augmenting paths.

A path augmentation has one advantage over a sin-
gle push: it maintains conservation of flow at all nodes.
The preflow-push algorithms violate conservation of
flow at all steps except at the very end, and instead
maintain a ‘preflow’ at each iteration. A preflow is a vec-
tor x satisfying the flow bound constraints and the fol-
lowing relaxation of the mass balance constraints (2):

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji � 0

for all i 2 N � fs; tg: (7)

Each element of a preflow vector is either a real
number or equals + 1. The preflow-push algorithms
maintain a preflow at each intermediate stage. For
a given preflow x, we define the excess for each node
i 2 N � {s, t} as

e(i) D
X

f j : ( j;i)2Ag

x ji �
X

f j : ( j;i)2Ag

xi j:

We refer to a node with positive excess as an active
node.We adopt the convention that the source and sink
nodes are never active. In a preflow-push algorithm, the
presence of an active node indicates that the solution is
infeasible. Consequently, the basic operation in this al-
gorithm is to select an active node i and try to remove
the excess by pushing flow out of it. When we push flow
out of an active node, we need to do it carefully. If we
just push flow to an adjacent node in an arbitrary man-
ner and the other nodes do the same, then it is conceiv-
able that some nodes keep pushing flow among them-
selves resulting in an infinite loop, which is not a de-
sirable situation. Since ultimately we want to send the
flow to the sink node, it seems reasonable for an active
node to push flow to another node that is ‘closer’ to the
sink. If all nodes maintain this rule, then the algorithm
could never encounter an infinite loop. The concept of
distance labels defined next allows us to implement this
algorithmic strategy.

The preflow-push algorithms maintain a distance
label d(i) with each node in the network. The distance
labels are nonnegative (finite) integers defined with re-
spect to the residual network G(x).We say that distance
labels are valid with respect to a flow x if they satisfy the
following two conditions:

d(t) D 0; (8)

d(i) � d( j)C 1 for every arc (i; j)

in the residual network G(x): (9)

We refer to the conditions (8) and (9) as the validity
conditions. It is easy to demonstrate that d(i) is a lower
bound on the length of any directed path (as measured
by number of arcs) from node i to node t in the residual
network, and thus is a lower bound on the length of the
shortest path between nodes i and j. Let i = i1 � � � � �
ik � t be any path of length k in the residual network
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from node i to node t. The validity conditions (8), (9)
imply that d(i) = d(i1) � d(i2) + 1, d(i2)� d(i3) + 1, . . . ,
d(ik) � d(t) + 1 = 1. Adding these inequalities shows
that d(i) � k for any path of length k in the residual
network, and therefore any (shortest) path from node i
to node t contains at least d(i) arcs. We say that an arc
(i, j) in the residual network is admissible if it satisfies
the condition d(i) = d(j) + 1; we refer to all other arcs as
inadmissible.

The basic operation in the preflow-push algorithm
is to select an active node i and try to remove the ex-
cess by pushing flow to a node with smaller distance
label. (We will use the distance labels as estimates of the
length of the shortest path to the sink node.) If node
i has an admissible arc (i, j), then d(j) = d(i) � 1 and
the algorithm sends flow on admissible arcs to relieve
the node’s excess. If node i has no admissible arc, then
the algorithm increases the distance label of node i so
that node i has an admissible arc. The algorithm termi-
nates when the network contains no active nodes, that
is, excess resides only at the source and sink nodes. The
next algorithm describes the generic preflow-push al-
gorithm.

BEGIN
set x := 0 and d( j) := 0 for all j 2 N ;
set xs j = us j for each arc (s; j) 2 A(s);
d(s) := n;
WHILE residual network G(x) contains an ac-
tive node
DO

BEGIN
select an active node I;
push/relabel(i);

END;
END;

procedure push/relabel(i);
BEGIN

IF network contains an admissible arc (i; j)
THEN push ı := minfe(i); ri; jg units of flow
from node i to node j
ELSE replace d(i) by

minfd( j) + 1 : (i; j) 2 A(i); ri j > 0g;
END;

The generic preflow-push algorithm

The algorithm first saturates all arcs emanating
from the source node; then each node adjacent to node
s has a positive excess, so that the algorithm can be-
gin pushing flow from active nodes. Since the prepro-
cessing operation saturates all the arcs incident to node
s, none of these arcs is admissible and setting d(s) =
n will satisfy the validity condition (8), (9). But then,
since d(s) = n, and a distance label is a lower bound on
the length of the shortest path from that node to node
t, the residual network contains no directed path from
s to t. The subsequent pushes maintain this property
and drive the solution toward feasibility. Consequently,
when there are no active nodes, the flow is a maximum
flow.

A push of ı units from node i to node j decreases
both the excess e(i) of node i and the residual rij of arc
(i, j) by ı units and increases both e(j) and rji by ı units.
We say that a push of ı units of flow on an arc (i, j)
is saturating if d = rij and is nonsaturating otherwise.
A nonsaturating push at node i reduces e(i) to zero. We
refer to the process of increasing the distance label of
a node as a relabel operation. The purpose of the rela-
bel operation is to create at least one admissible arc on
which the algorithm can perform further pushes.

It is instructive to visualize the generic preflow-push
algorithm in terms of a physical network: arcs represent
flexible water pipes, nodes represent joints, and the dis-
tance function measures how far nodes are above the
ground. In this network, we wish to send water from
the source to the sink. We visualize flow in an admis-
sible arc as water flowing downhill. Initially, we move
the source node upward, and water flows to its neigh-
bors. Although we would like water to flow downhill
toward the sink, occasionally flow becomes trapped lo-
cally at a node that has no downhill neighbors. At this
point, we move the node upward, and again water flows
downhill toward the sink.

Eventually, no more flow can reach the sink. As we
continue to move nodes upward, the remaining excess
flow eventually flows back toward the source. The al-
gorithm terminates when all the water flows either into
the sink or flows back to the source.

To illustrate the generic preflow-push algorithm, we
use the example given in Fig 4. Figure 4a) specifies the
initial residual network. We first saturate the arcs ema-
nating from the source node, node 1, and set d(1) = n
= 4. Fig 4b) shows the residual graph at this stage. At
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Maximum Flow Problem, Figure 4
Illustrating the preflow-push algorithm: a) the residual network G(x) for x = 0; b) the residual network after saturating arcs
emanating from the source; c) the residual network after pushing flow on arc (2, 4); d) the residual network after pushing
flow on arc (3, 4)

this point, the network has two active nodes, nodes 2
and 3. Suppose that the algorithm selects node 2 for the
push/relabel operation. Arc (2, 4) is the only admissi-
ble arc and the algorithm performs a saturating push
of value ı = min {e(2), r24} = min{2, 1} = 1. Fig 4c)
gives the residual network at this stage. Suppose the al-
gorithm again selects node 2. Since no admissible arc
emanates from node 2, the algorithm performs a relabel
operation and gives node 2 a new distance label d(2) =
min{d(3)+ 1, d(1)+ 1} = min{2, 5} = 2. The new residual
network is the same as the one shown in Fig 4c) except
that d(2) = 2 instead of 1. Suppose this time the algo-
rithm selects node 3. Arc (3, 4) is the only admissible
arc emanating from node 3, and so the algorithm per-
forms a nonsaturating push of value ı = min{e(3), r34}
= min{4, 5} = 4. Fig 4d) specifies the residual network
at the end of this iteration. Using this process for a few

more iterations, the algorithm will determine a maxi-
mum flow.

The analysis of the computational (worst-case)
complexity of the generic preflow-push algorithm is
somewhat complicated. Without examining the details,
we might summarize the analysis as follows. It is pos-
sible to show that the preflow-push algorithm main-
tains valid distance labels at all steps of the algorithm
and increases the distance label of any node at most
2n times. The algorithm performs O(nm) saturating
pushes and O(n2m) nonsaturating pushes. The nonsat-
urating pushes are the limiting computational opera-
tion of the algorithm and so it runs in O(n2m) time.

The preflow-push algorithm has several attractive
features, particularly its flexibility and its potential for
further improvements. Different rules for selecting ac-
tive nodes for the push/relabel operations create many
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different versions of the generic algorithm, each with
different worst-case complexity. As we have noted, the
bottleneck operation in the generic preflow-push algo-
rithm is the number of nonsaturating pushes and many
specific rules for examining active nodes can produce
substantial reductions in the number of nonsaturating
pushes. The following specific implementations of the
generic preflow-push algorithms are noteworthy:
i) the FIFO preflow-push algorithm examines the ac-

tive nodes in the first-in, first-out (FIFO) order and
runs in O(n3) time;

ii) the highest label preflow-push algorithm pushes
flow from an active node with the highest value of
a distance label and runs in O(n2 m1/2) time; and

iii) the excess-scaling algorithm uses the scaling of arc
capacities to attain a time bound of O(nm + n2

logU).
These algorithms are due to A.V. Goldberg and R.J.
Tarjan [10], J. Cheriyan and S.N. Maheshwari [4],
and R.K. Ahuja and J.B. Orlin [3], respectively. These
preflow-push algorithms are more general, more pow-
erful, and more flexible than augmenting path algo-
rithms. The best preflow-push algorithms currently
outperform the best augmenting path algorithms in
theory as well as in practice (see, for example, [1]).

Combinatorial Implications
of the Max–FlowMin–Cut Theorem

The max-flow min-cut theorem has far reaching con-
sequences. It can be used to prove several important
results in combinatorics that appear to be difficult to
prove using other means. We will illustrate the use of
the max-flow min-cut theorem to prove two such im-
portant results.

Network Connectivity

Given a directed network G = (N, A) and two specified
nodes s and t, we are interested in the following two
questions:
i) what is the maximum number of arc-disjoint (di-

rected) paths from node s to node t; and
ii) what is the minimum number of arcs that we should

remove from the network so that it contains no di-
rected paths from node s to node t.

We will show that these two questions are closely re-
lated. The second question shows how robust a net-

work, for example, a telecommunications network, is to
the failure of its arcs.

In the network G, let us define the capacity of each
arc as equal to one. Consider any feasible flow x of value
v in the resulting unit capacity network.We can decom-
pose the flow x into flows along v directed paths from
node s to node t, each path carrying a unit flow. Now
consider any s� t-cut [S; S] in the network. The capac-
ity of this cut is

ˇ̌
ˇ(S; S)

ˇ̌
ˇ that is, equals the number of

forward arcs in the cut. Since each path joining nodes s
and t contains at least one arc in the set (S; S), the re-
moval of all the arcs in (S; S) disconnects all paths from
node s to node t. Consequently, the network contains
a disconnecting set of arcs of cardinality equal to the
capacity of any s � t-cut [S; S]. The max-flow min-cut
theorem immediately implies the following result:

Corollary 5 The maximum number of arc-disjoint
paths from s to t in a directed network equals the min-
imum number of arcs whose removal will disconnect all
paths from node s to node t.

Matchings and Covers

The max-flowmin-cut theorem also implies a max-min
result concerning matchings and node covers in a di-
rected bipartite network G = (N1 [ N2, A), with arc
set A � N1 × N2. In the network G, a subset M � A
is a matching if no two arcs in M have an endpoint in
common. A subset C � N1N2 is a node cover of G if ev-
ery arc in A has at least one endpoint in the node set
C. Suppose we create the network G0 from G by adding
two new nodes s and t, as well as arcs (s, i) of capacity 1
for each i 2 N1 and arcs (j, t) of capacity 1 for each j 2
N2. All other arcs in G0 correspond to the arcs in G and
have infinite capacity. It is possible to show that each
matching of cardinality v defines a flow of value v in G0,
and each s� t cut of capacity v induces a corresponding
node cover with v nodes. Consequently, the max-flow
min-cut theorem establishes the following result:

Corollary 6 In a bipartite network G = (N1 [ N2, A),
the maximum cardinality of any matching equals the
minimum cardinality of any node cover of G.

These two examples illustrate important relationships
between maximum flows, minimum cuts, and many
other problems in the field of combinatorics. The max-
imum flow problem is of interest because it provides
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a unifying tool for viewing many such results, because it
arises directly in many applications, and because it has
been a rich arena for developing new results concerning
the design and analysis of algorithms.
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Abstract

Maximum-likelihood detection is a generic NP-hard
problem in digital communications which requires
efficient solution in practice. Some existing quasi-
maximum-likelihood detectors achieve polynomial
complexity with significant bit-error-rate performance
degradation (e. g. LMMSE Detector), while others ex-
hibit near-maximum-likelihood bit-error-rate perfor-
mance with exponential complexity (e. g. Sphere De-
coder and its variants). We present an efficient subopti-
mal detector based on a semidefinite relaxation, called
SDR Detector, which enjoys near-maximum-likelihood
bit-error-rate with worst-case polynomial complexity.
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SDR Detector can be implemented with recently devel-
oped Interior-Point methods for convex optimization
problems. For large systems SDR Detector provides
a constant factor approximation for the maximum-
likelihood detection problem. In high signal-to-noise
ratio region SDR Detector can solve the maximum-
likelihood detection problem exactly. Efficient imple-
mentations of SDR Detector empirically deliver a near-
optimal bit-error-rate with running time that scales
well to large problems and in any signal-to-noise ratio
region.

Keywords and Phrases

Maximum-likelihood detection; Multiple-input
multiple-output systems; Multiuser detection;
Semidefinite relaxation

Introduction

Maximum-Likelihood (ML) detection is a fundamental
problem in digital communications. Under the mild as-
sumption of equiprobable transmitted signals ML De-
tector achieves the best Bit-Error-Rate (BER). In gen-
eral, the ML detection problem is NP-hard due to the
discrete nature of a signal constellation. The exhaus-
tive search can be applied for small problem sizes, how-
ever this strategy is not practical for large systems. Large
communication systems often arise in schemes with ef-
ficient rate and diversity utilization, e. g. the systems
based on Linear Dispersion Codes [6]. Various subopti-
mal detectors that have been developed to approximate
ML Detector can be divided into two major categories:
� Accelerated versions of ML Detector with expo-

nential complexity (e. g. versions of Sphere De-
coder [3,16]),

� Polynomial complexity detectors with significant
degradation in the BER performance (e. g. Linear
Minimum Mean Square Error (LMMSE) Detector,
Matched Filter, Decorrelator, etc.).

We focus on an alternative detector which is based
on a semidefinite relaxation of the ML detection prob-
lem. This detector, called SDR Detector hereafter, en-
joys a worst-case polynomial complexity while deliver-
ing a near-optimal BER performance. In the next sub-
section we will introduce notations and a system model
used throughout the text.

Formulation

SystemModel

Consider a vector communication channel with n
transmit and m receive antennas. In wireless commu-
nications a Rayleigh fading model is widely used in
scenarios with significantly attenuated line-of-sight sig-
nal component. An abundant research is based on this
model which is used in profound theoretical results on
channel capacity, diversity and multiplexing gain. De-
fine a fading coefficient from the ith transmit antenna
to the kth receive antenna to be a Gaussian zero-mean
unit-variance, N (0; 1), variable Hki , with a Rayleigh
distributed amplitude jHki j and a uniformly distributed
phase �(Hki). The coefficients Hki are assumed to
be spatially and temporarily independent and identi-
cally distributed (i.i.d.). The transmitted signals s D
[s1; : : : ; sn]T are drawn from a discrete n-dimensional
complex set Cn . The communication system is operat-
ing at an average Signal-to-Noise Ratio (SNR) denoted
by �. Noise samples at each receive antenna, vk ; k D
1; : : : ;m, are modelled as i.i.d. N (0; 1) random vari-
ables. With these notations a Rayleigh memoryless vec-
tor channel can be represented by:

y D
p
�/n H sC v : (1)

The coefficient
p
�/n ensures that the expected

value of SNR at each receive antenna is equal to � inde-
pendent of problem dimension n. Channel model (1) is
quite generic and can be used to describe other commu-
nication systems, for example, a synchronous CDMA
multi-access channel, where n denotes the number of
users in the system.

In the sequel, we will assume that the receiver has
perfect information of the fading matrix H. In prac-
tice H is estimated by sending training signals which
are known to the receiver. Given the vector of received
signals y and the channel state H, the optimal detector
computes an estimate of transmitted signals such that
the probability of an erroneous decision is minimized.
For equiprobable input signals the minimal error prob-
ability is achieved by ML Detector given by:

sML D argmax
s2Cn

p(yjs;H) ;

where p(�j�) is a conditional probability density func-
tion and sML denotes the ML estimate of transmitted
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signals. For Gaussian noise this optimization problem
can be stated in the form of the Integer Least Squares
(ILS) problem:

sML D argmin
s2Cn
ky �

p
�/n H sk2 : (2)

In general, this optimization problem is NP-hard
and the discrete constraint set Cn of dimension n is the
source of intractability. We are interested in an efficient
polynomial time approximation algorithm for (2) with
theoretical performance guarantees. In the next section
we will briefly discuss common approaches to solving
problem (2).

Connection with Unconstrained Optimization

Several strategies have been developed to overcome
high computational complexity of ML Detector. Some
detectors achieve polynomial complexity by relaxing
the integer constraint in the ML detection problem (2),
e. g. LMMSE Detector, Decorrelator, and Matched Fil-
ter [5]. From the perspective of optimization theory
these detectors can be jointly treated by dropping the
discrete constraint in (2) and imposing a penalty func-
tion instead. For the BPSK constellation the relaxed
problem can be written as:

ŝ D arg min
s2Rn
ky �

p
�/n H sk2 C � ksk2 : (3)

The modified optimization problem is usually fol-
lowed by a rounding procedure which projects the opti-
mal solution of the relaxed problem onto set Cn . Select-
ing proper values for � , we can specialize (3) to LMMSE
Detector, Decorrelator, or Matched Filter. An appeal-
ing advantage of this approach is that it can be solved
analytically:

ŝ D sign
���

n
HTHC �I

��1
HTy

�
: (4)

This strategy achieves complexity O(n3) while sac-
rificing the BER performance.

Another type of detectors preserves the near-ML
BER while reducing the high complexity of the exhaus-
tive search. The work originates in [3,16] with the al-
gorithm to find the shortest vector on a lattice, known
as the so-called Sphere Decoder. The algorithm reduces
the exhaustive search to an ellipse centered at the zero-
forcing estimate of the transmitted signals:

sZF D
p
n/�

�
HTH

��1 HTy :

Different variants of this approach use various in-
telligent strategies of the radius selection and order-
ing of points to be searched inside the ellipse. In high
SNR region for small problem sizes Sphere Decoder
empirically demonstrates fast running time [7]. How-
ever, a thorough theoretical analysis [9,10] has shown
that both the worst-case and expected complexity of
this algorithm is still exponential.

Semidefinite Relaxation Strategy

We consider an alternative approach to solve (2) which
is based on a convex relaxation of the ML detec-
tion problem. Convexity of an optimization problem
is a good indicator of problem tractability. Efficient
and powerful algorithms with complexity O(n3:5) have
recently been developed to solve convex optimization
problems (e. g. Interior-Point methods). These algo-
rithms make efficient use of theoretically computable
stopping criteria, enjoy robustness, and offer the cer-
tificate of infeasibility when no solution exists. All these
properties render convex optimization methods a pri-
mary tool for various fields of engineering.

There are several generic types of convex problems,
the simplest one being a Linear Program (LP), i. e. the
optimization problem with a linear objective function
and linear constraints. An LP allows natural generaliza-
tion of the notion of an inequality constraint to a so-
called Linear Matrix Inequality (LMI). Instead of the
regular componentwise meaning of the inequality in
LP, LMI X � 0 implies that X belongs to the cone of
symmetric positive semidefinite matrices, i. e. all eigen-
values of X are non-negative. Such generalization leads
us to a generic class of Semi-Definite Programs (SDP),
which can be written in the standard form as follows:

min Q � X

s.t. Ak � X D bk; k D 1; : : : ;K;

X � 0 ;

(5)

where (�) denotes inner product in the matrix space:
Q � X D Tr(QX). The class of SDP problems (5) in-
cludes Linear Programs as well as Second Order Cone
Programs as special cases. It is quite remarkable that
any problem (5) in the broad class of SDP problems can
be solved in polynomial time, which makes it a valu-
able asset for solving engineering problems, includ-
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ing filter design, control, VLSI circuit layout design,
etc. [2].

In addition to application in numerical solvers, SDP
formulation (5) is widely used for analysis and design of
approximation algorithms for NP-hard problems. Tra-
ditional approaches involve relaxation of an NP-hard
problem to an LP, which can be easily solved in poly-
nomial time. With the invent of Interior-Point meth-
ods for non-linear convex optimization problems some
approximation algorithms have been significantly im-
proved [4]. Such advanced non-linear approximation
algorithms use weaker relaxations, thereby preserving
most of the structure of the original NP-hard problem.
The class of SDP problems represents a perfect candi-
date for design of approximation algorithms since the
SDP form is quite generic. The solution to the original
NP-hard problem is generated from the solution of the
relaxed SDP problem by a randomized or determinis-
tic rounding procedure. For example, as will be shown
later, the ML detection problem can be formulated as

fML :D min Q � X

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0

X is rank-1 :

(6)

Relaxing the rank constraint of X reduces the prob-
lem to the standard SDP form (5):

fSDP :D min Q � X

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0 :

(7)

A subsequent rounding procedure generates an es-
timate of the transmitted signals with an objective value
denoted fSDR based on the optimal solution Xopt of this
SDP problem.

Since SDR Detector outputs an estimate that be-
longs to the feasible set of the ML detection problem,
the optimal objective value fSDR of SDR Detector satis-
fies fML � fSDR. Let fopt ( fapr) denote the optimal objec-
tive value of an NP-hard problem (approximation algo-
rithm) in minimization form, then the approximation
algorithm with ratio c � 1 guarantees to provide a so-
lution with objective value fapr such that fapr � c fopt.
The quality of SDR Detector can be measured in terms

of approximation ratio c such that:

fML � fSDR � c fML; c � 1 ;

where c is independent of problem size.
Relaxation (5) was first applied to combinatorial op-

timization in [4] where the authors relaxed MAX-CUT
problem to an SDP problem in the standard form (5).
This strategy resulted in a substantial improvement of
the approximation ratio for MAX-CUT problem, as
compared to the classical relaxation to an LP. Unfor-
tunately, we can not pursue this approach because the
ML detection problem involves minimization instead
of maximization (for a positive semidefinite matrix Q)
used in the formulation of MAX-CUT problem. More-
over, the ML detection problem does not allow a con-
stant factor approximation algorithm for the worst case
realizations of H and v. However, from the perspective
of digital communications we are interested in the av-
erage performance of SDR Detector over many channel
and noise realizations. It turns out that SDR Detector
allows a probabilistic approximation ratio for the ran-
dom channel model (1). In high SNR region a typical
behavior of the detection error probability is

Pe ' e��(�) ;

where function �(�) varies for different detectors.
For example, �ml(�) D O(�) for ML Detector,
and �lmmse(�) D O(p�) for LMMSE Detector [5].
When a suboptimal detector is deployed instead of ML
Detector, the incurred BER deterioration can be ex-
pressed in terms of the log-likelihood ratio:

log(Pe (sdr))
log(Pe (ml))

D
�sdr(�)
�ml(�)

� c(�) :

Therefore, the approximation ratio c(�) is an essen-
tial step in bounding the SNR gap between two detec-
tors. Before we proceed with the probabilistic analysis
of the performance, let us consider the empirical BER
performance of SDRDetector in numerical simulations
for channel model (1).

Bit-Error-Rate Performance

The detector based on a semidefinite relaxation (SDR)
consists of two parts: a solver of relaxation (7) and
a randomized rounding procedure. The SDP in (7) can
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Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 1
Bit-Error-Rate as a function of Signal-to-Noise Ratio for dif-
ferent detectors

be efficiently solved using Interior Point (IP) methods
with complexity O(n3:5). For this purpose we use Se-
DuMi optimization toolbox for Matlab. The random-
ized rounding procedure projects the solution of the
SDP (7) onto the original discrete constraint set and will
be discussed in details in the next section.

Figure 1 shows a comparison of the BER per-
formance of the SeDuMi-based SDR Detector [13],
LMMSE Detector, Matched Filter, Decorrelator,
Nulling and Cancelling strategy, Sphere Decoder, and
ML Detector. We observe a significant BER improve-
ment of SDR Detector compared to other polynomial
complexity detectors. Sphere Decoder with adjustable
radius search [16] delivers the BER performance of ML
Detector (with probability 1) with running time that
scales exponentially [9] with problem size.

In many real-time/embedded applications a detec-
tion latency is upper bounded and, in general, prema-
ture decisions cause significant BER degradation. For
simulation purposes we suppose that an engineering
system is designed with BPSK modulation, operates at
SNR = 10 dB and allows 6.3ms per bit detection la-
tency. Figure 2 demonstrates the BER performance of
this system under the upper bound on the detection la-
tency. The exponential complexity of Sphere Decoder
reveals itself between dimensions 40 and 60 where we
observe a rapid BER degradation because the running
time of Sphere Decoder exceeds the fixed detection time

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 2
BER degradation due to the limit on detection time. Simu-
lation parameters: BPSK modulation, SNR = 10dB and time
limit per bitD 6:3ms

threshold for most channel realizations. At the same
time, the running time of SDR Detector scales grace-
fully with problem size and, in most cases, the detector
completes detection in time. As a result, SDR Detector
does not suffer any significant BER degradation even
for large problem sizes. In fact, the number of late de-
tections for SDRDetector does not exceed 1% for all di-
mensions shown in Fig. 2. For different values of SNR
and latency per bit we obtain essentially similar curves
for both detectors. Such behavior is indicative of the
exponentially growing computational effort of Sphere
Decoder and comparably modest computational power
required by SDR Detector.

In the next section we will discuss the details of the
SDP relaxation (11) and the randomized rounding pro-
cedure. After that we present theoretical guarantees that
substantiate the observed empirical behavior of SDR
Detector.

Method

SDR Detector consists of two components: an SDP
solver and a randomized rounding procedure.

SDP Solver

A transformation of the original ML detection prob-
lem (2) into the standard SDP form (5) will help
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us localize the place in (2) that makes the problem
NP-hard. We start with homogenizing the objective
function:

ky �
p
�/n Hsk2

D [s 1]T
�

(�/n)HTH �
p
�/n HTy

�
p
�/n yTH kyk2

� �
s
1

�

D � Tr(QxxT ) ;

where matrix Q 2 R(nC1)�(nC1) and vector x 2 RnC1

are defined as

Q D
�

(1/n) HTH �
p
1/n� HTy

�
p
1/n� yTH kyk2/�

�
; x D

�
s
1

�

(8)

Notice, that matrix Q is composed of the parame-
ters that are known at the receiver. We linearize the ob-
jective function by introducing a variable matrix X to
comply with the standard SDP form (5):

fML :D min Tr(QX)

s.t. X D xxT

Xi;i D 1; i D 1; : : : ; nC 1 :

(9)

In this problem formulation we discarded con-
straint xnC1 D 1 on the last entry of vector x because
the problem is not sensitive to the sign of vector x.
If x̂nC1 D �1 we output �x̂ as the solution to (9).
Constraint X D xxT is equivalent to the set fX � 0;
rank(X) D 1g, where notation X � 0 implies that
matrix X is symmetric positive semidefinite. Thus, we
complete the transformation of the original ML Detec-
tion problem over BPSK constellation to the equivalent
form stated in (6):

fML :D min Tr(QX)

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0

X is rank-1 :

(10)

The rank-1 constraint is the only non-convex con-
straint in (10) which makes the above problem in-
tractable. SDR Detector relaxes the rank constraint and
solves the following convex optimization problem:

fSDP :D min Tr(QX)

s.t. Xi;i D 1; i D 1; : : : ; nC 1

X � 0 :

(11)

To reveal the difference between this relaxation and
the one in (3) we can take one step further by relaxing
the set of constraints fXi;i D 1; i D 1; : : : ; n C 1g into
fTr(X) D nC1g while keeping constraint X � 0 intact.
This extra relaxed problem can be solved analytically
and leads to the solution

ŝ D
�

n

��
n
HTH

��1
HTy ;

which is exactly the soft output of Decorrelator (4)
with � D 0. The relaxation in (11) compares favor-
ably to the relaxations in (3) because it requires less
modifications of the ML problem, although complex-
ityO(n3:5) of (11) is higher than O(n3) for the detectors
in (3).

Since we dropped the rank constraint in (11), a so-
lution Xopt of (11) is no longer rank-1, hence, we need
to project Xopt onto the feasible set of the original ML
detection problem. Such projection is usually done by
a rounding procedure which can be either determinis-
tic like in (4) or randomized [13]. It can also vary de-
pending on the processing power available for the algo-
rithm. In the next section we will consider a random-
ized rounding procedure based on the principal eigen-
vector of matrix Xopt.

Randomized Rounding Procedure

There are various rounding procedures that can be used
to extract a rank-1 approximation of Xopt. Widely used
approaches and their analysis can be found in [4,13,14].
For our purposes we consider the randomized strat-
egy based on the principal eigenvector of matrix Xopt.
Notice that in the noise-free case, we have v D 0 and
a transmitted vector s belongs to the kernel of matrix Q
which is defined in (8). The optimal objective function
is 0 and is achieved by the vector of transmitted sig-
nals s. Thus, in the noise-free case, the optimal solution
of problem (11) is a rank-1 matrix:

Xopt D

�
s
1

� �
sT 1

�
:

The structure of the optimal matrix Xopt in the
noise-free case suggests that the principal component of
the eigen-decomposition contains most reliable infor-
mation on the transmitted signals in high SNR region.
It turns out that the optimal matrix Xopt has a strong
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principal component even in low SNR region, justifying
the randomized rounding procedure presented below:
� INPUT: Solution Xopt of (11), and number D of ran-

domized rounding tries.
� OUTPUT: Quasi-ML estimate sSDR and the best

achieved objective value fSDR.
� RANDOMIZED ROUNDING PROCEDURE:

1. Take a spectral decomposition Xopt DPnC1
iD1 �iuiuT

i and set vi D
p
�iui ; i D 1; : : : ;

nC 1.
2. Pick vi corresponding to the principal eigenvec-

tor vmax D argmax1�i�nC1 fkvikg.
3. For each entry xi define Bernoulli distribution:

Prfxi D C1g D (1C vmax
i )/2;

Prfxi D �1g D (1 � vmax
i )/2 ;

(12)

where vmax
i denotes the ith entry of vector vmax .

4. Generate a fixed number D of i.i.d. (n+1)-di-
mensional vector samples x̄d ; d D 1; : : : ;D, such
that each entry of (x̄d )i ; i D 1; : : : ; nC1, is drawn
from distribution (12).

5. For all D samples, set x̄d :D �x̄d if (n+1)-st entry
of x̄d is equal to �1.

6. Pick xSDR :D argmind x̄TdQx̄d and set the best
achieved objective value fSDR :D xTSDRQxSDR.

7. Return fSDR and sSDR which is given by vector
xSDR with the last bit discarded.

This randomized rounding procedure is designed to
ensure that output sSDR is equal to the vector of trans-
mitted signals with high probability. Whenever there is
an error, the procedure selects sSDR to reduce the num-
ber of bits in error.

Cases

Performance of SDR Detector

Constant Factor Optimality of SDR Detector The
core component of SDR Detector is an approximation
algorithm based on the convex relaxation (11) of the
original ML detection problem. In this section we an-
alyze the approximation ratio of this algorithm.

A technique pioneered in [4] is widely used in
optimization literature to derive a constant factor
optimality for SDP-based relaxations. After the opti-
mal solution Xopt of problem (11) has been obtained

the randomized rounding procedure used in [4] defines
Gaussian distribution N (0;Xopt) (compare with (12))
and implements the n-dimensional sign(�) operator
with uniformly generated cutting hyperplanes:
� Generate D i.i.d. samples x̄1; : : : ; x̄D from Gaussian

distributionN (0;Xopt).
� Let xi D sign(x̄i) and set the solution xSDR that

achieves minimum:

fSDR :D xTSDRQxSDR D min
i

xTi Qxi :

The best objective value fSDR achieved with this ran-
domized rounding procedure can be upper bounded as
follows [4]:

E f fSDRg D E
˚
xTSDRQxSDR

�

�P E
˚
xTi Qxi

�

D Tr
�
QE

˚
xixTi

��

D
2


Tr
�
Q arcsin(Xopt)

�
;

(13)

where the inequality above holds in probability for suf-
ficiently many samples D, and the last equality follows
from that fact that for any scalar random samples x̄i
and x̄ j drawn fromN (0; 1) we have:

E fsign(x̄i) sign(x̄i)g D
2


arcsin

�
E
˚
x̄i x̄ j

��
:

By taking Taylor expansion of arcsin(Y), we can see
that for any matrix Y, such that Y � 0;Yii D 1 the
following inequality holds:

arcsin(Y) � Y : (14)

Suppose that Q � 0, then we have the following
upper bound:

Tr
�
Q arcsin(Xopt)

�
� Tr(QXopt) ; (15)

which allows us to bound fSDR as a constant factor away
from fML:

fML � E f fSDRg �P 2


Tr(QXopt)

D
2


fSDP �

2


fML ;

where the first inequality holds because an output of
SDR Detector belongs to the feasible set of the ML
problem (10), the second inequality follows from (13)
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combined with (15), the third equality is the definition
of fSDP , and the last inequality holds because the SDP
problem (11) is a relaxation of the ML problem (10).
Therefore, given Q � 0, we obtain a 2/
-approxima-
tion ratio for the algorithm. Unfortunately, for ML de-
tection problem the reverse inequality takes place (8):

Q D
�

(1/n)HTH �
p
1/n� HTy

�
p
1/n� yTH kyk2/�

�
� 0 :

We can attempt to cure the problem with inequality
similar to (14) in the reverse direction for some con-
stant c:

arcsin(Y) � cY; for all Y � 0; with Yii D 1 :

For this inequality to hold, c must be growing
linearly with problem dimension n. Hence, in the
limit n ! 1 the constant c together with the approx-
imation ratio of the algorithm grow unbounded. That
is, we can not obtain a constant factor approximation
by applying the standard technique of [4] to the analy-
sis of the SDP relaxation in (11).

The technique presented above applies to any neg-
ative semidefinite matrix Q, hence, in the context of
suboptimal detection it attempts to obtain a constant
factor optimality for the worst-case channel realization.
However, from the perspective of digital communica-
tions, we are interested in the average performance of
SDR Detector over many channel realizations. Unlike
the technique we have discussed above, a probabilis-
tic analysis of Karush–Kuhn–Tucker (KKT) optimality
conditions of the semidefinite problem (11) allows us to
claim a constant factor optimality for SDR Detector in
probability [11].

The optimal objective value fSDR achieved by SDR
Detector is within a constant factor c(�; �) away from
the optimal ML objective value in probability:

lim
n;m!1

m/n! � � 1

P
�
fSDR
fML
� c(�; �)

	
D 1;

where c(�; �) D 1C
2(1Cp�)2ˇ
��˛ � 1

;

(16)

and f˛; ˇg are given by

˛ D

� 1
3 ; if � D 1
1
2 ; if � > 1

ˇ D

(
4 3p4; if � D 1
4
q

�
��1 ; if � > 1

The statement implies that the log-likelihood ratio of
SDR and ML Detectors is bounded in probability by
a constant which is fully specified by SNR only.

Performance of SDR Detector in High SNR Region
We have argued in Sect. “Randomized Rounding Pro-
cedure” that the selected randomized rounding pro-
cedure provides the optimal solution in the noise-free
case. The optimality condition can be extended to the
case of large finite SNR: for sufficiently high SNR SDR
Detector solves ML detection problem in polynomial
time.

For given system dimension n and SNR � (both fi-
nite), the solution Xopt of the relaxed problem (11) is
rank-1 if channel matrix H and noise v realizations sat-
isfy:

�min(HTH) >
r

n
�
kHTvk1 : (18)

Since random matrix HTH is full rank with prob-
ability 1, this claim can also be interpreted as follows:
for any given n there exists a sufficiently high (finite)
SNR level such that (18) holds and Xopt is rank-1. In
general, if (18) does not hold Xopt may still be rank-1.
Notice that if condition (18) is satisfied the solution of
the SDP problem (11) belongs to the feasible set of (10),
thus, Xopt is also the solution of the ML detection prob-
lem. Hence, under the specified conditions SDR Detec-
tor solves the original ML detection problem.

The asymptotic performance of SDR Detector for
fixed problem size and �!1 has been analyzed in [8],
where it is shown that for Rayleigh fading H SDR De-
tector achieves maximum diversity, i. e.

lim
�!1

log Pfssdr ¤ sg
log �

D lim
�!1

log Pfsml ¤ sg
log �

D �
n
2
:

Simulation Results

In this section we compare the running time and the
BER performance of various implementations of the
detectors based on the semidefinite relaxation (11) and
that of Sphere Decoder:
� SDP detector [13] implemented with SeDuMi tool-

box [15] for convex optimization problems.
� SDR Detector that is based on a dual-scaling

interior-point method (DSDP implementation [1])
and a dimension reduction strategy [12].
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� SDRDetector [12], implemented with a dual-scaling
interior-point method, a dimension reduction strat-
egy, and warm start with a truncated version of
Sphere Decoder.

� Sphere Decoder [16].
Figures 3 and 4 demonstrate the average running time
and the BER performance achieved by the above detec-
tors for problem size n D 60. Notice, the running time
of DSDP-based (SeDuMi-based) detector is insensitive
to SNR, and the BER performance shows 1 dB (2-dB)

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 3
Running time comparison, n D 60

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 4
Bit-error-rate comparison, n D 60

SNR loss. Sphere Decoder is faster than the semidefi-
nite relaxation-based detectors in high SNR regime but
becomes significantly slower for SNR lower than 10 dB.
SDR Detector matches the speed of Sphere Decoder in
high SNR region, matches the running time of other
semidefinite relaxation-based detectors in low SNR
regime, and enjoys the near-ML BER performance.

Figures 5 and 6 compare the average running time
for large problems and in low SNR region. The run-
ning time of polynomial complexity detectors (SDR

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 5
Running time for large problems, 
 D 10dB

Maximum Likelihood Detection via Semidefinite Program-
ming, Figure 6
Running time in low SNR regime, n D 40



Maximum Partition Matching M 2029

Detector, SeDuMi and DSDP-based) scales well in both
regimes, remaining in the sub-second region, while the
running time of Sphere Decoder deteriorates in both
scenarios.

Conclusions
We have considered the maximum likelihood detection
problem. Among various quasi-ML detectors SDR De-
tector offers a near-optimal BER performance with the
worst-case polynomial complexity. We have analyzed
the underlying structure of the SDP relaxation which is
the core of SDR Detector. For a given SNR SDR Detec-
tor delivers a constant factor approximation of the log-
likelihood ratio for the original ML detection problem
in probability, where the constant factor is indepen-
dent of problem size. SDRDetector solves ML detection
problem exactly in high SNR region. Numerical simu-
lations of BER and running time empirically demon-
strate the advantages of SDR Detector as compared to
the computationally expensive ML Detector.
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The maximum partition matching problem was intro-
duced recently in the study of routing schemes on in-
terconnection networks [2]. In this article, we study the
basic properties of the problem. An efficient algorithm
for the maximum partition matching problem is pre-
sented.
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Definitions andMotivation

Let S = {C1, . . . , Ck} be a collection of subsets of the
universal set U = {1, . . . , n} such that [k

iD1 Ci = U, and
Ci \ Cj = ; for all i 6D j. A partition (A, B) of S pairs two
elements a and b in U if a is contained in a subset in A
and b is contained in a subset inB. A partition matching
(of order m) of S consists of two ordered subsets L =
{a1, . . . , am} and R = {b1, . . . , bm} of m elements of U
(the subsets L and Rmay not be disjoint), together with
a sequence of m distinct partitions of S: (A1, B1), . . . ,
(Am, Bm) such that for all i = 1, . . . ,m, the partition (Ai,
Bi) pairs the elements ai and bi. Themaximum partition
matching problem is to construct a partition matching
of orderm for a given collection S withmmaximized.

The maximum partition matching problem arises
in connection with the parallel routing problem in in-
terconnection networks. In particular, in the study of
the star networks [1], which are attractive alternatives
to the popular hypercubes networks. It can be shown
that constructing an optimal parallel routing scheme in
the star networks can be effectively reduced to the max-
imum partition matching problem. Readers interested
in this connection are referred to [2] for a detailed dis-
cussion.

The maximum partition matching problem can be
formulated in terms of the 3-dimensional matching
problem as follows: given an instance S = {C1, . . . , Ck}
of the maximum partition matching problem, we con-
struct an instance M for the 3-dimensional matching
problem such that a triple (a, b, P) is contained in M
if and only if the partition P of S pairs the elements a
and b. However, since the number of partitions of the
collection S can be as large as 2n and the 3-dimensional
matching problem is NP-hard [4], this reduction does
not hint a polynomial time algorithm for the maximum
partition matching problem.

In the rest of this article, we study the basic proper-
ties for the maximum partition matching problem, and
present an algorithm of running time O(n2 log n) for
the problem. We first introduce necessary terminolo-
gies that will be used in our discussion.

Let 
 = hL, R, (A1, B1), . . . , (Am, Bm)i be a partition
matching of the collection S, where L = {a1, . . . , am} and
R = {b1, . . . , bm}. We will say that the partition (Ai, Bi)
left-pairs the element ai and right-pairs the element bi.
An element a is said to be left-paired if it is in the set

L. Otherwise, the element a is left-unpaired. Similarly
we define right-paired and right-unpaired elements. The
collections Ai and Bi are called the left-collection and
right-collection of the partition (Ai, Bi). The partition
matching 
 may also be written as 
[(a1, b1), . . . , (am,
bm)] if the corresponding partitions are implied.

For the rest of this paper, we assume thatU = {1, . . . ,
n} and that S = {C1, . . . , Ck} is a collection of pairwise
disjoint subsets of U such that [k

iD1 Ci = U.

Case I. Via Pre-Matching when kSk is Large

A necessary condition for two ordered subsets L = {a1,
. . . , am} and R = {b1, . . . , bm} of U to form a partition
matching for the collection S is that ai and bi belong to
different subsets in the collection S, for all i = 1, . . . , m.
We say that the two ordered subsets L and R of U form
a pre-matching � = {(ai, bi): 1 � i � m} if ai and bi do
not belong to the same subset in the collection S, for all
i = 1, . . . , m. The pre-matching � is maximum if m is
the largest among all pre-matchings of S.

A maximum pre-matching can be constructed ef-
ficiently by the algorithm pre-matching given below,
where we say that a set is singular if it consists of a sin-
gle element. See [3] for a proof for the correctness of the
algorithm.

Input : the collection S = fC1; : : : ;Ckg of subsets
of U

Output : a maximum pre-matching � in S
1. T = S; � = ;;
2. WHILE T contains more than one set but

does not consist of exactly three singular
sets
DO

2.1. pick two sets C and C0 of largest cardinal-
ity in T;

2.2. pick an element a in C and an element b
in C0;

2.3. � = � [ f(a; b); (b; a)g;
2.4. C = C � fag; C0 = C0 � fbg;
2.5. if C or C0 is empty now, delete it from T;

3. IF T consists of exactly three singular sets
C1 = fa1g, C2 = fa2g, and C3 = fa3g
THEN
� = � [ f(a1; a2); (a2; a3); (a3; a1)g.

Algorithm pre-matching
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In the following, we show that when the cardinality
of the collection S is large enough, a maximum parti-
tion matching of S can be constructed from the maxi-
mum pre-matching � produced by the algorithm pre-
matching.

Suppose that the collection S consists of k subsets
C1, . . . , Ck and 2k � 4n. The pre-matching � contains at
most n pairs. Let (a, b) be a pair in � and let C and C0

be two arbitrary subsets in S such that C contains a and
C0 contains b. Note that the number of partitions (A, B)
of S such that C is in A and C0 is in B is equal to 2k� 2 �

n. Therefore, at least one such partition can be used to
left-pair a and right-pair b. This observation results in
the following theorem.

Theorem 1 Let S = {C1, . . . , Ck} be a collection of
nonempty subsets of the universal set U = {1, . . . , n} such
that [k

iD1 Ci = U and Ci \ Cj = ;, for i 6D j. If 2k � 4n,
then a maximum partition matching in S can be con-
structed in time O(n2).

Proof Consider the following algorithm partition-
matching-I.

Input: the collection S = fC1; : : : ;Ckg of subsets
of U

Output: a partition matching � in S
1. construct a maximum pre-matching � of

S;
2. FOR each pair (a; b) in � DO

use an unused partition of S to pair a and
b.

Algorithm partition-matching-I

Suppose the pre-matching � constructed in step 1
is � = {(a1, b1), . . . , (am, bm)}. According to the above
discussion, for each pair (ai, bi) in � , there is always an
unused partition of S that left-pairs a and right-pairs b.
Therefore, step 2 of the algorithm partition-matching-I
is valid and constructs a partition matching 
 for the
collection S. Since each partition matching for S in-
duces a pre-matching in S and � is a maximum pre-
matching, we conclude that the partition matching 
 is
a maximum partition matching for the collection S.

By carefully organizing the elements in U and
the partitions of S, we can show that the algorithm
partition-matching-I runs in time O(n2). See [3].

Case II. Via GreedyMethod when kSk is Small

Now we consider the case 2k < 4n. Since the number
2k of partitions of the collection S is small, we can ap-
ply a greedy strategy that expands a current partition
matching by trying to add each of the unused partitions
to the partition matching. We show in this section that
a careful use of this greedy method constructs a maxi-
mum partition matching for the given collection.

Suppose we have a partition matching 
 = 
[(a1,
b1), . . . , (ah, bh)] and want to expand it. The partitions
of the collection S then can be classified into two classes:
h of the partitions are used to pair the h pairs (ai, bi), i =
1, . . . , h, and the rest 2k � h partitions are unused. Now
if there is an unused partition P = (A, B) such that there
is a left-unpaired element a in A and a right-unpaired
element b in B, then we simply pair the element a with
the element b using the partition P, thus expanding the
partition matching 
 .

Now suppose that there is no such unused parti-
tion, i. e., for all unused partitions (A, B), either A con-
tains no left-unpaired elements or B contains no right-
unpaired elements. This case may not necessarily imply
that the current partition matching is the maximum.
For example, suppose that (A, B) is an unused parti-
tion such that there is a left-unpaired element a in A
but no right-unpaired elements in B. Assume further
that there is a used partition (A0, B0) that pairs elements
(a0, b0), such that the element b0 is in B and there is
a right-unpaired element b in B0. Then we can let the
partition (A0, B0) pair the elements (a0, b), and then let
the partition (A, B) pair the elements (a, b0), thus ex-
panding the partition matching 
 . An explanation of
this process is that the used partitions have been incor-
rectly used to pair elements, thus in order to construct
a maximum partition matching, we must re-pair some
of the elements. To further investigate this relation, we
need to introduce a few notations.

For a used partition P of S, we put an underline on
a set in the left-collection (resp. the right-collection) of
P to indicate that an element in the set is left-paired
(resp. right-paired) by the partition P. The sets will be
called the left-paired set and the right-paired set of the
partition P, respectively.

Definition 2 A used partition P is directly left-
reachable from a partition P1 = (A1, B1) if the left-
paired set of P is contained in A1 (the partition P1
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can be either used or unused). The partition P is di-
rectly right-reachable from a partition P2 = (A2, B2) if
the right-paired set of P is contained in B2. A partition
Ps is left-reachable (resp. right-reachable) from a parti-
tion P1 if there are partitions P2, . . . , Ps� 1 such that Pi

is directly left-reachable (resp. directly right-reachable)
from Pi� 1, for all i = 2, . . . , s.

The left-reachability and the right-reachability are tran-
sitive relations.

Let P1 = (A1, B1) be an unused partition such that
there are no left-unpaired elements in A1, and let Ps =
(As, Bs) be a partition left-reachable from P1 and there
is a left-unpaired element as inAs.We show howwe can
use a chain justification to make a left-unpaired element
for the collection A1.

By the definition, there are used partitions P2, . . . ,
Ps� 1 such that Pi is directly left-reachable from Pi� 1,
for i = 2, . . . , s. We can further assume that Pi is not di-
rectly left-reachable from Pi� 2 for i = 3, . . . , s (otherwise
we simply delete the partition Pi� 1 from the sequence).
Thus, these partitions can be written as

P1 D (fC1g [ A01;B1);

P2 D (fC1;C2g [ A02;B2);

P3 D (fC2;C3g [ A03;B3);
: : :

Ps�1 D (fCs�2;Cs�1g [ A0s�1;Bs�1);

Ps D (fCs�1;Csg [ A0s ;Bs);

where A1
0, . . . , As

0 are subcollections of S without an
underlined set.

We can assume that the left-unpaired element as in
As D fCs�1;Csg[A0s is in a nonunderlined set Cs inAs

(otherwise we consider the sequence P1, . . . , Ps� 1 in-
stead). We modify the partition sequence into

P1 D (fC1g [ A01;B1);

P2 D (fC1;C2g [ A02;B2);

P3 D (fC2;C3g [ A03;B3);
:::

Ps�1 D (fCs�2;Cs�1g [ A0s�1;Bs�1);

Ps D (fCs�1;Csg [ A0s ;Bs):

The interpretation is as follows: we use the partition
Ps to left-pair the left-unpaired element as (the right-

paired element in the right-collection Bs is unchanged).
Thus, the element as� 1 in the set Cs� 1 of the parti-
tion Ps used to left-pair becomes left-unpaired.We then
use the partition Ps� 1 to left-pair the element as� 1 and
leave an element as� 2 in the setCs� 2 left-unpaired, then
we use the partition Ps� 2 to left-pair as� 2, etc. At the
end, we use the partition P2 to left-pair an element a2
in the set C2 and leave an element a1 in the set C1 left-
unpaired. Therefore, this process makes an element in
the left-collection A1 = {C1} [ A1

0 of the partition P1

left-unpaired.
The above process will be called a left-chain justifi-

cation. Thus, given an unused partition P1 = (A1, B1)
in which the left-collection A1 has no left-unpaired el-
ements and given a used partition Ps = (As, Bs) left-
reachable from P1 such that the left-collection As of Ps

has a left-unpaired element, we can apply the left-chain
justification that keeps all used partitions in the par-
tition matching 
 and makes a left-unpaired element
for the partition P1. A process called right-chain justifi-
cation for right-collections of the partitions can be de-
scribed similarly.

A greedy method based on the left-chain and right-
chain justifications is presented in the following algo-
rithm greedy-expanding.

Input: the collection S = fC1; : : : ;Ckg of subsets
of U

Output: a partition matching �exp in S
1. �exp = ;;
2. repeat until no more changes

IF there is an unused partition P = (A;B)
that has a left-unpaired element a inA and
a right-unpaired element b in B
THEN pair the elements (a; b) by the par-
tition P and add P to the matching �exp
ELSE IF a left-chain justification or a
right-chain justification (or both) is appli-
cable to make an unused partition P =
(A;B) to have a left-unpaired element in
A and a right-unpaired element in B
THEN apply the left-chain justification
and/or the right-chain justification

Algorithm greedy-expanding

In case 2k < 4n, a careful organization of the ele-
ments and the partitions can make the running time
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of the algorithm greedy-expanding bounded by O(n2

log n). Briefly speaking, we construct a graph G of 2k

vertices in which each vertex represents a partition of
S. The direct left- and right- reachabilities of partitions
are given by the edges in the graph G, so that checking
left- and right- reachabilities and performing left- and
right- chain justifications can be done efficiently. Inter-
ested readers are referred to [3] for a detailed descrip-
tion.

After execution of the algorithm greedy-expanding,
we obtain a partition matching 
exp. For each partition
P = (A, B) not included in 
exp, either A has no left-
unpaired elements and no used partition left-reachable
from P has a left-unpaired element in its left-collection,
or B has no right-unpaired elements and no used par-
tition right-reachable from P has a right-unpaired ele-
ment in its right-collection.

Definition 3 Define Lfree to be the set of partitions P
not used by 
exp such that the left-collection of P has
no left-unpaired elements and no used partition left-
reachable from P has a left-unpaired element in its left-
collection, and define Rfree to be the set of partitions P0

not used by 
exp such that the right-collection of P0 has
no right-unpaired elements and no used partition right-
reachable from P0 has a right-unpaired element in its
right-collection.

According to the algorithm greedy-matching, each par-
tition not used by 
exp is either in the set Lfree or in the
set Rfree. The sets Lfree and Rfree may not be disjoint.

Definition 4 Lreac to be the set of partitions in 
exp that
are left-reachable from a partition in Lfree, and define
Rreac to be the set of partitions in 
exp that are right-
reachable from a partition in Rreac.

According to the definitions, if a used partition P is
in the set Lreac, then all elements in its left-collection
are left-paired, and if a used partition P is in the set
Rreac, then all elements in its right-collection are right-
paired.

We first show that if Lreac and Rreac are not disjoint,
then we can construct a maximum partition matching
from the partition matching 
exp constructed by the al-
gorithm greedy-expanding. For this, we need the fol-
lowing technical lemma.

Lemma 5 If the sets Lreac and Rreac contain a common
partition and the partition matching 
exp has less than
n pairs, then there is a set C0 in S, |C0| � n/2, such that
either all elements in each set C 6D C0 are left-paired and
every used partition whose left-paired set is not C0 is con-
tained in Lreac, or all elements in each set C 6D C0 are
right-paired and every used partition whose right-paired
set is not C0 is contained in Rreac.

For a proof, see [3].

Theorem 6 If Lreac and Rreac have a common partition,
then the collection S has a maximum partition matching
of n pairs, which can be constructed in linear time from
the partition matching 
exp.

Proof If 
exp has n pairs, then 
exp is already a maxi-
mum partition matching. Thus we assume that 
exp has
less than n pairs. According to the above lemma, we can
assume, without loss of generality, that all elements in
each set Ci, i = 2, . . . , k, are left-paired, and that every
used partition whose left-paired set is not C1 is in Lreac.
Moreover, |C1| �

Pk
iD2 |Ci|.

Let t =
Pk

iD2 |Ci| and d = |C1|. Then we can assume
that the partition matching 
exp consists of the parti-
tions

P1; : : : ; Pt ; PtC1; : : : ; PtCh

where P1, . . . , Pt are used by 
exp to left-pair the ele-
ments in [k

iD2 Ci, and Pt+ 1, . . . , Pt+ h are used by 
exp

to left-pair the elements in C1, h < d. Moreover, all par-
titions P1, . . . , Pt are in the set Lreac. Thus, the set C1

must be contained in the right-collection in each of the
partitions P1, . . . , Pt .

We ignore the partitions Pt+ 1, . . . , Pt+ h and use the
partitions P1, . . . , Pt to construct a maximum partition
matching of n pairs. Note that {P1, . . . , Pt} also forms
a partition matching in the collection S.

For a partition (A, B) of S, we say that the partition
(B, A) is obtained by flipping the partition (A, B). In
the following algorithm partition-flipping, we show that
a maximum partition matching of n pairs can be con-
structed by flipping d partitions in the partitions P1, . . . ,
Pt .
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Input: a partition matching fP1; : : : ; Ptg that left-
pairs all elements in[k

i=2Ci , t =
Pk

i=2 jCi j,
and the set C1 is contained in the right-
collection of each partition Pi , i = 1; : : : ; t,
d = jC1j � t

Output: a maximum partition matching in S with
n pairs.

1. if not all elements in the set C1 are
right-paired by P1; : : : ; Pt , replace a
proper number of right-paired elements
in [k

i=2Ci by the right-unpaired elements
in C1 so that all elements in C1 are
right-paired by P1; : : : ; Pt ;

2. suppose that the partitions P1; : : : ; Pt�d
right-pair t � d elements b1; : : : ; bt�d in
[k

i=2Ci , and that Pt�d+1; : : : ; Pt right-pair
the d elements in C1;

3. suppose that P1; : : : ; Pt�d are the t � d
partitions in fP1; : : : ; Ptg that left-pair the
elements b1; : : : ; bt�d ;

4. flip each of the d partitions in
fP1; : : : ; Ptg � fP1; : : : ; Pt�dg to get d
partitions P01; : : : ; P0d to left-pair the d
elements in C1. The right paired element
of each P0i is the left-paired element before
the flipping;

5. fP1; : : : ; Pt ; P01; : : : ; P0d g is a partition
matching of n pairs.

Algorithm partition-flipping

Step 1 of the algorithm is always possible: since C1 is
contained in the right-collection of each partition Pi, i =
1, . . . , t, and t � d, for each right-unpaired element b in
C1, we can always pick a partition Pi that right-pairs an
element in [k

iD2 Ci, and let Pi right-pair the element b.
We keep doing this replacement until all d elements in
C1 get right-paired. At this point, the number of parti-
tions in {P1, . . . , Pt} that right-pair elements in [k

iD2 Ci

is exactly t� d. Step 3 is always possible since the parti-
tions P1, . . . , Pt left-pair all elements in [k

iD2 Ci.
Now we verify that the constructed sequence {P1,

. . . , Pt , P1
0, . . . , Pd

0} is a partition matching in S. No
two partitions Pi and Pj can be identical since {P1, . . . ,
Pt} is supposed to be a partition matching in S. No two
partitions Pi

0 and Pj
0 can be identical since they are ob-

tained by flipping two different partitions in {P1, . . . ,
Pt}. No partition Pi is identical to a partition Pj

0 because

Pi has C1 in its right-collection while Pj
0 has C1 in its

left-collection. Therefore, the partitions P1, . . . , Pt , P1
0,

. . . , Pd
0 are all distinct.

Each of the partitions P1, . . . , Pt left-pairs an ele-
ment in [k

iD2 Ci, and each of the partitions P1
0, . . . , Pd

0

left-pairs an element in C1. Thus, all elements in the
universal set U get left-paired in {P1, . . . , Pt , P1

0, . . . ,
Pd
0}.
Finally, the partitions P1, . . . , Pt right-pair all ele-

ments in C1 and the elements b1, . . . , bt� d in [k
iD2 Ci.

Now by our selection of the partitions, the partitions
P1
0, . . . , Pd

0 precisely right-pair all the elements in [k
iD2

Ci � {b1, . . . , bt� d}. Thus, all elements in U also get
right-paired in {P1, . . . , Pt , P1

0, . . . , Pd
0}.

This concludes that the constructed sequence {P1,
. . . , Pt , P1

0, . . . , Pd
0} is a maximum partition matching

in the collection S. The running time of the algorithm
partition-flipping is obviously linear.

Now we consider the case when the sets Lreac and Rreac

have no common partitions.

Theorem 7 If Lreac and Rreac have no common parti-
tions, then the partition matching 
exp is a maximum
partition matching.

Proof Let Wother be the set of used partitions in 
exp

that belong to neither Lreac nor Rreac. Then Lfree [ Rfree

[ Lreac [ Rreac [Wother is the set of all partitions of the
collection S, and Lreac [ Rreac [Wother is the set of par-
titions contained in the partition matching 
exp. Since
all sets Lreac, Rreac, and Wother are pairwise disjoint, the
number of partitions in 
exp is precisely |Lreac| + |Rreac|
+ |Wother|.

Now consider the set WL = Lfree [ Lreac. Let UL be
the set of elements that appears in the left-collection of
a partition inWL. We have
� Every P 2 Lreac left-pairs an element in UL;
� Every element in UL is left-paired;
� If an element a in UL is left-paired by a partition P,

then P 2 Lreac.
Therefore, the partitions in Lreac precisely left-pair the
elements in UL. This gives |Lreac| = |UL|. Since there are
only |UL| elements that appear in the left-collections in
partitions in Lfree [ Lreac, we conclude that the parti-
tions in WL = Lfree [ Lreac can be used to left-pair at
most |UL| = |Lreac elements in any partition matching
in S.
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Similarly, the partitions in the setWR = Rfree [ Rreac

can be used to right-pair at most |Rreac| elements in any
partition matching in S.

Therefore, any partition matching in the collection
S can include at most |Lreac| partitions in the setWL, at
most |Rreac| partitions in the setWR, and at most all par-
titions in the setWother. Consequently, amaximum par-
tition matching in S consists of at most |Lreac| + |Rreac|
+ |Wother| partitions. Since the partition matching 
exp

constructed by the algorithm greedy-expanding con-
tains just this many partitions, 
exp is a maximum par-
tition matching in the collection S.

Now it is clear how the maximum partition matching
problem is solved.

Theorem8 The maximum partition matching problem
is solvable in time O(n2 log n).

Proof Suppose that we are given a collection S = {C1,
. . . , Ck} of pairwise disjoint subsets of U = {1, . . . , n}.

In case 2k � 4n, we can call the algorithm partition-
matching-I to construct a maximum partition match-
ing in time O(n2).

In case 2k < 4n, we first call the algorithm greedy-
expanding to construct a partition matching 
exp and
compute the sets Lreac and Rreac. If Lreac and Rreac have
no common partition, then according to the previous
theorem, 
exp is already a maximum partition match-
ing. Otherwise, we call the algorithm partition-flipping
to construct a maximum partition matching. All these
can be done in time O(n2 log n). A detailed analysis of
this algorithm can be found in [3].
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In the maximum satisfiability (MAX-SAT) problem
one is given a Boolean formula in conjunctive normal
form, i. e., as a conjunction of clauses, each clause be-
ing a disjunction. The task is to find an assignment of
truth values to the variables that satisfies the maximum
number of clauses.

Let n be the number of variables and m the number
of clauses, so that a formula has the following form:

^
1�i�m

0
@ _

1�k�jCi j

li k

1
A ;

where |Ci| is the number of literals in clause Ci and lik
is a literal, i. e., a propositional variable uj or its nega-
tion uj , for 1 � j � n. The set of clauses in the formula
is denoted by C. If one associates a weight wi to each
clause Ci one obtains the weighted MAX-SAT problem,
denoted as MAX W-SAT: one is to determine the as-
signment of truth values to the n variables that maxi-
mizes the sum of the weights of the satisfied clauses. In
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the literature one often considers problems with differ-
ent numbers k of literals per clause, defined as MAX-k-
SAT, or MAX W-k-SAT in the weighted case. In some
papers MAX-k-SAT instances contain up to k literals
per clause, while in other papers they contain exactly k
literals per clause. We consider the second option un-
less otherwise stated.

MAX-SAT is of considerable interest not only from
the theoretical side but also from the practical one. On
one hand, the decision version SAT was the first exam-
ple of an NP-complete problem [16], moreover MAX-
SAT and related variants play an important role in the
characterization of different approximation classes like
APX and PTAS [5]. On the other hand, many issues
in mathematical logic and artificial intelligence can be
expressed in the form of satisfiability or some of its
variants, like constraint satisfaction. Some exemplary
problems are consistency in expert system knowledge
bases [46], integrity constraints in databases [4,23], ap-
proaches to inductive inference [35,40], asynchronous
circuit synthesis [32]. An extensive review of algorithms
for MAX-SAT appeared in [9].

M. Davis and H. Putnam [19] started in 1960 the
investigation of useful strategies for handling resolu-
tion in the satisfiability problem. Davis, G. Logemann
and D. Loveland [18] avoid the memory explosion of
the original DP algorithm by replacing the resolution
rule with the splitting rule. A recent review of advanced
techniques for resolution and splitting is presented in
[31].

The MAX W-SAT problem has a natural integer
linear programming formulation. Let yj = 1 if Boolean
variable uj is ‘true’, yj = 0 if it is ‘false’, and let the
Boolean variable zi = 1 if clause Ci is satisfied, zi = 0
otherwise. The integer linear program is:

max
mX
iD1

wizi

subject to the constraints:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

X

j2UCi

y j C
X
j2U�i

(1 � y j) � zi ;

i D 1; : : : ;m;
y j 2 f0; 1g; j D 1; : : : ; n;
zi 2 f0; 1g; i D 1; : : : ;m;

where UCi and U�i denote the set of indices of variables
that appear unnegated and negated in clause Ci, respec-
tively. If one neglects the objective function and sets all
zi variables to 1, one obtains an integer programming
feasibility problem associated to the SAT problem [11].

The integer linear programming formulation of
MAX-SAT suggests that this problem could be solved
by a branch and bound method (cf. also � Integer
programming: Branch and bound methods). A usable
method uses Chvátal cuts. In [35] it is shown that
the resolvents in the propositional calculus correspond
to certain cutting planes in the integer programming
model of inference problems.

Linear programming relaxations of integer linear
programming formulations of MAX-SAT have been
used to obtained upper bounds in [27,33,55]. A lin-
ear programming and rounding approach for MAX-2-
SAT is presented in [13]. A method for strengthening
the generalized set covering formulation is presented
in [47], where Lagrangian multipliers guide the genera-
tion of cutting planes.

The first approximation algorithms with a ‘guaran-
teed’ quality of approximation [5] were proposed by
D.S. Johnson [38] and use greedy construction strate-
gies. The original paper [38] demonstrated for both of
them a performance ratio 1/2. In detail, let k be the
minimum number of variables occurring in any clause
of the formula, m(x, y) the number of clauses satisfied
by the feasible solution y on instance x, and m�(x) the
maximum number of clauses that can be satisfied.

For any integer k � 1, the first algorithm achieves
a feasible solution y of an instance x such that

m(x; y)
m�(x)

� 1 �
1

k C 1
;

while the second algorithm obtains

m(x; y)
m�(x)

� 1 �
1
2k
:

Recently (1997) it has been proved [12] that the sec-
ond algorithm reaches a performance ratio 2/3. There
are formulas for which the second algorithm finds
a truth assignment such that the ratio is 2/3. Therefore
this bound cannot be improved [12].

One of the most interesting approaches in the de-
sign of new algorithms is the use of randomization.
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During the computation, random bits are generated
and used to influence the algorithm process. In many
cases randomization allows to obtain better (expected)
performance or to simplify the construction of the
algorithm. Two randomized algorithms that achieve
a performance ratio of 3/4 have been proposed in
[27] and [55]. Moreover, it is possible to derandom-
ize these algorithms, that is, to obtain deterministic al-
gorithms that preserve the same bound 3/4 for every
instance. The approximation ratio 3/4 can be slightly
improved [28]. T. Asano [2] (following [3]) has im-
proved the bound to 0.77. For the restricted case of
MAX-2-SAT, one can obtain a more substantial im-
provement (performance ratio 0.931) with the tech-
nique in [21]. If one considers only satisfiable MAX
W-SAT instances, L. Trevisan [54] obtains a 0.8 ap-
proximation factor, while H. Karloff and U. Zwick
[41] claim a 0.875 performance ratio for satisfiable in-
stances of MAX W-3-SAT. A strong negative result
about the approximability can be found in [36]: Unless
P = NPMAXW-SAT cannot be approximated in poly-
nomial time within a performance ratio greater than
7/8.

MAX-SAT is among the problems for which local
search has been very successful: in practice, local search
and its variations are the only efficient and effective
method to address large and complex real-world in-
stances. Different variations of local search with ran-
domness techniques have been proposed for SAT and
MAX-SAT starting from the late 1980s, see for ex-
ample [30,52], motivated by previous applications of
‘min-conflicts’ heuristics in the area of artificial intel-
ligence [44].

The general scheme is based on generating a start-
ing point in the set of admissible solution and trying to
improve it through the application of basic moves. The
search space is given by all possible truth assignments.
Let us consider the elementary changes to the current
assignment obtained by changing a single truth value.
The definitions are as follows.

Let U be the discrete search space: U = {0, 1}n, and
let f be the number of satisfied clauses. In addition, let
U(t) 2 U be the current configuration along the search
trajectory at iteration t, and N(U(t)) the neighborhood
of point U(t), obtained by applying a set of basic moves
�i (1 � i � n), where �i complements the ith bit ui of
the string: �i (u1, . . . , ui, . . . , un) = (u1, . . . , 1 � ui, . . . ,

un):

N(U (t)) D
n
U 2 U : U D �i ; U (t); i D 1; : : : ; n

o
:

The version of local search that we consider starts
from a random initial configuration U(0) 2 U and gen-
erates a search trajectory as follows:

V D BESTNEIGHBOR(N(U (t))); (1)

U (tC1) D

(
V if f (V) > f (U (t));
U (t) if f (V) � f (U (t))

(2)

where BESTNEIGHBOR selects V 2 N(U(t)) with the
best f value and ties are broken randomly. V in turn
becomes the new current configuration if f improves.
Other versions are satisfied with an improving (or
nonworsening) neighbor, not necessarily the best one.
Clearly, local search stops as soon as the first local opti-
mum point is encountered, when no improving moves
are available, see (2). Let us define as LS+ a modifica-
tion of LS where a specified number of iterations are
executed and the candidate move obtained by BEST-
NEIGHBOR is always accepted even if the f value re-
mains equal or worsens.

Properties about the number of clauses satisfied at
a local optimum have been demonstrated. Letm� be the
best value and k the minimum number of literals con-
tained in the problem clauses. Let mloc be the number
of satisfied clauses at a local optimum of any instance
of MAX-SAT with at least k literals per clause. mloc sat-
isfies the following bound [34]:

mloc �
k

k C 1
m

and the bound is sharp. Therefore, ifmloc is the number
of satisfied clauses at a local optimum, then:

mloc �
k

k C 1
m�: (3)

State-of-the-art heuristics for MAX-SAT are ob-
tained by complementing local search with schemes
that are capable of producing better approximations be-
yond the locally optimal points. In some cases, these
schemes generate a sequence of points in the set of ad-
missible solutions in a way that is fixed before the search
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starts. An example is given by multiple runs of local
search starting from different random points. The al-
gorithm does not take into account the history of the
previous phase of the search when the next points are
generated. The term ‘memory-less’ denotes this lack of
feedback from the search history.

In addition to the cited multiple-run local search,
these techniques are based on Markov processes (simu-
lated annealing; cf. also � Simulated annealing meth-
ods in protein folding), ‘plateau’ search and ‘random
noise’ strategies, or combinations of randomized con-
structions and local search. The use of aMarkov process
to generate a stochastic search trajectory is adopted, for
example in [53].

TheGsat algorithmwas proposed in [52] as amodel-
finding procedure, i. e., to find an interpretation of the
variables under which the formula comes out ‘true’.
Gsat consists of multiple runs of LS+, each run con-
sisting of a number of iterations that is typically pro-
portional to the problem dimension n. An empirical
analysis of Gsat is presented in [24,25]. Different ‘noise’
strategies to escape from attraction basins are added to
Gsat in [50,51].

A hybrid algorithm that combines a randomized
greedy construction phase to generate initial candidate
solutions, followed be a local improvement phase is the
GRASP scheme proposed in [48] for the SAT and gen-
eralized for the MAX W-SAT problem in [49]. GRASP
is an iterative process, with each iteration consisting
of two phases, a construction phase and a local search
phase.

Different history-sensitive heuristics have been pro-
posed to continue local search schemes beyond lo-
cal optimality. These schemes aim at intensifying the
search in promising regions and at diversifying the
search into uncharted territories by using the infor-
mation collected from the previous phase (the history)
of the search. Because of the internal feedback mecha-
nism, some algorithm parameters can be modified and
tuned in an on-line manner, to reflect the characteris-
tics of the task to be solved and the local properties of
the configuration space in the neighborhood of the cur-
rent point. This tuning has to be contrasted with the off-
line tuning of an algorithm, where some parameters or
choices are determined for a given problem in a prelim-
inary phase and they remain fixed when the algorithm
runs on a specific instance.

Tabu search is a history-sensitive heuristic proposed
by F. Glover [26] and, independently, by P. Hansen and
B. Jaumard, that used the term ‘SAMD’ (steepest as-
cent mildest descent) and applied it to the MAX-SAT
problem in [34]. The main mechanism by which the
history influences the search in tabu search is that, at
a given iteration, some neighbors are prohibited, only
a nonempty subset NA(U(t)) � N(U(t)) of them is al-
lowed. The general way of generating the search trajec-
tory that we consider is given by:

NA(U (t)) D allow(N(U (t)); : : : ;U (t)); (4)

U (tC1) D BESTNEIGHBOR(NA(U (t))): (5)

The set-valued function allow selects a nonempty sub-
set of N(U(t)) in a manner that depends on the entire
previous history of the search U(0), . . . , U(t). A spe-
cialized tabu search heuristic is used in [37] to speed
up the search for a solution (if the problem is satis-
fiable) as part of a branch and bound algorithm for
SAT, that adopts both a relaxation and a decomposi-
tion scheme by using polynomial instances, i. e., 2-SAT
and Horn-SAT.

Different methods to generate prohibitions produce
discrete dynamical systems with qualitatively different
search trajectories. In particular, prohibitions based on
a list of moves lead to a faster escape from a locally op-
timal point than prohibitions based on a list of visited
configurations [6]. In detail, the function allow can be
specified by introducing a prohibition parameter T (also
called list size) that determines how long a move will
remain prohibited after its execution. The fixed tabu
search algorithm is obtained by fixing T throughout the
search [26]. A neighbor is allowed if and only if it is ob-
tained from the current point by applying a move that
has not been used during the last T iterations. In detail,
if LU(�) is the last usage time of move � (LU(�) = �
1 at the beginning):

NA(U (t)) D
n
U D �U (t) : LU(�) < (t � T)

o
:

The reactive tabu search algorithm of [10], defines
simple rules to determine the prohibition parameter by
reacting to the repetition of previously-visited configu-
rations. One has a repetition if U(t + R) = U(t) for R � 1.
The prohibition period T depends on the iteration t and
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a reaction equation is added to the dynamical system:

T(t) D react(T(t�1);U (0); : : : ;U (t)):

An algorithm that combines local search and
nonoblivious local search [8], the use of prohibitions,
and a reactive scheme to determine the prohibition pa-
rameter is the Hamming-reactive tabu search algorithm
proposed in [7], which contains also a detailed experi-
mental analysis.

Given the hardness of the problem and the rele-
vancy for applications in different fields, the empha-
sis on the experimental analysis of algorithms for the
MAX-SAT problem has been growing in recent years
(as of 2000).

In some cases the experimental comparisons have
been executed in the framework of ‘challenges,’ with
support of electronic collection and distribution of soft-
ware, problem generators and test instances. An exam-
ple is the the Second DIMACS algorithm implemen-
tation challenge on cliques, coloring and satisfiability,
whose results have been published in [39]. Practical and
industrial MAX-SAT problems and benchmarks, with
significant case studies are also presented in [20]. Some
basic problem models that are considered both in theo-
retical and in experimental studies of MAX-SAT algo-
rithms are described in [31].

Different algorithms demonstrate a different degree
of effort, measured by number of elementary steps or
CPU time, when solving different kinds of instances.
For example, in [45] it is found that some distributions
used in past experiments are of little interest because
the generated formulas are almost always very easy to
satisfy. It also reports that one can generate very hard
instances of k-SAT, for k � 3. In addition, it reports the
following observed behavior for random fixed length 3-
SAT formulas: if r is the ratio r of clauses to variables (r
=m/n), almost all formulas are satisfiable if r < 4, almost
all formulas are unsatisfiable if r > 4.5. A rapid transi-
tion seems to appear for r 	 4.2, the same point where
the computational complexity for solving the generated
instances is maximized, see [17,42] for reviews of ex-
perimental results.

Let � be the least real number such that, if r is larger
than �, then the probability of C being satisfiable con-
verges to 0 as n tends to infinity. A notable result found
independently by many people, including [22] and [14]

is that

� � log 8
7
2 D 5:191:

A series of theoretical analyses aim at approximat-
ing the unsatisfiability threshold of random formulas
[1,15,29,43].

See also

� Greedy Randomized Adaptive Search Procedures
� Integer Programming
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Introduction

In multiproduct and multipurpose batch plants, dif-
ferent products can be manufactured via the same or
a similar sequence of operations by sharing available
pieces of equipment, intermediate materials, and other
production resources. They are ideally suited to manu-
facture products that are produced in small quantities
or for which the production recipe or the customer de-
mand pattern is likely to change. The inherent opera-
tional flexibility of this type of plant provides the op-
portunity for increased savings through the realization
of an efficient production schedule which can reduce
inventories, production and transition costs, and pro-
duction shortfalls.

The problem of production scheduling and plan-
ning for multiproduct and multipurpose batch plants
has received a considerable amount of attention dur-
ing the last two decades. Extensive reviews have been
written by Reklaitis [10], Pantelides [9], Shah [11]
and more recently by Floudas and Lin [4,5]. Most
of the work in the area of multiproduct batch plants
has dealt with either the long-term planning prob-
lem or the short-term scheduling problem. Both plan-
ning and scheduling deal with the allocation of avail-
able resources over time to perform a set of tasks re-
quired to manufacture one or more products. How-
ever, long-term planning problems deal with longer
time horizons (e. g., several months or years) and are
focused on higher level decisions such as timing and
location of additional facilities and levels of produc-
tion. In contrast, short-term scheduling models address
shorter time horizons (e. g., several days) and are fo-
cused on determining detailed sequencing of various
operational tasks. The area of medium-term schedul-
ing, however, which involves medium time horizons
(e. g. several weeks) and still aims to determine de-
tailed production schedules, can result in very large-
scale problems and has received much less attention in
the literature.

For medium-term scheduling, relatively little work
has been presented in the literature. Medium-term
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scheduling can be quite computationally complex, thus
it is common for mathematical programming tech-
niques to be used in their solution. The most widely
employed strategy to overcome the computational dif-
ficulty is based on the idea of decomposition. The
decomposition approach divides a large and com-
plex problem, which may be computationally expen-
sive or even intractable when formulated and solved
directly as a single MILP model, to smaller subprob-
lems, which can be solved much more efficiently.
There have been a wide variety of decomposition ap-
proaches proposed in the literature. In addition to de-
composition techniques developed for general forms
of MILP problems, various approaches that exploit
the characteristics of specific process scheduling prob-
lems have also been proposed. In most cases, the de-
composition approaches only lead to suboptimal so-
lutions, however, they substantially reduce the prob-
lem complexity and the solution time, making MILP
based techniques applicable for large, real-world prob-
lems.

In this chapter, we propose an enhanced State-Task
Network MILP model for the medium-term produc-
tion scheduling of a multipurpose, multiproduct indus-
trial batch plant. The proposed approach extends the
work of Ierapetritou and Floudas [6] and Lin et al. [8]
to consider a large-scale production facility and ac-
count for various storage policies (UIS, NIS, ZW), vari-
able batch sizes and processing times, batch mixing and
splitting, sequence-dependent changeover times, inter-
mediate due dates, products used as raw materials, and
several modes of operation. The methodology consists
of the decomposition of the whole scheduling period
into successive short horizons of a few days. A decom-
position model is implemented to determine each short
horizon and the corresponding products to be included.
Then, a novel continuous-time formulation for short-
term scheduling of batch processes with multiple in-
termediate due dates is applied to each short horizon
selected, leading to a large-scale mixed-integer linear
programming (MILP) problem. The scheduling model
includes over 80 pieces of equipment and can take
into account the processing recipes of hundreds of dif-
ferent products. Several characteristics of the produc-
tion plant are incorporated into the scheduling model
and actual plant data are used to model all parame-
ters.

Problem Statement

In the multiproduct batch plant investigated, there are
several different types of operations (or tasks) termed
operation type 1 to operation type 6. The plant has
many different types of units and over 80 are mod-
eled explicitly. Hundreds of different products can be
produced and for each of them, one of the processing
recipes shown in Fig. 1 or a slight variation is applied.
The recipes are represented in the form of State-Task
Network (STN), in which the state node is denoted by
a circle and the task node by a rectangle. The STN rep-
resentation provides the flow of material through vari-
ous tasks in the production facility to produce different
types of final products and does not represent the actual
connectivity of equipment in the plant.

For the first type of STN shown in Fig. 1, raw ma-
terials (or state F) are fed into a type 1 unit and un-
dergo operation type 1 to produce an intermediate
(or state I1). This intermediate then undergoes oper-
ation type 3 in a type 3 unit to produce another in-
termediate (or state I2). This second intermediate is
then sent to a type 4b unit before the resulting in-
termediate material (or state I3) is sent to a type 6
unit to undergo an operation type 6 task to pro-
duce a final product (or state P). The information on
which units are suitable for each product is given. All
the units are utilized in a batch mode with the ex-
ception of the type 5 and 6 units, which operate in
a continuous mode. The capacity limits of the type 1,
type 2, and type 3 units vary from one product to an-
other, while the capacity limits of the types 4a, 4b, 5
and 6 units are the same for all suitable products. The
processing time or processing rate of each task in the
suitable units is also specified. Also, some products re-
quire other products as their raw materials, creating
very complicated state-task networks.

The time horizon considered for production
scheduling is a few weeks or longer. Customer orders
are fixed throughout the time horizon with specified
amounts and due dates. There is no limitation on ex-
ternal raw materials and we apply the zero-wait storage
condition or limited intermediate storage capacity for
all materials based on actual plant data. There are two
different types of products produced, category 1 and 2.

The sixth STN shown in Fig. 1 shows a special type
of product, denoted as a campaign product. For this
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Medium-Term Scheduling of Batch Processes, Figure 1
State-task network (STN) representation of plant

type of product, raw materials are fed into up to three
type 1 units and undergo operation type 1 to produce
an intermediate, or state I1. This intermediate is then
sent to one of two type 4a units before being processed
in the type 5 unit, which is a continuous unit. Finally,
the intermediate material (or state I3) is sent to a type 6
unit, producing a final campaign product (or state P).
Because product changeovers in the type 5 unit can be
undesirable, there was a need to introduce the ability
to fix campaigns for continuous production of a single
product in the type 5 unit, called campaign mode pro-
duction.

Formulation

The overall methodology for solving the medium-
range production scheduling problem is to decom-
pose the large and complex problem into smaller
short-term scheduling subproblems in successive time
horizons [8]. The flowchart for this rolling horizon
approach is shown in Fig. 2. The first step is to input
relevant data into the formulation. Then, if necessary,
campaign mode production is determined. Next, the
overall medium-term scheduling problem is consid-
ered. A decomposition model is formulated and solved

to determine the current time horizon and correspond-
ing products that should be included in the current
subproblem. According to the solution of the decom-
position model, a short-term scheduling model is for-
mulated using the information on customer orders, in-
ventory levels, and processing recipes. The resulting
MILP problem is a large-scale, complex problem which
requires a large computational effort for its solution.
When a satisfactory solution is determined, the relevant
data is output and the next time horizon is considered.
The above procedure is applied iteratively in an auto-
matic fashion until the whole time horizon under con-
sideration has been scheduled.

Note that the decomposition model determines how
many days and products to consider in the shorter
scheduling horizon subject to an upper limit on the
complexity of the resulting mathematical model. Prod-
ucts are selected for the scheduling horizon if there is an
order for the product, if the product has an order within
a set amount of time into the future, if the product is
used as a raw material for another product which is in-
cluded, if the product was still processing in the previ-
ous scheduling horizon, or if the product is a campaign
product and is included in a campaign for the current
horizon.
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Medium-Term Scheduling of Batch Processes, Figure 2
Flowchart of the rolling horizon approach

Models

A key component of the rolling horizon approach is
the determination of the time horizon and the products
which should be included for each short-term schedul-
ing subproblem. We extend the two-level decomposi-
tion formulation of Lin et al. [8] which partitions the
entire scheduling horizon into shorter subhorizons by
taking into account the trade-off between demand sat-
isfaction, unit utilization, and model complexity. In the
first level, the number of days in the time horizon and
the main products which should be included are de-
termined. In the second level, additional products are

added to the horizon so that each of the first-stage units,
or type 1 units, are fully utilized.

Short-Term Scheduling Model

Once the decomposition model has determined the
days in the time horizon and the products to be in-
cluded, a novel continuous-time formulation for short-
term scheduling with multiple intermediate due dates is
applied to determine the detailed production schedule.
This formulation is based on the models of Floudas and
coworkers [6,7,8] and is expanded and enhanced in this
work to take into account specific aspects of the prob-
lem under consideration. The proposed short-term
scheduling formulation requires the following indices,
sets, parameters and variables:

Indices:

d days;
i processing tasks;
j units;
k orders;
n event points representing the beginning of a task;
s states;

Sets:

D days in the overall scheduling horizon;
Din days in the current scheduling horizon;
I processing tasks;
Ij tasks which can be performed in unit (j);
Ik tasks which process order (k);
Ics tasks which consume state (s);
Ips tasks which produce state (s);
Iin tasks which are included in the current schedul-

ing horizon;
IT5 tasks which are used to determine the type 5

unit campaign;
IT6b tasks which are used to perform operation

type 6 for category 1 products;
J units;
Ji units which are suitable for performing task (i);
Jp units which are suitable for performing only

processing tasks, or operation type 1, 2, 3, and
5 tasks;

JT1 units which are suitable for performing only op-
eration type 1 tasks;
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JT4 units which are suitable for performing only op-
eration type 4a and 4b tasks;

JT5 units are which used to determine the type 5
unit campaign;

JT6 units which are suitable for performing only op-
eration type 6 tasks;

K orders;
Ki orders which are processed by task (i);
Ks orders which produce state (s);
K in orders which are included in the current

scheduling horizon;
N event points within the time horizon;
S states;
Sk states which are used to satisfy order (k);
Scat1 states which are category 1 final products;
Scat2 states which are category 2 final products;
Scpm states which have minimum or maximum stor-

age limitations;
Sf states which are final products, after operation

type 6;
Si states which are intermediate products, before

operation type 6;
Sin states which are included in the current

scheduling horizon;
Sp states which are either final or intermediate

products;
Srw states which are products and are used as raw

materials for other products;
Sst states which have no intermediate storage;
ST5 states which are used to determine the type 5

unit campaign;
Sunl states which have unlimited intermediate stor-

age;
S0 states which are external raw materials;

Parameters:

Bmax
s the maximum suitable batch size used to

produce product state (s);
Bmin
s the minimum suitable batch size used to

produce product state (s);
C a large constant (e. g., 10000);
capmax

ij maximum capacity for task (i) in unit (j);
capmin

ij minimum capacity for task (i) in unit (j);
dems demand for state (s) in the current

scheduling horizon;
demrw

s demand for raw material product state
(s);

demtot
s total demand for state (s) in the overall

horizon;
duekksd due date of order (k) for state (s) on day

(d);
ExtraTimei amount of time needed for operation

type 3 task after processing task (i);
FixedTimeij constant term of processing time for task

(i) in unit (j);
H time horizon;
mintasks the minimum number of tasks that must

occur in the first-stage processing units,
JT1;

Nmax the maximum number of event points in
the scheduling horizon;

prawss0 0-1 parameter to relate final product (s)
to its raw material product (s0);

prices price of state (s);
priors priority of product state (s);
priorraws priority of raw material state (s);
RateCTij variable term of processing time for task

(i) in unit (j);
rkksd amount of order (k) for state (s) on day

(d);
startj the time at which unit (j) first becomes

available in the current scheduling hori-
zon;

stcapmax
s maximum capacity for storage of state (s);

stcapmin
s minimum capacity for storage of state (s);

˛ coefficient for the demand satisfaction of
individual orders term;

ˇ coefficient for the due date satisfaction of
individual orders term;

� coefficient for the overall demand satis-
faction slack variable term;

ı coefficient for the minimum inventory
requirement in dedicated units term;

� coefficient for the artificial demands on
raw material states term;

� coefficient for the minimizing of binary
variables term;

� coefficient for the minimizing of active
start times term;

� a small constant (e. g., 0.01);
�cis proportion of state (s) consumed by task

(i);
�
p
is proportion of state (s) produced by task

(i);
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� ii0 sequence-dependent setup time between
tasks (i) and (i0);

� coefficient for the satisfaction of orders
term;

! coefficient for the overall production
term;

Continuous Variables:

B(i , j , n) amount of material undertaking task (i)
in unit (j) at event point (n);

D(s , n) amount of state (s) delivered at event
point (n);

Df (s , n) amount of state (s) delivered after the last
event point;

kD(k , s , n) amount of state (s) delivered at event
point (n) for order (k);

kDf (k , s , n) amount of state (s) delivered after the last
event point for order (k);

sla1(k , s , d) amount of state (s) due on day (d) for or-
der (k) that is not delivered;

sla2(k , s , d) amount of state (s) due on day (d) for or-
der (k) that is over delivered;

slcap(s , n) amount of state (s) that is deficient in its
dedicated storage unit at event point (n);

sll(s) amount of state (s) due in the current
time horizon but not made;

sllraw(s) amount of raw material product state (s)
artificially due in the current time hori-
zon but not made;

slorder(k) 0-1 variable indicating if order (k) was
met;

slt1(k , s , d) amount of time state (s) due on day (d)
for order (k) is late;

slt2(k , s , d) amount of time state (s) due on day (d)
for order (k) is early;

ST(s , n) amount of state (s) at event point (n);
STF(s) final amount of state (s) at the end of the

current time horizon;
STO(s) initial amount of state (s) at the beginning

of the current time horizon;
Tf(i , j , n) time at which task (i) finishes in unit (j)

at event point (n);
Ts(i , j , n) time at which task (i) starts in unit (j) at

event point (n);
tot(s) total amount of state (s) made in the cur-

rent time horizon;

tts(i , j , n) starting time of the active task (i) in unit
(j) at event point (n);

Binary Variables:

wv(i , j , n) assigns the beginning of task (i) in unit (j)
at event point (n);

y(i , k , n) assigns the delivery of order (k) through
task (i) at event point (n);

On the basis of this notation, the mathematical
model for the short-term scheduling of an industrial
batch plant with intermediate due dates involves the
following constraints:

X
i2Iin;I j

wv(i; j; n) � 1 ;

8 j 2 J; n 2 N; n � Nmax

(1)

capmin
i j � wv(i; j; n) � B(i; j; n)

� capmax
i j � wv(i; j; n) ;

8i 2 Iin; j 2 Ji ; n 2 N; n � Nmax

(2)

st(s; n) D 0; 8s 2 Sin; Sst ;

s … Scpm; Sunl; n 2 N; n � Nmax (3)

st(s; n) � stcapmin
s � slcap(s) ;

8s 2 Sin; Scpm; n 2 N; n � Nmax (4)

st(s; n) � stcapmax
s ;

8s 2 Sin; Scpm; n 2 N; n � Nmax (5)

ST(s; n) D ST(s; n � 1) � D(s; n)
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i s
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8s 2 Sin; n 2 N; n D 1
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STF(s) D ST(s; n) � D f (s; n)

C
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i2Ips

�
p
i s

X
j2J i

B(i; j; n) ;

8s 2 Sin; n 2 N; n D Nmax
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Tf(i; j; n) D Ts(i; j; n)C FixedTimei j � wv(i; j; n)

C RateCTi j � B(i; j; n) ;

8i 2 Iin; j 2 Jp [ JT6; Ji ; n 2 N; n � Nmax

(9)

Tf(i; j; n) � Ts(i; j; n) ;

8i 2 Iin; j 2 JT4; Ji ; n 2 N; n � Nmax (10)

Tf(i; j; n) D H; 8s 2 Sin; Sst; s … Sunl ;

i 2 Iin; Ips ; j 2 JT4; Ji ; n 2 N; n D Nmax (11)

Ts(i; j; n C 1) � Tf(i; j; n)
C ExtraTimei � wv(i; j; n) ;

8i 2 Iin; j 2 Ji ; n 2 N; n < Nmax

(12)

Ts(i; j; n C 1) � Tf(i0; j; n)C (�i 0 i C ExtraTimei 0)

�wv(i0; j; n) � H[1 � w(i0; j; n)] ;

8 j 2 J; i; i0 2 Iin; I j; i ¤ i0; n 2 N; n < Nmax

(13)

Ts(i; j; nC 1) � Tf(i0; j0; n)

� H[1 � wv(i0; j0; n)] ;
8s 2 Sin; i 2 Iin; Ics ; i0 2 Iin; Ips ;

j 2 Ji ; j0 2 Ji 0 ; j ¤ j0; n 2 N; n < Nmax

(14)

Ts(i; j; n C 1) � Tf(i0; j0; n)C H[2 � wv(i0; j0; n)

� wv(i; j; n C 1)] ;

8s 2 Sin; Sst; s … Sunl; i 2 Iin; Ics ; i0 2 Iin; Ips ;

j 2 Ji ; j0 2 Ji 0 ; j ¤ j0; n 2 N; n < Nmax

(15)

The allocation constraints in (1) express the require-
ment that for each unit (j) and at each event point
(n), only one of the tasks that can be performed in the
unit (i. e., i 2 I j) should take place. The capacity con-
straints in (2) express the requirement for the batch-
size of a task (i) processing in a unit (j) at event point
(n); B(i; j; n), to be greater than the minimum amount
of material, capmin

i j , and less than the maximum amount
of material, capmax

i j , that can be processed by task (i) in
unit (j). The storage constraints in (3) enforce that those
states with no intermediate storage have to be con-
sumed by some processing task or storage task immedi-
ately after they are produced. Constraints (4) represent

the minimum required storage for state (s) in a dedi-
cated storage tank where this amount can be violated,
if necessary, by an amount slcap(s) which is penalized
in the objective function. Constraints (5) represent the
maximum available storage capacity for state (s) based
on the maximum storage capacity of the dedicated stor-
age tank. According to the material balance constraints
in (6), the amount of material of state (s) at event point
(n) is equal to that at event point (n � 1) increased
by any amounts produced at event point (n � 1), de-
creased by any amounts consumed at event point (n),
and decreased by the amount required by the market
at event point (n);D(s; n). Constraints (7)–(8) repre-
sent the material balance on state (s) at the first and
last event points, respectively. The duration constraints
in (9) represent the relationship between the starting
and finishing times of task (i) in unit (j) at event point
(n) for all processing tasks (i. e., Jp) and all operation
type 6 tasks (i. e., JT6) where FixedTimeij are the fixed
processing times for batch tasks and zero for contin-
uous tasks and RateCTij are the inverse of processing
rates for continuous tasks and zero for batch tasks, re-
spectively. Constraints (10) also represent the relation-
ship between the starting and finishing times of task (i)
in unit (j) at event point (n), but for operation type 4a
and 4b tasks (i. e., JT4). They do not impose exact du-
rations for tasks in these units but just enforce that all
tasks must end after they start. Constraints (11) are
written only for tasks in units which are processing
a nonstorable state (i. e., Sst and not Sunl) and enforce
that task (i) taking place at the last event point (n) must
finish at the end of the horizon.

The sequence constraints in (12) state that task (i)
starting at event point (nC 1) should start after the end
of the same task performed in the same unit (j) which
has finished at the previous event point, (n) where extra
time is added after task (i) at event point (n), if nec-
essary. The constraints in (13) are written for tasks (i)
and (i0) that are performed in the same unit (j) at event
points (nC 1) and (n), respectively. If both tasks take
place in the same unit, they should be at most consec-
utive. The third set of sequence constraints in (14) re-
late tasks (i) and (i0) which are performed in different
units (j) and ( j0) but take place consecutively accord-
ing to the production recipe. The zero-wait constraints
in (15) are written for different tasks (i) and (i0) that
take place consecutively with the intermediate state (s)
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having no possible intermediate storage and thus sub-
ject to the zero-wait condition.
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i 2 Ik ; IT6b; n 2 N; n < Nmax

(20)

D(s; n) D
X

k2K in;Ks

kD(k; s; n) ;

8s 2 Sin; Scat1; n 2 N; n � Nmax
(21)

D f (s; n) D
X

k2K in;Ks

kD f (k; s; n) ;

8s 2 Sin; Scat1; n 2 N; n D Nmax
(22)

X
n2N

n<Nmax

�
kD(k; s; nC 1)C kDf (k; s; nC 1)

�

C sla1(k; s; d) � rkksd ;

8s 2 Sin; Scat1; k 2 K in;Ks ;

d 2 Din; rkksd > 0

(23)

X
n2N

n<Nmax

�
kD(k; s; nC 1)C kDf (k; s; n C 1)

�

C stf (s) � sla2(k; s; d) � rkksd ;

8s 2 Sin; Scat1; k 2 K in;Ks ;

d 2 Din; rkksd > 0

(24)

Tf(i; j; n) � slt1(k; s; d; n) � duek(k; s; d)
C H � (2 � wv(i; j; n) � y(i; k; n)) ;

8s 2 Sin; Scat1; k 2 K in;Ks ; i 2 Iin; Ik ; IT6b ;

j 2 Ji ; n 2 N; n � Nmax; d 2 Din; rkksd > 0

(25)

Tf(i; j; n)C slt2(k; s; d; n) � (duek(k; s; d) � 24)

� H � (2 � wv(i; j; n) � y(i; k; n)) ;

8s 2 Sin; Scat1; k 2 K in;Ks ; i 2 Iin; Ik ; IT6b ;

j 2 Ji ; n 2 N; n � Nmax; d 2 Din; rkksd > 0
(26)

The order satisfaction constraints in (16)–(23) are
written to ensure that all orders for category 1 prod-
ucts are met on-time and with the required amount.
Both under and overproduction as well as early and late
production are represented with slack variables that are
penalized in the objective function. Note that these con-
straints can be modified to represent different require-
ments for production, if desired. Constraints (16) try to
ensure that each order (k) is met at least one time with
an operation type 6 task (i), where task (i) is suitable for
order (k) if i 2 Ik and is a operation type 6 task for a cat-
egory 1 product if i 2 IT6b. Similarly, constraints (17)
enforce the condition that each order (k) for category
1 product state (s) on day (d) can be met with at most
drkksd / Bmin

s e tasks. Constraints (18) and (19) link the
delivery of order (k) through task (i) at event point (n)
to the beginning of task (i) in any suitable unit (j) at
event point (n) so that every category 1 operation type 6
task must be linked to at least one order delivery and
vice versa. Thus, constraint (18) enforces that if a bi-
nary variable is activated for operation type 6 task (i),
then at least one order delivery must be activated. Sim-
ilarly, constraint (19) ensures that if no binary variables
are activated for operation type 6 task (i) at event point
(n), then no delivery variables can be activated. Con-
straints (20) relate the individual order delivery vari-
ables to the batch-size of the operation type 6 task used
to satisfy the order. If an order (k) is met by task (i) at
event point (n) (i. e., y(i; k; n) D 1), then at least one
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operation type 6 task is active for task (i) at event point
(n) and thus at least one B(i; j; n) variable is greater
than zero. Constraints (21) and (22) relate the individ-
ual order delivery variables to the overall delivery vari-
ables used in the material balance constraints.

Constraints (23) and (24) determine the under and
overproduction, respectively, of order (k) for state (s)
on day (d). Constraints (23) try to enforce the indi-
vidual order delivery variables to exceed the amount
due for order (k) (i. e., rkksd) where slack variables
sla1(k; s; d) are activated in the case of underproduc-
tion. Similarly, constraints (24) try to enforce the indi-
vidual order delivery variables plus any amount of the
product state left at the end of the horizon not to ex-
ceed the amount due for order (k) where slack variables
sla2(k; s; d) are activated in the case of overproduction.
Constraints (25) and (26) determine the late and early
production, respectively, of order (k) for state (s) on day
(d). Constraints (25) try to enforce the finishing time of
task (i) used to satisfy order (k) at event point (n) to be
less than the due date of order (k) where slack variables
slt1(k; s; d; n) are activated in the case of late produc-
tion. Similarly, constraints (26) try to enforce the fin-
ishing time of task (i) used to fulfill order (k) at event
point (n) to be greater than the beginning of the day (d)
on which the order is due (i. e., duek(k; s; d) � 24). Oth-
erwise, slack variables slt2(k; s; d; n) are activated indi-
cating early production.
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(30)

Constraints (27)–(29) are used to determine the
overall underproduction for both category 1 and 2

products in the current time horizon. First, con-
straints (27) determine the total production for all
product states (s) (i. e., tot(s)) in the current horizon.
Then, constraints (28) sum the overall delivery vari-
ables for category 1 products and activate the slack vari-
ables sll(s) if the sum does not exceed the demand for
category 1 product state (s). Similarly, constraints (29)
calculate the amount of underproduction (i. e., sll(s))
for category 2 product state (s) based on it’s overall
demand in the time horizon. The slack variable sll(s)
is then penalized in the objective function where cat-
egory 1 and 2 products can be penalized at different
weights. Constraints (30) determine the amount of un-
derproduction for intermediate product states (s) that
are needed as raw materials for final product states
(s0).

The bound constraints are used to impose lower and
upper bounds on the continuous variables including
slack variables. They are also used to fix some binary
and continuous variables to be zero when necessary.
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There are several different objective functions that can
be employed with a general short-term scheduling
problem. In this work, we maximize the sale of final
products while penalizing several other terms includ-
ing the slack variables introduced previously. The over-
all objective function is as follows:
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where each of the coefficients is used to balance the rel-
ative weight of each term in the overall objective func-
tion. The first term is the maximization of the value of
the final products and is the main term of the objective
function. The second term seeks to minimize the sum
of the starting times of all active processing tasks. This
is done to encourage all tasks to start as early as possi-
ble in the scheduling horizon. Note that this results in
a bilinear term which can replaced with an equivalent
linear term and set of constraints [3]. The third term
seeks to minimize the number of active binary variables
in the final production schedule. The fourth term seeks
to minimize the slack variable that is activated when
product state (s) does not meet its overall demand for
the time horizon. Coefficient priors allows the ability
to assign different weights to different product states.
The fifth term minimizes the number of category 1 or-
ders (k) that are not filled in the time horizon. The sixth
term minimizes the amount of over and underproduc-
tion of orders for category 1 products in the time hori-
zon where the coefficient � allows over and underpro-
duction to be penalized by different amounts. The sev-
enth term seeks to minimize the amount of early and
late production of orders for category 1 products due
in the time horizon where the coefficient � allows early
and late production to be penalized to different degrees.
The eighth term minimizes the slack variables activated
when insufficient rawmaterial state (s) is produced dur-
ing the time horizon where priorraws allows different
states to be penalized by different amounts. The ninth,
and final, term seeks to minimize the slack variables ac-
tivated when insufficient intermediate state (s) is stored
in its dedicated storage tank at each event point. Typical
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values for each of the coefficients are as follows: ! D 1;
� D 1; � D 10; � D 1000; � D 1000; ˛ D 2000;
ˇ D 500; � D 0:01; � D 50; ı D 10.

Cases

In this section, an example problem is presented to
demonstrate the effectiveness of the rolling horizon
framework. The example utilizes the proposed frame-
work to determine the medium range production
schedule of an industrial batch plant for a two-week
time period which satisfies customer orders for vari-
ous products distributed throughout the time period.
The example is implemented with GAMS 2.50 [1] and
solved using CPLEX 9.0 [2] with a 3.20GHz Linux
workstation. The dual simplex method is used with
best-bound search and strong branching. A relative op-
timality tolerance equal to 0.001% was used as the ter-
mination criterion along with a three hour time limit
and an integer solution limit of 40.

The distribution of demands for the entire two-
week time period is shown in Fig. 3 where the amounts
are shown in relative terms. There are two categories
of products, category 1 and 2, and a total of 67 dif-
ferent products have demands. There are two different
campaign products that can be scheduled for campaign
mode production and an additional eight intermediate
products are used to make final products, even though
they do not have demands. It is assumed that no final
products are available at the beginning of the time hori-
zon although some intermediate materials are available.
Also, we assume no limitation on external rawmaterials
and the zero-wait condition is applied to all intermedi-
ate materials unless they are used as raw materials for

Medium-Term Scheduling of Batch Processes, Figure 3
Distribution of demands

other final products. In this case, unlimited interme-
diate storage is allowed. Note that finite intermediate
storage is effectively modeled for those intermediates
that have a dedicated storage task with a given capac-
ity limit. In addition, there are two types of connections
made between each consecutive short-term scheduling
horizon in the rolling horizon framework: the initial
available time for each unit and the inventory of inter-
mediate materials.

Case 1: Nominal Run
without Campaign Mode Production

The example problem considers the production
scheduling of an industrial batch plant where no type 5
unit campaign is imposed. Instead, demands for both
campaign products are created throughout the time
horizon with a total demand for each product equal to
the production that would be imposed by a campaign.
The total time period is 19 days, from D0 to D18. The
rolling horizon framework decomposes the time hori-
zon into 8 individual subhorizons, each with its own
products and demands. The results of the decomposi-
tion for each time horizon can be seen in Table 1.

The final production schedule for the entire time
period can be seen in Fig. 4 and 5 where the process-
ing units (operation type 1, 2, 3, and 5) are shown in
the first figure and the other units (operation type 4a,
4b, and 6) are shown in the second. Each short-term
scheduling horizon is represented with a different color
beginning with black for the first horizon, red for
the second horizon, green for the third horizon, etc.
The model and solution statistics for each short-term

Medium-Term Scheduling of Batch Processes, Table 1
Decomposition results for case 1

Days Main Products Additional Products
H1 D0–D2 27 2
H2 D3–D4 31 0
H3 D5–D6 50 0
H4 D7–D8 49 0
H5 D9–D10 37 0
H6 D11–D12 49 0
H7 D13–D14 54 0
H8 D15–D18 45 0
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Medium-Term Scheduling of Batch Processes, Figure 4
Overall production schedule for processing units for case 1
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Medium-Term Scheduling of Batch Processes, Figure 5
Overall production schedule for non-processing units for case 1
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Medium-Term Scheduling of Batch Processes, Table 2
Model and solutions statistics for case 1

Days Event Points Objective Function Binary Variables Continuous Variables Constraints
H1 D0–D2 8 14; 001:69 4880 33,064 187,833
H2 D3–D4 6 4135:24 3660 24,923 125,374
H3 D5–D6 6 �105; 854:81 5478 32,621 258,852
H4 D7–D8 6 �5496:19 5376 32,167 255,696
H5 D9–D10 6 �15; 352:37 4296 27,613 175,939
H6 D11–D12 6 �11; 326:13 5490 32,637 272,802

H7 D13–D14 6 �19; 401:39 5568 32,955 282,632
H8 D15–D18 10 �37; 054:00 7430 46,827 321,162

scheduling horizon can be seen in Table 2 where each
horizon runs for the time limit of three hours.

The total demand for the entire 14-day period is
2323.545 and the total production is 2744.005, where
51.674 of the demands are not met. The production
schedules obtained satisfy demands for almost all the
products, though some due dates are relaxed, and also
produce 18.10% more material than the demands re-
quire. Many of the processing units are not fully uti-
lized, as shown in Table 3, indicating the potential for
even more production in the given time period. Also,
note that the processing units become more idle to-
wards the end of the overall time horizon. This is be-
cause no demands are specified for the days following
day D14 including days D15 to D18. Additional de-
mands at the end of the overall time horizon or in the
following days would generate a more heavily utilized
production schedule.

Conclusions

In this paper, a unit-specific event-based continuous-
time formulation is presented for the medium-term
production scheduling of a large-scale, multipurpose
industrial batch plant. The proposed formulation takes
into account a large number of processing recipes and
units and incorporates several features including var-
ious storage policies (UIS, NIS, ZW), variable batch
sizes and processing times, batch mixing and split-
ting, sequence-dependent changeover times, interme-
diate due dates, products used as raw materials, and
several modes of operation. The scheduling horizon is
several weeks or longer, however longer time periods
can be addressed with the proposed framework. A key
feature of the proposed formulation is the use of a de-

Medium-Term Scheduling of Batch Processes, Table 3
Unit utilization statistics for case 1

Unit Time Used (h) TimeLeft (h) Percent Utilized
Type 1–1 98.00 358.00 21.49%
Type 1–2 341.00 115.00 74.78%
Type 1–3 329.60 126.40 72.15%
Type 1–4 396.00 60.00 80.92%
Type 1–5 283.20 172.80 62.06%
Type 1–6 402.00 54.00 88.16%
Type 1–7 408.00 48.00 89.47%
Type 1–8 281.00 175.00 61.62%
Type 1–9 322.00 134.00 70.61%
Type 1–10 322.20 133.80 70.66%
Type 1–11 312.20 143.80 68.46%
Type 1–12 177.00 279.00 38.82%

Type 1–13 201.00 255.00 44.08%
Type 5 362.04 93.96 79.39%

composition model to split the overall scheduling hori-
zon into smaller subhorizons which are scheduled in
a sequential fashion. Also, new constraints are added
to the short-term scheduling model in order to model
the delivery of orders at intermediate due dates. The ef-
fectiveness of the proposed approach is demonstrated
with an industrial case study. Results indicate that the
rolling horizon approach is effective at solving large-
scale, medium-term production scheduling problems.
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Introduction

The vehicle routing problem (VRP) or the capacitated
vehicle routing problem (CVRP) is often described as
a problem in which vehicles based at a central depot
are required to visit geographically dispersed customers
in order to fulfill known customer demands. Let G D
(V ; E) be a graph where V D fi0; i1; i2; : : : ing is the
vertex set (ii D i0 refers to the depot and the customers
are indexed ii D i1; : : : ; in) and E D f(il ; il1 ) : il ; il1 2
Vg is the edge set. Each customer must be assigned to
exactly one of the k vehicles and the total size of deliv-
eries for customers assigned to each vehicle must not
exceed the vehicle capacity (Qk). If the vehicles are ho-
mogeneous, the capacity for all vehicles is equal and de-
noted by Q. A demand qi l and a service time sti l are
associated with each customer node il. The travel cost
between customers il and il1 is ci l i l1 . The problem is to
construct a low cost, feasible set of routes – one for each
vehicle. A route is a sequence of locations that a vehi-
cle must visit along with the indication of the service it
provides. The vehicle must start and finish its tour at
the depot. The most important variants of the vehicle
routing problem can be found in [12,13,39,54,84].

The vehicle routing problemwas first introduced by
Dantzig and Ramser [21]. As it is an NP-hard prob-
lem, the instances with a large number of customers
cannot be solved in optimality within reasonable time.
Due to the general inefficiency of the exact methods and
their inability to solve large scale VRP instances, a large
number of approximation techniques have been pro-
posed. These techniques are classified into two main
categories, the classical heuristics that were developed
mostly between 1960 and 1990 and the metaheuristics
that were developed in the last fifteen years.

In the 1960s and 1970s the first attempts to solve
the vehicle routing problem focused on route build-
ing, route improvement and two-phase heuristics. In
the 1980s a number of mathematical programming
procedures were proposed for the solution of the
problem. The most important of them can be found
in [6,18,19,22,28,29,33,62,88].

Metaheuristic Algorithms
for the Vehicle Routing Problem

The last fifteen years an incremental amount of meta-
heuristic algorithms have been proposed. Simulated
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annealing, genetic algorithms, neural networks, tabu
search, ant algorithms, together with a number of hy-
brid techniques are the main categories of the meta-
heuristic procedures. These algorithms have the ability
to find their way out of local optima. Surveys in meta-
heuristic algorithms have been published by [27,31,32,
49,50,79].

A number of metaheuristic algorithms have been
proposed for the solution of the Capacitated Vehicle
Routing Problem. The most important algorithms pub-
lished for each metaheuristic algorithm are given in the
following:
� Simulated Annealing (SA) [1,3,47,72] plays a spe-

cial role within local search for two reasons. First,
they appear to be quite successful when applied
to a broad range of practical problems. Second,
some threshold accepting algorithms such as SA
have a stochastic component, which facilitates a the-
oretical analysis of their asymptotic convergence.
Simulated Annealing [2] is a stochastic algorithm
that allows random uphill jumps in a controlled
fashion in order to provide possible escapes from
poor local optima. Gradually the probability allow-
ing the objective function value to increase is low-
ered until no more transformations are possible.
Simulated Annealing owes its name to an anal-
ogy with the annealing process in condensed mat-
ter physics, where a solid is heated to a maximum
temperature at which all particles of the solid ran-
domly arrange themselves in the liquid phase, fol-
lowed by cooling through careful and slow reduc-
tion of the temperature until the liquid is frozen
with the particles arranged in a highly structured lat-
tice andminimal system energy. This ground state is
reachable only if the maximum temperature is suffi-
ciently high and the cooling sufficiently slow. Other-
wise a meta-stable state is reached. The meta-
stable state is also reached with a process known
as quenching, in which the temperature is instan-
taneously lowered. Its predecessor is the so-called
Metropolis filter. Simulated Annealing algorithms
for the VRP are presented in [14,31,63].

� Threshold Accepting Method is a modification
of the Simulated Annealing, which together with
record to record travel [25,26] are known asDeter-
ministic Annealing methods. These methods leave
out the stochastic element in accepting worse solu-

tions by introducing a deterministic threshold de-
noted by Thm > 0, and accept a worse solution if
� D c(S0) � c(S) � Thm , where c is the cost of the
solution. This is the move acceptance criterion and
the subscript m is an iteration index. Dueck and
Scheurer [26] were the first to propose the Thre-
shold Accepting Method for the VRP. Tarantilis
et al. [81,82] proposed two very efficient algorithms
belonging to this class: the Backtracking Adaptive
Threshold Accepting (BATA) and the List-Based
Threshold Accepting (LBTA). Other Determinis-
tic Annealing methods were proposed by Golden
et al. [40], the Record-to-Record Travel Method
and by Li et al. [51].

� Tabu search (TS) was introduced by Glover [34,35]
as a general iterative metaheuristic for solving com-
binatorial optimization problems. Computational
experience has shown that TS is a well established
approximation technique, which can compete with
almost all known techniques and which, by its flexi-
bility, can beat many classic procedures. It is a form
of local neighbor search. Each solution S has an as-
sociated set of neighbors N(S). A solution S0 2 N(S)
can be reached from S by an operation called amove.
TS can be viewed as an iterative technique which
explores a set of problem solutions, by repeatedly
making moves from one solution S to another so-
lution S0 located in the neighborhood N(S) of S [37].
TS moves from a solution to its best admissible
neighbor, even if this causes the objective func-
tion to deteriorate. To avoid cycling, solutions that
have been recently explored are declared forbidden
or tabu for a number of iterations. The tabu sta-
tus of a solution is overridden when certain crite-
ria (aspiration criteria) are satisfied. Sometimes, in-
tensification and diversification strategies are used to
improve the search. In the first case, the search is
accentuated in the promising regions of the feasi-
ble domain. In the second case, an attempt is made
to consider solutions in a broad area of the search
space. Tabu Search algorithms for the VRP are pre-
sented in [7,9,20,30,63,70,71,77,85,89,90].

� Genetic Algorithms (GAs) are search procedures
based on the mechanics of natural selection and nat-
ural genetics. The first GAwas developed by John H.
Holland in the 1960s to allow computers to evolve
solutions to difficult search and combinatorial prob-
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lems, such as function optimization and machine
learning [44]. Genetic algorithms offer a particu-
larly attractive approach for problems like vehicle
routing problem since they are generally quite effec-
tive for rapid global search of large, non-linear and
poorly understood spaces. Moreover, genetic algo-
rithms are very effective in solving large-scale prob-
lems. Genetic algorithms [38,72] mimic the evolu-
tion process in nature. GAs are based on an imita-
tion of the biological process in which new and bet-
ter populations among different species are devel-
oped during evolution. Thus, unlike most standard
heuristics, GAs use information about a population
of solutions, called individuals, when they search for
better solutions. A GA is a stochastic iterative proce-
dure that maintains the population size constant in
each iteration, called a generation. Their basic oper-
ation is the mating of two solutions in order to form
a new solution. To form a new population, a bi-
nary operator called crossover, and a unary opera-
tor, called mutation, are applied [65,66]. Crossover
takes two individuals, called parents, and produces
two new individuals, called offsprings, by swapping
parts of the parents. Genetic Algorithms for the VRP
are presented in [4,5,8,11,45,56,53,60,64].

� Greedy Randomized Adaptive Search Procedure –
GRASP [73] is an iterative two phase search method
which has gained considerable popularity in com-
binatorial optimization. Each iteration consists of
two phases, a construction phase and a local search
procedure. In the construction phase, a randomized
greedy function is used to build up an initial solu-
tion. This randomized technique provides a feasi-
ble solution within each iteration. This solution is
then exposed for improvement attempts in the local
search phase. The final result is simply the best so-
lution found over all iterations. Greedy Randomized
Adaptive Search Procedure algorithms for the VRP
are presented in [17,42,55].

� The use of Artificial Neural Networks to find
good solutions to combinatorial optimization prob-
lems has recently caught some attention. A neural
network consists of a network [76] of elementary
nodes (neurons) that are linked through weighted
connections. The nodes represent computational
units, which are capable of performing a simple
computation, consisting of a summation of the

weighted inputs, followed by the addition of a con-
stant called the threshold or bias, and the applica-
tion of a nonlinear response (activation) function.
The result of the computation of a unit constitutes
its output. This output is used as an input for the
nodes to which it is linked through an outgoing con-
nection. The overall task of the network is to achieve
a certain network configuration, for instance a re-
quired input–output relation, by means of the col-
lective computation of the nodes. This process is of-
ten called self-organization. Neural Networks algo-
rithm for the VRP are presented in [61,83].

� The Ant Colony Optimization (ACO)metaheuris-
tic is a relatively new technique for solving com-
binatorial optimization problems (COPs). Based
strongly on the Ant System (AS) metaheuristic de-
veloped by Dorigo, Maniezzo and Colorni [24], ant
colony optimization is derived from the foraging
behaviour of real ants in nature. The main idea of
ACO is to model the problem as the search for
a minimum cost path in a graph. Artificial ants walk
through this graph, looking for good paths. Each ant
has a rather simple behavior so that it will typically
only find rather poor-quality paths on its own. Bet-
ter paths are found as the emergent result of the
global cooperation among ants in the colony. An
ACO algorithm consists of a number of cycles (it-
erations) of solution construction. During each it-
eration a number of ants (which is a parameter)
construct complete solutions using heuristic infor-
mation and the collected experiences of previous
groups of ants. These collected experiences are rep-
resented by a digital analogue of trail pheromone
which is deposited on the constituent elements of
a solution. Small quantities are deposited during
the construction phase while larger amounts are de-
posited at the end of each iteration in proportion
to solution quality. Pheromone can be deposited
on the components and/or the connections used in
a solution depending on the problem. Ant Colony
Optimization algorithms for the VRP are presented
in [10,15,16,23,57,67,68,69].

� Path Relinking This approach generates new so-
lutions by exploring trajectories that connect high-
quality solutions – by starting from one of these
solutions, called the starting solution and generat-
ing a path in the neighborhood space that leads
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towards the other solution, called the target solu-
tion [36]. Two new metaheuristic algorithms using
the path relinking strategy as a part first of Tabu
Search Metaheuristic is proposed in [43] and second
as a part of a Particle Swarm Optimization Meta-
heuristic is proposed in [52].

� Guided Local Search (GLS), originally proposed by
Voudouris and Chang [86,87], is a general optimiza-
tion technique suitable for a wide range of combi-
natorial optimization problems. The main focus is
on the exploitation of problem and search-related
information to effectively guide local search heuris-
tics in the vast search spaces of NP-hard optimiza-
tion problems. This is achieved by augmenting the
objective function of the problem to be minimized
with a set of penalty terms which are dynamically
manipulated during the search process to steer the
heuristic to be guided. GLS augments the cost func-
tion of the problem to include a set of penalty terms
and passes this, instead of the original one, for mini-
mization by the local search procedure. Local search
is confined by the penalty terms and focuses atten-
tion on promising regions of the search space. Iter-
ative calls are made to local search. Each time local
search gets caught in a local minimum, the penal-
ties are modified and local search is called again
to minimize the modification cost function. Guided
Local Search algorithms for the VRP are presented
in [58,59].

� Particle Swarm Optimization (PSO) is a popu-
lation-based swarm intelligence algorithm. It was
originally proposed by Kennedy and Eberhart as
a simulation of the social behavior of social organ-
isms such as bird flocking and fish schooling [46].
PSO uses the physical movements of the individuals
in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to the global and
local exploration abilities. The first algorithm for the
solution of the Vehicle Routing Problem was pro-
posed by [52].

� One of the most interesting developments that have
occurred in the area of TS in recent years is the con-
cept of Adaptive Memory developed by Rochat and
Taillard [74]. It is, mostly, used in TS, but its applica-
bility is not limited to this type of metaheuristic. An
adaptive memory is a pool of good solutions that is
dynamically updated throughout the search process.

Periodically, some elements of these solutions are
extracted from the pool and combined differently to
produce new good solutions. Very interesting and
efficient algorithms based on the concept of Adap-
tive Memory have been proposed [74,78,79,80].

� Variable Neighborhood Search (VNS) is a meta-
heuristic for solving combinatorial optimization
problems whose basic idea is systematic change of
neighborhood within a local search [41]. Variable
Neighborhood Search algorithms for the VRP are
presented in [48].
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Introduction

Many decision problems in various areas such as busi-
ness, engineering, economics, and science, including
those in manufacturing, location, routing, and schedul-
ing, may be formulated as optimization problems. Ow-
ing to the complexity of many of these optimization
problems, particularly those of large sizes encountered
in most practical settings, exact algorithms often per-
form very poorly, in some cases taking days or more
to find moderately decent, let alone optimal, solutions
even to fairly small instances. As a result, heuristic al-
gorithms are conspicuously preferable in practical ap-
plications.

As an extension of simple heuristics, a large num-
ber of local search approaches have been developed to
improve given feasible solutions. The main drawback
of these approaches is their inability to continue the
search upon becoming trapped in local optima. This
leads to consideration of techniques for guiding known
heuristics to overcome local optimality. Following this
theme metaheuristics have become a most important
class of approaches for solving optimization problems.
They supportmanagers in decision-making with robust
tools that provide high-quality solutions to important
applications in reasonable time horizons.

We describe metaheuristics mainly from an oper-
ations research perspective. Earlier survey papers on
metaheuristics include those of Blum and Roli [14] and
Voß [95]. Here we occasionally rely on the latter. The
general concepts have not become obsolete, and many
changes are mainly based upon an update to most re-
cent references. A handbook on metaheuristics is avail-
able describing a great variety of concepts by various
authors in a comprehensive manner [44].
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Definitions

The basic concept of heuristic search as an aid to prob-
lem solving was first introduced in [76]. A heuristic is
a technique (consisting of a rule or a set of rules) which
seeks (and hopefully finds) good solutions at a reason-
able computational cost. A heuristic is approximate in
the sense that it provides (hopefully) a good solution for
relatively little effort, but it does not guarantee optimal-
ity.

Heuristics provide simple means of indicating
which among several alternatives seems to be best. That
is, “Heuristics are criteria, methods, or principles for
deciding which among several alternative courses of
action promises to be the most effective in order to
achieve some goal. They represent compromises be-
tween two requirements: the need to make such crite-
ria simple and, at the same time, the desire to see them
discriminate correctly between good and bad choices.
A heuristic may be a rule of thumb that is used to guide
one’s action” [73].

Greedy heuristics are simple iterative approaches
available for any kind of (e. g., combinatorial) optimiza-
tion problem. A good characterization is their myopic
behavior. A greedy heuristic starts with a given feasible
or infeasible solution. In each iteration there are a num-
ber of alternative choices (moves) that can be made to
transform the solution. From these alternatives which
consist in fixing (or changing) one or more variables,
a greedy choice is made, i. e., the best alternative accord-
ing to a given measure is chosen until no such transfor-
mations are possible any longer.

Usually, a greedy construction heuristic starts with
an incomplete solution and completes it stepwise. Sav-
ings and dual algorithms follow the same iterative
scheme: dual heuristics change an infeasible low-cost
solution until reaching feasibility; savings algorithms
start with a high-cost solution and realize the highest
savings as long as possible. Moreover, in all three cases,
once an element has been chosen this decision is (usu-
ally) not reversed throughout the algorithm, it is kept.

As each alternative has to be measured, in general
we may define some sort of heuristic measure (provid-
ing, e. g., some priority values or some ranking infor-
mation) which is iteratively followed until a complete
solution is built. Usually this heuristic measure is ap-
plied in a greedy fashion.

For heuristics we usually have the distinction be-
tween finding initial feasible solutions and improving
them. In that sense we first discuss local search before
characterizing metaheuristics.

Local Search

The basic principle of local search is to successively
alter solutions locally. Related transformations are de-
fined by neighborhoods which for a given solution in-
clude all solutions that can be reached by one move.
That is, neighborhood search usually is assumed to
correspond to the process of iteratively moving from
one solution to another one by performing some
sort of operation. More formally, each solution of
a problem has an associated set of neighbors called
its neighborhood, i. e., solutions that can be obtained
by a single operation called transformation or move.
Most common ideas for transformations are, e. g., to
add or drop some problem-specific individual com-
ponents. Other options are to exchange two com-
ponents simultaneously, or to swap them. Further-
more, components may be shifted from a certain po-
sition into other positions. All components involved
within a specific move are called its elements or at-
tributes.

Moves must be evaluated by some heuristic mea-
sure to guide the search. Often one uses the implied
change of the objective function value, which may pro-
vide reasonable information about the (local) advan-
tage of moves. Following a greedy strategy, steepest de-
scent (SD) corresponds to selecting and performing in
each iteration the best move until the search stops at
a local optimum. Obviously, savings algorithms corre-
spond to SD.

As the solution quality of local optima may be
unsatisfactory, we need mechanisms which guide the
search to overcome local optimality. A simple strategy
called iterated local search is to iterate/restart the local
search process after a local optimum has been obtained,
which requires some perturbation scheme to generate
a new initial solution (e. g., performing some random
moves). Of course, more structured ways to overcome
local optimality may be advantageous.

A general survey of local search can be found in [1]
and the references from [2]. A simple template is pro-
vided in [90].
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Starting in the 1970s (see Lin and Kernighan [66]),
a variable way of handling neighborhoods is still a topic
within local search. Consider an arbitrary neighbor-
hood structure N, which defines for any solution s
a set of neighbor solutions N1(s) as a neighborhood
of depth d D 1. In a straightforward way, a neigh-
borhood NdC1(s) of depth d C 1 is defined as the
set Nd (s) [ fs0j9s00 2 Nd (s) : s0 2 N1(s00)g. In general,
a large d might be unreasonable, as the neighborhood
size may grow exponentially. However, depths of two
or three may be appropriate. Furthermore, temporarily
increasing the neighborhood depth has been found to
be a reasonable mechanism to overcome basins of at-
traction, e. g., when a large number of neighbors with
equal quality exist.

Large-scale neighborhoods have become an impor-
tant topic (see, e. g., [5] for a survey), especially when
efficient ways are at hand for exploring them. Related
research can also be found under various names; see,
e. g., [75] for the idea of ejection chains.

Stochastic local search is pretty much all we know
about local search but is enhanced by randomizing
choices. That is, a stochastic local search algorithm is
a local search algorithm making use of randomized
choices in generating or selecting candidate solutions
for given instances of optimization problems. Random-
ness may be used for search initialization as well as the
computation of search steps. A comprehensive treat-
ment of stochastic local search is given in [58].

Metaheuristics, Figure 1
Simplified metaheuristics inheritance tree

Metaheuristics

The formal definition of metaheuristics is based on
a variety of definitions from different authors based
on [39]. Basically, a metaheuristic is a top-level strat-
egy that guides an underlying heuristic solving a given
problem. In that sense we distinguish between a guiding
process and an application process. The guiding process
decides upon possible (local) moves and forwards its
decision to the application process, which then executes
the move chosen. In addition, it provides information
for the guiding process (depending on the requirements
of the respective metaheuristic) like the recomputed set
of possible moves.

According to [43], “metaheuristics in their modern
forms are based on a variety of interpretations of what
constitutes intelligent search”, where the term “intelli-
gent search” has been made prominent by Pearl [73]
(regarding heuristics in an artificial intelligence con-
text; see also [92] regarding an operations research con-
text). In that sense we may also consider the following
definition: “A metaheuristic is an iterative generation
process which guides a subordinate heuristic by com-
bining intelligently different concepts for exploring and
exploiting the search spaces using learning strategies to
structure information in order to find efficiently near-
optimal solutions” [72].

To summarize, the following definition seems to
be most appropriate: “A metaheuristic is an iterative
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master process that guides and modifies the opera-
tions of subordinate heuristics to efficiently produce
high-quality solutions. It may manipulate a complete
(or incomplete) single solution or a collection of so-
lutions at each iteration. The subordinate heuristics
may be high (or low) level procedures, or a simple lo-
cal search, or just a construction method. The fam-
ily of metaheuristics includes, but is not limited to,
adaptive memory procedures, tabu search, ant systems,
greedy randomized adaptive search, variable neighbor-
hood search, evolutionary methods, genetic algorithms,
scatter search, neural networks, simulated annealing,
and their hybrids” (p. ix in [97]).

We describe the ingredients and basic concepts of
various metaheuristic strategies like tabu search (TS),
simulated annealing (SA), and scatter search. This is
based on a simplified view of a possible inheritance tree
for heuristic search methods, illustrating the relation-
ships between some of the most important methods
discussed below, as shown in Fig. 1.

We also emphasize advances including the impor-
tant incorporation of exact methods into intelligent
search. Furthermore, general frames are sketched that
may subsume various approaches within the meta-
heuristics field.

Metaheuristic Methods

We survey the basic concepts of some of the most
important metaheuristics. We shall see that adaptive
processes originating from different settings such as
psychology (“learning”), biology (“evolution”), physics
(“annealing”), and neurology (“nerve impulses”) have
served as interesting starting points.

Simple Local Search Based Metaheuristics

To improve the efficiency of greedy heuristics, one may
apply generic strategies to be used alone or in combina-
tion with each other, namely, changing the definition
of alternative choices, look ahead evaluation, candidate
lists, and randomized selection criteria bound up with
repetition, as well as combinations with local search or
other methods.

Greedy Randomized Adaptive Search Omitting
a greedy choice criterion for a random strategy, one
can run the algorithm several times and obtain a large

number of different solutions. A combination of best
and random choice seems to be appropriate: We define
a candidate list as a list consisting of a number of (best,
i. e., first best, second best, third best, etc.) alternatives.
Out of this list one alternative is chosen randomly. The
length of the candidate list is given either as an abso-
lute value, a percentage of all feasible alternatives, or
implicitly by defining an allowed quality gap (to the
best alternative), which also may be an absolute value
or a percentage.

Replicating a search procedure to determine a local
optimum multiple times with different starting points
has been given the acronym GRASP and investigated
with respect to different applications. A comprehensive
survey of GRASP and its applications is given in [32].
It should be noted that GRASP goes back to older ap-
proaches [52], which is frequently overlooked in many
applications. The different initial solutions or starting
points are found by a greedy procedure incorporating
a probabilistic component. That is, given a candidate
list to choose from, GRASP randomly chooses one of
the best candidates from this list in a greedy fashion,
but not necessarily the best possible choice.

The underlying principle is to investigate many
good starting points through the greedy procedure and
thereby to increase the possibility of finding a good lo-
cal optimum on at least one replication. The method
is said to be adaptive as the greedy function takes into
account previous decisions when performing the next
choice.

The Pilot Method Building on a simple greedy algo-
rithm such as, e. g., a construction heuristic, the pilot
method [29,30] is a metaheuristic not necessarily based
on a local search in combination with an improvement
procedure. It primarily looks ahead for each possible lo-
cal choice (by computing a so-called “pilot” solution),
memorizing the best result, and performing the respec-
tive move. (Very similar ideas have been investigated
under the name rollout method [13].) One may ap-
ply this strategy by successively performing a greedy
heuristic for all possible local steps (i. e., starting with
all incomplete solutions resulting from adding some
not yet included element at some position to the cur-
rent incomplete solution). The look ahead mechanism
of the pilot method is related to increased neighbor-
hood depths as the pilot method exploits the evaluation
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of neighbors at larger depths to guide the neighbor se-
lection at depth one.

In most applications, it is reasonable to restrict
the pilot process to some evaluation depth. That is,
the method is performed up to an incomplete solu-
tion (e. g., partial assignment) based on this evaluation
depth and is then completed by continuing with a con-
ventional heuristic. For a recent study applying the pi-
lot method to several combinatorial optimization prob-
lems obtaining very good results see [96]. Additional
applications can be found, e. g., in [18,68].

Variable Neighborhood Search The basic idea of
variable neighborhood search (VNS) is to change the
neighborhood during the search in a systematic way.
VNS usually explores increasingly distant neighbor-
hoods of a given solution, and jumps from this solution
to a new one if and only if an improvement has been
made. In this way often favorable characteristics of in-
cumbent solutions, e. g., that many variables are already
at their appropriate value, will be kept and used to ob-
tain promising neighboring solutions.

Moreover, a local search routine is applied repeat-
edly to get from these neighboring solutions to local op-
tima. This routine may also use several neighborhoods.
Therefore, to construct different neighborhood struc-
tures and to perform a systematic search, one needs to
have a way for finding the distance between any two so-
lutions, i. e., one needs to supply the solution space with
some metric (or quasi-metric) and then induce neigh-
borhoods from it. For an excellent treatment of various
aspects of VNS see [51].

Simulated Annealing

Simulated annealing (SA) extends basic local search by
allowing moves to inferior solutions [26,64]. A basic
SA algorithm may be described as follows: Successively,
a candidate move is randomly selected; this move is ac-
cepted if it leads to a solution with an improved objec-
tive function value compared to the current solution,
otherwise, the move is accepted with a probability de-
pending on the deterioration � of the objective func-
tion value. The acceptance probability is computed as
e��/T , using a temperature T as a control parameter.
Usually, T is reduced over time for diversification at an
earlier stage of the search and to intensify later.

Various authors have described a robust concretiza-
tion of this general SA approach [60,62]. An interesting
variant of SA is to strategically reheat the process, i. e.,
to perform a nonmonotonic acceptance function.

Threshold accepting [28] is a modification (or sim-
plification) of SA accepting every move that leads to
a new solution which is “not much worse” (i. e., deteri-
orates not more than a certain threshold which reduces
with temperature) than the older one.

Tabu Search

The basic paradigm of tabu search (TS) is to use infor-
mation about the search history to guide local search
approaches to overcome local optimality (see [43] for
a survey on TS). In general, this is done by a dynamic
transformation of the local neighborhood. Based on
some sort of memory, certain moves may be forbidden;
we say they are set tabu. As for SA, the search may lead
to performing deteriorating moves when no improving
moves exist or when all improving moves of the current
neighborhood are set tabu. At each iteration a best ad-
missible neighbor may be selected. A neighbor, or a cor-
responding move, is called admissible if it is not tabu
or if an aspiration criterion is fulfilled. An aspiration
criterion is a rule to eventually override a possibly un-
reasonable tabu status of a move. For example, a move
that leads to a neighbor with a better objective function
value than encountered so far should be considered as
admissible.

We briefly describe some TS methods that differ es-
pecially in the way in which tabu criteria are defined,
taking into consideration the information about the
search history (performed moves, traversed solutions).

The most commonly used TS method is based on
a recency-basedmemory that stores moves, or attributes
characterizing respective moves, of the recent past
(static TS). The basic idea of such approaches is to pro-
hibit an appropriately defined inversion of performed
moves for a given period. For example, one may store
the solution attributes that have been created by a per-
formed move in a tabu list. To obtain the current tabu
status of a move to a neighbor, one may check whether
(or how many of) the solution attributes that would be
destroyed by this move are contained in the tabu list.

Strict TS embodies the idea of preventing cycling to
formerly traversed solutions. The goal is to provide ne-
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cessity and sufficiency with respect to the idea of not
revisiting any solution. Accordingly, a move is classi-
fied as tabu if and only if it leads to a neighbor that
has already been visited during the previous search.
There are two primary mechanisms to accomplish the
tabu criterion: First, we may exploit logical interde-
pendencies between the sequence of moves performed
throughout the search process, as realized by, e. g., the
reverse elimination method and the cancellation se-
quence method [40,94]. Second, we may store infor-
mation about all solutions visited so far. This may be
carried out either exactly or, for reasons of efficiency,
approximately (e. g., by using hash codes).

Reactive TS aims at the automatic adaptation of the
tabu list length of static TS [12]. The idea is to in-
crease the tabu list length when the tabu memory in-
dicates that the search is revisiting formerly traversed
solutions. A possible specification can be described as
follows: Starting with a tabu list length l of 1 it is in-
creased every time a solution has been repeated. If there
has been no repetition for some iterations, we decrease
it appropriately. To accomplish the detection of a rep-
etition of a solution, one may apply a trajectory-based
memory using hash codes as for strict TS.

For reactive TS [12], it is appropriate to include
means for diversifying moves whenever the tabu mem-
ory indicates that we are trapped in a certain region
of the search space. As a trigger mechanism one may
use, e. g., the combination of at least two solutions each
having been traversed three times. A very simple escape
strategy is to perform a number of random moves (de-
pending on the average of the number of iterations be-
tween solution repetitions); more advanced strategies
may take into account some long-term memory infor-
mation (like the frequencies of appearance of specific
solution attributes in the search history).

Of course there are a great variety of additional in-
gredients that may make TS work successfully, e. g., re-
stricting the number of neighbor solutions to be evalu-
ated (using candidate list strategies).

Evolutionary Algorithms

Evolutionary algorithms comprise a great variety of dif-
ferent concepts and paradigms, including genetic algo-
rithms (GAs) [45,56], evolutionary strategies [55,83],
evolutionary programs [36], scatter search [38,41], and

memetic algorithms [71]. For surveys and references on
evolutionary algorithms see also [9,37,69,78].

GAs are a class of adaptive search procedures based
on principles derived from the dynamics of natural
population genetics. One of the most crucial ideas
for a successful implementation of a GA is the rep-
resentation of an underlying problem by a suitable
scheme. A GA starts, e. g., with a randomly created
initial population of artificial creatures (strings), a set
of solutions. These strings in whole and in part are
the base set for all subsequent populations. They are
copied and information is exchanged between the
strings in order to find new solutions of the underly-
ing problem. The mechanisms of a simple GA essen-
tially consist of copying strings and exchanging par-
tial strings. A simple GA uses three operators which
are named according to the corresponding biological
mechanisms: reproduction, crossover, and mutation.
Performing an operator may depend on a fitness func-
tion or its value (fitness), respectively. As some sort
of heuristic measure, this function defines a means
of measurement for the profit or the quality of the
coded solution for the underlying problem and often
depends on the objective function of the given prob-
lem.

GAs are closely related to evolutionary strategies.
Whereas the mutation operator in a GA serves to pro-
tect the search from premature loss of information,
evolution strategies may incorporate some sort of lo-
cal search procedure (such as SD) with self-adapting
parameters involved in the procedure. On a simpli-
fied scale many algorithms may be coined evolutionary
once they are reduced to the following frame [54]:
1. Generate an initial population of individuals.
2. While no stopping condition is met do.
3. Co-operation.
4. Self-adaptation.
Self-adaptation refers to the fact that individuals (solu-
tions) evolve independently while co-operation refers
to an information exchange among individuals.

Scatter search ideas established a link between early
ideas from various sides – evolutionary strategies, TS,
and GAs. As an evolutionary approach, scatter search
originated from strategies for creating composite deci-
sion rules and surrogate constraints [38]. Scatter search
is designed to operate on a set of points, called ref-
erence points, that constitute good solutions obtained
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from previous solution efforts. The approach system-
atically generates linear combinations of the reference
points to create new points, each of which is mapped
into an associated point that yields integer values for
discrete variables. Scatter search contrasts with other
evolutionary procedures, such as GAs, by providing
unifying principles for joining solutions based on gen-
eralized path constructions in Euclidean space and by
utilizing strategic designs where other approaches re-
sort to randomization. For a very comprehensive treat-
ment of scatter search see [65].

Swarm Intelligence

Swarm intelligence is a relatively novel discipline inter-
ested in the study of self-organizing processes in nature
and human artifacts [15,63]. While researchers in eth-
nology and animal behavior have proposed many mod-
els to explain various aspects of social insect behavior
such as self-organization and shape formation, algo-
rithms inspired by these models have been proposed to
solve optimization problems. Successful examples are
the so-called ant system or ant colony paradigm, the bee
system, and swarm robotics, where the focus is on ap-
plying swarm intelligence techniques to the control of
large groups of cooperating autonomous robots.

The ant system is a dynamic optimization process
reflecting the natural interaction between ants search-
ing for food [23]. The ants’ ways are influenced by two
different kinds of search criteria. The first one is the lo-
cal visibility of food, i. e., the attractiveness of food in
each ant’s neighborhood. Additionally, each ant’s way
through its food space is affected by the other ants’ trails
as indicators for possibly good directions. The inten-
sity of trails itself is time-dependent: With time passing,
parts of the trails are diminishing, while the intensity
may increase by new and fresh trails. With the quan-
tities of these trails changing dynamically, an autocat-
alytic optimization process is started forcing the ants’
search into most promising regions. This process of in-
teractive learning can easily be modeled for most kinds
of optimization problems by using simultaneously and
interactively processed search trajectories.

A comprehensive treatment of the ant system
paradigm can be found in [24]. To achieve enhanced
performance of the ant system it is useful to hybridize
it at least with a local search component.

Miscellaneous

Target analysismay be viewed as a general learning ap-
proach. Given a problemwe first explore a set of sample
instances and an extensive effort is made to obtain a so-
lution which is optimal or close to optimality. The best
solutions obtained provide targets to be sought within
the next part of the approach. For instance, a TS algo-
rithm may resolve the problems with the aim of find-
ing what are the right choices to come to the already
known solution (or as close to it as possible). This may
give some information on how to choose parameters for
other problem instances.

A different method in this context is path relinking
(PR), which provides a useful means of intensification
and diversification. Here new solutions are generated
by exploring search trajectories that combine elite solu-
tions, i. e., solutions that have proven to be better than
others throughout the search. For references on target
analysis and PR see [43].

Recalling local search based on data perturbation
the noising method may be related to the following
approach too. Given an initial feasible solution, the
method performs some data perturbation [87] in or-
der to change the values taken by the objective function
of a respective problem to be solved. On the perturbed
data a local search may be performed (e. g., following
a SD approach). The amount of data perturbation (the
noise added) is successively reduced until it reaches
zero. The noising method is applied, e. g., in [19] for
the clique partitioning problem.

The key issue in designing parallel algorithms is
to decompose the execution of the various ingredients
of a procedure into processes executable by parallel
processors. In contrast to ant systems or GAs, meta-
heuristics like TS or SA, at first glance, have an in-
trinsic sequential nature owing to the idea of perform-
ing the neighborhood search from one solution to the
next. However, some effort has been undertaken to de-
fine templates for parallel local search [20,90,91,93].
A comprehensive treatment with successful applica-
tions is provided in [6]. The discussion of parallel meta-
heuristics has also led to interesting hybrids such as the
combination of a population of individual processes,
agents, in a cooperative and competitive nature (see,
e. g., the discussion of memetic algorithms in [71]) with
TS.
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Neural networks may be considered as metaheuris-
tics, although we have not considered them here; see
[85] for a comprehensive survey of these techniques for
combinatorial optimization. In contrast, one may use
metaheuristics to speed up the learning process regard-
ing artificial neural networks; see [7] for a comprehen-
sive consideration.

Furthermore, recent efforts on problems with mul-
tiple objectives and corresponding metaheuristic ap-
proaches can be found in [61]. See [82] for some ideas
regarding GAs and fuzzy multiobjective optimization.

General Frames

An important avenue of metaheuristics research refers
to general frames (to explain the behavior and the rela-
tionship between various methods) as well as the devel-
opment of software systems incorporating metaheuris-
tics (eventually in combination with other methods).
Besides other aspects, this takes into consideration that
in metaheuristics it has very often been appropriate
to incorporate a certain means of diversification vs.
intensification to lead the search into new regions of
the search space. This requires a meaningful mecha-
nism to detect situations when the search might be
trapped in a certain area of the solution space. There-
fore, within intelligent search the exploration of mem-
ory plays a most important role.

Adaptive Memory Programming

Adaptive memory programming (AMP) coins a gen-
eral approach (or even thinking) within heuristic search
focusing on exploiting a collection of memory com-
ponents [42,89]. An AMP process iteratively con-
structs (new) solutions based on the exploitation of
somememory, especially when combined with learning
mechanisms supporting the collection and use of the
memory. Based on the idea of initializing the memory
and then iteratively generating new solutions (utilizing
the given memory) while updating the memory based
on the search, we may subsume various of the above-
described metaheuristics as AMP approaches. This also
includes exploiting provisional solutions that are im-
proved by a local search approach.

The performance as well as the efficiency of
a heuristic scheme strongly depends on its ability to
use AMP techniques providing flexible and variable

strategies for types of problems (or special instances
of a given problem type) where standard methods fail.
Such AMP techniques could be, e. g., dynamic handling
of operational restrictions, dynamic move selection for-
mulas, and flexible function evaluations.

Consider, as an example, adaptive memory within
TS concepts. Realizing AMP principles depends on
which specific TS application is used. For example, the
reverse elimination method observes logical interde-
pendencies between moves and infers corresponding
tabu restrictions, and therefore makes fuller use of AMP
than simple static approaches do.

To discuss the use of AMP in intelligent agent
systems, one may use the simple model of ant sys-
tems as an illustrative starting point. Ant systems are
based on combining local search criteria with infor-
mation derived from the trails. This follows the AMP
requirement for using flexible (dynamic) move selec-
tion rules (formulas). However, the basic ant system
exhibits some structural inefficiencies when viewed
from the perspective of general intelligent agent sys-
tems, as no distinction is made between successful and
less successful agents, no time-dependent distinction
is made, and there is no explicit handling of restric-
tions providing protection against cycling and duplica-
tion. Furthermore, there are possible conflicts between
the information held in the adaptive memory (diverging
trails).

A Pool Template

In [48] a pool template (PT) is proposed as can be seen
in Fig. 2. The following notation is used. A pool of
p � 1 solutions is denoted by P. Its input and output
transfer is managed by two functions which are called
IF and OF, respectively. S is a set of solutions with car-
dinality s � 1. A solution combination method (proce-
dure SCM) constructs a solution from a given set S, and
IM is an improvement method.

Depending on the method used, in step 1 a pool
is either completely (or partially) built by a (random-
ized) diversification generator or filled with a single so-
lution which has been provided, e. g., by a simple greedy
approach. Note that a crucial parameter that deserves
careful elaboration is the cardinality p of the pool. The
main loop, executed until a termination criterion holds,
consists of steps 2–5. Step 2 is the call of the output
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1. Initialize P by an external procedure
WHILE termination=FALSE DO BEGIN

2. S := OF(P)
3. IF s > 1 THEN S0 := SCM(S)

ELSE S0 := S
4. S00 := IM(S0)
5. P := IF(S00)

END
6. Apply a post-optimizing procedure to P

Metaheuristics, Figure 2
Pool template

function which selects a set of solutions, S, from the
pool. Depending on the kind of method represented in
the PT, these solutions may be assembled (step 3) to
a working solution S0 which is the starting point for the
improvement phase of step 4. The outcome of the im-
provement phase, S00, is then evaluated by means of the
input function, which possibly feeds the new solution
into the pool. Note that a post-optimization procedure
in step 6 is for facultative use. It may be a straightfor-
ward greedy improvement procedure if used for single-
solution heuristics or a pool method on its own. As an
example we quote a sequential poolmethod, the TSwith
PR in [11]. Here a PR phase is added after the pool
has been initialized by a TS. A parallel pool method on
the other hand uses a pool of solutions while it is con-
structed by the guiding process (e. g., a GA or scatter
search).

Several heuristic and metaheuristic paradigms,
whether they are obviously pool-oriented or not, can be
summarized under the common PT frame. We provide
the following examples:
a) Local search/SD: PT with p D s D 1.
b) SA: p D 2; s D 1 incorporating its probabilistic ac-

ceptance criterion in IM. (It should be noted that
p D 2 and s D 1 seems to be unusual at first glance.
For SA we always have a current solution in the
pool for which one or more neighbors are evalu-
ated and eventually a neighbor is found which re-
places the current solution. Furthermore, at all itera-
tions throughout the search the so far best solution is
stored too (even if no real interaction between those
two stored solutions takes place). The same is also
valid for a simple TS. As for local search the current

solution corresponds to the best solution of the spe-
cific search, we have p D 1.)

c) Standard TS: p D 2; s D 1 incorporating adaptive
memory in IM.

d) GAs: p > 1 and s > 1 with population mechanism
(crossover, reproduction, and mutation) in SCM of
step 3 and without the use of step 4.

e) Scatter search: p > 1 and s > 1 with subset genera-
tion inOF of step 2, linear combination of elite solu-
tions by means of SCM in step 3, e. g., a TS for pro-
cedure IM and a reference set update method in IF
of step 5.

f) PR (as a parallel pool method): p > 1 and s D 2 with
a PR neighborhood in SCM. Facultative use of step 4.

Partial Optimization Metaheuristic
Under Special Intensification Conditions

A natural way to solve large optimization problems
is to decompose them into independent subproblems
that are solved with an appropriate procedure. How-
ever, such approaches may lead to solutions of moder-
ate quality since the subproblems might have been cre-
ated in a somewhat arbitrary fashion. Of course, it is not
easy to find an appropriate way to decompose a prob-
lem a priori. The basic idea of POPMUSIC conditions
is to locally optimize subparts of a solution, a posteri-
ori, once a solution to the problem is available. These
local optimizations are repeated until a local optimum
is found. Therefore, POPMUSICmay be viewed as a lo-
cal search working with a special, large neighborhood.
While the acronym POPMUSIC was given by Taillard
and Voß [88] other metaheuristics may be incorporated
into the same framework too [84].

For large optimization problems, it is often pos-
sible to see the solutions as composed of parts (or
chunks [102], cf. the term “vocabulary building”). Con-
sidering the vehicle routing problem, a part may be
a tour (or even a customer). Suppose that a solution can
be represented as a set of parts. Moreover, some parts
are more in relation with some other parts, so a cor-
responding heuristic measure can be defined between
two parts. The central idea of POPMUSIC is to select
a so-called seed part and a set P of parts that are mostly
related to the seed part to form a subproblem.

Then it is possible to state a local search optimiza-
tion frame that consists of trying to improve all sub-
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problems that can be defined, until the solution does
not contain a subproblem that can be improved. In the
POPMUSIC frame of [88], P corresponds precisely to
seed parts that have been used to define subproblems
that have been unsuccessfully optimized. Once P con-
tains all the parts of the complete solution, all subprob-
lems have been examined without success and the pro-
cess stops.

Basically, the technique is a gradient method that
starts from a given initial solution and stops in a local
optimum relative to a large neighborhood structure.
To summarize, both POPMUSIC as well as AMP may
serve as a general frame encompassing various other
approaches.

Hybrids with Exact Methods

Often a new idea or a new paradigm in metaheuristics
is claimed to be the idea by the inventor, while oth-
ers see it as useless in the first instance. However, once
it has been hybridized, things begin to fly. Especially
in population-based metaheuristics, many researchers
have followed this trend. That is, we now see many
hybrid approaches where the successful ingredients of
various metaheuristics have been combined. The term
“hybridization”, however, goes further, as it also refers
to combining metaheuristics with exact methods.

Traditionally, the structure of neighborhoods is de-
termined by local transformations or moves. This usu-
ally refers to relatively small homogeneous neighbor-
hoods. Different types of moves have been used in the
construction of very large and diverse neighborhoods.
In contrast, as a hybrid one may deploy neighborhoods
that are method-based. By this we mean that the basic
structure of a neighborhood is determined by the needs
and requirements of a given (say, exact) optimization
method used to search the neighborhood. That is, given
an incumbent solution one may define the neighbor-
hood so that an exact method can be efficiently used
rather than defining a neighborhood and trying to find
an appropriate method to explore it. This approach was
called corridor method by Sniedovich and Voß [86] as
it literally defines a neighborhood as a sufficiently sized
corridor around a given solution so that a given exact
method behaves well. Iteratively the corridor is moved
through the search space for exploration.

Constraint programming (CP) is a paradigm for rep-
resenting and solving a wide variety of problems ex-
pressed by means of variables, their domains, and con-
straints on the variables. Usually CP models are solved
using depth-first search and branch and bound. Nat-
urally, these concepts can be complemented by local
search concepts and metaheuristics. This idea is fol-
lowed by several authors; see [21] for TS and guided
local search hybrids. Commonalities with the POPMU-
SIC approach can be deduced from [74].

Of course, the treatment of this topic is by no means
complete and various ideas have been developed. One
idea is to transform a greedy heuristic into a search al-
gorithm by branching only in a few (i. e., limited num-
ber) cases when the choice criterion of the heuristic ob-
serves some borderline case or where the choice is least
compelling, respectively. This approach may be called
limited discrepancy search [17,53].

Independent from the CP concept, one may inves-
tigate hybrids of branch and bound and metaheuristics,
e. g., for deciding upon branching variables or search
paths to be followed within a branch and bound tree
(see [103] for an application of reactive TS). Here we
may also use the term “cooperative solver.” Somewhat
related is the local branching concept for solving mixed
integer programs (MIP), which seeks to explore neigh-
borhoods defined through (invalid) linear cuts. The
neighborhoods are searched by means of a general pur-
pose MIP solver [35].

Correspondingly, one of the current research is-
sues refers to exploiting mathematical programming
(MP) techniques in a (meta)heuristic framework or,
correspondingly, granting to MP approaches the cross-
problem robustness and computation time effective-
ness which characterize metaheuristics. Discriminating
landmark is some form of exploitation of a MP formu-
lation, e. g., by means of MIP. In this respect various
efforts have been made towards developing strategies
for making a heuristic sequence of roundings to obtain
feasible solutions for problems represented bymeans of
appropriate MIP [3,34].

Optimization Software Libraries

Besides some well-known approaches for reusable soft-
ware in the field of exact optimization (e. g., CPLEX
or ABACUS; see http://www.ilog.com and http://www.

http://www.ilog.com
http://www.informatik.uni-koeln.de/abacus
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informatik.uni-koeln.de/abacus) some ready-to-use
and well-documented component libraries in the field
of local search based heuristics and metaheuristics have
been developed; see especially the contributions in [98].

The most successful approaches documented in
the literature are the heuristic optimization frame-
work HOTFRAME of [33] and EASYLOCAL++ of [22].
HOTFRAME, as an example, is implemented in C++,
which provides adaptable components incorporating
different metaheuristics and an architectural descrip-
tion of the collaboration among these components and
problem-specific complements. Typical application-
specific concepts are treated as objects or classes:
problems, solutions, neighbors, solution attributes, and
move attributes. On the other hand, metaheuristic con-
cepts such as the different methods described above and
their building blocks such as tabu criteria or diversifi-
cation strategies are also treated as objects. HOTFRAME

uses genericity as the primarymechanism tomake these
objects adaptable. That is, common behavior of meta-
heuristics is factored out and grouped in generic classes,
applying static type variation. Metaheuristics template
classes are parameterized by aspects such as solution
spaces and neighborhood structures.

Applications

Applications of metaheuristics are almost uncountable
and appear in various journals (e. g., Journal of Heuris-
tics), books, and technical reports every day. A helpful
source for a subset of successful applications may be
special issues of journals or compilations such as [25,
77,79,97], just to mention some.

Specialized conferences like the Metaheuristics In-
ternational Conference are devoted to the topic [25,
59,72,80,81,97] and even more general conferences re-
veal that metaheuristics have become part of neces-
sary prerequisites for successfully solving optimization
problems [46]. Moreover, ready-to-use systems such as
class libraries and frameworks have been developed, al-
though they are usually restricted to application by the
knowledgeable user.

Specialized applications also reveal research needs,
e. g., in dynamic environments. One example refers to
the application of metaheuristics for online optimiza-
tion [49].

Conclusions

Over the last few decades metaheuristics have become
a substantial part of the optimization stockroom with
various applications in science and, even more impor-
tant, in practice. Metaheuristics have been considered
in textbooks, e. g., in operations research, and a wealth
of monographs [27,43,70,92] are available. Most impor-
tant in our view are general frames. AMP, an intelligent
interplay of intensification and diversification (such as
ideas from POPMUSIC), and the connection to pow-
erful exact algorithms as subroutines for handable sub-
problems are avenues to be followed.

From a theoretical point of view, the use of most
metaheuristics has not yet been fully justified. While
convergence results regarding solution quality exist
for most metaheuristics, once appropriate probabilis-
tic assumptions are made [8,31,50] these turn out not
to be very helpful in practice as usually a dispro-
portionate computation time is required to achieve
these results (usually convergence is achieved for a
computation time tending to infinity, with a few ex-
ceptions, e. g., for the reverse elimination method
within TS or the pilot method where optimality can
be achieved with a finite, but exponential number of
steps in the worst case). Furthermore, we have to ad-
mit that theoretically one may argue that none of the
metaheuristics described are on average better than
any other; there is no free lunch [101]. Basically this
leaves the choice of a best possible heuristic or related
ingredients to the ingenuity of the user/researcher.
Some researchers related the term “hyperheuristics”
to the question of which (heuristic) method among
a given set of methods to choose for a given prob-
lem [16].

Moreover, despite the widespread success of vari-
ous metaheuristics, researchers occasionally still have
a poor understanding of many key theoretical aspects
of these algorithms, including models of the high-level
run-time dynamics and identification of search space
features that influence problem difficulty [99]. More-
over, fitness landscape evaluations are considered to be
in their infancy too.

From an empirical standpoint it would be most in-
teresting to know which algorithms perform best under
various criteria for different classes of problems. Unfor-
tunately, this theme is out of reach as long as we do not

http://www.informatik.uni-koeln.de/abacus
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have any well-accepted standards regarding the testing
and comparison of different methods.

While most papers on metaheuristics claim to pro-
vide “high-quality” results based on some sort of mea-
sure, we still believe that there is a great deal of room
for improvement in testing existing as well as new ap-
proaches from an empirical point of view [10,57,67].
In a dynamic research process numerical results pro-
vide the basis for systematically developing efficient al-
gorithms. The essential conclusions of finished research
and development processes should always be substan-
tiated (i. e., empirically and, if necessary, statistically
proven) by numerical results based on an appropriate
empirical test cycle. Furthermore, even when excellent
numerical results are obtained, it may still be possible to
compare with a simple random restart procedure and
obtain better results in some cases [47]. However, this
comparison is usually neglected.

Usually the ways of preparing, performing, and pre-
senting experiments and their results are significantly
different. The failing of a generally accepted standard
for testing and reporting on the testing, or at least a cor-
responding guideline for designing experiments, unfor-
tunately implies the following observation: Some re-
sults can be used only in a restricted way, e. g., because
relevant data are missing, wrong environmental set-
tings are used, or simply results are glossed over. In the
worst case nonsufficiently prepared experiments pro-
vide results that are unfit for further use, i. e., any gen-
eralized conclusion is out of reach. Future algorithm re-
search needs to provide effective methods for analyzing
the performance of, e. g., heuristics in a more scientifi-
cally founded way (see [4,100] for some steps into this
direction).

A final aspect that deserves special consideration is
to investigate the use of information within different
metaheuristics. While the AMP frame provides a very
good entry into this area, this still provides an interest-
ing opportunity to link artificial intelligence with oper-
ations research concepts.
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Nicholas Constantine Metropolis was born in Chicago
on June 11, 1915 and died on October 17, 1999 in
Los Alamos. At Los Alamos, Metropolis was the main
driving force behind the development of the MANIAC
series of electronic computers. He was the first to
code a problem for the ENIAC in 1945–1946 (together
with S. Frankel), a task which consumed approximately
1,000,000 IBM punched cards.

Metropolis received his PhD in physics from the
University of Chicago in 1941. He went to Los Alamos
in 1943 as a member of the initial staff of fifty scientists
of the Manhattan Project. He spent his entire career
at Los Alamos, except for two periods (1946–1948 and
1957–1965), during which he was professor of Physics
at the University of Chicago.

Metropolis is best known for the development (joint
with S. Ulam and J. von Neumann) of theMonte-Carlo
method. The Monte-Carlo method provides approxi-
mate solutions to a variety of mathematical problems by
performing statistical sampling experiments on a com-
puter. However, the real use of Monte-Carlo meth-
ods as a research tool stems from work on the atomic
bomb during the second world war. This work involved

a direct simulation of the probabilistic problems con-
cerned with random neutron diffusion in fissile mate-
rial. Metropolis and his collaborators, obtained Monte-
Carlo estimates for the eigenvalues of Schrodinger
equation.

In 1953, Metropolis co-authored the first paper on
the technique that came to be known as simulated an-
nealing [3,8]. Simulated annealing is a method for solv-
ing optimization problems. The name of the algorithm
derives from an analogy between the simulation of the
annealing of solids. Annealing refers to a process of
cooling material slowly until it reaches a stable state.

Metropolis also made several early contributions to
the use of computers in the exploration of nonlinear
dynamics. In the Sixties and Seventies he collaborated
with G.-C. Rota and others on significance arithmetic.
Another contribution of Metropolis to numerical anal-
ysis is an early paper on the use of Chebyshev’s iterative
method for solving large scale linear systems [1].
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Minimax is a principle of optimal choice (of some pa-
rameters or functions). If applied, this principle re-
quires to find extremal values of some max-type func-
tion. Since the operation of taking the pointwise maxi-
mum (of a finite or infinite number of functions) gen-
erates, in general, a nonsmooth function, it is impor-
tant to study properties of such a function. Fortunately
enough, though a max-function is not differentiable, in
many cases it is still directionally differentiable. The di-
rectional differentiability provides a tool for formulat-
ing necessary (and sometimes sufficient) conditions for
a minimum or maximum and for constructing numer-
ical algorithms.

Recall that a function f :Rn!R is calledHadamard
directionally differentiable (H.d.d.) at a point x 2 Rn if
for any g 2 Rn there exists the finite limit

f 0H(x; g) D lim
[˛;g0]![C0;g]

f (x C ˛g0) � f (x)
˛

:

A function f : Rn!R is calledDini directionally dif-
ferentiable (D.d.d.) at a point x 2 Rn if for any g 2 Rn

there exists the finite limit

f 0D(x; g) D lim
˛#0

f (x C ˛g) � f (x)
˛

:

If f is H.d.d., then it is D.d.d. as well and fH 0(x, g) =
f D0(x, g).

Let ˝ � Rn be a convex compact set, x 2 ˝ . The
cone

Nx(˝) D fv 2 Rn : (v; x) D �˝(x)g

is called normal to˝ at x. Here

�˝ (x) D max
y2˝

(v; y)

is the support function of˝ at x.

Amax-function

Let

f (x) D max
y2G

'(x; y); (1)

where ': S × G! R is continuous jointly in x, y on S
× G and continuously differentiable in x there, S � Rn

is an open set, G is a compact set of some space. Under
the conditions stated, the function f is continuous on S.

Proposition 1 The function f is H.d.d. at any point x 2
S and

f 0H(x; g) D max
y2R(x)

(' 0x(x; y); g) D max
v2@ f (x)

(v; g); (2)

where

R(x) D fy 2 G : f (x) D '(x; y)g ;

'x
0(x, g) is the gradient of ' with respect to x for a fixed

y, (a, b) is the scalar product of vectors a and b,

@ f (x) D co
˚
' 0x(x; g) : y 2 R(x)

�
� Rn :

The set @f (x) is called the subdifferential of f at x. It is
convex and compact. Themapping @f is, in general, dis-
continuous.

Remark 2 It turns out that a convex function can also
be represented in the form (1) with ' being affine in x.
For this special (convex) case the set @f (x) is

@ f (x)

D fv 2 Rn : f (z) � f (x) � (v; z � x); 8z 2 Sg :

The discovery of the directional differentiability of
max-functions ([1,2,6]) and convex functions [10] was
a breakthrough and led to the development ofminimax
theory and convex analysis ([4,9,10]).
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AMaximum Function
with Dependent Constraints

Let x � Rn, Y � Rm be open sets and let

f (x) D max
y2a(x)

'(x; g); (3)

where a(x) is a multivalued mapping with compact im-
ages, ': X × Y ! R is Hadamard differentiable as
a function of two variables, i. e. there exists the limit

' 0H([x; y]; [g; v]) D lim
[˛;g0;v 0]![C0;g;v]

1
˛

�
�
'(x C ˛g0; yC ˛v0) � '(x; y)

�
:

Then ' is continuous and 'H
0 is continuous as a func-

tion of direction [g, v].
The function f is called a maximum function with

dependent constraints. Such functions are of great im-
portance and have widely been studied (see [3,5,7,8]).
To illustrate the results let us formulate one of them [5,
Thm. I, 6.3].

Proposition 3 Let a mapping a be closed and bounded,
its images be convex and compact, the support function
a(x, l) = maxv 2 a(x) (v, l) be uniformly differentiable with
respect to parameter l. Let, further, x 2 X and a function
' be concave in some convex neighborhood of the set {[x,
y]: y 2 R(x)} (where R(x) = {y 2 a(x): '(x, y) = f (x)}).
Then f (see (3)) is H.d.d. and

f 0(x; g) D sup
y2R(x)

min
[l1;l2]2V (x;y)

[(l1; g)Ca0(x; l2; g)]; (4)

where

V(x; y) D
n
l D [l1; l2] 2 @'(x; y) : l2 2 Nx;y

o
;

@'(x; y) is the superdifferential of ' at the point [x, y],
and Nx, y is the cone normal to a(x) at y.

Recall that if a function F: Rs! R is concave, Z � Rs is
open, z 2 Z, then the set

@F(z) D
�
v 2 Rs :

F(z0) � F(z) � (v; z0 � z);
8z0 2 Z

	

is called the superdifferential of F at z 2 Z. It is convex
and compact.

AMaxmin Function

Let '(x, y, z): S × G1 × G2! R be continuous jointly in
all variables, S � Rn be an open set, G1 � Rm, G2 � Rp

be compact. Put

f (x) D max
y2G1

min
z2G2

'(x; y; z): (5)

The function f is continuous on S.
Let

˚(x; y) D min
z2G2

'(x; y; z);

R(x) D fy 2 G1 : ˚(x; y) D f (x)g ;

Q(x; y) D fz 2 G2 : '(x; y; z) D ˚(x; y)g :

Fix x 2 S, let D"(" > 0) be an "-neighborhood of the
set {x} × R(x) ×[y 2 R(x)Q(x, y). Assume that the deriva-
tives

@'

@x
;
@'

@y
;
@2'

@x2
;
@2'

@x@y
;
@2'

@y2

exist and are continuous jointly in all variables onD"(x)
and that

�
@2'(x; y; z)

@y2
v; v

�
� 0;

8[x; y; z] 2 D"(x); v 2 Rm :

Assume also that G1 is convex. Let y 2 G1. Put

�(y) D
˚
v D �(y0 � y) : � > 0; y0 2 G1

�
;

� (y) D cl �(y):

Proposition 4 [3, Thm. 5.2] Under the above assump-
tions the function f (see (5)) is Hadamard directionally
differentiable and

f 0H(x; g) D sup
y2R(x)

sup
y2� (y)

min
z2Q(x;y)

��
@'(x; y; z)

@y
; v
�
C

�
@'(x; y; z)

@x
; g
��
:

Remark 5 More sophisticated results on the directional
differentiability of max- and maxmin functions can be
found, e. g., in [8].

Higher-Order Directional Derivatives

The results above are related to the first order direc-
tional derivatives. Using these derivatives, it is possible
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to construct the following first order expansion:

f (x C ˛g) D f (x)C ˛ f 0(x; g)C ox;g(˛); (6)

where f 0 is either fH 0 or fD0.
In some cases it is possible to get ‘higher-order’ ex-

pansions.
Let

f (x) D max
i2I

fi(x); (7)

where I = 1 : N, x = (x1, . . . , xn) 2 Rn, the f i0s are con-
tinuous and continuously differentiable up the lth order
on an open set S � Rr. Fix x 2 S. Then for sufficiently
small ˛ > 0

fi(x C ˛g)

D fi(x)C
lX

kD1

˛k

k!
f (k)i (x; g)C oi (g; ˛ l ); (8)

where

f (k)i (x; g) D
nX

j1;:::; jkD1

@k fi(x)
@x j1 � � � @x jk

g j1 ; : : : ; g jk ;

k 2 1; : : : ; l ;
oi (g; ˛ l )
˛ l !

˛#0
0 (9)

uniformly with respect to g, kgk = 1.
Let us use the following notation

f 0i (x; g) D fi(x);

8i 2 I; R0(x; g) D I;

Rk(x; g) D fi 2 Rk�1(x; g) :

f (k�1)i (x; g) D max
j2Rk�1(x;g)

f (k�1)j (x; g)
	
;

k 2 1; : : : ; l :

Clearly

R0(x; g) � R1(x; g) � R2(x; g) � � � � :

Note that R0(x, g) does not depend on x and g, and R1(x,
g) does not depend on g.

Proposition 6 [3, Thm. 9.1] The following expansion
holds:

f (x C ˛g) D f (x)C
lX

kD1

˛k

k!
f (k)(x; g)C o(g; ˛ l );

8g 2 Rn ; (10)

where

f (k)(x; g) D max
i2Rk (x;g)

f (k)i (x; g);

o(g; ˛ l )
˛ l !

˛#0
0 (11)

uniformly with respect to g, kgk = 1.

The value @kf (x)/ @gk = f (k)(x, g) is called the kth deriva-
tive of f at x in a direction g.

Remark 7 Themapping R1(x, g) is not continuous in x,
while the mappings Rk(x, g) (k � 2) are not continuous
in x as well as in g. Therefore the functions f (k)(x, g) in
(11) are not continuous in x and (if k � 2) in g and, as
a result, expansion (6) is also not ‘stable’ in x.

To overcome this difficulty we shall employ another
tool.

Hypodifferentiability of a Max Function

Let us again consider the case where f is defined by (7).
It follows from (8) that, for� = (�1, . . . ,�n) 2 Rn,

f (x C	)

D max
i2I

"
fi(x)C

lX
kD1

1
k!

f (k)i (x; 	)

#
C o(k	kk):

(12)

Let us use the notation (see (9))

f (k)i (x; 	) D Aik	
k:

The function f (k)i (x,�) is a kth order form of coordinates
�1, . . . ,�n; Aik being the set of coefficients of this form.
Then (12) can be rewritten as

f (x C	)

D max
i2I

"
fi(x)C

lX
kD1

1
k!
Aik	

k

#
C o(k	kk)

D f (x)C max
A2d l f (x)

" lX
kD1

1
k!
Ak	

k

#
C o(k	kk); (13)
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where

dl f (x) D co
n
A(i) D (Ai0; : : : ;Ail ) : i 2 I

o
;

Ai0 D fi(x)� f (x); A D (A0; : : : ;Al );

A0 2 R; A1 2 Rn ;

A2 2 Rn�n ; : : : ;Ak 2

k times‚ …„ ƒ
Rn�����n :

Here,

k times‚ …„ ƒ
Rn�����n is the space of kth order real forms,

e. g. Rn×n is the space of real (n × n)-matrices.
The set dlf (x) is called the kth order hypodifferential

of f at x. It is an element of the space R � Rn � � � � �
l‚ …„ ƒ

Rn�����n . The mapping dlf is continuous in x.

Remark 8 Expansion (13) can be extended to the case
where f is given by (1) and ' is l times continuously
differentiable in x.

Max functions represent a special case of the class of
quasidifferentiable functions (see [5]).
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With the introduction of computers, also started the
interest in having machines play games. Programming
a computer such that it could play, for example chess,
was seen as giving it some kind of intelligence. Start-
ing in the mid fifties, a theory on how to play two
player zero sum perfect information games, like chess
or go, was developed. This theory is essentially based
on traversing a tree called minimax or game tree. An
edge in the tree represents a move by either of the play-
ers and a node a configuration of the game.

Two major algorithms have emerged to compute
the best sequence of moves in such a minimax tree.
On one hand, there is the alpha-beta algorithm sug-
gested around 1956 by I. McCarthy and first published
in [27]. On the other hand, G.C. Stockman [29] intro-
duced the SSS
 algorithm. Both methods try to min-
imize the number of nodes explored in the game tree
using special traversal strategies and cut conditions.

Minimax Trees

A two-player zero-sum perfect-information game, also
called minimax game, is a game which involves ex-
actly two players who alternatively make moves. No
information is hidden from the adversary. No coins
are tossed, that is, the game is completely determinis-
tic, and there is perfect symmetry in the quality of the
moves allowed. Go, checker and chess are such mini-
max games whereas backgammon (the outcome of a die
determines the moves available) or card games (cards
are hidden from the adversary) are not.

A minimax tree or game tree is a tree where each
node represents a state of the game and each edge a pos-
sible move. Nodes are alternatively labeled ‘max’ and
‘min’ representing either player’s turn. A node having
no descendants represents a final outcome of the game.
The goal of a game is to find a winning sequence of
moves, given that the opponent always plays his best
move.

The quality of a node t in the minimax game tree,
representing a configuration, is given by its value e(t).
The value e(t), also called minimax value, is defined re-
cursively as

e(t) D

8̂
ˆ̂<
ˆ̂̂:

f (t) if t is a leave node;
max

s2sons(t)
e(s) if t is labeled ‘max’;

min
s2sons(t)

e(s) if t is labeled ‘min’:

If the considered minimax tree represents a com-
plete game, that is, all possible board configurations, the
function f may be defined as follows:

f (t) D

8̂
<̂
ˆ̂:

C1 if t leads to a winning position;
0 if t leads to a tie position;
�1 if t leads to a losing position;

otherwise f (t) represents an evaluation of the quality of
a board position.

The relation between minimax trees and games is
detailed in the following table.

Minimax tree notion Minimax game notion
Minimax tree All board configurations
Node in the tree Board configuration
Edge from “max” to
“min” node

Move by player “max”

Edge from “min” to
“max” node

Move by player “min”

Node value Quality of board position
Leave node Outcome of a game
Solution path Sequence of moves lead-

ing the best outcome

Sequential Minimax Game Tree Algorithms

Let t be a node of a minimax tree. Then the func-
tion first_son(t) returns the first son node s1 of t and
next_son(si , t) returns the i + 1th son of node t. The
function no_more_sons(s, t) returns true of s is the last
son of t. Otherwise it returns false. The ordering of the
sons introduced by these functions is arbitrary. In prac-
tice it is given by some heuristic function. The func-
tion father(t) returns the father node of t, is_leave(t)
whether or not t is a leave node and node_type(t) the
type of node t.

Minimax Algorithm

The most basic minimax algorithm is called the min-
imax algorithm. It systematically traverses, in a depth
first, left to right fashion, the complete minimax tree.
All nodes are visited exactly once.

Alpha-Beta Algorithm

The first nontrivial algorithm introduced to com-
pute the minimax value of a game tree was the
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alpha-beta algorithm. According to D. Knuth and R.
Moore, McCarthy’s comments at the Dartmouth sum-
mer research conference on artificial intelligence led
to the use of alpha-beta pruning in game playing pro-
grams since the late 1950s. The first published discus-
sion of an algorithm for minimax tree pruning ap-
peared in 1958 (see [11, p. 56]). Two early extensive
studies of the algorithm may be found in [18] and
[27].

The idea behind the alpha-beta algorithm is to tra-
verse the minimax tree in a depth first, left to right fash-
ion. It tries to prune sub-trees that can not influence the
minimax value of the tree. The conditions used to prune
sub-trees are called cut conditions. The idea behind the
suggested cut conditions is to associate to each node
a lower and an upper bound, called ˛ and ˇ bounds.
The bounds of a node are passed to its sons and tight-
ened during the execution of the algorithm. It is easy
to see that if the lower bound of a node t of type ‘max’
is larger than its upper bound then all not visited sons
of node t can be pruned, and similar for nodes of type
‘min’.

FUNCTION AlphaBeta(n; ˛; ˇ) IS
BEGIN

IF is_leave(n) THEN RETURN f (n)
s  first_son(n)
IF node_type(n)=max THEN

LOOP
˛  maxf˛;AlphaBeta(s; ˛; ˇ)g
IF ˛ � ˇ THEN RETURN ˇ
EXIT LOOPWHEN no_more_sons(s; n)
s next_son(s; n)

END LOOP
RETURN ˛

ELSE
LOOP
ˇ  maxf˛;AlphaBeta(s; ˛; ˇ)g
IF ˇ � ˛ THEN RETURN ˛
EXIT LOOPWHEN no_more_sons(s; n)
s next_sons(s; n)

END LOOP
RETURN ˇ

END IF
END AlphaBeta

Pseudocode for the alpha-beta algorithm

It has been proved in [18] that the alpha-beta algo-
rithm correctly calculates the minimax value of a tree.
The above pseudocode describes the alpha-beta algo-
rithm.

The minimax value of a tree T is computed as fol-
lows.

e (root(T)) AlphaBeta (root(T);�1;C1) :

Optimal State Space Search Algorithm SSS�
It has been introduced by Stockman in 1979, [29]. It
originates not in game playing but in systematic pat-
tern recognition. The algorithm was first analyzed and
criticized in [26].

The idea behind the SSS
 algorithm is to use a tree
traversal strategy that is, better than the depth first and
left to right strategy found in the alpha-beta algorithm.
The criteria used to order the nodes yet to visit is an
upper bound of their value. Nodes are stored in non
increasing order of their upper bound in a list called
‘open’.

The SSS
 algorithm first traverses the minimax
tree from top to bottom. Nodes whose sons have not
yet been visited and which cannot yet be pruned are
marked ‘live’. Nodes marked ‘solved’ have already been
visited once and have therefore their best upper bound
associated.

The operation purge(t, open) removes all nodes
from the open list for which the node t is an ancestor.
Due to the fact that the nodes in the open list are sorted
in nonincreasing order of their associated upper bound,
the pruning operation only eliminates nodes that need
no further consideration.

The SSS
 algorithm is described by the following
pseudocode.

FUNCTION SSS� IS
BEGIN

open ;
insert (root, live, +1, open)
LOOP

(s; t;m) remove (open)
IF s= root AND t= solved THEN RETURNm
h Apply the � operator to node s i

END LOOP
END SSS�

Pseudocode for the SSS� algorithm
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The operator � (s) is applied to each node s ex-
tracted from the ‘open’ list.

It is possible to define a dual version of the SSS
,
which may be called SSS
 -dual, in which the computa-
tion of upper bounds is replaced by the computation of
lower bounds. The SSS
 -dual algorithm has been sug-
gested in [21].

Stockman has shown that if the SSS
 algorithm ex-
plores a node, then this node is also explored by the
alpha-beta algorithm. In fact, the alpha-beta algorithm
loses efficiency (in the number of nodes visited) against
the SSS
 algorithm when the value of the minimax tree
is found towards the right of the tree. If the SSS
 algo-
rithm is applied to win-lose trees then it visits exactly
the same nodes in the same order as would the alpha-
beta algorithm.

hApply the � operator to node si �
IF t = live AND node_type = max
AND NOT is_leave(t) THEN
s  first_son(t)
LOOP
insert (s, live, m, open)
EXIT LOOPWHEN no_more_sons(s; t)
s  next_son(s; t)

END LOOP
END IF
IF t = live AND node_type = min
AND NOT is_leave(t) THEN
insert(first_son(t), live, m, open)

END IF
IF t = live AND is_leave(t) THEN
insert(t, solved, min{ f (t);m}, open)

END IF
IF t = solved AND node_type = max
AND NOT no_more_sons(t, father(t)) THEN
insert(next_son(t, father(t)), live, m, open)

END IF
IF t = solved AND node_type = max
AND no_more_sons(t, father(t)) THEN
insert(father(t), solved, m, open)

END IF
IF t = solved AND node_type = min THEN
insert(father(t), solved, m, open)
purge(father(t), open)

END IF

SCOUT: Minimax Algorithm
of Theoretical Interest

In the previous sections, we have described the most
common minimax algorithms. While trying to show
the optimality of the alpha-beta algorithm, J. Pearl [23]
introduced the SCOUT algorithm. His idea was to show
that the SCOUT algorithm is dominated by the alpha-
beta algorithm and to prove that SCOUT achieves
an optimal performance. But counterexamples showed
that the alpha-beta algorithm does not dominate the
SCOUT algorithm because the conservative testing ap-
proach of the SCOUT algorithm may sometimes cut off
nodes that would have been explored by the alpha-beta
algorithm.

The SCOUT algorithm itself recursively computes
the value of the first of its sons. Then it tests to see if the
value of the first son is better that the value of the other
sons. In case of a negative result, the son that failed
the test is completely evaluated by recursively calling
SCOUT.

Although the SCOUT algorithm is more of theoret-
ical interest, there are some problem instances where it
outperforms all other minimax algorithms. A last ad-
vantage of the SCOUT algorithm versus one of its ma-
jor competitors, the SSS
 algorithm, is that its storage
requirements are similar to those of the alpha-beta al-
gorithm.

GSEARCH: Generalized Game
Tree Search Algorithm

In 1986, T. Ibaraki [16] proposed a generalization of
the previously known algorithms to compute the mini-
max value of a game tree. His idea was to use a branch
and bound like approach. Nodes of the considered tree
which have not yet been evaluated are stored in a list
which is ordered according to a given criteria. Different
orderings give different traversal strategies. A lower and
upper bound is associated to each node. These bounds
generalize the ˛ and ˇ values found in the alpha-beta
algorithm.

Finally Ibaraki showed how the algorithm GS}CH is
related to other minimax algorithms like alpha-beta or
SSS
, and proved that his algorithm always surpasses
the alpha-beta algorithm.
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SSS-2: Recursive State Space Search Algorithm

The SSS-2 algorithm has been proposed byW. Pijls and
A. de Bruin [24]. It is based on the idea of computing
an upper bound for the root node and then repeatedly
transforming this upper bound into a tighter one. They
have shown that the SSS-2 algorithm exactly expands
the same nodes as those to which the SSS
 algorithm
applies the � operator.

Some Variations On The Subject

Computing the minimax value of a game tree may be
seen as aspiring the solution value from a leave node
through the whole tree up to the root node. While mov-
ing closer to the root node, more and more useless sub-
trees will be eliminated, as we have already stated for the
alpha-beta algorithm. The better the ˛ and ˇ bounds,
the more subtrees may be pruned. If, for instance, one
knows that the minimax value will, with high probabil-
ity, be found in the subset ]a, b[, then it may be worth
calling the alpha-beta algorithm as

e  AlphaBeta (root(T); a; b)

If, indeed, the minimax value e(root(T)) belongs to the
set ]a, b[, then the algorithm will correctly return that
value. If the minimax value does not belong to the set
]a, b[, then the value returned will be either a or b, de-
pending on whether the minimax value belongs to ]�
1, a] or [b, +1[. We then say that the alpha-beta al-
gorithm failed low, respectively high. In the case where
the algorithm failed low, the call

e  AlphaBeta (root(T);�1; a C 1)

will return the correct value. But it would also be possi-
ble to reiterate this procedure on a subset ]a1, a + 1[.

The technique of limiting the interval in which the
solution may be found is called aspiration search. If the
minimax value belongs to the specified interval, then
amuch larger number of cut conditions are verified and
the tree actually traversed is much smaller than the one
traversed by the alpha-beta algorithm without initial al-
pha and beta bounds.

Furthermore it is interesting to note that aspiration
search is at the bases of a technique called iterative deep-
ening which is used in many game playing programs.

I. Althöfer [5] suggested an incremental negamax al-
gorithm which uses estimates of all nodes in the mini-

max tree, rather than only those of the leave nodes, to
determine the value of the root node. This algorithm
is useful when dealing with erroneous leave evaluation
functions. Under the assumption of independently oc-
curring and sufficiently small errors, the proposed al-
gorithm is shown to have exponentially reduced error
probabilities with respect to the depth of the tree.

R.L. Rivest [25] proposed an algorithm for search-
ing minimax trees based on the idea of approximating
the min and the max operators by generalized mean
value operators. The approximation is used to guide the
selection of the next leave node to expand, since the ap-
proximation allows to select efficiently that leave node
upon whose value the minimax value most highly de-
pends. B.W. Ballard [6] proposed a similar algorithm
where the value of some nodes (the chance node as he
calls them) is a, possibly weighted, average of the values
of its sons. In fact he considers one additional type of
nodes called chance nodes.

Conspiracy numbers have been introduced by D.A.
McAllester in [22] as a measurement of the accuracy of
the minimax value of an incomplete tree. They measure
the number of leave nodes whose value must change in
order to change the minimax value of the root node by
a given amount.

Parallel Minimax Tree Algorithms

Parallelizing the minimax algorithm is trivial over uni-
form trees. Even on irregular trees, the parallelization
remains easy. The only additional problem arises from
the fact that the size of the subtrees to explore may now
vary. Different processors will be attributed problems
of varying computational volume. All what is needed
then to achieve excellent speedups, is a load-balancing
scheme, that is, a mechanism by means of which pro-
cessors may, during run-time, exchange problems so as
to keep all processors busy all the time.

The parallelization of the alpha-beta and the SSS

algorithms are much more interesting than the more
theoretical minimax algorithm. There exist basically
two approaches or techniques to parallelize the alpha-
beta algorithm. In the first approach, which has been
one of the first techniques used, all processors explore
the entire tree but using different search-intervals. This
approach is at the basic of the algorithm called paral-
lel aspiration search by G. Baudet [7]. The second one
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consists in exploring simultaneously different parts of
the minimax tree.

A Simple Way to Parallelize the Exploration
of Minimax Trees

Exploring a minimax tree in parallel can very simply be
obtained by generating the sons of the root node, and
their sons and so on up to the point where one has as
many son nodes waiting to be explored as there are pro-
cessors. At this point, each processor explores the sub-
tree rooted at one of these nodes, using any given se-
quential minimax algorithm. When all processors have
completed their exploration, the solution for the entire
tree is computed by using the partial results obtained
from each of the processors.

In practice the sons of a node may be ordered in
such a way that any son has a probability of yielding
the locally optimal path that is no smaller than the cor-
responding probabilities for its right neighbors. The
probability to find the optimum in the subtree rooted at
a given son then always decreases when traversing the
sons in a left to right order. Such ordering information
is generally available in game-playing programs, the or-
dering function being a heuristic function based on the
knowledge of the game to be played.

AMandatoryWork First Algorithm

R. Hewett and G. Krishnamurthy [15] proposed an al-
gorithm that achieves an efficiency of roughly 50% for
an number of processors in the range of 2 to 25. All the
nodes that still need to be explored are maintained in
a list called ‘open’ list. This list is ordered with respect to
how the nodes have been reached. More precisely, the
algorithm maintains two lists called ‘open’ and ‘closed’,
and a tree called ‘cut’. The ‘open’ list contains all the
nodes yet to be explored, the ‘closed’ list contains the
expanded nodes not yet pruned and the ‘cut’ tree con-
tains the pruned nodes. The ‘open’ list initially contains
only the root node. All processors fetch nodes from the
‘open’ list and process them if they cannot be discarded,
that is, they do not have any of their ancestors in the
‘cut’ tree. Leave nodes are evaluated and their result is
returned to the parent which may update its value and
check for possible pruning by traversing the ‘cut’ tree
up to the root node applying the usual alpha and beta
cutoffs. If the node selected is not a leave node, it is ex-

panded and its sons are inserted into the ‘open’ list and
itself into the ‘closed’ list.

S.G. Akl et al. [1,2] proposed an algorithm that
uses the same approach for exploring the minimax tree.
Their priority function is computed as

p(ni ) D p(father(ni )) � (bni C 1 � i) � 10(h� f�1);

where ni is the ith son of node father(ni), bni the
branching of node father(ni), h the search depth (the
maximal depth of the minimax tree) and f the depth of
node father(ni) in the minimax tree.

K. Almquist et al. [3] also developed an algorithm
based on the idea of having two categories of unex-
plored nodes which are ordered according to a given
priority function. Furthermore they add to this concept
parallel aspiration search as well as a novel scheduling
algorithm.

In the same direction, V.-D. Cung and C. Roucairol
[9] have proposed a shared memory parallel minimax
algorithm which distinguishes between critical and non
critical nodes. In their algorithm one processor is as-
signed to each node.

In the algorithm by I.R. Steinberg and M. Solomon
[28], which is also a mandatory work first type algo-
rithm, the list containing the speculative work or non
critical nodes is dynamically ordered.

Aspiration Search

The parallel algorithm called aspiration search has been
introduced by Baudet in 1978 [7]. In this algorithm
the search interval ]� 1, + 1[ used by the sequen-
tial alpha-beta algorithm is divided into a certain num-
ber of subintervals that cover the entire range ]� 1,
+ 1[. Now, every processor explores the entire mini-
max tree using one subinterval, different processors be-
ing assigned different intervals. Any processor search-
ing an interval ]ai, ai+1] may either fail low or high. The
principle is the same as in the sequential version of the
algorithm. Exactly one processor will neither fail low,
nor fail high. The value computed by this processor is
the value of the minimax tree to explore.

The implementation of the aspiration search algo-
rithm is really simple. Furthermore, there is no in-
formation exchange needed between processors. If the
nodes in the to explore minimax tree are ordered in
such a way that the alpha-beta algorithm has to explore
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the whole tree, then the speedup obtained by using the
aspiration search algorithm is maximal. But, when the
aspiration search algorithm is applied to randomly gen-
erated trees then Baudet has shown that the speedup is
limited to about six and is independent of the number
of processors used.

Tree-Splitting Algorithm

Among the early parallel minimax algorithms is the
tree-splitting algorithm by R.A. Finkel and J.P. Fishburn
[14]. This algorithm is based on the idea to look at the
available processors as a tree of processors. Each pro-
cessor, except for the ones representing leaves in the
processor tree, have a fixed number pb of son or slave
processors. During the execution of the algorithm a non
leave processor associated with a node n in the minimax
tree spawns the exploration of the sons si of n to its pb
slaves. As soon as one slave returns the next unexplored
son sj is spawned to that slave or the current value is
returned to the father processor if the cut condition is
satisfied. If all the sons of a node have been spawned to
its slaves, the father processor waits for the results of all
its slaves. Leave processors simply compute the value
of their associated node using the sequential alpha-beta
algorithm.

An important advantage of the tree-splitting algo-
rithm over other more elaborated algorithms is that it
may be simply implemented as well on a shared mem-
ory parallel machine as on a distributed memories par-
allel machine.

The tree-splitting algorithm has been implemented
and its execution has been simulated. On a 27 processor
simulated machine, in which each processor has tree
slave sons associated, the average speedup was 5.31 for
trees of depth eight and a branching of three.

PVSPLIT: Principal Variation Splitting Algorithm

It has been proposed by T.A. Marsland andM.S. Camp-
bell [19] and is by far the most often implemented algo-
rithm, especially in chess playing programs. The algo-
rithm is based on the structure of the sequential alpha-
beta algorithm. The idea is to first explore in a sequen-
tial fashion a path from the root node to its leftmost
leave. This path is called the principal variation path.
The traversal is done to obtain alpha and beta bounds.
If the minimax tree to explore is of type best first, then

the explored principal variation path represents the so-
lution path. In a second phase, for each level of the min-
imax tree all the yet to be visited sons are explored in
parallel by using the bounds computed during the prin-
cipal variation path computation and the traversal of
the lower levels of the minimax tree.

The PVSPLIT algorithm is completely described by
the following pseudocode using the negamax notation.

The PVSPLIT algorithm has been implemented in
[20] on a network of Sun workstations. An accelera-
tion of 3.06 has been measured on 4 processors when
traversing minimax trees representing real chess games.
The main problem of the PVSPLIT algorithm is that,
during the second phase, the subtrees explored in par-
allel are not necessarily of the same size.

The PVSPLIT algorithm is most efficient when the
iterative deepening technique is used, because with
each iteration is is increasingly likely that the first move
tried, that is, the one on the principal variation path, is
the best one.

FUNCTION PVSplit(b; ˛; ˇ) IS
BEGIN

IF is_leave(n) THEN RETURN f (n)
s first_son(n)
˛ �PVSplit(s;�ˇ;�˛)
IF ˛ � ˇ THEN RETURN ˛
FOR s0 2 sons(n) � fsg LOOP IN PARALLEL
hwait until a slave node is idlei
vi  �TreeSplit(s0;�ˇ;�˛)
IF vi > ˛ THEN
˛  vi
hUpdate the bounds according to ˛ on all
slavesi

END IF
IF ˛ > ˇ THEN
hTerminate all slave processorsi
RETURN ˛

END IF
END LOOP
RETURN ˛

END PVSplit

Pseudocode for the PVSPLIT algorithm

Synchronized Distributed State Space Search

A completely different approach to parallelizing the
SSS
 algorithm has been taken by C.G. Diderich and
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M. Gengler [10]. The algorithm proposed is called syn-
chronized distributed state space search (SDSSS). It
is an alternation of computation and synchronization
phases. The algorithm has been designed for a dis-
tributed memory multiprocessor machine. Each pro-
cessor manages its own local ‘open’ list of unvisited
nodes.

The synchronization phase may be subdivided in
three major parts. First, the processors exchange infor-
mation about which nodes can be removed from the
local ‘open’ lists. This corresponds to each processor
sending the nodes for which the ‘purge’ operation may
be applied by all the other processors. Next, all the pro-
cessors agree on the globally lowest upper bound m�

for which nodes exist in some of the ‘open’ lists. Fi-
nally all the nodes having the same upper boundm� are
evenly distributed among all the processors. This oper-
ation concludes the synchronization phase.

The computation phase of the SDSSS algorithm
may be described by the following pseudocode.

hComputation phasei �
WHILE hthere exists a node in the open list
having an upper bound of m�i

LOOP
(s; t; m�) remove(open)
IF s = root AND t = solved THEN

BROADCAST ‘the solution has been
found’
RETURN m�

END IF
hApply the � operator to node si

END LOOP

Pseudocode for the computation phase of the SDSSS algo-
rithm

Experiments executing the SDSSS algorithm on an
Intel iPSC/2 parallel machine have been conducted.
Speedups of up to 11.4 have been measured for 32 pro-
cessors.

Distributed Game Tree Search Algorithm

R. Feldman [12] parallelized the alpha-beta algorithm
for massively parallel distributed memory machines.
Different subtrees are searched in parallel by different
processors. The allocation of processors to trees is done
by imposing certain conditions on the nodes which are

be selectable. They introduce the concept of younger
brother waits. This concept essentially says that in the
case of a subtree rooted at s1, where s1 is the first son
node of a node n, is not yet evaluated, then the other
sons s2, . . . , sb of node n are not selectable. Younger
brothers may only be considered after their elder broth-
ers, which has as a consequence that the value of the el-
der brothers may be used to give a tight search window
to the younger brothers.

This concept is nevertheless not sufficient to achieve
the same good search window as the alpha-beta algo-
rithm achieves. Indeed when node s1 is computed, then
the younger brothers may all be explored in parallel us-
ing the value of node s1. Thus the node s2 has the same
search window as it would have in the sequential alpha-
beta algorithm, but this is not true anymore for si, where
i� 3. Indeed if nodes s2 and s3 are processed in parallel,
they only know the value of node s1, while in the se-
quential alpha-beta algorithm, the node s3 would have
known the value of both s1 and s2. This fact forces the
parallel algorithm to provide an information dissemi-
nation protocol.

In case the nodes s2 and s3 are evaluated on proces-
sors P and P0, and processor P finishes its work before
P0, producing a better value than node s1 did, then pro-
cessor P will inform processor P0 of this value, allowing
it to continue with better information on the rest of its
subtree or to terminate its work if the new value allows
P0 to conclude that its computation becomes useless.
The load distribution is realized by means of a dynamic
load balancing scheme, where idle processors ask other
processors for work.

Speedups as high as 100 have been obtained on
a 256 processor machines. In [13], a speedup of 344
on a 1024 transputer network interconnected as a grid
and a speedup of 142 on a 256 processor transputer de
Bruijn interconnected network have been shown.

Parallel Minimax Algorithm with Linear Speedup

In 1988, Althöfer [4] proved that it is possible, to de-
velop a parallel minimax algorithm which achieves lin-
ear speedup in the average case. With the assumption
that all minimax trees are binary win-loss trees, he ex-
hibited such a parallel minimax algorithm.

M. Böhm and E. Speckenmeyer [8] also suggested
an algorithm which uses the same basic ideas as Althöf-
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fer. Their algorithm is more general in the sense that
it needs only to know the distribution of the leave val-
ues and is independent of the branching of the tree ex-
plored.

In 1989, R.M. Karp and Y. Zhang [17] proved that
it is possible to obtain linear speedup on every instance
of a random uniform minimax tree if the number of
processors is close to the height of the tree.

See also

� Bottleneck Steiner Tree Problems
� Directed Tree Networks
� Shortest Path Tree Algorithms

References

1. Akl SG, Barnard DT, Doran RJ (1979) Searching game trees
in parallel. In: Proc. 3rd Biennial Conf. Canad. Soc. Compu-
tation Studies of Intelligence, pp 224–231

2. Akl SG, Barnard DT, Doran RJ (1982) Design, analysis, and
implementation of a parallel tree search algorithm. IEEE
Trans Pattern Anal Machine Intell PAMI-4(2):192–203

3. Almquist K, McKenzie N, Sloan K (1988) An inquiry into par-
allel algorithms for searching game trees. Techn. Report
Univ. Washington, Seattle, WA 12(3)

4. Althöfer I (1988) On the complexity of searching game
trees and other recursion trees. J Algorithms 9:538–567

5. Althöfer I (1990) An incremental negamax algorithm. Artif
Intell 43:57–65

6. Ballard BW (1983) The � -minimax search procedure for
trees containing chance nodes. Artif Intell 21:327–350

7. Baudet GM (1978) The design and analysis of algorithms
for asynchronous multiprocessors. PhD Thesis Carnegie-
Mellon Univ. Pittsburgh, PA, CMU-CS-78-116

8. BöhmM, Speckenmeyer E (1989) A dynamic processor tree
for solving game trees in parallel. Proc. SOR’89

9. Cung V-D, Roucairol C (1991) Parallel minimax tree search-
ing. Res Report INRIA, vol 1549

10. Diderich CG (1992) Evaluation des performances de
l’algorithme SSS� avec phases de synchronisation sur une
machine parallèle à mémoires distribuées. Techn. Report
Computer Sci. Dept. Swiss Federal Inst. Techn. Lausanne,
Switzerland, LiTH-99 (In French.)

11. Feigenbaum EA, Feldman J (1963) Computers and
thought. McGraw-Hill, New York

12. Feldmann R, Monien B, Mysliwietz P, Vornberger O (1989)
Distributed game tree search. ICCA J 12(2):65–73

13. Feldmann R, Mysliwietz P, Monien B (1994) Game tree
search on a massively parallel system. In: van den Herik
HJ, Herschberg IS, Uiterwijk JWHM (eds) Advances in Com-
puter Chess, vol 7. Univ. Limburg, Maastricht, pp 203–218

14. Finkel RA, Fishburn JP (1982) Parallelism in alpha-beta
search. Artif Intell 19:89–106

15. Hewett R, Krishnamurthy G (1992) Consistent linear
speedup in parallel alpha-beta search. Proc. ICCI’92, Com-
puting and Information. IEEE Computer Soc Press, New
York, pp 237–240

16. Ibaraki T (1986) Generalization of alpha-beta and {SSS*}
search procedures. Artif Intell 29:73–117

17. Karp RM, Zhang Y (1989) On parallel evaluation of game
trees. In: ACM Annual Symp. Parallel Algorithms and Archi-
tectures (SPAA’89). ACM, New York, pp 409–420

18. Knuth DE, Moore RW (1975) An analysis of alpha-beta
pruning. Artif Intell, 6(4):293–326

19. Marsland TA, Campbell MS (1982) Parallel search of
strongly ordered game trees. ACM Computing Surveys
14(4):533–551

20. Marsland TA, Popowich F (1985) Parallel game-tree search.
IEEE Trans Pattern Anal Machine Intell PAMI-7(4):442–452

21. Marsland TA, Reinefeld A, Schaeffer J (1987) Low overhead
alternatives to SSS�. Artif Intell 31:185–199

22. McAllester DA (1988) Conspiracy numbers for min-max
searching. Artif Intell 35:287–310

23. Pearl J (1980) Asymptotical properties of minimax trees
and game searching procedures. Artif Intell 14(2):113–138

24. Pijls W, de Bruin A (Aug. 1990) Another view of the SSS�
algorithm. In: Proc. Internat. Symp. (SIGAL’90)

25. Rivest RL (1987) Game tree searching by min/max approx-
imation. Artif Intell 34(1):77–96

26. Roizen I, Pearl J (1983) A minimax algorithm better than
alpha-beta? Yes and no. Artif Intell 21:199–230

27. Slagle JH, Dixon JK (Apr. 1969) Experiments with somepro-
grams that search game trees. J ACM 16(2):189–207

28. Steinberg IR, Solomon M (1990) Searching game trees in
parallel. Proc. IEEE Internat. Conf. Parallel Processing, III, III–
9–III–17

29. Stockman GC (1979) A minimax algorithm better than
alpha-beta? Artif Intell 12(2):179–196

Minimax Theorems
STEPHEN SIMONS

Department Math., University California,
Santa Barbara, USA

MSC2000: 46A22, 49J35, 49J40, 54D05, 54H25,
55M20, 91A05

Article Outline

Keywords
Von Neumann’s Results
Infinite-Dimensional Results for Convex Sets



2088 M Minimax Theorems

Functional-Analytic Minimax Theorems
Minimax Theorems that Depend
on Connectedness

Mixed Minimax Theorems
A Metaminimax Theorem
Minimax Theorems and Weak Compactness
Minimax Inequalities for Two or More Functions
Coincidence Theorems
See also
References

Keywords

Minimax theorem; Fixed point theorem;
Hahn–Banach theorem; Connectedness

We suppose that X and Y are nonempty sets and f : X
× Y ! R. A minimax theorem is a theorem that asserts
that, under certain conditions,

inf
Y
sup
X

f D sup
X

inf
Y

f ;

that is to say,

inf
y2Y

sup
x2X

f (x; y) D sup
x2X

inf
y2Y

f (x; y):

The purpose of this article is to give the reader the
flavor of the different kind of minimax theorems, and of
the techniques that have been used to prove them. This
is a very large area, and it would be impossible to touch
on all the work that has been done in it in the space that
we have at our disposal. The choice that we have made
is to give the historical roots of the subject, and then go
directly to the most recent results. The reader who is
interested in a more complete narrative can refer to the
1974 survey article [35] by E.B. Yanovskaya, the 1981
survey article [8] by A. Irle and the 1995 survey article
[31] by S. Simons.

Von Neumann’s Results

In his investigation of games of strategy, J. von Neu-
mann realized that, even though a two-person zero-
sum game did not necessarily have a solution in pure
strategies, it did have to have one in mixed strategies.
Here is a statement of that seminal result ([19], trans-
lated into English in [21]):

Theorem 1 (1928) Let A be an m × n matrix, and X
and Y be the sets of nonnegative row and column vectors
with unit sum. Then

min
y2Y

max
x2X

xAy D max
x2X

min
y2Y

xAy:

Despite the fact that the statement of this result is quite
elementary, the proof was quite sophisticated, and de-
pended on an extremely ingenious induction argument.
Nine years later, in [20], von Neumann showed that the
bilinear character of Theorem 1 was not needed when
he extended it as follows, using Brouwer’s fixed point
theorem:

Theorem 2 (1937) Let X and Y be nonempty compact,
convex subsets of Euclidean spaces, and f : X × Y! R be
jointly continuous. Suppose that f is quasiconcave on X
and quasiconvex on Y (see below). Then

min
Y

max
X

f D max
X

min
Y

f :

When we say that f is quasiconcave on X, we mean that
� for all y 2 Y and � 2 R, GT(�, y) is convex,
and when we say that f is quasiconvex on Y , we mean
that
� for all x 2 X and � 2 R, LE(x, �) is convex.
Here, GT(�, y) and LE(x, �) are ‘level sets’ associated
with the function f . Specifically,

GT(�; y) :D fx 2 X : f (x; y) > �g

and

LE(x; �) :D fy 2 Y : f (x; y) � �g :

In 1941, S. Kakutani [10] analyzed von Neumann’s
proof and, as a result, discovered the fixed point theo-
rem that bears his name.

Infinite-Dimensional Results for Convex Sets

The first infinite-dimensional minimax theorem was
proved in 1952 by K. Fan ([1]), who generalized Theo-
rem 2 to the case when X and Y are compact, convex
subsets of infinite-dimensional locally convex spaces,
and the quasiconcave and quasiconvex conditions are
somewhat relaxed. The result in this general line that
has the simplest statement is that of M. Sion, who
proved the following ([33]):
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Theorem 3 (1958) Let X be a convex subset of a lin-
ear topological space, Y be a compact convex subset of
a linear topological space, and f : X × Y ! R be upper
semicontinuous on X and lower semicontinuous on Y.
Suppose that f is quasiconcave on X and quasiconvex on
Y. Then

min
Y

sup
X

f D sup
X

min
Y

f :

When we say that f is ‘upper semicontinuous on X’ and
‘lower semicontinuous on Y ’ we mean that, for all y 2
Y , the map x 7�! f (x, y) is upper semicontinuous and,
for all x 2X, the map y 7�! f (x, y) is lower semicontinu-
ous. The importance of Sion’s weakening of continuity
to semicontinuity was that it indicated that many kinds
of minimax problems have equivalent formulations in
terms of subsets of X and Y , and led to Fan’s 1972
work ([4]) on sets with convex sections and minimax
inequalities, which has since found many applications
in economic theory. Like Theorem 2, all these result re-
lied ultimately on Brouwer’s fixed point theorem (or
the related Knaster–Kuratowski–Mazurkiewicz lemma
(KKM lemma) on closed subsets of a finite-dimensional
simplex).

Functional-Analytic Minimax Theorems

The first person to take minimax theorems out of the
context of convex subsets of vector spaces, and their
proofs (other than that of the matrix case discussed in
Theorem 1) out of the context of fixed point theorems
was Fan in 1953 ([2]). We present here a generalization
of Fan’s result due to H. König ([15]). König’s proof
depended on the Mazur–Orlicz version of the Hahn–
Banach theorem (see Theorem 5 below).

Theorem 4 (1968) Let X be a nonempty set and Y be
a nonempty compact topological space. Let f : X × Y !
R be lower semicontinuous on Y. Suppose that:
� for all x1, x2 2 X, there exists x3 2 X such that

f (x3; �) �
f (x1; �)C f (x2; �)

2
on Y ;

� for all y1, y2 2 Y, there exists y3 2 Y such that

f (�; y3) �
f (�; y1)C f (�; y2)

2
on X:

Then

min
Y

sup
X

f D sup
X

min
Y

f :

We give here the statement of theMazur–Orlicz version
of the Hahn–Banach theorem, since it is a very useful
result and it not as well-known as it deserves to be.

Theorem 5 (Mazur–Orlicz theorem) Let S be a sub-
linear functional on a real vector space E, and C be
a nonempty convex subset of E. Then there exists a linear
functional L on E such that L� S on E and infCL = infCS.

See [16,22] and [23] for applications of the Mazur–
Orlicz theorem and the related ‘sandwich theorem’ to
measure theory, Hardy algebra theory and the theory
of flows in infinite networks.

The kind of minimax theorem discussed in this sec-
tion (where X is not topologized) has turned out to be
extremely useful in functional analysis, in particular in
convex analysis and also in the theory of monotone op-
erators on a Banach space. (See [32] for more details of
these kinds of applications.)

Minimax Theorems that Depend
on Connectedness

It was believed for some time that proofs of minimax
theorems required either the fixed point machinery of
algebraic topology, or the functional-analytic machin-
ery of convexity. However, in 1959, W.-T. Wu proved
the first minimax theorem in which the conditions of
convexity were totally replaced by conditions related
to connectedness. This line of research was continued
by H. Tuy, L.L. Stachó, M.A. Geraghty with B.-L. Lin,
and J. Kindler with R. Trost, whose results were all sub-
sumed by a family of general topological minimax the-
orem established by König in [17]. Here is a typical re-
sult from [17]. In order to simplify the statements of
this and some of our later results, we shall write f � :=
supX infYf. f � is the ‘lower value’ of f . If � 2 R, V � Y
and W � X, we write GT(�, V) :=

T
y 2 V GT(�, y) and

LE(W, �) :=
T

x 2W LE(x, �).

Theorem 6 (1992) Let X be a connected topological
space, Y be a compact topological space, and f : X × Y
! R be upper semicontinuous on X and lower semicon-
tinuous on Y. Let � be a nonempty subset of (f �, 1)
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such that inf� = f � and suppose that, for all � 2�, for
all nonempty subsets V of Y, and for all nonempty finite
subsets W of X,

GT(�;V ) is connected in X;

and

LE(W; �) is connected in Y :

Then

min
Y

sup
X

f D sup
X

min
Y

f :

MixedMinimax Theorems

In [34], F. Terkelsen proved the first mixed minimax
theorem. We describe Terkelsen’s result as ‘mixed’ since
one of the conditions in it is taken fromTheorem 4, and
the other from Theorem 6:

Theorem 7 (1972) Let X be a nonempty set and Y be
a nonempty compact topological space. Let f : X × Y !
R be lower semicontinuous on Y. Suppose that,
� for all x1, x2 2 X there exists x3 2 X such that

f (x3; �) �
f (x1; �)C f (x2; �)

2
on Y :

Suppose also that, for all � 2 R and, for all nonempty
finite subsets W of X,

LE(W; �) is connected in Y :

Then

min
Y

sup
X

f D sup
X

min
Y

f :

AMetaminimax Theorem

It was believed for some time that Brouwer’s fixed point
theorem or the Knaster–Kuratowski–Mazurkiewicz
lemma was required to order to prove Sion’s theorem,
Theorem 3. However, in 1966, M.A. Ghouila-Houri
([7]) proved Theorem 3 using a simple combinato-
rial property of convex sets in finite-dimensional space.
This was probably the first indication of the breakdown
of the classification of minimax theorems as either of
‘topological’ or ‘functional-analytic’ type. Further indi-

cation of this breakdown was provided by Terkelsen’s
result, Theorem 7, and the subsequent 1982 results of I.
Joó and Stachó ([9]), the 1985 and 1986 results of Ger-
aghty and Lin ([5] and [6]), and the 1989 results of H.
Komiya ([18]).

Kindler ([11]) was the first to realize (in 1990) that
some abstract concept akin to connectedness might be
involved in minimax theorems, even when the topolog-
ical condition of connectedness was not explicitly as-
sumed. This idea was pursued by Simons with the in-
troduction in 1992 of the concept of pseudoconnected-
ness, which we will now describe. We say that sets H0

and H1 are joined by a set H if

H � H0 [ H1; H \ H0 ¤ ;

and

H \ H1 ¤ ;:

We say that a family H of sets is pseudoconnected if

H0;H1;H 2H and H0 and H1 joined by H

+

H0 \ H1 ¤ ;:

Any family of closed connected subsets of a topological
space is pseudoconnected. So also is any family of open
connected subsets. However, pseudoconnectedness can
be defined in the absence of any topological structure
and, as we shall see in Theorem 8, is closely related to
minimax theorems. Theorem 8 is the improvement of
the result of [29] due to König (see [30]). We shall say
that a subset W of X is good if
� W is finite; and
� for all x 2 X, LE(x, f �) \ LE(W, f �) 6D ;.

Theorem 8 (1995) Let Y be a topological space, and�
be a nonempty subset of R such that inf� = f �. Suppose
that, for all � 2� and for all good subsets W of X,
� for all x 2 X, LE(x, �) is closed and compact; {LE(x,
�) \ LE(W, �)}x 2 X is pseudoconnected; and

� for all x0, x1 2 X, there exists x 2 X such that LE(x0,
�) and LE(x1, �) are joined by LE(x, �) \ LE(W, �).

Then

min
Y

sup
X

f D sup
X

min
Y

f :
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Theorem 8 is proved by induction on the cardinality
of the good subsets of W. Given the obvious topolog-
ical motivation behind the concept of pseudoconnect-
edness, it is hardly surprising that Theorem 8 implies
Theorem 6. What is more unexpected is that Theo-
rem 8 implies Theorems 4 and 7 also. We prefer to
describe Theorem 8 as a metaminimax theorem rather
than a minimax theorem, since it is frequently harder
to prove that the conditions of Theorem 8 are satisfied
in any particular case that it is to prove Theorem 8 it-
self. So Theorem 8 is really a device for obtaining min-
imax theorems rather than a minimax theorem in its
own right.

More recent work by Kindler ([12,13] and [14]) on
abstract intersection theorems has been at the interface
between minimax theory and abstract set theory.

Minimax Theorems andWeak Compactness

There are close connections between minimax theo-
rems and weak compactness. The following ‘converse
minimax theorem’ was proved by Simons in [25]; this
result also shows that there are limitations on the ex-
tent to which one can totally remove the assumption of
compactness from minimax theorems.

Theorem 9 (1971) Suppose that X is a nonempty
bounded, convex, complete subset of a locally convex
space E with dual space E�, and

inf
y2Y

sup
x2X
hx; yi D sup

x2X
inf
y2Y
hx; yi

whenever Y is a nonempty convex, equicontinuous, sub-
set of E�. Then X is weakly compact.

No compactness is assumed in the following, much
harder, result (see [26]):

Theorem 10 (1972) If X is a nonempty bounded, con-
vex subset of a locally convex space E such that every el-
ement of the dual space E� attains its supremum on X,
and Y is any nonempty convex equicontinuous subset of
E�, then

inf
y2Y

sup
x2X
hx; yi D sup

x2X
inf
y2Y
hx; yi :

If one now combines the results of Theorems 9 and
10, one can obtain a proof of the ‘sup theorem’ of R.C.

James, one of the most beautiful results in functional
analysis:

Theorem 11 (James sup theorem) If C is a nonempty
bounded closed convex subset of E, then C is w(E, E�)-
compact if and only if, for all x� 2 E�, there exists x 2 C
such that hx, x�i = maxCx�.

James’s theorem is not easy - the standard proof can be
found in the paper [24] by J.D. Pryce.

See [31] for more details of the connections between
minimax theorems and weak compactness.

Minimax Inequalities for Two orMore Functions

Motivated by Nash equilibrium and the theory of non-
cooperative games, Fan generalized Theorem 2 to the
case of more than one function. In particular, he proved
in [3] the following two-function minimax inequality
(since the compactness of X is not needed, this result
can in fact be strengthened to include Sion’s theorem,
Theorem 3, by taking g = f ):

Theorem 12 (1964) Let X and Y be nonempty com-
pact, convex subsets of topological vector spaces and f , g:
X × Y ! R. Suppose that f is lower semicontinuous on
Y and quasiconcave on X, g is upper semicontinuous on
X and quasiconvex on Y, and

f � g on X � Y :

Then

min
Y

sup
X

f � sup
X

inf
Y

g:

Fan (unpublished) and Simons (see [27]) generalized
König’s theorem, Theorem 4, with the following two-
function minimax inequality:

Theorem 13 (1981) Let X be a nonempty set, Y be
a compact topological space and f , g: X × Y ! R. Sup-
pose that f is lower semicontinuous on Y, and
� for all y1, y2 2 Y there exists y3 2 Y such that

f (�; y3) �
f (�; y1)C f (�; y2)

2
on X;
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� for all x1, x2 2 X there exists x3 2 X such that

g(x3; �) �
g(x1; �)C g(x2; �)

2
on Y ;

and
� f � g on X × Y.
Then

min
Y

sup
X

f � sup
X

inf
Y

g:

Theorems 12 and 13 both unify the theory of mini-
max theorems and the theory of variational inequali-
ties. The curious feature about these two results is that
they have ‘opposite geometric pictures’. This question
is discussed in [27] and [28]. The relationship between
Theorem 12 and Brouwer’s fixed point theorem is quite
interesting. As we have already pointed out, Sion’s the-
orem, Theorem 3, can be proved in an elementary fash-
ion without recourse to fixed point related concepts.
On the other hand, Theorem 12 can, in fact, be used
to prove Tychonoff’s fixed point theorem, which is itself
a generalization of Brouwer’s fixed point theorem. (See
[3] for more details of this.)

A number of authors have provedminimax inequal-
ities for more than two functions. See [31] for more de-
tails of these results.

Coincidence Theorems

A coincidence theorem is a theorem that asserts that if
S: X ! 2Y and T: Y ! 2X have nonempty values and
satisfy certain other conditions, then there exist x0 2 X
and y0 2 Y such that y0 2 Sx0 and x0 2 Ty0. The con-
nection with minimax theorems is as follows: Suppose
that infY supX f 6D supX infYf . Then there exists � 2 R
such that

sup
X

inf
Y

f < � < inf
Y
sup
X

f :

Hence,
� for all x 2 X there exists y 2 Y such that f (x, y) < �;

and
� for all y 2 Y there exists x 2 X such that f (x, y) > �.
Define S: X! 2Y and T: Y! 2X by

Sx :D fy 2 Y : f (x; y) < �g ¤ ;

and

Tx :D fx 2 X : f (x; y) > �g ¤ ;:

If S and T were to satisfy a coincidence theorem, then
we would have x0 2 X and y0 2 Y such that

f (x0; y0) < � and f (x0; y0) > �;

which is clearly impossible. Thus this coincidence the-
orem would imply that

inf
Y
sup
X

f D sup
X

inf
Y

f :

The coincidence theorems known in algebraic topology
consequently give rise to corresponding minimax theo-
rems. There is a very extensive literature about coinci-
dence theorems. See [31] for more details about this.
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The minimum concave transportation problem MCTP
concerns the least cost method of carrying flow on a bi-
partite network in which the marginal cost for an arc is
a nonincreasing function of the flow on that arc. A bi-
partite network contains source nodes and sink nodes,
but no transshipment (i. e., intermediate) nodes. The
MCTP can be formulated as

min
X

(i; j)2A

�i j(xi j) (1)

subject to:
X
j2N

xi j D si ; 8i 2 M; (2)

X
i2M

xi j D dj; 8 j 2 N; (3)

xi j � 0; 8(i; j) 2 A; (4)
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where M is the set of source nodes; N is the set of sink
nodes; si is the supply at source node i, dj is the demand
at sink node j; A = {(i, j) : i 2 M, j 2 N} is the (di-
rected) arc set; xij is the flow carried on arc (i, j); and � ij

(xij) is the concave cost function for arc (i, j). Objective
function (1) minimizes total costs; constraints (2) bal-
ance flow at the source nodes; and constraints (3) bal-
ance flow at the sink nodes. If

P
i 2M si is less (greater)

than
P

j 2 N dj, then a dummy source (sink) node can
be added to setM (N).

MCTPs arise naturally in distribution problems in-
volving shipments sent directly from supply points to
demand points in which the transportation costs ex-
hibit economies of scale [21]. However, the MCTP is
not limited to this class of problems. Specifically, any
network flow problem with arc cost functions that are
not concave can be converted to a network flow prob-
lem on an expanded network whose arc cost functions
are all concave [16]. Then, the expanded network can
be converted to a bipartite network by replacing each
transshipment node with a source node and a sink
node. Arc flow capacities can be removed by adding
additional source nodes, one for each capacitated arc
[19,23].

The fixed charge transportation problem FCTP is
a type of MCTP in which the cost function � ij (xij) for
each arc (i, j) 2 A is of the form

�i j(xi j) D

(
0 if xi j D 0;
fi j C gi j � xi j if xi j > 0;

(5)

where f ij and gij are coefficients with f ij � 0. FCTPs are
commonly used to model network flow problems in-
volving setup costs [9]. Furthermore, a variety of com-
binatorial problems can be converted to FCTPs. For in-
stance, consider the 0–1 knapsack problem KP. The KP
is formulated as

max
nX

kD1

ck � yk (6)

subject to:
nX

kD1

ak � yk � b; (7)

yk 2 f0; 1g; for k D 1; : : : ; n; (8)

with ak � 0 and ck � 0 for k = 1, . . . , n. The KP can
be converted to a FCTP with two source nodes and n +

1 sink nodes. Define an + 1 = b and cn + 1 = 0. Then, the
network is specified asM = {1, 2}, N = {1, . . . , n + 1}, s1
= b, s2 =

Pn
kD1 ak, and dj = aj for j = 1, . . . , n + 1; and

the cost function is of the form of (5) where, for each
arc (i, j) 2 A, the coefficients f ij and gij are given by

fi j D

8̂
<
:̂

nX
kD1

ck if j D 1; : : : ; n;

0 if j D nC 1;
(9)

gi j D

(
�

c j
a j

if i D 1;

0 if i D 2:
(10)

For j = 1, . . . , n sink node j has two incoming arcs, ex-
actly one of which will have nonzero flow in the optimal
solution to the FCTP. If x�1 j > 0 in the FCTP, then y�j =
1 in the KP. If x�2 j > 0 in the FCTP, then y�j = 0 in the
KP.

One consequence of this result is that any integer
programming problem with integer coefficients can (in
principle) be formulated and solved as a FCTP by first
converting the integer program to a KP [10].

Exact solution methods for the MCTP are pre-
dominately branch and bound enumeration procedures
[2,3,4,6,8,11,12,15]. Binary partitioning is used for the
FCTP; and interval partitioning is used for the MCTP
with arbitrary concave arc cost functions. Finite con-
vergence of themethod was shown by R.M. Soland [22].
The convex envelope of the cost function � ij (xij) is
an affine function. Hence, a subproblem in the branch
and bound procedure can be solved efficiently as a lin-
ear transportation problem (LTP) [1]. Fathoming tech-
niques (such as ‘up and down penalties’ and ‘capacity
improvement’) based on post-optimality analysis of the
LTP facilitate the branch and bound procedure for the
MCTP [2,3,18,20]. The LTP is also used in approximate
solution methods for the MCTP which rely on succes-
sive linearizations of the concave cost function, � ij (xij)
[5,13,14].

Test problems for the MCTP are given in
[7,8,12,17,20].
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The minimum cost flow problem seeks a least cost ship-
ment of a commodity through a network to satisfy de-
mands at certain nodes by available supplies at other
nodes. This problem has many, varied applications: the
distribution of a product from manufacturing plants to
warehouses, or fromwarehouses to retailers; the flow of
raw material and intermediate goods through various
machining stations in a production line; the routing of
automobiles through an urban street network; and the
routing of calls through the telephone system. The min-
imum cost flow problem also has many less direct appli-
cations. In this article, we briefly introduce the theory,
algorithms and applications of the minimum cost flow
problem. [1] contains much additional material on this
topic.

Let G = (N,A) be a directed network defined by a set
N of n nodes and a set A of m directed arcs. Each arc
(i, j) 2 A has an associated cost cij that denotes the cost
per unit flow on that arc. We assume that the flow cost
varies linearly with the amount of flow. Each arc (i, j) 2
A has an associated capacity uij denoting the maximum
amount that can flow on this arc, and a lower bound
lij that denotes the minimum amount that must flow
on the arc. We assume that the capacity and flow lower
bound for each arc (i, j) are integers. We associate with
each node i 2 N an integer b(i) representing its sup-
ply/demand. If b(i) > 0, node i is a supply node; if b(i)
< 0, then node i is a demand node with a demand of �
b(i); and if b(i) = 0, then node i is a transshipment node.
We assume that

P
i 2 N b(i) = 0. The decision variables

xij are arc flows defined for each arc (i, j) 2 A.
The minimum cost flow problem is an optimization

model formulated as follows:

Minimize
X

(i; j)2A

ci jxi j (1)

subject to

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji D b(i);

for all i 2 N; (2)

li j � xi j � ui j; for all (i; j) 2 A: (3)

We refer to the constraints (2) as the mass balance con-
straints. For a fixed node i, the first term in the con-
straint (2) represents the total outflow of node i and the
second term represents the total inflow of node i. The
mass balance constraints state that outflow minus in-
flow must equal the supply/demand of each node. The
flow must also satisfy the lower bound and capacity
constraints (3), which we refer to as flow bound con-
straints.

This article is organized as follows. To help in un-
derstanding the applicability of the minimum cost flow
problem, we begin in Section 2 by describing several
applications. In Section 3, we present preliminary ma-
terial needed in the subsequent sections. We next dis-
cuss algorithms for the minimum cost flow problem,
describing the cycle-canceling algorithm in Section 4
and the successive shortest path algorithm in Section 5.
The cycle-canceling algorithm identifies negative cost
cycles in the network and augments flows along them.
The successive shortest path algorithm augments flow
along shortest cost augmenting paths from the supply
nodes to the demand nodes. In Section 6, we describe
the network simplex algorithm.

Applications

Minimum cost flow problems arise in almost all in-
dustries, including agriculture, communications, de-
fense, education, energy, health care, manufacturing,
medicine, retailing, and transportation. Indeed, mini-
mum cost flow problems are pervasive in practice. In
this section, by considering a few selected applications
that arise in distribution systems planning, capacity
planning, and vehicle routing, we give a passing glimpse
of these applications.

Distribution Problems

A large class of network flow problems center around
distribution applications. One core model is often de-
scribed in terms of shipments from plants to ware-
houses (or, alternatively, from warehouses to retailers).
Suppose a firm has p plants with known supplies and q
warehouses with known demands. It wishes to identify
a flow that satisfies the demands at the warehouses from
the available supplies at the plants and that minimizes
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its shipping costs. This problem is a well-known spe-
cial case of the minimum cost flow problem, known as
the transportation problem. We next describe in more
detail a slight generalization of this model that also in-
corporates manufacturing costs at the plants.

A car manufacturer has several manufacturing
plants and produces several car models at each plant
that it then ships to geographically dispersed retail cen-
ters throughout the country. Each retail center requests
a specific number of cars of each model. The firm must
determine the production plan of each model at each
plant and a shipping pattern that satisfies the demand
of each retail center while minimizing the overall cost
of production and transportation.

We describe this formulation through an example.
Figure 1 illustrates a situation with two manufacturing
plants, two retailers, and three car models. This model
has four types of nodes:
i) plant nodes, representing various plants;
ii) plant/model nodes, corresponding to each model

made at a plant;
iii) retailer/model nodes, corresponding to the models

required by each retailer; and
iv) retailer nodes corresponding to each retailer.
The network contains three types of arcs:
i) production arcs;
ii) transportation arcs; and
iii) demand arcs.
The production arcs connect a plant node to a plant/
model node; the cost of this arc is the cost of produc-
ing the model at that plant. We might place lower and
upper bounds on production arcs to control for the
minimum and maximum production of each particu-
lar car model at the plants. Transportation arcs con-
nect plant/model nodes to retailer/model nodes; the
cost of any such arc is the total cost of shipping one
car from the manufacturing plant to the retail cen-
ter. The transportation arcs might have lower or upper
bounds imposed upon their flows to model contractual
agreements with shippers or capacities imposed upon
any distribution channel. Finally, demand arcs connect
retailer/model nodes to the retailer nodes. These arcs
have zero costs and positive lower bounds that equal
the demand of that model at that retail center.

The production and shipping schedules for the au-
tomobile company correspond in a one-to-one fashion
with the feasible flows in this network model. Conse-

quently, a minimum cost flow provides an optimal pro-
duction and shipping schedule.

Airplane Hopping Problem

A small commuter airline uses a plane, with a capacity
to carry at most p passengers, on a ‘hopping flight’ as
shown in Fig. 2a). The hopping flight visits the cities
1, . . . , n, in a fixed sequence. The plane can pick up
passengers at any node and drop them off at any other
node. Let bij denote the number of passengers available
at node i who want to go to node j, and let f ij denote
the fare per passenger from node i to node j. The airline
would like to determine the number of passengers that
the plane should carry between the various origins to
destinations in order to maximize the total fare per trip
while never exceeding the plane’s capacity.

Figure 2b) shows a minimum cost flow formulation
of this hopping plane flight problem. The network con-
tains data for only those arcs with nonzero costs and
with finite capacities: any arc listed without an associ-
ated cost has a zero cost; any arc listed without an as-
sociated capacity has an infinite capacity. Consider, for
example, node 1. Three types of passengers are avail-
able at node 1: those whose destination is node 2, node
3 or node 4. We represent these three types of passen-
gers in a new derived network by the nodes 1 – 2, 1 –
3 and 1 – 4 with supplies b12, b13 and b14. A passenger
available at any such node, say 1 – 3, could board the
plane at its origin node represented by flowing through
the arc (1 – 3, 1) and incurring a cost of � f 13 units (or
profit of f 13 units). Or, the passenger might never board
the plane, which we represent by the flow through the
arc (1 – 3, 3). It is easy to establish a one-to-one corre-
spondence between feasible flows in Fig. 2b) and feasi-
ble loading of the plane with passengers. Consequently,
a minimum cost flow in Fig. 2b) will prescribe a most
profitable loading of the plane.

Directed Chinese Postman Problem

The directed Chinese postman problem is a generic rout-
ing problem that can be stated as follows. In a directed
network G = (N, A) in which each arc (i, j) has an as-
sociated cost cij, we wish to identify a walk of mini-
mum cost that starts at some node (the post office), vis-
its each arc of the network at least once, and returns
to the starting point (see the next Section for the def-
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Minimum Cost Flow Problem, Figure 1
Formulating the production-distribution problem

inition of a walk). This problem has become known as
the Chinese postman problem because a Chinese math-
ematician, K. Mei-Ko, first discussed it. The Chinese
postman problem arises in other settings as well; for in-
stance, patrolling streets by police, routing street sweep-
ers and household refuse collection vehicles, fuel oil de-
livery to households, and spraying roads with sand dur-
ing snowstorms. The directed Chinese postman prob-
lem assumes that all arcs are directed, that is, the postal
carrier can traverse an arc in only one direction (like
one-way streets).

In the directed Chinese postman problem, we are
interested in a closed (directed) walk that traverses each
arc of the network at least once. The network might not
contain any such walk. It is easy to show that a net-
work contains a desired walk if and only if the net-

work is strongly connected, that is, every node in the net-
work is reachable from every other node via a directed
path. Simple graph search algorithms are able to deter-
mine whether the network is strongly connected, and
we shall therefore assume that the network is strongly
connected.

In an optimal walk, a postal carrier might traverse
arcs more than once. The minimum length walk min-
imizes the sum of lengths of the repeated arcs. Let xij
denote the number of times the postal carrier traverses
arc (i, j) in a walk. Any carrier walk must satisfy the fol-
lowing conditions:

X

f j : (i; j)2Ag

xi j �
X

f j : ( j;i)2Ag

x ji D 0 for all i 2 N; (4)

xi j � 1 for all (i; j) 2 A: (5)
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Minimum Cost Flow Problem, Figure 2
Formulation of the hopping plane flight problem as aminimum cost flow problem

The constraints (4) state that the carrier enters
a node the same number of times that he or she leaves
it. The constraints (5) state that the carrier must visit
each arc at least once. Any solution x satisfying the sys-
tem (4)–(5) defines a carrier’s walk. We can construct
a walk in the following manner. Given a flow xij, we re-
place each arc (i, j) with xij copies of the arc, each arc
carrying a unit flow. In the resulting network, say G0 =
(N, A0), each node has the same number of outgoing
arcs as it has the incoming arcs. It is possible to decom-
pose this network into at mostm/2 arc-disjoint directed
cycles (by walking along an arc (i, j) from some node i
with xij > 0, leaving an node each time we enter it until
we repeat a node). We can connect these cycles together
to form a closed walk of the carrier.

The preceding discussion shows that the solution
x defined by a feasible walk for the carrier satisfies
conditions (4)–(5), and, conversely, every feasible so-
lution of system (4)–(5) defines a walk of the postman.
The length of a walk defined by the solution x equalsP

(i, j) 2 A cijxij. This problem is an instance of the mini-
mum cost flow problem.

Preliminaries

In this Section, we discuss some preliminary material
required in the following sections.

Assumptions

We consider the minimum cost flow problem subject to
the following six assumptions:
1) lij = 0 for each (i, j) 2 A;
2) all data (cost, supply/demand, and capacity) are in-

tegral;
3) all arc costs are nonnegative;
4) for any pair of nodes i and j, the network does not

contain both the arcs (i, j) and (j, i);
5) the minimum cost flow problem has a feasible solu-

tion; and
6) the network contains a directed path of sufficiently

large capacity between every pair of nodes.
It is possible to show that none of these assumptions,
except 2), restricts the generality of our development.
We impose them just to simply our discussion.
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Graph Notation

We use standard graph notation. A directed graph G =
(N, A) consists of a set N of nodes and a set A of arcs.
A directed arc (i, j) has two endpoints, i and j. An arc (i,
j) is incident to nodes i and j. The arc (i, j) is an outgoing
arc of node i and an incoming arc of node j. A walk in
a directed graph G = (N, A) is a sequence of nodes and
arcs i1, a1, i2, a2, . . . , ir satisfying the property that for all
1 � k� r� 1, either ak = (ik, ik + 1) 2 A or ak = (ik + 1, ik)
2 A. We sometimes refer to a walk as a sequence of arcs
(or nodes) without any explicit mention of the nodes
(or arcs). A directed walk is an oriented version of the
walk in the sense that for any two consecutive nodes
ik and ik + 1 on the walk, ak = (ik, ik + 1) 2 A. A path is
a walk without any repetition of nodes, and a directed
path is a directed walk without any repetition of nodes.
A cycle is a path i1, i2, . . . , ir together with the arc (ir,
i1) or (i1, ir). A directed cycle is a directed path i1, i2,
. . . , ir together with the arc (ir, i1). A spanning tree of
a directed graph G is a subgraph G0 = (N, A0) with A0

� A that is connected (that is, contains a path between
every pair of nodes) and contains no cycle.

Residual Network

The algorithms described in this article rely on the con-
cept of a residual network G(x) corresponding to a flow
x. For each arc (i, j) 2 A, the residual network contains
two arcs (i, j) and (j, i). The arc (i, j) has cost cij and
residual capacity rij = uij � xij, and the arc (j, i) has cost
cji = � cij and residual capacity rji = xij. The residual
network consists of arcs with positive residual capacity.
If (i, j) 2 A, then sending flow on arc (j, i) in G(x) cor-
responds to decreasing flow on arc (i, j); for this reason,
the cost of arc (j, i) is the negative of the cost of arc
(i, j). These conventions show how to determine the
residual network G(x) corresponding to any flow x. We
can also determine a flow x from the residual network
G(x) as follows. If rij > 0, then using the definition of
residual capacities and Assumption 4), we set xij = uij
� rij if (i, j) 2 A, and xji = rij otherwise. We define the
cost of a directed cycle W in the residual network G(x)
as
P

(i, j) 2W cij.

Order Notation

In our discussion, we will use some well-known nota-
tion from the field of complexity theory. We say that

an algorithm for a problem P is an O(n3) algorithm, or
has a worst-case complexity of O(n3), if it is possible to
solve any instance of P using a number of computa-
tions that is asymptotically bounded by some constant
times the term n3. We refer to an algorithm as a poly-
nomial time algorithm if its worst-case running time is
bounded by a polynomial function of the input size pa-
rameters, which for a minimum cost flow problem, are
n, m, log C (the number of bits needed to specify the
largest arc cost), and log U (the number of bits needed
to specify the largest arc capacity). A polynomial time
algorithm is either a strongly polynomial time algorithm
(when the complexity terms involves only n andm, but
not log C or log U), or is a weakly polynomial time al-
gorithm (when the complexity terms include log C or
log U or both). We say that an algorithm is a pseu-
dopolynomial time algorithm if its worst-case running
time is bounded by a polynomial function of n, m and
U. For example, an algorithmwith worst-case complex-
ity of O(nm2 log n) is a strongly polynomial time algo-
rithm, an algorithm with worst-case complexity O(nm2

log U) is a weakly polynomial time algorithm, and an
algorithm with worst-case complexity of O(n2 mU) is
a pseudopolynomial time algorithm.

Cycle-Canceling Algorithm

In this Section, we describe the cycle-canceling algo-
rithm, one of the more popular algorithms for solv-
ing the minimum cost flow problem. The algorithm
sends flows (called augmenting flows) along directed cy-
cles with negative cost (called negative cycles). The algo-
rithm rests upon the following negative cycle optimality
condition stated as follows.

Theorem 1 (Negative cycle optimality condition) A
feasible solution x� is an optimal solution of the mini-
mum cost flow problem if and only if the residual net-
work G(x�) contains no negative cost (directed) cycle.

It is easy to see the necessity of these conditions. If the
residual network G(x�) contains a negative cycle (that
is, a negative cost directed cycle), then by augmenting
positive flow along this cycle, we can decrease the cost
of the flow. Conversely, it is possible to show that if the
residual network G(x�) does not contain any negative
cost cycle, then x� must be an optimal flow.

The negative cycle optimality condition suggests
one simple algorithmic approach for solving the min-



MinimumCost Flow Problem M 2101

Minimum Cost Flow Problem, Figure 3
Cycle-canceling algorithm

imum cost flow problem, which we call the cycle-
canceling algorithm. This algorithmmaintains a feasible
solution and at every iteration improves the objective
function value. The algorithm first establishes a feasi-
ble flow x in the network by solving a related (and eas-
ily solved) problem known as the maximum flow prob-
lem. Then it iteratively finds negative cycles in the resid-
ual network and augments flows on these cycles. The
algorithm terminates when the residual network con-
tains no negative cost directed cycle. Theorem 1 implies
that when the algorithm terminates, it has found a min-
imum cost flow. Figure 3a specifies this generic version
of the cycle-canceling algorithm.

The numerical example shown in Fig. 4a) illustrates
the cycle-canceling algorithm. This figure shows the arc

Minimum Cost Flow Problem, Figure 4
Illustration of the cycle-canceling algorithm. a) the original network with flow x and arc costs; b) the residual network G(x); c)
the residual network after augmenting a unit of flow along the cycle 2 – 1 – 3 – 2; d) the residual network after augmenting a
unit of flow along the cycle 4 – 5 – 6 – 4

costs and the starting feasible flow in the network. Each
arc in the network has a capacity of 2 units. Figure 4b)
shows the residual network corresponding to the ini-
tial flow. We do not show the residual capacities of the
arcs in Fig. 4b) since they are implicit in the network
structure. If the residual network contains both arcs (i,
j) and (j, i) for any pair i and j of nodes, then both have
residual capacity equal to 1; and if the residual network
contains only one arc, then its capacity is 2 (this ob-
servation uses the fact that each arc capacity equals 2).
The residual network shown in Fig. 4b) contains a neg-
ative cycle 1 – 3 – 2 – 1 with cost – 3. By augmenting
a unit flow along this cycle, we obtain the residual net-
work shown in Fig. 4c). The residual network shown in
Fig. 4c) contains a negative cycle 6 – 4 – 5 – 6 with cost –
4.We augment unit flow along this cycle, producing the
residual network shown in Fig. 4d), which contain no
negative cycle. Given the optimal residual network, we
can determine optimal flow using the method described
in the previous Section.

A byproduct of the cycle-canceling algorithm is the
following important result.

Theorem 2 (Integrality property) If all arc capacities
and supply/demands of nodes are integer, then the mini-
mum cost flow problem always has an integer minimum
cost flow.
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This result follows from the fact that for problems
with integer arc capacities and integer node sup-
plies/demand, the cycle-canceling algorithm starts with
an integer solution (which is provided by the maxi-
mum flow algorithm used to obtain the initial feasible
flow) and at each iteration augments flow by an integral
amount.

What is the worst-case computational requirement
(complexity) of the cycle-canceling algorithm? The al-
gorithm must repeatedly identify negative cycles in the
residual network. We can identify a negative cycle in
the residual network in O(nm) time using a shortest
path label-correcting algorithm [1]. How many times
must the generic cycle-canceling algorithm perform
this computation? For the minimum cost flow prob-
lem, mCU is an upper bound on the initial flow cost
(since cij � C and xij � U for all (i, j) 2 A) and �mCU
is a lower bound on the optimal flow cost (since cij
� � C and xij � U for all (i, j) 2 A). Any iteration
of the cycle-canceling algorithm changes the objective
function value by an amount

P
(i, j) 2W ci, j) ı, which is

strictly negative. Since we have assumed that the prob-
lem has integral data, the algorithm terminates within
O(mCU) iterations and runs inO(nm2 CU) time, which
is a pseudopolynomial running time.

The generic version of the cycle-canceling algo-
rithm does not specify the order for selecting nega-
tive cycles from the network. Different rules for select-
ing negative cycles produce different versions of the al-
gorithm, each with different worst-case and theoreti-
cal behavior. Two versions of the cycle-canceling algo-
rithm are polynomial time implementations:
i) a version that augments flow in arc-disjoint negative

cycles with the maximum improvement [2]; and
ii) a version that augments flow along a negative cycle

with minimum mean cost, that is, the average cost
per arc in the cycle [4]).

Successive Shortest Path Algorithm

The cycle-canceling algorithm maintains feasibility of
the solution at every step and attempts to achieve op-
timality. In contrast, the successive shortest path algo-
rithm maintains optimality of the solution at every step
(that is, the condition that the residual network G(x)
contains no negative cost cycle) and strives to attain fea-
sibility. It maintains a solution x, called a pseudoflow

(see below), that is nonnegative and satisfies the arcs’
flow capacity restrictions, but violates the mass balance
constraints of the nodes. At each step, the algorithm se-
lects a node k with excess supply (i. e., supply not yet
sent to some demand node), a node l with unfulfilled
demand, and sends flow from node k to node l along
a shortest path in the residual network. The algorithm
terminates when the current solution satisfies all the
mass balance constraints.

To be more precise, a pseudoflow is a vector x sat-
isfying only the capacity and nonnegativity constraints;
it need not satisfy the mass balance constraints. For any
pseudoflow x, we define the imbalance of node i as

e(i) D b(i)C
X
f j;i)2Ag

x ji �
X
f(i; j)2Ag

xi j

for all i 2 N: (6)

If e(i) > 0 for some node i, then we refer to e(i) as the
excess of node i; if e(i) < 0, then we refer to � e(i) as the
node’s deficit. We refer to a node i with e(i) = 0 as bal-
anced. Let E and D denote the sets of excess and deficit
nodes in the network. Notice that

P
i 2 N e(i) =

P
i 2 N

b(i) = 0, which implies that
P

i 2 E e(i) = �
P

i 2 D e(i).
Consequently, if the network contains an excess node,
then it must also contain a deficit node. The residual
network corresponding to a pseudoflow is defined in
the same way that we define the residual network for
a flow. The successive shortest path algorithm uses the
following result.

Theorem 3 (Shortest augmenting path theorem)
Suppose a pseudoflow (or a flow) x satisfies the optimal-
ity conditions and we obtain x0 from x by sending flow
along a shortest path from node k to some other node l in
the residual network, then x0 also satisfies the optimality
conditions.

To prove this Theorem, we would show that if the resid-
ual network G(x) contain no negative cycle, then aug-
menting flow along any shortest path does not intro-
duce any negative cycle (we will not establish this result
in this discussion). Figure 5 gives a formal description
of the successive shortest path algorithm.

The numerical example shown in Fig. 6a) illustrates
the successive shortest path algorithm. The algorithm
starts with x = 0, and at this value of flow, the residual
network is identical to the starting network. Just as we
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BEGIN
x := 0;
e(i) = b(i) for all i 2 N ;
initialize the sets E and D;
WHILE E ¤ ; DO
BEGIN

select a node k 2 E and a node l 2 D;
identify a shortest path P in G(x) from
node k to node l ;
ı :=min[e(s);�e(t);minfri j : (i; j)2Pg];
augment ı units of flow along the path P and
update x and G(x);

END
END

Minimum Cost Flow Problem, Figure 5
Successive shortest path algorithm

observed in Fig. 4, whenever the residual network con-
tains both the arcs (i, j) and (j, i), the residual capacity of
each arc is 1. If the residual network contains only one
arc, (i, j) or (j, i), then its residual capacity is 2 units.
For this problem, E = {1} and D = {6}. In the residual
network shown in Fig. 6a), the shortest path from node
1 to node 6 is 1 – 2 – 4 – 6 with cost equal to 9. The
residual capacity of this path equals 2. Augmenting two
units of flow along this path produces the residual net-
work shown in Fig. 6b), and the next shortest path from

Minimum Cost Flow Problem, Figure 6
Illustration of the successive shortest path algorithm. a) the residual network corresponding to x = 0; b) the residual network
after augmenting 2 units of flow along the path 1 – 2 – 4 – 6; c) the residual network after augmenting 2 units of flow along
the path 1 – 3 – 5 – 6

node 1 to node 6 is 1 – 3 – 5 – 6 with cost equal to 10.
The residual capacity of this path is 2 and we augment
two unit of flow on it. At this point, the sets E = D = ;,
and the current solution solves the minimum cost flow
problem.

To show that the algorithm correctly solves the min-
imum cost flow problem, we argue as follows. The algo-
rithm starts with a flow x = 0 and the residual network
G(x) is identical to the original network. Assumption 3)
implies that all arc costs are nonnegative. Consequently,
the residual network G(x) contains no negative cycle
and so the flow vector x satisfies the negative cycle op-
timality conditions. Since the algorithm augments flow
along a shortest path from excess nodes to deficit nodes,
Theorem 3 implies that the pseudoflow maintained by
the algorithm always satisfies the optimality conditions.
Eventually, node excesses and deficits become zero; at
this point, the solution maintained by the algorithm is
an optimal flow.

What is the worst-case complexity of this algo-
rithm? In each iteration, the algorithm reduces the ex-
cess of some node. Consequently, if U is an upper
bound on the largest supply of any node, then the al-
gorithm would terminate in at most nU iterations. We
can determine a shortest path inG(x) inO(nm) time us-
ing a label-correcting shortest path algorithm [1]. Con-
sequently, the running time of the successive shortest
path algorithm is n2mU.
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Minimum Cost Flow Problem, Figure 7
Computing flows for a spanning tree

The successive shortest path algorithm requires
pseudopolynomial time to solve the minimum cost flow
problem since it is polynomial in n, m and the largest
supply U. This algorithm is, however, polynomial time
for some special cases of the minimum cost flow prob-
lem (such as the assignment problem for which U =
1). Researchers have developed weakly polynomial time
and strongly polynomial time versions of the successive
shortest path algorithm; some notable implementations
are due to [3] and [5].

Network Simplex Algorithm

The network simplex algorithm for solving the mini-
mum cost flow problem is an adaptation of the well-
known simplex method for general linear programs.
Because the minimum cost flow problem is a highly
structured linear programming problem, when applied
to it, the computations of the simplex method become
considerably streamlined. In fact, we need not explic-
itly maintain the matrix representation (known as the
simplex tableau) of the linear program and can per-
form all of the computations directly on the network.
Rather than presenting the network simplex algorithm
as a special case of the linear programming simplex
method, we will develop it as a special case of the cycle-
canceling algorithm described above. The primary ad-
vantage of our approach is that it permits the network
simplex algorithm to be understood without relying on
linear programming theory.

The network simplex algorithmmaintains solutions
called spanning tree solutions. A spanning tree solution
partitions the arc set A into three subsets:
i) T, the arcs in the spanning tree;
ii) L, the nontree arcs whose flows are restricted to

value zero;

iii) U, the nontree arcs whose flow values are restricted
in value to the arcs’ flow capacities.

We refer to the triple (T, L, U) as a spanning tree
structure. Each spanning tree structure (T, L, U) has
a unique solution that satisfies the mass balance con-
straints (2). To determine this solution, we set xij = 0
for all arcs (i, j) 2 L, xij = uij for all arcs (i, j) 2 U, and
then solve the mass balance equations (2) to determine
the flow values for arcs in T.

To show that the flows on spanning tree arcs are
unique, we use a numerical example. Consider the
spanning tree T shown in Fig. 7a). Assume that U = ',
that is, all nontree arcs are at their lower bounds. Con-
sider the leaf node 4 (a leaf node is a node with exactly
one arc incident to it). Node 4 has a supply of 5 units
and has only one arc (4, 2) incident to it. Consequently,
arc (4, 2) must carry 5 units of flow. So we set x42 = 5,
add 5 units to b(2) (because it receives 5 units of flow
sent from node 4), and delete arc (4, 2) from the tree.
We now have a tree with one fewer node and next se-
lect another leaf node, node 5 with the supply of 5 units
and the single arc (5, 2) incident to it. We set x52 = 5,
again add 5 units to b(2), and delete the arc (5, 2) from
the tree. Now node 2 becomes a leaf node withmodified
supply/demand of b(5) =�10, implying that node 5 has
an unfulfilled demand of 10 units. Node 2 has exactly
one incoming arc (1, 2) and to meet the demand of 10
units of node 2, we must send 10 units of flow on this
arc. We set x12 = 10, subtract 10 units from b(1) (since
node 1 sends 10 units), and delete the arc (1, 2) from
the tree. We repeat this process until we have identi-
fied flow on all arcs in the tree. Figure 7b) shows the
corresponding flow. Our discussion assumed that U is
empty. If U were nonempty, we would first set xij = uij,
add uij to b(j), and subtract uij from b(i) for each arc (i,
j) 2 U, and then apply the preceding method.
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Minimum Cost Flow Problem, Figure 8
Computing node potentials for a spanning tree

We say a spanning tree structure is feasible if its as-
sociated spanning tree solution satisfies all of the arcs’
flow bounds. We refer to a spanning tree structure as
optimal if its associated spanning tree solution is an op-
timal solution of the minimum cost flow problem. We
will now derive the optimality conditions for a span-
ning tree structure (T, L, U).

The network simplex algorithm augments flow
along negative cycles. To identify negative cycles
quickly, we use the concept of node potentials. We de-
fine node potentials 
(i) so that the reduced cost for
any arc in the spanning tree T is zero. That is, that is, c�i j
= cij � 
(i) + 
 (j) = 0 for each (i, j) 2 T. With the help
of an example, we show how to compute the vector 

of node potentials. Consider the spanning tree shown
in Fig. 8a) with arc costs as shown. The vector 
 has
n variables and must satisfy n � 1 equations, one for
each arc in the spanning tree. Therefore, we can assign
one potential value arbitrary. We assume that 
(1) = 0.
Consider arc (1, 2) incident to node 1. The condition
c�12 = c12 � 
 (1) + 
 (2) = 0 yields 
 (2) = � 5. We
next consider arcs incident to node 2. Using the con-
dition c�52 = c52 � 
 (5)+ 
 (2) = 0, we see that 
 (5)
= � 3, and the condition c�32 = c32 � 
 (3) + 
 (2) =
0 shows that 
 (3) = � 2. We repeat this process until
we have identified potentials of all nodes in the tree T.
Figure 8b) shows the corresponding node potentials.

Consider any nontree arc (k, l). Adding this arc to
the tree T creates a unique cycle, which we denote as
Wkl. We refer to Wkl as the fundamental cycle induced
by the nontree arc (k, l). If (k, l) 2 L, then we define the
orientation of the fundamental cycle as in the direction
of (k, l), and if (k, l) 2 U, then we define the orienta-

tion opposite to that of (k, l). In other words, we de-
fine the orientation of the cycle in the direction of flow
change permitted by the arc (k, l). We let c(Wkl) denote
the change in the cost if we send one unit of flow on the
cycle Wkl along its orientation. (Notice that because of
flow bounds, we might not always be able to send flow
along the cycleWkl.) LetWkl denote the set of forward
arcs in Wkl (that is, those with the same orientation as
(k, l)), and let Wkl denote the set of backward arcs in
Wkl (that is, those with an opposite the orientation to
arc (k, l)). Then, if we send one unit of flow along Wkl,
then the flow on arcs in Wkl increases by one unit and
the flow on arcs in Wkl decreases by one unit. There-
fore,

c(Wkl ) D
X

(i; j)2Wkl

ci j �
X

(i; j)2Wkl

ci j:

Let c� (Wkl) denote the change in the reduced costs
if we send one unit of flow in the cycle Wkl along its
orientation, that is,

c� (Wkl ) D
X

(i; j)2Wkl

c�i j �
X

(i; j)2Wkl

c�i j:

It is easy to show that c� (Wkl) = c(Wkl). This result
follows from the fact that when we substitute c�k l = cij
� 
 (i) + 
 (j) and add the reduced costs around any
cycle, then the node potentials 
(i) cancel one another.
Next notice that the manner we defined node potentials
ensures that each arc in the fundamental cycle Wkl ex-
cept the arc (k, l) has zero reduced cost. Consequently,
if arc (k, l) 2 L, then

c(Wkl ) D c� (Wkl ) D c�k l ;
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and if arc (k, l) 2 U, then

c(Wkl ) D c�(Wkl ) D �c�k l :

This observation and the negative cycle optimality
condition (Theorem 1) implies that for a spanning tree
solution to be optimal, it must satisfy the following nec-
essary conditions:

c�k l � 0 for every arc (i; j) 2 L; (7)

c�k l � 0 for every arc (i; j) 2 U: (8)

It is possible to show that these conditions are also
sufficient for optimality; that is, if any spanning tree so-
lution satisfies the conditions (7)–(8), then it solves the
minimum cost flow problem.

We now have all the necessary ingredients to de-
scribe the network simplex algorithm. The algorithm
maintains a feasible spanning tree structure at each it-
eration, which it successively transforms it into an im-
proved spanning tree structure until the solution be-
comes optimal. The algorithm first obtains an initial
spanning tree structure. If an initial spanning tree struc-
ture is not easily available, then we could use the follow-
ing method to construct one: for each node i with b(i)
� 0, we connect node i to node 1 with an (artificial) arc
of sufficiently large cost and large capacity; and for each
node i with b(i) < 0, we connect node 1 to node i with
an (artificial) arc of sufficiently large cost and capacity.
These arcs define the initial tree T, all arcs in A define
the set L, andU = ;. Since these artificial arcs have large
costs, subsequent iterations will drive the flow on these
arcs to zero.

Given a spanning tree structure (T, L, U), we first
check whether it satisfies the optimality conditions (7)
and (8). If yes, we stop; otherwise, we select an arc (k, l)
2 L or (k, l) 2 U violating its optimality condition as an
entering arc to be added to the tree T, obtain the fun-
damental cycle Wkl induced by this arc, and augment
the maximum possible flow in the cycleWkl without vi-
olating the flow bounds of the tree arcs. At this value
of augmentation, the flow on some tree arc, say arc (p,
q), reaches its lower or upper bound; we select this arc
as an arc to leave the spanning tree T, adding it added
to L or U depending upon its flow value. We next add
arc (k, l) to T, giving us a new spanning tree structure.
We repeat this process until the spanning tree structure

BEGIN
determine an initial feasible tree structure
(T; L;U);
let x be the flow and let � be the corresponding
node potentials;
WHILE (some nontree arc violates its opti-
mality condition) DO
BEGIN

select an entering arc (k; l) violating the opti-
mality conditions;
add arc (k; l) to the spanning tree T, thus
forming a unique cycleWkl ;
augment the maximum possible flow ı in the
cycleWkl and
identify a leaving arc (p; q) that reaches its
lower or upper flow bound;
update the flow x, the spanning tree struc-
ture (T; L;U) and the potentials � ;

END;
END

Minimum Cost Flow Problem, Figure 9
The network simplex algorithm

satisfies the optimality conditions. Figure 9 specifies the
essential steps of the algorithm.

To illustrate the network simplex algorithm, we use
the numerical example shown in Fig. 10a). Figure 10b)
shows a feasible spanning tree solution for the problem.
For this solution, T = {(1, 2), (1, 3), (2, 4), (2, 5), (5, 6)},
L = {(2, 3), (5, 4)} and U = {(3, 5), (4, 6)}. We next com-
pute c�35 = 1. We introduce the arc (3, 5) into the tree,
creating a cycle. Since (3, 5) is at its upper bound, the
orientation of the cycle is opposite to that of (3, 5). The
arcs (1, 2) and (2, 5) are forward arcs in the cycle and
arcs (3, 5) and (1, 3) are backward arcs. The maximum
increase in flow permitted by the arcs (3, 5), (1, 3), (1,
2), and (2, 5) without violating their upper and lower
bounds is, respectively, 3, 3, 2, and 1 units. Thus, we
augment 1 unit of flow along the cycle. The augmenta-
tion increases the flow on arcs (1, 2) and (2, 5) by one
unit and decreases the flow on arcs (1, 3) and (3, 5) by
one unit. Arc (2, 5) reaches its upper bound and we se-
lect it as the leaving arc. We update the spanning tree
structure; Fig. 10c) shows the new spanning tree T and
the new node potentials. The sets L and U become L =
{(2, 3), (5, 4)} and U = {(2, 5), (4, 6)}. In the next iter-
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Minimum Cost Flow Problem, Figure 10
Numerical example for the network simplex algorithm

ation, we select arc (4, 6) since this arc violates the arc
optimality condition. We augment one unit flow along
the cycle 6 – 4 – 2 – 1 – 3 – 5 – 6 and arc (3, 5) leaves
the spanning tree. Figure 10d) shows the next spanning
tree and the updated node potentials. All nontree arcs
satisfy the optimality conditions and the algorithm ter-
minates with an optimal solution of the minimum cost
flow problem.

The network simplex algorithm can select any non-
tree arc that violates its optimality condition as an en-
tering arc. Many different rules, called pivot rules, are
possible for choosing the entering arc, and these rules
have different empirical and theoretical behavior. [1]
describes some popular pivot rules. We call the process
of moving from one spanning tree structure to another
as a pivot operation. By choosing the right data struc-
tures for representing the tree T, it is possible to per-
form a pivot operation in O(m) time.

To determine the number of iterations performed
by the network simplex algorithm, we distinguish two
cases. We refer to a pivot operation as nondegenerate
if it augments a positive amount of flow in the cycle
Wkl (that is, ı > 0), and degenerate otherwise (that is,
ı = 0). During a degenerate pivot, the cost of the span-
ning tree solution decreases by |c�k l |ı. When combined
with the integrality of data assumption (Assumption 2)

above), this result yields a pseudopolynomial bound on
the number of nondegenerate iterations. However, de-
generate pivots do not decrease the cost of flow and
so are difficult to bound. There are methods to bound
the number of degenerate pivots. Obtaining a polyno-
mial bound on the number of iterations remained an
open problem for quite some time; [6] suggested an
implementation of the network simplex algorithm that
runs in polynomial time. In any event, the empirical
performance of the network simplex algorithm is very
attractive. Empirically, it is one of the fastest known
algorithms for solving the minimum cost flow prob-
lem.
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The location-allocation problem may be stated in the
following general way: Given the location or distribu-
tion of a set of customers which could be probabilis-
tic and their associated demands for a given product or
service, determine the optimal locations for a number
of service facilities and the allocation of their products
or services to the costumers, so as to minimize total (ex-
pected) location and transportation costs. This problem
finds a variety of applications involving the location of
warehouses, distribution centers, service and produc-
tion facilities and emergency service facilities. In the
last section we are going to consider the development
of an offshore oil field as a real-world application of the
location-allocation problem. This problem involves the
location of the oil platforms and the allocation of the oil
wells to platforms.

It was shown in [25] that the joint location-
allocation problem isNP-hard even with all the demand
points located along a straight line. In the next sec-
tion alternative location-allocation models will be pre-
sented based on different objectives and the incorpo-
ration of consumer behavior, price elasticity and sys-
tem dynamics within the location-allocation decision
framework.

Location-allocation Models

In developing location-allocation models different ob-
jectives alternatives are examined. One possibility is to
follow the approach in [5], to minimize the number of
centers required to serve the population. This objective
is appropriate when the demand is exogenously fixed.
Amore general objective is to maximize demand by op-
timally locating the centers as proposed in [10]. The de-
mand maximization requires the incorporation of price
elasticity representing the dependence of the costumer
preference to the distance from the center. The cost of
establishing the centers can also be incorporated in the
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model as proposed in [13]. An alternative objective to-
wards the implementation of costumer preference to-
wards the nearest center is the minimization of an ag-
gregated weighted distance which is called the median
location-allocation problem.

The simplest type of location-allocation problem is
the Weber problem, as posed in [9], which involves lo-
cating a production center so as to minimize aggre-
gate weighted distance from the different raw mate-
rial sources. The extension of the Weber problem is
the p-median location-allocation problem, which in-
volves the optimal location of a set of p uncapaci-
tated centers to minimize the total weighted distance
between them and n demand locations. Here, each
source is assumed to have infinite capacity. In continu-
ous space, the p-median problem can be formulated as
follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min C D
nX

iD1

pX
jD1

Oi�i j ci j

s.t.
pX

jD1

�i j D 1; i D 1; : : : ; n;

�i j D 0; 1; i D 1; : : : ; n; j D 1; : : : ; p;

where Oi is the quantity demanded at location i whose
coordinates are (xi, yi); and �ij is the binary vari-
ables that is assigned the value of 1 if demand point
i is located to center j and zero otherwise. The above
formulation allocate the consumers to their nearest
center while ensuring that only one center will serve
each customer. This however, can lead to dispropor-
tionally sized facilities. In the more realistic situation
where the capacities of the facilities are limited to
supplies of s1, . . . , sn for i = 1, . . . , n facilities then
the location-allocation problem takes the following
form [24]:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min C D
nX

iD1

pX
jD1

wi jci j

s.t
pX

jD1

wi j D si ; i D 1; : : : ; n;

nX
iD1

wi j D dj ; j D 1; : : : ; p;

�i j D 0; 1; i D 1; : : : ; n; j D 1; : : : ; p;

where wij is the amount shipped from facility i located
at (xi, yi) to destination j. In the above formulations the
distance (or the generalized transport cost, which is as-
sumed to be proportional to distance) between the de-
mand point i and the supply point j is represented by
cij. The Euclidean metric:

ci j D
q
(xi � ˛ j)2 C (yi � ˇ j)2

or the rectilinear metric:

ci j D
ˇ̌
xi � ˛ j

ˇ̌
C
ˇ̌
yi � ˇ j

ˇ̌
:

The rectilinear metric is appropriate when the trans-
portation is occurring along a grid of city streets (Man-
hattan norm) or along the aisles of a floor shop [8].

The aforementioned location-allocation models are
based on the assumption that the consumers always
prefer the nearest center to obtain service. In real-
ity however, as reported in the literature from sev-
eral empirical studies [11] there exist several ser-
vices for which consumers choose their service fa-
cility center. The travel patterns of the consumers
for example can produce a variety of allocations
that differ from the nearest center rule. In order
to accommodate such behavior a spatial-interaction
model is incorporated within the uncapacitated p-
median location-allocation model in the following
manner:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
1
ˇ

X
j

Yj
X
i

Si j log(Si j � 1)

C
X
j

X
i

Yj Si j ci j

s.t.
X
j

YjSi j D Oi ; i D 1; : : : ; n;

X
j

Yj D p

Si j � Yj ; i D 1; : : : ; n; j D 1; : : : ; p;
Yj D 0; 1; j D 1; : : : ; p;

where the decision variables include Yj which takes the
value of one if the facility is located at J models. and
zero otherwise;

Si j D AiOiYj exp(�ˇci j)
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that defines the interaction of facility i and consumer j.

Ai D
1P

l Yl exp(�ˇci l )
; i D 1; : : : ;m;

that ensures that the sum of all outflows from the ori-
gin i add up to the amount of demand at that location;
ˇ is either calibrated to match some known interac-
tion data or is defined exogenously. The following re-
lationship holds between the original p-median model
and the spatial-interaction model as shown in [17]. The
value of the optimal objective function at the solution
of the p-median problem is given by:

X
i

X
j

Oi Xi j ci j;

where Xij allocates demand to the nearest of p avail-
able centers. Turning to spatial-interaction model, as
the impedance parameter ˇ increases the term:

Yj exp(�ˇci j)P
l Yl exp(�ˇci l )

of the Sij tends to Xij, where Xij = 1 if the travel time
from i to j is smaller that the travel time from i to
any other facility and zero otherwise. Therefore, the
Sij tends to OiXij and this model allocates the demand
to the nearest facility as the original p-median prob-
lem.

All the models mentioned above consider the static
location-allocation problem where all the activities take
place at one instance. These formulations are suffi-
cient if neither the level nor the location of demand
alters over time. An important factor however, in any
location-allocation problem is the dynamics of the sys-
tem involving demand changes over time. Particularly,
in the competitive environment, an optimal center lo-
cation could become undesirable as new competing
centers develop. Potential directions include the liter-
ature on decision making under uncertainty, [12]. A.J.
Scott [18] proposed a general framework for the inte-
gration of the spatial and discrete temporal dimensions
in the location-allocation models. He proposed a mod-
ification of the location-allocation so as to minimize an
aggregate weighted transport cost over T time periods,
during which time the number nt , level Oit and the lo-
cation (xit , yit) of the demand points change. If the lo-

cations were greatly different the center would be likely
to relocate at some time and costs of relocation are in-
cluded in the model. It was assumed that when a cen-
ter relocates it incurs a fixed cost, ˛. Based on these
ideas the formulation proposed for the uncapacitated
location-allocation problem has the following form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min ˛1 C

n1X
i

Oi1ci j1

C

TX
t

 
˛�t C

ntX
iD1

Oit ci jt

!

s.t. �t D 0; 1; t D 2; : : : ; T;

where the subscript t refers to different time periods, ˛1
is the cost of establishing the center in the first time pe-
riod. The problem as formulated above is to locate in
the first period one center that takes into account fu-
ture variations. Extending the aspects of this model al-
lows the replacement of a truly dynamic model by a se-
ries of static problems as proposed in [3], thus outlining
a multilayer approach, where the objective is to sequen-
tially locate each period’s facility given the previous pe-
riod’s facility locations in order to minimize the present
period cost. This strategy is appropriate whenever the
period durations are sufficiently long or under uncer-
tainty regarding future data or decisions. An alterna-
tive approach proposed in [24] is a discounted present
worth strategy which is appropriate whenever the fore-
going conditions do not hold. In this case the facilities
are being located one per period and the decisions are
made in a rolling horizon framework.

Solution Approaches

For the uncapacitated location-allocation problem us-
ing Euclidean metric for the distances between each fa-
cility and the different demand points, R.F. Love and
H. Juel [15] showed that this problem is equivalent to
a concave minimization problem for which they used
several heuristic procedures. For the capacitated prob-
lems assuming that the costs are proportional to lqp us-
ing lp distances where p � 1 and q � 1 are integers,
M. Avriel [1] developed a geometric programming ap-
proach. H.D. Sherali and C.M. Shetty [22] proposed
a polar cutting plane algorithm for the case p = q =
1. For the case p = q = 2, Sherali and C.H. Tunc-
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bilek [23] proposed a branch and bound algorithm (cf.
� MINLP: Branch and bound methods; � MINLP:
Branch and bound global optimization algorithm) that
utilizes a specialized tight, linear programming repre-
sentation to calculate strong upper bounds via a La-
grangian relaxation scheme. They exploit the special
structure of the transportation constraints to derive
a partitioning scheme. Additional cut-set inequalities
are also incorporated to preserve partial solution.

For the uncapacitated location-allocation model us-
ing rectilinear distance metric Love and J.G. Morris
[16] have developed an exact two-stage algorithm. R.E.
Kuenne and R.M. Soland [14], have developed a branch
and bound algorithm based on a constructive assign-
ment of customers to sources. The capacitated problem
has been addressed in [19,21] and utilize the discrete
equivalence of the capacitated location-allocation prob-
lem. In particular, [8], and [26] showed that
a) the optimal values of xi and yi for each imust satisfy

xi = ˛j for some j and yi =ˇj for some j, whichmeans
that the rectilinear distance location problem always
has an optimal solution with the sources located at
the grid points of the vertical and horizontal lines
drawn through the existing customer locations; and

b) the optimal source locations lie in the convex hull of
the existing facility locations.

Based on these ideas and by denoting k = 1, . . . , K the
intersection grid points that also belong to the convex
hull of the existing facility locations, [21], introduced
the decision binary variables zik that take the value of
1 if source i is located at point k and zero otherwise.
This leads to the following discrete location-allocation
problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

iD1

pX
jD1

KX
kD1

ci jkwi jzik

s.t.
KX

kD1

zik D 1; i D 1; : : : ; n;

pX
jD1

wi j D si ; i D 1; : : : ; n;

nX
iD1

wi j D dj ; j D 1; : : : ; p;

wi j � 0; i D 1; : : : ; n; j D 1; : : : ; p;
zik D 0; 1; i D 1; : : : ; n;

where cijk = cij [|˛k � ˛j| + |ˇk � ˇj|]. The above
model corresponds to a mixed integer bilinear pro-
gramming problem. See [19] for a related version of
this discrete-site location-allocation problem involving
one-to-one assignment restriction and fixed charges.
See [20] for the solution of the problem as a bilinear
programming problem, since the binary variables z can
be treated as positive variables because of the problem
structure that preserves the binariness of z at optimal-
ity. However, in [21] it is proved that it is more useful
to exploit the binary nature of z variables for the effi-
cient solution of the above model. Before giving more
details of this proposed branch and bound based ap-
proach we should mention the heuristic approach pro-
posed in [4], which is very widely used. This so-called
alternating procedure exploited the fundamental con-
cepts of the location-allocation problem and simply
involves allocating demand to centers and relocating
centers until some convergence criterion is achieved.
For the uncapacitated p-median problem, the alternat-
ing procedure involves iterating through the following
equations:

x j D

Pn
iD1

Oi	i j x i
c i jPn

iD1
Oi	i j
c i j

;

y j D

Pn
iD1

Oi	i j y i
c i jPn

iD1
Oi	i j
c i j

;

which are derived from differentiating the objective
function with respect to xj and yj and setting the partial
derivatives to zero. The major drawback of this proce-
dure is that it does not guarantee global optimality. This
is in fact a concern because the spatial configuration of
the local and the global optimummay be very different.
As a rule, repeated runs using numerous starting values
should be undertaken, although there is no guarantee
that the repeatedly found solution would be the global
optimum. Note however that the procedure is general
to all different models of the location-allocation prob-
lem.

Returning to the approach proposed in [21] for the
case of rectilinear capacitated location-allocation prob-
lem, the following linear reformulation of the problem
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is used:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

iD1

pX
jD1

KX
kD1

ci jk Xi jk

s.t.
KX

kD1

Xi jk � wi j D 0; 8(i; j);

pX
jD1

Xi jk � si zik D 0; 8(i; k);

�Xi jk C ui jzik � 0; 8(i; j);
KX

kD1

zik D 1; 8i;

pX
jD1

wi j D si ; 8i;

nX
iD1

wi j D dj ; 8 j;

wi j � 0; 8(i; j);
zik D 0; 1; 8i;
Xi jk � 0; 8(i; j; k);

where uij =min{si, dj }. The above model corresponds to
a mixed integer linear programming problem for which
a special branch and bound algorithm is applied based
on the derivation of tight lower bounds via a suitable
Lagrangian dual formulation.

Briefly, for the location-allocation problems that
have embedded spatial-interaction equations dual-
based exact methods, [17], and heuristic approaches,
[2], have been developed.

Application: Development of Offshore Oil Fields

In this section a real world application of the
location-allocation problem is presented considering
the minimum-cost development of offshore oil fields,
[6]. The facilities to be located are the platforms and the
demands to be allocated are the oil wells. For the ini-
tial information about an oil field, locations are decided
upon the production wells which are specified by two
map coordinates and a depth coordinate. The drilling is
performed directionally from fixed platforms. The cost
of drilling depends on the length and angle of the well
from the platform. The platform cost depends on the
water depth and on the number of wells to be drilled
from the platform. Consequently for a large number of
wells (25 to 300) an optimization problem that arises is

to find the number, size and location of the platforms
and the allocation of wells to platforms so as to mini-
mize the sum of platform and drilling costs.

In order to formulate this problem the following in-
dices, parameters and variables are introduced. Let m
denote the number of wells and i the index of well,
n the number of platforms and j the index for plat-
form, zij are then the binary variables that represent
the allocation of the well i to platform j if it takes the
value of 1, otherwise it becomes 0, Sj the capacity of
the platform j representing the number of wells drilled
from this platform, (ai, bi) denote the location coor-
dinates of well i and (xj, yj) the location of platform j,
di j D

p
[(x j � ai)2 C (y j � bi )2] is the horizontal Eu-

clidean distance between well i and platform j, g(dij)
denotes the drilling cost function that depends on dis-
tance dij, P(Sj, xj, yj) is the platform cost which is a func-
tion of platform size Sj and its location. Based on this
notation the location-allocation problem can be formu-
lated as follows:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
mX
iD1

nX
jD1

zi j g(di j)C
nX

jD1

P(Sj ; x j; y j)

s.t.
nX

jD1

zi j D 1; 8(i);

mX
iD1

zi j D S j ; 8 j;

zi j D 0; 1; 8(i; j);

where the first set of constraints guarantee that each
well is assigned to exactly one platform and the sec-
ond set guarantee that exactly Sj wells are assigned
to each platform. Note that n is fixed in the problem
and is usually small in the size of 3 to 5. The nature
of the problem depends upon the form of the cost of
the drilling function and the platform cost function.
The approach taken in [6] is the alternating location-
allocation method presented in the previous section.
For the specific problem the approach involves the fol-
lowing steps:
a) given fixed platform locations find a minimum cost

allocation of wells to platforms;
b) given fixed allocation of wells to platforms find the

minimum total cost location for each platform.
The procedure alternates between steps a) and b) un-
til convergence is achieved. The convergence criterion
is the following: From the solution of step a) a set of
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n subproblems are generated for each one of the plat-
forms, the solution of these problems result in the re-
location of the platforms. The iterations continue until
no changes are possible. As mentioned above, the so-
lution obtained from this algorithmic procedure is lo-
cally optimum in the sense that for a given assignment
of wells to platforms the solution cannot be improved
by changing locations and for given locations, the so-
lution cannot be improved by altering the assignment
of wells to platforms. The mathematical formulation of
problem a), the allocation subproblem is the following:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
mX
iD1

nX
jD1

zi j g(di j)C
nX

jD1

P(Sj)

s.t.
nX

jD1

zi j D 1; 8(i);

mX
iD1

zi j D Sj; 8 j;

zi j D 0; 1; 8(i; j);

note that the platform cost now depends only on Sj
since the location of the platforms are known. The so-
lution procedure for this problem depends on the form
of the platform cost P(Sj). Five different forms are dis-
cussed in [6]:
1) Single fixed cost with no capacity constraints: P(Sj)

= aj In this case the total cost for platforms is fixed
and the optimal allocation corresponds to the as-
signment of the wells to the closest platform.

2) Single fixed cost with capacity constraints: P(Sj) = aj
and capacity constraints are introduced as inequali-
ties

Pm
iD1 zij � Sj, 8j. In this case the problem cor-

responds to a linear programming model.
3) Linear platform cost: P(Sj) = aj + bj Sj By considering

the following transformation cij0 = cij + bj the prob-
lem takes the form of case 1).

4) Piecewise linear function. In this case the problem
has the structure of ‘transshipment problem’ which
can be solved network flow techniques.

5) Step function: P(Sj) =
PK j

kD1 r
k
j z

k
i j, where Kj are the

number of different size platforms available and rkj
is the cost of kth size of platform j. The problem
in this case is a mixed integer linear programming
problem.
The mathematical formulation for problem b), the

location problem, is the following. Assuming that Aj is

the set of indices for the wells assigned to platform j,
then zij = 1, for i 2 Aj, zij = 0 otherwise and the problem
for platform j takes the form:

min
mX
iD1

X
i2A j

g(di j)C P(x j; y j):

Note that the platform cost is a function of platform lo-
cation only since the size is assumed known. Since the
drilling cost function is convex, if the platform cost is
also convex then the problem corresponds to the min-
imization of a convex function that can be achieved
through a local minimization algorithm. Of course if
the platform cost is nonconvex then global optimal-
ity cannot be guaranteed and global optimization tech-
niques should be considered, [7].

Finally, M.D. Devine and W.G. Lesso, [6], applied
the aforementioned procedure to two test problems one
involving 60 wells and 7 platforms and a second one in-
volving 102 wells and 3 platforms. In both cases they
reported large economic savings in the field develop-
ment.
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Pooling and blending is inherent in many manufactur-
ing plants with limited tankage available to store the
intermediate streams produced by various processes.
Also, chemical products often need to be transported
as a mixture, either in a pipeline, a tank car or a tanker.
In each case, blended or pooled streams are then used
in further downstream processing. In modeling these
processes, it is necessary to model not only product

MINLP: Applications in Blending and Pooling Problems, Fig-
ure 1
General pooling and blending problem

flows but the properties of intermediate streams as well.
The presence of these pools can introduce nonlineari-
ties and nonconvexities in the model of the process, re-
sulting in difficult problems with multiple local optima.

Given a set of components i, a set of products j, a set
of pools k and a set of qualities l, let xil be the amount of
component i allocated to pool l, ylj be the amount going
from pool l to product j, zij be the amount of compo-
nent i going directly to product j and plk be the level
of quality k in pool l. Furthermore, let Ai, Dj and Sl be
upper bounds for component availabilities, product de-
mands and pool sizes respectively, let Cik be the level of
quality k in component i, Pjk be upper bounds on prod-
uct qualities, ci be the unit price of component i and dj
be the unit price of product j. The general pooling and
blending model can then be written as [1]:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max �
X
i;l

ci xi l C
X
l ; j

d j yl j C
X
i; j

(dj � ci )zi j

s.t.
X
l

xi l C
X
j

zi j � Ai

X
l

yl j C
X
i

zi j � Dj

X
i

xi l �
X
j

yl j D 0

X
i

xi l � Sl

�
X
i

Cik xi l C pl k
X
j

yl j D 0

X
l

(pl k � Pjk )yl j

C
X
i

(Ci j � Pjk )zi j � 0

xi l ; yl j ; zi j; pl k � 0:

The first two sets of constraints ensure that the amount
of components used and products made do not ex-
ceed the respective availabilities or demands. The third
and fourth set of constraints are material balance con-
straints around each pool, which ensure that there is no
accumulation or overflow of material in the pools. The
fifth set of constraints relates the quality of each pool
to the quality of the components going into the pool
(in this case, the qualities are assumed to blend linearly,
that is, the pool quality is an average of the qualities of
the components). Finally, the sixth set of equations en-
sures that any upper bound specifications on product
qualities are met. These last two sets of equations are
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bilinear, and can cause significant problems in solving
these models.

The general blending problem has a similar for-
mulation as above, except that the pools need not be
present; the components can be blended directly to
make various products. It should also be noted that
there are various other formulations possible, involv-
ing multiple time periods, tanks and inventories for
components and products, and costs for pooling.More-
over, not all the components need go through all pools.
One example of a simplified pooling model, due to C.A.
Haverly [8,9], is given in Fig. 2, where three compo-
nents with varying sulfur contents are to be blended to
form two products. There is a maximum sulfur restric-
tion on each product. The components have values of
6, 13 and 10, respectively, while the products have val-
ues of 9 and 15, respectively. The mathematical model
for the problem consists of writing mass and sulfur bal-
ances for the various streams, and can be formulated as
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max 9 � (y11 C z31)C 15 � (y12 C z32)
�6x11 � 13x21 � 10 � (z31 C z32)

s.t. x11 C x21 � y11 � y12 D 0
p � y11 C 2z31 � 2:5(y11 C z31) � 0
p � y12 C 2z32 � 1:5(y12 C z32) � 0
p � (y11 C y12) � 3x11 � x21 D 0
y11 C z31 � 100
y12 C z32 � 200:

The variable p represents the sulfur content of the pool
(and of y11 and y12) and is determined as an average of
the sulfur contents of x11 and x21.

Characteristics of Pooling and Blending Problems

Multiple Solutions

The presence of nonconvex constraints needed to de-
fine pool and product qualities often results in multiple
local solutions in these models. For example, consider
the optimal solution of the Haverly pooling problem as
a function of the pool quality p, as shown in Fig. 3.

It can be seen that the problem has three solutions:
1) A local maximum of 125 at p = 2.5 with x11 = 75, x21

= 25, y11 = 100 and all other variables zero;
2) a saddle point region with 1 < p < 2, all flows zero

and profit of zero; and

MINLP: Applications in Blending and Pooling Problems, Fig-
ure 2
Haverly pooling problem

MINLP: Applications in Blending and Pooling Problems, Fig-
ure 3
Optimal solution to Haverly pooling problem

3) a global maximum of 750 at p = 1.5 with x11 = 50,
x21 = 150, y12 = 200 and all other variables zero.

It is not uncommon for a large pooling problem to have
many dozen local optima, with the objective function
varying by small amounts but with all the flow and qual-
ity variables taking on vastly different values.
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Nonlinear Blending

For the sake of simplicity, it is often assumed in for-
mulating these models that the qualities to be tracked
blend linearly by volume or weight of each component.
In practice, however, this is rarely the case. For exam-
ple, one of the properties commonly tracked in refinery
blends is the Reid vapor pressure (RVP), which mea-
sures the volatility of a blend. Themost commonly used
blending rule for RVP is the Chevron method:
 X

i

xi

!
R1:25 D

X
i

xi r1:25i ;

where ri is the RVP of component i, xi is its volume,
and R is the RVP of the blend. Including such a non-
linear equation in the model can cause difficulty in its
solution. Fortunately, this can be avoided by introduc-
ing a blending index, defined as

ri D r1:25i ; R D R1:25:

Then, all specifications on the blend RVP can be con-
verted using the same index. For example, if there is
a lower bound RL on the blend RVP, then using the
blending index results in the constraints as:
 X

i

xi

!
R D

X
i

xi ri ; R � (RL)1:25:

In some cases, the properties (such as octane number or
pour point) can require complex blending rules which
cannot be simplified using the blending index, and the
full nonlinear blending equation must be included in
the model as is.

Single versus Multiperiod Models

Since components are pooled or blended in the plants
on a regular basis, it is often advantageous to model
these processes using multiple periods. With multi-
period models, it is possible to accumulate material in
the pools or blend tanks, thereby facilitating the alloca-
tion of stocks ahead of time in anticipation of a future
lifting of a valuable product. This requires the model to
incorporate inventories (carry-over stock) in each tank
or pool, resulting in more complex models. It is im-
portant to note that each period does not need to be
of the same duration. Often, the results of the multi-
period models will only be implemented for the first

period, with results for future periods being used for
planning purposes. Therefore, initial periods are typi-
cally of shorter duration (say a day each) while later pe-
riods might be as long as a month. This way, the same
multiperiod model can be used as an operating tool for
the present and a planning tool for the future.

Another important consideration in multiperiod
models is the disposition of stocks at the end of the final
period. If the final inventories/stocks are included sim-
ply as variables, the optimal solution will almost always
set them to zero. In practice, however, this is unrealistic
since it is not desired to run down stocks. This can be
dealt with in several ways:
a) set the final inventory levels to reasonable values

(say the same as inventory levels at the beginning
of the first period);

b) assign a value to final inventory; this way the model
can decide if it is worthwhile to produce stock to sell
at the end of the final period.

Logical Constraints and MINLP Formulations

It is often necessary to impose additional logical con-
straints that dictate how various components are to be
blended in relation to each other. Modeling such con-
straints often requires the addition of integer variables,
as discussed below.
a) If a component is to be used in a particular blend,

then it must be present in at least a certain amount
in the blend. This arises from the fact that it is usu-
ally not practical to blend in infinitesimally small
quantities.
If x represents the volume of such a component,
then introducing a new binary variable ı (i. e. ı is
either 0 or 1) and the constraints

x �Mı � 0;

x � mı � 0

are sufficient to ensure this condition is satisfied.
Here,M is a sufficiently large number, while m rep-
resents the threshold value below which a compo-
nent should not be blended in.

b) Each product can have at most k components in
its blend. This is typically imposed by limitations
on how many streams can be physically blended in
a reasonable amount of time. Again, introducing the
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new variables and constraints as below:
x1 � mı1 � 0;

� � �

xn � mın � 0;

ı1 C � � � C ın � k;

ı1; : : : ; ın 2 f0 � 1gn;

ensures this condition is met.
c) If component A is to be present in the blend, then

component Bmust also be present:

xA � mıA � 0;

xB � mıB � 0;

ıB � ıA:

Each of these logical constraints results in a mixed
integer nonlinear programming (MINLP) model (cf.
also�Mixed integer nonlinear programming). To date
(2000), such models have not been used extensively in
the practical solution of these problems in industry.

Complexity of Models

With the various options of single versus multiperiod
and linear versus nonlinear blending, the models for
pooling and blending can vary significantly in complex-
ity. This is shown pictorially in Fig. 4.

Solution Methods

Pooling problems can be solved using a variety of solu-
tion algorithms. These can be broadly classified as local
and global solution methods.

Local Optimization Approaches

Traditionally, pooling and blending problems have
been solved using various recursion and successive lin-
ear programming (SLP) techniques. The first published
approach for solving the pooling problem was due to
Haverly [8], who proposed the following recursion ap-
proach for solving the problem given in Fig. 2:

1 Start with a guess for the pool quality p.
2 Solve the remaining linear problem for all

other variables.
3 Calculate a new value for p from the solution

in 2).

Unfortunately, this rather simple recursion will
converge to a suboptimal solution regardless of the
starting value for p. This can be partially addressed by
using a ‘distributed recursion’ approach, where an ad-
ditional recursion coefficient f and two additional ‘cor-
rection vectors’ are introduced, modifying the inequal-
ities in the model as follows:

p � y11 C 2z31 � 2:5(y11 C z31)

C f (over � under) � 0;
p � y12 C 2z32 � 1:5(y12 C z32)

C (1 � f )(over � under) � 0:

This formulation serves to distribute the error made in
estimating the pool quality to the two pool destinations.
Recursing on both p and f has a better likelihood of
identifying the optimal solution.

SLP algorithms solve nonlinear models through
a sequence of linear programs (LPs), each of which is
a linearized version of the model around some base
point. These methods consist of replacing nonlinear
constraints of the form

g(x) � 0; h(x) D 0;

with the linearizations

g(xk)Cr g(xk) � (x � xk) � 0;

h(xk)Crh(xk) � (x � xk) D 0

around a base point xk at the kth iteration. The lin-
earized problems can be solved using standard LP
methods. The solution to the problem is used to pro-
vide a value for xkC1. As long as there is an improve-
ment in the objective function value as well as the
feasibility of the original constraints, these methods
can be shown to converge to a local optimum. They
work well for largely linear problems and have there-
fore found widespread use in the refining industry for
solving pooling, blending and general refinery planning
problems [4,11]. However, when there are nonlinear
blending constraints, the linearization in the SLP is of-
ten a bad approximation of the original problem, lead-
ing to poor convergence rates and large solution times.

Pooling and blending problems can also be solved
using other nonlinear programming (NLP) meth-
ods such as generalized reduced gradient, successive
quadratic programming or penalty function methods.
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MINLP: Applications in Blending and Pooling Problems, Figure 4
Types of pooling problems

In general, these methods have not found large accep-
tance in solving these problems, mainly due to difficul-
ties with convergence and stability.

Global Optimization Approaches

The recursive, SLP and conventional NLP techniques
all suffer from the drawback that the solution found is
highly dependent on the starting point, and in general
cannot guarantee convergence to the global solution. In
the last dozen years, numerous approaches have been
proposed for the solution of quadratically constrained
optimization problems (such as the pooling/blending
problem). Surveys of these algorithms can be found
in [10,12]. These approaches can generally be classified
as either decomposition-based or branch and bound al-
gorithms.

One of the common approaches to dealing with
the nonconvexities in the pooling problem is to reduce
the bilinear terms to linear terms over a convex enve-
lope [2]. Noting that for any bilinear term p � y,

(p � pL) � (y � yL) � 0;

(p � pU ) � (y � yU ) � 0;

(p � pL) � (y � yU ) � 0;

(p � pU ) � (y � yL) � 0;

where [pL, pU] and [yL, yU] define the ranges for the
variables p and y. This allows the term p � y to be re-
placed by a set of linear inequalities in the model, re-

sulting in a linearized problemwhich provides an upper
bound on the global solution to the original problem.
After solving this problem, the rectangle defined by the
bounds on p and y can be subdivided into smaller rect-
angles, and a new linearized problem can be solved over
each of these subrectangles. By continuously subdivid-
ing these rectangles, the upper bound can be made to
asymptotically approach the global solution. See [7] for
the solution of several pooling problems using this ap-
proach.

Note that the pooling problem is a partially linear
problem. That is, it can be formulated as

8<
:
min
x;p

c>x

s.t. A(p)x � b;
(1)

where p represents the pool quality and x represents all
component flow rates. For such problems, decomposi-
tion approaches provide a natural solution mechanism.
For a fixed value of p, this problem is linear, and pro-
vides an upper bound on the global solution. The solu-
tion to this linear problem (called the ‘primal’ problem)
can be used to generate a Lagrange function of the form

L(x; p) D c>x C � � (A(p)x � b)

where � represents the multipliers or marginal values
for the constraints from the primal problem. Then, the
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‘dual’ problem
8<
:
min
x;p;


�

s.t. � � L(x; p)
(2)

provides an upper bound on the global solution. Prob-
lem (2) contains bilinear terms of the form A(p)x,
which can be underestimated in a variety of ways. C.A.
Floudas and V. Visweswaran [5,6] have developed the
GOP algorithm based on this approach. By alternating
between the primal problem and a series of relaxed dual
problems (developed by successively partitioning the
feasible region), the GOP algorithm guarantees conver-
gence to the global solution. In [13,14], they show that
it is possible to develop properties that reduce the num-
ber of relaxed dual problems that need to be solved, thus
speeding up the overall algorithm. They also report the
solution of numerous pooling and blending problems
using this approach.

Instead of fixing p for the primal problem, it is pos-
sible to solve (1) directly using local optimization tech-
niques. For example, nonsmooth optimization tech-
niques can be effective in finding local solutions to these
problems [1]. The dual problem can also be solved this
way, with the region for p being refined by partition-
ing. See [1] for the solution of several pooling problems
using this approach.

It is important to note that these global optimiza-
tion approaches (and others) for solving the pooling
problem can be computationally intensive. Invariably,
a large number of subproblems need to be solved be-
fore convergence to a global solution can be guaranteed.
Because the subproblems are usually of the same struc-
ture, varying only slightly in the data for the problems,
they can be solved in parallel. See [3] for an implemen-
tation of a distributed parallel version of the GOP al-
gorithm and a successful application to solve pooling
problems of medium size.

Applications

The most common application of pooling and blending
models is in the refining and petrochemical industries.
Crude oil from various sources is often brought into
the refinery and stored in common tanks before being
processed downstream. Similarly, intermediate streams
from various refinery processes (alkylation, reforming,

cracking) are usually sent to common pools fromwhich
finished products such as gasoline and diesel oil are
made. In both cases, it is important to know various
qualities of the stream coming out of the pool (such as
chemical compositions like sulfur or physical proper-
ties such as vapor pressure).

In addition to refinery processes, blending is a fea-
ture of various other manufacturing processes. These
include
� agriculture, where blending livestock feeds or fertil-

izers at minimum cost is very important;
� mining, where different ores are often mixed to

achieve a desired quality;
� various aspects of food manufacturing; and
� pulp and paper, involving blending of raw materials

used to produce paper.
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In the development of a process, the steady state design
aspects and dynamic operability issues are usually han-
dled sequentially. First, the design engineers develop
and synthesize the structure of the flowsheet and de-
termine the operating parameters and steady-state op-
erating conditions. Then, the control engineer takes the
fixed design and develops a control system to maintain
the system at the desired specifications. During the first
step, the dynamic operation of the process is generally
not considered, and in the second step, changes to the
flowsheet and operating conditions generally can not be
made.

Process design seeks to determine the arrangement
of processing units that will convert the given raw ma-
terials into the desired products. The idea is to develop
a process flowsheet from the large number of possible
design alternatives. Numerous process design methods
and techniques exist for determining the best process
flowsheet and operating conditions. This best design is
determined by optimizing some economic criteria and
the quality of the design is based on its economic value.
Hence, the process is designed to operate at steady state
and issues relating to the process dynamics, operability,
and controllability are usually not considered.

Once the process has been designed, the plans are
handed over to the process control engineer whose task
is to ensure the stable dynamic performance of the pro-
cess. The control engineer is concerned with develop-
ing a control system which maintains the operation of
the process at the desired steady state in the presence
ever-changing external influences. Issues such as dis-
turbances, uncertainty, and changes in production rates
must be addressed so as to maintain product quality
and safe operation. By addressing the design and con-
trol sequentially, the inherent connection between the
two is neglected. For instance, the steady-state design of



2122 M MINLP: Applications in the Interaction of Design and Control

a process may appear to produce great economic prof-
its. However, unfavorable dynamic operation may lead
to a product which does not meet the required specifi-
cations. This may result in an economic loss due to dis-
posal or reworking costs. Thus, a process design with
good controllability aspects may have better economic
value that an economically optimal steady state design
when the dynamic operation is considered. This trade-
off between the steady state design and the dynamic
controllability motivates the treatment of the issues si-
multaneously.

There are additional incentives for employing a si-
multaneous approach. Due to economic and environ-
mental reasons, the recent trend in process design has
been towards more highly integrated process in terms
of both material and energy flows. Processes are also
required to operate under much tighter operating con-
ditions due to environmental and safety issues. Both of
these lead to designs with increased dynamic interac-
tions and processes which are generally more difficult
to control. Thus, the dynamic operation of the process
must be considered at the early stages of the design.

A systematic method for analyzing the interaction
of design and control requires quantitative controllabil-
ity measures of the process. Such measures have been
derived to quantify certain qualitative concepts about
the controllability of the process such as inversion, in-
teraction effects, and directionality problems. A com-
mon measure for controllability is the integral squared
error (ISE) between outputs and their desired levels. Al-
though it is easy to measure, it is not of direct interest in
practice. Other performance criteria such as maximum
deviation of output variables, maximum magnitude of
control variables, or time to return to steady state can
also be used.

Most of the work in the development of control-
lability measures has focused on linear dynamic mod-
els. The control objective is the robust performance of
the process without any restrictions on the controller
structure [15]. One such measure is the structured sin-
gular value, � , which indicates the performance in the
presence of uncertainty. The condition number, � , has
been developed as an indicator of closed-loop sensi-
tivity to model error while the disturbance conditions
number, �d, indicates the sensitivity of the process to
disturbances. The relative gain array (RGA), �, is used
as an indicator of the relationship between control error

and set point changes while the closed-loop disturbance
gain (CLDG) is used to measure the relation between
control error and disturbances. These measures have
been used extensively in applications for controllabil-
ity assessment; however, they can be misleading. While
these indicators give ideas as to the closed loop perfor-
mance of the process, their impact on the economics of
the process is not clear.

PreviousWork

In comparison to the amount of research on the con-
trollability measures, relatively little work has been
placed on methods for systematically determining the
trade-offs between steady-state economics and dynamic
controllability. Although economics continues to be the
driving force in the design of a process, there is no
straightforward method for evaluating the economics
of the dynamic operation of the process. Several meth-
ods have been proposed to address these issues. M.
Morari and J.D. Perkins [14] discuss the concept of con-
trollability and emphasize that the design of a control
system for a process is part of the overall design of the
process. Noting that a great amount of effort has been
placed on the assessment of controllability, particularly
for linear dynamic models, they indicate that very lit-
tle has been published on algorithmic approaches for
determination of process designs where economics and
controllability are traded off systematically.

In order to deal with the controllability issues on
a economic level, a back-off method was presented in
[18] to determine the economic impact of disturbances
on the system. The basic idea is to determine the opti-
mal steady-state operating point such that the feasible
operation is maintained with respect to all constraints
in the presence of uncertainties and disturbances. This
operating point is compared to the optimal steady-
state operating point determined in the absence of dis-
turbances. The economic penalty incurred by backing
away from the disturbances-free operating point to the
feasible operating point can be determined and thus the
cost of the disturbance can be evaluated. This concept
is illustrated in Fig. 1. Point A indicates the nominal
steady-state design, and point B is the back-off point
which corresponds to the design which will not violate
the constraints h1 and h2 in the presence of uncertain-
ties and disturbances.
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Figure 1
Illustration of the back-off approach

The method is further developed in [17], where the
control structure selection problem is analyzed. Perfect
control assumptions are used along with a linearized
model to formulate a mixed integer linear program
(MILP) where the integer variables indicate the pairings
between the manipulated and controlled variables. The
back-off approach incorporated the dynamic operation
of the process into the design, but it only ensures the
feasible operation of the process and does not directly
address controllability aspects.

An approach for determining process designs which
are both steady-state and operationally optimal was
presented in [2]. The controllability of potential designs
is evaluated along with their economic performance
by incorporating a model predictive control algorithm
into the process design optimization algorithm. This
coordinated approach uses an objective function which
is a weighted sum of economic and controllability mea-
sures.

A multi-objective approach was proposed in [9,10]
to simultaneously consider both controllability and
economic aspects of the design. This approach incorpo-
rates both design and control aspects into a process syn-
thesis framework where the trade-offs between various
open-loop controllability measures and the economics
of the process can be observed. The problem is formu-
lated as a mixed integer nonlinear program (MINLP),
where integer variables are utilized for structural al-

ternatives in the process flowsheet. Through the ap-
plication of multi-objective techniques, a process de-
sign which is both economic and controllable is deter-
mined.

A screening approach was proposed in [4], where
the variability in the product quality is used to com-
pare different steady-state process designs. The dy-
namic controllability is measured economically by cal-
culating the amount of material produced that is off-
specification and on-specification. The on-specification
material leads to profits while the off-spec material re-
sults in costs for reworking or disposal.

A back-off technique was also developed in [1] for
the design of steady-state and open-loop dynamic pro-
cesses. Both uncertainties and disturbances are consid-
ered for determining the amount of back-off. In order
to address the fact that back-off approaches address the
feasible operation and do not address controllability as-
pects, [5] introduces a recovery factor which is defined
as the ratio of the amount of penalty recovered with
control to the penalty with no control. This ratio is then
used to rank different control strategies.

The advantage of the back-off approaches is that
they determine the cost increase associated with mov-
ing to the back-off position which is attributed to the
uncertainties and disturbances. A limitation of this ap-
proach is that it can lead to rather conservative designs
since the worst-case uncertainty scenario is considered.
Although the probability of the worst-case uncertainty
occurring may not be high, this is the basis for the final
design. Also, the method has not been applied to the
design/synthesis problem. A fixed design is considered
and then the back-off is considered as a modification of
this design.

The optimal design of dynamic systems under un-
certainty was addressed in [13]. Flexibility aspects as
well as the control design were considered simultane-
ously with the process design. The algorithm is used to
find the economic optimum which satisfies all of the
constraints for a given set of uncertainties and distur-
bances when the control system is included.

S. Walsh and Perkins [23] outline the use of opti-
mization as a tool for the design/control problem. They
note that the advances in computational hardware and
optimization tools have made it possible to solve the
complex problems that arise in design/control. Their
assessment focuses on the control structure selection
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problem where the economic cost of a disturbance is
balanced against the performance of the controller.

The increasing importance of design and control is-
sues had lead tomore andmore discussion on the topic.
One contribution to the area has been [11]. The funda-
mental design and control concepts are described and
several quantitative examples are given which illustrate
the interaction of design and control.

Most of the previous work does not address syn-
thesis issues and does not treat the problem quanti-
tatively. Two methods employ the optimization ap-
proach in process synthesis to arrive at mathematical
programming formulations which are solved to deter-
mine the trade-offs between the steady-state design and
dynamic controllability. The first method [9,10] uses
steady state linear controllability measures while the
second method [20] uses full nonlinear dynamic mod-
els of the process.

Process Synthesis

Mathematical programming has been found to be
a very useful tool for process synthesis. Its application
in analyzing the interaction of design and control has
followed directly along the process synthesis methodol-
ogy.

The goal in process synthesis to determine the struc-
ture and operating conditions of the process flowsheet.
The optimization approach to the synthesis problem in-
volves three steps:
1) The representation of process design alternatives of

interest through a process superstructure.
2) The mathematical modeling of the superstructure.
3) The algorithmic development of solution procedure

to extract the optimal process flowsheet from the su-
perstructure and solution of the optimization prob-
lem.

The key aspect is the postulation of a superstructure
which contains all possible design alternatives of inter-
est. The superstructure must be sufficiently rich so as to
include the numerous design possibilities yet succinct
enough to eliminate redundancies and reduce complex-
ities.

The mathematical model is characterized by the
variables and equations used in the model. Continu-
ous variables are used to represent flowrates, compo-
sitions, temperatures, etc. Binary variables are used to

represent structural alternatives such as the existence of
process units. The modeling of steady-state processes
leads to algebraic equations and constraints and re-
sults in an MINLP. When dynamic models are to be
used, the continuous variables are partitioned into dy-
namic state variables, control variables, and time invari-
ant variables, and the resulting formulation is classified
as amixed integer optimal control problem (MIOCP).

Steady-State Modeling Approach

This approach was outlined in [9,10] and follows the
optimization approach for process synthesis. A system-
atic procedure is presented for incorporating open-loop
steady-state controllability measures into the process
synthesis problem. The problem is formulated mathe-
matically as a MINLP and a multi-objective optimiza-
tion problem is solved to quantitatively determine the
best-compromise solution among the economic and
control objectives. The �-constraint method is used to
determine the noninferior solution set where one objec-
tive can be improved only at the expense of another,
and the best-compromise solution is determined using
a cutting plane algorithm.

In order to apply the process synthesis approach,
the controllability measure must be expressed as a func-
tion of the unknown design parameters. Steady-state
controllability measures are used to simplify the prob-
lem and reduce implementation difficulties that arise
when considering controllability measures as functions
of frequency. The steady-state gains of the process can
be written in an analytical form thus allowing for an al-
gebraic representation.

The starting point for the controllability analysis is
the linear multiple input/multiple output system writ-
ten in the Laplace domain as

z(s) D G(s)u(s)C Gd (s)d(s);

where z are the output variables, u are the control vari-
ables, G(s) is the process transfer function matrix, and
Gd(s) is the disturbance transfer function matrix.

Closed-loop control can be considered by express-
ing the control variable u(s) as

u(s) D Gc(s)(z�(s) � z(s));

where Gc(s) is the controller transfer function and z�

is the desired set-point. This requires that the form of
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controller transfer function be known as well as the
method for calculating the parameters. Since this causes
problems in the formulation of the optimization prob-
lem, the controllability is viewed as a property inherent
to the process and independent of the particular con-
trol system design. The analysis thus considers only the
open-loop controllability measures which depend only
on the process itself.

Since both the process design and controllability
measures can be expressed as functions of the unknown
design parameters, the synthesis problem can be ex-
pressed as a multi-objective MINLP:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min J(x; y)
s.t. h(x; y) D 0

g(x; y) D 0

 D h(x; y)
x 2 X � Rp

y 2 f0; 1gq:

In this formulation, J is a vector of objectives which in-
cludes both the economic objectives and controllabil-
ity objectives. The expressions h and g represent mate-
rial and energy balances, thermodynamic relations, and
other constraints. The controllability measures are in-
cluded in the formulation as 
. The variables in this
problem are partitioned as continuous x and binary y.

The problem is posed with multiple objectives rep-
resenting the competing economic and open-loop con-
trollability measures. Different techniques have been
developed in order to assess the trade-offs among the
objectives quantitatively. In this approach, the nonin-
ferior solution set is generated to determine the set of
solutions in which one objective can be improved only
at the expense of the other(s). The noninferior solution
set for a two objective problem is visually depicted in
Fig. 2.

This noninferior solution set is generated using an
�-constraint method where one objective is optimized
and the others are included as constraints less than a pa-
rameter �. The problem is reduced to a single objec-
tive optimization problemwhich is iteratively solved for
varying values of � to generate the noninferior solution
set.

By reducing the problem to a single objective prob-
lem, MINLP optimization techniques can be applied

MINLP: Applications in the Interaction ofDesign and Control,
Figure 2
Noninferior solution set for a problem with two objectives

to solve the problem. These MINLP techniques in-
clude generalized Benders decomposition (GBD) [7,19],
outer approximation (OA) [3], outer approximation
with equality relaxation (OA/ER) [8], and outer ap-
proximation with equality relaxation and augmented
penalty [22]. These are discussed in detail in [6].

Once the noninferior solution set is determined, the
best compromise solution is determined by applying
a cutting plane algorithm. The trade-offs among the ob-
jectives are quantitatively assessed using weight factors
which come from the slope of the noninferior solution
set.

Dynamic Modeling Approach

The major limitation of the above approach is that is
does not consider the dynamic behavior of the pro-
cess. This approach considers the full dynamic model of
the process and a dynamic controllability measure. An
optimization approach is applied which involves a dy-
namic optimization problem.

One of the initial difficulties with this method is
defining a controllability measure for nonlinear dy-
namic systems. As in the previous method, the control-
lability measure must be capable of being expressed as
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a function of the unknown design parameters. One pos-
sible choice for the controllability measure is the inte-
gral square error (ISE). The benefit of this measure is
that it is easy to calculate and and does reflect the dy-
namics of the process albeit only in the outputs of the
process. One downside of this measure is that there is
no one to one correspondence between the the control
structure and the ISE measure. Thus, different dynamic
characteristics of the process may not be reflected in the
ISE.

The superstructure is the same as in the previ-
ous approach, but a dynamic model is used instead of
a steady-state model. The dynamic modeling of the su-
perstructure leads to a problem that includes differen-
tial and algebraic equations (DAEs) and the formula-
tion is amulti-objective MIOCP. New algorithmic tech-
niques must be developed for the solution of the formu-
lation.

The general formulation for the multi-objective
MIOCP is as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min J(ż1(ti); z1(ti); z2(ti);u(ti); x; y)
s.t. f1(ż1(t); z1(t); z2(t);u(t); x; y; t)D 0

f2(z1(t); z2(t);u(t); x; y; t)D 0
z1(t0) D z01
z2(t0) D z02
h0(ż1(ti); z1(ti); z2(ti);u(ti); x; y) D 0
g0(ż1(ti); z1(ti); z2(ti);u(ti); x; y) � 0
h00(x; y) D 0
g00(x; y) � 0
x 2 X � Rp

y 2 f0; 1gq

ti 2 [t0; tN]
i D 0; : : : ;N:

(1)

Here, z1(t) is a vector of n dynamic variables whose
time derivatives, ż1(t), appear explicitly, and z2(t) is
a vector ofm dynamic variables whose time derivatives
do not appear explicitly, x is a vector of p time invari-
ant continuous variables, y is a vector of q binary vari-
ables, and u(t) is a vector of r control variables. Time t
is the independent variable for the DAE system where
t0 is the fixed initial time, ti are time instances, and tN
is the final time. The DAE system is represented by f1,
the n differential equations, and f2, them dynamic alge-

braic equations. The constraints h0 and g0 are point con-
straints where ti represents the time instance at which
the constraint is enforced and h00 and g00 are general
constraints. The objective functions for the economic
and controllability measures are represented by the vec-
tor J.

The initial condition for the above system is deter-
mined by specifying n of the 2n + m variables z1(t0), ż1
(t0), z2 (t0). For DAE systems with index 0 or 1, the re-
maining n + m values can be determined. In this work,
DAE systems of index 0 or 1 are considered and the ini-
tial conditions for z1(t) and z2(t) are z01 and z02 respec-
tively.

Note that in this general formulation, the y variables
appear in the DAE system as well as in the point con-
straints and general constraints. This has implications
on the solution strategy.

A similar approach to that of the previous approach
is applied to address the multi-objective nature of the
problem. An �-constraint method is applied to reduce
to problem to an iterative solution of single objective
MIOCPs.

MIOCP Solution Algorithm

The strategy for solving the MIOCP is to apply iterative
decomposition strategies similar to existing MINLP al-
gorithms with extensions for handling the DAE system.
The algorithm developed for the solution of theMIOCP
closely parallels existing algorithms for MINLP opti-
mization (GBD, OA, OA/ER, OA/ER/AP). The pres-
ence of the y variables in DAE system for the general
case prohibits the use of Outer Approximation and its
variants. For the special cases where the y variables do
not appear in the DAEs and do participate in a lin-
ear and separable fashion, outer approximation and its
variants can be applied to the problem. The GBD al-
gorithm can be applied to the solution of the general
problem, and the algorithmic development closely fol-
lows those of GBD.

The GBD algorithm is an iterative procedure which
generates upper and lower bounds on the solution of
the MINLP formulation. The upper bound results from
the solution of an NLP primal problem and the lower
bound from an MILP master problem. The bounds on
the solution converge in a finite number of iterations
to yield the solution to the MINLP model. A similar
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methodology is applied to the MIOCP problem, but the
forms of the primal and master problems have to be al-
tered.

Primal Problem

The primal problem is obtained by fixing the y variables
which leads to an optimal control problem. For fixed
values of y = yk, the MIOCP has the following form:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min J(ż1(ti); z1(ti); z2(ti);u(ti); x; yk)
s.t. f1(ż1(t); z1(t); z2(t);u(t); x; yk; t) D 0

f2(z1(t); z2(t);u(t); x; yk; t) D 0
z1(t0) D z01
z2(t0) D z02
h0(ż1(ti); z1(ti); z2(ti);u(ti); x; yk) D 0
g0(ż1(ti); z1(ti); z2(ti);u(ti); x; yk) � 0
h00(x; yk) D 0
g00(x; yk) � 0
x 2 X � Rp

ti 2 [t0; tN]
i D 0; : : : ;N:

(2)

The solution of this optimal control problem can be
handled in several ways: complete discretization, so-
lution of the necessary conditions, dynamic program-
ming, and control parameterization. This work focuses
on the control parameterization techniques which pa-
rameterize only the control variables u(t) in terms of
time invariant parameters. At each step of the optimiza-
tion procedure, the DAEs are solved for given values
of the decision variables and a feasible path for z(t) is
obtained. This solution is used to evaluate the objec-
tive function and remaining constraints. The control
parameterization can either be open loop as described
in [21] or closed-loop such as that described in [17] and
[16] which also includes the control structure selection.

The basic idea behind the control parameterization
is to express the control variables u(t) as functions of
time invariant parameters. This parameterization can
be done in terms of the independent variable t (open
loop):

u(t) D �(w; t):

Alternatively, the parameterization can be done in
terms of the state variables z(t) (closed-loop):

u(t) D  (w; ż(t); z(t)):

In both cases, w are the time invariant control param-
eters. The set of time invariant parameters, x, is now
expanded to include the control parameters:

x D fx;wg:

The set of DAEs (f) is expanded to include parameteri-
zation functions

f(�) D ff(�); �(�);  (�)g

and the control variables are converted to dynamic state
variables:

z D fz;ug:

Through the application of the control parameter-
ization, the control variables are effectively removed
from the problem and the following problem results:
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ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
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min J(ż1(ti); z1(ti); z2(ti); x; yk)
s.t. f1(ż1(t); z1(t); z2(t); x; yk; t) D 0

f2(z1(t); z2(t); x; yk; t) D 0
z1(t0) D z01
z2(t0) D z02
h0(ż1(ti); z1(ti); z2(ti); x; yk) D 0
g0(ż1(ti); z1(ti); z2(ti); x; yk) � 0
h00(x; yk) D 0
g00(x; yk) � 0
x 2 X � Rp

ti 2 [t0; tN]
i D 0; : : : ;N:

(3)

This problem is a nonlinear program with differential
and algebraic constraints (NLP/DAE). This problem is
solved using a parametric method where the DAE sys-
tem is solved as a function of the x variables. The solu-
tion of the DAE system is achieved through an integra-
tion routine which returns the values of the z variables
at the time instances, z(ti), along with their sensitivi-
ties with respect to the parameters, dz/dx(ti). The re-
sulting problem is an NLP optimization over the space
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of x variables which has the form:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min J(ż1(ti); z1(ti); z2(ti); x; yk)
s.t. h0(ż1(ti); z1(ti); z2(ti); x; yk) D 0

g0(ż1(ti); z1(ti); z2(ti); x; yk) � 0
h00(x; yk) D 0
g00(x; yk) � 0
x 2 X
ti 2 [t0; : : : ; tN ]
i D 0; : : : ;N;

(4)

where the variables ż1(ti), z1(ti), and z2(ti) are deter-
mined through the solution of the DAE system by inte-
gration:

8̂
ˆ̂̂<
ˆ̂̂̂
:

f1(ż1(t); z1(t); z2(t); x; yk; t) D 0;
f2(z1(t); z2(t); x; yk; t) D 0;
z1(t0) D z01;
z2(t0) D z02:

(5)

The functions J(�), g0(�), and h0(�) are functions of
z(ti) which are implicit functions of the x variables
through the integration of the DAE system. For the so-
lution of the NLP the objective and constraints eval-
uations, along with their gradients with respect to x,
are required. These are evaluated directly for the con-
straints g00(x) and h00(x). However, for the functions
J(�), g0(�), and h0(�), the values z(ti), and the gradients
dz/dx(ti), as returned from the integration, are used.
The functions J(�), g0(�), and h0(�) are evaluated directly
and the gradients dJ/dx, dgi0/dx, and dh0/dx are evalu-
ated by using the chain rule:

8̂
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ˆ̂̂̂
ˆ̂̂̂
:

d J
dx D
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@z
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@z
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�
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�
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@x

�
;

dh0i
dx D

�
@h0i
@z

� �
@z
@x

�
C
�
@h0i
@x

�
;

dg0i
dx D

�
@g0i
@z

� �
@z
@x

�
C
�
@g0i
@x

�
:

(6)

Standard gradient based optimization techniques
can be applied to solve this problem as an NLP. The so-
lution of this problem provides values of the x variables
and trajectories for z(t).

The master problem is formulated using dual infor-
mation and the solution of the primal problem. Pro-
vided that the y variables participate linearly, the prob-
lem is an MILP whose solution provides a lower bound

MINLP: Applications in the Interaction of Design andControl,
Table 1
Constraints and their corresponding dual variables

constraint dual variable
f1 �1(t)
f2 �2(t)
g0 �0

h0 �0

g" �"
h" �"

and y variables for the next primal problem. Dual infor-
mation is required from all of the constraints including
the DAEs whose dual variables, or adjoint variables, are
dynamic. The constraints and their corresponding dual
variables are listed in Table 1.

The dual variables �0, �0, �00, and �00 are gener-
ally obtained from the solution technique for the pri-
mal problem. Dual information from the DAE system
is obtained by solving the adjoint problem for the DAE
system which has the following formulation:

8̂
<̂
ˆ̂:

p D �>1
df1
d ż1
;

ṗ D �>1
df1
dz1
C �>2

df2
dz1
;

0 D �>1
df1
dz2
C �>2

df2
dz2
:

(7)

This is a set of DAEs where the solutions for df1/dż1,
df1/dz1, df2/dz1, df1/dz2, and df2/dz2 are known func-
tions of time obtained from the solution of the primal
problem. The variables �1(t) and �2(t) are the adjoint
variables and the solution of this problem is a backward
integration in time with the following final time condi-
tions:

dJ
dz1
C �0

dh0

dz1
C �0

dg0

dz1
C �>1

df1
dż1
D 0:

Thus, the Lagrange multipliers for the end-time con-
straints are used as the final time conditions for the ad-
joint problem and are not included in the master prob-
lem formulation.

The master problem is formulated using the solu-
tion of the primal problem, xk and zk(t), along with
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MINLP: Applications in the Interaction of Design and Control, Figure 3
Superstructure for reactor-separator-recycle system

MINLP: Applications in the Interaction of Design and Control, Figure 4
Noninferior solution set for the reactor-separator-recycle system
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MINLP: Applications in the Interaction of Design and Control, Figure 5
Dynamic responses of product compositions for three designs

the dual information, �00k, �00k, and �k(t). The master
problem has the following form:
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C�00kg00(xk ; y)C �00kh00(xk ; y);
k 2 Kinfeas;

y 2 f0; 1gq:

(8)

The integral term can be evaluated since the profiles
for zk(t) and �k(t) both are fixed and known. Note that
this formulation has no restrictions on whether or not
y variables participate in the the DAE system.

Example: Reactor-Separator-Recycle System

The example problem considered here is the design of
a process involving a reaction step, a separation step,
and a recycle loop. Fresh feed containing A and B flow
into a an isothermal reactor where the first order irre-
versible reaction A! B takes place. The product from
the reactor is sent to a distillation columnwhere the un-
reacted A is separated from the product B and sent back
to the reactor. The superstructure is shown in Fig. 3.

The model equations for the reactor (CSTR) and
the separator (ideal binary distillation column) can be
found in [12]. The specific problem design follows the
work in [10].

For this problem, the single output is the prod-
uct composition. The bottoms (product) composition is
controlled by the vapor boil-up and the distillate com-
position is controlled by the reflux rate. Since only the
product composition is specified, the distillate compo-
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sition set-point is free and left to be determined through
the optimization.

The cost function includes column and reactor cap-
ital and utility costs.

costreactor D 17639D1:066
r (2Dr)0:802;

costcolumn D 6802D1:066
c (2:4Nt)0:802

C 548:8D1:55
c Nt ;

costexchangers D 193023V0:65
ss ;

costutilities D 72420Vss ;

costtotal D
costreactorC costcolumnC costexchangers

ˇpay

C ˇtax[costutilities]:

The controllability measure is the time weighted ISE
for the product composition:

d�
dt
D t(xB � x�B)

2:

The noninferior solution set is shown in Fig. 4, and
Table 2 lists the solution information for three of the
designs in the noninferior solution set. The dynamic
profile for these three designs are shown in Fig. 5.

All of the designs in the noninferior solution set are
strippers. Since the feed enters at the top of the column,
there is no reflux and thus no control loop for the dis-
tillate composition. The controllability of the process is
increased by increasing the size of the reactor and de-
creasing the size of the column. The most controllable
design has a large reactor and a single flash unit.

MINLP: Applications in the Interaction ofDesign and Control,
Table 2
Solution information for three designs

Solution A B C
Cost($) 489; 000 534; 000 736; 000
Capital($) 321; 000 364; 000 726; 000
Utility($) 168; 000 170; 000 10; 000
ISE 0:0160 0:00379 0:0011
Trays 19 8 1
Feed 19 8 1
Vr(kmol) 2057:9 3601:2 15000
V(kmol/hr) 138:94 141:25 85:473
KV 90:94 80:68 87:40
�V (hr) 0:295 0:0898 0:0156
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A wide range of nonlinear optimization problems in-
volve integer or discrete variables in addition to con-
tinuous ones. These problem are denoted as mixed in-
teger nonlinear programming (MINLP) problems. Inte-
ger variables correspond to logical decision describing
whether certain actions do or do not take place, ormod-
eling the sequence according to which those decisions
take place. The nonlinear nature of the MINLP models
may arise from:
� nonlinear relations in the integer domain only
� nonlinear relations in the continuous domain only
� nonlinear relations in the joint domain, i. e., prod-

ucts of continuous and binary/integer variables.
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The general mathematical formulation of the
MINLP problems can be stated as follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Y (integer):

Here, x represents a vector of n continuous variables,
y is a vector of integer variables, f (x, y), h(x, y), g(x, y)
represent the objective function, equality and inequality
constraints, respectively. It should be noted, that every
problem of the form just presented, can be transformed
into one where all integer variables have been trans-
formed into binary, i. e., 0–1, variables, by realizing that
every integer yL � y� yU can be expressed through 0–1
variables, z = (z1, . . . , zN), as:

y D yL C z1 C 2z2 C 4z3 C � � � C 2N�1zN ;

N D 1C INT
�
log(yU � yL)

log 2

	
:

Therefore, any MINLP problem can be written as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Y D f0; 1gm:

In the analysis of MINLP problems two issues are of
paramount importance:
� combinatorial explosion of computational require-

ments as the number of binary variables increases
� NP-hard nature of the problem of determining

the global minimum solution of general nonconvex
MINLP problems.

A complexity analysis of the former is presented in [16],
while the complexity of determining global minimum
solutions of MINLPs is discussed in [15].

Various methods exist for identifying a locally opti-
mum solution ofMINLP problems. These are discussed
in great detail in [9] and in a recent thorough review pa-
per, [6], which presents a comprehensive account of the
various approaches for addressing issues related to the

solution of mixed integer nonlinear optimization prob-
lems.

The main objective in a general branch and bound
algorithm is to perform an enumeration of the alterna-
tives without examining all 0–1 combinations of the bi-
nary variables. A key element in such an enumeration if
the representation of alternatives via a binary tree. The
basic ideas in a branch and bound algorithm are the fol-
lowing. First, a reasonable effort is made in solving the
original problem, by considering for instance the con-
tinuous relaxation of it. If the relaxation does not re-
sult in an integer-feasible solution, i. e., one in which
the binary variables achieve 0–1 at the optimal point,
them the root node is separated into two candidate
subproblems which are subsequently solved. The sep-
aration aims at creating simpler instances of the orig-
inal problem. Until the problem is successfully solved
this process of generating candidate subproblems is re-
peated. Branch and bound algorithms are also known as
divide-and-conquer for that very reason. A basic prin-
ciple common to all branch and bound algorithms is
that the solution of the subproblems aims at generat-
ing valid lower bounds on the original MINLP through
its relaxation to a continuous problem. The relaxation,
in the case of MINLP, results in a nonlinear program-
ming problem (NLP) which, in the general case, is non-
convex and needs to be solved to global optimality so
as to provide a valid lower bound. If the NLP relax-
ation renders an integer solution, then this solution
is referred to as valid upper bound. The generation of
the sequence of valid upper and lower bounds is called
bounding step. The way subproblems are created is by
forcing some of the binary variables to take on a value
of 0 or 1. This is known as the branching step. Nodes
in the tree are pruned when the corresponding valid
lower bound exceeds the valid upper bound, this stage is
know as the fathoming step. The selection of the branch-
ing node, the branching variable and the generation of
the lower bound are very crucial steps whose impor-
tance becomes even more pronounced when address-
ing nonconvex MINLP problems. Two basic strategies
exists regarding the selection of the branching node de-
pending on whether one designs a branch and bound
based on a depth-first or a breadth-first approach. In
the former, the last node created is selected for branch-
ing, in the latter the node that generated the best lower
bound is selected. It is not clear which strategy is the
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best and it is often that the one that minimizes the
computational requirement is selected, [13]. Another
alternative is to select nodes based on the deviation of
the solution from integrality, [12]. The most common
strategy for selecting a branching variable is to select
the variable whose value at the solution of some re-
laxed problem is the farthest from integer, i. e., the most
fractional variable, [17]. In [12] a method based on the
concept of pseudocosts which quantifies the effect of bi-
nary variables is also proposed, which assigns essen-
tially priorities on the order of branching variables. Fi-
nally, one of the most important computational step
is the generation of the lower bound, in other words
the solution of the relaxed problem. The effectiveness
of a branch and bound depends of the quality of the
lower bound that is generated. At every node of the
branch and bound tree a nonlinear-nonconvex NLP is
solved. Two issues are important: the lower boundmust
be valid, in other words the relaxation at a particular
node must underestimate the solution of the original
problem for this node, and the lower bounds must be
tight so as to enhance the fathoming step. The key com-
plexity when dealing with nonconvex MINLPs is that
the relaxation solved at each node is, of course, a non-
convex NLP that has to be solved to global optimal-
ity. With the exception of problems which are convex
in the x and relaxed y-space for which variants of the
branch and bound algorithms will lead the correct so-
lution, [18], in all other cases global optimization algo-
rithms have to be employed for the generation of valid
lower bounds.

In [19] the scope of branch and bound algorithms
was extended to problems for which valid convex un-
derestimating NLPs can be constructed for the con-
vex relaxations. The problems included bilinear and
separable problems for which convex underestimators
can be build [14]. A number of very useful tests were
proposed to accelerate the reduction of solution space.
Namely:
1) Optimality based range reduction tests: For the first

set of tests, an upper bound U on the noncon-
vex MINLP must be computed and a convex lower
bounding NLP must be solved to obtain a lower
bound L. If a bound constraint for variable xi, with
xLi � xi � xUi , is active at the solution of the convex
NLP and has multiplier ��i > 0, the bounds on xi can
be updated as follows:

a) If xi � xUi = 0 at the solution of the convex NLP
and � i = xUi � (U � L)/��i is such that � i > xLi ,
then xLi = � i.

b) If xi � xLi = 0 at the solution of the convex NLP
and � i = xLi + (U � L)/��i is such that � i < xUi ,
then xUi = � i.

If neither bound constraint is active at the solution
of the convex NLP for some variable xj, the problem
can be solved by setting xj = xUj or xj = xLj . Tests sim-
ilar to those presented above are then used to update
the bounds on xj.

2) Feasibility based range reduction tests: In addition
to ensuring that tight bounds are available for the
variables, the constraint underestimators are used
to generate new constraints for the problem. Con-
sider the constraint gi(x, y) � 0. If its underestimat-
ing function g

i
(x; y) D 0 at the solution of the con-

vex NLP and its multiplier is ��i > 0, the constraint

g
i
(x; y) � �

U � L
��i

can be included in subsequent problems.
A global optimization algorithm branch and bound al-
gorithm has been proposed in [20]. It can be applied
to problems in which the objective and constraints are
functions involving any combination of binary arith-
metic operations (addition, subtraction, multiplication
and division) and functions that are either concave over
the entire solution space (such as ln) or convex over this
domain (such as exp).

The algorithm starts with an automatic reformu-
lation of the original nonlinear problem into a prob-
lem that involves only linear, bilinear, linear fractional,
simple exponentiation, univariate concave and univari-
ate convex terms. This is achieved through the intro-
duction of new constraints and variables. The reformu-
lated problem is then solved to global optimality using
a branch and bound approach. Its special structure al-
lows the construction of a convex relaxation at each
node of the tree. The integer variables can be handled
in two ways during the generation of the convex lower
bounding problem. The integrality condition on the
variables can be relaxed to yield a convex NLP which
can then be solved globally. Alternatively, the integer
variables can be treated directly and the convex lower
bounding MINLP can be solved using a branch and
bound algorithm as described earlier. This second ap-
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proach is more computationally intensive but is likely
to result in tighter lower bounds on the global optimum
solution. In order to obtain an upper bound for the op-
timum solution, several methods have been suggested.
The MINLP can be transformed to an equivalent non-
convex NLP by relaxing the integer variables. For exam-
ple, a variable y 2 {0, 1} can be replaced by a continuous
variable z 2 [0, 1] by including the constraint z � z � z =
0. The nonconvex NLP is then solved locally to provide
an upper bound. Finally, the discrete variables could be
fixed to some arbitrary value and the nonconvex NLP
solved locally.

In [1] SMIN was proposed which is designed to ad-
dress the following class of problems to global optimal-
ity:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x)C x>A0y C c>0 y
s.t. h(x)C x>A1y C c>1 y D 0

g(x)C x>A2y C c>2 y � 0
x 2 X � Rn

y 2 Y (integer);

where c>0 , c>1 and c>2 are constant vectors, A0,A1 andA2

are constant matrices and f (x), h(x) and g(x) are func-
tions with continuous second order derivatives. The so-
lution strategy is an extension of the ˛BB algorithm for
twice-differentiable NLPs [4,5,7]. It is based on the gen-
eration of two converging sequences of upper and lower
bounds on the global optimum solution. A rigorous
underestimation and convexification strategy for func-
tions with continuous second order derivatives allows
the construction of a lower bounding MINLP problem
with convex functions in the continuous variables. If no
mixed-bilinear terms are present (Ai = 0, 8i), the re-
sulting MINLP can be solved to global optimality us-
ing the outer approximation algorithm (OA), [8]. Oth-
erwise, the generalized Benders decomposition (GBD)
can be used, [10], or the Glover transformations [11]
can be applied to remove these bilinearities and per-
mit the use of the OA algorithm. This convex MINLP
provides a valid lower bound on the original MINLP.
An upper bound on the problem can be obtained by
applying the OA algorithm or the GBD to find a lo-
cal solution. This bound generation strategy is incorpo-
rated within a branch and bound scheme: a lower and
upper bound on the global solution are first obtained
for the entire solution space. Subsequently, the domain

is subdivided by branching on a binary or a continu-
ous variable, thus creating new nodes for which upper
and lower bounds can be computed. At each iteration,
the node with the lowest lower bound is selected for
branching. If the lower bounding MINLP for a node is
infeasible or if its lower bound is greater than the best
upper bound, this node is fathomed. The algorithm is
terminated when the best lower and upper bound are
within a pre-specified tolerance of each other.

Before presenting the algorithmic procedure, an
overview of the underestimation and convexification
strategy is given, and some of the options available
within the algorithm are discussed.

In order to transform the MINLP problem of the
form just described into a convex problem which can
be solved to global optimality with the OA or GBD
algorithm, the functions f (x), h(x) and g(x) must be
convexified. The underestimation and convexification
strategy used in the ˛BB algorithm has previously been
described in detail [3,4,5]. Its main features are exposed
here.

In order to construct as tight an underestimator as
possible, the nonconvex functions are decomposed into
a sum of convex, bilinear, univariate concave and gen-
eral nonconvex terms. The overall function underes-
timator can then be built by summing up the convex
underestimators for all terms, according to their type.
In particular, a new variable is introduced to replace
each bilinear term, and is bounded by its convex enve-
lope. The univariate concave terms are linearized. For
each nonconvex term nt(x) with Hessian matrixHnt(x),
a convex underestimator L(x) is defined as

L(x) D nt(x)�
X
i

˛i (xUi � xi)(xi � xLi ); (1)

where xUi and xLi are the upper and lower bounds on
variable xi, respectively, and the ˛ parameters are non-
negative scalars such that Hnt(x) + 2 diag(˛i) is posi-
tive semidefinite over the domain [xL, xU]. The rigorous
computation of the ˛ parameters using interval Hessian
matrices is described in [3,4,5].

The underestimators are updated at each node of
the branch and bound tree as their quality strongly de-
pends on the bounds on the variables. An unusual fea-
ture of the SMIN-˛BB algorithm is the strategy used to
select branching variables. It follows a hybrid approach
where branching may occur both on the integer and the
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continuous variables in order to fully exploit the struc-
ture of the problem being solved. After the node with
the lowest lower bound has been identified for branch-
ing, the type of branching variable must be determined
according to one of the following two criteria:
1) Branch on the binary variables first.
2) Solve a continuous relaxation of the nonconvex

MINLP locally. Branch on a binary variable with
a low degree of fractionality at the solution. If there
is no such variable, branch on a continuous variable.

The first criterion results in the creation of an integer
tree for the first q levels of the branch and bound tree,
where q is the number of binary variables. At the low-
est level of this integer tree, each node corresponds to
a nonconvex NLP and the lower and upper bounding
problems at subsequent levels of the tree are NLP prob-
lems. The efficiency of this strategy lies in the minimiza-
tion of the number of MINLPs that need to be solved.
The combinatorial nature of the problem and its non-
convexities are handled sequentially. If branching oc-
curs on a binary variable, the selection of that variable
can be done randomly or by solving a relaxation of the
nonconvex MINLP and choosing the most fractional
variable at the solution.

The second criterion selects a binary variable for
branching only if it appears that the two newly
created nodes will have significantly different lower
bounds.Thus, if a variable is close to integrality at the
solution of the relaxed problem, forcing it to take on
a fixed value may lead to the infeasibility of one of the
nodes or the generation of a high value for a lower
bound, and therefore the fathoming of a branch of the
tree. If no binary variable is close to integrality, a con-
tinuous variable is selected for branching.

A number of rules have been developed for the se-
lection of a continuous branching variable. Their aim
is to determine which variable is responsible for the
largest separation distances between the convex under-
estimating functions and the original nonconvex func-
tions. These efficient rules are exposed in [2]. Variable
bound updates performed before the generation of the
convex MINLP have been found to greatly enhance the
speed of convergence of the ˛BB algorithm for contin-
uous problems [2]. For continuous variables, the vari-
able bounds are updated by minimizing or maximiz-
ing the chosen variable subject to the convexified con-
straints being satisfied. In spite of its computational

cost, this procedure often leads to significant improve-
ments in the quality of the underestimators and hence
a noticeable reduction in the number of iterations re-
quired.

In addition to the update of continuous variable
bounds, the SMIN-˛BB algorithm also relies on binary
variable bound updates. Through simple computations,
an entire branch of the branch and bound tree may
be eliminated when a binary variable is found to be
restricted to 0 or 1. The bound update procedure for
a given binary variable is as follows:
1) Set the variable to be updated to one of its bounds

y = yB.
2) Perform interval evaluations of all the constraints in

the nonconvex MINLP, using the bounds on the so-
lution space for the current node.

3) If any of the constraints are found infeasible, fix the
variable to y = 1 � yB.

4) If both bounds have been tested, repeat this proce-
dure for the next variable to be updated. Otherwise,
try the second bound.
In [1] GMIN, which operates within a classical

branch and bound framework, was proposed. The main
difference with similar branch and bound algorithms
[12,17] is its ability to identify the global optimum so-
lution of a much larger class of problems of the form

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Nq;

where N is the set of nonnegative integers and the only
condition imposed on the functions f (x, y), g(x, y) and
h(x, y) is that their continuous relaxations possess con-
tinuous second order derivatives. This increased appli-
cability results from the use of the ˛BB global opti-
mization algorithm for continuous twice-differentiable
NLPs [4,5,7].

At each node of the branch and bound tree, the non-
convex MINLP is relaxed to give a nonconvex NLP,
which is then solved with the ˛BB algorithm. This al-
lows the identification of rigorously valid lower bounds
and therefore ensures convergence to the global opti-
mum. In general, it is not necessary to let the ˛BB al-
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gorithm run to completion as each one of its iterations
generates a lower bound on global solution of the NLP
being solved. A strategy of early termination leads to
a reduction in the computational requirements of each
node of the binary branch and bound tree and faster
overall convergence.

The GMIN-˛BB algorithm selects the node with the
lowest lower bound for branching at every iteration.
The branching variable selection strategy combines sev-
eral approaches: branching priorities can be specified
for some of the integer variables. When no variable has
a priority greater than all other variables, the solution of
the continuous relaxation is used to identify either the
most fractional variable or the least fractional variable
for branching.

Other strategies have been implemented to ensure
a satisfactory convergence rate. In particular, bound
updates on the integer variables can be performed at
each level of the branch and bound tree. These can be
carried out through the use of interval analysis. An in-
teger variable, y�, is fixed at its lower (or upper) bound
and the range of the constraints is evaluated with in-
terval arithmetic, using the bounds on all other vari-
ables. If the range of any constraint is such that this
constraint is violated, the lower (or upper) bound on
variable y� can be increased (or decreased) by one. An-
other strategy for bound updates is to relax the integer
variables, to convexify and underestimate the noncon-
vex constraints and to minimize (or maximize) a vari-
able y� in this convexified feasible region. The resulting
lower (or upper) bound on relaxed variable y� can then
be rounded up (or down) to the nearest integer to pro-
vide an updated bound for y�.
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A general mixed integer nonlinear programming prob-
lem (MINLP) can be written as

(MINLP)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x; y)
s.t. h(x; y) D 0

g(x; y) � 0
x 2 Rn

y 2 Zm :

Here x is a vector of n continuous variables and y is
a vector of m integer variables. In many cases, the in-
teger variables y are restricted to the values 0 and 1.
Such variables are called binary variables. The function
f is a scalar valued objective function, while the vec-
tor functions h and g express linear or nonlinear con-
straints. Problems of this form have a wide variety of
applications, in areas as diverse as IR spectroscopy [6],
finance [3], chemical process synthesis [9], topological
design of transportation networks [12], and marketing
[10].

The earliest work on branch and bound algorithms
for mixed integer linear programming dates back to the
early 1960s [7,13,15]. Although the possibility of apply-
ing branch and bound methods to mixed integer non-
linear programming problems was apparent from the
beginning, actual work on such problems did not be-
gin until later. Early papers on branch and bound al-
gorithms for mixed integer nonlinear programming in-
clude [11,14].

A branch and bound algorithm for solving
(MINLP) requires the following data structures. The
algorithm maintains a list L of unsolved subproblems.
The algorithm also maintains a record of the best in-
teger solution that has been found. This solution, (x�,
y�), is called the incumbent solution. The incumbent
solution provides an upper bound, ub, on the objective
value of an optimal solution to (MINLP).

The basic branch and bound procedure is as follows.
1) Initialize: Create the list L with (MINLP) as the ini-

tial subproblem. If a good integer solution is known,
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then initialize x�, y�, and ub to this solution. If there
is no incumbent solution, then initialize ub to +1.

2) Select: Select an unsolved subproblem, S, from the
list L. If L is empty, then stop: If there is an incum-
bent solution, then that solution is optimal; If there
is no incumbent solution, then (MINLP) is infeasi-
ble.

3) Solve: Relax the integrality constraints in S and
solve the resulting nonlinear programming relax-
ation. Obtain a solutionbx,by, and a lower bound, lb,
on the optimal value of the subproblem.

4) Fathom: If the relaxed subproblem was infeasible,
then S will clearly not yield a better solution to
(MINLP) than the incumbent solution. Similarly, if
lb � ub, then the current subproblem cannot yield
a better solution to (MINLP) than the incumbent
solution. Remove S from L, and return to step 2.

5) Integer Solution: Ifby is integer, then a new incum-
bent integer solution has been obtained. Update x�,
y�, and ub. Remove S from L and return to step 2.

6) Branch: At least one of the integer variables yk takes
on a fractional value in the solution to the current
subproblem. Create a new subproblem, S1 by adding
the constraint

yk � bbykc:

Create a second new subproblem, S2 by adding the
constraint

yk � dbyke:

Remove S from L, add S1 and S2 to L, and return to
step 2.

The following example demonstrates how the branch
and bound algorithm solves a simple (MINLP):

8̂
<̂
ˆ̂:

min (y1 � 1
4 )

2 C (y2 � 1
4 )

2 C y23
�2y1 C 2y2 � 1
y binary:

The optimal solution to the initial nonlinear program-
ming relaxation is y = (1/4, 1/4, 0), with an objective
value of z = 0. Both y1 and y2 take on fractional val-
ues in this solution, so it is necessary to select a branch-
ing variable. The algorithm arbitrarily selects y1 as the

MINLP: Branch and BoundMethods, Figure 1
Branch and bound tree for a sample problem

branching variable, and creates two new subproblems
in which y1 is fixed at 0 or 1. In the subproblem with y1
fixed at 0, the optimal solution is y = (0, 1/4, 0), with z =
1/16. Since the optimal value of y2 is fractional, the algo-
rithm again creates two new subproblems, with y2 fixed
at 0 and 1. The optimal solution to the subproblem with
y1 = 0 and y2 = 0 is y = (0, 0, 0), with z = 1/8. This estab-
lishes an incumbent integer solution. The subproblem
with y1 = 0 and y2 = 1 is infeasible and can be eliminated
from consideration. The subproblem with y1 = 1 has an
optimal solution with y = (1, 1/4, 0) and objective value
z = 9/16. Since 9/16 is larger than the objective value of
the incumbent solution, this subproblem can be elim-
inated from consideration. Thus the optimal solution
to the example problem is y� = (0, 0, 0) with objective
value z� = 1/8.

Since each subproblem S creates at most two new
subproblems, the set of subproblems considered by the
branch and bound algorithm can be represented as
a binary tree. The above figure shows the branch and
bound tree for the example problem.

There are a number of important issues in the im-
plementation of a branch and bound algorithm for
(MINLP).

The first important issue is how to solve the non-
linear programming relaxations of the subproblems in
step 3. If the objective function f and the constraint
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functions g are convex, while the constraint functions
h are linear, then the nonlinear programming subprob-
lems in step 3 are convex and thus relatively easy to
solve. A variety of methods have been used to solve
these subproblems including generalized reduced gra-
dient (GRG) methods [11], sequential quadratic pro-
gramming (SQP) [4], active set methods for quadratic
programming [8], and interior point methods [16].

However, if the nonlinear programming subprob-
lems are nonconvex, then it can be extremely diffi-
cult to solve the nonlinear programming relaxation of
S or even obtain a lower bound on the optimal ob-
jective function value. For some specialized classes of
nonconvex optimization problems, including indefinite
quadratic programming, bilinear programming, and
fractional linear programming, convex functions which
underestimate the nonconvex objective function are
known. These convex underestimators are widely used
in branch and bound algorithms for nonconvex nonlin-
ear programming problems. Branch and bound tech-
niques for nonconvex continuous optimization prob-
lems can also been used within a branch and bound al-
gorithm for nonconvex mixed integer nonlinear pro-
gramming problems. For instance, the BARON sys-
tem uses this approach to solve a variety of noncon-
vex mixed integer nonlinear programming problems
[17,18]. This approach is also used in the GMIN-˛BB
algorithm to solve nonconvex 0� 1mixed integer non-
linear programming problems with twice differentiable
objective and constraint functions [1].

The choice of the next subproblem to be solved in
step 2 can have a significant influence on the perfor-
mance of the branch and bound algorithm. In mixed
integer linear programming, a variety of heuristics are
employed to select the next subproblem [2]. One pop-
ular heuristic used in branch and bound algorithms for
MILP is the ‘best bound rule’, in which the subprob-
lem with the smallest lower bound is selected. The best
bound rule is widely used within branch and bound al-
gorithms for (MINLP) [4,11,18]

In step 6, there may be a choice of several vari-
ables with fractional values to be the branching variable.
A simple approach is to select the variable whose value
byk is furthest from being an integer [4,11]. In mixed
integer linear programming, estimates of the increase
in the objective function that will result from forcing
a variable to an integer value are often made. These es-

timates, called ‘pseudocosts’ or ‘penalties’, are used to
select the branching variable. Penalties have also been
used in branch and bound algorithms for mixed inte-
ger nonlinear programming problems [11,18].

The performance of the branch and bound algo-
rithm can be improved by computing lower bounds
on the optimal value of a subproblem without actu-
ally solving the subproblem. In [8], lower bounds on
the optimal objective value of a subproblem are derived
from an optimal dual solution to the subproblem’s par-
ent problem. If this lower bound is larger than the ob-
jective value of the incumbent solution, then the sub-
problem can be eliminated from consideration. In [4],
Lagrangian duality is used to compute lower bounds
during the solution of a subproblem. When the lower
bound exceeds the value of the incumbent solution, the
current subproblem can be discarded.

Another way to improve the performance of
a branch and bound algorithm for (MINLP) is to
tighten the formulation of the nonlinear programming
subproblems before solving them. In the BARONpack-
age, dual information from the solution to a nonlinear
programming subproblem is used to restrict the ranges
of variables and constraints in the children of the sub-
problem [17,18].

In branch and cut approaches, constraints called
cutting planes are added to the nonlinear programming
subproblems [3,19]. These additional constraints are
selected so that they reduce the size of the feasible re-
gion of nonlinear programming subproblems without
eliminating any integer solutions from consideration.
This tightens the formulations of the subproblems and
thus increases the probability that a subproblem can be
fathomed by bound. Furthermore, the use of cutting
planes can make it more likely that an integer solution
will be obtained early in the branch and bound pro-
cess. A variety of cutting planes developed for use in
branch and cut algorithms for integer linear program-
ming have been adapted for use in branch and cut al-
gorithms for nonlinear integer programming. These in-
cludemixed integer rounding cuts [3], knapsack cuts [3],
intersection cuts [3], and lift-and-project cuts [19].

To date, little work has been done to compare
the performance of branch and bound methods for
(MINLP) with other approaches such as outer ap-
proximation and generalized Benders decomposition. B.
Borchers and J.E. Mitchell (1997) compared an ex-
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perimental branch and bound code with a commer-
cially available outer approximation code on a num-
ber of test problems [5]. This study found that the
branch and bound code and outer approximation code
were roughly comparable in speed and robustness. R.
Fletcher and S. Leyffer (1998) compared the perfor-
mance of their branch and bound code for mixed in-
teger convex quadratic programming problems with
their implementations of outer approximation, gener-
alized Benders decomposition, and an algorithm that
combines branch and bound and outer approximation
approaches [8]. Fletcher and Leyffer found that their
branch and bound solver was consistently faster than
the other codes by about an order of magnitude.
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The design of batch processes has been a major area
of research for the past several decades. In conjunc-
tion with the design of batch plants, many different ap-
proaches have been proposed for the determination of
an optimal schedule for the plant. It has been recog-
nized for some time that in order to increase the effi-
ciency of batch processes, the two tasks of design and
scheduling should be considered simultaneously.

The problem is to design a batch process consisting
of M processing steps, in which N products are made,
where all materials follow the same path through the
process. This is commonly known as a multiproduct
batch plant, or a flow-shop.

There are two predominant methods for formulat-
ing the batch process design and scheduling problem.
The first is a continuous-time formulation in which the
scheduling information is incorporated through a plan-
ning horizon constraint. This problem can be formu-
lated as a NLP or MINLP depending on whether the
number of parallel units is fixed or variable. The solu-
tion of this problem does not give the actual schedule,
but does guarantee that a feasible schedule exists. A sep-
arate problem, typically a MILP, must be solved to find
the actual schedule.

The second method for formulating the batch pro-
cess design and scheduling problem is based on a state-
task-network (STN) representation. In this approach,
the planning horizon is discretized into time steps. Each
task must be assigned to both a unit and a time slot. The
formulation results in a large MINLP whose solution
provides both the plant design and the actual sched-
ule.

Continuous-Time Formulations

The early work of [10] was based on the single product
campaign (SPC) scheduling policy. In a single product
campaign, all batches of one product are processed one
after the other, followed by all of the batches of the next
product, and so on.

In this approach, the scheduling information is in-
corporated by way of a planning horizon constraint.
This constraint requires that all products must be com-
pleted before the planning horizon, H, is reached. In
a single product campaign, the time between batches
of product i is based on the maximum processing time
over all of the stages,

tLi D max
j
(ti j);

where tLi is the ‘limiting’ time for product i. The plan-
ning horizon constraint can be written as the sum over
all of the products of the limiting time multiplied by the
number of batches of each product

X
i

Qi

Bi
TLi � H;

where Qi is the total production of i and Bi is the batch
size for i. Because Qi and Bi are variables, this results in
a NLP.
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In [4] the authors formulated the batch process de-
sign and scheduling problem as a MINLP. Their model
was based on the SPC model of [10]. In this problem,
more than one piece of equipment per stage is available
for use in parallel. Rather than solve the MINLP rigor-
ously, they relaxed the number of units per stage to be
continuous and solved the resulting NLP. [5] formu-
lated the MINLP using binary 0-1 variables and solved
it with an outer approximation method. In addition to
the combinatorial nature of the problem due to integer
variables, the solution of the problem is complicated by
the nonconvex form of the planning horizon constraint.

[2] developed extensions of the SPC formulation
to allow more efficient utilization of the batch process
equipment. They considered two mixed-product cam-
paign (MPC) scheduling policies,
i) the unlimited intermediate storage (UIS) policy; and
ii) the zero-wait (ZW) policy.
As its name implies, a mixed product campaign allows
batches of different products to be processed sequen-
tially. For example, a SPC schedule for three batches
each of two products A and B would be, AAABBB,
while a MPC schedule could be ABABAB. In the zero-
wait policy, when a product has completed process-
ing in one stage, it must immediately begin process-
ing in the next stage. Conversely, the UIS policy allows
a product to be stored for a period of time before be-
ginning the next processing step. [7] showed that for
the case of zero cleanup times, the UIS policy is the
most efficient mixed-product campaign policy, while
the ZW policy is the most conservative. [2] incorpo-
rated the new scheduling policies into the batch process
design problem by considering the characteristic cycle
time for each policy. The cycle time becomes the ba-
sis upon which the planning horizon constraint is im-
posed.

[3] used the batch design formulation with mixed-
product campaign schedules to formulate the batch
synthesis, design and scheduling problem. In this for-
mulation the number of stages, M, in the batch process
is not fixed. Instead, each product is required to un-
dergo the same sequence, T, of processing tasks. Units
that each can perform one of the tasks are given, and
in addition, ‘superunits’ are postulated that can com-
bine two or more tasks. The problem is to assign tasks
to units, size the units, and determine the number of
parallel units in the batch process.

Problem Formulation

1) Binary variables

YEXj D

(
1 if unit j exists
0 otherwise;

YCc j D

8̂
<̂
ˆ̂:

1 if unit j contains
c parallel units

0 otherwise;

Yt j D

8̂
<̂
ˆ̂:

1 if task t is assigned
to unit j

0 otherwise;

YFt j D

8̂
<̂
ˆ̂:

1 if t is the first task
processed in unit j

0 otherwise:

2) Design constraints
– Task volume requirement, VT

t , depends on batch
size, Bi, of each product and size factor, Sit, for
each product in each task.

VT
t � Bi Si t :

– The volume of a processing unit j must be large
enough to accomodate task t if task t is assigned
to unit j, (Ytj = 1).

Vj � VT
t � VU

j (1 � Yt j):

– The processing time, ptij, for each product in
each unit is given by the corresponding time fac-
tor, tit , for each product in task t if task t is as-
signed to unit j, (Ytj = 1).

pti j �
X
t

ti tYt j :

– The number of batches, ni, multiplied by the
batch size must satisfy the production require-
ment, Qi, for each product.

niBi � Qi :

3) Parallel equipment constraints
– The number of parallel units in each stage j is de-

termined by the binary variable YCcj multiplied
by the number c,

Nj D
X
c

c � YCc j :
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4) Scheduling constraint
– For the UIS policy with zero cleanup times, the

planning horizon constraint derived by [2] is
used,
X
i

ni pti j � H � Nj:

5) Logical constraints
– If a stage j exists, then at least one processing task

must be assigned to it,
X
t

Yt j � YEXj:

– If a stage j does not exist, there can be no tasks
assigned to it,

Yt j � YEXj:

– If a stage j exists, then one of the tasks assigned
to it must be the first task assigned to stage j,
X
t

YFt j D YEXj :

– There cannot be more than one first task as-
signed to each stage,
X
t

YFt j � 1:

– A task can be the first task assigned to a stage
only if the task is among those assigned to the
stage,

YFt j � Yt j :

– No tasks that occur before the first task assigned
to stage j can be among those assigned to the
stage,

Yt0 j � 1 � YFt j for t0 < t:

– If multiple tasks are assigned to a unit, they must
be consecutive tasks,

Yt j � YFt j C Yt�1; j:

– One and only one binary variable that deter-
mines the number of parallel units in stage jmust
be active,
X
c

YCc j D 1:

6) Objective function
– The objective is to minimize the cost of the plant.

[3] used a fixed-charge cost for each unit, � j, plus
a nonlinear cost function on the size of the unit,

Cost D
X
j

N j

h
� j C ˛ jV

ˇ j
j

i
:

This formulation is a MINLP where all binary variables
participate linearly and separably. However, it is a non-
convex problem due to the cost function, and the bi-
linear terms in the batch size constraints and the plan-
ning horizon constraints. [3] used the outer approxima-
tion method implemented in DICOPT ([11]) to solve
a number of example problems. Due to the nonconvex-
ities in the formulation, there is no guarantee of global
optimality with the outer approximation method, but
they report good results for the examples presented in
the paper.

Two examples are briefly discussed to illustrate the
proposed approach for multiproduct batch plants with
a variety of scheduling policies. The first example con-
sists of three products with four processing tasks and
five potential units and superunits. The MINLP formu-
lation with the SPC policy contains 33 binary variables
and 54 continuous variables. With the ZW policy, the
number of binary variables drops to 8, with 98 contin-
uous variables. For the UIS policy, the formulation has
33 binary variables with 51 continuous variables.

The second example is larger and contains 6 prod-
ucts with 7 potential units and superunits. The SPC pol-
icy formulation contains 46 binary variables and 101
continuous variables. The MINLP formulation for the
ZW policy has 11 binary and 374 continuous variables.
The UIS policy formulation has 46 binary and 95 con-
tinuous variables. In all cases the examples were solved
in less than 50 minutes using GAMS/DICOPT ++ on
Microvax II.

Discrete-Time Formulations

A.P.F.D. Barbosa-Póvoa and S. Macchietto, [1], pro-
posed a MILP formulation to address the problem of
optimal batch design by simultaneously considering
optimizing production schedule. They based their for-
mulation on
a) an extended state-task-network (mSTN) represen-

tation of the batch plant; and
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b) the discrete time representation using uniform time
discretization.

In the STN representation, proposed in [6], all the
materials are represented as states processed through
a set of processing steps (‘tasks’). In order to incorpo-
rate connectivity constraints the extended state-task-
network (mSTN) is proposed involving the alternative
design configurations considering all permitted equip-
ment and connections allocations. Single campaign is
assumed with a cyclic schedule of cycle time T repeated
over a planning horizon H. A cycle represents a se-
quence of operations involving the production of all
products and the utilization of all resources. The op-
erational characteristics such as the allocation of equip-
ments to tasks, batch sizes, task timings, transport of
material and storage profiles are identical in each cycle.
The mathematical formulation they proposed involves:
� allocation constraints for the assignment of the tasks

to the units
� capacity constraints expressing the limiting equip-

ment capability
� connectivity constraints for determining the con-

nection of different units
� dedicated storage constraints
� mass balances
� production requirement constraints
� an objective function, which is chosen to be either

the minimization of the capital cost or the maxi-
mization of plant profit.

The main variables of the formulation are:
a) binary structural variables representing the exis-

tence of an equipment;
b) binary allocation variables for the assignment of

a task to a unit at the beginning of a time period;
c) continuous variables representing the capacity of

a unit;
d) continuous variables corresponding to the batch

size of a task to a unit at each time period;
e) amount of material delivered and received at each

time period;
f) the amount of material transfered at each time pe-

riod; and
g) the amount of material stored at each time period.
The proposed formulation correspond to a mixed in-
teger linear programming (MILP) problem since they
used linear cost functions to express the capital cost of
equipments and time discretization to represent time.

Three examples were solved illustrating:
a) the effect of limited connectivity and connection

cost in the optimal design;
b) the advantages of considering simultaneously the

plant design and plant connectivity rather than op-
timizing first the equipment sizes and then optimiz-
ing plant connectivity.
In later work, Barbosa-Póvoa and C.C. Pantelides,

[1], proposed a new mathematical formulation for the
optimization of batch plant design considering detailed
operation characteristics (i. e., short term schedul-
ing). This formulation also considers a uniform time
discretization, the only difference lies in the plant
representation. The resource-state-task (RTN) plant
representation, [9], was used which corresponds to
a more general and uniform description of all avail-
able production resources. However, the new formu-
lation shares the main characteristics of the previous
presented one with the same basic variables, and con-
straints.

Both formulations share the limitations of the dis-
crete time formulations, which are that:
i) they correspond to an approximation of the time

horizon; and
ii) they result in an unnecessary increase of the number

of binary variables in particular, and in the overall
size of the mathematical model.

A continuous-time formulation was proposed in [12],
based on the STN representation and the scheduling
formulation proposed in [13]. It gives rise to amixed in-
teger nonlinear programming problem which is solved
using a stochastic MINLP optimizer based on an evolu-
tionary algorithm (EA) with simulated annealing (SA)
presented in [12]. The method is based on a guided
stochastic generation of alternative vectors of decision
variables, which explore promising areas of the search
space through selection, crossover, and mutation oper-
ations applied to individuals in a population of solu-
tion candidates. It can be used to deal with nonconvex,
nondifferentiable functions although it has no guaran-
tee of convergence to even a local optimal solution. The
proposed formulation involves the following basic vari-
ables:
� Main design variables representing the discrete deci-

sions of selecting a unit (j), Ej, or a storage (s), Es, or
continuous decisions corresponding to the capacity
of unit storage or utility,Vj,Vs, andUu, respectively.
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� Main operation variables corresponding to the dis-
crete decision of allocation of task (i) in unit (j) at
time Tl, Wijl, and the decision of assigning task (i)
in unit (j) between starting time Tl and end time
Tl0 , and continuous variables, the time of event (l),
Tl, the batch size, the processing time and utility re-
quirement of task (i) allocated to unit (j) starting at
Tl, Bijl, � ijl, Uu

ijl, respectively,
Based on these variables the proposed formulation in-
volves:
1) Processing task models:

Uu
i jl D ˛

u
i jl C ˇ

u
i jB

�ui j
i j l ;

expressing the consumption-generation of utilities
as a function of batch size;

�i j l D ˛i j l C ˇi jB
�i j
i j l

C
X
u

�u
i jU

u
i jl C

X
˛

�˛i jA
˛
j l ;

expressing the dependence of processing time, � ijl,
of batch size, Bijl, utilities, Uu

i jl , and unit availabili-
ties, A˛j l .

2) Batch size constraints:

�min
i j VjWi jl � Bi jl � �

max
i j VjWi jl

imposing the maximum and minimum capability
of unit (j) when task (i) is performed.

3) Timing constraints:

Wi jl (�i j l C Tl ) D
X
l 0>l

Xi jl l 0Tl 0 ;

which establish the relationship between process-
ing time, � ijl, and time of event (l), Tl.

0 � T1 � T2 � � � � � Tlmax � H;

expressing the monotonic increase in event times.
4) Allocation constraints:

0 �
X
i2I j

X
l 00�l 0

Wi jl 00 �
X
i2I j

X
l<l 00

X
l 00�l 0

Xi jl l 00 � Ej;

X
i2I j

X
l 00�lmax

Wi jl 00 D
X
i2I j

X
l<l 00

X
l 00�lmax

Xi jl l 00 ;

Wi jl D
X
l 0>l

Xi jl l 0 ;

expressing the relationship between Wijl and Xijll0

operation variables, [13].

5) Material balances written for state s at event time
Tl:

Csl 0 D Csl 0�1

C
X
i2Is

X
j2J i

�insi j

X
l<l 0

Bi jl Xi jl l 0

�
X
i2Is

X
j2J i

�outsi j Bi jl 0 ;

0 � Csl 0 � Vs0 C Vs :

6) Utility constraints written for utility (u) at event
time Tl:

Uul 0 D Uul 0�1

C
X
i2Iu

X
j2J i

X
l<l 0

Uu
i jl Xi jl l 0

�
X
i2Iu

X
j2J i

Uu
i jl 0Wi jl 0 ;

0 � Uul 0 � Uu ;

Uuc D
X
i2Iu

X
j2J i

X
l

Uu
i jl Ti jlWi jl :

7) Availability constraints written for unit (j) at event
time Tl:

A˛j l 0C1 D
X
i2I j

A˛j l 0˛
˛
i jWi jl 0 �

X
i2I j

ˇ˛i jWi jl 0 ;

A˛j l 0 �
X
i2I j

�˛i jWi jl 0 :

8) Existence constraints:
X
i2I j

Wi jl � Ej;

Vmin
j E j � Vj � Vmax

j E j;

Vmin
s Es � Vs � Vmax

s Es ;

that correspond to logical restrictions on produc-
tion unit and storage tank size if this unit-storage
tank is present at the optimal design.

9) Production constraints:

Cslmax � Rs ;

expressing the requirement of producing at least as
much as the market demands for state (s).
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10) Objective function:

Profit D
X
s2Sp

psCslmax

C
X
s2Si

ps(Cslmax � Cs0)

�
X
s2S f

psCs0 �
X
u

cuUuc ;

the first two terms represent the revenue due to
product and intermediate state production, respec-
tively, whereas the last two terms express the cost
of raw materials and utilities, respectively,

Cost D
X
j

(Ejęj C ějV
e� j
j )

C
X
s

(Esęs C ěsVe� s
s );

the first term represent the cost of installing pro-
duction unit (j), whereas the second term corre-
spond to the cost of storage tank (s).

Objective D Cost � Profit:

This above formulation correspond to a MINLP prob-
lem with decision variables: Wijl, Xijll0 , Bijl, Uu

i jl , Tl that
correspond to plant operation and Ej, Es, Vj, Vs, Uu

that represent design decisions. Nonconvexities appear
in the timing constraints, material balances, utility con-
straints as bilinear products of binary and continuous
variables and in the objective function in power form

of the type Ve� j
j and Ve� ss . The authors proposed an

evolutionary algorithm (EA) with simulated annealing
(SA), [12], to solve this problem. They utilized simu-
lated annealing to improve the poor local search abil-
ity of EA. A suitable encoding procedure is proposed
which results in reduction in the number of constraints
and variables by up to 50%. In particular, they explored
the mathematical structure of the problem in the fol-
lowing sense. If Wijl = 1 and Xijll0 = 1, unit j exists,
it executes operation k which starts at STj = l finishes
at FTj

k = l0 involving task TSjk = i with batch size BSjk
= Bijl and utility usage U j

uk = Uu
i jl . So they proposed

to replace Wijl, Xijll0 , Bijl and Uu
i jl by the operation se-

quence of tasks in units: task sequence TSj = (i1, . . . ,
iN j), task batch size BSj = (B1, . . . , BN j ), task utility

usage U j
u = (Uu

1 , . . . , U
u
N j
), start time STj = (l1, . . . ,

lN j), finish time FTj = (l01, . . . , l0N j ). In this way the
decision variables become (Ej, Vj, Es, Vs, Uu, Tl, TSj,
BSj, Uj

u, STj, FTj). The algorithm starts with an ini-
tial guess and evolves a number of candidate instances
for these variables. The allocation and the capacity con-
straints are automatically satisfied by each candidate so-
lution and Tl are chosen so that the timing constraints
are also satisfied. Two examples are presented to il-
lustrate the applicability of the proposed approach to
solve batch design problem involving detailed schedul-
ing constraints. Linear and nonlinear task processing
times and unit cost models are considered for both the
examples. For the first example considering linear func-
tions for processing times and unit cost models the re-
sults obtained are compared with a discrete time for-
mulation, [8], and found to outperform it in terms of
number of variables which is expected since the for-
mulation is based on the continuous time description
and the computational requirement for the solution of
their model. Considering nonlinear models for pro-
cessing times and unit costs, the resulting model for
a problem with 4 production units, 4 storage tanks, 5
tasks and 4 states, involves 62 integer and 34 contin-
uous variables and 122 constraints. This example was
the largest presented in this work, and required consid-
erable computational effort, 7849.23 CPU seconds on
a SUN ULTRAstation-1.

See also

� Chemical Process Planning
� Extended Cutting Plane Algorithm
� Generalized Benders Decomposition
� Generalized Outer Approximation
� Job-shop Scheduling Problem
�MINLP: Application in Facility Location-allocation
�MINLP: Applications in Blending and Pooling

Problems
�MINLP: Applications in the Interaction of Design

and Control
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Branch and Bound Methods
�MINLP: Generalized Cross Decomposition
�MINLP: Global Optimization with ˛BB
�MINLP: Heat Exchanger Network Synthesis



2148 M MINLP: Generalized Cross Decomposition

�MINLP: Logic-based Methods
�MINLP: Outer Approximation Algorithm
�MINLP: Reactive Distillation Column Synthesis
�Mixed Integer Linear Programming: Mass and Heat

Exchanger Networks
�Mixed Integer Nonlinear Programming
� Stochastic Scheduling
� Vehicle Scheduling

References

1. Barbosa-Póvoa APFD, Macchietto S (1994) Detailed design
ofmultipurpose batch plants. Comput ChemEng 18:1014–
1042

2. Birewar DB, Grossmann IE (1989) Incorporating scheduling
in the optimal design of multiproduct batch plants. Com-
put Chem Eng 13:141–161

3. Birewar DB, Grossmann IE (1990) Simultaneous synthesis,
sizing and scheduling of multiproduct batch plants. In-
dustr Eng Chem Res 29:2242–2251

4. Grossmann IE, Sargent RWH (1979) Optimum design of
multipurpose batch plants. Industr Eng Chem Process Des
Developm 18:343–348

5. Kocis GR, Grossmann IE (1989) Computational experience
with DICOPT solving MINLP problems in process synthesis
engineering. Comput Chem Eng 13:307–315

6. Kondili E, Pantelides CC, Sargent RWH (1993) A general al-
gorithm for short-term scheduling of batch operations -
I. MILP formulation. Comput Chem Eng 17:211–227

7. Ku H, Karimi I (1986) Scheduling in multistage serial batch
processeswith finite intermediate storage - Part I. MILP for-
mulation; Part II. Approximate algorithms. AIChE Annual
Meeting, Miami

8. Manual gBSS, general batch scheduling system - User
manual and language reference, Imperial College

9. Pantelides CC (1994) Unified frameworks for the optimal
proces planning and scheduling. Proc. Second Conf. Foun-
dations of Computer Aided Operations, pp 253–274

10. Sparrow RE, Forder GJ, Rippin DWT (1975) The choice of
equipment sizes for multiproduct batch plants. Heuristics
vs. branch and bound. Industr Eng Chem Process Des De-
velopm 14:197–203

11. Viswanathan J, Grossmann IE (1990) A combined penalty
function and outer-approximation method for MINLP op-
timization. Comput Chem Eng 14:769–782

12. Xia Q, Macchietto S (1997) Design and synthesis of batch
plants- MINLP solution based on a stochastic method.
Comput Chem Eng 21:S697–S702

13. Zhang X, Sargent RWH (1994) The optimal operation of
mixedproduction facilities - general formulationand some
solution approaches for the solution. Proc. 5th Internat.
Symp. Process Systems Engin. (Kyongju, Korea), pp 171–
177

MINLP: Generalized Cross
Decomposition

KAJ HOLMBERG

Department Math., Linköping Institute Technol.,
Linköping, Sweden

MSC2000: 90C11, 90C30, 49M27

Article Outline

Keywords
The Problem
The Primal Master Problem
The Dual Master Problem
The Subproblems
The Cross Decomposition Algorithm
The Convergence Tests
See also
References

Keywords

Decomposition; Primal-dual; Nonlinear; Mixed integer

Decomposition methods, such as the classical Benders
decomposition (cf.� Generalized Benders decomposi-
tion), [1], and Dantzig–Wolfe decomposition, [3], have
been used to solve many different large structured opti-
mization problems, by decomposing themwith the help
of relaxation of constraints or fixation of variables. The
success of such an approach depends very much on the
structure of the problem. In some cases these methods
are very efficient, but in other cases they are not com-
petitive with other techniques.

However, the simple elegance of these basic princi-
ples has inspired many researchers to propose modifi-
cations of the basic methods, mostly aimed at improv-
ing the efficiency of the methods, but also aimed at ex-
tending the applicability of the approaches.

Dantzig–Wolfe decomposition, originally for linear
programming problems, [3], has been extended to con-
vex nonlinear programming problems, [2], under sev-
eral names, for example generalized linear program-
ming. We will here simply use the term ‘nonlinear
Dantzig–Wolfe decomposition’.
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Benders decomposition, originally for linear mixed
integer programming problems, [1], has been extended
to partly convex nonlinear programming problems, [5],
under the name ‘generalized Benders decomposition’.

On the other hand, among the numerous sugges-
tions for modifications to increase the efficiency, there
is one which in a way shares the simplicity and clear
principle of the basic methods, namely cross decom-
position, [11]. Usually described as a combination of
Benders decomposition and Dantzig–Wolfe decompo-
sition, simultaneously using the two methods in an it-
erative manner, the method borrows its basic conver-
gence properties from these two methods. However,
one can also view cross decomposition as the more gen-
eral method, and Benders and Dantzig–Wolfe decom-
position as modifications of cross decomposition, ob-
tained by excluding one of the subproblems and one of
the master problems.

Cross decomposition was originally developed for
linear mixed integer programming problems, [11], but
the approach is more general and not restricted to such
problems. The first application of cross decomposition
was to the capacitated facility location problem, [12],
and produced a solution method which is recognized
as one of the most efficient existing methods for that
problem. However, another early application was to the
stochastic transportation problem (a convex problem
with linear parts), [10].

Here we will describe ‘generalized cross decompo-
sition’, which was first proposed in [6], and more thor-
oughly treated in [7]. The generalization of the proce-
dure, parallel to that in [5] for generalized Benders de-
composition, enables the solving of nonlinear program-
ming problems with convex parts, for example nonlin-
ear mixed integer programming problems, see for ex-
ample [4].

The Problem

Consider the following general optimization problem.

(P)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

v� D min f (x; y)
s.t. G1(x; y) � 0

G2(x; y) � 0
x 2 X
y 2 Y

where X and Y are compact, nonempty sets. Assume
that X is convex and f , G1 and G2 are proper convex
functions in x for any fixed y 2 Y , i. e. that the problem
is convex in x. Also assume that that f , G1 and G2 are
bounded and Lipschitzian on (X, Y). Note that we do
not assume any convexity in the y-variables. An impor-
tant case is when Y is a (finite) set of integers.

Furthermore we assume the following (as was done
in [5] for generalized Benders decomposition). The op-
timization with respect to x of the Lagrangian func-
tions must be possible to do ‘essentially indepen-
dent’ of y (called property P by A.M. Geoffrion). We
therefore assume that the functions q1, q2, q3 and
q4 exist, such that f (x, y) + u>1 G1(x, y) + u>2 G2(x,
y) = q1(q3(x, u), y, u), 8x, y, u, and eu>1 G1(x; y) C
eu>2 G2(x; y) D q2(q4(x;eu); y;eu), 8x; y;eu, where q3
and q4 are scalar functions, q1 and q2 are increasing
in their first argument, and eu is assumed to belong
to the set of all possible nonnegative, normalized di-
rections C D

˚eu � 0 : e>eu D 1
�
, where e is a vec-

tor of ones. Since f , G1 and G2 are convex in x and
bounded and Lipschitzian on (X, Y), the same applies
to q1 for any fixed u � 0, and to q2 for any fixed
eu 2 C.

The optimal solution of P is denoted by (x�, y�).
We will also mention the case when P is convex, i. e.
where f , G1 and G2 are convex functions (in y too) and
Y is a convex set. Lagrangian duality can be used to get
a dual solution (the optimal Lagrange multipliers), de-
noted by u� = (u�1 , u�2 ).

Let us for convenience introduce the following no-
tation.

L(x; y; u) D f (x; y)C u>1 G1(x; y)C u>2 G2(x; y);
eL(x; y;eu) Deu>1 G1(x; y)Ceu>2 G2(x; y);

L1(x; y; u1) D f (x; y)C u>1 G1(x; y);
eL1(x; y;eu1) Deu>1 G1(x; y):

The Primal Master Problem

Using the primal structure of (P) we can rewrite it as

v� D min
y2V

h(y);
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where 8y = 2 V ,

8̂
ˆ̂̂<
ˆ̂̂̂
:

h(y) D min f (x; y)
s.t. G1(x; y) � 0

G2(x; y) � 0
x 2 X

and

V D
�
y 2 Y : 9x 2 X :

G1(x; y) � 0;
G2(x; y) � 0

	
:

The problem is convex in x, so we can use La-
grangian duality to get, 8y 2 V ,

h(y) D max
u�0

min
x2X

L(x; y; u):

A similar expression can be obtained for V :

V D
�
y 2 Y :

�
maxeu2C min

x2X
eL(x; y;eu)

�
� 0

	
:

The full primal master problem is given below:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

v� D min q
s.t. q � min

x2X
L(x; y; u); 8u � 0;

0 � min
x2X

eL(x; y;eu); 8eu 2 C;

y 2 Y :

This problem has an infinite number of constraints,
one for each nonnegative dual point and one for each
nonnegative dual direction. Each constraint contains an
optimization problem (minimization with respect to x),
which should in theory be solved for all y 2 Y before
the main problem, miny 2 Yh(y), can be solved. How-
ever, we have

min
x2X

L(x; y; u) D q1
�
min
x2X

q3(x; u); y; u
�

and

min
x2X

eL(x; y;eu) D q2
�
min
x2X

q4(x;eu); y;eu
�
:

Since q1 and q2 are proper, convex, bounded and
Lipschitzian on X, and X is compact and convex, the
optima in x (for fixed u andeu) will be attained. q1 and
q2 are increasing in their first argument, so the mini-
mization in x can be made in q3 and q4 instead, and
the value of y will thus not influence the result of this
minimization. The minimization over x can be made
once (for any y) and the result will then be true for all
y 2 Y .

The relaxed primal master problem only contains
a finite number of cuts (with index sets PU and RU)
which gives an approximate description of h(y) and
V , and an optimal objective function value, vPM � v�.
Since the part of the problem that is described by the
constraints is convex in x, vPM will converge asymptot-
ically towards v� as the sets of constraints grow.

The constraints can now be expressed as

q � q1
�
min
x2X

q3(x; u(k)); y; u(k)
�
; 8k 2 PU ;

0 � q2
�
min
x2X

q4(x;eu(k)); y;eu(k)
�
; 8k 2 RU :

The minimization in x can now be made indepen-
dently in each constraint, since the other arguments in
q3 and q4, namely u andeu, are fixed. Since the minima
are attained, we use the notation x(k), 8k 2 PU , andbx(k),
8k 2 RU , for the minimizers of q3 and q4.

Inserting this, we obtain the final form of the relaxed
primal master problem.

(PM)

8̂
ˆ̂̂<
ˆ̂̂̂
:

vPM D min q
s.t. q � L(x(k); y; u(k)); 8k 2 PU ;

0 �eL(bx(k); y;eu(k)); 8k 2 RU ;

y 2 Y :

The constraints in the first set are called value cuts,
and those in the second set are called feasibility cuts.

The Dual Master Problem

Using Lagrangian duality on (P) yields a relaxation and
a lower bound, vL, on v�:

vL D max
u1�0

g(u1)
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where, 8u1 � 0,

8̂
ˆ̂̂<
ˆ̂̂̂
:

g(u1) D min L1(x; y; u1)
s.t. G2(x; y) � 0

x 2 X
y 2 Y :

This leads to a dual master problem, which is a convex-
ification of the problem. If (P) is not convex a duality
gap might occur. We denote the subset of the solutions
that are included by (x(k), y(k)), 8k 2 PX , and obtain the
restricted dual master problem as

(DM)

8̂
ˆ̂̂<
ˆ̂̂̂
:

vDM D max q
s.t. q � L1(x(k); y(k); u1);

8k 2 PX ;
u1 � 0:

The Subproblems

The primal subproblem is a convex problem in x, ob-
tained by fixing y to y.

(PS)

8̂
ˆ̂̂<
ˆ̂̂̂
:

h(y) D min f (x; y)
s.t. G1(x; y) � 0

G2(x; y) � 0
x 2 X:

A solution to (PS) is assumed to consist of both a pri-
mal solution, x(k), and a dual solution, (u(k)1 , u(k)2 ). Due
to the convexity we can use Lagrangian duality without
creating a duality gap.

(PSL) h(y) D sup
u�0

min
x2X

L(x; y; u):

If (PS) is infeasible, (PSL) will be unbounded in u, and
a solution is represented by a direction, eu(k). A valid
cut for the primal master problem also requires a cor-
responding primal solution,bx(k), obtained by solving

min
x2X

eL(x; y;eu(k)):

(Note thatbx(k) is not feasible in (PS).)

The dual subproblem is the following (nonconvex)
problem, obtained by relaxing the first set of constraints
in (P) and fixing the Lagrange multipliers u1 to u1:

(DS)

8̂
ˆ̂̂<
ˆ̂̂̂
:

g(u1) D min L1(x; y; u1)
s.t. G2(x; y) � 0

x 2 X
y 2 Y

To handle unbounded dual solutions,eu1, we can use the
following subproblem:

(UDS)

8̂
ˆ̂̂<
ˆ̂̂̂
:

ev(eu1) D mineL1(x; y;eu1)
s.t. G2(x; y) � 0

x 2 X
y 2 Y :

(UDS) does not produce a bound on v�, but ifev(eu1) � 0
it yields a dual cut that will eliminateeu1.

The Cross Decomposition Algorithm

In the subproblem phase of the cross decomposition
method we iterate between the primal subproblem (PS)
and the dual subproblem (DS) (or (UDS)).

The primal subproblem, (PS), supplies an upper
bound, h(y), on v�, and u1 for the dual subproblem.
The dual subproblem, (DS), supplies a lower bound,
g(u1), on v�, and y for the primal subproblem. If (PS)
has an unbounded solution,eu1, we use (UDS) (instead
of (DS)) to get y.

Unfortunately, the lack of controllability for the im-
portant parts of the solutions, y and u1, which occurs
unless the problem is strictly convex, implies that this
procedure alone cannot be expected to converge to the
optimal solution.

We therefore need to use the master problems to en-
sure convergence. (PM) or (DM) can be solved with all
the constraints generated by the subproblem solutions.
We have all the known results for generalized Benders
or nonlinear Dantzig–Wolfe decomposition to fall back
on, so this technique is well known. After the solution
of one master problem, the subproblem phase is reen-
tered. (We do not switch to Benders or Dantzig–Wolfe
decomposition completely.)
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MINLP: Generalized Cross Decomposition, Figure 1

We will later describe convergence tests that tell us
exactly when to use a master problem. The existence
of such convergence tests is a very important aspect of
cross decomposition. Let us, before getting any further,
give below a short algorithm for cross decomposition
algorithm.

Let us denote the convergence test in step 3 (before
(PS)) by CTP and the convergence test in step 6 (before
(DS)) by CTD. The optimality tests (step 2 and step 5)
are included in the convergence tests, and the decision
about where to go is based on the results of both tests.
The algorithm is pictured in Fig. 1.

0 Get a starting u.
1 Solve (DS) (or (UDS)).
2 IF optimal go to 8.
3 IF not convergence, go to 7A (or 7B).
4 Solve (PS).
5 IF optimal go to 8.
6 IF not convergence go to 7B (or 7A). ELSE

go to 1.
7A Solve (PM). Go to 4.
7B Solve (DM). Go to 1.
8 Stop. The solution from (PS) is optimal.

We can start with either one of the subproblems, so
a good primal starting solution can also be utilized.

If CTP indicates that (PS) will not give further con-
vergence, we use (PM). If CTD indicates failure of con-
vergence for (DS), we can use (DM) (which however
gives certain convergence only if (P) is convex). After
(PM) we go to (PS) and after (DM) we go to (DS), in
order to make use of the output of the master problems.
In the general nonconvex case, it is not necessary to use
(DM). It is even possible to omit the convergence tests
CTD if only (DM) is used.

The Convergence Tests

Returning to the question of convergence in the sub-
problem phase, we make the following definitions of "-
improvements.

‘"-bound-improvement’ is an improvement of at
least " of the upper or lower bound.

‘"-cut-improvement’ is a generation of a new, so far
unknown cut, that is at least " better (i. e. has a value of
at least " higher or lower) than all known cuts at some
point.

Discussing linear mixed integer problems, as in [11],
one can let " = 0. In such a case we simply omit " from
the above notation.

Cut-improvement thus means that a new cut will
be included in one of the restricted master problems
and that the description of the functions h(y) or g(u1)
or the set Y is refined. By ‘improvement’ we will, in
the rest of this paper mean bound-improvement and/or
cut-improvement. When using unbounded solutions
as input no finite bounds are obtained, so bound-
improvement can not appear. Also, a cut giving a cut-
improvement can be a value cut or a feasibility cut, i. e.
generated by output in the form of unbounded as well
as bounded solutions.

Let us by primal cut-improvement denote genera-
tion of a primal cut (for (PM)) and by dual cut-im-
provement denote generation of a dual cut (for (DM)).
We also use the notation ‘primal’ or ‘dual bound-im-
provement’ to indicate which of the two subproblems
that gave the improvement, i. e. primal bound-improve-
ment means that h(y) < v and dual bound-improve-
ment means that g(u1) > v. (v is the least upper bound
known and v the largest lower bound known.)

The convergence tests are originally formulated to
give the answers to the following questions.
� Can y give a bound-improvement in (PS)?
� Can u1 give a bound-improvement in (DS)?
Testing extreme rays, eu1, for convergence, we note
that the subproblem (UDS) can not give bound-
improvement. We call the test of unbounded solutions
CTDU.

We now give the convergence tests, CT, with strict
inequalities, following [11]:
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CTP If L(x(k); y; u(k)) < v, 8k 2 PU , andeL(bx(k); y;eu(k)) < 0, 8k 2 RU , then y will
give primal improvement. If not, use a mas-
ter problem.

CTD If L1(x(k); y(k); u1) > v, 8k 2 PX , then u1
will give dual improvement. If not, use
a master problem.

CTDU IfeL1(x(k); y(k);eu1) > 0, 8k 2 PX , theneu1
will give dual cut-improvement. If not, use
a master problem.

We call CTD and the first part of CTP value conver-
gence tests and CTDU and the second part of CTP fea-
sibility convergence tests. This conforms to the notation
of value and feasibility cuts in the master problems.

One can show that the convergence tests CTP and
CTD are necessary for bound-improvement and suffi-
cient for cut- or bound-improvement, see [7]. The con-
vergence tests CTDU are sufficient for cut-improve-
ment.

However, there can be an infinite number of primal
and/or dual improvements, so one can not be certain
that CT will fail within a finite number of steps. For this
reason it is necessary to consider "-improvements.

We need the following "-convergence tests, CT ":

CTP" If L(x(k); y; u(k)) � v � ", 8k 2 PU , andeL(bx(k); y;eu(k)) � �",8k 2 RU , then y will
give primal "-improvement. If not, use a
master problem.

CTD" If L1(x(k); y(k); u1) � v + ", 8k 2 PX , then
u1 will give dual "-improvement. If not,
use a master problem.

CTDU" IfeL1(x(k); y(k);eu1) � ", 8k 2 PX , theneu1
will give dual "-cut-improvement. If not,
use a master problem.

The "-value convergence tests correspond to the value
cuts of the master problems, and the " used corresponds
directly to a change of " of the bounds ("-bound-
improvement). The "-feasibility convergence tests, on
the other hand, correspond to feasibility cuts of the
master problems, and the " used corresponds to the
‘infeasibility’ it gives some previously feasible points,
which is what we call "-cut-improvement for feasi-
bility cuts. While these "-tests are sufficient for "-

improvement, they are not necessary. To prove ne-
cessity would require an inverse Lipschitz assumption,
namely that for points a certain distance apart, the value
of a function (the feasibility cut) should differ by at least
a certain amount. The following result is proved in [7].

The "-value convergence tests of CTP ", the feasi-
bility convergence tests of CTP and the "-convergence
tests CTD " are necessary for "-bound-improvement.
The "-convergence tests CT " are sufficient for "-
bound- or "-cut-improvement, in the sense that they
are sufficient for one of the following.
I) "-bound-improvement.
II) "-cut-improvement.
III) "1-bound-improvement and "2-cut-improvement,

where "1 + "2 = ".
Now it is possible to verify finiteness of the convergence
tests. A formal proof for this can be found in [7]. The
following reasoning is used.

When the bounded set Y is completely described
with an accuracy better than " by either value cuts or
feasibility cuts, the "-convergence tests will fail (if not
earlier). Each time the "-convergence tests do not fail,
we will get improvement according to one of the three
cases mentioned above.

A finite number of "-bound-improvements is obvi-
ously sufficient to decrease the finite distance between v
and v� to less than ". After an "-cut-improvement, the
new cut describes h(y) with an accuracy better than " in
the area around y where h(y) < L(x(l), y, u(l)) + ". Due
to the Lipschitzian property of the functions f , G1 and
G2, there is a least distance, ı, proportional to ", from
y to any point y violating this inequality, and the "-
convergence tests will fail for any point with a distance
to y less then ı. The bounded set V can be completely
covered by a finite number of such areas.

In the third case, an "1-bound-improvement to-
gether with an "2-cut-improvement, where "1 + "2 = ",
we can ignore the least of "1 and "2, leaving us with the
other one greater or equal to "/2. This yields one of the
two cases above, so exchanging " for "/2 finiteness is
still assured.

For unbounded solutions to (PS), any y satisfying
eL(bx(l ); y;eu(l )) > �" will make the "-convergence tests
fail, and because of the Lipschitzian property of G1 and
G2 there is a least distance, ı (proportional to "), from
y to any y not making the "-convergence tests fail. Thus
an area of a certain least size is made ‘infeasible’, and
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the bounded set Y \ V can be covered by a finite set of
such areas. Thus CTP " will fail within a finite number
of steps.

Note that it is enough that CTP " fails. To obtain
finiteness we do not need to use CTD ", even if it
might be useful in practice. We cannot show that CTD
"will fail within a finite number of steps. Dual "-bound-
improvement can only occur a finite number of times,
but dual "-cut-improvement can occur an infinite num-
ber of times, since the area to be covered by the cuts is
the nonnegative orthant of u1.

We therefore require that (PM) is used regularly.
(One could even skip (DM) completely.) The following
is our main result.

Theorem 1 The generalized cross decomposition algo-
rithm equipped with "-convergence tests CT " finds an
"-optimal solution to (P) in a finite number of steps, if
the generalized Benders decomposition algorithm does.

All the results for generalized Benders decomposition
can be directly used for generalized cross decomposi-
tion, especially the following two.

In [5] it is shown that generalized Benders decom-
position has finite exact convergence if Y is a finite dis-
crete set. The worst case is solving the primal subprob-
lem with each possible y 2 Y , which will give a perfect
description of h(y) and V on Y .

Therefore we know that if Y is a finite discrete
set, the generalized cross decomposition algorithm will
solve P exactly in a finite number of steps.

It is also shown in [5] that generalized Benders de-
composition terminates in a finite number of steps to
an "-optimal solution, i. e. where v � v � " for any
given " > 0, if the set of interesting (u1, u2)-solutions
(possible optimal solutions to the primal subproblem)
is bounded and Y � V . This makes the primal feasibil-
ity cuts (and the corresponding convergence tests) un-
necessary. So for generalized cross decomposition, we
know the following.

If h(y) is bounded from above for all y 2 Y , i. e.
(PS) has a feasible solution for every y 2 Y , then the
cross decomposition algorithm (without UDS and the
"-feasibility convergence tests of CT ") will yield finite
"-convergence, i. e. yield v� v � " in a finite number of
steps, for any given " > 0.

If Y 6� V one might get asymptotic convergence
of the feasibility cuts, i. e. solutions getting closer and

closer to the feasible set, but never actually becomes
feasible. If one is reluctant to base a stopping criterion
on "-feasible solutions, one could use penalty functions,
which transforms feasibility cuts to value cuts and gives
better possibilities of handling cases where Y 6� V . One
could also use artificial variables for this purpose. As for
nonlinear penalty function techniques, one should not
forget the Lipschitzian assumption made.

The practical motivation behind cross decomposi-
tion is to replace the hard primal master problem with
the easier dual subproblem to the largest possible ex-
tent. Therefore the theoretical result that generalized
cross decomposition equipped with "-convergence tests
does not have asymptotically weaker convergence than
generalized Benders decomposition, is quite satisfac-
tory.

Finally one might mention that these approaches
also has been applied to pure (not mixed) integer pro-
gramming problems in [8] (nonlinear) and [9] (linear).
In such cases, various duality gaps appear, and exact so-
lution is not possible. However, the approach may be
useful for obtaining good bounds on the objective func-
tion value, which are to be used in branch and bound
methods.
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The ˛BB global optimization algorithm for continu-
ous twice-differentiable NLPs (cf. � ˛BB algorithm)
[2,4,5,6,8,18] can be used to design global optimiza-
tion algorithms for mixed integer nonconvex problems
[1,3,7]. One such algorithm, the special structure mixed
integer ˛BB algorithm (SMIN-˛BB) is designed to ad-
dress the class of MINLPs in which all the integer
variables are binary variables that participate in linear
or mixed-bilinear terms and in which the nonconvex
functions in the continuous variables have continuous
second order derivatives. This algorithm is an extension
of the ˛BB algorithm and branching is performed on
both the continuous and the binary variables. A second
algorithm, the general structure mixed integer ˛BB al-
gorithm (GMIN-˛BB), guarantees convergence to the
global optimum of a much broader class of problems.
The integer variables may participate in the problem in
a very general way, provided that the continuous relax-
ation of the MINLP is C2 continuous. This article de-
scribes both algorithms.

The SMIN-˛BB Algorithm

The SMIN-˛BB algorithm [1,3,7] guarantees finite �-
convergence to the global solution of MINLPs belong-
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ing to the class
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;y

f (x)C x>A f yC c>f y

s.t. gi (x)C x>Ag;iyC c>g;iy � 0;
i D 1; : : : ;m;

h(x)C x>Ah;iyC c>h;iy D 0;
i D 1; : : : ; p;

x 2 [xL; xU ]
y 2 f0; 1gq

(1)

where f (x), g(x), and h(x), are continuous, twice-
differentiable functions, m is the number of inequality
constraints, p is the number of equality constraints, q
is the dimension of the binary variable vector, Af , Ag, i

and Ah, i are n × q matrices, and cf , cg, i and ch, i are q-
dimensional vectors.

The main features of any branch and bound algo-
rithm are the strategy used to generate valid lower and
upper bounds for the problem and the selection criteria
for the branching node and the branching variable. Op-
tionally, a procedure to tighten the variable boundsmay
be considered. Each one of these issues is examined in
the context of the SMIN-˛BB algorithm.

Generation of Valid Upper and Lower Bounds

A local solution of the nonconvex MINLP (1) using one
of the algorithms described in [13] constitutes a va-
lid upper bound on the global optimum solution of
that problem. The generalized Benders decomposition
(GBD) [10,14] or a standard MINLP branch and bound
algorithm (B&B) [9,11,15,19,20] may be used to ob-
tain such a solution. When there are no mixed-bilinear
terms, the outer approximation with equality relaxation
(OA/ER) [12,16]may also be used. Alternatively, the bi-
nary variables may be fixed to a combination of 0 and 1
values and the resulting nonconvex NLP may be solved
locally.

A relaxed problem which can be solved to global
optimality must be constructed from problem (1) in
order to obtain a valid lower bound. The class of
MINLPs in which the continuous functions f (x), gi(x),
and hi(x), are convex can be solved to global opti-
mality using the GBD or B &B algorithms, and, when

there are no mixed-bilinear terms, the OA/ER algo-
rithm. To identify a guaranteed lower bound on the so-
lution of the problem, it therefore suffices to construct
convex underestimators for the nonconvex functions
f (x), gi(x), and hi(x), and to solve the resulting prob-
lem with one of these algorithms. The rigorous con-
vexification/relaxation strategy used in the ˛BB algo-
rithm for nonconvex continuous problem [2,4,5,6] al-
lows the construction of the desired lower bounding
MINLP. This scheme is based on a decomposition of
the functions into a sum of terms with special mathe-
matical structure, such as linear, convex, bilinear, trilin-
ear, fractional, fractional trilinear, univariate concave
and general nonconvex terms. A different convex relax-
ation technique is then applied for each class of term.
The fact that a summation of convex functions is it-
self a convex function is then used to construct overall
function underestimators and arrive at a convex lower
bounding MINLP.

Selection of Branching Node

A list of the lower bounds on all the nodes that have not
yet been explored during the branch and bound pro-
cedure is maintained. A number of approaches can be
used to select the next branching node, such as depth-
first, breadth-first or smallest lower bound first. Since
the purpose of the algorithm is to identify the global so-
lution of the problem, all promising regions, that is, all
regions for which the lower bound is less than or equal
to the best upper bound on the solution, must be ex-
plored. The strategy that usually minimizes the num-
ber of nodes to be examined and therefore the CPU re-
quirements of the algorithm is used to choose the next
branching node in the SMIN-˛BB algorithm. Thus, the
node with the smallest lower bound is selected.

Selection of Branching Variable

Several strategies can be used to select the next vari-
able to be branched on. If a continuous variable is judi-
ciously chosen, the partition results in an improvement
of the lower bound on the problem through a tighten-
ing of the convex relaxation of the nonconvex contin-
uous functions. Binary variables have an indirect effect
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on the quality of the convex underestimators as they in-
fluence the range of values that the continuous variables
can take on.

A first branching variable selection scheme exploits
the direct relationship between the range of the con-
tinuous variables and the quality of the lower bounds
and therefore branches only on these variables. One of
the rules available for the ˛BB algorithm [2] is used for
the selection. These are based on the size of the variable
ranges, or on a measure of the quality of the underesti-
mator for each term, or on a measure of each variable ’s
overall contribution to the quality of the underestima-
tors.

A second approach aims to first tackle the combi-
natorial aspects of the problem by branching only on
binary variables for the first q levels of the branch and
bound tree, where q is the number of binary variables.
The nonconvexities are dealt with on subsequent levels
of the tree, by branching on the continuous variables.
The specific binary variable used for branching is cho-
sen randomly or from a priority assigned on the basis of
its effect on the structure of the problem. In particular,
the binary variables that influence the bounds on the
greatest number of variables are given the highest pri-
orities. Once all the binary variables have been fixed, the
problems that must be considered are continuous non-
convex and convex problems for the upper and lower
bound respectively. The bounding of the nodes below
level q is therefore less computationally intensive than
above that level.

A third approach also involves branching on the
continuous and binary variables although the choice
is no longer based on the level in the tree. To in-
crease the impact of binary variable branching on the
quality of the lower bound, such a variable is selected
when a continuous relaxation of the problem indicates
that the two children node will have significantly dif-
ferent lower bounds, and that one of them may even
be infeasible. Thus, if one of the binary variables is
close to 0 or 1 at a local solution of the continuous
relaxation, it is branched on. The degree of closeness
is an arbitrary parameter which can typically be set
to 0.1 or 0.2. If no ‘almost-integer’ binary variable is
found, a continuous variable is selected for branching.
In general, this hybrid strategy results in a faster im-

provement in the lower bounds than the second ap-
proach, but it is more computationally intensive be-
cause a continuous relaxation must be solved before
selecting a branching variable and a larger number of
MINLP nodes may be encountered during the branch
and bound search.

Variable Bound Updates

The tightening of variable bounds is a very important
step because of its impact on the quality of the under-
estimators. For continuous variables, the strategies de-
veloped for the ˛BB algorithm may be used [2]. For
the SMIN-˛BB algorithm, they rely on the solution of
several convex MINLPs in the optimization-based ap-
proach, or the iterative interval evaluation of the con-
straints in the interval-based approach. In this latter
case, the binary variables are relaxed during the inter-
val computation.

PROCEDURE binary variable bound update()
Consider R = f(x; y) 2 F : yi = 0g;
Test interval feasibility of R;
IF infeasible, set yLi = 1;
Consider R = f(x; y) 2 F : yi = 1g;
Test interval feasibility of R;
IF infeasible,

IF yLi = 1, RETURN(infeasible node);
ELSE, set yUi = 0;

RETURN(new bounds yLi and yUi );
END binary variable bound update;

Procedure for binary variable bound updates

In the case of binary variables, successful bound
updates are beneficial in two ways. First, they indi-
rectly lead to the construction of tighter underestima-
tors as they affect the continuous variable bounds. Sec-
ond, they allow a binary variable to be fixed and there-
fore decrease the number of combinations that poten-
tially need to be explored. An interval-based strategy
can be used to carry out binary variable bound updates.
Given the current upper bound f � on the global op-
timum solution, the feasible region F is defined by the
constraints appearing in the nonconvex problem, a new
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constraint f (x)C x>A f yC c>f y � f �, and the box (x,
y) 2 [xL, xU] × [yL, yU]. Consider a variable yi 2 {0, 1 }
whose bounds are being updated. The procedure above
is used.

Algorithmic Procedure

The algorithmic procedure for the SMIN-˛BB algo-
rithm is as follows:

PROCEDURE SMIN-˛BB algorithm()
Decompose functions in problem;
Set tolerance �;
Set f � = f 0 = �1 and f

�
= f

0
= +1;

Initialize list of lower bounds f f 0g;

DO f
�
� f � > �

Select node k with smallest lower bound, f k ,
from list of lower bounds;
Set f � = f k ;
(Optional) Update binary and continuous var-
iable bounds;
Select binary or continuous branching variable
Partition to create new nodes;
DO for each new node i
Generate convex lower bounding MINLP;
Find solution f i of convex lower bounding
MINLP;
IF infeasible or f i > f

�
+ �

Fathom node;
ELSE
Add f i to list of lower bounds;

Find a solution f
i
of nonconvex MINLP;

IF f
i
< f
�
THEN Set f

�
= f

i
;

OD;
OD;
RETURN( f

�
and variables values at correspon-

ding node);
END SMIN-˛BB algorithm;

Pseudocode for the SMIN-˛BB algorithm

In order to illustrate the algorithmic procedure,
a small example proposed in [17] is used. It is a sim-
ple design problem where one of two reactors must be
chosen to produce a given product at the lowest possi-
ble cost. It involves two binary variables, one for each
reactor, and seven continuous variables. The formula-

tion is:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min 7:5y1 C 5:5y2 C 7v1 C 6v2 C 5x
s.t. z1 � 0:9

�
1 � e�0:5v1

�
x1 D 0

z2 � 0:8
�
1 � e�0:5v2

�
x2 D 0

x1 C x2 � x D 0
z1 C z2 D 10
v1 � 10y1 � 0
v2 � 10y2 � 0
x1 � 20y1 � 0
x2 � 20y2 � 0
y1 C y2 D 1
0 � x1; x2 � 20; 0 � z1; z2 � 30
0 � v1; v2 � 10; 0 � x � 20
(y1; y2) 2 f0; 1g2

Because of the linear participation of the binary vari-
ables, the SMIN-˛BB algorithm is well-suited to solve
this nonconvex MINLP. It identifies the global solution
of 99.2 after nine iterations, when bound updates are
performed at every iteration and branching takes place
on the binary variables first. Branching variable selec-
tion takes place randomly for the binary variables and
according to the termmeasures for the continuous vari-
ables. At the global solution, the binary variable val-
ues are y1 = 1 and y2 = 0. The steps of the algorithm
are shown in Fig. 1. The boldface numbers next to the
nodes indicate the order in which the nodes were ex-
plored. The lower bound is computed by solving a con-
vex relaxation of the nonconvex problem is indicated
inside each node, and the branching variable selected
for the node is also specified. The domain to which
this branching variable is restricted is displayed along
each branch. A black node indicates the lower bound-
ing problem was found infeasible and a shaded node is
fathomed because its lower bound is greater than the
current upper bound on the solution.

At the first node, the initial lower bound is 11.4 and
an upper bound of 99.2 is found. The binary variable y1
is selected as a branching variable. The region y1 = 0 is
infeasible and can therefore be fathomed (black node),
while an improved lower bound is found for y1 = 1. This
latter region is therefore chosen for exploration at the
second iteration. Variable bound updates reveal that y2
= 1 is infeasible so that y2 can be fixed to zero. Branch-
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MINLP: Global Optimization with˛BB, Figure 1
SMIN-˛BB branch and bound tree

ing on the continuous variables may now begin. The
first selected variable is x1 and regions 0 � x1 � 10 and
10 � x1 � 20 are created. Since the left region has the
lowest lower bound (36.4), it is examined at iteration 3.
Variable bound updates show that this region is in fact
infeasible and it is therefore eliminated without further
processing. The algorithm proceeds to node 4 for which
v1 is selected as a branching variable. The right region,
5 � v1 � 10, is fathomed since it has a lower bound
greater than 99.2. The algorithm progresses along the
branch and bound until, at iteration 9, two nodes are
left open with lower bounds of 99.2. This is within the
accuracy required for this run so the procedure is ter-
minated. One more iteration would reveal that the only
global optimum lies in the right child of node 9.

The SMIN-˛BB algorithm is especially effective for
chemical process synthesis problem such as distillation
network or heat exchanger network synthesis [1,3].

The GMIN-˛BB Algorithm

The GMIN-˛BB algorithm is designed to address the
broad class of problems represented by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0
h(x; y) D 0
x 2 [xL ; xU ]
y 2 [yL; yU ] \Nq

(2)

where f (x, y), g(x, y), and h(x, y), are functions whose
continuous relaxation is twice continuously differen-
tiable.

The GMIN-˛BB algorithm [2,3,7] extends the ap-
plicability of the standard branch and bound ap-
proaches for MINLPs [9,11,13,15,19,20] by making use
of the ˛BB-algorithm. The most crucial characteristics
of the algorithm are the branching strategy, the deriva-
tion of a valid lower bound on problem (2), and the
variable bound update strategies.

Branching Variable Selection

Branching in the GMIN-˛BB algorithm is carried out
on the integer variables only. When it is a bisection,
the partition takes place either at the midpoint of the
range of the selected variable, or at the value of that
variable at the solution of the lower bounding problem.
It is also possible to branch on more than one variable
at a given node, or to perform k-section on one of the
variables. More than two children node may be created
from a parent node when the structure of the problem is
such that the bounds on a small fraction of the integer
variables affect the bounds on many of the other vari-
ables in the problem. As in the SMIN-˛BB algorithm,
an integer variable is chosen randomly or according to
branching priorities. An additional rule consists of se-
lecting the most or least fractional variable at the solu-
tion of a continuous relaxation of the problem.

Generation of a Valid Lower Bound

A guaranteed lower bound on the global solution of
the current node of the branch and bound tree is ob-
tained by solving a continuous relaxation of the non-
convexMINLP at that node.When the integer variables
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that have not yet been fixed are allowed to vary con-
tinuously between their bounds, the problem becomes
a nonconvex NLP. The validity of the lower bound can
only be ensured if the global solution of this noncon-
vex NLP is identified or if a lower bound on this so-
lution is found. On the other hand, when all integer
variables have been fixed to integer values at a node, no
additional partitioning of this node can take place and
the global optimum solution of the nonconvex NLP is
required to guarantee convergence of the GMIN-˛BB.
Based on these conditions, the ˛BB algorithm can be
used as as subroutine to generate valid lower bounds:
� If at least one integer variable can be relaxed at the

current node, run the ˛BB algorithm for a few itera-
tions to obtain a valid lower bound on the global so-
lution of the continuous relaxation or run the ˛BB
algorithm to completion to obtain the global solu-
tion of the continuous relaxation.

� Otherwise, run the ˛BB algorithm to completion to
obtain the global solution for the current node.

This strategy makes use of the convergence characteris-
tics of the ˛BB algorithm to improve the performance
of the GMIN-˛BB algorithm. The rate of improvement
of the lower bound on the global solution of a non-
convex NLP is usually very high at early iterations and
then gradually tapers off. At later stages of an ˛BB run,
the computationally expensive reduction of the gap be-
tween the bounds on the solution of the continuous
relaxation does not result in a sufficiently significant
increase in the lower bound to affect the performance
of the GMIN-˛BB algorithm and can therefore be by-
passed.

Generation of a Valid Upper Bound

Because of the finite size of the branch and bound tree,
it is not necessary to generate an upper bound on the
nonconvex MINLP at each node in order to guaran-
tee convergence of the GMIN-˛BB algorithm. In the
worst case, the integer variables are fixed at every node
of the last level of the tree, and the solutions of the cor-
responding NLPs provide the upper bounds needed to
identify the global optimum solution. However, upper
bounds play a significant role in improving the conver-
gence rate of the algorithm by allowing the fathoming
of nodes whose lower bound is greater than the smallest
upper bound and therefore reducing the final size of the

branch and bound tree. An upper bound on the solu-
tion of a given node can be obtained in several ways. For
example, if the solution of the continuous relaxation is
integer-feasible, that is, all the relaxed integer variables
have integer values at the solution, this solution is both
a lower and an upper bound on the current node. If the
˛BB algorithm was run for only a few iterations and the
relaxed integer variables are integer at the lower bound,
they can be fixed to these integer values and the result-
ing nonconvex NLP can be solved locally to yield an up-
per bound on the solution of the node. Finally, a set of
integer values satisfying the integer constraints can be
used to construct a nonconvex NLP whose local solu-
tions are upper bounds on the current node solution.

Variable Bound Updates

If the bounds on the integer variables at any given node
can be tightened, the solution space can be significantly
reduced due to the combinatorial nature of the prob-
lem. The allocation of computational resources for this
purpose is therefore a potentially worthwhile invest-
ment. An optimization-based approach or an interval-
based approach may be used to update the variable
bounds. These approaches are similar to those devel-
oped for the ˛BB algorithm but they take advantage of
the integrality of the variables. Thus, in the optimiza-
tion approach, the lower or upper bound on variable yi
is improved by first relaxing the integer variables, and
then solving the convex NLP

y� D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min or maxx;y;w yi
s.t. f̆ (x; y;w) � f �

C(x; y;w)
x 2 [xL; xU ]
y 2 [yL; yU ]
w 2 [wL;wU ]

(3)

where f̆ (x; y;w) denotes the convex underestimator of
objective function, f � denotes the current best upper
bound on the global optimum solution, C (x, y, w) de-
notes the set of convexified constraints, and w is the
set of new variables introduced during the convexifica-
tion/relaxation procedure. Finally, the improved lower
or upper bound is obtained by setting yLi = d y

� e or yUi
= b y� c.
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In the interval-based approach, an iterative proce-
dure is followed based on an interval test which pro-
vides sufficient conditions for the infeasibility of the
original constraints and the ‘bound improvement con-
straint’ f (x; y) � f �, given the relaxed region (x, y) 2
[xL, xU] × [yL, yU]. This set of constraints defines a re-
gion denoted by F. The procedure to improve the lower
(upper) bound on variable yi is as follows:

PROCEDURE interval-based bound update()
Set initial bounds L = yLi and U = yUi ;
Set iteration counter k = 0;
Set maximum number of iterations K;
DO k < K and L ¤ U

Compute ‘midpoint’ M = b(U + L)/2c;
Set left region
f(x; y) 2 F : yi 2 [L;M]g;

Set right region
f(x; y) 2 F : yi 2 [M + 1;U]g;

Test interval feasibility of left(right) region;
IF feasible,

Set U = M (L = M);
ELSE

Test interval feasibility of right(left)
region;
IF feasible,

Set L = M (U = M);
ELSE

IF k = 0,
RETURN(infeasible node);

ELSE
Set L = U (U = L);
Set U = yUi (L = yLi );

Set k = k + 1;
OD;
RETURN(yLi = L (yUi = U));

END interval-based bound update;

Interval-based bound update procedure

The variable bound tightening is performed before
calling the ˛BB algorithm to obtain a lower bound on
the solution of the current node. In many cases, during
an ˛BB run, variable bound updates are also used to
improve the quality of the generated lower bounds. Al-
though the ˛BB algorithm treats the y variables as con-
tinuous, the bound update strategy within the ˛BB al-

gorithm may be modified to account for the true nature
of these variables. A larger reduction in the solution
space can be achieved by adopting one of the integer
bound update strategies described here for the relaxed y
variables. This more stringent approach leads to a lower
bound which is not necessarily a valid lower bound on
the continuous relaxation, but which is always a lower
bound on the global solution of the nonconvex MINLP.

The overall algorithmic procedure for the GMIN-
˛BB algorithm is shown below:

PROCEDURE GMIN-˛BB algorithm()
Set tolerance �;
Set f � = f 0 = �1 and f

�
= f

0
= +1;

Initialize list of lower bounds f f 0g;

DO f
�
� f � > �

Select node k with smallest lower bound, f k ,
from list of lower bounds;
Set f � = f k ;
(Optional) Update y variable bounds;
Select integer branching variable(s);
Create new nodes by branching;
DO for each new node i

Obtain lower bound f i on node
IF all integer variables are fixed,

Find global solution f i of nonconvex
NLP with ˛BB algorithm;

ELSE
Relax integer variables;
Run ˛BB algorithm to completion or
for a few iterations to get f i

(Optional) Use integer bound
updates on y variables;

IF f i > f
i
+ �, THEN Fathom node;

ELSE
Add f i to list of lower bounds;

(Optional) Obtain upper bound f
i
on

nonconvex MINLP;
IF f

i
< f
�
THEN Set f

�
= f

i
;

OD;
OD;
RETURN( f

�
and variables values at corres-

ponding node);
END GMIN-˛BB algorithm;

Pseudocode for the GMIN-˛BB algorithm
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MINLP: Global Optimization with˛BB, Figure 2
GMIN-˛BB branch and bound tree

The algorithmic procedure for the GMIN-˛BB al-
gorithm is illustrated using the same example as for the
SMIN-˛BB algorithm. The branch and bound tree is
shown in Fig. 2, using the same notation as previously.

At the first node, the continuous relaxation of the
nonconvex MINLP is solved for 10 ˛BB iterations to
yield a lower bound of 60. No upper bound is found.
Next, the binary variable y2 is chosen for branching and
the continuous relaxation of the problem with y2 = 0
is solved. A lower bound of 92.2 is found as the global
solution to this nonconvex NLP. In addition, this solu-
tion is integer feasible and therefore provides an upper
bound on the global optimum solution of the noncon-
vex MINLP. The region y2 = 1 is then examined and
the global solution of the NLP is found to be 101.7 after
10 ˛BB iterations. This node can therefore be fathomed
and the procedure terminated.

The GMIN-˛BB algorithm has been used to solve
nonconvex MINLPs involving nonconvex terms in the
integer variables and some mixed nonconvex terms.
Branching priorities combined with variable bound up-
dates and a small number of ˛BB iterations for relaxed
nodes allow the identification of the global optimum so-
lution after the exploration of a small fraction of the
maximum number of nodes and with small CPU re-
quirements. In particular, the algorithm has been used
on a pump network synthesis problem [2,3]. Some non-
convex integer problems have also been tackled by the
same approach. For instance, the minimization of trim
loss, a problem taken from the paper cutting industry,
has also been addressed for medium order sizes [3].

Conclusions

The ˛BB algorithm for nonconvex NLPs can be in-
corporated within more general frameworks to address

broad classes of nonconvex MINLPs. One extension
of the algorithm is the SMIN-˛BB algorithm which
identifies the global optimum solution of problems in
which binary variables participate in linear or mixed-
bilinear terms and continuous variables appear in twice
continuously differentiable functions. The partitioning
of the solution space takes place in both the contin-
uous and binary domains. The GMIN-˛BB algorithm
is designed to locate the global optimum solution of
problems involving integer and continuous variables in
functions whose continuous relaxation is twice contin-
uously differentiable. The algorithm is similar to tra-
ditional branch and bound algorithms for mixed inte-
ger problems in that branching occurs on the integer
variables only and a continuous relaxation of the prob-
lem is constructed during the bounding step. It uses the
˛BB algorithm for the efficient and rigorous generation
of lower bounds. Both algorithms are widely applica-
ble and have been successfully tested on a variety of
medium-size nonconvex MINLPs.
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Heat exchanger network synthesis problems arise in
chemical process design when the heat released by hot
process streams is used to satisfy the demands of cold
process streams. These problems have been the subject
of an intensive research effort, and over 400 publica-
tions have been written in the area. See [7,8,9] for re-
views of the area, and [1,3] for detailed analysis of HEN
synthesis.

The discovery by T. Umeda et al. [11] of a ther-
modynamic pinch point that limits heat integration in
a heat exchanger network led to much of this research
effort. They showed that setting minimum temperature
approach, 	Tmin, places a lower bound on the utility
consumption in a heat exchanger network and decom-
posed a heat exchanger network into independent sub-
networks. This enables the heat exchanger network syn-
thesis problem to be decomposed into four subprob-
lems. The first subproblem finds the appropriate min-
imum temperature approach, the second subproblem
minimizes the utility consumption, the third subprob-
lem finds the minimum number of matches and iden-
tifies the matches and their heat duty, and the fourth
finds and optimizes the actual network structure.

See [5] for a systematic scheme for solving these
problems sequentially. First, the utility consumption is
minimized using the linear programming (LP) trans-
shipment model approach of [10]. Second, a set of pro-
cess matches and their heat duties that minimize the
total number of units is found with the mixed integer
linear programming (MILP) strategy of [10]. Then, the
network structure is found [5] by optimizing a super-
structure that contains all possible network configura-
tions embedded within it using a nonlinear program-
ming (NLP) problem. When there is more than one
combination of matches and heat duties that satisfies
the minimum unit criterion, the best combination is
found by exhaustive enumeration. The minimum tem-
perature approach is optimized with a golden section
search that solves all three of these optimization prob-
lems at each iteration.

In the late 1980s it was found, [4,12], that better net-
work designs could be obtained by solving some of the
heat exchanger network design subproblems simulta-
neously. C.A. Floudas and A.R. Ciric [4] combined the
MILP stream matching problem with the NLP super-
structure optimization problem formulated in [5], cre-
ating a mixed integer nonlinear programming problem
(MINLP) that avoided the exhaustive search through all
combinations of matches that minimize the number of
units. In 1990, they [2] formulated the entire heat ex-
changer network design problem as a MINLP. The so-
lution of this problem yields the optimal temperature
approach, utility level, processmatches, heat duties, and
network structure, eliminating the need for a global sec-
tion search for the optimumminimum temperature ap-
proach.

T.F. Yee and I.E. Grossmann [12] used a smaller su-
perstructure proposed in [6] that embodies a sequen-
tial-parallel network structure to formulate an alterna-
tive MINLP for heat exchanger network synthesis. The
solution of this MINLP yielded the utility consumption,
matches and network structure and heat exchanger ar-
eas.

Problem Statement

This article will explore two mixed integer nonlin-
ear programming problems in heat exchanger network
synthesis: combined match-network optimization and
heat exchanger network synthesis without decompo-
sition. The synthesis without decomposition problem
can be stated as follows:

Given:
1) A set of hot process streams and hot utilities i 2 H,

their inlet and outlet temperatures Ti, TO, i, and heat
capacity flow rates Fi;

2) A set of cold process streams and cold utilities j 2 C,
their inlet and outlet temperatures Tj, TO, j, and heat
capacity flow rates Fj; and

3) Overall heat transfer coefficients Uij.
Determine:

A) The stream matches (ij), the heat duty Qij of match
(ij), and the heat exchanger area Aij of match (ij);

B) the piping structure for each stream in the network;
and

C) the temperature and flowrate within each pipe of
the network.
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MINLP: Heat Exchanger Network Synthesis, Figure 1
A superstructure for one hot stream exchanging heat with two cold streams

In the match-network problem, one is also given
� the level of each utility; and
� a minimum temperature approach	Tmin.
These problems can be solved using mixed integer non-
linear programming. The development and application
of these approaches is described in more detail below.

Heat Exchanger Network Superstructures

Mixed integer nonlinear programming approaches to
these problems begin with a superstructure that con-
tains many alternative designs embedded within it. Two
superstructures are particularly interesting.

Figure 1 shows a superstructure of a hot stream,
above the thermodynamic pinch point, that may ex-
change heat with two cold streams [5]. Notice that the
stream can be piped in series, in parallel, and in split-
mix-bypass configurations, as shown in Fig. 2. As we
shall see, this richness leads to nonconvex constraints
in the MINLP. The first network superstructure is cre-
ated by constructing similar structures for every other
stream above the pinch point.

Notice that in this subnetwork, streams H1 and C1,
and all other pairs of hot and cold streams, can ex-
change heat no more than once. H1 and C1 may ex-
change heat again in the subnetwork below the thermo-
dynamic pinch point. The thermodynamic pinch point
has partitioned the temperature range into two inter-
vals, and in each interval, individual process streams
can only exchange heat once.

One could increase the number of times two
streams can exchange heat by partitioning the temper-

ature range further. This is the basic strategy behind
the second superstructure [6,12] shown in Fig. 3. Here,
the temperature range has been partitioned into many
intervals, or stages. Within any particular stage, each
hot stream may exchange heat with each cold stream;
multiple intervals allow any particular match to take
place many times in the network. Unlike the first super-
structure, each stream in each stage is piped in a par-
allel configuration, and the inlet and outlet tempera-
ture of each parallel line is fixed by the temperature
interval. Series piping structures arise when a stream
exchanges heat only once per interval. The superstruc-
ture does not contain split-mix-bypass or series-parallel
structures, but as we shall see that in exchange the non-
convex constraints that arise from the first superstruc-
ture have been eliminated.

Mathematical Models
for HEN Synthesis usingMINLPs

MINLP models of heat exchanger network synthesis
arise when the process stream matches are selected
while simultaneously optimizing the heat exchanger
network; the former is a discrete decision modeled
with integer variables, the latter, a nonlinear optimiza-
tion problem. In this paper, we refer to this as the
match-network problem. MINLPs may also be used
to formulate an optimization problem that simultane-
ously minimizes the utility consumption, selects the
stream matches, and optimizes the network layout, in
heat exchanger network synthesis without decomposi-
tion.
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MINLP: Heat Exchanger Network Synthesis, Figure 2
Stream piping configurations embedded in the superstructure shown in Fig. 1

Match-Network Problem

The MINLP model of the match-network problem has
three components: a transshipment model [10] that
identifies feasible process streammatches and their heat

duties, a superstructure model of all possible network
structures, and an objective function.

The transshipment model partitions the tempera-
ture range into t = 1, . . . , T temperature intervals, us-
ing the inlet and outlet temperatures of the streams and
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MINLP: Heat Exchanger Network Synthesis, Figure 3
Two-stage superstructure

the temperature interval approach temperature (TIAT).
Hot streams release heat into the temperature intervals,
where it either flows to the cold streams in the same in-
terval or cascades down to the next colder interval. The
binary variable Yij denotes the existence of a match be-
tween hot stream i and cold stream j, where heat loads
are qij and Qij, and heat residuals are Rk. The model is
composed by the following constraints:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

X
j2Ct

qi jt C Ri;t � Ri;t�1 D QH
it ; i 2 H; j 2 Ci ;

X
i2R j

qi jt D QC
jt ; j 2 C; t D 1; : : : ; T;

TX
tD1

qi jt D Qi j; i 2 H; j 2 Ci ;

Qi j � UYi j � 0; i 2 H; j 2 Ci ;X
i2H

X
j2Ci

Yi j � Nmax:

The first two constraints in the transshipment model
are the energy balances for each temperature interval.

The total heat load in a match is given by the third con-
straint. The fourth constraint bounds the heat load us-
ing the binary variable Yij and a large fixed constant U.
The last constraint in the above model puts an upper
bound on the number of existing matches, which is the
maximum number of units.

The second part of the match-network synthesis
model is the hyperstructure topology model, which
consists of mass and energy balances for the mixers and
splitters, feasibility constraints, utility load constraint
and bounds on the flow rate heat-capacities.

Mass balances for the splitters at the inlet of the su-
perstructure:
X
k0

f I;kk0 D Fk ; k 2 HCT:

Here, HCT is the set of all process streams and utili-
ties. Mass balances for the mixers at the inlets of the
exchangers:

f I;kk0 C
X
k00

f B;kk0;k00 � f E;kk0 D 0; k0; k 2 HCT:
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Mass balances for the splitters at the outlets of the ex-
changers:

f O;kk0 C
X
k00

f B;kk00;k0 � f E;kk0 D 0; k0; k 2 HCT:

Energy balances for the mixers at the inlets of the ex-
changers:

Tk f I;kk0 C
X
k00

f B;kk0;k00 t
O;k
k0 � f E;kk0 tI;kk0 D 0;

k0; k 2 HCT:

Energy balances over the heat exchangers:

Qi j � f E;ij

�
tI;ij � tO;ij

�
D 0; i 2 H; j 2 C;

Qi j � f E; ji

�
tO; ji � tI; ji

�
D 0:

The minimum temperature approach between a hot
stream and a cold stream:

tI;ij � tO; ji � 	Tmin;

tO;ij � tI; ji � 	Tmin:

Logical relations between the heat-capacity flow rates
and the existence of a match:

f E;ij � FiYi j � 0;

f E; ji � F jYi j � 0:

Lower bounds on the heat-capacity flow rates through
the exchanger:

f E;ij �
Qi j

	Ti j;max
� 0;

f E; ji �
Qi j

	Ti j;max
� 0;

where 	Tij, max equals Ti � Tj. Lastly, the objective
function minimizes the total investment cost:

min
X
i2H

X
j2C

˛

0
BBBBBB@

Qi j

Ui j
tI;ij �t

O; j
i �t

O;i
j Ct I; ji

ln
tI;ij �t

O; j
i

tO;ij �t
I; j
i

1
CCCCCCA

ˇ

Yi j:

The model is a mixed integer nonlinear programming
(MINLP) problem, as the objective function and the en-
ergy balances are nonlinear, and the decision variables
Yij are binary. Notice that the energy balances are bilin-
ear, creating a nonconvex feasible region.

MINLP: Heat Exchanger Network Synthesis, Table 1
Stream data for example problem

Stream Tin(C) Tout(C) FCp(kW/C)
H1 500 320 6
H2 480 380 4
H3 460 360 6
H4 380 360 20
H5 380 320 12
C1 290 660 18
F 700 700

CW 300 320
U = 1:0kW/(m2C)
Annual cost=1200A0:6 for all exchangers
Cs = 140$/kW
Ccw = 10$/kW

MINLP: Heat Exchanger Network Synthesis, Table 2
Match data for example problem; pseudo-pinch method [2]

Match Q(kW) A(m2)
H1-C1 948:454 79:391
H1-CW 131:546 6:280
H2-C1 400:000 29:057
H3-C1 600:000 57:488
H4-C1 400:000 14:880
H5-C1 720:000 25:509
S-C1 3591:546 32:112

Heat Exchanger Network Synthesis
Without Decomposition

MINLP models that optimize utility consumption as
well as process matches, heat duties, and network con-
figurations can also be formulated. See [2] and [12] for
pseudopinch approaches that set the TIAT to a small
value and lets heat flow across the pinch. A strict de-
composition at the pinch can also be maintained by let-
ting TIAT vary, and using integer variables tomodel the
changing structure of the temperature cascade.

Example 1 These techniques are demonstrated with
a problem given in both [12] and [2]. The problem con-
sists of two hot streams, two cold streams, one hot util-
ity (steam), and one cold utility (cooling water). The
stream data is given in Table 1.

Using the pseudopinchmethod with TIAT = 1C and
	Tmin = 0.5C, and allowing HRAT to vary between 1C
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MINLP: Heat Exchanger Network Synthesis, Figure 4
Optimal network configuration for example problem; pseudopinch [2]

MINLP: Heat Exchanger Network Synthesis, Figure 5
Optimal network configuration for example problem; simultaneous approach [12]

and 30C, Ciric and Floudas [2] formulated the prob-
lem as a MINLP problem and solved it using the gener-
alized Benders decomposition algorithm. The optimal
network configuration is pictured in Fig. 3. The net-
work consumes 3592.4kW of steam and 1312.4kW of
cooling water, the HRAT is 8.42C. The annual cost of
the network is $571,080. The match data of this solu-
tion is given in Table 2. Yee and Grossmann [12] used
the same problem to demonstrate the simultaneous op-
timization approach. The problem is again formulated

as a MINLP problem. The optimal network configura-
tion is given in Fig. 4. The annual cost of this network
is $576,640. HRAT is 13.1C. The match data of this net-
work is given in Table 3.

Conclusions

Mixed integer nonlinear programming offer a power-
ful approach to heat exchanger network synthesis. Us-
ing these techniques, stream matching, the combina-
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MINLP: Heat Exchanger Network Synthesis, Table 3
Match data for example problem; simultaneous approach
[12]

Match Q(kW) A(m2)
S-C1 3676:4 32:6
H1-C1 863:6 64:1
H2-C1 400:0 17:1
H3-C1 600:0 47:0
H4-C1 400:0 13:8
H1-CW 216:4 7:9
H5-C1 720:0 18:4

torial component of heat exchanger network synthesis,
can be performed while simultaneously minimizing the
utility consumption and selecting the cost-optimal heat
exchanger network configuration. Merging these tasks
leads to more cost-effective stream matches and lower
exchanger costs.
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There has been an increasing trend to representing lin-
ear and nonlinear discrete optimization problems by
models consisting of algebraic constraints, logic dis-
junctions and logic relations ([1,7,8]). For instance,
a mixed integer program can be formulated as a gen-
eralized disjunctive program as has been shown in [5]:

(DP1)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min Z D
X
k

ck C f (x)

s.t. g(x) � 0

W
i2Dk

2
664

Yik

hik(x) � 0
ck D �i k

3
775 ;

k 2 SD;
˝(Y) D true
x 2 Rn ; c 2 Rm ;

Y 2 ftrue; falsegm;

in which Yik are the boolean variables that establish
whether a given term in a disjunction is true (hik(x)
� 0), while ˝(Y) are logical relations assumed to be
in the form of propositional logic involving only the
boolean variables. Yik are auxiliary variables that con-
trol the part of the feasible space in which the continu-
ous variables, x, lie, and the variables cik represent fixed
charges which are set to a value � ik if the corresponding
term of the disjunction is true. Finally, the logical con-
ditions, ˝(Y), express relationships between the dis-
junctive sets. In the context of optimal synthesis of pro-
cess networks, the disjunctions in (DP1) typically arise
for each unit i in the following form:

2
4

Yi

hi(x) � 0
ci D �i

3
5_

2
4
:Yi

Bi x D 0
ci D 0

3
5 ; i 2 I; (1)

in which the inequalities hi apply and a fixed cost � i
is incurred if the unit is selected (Yi); otherwise (:Yi)
there is no fixed cost and a subset of the x variables is set
to zero with the matrix Bi. An important advantage of

the above modeling framework is that there is no need
to introduce artificial parameters for the ‘big-M’ con-
straints that are normally used in MINLP to model dis-
junctions.

M. Turkay and I.E. Grossmann [9] proposed a logic
version of the outer approximation algorithm for
MINLP [3] for solving problem (DP1), and in which
the disjunctions are given as in equation (1), and all
the functions are assumed to be convex. The algorithm
consists of solving a sequence of NLP subproblems and
master problems, which are as follows.

For fixed values of the boolean variables, Ybi k D true
and Yik = false forbi ¤ i, the corresponding NLP sub-
problem is as follows:

(NLPD)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min Z D
X
k

ck C f (x)

s.t. g(x) � 0

for Ybi k D true :

(
hik(x) � 0
ck D �i k

for Yik D false :

(
Bix D 0
ck D 0

k 2 SD;
x 2 Rn ; ci 2 R1:

Note that for every disjunction k 2 SD only constraints
corresponding to the boolean variable Ybi k that is true
are imposed. Also, fixed charges � ik are only applied
to these terms. Assuming that K subproblems (NLPD)
are solved in which sets of linearizations l = 1, . . . , K
are generated for subsets of disjunction terms L(ik) = {l:
Yl
ik = true}, one can define the following disjunctive OA

master problem:

(MDP1) min Z D
X
k

ck C f (x)

such that

˛ � f (xl )Cr f (xl )>(x � xl );

g(xl )Cr g(xl )>(x � xl ) � 0;

l D 1; : : : ; L;

_
i2Dk

2
4
Yik

hik(x`)Crhik(x`)>(x � x`) � 0
ck D �i k

3
5 ;
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k 2 SD;

˝(Y) D true;

˛ 2 R; x 2 Rn ; c 2 Rm ;

Y 2 ftrue; falsegm:

It should be noted that before applying the above
master problem it is necessary to solve various subprob-
lems (NLPD) so as to produce at least one linear ap-
proximation of each of the terms in the disjunctions.
Selecting the smallest number of subproblems amounts
to the solution of a set covering problem, which is of
small size and easy to solve [9].

The above problem (MDP1) can be solved by the
methods described in [1] and [7]. It is also interesting
to note that for the case of process networks Turkay and
Grossmann [9] have shown that if the convex hull rep-
resentation of the disjunctions in (1) is used in (MDP1),
then assuming Bi = I and converting the logic relations
˝(Y) into the inequalities Ay � a, leads to the MILP
problem,

(MIPDF) min Z D
X
k

ck C f (x)

such that

˛ � f (xl )Cr f (xl )>(x � xl );

g(xl )Cr g(xl )>(x � xl ) � 0;

l D 1; : : : ; L;

rxzi hi (xl )>xzi CrxNi
hi(xl )>x1Ni

�
h
�hi(x`)Crx hi(x`)>x`

i
yi ;

` 2 Ki
L; i 2 I;

xNi D x1Ni
C x2Ni

;

0 � x1Ni
� xUNi

yi ;

0 � x2Ni
� xUNi

(1 � yi );
Ay � a;

x 2 Rn ; x1Ni
� 0; x2Ni

� 0;

yf0; 1gm;

where the vector x is partitioned into the variables for
each disjunction i according to the definition of the ma-
trix Bi. The linearization set is given by Ki

L = {`: Y`i =
true, ` = 1, . . . , L} that denotes the fact that only a sub-
set of inequalities were enforced for a given subprob-
lem `. It is interesting to note that the logic-based outer
approximation algorithm represents a generalization of

the modeling/decomposition strategy [5] for the syn-
thesis of process flowsheets.

Turkay and Grossmann [9] have also shown that
while a logic-based generalized Benders method [4] can-
not be derived as in the case of the OA algorithm, one
can exploit the property for MINLP problems that per-
forming one Benders iteration [2] on the MILP master
problem of the OA algorithm, is equivalent to generat-
ing a generalized Benders cut. Therefore, a logic-based
version of the generalized Benders method consists of
performing one Benders iteration on the MILP master
problem (MIPDF). It should also be noted that slacks
can be introduced to (MDP1) and to (MIPDF) to re-
duce the effect of nonconvexities as in the augmented-
penalty MILP master problem [10].

Finally, it should be noted that S. Lee and Gross-
mann [6] have developed a new branch and bound
method and a MINLP reformulation that is based on
the convex hull of each of the disjunctions in (DP1)
with nonlinear inequalities.
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Mass integration in the form of mass exchanger net-
works, MEN, appears in the chemical industries as an
economic alternative in waste treatment, feed prepara-
tion, product separation, recovery of valuable materials,
etc. The MEN involves a set of rich streams, wherefrom
one or more components are removed bymeans of lean
streams (mass separating agents) in mass transfer op-
erations that do not require energy (constant pressure
and temperature).

The MEN synthesis/design problem is posed as
a combinatorial problem, involving discrete and con-
tinuous decisions (e. g. the mass exchange opera-
tions/matches and the unit sizes, respectively), that
both affect the overall mass integration cost.

When the mass transfer operations can take place at
different temperatures, heat integration of the rich and

MINLP: Mass and Heat Exchanger Networks, Figure 1
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lean streams is also considered within a combinedmass
and heat exchanger network, MHEN, synthesis prob-
lem.

In isothermal MEN synthesis, the simultaneous op-
timization of the mass exchange operations, the mass
separating agent flows and the network configuration
has been formulated by K.P. Papalexandri, E.N. Pis-
tikopoulos and C.A. Floudas [9] as an MINLP problem
based on:
a) theMEN superstructure of synthesis/design alterna-

tives;
b) modeling of mass exchange in each mass exchanger;

and,
c) minimization of a total annualized network cost.
Details are given below

MEN Superstructure

TheMEN superstructure for a given set of rich and lean
streams includes all possible mass exchange operations
(mass exchange matches) between the network streams
in all possible network configurations. Its main features
are:
� Each potential match between a rich and a lean

stream corresponds to a potential mass exchanger
(one-to-one correspondence).
Multiple mass exchange matches between two
streams may be considered (i. e. streams integrated
at different points in the network), increasing thus
the considered MEN structures and the combinato-
rial complexity of the synthesis problem. Note that,
this is not similar to an a priori decomposition of the
network into separable subnetworks.

� Each stream entering the network is split towards all
its potential mass exchanger units.

� After each mass exchanger, a splitter is considered
for each stream, where the stream is split towards
its final mixer and all the other potential stream ex-
changers.

� Prior to each potential mass exchanger, a mixer is
considered for each participating stream, where the
flow from the initial splitter and connecting (bypass)
flows from all the other exchangers of the stream are
merged into the flow towards the exchanger.

� A mixer is considered at the network outlet of each
stream, where flows from all the potential stream ex-
changers are merged into the outlet flow.

MINLP: Mass and Heat Exchanger Networks, Figure 2
Rich stream superstructure

MINLP: Mass and Heat Exchanger Networks, Figure 3
Lean stream superstructure

For example, for a rich stream i and its mth and m0th
possible exchangers with lean streams j and j0 respec-
tively, we have Fig. 2

In Fig. 2, c = 1, . . . , C are the transferable compo-
nents. All possible configurations for the two exchang-
ers ((ijm) and (ij0m0) in series, or in parallel), result by
‘deleting’ appropriate connecting streams. Stream dele-
tion corresponds to zero stream flows (e. g. gIi j0m0 = gOi jm
= 0 and gBi j0 jm0m = 0 results in the exchangers in series).

For a lean stream j and itsmth andm0th exchangers
with rich streams i and i0, we have Fig. 3.

The MEN superstructure is described by mass bal-
ances for the overall streams and each transferable com-
ponent at the exchangers, splitters and mixers of the su-
perstructure:

8̂
ˆ̂̂<
ˆ̂̂̂
:

gEi jm(y
I
i jmc � yOi jmc ) D Mi jmc ;

i 2 R; c D 1; : : : ;C;
l Ei jm(x

O
i jmc � xIi jmc) D Mi jmc ;

i 2 S; c D 1; : : : ;C;

(1)
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8̂
<̂
ˆ̂:

X
j2S;m

gIi jm � Gi D 0; i 2 R;

X
i2R;m

l Ii jm � Lj D 0; i 2 S;
(2)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

gOi jm C
X

j02S;m0
gBi j j0mm0 � gEi jm D 0;

l Oi jm C
X

i 02S;m0
l Bi i 0 jmm0 � l Ei jm D 0;

i 2 R; j 2 S; m D 1; : : : ;M;

(3)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

gIi jm C
X

j02S;m0
gBi j0 jm0m � gEi jm D 0;

l Ii jm C
X

i 02S;m0
l Bi 0 i jm0m � l Ei jm D 0;

i 2 R; j 2 S; m D 1; : : : ;M;

(4)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

gIi jm y
s
i c C

X
j02S;m0

gBi j0 jm0m y
O
i j0m0 c

�gEi jm y
I
i jmc D 0;

l Ii jmx
s
jc C

X
i 02S;m0

l Bi 0 i jm0mx
O
i 0 jm0 c

�l Ei jmx
I
i jmc D 0;

i 2 R; j 2 S;
c D 1; : : : ;C; m D 1; : : : ;M;

(5)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

X
j2S;m

gOi jm y
O
i jmc � Gi yti c D 0;

i 2 R; c D 1; : : : ;C;X
i2R;m

lOi jmx
O
i jmc � Ljxt

jc D 0;

i 2 S; c D 1; : : : ;C;

(6)

where the inlet, outlet, exchanger and exchanger-
connecting flows of the rich and lean streams (gI , gO,
gE, gB and lI , lO, lE, lB, respectively) and the intermediate
compositions of components (molar fractions xI , xO, yI ,
yO) are illustrated in the corresponding superstructure
figures.

ModelingMass Exchange

The existence of each potential mass exchanger in the
network is denoted by a binary variable:

Ei jm D

8̂
<̂
ˆ̂:

1; when the mth exchanger
between streams i and j exists;

0; otherwise;

and defined by
8̂
ˆ̂̂<
ˆ̂̂̂
:

gEi jm � Ei jmU � 0;
l Ei jm � Ei jmU � 0;
Mi jmc � Ei jmU � 0;
gEi jm ; l

E
i jm; Mi jmc � 0;

(7)

where Mijmc is the mass exchange load of component c
in mass exchanger (ijm), andU a large positive number.

In each potential mass exchanger a component c is
transferred from the rich to the lean stream when the
rich composition is greater than the equilibrium com-
position with respect to the lean stream:

yc � f (xc);

where f (xc) is the mass transfer equilibrium relation,
that may account for reactive mass transfer also.

Feasibility of mass transfer is ensured imposing the
above constraint at the inlet and outlet of the streams,
i. e. (for counter-current flows):
(
�yIi jmc C f (xOi jmc)C �i jc � (1 � Ei jm)U � 0;
�yOi jmc C f (xIi jmc)C �i jc � (1 � Ei jm)U � 0;

(8)

where �ijc is a minimum composition difference that is
required for feasible mass exchange in a unit of finite
size (e. g. imposed frommechanical constraints). When
f (xc) is not convex the constraints in (8) cannot guar-
antee feasible mass transfer throughout the exchanger.
In this case f (xc) can be approximated by a set of con-
vex functions and feasible mass transfer be ensured
considering the constraints in (8) also for intermedi-
ate exchanger points, that define the convex parts. Note
that, the mass-transfer feasibility or driving-force con-
straints in (8) are activated only when the correspond-
ing exchanger exists (Eijm = 1).

The size of each potential mass exchanger (number
of mass transfer stages, Nst, etc.) is calculated as a func-
tion of the variable mass transfer, through appropriate
design equations (e. g. for perforated-plate columns the
Kremser equation):

Nst
i jm D Nst(gEi jm ; l

E
i jm; x

I
i jmc ; x

O
i jmc ; y

I
i jmc ; y

O
i jmc ): (9)

Minimizing Network Cost

The total network cost comprises
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� the annualized capital cost of the mass exchangers,
that may be discontinuous (involve a fixed charge
cost factor), and

� the annualized operating cost, i. e. the cost of the
mass separating agents.
Consequently, the MEN MINLP synthesis model is

formulated as follows:

(P1) min

X
i jm

�
AC1

i jmEi jm C AC2
i jm(N

st
i jm)

�
C
X
j

AC3
j L j

such that

(2) � (9)

gIi jm ; g
E
i jm ; g

B
i j j0mm0 ; g

O
i jm � 0;

yIi jmc ; y
O
i jmc � 0;

i 2 R; j; j0 2 S;

m;m0 D 1; : : : ;M;

c D 1; : : : ;C;
l Ii jm; l

E
i jm; l

B
i i 0 jmm0 ; l

O
i jm � 0;

xIi jmc ; x
O
i jmc � 0;

i 2 R; j; j0 2 S;

m;m0 D 1; : : : ;M;

c D 1; : : : ;C;

Ei jm D 0; 1;

i 2 R; j; j0 2 S;

m;m0 D 1; : : : ;M:

(P1) is a nonconvex MINLP problem and global
optimization methods are required to guarantee global
optimal solutions.

The main advantage of the simultaneous MEN syn-
thesis model (P1), as opposed to the sequential MEN
synthesis method, is that the trade-off between the cap-
ital and operating costs is systematically considered.
Also,
� (P1) derives the optimal network with respect to all

the transferable components, considering the mass
transfer of each component separately within the
calculated mass-transfer stages of each exchanger.

� Forbidden mass exchange matches, limited mass
exchange and/or forbidden exchanger connections
can be explicitly considered in (P1).

� Variable target compositions are straightforwardly
handled.

When the mass exchange matches and mass exchange
loads are fixed (e. g. when these are determined within
a sequential MEN synthesis framework), (P1) reduces
to an NLP and can be solved to derive a network con-
figuration and unit sizes with minimum capital cost.

Extending the concept of cost optimality of the mass
exchanger network, two special cases have been studied:
� MEN and regeneration networks.

When regenerating agents are available for some
(or all) lean streams, the total mass integration cost
involves also the regeneration cost. The regener-
ation network can be considered simultaneously
within the MINLP MEN synthesis model [9], ac-
counting for all the regeneration alternatives of the
lean streams and employing binary variables to de-
note the existence of the regenerating exchangers.
In this case, the mass separating agents behave as
lean streams in the mass exchangers of the main
MEN and as rich streams in the regenerating mass
exchangers. The regeneration network is not nec-
essarily separable from the main MEN, as a lean
stream may be partly regenerated before being used
as a separating agent in another mass exchanger.
Thus, the lean stream superstructures involve all the
possible interconnections between the exchangers of
the mainMEN and the regenerating exchangers. For
example, for a lean stream j and its mth and m0th
exchangers with rich stream i and regenerant k we
have Fig. 4.
The overall superstructure of mass exchange and re-
generation alternatives involves also the superstruc-
tures of the regenerating agents, that have variable
flows, while the overall network cost includes the
main MEN and the regeneration cost (capital and
operating cost).

� Flexible mass exchange networks.
The ability of MEN to accommodate variations in
the rich stream flows and inlet compositions in an
efficient manner affects cost optimality. A multi-
period MINLP MEN synthesis model has been sug-
gested in [7], to derive mass exchange networks,
flexible to accommodate in an optimal manner dif-
ferent mass integration requirements. In the mul-
tiperiod MINLP model a weighted operating cost
is optimized simultaneously with the capital cost
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MINLP: Mass and Heat Exchanger Networks, Figure 4
Regenerable lean stream superstructure

MINLP: Mass and Heat Exchanger Networks, Figure 5
Regenerating stream superstructure

for mass exchangers that can operate feasibly un-
der the different conditions. The MEN superstruc-
ture is extended to include control variables that
enhance flexibility (as exchanger-bypassing streams
and overall bypass streams that are accordingly pe-
nalized).

When the alternative mass transfer operations take
place at different and/or variable temperatures, heat
integration between the network streams can be si-
multaneously considered within a combined MEN and
HEN synthesis problem [7]. The available rich and lean
streams define hot, cold or hot-and-cold streams in the
heat integration problem, depending on whether their
supply and target compositions are above or below the
mass exchange temperatures. Thus, their heat exchange
alternatives include both hot- and cold-side matching.
Inlet and outlet temperatures and compositions inmass
and heat exchangers are variables. The combined mass
and heat exchanger superstructure involves all the pos-
sible mass and heat exchangers of a stream and all the
possible interconnections between them, Fig. 6.

The combined MEN and HEN superstructure is de-
scribed by

� mass balances at the superstructure splitters (i. e. the
initial stream splitters and the splitters after each
side of the possible mass and heat exchangers), simi-
lar to (2) and (3), and considering all the connecting
flows;

� mass balances for overall flows and transferable
components at the superstructure mixers (i. e. the fi-
nal stream mixers and the mixers prior to each side
of the potential mass and heat exchangers), similar
to (4), (5) and (6), and considering all the connect-
ing flows;

� energy balances at the superstructure mixers;
� mass balances at the mass exchangers, similar to (1),

and
� energy balances at the heat exchangers.
The MHEN synthesis model also involves
� binary variables, to denote the existence of mass and

heat exchangers, and their definition (mixed integer
constraints),

� driving force constraints for mass exchange (8) at
the potential mass exchangers, and for heat ex-
change at the potential heat exchangers (based on
	Tmin),

� design equations for the potential mass and heat ex-
changers, and

� a total annualized network cost.
and is formulated as a (nonconvex) MINLP.

The simultaneous MHEN synthesis model ad-
dresses systematically the trade-off between capital and
operating cost of mass and heat integration. The MEN
and HEN are not assumed separable. Thus, better inte-
gration can be achieved, as it is allowed for a stream to
be partly heated for a particular mass exchange opera-
tion and then heated further for final purification.
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MINLP: Mass and Heat Exchanger Networks, Figure 6
Combined MEN and HEN superstructure

In the simple case when the temperatures of the
mass exchange operations are given or can be prepos-
tulated, the rich and lean streams define hot (or cold)
streams before participating to mass exchangers and
cold (or hot) streams afterwards [11].

The final mass and heat exchanger network struc-
ture results from the flows of the superstructure sub-
streams. Alternatively, the use of binary variables has
been suggested in [7] to denote the existence of ex-
changer connections. This, although increasing the
combinatorial complexity of the MINLP synthesis
model, allows for:
i) explicit piping cost considerations,
ii) structural constraints to be easily modeled, and
iii) the solution of simple NLP subproblems within

a decomposition-based MINLP solution method.
Mass exchange networks have been introduced as an
end-of-pipe treatment alternative. However, the extent
of mass recovery and the corresponding cost are closely
related to the reactive and mixing operations in a pro-
cess. A. Lakshmanan and L.T. Biegler [6] have sug-
gested a MINLP model for the synthesis of optimal re-
actor networks, where the thermodynamic feasibility of
mass integration and its implications are taken simul-
taneously into account, applying the first and second
thermodynamic laws for mass exchange, i. e.
� Total mass balance for the mass integrated streams

(resulting process and available rich and lean
streams);

X
i2R

Gi (ysi c � yti c) D
X
j2S

Lj(xt
jc � xsjc ) (10)

and

� feasibility of mass exchange above (and below) each
candidate mass exchange pinch:

8<
:

Mass lost by all the rich
streams below each pinch
point candidate

9=
;

�

8<
:

Mass gained by all the lean
streams below each pinch
point candidate

9=
; � 0

i. e.
X
i2R

Gi

�
�
max(0; yp � yti c) �max(0; yp � ySi c)

�

�
X
j2S

Lj

�
h
max(0; xp � xSjc ) �max(0; xp � xt

jc )
i

� 0

(11)

Note that the thermodynamic feasibility requirements
in (11) involve nondifferentiable terms if inlet and
outlet compositions are variables (position of streams
with respect to candidate pinch points). These can be
handled either employing differentiable approximation
functions [6], or introducing binary variables [2,3,5].

The main assumption in MEN is that mass transfer
operations are isothermal. In the general case these can
be followed (or caused) by heat transfer, as in distilla-
tion. Assuming constant counter-current molar flows,
M.J. Bagajewicz and V. Manousiouthakis showed in
[1] that distillation columns can be handled as pure
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mass transfer operations and derived targets for en-
ergy consumption and separation of a ‘key’ component,
employing the first and second thermodynamic laws
in (10) and (11), within an MINLP-based MHEN se-
quential synthesis framework. The problem of energy-
induced separations has been addressed by M.M. El-
Halwagi, B.K. Srinivas and R.F. Dunn in [4], translating
the energy-based separation tasks into simple energy-
requiring operations (heating and cooling tasks) and
deriving targets for energy consumption and the corre-
sponding mass recovery, based on thermodynamic fea-
sibility constraints.

Extending the concept of mass exchange to non-
isothermal mass transfer operations Papalexandri and
Pistikopoulos introduced a mass/heat transfer mod-
ule [8], where mass is transferred between different
phases or reacting species if that is thermodynamically
feasible, i. e. if that decreases the total Gibbs free energy
of the system. Mass and energy balances, taking into
account possible reactions, and mass-transfer driving-
force constraints based on total Gibbs free energy are
employed to model the mass/heat transfer module as
an aggregate of differential mass and energy transfer
phenomena. Considering a superstructure of mass/
heat and heat exchange modules in a process and all
possible interconnections between them, process syn-
thesis tasks can be formulated as mass/heat and heat
exchange superstructure MINLP problems, where bi-
nary variables are employed to denote the existence
of mass/heat and heat exchangers. Then, process op-
erations (conventional and/or hybrid) and networks
are derived as combinations of mass/heat and heat
exchange phenomena [8,10].

See also
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The outer approximation algorithm (OA algorithm)
([1,2,9]) addresses mixed integer nonlinear programs of
the form:

(P)

8̂
<̂
ˆ̂:

min Z D f (x; y)
s.t. g j(x; y) � 0 ; j 2 J ;

x 2 X ; y 2 Y ;

where f (�), g(�) are convex, differentiable functions, J is
the index set of inequalities, and x and y are the con-
tinuous and discrete variables, respectively. The set X
is commonly assumed to be a convex compact set, e. g.
X = {x: x 2 Rn, Dx � d, xL � x � xU}; the discrete set Y
corresponds to a polyhedral set of integer points, Y = {y:
y 2 Zm, Ay � a}, and in most cases is restricted to 0� 1
values, y 2 {0, 1}m. In most applications of interest the
objective and constraint functions f (�), g(�) are linear in
y (e. g. fixed cost charges and logic constraints).

The OA algorithm is based on the following theo-
rem [1]:

Theorem 1 Problem (P) and the following mixed-
integer linear program (MILP) master problem (M-OA)
have the same optimal solution (x�, y�),

(M� OA) min ZL D ˛

such that

˛ � f (xk ; yk)Cr f (xk; yk)
�
x � xk

y � yk

�
;

g j(xk ; yk)Cr g j(xk ; yk)
�
x � xk

y � yk

�
� 0 ;

j 2 J ; k 2 K� ;

x 2 X ; y 2 Y ;

where

K� D

8<
:k :

(xk; yk) is the optimal
solution to (NLP1)

for all feasible yk 2 Y

9=
; ;

(NLP1)

8̂
<̂
ˆ̂:

min Zk
U D f (x; yk)

s:t: g j(x; yk) � 0 ; j 2 J ;
x 2 X ;

where Zk
U is an upper bound to the optimum of problem

(P).

Note that since the functions f (x, y) and g(x, y) are
convex, the linearizations in (M-OA) correspond to
outer approximations of the nonlinear feasible region
in problem (P). Also, since the master problem (M-OA)
requires the solution of all feasible discrete variables yk,
the following MILP relaxation is considered, assuming
that the solution of K NLP subproblems is available:

(RM� OA) min ZK
L D ˛

such that

˛ � f (xk; yk)Cr f (xk; yk)
�
x � xk

y � yk

�
;

g j(xk; yk)Cr g j(xk ; yk)
�
x � xk

y � yk

�
� 0 ;

j 2 J ; k D 1; : : : ;K ;

x 2 X ; y 2 Y :

Given the assumption on convexity of the functions
f (x,y) and g(x,y), the following property can be easily
be established,

Property 2 The solution of problem (RM-OA), corre-
sponds to a lower bound to the solution of problem (P).

Note that since function linearizations are accumulated
as iterations proceed, the master problems (RM-OA)
yield a nondecreasing sequence of lower bounds, Z1

L �

� � � � ZK
L , since linearizations are accumulated as itera-

tions k proceed.
The OA algorithm as proposed by M.A. Duran and

I.E. Grossmann [1] consists of performing a cycle of
major iterations, k = 1, . . . , K, in which (NLP1) is solved
for the corresponding yk, and the relaxed MILP mas-
ter problem (RM-OA) is updated and solved with the
corresponding function linearizations at the point (xk,
yk). The (NLP1) subproblems yield an upper bound
that is used to define the best current solution, UBK =
min(Zk

U ). The cycle of iterations is continued until this
upper bound and the lower bound of the relaxed master
problem, are within a specified tolerance.

It should be noted that for the case when the prob-
lem (NLP1) has no feasible solution, there are two ma-
jor ways to handle this problem. The more general op-
tion is to consider the solution of the feasibility prob-
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lem,

(NLFP)

8̂
<̂
ˆ̂:

min u
s:t: g j(x; yk) � u ; j 2 J ;

x 2 X ; u 2 R1 :

R. Fletcher and S. Leyffer [2] have shown that for
infeasible NLP subproblems, if the linearization at the
solution of problem (NLFP) is included, this will guar-
antee convergence to the optimal solution.

For the case when the discrete set Y is given by 0–1
values in problem (P), the other option to ensure con-
vergence of the OA algorithm without solving the fea-
sibility subproblems (NLFP), is to introduce the follow-
ing integer cut whose objective is to make infeasible the
choice of the previous 0–1 values generated at the K
previous iterations [1]:

(ICUT)

8̂
<
:̂

X

i2Bk

yi �
X

i2Nk

yi �
ˇ̌
ˇBk

ˇ̌
ˇ� 1 ;

k D 1; : : : ;K ;

where Bk = {i:yki = 1 }, Nk = {iyki = 0 }, k = 1, . . . , K.
This cut becomes very weak as the dimensionality of
the 0–1 variables increases. However, it has the useful
feature of ensuring that new 0–1 values are generated at
each major iteration. In this way the algorithm will not
return to a previous integer point when convergence is
achieved. Using the above integer cut the termination
takes place as soon as ZK

L � UBK .
The OAmethod generally requires relatively few cy-

cles or major iterations. One reason for this behavior is
given by the following property:

Property 3 The OA algorithm trivially converges in
one iteration if f (x, y) and g(x, y) are linear.

The proof simply follows from the fact that if f (x, y) and
g(x, y) are linear in x and y the MILP master problem
(RM-OA) is identical to the original problem (P).

It is also important to note that the MILP master
problem need not be solved to optimality. In fact given
the upper bound UBK and a tolerance " it is sufficient
to generate the new (yK , xK) by solving,

(M� OAF) min ZK
L D 0˛

such that
˛ � UBk � " ;

˛ � f (xk ; yk)Cr f (xk; yk)
�
x � xk

y � yk

�
;

g j(xk ; yk)Cr g j(xk ; yk)
�
x � xk

y � yk

�
� 0 ;

j 2 J ; k D 1; : : : ;K ;
x 2 X ; y 2 Y :

While in (M-OA) the interpretation of the new
point yK is that it represents the best integer solution to
the approximating master problem, in (M-OAF) it rep-
resents an integer solution whose lower bounding ob-
jective does not exceed the current upper bound UBK ;
in other words it is a feasible solution to (M-OA) with
an objective below the current estimate. Note that in
this case the OA iterations are terminated when (M-
OAF) is infeasible.

Another interesting point about the OA algorithm
is the relationship of its master problem with the one
of the generalized Benders decomposition method [3],
which is given by:

(RM� GBD) min ZK
L D ˛

such that
˛ � f (xk ; yk)Cry f (xk; yk)>(y � yk)

C (�k)>
h
g(xk; yk)Cr g(xk ; yk)(y � yk)

i
;

k 2 KFS ;

(�k)>
h
g(xk ; yk)Cr g(xk ; yk)(y � yk)

i
;

k 2 KIS ;

x 2 X ; ˛ 2 R1 ;

where KFS is the set of feasible subproblems (NLP1)
and KIS the set of infeasible subproblems whose solu-
tion is given by (NLFP). Also |KFS � KIS | = K. The
following property, holds between the twomethods [1]:

Property 4 Given the same set of K subproblems, the
lower bounds predicted by the relaxed master problem
(RM-OA) are greater or equal to the ones predicted by
the relaxed master problem (RM-GBD).

The above proof follows from the fact that the La-
grangian and feasibility cuts in (RM-GBD) are surro-
gates of the outer approximations in the master prob-
lem (M-OA). Given the fact that the lower bounds of
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MINLP: Outer Approximation Algorithm, Table 1
Summary of computational results

Method Subproblems Master LPs
problems solved

BB 5 (NLP1)
OA 3 (NLP2) 3 (M-PID) 19 LPs
GBD 4 (NLP2) 4 (M-GBD) 10 LPs
ECP � 5 (M-MIP) 18LPs

MINLP: Outer Approximation Algorithm, Figure 1
Progress of iterations of OA and GBD for MINLP in MIP-EX

GBD are generally weaker, this method commonly re-
quires a larger number of cycles or major iterations. As
the number of 0–1 variables increases this difference be-
comes more pronounced. This is to be expected since
only one new cut is generated per iteration. Therefore
user-supplied constraints must often be added to the
master problem to strengthen the bounds. As for the
OA algorithm, the trade-off is that while it generally
predicts stronger lower bounds than GBD, the compu-
tational cost for solving the master problem (M-OA) is
greater since the number of constraints added per iter-
ation is equal to the number of nonlinear constraints
plus the nonlinear objective.

The OA algorithm is also closely related to the ex-
tended cutting plane (ECP) method by T. Westerlund

and F. Peterssen [8]. The main difference lies that in
the ECPmethod noNLP subproblem is solved, and that
linerization simply takes place over the predicted con-
tinuous points from the MILP master problem, which
in turn will normally only include linearizations of the
most violated constraints.

Extension of the OA algorithm [4] include the
LP/NLP based branch and bound [6], which avoids the
complete solution of the MILP master problem (M-
OA) at each major iteration. The method starts by solv-
ing an initial NLP subproblem which is linearized as
in (M-OA). The basic idea consists then of perform-
ing an LP-based branch and boundmethod for (M-OA)
in which NLP subproblems (NLP1) are solved at those
nodes in which feasible integer solutions are found. By
updating the representation of the master problem in
the current open nodes of the tree with the addition of
the corresponding linearizations, the need of restarting
the tree search is avoided. Another important extension
has been the method by Fletcher and Leyffer [2] who
included a quadratic approximation based on the Hes-
sian of the Lagrangian to the master problem (M-OAF)
in order to capture nonlinearities in the 0–1 variables.
Note that in this case the optimal solution of the mixed
integer quadratic program (MIQP), ZK , does not pre-
dict valid lower bounds in this case, and hence the con-
straint ˛ � UBK � " is added, with which the search is
terminated when no feasible solution can be found in
the MIQP master.

Finally, in order to handle equations in problem
(P), G.R. Kocis and Grossmann [5] proposed the equal-
ity relaxation strategy, in which linearizations of equa-
tions are converted into inequalities for the MIP mas-
ter problem according to the sign of the Lagrange
multipliers of the corresponding NLP subproblem. J.
Viswanathan and Grossmann [7], further proposed to
add slack variables to this MILP master problem, and
an augmented penalty function. Since in this gener-
ally nonconvex case the bounding properties do not ap-
ply, the algorithm was modified so as to start with the
NLP relaxation of problem (P). If no integer solution is
found, iterations between the MILP and NLP subprob-
lems take place until there is no improvement in the ob-
jective function. This idea was precisely implemented in
the commercial codeDICOPT, which can also bemodi-
fied to the original OA algorithm, if the user knows that
the functions f (x, y) and g(x, y) are convex.
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Example 5 In order to illustrate the performance of the
OA algorithm, a simple numerical MINLP example is
considered.

(MIP � EX)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min Z D y1 C 1:5y2 C 0:5y3
Cx21 C x22

s.t. (x1 � 2)2 � x2 � 0
x1 � 2y1 � 0
x1 � x2 � 4(1 � y2) � 0
x1 � (1 � y1) � 0
x2 � y2 � 0
x1 C x2 � 3y3
y1 C y2 C y3 � 1
0 � x1 � 4; 0 � x2 � 4
y1; y2; y3 D 0; 1 :

The optimum solution to this problem corresponds to
y1 = 0, y2 = 1, y3 = 0, x1 = 1, x2 = 1, Z = 3.5. Figure 1
shows the progress of the iterations of the OA and GBD
algorithm with the starting point y1 = y2 = y3 = 1. As
can be seen the lower bounds predicted by the OA algo-
rithm are considerably stronger than the ones predicted
by GBD. In particular at iteration 1, the lower bound of
OA is 1.0 while the one of GBD is �23.5. Nevertheless,
since this is a very small problem GBD requires only
onemore iteration than OA (4 versus 3). It is interesting
to note that the NLP relaxation of this problem is 2.53,
which is significantly lower than the optimal mixed in-
teger solution. Also, as can be seen in Table 1, an NLP-
based branch and bound method requires the solution
of 5 NLP subproblems, while the ECP method requires
5 successive MILP problems.
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Reactive distillation (RD) occurs when a reaction takes
place in the liquid holdup on the trays, in the reboiler,
or in the condenser of a distillation column. Reactive
distillation can increase the conversion of equilibrium
limited reactions by continuously separating products
and reactants, improve the selectivity in some kineti-
cally limited reaction systems, and separate azeotropic
and isomeric mixtures by converting one species into
another that is easy to remove. It can also create a natu-
ral heat integration that uses an exothermic heat of re-
action to create vapor boilup in a distillation column,
and reduce capital costs by completing several process-
ing steps in a single vessel. Reactive distillation is used
commercially to produce methyl tert-butyl ether [13],
esters including methyl acetate [1], and nylon 6, 6 [9].
It has also been proposed for hydrolysis reactions [7],
ethyl- ene glycol synthesis [11], and cumene produc-
tion [12]. See [7] for a review of the area.

As a result of increasing interest in the reactive
distillation technique, systematic reactive distillation
design methods have gained much importance. See
[2,3,4,5] for residue curve maps, a powerful tool for vi-
sualizing distillation problems, to reactive distillation.
In [7] this work was extended by including kinetic ef-
fects when the Damkohler number is fixed. In [14] syn-
thesis of reactive distillation with multiple reactions is
studied.

Reactive distillation poses a challenging problem for
optimization based design techniques. Unlike in con-
ventional distillation, holdup volume is an important
design variable in reactive distillation, since the reac-
tion generally takes place in the liquid body on the
tray. The constant molar overflow assumption of con-
ventional distillation design is not valid unless the re-

action has thermal neutrality and is stoichiometrically
balanced. For an optimal solution one should take into
account that the feed to the column may be distributed.
This, in addition to the holdup volume, liquid and va-
por flows, composition and temperature profiles, num-
ber of trays and feed location(s) becomemajor variables
of an optimization problem which searches for a min-
imum of a cost function. The constraints of this op-
timization problem are material and energy balances,
vapor-liquid equilibria, mole fraction summations, ki-
netic and thermodynamic relationships, and logical re-
lationships between the variables. The resulting opti-
mization model is a mixed integer nonlinear program-
ming problem since it involves the optimum number of
trays and feed tray locations which are integer variables.
The cost function and the material and energy balances
cause the nonlinearity of the problem.

There are two approaches to RD design via MINLP
methods. One addresses reactive distillation through
heat and mass exchanger networks [10], and the other
addresses it through distillation column superstruc-
tures [6,8].

Problem Statement

The general problem of the reactive distillation column
synthesis problem can be stated formally as follows.
Given:
� the chemical species, i = 1, . . . , I, involved in the dis-

tillation; desired products, i 2 P, and their produc-
tion rates PI ;

� the set of chemical reactions, j = 1, . . . , J;
� rate expressions rj or an equilibrium constant Kj for

each reaction j;
� heat of vaporization and vapor-liquid equilibrium

data;
� cost of downstream separations;
� cost cs and composition xis of all feedstocks, s = 1

. . .S;
� the cost of the column as a function of the number

of trays and the internal vapor flow rate, C(V , N);
� the form of the catalyst.
Determine:
� the optimum number of trays;
� the trays where reactions take place;
� the holdup on each tray where a kinetically limited

reaction takes place;
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� the reflux ratio;
� the condenser and reboiler duties; and
� the feed location(s).
Such that the total cost is minimized while producing
the correct amount of product.

Distillation Based Superstructure Approaches

One approach to MINLP based reactive distillation col-
umn design uses a superstructure that contains many
different alternative designs embedded within it. Two
different superstructures have been proposed; they dif-
fer in their treatment of the liquid reflux and vapor
boilup, and in their heat management. See [6] for
a structure that varies the number of trays and always
recycles the liquid reflux to the top tray and the va-
por boilup to the bottom tray (Fig. 1). More recently
(1997), Z.H. Gumus and A.R. Ciric [8] modified the su-
perstructure presented in [15] recycling vapor boilup
and liquid reflux to each tray by adding a decanter to
the distillate stream and side heaters and coolers to each
tray (Fig. 2). In both of these superstructures, the num-
ber of trays may vary between 1 and some upper bound
K. Each feed stream is split, and a portion is sent to each
tray in the superstructure. In kinetically limited reac-
tions, the hold-up volume may vary, and, in reactions
systems with a solid catalyst, some trays will have reac-
tion while others do not.

MINLP: Reactive Distillation Column Synthesis, Figure 1
Superstructure for optimum feed location(s) and number of
trays [6]

MINLP: Reactive Distillation Column Synthesis, Figure 2
Tray-by-tray superstructure of [8]

The structure shown in Fig. 1 is appropriate for re-
active distillation processes with a single liquid phase
and kinetically limited reactions that are catalyzed with
a solid catalyst. Representing the existence of each tray
with an integer variable Yk leads to a mixed integer
nonlinear programming problem whose solution ex-
tracts a design with the number of trays, feed tray lo-
cations, reactive trays, holdup volumes, reflux ratio and
boilup ratio that minimize the total cost. Assumed va-
por liquid equilibrium on each tray, no reaction in the
vapor phase, homogeneous liquid phase, negligible en-
thalpy of liquid streams, constant heat of vaporization
leads to the MINLP shown below [6]:

min Z D co C
X
sk

cs Fsk C cRQB C cCQC

C cTD1:55 �
X�

2Yk C 1:27
Wk

D2

�

C cSHD
X
k

0
@Ho C

X
k0�k

2C 1:27
Wk0

D2

1
A

0:802

� (Yk � YkC1)

subject to

X
s

xisFs1 � L1xi1(1 � ˇ)

C L2xi;2 � V1Ki1xi1 C
X
j

�i j�1 j D 0; (1)
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"X
s

xisFsk C Vk�1Ki;k�1xik�1 C LkC1xi;kC1

�Lkxik � VkKikxik C
X
j

�i j�i k

3
5Yk D 0;

k D 2; : : : ;K; (2)
2
4�Vk�1 � �Vk �

X
j

	Hj� jk

3
5Yk D 0; (3)

Dist D
X
k

(Vk � LkC1)(Yk � YkC1); (4)

Bi D (1 � ˇ)L1xi1; (5)

Bi D Pi ; i 2 P; (6)
"X

i

xik � 1

#
(Yk � Yk�1) D 0; (7)

"X
i

Kikxik � 1

#
Yk D 0; (8)

xdi � Kikxik � 1C yk � ykC1 � 0; (9)

xi;kC1 � xdi � 1C yk � ykC1 � 0; (10)

X
i

xdi D 1; (11)

� jk D Wk f j(xik; Tk ); (12)

Kik D Kik(xik; Tk ); (13)

Vk � FmaxYk � 0; (14)

X
s

Fsk � FmaxYk � 0; (15)

LkC1 � FmaxYk � 0; (16)

Wk �WmaxYk � 0; (17)

QB D ˇ�L1; (18)

QC D
X
k

�Vk(Yk � YkC1); (19)

D4 � CDˇ
2L21; (20)

D � Dmin; (21)

YkC1 � Yk : (22)

In this model, constraints (1) and (2) are the com-
ponent balances of species i over the bottom tray and
the remaining trays k; constraint (3) is the energy bal-
ance around tray k. The distillate flow is found with
constraint (4). Distillate flow is calculated as the differ-
ence between the vapor flow leaving the top tray and
the liquid flow entering it. Note that the term Yk �

Yk+1 will be nonzero only for top tray, and zero for all
others. Constraint (5) calculates the bottoms flow rate
and constraint (6) specifies the production rate. Sum-
mation equations for the mole fractions are given in
constraints (7) and (8). Constraints (9)–(11) identify
the top tray and set the distillate and liquid reflux com-
position equal to the composition of the vapor leaving
the top tray. Reaction rates are given in constraint (12),
and the vapor liquid equilibrium constant is found by
constraint (13). Constraints (14)–(17) ensure that when
Yk equals zero and tray k does not exist, the flows onto
and off of the tray are zero. Constraints (18) and (19)
calculate the reboiler and condenser duties, while con-
straints (20) and (21) find the column diameter. The last
constraint ensures that tray k + 1 does not exist if tray k
does not exist.

In [6] this technique is demonstrated with the syn-
thesis of a reactive distillation column that makes ethy-
lene glycol from ethylene oxide and water. The main
reaction is

C2H4OCH2O! C2H6O2:

Further reaction of ethylene glycol gives the unde-
sired byproduct diethylene glycol:

C2H4OC C2H6O2 ! C4H10O3

Ethylene glycol is produced using reactive distilla-
tion because the large volatility difference between the
product and the reactants allows the continuous re-
moval of EG from the reaction zone and absorption
of the heat of reaction by the separation results in cost
cuts.

The problem is solved using the reaction, physical
property and cost data given in Table 1. The production
rate is taken as 25 kg.mol/h of ethylene glycol. When
the problem is solved without specifying the number of
feed trays or their locations the solution obtained us-
ing GAMS is a 10-tray distillation column with a total
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MINLP: Reactive Distillation Column Synthesis, Table 1
Ethylene glycol system; reaction, physical property and cost
data

Reaction Rate �H
(mol/cm3.s) (kJ/mol)

1 3:15	109exp
h
�9:547
T(K)

i
xEOxH2O �80

2 6:3	109exp
h
�9:547
T(K)

i
xEOxEG �13:1

Component K for P = 1 atm

EO 71:9 exp
˚
5:72

� T�469
T�35:9

��

H2O 221:2 exp
˚
6:31

� T�647
T�52:9

��

EG 77 exp
˚
9:94

� T�645
T�71:4

��

DEG 47 exp
˚
10:42

� T�681
T�80:6

��

EO feedstock: $43:7/kmol
Water feedstock: $21:9/kmol
Downstream separation: $0:15/kmol H2O

in effluent
Csh = $222/yr
CT = $15:7/yr
CR = $146:8/kW.yr
CC = $24:5/kW.yr
CO = $10; 000/yr

annualized cost of 15.69 × 106/yr. The reaction zone is
above tray 4 and the feed is distributed to each tray in
the reaction zone. When the problem is slightly modi-
fied by adding constraints on the feed tray number, the
solution changes to a 10-tray column with a total annu-
alized cost of 15.73 × 106/yr. The reaction zone is be-
tween trays 4 and 10 and water is fed to tray 10 while
ethylene glycol enters the column at tray 4. The selectiv-
ity reached by both columns is the same. (Fig. 3) shows
the solutions. The column specifications are given in
Table 2.

Heat andMass Exchange Networks

In this approach, process units are defined as combi-
nations of heat and mass exchanger blocks, and the al-
ternatives for the synthesis are explored simultaneously
in a superstructure. A reactive distillation column can
be described as a combination of mass/heat exchanger
units with a condenser and a reboiler [10]. Heat and
mass transfer takes place between the contacting vapor

and liquid phases and from reactants to products. Mul-
tiple feeds and products and side heating and cooling
tasks can be included in the description in the form of
multiple mass and heat exchanger blocks between liq-
uid and vapor streams. Its phase and quality define each
stream. The quality indicator describes the leanness or
richness of a stream in different components. Heat and
mass transfer occurs between vapor and liquid streams
of the same quality or between liquid and liquid (reac-
tant and product) streams. For example, consider the
reaction

AC B! CC D:

Then there are liquid and vapor streams LABCD
and VABCD in general notation. The streams lean
in a component, for example in A, have that letter
in parentheses, e. g. L(A)BCD or V(A)BCD. All pos-
sibilities of such streams, i. e. LAB(CD), VAB(CD),
L(ABC)D, V(ABC)D, L(AB)C(D), V(AB)C(D), etc.,
and all the possible matches between them are con-
sidered within the structure. The possible matches are
liquid-vapor matches of the same stream and all liquid-
liquid matches.

This model describes exchangers with simple mass
and energy balances and constraints defining phase and
feasibility. Mass and heat generated or consumed by
chemical reactions are included in the balances. Mass
transfer is driven by a minimum concentration ap-
proach while a minimum temperature approach is the
driving force for heat transfer. Concentration and tem-
perature approach constraints are considered at each
end of the exchanger. Equilibrium can be represented
by a zero concentration approach, which means no
driving force for mass transfer.

In the synthesis framework for an optimal pro-
cess network, one should start with the construction
of the stream sets containing all the initial, intermedi-
ate, and final process streams. The key is the availabil-
ity of the physical and chemical property information
on the streams. When the information is not enough
to identify the individual streams, especially the inter-
mediate streams, a general set of one vapor and one
liquid stream is constructed, which contain all compo-
nents involved in the process. The second step is to list
all the possible streammatches. Engineering knowledge
plays an important role in this step. One should be care-
ful about not listing redundant or meaningless stream
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MINLP: Reactive Distillation Column Synthesis, Figure 3
Optimal distributed and two-feed columns for ethylene glycol production

MINLP: Reactive Distillation Column Synthesis, Table 2
Column specifications for ethylene glycol production

Feed type Diam. (m) Height (m) Boilup ratio Reboiler duty (MW) Condenser duty (MW)
Distr. 1:3 12 0:958 6:7 7:31
Two-feed 1:3 12 0:96 6:9 7:5

MINLP: Reactive Distillation Column Synthesis, Figure 4
Mass/heat exchange network representation of a multifeed
reactive distillation column

matches since these will only make the problem more
complex. Knowledge about the system is the key in this
screening stage. Developing the mass/heat exchange

network superstructure is the next step in the frame-
work. All possible interconnections between the stream
splitters and mixers should be taken into considera-
tion. The last step is the optimization of the superstruc-
ture. Usually, the objective function of the optimization
problem is a cost function. If the cost function includes
only operating cost, which depends on the raw mate-
rial and utility consumption, the objective function can
be easily formulated from the superstructure. If, how-
ever, capital investment costs are involved in the ob-
jective cost function, the formulation is not straightfor-
ward from the superstructure, since process unit spec-
ifications are not considered in the superstructure. In
this case, capital cost is to be approximated using cost
functions that take operating conditions into account.
Separation difficulty can be used in evaluating the capi-
tal cost of a distillation tray.

K.P. Papalexandri and E.N. Pistikopoulos [10] used
the production of ethylene glycol from ethylene ox-
ide and water to demonstrate this approach. The re-
actions involved in this production were given be-
fore. Physical properties, cost and reaction data are
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MINLP: Reactive Distillation Column Synthesis, Figure 5
Steps of the synthesis framework

the same as given earlier in Table 1. The difference
from the example problem studied in [6] is the objec-
tive, which is the minimization of operating cost only.
The set of streams include the intermediate streams
L{EO, H2O, EG, DEG} and V{EO, H2O, EG, DEG} and
the product streams L(EG) and L(DEG). Five liquid-
liquid mass/heat exchange matches and 15 liquid-vapor
mass/heat exchange matches are considered. Repre-
senting each match with a binary variable, and consid-
ering all possible interactions between units, the prob-
lem is formulated as a mixed integer nonlinear pro-
gramming problem with the objective of minimizing
operating cost, which includes rawmaterial cost, purifi-
cation, and utility cost. The optimal reactive distillation
column obtained is pictured in Fig. 6. The column has
two reaction zones and multiple feeds, and the operat-
ing cost is 1.17 × 106 $/yr.

Conclusions

This paper discussed the MINLP applications in reac-
tive distillation design problems. Twomain approaches
are studied: distillation based superstructure approach
that uses rigorous tray-by-tray method to model reac-
tive distillation, and heat and mass exchanger network
superstructure approach that realizes reactive distilla-
tion processes as combinations of several mass/heat ex-
changers with a condenser and a reboiler. Examples are
included to demonstrate the approaches.

MINLP: Reactive Distillation Column Synthesis, Figure 6
Optimal reactive distillation column for ethylene glycol pro-
duction
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The trim-loss problem is one of the most demanding
optimization problems in the paper-converting indus-
try. It appears when an order specified by a customer is
to be satisfied by cutting out a set of product reels from
a wider raw paper reel.

The products in the order are characterized by
width and quality. In a paper-converting mill the raw
paper can be printed, coated and cut. In a typical paper-
converting mill, there may be hundreds of different
products to be produced. When considering the trim-
loss problem, width is the most important property
while the main problem is to determine such cutting
patterns that minimize waste production, the trim loss.

In the optimization problem, beyond the number
of cutting patterns needed, the appearance of each cut-
ting pattern needs to be determined at the same time as
having to decide how many times the cutting patterns
ought to be repeated.

The customer widths and the raw paper widths are
often more or less independent of each other. This
makes it combinatorially very demanding to produce
a cutting plan that minimizes the trim loss. Even if
the trim-loss problem is in its basic form an integer
problem, it has often been solved by linear program-
ming (LP) methods [3] or some heuristic algorithms
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MINLP: Trim-loss Problem, Figure 1
The cutting procedure

[4]. A good survey of widely used solution methods for
trim-loss and assortment problems is given in [7].

When using an LP-approach to solve an integer
problem the biggest difficulty is to convert the continu-
ous solution such that the integer variables obtain in-
teger values. The rounding methods are heuristic [8]
and often fail to give the optimal integer solution even
though the solution may be fairly good.

Problem Formulation

The trim-loss problem is a bilinear nonconvex integer
nonlinear programming (INLP) problem. The appear-
ance of a cutting pattern needs to be determined by in-
teger variables and the bilinearity comes from the de-
mand constraints.

A cutting pattern tells how many times a certain
product is cut out from the raw paper. Let a cutting pat-
tern have the index j and a product the index i. Assume
a customer demand with I different products and fur-
ther assume that the maximum allowed number of dif-
ferent cutting patterns is J. Further let mj be the num-
ber of times a certain cutting pattern is repeated and nij
be the number of times a product i appears in cutting
pattern j. If the demand of a product i is expressed by
ni, order, the demand constraints can be written as

ni;order �

JX
jD1

mj � ni j � 0;

i D 1; : : : ; I;

mj; ni j 2 ZC:

(1)

The negative bilinear terms make the problem noncon-
vex. Both of the variables in the term are integer vari-
ables and consequently the problem is a bilinear inte-

ger optimization problem. It is not possible to replace
one of the variables nij with a continuous variable be-
cause this would violate the product specification. In
theory it is possible to replace themj with a continuous
variable but this may easily dissatisfy the desired prod-
uct reel length and diameter requirements. Therefore,
in the following study it is preferable to keep both mj

and nij as integers.
While raw paper reels of the same width are often

glued together to form a continuous raw paper reel the
problem can be simplified by omitting the raw paper
length and assuming that the pattern lengths are equal.

Besides the demand constraint, certain constraints
are needed to keep the problem feasible. Let the width
of a product i be expressed by bi and the width of the
raw paper used for cutting pattern j by Bj, max. The trim-
loss width cannot exceed, for instance, 200mmowing to
the machinery. This limit is represented by�j. Further-
more, the maximum number of products that can be
cut out from a pattern often has a physical restriction.
The outcoming product reels have to form an angle big
enough so that the reels do not attach together, yet with
too big an angle between the outermost reels the paper
may be torn off. Let this upper limit be Nj, max.

Besides the total number of patterns, the pattern
changes are also of interest when doing the optimiza-
tion. This is due to the fact that the machinery normally
needs to be stopped for a knife change which causes
a production stop. Let therefore the variable yj be 1 if
the cutting pattern j exists and 0 if not. The sum of yj
variables then indicates howmany different cutting pat-
terns are needed to satisfy the production and the sum
of mj indicates the total number of all patterns which
are related to the running metres of the raw material.

Now the basic formulation can be written in math-
ematical form. The objective is to minimize the total
number of patterns and the number of pattern changes.

min
m j;ni j;y j

8<
:

JX
jD1

c j � mj C Cj � y j

9=
; (2)

subject to

IX
iD1

bi � ni j � Bj;max � 0; (3)
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�

IX
iD1

bi � ni j C Bj;max �	 j � 0; (4)

IX
iD1

ni j � Nj;max � 0; (5)

y j � mj � 0; (6)

mj � Mj � y j � 0;
j D 1; : : : ; J;

(7)

ni;order �

JX
jD1

mj � ni j � 0;

i D 1; : : : ; I;

mj; ni j 2 Z; y j 2 f0; 1g:

(8)

The Mj gives the upper bound for corresponding mj

variables. When using an objective as in (2) the con-
straint (6) becomes irrelevant. The width constraints
are given in (3)–(4) and the constraint (5) restricts the
number of cuts in a pattern. The binary variables, yj, are
defined in (6)–(7).

The functionality of the variables are demonstrated
in the following figure where the raw-paper width is
Bj, max. Note that the pattern lengthmay typically be e. g.
6500m.

The last constraint, the demand constraint (8), is an
integer bilinear constraint where both variables in bi-
linear terms are pure integers. This makes the problem
a nonconvex MINLP problem where the nonconvexity
appears in the integer variables.

There are very few methods available that are ca-
pable of solving similar nonconvex MINLP problems.
Some heuristic methods such as simulated annealing
[9] may find the global optimal solution within infinite
time but algorithmic methods have not been proven to
converge with such types of problems. Only recently
(1999) some advancements have been reported in [1]
and [11].

However, it is fully possible to transform the trim-
loss problem into convex or linear form and use some
established MINLP or MILP solver to solve the result-
ing problem to global optimality. Some linear trans-
formations are presented in [6] and methods to trans-
form the nonconvex problem into a convex form can be
found in [10] and [5].

Linear Transformations

As can be seen from (2)–(8), all constraints but the last
demand constraint are linear. This means that the prob-
lem should be fairly well bounded already by the linear
part of the problem and thus a linear formulation strat-
egy seems to be fully possible.

However, this linear transformation requires new
variables and constraints that may complicate the prob-
lem. Using a standard approach, by rewriting one of
the integer variables in the bilinear term by binary vari-
ables, the following is obtained.

mj D

KX
kD1

2k�1 � ˇ jk ;

mj 2 R; ˇ jk 2 f0; 1g:

(9)

K is the number of binary variables needed. By defin-
ing Lij to be the upper bound for respective nij variables
and introducing a new slack-variable sijk the following
constraints will create a necessary link between the nij
and sijk variables:

si jk � ni j � 0; (10)

� si jk C ni j � Li j � (1 � ˇ jk ) � 0; (11)

si jk � Li j � ˇ jk � 0: (12)

Using the above constraints the bilinear demand con-
straint can be written in linear form

ni;order �

JX
jD1

KX
kD1

2k�1 � si jk � 0: (13)

Themj could also be represented by special ordered sets
(SOS) where at most, one of the binary variables are al-
lowed to be nonzero.

mj D

KX
kD1

k � ˇ jk ;

KX
kD1

ˇ jk � 1 : (14)

It should be noted that the usage of this kind of trans-
formation may enlarge the integrality gap unless for in-
stance the nij variables in equations (3)–(5) are replaced
with corresponding variables sijk.

The same transformation can be modified such that
nij is replaced by a binary representation and mj is de-
fined through the slack-variables sijk.
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MINLP: Trim-loss Problem, Figure 2
The integer variables

ParameterizationMethods

Beyond the linear transformation, the problem can be
written in linear form by simply parameterizing one of
the variables in the bilinear term. This method though
may lead to global optimality only in such cases where
all the possible combinations have been considered.
This strategy may be good for smaller problems but it
may also generate far toomany integer variables in solv-
ing larger trim-loss problems.

It is quite easy to generate all the possible combi-
nations of nij variables satisfying the constraints (3)–
(5). This strategy results in a problem where these con-
straints can be removed and where the nij variables in
the resulting linear demand constraint are parameters:

ni;order � mj � n0i j � 0 ; mj 2 Z : (15)

The same type of parameterization strategy may also be
applied to the other variable mj but in this case it may
be more difficult to define the exact values of the pa-
rameters. One strategy is to use the upper boundsMj or
define all the mj variables to be equal to one and make
sure that a sufficient amount of the variablesmj are con-
sidered.

Another alternative is to combine the parameter-
ization and transformation methods so that a proper
amount of parameterized variables are combined with
original variables. This strategy may be very efficient
but often requires such information that may be dif-
ficult to obtain from a larger problem without any
knowledge of the solution.

Convex Transformations

In the previous sections a number of methods were
presented where the nonconvex problem can be trans-

formed or parameterized into linear form. The main
drawback for this linear transformation strategy is the
large number of extra constraints and continuous vari-
ables. The parameterization strategy results in a formu-
lation with a few constraints but many extra integer
variables.

In the following a number of convexification meth-
ods are presented. Generally, the convex formulations
need fewer extra constraints and continuous variables
as the linear strategies and no extra integer variables as
is the case with the parameterization methods. Thus,
the convex transformation could be expected to result
in formulations which are easier to solve especially for
larger-scale orders. This creates an interesting problem,
where the integer search space is reduced at the expense
of more complex nonlinear functions, which could, in
principle, be used as benchmarks for the performance
of MINLP algorithms.

The basic principle for the convex transformation is
to first expand the bilinearity in the demand constraint

mj �ni j D (mjC�)(ni jC�)�� � (mjCni j)��2: (16)

In the following text, the translation constant � = 1 is
used for simplicity. The second step is to substitute the
bilinear term in the original demand constraint

ni;order �

JX
jD1

(mj C 1)(ni j C 1)

C

JX
jD1

(mj C ni j)C J � 0: (17)

It should be noted that the transformations that follow
need to consider the whole problem not only individual
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functions, which makes the transformation techniques
more demanding. A transformation of a single function
may cause linear constraints to become nonlinear if one
is unaware of this fact.

Exponential Transformation

The demand constraint is originally a negative bilinear
constraint. The exponential transformation can only be
applied to a positive bilinear constraint. Therefore, one
of the variables in the bilinear term needs to be substi-
tuted with its reversed value.

ri j D Nj;max � ni j (18)

and the demand constraint is modified to

ni;order �

JX
jD1

mj � Nj;max C

JX
jD1

mj � ri j: (19)

Now the exponential transformation can be applied.
The transformation is of the form

mj C 1 D eM j ; ri j C 1 D eRi j (20)

and the variables are defined as

mj D

L jX
lD1

ˇ j l � l ; (21)

Mj D

L jX
lD1

ˇ j l � ln(l C 1); (22)

ri j D
KiX
kD1

ˇi jk � k; (23)

Ri j D

KiX
kD1

ˇi jk � ln(k C 1); (24)

L jX
lD1

ˇ j l � 1;
KiX
kD1

ˇi jk � 1; (25)

ˇ j l ; ˇi jk 2 f0; 1g; Mj; Ri j 2 R:

When combining these definitions, the demand con-
straint can be written in convex form

ni;order � J C
JX

jD1

eM jCRi j

�

JX
jD1

0
@(Nj;max C 1) �

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0:

(26)

This transformation can also be achieved in slightly an-
other way but using this strategy also requires updating
some of the constraints in (3)–(7).

Square-Root Transformation

This transformation is almost equivalent to the previ-
ous one. A main difference is that it can be applied
straight to the negative bilinear constraint and thus no
rij variables need to be defined. The constraint (21) is
valid but the constraint (23) needs to be modified to

ni j D

KiX
kD1

ˇi jk � k: (27)

Note that the equations in (25) are valid. The transfor-
mation is of the form

mj C 1 D
q
Mj; ni j C 1 D

q
Ni j: (28)

The transformation variablesMj and Nij are defined as

Mj D 1C
L jX
lD1

ˇ j l � l(l C 2); (29)

Ni j D 1C
KiX
kD1

ˇi jk � k(k C 2); (30)

ˇ jk ; ˇi jk 2 f0; 1g; Mj ;Ni j 2 R:

and the resulting convex demand constraint is

ni;order C J �
JX

jD1

q
Mj � Ni j

C

JX
jD1

0
@

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0: (31)
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Logarithmic and Square-Root Transformation

The square-root and the logarithmic functions can be
combined, resulting in a third convex transformation.
It is directly applicable to the negative bilinear function
and the transformation can be written as

mj C 1 D
q
Mj; ni j C 1 D lnNi j: (32)

Themj, nij andMj variables are defined as in the square-
root transformation and the Nij is defined as

Ni j D e C
KiX
kD1

ˇi jk � (ekC1 � e) (33)

and the following convex demand constraint is ob-
tained

ni;orderC J �
JX

jD1

q
Mj � lnNi j

C

JX
jD1

0
@

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0: (34)

It can be noted in equation (34) that the only difference
to the former transformation is the third term of the
demand constraint.

Inverted Transformation

The following transformation can be applied to a pos-
itive bilinear constraint. Thus the same definition of rij
has to be done as for the exponential transformation.
The transformation has the form

mj C 1 D
1
Mj
; ri j C 1 D

1
Ri j
: (35)

The definitions of the transformation variables follow:

Mj D 1C
L jX
lD1

ˇ j l �

�
1

l C 1
� 1

�
; (36)

Ri j D 1C
KiX
kD1

ˇi jk �

�
1

k C 1
� 1

�
: (37)

The demand constraint is obtained exactly in the same
way as before

ni;order � J C
JX

jD1

1
Mj � Ri j

�

JX
jD1

0
@(Nmax C 1) �

L jX
lD1

ˇ j l � l C
KiX
kD1

ˇi jk � k

1
A � 0:

(38)

Modified Square-Root Transformation

As the last transformation, a modification to the pre-
viously presented square-root transformation is intro-
duced. In such cases where the variable mj may take
large values, it may bemore efficient to use another type
of binary representation.

mj D

L0jX
lD1

2l�1 � ˇ j l ; (39)

where Lj0 = blog2(mj, max)c+ 1 if mj, max is the upper
bound for the respective mj variable. This modification
reduces the required number of binary variables and
the transformation variable Mj needs to be redefined.
The definition also requires additional slack-variables
and constraints. In the following, the square-root trans-
formation is used:

Mj D 1C
L0jX
lD1

(s2l�2 C 2l ) � ˇ j l

C

L0jX
l ;mD1;m<l

2lCm�1 � s jlm ; (40)

� s jlm � 1C ˇ j l C ˇ jm � 0; (41)

2 � s jlm � ˇ j l � ˇ jm � 0;

l ;m D 1; : : : ; L0j ; m < l : (42)

By adding the extra constraints and defining Nij as in
the square-root strategy, the demand constraint can be
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written in convex form as follows

ni;orderC J �
JX

jD1

q
Mj � Ni j

C

JX
jD1

0
@

L jX
lD1

ˇ j l � 2l�1 C
KiX
kD1

ˇi jk � k

1
A � 0: (43)

Five methods for transforming the originally noncon-
vex trim-loss problem into convex form have been dis-
cussed. Three of them were directly applicable to a neg-
ative bilinear function but for two methods some op-
erations were needed to change the demand constraint
into a positive bilinear constraint.

Example: A Numerical Problem

In this last section a numerical example is solved with
all of the presented methods. To improve the perfor-
mance of the solution procedure some extra linear con-
straints need to be defined. They are, however, not spec-
ified here.

In the following example order an upper limit for
products ni, max that are allowed to be produced also has
been defined. Here, the maximal possible overproduc-
tion of any product is 2. This limit is somewhat unnat-
ural and is therefore not used as a constraint. However,
the use of this type of upper bounds makes it possible
to efficiently reduce the combinatorial space.

i bi(mm) ni;order ni;max
1 330 8 10
2 360 16 18
3 380 12 14
4 430 7 9
5 490 14 16
6 530 16 18

Example order

The example demand is a mid-size customer order with
a total weight of 27.5tons. Some important parameters
need to be defined before optimization. The raw paper

width of 2200mm is chosen and a maximal trim loss of
100mm is tolerated. At most 5 products may be cut out
from a cutting pattern. Among the following parame-
ters, the parameter Mj refers to the upper bound of the
respective mj variable and the parameter Ni to the nij
variables. Note, that since the raw paper width is equal
for every pattern the latter upper bound is independent
of the index j.

J = I = 6 Nj;max = 5
c j = 1 Mj = f14; 12; 8; 7; 4; 2g
Cj = 0:1 Ni = f2; 3; 3; 5; 3; 4g
Bj;max = 2200mm Mmin = 15
� j = 100mm

The problem parameters

The parameter Mmin is the lower bound for the sum of
the variablesmj. This sum can easily be calculated in ad-
vance and significantly enhances the optimization per-
formance.

Before doing the actual optimization it should be
pointed out that the results are not comparable. The
main purpose for showing the numerical results is to
demonstrate that the above presented strategies are
fully usable and result in quite efficient solvable formu-
lations. The transformation strategies can be directly
applied to any problem where the bilinear terms con-
tain integer variables.

The methods are divided into three groups of which
the linear transformation and the parameterization
strategies result into MILP formulations. The third
group, the convex transformation strategy produces
MINLP formulations that have in this case been solved
using the extended cutting plane (ECP) algorithm by T.
Westerlund and F. Peterssen [12].

In the parameterization strategies the problem is
redefined by parameterizing certain variables which
means that the resulting problem has already been
partly solved. This may, however, not always be a bene-
fit, especially in such problems where a huge number of
parameters increases the integer search space for other
variables.
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The strategies are numbered as follows:

1. binary representation ofmj

2. binary representation of nij
3. parameterization of nij
4. parameterization ofmj

5. exponential transformation
6. square-root transformation
7. logarithmic and square-root transformation
8. inverted transformation
9. modified square-root transformation

The strategies enlarge the problem both in terms of
variables and constraints. In the following the num-
ber of variables and constraints are given. All the con-
straints are linear except in the convex transformation
strategies where six of the constraints are nonlinear.

The strategies 1–4 are linear formulations of which
3–4 use the parameterization strategy to overcome the
bilinearity. Strategies 5–9 are convex transformations.
The field with combinations gives simply the number of
unconstrained discrete variable combinations as a func-
tion of number of binary variables. This information is
more informative than just the number of variables.

Strategy Constraints Variables Comb.
(I/B/C) 2n

1: 408 36/23/120 298
2: 366 6/88/144 2105

3: 59 51/51/� 2140
4: 201 282/47/� 2634

5: 199 �/169/84 296
6: 199 �/169/84 296
7: 185 �/169/84 296
8: 185 �/169/84 296
9: 225 �/208/84 2118

The MILP problems 1–4 were solved with CPLEX-
5.0 using default settings and the MINLP problems 5–

9 were solved by ‘mittlp’, an ECP application written
by H. Skrifvars. The optimization was done on a Pen-
tium Pro 200MHz running the Linux operating sys-
tem.

The optimization results can be seen in the follow-
ing table.

Strategy Nodes ECP-iter. CPU-
(MILP) (MINLP) time (s)

1: 265 - 7:6
2: 51 - 0:51
3: 2174 - 3:2
4: 265 - 7:7
5: - 4 8:6
6: - 7 66:6
7: - 9 138:6
8: - 10 736:4
9: - 6 49:9

The optimal result has two cutting patterns with the
widths B1 = 2110 mm and B2 = 2170 mm and multi-
plesm1 = 8,m2 = 7. The appearances of the patterns are
given by the following variables: n1, 1 = 1, n2, 1 = 2, n6, 1
= 2, n3, 2 = 2, n4, 2 = 1, n5, 2 = 2

Conclusions

The study above is not a fair comparison. Experience
has shown that the performance order is highly depen-
dent on the specific problem. In order to get an idea
of which of the methods is, in average the most effi-
cient one, tens of problems of different sizes need to
be solved. However, the study illustrates that it is fully
possible to apply the transformation methods to a well
explored real industrial problem.

In the present study the trim-loss problem was used
as an example case but the transformation methods are
general and can be applied to any problem with similar
type of bilinear constraints.
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Notation

i product index
j cutting pattern index
I number of products in the order
J number of possible cutting patterns
mj number of times the pattern j is used
nij number of product i in pattern j
rij reversed value of nij
ni, order number of product i ordered
bi width of product i
Bj, max width of raw paper of pattern j
�j max. trim-loss width
Nj, max max. number of products in pattern j
yj binary variable that is one ifmj > 0
cj , Cj cost coefficients
Mj upper bound / transformation variable
ˇ jl , ˇ jk binary variables for definingmj

Lij upper bound

sijk slack-variable for linear transformations
ˇ ijk binary variables for defining nij or rij
nij0 fixed nij values
� translation constant
Nij transformation variable
Rij transformation variable
l, k,m indices of binary variables
Lj , Ki number of binary variables needed

See also

� Branch and Price: Integer Programming with
Column Generation

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
� Integer Programming: Branch and Bound Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
� Integer Programming Duality
� Integer Programming: Lagrangian Relaxation
� LCP: Pardalos–Rosen Mixed Integer Formulation
�Mixed Integer Classification Problems
�Multi-objective Integer Linear Programming
�Multi-objective Mixed Integer Programming
�Multiparametric Mixed Integer Linear

Programming

� Parametric Mixed Integer Nonlinear Optimization
� Set Covering, Packing and Partitioning Problems
� Simplicial Pivoting Algorithms for Integer

Programming
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Time-dependent Traveling Salesman Problem
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Introduction/Background

In the past two decades, biologists have sequenced more
and more complete genome sets for various species. To
reveal secrets of life hiding in enormous genome data,
the mechanism which conducts gene expression is con-
tinuously researched and discussed. Gene transcrip-
tion, a primary gateway to gene function, is controlled
by a complex regulatory mechanism. In this mecha-
nism, many specific regulatory proteins bind to local
regions of a gene upstream, called transcription factor
binding sites (TFBS) or motifs, to control the gene ex-
pression. Therefore, the discrimination of TFBSs be-
comes an essential task for genome function analysis.
Finding TFBSs is a challenging issue because motifs
are mostly orientation- and position- independent to
transcription starting points, and usually with some de-
gree of ambiguity. Experimental methods like DNAmi-
croarray (DeRisi et al., 1997; Lockhart et al., 1996) and

SAGE (Velculescu et al., 2000) are capable of precisely
elucidating motifs, but too laborious and time consum-
ing to analyze enormous genome data. More and more
computer based methods - such as enumeration meth-
ods, probability models and heuristics - are being de-
veloped to help motif finding. The modeling of in silico
motif finding has two parts: scoring function and algo-
rithm. The simplest scoring function is given by sum-
ming up the number of base matches in a regulatory
region. Generally it needs a predefined shared pattern
for accuracy. Another scoring criterion is position-spe-
cific scoring matrices (PSSM) or its variant, informa-
tion content (IC, Schneider et al., 1986), [44]. Though
more computing is required, PSSM and IC are the most
popular scoring functions, owing to their pattern-free
property.

Current motif finding algorithms can generally be
categorized as the probabilistic approaches and the
deterministic approaches. Popular probabilistic algo-
rithms are the expectation maximization [22], Gibbs
sampling [21] and hidden Markov model (HMM).
These are used to develop various sample-driven tools
like MEME [3], CONSENSUS [17], AlignACE [19],
ANN-spec [54], BioProspector [24], MotifSampler
[48], GLAM [13], The Improbizer [1], QuickScore [38],
SesiMCMC [11] and TFBSfinder [51].

There are many discrepancies among determinis-
tic methods. A representative one is the consensus-
based approach, [45] which tests all 4m m-wide pat-
terns and promises an optimal solution, but is very time
consuming and impractical for large m [33,49]. Many
heuristics are developed to prune the huge searching
space, including testing only the substrings in the se-
quences [15,26], specifying a shared pattern to restrict
the locations of mismatches [5,7,38,41], constructing
suffix tree with fixed mismatches [30,31] and clustering
approaches [6,23,34].

The methods for determining a consensus pattern
can be split into two parts. The first part is the model
for describing the shared pattern, and the second part
is the algorithm for identifying the optimal consensus
sequence according to its shared pattern. This study be-
longs to the second part. A consensus based motif find-
ing problem is, given a set of sequences known to con-
tain binding sites for a common factor but not knowing
where the site are, to discover the location of the sites in
each sequence [45].
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Ecker et al. (2002) utilized optimization techniques
to reformulate the maximum likelihood approach for
motif finding problems. They adopted a probabilistic
model and formulated a well-designed nonlinear model
with reference to the expectation maximization algo-
rithm of Lawrence and Reilly [22]. Their method, how-
ever, occasionally only finds a feasible solution or a lo-
cal optimum, which means the best solution may not
be found. Additionally, no further structural feature in
the target motif can be embedded conveniently in their
model.

Definitions

This study introduces a linear programming method
for solving amotif finding problem to reach the globally
optimal consensus sequence. Two examples of search-
ing for CRP-binding sites and for FNR-binding sites in
the Escherichia coli genome are used to illustrate the
proposed method. The motif finding problem is firstly
formulated as a nonlinear mixed 0-1 program for the
alignment of DNA sequences; each of the four bases
are coded with two binary variables and a matching
score is designed. This nonlinear mixed 0-1 program is
then converted into a linear mixed 0-1 program by lin-
earization techniques. Owing to some special features
of the binary relationships, this linear 0-1 program in-
cludes 2m binary variables where m is the number of
active letters in the consensus. This method makes the
number of binary variables independent of the num-
ber of sequences and the size of each sequence. That
means the proposed method is computationally effi-
cient in solving a motif finding problem with a large
data size. Secondly, the proposed method is guaran-
teed to find the global optimum instead of a local op-
timum. Thirdly, many kinds of specific features ac-
companied with the target motif can be formulated as
logical constraints and embedded into the linear pro-
gram.

An example of searching CRP-binding sites, as dis-
cussed in Stormo et al. [44] and Ecker et al. (Ecker et al.,
2002), is described as follows. Given eighteen letter se-
quences, each 105 positions long, where each position
contains a letter from the set {A, T, C, G}, find a con-
sensus sequence of length16 with the pattern

L1L2L3L4L5 
 
 
 
 
 
L6L7L8L9L10

where Li 2{A, T, C, G} and 
’s mean the positions of
ignored letters.

Restated, the problem is to specify
(i) the Li’s of the consensus sequence pattern, and
(ii) the location of the site in each given sequence

which can fit most closely the consensus sequence.

Formulation

This study firstly formulates a motif finding problem as
a nonlinear mixed 0-1 program. This nonlinear mixed
0-1 program is then converted into a linear mixed
0-1 program using linearization techniques. To reduce
the computational burden, many 0-1 variables in this
linear mixed 0-1 program can actually be solved as con-
tinuous variables by an all or nothing assignment tech-
nique which greatly improves the computational effi-
ciency of this program.

Here we use the example data in [44], as listed in
Appendix, to describe the proposed method. First, we
represent the data in Appendix as an 18*105 data ma-
trix D:

D D

2
6664

b1;1 b1;2 � � � b1;105
b2;1 b2;2 � � � b2;105
:::

:::
: : :

:::

b18;1 b18;2 � � � b18;105

3
7775 (1)

where bl ;p is the letter in the position p of the sequence l.
Recall the example discussed in previous section:

the consensus sequence we want to find has 16 posi-
tions (ten Li’s and six ignored letters). A sequence has
90 corresponding sites, so an 18*900 data matrix D0 is
generated from D.

D0D

2
6664

d11;1 � � � d
10
1;1 d11;2 � � � d

10
1;2 � � � d11;90 � � � d

10
1;90

d12;1 � � � d
10
2;1 d12;2 � � � d

10
2;2 � � � d12;90 � � � d

10
2;90

:::
:::

: : :
:::

d118;1 � � � d
10
18;1 d118;2 � � � d

10
18;2 � � � d

1
18;90 � � � d

10
18;90

3
7775

(2)

where

di
l ;s D

(
bl ;iCs�1 (for i D 1; 2; : : : ; 5)
bl ;iCsC5 (for i D 6; 7; : : : ; 10) ;

and s D 1 : : : 90 is the starting position of each candi-
date site.
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Mixed 0-1 Linear Programming Approach for DNA Transcrip-
tion Element Identification, Table 1
Base code in the determined consensus sequence

Base ui vi ai ti ci gi
A 0 0 1 0 0 0
T 1 1 0 1 0 0
C 0 1 0 0 1 0
G 1 0 0 0 0 1

For Li 2{A, T, C, G}, two binary variables ui and vi
can be used to express Li, an element of the consensus
sequence, as shown in Table 1.

Table 1 indicates that if Li is A, T, C, or G respec-
tively, then ai D 1, ti D 1, ci D 1 or gi D 1, which im-
plies following conditions.

ai D (1 � ui )(1� vi )

ti D uivi
ci D (1 � ui )vi
gi D ui(1 � vi)

(3)

Now we let Scorel be the degree of fitting to the
found consensus sequence, specified as

Scorel D
90X
sD1

zl ;s
�
�1l ;s C �

2
l ;s C : : : � � � C �

10
l ;s
�

(4)

where � i
l ;s is the element of candidate sites extracted

from D0. The constraints associated with (4) are below:
(i)

90X
sD1

zl ;s D 1; zl ;s 2 f0; 1g for all l and s : (5)

(ii)

� i
l ;s D

8̂
ˆ̂̂<
ˆ̂̂̂
:

ai if di
l ;s D A

ti if di
l ;s D T

ci if di
l ;s D C

gi if di
l ;s D G :

(6)

Clearly, 0 � Scorel � 10, and the objective is to maxi-
mize the total sum of Scorel .

Methods/Applications

Consider the sample data in Fig. 1 for instance:

Score1 D

z1;1(a1 C a2 C g3 C a4 C c5 C t6 C t7 C t8
C g9 C a10)

C z1;2(a1 C g2 C a3 C c4 C t5 C t6 C t7 C g8
C a9 C t10)

z1;3(g1 C a2 C c3 C t4 C g5 C t6 C g7 C a8
C t9 C c10) (7)

Score2 D

z2;1(g1 C a2 C t3 C t4 C a5 C c6 C g7 C g8
C c9 C g10)

C z2;2(a1 C t2 C t3 C a4 C t5 C g6 C g7 C c8
C g9 C t10)

C z2;3(t1 C t2 C a3 C t4 C t5 C g6 C c7 C g8
C t9 C c10) (8)

All zl ;s in (4) are binary variables. Equation (5) im-
plies that for a sequence l, only one site is chosen to
contribute to Scorel . Suppose the kth site is selected,
then zl ;k D 1 and zl ;s D 0 for all s 2 f1; 2; : : : ; 90g,
s ¤ k. Since a huge amount of zl ;s (i. e., jl j 
 jsj) are
involved, to treat zl ;s as binary variables would cause
a heavy computational burden. Therefore zl ;s should
be resolved as continuous variables rather than binary
variables. An important proposition is introduced be-
low:

Proposition 1 (All or nothing assignment) Let
zl ;s � 0 be continuous variables instead of binary vari-
ables. If there is a k, k 2 f1; 2; : : : ; 90g, such thatP10

iD1 �
i
l ;k D max

nP10
iD1 �

i
l ;s for s D 1; 2; : : : ; 90

o
,

then assigning zl ;k D 1 and zl ;s D 0 for all s ¤ k,
s 2 f1; 2; : : : ; 90g, can maximize the value of Scorel.

Proof Since
P

s zl ;s D 1 and zl ;s � 0, it is true that
max

nP
s(zl ;s

P
i �

i
l ;s)
o
� max

˚P
i �

i
l ;s for s D 1;

2; : : : ; 90
�
D
P

i �
i
l ;k . �
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Remark 1 The objective function
P

l Scorel can be
rewritten as

f (x) D
10X
iD1

8<
:ai

X
(l ;s)2SAi

zl ;s C ti
X

(l ;s)2STi

zl ;s

Cci
X

(l ;s)2SCi

zl ;s C gi
X

(l ;s)2SGi

zl ;s

9=
; (9)

where SAi D f(l ; s)jdi
l ;s D Ag, STi D f(l ; s)jdi

l ;s D Tg,
SCi D f(l ; s)jdi

l ;s D Cg, and SGi D f(l ; s)jdi
l ;s D Gg

for i D 1; 2; : : : ; 10.

This result implies that SAi (or STi, SCi, SGi) is a set
composed of (l, s) in which the product term zl ;s ai (or
zl ;s ti , zl ;s ci , zl ;s gi respectively) appears on the right
hand side of (4) because � i

l ;s D ai .
For instance, the sum of Score1 and Score2 in (7)

and (8) becomes

Score1 C Score2 D a1(z1;1 C z1;2 C z2;2)C : : :

C a10z1;1 C � � � C g1(z1;3 C z2;1)C � � � C g10z2;1 :
(10)

Some logical constraints can be conveniently expressed
by binary variables. For instance, the constraint that
a CRP dimer binds a symmetrical site requires that

if Li D

(
A then L11�i D T ;
C then L11�i D G :

Such a logical structure can be conveniently formulated
with the following constraints:

ui C u11�i D 1
vi C v11�i D 1

)
for i D 1; 2; 3; 4; 5 (11)

where ui ; vi ; u11�i ; v11�i 2 f0; 1g.
With reference to Table 1, clearly if Li D A (i. e.,

ui D 0 and vi D 0) then L11�i D T (i. e., u11�i D
1 andv11�i D 1) and vice versa; (ii) if Li D C (i. e.,
ui D 0 and vi D 1) then L11�i D G (i. e., u11�i D
1 and v11�i D 0) and vice versa.

Models

Amotif finding problem can be formulated as a nonlin-
ear mixed 0-1 program based on these constraints:

Program 1 (Nonlinear Mixed 0-1 Program)

Maximize
18X
lD1

Scorel D
10X
iD1

8<
:ai

X
(l ;s)2SAi

zl ;s

Cti
X

(l ;s)2STi

zl ;s C ci
X

(l ;s)2SCi

zl ;s

Cgi
X

(l ;s)2SGi

zl ;s

9=
;

(12)

subject to
90X
sD1

zl ;s D 1 ; zl ;s � 0 for all l ; s

ai D (1 � ui)(1 � vi )

ti D uivi
ci D (1 � ui)vi
gi D ui (1 � vi )

9>>>>=
>>>>;

Conservative

constraints for

i D 1; 2; : : : ; 10

ui C u11�i D 1

vi C v11�i D 1

)
Logical constraints
for i D 1; 2; : : : ; 5

ui ; vi 2 f0; 1g
for i D 1; 2; : : : ; 5

0 � ui ; vi � 1

for i D 6; 7; : : : ; 10

0 � ai ; ti ; ci ; gi � 1

for i D 1; 2; : : : ; 10 :

This program intends to solve fai ; ti ; ci ; gig for
i D 1; 2; : : : ; 10 thus to maximize the total degree of
fitting to the consensus sequence for the given 18
sequences, subjected to a possible logical constraint.
A very important feature of Program 1 is that we can
treat zl ;s as continuous variables rather than binary
variables, which can improve the computational effi-
ciency dramatically. We can ensure all found zl ;s still
have binary values as discussed in the next section.

Linearization of Program 1 Program 1 is a mixed
nonlinear 0-1 program where qi

P
zl ;s for qi 2 fai ; ti ;

gi ; cig and uivi are product terms. These product terms
can be linearized directly by the following propositions:

Proposition 2 The product term �i D qi
P

zl ;s , where
�i is to be maximized and qi 2 f0; 1g, can be linearized
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as follows:

�i �
X

zl ;s CM(qi � 1)

�i � 0

�i �
X

zl ;s

�i � M qi

(13)

where M is a big constant larger than or equal to the
number of sequences.

Proof If qi D 1 then �i D
P

zl ;s ; and otherwise
�i D 0.

�

Proposition 3 The product term wi D uivi , where
ui ; vi 2 f0; 1g, can be linearized as follows:

wi � ui

wi � vi
wi � 0

wi � ui C vi � 1 :

(14)

Denote Z(ai) D ai
P

(l ;s)2SAi
zl ;s , Z(ti) D ti

P
(l ;s)2STi

zl ;s , Z(ci) D ci
P

(l ;s)2SCi
zl ;s , and Z(gi ) D

gi
P

(l ;s)2SGi

zl ;s . Program 1 is then linearized into Program 2 based
on Proposition 2 and Proposition 3.

Program 2 (Linear Mixed 0-1 Program)

Maximize
18X
lD1

Scorel

D

10X
iD1

�
Z(ai)C Z(ti )C Z(ci)

C Z(gi )
�

subject to
90X
sD1

zl ;s D 1; zl ;s � 0 for all l ; s

(15)

ai D 1 � ui � vi C wi

ti D wi

ci D vi � wi

gi D ui � wi

wi � ui

wi � vi
wi � 0
wi � ui C vi � 1

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

Conservative constraints
for i D 1; 2; : : : ; 10

ui C u11�i D 1

vi C v11�i D 1

)
Logical constraints

for i D 1; 2; : : : ; 5X
(l ;s)2SAi

zl ;s CM(ai � 1) � Z(ai) �
X

(l ;s)2SAi

zl ;s

0 � Z(ai ) � M aiX
(l ;s)2STi

zl ;s CM(ti � 1) � Z(ti) �
X

(l ;s)2STi

zl ;s

0 � Z(ti) � M tiX
(l ;s)2SCi

zl ;s CM(ci � 1) � Z(ci ) �
X

(l ;s)2SCi

zl ;s

0 � Z(ci ) � M ciX
(l ;s)2SGi

zl ;s CM(gi � 1) � Z(gi) �
X

(l ;s)2SGi

zl ;s

0 � Z(gi ) � M gi

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>; C

on
st
ra
in
ts
fo
rl
in
ea
riz

in
g
pr
od

uc
tt
er
m
s

ui ; vi 2 f0; 1g for i D 1; 2; : : : ; 5
0 � ui ; vi � 1 for i D 6; 7; : : : ; 10

0 � ai ; ti ; ci ; gi � 1 for D 1; 2; : : : ; 10

zl ;s ’s are treated as non-negative continuous variables
for l D 1; 2; : : : ; 18 and s D 1; 2; : : : ; 90 where M can
be any value greater than or equal to 18 :

In Program 2, since ui and vi are binary variables, ai, ti,
ci, and gi should have binary values following (3). Al-
though zl ;s are treated as continuous variables, the val-
ues of zl ;s should be 0 or 1. This is because the optimal
solution of a linear program should be a vertex point
satisfying

P
s zl ;s D 1 for all l.

Consider the following proposition.

Proposition 4 Let the optimal solution of Program 2
be x� D (Z�; u�; v�) and

P
s zl ;s D 1. Assume that

a sequence l contains sites s1; s2; : : : ; sk such that
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0 < z�l ;s j < 1 for j D 1; 2; : : : ; k, then,

X
i
� i
l ;s1 D

X
i
� i
l ;s2 D � � � D

X
i
� i
l ;sk

D max
nX

i
� i
l ;s

o
;

where � i
l ;s j are specified in (6) :

Proof For
P

s zl ;s D 1, if sp; sq 2 fs1; s2; : : : skg whereP
i �

i
l ;s p >

P
i �

i
l ;sq , then to maximize Scorel DP

l ; j zl ;s j
P

i �
i
l ;s j requires zl ;sq D 0. This conflicts with

the observation that 0 < zl ;sq < 1, therefore
P

i �
i
l ;s1 DP

i �
i
l ;s2 D � � � D

P
i �

i
l ;sk . �

After solving Program 2 we can obtain the globally
optimum solution “TGTGA******TCACA” with objec-
tive value 147. The related nonzero zl ;s values indicate
the starting positions of the binding sites in the 18 se-
quences, as listed below:

z1;64 D z2;58 D z3;79 D z4;66 D z5;53 D z6;63 D z7;27
D z8;42 D z9;12 D z10;17 D z11;64 D z12;44 D z13;51
D z14;74 D z15;20 D z16;56 D z17;87 D z18;81 D 1

All other zl ;s ’s have value 0.
In Program 2 the total number of 0-1 variables is

2m and the total number of the continuous variables
is 20mC jl j 
 jsj. Since the number of 0-1 variables is
independent of the lengths of l and s, a motif finding
problem with many long sequences can be solved effec-
tively.

Suboptimal Consensus Sequences Program 2 can
find the exact global optimum solution. Sometimes the
second best and the third best solution may also be use-
ful. It is very convenient for the proposed method to
find a complete set of consensus sequences by adding
some extra constraints. For instance, the second best
solution of Program 2 can be obtained conveniently by
solving the following program:

Maximize
18X
lD1

Scorel (16)

subject to (i) The same constraints in Model 1

(ii) t1 C g2 C t3 C g4 C a5 C t6 C c7C

a8 C c9 C a10 � 9 (new constraint)

Mixed 0-1 Linear Programming Approach for DNA Transcrip-
tion Element Identification, Figure 1
A small example of finding consensus sequence: a two se-
quences to be compared; b Schematic representation of the
candidate sites; c The associated D0 matrix

The new constraint is used to force the program to
find a new solution different from the solution of Pro-
gram 2. The found second best consensus sequence is
“TTTGA******TCAAA” with score 129. Similarly we
can find another solution by adding following con-
straint into (16).

t1C t2C t3C g4C a5C t6C c7C a8C a9C a10 � 9

The found third best consensus sequence is
“AAATT******AATTT” with score 129.

Extend to Find Unknown Binding Sites A more
complicated motif finding problem is to search for the
consensus sequence with an uncertain pattern format
where the number of ignored letters between the two
half sites is unknown. An example is to find a consen-
sus sequence of length 2 
 5C k with the pattern

L1L2L3L4L5 
 � � � 
 L6L7L8L9L10

where k, the number of 
’s, is an unknown integer be-
tween 0 and 10.

Program 2 can be modified slightly to treat this type
of motif finding problem. Firstly we expand D in (1) as
D0 below:

D0 D [D0(0)D0(1)D0(2) : : : : : :D0(10)]
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Mixed 0-1 Linear Programming Approach for DNA Transcription Element Identification, Figure 2
The relationship between computational time and various factors involved in a consensus basedmotif finding problem. This
figure illustrates the computational timeof solving Program 2with a various sequences sizes; b various number of sequences
and c various independent positions
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Mixed 0-1 Linear Programming Approach for DNA Transcription Element Identification, Figure 3
Computational time of Program 3 with various numbers of possible k’s. The number enclosed in the common site is the
solution of k

in which

D0(k) D
2
6664

d11;1;k � � � d
10
1;1;k d11;2;k � � � d

10
1;2;k � � � d

1
1;90;k � � � d

10
1;90;k

d12;1;k � � � d
10
2;1;k d12;2;k � � � d

10
2;2;k � � � d

1
2;90;k � � � d

10
2;90;k

:::
:::

: : :
:::

d118;1;k � � � d
10
18;1;k d

1
18;2;k � � � d

10
18;2;k � � � d

1
18;90;k � � � d

10
18;90;k

3
7775

where k 2 f0; 1; : : : ; 10g.

di
l ;s;k D

(
bl ;iCs�1 (for i D 1; 2; 3; 4; 5)
bl ;iCsCk�1 (for i D 6; 7; 8; 9; 10)

� i
l ;s:k D ai ; ti ; ci or gi when di

l ;s:k D ‘A’, ‘T’,

‘C’, or ‘G’ respectively :

The cases with k larger than 10 are not considered since
they are relatively rare. A linear mixed 0-1 program for
solving this example is formulated below:

Program 3

Maximize
2mX
iD1

�
Z(ai )C Z(ti)C Z(ci)C Z(gi )

�
(15)

subject to (i)
10X
kD0

96�kX
sD1

zl ;s;k D 1 ;

zl ;s;k � 0 for all l ; s; k

(ii)
X
s

z1;s;k D
X
s

z2;s;k D : : :

D
X
s

z18;s;k for k 2 f0; 1; : : : ; 10g

(iii) the same conservative and logical
constraints in Program 2

(iv) the same constraints for linearizing
product terms in Program 2 but
replace zl ;s by zl ;s:k :

Constraints (i) and (ii) are used to ensure that
when a specific k is chosen then

P
s zl ;s;k D 1 andP

s zl ;s;k0 D 0 for k0 ¤ k.
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Mixed 0-1 Linear Programming Approach for DNA Transcription Element Identification, Table 2
FNR binding sites found by Program 3

Cases

Finding CRP Binding Sites with a Given Pattern

Several experiments are tested here, using the exam-
ple in the Appendix, to analyze the effect of sequence
length and number of sequences on the computational
time. All examples are solved by LINGO [40], a widely
used optimization software, on a personal computer
with a Pentium 4 2.0G CPU. A software package named
“Global Site Seer” is developed based on Program 2 for
finding DNA motifs. This software is available from
http://www.iim.nctu.edu.tw/~cjfu/gss.htm.

Figure 2 illustrates the experimental results for an-
alyzing the time complexity. Figure 2a is the computa-
tional time given various sequence lengths, where the
number of sequences is fixed at 18. The results show
that the computational time changes only slightly even
if the sequence length is increased from 105 to 1050.

Figure 2b is the computational time with various num-
bers of sequences. It shows that the solving time is
roughly proportional to the number of sequences. The
proposed model is quite promising for finding DNA
motifs in a dataset with a large sequence length and
a large number of sequences. Figure 2c shows that the
computational time rises exponentially as the number
of independent positions increases.

Using Program 3 to search CRP binding
sites, we obtain the globally optimal solution
“TGTGA******TCACA” with score 147, which is ex-
actly the same solution found in Program 2. The second
best solution is “GTGAA****TTCAC” with score 134.
The relationship between the computational time and
the number of possible k’s (i. e. jkj) is linear, as shown
in the experiment result listed in Fig. 3. The number of
ignored letters k is between 0 and k̄, the upper bound
of k, and thus we have jkj D k̄ C 1 in this experiment.

http://www.iim.nctu.edu.tw/~cjfu/gss.htm
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Finding FNR-binding Sites with an Ambiguous
Shared Pattern Program 3 is also applied to solve
an example of searching for binding sites of fumarate
and nitrate reduction regulatory protein (FNR) in E.
coli. Both CRP and FNR belong to the CRP/FNR helix-
turn-helix transcription factor superfamily [47]. The
sequence data, which is taken from GenBank, con-
tains 12 DNA sequences with lengths varied from 96
to 781. Owing to the dimer structure of the binding
protein, the consensus sequence in this example also
has a constraint of inverse symmetry. The RegulonDB
database [18] lists the found regulatory binding sites for
eight of these twelve sequences while the exact posi-
tions of the other four sequences are not listed yet. Solv-
ing this example by Program 3 we obtained the global
optimal consensus sequence as “TTGAT****ATCAA”
with score 107, which is the same consensus sequence
as indicated by [47]. Table 2 illustrates the result includ-
ing the consensus sequence and the predicted binding
sites for all of the 12 sequences. Some sites downstream
of the transcription start (i. e. with positive indices)
are also listed because there are a few known cases
in which regulatory sites appear within transcription
units [47]. The proposed method has found some sites
not listed in RegulonDB, but which have scores higher
than those listed in RegulonDB (e. g. the third solution
in the Operon ansB row of Table 2). The best predicted
sites in the four undetermined sequences are also listed
in Table 2.

Conclusions

This study proposes a linear mixed 0-1 programming
approach for finding DNA motifs. Compared to the
widely used maximum likelihood methods, the pro-
posed method can reach a global optimum rather than
finding a local optimum or a feasible solution. Addi-
tionally, by utilizing binary variables, some logical con-
straints can be embedded into the models. It is also con-
venient to find the complete set of the second, third,
etc. best consensus sequences. Since the number of bi-
nary variables is fully independent of the number of
sequences and the length of a sequence, the proposed
method can treat motif finding problems with many
long sequences. For finding motifs with many indepen-
dent positions in an acceptable time, this study also pro-
poses a method for distributed computing.

The proposed method can also be conveniently ex-
tended to treat more complicated motif finding prob-
lems. In this study an extension of the linear program is
designed to find DNAmotifs with an unknown number
of ignored letters between the two half sites. The result
of searching for FNR-binding sites shows that the ex-
tended model can find not only the locations of known
binding sites listed in the RegulonDB database but also
those not yet delimitated.
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Introduction

The G-group classification problem, also known as the
G-group discriminant problem, involves a population
partitioned into G distinct (and predefined) groups.
The object is to construct a scalar- or vector- valued
scoring function f : <p !< so that the group to which
a population member with observed attributes x 2 <P

belongs can be determined, with best possible accuracy,
from its score f (x). The scoring function f is usually re-
stricted to a particular class (most commonly, linear).
By a wide margin, the majority of studies have focused
on the two-group case. Construction of f is based on
training samples from the various groups. Themost rea-
sonable criterion for choosing f may be expected mis-
classification cost, but many studies make the simpli-
fying assumptions that all misclassifications are equally
expensive and that groups are represented in the train-
ing samples in proportion to their prior probability of
being encountered, in which case the criterion reduces

Mixed Integer Classification Problems, Figure 1
Optimal linear classifier (� =misclassified)
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to minimizing the number of misclassifications in the
combined training samples. Figure 1 illustrates an opti-
mal choice of linear classifier f in a two-group problem.

Classical discriminant analysis relies on distribu-
tional assumptions. In the two-group case with nor-
mally distributed attributes, the scalar-valued discrimi-
nant function that minimizes expectedmisclassification
cost is known to be linear if the two groups have identi-
cal covariance structures and quadratic if not. In both
cases, direct estimation of f is straightforward. Non-
parametric approaches, making no distributional as-
sumptions, have utilized an eclectic assortment of tech-
niques, among them neural networks, metaheuristics,
and mathematical programming. Although some con-
sideration has been given to nonlinear programming
methods, the bulk of the work involving mathematical
programming has utilized either linear or mixed inte-
ger linear programming models, or support vector ma-
chines (quadratic programs) [8]. See [10] and � lin-
ear programming models for classification (elsewhere
in this volume) for an overview of the subject.

When f is linear, the problem of minimizing the
number of misclassifications is a special case of the
slightly more general problem of dropping the small-
est (or least costly) set of constraints necessary to ren-
der an inconsistent set of linear inequalities consis-
tent. This problem crops up in a variety of contexts,
including pattern recognition [18], machine learn-
ing/data mining [5] and the analysis of infeasible lin-
ear programs [6]. Thus methods from those areas may
be applicable to discriminant problems. For instance,
Soltysik and Yarnold [15] applied the algorithm of
Warmack and Gonzalez [18] to the two-group linear
discriminant problem.

Formulation

The following is a typical mixed integer programming
model for the two-group case, using a scalar linear dis-
criminant function:

min
2X

gD1


gCg

Ng

NgX
nD1

zgn

s.t. X1wC w0 � 1 �M � z1 � 0

X2wC w0 � 1CM � z2 � 0

w;w0 free; zg 2 f0; 1gNg :

(1)

Matrix Xg is an Ng � p training sample from group g,
while 
g and Cg are respectively the prior probabil-
ity of group g and the cost of misclassifying a mem-
ber of that group.M is a sufficiently large positive con-
stant, and 0 and 1 denote vectors, all of whose en-
tries are respectively 0 or 1. The discriminant func-
tion f (x) D w0xC w0 is intended to produce nega-
tive scores for members of the first group and positive
scores for members of the second group. Bivalent indi-
cator variable zgn takes value 1 if the nth training obser-
vation from group g is classified incorrectly and 0 if it is
classified correctly.

The discriminant function is linear as written, but
various nonlinear functions can be generated by em-
bedding the attribute space<p in a higher-dimensional
space. Support vector machines are particularly adept
at this. Polynomial functions, for instance, are easily ac-
commodated in (1) by expanding the sample matrices
to include powers and products of attributes.

A score of zero results in an ambiguous classifica-
tion. Some authors deal with this by changing the first
two constraints of (1) to

X1wC w0 � 1 �M � z1 � �" � 1
X2wC w0 � 1CM � z2 � C" � 1 ;

where " is a small positive constant. This formulation is
nearly as general, although it is mathematically possible
that infelicitous choices of " and M could rule out an
otherwise desirable solution.

Problem (1) is known to be NP-hard [1]. At the
same time, using the finite VC-dimension of linear clas-
sifiers [16,17], it can be shown that the error rate of
the solution to (1) converges in probability to the op-
timal error rate as sample size grows [2]. Assuming
availability of sufficient data, a key question is whether
the problem remains tractable when the training sam-
ple is large enough to provide a suitably accurate so-
lution. There is grounds for (cautious) optimism, in
that progress in hardware, software and algorithms ad-
vances the boundaries of what is tractable, while for
a given problem instance the sample size needed for ac-
curacy is static.

While there will often be a unique best choice of
training observations to misclassify (i. e., unique opti-
mal values of z1 and z2), there commonly will be in-
finitely many choices for the coefficients w, w0 of a dis-
criminant function that misclassifies those observations
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only. To select from among those coefficient solutions,
authors often introduce additional terms in the objec-
tive function. As an example, Bajgier and Hill [4] used
a formulation similar to the following:

min
2X

gD1


g

Ng

NgX
nD1

h
Cgzgn C "1d�gn � "2d

C
gn

i

s.t. X1wC w0 � 1C dC1 � d�1 �M � z1 �0

X2wC w0 � 1 � dC2 C d�2 CM � z2 �0
w;w0 free; dCg ; d

�
g � 0; zg 2 f0; 1gNg :

The deviation variables dCg and d�g measure the amount
by which each score falls on the correct and incorrect
side of the zero cutoff, respectively. The objective func-
tions rewards the former and penalizes the latter, using
small positive objective coefficients "1 and "2 to prevent
improvements in these terms from inducing unneces-
sary misclassifications.

The motivation for formulation (1) is simple: if
the training samples are representative of the overall
population, the discriminant function that minimizes
misclassification costs on the training samples should
come close to minimizing expected misclassification
cost on the overall population. Models like (1) tend to
be computationally expensive, however. As is typical
with mixed integer programming models, computation
time increases modestly with the number of attributes
(p) but more dramatically with the number of zero-one
variables (N1 C N2, the combined sample size). More-
over, the constant M must be chosen large enough that
the best choice of w and w0 is not rendered infeasible
by a misclassified observation with score larger than
M in magnitude; but the larger M is, the weaker the
bounds in a branch-and-bound solution of the prob-
lem, and thus the longer the solution time. Codato and
Fischetti [7] reported success using a form of Benders
cut to eliminate M.

In the special case where all attribute variables are
discrete, it is likely that some observation vectors will
appear more than once in the training samples. When
that occurs, the number of zero-one variables can be re-
duced from one per observation to one per distinguish-
able observation, yielding a variation of (1) in which the
objective function is replaced with

min
X2

gD1


gCg

Ng

XKg

kD1
Ngkzgk :

In this formulation [3], Kg is the number of distinct at-
tribute vectors x in the training sample from group g,
Ngk is the number of repetitions of the kth distinct ob-
servation from group g, and the matrices Xg contain
only one copy of each such observation.

Multiple Groups

WhenG > 2 groups are involved, the problem becomes
considerably more complicated. In a practical applica-
tion with multiple groups, it is plausible that misclassi-
fication costs would depend not only on the group to
which a misclassified point belonged but also the one
into which it was classified. Thus an appropriate objec-
tive function might look like

GX
gD1


g

Ng

GX
hD1
h¤g

Cgh

NgX
nD1

zghn ;

where Cgh is the cost of classifying a point from group g
into group h and zghn is 1 if the nth observation of
group g is classified into group h and 0 otherwise. This
represents a substantial escalation of the number of in-
dicator variables. As a consequence, most research on
the multiple group problem assumes that misclassifica-
tion costs depend only on the correct group.

Few models, and fewer computational results,
have been published for the multiple group problem.
Gehrlein [9] presented one of the earliest scalar-valued
mixed integer models for the case G > 2. The range
of his discriminant function is partitioned into sepa-
rate intervals corresponding to the groups. His model,
adapted to the preceding notation, is

min
GX

gD1


gCg

Ng

NgX
nD1

zgn

s.t. XgwC w0 � 1 �M � zg � Ug � 1 � 0

XgwC w0 � 1CM � zg � Lg � 1 � 0

Ug � Lg � 0
Lh � Ug CMyhg � "

ygh C yhg D 1

w;w0; L;U free;

zg 2 f0; 1gNg ; y 2 f0; 1gG(G�1) :

The first three constraints are repeated for g D

1; : : : ;G while the next two are repeated for all pairs g;
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h D 1; : : : ;G such that g ¤ h. Observations are clas-
sified into group g if their scores fall in the interval
[Lg ;Ug]. Variable ygh D 1 if the scoring interval for
group g precedes that for group h. Parameter " > 0 dic-
tates a minimum separation between intervals.

Using a single scalar-valued discriminant function
with G > 2 groups is restrictive; it assumes that the
groups project onto some line in an orderly manner.
In [9], Gehrlein also suggested a model using a vector-
valued discriminant function f () of dimension G. Ob-
servation x would be classified into the group corre-
sponding to the largest component of f(x). The model
increases the number of coefficient variables and the
number of constraints but not the number of 0-1 vari-
ables, the primary determinant of execution time. The
model is:

min
GX

gD1


gCg

Ng

NgX
nD1

zgn

s.t. Xgwg C wg0 � 1 � Xgwh � wh0 � 1CM � zg
� " � 1

wg ;wg0 free; zg 2 f0; 1gNg :

Herew0gxC wg0 is the gth component of f(x) and " > 0
is the minimum acceptable difference between the cor-
rect component of the scoring function and the largest
incorrect component. The sole constraint is repeated
once for each pair g; h D 1; : : : ;G such that g ¤ h.

Methods

Advances in computer hardware, optimization soft-
ware and algorithms for the mixed integer classifica-
tion problem have allowed progressively larger train-
ing samples to be employed: where Koehler and Eren-
guc [11] were restricted to combined training samples
of 100 in 1990 (on a mainframe), Rubin [13] was able
to handle over 600 observations in 1997 (on a per-
sonal computer). Nonetheless, a variety of heuristics
have been developed to find near optimal solutions to
the problem. Several revolve around this property of
the problem: if the training samples can be classified
with perfect accuracy by a linear function, then prob-
lem (1) can be solved as a linear program, with the
zgn deleted, to obtain a discriminant function. Deletion
of the zgn reduces the objective function to a constant

0. Although this is perfectly acceptable, heuristics may
substitute an objective function from one of the linear
programming classification models, to encourage the
chosen discriminant function to separate scores of the
two groups as much as possible. This often also neces-
sitates inclusion of a normalization constraint, to keep
the resulting linear program from being unbounded.
Alternatively, (1) may be solved heuristically to deter-
mine which training observations to misclassify, and
then a linear programming model using the remaining
observations may be employed to select the final dis-
criminant function.

The BPMM heuristic of [11] solves the linear pro-
gram dual to a relaxation of the mixed integer prob-
lem, notes which observations would be misclassified
by the resulting discriminant function, and then solves
the dual of each linear relaxation obtainable by delet-
ing one of those observations. Solving the dual problem
tends to be more efficient than solving the primal, since
there will typically be more observations than attributes
(N1 C N2 � p). The heuristics presented in [14] also
operate on the dual of the linear relaxation of the mixed
integer problem, restricting basis entry to force certain
dual variables to take value zero (equivalent to relaxing
the corresponding primal constraints, thus allowing the
associated observations to be misclassified).

As noted earlier, comparatively few computational
studies involve mixed integer models for multiple
groups. Pavur proposed a sequential mixed integer
method to handle multiple groups [12], constructing
a vector-valued scoring function from a sequence of
scalar functions. An initial mixed integer model sim-
ilar to Gehrlein’s is solved to obtain the first scalar
function. Thereafter, a sequence of similar mixed in-
teger models is solved, with each model bearing addi-
tional constraints compelling the scores produced by
the next scoring function to have sample covariance
zero with the scores of each of the preceding functions.
The covariance constraints impose a sort of probabilis-
tic “orthogonality” on the dimensions of the composite
(vector-valued) scoring function.

See also

� Deterministic and Probabilistic Optimization
Models for Data Classification

� Integer Programming
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� Linear Programming Models for Classification
� Optimization in Boolean Classification Problems
� Statistical Classification: Optimization Approaches
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Heat exchanger networks use the waste heat released by
hot process streams to heat the cold process streams of
a chemical manufacturing plant, reducing utility costs
by as much as 80%. Heat exchanger network synthesis
has been an active area of process research ever since
the energy crisis of the 1970s, and over 400 research pa-
pers have been published in the area. See [1,2,4,5,6], for
recent reviews.

In 1979, T. Umeda et al. [8] discovered a thermo-
dynamic pinch point that limits the energy savings of
a heat exchanger network, establishes minimum util-
ity levels, and partitions the heat exchanger network
into two independent subnetworks. This discovery rev-
olutionized heat exchanger network synthesis: with it,
designers could compute utility levels a priori, then
seek the heat exchanger network structure that uses the
minimum utility consumption while also minimizing
the total investment cost. This remaining problem re-
quires matching the hot utilities and process streams
that release heat with the cold process streams and util-
ities that require heat, choosing the network structure
of each stream, and designing the individual heat ex-
changer networks. In general, this is a mixed integer
nonlinear programming problem (MINLP), but can be
decomposed into two smaller problems by first select-
ing the matches between hot and cold process streams
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and utilities by minimizing the total number of units,
then optimizing the network structure. The first prob-
lem is a mixed integer linear programming problem
that will be discussed in detail here.

UsingMILP Models
to Find the MinimumNumber of Units

Stated formally, the minimum-units problem is:
Given
1) A set of hot process streams and utilities i 2 H, and

for each hot stream i:
a) the inlet and outlet temperatures TI

i and TO
i ;

b) either the heat capacity flow rate FCPi or the heat
duty Qi.

2) A set of cold process streams j 2C, and for each cold
stream j:
a) the inlet and outlet temperatures TI

j and TO
j ;

b) either the heat capacity flow rate FCpj or the heat
duty Qj,

3) The minimum temperature difference between hot
and cold streams exchanging heat, � Tmin.

Identify a set of stream matches (ij) and their heat du-
ties Qij that
a) meets the heating and cooling needs of each stream;

and
b) minimizes the total number of matches.

S.A. Papoulias and I.E. Grossmann [7] formulated
this as a mixed integer programming problem using
a transshipment model, by making an analogy between
heat exchanger networks and transportation networks.
In the transshipment analogy, hot process streams, the
sources of heat, are similar to manufacturing plants, the
sources of goods, while cold process streams, the heat
sinks, are akin to stores and shopping malls, the sinks
of manufactured goods.

The analogy is not perfect, as heat only flows from
a high temperature to a lower one, in obedience to the
second law of thermodynamics. Partitioning the tem-
perature range of the heat exchanger network into in-
tervals can capture this heat flow pattern. Each interval
sends excess, or residual, heat to the interval below it,
just as excess manufactured goods are sent to a discount
warehouse.

The hot side of this temperature cascade is created
by ordering TI

i and TI
j + � Tmin from the highest to

the lowest value, creating t = 1, . . . , TI temperature in-

Mixed Integer Linear Programming: Heat Exchanger Net-
work Synthesis, Table 1
Stream data.QCW = 8395.2 kW ,�Tmin = 10°C

Stream T in(ı) Tout(ı) FCp(kW/K)
H1 159 77 228:5
H2 159 88 20:4
H3 159 90 53:8
C1 26 127 93:3
C2 118 149 196:1

tervals. Temperatures on the cold side of the cascade
equal the temperature on the hot side minus �Tmin.
Hot stream i releases QH

i t units of heat to temperature
interval t. QH

i t is equal to

QH
it D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

FCPi (Tt�1 � Tt)
if TI

i � Tt�1 and TO
i � Tt ;

FCPi (Tt�1 � TO
i )

if TI
i � Tt�1 and TO

i � Tt ;

Q
if TI

i D TO
i and Tt�1 D TI

i :

Cold stream j absorbs QC
jt units of heat from tempera-

ture interval t. QC
jt equals

QC
jt D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

FCPj(Tt�1 � Tt)
if TI

j � Tt �	Tmin and
TO
j � Tt�1 �	Tmin;

FCPj(T0
j � Tt�1)

if TI
j � Tt �	Tmin and
TO
j � Tt�1 �	Tmin;

Qj

if TI
j D TO

j and TI
j D Tt�1 �	Tmin:

Any excess heat sent to interval t from hot stream i
cascades down to interval t+1 through the residual flow
Rit . Process utilities may be treated as process streams,
or may be placed at the top or bottom of the cascade.

This transshipment model of heat flow leads to the
following mixed integer linear programming problem:

min
X
i; j

yi j
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subject to

Ri;t � Ri;t�1 C
X
j

qi jt D QH
it ;

i D 1; : : : ;H; t D 1; : : : ; TI;
(1)

X
i

qi jt D QC
jt ; j D 1; : : : ;C; t D 1; : : : ; TI; (2)

Qi j D
X
t2TI

qi jt ; i D 1; : : : ;H; j D 1; : : : ;C; (3)

Qi j � Ui j yi j; i D 1; : : : ;H; j D 1; : : : ;C; (4)

(
qi jt � 0;
Rt � 0;

i D 1; : : : ;H; j D 1; : : : ;C; t D 1; : : : ; TI;

(5)

R0 D RT D 0; (6)

yi j D f0; 1g; i D 1; : : : ;H; j D 1; : : : ;C: (7)

In this formulation, yij is a binary variable which is
one if a match between hot process stream i and cold
process stream j occurs, and zero otherwise; qijt is the
amount of heat exchanged between hot stream i and
cold stream j in temperature interval t, Rit is the resid-
ual heat flow associated with hot stream i that cascades
down from temperature interval t to temperature in-
terval t+1, and Qij is the heat duty of match (i, j). The
overall objective function minimizes the total number
of units. Constraint (1) is the energy balance for hot
stream i around temperature interval t and constraint
(2) is the energy balance for cold stream j around tem-
perature interval t. Constraint (3) finds the overall heat
duty of match (ij). Constraint (4) sets this heat duty to
zero when match (ij) does not exist. The nonnegativ-
ity constraints prevents heat flow from a low tempera-
ture to a higher one. Note that the residual heat flows
into the first temperature interval and out of the last
temperature interval are zero when there are no utili-
ties above or below the cascade. The objective function
and the constraints are linear, and the formulation in-
volves both continuous and integer variables, making
this a mixed integer linear programming problem.

Lower bounds on the solution of this problem are
given by linear programming problems where some in-
teger variables are fixed to either zero or one and the
remainder are treated as continuous variables. The ac-
curacy of these bounds depends upon the parameters
Uij is the fourth constraint. When these parameters are
very large, the lower bounds will be quite far from the
solution of the MILP.

The smallest acceptable value ofUij is the minimum
of the cooling requirements of stream i and the heating
requirements of stream j:

Ui j D min

(X
t2TI

QH
i t ;
X
t2TI

QCjt

)
:

Example 1 This example is from [3] and features three
hot streams, two cold streams, and a cold utility. Table 1
gives the inlet and outlet stream temperatures and the
flowrate heat capacities of each process stream and the
cooling water duty.

Temperatures on the hot side of the cascade are
159°C, 128°C, and 36°C, while temperatures on the cold
side are 149°C, 118°C and 26°C. There are two temper-
ature intervals. Table 2 gives the heat released from hot
streams to the temperature intervals, while Table 3 gives
the heat absorbed by the cold streams from the temper-
ature intervals.

Mixed Integer Linear Programming: Heat Exchanger Net-
work Synthesis, Table 2
QH
it , heat released from hot stream i to temperature interval t

Stream Temperature Interval
TI-1 TI-2

H1 7083:5 11635:5
H2 632:4 816:0
H3 1667:8 2044:4

Mixed Integer Linear Programming: Heat Exchanger Net-
work Synthesis, Table 3
QC
it , heat absorbed by cold stream i from temperature inter-

val t

Stream Temperature Interval
TI-1 TI-2

C1 839:7 8583:6
C2 6079:1
CW 8395:2
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Mixed Integer Linear Programming: Heat Exchanger Network Synthesis, Table 4
Four solutions which satisfy minimum number of matches

Solution 1 Solution 2 Solution 3 Solution 4
Match Duty (Qi j) Match Duty (Qi j) Match Duty (Qi j) Match Duty (Qi j)
H1�C1 9423:3 H1�C1 7974:9 H1�C1 5711:1 H1�C1 4262:7
H1�C2 6079:1 H1�C2 6079:1 H1�C2 6079:1 H1�C2 6079:1
H1�CW 3234:6 H1�CW 4683:0 H1�CW 6946:8 H1�CW 8395:2
H2�CW 1448:4 H2�C1 1448:4 H2�CW 1448:4 H2�C1 1448:4
H3�W 3712:2 H3�CW 3712:2 H3�C1 3712:2 H3�C1 3712:2

In this example, the minimum number of units is 5,
and there are four solutions to this MILP that meet this
minimum (cf. Table 4).

Conclusions

Mixed integer linear programs are used in heat ex-
changer network synthesis to identify the minimum
number of units, and a set of matches and their heat
loads meeting the minimum. These MILPs are based
upon a transshipment model of heat flow.
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Separation networks involving mass transfer operations
that do not require energy (e. g. absorption, liquid-
liquid extraction, ion-exchange etc.) are characterized
as mass exchange networks (MEN). These appear in
the chemical industries mostly in waste treatment, but
also, in feed preparation, product separation, recovery
of valuable materials, etc. Amass exchanger, in this con-
text, is any counter-current, direct-contact mass trans-
fer unit, where one or more components are trans-
ferred at constant temperature and pressure from one
process stream, which is characterized as rich stream,
to another process or utility stream, characterized as
lean stream. Mass integration aims to the purification
of the rich streams and the recovery of valuable or haz-
ardous materials at the minimum total cost (invest-
ment and operating cost of auxiliary streams). In the
specific case, when the mass transfer operations take
place at the same temperature, or heating/cooling re-
quirements are negligible, the integration problem is
limited to the synthesis of a mass exchanger network
(MEN) only. When mass exchange operations at dif-
ferent temperature levels are encountered, mass and
heat exchanger networks (MHEN) may be considered
simultaneously.

MEN synthesis involves a set of rich streams, in
terms of one or more components, R = {i: i = 1, . . . ,NR},
with known flowrates, Gi, inlet and outlet compositions
for the components of interest, ysic, y

t
ic (exact values or

bounds) respectively, and a set of process or auxiliary
lean streams (mass separating agents, MSAs), S = {j: j =
1, . . . , NS} with known cost, inlet and outlet composi-
tions for the same components, xsjc, xtjc (exact values or
bounds), as shown in Fig. 1.

The synthesis problem refers to the selection of the
appropriate lean streams and their flowrates, Lj, the
mass exchange operations (mass exchange matches), the
mass transfer load for each separator and its required
size, and the configuration of the overall network.

Mass transfer in each mass exchanger is governed
by the first and second thermodynamic laws, as is heat
transfer in heat exchangers. Mass transfer of a compo-
nent c from a rich to a lean stream is feasible if the com-
position of c in the rich phase is greater than the equi-

Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 1

librium composition with respect to the lean phase:

yc � f (xc)C �; (1)

where f (xc) is the equilibrium relation and � is a min-
imum composition difference that ensures feasible mass
transfer in a separator of finite size, in analogy to�Tmin

in heat exchangers. This analogy led to the development
of synthesis methods for mass exchanger networks em-
ploying mixed integer optimization techniques, simi-
lar to heat exchanger networks (cf. Mixed Integer Lin-
ear Programming:Mass and Heat Exchanger Networks;
� MINLP: Mass and Heat Exchanger Networks), that
are categorized into the sequential synthesis and the si-
multaneous synthesismethods.

The sequential MEN synthesis method, introduced
in [3] and [4] involves the following steps:
1) Minimum cost of mass separating agents (minimum

utility problem), to determine the optimal flows of
the mass separating agents.

2) Minimum number of mass exchanger units, for
fixed MSA flows, to determine the mass exchange
matches.

3) Network configuration and separator sizes for fixed
mass exchange operations.

The first two synthesis steps involve the solution of lin-
ear and mixed integer linear problems.

A useful tool of the sequential MEN synthesis
method is the composition interval diagram, CID,
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where thermodynamic feasibility of mass transfer is ex-
plored mapping the rich and the lean streams on equiv-
alent composition scales, that are derived from themass
transfer feasibility requirements in (1). In general, the
composition equivalent scales and the minimum com-
position difference, �, are defined for each component
of interest and each pair of rich and lean streams. In the
simple case of a single component, where mass transfer
is independent of the presence of other components in
the rich streams, the CID is constructed as illustrated in
Fig. 2.

Feasible rich-to-lean mass transfer is guaranteed
within a composition interval when the equilibrium re-
lation f (xc) is convex within the interval. When f (xc) is
convex in the whole composition range, only inlet com-
positions are required to construct the CID [8].

The minimum cost of mass separating agents is
found employing a transshipment model, where the
components of interest are the transferred commodi-
ties, the rich and the lean streams are considered as
sources and sinks respectively, and the composition in-
tervals define the intermediate nodes [4]. Themodel in-
volves energy balances around the temperature inter-
vals (intermediate nodes):

(TP1)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
j

c jL j

s.t. ık�1 C
X
i2Rk

WRi
k

D ık C
X
j2Sk

WS j
k

0 � Lj � Lupj ; j 2 S;
ı0 D ıNint D 0;
ık � 0; k D 1; : : : ;Nint � 1;

where
� Rk is the set of rich streams, present in interval k;
� Sk is the set of lean streams, present in interval k;
� N int is the number of composition intervals;
� WRi

k is the mass exchange load of rich stream i in
interval k,

WRi
k D Gi(yk �max(ykC1; yti ));

� WSjk is the mass exchange load of lean stream j in
interval k,

WSj
k D Lj(min(xt

j ; x jk ) � x jkC1);

Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 2
Composition interval diagram

� ık is the residual mass exchange load in interval k.
Problem (TP1) results in the optimal flows of the mass
separating agents and the identification of the pinch
points, i. e. the thermodynamic bottlenecks in mass
transfer. The pinch points are defined by zero residual
flows and divide the mass exchange network into sub-
networks. Mass transfer between different subnetworks
(i. e. across the pinch) increases the cost of mass sepa-
rating agents.

An assumption in (TP1) is that molar flows of the
rich and the lean streams are constant. If significant
flowrate variations take place, compositions and mass
exchange loads are calculated based on nontransferable
components.

The following cases are distinguished:
� Fixed inlet and outlet compositions.

Then, (TP1) is an LP problem.
Whenmultiple components are considered, the CID
is defined for all the components of interest and
(TP1) corresponds to the multicommodity trans-
shipment model. The pinch points are then deter-
mined by the component that requires the greater
MSA flows.

� Variable outlet compositions.
Then, the mass exchange loads of the rich and lean
streams in their final intervals (defined by the up-
per and lower bounds on their outlet compositions)
are variables. Problem (TP1) can still be solved as an
LP [9], considering the variable mass exchange loads
explicitly in the model.

Variable inlet compositions usually require flexible
mass exchange networks to accommodate the varia-
tions and define a different problem. For a single com-
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ponent it has been shown that the minimum MSA cost
corresponds to the lower bounds of the inlet composi-
tions [8].

For nonconvex equilibrium relations, (TP1) cannot
guarantee feasible mass transfer throughout the com-
position range, while the predicted MSA cost is a lower
bound to the actual minimum one. B.K. Srinivas and
M.M. El-Halwagi suggested in [14] an iterative proce-
dure to calculate the minimum required MSA cost, that
involves two major steps:
i) a ‘feasibility problem’, where ‘critical’ composition

levels are identified and included in the CID (non-
convex NLP step, that requires global optimization
methods), and

ii) (TP1) with updated intervals, which calculates in-
creasing lower bounds to the minimumMSA cost.

Instead of target outlet compositions for the rich
streams, it may be of interest to remove a certain total
mass load of pollutants. Then, (TP1) is solved with vari-
able rich outlets and a fixed total mass exchange load
[10]:

Mc D
X
i

Gi (ysi � yti )

The minimum-utility-cost problem has been alter-
natively formulated as an LP or MINLP problem, based
on total mass balances and the following property:

8<
:

Mass lost by all the rich
streams below each
pinch point candidate

9=
;

�

8<
:

Mass gained by all the lean
streams below each
pinch point candidate

9=
; � 0 (2)

and employing binary variables to denote the relative
position of variable outlet compositions with respect to
each pinch point candidate in the CID [5,6,8,9].

The minimum number of mass exchange opera-
tions (units) for fixed MSA cost is determined in each
subnetwork in a second step, in an attempt to minimize
the fixed cost of the separators. The minimum number
of mass exchangers is found employing the expanded
transshipment model, where the existence of a mass ex-
change match-separator in a subnetwork is denoted by

a binary variable:

Ei jm D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1; when streams i; j
exchange mass
in subnetwork m

0; otherwise:

For a single component, the minimum number of mass
exchanger units is given by the following MILP prob-
lem [4]:

(TP2)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
m

X
i2Rm

X
j2Sm

Ei jm

s.t. ıi k � ıi k�1 C
X
j2Smk

Mi jk DWRi
k ;

k 2 Im ; i 2 Rmk ; m 2 M;X
i2Rmk

Mi jk DWSj
k ;

k 2 Im ; j 2 Smk ; m 2 MX
k2Im

Mi jk � Ei jmUi jm � 0

ıi k � 0; k 2 Im ; i 2 Rm ;

Mi jk � 0; k 2 Im ;
i 2 Rkm ; j 2 Skm
Ei jk D 0; 1; k 2 Im ;
i 2 Rkm ; j 2 Skm ;

where
� Rm is the set of rich streams, present in subnetwork

m,
� Sm is the set of lean streams, present in subnetwork

m,
� Im is the set of intervals in subnetwork m,
� Rkm is the set of rich streams, present in interval k of

subnetwork m, or above,
� Skm is the set of lean streams, present in interval k of

subnetwork m,
� WRi

k is the mass exchange load of rich stream i in
interval k,

� ıik is the residual mass exchange load of rich stream
i in interval k,

� WSjk is the mass exchange load of lean stream j in
interval k, as determined by (TP1),

� Mijk is the mass exchange load between i and j in
interval k,
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� Uijm is an upper bound to the possible mass ex-
change load between i and j in subnetwork m,

Ui jm D min

0
@X

k2Im

WRi
k ;
X
k2Im

WS j
k

1
A :

Srinivas and El-Halwagi have shown [14] that, when the
equilibrium relations around a pinch point are not con-
vex, a mass exchanger can straddle the pinch and still be
thermodynamically feasible. To account for such cases,
exchangers across the pinch points can be considered
introducing extra binary variables:

Ii jp � Mi jp;

Ii jpC1 � Mi jpC1;

Ii jp C Ii jpC1 � 2Bi jp;

Ii jp; Ii jpC1 2 f0; 1g;

Bi jp 2 f0; 1g;

where
� Iijp denotes that streams i and j exchange mass at the

interval directly above pinch point p,
� Iijp+1 denotes that streams i and j exchange mass at

the interval directly below pinch point p,
� Bijp denotes the existence of an exchanger between

streams i and j, across the pinch p.
Then, the number of required units to minimize is
given by:

X
m

0
@X

i2Rm

X
j2Sm

Ei jm �
X
p

Bi jp

1
A :

Note, that Iijp-variables can be relaxed to continuous,
due to total unimodularity of the model with respect to
these variables:

0 � Ii jp; Ii jpC1 � 1

Problem (TP2) may not have a unique solution.
Alternative combinations of mass exchange matches,
featuring the minimum MSA cost, may be generated
by solving (TP2) iteratively and including integer cuts.
These do not necessarily correspond to networks of the
same overall cost.

The expanded transshipment model can also be em-
ployed to determine the minimumMSA cost, consider-
ing variable mass loads for the lean streams. Then, for-
bidden or restricted mass exchange operations can be
explicitly accounted for.

Although (TP2) does not determine the network
structure, stream splitting and exchanger connectivity
may be guided by the resulting mass exchange load dis-
tribution in each composition interval [4]. The actual
network configuration is found in a next step, employ-
ing heuristic methods [3,5] or superstructure methods
(NLP models).

Special cases of mass exchange networks have been
studied:
� MEN and regeneration networks [5,11].

The regeneration of mass separating agents by auxil-
iary streams can be considered simultaneously with
the main MEN, in another mass exchanger network,
where the MSAs behave as the rich streams. In this
case, the CID is extended to include the equivalent
composition scales of the regenerating agents. The
inlet and outlet compositions of the lean streams in
the main MEN are in general variables.

� Reactive mass exchange networks [6,11,14]
Rich-to-lean mass transfer may involve interphase
mass transfer and chemical reaction in the lean
phase, at constant temperature. Mass exchange op-
erations of this kind are considered deriving the
equilibrium relations based on chemical equilib-
rium.

The main advantage of the sequential synthesis method
for mass exchange networks is that simple optimiza-
tionmodels are solved. However, unless theMSA cost is
dominant, as synthesis decisions are fixed from one step
to the next, important trade-offs between operating and
capital cost are not exploited and overall cost optimal-
ity cannot be guaranteed. Furthermore, the minimum
composition difference, � that defines the mass recov-
ery levels in (TP1) and (TP2), is in general, an optimiza-
tion variable for each mass exchanger separately. In the
sequential synthesis method this is fixed arbitrarily to
a possibly conservative value for the construction of the
CID. El-Halwagi and V.Manousiouthakis [4] suggested
a two-level optimization procedure to select a unique �
for all mass exchange operations, based on the impact
of � on the final MEN cost, still, not exploiting the over-
all cost trade-offs.

When isothermal mass exchange operations take
place at different temperature levels, the operating and
overall mass integration costs are affected by the heat-
ing and cooling requirements of the system. Energy
integration between the rich and lean streams can be
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Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 3

considered within a mass and heat exchanger network
synthesis problem (MHEN) to reduce the total cost.
The overall problem is addressed combining MEN and
HEN synthesis tools. The optimal temperature of mass
exchange is defined for each pair of rich and lean
streams by the equilibrium relations that limit mass
transfer

yi � Ki j(T)x j;

where Kij(T) is a known function of temperature.
In the sequential synthesis framework, the overall

minimum operating cost for the network (cost of mass
separating agents and heating/cooling utilities) may be
calculated from a combined mass and heat transship-
ment model. Each stream is considered to consist of
substreams, of the same inlet and outlet composition
and temperature, each of which participates to isother-
mal mass exchange operations at a different temper-
atures. Srinivas and El-Halwagi proved [13], that, for
monotonic dependence of the equilibrium constant on
temperature, the overall utility cost of the combined
MHEN is independent of such a stream decomposition,
see Fig. 3.

Although the mass exchange temperatures (T1, . . . ,
TN) are variables, their relative position with respect to
inlet and outlet stream temperatures (greater or less)
can be prepostulated. Thus, the rich and lean sub-
streams define hot (or cold) streams before their mass
exchange operations and cold (or hot) streams after-
wards, cf. Fig. 4.

A CID is constructed, similarly to the simple MEN
case, involving the several substreams with variable
flows, and thus, variable mass loads in each composi-

(Ril; ySi ;T
S
i )

hot
stream

�
�

���
(Ril; ySi ;Tl)

stream
rich

� (Ril; yti;Tl)
�

�
���
stream
cold

(Ril; yti;T
t
i )

Mixed Integer Linear Programming: Mass and Heat Ex-
changer Networks, Figure 4
Rich substream with Tsi � Tl � Tti

tion interval. Mass exchange is permitted between sub-
streams of the same temperature. A temperature inter-
val diagram, TID, is also constructed, involving the hot
and cold substreams and the available heating and cool-
ing utilities, with variable heat loads per interval, due
to the variable substream flows. In order to avoid dis-
crete decisions (i. e. presence or not of streams in tem-
perature intervals with variable limits), the temperature
range for each mass transfer operation is discretized
and a substream is associated with each candidate tem-
perature [13].

Theminimumutility cost is found from the solution
of the combined LP transshipment model, which, for
a single component is as follows:

(TP3)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min

0
@X

j2S

c jL j

C
X
n2TI

X
h2HUn

chQHUhn

C
X
n2TI

X
c2CUn

ccQCUcn

1
A

such that

ıl i k � ıl i k�1 C
X
j2S

X
l 0j2SS jk

Mli l 0j k D WRli
k ;

k 2 CI; i 2 R; li 2 RSik ;

X
i2R

X
l 0i2RSik

Ml 0i l j k
DWSl jk ;

k 2 CI; j 2 S; l j 2 SSjk ;

�l s n � �l s n�1

C
X

s02R[S

X
l 0s02CSs0n

Qls l 0s0 n



Mixed Integer Linear Programming: Mass and Heat Exchanger Networks M 2223

C
X

c2CUn

QCls cn D QSls n ;

n 2 TI; s 2 R [ S; ls 2 HSsn ; � h
hn � �

h
hn�1

C
X

s2R[S

X
l s2CSsn

QHhls n D QHUhn ;

n 2 TI; h 2 HUn ;

X
s02R[S

X
l 0s02HSs0n

Ql 0s0 l s n

C
X

h2HUn

QHhls n D QSls n ;

n 2 TI; s 2 R [ S; ls 2 CSsn ;

X
s2R[S

X
l s2HSsn

QCls cn D QCUcn ;

n 2 TI; c 2 CUn ;

ıl i k � 0; k 2 CI; i 2 R; li 2 RSik ;

�l s n � 0; n 2 TI; s 2 R [ S; ls 2 HSsn ;

� h
hn � 0; n 2 TI; h 2 HUn ;

Mli l 0j k
� 0;

k 2 CI; i 2 R; j 2 S;

li 2 RSik ; l 0j 2 SSjk ;

Mli l 0j k D 0;

k 2 CI; i 2 R; j 2 S;

li 2 RSik ; l 0j 2 SSjk ;

(li l 0j) 2 FM;

ıl i0 D ıl i NCI D 0;

i 2 R; li 2 RSi ;

�l s0 D �l s NTI D 0;

s 2 R [ S; ls 2 HSs ;

� h
h0 D �

h
hNTI
D 0;

h 2 HU;

where
� CI is the set of composition intervals k,
� TI is the set of temperature intervals n,

� RSik is the set of substreams of rich stream i, of vari-
able flow, Gli , such that
X
l

Gli D Gi ;

present in interval k, or above,
� SSjk is the set of substreams of lean stream j, of vari-

able flow, Ll j , such that
X
l

Ll j D Lj;

present in interval k,
� HSsn is the set of hot substreams of stream s, present

in interval n, or above,
� CSsn is the set of cold substreams of stream s, present

in interval n,
� HUn is the set of hot utilities, present in interval n,

or above,
� CUn is the set of cold utilities, present in interval n,
� WRli k is the mass exchange load of substream li, in

interval k,

WRli
k D Gli (yk �max(ykC1; yi spt));

� WSl j k is the mass exchange load of substream lj, in
interval k,

WSl jk D Ll j (min(xt
j ; x jk ) � x jkC1);

� ı l i k is the residual mass load of substream li in inter-
val k,

� Mli l 0 j k is the mass exchange load between li and l0j,
in k,

� FM is the set ofmass exchanging substreams that are
at different temperatures,

� QSlsn is the heat load of substream ls in interval n,
� Qls ls00n is the heat exchange load between ls and ls0 0

in interval n,
� � l s n is the residual heat load of hot substream ls in

interval n,
� QHUhn is the heat load of hot utility h in interval n,
� QCUcn is the heat load of cold utility c in interval n,
� QHhlsn is the heat exchange load between hot utility

h and ls in interval n,
� � h

hn is the residual heat load of hot utility h in inter-
val n,

� QCls cn is the heat exchange load between ls and cold
utility c in interval n.
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Problem (TP3) results in the minimum utility cost and
the corresponding flows of separating agents and heat-
ing/cooling utility streams, the optimal decomposition
of each stream into substreams of fixed mass exchange
temperature and the mass and heat exchange pinch
points and corresponding subnetworks.

The minimum operating cost of the combined
MHEN can alternatively be found applying the first and
second thermodynamic laws (property in (2)) on the
composition and temperature interval diagrams [13].

Theminimum number of mass and heat exchangers
is determined in a second step through the expanded
MILP transshipment model, separately in each mass
and heat exchanger subnetwork. The final network con-
figurations and unit sizes are determined in a final step,
applying heuristic rules or superstructure models.

Additional disadvantages of the sequential MHEN
synthesis method, compared to the synthesis of simple
MEN, are that:
i) the mass and heat exchange networks are assumed

separable and
ii) the intermediate mass exchange temperatures are

decided in the first step; this forbids full exploitation
of the mass/heat integration trade-offs, as capital
cost implications of such decision is not accounted
for.

Modeling concepts from the sequential mass and heat
exchanger network synthesis methods, employing LP
and MILP optimization models, have been extended
to explore distillation networks [1], pervaporation sys-
tems [12] and other energy-requiring separation net-
works [2,7].
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Introduction

The global optimization of classes of mixed integer
nonlinear bilevel optimization problems is addressed.
For problems where the integer variables participate in
both the inner and the outer problems, the outer level

may involve general mixed-integer nonlinear functions.
The inner level may involve functions that are mixed-
integer nonlinear in outer variables, linear, polyno-
mial, or multilinear in inner integer variables and linear
in inner continuous variables. The technique is based
on reformulating the mixed-integer inner problem as
continuous by its convex hull representation [11,12]
and solving the resulting nonlinear bilevel optimization
problem by a novel deterministic global optimization
framework.

Formulation

The general mixed-integer nonlinear Bilevel Program-
ming Problem (BLP) formulation is:

min
x

F(x; y)

s.t. G(x; y) � 0
H(x; y) D 0

min
y

f (x; y)

s.t. g(x; y) � 0

h(x; y) D 0

x1; ::; xi 2 <n1 ; y1; ::; y j 2 <n2 ;

xiC1; ::; xn1 2 ZC; y jC1; ::; yn2 2 YIN � ZC :

(1)

where x is a vector of outer problem variables, of which
i are continuous and n1 � i are integer, y is a vector of
inner problem variables, of which j are continuous and
n2 � j are integer, F(x; y) is the outer objective func-
tion, H(x; y) are outer equality constraints, G(x; y) are
outer inequality constraints, f (x; y) is the inner objec-
tive function, h(x; y) are inner equality constraints, and
g(x; y) are inner inequality constraints. The applica-
tions of BLP are many and diverse [4,6,7]; if these prob-
lems involve discrete decisions in addition to continu-
ous ones, then the mixed-integer BLP models arise.

Classes

The nonlinear mixed integer BLP can be classified into
four different categories, depending on the existence of
integer variables in the outer or the inner problems:

(I). Integer Upper, Continuous Lower BLP;
(II). Purely Integer BLP;
(III). Continuous Upper, Integer Lower BLP;
(IV). Mixed-Integer Upper and Lower BLP.



2226 M Mixed Integer Nonlinear Bilevel Programming: Deterministic Global Optimization

Mixed Integer Nonlinear Bilevel Programming: Deterministic
Global Optimization, Figure 1
Algorithm flowsheet for type II,III,IV BLPs

The existence of both integer and nonlinear terms
in the above problem classes require special solution
techniques. The specific mathematical structure of the
mixed integer nonlinear BLP is of great import in devel-
oping corresponding solution strategies. Problems of
Type I can be addressed with existing BLP solution ap-
proaches. For problems of Type II, enumeration meth-
ods can be applied. However, BLPs of Type III and IV
are the most difficult to solve.

BLPs with Inner Integer Variables

The conventional solution method of the continuous
BLP is to transform it into a single level problem by re-
placing the inner problem with the set of equations that
define its Karush–Kuhn–Tucker (KKT) optimality con-
ditions. However, the KKT optimality conditions use
gradient information, so the conventional approach is
not applicable when integer inner variables exist. Fur-
thermore, if the integrality constraint is relaxed on the
inner integer variables, the solution of this relaxed BLP
does not provide a valid lower bound on the solution of
the mixed-integer BLP [9]. Note that even if the optimal

solution of the relaxed BLP is integral in y, this may not
be a globally optimal solution of the original BLP [9].
Thus, the conventional KKT-based methods inherently
fail in locating the global optimum.

The BLP with inner mixed-integer variables can be
transformed into an equivalent BLP with inner mixed-
binary (0-1) variables as follows. Every inner prob-
lem integer variable yj, with upper and lower bounds
yLj � y j � yUj is converted into a set of binary variables
using the formula [2]:

y j D yLj C z j1 C 2z j2 C 4z j3 C : : :C 2(N j�1)z jN (2)

where z j is a vector of (0-1) variables and Nj is the min-
imum number of (0-1) variables needed:

Nj D 1C INT

 
log(yUj � yLj )

log(2)

!
(3)

such that INT truncates its real argument to an integer.
The only time that the KKT optimality conditions

are applicable to solve the BLP with mixed-binary y is
when the following property is satisfied [8]:

Property 1 If the inner problem constraint set, Y IN, de-
fines a vertex polyhedral convex hull and all the vertices
of the convex hull lie in YIN, then the optimal inner prob-
lem integer solution is equivalent to its linear program-
ming relaxation. As a result, the Karush–Kuhn–Tucker,
KKT, conditions of relaxed inner linear problem are nec-
essary and sufficient to define the optimal inner problem
integer solution.

The property is also satisfied when outer variables ex-
ist in the inner problem constraints, such that the inner
problem vertex polyhedral convex envelope is defined
parametrically in x. Hence, the integer solution of the
inner problem lies at a vertex of the inner solution set
and the KKT optimality conditions locate the true opti-
mal solution [8].

Here, a global optimization procedure is presented
for BLPs of Type II, III and IV that is based on a refor-
mulation/linearization scheme combined with a global
optimization framework. The idea is that if the inner
problem constraint set has a vertex polyhedral convex
envelope, then Property 1 is satisfied and the mixed-
integer inner problem can be converted into a contin-
uous problem of equivalent form. The application of
the reformulation/linearization technique results in the
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convex hull representation for several classes of inner
problems.

Reformulation/Linearization

Themixed-binary inner problem constraint set is trans-
formed into the continuous domain by converting it
into a polynomial programming problem and then
relinearizing it into an extended linear problem by
a method based on [11]. First, a polynomial factor is
defined as follows:

Fn(J1; J2) D

8̂
ˆ̂<
ˆ̂̂:

 
Q
j2J1

y j

! 
Q
i2J2

(1 � y j)

!
;

J1; J2 � Ny � 1; ::; ny ;

s.t. J1 \ J2 D ;; jJ1 [ J2j D ny

9>>>=
>>>;
:

(4)

Using this polynomial factor, the convex hull of the in-
ner problem, Y IN, is obtained. If the inner optimization
problem is linear, then the 2-step process is as follows:

Step 1 Reformulation. Multiply every constraint, in-
cluding 0 � y � 1, with every factor defined as above
and use the relationship y2j D y j , 8 j D 1; ::; ny to lin-
earize terms polynomial in y. Include in the inner prob-
lem constraint set the nonnegativities on all possible
factors of degree ny (i. e. Fn(J1; J2) � 0 for all (J1; J2) of
order ny).
Step 2 Linearization. Linearize the inner constraints
that are multilinear in y, such as ˘ j2J y j by substitut-
ing a zJ for each set J with jJj � 2, with the elements
of J in increasing order. (i. e. a new variable zij is in-
troduced to substitute for a bilinear term (yi y j D zi j)
and further substitution is performed for multilinear
terms). At constant x, the resulting inner constraint set
describes a polytope with all vertices defined by binary
values and characterizes the convex hull of feasible so-
lutions for any inner problem that is linear or polyno-
mial binary in y-variables.

If the inner optimization problem is mixed-binary
linear or polynomial, the problem constraints are again
multiplied by ny-degree polynomial factors composed
of the ny binary variables and their complements and
the resulting nonlinear problem is linearized by a sub-
stitution of new variables. Additional nonlinear terms
arise from the multiplication of the ny-degree polyno-
mial factors with the inner problem linear continuous

terms in y, that are also linearized through a redefini-
tion [8,12]. This transformation is applicable when in
the mixed-binary inner problem, the continuous y are
0 � y � 1. Note that there are no such restrictions on
the outer problem x-variables in both inner and outer
problems.

Inner ProblemKKT Conditions
and Complementarity

After reformulation/relinearization, the inner problem
is replaced by the set of equations that define its neces-
sary and sufficient KKT optimality conditions:

hri (x; y
�) D 0; i 2 I ;

@ f (x; y�)
@y�

C

JX
jD1

� j
@grj
@y�
C

JX
jD1

��i
@hri
@y�
D 0 ;

grj (x; y
�)C s�j D 0 ; j 2 J

��j s
�
j D 0 ; j 2 J (CS)

��j s
�
j � 0 ; j 2 J

(5)

where f r , hr and g r are the reformulated inner objec-
tive, equality and inequality constraints, � and � are
the Lagrange multipliers of the inner inequality and
equality constraints, and s are the slack variables asso-
ciated with the complementarity constraints.

Active Set Strategy

The complementarity condition constraints, (CS) in-
volve discrete decisions on the choice of the inner prob-
lem active constraint set. The set changes when at least
one inequality function and its Lagrange multiplier are
equal to zero. This imposes a major difficulty in the so-
lution of the transformed problem. To overcome this
difficulty, the Active Set Strategy [5,8] is employed, such
that the complementarity constraints are reformulated
as:

� j � UYj � 0 ; j 2 J

s j � U(1 � Yj) � 0 ; j 2 J

� j; s j � 0 ; j 2 J

Yj 2 f0; 1g :

(6)
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where U is an upper bound on the slack variables s and
Y are the additional binary variables introduced. If con-
straint j is active, (Yj D 1), and if inactive, (Yj D 0).
Note that now the integer variable set includes the bi-
nary variables Y in addition to the outer problem inte-
ger variables.

Transformed BLPP Global Optimization

The problem that results after the reformulated/linear-
ized inner problem is replaced with its KKT optimal-
ity conditions and active set strategy is applied can still
have nonlinear terms due to complementarity and sta-
tionarity conditions. Further, nonlinear terms in the
outer problem variables may exist in either the in-
ner or outer problem constraints. Hence, the result-
ing problem is a mixed-integer (nonlinear) optimiza-
tion problem and should be solved by a global opti-
mization procedure. If the integer variables are all bi-
nary and only appear in linear or mixed-bilinear terms,
the Special structure MINLP-˛BB, SMIN-˛BB [1,3] ap-
proach is employed. If the outer integer variables are
not restricted to binary and/or participate in nonlin-
ear terms, the General structure MINLP-˛BB, GMIN-
˛BB [1,3] approach is employed. The steps of the pro-
posed framework are given below.

Global Optimization Algorithm

Step 1 Establish variable bounds by solving the prob-
lems:

yL, yU = min y, �y s.t. inner problem constraint
setprotect
to obtain simple lower and upper bounds on y,

yL � y � yU.

Step 2 If the inner integer variables are integer, convert
into a set of binary variables by Eq. (2) and Eq. (3).
Step 3 Obtain the vertex polyhedral convex envelope
of the inner problem feasible region via the reformula-
tion/ linearization [11]. The inner problem is now lin-
ear in both inner binary and continuous variables and
parametric in outer problem variables, x.
Step 4 Replace the inner problem with the set of equa-
tions that define its necessary and sufficient KKT opti-
mality conditions. The resulting problem is single level.
Step 5 Solve the resulting single level optimization

problem to global optimality. The inner integer vari-
ables are all separable, linear and binary at the begin-
ning of this step. If the final problem is a Mixed Inte-
ger Linear Problem, (MILP), then use CPLEX. Notice
that the problem will be an MILP only for the simplest
cases. If there are nonlinear continuous variables, but
the integer variables are all binary, linear and separable,
use SMIN-˛BB [1,3] global optimization procedure. If
the outer problem has nonlinear integer terms, then use
GMIN-˛BB [1,3] global optimization procedure.

Illustrative Example

The following problem [10] can not be solved to global
optimality using current deterministic solution ap-
proaches for integer bilevel programming problems in
the literature.

min�
�
�
2
5
x21x2 C 4x22

�
y1 y2

�
�
�x32 C 3x21x2

�
(1 � y1)y2 �

�
2x22 � x1

�
(1 � y2)

s.t. min�
�
x1x22 C 8x32 � 14x21 � 5x1

�
y1y2

�
�
�x1x22 C 5x1x2 C 4x2

�
(1 � y1)y2

� 8x1y1(1 � y2)
s.t. y1 C y2 � 1

0 � x1 � 10

0 � x2 � 10

y1; y2 2 f0; 1g2 ; x 2 < :
(7)

Steps 1–2 Variable bounds are already given in this
problem, with 0 � x � 10, and y1 and y2 are defined
as binary.
Step 3 Determination of the vertex polyhedral con-
vex hull: The inner problem is Ny D 2 degrees,
second degree factors y1y2, y1(1 � y2), (1 � y1)y2,
(1 � y1)(1 � y2) multiply the inner problem constraint
y1 C y2 � 1 � 0 and result in:

y1y2 � 0

y1 C y2 � y1y2 � 1 � 0 :
(8)

Linearization: Assign a new variable for the bilinear
term z12 D y1y2 that leads to the additional constraints:
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z12 � 0

y1 � z12 � 0
y2 � z12 � 0

�y1 � y2 C z12 � �1 :

(9)

From Eqs. (8) and (9), y1 C y2 � z12 � 1 D 0. Substi-
tuting the definition of z12 into Eq. (8), a linear relax-
ation of the inner problem constraint set leads to the
original set of constraints:

y1 C y2 � 1 � 0
1 � y2 � 0

1 � y1 � 0 :

(10)

Hence, the continuous relaxation of the original prob-
lem constraints define the convex hull and no addi-
tional constraints are necessary. The inner problem is
continuous and linear in y1 and y2, and parametric in
the outer problem variables x.
Step 4 Replace the relaxed inner problem with the
equivalent set of equations that define its necessary and
sufficient KKT optimality conditions:

min
�
17
5
x21x2 � 4x22 � x32

�
y1C

�
2
5
x21x2 � 2x22 � x1

�

� y2
�
�
17
5
x21x2 C 2x22 C x32 C x1

�

0 � x1 � 10

0 � x2 � 10

� x21x
2
2 � 8x32 C 14x21 C 5x1 � x1x22 C 5x1x2 C 4x2
� �1 C �2 D 0

� �1 � x21x
2
2 � 8x32 C 14x21 C 13x1 C �3 D 0

� y1 � y2 C 1C s1 D 0
y1 C s2 D 1

y2 C s3 D 1

�1 � UY � 0

s1 C UY � U

Y 2 f0; 1g; s1; �1; y1; y2 � 0;

x1; x2 2 <; y1; y2 � 1 :
(11)

Step 5 The single level problem constraint contains the
following nonlinear terms: x21x2y1, x22 y1, x21x2y2, x22 y2,
x1y2, x21x2, x22, x23, x1x22 , x1x2, x21x22 that should be
underestimated. All integer variables are binary, lin-
ear and separable. Solve the resulting single level prob-

lem to global optimality using SMIN-˛BB [1,3]. The
global optimal solution reported in [10] is at (x�1 ; x�2 ;
y�1 ; y�2 ) D (6:038; 2:957; 0; 1). We identify the lower
global solution at (0, 10, 1, 1). Note that the solution of
this problem by enumeration methods could be labor
intensive due to the presence of continuous variables.

Conclusions

The global optimization framework addresses the solu-
tion of several classes of mixed integer nonlinear bilevel
optimization problems. The outer problem may be
mixed-integer nonlinear in both inner and outer vari-
ables; the inner problem may be mixed-integer nonlin-
ear in outer variables, linear, polynomial or multilinear
in inner integer variables and linear in inner continu-
ous variables. This is based on the reformulation of the
mixed-integer inner problem feasible space to gener-
ate its convex hull, where the vertices correspond to bi-
nary solutions. This allows the equivalence of the inner
optimization problem to the set of equations that de-
fine its KKT optimality conditions, with which it is re-
placed. The resulting single level optimization problem
is solved to global optimality. This is arguably the first
deterministic global optimization technique that can
solve several classes of mixed-integer nonlinear bilevel
optimization problems. Note that if the central decision
maker wants to locate the second-best inner or outer
integer solutions, simple integer cuts [2] can be added
prior to applying the relevant solution strategy.
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8. Gümüş ZH, Floudas CA (2005) Global optimization of
mixed-integer bilevel programming problems. CompMan
Sci 2:181–212

9. Moore JT, Bard JF (1990) The mixed integer linear bilevel
programming problem. Oper Res 38:911

10. Sahin KH, Ciric AR (1998) A dual temperature simulated an-
nealing approach for solving bilevel programming prob-
lems. Comp Chem Eng 23:11–25

11. Sherali HD, AdamsWP (1990) A hierarchy of relaxations be-
tween the continuous and convex hull representations for
zero-one programming problems. SIAM J Discret Math 3:
411–430

12. Sherali HD, Adams WP (1994) A hierarchy of relaxations
and convex-hull characterizations for mixed-integer zero-
one programming problems. Discret Appl Math 52:83–106

Mixed-Integer Nonlinear
Optimization: A Disjunctive Cutting
Plane Approach

YUSHAN ZHU

Department of Chemical Engineering,
Tsinghua University, Beijing, China

MSC2000: 49M37, 90C11

Article Outline

Keywords
Introduction
Formulation
Branch-And-Cut Procedure
Linear Approximation of NLP Relaxation
Disjunctive Cut Generation
Cut Lifting
Conclusion
References

Keywords

Mixed-integer nonlinear programming; Branch-
and-cut; Disjunctive cutting plane; Lift-and-project;
MINLP

Introduction

The mixed-integer nonlinear programming (MINLP)
approach was widely used to model and solve the pro-
cess synthesis problems in chemical engineering filed
during the last two decades within the superstructure
framework that always involves discrete and continu-
ous variables [3,4,5,6,10]. Recently, the successful em-
ployment of the branch-and-cut method for 0–1 inte-
ger programming [7,8] and 0–1 mixed-integer linear
programming [1,2] has spurred great interest in its ap-
plication for 0–1 mixed-integer nonlinear optimization
due to the significant progress of interior point algo-
rithm for convex optimization problems. Stubbs and
Mehrotra [9] generalized the lift-and-project cut or the
disjunctive cut for 0–1 integer or mixed-integer lin-
ear programming proposed in [1,2,7,8], and extended
their method into a branch-and-cut algorithm for the
0–1 mixed-integer nonlinear optimization problem.
The disjunctive cutting plane presented by Stubbs and
Mehrotra [9] is obtained by solving a convex projection
problem, so it is computationally expensive. In [11],
a valid disjunctive cutting plane for mixed-integer non-
linear optimization problems was constructed by solv-
ing a linear programming problem implemented in an
algorithmic package named MINO, i. e., Mixed-Integer
Nonlinear Optimizer.

Formulation

The general 0–1 mixed-integer nonlinear optimization
problems can be formulated as

(P)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

min
x;y

dx

s:t: Ax C Gy � b
gi
�
x; y

�
� 0; i D 1; : : : ; l

x 2 <n ; y 2 f0; 1gq

where the constant vectors and matrices are defined as
d 2 <n ;A 2 <m�n ;G 2 <m�q ; b 2 <m . Let the
feasible region of the standard continuous relaxation of
problem (P) be defined as

C D

8<
:
�
x; y

�
2 <nCq

ˇ̌
ˇ̌
ˇ̌
Ax C Gy � b;
gi
�
x; y

�
� 0; i D 1; : : : ; l ;

0 � y � 1;

9=
;

Hence, the feasible set of ( P ) can be formulated as

C0 D
˚�
x; y

�
2 C : y j 2 f0; 1g ; j D 1; : : : ; q

�
:
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At a generic step of the branch-and-cut algorithm,
let
�
x; y

�
be a solution to the current NLP relaxation of

(P). If any of the components of the binary variables y
are not in f0; 1g, we can add a valid inequality into the
current feasible set such that this inequality is violated
by
�
x; y

�
. We denote by c the family of inequalities to

describe the current feasible set and the newly incorpo-
rated inequalities. We denote by F0; F1 � f1; : : : ; qg the
sets of binary variables that have been fixed at 0 and 1,
respectively. Let

K (C; F0; F1) D
��

x; y
�
2 C

ˇ̌
ˇ̌ y j D 0 for j 2 F0

y j D 1 for j 2 F1

	

And let NLP (C; F0; F1) denote the nonlinear program

min
x;y

dx

s.t.
�
x; y

�
2 K (C; F0; F1)

The active nodes of the enumeration tree are repre-
sented by a list of Swith ordered pairs (F0; F1). LetUBD
represent the current upper bound, i. e., the value of the
best-known solution to problem (P).

Branch-And-Cut Procedure

Input of d; n; q;A;G; b; gi (i D 1; : : : ; l):
(1) Initialization. Set S D f(F0 D �; F1 D �)g, and let

C consist of the nonlinear programming relaxation
of (P) and UBD D 1.

(2) Node Selection. If S D �, stop. Otherwise, choose
an ordered pair (F0; F1) 2 S and remove it from S.

(3) Lower Bounding Step. Solve the nonlinear program
NLP (C; F0; F1). If the problem is infeasible, go to
Step 2. Otherwise, let

�
x; y

�
denote its optimal solu-

tion. If dx � UBD, go to Step 2. If y j 2 f0; 1g ; j D
1; : : : ; q, let

�
x�; y�

�
D
�
x; y

�
, UBD D dx , and go

to Step 2.
(4) Branching versus cutting decision. Should cutting

planes be generated? If yes, go to Step 5, else go to
Step 6.

(5) Cut generation. Generate cutting plane ˛xCˇy �
� valid for (P) but violated by

�
x; y

�
. Add the cuts

into C and go to Step 3.
(6) Branching Step. Pick an index j 2 f1; : : : ; qg such

that 0 < y j < 1. Generate the subproblems corre-
sponding to

�
F0 [ f jg ; F1

�
and

�
F0; F1 [ f jg

�
, add

them into the node set S. Go to Step 2.

When the algorithm terminates, ifUBD <1,
�
x�; y�

�
is an optimal solution to (P), otherwise (P) is infeasible.

Linear Approximation of NLP Relaxation

The continuous relaxation of problem (P) at some node
in an enumeration tree can be described by

(NLP)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
x;y

dx

s:t: Ãx C G̃y � b̃;
gi
�
x; y

�
� 0; i D 1; : : : ; l ;

y j D 0; j 2 F0;
y j D 1; j 2 F1;�
x; y

�
2 <nCq ;

where the reformulated linear constraint set consists
of the original linear constraint set and the upper and
lower bound constraints for binary variables, so we
have Ã 2 <(mC2q)�n ; G̃ 2 <(mC2q)�q; b̃ 2 <mC2q . As-
sume that the above NLP continuous problem is feasi-
ble and has a finite minimum at

�
x; y

�
, since otherwise

the node is done. A linear approximation problem at�
x; y

�
for the above NLP problem can be obtained by

(LP)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
x;y

dx

s:t: Ãx C G̃ y � b̃;

gi
�
x; y

�
Cr gi

�
x; y

� � x � x
y � y

�
� 0;

i D 1; : : : ; l ;
y j D 0; j 2 F0;
y j D 1; j 2 F1;�
x; y

�
2 <nCq;

where the original convex and differentiable functions
are replaced by their first-order Taylor approximation
at
�
x; y

�
. Accordingly, a MILP problem corresponding

to the MINLP problem at the current node can be de-
scribed by

(MILP)

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
x;y

dx

s:t: Ãx C G̃ y � b̃;

gi
�
x; y

�
Cr gi

�
x; y

� � x � x
y � y

�
� 0;

i D 1; : : : ; l ;
y j D 0; j 2 F0;
y j D 1; j 2 F1;
x 2 <n ; y 2 f0; 1gq ;
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[11] proved that if the above NLP achieves its optimal
solution at

�
x; y

�
. Then,

�
x; y

�
is also an optimal solu-

tion to the aforementioned LP. The geometrical expla-
nation of the above linear approximation is presented
in Fig. 1, and it is obvious that the mixed-integer set is
expanded after linear approximation.

Disjunctive Cut Generation

For problem (P), it is very attractive to construct the
lift-and-project cut in terms of the approximated LP
instead of the NLP, but the cut still can cut away the
fraction point

�
x; y

�
. Such cut can be derived by impos-

ing the 0–1 integral condition on a binary variable y j
while 0 < y j < 1. In Fig. 1, the short dashed line rep-
resents the cut generated directly by using the convex
hull of the mixed-integer convex set presented by [9],
and the long dashed line stands for the cut to be gener-
ated in [11] based on the linear approximation. For cut
generation, the node sets F0 and F1 can be expanded
to include additional binary variables whose optimal
solutions are taken at 0 or 1 for the NLP problem at
the current node. Then, we redefine these two sets as
F0 D

˚
i : yi D 0

�
and F1 D

˚
i : yi D 1

�
. It is not

difficult to verify that the above NLP and LP problems
have the same optimal solutions if we change the orig-
inal node sets to be the expanded ones. Let the feasible
region of the above LP be defined as

K D K
�
C; F0; F1

�
D

8<
:
�
x; y

�
2 <nCq

ˇ̌
ˇ̌
ˇ̌
Ax C Gy � b
yi D 0; i 2 F0

yi D 1; i 2 F1

9=
;

where A 2 <(mC2qCl )�n ;G 2 <(mC2qCl)�q ; b 2
<mC2qCl , i. e., the newly reformulated linear constraint
set consists of the linear approximation set besides the
original one, as

Ax C Gy � b �

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Ax C Gy � b;
r gx

�
x; y

�
x Cr g y

�
x; y

�
y

� r g
�
x; y

� � x
y

�
� g

�
x; y

�
;

�yi � 0 i D 1; : : : ; q;
yi � 1 i D 1; : : : ; q ;

It should be noted that the node sets have already
been changed to the expanded ones in the above for-

mulation. If we impose the integrality condition on a bi-
nary variable y j for which 0 < y j < 1, the disjunctive
cut can be obtained by choosing a valid inequality for

Pj (K) D conv
�
K \

˚�
x; y

�
2 <nCq : y j 2 f0; 1g

��
;

The convex hull of this union set can be further de-
scribed by its disjunctive form as

Pj(K) D conv
��

K \
n
(x; y) 2 <nCq : y j � 0

o	

[

�
K \

n
(x; y) 2 <nCq : �y j � �1

o	�
;

Let F D f1; : : : ; qg n
�
F0 [ F1

�
denote the set of

free variables at node
�
F0; F1

�
, and the vector cor-

responding to those free variables can be defined as
yF D yn

˚
yi : i 2

�
F0 [ F1

��
. The columns of ma-

trix G corresponding to the fixed binary variables
can be removed from the constraint set by defining
GF
D Gn

˚
Gi : i 2

�
F0 [ F1

��
, and the right-hand side

can be calculated accordingly as b
F
D b�

P
i2F1 Gi . Fi-

nally, the rows in matrices A and GF , and vector b
F
that

correspond to the upper and lower bounds of the fixed
binary variables are removed. After doing the above
operations, we can assume without loss of generality,
that F1 D �. Since if F1 ¤ �, all the variables yk in
F1 can be complemented by 1-yk which amounts re-
placing the columns Gk and the right-hand side with
�Gk and b � Gk , respectively. The reduced LP con-
straint set after removing the fixed binary variables be-
comes

AFx C GF yF � b
F
�

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

Ax C
P
i2F

Gj y j � b

�
P
i2F1

Gj ;

r gx
�
x; y

�
x

C
P
i2F
r g yi

�
x; y

�
y j

� r g
�
x; y

� � x
y

�

�g
�
x; y

�
�
P
i2F1
r g yi

�
x; y

�
;

�yi � 0 i 2 F;
yi � 1 i 2 F ;

where AF
2 <(mC2jFjCl )�n ; GF

2 <(mC2jFjCl )�jFj;

b
F
2 <mC2jFjCl . Then, the feasible region of the above
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Mixed-Integer Nonlinear Optimization: A Disjunctive Cutting Plane Approach, Figure 1
Linear approximation of themixed-integer nonlinear optimization problem,where themixed-integer convex set is described
by a continuous variable and a binary variable

LP can be reformulated as

K D
n�
x; yF

�
2 <nCjFj

ˇ̌
ˇAFx C GF yF � b

F o

Let
�
x; y

�
be the optimal solution when solving

NLP
�
C; F0; F1

�
. First, we assume that

�
x; y

�
is not fea-

sible to problem (P), and let j be the binary variable in-
dex such that 0 < y j < 1. In [11], a disjunctive cut
generation linear programming is given by

(LP(F))

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

min
P
i2N

zi C
P
i2F

wi

s:t: x D u0 C u1; yF D v0 C v1;
AFu0 C GFv0 � b

F
�0 � 0;

v0; j � 0;
AFu1 C GFv1 � b

F
�1 � 0;

�v1; j � ��1;
�0 C �1 D 1;
�z C x � x; �z � x � �x;
�w C yF � yF ; �w � yF � �yF ;
�0; �1 � 0; x; u0; u1; z 2 <n ;

yF ; v0; v1;w 2 <jFj :

This linear program has 4n C 4 jFj C 2 variables
with 2m C 3n C 7 jFj C 2l C 3 equality or inequality
constraints. After solving this linear program, we get its
solutions denoted by

�
x̃; ỹF ; ũ0; ṽ0; ũ1; ṽ1; z̃; w̃; �̃0; �̃1

�
as well as the dual multipliers. Denote by 
F

x ; 

F
y ; ı

F
	

the multipliers for the equality constraints, ıF0 ; ıF1 for

the disjunctive inequality constraints, �F
0 ; �

F
1 for the

inequality original constraints, and "FC; "
F
�; '

F
C; '

F
� for

the additional constraints in LP(F), the cut generated in
Theorem 2, i. e. ˛xCˇF yF � � , can be reformulated by
the dual multipliers and the primal solutions to LP(F),
as 
F

x x C 
F
y yF � 
F

x x̃ C 
F
y ỹF . Since the feasible set

of problem (P) at the node (F0; F1) is contained in the
feasible set of the MILP at that node. Therefore, the in-
equality ˛xCˇF yF � � is valid and proper for problem
(P) at the current node denoted by (F0; F1), and its de-
scendents where the variables in (F0; F1) remain fixed.

Cut Lifting

An important advantage of the cut generated by the
lift-and-project technology is that the multipliers, i. e.,
�F
0 ; ı

F
0 ; �

F
1 ; ı

F
1 , obtained along with the solution

�
x̃; ỹF

�
by solving LP(F) can be used to calculate the closed
form expressions of the coefficients ˇi for the binary
variables in the index set F0 [ F1. First, we lift the in-
equality obtained at the current node into the comple-
mented original space of the MILP problem, that is

( �
x; y

�
2 <nCq :

ˇ̌
ˇ̌
ˇ
Ax C GQ y � b

Q
;

y 2 f0; 1gq

)

Let j 2 f1; : : : ; qg be an index such that 0 < y j < 1
and consider the inequality ˛qx C ˇq y � � q gener-
ated over the complemented original space of the MILP
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problem, this is to solve the linear program LP(Q), as

(LP(Q))

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

min
P
i2N

zi C
P
i2Q

wi

s:t: x D u0 C u1; y D v0 C v1;
Au0 C GQv0 � b

Q
�0 � 0;

v0; j � 0;
Au1 C GQv1 � b

Q
�1 � 0;

�v1; j � ��1;
�0 C �1 D 1;
�z C x � �x; �z � x � �x;
�w C y � y; �w � y � �y;
�0; �1 � 0;
x; u0; u1; z 2 <n ; y; v0; v1;w 2 <q :

Note that more variables and constraints are added
into this linear program compared with LP(F). But,
by using the solutions to LP(F) and its multipliers, we
can obtain the optimal solution to the above LP(Q).
Let

�
x̂; ŷ; û0; v̂0; û1; v̂1; ẑ; ŵ; �̂0; �̂1

�
be the solution to

the linear program LP(Q), which can be constructed
by the solution to the LP(F), as x̃ D x̂, ŷ D ( ỹF ; 0),
û0 D ũ0, û1 D ũ1, v̂0 D (ṽ0; 0), v̂1 D (ṽ1; 0), �̂0 D �̃0,
�̂1 D �̃1, ẑ D z̃, and ŵ D (w̃; 0). Then, the cor-
responding dual multipliers of LP(Q ) denoted by
(
̂Q

x ; 
̂
Q
y ; �̂

Q
0 ; ı̂

Q
0 ; �̂

Q
1 ; ı̂

Q
1 ; ı̂

Q
	
; "̂

Q
C; "̂

Q
�; '̂

Q
C; '̂

Q
� ), which

is also the solution to the dual linear program DLP(Q),
can be constructed by those to DLP(F), as 
̂Q

x D 
̃F
x ,


̂
Q
y;i D 
̃F

y;i for i 2 F, 
̂Q
y;i D min

˚
�̃F
0G

Q
i ; �̃

F
1G

Q
i
�

for i 2 F0 [ F1, ı̂Q0 D ı̃F0 , ı̂
Q
1 D ı̃F1 , ı̂

Q
	
D ı̃F

	
, �̂Q

0 D

(�̃F
0 ; 0), �̂

Q
1 D (�̃F

1 ; 0), "̂
Q
C D "̃

Q
C, "̂

Q
� D "̃Q� ,

'̂
Q
C D ('̃F

C; 0), and '̂Q
� D

�
'̃F
�; 0

�
. The inequal-

ity ˛qx C ˇq y � � q described by 
̂Q
x x C 
̂Q

y y �

̂Q
x x̂ C 
̂Q

y ŷ is valid for the entire enumeration tree,
and cuts away

�
x; y

�
.

Conclusion

A branch-and-cut algorithm is introduced in this sec-
tion to solve 0–1 mixed-integer nonlinear optimiza-
tion problem where the disjunctive cuts are generated
and incorporated into an enumeration process. The
lift-and-project cut generation is performed via linear
programming, as opposed to the convex nonlinear ap-
proach used in [9]. This new approach has the ad-
vantage of making the cut generation computationally
cheaper and overcoming the nondifferential problems.
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A wide range of nonlinear optimization problems in-
volve integer or discrete variables in addition to the
continuous variables. These classes of optimization
problems arise from a variety of applications and
are denoted as mixed integer nonlinear programming
MINLP problems.

The integer variables can be used to model, for in-
stance, sequences of events, alternative candidates, ex-
istence or non-existence of units (in their zero-one rep-
resentation), while discrete variables can model, for in-
stance, different equipment sizes. The continuous vari-
ables are used to model the input-output and inter-
action relationships among individual units/operations
and different interconnected systems.

The nonlinear nature of these mixed integer opti-
mization problems may arise from:
i) nonlinear relations in the integer domain exclu-

sively (e. g., products of binary variables in the
quadratic assignment model);

ii) nonlinear relations in the continuous domain only
(e. g., complex nonlinear input-output model in
a distillation column or reactor unit);

iii) nonlinear relations in the joint integer-continuous
domain (e. g., products of continuous and binary

variables in the scheduling/planning of batch pro-
cesses and retrofit of heat recovery systems).

The book [88] studies mixed integer linear optimiza-
tion and combinatorial optimization, while the [40]
studies mixed integer nonlinear optimization prob-
lems.

The coupling of the integer domain and the contin-
uous domain with their associated nonlinearities make
the class of MINLP problems very challenging from
the theoretical, algorithmic, and computational point
of view. Mixed integer nonlinear optimization prob-
lems are encountered in a variety of applications in
all branches of engineering and applied science, ap-
plied mathematics, and operations research. These rep-
resent very important and active research areas that in-
clude:
� process synthesis

– heat exchanger networks
– retrofit of heat recovery systems
– distillation sequencing
– mass exchange networks
– reactor-based systems
– reactor-separator-recycle systems
– utility systems
– total process systems
– metabolic engineering

� process design
– reactive distillation
– design of dynamic systems
– plant layout
– environmental design

� process synthesis and design under uncertainty
– uncertainty analysis
– dynamic systems
– batch plant design

� molecular design
– solvent selection
– design of polymers and refrigerants
– property prediction under uncertainty

� interaction of design, synthesis and control
– steady state operation
– dynamic operation

� process operations
– scheduling of multiproduct plants
– design and retrofit of multiproduct plants
– synthesis, design and scheduling ofmultipurpose

plants
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– planning under uncertainty
� facility location and allocation
� facility planning and scheduling
� topology of transportation networks
The applications in the area of process synthesis in
chemical engineering include:
i) the synthesis of grassroot heat recovery networks

[24,25,43,138,139,140];
ii) the retrofit of heat exchanger systems [25,95];
iii) the synthesis of distillation-based separation sys-

tems [8,9,90,102,104,131];
iv) the synthesis of mass exchange networks [54,99];
v) the synthesis of complex reactor networks [71,73,

74,119];
vi) the synthesis of reactor-separator-recycle systems

[72];
vii) the synthesis of utility systems [65];
viii) the synthesis of total process systems [28,29,68,69,

75,76,98]; and
ix) the analysis and synthesis of metabolic pathways

[30,58,59,107].
Reviews of the mixed integer nonlinear optimization
frameworks and applications in Process Synthesis are
provided in [40,49,50], and [7], while algorithmic ad-
vances for logic and global optimization in Process Syn-
thesis are reviewed in [44].

The MINLP applications in the area of process de-
sign include:
i) reactive distillation processes [26];
ii) design of dynamic systems [11,14,117,118];
iii) plant layout systems [47,105]; and
iv) environmentally benign systems [27,123].
The MINLP applications in the area of process synthesis
and design under uncertainty include:
i) deterministic and stochastic uncertainty analysis

[1,33,51];
ii) design of dynamic systems under uncertainty

[31,85]; and
iii) design of batch processes under uncertainty

[57,63,108,109].
In the area ofmolecular design, the MINLP applications
include:
i) the computer-aided molecular design aspects of se-

lecting the best solvents [91];
ii) design of polymers and refrigerants [21,22,23,35,

80,111,126]; and
iii) property prediction under uncertainty [81].

The MINLP applications in the area of interaction of
design, synthesis and control include:
i) studies under steady state operation of chemical

processes [78,79,96,97]; and
ii) studies under dynamic operation [85,86,118].
Applications of MINLP approaches have also emerged
in the area of process operations and include:
i) short term scheduling of batch and semicontinuous

processes [85,143];
ii) the design of multiproduct plants [17,18,53];
iii) the synthesis, design and scheduling of multipur-

pose plants [13,36,37,93,94,116,127,128,132,133,
137]; and

iv) planning under uncertainty [62,63,64,77,106].
Reviews of the advances in the design, scheduling and
planning of batch plants can be found in [52,113], while
a collection of recent contributions can be found in the
proceedings of the 1998 FOCAPO meeting.

MINLP applications received significant attention
in other engineering disciplines. These include
i) the facility location in a multi-attribute space [45];
ii) the optimal unit allocation in an electric power sys-

tem [16];
iii) the facility planning of an electric power generation

[19,114];
iv) the chip layout and compaction [32];
v) the topology optimization of transportation net-

works [60]; and
vi) the optimal scheduling of thermal generating units

[48].

Mathematical Description

The general algebraic MINLP formulation can be stated
as:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Y integer:

(1)

Here x represents a vector of n continuous vari-
ables (e. g., flows, pressures, compositions, tempera-
tures, sizes of units), and y is a vector of integer vari-
ables (e. g., alternative solvents or materials); h(x, y) =
0 denote the m equality constraints (e. g., mass, energy
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balances, equilibrium relationships); g(x, y)� 0 are the
p inequality constraints (e. g., specifications on purity of
distillation products, environmental regulations, feasi-
bility constraints in heat recovery systems, logical con-
straints); and f (x, y) is the objective function (e. g., an-
nualized total cost, profit, thermodynamic criteria).

Remark 1 The integer variables ywith given lower and
upper bounds

yL � y � yU

can be expressed through 0–1 variables (i. e., binary),
denoted as z, by the following formula:

y D yL C z1 C 2z2 C 4z3 C � � � C 2N�1zN ;

where N is the minimum number of 0–1 variables
needed. This minimum number is given by:

N D 1C INT
�
log (yU � yL)

log 2

	
;

where the INT function truncates its real argument to
an integer value.

Then, formulation (1) can be written in terms of 0–1
variables:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 f0; 1gq ;

(2)

where y now is a vector of q 0–1 variables (e. g., exis-
tence of a process unit (yi = 1) or nonexistence (yi = 0)).

Challenges in MINLP

Dealing with mixed integer nonlinear optimization
models of the form (1) or (2) present two major chal-
lenges. These difficulties are associated with the nature
of the problem, namely, the combinatorial domain (y-
domain) and the continuous domain (x-domain).

As the number of binary variables y in (2) in-
crease, one is faced with a large combinatorial prob-
lem, and the complexity analysis results characterize
MINLP problems as NP-complete [88]. At the same
time, due to the nonlinearities the MINLP problems

are in general nonconvex which implies the potential
existence of multiple local solutions. The determina-
tion of a global solution of the nonconvex MINLP prob-
lems is also NP-hard, since even the global optimization
of constrained nonlinear programming problems can
be NP-hard [100], and even quadratic problems with
one negative eigenvalue are NP-hard [101]. An excel-
lent book on complexity issues for nonlinear optimiza-
tion is [129].

Despite the aforementioned discouraging results
from complexity analysis, which are worst-case results,
significant progress has been achieved in the MINLP
area from the theoretical, algorithmic, and computa-
tional perspective. As a result, several algorithms have
been proposed for convex and nonconvex MINLP
models, their convergence properties have been inves-
tigated, and a large number of applications now exist
that cross the boundaries of several disciplines. In the
sequel, we will discuss these developments.

Overview of Local Optimization Approaches
for ConvexMINLP Models

A representative collection of local MINLP algorithms
developed for solving convex MINLP models of the
form (1) or restricted classes of (2) includes the follow-
ing:
1) generalized Benders decomposition, GBD, [42,46,

103];
2) outer approximation, OA, [34];
3) outer approximation with equality relaxation,

OA/ER, [67];
4) outer approximation with equality relaxation and

augmented penalty, OA/ER/AP, [131];
5) generalized outer approximation, GOA, [38];
6) generalized cross decomposition, GCD, [61];
7) branch and bound, BB, [15,20,39,55,92,110];
8) feasibility approach, FA, [82];
9) extended cutting plane, ECP, [134,135];
10) logic-based approaches, [124,130].
In the pioneering work [46] on the generalized benders
decomposition, GBD, two sequences of updated up-
per(nonincreasing) and lower (nondecreasing) bounds
are created that converge within � in a finite number
of iterations. The upper bounds correspond to solving
subproblems in the x variables by fixing the y variables,
while the lower bounds are based on duality theory.
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The outer approximation, OA, addresses problems
with nonlinear inequalities, and creates sequences of
upper and lower bounds as the GBD, but it has the dis-
tinct feature of using primal information, that is the
solution of the upper bound problems, so as to lin-
earize the objective and constraints around that point.
The lower bounds in OA are based upon the accu-
mulation of the linearized objective function and con-
straints, around the generated primal solution points.

The OA/ER algorithm extends the OA to handle
nonlinear equality constraints by relaxing them into in-
equalities according to the sign of their associated mul-
tipliers.

The OA/ER/AP algorithm introduces an aug-
mented penalty function in the lower bound subprob-
lems of the OA/ER approach.

The generalized outer approximation, GOA, ex-
tends the OA to the MINLP problems that the GBD ad-
dresses and introduces exact penalty functions.

The generalized cross decomposition, GCD, simul-
taneously utilizes primal and dual information by ex-
ploiting the advantages of Dantzig–Wolfe and general-
ized Benders decomposition.

An overview of these local MINLP algorithms and
extensive theoretical, algorithmic, and applications of
GBD, OA, OA/ER, OA/ER/AP, GOA, and GCD algo-
rithms can be found in [40].

The branch and bound, BB, approaches start by
solving the continuous relaxation of the MINLP and
subsequently perform an implicit enumeration where
a subset of the 0–1 variables is fixed at each node. The
lower bound corresponds to the NLP solution at each
node and it is used to expand on the node with the
lowest lower bound or it is used to eliminate nodes
if the lower bound exceeds the current upper bound.
If the continuous relaxation, NLP in most cases with
the exception of the algorithm of [110] where an LP
problem is obtained, of the MINLP has a 0–1 solution
for the y variables, then the BB algorithm will termi-
nate at that node. With a similar argument, if a tight
NLP relaxation results in the first node of the tree, then
the number of nodes that would need to be eliminated
can be low. However, loose NLP relaxations may result
in having a large number of NLP subproblems to be
solved. The algorithm terminates when the lowest lower
bound is within a prespecified tolerance of the best up-
per bound.

The feasibility approach, FA, rounds the relaxed
NLP solution to an integer solution with the least lo-
cal degradation by successively forcing the superba-
sic variables to become nonbasic based on the reduced
cost information. The premise of this approach is that
the problems to be treated are sufficiently large so that
techniques requiring the solution of several NLP relax-
ations, such as the branch and bound approach, have
prohibitively large costs. They therefore wish to ac-
count for the presence of the integer variables in the for-
mulation and solve the mixed integer problem directly.
This is achieved by fixing most of the integer variables
to one of their bounds (the nonbasic variables) and al-
lowing the remaining small subset (the basic variables)
to take discrete values in order to identify feasible so-
lutions. After each iteration, the reduced costs of the
variables in the nonbasic set are computed to measure
their effect on the objective function. If a change causes
the objective function to decrease, the appropriate vari-
ables are removed from the nonbasic set and allowed
to vary for the next iteration. When no more improve-
ment in the objective function is possible, the algorithm
is terminated. This strategy leads to the identification of
a local solution.

The cutting plane algorithm proposed in [66] for
NLP problems has been extended toMINLPs [134,135].
The ECP algorithm relies on the linearization of one of
the nonlinear constraints at each iteration and the so-
lution of the increasingly tight MILP made up of these
linearizations. The solution of the MILP problem pro-
vides a new point on which to base the choice of the
constraint to be linearized for the next iteration of the
algorithm. The ECP does not require the solution of any
NLP problems for the generation of an upper bound. As
a result, a large number of linearizations are required
for the approximation of highly nonlinear problems
and the algorithm does not perform well in such cases.
Due to the use of linearizations, convergence to the
global optimum solution is guaranteed only for prob-
lems involving inequality constraints which are convex
in the x and relaxed y-space.

An alternative to the direct solution of the MINLP
problem was proposed by [124]. Their approach stems
from the work of [70] on a modeling/decomposition
strategy which avoids the zero-flows generated by the
nonexistence of a unit in a process network. The first
stage of the algorithm is the reformulation of the
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MINLP into a generalized disjunctive program. A vec-
tor of Boolean variables indicate the status of a dis-
junction (True or False) and are associated with the
alternatives. The set of disjunctions allows the repre-
sentation of several alternatives. A set of logical rela-
tionships between the Boolean variables is introduced.
Instead of resorting to binary variables within a single
model, the disjunctions are used to generate a different
model for each alternative. Since all continuous vari-
ables associated with the nonexisting alternatives are
set to zero, this representation helps to reduce the size
of the problems to be solved. Two algorithms are sug-
gested by [124]. They are logic-based variants of the
outer approximation and generalized Benders decom-
position. [130] introduced LOGMIP, a computer code
for disjunctive programming and MINLP problems,
and studied modeling alternatives and process synthe-
sis applications.

Overview of Global Optimization Approaches
for NonconvexMINLP Models

the previous Section we discussed local MINLP algo-
rithms which are applicable to convex MINLP models.
While identification of the global solution for convex
problems can be guaranteed, a local solution is often
obtained for nonconvex problems. The recent book by
[41] discusses the theoretical, algorithmic and applica-
tions oriented advances in the global optimization of
mixed integer nonlinear models. A number of global
MINLP algorithms that have been developed to address
different types of nonconvex MINLPs are presented in
this section. These include:
1) Branch and reduce approach, [115];
2) interval analysis based approach, [125];
3) extended cutting plane approach, [135,136];
4) reformulation/spatial branch and bound approach,

[121,122];
5) hybrid branch and bound and outer approximation

approach, [141,142];
6) The SMIN-˛BB approach, [2,4];
7) The GMIN-˛BB approach, [2,4].
In the sequel, we will briefly discuss the approaches 1)–
7).

Branch and Reduce Algorithm
[115] extended the scope of branch and bound algo-
rithms to problems for which valid convex underesti-

mating NLPs can be constructed for the nonconvex re-
laxations. The range of application of the proposed al-
gorithm encompasses bilinear problems and separable
problems involving functions for which convex under-
estimators can be built [10,83]. Because the nonconvex
NLPs must be underestimated at each node, conver-
gence can only be achieved if the continuous variables
are branched on. A number of tests are suggested to ac-
celerate the reduction of the solution space. They are
summarized in the following.

Optimality Based Range Reduction Tests

For the first set of tests, an upper bound U on the non-
convex MINLP must be computed and a convex lower
bounding NLP must be solved to obtain a lower bound
L. If a bound constraint for variable xi, with xLi � xi �
xUi , is active at the solution of the convex NLP and has
multiplier ��i > 0, the bounds on xi can be updated as
follows:
1) If xi � xUi = 0 at the solution of the convex NLP and
� i = xUi � (U � L)/��i is such that � i > xLi , then xLi =
� i.

2) If xi � xLi = 0 at the solution of the convex NLP and
� i = xLi + (U � L)/��i is such that � i < xUi , then xUi =
� i.

If neither bound constraint is active at the solution of
the convex NLP for some variable xj, the problem can
be solved by setting xj = xUj or xj = xLj . Tests similar
to those presented above are then used to update the
bounds on xj.

Feasibility Based Range Reduction Tests

In addition to ensuring that tight bounds are available
for the variables, the underestimators of the constraints
are used to generate new constraints for the problem.
Consider the constraint gi(x, y)� 0. If its underestimat-
ing function gi(x; y) D 0 at the solution of the convex
NLP and its multiplier is ��i > 0, the constraint

gi (x; y) � �
U � L
��i

can be included in subsequent problems.
The branch and reduce algorithm has been tested

on a set of small problems.



2240 M Mixed Integer Nonlinear Programming

Interval Analysis Based Approach

An approach based on interval analysis was proposed
by [125] to solve to global optimality problems with
a twice-differentiable objective function and once-
differentiable constraints. Interval arithmetic allows the
computation of guaranteed ranges for these functions
[87,89,112]. The approach relies on the same concepts
of successive partitioning of the domain and bound-
ing of the objective function, while the branching takes
place on the discrete and continuous variables. The
main difference with the branch and bound algorithms
is that bounds on the problem solution in a given do-
main are not obtained through optimization. Instead,
they are based on the range of the objective function
in the domain under consideration, as computed with
interval arithmetic. As a consequence, these bounds
may be quite loose and efficient fathoming techniques
are required in order to enhance convergence. [125]
suggested node fathoming tests and branching strate-
gies which are outlined in the sequel. Convergence
is declared when best upper and lower bounds are
within a prespecified tolerance and when the width of
the corresponding region is below a prespecified toler-
ance.

Node Fathoming Tests

The upper-bound test is a classical criterion used in
all branch and bound schemes: If the lower bound for
a node is greater than the best upper bound for the
MINLP, the node can be fathomed.

The infeasibility test is also used by all branch and
bound algorithms. However, the identification of infea-
sibility using interval arithmetic differs from its identifi-
cation using optimization schemes. An inequality con-
straint gi(x, y) � 0 is declared infeasible if its interval
inclusion over the current domain, is positive. If a con-
straint is found to be infeasible, the current node is fath-
omed.

The monotonicity test is used in interval-based ap-
proaches. If a region is feasible, the monotonicity prop-
erties of the objective function can be tested. For this
purpose, the inclusions of the gradients of the objec-
tive with respect to each variable are evaluated. If all the
gradients have a constant sign for the current region,
the objective function is monotonic and only one point
needs to be retained from the current node.

The nonconvexity test is used to test the existence
of a solution (local or global) within a region. If such
a point exists, the Hessian matrix of the objective func-
tion at this point must be positive semidefinite. A suf-
ficient condition is the nonnegativity of at least one
of the diagonal elements of its interval Hessian ma-
trix.

[125] suggested two additional tests to accelerate the
fathoming process. The first is denoted as lower bound
test. It requires the computation of a valid lower bound
on the objective function through a method other than
interval arithmetic. If the upper bound at a node is less
than this lower bound, the region can be eliminated.
The second test, the distrust region method, aims to
help the algorithm identify infeasible regions so that
they can be removed from consideration. Based on the
knowledge of an infeasible point, interval arithmetic is
used to identify an infeasible hypercube centered on
that point.

Branching Strategies

The variable with the widest range is selected for
branching. It can be a continuous or a discrete variable.
In order to determine where to split the chosen variable,
a relaxation of the MINLP is solved locally.
� Continuous Branching Variable: If the optimal

value of the continuous branching variable, x�, is
equal to one of the variable bounds, branch at the
midpoint of the interval. Otherwise, branch at x��
ˇ, where ˇ is a very small scalar.

� Discrete Branching Variable: If the optimal value of
the discrete branching variable, y�, is equal to the
upper bound on the variable, define a region with y
= y� and one with yL � y � y�� 1, where yL is the
lower bound on y. Otherwise, create two regions yL

� y � int(y�) and int(y�) + 1 � y � yU , where yU is
the upper bound on y.

This algorithm has been tested on a small example
problem and a molecular design problem [125].

Extended Cutting Plane for Pseudoconvex MINLPs

The use of the ECP algorithm for nonconvex MINLP
problems was suggested in [135], using a modified al-
gorithmic procedure as described in [136]. The main
changes occur in the generation of new constraints for
the MILP at each iteration (Step 4). In addition to the
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construction of the linear function lk(x, y) at iteration
k, the following steps are taken:
1) Remove all constraints for which li(xk, yk)> gji(xk,

yk). These correspond to linearizations which did
not underestimate the corresponding nonlinear
constraint at all points due to the presence of non-
convexities.

2) Replace all constraints for which li(xk, yk) = gji(xk,
yk) = 0 by their linearization around (xk, yk).

3) If constraint i is such that gi(xk, yk)> 0, add its lin-
earization around (xk, yk).

The convergence criterion is also modified. In addition
to the test used in Step 3, the following two conditions
must be met:
1) (xk� xk�1)|(xk� xk�1) � ı, a pre-specified toler-

ance.
2) yk � yk�1 = 0.
The ECP algorithm for pseudoconvex MINLPs has
been used to address a trim loss problem arising in the
paper industry [136]. A comparative study between the
outer approximation, the generalized Benders decom-
position and the extended cutting plane algorithm for
convex MINLPs was presented in [120].

Reformulation/Spatial Branch
and Bound Algorithm

A global optimization algorithm of the branch and
bound type was proposed in [121]. It can be applied
to problems in which the objective and constraints are
functions involving any combination of binary arith-
metic operations (addition, subtraction, multiplication
and division) and functions that are either concave over
the entire solution space (such as ln) or convex over this
domain (such as exp).

The algorithm starts with an automatic reformu-
lation of the original nonlinear problem into a prob-
lem that involves only linear, bilinear, linear fractional,
simple exponentiation, univariate concave and univari-
ate convex terms. This is achieved through the intro-
duction of new constraints and variables. The reformu-
lated problem is then solved to global optimality us-
ing a branch and bound approach. Its special struc-
ture allows the construction of a convex relaxation at
each node of the tree. It should be noted that due to
the introduction of many new constraints and variables
the size of the convex relaxation of the reformulated

problem increases substantially even for modest size
problems. The integer variables can be handled in two
ways during the generation of the convex lower bound-
ing problem. The integrality condition on the variables
can be relaxed to yield a convex NLP which can then
be solved globally. Alternatively, the integer variables
can be treated directly and the convex lower bounding
MINLP can be solved using a branch and bound algo-
rithm. This second approach is more computationally
intensive but is likely to result in tighter lower bounds
on the global optimum solution.

In order to obtain an upper bound on the optimum
solution, a local MINLP algorithm can be used. Alter-
natively, the MINLP can be transformed to an equiva-
lent nonconvex NLP by relaxing the integer variables.
For example, a variable y 2 {0, 1} can be replaced by
a continuous variable z 2 [0, 1] by including the con-
straint z � z� z = 0.

This algorithm has been applied to reactor selection,
distillation column design, nuclear waste blending, heat
exchanger network design and multilevel pump config-
uration problems.

Hybrid Branch and Bound
and Outer Approximation

[142] proposed a global optimization MINLP approach
for the synthesis of heat exchanger networks without
stream splitting. This approach is a hybrid branch and
bound with outer approximation. It is based on two
alternative convex underestimators for the heat trans-
fer area. The first type of these convex underestima-
tors along with the variable bounds and techniques
for the bound contraction are based on a thermody-
namic analysis. The second type is based on a relax-
ation and transformation so as to employ specific un-
derestimation schemes. These convex underestimators
result in a convex MINLP that is solved using the
Outer Approximation approach and which provides
valid lower bounds on the global solution. This ap-
proach has been applied to five heat exchanger net-
work examples that employ the MINLP model of [138]
that contains linear constraints and nonconvex objec-
tive function.

[141] introduced a deterministic branch and con-
tract approach for structured process systems that have
univariate concave, bilinear and linear fractional terms.
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They proposed properties of the contraction operation
and studied their effect on several applications.

The SMIN-˛BB Algorithm

The SMIN-˛BB global optimization algorithm, pro-
posed by [2] is designed to solve to global optimal-
ity mathematical models where the binary/integer vari-
ables appear linearly and hence separably from the con-
tinuous variables and/or appear in at most bilinear
terms, while nonlinear terms in the continuous vari-
ables appear separably from the binary/integer vari-
ables. These mathematical models become:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x)C x>A0yC c>0 y

s.t. h(x)C x>A1yC c>1 y D 0
g(x)C x>A2yC c>2 y � 0
x 2 X � Rn

y 2 Y integer;

(3)

where c>0 , c>1 and c>2 are constant vectors, A0,A1 andA2

are constant matrices and f (x), h(x) and g(x) are func-
tions with continuous second order derivatives.

The theoretical, algorithmic and computational
studies of the SMIN-˛BB algorithm are presented in
detail in [41].

The GMIN-˛BB Algorithm

The GMIN-˛BB global optimization algorithm pro-
posed in [2] operates within a branch and bound
framework. The main difference with the algorithms of
[56,92] and [20] is its ability to identify the global opti-
mum solution of a much larger class of problems of the
form
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 Nq;

where N is the set of nonnegative integers and the only
condition imposed on the functions f (x, y), g(x, y) and
h(x, y) is that their continuous relaxations possess con-

tinuous second order derivatives. This increased appli-
cability results from the use of the ˛BB global opti-
mization algorithm for continuous twice-differentiable
NLPs [3,5,6,12].

The theoretical, algorithmic and computational
studies of the GMIN-˛BB Algorithm are presented in
detail in [41].
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Abstract

This Chapter presents a novel, mixed integer nonlinear
programming (MINLP) model for the well scheduling
problem, where the nonlinear behavior of the reservoir,
wells, pipelines and surface facilities has been incor-
porated into the mathematical formulation. The well
scheduling problem is formulated as a snapshot opti-
mization problem with an objective function that ex-
presses the maximization of an economic index. Dis-
crete decisions here include the operational status of the
wells, the allocation of wells to manifold or separators
and the allocation of surface flowlines to separators.
Continuous decisions include the well oil flowrates, and
the allocation of gas-to-gas lift wells.

A three-step solution strategy is proposed for the
solution of this problem, where logic based relations
and piecewise linear approximations of oil field wells
are integrated in the MINLP formulation. The model
is solved following an Outer Approximation (OA) class
algorithm. A number of examples are presented to il-
lustrate the performance and business value of the pro-
posed strategy; a remarkable increase in oil production
of up to 10% is demonstrated, compared to results ob-
tained via widespread heuristic methods. A further in-
crease of 2.9% can be achieved by dynamic optimiza-
tion based on explicit consideration of the multiphase
flow within the reservoirs of a particular oil field.

Introduction

In an era of globalized business operations, large and
small oil and gas producers alike strive to foster prof-
itability by improving the agility of exploration endeav-
ors and the efficiency of oil production, storage and
transport operations [7]. Consequently, they all face
acute challenges: ever-increasing international produc-
tion, intensified global competition, price volatility, op-
erational cost reduction policies, aggressive financial
goals (market share, revenue, cash flow and profitabil-
ity) and strict environmental constraints (offshore ex-
traction, low sulphur): all these necessitate a high level
of oilfield modeling accuracy, so as to maximize recov-
ery from certified reserves. Straightforward translation
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of all considerations to explicit mathematical objectives
and constraints can yield optimal oilfield network de-
sign, planning and operation policies. Therefore, the
foregoing goals and constraints should be explicitly in-
corporated and easily revised if the generality of pro-
duction optimization algorithms is to be preserved.
This Chapter provides a summary of a new, efficient
MINLP optimization formulation for well schedul-
ing, and a novel strategy towards integration of equa-
tion-oriented process modeling and multiphase reser-
voir computational fluid dynamics (CFD), in order to
include the dynamic behavior of reservoirs into oil and
gas production models.

The problem of fuel production optimization sub-
ject to explicit oilfield constraints has attracted sig-
nificant attention, documented in many petroleum
engineering publications. A comprehensive literature
review by Kosmidis [18] classifies previous algorithms
in 3 broad categories (simulation, heuristic, and math-
ematical programming methods) and underlines that
most are applied either to simple pipeline networks of
modest size, relying on heuristic rules of limited appli-
cability, or are suitable for special structures. Reducing
the computational burden (focus on natural-flow wells
or gas-lift wells only, or reducing well network connec-
tivity discrete variables) is a crucial underlying pattern.

Dynamic oil and gas production systems simula-
tion and optimization is a research trend which has
the clear potential to meet the foregoing challenges of
the international oil and gas industry and assist pro-
ducers in achieving business goals and energy needs.
Previous work [8,19,20,23] has addressed successfully
research challenges in this field, using appropriate sim-
plifying correlations [25] for two-phase flow of oil and
gas in production wells and pipelines. A series of as-
sumptions are routinely adopted to achieve manageable
computational complexity: the fundamental one is the
steady-state assumption for the reservoir model, based
on the enormous timescale difference between different
spatial levels (oil and gas reservoir dynamics evolve in
the order of weeks, the respective timescales of pipeline
networks are in the order of minutes, and the produc-
tion optimization horizon is in the order of days). The
decoupling of reservoir simulation from surface facili-
ties optimization is based on these timescale differences
among production elements [2,25]. While the surface
and pipeline facilities are in principle no different from

those found in any petrochemical plant, sub-surface
elements (reservoirs, wells) induce complexity which
must be addressed via a systematic strategy that has not
been hitherto proposed.

In some petroleum fields, such as the Prudhoe
Bay [22], a production well can be connected to dif-
ferent manifolds that lead to different separators. In
such fields, switching a well from one manifold to an-
other could be an effective way to increase oil produc-
tion and/or reduce production cost by making optimal
use of the existing resources such as the capacity of
separators [9]. However, for best results, the well con-
nection must be optimized simultaneously with the well
oil rate and gas lift rate. The corresponding optimiza-
tion problem is known as well scheduling problem.

Problem Statement

The well scheduling problem in integrated oil and gas
production can be stated as follows: given are (i) a set
of wells, which could be closed (shut in) or connected
to manifolds or separators, (ii) a set of flowlines which
could be connected to separators. The goal is to deter-
mine: (i) the operational status of the wells, i. e. closed
or open, (ii) the connection of wells to manifolds or sep-
arators, (iii) the connection of flow lines to separators,
(iv) the well oil flowrate and the (v) the allocation of gas
to gas lift wells, which maximize the net revenue (oil
sales minus the cost of gas compression), while satisfy-
ing physical laws and operational constraints such as:
(i) a well bore model, (ii) mass, energy and momentum
balances throughout the production network, (iii) up-
per and lower well oil rate constraints and minimum
pressure constraints at the inlet and outlet of the flow-
lines, (iv) maximum oil, gas and water capacity con-
straints in the separators, (v) an upper bound on gas
lift availability and (vi) a maximum number of well
switches. The first step in order to determine the op-
timal well configuration that maximizes the revenue
is to develop a suitable superstructure that includes
all the possible pipeline network configurations. Such
a production network superstructure is shown in Fig. 1
and includes the reservoir (R), the wells (W), the man-
ifolds (M), and the separators (S) nodes as well as the
potential connection of wells to manifolds or separa-
tors and flowlines to separators. Two types of wells are
considered: (i) type A wells that can be connected only
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to manifolds, and (ii) type B wells that can be connected
to separators. It must be noted that a feasible produc-
tion network should satisfy the following requirements:
(i) a type A well should be either shut in or else con-
nected to one manifold, (ii) a type B well should be
either shut in or else connected to one separator, and
(iii) a manifold flowline must be connected to one sep-
arator.

OptimizationModel

This section presents the MINLP optimization model
for the well scheduling problem, based on the following
assumptions:
� the system is under steady state conditions,
� a homogeneous slip model which is applied to de-

termine the pressure drop in the pipelines,
� the temperature of the reservoir is known,
� the operating pressures of the separators are con-

stant, and
� the thermodynamic description of the fluid is based

on the black oil model.
For the development of the MINLP optimization
model, the following sets, variables and parameters are
defined:

Sets
I set of wells
IA set of wells of type A
IB set of wells of type B
M set of manifolds
S set of separators

Indices
i; iA; iB well in set I; IA; IB respectively
m manifold in setM
s separator in set S

Binary decision variables

yi D
�

1 if well i is open
0 otherwise

yi;m D
�

1 if well i is connected to manifold m
0 otherwise

ym;s D

8<
:

1 if manifold m is connected to
separator s

0 otherwise

yi;s D
�

1 if well i is connected to separator s
0 otherwise

Continuous variables
qp;i flowrate in stock tank conditions of phase p from

well i
qp;i;m flowrate in stock tank condition of phase p from

well i to manifold m
qp;m;s flowrate in stock tank condition of phase p from

manifold m to separator s
qp;s flowrate in stock tank condition of phase p in

separator s
Pi;m pressure of well i at the manifold level
Pm manifold pressure
Hi;m total enthalpy of well i at the manifold level
Hm manifold enthalpy

The proposed model includes the following elements:
(i) the well bore model, (ii) the mass, momentum and
energy balances in well, manifold and separator nodes,
(iii) the network logic constraints, (iv) the well and
flowline momentum and energy balances, (v) the max-
imum number of allowable well switches, and (vi) the
objective function.

Wellbore Model

The wellbore model describes the multiphase fluid flow
from the reservoir to the wellbore and comprises the
following equations:

qo;i D PIi (PR;i � Pwf
i ) ; 8i 2 I (1)

qfg;i D fo(qo;i) ; 8i 2 I (2)

qw;i D fw(qo;i) ; 8i 2 I (3)

Ti D TR ; 8i 2 I (4)

Hi D fH(Pwf
i ; Ti ; qo;i ; qw;i ; qg;i) ; 8i 2 I (5)

where Pwf
i is the bottomhole pressure and qfg;i is the

formation gas flowrate in stock tank conditions. Equa-
tions (2) and (3) can be nonlinear in order to model
the case of gas and water coning wells. These nonlin-
ear relations are generated either by using Addington’s
correlations [1] or by repetitively solving a well coning
model for different values of well oil rate qo;i , in or-
der to calculate the corresponding water qw;i and gas
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Mixed Integer Optimization in Well Scheduling, Figure 1
Production network superstructure for the well scheduling problem

flowrates qfg;i . In the latter case, Eq. (2) and (3) are con-
structed via curve fitting to the data series (qo;i , qo;i)
and (qo;i , qfg;i) respectively. For naturally flowing wells,
the total gas flowrate is given by:

qg;i D qfg;i ; 8i 2 D D fi 2 I j natural flowg (6)

while for gas lift wells the total gas flowrate is equal to:

qg;i D qfg;i C qinjg;i ; 8i 2 F D fi 2 I j gas liftg : (7)

Mass, Momentum and Energy Balances in Well,
Manifold and Separator Nodes

A well node of type A can be modeled as a splitter
i 2 IA, which consists of an inlet stream that repre-
sents the fluid flow from the reservoir, and a set of out-
let streams that represents the potential connections of
a well to manifolds as shown in Fig. 2. The mass bal-
ances around the splitter for each phase are given by
the following relations:

qp;i D
X
m

qp;i;m ; 8p 2 fo;w; gg ; i 2 IA : (8)

Similarly, the mass balances around a well node of
type B are given by:

qp;i D
X
s

qp;i;s ; 8p 2 fo;w; gg ; i 2 IB : (9)

There is also an upper and a lower bound in the well
oil flowrates. The upper bound is enforced to prevent

Mixed Integer Optimization in Well Scheduling, Figure 2
Splitter node

sand production [4], while the lower bound is imposed
to satisfy stable flow [27]:

yi qLo;i � qo;i � qUo;i yi ; 8i 2 I : (10)

Equation (10) states that if well i is open (yi D 1), then
the well oil flowrate qo;i is constraint by an upper and
a lower bound, while if well i is shut in (yi D 0), then
the well oil flowrate qo;i is zero.

Manifold Node A manifold node is shown in Fig. 3
and performs two tasks: (i) mixing and (ii) splitting.
The mass balance of the mixer for each phase is given
by:

X
i2IA

qp:i:m D qp:m ; 8p 2 fo;w; gg ; m 2 M : (11)

The splitter allocates the manifold fluid qp;m to one sep-
arator s. The mass balances for each phase around the
splitter are given by:

qp;m D
X
s

qp;m;s ; 8p;m 2 M : (12)
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Mixed Integer Optimization in Well Scheduling, Figure 3
Manifold node

All wells that are connected to manifoldmmust op-
erate at the same pressure (Pm):

LP(1 � yi;m) � Pm
i � Pm � UP (1 � yi;m) ;

8i 2 IA ; m 2 M
(13)

where Pi;m is the pressure of well i at manifold level m,
and LP , UP are the corresponding upper and lower
bounds, respectively. Moreover, if manifold m is con-
nected to separator s, then its inlet pressure must be
greater than the separator pressure:

Ps ym;s � Pm ; 8m 2 M ; s 2 S : (14)

The pressure of the flowline at the separator level Pm;s
is equal to the separator pressure:

Pm;s D
X
s

ym;s Ps : (15)

The energy balance in the manifold is given by:
X
i2IA

Hm
i D Hm ; 8m 2 M (16)

where Hm
i is the enthalpy of well i at manifold level m.

Separator Node Each separator s has a set of inlet
streams coming from the flowlines and type B wells, as
shown in Fig. 4. The mass balances for each phase are
given by the following relation:

X
m

qp;m;s C
X
i2IB

qp;i;s D qp;s ; 8p; s 2 S (17)

while the separator capacity constraints must also be
satisfied:

qp;s � Cp;s ; 8p; s 2 S : (18)

Mixed Integer Optimization in Well Scheduling, Figure 4
Separation node

Finally, the total amount of gas available for gas lift
is restricted by the compressor capacity (CC ):

X
i

qinjg;i � Cc : (19)

Network Logic Constraints

A well of type A could either be shut in, or else con-
nected to one manifold:

X
m

yi;m D yi ; 8i 2 IA (20)

yi;m � yi ; 8i 2 IA ; m 2 M : (21)

The integer Eq. (20) states that if the well is open
(yi D 1) then it should be connected to one manifold,
while Eq. (21) states that if the well is shut in (yi D 0)
then all binary variables yi;m which represent the con-
nection of well i to manifold m are zero.

Similarly, a well of type B could either be shut in, or
else connected to one separator:

X
s

ys;i D yi ; 8i 2 IB (22)

ys;i � yi ; 8i 2 IB ; s 2 S : (23)

Furthermore, it is also necessary to enforce the condi-
tion that each manifold flowline is connected to one
separator:

X
s

ym;s D 1 ; 8m 2 M : (24)
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Moreover, if the connection of well i to manifold m
or separator s does not exist, then its corresponding
flowrates and enthalpies must be zero:

0 � Hm
i � HU yi;m ; 8i 2 IA (25)

0 � qp;i;m � qUp;i;myi;m ; 8p; i 2 IA ; m 2 M (26a)

0 � qp;i;s � qUp;i;s yi;s ; 8p; i 2 IB ; s 2 S (26b)

Well and Flowline Momentum and Energy Balances

1. Naturally flowing wells of type A. Kosmidis [18] dis-
cusses how naturally flowing wells of type A can be
accurately approximated by piecewise linear func-
tions:

qmax
o;i D

X
j

�i; j qd;max
o;i; j ; 8i 2 IA (27a)

Pm
i D

X
j

�i; jPd
i; j ; 8i 2 IA (27b)

Hm
i D

X
j

X
k

�i; j;kHd
i; j;k ; 8i 2 IA (27c)

qo;i D
X
j

X
k

�i; j;kqdo;i; j;k ; 8i 2 IA (27d)

qo;i � qmax
o;i ; 8i 2 IA (27e)

X
j

X
k

�i; j;k D yi ; 8i 2 IA (27f)

�i; j D
X
k

�i; j;k ; �i;k D
X
j

�i; j;k ;

�i;t D
X
j

�i; j; jCt ; 8i 2 IA
(27g)

�i; j ; �i;k ; �i;t � 0 ; SOS ; 8i 2 IA : (27h)

It must be noted that if well i is shut in (yi D 0),
then all continuous variables in constraint (27) are
set equal to zero, as it can be observed from con-
straint (27f). The piecewise linear approximation of
the well model is constructed in a pre-processing
step by discretizing:
(i) the manifold pressure between the valid lower

(LP) and upper (UP) bound, and
(ii) the well oil rate in the interval [qLo;i ; q

U
o;i].

The lower bound (LP ) is equal to the lowest op-
erating pressure of the separators, while the upper
bound (UP ) must be greater than the highest oper-
ating pressure of the separators.

2. Naturally flowing wells of type B. For the case of nat-
urally flowing wells of type B, the oil flowrate qo;i;s
of well i in separator s is given by:

qo;i;s � qd;max
o;i;s yi;s ; 8i 2 IB (28)

where qd;max
o;i;s is calculated in a pre-processing step

for each fixed pressure separator s by setting the
choke fully open.

3. Gas lift wells of type A. These can be accurately ap-
proximated by the following set of mixed integer lin-
ear relations:

qo;i D
X
j

X
k

�i; j;kqdo;i; j;k ; 8i 2 IB (29a)

qinjg;i D
X
j

X
k

�i; j;kq
d;inj
g;i;k ; 8i 2 IB (29b)

Pm
i D

X
j

X
k

�i; j;kPd
i; j ; 8i 2 IB (29c)

Hm
i D

X
j

X
k

�i; j;kHd
i; j;k ; 8i 2 IB (29d)

X
j

X
k

�i; j;k D yi ; 8i 2 IB (29e)

�i; j D
X
j

�i; j;k ; �i;k D
X
k

�i; j;k ;

�i;t D
X
j

�i; j; jCt ; 8i 2 IB
(29f)

�i; j ; �i;k ; �i;t � 0 (SOS) ; 8i 2 IB : (29g)

These relations are constructed in a pre-processing
step by discretizing:
(iii) the manifold pressure in the interval [ LP , UP],

and
(iv) the well gas injection rate in the interval

[0; qinj;Ug;i ], where qinj;Ug;i is the gas injection rate
at the upper bound pressure (UP ), where the
well oil flowrate is reduced despite the increase
in gas injection rate.
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4. Gas lift wells of type B. These are connected to a fixed
pressure separator and they can be accurately ap-
proximated as follows:

qo;i;s D
X
j

�i; j;s qdo;i; j;s ; 8i 2 IB ; s 2 S (30a)

qinjg;i;s D
X
j

�i; j;s q
d;inj
g;i; j;s ; 8i 2 IB ; s 2 S (30b)

X
j

�i; j;s D yi;s ; 8i 2 IB ; s 2 S (30c)

�i; j;s � 0 ; SOS : (30d)

Flowline Momentum Balance The momentum bal-
ance in the manifold flowlines is given by:

Pm;s � fP(Pm ;Hm ; qo;m ; qg;m; qw;m) D 0 ;
8m 2 M ; s 2 S

(31)

where Pm;s is the pressure of flowline m at separator
level s.

Remark During construction of the piecewise linear
approximations or calculation of qmax

o;i;s , it is possible
to identify naturally flowing wells of type A or type B
which are unable to flow towards certain manifolds
or separators. To exclude these infeasible connections,
the following logic constraints are incorporated in the
mathematical formulation:

yi;m � 1 � ym;s ; 8i 2 IA (32)

yi;s � 0 ; 8i 2 IB : (33)

Constraint (32) states that if flowline m is connected to
separator s(ym;s D 1), then well i cannot be connected
to manifold m.

MaximumNumber of Well Switches

There is an upper bound on the number of well switches
(for wells of both types A and B) that can be performed
within a day. This is an operational constraint and is
applied to avoid huge flow variations which may even-
tually lead to a surface facility shut down. To consider
and model this requirement, the following binary vari-
ables and parameters are introduced:

Binary variables

cfi D

8<
:

1 if the well i is open and in the
previous day was closed

0 otherwise

cnfi D

8<
:

1 if the well i is closed and in the
previous day was open

0 otherwise

ci;m D

8<
:

1 if the well i of type A is connected
to a new manifold m on this day

0 otherwise

ci;s D

8<
:

1 if the well i of type B is connected to
a new separator s on this day

0 otherwise

cm;s D

8<
:

1 if the flowline m is connected to
a new separator s on this day

0 otherwise :

Parameters
NCmax

A maximum number of switches for the wells of
type A.

NCmax
B maximum number of switches for the wells of

type B.
yb binary parameters representing the well struc-

ture of the previous day.

One switch is accounted for in the following cases:
(i) A well i was closed and is currently open. This case

is modeled by incorporating the following con-
straint in the formulation:

yi � ybi � cfi ; 8i 2 I : (34)

Thus, if well i is open (yi D 1) while it was pre-
viously closed (ybi D 0), then one well switch is
accounted for by forcing the binary variable cfi to
be 1.

(ii) A well i was open and is currently closed. To in-
corporate this well switch in the formulation, the
following constraint is used:

ybi � yi � cnfi ; 8i 2 I : (35)

(iii) A well of type A switches manifold. If well i is
currently connected to manifold m(yi;m D 1) and
it was previously connected to manifold m0 ¤ m
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(that implies ybi;m D 0), then there is one well
switch, which is modeled by the following con-
straint in the formulation:

yi;m � ybi;m � ci;m ; 8i 2 B ; m 2 M (36)

where the set B D fi 2 IA j ybi ¤ 0g is the set of
wells of type A that were open during the previ-
ous day. Constraint (36) is applicable only for wells
of type A that were previously open (ybi ¤ 0), to
avoid double counting a well switch; the case of
a well that was closed (ybi D 0) and is currently
open (yi D 1) is considered by constraint (34).

(iv) Awell of type B switches to a new separator. If well i
is currently connected to separator s(yi;s D 1)
and was previously connected to separator s0 ¤
s(ybi;s D 0), then there is one well switch, which is
modeled by the following constraint in the formu-
lation:

yi;s � ybi;s � ci;s ; 8i 2 C ; s 2 S (37)

where the set C D fi 2 IB j ybi ¤ 0g is the set of
wells of type B that were open during the previous
day.

(v) A manifold flowline switches to a new separator. If
a manifold flowline m is currently connected to
a separator s(ym;s D 1) and was previously con-
nected to separator s0 ¤ s(ybm;s D 0), then there is
one switch, which is accounted for by forcing the
binary variable cm;s to be 1:

ym;s � ybm;s � cm;s ; 8m 2 M ; s 2 S : (38)

The sum of switches for the wells of type A and B
must be less then an upper bound:

X
i2IA

(cfi C cnfi )C
X
i2B

X
m2M

ci;m

C
X
m2M

X
s2S

cm;s � NCmax
A (39)

X
i2IA

(cfi C cnfi )C
X
i2C

X
s2S

ci;s � NCmax
B : (40)

Objective Function

The objective function is the maximization of daily rev-
enue:

max wo
X
i2I

qo;i � wg
X
i2I

qinjg;i (41)

The control variables are:
(i) the well operational status (open or close),
(ii) the well connections to manifolds and separators,
(iii) the flowline connections to separators,
(iv) the well oil flowrates, and
(v) the gas injection rates into gas lift wells.

AnMINLP Formulation
for theWell Scheduling Problem

By defining the vectors xD[P;H], qpD[qo ; qg ; qw ; q
inj
g ],

ys D [yi ; yi;m ; ym;s ; yi;s], c D [cfi ; c
nf
i ; ci;m; ci;s ; cm;s],

	 D [�i; j; �i;k ; �i;t] and ya (the vector of binary vari-
ables that are used to impose the adjacency condition
in SOS-type variables), the mathematical programming
formulation (P) for the well scheduling problem can be
concisely expressed as:

P : max  (qo;i ; q
inj
g;i) (42)

subject to

m1(xi ; qp;i ) D 0 (43)

m2(qp;i ; qp;i;m; qp;i;s ; qp;s ; xi ; xi;m; ys) � 0 (44)

m3(qp;i;m; qp;i;s ; ys) � 0 (45)

m4(qo;i ; q
inj
g;i ; qo;i;s; q

max
o;i;s; q

inj
g;i;sxi;m; �; y

s; ya)

D 0 (46)

m5(xm ; qp;m) D 0 (47)

m6(ys ; c) � 0 : (48)

The equivalence of the equations within the above
model (P) is explained as follows. Equation (42) is
equivalent to the linear objective function (41). Equa-
tion (43) represents the nonlinear wellbore model
Eq. (1)–(7). Equation (44) represents the mixed inte-
ger linear mass, momentum and energy balances in
the wells, manifold and separator nodes and is equiva-
lent to Eq. (8)–(19). Equation (45) represents the mixed
integer linear network logic constraints and is equiv-
alent to Eq. (20)–(26). Equation (46) represents the
well piecewise linear approximation and is equivalent
to Eq. (27)–(30). Equation (47) represents the nonlinear
momentum balance in the flowlines and is equivalent
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to Eq. (31). Finally, Eq. (48) represents the integer logic
relations associated with the ability of naturally flowing
wells to flow and with the relevant well switches, and is
equivalent to Eq. (32)–(40).

The mathematical programming formulation P in-
cludes: (i) binary variables, and (ii) nonlinear equa-
tions. Therefore, it belongs to the class of mixed inte-
ger nonlinear programming (MINLP) problems. There
are two categories of binary variables: the one that is as-
sociated with the structure of the production network
and the well switches (ys ; c), and a second that is used
to impose the adjacency condition on SOS-type vari-
ables (ya). Moreover, the number of nonlinear equa-
tions is equal to the number of coning wells plus the
number of flowlines.

The most popular methods for solving MINLP
problems are those that proceed by solving a sequence
of nonlinear (NLP) and mixed integer linear programs
(MILP) problems. These include Generalized Benders
decomposition (GBD, Geoffrion [3]) and Outer Ap-
proximation (OA, Kocis and Grossmann [5]). The dis-
advantage of GBD is that it may require a significant
number of major iterations of the NLP subproblem and
the MILP master problem. The major advantage of OA
is that it typically requires fewer iterations to achieve
a solution, since its MILP master problem contains
more information than the GBD formulation. Con-
versely, because the OA master problem is richer, it is
also more time-consuming to solve. A detailed review
of the various MINLP algorithms has been published
by Floudas [10].

This Chapter considers an approach based on
Outer Approximation (OA), since it typically requires
fewer iterations when compared to other MINLP tech-
niques. Also, its modified version (Outer Aproxima-
tion/Augmented Penalty (OA/AP), (Viswanathan and
Grossmann, 1990)) has been found to be capable of
handling mild nonconvexities present in the MINLP
problems.

Optimization Strategy

The first NLP subproblem of the OA/AP algorithm
involves solving an optimization problem where the
structure of the pipeline network is the one of the previ-
ous day. The lth NLP subproblem (l > 1) involves fix-
ing the discrete decisions ys and c to a given set of values

(ys(l ); c(l )). Therefore, there is no need to introduce the
logic constraints (45), (48) and hence the NLP subprob-
lem (P) is equivalent to the well operation and gas lift
allocation problem. It must be noted that the solution
of the NLP subproblem provides a lower bound on the
solution of the MINLP problem since the binary vari-
ables ys and c are fixed to values that are not necessarily
optimal.

The master problem is formulated from the lin-
earization of the nonlinear constraints (43) and (47) at
the solution points of the subproblems (l D 1; : : : ; L)
and relaxation of them to inequalities using the sign of
the Lagrange multipliers [17]. It is therefore, a MILP
problem. The master problem provides (i) an upper
bound to the MINLP problem and (ii) a new set of
binary variables ys and c. The master MILP problem is
as follows:

PM : max  (qo;i ; q
inj
g;i) � (wp

l )
Tpl � (wq

l )
Tql (49)

subject to

Tl
�
[rxi m1(xli ; q

l
p:i )rqp;i m1(xli ; q

l
p:i )]

�
(xi � xli )

(qp:i � ql
p:i )

�	
� pl ; 8l D 1; : : : ; L (50)

m2(qp;i ; qp;i;m ; qp;i;s; qp;s ; xi ; xi;m; ys) � 0 (51)

m3(qp;i;m; qp;i;s ; ys) � 0 (52)

m4(qo;i ; q
inj
g;i ; qo;i;s; q

max
o;i;s; q

inj
g;i;sxi;m; �; y

s; ya) D 0 (53)

Tl
�
[rxmm5(xlm; q

l
p;m)rqp;sm5(xlm; q

l
p;m)]

�
xm � xlm

qp;m � ql
p;m

�	
� ql ; l D 1; : : : ; L (54)

m6(ys; c) � 0 (55)

X

n2Gl

ysn �
X

n2NGl

ysn � jG
l j ; 8l D 1; : : : ; L (56)

where wp
l and wq

l are both vectors whose dimension is
equal to the number of equations in (50) and (54), re-
spectively. Each element of these vectors is a positive
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scalar which is greater than the absolute value of the La-
grange multiplier vlj associated with the jth constraint
in (50) and (54) at the lth iteration. Moreover, Tl is a di-
agonal matrix whose elements are defined as follows:

t lj j D

8̂
<
:̂

�1 if � lj < 0
1 if � lj > 0
0 if � lj D 0 :

(57)

Furthermore, pl and ql are vectors whose elements are
positive slack variables associated with each of the con-
straints in Eq. (50) and (54), respectively. Finally, the
constraint (56) is known as an integer cut and is ap-
plied to ensure that any pipeline configuration that has
already been considered is not selected again. The no-
tion jGl j denotes the cardinality of the set Gl whose el-
ements are all the structural binary variables yns that
have a value of 1 at the lth iteration, while NGl is the set
of structural binary variables that have a value of zero at
lth iteration.

The MINLP problem terminates when the differ-
ence of the best lower bound from the NLP subprob-
lems (maxl LBl ) and the current upper bound from the
MILP problem (UBl) are within a prespectified toler-
ance ":

maxl LBl � UBl

UBl � " (58)

or when the MILP problem is integer-infeasible. The
optimal solution is the one given by the best NLP sub-
problem.

However, the solution of the MILP problem on the
full space of both structural and interpolation binary
variables is computationally intensive, since the num-
ber of interpolation binary variables becomes very large
as the number of wells increases. For instance, a prob-
lem with 10 gas lift wells involves about 300 interpola-
tion binary variables. This motivates the need to refor-
mulate the MILP problem (PM), so as to involve only
structural and switching binary variables ys and c. As
mentioned, the master MILP problem is constructed
from (i) linearization of the nonlinear constraints, and
(ii) relaxation of the nonlinear equality constraints us-
ing the sign of Lagrange multipliers. Fortunately, in-
formation for both is available from the solution of
the NLP subproblem. Consider for instance the case of
a gas lift well of type A (29), where the subscript i has

been dropped for simplicity. At the optimal point, three
adjacent � coefficients are active (Williams, 1990). The
active triplet is assumed to be (� j;k ; � jC1;k ; � j;kC1),
without loss of generality. Then the gas lift model (29)
can be written as:

qo D � j;k qdo; j;kC� jC1;k qdo; jC1;kC� j;kC1qdo; j;kC1 (59a)

qinjg D � j;kq
d;inj
g;k C� jC1;kq

d;inj
g;k C� j;kC1q

d;inj
g;kC1 (59b)

Pm D � j;kPd;m
j C � jC1;kPd;m

jC1 C � j;kC1Pd;m
j (59c)

� j;k C � jC1;k C � j;kC1 D 1 (59d)

By substituting Eq. (59d) into (59b) and (59c), both
� jC1;k and � j;kC1 are given by:

� jC1;k D
Pm � Pd;m

j

Pd;m
jC1 � Pd;m

j

(60a)

� j;k D
qinjg � qd;injg;k

qd;injg;kC1 � qd;injg;k

: (60b)

Substituting Eq. (60a) and (60b) into (59a), the follow-
ing equation is obtained:

qo D qo; j;k C
qdo; jC1;k � qdo; j;k
Pd;m
jC1 � Pd;m

j

(Pm � Pd;m
j )

C
qdo; j;kC1 � qdo; j;k
qd;injg;kC1 � qd;injg;k

(qinjg � qinjg;k) : (61)

Equation (61) is the linearization of the nonlinear gas
lift well model, where the derivatives are calculated by
forward finite difference formulae. If Eq. (61) replaces
Eq. (59), a new NLP subproblem is obtained; then, by
applying KKT conditions to both NLP subproblems, it
is easy to prove that the Lagrangemultiplier of Eq. (59a)
is equal to the Lagrange multiplier of Eq. (61). Conse-
quently, the active triplet of �’s is obtained from the so-
lution of the NLP subproblem, along with the Lagrange
multiplier; moreover, the new MILP master problem
(PM 0) is formulated:

PM0 : max  (qo;i ; q
inj
g;i)

� (wp
l )

Tpl � (wq
l )

Tql � (wr
l )
Trl (62)
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subject to

Tl
�
[rxi m1(xli ; q

l
p:i );rqp;i m1(xli ; q

l
p:i )]

�
(xi � xli )

(qp:i � ql
p:i )

�	
� pl ; 8l D 1; : : : ; L (63)

m2(qp;i ; qp;i;m; qp;i;s ; qp;s ; xi ; xi;m; ys) � 0 (64)

m3(qp;i;m; qp;i;s; ys) � 0 (65)

Tl
�
[rxi m4(xli ; q

l
p:i )rqp;i m4(xli ; q

l
p:i )]

�
(xi � xli )

(qp:i � ql
p:i )

�	
� rl ; 8l D 1; : : : ; L (66)

Tl
�
[rxmm5(xlm; q

l
p;s)rqp;sm5(xlm ; q

l
p;s)]

�
xm � xlm
qp;s � ql

p;s

�	
� ql ; l D 1; : : : ; L (67)

m6(ys; c) � 0 (68)

X

n2Gl

ysn �
X

n2NGl

ysn � jG
l j ; 8l D 1; : : : ; L : (69)

The MILP problem (PM0) involves only structural (ys)
and switching (c) binary variables. Figure 5 depicts the
linearization of the nonlinear gas lift model, according
to the foregoing analysis.

Solution Procedure

Based on the foregoing sections, the steps of the
proposed MINLP optimization strategy for the well
scheduling problem are formally presented as follows:
(1) Pre-processing step

1. The reservoir information (productivity index,
GOR and WOR) is updated, using a reservoir
simulator.

2. For each naturally flowing well, the manifold
pressure and the well oil rate are discretized be-
tween a lower and an upper bound. Then, the
well model is simulated for each pair of discrete

points, and the momentum and energy balances
are approximated with piecewise linear func-
tions.

3. For each gas lift well, the manifold pressure
and the gas injection rate are discretized be-
tween a lower and an upper bound. Then, the
well model is simulated for each pair of discrete
points, and the momentum and energy balances
are approximated with piecewise linear func-
tions.

4. If a naturally flowing well cannot flow towards
a separator, then the corresponding logic con-
straint is incorporated into the formulation.

5. If Vertical Flowing Tables are used, then the ap-
proximation of momentum and energy balances
in the wells is simpler: there is no need for well
simulation using each pair of discrete points,
and simple interpolation calculations are used
to approximate the momentum and energy bal-
ances in the wells.

(2) Processing step
This step involves the solution of the MINLP prob-
lem:
1. Set the iteration counter at l = 0, and the upper

bound at UB0 D C1.
2. Solve the NLP subproblem as a sequence of

MILP problems, following the algorithm de-
scribed by Kosmidis [18] 4 to obtain a lower
bound (LBl ).

3. Add linearizations and integer cuts cumula-
tively, and solve the MILP master problem
(PM 0) and update the upper bound (UBl ).

4. If (UBl �maxl LBl )/(LBl ) � " or the MILP
problem is integer-infeasible, then STOP. The
optimal structure is the one which corresponds
to the best lower bound maxl LBl . Else, set
l D l C 1 and go to step (2).2.

(3) Post-processing step
For each well, fix the manifold pressure and the well
oil flowrate and perform a a well simulation (based
on the system of well equations) to calculate the
precise well choke settings.

Example Problems

This section illustrates the performance of the proposed
MINLP algorithm in two different example problems.
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Mixed Integer Optimization in Well Scheduling, Figure 5
Linearization of a gas lift well model

The first example is a small production network which
involves three wells connected to a manifold, and it is
used to illustrate the economic impact of incorporat-
ing discrete decisions in the well scheduling problem.
In the second example, the proposed MINLP optimiza-
tion strategy is applied to a field consisting of 3 sepa-
rators, 2 manifolds and 11 naturally flowing wells. To
evaluate the economic benefits of the proposed MINLP
optimization strategy, heuristic rules are also applied
to the same problem for comparison. Finally, the pro-
posed method is applied to an oil field, which consists
of 22 (both naturally flowing and gas lift) wells.

Example 1

The mathematical formulation and the solution proce-
dure developed in this Chapter has been applied to the
production network presented in Fig. 6. The well char-
acteristics, separator pressures and capacities are given
in Table 1 and 2, respectively. The problem has been
formulated as an MINLP problem, where binary vari-
ables are used to model the operational status of each
(closed or open) well. The MILP problems have been
implemented in GAMS [5] and solved using CPLEX®
as the MIP solver. The problem involves 3 binary vari-
ables, 26 interpolation binary variables and 81 con-

straints. Initially, the manifold pressure and the well
oil flowrate are discretized to construct a piecewise lin-
ear approximation of the well model. Then, the initial
structure (all wells tied to the manifold) has been eval-
uated by solving the corresponding NLP subproblem:
the optimal solution has thus been determined equal
to LB1 D 12010 STB/day. The master MILP problem
is then formulated and solved: the MILP problem so-
lution generates a new production network structure,
where well 1 is shut in. The new structure has then been
evaluated in the NLP subproblem, and a new lower
bound equal to LB2 D 12104:2 STB/day has been deter-
mined. The algorithm terminates, since the MILP mas-
ter problem is found to be integer-infeasible. Therefore,
the optimal structure involves only wells 2 and 3 con-
nected to the manifold, with their chokes fully open.

A typical heuristic rule for maximization of oil pro-
duction states that the well chokes must be fully open
for oil maximization. The application of this heuristic
rule to this particular production network yields an oil
production level equal to 11929.2 STB/day. The results
from the application of heuristic rules and the pro-
posed strategy are summarized in Table 3 and sug-
gest that: (i) these heuristic rules may lead to subop-
timal solutions, and (ii) an increase in oil production
of 175 STB/day is observed when the proposed formal
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Mixed Integer Optimization in Well Scheduling, Table 1
Well characteristics for a three-well production network (illustrative example)

Reservoir / pipeline parameters Well 1 Well 2 Well 3 Flowline

Reservoir pressure (psia) 2370 4650 4250
Productivity index (STB/psia day) 3.0 9.0 3.3
GOR (SCF/STB) 5100 1900 1600
WC 0.93 0.165 0.15
Vertical length (ft) 8000 6000 7000 22000 ft
Horizontal length (ft) 6000 4000 3000 0
Diameter (in) 3 in 3 in 3 in 6 in
Roughness 0.0001 0.0001 0.001 0.0001
Flowrate upper bound (STB/day) 1600 10000 5300
Flowrate lower bound (STB/day) 200 530 470

Mixed Integer Optimization in Well Scheduling, Figure 6
Production network structure for Example 1 (illustrative ex-
ample)

Mixed Integer Optimization in Well Scheduling, Table 2
Surface facilities: separator capacities for Example 1 (illustra-
tive example)

Pressure (psia) 400
Oil Capacity (STB/day) 17000
Gas Capacity (MSCF/day) 33000
Water Capacity (STB/day) 22000

MINLP optimization technique is applied to the well
scheduling problem. The above result can be explained
by considering the interaction of wells that share a com-
mon flowline. This particular three-well network prob-
lem has a well with a very high water cut (well 1), as can

Mixed Integer Optimization in Well Scheduling, Table 3
Comparison of structure and oil production results: heuris-
tics vs. optimization

Structure Objective function (STB/day)
(y1; y2; y3) D (1; 1; 1) 11929.2 (Heuristics)
(y1; y2; y3) D (0; 1; 1) 12104.2 (Optimization)

be seen fromTable 1: this results in increased back pres-
sure in the manifold flowline, which restricts oil pro-
duction from wells 2 and 3. By shutting in well 1, the
pressure drop in the flowline is reduced: the increased
production from wells 2 and 3 thus compensates losses
in oil production by shutting in well 1.

Example 2

The proposed MINLP optimization strategy is also ap-
plied to an oil field that comprises 11 naturally flowing
wells, 2 manifolds and 3 separators: this production
network is depicted in Fig. 7. Two types of wells are
considered: (i) type A wells, designated as TB01, TB02,
TB04, TB05, TB07, TB08D and TB10, and (ii) type B
wells, designated as A11, A13, A15 and A18. All these
are naturally flowing wells and their well oil flowrate
upper bounds are given in Table 4. The surface facil-
ities consist of a high (HP), an intermediate (IP) and
a low (LP) pressure separator, and the respective oper-
ating pressures and capacities are summarized in Ta-
ble 5. Two case studies are considered: the first is a gas
coning oil field, while the second is a water coning oil
field. The well bore model is generated from a reservoir
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Mixed Integer Optimization in Well Scheduling, Figure 7
Production network structure for Example 2a (initial pipeline configuration)

Mixed Integer Optimization in Well Scheduling, Table 4
Maximum flowrate values for wells

TB01 2300 STB/day TB07 7000 STB/day A11 4100 STB/day
TB02 4300 STB/day TB08D 1000 STB/day A13 4200 STB/day
TB04 2500 STB/day TB10 7000 STB/day A15 1800 STB/day
TB05 7500 STB/day A18 1200 STB/day

Mixed Integer Optimization in Well Scheduling, Table 5
Operating pressures and capacities of separators for Example 2a (gas coning)

HP separator IP separator LP separator
Capacity Optimal Capacity Optimal Capacity Optimal

Pressure (psia) 1235 460 165
Oil (STB/day) 15000 12541.9 10000 7191.2 10000 9584.1
Gas (MMSCF/day) 24000 24000 18000 18000 18000 18000
Water (STB/day) 2000 1236.5 4000 2057.8 8000 8000
Total oil production 29317
NLP (LB) 28567 28910 29317 28735 29020
MILP (UB) 32104 31580 31210 30920 30067
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Mixed Integer Optimization in Well Scheduling, Table 6
Optimal well flowrates by MINLP optimization (Example 2a)

Well Qo (STB/day) Qg (MSCF/day) Qw (STB/day)

TB01 2300 5574.83 3552.06
TB05 5685.67 10806.03 1123.67
TB08D Shut in
TB02 632.906 2223.614 0.0
TB04 836.88 1971.94 2055.46
TB07 6647.67 12543.21 109.594
TB10 5814.3 8229.61 2392.47
A11 4100 9151.44 71.62
A13 1291.18 3930.83 1553.64
A15 1800 4917.72 432.51
A18 208.552 650.76 3.213

simulator using a coning model. Details about this sec-
ond example (oil flowrate as a function of bottomhole
pressure, GOR andWC for both cases) are presented by
Kosmidis [18].

Example 2a (gas coning problem) The initial struc-
ture of the production network is shown in Fig. 7,
and five (5) well interconnection changes are allowed
for wells of type A and type B. The MINLP opti-
mization problem involves 89 binary variables, 260 in-
terpolation binary variables, 924 continuous variables,
1082 constraints and the objective is the maximiza-
tion of oil production. The optimization requires 5
OA/AP iterations and the total oil production is
29317.2 STB/day; the optimal production network
structure is presented in Fig. 8. Table 5 summarizes the
amount of oil, gas and water in the separators and the
convergence history of the MINLP algorithm; the in-
dividual well fluid flowrates are reported in Table 6.
A remarkable observation is that the gas capacity of
all separators is fully utilized at the optimal operat-
ing point, as can be observed from the results of Ta-
ble 5.

Example 2b (water coning problem) This problem is
again solved following the proposed MINLP optimiza-
tion strategy. The initial structure of the field is pre-
sented in Fig. 8; the maximum number of allowable
well interconnection changes is seven (7) for wells of
type A and type B. The MINLP problem converges in
6 OA/AP iterations and the optimal structure is de-
picted in Fig. 9. Table 7 presents the amount of oil, gas

and water in the separators and the convergence his-
tory of the MINLP problem, while well fluid flowrates
are reported in Table 8. The results of Table 7 suggest
that the production bottleneck of the oil field is the wa-
ter separator capacity, and the proposed MINLP opti-
mization method manages to allocate and operate the
wells in such a way that the available water separator
capacity is almost fully utilized. The manifold flowline
that is connected to theHP separator in the initial struc-
ture (Fig. 7) is reallocated to the IP separator, since the
latter has a larger water capacity compared to the HP
separator (Table 7).

Heuristic Rules vs. Optimization Examples 2a
and 2b are also both solved with heuristic rules, by
applying the following procedure:
STEP 0. Consider an initial pipeline structure identical
to that of the previous day.
STEP 1. Set the chokes fully open and solve the corre-
sponding production network problem.
STEP 2. If some of the resulting well flowrates from
Step 1 violate their upper bounds, then choke back these
wells until the respective upper bounds are satisfied.
STEP 3. The following two heuristic rules are applied
sequentially (one well at a time):

(i) Choke back the well according to the follow-
ing heuristic rule: if gas and/or water capacity
constraints are violated, then choke back the well
with the highest GOR and/orWC, respectively, un-
til the capacity constraints are satisfied. Terminate
or else go to Step 3 (ii).

(ii) Allocate high GOR wells to the HP separator and
high WC wells to the LP separator, and go back to
Step 1.

It must be noted that: (i) the heuristic rules are applied
sequentially, and (ii) the termination criterion is based
on the satisfaction of the operator. The results from
the application of heuristic rules are based on repeti-
tively applying the procedure described, until the max-
imum number of allowable interconnection changes is
reached. The production network structures resulting
from the application of heuristic rules in Examples 2a
and 2b are depicted in Fig. 10 and 11, respectively.
Tables 9 and 10 summarize the results derived from
both MINLP optimization and heuristic strategies. The
comparison clearly demonstrates the economic bene-
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Mixed Integer Optimization in Well Scheduling, Figure 8
Optimal production network structure by MINLP optimization (Example 2a)

Mixed Integer Optimization in Well Scheduling, Table 7
Optimal surface separator capacities by MINLP optimization (Example 2b)

HP separator IP separator LP separator
Capacity Optimal Capacity Optimal Capacity Optimal

Pressure (psia) 1235 460 165
Oil (STB/day) 15000 5900 10000 9714.5 10000 9684.4
Gas (MMSCF/day) 24000 14069.2 18000 18000 18000 18000
Water (STB/day) 2000 1926.9 4000 4000 8000 8000
Total oil production 25299
NLP (LB) 23210 24820 25170 25299 24870 24320
MILP (UB) 29102 28670 27332 26703 26209 26023

fits from the application of the proposed MINLP opti-
mization strategy, which in both examples achieves of
up to 10% in oil production. There are many reasons
which can explain these superior results: (i) the sim-
plistic nature of heuristic rules, which consider only the
individual well GOR andWC, and neglect other param-

eters (e. g. productivity index, pipeline length and di-
ameter), (ii) heuristic strategies do not account directly
for system interactions, which become important when
the wells share a common flowline, and (iii) heuristic
methods often have ad hoc or unclear termination cri-
teria.



Mixed Integer Optimization in Well Scheduling M 2263

Mixed Integer Optimization in Well Scheduling, Figure 9
Optimal production network structure by MINLP optimization (Example 2b)

Mixed Integer Optimization in Well Scheduling, Table 8
Optimal well flowrates by MINLP optimization (Example 2b)

Qo (STB/day) Qg (MSCF/day) Qw (STB/day)

TB01 2300 2125.14 3552.1
TB05 5200 10429.3 1874.8
TB08D 757.308 2723.6 375.1
TB02 1427.04 2721.95 2198.01
TB04 Shut in
TB07 6864.4 12937.2 1893.7
TB10 1691.2 2359.6 1573.4
A11 4100 9151.4 1494.4
A13 Shut in
A15 1800 4917.7 432.5
A18 1158.8 2703.2 532.9

Integration of Reservoir Multiphase Flow
Simulation andOptimization

Dynamic oil and gas production systems simulation
and optimization is a research trend with a potential

to meet the challenges faced by the international oil
and gas industry, as has been already demonstrated in
a wide variety of publications in the open literature.
The multiphase flow in reservoirs and wells governs
fuel transport and production, but is mostly handled
by algebraic approximations in modern optimization
applications: true reservoir state variable profiles (ini-
tial/boundary conditions) are generally not known.
Nevertheless, oil reservoirs, wells, pipelines, manifolds
and surface facilities are all equally important ele-
ments of a spatially and temporally distributed complex
system, and the potential contribution of CFDmethods
has not been fully explored so far, even though it is gen-
erally recognized that computing accurate reservoir and
well state variable profiles can be extremely useful for
optimization. This section discusses a strategy for inter-
facing reservoir simulation (ECLIPSE®) with equation-
oriented process optimization (gPROMS®) and presents
a relevant application [13].

The complex multiphase flow in oil production
fields is of paramount importance. Despite intensive
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Mixed Integer Optimization in Well Scheduling, Table 9
Comparison of results: MINLP optimization vs. heuristics (Example 2a)

Example 2a (High GORs) Capacity Optimization Heuristics
Qo (STB/day) Qo (STB/day) Qo (STB/day)

LP 10000 9584.15 9004.296
IP 10000 7191.18 7191.186
HP 15000 12541.894 12321.138
Total 29317.2 28516.6
Benefit (STB/day) 800.5 (+2.3%)

Mixed Integer Optimization in Well Scheduling, Figure 10
Heuristic production network structure (Example 2a)

Mixed Integer Optimization in Well Scheduling, Table 10
Comparison of results: MINLP optimization vs. heuristics (Example 2b)

Example 2b (HighWCs) Capacity Optimization Heuristics
Qo (STB/day) Qo (STB/day) Qo (STB/day)

LP 10000 9684.4 7424.407
IP 10000 9714.5 9311.058
HP 15000 5900 5900
Total 25298.8 22635.5
Benefit (STB/day) 2663.3 (+11.8%)
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Mixed Integer Optimization in Well Scheduling, Figure 11
Heuristic production network structure (Example 2b)

experimentation and extensive CFD simulations to-
wards improved understanding of flow and phase dis-
tribution, commercial optimization applications have
not benefited adequately from accurate sub-surface
multiphase CFD modeling, and knowledge from field
data is not readily implementable in commercial soft-
ware. Model integration can enable the employment
of two-phase reservoir CFD simulation, towards en-
hanced oil or gas production from depleted or gas-rich
reserves, respectively.

The concept of integrated modeling and optimiza-
tion of oil and gas production treats oil reservoirs,
wells and surface facilities as a single (albeit multiscale)
system, and focuses on computing accurate reservoir
state variable profiles (as initial/boundary conditions).
The upper-level optimization can thus benefit from
the low-level reservoir simulation of oil and gas flow,
yielding flow control settings and production resource
allocations. The components of this system are tightly
interconnected (well operation, allocation of wells to
headers andmanifolds, gas lift allocation, control of un-

stable gas lift wells). These are only some of the prob-
lems that can be addressed via this unified framework.
Figure 12 presents the concept of integrated modeling
of oil and gas production systems.

Literature Review and Challenges
for IntegratedModeling and Optimization

A number of scientific publications address modeling
and simulation of oil extraction: they either focus on ac-
curate reservoir simulation, without optimization con-
siderations [15,22], or on optimal well planning and
operations, with reduced [8,23,29,32] or absent [28,30]
reservoir models. A recent paper [16] is the only con-
sidering a three-dimensional field topology (without
additional flow constraints) for well placement op-
timization. Computational Field Dynamics (CFD) is
a powerful technology, suitable for studying the dy-
namic behavior of reservoirs for efficient field opera-
tion [2]. The MINLP formulation for oilfield produc-
tion optimization of Kosmidis [19] uses detailed well
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Mixed Integer Optimization in Well Scheduling, Figure 12
Integrated modeling concept for oil and gas production systems optimization: illustration of the hierarchy of levels and all
production circuit elements

models and serves as a starting point in the case ex-
amined in this section. Therein, the nonlinear reser-
voir behavior, the multiphase flow in pipelines, and sur-
face capacity constraints are all considered (multiphase
flow is handled by DAE systems, which in turn com-
prise ODEs for flow equations and algebraics for phys.
properties). The model uses a degrees-of-freedom anal-
ysis and well bounding, but most importantly approx-
imates each well model with piecewise linear functions
(via data preprocessing).

Here, explicit reservoir flow simulation via a dy-
namic reservoir simulator (ECLIPSE®) is com-
bined with an equation-oriented process optimizer
(gPROMS®), towards integrated modeling and opti-
mization of a literature problem 13. An asynchronous
fashion is employed: the first step is the calculation of
state variable profiles from a detailed description of the
production system (reservoir) via ECLIPSE®. This is
possible by rigorously simulating the multiphase flow
within the reservoir, with real-world physical proper-
ties (whose extraction is laborious [7]). These dynamic
state variable profiles (pressure, oil, gas and water sat-

uration, flows) are a lot more accurate than piecewise
linear approximations [18], serving as initial condi-
tions for the higher-level dynamic optimization model
(within gPROMS®). Crucially, these profiles consti-
tute major sources of uncertainty in simplified models.
Considering the oil and gas pressure drop evolution
within the reservoir and along the wells, one can solve
single-period or multi-period dynamic optimization
problems that yield superior optima, because piece-
wise linear pressure underestimation is avoided. While
integrating different levels (sub-surface elements and
surface facilities – Fig. 12) is vital, interfacing CFD
simulation with MINLP optimization is here pursued
in an asynchronous fashion (given the computational
burden for CFD nested within MINLP).

The concept of integrated modeling and optimiza-
tion is illustrated in Fig. 13.

ProblemDefinition andModel Formulation

Dynamic CFD modeling for explicit multiphase flow
simulation in reservoirs and wells comprises a large
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Mixed Integer Optimization in Well Scheduling, Figure 13
Integrated modeling and optimization of oil and gas production systems: illustration of the explicit consideration of multi-
phase flowwithin reservoirs and wells

number of conservation laws and constitutive equa-
tions for closure: Table 1 presents only the most im-
portant ones, which are implemented in ECLIPSE®. The
black-oil model [25] is adopted in this study, to manage
complexity. More complicated, compositional models
are widely applied [2], accounting explicitly for dif-
ferent hydrocarbon real- or pseudo-species concentra-
tions. A black-oil model allows for multiphase simula-
tion via only 3 phases (oil, water, gas):

Multiphase flow CFD model equations (Nomencla-
ture [19]):
Oil:
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Total pressure gradient:

dP
dx
D �g�m(x) sin(�) �

�w(x)S
A

(73)

Capillary pressure (oil/gas):

Pcog(So ; Sg) D Po � Pg (74)

Capillary pressure (oil/water):

Pcow(So; Sw ) D Po � Pw (75)

Multiphase mixture saturation:

So C Sw C Sg D 1 (76)
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Mixed Integer Optimization in Well Scheduling, Figure 14
Temporal evolution of pressure, oil saturation and gas/oil ratio in an oilfield: the gradual depletion of oil in reservoirs is
explicitly considered for optimization (t:yr)

Multiphase mixture density:

�m(x) D �l (x)El (x)C �g(x)Eg(x) (77)

Multiphase mixture viscosity:

�m(x) D �l (x)El (x)C �g(x)Eg(x) (78)

Multiphase mixture sup. velocity:

Um(x) D
�l (x)
�m(x)

Usl (x)C
�g(x)
�m(x)

Usg (x) (79)

Multiphase mixture holdup closure:

Eg(x)C El (x) D 1 (80)

Drift flux model (gas holdup):

Eg D fd(Usl ;Usg ; mixture properties) (81)

Choke model (for well & valve i):

qL;i D fc(di ; Pi (x�ch); Pi (x
C
ch); ci ; qg;i ; qw;i) (82)
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Mixed Integer Optimization in Well Scheduling, Table 11
Oil production optimization by explicit CFD simulation boundary conditions

Example 2a, Kosmidis et al.[20] Total capacity Via performance indices With explicit reservoir simulation

Oil production (STB/day) 35000 29317.2 30193.7 (+2.9%)
Gas production (MSCF/day) 60000 60000 60000
Water production (STB/day) 14000 11294.3 11720.1 (+3.8%)

Choke setting (for well & valve i):

ci D max(cc ; Pi (x�ch); Pi (x
C
ch)) (83)

Performance (flow vs. pressure):

q j;i D f j(Pwf; j;i); 8i 2 I; 8 j 2 fo;w; gg : (84)

Reduced (1D) multiphase flow balances were solved us-
ing a fully implicit formulation and Newton’s method,
but only for the wells and not for the reservoir [18].
The present section uses: (a) explicit reservoir and
well 3D multiphase flow simulation, (b) elimination
of Eq. (84) (performance relations/preprocessing obso-
lete due to CFD), (c) CFD profiles as initial conditions
(asynchronous fashion) for dynamic optimization. The
MINLP optimization objective (maximize oil produc-
tion) and model structure is adopted from the litera-
ture [20] via a gPROMS®–SLP implementation. Adopt-
ing an SQP strategy can increase robustness as well as
computational complexity.

Reservoir Multiphase Flow Simulation Results

Dynamic multiphase flow simulation results
(ECLIPSE®) are presented in Fig. 14.

Oil Production Optimization Results

Dynamic optimization via explicit CFD simulation of
a particular oil field problem can improve on results
from MINLP optimization: the comparison is pre-
sented in Table 11.

Conclusions

A novel MINLP optimization formulation for the well
scheduling problem has been proposed in this Chapter:
the optimal connectivity of wells to manifolds and sep-
arators is treated simultaneously with the optimal well
operation and gas lift allocation. The algorithm avoids
examining infeasible connections of wells to manifolds
or separators by incorporating appropriate integer cuts

in the formulation: these, along with the incorpora-
tion of operational logic constraints pertinent to the
maximum number of well switches, lead to satisfac-
tory computational performance: convergence has been
achieved in less then 6 iterations in all cases examined.
The business value of the new MINLP formulation has
been investigated by comparing the proposed method
with established heuristic rules, and an increase of up
to 10% in oil production has been observed for the cases
studied [18].

The combination of dynamic multiphase CFD sim-
ulation and MINLP optimization has the potential to
yield improved solutions towards efficiently maximiz-
ing oil production. This Chapter also addresses inte-
grated oilfield modeling and optimization, treating the
oil reservoirs, wells and surface facilities as a com-
bined system: most importantly, it stresses the ben-
efit of computing accurate state variable profiles for
reservoirs via CFD. Explicit CFD simulations via a dy-
namic reservoir simulator (ECLIPSE®, Schlumberger)
are combined with equation-oriented process opti-
mization software (gPROMS®, PSE): the key idea is to
use reduced-order copies of CFD profiles for dynamic
optimization. The literature problem solved shows that
explicit use of CFD results in optimization yields im-
proved optima at additional cost (CPU cost and cost
for efficient separation of the additional water; the per-
centage difference is due to accurate reservoir simu-
lation). These can also be evaluated systematically for
larger case studies under various conditions [14].
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Background

Mixed-Integer Programming

Mixed-Integer Programming (MIP) [5] emerged in the
mid 1950s as an extension of Linear Programming (LP)
to include both integer and continuous variables. It
was developed to address a variety of problems (facil-
ity location, scheduling, design of plants and networks,
etc.) where discrete decisions needed to be made. There
are two main algorithms used to solve MIP models:
branch-and-bound [5,31] and cutting planes. When
the two solution methods are combined we have the
branch-and-cut algorithm, where cutting planes are
added until either an integral solution is found or it be-
comes impossible or too expensive to find another cut-
ting plane. In the latter case, a traditional branch op-
eration is performed and the search for cutting planes
continues for the subproblems. Balas developed an al-
gorithm for 0–1 problems to obtain dual bounds and
check primal feasibility [3]. The idea of cutting planes
was originally proposed by Gomory in [17], and a cut-
ting plane algorithm was presented by Gomory in [18].
A general procedure for bounded programs was pro-
posed by Chvatal in [13].

The results of Edmonds and Fulkerson in the late
1960s led several authors to propose other, specific
types of cutting planes: cover inequalities [4,5], flow
cover inequalities [4], and GUB constraints [51]. Due
to the incorporation of these theoretical results, the
efficiency of the commercial solvers has greatly been
enhanced during the last decade. Advances in prepro-
cessing, more sophisticated branching and node selec-
tion rules, as well as the use of primal heuristics have
also contributed to the improvement of MIP solvers.
Special techniques have also been used extensively for
the solution of MIP problems, when the set of con-
straints exhibits a special structure. Themost popular of
these schemes are Benders decomposition [9] and La-
grangean relaxation [16,19]. More information on MIP
can be found in [38], and [52], while an exposition in
recent progress in solution techniques for MIP models
can be found in [30].

Constraint Programming

Constraint Programming [24,47] is a relatively new
modeling and solution paradigm that was originally de-
veloped to solve feasibility problems, but it has been
extended to solve optimization problems as well. Con-
straint Programming (CP) has emerged as a very in-
teresting sub-field of logic programming that aims at
combining the declarative aspect of logic programming
and constraint solving in an efficient problem solv-
ing environment [29]. Optimization problems in Con-
straint Programming are solved as Constraint Satisfac-
tion Problems (CSP), where we have a set of variables,
a set of possible values for each variable (domain) and
a set of constraints among the variables. Constraints are
solved withmethods and advanced techniques originat-
ing in various areas, from Artificial Intelligence, Oper-
ations Research and Discrete Mathematics. The com-
putation domains handled by CP solvers are quite di-
verse, including Boolean algebra, linear programming,
finite domains, and list and set handling. Successful in-
dustrial applications were implemented with CP solvers
over finite domains in production planning, schedul-
ing and resource applications [44]. Finite domain con-
straints are expressed over variables, which range over
a finite set of possible values. Constraints may be arith-
metic, symbolic or global constraints [1] that have been
developed to efficiently model and solve complex prob-
lems. A CP program is usually structured as follows:
(1) declaration of decision variables, (2) constraints and
(3) the enumeration/optimization. The question to be
answered is as follows: Is there an assignment of values
to variables that satisfy all constraints? Constraint Pro-
gramming is very expressive as continuous, integer, as
well as boolean variables are permitted and moreover,
variables can be indexed by other variables. A CP prob-
lem can be seen as a network of constraints. As soon as
some information becomes available at some points in
this network, constraints are invoked to check consis-
tency and to remove inconsistent values by applying ef-
ficient handling methods. The new domain reductions
are propagated through the network. The solution of
CP models is based on performing constraint propaga-
tion at each node by reducing the domains of the vari-
ables. If an empty domain is found the node is pruned.
Branching is performed whenever a domain of an inte-
ger, binary or boolean variable has more than one ele-
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ment, or when the bounds of the domain of a contin-
uous variable do not lie within a tolerance. Whenever
a solution is found, or a domain of a variable is reduced,
new constraints are added. The search terminates when
no further nodes must be examined.

The effectiveness of CP depends on the propaga-
tion mechanism behind the constraints. Thus, even
though many constructs and constraints are avail-
able, not all of them have efficient propagation mech-
anisms. For some problems, such as scheduling, prop-
agation mechanisms have been proven to be very ef-
fective. Some of the most common propagation rules
for scheduling are the “time-table” constraint [32],
the “disjunctive-constraint” propagation [6,45], the
“edge-finding” [12,39] and the “not-first, not-last” [7].
Constrained-based scheduling algorithms can be found
in [8]. General information on CP can be found
in [24,27,36,47].

Methods

Several authors have compared MIP and CP based ap-
proaches for solving a variety of problems [21,26], and
the main findings are as follows:
� MIP based techniques are very efficient when the LP

relaxation is tight and the models have a structure
that can be effectively exploited.

� CP based techniques are better for highly con-
strained discrete optimization problems.

Since the two approaches appear to have complemen-
tary strengths, in order to solve difficult problems that
are not effectively solved by either of the two, several re-
searchers have proposed models that integrate the two
paradigms. The integration between MIP and CP can
be achieved in two ways [26,48]:
1 By combining MIP and CP constraints into one hy-

brid model. In this case a hybrid algorithm that inte-
grates constraint propagation with linear program-
ming in a single search tree is also needed for the
solution of the model (e. g. see [21,42]).

2 By decomposing the original problem into two sub-
problems: one MIP and one CP subproblem. Each
model is solved separately and information obtained
while solving one subproblem is used for the solu-
tion of the other subproblem [11,28].
Bockmayr and Kasper [10] have presented a uni-

fying framework, called Branch and Infer, which can

be used for the development of various integration
schemes. Hooker et al. [25] have proposed a new mod-
eling paradigm to perform efficient integration of MIP
and CP techniques. In general, it is not clear whether
an integration strategy performs better than a stan-
dalone MIP or CP approach, especially when the prob-
lem at hand is solved effectively by one of the two ap-
proaches. For some problems, however, the integration
of the two approaches has led to significant compu-
tational improvements. Common integration schemes
include the derivation of cuts for MIP formulations
using CP techniques, the use of CP to accelerate col-
umn generation, and the use of CP local search to solve
MIP scheduling problems. Integration schemes are de-
scribed in [21,23,26,27,37], and [48].

MIP/CP Hybrid Schemes are particularly successful
for scheduling problems that often arise in manufac-
turing, chemical and food industry, in transportation
industries and in computing environments. To solve
a scheduling problem one has to (i) allocate limited re-
sources to tasks, and (ii) sequence the tasks allocated to
a single resource. We will refer to the first set of deci-
sions as the assignment problem, and the second set of
decisions as the sequencing problem.

While heuristic methods are widely used, rigorous
optimization methods have also been studied. To solve
some hard scheduling problems to optimality, several
authors have proposed MIP/CP hybrid schemes that
exploit the complementary strengths of Mathematical
and Constraint Programming. The main idea behind
these approaches is to solve a relaxed MIP model to
determine the allocation of machines to tasks, and use
CP to check the feasibility of a given assignment and
to generate cuts that are added in the relaxed MIP
model. Thus, the complementary strengths of the two
methods are combined: Mathematical Programming is
used for optimization (i. e. identify potentially good
assignments) and Constraint Programming to check
feasibility.

Applications

A scheduling problem that has been widely studied us-
ing hybrid schemes is the Multi-Machine Assignment
Scheduling Problem (MMASP) with Release and Due
Times. In this problem a set I of N jobs have to be pro-
cessed on a set J of M machines; the processing of job
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i 2 I D f1; : : :Ng on any machine j 2 J D f1; : : :Mg,
must start after its release time ri and must be com-
pleted before its due time di; the processing time and
processing cost of job i 2 I on machine j 2 J are Pij,
and Cij respectively. The objective is to minimize the
total processing cost. The MMSAP was first studied by
Hooker et al. [22] in a hybrid optimization framework.

A MIP model (M) for the MMASP consists of con-
straints (1)–(6):

min Z D
X
i2I

X
j2J

Ci jxi j (1)

X
j2J

xi j D 1 8i 2 I (2)

si � ri 8i 2 I (3)

si C
X
j2J

Pi jxi j � di 8i 2 I (4)

yi i 0 C yi 0 i � xi j C xi 0 j � 1

8 j 2 J;8i 2 I;8i0 2 Iji < i0 (5)

si C
X
j2J

Pi jxi j � si 0 CM(1 � yi i 0)

8i 2 I;8i0 2 Iji ¤ i0 (6)

where binary xij is 1 if job i is assigned to machine j,
binary yi i 0 is 1 is job i is scheduled before job i0 in the
same machine, and si is the start time of processing of
job i.

Constraint (2) ensures that each job is processed on
exactly one machine. Constraints (3) and (4) restrict
each job to start after its release, and finish before its
due time, respectively. Constraint (5) imposes the con-
dition that if both jobs i and i0 are assigned to the same
machine j (i. e. xi jCxi 0 j�1 D 1), then jobs i and i0must
be sequenced (i. e. yi i 0 D 1 or yi 0 i D 1). Constraint (6)
is a big-M sequencing constraint that is active when yi i 0
is 1.

Hooker et al. [22] and Jain and Grossmann [28]
showed that model (M) is not efficient, due to the poor
LP relaxation caused by the big-M sequencing con-
straint (6). Furthermore, they showed that standalone
CPmodels are not efficient either, due to the large num-
ber of different assignments. To overcome this, the au-
thors proposed a scheme where an IP master problem

and a CP subproblem are solved iteratively. The IPmas-
ter problem is a relaxation ofmodel (M) and it is used to
determine an assignment. The CP subproblem is used
to check feasibility of the current assignment; if infea-
sible, integer cuts are added and the IP master problem
is re-solved; if feasible, the subproblem gives a feasible
sequence, and the algorithm terminates. The IP master
problem consists of constraints (1)–(2), (7) and the in-
teger cuts that are added at each iteration. Constraint
(7) is used to eliminate infeasible assignments:

X
i2I

Pi jxi j � max
i2I
fdig �min

i2I
frig 8 j 2 J (7)

The IP master problem does not include the sequenc-
ing binary variables yi i 0 and big-M constraint (6), it is
solved fast, and at iteration k, yields a complete job-
machine assignment xk. The CP subproblem is then
used to check whether the current assignment xk is fea-
sible. At each iteration k, the set Ikj of jobs assigned on
machine j 2 J, the processing time P̄k

i of each job, and
the domain Dk

i for the start time of job i (i. e. si 2 Dk
i )

are given by (8)–(10), respectively:

Ikj D fijx
k
i j D 1g 8 j 2 J (8)

P̄k
i D

X
j2J

Pi jxk
i j 8i 2 I (9)

Dk
i D [ri ; di � P̄k

i ] 8i 2 I (10)

Thus, the CP subproblem reduces to jJj one-machine
independent problems, and for each one of these prob-
lems we try to find a sequence of jobs in Ikj that sat-
isfies constraint (10) and the non-overlapping of jobs
assigned to machine k (see (5) and (6)). This problem
can be solved using the global constraint cumulative [1],
and various propagation techniques (time-table, dis-
junctive, edge-finding, etc.).

cumulative i2O ((si ; di ; ri) ; l ; e) (11)

The basic version of cumulative, (see detailed exam-
ples in [2]) takes 3 arguments, argument 1 is the set of
operations O where each operation is characterized by
three parameters, which can be either domain variables
or values; the starting time si, the duration di, and the
amount of some resource ri used by the operation. The
second argument l is the upper bound on the resource



2274 M Mixed Integer Programming/Constraint Programming Hybrid Methods

consumption. The third argument e is the completion
time. In this case, Eq. (11) can be written as follows:

cumulative i2I j

��
si ; P̄k

i ; 1
�
; 1; max

i2I j
fdig

�
(12)

The global cumulative constraint is satisfied if the fol-
lowing conditions hold:

X
i2O :s i�t�s iCdi ;t21::l

ri � l AND max
i2O

(siCdi ) � e

(13)

If there is no sequence for machine j that satisfies con-
straint (12), then the current assignment xk is infeasi-
ble. For every infeasible one-machine problem we add
the following integer cut in the cut-pool of the master
problem:

X

i2Ikj

xi j � jIkj j � 1 (14)

If the IP master problem is solved to optimality, the
lower bound provided by the optimal solution Zk of
the IP is non-decreasing, and the first feasible assign-
ment is the assignment that yields the optimal solution
with a minimum assignment cost. A schematic of the
proposed algorithm is given in Fig. 1. The hybrid itera-
tive approach was shown to be considerably faster than
standalone MIP and CP models.

The above hybrid decomposition can also be imple-
mented in a branch-and-cut framework (B&C), where
the IP master problem is not solved to optimality before
adding cuts. In the B&C framework, cuts are added ei-
ther at a (possibly suboptimal) integer solution to the
master problem or a partially feasible node, i. e. a node
with integer assignments for a subset of machines.

Bockmayr and Pisaruk [11] proposed a hybrid
branch-and-cut scheme where the master problem is
solved using an IP solver and the CP solver is called
at a node of the tree, in order to generate integer cuts.
The advantage of this method is that the IP model is
not solved from scratch every time an integer solu-
tion (i. e. an assignment) is found. Furthermore, the au-
thors were able to obtain cuts that are stronger than
the ones proposed by Jain and Grossmann [28]. They
were also able to generate cuts from fractional LP solu-
tions of the IP model. The computational performance

of the proposed hybrid branch-and-cut approach is bet-
ter than the iterative IP/CP approach. Vazacopoulos
and Verma [49] proposed certain Disjunctive and pre-
emptive cuts to a priori forbid infeasible assignments
and developed two hybrid MIP/CP algorithms for the
MMASP. Sadykov and Wolsey [43] studied several
hybrid approaches and developed two IP/CP hybrid
schemes that appear to be better than those previously
proposed. In the first, the authors were able to develop
two classes of tightening inequalities, in the space of xi j
variables, which exclude many infeasible assignments
and thus lead to smaller trees. The tightening inequal-
ities are knapsack constraints, similar to constraint (7),
but for subsets of set I. They also proposed a column
generation algorithm using the tightening inequalities.

While the MMASP has been extensively studied
due to its simple structure, hybrid schemes have also
been developed for more complex scheduling prob-
lems. Harjunkoski and Grossmann [20], Timpe [46]
and Constantino [14] presented hybrid schemes for
complex chemical plants. Maravelias and Gross-
mann [33,34] proposed a general framework for in-
tegrating Mathematical and Constraint Programming
methods for the solution of scheduling problems, while
Maravelias [35] proposed the integration of MIP meth-
ods with heuristic algorithms. Hybrid methods that
combine Mathematical and Constraint Programming
have also been applied to transportation, inventory
management and resource allocation problems.

Conclusions

While the computational efficiency of MIP/CP meth-
ods varies significantly, there is evidence that for some
classes of problems they outperform existing methods.
In general, if the structure of the problem at hand is
exploited by efficient preprocessing and the genera-
tion of strong cuts, it is expected that hybrid schemes
will be more effective because they combine the
complementary strengths of two solution techniques.

The computational performance of hybrid methods
relies on (i) the quality of the decomposition, (ii) the
solution efficiency of the two subproblems, and (iii) the
number of subproblems needed to be solved to prove
optimality. Ideally, the original problem should be de-
composed/reformulated into a tight MIP subproblem
that is easily solved yielding potentially good feasible
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Mixed Integer Programming/Constraint Programming Hybrid Methods, Figure 1
Iterative hybrid IP/CP scheme of Jain and Grossmann [28]

solutions, and a feasibility CP subproblem that is used
to check feasibility and generate cuts.

In particular, MIP/CP methods have been shown to
be very effective in tackling scheduling problems where
both assignment and sequencing decisions have to be
made. The key idea in these methods is the decompo-
sition of the original problem into two sub problems;
Mathematical Programming is used for the assignment
of tasks to resources, while Constraint Programming is
used for the sequencing of tasks on resources.
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Abstract

This chapter presents model based controllers for two
drug delivery systems: (i) surgery under anesthesia and
(ii) insulin delivery for type 1 diabetes. For anesthesia,
a compartmental model is presented and then used for
deriving model predictive controller for simultaneous
control of mean arterial pressure (MAP), cardiac out-
put (CO) and hypnosis. For type 1 diabetes, parametric
control techniques are used for obtaining insulin deliv-
ery rate as an explicit function of the state of the patient.
This reduces the implementation of the model based
controller to function evaluations that can be carried
out on a portable computational hardware.

Introduction

Drug delivery systems aim to provide effective therapy
by minimizing side effects, reducing deviations from
the desired state of the patient and increasing patient
compliance and safety. Automation of a drug delivery
system relies on the mathematical model of the pa-
tient that can take into account the pharmacokinetic
and pharmacodynamic effects of the drugs on various
organs of the body. To reduce the complexity of the
mathematical model, some of the organs are lumped

and then represented as interconnected compartments.
This reduction in complexity is quite important es-
pecially for models that are used for controlling the
amount of drugs to be infused. In this chapter, mod-
els and advanced model based controllers for two drug
delivery systems are presented. In Sect. “Surgery Un-
der Anesthesia”, the first system which is concerned
with the delivery of anesthetics for patients undergoing
surgery is discussed. A compartmental model is pre-
sented that considers a choice of three drugs, isoflu-
rane, dopamine and sodium nitroprusside, and there-
fore allows simultaneous control of mean arterial pres-
sure, cardiac output and hypnosis. This model is then
used for designing model predictive controller and the
performance of the controller is tested for its set-point
tracking capabilities. In Sect. “Blood Glucose Control
for Type 1 Diabetes” model based parametric con-
troller for the regulation of the blood glucose concen-
tration for people with type 1 diabetes is derived. The
key advantage of this controller is that the optimal
drug infusion rate is obtained as an explicit function
of the state of the patient and therefore requires sim-
ple function evaluations for its implementation. Con-
cluding remarks are presented in Sect. “Concluding
Remarks”.

Surgery Under Anesthesia

Anesthesia is defined as the absence or loss of sensa-
tion. In order to provide safe and adequate anesthesia,
the anesthesiologist must guarantee analgesia, provide
hypnosis, muscle relaxation and maintain vital func-
tions of the patient. Anesthesiologists administer anes-
thetics andmonitor a wide range of vital functions, such
as mean arterial pressure (MAP), heart rate, cardiac
output (CO). These vital functions need to be moni-
tored and maintained within tolerable operating ranges
by infusing various drugs and/or intravenous fluids as
shown in Fig. 1. Automation of anesthesia is desirable
as it will provide more time and flexibility to the anes-
thesiologist to focus on critical issues, monitor the con-
ditions that cannot be easily measured and overall im-
prove patient’s safety. Also, the cost of the drugs will
be reduced and shorter time will be spent in the post-
operative care unit. There is a significant amount of
research in the area of developing models and con-
trol strategies for anesthesia [10,14,15,17]. Gentilini et
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Model Based Control for Drug Delivery Systems, Figure 1
Anesthesia control system (adapted from [6])

al. [6] proposed a model for the regulation of MAP
and hypnosis with isoflurane. It was observed that con-
trolling both MAP and hypnosis simultaneously with
isoflurane was difficult. Yu et al. [16] proposed a model
for regulating MAP and CO using dopamine (DP) and
sodium nitroprusside (SNP), but the control of hypno-
sis was not considered.

In the next section, a compartmental model is pre-
sented, which allows the simultaneous regulation of
the MAP and the unconsciousness of the patients. The
model is characterized by: (i) pharmacokinetics for the
uptake and distribution of the drugs, (ii) pharmacody-
namics which describes the effect of the drugs on the vi-
tal functions and (iii) baroreflex for the reaction of the
central nervous system to changes in the blood pres-
sure. The model involves choice of three drugs, isoflu-
rane, DP and SNP. This combination of drugs allows
simultaneous regulation of MAP and hypnosis.

Modeling Anesthesia

The model is based on the distribution of isoflurane in
the human body [15]. It consists of five compartments
organized as shown in Fig. 2.

The compartments 1–5 represent lungs, vessel rich
organs (e. g. liver), muscles, other organs and tissues
and fat tissues respectively.

The distribution of the drugs occurs from the cen-
tral compartment to the peripheral compartments by
the arteries and from the peripheral to the central by
the veins. The first compartment in Fig. 2 is the central

Model Based Control for Drug Delivery Systems, Figure 2
Compartmental model

compartment and heart can be considered to be belong-
ing to the central compartment, whereas compartments
2–5 are the peripheral compartments.

PharmacokineticModeling The uptake of isoflurane
in central compartment via the respiratory system is
modeled as:

V
dCinsp

dT
DQinCin � (Qin ��Q)Cinsp

� fR(VT ��)(Cinsp � Cout) ;

where Cinsp is the concentration of isoflurane inspired
by the patient (g/ml), Cin is the concentration of isoflu-
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rane in the inlet stream (g/ml), Cout is the concentration
of isoflurane in the outlet stream (g/ml), Qin is the inlet
flow rate (ml/min), �Q is the losses (ml/min), V is the
volume of the respiratory system (l), f R is the respira-
tory frequency (l/min), VT is the tidal volume (l) and
� is the physiological dead space (ml). For the central
compartment, the concentration of isoflurane is given
by:

V1
dC1

dt

D

5X
iD2

�
Qi

�
Ci

Ri
� C1

��
C fR(VT�)(CinspC1) ;

where Ci is the concentration of the drug in compart-
ment i (g/ml), Ri is the partition coefficient between
blood and tissues in compartment i,Qi is the blood flow
in compartment i (ml/min). The concentration of DP
and SNP in the central compartment is modeled as fol-
lows:

V1
dC1

dt
D

5X
iD2

�
Qi

�
Ci

Ri
� C1

��
C Cinf �

1
� 1

2

C1V1 ;

where Cinf is the concentration of the drug infused
(g/min), Vi is the volume of compartment i (ml) and
�1/2 is the half-life of the drug (min). Isoflurane is elim-
inated by exhalation and metabolism in liver, the 2nd
compartment, as follows:

V2
dC2

dt
D Q2

�
C1 �

C2

R2

�
� k20C2V2 ;

where k20 is the rate of elimination of isoflurane in the
2nd compartment (min�1). The distribution of isoflu-
rane in compartments 3 to 5 is given by:

Vi
dCi

dt
D Qi

�
C1 �

Ci

Ri

�
; i D 3; : : : ; 5 :

The natural decay of DP and SNP in the body, for
compartment 2 to 5, is given by:

Vi
dCi

dt
D Qi

�
C1 �

Ci

Ri

�
�

1
� 1

2

CiVi ; i D 2; : : : ; 5 :

Pharmacodynamic Modeling The effect of DP and
SNP on two of the heart’s characteristic parameters:

maximum elastance (Emax) and systemic resistance
(Rsys) is given by:

dEff
dt
D k1CN

1 (Effmax � Eff) � k2Eff

Emax D Emax;0
�
1C EffDP�Emax

�

Rsys D Rsys;0
�
1 � EffDP�Rsys � EffSNP�Rsys

�
;

where Eff is the measure of the effect of drug on
the parameters of interest, Rsys is the systemic resis-
tance (mmHg/(ml/min)), Emax is the maximum elas-
tance (mmHg/ml), Emax,0 is nominal maximum elas-
tance, Rsys,0 is nominal systemic resistance, EffDP�Emax

is effect of DP on Emax, EffDP�Rsys is effect of DP on Rsys,
EffSNP�Rsys is the effect of SNP on Rsys, k1, k2 are the rate
constants andN is the non-linearity constant. MAP can
then be expressed as a function of Emax and Rsys as:

MAP2 1
R2
sys
C 2K2MAP � 2K2VLVEmax D 0

K D
AaortaALV

p
�
p
A2
LV � A2

aorta
;

where MAP is the mean arterial pressure (mmHg),
Aaorta is the cross sectional area of the aorta (cm2), ALV

is the cross sectional area of the left ventricle (cm2),VLV

is the mean volume of the left ventricle (ml) and � is the
blood density (g/ml). Isoflurane affects MAP as follows:

MAP D
Q1

5P
iD2

�
gi;0 (1C biCi )

� ;

where, gi,0 is the baseline conductivities (ml/
(min.mmHg)) and bi is the variation coefficient of con-
ductivity (ml/g). There is experimental evidence that
a transportation delay exists between the lungs and the
site of effect of isoflurane on the unconsciousness of the
patient. In order to model this, an effect compartment
is linked to the central compartment. The concentra-
tion of isoflurane within this compartment is related to
the central compartment, which is given by:

dCe

dt
D ke0(C1 � Ce) ;

where Ce is the concentration of isoflurane in the effect
compartment (g/ml), and ke0 is the kinetics in the effect
compartment (min�1). The action of isoflurane can be
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then expressed as follows:

�BIS D �BISMAX
C�e

C�e C EC�50
�BIS D BIS � BIS0

�BISMAX D BISMAX � BIS0 ;

where BIS0 is the baseline value of BIS (assumed to be
100), BISMAX is the maximum value of BIS (assumed to
be 0), EC50 is the patient’s sensitivity to the drug and �
is the measure of the degree of non-linearity.

Baroreflex Baroreflex is obtained from a set of trans-
fer functions relating the mean arterial pressure to the
maximum elastance and the systemic resistance and is
given by:

bfc D
ec(MAP�MAP0)

1C ec(MAP�MAP0) ;

where c is the empirical constant (mmHg).

Control of Anesthesia

The model presented in the previous section was val-
idated by carrying out a number of dynamic simula-
tions for different amounts of drug dosages and distur-
bances using gPROMS [7]. For designing controllers,
this model was linearized at the nominal values of in-
puts: 0.6% vol. of isoflurane, 2 μg/kg/min of DP and
4 μg/kg/min of SNP and outputs: 57.38mmHg of MAP,
61.1 BIS and 1.21 l/min of CO, to obtain a state-space
model of the following form:

xtC1 D Axt C But

yt D Cxt C Dut ;
(1)

subject to the following constraints:

xmin � xt � xmax

ymin � yt � ymax

umin � ut � umax ;

(2)

where xt 2 Rn; yt 2 Rl ; ut 2 Rm , are the state, output
and input vectors respectively and the subscripts min
and max denote lower and upper bounds respectively.

Model predictive control (MPC) [5] problem can then
be posed as the following optimization problem:

min
U

J(U; x(t)) D xTtCNyjtPxtCNyjt

C

Ny�1X
kD0

h
xTtCkjtQxtCkjt C uT

tCkRutCk

i

s:t: xmin � xtCkjt � xmax ; k D 1; : : : ;Nc

ymin � ytCkjt � ymax ; k D 1; : : : ;Nc

umin � utCk � umax ; k D 1; : : : ;Nc

xtCkC1jt D AxtCkjt C ButCk ; k � 0

ytCkjt D CxtCk C DutCk ; k � 0

utCk D KxtCkjt ; Nu � k � Ny ;

(3)

where U D [uT
t ; : : : ; uT

tCNu�1]
T ;Q and R are constant,

symmetric and positive definite matrices, P is given
by the solution of the Riccati or Lyapunov equation,
Ny, Nu and Nc are the prediction, control and con-
straint horizons respectively and the superscript T de-
notes transpose of the vector. Problem (3) is solved
at each time t for the current state xt and the vector
of predicted state variables, xtC1jt; : : : ; xtCNyjt at time
t C 1; : : : ; t C k respectively and corresponding con-
trol actions ut ; : : : ; utCk are obtained.

Results

The model for anesthesia consists of 23 states, 3 out-
puts and 3 inputs. This state-space form of the model
is then adapted for designing model predictive con-
troller by using theMATLABModel Predictive Control
Toolbox™ [11]. For designing the MPC controller, the
following input: 0 � DP � 7 μg/kg.min, 0 � SNP �
10 μg/kg.min, 0 � Isoflurane � 5%vol:, and output
constraints: 40 � MAP � 150mmHg, 40 � BIS � 65,
1 � CO � 6:5 l/min are used. A prediction horizon of
5, control horizon of 3 and sampling time of 0.5 min-
utes are considered. A set point of [20–10 1]0 deviation
from the nominal point of the output variables is given
and the performance of the controller is shown in Fig. 3.
It is observed that the MPC tracks the set point quite
well. The performance of the MPC was also tested by
reducing the model to 15 states and was observed to be
very good. From the above results it can be inferred that
the model based control technology provides a promis-
ing platform for the automation of anesthesia.
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Model Based Control for Drug Delivery Systems, Figure 3
MPC performance for anesthesia

Note that MPC solves a quadratic program at regu-
lar time intervals. In the next section a parametric pro-
gramming approach for control of blood glucose for
type 1 diabetes is presented that does not require repet-
itively solving quadratic programs.

Blood Glucose Control for Type 1 Diabetes

Diabetes is a disease that affects the body’s ability to
regulate glucose. In Type 1 diabetes, the pancreas pro-
duces insufficient insulin, and exogenous insulin is re-
quired to be infused at an appropriate rate to maintain
blood sugar levels within the range of 60–120mg/dl [2].
If insulin is supplied in excess, the blood glucose level
can go well below normal (< 60mg/dl), a condition
known as hypoglycemia. On the other hand, if insulin
is not supplied sufficiently, the blood glucose level is el-
evated above normal (> 120mg/dl), a condition known
as hyperglycemia. Both hypo- and hyperglycemia can be
harmful to an individual’s health. Hence, it is very im-
portant to control the level of blood glucose in the body
to within a reasonable range [9,12]. In the following
sections, advanced model based controllers for regulat-
ing the blood glucose concentration for type 1 diabetes
are presented.

Model Based Control for Drug Delivery Systems, Figure 4
Schematic representation of the Bergmanmodel

Model for Type 1 Diabetes

The Bergman model [1] is used in this study, which
presents a ‘minimal’ model comprising 3 equations to
describe the dynamics of the system. The schematic
representation of the model is shown in Fig. 4. The
modeling equations are:

dG
dt
D �P1G � X(G C Gb)C D(t) (4)

dI
dt
D �n(I C Ib)C U(t)/V1 (5)

dX
dt
D �P2X C P3I : (6)

The states in this model are: G, plasma glucose con-
centration (mg/dl) relative to basal value, I, plasma
insulin concentration (mU/l) relative to basal value,
and X, proportional to I in remote compartment
(min�1). The inputs are:D(t), meal glucose disturbance
(mg/dl/min), U(t), manipulated insulin infusion rate
(mU/min) and Gb, Ib, nominal values of glucose and
insulin concentration (81mg/dl; 15mU/l). The param-
eter values for a Type 1 diabetes are: P1 D 0min�1,
P2 D 0:025min�1, P3 D 0:000013 l/mUmin2,
V1 D 12 l and n D 5/54min [4].

The model, (4)–(6) is linearized about the steady-
state values of Gb D 81mg/dl, Ib D 15mU/l, Xb D 0
and Ub D 16:66667mU/min to obtain the state space
model of the form: xtC1 D Axt C But C Bddt where
the term dt represents the input disturbance glucose
meal. The sampling time considered is 5 minutes,
which is reasonable for the current glucose sensor tech-
nology. The discrete state-space matrices A; B;C and Bd
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are as follows:

A D

2
4

1 �0:000604 �21:1506
0 0:6294 0
0 0:00004875 0:8825

3
5

B D

2
4
�0:000088
0:3335

0:0000112

3
5 ;

C D
�
1 0 0

�
; Bd D

2
4

5
0
0

3
5

The constraints imposed are 60 � G C Gb � 180 and
0 � U C Ub � 100.

Parametric Controller

Parametric programming can be used in the MPC
framework to obtain U as a function of xt by treating
U as optimization variables and xt as parameters as de-
scribed next [3,13]. For simplicity in presentation as-
sume that Ny D Nu D Nc , the theory presented is how-
ever valid for the case when Ny, Nu and Nc are not
equal. The equalities in formulation (3) are eliminated
by making the following substitution:

xtCkjt D Akxt C
k�1X
jD0

AjButCk�1� j (7)

to obtain the following Quadratic Program (QP):

min
U

1
2
UTHU C xTt FU C

1
2
xTt Yxt

s:t:GU � W C Ext ;
(8)

where, U D [uT
t ; : : : ; uT

tCNu�1]
T 2 Rs , is the vector

of optimization variables, s D mNu , H is a con-
stant, symmetric and positive definite matrix and
H; F;Y ;G;W; E are obtained from Q; R and (1) and
(2).

The QP problem in (8) can now be reformulated as
a multi-parametric quadratic program (mp-QP):

Vz(x) D min
z

1
2
zTHz

s:t:Gz � W C Sxt ;
(9)

where, z D U C H�1FTxt; z 2 Rs , and S D E C
GH�1FT .

This mp-QP is solved by treating z as the vector
of optimization variables and xt as the vector of pa-
rameters to obtain z as an explicit function of xt . U
is then obtained as an explicit function of xt by using
U D z � H�1FTxt .

Results

A prediction horizon Ny D 5 and Q/R ratio of 1000
is considered for deriving the control law – this re-
sults in partitioning of the state-space into 31 polyhe-
dral regions. These regions are known as Critical Re-
gions (CR). Associated with each CR is a control law
that is an affine function of the state of the patient. For
example, one of the CRs is given by the following state
inequalities:

� 5 � I � 25

0:0478972G � 0:0002712I � X � 0:104055

0:0261386G � 0:0004641I � X � 0:0576751

� 0:00808846G C 0:00119685I C X � 0
� 0:00660123G C 0:00130239I C X � 0

0:00609435G � 0:00134362I � X � 0

(10)

where the insulin infusion rate as a function of the state
variables for the next five time intervals is given as fol-
lows:

U(1) D 30:139G � 0:44597I � 3726:2X

U(2) D 24:874G � 0:40326I � 3280:4X

U(3) D 20:16G � 0:35946I � 2842:8X
U(4) D 16:002G � 0:31571I � 2424:1X

U(5) D 0

(11)

The complete partitioning of the state-space for G
= 80mg/dl into CRs is shown in Fig. 5. The perfor-
mance of the parametric controller for a 50mg meal
disturbance [8] is as shown in Figs. 6 and 7. The corre-
sponding trajectory of the state variables is also shown
in Fig. 5.

The model based parametric controller of the form
given in (10) and (11) can be stored and implemented
on a simple computational hardware and therefore can
provide effective therapy at low on-line computational
costs.
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Model Based Control for Drug Delivery Systems, Figure 5
Critical regions for type 1 diabetes

Model Based Control for Drug Delivery Systems, Figure 6
Glucose concentration vs. time

Concluding Remarks

Automation of drug delivery systems aims at reducing
patient inconvenience by providing better and person-
alized healthcare. The automation can be achieved by
developing detailed models and by deriving advanced
controllers that can take into account the model as well
as the constraints on state and control variables. In this
chapter, a compartmental model incorporating phar-
macokinetic and pharmacodynamic aspects for deliv-
ery of anesthetic agents has been presented. This model
was then used for the derivation of model predictive
controller. For type 1 diabetes, implementation of ad-
vanced model based controllers through a simple com-

Model Based Control for Drug Delivery Systems, Figure 7
Insulin infusion vs. time

putational hardware was demonstrated by deriving in-
sulin delivery rate as an explicit function of the state
of patient. The developments presented in this chapter
highlight the importance of modeling and control tech-
niques for biomedical systems.

See also

� Nondifferentiable Optimization: Parametric
Programming
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Introduction

We define difficult optimization problems as problems
that cannot be solved to optimality or to any guaran-
teed bound by any standard solver within a reason-
able time limit. The problem class we have in mind
are mixed-integer programming (MIP) problems. Op-
timization, and especially MIP, is often appropriate and
frequently used tomodel real-world optimization prob-
lems. While it started in the 1950s, models have become
larger and more complicated.

A reasonable general framework is mixed-integer
nonlinear programming (MINLP) problems. They
are specified by the augmented vector xT˚ D xT ˚ yT

established by the vectors xT D (x1; : : : ; xnc ) and
yT D (y1; : : : ; ynd ) of nc continuous and nd discrete
variables, an objective function f (x; y), ne equality con-
straints h(x; y), and ni inequality constraints g(x; y).
The problem

min

8̂
<̂
ˆ̂:

f (x; y)

ˇ̌
ˇ̌
ˇ̌
ˇ̌

h(x; y) D 0; h : X � U ! Rne ;

x 2 X � Rnc

g(x; y) � 0; g : X � U ! Rni ;

y 2 U � Znd

9>>=
>>;
(1)

is called a mixed-integer nonlinear programming
(MINLP) problem if at least one of the functions
f (x; y), g(x; y), or h(x; y) is nonlinear. The vector in-
equality, g(x; y) � 0, is to be read componentwise. Any
vector xT˚ satisfying the constraints of (1) is called a fea-
sible point of (1). Any feasible point whose objective
function value is less than or equal to that of all other
feasible points is called an optimal solution. From this
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definition it follows that the problem might not have
a unique optimal solution.

Depending on the functions f (x; y), g(x; y), and
h(x; y) in (1) we get the following structured problems
known as

Acro-
nym

Type of
opti-
mization

f (x; y) h(x; y) g(x; y) nd

LP Linear
pro-
gram-
ming

cTx Ax� b x 0

QP Quadratic
pro-
gram-
ming

xTQxCcTx Ax� b x 0

NLP Nonlinear
pro-
gram-
ming

0

MILP Mixed-
integer
LP

cTx˚ Ax˚ � b x˚ � 1

MIQP Mixed-
integer
QP

xT
˚
Qx˚CcTx˚ Ax˚ � b x˚ � 1

MINLP Mixed-
integer
NLP

� 1

with a matrix A of m rows and n columns, i. e., A 2
M(m � n; IR); b 2 IRm ; c 2 IRn , and n D nc C nd .
Real-world problems lead much more frequently to
LP and MILP than to NLP or MINLP problems. QP
refers to quadratic programming problems. They have
a quadratic objective function but only linear con-
straints. QP and MIQP problems often occur in appli-
cations of the financial services industry.

While LP problems as described in [31] or [1] can
be solved relatively easily (the number of iterations, and
thus the effort to solve LP problems withm constraints,
grows approximately linearly in m), the computational
complexity of MILP and MINLP grows exponentially
with nd but depends strongly on the structure of the
problem. Numerical methods to solve NLP problems
work iteratively, and the computational problems are
related to questions of convergence, getting stuck in
bad local optima and availability of good initial solu-
tions. Global optimization techniques can be applied to

both NLP and MINLP problems, and its complexity in-
creases exponentially in the number of all variables en-
tering nonlinearly into the model.

While the word optimization, in nontechnical or
colloquial language, is often used in the sense of im-
proving, the mathematical optimization community
sticks to the original meaning of the word related to
finding the best value either globally or at least in a lo-
cal neighborhood. For an algorithm being considered
as a (mathematical, strict, or exact) optimization al-
gorithm in the mathematical optimization community
there is consensus that such an algorithm computes fea-
sible points proven globally (or locally) optimal for lin-
ear (nonlinear) optimization problems. Note that this is
a definition of a mathematical optimization algorithm
and not a statement saying that computing a local opti-
mum is sufficient for nonlinear optimization problems.
In the context of mixed-integer linear problems an op-
timization algorithm [12] and [13] is expected to com-
pute a proven optimal solution or to generate feasible
points and, for a maximization problem, to derive a rea-
sonably tight, nontrivial upper bound. The quality of
such bounds is quantified by the integrality gap – the
difference between the upper and lower bound. What
one considers to be a good-quality solution depends on
the problem, the purpose of the model, and the accu-
racy of the data. A few percent, say 2 to 3%, might be
acceptable for the example discussed by Kallrath (2007,
Encyclopedia: Planning). However, discussion based on
percentage gaps become complicated when the objec-
tive function includes penalty terms containing coeffi-
cients without a strict economic interpretation. In such
cases scaling is problematic. Goal programming as dis-
cussed in ([23], p. 294) might help in such situations to
avoid penalty terms in the model. The problem is first
solved with respect to the highest-priority goal, then
one is concerned with the next level goal, and so on.

For practical purposes it is also relevant to observe
that solving mixed-integer linear problems and the
problem of finding appropriate bounds is often NP-
complete, which makes these problems hard to solve.
A consequence of this structural property is that these
problems scale badly. If the problem can be solved to
optimality for a given instance, this might not be so
if the size is increased slightly. While tailor-made op-
timization algorithms such as column generation and
branch-and-price techniques can often cope with this
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situation for individual problems, it is very difficult for
standard software.

We define difficult optimization problems as prob-
lems that cannot be solved to optimality or within a rea-
sonable integrality gap by any standard MIP solver
within a reasonable time limit. Problem structure, size,
or both could lead to such behavior. However, in many
cases these problems (typically MIP or nonconvex op-
timization problems fall into this class) can be solved if
they are individually treated, and we resort to the art of
modeling.

The art of modeling includes choosing the right
level of detail implemented in the model. On the one
hand, this needs to satisfy the expectations of the owner
of the real-world problem. On the other hand, we are
limited by the available computational resources. We
give reasons why strict optimality or at least safe bounds
are essential when dealing with real-world problems
and why we do not accept methods that do not generate
both upper and lower bounds.

Mapping the reality also forces us to discuss
whether deterministic optimization is sufficient or
whether we need to resort to optimization under un-
certainty. Another issue is to check whether one objec-
tive function suffices or whether multiple-criterion op-
timization techniques need to be applied.

Instead of solving such difficult problems directly
as, for example, a standalone MILP problem, we dis-
cuss how problems can be solved equivalently by solv-
ing a sequence of models.

Efficient approaches are as follows:
� Column generation with a master and subproblem

structure,
� Branch-and-price,
� Exploiting a decomposition structure with a rolling

time horizon,
� Exploiting auxiliary problems to generate safe

bounds for the original problem, which then makes
the original problems more tractable,

� Exhaustion approaches,
� Hybrid methods, i. e., constructive heuristics and

local search on subsets of the difficult discrete
variables leaving the remaining variables and con-
straints in tractable MILP or MINLP problems that
can be solved.

We illustrate various ideas using real-world planning,
scheduling, and cutting-stock problems.

Models and the Art of Modeling

We are here concerned with two aspects of modeling
and models. The first one is to obtain a reasonable rep-
resentation of the reality and mapping it onto a math-
ematical model, i. e., an optimization problem in the
form of (1). The second one is to reformulate the model
or problem in such equivalent forms that is is numeri-
cally tractable.

Models The terms modeling and model building are
derived from the word model. Its etymological roots
are the Latin word modellus (scale, [diminutive of
modus, measure]) and what was to be in the 16th cen-
tury the new word modello. Nowadays, in a scientific
context the term is used to refer to a simplified, ab-
stract, or well-structured part of the reality one is in-
terested in. The idea itself and the associated concept
is, however, much older. Classical geometry, and espe-
cially Pythagoras around 600 B.C., distinguish between
wheel and circle and field and rectangle. Around A.D.
1100 a wooden model of the later Speyer cathedral was
produced; the model served to build the real cathe-
dral. Astrolabs and celestial globes have been used as
models to visualize the movement of the moon, plan-
ets, and stars on the celestial sphere and to compute
the times of rises and settings. Until the 19th cen-
tury mechanical models were understood as pictures
of reality. Following the principles of classical mechan-
ics the key idea was to reduce all phenomena to the
movement of small particles. Nowadays, in physics and
other mathematical sciences one will talk about models
if
� For reasons of simplification, one restricts oneself to

certain aspects of the problem (example: if we con-
sider the movement of the planets, in a first approx-
imation the planets are treated as point masses);

� For reasons of didactic presentation, one develops
a simplified picture for more complicated reality
(example: the planetary model is used to explain the
situation inside atoms);

� One uses the properties in one area to study the sit-
uation in an analogous problem.

A model is referred to as a mathematical model of
a process or a problem if it contains typical mathemat-
ical objects (variables, terms, relations). Thus, a (math-
ematical) model represents a real-world problem in
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the language of mathematics using mathematical sym-
bols, variables, equations, inequalities, and other rela-
tions.

It is very important when building amodel to define
and state precisely the purpose of the model. In science,
we often encounter epistemological arguments. In engi-
neering, a model might be used to construct some ma-
chines. In operations research and optimization, mod-
els are often used to support strategic or operative deci-
sions. All models enable us to
� Learn and understand situations that do not allow

easy access (very slow or fast processes, processes in-
volving a very small or very large region);

� Avoid difficult, expensive, or dangerous experi-
ments; and

� Analyze case studies and what-if-when scenarios.
Tailored optimization models can be used to support
decisions (that is, the overall purpose of the model).
It is essential to have a clear objective describing what
a good decision is. The optimization model should pro-
duce, for instance, optimal solutions in the following
sense:
� To avoid unwanted byproducts as much as possible,
� To minimize costs, or
� to maximize profit, earnings before interest and

taxes (EBIT), or contribution margin.
The purpose of a model may change over time.

To solve a real-world problem by mathematical opti-
mization, at first we need to represent our problem by
a mathematical model, that is, a set of mathematical
relationships (e. g., equalities, inequalities, logical con-
ditions) representing an abstraction of our real-world
problem. This translation is part of the model-building
phase (which is part of the whole modeling process)
and is not trivial at all because there is nothing we
could consider an exact model. Each model is an ac-
ceptable candidate as long as it fulfills its purpose and
approximates the real world accurately enough. Usu-
ally, a model in mathematical optimization consists of
four key objects:
� Data, also called the constants of a model;
� Variables (continuous, semicontinuous, binary, in-

teger), also called decision variables;
� Constraints (equalities, inequalities), also called re-

strictions; and
� Objective function (sometimes even several of

them).

The data may represent costs or demands, fixed oper-
ation conditions of a reactor, capacities of plants, and
so on. The variables represent the degrees of freedom,
i. e., what we want to decide: how much of a certain
product is to be produced, whether a depot is closed
or not, or how much material we will store in the in-
ventory for later use. Classical optimization (calculus,
variational calculus, optimal control) treats those cases
in which the variables represent continuous degrees of
freedom, e. g., the temperature in a chemical reactor or
the amount of a product to be produced. Mixed-integer
optimization involves variables restricted to integer val-
ues, for example counts (numbers of containers, ships),
decisions (yes-no), or logical relations (if product A is
produced, then product B also needs to be produced).
The constraints can be a wide range of mathematical re-
lationships: algebraic, analytic, differential, or integral.
They may represent mass balances, quality relations,
capacity limits, and so on. The objective function ex-
presses our goal: minimize costs, maximize utilization
rate, minimize waste, and so on. Mathematical mod-
els for optimization usually lead to structured problems
such as:
� Linear programming (LP) problems,
� Mixed-integer linear programming (MILP) prob-

lems,
� Quadratic (QP) and mixed-integer quadratic pro-

gramming (MIQP),
� Nonlinear programming (NLP) problems, and
� Mixed-integer nonlinear programming (MINLP)

problems.

The Art of Modeling How do we get from a given
problem to its mathematical representation? This is
a difficult, nonunique process. It is a compromise be-
tween the degree of detail required to model a problem
and the complexity, which is tractable. However, sim-
plifications should not only be seen as an unavoidable
evil. They could be useful for developing understanding
or serve as a platform with the client, as the following
three examples show.
1. At the beginning of the modeling process it can be

useful to start with a “down-scaled” version to de-
velop a feeling for the structure and dependencies
of the model. This enable a constructive dialog be-
tween themodeler and the client. A vehicle fleet with
100 vehicles and 12 depots could be analyzed with
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only 10 vehicles and 2 depots to let the model world
and the real world find each other in a sequence of
discussions.

2. In partial or submodels the modeler can develop
a deep understanding of certain aspects of the prob-
lem which can be relevant to solve the whole prob-
lem.

3. Some aspects of the real world problem could be
too complicated to model them complete or exactly.
During the modeling process it can be clarified, us-
ing a smaller version, whether partial aspects of the
model could be neglected or whether they are essen-
tial.

In any case it is essential that the simplifications be well
understood and documented.

Tricks of the Trade for Monolithic Models

Using state-of-the-art commercial solvers, e. g.,
XPressMP [XPressMP is by Dash Optimization,
http://www.dashoptimization.com] or CPLEX [CPLEX
is by ILOG, http://www.ilog.com], MILP problems can
be solved quite efficiently. In the case of MINLP and
using global optimization techniques, the solution effi-
ciency depends strongly on the individual problem and
the model formulation. However, as stressed in [21] for
both MILP and MINLP problem, it is recommended
that the full mathematical structure of a problem be
exploited, that appropriate reformulations of models
be made, and that problem-specific valid inequalities
or cuts be used. Software packages may also differ with
respect to the ability of presolving techniques, default
strategies for the branch-and-bound algorithm, cut
generation within the branch-and-cut algorithm, and,
last but not least, diagnosing and tracing infeasibilities,
which is an important issue in practice.

Here we collect a list of recommendation tricks that
help to improve the solution procedure of monolithic
MIP problems, i. e., standalone models that are solved
by one call to a MILP or MINLP solver. Among them
are:
� Use bounds instead of constraints if the dual values

are not necessarily required.
� Apply one’s own presolving techniques. Consider,

for instance, a set of inequalities

Bi jkıi jk � Ai jk ; 8fi; j; kg (2)

on binary variables ıi jk . They can be replaced by the
bounds

ıi jk D 0 ; 8f(i; j; k)
ˇ̌
Ai jk < Bi jk g

or, if one does not trust the < in a modeling lan-
guage, the bounds

ıi jk D 0 ; 8f(i; j; k)
ˇ̌
Ai jk � Bi jk � " g

where " > 0 is a small number, say, of the order
of 10�6. If Ai jk � Bi jk , then (2) is redundant. Note
that, due to the fact that we have three indices, the
number of inequalities can be very large.

� Exploit the presolving techniques embedded in the
solver; cf. [28].

� Exploit or eliminate symmetry: sometimes, symme-
try can lead to degenerate scenarios. There are situ-
ations, for instance, in scheduling where orders can
be allocated to identical production units. Another
example is the capacity design problem of a set of
production units to be added to a production net-
work. In that case, symmetry can be broken by re-
questing that the capacities of the units be sorted in
descending order, i. e., cu � cuC1. [29] exploit sym-
metry in order allocation for stock cutting in the pa-
per industry; this is a very enjoyable paper to read.

� Use special types of variables for which tailor-made
branching rules exist (this applies to semicontinu-
ous and partial-integer variables as well as special
ordered sets).

� Experiment with the various strategies offered by
the commercial branch-and-bound solvers for the
branch-and-bound algorithm.

� Experiment with the cut generation within the com-
mercial branch-and-cut algorithm, among them
Gomory cuts, knapsack cuts, or flow cuts; cf. [28].

� Construct one’s own valid inequalities for certain
substructures of problems at hand. Those inequal-
ities may be added a priori to a model, and in the ex-
treme case they would describe the complete convex
hull. As an example we consider the mixed-integer
inequality

x � C� ; 0 � x � X ; x 2 IRC0 ; � 2 IN (3)

which has the valid inequality

x � X � G(K � �) where

K :D
�
X
C

�
and G :D X � C (K � 1) :

(4)

http://www.dashoptimization.com
http://www.ilog.com
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This valid inequality (4) is the more useful, the more
K and X/C deviate. A special case arising is often the
situation � 2 f0; 1g. Another example, taken from
[39], p. 129 is

A1˛1CA2˛2 � BC x x 2 IRC0 ˛1; ˛2 2 IN

(5)

which for B … IN leads to the valid inequality

bA1c˛1C

�
bA2c˛2 C

f2 � f
1 � f

�
� bBcC

x
1 � f

(6)

where the following abbreviations are used:

f :D B � bBc ;
f1 :D A1 � bA1c ; f2 :D A2 � bA2c : (7)

The dynamic counterpart of valid inequalities added
a priori to a model leads to cutting-plane algorithms
that avoid adding a large number of inequalities
a priori to the model (note, this can be equivalent
to finding the complete convex hull). Instead, only
those useful in the vicinity of the optimal solution
are added dynamically. For the topics of valid in-
equalities and cutting-plane algorithms the reader is
referred to books by Nemhauser and Wolsey [30],
Wolsey [39], and Pochet and Wolsey [32].

� Try disaggregation in MINLP problems. Global op-
timization techniques are often based on convex un-
derestimators. Univariate functions can be treated
easier than multivariate terms. Therefore, it helps to
represent bilinear or multilinear terms by their dis-
aggregated equivalences. As an example we consider
x1x2 with given lower and upper bounds X�i and XCi
for xi ; i D 1; 2. Wherever we encounter x1x2 in our
model we can replace it by

x1x2 D
1
2
(x212 � x21 � x22)

and

x12 D x1 C x2 :

The auxiliary variable is subject to the bounds
X�12 :D X�1 C X�2 and

X�12 � x12 � XC12 ;

X�12 :D X�1 C X�2 ; XC12 :D XC1 C XC2 :

This formulation has another advantage. It allows us
to construct easily a relaxed problem which can be
used to derive a useful lower bound. Imagine a prob-
lem P with the inequality

x1x2 � A : (8)

Then

x212 � X�1 x1 � X�2 x2 � 2A (9)

is a relaxation of P as each point (x1; x2) satisfying
(8) also fulfills (9). Note that an alternative disaggre-
gation avoiding an additional variable is given by

x1x2 D 1
4

�
(x1 C x2)2 � (x1 � x2)2

�
:

However, all of the creative attempts listed above may
not suffice to solve the MIP using one monolithic
model. That is when we should start looking at solv-
ing the problem by a sequence of problems. We have to
keep in mind that to solve a MIP problem we need to
derive tight lower and upper bounds with the gap be-
tween them approaching zero.

Decomposition Techniques

Decomposition techniques decompose a problem into
a set of smaller problems that can be solved in sequence
or in any combination. Ideally, the approach can still
compute the global optimum. There are standardized
techniques such as Benders Decomposition [cf. Floudas
([9], Chap. 6). But often one should exploit the struc-
ture of an optimization to construct tailor-made de-
compositions. This is outlined in the following subsec-
tions.

Column Generation

In linear programming parlance, the term column usu-
ally refers to variables. In the context of column-
generation techniques it has wider meaning and stands
for any kind of objects involved in an optimization
problem. In vehicle routing problems a column might,
for instance, represent a subset of orders assigned to
a vehicle. In network flow problems a column might
represent a feasible path through the network. Finally,
in cutting-stock problems [10,11] a column represents
a pattern to be cut.
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The basic idea of column generation is to decom-
pose a given problem into a master and subproblem.
Problems that might otherwise be nonlinear can be
completely solved by solving only linear problems. The
critical issue is to generate master and subproblems that
can both be solved efficiently. One of the most famous
examples is the elegant column-generation approach
of Gilmore and Gomory [10] for computing the min-
imal number of rolls to satisfy a requested demand for
smaller sized rolls. This problem, if formulated as one
monolithic problem, leads to a MINLP problem with
a large number of integer variables. In simple cases,
such as those described by Schrage ([35], Sect. 11.7),
it is possible to generate all columns explicitly, even
within a modeling language. Often the decomposition
has a natural interpretation. If not all columns can be
generated, the columns are added dynamically to the
problem. Barnhart et al. [2] give a good overview on
such techniques. A more recent review focusing on se-
lected topics of column generation is [25]. In the con-
text of vehicle routing problems, feasible tours contain
additional columns as needed by solving a shortest-
path problem with time windows and capacity con-
straints using dynamic programming [7].

More generally, column-generation techniques are
used to solve well-structured MILP problems involving
a huge number, say, several hundred thousand or mil-
lions, of variables, i. e., columns. Such problems lead to
large LP problems if the integrality constraints of the
integer variables are relaxed. If the LP problem con-
tains so many variables (columns) that it cannot be
solved with a direct LP solver (revised simplex, interior
point method), one starts solving this so-called master
problem with a small subset of variables yielding the
restricted master problem. After the restricted master
problem has been solved, a pricing problem is solved
to identify new variables. This step corresponds to the
identification of a nonbasic variable to be taken into the
basis of the simplex algorithm and the term column gen-
eration. The restricted master problem is solved with
the new number of variables. The method terminates
when the pricing problems cannot identify any new
variables. The simplest version of column generation is
found in the Dantzig–Wolfe decomposition [6].

Gilmore and Gomory [10,11] were the first to gen-
eralize the idea of dynamic column generation to an
integer programming (IP) problem: the cutting-stock

problem. In this case, the pricing problem, i. e., the sub-
problem, is an IP problem itself – and one refers to this
as a column-generationalgorithm. This problem is spe-
cial as the columns generated when solving the relaxed
master problem are sufficient to get the optimal integer
feasible solution of the overall problem. In general this
is not so. If not only the subproblem, but also the master
problem involves integer variables, then the column-
generation part is embedded into a branch-and-bound
method; this is called branch-and-price. Thus, branch-
and-price is integer programming with column gen-
eration. Note that during the branching process new
columns are generated; therefore the name branch-and-
price.

ColumnGeneration in cutting-stock Problems This
section describes the mathematical model for minimiz-
ing the number of roles or trimloss and illustrates the
idea of column generation.

Indices used in this model:

p 2 P :D fp1; : : : ; pNPg for cutting patterns (for-
mats).
Either the patterns are directly generated according
to a complete enumeration or they are generated by
column generation.
i 2 I :D fi1; : : : ; iN Ig given orders or widths.

Input Data We arrange the relevant input data size
here:

B [L] width of the rolls (raw material roles)
Di [-] number of orders for the width i
Wi [L] width of order type i

Integer Variables used in the different model variants:

�p 2 IN0 :D f0; 1; 2; 3; : : :g [�] indicates how of-
ten pattern p is used.
If cutting pattern p is not used, then we have
�p D 0.
˛i p 2 IN0 [�] indicates how often width i is con-
tained in pattern p.
This variable can take values between 0 and Di de-
pending on the order situation.
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Model The model contains a suitable object function

min f (˛i p; �p) ;

as well as the boundary condition (fulfillment of the de-
mand)

X
p

˛i p�p D Di ; 8i (10)

and the integrality constraints

˛i p 2 IN0 ; 8fipg ;

�p 2 IN0 ; 8fpg :
(11)

General Structure of the Problem In this form it
is a mixed-integer nonlinear optimization problem
(MINLP). This problem class is difficult in itself. More
serious is the fact that we may easily encounter several
million variables ˛i p . Therefore the problem cannot be
solved in this form.

Solution Method The idea of dynamic column gener-
ation is based on the fact that one must decide in a mas-
ter problem for a predefined set of patterns how often
every pattern must be used as well as calculate suitable
input data for a subproblem. In this subproblem new
patterns are calculated.

The master problem solves for the multiplicities of
existing patterns and has the shape

min
X
p

�p ;

with the demand-fulfill inequality (note that it is al-
lowed to produce more than requested)

X
i

Ni p�p � Di ; 8i (12)

and the integrality constraints

�p 2 IN0 ; 8fpg : (13)

The subproblem generates new patterns. Structurally it
is a knapsack problem with object function

min
˛i

1 �
X
p

Pi˛i ;

where Pi are the dual values (pricing information) of
the master problem (pricing problem) associated with

(12) and ˛i is an integer variable specifying how often
width i occurs in the new pattern. We add the knapsack
constraint with respect to the width of the rolls

X
i

Wi˛i � B ; 8i (14)

and the integrality constraints

˛i 2 IN0 ; 8fig : (15)

In some cases, ˛i could be additionally bounded by the
number, K, of knives.

Implementation Issues The critical issues in this
method, in which we alternate in solving the master
problem and the subproblem, are the initialization of
the procedure (a feasible starting point is to have one
requested width in each initial pattern, but this is not
necessarily a good one), excluding the generation of the
existing pattern by applying integer cuts, and the termi-
nation.

Column Enumeration

Column enumeration is a special variant of column
generation and is applicable when a small number of
columns is sufficient. This is, for instance, the case in
real-world cutting-stock problems when it is known
that the optimal solution has only a small amount of
trimloss. This usually eliminates most of the pattern.
Column enumeration naturally leads to a type of se-
lecting columns or partitioning models. A collection of
illustrative examples contained in ([35], Sect. 11.7) cov-
ers several problems of grouping, matching, covering,
partitioning, and packing in which a set of given objects
has to be grouped into subsets to maximize or mini-
mize some objective function. Despite the limitations
with respect to the number of columns, column enu-
meration has some advantages:
� No pricing problem,
� Easily applied to MIP problems,
� Column enumeration is much easier to implement.
In the online version of the vehicle routing prob-
lem described in [22] it is possible to generate the
complete set, Cr , of all columns, i. e., subsets of or-
ders i 2 O ; r D jOj, assigned to a fleet of n vehi-
cles, v 2 V . Let Cr be the union of the sets, Crv , i. e.,
Cr D [vD1:::nCrv with Cr D jCr j D 2rn, where Crv
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contains the subsets of orders assigned to vehicle v.
Note that Crv contains all subsets containing 1, 2, or r
orders assigned to vehicle v. The relevant steps of the
algorithm are:
1. Explicitly generate all columns Crv , followed by

a simple feasibility test w.r.t. the availability of the
cars.

2. Solve the routing-scheduling problem for all
columns Crv using a tailor-made branch-and-bound
approach (the optimal objective function values,
Z(�c ) or Z(�cv ), respectively, and the associated
routing-scheduling plan are stored).

3. Solve the partitioning model:

min
�cv

CrvX
cD1

NVX
vD1

Z(�cv )�cv ; (16)

s.t.

CrX
cD1

NVX
vD1

Ii (�cv)�cv D 1 ; 8i D 1; : : : ; r (17)

ensures that each order is contained exactly once, the
inequality

CrX
cD1

�cv � 1 ; 8v 2 V ; (18)

ensuring that at most one column can exist for each
vehicle, and the integrality conditions

�cv 2 f0; 1g ; 8c D 1; : : : ;Cr : (19)

Note that not all combinations of index pairs fc; vg
exist; each c corresponds to exactly one v, and vice
versa. This formulation allows us to find optimal so-
lutions with the defined columns for a smaller num-
ber of vehicles. The objective function and the parti-
tioning constraints are just modified by substituting

NVX
vD1jv2V

�!

NVX
vD1jv2V�

;

the equations

CrvX
cD1

NVX
vD1jv2V�

Ii (�cv)�cv D 1 ; 8i D 1; : : : ; r ;

and the inequality

CrvX
cD1

�cv � 1 ; 8v 2 V� ;

whereV� � V is a subset of the setV of all vehicles.
Alternatively, if it is not prespecified which vehicles
should be used but it is only required that not more
than NV

� vehicles be used, then the inequality

CrX
cD1

NVX
vD1jv2V

�cv � NV
� (20)

is imposed.
4. Reconstruct the complete solution and extract the

complete solution from the stored optimal solutions
for the individual columns.

Branch-and-Price

Branch-and-price (often coupled with branch-and-cut)
refers to a tailor-made algorithm exploiting the decom-
position structure of the problem to be solved. This ef-
ficient method for solving MIP problems with column
generation has been well described by Barnhart et al. [2]
and has been covered by Savelsbergh [34] in the first
edition of the Encyclopedia of Optimization. Here, we
give a list of more recent successful applications in var-
ious fields.
� Cutting stock: [3,38]
� Engine routing and industrial in-plant railroads: [26]
� Network design: [16]
� Lot sizing: [38]
� Scheduling (staff planning): [8]
� Scheduling of switching engines: [24]
� Supply chain optimization (pulp industry): [5]
� Vehicle routing: [7,15]

Rolling Time Decomposition

The overall methodology for solving the medium-
range production scheduling problem is to decom-
pose the large and complex problem into smaller
short-term scheduling subproblems in successive time
horizons, i. e., we decompose according to time.
Large-scale industrial problems have been solved by
Janak et al. [18,19]. A decomposition model is formu-
lated and solved to determine the current horizon and
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corresponding products that should be included in the
current subproblem. According to the solution of the
decomposition model, a short-term scheduling model
is formulated using the information on customer or-
ders, inventory levels, and processing recipes. The re-
sulting MILP problem is a large-scale complex problem
that requires a large computational effort for its solu-
tion. When a satisfactory solution is determined, the
relevant data are output and the next time horizon is
considered. The above procedure is applied iteratively
in an automatic fashion until the whole scheduling pe-
riod under consideration is finished.

Note that the decomposition model determines au-
tomatically how many days and products to consider in
the small scheduling horizon subject to an upper limit
on the complexity of the resulting mathematical model.

An Exhaustion Method

This method combines aspects of a constructive heuris-
tics and of exact model solving. We illustrate the ex-
hausting method by the cutting-stock problem de-
scribed in Sect. “Column Generation in cutting-stock
Problems”; assigning orders in a scheduling problem
would be another example. The elegant column gener-
ation approach by Gilmore and Gomory [10] is known
for producing minimal trimloss solutions with many
patterns. Often this corresponds to setup changes on
the machine and therefore is not desirable. A solution
with a minimal number of patterns minimizes the ma-
chine setup costs of the cutter. Minimizing simultane-
ously trimloss and the number of patterns is possible for
a small case of a few orders only exploiting the MILP
model by Johnston and Salinlija [20]. It contains two
conflicting objective functions. Therefore one could re-
sort to goal programming. Alternatively, we could pro-
duce several parameterized solutions leading to differ-
ent numbers of rolls to be used and patterns to be cut
from which the user would extract the one he likes best.

As the table above indicates, we compute tight lower
bounds on both trimloss and the number of patterns.
Even for up to 50 feasible orders, near-optimal solu-
tions are constructed in less than a minute.

Note that it would be possible to use the branch-
and-price algorithm described in [38] or [3] to solve
the one-dimensional cutting-stock problem with min-
imal numbers of patterns. However, these methods are

not easy to implement. Therefore, we use the following
approaches, which are much easier to program:
� V1: Direct usage of the model by Johnston and

Salinlija [20] for a small number, say, NI � 14, of
orders and Dmax � 10. In a preprocessing step we
compute valid inequalities as well as tight lower and
upper bounds on the variables.

� V2: Exhaustion procedure in which we generate suc-
cessively new patterns with maximal multiplicities.
This method is parameterized by the permissible
percentage waste Wmax, 1 � Wmax � 99. After a few
patterns have been generated with this parameteri-
zation, it could happen that is is not possible to gen-
erate any more patterns with waste restriction. In
this case the remaining unsatisfied orders are gen-
erated by V1 without the Wmax restriction.

Indices and Sets

In this model we use the indices listed in Johnston and
Salinlija [20]:

i 2 I :D fi1; : : : ; iN Ig denotes the sets of width.
j 2 | :D f j1; : : : ; jNPg denotes the pattern; N J � NI .

The patterns are generated by V1, or dynamically
by maximizing the multiplicities of a used pattern.

k 2K :D fk1; : : : ; kNPg denotes the multiplicity in-
dex to indicate how often a width is used in a pat-
tern.
The multiplicity index can be restricted by the ratio
of the width of the orders and the width of the given
rolls.

Variables

The following integer or binary variables are used:

ai jk 2 IN [�] specifies the multiplicity of pattern j.
The multiplicity can vary between 0 and
Dmax :D maxfDig. If pattern j is not used, we have
r j D p j D 0.

p j 2 f0; 1g [�] indicates whether pattern j is used at
all.

r j 2 IN [�] specifies how often pattern j is used.
The multiplicity can vary between 0 and
Dmax :D maxfDig. If pattern j is not used, we have
r j D p j D 0.

˛i p 2 IN [�] specifies how often width i occurs in
pattern p.
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# of # output file flag Wmax comment
rolls pat
--------------------------------------------------------------------
0 5 8 99 lower bound: minimal # of patterns
30 10 pat00.out 9 99 lower bound: minimal # of rolls
34 7 pat01.out 0 20
31 9 pat02.out 1 15
30 8 pat03.out 0 10 minimal number of rolls
32 9 pat04.out 1 8
30 8 pat05.out 0 6 minimal number of rolls
31 8 pat06.out 1 4

The best solution found contains 7 patterns!
The solution with minimal trimloss contain 30 rolls!

Improvement in the lower bound of pattern: 6!
Solutions with 6 patterns are minimal w.r.t.
to the number of patterns.

A new solution was found with only 6 patterns and 36 rolls: patnew.out
36 6 patnew.out 0 99

This width-multiplicity variable can take all values
between 0 and Di .

xi jk 2 f0; 1g [�] indicates whether width i appears
in pattern j at level k.
Note that xi jk D 0 implies ai jk D 0.

The Idea of the Exhaustion Method

In each iteration we generate m at most two or three
new patterns by maximizing the multiplicities of these
patterns, allowing no more than a maximum waste,
Wmax. The solution generated in iteration m is pre-
served in iterationmC 1 by fixing the appropriate vari-
ables. If the problem turns out to be infeasible (this
may happen if Wmax turns out to be restrictive), then
we switch to a model variant in which we minimize the
number of patterns subject to satisfying the remaining
unsatisfied orders.

Themodel is based on the inequalities (2,3,5,6,7,8,9)
in [20], but we add a few more additional ones or mod-
ify the existing ones. We exploit two objective func-
tions: maximizing the multiplicities of the patterns gen-
erated

max
�uX
jD1

r j ;

where 
u specifies the maximal number of patterns
(
u could be taken from the solution of the column-
generation approach, for instance), or minimizing the
number of patterns generated

min
�uX
jD1

p j :

The model is completed by the integrality conditions

r j; ai jk 2 f0; 1; 2; 3; : : :g (21)

p j ; xi jk ; y jk 2 f0; 1g : (22)

The model is applied several times with ai jk � D̃i ,
where D̃i is the number of remaining orders of width
i. In particular, the model has to fulfill the relationships

kai jk > D̃i H) ai jk D 0 ; xi jk D 0

and

ai jk �
�
D̃i

k

�
or ai jk �

�
D̃i C Si

k

�
;

where Si denotes the permissible overproduction.
The constructive method described so far provides

an improved upper bound, 
 0u , on the number of pat-
tern.
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Computing Lower Bounds

To compute a lower bound we apply two methods.
The first method is to solve a bin-packing problem,
which is equivalent to minimizing the number of rolls
in the original cutting-stock problem described in the
Sect. “Column Generation in Cutting-Stock Problems”
for equal demands Di D 1. If solved with the column-
generation approach, this method is fast and cheap, but
the lower bound, 
 0l , is often weak. The second method
is to exploit the upper bound, 
 0u , on the number of pat-
terns obtained and to call the exact model as in V1. It is
impressive how quickly the commercial solvers CPLEX
and XpressMP improve the lower bound yielding 
 "

l .
For most examples with up to 50 orders we obtain

 0u � 


0
l � 2, but in many cases 
 0u � 
 0l D 1 or even


 0u D 

"
l .

Primal Feasible Solutions and HybridMethods

We define hybrid methods as methods based on any
combination of exact MIP methods with constructive
heuristics, local search, metaheuristics, or constraint
programming that produces primal feasible solutions.
Dive-and-fix, near-integer-fix, and fix-and-relax are
such hybrid methods. They are user-developed heuris-
tics exploiting the problem structure. In their kernel
they use a declarative model solved, for instance, by
CPLEX and XpressMP.

In constructive heuristics we exploit the structure
of the problem and compute a feasible point. Once
we have a feasible point we can derive safe bounds
on the optimum and assign initial values to the criti-
cal discrete variable, which could be exploited by the
GAMS/CPLEX mipstart option. Feasible points can
sometimes be generated by appropriate sequences of
relaxed models. For instance, in a scheduling problem
P with due times one might relax these due times ob-
taining the relaxed model R. The optimal solution, or
even any feasible point of R, is a feasible point of P if
the due times are models with appropriate unbounded
slack variables.

Constructive heuristics can also be established by
systematic approaches of fixing critical discrete vari-
ables. Such approaches are dive-and-fix and relax-and-
fix. In dive-and-fix the LP relaxation of an integer prob-
lem is to be solved followed by fixing a subset of frac-
tional variables to suitable bounds. Near-integer-fix is

a variant of dive-and-fix that fixes variables with frac-
tional values to the nearest integer point. Note that
these heuristics are subject to the risk of becoming in-
feasible.

The probability of becoming infeasible is less likely
in relax-and-fix. In relax-and-fix, following Pochet and
Wolsey ([32], pp. 109) we suppose that the binary
variables ı of a MIP problem P can be partitioned
into R disjoint sets S1; : : : ; SR of decreasing impor-
tance. Within these subsets Ur with U � [R

uDrC1S
u for

r D 1; : : : ; R � 1 can be chosen to allow for somewhat
more generality. Based on these partitions, RMIP prob-
lems are solved, denoted Pr with 1 � r � R to find
a heuristic solution to P. For instance in a production
planning problem, S1 might be all the ı variables asso-
ciated with time periods in f1; : : : ; t1g, Su those asso-
ciated with periods in ftu C 1; : : : ; tuC1g, whereas Ur

would would be the ı variables associated with the pe-
riods in some set ftr C 1; : : : ; urg.

In the first problem, P1, one only imposes the in-
tegrality of the important variables in S1 [ U1 and re-
laxes the integrality on all the other variables in S. As
P1 is a relaxation of P, for a minimization problem, the
solution of P1 provides a lower bound of P. The solu-
tion values, ı1, of the discrete variables are kept fixed
when solving Pr . This continues and in the subsequent
Pr , for 2 � r � R, we additionally fix the values of the ı
variables with index in Sr�1 at their optimal values from
Pr�1 and add the integrality restriction for the variables
in Sr [ Ur .

Either Pr is infeasible for some r 2 f1; : : : ; Rg, and
the heuristic failed, or else (xR , ıR) is a relax-and-
fix solution. To avoid infeasibilities one might apply
a smoothed form of this heuristic that allows for some
overlap of Ur�1 and Ur . Additional free binary vari-
ables in horizon r � 1 allow one to link the current hori-
zon r with the previous one. Usually this suffices to en-
sure feasibility. Relax-and-fix comes in various flavors
exploiting time-decomposition or time-partitioning
structures. Other decompositions, for instance plants,
products, or customers, are possible as well.

A local search can be used to improve the solution
obtained by the relax-and-fix heuristic. Themain idea is
to solve repeatedly the subproblem on a small number
of binary variables reoptimizing, for instance, the pro-
duction of some products. The binary variables for re-
solving could be chosen randomly or by ametaheuristic
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such as simulated annealing. All binary variables related
to them are released; the others are fixed to the previous
best values.

Another class of MIP hybrid method is estab-
lished by algorithms that combine a MIP solver with
another algorithmic method. A hybrid method ob-
tained by the combination of mixed-integer and con-
straint logic programming strategies has been devel-
oped and applied by Harjunkoski et al. [14] as well
as Jain and Grossmann [17] for solving scheduling
and combinatorial optimization problems. Timpe [37]
solved mixed planning and scheduling problems with
mixed MILP branch-and-bound and constraint pro-
gramming. Maravelias and Grossmann [27] proposed
a hybrid/decomposiiton algorithm for the short-term
scheduling of batch plants, and Roe et al. [33] pre-
sented a hybrid MILP/CLP algorithm for multipur-
pose batch process scheduling in which MILP is used
to solve an aggregated planning problem while CP is
used to solve a sequencing problem. Other hybrid al-
gorithms combine evolutionary and mathematical pro-
gramming methods; see, for instance, the heuristics by
Till et al. [36] for stochastic scheduling problems and by
Borisovsky et al. [4] for supply management problems.

Finally, one should not forget to add some algorith-
mic component that, for the minimization problem at
hand, would generate some reasonable bounds to be
provided in addition to the hybrid method. The hy-
brid methods discussed above provide upper bounds
by constructing feasible points. In favorite cases, the
MIP part of the hybrid solver provides lower bounds. In
other case, lower bounds can be derived from auxiliary
problems, which are relaxations of the original prob-
lem, and which are easier to solve.

Summary

If a givenMIP problem cannot be solved by an available
MIP solver exploiting all its internal presolving tech-
niques, one might reformulate the problem and obtain
an equivalent or closely related representation of real-
ity. Another approach is to construct MIP solutions and
bounds by solving a sequence of models. Alternatively,
individual tailor-made exact decomposition techniques
could help as well as primal heuristics such as relax-
and-fix or local search techniques on top of a MIP
model.
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In this paper, modeling languages are identified as
a new computer language paradigm and their applica-
tions for representing optimization problems is illus-
trated by examples.

Programming languages can be classified into three
paradigms: imperative, functional, and logic program-
ming [14]. The imperative programming paradigm is
closely related to the physical way of how (the von Neu-
mann) computer works: Given a set of memory loca-
tions, a program is a sequence of well defined instruc-
tions on retrieving, storing and transforming the con-
tent of these locations. The functional paradigm of com-
putation is based on the evaluation of functions. Every
program can be viewed as a function which translates
an input into a unique output. Functions are first-class
values, that is, they must be viewed as values them-
selves. The computational model is based on the �-
calculus invented by A. Church (1936) as a mathemat-
ical formalism for expressing the concept of a compu-
tation. The paradigm of logic programming is based on
the insight that a computation can be viewed as a kind
of (constructive) proof. Hence, a program is a notation
for writing logical statements together with specified al-
gorithms for implementing inference rules.

All three programming paradigms concentrate on
problem representation as a computation, that is, the
problem is stated in a way that describes the process of
solving it. The computation on how to solve a problem
‘is’ its representation. One may call such a notational
system an algorithmic language.

Definition 1 An algorithmic language describes (ex-
plicitly or implicitly) the computation of solving a prob-
lem, that is, ‘how’ a problem can be processed using
a machine. The computation consists of a sequence
of well-defined instructions which can be executed in
a finite time by a Turing machine. The information of
a problemwhich is captured by an algorithmic language
is called algorithmic knowledge of the problem.

Algorithmic knowledge to describe a problem is very
common in our everyday life – one only need to look
at cookery-books, or technical maintenance manuals –
that one may ask whether the human brain is ‘predis-
posed’ to preferably present a problem in describing its
solution recipe.

However, there exists at least one different way to
capture knowledge about a problem; it is the method

which describes ‘what’ the problem is by defining its
properties, rather than saying ‘how’ to solve it. Math-
ematically, this can be expressed by a set {x 2 X: R(x)},
where X is a continuous or discrete state space and R(x)
is a Boolean relation, defining the properties or the con-
straints of the problem; x is called the variable(s). A no-
tational system that represents a problem in this way is
called a declarative language.

Definition 2 A declarative language describes the
problem as a set using mathematical variables and con-
straints defined over a given state space. This space can
be finite or infinite, countable or noncountable. The in-
formation of a problem which is captured by a declar-
ative language is called declarative knowledge of the
problem.

The declarative representation, in general, does not give
any indication on how to solve the problem. It only
states what the problem is. Of course, there exists a triv-
ial algorithm to solve a declaratively stated problem,
which is to enumerate the state space and to check
whether a given x 2 X violates the constraint R(x). The
algorithm breaks down, however, whenever the state
space is infinite. But even if the state space is finite, it
is – for most nontrivial problems – so large that a full
enumeration is practically impossible.

Algorithmic and declarative representations are two
fundamentally different kinds of modeling and rep-
resenting knowledge. Declarative knowledge answers
the question ‘what is?’, whereas algorithmic knowledge
asks ‘how to?’ [4]. An algorithm gives an exact recipe
of how to solve a problem. A mathematical model, i. e.
its declarative representation, on the other hand, (only)
defines the problem as a subspace of the state space. No
algorithm is given to find all or a single element of the
feasible subspace.

Why Declarative Representation

The question arises, therefore, why to present a prob-
lem using a declarative way, since one must solve it
anyway and, hence, represent as an algorithm? The rea-
sons are, first of all, conciseness, insight, and documen-
tation. Many problems can be represented declaratively
in a very concise way, while the representation of their
computation is long and complex. Concise writings fa-
vor also the insight of a problem. Furthermore, in many
scientific papers a problem is stated in a declarative
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way using mathematical equations and inequalities for
documentational purposes. This gives a clear statement
of the problem and is an efficient way to communi-
cate it to other scientists. However, documentation is
by no means limited to human beings. One can imag-
ine declarative languages implemented on a computer
like algorithmic languages, which are parsed and inter-
preted by a compiler. In this way, an interpretative sys-
tem can analyse the structure of a declarative program,
can pretty-print it on a printer or a screen, can classify
it, or symbolically transform it in order to view it as a di-
agram or in another textual form.

Of course, the most interesting question is whether
the declarative way of representing a problem could be
of any help in solving the problem.

Indeed, for certain classes of problems the computa-
tion can be obtained directly from a declarative formu-
lation. This is true for all recursive definitions. A clas-
sical example is the algorithm of Euclid to find the
greatest common divisor (gcd) of two integers. One can
proof that

gcd(a; b) D

(
gcd(b; a mod b); b > 0
a; b D 0;

which is clearly a declarative statement of the prob-
lem. In Scheme, a functional language, this formula can
be implemented directly as a function in the following
way:

(define (gcd a b)
(if(= b 0) a

(gcd b (remainder a b))))

Similar formulations can be given for any other lan-
guage which includes recursion as a basic control struc-
ture. This class of problems is surprisingly rich. The
whole paradigm of dynamic programming can be sub-
sumed under this class.

A class of problems of a very different kind are linear
programs, which can be represented declaratively in the
following way:

fmin cx : Ax � bg

From this formulation – in contrast to the class of
recursive definitions – nothing can be deduced that
would be useful in solving the problem. However, there

exists well-known methods, for example the simplex
method, which solves almost all instances in a very ef-
ficient way. Hence, to make the declarative formulation
of a linear program useful for solving it, one only needs
to translate it into a form, the simplex algorithm accepts
as input. The translation from the declarative formu-
lation {min cx: Ax � b} to such an input-form can be
automated. This concept can be extended to nonlinear
and discrete problems.

AlgebraicModeling Languages

The idea to state the mathematical problem in a declar-
ative way and to translate it into an ‘algorithmic’
form by a standard procedure led to a new language
paradigm emerged basically in the community of op-
erations research at the end of the 1980s, the algebraic
modeling languages (AIMMS [1], AMPL [7], GAMS
[2], LINGO [18], and LPL [12] and others). These lan-
guages are becoming increasingly popular even outside
the community of operations research. Algebraic mod-
eling languages represent a problem in a purely declara-
tive way, although most of them include computational
facilities to manipulate the data as well as certain con-
trol structures.

One of their strength is the complete separation of
the problem formulation as a declarative model from
finding a solution, which is supposed to be computed
by an external program called a solver. This allows
the modeler not only to separate the two main tasks
of model formulation and model solution, but also to
switch easily between several solvers. This is an invalu-
able benefit for many difficult problems, since it is not
uncommon that a model instance can be solved using
onemethod, and another instance is solvable only using
another method. Another advantage of such languages
is to separate clearly between model structure, which
only contains parameters (place-holder for data) but no
data, and model instance, in which the parameters are
replaced by a specific data set. This leads to a natural
separation between model formulation and data gath-
ering stored in databases. Hence, the main features of
these algebraic modeling languages are:
� purely declarative representation of the problem;
� clear separation between formulation and solution;
� clear separation between model structure andmodel

data.
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It is, however, naive to think that one only needs to for-
mulate a problem in a concise declarative form and to
link it somehow to a solver in order to solve it. First
of all, the ‘linking process’ is not so straightforward as
it seems initially. Second, a solver may not exist which
could solve the problem at hand in an efficient way. One
only needs to look at Fermat’s last conjecture which can
be stated in a declarative way as {a, b, c, n 2 N+: an + bn

= cn, a, b, c � 1, n > 2} to convince oneself of this fact.
Even worse, one can state a problem declaratively for
which no solver can exist. This is true already for the
rather limited declarative language of first order logic,
for which no algorithm exists which decides whether
a formula is true or false in general (see [5]).

In this sense, efforts are under way actually in the
design of such languages which focus on flexibly link-
ing the declarative formulation to a specific solver to
make this paradigm of purely declarative formulation
more powerful. This language-solver-interface problem
has different aspects and research goes in many di-
rections. A main effort is to integrate symbolic model
transformation rules into the declarative language in
order to generate formulations which are more use-
ful for a solver. AMPL, for example, automatically de-
tects partially separable structure and computes second
derivatives [8]. This information are also handed over
to a nonlinear solver. LPL, to cite a very different un-
dertaking, has integrated a set of rules to translate sym-
bolically logical constraints into 0–1 constraint [11]. To
do this in an intelligent way is all but easy, because the
resulting 0–1 formulation should be as sharp as pos-
sible. This translation is useful for large mathematical
models which must be extended by a few logical con-
ditions. For many applications the original model be-
comes straightforward while the transformed is com-
plicated but still relatively easy to solve (examples were
given in [11]). Even if the resulting formulation is not
solvable efficiently, the modeler can gain more insights
into the structure of the model from such a symbolic
translation procedure, and eventually modify the origi-
nal formulation.

Second GenerationModeling Languages

Another research activity, actually under way, goes in
the direction of extending the algebraic modeling lan-
guages in order to express also algorithmic knowledge.

This is necessary, because even if one could link an
purely declarative language to any solver, it remains
doubtful of whether this can be done efficiently in all
cases. Furthermore, for many problems it is not useful
to formulate them in a declarative way: the algorithmic
way is more straightforward and easier to understand.
For still other problems a mixture of declarative and
algorithmic knowledge leads to a superior formulation
in terms of understandability as well as in terms of
efficiency, (examples are given below to confirm this
findings).

Therefore, AIMMS integrates control structures
and procedure definitions. GAMS, AMPL and LPL also
allow the modeler to write algorithms powerful enough
to solves models repeatedly.

A theoretical effort was undertaken in [10] to spec-
ify a modeling language which allows the modeler (or
the programmer) to combine algorithmic and declar-
ative knowledge within the same language framework
without intermingle them. The overall syntax structure
of a model (or a program) in this framework is as fol-
lows:

MODELModelName
hdeclarative part of the modeli

BEGIN
halgorithmic part of the modeli

ENDModelName.

Declarative and algorithmic knowledge are clearly sep-
arated. Either part can be empty, meaning that the
problem is represented in a purely declarative or in
a purely algorithmic form. The declarative part consists
of the basic building blocks of declarative knowledge:
variables, parameters, constraints, model checking fa-
cilities, and sets (that is a way to ‘multiply’ basic build-
ing blocks). This part may also contain ‘ordinary decla-
rations’ of an algorithmic language (e. g., type and func-
tion declarations). Furthermore, one can declare whole
models within this part, leading to nested model struc-
tures, which is very useful in decomposing a complex
problem into smaller parts. The algorithmic part, on
the other hand, consists of all control structures which
make the language Turing complete. One may imagine
his or her favorite programming language being imple-
mented in this part. A language which combines declar-
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ative and algorithmic knowledge in this way is called
modeling language.

Definition 3 A modeling language is a notational sys-
temwhich allows one to combine (not tomerge) declar-
ative and algorithmic knowledge in the same language
framework. The content captured by such a notation is
called amodel.

Such a language framework is very flexible. Purely
declarative models are linked to external solvers to be
solved; purely algorithmic models are programs, that is
algorithms + data structures, in the ordinary sense.

Modeling Language
and Constraint Logic Programming

Merging declarative and algorithmic knowledge is not
new, although it is not very common in language de-
sign. The only existing language paradigm doing it is
constraint logic programming (CLP), a refinement of
logic programming [13]. There are, however, impor-
tant differences between the CLP paradigm and the
paradigm of modeling language as defined above.
1) In CLP the algorithmic part – normally a search

mechanism – is behind the scene and the compu-
tation is intrinsically coupled with the declarative
language itself. This could be a strength because the
programmer does not have to be aware of how the
computation is taking place, he or she only writes
the rules in a descriptive, that is declarative, way
and triggers the computation by a request. In reality,
however, it is an important drawback, because – for
most nontrivial problem – the programmer ‘must’
be aware on how the computation is taking place.
Therefore, to guide the computation in CLP, the
declarative program is interspersed with additional
rules which have nothing to do with the description
of the original problem. In a modeling language, the
user either links the declarative part to an external
solver or writes the solver within the language. In
either case, both parts are strictly separated. Why is
this separation so important? Because it allows the
modeler to ‘plug in’ different solvers without touch-
ing the overall model formulation.

2) The second difference is that the modeling lan-
guage paradigm lead automatically to modular de-
sign. This is probably to hottest topic in software

engineering: building components. Software engi-
neering teaches us that a complex structure can be
only managed efficiently by break it down intomany
relatively independent components. The CLP ap-
proach leads more likely to programs that are dif-
ficult to survey and hard to debug and to main-
tain, because such considerations are entirely absent
within the CLP paradigm.

3) On the other hand, the community of CLP has de-
veloped methods to solve specific classes of com-
binatorial problems which seems to be superior to
other methods. This is because they rely on propaga-
tion, simplification of constraints, and various con-
sistency techniques. In this sense, CLP solvers could
be used and linked with modeling languages. Such
a project is actually under way between the AMPL
language and the ILOG solver [6,17].

Hence, while the representation of models is probably
best done in the language framework of modeling lan-
guages, the solution process can taken place in a CLP
solver for certain problems.

Modeling Examples

Five modeling examples are chosen from very different
problem domains to illustrate the highlights of the pre-
sented paradigm of modeling language. The first two
examples show that certain problems are best formu-
lated using algorithmic knowledge, the next two exam-
ples show the power of a declarative formulation, and
a last example indicates that mixing both paradigms is
sometimes more advantageous.

Sorting

Sorting is a problem which is preferably expressed in
an algorithmic way. Declaratively, the problem could be
formulated as follows: Find a permutation 
 such that
A� i �A� i+1 for all i 2 {1, . . . , n�1} whereA1, . . . , n is an
array of objects on which an order is defined. It is diffi-
cult to imagine a ‘solver’ that could solve this problem
as efficiently as the best known sorting algorithms such
as Quicksort, of which the implementation is straight-
forward.

The reason why the sorting problem is best formu-
lated as an algorithm is probably that the state space is
exponential in the number of items, however, the best
algorithm only has complexity O(n log n).
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The n-Queens Problem

The n-queens problem is to place n queens on a chess-
board of dimension n × n in such a way, that they can-
not beat each other. This problem can be formulated
declarative as follows: {xi, xj 2 {1, . . . , n}:xi 6D xj, xi+ i 6D
xj + j, xi � i 6D xj � j}, where xi is the column position
of the ith queen (i. e. the queen in row i).

Using the LPL [12] formulation:

MODEL nQueens;
PARAMETER n; SET i ALIAS j ::=f1; : : : ; ng;
DISTINCT VARIABLE xfig[1; : : : ; n];
CONSTRAINT Sfi; j : i < jg:

x[i]+ i <> x[ j]+ jAND x[i]� i <> x[ j]� j;
END

the author was able to solve problems for n � 8 us-
ing a general MIP solver. The problem is automatically
translated into a 0–1 problem by LPL. Replacing the
MIP-solver by a tabu search heuristic, problems with
n � 50 were solvable within the LPL framework. Using
the constraint language OZ [19] problems of n � 200
are efficiently solvable using techniques of propagation
and variable domain reductions. However, the success
of all these methods seems to be limited compared to
the best we can attain. In [20,21], Sosic Rok and Gu
Jun presented a polynomial time local heuristic that can
solve problems of n� 3 000 000 in less than oneminute.
The presented algorithm is very simple. The conclusion
seems to be for the n-queens problem that an algorith-
mic formulation is advantageous.

A Two-Person Game

Two players choose at random a positive number and
note it on a piece of paper. They then compare them. If
both numbers are equal, then neither player gets a pay-
off. If the difference between the two numbers is one,
then the player who has chosen the higher number ob-
tains the sum of both; otherwise the player who has cho-
sen the smaller number obtains the sum of both. What
is the optimal strategy for a player, i. e. which numbers
should be chosen with what frequencies to get the max-
imal payoff? This problem was presented in [9] and is

a typical two-person zero-sum game. In LPL, it can be
formulated as follows:

ODEL Game ‘finite two-person zero-sum game’;
SET i ALIAS j := /1 : 50/;
PARAMETER pfi; jg := IF( j > i; IF( j = i + 1;
�i � j;MIN(i; j)); IF( j < i;�p[ j; i]; 0));
VARIABLE xfig;
CONSTRAINT R : SUMfig x[i] = 1;
MAXIMIZE gain: MINf jg(SUMfigp[ j; i] � x[i]);

END Game.

This is an very compact way to declaratively formu-
late the problem and it is difficult to imagine how this
could be achieved using algorithmic knowledge alone.
It is also an efficient way to state the problem, because
large instances can be solved by an linear programming
solver. LPL automatically transforms it into an linear
program. (By the way, the problem has an interest-
ing solution: Each player should only choose number
smaller than six.)

Equal Circles in a Square

The problem is to find the maximum diameter of n
equal mutually disjoint circles packed inside a unit
square.

In LPL, this problem can be compactly formulated
as follows:

MODEL circles ‘pack equal circles in a square’;
PARAMETER n ‘number of circles’;
SET i ALIAS j = 1; : : : ; n;
VARIABLE

t ‘diameter of the circles’;
xfig[0; 1] ‘x-position of the center’;
yfig[0; 1] ‘y-position of the center’;

CONSTRAINT
Rfi; j : i < jg ‘circles must be disjoint’:

(x[i]� x[ j])2 + (y[i] � y[ j])2 � t;
MAXIMIZE obj ‘maximize diameter’: t;
END

C.D. Maranas et al. [15] obtained the best known solu-
tions for all n � 30 and, for n = 15, an even better one
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using an equivalent formulation in GAMS and linking
it to MINOS [16], an well-known nonlinear solver.

The (Fractional) Cutting-Stock Problem

Paper is manufactured in rolls of width B. A set of cus-
tomers W orders dw rolls of width bw(with w 2 W).
Rolls can be cut in many ways, every subset P0 � W
such that

P
i2P0 yi bi � B is a possible cut-pattern, where

yi is a positive integer. The question is how the initial
roll of width B should be cut, that is, which patterns
should be used, in order to minimize the overall paper
waste. A straightforward formulation of this problem is
to enumerate all patterns, each giving a variable, then to
minimize the number of used patterns while fulfilling
the demands. The resulting model is a very large linear
program which cannot be solved.

A well-known method in operations research to
solve such kind of problems is to use a column genera-
tion method (see [3] for details), that is, a small instance
with only a few patterns is solved and a rewarding col-
umn – a pattern – is added repeatedly to the problem.
The new problem is then solved again. This process is
repeated, until no pattern can be added. To find a re-
warding pattern, another problem – named a knapsack
problem – must be solved.

The problem can be formulated partially be algo-
rithmic partially by declarative knowledge. It consists
of two declaratively formulated problems (a linear pro-
gram and an knapsack problem), which are both re-
peatedly solved. In a pseudocode one could formulate
the algorithmic knowledge as follows:

SOLVE the small cutting-stock problem
SOLVE the knapsack problem
WHILE a rewarding pattern was found DO

add pattern to the cutting-stock problem
SOLVE the cutting-stock problem again
SOLVE the knapsack problem again

ENDWHILE

The two models (the cutting-stock problem and the
knapsack problem) can be formulated declaratively. In
the proposed framework of modeling language, the
complete problem can now be expressed as in the pro-
gram below.

MODEL CuttingStock;
MODEL Knapsack(i;w; p;K; x; obj);
SET i;
PARAMETER wfig; pfig; K;
INTEGER VARIABLE xfig;
CONSTRAINT R: SUMfig w � x � K;
MAXIMIZE obj: SUMfig p � x;

END Knapsack.
SET
w ‘rolls ordered’; p ‘possible patterns’;

PARAMETER
afw; pg ‘pattern table’;
dfwg ‘demands’;
bfwg ‘widths of ordered rolls’;
B ‘initial width’;
INTEGER yfwg ‘new added pattern’;
C ‘contribution of a cut’;

VARIABLE
Xfpg ‘number of rolls cut according to p’;

CONSTRAINT
Demfwg: SUMfpg a � X � d;

MINIMIZE obj: SUMfpg X;
BEGIN

SOLVE;
SOLVE Knapsack(w; b;Dem.dual; B; y;C);
WHILE (C > 1) DO
p := p + f‘pattern_’ + str(#p)g;
afw; #pg := y[w];
SOLVE;
SOLVE Knapsack(w; b;Dem.dual; B; y;C);

END;
END CuttingStock.

This formulation has several remarkable properties:
1) It is short and readable. The declarative part consists

of the (small) linear cutting-stock problem, it also
contains, as a submodel, a knapsack problem. The
algorithmic part implements thecolumn generation
method. Both parts are entirely separated.

2) It is a complete formulation, except from the data.
No other code is needed; both models can be solved
using a standard MIP solver (since the knapsack
problem is small in general).

3) It has a modular structure. The knapsack problem
is an independent component with its own name
space; there is no interference with the surrounding
model. It could even be declared outside the cutting-
stock problem.
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4) The cutting-stock problem is only one problem of
a large class of relevant problems which are solved
using a column generation or, alternatively, a row-
cut generation.

Conclusion

It has been shown that certain problems are best formu-
lated as algorithms, others in a declarative way, still oth-
ers need both paradigms to be stated concisely. Com-
puter science made available many algorithmic lan-
guages; they can be contrasted to the algebraic mod-
eling languages which are purely declarative. A lan-
guage, called modeling language, which combines both
paradigms was defined in this paper and examples were
given showing clear advantages of doing so. Its is more
powerful than both paradigms separated.

However, the integration of algorithmic and declar-
ative knowledge cannot be done in an arbitrary way.
The language design must follow certain criteria well-
known in computer science. The main criteria are: reli-
ability and transparency. Reliability can be achieved by
a unique notation to codemodels, that is, by amodeling
language, and by various checking mechanisms (type
checking, unit checking, data integrity checking and
others). Transparency can be obtained by flexible de-
composition techniques, like modular structure as well
as access and protection mechanisms of these structure,
well-known techniques in language design and software
engineering.

Solving efficiently and relevant optimization prob-
lems using present desktop machine not only asks for
fast machines and sophisticated solvers, but also for for-
mulation techniques that allow the modeler to commu-
nicate the model easily and to build it in a readable and
maintainable way.

See also

� Continuous Global Optimization: Models,
Algorithms and Software

� Large Scale Unconstrained Optimization
� Optimization Software
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Introduction

This article presents a general overview of some of the
most recent approaches for solving the molecular dis-
tance geometry problem, namely, the ABBIE algorithm,
the Global Continuation Algorithm, d.c. optimization
algorithms, the geometric build-up algorithm, and the
BP algorithm.

The determination of the three-dimensional struc-
ture of a molecule, especially in the protein folding
framework, is one of the most important problems in
computational biology. That structure is very impor-
tant because it is associated to the chemical and biolog-
ical properties of the molecule [7,11,46]. Basically, this
problem can be tackled in two ways: experimentally, via
nuclear magnetic resonance (NMR) spectroscopy and
X-ray crystallography [8], or theoretically, through po-
tential energy minimization [19].

The Molecular Distance Geometry Problem
(MDGP) arises in NMR analysis. This experimental
technique provides a set of inter-atomic distances dij
for certain pairs of atoms (i,j) of a given protein [23,24,
33,56,57]. The MDGP can be formulated as follows:

Given a set S of atom pairs (i,j) on a set of m
atoms and distances di j defined over S, find positions
x1, : : : ; xm 2 R3 of the atoms in the molecule such that

jjxi � x jjj D di j ; 8(i; j) 2 S: (1)

When the distances between all pairs of atoms of
a molecule are given, a unique three-dimensional struc-
ture can be determined by a linear time algorithm [16].
However, because of errors in the given distances, a so-
lution may not exist or may not be unique. In addition
to this, because of the large scale of problems that arise
in practice, the MDGP becomes very hard to solve in
general. Saxe [51] showed that the MDGP is NP-com-
plete even in one spatial dimension.

The exact MDGP can be naturally formulated as
a nonlinear global minimization problem, where the
objective function is given by

f (x1; : : : ; xm) D
X

(i; j)2S

(jjxi � x jjj
2 � d2i j)

2 : (2)

This function is everywhere infinitely differentiable and
has an exponential number of local minimizers. As-
suming that all the distances are correctly given, x 2
R3m solves the problem if and only if f (x) D 0.

Formulations (1) and (2) correspond to the exact
MDGP. Since experimental errors may prevent solu-
tion existence (e. g. when the triangle inequality

di j � dik C dk j

is violated for atoms i, j, k), we sometimes consider an
�-optimum solution of (1), i. e. a solution x1; : : : ; xm
satisfying

jjjxi � x jjj � di jj � � ; 8(i; j) 2 S : (3)

Moré and Wu [41] showed that even obtaining such an
�-optimum solution is NP-hard for � small enough.

In practice, it is often just possible to obtain lower
and upper bounds on the distances [4]. Hence a more
practical definition of the MDGP is to find positions
x1; : : : ; xm 2 R3 such that

li j � jjxi � x jjj � ui j ; 8(i; j) 2 S ; (4)

where lij and uij are lower and upper bounds on the dis-
tance constraints, respectively.
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The MDGP is a particular case of a more general
problem, called the distance geometry problem [6,13,
14,15], which is intimately related to the Euclidean dis-
tance matrix completion problem [1,28,38].

Several methods have been developed to solve the
MDGP, including the EMBED algorithm by Crippen
and Havel [12,25], the alternating projection algorithm
by Glunt et al. [20], spectrial gradient methods by
Glunt et al. [21,22], the multi-scaling algorithm by
Trosset et al. [29,52], a stochastic/perturbation algo-
rithm by Zou, Byrd, and Schnabel [58], variable neigh-
borhood search-based algorithms by Liberti, Lavor, and
Maculan [35,39], the ABBIE algorithm by Hendrick-
son [26,27], the Global Continuation Algorithm by
Moré and Wu [41,42,43,44,45], the d.c. optimization
algorithms by An and Tao [2,3], the geometric build-
up algorithm by Dong, Wu, and Wu [16,17,54], and
the BP algorithm by Lavor, Liberti, and Maculan [37].
Two completely different approaches for solving the
MDGP are given in [34] (based on quantum compu-
tation) and [53] (based on algebraic geometry).

The wireless network sensor positioning problem is
closely related to the MDGP, the main difference being
the presence of fixed anchor points with known posi-
tions: results derived for this problem can often be ap-
plied to the MDGP. Amongst the most notable, [18]
shows that the MDGP associated to a trilateration
graph (a graph with an order on the vertices such that
each vertex is adjacent to the preceding 4 vertices) can
be solved in polynomial time; [40] provides a detailed
study of Semi Definite Programming (SDP) relaxations
applied to distance geometry problems.

ABBIE Algorithm

In [26,27], Hendrickson describes an approach to the
exact MDGP that replaces a large optimization prob-
lem, given by (2), by a sequence of smaller ones. He
exploits some combinatorial structure inherent in the
MDGP, which allows him to develop a divide-and-
conquer algorithm based on a graph-theoretic view-
point.

If the atoms and the distances are considered as
nodes and edges of a graph, respectively, the MDGP
can be described by a distance graph and the solution
to the problem is an embedding of the distance graph
in an Euclidean space. When some of the atoms can be

moved without violating any distance constraints, there
may bemany embeddings. The graph is then called flex-
ible or otherwise rigid.

If the graph is rigid or does not have partial reflec-
tions, for example, then the graph has a unique embed-
ding. These necessary conditions can be used to find
subgraphs that have unique embeddings. The problem
can then be solved by decomposing the graph into such
subgraphs, in which the minimization problems associ-
ated to the function (2) are solved. The solutions found
for the subgraphs can then be combined into a solution
for the whole graph.

This approach to the MDGP has been implemented
in a code named ABBIE and tested on simulated data
provided by the bovine pancreatic ribonuclease A,
a typical small protein consisting of 124 amino acids,
whose three-dimensional structure is known [47]. The
data set consists of all distances between pairs of atoms
in the same amino acid, along with 1167 additional dis-
tances corresponding to pairs of hydrogen atoms that
were within 3.5Å of each other. It was used fragments
of the protein consisting of the first 20, 40, 60, 80 and
100 amino acids as well as the full protein, with two sets
of distance constraints for each size corresponding to
the largest unique subgraphs and the reduced graphs.
These problems have from 63 up to 777 atoms.

Global Continuation Algorithm

In [43], Moré and Wu formulated the exact MDGP in
terms of finding the global minimum of a similar func-
tion to (2),

f (x1; : : : ; xm) D
X

(i; j)2S

wi j(jjxi � x jjj
2 � d2i j)

2 ; (5)

where wij are positive weights (in numerical results
wi j D 1 was used).

Following the ideas described in [55], Moré andWu
proposed an algorithm, called Global Continuation Al-
gorithm, based on a continuation approach for global
optimization. The idea is gradually transform the func-
tion (5) into a smoother function with fewer local min-
imizers, where an optimization algorithm is then ap-
plied to the transformed function, tracing their mini-
mizers back to the original function. For other works
based on continuation approach, see [9,10,30,31,32,49].
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The transformed function h f i	 , called the Gaussian
transform, of a function f : Rn ! R is defined by

h f i	(x) D
1


n/2�n

Z
Rn

f (y) exp
�
�
jjy � xjj2

�2

�
dy ;

(6)

where the parameter � controls the degree of smooth-
ing. The value h f i	(x) is a weighted average of f (x) in
a neighborhood of x, where the size of the neighbor-
hood decreases as � decreases: as �! 0, the average is
carried out on the singleton set fxg, thus recovering the
original function in the limit. Smoother functions are
obtained as � increases.

This approach to the MDGP has been implemented
and tested on two artificial models of problems, where
the molecule has m D s3 atoms located in the three-
dimensional lattice

f(i1; i2; i3) : 0 � i1 < s; 0 � i2 < s; 0 � i3 < sg

for an integer s � 1. In numerical results, it was consid-
ered m D 27; 64; 125; 216.

In the first model, the ordering for the atoms is spec-
ified by letting i be the atom at the position (i1,i2,i3),

i D 1C i1 C si2 C s2 i3;

and the set of atom pairs whose distances are known, S,
is given by

S D f(i; j) : ji � jj � rg ; (7)

where r D s2. In the second model, the set S is specified
by

S D f(i; j) : jjxi � x jjj �
p
rg ; (8)

where xi D (i1; i2; i3) and r D s2. For both models, s is
considered in the interval 3 � s � 6.

In (7), S includes all nearby atoms, while in (8), S in-
cludes some of nearby atoms and some relatively dis-
tant atoms.

It was shown that the Global Continuation Algo-
rithm usually finds a solution from any given starting
point, whereas the local minimization algorithm used
in the multistart methods is unreliable as a method for
determining global solutions. It was also showed that
the continuation approach determines a global solution
with less computational effort that is required by the
multistart approach.

D.C. Optimization Algorithms

In [2,3], An and Tao proposed an approach for solving
the exact MDGP, based on the d.c. (difference of con-
vex functions) optimization algorithms. They worked
inMm;3(R), the space of real matrices of order m � 3,
where for X 2 Mm;3(R), Xi (resp., Xi) is its ith row
(resp., ith column). By identifying a set of positions
of atoms x1; : : : ; xm with the matrix X, XT

i D xi for
i D 1; : : : ;m, they expressed the MDGP by

0 D min
�
�(X)

:D
1
2

X
(i; j)2S;i< j

wi j�i j(X) : X 2Mm;3(R)

9=
; ; (9)

where wi j > 0 for i ¤ j and wii D 0 for all i. The pair-
wise potential �i j : Mm;3(R) ! R is defined for prob-
lem (1) by either

�i j(X) D
�
d2i j � jjX

T
i � XT

j jj
2
�2

(10)

or

�i j(X) D
�
di j � jjXT

i � XT
j jj
�2
; (11)

and for problem (4) by

�i j(X) D min 2

(
jjXT

i � XT
j jj

2 � l2i j
l2i j

; 0

)

Cmax 2

(
jjXT

i � XT
j jj

2 � u2
i j

u2
i j

; 0

)
: (12)

Similarly to (2), X is a solution if and only if it is
a global minimizer of problem (9) and �(X) D 0.

While the problem (9) with �i j given by (9) or (12)
is a nondifferentiable optimization problem, it is a d.c.
optimization problem.

An and Tao demonstrated that the d.c. algorithms
can be adapted for developing efficient algorithms for
solving large-scale exact MDGPs. They proposed vari-
ous versions of d.c. algorithms that are based on differ-
ent formulations for the problem. Due its local char-
acter, the global optimality cannot be guaranteed for
a general d.c. problem. However, the fact that the global
optimality can be obtained with a suitable starting point
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motivated them to investigate a technique for comput-
ing good starting points for the d.c. algorithms in the
solution of (9), with �i j defined by (11).

The algorithms have been tested on three sets of
data: the artificial data from Moré and Wu [43] (with
up to 4096 atoms), 16 proteins in the PDB [5] (from
146 up to 4189 atoms), and the data from Hendrick-
son [27] (from 63 up to 777 atoms). Using these data,
they showed that the d.c. algorithms can efficiently
solve large-scale exact MDGPs.

Geometric Build-up Algorithm

In [17], Dong and Wu proposed the solution of the
exact MDGP by an algorithm, called the geometric
build-up algorithm, based on a geometric relationship
between coordinates and distances associated to the
atoms of a molecule. It is assumed that it is possible to
determine the coordinates of at least four atoms, which
are marked as fixed; the remaining ones are non-fixed.
The coordinates of a non-fixed atom a can be calcu-
lated by using the coordinates of four non-coplanar
fixed atoms such that the distances between any of
these four atoms and the atom a are known. If such
four atoms are found, the atom a changes its status to
fixed. More specifically, let b1, b2, b3, b4 be the four fixed
atoms whose Cartesian coordinates are already known.
Now suppose that the Euclidean distances among the
atom a and the atoms b1, b2, b3, b4, namely da,bi, for
i D 1; 2; 3; 4, are known. That is,

jja � b1jj D da;b1 ;

jja � b2jj D da;b2 ;

jja � b3jj D da;b3 ;

jja � b4jj D da;b4 :

Squaring both sides of these equations, we have:

jjajj2 � 2aTb1 C jjb1jj2 D d2a;b1 ;

jjajj2 � 2aTb2 C jjb2jj2 D d2a;b2 ;

jjajj2 � 2aTb3 C jjb3jj2 D d2a;b3 ;

jjajj2 � 2aTb4 C jjb4jj2 D d2a;b4 :

By subtracting one of these equations from the others,
it is obtained a linear system that can be used to deter-
mine the coordinates of the atom a. For example, sub-
tracting the first equation from the others, we obtain

Ax D b ; (13)

where

A D �2

2
4

(b1 � b2)T

(b1 � b3)T

(b1 � b3)T

3
5 ; x D a ;

and

b D

2
6664

�
d2a;b1 � d2a;b2

�
�
�
jjb1jj2 � jjb2jj2

�
�
d2a;b1 � d2a;b3

�
�
�
jjb1jj2 � jjb3jj2

�
�
d2a;b1 � d2a;b4

�
�
�
jjb1jj2 � jjb4jj2

�

3
7775 :

Since b1, b2, b3, b4 are non-coplanar atoms, the sys-
tem (13) has a unique solution. If the exact distances
between all pairs of atoms are given, this approach can
determine the coordinates of all atoms of the molecule
in linear time [16].

Dong and Wu implemented such an algorithm, but
they verified that it is very sensitive to the numerical
errors introduced in calculating the coordinates of the
atoms. In [54], Wu and Wu proposed the updated ge-
ometric build-up algorithm showing that, in this algo-
rithm, the accumulation of the errors in calculating the
coordinates of the atoms can be controlled and pre-
vented. They have been tested the algorithm with a set
of problems generated using the known structures of 10
proteins downloaded from the PDB data bank [5], with
problems from 404 up to 4201 atoms.

BP Algorithm

In [37], Lavor, Liberti, and Maculan propose an algo-
rithm, called branch-and-prune (BP), based on a dis-
crete formulation of the exact MDGP. They observe
that the particular structures of proteins makes it pos-
sible to formulate the MDGP applied to protein back-
bones as a discrete search problem. They formalize this
by introducing the discretizable molecular distance ge-
ometry problem (DMDGP), which consists of a cer-
tain subset of MDGP instances (to which most protein
backbones belong) for which a discrete formulation
can be supplied. This approach requires that the bond
lengths and angles, as well as the distances between
atoms separated by three consecutive bond lengths are
known.

In order to describe a backbone of a protein with
m atoms, in addition to the bond lengths di�1;i , for i D
2; : : : ;m, and the bond angles �i�2;i , for i D 3; : : : ;m,
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it is necessary to consider the torsion angles !i�3;i , for
i D 4; : : : ;m, which are the angles between the normals
through the planes defined by the atoms i�3; i�2; i�1
and i � 2; i � 1; i.

It is known that [48], given all the bond lengths
d1;2; : : : ; dm�1;m , bond angles �13; : : : ; �m�2;m , and
torsion angles !1;4; : : : ; !m�3;m of a molecule with
m atoms, the Cartesian coordinates (xi1 ; xi2 ; xi3 ) for
each atom i in the molecule can be obtained using the
following formulae:
2
664

xi1
xi2
xi3
1

3
775 D B1B2 : : : Bi

2
664

0
0
0
1

3
775 ; 8i D 1; : : : ;m ;

where

B1 D

2
664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
775 ;

B2 D

2
664

�1 0 0 �d1;2
0 1 0 0
0 0 �1 0
0 0 0 1

3
775 ;

B3 D

2
664

� cos �1;3 � sin �1;3 0 �d2;3 cos �1;3
sin �1;3 � cos �1;3 0 d2;3 sin �1;3

0 0 1 0
0 0 0 1

3
775 ;

and

Bi D

2
664

� cos �i�2;i � sin �i�2;i
sin �i�2;i cos!i�3;i � cos �i�2;i cos!i�3;i

sin �i�2;i sin!i�3;i � cos �i�2;i sin!i�3;i

0 0

0 �di�1;i cos �i�2;i
� sin!i�3;i di�1;i sin �i�2;i cos!i�3;i

cos!i�3;i di�1;i sin �i�2;i sin!i�3;i

0 1

3
775 ;

for i D 4; : : : ;m.
Since all the bond lengths and bond angles are as-

sumed to be given in the instance, the Cartesian coordi-
nates of all atoms of amolecule can be completely deter-
mined by using the values of cos!i�3;i and sin!i�3;i ,
for i D 4; : : : ;m.

For instances of the DMDGP class, for all i D
4; : : : ;m, the value of cos!i�3;i can be computed by
the formula

cos!i�3;i D a/b

where a D d2i�3;i�2 C d2i�2;i � 2di�3;i�2di�2;i
� cos �i�2;i cos �i�1;iC1 � d2i�3;i

and b D 2di�3;i�2di�2;i sin �i�2;i sin �i�1;iC1 ;

(14)

which is just a rearrangement of the cosine law for tor-
sion angles [50] (p. 278), and all the values in the ex-
pression (14) are given in the instance. This allows to
express the position of the i-th atom in terms of the
preceding three, giving 2m�3 possible conformations,
which characterizes the discretization of the problem.

The idea of the BP algorithm is that at each step
the ith atom can be placed in two possible positions.
However, either of both of these positions may be in-
feasible with respect to some constraints. The search is
branched on all atomic positions which are feasible with
respect to all constraints; by contrast, if a position is not
feasible the search scope is pruned.

The algorithm has been tested on the artificial data
fromMoré and Wu [43] (with up to 216 atoms) and on
the artificial data from Lavor [36] (a selection from 10
up to 100 atoms).

Conclusion

This paper surveys some of the methods to solve the
Molecular Distance Geometry Problem, with particular
reference to five existing algorithms: ABBIE algorithm,
global continuation algorithm, d.c. optimization algo-
rithms, the geometric build-up algorithm and the BP
algorithm.
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An important class of difficult global minimization
problems arise as an essential feature of molecular
structure calculations. The determination of a stable
molecular structure can often be formulated in terms
of calculating the global (or approximate global) mini-
mum of a potential energy function (see [6]). Comput-
ing the global minimum of this function is very diffi-
cult because it typically has a very large number of local
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minima which may grow exponentially with molecule
size.

One such application is the well known protein
folding problem. It is widely accepted that the folded
state of a protein is completely dependent on the one-
dimensional linear sequence (i. e., ‘primary’ sequence)
of amino acids from which the protein is constructed:
external factors, such as enzymes, present at the time of
folding have no effect on the final, or native, state of the
protein. This led to the formulation of the protein fold-
ing problem: given a known primary sequence of amino
acids, what would be its native, or folded, state in three-
dimensional space.

Several successful predictions of folded protein
structures have been made and announced before the
experimental structures were known (see [3,9]). While
most of these have been made with a blend of a hu-
man expert’s abilities and computer assistance, fully au-
tomated methods have shown promise for producing
previously unattainable accuracy [2].

These machine based prediction strategies attempt
to lessen the reliance on experts by developing a com-
pletely computational method. Such approaches are
generally based on two assumptions. First, that there
exists a potential energy function for the protein; and
second that the folded state corresponds to the struc-
ture with the lowest potential energy (minimum of the
potential energy function) and is thus in a state of ther-
modynamic equilibrium. This view is supported by in
vitro observations that proteins can successfully refold
from a variety of denatured states. Evolutionary the-
ory also supports a folded state at a global energy min-
imum. Protein sequences have evolved under pressure
to perform certain functions, which formost known oc-
currences requires a stable, unique, and compact struc-
ture. Unless specifically required for a certain function,
there was no biochemical need for proteins to hide their
global minimum behind a large kinetic energy barrier.
While kinetic blocks may occur, they should be limited
to special proteins developed for certain functions (see
[1]).

Molecular Model

Unfortunately, finding the ‘true’ energy function of
a molecular structure, if one even exists, is virtually
impossible. For example, with proteins ranging in size

up to 1, 053 amino acids (a collagen found in ten-
dons), exhaustive conformational searches will never
be tractable. Practical search strategies for the protein
folding problem currently require a simplified, yet suf-
ficiently realistic, molecular model with an associated
potential energy function representing the dominant
forces involved in protein folding [4]. In a one such
simplified model, each residue in the primary sequence
of a protein is characterized by its backbone compo-
nents NH � C˛H � C0O and one of 20 possible amino
acid sidechains attached to the central C˛ atom. The
three-dimensional structure of the chain is determined
by internal molecular coordinates consisting of bond
lengths l, bond angles � , sidechain torsion angles �, and
the backbone dihedral angles �,  , and !. Fortunately,
these 10r � 6 parameters (for an r-residue structure)
do not all vary independently. Some of these (7r � 4
of them) are regarded as fixed since they are found to
vary within only a very small neighborhood of an ex-
perimentally determined value. Among these are the 3r
� 1 backbone bond lengths l, the 3r � 2 backbone bond
angles � , and the r � 1 peptide bond dihedral angles !
(fixed in the trans conformation). This leaves only the r
sidechain torsion angles �, and the r � 1 backbone di-
hedral angle pairs (�, ). In the reduced representation
model presented here, the sidechain angles � are also
fixed since sidechains are treated as united atoms (see
below) with their respective torsion angles � fixed at
an ‘average’ value taken from the Brookhaven Protein
Databank. Remaining are the r � 1 backbone dihedral
angles pairs. These also are not completely indepen-
dent; they are severely constrained by known chemical
data (the Ramachandran plot) for each of the 20 amino
acid residues. Furthermore, since the atoms from one
C˛ to the next C˛ along the backbone can be grouped
into rigid planar peptide units, there are no extra pa-
rameters required to express the three-dimensional po-
sition of the attached O and H peptide atoms. Hence,
these bond lengths and bond angles are also known and
fixed.

Another key element of this simplified polypeptide
model is that each sidechain is classified as either hy-
drophobic or polar, and is represented by only a sin-
gle ‘virtual’ center of mass atom. Since each sidechain
is represented by only the single center of mass ‘virtual
atom’ Cs, no extra parameters are needed to define the
position of each sidechain with respect to the backbone
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mainchain. The twenty amino acids are thus classified
into two groups, hydrophobic and polar, according to
the scale given by S. Miyazawa and R.L. Jernigan [7].

Corresponding to this simplified polypeptide model
is a simple energy function. This function includes four
components: a contact energy term favoring pairwise
hydrophobic residues, a second contact term favoring
hydrogen bond formation between donor NH and ac-
ceptor C0 = O pairs, a steric repulsive term which re-
jects any conformation that would permit unreason-
ably small interatomic distances, and a main chain tor-
sional term that allows only certain preset values for the
backbone dihedral angle pairs (�, ). Since the residues
in this model come in only two forms, hydrophobic
and polar, where the hydrophobic monomers exhibit
a strong pairwise attraction, the lowest free energy state
involves those conformations with the greatest num-
ber of hydrophobic ‘contacts’ [4] and intrastrand hy-
drogen bonds. Simplified potential functions have been
successful in [10,11], and [12]. Here we use a simple
modification of the energy function from [11].

The Convex Global Underestimator

One practical means for finding the global minimum
of the polypeptide’s potential energy function is to use
a convex global underestimator to localize the search in
the region of the global minimum. The idea is to fit all
known local minima with a convex function which un-
derestimates all of them, but which differs from them by
the minimum possible amount in the discrete L1 norm.
The minimum of this underestimator is used to predict
the global minimum for the function, allowing a more
localized conformer search to be performed based on
the predicted minimum.

More precisely, given an r-residue structure with n
= 2r � 2 backbone dihedral angles, denote a conforma-
tion of this simplified model by � 2 Rn, and the corre-
sponding simplified potential energy function value by
F(�). Then, assuming that k � 2n + 1 local minimum
conformations �(j), for j= 1, . . . , k, have been computed,
a convex quadratic underestimating function U(�) is
fitted to these local minima so that it underestimates
all the local minima, and normally interpolates F(�(j))
at 2n + 1 points. This is accomplished by determining
the coefficients in the function U(�) so that

ı j D F(�( j)) � U(�( j)) � 0 (1)

for j = 1, . . . , k, and where
Pn

jD1 ıj is minimized. That
is, the difference between F(�) and U(�) is minimized
in the discrete L1 norm over the set of k local minima
�(j), j = 1, . . . , k. Of course, this ‘underestimator’ only
underestimates known local minima. The specific un-
derestimating function U(�) used in this convex global
underestimator (CGU) method is given by

U(�) D c0 C
nX

iD1

�
ci�i C

1
2
di�2

i

�
: (2)

Note that ci and di appear linearly in the constraints
of (1) for each local minimum �(j). Convexity of this
quadratic function is guaranteed by requiring that di �
0 for i = 1, . . . , n. Other linear combinations of convex
functions could also be used, but this quadratic func-
tion is the simplest.

Additionally, in order to guarantee thatU(�) attains
its global minimum Umin in the hyperrectangle H� D
f�i : 0 � � i � �i � � i � 2
g, an additional set of
constraints are imposed on the coefficients of U(�):

(
ci C � i di � 0;
ci C � i di � 0;

i D 1; : : : ; n: (3)

Note that the satisfaction of (3) implies that ci � 0 and
di � 0 for i = 1, . . . , n.

The unknown coefficients ci, i = 0, . . . , n, and di, i =
1, . . . , n, can be determined by a linear program which
may be considered to be in the dual form. For reasons
of efficiency, the equivalent primal of this problem is
actually solved, as described below. The solution to this
primal linear program provides an optimal dual vec-
tor, which immediately gives the underestimating func-
tion coefficients ci and di. Since the convex quadratic
function U(�) gives a global approximation to the local
minima of F(�), then its easily computed global min-
imum function value Umin is a good candidate for an
approximation to the global minimum of the correct
energy function F(�).

An efficient linear programming formulation and
solution satisfying (1)–(3) will now be summarized. Let
f (j) = F(�(j)), for j = 1, . . . , k, and let f 2 Rk be the vector
with elements f (j) . Also let !(j) 2 Rn be the vector with
elements 1

2 (�
( j)
i )2, i = 1, . . . , n, and let ek 2 Rk be the

vector of ones. Now define the following two matrices
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˚ 2 R(n+1)×k and˝ 2 Rn×k:
8̂
<̂
ˆ̂:
˚ D

 
e>k

�(1) � � ��(k)

!
;

˝ D
�
!(1) � � �!(k)

�
:

(4)

Finally, let c 2 Rn+1, d 2 Rn, and ı 2 Rk be the vectors
with elements ci, di, and ıi, respectively. Then (1)–(3)
can be restated as the linear program (with free vari-
ables c, d, and ı):
� minimize e>k ı
� such that

0
BB@

˚> ˝> 0
�˚> �˝> �Ik
I0n D 0
�I0n �D 0

1
CCA

0
@
c
d
ı

1
A �

0
BB@

f
� f
0
0

1
CCA ; (5)

where D D diag(�1; : : : ; �n), D D

diag(�1; : : : ; �n), Ik is the identity matrix of or-
der k, and I0n is the n × (n + 1) ‘augmented’ matrix
(0 : In where In is the identity matrix of order n.

Since the matrix in (5) has more rows than columns
(2(k + n) rows and k + 2n + 1 columns, where k � 2n +
1), it is computationally more efficient to consider it as
a dual problem, and to solve the equivalent primal. Af-
ter some simple transformations, this primal problem
reduces to:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f>y1 � f>ek

s.t.

 
˚ I0>n �I0>n
˝ D �D

!0BB@
y1
y2
y3

1
CCA D

 
˚ ek
˝ek

!

y1; y2; y3 � 0

(6)

which has only 2n + 1 rows and k + 2n � 4n + 1
columns, and the obvious initial feasible solution y1 =
ek and y2 = y3 = 0. Furthermore, since the first of the 2n
+ 1 constraints in (6) in fact requires that e>k y1 = 1, then
the function f | y1 � f | ek is also bounded below, and so
this primal linear program always has an optimal solu-
tion. This optimal solution gives the values of c, d, and
ı via the dual vectors, and also determines which values
of f (j) are interpolated by the potential function U(�).
That is, the basic columns in the optimal solution to (6)
correspond to the conformations �(j) for which F(�(j))
= U(�(j)).

Note that once an optimal solution to (6) has been
obtained, the addition of new local minima is very easy.
It is done by simply adding new columns to ˚ and ˝ ,
and therefore to the constraint matrix in (6). The num-
ber of primal rows remains fixed at 2n + 1, independent
of the number k of local minima.

The convex quadratic underestimating function
U(�) determined by the values c 2 Rn+1 and d 2 Rn

now provides a global approximation to the local min-
ima of F(�), and its easily computed global minimum
point �min is given by (�min)i =� ci/di, i = 1, . . . , n, with
corresponding function value Umin given by Umin = c0
�
Pn

iD1 c
2
i /di. The value Umin is a good candidate for

an approximation to the global minimum of the cor-
rect energy function F(�), and so �min can be used as an
initial starting point around which additional configu-
rations (i. e., local minima) should be generated. These
local minima are added to the constraint matrix in (6)
and the process is repeated. Before each iteration of this
process, it is necessary to reduce the volume of the hy-
perrectangleH � over which the new configurations are
produced so that a tighter fit of U(�) to the local min-
ima ‘near’ �min is constructed.

The rate and method by which the hyperrectangle
size is decreased, and the number of additional local
minima computed at each iteration must be determined
by computational testing. But clearly the method de-
pends most heavily on computing local minima quickly
and on solving the resulting linear program efficiently
to determine the approximating function U(�) over the
current hyperrectangle.

If Ec is a cutoff energy, then one means for decreas-
ing the size of the hyperrectangle H� at any step is to
letH� = {�:U(�)� Ec}. To get the bounds ofH�, con-
sider U(�)� Ec where U(�) satisfies (2). Then limiting
� i requires that

nX
iD1

�
ci�i C

1
2
di�2

i

�
� Ec � c0: (7)

As before, the minimum value ofU(�) is attained when
� i = �ci/di, i = 1, . . . , n. Assigning this minimum value
to each � i, except �k, then results in

ck�k C
1
2
dk�2

k � Ec � c0 C
1
2

X
i¤k

c2i
di
� ˇk : (8)
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The lower and upper bounds on �k, k = 1, . . . , n, are
given by the roots of the quadratic equation

ck�k C
1
2
dk�2

k D ˇk : (9)

Hence, these bounds can be used to define the new hy-
perrectangle H� in which to generate new configura-
tions.

Clearly, if Ec is reduced, the size of H� is also re-
duced. At every iteration the predicted global mini-
mum valueUmin satisfies Umin � F(��), where �� is the
smallest known local minimum conformation. There-
fore, Ec = F(��) is often a good choice. If at least one
improved point �, with F(�) < F(��), is obtained in
each iteration, then the search domain H� will strictly
decrease at each iteration, and may decrease substan-
tially in some iterations.

The CGU Algorithm

Based on the preceding description, a general method
for computing the global, or near global, energy mini-
mum of the potential energy function F(�) can now be
described.
1) Compute k � 2n + 1 distinct local minima �(j), for j

= 1, . . . , k, of the function F(�).
2) Compute the convex quadratic underestimator

function given in (2) by solving the linear program
given in (6). The optimal solution to this linear pro-
gram gives the values of c and d via the dual vectors.

3) Compute the predicted global minimum point �min

given by (�min)i = �ci/di, i = 1, . . . , n, with corre-
sponding function value Umin given by Umin = c0 �Pn

iD1 c
2
i /(2di).

4) If �min = ��, where �� = argmin{F(�(j)): j = 1, 2, . . . }
is the best local minimum found so far, then stop
and report �� as the approximate global minimum
conformation.

5) Reduce the volume of the hyperrectangle H� over
which the new configurations will be produced, and
remove all columns from ˚ and ˝ which cor-
respond to the conformations which are excluded
from H�.

6) Use �min as an initial starting point around which
additional local minima �(j) of F(�) (restricted to
the hyperrectangle H�) are generated. Add these

new local minimum conformations as columns to
the matrices ˚ and˝ .

7) Return to step 2.
The number of new local minima to be generated in
step 6 is unspecified since there is currently no theory
to guide this choice. In general, a value exceeding 2n + 1
would be required for the construction of another con-
vex quadratic underestimator in the next iteration (step
2). In addition, the means by which the volume of the
hyperrectangle H� is reduced in step 5 may vary. One
could use the two roots of (7) to define the new bounds
of H�. Another method would be simply to use H� =
{� i: (�min)i � ıi � � i � (�min)i + ıi} where ıi = |(�min)i
� (��)i|, i = 1, . . . , n.

For complete details of the CGU method and its
computational results, see [5,8].

See also

� Adaptive Simulated Annealing and its Application
to Protein Folding

� Genetic Algorithms
� Global Optimization in Lennard–Jones and Morse

Clusters
� Global Optimization in Protein Folding
�Monte-Carlo Simulated Annealing in Protein

Folding
�Multiple Minima Problem in Protein Folding: ˛BB

Global Optimization Approach
� Packet Annealing
� Phase Problem in X-ray Crystallography: Shake and

Bake Approach
� Protein Folding: Generalized-ensemble Algorithms
� Simulated Annealing
� Simulated Annealing Methods in Protein Folding
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Introduction

The role of convexity in optimization theory has in-
creased significantly over the last few decades. Despite
this fact, a wide variety of global optimization problems

are usually encountered in applications in which non-
convex models need to be tackled. For this reason, de-
veloping solution methods for specially structured non-
convex problems has become one of the most active
areas in recent years. Although these problems are diffi-
cult by their nature, promising progress is achieved for
some special mathematical structures. Among the so-
lution methods developed for these special structures,
monotonic optimization, first proposed by Tuy [9], is
presented in this study.

Problems of optimizing monotonic functions of
n variables under monotonic constraints arise in the
mathematical modeling of a broad range of real-world
systems, including in economics and engineering. The
original difficulties of these problems can be reduced by
a number of principles derived from their monotonic-
ity properties. For example, in nonconvex problems in
general, a solution which is known to be feasible or even
locally optimal, does not provide any information about
global optimality and the search should be continued
on the entire feasible space, while for an increasing ob-
jective function, a feasible solution like z, would exclude
the cone z C Rn

C from the search procedure (for a min-
imization objective function). In a similar way, if g(x) in
a constraint like g(x) � 0 is increasing, then by know-
ing that z is infeasible for this constraint, the whole cone
z C Rn

C can be discarded from further consideration.
This kind of information would obviously restrict the
search space and may result in more efficient solution
methods.

To formally present the general framework
of the monotonic optimization problem, consider
two vectors x; x0 2 Rn . We say x0 � x (x0 domi-
nates x) if x0i � xi 8i D 1; : : : ; n. We say x0 > x (x0

strictly dominates x) if x0i > xi 8i D 1; : : : ; n. Let
Rn
C D fx 2 Rnjx � 0g and Rn

CC D fx 2 Rnjx > 0g. If
a; b 2 Rn and a � b, we define the box

�
a; b

�
as the

set of all x 2 Rn such that a � x � b. Similarly, let�
a; b) D fxja � x < bg and (a; b

�
D fxja < x � bg.

A function f : Rn ! R is called increasing on a box�
a; b

�
2 Rn if f (x) � f (x0) for a � x � x0 � b.

A function f is called decreasing if –f is increasing.
Any increasing or decreasing function is referred to as
monotonic. It can be easily shown that the pointwise
supremum of a bounded-above family of increasing
functions and the pointwise infimum of a bounded-
below family of increasing functions are increasing.
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In monotonic optimization, the following problem is
considered:

Maximize (minimize) f (x)

subject to gi (x) � 1 8i D 1; : : : ; m1 ;

hj(x) � 1 8 j D 1; : : : ; m2 ;

x 2 Rn
C ;

(1)

in which f (x), gi(x), and hj(x) are increasing functions
on Rn. A more general definition of this problem is pre-
sented in Sect. “Normal Sets and Polyblocks”. Heuristi-
cally, f (x) may be a cost function (profit function for the
maximize problem), gi(x) may express some resource
availability constraints, while hj(x) may be a family of
utility functions which have to take a value at least as
big as a goal.

The remainder of this article is organized as follows.
We first describe the theory of normal sets and poly-
blocks in Sect. “Normal Sets and Polyblocks”. Mono-
tonic optimization algorithms are presented in Sect.
“Solution Method”. Section “Generalizations” contains
two generalizations of monotonic optimization. Differ-
ent class of applications for whichmonotonic optimiza-
tion is adapted are discussed in Sect. 5 and finally con-
clusions are made in Sect. “Conclusions”.

Normal Sets and Polyblocks

The theory of normal sets and polyblocks is the under-
lying principle for monotonic optimization. In this sec-
tion, the definitions are presented as well as the main
concepts and properties to help the reader to under-
stand the upcoming algorithms. For more details and
proofs see [5,9,10].

Normal Sets

A set G � Rn
C is called normal if for any two points

x; x0 2 Rn
C such that x � x0 > x0 2 G implies x 2 G.

Given any set D � Rn
C, the set N[D], which is called

the normal hull ofD, is the smallest normal set contain-
ing D. In other words, N[D] can be interpreted as the
intersection of all normal sets that contain D. The in-
tersection and the union of a family of normal sets are
normal. If the normal set contains a point u 2 Rn

CC we
say it has a nonempty interior. Suppose that g(x) is an
increasing function over Rn

+. Define the level set of g(x)

as the setG D
˚
x 2 Rn

Cjg(x) � 1
�
. It can be shown that

the level set of an increasing function is a normal set and
it is closed if the function is lower semicontinuous.

Define I(x) D fijxi D 0g, Kx D fx0 2 Rn
Cjx
0
i >

xi 8i … I(x)g, and clKx D
˚
x0 2 Rn

Cjx
0 � x

�
. Then

a point y 2 Rn
C is called an upper boundary point of

a bounded normal set G if y 2 clG while Ky � Rn
CnG.

The set of upper boundary points of G is called the up-
per boundary of G and is denoted by @+G.

For a compact normal set G � [0; b] with
nonempty interior and for every point z 2 Rn

Cn f0g, the
half line from 0 through z meets @+G at a unique point
denoted by 
G(z), which is defined as 
G (z) D �z,
� D max f˛ > 0j˛z 2 Gg.

A set H � Rn
C is called a reverse normal set (also

known as conormal) if x0 � x and x 2 H implies
x0 2 H. A reverse normal set in a box [0, b] is defined as
a set like H 2 Rn

C for which 0 � x � x0 � b and x 2 H
implies x0 2 H. As before, rN[D] is the smallest reverse
normal set containing D � Rn

C and is called a reverse
normal hull of set D. Define H D

˚
x 2 Rn

Cjh(x) � 1
�

for the increasing function h(x). Then it can be shown
that H is reverse normal and it is closed if h(x) is upper
semicontinuous.

A point y 2 Rn
C is called a lower boundary point of

a reverse normal set H if y 2clH and x … H 8x < y.
The set of lower boundary points ofH is called the lower
boundary of H and is denoted by @�H.

For the closed reverse normal set H and b 2
intH and every point z 2 [0; b]nH, the half line
from b through z meets @�H at a unique point
�H(z), which is defined as �H(z) D bC �(z � b),
� D max f˛ > 0jbC ˛(z � b) 2 Hg.

Now consider the set of constraints imposed by
increasing functions gi(x) and hj(x) in problem (1).
The feasible space characterized by these sets of con-
straints can properly be presented by normal sets and
reverse normal sets. Define the sets G; H � Rn

C as
G D

˚
x 2 Rn

Cjgi (x) � 1 8i D 1; : : : ; m1
�
and H D˚

x 2 Rn
Cjhj(x) � 1 8i D 1; : : : ; m2

�
. Then by the ba-

sic properties of normal and reverse normal sets which
were described above, G is the intersection of a finite
number of normal sets which is normal. In a similar
way, H is the intersection of a finite number of reverse
normal sets which is reverse normal. Now we can rede-
fine the fundamental problem of monotonic optimiza-
tion, also called the canonical monotonic optimization
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problem, as optimizing amonotonic function on the in-
tersection of a family of normal and reverse normal sets
as follows:

Maximize (minimize) f (x)

subject to x 2 G \ H ;
(2)

in which G � [0; b] � Rn
C is a compact normal set,

H is a close reverse normal set, and f (x) is an in-
creasing function on [0, b]. Tuy [9] proved that if G
has a nonempty interior (if b 2 intH), then the max-
imum (minimum) of f (x) over G \ H, if it exists,
is attained on @CG \ H (G \ @�H). On the basis of
this essential result, it can be shown that for every
arbitrary compact set D � Rn

C, max f f (x)jx 2 Dg D
max f f (x)jx 2 N[D]g. Analogously, for the minimiza-
tion version of the objective function, for any ar-
bitrary set E � Rn

C, we have min f f (x)jx 2 Eg D
min f f (x)jx 2 rN[E]g.

It is worth mentioning that the minimization prob-
lem can be converted to the maximization case by mak-
ing a simple set of transformations. So it can be either
transformed to the maximization problem or treated
separately.

Polyblocks

The role of polyblocks in monotonic optimization is
the same as that of the polytope in convex optimiza-
tion. As the polytope is the convex hull of finitely many
points in Rn, a polyblock is the normal hull of finitely
many points in Rn

+. A set P � Rn
C is a polyblock in

[a; b] � Rn
C if it is the union of a finite number of boxes

[a, z], z 2 T � [a; b]. The set T is called the vertex set of
the polyblock. We call the vertex z 2 T a proper vertex
if z … [0; z0] 8z0 2 Tn fzg, i. e., by removing the vetex z
from T, the new polyblock created by T is not equiva-
lent to P. A vertex which is not proper is called an im-
proper vertex. A polyblock can be defined by the set of
its proper vertices.

A polyblock is a closed normal set and the inter-
section of a set of polyblocks is again a polyblock.
Now suppose that x 2 [a; b] and consider the set
P D [a; b]n(x; b]. Then it is easy to verify that P is
a polyblock with vertices zi D b C (x � b)ei ; 8i D
1; : : : ; n in which ei is the ith unit vector. Using this
property, we can approximate an arbitrary compact
normal set ˝ � Rn

C (with any desired accuracy) by

a nested sequence of polyblock approximation. At each
iteration, a point x … ˝ is found and a new polyblock is
constructed based on that which is a subset of the pre-
vious polyblock but still contains the set˝ .

To present the main idea of the polyblock approx-
imation method in monotonic optimization, we need
one more result on optimizing an increasing function
over a polyblock. Tuy [9] proved that the increasing
function f (x) achieves its maximum over a polyblock
at a proper vertex.

Now consider the problem of maximizing the in-
creasing function f (x) over the arbitrary compact
set ˝ � Rn

C. As mentioned before, we can substi-
tute ˝ by its normal hull. So without loss of gen-
erality, we assume that ˝ is normal. The idea is to
construct a nested sequence of polyblock outer ap-
proximation P1 � P2 � : : : � ˝ in such a way that
maxf f (x)jx 2 Pkg & maxf f (x)jx 2 ˝g.

At iteration k, assume zk is the proper vertex of Pk

whichmaximizes f (x), i. e., zk D argmaxf f (z)jz 2 Tkg,
where Tk is the set of proper vertices of Pk. Then if zk is
feasible in˝ , the initial feasible space, it also solves the
problem. Otherwise, we are interested in a new poly-
block PkC1 � Pknfzkg which still contains ˝ as a sub-
set.

To obtain Pk+1 from Pk, the box [0; zk] is replaced
by [0; zk]nKxk , in which xk is defined as 
(zk). Math-
ematically, PkC1 D ([0; zk]nKxk )

S
z2Tknfzkg[0; z],

which clearly satisfies the desired property of
˝ � PkC1 � Pknfzkg.

The vertex set of the established polyblock Pk+1,
denoted by Vk+1, contains the proper vertices of
Pk excluding zk and a set of n new vertices, zk; 1;
zk; 2; : : : ; zk; n , defined as zk; i D zk C (xk

i �

zki )e
i . This result is directly followed by the earlier-

mentioned property of polyblocks about the vertices
of [a; b]n(x; b]. Finally, the proper vertex set of Pk+1,
Tk+1, is obtained from Vk+1 by removing its improper
vertices [9,10].

A set P � Rn
C is called a reverse polyblock in

[0, b] if it is the union of a finite number of boxes
[z; b]; z 2 T; T � [0; b]. The set T is called the vertex
set of the reverse polyblock. As before, z is a proper ver-
tex if by removing it from T, the new reverse polyblock
created by T is not equivalent to P. A reverse polyblock
can be defined by the set of its proper vertices. An in-
creasing function f (x) achieves its minimum over a re-
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verse polyblock at a proper vertex. Similar results to
what we had for polyblocks can be developed for re-
verse polyblocks in the very same way. For more details
see [9,10].

SolutionMethod

Consider problem (2) (in the maximization form) as
discussed in Sect. “Normal Sets and Polyblocks” with
the additional assumptions that f (x) is semicontin-
uous on H and G \ H � Rn

CC. The latter assump-
tion implies the existence of a vector a such that
0 < a � x; 8x 2 G \ H. Let Ha D fx 2 Hjx � ag.
For � � 0 as a given tolerance, the solution x0 is called
�-optimal if f (x0) � f (x)� �; 8x 2 G \ H. We at-
tempt to design an algorithm which is capable of find-
ing an �-optimal solution for any given �.

Obviously, b 2 H because otherwise the problem is
infeasible. Let P1 D [0; b] be the initial polyblock and
T1 D fbg its corresponding proper vertex set. If we ap-
ply the polyblock approximation method described in
Sect. “Normal Sets and Polyblocks” to this problem, at
each iteration k, Pk and its proper vertex set, Tk, are ob-
tained from the last iteration. We should notice that ev-
ery vertex z 2 TknHa can be removed since they do not
belong to the initial feasible space. Also suppose that
f (xk) is the best value found for the objective function
so far. Then any vertex z for which f (z) � f (xk)C � is
discarded because no �-optimal solution happens to be
in box [0, z]. These two rules can be applied at each iter-
ation to refine the proper vertex set Tk and delete some
of the vertices from further consideration.

If Tk D ; in some iteration k, it means there is no
solution x for which f (x) > f (xk)C �. So, xk, the best
solution found so far, is �-optimal and the procedure
terminates. Otherwise, let zk D argmax f f (z)jz 2 Tkg.
If zk is feasible in G \ H, it solves the problem. Since
zk 2 H is always true, it is feasible if it belongs to G
and infeasible otherwise. In the case of infeasibility, we
find xk D 
G (zk) and construct the polyblock Pk+1 as
described in Sect. “Normal Sets and Polyblocks” which
excludes zk while still containing a global optimal so-
lution of the problem. This procedure is repeated until
the termination criteria are satisfied or the problem is
known to be infeasible. This procedure, first proposed
by Tuy [9], is called the polyblock algorithm. Tuy [9] dis-
cussed the convergence of this method and showed that

as k!1, the sequence xk converges to a global opti-
mal solution of the problem.

Now consider the minimization case of problem (2)
in Sect. “Normal Sets and Polyblocks” with addi-
tional assumptions that f (x) is semicontinuous on G
and there exists a vector c such that 0 < c < b and
0 � x � c; 8x 2 G \ H. A nested sequence of reverse
polyblock outer approximation ofG \ H (or a subset of
G \ H in which the existence of at least one optimal so-
lution is guaranteed) is called the reverse polyblock algo-
rithm (copolyblock algorithm) which is devised to solve
this problem [9].

The polyblock approximation algorithm works
properly for relatively small dimension n, typically
n D 10. However, the algorithm converges slowly as
it gets closer to the global optimal solution and needs
a large number of iterations even for a value of n as
small as 5. Tuy et al. [12] presented two main rea-
sons for this drawback of the algorithm. First, the speed
of convergence depends on the way in which we con-
struct the current polyblock from the previous one. Ob-
viously, we prefer to remove a larger portion of the
previous polyblock to have a smaller search space and
a higher speed of convergence. This goal is achieved
by employing more complex rules of constructing the
polyblocks, which imposes some additional computa-
tional effort. The second source of the slowness of the
algorithm is how it selects the solution xk in each it-
eration. These solutions are basically derived from the
monotonicity properties of the problem, while some-
times there may exist some amount of convexity which
can be used to speed up the algorithm.

Tuy and Al-Khayyal [11] introduced the concept of
reduced box and reduced polyblock. It involves tighten-
ing the box in which we are interested to find the up-
per bound of f (x), in such a way that the reduced box
still contains an optimal solution of the problem. Then
based on that, a new procedure is developed to pro-
duce tighter polyblocks. They also redefined the proper
vertex set of polyblocks in the algorithm and suggested
that instead of selecting xk as the last point of G on
the halfline from a through zk, as the original algo-
rithm does, a more complex way can be implemented
by incorporating some of the convexity properties of
the problem. This is by solving the convex relaxation of
the problemmax

˚
f (x)jx 2 G \ H; x 2 [a; zk]

�
which

gives us an upper bound of f (x) over the feasible solu-
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tion x in box [a, xk]. Similar ideas were applied to the re-
verse polyblock algorithm as well. Using these two new
modifications and improvements, they developed new
algorithms and discussed their convergence properties,
namely, the revised polyblock algorithm and the revised
reverse polyblock (copolyblock) algorithm.

Most of the outer approximation procedures, in-
cluding the polyblock algorithm, encounter storage and
numerical problems while solving problems in high di-
mensions. By using branch-and-bound strategies, one
can tackle these difficulties. Bounding is performed
on the basis of the polyblock approximation. As be-
fore, monotonicity cuts and convex relaxation can be
combined to enhance the quality of the bounds in the
corresponding portion of the feasible space. In this
branch-and-bound approach, branching is performed
as partitioning the feasible space into cones pairwise
having no common interior point. The logic behind
using conical partitioning instead of rectangular par-
titioning is the fact that the optimal solution of the
monotonic optimization problem, as discussed before,
is always achieved on the upper boundary of the feasible
normal set. Using conical partitioning is more efficient
and less expensive in terms of the computational time.

The algorithm starts with initial cone Rn
+ and par-

titions it into subcones. For each of these subcones, an
upper bound for the value of the objective function over
the feasible solutions contained in it is derived. Those
cones which are known to not contain an optimal so-
lution are fathomed and the remaining ones are sub-
divided again and the procedure is repeated until the
termination criteria are satisfied. Among the remaining
cones, the one having the maximal bound is the first
candidate for branching. This algorithm, suggested by
Tuy and Al-Khayyal [11], is called the conical algorithm.

For those problems having partial monotonicity
and partial convexity, this branch-and-bound scheme
can be extended to devise a more general method. In
this method, branching is performed on the nonconvex
variables and bounds are computed by Lagrangian or
convex relaxation [6].

To further exploit the monotonic structure of the
problem, reduction cuts are combined with original
monotonicity cuts and a more efficient method is de-
veloped [13]. This method creates branch-and-cut al-
gorithms to solve monotonic optimization problems by
systematic use of these cuts.

Finally, it is worth mentioning that a new concept
of the essential �-optimal solution can be applied to
monotonic optimization problems. The advantage of
the method developed on the basis of this concept is
the finding of an approximate optimal solution which
is more appropriate and more stable than that which is
found by the �-optimal method. For details see [8].

Generalizations

The essential approach used in monotonic optimiza-
tion can be further generalized to cover a wider class
of non-convex general optimization problems. Among
these generalizations, optimization of the difference
of monotonic functions and discrete monotonic opti-
mization are presented here.

Optimization of the Difference
of Monotonic Functions

The underlying idea of monotonic optimization can be
extended to deal with problems including the differ-
ence of monotonic functions. A function f : Rn

C ! R is
said to be a difference of monotonic functions if it is
representable as the difference of two increasing func-
tions: f1 : Rn

C ! R and f2 : Rn
C ! R. Similar to func-

tions presented as the difference of convex functions,
the class of difference of monotonic functions is a lin-
ear space. The pointwise minimum and pointwise max-
imum of a family of difference of monotonic functions
(difference of convex functions) is still a difference of
monotonic functions (difference of convex functions).
The linear combination of a set of difference of mono-
tonic functions is a difference of monotonic functions.
Obviously, any polynomial function can be presented
as the difference of two increasing functions, the first
one includes all terms having positive coefficients and
the second one includes all terms having negative coef-
ficients.

Consider the problem:

Maximize (minimize) f (x) � g(x)

subject to x 2 G \ H ;
(3)

in which G and H are as before and f (x) and g(x)
are increasing functions on [0, b]. Tuy [9] extended
the original polyblock algorithm to solve this prob-
lem. By introducing t as the difference between g(b)
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and g(x) for x 2 [0; b] and regarding the fact that
t is always positive owing the function g(x) being in-
creasing, we rewrite the model as (maximization case)
maxf f (x) C t � g(b)jx 2 G \ H; t D g(b) �
g(x)g. Now g(b) is a constant and can be removed
from the objective function. In the resulting problem,
max f f (x)C tjx 2 G \ H; 0 � t � g(b) � g(x)g, con-
sider the set of constraints. By incrementing the di-
mension of the problem by one, the feasible space can
be presented as D \ E such that D D f(x; t)jx 2
G; t C g(x) � g(b); 0 � t � g(b) � g(0)g and
E D f(x; t)jx 2 H; 0 � t � g(b) � g(0)g. It is easy
to verify that D is a normal set and H is a reverse nor-
mal set in the box [0; b] � [0; g(b) � g(0)]. Also the
function F(x; t) D f (x) C t is an increasing function
on [0; b] � [0; g(b) � g(0)]. So problem (3) is reduced
to problem (2) in Sect. “Normal Sets and Polyblocks”
and can be treated by the original polyblock algorithm.
The additional cost that the presence of difference of
monotonic functions has incurred is the dimension of
the problem incremented by one.

For the minimization case of problem (3), a similar
transformation can be applied to convert this problem
to the minimization case of problem (2).

To make the problem even more general, suppose
that all constraints are also difference of monotonic
functions. Specifically, consider the problem:

Maximize (minimize) f1(x) � f2(x)

subject to gi (x) � hi(x) � 0

8i D 1; : : : ; m ;

x 2 ˝ � [0; b] � Rn
C ;

(4)

in which f 1(x), f 2(x), gi(x), and hi(x) are increas-
ing functions and ˝ is a normal set. By the above
argument, first we can make a proper transforma-
tion and convert the objective function to an increas-
ing function. So without loss of generality, let us as-
sume that f2(x) D 0. Now consider the set of m con-
straints. This set of constraints can be rewritten as
maxi fgi(x) � hi(x)g � 0. Since the pointwise maxi-
mum of a family of difference of monotonic functions
is still a difference of monotonic functions, we can
represent the space imposed by these constraints by
g(x) � h(x) � 0, where both g(x) and h(x) are increas-
ing. By introducing the new variable t � 0 and assum-
ing g(b) � 0 (this assumption is not restrictive), the set

of the following two constraints fully defines the space
mentioned: g(x)C t � g(b), h(x)C t � g(b). The first
constraint gives us the upper bound of g(b) � g(0) for t.

Finally the problem reduces to (maximization case):
maxf f1(x)jg(x)C t � g(b); h(x)C t � g(b);
x 2 ˝; 0 � t � g(b) � g(0)g. This problem is
the same as problem (2) by defining G D f(x; t)j
x 2 ˝; g(x) C t � g(b); 0 � t � g(b) � g(0)g,
which is a subset of the box [0; b] � [0; g(b) � g(0)]
and H D f(x; t)jh(x)C t � g(b)g is defined in RnC1

C .
Increasing the dimension of the problem is the main

drawback of the above mentioned approach. Tuy and
Al-Khayyal [11] presented a direct approach for the
difference of monotonic functions optimization prob-
lem requiring no additional dimension. This method
is referred to as the branch-reduce-and-bound (BRB)
algorithm. As the name of the algorithm suggests, it
contains three main steps, which are branching upon
nonconvex variables, reducing any partition set before
bounding, and bounding over each partition set.

The branching phase is performed by rectangular
subdivision. Every box is divided into two subboxes by
a hyperplane. The reduction phase contains a set of op-
erations by which the box [p, q] is tightened without
losing any feasible solution. This is called a proper re-
duction of [p,q]. This approach takes advantage of the
monotonicity properties of the problem and increases
the rate of convergence in the algorithm. In the bound-
ing phase, for a properly reduced box [p; q], an upper
bound like ˇ is obtained such that ˇ � maxf f1(x) �
f2(x)jgi(x) � hi(x) � 0; 8i D 1; : : : ; m; x 2
[p; q]g. As mentioned before, stronger bounds are ob-
tained by a sequence of polyblock approximations or
by combining monotonicity with convexity present in
the problem. Furthermore, more complex methods can
be applied to improve the quality of the bounds in the
bounding phase.

Discrete Monotonic Optimization

A class of monotonic optimization problems contain-
ing the additional discrete constraints are called discrete
monotonic optimization problems. Specifically, given
a finite set S of points in the box [a,b], the constraint
x 2 S is added to the model. So the problem can be rep-
resented as max f f (x)jx 2 G \ H \ Sg (all the assump-
tions are as in problem (2).
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The original polyblock algorithm is not practical for
these problems. Since the polyblock algorithm is an it-
erative procedure, it does not have the capability to
produce the optimal solution in a finite number of it-
erations. However, by making suitable modifications,
one can use this algorithm to obtain the exact opti-
mal solution of the problem in a finite number of steps
[1,14]. In the new method, monotonicity cuts are ad-
justed on the basis of a special procedure to cope with
discrete requirements. This adjustment consists in up-
dating the vertex of the monotonicity cut by pushing
it deeper inside the polyblock to obtain a tighter space
while keeping all discrete points which are not proven
to be nonoptimal, unaffected.

The algorithm first constructs the normal hull of
G \ S, denoted by G̃, and then tries to solve the prob-
lem max

˚
f (x)jx 2 G̃ \ H

�
in continuous space. This

method is called the discrete polyblock algorithm. For
large-scale instances, a similar BRB algorithm was de-
veloped by Tuy et al. [14].

Applications

Although monotonic optimization is a new approach in
global optimization and there is not a broad literature
on its applications, it can be applied to numerous prob-
lems. In most of these applications, first some transfor-
mations are performed and the problems are reformu-
lated in the proper way. Then monotonic optimization
is applied and other approaches are employed to en-
hance the quality of the bounds. Some of these appli-
cations are briefly introduced in this section.

Polynomial programming: The problem of min-
imizing or maximizing a polynomial function under
a set of polynomial constraints, which is encountered
in a multitude of applications, is called polynomial pro-
gramming. Tuy [9] reformulated this problem as a dif-
ference of monotonic functions problem which can be
solved by the methods described before. Tuy [7] pro-
posed a robust solution approach for polynomial pro-
gramming based on a monotonic optimization scheme.
He developed a BRB procedure to tackle the polynomial
optimization problems of higher dimensions.

Polynomial optimization contains nonconvex
quadratic programming as a special case. So every
polynomial optimization method can be applied to
solve this important class of problems [4,16].

Fractional programming: In fractional program-
ming, we are dealing with functions which are repre-
sented by ratios of other functions. Phuong and Tuy [3]
considered a generalized linear fractional programming
problem. In this problem, the objective function con-
sists of an arbitrary continuous increasing function of
m linear fractional functions and the feasible set is the
polytope D. Linear fractional functions are defined as
the ratio of two linear affine functions. They proposed
a new unified approach which reformulates the prob-
lem and solves it as a monotonic optimization prob-
lem.

Tuy [17] considered a more general class of frac-
tional programming problems which is optimizing
a polynomial fractional function (the ratio of two poly-
nomial functions) under polynomial constraints. His
method to solve the problem is again based on re-
formulating the problem as a monotonic optimization
problem. A branch-and-bound scheme was presented
for problems of higher ranks. Clearly, polynomial pro-
gramming is a special case of this class of problems.

Multiplicative programming: Multiplicative pro-
gramming problems are optimization problems con-
taining products of a number of convex or concave
functions in the objective function or constraints.
Tuy [9] showed that these classes of problems are es-
sentially monotonic optimization problems. Tuy and
Nghia [15] devised a new approach based on the re-
verse polyblock approximation method for a broad
class of problems including generalized linear multi-
plicative and linear fractional programming as special
cases.

For more applications, including Lipschitz opti-
mization, optimization under network constraints, the
Fekete points problem, and the Lennard-Jones potential
energy function, see [9].

Conclusions

We have discussed the recently developed theory of
monotonic optimization as well as its generalizations
and applications. This noble scheme which is capable
of solving a wide range of nonconvex problems is based
on an polyblock outer approximation procedure.

The approach that monotonic optimization uses to
deal with optimization problems is analogous to con-
vex optimization in several respects. Just as we approx-
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imate convex sets by polyhedrons, normal sets, defined
as the level sets of increasing functions, can be approx-
imated by a set of polyblocks in monotonic optimiza-
tion. As the difference of convex functions plays an es-
sential role in convex analysis (because any arbitrary
continuous function can be represented as the differ-
ence of two convex functions), optimization problems
representable as the difference of monotonic functions
can be treated in monotonic optimization.

The performance of this method can be significantly
improved by incorporating some other techniques like
convex relaxation to exploit other properties present in
the problem. In high dimensions, branch-and-bound
or branch-and-cut extensions of the algorithm can be
applied to overcome storage difficulties and increase the
convergence speed.

References

1. Minoux M, Tuy H (2001) Discrete Monotonic Global Opti-
mization. preprint. Institute of of Mathematics, Hanoi

2. Pardalos PM, Romeijn HE, Tuy H (2000) Recent develop-
ments and trends in global optimization. J Comput Appl
Math 124:209–228

3. Phuong NTH, Tuy H (2003) A Unified Monotonic Approach
to Generalized Linear Fractional Programming. J Global
Optim 26:229–259

4. Phuong NTH, Tuy H (2002) A Monotonicity Based Ap-
proach to Nonconvex Quadratic Minimization. Vietnam
J Math 30:373–393

5. Rubinov A, Tuy H, Mays H (2001) An Algorithm for
Monotonic Global Optimization Problems. Optimization
49:205–221

6. Tuy H (2005) Partly Convex and Convex-Monotonic Op-
timization Problems. preprint, Institute of Mathematics,
Hanoi

7. Tuy H (2005) Polynomial Optimization: A Robust Ap-
proach. preprint, Institute of Mathematics, Hanoi

8. Tuy H (2005) Robust Solution of Nonconvex Global Opti-
mization Problems. J Global Optim 32:307–323

9. Tuy H (2000) Monotonic Optimization: Problems and Solu-
tion Approaches. SIAM J Optim 11:464–494

10. Tuy H (1999) Normal sets, Polyblocks, and Monotonic Op-
timizatin. Vietnam J Math 27:277–300

11. Tuy H, Al-Khayyal F (2003) Monotonic Optimization Revis-
ited. preprint, Institute of Mathematics, Hanoi

12. Tuy H, Al-Khayyal F, Ahmed S (2001) Polyblock Algorithms
Revisited. preprint, Institute of Mathematics, Hanoi

13. Tuy H, Al-Khayyal F, Thach PT (2005) Monotonic Optimiza-
tion: Branch and Cut Methods. In: Audet C, Hansen P,
Savard G (eds) Essays and Surveys in Global Optimization.
Springer US, pp 39–78

14. Tuy H, Minoux M, Phuong NTH (2006) Discrete Monotonic
Optimizationwith Application to a Discrete Location Prob-
lem. SIAM J Optim 17:78–97

15. Tuy H, Nghia ND (2001) Reverse Polyblock Approxima-
tion for Generalized Multiplicative/Fractional Program-
ming. preprint, Institute of Mathematics, Hanoi

16. Tuy H, Phuong NTH (2007) A robust algorithm for
quadratic optimization under quadratic constraints.
J Global Optim 37:557–569

17. Tuy H, Thach PT, Konno H (2004) Optimization of Polyno-
mial Fractional Functions. J Global Optim 29:19–44

Monte-Carlo Simulated Annealing
in Protein Folding
YUKO OKAMOTO

Department Theoret. Stud. Institute Molecular Sci.
and Department Functional Molecular Sci.,
Graduate University Adv. Stud., Okazaki, Japan

MSC2000: 92C40

Article Outline

Keywords
Introduction
Energy Functions of Protein Systems
Methods
Results
Conclusions
See also
References

Keywords

Simulated annealing; Protein folding; Tertiary
structure prediction; ˛-helix; ˇ-sheet

We review uses of Monte-Carlo simulated annealing
in the protein folding problem. We will discuss the
strategy for tackling the protein folding problem based
on all-atom models. Our approach consists of two ele-
ments: the inclusion of accurate solvent effects and the
development of powerful simulation algorithms that
can avoid getting trapped in states of energy local min-
ima. For the former, we discuss several models vary-
ing in nature from crude (distance-dependent dielectric
function) to rigorous (reference interaction site model).
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For the latter, we show the effectiveness ofMonte-Carlo
simulated annealing.

Introduction

Proteins under their native physiological conditions
spontaneously fold into unique three-dimensional
structures (tertiary structures) in the time scale of mil-
liseconds to minutes. Although protein structures ap-
pear to be dependent on various environmental fac-
tors within the cell where they are synthesized, it
was inferred by experiments ‘in vitro’ that the three-
dimensional structure of a protein is determined solely
by its amino-acid sequence information [12]. Hence,
it has been hoped that once the correct Hamiltonian
of the system is given, one can predict the native pro-
tein tertiary structure from the first principles by com-
puter simulations. However, this has yet to be accom-
plished. There are two reasons for the difficulty. One
reason is that the inclusion of accurate solvent effects
is nontrivial, because the number of solvent molecules
that have to be considered is very large. The other rea-
son for the difficulty comes from the fact that the num-
ber of possible conformations for each protein is as-
tronomically large [30,60]. Simulations by conventional
methods such as Monte-Carlo or molecular dynamics
algorithms in canonical ensemble will necessarily be
trapped in one of many local-minimum states in the
energy function. In this article, I will discuss a possi-
ble strategy to alleviate these difficulties. The outline of
the article is as follows. In Sect. “Energy Functions of
Protein Systems” we summarize the energy functions
of protein systems that we used in our simulations. In
Sect. “Methods” we briefly review our simulation meth-
ods. In Sect. “Results” we present the results of our pro-
tein folding simulations. Section “Conclusions” is de-
voted to conclusions.

Energy Functions of Protein Systems

The energy function for the protein systems is given by
the sum of two terms: the conformational energy EP for
the protein molecule itself and the solvation free en-
ergy ES for the interaction of protein with the surround-
ing solvent. The conformational energy function EP (in
kcal/mol) for the protein molecule that we used is one
of the standard ones. Namely, it is given by the sum of
the electrostatic term EC, 12-6 Lennard–Jones term ELJ,

and hydrogen-bond term EHB for all pairs of atoms in
the molecule together with the torsion term Etor for all
torsion angles:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

EP D EC C ELJ C EHB C Etor;

EC D
X
(i; j)

332qiq j

�ri j
;

ELJ D
X
(i; j)

 
Ai j

r12i j
�

Bi j

r6i j

!
;

EHB D
X
(i; j)

 
Ci j

r12i j
�

Di j

r10i j

!
;

Etor D
X
i

Ui
�
1˙ cos(ni�

i )
�
:

(1)

Here, rij is the distance (in Å) between atoms i and j, �
is the dielectric constant, and �i is the torsion angle for
the chemical bond i. Each atom is expressed by a point
at its center of mass, and the partial charge qi (in units
of electronic charges) is assumed to be concentrated at
that point. The factor 332 in EC is a constant to ex-
press energy in units of kcal/mol. These parameters in
the energy function as well as the molecular geometry
were adopted from ECEPP/2 [37,41,57]. The computer
code KONF90 [23,46] was used for all the Monte-Carlo
simulations. For gas phase simulations, we set the di-
electric constant � equal to 2. The peptide-bond dihe-
dral angles ! were fixed at the value 180° for simplicity.
So, the remaining dihedral angles � and  in the main
chain and � in the side chains constitute the variables to
be updated in the simulations. One Monte-Carlo (MC)
sweep consists of updating all these angles once with
Metropolis evaluation [36] for each update.

Solvation free energy of interactions between a so-
lute molecule and solvent molecules, in general, can
be divided into three contributions: hydrophobic term
that corresponds to the work required to create a cav-
ity of the shape of the solute molecule in solution
(the term ‘hydrophobic’ used in this article is differ-
ent from a more standard one; see [11] for clarification
on various definitions), the electrostatic term (includ-
ing the hydrogen-bond energy) between solute and sol-
vent molecules, and the Lennard–Jones term between
solute and solvent molecules.

One of the simplest ways to represent solvent effects
is by the sigmoidal, distance-dependent dielectric func-
tion [20,54]. The explicit form of the function we used
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is given by [43]

�(r) D D �
D � 2
2

�
(sr)2 C 2sr C 2

�
e�sr ; (2)

which is a slight modification of the one used in [9].
Here, we use s = 0.3 and D = 78. It approaches 2 (the
value inside a protein) in the limit the distance r go-
ing to zero and 78 (the value for bulk water) in the
limit r going to infinity. The distance-dependent dielec-
tric function is simple and also computationally only
slightly more demanding than the gas-phase case. But
it only involves the electrostatic interactions. Other sol-
vent contributions are hydrophobic interactions and
Lennard–Jones interactions between protein and sol-
vent.

Another commonly used term that represents sol-
vent contributions is the term proportional to the
solvent-accessible surface area of protein molecule. The
solvation free energy ES in this approximation is given
by

ES D
X
i

�i Ai ; (3)

where Ai is the solvent-accessible surface area of ith
functional group, and � i is the proportionality con-
stant. There are several versions of the set of the propor-
tionality constants and functional groups. Five param-
eter sets were compared for the systems of peptides and
a small protein, and we found that the parameter sets of
[52,59] are valid ones [33]. The term in (3) includes all
the contributions from solvent (namely, hydrophobic,
electrostatic, and Lennard–Jones interactions), and it is
therefore more accurate than the distance-dependent
dielectric function. It is, however, an empirical repre-
sentation, and its validity has to be eventually tested
with a rigorous solvation theory.

The most widely-used and rigorous method of in-
clusion of solvent effects is probably the one that deals
with the explicit solvent molecules with all-atom rep-
resentations. Many molecular dynamics simulations of
protein systems now directly include these explicit sol-
vent molecules (for a review, see, for instance, [4]). An-
other rigorous method is based on the statistical me-
chanical theory of liquid and solution and is called
the reference interaction site model (RISM) [7,21]. The
RISM integral equation for solute-solvent (p-s) correla-

tion functions in Fourier k-space is given by

ehps D ewppecps �ewss C �ehss� ; (4)

whereehps andehss are the matrices of the solute-solvent
and the solvent-solvent total correlation functions, re-
spectively,ecps is the matrix of the solute-solvent direct
correlation functions,ewpp andewss are the intramolecu-
lar correlation matrices for solute and solvent, respec-
tively, and � is the number density matrix of the sol-
vent. The solvation free energy is given by

ES D 4
�kBT
Z 1
0

r2F(r) dr; (5)

where F(r) is defined by

F(r) �
X
a;b

�
1
2
hps
ab(r)

2 � cpsab(r) �
1
2
hps
ab(r)c

ps
ab(r)

	
: (6)

Here, the summation indices a and b run over the so-
lute and the solvent sites, respectively. A robust and
fast algorithm for solving RISM equations was re-
cently (as of 1999) developed [24], which made fold-
ing simulations of peptides a feasible possibility [25].
Although this method is computationally much more
time-consuming than the first two methods (terms with
distance-dependent dielectric function and those pro-
portional to surface area), it gives the most accurate
representation of the solvation free energy.

Methods

Once the appropriate energy function of the protein
system is given, we have to employ a simulation method
that does not get trapped in states of energy local min-
ima. We have been advocating the use of Monte-Carlo
simulated annealing [27].

In the regular canonical ensemble with a given in-
verse temperature ˇ � 1/kBT , the probability weight of
each state with energy E is given by the Boltzmann fac-
tor:

WB(E) D exp(�ˇE): (7)

The probability distribution in energy is then given by

PB(T; E) / n(E)WB(E); (8)
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where n(E) is the number of states with energy E.
Since the number of states n(E) is an increasing func-
tion of energy and the Boltzmann factor WB(E) de-
creases exponentially with E, the probability distribu-
tion PB(T; E) has a bell-like shape in general. When the
temperature is high, ˇ is small, and WB(E) decreases
slowly with E. So, PB(T; E) has a wide bell-shape. On
the other hand, at low temperature ˇ is large, and
WB(E) decreases rapidly with E. So, PB(T; E) has a nar-
row bell-shape (and in the limit T ! 0 K, PB(T; E) /
ı(E � EGS), where EGS is the global-minimum energy).
However, it is very difficult to obtain canonical distribu-
tions at low temperatures with conventional simulation
methods. This is because the thermal fluctuations at low
temperatures are small and the simulation will certainly
get trapped in states of energy local minima. Simulated
annealing [27] is based on the process of crystal mak-
ing. Namely, by starting a simulation at a sufficiently
high temperature (much above the melting tempera-
ture), one lowers the temperature gradually during the
simulation until it reaches the global-minimum-energy
state (crystal). If the rate of temperature decrease is suf-
ficiently slow so that thermal equilibrium may be main-
tained throughout the simulation, only the state with
the global energy minimum is obtained (when the fi-
nal temperature is 0 K). However, if the temperature
decrease is rapid (quenching), the simulation will get
trapped in a state of energy local minimum in the vicin-
ity of the initial state.

Simulated annealing was first successfully used to
predict the global-minimum-energy conformations of
polypeptides and proteins [22,61,63] and to refine pro-
tein structures from X-ray and NMR data [5,42] almost
a decade ago. Since then this method has been exten-
sively used in the protein folding and structure refine-
ment problems (for reviews, see [45,62]). Our group has
been testing the effectiveness of the method mainly in
oligopeptide systems. The procedure of our approach is
as follows. While the initial conformations in the pro-
tein simulations are usually taken from the structures
inferred by the experiments, our initial conformations
are randomly generated. Each Monte-Carlo sweep up-
dates every dihedral angle (in both the main chain and
side chains) once. Our annealing schedule is as follows:
The temperature is lowered exponentially from TI =
1000 K to TF = 250 K (the final temperature TF was
sometimes set equal to 100 K, 50 K, or 1 K) [23,46]. The

temperature for the nth MC sweep is given by

Tn D TI�
n�1; (9)

where � is a constant which is determined by TI , TF ,
and the total number ofMC sweeps of the run. Each run
consists of 104 � 106 MC sweeps, and we usually made
10 to 20 runs from different initial conformations.

Results

We now present the results of our simulations based on
Monte-Carlo simulated annealing. All the simulations
were started from randomly-generated conformations.

The first example is Met-enkephalin. This brain
neuro peptide consists of 5 amino acids with the amino-
acid sequence: Tyr-Gly-Gly-Phe-Met. Because it is one
of the smallest peptides that have biological functions,
it has served as a bench mark for testing a new sim-
ulation method. The global minimum conformation
of this peptide for ECEPP/2 energy function in gas
phase (� = 2) is known [31,49]. For KONF90 realiza-
tion of ECEPP/2 energy, the peptide is essentially in
the ground state for EP ��11 kcal/mol [15,49] and the
lowest value is �12.2 kcal/mol [16,17].

In Fig. 1, we show the ‘time series’ of the total con-
formational energy EP (in (1)) obtained by conven-
tional canonical Monte-Carlo simulations at T = 1000,
300, and 50 K.

The thermal fluctuations for the run at T = 50 K in
Fig. 1c are very small and this run has apparently gotten
trapped in states of energy local minima (because the
average energy at 50 K is about �11 kcal/mol [15,16]).
In Fig. 2 we display the time series of energy obtained
by a Monte-Carlo simulated annealing simulation.

This run reaches the global minimum region (EP �
�11 kcal/mol) as the temperature is decreased during
the simulation from 1000 K to 50 K.

We have up to now presented the results in
gas phase (� = 2). In Fig. 3 we compare the super-
posed structures of lowest-energy conformations from
8 Monte-Carlo simulated annealing runs in gas phase,
simple-repulsive solvent, and water (the latter two con-
tributions were calculated by the RISM theory) [26]
with those of 5 structures inferred from NMR experi-
ments ([13, Fig. 2]). The figures were created with Ras-
Mol [55].
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 1
Series of energy EP (kcal/mol) of Met-enkephalin from con-
ventional canonical Monte-Carlo runs at T = 1000 K (a), 300 K
(b), and 50 K (c)

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 2
Time series of energy EP (kcal/mol) of Met-enkephalin from
a Monte-Carlo simulated annealing run

We see a striking similarity between simulation re-
sults in water Fig. 3c and those of NMR experiments
(Fig. 3d). The simulation results in Fig. 3 are from the
same number of MC sweeps. It seems that the presence
of water speeds up the convergence of the backbone
structures in the sense that it requires less number of
MC sweeps for convergence [26].

The solvation free energy based on the RISM theory
is very accurate, but it is also computationally very de-
manding. We are currently trying to solve this problem
making the algorithm more efficient and robust [24].
Hereafter, we discuss how well other solvation theories
can still describe the effects of solvent in the predic-
tion of three-dimensional structures of oligopeptides
and small proteins.

Next systems we discuss are those of homo-
oligomers with length of 10 amino acids. From the
structural data base of X-ray experiments of protein
structures [8] and CD experiments [6], it is known that
certain amino acids have more tendency of ˛-helix for-
mation than others. For instance, alanine is a helix for-
mer and glycine is a helix breaker, while phenylala-
nine has intermediate helix-forming tendency. We have
performed 20 Monte-Carlo simulated annealing runs
of 10,000 MC sweeps in gas phase (� = 2) with each
of (Ala)10, (Leu)10, (Met)10, (Phe)10, (Ile)10, (Val)10,
and (Gly)10 [44]. These amino acids are nonpolar and
we can avoid the complications of electrostatic and
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 3
Superposition of the eight conformations of Met-enkephalin
obtained as the lowest-energy structures by Monte-Carlo
simulated annealing in gas phase (a), simple-repulsive sol-
vent (b), and water (c) together with superposition of five
conformations deduced from the NMR experiment (d)

hydrogen-bond interactions of side chains with each
other, with main chain, and with the solvent.

In order to analyze how much ˛-helix formation is
obtained by simulations, we first define ˛-helix state of
a residue. We consider that a residue is in the ˛-helix
state when the dihedral angles (�,  ) fall in the range
(�60 ˙ 45°, �50 ˙ 45°) (Definition I) [23,46]. The
length ` of a helical segment is then defined by the num-
ber of successive residues that are in the ˛-helix state.
The number n of helical residues in a conformation is
defined by the sum of ` over all helical segments in the
conformation. Note that ` = 3 corresponds to roughly
one turn of ˛-helix. We therefore consider a conforma-
tion as helical if it has a segment with helix length `� 3.

The average values of the dihedral angles � and  
for the helical segments based on Definition I (with
helix length ` � 3) are �70° and �37°, respectively,
and the standard deviation is � 10° for ECEPP/2 en-
ergy function [44,46]. Hence, for detailed analyses of
the data we adopt a more stringent criterion for ˛-helix
state (Definition II): The range is (�,  ) = (�70˙ 20°,
�37˙ 20°) [44].

We likewise consider that a residue is in the ˇ-
strand state when the dihedral angles (�,  ) fall in
the range (�130 ˙ 50°, 135 ˙ 45°) [44]. The ˇ-strand
length m is then defined to be the number of succes-
sive residues that are in the ˇ-strand state. We consider
a conformation as ˇ-stranded if it has a segment with
ˇ-strand length m� 3.

In Table 1 we summarize the ˛-helix formation in
the 20 Monte-Carlo simulated annealing runs [44]. The
results are for Definition II of the ˛-helix state.

We see that (Met)10, (Ala)10, and (Leu)10 gave many
helical conformations: 15, 9, and 9 (out of 20), respec-
tively. In particular, (Met)10 and (Ala)10 produced long
helices, some conformations being almost entirely he-
lical (` � 8). On the other hand, (Val)10, (Ile)10, and
(Gly)10 gave few helical conformations: 2, 2, and 1 (out
of 20), respectively. We obtained not only a smaller
number of helices but also shorter helices for these
homo-oligomers than the above three homo-oligomers.
Finally, the results for (Phe)10 indicate that Phe has in-
termediate helix-forming tendency between these two
groups. We thus have the following rank order of helix-
forming tendency for the seven amino acids [44]:

Met > Ala > Leu > Phe > Val > Ile > Gly: (10)
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Monte-Carlo Simulated Annealing in Protein Folding, Table 1
˛-Helix formation in homo-oligomers from 20Monte-Carlo simulated annealing runs

Peptide (Met)10 (Ala)10 (Leu)10 (Phe)10 (Val)10 (Ile)10 (Gly)10
`

3 1 0 4 1 0 2 1
4 2 0 2 2 2 0 0
5 0 1 1 1 0 0 0
6 2 3 2 1 0 0 0
7 2 1 0 0 0 0 0
8 7 4 0 0 0 0 0
9 1 0 0 0 0 0 0
10 0 0 0 0 0 0 0
Total 15/20 9/20 9/20 5/20 2/20 2/20 1/20

This can be compared with the experimentally deter-
mined helix propensities [6,8]. Our rank order (10) is
in good agreement with the experimental data.

We then analyzed the relation between helix-
forming tendency and energy. We found that the dif-
ferences	E = ENH �EH betweenminimum energies for
nonhelical (NH) and helical (H) conformations is large
for homo-oligomers with high helix-forming tendency
(9.7, 10.2, 21.5 kcal/mol for (Met)10, (Ala)10, (Leu)10, re-
spectively) and small for those with low helix-forming
tendency (0.5, 1.6, �3.2 kcal/mol for (Val)10, (Ile)10,
(Gly)10, respectively). Moreover, we found that the
large	E for the former homo-oligomers are caused by
the Lennard–Jones term 	ELJ (13.3, 8.0, 17.5 kcal/mol
for (Met)10, (Ala)10, (Leu)10, respectively). Hence, we
conjecture that the differences in helix-forming ten-
dencies are determined by the following factors [44].
A helical conformation is energetically favored in gen-
eral because of the Lennard–Jones term ELJ. For amino
acids with low helix-forming tendency except for Gly,
however, the steric hindrance of side chains raises ELJ
of helical conformations so that the difference 	ELJ
between nonhelical and helical conformations are re-
duced significantly. The small 	ELJ for these amino
acids can be easily overcome by the entropic effects and
their helix-forming tendencies are small. Note that such
amino acids (Val and Ile here) have two large side-chain
branches at Cˇ , while the helix forming amino acids
such as Met and Leu have only one branch at Cˇ and
Ala has a small side chain.

We now study the ˇ-strand forming tendencies of
these seven homo-oligomers. In Table 2 we summarize

the ˇ-strand formation in 20 Monte-Carlo simulated
annealing runs [44].

The implications of the results are not as obvious as
in the ˛-helix case. This is presumably because a short,
isolated ˇ-strand is not very stable by itself, since hy-
drogen bonds between ˇ-strands are needed to stabi-
lize them. However, we can still give a rough estimate
for the rank order of strand-forming tendency for the
seven amino acids [44]:

Val > Ile > Phe > Leu > Ala > Met > Gly: (11)

Here, we considered Val as more strand-forming than
Ile, since the longer the strand segment is, the harder it
is to form by simulation. Our rank order (11) is again
in good agreement with the experimental data [8].

By comparing (11) with (10), we find that the helix-
forming group is the strand-breaking group and vice
versa, except for Gly. Gly is both helix and strand break-
ing. This reflects the fact that Gly, having no side chain,
has a much larger (backbone) conformational space
than other amino acids.

The helix-coil transitions of homo-oligomer sys-
tems were further analyzed by multicanonical algo-
rithms [3] in [47,48]. The obtained results gave quan-
titative support to those by Monte-Carlo simulated an-
nealing described above [44].

We have so far studied peptides with nonpolar
amino acids each of which is electrically neutral as
a whole. We now discuss the helix-forming tendencies
of peptides with polar amino acids where side chains
are charged by protonation or deprotonation. One ex-
ample is the C-peptide, residues 1–13 of ribonuclease A.
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Monte-Carlo Simulated Annealing in Protein Folding, Table 2
ˇ-Strand formation in homo-oligomers from 20 Monte-Carlo simulated annealing runs

Peptide (Met)10 (Ala)10 (Leu)10 (Phe)10 (Val)10 (Ile)10 (Gly)10
m
3 0 0 2 5 1 7 0
4 0 0 0 1 0 4 0
5 0 0 0 0 2 1 0
6 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
Total 0/20 0/20 2/20 6/20 5/20 12/20 0/20

It is known from the X-ray diffraction data of the whole
enzyme that the segment from Ala-4 to Gln-11 exhibits
a nearly 3-turn ˛-helix [58,64]. It was also found by CD
[56] and NMR [53] experiments that the isolated C-
peptide also has significant ˛-helix formation in aque-
ous solution at temperatures near 0°C.

Furthermore, the CD experiment of the isolated C-
peptide showed that the side-chain charges of residues
Glu-2� and His-12+ enhance the stability of the ˛-helix,
while the rest of the charges of other side chains do
not [56]. The NMR experiment [53] of the isolated C-
peptide further observed the formation of the charac-
teristic salt bridge between Glu-2� and Arg-10+ that
exists in the native structure determined by the X-ray
experiments of the whole protein [58,64].

In order to test whether our simulations can repro-
duce these experimental results, we made 20 Monte-
Carlo simulated annealing runs of 10,000 MC sweeps
with several C-peptide analogues [23,46]. The amino-
acid sequences of four of the analogues are listed in Ta-
ble 3.

The simulations were performed in gas phase (� =
2). The temperature was decreased exponentially from
1000 K to 250 K for each run. As usual, all the simula-
tions were started from random conformations.

In Table 4 we summarize the helix formation of all
the runs [46]. Here, the number of conformations with
segments of helix length ` � 3 are given with Defini-
tion I of the ˛-helix state. From this table one sees that
˛-helix was hardly formed for Peptide IV where Glu-2
and His-12 are neutral, while many helical conforma-
tions were obtained for the other peptides. This is in

Monte-Carlo SimulatedAnnealing in Protein Folding, Table 3
Amino-acid sequences of the peptide analogues of C-
peptide studied by Monte-Carlo simulated annealing

Peptide I II III IV
Sequence
1 Lys+
2 Glu� Glu
3 Thr
4 Ala
5 Ala
6 Ala
7 Lys+
8 Phe
9 Glu� Glu Leu
10 Arg+
11 Gln
12 His+ His
13 Met

accord with the experimental results that the charges of
Glu-2� and His-12+ are necessary for the ˛-helix sta-
bility [56].

Peptides II and III had conformations with the
longest ˛-helix (` = 7). These conformations turned
out to have the lowest energy in 20 simulation runs for
each peptide. They both exhibit an ˛-helix from Ala-5
to Gln-11, while the structure from the X-ray data has
an ˛-helix from Ala-4 to Gln-11. These three confor-
mations are compared in Fig. 4.

As mentioned above, the agreement of the back-
bone structures is conspicuous, but the side-chain
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 4
The lowest-energy conformations of Peptide II (a) and Pep-
tide III (b) of C-peptide analogues obtained from 20 Monte-
Carlo simulated annealing runs in gas phase, and the corre-
sponding X-ray structure (c)

Monte-Carlo SimulatedAnnealing in Protein Folding, Table 4
˛-Helix formation in C-peptide analogues from 20 Monte-
Carlo simulated annealing runs

Peptide I II III IV
`

3 4 2 3 1
4 3 2 3 0
5 1 1 0 0
6 0 1 0 0
7 0 1 1 0
Total 8/20 7/20 7/20 1/20

structures are not quite similar. In particular, while the
X-ray [58,64] andNMR [53] experiments imply the for-
mation of the salt bridge between the side chains of
Glu-2� and Arg-10+, the lowest-energy conformations
of Peptides II and III obtained from the simulations do
not have this salt bridge.

The disagreement is presumably caused by the lack
of solvent in our simulations. We have therefore made
multicanonical Monte-Carlo simulations of Peptide II
with the inclusion of solvent effects by the distance-
dependent dielectric function (see (2)) [18,19]. It was
found that the lowest-energy conformation obtained
has an ˛-helix from Ala-4 to Gln-11 and does have
the characteristic salt bridge between Glu-2� and Arg-
10+ [18,19].

Similar dependence of ˛-helix stability on side-
chain charges was observed in Monte-Carlo simulated
annealing runs of a 17-residue synthetic peptide [43].
The pH difference in the experimental conditions was
represented by the corresponding difference in charge
assignment of the side chains, and the agreement with
the experimental results (stable ˛-helix formation at
low pH and low helix content at high pH) was observed
in the simulations by Monte-Carlo simulated annealing
with the distance-dependent dielectric function [43].

Considering our simulation results on homo-
oligomers of nonpolar amino acids, C-peptide, and the
synthetic peptide, we conjecture that the helix-forming
tendencies of oligopeptide systems are controlled by
the following factors [43]. An ˛-helix structure is gen-
erally favored energetically (especially, the Lennard–
Jones term). When side chains are uncharged, the steric
hindrance of side chains is the key factor for the dif-
ference in helix-forming tendency. When some of the
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side chains are charged, however, these charges play
an important role in the helix stability in addition to
the above factor: Some charges enhance helix stability,
while others reduce it.

We have up to now discussed ˛-helix formations
in our simulations of oligopeptide systems. We have
also studied ˇ-sheet formations by Monte-Carlo sim-
ulated annealing [38,39,51]. The peptide that we stud-
ied is the fragment corresponding to residues 16–36
of bovine pancreatic trypsin inhibitor (BPTI) and has
the amino-acid sequence: Ala16-Arg+-Ile-Ile-Arg+-Tyr-
Phe -Tyr -Asn -Ala -Lys+ -Ala -Gly -Leu -Cys -Gln -Thr-
Phe-Val-Tyr-Gly36. An antiparallel ˇ-sheet structure in
residues 18–35 is observed in X-ray crystallographic
data of the whole protein [10].

We first performed 20 Monte-Carlo simulated an-
nealing runs of 10,000 MC sweeps in gas phase (� = 2)
with the same protocol as in the previous simulations
[38]. Namely, the temperature was decreased exponen-
tially from 1000 K to 250 K for each run, and all the
simulations were started from random conformations.
The difference of the present simulation and the pre-
vious ones comes only from that of the amino-acid se-
quences.

The most notable feature of the obtained results is
that ˛-helices, which were the dominant motif in pre-
vious simulations of C-peptide and other peptides, are
absent in the present simulation. Most of the conforma-
tions obtained consist of stretched strands and a ‘turn’
which connects them. The lowest-energy structure in-
deed exhibits an antiparallel ˇ-sheet [38].

We next made 10Monte-Carlo simulated annealing
runs of 100,000 MC sweeps for BPTI(16–36) with two
dielectric functions: � = 2 and the sigmoidal, distance-
dependent dielectric function of (2) [39]. The results
with � = 2 reproduced our previous results: Most of the
obtained conformations have ˇ-strand structures and
no extended ˛-helix is observed. Those with the sig-
moidal dielectric function, on the other hand, indicated
formation of ˛-helices. One of the low-energy confor-
mations, for instance, exhibited about a four-turn ˛-
helix from Ala-16 to Gly-28 [39]. This presents an ex-
ample in which a peptide with the same amino-acid se-
quence can form both ˛-helix and ˇ-sheet structures,
depending on its electrostatic environment.

NMR experiments suggest that this peptide actually
forms a ˇ-sheet structure [40]. The representation of

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 5
The structure of BPTI(16–36) deduced from X-ray experi-
ments (a) and the lowest-energy conformation of BPTI(16–
36) obtained from 20 Monte-Carlo simulated annealing runs
in aqueous solution represented by solvent-accessible sur-
face area (b)

solvent by the sigmoidal dielectric function (which gave
˛-helices instead) is therefore not sufficient. Hence, the
same peptide fragment, BPTI(16–36), was further stud-
ied in aqueous solution that is represented by solvent-
accessible surface area of (3) by Monte-Carlo simulated
annealing [51]. Twenty simulation runs of 100,000 MC
sweeps were made. It was indeed found that the lowest-
energy structure obtained has a ˇ-sheet structure (ac-
tually, type II0 ˇ-turn) at the very location suggested by
the NMR experiments [40]. This structure and that de-
duced from the X-ray experiments [10] are compared
in Fig. 5. The figures were created with Molscript [29]
and Raster3D [2,35].

Although both conformations are ˇ-sheet struc-
tures, there are important differences between the two:
The positions and types of the turns are different. Since
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the X-ray structure is taken from the experiments on
the whole BPTI molecule, it does not have to agree with
that of the isolated BPTI(16–36) fragment. It was found
[51] that the simulated results in Fig. 5b have remark-
able agreement with those in the NMR experiments of
the isolated fragment [40].

We have so far dealt with peptides with small
number of amino acids (up to 21) with simple sec-
ondary structural elements: a single ˛-helix or ˇ-sheet.
The native proteins usually have more than one sec-
ondary structural elements. We now discuss our at-
tempts on the first-principles tertiary structure predic-
tions of larger and more complicated systems.

The first example is the fragment corresponding to
residues 1–34 of human parathyroid hormone (PTH).
An NMR experiment of PTH(1–34) suggested the ex-
istence of two ˛-helices around residues from Ser-3 to
His-9 and from Ser-17 to Leu-28 [28]. Another NMR
experiment of a slightly longer fragment, PTH(1–37),
in aqueous solution also suggested the existence of the
two helices [32]. One of the determined structures, for
instance, has ˛-helices in residues from Gln-6 to His-9
and from Ser-17 to Lys-27 [32].

For PTH(1–34) we performed 20Monte-Carlo sim-
ulated annealing runs of 10,000MC sweeps in gas phase
(� = 2) with the same protocol as in the previous simu-
lations [50]. Many conformations among the 20 final
conformations obtained exhibited ˛-helix structures
(especially in the N-terminus area). In Fig. 6 we show
the lowest-energy conformation of PTH(1–34) [50].

This conformation indeed has two ˛-helices around
residues from Val-2 to Asn-10 (Helix 1) and fromMet-
18 to Glu-22 (Helix 2), which are precisely the same lo-
cations as suggested by experiment [28], although Helix
2 is somewhat shorter (5 residues long) than the cor-
responding one (12 residues long) in the experimental
data.

A slightly larger peptide fragment, PTH(1–37), was
also studied by Monte-Carlo simulated annealing [34]
to compare with the results of the recent NMR exper-
iment in aqueous solution [32]. Ten simulation runs
of 100,000 MC sweeps were made in gas phase (� = 2)
and in aqueous solution that is represented by the terms
proportional to the solvent-accessible surface area (see
(3)). Although the results are preliminary, the simula-
tions in gas phase did not produce two helices this time
in contrast to the previous work [50], where a short

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 6
Lowest-energy conformation of PTH(1–34) obtained from20
Monte-Carlo simulated annealing runs in gas phase

second helix was observed, as discussed in the previ-
ous paragraph. The lowest-energy conformation has an
˛-helix from Val-2 to Asn-10. The simulations in aque-
ous solution, on the other hand, did observe the two ˛-
helices. The lowest-energy conformation obtained has
˛-helices from Gln-6 to His-9 and from Gly-12 to Glu-
22. Note that the second helix is now more extended
than the first one in agreement with experiments. This
structure together with one of the NMR structure [32]
is shown in Fig. 7. The figures were again created with
Molscript [29] and Raster3D [2,35].

Generalized-ensemble simulations of PTH(1–37)
are now in progress in order to obtain more quantita-
tive information such as average helicity as a function
of residue number, etc.

The second example of more complicated system is
the immunoglobulin-binding domain of streptococcal
protein G. This protein is composed of 56 amino acids
and the structure determined by an NMR experiment
[14] and an X-ray diffraction experiment [1] has an ˛-
helix and a ˇ-sheet. The ˛-helix extends from residue
Ala-23 to residue Asp-36. The ˇ-sheet is made of four
ˇ-strands: from Met-1 to Gly-9, from Leu-12 to Ala-
20, from Glu-42 to Asp-46, and from Lys-50 to Glu-56.
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Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 7
A structure of PTH(1–37) deduced fromNMR experiments (a)
and the lowest-energy conformation of PTH(1–37) obtained
from 10 Monte-Carlo simulated annealing runs in aqueous
solution represented by solvent-accessible surface area (b)

This structure is shown in Fig. 8a). The figures in Fig. 8
were again created with Molscript [29] and Raster3D
[2,35].

We have performed eight Monte-Carlo simulated
annealing runs of 50,000 to 400,000 MC sweeps with
the sigmoidal, distance-dependent dielectric function
of (2). The lowest-energy conformation so far obtained
has four ˛-helices and no ˇ-sheet in disagreement
with the X-ray structure. This structure is shown in
Fig. 8b).

The disagreement of the lowest-energy structure
(Fig. 8b) so far obtained with the X-ray structure
(Fig. 8a) is presumably caused by the poor representa-
tion of the solvent effects. As can been seen in Fig. 8a),
the X-ray structure has both interior where a well-
defined hydrophobic core is formed and exterior where
it is exposed to the solvent. The distance-dependent di-
electric function, which mimics the solvent effects only

Monte-Carlo Simulated Annealing in Protein Folding, Fig-
ure 8
A structure of protein G deduced from an X-ray experi-
ment (a) and the lowest-energy conformation of protein G
obtained from Monte-Carlo simulated annealing runs with
the distance-dependent dielectric function (b)

in electrostatic interactions, is therefore not sufficient to
represent the effects of the solvent here.

Conclusions

In this article we have reviewed theoretical aspects of
the protein folding problem. Our strategy in tackling
this problem consists of two elements: 1) inclusion of
accurate solvent effects, and 2) development of power-
ful simulation algorithms that can avoid getting trapped
in states of energy local minima.

We have shown the effectiveness of Monte-Carlo
simulated annealing by showing that direct folding of
˛-helix and ˇ-sheet structures from randomly-gener-
ated initial conformations are possible.
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As for the solvent effects, we considered sev-
eral methods: a distance-dependent dielectric func-
tion, a term proportional to solvent-accessible surface
area, and the reference interaction site model (RISM).
These methods vary in nature from crude but com-
putationally inexpensive (distance-dependent dielectric
function) to accurate but computationally demanding
(RISM theory). In the present article, we have shown
that the inclusion of some solvent effects is very impor-
tant for a successful prediction of the tertiary structures
of small peptides and proteins.
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Many important real-world problems contain stochas-
tic elements and require optimization. Stochastic pro-
gramming and simulation-based optimization are two
approaches used to address this issue. We do not ex-
plicitly discuss other related areas including stochastic
control, stochastic dynamic programming, andMarkov
decision processes. We consider a stochastic optimiza-
tion problem of the form

(SP) z� D min
x2X

E f (x; �);

where x is a vector of decision variables with deter-
ministic feasible region X � Rd, � is a random vector,
and f is a real-valued function with finite expectation,
E f (x; �), for all x 2 X. We use x� to denote an optimal
solution to (SP). Note that the decision xmust be made
prior to observing the realization of �.

A wide variety of types of problems can be expressed
as (SP) depending on the definitions of f and X. Two
of the most commonly-used approaches are rooted in
mathematical programming and in discrete-event sim-
ulation modeling.

In a two-stage stochastic linear program with re-
course [6,14], X is a polyhedral set and f is defined as
the optimal value of a linear program, given x and �,
i. e.,

f (x; �) D cx C

8<
:
min
y�0

qy

s.t. Wy D Tx C h:
(1)

Here, � is the vector of random elements from h, q, T,
andW. A prototypical problem of this nature is a capac-
ity allocation model under uncertain demand and/or
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capacity availabilities. x is a strategic decision allocat-
ing resources while y represents an operational recourse
decision that is made after observing the demand and
availabilities. Example applications of this type include
capacity expansion planning in an electric power sys-
tem [16] and in a telecommunications network [61].
The two-stage model generalizes to a more dynamic,
multistage model (see, e. g., [10]) in which decisions are
made, and random events unfold, over time. For mul-
tistage applications in asset-liability management see
[13] and in hydro-electric scheduling see [39].

In the context of a simulation model, f (x, �) could
represent a performance measure under a design speci-
fied by x. For example, f (x, �) might represent the num-
ber of hours in a workday that a critical machine is
blocked in a queueing network model of a manufac-
turing system in which buffer sizes are determined by
x. In another application, E.L. Plambeck et al. [53] al-
locate constrained processing rates to unreliable ma-
chines with buffers in a fluid serial queueing network
in order to maximize steady-state throughput. In non-
terminating simulations, the expectation in E f (x; �) is
typically with respect to a steady-state distribution.

Note that E f (x; �) can capture objectives not usu-
ally thought of as a ‘mean’. For example, if c represents
random rates of return and x investment amounts, we
might want to maximize the probability of exceeding
a return threshold, T. We can write P(cx � T) D
EI(cx � T) where I(�) is the indicator function that
takes value one if its argument is true and zero oth-
erwise. For more on probability maximization models
(and generalizations of (SP) in which X contains prob-
abilistic constraints) see [54]. See [45] for a discussion
of risk modeling in stochastic optimization.

A more general model than (SP) allows the distri-
bution of � to depend on x. Some simple types of de-
pendencies can effectively be captured in (SP) via mod-
eling tricks, such as the x scaling random elements of
T in (1). General dependencies, however, are difficult
to handle. For work on decision-dependent distribu-
tions when there are a finite number of possibilities see
[26,40].

Regardless of whether it is defined as the expected
value of a mathematical program or as a long-run av-
erage performance measure of a discrete-event simula-
tion model, it is usually impossible to calculate E f (x; �)
exactly- even for a fixed value of x. When the dimension

of the random vector � is relatively low, one approach is
to obtain deterministic approximations of E f (x; �) us-
ing numerical quadrature or related ideas. In stochastic
programming, this corresponds to generating and re-
fining bounds on E f (x; �) within a sequential approx-
imation algorithm [20,24,43]. For problems in which
� is of moderate-to-high dimension and is continu-
ous or has a large number of realizations, Monte-Carlo
simulation is widely regarded as the method of choice
for estimating E f (x; �). As a result, it is not surprising
that Monte-Carlo techniques play a fundamental role
in solving (SP).

In recent years (1999), considerable progress has
been made in solving realistically-sized problems with
a significant number of stochastic parameters and de-
cision variables. The telecommunications model con-
sidered in [61] has 86 random point-to-point demand
pairs and 89 links on which capacity may be installed.
In [53] queueing networks with up to 50 nodes are
studied. Each node represents a machine with random
failures and has a decision variable denoting its as-
signed cycle time. [53] also solves a stochastic PERT
(program evaluation and review technique) problem
with 70 nodes and 110 stochastic arcs. The arcs model
the times required to complete activities and a deci-
sion variable associated with each arc influences (pa-
rameterizes) the distribution of the random activity du-
ration. These problems contain objectives with high-
dimensional expectations and all were solved using
Monte-Carlo methods.
In this article we discuss:
i) several types of Monte-Carlo-based solution proce-

dures that can be used for solving (SP);
ii) methods for testing the quality of a candidate solu-

tionbx 2 X;
iii) variance reduction techniques used in stochastic

optimization; and
iv) theoretical justification for using sampling.

Solution Procedures

Monte-Carlo methods for approximately solving
stochastic optimization problems can typically be clas-
sified on the basis of whether the sampling is external
to, or internal to, the optimization algorithm. Solu-
tion procedures of both types are driven by estimates of
objective function values and/or gradients. Before turn-
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ing to solution procedures we briefly discuss gradient
estimation.

In stochastic programming, gradient (or subgra-
dient) estimates of E f (x; �) are typically available via
duality. In simulation-based optimization, the primary
methods for obtaining gradient estimates are finite dif-
ferences, the likelihood ratio (LR) method (also called
the score function method) [29,57], and infinitesimal
perturbation analysis (IPA) [27,35]. Finite-difference
approximations require minimal structure, needing
only estimates of E f (x; �); however, they result in so-
lution procedures that can converge slowly. The LR
method is more widely applicable than IPA, but when
both apply the IPA approach tends to produce estima-
tors with lower variance. See, for example, [28] for a dis-
cussion of these issues.

In the simplest form of ‘external sampling’ (also
called ‘sample-path optimization’ [55] and the ‘stochas-
tic counterpart’ method [57]) we generate independent
and identically distributed (i.i.d.) replicates �1, . . . , �n

from the distribution of � and form the approximating
problem

(SPn) z�n D min
x2X

1
n

nX
iD1

f (x; � i):

Even when it is possible to construct (SPn) using
i.i.d. variates, it may be preferable to use another sam-
pling scheme in order to reduce the variance of the re-
sulting estimators. Moreover, in nonterminating simu-
lation models, generating i.i.d. replicates from a station-
ary distribution is often impossible (for exceptions see
recent work on exact sampling, e. g., [3,22]), but under
appropriate conditions we may run the simulation for
a length n and replace the objective function in (SPn)
with a consistent estimate of the desired long-run aver-
age performance measure.

After constructing an instance of (SPn) we employ
a (deterministic) optimization algorithm to obtain a so-
lution x�n . In the case of stochastic linear programming,
(SPn) is a large scale linear program. The cutting plane
algorithm of R.M. Van Slyke and R.J-B. Wets [64], its
variant with a quadratic proximal term [58], and its
multistage version [7,9] are powerful tools for solving
such problems. A cutting plane algorithm with a prox-
imal term and IPA-based gradients is used in an exter-
nal sampling method for solving the queueing network

problem in [53]. See [8] for a recent survey of compu-
tational methods for stochastic programming instances
of (SPn).

Intuitively, we might expect solutions of (SPn)
to more accurately approximate solutions of (SP) as
n increases. We discuss results supporting this in
Sect. “Theoretical Justification for Sampling”. In addi-
tion, after having solved (SPn) to obtain x�n it would be
desirable to know whether n was ‘large enough’. More
generally, we would like to be able to test the quality of
a candidate solution (such as x�n ). This is discussed in
the next section.

We now turn to solution procedures based on inter-
nal sampling. These algorithms adapt deterministic op-
timization algorithms by replacing exact function and
gradient evaluations with Monte-Carlo estimates. The
sampling is internal because new observations of � are
generated on an as-needed basis at each iteration of the
algorithm. We briefly discuss stochastic adaptations of
steepest descent and cutting plane methods.

A deterministic steepest descent algorithm for (SP)
forms iterates {x`} using the recursion

x`C1  ˘X

h
x` � �`rE f (x`; �)

i
:

˘X performs a projection onto X and { �` }
are steplengths. It is usually impossible to calculate
rE f (x; �) exactly and it must be estimated. Stochastic
approximation (SA) and stochastic quasigradient (SQG)
algorithms are stochastic variants of a steepest descent
search. The Keifer-Wolfowitz SA method uses unbiased
estimates of E f (x; �) to form finite-difference approx-
imations of the gradient. The Robbins–Monro SA pro-
cedure requires unbiased estimates of rE f (x; �). SQG
methods do not require that E f (x; �) be differentiable
and work under more general assumptions concerning
the estimates of (sub)gradients of E f (x; �). In particu-
lar, the estimates need not be unbiased but the bias must
effectively shrink to zero as the algorithm proceeds. For
convergence properties of SA methods see [49] and for
SQG procedures see [23].

Cutting plane methods are applicable when E f (x; �)
is convex. The iterates {x` } are found by solving a se-
quence of optimization problems of the form

min
x2X

max
`D1;:::;L

E f (x`; �)CrE f (x`; �)(x � x`);
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where L grows as the algorithm proceeds. At each it-
eration a first order Taylor approximation of E f (x; �),
i. e., a cutting plane, is computed at the current iterate
x` and is used to refine the piecewise-linear outer ap-
proximation of E f (x; �). The key idea is that this ap-
proximation need only be accurate in the neighborhood
of an optimal solution. For stochastic linear programs,
G.B. Dantzig, P.W. Glynn [15], and G. Infanger [37,38]
and J.L. Higle and S. Sen [32,34] have developedMonte-
Carlo-based cutting plane methods by using statistical
estimates for the cut intercepts and gradients. Dantzig,
Glynn, and Infanger use separate streams of observa-
tions of � to estimate each cut. The stochastic decom-
position algorithm of Higle and Sen uses common ran-
dom number streams to calculate each cut and employs
an updating procedure to ensure that the statistical cuts
are asymptotically valid (i. e., lie below E f (x; �)). Rela-
tive to SA and SQG methods, cutting plane procedures
avoid potentially difficult projections and, in practice,
have a reputation for converging more quickly, partic-
ularly when X is high dimensional.

Grid search and optimization of metamodels are
two common approaches to optimizing system per-
formance in discrete-event simulation models. In grid
search, X is replaced by a ‘grid’ of points Xm = { x1, . . . ,
xm } and sample-mean estimates

f n(x) D 1/n
nX

iD1

f (x; � i )

are formed at each x 2 Xm. (SP) is then approximately
solved by z�n D minx2Xm f n(x) with x�n being the as-
sociated minimizer. Grid search is attractive because it
requires minimal structure, but in implementing this
procedure, we must exercise care in selecting m and n.
With independent sampling at each grid point, K.B. En-
sor and Glynn [21] consider the rate at which n must
grow relative to m in order to achieve consistency and
they also discuss the method’s limiting behavior when
the rate of growth is at (and slower than) the critical
rate.

A metamodel can be used to approximate a more
complex simulation model which, in turn, is an approx-
imation of the real system. In such a metamodel, es-
timates of E f (x; �) are formed at each point in a set
specified by an experimental design, and the parame-
ters of the postulated response surface are fit to these ob-
served values. The resulting function is then optimized

with respect to x. For more on metamodels see, e. g.,
[11,47]. The review in [25] includes optimization using
response surfaces, and metamodeling has also been ap-
plied in stochastic programming [5].

The grid-search and metamodel approaches are
classified as external sampling procedures if the proce-
dure is executed once. However, it may be desirable to
refine the grid (or the region covered by the experimen-
tal design) in the neighborhood of promising values of
x and repeat the methodology. When it is adaptively re-
peated in this fashion the procedure is classified as an
internal sampling method.

We have not explicitly discussed approaches for
when X is discrete. These range from methods for se-
lecting the best design in simulation to those for solv-
ing stochastic integer programming models. Finally,
sampling-based procedures for multistage stochastic
programs have been proposed in [17].

Establishing Solution Quality

Establishing solution quality is a key concept when us-
ing an approximation scheme to solve an optimization
problem. When applying Monte-Carlo techniques to
(SP), the best we can expect are probabilistic quality
statements. In the context of external sampling, there
has been significant work on studying the behavior of
solutions to (SPn) for large sample sizes (see the last sec-
tion). There are analogous convergence results for al-
gorithms based on internal sampling. Such results take
a number of forms but perhaps the most fundamen-
tal is to show that limit points of the sequence of so-
lutions are, say, almost surely optimal to (SP). Next, it
is desirable to have a statement regarding the rate of
convergence and an associated asymptotic distribution.
These consistency and limiting distribution results are
aimed at justifying sampling-based methods and may
be viewed as establishing solution quality. However,
the approach discussed in this section centers on the
question: Given a candidate solutionbx 2 X, what can
be said regarding its quality? Because candidate solu-
tions may be obtained by internal or external sampling
schemes or via another, heuristic, method, procedures
that can directly test the quality of bx, regardless of its
origin, are very attractive.

One natural way of defining solution quality is by
the optimality gap, E f (bx; �) � z�. An optimal solution
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has an optimality gap of zero, but in our setting we hope
to make probabilistic statements such as

PfE f (bx; �) � z� � �g � ˛; (2)

where � is a random confidence interval width and ˛ is
a confidence level, e. g., ˛ = 0.95. Unfortunately, exact
confidence intervals such as (2) can be difficult to ob-
tain even in relatively simple statistical settings so we
attempt to construct approximate confidence intervals

PfE f (bx; �) � z� � �g 	 ˛: (3)

To form a confidence interval (3) for E f (bx; �)�z� we
estimate the mean of a gap random variable Gn = Un �

Ln that is expressed as the difference between upper and
lower bound estimators and satisfies EGn � E f (bx; �) �
z�.

In many problems it is relatively straightforward to
estimate the performance of a suboptimal decisionbx via
simulation. For example, the standard sample mean es-
timator,Un D 1/n

Pn
iD1 f (bx; � i ), provides an unbiased

estimate of the expected cost of using decision bx, i. e.,
E f (bx; �).

To construct a confidence interval for the optimality
gap we also want an estimate of z�. However, unbiased
estimates of z� are difficult to obtain so an estimator
Ln that satisfies ELn � z� is used. In [51] it is shown
that if the objective in (SPn) is an unbiased estimate of
E f (x; �) then Ez�n � z�, i. e., z�n is one possible lower
bound estimator Ln. Higle and Sen [33] perform a La-
grangian relaxation of a reformulation of (SPn) which
uses explicit ‘nonanticipativity’ constraints. The result-
ing lower bound is weaker in expectation than z�n but
has the computational advantage that the optimization
problem separates by scenario.

Once observations of Gn can be formed, we can
appeal to the batch means method and use the cen-
tral limit theorem [51], or a nonparametric approach
[31,33], to construct approximate confidence intervals
(3). Another approach to examining solution quality
is to test the null hypothesis that the (generalized)
Karush-Kuhn-Tucker (KKT) optimality conditions are
satisfied; see [63]. Higle and Sen [31] also consider the
KKT conditions but use them to derive bounds on the
optimality gap.

Variance Reduction Techniques

When applying the ‘crude’ Monte-Carlo method to es-
timate E f (x; �) for fixed x, we use the standard sample
mean estimator based on i.i.d. terms,

1
n

nX
iD1

f (x; � i ):

The error associated with this estimate is proportional
to

�
var f (x; �)

n

�1/2
: (4)

This error can be decreased by increasing the sample
size. However, obtaining an additional digit of accuracy
requires increasing the sample size by a factor of 100.
If f is defined as the optimal value of a mathematical
program or as the performance measure of a simula-
tion model, increasing the number of evaluations of f in
this fashion can be prohibitively expensive.Variance re-
duction techniques (VRTs) effectively decrease the nu-
merator in (4) instead of increasing the denominator.
Many problems for which crude Monte-Carlo would
yield useless results are instead made computationally
tractable via VRTs. As described in Sect. “Solution Pro-
cedures”, sampling is also used to estimate r Ef (x, �),
but for simplicity we primarily restrict our attention to
VRTs for estimating E f (x; �).

Some VRTs, including control variates (CVs) and
importance sampling (IS), exploit special structures of
f (x, �). Suppose that we have � x(�), with known mean
�� , which is believed to approximate (be positively
correlated with) f (x, �). In CVs we attempt to ‘subtract
out’ variation by generating observations of [f (x, �) �
� x(�)] + �� , which has the same expectation as f (x,
�). (It is common to incorporate a multiplicative fac-
tor with the control variate � x(�) and also possible to
use multiple controls.) In IS we attempt to reduce vari-
ance by generating observations of �� [f (x, �)/ � x(�)].
In CVs observations of � are generated from its origi-
nal distribution. However, in IS the expected value of
the ratio is not the ratio of expectations and, as a re-
sult, there is a change of measure induced by � x that is
required to yield an unbiased estimate. Under the new
IS distribution, we are more likely to sample � where
� x(�) is large, i. e., scenarios that our approximation
function predicts have high cost. In an IS scheme for
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stochastic linear programs, [15,37] use an approxima-
tion function that is separable in the components of
� while [48] utilizes a piecewise-linear approximation.
See [12] for the solution of a stochastic optimization
problem to price American-style financial options us-
ing the simpler European option as a control variate.
These papers report significant variance reduction in
computational results.

Other VRTs exploit correlation structures in the so-
lution methodology.Common random numbers (CRNs)
are often used in simulation when comparing the per-
formance of two systems. The use of CRNs has been
suggested in a stochastic approximation method with
finite differences where the same stream is used for the
forward and backward point estimates [50]. The upper
and lower bounds used to determine solution quality
(see the previous section) may be viewed as two ‘sys-
tems’ and the use of CRNs in estimating their difference
has been advocated in [34,51]. In order to reduce the er-
ror in the resulting response surface, various methods
have been proposed for generating the streams of ob-
servations of � at each point in the experimental design.
The Schruben–Margolin scheme [59] uses a mixture of
CRNs and antithetic variates and an extension [65] also
incorporates CVs.

Another group of VRTs attempts to more regu-
larly spread the sampled observations over the sup-
port of �. Such techniques include stratified sampling
and Latin hypercube sampling as well as quasi-Monte-
Carlo techniques in which the sequence of observa-
tions is deterministic. Empirical results in [30] for two-
stage stochastic linear programming compare the vari-
ance reduction obtained by stratified sampling, anti-
thetic variates, IS, and CVs and suggest that a CV pro-
cedure performs relatively well, particularly on high-
variance problems.

Theoretical Justification for Sampling

In Sect. “Solution Procedures” we formed an approx-
imating problem for external sampling procedures by
using the sample mean estimator of E f (x; �). Here we
redefine (SPn) as

(SPn) z�n D min
x2X

En f (x; �);

with x�n again denoting an optimal solution. In (SP) the
expected value operator E is with respect to the ‘true’

probability measure P while in (SPn), En is with respect
to a measure Pn that is a statistical estimate of P. If
Monte-Carlo methods are used to generate i.i.d. repli-
cates from P then Pn is the associated (random) empir-
ical measure.

Since z�n is an estimator of z� and x�n an estimator of
an optimal solution to (SP), it is natural to study the be-
havior of these estimators for large sample sizes. For ex-
ample, under what conditions do we obtain consistency
and what can be said concerning rates of convergence?
Positive answers to such questions provide theoretical
justification for employing external Monte-Carlo sam-
pling techniques to solve (SP).

In general, (SPn) and (SP) may have multiple op-
timal solutions and so we cannot expect {x�n } to con-
verge. Instead, establishing consistency of x�n amounts
to showing that the accumulation points of the se-
quence are almost surely optimal to (SP). If, for exam-
ple, the samples are i.i.d. then by the strong law of large
numbers we have En f (x; �) ! E f (x; �), a.s., for all x.
Unfortunately, this does not ensure that {x�n } has accu-
mulation points that are optimal to (SP) and that z�n !
z�, a.s. [4].

The notion of epiconvergence plays a fundamental
role in establishing consistency results for x�n and z�n ;
see [4]. A sequence of functions { �n } is said to epi-

converge to � (written �n
epi
! �) if the epigraphs of �n,

{(x, ˇ): ˇ � �n(x) }, converge to that of �. Epiconver-
gence is weaker than classical uniform convergence. P.
Kall [41] provides an excellent review of various types
of convergence, their relations, and their implications
for approximations of optimization models. Epiconver-
gence is a valuable property because of the following re-
sult:

Theorem 1 Suppose �n
epi
! �. If bx is an accumu-

lation point of { x�n , where x�n 2 argmin �n(x), then
bx 2 argmin�(x).

Constrained optimization is captured in this result be-
cause �n and � are defined to be extended-real-valued
functions that take value + 1 at infeasible points.
While it is possible that the sequence of optimizers {x�n}
has no accumulation points, this potential difficulty is
avoided if the feasible region X is compact (i. e., closed
and bounded).

Because of the implications of epiconvergence,
there is considerable interest in determining sufficient
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conditions on f , Pn , and P under which En f (x; �)
epi
!

E f (x; �), a.s. Note that because fPng are random mea-
sures, the epiconvergence of the approximating func-
tions is with probability one (also called epiconsistency).
Under this hypothesis the accumulation points of {x�n }
are almost surely optimal to (SP); see [19].

Sufficient conditions for achieving En f (x; �)
epi
!

E f (x; �), a.s. are examined in [19,42,55], and [56].
Roughly speaking, we will obtain epiconsistency if f
is sufficiently smooth, Pn converges weakly to P with
probability one, and the tails of the distributions are
well-behaved relative to f . See [2,60] for results when
f is discontinuous.

For two-stage stochastic programming in which the
recourse matrix W in (1) is deterministic and Pn is
the empirical measure, [46] contains consistency results
under modest assumptions. We note that is possible to
develop consistency results using other (stronger) types
of convergence of En f (x; �) to E f (x; �); see, for exam-
ple, [52].

There is a large literature on consistency, stability,
and rates of convergence for solutions of (SPn). Much
of this work may be viewed as generalizing earlier re-
sults on constrained maximum likelihood estimation in
[1] and [36]. Under restrictive assumptions, asymp-
totic normality for

p
n(z�n � z�) and

p
n(x�n � x�)

may be obtained, e. g., [19]. However, when inequal-
ity constraints in X play a nontrivial role we cannot,
in general, expect to obtain limiting distributions that
are normal [18,44,62]. See [44] for a limiting distribu-
tion for

p
n(x�n � x�) that is the solution of a (random)

quadratic program.

See also

�Monte-Carlo Simulated Annealing in Protein
Folding
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19. Dupačová J, Wets RJ-B (1988) Asymptotic behavior of sta-
tistical estimators and of optimal solutions of stochastic
optimization problems. Ann Statist 16:1517–1549

20. Edirisinghe C, Ziemba WT (1996) Implementing bounds-
based approximations in convex-concave two-stage
stochastic programming. Math Program 75:295–325

21. Ensor KB, Glynn PW (1997) Stochastic optimization via grid
search. In: Yin GG, Zhang Q (eds) Mathematics of Stochas-



2344 M Monte-Carlo Simulations for Stochastic Optimization

tic Manufacturing Systems, vol 33. Lect Appl Math Amer
Math Soc, Providence, pp 89–100

22. Ensor KB, Glynn PW (2000) Simulating the maximum of
a randomwalk. J Statist Planning Inference 85:127–135

23. Ermoliev Y (1988) Stochastic quasigradient methods. In:
Ermoliev Y, Wets RJ-B (eds) Numerical Techniques for
Stochastic Optimization. Springer, Berlin, pp 141–185

24. Frauendorfer K (1992) Stochastic two-stage programming.
of Lecture Notes Economics and Math Systems, vol 392.
Springer, Berlin

25. Fu MC (1994) Optimization via simulation: A review. Ann
Oper Res 53:199–248

26. Futschik A, Pflug GCh (1997) Optimal allocation of simu-
lation experiments in discrete stochastic optimization and
approximative algorithms. Europ J Oper Res 101:245–260

27. Glasserman P (1991) Gradient estimation via perturbation
analysis. Kluwer, Dordrecht

28. Glynn PW (1989) Optimization of stochastic systems via
simulation. In: Proc 1989 Winter Simulation Conf, pp 90–
105

29. Glynn PW (1990) Likelihood ratio gradient estimation for
stochastic systems. CommACM 33(10):75–84

30. Higle JL (1998) Variance reduction and objective function
evaluation in stochastic linear programs. INFORMS J Com-
put 10:236–247

31. Higle JL, Sen S (1991) Statistical verification of optimal-
ity conditions for stochastic programs with recourse. Ann
Oper Res 30:215–240

32. Higle JL, Sen S (1991) Stochastic decomposition: An algo-
rithm for two-stage linear programs with recourse. Math
Oper Res 16:650–669

33. Higle JL, Sen S (1996) Duality and statistical tests of opti-
mality for two stage stochastic programs. Math Program
75:257–275

34. Higle JL, Sen S (1996) Stochastic decomposition: A statisti-
cal method for large scale stochastic linear programming.
Kluwer, Dordrecht

35. Ho YC, Cao XR (1991) Perturbation analysis of discrete
event dynamic systems. Kluwer, Dordrecht

36. Huber PJ (1967) The behavior of maximum likelihood esti-
mates under nonstandard conditions. In: Proc Fifth Berke-
ley SympMath Stat Probab, pp 221–233

37. Infanger G (1992) Monte Carlo (importance) sampling
within a Benders decomposition algorithm for stochastic
linear programs. Ann Oper Res 39:69–95

38. Infanger G (1993) Planning under uncertainty: Solving
large-scale stochastic linear programs. Sci Press Ser. Boyd
& Fraser, Danvers

39. Jacobs J, Freeman G, Grygier J, Morton D, Schultz G,
Staschus K, Stedinger J (1995) SOCRATES: A system for
scheduling hydroelectric generation under uncertainty.
Ann Oper Res 59:99–133

40. Jonsbråten TW, Wets RJ-B, Woodruff DL (1998) A class of
stochastic programs with decision dependent random el-
ements. Ann Oper Res 82:83–106

41. Kall P (1986) Approximation to optimization problems: An
elementary review. Math Oper Res 11:9–18

42. Kall P (1987) On approximations and stability in stochas-
tic programming. In: Guddat J, Jongen HTh, Kummer B,
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Motzkin’s transposition theorem (MTT) [1] is a so-
called theorem of the alternative (cf.� Linear Optimiza-
tion: Theorems of the Alternative). It deals with the
question whether or not a given system of linear in-
equalities has a solution. In the most general case such
a system has the form

(S) Ax � a; Bx > b;

where A and B are matrices of size m × n and p × n, re-
spectively, and where Ax � a contains the ‘larger than
or equal’ inequalities and Bx > b the ‘larger than’ in-
equalities. Note that inequalities of the opposite type
(‘smaller than or equal’ or ‘smaller than’) can be turned
into the appropriate form by multiplying them by �1.

The Motzkin transposition theorem states that the
system (S) has no solution if and only if at least one of
the systems (T1) and (T2) has a solution, where the lat-
ter systems are given by

(T1)

(
y>AC v>B D 0; y>a C v>b > 0;
y � 0; v � 0;

and

(T2)

(
y>AC v>B D 0; y>a C v>b � 0;
y � 0; v � 0; v ¤ 0;

respectively.
In other words, when one has a solution of (T1) or

of (T2) this solution is a certificate for the fact that the
given system (S) is infeasible, i. e., has no solution.

It makes sense to formulate two most useful princi-
ples following from the theorem.

Theorem 1 (Principle A) The system (S) is infeasible
if and only if one can combine the inequalities in (S)
in a linear fashion (i. e., multiply each inequality with
a nonnegative number and add the results) to get the
contradictory inequality 0 > 0 (or 0� 1).

To see that this is exactly what the MTT says, let y and v
denote nonnegative vectors of appropriate sizes. Then
the inequality

�
y>AC v>B

�
x � y>aC v>b (1)

is a consequence of the inequalities in (S), and if the
vector v is not the zero vector, then also the stronger
inequality

�
y>AC v>B

�
x > y>aC v>b (2)

is a consequence of (S). The inequalities (1) and (2) have
certainly solutions if y| A + v| B 6D 0. But if y| A + v| B
= 0 then (1) yields a contradiction if y| a + v| b > 0 and
(2) if y| a + v| b � 0. The first case occurs if (T1) has
a solution and the second case if (T2) has a solution.
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The second principle is:

Theorem 2 (Principle B) If (S) is feasible, then a linear
inequality is a consequence of the inequalities in (S) if
and only if it can be obtained by combining, in a linear
fashion, the inequalities in (S) and the trivial inequality
0 ��1.

This principle can be understood in a similar way: If (S)
is feasible, then c| x � z is an implied inequality if and
only if

Ax � a; Bx > b ) c>x � z;

which is equivalent to the system

Ax � a; Bx > b; �c>x > �z

being infeasible. By Principle A this happens if and only
if there exist nonnegative vectors y and v and a nonneg-
ative scalar � such that
�
y>AC v>B � �c

�
x � y>aC v>b � �z

is a contradictory inequality. Hence y| A + v| B �� c =
0 and y| a + v| b�� z > 0. Since (S) is feasible, we must
have � > 0. Without loss of generality we may assume
� = 1. Then c = y| A + v|B and z � y| a + v| b. This
proves the claim.

The above principles are highly nontrivial and very
deep. Consider, e. g., the following system of 4 inequal-
ities with two variables u, v:

� 1 � u � 1;
� 1 � v � 1:

From these inequalities it follows that

u2 C v2 � 2;

which in turn implies, by the Cauchy inequality, the in-
equality u + v � 2:

uC v D 1 � u C 1 � v �
p
12 C 12

p
u2 C v2 � 2:

The concluding inequality is linear, and is a conse-
quence of the original system, but the above derivation
is ‘highly nonlinear’. It is absolutely unclear a priori why
the same inequality can also be obtained from the given
system in a linear manner as well, as stated by Principle
B. Of course, it can – it suffices to add the inequalities u
� 1 and v � 1.

The MTT is one of the deepest result in the part
of mathematics dealing with linear inequalities and, in
fact, is logically equivalent to other deep results in this
discipline. For example, it is equivalent to the duality
theorem for linear optimization (cf.� Linear Program-
ming). To demonstrate this, consider the linear opti-
mization problem

(P) min
˚
c>x : Ax � b

�
:

Let z� denote the optimal value of (P), where we take z�

= �1 if (P) is unbounded and z� =1 if (P) is infeasi-
ble. Now, a real z is a lower bound on the optimal value
of (P) if and only if c|x � z is a consequence of Ax � b,
or, which is the same, if and only if the system of linear
inequalities

(Sz) Ax � b; �c>x > �z

has no solutions. By the MTT this is the case if and only
if at least one of the systems

(T1z)

(
y>A� y0c D 0; y>b � y0z > 0;
y � 0; y0 � 0

and

(T2z)

(
y>A� y0c D 0; y>b � y0z � 0;
y � 0; y0 > 0

has a solution. Note that the only difference between
these two systems is that (T1z) requires y0 � 0 whereas
(T2z) requires y0 > 0. Also, since the system (T2z) is ho-
mogeneous, without loss of generality we may take y0 =
1. Thus it follows that z is a lower bound on the opti-
mal value of (P) if and only if one of the following two
systems

(T10z) y>A D 0; y>b > 0; y � 0

and

(T20z) y>A D c; y>b � z; y � 0

has a solution. Observe that z does not appear in (T10z).
Therefore, if this system has a solution then each real z
is a lower bound on the optimal value of (P), but this oc-
curs if and only the problem (P) is infeasible. Assuming
that (P) is feasible, it follows that z is a lower bound on
the optimal value of (P) if and only if the system (T20z)
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has a solution. Given a solution y of (T20z) any z sat-
isfying y|b � z is a lower bound and the largest lower
bound provided in this way is y|b. Hence, the largest
possible lower bound on the optimal value of (P) is the
optimal value of the problem

(D) max
˚
b>y : y>A D c; y � 0

�
:

If the problem (P) is unbounded, i. e., if there does not
exists a lower bound on the optimal value of (P), then
the problem (D) must be infeasible. Otherwise the op-
timal value of (D) must coincide with the optimal value
of (P).

The problem (D) is called the dual problem of the
primal problem (P). The above findings can be summa-
rized as follows:

if one of the two problems (P) and (D) is un-
bounded then the other is infeasible; if both
problems are feasible then they have both an
optimal solution and the optimal values are the
same.

This is the duality theorem for linear optimization. Note
that one other case may occur, namely that both prob-
lems are infeasible. It became clear above that (P) is in-
feasible if and only if (T10z) has a solution, so

the primal problem (P) is infeasible if and only if
there exists a dual ray y, i. e., a vector y such that

y>A D 0; y>b > 0; y � 0: (3)

In fact, the latter statement is equivalent to the state-
ment that (3) and Ax� b are alternative systems, which
is the special case of the MTT occurring when B is
vacuous and which is known as Farkas’ lemma. (See
� Linear Optimization: Theorems of the Alternative
and � Farkas Lemma.) In just the same way it can be
derived from a variant of Farkas’ lemma that:

the dual problem (D) is infeasible if and only if
there exists a primal ray x, i. e., a vector x such
that

Ax � 0; c>x < 0: (4)

It has been shown above that the MTT implies the
duality theorem for linear optimization. The converse

is also true: Assuming the duality theorem for linear
optimization, the MTT easily can be proved, showing
that the two results are logically equivalent. This goes in
two steps. Assuming the duality theorem for linear op-
timization, first one derives Farkas’ lemma and then it is
shown that the MTT follows. To derive Farkas’ lemma,
consider the problem

min
˚
0>x : Ax � b

�
:

Clearly, the system Ax � b has a solution if and only if
the optimal value of this problem is zero. By the duality
theorem this holds if and only if the optimal value of
the dual problem

max
˚
b>y : y>A D 0; y � 0

�

is also zero. This holds if and only

y>A D 0; y � 0 ) b>y � 0;

which is true if and only if the system

y>A D 0; y � 0; b>y > 0

has no solution, proving Farkas’ lemma.
To prove the MTT, one derives from Farkas’ lemma

that the ‘weaker’ system

(S1) Ax � a; Bx � b

is infeasible if and only if the system (T1) has a solution.
If (S1) is feasible then one easily verifies that (S) has no
solution if and only if the optimal value of the problem

(P1) min f� : Ax � a; Bx C �e � bg

is a nonnegative real. Here e denotes the all-one vector.
Since (P1) is feasible and below bounded, by the duality
theorem this happens if and only if the optimal value of
the dual problem

(D1) max

8<
:a>yC b>v :

y>AC v>B D 0;
e>v D 1;

y � 0; v � 0

9=
;

is a nonnegative real and, finally, this occurs if and only
if (T2) has a solution. Thus it has been shown that the
MTT is logically equivalent to the duality theorem for
linear optimization.
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So far the issue of how to prove the MTT has not
been touched. One possible approach is to prove the
duality theorem for linear optimization and then derive
the MTT in the above described way. This approach is
now quite popular in text books. For a recent exam-
ple see, e. g., [2]. The easiest way for a direct proof is to
prove first the Farkas’ lemma and then derive the MTT
from this lemma. The latter step uses the easy to ver-
ify statement that (S) has no solution if and only if the
system

Ax � ta � 0;
Bx � tb � se � 0;

t � s � 0;

� s < 0

has no solution. Application of a suitable variant of
Farkas’ lemma to this system yields the MTT. Farkas’
lemma and its proof have a rich history; for a nice and
detailed survey one might consult [3].

See also

� Farkas Lemma
� Linear Optimization: Theorems of the Alternative
� Linear Programming
�Minimum Concave Transportation Problems
�Multi-index Transportation Problems
� Stochastic Transportation and Location Problems
� Tucker Homogeneous Systems of Linear Relations
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Introduction

Data classification is a supervised learning strategy that
analyzes the organization and categorization of data in
distinct classes [14]. Generally, a training set, in which
all objects are already associated with known class la-
bels, is used by classification methods. The data clas-
sification algorithm works on this set by using input
attributes and builds a model to classify new objects.
In other words, the algorithm predicts output attribute
values. Output attribute of the developed model is cate-
gorical [4]. There are many applications of data classifi-
cation in finance [6,14], health care [14], sports [14], en-
gineering [10,14] and science [10]. Data classification is
an important problem that has applications in a diverse
set of areas ranging from finance to bioinformatics.

A broad range of methods exists for data classifica-
tion problem including Decision Tree Induction [14],
Bayesian Classifier [14], Neural Networks (NN) [10],
Support Vector Machines (SVM) [10] and Mathemat-
ical Programming (MP) [1]. An overall view of clas-
sification methods is published by Weiss and Ku-
likowski [21]. A neural network is a data structure that
attempts to simulate the behavior of neurons in a bi-
ological brain [14]. A major shortcoming of the neu-
ral network approach is a lack of explanation of the
constructed model. The possibility of obtaining a non-
convergent solution due to the wrong choice of initial
weights and the possibility of resulting in a non-optimal
solution due to the local minima problem are impor-
tant handicaps of neural network-based methods. SVM
approach operates by finding a hyper surface that will
split the classes so that the distance between the hy-
per surface and the nearest of the points in the groups
has the largest value [19]. The main goal is to generate
a separating hyper surface which maximizes the margin
and produces good generalization ability [10]. In recent
years, SVM has been considered one of the most effi-
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cient methods for two-class classification problems [5].
SVM method has two important drawbacks in multi-
class classification problems; a combination of SVMhas
to be used in order to solve the multi-class classification
problems and some approximation algorithms are used
in order to reduce the computational time for SVM
while learning the large scale of data.

There have been numerous attempts to solve clas-
sification problems using mathematical programming.
A survey of classification methods using mathemati-
cal programming is published by Joachimsthaler and
Stam [11]. The mathematical programming approach
to data classification was first introduced in early
1980’s. Since then, numerous mathematical program-
ming models have appeared in the literature. As an ex-
tension of complement to these, Erenguc and Koehler
provide a comprehensive review [7]. Many distinct
mathematical programmingmethods with different ob-
jective functions are developed in the literature. These
include; minimizing the maximum exterior deviation,
minimizing the weighted sum of exterior deviations,
minimizing ameasure of exterior deviations whilemax-
imizing a measure of interior deviations, minimiz-
ing the number of misclassifications, and minimizing
a generalized distance measure. Most of these methods
modeled data classification as linear programming (LP)
problems to optimize a distance function. Contrary
to LP problems, mixed-integer linear programming
(MILP) problems that minimize the misclassifications
on the design data set are also widely studied [7]. Math-
ematical programming methods have certain advan-
tages over the parametric ones. For instance, they are
free from parametric assumptions and weights to be ad-
justed. Moreover, varied objectives and more complex
problem formulations can easily be accommodated. On
the other hand, obtaining a solution without any dis-
criminating power, unbounded solutions and excessive
computational effort requirement are some of the prob-
lems in mathematical programming based methods.
Koehler [12] surveys the potential problems in math-
ematical programming formulations. There have been
several attempts to formulate data classification prob-
lems as MILP problems [2,8,13,15]. Since MILP meth-
ods suffer from computational difficulties, the efforts
are mainly focused on efficient solutions for two-group
supervised classification problems. Although ways to
solve a multi-class data classification problem exist by

means of solving several two-group problems, such ap-
proaches also have drawbacks including computational
complexity resulting in long computational times [16].

MILP Formulation

The objective in data classification is to assign data
points that are described by several attributes into a pre-
defined number of classes. The use of hyper-boxes for
defining boundaries of the sets that include all or some
of the points in that set as shown in Fig. 1 can be very ac-
curate on multi-class problems. If it is necessary, more
than one hyper-box could be used in order to repre-
sent a class as shown in Fig. 1. When the classes that are
indicated by square and circle data points are both rep-
resented by a single hyper-box respectively, the bound-
aries of these hyper-boxes will overlap. Thus, two boxes
are constructed in order to eliminate this overlapping.
A very important consideration in using hyper-boxes
is the number of boxes used to define a class. If the
total number of hyper-boxes is equal to the number
of classes, then the data classification is very efficient.
On the other hand; if there are as many hyper-boxes of
a class as the number of data points in a class, then the
data classification is inefficient.

Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Figure 1
Schematic representation of multi-class data classification
using hyper-boxes
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The data classification problem based on this new
idea is built in two parts: training and testing. Determi-
nation of the characteristics of the data points that be-
long to a certain class and differentiation them from the
data points that belong to other classes are the targets
done during the training part. Thus, boundaries of the
classes are formed by the construction of hyper-boxes
in the training step. After the distinguishing character-
istics of the classes are determined, then the effective-
ness of the classification must be tested. Predictive ac-
curacy of the developed model is performed on a test
data set during the test part.

Training Problem Formulation

Training part studies are performed on a training data
set composed of a number of instances i. The data
points are represented by the parameter aim that de-
notes the value of attribute m for the instance i. The
class k that the data point i belongs to are given by the
set Dik . Each existing hyper-box l encloses a number of
data points belonging to the class k. Moreover, bounds
n (lower, upper) of each hyper-box is determined by
solving the training problem.

Given these parameters and the sets, the following
variables are sufficient to model the data classification
problem with hyper-boxes. The binary variable ybl is
indicates whether the box l is used or not. The posi-
tion (inside or outside) of the data point i with regard
to box l is represented by ypbi l . The assigned class k of
box l and data point i is symbolized by ybcl k and ypcik ,
respectively. If the data point i is within the bound n
with respect to attribute m of box l, then the binary
variable ypbni lmn takes the value of 1, otherwise 0. Sim-
ilarly, ypbmilm indicates whether the data point i is
within the bounds of attribute m of box l or not. Fi-
nally, ypik indicate the misclassification of data points.
In order to define the boundaries of hyper-boxes, two
continuous variables are required: Xlmn is the one that
models bounds n for box l on attribute m. Correspond-
ingly, bounds n for box l of class k on attribute m are
defined with the continuous variable XDl ;k;m;n .

The following MILP problem models the training
part of data classification method using hyper-boxes:

min z D
X
i

X
k

ypik C c
X
l

ybl (1)

subject to

XDl kmn � aim ypbi l 8i; k; l ;m; n jn D lo (2)

XDl kmn � aim ypbi l 8i; k; l ;m; n jn D up (3)

XDl kmn � Qybcl k 8k; l ;m; n (4)

X
k

XDl kmn D Xlmn 8l ;m; n (5)

ypbni lmn � (1/Q)(Xlmn�aim) 8i; l ;m; n jn D up

(6)

ypbni lmn � (1/Q)(aim �Xlmn) 8i; l ;m; n jn D lo

(7)

X
l

ypbi l D 1 8i (8)

X
k

ypcik D 1 8i (9)

X
l

ypbi l D
X
k

ypcik 8i (10)

X
k

ybcl k � ybl 8l (11)

ybcl k �
X
i

ypbi l � 0 8l ; k (12)

ybcl k �
X
i

ypcik � 0 8l ; k (13)

X
n

ypbni lmn � ypbmilm � N � 1 8i; l ;m (14)

X
m

ypbmilm � ypbi l � M � 1 8i; l (15)

ypcik � ypik � 0 8i; k … Dik (16)

Xlmn ; XDl kmn � 0 ; ybl ; ybcl k ; ypbi l ; ypcik ;

ypbni lmn ; ypbmilm ; ypik 2 f0; 1g
(17)

The objective function of the MILP problem (Eq. (1))
is to minimize the misclassifications in the data set with
the minimum number of hyper-boxes. In order to elim-
inate unnecessary use of hyper-boxes, the unnecessary
existence of a box is penalized with a small scalar c in
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the objective function. The lower and upper bounds of
the boxes are given in Eqs. (2) and (3), respectively. The
lower and upper bounds for the hyper-boxes are de-
termined by the data points that are enclosed within
the hyper-box. Eq. (4) enforces the bounds of hyper-
boxes exist if and only if this hyper-box is assigned to
a class. Eq. (5) is used to relate the two continuous
variables that represent the bounds of the hyper-boxes.
The position of a data point with respect to the bounds
on attribute m for a hyper-box is given in Eqs. (6)
and (7). The binary variable ypbni lmn helps to iden-
tify whether the data point i is within the hyper-box l.
Two constraints, one for the lower bound and one for
the upper bound, are needed for this purpose (Eqs. (6)
and (7)). Since these constraints establish a relation be-
tween continuous and binary variables, an arbitrarily
large parameter,Q, is included in these constraints. The
Eqs. (8) and (9) state that every data point must be as-
signed to a single hyper-box, l, and a single class, k, re-
spectively. The equivalence between Eqs. (8) and (9)
is given in Eq. (10); indicating that if there is a data
point in the class k, then there must be a hyper-box l
to represent the class k and vice versa. The existence of
a hyper-box implies the assignment of that hyper-box
to a class as shown in Eq. (11). If a class is represented
by a hyper-box, there must be at least one data point
within that hyper-box as in Eq. (12). In the same man-
ner, if a hyper-box represents a class, there must be at
least a data point within that class as given in Eq. (13).
The Eq. (14) represents the condition of a data point be-
ing within the bounds of a box in attribute m. If a data
point is within the bounds of all attributes of a box, then
it must be in the box as shown in Eq. (15). When a data
point is assigned to a class that it is not a member of,
a penalty applies as indicated in Eq. (16). Finally, last
constraint gives non-negativity and integrality of deci-
sion variables. By using this MILP formulation, a train-
ing set can be studied and the bounds of the classes are
determined for a data classification problem.

Testing Problem Formulation

The testing problem for multi-class data classification
using hyper-boxes is straight forward. If a new data
point whose membership to a class is not known ar-
rives, it is necessary to assign this data point to one of
the classes. There are three possibilities for a new data

point when determining its class:
i. the new data point is within the boundaries of a sin-

gle hyper-box,
ii. the new data point is within the boundaries of more

than one hyper-box,
iii. the new data point is not enclosed in any of the

hyper-boxes determined in the training problem.
When the first possibility is realized for the new

data point, the classification is made by directly assign-
ing this data to the class that was represented by the
hyper-box enclosing the data point. Since eliminating
the shared areas between the constructed hyper-boxes
introduces new constraints into the training problem
that makes it computationally very difficult to be solved,
there exists a possibility for a new data point to be
within the boundaries of more than one hyper-box. In
that case, the data point is assigned to the classes of the
hyper-boxes that enclose this specific data point. The
proportion of the number of correct classes to the num-
ber of total assigned classes to that data point deter-
mines the effect of that data point to the accuracy of the
model. In the case when the third possibility applies,
the assignment of the new data point to a class requires
some analysis. If the data point is within the lower and
upper bounds of all but not one of the attributes (i. e.,
m0) defining the box, then the shortest distance between
the new point and the hyper-box is calculated using the
minimum distance between hyper-planes defining the
hyper-box and the new data point. The minimum dis-
tance between the new data point j and the hyper-box
is calculated using Eq. (18) considering the fact that the
minimum distance is given by the normal of the hyper-
plane.

min
l ;m;n

˚ˇ̌�
ajm � Xlmn

�ˇ̌�
(18)

When the data point is between the bounds of smaller
than or equal to M-2 attributes, then the smallest dis-
tance between the point and the hyper-box is obtained
by calculating the minimum distance between edges of
the hyper-box and the new point. An edge is a finite
segment consists of the points of a line that are between
two extreme points Xlmn and Xlm0n . The data point j

is represented by the vector
!

Aj which is composed of

a jm values and
!

P0lmn and
!

P1lmn are the vector forms
of two extreme points. The minimum distance between
the new data point j and one of the segments of the
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hyper-box determined by two extreme points is calcu-
lated using Eq. (25) where (�) indicates the dot product
of the matrices in Eq. (22) and (23).

!

Wjlmn D
!

A j �
!

P0lmn (19)

!

V jlmn D
!

P1lmn �
!

P0lmn (20)

C1 j lmn D
(Wjlmn � Vjlmn )

Wjlmn



 

Vjlmn


 (21)

C2 j lmn D
(Vjlmn � Vjlmn )

Vjlmn



 

Vjlmn


 (22)

b jlmn D
C1 j lmn

C2 j lmn
(23)

Pbjlmn D P0 j lmn C b jlmnVjlmn (24)

min
l ;n

8<
:
sX

m

(ajm � pb jlmn )2

9=
; (25)

When data point is not within the lower and upper
bounds of any attributes defining the box, then the
shortest distance between the new point and the hyper-
box is calculated using the minimum distance between
extreme points of the hyper-box and the new data. The
minimum distance between the new data point j and
one of the extreme points of the hyper-box is calculated
using Eq. (26).

min
l ;n

8<
:
sX

m

(ajm � Xlmn)2

9=
; (26)

The following algorithm assign a new data point j with
attribute values ajm to class k:

Step 0: Initialize inAtt(l,m)= 0.
Step 1: For each l and m, if

Xlmn � ajm � Xlmn0 8n D lo; n0 D up

(27)

Set inAtt(l,m) = inAtt(l,m) + 1.
Step 2: If inAtt(l,m) =M, then go to Step 3. Other-

wise, continue. If inAtt(l,m)�M� 1, then go
to Step 4.

Step 3: Assign the new data point to class kwhere ybcl k
is equal to 1 for the hyper-box in Step 2. Stop.

Step 4: Calculate the minimum given by Eq. (18) and
set the minimum asmin1(l). Calculate the min-
imum given by Eq. (25) and set the minimum
as min2(l). Calculate the minimum given by
Eq. (26) and set the minimum asmin3(l). Select
the minimum between min1(l), min2(l) and
min3(l) to determine the hyper-box l that is
closest to the new data point j. Assign the new
data point to class k where ybcl k is equal to 1
for the hyper-box l. Stop.

Application

We applied the mathematical programming method on
a set of 16 data points in 4 different classes given in
Fig. 2. The data points can be represented by two at-
tributes, 1 and 2.

There are a total of 20 data points; 16 of these points
were used in training and 4 of them used in testing. The
training problem classified the data into 4 four classes
using 5 hyper-boxes as shown in Fig. 3. It is interest-
ing to note that Class1 requires two hyper-boxes while
the other classes are represented with a single hyper-
box only. The reason for having two hyper-boxes for
Class1 is due to the fact that a single hyper-box for this

Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Figure 2
Data points in the illustrative example and their graphical
representation
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Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Figure 3
Hyper-boxes that classify the data points in the illustrative
example

class would include one of the data points that belong to
Class3. In order to eliminate inconsistencies in training
data set, the method included one more box for Class1.

After the training is successfully completed, the test
data is processed to assign them to hyper-boxes that
classify the data perfectly. The assignment of the test
data point B to Class2 is straightforward since it is
included in the hyper-box that classifies Class2 (i. e.,
inAtt(l,m) =M for this data point). The test data in
Class1 is assigned to one of the hyper-boxes that clas-
sify Class1. Similarly, the test data in Class3 is also as-
signed to the hyper-box that classifies Class3. Since the
test data in these classes are included within the bounds
of one of the two attributes, the minimum distance is
calculated as the normal to the closest hyper-plane to
these data points. In the case of data point that belongs
to Class4, it is assigned to its correct class since the clos-
est extreme point of a hyper-box classifies Class4. This
extreme point of the hyper-box 5 classifying Class4 is
given by (X5;1;l o; X5;2;l o). The test problem also clas-
sified the data points with 100% accuracy as shown in
Fig. 3.

This illustrative example is also tested by different
data classification models existing in the literature in
order to compare the results and to measure the per-
formance of the proposed model. Table 1 shows the ex-

Multi-Class Data Classification via Mixed-Integer Optimiza-
tion, Table 1
Comparison of different classificationmodels for the illustra-
tive example

Classification Model Prediction
Accuracy

Misclassified
Sample(s)

Neural Networksa 75% A
Support Vector Machinesb 75% D
Bayesian Classifierc 75% C
K-nearest Neighbor Classifierc 75% A
Statistical Regression
Classifiersc

75% C

Decision Tree Classifierc 50% A, C
MILP approach 100% –

a iDA implementation inMS Excel [9] b SVM implementation in
Matlab [3] c WEKA [20]

amined models and their outcomes for this small illus-
trative example.

Neural Networks, Support Vector Machines,
Bayesian, K-nearest Neighbor and Statistical Regres-
sion classifiers have only one misclassified instance
which leads to 75% accuracy value as shown in Table 1.
Neural Networks and K-nearest Neighbor classifier
predicts the class of test sample A as Class3. Support
Vector Machine methodmisclassifies test sample D and
assigns it to Class1 while Bayesian and Statistical Re-
gression classifier classifies test sample C as belonging
to Class2. On the other hand, Decision Tree classi-
fier gives the lowest accuracy value (50%) with two
misclassifications. Sample A and sample C is classi-
fied as Class3 and Class2, respectively. Consequently,
MILP approach in this thesis classifies all of the test
samples accurately and achieves 100% accuracy. As
a result, the MILP approach performs better than other
data classification methods that are listed in Table 1
for the illustrative example. The accuracy of the MILP
approach is tested on IRIS dataset and protein fold-
ing type dataset. The results indicate that the MILP
approach has better accuracy than other methods on
these datasets [17,18].

Conclusion

Multi-class data classification problem can be very ef-
fectively modeled as an MILP problem. One of the
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most important characteristics of the MILP approach
is allowing the use of hyper-boxes for defining the
boundaries of the classes that enclose all or some of
the points in that set. In other words, if necessary,
more than one hyper-box is constructed for a spe-
cific class through the training part studies. Moreover,
well-construction of the boundaries of each class pro-
vides the lack of misclassifications in the training set
and indirectly improves the accuracy of the model.
The model does not require the underlying distribu-
tion of the training data set and learns from the train-
ing set in a reasonable time. With only one parameter
(c: the penalty parameter to minimize the total num-
ber of hyper-boxes), the suggested model is simple and
very effective. Furthermore, the proposed model can be
used for both binary and multi-class data classification
problems without any modifications. Hence, the per-
formance of the model does not depend on the class
related changes.
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Linear multicommodity flow problems (MCF) are lin-
ear programs (LPs) that can be characterized by a set
of commodities and an underlying network. A com-
modity is a good that must be transported from one or
more origin nodes to one or more destination nodes in
the network. In practice these commodities might be
telephone calls in a telecommunications network, pack-
ages in a distribution network, or airplanes in an air-
line flight network. Each commodity has a unique set
of characteristics and the commodities are not inter-
changeable. That is, you cannot satisfy demand for one
commodity with another commodity. The objective of
the MCF problem is to flow the commodities through
the network at minimum cost without exceeding arc ca-
pacities. A comprehensive survey of linear multicom-
modity flow models and solution procedures are pre-
sented in [2].

Integer multicommodity flow (IMCF) problems,
a constrained version of the linear multicommodity
flow problem in which flow of a commodity (specified
in this case by an origin-destination pair) may use only
one path from origin to destination.

MCF and IMCF problems are prevalent in a number
of application contexts, including transportation, com-
munication and production.

MCF Example Applications

� Routing vehicles in traffic networks (dynamic traf-
fic assignment). This involves the determination of
minimum delay routes for vehicles from their ori-
gins to their respective destinations over the traffic
network. The allowable congestion levels determine
the arc capacities. Alternatively, there are no capaci-
ties but the cost on an arc is a function of the amount
of flow on the arc. In the former case, the objective
function is linear while in the latter it is nonlinear.

� Distribution systems planning. In this problem there
are different products (or, commodities) produced
at several plants with known production capacities.
Each commodity has a certain demand in each cus-
tomer zone. The demand is satisfied by shipping
via regional distribution centers with finite stor-
age capacities. A.M. Geoffrion and G.W. Graves
[28] model this problem of routing the commodi-
ties from the manufacturing plants to the customer
zones through the distribution centers as a MCF
problem.

� Import and export models. One of the factors that
may affect export is handling capacity at ports. D.
Barnett, J. Binkley and B. McCarl [8] use a MCF
model to analyze the effect of US port capacities on
the export of wheat, corn and soybean.

� Optimization of freight operations. T. Crainic, J.A.
Ferland and J.M. Rousseau [20] develop a MCF-
based routing and scheduling optimization model
that considers the planning issues for the railroad
industry. More recently, H.N. Newton [48] and C.
Barnhart, H. Jin and P.H. Vance [13] study the
railroad blocking problem using multicommodity
based formulations.

� Freight Assignment in the Less-than-Truckload
(LTL) industry. An LTL carrier has to consolidate
many shipments to make economic use of the vehi-
cles. This requires the establishment of a large num-
ber of terminals to sort freight. Trucking companies
use forecasted demands to define routes for each
vehicle to carry freight to and from the terminals.
Once the routes are fixed, the problem is to deliver
all the shipments with minimum total service time
or cost. This problem is formulated as a MCF prob-
lem in [17] and [24].

� Express Shipment Delivery. D. Kim [40] models the
shipment delivery problem faced by express carri-
ers like Federal Express, United States Postal Ser-
vice, United Parcel Service, etc. as a MCF problem
on a network in space and time.

� Routing messages in a telecommunications or com-
puter network. The network consists of transmis-
sion lines. Each message request is a commodity.
The problem is to route the messages from origins to
the respective destinations at a minimum cost. T.L.
Magnanti et al. [42] and others provide MCF-based
formulations for this problem.
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� Long-term hydro-generation optimization. The task
in this case is to determine the amount of hydro-
generation at a reservoir in an interval of time, that
minimizes the expected cost of power generation
over a period of time, divided into several intervals.
N. Nabonna [47] showed that this problem can be
modeled as a MCF problem with inflows given as
probabilistic density functions.

� Forest management. For each planning period, for-
est managers have to make decisions concerning the
land areas to be harvested, the volume of timber to
be harvested from these areas, the land areas to be
developed for recreation and the road network to be
built and maintained in order to support both the
timber haulers and recreationists. This problem has
been formulated as a MCF problem in [33].

� Street planning. L.R. Foulds [26] introduced this
problem and modeled it as a MCF problem. The ob-
jective is to identify a set of two-way streets such
that making these streets one-way minimizes the to-
tal congestion cost in the network.

� Spatial price equilibrium (SPE) problem. This prob-
lem requires modeling consumer flows within a gen-
eral network. The SPE problem determines the opti-
mum levels of production and consumption at each
market and the optimal flows satisfy the equilibrium
property. R.S. Segall [59] models and solves the SPE
problem as a MCF problem.

For a more comprehensive description of MCF appli-
cations, see [2,37,57].

IMCF Example Applications

� Airline fleet assignment. Given a time table of flight
arrivals and departures, the expected demand on the
flights and a set of aircraft, the objective is to ar-
rive at a minimum cost assignment of aircraft to the
flights. This problem has been extensively studied in
[1,31].

� Airline crew scheduling. This problem deals with the
minimum cost scheduling of crews. Factors such as
hours of work limitations and Federal Aviation Ad-
ministration regulations must be taken into account
while solving the problem. For an in-depth study see
[5,14].

� Airline maintenance routing problems require that
single aircraft be routed such that maintenance re-

quirements are satisfied and each flight is assigned
to exactly one aircraft. This problem has been stud-
ied in [10,19,25].

� Bandwidth packing problems require that bandwidth
be allocated in telecommunications networks to
maximize total revenue. The demands, or calls, on
the networks are the commodities and the objective
is to route the calls from their origin to their desti-
nation. In the case of video teleconferencing, since
call splitting is not allowed, each call must be routed
on exactly one network path. This IMCF problem is
described in [49].

� Package flow problems, such as those arising in ex-
press package delivery operations, require that ship-
ments, each with a specific origin and destination,
be routed over a transportation network. Each set
of packages with a common origin-destination pair
can be considered as a commodity and often, to fa-
cilitate operations and ensure customer satisfaction,
must be assigned to a single network path. These
problems are cast as IMCF problems in [12].

Formulations

Multicommodity flow problems can be modeled in
a number of ways depending how one defines a com-
modity. There are three major options: a commodity
may originate at a subset of nodes in the network and
be destined for another subset of nodes, or it may orig-
inate at a single node and be destined for a subset of the
nodes, or finally it may originate at a single node and be
destined for a single node. K.L. Jones et al. [34] present
models for each of these different cases. In the interest
of space, we will only consider models for the last case.
The other cases can also be modeled using variants of
the models presented here.

We present two different formulations of the MCF
problem: the node-arc or conventional formulation and
the path or column generation formulation. The MCF
is defined over the network G comprised of node set N
and arc set A. MCF contains decision variables x, where
xki j is the fraction of the total quantity (denoted qk) of
commodity k assigned to arc ij. In the IMCF problem
these variables are restricted to be binary. The cost of
assigning commodity k in its entirety to arc ij equals
qk times the unit flow cost for arc ij, denoted cki j . Arc
ij has capacity dij, for all ij 2 A. Node i has supply of
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commodity k, denoted bki , equal to 1 if i is the origin
node for k, equal to �1 if i is the destination node for k,
and equal to 0 otherwise.

The node-arc MCF formulation is:

minimize
X
k2K

X
i j2A

cki jq
kxk

i j (1)

such that
X
i j2A

xk
i j �

X
ji2A

xk
ji D bki ; 8i 2 N;8k 2 K; (2)

X
k2K

qkxk
i j � di j; 8i j 2 A; (3)

xk
i j � 0; 8i j 2 A; 8k 2 K: (4)

Note that without restricting generality of the prob-
lem, we model the arc flow variables x having values
between 0 and 1. To do this, we scale the demand for
each commodity to 1 and accordingly adjust the coef-
ficients in the objective function (1) and in constraints
(3). Also note the block-angular structure of this model.
The conservation of flow constraints (2) form nonover-
lapping blocks, one for each commodity. Only the arc
capacity constraints (3) link the values of the flow vari-
ables of different commodities.

To contrast, the path-based or column generation
MCF formulation has fewer constraints, and far more
variables. Again, the underlying network G is com-
prised of node set N and arc set A, with qk representing
the quantity of commodity k. P(k) represents the set of
all origin-destination paths in G for k, for all k 2 K. In
the column generation model, the binary decision vari-
ables are denoted ykp , where ykp is the fraction of the total
flow of commodity k assigned to path p 2 P(k). The cost
of assigning commodity k in its entirety to path p equals
qk times the unit flow cost for path p, denoted ckp . ckp rep-
resents the sum of the cki j costs for all arcs ij contained
in path p. As before, arc ij has capacity dij, for all ij 2 A.
Finally, ıpi j is equal to 1 if arc ij is contained in path p 2
P(k), for all k 2 K; and is equal to 0 otherwise.

The path or column generation IMCF formulation
is then:

minimize
X
k2K

X
p2P(k)

ckpq
k ykp (5)

such that
X
k2K

X
p2P(k)

qk ykpı
p
i j � di j; 8i j 2 A; (6)

X
p2P(k)

ykp D 1; 8k 2 K; (7)

ykp � 0; 8p 2 P(k); 8k 2 K: (8)

LP SolutionMethods

Comprehensive surveys of the available multicommod-
ity network flow solution techniques are provided in
[6,37]. Descriptions of these approaches are also pro-
vided in [2,38].

Price-directive decomposition techniques use the
path-based MCF model. To limit the number of vari-
ables considered in finding an optimal solution, col-
umn generation techniques are used. Further details of
price-directive decomposition and column generation
are provided in [18,22,41,45,61].

Resource-directive decomposition techniques at-
tempt to solve MCF problems by allocating arc capac-
ity by commodity and solving the resulting decoupled
minimum cost flow problems for each commodity. Ad-
ditional descriptions of this technique can be found
in [27,30,35,37,39,41,52,60,61].

Computational comparisons of the performance of
price- and resource-directive decomposition methods
can be found in [3,4]. A. Ali, R.V. Helgason, J.L. Ken-
nington, and H. Lall [4] report that specialized de-
composition codes can be expected to run from three
to ten times faster than a general linear program-
ming package. Furthermore, A.A. Assad [7] reports
that resource-directive algorithms converge quickly for
small problems but are outperformed by the price-
directive method for larger MCF problems.

G. Saviozzi [56] uses subgradient techniques on the
Lagrangian relaxation of the bundle constraints and
proposes a method of arriving at an advanced start-
ing basis for the minimum cost multicommodity flow
problem.

Partitioning methods specialize the simplex method
by partitioning the current basis to exploit the un-
derlying network structure. Experiences with primal
partitioning techniques have been reported in [24,32,
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36,43,51,53,54,55], among others. J.B. Rosen [53] devel-
ops a partitioning strategy for angular problems. J.K.
Hartman and L.S. Lasdon [32] develop a generalized
upper bounding algorithm for multicommodity net-
work flow problems in which the special structure of
the MCF problem is exploited. Their primal partition-
ing procedure, a specialization of the generalized up-
per bounding procedure developed byG.B. Dantzig and
R.M. Van Slyke [21], involves the determination at each
iteration of the inverse of a basis containing only one
row for each saturated arc. Similarly, C.J. McCallum
[44] developed a generalized upper bounding algorithm
for a communications network planning problem. All
of these procedures exploit the block-diagonal problem
structure and perform all steps of the simplex method
on a reduced working basis of dimension m, where m
represents the size of set A.

Interior point methods and parallel computing
techniques have also been applied to MCF problems.
Interior point methods provide polynomial time algo-
rithms for the MCF problems. The best time bound is
due to P.M. Vaidya [62]. G.L. Schultz and R.R. Meyer
[58] provide an interior point method with massive
parallel computing to solve multicommodity flow prob-
lems.

Development of new heuristic procedures for MCF
problems include the primal and dual-ascent heuris-
tics described in [17] and [9], respectively. A. Ger-
sht and A. Shulman [29] use a barrier-penalty method
to find nearly optimal solutions for multicommod-
ity problems, while R. Schneur [62] describes a scal-
ing algorithm to determine nearly feasible MCF solu-
tions.

Recently, price-directive decomposition or col-
umn generation approaches, such as those presented
in [2,11,23,34] have been the most extensively used
method for solving large versions of the linear MCF
problem. The general idea of column generation is that
optimal solutions to large LP’s can be obtained without
explicitly including all columns (i. e., variables) in the
constraint matrix (called the Master Problem or MP).
In fact, only a very small subset of all columns will be in
an optimal solution and all other (nonbasic) columns
can be ignored. In a minimization problem, this im-
plies that all columns with positive reduced cost can be
ignored. The multicommodity flow column generation
strategy, then, is:

0) RMP Construction. Include a subset of columns in
a restricted MP, called the Restricted Master Prob-
lem, or RMP;

1) RMP Solution. Solve the RMP LP;
2) Pricing Problem Solution. Use the dual variables

obtained in solving the RMP to solve the pricing
problem. The pricing problem either identifies one
or more columns with negative reduced cost (i. e.,
columns that price out) or determines that no such
column exists.

3) Optimality Test. If one or more columns price out,
add the columns (or a subset of them) to the RMP
and return to Step 1; otherwise stop, the MP is
solved.

For any RMP in Step 1, let � 
 ij represent the non-
negative dual variables associated with constraints (6)
and �k represent the unrestricted dual variables asso-
ciated with constraints (7). Since ckp can be represented
as
P

ij 2A cki j ı
p
i j , the reduced cost of column p for com-

modity k, denoted ckpqk , is:

ckpq
k D

X
i j2A

qk(cki j C 
i j)ı
p
i j � �

k ;

8p 2 P(k);8k 2 K: (9)

For each RMP solution generated in Step 1, the pricing
problem in Step 2 can be solved efficiently. Columns
that price out can be identified by solving one shortest
path problem for each commodity k2K over a network
with arc costs equal to cki j+ 
 ij, for each ij 2 A. Let p

represent a resulting shortest path p
 for commodity k.
Then, if for all k 2 K,

ckp�q
k � 0;

the MP is solved. Otherwise, the MP is not solved and,
for each k 2 K with

ckp�q
k < 0;

path p
 2 P(k) is added to the RMP in Step 3.

IP Solution Methods

The ability to solve large MCF LP’s enables the solu-
tion of large IMCF problems. Successful approaches
for solving large IMCF problems use the path-based or
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column generation formulation of the problem. Col-
umn generation IP’s can be solved to optimality us-
ing a procedure known as branch and price, detailed in
[15,23,64]. Branch and price, a generalization of branch
and bound with LP relaxations, allows column genera-
tion to be applied at each node of the branch and bound
tree. Branching occurs when no columns price out to
enter the basis and the LP solution does not satisfy the
integrality conditions.

Applying a standard branch and bound procedure
to the final restricted master problem with its existing
columns will not guarantee an optimal (or feasible) so-
lution. After the branching decision modifies RMP, it
may be the case that there exists a column for MP that
prices out favorably, but is not present in RMP. There-
fore, to find an optimal solution we must maintain the
ability to solve the pricing problem after branching.
The importance of generating columns after the ini-
tial LP has been solved is demonstrated for airline crew
scheduling applications in [63]. Although they were un-
able to find even feasible IP solutions using just the
columns generated to solve the initial LP relaxation,
they were able to find quality solutions using a branch
and price approach for crew scheduling problems in
which they generated additional columns whenever the
LP bound at a node exceeded a preset IP target objective
value.

The difficulty of performing column generation
with branch and bound is that conventional integer
programming branching on variables may not be effec-
tive because fixing variables can destroy the structure of
the pricing problem. For the multicommodity flow ap-
plication, a branching rule is needed that ensures that
the pricing problem for the LP with the branching de-
cisions included can be solved efficiently with a shortest
path procedure. To illustrate, consider branching based
on variable dichotomy in which one branch forces com-
modity k to be assigned to path p, i. e., ykp = 1, and the
other branch does not allow commodity k to use path
p, i. e., ykp = 0. The first branch is easy to enforce since
no additional paths need to be generated once k is as-
signed to path p. The latter branch, however, cannot be
enforced if the pricing problem is solved as a shortest
path problem. There is no guarantee that the solution
to the shortest path problem is not path p. In fact, it
is likely that the shortest path for k is indeed path p.
As a result, to enforce a branching decision, the pricing

problem solution must be achieved using a next shortest
path procedure. In general, for a subproblem, involving
a set of a branching decisions, the pricing problem so-
lution must be achieved using a kth shortest path pro-
cedure.

The key to developing a branch and price proce-
dure is to identify a branching rule that eliminates
the current fractional solution without compromising
the tractability of the pricing problem. In general, J.
Desrosiers et al [23] argue this can be achieved by bas-
ing branching rules on variables in the original formu-
lation, and not on variables in the column generation
formulation. This means that branching rules should
be based on the arc flow variables xki j from the node-arc
formulation of the problem. Barnhart et al. [15] develop
branching rules for a number of different master prob-
lem structures. They also survey specialized algorithms
that have appeared in the literature for a broad range of
applications.

M. Parker and J. Ryan [49] present a branch and
price algorithm for the bandwidth packing problem. in
which the objective is to choose which of a set of com-
modities to send in order to maximize revenue. They
use a path-based formulation. Their branching scheme
selects a fractional path and creates a number of new
subproblems equal to the length of the path (measured
in the number of arcs it contains) plus one. On one
branch, the path is fixed into the solution and on each
other branch, one of the arcs on the path is forbidden.
To limit time spent searching the tree they use a dy-
namic optimality tolerance. They report the solution of
14 problems with as many as 93 commodities on net-
works with up to 29 nodes and 42 arcs. All but two of
the instances are solved to within 95% of optimality.

K. Ziarati et al. [16] consider the problem of as-
signing railway locomotives to trains. They model the
problem as an integer multicommodity flow problem
with side constraints and solve using a Dantzig–Wolfe
decomposition technique, where subproblems are for-
mulated as constrained or unconstrained shortest path
problems.

P. Raghavan and C.D. Thompson [50] illustrate the
use of randomized algorithms to solve some integer
multicommodity flow problems. They use randomized
rounding procedures that give provably good solutions
in the sense that they have a very high probability of
being close to optimality.
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Barnhart et al. [12] present a branch and price and
cut algorithm for general IMCF problems where each
commodity is represented by an origin-destination pair
and flow volume. Branch and cut, another variant of
branch and bound, allows valid inequalities, or cuts,
to be added throughout the branch and bound tree.
Branch and price and cut combines column and row
generation to yield very strong LP relaxations at nodes
of the branch and bound tree.

See also

� Auction Algorithms
� Communication Network Assignment Problem
� Directed Tree Networks
� Dynamic Traffic Networks
� Equilibrium Networks
� Evacuation Networks
� Generalized Networks
�Maximum Flow Problem
�Minimum Cost Flow Problem
� Network Design Problems
� Network Location: Covering Problems
� Nonconvex Network Flow Problems
� Nonoriented Multicommodity Flow Problems
� Piecewise Linear Network Flow Problems
� Shortest Path Tree Algorithms
� Steiner Tree Problems
� Stochastic Network Problems: Massively Parallel

Solution
� Survivable Networks
� Traffic Network Equilibrium
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Introduction

References to Financial Statements Fraud (FSF) and
earnings manipulation have attracted the attention of

market participants, academics, and regulators all over
the world especially in recent years and following the
collapse of Enron. During these years there have also
been several cases of financial statement fraud which
have been undetected by the auditors.

Using normal audit procedures, the detection of fal-
sified financial statements is a difficult task [18,73]).
There are numerous reasons for these difficulties such
as a shortage of knowledge concerning the character-
istics of management fraud, the efforts of managers to
deceive auditors, and difficulties in collecting, analyzing
and synthesizing large quantities of data from several
different sources.

Models of audit reporting have several uses (i. e.
prediction, determination, bankruptcy), as described
by Dopuch et al. [26]. For example, they can provide
a benchmark representing the probability that an audi-
tor would issue a modified audit report on a given com-
pany. Furthermore, these models can be imperative in
an auditing system that enables the users to take pre-
ventive or corrective actions [30,57,80]).

Most of the earlier studies of FSF have used dis-
crete choice models in which the dependent variable
was dichotomous. Mutchler [66] and Levitan and Kno-
blett [60] used discriminant analysis, Dopuch et al. [26]
and Lennox [59] used probit models, Keasey et al. [48],
Bell and Tabor [9], Monroe and Teh [65], Louw-
ers [62], DeFond et al. [25], Citron and Taffler [17],
Menon and Schwartz [63], and Spathis [80] used logit
models, Krishnan [55] used an ordered probit model,
Spathis et al. [79,81]), and Pasiouras et al. [71] used
multicriteria decision aid (UTADIS) and multivariate
statistical techniques (e. g. discriminant and logit anal-
ysis), Gaganis and Pasiouras [35] used discriminant
and logit models, Gaganis et al. [36] used probabilis-
tic neural network models, Gaganis et al. [33] used
nearest neighbor models, Fanning et al. [31] and Fan-
ning and Cogger [30] used artificial neural networks,
and Doumpos et al. [27] used support vector ma-
chines.

In the present study, a multicriteria approach was
followed through the application of the nonparametric
Multi-group Hierarchical DIScrimination (MHDIS)
method with the aim of developing a sorting model to
detect those firms that issue FSF in Greece. TheMHDIS
model was compared with logit analysis in order to test
its efficiency against a benchmark that has been com-
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monly used in previous studies. MHDIS is not based
on statistical assumptions, which often cause problems
during the application of statistical methods (logit and
probit analysis), and furthermore, it can easily incorpo-
rate qualitative data.

Although there have recently been a few attempts
to develop models to detect falsified audit statements in
Greece [15,51,79,81]. The present study differs in sev-
eral respects. First, we have used a more recent and
larger dataset than in previous studies, which contains
more detailed information. The data used corresponds
to the fiscal years 2001–2004 and covers 398 compa-
nies. Spathis et al. [79,81] and Kirkos et al. [51] ex-
amined the same random sample of 76 manufacturing
companies covering the period 1997–1999, and Cara-
manis and Spathis [15] examined a sample of 182 com-
panies. Second, we examined both listed and unlisted
companies from the manufacturing, trade, and ser-
vices sectors in contrast to Spathis et al. [79,81] and
Kirkos et al. [51] who examined only manufacturing
listed companies and Caramanis and Spathis [15] who
considered only listed companies. Third, we used out-
of-time and out-of-sample testing samples. When eval-
uating the classification ability of a model, it is impor-
tant to ensure that it has not been over-fitted to the
training (estimation) dataset. As Stein [83] mentions
“a model without sufficient validation may only be a hy-
pothesis”. Previous research has shown that when clas-
sification models are used to reclassify the observations
of the training sample, the classification accuracies are
biased upward. Thus, it is necessary to classify a set of
observations which were not used during the develop-
ment of the model, using some kind of testing sam-
ple.

The rest of the paper is organized as follows: Sec-
tion “Sample” describes the sample used in this study.
Section “Method” describes the methodology. Section
“Empirical Results” presents the empirical results, and
the Sect. “Conclusions and Further Research” discusses
the concluding remarks and suggests some possible fu-
ture research directions.

Sample

The data used in the study consisted of financial state-
ment information (i. e. balance sheet, income state-
ment, auditors’ opinions, and the notes to financial

statements) of a sample of companies obtained from
ICAP1 database and Athens Stock Exchange (ASE).
Our analysis was restricted to Greek limited (société
anonyme) and limited liability companies, which are
obliged by law to have their financial statements au-
dited, and we focused on the period between 2001 and
2004.

We obtained 199 qualified cases which were dis-
tributed over various sectors2. The next step was to
select unqualified firms. We used a pair-matching
method by sector. Matching of firms is common prac-
tice when conducting classification studies in auditing
as well as in other areas of finance, such as bankruptcy
or acquisitions prediction (e. g. [11,34,50,58,71]). There
are two primary reasons for following this procedure,
which is known as choice-based sampling. The first is
the lower cost of collecting data in comparison with an
unmatched sample [6,46,90]). The second andmost im-
portant is that a choice-based sample provides greater
information content than a random sample [19,45,69]).
Hence, our sample consisted of the same number of
qualified and unqualified cases.

Most of the previous studies concerning the devel-
opment of models to replicate (or predict) auditors’
opinion used training and testing samples from the
same period, or re-sampling techniques such as jack-
knife and bootstrap (e. g. [57,79,81]). However, as Es-
pahbodi and Espahbodi [29] point out, the real test of
a classification model and its practical usefulness is its
ability to classify objects correctly in the future. The
main reason, as stated by Barnes [5], is that given in-
flationary effects, technological and other reasons, such
as accounting policies, it is not reasonable to expect fi-
nancial ratios to be stable over time. To account for
this population drifting, in the present study, we split
our sample of 398 companies into two distinct sam-
ples. The training sample, used for the development
of the models, consisted of 234 companies and cov-
ered the period 2001–2003. The validation sample con-
sisted of the remaining 164 companies and used data
from 2004.

1ICAP is the largest company providing Business Information
and Consulting Services in Greece.

2The sample for this study consists of 164 manufacturing,
122 trade and 110 services companies.
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Financial Variables

Similar to previous studies we used financial ratios as
the indicators of FSF. One of the problems with the se-
lection of suitable ratios is that not only are there many
financial variables which could be potential candidates
for inclusion in the model, but also that previous stud-
ies have, in general, failed to select variables that re-
flect theoretical models of FFS as well. We therefore se-
lected variables that were regarded as important in pre-
vious studies, such as Albrecht and Romney [1], Palm-
rose [70], Dopouch et al. [26], Loebbecke et al. [61],
Green [38], Stice [84], Davia et al. [23], Bell et al. [10],
Schilit [75], Arens and Loebbecke [3], Beasley [7],
Bologna et al. [12], Krishnan and Krishnan [54],
Green and Choi [39], Hoffman [42], Hollman and Pat-
ton [43], Zimbelman [89], Laitinen and Laitinen [57],
Spathis et al. [79,81], Spathis [80], Doumpos et al. [27],
Gaganis et al. [33,36], Gaganis and Pasiouras [35], and
Pasiouras et al. [71]. Table 1 present a full list of the
variables considered in this study. There are 28 finan-
cial variables covering all aspects of the performance of
the selected companies, such as liquidity, leverage, prof-
itability, managerial activity, and annual changes in ba-
sic accounts [20].

An examination of previous research indicates that
the prediction variables range between 6 and 20. Most
of these studies selected the effective independent vari-
ables using a statistical method, in an attempt to reduce
the number of independent variables and the impact of
potential multicollinearity. There is, however, little rel-
evant theory about the selection of independent vari-
ables for the nonlinear methods. From a practical point
of view, developing amodel that considers a large num-
ber of variables poses problems for the applicability of
the model on a daily basis by the auditor. This is because
any application of the model requires that the auditor
collects all necessary data, which leads to increased time
and cost for data collection and management [79]. In
the present study, we used a combination of two statis-
tical analysis methods to examine whether there was an
association between our variables and auditors’ opin-
ions and hence to select our final set.

First, we used the Kruskal–Wallis non-parametric
test to examine the differences between qualified and
unqualified companies. Table 1 present the results of
the Kruskal–Wallis test for the training sample. Only

three variables: 365*Stock/Cost of Sales; Logarithm of
Debt; and Inventories/Total Assets were not statistically
significant at the 10% level. We then reduced the num-
ber of variables to a manageable size using factor anal-
ysis.

This approach can be used to uncover the latent
structure of a set of variables by reducing the attribute
space from a larger number of variables to a smaller
number of factors. The factor loadings were then used
to select a limited set of financial variables.

Finally, seven financial variables were selected,
each being the variable with the highest loading in
each factor. These were: Receivable/Sales; Current As-
sets/Current Liabilities; Current Assets/Total Assets;
Cash/Total Assets; Profit before tax/Total Assets; In-
ventories/Total Assets; and Annual Change in Sales.

Non-financial Variables

In addition to the seven financial variables discussed
above, six non-financial ones were also used. Dop-
uch et al. [26] presented a predictive model of audit
opinion qualifications in which the variables with great-
est predictive power were categorical ones.

Previous studies mainly dealt with the construction
of bankruptcy models for making audit opinions rela-
tive to going concern (e. g. [44,52,53]). Prior research
(e. g. [17,30,41,61,74,79,84]) suggests that financial dis-
tress is very important in the issuing of an audit qual-
ification. Although most of the previous studies used
Altman’s z-score [2] or credit risk assessment of a rat-
ing agency [71] as a proxy of default, such an approach
may not be appropriate in our case. The reason is that
Altman’s z-score was developed for a particular in-
dustry (i. e. manufacturing), under different economic
conditions (i. e. in the 1960s) and for a specific coun-
try (i. e. USA). In the present study, we used a score
(UTADISCR) estimated from the UTADIS bankruptcy
prediction model of Zopounidis et al. [92]. We antici-
pated that the use of this measure, which indicates the
likelihood of default of Greek firms over the 12 months
following the date of its calculation, might provide
more accurate results.

Spathis [80] found that audit qualification decision
was positively associated with company litigation. In
this study, the client litigation variable was coded as
zero if a company had litigation in the year preceding
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Multicriteria Decision Support Methodologies for Auditing Decisions, Table 1
Descriptive statistics

Unqualified Qualified Kruskal–
WallisMean St.Dev Mean St.Dev

INVREC / TA 0:58 0:26 0:53 0:22 2.83 ***
REC / SAL 0:31 0:18 0:52 0:59 16.84 *
CA / CL 1:52 0:60 1:00 0:69 66.07 *
CA / TA 0:75 0:22 0:65 0:22 14.48 *
CASH / CL 0:22 0:28 0:08 0:18 26.59 *
CASH / TA 0:12 0:16 0:05 0:11 13.85 *
ROA 0:19 0:12 �0:12 0:16 157.80 *
PRBT / FA 5:04 11:16 �0:62 1:29 149.09 *
INV / SAL 0:12 0:12 0:27 0:41 6.28 **
SAL / TA 1:52 0:83 1:09 0:84 22.70 *
TD / TA 0:59 0:21 0:90 0:34 66.26 *
PRBT / CL 0:37 0:25 �0:15 0:24 157.60 *
CL / TA 0:56 0:23 0:82 0:34 40.98 *
WC / TA 0:20 0:18 �0:17 0:34 80.45 *
EBIT MARGIN 0:15 0:12 �0:19 0:39 157.17 *
GP / SAL 0:36 0:18 0:13 0:21 72.76 *
GP / TA 0:52 0:33 0:16 0:22 83.78 *
(CA� ST) / CL 1:18 0:47 0:74 0:56 65.87 *
365 * AREC / SAL 126:70 66:49 238:46 330:86 21.81 *
365 * ST / CS 73:29 79:92 113:16 163:22 0.41
SAL / EQ 7:36 10:81 0:05 32:71 31.89 *
SAL / TD 2:84 1:63 1:24 0:87 78.28 *

365 * AP / SAL 139:63 550:32 155:07 249:57 65.98 *
TACH 0:22 0:46 0:10 0:39 11.76 *
SALCH 0:15 0:39 0:10 0:44 5.79 **
LOGTA 7:45 0:53 7:28 0:46 7.50 *
LOGDEPT 7:19 0:54 7:19 0:45 0.05
INV / TA 0:16 0:13 0:16 0:15 0
UTADISCR 0:74 0:10 0:49 0:12 126.51**

Notes: INVREC / TA: (Inventories + Receivable) / Total Assets, REC / SAL: Receivable / Sales, CA / CL: Current Assets / Current
Liabilities, CA / TA: Current Assets / Total Assets, CASH / CL: Cash / Current Liabilities, CASH / TA: Cash / Total Assets, ROA: Profit
before tax × 100 / Total assets, PRBT / FA: Profit (Loss) before tax × 100 / Fixed Assets, INV / SAL: Inventories/Sales, SAL\TA: Sales
/ Total Assets, TD / TA: Total Dept / Total Assets, PRBT / CL : Profit (Loss) before tax × 100 / Current Liabilities, CL / TA: Current
Liabilities / Total Assets, WC / TA: Working Capital / Total Assets, EBIT Margin: Profits before interest and taxes × 100 / Turnover,
GP / SAL: Gross Profit / Sales, GP / TA: Gross Profit / Total Assets, (CA� ST) / CL: (Current assets� Stock ) / Current liabilities, 365 *
AREC / SAL:365 Accounts Receivable / Sales, 365 * ST / CS: 365 * Stock / Cost of Sales, SAL / EQ: Sales / Equity, SAL / TD: Sales / Total
Dept, 365 * AP / SAL: 365* Accounts Payable / Sales, TACH: (Total Assets in year t � Total Assets in year t�1) × 100 / Total Assets
in year t�1, SALCH: (Sales in year t � Sales in year t�1) × 100 / Sales in year t�1, LOGTA: Logarithm of Total Assets, LOGDEPT:
Logarithm of Dept, INV / SAL : Inventories / Total Assets. The Kruskal–Wallis test indicateswhether there are statistically significant
differences between the two groups. ** Significant at the 1% level, * Significant at the 5% level, *** Significant at the 10% level
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the audit opinion and as one otherwise. Skinner [77]
considered companies having litigation in the follow-
ing cases: (a) a lawsuit had been filed in a Greek court;
(b) there had been an allegation of common stock price
fraud; or (c) there had been an allegation of stock ex-
change violation under Greek law.

The most consistent result in all previous research
has been that auditor size can explain the supply of
a higher level of audit quality, defined as the joint prob-
ability of detecting and reporting material financial er-
rors (i. e., [4,8,22,24,25,28,47,48,64,72]). The evidence
concerning the relationship between audit firms and
audit report is mixed. Whereas Warren [88] did find
a significant association between large audit firms and
qualified audit reports, Shank and Murdock [76] found
otherwise.

Previous studies also examined whether the auditor
is one of the Big Four (namely PricewaterhouseCoop-
ers, Deloitte and Touche, KPMG, Ernst and Young) or
not [35]. We use a dummy variable set to zero (Domes-
tic = 0) if the auditor was one of the domestic audit
firms and one if the auditor was one of the foreign audit
firms in Greece (Foreign = 1). In Greece the auditing
profession was liberalized in 1992 by enabling legisla-
tion [37], see Caramanis [13,14]. The competition be-
tween the local Greek and foreign audit companies has
increased since 1992. Nowadays, Greek companies au-
dit a greater percentage of companies than foreign audit
companies. It is possible that smaller companies avoid
paying the premium price levied by the large audit com-
panies, since Krishnan et al. [54] found that smaller
firms in the US are less likely to be audited by the ‘Big
Four’ companies. Furthermore, it is possible that the
partners of domestic audit companies are more likely to
develop close personal relationships with the directors
of Greek client companies. On the other hand, there
is a chance that the domestic audit companies will be
more familiar with the ‘small acceptable standards of
control’ in Greece.

Various papers examine the relationship between
the audit opinion before and after the chance of au-
ditors (switching). Chow and Rice [16], Craswell [21],
Gul et al. [40], and Krishnan et al. [56] found a sig-
nificant positive association between qualified opin-
ions and subsequent auditor switching. As Nieves [68]
points out, two effects may obscure the influence of the
audit report in motivating a change: (a) many auditor

changes may be unrelated to audit opinion; and (b) the
reasons for auditor changes are an internal state which
is not directly observable. We tested the importance
of auditor changes to detection of FFS over a 3-year
period. The 3-year period included the first year of
the financial statements and auditors’ opinions and the
2 years before this first year. We used a dummy variable
(Prior 2 year auditor) that takes a value of one (yes = 1)
if the auditor had been retained and a value of zero if
the firm had switched auditors (no = 0).

Finally, we used two other variables, LOSS and
STOCK. LOSS is an indicator variable whose value is
zero if an auditee experienced a loss in the year of
audit opinion and one (profit) otherwise. Spathis [80]
found a significant difference between qualified and
non-qualified audit reports for this variable. STOCK is
a dummy variable that takes a value of zero (yes = 0) for
companies listed in the Athens Stock Exchange and one
for unlisted companies (no = 1). Ireland [46] reported
that whether a company is listed or unlisted may influ-
ence the auditor’s independence. Listed companies may
have greater supervision and training of their stock ex-
change authority. Furthermore, as Ireland [46] points
out, large companies are more likely to have good ac-
counting systems and internal controls, thus reducing
disagreements and limitations on scope while, at the
same time, auditors are more likely to waive earnings
management attempts (resulting in mis-statements) in
large clients, even after controlling for the materiality of
such attempts [67].

Method

Multicriteria decision making (MCDM) provides the
methodological basis for the combination of qualitative
and quantitative data. MCDA has been applied in fi-
nance as a sophisticated tool to improve the decision-
taking in the turbulent and complex financial environ-
ment that exists nowadays. Spronk et al. [82] thor-
oughly investigated the application of this technique
in the financial field. In the present study we used the
MHDIS method [91].

The problem considered in this case study falls
within the classification problematic that in general
involves the assignment of a finite set of alternatives
A D fa1; a2; : : : ; ang to a set of q ordered classes
C1 
 C2 
 � � � 
 Cq . Each alternative was evaluated



Multicriteria Decision Support Methodologies for Auditing Decisions M 2367

along a set of m criteria g1, g2; : : : ; gm . In the present
case study the alternatives involved the companies in
the sample, the criteria correspond to the set of seven
financial variables, and six non-financial variables and
there were two classes, the unqualified financial state-
ments (class C1) and the qualified financial statements
(class C2).

MHDIS distinguishes the groups progressively,
starting by discriminating the first group from the oth-
ers, and then proceeds to the discrimination between
the alternatives belonging to the other group. To ac-
complish this task two additive utility functions are de-
veloped in each one of the q� 1 steps, where q is the
number of groups. The first function Uk(a) describes
the alternatives of group C1, and the second function
U�k(a) describes the remaining alternatives that are
classified in lower groups CkC1; : : : ;Cq .

Uk(a) D
mX
iD1

pkiuki(gi )

and U�k(a) D
mX
iD1

p�kiu�ki(gi);

k D 1; 2; : : : ; q � 1:

The corresponding marginal utility functions for each
criterion gi are denoted as uki(gi) and, u�ki

�
gi
�
which

are normalized between 0 and 1, while the criteria
weights pki and p�ki sum up to 1. As mentioned above,
the model is developed in q� 1 steps. In the first step,
the method develops a pair of additive utility functions
U1(a) and U�1(a) to discriminate between the alter-
natives of group C1 and the alternatives of the other
groups C2; : : : ;Cq . On the basis of the above function
forms the rule to decide upon the classification of any
alternative has the following form:

If U1(a) � U�1(a) then a belongs in C1.
Else if U1(a) � U�1(a) then a belongs in (C2,

C3; : : : ;Cq).
The alternatives that are found to belong in class

C1 (correctly or incorrectly) are excluded from fur-
ther analysis. In the next step, another pair of util-
ity functions U2(a) and U�2(a) is developed to dis-
criminate between the alternatives of group C2 and
the alternatives of the groups C3; : : : ;Cq: Similarly to
step 1, the alternatives that are found to belong in
group C2 are excluded from further analysis. This pro-

cedure is repeated up to the last stage (q� 1), when
all groups have been considered. The estimation of the
weights of the criteria in the utility functions as well as
the marginal utility functions is accomplished through
mathematical programming techniques. More specifi-
cally, at each stage of the hierarchical discrimination
procedure, two linear programs and a mixed-integer
one are solved to estimate the two additive utility func-
tions optimally and to minimize the classification error.
Further details of the mathematical programming for-
mulations used in MHDIS can be found in Zopounidis
and Doumpos [91].

Empirical Results

Table 1 presents descriptive statistics which indicate the
magnitude of the difference in the independent vari-
ables between the qualified and unqualified reports over
the period 2001–2003. A comparison between the mean
value of UTADISCR for the qualified and unqualified
companies in the training sample shows that the for-
mer had a lower average value, which was statistically
significant at the 1% level. Hence, many companies that
had manipulated their financial statements were in fi-
nancial distress [30,36,78]). Statistically significant dif-
ferences at the 1% level were also found for two others
variables, namely Inventories/Sales and Sales Annual
Change, between the two groups in the training sam-
ple. Thus, companies with lower sales are more likely
to receive a qualified report than other companies in
Greece.

Furthermore, the variable Profits before tax/Total
Assets (ROA) had lower means for the qualified com-
panies, which was consistent with most of the previ-
ous studies, indicating that firms which receive quali-
fied opinions made less profit [7,61,78,81,86]).

Table 2 illustrates the contribution of each of the
financial and non-financial criteria in our auditing
model. As our study involved two groups (unqualified
and qualified) the hierarchical discrimination process
of MHDIS consisted of only one stage, during which
two additive utility functions were developed. The util-
ity functionU1 characterizes the unqualified companies
whereas the utility function U�1 characterizes those
that were qualified.

ROA is indicated as one of the important crite-
ria in most cases. Particularly in the case of unquali-
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Multicriteria Decision Support Methodologies for Auditing
Decisions, Table 2
Average weights for the criteria in the 2models

MHDIS financial MHDIS No financial
U1 U�1 U1 U�1

REC / SAL 2.28% 3.82% 0.02% 0.02%
CA / CL 7.17% 25.18% 3.99% 16.41%
CA / TA 21.49% 5.02% 15.04% 10.14%
CASH / TA 4.39% 11.23% 16.87% 1.11%
ROA 44.75% 25.71% 28.09% 11.57%
INV / SAL 12.54% 13.74% 10.55% 0.02%
SALCH 7.38% 15.30% 1.50% 3.94%

Profit or Loss in the
year

0.00% 0.00%

Stock Exchange 0.00% 17.49%
Auditor 0.00% 0.00%
Prior 2 years Auditor 9.93% 0.00%
Litigation 0.00% 22.37%
UTADISCR 14.01% 16.94%

Notes: REC / SAL: Receivable / Sales, CA / CL: Current Assets /
Current Liabilities, CA / TA: Current Assets / Total Assets, CASH
/ TA: Cash / Total Assets, ROA: Profit before Tax � 100 / Total
Assets, INV / SAL: Inventories / Total Assets, SALCH: (Sales in
year t � Sales in year t� 1)� 100 / Sales in year t� 1

fied firms, it has a weight that is as high as 44.75% in
the financial model and 28.09% in the non-financial
one. Similar findings were observed in previous stud-
ies [7,61,71,78,81,86]).

The most important criteria that characterized the
qualified firms in the case of the financial model are
ROA and Current Assets/Current Liabilities (CA/CL)
followed by Sales in year t� Sales in year t� 1 (SALCH)
with weights of 25.71, 25.18 and 15.30%, respectively.
Pasiouras et al. [71] also found ROA to be statistically
significant at the 1% level and one of the most impor-
tant criteria for the models. In addition, Ireland [46]
reported that companies with high liquidity (CA/CL)
might increase the likelihood of a qualified audit opin-
ion as assets may have been overstated.

From the non-financial criteria, litigation, STOCK,
UTADISCR and CA/CL were the most important cri-
teria with 22.37, 17.49, 16.94 and 16.41%, respectively,
for qualified companies. A comparison with the results
of previous studies showed that the results were simi-
lar. In particular, Spathis [80] found that litigation and
financial distress were among the most important vari-

Multicriteria Decision Support Methodologies for Auditing
Decisions, Table 3
Classification results (accuracies in %) for the MHDIS and
Logit models

Unqualified Qualified Average
Panel A:Financial Variables

Training(2001-2003)
MHDIS 94.87 95.73 95.30
LA 95.7 95.7 95.7
Holdout (2004)
MHDIS 80.49 87.80 84.15
LA 78.00 86.6 82.3

Panel B: Non-financial Variables
Training (2001-2003)
MHDIS 98.29 98.29 98.29
LA 97.43 95.73 96.58
Holdout (2004)
MHDIS 84.15 91.46 87.81
LA 74.39 93.90 84.15

ables, and Spathis et al. [79] found CA/CL to be among
the most important factors.

Table 3 presents the classification results obtained
from the financial and non financial models. The clas-
sification ability of the models was tested further us-
ing the out-of-time and out-of-sample companies. The
results indicated that the MHDIS models developed
with the selected variables were able to provide a sat-
isfactory distinction between qualified and unqualified
statements.

The overall correct classifications at the training
and holdout stages were 95.3 and 84.15%, respectively.
The differences between the financial and the non-
financial MHDIS models were significant. Overall, the
non-financial MHDIS model provided higher overall
classification accuracy in both the training (92.3%) and
holdout samples (87.81%). This means that the inclu-
sion of non-financial variables in the model yielded
a more accurate distinction between qualified and un-
qualified companies than the inclusion of financial vari-
ables alone.

For benchmarking purposes, we developed addi-
tional models with logit analysis (LA). These models
were developed with the same input variables. In the
case of the financial model, the classification accuracy
in the training sample was 78%, and the correspond-
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ing figure for the holdout sample was 74.3%. In the
case of the non-financial model, however, the classifi-
cation accuracies were 82.3 and 84.15% in the training
and holdout samples, respectively. It is therefore clear
that MHDIS was more efficient than LA during both
the training and holdout stages (for both financial and
non-financial models).

MHDIS achieves more balanced results in terms of
type I and type II errors in the holdout sample.Whereas
Bell and Tabory [9] reported that type II errors aremore
costly than type I errors, Kida [49] argued that type I
errors might result in: (a) a company changing its au-
dit firm (switching), which means loss in audit firm
revenue; (b) a lawsuit by a client against the account-
ing firm; (c) a negative effect on the auditor’s repu-
tation in the business community; (d) a deterioration
in relations with the client; or (e) the so-called self-
fulfilling prophecy – the qualification itself jeopardizes
client survival, which in turn increases the probability
of that consequence.

Conclusions and Further Research

This study investigated the extent to which MHDIS
models based on financial and non-financial variables
could predict auditors’ decisions to issue qualified opin-
ions in the Greek market.

The sample consisted of 199 companies operating
in the Greek manufacturing, trade and service sectors
with FSF between 2001 and 2004, matched by industry
and total assets with 199 non-FSF ones, yielding a to-
tal of 398 companies. We used out-of-time and out-
of-sample testing samples to evaluate the classification
ability of the model and ensure that they were not over-
fitted to the training dataset. The sample was split into
a training dataset of 234 companies using data from the
period 2001–2003 and a validation dataset of 164 com-
panies using data from the year 2004.

Seven financial and six non-financial variables, rep-
resenting all dimensions of companies’ performance,
were selected for inclusion in the models that were de-
veloped through the MHDIS approach. The results in-
dicated that ROA, CA/CL and Current Assets/Total As-
sets A were the important criteria for financial model.
In additional, litigation, stock exchange, UTADISCR
and CA/CL were the most important criteria for the
non-financial model. Furthermore, the non-financial

MHDIS model provides higher overall classification ac-
curacy indicating that the inclusion of non-financial
variables resulted in a more accurate distinction be-
tween qualified and unqualified companies.

By using such models, auditors can simultaneously
screen a large number of firms and direct their atten-
tion to the ones that are more likely to contain mis-
statements, saving time or money. These models can
also be used by policy-makers in an attempt to stop tax
evasion (i. e. the tax evasion consisting of filing fraudu-
lent tax declarations in Italy is estimated to be between
3 and 10% of GNP [87]). In addition, these models can
be useful to investors, managers, banks and others com-
panies to identify ‘red flags’.

The current research could be extended in several
directions. First, future research could be extended to-
wards the inclusion of additional variables such asman-
agers’ experience, market characteristics (i. e. industry
concentration, industry growth), audit fees and non-
audit fees, subsidiaries, and stock prices. Second, com-
panies could be classified into more specific groups.
Third, the inclusion of data from a longer time period,
could allow the consideration of industry and macroe-
conomic effects. Finally, future research could be di-
rected towards the comparison and integration of al-
ternative or additional classification techniques, such
as neural networks, rough sets, expert systems, sup-
port vector machine, and others. The integration of the
models through additional techniques, such as bagging
and boosting, could also be examined.
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Introduction/Background

Over the last 35 years there have been several stud-
ies which have attempted to develop classification
models to predict takeover targets in various coun-
tries and regions of the world, such as the USA [7,8,
10,11,12,15,23,30,34,37], the UK [2,3,4,5,13,28,36],
Canada [9,20,29], Greece [31,38,39], and more recently
the EU [26,27] and Asia [25]. This is not surprising,
since the prediction of acquisitions can be of major in-
terest to stockholders, investors, creditors, and gener-
ally anyone who has established a relationship with the
acquired firm [35].

Most of these studies have used multivariate statis-
tical and econometric techniques such as discriminant
analysis (DA) and logit analysis and only more recently
the parametric nature and the statistical assumptions
and restrictions of those approaches have led re-
searchers to the application of alternative techniques
such as artificial neural networks (ANN) [10], rough
sets (RS) [31], recursive partitioning algorithm [15],
support vector machines [26], and nearest neigh-
bors [26].

A few recent studies have also used multicriteria
decision aid (MCDA, which is the designation usually
used in Europe, or multiple criteria decision making,
MCDM, which is the one usually used in the USA) tech-
niques [13,25,26,27,36,39] which over the last few years
have gained significant recognition among researchers
and have been employed in several studies in bank-
ing, finance, accounting, and management. For exam-
ple, Steuer and Na [33] identified 256 applications that
combine MCDM and finance. One of the characteris-
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tics of these techniques is that they are well suited for
analyzing complex decision problems that involve mul-
tiple and usually conflicting criteria and/or goals. They
can therefore prove particularly useful in the predic-
tion of acquisitions, since there is often not one sin-
gle reason but a number of reasons that lead manage-
ment to the decision to merge with or acquire another
firm. A further advantage of MCDA techniques is that
they do not make any assumptions, as do the traditional
techniques (see Barniv and McDonald [6] for a sum-
mary of the problems related to the use of discriminant,
logit, and probit), about the normality of the variables
or the group dispersion matrices (e. g., DA) and they
are not sensitive to multicollinearity (e. g., logit analy-
sis). In this paper we first present a brief review of the
studies that have appliedMCDA in the prediction of ac-
quisition targets (Sect. “Methods/Applications”). Then,
in Sect. “Formulation”, we outline one of the MCDA
techniques, namely, utilités additives discriminantes
(UTADIS), which is used for the development of our
classifications models. “Cases” describes a case study
and presents the results. Finally, Sect. “Conclusions”
concludes our paper.

Methods/Applications

Zopounidis and Doumpos [39] were the first to pro-
pose the use of MCDA in the prediction of acquisi-
tion targets. They developed a classification model with
the multigroup hierarchical discrimination (MHDIS)
method using a sample of 30 acquired and 30 nonac-
quired Greek firms and ten financial ratios covering
various aspects of a firm’s financial condition. Data
from 1 year prior to the acquisition (year �1) were
used for the development of the model, while years 2
(year �2) and 3 (year �3) before the acquisition were
used to test its discrimination ability. The model clas-
sifies correctly 58.33 and 61.67% of the firms for years
2 and 3 prior to the acquisition, respectively. The au-
thors argue that this poor classification could be at-
tributed to the difficulty of predicting acquisition tar-
gets in general, and not necessarily to the inability of the
proposed approach as a discrimination method. To test
further the proposed technique, its classification accu-
racy was compared with that of DA and UTADIS. The
correct classification accuracy obtained using the pro-
posed method is better for all years than that obtained

using DA. As opposed to the UTADIS method, the clas-
sification accuracy under the proposed approach is sig-
nificantly higher for year �1, the same for for year �2,
and slightly higher for year �3. On the basis of these
results the authors conclude that the iterative binary
segmentation procedure is able to provide results that
are at least favorably comparable with those provided
by UTADIS and outperforms DA.

Tartari et al. [35] also used UTADIS in their study
along with linear DA (LDA), probabilistic neural net-
works (PNN), and RS in an attempt to examine whether
the integration of different methods using a stacked
generalization approach could result in higher classi-
fication accuracies. Their sample consisted of 48 UK
firms, selected from 19 industries/sectors, acquired
during 2001, and 48 nonacquired firms matched by
principal business activity, asset size, sales volume,
and number of employees. Twenty-three financial ra-
tios measuring profitability, liquidity and solvency, and
managerial performance were initially calculated for
each firm for up to 3 years prior to the acquisition
(1998–2000); however, they finally used a set of nine ra-
tios, selected on the basis of factor analysis. Their exer-
cise consisted of two stages. First, UTADIS, LDA, PNN,
and RS were used to develop individual models. The
most recent year (i. e., 2000) was used as a training sam-
ple, while data from the other two years (i. e., 1998 and
1999) were used to test the generalizing performance of
the proposed integration approach. An eightfold cross-
validation approach was employed to develop the base
models using the four methods. The classifications of
the firms obtained were then used as a training sample
for the development of a stacked generalization model.
Finally, the development of the stacked model was per-
formed using the UTADIS method that combines (at
a metalevel) the group assignments of all the fourmeth-
ods considered in the analysis. The use of other meth-
ods to develop the combined model was also examined;
nevertheless the results are inferior to those obtained
with UTADIS. The stacked model performs better (in
terms of the overall correct accuracy rate) than any of
the four methods upon which it is based, throughout all
the years of the analysis. Furthermore, the results indi-
cate that the stacked model provides significant reduc-
tions in the overall error rate compared with LDA, RS,
and UTADIS, although they were less significant com-
pared with PNN.
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In another UK study, Doumpos et al. [13] com-
pared the classification ability of UTADIS against one
of the models developed using DA, logistic regression
(LR), and ANN. The sample included 76 UK firms
acquired during 2000–2002, matched by industry and
size with 76 nonacquired firms. Twenty-nine financial
ratios were initial candidates for model development,
representing profitability, efficiency, activity, financial
leverage, liquidity, and growth; however, the authors fi-
nally selected six variables on the basis of a t test and
correlation analysis. The UTADIS model was first de-
veloped using data drawn from the most recent year
prior to the acquisition (i. e., year �1). The model de-
veloped was then applied to data from 2 and 3 years
prior to the acquisition (years �2 and �3). The average
accuracies were 74.34 and 78.95%, respectively. These
accuracies are higher than the ones obtained by both
DA and LR, and are found to comparable to or better
than those of ANN when tested using data from years
�2 and �3.

Pasiouras et al. [26] used both UTADIS and
MHDIS, among several other classification techniques,
to develop models specifically designed for the EU
banking industry. They developed several models on
the basis of equal and unequal training samples from
the period 1998–2000, using both raw and country-
adjusted variables. The models were tested in equal
and unequal datasets from a future period (2001–2002).
They also developed models that combine the pre-
dictions of the individual models developed in the
first stage, using two integration techniques, namely,
stacked generalization and majority voting. Their re-
sults were mixed and depended on the form of the vari-
ables used, the datasets, and the evaluation measure
considered. Hence, they concluded that there is no clear
winner technique that dominates all the others under
all circumstances. However, UTADIS appears several
times as one of the best techniques. Furthermore, the
stacked model developed through UTADIS also per-
forms relatively well.

Pasiouras et al. [27] also focused on the EU banking
sector, but differentiated their study in two ways from
that of Pasiouras et al. [26]. First, they considered an
additional MCDA technique, namely, PAIRCLAS, that
was applied for the first time in the prediction of acqui-
sitions. Second, they followed a tenfold cross-validation
resampling procedure for the development and eval-

uation of the models. Their sample consisted of 168
banks acquired between 1998 and 2002 matched with
168 nonacquired banks. MHDIS achieved the highest
overall accuracy in the validation dataset, with 68% of
the acquired and 63.3% of the nonacquired banks clas-
sified correctly (implying an overall classification rate
of 65.7%). PAIRCLAS also achieves marginally better
classification accuracies than UTADIS, and its ability to
classify correctly the nonacquired banks (75%) is even
higher than that of MHDIS (72.2%).

In another study, Pasiouras et al. [25] concentrated
on the Asian banking sector. They used a sample of 52
targets and 47 acquirers that were involved in acquisi-
tions in nine Asian banking markets during 1998–2004
and matched them by country and time with an equal
number of banks not involved in acquisitions. The
models were developed and validated through a tenfold
cross-validation approach using UTADIS and MHDIS.
In each case three versions of the model were devel-
oped. The first one distinguished between acquired
and noninvolved banks. The second one distinguished
between acquirers and noninvolved banks. The last
one, was a three-outcome model that simultaneously
distinguished between targets, acquirers, and nonin-
volved banks. For comparison purposes they also devel-
oped models through DA. The results indicate that the
MCDA models are more efficient that the ones devel-
oped through DA. Furthermore, in all cases the mod-
els are more efficient in distinguishing between acquir-
ers and noninvolved banks than between targets and
noninvolved banks. Finally, the models with a binary
outcome achieve higher accuracies than the ones which
simultaneously distinguish between acquirers, targets,
and noninvolved banks.

Formulation

The problem considered in the present study is a clas-
sification one that in general involves the assignment of
a set ofm alternatives A D fa1; a2; : : : ; amg, evaluated
along a set of n criteria g1, g2, . . . , gn, to a set of q classes
C1,C2, . . . ,Cq. In the case of acquisitions, the alterna-
tives are the firms in the sample, the criteria can corre-
spond to financial and nonfinancial variables, and there
are usually two classes, the nonacquired firms (class C1)
and the acquired firms (class C2). Hence, in what fol-
lows we consider the simple two-class case, while details
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on the multiclass case can be found in Doumpos and
Zopounidis [14] and Zopounidis and Doumpos [39].

The UTADIS approach, used in the present study,
implies the development of an additive utility func-
tion that is used to score the firms and decide upon
their classification. The utility function has the follow-
ing general form:

U(a) D
nX

iD1

wiu0i(gi ) 2 [0; 1] ; (1)

where wi is the weight of criterion gi (the criteria
weights sum up to 1) and u0i(gi) is the corresponding
marginal utility function normalized between 0 and 1.
The marginal utility functions provide a mechanism
for decomposing the aggregate result (global utility) in
terms of individual assessment to the criterion level. To
avoid the estimation of both the criteria weights and
the marginal utility functions, it is possible to use the
transformation ui (gi) D wiu0i (gi). Since u

0
i(gi) is nor-

malized between 0 and 1, it becomes obvious that ui(gi)
ranges in the interval [0,wi]. In this way, the additive
utility function is simplified to the following form:

U(a) D
nX

iD1

ui(gi ) 2 [0; 1] : (2)

The utility function developed provides an aggregate
score U(a) of each firm along all criteria. In the case
of acquisitions prediction, this score provides the basis
for determining whether the firm could be classified in
either the group of nonacquired ones or in the group of
acquired ones. The classification rule in this case is the
following (C1 and C2 denote the group of nonacquired
and acquired firms, respectively, while u1 is a cutoff util-
ity point defined on the global utility scale, i. e., between
0 and 1):

U(a) � u1 ) a 2 C1

U(a) < u1 ) a 2 C2

	
: (3)

The estimation of the additive value function and the
cutoff threshold is performed using linear program-
ming techniques so that the sum of all violations of
the classification rule (3) for all the firms in the train-
ing sample is minimized. A detailed description and
derivation of this mathematical programming formu-
lation can be found in Doumpos and Zopounidis [14].

Cases

In this section, our method is illustrated by a case study
from the work of Pasiouras et al. [24]. The dataset con-
sidered in the study consists of 76 firms acquired be-
tween 2000 and 2002, and 76 nonacquired firms, which
operate in manufacturing, construction, and mining–
quarrying–extraction industries in the UK. The sam-
ple was constructed as follows. The acquired firms were
first identified in the Hemscott M&As database and
the financial data were collected from the Financial
Analysis Made Easy database of Bureau van Dijk. After
screening for data availability in FAME, 59 manufac-
turing, six construction, five production and six min-
ing–quarrying–extraction firms had complete financial
data for the 3 years prior to the acquisition and were
included in the sample.

Although the year of acquisition is not common for
all firms in the sample, they were all thought to be ac-
quired in the “zero” year, considered as the year of ref-
erence. The years of activity prior to “zero” are coded as
“year �1” (1 year prior), “year �2” (2 years prior), and
“year �3” (3 years prior).

After the sample described above had been ob-
tained, nonacquired firms were chosen to match the ac-
quired firms. The firms were matched by industry and
size (total assets) and financial data for the nonacquired
companies were taken from the same calendar years as
for the corresponding acquired companies.

Barnes [5] mentions that the problem for the ana-
lyst who attempts to forecast targets is simply a mat-
ter of identifying the best predictive (i. e., explanatory)
variables. Unfortunately, financial theories do not of-
fer much in selecting specific variables among the nu-
merous ones regarded as potential candidates in model
development. Given the large number of possible ra-
tios, it is important to reduce the list of ratios that en-
ter the final model selection process. Hence, a question
that emerges when attempting to select accounting ra-
tios for empirical research is which ones, among the
hundreds, should be used? However, there is no easy
way to determine how many ratios a particular model
should contain. Too few and the model will not cap-
ture all the relevant information. Too many and the
model will overfit the training sample, but underper-
form in a holdout sample, and will most likely have
onerous data input requirements [21]. As Hamer [17]



2376 M Multicriteria Methods for Mergers and Acquisitions

points out, the variable set should be constructed on
the basis of (1) minimizing the cost of data collection
and (2) maximizing the model applicability. Huberty
[18] suggests three variable screening techniques that
could be used: logical screening (e. g., financial theory
and human judgment), statistical screening (e. g., test
of differences of two group means such as the t test),
and dimension reduction (e. g., factor analysis). In the
present study we follow the latermost approach as in
Stevens [34], Barnes [2], Kira and Morin [20], Zanakis
and Zopounidis [38], and Tartari et al. [35]. Hence,
a total of 25 variables are initially considered on the
basis of data availability and previous studies, cover-
ing several aspects of firms’ performances such as prof-
itability, efficiency, activity, financial leverage, liquid-
ity, and growth. Factor analysis is then used to reduce
the number of variables to a smaller number of factors
that are linear combinations of the initial variables. The
analysis results in the extraction of seven factors, with
eigenvalues higher than 1. The variable with the highest
loading is selected from each one of the seven compo-
nents for inclusion in the classification models. Conse-
quently, we use the following seven variables:
1. X1: Current assets/current liabilities,
2. X2: Total liabilities/shareholders’ equity,
3. X3: Annual change of total assets,
4. X4: Annual change of current liabilities,
5. X5: Profits before taxes/total assets,
6. X6: Sales/stock,
7. X7: Sales/debtors.
X1 is an indicator of liquidity that has been used in
many previous studies [2,12,20,38]. The views about
liquidity are somewhat mixed. It is possible that firms
with excess liquidity are more likely to be acquired be-
cause of their good short-term financial position and
the availability of cash or near-cash assets [36]. In
this case, there is also an opportunity for the acquir-
ers to finance the acquisition with the target’s own re-
sources [32]. On the other hand, it can be argued that
a firm in need of funds to finance its working cap-
ital requirements is likely to be an acquisition target
because the acquirer, after the acquisition, expects to
bring additional funds into the firm to improve its liq-
uidity [29].

X2 is a measure of financial leverage that has been
used as a proxy for financial leverage in Rege [29],
Palepu [23], and Kim and Arbel [19] among others. Ac-

cording to the financial leverage hypothesis the likeli-
hood of being acquired decreases with the increase in
company debt. There are two reasons why firms with
lower preexisting levels of debt are considered attrac-
tive acquisition targets. The first is that the low debt ra-
tio of the target decreases the probability of future de-
fault of the joint firm, while at the same time it increases
the debt capacity of the new firm. The second is that
in some cases a firm has extremely low debt ratios, the
value of the firm may not be maximized, and low lever-
age can be seen as a sign of inefficient management.

X3 and X4 are measures of annual changes in two
basic elements of the firms (i. e., assets, liabilities).
Firms whose growth rates, as measured by X3, are rela-
tively high can experience problems because their man-
agement and/or structure will not able to deal with and
sustain exceptional growth. It is therefore possible that
a firm which is constrained in this way will become an
acquisition target of a firm with surplus resources or
management available to help [14]. Furthermore, a firm
with high levels of growth might be acquired by firms
that what to take advantage of this increase in assets,
and boost their own growth. Turning to X4, exceptional
increases may indicate that the firm has problems in
meeting its short-term liabilities and can therefore be
acquired to avoid solvency.

Variables X5, X6, and X7 are related to the ineffi-
cient management hypothesis. This hypothesis argues
that if the managers of a firm fail to maximize its market
value, then the firm is likely to be an acquisition target
and inefficient managers will be replaced. Thus, these
takeovers are motivated by a belief that the acquiring
firm’s management can manage better the target’s re-
sources. This view is supported by two specific argu-
ments. First, the firm might be poorly run by its cur-
rent management, partly because the objectives of the
management are at variance with those of the share-
holders. In this case, the takeover threat can serve as
a control mechanism limiting the degree of variance be-
tween management’s pursuits for growth from share-
holders’ desire for wealth maximization. A merger may
not be the only way to improve management, but if dis-
appointed shareholders cannot accomplish a change in
management that will increase the value of their invest-
ment within the firm, either because it is too costly or
too slow, then a merger may be a simpler and more
practical way of achieving their desired goals. Second,
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Multicriteria Methods for Mergers and Acquisitions, Table 1
Weights of the variables (percent) in the utilités additives dis-
criminantes (UTADIS) model (averages over the ten replica-
tions)

Year�1 Year�2 Year�3
X1 11.15 2.45 10.40
X2 23.28 34.04 31.99
X3 5.15 7.43 8.80
X4 15.79 5.71 8.59
X5 14.67 25.08 12.22
X6 14.40 11.31 14.77
X7 15.56 13.97 13.23

the acquirer may simply have better management ex-
perience than the target. There are always firms with
unexploited opportunities to cut costs and increase
sales and earnings, and that makes them natural can-
didates for acquisition by other firms with better man-
agement [1]. Therefore, if the management of the ac-
quirer is more efficient than the management of the
target firm, a gain could result through a merger if the
management of the target is replaced.

Table 1 presents the contribution of the seven crite-
ria in the UTADIS model. To ensure the proper devel-
opment and validation of the models, we follow a ten-
fold cross-validation. Hence, the total sample of 152
firms is randomly split into ten mutually exclusive sub-
samples (folds) of approximately equal size. Then ten
models are developed, using each fold in turn for vali-
dation and the remaining folds for training. Therefore,
in each of the ten replications, the training sample con-
sists of 137 firms and the validation of 15 firms. The
figures presented are the averages over the ten replica-
tions.

X2 (total liabilities/shareholders’ equity) appears to
be the most important criterion in all 3 years with an av-
erage weight that ranges between 23.28 (year �1) and
34.04% (year �3). The profitability and efficiency in-
dicators (X5, X6, X7) also appear to be important in
classifying firms within the two groups, with average
weights between 11.31 and 25.08%. X1 (i. e., current as-
sets ratio) carries a weight above 10% in years �1 and
�3 but it is considerably reduced to 2.45% in year �2.
Finally, X3, which corresponds to the annual growth of
the firm in terms of total assets, is the least important
criterion in all years.

Multicriteria Methods for Mergers and Acquisitions, Table 2
Classification accuracies in percent (averages over ten repli-
cations)

Acquired
firms

Nonacquired
firms

Overall
accuracy

Classification accuracies of the UTADIS model
in the development stage
Year�1 80.1 71.8 75.9
Year�2 81.9 71.1 76.5
Year�3 81.1 70.3 75.7
Classification accuracies in the validation
stage
Year�1
UTADIS 76.2 63.9 70.1
DA 77.9 54.0 65.9
Year�2
UTADIS 75.3 65.5 70.4
DA 77.4 47.2 62.3
Year�3

UTADIS 77.3 63.1 70.2
DA 65.5 50.4 58.0

By comparing the score U(a) of each firm with the
cutoff threshold that was calculated through the esti-
mation of the UTADIS model and rule (3), we can de-
cide whether a firm can be classified as acquired or not
acquired. Table 2 presents the classification results ob-
tained by UTADIS during the development and vali-
dation process. In Table 2 we also present the classifi-
cation results obtained by DA, used for benchmarking
purposes.

The overall classification accuracy of the UTADIS
model during the development stage is around 75%.
Furthermore, the model appears to be quite robust,
with classifications that do not deviate significantly
from one year to another. Unsurprisingly, consistent
with previous studies, the classification accuracy de-
creases in the validation stag; however, the decrease is
relatively small and the overall classification accuracy
is now around 70%. It should be mentioned that while
our model misclassifies around 30% of the firms in the
validation dataset, this is not uncommon for studies on
the prediction of acquisitions targets.

Other studies that used resampling techniques ob-
tained similar results. Bartley and Boardman [7] re-
ported a classification accuracy of 64%, while in a later
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study [8] they obtained classification accuracies be-
tween 69.9 and 79.9%. Similarly, the classification ac-
curacy in the study of Kira and Morin [20] was 66.17%.
The study of Pasiouras et al. [27] that focused on the
EU banking industry also reported classification accu-
racies between 61.6 and 65.7%. As Barnes [14] notes,
perfect prediction models are difficult to develop even
for bankruptcy prediction, where failing firms have
definitely inferior or abnormal performance compared
with healthy firms. The problem with the identification
of acquisition targets is not only that there are poten-
tially many reasons for acquisitions, but also that at the
same time managers do not always act in a manner
which maximizes shareholders’ returns owing to hybris
or agency motives.

While the comparison of the results obtained in the
current study with the ones of previous studies gives
a first indication for the performance of the model, a di-
rect comparison is not appropriate because of differ-
ences in the datasets [16,21], the industry under inves-
tigation, the methods used to validate the models, and
so on. Hence, the comparison of the UTADIS model
with the one developed with DA using exactly the same
dataset, variables, and development and validation pro-
cedures might provide a more accurate indication of
the efficiency (in terms of classification accuracy) of the
MCDAmodel. Looking at the results in Table 2, we see
that UTADIS clearly achieves higher classification ac-
curacies than DA. Furthermore, while the classification
accuracies of DA decrease as we move back in time, the
accuracies of UTADIS remain quite robust, even when
we use data from 3 years prior to the acquisition. Fi-
nally, with the exception of acquired firms in year �1,
UTADIS outperforms DA in classifying correct firms of
both groups (i. e., acquired, nonacquired).

Conclusions

In this paper we first discussed why MCDA could be
useful in the prediction of acquisition targets and pro-
vided a review of relevant studies. Then, we presented
the UTADIS technique and its application on a dataset
of acquired and nonacquired UK firms.

The application indicates that UTADIS not only
outperforms a model developed by DA, but it also
achieves quite robust results, as we use data that move
away from the period of the event.

Future applications of MCDA in the area of acqui-
sitions prediction could focus on the incorporation of
nonfinancial and qualitative data (e. g. managers’ expe-
rience, managers’ educational background) in the anal-
ysis. Although this has been mentioned in the literature
in the past [22,38], there is still a lack of studies that
use such variables in the analysis, usually owing to data
availability. MCDA techniques, like UTADIS, can eas-
ily incorporate qualitative data, and it would be there-
fore interesting to perform such an exercise. Further-
more, it would also be worthwhile to investigate the
classification of firms in more than two groups (e. g.,
acquired, acquirers, noninvolved) as in the study of Pa-
siouras et al. [25]. While the results of the later study
were not promising, the study focused on the bank-
ing industry, which is a special case. Hence, results
from nonfinancial sectors might lead to different con-
clusions. MCDA techniques, like MHDIS, which was
developed with the multigroup discrimination in mind,
might be useful in such applications.
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Decision making problems, according to their nature,
the policy of the decision maker, and the overall ob-
jective of the decision may require the choice of an al-
ternative solution, the ranking of the alternatives from
the best to the worst ones or the sorting of the alterna-
tives in predefined homogeneous classes [30]. For in-
stance, a decision regarding the location of a new power
plant can be considered as a choice problem, since the
objective is to select the most appropriate location ac-
cording to environmental, social and investment crite-
ria. On the other hand, an evaluation of the efficiency of
the different units of a firm can be considered as a rank-
ing problem, since the objective is to estimate the rela-
tive performance of each unit compared to the others.
Finally, a credit granting decision is a sorting problem:
a credit application can be accepted, rejected or submit-
ted for further consideration, according to the business
and personal profile of the applicant. Actually, a wide
variety of decision problems, including financial and
investment decisions, environmental decisions, medi-
cal decisions, etc., are better formulated and studied
through the sorting approach.

The sorting problem, generally stated, involves the
assignment of a set of observations (objects, alterna-
tives) described over a set of attributes or criteria into
predefined homogeneous classes. This type of prob-
lem can also referred to as the ‘discrimination’ problem
or the ‘classification’ problem. Although any of these
three terms can be used to describe the general objec-
tive of the problem (i. e. the assignment of observa-

tions into groups), actually, they refer to two slightly
different situations: the discrimination or classification
problem refers to the assignment of observations into
classes which are not necessarily ordered. On the other
hand, sorting refers to the problem in which the obser-
vations should be classified into classes which are or-
dered from the best to the worst ones. For instance, in
medical diagnosis the classification of patients accord-
ing to their symptoms into several possible diseases is
a discrimination (classification) problem, since it is im-
possible to establish a preference ordering between the
diseases. On the contrary, the evaluation of bankruptcy
risk is a sorting problem, since the non-bankrupt firms
are preferred to the bankrupt ones. In this paper the
terms ‘discrimination’, ‘classification’, and ‘sorting’ will
be used without distinction to refer to the general prob-
lem of assigning observations, objects or alternatives
into classes.

The major practical interest of the sorting prob-
lem, has motivated researchers in developing an arsenal
of methods for studying such problems, with the aim
being the development of quantitative models achiev-
ing the higher possible classification accuracy and pre-
dicting ability. In 1936, R.A. Fisher [8] was the first to
propose a framework for studying classification prob-
lems taking into account their multidimensional na-
ture. The linear discriminant analysis (LDA) that Fisher
proposed has been used for decades as the main classifi-
cation technique and it is still being used at least as a ref-
erence point for comparing the performance of new
techniques that are developed. C. Smith in 1947 [34]
extended Fisher’s linear discriminant analysis propos-
ing quadratic discriminant analysis (QDA) in order to
overcome the restrictive assumption underlying LDA
that groups have equal dispersion matrices. Later on,
several other statistical classification approaches have
been proposed. Among them logit and probit analy-
sis are the most widely used techniques overcoming
the multivariate normality assumption of discriminant
analysis (both linear and quadratic). Although these
techniques overcome most of the statistical restrictions
imposed in discriminant analysis, their parameters are
difficult to explain, especially in multigroup discrimi-
nant problems.

The continuous advances in other fields including
operations research and artificial intelligence led many
scientists and researchers to exploit the new capabili-
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ties of these fields, in developing more efficient classifi-
cation techniques. Among the attempts made one can
mention neural networks, machine learning, fuzzy sets
as well as multicriteria decision aid (MCDA). This ar-
ticle will focus on MCDA and its application in the
study of classification problems with or without or-
dered classes. MCDA provides an arsenal of powerful
and efficient nonparametric classification methods and
approaches, which are free of statistical assumptions
and restrictions, while furthermore they are able to in-
corporate the decision maker’s preferences in a flexible
and realistic way.

The remainder of the article is organized as fol-
lows. Section 2 provides a review of MCDA sorting ap-
proaches and techniques, outlining their basic charac-
teristics, concepts and limitations. In section 3, a new
MCDA sorting method is described and its operation is
depicted through a simple illustrative example. Finally,
section 4 concludes the paper and outlines some pos-
sible future research directions concerning the applica-
tion of MCDA in sorting problems.

Multicriteria SortingMethods

The MCDA methods which have been proposed for
the study of sorting problems can be distinguished ei-
ther according to the approach from which they are
originated (multi-objective/goal programming, multi-
attribute utility theory, outranking relations, preference
disaggregation), or according to the type of problem
that they address (ordered or non-ordered classes). The
review presented in this section will distinguish the
methods according to their origination, but in the same
time the type of problems that they address will also be
discussed.

Goal Programming Approaches

The work of A. Charnes and W.W. Cooper [4] set the
foundations on goal/multi-objective programming, but
it can also be considered as one or the pioneering stud-
ies in the field of MCDA in general. Since then, both
multi-objective and goal programming constitute two
major fields of interest from the theoretical and prac-
tical points of view in the MCDA and operations re-
search communities. In particular, goal programming
approaches, during the 1960s and the 1970s have been
used to elicit attribute weights in multiple criteria rank-

ing decision problems [15,27,35,36]. N. Freed and F.
Glover [9] were among the first to investigate the po-
tentials of goal programming techniques in the dis-
criminant problem. Their aim was to develop a linear
discriminant model so that the minimum distance of
the score of each alternative from a predefined cut-off
point is maximized (maximize the minimum distance-
MMD). To develop this model, they proposed the fol-
lowing goal programming formulation:

8̂
<̂
ˆ̂:

max d
s.t.

X
wixi j C d � c; 8i 2 Group 1;X
wixi j � d � c; 8i 2 Group 2;

where wi is the weight of attribute i, xij is the evaluation
of alternative j on attribute i, and c is the cut-off score
(wi and d are unrestricted in sign). Soon after propos-
ing this model, the same authors proposed a variety of
similar goal programming formulations incorporating
several other discrimination criteria, such as the sum of
deviations (optimize the sum of deviations-OSD), the
sum of interior deviations (minimize the sum of in-
terior deviations-MSID) and the maximum deviation
[10].

These two studies attracted the interest of sev-
eral operational researchers and management scien-
tists. S.M. Bajgier and A.V. Hill [2] proposed a new
goal programming approach in order to minimize the
number of misclassifications using a mixed integer pro-
gramming formulation (MIP) and conducted a first ex-
perimental study to compare theMMDmodel, the OSD
model, and their MIP formulation with LDA. They
concluded that the goal programming formulations are
generally superior to LDA, except for the case of mod-
erate to low overlap between groups and equal disper-
sion matrices, where LDA outperforms all the exam-
ined goal programming formulations.

The performance of goal programming approaches
compared to statistical techniques was an issue that
several researchers tried to investigate using mainly
experimental data sets. Freed and Glover [11] com-
paredMMD,MSID, OSD and LDA and they concluded
that although the presence of outliers pose a greater
problem for the two simpler goal programming for-
mulations (MMD and MSID) than for LDA, generally
the goal programming approaches outperform LDA.
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E.A. Joachimsthaler and A. Stam [18] compared the
LDA, QDA, logistic regression and OSD procedures
and they concluded that these methodologies produce
similar results although the misclassification rates for
LDA and QDA tended to increase with highly kurto-
sis data and increased dispersion heterogeneity. C.A.
Markowski and E.P. Markowski [22] examined the in-
fluence of qualitative attributes on the discriminating
performance ofMMD and LDA. Although the incorpo-
ration of qualitative attributes in LDA violates the nor-
mality assumption, the experimental study of the au-
thors showed that the incorporation of qualitative vari-
ables improved the performance of LDA, while on the
other handMMDdid not appear to be particularly well-
suited for use with qualitative variables. In another ex-
perimental study conducted by P.A. Rubin [32], QDA
outperformed 15 goal programming approaches, lead-
ing the author to indicate that ‘if LP models are to be
considered seriously as an alternative to conventional
procedures, they must be shown to outperform QDA
under plausible conditions, presumably involving non-
Gaussian data’. These experimental studies clearly indi-
cate the confusion concerning the discriminating per-
formance of the goal programming formulations as op-
posed to well known multivariate statistical techniques.
Except for this issue, the research on the field of goal
programming approaches for discriminant problems,
was also focus on the theoretical drawbacks which were
often meet. Markowski and Markowski [23] were the
first to identify two major drawbacks of the goal pro-
gramming formulations (MMD and OSD) proposed by
Freed and Glover [9,10]. More specifically, they proved
that if each quadrant contains at least one case from
the second group, unacceptable solutions will result in
MMD (all coefficients in the discriminant function are
zeros which leads all the observations to be classified
in the same group), while furthermore they showed
that the solutions (discriminant functions) obtained
through the MMD and the OSD models are not stable
when the data are transformed (when there is a shift
from the origin). Except for these two problems, many
goal programming formulations were found to suffer
from two additional theoretical shortcomings [29]:
a) they produce unbounded solutions, and
b) they produce improper solutions.
A solution is considered unbounded if the objective
function can be increased or decreased without limit,

in which case the discrimination rule (function) may be
meaningless, whereas a solution is improper if all obser-
vations fall on the classification hyperplane.

To overcome these problems new goal program-
ming formulations were proposed, including hybrid
models [12,13], nonlinear programming formulations
[37], as well as several mixed integer programming for-
mulations [1,3,5,20,33,38,39].

In the light of this review of goal programming ap-
proaches for discriminant problems it is possible to
identify the following three characteristics of the re-
search in this field:
1) The majority of the proposed models aim at devel-

oping a linear discrimination rule (function). The
extension of the models to develop a nonlinear dis-
criminant function leads to nonlinear programming
formulations which are generally computationally
intensive and difficult to solve. Among the few al-
ternative approaches is the MSM method (mul-
tisurface method) proposed by O.L. Mangasarian
[21] that leads to the construction of a piecewise
linear discrimination surface between two groups
(see also [26] for a revision of the method using
multi-objective programming and fuzzy mathemat-
ical programming techniques).

2) Little research has been made on extending the ex-
isting framework on the multigroup discriminant
problem. E.-U. Choo and W.C. Wedley [5], W. Go-
chet et al. [14], as well as J.M. Wilson [39] applied
goal programming approaches in multigroup dis-
criminant problems, but generally most of the stud-
ies in this field were focused on two-group discrim-
ination trying to extend the original goal program-
ming models of Freed and Glover [9,10] in order to
achieve higher classification accuracy and predict-
ing ability.

3) The models based on the goal programming ap-
proach can be applied in any classification problem
with or without ordered classes.

Outranking Relations Approaches

In contrast to the goal programming approaches, out-
ranking relations procedures study the classification
problem on a completely different basis. The aim of
such procedures is not to develop a discriminant func-
tion (linear or nonlinear), but instead their aim is to
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model the decision makers’ preferences and develop
a global preference model which can be used to as-
sign the alternatives (observations) into the predefined
classes. To achieve the classification of the alternatives
some reference profiles are determined which can be
considered as representative examples of each class.
Through the comparison of each alternative with these
reference profiles the classification of the alternatives is
accomplished.

A representative example of MCDA sorting method
based on the outranking relations approach is the
ELECTRE TRI method proposed by W. Yu [40]. The
aim of ELECTRETRI is to provide a sorting of the alter-
natives under consideration into two or more ordered
categories. In order to define the categories ELECTRE
TRI uses some reference alternatives (reference pro-
files) ri, i = 1, . . . , k � 1, which can be considered as
fictitious alternatives different from the alternatives un-
der consideration. The profile ri is the theoretical limit
between the categories Ci and Ci + 1(Ci + 1 is preferred to
Ci) and ri is strictly better than ri� 1 for each criterion.
To provide a sorting of the alternatives in categories
ELECTRE TRI makes comparisons of each alternative
with the profiles.

For an alternative a and a profile ri the concordance
index cj(a, ri) is calculated. This index expresses the
strength of the affirmation ‘alternative a is at least as
good as profile ri on criterion j’. In order to compare
the alternative to a reference profile on the basis ofmore
than one criteria, a global concordance index C(a, ri) is
calculated. This index expresses the strength of the af-
firmation ‘a is at least as good as ri according to all cri-
teria’. Setting wj as the weight of the criterion j, C(a, ri)
is constructed as the weighted average of all ci(a, ri).

In contrast to the concordance index, the discor-
dance index Dj(a, ri) expresses the strength of the op-
position to the affirmation ‘alternative a is at least as
good as profile ri according to criterion gj’. The calcula-
tion of the discordance index is based on the definition
of a veto threshold vj(ri) for criterion j and the profile ri.
The veto threshold vj(ri) for criterion j defines the mini-
mum accepted difference between the values of the pro-
file ri and alternative a on the specific criterion so that
we can say that they have totally different preference ac-
cording to criterion j.

Let F(a; ri) be the set consisted of all criteria for
which the discordance index value is greater than the

value of global concordance index. For each affirma-
tion of the type: ‘alternative a outranks profile ri ac-
cording to all criteria’, the credibility index � s(a, ri) is
calculated. If F(a; ri) is empty then � s(a, ri) = C(a, ri),
otherwise the credibility index is calculated as follows:

�s(a; ri) D C(a; ri ) �
Y

j2F

1 � Dj(a; ri)
1 � C(a; ri )

:

If the value of the credibility index of the affirmation ‘al-
ternative a outranks profile ri according to all criteria}
exceeds a predefined cut-off value �, then the proposi-
tion ‘a outranks ri’ can be considered to be valid. De-
noting the outranking relation as S, the preference (P),
indifference (I) and incomparability (R) relations be-
tween alternative a and profile ri can be defined as fol-
lows:
� aIri if and only if aSri and riSa;
� aPri if and only if aSri and no riSa;
� riPa if and only if no aSri and riSa;
� aRri if and only if no aSri and no riSa.
According to these relations two sorting procedures are
applied: the pessimistic and the optimistic one. The
sorting procedure starts by comparing alternative a to
the worst profile r1 and in the case where aPr1, a is com-
pared to the second profile r2, etc., until one of the fol-
lowing two situations appears:
i) aPri and ri + 1Pa or aIri + 1;
ii) aPri and aRri + 1, . . . , aRri +k, ri + k + 1Pa.
If situation i) appears, then alternative a is assigned to
category i + 1 by both pessimistic and optimistic proce-
dures. If situation ii) appears, then a is assigned to cate-
gory i + 1 by the pessimistic procedure and to category
i + k + 1 by the optimistic procedure.

It is clear that the ELECTRE TRI method is a pow-
erful tool for analyzing the decision maker’s preference
in sorting problems involving multiple criteria where
the classes are ordered. However, the major drawback
of the method is the significant amount of informa-
tion that it requires by the decision maker (weights
of the criteria, preference and indifference thresholds,
veto thresholds, etc.). This problem can be overcame
using decision instances (assignment examples) as pro-
posed in [25].

Other MCDA sorting methods based on the out-
ranking relations approach have been proposed in
[24] (N-TOMIC method), [31] and the PROMETHEE
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method as it has been modified in [19]. Furthermore,
P. Perny [28] extended the existing framework of the
sorting methods based on the outranking relations ap-
proach in the case in which the groups are not or-
dered. More specifically, he proposed the construction
of a fuzzy outranking relation in order to estimate the
membership of each alternative for each group, and
suggested two assignment procedures:
a) filtering by strict preference (the assignment rule

consists of testing whether an alternative is pre-
ferred or not to a reference profile reflecting the
lower limit of a group), and

b) filtering by indifference (the assignment rule con-
sists of testing whether an alternative is indifferent
or not to a reference profile representing a prototype
of a group).

Overall the main characteristics of sorting methods
based on the outranking relations approach of MCDA
include their application to both sorting (ordered
classes) as well as discrimination (non ordered classes)
problems, and the significant amount of information
that they require by the decision maker.

Preference Disaggregation Approaches

The preference disaggregation approach refers to the
analysis (disaggregation) of the global preferences of
the decision maker to deduce the relative importance
of the evaluation criteria, using ordinal regression tech-
niques based mainly on linear programming formula-
tions.

In contrast to the outranking relations approach the
global preference model of the decision maker is not
constructed through a direct interrogation procedure
between the decision analyst and the decision maker.
Instead, decision instances (e. g. past decisions) are used
in order to analyze the decision policy of the decision
maker, to specify his/her preferences and construct the
corresponding global preference model as consistently
as possible.

A well known preference disaggregation method is
the UTAmethod (UTilités Additives) proposed in [17].
Given a predefined ranking of a reference set of alterna-
tives, the aim of the UTAmethod is to construct a set of
additive utility functions which are as consistent as pos-
sible with the pre-ordering of the alternatives (and con-
sequently with the decision maker’s preferences). The

form of the additive utility function is the following:

U(g) D
X
j

u j(g j);

where U(g) denotes the global utility of an alternative
described over a vector of criteria g, while uj(gj) is the
partial or marginal utility of an alternative on criterion
gj.

Except for the study of ranking problems, the
methodological framework of the preference disaggre-
gation approach using the UTAmethod is also applica-
ble in sorting problems. The UTADIS method (UTilités
Additives DIScriminantes) [6,16,17,42] is a representa-
tive example. In the UTADIS method, the sorting of the
alternatives is accomplished by comparing the global
utility (scores) of each alternative a, denoted as U(a),
with some thresholds (u1, . . . , uq� 1) which distinguish
the classes C1, . . . , Cq (the classes are ordered, so that C1

is the class of the best alternatives and Cq is the class of
the worst alternatives).

U(a) � u1) a 2 C1

u2 � U(a) < u1) a 2 C2

� � �

uk � U(a) < uk�1) a 2 Ck

� � �

U(a) < uq�1) a 2 Cq :

The objective of the UTADIS method is to estimate
an additive utility function and the utility thresholds
in order to minimize the classification error. The clas-
sification error is measured through two error func-
tions denoted as �+(a) and ��(a), representing the de-
viations of a misclassified alternative from the utility
threshold. The estimation of both the additive utility
model and the utility thresholds is achieved through
linear programming techniques [6,42].

See [7] and [41] for three variants of the UTADIS
method to improve the classification accuracy of the
obtained additive utility models as well as their pre-
dicting ability. The first variant (UTADIS I) except for
the classification errors also incorporates the distances
of the correctly classified alternatives from the util-
ity thresholds which have to be maximized. The sec-
ond variant (UTADIS II) is based on a mixed integer
programming formulation minimizing the number of
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misclassifications instead of their magnitude, while the
third variant (UTADIS III) combines UTADIS I and II,
and its aim is to minimize the number of misclassifica-
tions and maximize the distances of the correctly clas-
sified alternatives from the utility thresholds.

Overall themain characteristics of the application of
the preference disaggregation approach in the study of
sorting problems, can be summarized in the following
three aspects.
1) The information that is required is minimal, since,

similarly to the goal programming approaches, only
a predefined classification of a reference set of alter-
natives is required.

2) The preference disaggregation approach is focused
only on decision problems where the classes are or-
dered, since it is assumed that there is a strict pref-
erence relation between the classes.

3) The classification/sorting models which are devel-
oped have a nonlinear form, since the marginal util-
ities of the evaluation criteria are piecewise linear
and consequently the global utility model is also
nonlinear, in contrast to the linear discriminant
models used in the goal programming approaches.

AMultigroup Hierarchical DiscriminationMethod

In this section a new method is presented for the
study of discrimination problems with two or more
ordered groups (multigroup discrimination). The pro-
posed method is called M.H.DIS (Multigroup Hierar-
chical DIScrimination) and differs from most of the
aforementioned MCDA approaches in two major as-
pects.
1) It employs a hierarchical discrimination approach:

the method does not aim on the development of an
overall global preference model (discriminant func-
tion) which will characterize all the observations (al-
ternatives or objects). Instead the method is try-
ing to distinguish the groups progressively, starting
by discriminating the first group (best alternatives)
from all the others, and then proceeding to the dis-
crimination between the objects which belong to the
other groups.

2) It accommodates three different discrimination cri-
teria in a very flexible and efficient way. The most
common discrimination criterion in the previous
approaches is the minimization of the classification

error which is measured as the deviations of the
scores of the misclassified alternatives from some
cut-off points. However, such an objective does not
necessarily yield the optimal classification rule. For
instance, consider that in a discrimination problem,
three alternatives are misclassified with the follow-
ing deviations from the cut-off point: [0.25, 0.25,
0.25], with the overall objective of minimizing the
total classification error being 0.75. It is obvious,
that this classification result is not optimal, since
a classification result [0, 0, 0.75] yields the same
value for the overall classification error (0.75), but
there is only one misclassified alternative instead of
three. Several mixed integer programming formu-
lations have been proposed to confront this issue,
but their application in real world problems is pro-
hibited by the significant amount of time required
to solve such problems. M.H.DIS employs an effi-
cient mixed integer programming (MIP) formula-
tion for minimizing the number of misclassifica-
tions, once the minimization of the classification er-
ror has been achieved. Furthermore, M.H.DIS also
considers a third criterion in order to achieve the
higher possible discrimination. These three discrim-
ination criteria have been used in previous stud-
ies separately, or in hybrid models [12,13], but they
have never been used through a sequential proce-
dure. Instead, in M.H.DIS initially the classification
error is minimized. Then considering only the mis-
classified alternatives M.H.DIS tries to ‘re-arrange’
their classification error in order to minimize the
number of misclassifications, and finally the maxi-
mum discrimination between the alternatives is at-
tempted.

Model Formulation

Let A = {a1, . . . , an} be a set of n alternatives which
should be classified into q ordered classes C1, . . . , Cq.(C1

is preferred to C2, C2 is preferred to C3, etc.) Each al-
ternative is described (evaluated) along a set G = {g1,
. . . , gm} ofm evaluation criteria. The evaluation of each
alternative a on criterion gi is denoted as gi(a). Ac-
cording to the set A of alternatives, pi different values
for each criterion gi can be distinguished. These pi val-
ues are rank-ordered from the smallest value g1i to the
largest value g pii . Furthermore, among the set of cri-



2386 M Multicriteria Sorting Methods

teria it is possible to distinguish two subsets: a subset
G1 consisting of m1 criteria for which higher values in-
dicate higher preference, and a second subset G2 con-
sisting of m2 criteria for which the decision maker’s
preference is a decreasing function of the criterion’s
scale. For instance, in an investment decision problem
G1 may include criteria related to the return of an in-
vestment project (projects with higher return are pre-
ferred), while G2 may include criteria related to the
risk of the investment (projects with lower risk are pre-
ferred).

The Hierarchical Discrimination Process

The method proceeds progressively in the classification
of the alternatives into the predefined classes, starting
from class C1 (best alternatives). Initially, the aim is to
identify which alternatives belong in class C1. The al-
ternatives which are found to belong in class C1 (either
correctly or incorrectly) are excluded from further con-
sideration. In a second stage the objective is to identify
which alternatives belong in class C2. The alternatives
which are found to belong in this class (either correctly
or incorrectly) are excluded from further consideration,
and the same procedure continues until all alternatives
have been classified in the predefined classes.

Throughout this hierarchical classification proce-
dure, it is assumed that the decision maker’s prefer-
ences are monotone functions (increasing or decreas-
ing) on the criteria’s scale. This assumption implies that
in the case of a criterion gi 2 G1, as the evaluation of an
alternative on this criterion increases, then the decision
of classifying this alternative into a higher (better) class
is more favorable to a decision of classifying the alterna-
tive into a lower (worst) class. For instance, in the credit
granting problem as the profitability of a firm increases,
the credit analyst will be more favorable in classifying
the firm as a healthy firm, rather than classifying it as
a risky one. A similar implication is also made for each
criterion gi 2 G2.

This preference relation between the several possi-
ble decisions of classifying a specific alternative a into
one of the predefined classes, imposes the following
general classification rule:

The decision concerning the classification of an
alternative a into one of the predefined classes

should be made in such a way that the utility
(value) of such a decision for the decision maker
is maximized.

The utility of a decision concerning the classification of
an alternative a into group Cj can be expressed in the
form of additive utility function:

UC j (a) D
mX
iD1

uC j
i [gi(a)] 2 [0; 1];

where uC j
i [gi(a)] denotes the marginal (partial) utility

of the decision concerning the classification of an al-
ternative a into group Cj according to criterion gi. If
gi 2 G1, then uC j

i (gi) will be an increasing function
on the criterion’s scale. On the contrary, the marginal
utility of a criterion gi 2 G2 regarding the classifi-
cation of an alternative into a lower (worse) class
Ck (k >j) will be a decreasing function on the crite-
rion’s scale. For instance, consider once again the credit
granting problem: since healthy firms are generally
characterized by high profitability, the marginal util-
ity for a profitability criterion for the group of healthy
firms will be an increasing function, indicating that as
profitability increases the preference of decision con-
cerning the classification of a firm in the group of
healthy firms in also increasing. On the other hand,
for the group of risky firms the marginal utility will
be a decreasing function of the criterion’s (profitabil-
ity) values, indicating that as profitability increases the
preference of the decision concerning the classifica-
tion of a firm in the group of risky firms is decreas-
ing.

Consequently, at each stage of the hierarchical clas-
sification procedure that was described above, two util-
ity functions are constructed. The first one corresponds
to the utility of a decision concerning the classification
of an alternative a into class Ck (denoted as UCk (a)),
while the second one corresponds to the utility of a de-
cision concerning the nonclassification of an alternative
a into class Ck (denoted as U�Ck (a)). Based on these
two utility functions the aforementioned general classi-
fication rule can be expressed as follows:

(
if UCk (a) > U�Ck (a); then a 2 Ck ;

if UCk (a) < U�Ck (a); then a … Ck :
(1)
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Multicriteria Sorting Methods, Figure 1
The hierarchical classification procedure

Following this rule, the overall hierarchical discrimina-
tion procedure is presented in Fig. 1.

Estimation of Utility Functions

According to the hierarchical discrimination procedure
which was described above, to achieve the classification
of the alternatives in q classes, the number of utility
functions which must be estimated is 2(q� 1). The esti-
mation of these utility functions in M.H.DIS is accom-
plished through linear programming techniques. More
specifically, at each stage of the hierarchical discrimi-
nation procedure, two linear programs and one mixed
integer program are solved to estimate ‘optimally’ the
two utility functions.

LP1: Minimizing the Overall Classification Error

According to the classification rule (1), to achieve the
correct classification of an alternative a 2 Ck at stage k
(cf. Fig. 1), the estimated utility functions should satisfy

the following constraint:

UCk (a) > U�Ck (a):

Since, in linear programming it is not possible to use
strict inequality constraints, a small positive real num-
ber smay be used as follows:

UCk (a)� U�Ck (a) � s:

If for an alternative a 2 Ck the classification rule at
stage k yields UCk (a) < U�Ck (a), then this alternative is
misclassified, since it should be classified in one of the
lower classes (the specific classification of the alterna-
tive will be determined in the next stages of the hierar-
chical discrimination process). The classification error
in this case is:

e(a) D U�Ck (a) � UCk (a)C s:

Similarly, to achieve the correct classification of an
alternative b 62 Ck at stage k, the estimated utility func-
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tions should satisfy the following constraint:

U�Ck (b) � UCk (b) � s:

If this constraint is not satisfied for an alternative b 62
Ck at stage k, then this fact implies that this alternative
should be classified in class Ck and the classification er-
ror in this case is e(b) = UCk (b) � U�Ck (b) +s.

Moreover, to achieve the monotonicity of the
marginal utilities, the following constraints are im-
posed:

if gi 2 G1

8̂
ˆ̂̂<
ˆ̂̂̂
:

uCk
i (g1i ) D 0

u�Ck
i (gpii ) D 0

uCk
i (g jC1

i ) > uCk
i (g ji )

u�Ck
i (g jC1

i ) < u�Ck
i (g ji )

(2)

if gi 2 G2

8̂
ˆ̂̂<
ˆ̂̂̂
:

uCk
i (gpii ) D 0

u�Ck
i (g1i ) D 0

uCk
i (g jC1

i ) < uCk
i (g ji )

u�Ck
i (g jC1

i ) > u�Ck
i (g ji )

(3)

where g j
i and g jC1

i are two consecutive values of crite-
rion gi(g

jC1
i > g j

i for all gi 2 G). These constraints can
be simplified by setting:

if gi 2 G1

(
wCk

i j; jC1 D uCk
i (g jC1

i ) � uCk
i (g ji )

w�Ck
i j; jC1 D u�Ck

i (g ji ) � u�Ck
i (g jC1

i )

(4)

if gi 2 G2

(
wCk

i j; jC1 D uCk
i (g ji ) � uCk

i (g jC1
i )

w�Ck
i j; jC1 D u�Ck

i (g jC1
i ) � u�Ck

i (g ji )

(5)

The marginal utility of criterion gi at point g
j
i can

then be calculated through the following formulas:

uCk
i (g ji ) D

j�1X
lD1

wCk
i l ;lC1;

u�Ck
i (g ji ) D

pi�1X
lD j

w�Ck
i l ;lC1:

(6)

Using these transformations, constraints (2) and (3)
can be rewritten as follows (a small positive number t
is used to ensure the strict inequality):

wCk
i j; jC1 � t; w�Ck

i j; jC1 � t; 8gi :

Consequently, the initial linear program (LP1) to be
solved can be formulated as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min F D
X
a2A

e(a)

s.t. UCk (a) � U�Ck (a)C e(a) � s;
8a 2 Ck ;

U�Ck (b) � UCk (b)C e(b) � s;
8b … Ck ;

wCk
i j; jC1 � t

w�Ck
i j; jC1 � tX
i

X
j

wCk
i j; jC1 D 1

X
i

X
j

w�Ck
i j; jC1 D 1

e(a); s; t � 0:

LP2: Minimizing the Number of Misclassifications

If after the solution of (LP1), there exist some alterna-
tives a 2 A for which e(a) > 0, then obviously these
alternatives are misclassified. However, as it has been
already illustrated during the discussion of the main
characteristics ofM.H.DIS, it may be possible to achieve
a ‘re-arrangement’ of the classification errors which
may lead to the reduction of the number of misclassi-
fications.

InM.H.DIS this is achieved through amixed integer
programming (MIP) formulation. However, since MIP
formulations are difficult to solve, especially in cases
where the number or integer or binary variables is large,
the MIP formulation used in M.H.DIS considers only
the misclassifications occurred by solving (LP1), while
retaining all the correct classifications. Let C be the set
of alternatives which have been correctly classified after
solving (LP1), andM be the set of misclassified alterna-
tives for which e(a) > 0. The MIP formulation used in
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M.H.DIS is the following (LP2):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min F D
X
a2A

I(a)

s.t. UCk (a)� U�Ck (a) � s;
8a 2 Ck \ C;

U�Ck (b)� UCk (b) � s;
8b … Ck ; b 2 C;

UCk (a)� U�Ck (a)C I(a) � s;
8a 2 Ck \ M;

U�Ck (b)� UCk (b)C I(a) � s;
8b … Ck ; b 2 M;

wCk
i j; jC1 � t

w�Ck
i j; jC1 � tX
i

X
j

wCk
i j; jC1 D 1

X
i

X
j

w�Ck
i j; jC1 D 1

s; t; I(a) integer:

The first set of constraints is used to ensure that
all the correct classifications achieved by solving (LP1)
are retained. The second set of constraints is used only
for the alternatives which were misclassified by (LP1).
Their meaning is similar to the constraints in LP1, with
the only difference being the transformation of the con-
tinuous variables e(a) of LP1 (classification errors) into
integer variables I(a) which indicate whether an alter-
native is misclassified or not. The meaning of the final
two constraints has already been illustrated in the dis-
cussion of the LP1 formulation. The objective of LP2 is
to minimize the number of misclassifications occurred
through the solution of LP1.

LP3: Maximizing the Minimum Distance

Solving LP1 and LP2 the ‘optimal’ classification of the
alternatives has been achieved, where the term ‘optimal’
refers to the minimization of the number of misclassi-
fied alternatives. However, the correct classification of
some alternatives may have been ‘marginal’, that is al-
though they are correctly classified, their global utilities
according to the two utility functions developed may
have been very close. The objective of LP3 is to maxi-
mize the minimum difference between the global util-

ities of the correctly classified alternatives achieved ac-
cording to the two utility functions.

Similarly to LP2, let C be the set of alternatives
which have been correctly classified after solving LP1
and LP2, and M be the set of misclassified alternatives.
LP3 can be formulated as follows:8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max d
s.t. UCk (a)� U�Ck (a)� d � s;

8a 2 Ck \ C;
U�Ck (b) � UCk (b)� d � s;
8b … Ck ; b 2 C;

UCk (a)� U�Ck (a) � s;
8a 2 Ck \M;

U�Ck (b) � UCk (b) � s;
8b … Ck ; b 2 M;

wCk
i j; jC1 � t

w�Ck
i j; jC1 � tX
i

X
j

wCk
i j; jC1 D 1

X
i

X
j

w�Ck
i j; jC1 D 1

d; s; t � 0:

The first set of constraints involves only the cor-
rectly classified alternatives. In these constraints d rep-
resents the minimum absolute difference between the
global utilities of each alternative in the two utility func-
tions. The second set of constraints involves the mis-
classified alternatives and it is used to ensure that they
will be retained as misclassified.

An Illustrative Example

To illustrate the application of the method, consider
a simple example consisting of six alternatives eval-
uated along three evaluation criteria [25] for which
higher values are preferred. The alternatives must be
classified in three ordered classes. Table 1, illustrates the
evaluation of the alternatives on the criteria as well as
the predefined classification.

Distinguishing Between C1 and C2-C3

In the first stage of the hierarchical discrimination pro-
cedure, the aim is to distinguish the alternatives be-
longing in class C1 from the alternatives belonging in
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Multicriteria Sorting Methods, Table 1
Data of the illustrative example (Source: [25])

g1 g2 g3 Class
a1 70 64:75 46:25 C1
a2 61 62 60 C1
a3 40 50 37 C2
a4 66 40 23:125 C2
a5 20 20 20 C3
a6 15 15 30 C3

classes C2 and C3. To achieve this classification two
utility functions are developed, denoted as UC1 (a) and
U�C1 (a).

The utility of the decision of classifying the alterna-
tive a1 in class C1 can be expressed as follows:

UC1 (a1) D uC1
1 (70)C uC1

2 (64:75)C uC1
3 (46:25): (7)

Since for all criteria higher values are preferred, it
is possible to define the following rank-order on each
criterion’s scale (p1 = p2 = p3 = 6).

g1) g11 = 15 < 20 < 40 < 61 < 66 < 70 = g p11 ;
g2) g12 = 15 < 20 < 40 < 50 < 62 < 64.75 = g p22 ;
g3) g13 = 20 < 23.125 < 30 < 37 < 46.25 < 60 = g p33 .

According to relation (4), the following transforma-
tions are then applied (criterion g1):

wC1
11;2 D uC1

1 (20) � uC1
1 (15);

wC1
12;3 D uC1

1 (40) � uC1
1 (20);

wC1
13;4 D uC1

1 (61) � uC1
1 (40);

wC1
14;5 D uC1

1 (66) � uC1
1 (61);

wC1
15;6 D uC1

1 (70) � uC1
1 (66):

The same transformations are also applied to crite-
ria g2 and g3. Then, according to (6), relation (7) can be
re-written in the following way:

UC1 (a) D (wC1
11;2 C wC1

12;3 C wC1
13;4 C wC1

14;5 C wC1
15;6)

C (wC1
21;2 C wC1

22;3 C wC1
23;4 C wC1

24;5 C wC1
25;6)

C (wC1
31;2 C wC1

32;3 C wC1
33;4 C wC1

34;5):

On the other hand, if a1 is classified in class C2 then
the utility of the decision maker will be:

U�C1 (a1) D u�C1
1 (70)C u�C1

2 (64:75)C u�C1
3 (46:25)

m

U�C1 (a1) D w�C1
35;6 :

Following the same methodology, the utilities con-
cerning the classification of the rest of the alternatives
are also formulated.
� Alternative a2:

U�C1 (a2) D uC1
1 (61)C uC1

2 (62)C uC1
3 (60)

m

UC1 (a2) D (wC1
11;2 C wC1

12;3 C wC1
13;4)

C (wC1
21;2 C wC1

22;3 C wC1
23;4 C wC1

24;5)

C (wC1
31;2 C wC1

32;3 C wC1
33;4 C wC1

34;5 C wC1
35;6);

U�C1 (a2) D u�C1
1 (61)C u�C1

2 (62)C u�C1
3 (60)

m

U�C1 (a2) D (w�C1
14;5 C w�C1

15;6 )C (w�C1
25;6 ):

� Alternative a3:

U�C1 (a3) D uC1
1 (40)C uC1

2 (50)C uC1
3 (37)

m

UC1 (a3) D (wC1
11;2 C wC1

12;3)

C (wC1
21;2 C wC1

22;3 C wC1
23;4)

C (wC1
31;2 C wC1

32;3 C wC1
33;4);

U�C1 (a3) D u�C1
1 (40)C u�C1

2 (50)C u�C1
3 (37)

m

U�C1 (a3) D (w�C1
13;4 C w�C1

14;5 C w�C1
15;6 )

C (w�C1
24;5 C w�C1

25;6 )C (w�C1
34;5 C w�C1

35;6 ):

� Alternative a4:

U�C1 (a4) D uC1
1 (66)C uC1

2 (40)C uC1
3 (23:125)

m

UC1 (a4) D (wC1
11;2 C wC1

12;3 C wC1
13;4 C wC1

14;5)
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C (wC1
21;2 C wC1

22;3)C (wC1
31;2);

U�C1 (a4) D u�C1
1 (66)

C u�C1
2 (40)C u�C1

3 (23:125)

m

U�C1 (a4) D (w�C1
15;6 )

C (w�C1
23;4 C w�C1

24;5 C w�C1
25;6 )

C (w�C1
32;3 C w�C1

33;4 C w�C1
34;5 C w�C1

35;6 ):

� Alternative a5:

U�C1 (a5) D uC1
1 (20)C uC1

2 (20)C uC1
3 (20)

m

UC1 (a5) D (wC1
11;2)C (wC1

21;2);

U�C1 (a5) D u�C1
1 (20)

C u�C1
2 (20)C u�C1

3 (20)

m

U�C1 (a5)

D (w�C1
12;3 C w�C1

13;4 C w�C1
14;5 C w�C1

15;6 )

C (w�C1
22;3 C w�C1

23;4 C w�C1
24;5 C w�C1

25;6 )

C (w�C1
31;2 C w�C1

32;3 C w�C1
33;4 C w�C1

34;5 C w�C1
35;6 ):

� Alternative a6:

U�C1 (a6) D uC1
1 (15)C uC1

2 (15)C uC1
3 (30)

m

UC1 (a6) D (wC1
31;2 C wC1

32;3);

U�C1 (a6) D u�C1
1 (15)C u�C1

2 (15)C u�C1
3 (15)

m

U�C1 (a6)

D (w�C1
11;2 C w�C1

12;3 C w�C1
13;4 C w�C1

14;5 C w�C1
15;6 )

C (w�C1
21;2 C w�C1

22;3 C w�C1
23;4 C w�C1

24;5 C w�C1
25;6 )

C (w�C1
33;4 C w�C1

34;5 C w�C1
35;6 ):

According to these expressions of the global utility
of the decision to classify an alternative into class C1 or
into one of the classes C2 and C3, the LP1 formulation
is used to minimize the classification error (s = 0.001, t
= 0.0001).

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min F D e(a1)C e(a2)C e(a3)C e(a4)
Ce(a5)C e(a6)

s.t. UC1 (a1) � U�C1 (a1)C e(a1) � 0:001
UC1 (a2) � U�C1 (a2)C e(a2) � 0:001
U�C1 (a3) � UC1 (a3)C e(a3) � 0:001
U�C1 (a4) � UC1 (a4)C e(a4) � 0:001
U�C1 (a5) � UC1 (a5)C e(a5) � 0:001
U�C1 (a6) � UC1 (a6)C e(a6) � 0:001
wC1

i j; jC1 � 0:0001; w�C1
i j; jC1 � 0:0001;

3X
iD1

5X
jD1

wC1
i j; jC1 D 1;

3X
iD1

5X
jD1

w�C1
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 6;
e(a1); e(a2); e(a3) � 0;
e(a4); e(a5); e(a6) � 0:

The obtained solution is presented in Table 2.
According to this solution, the marginal utilities are cal-
culated.
� Criterion g1:

– uC1
1 (15) = 0,

– u�C1
1 (15) = w�C1

11;2 + w�C1
12;3 + w�C1

13;4 +w�C1
14;5 + w�C1

15;6
= 0.25937,

Multicriteria Sorting Methods, Table 2
Results obtained through the solution of LP1

wC1
11;2 0.00010 w�C1

11;2 0.03708
wC1
12;3 0.00010 w�C1

12;3 0.03708
wC1
13;4 0.09872 w�C1

13;4 0.07406
wC1
14;5 0.00010 w�C1

14;5 0.03708
wC1
15;6 0.09872 w�C1

15;6 0.07406
wC1
21;2 0.00010 w�C1

21;2 0.03708
wC1
22;3 0.00010 w�C1

22;3 0.03708
wC1
23;4 0.09872 w�C1

23;4 0.07406
wC1
24;5 0.13570 w�C1

24;5 0.11104
wC1
25;6 0.09872 w�C1

25;6 0.07406
wC1
31;2 0.00010 w�C1

31;2 0.03708
wC1
32;3 0.09872 w�C1

32;3 0.07406
wC1
33;4 0.09872 w�C1

33;4 0.07406
wC1
34;5 0.13570 w�C1

34;5 0.11104
wC1
35;6 0.13570 w�C1

35;6 0.11104
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– uC1
1 (20) = wC1

11;2 = 0.0001,
– u�C1

1 (20) = w�C1
12;3 +w�C1

13;4 +w�C1
14;5 +w

�C1
15;6 = 0.22229,

– uC1
1 (40) = wC1

11;2 +w
C1
12;3 = 0.0002,

– u�C1
1 (40) = w�C1

13;4 +w�C1
14;5 +w�C1

15;6 = 0.18521,
– uC1

1 (61) = wC1
11;2 +w

C1
12;3 +w

C1
13;4 = 0.09892,

– u�C1
1 (61) = w�C1

14;5 + w�C1
15;6 = 0.11114,

– uC1
1 (66) = wC1

11;2 + wC1
12;3 + wC1

13;4 + wC1
14;5 = 0.09902,

– u�C1
1 (66) = w�C1

15;6 = 0.07406,
– uC1

1 (70) = wC1
11;2 + wC1

12;3 + wC1
13;4 + wC1

14;5 + wC1
15;6 =

0.19773,
– u�C1

1 (70) = 0;
� Criterion g2:

– uC1
2 (15) = 0,

– u�C1
2 (15) = w�C1

21;2 + w�C1
22;3 + w�C1

23;4 + w�C1
24;5 +w�C1

25;6
= 0.33333,

– uC1
2 (20) = wC1

21;2 = 0.0001,
– u�C1

2 (20) = w�C1
22;3 + w�C1

23;4 + w�C1
24;5 + w�C1

25;6 =
0.29625,

– uC1
2 (40) = wC1

21;2 + wC1
22;3 = 0.0002,

– u�C1
2 (40) = w�C1

23;4 + w�C1
24;5 + w�C1

25;6 = 0.25917,
– uC1

2 (50) = wC1
21;2 + wC1

22;3 + wC1
23;4 = 0.09892,

– u�C1
2 (50) = w�C1

24;5 + w�C1
25;6 = 0.18511,

– uC1
2 (62) = wC1

21;2 +w
C1
22;3 +w

C1
23;4 +w

C1
24;5 = 0.23462,

– u�C1
2 (62) = w�C1

25;6 = 0.07406,
– uC1

2 (64.75) = wC1
21;2 + wC1

22;3 + wC1
23;4 + wC1

24;5 + wC1
25;6

= 0.33333,
– u�C1

2 (64.75) = 0;
� Criterion g3:

– uC1
3 (20) = 0,

– u�C1
3 (20) = w�C1

31;2 + w�C1
32;3 + w�C1

33;4 +w�C1
34;5 +w�C1

35;6 =
0.40730,

– uC1
3 (23.125) = wC1

31;2 = 0.0001,
– u�C1

3 (23.125) = w�C1
32;3 + w�C1

33;4 + w�C1
34;5 +w�C1

35;6 =
0.37021,

– uC1
3 (30) = wC1

31;2 +w
C1
32;3 = 0.09882,

– u�C1
3 (30) = w�C1

33;4 +w�C1
34;5 +w�C1

35;6 = 0.29615,
– uC1

3 (37) = wC1
31;2 +w

C1
32;3 +w

C1
33;4 = 0.19753,

– u�C1
3 (37) = w�C1

34;5 +w�C1
35;6 = 0.22209,

– uC1
3 (46.25) = wC1

31;2 +wC1
32;3 +wC1

33;4 +wC1
34;5 =

0.33323,
– u�C1

3 (46.25) = w�C1
35;6 = 0.11104,

– uC1
3 (60) = wC1

31;2 +wC1
32;3 +wC1

33;4 +wC1
34;5 +wC1

35;6 =
0.46893,

– u�C1
3 (60) = 0;

Multicriteria SortingMethods, Table 3
Global utilities obtained through the solutionof LP1 (stage1)

UC1 (a) U�C1 (a)
a1 0:8643 0:1110
a2 0:8025 0:1852
a3 0:2967 0:5924
a4 0:0993 0:7034
a5 0:0002 0:9258
a6 0:0988 0:8889

According to these marginal utilities, the global util-
ities are calculated based on the expressions that have
already been presented. Table 3, illustrates the obtained
global utilities according to the two utility functions
that were developed.

It is clear that a1 and a2 are classified in class C1,
since the global utility of a decision concerning the clas-
sification of these two alternatives in class C1 is greater
than the utility concerning their classification in classes
C2 or C3. Similarly, alternatives a3, a4, a5 and a6 are
not classified in class C1, but instead they belong in one
of the classes C2 or C3 (their specific classification will
be determined in the next stage of the hierarchical dis-
crimination process).

Since the correct discrimination between the alter-
natives belonging in class C1 and the alternative not be-
longing in this class has been achieved through LP1,
it is not necessary to proceed in LP2 (minimization of
the number of misclassifications). Hence, the procedure
proceeds in the formulation and solution of LP3 in or-
der to achieve the higher possible discrimination:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

max d
s.t. UC1 (a1) � U�C1 (a1) � d � 0:001

UC1 (a2) � U�C1 (a2) � d � 0:001
U�C1 (a3) � UC1 (a3) � d � 0:001
U�C1 (a4) � UC1 (a4) � d � 0:001
U�C1 (a5) � UC1 (a5) � d � 0:001
U�C1 (a6) � UC1 (a6) � d � 0:001
wC1

i j; jC1 � 0:0001; w�C1
i j; jC1 � 0:0001

3X
iD1

5X
jD1

wC1
i j; jC1 D 1;

3X
i

5X
jD1

w�C1
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 6; d � 0:

According to the obtained solution and following
the same procedure for calculating the marginal utili-
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Multicriteria Sorting Methods, Table 4
Global utilities obtained through the solutionof LP3 (stage1)

UC1 (a) U�C1 (a)
a1 0:9985 0:0001
a2 0:9987 0:0003
a3 0:0008 0:9992
a4 0:0009 0:9993
a5 0:0002 0:9998
a6 0:0002 0:9998

ties, the global utilities of Table 4 are obtained. Obvi-
ously, this new solution provides a better discrimina-
tion of the alternatives, compared to the initial solution
obtained by LP1.

Distinguishing Between C2 and C3

After the solution of LP3, the first stage of the hierarchi-
cal discrimination process is completed, with the cor-
rect classification of a1 and a2 in classC1. Consequently,
these two alternatives are excluded from further consid-
eration (second stage). In the second stage, the aim is to
determine the specific classification of the alternatives
a3, a4, a5 and a6. The following rank-order is defined
on the scale of the three evaluation criteria (p1 = p2 = p3
= 4).

g1) g11 = 15 < 20 < 40 < 66 = g p11 ;
g2) g12 = 15 < 20 < 40 < 50 = g p22 ;
g3) g13 = 20 < 23.125 < 30 < 37 = g p22 .

Then, following the procedure illustrated in the previ-
ous stage, the variables wC1

i j; jC1 and w�C1
i j; jC1 are formu-

lated, and the new form of the LP1 problem is the fol-

Multicriteria Sorting Methods, Table 5
Global utilities obtained through the solutionof LP1 (stage2)

UC2 (a) U�C2 (a)
a3 0:8944 0:1000
a4 0:7333 0:2501
a5 0:2111 0:8000
a6 0:1612 0:7500

lowing (s = 0.001, t = 0.0001):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min F D e(a3)C e(a4)C e(a5)C e(a6)
s.t. UC2 (a3) � U�C2 (a3)C e(a3) � 0:001

UC2 (a4) � U�C2 (a4)C e(a4) � 0:001
U�C2 (a5) � UC2 (a5)C e(a5) � 0:001
U�C2 (a6) � UC2 (a6)C e(a6) � 0:001
wC2

i j; jC1 � 0:0001; w�C2
i j; jC1 � 0:0001

3X
iD1

3X
jD1

wC2
i j; jC1 D 1;

3X
i

3X
jD1

w�C2
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 4;
e(a3); e(a4); e(a5); e(a6) � 0:

Table 5 presents the global utilities of the alterna-
tives according to the solution obtained by LP1 in this
second stage.

The alternatives are correctly classified in their orig-
inal classes, and therefore, it is not necessary to pro-
ceed with LP2 (similarly to the first stage). Instead, the
method proceeds in solving LP3 to achieve better dis-
crimination of the alternatives.
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max d
s.t. UC2 (a3) � U�C2 (a3) � d � 0:001

UC2 (a4) � U�C2 (a4) � d � 0:001
U�C2 (a5) � UC2 (a5) � d � 0:001
U�C2 (a6) � UC2 (a6) � d � 0:001
wC2

i j; jC1 � 0:0001; w�C2
i j; jC1 � 0:0001;

3X
iD1

3X
jD1

wC2
i j; jC1 D 1

3X
iD1

3X
jD1

w�C2
i j; jC1 D 1;

8i D 1; 2; 3; 8 j D 1; : : : ; 4;
d � 0:

Table 6 presents the global utilities calculated ac-
cording to the solution of LP3.

In this point the hierarchical discrimination proce-
dure ends, since all the alternatives have been classified
in the three predefined classes. Moreover, this classifi-
cation is correct. In particular, in stage 1 a1 and a2 have
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Multicriteria Sorting Methods, Table 6
Global utilities obtained through the solutionof LP3 (stage2)

UC2 (a) U�C2 (a)
a3 0:9999 0:0005
a4 0:9997 0:0003
a5 0:0002 0:9996
a6 0:0005 0:7949

been correctly classified in class C1, while in stage 2 a3
and a4 have been correctly classified in class C2, and a5
and a6 have been classified into the final class C3 (cf.
Table 6).

Concluding Remarks and Future Perspectives

The focal point of interest in this article was the applica-
tion of MCDA in the study of sorting or more generally
discrimination (classification) problems. Such types of
problems have major practical interest in several fields
including finance, environmental and energy policy
and planning, marketing, medical diagnosis, robotics
(pattern recognition), etc. The multivariate statistical
classification techniques have been used for decades to
study such problems. However, their inability to pro-
vide a realistic and flexible approach to support real
world decision making problems in situations where
classification is required, led operational researchers,
management scientists as well as practitioners towards
the exploitation of the recent advances in the fields of
operations research, management science, and artificial
intelligence.

Among these ‘alternative’ approaches for the study
of classification problem, MCDA provides an arsenal
of tools and methods to develop classification (sorting)
models within a realistic and flexible context. This arti-
cle outlined the main MCDA classification techniques,
both from the specific type of classification problems
that they address (ordered or non-ordered classes), as
well as from the MCDA approach that they employ
(goal programming, outranking relations, preference
disaggregation).

Furthermore, a newMCDA approach has been pro-
posed. The M.H.DIS method, extends the common
two-group classification framework, through a hier-
archical multigroup discrimination procedure, taking
into account threemain discrimination criteria through
a sequential process. In this way the classification prob-

lem is studied globally, in order to achieved the higher
possible classification accuracy. Except for the illustra-
tive example used in this paper, the M.H.DIS method
has already been used in several financial classification
problems, including the evaluation of bankruptcy risk,
portfolio selection and management, the evaluation
of bank branches efficiency, the assessment of coun-
try risk, company mergers and acquisitions, etc. [43],
providing very encouraging results compared to well
known statistical techniques (discriminant analysis,
logit and probit analysis), and MCDA preference dis-
aggregation techniques (family of UTADIS methods).

An interesting further research direction would be
the exploration of a possible combination of M.H.DIS
with artificial intelligence techniques such as fuzzy sets,
in order to consider the fuzziness which may exist on
the evaluation of alternatives on each evaluation crite-
rion, or on the classification of the alternatives.
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Introduction

The multidimensional assignment problem (MAP) can
be viewed as a higher-dimensional extension of the lin-
ear assignment problem (LAP). While the LAP is often
explained as assigning each person in a group a spe-
cific job so that for each job there is only one per-
son who does it, and for each person there is only one
assigned job. The MAP generalizes evidently two-di-
mensional (people, jobs) LAP by allowing additional
dimensions (space, time, etc.) Hence, the previous ex-
ample of scheduling people to jobs can be extended
to scheduling people to jobs at various time intervals
in different locations, so that each specific parameter
(say, time interval) is coupled with its own unique three
other parameters (person, job, location) and none of
them are in any other assignment (of a person, a job,
a time slot and a person). Such a modified assign-
ment problem is an example of a MAP in four dimen-
sions.

Obviously, the LAP is a special case of the MAP in
two dimensions. On the other hand, the MAP (some-
times referred to as multi-index assignment problem)
is a special case of the multi-index transportation prob-
lem, just like the LAP is a particular instance of the
more general transportation problem.

Interestingly, a broader class of multidimensional
transportation problems was originally considered
about a decade before the LAP was first given its mul-
tidimensional generalization. In fact, a three-dimen-
sional case of the multi-index transportation problem
was first introduced by Schell in 1955 [33], and later
by Haley [19] in 1963. The MAP was initially pre-
sented by Pierskalla [26] in 1966, through first extend-
ing the LAP to its three-dimensional case, and then (in
1968) as a general formulation of MAP in n dimen-
sions [27].

Despite the fact that the LAP can be solved in
polynomial time, the MAP of dimensionality d � 3
is known to be NP-hard in general (the latter state-
ment follows from a reduction of the matching prob-
lem in three dimensions) [16]. In fact, the size of the
MAP increases extremely fast with an increase in di-
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mensions. To be more precise, the size of problem
grows by products of factorials. As a result of the inher-
ent complexity of the problem, only small to medium-
sized instances of the MAP can be solved routinely
at the moment. Most of the exact and heuristic al-
gorithms developed for this problem are enumerative
in nature and/or utilize some form of local neighbor-
hood search. Although many real-life applications of
the MAP, including the data association problem in
target tracking, require solving general problems of di-
mensions higher than three, most of the proposed so-
lution methods deal with widely studied three-dimen-
sional versions such as axial 3-MAP and planar 3-
MAP.

Formulation

Several alternative formulations of the MAP have been
given since Pierskalla introduced it as a 0-1 integer pro-
gramming problem as follows.

Given 1 � p1 � : : : � pd � n; a finite sequence of
positive integers, we want to

minimize
X

1�i1�p1

: : :
X

1�id�pd

ci1 ::: id � xi1 ::: id

subject to
X

1�i2�p2

: : :
X

1�id�pd

xi1 ::: id

D 1; 1 � i1 � p1 ;X
1�i1�p1

: : :
X

1�ik�1�pk�1

X
1�ikC1�pkC1

: : :

X
1�id�pd

xi1 ::: id D 1 ;

1 � ik � pk ; 2 � k � d � 1 ;X
1�i1�p1

: : :
X

1�id�1�pd�1

xi1 ::: id D 1 ;

1 � id � pd ;

xi1 ::: id 2 f0; 1g; 1 � ik � pk ; 1 � k � d ;
(1)

where ci1 ::: id are the cost coefficients.
By introducing dummy variables, we can assume

without loss of generality that p1 D : : : D pd D n;
then the d-dimensional assignment problem can be re-

formulated as follows:

minimize
X

1�i1�n

: : :
X

1�id�n

ci1 ::: id � xi1 ::: id

subject to
X

1�i2�n

: : :
X

1�id�n

xi1 ::: id D 1 ; 1 � i1 � n ;

X
1�i1�n

: : :
X

1�ik�1�nX
1�ikC1�n

: : :
X

1�id�n

xi1 ::: id D 1 ;

1 � ik � n ; 2 � k � d � 1 ;X
1�i1�n

: : :
X

1�id�1�n

xi1 ::: id D 1 ; 1 � id � n ;

xi1 ::: id 2 f0; 1g ; 1 � ik � n ; 1 � k � d :
(2)

The MAP (2) also has an interesting interpretation as
a problem of combinatorial optimization:

Given a d-dimensional cubic matrix, one must find
the permutation of its columns and rows with the mini-
mum sum of the diagonal elements. In other words, this
is an equivalent characterization of (2) in terms of d � 1
permutations 
1,
2, . . . ,
d�1 of the set {1, 2, . . . n}:

minimize
X

1�i�n

ci�1(i) :::�d�1(i) ;

subject to 
1; 
2 ; : : : ; 
d�1 2 ˘
n ;

(3)

where˘n is the set of all permutations of {1, 2, . . . n}.
Spieksma [34] gives an alternative compact formu-

lation of the MAP as follows:
Given d sets A1,A2, . . . ,Ad, each of size n, let

A D ˝d
iD1Ai D A1 � A2 � : : : � Ad . In other words,

A is a set of all d-tuples a D (a(1); a(2); : : : ; a(d)) 2 A.
Let xa denote a variable for each a 2 A. Then, given as-
signment costs ca for all a 2 A, the objective function is
written as

P
a2A

caxa .

Given a positive integer k, such that 1 � k � d � 1,
let Q denote the set of all (d � k)-element subsets
of {1, 2, . . . , d}. Each subset F from Q corresponds to
the set of “fixed” indices. Given such F, let AF D

˝ f2FA f . Next, given some g 2 AF , let A(F; g) D
fa 2 Aja( f ) D g( f ); 8 f 2 Fg denote the set of all
d-tuples that coincide with g on the set F of “fixed” in-
dices.
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Then the multi-index assignment problem can be
written as:

maximize/minimize
X
a2A

caxa

subject to
X

a2A(F; g)

xa D 1;

for all g 2 AF ; F 2 Q ;

xa 2 f0; 1g; for all a 2 A :

(4)

Similarly to the linear assignment formulation by
means of a bipartite graph, the MAP can also be stated
using the graph theory terminology in the subsequent
fashion [7]:

Given a complete d-partite graph G D (V1;V2; : : : ;

Vd ; E), where Vi, jVi j D n; i 2 f1; 2; : : : ; dg, denote
mutually disjoint vertex sets, and E is the set of edges
in the graph, a subset of the vertex set V D [d

iD1Vi

is said to be a clique if it meets every set Vi in exactly
one vertex. A d-dimensional assignment is a partition
ofV into n pairwise disjoint cliques. Given a real-valued
cost function c defined on the set of cliques of d-partite
graph G, the d-dimensional assignment problem asks
for a d-dimensional assignment, which minimizes c.

Cases

A special case of the MAP that is based on the graph
theory formulation for MAP was considered by Ban-
delt et al. [6]. The cost function in this particular case
can be represented using some type of function of el-
ementary costs defined on the edges of the d–partite
graph, whereas a general formulation of the MAP us-
ing graphs allows for the cost function to be defined ar-
bitrarily on the set of cliques. In particular, the clique
costs can be decomposed using such functions of edge
costs as a sum of costs (i. e., a sum of the lengths of all
the edges in a given clique), a tour cost (i. e., minimum
cost of a traveling salesman tour in a given clique), a star
cost (i. e., minimum length of a spanning star in a given
clique), and a tree cost (i. e., minimum cost of a span-
ning tree). By using the decomposed costs, one can con-
struct the worst-case bounds on the ratio between the
solution costs found by a simple heuristic, as well as find
the cost of the optimal solution. Specifically, Crama and
Spieksma [10] considered a case of three-dimensional
assignment problem, where the lengths of the edges of
the underlying three-partite graph satisfy the triangle

inequality, and the objective function is defined as the
cost of the triangle formed by three vertices (each from
a different mutually disjoint vertex subsets of the three-
partite graph). When the triangle cost is defined as the
length of the triangle (i. e., sum of the lengths of all its
sides), then there exists a heuristic that gives a feasible
solution that is within 3/2 from the optimum. The latter
bound is decreased to 4/3 in the case when the triangle
cost is defined as the sum of the two shortest sides.

As mentioned earlier, owing to the exponential in-
crease in the size of the problem with an increase in the
number of parameters, it becomes computationally dif-
ficult to solve MAP instances of higher dimensionality.
As a result most solution methods for theMAP are con-
structed for three-dimensional versions of the problem.
Two important types of the three-dimensional assign-
ment problem are the axial three-dimensional assign-
ment problem and the planar three-dimensional as-
signment problem. The distinction between two types
lies in constraints and can be easily explained using the
following simple geometric interpretation [7].

Let each solution be represented by a three-dimen-
sional 0-1 array of size n � n � n. To visualize such an
array of zeros and ones, let us fix a vertex and draw lines
or axes along three dimensions. Next, we partition each
axis onto n intervals. This partition splits the array into
n3 cells so that each cell contains either a 0 or a 1. Given
an axis, say j, each of n intervals on j has a correspond-
ing two-dimensional level surface that consists of n � n
cells and goes through a given interval of j. Alterna-
tively, the interval partition of each axis divides a three-
dimensional solution array into n two-dimensional sur-
faces or “slices” corresponding to each interval on the
axis. The constraints imposed in the axial case guaran-
tee that for each axis and all of its intervals, the n � n
cells in each two-dimensional slice through the inter-
val sum up to 1. In other words, each axial interval is
assigned a value of 1, which constitutes the sum of all
cells that can be projected on that axial interval. This
explains the name “axial.”

In contrast, the constraints of the planar MAP deal
with three planes formed by each possible pair of axes.
For example, consider the plane formed by axes j and
k. Using the above partition, this plane is divided into
n � n squares. For each square on the plane, there is
a corresponding stack of cells that goes along the i axis.
Each cell in the stack is projected onto its square (j�, k�)
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by axis i. The planar constraints require that for each
plane and every square the sum of the cells in an asso-
ciated stack is equal to 1.

Integer programming formulations for each of type
of three-index MAP are given below.

Given a set of n3 cost coefficients cijk, the axial three-
dimensional assignment problem is defined as follows:

minimize
nX

iD1

nX
jD1

nX
kD1

ci jk xi jk

subject to
nX

jD1

nX
kD1

xi jk D 1 ; 1 � i � n ;

nX
iD1

nX
kD1

xi jk D 1 ; 1 � j � n ;

nX
iD1

nX
jD1

xi jk D 1 ; 1 � k � n ;

xi jk 2 f0; 1g ; 1 � i; j; k � n :

(5)

Given n3 cost coefficients cijk, the planar three-dimen-
sional assignment problem can be written in the follow-
ing fashion:

minimize
nX

iD1

nX
jD1

nX
kD1

ci jk xi jk

subject to
nX

iD1

xi jk D 1; 1 � j; k � n ;

nX
jD1

xi jk D 1 ; 1 � i; k � n ;

nX
kD1

xi jk D 1 ; 1 � i; k � n ;

xi jk 2 f0; 1g ; 1 � i; j; k � n :

(6)

The axial three-index MAP given by (5) can also be for-
mulated using n permutations � and 
 as a combinato-
rial optimization problem:

minimize
nX

iD1

ci�(i)�(i) ; subject to �; 
 2 ˘n : (7)

Note that the planar three-dimensional assignment
problem has a different combinatorial interpretation in
terms of Latin squares of order n.

Although both axial and planar three-dimensional
assignment problems (just as the general MAP) are

generally NP-hard, there exist a number of polyno-
mially solvable special cases. Particularly, in the case
when the cost coefficients form a so-called Monge ar-
ray [8], the MAP is solved by d � 1 identity-n permuta-
tions f1; 2; : : : ; ng ! f1; 2; : : : ; ng. Another case of
the polynomially solvable MAP is the axial three-di-
mensional assignment problem, where the cost coeffi-
cient can be represented as a product of nonnegative
index factors ci jk D pi � q j � rk , and the objective func-
tion is maximized [9].

Methods

All known exact methods for solving this generally NP-
hard problem are enumerative in nature, and as a result
of the inherent complexity of the problem such meth-
ods are too slow for practical applications of the MAP.
Hence, researchers often use heuristic approaches to
find suboptimal solutions of different MAPs. In fact,
one of the earliest solution methods for the MAP was
a suboptimal method of trisubstitution proposed by
Pierskalla [26] in 1966 to solve a three-dimensional as-
signment problem. Later Frieze and Yadegar [15] devel-
oped a suboptimal procedure for the three-index MAP
using Lagrangian relaxation. Their technique utilized
information contained in the relaxed solution to re-
cover a feasible solution. The key advantage of the La-
grangian relaxation approach is that it allows for com-
puting both upper and lower bounds on the optimum
solution, and therefore this method can be employed to
evaluate solution quality. Consequently, the Lagrangian
relaxation technique was widely used to propose nu-
merous modifications of the original three-dimensional
method by extending it to the general multidimen-
sional case [12,28,29]. For example, one of such algo-
rithms presented by Poore and Robertson [29] in 1997
works by relaxing a d-dimensional assignment prob-
lem to a two-dimensional problem, then maximizing
with regard to the relaxed Lagrangian multipliers, and
next formulating the recovery procedure as a (d � 1)-
dimensional problem. These three steps are repeated
successively until the recovery procedure can be for-
mulated as a two-dimensional problem, which is solved
optimally in polynomial time, and the algorithm termi-
nates.

Most exact methods for solving the MAP are de-
vised primarily for its three-dimensional case. One of
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the earliest exact approaches for the axial three-di-
mensional assignment problem was suggested by Pier-
skalla [27] in 1968. His approach works by enumerating
all feasible solutions using a tree structure, and utilizing
the branch and bound method as follows. For a given
node of the feasible solutions tree, a lower bound is cal-
culated from the corresponding dual subproblem, be-
fore proceeding further on outgoing branches from the
node. If the lower bound is greater than the known low-
est bound, then the outgoing branches are eliminated,
since it is impossible to obtain a better solution along
such branches. Otherwise when the lower bound ob-
tained is less than the known lowest bound, we con-
tinue further from this node, because it might still be
possible to improve our solution in that direction. Al-
though this branch and bound algorithm can easily be
generalized to the multidimensional case, it is too slow
to work effectively for the general MAP.

Since Pierskalla introduced his branch and bound
procedure for the axial three-dimensional assignment
problem, many other branch and bound based ap-
proaches have been developed. Most of them branch
the current problem onto two subproblems by setting
one variable xi jk D 0 or xi jk D 1. Then the size of the
subproblems is decreased. In contrast, a branch and
bound scheme proposed by Balas and Saltzman [5] per-
mits fixing several variables at once at each branching
node by incorporating a special branching strategy that
takes advantage of the problem structure.

The planar three-index MAP can also be solved us-
ing variations of branch and bound. One of the first ap-
plications of this method to the planar case was given
by Vlach [35] in 1967. The algorithm obtains lower
bounds by means of row and column reductions that
are similar to the ones in the axial case. A method
for solving the planar three-dimensional assignment
problem based on a clever combination of branch and
bound with a relaxation heuristic and Lagrangian relax-
ation was developed by Magos and Miliotis [24]. The
upper bounds are calculated by first applying the re-
laxation heuristic and then decomposing the remain-
ing problem into n linear sum assignment problems.
The lower bounds are computed by either a heuristic or
a Lagrangian relaxation depending on the current prob-
lem.

The method introduced by Hansen and Kauf-
man [20] for solving the axial three-dimensional as-

signment problem employs a primal-dual method com-
parable to the well-known Hungarian method for the
LAP.

There have been a number of investigations of
a convex hull of feasible solutions of the three-dimen-
sional assignment problem. Euler et al. [14] examined
the polyhedral structure of the solution polytope for
the planar three-index MAP through its connection to
Latin squares. Euler [13] also studied the axial poly-
tope by investigating the role of odd cycles for a class of
facets of the polytope. The structure of the axial three-
index assignment polytope was also analyzed by Balas
et al. [3,4,32]. They developed linear-time separation al-
gorithms for different classes of facets induced by spe-
cific cliques, and then constructed a polyhedral proce-
dure for solving the axial three-index MAP.

Clemons et al. [11] applied a simulated annealing
algorithm for solving the MAP. Several local neigh-
borhood search procedures were implemented for the
MAP. Greedy randomized adaptive search procedures
(GRASP) were applied by Murphey et al. [25] for solv-
ing the general MAP and later by Lidstrom et al. [22]
and by Aiex et al. [1] for finding solutions of the axial
three-dimensional assignment problem. A tabu search
for the planar three-dimensional assignment problem
was employed by Magos [23] to obtain suboptimal so-
lutions of the planar thee-index assignment problem.

Grundel and Pardalos [18] developed a test prob-
lem generator for testing exact and suboptimal solution
methods for the axial MAP. Several recent studies in-
vestigated various asymptotic properties of the MAPs
with randomly generated assignment cost coefficients.
In particular, Grundel et al. [17] established the lower
and upper bounds for the expected number of local
minima of the MAPs with random costs.

Applications

The MAP can be used to solve various real-life prob-
lems arising in such important areas as capital invest-
ment, dynamic facility location, and satellite launch-
ing [30]. Other applications of the MAP include circuit
board assembly and production planning of goods,
which can be modeled using the axial three-dimen-
sional assignment problem [34]. The planar three-di-
mensional assignment problem has also found many
interesting applications, for instance, school timetables
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and experimental design [21], as well as modeling of
satellite launching [2].

Furthermore, it was shown that such a complex
problem as tracking elementary particles can be inves-
tigated using the five-dimensional assignment problem
as a mathematical model [31]. By solving this com-
plex case of the MAP, one can reconstruct the paths
of charged elementary particles produced by the Large
Electron–Positron Collider.

Many important applications of the general MAP
arise in data association, resource allocation, air traf-
fic control, surveillance, etc. In particular, Poore [28]
has shown that the data association problem arising in
a large class of multiple target tracking and sensor fu-
sion problems can be formulated as a MAP by parti-
tioning the set of observations into false reports and
tracks, and then maximizing the likelihood of selecting
the true partition.

See also

� Assignment and Matching
� Integer Programming: Branch and Bound Methods
�Multi-index Transportation Problems
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The multidimensional knapsack problem (MKP) can be
formulated as:8̂

ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
nX

jD1

p jx j

s.t.
nX

jD1

ri jx j � bi ; i D 1; : : : ;m;

x j 2 f0; 1g; j D 1; : : : ; n;

(1)

where bi � 0, i = 1, . . . ,m, and rij � 0, i = 1, . . . ,m, j = 1,
. . . , n.

Each of the m constraints in (1) is called a knapsack
constraint, so the MKP is also called them-dimensional
knapsack problem.

Other names given to this problem in the literature
are the multiconstraint knapsack problem, the multi-
knapsack problem and the multiple knapsack problem.
Some authors also include the term ‘zero-one’ in their
name for the problem, e. g., the multidimensional zero-
one knapsack problem. Historically the majority of au-
thors have used the name multidimensional knapsack
problem and so we also use that phrase to refer to the
problem. The special case corresponding to m = 2 is
known as the bidimensional knapsack problem or the
bi-knapsack problem.

Many practical problems can be formulated as
a MKP, for example, the capital budgeting problem
where project j has profit pj and consumes rij units of
resource i. The goal is to find a subset of the n projects
such that the total profit is maximised and all resource
constraints are satisfied. Other applications of the MKP
include allocating processors and databases in a dis-
tributed computer system [24], project selection and
cargo loading [53], and cutting-stock problems [26].

The MKP can be regarded as a general statement of
any zero-one integer programming problem with non-
negative coefficients. Indeed much of the early work on
the MKP (e. g., [32,35,52,59]) viewed the problem in
this way.

Most of the research on knapsack problems deals
with the much simpler single constraint version (m =
1). For the single constraint case the problem is not
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strongly NP-hard and effective approximation algo-
rithms have been developed for obtaining near-optimal
solutions. A good review of the single constraint knap-
sack problem and its associated exact and heuristic al-
gorithms is given by S. Martello and P. Toth [42].

Below we give a very brief overview of the literature
relating to the MKP. A more detailed literature review
can be found in [10].

Exact Algorithms

There have been relatively few exact algorithms pre-
sented in the literature.

W. Shih [53] presented a branch and bound algo-
rithm (cf. also � Integer programming: Branch and
bound methods) for the MKP with an upper bound ob-
tained by computing the objective function value asso-
ciated with the optimal fractional solution for each of
the m single constraint knapsack problems separately
and selecting the minimum objective function value
among those as the upper bound.

Another branch and bound algorithm was pre-
sented in [25] with various relaxations of the problem,
including Lagrangian, surrogate and composite relax-
ations being used to compute bounds. Y. Crama and
J.B. Mazzola [11] showed that although the bounds
derived from these relaxations are stronger than the
bounds obtained from the linear programming (LP) re-
laxation, the improvement in the bound that can be re-
alized using these relaxations is limited.

Statistical/Asymptotic Analysis

There have been a few papers considering a statisti-
cal/asymptotic analysis of the MKP.

An asymptotic analysis was presented by K.E.
Schilling [51] who computed the asymptotic (n! 1
with m fixed) objective function value for the MKP
where the rij’s and pj’s were uniformly (and indepen-
dently) distributed over the unit interval and where bi
= 1. K. Szkatula [54] generalized that analysis to the case
where bi 6D 1 (see also [55]).

A statistical analysis was conducted by J.F. Fonta-
nari [18], who investigated the dependence of the ob-
jective function on bi and on m, in the case when pj =
1 and the rij’s were uniformly distributed over the unit
interval.

Early Heuristic Algorithms

Early heuristic algorithms for the MKP were typically
based upon simple constructive heuristics.

S.H. Zanakis [59] gave detailed results comparing
three algorithms from [32,35] and [52]. R. Loulou and
E. Michaelides [40] presented a greedy-like method
based on Toyoda’s primal heuristic [57]. Primal heuris-
tics start with a zero solution, after which a succession
of variables are assigned the value one, according to
a given rule, as long as the solution remain feasible.

Bound Based Heuristics

Bound based heuristics make use of an upper bound on
the optimal solution to the MKP.

M.J. Magazine and O. Oguz [41] presented a heuris-
tic algorithm that combines the ideas of S. Senju and
Toyoda’s dual heuristic [52] with Everett’s generalized
Lagrange multiplier approach [17]. Dual heuristics start
with the all-ones solution, variables are then succes-
sively set to zero according to heuristic rules until a fea-
sible solution is obtained. Their algorithm computes an
approximate solution and uses the multipliers gener-
ated to obtain an upper bound.

H. Pirkul [45] presented a heuristic algorithmwhich
makes use of surrogate duality. The m knapsack con-
straints were transformed into a single knapsack con-
straint using surrogate multipliers. A feasible solution
was obtained by packing this single knapsack in de-
creasing order of profit/weight ratios. These ratios were
defined as pj/

Pm
iD1!i rij, where!i is the surrogate mul-

tiplier for constraint i. Surrogate multipliers were deter-
mined using a descent procedure.

J.S. Lee and M. Guignard [36] presented a heuris-
tic that combined Toyoda’s primal heuristic [57] with
variable fixing, LP and a complementing procedure
from [6].

A. Volgenant and J.A. Zoon [58] extended the
heuristic in [41] in two ways:
1) in each step, not one, but more, multiplier values are

computed simultaneously; and
2) at the end of the procedure the upper bound is

sharpened by changing some multiplier values.
A. Freville and G. Plateau [21] presented an efficient
preprocessing algorithm for the MKP, based on [20],
which provided sharp lower and upper bounds on the
optimal value, and also a tighter equivalent represen-
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tation by reducing the continuous feasible set and by
eliminating constraints and variables.

They also [22] presented a heuristic for the bidi-
mensional knapsack problem which includes problem
reduction, a bound based upon surrogate relaxation
and partial enumeration.

Tabu Search Heuristics

Tabu search (TS) heuristics are based on tabu search
concepts (see [1,29,46]).

F. Dammeyer and S. Voß [12] presented a TS
heuristic based on reverse elimination. R. Aboudi and
K. Jörnsten [2] combined TS with the pivot and com-
plement heuristic [6] in a heuristic that they applied to
the MKP (see also [39]). R. Battiti and G. Tecchiolli [7]
presented a heuristic based on reactive TS (essentially
TS but with the length of the tabu list varied over the
course of the algorithm).

F. Glover and G.A. Kochenberger [28] presented
a TS heuristic with a flexible memory structure that in-
tegrates recency and frequency information keyed to
‘critical events’ in the search process. Their method was
enhanced by a strategic oscillation scheme that alter-
nates between constructive (current solution feasible)
and destructive (current solution infeasible) phases. See
also [30].

A. Løkketangen and Glover [37] presented a heuris-
tic based on probabilistic TS (essentially TS but with the
acceptance/rejection of a potential move controlled by
a probabilistic process). They also [38] presented a TS
heuristic designed to solve general zero-one mixed in-
teger programming problems which they applied to the
MKP.

Genetic AlgorithmHeuristics

Genetic algorithm (GA) heuristics are based on genetic
algorithm concepts (see [1,8,43,46]).

In the GA of [34] infeasible solutions were allowed
to participate in the search and a simple fitness function
which uses a graded penalty term was used. In [56] sim-
ple heuristic operators based on local search algorithms
were used, and a hybrid algorithm based on combining
a GA with a TS heuristic was suggested.

In [48,49] a GA was presented where parent selec-
tion is not unrestricted (as in a standard GA) but is
restricted to be between ‘neighboring’ solutions. Infea-

sible solutions were penalized as in [34]. An adaptive
threshold acceptance schedule (motivated by [14,15])
for child acceptance was used.

In the GA of [33] only feasible solutions were al-
lowed. P.C. Chu and J.E. Beasley [10] presented a GA
based upon a simple repair operator to ensurethat all
solutions were feasible.

Analysed Heuristics

Analysed heuristics have some theoretical underlying
analysis relating to their worst-case or probabilistic per-
formance.

A.M. Frieze and M.R.B. Clarke [23] described
a polynomial approximation scheme based on the use
of the dual simplex algorithm for LP, and analysed the
asymptotic properties of a particular random model.

In [47] a class of generalized greedy algorithms is
proposed in which items are selected according to de-
creasing ratios of their pj’s and a weighted sum of their
rij’s. These heuristics were subjected to both a worst-
case, and a probabilistic, performance analysis.

I. Averbakh [5] investigated the properties of several
dual characteristics of the MKP for different probabilis-
tic models. He also presented a fast statistically efficient
approximate algorithm with linear running time com-
plexity for problems with random coefficients.

Other Heuristics

G.E. Fox and G.D. Scudder [19] presented a heuristic
based on starting from setting all variables to zero(one)
and successively choosing variables to set to one(zero).
See [13] for a heuristic based upon simulated anneal-
ing (SA). See [27] for a heuristic based on ghost image
processes. S. Hanafi and others [31] presented a simple
multistage algorithm within which a number of differ-
ent local search procedures (such as greedy, SA, thresh-
old accepting [14,15] and noising [9]) can be used. They
also presented two TS heuristics.

Multiple–Choice Problems

One problem that is related to the MKP is the multidi-
mensional multiple-choice knapsack problem (MMKP).
Suppose that {1, . . . , n} is divided up into K sets Sk, k
= 1, . . . , K, which are mutually exclusive Sk \ Sl = ;,
8k 6D l, and exhaustive [K

kD1 Sk = {1, . . . , n}. If we then
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add to the formulation of the MKP given previously the
constraint

X
j2Sk

x j D 1; k D 1; : : : ;K; (2)

we obtain the MMKP. Equation (2) ensures that exactly
one variable is chosen from each of the sets Sk, k = 1,
. . . , K.

See [44] for a heuristic for MMKP based on the
MKP heuristic of Magazine and Oguz [41].

The special case of the MMKP corresponding to
m = 1 is known as the multiple-choice knapsack
problem (MCKP) and its LP relaxation as the linear
multiple-choice knapsack problem (LMCKP). Work on
MCKP includes [16], which presented a hybrid dy-
namic programming tree search algorithm incorpo-
rating a Lagrangian relaxation bound; [4], which pre-
sented a heuristic based upon SA; and [3], which pre-
sented a tree search algorithm incorporating a La-
grangian relaxation bound. For work on LMCKP see
[50]. Earlier work on MCKP and LMCKP is cited in [3,
4,16,50].

See also

� Integer Programming
� Quadratic Knapsack
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Modern large scale vehicle design (aircraft, ships, auto-
mobiles, mass transit) requires the interaction of mul-
tiple disciplines, traditionally processed in a sequential
order. Multidisciplinary optimization (MDO), a formal
methodology for the integration of these disciplines, is
evolving towardmethods capable of replacing the tradi-
tional sequential methodology of vehicle design by con-
current algorithms, with both an overall gain in prod-
uct performance and a decrease in design time. The
obstacles to MDO becoming a production methodol-
ogy, in the same sense as quality control, are numerous
and formidable. In aircraft design, for instance, typi-
cal disciplines involved would be aerodynamics, struc-
tures, thermodynamics, controls, propulsion, manufac-
ture, and economics. Detailed analyses in each of these
disciplines could involve tens to hundreds of subrou-
tines and tens of thousands of lines of code. Managing
the software libraries and data alone is a daunting task.

Codes fromdifferent disciplines typically are grossly
incompatible, but even within disciplines, data struc-
tures and solution representations may be incompat-
ible, requiring ‘translation’ routines or recoding. This
incompatibility is particularly acute when stand-alone
packages with interactive interfaces are involved. Most
disciplinary codes, designed years ago for small serial
computers, are very ill-suited to modern parallel archi-
tectures, even with a coarse grained approach.

Detailed, highly accurate disciplinary analyses are
very expensive, requiring sometimes hours on a super-
computer, even when run in parallel. The import of
this is that, regardless of the dimension of the design
space, it can be sampled for accurate function values at
only a relatively small number of points. Other obsta-
cles to achieving true MDO include model verification,
noisy function values, and flawed parallel optimization
methodologies.

Almost every conceivable strategy for MDO has
been proposed. A good recent summary of hierarchi-
cal approaches can be found in [4], and [9] pioneered
nonhierarchical or concurrent approaches. The basic
idea of concurrent methods, and a particular variant
known as concurrent subspace optimization (CSSO), is
to simultaneously and independently optimize each of
the disciplines (or ‘contributing analyses’, as they are
called), and then perform a global coordination that
brings the entire system closer to a globally feasible
and optimal point. Collaborative optimization differs
from CSSO in how the global coordination is managed.
An excellent discussion of these approaches is in the
proceedings [2]. While concurrent methods are intu-
itively appealing and naturally parallelizable, they are
not guaranteed to converge [8].

Trust region model management [1] is a rigor-
ous approach to MDO that shows promise, and as-
pects of CSSO when combined with an extended La-
grangian and response surface approximations, can
lead to a provably convergent MDO method (J.F. Ro-
dríguez, J.E. Renaud and L.T. Watson, [6]). A note-
worthy aspect of the Rodríguez method [6] is that the
convergence proof covers variable fidelity data, which
is crucial in practice.

In a taxonomy of MDO approaches, one distinc-
tion would be between hierarchic or nonhierarchic.
Another distinction is whether parallelism is achieved
between disciplines (concurrent disciplinary computa-
tion) or within disciplines (multipoint, response sur-
face, local/global computation). If response surface ap-
proximations are used, two prevalent approximation
methods are classical least squares and DACE (Design
and Analysis of Computer Experiments).

S. Burgee, A.A. Giunta, V. Balabanov, B. Grossman,
W.H. Mason, R. Narducci, R.T. Haftka, and Watson
[3] has a detailed discussion of the multipoint, classi-
cal least squares approach to response surface construc-
tion, and of the use of parallelism within disciplines (the
pipelined MDO paradigm of Burgee is also provably
convergent). The tack of this approach is to use clas-
sical design of experiments theory, regression statistics,
and low order polynomial approximation models.

The DACE [7] model posits that the output of
a computer analysis program is

Y(x) D ˇ C Z(x);
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where Z(x) is a zero mean stationary Gaussian process.
(This is clearly a fiction since computer output is deter-
ministic. The issue is whether the model has predictive
power.) Using Bayesian statistics, the best unbiased pre-
dictor is

bY(x) D b̌C r(x; S)R�1(YS � 1 � b̌);

where S is a set of observation sites, YS is the vector of
observations at S, r(x, S) is the correlation of xwith sites
S, R is the correlation matrix between sites S, and b̌ is
the estimate of themean. Some parametrized functional
form for the correlation is assumed, and then these cor-
relation parameters and b̌ are computed as maximum
likelihood estimates.

DACE models are more flexible than polynomial
models, but with sparse data in high dimensions neither
DACE nor polynomial models have much predictive
power. To appreciate the problem, observe that a cube
in 30 dimensions has 230 	 109 vertices, and to even
evaluate an algebraic formula at each vertex requires su-
percomputer power.

MDO Paradigm Example

As an illustration, anMDOparadigm for aircraft design
is presented here. The MDO algorithm is a repeat loop,
with a nominal design as its starting point, approximate
optimal designs as loop iterates, and an optimal design
as its ending point (see Fig. 1). At the start of each loop,
aerodynamic shape and mission variables are obtained
from either the nominal starting design or the inter-
mediate approximate optimal design. These shape and
mission variables are then used in the parallel simple
aerodynamic and structural analyses.

The simple aerodynamic analyses are performed on
a regular grid of points in the design space. Simple
aerodynamic calculations evaluate the (aerodynamic)
feasibility of each grid point using tolerances on the
constraints and move limits on the objective function,
eliminating grossly infeasible points, and generating an
approximation domain. The simple structural analyses
use the aerodynamic shape and mission variables in ba-
sic weight equations to calculate approximate weights
needed by the objective function and constraints, fur-
ther refining the approximation domain.

Using the relatively abundant data from the simple
analyses, regression analysis and analysis of variance

Multidisciplinary Design Optimization, Figure 1
MDO paradigm

are used to identify less important terms in the poly-
nomial response surface models. Once the less impor-
tant terms are eliminated, the structure of the reduced-
term polynomial regression models is known, and can
be used later in the generation of response surface ap-
proximations of the optimal weight and necessary aero-
dynamic quantities over the approximation domain.

A genetic algorithm (GA; cf.�Genetic Algorithms)
is used to find sets of approximate D-optimal design
points in the approximation domain obtained from the
parallel simple analyses. The structure of a response
surface model is embodied in the regression matrix X,
which defines the GAmerit function |X|X| (maximized
by a set of points called D-optimal). These D-optimal
design points are input to the detailed aerodynamic
analysis code, which performs detailed analyses at each
of the D-optimal design points in parallel. The analyses
result in accurate aerodynamic quantities, such as wave
drag and other drag components, and accurate aerody-
namic loads.
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The accurate aerodynamic quantities are used to
generate reduced-term polynomial response surface
models for each of the expensive quantities (such as
wave drag). An aerodynamic load calculated in the
detailed aerodynamic analyses is used in a detailed
structural optimization to calculate an accurate optimal
weight for that particular aerodynamic load. This struc-
tural optimization is done (in parallel) for each aero-
dynamic load generated in the detailed aerodynamic
analyses. The accurate optimal weights calculated in the
structural optimization are used to generate a reduced-
term polynomial response surface model for the opti-
mal weight.

All the response surface models are then used in
a configuration optimization to generate an approxi-
mate optimal design, which will be used as the starting
design for the next iteration of the MDO loop. The grid
spacing may possibly be refined for the simple analy-
ses. When some convergence criterion is satisfied, the
MDO loop exits with an optimal design.

Note that the source of parallelism in the present
MDOparadigm is the multipoint approximations within
each discipline, where the disciplines are visited sequen-
tially in a pipeline. This contrasts sharply with CSSO
MDO paradigms, where the source of the parallelism is
processing the disciplines in parallel.

See also

� Bilevel Programming: Applications in Engineering
� Design Optimization in Computational Fluid

Dynamics
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In location planning one is typically concerned with
finding a good location for one or several new facil-
ities with respect to a given set of existing facilities
(clients). The two most common models in planar lo-
cation theory are theWeber problem, where the average
(weighted) distance of the new to the existing facilities
is taken into account and the Weber–Rawls problem,
where the maximum (weighted) distance of the new to
the existing facilities is taken into account.

More precisely, one is given a finite set Ex = {Ex1,
. . . , ExM} of existing facilities (represented by their ge-
ographical coordinates) in the plane R2 and distance
functions dm assigned to each existing facility m 2 M

:= {1, . . . , M}. The set of locations for the N new fa-
cilities one is looking for is denoted X = {X1, . . . , XN}.
The distance between the new facilities is measured by
a common distance d. Additionally, a value wmn is as-
signed to each pair (Exm, Xn), for m 2M, n 2 N := {1,
. . . , N} and a value vrs assigned to each pair (Xr , Xs), for
r, s 2N, s > r, reflecting the level of interaction.

With these definitions themultifacilityWeber objec-
tive function can be written as

X
m2M

X
n2N

wmndm(Exm; Xn)

C
X
r;s2N
s>r

vrsd(Xr ; Xs) :D f (X1; : : : ; XN)

and the multifacility Weber–Rawls objective function
can be written as

max

(
max
m2M
n2N

wmndm(Exm; Xn); max
r;s2N
s>r

vrsd(Xr ; Xs)

)

:D g(X1; : : : ; XN ):

In the corresponding optimization problems we may
additionally assume a feasible region F and we look for

min
fX1;:::;XN g�F

f (X1; : : : ; XN );

and

min
fX1;:::;XN g�F

g(X1; : : : ; XN):

In the first part of this survey it is assumed that F = R2

whereas F will be a restricted set later on.
The models above implicitly assume that the new

facilities can be distinguished, that the amount of inter-
action between each new and existing facility is known

and that the new facilities have mutual communica-
tion. Note, that problems without communication be-
tween the new facilities can be separated into N inde-
pendent 1-facility problems which can be easily solved
by suitable algorithms. Also, in many applications we
want to locate a number of indistinguishable facilities to
serve the overall demand. This implies that we are not
only locating facilities, but we are also allocating exist-
ing facilities (clients) to the new ones. This variation of
the problem is calledmultiWeber ormultiWeber–Rawls
problem and the objective functions can be written as

X
m2M

wmdm(Exm; fX1; : : : ; XNg) Dbf (X)

and

max
m2M
fwmdm(Exm; fX1; : : : ; XNg)g Dbg(X);

respectively, where dm(Exm, {X1, . . . , XN}) :=
minY2X1 ;:::;Xn } dm(Exm, Y).

In order to discuss solution methods, suitable types
of distance functions dm,m 2M, are specified next.

Let B be a compact convex set in the plane contain-
ing the origin in its interior and let Y be a point in the
plane. The gauge of Y (with respect to B) is then defined
as

�B(Y) :D inf f� > 0 : Y 2 �Bg :

This definition dates back to [25]. The distance from
Exm to Y induced by �B is

dm(Exm;Y) :D �Bm (Y � Exm) for m 2M:

In the case where all Bm are convex polytopes with
extreme points Ext(Bm) := {em1 , . . . , emG } we can define
halflines lmi starting at Exm and going through emi . For
the 1-facility case it was proved in [6] for the Weber
problem that there always exists an optimal solution in
the set of intersection points of the halflines lmi for i =
1, . . . , Gm and m 2M. This result carries over to multi-
(facility) Weber problems when each Bm has no more
than 4 extreme points [24]. For more than 4 extreme
points it is in general wrong (see [24] for a counterex-
ample).

In the case where all Bm are polytopes we can give
linear programming formulations for the multifacility
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Weber as well as the multifacility Weber–Rawls prob-
lem [34] using B0

m , the polar set of Bm,m 2M.
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
m2M

X
n2N

wmnzmn C
X
r;s2N
s>r

vrs z0rs

s.t.
˝
Exm � Xn ; e0m

˛
� zmn ;

8m 2M; n 2N e0m 2 Ext(B0
m);˝

Xs � Xr ; e0
˛
� z0rs ;

8s; r 2N ; s > r; e0 2 Ext(B0);8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min z
s.t. wmn

˝
Exm � Xn; e0m

˛
� z;

8m 2M; n 2N ; e0m 2 Ext(B0
m);

vrs
˝
Xs � Xr ; e0

˛
� z;

8s; r 2N ; s > r; e0 2 Ext(B0):

Even without polyhedral structure we still have a con-
vex optimization problem for which several solution
techniques are available (see [11,12,21,32] and refer-
ences therein).

In the case where we also have to deal with the allo-
cation problem we still can apply discretization results
from the 1-facility case. The allocation part makes the
problem howeverNP-hard (see [22,23]; cf. also�Com-
plexity Theory; � Complexity Classes in Optimiza-
tion). Nevertheless, constructs from computational ge-
ometry (e. g. Voronoi diagrams; cf. also � Voronoi Di-
agrams in Facility Location) can be used to tackle the
allocation part efficiently and allow iterative heuristics
producing in general satisfactory results (see [2,30]).

Further extensions are possible and already investi-
gated including location with attraction and repulsion,
hub location, etc. (see [32] for further references).

A problem common to all forms of multi-(facility)
location problems is, that in an optimal solution loca-
tions of different new facilities may coincide with each
other or with existing facilities. This raises at least two
issues:
� A priori detection of coincidences which result in

a reduction of the dimension of the problem and al-
low the exploitation of differentiability are discussed
in [7,20,31].

� If coincidence is excluded, the theory of restricted
location can be used which is discussed next.

So far, the set F for placing new facilities was the whole
plane R2. Now, the feasibility set F = R2 \ int (R) is con-

sidered, where R � R2 is the restricting set assumed
to be connected in R2. This problem is more compli-
cated than the unrestricted one, since F is in general
not convex. But from a practical point of view it is
a necessary extension of the classical location model,
since forbidden regions appear everywhere: nature re-
serves, lakes, exclusion of coincidence in multifacility,
etc. These problems are called restricted location prob-
lems and have been developed in [1,12,14,15] and [26].
In the following we exclude the trivial case and assume
that none of the optimal solutions of the unrestricted
problem is a feasible solution of the restricted one.

If the objective function h of the location problem
is convex it can be shown that optimal solutions of the
restricted problem can be found on the boundary of R.
Therefore, level curves

LD(z) :D fX 2 Rn : h(X) D zg

and level sets

L�(z) :D fX 2 Rn : h(X) � zg

can be used to reformulate the restricted location prob-
lem as

min fz : LD(z) \ @R ¤ ; and L�(z) � Rg :

A resulting search algorithmwas formulated in [11],
but proved to be inefficient in practical applications.

An efficient approach originally presented in [12,14,
15] identifies finite dominating set (FDS) on the bound-
ary R, i. e. a finite set of locations on @R which contains
an optimal solution. Using this discretization, problems
with gauge distance and convex forbidden region can
be solved by considering as FDS the intersection points
of lmi and the boundary of R (see [15,26,28] and the il-
lustration in the following figure).

The discretization also works for restricted center
problems [16] and can be extended to nonconvex for-
bidden regions (see [15,26]) and also to the case of at-
traction and repulsion (negative weights are allowed),
see [29]. The concept of forbidden regions has been suc-
cessfully applied to a problem in PCB assembly, where
the bins holding the parts to be inserted into the PCB
have to be stored [10]. Of course, the PCB itself has to be
forbidden for placing a bin. A solution approach, where
also the issue of space requirements in a multifacility
setting is addressed can be found in [9,15]. A more gen-
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Multifacility and Restricted Location Problems, Figure 1
Example of a restricted location problem with 4 existing fa-
cilities and an elliptic forbidden region

eral case where the new facility is a line has been consid-
ered in [33]. Algorithms for multifacility problems with
forbidden regions can be found in [8,15,27].

Another type of restricted location problem is one,
where not only placement, but also tresspassing of re-
gions is forbidden. These problems are called barrier lo-
cation problems. The corresponding models are mathe-
matically challenging, since the distance functions (and
thus also the objective functions) are no longer con-
vex. [17] considers Euclidean distances and one circle
as forbidden region. [1] and [4] develop heuristics for
lp distances and barriers that are closed polygons. [19]
and [3] obtain discretization results for l1 distances and
arbitrary shaped barriers by showing an equivalence of
the barrier problem to a network location problem. In
the more general context of gauge distances an FDS is
given in [13] for median problems and in [5] for center
problems. Finally, [18] considers barrier problems if the
distance is an arbitrary norm and the barrier consists of
a line with finitely many passages.
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An ordinary transportation problem has variables with
two indices, typically corresponding to sources (or ori-
gins, or supply points) and destinations (or demand
points). A multi-index transportation problem (MITP)
has variables with three or more indices, correspond-
ing to as many different types of points or resources
or other factors. Multi-index transportation problems
were considered by T. Motzkin [22] in 1952; an appli-
cation involving the distribution of different types of
soap was presented by E. Schell [35] in 1955. MITPs are
also known as multidimensional transportation prob-
lems [4]. There are several versions and special cases of
MITPs:
� The number k of dimensions may be fixed to

a small value; the resulting MITP is called a k-index
transportation problem, k ITP. Quite naturally, the
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best studied cases are the three-index transportation
problems (3ITPs), also known as three-dimensional,
or 3D transportation problems.

� The type of constraints is determined by an integer
m with 0 < m < k, defining m-fold k ITPs (called
symmetric MITPs in [16]; see also [41, Chapt. 8]).
The most common cases are axial MITPs, whenm =
k�1; and planar MITPs, when m = 1; see below for
details.

� Integer solutions may or may not be required. In-
tegrality requirements, which give rise to integer
MITPs, may be necessary since MITPs lack the inte-
grality property enjoyed by ordinary transportation
problems (but see [22] for an exception).

� Unit right-hand sides, in conjunction with integral-
ity requirements, give rise to multi-index assign-
ment problems (MIAPs). (Some authors use this
term for integer MITPs with integer right-hand
sides; the present terminology, consistent with that
for ordinary assignment and transportation prob-
lems, seems preferable.) MIAPs are hard to solve:
the 3IAP is already NP-hard by reduction from the
3-dimensional matching problem [17]. Even worse
[6]: no polynomial time algorithm for the 3IAP can
achieve a constant performance ratio, unless P =NP.

� The objective function is usually a simple linear
combination of the variables, normally a total cost
to be minimized as in equation (1) below. Alterna-
tives, not considered in this article, may include bot-
tleneck objectives [11,36], more general nonlinear
objectives such as in [34], or multicriteria problems
[38].

� There may be additional constraints, such as upper
bounds on the variables, (capacitated MITPs), vari-
ables fixed to the value zero (MITPs with forbidden
cells), or constraints on certain partial sums of vari-
ables (MITPs with generalized capacity constraints).

MITPs with linear objectives and without integral-
ity restrictions are linear programming problems with
a special structure. The most extensively studied inte-
gerMITPs are three-index assignment problems (3IAPs);
see also Three-index Assignment Problem.

Formulations

The following compact notation [31,34] avoids multi-
ple summations and multiple layers of subindices. Let k

� 3 denote the number of dimensions or indices, and K
= { 1, . . . , k }. For i 2 K let Ai denote the set of values of
the ith index. Let A =˝i2KAi =A1 × � � � ×Ak denote the
Cartesian product of these index sets, that is, the set of
all joint indices (k-tuples) a = (a(1), . . . , a(k)) with a(i)2
Ai for all i 2 K. One variable xa is associated with each
joint index a 2 A. Thus, for example in a 3ITP with in-
dex sets I, J and L, the variable xa stands for xij ` when
the joint index is a = (i, j, `).

Given unit costs ca 2R for all a 2 A, a linear objec-
tive function is

min
X
a2A

caxa (1)

and the variables are usually restricted to be nonnega-
tive:

xa � 0 for all a 2 A: (2)

Given the integer m with 0 < m < k, the demand
constraints of the m-fold k ITP are defined as follows.
Let (Kk� m) denote the set of all (k �m)-element subsets
of K; an F 2 (Kk�m) is interpreted as a set of k�m ‘fixed
indices’. Given such an F and a (k � m)-tuple g 2 AF =
˝f2FAf of ‘fixed values’, let

A(F; g) D fa 2 A : a( f ) D g( f ); 8 f 2 Fg

be the set of k-tuples which coincide with g on the fixed
indices. Them-fold demand constraints are

X
a2A(F;g)

xa D dFg

for all F 2

 
K

k � m

!
; g 2 AF ;

(3)

where the right-hand sides dFg are given positive de-
mands associated with the values g for fixed index sub-
set F. These ‘demands’ may also denote supplies or ca-
pacities when the indices represent sources or some
other resource type. When some of these resources are
in excess, the equality in constraints (3)may be replaced
with inequalities. Problem (1)–(3) is a k ITP. Adding
the integrality restrictions

xa 2 N for all a 2 A; (4)

yields an integer MITP.
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As mentioned above, the most common cases arem
= k�1, defining axial MITPs; and m = 1, defining pla-
nar MITPs. For the axial problems, the notation may
simplified by letting dig = dFg when F = { i }. Note that
each variable xa appears in the same number k of axial
and planar demand constraints; however there are onlyP

i 2 K |Ai| axial constraints, versus
P

i 2 K
Q

f 2 K \ { i }

|Af | planar constraints. Of course, it is possible to com-
bine demand constraints with different values of m, so
as to formulate different types of restrictions (e. g., see
[5] and [16]).

Reductions between MITPs are presented in [16],
where it is shown in particular that anm-fold k ITP can
be reduced to a 1-fold k ITP for any m (with 0 < m <
k), thereby generalizing a result in [14]. Thus, an algo-
rithm that solves planar k ITPs is in principle capable of
solving m-fold k ITPs for any m (with 0 <m < k).

Notice that any MITP with arbitrary right hand
sides can be transformed to a MITP with right hand
sides 1. This is a (pseudopolynomial) transformation
and simply involves duplicating a resource with a sup-
ply of q units by q unit-supply resources. There seems
to be little advantage in doing so, except perhaps in con-
verting an integer MITP into one with 0–1 variables.

Another issue is the existence of feasible solutions.
For an axial MITP the requirement of equal total de-
mands

P
g dig =

P
g djg for all i, j 2 K is a necessary

and sufficient condition for the existence of feasible so-
lutions. Feasibility conditions are more complicated for
nonaxial problems; see [40] for a review of results for
planar problems. See also [41, Chapt. 8] for properties
of polytopes associated with (integer) MITPs, including
issues of degeneracy.

Applications

Transportation and Logistics

MITPs are used to model transportation problems that
may involve different goods; such resources as vehicles,
crews, specialized equipment; and other factors such as
alternative routes or transshipment points. Thus index
sets A1 and A2 may represent destinations and sources,
respectively, and the other sets A3, A4, . . . these addi-
tional factors. The type of ‘demand’ constraints used
will reflect the availability of these factors and their in-
teractions. Thus, for example, an axial demand con-
straint (3) with right-hand side d3i will be used for a ve-

hicle type i 2 A3 of which d3i units are globally available
(at identical cost) to all sources and destinations, while
a constraint with F = {2, 3} will be used if there are dFg
vehicles of type g(3) available at the different sources
g(2).

Interesting cases arise when each resource or factor
` 2 Ai corresponds to a point Pi, ` in ametric space, i. e.,
a set with a distance ı, and the unit costs ca are ‘de-
composable’ as defined below. Each joint index a 2 A
may be interpreted as a cluster of points among which
transportation and other activities are conducted. The
unit cost ca reflects the within-cluster transportation
costs associated with these activities; it is decomposable
if it can be expressed as a function of the distances
between pairs of points in the cluster a. Examples in-
clude the diametermaxi, j ı(Pi, a(i), Pj, a(j)), when all these
activities are performed simultaneously; the sum costsP

i, j ı(Pi, a(i), Pj, a(j)) when all activities are performed
sequentially; and the Hamiltonian path or path costs,
when all points Pi ` in the cluster have to be visited in
a shortest sequence.

Other interesting cases arise when one of the indices
denotes time. A simple dynamic location problem [27]
may be modeled as an axial k ITP, where index set A1

may denote the set of facilities (say, warehouses) to be
located; A2 that of candidate locations; and A3 that of
time periods. The costs cijt may include discounted con-
struction and operating costs of these facilities. See [38]
and [33] for other applications of this type.

Timetabling

Other problems involving time and which can be for-
mulated as MITPs arise in timetabling or staffing appli-
cations. To illustrate, consider the following generic sit-
uation. Given are N employees (index i), each of which
can be assigned to one ofM tasks (index j) during each
of T time periods (index k). Moreover, for each pair
consisting of a task and a time period a number rjk is
given denoting the number of employees required for
task j in period k. Also, a number rij is given denoting
the number of periods that task j requires employee i.
An employee can only be assigned to one task during
each time period. Finally, there is a cost-coefficient cijk
which gives the cost of employee i performing task j in
period k. This problem is called the multiperiod assign-
ment problem in [21] (see also the references contained
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therein). To model this as a planar 3ITP, let A1 be the
set of employees; A2 the set of tasks; A3 the set of time
periods;

dFg D

8̂
<̂
ˆ̂:

r jk for F D f2; 3g; 8g D ( j; k);
1 for F D f1; 3g; 8g D (i; k);
ri j for F D f1; 2g; 8g D (i; j);

and require the decision variables to be in { 0, 1 }. A spe-
cial case arises when rjk = 1 for all j, k and N = M.
The polyhedral structure of the resulting planar 3ITP
is investigated in [7]. Other references dealing with
timetabling problems formulated as MITPs are [10,15]
and [12].

Multitarget Tracking

Consider the following (idealized) situation. N objects
move along straight lines in the plane. At each of T time
instants a scan has been made, and the approximate po-
sition of each object is observed and recorded. From
such a scan it is not possible to deduce which object
generated which observation. Also, a small error may
be associated with each observation. A track is defined
as a T-tuple of observations, one from each scan. For
each possible track a cost is computed based on a least
squares criterion associated with the observations in the
track. The problem is now to identify N tracks while
minimizing the sum of the costs of these tracks. This
problem is called the data-association problem in [25].
It can be modeled as an axial integer TIAP as follows:
let Ai be the set of observations in scan i, i = 1, . . . , T,
and let dig = 1, i = 1, . . . , T, g = 1, . . . , N. Not surpris-
ingly, this problem is NP-hard already for T = 3 (see
[37]; notice however that this does not follow from the
NP-hardness of 3IAP due to the structure present in the
cost-coefficients in the objective function of multitarget
tracking problems). Other references dealing with tar-
get tracking problems formulated as axial MIAPs are
[23] and [24]; see also [20].

Tables with Given Marginals

Other statistical applications of MITPs require finding
multidimensional tables with given sums across rows or
higher-dimensional planes, as specified in constraints
(3). The right-hand sides dFg of such constraints are

often known as marginals. In a simple application [3]
arising in the integration of surveys and controlled selec-
tion, each index set represents a population from which
a sample is to be drawn. A (joint) sample is a k-tuple,
one from each population. The marginals are speci-
fied marginal probability distributions over each pop-
ulation, giving rise to axial demand constraints. Given
sample costs ca, the problem is to find a joint probability
distribution, defined by (xa), of all the samples, consis-
tent with these marginal distributions and of minimum
expected cost (1).

In contrast, problems of updating input-output ma-
trices (see [34] and references therein) typically have
nonlinear objectives. In such problems, given are a k-
dimensional array B of data (for example, past input-
output coefficients) and arrays d of marginals (for ex-
ample, forecast aggregate coefficients) with appropri-
ate dimensions. The problem is to determine values xa,
the updated array entries, satisfying the demand con-
straints corresponding to the given marginals, and such
that the resulting updated array X = (xa) differs as little
as possible from the given array B, as specified by an ap-
propriate (nonlinear) objective function. A (nonlinear)
MITP arises when the values xa are constrained to be
nonnegative, a natural requirement in many contexts.

Other Applications

include an axial integer 3ITP model for planning the
launching of weather satellites [27], and an axial integer
5IAP arising in routing meshes in circuit design [9].

Solution Methods

As noted above, MITPs are linear programming prob-
lems with a special structure. There are several propos-
als for extensions of LP (transportation) algorithms to
MITPs (e. g., [4,13] for 3ITPs and [1] for a 4ITP).

As also mentioned earlier, integer MITPS are hard
to solve. Exact algorithms have been proposed for the
axial integer 3IAP (see Three-index Assignment Prob-
lem) and for the planar integer 3IAP (see [39] and
[19]). Other exact approaches for integer MITPs rely
on structure that is present in the particular application
considered (see, e. g., [12]).

Several methods have been proposed to obtain good
approximate solutions to integer MITPs. In [21]results
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are reported for a rounding heuristic on some medium-
sized planar integer 3ITPs. A tabu search algorithm for
this problem is described in [18]. Heuristic solution
approaches based on Lagrangian relaxation are pro-
posed in [26,28] and [29] for multitarget tracking prob-
lems.

One major difficulty with these exact or approxi-
mate solution methods may be the sheer size of MITP
formulations; if, for example, all |Ai| = n then anm-fold
k ITP has nk variables and (km)nk�m constraints. In con-
trast, the two approaches sketched below yield feasible
solutions to axialMITPs much more quickly than sim-
ply writing down all the cost coefficients. In particular,
these algorithms only produce the nonzero variables xa
and their values; all other variables are zero in the solu-
tion. In addition, this solution is integral if all demands
are integral. Of course, the effectiveness of these meth-
ods relies on some assumptions on the cost coefficients
ca, assumptions which are verified in several applica-
tions.

A Greedy Algorithm for Axial MITPs

The greedy algorithm below (a multi-index extension of
the North–West corner rule) finds a feasible solution to
axial MITPs in O(k

P
i |Ai|) time, which is (for fixed k)

linear in the size of the demand data dig . This solution
is in fact optimal if the cost coefficients are known to
satisfy a ‘Monge property’ [3,31,32] defined below. (For
k = 3, this greedy algorithm is already described in [4]
to obtain a basic feasible solution).

Consider the axial k ITP with equality constraints
(3) and assume that each Ai = { 1, . . . , |Ai| }. Recalling
that the demands are denoted dig , assume that

P
g2Ai

dig =
P

g2A1 d1g for all i 2 K, a necessary and sufficient
condition for the problem to be feasible.

PROCEDURE greedy MITP algorithm
WHILE (

P
g2Ai

di g > 0 for all i 2 K) DO
let a(i) = minfg 2 Ai : di g > 0g;
let� = minfdi;a(i) : i 2 Kg;
let xa = �;
FOR i 2 K DO let di;a(i) = di;a(i) ��;

RETURN x
END

A greedy algorithm for axial MITPs

AMonge Property

The join a _ b and meet a ^ b of a, b 2 A are

(a _ b)i D maxfa(i); b(i)g;

(a ^ b)i D minfa(i); b(i)g for all i 2 K:

The cost coefficients (ca) satisfy theMonge property if

ca_b C ca^b � ca C cb for all a; b 2 A:

Note that this is just the submodularity of the function
c: A! R defined on the product lattice A, see [3,31,32].
These references show that the above greedy algorithm
returns an optimal solution for all feasible demands if
and only if the cost function satisfies the Monge prop-
erty. The latter two references also extend the greedy
algorithm
i) to the case of forbidden cells when the nonforbidden

cells form a sublattice of A; and
ii) so that it returns an optimal dual solution.
They also show that optimizing a linear function over
a submodular polyhedron is special case of the dual
problem. It is shown in [32] that the primal problems
are equivalent to the ‘submodular linear programs on
forests’ of [8].

Cost functions c with the Monge property include
typical decomposable costs (as defined above) when all
the points are located on a same line or on parallel lines
(one line for each factor type Ai). For these problems,
the greedy algorithm above amounts to a ‘left to right
sweep’ across the points.

Hub Heuristics for Axial MITPs

The basic idea ([30], extending earlier work on axial
3IAPS [6] and MIAPs [2] with decomposable costs)
is to solve a small number of ordinary transportation
problems and to expand their solutions into a feasible
solution to the original MITP. For a large collection of
decomposable costs arising from applications, the ob-
jective value of this feasible solution is provably within
a constant factor of the optimum.

Given an index h, called the hub, determine, for each
index i 6D h, a feasible solution to the ordinary trans-
portation problem defined by supplies (dij)j 2 A(i) and
(dhg)g 2 A(h). The Expand procedure below then takes as
inputs these solutions y(h) = (yi)i 6D h and expands them
into a feasible solution x(h) to the axial MITP. Its run-
ning time is O(|Ah |

P
i 6D h| Ai|).
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FOR k = 1; : : : ; n;
PROCEDURE Expand(h; y(h))
FOR g := 1 TO nh DO

q := 0;
a(i) := 1 for i 2 K n h;
WHILE(q < dh;g) DO

let ` be such that
y`a(`);g = minfyra(r);g : r ¤ hg;
x(h)a := y`a(`);g ;
yra(r);g := yra(r);g � x(h)a for all r 2 K n h;
a(`) := a(`) + 1;
q := q + x(h)a ;

RETURN x(h)
END

The Expand procedure for axial MITPs

In the hub heuristics for decomposable costs, the or-
dinary transportation problems use as cost coefficients
the distances ı(Pij, Phg) between the corresponding
points Pij and Phg in the metric space. The expanded
MITP solution xh would be optimum if the cost func-
tion was that of the star with center h, namely if ca =P

i 6D h ı(Pi, a(i), Ph, a(h)). The triangle-inequality prop-
erty of the distance ı allows one to bound the cost
penalty from using this h-star cost function instead of
the actual decomposable cost function.

In the single hub heuristic, one chooses a hub h 2 K;
solves these k� 1 transportation problems; inputs their
solutions y(h) to Expand; and simply outputs the result-
ing MITP solution x(h). If the distance ı satisfies the tri-
angle inequality, the cost of this solution x(h) is no more
than k � 1 times the optimal cost, in the worst case,
for many common decomposable cost functions. The
multiple-hub heuristic is an obvious extension whereby
one performs the single-hub heuristic k times, once for
each h 2 K, and retains the best solution. This amounts
to solving (K2 ) ordinary transportation problems. Under
the same assumptions as above and for many common
decomposable cost functions, the cost of the resulting
solution is less than twice the optimum cost in the worst
case.

See also

� Generalized Assignment Problem
� Stochastic Transportation and Location Problems
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Multilevel, or hierarchical, programming problems
(MLP) are constrained optimization programs in which
subsets of the solution set are themselves solution sets
of other, lower-level optimization programs. Several
general MLP problem statements exist. They differ
from one another in the specifics of optimization vari-
able distribution among the levels and the definition of
the objectives and constraints at particular levels.

Given a set of objectives {f i}i = 1, . . . ,M with f i:Rn!R
and a vector of variables x 2Rn, partitioned into subsets
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x = (x1, . . . , xM) for some integerM denoting the num-
ber of subsystems, a prototypical form of MLP may be
stated as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

minx12S1 f1(x)
s.t. x2 2 argminx22S2f f2(x)g

:::

xM 2 argminxM2SM f fM(x)g;

where the optimization problem at each level i controls
its own subset of variables xi, while the other subsets
of variables x1, . . . , xi� 1, xi + 1, xM serve as parameters.
The constraint set for each level is Si � {x: hi(x) = 0,
gi(x) � 0} with hi: Rn ! Rmhi and gi: Rn ! Rmgi for
some integers mhi , mgi .

This form of MLP inspired by the work of H.
Stackelberg [92] can be viewed as an M-player Stack-
elberg game [18,84]. Its interpretation is that of M
autonomous players or decision makers seeking to
minimize their (possibly constrained) objective func-
tions while manipulating subsets of decision or design
variables disjoint from those of other decision makers.
The higher-level problems are implicit in the variables
of the lower-level problems. This formulation has been
studied widely in the bilevel case. See, for example, [15]
and the references therein. In general, all problem lev-
els, but the outermost one, may contain a number of
concurrent optimization problems.

A related variant of the problem, known as the gen-
eralized bilevel programming problem, represents the
reaction of the lower-level problem to decisions made
by the upper-level problem via a solution of an equilib-
rium problem stated as a variational inequality:

8<
:
min x2X;

y2Y(x)
f1(x; y)

s.t. h f2(x; y); y � zi � 0 for all z 2 Y(x);

where the upper-level domain X is such that the lower-
level domain Y(x) is not empty. This formulation
was introduced by P. Marcotte in [63] and studied in
[45,64], and [71].

Multilevel problems may be partitioned into two
classes with respect to another criterion [100]. In one
of the classes, upper-level optimization problems de-
pend on the corresponding lower-level ones through

the optimal value functions (or the marginal functions)
of the lower-level problems. An optimal value function
represents the value of a lower-level objective function
at a solution of that lower-level problem. In the other
class, upper-level problems depend on the correspond-
ing lower-level problems through the actual optimal so-
lutions of the latter. An example of two such formula-
tions in engineering design optimization will be given
further.

Multilevel programming problems arise in numer-
ous applications where the structure of the applica-
tion involves hierarchical decision making or where
the sheer size and complexity of the problem neces-
sitates partitioning of the system and processing the
subsystems in a hierarchical fashion. Information on
applications of multilevel optimization in such varied
areas as power systems, water resource systems, ur-
ban traffic systems, and river pollution control can be
found in [36,50,51,52,62,69,70,85], and many other ref-
erences. The use of multilevel algorithms in engineer-
ing control is well documented, for instance, in [46]
and [57].

The broad area ofmultidisciplinary design optimiza-
tion(MDO) – a term that denotes a large set of re-
search subjects and practical techniques for the design
of complex coupled engineering systems – is particu-
larly amenable to the use of multilevel methods, due
to the extreme computational expense and the organi-
zational complexity of the field. For instance, the de-
sign of aircraft involves aerodynamics, structural anal-
ysis, control, weights, propulsion, and cost, to list a few
disciplines. The complexity and expense of each dis-
cipline have assured that most disciplines have devel-
oped into vast, autonomous fields of study, so that prac-
tically feasible optimization methods that involve the
contributing disciplines must take into account such an
autonomy and the hierarchical organization. Maintain-
ing disciplinary autonomy while accounting for inter-
disciplinary subsystem couplings and allowing for inte-
grated system optimization with respect to system and
interdisciplinary objectives is one of the tasks of MDO.
Overviews of multidisciplinary optimization may be
found in [6] and [90].

Practitioners of engineering have been using mul-
tilevel methods, in some form, since optimization al-
gorithms made their appearance in engineering prob-
lems. The seminal works [60,65], and [98] contributed
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to a systematic development and understanding of hi-
erarchical optimization. Multilevel methods have been
studied extensively in application to multidisciplinary
design ([16,17,22,96,97]) and single-discipline design
areas that give rise to large problems, such as structural
optimization (e. g., [74,87,91]). Engineering multilevel
optimization has always had a strong connection with
multi-objective optimization (e. g., [53]).

Problem Formulation

The procedure of formulating an engineering design
problem as a multilevel or a bilevel problem is difficult
and depends on the complexity and size of the prob-
lem. The general components in formulating a multi-
level optimization problem are as follows:
� The original problem is studied to determine its

structure. Structure is of paramount importance in
deciding to adopt a particular formulation. For in-
stance, most formulations assume that the problem
subsystems share only a relatively small number of
variables, i. e., that the bandwidth of interdisciplinary
coupling is relatively small.

� The problem is partitioned into a system (or upper-
level) problem and subsystem (or lower-level) prob-
lems. Decisions are made on inclusions of particular
variables and constraints into the system and sub-
systems. Decisions are also made on the form of the
system and subsystem objectives.

� Finally, algorithms are selected for solving the sys-
tem and subsystem optimization problems. One
must distinguish a formulation of the problem from
the algorithm used to solve that formulation. While
some of the multilevel formulations can be eas-
ily shown to be mathematically equivalent to the
original problem with respect to solution sets, they
may not be equivalent with respect to other at-
tributes, such as constraint qualifications and opti-
mality conditions. Hence the numerical properties
of algorithms applied to different formulations vary
widely [8,9,10].

Problem decomposition constitutes a special area of
study. In general, decomposition techniques take ad-
vantage of the problem structure and depend on the
strength and bandwidth of couplings among the sub-
systems. Separable and partially separable problems are
particularly amenable to decomposition.

Two types of decomposition may be considered
in design optimization. Coarse-grained decomposi-
tion with respect to disciplines presents no difficulty,
because the design problem initially consists of au-
tonomous parts. The difficulty at this level of problem
formulation is in integration or synthesis. However, in
realistic applications, even though the coarse-grained
decomposition is frequently obvious, the complexity of
the problem requires that a dependence analysis be per-
formed in order to determine the most advantageous
arrangement or sequencing of the disciplinary subsys-
tems in the optimization procedure. Automatic tech-
niques based on graph-theoretic foundations may be
found in [78] and [79], for instance.

Finer-grained decomposition within a particular
discipline may be addressed by a multitude of tech-
niques for decomposition of mathematical programs.
Extensive references on decomposition in general
mathematical programming, beginning with [19] and
[31], and extended in [49] and many others, can be
found in [42] and [43]. Further references to decompo-
sition techniques aimed specifically at design problems
can be found in [95].

General multilevel programming presents an ex-
ceedingly difficult problem, and many multilevel for-
mulations and algorithms of engineering design rely
more on heuristics than on theoretically substantiated
foundations. There are exceptions, for instance, such as
those in [12,29,68], and [75]. While many engineering
multilevel approaches have enjoyed success when ap-
plied to specific problems, insufficient analytical foun-
dation and the difficulty of the problem usually mean
that the approaches are not robust, and extensive ‘fine-
tuning’ of heuristic parameters is required for each new
problem or instance of a problem. Hence, recent years
have seen renewed interest in systematic, analytically
substantiated approaches to MLP. Many such develop-
ments have taken place in bilevel optimization.

Bilevel Optimization

Although bilevel optimization problems (BLP) form
the simplest case of multilevel optimization, they are
very difficult to solve and constitute a fertile research
area. A survey of the field can be found in [28]. A large
bibliography with an emphasis on theoretical develop-
ments is also provided in [94].
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The conventional general bilevel problem may be
posed as follows:
8̂
<̂
ˆ̂:

minx2X f1(x; y)
s.t. h1(x; y) D 0

g1(x; y) � 0;

where y solves for fixed x:
8̂
<̂
ˆ̂:

miny2Y f2(x; y)
s.t. h2(x; y) D 0

g2(x; y) � 0:

The cases of linear and convex problem functions have
been studied widely. A popular class of methods for the
linear bilevel problem (extreme point algorithms) com-
putes global solutions by enumerating extreme points
of the lower-level feasible set (e. g., [27]). Convex bilevel
problems are often solved by branch and bound meth-
ods (e. g., [15]). A survey of methods for linear and con-
vex bilevel programming can be found in [11].

The considerably more difficult case of nonlinear
and nonconvex problem functions has inspired much
research activity as well but has, to date, led to few
computationally successful algorithms. The existing ap-
proaches to nonlinear bilevel optimization can be clas-
sified into several categories.

Penalty-Based Methods

This category uses penalty methods. In some algo-
rithms (e. g., [1]), a barrier function penalizes the
lower-level objective. In double-penalty methods, both
the lower-level problem and the upper-level problem
are approximated by sequences of unconstrained opti-
mization problems [56,61,64]. Single or double-penalty
methods are, in general, expected to converge slowly,
especially for highly nonlinear problems. Thus using
these methods for the usually large and nonlinear de-
sign optimization problems may be difficult.

KKT-Based Methods

The algorithms of this category convert the bilevel
problem into a nonconvex, single-level optimization
problem by using the Karush—Kuhn—Tucker condi-
tions (KKT conditions) of the lower-level problem
as constraints on the upper-level problem [14,15,20,

37,44]. If the lower-level problem is convex, the KKT
formulation is equivalent to the original formulation
[14]. However, even in this case, the KKT conditions
on the lower-level problem include the complementar-
ity slackness condition as a constraint. The form of
the complementarity condition makes the single-level
problem difficult to solve. The KKT formulation suffers
from an additional difficulty. Namely, it is well known
from the study of the sensitivity and stability of non-
linear programming (e. g., [40]) that even if the lower-
level problem behaves exceedingly well in that it satis-
fies such stringent assumptions as strong second order
sufficiency and regularity as a constraint qualification,
the feasible set of the single-level problem will generally
not be differentiable with respect to x. Hence, the per-
formance of gradient-based solvers on the transformed
problem may be adversely affected.

Descent-Based Methods

Another category of algorithms is based on solving
subproblems that result in descent for the upper-level
problem with gradient information of the lower-level
problem used in a number of ways [34,39,59,83].

The remainder of the article will be devoted to
a more detailed description of two specific approaches
to nonlinear, nonconvex problems that arose from the
need to solve engineering design problems. One ap-
proach is a bilevel formulation, the other is an algo-
rithm for solving multilevel formulations.

Examples: Collaborative Optimization

Collaborative optimization (CO) is a general approach
to solving multidisciplinary design optimization prob-
lems by formulating them as nonlinear bilevel pro-
grams of special structure. CO comprises a number of
methods. Its antecedents can be traced to earlier hier-
archical approaches, as in [60] and [98]. The underly-
ing idea of CO appeared in [13,80,81,82,88] and [96,97].
The approach has recently received attention under the
name of collaborative optimization [22,23,86,93].

Given that MDO problems are naturally partitioned
into subsystems along disciplinary lines, CO suggests
an intuitively attractive way to formulate the optimiza-
tion problem so that the autonomy of the disciplinary
subsystem computations is preserved. However, the ap-
proach presents a problem that is difficult to solve by
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means of conventional nonlinear programming soft-
ware [7,58]. The analytical and computational aspects
of CO were addressed in [9], of which the following
discussion is an abstract. As a complete description of
CO is lengthy, only an abbreviated version is consid-
ered here.

It is assumed that the original system is composed of
a number, say M, of interdependent but autonomous
systems, each of which is described by a disciplinary
analysis Ai, i = 1, . . . ,M, expressed in the form

Ai (xi ; yi(xi)) D 0;

where, given a vector of disciplinary design variables
xi, the analysis (frequently represented by a numerical
differential equation solver or simulator) is performed
to yield the vector of state variables or responses yi(xi).
The sets of disciplinary variables xi are not necessarily
disjoint. The disciplinary constraints are usually repre-
sented by inequalities

ci(xi ; yi (xi)) � 0:

Once the system objective and variables and the subsys-
tem constraints and variables are identified, the bilevel
problem is formed as follows:

The constraints of the system problem comprise
the ‘consistency’ (or ‘coupling’ or ‘matching’) condi-
tions that are used to drive the discrepancy among the
inputs and outputs shared by the subsystems to zero.
The values of the constraints are computed by solving
the subsystem optimization problems, and the num-
ber of consistency constraints is related to the number
of subsystems and variables shared among the subsys-
tems. The form of the consistency constraints deter-
mines a particular implementation of CO.

Let � and � represent system-level variables corre-
sponding to inputs and outputs of subsystems, respec-
tively. Then, given M subsystems, the abbreviated sys-
tem program is

(
min F(�; �)
s.t. G(�; �) D 0;

(1)

where

G(�; �) D

0
B@

g1(�; �)
:::

gM(�; �)

1
CA

is the set of system consistency constraints obtained by
solving lower-level subproblems, each of which is of the
form

(
min 1

2

�
k�i � xik2 C k�i � y(xi)k2

�

s.t. ci (xi ; y(xi)) � 0;
(2)

where i is the number of the subsystem. Thus, the ob-
jective of a subsystem optimization problem is always
to minimize the discrepancy between the shared vari-
ables of the subsystems, in a least squares sense, sub-
ject to satisfying the disciplinary constraints, which do
not depend explicitly on the system variables passed
down to the subsystems as parameters. The subsystems
remain feasible during optimization, while interdisci-
plinary feasibility is gradually attained at the system
level via the consistency constraints. Maintaining disci-
plinary feasibility is extremely important from the de-
sign perspective.

The problem now consists of a set of decoupled sub-
problems that can be solved independently and in par-
allel.

One instance of the system-level consistency condi-
tions gives rise to the form in which CO is usually pre-
sented: namely, the consistency condition is intended
to drive to zero the value function of the subproblem
(2). That is,

gi (�; �) D
1
2
k� � x�k2 C k� � y(x�)k2 ; (3)

where x� solves the subsystem optimization problem.
Another instance of system-level consistency condi-

tions matches the system-level variables with their sub-
system counterparts computed in subproblem

gi (�; �) D (� � x�; �� y(x�)): (4)

The behavior of optimization algorithms applied to the
original and CO formulations will differ greatly, as the
formulations are not equivalent with respect to con-
straint qualifications or optimality conditions.

In general, value functions are not differentiable,
and this may cause difficulties for optimization algo-
rithms applied to the system-level problem. However,
under a number of strong assumptions, the constraints
are locally differentiable and can usually be computed.

Derivatives of the system-level constraints with re-
spect to the system-level design variables are the sensi-
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tivities of the minima or the solutions of the subsystem-
level optimization problems to parameters. The area of
sensitivity in nonlinear programming has been studied
extensively. Relevant results can be found in [40] and
[41]. In particular, under the assumptions of sufficient
smoothness, second order sufficiency, regularity as con-
straint qualification, and strict complementarity slack-
ness, the basic sensitivity theorem (BST) proves the ex-
istence of a unique, local, continuously differentiable
solution-multiplier triple for the perturbed problem.
Moreover, locally, the set of active constraints remains
unchanged and regularity and strict complementarity
hold, allowing one to compute derivatives locally. In
fact, under a number of assumptions, stronger state-
ments can be made about the differentiability of the
value function [30,77].

Under the conditions of BST, local first order
derivatives of the consistency constraints (3) have a par-
ticularly simple form because, in the case of CO, the
constraints of the lower-level problems do not depend
on parameters. On the other hand, the first order sen-
sitivities of solutions of the lower-level problem that
form the derivatives of the consistency constraints (4),
while of closed form, are expensive to compute and
involve second order derivatives of the subsystem La-
grangians.

There is another feature of the CO formulation with
compatibility constraints (3) that will cause difficul-
ties for nonlinear programming algorithms applied to
the system-level problem: Lagrange multipliers will al-
most never exist for the equality constrained system
level problem, with all the ensuing consequences. The
nonexistence of Lagrange multipliers is due to the de-
scription of the feasible region that causes the Jaco-
bian of the system-level constraints to vanish at a so-
lution. The formulation with compatibility constraints
(4) aims to address this problem. However, the com-
putation of derivatives for this formulation is clearly
expensive, as it not only involves solving a system of
equations, but also requires the computation of second
order information for the subsystems. The difficulties
are addressed in detail in [9].

In summary, CO is an appealing approach to de-
sign optimization; however, the bilevel nature of the
problem formulation will cause difficulties for con-
ventional nonlinear programming algorithms applied
to the system-level problem. Variations, special algo-

rithms for solution, and alternatives can be found in,
e. g. [33,54,55].

Example: MAESTRO,
a Class of Multilevel Algorithms

Asmentioned earlier, most multilevel formulations and
algorithms for engineering design problems assume
that the bandwidth of coupling among the subsystems
comprised by the multilevel system is small. While
many problems may be stated in this way, it is becom-
ing increasingly important to consider problems with
large bandwidth of coupling where, to use an MDO
expression, ‘everything affects everything else’. MAE-
STRO (a class of multilevel algorithms for constrained
optimization; [2]) is intended for solving large non-
linear programming problems with arbitrary couplings
among the naturally occurring subsystems, i. e., a par-
ticular instance of MDO problems with a single ob-
jective. The class was extended in, e. g., [5] to include
a large class of steps for the nonlinear programming
problem and in [3,4] to incorporate general nonlin-
ear objectives. The class makes no assumptions on the
structure of the problem, such as convexity or separa-
bility.

The algorithms of the class are based on trust re-
gion methodology (see, e. g., [35,38,67]) and are proven
to converge under reasonable assumptions.

The idea of the MAESTRO algorithms is to attain
sequential predicted sufficient decrease conditions for all
the constrained objectives, and is a direct extension of
the multilevel ideas for the equality constrained opti-
mization problem. The approach can be summarized
as follows. Given an initial approximation to the so-
lution of the multilevel problem, the trial step for the
multilevel problem is computed as a sum of a sequence
of substeps, each of which predicts sufficient (or opti-
mal) decrease in the quadratic model of the objective of
a given subproblem, subject to maintaining predicted
decrease in the models of the previous objectives. For
instance, in the case of the unconstrained bilevel prob-
lem, the trial step for the bilevel problem is a sum of two
substeps. The first substep is computed to predict suffi-
cient decrease, via the quadratic model of the innermost
objective f 2, for the subproblem of approximately opti-
mizing

mf2 (s) � f2(xc)Cr f2(xc)>sC
1
2
s>H2(xc)s;
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in the trust region of size ı f2 to produce the substep s f2 ,
where xc is the current approximation to the solution
and H2 is the current approximation to the Hessian of
f 2. The second step s f1 would then approximately mini-
mize the quadratic model of the outermost objective f 1,
constructed at xc C s f2 , in the trust region of size ı f1 ,
subject to constraints that enforce the preservation of
the predicted sufficient or optimal decrease for f 1. The
total trial step is evaluated by using the merit function
designed to account for the sequential processing of the
objectives. The algorithm is shown to converge to crit-
ical points of the bilevel or multilevel problem. Thus,
the essential difference between this approach and the
classical approaches to bilevel optimization is that in-
stead of starting from the optimality conditions for the
bilevel or multilevel problem, the approach attempts to
obtain decrease on the sequence of subproblem mod-
els, while preserving predicted decrease for the previ-
ously processed subproblems, and to measure progress
via the use of an appropriate merit function with rig-
orously updated penalty parameters. It is important to
emphasize that the merit function is used only to eval-
uate the steps, and not to compute them.

The ongoing work is concerned with practical im-
plementation issues and applications to engineering de-
sign problems.

Summary

Multilevel optimization has been an active research
field, both in applied mathematics and in engineer-
ing design. Many open questions remain, in particu-
lar, in the area of practical computational algorithms
for bilevel and multilevel problems. Overviews of some
recent developments can be found in [66].

Understanding the behavior of specific, nonlinear
programming algorithms applied to the system-level
problem of the bilevel or multilevel formulations will
present an interesting and difficult area of inquiry, and
would benefit from the techniques of nonsmooth anal-
ysis and optimization [32,36,47], unconventional no-
tions of constraint qualifications [24,25], and optimality
[99,100].

To facilitate research and testing in the area of algo-
rithms, one may find automatic bilevel and multilevel
problem generators, as well as other sources of multi-
level problems, described in [26,72,73].
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Multilevel optimization methods have been developed
first in the period after 1960. The main scope was to
facilitate the optimization of large scale systems in in-
dustrial processes and to solve trajectory determination
and prediction problems using trajectory decomposi-
tion techniques. The reader may refer in this respect to
the corresponding articles [3] and [26] and to the ref-
erences given there but also to the books [27] and [12].
More recent works on this subject have been published
in [4,14]. It should be mentioned that certain sources
concerning the ideas of multilevel optimization may be
found in well-known treatises of calculus of variations
and theoretical mechanics, cf. e. g. [5,10]. Indeed, the
well-known procedure of variational methods in Me-
chanics of ‘frozen’ variables or constraints has a great
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relationship with the ideas of multilevel optimization.
Also the well-known iterative methods of H. Cross and
G. Kany of linear structural analysis used after 1940
and before the development of computer codes based
on the finite element method (FEM), for the calculation
of framed structures, are nothing than a formulation in
the ‘language’ of structural analysis of a multilevel op-
timization algorithm for the minimization problem of
the complementary energy of the structure, expressed
in terms of the bending moments of the beam and col-
umn connections.

Among the pioneers in the application of the multi-
level optimization methods inmechanics and especially
concerning the calculation of structures involving in-
equality constraints was P.D. Panagiotopoulos [19,20].
The idea was the following: Most mechanical problems
can be expressed as the minimum problems of an ap-
propriately formulated energy function. The decompo-
sition of this initial optimization problem into smaller
subproblems corresponds to the energetic decomposi-
tion of the initial mechanical problem into smaller fic-
titious subproblems. The mutual interaction of these
subproblems yields, after an iterative procedure, the
solution of the initial problem. The aforementioned
method leads to the following three main applications
of the multilevel optimization techniques in the frame-
work of Mechanics and more generally in engineering
sciences.
a) Calculation of large structures.
b) Validation of the simplifying assumptions used for

the calculation of complex structures. Accuracy test-
ing.

c) Accuracy improvement of simplified models used
for the estimation of the behavior of complex struc-
tures.

Note that in the above, the term ‘structure’ can be re-
placed with the term ‘systems’, meaning systems whose
behavior is characterized by the solution of a minimax
problem.

Since most of the multilevel techniques developed
in the early sixties for the trajectory determination
problems in space science are also applicable to sta-
tionarity problems, and since recently it has been
proved that in the dynamic problems involving impact
phenomena the functional of the action is stationary
[22,23] it results that there is also a further application
of the multilevel optimization methods:

d) Calculation of the dynamic behavior of structures
involving impact effects.

To the aforementioned applications the following, clas-
sical one, can be added.
e) Solution of optimal control (minimum of weight or

cost, maximum of strength) in dynamic structural
analysis problems.

This article deals mainly with static systems. Concern-
ing the application d) and e) the reader is referred to
[12,27] in relation with [22,23]. In dynamic problems
analogous methods to the static problems can be devel-
oped.

The classical decomposition techniques which are
applied to optimization problems (cf. in this respect
also [20, pp. 355ff]) have been extended and they can
be applied also to substationarity problems [25], i. e. to
problems of the type

0 2 @ f (x);

where f is a nonconvex nonsmooth energy function
and @ denotes the generalized gradient of F.H. Clarke
[7] as it has been extended by R.T. Rockafellar [25] for
nonLipschitzian functionals. In this case the variational
inequalities of the convex energy problems are replaced
by hemivariational inequalities (cf. e. g. [8,17,20,21])
and instead of a global minimum of the convex po-
tential or complementary energy functionals, the local
minima and maxima are searched and among them the
global minimum as well. For the numerical treatment of
hemivariational inequalities certain numerical methods
have been developed (cf. e. g. [21]) and among them,
the two methods described in [15] are extensions of
the multilevel optimization methods to substationarity
problems.

It should also be noted that most of the domain de-
composition methods are special cases of the multilevel
optimization algorithms, as it results easily if one con-
siders the energy functionals corresponding to the par-
tial differential equations studied. Then the domain de-
composition leads to energy functionals which have to
be minimized on the decomposed parts of the domain.

Finally, it should be mentioned that fractal geome-
tries in optimization problems arising in Mechanics are
treated by means of appropriate multilevel transforma-
tions of the problem as is will be shown further. It is evi-
dent that an optimization problem with many variables
cannot always directly be decomposed into indepen-
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dent optimization subproblems. The aim of the mul-
tilevel optimization is to define with respect to an op-
timization problem, appropriate mutually independent
subproblems. Each of these when solved independently
yields the optimum of the overall problem after an iter-
ative procedure which is called second-level controller.
The decomposition into subproblems is achieved by
choosing some variables, called coordinating variables,
which are freely manipulated by the second-level con-
troller in such a way that the subproblems (first-level of
the problem) have solutions which in fact yield the op-
timum of the initial problem, i. e. before its decomposi-
tion into subproblems. Here, the ideas of [3] are closely
followed.

There are several different methods of transforming
a given constrained optimization problem into a multi-
level optimization problem. All these methods are basi-
cally combination of two methods: the feasible decom-
position method or model coordination method and the
nonfeasible decomposition method or goal coordination
method.

Let us consider the problem
8̂
<̂
ˆ̂:

min
x;u

˘ (x;u)

s.t. f(x;u) D 0
R(x;u) � 0;

(1)

where x is a vector in En, u is a vector in Em, f is an n
vector of C2 functions,˘ is a twice continuously differ-
entiable (C2) function, and R is an r vector of C2 func-
tions. To decompose, coordinating variables s may be
substituted not only for a single variable but also, for
functions g(x, u), so that˘ is splitted intomutually dis-
joint parts and the f and R equations contain no com-
mon x, u, or s variables between the subproblems. Thus
the following problem results:

˘ (x;u; s) D
NX
iD1

˘ (i)(x(i);u(i); s(i))

f(i)(x(i);u(i); s(i)) D 0; i D 1; : : : ;N;

R(i)(x(i);u(i); s(i)) � 0; i D 1; : : : ;N:

The (i) denotes to the ith subproblem or subsystem
which must be optimized. For example in a control
problem x denotes the state, u denotes the control and
x(1) is the state vector for the first subsystem. Also the

coupling equations must be added:

s(i) D g(i)(x( j);u( j)) for all j ¤ i:

The Lagrangian of the new problem reads

ĕ(x;u; s;�;�;�)

D

NX
iD1

˘ (i) C

NX
iD1

�(i)> f(i) C
NX
iD1

�(i)>(R(i) � � (i))

C

NX
iD1

�(i)>(g(i) � s(i)); (2)

where � (i) � 0 are additional slack variables such that

R(i) � � (i) D 0:

ĕ is immediately separable into N individual subsys-
tems, except for its last term.

In the method of nonfeasible decomposition it is as-
sumed that �(i) has a known value. The term �(i) | s(i) is
put in the ith subsystem and all of the �(i)|g(i)(x(j), u(j))
terms associated with the jth variables are put in the jth
subsystem. On the other hand, in the feasible decompo-
sition method it is assumed that s(i) has a known value.
Moreover, all of the �(i) |[g(i)(x(j), u(j)) � s(i)] terms as-
sociated with the jth variables are put in the jth sub-
system. In both cases, the optimization problem is sep-
arable and each subsystem can be optimized indepen-
dently. Equation (2) is rewritten in more compact form
as

ĕ(x; v;�;�;�)

D F(x; v)C �>f(x; v)C �>[R(x; v)� � ]

C �>h(x; v); (3)

where � � 0, v represents u and s and h(x, v) denotes all
g(i) � s(i), � is a Lagrange multiplier vector of the same
dimension as g, � is an r vector including all Lagrange
multipliers, and � is an n vector including all Lagrange
multipliers.

The Kuhn–Tucker theory of nonlinear program-
ming [9] implies that if ˘ (x, v) has a critical point at
(x0, v0) such that the constraint equations in (1), are
satisfied, and if the rank of
"�

@f
@y

�> �
@R
@y

�> �
@h
@y

�>#
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is full and equals the rank of
"�

@f
@y

�> �
@R
@y

�> �
@h
@y

�> �
@˘

@y

�>#
; (4)

where

y �
�
x
v

�

at (x0, v0), then a set of unique Lagrange multipliers �0,
�0 and �0 exist at the critical point. The necessary con-
ditions for a critical point (local minimum) are

@ĕ
@x
D
@ĕ
@v
D 0; �i Ri D 0; R � 0; � � 0; (5)

@ĕ
@�
D f> D 0;

ĕ
@�
D h> D 0: (6)

If ˘ (x, v) is convex, if f i(x, v) and hi(x, v) are convex
for �0i and �

0
i positive, or if f i(x, v), hi(x, v), Ri(x, v) are

concave for �0i , �
0
i ,�

0
i negative, and the above necessary

conditions are satisfied, then ˘ (x0, v0) is the absolute
minimum of (1) and ĕ has a global saddle point at (x0,
v0); that is,

ĕ(x; v;�0;�0;�0) � ĕ(x0; v0;�0;�0;�0)

� ĕ(x0; v0;�;�;�)

for all x, v,�,�, and �. These conditions can be relaxed
to local convexity and concavity such that only a local
minimum and saddle point are assured.

The nonfeasible gradient controller of L.C. Lasdon
and J.D. Schoeffler [11] has the following form: Given
(1), suppose that
a) ĕ has a global saddle point at (x0, v0;�0, �0, �0);

and
b) for any given �, a finite constrained (unique) mini-

mum (constrained by f and R) exists.
Then the iterative procedure given by

iC1� D i�C	�;

where

	� D C�h(x�; v�); with � > 0;

will converge to �0 and the absolute minimum of (1).
Note that a local saddle point can replace a), then the

initial guess on � must be within this saddle region.
However, then the algorithm leads only to a local min-
imum. This Lasdon gradient controller can be consid-
ered as a variant of the modified Arrow–Hurwicz gra-
dient method of K. Arrow, L. Hurwicz and H. Uzawa
[1].

The feasible gradient controller of C.B. Brosilow et
al. [6] has the following form: Given (1), suppose that
a) a finite minimum exists at (x0, v0); and
b) all the conditions of (5) and (6) are fulfilled except

for @ĕ /(@s) D 0, (where v denotes all s and u).
Then the iterative procedure given by

iC1s D isC	s;

where

	s D ��

 
@ĕ
@s

!
; with � > 0;

will converge to s0 = x0 and the minimum of (1).
The good choice of � is important for the gradi-

ent calculations. Then at the second level of the feasible
method, we may write ([3, p. 142]) that

d˘ � D
@ĕ
@s

ds D ��
@ĕ
@s

 
@ĕ
@s

!>
; � > 0:

An estimate of the expected improvement is written as
�˛˘

�
, ˛ > 0, where ˛ is usually 10% or so. Then

� D
˛ ĕ�

�
@ĕ/@s

� �
@ĕ/@s

�> : (7)

In the case of nonfeasible decomposition a similar
equation may be obtained [3]:

� D
˛ ĕ�
g>g

: (8)

Note that 	s and 	� become singular at the optimum
if (7) and (8) are used, respectively, and therefore these
values of	s and	� are not appropriate to obtain exact
solutions.

There is also the possibility to apply a Newton–
Raphson controller both for the feasible and for the
nonfeasible method in the second level (cf. in this con-
text [3, p. 173]).
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For instance examining (5) and (6), it is obvious that
the only necessary condition not satisfied by the subsys-
tems is g = 0 in the nonfeasible decomposition method.
Thus the Newton–Raphson method has as task to solve
g = 0 by an iterative method at the second level.

Note that the main characteristic of the aforemen-
tioned methods, i. e. the decomposition into subsys-
tems and the separable optimization applies also to
nonsmooth convex or nonconvex optimization prob-
lems.

Large Cable Structures

Here a possibility offered in structural analysis by the
multilevel optimization algorithms is presented. Cer-
tain subproblems do not contain inequalities, i. e. are
bilateral, and thus they can be treated by the avail-
able classical (i. e. based only on inequalities) FEM pro-
grams.

In the majority of cable structures the number of ca-
bles and nodes is large, and so an optimization problem
with a large number of unknowns and constraints must
be solved. Here, a multilevel optimization technique
suitable for the solution of this kind of optimization
problem is proposed. The initial optimization problem
is decomposed into a number of subproblems. In the
‘first level’ of the calculation, each subproblem is opti-
mized separately, and in the ‘second level’ the solutions
of these subproblems are combined to yield the overall
optimum.

It is interesting to note that some of these sub-
problems constitute minimization problems without
inequality constraints (corresponding to classical bilat-
eral structures), and the algorithms for their numerical
treatment are much faster. The initial problem is de-
composed into two subproblems: the first involves only
the displacement terms and corresponds to a structure
resulting from the given one by considering that all
the cables act as bars (capable of having compressive
forces), and the second, including only the slackness
terms, corresponds to a hypothetical slack structure. In
order to perform the decomposition, the potential en-
ergy of the structure is written in the form

˘ (u; v) D ˘ 0(u)C˘ 00(v)C u>GK0v; (9)

where

˘ 0(u) D
1
2
u>Ku� u>(GK0e0 C p) (10)

and

˘ 00(v) D
1
2
v>K0v> C v>(a � K0e0): (11)

In the above equations u, v, p, e0 are the displacements,
slackness, loading and initial strain vectors respectively,
K0 is the natural stiffness matrix, K is the stiffness ma-
trix of the assembled structure and G is the equilibrium
matrix. Introducing the variable w the minimization
problem (9) takes the form

min˘ (u; v;w) D ˘ 0(u)C˘ 00(v)C u>GK0w:

The Lagrangian of this problem is

˘1(u; v;w) D ˘ (u; v;w)C �>(v � w);

where � is the vector of the Lagrange multipliers. The
decomposition can be performed by means of two
methods: the nonfeasible gradient controller method of
Lasdon and Schoeffler and the feasible gradient con-
troller method of Brosilow, Lasdon and Pearson [11].
In the nonfeasible gradient controller method the value
of � is supposed to be constant in the first level, say
�1, and the minimization problem decomposes into the
two subproblems

min
u;w
f˘ 0(u)C u>GK0w � �>1 wg

and

min
v

˚
˘ 00(v)C �>1 v : vC p � 0

�
:

After performing the optimization, the values of u, v
and w, e. g. u1, v1 and w1, result. It is obvious that v1
6D w1. The task of the second level is to estimate a new
value of �, e. g. �2 by means of the equation

�2 D �1 C �(v1 � w1); � > 0;

where � is a properly chosen constant (see, e. g., [11]),
and to transmit this value to the first level. The opti-
mization is performed again, new values u2, v2 and w2

result, etc., until the differences vi � wi are made neg-
ligible. The algorithm converges in a finite number of
steps, provided that the minima exist [11].

In the feasible gradient controller method, the value
of w is taken as constant in the first level, e. g. w1, and
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thus the initial problem decomposes into the two sub-
problems

min
u
f˘ 0(u)C u>GK0w1g

and

min
v;


˚
˘ 001 (v)C �

>(v� w001 ) : vC b � 0
�
:

As a result of the optimization, the values of u, v and �,
e. g. u1, v1 and �1 are calculated. By means of the sec-
ond level a new value of w, e. g. w2, is estimated and
transmitted to the first level. This value is given by the
equation

w2 D w1 � �

�
@˘1(u; v;w)

@w

�

wDw1

; � > 0;

where � is a properly chosen constant (see, e. g., [11]).
The optimization yields a new set of values u2, v2 and �2
and the procedure is continued until the difference be-
tween the consecutive values of vector w becomes suffi-
ciently small.

For numerical applications the reader is referred
to [20].

Large Elastoplastic Structures

We consider here the holonomic plasticity model [13],
(extension to nonholonomic plasticity problems is
straightforward) described by the following equations:

e D F0s;

e D e0 C eE C eP ;

eP D N�;

	 D N>s � k;

� � 0; 	 � 0; 	>� D 0;

where F0 is the natural flexibility matrix of the struc-
ture, e the respective strain vector consisting of three
parts, the initial strain e0, the elastic strain eE and the
plastic strain eP , � are the plastic multipliers vector, 	
the yield functions, N is the matrix of the gradients of
the yield functions with respect to the stresses and k is
a vector of positive constants. The potential energy of
the structure is written in the form

˘ (u;�) D ˘ 0(u)C˘ 00(�) � u>GK0N�

where

˘ 0(u) D 1
2u
>Ku � e>0 K0G>u� p>u;

˘ 00(�) D 1
2�
>N>K0N�C e>0 K0N� � k�:

Again, K is the stiffness matrix of the structure and K0

is the inverse of F0.
The solution of the problem can be obtained by

minimizing the potential energy of the structure:

min f˘ (u;�) : � � 0g : (12)

By introducing a new variable w, (12) takes the form

min
˚
˘ (u;�;w) D ˘ 0(u)C˘ 00(�)

�u>GK0Nw : w D �; � � 0
�
: (13)

As in the previous section, the decomposition can be
performed by the two methods of the feasible and
the nonfeasible gradient controller respectively. For the
sake of brevity only the nonfeasible gradient method
will be shown here. The Lagrangian of (13) is first con-
sidered

˘ (u;�;w) D ˘ (u;�;w)C �>(� � w)

and the minimization problem is decomposed in the
following two subproblems

min
u;w

˚
˘ 0(u) � u>GK0Nw � �>w

�
(14)

and

min
�

˚
˘ 001 (�)C �

>� : � � 0
�
: (15)

In the first step it is supposed that the value of � is con-
stant (say �1) and we take as a result from (14) and (15)
the values u1, �1 and w1. Obviously �1 6D w1. Then
the second level controller estimates the new value of
� from the equation

�2 D �1 C �(�1 � w1); � > 0;

and transmits it to the first level, and the procedure is
continued until the differences �i � wi become appro-
priately small.

The same procedure can be applied also to holo-
nomic models including hardening and to nonholo-
nomic plasticity models [13].



2434 M Multilevel Optimization in Mechanics

Validation and Improvements
of SimplifiedModels

In mechanics and engineering sciences as well as in
economy, simplified models are often considered for
the treatment of complicated problems, e. g. concern-
ing the calculation of stresses in complex structures. In
these models it is assumed that certain quantities do
not influence considerably the solution of the problem.
By means of the multilevel decomposition, a method
which permits the validation of these models and the
improvement of their accuracy can be developed. This
idea is explained in the sequel.
A. Consider a large structure involving also some ca-
bles and assume that due to the pretension of the
cables the structure is calculated as if the cables are
rods, i. e. by ignoring the fact that a cable may be-
come slack and then it has zero stresses. Then in the
equations (9)–(11) v = 0 and the solution of the mini-
mum problem is obtained by solving an unconstrained
minimization problem, i. e. by a linear system solver.
In order to check whether the solution of the simpli-
fied model is close to the solution of the initial prob-
lem, in which some cables, say r, may become slack,
i. e. vi > 0, i = 1, . . . , r, it is enough to verify whether
the second level controller which gives a value of the
slackness of the cables causes a significant change in
the solution of the first level problem which corre-
sponds to the simplified structure. Also the algorithm
offers an improvement of the solution of the simplified
model.
B. Here, the investigation of the mutual influence of
two subsystems is presented. Consider two substruc-
tures connected together, for instance a cylindrical shell
with a hemispherical shell covering the one end of the
cylinder. The solution of the whole linear elastic struc-
tural compound minimizes, for a given external load-
ing, the potential (or the complementary) energy of the
whole structure. Let x1 (respectively, x2) be the variables
of the cylindrical (respectively, the hemispherical) shell
and let z be the common variables at the contact line
which are common in both structures. In order to de-
compose the potential energy into two minimum prob-
lems, one containing the unknowns of the cylindrical
shell and the other of the hemispherical shell, the com-
mon variables for the cylindrical (respectively, hemi-
spherical) shell are denoted by z1 (respectively, z2) and

thus the initial problem

min
x1;x2;z

f˘ (x1; x2; z) D ˘1(x1; z)C˘2(x2; z)g

is written as

min
x1;x2;z1;z2

f˘1(x1; z1)C˘2(x2; z2) : z1 � z2 D 0g :

Here˘ 1 (respectively,˘ 2) denotes the potential or the
complementary energy of the cylindrical (respectively,
the hemispherical) shell. Thus it can be tested by the
nonfeasible controller method how the difference z1 �
z2 influences the solution of the problem. The proce-
dure is similar in the case of elastoplastic structures with
the difference that the minimum is constrained by in-
equalities.

The above procedure may find applications in esti-
mating the influence of saddles on pipelines of rigidity
rings on long tubes etc.
C. Note that in all the above cases the Lagrange multi-
pliers have a precise meaning: they correspond in the
sense of energy to the chosen coordinating variables,
i. e., if the coordinating variables are stresses (respec-
tively, strains) or forces (respectively, displacements)
then the coordinating Lagrange multipliers are strains
(respectively, stresses) or displacements (respectively,
forces). Thus the feasible and the nonfeasible decom-
position method have a precise mechanical meaning.
In the first case the Lagrange multipliers, i. e. the strains
(respectively, the stress) are controlled while in the sec-
ond one the coordinating variables, i. e. the stress (re-
spectively, the strain) of the links between the two sub-
structures are controlled, in order to achieve the posi-
tion of equilibrium of the whole structure.
D. Some of the resulting substructures may have
a known analytical solution. Then this fact facilitates
the calculation and may be applied as a test for the ac-
curacy of the resulting solution via a numerical tech-
nique, e. g. by the FEM model. The procedure is de-
scribed in [24].
E. The multilevel decomposition method can be used
also as estimator of the sensitivity of the final solution
to small changes of the system to be optimized [24].
This method may be used for example in estimating
how a partial change in a structure influences the stress
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and strain field of the structure without solving twice
the structure.

Decomposition Algorithms
for NonconvexMinimization Problems

In unilateral contact problems with friction, Pana-
giotopoulos proposed in 1975 an algorithm [18] called
later PANA-algorithm for the decomposition of the
quasivariational inequality problems into two classical
variational inequality problems which are equivalent
to two minimization problems. Analogous decomposi-
tion methods of complicated problems using an anal-
ogous to [18] fixed point procedure can be applied to
the treatment of much more complicated problems to-
day involving nonconvex energy functions. This section
is devoted to the study of multilevel decomposition al-
gorithms for problems belonging to the general frame-
work of the substationarity problems.

It is known that the equilibrium of an elastic body
˝ in adhesive contact with a support � is governed by
the following problem [17,21]: Find u 2 V such as to
satisfy the hemivariational inequality

˛(u; v � u)C
Z
�

j0N (uN ; vN � uN )d�

C

Z
�

j0T (uT ; vT � uT)d� � ( f ; v � u); 8v 2 V :

(16)

Here u, v are the displacement fields, f are all the ap-
plied forces, (f , v) – usually a L2 internal product –
is the work of the applied forces, ˛(u, v) is the elastic
strain energy which is usually a coercive form, jN (re-
spectively, jT) denote the nonconvex, locally Lipschitz
generally nonsmooth energy density functions of the
adhesive forces in the normal (respectively, the tangen-
tial) direction to the interface � . It is assumed that the
normal adhesive action is independent of the tangential
adhesive action. Moreover, j0N , j

0
T denote the directional

derivative in the sense of Clarke [7], and uN , vN (respec-
tively, uT , vT) denote the normal (respectively, tangen-
tial) component of the displacement with respect to � .
The solution of the above problem can be obtained in
most cases of practical interest (cf. [21]) under certain
mild hypotheses which guarantee this equivalence, by

solving the substationarity problem

0 2 @I(u) D @
�
1
2
˛(u; u)C

Z
�

jN(uN )d�

C

Z
�

jT (uT )d� � ( f ; u)
	
;

where @ denotes the generalized gradient of Clarke.
In engineering problems the nonconvex superpo-

tentials (cf. e. g. [16]) jN and jT are not independent
but they depend jN (respectively, jT) on the vectors ST
(respectively, SN), where ST , SN are the reactions cor-
responding to uT , uN respectively. In this case a hemi-
variational inequality cannot be formulated. In order to
solve this problem numerically one may apply the fol-
lowing procedure: In the first step it is assumed that SN
is given, say, S(0)N and the problem (S(0)N enters with its
work into (f (0)1 , u))

0 2 @
�
1
2
˛(u; u)C

Z
�

jT (S(0)N ; uT )d� � ( f (0)1 ; u)
	

(17)

is solved. The above problem yields a value of ST , say
S(1)T . Then the problem

0 2 @
�
1
2
˛(u; u)C

Z
�

jN (S(1)T ; uN )d� � ( f (1)2 ; u)
	

(18)

is solved (S(1)T enters with its work into (f (1)2 , u)) yield-
ing a new value of SN , say S(1)N , and so on until the dif-
ferences k S(i)N � S(iC1)

N k and k S(i)T � S(iC1)
T k at each

point of the discretized interface � become appropri-
ately small. Here k � k denotes the R3-norm because
the values are checked pointwise. The first (respectively,
second) problem with jN = 0 (respectively, with jT = 0)
corresponds to the first level (respectively, to the sec-
ond level). Applications of the above procedure can be
found in [15,20,21].

Structures with Fractal Interfaces

In this section the attention is focused on the fractal ge-
ometry of interfaces where their behavior is modeled
by means of an appropriate nonmonotone contact and
friction mechanism. The interfaces of fractal geometry
are analyzed here as a sequence of classical interface
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subproblems. These classical subproblems result from
the consideration of the fractal interface as the unique
‘fixed point’ of a given iterative function system (IFS),
which consists of N contractive mappings wi: R2! R2

with contractivity factors 0 � si < 1, i = 1, . . . , N [2].
According to this procedure, a fractal set A is the ‘fixed
point’ of a transformation W i. e.

A D W(A) D
N[
iD1

Wi(A);

whereWi is defined

Wi (B) D fwi(x) : x 2 Bg ; 8B 2 H(R2):

Generally a fractal set A is given by the relation:

A D lim
n!1

W (n)(B); 8B 2 H(R2);

where H(R2) is the space of all compact subsets of
R2. Thus each level corresponds to a classical geom-
etry approximating the fractal geometry. Within each
level a new optimization problem is solved with the new
data. Thus the multilevel character of the optimization
problem results from the necessity to take into account
the fractal geometry.

In the sequel a linear elastic structure occupying
a subset ˝ of R3 is considered. In its undeformed state
the structure has a boundary � which is decomposed
into two mutually disjoint parts � U and � F . It is as-
sumed that on � U(respectively, � F) the displacements
(respectively, the tractions) are given. In the structure
˝ some cracks with interfaces ˚ of fractal type are
formed. These cracks in brittle materials frequently
propagate along one or more irregular ways. In this case
the fracture system may be considered to be a cluster of
branches propagating in such a way that new branches
in the n + 1 step are successively created from a for-
mer branch at the n step. In other words the fracture
system can be modeled by an IFS procedure. Regarding
now the boundary conditions on ˚ , it is assumed that
nonmonotone, possibly multivalued laws describe the
behavior of each interface in the normal and tangential
directions. More specifically, it is assumed that the fol-
lowing boundary conditions hold:

� SN 2 @ jN(uN ; x);

� ST 2 @ jT (uT ; x):

Then according to the previous section, an equilibrium
position of ˝ is characterized by the hemivariational
inequality (16).

In this case, where the fractured body˝ with fractal
interfaces ˚ is studied, it is necessary to substitute in
(16) the domain � with ˚ . As it has been mentioned
above, ˚ is the fixed point of a given transformation
denoted byW, i. e.

˚ DW˚;

˚ (nC1) DW˚ (n);

˚ (n)
n!1 ! ˚:

Thus, for each approximation ˚ (n) of the fractal inter-
face ˚ a structure˝ (n) must be solved. Since ˚ (n) is an
interface set with classical geometry the solutions u(n)

and � (n) (where u(n) and � (n) are the corresponding dis-
placement and stress fields) are obtained using numer-
ical procedures for the solution of (17) and (18). This
procedure is repeated several times by increasing n; at
the limit n!1, u(n) and � (n) give the solution of the
fractal interface problem.
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It is well known that, on the one hand, combinatorial
optimization (CO) provides a powerful tool to formu-
late and model many optimization problems, on the
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other hand, a multi-objective (MO) approach is often
a realistic and efficient way to treat many real world ap-
plications. Nevertheless, until recently, Multi-objective
combinatorial optimization (MOCO) did not receive
much attention in spite of its potential applications.
One of the reason is probably due to specific difficul-
ties of MOCO models. We can distinguish three main
difficulties. The first two are the same as those ex-
isting for multi-objective integer linear programming
(MOILP) problem (cf. � Multi-objective Integer Lin-
ear Programming), i. e.
� the number of efficient solutionsmay be very large;
� the nonconvex character of the feasible set requires

to device specific techniques to generate the so-
called ‘nonsupported’ efficient solutions (cf.�Mul-
ti-objective Integer Linear Programming).

A particular single CO problem is characterized by
some specificities of the problem, generally a special
form of the constraints; the existing methods for such
problem use these specificities to define efficient ways
to obtain an optimal solution. For MOCO problem, it
appears interesting to do the same to obtain the set of
efficient solutions. Consequently, and contrary to what
is often done in MOLP and MOILP methods, a third
difficulty is to elaborate methods avoiding to introduce
additional constraints so that we preserve during all the
procedure the particular form of the constraints.

The general form of a MOCO problem is

(P)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

0min
X2S

0 zk(X) D ckX;

k D 1; : : : ;K;
where S D D \ Bn

with X(n � 1);
B D f0; 1g

andD is a specific polytope characterizing the CO prob-
lem: assignment problem, knapsack problem, traveling
salesman problem, etc.

There exists several surveys on MOCO; some are
devoted to specific problems (i. e., the particular form
ofD): the shortest path problem [8], transportation net-
works [2], and the scheduling problem [6,7]; the survey
[9] is more general examining successively the litera-
ture on MO assignment problems, knapsack problems,
network flow problems, traveling salesman problems,
location problems, set covering problems.

In the present article we put our attention on the
existing methodologies for MOCO. First we examine
how to determine the set E(P) of all the efficient solu-
tions and we distinguish three approaches: direct meth-
ods, two-phase methods and heuristic methods. Subse-
quently we analyse interactive approaches to generate
a ‘good compromise’ satisfying the decision maker.

Generation of E(P)

Direct Methods

The first idea is to use intensively classical methods for
single objective problem (P) existing in the literature to
determine E(P). Of course, each time a feasible solution
is obtained the k values zk(X) are calculated and com-
pared with the list bE(P) containing all the feasible solu-
tions already obtained and non dominated by another
generated feasible solution. Clearly, bE(P), called the set
of potential efficient solutions, plays the role of the so-
called ‘incumbent solution’ in single objective methods.
At each step, bE(P) is updated and at the end of the pro-
cedure E(P) D bE(P). Such extension of single objec-
tive method is specially designed for enumerative pro-
cedure based on a branch and bound approach. Unfor-
tunately, in a MO framework, a node of the branch and
bound tree is less often fathomed than in the single ob-
jective case, so that logically such MO procedure is less
efficient.

We describe below an example of such direct
method, extending the well known Martello–Toth pro-
cedure, for the multi-objective knapsack problem for-
mulated as
8̂
ˆ̂̂<
ˆ̂̂̂
:

0max 0 zk(X) D
nX

jD1

c(k)j x j; k D 1; : : : ;K;

nX
jD1

wjx j �W xj D (0; 1):

The following typical definitions are used (k = 1, . . . ,K):
� Ok: variables order according to decreasing values of

ckj /wj.
� r(k)j : the rank of variable j in order Ok.
� 
: variables order according to increasing values ofPK

kD1 r
(k)
j /K.

We assume that variables are indexed according to or-
dinal preference
.
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At any node of the branch and bound tree, variables
are set to 0 or 1; let B0 and B1 denote the index sets of
variables assigned to the values 0 and 1, respectively. Let
F be the index set of free variables which always follow,
in the order 
, those belonging to B1 [ B0. If i � 1 is
the last index of fixed variables, we have B1 [ B0 = { 1,
. . . , i � 1 }; F = { i, . . . , n }.
Initially, i = 1. Let
� W D W �

P
j2B1

wj � 0 be the leftover capacity of
the knapsack.

� Z D
�
zk D

P
j2B1

c(k)j

�
kD1;:::;K

be the criteria val-

ues vector obtained with already fixed variables.
bE(P) contains nondominated feasible values Z and
is updated at each new step.
Initially, zk D 0, 8 k, and bE(P) D ;.

� Z D (zk) be the vector whose components are upper
bounds of feasible values respectively for each ob-
jective at considered node. These upper bounds are
evaluated separately, for instance as in the Martello–
Toth method.
Initially, zk D1, 8 k.

A node is fathomed in the following two situations:
i) if

˚
j 2 F : wj < W

�
D ;; or

ii) z is dominated by z� 2 bE(P).
When the node is fathomed, the backtracking proce-
dure is performed: a new node is build up by setting to
zero the variable corresponding to the last index in B1.
Let t be this index:

B1  B1nftg;

B0  (B0 \ f1; : : : ; t � 1g) [ ftg;

F  ft C 1; : : : ; ng:

When the node is nonfathomed, a new node of the
branch and bound tree is build up for next iteration,
as follows:
� Define s to be the index variable such that

max

8<
:l 2 F :

lX
jDi

w j < W

9=
; :

If wi >W , set s = i � 1.
� If s� i:

B1  B1 [ fi; : : : ; sg;

B0  B0;

F  Fnfi; : : : ; sg:

If s = i � 1,

B1  B1 [ frg;

B0  B0 [ fi; : : : ; r � 1g;
F  Fnfi; : : : ; rg;

with r D min
˚
j 2 F : wj < W

�
.

The procedure stops when the initial node is fathomed
and then E(P) D bE(P). An illustration is given in [10].

Two-Phase Method

Such an approach is particularly well designed for bi-
objective MOCO problems. The first phase consists to
determine the set SE(P) of supported efficient solu-
tions (see � Multi-objective Integer Linear Program-
ming). Let S [ S0 be the list of supported efficient so-
lutions already generated; S is initialized with the two
efficient optimal solutions respectively of objectives z1
and z2. Solutions of S are ordered by increasing value
of criterion 1; let Xr and Xs be two consecutive solu-
tions in S, thus with z1r < z1s and z2r > z2s, where zkl =
zk(Xl). The following single-criterion problem is con-
sidered:

(P	)

8̂
<̂
ˆ̂:

min z	(X) D �1z1(X)C �2z2(X)
X 2 S D D \ B(n)

�1 � 0; �2 � 0:

This problem is optimized with a classical single ob-
jective CO algorithm for the values �1 = z2r � z2s and �2
= z1s � z1r; with these values the search direction z	(X)
corresponds in the objective space to the line defined
by Zr and Zs. Let {Xt : t = 1, . . . , T } be the set of optimal
solutions obtained in this manner and {Zt :t = 1, . . . , T }
their images in the objective space. There are two pos-
sible cases:
� { Zr , Zs } \ {Zt : t = 1, . . . , T } = ;: Solutions Xt are

new supported efficient solutions. X1 and XT , pro-
vided T > 1, are put in S and, if T > 2, X2, . . . , XT � 1

are put in S0. It will be necessary at further steps to
consider the pairs (Xr, X1) and (XT , Xs)

� { Zr , Zs } � {Zt: t = 1, . . . , T }: Solutions {Xt : t =
1, . . . , T } \ { Xr , Xs } are new supported efficient
solutions giving the same optimal value as Xr and
Xs for z	(X); we put them in list S0.
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Multi-objective Combinatorial Optimization, Figure 1
SE(P) = S[ S0

This first phase is continued until all pairs (Xr , Xs) of S
have been examined without extension of S.

Finally, we obtain SE(P) = S [ S0 as illustrated in
Fig. 1.

The purpose of the second phase is to generate the
set NSE(P) = E(P) \ SE(P) of nonsupported efficient
solutions. Each nonsupported efficient solution has its
image inside the triangle M ZrZs determined by two
successive solutions Xr and Xs of SE(P) (see Fig. 1). So
each of the |SE(P)|� 1 triangles M ZrZs are successively
analysed. This phase is more difficult to manage and is
dependent of the particular MOCO problem analysed;
in general, this second phase is achieved using partly
a classical single objective CO method. An example of
such second phase is given in � Bi-objective Assign-
ment Problem and in [14] for the bi-objective knapsack
problem.

Heuristic Methods

As pointed out in [9,10,14], it is unrealistic to extend
the exact methods describe above to MOCO problems
with more than two criteria or more than a few hun-
dred variables; the reason is that these methods are too
consuming time. Because a metaheuristic, simulating
annealing (SA), tabu search (TS), genetic algorithms
(GA), etc., provide, for the single objective problem,
excellent solutions in a reasonable time, it appeared
logical to try to adapt these metaheuristics to a multi-
objective framework.

The seminal work in this direction is the 1993 Ph.D.
thesis of E.L. Ulungu, which gave rise to the so-called
MOSA method to approximate E(P) (see, in particu-
lar, [11]). After this pioneer study, this direction has
been tackled by other research teams: P. Czyzak and A.
Jaszkiewicz ([3]) proposed another way to adapt simu-
lating annealing to a MOCO problem; independently,
[4,5] and [1] did the same with tabu search, the later
combining also tabu search and genetic algorithms; ge-
netic algorithms are also used in [13].

The principle idea of MOSA method can be re-
sumed in short terms. One begins with an initial iterate
X0 and initializes the set of potentially efficient points
PE to just contain X0. One then samples a point Y in
the neighborhood of the current iterate. But instead of
accepting Y if it is better than the current iterate on an
objective: we now accept it if it is not dominated by any
of the points currently in the set PE. If it is not domi-
nated, we make Y the current iterate, add it to PE, and
throw out any point in PE that are dominated by Y . On
the other hand, if Y is dominated, we still make it the
current iterate with some probability. In this way, as we
move the iterate through the space, we simultaneously
build up a set PE of potentially efficient points. The
only complicated aspect of this scheme is the method
for computing the acceptance probability for Y when it
is dominated by a point in PE. The MOSA method is
described in details in [11] and in � Bi-objective As-
signment Problem.

Interactive Determination of a Good Compromise

The general idea of interactive methods is described in
� Multi-objective Integer Linear Programming. Two
types of methods can be distinguished, which we treat
in the following subsections.

Goal Programming

As pointed out in [9], this methodology is often used
by American researchers to treat several case studies.
The general idea of goal programming method is to in-
troduce for each objective k deviation variables d+ and
d�, respectively by excess and by default, with respect
to a certain a priori goal gk, so that goal constraints are
defined. If some priorities expressed by some weights pk
are given, this results in a single-objective problem (Pg)
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defined by the global weighted deviation function:

(Pg)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
KX

kD1

pkd�k

s.t. zk(X)C dCk � d�k D gk ; 8k;
X 2 S D D \ Bn :

When a solution is obtained, the decision maker can
possibly modify the values of the goals gk before a new
iteration is performed. One drawback is that the addi-
tional goal constraints induce the loss of the particular
structure of the initial CO problem, so that a general
ILP software must be used to solve problem (Pg).

Interactive Two-Phase Methods andMOSAMethod

The two-phase methodology described above can eas-
ily be adapted to build interactively a good compro-
mise. At each step of the first phase, the decision maker
can indicate which pair (Xr , Xs) he prefers so that only
a small subset of SE(P) is generated in the direction
given by the decision maker; at the second phase, only
one (or a few number of) triangles M ZrZs is (are) anal-
ysed to verify if there exists in it a more satisfying non-
supported efficient solution. In the same spirit, an inter-
active MOSA method can be designed (see also [12]):
the decision maker gives some goals gk and only the
solutions satisfying zk(X) � gk are putting in the list
of potential efficient solutions. When this list contains
a certain a priori fixed number of solutions, the deci-
sion maker indicates which one is preferred, modifies
the goals gk in a more restrictive sense before to con-
tinue the search with MOSA.

An example of such interactive procedure is given
in [12] for a real case study.
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Introduction

A number of optimization problems are actually mul-
tiobjective optimization problems (MOPs), where the
objectives are conflicting. As a result, there is usually no
single solution which optimizes all objectives simulta-
neously. A number of techniques have been developed
to find a compromise solution to MOPs. The reader is
referred to the recent book by Miettinen [16] about the
theory and algorithms for MOPs. Fractional program-
ming problems(FPPs) arise from many applied areas
such as portfolio selection, stock cutting, game theory,
and numerous decision problems in management sci-
ence. Many approaches for FPPs have been exploited in
considerable details. See, for example, Avriel et al. [3],
Craven [5], Schaible [24,25], Schaible and Ibaraki [26]
and Stancu-Minasian [27,28].

In this paper, we consider the following multiobjec-
tive fractional programming problem:

(MFP) min

f (x)
g(x)

�
D

�
f1(x)
g1(x)

;
f2(x)
g2(x)

; : : : ;
fp(x)
gp(x)

�T

;

s.t.

h(x) � 0; x 2 X ;

where X � Rn is an open set, f i, gi (i D 1; 2; : : : ; p)
are real-valued functions defined on X, and h is an m-
dimensional vector-valued function defined on X. Sup-
pose that fi(x) � 0 and gi (x)> 0 for x 2 X and
i D 1; 2; : : : ; p. Moreover, let f i, gi (i D 1; 2; : : : ; p)
and hj ( j D 1; 2; : : : ;m) be continuously differentiable
over X and denote the gradients of f i, gi and hj at x by
r fi(x);r gi(x) and rhj(x), respectively.

If the parameter p in the problem (MFP) is equal
to 1, then (MFP) corresponds to the following single-
objective fractional programming problem:

(FP) min
f (x)
g(x)

;

s.t. h(x) � 0; x 2 X ;

where X � Rn is an open set, f , g are real-valued func-
tions defined on X, and h is an m-dimensional vector-
valued function defined on X, f (x) � 0 and g(x)> 0
for all x 2 X. Moreover, assume that f (x), g(x) and
hj(x) ( j D 1; 2; : : : ;m) are continuously differentiable
over X.
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Khan and Hanson [10], and Reddy and Mukher-
jee [21] considered the optimality conditions and du-
ality for (FP) with respect to the following generalized
concepts of convexity, respectively.

Definition 1 [6] Let f be a real function defined on an
open set X � Rn and differentiable at x0. Given a map-
ping � : X�X ! Rn , the function f is said to be invex at
x0 with respect to � if, 8x 2 X, the following inequality
holds:

f (x)� f (x0) � r f (x0)T�(x; x0) :

Definition 2 [7] Let f be a real function defined on an
open set X � Rn and differentiable at x0. Given a real
number �, a mapping � : X � X ! Rn and a scalar
function d : X � X ! R, the function f is said to be
�-invex at x0 with respect to � and d if, 8x 2 X, the
following inequality holds:

f (x)� f (x0) � r f (x0)T�(x; x0)C �d2(x; x0) :

The authors of references [10,21] imposed the corre-
sponding generalized convexity on the numerator and
denominator individually for the objective function in
the problem (FP), and then derived some optimality
conditions and duality results. How to extend these
methods to the multiobjective case is still an open prob-
lem [21].

As far as the multiobjective fractional problem
(MFP) is concerned, Jeyakumar and Mond [8] intro-
duced a concept of v-invexity as follows.

Definition 3 Let f : X ! Rp be a real vector function
defined on an open set X � Rn and each component of
f be differentiable at x0. The function f is said to be v-
invex at x0 2 X if there exist a mapping � : X�X ! Rn

and a function ˛i : X�X ! RC n f0g (i D 1; 2; : : : ; p)
such that, 8x 2 X,

fi(x)� fi(x0) � ˛i (x; x0)r fi(x0)T�(x; x0) :

Jeyakumar and Mond [8] obtained some weak effi-
ciency conditions and duality results for a nonconvex
multiobjective fractional programming problem via the
concept of v-invexity, v-pseudoinvexity and v-quasiin-
vexity.

Motivated by various concepts of generalized con-
vexity, Liang et al. [12] introduced a unified formu-
lation of the generalized convexity, which was called

(F; ˛; �; d)-convexity, and obtained some correspond-
ing optimality conditions and duality results for the
single-objective fractional problem (FP). In this paper,
we will extend the methods adopted for the single-
objective problem (FP) in [12] to the multiobjective
problem (MFP).

Definition 4 A function F : Rn ! R is said to be
sublinear if for any ˛1; ˛2 2 Rn ,

F(˛1 C ˛2) � F(˛1)C F(˛2) ; (1)

and for any r 2 RC; ˛ 2 Rn ,

F(r˛) D rF(˛) : (2)

Note that the concept of the sublinear function was
given in Preda [20]. Now, a sublinear function is de-
fined simply as a function that is subadditive and pos-
itively homogeneous, which is free of extraneous sym-
bols in Preda [20]. It follows from (2) that F(0) D 0.

Based upon the concept of the sublinear function,
we recall the unified formulation about generalized
convexity, i. e., (F; ˛; �; d)-convexity, which was intro-
duced in [12] as follows.

Definition 5 Given an open set X � <n , a number
� 2 R, and two functions ˛ : X � X ! RC n f0g and
d : X�X ! R, a differentiable function f over X is said
to be (F; ˛; �; d)-convex at x0 2 X if for any x 2 X,
F(x; x0; � ) : <n ! < is sublinear, and f (x) satisfies the
following condition:

f (x)� f (x0) �F(x; x0;˛(x; x0)r f (x0))

C �d2(x; x0) :
(3)

The function f is said to be (F; ˛; �; d)-convex over X
if, 8x0 2 X, it is (F; ˛; �; d)-convex at x0; f is said to
be strongly (F; ˛; �; d) � convex or (F; ˛) � convex if
�> 0 or � D 0, respectively.

From Definition 5, there are the following special
cases:
(i) If ˛(x; x0) D 1 for all x; x0 2 X, then (F; ˛; �; d)-

convexity is (F; �)-convexity [20].
(ii) If F(x; x0;˛(x; x0)r f (x0)) D r f (x0)T�(x; x0) for

a certain mapping � : X � X ! Rn , then
(F; ˛; �; d)-convexity is �-invexity defined in [7].

(iii) If � D 0 or d(x; x0) � 0 for all x; x0 2 X
and F(x; x0;˛(x; x0)r f (x0)) D r f (x0)T�(x; x0)
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for a certain mapping � : X � X ! Rn , then
(F; ˛; �; d)-convexity reduces to invexity [6].

In the following, �; ˛ and d are referred to as pa-
rameters of (F; ˛; �; d)-convexity. Furthermore, we will
adopt the following conventions.

Let Rn
C denote the nonnegative orthant of Rn and xT

denote the transpose of the vector x 2 Rn . For any two
vectors x D (x1; x2; : : : ; xn)T; y D (y1; y2; : : : ; yn)T 2
Rn , we denote:

x D y implying xi D yi ; i D 1; 2; : : : ; n;

x � y implying xi � yi ; i D 1; 2; : : : ; n;

but x ¤ y;

x < y implying xi < yi ; i D 1; 2; : : : ; n;
x ˜ y implying yi < xi for at leastone i :

A solution of the problem (MFP) is referred to as an
efficient (Pareto optimal) solution, which is defined as
follows.

Definition 6 A feasible solution x0 2 X of (MFP) is
called an efficient solution of (MFP) if there exists no
other feasible solution x 2 X such that

f (x)
g(x)

�
f (x0)
g(x0)

:

In [14], Maeda gave a kind of constraint qualification,
which was called generalized Guignard constraint qual-
ification (GGCQ), under which he derived the follow-
ing Kuhn–Tucker type necessary conditions for a feasi-
ble solution x0 to be an efficient solution to the problem
(MFP):

If x0 is an efficient solution of (MFP) and (GGCQ)
holds at x0 [14], then there exist � D (�1; �2; : : : ; �p)T 2
Rp
C; � > 0;

Pp
iD1 �i D 1 and � D (�1; �2; : : : ; �m)T 2

Rm
C such that

pX
iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0;

� jh j(x0) D 0; j D 1; 2; : : : ;m :

This paper is organized as follows. In Sect.
“Efficiency Conditions”, efficiency conditions for the
multiobjective fractional problem (MFP) involving (F;
˛; �; d)-convexity are presented. The duality properties
of the problem (MFP) are studied in Sect. “Duality”,

including several duals for (MFP) and some weak and
strong duality theorems. Concluding remarks are given
in the last section.

Efficiency Conditions

First, we present a lemma which indicates that (F; ˛;
�; d)-convexity can be preserved after taking division.

Lemma 1 Let X � Rn be an open set. Assume that p,
q are real-valued differentiable functions defined on X
and p(x) � 0; q(x)> 0 for all x 2 X. If p and �q are
(F; ˛; �; d)-convex at x0 2 X, then p/q is (F; ˛; �; d)-
convex at x0, where ˛(x; x0) D ˛(x;x0)q(x0)

q(x) ; � D

�
�
1C p(x0)

q(x0)

�
and d(x; x0) D d(x;x0)

q
1
2 (x)

.

In the following, we present some sufficient efficiency
conditions for (MFP) under appropriate (F; ˛; �; d)-
convexity assumptions.

Theorem 1 Let x0 be a feasible solution of (MFP). Sup-
pose that there exist � D (�1; �2; : : : ; �p)T 2 Rp

C, � > 0,Pp
iD1 �i D 1 and � D (�1; �2; : : : ; �m)T 2 Rm

C such
that

pX
iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0 ; (4)

� j h j(x0) D 0; j D 1; 2; : : : ;m : (5)

If f i and �gi (i D 1; 2; : : : ; p) are (F; ˛i ; �i ; di )-
convex at x0, hj ( j D 1; 2; : : : ;m) is (F; ˇ j; � j; c j)-
convex at x0, and

pX
iD1

�i�i
d
2
i (x; x0)
˛ i (x; x0)

C

mX
jD1

� j� j
c2j (x; x0)

ˇ j(x; x0)
� 0 ; (6)

where ˛ i(x; x0) D
˛i (x;x0)g i (x0)

g i (x)
; �i D �i

�
1C f i (x0)

g i (x0)

�
;

and di(x; x0) D di (x;x0)

g
1
2
i (x)

; then x0 is a global efficient so-

lution for (MFP).

Corollary 1 Let x0 be a feasible solution of (MFP).
Suppose that there exist � D (�1; �2; : : : ; �p)T 2 Rp

C;

� > 0;
Pp

iD1 �i D 1; and � D (�1; �2; : : : ; �m)T 2 Rm
C

such that
pX

iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0;

� j h j(x0) D 0; j D 1; 2; : : : ;m :
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If f i and �gi (i D 1; 2; : : : ; p) are strongly
(F; ˛i ; �i ; di )-convex (or (F; ˛i )-convex) at x0, hj ( j D
1; 2; : : : ;m) is strongly (F; ˇ j; � j; c j)-convex (or (F; ˇ j)-
convex) at x0, then x0 is a global efficient solution for
(MFP).

For i D 1; 2; : : : ; p, if gi (x) D 1 for all x 2 X,
f i(x) need not be nonnegative, and the functions in-
volved are assumed to be invex, �-invex with respect to
� : X�X ! Rn ; d : X�X ! R, (F; �)-convex, or gen-
eralized (F; �)-convex, respectively, then we can obtain
the corresponding results presented in [1,2,9].

Next, we consider a special case of (MFP), in which
the fractional objective functions have the same de-
nominator. For i D 1; 2; : : : ; p, let gi (x) D g(x) in
(MFP). The property about the efficient solution of this
special (MFP) can be obtained similarly as that in The-
orem 1, so we state the following theorem:

Theorem 2 Let x0 be a feasible solution of (MFP). Sup-
pose that there exist � D (�1; �2; : : :, �p)T 2 Rp

C, � > 0,Pp
iD1 �i D 1, and � D (�1; �2; : : : ; �m)T 2 Rm

C such
that

pX
iD1

�ir
fi(x0)
g(x0)

C

mX
jD1

� jrhj(x0) D 0;

� j h j(x0) D 0; j D 1; 2; : : : ;m :

If �g is (F; ˛; �; d)-convex at x0,f i (i D 1; 2; : : : ; p)
is (F; ˛; �i ; d)-convex at x0,hj ( j D 1; 2; : : : ;m)
is (F; ˛; � j; d)-convex at x0, and

Pp
iD1 �i�i CPm

jD1 � j� j � 0, where ˛(x; x0) D (˛(x; x0)g(x0))/g(x),
�i D �i C �( fi(x0))/g(x0) and d(x; x0) D (d(x; x0))/
(g

1
2 (x)), then x0 is a global efficient solution for (MFP).

Finally, we present an equivalent formulation of the
problem (MFP). Let G(x) D

Qp
iD1 gi (x), Gi (x) D

G(x)
g i (x)

(i D 1; 2; : : : ; p). Then (MFP) can be written in
the following form:

(MFP)

min
�
G1(x) f1(x)

G(x)
;
G2(x) f2(x)

G(x)
; : : : ;

Gp(x) fp(x)
G(x)

�T

;

s.t. h(x) � 0; x 2 X:

By Theorem 2, we have the following corollary:

Corollary 2 Let x0 be a feasible solution of (MFP).
Suppose that there exist � D (�1; �2; : : : ;�p)T 2 Rp

C;

� > 0;
Pp

iD1 �i D 1, and � D (�1; �2; : : : ; �m)T 2 Rm
C

such that

pX
iD1

�ir
fi(x0)
gi (x0)

C

mX
jD1

� jrhj(x0) D 0;

� j h j(x0) D 0; j D 1; 2; : : : ;m:

If �G is (F; ˛; �; d)-convex at x0, Gi fi(i D 1; 2; : : : ;
p) is (F; ˛; �i ; d)-convex at x0, h j( j D 1; 2; : : : ;m)
is (F; ˛; � j; d)-convex at x0, and

Pp
iD1 �i�i CPm

jD1 � j� j � 0, where �i D �i C �( fi(x0))/(gi(x0)),
˛(x; x0) D (˛(x; x0)G(x0))/G(x), and d(x; x0) D
(d(x; x0))/(G1/2(x)), then x0 is a global efficient solu-
tion for (MFP).

Under the assumptions of Theorem 2 or Corollary 2,
if � � max

1�i�p
�i , �i D �i (1 C fi(x0)/g(x0)), or �i D

�i (1C fi(x0)/gi (x0)), respectively, then the correspond-
ing results still hold.

Duality

Many types of duals for a given mathematical program-
ming problem. Two well-known duals are the Wolfe
type dual [29] and the Mond-Weir type dual [17]. Re-
cently, the mixed (or general type) dual has been con-
sidered for various optimization problems [1,2,11,13,
18,19,20,30,31,32]. The mixed dual includes the Wolfe
type dual and the Mond-Weir type dual as special cases.
In the sequel, the generalized Mond-Weir dual are dis-
cussed first, and then three other types of duals are pre-
sented, which are based on (F; ˛; �; d)-convexity for
the problem (MFP).

Let M D f1; 2; : : : ;mg and M0;M1; : : : ;Mq be
a partition of M, i. e.,

Sq
kD1 Mk D M;Mk

T
Ml D ;

for k ¤ l . The generalized Mond-Weir dual of (MFP)
is as follows:

max
f (u)
g(u)
C �TM0

hM0(u) e
�
D

�
f1(u)
g1(u)

C �TM0
hM0(u); : : : ;

fp(u)
gp(u)

C �TM0
hM0(u)

�T

;

s.t.
pX

iD1

�ir
fi(u)
gi (u)

C

mX
jD1

� jrhj(u) D 0;
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�TMk
hMk (u) � 0; k D 1; 2; : : : ; q;

� D (�1; �2; : : : ; �p)T 2 Rp
C; � > 0;

pX
iD1

�i D 1;

�Mk 2 RjMk j
C ; k D 0; 1; 2; : : : ; q;

u 2 X ;

where e D (1; 1; : : : ; 1)T and �Mk denotes the column
vector whose subscripts of components belong to Mk.
In particular, if M0 D M;Mk D ;; k D 1; 2; : : : ; q,
then the above dual becomes the Wolfe type dual; if
M0 D ; and q D 1;M1 D M, the Mond-Weir type
dual is obtained. Since the Wolfe type dual is unsuit-
able for single objective fractional programming prob-
lems [15,22,23], the duals with M0 ¤ ; are certainly
unsuitable for (MFP). For the generalized Mond-Weir
type dual, we only consider the caseM0 D ;,M1 D M;
i. e., the Mond-Weir dual.

Mond-Weir Dual

TheMond-Weir dual of the problem (MFP) has the fol-
lowing form:

(MFD1)

max
f (u)
g(u)

D

�
f1(u)
g1(u)

;
f2(u)
g2(u)

; : : : ;
fp(u)
gp(u)

�T

s.t.
pX

iD1

�ir
fi(u)
gi(u)

C

mX
jD1

� jrhj(u) D 0;

�Th(u) � 0;

� D (�1; �2; : : : ; �p)T 2 Rp; � > 0;
pX

iD1

�i D 1;

� D (�1; �2; : : : ; �m)T 2 Rm
C; u 2 X :

Theorem 3 (Weak Duality) Assume that x is a fea-
sible solution of (MFP) and (u; � ; �) is a feasible so-
lution of (MFD1). If f i and �gi (i D 1; 2; : : : ; p)
are (F; ˛i ; �i ; di )-convex at u, h j ( j D 1; 2; : : : ;m) is
(F; ˇ; � j; c j)-convex at u, and the inequality

pX
iD1

� i�i
d
2
i (x; u)
˛ i (x; u)

C

mX
jD1

� j� j
c2j (x; u)

ˇ(x; u)
� 0 (7)

holds, where ˛ i (x; u) D ˛i (x; u)(g(u))/(g(x)), �i D
�i (1 C ( fi(u))/(gi(u))), and di (x; u) D (di (x; u))/

(g
1
2
i (x)), then we have

f (x)
g(x)

˜
f (u)
g(u)

:

Corollary 3 (Weak Duality) Assume that x is a fea-
sible solution of (MFP), and (u; � ; �) is a feasible so-
lution of (MFD1). If fi and �gi (i D 1; 2; : : : ; p) are
strongly (F; ˛i ; �i ; di )-convex (or (F; ˛i )-convex) at u,
and h j ( j D 1; 2; : : : ;m) is strongly (F; ˇ; � j; c j)-convex
(or (F; ˇ)-convex) at u, then

f (x)
g(x)

˜
f (u)
g(u)

:

Theorem 4 (Strong Duality) Assume that x is an ef-
ficient solution of (MFP) and the constraint qualifica-
tion (GGCQ) holds at x [14]. Then there exists (�; �) 2
Rp
C � Rm

C such that (x; � ; �) is a feasible solution of
(MFD1), and the objective function values of (MFP) and
(MFD1) at the corresponding points are equal. If the as-
sumptions about the generalized convexity and the in-
equality (7) in Theorem 3 are also satisfied, then (x; � ; �)
is an efficient solution of (MFD1).

Schaible Dual

In this subsection, we shall consider the following ex-
tended form of the Schaible dual for (MFP) [22,23]:

(MFD2)

max � D (�1; �2; : : : ; �p)T

s.t.
pX

iD1

�iru( fi(u) � �i gi (u))C
mX
jD1

v jrhj(u)

D 0;
fi(u) � �i gi (u) � 0; i D 1; 2; : : : ; p

vTh(u) � 0;

� > 0;
pX

iD1

�i D 1;

� 2 Rp
C; � 2 Rp

C; v 2 Rm
C; u 2 X:

Theorem 5 (Weak Duality). Assume that x is a feasible
solution of (MFP) and (u; � ; �; v) is a feasible solution of
(MFD2). If one of the following holds:
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� (I) fi and �gi (i D 1; 2; : : : ; p) are (F; ˛i ; �i ; di )-
convex at u , h j ( j D 1; 2; : : : ;m) is (F; ˇ; � j; c j)-
convex at u, and

pX
iD1

� i�i (1C�i)
d2i (x; u)
˛i (x; u)

C

mX
jD1

v j� j
c2j (x; u)

ˇ(x; u)
� 0;

(8)

� (II) fi and �gi (i D 1; 2; : : : ; p) are (F; ˛; �i ; d)-
convex at u, h j ( j D 1; 2; : : : ;m) is (F; ˛; � j; d)-
convex at u, and the vectors �; �; v satisfy:

pX
iD1

� i�i (1C �i )C
mX
jD1

v j� j � 0 ; (9)

then

f (x)
g(x)

˜ �:

Theorem 6 (Strong Duality). Assume x is an effi-
cient solution of (MFP), and the constraint qualifica-
tion (GGCQ) holds at x [14]. Then there exist � 2 Rp

C,
� 2 Rp

C, v 2 Rm
C such that (x; � ; �; v) is a feasible

solution of (MFD2) and � D f (x)
g(x) . Furthermore, if all

assumptions in Theorem 5 are satisfied, then the corre-
sponding (x; � ; �; v) is an efficient solution of (MFD2).

Extended Bector Type Dual

For a single-objective fractional programming problem
in [4], Bector used the positivity of the denominator to
transform the inequality constraints and add them to
the objective by Lagrangian mulitipliers for establishing
a kind of dual. Since the denominators in (MFP) need
not be the same, we use the equivalent form (MFP) of
(MFP) to establish the following dual, which is called
the extended Bector type dual of (MFP):

(MFD3)

max

 G1(u) f1(u)CvTM0 hM0 (u)
G(u)
:::

Gp(u) f p(u)CvTM0 hM0 (u)
G(u)

!T

s.t.
pX

iD1

�iru
Gi (u) fi(u)C vTM0

hM0(u)
G(u)

C

qX
kD1

ruvTMk
hMk (u) D 0;

vTMk
hMk (u) � 0; k D 1; 2; : : : ; q;

Gi (u) fi(u)C vTM0
hM0(u) � 0;

i D 1; 2; : : : ; p;
pX

iD1

�i D 1; � D (�1; �2; : : : ; �p)T 2 Rp
C;

� > 0;

u 2 X; vMk 2 RjMk j
C ; k D 0; 1; 2; : : : ; q :

Theorem 7 (Weak Duality) Let x be a feasible so-
lution of (MFP) and (u; �; v) be a feasible solution of
(MFD3). Assume that �G is (F; ˛; �; d)-convex at u,
Gi fi (i D 1; : : : ; p) is (F; ˛; �i ; d)-convex at u and
hj ( j D 1; : : : ;m) is (F; ˛; � j; d)-convex at u. If � �
max
1�i�p

�i and the following inequality holds:

pX
iD1

�i�i

�
1C

Gi (u) fi(u)C vTM0
hM0 (u)

G(u)

�

C
X
j2M0

v j� j C G(u)
qX

kD1

X
j2Mk

v j� j � 0 ; (10)

then we have

f (x)
g(x)

˜
G(u) f (u)C vTM0

hM0(u) e
G(u)

;

where G(u) D diagfG1(u); : : : ;Gp(u)g and each com-
ponent in e 2 Rp is equal to 1.

Theorem 8 (Strong Duality) Assume that x is an effi-
cient solution of (MFP) and the constraint qualification
(GGCQ) holds at x [14]. Then there exists (� ; v) such
that (x; � ; v) is a feasible solution of (MFD3), and the
objective function values of (MFP) and (MFD3) at x and
(x; � ; v), respectively, are equal. If the assumptions and
conditions in Theorem 7 are also satisfied, then (x; � ; v)
is an efficient solution of (MFD3).

Concluding Remarks

In this paper, a unified formulation of the generalized
convexity defined in [12] is adopted, which includes
many other generalized convexity concepts in opti-
mization theory as special cases. Our concept of gen-
eralized convexity is suitable to analyze the efficiency
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conditions and duality of multiobjective fractional pro-
gramming problems. Efficiency conditions and dual-
ity for a class of multiobjective fractional programming
problems are presented. We extend the methods, which
were adopted for single-objective fractional program-
ming problems in [10,12,21], to the case with multi-
ple fractional objectives. We also present the extended
Bector type dual by using an equivalent formulation of
the primal problem. Note that we only consider (MFP)
from a viewpoint of the efficient solution in this paper.
The methods used here can be extended to the study of
(MFP) from a viewpoint of the weak efficient solution.
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From the 1970s onwards, multi-objective linear pro-
gramming (MOLP)methods with continuous solutions
have been developed [8]. However, it is well known
that discrete variables are unavoidable in the linear pro-
grammingmodeling of many applications, for instance,
to represent an investment choice, a production level,
etc.

The mathematical structure is then integer lin-
ear programming (ILP), associated with MOLP giving
a MOILP problem. Unfortunately, MOILP cannot be
solved by simply combining ILP and MOLP methods,
because it has got its own specific difficulties.

The problem (P) considered is defined as

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

0max
X2D

0 zk(X) D
nX

jD1

c(k)j x j;

k D 1; : : : ;K;

where D D

8̂
ˆ̂̂<
ˆ̂̂̂
:
X 2 Rn :

TX � d;
X � 0;

x j integer;
j 2 J

9>>>>=
>>>>;

with T(m � n);
d(m � 1);
X(n � 1);
J � f1; : : : ; ng:

If we denote LD = {X: TX � d, X � 0}, problem (LP)
is the linear relaxation of problem (P):

(LP)

(
0max 0 zk(X); k D 1; : : : ;K;

X 2 LD

A solution X? in D (or LD) is said to be efficient for
problem (P) (or (LP)) if there does not exist any other
solution in D (or LD) such that zk (X)� zk (X?), k = 1,
. . . , K, with at least one strict inequality.

Let E(�) denote the set of all efficient solutions of
problem (�). It is well known (see [8]) that (LP) may be
characterized by the optimal solutions of the single ob-
jective and parametrized problem:

(LP	)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max
KX

kD1

�kzk(X)

X 2 LD
with �k > 0; 8k;

KX
kD1

�k D 1

This fundamental principle – often called Geof-
frion’s theorem – is no longer valid in presence of dis-
crete variables because the set D is not convex. The set
of optimal solutions of problem (P	), defined as prob-
lem (LP	) in which LD is replaced by D, is only a sub-
set SE(P) of E(P); the solutions in SE(P) are called sup-
ported efficient solutions, while the solutions belonging
to NSE(P) = E(P) \ SE(P) are called nonsupported effi-
cient solutions.

The breakdown of Geoffrion’s theorem for problem
(P) can be illustrated by the following obvious example:

K D 2;

z1(X) D 6x1 C 3x2 C x3;

z2(X) D x1 C 3x2 C 6x3;

D D fX : x1 C x2 C x3 � 1; xi 2 f0; 1gg :

For this problem,

E(P) D f(1; 0; 0); (0; 1; 0); (0; 0; 1)g

while NSE(P) = {(0, 1, 0)}.
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Nevertheless, V.J. Bowman [1] has given a theoreti-
cal characterization of E(P): Setting

Mk D max
X2D

zk(X);

zk D Mk C "k; with "k > 0;
� > 0;

then E(P) is characterized by the optimal solutions of
the problem(PT

	
):

min
X2D

max
k

 
�k (zk � zk(X))C �

 KX
kD1

(zk � zk(X))

!!
;

consisting of minimizing the augmented weighted
Tchebychev distance between zk(X) and zk .

Let us note that another characterization of E(P) is
given in [2] for the particular case of binary variables.
Two types of problems can be analysed:
� Generate E(P) explicitly. Several methods have been

proposed; they are reviewed in [10]. below we will
present two of them, which appear general, charac-
teristic and efficient.

� To determine interactively with the decision maker
a ‘best compromise’ in E(P) according to the pref-
erences of the decision maker. Some of the existing
approaches are reviewed in [11]; below we will de-
scribe three of these interactive methods.

Generation of E(P)

Klein–Hannan Method

See [5]. This is an iterative procedure for sequentially
generating the complete set of efficient solutions for
problem (P) (we suppose that the coefficients c(k)j are
integers); it consists in solving a sequence of progres-
sively more constrained single objective ILP problems
and can be implemented through use of any ILP algo-
rithm.
� (Initialization: step 0) An objective function l 2 {1,

. . . , K} is chosen arbitrarily and the following single
objective ILP problem is considered:

(P0) max
X2D

zl (X):

Let E(P0) be the set of all optimal solutions of (P0)
and let E0(P) be the set of solutions defined as E0(P)
= E(P0) \ E(P). Thus, E0(P) is the subset of non-
dominated solutions in E(P0).

� (Step j, (j �1)) The efficient solutions generated at
the previous steps are denoted by X�r , r = 1, . . . , R,
i. e. [ j�1

iD1Ei(P) = {X�r :r = 1, . . . , R}. In this jth step,
the following problem is solved

(P j)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max
X2D

zl (X)

R\
rD1

0
BB@

K[
kD1
k¤l

zk(X) � zk(X�r )C 1

1
CCA :

The new set of constraints represents the require-
ment that a solution to (Pj) be better on some ob-
jective k 6D l for each efficient solution X�r gener-
ated during the previous steps; an example of imple-
mentation of theseconstraints is given in [5]. The set
of solutions Ej(P) is then defined as Ej(P) = E(Pj)\
E(P), where E(Pj) is the set of all optimal solutions
of (Pj).

The procedure continues until, at some iteration J, the
problem (PJ) becomes infeasible; at this time E(P) =
[

J�1
jD0Ej(P).

Kiziltan–Yucaoglu Method

See [4]. This is a direct adaptation to a multi-objective
framework of the well-known Balas algorithm for the
ILP problem with binary variables.

At node Sr of the branch and bound scheme, the fol-
lowing problem is considered:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

0max 0
X
j2Fr

c jx j C
X
j2Br

c j

s.t.
X
j2F

t jx j � dr

x j D (0; 1)
where Br is the index set of variables

assigned the value one
Fr is the index of free variables
dr D d �

X
j2Br

t j

t j is the jth column of T
cj is the vector of components c(k)j :

The node Sr is called feasible when dr� 0 and infeasible
otherwise. The three basic rules of the branch and bound
algorithm are:



Multi-objective Integer Linear Programming M 2451

� (bounding rule) A lower and upper bound vector,
Zr and Zr , respectively, are defined as

Zr D
X
j2Br

c j;

Zr D Zr C Yr ;

where Yr
k =

P
j2Fr max{0, ckj }. The vector Zr is

added to a list bE of existing lower bounds if Zr is
not dominated by any of the existing vectors of bE.
At the same time, any vector ofbE dominated by Zr

is discarded.
� (fathoming rules) In the multi-objective case, the

feasibility of a node is no longer a sufficient condi-
tion for fathoming it. The three general fathoming
conditions are:
– Zr is dominated by some vector ofbE;
– the node Sr is feasible and Zr D Zr ;
– the node Sr is unfeasible and

P
j2 Fr min(0, tij)>

dri for some i = 1, . . . , m.
The usual backtracking rules are applied.

� (branching rule) A variable xl 2 Fr is selected to be
the branching variable.
– If the node Sr is feasible, l 2 f j 2 Fr : c j 6� 0g.
– Otherwise, index l is selected by the minimum

unfeasibility criterion:

min
j2Fr

mX
iD1

max
�
0;�dr

i C ti j
�
:

When the explicit enumeration is complete, E(P) D bE.

InteractiveMethods

Suchmethods are particularly important to solve multi-
objective applications. The general idea is to determine
progressively a good compromise solution integrating
the preferences of the decision maker.

The dialog with the decision maker consist of
a succession of ‘calculation phase’ managed by the
model and ‘information phase’ managed by the deci-
sion maker.

At each calculation phase, one or several new effi-
cient solutions are determined taking into account the
information given by the decision maker at the pre-
ceding information phase. At each information phase,
a few number of easy questions are asked to the deci-
sion maker to collect information about its preferences
in regard to the new solutions.

Gonzalez–Reeves–Franz Algorithm

See [3]. In this method a seteE of K efficient solutions is
selected and updated in each algorithm step according
to the decision maker’s preferences. At the end of the
procedure,eE will contain the most preferred solutions.
The method is divided in two stages: in the first one, the
supported efficient solutions are considered, while the
second one deals with nonsupported efficient solutions.
� (Stage 1): Determination of the best supported effi-

cient solutions. eE is initialized with K optimal so-
lutions of the K single objective ILP problems. Let
us denote by eZ the K corresponding points in the
objective space of the solution of eE. At each itera-
tion, a linear direction of search G(X) is build:G(X)
is the inverse mapping of the hyperplane defined by
the points of eZ in the objective space into the deci-
sion space. A new supported efficient solution X� is
determined by solving the single objective ILP prob-
lemmaxX2DG(X) and Z� is the corresponding point
in the objective space. Then:
– if Z� … eZ and the decision maker prefers solu-

tion X� to at least one solution ofeE: the least pre-
ferred solution is replaced ineE by X� and a new
iteration is performed;

– if Z� … eZ and X� is not preferred to any solution
in eE: eE is not modified and the second stage is
initiated;

– if Z 
 eZ: eZ defines a face of the efficient surface
and the second stage is initiated.

� (Stage 2): Introduction of the best non supported so-
lutions. We will not give details about this second
stage (see [3] or [10]); letus just say that it is per-
formed in the same spirit but considering the single
objective problem
8̂
<̂
ˆ̂:

max G(X)
X 2 D
G(X) � eG � " with " > 0

where eG is the optimal value obtained for the last
function G(X) considered.

Steuer–Choo Method

See [9]. Several interactive approaches of MOLP prob-
lems can also be applied to MOILP; among them, we
mention only the Steuer–Choo method, which is a very



2452 M Multi-objective Integer Linear Programming

general procedure based on problem (PT
	
) defined in the

introduction.
The first iteration uses a widely dispersed group of

� weighting vectors to sample the set of efficient solu-
tions. The sample is obtained by solving problem (PT

	
)

for each of the � values in the set. Then the decision
maker is asked to identify the most preferred solution
X(1) among the sample. At iteration j, a more refined
grid of weighting vectors � is used to sample the set
of efficient solution in the neighborhood of the point
zk(X(j)) (k = 1, . . . , K) in the objective space. Again the
sample is obtained by solving several problems (PT

	
)

and the most preferred solution X(j+1) is selected. The
procedure continues using increasingly finer sampling
until the solution is deemed to be acceptable.

The MOMIXMethod

(See [6].) The main characteristic of this method is the
use of an interactive branch and bound concept – ini-
tially introduced in [7] – to design the interactive phase.
� (First compromise): The following minimax opti-

mization, with m = 1, is performed to determined
the compromise eX(1):

(Pm)

8̂
<̂
ˆ̂:

min ı

8k ˘
(m)
k (M(m)

k � zk(X)) � ı;
X 2 D(m)

where
– D(1) � D;
– [m(1)

k , M(1)
k ] are the variation intervals of the cri-

teria k, provided by the pay-off table (see [8]);
– ˘

(1)
k are certain normalizing weights taking into

account these variation intervals (see [8]).

Remark 1 If the optimal solution is not unique, an aug-
mented weighted Tchebychev distance is required in
order to obtain an efficient first solution.

� (Interactive phases): There are integrated in an in-
teractive branch and bound tree; a first step (a depth-
first progression in the tree) leads to the determina-
tion of a first good compromise; the second step (a
backtracking procedure) confirms the degree of sat-
isfaction achieved by the decision maker or it finds
a better compromise if necessary.
– (Depth first progression): For m � 1, let at the

mth iteration

1) eX(m) be themth compromise;
2) z(m)

k be the corresponding values of the crite-
ria;

3) [m(m)
k , M(m)

k ] be the variation intervals of the
criteria; and

4)˘ (m)
k be the weight of the criteria.

The decision maker has to choose, at thismth it-
eration, the criterion lm(1)2 {k: k = 1, . . . , K} he is
willing to improve in priority. Then a new con-
straint is introduced so that the feasible set be-
comes D(m+1) � D(m) \ {zlm(1)(X) > zlm(1)(m)}
Further, the variation intervals [m(mC1)

k ,M(mC1)
k ]

and the weights ˘ (mC1)
k are updated on the new

feasible set D(m+1). The new compromise eX(mC1)

is obtained by solving the problem (Pm+1).
Different tests allow to terminate this first step.
The node (m+1) is fathomed if one of the follow-
ing conditions is verified:
a) D(m+1) = ;;
b)M(mC1)

k �m(mC1)
k � �k 8 k;

c) the vector bZ of the incumbent values (val-
ues of the criteria for the best compromise
already determined) is preferred to the new
ideal point (of componentM(mC1)

k ).
The first step of the procedure is stopped if either
more than q successive iterations do not bring an
improvement of the incumbent pointbZ or more
than Q iterations have been performed.
Note that the parameters �k, q and Q are fixed in
the agreement with the decision maker.

c) (Backtracking procedure): It can be hoped that the
appropriate choice of the criterion zlm(1), at each
levelm of the depth-first progression, has beenmade
so that at the end of the first step, a good compro-
mise has been found.
Nevertheless, it is worth examining some other parts
of the tree to confirm the satisfaction of the deci-
sion maker. The complete tree is generated in the
following manner: at each level, K subnodes are in-
troduced by successively adding the constraints:

zlm (1)(X) > z(m)
lm (1);

zlm (2)(X) > z(m)
lm (2); zlm (1)(X) � z(m)

lm (1);

:::
:::

:::
:::

:::
:::

zlm (K)(X) > z(m)
lm (K); zlm (k)(X) � z(m)

lm (k);
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for all k = 1, . . . , K � 1, where lm(k) 2 {k: k = 1, . . . ,
K} is the kth objective that the decision maker wants
to improve at themth level of the branch and bound
tree.
At each levelm, the criteria are thus ordered accord-
ing to the priorities of the decision maker in regard
with the compromise eX(m).
The usual backtracking procedure is applied; yet it
seems unnecessary to explore the whole tree. In-
deed, the subnode k > K of each branching corre-
spond to a simultaneous relaxation of those criteria
lm(k), k � K, the decision maker wants to improve
in priority!
Therefore, the subnodes k > K D 2 or 3, for in-
stance, do almost certainly not bring any improved
solutions.
The fathoming tests and the stopping tests are again
applied in this second step.
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Amulti-objective (multicriteria) mixed integer program-
ming(MOMIP) problem is a mathematical program-
ming problem that considers more than one objective

function and some but not all the variables are con-
strained to be integer valued. The integer variables can
either be binary or take on general integer values. The
problem may be stated as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

max z1 D f1(x)
:::

max zk D fk(x)
s.t. x 2 X

where X � Rn denotes the nonconvex set of feasible so-
lutions defined by a set of functional constraints, x � 0
and xj integer j2 J� {1, . . . , n}. It is assumed that X is
compact (closed and bounded) and nonempty.

Although a MOMIP problem may be nonlin-
ear, models with linear constraints and linear objec-
tive functions have been more often considered. In
a multi-objective mixed integer linear programming
(MOMILP) problem, the functional constraints can be
defined as Ax � b, and the objective functions f i(x) =
cix, i = 1, . . . , k, where A is a m × n matrix, b is a m-
dimensional column vector and ci, i = 1, . . . , k, are n-
dimensional row vectors.

Multi-objective mixed integer programming is very
useful for many areas of application such as commu-
nication, transportation and location, among others.
Integer variables are required in a real-world model
whenever it is sought to incorporate discrete phenom-
ena; for instance, investment choices, production lev-
els, fixed charges, logical conditions or disjunctive con-
straints. However, research on MOMIP has been rather
limited. Concerning multi-objective mathematical pro-
gramming, most research efforts have been so far de-
voted to linear programming with continuous variables
(MOLP). The introduction of discrete phenomena into
multi-objective models leads to all-integer or mixed in-
teger problems that are more difficult to tackle. They
can not be handled by most MOLP approaches be-
cause the feasible set is no longer convex. Also, there
are multi-objective approaches designed for all-integer
problems that do not apply to the mixed integer case.
Therefore, even for the linear case, techniques for deal-
ing with multi-objective mixed integer programming
involve more than the combination of MOLP with
multi-objective integer programming techniques.
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Efficiency and Nondominance

The concept of efficiency (or nondominance) in
MOMIP is defined as usually for multi-objective math-
ematical programming: A solution x 2 X is efficient if
and only if it does not exist another x 2 X such that
fi(x) � fi(x) for all i 2 {1, . . . , k} and fi(x) > fi(x)
for at least one i. A solution x 2 X is weakly efficient
if and only if it does not exist another x 2 X such that
fi(x) > fi(x) for all i 2 {1, . . . , k}.

Let Z � Rk be the image of the feasible region X
in the criterion (objective function) space. A criterion
point z 2 Z corresponding to a (weakly) efficient solu-
tion x 2 X is called (weakly) nondominated. The desig-
nations ‘efficient’, ‘nondominated’ and ‘Pareto optimal’
are often used as synonyms.

Supported and Unsupported
Nondominated Solutions

Since the feasible region is nonconvex, unsupported
nondominated points/solutions may exist in a MOMIP
problem. A nondominated point z 2 Z is unsupported
if it is dominated by a convex combination (which
does not belong to Z) of other nondominated criterion
points (belonging to Z). In Fig. 1 the line segment from
A to B plusD is the set of supported nondominated cri-
terion points. The line segment from C to D excluding
C and D is the set of unsupported nondominated crite-
rion points. Note that convex combinations of B and D

Multi-objective Mixed Integer Programming, Figure 1
Nondominated criterion points of a MOMILP problem

dominate the line segment from C to D, excluding D. C
is a weakly nondominated solution.

Characterization of the Nondominated Set

Unlike MOLP, the nondominated (or efficient) set of
MOMIP problems can not be fully determined by pa-
rameterizing on � the weighted-sums program:

(P	)

8̂
<̂
ˆ̂:
max

( kX
iD1

�i f i(x) : x 2 X

)

where � 2 �:

Here,

� D

(
� 2 Rk :

�i > 0 8i;Pk
iD1 �i D 1

)
:

The unsupported nondominated solutions cannot be
reached even if the complete parameterization on � is
attempted.

Researchers on multi-objective mathematical pro-
gramming early recognized this fact and stated other
characterizations for the nondominated set that fit
MOMIP and, in particular, MOMILP problems. Ba-
sically, two main characterizations are defined. One
consists of introducing additional constraints into the
weighted-sums program. Generally, these constraints
impose bounds on the objective function values. This
form of characterization may be regarded as a partic-
ularization of the general characterization provided by
R.M. Soland [13]. The other is based on the Tchebycheff
theory whose theoretical foundation originated from
V.J. Bowman [3]. More details about these character-
izations and on how they provide the computation of
nondominated solutions will be given later. Although
providing very important theoretical results, the char-
acterizations of the nondominated set do not offer an
explicit means to provide decision support for MOMIP
problems. However, some authors have developed de-
cision support methods for these problems.

Interactive Versus NoninteractiveMethods

Methods may be either noninteractive (in general,
generating methods designed to find the whole or
a subset of the nondominated solutions) or inter-
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active (characterized by phases of human interven-
tion alternated with phases of computation). Gener-
ating methods for MOMIP problems usually require
an excessive amount of computational resources, both
in processing time and storage capacity. Even spe-
cialized generating algorithms developed just for bi-
objective problems, which profit from graphical rep-
resentations on the criterion space, tend to be inad-
equate to deal with large problems. Nevertheless, the
distinction between interactive and generating meth-
ods is not always clear. Some approaches attempt to
find a representative subset of the nondominated set
(generating methods according to the above defini-
tion) and would be easily embodied in an interac-
tive framework. The bi-objective method of R. Solanki
[14] may be regarded as an example of such an ap-
proach.

Taking into account the difficulties mentioned
above, and the large number of nondominated solu-
tions in many problems, special attention to interactive
methods will be paid. First of all, a short remark is made
about the major paradigms followed by the authors of
interactive methods. Some authors admit that the deci-
sion maker’s (DM) preferences can be represented by
an implicit utility function. The interactive process con-
sists in building a protocol of interaction aiming to dis-
cover the optimum (or an approximation of it) of that
implicit utility function. The convergence to this opti-
mum requires no contradictions in the DM’s responses
given throughout the interactive process.

In contrast with implicit utility function ap-
proaches, the open communication approaches are
based on a progressive and selective learning of the
nondominated set. The terminology of open commu-
nication is inspired on the concept of open exchange,
defined by P. Feyerbend [6]. Such multi-objective ap-
proaches are not intended to converge to any ‘best’
compromise solution but to help the DM to avoid the
search for nondominated solutions he/she is not at all
interested in. There are no irrevocable decisions dur-
ing the whole process and the DM is always allowed to
go ‘backwards’ at a later interaction. So, at each inter-
action, the DM is only asked to give some indications
on what direction the search for nondominated solu-
tions must follow, or occasionally to introduce addi-
tional constraints. The process only finishes when the
DM considers to have gained sufficient insight into the

nondominated solution set. Using the terminology of
B. Roy [12], ‘convergence’ must give place to ‘creation’.
The interactive process is a constructive process, not the
search for something ‘pre-existent’.

Although we personally prefer the open commu-
nication methods, we will include in the next section
a tentative classification of both, drawing out some
differences and similarities between them. We adopt
this perspective because this question is not specific
to mixed integer programming and arguments pro or
against each approach, besides being subjective, are the
same as in other multi-objective programming fields.
Furthermore, since MOMIP is still in its early steps,
no behavioral studies exist addressing the use of pro-
cedures within this context.

As we have mentioned before, research on MOMIP
has been rather scarce in comparison to other fields
of the multi-objective mathematical programming,
namely in MOLP. We will mention herein some well-
known methods specially designed for MOMIP or far
more generally applicable.

Computing Processes and Their Use
in InteractiveMethods

Weighted-Sums Programs
with Additional Constraints

The introduction of bounds on the objective function
values into theweighted-sums program (P	) enables this
program to also compute unsupported nondominated
solutions:

(P	;g) max

8<
:

kX
jD1

�i f i(x) : x 2 X; f (x) � g

9=
; ;

where f (x) = (f 1(x), . . . , f k(x)), � 2 � and g is a vector
of objective bounds. Besides the fact that every solution
obtained by (P	, g) is nondominated, there always exists
a g 2 Rk such that (P	, g) yields a particular nondom-
inated solution. Other types of additional constraints
can also be used.

A scalarizing program which consists of the
weighted-sums program combined with additional
constraints is used for computing nondominated solu-
tions in the interactive branch and bound method of
B. Villarreal et al. [18]. The additional constraints are
bounds imposed on integer variables by the branching
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process. This method, which is devoted to MOMILP
problems, received later improvements in [8] and [11].
Starting by applying the well-known (MOLP) Zionts–
Wallenius procedure to the linear relaxation of the
MOMILP problem, the method then employs a branch
and bound phase until an integer solution that satis-
fies the DM is achieved. An implicit utility function is
assumed and the DM’s preferences are assessed using
pairwise evaluations of decision alternatives and trade-
off analysis. In light of the DM’s underlying utility func-
tion, decisions on whether to apply again the Zionts–
Wallenius procedure to the linear relaxation of a can-
didate multi-objective subproblem, or to continue to
branch by appending a constraint on a variable, are suc-
cessively made.

Another method that uses particular forms of (P	, g)
to compute nondominated solutions is due to Y. Ak-
soy [1]. This is an interactive method for bicriterion
mixed integer programs that employs a branch and
bound scheme to divide the subset of nondominated
solutions considered at each node into two disjoint sub-
sets. The branching process seeks to bisect the range of
nondominated values for z2 at the node under consid-
eration, checking whether a nondominated point ex-
ists whose value for z2 is in the middle of the range.
If no such solution exists, that subset is divided us-
ing two nondominated points whose values for z2 are
the closest (one up and the other down) to the mid-
dle value. These nondominated solutions are obtained
by solving (P	, g) optimizing one objective function
and bounding the other. The interactive process re-
quires the DM to make pairwise comparisons in or-
der to determine the branching node and to adjust
the incumbent solution to the preferred nondomi-
nated solution. It is assumed that the DM’s preferences
are consistent, transitive and invariant over the pro-
cess aiming to optimize the DM’s implicit utility func-
tion.

C. Ferreira et al. [5] proposed a decision support
system for bicriterion mixed integer programs. The in-
teractive process follows an open communication pro-
tocol asking the DM to specify bounds for the objec-
tive function values. These bounds are input into (P	, g)
defining subregions to carry on the search for nondom-
inated solutions. Some objective space regions are pro-
gressively eliminated either by dominance or infeasibil-
ity.

Tchebycheff and Achievement Scalarizing Programs

Bowman [3] proved that the parameterization on w
of minx2X k f � f (x)kw generates the nondominated
set, where wi � 0 for all i,

Pk
iD1wi = 1, f is a cri-

terion point such that f > f (x) for all x 2 X and
k f � f (x)kw denotes the w-weighted Tchebycheff met-
ric, that is, max1�i�kfwi j f i � fi(x)jg. This scalarizing
program is equivalent to

(Tw )

8̂
<̂
ˆ̂:

min ˛

s.t. wi

�
f i � fi(x)

�
� ˛; 1 � i � k;

x 2 X; ˛ � 0:

(Tw) may yield weakly nondominated solutions (for in-
stance, point C in Fig. 1). Replacing the objective func-
tion in (Tw) by ˛ � �

Pk
iD1f i(x) with � a small posi-

tive value, all the solutions returned by this augmented
weighted Tchebycheff program are nondominated. R.E.
Steuer and E.-U. Choo [16] proved that there are always
� small enough that enable to reach all the nondomi-
nated set for the finite-discrete and polyhedral feasible
region cases.

Concerning the MOMIP case, although there may
be portions of the nondominated set that the program
is unable to compute, even considering � very small
(for example, the line segment from C to C0 in Fig. 2,
for a given �), this characterization is still possible in
practice. Note that � can be set so small that the DM
is unable to discriminate between those solutions and
a nearby weakly nondominated solution (this corre-
sponds to C0 getting closer to C in Fig. 2).

In [16] and [15] a lexicographic weighted Tcheby-
cheff program is proposed for the nonlinear and
infinite-discrete feasible region cases to overcome this
drawback of the augmented weighted Tchebycheff pro-
gram. The lexicographic approach can also be applied
to the mixed integer (linear) case. However, it is more
difficult to implement since two stages of optimiza-
tion are employed. At the first stage only ˛ is mini-
mized. When the first stage results in alternative op-
tima, a second stage is required. It consists of mini-
mizing �

Pk
iD1f i(x) over the solutions that minimize

˛ in order to eliminate the weakly nondominated solu-
tions.

Besides (Tw) (either the augmented or the lexi-
cographic forms), there are other similar approaches
that also allow to characterize the nondominated set of
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Multi-objective Mixed Integer Programming, Figure 2
Illustration of the augmented weighted Tchebycheff metric

multi-objective mixed integer programs. An approach
of this type consists in discarding the w-vector or fix-
ing it and varying f , the criterion reference point that
represents the DM’s aspiration levels. This scalarizing
program can be denoted by (T f ). There always exist ref-
erence points satisfying f > f (x) for all x 2 X, such
that (T f ) produces a particular nondominated solution
z D f (x). The variation of f can be done according
to a vector direction � , leading to (T fC
 ). The refer-
ence points are thus projected onto the nondominated
set. Reference points that do not satisfy the condition
f > f (x) for all x 2 X may also be considered pro-
vided that the ˛ variable is defined without sign restric-
tion. This corresponds to the minimization of a dis-
tance from Z to the reference point if the latter is not
attainable and to the maximization of such a distance
if the reference point is attainable. If reference or as-
piration levels are used as controlling parameters, the
(weighted) Tchebycheff metric changes its form of de-
pendence on controlling parameters and should be in-
terpreted as an achievement function [9].

Like (Tw), the simplest form of (T f ) may produce
weakly nondominated solutions. The augmented form
is a good substitute in practice and the lexicographic
approach guarantees that all nondominated solutions
can be reached. In what follows, let (T�) denote either
the simplest, the augmented or the lexicographic form.

Scalarizing programs (Tw), (T f ) and their exten-
sions or slight different formulations are used to gen-
erate nondominated solutions in several (interactive)

methods proposed in literature, namely in the follow-
ing ones.

Steuer and Choo [16] proposed a general purpose
multi-objective programming interactive method that
assumes an implicit DM’s utility function without any
special restriction on shape. The strategy of the inter-
active procedure is to sample series of progressively
smaller subsets of nondominated solutions. At each
interaction, the DM selects his/her preferred solution
from a sample of nondominated solutions obtained
from (Tw) with several w-vectors and the ideal crite-
rion point in the role of f . The solution preferred by
the DM provides information to tighten the set of w-
vectors for the next interaction. The procedure termi-
nates when a nondominated criterion point sufficiently
close to the optimal criterion point of the underlying
utility function is found.

Solanki’s method [14], which is designed for bi-
objective mixed integer linear programs, is an adapta-
tion of the noninferior set estimation (NISE) method
developed by J.L. Cohon for bi-objective linear pro-
grams. It seeks to generate a representative subset of
nondominated solutions by combining the NISE’s key
features with weighted Tchebycheff scalarizing pro-
grams. At each iteration, a new nondominated solution,
say z3, is computed by solving (Tw) for specific w and f ,
assuring that z3 belongs to the region between a pair of
nondominated criterion points previously determined,
say (z1, z2). This pair is then replaced by (z1, z3) and
(z3, z2). The approximation of the nondominated sur-
face is progressively improved, thus decreasing the ‘er-
rors’ associated with the approximate representation of
the pairs. This ‘error’ is measured by the largest range of
the two objectives for the points forming the pair. The
algorithm finishes when the maximum ‘error’ is lower
than a predefined maximum allowable ‘error’.

Another interactive method capable of solving
MOMIP problems was developed by A. Durso [4]. This
method employs a branching scheme considering pro-
gressively smaller portions of the nondominated set by
imposing lower bounds on the criterion values. At each
interaction, the k nondominated solutions that define
the (quasi)ideal criterion point for each new node are
calculated. The DM is then asked to select the node
for branching by choosing the preferred ideal point.
The branching process begins by solving an equally
weighted augmented Tchebycheff program to deter-
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mine a ‘centralized’ nondominated point for the subset
of the node under exploration. Once the DM chooses
the most preferred of the k + 1 nondominated points
already known for this node, saybz, up to k new nodes
(children) are created. Each child inherits its parent’s
bounding constraints and usesbz to further restrict one
of them. Thus, the ith child restricts the ith criterion
by imposing fi(x) � bzi C ı with ı small positive.
This approach may be regarded as an open communi-
cation procedure that terminates when the DM is sat-
isfied with the incumbent solution (the preferred non-
dominated solution obtained so far).

M.J. Alves and J. Clímaco [2] proposed a MOMILP
open communication interactive approach. It combines
the Tchebycheff theory with the traditional branch and
bound technique for solving single-objective mixed in-
teger programs. At each interaction, the DM speci-
fies either a reference point f , which is input in (T f )
to compute a nondominated solution via branch and
bound, or just selects an objective function, say f j,
he/she wants to improve with respect to the previous
nondominated solution. In the latter case, the refer-
ence point is automatically adjusted by increasing the
jth component of f keeping the others equal, in order
to produce new nondominated solutions (directional
search) more suited to the DM’s preferences. This in-
volves an iterative process of sensitivity analysis and
operations to update the branch and bound tree. The
sensitivity analysis takes advantage of the special be-
havior of the parametric scalarizing program (T fC
 ).
It returns a value � j > 0 such that the structure of the
previous branch and bound tree remains unchanged
for variations in f j up to f j C � j . Therefore, refer-
ence points f C � D ( f 1; : : : ; f j C � j; : : : ; f k) with
� j � � j lead to nondominated solutions that may be
obtained in a straightforward way. If the DM wishes to
continue the search in the same direction, a slight in-
crease over � j , say � j C �, is first considered. In this
case, the previous sensitivity analysis also returns the
best candidate node, i. e., an ancestor of the node that
will produce the next nondominated solution. The pre-
vious branch and bound tree is thus used to proceed to
the next computations. Since further branching is usu-
ally required, an attempt is made to simplify the tree
before enlarging it. The underlying idea is to avoid an
evergrowing tree. This simplification means cutting off
parts of the tree linked by branching constraints no

longer active. In sum, this approach brings together
sensitivity analysis phases meant to adjust the refer-
ence point and simplification/branching operations of
the search tree to compute nondominated solutions.
This process is repeated as long as the DM wishes to
continue the directional search or if the reference point
has not been adjusted enough to yield a nondominated
solution different from the previous one (a situation
that occurs more often in all-integer programs than
in mixed integer models). Computational experiments
have shown that this multi-objective approach succeeds
in performing directional searches. The times of com-
puting phases using simplification/branching opera-
tions have been significantly reduced by this strategy.

Some researchers have developed other methods for
multi-objective integer programming that are also ap-
plicable to the mixed integer case. Good examples of
such approaches are those in [10,17] and [7]. In our
opinion, they all are open communication procedures
that share some key features, namely the concept of
projecting a reference direction onto the nondominated
surface (although this procedure is used in different
ways) and the type of information required about the
DM’s preferences. This information lies fundamentally
in the specification of aspiration levels for the objec-
tive function values (reference points). Some of these
approaches are continuous/integer ([7,10]) working al-
most all the time with nondominated continuous solu-
tions of the linear relaxation of the problem. Whenever
the DM finds a satisfactory continuous solution, an in-
teger nondominated solution close to it is then com-
puted.

Conclusions and Future Developments

Most methods developed so far for MOMIP problems
require an excessive amount of computational effort,
or require too much cognitive load from the DM, or
only address bi-objective problems. In addition, com-
putational experience with real-world applications is
lacking. Although interesting or promising approaches
have been developed, further research efforts must be
made in order to build effective interactive methods
able to handle real-sized problems.
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Multiple criteria decision making (MCDM) refers to the
explicit incorporation of more than one evaluation cri-
teria into a decision problem. MCDM has been a very
active field of research roughly since the 1970s. Al-
though boundaries might be fuzzy and overlapping,
multicriteria decision analysis (studying the problem of
identifying the ‘most-preferred’ among a finite discrete
set of alternatives), multi-attribute utility theory (using
utility functions explicitly to model a decision maker’s
preferences) and multi-objective optimization (model-
ing the decision problem within a mathematical pro-
gramming framework) have emerged as major fields of
interest under MCDM. For more information on the
general field of MCDM, see [21].

Multi-objective mathematical programming pro-
vides a flexible modeling framework that allows for si-
multaneous optimization of more than one objective
function over a feasible set. Mathematically, the multi-
objective optimization problem can be expressed as:

(MOO)

(
max f (x);
s.t. x 2 X;

where X � Rn is the set of feasible alternatives and f =
(f 1, . . . , f p): Rn!Rp, p� 2, is a vector-valued function.
Note that X can be any set, continuous or discrete, ex-
pressed through constraints, and the objective function
f can be of any form.

The increased flexibility provided by (MOO) also
raises the question of what constitutes a solution to it.

The definition of optimality is no longer valid, as each
objective function would possibly yield a different op-
timal solution. Therefore solving the (MOO) problem
is about studying the inherent trade-offs among con-
flicting objectives. Efficient solutions are the ones that
possess the relevant trade-off information. An xo 2 Rn

is called an efficient solution for the (MOO) problem
if xo 2 X and there exists no x 2 X such that f (x) �
f (xo) with strict inequality holding for at least one com-
ponent. The set of all efficient solutions of the (MOO)
problem is usually denoted by XE. As per the above
definition, the most-preferred solution of the decision
maker should belong to XE, as solutions that are not ef-
ficient, the dominated ones, can be improved upon in
at least one objective without worsening the others.

Since XE is usually a big set, confining the most-
preferred solution to XE does not help identify the
most-preferred solution immediately. In particular, the
difficulty of defining and obtaining the most-preferred
solution, the one that the decision maker would iden-
tify as the solution to the decision-making problem, and
the need for the inevitable involvement of the decision
maker in the solution procedure has resulted in very
different solution approaches to the (MOO) problem.

Traditional Classification

The timing of the involvement of the decision maker
in the solution procedure has been a crucial factor that
distinguishes among various approaches to the (MOO)
problem [13]. A priori methods, methods that use prior
articulation of preferences, ask the decision maker to
specify preference information prior to the application
of an optimization routine. The elicitation of preference
information can be directed towards deriving a util-
ity function that describes the decision maker’s pref-
erences [14], or as in goal programming [7] and com-
promise programming [23], a standard model can be
imposed upon the decision maker. As these methods
reduce the (MOO) problem to a single-objective opti-
mization problem and they aspire to find a single solu-
tion to it, they have received considerable recognition
although their assumptions are usually restrictive.

The interactive methods require the interaction of
the decision maker with the computer while solv-
ing a particular (MOO) problem. Usually, the idea is
to construct a model that proposes solutions to the
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(MOO) problem based on some initial input. The de-
cision maker is then invited to reply to the solution by
providing additional preference information. The in-
teraction between the computer program and the de-
cision maker continues until a satisfying solution is ob-
tained.

Interactive methods are important inmore than one
way. First, they have introduced the means for practi-
cally solving a (MOO) problem [12]. Second, they help
a decision maker learn about the inherent trade-offs of
a problem during the solution process [5]. Third, the
idea underlying the interactive methods constitutes the
major motivation behind the contemporary decision
support systems. Although interactive algorithms have
encountered a certain level of acceptance from practi-
tioners [1,20], they are not without disadvantages. They
usually rely too much on the information provided by
the decision maker, are not able to provide a global look
at XE, and thus at the trade-offs inherent in a prob-
lem, and they focus on finding a single solution whereas
a number of solutions may be compatible with the deci-
sion maker’s preferences. Moreover, their information
requests may be overwhelming for the decision maker.
It has been discussed that interactive methods need to
address behavioral aspects of decision making [16] and
concentrate on interfacing the decision maker[15] as
well as broadening their model base [10]. Although they
do not encompass all the raised issues, some of the in-
teractive (MOO) algorithms have already evolved into
decision support systems that provide a friendly envi-
ronment for modeling as well as problem solving [17].
It can be expected that more decision support systems
to solve problem (MOO) will appear in the near future.

Perhaps the most straight-forward way of ap-
proaching the (MOO) problem is as in vector optimiza-
tion methods. Also referred to as posterior methods,
these methods are based on the sole assumption that
the decision maker prefers more to less in each ob-
jective function in (MOO) hence they propose identi-
fying all of the efficient solutions of (MOO) and pre-
senting them to the decision maker for the identifica-
tion of the most-preferred solution. Along with theo-
retical findings [2,11], some vector optimization meth-
ods have been proposed; however, the methods have
not gained practical recognition in general. The fail-
ure in the implementation of the proposedmethods can
be explained by the heavy computational requirements

of these methods. Perhaps a more important factor is
the difficulty of presenting the efficient set in a ‘legi-
ble’ way to the decision maker. Furthermore, as the ef-
ficient set is usually continuous when the feasible re-
gion is, the task of identifying the most-preferred so-
lution is a monstrous one attributed to the decision
maker.

Multi-Objective Linear Programming

When (MOO) has linear objective functions and a poly-
hedral feasible set, the resulting problem is called amul-
tiple objective linear programming (MOLP) problem.
The MOLP problem has mathematical features that
make it easier to characterize and obtain the efficient set
compared to the more general case. More specifically, it
has been shown that the efficient set of the MOLP prob-
lem consists of a collection of efficient faces of the fea-
sible region. As faces of a polyhedron can be charac-
terized in a number of ways, for instance as the convex
hull of its extreme points if its compact, as the optimal
solution set to a particular optimization problem, or as
a polyhedron itself, it becomes possible to obtain and
present the efficient set [9,18,22].

Yet the computational effort increases with prob-
lem size, and the (MOO) problem cannot be considered
truly solved at this stage without some mechanism that
helps the decision maker identify the most-preferred
solution in this huge and hard-to-explore set. Most of
the vector optimization methods have concentrated on
finding the set of efficient extreme points of the multi-
ple objective linear programming problem. These are
usually methods that rely on simplex-like procedures
or parametric searches that incorporate book-keeping
mechanisms based on the fact that the set of efficient
extreme points is connected. A well-known procedure
that solves (MOLP) for all of its extreme points is AD-
BASE which was developed by R.E. Steuer [19].

Example 1 Consider the MOLP problem [18]:

8̂
ˆ̂̂<
ˆ̂̂̂
:

max x1; x2; x3;
s.t. 2x1 C 3x2 C 4x3 � 12

4x1 C x2 C x3 � 8
x1; x2; x3 � 0:

(1)
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The efficient set is the union of the two shaded efficient
faces E1 and E2. There are 5 efficient extreme points: e1
= (0, 0, 3), e2 = (10/7, 0, 16/7), e3 = (12/10, 32/10, 0), e4
= (0, 4, 0), e5 = (2, 0, 0). If X denotes the feasible region,
The face marked E1 can be characterized as the polyhe-
dron that forces the first constraint in (1) to equality in
the definition of X. It can also be defined as the convex
hull of its four extreme points e1, e2, e3, e4. Finally, it is
the optimal solution set to the optimization problem
(
max �1x1 C �2x2 C �3x3
s.t. x 2 X

for (�1, �2, �3) = (2, 3, 4), and its positive multiples.

In large problems, the set of efficient extreme points
may still contain too many points to be studied by
the decision maker. Moreover, extreme efficient points
may not carry the trade-off information well since some
portions of the efficient set may end up being over-
emphasized whereas some regions are highly missed.
Indeed, there is no reason for a decision maker to be
solely interested in extreme point efficient solutions.
The attractiveness of efficient extreme points mostly lies
in their mathematical properties. With this motivation,
a method that applies to a general set of (MOO) prob-
lems has been suggested to find globally-representative
subsets of the efficient set [6].

Working in the Outcome Space

The outcome set Y = { y 2 Rp: y = f (x) 9 x 2 X }
helps redefine an equivalent problem to (MOO) in p-
dimensional outcome space:

(MOOO)

(
max y
s.t. y 2 Y :

As the number of objectives p is usually much less than
the number of variables n, the structure of Y is simpler
than that of X [4,8]. The ability to work directly with
(MOOO) thus has the potential of providing significant
computational benefits that vector optimization algo-
rithms have tried to realize [3].

Reflections on Optimization Trends

As a field within the general field of optimization,
multi-objective optimization is naturally affected by the
trends that become dominant in optimization. Con-
sequently, interior point methods, genetic algorithms,
neural networks have been applied to the (MOO) prob-
lem in various ways. As there are difficult problems un-
der (MOO) that cannot be yet practically solved, new
developments in the general field of optimization con-
stitute a potential to solve these problems.

Nonlinear and Integer Problems

Most of the algorithms proposed to solve problem
(MOO) concentrate on the fully linear case. In general,
when nonlinearities are introduced, the efficient solu-
tions and the efficient set become difficult to character-
ize. There are some algorithms that allow for nonlin-
earities in the objective functions, and in the constraints
that define the feasible region, but usually in a conserva-
tive way so as to retain some computational tractability.
Similarly, the multiple objective integer programming
problem is a very difficult one to solve due to the addi-
tional complications related to integrality.

Applications

Along with what one can call ‘case studies’, certain
applications that are more generic than a case study
but more specific than problem (MOO) itself have ap-
peared. Typical examples include, but are not limited
to, bicriteria network optimization problems, bicriteria
knapsack problems, and multicriteria scheduling prob-
lems. Since usually these are problems that naturally
involve multiple criteria, the methods developed for
these problems have practical implications. Most of the
methods developed can be categorized under a priori
methods. A typical approach is to form aweighted com-
bination of the objective functions. Recently, interactive
and vector optimization approaches that deal with sim-
ilar problems have also appeared.
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A Related Optimization Problem

A related problem is the problem of optimizing a func-
tion g: Rn !Rp over the efficient set XE. This can be
a difficult global optimization problem depending on
the properties of the objective function g. The problem
is motivated in different ways. Sometimes, in certain
settings, a function that is to serve as a pseudo utility
function is available. Then optimizing this pseudo util-
ity function over the efficient set in a sense corresponds
to solving problem (MOO) itself. In addition, when g
becomes one of the objective functions, then solving
this problem provides the range of values the objective
function takes over the efficient set. This information
is valuable for a decision maker who is trying to make
assessments to solve a problem and is used in some of
the interactive algorithms. The difficulty of the problem
has also resulted in heuristic solution approaches.

Trends

The advances in information technology affect the field
of multiple criteria decision making heavily. Faster
computers and parallel processing opportunities make
it timewise feasible to solve optimization problems that
would be deemed impractical in the past. Improved
graphical capabilities make it feasible to accommo-
date sophisticated user interfaces to invite the decision
maker in the problem solving process more actively and
reliably. The developments in the World Wide Web
present many opportunities to explore for individual
and group decision support. At this point in time, there
is still a need to solve the MOO problem in a rigor-
ous, user-friendly and creative way. The decision sup-
port systems that enable the involvement of the deci-
sionmaker inmodeling and problem solving practically
seem to be the way of solving (MOO) problems. The
vector optimization approaches can also benefit from
a decision support framework in their effort to help the
decision maker identify a most-preferred solution.
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Traditionally, process design and process control are
treated sequentially. Dynamics are not considered dur-
ing the design phase, and flowsheet changes can not be
made during the control phase. The problem with this
approach is that the two are inherently connected as the
design of the process affects its controllability. Thus, the
steady state design and the dynamic operability issues
should be treated simultaneously. Analyzing the inter-
action of design and control addresses the issue of quan-
titatively determining the trade-offs between the steady
state economics and the dynamic controllability.

The interaction of design and control problem is to
determine the process flowsheet which is both the eco-
nomically optimal and controllable. There are different
methods for addressing this problem. One common ap-
proach is to use overdesign where, once the economic
steady state design is determined, surge tanks are added
or equipment sizes are increased in order to handle any
dynamic problems which may arise. This overdesign is
usually based on heuristic rules and will likely move
the design away from its economic optimum. There
is no guarantee that the measures taken will even im-
prove the controllability of the process. Other meth-
ods may examine the dynamic operation of several de-
signs to determine which has the best controllability as-
pects.

There are very fewmethods which address the inter-
action of design and control in a quantitative manner.
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The interaction of design and control can be addressed
through a process synthesis approach involving opti-
mization. This approach involves the representation of
design alternatives through a process superstructure,
the mathematical modeling of the superstructure, and
the development of an algorithm to extract the opti-
mal flowsheet from the superstructure. The simultane-
ous optimization of the design and control of the pro-
cess is handled through multiple objectives represent-
ing the steady state economics and dynamic controlla-
bility. This naturally leads to a multi-objective frame-
work.

Multi-objective Optimization

In any decision making process, the goal is to reach the
best compromise solution among a number of compet-
ing objectives. Many examples of competing objectives
exist in the field of engineering. For example, in the de-
sign of a process, one may have to consider safety and
operational issues as well as economic issues. A decision
making process is necessary when the most economic
design is not the safest or most operable.

The best compromise solution depends on the rela-
tive importance of the conflicting objectives. This rela-
tive importance is not easily determined and is usually
a subjective decision. The one responsible for making
this decision is the decision maker (DM) whose choice
can be based on a number of factors. Since subjective
measures and decisions do not translate well into math-
ematics, a quantitative way of determining the trade-
offs and relative importance among the the objectives
is necessary for a multi-objective optimization frame-
work.

Multi-objective Framework
for the Interaction of Design and Control

In analyzing the interaction of design and control, the
objectives that are considered measure the steady state
economics and the dynamic controllability of the pro-
cess. The optimization approach in process synthesis
serves as the basis for the multi-objective framework for
the interaction of design and control. The procedure in-
volves four steps:
1) Process representation;
2) Mathematical modeling;

3) Generation of noninferior solution set (determine
trade-offs);

4) Best-compromise examination.
The first step is the representation of all the possible de-
sign alternatives through a process superstructure. In
this step, all the units and possible connections of inter-
est are incorporated into the superstructure such that
all designs of interest are included as a subset of the su-
perstructure.

Next, a mathematical model of the superstructure is
developed for the superstructure as well as for for ob-
jective functions. The mathematical formulation is de-
termined by the structure of the process flowsheet and
must include all information needed to evaluate the ob-
jective functions. The objective functions must mea-
sure the economics of the process as well as the con-
trollability of the process. Since the objective related
to the economic performance is determined by steady
state operation and the objective for the controllability
is determined by its dynamic operation, the mathemat-
ical model most contain both steady state and dynamic
information. The mathematical formulation involves
both continuous and discrete variables where discrete
variables are used to indicate the existence of units and
connections within the flowsheet.

Multi-objective Optimization: Interaction ofDesign andCon-
trol, Figure 1
Noninferior solution set for a problem with two objectives
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Once the model has been formulated, an algorithm
is developed and used to determine the quantitative
trade-offs among the competing objectives. Individu-
ally, each objective can be optimized, but together, they
will be in conflict. This means that there is a set of solu-
tions where one objective can be improved only at the
expense of the other objectives. This set of solutions is
called the noninferior solution set which is visually de-
picted for a two objective problem in Fig. 1. This solu-
tion set is also referred to as nondominated and Pareto
optimal and the surface of noninferior solutions implic-
itly defines a function G(J).

Using the information about the trade-offs among
the competing objectives, a strategy for determining
the best compromise solution is developed. This strat-
egy is based on information from the DM and depends
on the relative weights given to the objectives. These
weights are varied systematically to locate the solution
which the DM prefers the most. How to determine
these weights is one of the more interesting aspects of
the problem.

Note that the multi-objective problem can be re-
duced if some of the objectives (presumably those with
very low weights) need not be optimized but simply
brought to a satisfactory level. In this case, these ob-
jectives can be incorporated into the problem as con-
straints.

GeneralMathematical Formulation

The mathematical model is a multi-objective mixed in-
teger nonlinear programming problem which has the
following form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

OPTIMIZE J(x; y)
s.t. h(x; y) D O

g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(1)

In this formulation, J is a vector of objectives which in-
cludes the economic and controllability objectives. The
expressions h and g represent material and energy bal-
ances, thermodynamic relations, and other constraints.
The controllability measures are included in the formu-
lation as 
. The variables in this problem are partitioned
as continuous x and binary y.

Solution of theMOP

One way to address the solution of the MOP is to for-
mulate it using a utility function U which implicitly re-
lates the multiple objectives in terms of some common
basis:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min U[J(x; y)]
s.t. h(x; y) D O

g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(2)

By introducing the utility function, the vector optimiza-
tion problem has been reduced to a scalar optimiza-
tion problem and MINLP techniques can be applied
to solve the problem. These MINLP techniques in-
clude generalized Benders decomposition (GBD) [4,14],
outer approximation (OA) [2], outer approximation
with equality relaxation (OA/ER) [8], and outer approx-
imation with equality relaxation and augmented penalty
(OA/ER/AP) [16]. These methods are discussed in de-
tail in [3].

With the definition of the noninferior solution set,
the optimization problem can be formulated as

(
min U[J(x; y)]
s.t. G(J) D 0:

(3)

The challenging aspect of the problem is determin-
ing the explicit form of the utility function. One possi-
ble form of the utility function is a weighted linear sum
of the objectives:

U[J(x; y)] D
X
i2I

wi Ji ;

where I is the set of objective functions and wi are the
weights for the objective functions whose value is deter-
mined by the DM. The difficulty that arises is that the
utility function is generally not known. It is, however,
assumed to be convex and continuously differentiable.

The issues surrounding the solution of the multi-
objective optimization problem are determining the
noninferior solution set, determining the utility func-
tion based on information from the DM, and determin-
ing the best-compromise solution.

Different techniques have been developed in order
to assess the trade-offs among the objectives quantita-
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tively. See [7] for a tutorial in multi-objective optimiza-
tion. A review is also available in [17]. Much of the fun-
damental aspects of multi-objective optimization can
be found in [1].

Noninferior Solution Sets

The noninferior solution set can be determined in
a number of ways. One approach is the formulate the
problem as

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min
X
i2I

wi Ji (x; y)

s.t. h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq;

(4)

where the weights wi are selected such that wi � 0 for
all i and

P
i 2I wi = 1. Through a suitable choice of the

weights, the noninferior solution set can be found. This
approach can miss some points in the noninferior solu-
tion set if the solution region is nonconvex. In order to
address this problem, a weighted norm can be used as
follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min

(X
i2I

�
wi Ji(x; y)

�p
) 1/p

s.t. h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(5)

By increasing the size of p, the curvature of the support-
ing function is increased and more noninferior points
can be found. In the extreme of p = 1, all the non-
inferior points can be located. Using the1-norm, the
problem becomes

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min max
i2I

wi Ji (x; y)

s.t. h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(6)

The advantage of this formulation is that the weights
have a physical meaning for the DM. If the DM knows

the desired values for each objective for a given nonin-
ferior point, the weights can be set to the reciprocal of
these values. The noninferior solution will be the one
that is most like the one with the values specified by the
DM. The disadvantage of this formulation is that it can
be difficult to solve.

Another way to determine the noninferior solution
set is through the �-constraint method [6]. In this ap-
proach, all but one of the objectives is incorporated into
the problem as a constraint less than �. This results in
the following formulation:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min J1(x; y)
s.t. Ji (x; y) � �i ; i D 2; : : : ; q;

h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(7)

By varying the values of �i, the points of the noninferior
solution set can be found.

Choosing the Best-Compromise Solution

To this point, the focus has been on determining the
noninferior solution set. Only one of the points can be
chosen as the best solution for the problem, and the task
of the DM is to determine this point. Once the noninfe-
rior solution set is determined, it is presented to the DM
who will choose the solution point he prefers. The selec-
tion of this point is based on the relative importance of
the objectives in the eyes of the decision maker.

Instead of assigning arbitrary weights to the vari-
ous objectives, a systematic approach can applied which
uses the trade-off information in the noninferior solu-
tion set. The slope of the noninferior solution set at any
point reveals how much one objective will be improved
at the expense of another objective. This information is
used in an interactive, iterative cutting plane algorithm
to determine the best compromise solution.

Cutting Plane Algorithm

The cutting plane algorithm described in [11] is based
on [5] and [10]. Marginal rates of substitution were
used to solve problems of the form (2) where U is un-
known, convex, and continuously differentiable. Due to
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convexity, the partial derivatives of U with respect to
each of the arguments in the objective space are posi-
tive. This is expressed mathematically as

@U(J)
@Ji

> 0:

Thus, a decrease in Ji will lead to a decrease in U. In
the interactive scheme, the DM is asked for the positive
trade-off weights,wk

i , for a given solution k. This weight
is defined as the ratio of the change in the utility func-
tion with respect to one function divided by the change
in the utility function with respect to another. This is
expressed mathematically as

wk
i D

@U(Jk ) / @Ji
@U(Jk ) / @J1

where Jk = [J1(xk, yk), . . . , J1(xk, yk)]. A line search along
a feasible direction of steepest descent locates an im-
proved solution for the next iteration.

By exploiting the fact that the utility function is con-
vex, cutting planes can be introduced to reduce the
search to improving directions [10]. Since U is convex,

0 � U(J�) � U(Jk )

� r f U(Jk )(J� � Jk )

�

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min r f U(Jk )(J� Jk)
s.t. h(x; y) D O

g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(8)

This involves the linearization in the objective space
around the point Jk. If the solution to the minimization
is zero, then the optimal solution J? has been found.
If the solution has a negative value, then the direc-
tion leads to an improvement in the objective space.
This minimization can be performed over a number
of points k = 1, . . . , K to find a direction which im-
proves all of them. Cutting planes in the objective space
are formed to find new values of the objectives which
improve the utility function according to the trade-off
weights,r U, which the DM provides. At each iteration

of the algorithm, the following problemmust be solved:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min z

s.t. z �
pX

iD1

wk
i (Ji (x; y)� Ji (xk; yk);

8k D 1; : : : ;K:
h(x; y) D O
g(x; y) � O
x 2 Rp

y 2 f0; 1gq:

(9)

The steps of the cutting plane algorithm are the follow-
ing:

1 Determine the initial solution point k = 1 and
determine the values of all the objective func-
tions.
Assign the values of the weights wk

i .
2 Solve (9) to find new values of x and y.

Determine the values of the objective functions
for the new values of x and y.

3 IF the solution to (9) is zero, THEN go to Step 4
ELSE set k = k + 1, update the values xk , yk;
and Jk , generate new weights, and go to Step 2.

4 Terminate with xk and yk as the best-
compromise solution.

Cutting plane algorithm

This algorithm requires the DM to provide only trade-
off weights at each iteration. These weights can be es-
timated by knowledge of the relative importance of the
objectives or by information from the noninferior solu-
tion set.

Multi-objective Optimization
in the Interaction of Design and Control

The interaction of design and control has been recog-
nized as a multi-objective problem bymany researchers
as the objectives representing the steady-state economic
design and dynamic controllability are regarded as non-
commensurable. One of the first challenges in this
problem is determining a suitable controllability objec-
tive. The choice of the controllability objective will dic-
tate the required elements of the mathematical formu-
lation of the problem.
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One of the early works which addressed the multi-
objective nature of the interaction of design and con-
trol was that of [9]. A given set of alternative steady-
state designs was assumed to be known. Bounds on the
dynamic measures of the designs were determined and
used to screen designs and determine the noninferior
solution set. No method was provided for determining
the best-compromise solution.

In the work of [13], singular value decomposition
is used to determine dynamic operability measures.
The controllability is formulated through the lineariza-
tion of the model and is given in terms of the sin-
gular values of the transfer function. This modeling
leads to an infinite-dimensional problem as all frequen-
cies must be considered for the controllability measure.
For the multi-objective optimization, the �-constraint
method was used to determine the noninferior solu-
tion set. The scalar optimization was addressed by ap-
proximating the infinite-dimensional problem and us-
ing an gradient-based algorithm to solve the optimiza-
tion problem and determine the operating parameters
for the process.

The previous methods did not take into account
that the structure of the process flowsheet as well as
the design parameters determine its inherent control-
lability. In order to consider structural alternatives in
the process flowsheet such as the existence of units in
the flowsheet, discrete variables are used in the pro-
cess modeling. This aspect of the process design was
considered by [11,12] in the interaction of design and
control by using the optimization approach to process
synthesis. In this approach, the structure of the pro-
cess flowsheet and the design parameters are consid-
ered simultaneously with the dynamic controllability
of the process. The controllability measures employed
were the open-loop linear controllability measures (sin-
gular value, condition number, relative gain array). The
noninferior solution set was determined using the �-
constraint method, and the best-compromise solution
was found using the cutting plane method described
above.

Further development of the above technique was
addressed by [15] where nonlinear dynamic mod-
els were considered. The problem was formulated as
amulti-objectivemixed integer optimal control problem.
The multi-objective problemwas again solved using the
�-constraint method. The mixed integer optimal con-

trol problem was solved by extending the methods for
solving mixed integer nonlinear optimization to handle
dynamic systems.

Conclusions

Analyzing the interaction of design and control leads to
a multi-objective optimization problem. The key issue
in solving this problem is quantitatively determining
the trade-offs between the steady-state economics and
the dynamic controllability. By using multi-objective
optimization techniques, these characteristics of the
process can be traded off in a systematic manner.

By following the optimization approach to process
synthesis, a mathematical framework can be developed.
This involves developing a superstructure of design al-
ternatives and effective mathematical models for the
different criteria. The algorithmic procedure for solv-
ing the multi-objective problem involves the successive
solution of scalar optimization problems to determine
the noninferior solution set. The final step in the ap-
proach is to determine the best-compromise solution
from those in the noninferior solution set.
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The multi-objective optimization (multiple criteria de-
cision making) problem is the problem of choosing
a most preferred solution when two or more incom-
mensurate, conflicting objective functions (criteria) are
to be simultaneously maximized. Interest in multi-
objective optimization has risen sharply during the past
30 years. There are at least three reasons for this. First,
andmost importantly, is the increasing recognition that
most applied problems in both the private and pub-
lic sectors involve multiple objectives rather than one
objective. Second, a variety of solution algorithms for
multi-objective optimization are now available. Finally,
the enormous improvements in the speed and stor-
age of computers make it practical to apply these al-
gorithms to the solution of realistically-sized problem
applications.

Formally, the statement of the multi-objective opti-
mization problem of interest here is

(V)

(
VMAX f (x) D [ f1(x); : : : ; fp(x)];
s.t. x 2 X:

Here, p� 2, X is a nonempty subset of Rn, each f j, j = 1,
. . . , p, is a real-valued function defined on X or on some
suitable set containing X, and VMAX indicates that, in
some unspecified sense, we are to ‘vector maximize’ the
vector f (x) of objective functions (criteria) over X. The
set X is called the set of decision alternatives or the de-
cision set, and {f (x) 2 Rp: x 2 X }, is called the outcome
set.

There are a large number of diverse solution algo-
rithms for problem (V). All are intended to help the
decision maker (DM) find a most preferred solution to
the problem. In the majority of these algorithms, the
notion of efficiency plays an indispensable role. An effi-
cient (nondominated, noninferior, Pareto optimal) solu-
tion for problem (V) is a solution x 2 X such that there
exists no other solution x 2 X that satisfies f (x) � f (x)
and f (x) ¤ f (x). Let XE denote the set of efficient so-
lutions for problem (V). Notice that if x 2 XE , then
there is no other feasible solution for problem (V) that
achieves at least as large a value as x in each criterion of
the problem and a strictly larger value than x in at least
one criterion of the problem.

In the great majority of instances of problem (V),
the preference value function (value function) v of the
DM is unknown. This is a function v: Rp!R that maps

the outcomes of problem V to real numbers in such
a way that for any two outcomes y1 and y2, the DM
prefers y1 to y2 if and only if v(y1) > v(y2). Although
v is unknown, what is known is that for each objec-
tive function f j, the DM prefers more of f j to less of f j.
Mathematically, this means that v is coordinatewise in-
creasing, i. e., that whenever z; z 2 Rp satisfy z � z and
z j > z j for some j = 1, . . . , p, then v(z) > v(z). It is easy
to show that when v is coordinatewise increasing, any
maximizer x� of v [f (x)] over Xmust satisfy x� 2 XE. In
other words, as long as the DM prefers more to less, the
search for a most preferred solution to problem (V) can
be confined to XE. This is one of the key reasons that
the concept of efficiency is so important to the majority
of the algorithms for problem (V).

The interactive methods constitute one of the most
popular categories of algorithms for solving problem
(V). An interactive method for problem (V) consists of
a sequence of DM-computer interactions designed to
create a sequence of decision alternatives that termi-
nates with a most preferred solution to the problem. In
a majority of cases, the generated alternatives are effi-
cient. Each iteration of the interactive process consists
of three steps. First, an initial solution is found with the
aid of the computer. Typically, this solution is found
by solving a single-objective optimization problem that
generates either an efficient point or, at worst, a feasible
point. Next, the DM is asked to react to the generated
point by answering one or more questions involving his
preferences for it. Last, based upon the answers given,
the computer generates a new point, typically by mod-
ifying parameters in the single-objective optimization
problem. This process continues until either the com-
puter or the DM identifies a most preferred solution.
The value function v of the DM is never needed and, in
fact, is assumed to be unavailable.

There are several advantages to using interactive
methods as compared to other categories of methods
for problem (V). For instance, the preference infor-
mation asked of the DM at each iteration is not dif-
ficult to supply. Furthermore, the DM thereby learns
about his value function, which is often initially vague
or mostly unknown. As the search continues, the DM
also learns about the decision or efficient decision al-
ternatives available and the trade-offs in the objective
functions across these decision alternatives. The op-
timizations required of the computer are also usually
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not difficult to perform. Finally, because the DM is
highly involved in the process, his confidence in the
most preferred solution that is eventually found is en-
hanced.

A frequent criticism of the interactive methods is
that, in practice, the work required of the DM during
the iterations seems to be burdensome for him in many
cases. This may cause the DM to prematurely termi-
nate the search so that a most preferred solution is not
found.

There are literally hundreds of interactive algo-
rithms for problem (V). Many are limited to cases
where problem (V) is a multiple objective linear pro-
gramming problem. Others apply when problem (V)
is a multiple objective convex, nonlinear programming
problem, a multiple objective integer programming
problem, or some other type of multiple objective op-
timization problem. Instead of examining these algo-
rithms individually, we will describe them by groups
according to the characteristics that they possess.

One of the key characteristics of the interactive al-
gorithms concerns the type of information required of
the DM at each iteration. For instance, at each itera-
tion, the DM may be asked to intuitively assign or re-
assign weights to the criteria according to his current
assessment of their relative importance. R.E. Steuer [13]
has shown some important stumbling blocks to this ap-
proach, however. Other algorithms may instead elicit
relaxation quantities from the DM. In these cases, the
DM is asked how much he would be willing to relax
the level of one objective function in order to obtain
possible improvements in the levels of other objective
functions. Some of the oldest interactive algorithms use
this approach [1,9]. Still other types of algorithms ask
the DM various types of trade-off questions. The trade-
off questions are designed to obtain an estimate of the
gradient of the value function of the DM at the current
solution. This approach is also relatively old, but diffi-
cult for the DM to accomplish [5,14]. Finally, a num-
ber of algorithms call for the DM to make paired com-
parisons at each iteration. In a paired comparison, the
DM is given two solutions to compare and must give
his preference for one or the other. Usually, the DM
can accomplish this. But when the two solutions are
quite similar, difficulties can arise [15]. In addition, al-
gorithms that use paired comparisons can sometimes
call for excessive numbers of these comparisons [12].

A second dimension where the interactive algo-
rithms differ is in the approach used to explore the fea-
sible region X or the efficient set XE. Some algorithms
use feasible direction methods [2]. In these algorithms,
at each iteration, the direction to move from a point
that was last found and the distance to move along the
direction are determined with the aid of the DM. By
moving along the direction by the specified amount,
the next solution point is found. In many algorithms,
all such points are efficient. In another group of algo-
rithms, feasible region reduction is used to explore X or
XE. As points in X or in XE are examined in these meth-
ods, portions of X are removed, usually via linear cuts.
Another set of algorithms uses weighting space reduc-
tion. In these algorithms, a weighted sum of f j, j = 1,
. . . , p, is maximized at each iteration, thereby yielding
a point in XE. Based upon the DM’s responses to these
maximizations, portions of the weighting space are re-
moved. Eventually, the portion of the weighting space
remaining is so small that the DM can pick out the set
of weights associated with a most preferred solution.

Other approaches used to explore X or XE include
the trade-off cutting planemethod [10], Lagrange multi-
pliermethods, visual interactivemethods (see, e. g. [7]),
and the branch and bound method [8], among oth-
ers. For further reading concerning these methods, see
[3,4,6,11,12,13].

Another way to group the interactive algorithms for
problem (V) is according to whether or not they han-
dle inconsistencies in the DM’s preference responses.
As human beings, DM’s are prone to giving preference
responses over the course of the solution procedure that
imply inconsistencies such as asymmetries or intransi-
tivities of preference. Some algorithms take no account
of these possible inconsistencies and have been criti-
cized for this [12]. Others attempt to reduce inconsis-
tency by either minimizing the DM’s cognitive burden
or by incorporating tests for inconsistency that are used
as the interactive solution process proceeds.

W.S. Shin and A. Ravindran [12] have compared
various of the classes of interactive algorithms accord-
ing to four criteria that are important in practice. These
criteria are the DM’s cognitive burden, the ease with
which the single-objective optimizations called for can
be used, implemented and solved, the handling of in-
consistency, and the overall quality of the solution pro-
cess and the answers obtained. Although preliminary,
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these comparisons seem to show the relative superior-
ity of the weighting space reduction and other criterion
weight space search methods, and of the visual inter-
active methods. Readers should note, however, that the
rankings in the study are subjectively-obtained by the
authors [7].

For further general reading on interactive methods,
see [2,3,4,6,11,12,13,14].
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As is well known, duality in mathematical program-
ming is based on the property that any closed convex set
can be also represented by the intersection of closed half
spaces including it. Let themulti-objective optimization
problem to be considered here be given by

(P)

(
min f (x) :D ( f1(x); : : : ; fp(x))
over x 2 X;

where

X D
�
x 2 X0 : gi (x) 5 0;

i D 1; : : : ;m; X0 � Rn

	
:

Note here that vector inequalities are commonly used:
for any n-vectors a and b, a > bmeans ai > bi (i = 1, . . . ,
n). Also, a = b means ai = bi (i = 1, . . . , n). On the
other hand, a � b means a = b but a 6D b. Hereafter,
vector inequalities such as g(x) 5 0 will be used instead
of gi (x) 5 0 (i = 1, . . . , m).

Defining a dual problem (D) in some appropriate
way associated with the problem (P), our aim is to show
the property min(P) = max(D). Here min(P) denotes
the set of efficient points of the problem (P) in the ob-
jective function space Rp, and similarly max(D) the one
of the dual problem (D).

Unlike the usual mathematical programming, the
optimal value of the primal problem (and the dual
problem) are not necessarily determined uniquely in
multi-objective optimization. Hence, there have been
developed several kinds of formulation of dual problem
in order to get the desirable property min(P) = max(D).
Regarding Lagrange duality, three typical dualizations
can be seen in linear cases, nonlinear cases and geomet-
ric approaches [6].

Linear Cases

The first result on duality for multi-objective optimiza-
tion seems the one given in [1] for linear cases. This is
formulated as a matrix optimization including the vec-
tor optimization as a special case. Although there have
been several related works, the probably most attractive
one is given in [2] because it is formulated as a natural

extension of traditional linear programming: Let A be
an m × n matrix, C a p × n matrix, and b an m-vector.
Then the primal problem (P) in linear cases is formu-
lated as

(PI)

8̂
<̂
ˆ̂:

min Cx
s.t. Ax = b

x = 0:

Associated with (PI), H. Iserman [2] defined the
dual problem as

(DI)

8̂
<̂
ˆ̂:

max �b
s.t. �A 6= C

� = 0:

Here, the multiplier � = 0 is a p × m matrix whose
elements are all nonnegative.
Then Isermann’s duality is given by
i) � b 6� Cx for all feasible x and �.
ii) Suppose that �b D Cx for some feasible x and

some feasible �. Then � is an efficient solution to
(DI) and x is an efficient solution to (PI).

iii) min(PI) = max(DI).

Nonlinear Cases

The most natural dualization in nonlinear multi-
objective optimization seems to be the one given in
[10].
Consider the problem (P), and assume the following:
i) X0 is a nonempty compact convex set.
ii) f is continuous, and f (X) + Rn

+ is convex in Rp.
iii) gi(i = 1, . . . ,m) are continuous and convex.
Under these assumptions, it can be readily shown that
for every u 2 Rm, both sets X(u) D fx 2 X0 : g(x) 5 ug
and Y(u) D f [X(u)] D fy 2 Rp : y D f (x); x 2 X0;
g(x) 5 ug are compact and convex.

The primal problem (P) can be embedded as (P0) in
a family of perturbed problems (Pu) given by

(Pu) min Y(u):

Defining � = {u 2 Rm: X(u) 6D ; }, the set � is con-
vex. Now in a similar fashion to the ordinary mathe-
matical programming, the perturbed map can be de-
fined by

W(u) D min
˚
f (x) : x 2 X0; g(x) 5 u

�
:
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It is known that for every u 2 � ,W(u) + Rp
C is con-

vex and

W(u)CR
p
C D Y(u)CR

p
C:

In addition, the mapW is monotone and convex on � .
Now, define the vector valued Lagrangian function

with a p ×mmatrix multiplier � as

L(x; �) D f (x)C�g(x):

Associated with this definition, the dual map can be
defined as

˚(�) D min˝(�);

where

˝(�) D
˚
L(x; �) : x 2 X0

�
:

Under the terminology, the dual problem associated
with the primal problem (P) can be given by

(DTS) max
[
�2L

˚(�):

It can be shown that ˚ is concave point-to-set map
on � , namely

˚(˛�1 C (1 � ˛)�2)

� ˛˚(�1)C (1 � ˛)˚(�2)CR
p
C

and ˚(�) + Rp
C is a convex set in Rp for each � 2 L.

Here L is the set of all p × m matrices whose compo-
nents are all positive.

T. Tanino and Y. Sawaragi [10] presented the fol-
lowing as duality in multi-objective optimization:

Theorem 1
i) For any x 2 X and y 2 ˚(�)

y 6� f (x):

ii) Suppose thatbx 2 X,b� 2 L and f (bx) 2 ˚(b�). Then
by D f (bx) is an efficient point to the primal problem
(P) and also to the dual problem (DTS).

iii) Suppose that any efficient solutions to (P) are all
proper and that Slater’s constraint qualification is
satisfied. Then

min (P) � max (DTS):

Remark 2 The above theorem is not complete in the
sense that the relation min(P) = max(D) does not hold.
Regarding conjugate duality, there have been reports
presenting w-min(P) = w-max(D) (see, e. g., [4] and
[9]). Several studies based on geometric consideration
have been made for deriving the relation min(P) =
max(D) using vector valued Lagrangian. This will be
stated in the following

Geometric Duality

Geometric considerations are made in [3], based on the
supporting hyperplanes for epiW, and in [5], based on
the supporting conical varieties for epiW, which is de-
noted by G here.
Define

G D

8<
:(u; y) 2 Rp �Rp :

y = f (x);
u = g(x)
for some x 2 X0

9=
; ;

YG D
˚
y : (0; y) 2 G; 0 2 Rm ; y 2 Rp� :

Associates with the primal problem (P), we consider
the following two kinds of dual problems:

(DN) max
[
�2L

YS(�);

where

YS(�) D
˚
y 2 Rp : f (x)C�g(x) 6� y; 8x 2 X0

�

and

(DJ)
[

>0
	=0

YH�(	;
);

where

YH�(	;
)

D

�
y 2 Rp : h�; f (x)i C h�; g(x)i = h�; yi

8x 2 X0

	
:

Theorem 3
i) For any feasible x in (P) and for any feasible y in (DN)

or (DJ),

y 6� f (x):

ii) Assume that G is closed, that there exists at least
an efficient solution to the primal problem, and that
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these solutions are all proper. Then, under the condi-
tion of Slater’s constraint qualification, the following
holds:

min (P) D max (DN) D max (DJ):

Remark 4 In the above duality, we assumed that the
convex set G is closed and that Slater’s constraint quali-
fication is satisfied, which seem relatively restrictive. In-
stead of these conditions, J. Jahn [3] assumed that YG is
closed and some normality condition.

Define

AG(
) D
˚
˛ : (0; ˛) 2 G(�); 0 2 Rm ; ˛ 2 R1�

YG D fy : (0; y) 2 G; 0 2 Rm ; y 2 Rmg :

Definition 5 The primal problem (P) is said to be J-
normal, if for every � > 0

cl(AG(
)) D AclG(
):

The primal problem (P) is said to be J-stable, if it is
J-normal and for an arbitrary � > 0 the problem

sup
	=0

inf
x2X
h�; f (x)i C h�; g(x)i

has at least one solution.

On the other hand, J.W. Nieuwenhuis [7] suggested an-
other normality condition:

Definition 6 The primal problem (P) is said to be N-
normal, if

clYG D YclG :

Lemma 7 Slater’s constraint qualification (9bx, g(bx) >
0) yields J-stability and N-normality.

Theorem 8 Suppose that YG is closed, minD(P) 6D ;,
and the efficient solutions to (P) are all proper. Then, un-
der the condition of J-stability,

min (P) D max (DN) D max (DJ):

Duality for Weak Efficiency

Define

YS0(�) D
˚
y 2 Rp : f (x)C�g(x) 6< y; 8x 2 X0

�
:

Theorem 9 Suppose that YG is a nonempty subset in
Rp and YG + Rp

C is bounded. Then under the condition
of N-normality

w-min clYG D w-max cl
[
�2L

YS0(�)

D w-max cl
[


2R
p
C
nf0g

	=0

YH�(	;
):

Remark 10 As can be readily seen, by defining inf A,
for a set A 2 Rp, as essentially min cl(A + Rp

C) and sim-
ilarly sup A as essentially min cl(A � Rp

C), we can have
inf(P) = sup(DTS) = sup (DN) = sup(DJ) under some
appropriate stability condition [9].
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The multi-objective optimization (multiple criteria de-
cision making) problem is the problem of choosing
a most preferred solution when two or more incom-
mensurate, conflicting objective functions (criteria) are
to be simultaneously maximized. A central difficulty in
such problems is that, unlike in single objective maxi-
mization problems, there is no obvious or simple way to
define the concept of a most preferred solution. Never-
theless, because the applications of multi-objective op-
timization abound, there has been great interest dur-
ing the past 30 years in seeking appropriate defini-
tions for a most preferred solution and in developing
algorithms that aid the decision maker (DM) to find
such a solution. These applications are in a wide variety
of areas, including, for example, production planning,
finance, environmental conservation, academic plan-
ning, nutrition planning, advertising, facility location,
auditing, blending techniques, transportation planning,
and scheduling, to name just a few.

There are several alternate mathematical formula-
tions of the multi-objective optimization problem [13].
For purposes of modeling the deterministic multiple
objective optimization problems found in management
science/operations research, however, the most popular
form of the problem is denoted

(V)

(
VMAX [ f1(x); : : : ; fp(x)]
s.t. x 2 X:

Here, p� 2, X is a nonempty subset of Rn, each f j, j = 1,
. . . , p, is a real-valued function defined onX or on a suit-
able set containing X, and VMAX indicates that we are
to, in some as-yet unspecified sense, ‘vector maximize’
the vector

f (x) D [ f1(x); : : : ; fp(x)]

of objective functions (criteria) over X. The set X is
called the set of alternatives or the decision set.

Of all of the solution concepts proposed for helping
the DM find a most preferred solution for problem (V),
the concept of efficiency has proven to be of overrid-
ing importance. An efficient (Pareto optimal, noninfe-
rior, nondominated) solution for problem (V) is a point
x 2 X such that there exists no other point x 2 X that
satisfies f (x) � f (x) and f (x) ¤ f (x). Letting XE de-
note the set of all efficient points for problem (V), we
see that whenever x 2 XE , there is no other feasible
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point that does at least as well as x in all of the criteria
for problem (V) and strictly better in at least one crite-
rion. A point x 2 X is called dominated when for some
other point x 2 X, f (x) � f (x) and, for at least one
j = 1, . . . , p, f j(x) > f j(x). Thus, we have the alternate
definition for efficiency that states that a point x is an ef-
ficient solution for problem (V) when x 2 X and there
are no other points in X that dominate x.

One of the reasons for the fundamental importance
of the efficiency concept is that it has proven to be
highly useful in a variety of algorithms for problem
(V). Among these algorithms are the satisficing meth-
ods, compromise programming, most interactive meth-
ods, and the vector maximization method. The latter
method, for instance, seeks to generate either all of XE

or key parts of XE. The generated set is shown to the
DM. Then, based upon the DM’s internal utility (or
value) function, the DM chooses from the generated set
a most preferred solution. For details concerning these
methods for problem (V), see [7,10,12,13,14].

In some cases, it is useful to consider a slightly
relaxed concept of efficiency called weak efficiency.
A point x 2 X is called a weakly efficient (weakly Pareto
optimal, weakly noninferior, weakly nondominated) so-
lution for problem (V) when there is no other point x
2 X such that f (x) > f (x). Let XWE denote the set of
all weakly efficient points for problem (V). Notice that
XE is a subset of XWE. In some cases of problem (V),
such as when the objective functions are ratios of linear
functions, it is easier to analyze and generate points in
XWE than points in XE.

Let U represent a utility function defined on the
spaceRp of the objective functions of problem (V). Sup-
pose thatU is coordinatewise increasing, i. e., that when-
ever z; z 2 Rp satisfy z � z and z j > z j for some j = 1,
. . . , p, then U(z) > U(z). Suppose that x� is an optimal
solution to the single objective problem

(S) max
x2X

U[ f1(x); : : : ; fp(x)]:

Then x� must be an efficient solution for problem (V)
(cf. [11]).

The property in the previous paragraph explains
to a great extent why the concept of efficiency is of
such fundamental value. The assumption that the util-
ity function U in the above paragraph is coordinatewise
increasing implies that in problem (S), for each j = 1, . . . ,

p, more of f j is preferred to less of f j. Thus, if we imag-
ine that U is the utility (or value) function of the DM
over the objective function space of problem (V), then
the previous paragraph implies that whenever the DM
prefers more to less in each objective function of prob-
lem (V), any point that maximizes the DM’s utility for
f (x) over X must be an efficient point in problem (V).
In short, as long as we know that the DM prefers more
to less, we can confine the search for a most preferred
solution to XE. Although the utility function of the DM
is generally not actually available, in virtually all appli-
cations the DM does, indeed, prefer more to less in each
objective function of problem (V). Thus, in essentially
all cases, any most preferred solution for problem (V)
will be found in XE.

Because of the central importance of efficiency,
a great deal of effort has been made by researchers to
delineate the properties of the efficient points and of the
efficient set for problem (V). In what follows, we shall
briefly highlight some of the most important of these
properties.

Consider the single-objective optimization problem

(W)

8̂
<̂
ˆ̂:
max

pX
jD1

wj f j(x);

s.t. x 2 X:

Here, wj, j = 1, . . . , p, are parameters, which are of-
ten thought of as weights associated with the objective
functions f j, j = 1, . . . , p, of problem (V). A number of
so-called scalarization properties for efficient points of
problem (V) are expressed in terms of problem (W).
To present some of these, another efficiency concept,
called proper efficiency, is needed. A point x ° is said to
be a properly efficient solution for problem (V) when x °
2 XE and, for some sufficiently large numberM, when-
ever f i(x) > f i(x °) for some i = 1, . . . , p and some x 2
X, there exists some j = 1, . . . , p such that f j(x) < f j(x °)
and

fi(x) � fi(xı)
f j(xı) � f j(x)

� M:

In words, for each properly efficient solution of prob-
lem (V), for each criterion, the possible marginal gains
in that criterion relative to the losses in the criteria that
have losses cannot all be unbounded from above. Let
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XPRE denote the set of properly efficient solutions for
problem (V), and let w| = (w1, . . . , wp). Then some key
scalarization properties are as follows.
1) If x is the unique optimal solution to problem (W)

for some w � 0, w 6D 0, then x 2 XE .
2) If x is an optimal solution to problem (W) for some

w � 0, w 6D 0, then x 2 XWE .
3) Assume that for each j = 1, . . . , p, f j is a concave

function on the convex set X. Then x 2 XPRE if and
only if x is an optimal solution to problem (W) for
some w > 0.

4) Under the assumptions in property 3), x 2 XWE if
and only if x is an optimal solution to problem (W)
for some w � 0, w 6D 0.

5) Under the assumptions of property 3), if x 2 XE but
x … XPRE , then there exists a w� 0, w 6D 0 with wj =
0 for at least one j = 1, . . . , p such that x is an optimal
solution to problem (W).

6) If each f j, j = 1, . . . , p, is a linear function and X is
a polyhedron, XPRE = XE.

The scalarization properties can be used for various
purposes, including the generation of points inXE,XWE

andXPRE. For instance, when each f j, j= 1, . . . , p, is a lin-
ear function and X is a polyhedron, from properties 3)
and 6), points in XE, including, at least potentially, all
of XE, can be generated by solving problem (W) as the
parameter w > 0 is varied. Under the assumptions of
property 3), the same process will generate points in
XPRE, including, at least potentially, all of XPRE. How-
ever, from properties 3)–5), it is apparent that no such
simple process for generating XE exists, even under the
assumptions of property 3). This is another motivation
for the proper efficiency concept.

Another important issue in efficiency concerns test-
ing. One may want to test a given point for efficiency
in problem (V), and one may want to test whether XE

and XPRE are empty or not. We will present several of
the properties of efficiency that provide some of the the-
ory for these tests. These properties all utilize the single-
objective problem

(T)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
pX

jD1

f j(x);

s.t. f j(x) � f j(xı);
j D 1; : : : ; p;
x 2 X:

Here, x ° is an arbitrary element of Rn. The properties
are as follows.
7) The point x ° 2 Rn belongs to XE if and only if x °

is an optimal solution to problem (T).
8) Suppose that x °2X in problem (T), and that prob-

lem (T) has no finite maximum value. Then XPRE =
; [1].

9) Suppose that the assumptions of property 3) hold,
that x ° 2 X in problem (T), and that problem (T)
has no finite maximum value. Then, if the set

Z D
˚
z 2 Rp : z � f (x) for some x 2 X

�

is closed, XE = ;.
10) Assume that each f j, j = 1, . . . , p, is a linear function

and that X is a polyhedron. Suppose that x ° 2 X
in problem (T), and that problem (T) has no finite
maximum value. Then XE = ;.

11) Any optimal solution to problem (T) belongs to
XE.

Notice from these properties that solving problem (T)
is a useful tool for both testing a point for efficiency and
for investigating the issues of whether XE and XPRE are
empty or not. In the case of testing a point x ° for effi-
ciency, property 7) shows that problem (T) can be used
to obtain a definitive answer, i. e., using property 7), we
will always detect whether or not x ° 2 XE. Further-
more, when property 7) shows that x ° 62 XE, but prob-
lem (T) has an optimal solution x�, then, by property
11), x� 2 XE. Notice also that in this case, x� dominates
x °.

In the case of investigating whether or not XE and
XPRE are empty, however, definitive answers cannot
usually be obtained by using these properties. This is
because none of the properties addresses the issue of
whether or not XE and XPRE are empty when, instead
of having an optimal solution or having no finite max-
imum value, problem (T) has a finite but unattained
maximum value. The one case where the properties can
be used to definitely detect whether or not XE and XPRE

are empty is the case where the objective functions of
problem (V) are all linear and X is a polyhedron. In that
case, problem (T) cannot have a finite but unattained
maximum value. Therefore, properties 7), 10) and 11)
can be used to detect whether or not XE =XPRE is empty
in such cases.

One of the main challenges computationally to gen-
erating all or parts of XE or XWE for the DM to consider
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is that both XE and XWE are, except for trivial cases,
nonconvex sets. Although some researchers have sug-
gested ways to mitigate this problem [5], it generally
remains a major stumbling block for algorithm devel-
opment. In many common cases, however, XE or XWE

possesses a useful, although less valuable, property than
convexity upon which algorithms can be based. This
property is called connectedness. In particular, a set Z
� Rn is connected if, whenever A and B are nonempty
subsets ofRn such that A has no points in common with
the closure of B, and B has no points in common with
the closure of A, Z 6D A [ B. Some common cases of
problem (V) where XE or XWE is connected are given in
the following properties.
12) Assume that for each j = 1, . . . , p, f j is a quasicon-

cave function on X, and that X is a compact convex
set. Then XWE is connected.

13) Assume that for each j = 1, . . . , p, f j is a concave
function on Rn, and that X is a compact convex set.
Then XE is connected.

Recall that a concave function on a convex set is also
quasiconcave on the set. Therefore, from property 12),
it follows that XWE is connected when each objective
function in problem (V) is a concave function onX, and
X is a compact, convex set.

There are a variety of other properties of efficient
points and of the efficient set for problem (V). These in-
clude, for instance, density properties, stability-related
properties, the domination property [2,3,8], and com-
plete efficiency-related properties [4,6]. For further
reading, see [5,7,9,10,12,13,14].
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In this article we will describe some results for sensi-
tivity analysis and parametric programming for linear
models. The solution approach that is described here
is based upon the extension of simplex algorithm for
linear programs (LP) [3,5]. Here we mention some ref-
erences ([1,2,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21],
and [17]); however [3] is recommended for an exten-
sive list of references and [4] for a historical outline on
parametric linear programming.

We will consider right-hand side (RHS) multipara-
metric linear programming problems, where uncertain
parameters are assumed to be bounded in a convex re-
gion. The solution algorithm is based upon character-
izing the given initial convex region by a number of
nonoverlapping smaller convex regions and obtaining

Multiparametric Linear Programming, Figure 1
Definition of critical regions

optimal solutions associated with each of these regions.
The basic assumptions for the application of the algo-
rithm are:
� The given region must be finite and connected.
� One should be able to characterize at least one

(smaller) region.
� One should be able to identify all regions that are

adjacent to a given region.
Consider the following multiparametric linear pro-
gramming problem, when parameters are present on
the right-hand side of the constraints:

8̂
ˆ̂̂<
ˆ̂̂̂
:

z(�) D min
x

c>x

s.t. Ax D bC F�
x � 0
x 2 Rn ; � 2 Rs ;

(1)

where x is a vector of continuous variables; A and F are
constant matrices, and c and b are constant vectors of
appropriate dimensions; � is a vector of uncertain pa-
rameters, such that for each � 2 K, � 2 Rs, (1) has a fi-
nite optimal solution, and has no optimal solution for
� 2 Rs � K. Further, consider the following restriction
on � 2 � , � = {� :G� � g}, where G is a constant ma-
trix and g is a constant vector; see Fig. 1 for a graphical
interpretation for the two parametric case where � is
bounded in the region given by PQRST.

The simplex tableau associated with (1) is given as
follows:

Yx � �F� D xB;

z C �z>x � fmC1� D z(�);

where

Y D B�1A; �F D B�1F; xB D B�1b;

z D c>x; �z D c>B Y � c>;

f>mC1 D c>B
�F; z(�) D c>B xB;

(2)

where � corresponds to the index of basic variables
and B is the corresponding matrix. The (critical) re-
gion within which the above (optimal) tableau is valid
can then be derived as follows. The critical region, CR,
where an optimal solution, z(�)(�) = c>B xB(�), preserves
its optimality, is given by the initial conditions on � :

G� � g (3)
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together with the conditions of primal feasibility. The
conditions of primal feasibility are derived as follows.
The basis B is said to be primal feasible if the condition:

B�1b(�) D xB(�) � 0; (4)

where b(�) = b + F� and xB(�) = xB +�F� , is satisfied.
Then using (2) and (4), the condition of primal feasibil-
ity is given by:

� �F� � xB: (5)

Thus, the critical region corresponding to � is given by
(5) and (3). For illustration purposes, say in Fig. 1, the
initial region of � (condition (3)) is given by PQRST
and the condition of primal feasibility is given by
UVWX (condition (5)), then CR2 is the correspond-
ing critical region. Note that CR2 is obtained by remov-
ing the redundant constraints, PT, QR and RS. In order
to devise a procedure to obtain ‘all’ the critical regions
(CR1 and CR3), and optimal solutions associated with
them, we first state the following:
� Two optimal bases are said to be neighbors if

– there exists some �� 2 K such that both the bases
are optimal, and,

– it is possible to pass from one basis to another by
one dual step.

� The critical regions associated with two different op-
timal bases are said to be neighbors if their corre-
sponding bases are neighbors.

� Two neighboring critical regions lie in opposite half
spaces.

� The optimal value function, z(�), is continuous and
convex; see Fig. 2 for a graphical interpretation for
the case of two parameters.

Based upon the above statements, the solution algo-
rithm for identifying all the critical regions can now be
described. The algorithm consists of twomajor parts. In
the first part, an initial feasible solution is obtained and
the critical region which corresponds to the initial so-
lution is characterized. The second part then starts with
this critical region and identifies all the regions and cor-
responding optimal solutions. The major steps of the
algorithm are as follows:
1) Find a feasible solution:

– Solve (1) by treating � as a free variable to ob-
tain ��. If no feasible solution exists, stop; (1) is
infeasible.

Multiparametric Linear Programming, Figure 2
z(�)is a continuous and convex function of �

– Fix � = �� and solve (1) to obtain an initial basis
B and corresponding critical region.

2) Find all optimal solutions:
– Construct two lists V and W, where V consists

of those optimal bases whose neighboring bases
have been identified, and W consists of those
bases whose neighbors have yet not been iden-
tified.

– Select any basis fromW and identify all its neigh-
boring bases. From all the identified bases, in-
sert inW those bases which are neither in V nor
inW. The optimal solutions (and corresponding
critical regions) are then determined by moving
from the basis to its neighbors by one dual step.

– Repeat the procedure untilW = {;}.
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In this article we describe theoretical and algorithmic
developments in the field of parametric programming
for linear models involving 0–1 integer variables. We
will consider two cases of the problem: single paramet-
ric (when a single uncertain parameter is present) and
multiparametric (when more than one uncertain pa-
rameters are present in the model). For the case when
a single uncertain parameter is present, solution ap-
proaches are based upon
a) enumeration [11,12,13];
b) cutting planes [6]; and
c) branch and bound techniques [8,10].
For the multiparametric case, solution algorithm that
has been proposed is based upon branch and bound
fundamentals [1,2]. While most of the work on single
parametric problems has been reviewed in the two ex-
cellent papers [5] and [7], and has been borrowed here
for the sake of completeness, the work on multipara-
metric problems, the focus of this article, is quite re-
cent and is described in detail. It may bementioned that
while solution approaches for single parametric case
are available for uncertainty in objective function co-
efficients or right-hand side of constraints, for the case
of more than one uncertain parameter the solution ap-
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proach is available only for the right-hand side case.
Next we will describe solution approaches for
a) single parametric mixed integer linear programs for

objective function coefficients parametrization; and
b) single parametric pure integer programs when the

uncertain parameter is present on the right-hand
side of the constraints.

These illustrate some concepts which are based upon
some basic observations. For other solution ap-
proaches, see the literature cited above. Finally we will
present a solution approach for right-hand side multi-
parametric mixed integer linear programs.

Mixed Integer Linear Programming Problems
Involving a Single Uncertain Parameter
in Objective Function Coefficients

These can be stated as follows:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
x;y

(c> C c0�)x C d> y

s.t. Ax C Ey � b;
x 2 Rn ; y 2 f0; 1gl ;
�min � � � �max;

(1)

where x is a vector of continuous variables; y is the vec-
tor of 0–1 integer variables; � is a scalar uncertain pa-
rameter bounded between its lower and upper bounds
�min and �max respectively; A is an (m × n) matrix; E
is an (m × l) matrix; c, c0, d and b are vectors of appro-
priate dimensions. Solution procedure for (1) is based
upon following two features of the formulation in (1).
First feature of this formulation is that, since the uncer-
tain parameter is present in the objective function only,
the feasible region of (1) remains constant for all the
fixed values of � in [�min, �max]. And the second fea-
ture is that, the optimal value of (1) for �min � � � �max

is piecewise linear, continuous, and concave on its fi-
nite domain. The solution is then approached by deriv-
ing valid upper and lower bounds, using the concavity
property of the objective function value, and sharpen-
ing these bounds until they converge to the same value,
as described next. Solving (1) for � fixed at its endpoints
�min and �max, gives upper bounds AB and BC respec-
tively (see Fig. 1); and a linear interpolation, AC, be-
tween the endpoints provides a lower bound to the so-
lution. The region ABC within which the solution will

Multiparametric Mixed Integer Linear Programming, Fig-
ure 1
Derivation of bounds

Multiparametric Mixed Integer Linear Programming, Fig-
ure 2
Sharpening of bounds

lie is then reduced by solving (1) at � int, the intersec-
tion point of two upper bounds AB and BC. This re-
sults (see Fig. 2) in two smaller regions, ADE and EFC,
within which the solution will exist. This procedure is
continued until the difference between upper and lower
bounds becomes zero.

Integer programming problem involving a single
uncertain parameter on the right-hand side of the con-
straints can be stated as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
y

d> y

s.t. Ey � bC r�;
�min � � � �max

y 2 f0; 1gl ;

(2)

where r is a scalar constant and � is a scalar uncer-
tain parameter bounded between �min and �max respec-
tively. For a special case of (2) when r � 0, it may be
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Multiparametric Mixed Integer Linear Programming, Fig-
ure 3
Step function nature of objective function value

noted that as � is increased from �min to �max, the fea-
sible region will enlarge, and hence the objective func-
tion value will decrease or remain the same, i. e., z(� i)
� z(� i+1) for � i � � i+1. Further, since only integer vari-
ables are present in (2), a solution will remain optimal
for some interval of � and then suddenly another solu-
tion will become optimal, and remain so for the next in-
terval (see Fig. 3). The problem thus reduces to solving
(2) at an end point, say �min, and then finding a point � i
at which the current solution becomes infeasible. Solv-
ing (2) at � i + � will give another integer solution. This
procedure is continued until we hit the other end point,
�max.

Consider a multiparametric mixed integer linear
programming problem (mp-MILP) of the following
form:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
x;y

c>x C d> y

s.t. Ax C Ey � bC F�;
G� � g;
x 2 Rn ; y 2 f0; 1gl ; � 2 Rs ;

(3)

where � is a vector of uncertain parameters; F is an (m
× s) matrix, G is an (r × s) matrix, and g is a constant
vector. Solving (3) implies obtaining the optimal solu-
tion to (3) for every � that lies in � = {� :G� � g, �
2 Rs}. The algorithm for the solution of (3) proposed
in [1] is based upon simultaneously using the concepts
of
� branch and bound method for solving mixed inte-

ger linear programming (MILP) problems (see, e. g.,
[9]); and,

� simplex algorithm for solving multiparametric lin-
ear programming (mp-LP) problems [4].

While a solution of (3) by relaxing the integrality con-
dition on y (at the root node) represents a paramet-
ric lower bound, a solution where all the y variables
are fixed (e. g., at a terminal node) represents a para-
metric upper bound. The algorithm proceeds from the
root node (lower bound) towards terminal nodes (up-
per bound) by fixing y variables at the intermediate
nodes. The complete enumeration of the tree is avoided
by fathoming those intermediate nodes which guaran-
tee a suboptimal solution.

At the root node, by relaxing the integrality condi-
tion on y, i. e., considering y as a continuous variable
bounded between 0 and 1, (3) is transformed to an mp-
LP of the following form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ž(�) D min
x; y̌

c>x C d> y̌

s.t. Ax C Ey̌ � bC F�;
G� � g;
0 � y̌ � 1;
x 2 Rn ; � 2 Rs :

(4)

The solution of (4), given by linear parametric profiles,
ž(�)i , valid in their corresponding critical regions, ČRi ,
represents a parametric lower bound.

Similarly, at a node where all y are fixed, y Dby, (3)
is transformed to an mp-LP of the following form:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

bz(�) D min
x;by

c>x C d>by

s.t. Ax C Eby � bC F�;
G� � g;
by D f0; 1gl ;
x 2 Rn ; � 2 Rs :

(5)

The solution of (5), bz(�)i , valid in its corresponding
critical regions, cCRi , represents a parametric upper
bound.

Starting from the root node, some of the y variables
are systematically fixed (to 0 and 1) to generate inter-
mediate nodes of the branch and bound tree. At an in-
termediate node, where some y are fixed and some are
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Multiparametric Mixed Integer Linear Programming, Fig-
ure 4
Redundant constraints

relaxed, an mp-LP of the following form is formulated:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

z(�) D min
x;y

c>x C d>j by j C d>k y̌k

s.t. Ax C Ejby j C Ek y̌k � bC F�;
G� � g;
by j D f0; 1g;
0 � y̌k � 1;
x 2 Rn ; � 2 Rs ;

(6)

where the subscripts j and k correspond to y that are
fixed and y that are free, respectively. The solution at
an intermediate node, z(�)i , valid in its corresponding
critical regions, CRi , is then analyzed, to decide whether
to explore subnodes of this intermediate node or not, by
using the following fathoming criteria. A given space
in any node can be discarded if one of the following
holds:
� (infeasibility criterion) Problem (6) is infeasible in

the given space.
� (integrality criterion) An integer solution is found in

the given space.
� (dominance criterion) The solution of the node is

greater than the current upper bound in the same
space.

If all the regions of a node are discarded the node can be
fathomed. While the first two fathoming criteria (Infea-
sibility and Integrality) are easy to apply, in order to ap-

Multiparametric Mixed Integer Linear Programming, Fig-
ure 5
Definition of CRint; Case 1

Multiparametric Mixed Integer Linear Programming, Fig-
ure 6
Definition of CRint; Case 2

ply the third one (dominance criteria) we need a com-
parison procedure, which is described next.

The comparison procedure consists of two steps. In
the first step, a region, CRint D cCR\CR, where the so-
lution of the intermediate node and the current upper
bound are valid is defined. This is achieved by removing
the redundant constraints from the set of constraints
which define cCR and CR (for a procedure to eliminate
redundant constraints see [3]); graphical interpretation
of redundant constraints is given in Fig. 4, where C1 is
a strongly redundant constraint and C2 is a weakly re-
dundant constraint.

The results of this redundancy test, which belong to
one of the following 4 cases, are then analyzed as fol-
lows:
� (case 1; Fig. 5) All constraints from CR are redun-

dant. This implies that CR � cCR, and therefore
CRint D cCR.



2488 M Multiparametric Mixed Integer Linear Programming

Multiparametric Mixed Integer Linear Programming, Fig-
ure 7
Definition of CRint; Case 3

Multiparametric Mixed Integer Linear Programming, Fig-
ure 8
Definition of CRint; Case 4

� (case 2; Fig. 6) All constraints from cCR are redun-
dant. This implies that cCR � CR, and therefore
CRint D CR.

� (case 3; Fig. 7) Constraints from both regions are
nonredundant. This implies that two spaces inter-
sect with each other, and CRint is given by the space
delimited by the nonredundant constraints.

� (case 4; Fig. 8) The problem is infeasible. This im-
plies that two spaces are apart from each other and
CRint = {;}.

Once CRint has been defined, the second step is to com-
pare z tobz, so as to find which of the two is lower. This
is achieved by defining a new constraint:

zdiff(�) D z(�) �bz(�) � 0

and checking for redundancy of this constraint in CRint.
This redundancy test results in following 3 cases:

Multiparametric Mixed Integer Linear Programming, Fig-
ure 9
Compare z(�) :bz(�); Case 1

Multiparametric Mixed Integer Linear Programming, Fig-
ure 10
Compare z(�) :bz(�); Case 2

Multiparametric Mixed Integer Linear Programming, Fig-
ure 11
Compare z(�) :bz(�); Case 3

� (case 1; Fig. 9) The new constraint is redundant.
This implies that z(�) � bz(�) and therefore the
space must be kept for further analysis.
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� (case 2; Fig. 10) The problem is infeasible. This im-
plies that z(�) �bz(�) and therefore the space can be
discarded from further analysis.

� (case 3; Fig. 11) The new constraint is non-
redundant. This implies that z(�) �bz(�) in ABCD,
and therefore the rest of the space can be discarded
from further analysis.

Based upon the above theoretical framework, the steps
of the algorithm can be summarized as follows:

1 Set an upper bound ofbz(
) =1.
2 Solve the fully relaxed problem (4).

IF an integer solution is found in a critical re-
gion, THEN update the upper bound and dis-
card the region from further analysis.

3 Fix one of the y variables to 0 and 1 to create
two new nodes.
IF no new nodes can be generated, THEN stop.

4 Solve the resulting problem (6).
IF the problem is infeasible THEN go back to
Step 3,
ELSE compare the solution to the current up-
per bound.

5 IF all regions from a node have been analyzed,
THEN go to Step 3.
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Motivation

Proteins are arguably the most complex molecules in
nature. This complexity arises from an intricate bal-
ance of intra- and inter-molecular interactions that de-
fine the native three-dimensional structure of the sys-
tem, and subsequently its biological functionality. The
underlying goal of protein folding research is to under-
stand the formation of these native tertiary structures.
Genetic engineering can be used to produce proteins
with specific amino acid sequences. The next step in-
volves developing the link between the primary protein
sequence and the native structure. The ability to pre-
dict the folding of proteins promises to have important
practical and theoretical ramifications, especially in the
areas of medicinal and biophysical chemistry.

Experimental studies have shown that proteins, un-
der native physiological conditions, spontaneously re-
fold to their unique, native structure after denaturation.
This implies that the formation of the native structure
is controlled primarily by the amino acid sequence. Ac-
cording to Anfinsen’s hypothesis the native structure is
in a state of thermodynamic equilibrium correspond-
ing to the conformation with the lowest free energy.
Through mathematical modeling of protein interaction
energies, the protein folding problem can be addressed
as a conformational search for the global minimum en-
ergy.

There exists two fundamental problems associated
with protein folding in the context of a conforma-
tional search. The first is the ability to correctly model
protein interactions using detailed mathematical equa-
tions. The second is associated with searching the
highly nonconvex energy hypersurface that describes
a given protein. This complexity, coupled with an ex-
ponential growth in the number of local minima as the
size of protein increases, has become known as themul-
tiple minima problem. There exists an obvious need for
the development of efficient global optimization tech-
niques. An efficient method which has been successfully
applied to detailed atomistic models of protein folding
is the ˛BB [1,2,3,17] global optimization algorithm.

Mathematical Description

Proteins are essentially polymer chains composed of
a predefined set of amino acid residues in which neigh-
boring residues are linked by peptidic bonds. Naturally
occurring proteins consist of only 20 different amino
acid residues, and the form of the side chain R (e. g.,
methyl, butyl, benzoic, etc.) defines the differences be-
tween these constituent groups. The chemical structure
of a generic protein is illustrated in Fig. 1. The repeat-
ing unit � NC˛C0 � defines the backbone of the pro-
tein. The protein also possesses amino and carboxyl
end groups, denoted by EAmino and ECarboxyl, respec-
tively.

The geometry of a protein can be fully described by
assigning a three-dimensional coordinate vector ri:

ri D

0
@
xi
yi
zi

1
A :
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Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 1
Generic primary protein structure

These ri specify the position of each atom in the pro-
tein molecule. The bond vector between two atoms (i,
j) connected with a covalent bond is defined as:

ri j D

0
@
x j � xi
y j � yi
z j � zi

1
A :

The corresponding bond length is then equal to the Eu-
clidean distance between these two atoms:

ˇ̌
ri j
ˇ̌
D

q�
x j � xi

�2
C
�
y j � yi

�2
C
�
z j � zi

�2

A covalent bond angle, � ijk, formed by the two adjacent
bond vectors rij and rjk can be computed by the follow-
ing formulas:

cos
�
�i jk

�
D

ri j � r jkˇ̌
ri j
ˇ̌ ˇ̌
r jk
ˇ̌ ; sin

�
�i jk

�
D

ri j � r jkˇ̌
ri j
ˇ̌ ˇ̌
r jk
ˇ̌ :

Here, rij � rjk is the dot product of the bond vectors rij
and rjk and rij × rjk is the cross product.

The dihedral angle !ijkl measures the relative ori-
entation of two adjacent covalent angles � ijk and � jkl.
This angle is defined as the angle between the normals
through the planes defined by atoms i, j, k and j, k, l
respectively, and can be calculated from the following
relations:

cos
�
!i jk l

�
D

�
ri j � r jk

�
�
�
r jk � rk l

�
ˇ̌
ri j � r jk

ˇ̌ ˇ̌
r jk ;�rk l

ˇ̌ ;

sin
�
!i jk l

�
D

�
rk l � ri j

�
� r jk

ˇ̌
r jk
ˇ̌

ˇ̌
ri j � r jk

ˇ̌ ˇ̌
r jk � rk l

ˇ̌ :

Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 2
Illustration of dihedral angle

An alternative to specifying the coordinate vector
for all atoms in a protein molecule is to set bond
lengths, covalent bond angles and independent dihe-
dral angles. A common approximation is to assume
rigid bond lengths and bond angles so that the dihedral
angles can be used to fully characterize the shape of the
protein molecule.

The names of the dihedral angles of a protein chain
follow a standard nomenclature. The dihedral angle
between the normals of the planes formed by atoms
Ci� 1

0NiC˛i andNiC˛i Ci
0 respectively, is called � i, where

i� 1 and i are two adjacent amino acid residues. The
angle defined by the planesNiC˛i Ci

0 and C˛i Ci
0Ni + 1, re-

spectively, is called  i, where i and i + 1 are two adja-
cent amino acid residues. Also, !i is the dihedral an-
gle defined by the planes C˛i Ci

0 Ni + 1 and Ci
0Ni + 1C˛iC1.

Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 3
Dihedral angle conventions
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The letter � is utilized to denote the dihedral angles
which are associated with the side groups Ri. Finally,
the letter � is used to name the dihedral angles asso-
ciated with the two end groups. These conventions are
illustrated in Fig. 3.

Potential EnergyModeling

A number of empirically based molecular mechanics
models have been developed for protein systems, in-
cluding AMBER [24], CHARMM [7], ECEPP/3 [19],
GROMOS [11], MM3 [4]. These models, also known
as force fields, are typically expressed as summations of
several potential energy components, with the mathe-
matical form of individual energy terms based on the
phenomenological nature of that term. A general to-
tal potential energy equation should include terms for
bond stretching (Ebond), angle bending (Eangle), torsion
(Etor) and nonbonded (Enb) interactions:

Epotential D Ebond C Eangle C Etor C Enb

When rigid body approximations are employed, bond
stretching and angle bending energies can be neglected.
For these force fields, torsion angles define a set of inde-
pendent variables that effectively describe any protein
conformation. This approximately reduces the number
of variables by a factor of 3 over those force fields that
use a Cartesian coordinate system to describe flexible
molecular geometries.

One example of a rigid body atomistic level poten-
tial energy model is the ECEPP/3 force field. In this
case, the nonbonded energy terms, Enb, include electro-
static, Eelec, van der Waals, Evdw, and hydrogen bond-
ing, Ehbond, interactions. These energies are calculated
for those atoms that are separated by more than two
atoms; that is, the atoms possess at least a 1–4 rela-
tionship. Electrostatic energies, Eelec, are calculated as
Coulombic forces based on atomic point charges:

Eelec D
QiQj

�Ri j

Here, Qi and Qj represent the two point charges, while
Rij equals the distance between these two points. The �
term describes the dielectric nature of the protein envi-
ronment.

General nonbonded van der Waals interactions,
Evdw, are modeled using a 6–12 Lennard–Jones poten-

tial energy term, which consists of a repulsion and at-
traction term:

Evdw D �i j

2
4
 
R�i j
Ri j

!12

� 2

 
R�i j
Ri j

!6
3
5 :

The energy minimum for a given atomic pair is de-
scribed by the potential depth, �ij, and position, R�i j . For
those atomic pairs that may form a hydrogen bond, the
6–12 potential energy term is replaced by a modified
10–12 Lennard–Jones type term:

Ehbond D �i j

2
45
 
R�i j
Ri j

!12

� 6

 
R�i j
Ri j

!10
3
5 :

Finally, corrective torsional energies, Etor, which are
represented by a three term Fourier series expansion,
are also added:

Etor D
E1

2
(1 � cos �)C

E2

2
(1 � cos 2�)

C
E3

2
(1 � cos 3�):

Each term can be interpreted physically. The 1-x (cos
�) symmetry term accounts for those nonbonded inter-
actions not included in general nonbonded terms. The
2-x (cos 2 �) symmetry term is related to the interac-
tions of orbitals, while the 3-x (cos 3 �) symmetry term
describes steric contributions.

Other specific potential energy terms may also be
added to the general energy equation depending on the
exact protein sequence. For example, the formation of
disulfide bridges can be enforced by adding a penalty
term to constrain the values of particular atomic dis-
tances. Correction terms have also been used to ad-
just conformational energies according to the configu-
rations of proline and hydroxyproline residues.

Solvation EnergyModeling

In general, the energetic description of a protein must
also include solvation effects. A theoretically simple ap-
proach would be to explicitly surround the peptide with
solvent molecules and compute potential energy con-
tributions for intra-and inter-molecular interactions.
These explicit calculations tend to greatly increase the
computational cost of the simulation. In addition, sol-
vent configurations are not rigid, so these calcula-
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tions must consider an average solvent-peptide config-
uration, which is typically generated by a number of
Monte-Carlo (MC) or molecular dynamics (MD) sim-
ulations [14]. Therefore, most simulations of this type
are limited to restricted conformational searches.

An alternative way for effectively considering av-
erage solvent effects is to use implicit solvation mod-
els. One complication involves the solvent’s influence
on electrostatic interaction energies because of the im-
plicit relationship between dielectric effects and solva-
tion. A simple solution has been to modify the repre-
sentation of the dielectric term. In reality, however, the
rigorous treatment of electrostatic interactions involves
the solution of the Poisson–Boltzmann equation.

Other simple and computationally feasible implicit
solvation models are based on empirical representa-
tions of the solvation energy. In these cases, the sol-
vation energy of each functional group is related to
the interaction of the solvent with a hydration shell
for the particular group. The individual terms are then
summed together to provide a total solvation energy for
the system. These solvation contributions can be de-
scribed by the following general equation:

Esolv D

NX
iD1

Si�i :

Typically, Si represents either the solvent-accessible
surface area, Ai, or the solvent-accessible volume of hy-
dration layer, VHSi, for the functional group, and � i is
an empirically derived free energy density parameter.

A number of algorithms have been developed for
calculating solvent-accessible surface areas [8,9,22]. Al-
though several of these are relatively efficient, the ap-
pearance of discontinuities has been one complication
in considering solvent accessible surface areas. In ad-
dition, a large number of parameterization strategies
(JRF, OONS, WE, etc.) have been used to derive ap-
propriate � i parameters [21,23,25]. In the case of the
JRF parameter set, discontinuities can be avoided be-
cause the surface-accessible solvation energies are only
included at local minimum conformations [23]. This is
because the parameters were derived from low energy
solvated configurations of actual tetrapeptides.

Several methods have also been developed for cal-
culating the hydration volumes and corresponding free
energy parameters [6,12]. A recent and computation-

ally inexpensive method, RRIGS, is based on a Gaussian
approximation for the volume of a hydration layer [6].
This method also inherently avoids numerical prob-
lems associated with possible discontinuities so that the
solvation energy contributions can easily be added at
every step of local minimizations.

Problem Formulation

For protein folding, the energy minimization problem
can be formulated as a nonconvex, nonlinear global op-
timization problem in which the energy, E, must be
globally minimized with respect to the dihedral angles
of the protein:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min E(�i ;  i ; !i ; �
k
i ; �

N
j ; �

C
j )

subject to �
 � �i � 


�
 �  i � 


�
 � !i � 


�
 � �k
i � 


�
 � �N
j � 


�
 � �Cj � 
:

The index i = 1, . . . , NRES defines the number of
residues, NRES, in the protein. In addition, k = 1, . . . ,
Ki denotes the number of dihedral angles in the side
chain of the ith residue, and j = 1, . . . , JN and j = 1, . . . ,
JC indicates the indices of the amino and carboxyl end
groups, respectively. The energy, E, represents the total
potential energy function, Epotential, plus the free energy
of solvation, Esolv. In most cases, this is the exact formu-
lation; that is, energetic and gradient contributions can
be added at each step of the minimization. However, in
the case of surface-accessible hydration using the JRF
parameters, the potential energy function is minimized
before adding the hydration energy contributions. In
other words, gradient contributions from solvation are
not considered.

Even after reducing this optimization problem to
a function of internal variables, the multidimensional
surface that describes the energy function possesses an
astronomically large number of local minima. In addi-
tion, evaluation of the energy, especially with the addi-
tion of solvation, is computationally expensive, which
makes even local minimization slow. A large number
of techniques have been developed to search this non-
convex conformational space. Many methods employ



2494 M Multiple Minima Problem in Protein Folding: ˛BB Global Optimization Approach

stochastic search procedures, while others rely on sim-
plifications of the potential model and/or mathemati-
cal transformations. In addition, the use of statistical
and/or heuristic conformational information is often
required. In general, the major limitation is that there
is no guarantee for convergence to the global minimum
energy structure. A number of recent reviews have fo-
cused on global optimization issues for these systems
[10,20].

The ˛BB global optimization approach has been
extremely effective in identifying global minimum en-
ergy conformations of peptides described by detailed
atomistic models. The development of this determin-
istic branch and bound method was motivated by the
need for an algorithm that could guarantee conver-
gence to the global minimum of nonlinear optimiza-
tion problems with twice-differentiable functions. The
application of this algorithm to the minimization of po-
tential energy functions was first introduced for micro-
clusters [16]. The algorithm has also been shown to be
successful for isolated [5,15], as well as solvated peptide
systems [13].

Global Minimization Using ˛BB

The ˛BB global optimization algorithm effectively
brackets the global minimum solution by develop-
ing converging sequences of lower and upper bounds.
These bounds are refined by iteratively partitioning the
initial domain. Upper bounds on the global minimum
are obtained by local minimizations of the original en-
ergy function, E. Lower bounds belong to the set of so-
lutions of the convex lower bounding functions, which
are constructed by augmenting E with the addition of
separable quadratic terms. By using �L

i ,  
L
i , !

L
i , �

k;L
i ,

�
N;L
j , �C;Lj and �U

i ,  
U
i , !

U
i , �

k;U
i , �N;U

j , �C;Uj to refer
to lower and upper bounds on the corresponding di-
hedral angles, the lower bounding function, L, of the
energy hypersurface can be expressed in the following
manner:

L D E

C

NRESX
iD1

˛�;i
�
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� �
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�
:

The ˛ represent nonnegative parameters whichmust be
greater or equal to the negative one-half of the mini-
mum eigenvalue of the Hessian of E over the defined
domain. The overall effect of these terms is to over-
power the nonconvexities of the original nonconvex
terms by adding the value of 2 ˛ to the eigenvalues of
the Hessian of E. The convex lower bounding functions,
L, possess a number of important properties which
guarantee global convergence [18]:
i) L is a valid underestimator of E;
ii) L matches E at all corner points of the current box

constraints;
iii) L is convex in the current box constraints;
iv) the maximum separation between L and E is

bounded. This property ensures that feasibility and
convergence tolerances can be reached for a finite
size partition element;

v) the underestimators L constructed over supersets
of the current set are always less tight than the un-
derestimator constructed over the current box con-
straints for every point within the current box con-
straints.

Once solutions for the upper and lower bounding prob-
lems have been established, the next step is to modify
the problem for the next iteration. This is accomplished
by successively partitioning the initial domain into
smaller subdomains. One obvious strategy is to sub-
divide the original hyper-rectangle by bisecting the
longest dimension. In order to ensure nondecreas-
ing lower bounds, the hyper-rectangle to be bisected
is chosen by selecting the region which contains the
infimum of the minima of lower bounds. A nonin-
creasing sequence for the upper bound is found by
solving the nonconvex problem locally and selecting it
to be the minimum over all the previously recorded up-
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per bounds. If the single minimum of L for any hyper-
rectangle is greater than the current upper bound, this
hyper-rectangle can be discarded because the global
minimum cannot be within this subdomain (fathom-
ing step).

The computational requirement of the ˛BB algo-
rithm depends on the number of variables (global) on
which branching occurs. Therefore, these global vari-
ables need to be chosen carefully. Qualitatively, the
branching variables should correspond to those vari-
ables which substantially influence the nonconvexity of
the surface and the location of the global minimum. In
terms of the protein folding problem, it is generally ac-
cepted that the backbone dihedral angles (� and  ) are
the most influential variables. Therefore, in larger prob-
lems, the global variable set should include only the set
of � and variables. In this case, the dihedral angles as-
sociated with the peptide bond (!) and the side chains
(�) are treated as local variables.

Algorithmic Description

The basic steps of the algorithm are as follows:
1) The initial best upper bound is set to an arbitrarily

large value. The original domain is partitioned along
one of the global variable dimensions.

2) A convex function L is constructed in each hyper-
rectangle and minimized using a local nonlinear
solver, with function calls to potential and solvation
models. If a solution is greater than the best upper
bound the entire subregion can be fathomed, other-
wise the solution is stored.

3) The local minima for L are used as initial starting
points for local minimizations of the upper bound-
ing function E in each hyper-rectangle. In solving
the upper bounding problems, all variable bounds
are expanded to (� 
 , 
) domain. These solutions
are upper bounds on the global minimum solution
in each hyper-rectangle.

4) The current best upper bound is updated to be the
minimum of those thus far stored. If a new upper
bound (from step 3) is selected, a separate module is
called to ensure that the absolute value of each gra-
dient in the objective function gradient vector is be-
low a specified tolerance (kcal/mol/deg). The second
derivative matrix is also evaluated to verify that the
upper bound solution is a local minimum.

5) The hyper-rectangle with the current minimum
value for L is selected and partitioned along one of
the global variables.

6) If the best upper and lower bounds are within an
� tolerance the program will terminate, otherwise it
will return to Step 2.

A novel approach has also been proposed for the initial-
ization of the ˛BB algorithm [5]. Specifically, an analy-
sis of 98 proteins from the Brookhaven X-ray data bank
was used to develop dihedral angle distributions in the
form of histograms from� 
 to 
 for each dihedral an-
gle of each of the naturally occurring amino acids. Us-
ing this information, a set of reduced domains can be
defined for every dihedral angle of every residue in the
peptide sequence. Overall initialization domains corre-
spond to the Cartesian products of all the sub-domains
of individual residues in the protein. This approach
maintains the guarantee of global optimality over the
considered search space of the reduced domains, and
is deterministic in those subdomains that possess con-
vex underestimators. In addition, all variable bounds
are expanded to the [ � 
 , 
] when solving the up-
per bounding problem. Therefore, although the initial
point of an upper bounding minimization is restricted
to the search space of the corresponding lower bound-
ing problem, the solution may lie outside the original
subdomain.

Example 1 Met-enkephalin (H-Tyr-Gly-Gly-Phe-
Met-OH) is an endogenous opioid pentapeptide found
in the human brain, pituitary, and peripheral tissues. Its
biological function involves a large variety of physiolog-
ical processes, most notably the endogenous response
to pain. The peptide consists of 24 dihedral angles and
a total of 75 atoms, and has played the role of a bench-
mark molecular conformation problem. The energy
hypersurface is extremely complex with the number of
local minima estimated on the order of 1011. The un-
solvated global minimum energy conformation, which
is efficiently located using the ˛BB algorithm, has been
shown to exhibit a type II’ ˇ-bend along the N-C’ pep-
tidic bond of Gly3 and Phe4 [5], as shown in Fig. 4.

The algorithm has also successfully predicted global
minimum energy structures of met-enkephalin using
both solvent-accessible surface area (JRF) and volume
of hydration (RRIGS) models [13]. In both cases, ex-
tended structures were identified, which qualitatively
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Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 4
Global minimum energy structure of unsolvated met-
enkephalin

Multiple Minima Problem in Protein Folding:˛BB Global Op-
timization Approach, Figure 5
Global minimum energy structure of met-enkephalin using
area based hydration

agrees with experimental results. However, differences
in the role of nonbonded energies and the side chain
conformations have been identified. The global mini-
mum energy conformations of the surface area and vol-
ume of hydration models are shown in Fig. 5 and Fig. 6,
respectively.

See also

� Adaptive Simulated Annealing and its Application
to Protein Folding

Multiple Minima Problem in Protein Folding:˛BBGlobal Op-
timization Approach, Figure 6
Global minimum energy structure of met-enkephalin using
volume based hydration

� Genetic Algorithms
� Global Optimization in Lennard–Jones and Morse

Clusters
� Global Optimization in Protein Folding
�Molecular Structure Determination: Convex Global

Underestimation
�Monte-Carlo Simulated Annealing in Protein

Folding
� Packet Annealing
� Phase Problem in X-ray Crystallography: Shake and

Bake Approach
� Protein Folding: Generalized-ensemble Algorithms
� Simulated Annealing
� Simulated Annealing Methods in Protein Folding
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Dynamic programming has been an area of active re-
search since its introduction by R. Bellman [1]. More
recently, with the recognition that many applied op-
timization problems require more than one objective,
the study of multicriteria optimization has become
a growing area of research. Included in this area of
multicriteria optimization is the study of multiple ob-
jective dynamic programming (MODP). MODP was
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first used to replace multiple objective linear program-
ming (MOLP) where it was not applicable, such as in
problems with discrete variables. Many of the tech-
niques used are extensions of classical dynamic pro-
gramming. The following is a discussion of some of
the research that has been developed in the area of
MODP.

Using multiple objective dynamic programming to
find the ‘shortest’ path through a network with con-
stant costs is one of the more straightforward uses of
MODP. Work has been done on both forward and
backward MODP in this area. First, we consider a gen-
eral network containing a set of nodes N = {1, . . . , n}
and a set of arcs A = {(i0, i1), (i2, i3), (i4, i5), . . . } �
N × N which indicates connections between nodes.
Each arc (i, j) has an associated cost vector, cij = (cij1,
. . . , cijm) � Rm. A path from node i0 to ip is the se-
quence of arcs P = {(i0, i1), . . . , (ip�1, ip)} where the
first node of each arc is the same as the terminal node
of the preceding arc and each node in the path is
unique. Let ˘ i be the set of all paths from node 1 to
node i. The cost to traverse a path p in ˘ i is [c(p)] =P

(i, j) 2 p[cij]. A path in ˘ i is nondominated if there is
no other path p� in ˘ i with [c(p�)]r � [c(p)]r for r
= 1, . . . , m and [c(p�)]r < [c(p)]r for some r 2 {1, . . . ,
m}.

0 k = 1.
1 Evaluate Ski for all nodes using S

k
i = fci j+Sk�1i g.

2 If k < N , set k = k + 1 and return to step 1;
otherwise:

3 For each nondominated solution at each node
determined in step 1 and for each r, r =
1; : : : ;m, define Tr as Tr = miniN ;:::;i0P

n c
r
in jn�1, where in is the originated node at

stage n and In is the set of nodes that can be
reached from node n.

4 Given weights Wm 2 Rm
+ , compute the MIN-

SUM as

min

" mX
r=1

(
Wr

PN
k=1 ci j � Tr

Tr

)#
:

H.G. Daellenbach and C.A. DeKluyver [5] gave one
of the earliest algorithms for backward MODP with
constant costs, which finds nondominated paths from
all nodes to the destination node. Their method is ba-

sically an extension of the principle of optimality to
a multicriteria context. They state a principle of Pareto
optimality of MODP: ‘A nondominated policy has the
property that regardless of how the process entered
a given state, the remaining decisions must belong to
a nondominated subpolicy.’ Let Ski be the nondomi-
nated vector of objective values for a node i, exactly k
links from its destination, t. Then the algorithm is given
above.

The resulting Ski vectors give nondominated solu-
tions for the network, but maybe not all of them. They
solve an example in which the weights are not specified.

A few years later, R. Hartley [6] proposed a simi-
lar algorithm that also uses backward MODP to find all
Pareto paths from all nodes in the network to a specified
node. The algorithm is as follows:

LetV0(i) = {1, . . . ,1} for k = 0, 1, . . . , and letVk(t)
= {0, . . . , 0}.

Vk(i) = eff[ [ {cij + Vk�1(j): j 2 � (i)}] for i 2 N (i 6D
t) and k = 1, 2, . . . , where � (i) is the set of nodes such
that (i, j) 2 A. The ‘eff’ operator finds all nondominated
vectors in the set. The associated paths must be handled
separately.

H.W. Corley and I.D. Moon [4] used forward
MODP to find all nondominated paths from a speci-
fied node to all other nodes in a network with multiple
constant costs. They assumed that the network contains
no loops and that cij 6D {0, . . . , 0} for any (i, j) 2 A. Let-
ting G(k)

i be the set of vector costs of all Pareto paths
from node 1 to node i containing k or fewer arcs, the
algorithm follows:

1 Set ci i = (0; : : : ; 0), i = 1; : : : ; n and ci j =
(1; : : : ;1), i ¤ j, if no arc exists from i to
j. Set k = 1 and let G(1)

i = fc1ig, i = 1; : : : ; n.
2 For i = 1; : : : ; n, set Gk+1

i = Vmin[n
j=1
˚
ci j +

gkj : g
k
j 2 G(k)

j
�
.

3 If G(k+1)
i = G(k)

i , i = 1; : : : ; n, stop, otherwise
go to step 4.

4 If k = n� 1, stop. Else, k = k + 1 and go to step
2.

Vmin is an operation that computes the vector costs
of all nondominated paths in a set of vector costs. An
algorithm for Vmin is given in their paper.
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Multiple Objective Dynamic Programming, Table 1

k = 1 k = 2 k = 3

G(k)
1

 
0
0

!  
0
0

!  
0
0

!

G(k)
2

 
2
3

!  
2
3

!  
2
3

!

G(k)
3

 
4
6

!  
4
6

!  
4
6

!

G(k)
4 Vmin

	 
8
6

!
;

 
7
7

!
 	 
8
6

!
;

 
7
7

!
 	 
8
6

!
;

 
7
7

!


G(k)
5 Vmin

	 
6
9

!
;

 
10
7

!
  
6
9

!
;

 
10
7

!  
6
9

!
;

 
10
7

!

G(k)
6

 
1

1

!
Vmin

	 
12
12

!
;

 
11
13

!
;

 
9
11

!
;

 
13
9

!
  
9
11

!
;

 
13
9

!

Multiple Objective Dynamic Programming, Figure 1

Table 1 gives the results of the algorithm. The re-
sulting Pareto optimal paths from node 1 to node 6 are
{(1, 2), (2, 5), (5, 6)} and {(1, 3), (3, 5), (5, 6)}.

The following example uses the Corley–Moon algo-
rithm to solve a dynamic routing problem for the net-
work in Fig. 1.

Using multiple objective dynamic programming to
find the shortest path through a network with time-
dependent costs is considerably more complicated than
MODP with constant costs. The monotonicity assump-
tions necessary for the principle of optimality in dy-
namic programming can easily be broken when dealing
with time-dependent costs. Reaching a node later may
be less costly than reaching it earlier. M.M. Kostreva

and M.M. Wiecek [7] extended the work done by
K.L. Cooke and E. Halsey [3] on dynamic program-
ming with one time-dependent cost (travel time) to
dynamic programming with multiple time-dependent
costs. This method uses backward dynamic program-
ming on a discrete time grid to find all nondominated
paths from every node in the network to the destination
node.

Assume the discrete time grid ST = {t0, . . . , t0 + T},
t0 > 0 and the cost functions [cij(t)]k > 0, (i, j) 2 A, for
all t 2 ST . T is the upper bound on total time to travel
from any node in the network to the destination node,
Nd. Also assume that [cij(t)]1 is the time to travel from
node i to node j when the arrival time at node i is time
t. For all i 2 N \ Nd and all t 2 ST , define {[Fi(t)]} as the
set of nondominated vectors associated with the paths
that leave node i at time t and reach nodeNd and define
{[Fi(t)(k)]} as the set of nondominated vectors associ-
ated with the paths that leave node i at time t and reach
node Nd in at most k + 1 links before time t0 + T, where
k = 0, 1, . . . . The following is the principle of optimality
used for this algorithm: ‘A nondominated path p, leav-
ing node i at time t 2 ST and reaching node N at or
before time t0 + T, has the property that for each node
j lying on this path, a subpath p1, that leaves node j at
time tj 2 ST , tj > t, and arrives at node N at or before
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time t0 + T, is nondominated.’ The algorithm is as fol-
lows:

1 Find a time grid of discrete values ST = ft0; : : : ;
t0 + Tg; t0 > 0 and compute [ci j(t)] for all
t 2 ST and all (i; j) 2 A.

2 Modify [ci j(t)] for all t 2 ST and all (i; j) 2 A
as follows:

[ci j(t)]0 =

(
[ci j(t)] if t+[ci j(t)]l � t0+T;
1 if t+[ci j(t)]l > t0+T:

3 Find the initial array [f[Fi(t)(0)]g]; i = 1; : : : ;N ,
for all t 2 ST , where f[FNd (t)(0)]g = f0g, and
f[Fi(t)(0)]g = [ciNd (t)]0 for i 2 NnNd .

4 Find the arrays [f[Fi(t)(k)]g]; i = 1; : : :N , for
all t 2 ST , for k = 1; 2; : : : as follows:

f[Fi(t)(k)]g

=VMINf[ci j(t)]0+f[Fj(t+[ci j(t)]01)
(k�1)]gg;

i 2 NnfNdg;

f[Fi(t)(k)]g = f0g:

5 The sequence of sets f[Fi(t0)(k)]g; k = 1; 2; : : : ;
converges to the set f[Fi(t0)]g, the set of non-
dominated vectors associated with the paths
that leave node i at time t0 and reach node Nd .

The following example uses Algorithm One [7] to
solve a dynamic routing problem for the network in
Fig. 2. A grid of discrete values of time S19 = {1, 2, . . . ,
20} for t0 = 1 is established.

Table 2 shows the initial array and the two subse-
quent arrays. So, the set {Eff(EI(t0))} of all nondomi-
nated paths that leave node 1, 2, and 3 at time t0 = 1 are
{(1, 2), (2, 3), (3, 4)}, {(2, 3), (3, 4)}, and {(3, 4)}.

Kostreva and Wiecek [7] also developed an algo-
rithm which uses forward dynamic programming to

Multiple Objective Dynamic Programming, Figure 2

find all nondominated paths from an origin node to
every other node in the network without using a time
grid. Thus, assume t is a continuous variable, t � 0, and
[cij(t)]1 > 0. An assumption must be made about the
cost functions so that the principle of optimality will
hold for these networks: For any arc (i, j) 2 A and all
t1, t2 � 0, if t1 � t2, then:
a) t1 + [cij(t1)]1 � t2 + [cij(t2)] 1, and
b) [cij(t1)]r � [cij(t2)]r for all r 2 {2, . . . , m}. Assuming

the cost functions are monotone increasing with re-
spect to time satisfies this assumption.

1 Find the initial vector f[G(0)
j ]g; j = 1; : : : ;N ,

where f[G(0)
1 ]g = f0g and f[G(0)

j ]g = [c1 j(0)];
j = 2; : : : ;N .

2 Calculate the vectors f[G(k)
j ]g; j = 1; : : : ;N , for

k = 1; 2; : : : ; as follows:

f[Gl
j(tl )

(k)]; l =; : : : ;Njg

= VMINf[Gn
i (t

n)(k�1)] + [ci j(tn)];
n = 1; : : : ;Nig;

j = 2; : : : ;N;

f[Gl
1(t

l )(k)]; l = 1g = f0g:

3 f[G(k)
j ]g; k = 1; 2; : : : ; converges to f[Gj]g, the

set of vector costs of all nondominated paths
which leave the origin node at time t = 0 and
lead to node j.

Assume that node 1 is the origin node. For nodes j
= 2, . . . , N, let [Gu

j (t
u)(k)] be the vector cost of the non-

dominated path uwhich is of at most k links leaving the
origin node at time t = 0 and leading to node j, where
tu is the arrival time of this path at node j. Also, let
{[G(k)

j ]} be the set of vector costs of all nondominated
paths which are of at most k links leaving the origin
node at time t = 0 and leading to node j, where Nj is the
number of nondominated paths. Let {[Gj]} be the set of
vector costs of all nondominated paths which leave the
origin node at time t = 0 and lead to node j. The algo-
rithm is as listed above.

Another way to get around the monotonicity as-
sumption of dynamic programming is to use gener-
alized dynamic programming techniques. See [2] for
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Multiple Objective Dynamic Programming, Table 2
Sequence of arrays

Time [f[FI(t)(0)]g] [f[FI(t)(1)]g] [f[FI(t)(2)]g]

1

 
1

1

!  
1

1

! 
17
2

! 
0
0

!  
7
5

! 
7
4

! 
17
2

! 
0
0

!  
5
5

! 
7
4

! 
17
2

! 
0
0

!

2

 
1

1

! 
1

1

! 
10
2

! 
0
0

!  
4
5

! 
4
4

! 
10
2

! 
0
0

!  
4
5

! 
4
4

! 
10
2

! 
0
0

!

3

 
1

1

! 
1

1

! 
5
2

! 
0
0

!  
9
5

! 
3
4

! 
5
2

! 
0
0

!  
9
5

! 
3
4

! 
5
2

! 
0
0

!

4

 
1

1

! 
1

1

! 
2
2

! 
0
0

!  
1

1

! 
4
4

! 
2
2

! 
0
0

!  
1

1

! 
4
4

! 
2
2

! 
0
0

!

5

 
1

1

! 
1

1

! 
1
2

! 
0
0

!  
1

1

! 
7
4

! 
1
2

! 
0
0

!  
1

1

! 
7
4

! 
1
2

! 
0
0

!

6

 
1

1

! 
1

1

! 
2
2

! 
0
0

!  
1

1

! 
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4

! 
2
2

! 
0
0

!  
1

1

! 
12
4

! 
2
2

! 
0
0

!

7

 
1
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1

1
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5
2
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0
0
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1

1

! 
1

1
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5
2

! 
0
0

!  
1

1

! 
1

1

! 
5
2

! 
0
0

!

8

 
1

1

! 
1

1
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1

1
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1
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0
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1

1
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1

1
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2
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0
0

!

9
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1
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1

! 
1

1

! 
0
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1

1

! 
1

1

! 
1

1

! 
0
0

!  
1

1

! 
1

1

! 
1

1

! 
0
0

!

� � �

 
1

1

! 
1

1

! 
1

1

! 
0
0

!  
1

1

! 
1

1

! 
1

1

! 
0
0

!  
1

1

! 
1

1

! 
1

1

! 
0
0

!

a way to use generalized DP with a multicriteria prefer-
ence function. Basically, generalized DP uses a weaker
principle of optimality than Bellman’s famous version
[1]. Generalized DP finds partial solutions that may
lead to optimal solutions even though locally they are
not optimal solutions according to the preference func-
tion.

In [2] generalized DP is applied to the multicriteria
best path problem. Assuming node 1 to be the origin
and node N to be the destination, let˘ be the set of all
paths in the network. Let

P( j) D fp 2 ˘ : i1 D 1; in D jg

be the set of all paths from the origin to node j. Let

X( j) D fp 2 ˘ : i1 D j; in D Ng

be the set of all paths from node j to the destination
node. The vector cost along each arc is called an arc
length vector, lij = (l1i j , . . . , l

m
i j ) 2 R

m. A path length func-
tion z : ˘ ! Rm assigns a path length vector to every
path p 2˘ where ı is a binary operator on Rm:

z(p) D l1;2 ı � � � ı lin�1;in :

Thus, each different objective can have a different bi-
nary operation. For example, distance would have an
additive binary operator and probabilities would have



2502 M Multiple Objective Dynamic Programming

a multiplicative binary operator. Let

Z( j) D fz(p) : p 2 P( j)g

be the set of all length vectors of all paths from the
origin to node j. A multicriteria preference function u:
Rm ! R is defined on the set of path length vectors.
The objective is to maximize this preference function.
The monotonicity assumption says that for all z; z0 2
Z( j); u(z) � u(z0) ) u(z ı l jk ) � u(z0 ı l jk ) for all j,
k 2 S such that (j, k) 2 T. Unfortunately, with multi-
objective problems this assumption is easily violated.
Generalized DP tries to get around this monotonicity
assumption by having local preference relations defined
as �j � Z(j) × Z(j): for z, z0 2 Z(j), where z�jz0 implies
that any subpath from the origin to node jwhose length
is z cannot be used in a path to produce a better overall
path from the origin to the destination node than using
the subpath from the origin to node j whose length is
z0. So, subpath length vector z0 is more locally preferred
even though subpath length vector z may be globally
preferred, u(z0) � u(z). So, for z, z0 2 Z(j), z�jz0 if and
only if 9p0 2X(j) such that u(zız(p)) � u(z0ız(p0)) for
all p 2 X(j). These local preference relations are used to
form the weak principle of optimality. An optimal path
must be composed of subpaths that can be part of an
optimal path.

Unfortunately, in order to get these preference rela-
tions one would have to complete all paths from every
node in the network. Since this is too computationally
intense, the preference relations are relaxed to the refin-
ing local preference relations �j where z �j z0 implies z
�j z0. Using �j avoids having to find the entire relation
�j. Using this relation means that a larger set of maxi-
mal path length vectors will be kept by using �j than if
�j were used. A maximal path length vector is a vector
where there does not exist another vector at that state
that is strictly more preferred. Let

maxl(X; �) D
˚
x 2 X : 9x0 2 X : x�x0 and x0�x

�
:

The following are the equations of generalized DP:

f (1) D fz1g;

f ( j) D maxl
�
[(i; j)2A( f (i) ı li j) � j

�

for j D 2; : : : ;N;

where f f (i) ı li jg D fz ı li j : z 2 f (i)g.

When the monotonicity assumptions are satisfied,
the �j relation can be replaced with the multicriteria
preference function, u, thus reducing to the conven-
tional DP problem. However, when the monotonicity
assumption does not hold the �j relation must be de-
fined by trying exploit any special structures of each
individual problem. Also, using dynamic programming
to find the entire Pareto optimal set can be seen as an-
other special case of generalized DP where zk � zk0 for
all k = 1, . . . , m) z �j z0 (assuming minimization of
each criteria).

The subject of multiple objective dynamic pro-
gramming has developed into a viable body of knowl-
edge capable of providing solutions to applied prob-
lems in which trade-offs among objectives is important.
Among the multiple objective techniques, it is distinc-
tive in its ability to provide the entire Pareto optimal
set. To gain such an advantage, one must be willing to
perform computationally intensive operations on large
sets of vectors.
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This article gives a brief introduction into multiple ob-
jective programming support. We will overview basic
concepts, formulations, and principles of solving mul-
tiple objective programming problems. To solve those
problems requires the intervention of a decision-maker.
That’s why behavioral assumptions play an important
role in multiple objective programming. Which as-
sumptions are made affects which kind of support is
given to a decision maker. We will demonstrate how
a free search type approach can be used to solve multi-
ple objective programming problems.

Introduction

Before we can consider the concept of multiple objec-
tive programming support (MOPS), we have to first ex-
plain the concept of multiple criteria decision making
(MCDM). Even if there is a variation of different def-
initions, most researchers working in the field might
accept the following general definition: Multiple Cri-
teria Decision Making (MCDM) refers to the solving
of decision and planning problems involving multi-
ple (generally conflicting) criteria. ‘Solving’ means that
a decision-maker (DM) will choose one ‘reasonable’ al-
ternative from among a set of available ones. It is also
meaningful to define that the choice is irrevocable. For
an MCDM problem it is typical that no unique solu-
tion for the problem exists. Therefore to find a solu-
tion for MCDM problems requires the intervention of
a decision-maker (DM). In MCDM, the word ‘reason-
able’ is replaced by the words ‘efficient/nondominated’.
They will be defined later on.

Actually the above definition is a strongly simpli-
fied description of the whole (multiple criteria) deci-
sion making process. In practice, MCDM problems are
not often so well-structured, that they can be consid-
ered just as a choice problem. Before a decision prob-
lem is ready to be ‘solved’, the following questions re-
quire a lot of preliminary work: How to structure the
problem? How to find essential criteria? How to handle
uncertainty? These questions are by no means outside
the interest area of MCDM-researchers. The outrank-
ingmethod by B. Roy [17] and the AHP (the analytic hi-
erarchy process) developed by T.L. Saaty [18] are exam-
ples of the MCDM-methods, in which a lot of effort is
devoted to problem structuring. Both methods are well
known and widely used in practice. In both methods,
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Multiple Objective Programming Support, Figure 1
A variable, criterion, and value space

the presence of multiple criteria is an essential feature,
but the structuring of a problem is an even more im-
portant part of the solution process.

When the term ‘support’ is used in connection with
MCDM, we may adopt a broad perspective and refer
with the term to all research associated with the rela-
tionship between the problem and the decision-maker.
In this article we take a narrower perspective and focus
on a very essential supporting problem in multiple cri-
teria decision making: How to assist a DM to find the
‘best’ solution from among a set of available ‘reason-
able’ alternatives, when the alternatives are evaluated
by using several criteria? Available alternatives are as-
sumed to be defined explicitly or implicitly by means of
a mathematical model. The termmultiple objective pro-
gramming is usually used to refer to dealing with this
kind of model.

The following considerations are general in the
sense that usually it is not necessary to specify how the
alternatives are defined. It is enough to assume that they
belong to set Q. However, in Fig. 1 and Fig. 2 and the
numerical example we consider amultiple objective lin-
ear programming model in which all constraints and
objectives are defined using linear functions.

The article consists of seven sections. In Sect. “A
Multiple Objective Programming Problem”, we give
a brief introduction to some foundations of multiple
objective programming. How to generate potential ‘rea-
sonable’ solutions for a DM’s evaluation is considered
in Sect. “Generating Nondominated Solutions”, and in
Sect. “Solving Multiple Objective Problems”, we will
review general principles to solve a multiple objective
programming problem. In Sect. “Example of a Deci-
sion Support System: VIG”, a multiple criteria decision
support system VIG is introduced, and a numerical ex-

Multiple Objective Programming Support, Figure 2
Illustrating the projection of a feasible and an infeasible as-
piration level point onto the nondominated surface

ample is solved in Sect. “Numerical Illustrations”. Con-
cluding remarks are given in Sect. “Conclusion”.

AMultiple Objective Programming Problem

A multiple objective programming (MOP) problem in
a so-called criterion space can be defined as follows:

(
‘ max ’ q
s.t. q 2 Q;

(1)

where set Q � Rk is a so-called feasible region in a k-
dimensional criterion space Rk. The set Q is of special
interest. Most considerations in multiple objective pro-
gramming are made in a criterion space.

Set Q may be convex/nonconvex, bounded/un-
bounded, precisely known or unknown, consist of finite
or infinite number of alternatives, etc. When Q con-
sists of a finite number of elements which are explicitly
known in the beginning of the solution process, we have
an important class of problems which may be called
e. g. (multiple criteria) evaluation problems. Sometimes
those problems are referred to as discrete multiple crite-
ria problems or selection problems (for a survey see for
example [16]).

When the number of alternatives inQ is infinite and
not countable, the alternatives are usually defined using
a mathematical model formulation, and the problem is
called continuous. In this case we say that the alterna-
tives are only implicitly known. This kind of problem is
referred as amultiple criteria design problem (the terms
‘evalution’ and ‘design’ are adopted from A. Arbel) or
a continuous multiple criteria problem. In this case, the
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set Q is not specified directly, but by means of decision
variables as usually done in single optimization prob-
lems:

(
max q D f (x) D ( f1(x); : : : ; fk(x))
s.t. x 2 X;

(2)

where X � Rn is a feasible set and f : Rn ! Rk. The
space Rn is called a variable space (see Fig. 1). The func-
tions f i, i = 1, . . . , k, are objective functions. The feasible
region Q can now be written as Q = {q: q = f (x), x 2 X}.

The MOP-problem has seldom a unique solution,
i. e. an optimal solution that simultaneously maxi-
mizes all objectives. Conceptually the multiple objective
mathematical programming problem may be regarded
as a value (utility) functionmaximization program:

(
max v(q)
s.t. q 2 Q;

(3)

where v is a real-valued function, which is strictly in-
creasing in the criterion space and defined at least in
the feasible region Q. It is mapping the feasible region
into a one-dimensional value space (see Fig. 1). Func-
tion v specifies the DM’s preference structure over the
feasible region. However, the key assumption in multi-
ple objective programming is that v is unknown. Gen-
erally, if the value function is estimated explicitly, the
system is considered to be in the MAUT category, see
for example [7], (MAUT stands for multiple attribute
utility theory) and can then be solved without any inter-
action of the DM. Typically, MAUT-problems are not
even classified under the MCDM-category. If the value
function is implicit (assumed to exist but is otherwise
unknown) or no assumption about the value function
is made, the system is usually classified under MCDM
[2] or MOP.

Solutions of the MOP-problems are all those alter-
natives which can be the solutions of some value func-
tion v: Q ! R. Those solutions are called efficient or
nondominated depending on the space where the alter-
natives are considered. The term nondominated is used
in the criterion space and efficient in the variable space.
(Some researchers use the term efficient to refer to effi-
cient and nondominated solutions without making any
difference.) Any choice from among the set of efficient
(nondominated) solutions is an acceptable and ‘reason-

able’ solution, unless we have no additional informa-
tion about the DM’s preference structure.

Nondominated solutions are defined as follows:

Definition 1 In (1), q� 2 Q is nondominated if and
only if there does not exist another q 2 Q such that q �
q� and q 6D q�.

Definition 2 In (1), q� 2 Q is weakly nondominated if
and only if there does not exist another q 2 Q such that
q > q�.

Correspondingly, efficient solutions are defined as fol-
lows:

Definition 3 In (2), x� 2 X is efficient if and only if
there does not exist another x 2X such that f (x)� f (x�)
and f (x) 6D f (x�).

Definition 4 In (2), x� 2 X is weakly efficient if and
only if there does not exist another x2X such that f (x)>
f (x�).

The final (‘best’) solution q 2 Q of the problem (1) is
called the most preferred solution. It is a solution pre-
ferred by the DM to all other solutions. At the concep-
tual level, wemay think it is the solution maximizing an
(unknown) value function in problem (3). How to find
it? That is the problem we now proceed to consider.

Unfortunately, the above characterization of the
most preferred solution is not very operational, because
no system can enable the DM to simultaneously com-
pare the final solution to all other solutions with an
aim to check if it is really the most preferred or not.
It is also as difficult to maximize a function we do not
know. Some properties for a good system are, for ex-
ample, that it makes the DM convinced that the final
solution is the most preferred one, does not require too
much time from the DM to find the final solution, to
give reliable enough information about alternatives, etc.
Even if it is impossible to say which system provides the
best support for a DM for his multiple criteria prob-
lem, all proper systems have to be able to recognize,
generate and operate with nondominated solutions. To
generate nondominated solutions for the DM’s evalu-
ation is thus one key issue in multiple objective pro-
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gramming. In the next section, we will consider some
principles.

Generating Nondominated Solutions

Despite many variations among different methods of
generating nondominated solutions, the ultimate prin-
ciple is the same in all methods: a single objective opti-
mization problem is solved to generate a new solution
or solutions. The objective function of this single ob-
jective problemmay be called a scalarizing function, ac-
cording to [25]. It typically has the original objectives
and a set of parameters as its arguments. The form of
the scalarizing function as well as what parameters are
used depends on the assumptions made concerning the
DM’s preference structure and behavior.

Two classes of parameters are widely used in multi-
ple objective optimization:
1) weighting coefficients for objective functions; and
2) reference/aspiration/reservation levels for objective

function values.
Based on those parameters, there exist several ways to
specify a scalarizing function. An important require-
ment is that this function completely characterizes the
set of nondominated solutions:

for each parameter value, all solution vectors
are nondominated, and for each nondominated
criterion vector, there is at least one parameter
value, which produces that specific criterion vec-
tor as a solution

(see, for theoretical considerations, e. g. [26]).

A Linear Scalarizing Function

A classic method to generate nondominated solutions
is to use the weighted-sums of objective functions, i. e.
to use the following linear scalarizing function:

max
˚
�0 f (x) : x 2 X

�
: (4)

If � > 0, then the solution vector x of (4) is efficient,
but if we allow that � � 0, then the solution vector
is weakly-efficient. (see, e. g. [21, p. 215; 221]). Using
the parameter set � = {�: � > 0} in the weighted-
sums linear program we can completely characterize
the efficient set provided the constraint set is convex.

However, � is an open set, which causes difficulties in
a mathematical optimization problem. If we use cl(�)
= {�: � � 0} instead, the efficiency of x cannot be guar-
anteed anymore. It is surely weakly-efficient, and not
necessarily efficient. When the weighted-sums are used
to specify a scalarizing function in multiple objective
linear program (MOLP) problems, the optimal solu-
tion corresponding to nonextreme points of X is never
unique. The set of optimal solutions always consists
of at least one extreme point, or the solution is un-
bounded. In early methods, a common feature was to
operate with weight vectors � 2 Rk, limiting considera-
tions to efficient extreme points (see, e. g., [29]).

A Chebyshev-Type Scalarizing Function

Currently, most solution methods are based on the use
of a so-called Chebyshev-type scalarizing function first
proposed by A. Wierzbicki [25]. We will refer to this
function by the term achievement (scalarizing) func-
tion. The achievement (scalarizing) function projects
any given (feasible or infeasible) point g 2 Rk onto the
set of nondominated solutions. Point g is called a ref-
erence point, and its components represent the desired
values of the objective functions. These values are called
aspiration levels.

The simplest form of achievement function is:

s(g; q;w) D max
k2K

gk � qk
wk

; (5)

where w > 0 2 Rk is a (given) vector of weights, g 2 Rk,
and q 2 Q = {f (x): x 2 X}. By minimizing s(g, q, w) sub-
ject to q 2 Q, we find a weakly nondominated solution
vector q� (see, e. g. [25,26]). However, if the solution is
unique for the problem, then q� is nondominated. If g
2 Rk is feasible, then q� 2 Q, q� � g. To guarantee that
only nondominated (instead of weakly nondominated)
solutions will be generated, more complicated forms for
the achievement function have to be used, for example:

s(g; q;w; �) D max
k2K

�
gk � qk
wk

�
C �

kX
iD1

(gi � qi); (6)

where � > 0. In practice, we cannot operate with a def-
inition ‘any positive value’. We have to use a pre-
specified value for �. Another way is to use a lexico-
graphic formulation [10].
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The applying of the scalarizing function (6) is easy,
because given g 2 Rk, the minimum of s(g, v, w, �) is
found by solving the following LP-problem:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min � C �

kX
iD1

(gi � qi)

s.t. x 2 X
� �

g i�qi
wi

; i D 1; : : : ; k:

(7)

Problem (7) can be further written as:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min � C �

kX
iD1

(gi � qi)

s.t. x 2 X
qC �w � z D g
z � 0:

(8)

To illustrate the use of the achievement scalarizing
function, consider a two-criteria problem with a feasi-
ble region having four extreme points (0, 0), (0, 3), (2,
3), (8, 0), as shown in Fig. 2. In Fig. 2, the thick solid
lines describe the indifference curves when � = 0 in the
achievement scalarizing function. The thin dotted lines
stand for the case � > 0. Note that the line from (2, 3)
to (8, 0) is nondominated and the line from (0, 3) to (2,
3) (excluding the point (2, 3)) is weakly-nondominated,
but dominated. Let us assume that the DM first spec-
ifies a feasible aspiration level point g1 = (2, 1). Us-
ing a weight vector w = [2, 1]0, the minimum value of
the achievement scalarizing function (�1) is reached at
a point v1 = (4, 2) (cf. Fig. 2). Correspondingly, if an as-
piration level point is infeasible, say g2 = (8, 2), then the
minimum of the achievement scalarizing function (+ 1)
is reached at point v2 = (6, 1). When a feasible point
dominates an aspiration level point, then the value of
the achievement scalarizing function is always negative;
otherwise it is nonnegative. It is zero, if an aspiration
level point is weakly-nondominated.

SolvingMultiple Objective Problems

Several dozen procedures and computer implementa-
tions have been developed from the 1970s onwards
to address both multiple criteria evaluation and design

problems. The multiple objective decision procedures
always requires the intervention of a DM at some stage
in the solution process. A popular way to involve the
DM in the solution process is to use an interactive ap-
proach.

The specifics of these procedures vary, but they have
several common characteristics. For example, at each
iteration, a solution, or a set of solutions, is generated
for a DM’s examination. As a result of the examination,
the DM inputs information in the form of trade-offs,
pairwise comparisons, aspiration levels, etc. (see [20]
for a more detailed discussion). The responses are used
to generate a presumably, improved solution. The ulti-
mate goal is to find the most preferred solution of the
DM. Which search technique and termination rule is
used is heavily dependent on the underlying assump-
tions postulated about the behavior of the DM and the
way in which these assumptions are implemented. In
MCDM-research there is a growing interest in the be-
havioral realism of such assumptions.

Based on the role that the value function (3) is sup-
posed to play in the analysis, we can classify the as-
sumptions into three categories:
1) Assume the existence of a value function v, and as-

sess it explicitly.
2) Assume the existence of a stable value function v,

but do not attempt to assess it explicitly. Make as-
sumptions of the general functional form of the
value function.

3) Do not assume the existence of a stable value func-
tion v, either explicitly, or implicitly.

The first assumption is adopted in multi-attribute util-
ity or decision analysis (see, e. g. [7]). Interactive soft-
ware implementing such approaches on personal com-
puters exists.

The second assumption was a basic paradigm used
in interactive multiple criteria approaches in the 1970s.
A classical example is the GDF-method [3]. DM’s re-
sponses to specific questions were used to guide the
solution process towards an ‘optimal’ or ‘most pre-
ferred’ solution (in theory), assuming that the DM be-
haves according to some specific (but unknown) under-
lying value function (see for surveys, e. g. [5,20,21], and
[24]). Interactive software that implements such sys-
tems for a computer have often been developed by the
authors of the above procedures for experimental pur-
poses.
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The approaches based on the assumption on ‘no sta-
ble value/utility function’ typically operate with a DM’s
aspiration levels regarding the objectives on the feasi-
ble region. The aspiration levels are projected via min-
imizing so called achievement scalarizing functions (6)
[23,25]. No specific behavioral assumptions e. g. transi-
tivity are necessary.

In essence, this approach seeks to help the DMmore
or less freely to search the set of efficient solutions.
Interactive software that implements such systems for
a computer have been developed like ADBASE [22],
DIDAS [14], VIG [8], and VIMDA [9]. For an excel-
lent review of several interactive multiple criteria proce-
dures, see [21]. Other well-known books that provides
a deeper background and additional references espe-
cially in the field of multiple objective optimization in-
clude [1,4,5,6,19,27] and [28].

Multiple objective linear programming (MOLP) is
the most commonly studied problem in multiple crite-
ria decision making (MCDM). Most solution methods
are developed for this problem.

Example of a Decision Support System: VIG

Today, many systems use aspiration level projections,
where the projection is performed using Chebyshev-
type achievement scalarizing functions as explained
above. These functions can be controlled either by vary-
ing weights (keeping aspiration levels fixed) or by vary-
ing the aspiration levels (keeping weights fixed). Instead
of aspiration levels, some algorithms asks the DM to
specify the reservation levels for the criteria (see, e. g.
[15]).

An achievement scalarizing function projects one
aspiration (reservation) level point at a time onto the
nondominated frontier. By parametrizing the function,
it is possible to project the whole vector onto the non-
dominated frontier as originally proposed by [11]. The
vector to be projected is called a reference direction vec-
tor and the method reference direction method, cor-
respondingly. When a direction is projected onto the
nondominated frontier, a curve traversing across the
nondominated frontier is obtained. Then an interactive
line search is performed along this curve. The idea en-
ables the DM to make a continuous search on the non-
dominated frontier. The corresponding mathematical
model is a simple modification from the original model

(8) developed for projecting one point:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min � C �

kX
iD1

(gi � qi)

s.t. x 2 X
qC �w � z D g C tr; z � 0;

(9)

where t: 0 ! 1 and r 2 Rk is a reference direc-
tion. In the original approach, a reference direction was
specified as a vector starting from the current solution
and passing through the aspiration levels. The DM was
asked to give aspiration levels for criteria.

The original reference direction approach has been
further developed into many directions. First, [12] im-
proved upon the original procedure by making the
specification of a reference direction dynamic. The dy-
namic version was called Pareto race. In Pareto race,
the DM can freely move in any direction on the non-
dominated frontier he/she likes, and no restrictive as-
sumptions concerning the DM’s behavior are made.
Furthermore, the objectives and constraints are pre-
sented in a uniform manner. Thus, their role can also
be changed during the search process. The method and
its implementation is called Pareto race. The whole
software package consisting of Pareto race is called
VIG.

In Pareto race, a reference direction r is determined
by the system on the basis of preference information
received from the DM. By pressing number keys cor-
responding to the ordinal numbers of the objectives,
the DM expresses which objectives he/she would like to
improve and how strongly. In this way he/she implic-
itly specifies a reference direction. Figure 3 shows the

Multiple Objective Programming Support, Figure 3
Example Pareto race screen
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Pareto race interface for the search, embedded in the
VIG software [8].

Thus Pareto race is a visual, dynamic, search proce-
dure for exploring the nondominated frontier of a mul-
tiple objective linear programming problem. The user
sees the objective function values on a display in nu-
meric form and as bar graphs, as he/she travels along
the nondominated frontier. The keyboard controls in-
clude an accelerator, gears, brakes, and a steering mech-
anism. The search on the nondominated frontier is like
driving a car. The DM can, e. g., increase/decrease the
speed, make a turn and brake at any moment he/she
likes.

To implement those features, Pareto race uses cer-
tain control mechanisms, which are controlled by the
following keys:
� (SPACE) BAR, an ‘accelerator’: Proceed in the cur-

rent direction at constant speed.
� F1, ‘gears (backward)’: Increase speed in the back-

ward direction.
� F2, ‘gears (forward)’: Increase speed in the forward

direction.
� F3, ‘fix’: Use the current value of objective i as the

worst acceptable value.
� F4, ‘relax’: Relax the ‘bound’ determined with key

F3.
� F5, ‘brakes’: Reduce speed.
� F10, ‘exit’.
� num, ‘turn’: Change the direction of motion by in-

creasing the component of the reference direction
corresponding to the goal’s ordinal number i 2 [1,
k] pressed by DM.
An example of the Pareto race screen is given in

Fig. 3. The screen is associated with the numerical ex-
ample described in the next section.

Pareto race does not specify restrictive behavioral
assumptions for a DM. He/she is free to make a search
on the nondominated surface, until he/she believes that
the solution found is his/her most preferred one.

Pareto race is only suitable for solving moderate
size problems. When the size of the problem becomes
large, computing time makes the interactive mode in-
convenient. To solve large scale problems [13] pro-
posed a method based on Pareto race. An (interactive)
free search is performed to find the most preferred di-
rection. Based on the direction, an nondominated curve
can be generated in a batch mode if desired.

Numerical Illustrations

For illustrative purposes, we will consider the following
production planning problem, where a decision maker
(DM) tries to find the ‘best’ product-mix for three prod-
ucts: Product 1, Product 2, and Product 3. The produc-
tion of these products requires the use of one machine
(mach. hours), man-power (man hours), and two crit-
ical materials (crit. mat. 1 and crit. mat. 2). Selling the
products results in profit (profit). Assume that the DM
describes his/her decision problem as follows:

Of course, I would like to make as much profit as
possible. Because it is difficult and quite expen-
sive to obtain critical materials, I would like to
use them as little as possible, but never more than
I have presently in storage (96 units of each).
Only one machine is used to produce the prod-
ucts. It operates without any problems for at least
9 hours. The length of the regular working day
is 10 hours. People are willing to work overtime
which is costly and they are tired the next day.
Therefore, if possible, I would like to avoid it. Fi-
nally, product 3 is very important to a major cus-
tomer, and I cannot totally exclude it from the
production plan.

The traditional single objective programming con-
siders the problem as a profit maximization problem.
The other ‘requirements’ are taken as constraints. The
multiple objective programming takes a ‘softer’ per-
spective. Wemay, for instance, consider the problem as
a four objective problem. The DM would like to make
as much profit as possible, but simultaneously, he/she
would like to use those two critical materials as little as
possible, and in addition to maximize the use of prod-
uct 3. Machine hours and man hours are considered as
constraints, but during the search process the role of

Multiple Objective Programming Support, Table 1
The coefficientmatrix of the production planning problem

Prod. 1 Prod. 2 Prod. 3
mach. hours 1:5 1 1:6
man hours 1 2 1
crit. mat. 1 9 19:5 7:5
crit. mat. 2 7 20 9
profit 4 5 3
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Multiple Objective Programming Support, Table 2
A sample of solutions for the multiple criteria problem

I II III IV
Objectives:
crit. mat. 1 91:46 94:50 93:79 90:00
crit. mat. 2 85:44 88:00 89:15 84:62
profit 30:27 31:00 30:42 29:82
product 3 0:23 0:00 0:50 0:44
Constraints:
mach. hours 9:00 9:00 9:00 9:00
man hours 9:73 10:00 10:00 9:62
Decision Variables:
product 1 3:88 4:00 3:45 3:71
product 2 2:81 3:00 3:03 2:74
product 3 0:23 0:00 0:50 0:44

constraints and objectives may also be changed, if nec-
essary.

We assume that the problem can be modeled as an
MOLP-model. The coefficient matrix of the problem is
given in Table 1.

Thus, we have the following multiple objective lin-
ear programming model:

crit. mat. 1: 9P1 C 19:5P2 C 7:5P3 ! min
crit. mat. 2: 7P1 C 20P2 C 9P3 ! min
profit: 4P1 C 5P2 C 3P3 ! max
product 3: P3 ! max

subject to:

mach. hours: 1:5P1 C P2 C 1:6P3 � 9
man hours: P1 C 2P2 C P3 � 10

The problem has no unique solution. Using the
Pareto race (see Fig. 3) or any other software developed
for multiple objective programming enables a DM to
search nondominated solutions. Which solution he/she
will choose as a final one depends entirely on his/her
own preferences. Actually, all sample solutions except
solution II are somehow consistent with his/her state-
ment above. In solution II, product 3 is excluded from
the production plan.

Conclusion

In this article, we have provided an overview on multi-
ple objective programming support. The emphasis was

how to find the most preferred alternative from among
a set of reasonable (nondominated) alternatives. This
kind of the approach is unique for the multiple criteria
decision making. We have left other features like struc-
turing the problem, finding relevant criteria etc. beyond
this presentation. They are important, but also relevant
in the considerations of any decision support system.
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Multiplicative programming refers to a class of opti-
mization problems containing products of real-valued
functions in the objective and/or in the constraints.
A product of convex functions is called a convex mul-
tiplicative function; similar definitions hold for con-
cave and linear multiplicative functions. Multiplica-
tive functions appear in various areas, including mi-
croeconomics [4], VLSI chip design [10] and modu-
lar design [2]. Especially in multiple objective decision
making, they play important roles [3]. A typical ex-
ample is a bond portfolio optimization studied in [7],
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where a number of performance indices such as aver-
age coupon rate, average terminal yields and average
length of maturity associated with a portfolio (a bundle
of assets) are to be optimized (either minimized ormax-
imized) subject to a number of constraints. One handy
approach to simultaneously optimizing multiple objec-
tives without a common scale is to optimize the geo-
metric mean, or equivalently the product of these ob-
jectives. Thus, we are led to consider a multiplicative
programming problem.

The simplest subclass of multiplicative program-
ming problems is a linearmultiplicative program, which
is a quadratic program of minimizing a product of two
affine functions c>1 x + c10, i = 1, 2, over a polytope D�
Rn:

(
min f (x) D (c>1 xC c10)(c>2 xC c20)
s.t. x 2 D:

(1)

This problem was first studied by K. Swarup [13] many
years ago, but had attracted little attention until the
late 1980s when an intensive research was undertaken
[8,12,14]. In general, the objective function f is indef-
inite; it is quasiconcave on a region where the signs
of c>i x + ci0s are the same, but quasiconvex on a re-
gion where the signs are different [1,8]. Therefore, to
solve (1), we need to solve a quasiconcave minimization
problem:

(
min f (x)
s.t. x 2 D \ S;

(2)

and a quasiconcave maximization problem:
(
max f (x)
s.t. x 2 D \ S;

(3)

where S = {x 2 Rn: c>i x + ci0 � 0, i = 1, 2}. While (2)
belongs to multi-extremal global optimization [6] and
is known to be NP-hard [11] (cf. also � Complexity
Classes in Optimization; � Computational Complex-
ity Theory), problem (3) can be solved using a stan-
dard convex minimization technique because maximiz-
ing f (x) amounts to minimizing a convex function �
log(c>1 x + c10)� log(c>2 x + c20). For the same reason as
(3), certain linear programs with additional linear mul-
tiplicative constraints, e. g. the modular design problem

with xi yj � bij [2], can be handled within the frame-
work of convex programming, if xi, yj � 0.

A generalization of (1) is a convex multiplicative
program, which minimizes a product of several convex
functions f i(x), i = 1, . . . , p, over a compact convex set
D� Rn:

8̂
<̂
ˆ̂:
min f (x) D

pY
iD1

fi(x)

s.t. x 2 D:

(4)

Inmost of the existing solutions to (4), the convex func-
tions f i are assumed to be nonnegative-valued on D.
When f i(x0) = 0 for some i and for some x0 2 D, the
minimum value of (4) is zero; and x0 is a globally opti-
mal solution. We may therefore assume for each i that
f i(x)> 0 for all x 2 D. If f is a concave multiplicative
function instead of a convex one, the problem is equiv-
alent to a concave minimization problem because log
f(x) =

PpD1
i log f i(x) is concave. The convex multi-

plicative program (4) itself can also be transformed into
a concave minimization problem (cf. � Concave Pro-
gramming), though f is not a concave function. For ex-
ample, introducing additional variables yi, i = 1, . . . , p,
we have an equivalent problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
pX

iD1

log yi

s.t. x 2 D
fi(x) � yi ; i D 1; : : : ; p;
y � 0:

(5)

The number p of f is is often very small in comparison
with the dimension n of x; e. g. five or so in applica-
tions to multiple objective optimization. Owing to this
low-rank nonconvexity [9], problem (5) can be solved
far more efficiently than the usual concave minimiza-
tion problem of the same size.

In addition to (1) and (4), there are a number of
studies on problemswith generalized convex multiplica-
tive functions of the forms f (x) =

Qp
iD1 f i(x)+ g(x) and

f (x) =
Pp

iD1 f 2i � 1(x) f 2i(x)+ g(x), where the f is and
g are convex functions. These are all nonconvex min-
imization problems, each of which has an enormous
number of local minima. Nevertheless, algorithms de-
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veloped in the 1990s can locate a globally optimal so-
lution in a reasonable amount of time, by exploiting
special structures of f such as low-rank nonconvexity.
A comprehensive review of the algorithms are given by
H. Konno and T. Kuno in [5].
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Introduction

In this contribution, we consider Multi-Quadratic Pro-
gramming (MQP) problems, where the objective func-
tion is a quadratic function and the feasible region is de-
fined by a finite set of quadratic and linear constraints.
They can be formulated as follows:

min xTQx C cT x
s.t. xTAjx C Bjx � b j ; j D 1; : : : ;m x � 0 ;

(1)

where Aj is an (n � n) matrix corresponding to the
mth quadratic constraint, and Bj is the jth row of the
(m � n) matrix B.
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MQP plays an important role in modeling many
diverse problems. The MQP encompasses many other
optimization problems since it provides a much im-
provedmodel compared to the simpler linear relaxation
of a problem. Indeed, linear mixed 0-1, fractional, bi-
linear, bilevel, generalized linear complementarity, and
many more programming problems are or can easily be
reformulated as special cases of MQP. However, there
are theoretical and practical difficulties in the process of
solving such problems. However, very large linear mod-
els can be solved efficiently; whereas MQP problems are
in general NP-hard and numerically intractable. The
problem of finding a feasible solution is alsoNP-hard.
This is because MQP is a generalization of the lin-
ear complementarity problem [29]. The nonlinear con-
straints in MQP define a feasible region which is in
general neither convex nor connected. Moreover, even
if the feasible region is a polyhedron, optimizing the
quadratic objective function is strongly NP-hard as
the resulting problem is considered to be the disjoint
bilinear programming problem. Therefore, finding a fi-
nite and exact algorithm that solves large MQP prob-
lems is impractical. Even for the convex case (when
Q and Aj are positive semidefinite), there are very few
algorithms for solving MQP problems. However, the
MQP constitutes an important part of mathematical
programming problems, arising in various practical ap-
plications including facility location, production plan-
ning, VLSI chip design, optimal design of water distri-
bution networks, and most problems in chemical engi-
neering design.

The MQP was first introduced in the seminal paper
of Kuhn and Tucker [31]. Later on, the case of MQP
with a single quadratic constraint in the problem was
discussed in [55,56]. The first general approach for solv-
ing MQP problems was proposed in [12], where the
following two Lagrange functions for MQP are consid-
ered:

L1(x; �) D xTQx C cT x

C

mX
jD1

� j(xTAjx � Bjx � b j) ;

L2(x; �; �) D L1(x; �) � �i xi ;

where � and � are the multipliers for the quadratic
and bound constraints respectively. A cutting plane al-
gorithm was applied to solve this problem; that is, the

algorithm solves a sequence of linear master problems
that minimize a piecewise linear function constructed
from the Lagrange functions for constant x, and a pri-
mal problem with either an unconstrained quadratic
function (using L2(x; �; �)) or a quadratic function
over the nonnegative orthant (using L1(x; �)) [21].

Multi-Quadratic Integer Program

In this contribution we consider a multi-quadratic
integer programming (MQIP) problem with bilevel
variables. This problem is a more specific case of
MQP. Recently, multi-quadratic zero-one program-
ming problems were proved equivalent to mixed-
integer programming problems [16]. In that work,
a quadratic zero-one programming was initially proved
equivalent to a mixed integer programming prob-
lem. Then, the result was extended to the case multi-
quadratic programming case.

Throughout this paper, we consider a multi-
quadratic zero-one programming problem, which has
following form:

P1 :: min f (x) D xTAx ; s.t. Bx � b ; xTCx � ˛ ;

x 2 f0; 1gn ; ˛ is a constant :

Notice xTCx � ˛ essentially represent the same the
quadratic constraints as xTAjx C Bjx � b j in problem
(1), due to the binary variables’ property xi xi D xi .

Applications

Bilinear Problem

Each n-dimensional MQP problem can be easily trans-
formed to a 2n-dimensional bilinear problem. A strat-
egy for reducing the necessary dimension of the
resulting bilinear program is also proposed [7,28].
However, on the other hand, bilinear optimization
problems are nothing else but a special instance of
MQP. Pooling problems in petrochemistry, the modu-
lar design problem introduced in [17], in particular the
multiple modular design problem [7,18] or the more
general modularization of product sub-assemblies [46],
and special classes of structured stochastic games [20]
are only some examples of the wide range of applica-
tions of bilinear programming problems. Another large
class of optimization problems are problems with linear
or quadratic functions additionally involving Boolean
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variables (i. e., variables xi 2 R with the constraint
xi 2 f0; 1g). Another widely explored problem is the
problem of packing n 2 N equal circles in a square,
which can be transformed to a MQP problem. One
looks for the maximum radius r of n non-overlapping
circles contained in the unit square. This problem is
equivalent to a MQP problem with a linear objective
function and concave quadratic constraints.

Minimax Problem

A related class of global optimization problems are
minimax location problems [42], which also lead to
quadratic constraints. Production planning and port-
folio optimization are examples where so-called chance
constrained linear programs occur. These are problems,
looking similar to linear programs. However, the ma-
trix describing the linear constraints of such problems
is not deterministic, it is a stochastic one. Under cer-
tain restrictive assumptions it is possible to transform
these stochastic constraints to deterministic quadratic
constraints [42], such that in general a problem of type
MQP is obtained. In [8] it is shown that nonconvex
MQP problems can be used for the examination of spe-
cial instances of nonlinear bilevel programming prob-
lems. Other applications of MQP include the fuel mix-
ture problem encountered in the oil industry [43] and
also placement and layout problems in integrated cir-
cuit design [9,10].

Mixed Integer Problem

As described in the previous section, MQP prob-
lem can be easily linearized to a mixed integer zero-
one problem with the same problem size. In the-
ory and practice, the linearization technique proposed
in [16] has been shown to be superior than other
conventional linearization techniques. In medical ap-
plications, multi-quadratic zero-one problems were
used to model epileptic brains for electrode selection
problems. Basically, multi-quadratic zero-one prob-
lems were solved to identify the location (electrode)
sites of the brain that can detect seizure pre-cursors
(predict seizures) [30,34,36]. In order to operate in
real time, multi-quadratic zero-one problems were lin-
earized to a mixed integer zero-one problem, which is
much faster to solve in practice.

Hence there are many applications of MQP.
Whether the MQP is in practice applicable for solving,
for example, problems resulting from integer program-
ming problems, depends on the numerical efficiency
of the solution method that is used. Up to now only
few methods for solving the considered general case of
MQP were proposed in the literature. Most of them re-
sult frommethods being developed for other more gen-
eral problem classes. In the next section we will discuss
some of the solution techniques.

Solution Techniques

There are many different techniques proposed for solv-
ing this type of problems, most of them are of branch
and bound type or some type of linearization tech-
niques [4,25,26,27,37,38,39,57]. A disadvantage of the
standard linearization technique is the additional vari-
ables for each product xi x j , in which the number
of new variables is O(n2), where n is the number
of initial 0-1 variables [4,25,26,57]. The method pro-
posed in [16] needs only O(kn) additional continu-
ous variables, where k is the number of quadratic con-
straints, and the number of initial 0-1 variables remains
the same. A branch-and-bound algorithm for solving
MQP problems (and other more general problems),
when the objective function is separable and the con-
straint set is linear, was introduced in [19]. The method
evolves solving bounding convex envelope approximat-
ing problems over successive partitions of the feasible
region. This method was later extended to deal with
nonconvex constraints but it generates a number of in-
feasible solutions and does not, in general, converge
in a finite number of iterations [53]. An algorithm for
the solution to linear problems with an additional re-
verse convex constraint was proposed in [15]. The al-
gorithm involves partitioning the feasible region into
subsets contained in cones originating at an infeasi-
ble vertex of the polytope formed by the linear con-
straints while ensuring that an interior point of the
feasible region is contained in each partition. Later
on, an algorithm for the solution to problems with
concave objective functions and separable quadratic
constraint was proposed in [8]. The algorithm uses
piecewise linear approximation for the quadratic con-
straints and solves a MQP problem as a mixed 0-1
linear problem. This algorithm is similar to the solu-
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tion approaches for concave quadratic problems [40]
and for indefinite quadratic problems [35]. During the
last decade, several authors are interested in some spe-
cial cases of MQP. Also, many extensions of MQP
have been discussed in the literature. The problem of
minimizing an indefinite quadratic objective subject
to two-sided indefinite quadratic constraints was dis-
cussed in [54]. Under suitable assumptions, they de-
rived necessary and sufficient optimality conditions and
gave some conditions for the existence of solutions for
this nonconvex program. While several methods have
been suggested for solving MQP problems, numerical
solutions of the general problem are still rarely avail-
able in the literature. By using a double duality argu-
ment, under suitable assumptions, the MQP is proved
to be equivalent to a convex program [6]. In addition,
a problem with a concave quadratic function is proved
to be equivalent to a minimax convex problem, and
thus can be solved in polynomial time via interior-
points methods. The property is no longer true when
Q is an indefinite quadratic function [6].

Linear Forms of MQIP

As aforementioned, MQP problems have a close re-
lationship with mixed integer zero-one problem by
applying linearization schemes, which have been ex-
plored for decades. Although the existing linearization
schemes originally were developed for QP instead of
MQP, they could be easily applied to MQP, since the
quadratic constraints in MQP could be reformulated by
using the same technique in linearization considered
for the quadratic objective. This section will provide
a brief view of major linearization schemes and their
applications on MQP problems.

No matter what specific reformulation of the lin-
earization schemes, the ideas are the same as replacing
the quadratic product xi x j by additional variables. Cur-
rently existing linearization schemes were developed in
four phases.

The prototype of linearization technique arose in
1960s, proposed byWatters [57] and Zangwill [58] (see
also Fortet [22,23]). This approach introduces addi-
tional binary variables wij for replacement of the prod-
ucts xi x j and additional constraints, xi C x j � wi j � 1
and xi C x j � 2wi j;8i; j; for a guarantee of correct re-
placement. Taken this approach, the MQP P1 is trans-

formed as following form:

MIP1 :: min f (x;w) D
X
i

ai i xi

C
X
i

X
j>i

(ai j C aji)wi j; s.t. Bx � b;

X
i

ci i xi C
X
i

X
j>i

(ci j C c ji)wi j � ˛;

xi C x j � wi j � 1;8i; j; xi C x j � 2wi j;

8i; j; x 2 f0; 1gn;wi j 2 f0; 1g ˛ is a constant
and A D (ai j);C D (ci j) :

In this formulation, the quadratic products xi x j in
objective and constraints, xTAx and xTCx, have
been similarly replaced by additional binary vari-
ables wij, and the formulation is consistent with orig-
inal P1 by additional constraints, xi C x j � wi j � 1
and xi C x j � 2wi j;8i; j. Following this seminal work,
Glover and Woolsey [25] provided more concise zero-
one linear programming formulations, where reformu-
lation rules are given under difference conditions to re-
duce the numbers of additional constraints and addi-
tional variables.

In the second phase development of linearization
techniques, researchers recognized the additional bi-
nary variables wij inMIP1 could be relaxed by continu-
ous ones. Such linearization schemes include the mod-
els developed in Glover [24], Glover and Woolsey [26],
and Rhys [45]. One scheme with close relationship of
the linearization prototype was provided in Glover and
Woolsey [26], which introduces additional cut con-
straints xi � wi j and x j � wi j;8i; j enforcing the ad-
ditional continuous variables wij to be binary. However,
this technique doubles the number of additional con-
straints added and thereafter enlarges the size of origi-
nal MQP problems. A straightforward generalization of
xi � xi x j;8 j generated their further improvement of
this technique in [26] that used alternative concise con-
straints (n � i)x j �

P
( j>i) wi j;8i to enforce the ad-

ditional variables to be binary, with somewhat fewer
constraints. Applying such linearization technique, the
MQP P1 has the following representation:

MIP2 :: min f (x;w) D
X
i

ai i xi

C
X
i

X
j>i

(ai j C aji)wi j; s.t. Bx � b;
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X
i

ci i xi C
X
i

X
j>i

(ci j C c ji )wi j � ˛;

xi C x j � wi j � 1;8i; j; (n � i)x j

�
X
( j>i)

wi j;8i; x 2 f0; 1gn;wi j � 0

˛ is a constant and A D (ai j);C D (ci j) :

The main difference between MIP1 and MIP2 is the
continuity of wij and the smaller number of additional
constraints.

Beyond the linearization technique in [26], Glover
first noticed Petersen’s work [41], where the cross prod-
ucts in the model are considered by their upper and
lower bounds. Following this idea, Glover, in [24],
firstly proposed a linearization technique introduc-
ing different continuous variables wi to the pioneer
research. In his linearization scheme, the additional
continuous variables are defined by wi D xi

P
j ai jx j ,

where xi are binary variables in original model and aij
are quadratic coefficients in the objective function. Fur-
ther define the lower and upper bounds of

P
j ai jx j by

A�i D
P

jfai jjai j < 0g and ACi D
P

jfai jjai j > 0g, re-
spectively. Taking the cross products and binary vari-
ables into consideration, the additional inequalities
ACi xi � wi � A�i xi and

P
j ai jx j�A�i (1� xi) � wi �P

j ai jx j � ACi (1� xi) provide the equivalence of orig-
inal QP model. Applied such linearization technique,
the MQP P1 has a different structure as follows:

MIP3 :: min f (w) D
X
i

wi ; s.t. Bx � b;

ACi xi � wi � A�i xi ;8i;
X
j

ai jx j � A�i (1 � xi)

� wi �
X
j

ai jx j � ACi (1 � xi )8i
X
i

vi � ˛;

CCi xi � vi � C�i xi ;8i;
X
j

ci j x j � C�i (1 � xi)

� vi �
X
j

ci j x j � CCi (1 � xi)8i; x 2 f0; 1gn;

˛ is a constant :

Notice, in MIP3, the quadratic constraint xTCx � ˛ is
replaced by a series of inequalities

P
i vi � ˛;C

C
i xi �

vi � C�i xi ;8i;
P

j ci jx j � C�i (1 � xi) � vi �P
j ci jx j � CCi (1 � xi)8i, which follow the definitions

in [24] as: vi D xi
P

j ci jx j , C�i D
P

jfci jjci j < 0g,

and CCi D
P

jfci jjci j > 0g. Compared MIP3 with
MIP1 and MIP2, the most important improvement of
this linearization technique is that the numbers of ad-
ditional variables and constraints reduce from O(n2)
to O(n). Some recent papers [1,2] proposed further-
improved linearization techniques based on the strat-
egy of Glover’s technique, either providing concise for-
mulation or generating tighter upper/lower bounds.

The linearization techniques in the third phase de-
velopment considered the transformation from the di-
rection of tightness instead of problem size. One typical
technique included in this category is the famous Sher-
ali–Adams Reformulation-Linearization Technique (as
RLT in short) [3,4,5,50,51,52] which provides wide-
range applications. The development milestones of
RLT can be found in a recent memorial paper written
by Sherali [47]. Interested readers could follow this pa-
per to find the development details of the linearization
scheme.

Some practical applications of linearization tech-
nique in early 1980s (e. g. [13] considered for solv-
ing notorious quadratic assignment problem) gener-
ated the experiences that the linearization techniques
are practically inefficient although they may have small
problem size. Such experience intrigued some re-
searchers to provide better LP structures with tighter
bounds, which offer better computational efficiencies,
rather than to pursue smaller problem size. The lin-
earization technique shown in [3] provides a struc-
ture having tighter bounds for zero-one QP. The trans-
formation happens not only replacing the cross prod-
ucts xi x j in the model but also reconstructing the con-
straints to obtain the tightness. The example given
in [3] not only includes the additional constraints and
continuous variables, but reconstructs the linear con-
straints by multiplying xj and 1 � x j , respectively. Ap-
plying this linearization technique to MQP, P1 is trans-
formed as follows:

MIP4 :: min f (x;w) D
X
i

ai i xi

C
X
i

X
j>i

(ai j C aji)wi j; s.t.
X
i

Bki xi � ˇk

�
X
i< j

Bkiwi jC
X
i> j

Bkiw jiC (Bk j � ˇk)x j

� 0;
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8 j; k;
X
i

ci i xi C
X
i

X
j>i

(ci j C c ji)wi j � ˛;

xi C x j � wi j � 1;8i; j; xi � wi j; x j � wi j

8i; j; x 2 f0; 1gn;wi j � 0;
where ˛ is a constant and A D (ai j);

C D (ci j);

B D (Bi j); b D (ˇk) :

Notice the linear constraints Bx � b are reconstructed
as by multiplying xj and 1 � x j and then have much
more complicated but tighter representations. The au-
thors also provided the rigorous proof that the con-
struction is tighter than the linearizaiton provided
by Glover [24]. Other than that, this formulation
uses the inequalities xi � wi j and x j � wi j instead of
(n � i)x j �

P
( j>i) wi j which will weaken the model’s

tightness as pointed out by the authors.
Using this idea of multiplying xj and 1 � x j to the

feasible set Adams and Sherali [4] provided a lineariza-
tion strategy to more general MIP with cross products
between continuous and binary variables. Compar-
isons were also provided between the RLT strategy and
the linearization techniques in Watters [57], Zang-
will [58], Petersen [41], Glover and Woolsey [25,26],
and Glover [24]. Along with this direction, Sherali
and Adams [49,50,51] generated a hierarchy of relax-
ations for zero-one polynomial problems. This relax-
ation strategy generalizes the idea in [3] by introduc-
ing a select set of d-degree polynomial terms or factors,
where d is an integer less than the number of binary
variables. Multiplying the feasible set by d-degree poly-
nomial terms, as the authors showed, obtains an equiv-
alent reformulation, for each d D 1; : : : ; n, which can
enforce the binary restrictions on the original x vari-
ables. And these papers also proved that, when d D n,
the resulting linear system characterizes the convex hull
of feasible solutions, and therefore is tighter than any
other linearization techniques.

The most recent development, as the final phase,
of linearization technique is proposed by Chaovalit-
wongse et al. [16]. The authors took the dual vari-
ables into account, and proposed a new linearization
technique based on KKT optimality conditions. Their
approach was originally considered for MQP, and is
not hard to be utilized for zero-one QP problems.
The transformation of MQP P1 using this linearization

strategy can be shown as follows.

MIP5 :: min g(s; x) D eT s �MeTx; s.t.

Ax � y � s CMe D 0; Bx � b;

y � 2M(e � x);Cx � z CM0e � 0;

eTz � M0eTx � ˛; z � 2M0x;

x 2 f0; 1gn; yi ; si ; zi � 0;
where M0 D kCk1 and M D kAk1 :

Notice the additional variables including s; y and z,
which are introduced from the Lagrangian function of
MQP.

Theorem 1 P1 has an optimal solution x0 iff there exist
y0; s0; z0 such that (x0; y0; s0; z0) is an optimal solution
of MIP5.

Proof 1 See [16]. �

To conclude all the linearization schemes shown
herein, we provide a table aggregating the numbers
of additional variables and constraints for these tech-
niques as a brief comparison. Assuming we have k
linear constraints

P
i B ji xi � b j; j D 1; : : : ; k and m

quadratic constraints xTCjx � ˛ j ; j D 1; : : : ;m, in an
MQP. Also assume that the number of binary variables
n� k and n� m. Then the number of additional
variables and constraints of the linearized forms apply-
ing different techniques can be shown in the table as
follows:

Models P1 MIP1 MIP2 MIP3 MIP4 MIP5
Additional
constraints

0 O(n2) O(n2) O(nm) O(n2) O(nm)

Addiontal
variables

0 O(n2) O(n2) O(nm) O(n2) O(nm)

Total
constraints

O(mC k) O(n2) O(n2) O(nm) O(n2) O(nm)

Total
variables

O(n) O(n2) O(n2) O(nm) O(n2) O(nm)

Notice that the problem size is not the only rea-
son of computational efficiencies. The tightness of lin-
earization schemes, as pointed out by [47], may signif-
icantly change the effectiveness of the techniques for
MQP.

In terms of solution methods, there are many stud-
ies in the literature dealing with the MQP.Most of them
apply a technique called semidefinite programming to
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solve the problem. Specifically, these approaches in-
clude special branch-and-bound [9,10,32,44], branch-
and-cut [11], lift-and-project [11], and the state-of-the-
art Interior Point method [14,33]. Some of them have
been applied in the commercial software package, e. g.,
the solvers BARON and CPLEX in GAMS.
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Introduction

Many problems in optimization involve multiple length
and time scales. Perhaps the most commonly stud-
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ied problems in this area are configurational molecu-
lar modeling problems such as phase transitions in wax
formation, the structure of Lennard-Jones (LJ) clusters,
and protein folding. This class of optimization prob-
lems is generally characterized by the presence of many,
many stationary points (i. e., minima, first-order sad-
dles, second-order saddles, etc.) that give the appear-
ance of roughness at the small length scale and quite
different geometric structure at the large length scale.
A good example of the disparity in different length
scales is described in Onuchic et al. [28] who illus-
trate the small-scale geometry of the protein free energy
landscape showing many stationary points (or rough-
ness or frustration) at the small length scale and a fun-
nel shaped geometry for the large length scale. This is
the multi-scale description we adopt in this expose. It is
often acknowledged that finding all stationary points on
these multi-scale objective function surfaces is all but
impossible [8] for many problems of practical interest
and in most cases it is irrelevant. What is of primary
interest from a computational chemistry perspective is
finding the relatively few important stationary points
that describe important physical phenomena – with-
out finding everything else. These important stationary
points include global minima, strong local minima and
important transitions states that describe rate limiting
behavior.

There are many deterministic and/or stochastic
methods that can be used to solve multi-scale global
optimization problems. See, for example, [1,2,3,4,5,6,7,
10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
29,30,31,32,33,34,35,36]. These methodologies run the
gambit frombranch and boundmethods, to homotopy-
continuation and interval methods, to simulated an-
nealing and genetic algorithms, to terrain and funnel-
ing methods, to specialized techniques.

In this chapter, a deterministic terrain/funneling
approach for multi-scale global optimization is de-
scribed. This approach considers two distinct length
scales and assumes that the geometry of the larger
length scale is funnel shaped. Terrain methods are used
to explore the objective function landscape at small
length scales and gather point-wise and average gradi-
ent and curvature information while funneling meth-
ods are used to make large-scale, monotonically de-
creasing moves at the large length scale and ‘funnel’ it-
erates to the global minimizer.

Formulation

The formulation of the problem under consideration is
straightforward. It is to find the

global min f (z) : subject to z � c(z) (1)

where f D f (z) is a C3 objective function defined on
Rn subject to bounds on variables, c(z), and where z are
the optimization variables. It is assumed that f has two
distinct length scales – a small length scale of consider-
able roughness and a large length scale where f has non-
quadratic behavior. For the discussions that follow, it is
convenient to denote the gradient of f by g D g(z) and
the Hessian matrix of f by h D h(z).

Generally, formulations based on second-order
Taylor series expansion are adequate to describe be-
havior at the small length scale, and methods based on
quadratic approximations of f are well known. How-
ever, since it is assumed that the behavior of the ob-
jective function, f , is non-quadratic at the large length
scale, funneling methods are used to build approxima-
tions to the large-scale geometry of f using the funnel
function given by

F(z) D F0 � � exp[�q(z)] (2)

where q(z) D 1
2 z

TAz C bTz C c, and where � > 0, F0
and c are scalar parameters, b is an n-dimensional vec-
tor, and A is an n x n symmetric matrix. The functional
form of Eq. (2) is interesting because it is non-convex,
has a unique global minimum when A is positive defi-
nite, and contains certain inherent self-scaling charac-
teristics. Figure 1 gives an illustration of the funnel ge-
ometries that can be represented by the functionality of
Eq. (2).

The funnels at the top and the bottom left in Fig. 1
each have unique minimum because A is positive defi-
nite while the one at the bottom right has two minima
since A is indefinite.

Methods

In this sub-section, the global terrain method, a fun-
neling algorithm, and a multi-scale global optimization
method are described.
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Multi-Scale Global Optimization Using Terrain/Funneling Methods, Figure 1
Various Funnel Geometries

A Global Terrain Method for Optimization
at the Small Length Scale

Terrain methods [18,19,20] have described in detail in
a separate chapter in this encyclopedia and are briefly
summarized in this chapter for the purpose of continu-
ity of presentation. Terrain methods are used to locate
sets of stationary and singular points of the objective
function. They do this by following valleys and moving
up and down the landscapes of gTg and f . Key among
the equations used in terrain methods is the characteri-
zation of valleys as solutions, V , to a sequence of general
nonlinearly constrained optimization problems

V D fmin hTgThg such that gTg D L; for all L" �g

(3)

where g and h are defined as before, where L is any given
value (or level) of the least-squares objective function,
and where � is some collection of contours. Terrain
methods require
1) Reliable downhill equation solving
2) Reliable and efficient computation of singular points
3) Efficient uphill movement comprised of predictor-

corrector calculations
4) Reliable and efficient eigenvalue-eigenvector com-

putations

5) Effective bookkeeping
6) A termination criterion to decide when the compu-

tations have finished.
In this chapter, a terrainmethodology is used to find

sets of stationary and singular points and to determine
average gradient and average curvature (or Hessian ma-
trix) information along a given terrain path. Average
gradient and curvature information is calculated from
the mean value theorem using the following equations.

hgi D (1/˛) s g[z(˛)]d˛ (4)

hhi D (1/˛) s h[z(˛)]d˛ (5)

where ˛ is some relevant length of the smooth ter-
rain path connecting any set of stationary and singular
points. It is important for the reader to understand that
it is the set of stationary and singular points as well as
average gradient and Hessian matrix information that
are communicated from the small length scale to the
large length scale. This will be discussed again a little
later in this chapter.
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A Funneling Method for Optimization
at the Large Length Scale

To build iterative global funnel approximations of the
objective function we match function, gradient, and
second derivative information of the true objective
function, f , g and h, with the function, gradient, and
Hessian matrix information, F,G andH respectively, of
the funnel function at various points, where G D G(z)
and H D H(z) are given by

G(z) D � exp[�q(z)][AzC b] (6)

H(z) D � exp[�q(z)][A� (Az C b)(AzC b)T] (7)

Note that if f (z) is used in place of F(z) in Eq. (2), then
it follows that

�(z) D F0 � f (z) D � exp[�q(z)] (8)

where � > 0 is a positive scaling factor that depends on
a single numerical measurement, f (z), and the scalar
parameter, F0. Moreover, replacing G(z) with g(z) and
H(z) with h(z) in Eqs. (6) and (7) respectively give the
equations

[Az C b] D g(z)/� (9)

A D [�hC ggT]/�2 (10)

Equations (8), (9), and (10) show that it is possible to
estimate A and b from values of f (z), g(z), and h(z)
using interpolation formula at two or more iterates.

Interpolating Formulae Let zk be any value of the
unknown optimization variables with corresponding
objective function, gradient and Hessian matrix values
f k, gk and hk respectively. Also let zkC1 be some other
arbitrary but not necessarily nearby or successive iter-
ate with corresponding function, gradient and Hessian
matrix values fkC1, gkC1 and hkC1. Writing Eq. (8) for
zk and zkC1 and then subtracting the latter from the for-
mer, eliminates F0 and gives

�kC1 � �k D fk � fkC1 (11)

Repeating the same algebra using Eq. (10) yields

�2k [�kC1hkC1 C gkC1gTkC1] � �
2
kC1[�k hk C gk gTk ] D 0

(12)

Equations (11) and (12) form a set of [1C n(n C 1)/2]
nonlinear equations in the two unknowns �k and �kC1

when the symmetry of the associated matrices is taken
into account. This together with Eq. (11) gives a to-
tal of [1C n(n C 1)/2] nonlinear equations. For n D 1,
there are two equations and two unknowns. When
n > 1 there are more equations than unknown vari-
ables. However, irrespective of this, two equations for
which �k and �kC1 > 0 can be determined using the
Routh criterion.

Estimating Funnel Parameters Calculated values of
�k and �kC1 can be used to determine the matrixA from
Eq. (10) – using gradient and Hessian matrix informa-
tion either at zk or zkC1. Following this, the parameter b
can be computed by simply rearranging Eq. (9) to give

b D g(z)/� � Az (13)

while F0 can be calculated from F0 D f (z)C � . Like A,
the values of b and F0 can be determined using function
and gradient values at either zk or zkC1.

Finding the Funnel Minimum It is then straightfor-
ward to estimate the unique global minimizer of the
funnel approximation, say y, by simply solving

Ay D �b (14)

Note that Eq. (10) shows that the matrix A is gener-
ated from a rank-one, positive semi-definite correction
to h(z), that the sign definiteness of A can be controlled
by the parameter � , and that � appears to also play the
role of a self-scaling factor.

Communication Between Length Scales One of the
keys to success in any multi-scale global optimization
methodology is the communication between length
scales. In the terrain/funneling approach to multi-scale
global optimization, small-scale calculations communi-
cate average gradient and Hessian matrix information
at two distinct points to the large length scale. The large
length scale optimizations, on the other hand, com-
municate an estimate of the values of the optimization
variables at a converged minimum of the funnel ap-
proximation to the small length scale and identify the
next region on the objective function surface on which
small-scale optimizations should be conducted.
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AMulti-Scale Global Optimization Method

The details of a multi-scale global optimization
methodology based on the terrain and funneling meth-
ods is as follows.
1 Perform two sets of small-scale optimization calcu-

lations using the terrain methodology starting from
two different points on the objective function sur-
face. Calculate average gradient, and average Hes-
sian information along the resulting terrain paths.
Thus at the kth funnel iteration the following infor-
mation is available – zk, f k , gk and hk and zkC1, fkC1,
gkC1 and hkC1 such that fkC1 < f k.

2 Conduct iterative large-scale optimization calcula-
tions with the funneling methodology initialized
using the objective function, average gradient and
average Hessian information from the small-scale
optimization calculations to find a funnel minimum
that also corresponds to a stationary point on the
true objective function surface. To do this,
a) Solve Eqs. (11) and (12) for �k and �kC1.
b) Using �kC1, calculate A and b from Eqs. (10)

and (13) respectively.
c) Determine an estimate of funnel minimum, y,

from Eq. (14).
d) Evaluate f (y), g(y) and h(y).
e) Test f (y) against fkC1. If f (y) < fkC1, then go

to step 2f for the next funnel iteration. Else set
�k D �k/2 and return to step 2a.

f) Set zkC1 D y, fkC1 D f (y), gkC1 D g(y), and
hkC1 D h(y).

g) If jjg(zkC1)jj < ", set y D y�, and go to step 3;
else go to step 2a.

3 Conduct a new set of small-scale terrain calculations
using the funnel minimum from step 2. Calculate
average gradient and average Hessian information
along the resulting terrain path such that new values
of zkC1, fkC1, gkC1 and hkC1 satisfy the condition
fkC1 < fk .

4 Repeat step 2 using the new small-scale information
and zk, f k, gk and hk from step 1.

5 Repeat steps 2 and 3 until there is no further decrease
in the objective function.
Here we describe step 2 of themulti-scale algorithm.

The most effective way to determine �kC1 in step 2a is
to rearrange Eq. (11) for �kC1 in terms of �k and then
substitute the resulting expression into Eq. (12) This

gives a cubic polynomial equation in �k and shows that
there are three possible values of �k and thus three pos-
sible sets of scaling factors (�k , �kC1). Using an equa-
tion solver like Newton’s method, it is easy to find one
solution for �k . The other two values of �k can be deter-
mined by deflation of the cubic equation to a quadratic
equation and by using the quadratic formula. The cor-
rect value of �k is the smallest real valued �k > 0 such
that �kC1 > �k , where �kC1 = f k – fkC1 C �k . Step 2b
is straightforward and step 2c requires the solution of
a system of linear equations. Step 2d evaluates the ac-
tual function, gradient, and Hessian matrix at the fun-
nel iterate y. Step 2e is used to ensure monotonic de-
creasing objective function values by halving �kC1 un-
til f (y) < fkC1 while step 2f replaces the information
associated with zkC1 with that for the funnel iterate y.
Finally, step 2g checks the norm of the gradient of the
objective function and terminates the funnel iterations
once that norm of the gradient falls below the spec-
ified tolerance. Note that any point, y�, that satisfies
the convergence condition in step 2g is simultaneously
a stationary point of f (z) and a minimizer of the funnel
function F(z).

The proposed multi-scale optimization algorithm
is very robust. The reason for this is because if the
funneling algorithm gets trapped at a local minimum,
the methodology returns to the small-scale terrain cal-
culations to get average gradient and average Hessian
information around that local minimum. Replacing
point-wise zero-valued gradient information at a local
minimum with averaged non-zero valued gradient in-
formation forces the optimizer to look for a minimizer
that is deeper in funnel. By forcing movement further
down the funnel in this way, the multi-scale algorithm
will continue to improve the value of the objective func-
tion in a monotonic fashion until it reaches the global
minimum at the bottom of the funnel.

Application

In this sub-section, a simple illustration of the multi-
scale global optimization methodology is given us-
ing the classical thirteen-particle Lennard-Jones (LJ13)
problem. This example was selected because it is the
first in the series of Lennard-Jones clusters that truly
has a single funnel based on the Mackay icosahedron
structure with the global minimum lying at the bot-
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tom of the funnel [8]. The LJ13 cluster has 33 unknown
Cartesian coordinates, 1509 minima, 116,835 first-
order and second-order transition states, and many
higher order transition states [9].

Small Scale Terrain Optimization

Small-scale optimization calculations were performed
using the terrain methodology from two different start-
ing points. From the first starting point, which corre-
sponds to an energy of E = �38.8572, six (6) station-
ary and singular points along a terrain path were calcu-
lated requiring 4832 function and gradient evaluations
and 616.68 s of computer time. Average gradient and
Hessian information was accumulated along the terrain
path defined the path integrals given by Eqs. (4) and (5).
From a second and quite different starting point on the
objective function surface another set of small-scale op-
timization calculations was performed using the terrain
methodology. The energy at this second starting point
was E = �38.4246, and five (5) stationary and singular
points were calculated requiring 1415 function and gra-
dient evaluations and 214.25 s of computer time. Again,
average gradient andHessian information was accumu-
lated along the terrain path using the path integrals us-
ing Eqs. (4) and (5).

Large Scale Funneling Optimization

To build an approximation of the large-scale geometry,
two singular points – one from each of the two sets of
terrain calculations – were selected. Using the function
values at these singular points as well as average gra-
dient and average Hessian information, funnel param-
eters were determined and a first estimate of the fun-
nel minimum was calculated. We then replaced one of
the singular points with this estimate of the funnel min-
imum and repeated the funnel optimization calcula-
tions until jj gjj < " D 1 x 10�4. Figure 2 summarizes
these results, which are shown by the curve of dark or
black diamonds. The resulting structure for LJ13 is also
shown in Fig. 2. Twenty (20) funneling iterations were
required for convergence to the global minimum at
E = �44.3268 on the LJ13 energy surface.

Robustness

Terrain/funnel calculations were performed using
many other arbitrary starting points on the potential

Multi-Scale Global Optimization Using Terrain/Funneling
Methods, Figure 2
Multi-Scale Terrain/Funneling Calculations for the LJ13 Clus-
ter

energy surface for the LJ13 cluster to illustrate the ro-
bustness of this multi-scale optimization method. Re-
sults for some of these calculations are also shown in
Fig. 2 by the two light gray curves with diamonds. Note
that these multi-scale optimization calculations using
the terrain/funneling approach also converge easily and
monotonically to the global minimum in 32 and 27 fun-
nel iterations respectively from these starting points. In
all cases, the funneling portion of the overall multi-scale
algorithm finds the global minimum in less than 0.35 s.

Reliability – Avoiding Traps at Local Minima

To show that the proposed optimization approach does
not get trapped at local minima, terrain/funneling cal-
culations were repeated from a different set of initial
terrain calculations. In particular, small-scale terrain
calculations starting from points on the energy surface
corresponding to energy values of E1 = �39.1597 and
E2 = �38.4246 were performed and average gradient
and average Hessian information gathered along the re-
sulting terrain paths. Using this information, the fun-
neling algorithm converged to a localminimum on the
potential energy surface at E3 = �41.4445 in 18 funnel
iterations. The results of these calculations correspond
to the gray curve that terminates at E = �41.4445 in
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Fig. 2. This local minimum was then used as a start-
ing point to perform a third set of small-scale terrain
calculations and to gather average gradient and aver-
age Hessian information in the valley around the local
minimum. Using this average information around the
local minimum, E3, together with average information
around E1, a second set of iterative funneling calcula-
tions was performed. In this case, the funneling calcu-
lations located the global minimum at E = �44.3268
on the energy surface in 16 funnel iterations. This sec-
ond set of funnel iterations is shown by the red curve in
Fig. 2.

Those readers interested in the numerical details
of the LJ13 illustration are encouraged to contact the
author, who is quite willing to provide all computer-
generated numerical results for this example.
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Many problems in finance, economics and other appli-
cations require that decisions xt 2 Rn

t are made periodi-
cally over time, depending on observations of uncertain
data (�t , � t) in future periods t = 1, . . . , T. Here, it is
distinguished between random data �t 2 
t � RK

t that
influence prices in the objective function and random
data � t 2 � t � RL

t that affect the demand on the right-
hand side of constraints in an optimization problem.

Once an observation (�t, � t) becomes available, the
decision maker has to determine a policy xt that min-
imizes the costs �t(xt � 1, xt , �t) in t plus the expected
costs in the subsequent periods t + 1, . . . , T, subject to

a set of constraints f t(xt� 1, xt) � h(� t). Both the objec-
tive function and the constraints may depend on the se-
quences of observations �t = (�1, . . . , �t), � t = (�1, . . . , � t)
up to t and earlier decisions xt� 1 = (x0, . . . , xt� 1). Ob-
viously, an action xt must be selected after (�t , � t) is ob-
served but before the future outcomes �t+ 1, . . . , �T and
� t+ 1, . . . , �T are known, i. e. the decision is based only
on information available at time t. Hence, one obtains
a sequence of decisions with the property x0, x1(�1, �1),
. . . , xT(�T , �T), called nonanticipativity. This results in
a multistage stochastic program, which may be written
in its dynamic representation as a series of nested two-
stage programs (with �T+ 1(�) := 0, see [4]):

�t(xt�1; �t ; � t) :D min
�
�t(xt�1; xt; �t)

C

Z
�tC1(xt�1; xt; �t ; �tC1; �

t ; �tC1) dPtC1

	
;

t D 0; : : : ; T; (1)

where the expectation is taken w.r.t. the probability
measure Pt+ 1 (�t+ 1, � t+ 1|�t, � t) of the joint distribution
of (�t+ 1, � t+ 1), subject to

ft(xt�1; xt) � h(� t); xt � 0: (2)

In case of discrete distributions, it is well known
that one can immediately transform the stochastic mul-
tistage program given by (1) and (2) into a (large) de-
terministic equivalent problem which can be solved by
standard optimization tools, possibly combined with
decomposition techniques to exploit the special struc-
ture of the problem (see e. g. [1,9,10]). However, if the
distribution is continuous with some density function,
it is in general impossible to do the integration in (1)
exactly. One way to overcome this difficulty is to ap-
proximate the (continuous) probability measure Pt by
a discrete one Qt. In MSP, this is usually done by con-
structing a scenario tree which can be illustrated as fol-
lows:

Together with the associated scenario probabilities,
this tree is defined formally as

A :D
�
(�T ; �T ) : (�t ; �t) 2At(�t�1; � t�1)

8t > 0

	
;

q(�T ; �T ) :D
TY

tD1

qt(�t; �t j�t�1; � t�1):
(3)
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Multistage Stochastic Programming: Barycentric Approxi-
mation, Figure 1

The scenario tree represents an approximation of
the discrete-time process (�t , � t ; t = 1, . . . , T), and
At(�) denotes the set of finitely many outcomes for (�t ,
� t) conditioned on the history (�t� 1, � t� 1). Again, this
results in a sparse large scale program. Naturally, the
question arises how good the accuracy of the associated
(deterministic) optimization problem is, and if the set
of scenarios can be improved w.r.t. the accuracy.

For convex optimization problems where the ran-
dom data are decomposable in two groups, one that de-
termines the cost function and the second one affecting
the demand, it can be shown (see [4] for details) that
the value function (1) is a saddle function for all t = 1,
. . . , T under the following conditions:
i) �t(�) is concave in �t ,
ii) the left-hand sides of the constraints are determin-

istic, and
iii) the distribution function of Pt(�| �t� 1, � t� 1) de-

pends linearly on the past.
Then, (1) is concave in �t and convex in (xt , � t). The
situation where assumptions i)–iii) are fulfilled is called
the entire convex case.

This underlying saddle property of the value func-
tion motivates the application of barycentric approxi-
mationwhich derives two scenario treesAu andAl. The
associated approximate deterministic programs pro-
vide upper and lower bounds to the original problem.
In this sense, barycentric approximation is a general-
ization of the inequalities due to H.P. Edmundson [2]
and A. Madansky [8] (see e. g. � Stochastic Programs
with Recourse: Upper Bounds) and J.L. Jensen [6] that
is applicable to saddle functions of correlated random
data. Here, it is assumed that
t � RK

t and � t � RL
t are

regular simplices whose vertices are denoted by u�t , �t
= 0, . . . , Kt , and v
t ,�t = 0, . . . , Lt . Both
t and� t may
depend on prior observations (�t� 1, � t� 1) although this
is not stressed in the notation for simplicity.

To illustrate the way the discretization is performed,
assume that a two-stage problem is given (the time in-
dex is omitted here) with deterministic objective, i. e.
only the right-hand side coefficients h(�) are random
(see e. g. [7]). For any � 2 � , the barycentric weights
�0(�), . . . , �L(�) w.r.t. the simplex� are given by

�0 C � � � C �L D 1;

�0v0 C � � � C �LvL D �:
(4)

Since �(x, �) is convex in � for all x, '(�) :D �(bx; �)
is a convex function for any fixed first-stage decision
bx. Due to convexity, '(�) is bounded from above for
all � 2 � by a linear function � (�) =

PL

D0 �
(�)

v
. To construct the ‘classical’ Edmundson–Madansky
upper bound (EM) for

R
'(�) dP over the simplex � ,

� is replaced by a discrete random variable with the
same expectation, attaining values v0, . . . , vL. To ob-
tain the corresponding probabilities, � has to be re-
placed by overl ine� D

R
� dP in (4), and the sys-

tem must be solved for �0, . . . , �L. Then,
R
'(�) dP �PL


D0 �
(�)v
, and the weights may be interpreted as
the probabilities of the discrete outcomes.

On the other hand, a lower bound can be found
using Jensen’s inequality: '(�) �

R
'(�) dP, i. e. by

evaluation of the function for the expectation of �, and
the tangent  (�) to '(�) at � is a lower bound to the
original function. Both linear approximations  (�) and
� (�) to the convex value function for a given policy are
shown in Fig. 2.

From a computational viewpoint, the original func-
tion '(�) is replaced by two linear affine functions.
Clearly,  (�) and � (�) can be integrated easily over the
support of �. If there is only randomness in the objec-

Multistage Stochastic Programming: Barycentric Approxi-
mation, Figure 2
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Multistage Stochastic Programming: Barycentric Approxi-
mation, Figure 3

tive with deterministic right-hand sides, a lower and an
upper bound can be constructed by applying the same
procedure to the dual concave (maximization) prob-
lem, deriving an upper bound from Jensen’s inequality
and a lower approximation with the EM-rule.

Barycentric approximation combines these con-
cepts for stochastic objective and right-hand sides [3]
and extends them to the multistage case [4,5]. It derives
distinguished points, so-called generalized barycenters,
where the value function (1) must be supported by two
bilinear functions to minimize the error induced by the
approximation. This is shown in Fig. 3 for Kt = Lt = 1,
where the minorant is supported at �0 and �1 and the
majorant at �0 and �1.

Let �t, 0(�t), . . . , �t, Kt(�t), � t , 0(� t), . . . , � t , Lt(� t)
be the barycentric weights w.r.t. 
t and � t defined
analogously to (4). For both simplices, the generalized
barycenters and their probabilities are given by

�
t D
�
q(�
t )

��1
�

KtX
�tD0

u�t

Z
��t (�t)�
t (�t) dPt ;

q(�
t ) D
Z
�
t (�t) dPt ; �t D 0; : : : ; Lt ;

��t D
�
q(��t )

��1
�

LtX

tD0

v
t

Z
��t (�t)�
t (�t) dPt ;

q(��t ) D
Z
��t (�t) dPt ; �t D 0; : : : ;Kt :

Note that the integrand �
t(�t)���t (� t) is a bilinear
function in (�t , � t) since the barycentric weights �
t
and ��t are linear in their components. Obviously, a bi-
linear function is easy to integrate which was the inten-
tion of the approximation.

The generalized barycenters ��t , �t = 0, . . . , Kt , are
supporting points of the minorant. They are combined
with the vertices u�t and weighted with the correspond-
ing probabilities q(��t ) to obtain discrete outcomes for
the lower approximation of the original measure Pt .
This way, one derives a discrete probability measure Ql

t
with support

suppQl
t D f(u�t ; ��t ) : �t D 0; : : : ;Ktg :

Analogously, �
t , �t = 0, . . . , Lt , are supporting
points for the majorant with assigned probabilities
q(�
t). This induces a discrete measure Qu

t for the up-
per approximation with

suppQu
t D

˚
(�
t ; v
t ) : �t D 0; : : : ; Lt

�
:

Both measures represent the solutions of two corre-
sponding moment problems. The advantageous feature
from a computational viewpoint is that the generalized
barycenters and their probabilities are completely de-
termined by the first moments of �t and � t , and by
the bilinear cross moments E(��t ��
t), �t = 0, . . . , Kt ,
�t = 0, . . . , Lt . Note that the covariance of two ran-
dom variables is derived from the first moments and
the corresponding cross moments. Therefore, the mea-
suresQu

t andQl
t incorporate implicitly a correlation be-

tween �t and � t . However, cross moments (or covari-
ances, respectively) between different elements of �t are
not taken into account (the same holds for the compo-
nents of � t). Hence, the formulae given above are appli-
cable without the assumption of independent random
variables.
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Applying the approximation scheme dynamically
over time, one obtains two barycentric scenario trees
Al and Au with their path probabilities of type (3).
The set of outcomes at stage t = 1, . . . , T is given by
Al(�t� 1, � t� 1) = supp Ql

t(�|�t� 1, � t� 1) and Au(�t� 1,
� t� 1) = supp Qu

t (�|�t� 1, � t� 1). Substituting Pt in (1)
by the discrete measures Ql

t and Qu
t yields two value

functions

 t(xt�1; �t ; � t) :D min
�
�t(xt�1; xt ; �t)

C

Z
 tC1(xt�1; xt ; �t ; �tC1; �

t ; �tC1) dQl
tC1

	
;

�t(xt�1; �t ; � t) :D min
�
�t(xt�1; xt; �t)

C

Z
�tC1(xt�1; xt; �t ; �tC1; �

t ; �tC1) dQu
tC1

	

for t = 0, . . . , T with  T+ 1(�) = �T+ 1(�) := 0. According
to [4], these are lower and upper bounds to the original
value function, i. e.

 t(xt�1; �t ; � t) � �t(xt�1; �t ; � t) � �t(xt�1; �t ; � t):

In the entire convex case, the accuracy of the approx-
imation is quantifiable by the difference between the
upper and lower bound. If required, the approxima-
tion can be improved by partitioning the simplices 
t

and � t . In case that the subsimplices become arbitrar-
ily small, the extremal measures converge to Pt , and the
convergence of the upper and lower bounds to the ex-
pectation of the value function is guaranteed (see [5] for
details).
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Introduction

The nested partitions (NP) method is a powerful opti-
mization method that has been found to be very effec-
tive for solving large-scale discrete optimization prob-
lems. Such problems are common in many practical
applications and the NP method is hence useful in
diverse application areas. It can be applied to both op-
erational and planning problems and has been demon-
strated to effectively solve complex problems in both
manufacturing and service industries.

The NP method was first introduced in [4] and ap-
plication examples include diverse areas such as opti-
mization of beam orientation in radiation therapy [1],
feature selection in data mining [3], and product de-
sign [5].

Formulation

The NP method is particularly well suited for complex
large-scale discrete optimization problems where tradi-
tional methods experience difficulty. It is, however, very
broadly applicable and can be used to solve any opti-
mization problem that can be stated mathematically in
the following generic form:

min
x2X

f (x) ; (1)

where the solution space or feasible region X is either
a discrete or a bounded set of feasible solutions.

An important special type of problem that can be
effectively addressed using the NP method is mixed in-
teger programs (MIP) [6]. For such problems there may
be one set of discrete variables and one set of con-
tinuous variables and the objective function and con-
straints are both linear. A general MIP can be stated as
follows:

zMIP D min
x;y2X

c1x C c2y ; (2)

where X D
˚
x 2 Zn

C; y 2 Rn : A1x C A2y � b
�

and
we use zMIP to denote any linear objective function, that
is, zMIP D f (x) D cx. While some large-scale MIPs can
be solved efficiently using exact mathematical program-
ming methods, complex applications often give rise to
MIPs where exact solutions can only be found for rel-
atively small problems. When dealing with such com-
plex large-scale problems the NP method provides an
attractive alternative. However, even in such cases it
may be possible to take advantage of exact mathemati-
cal programming methods by incorporating them into
the NP framework. The NP method therefore provides
a framework for combining the complementary bene-
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fits of two optimization approaches that have tradition-
ally been studied separately, namely, mathematical pro-
gramming and metaheuristics.

Another important class of problems are combina-
torial optimization problems (COP) where the feasible
region is finite but its size typically grows exponentially
with the number of input parameters of the problem.
A general COP can be stated as follows:

min
x2X

f (x) ; (3)

where jXj <1, but the objective function f : X ! R
may be a complex nonlinear function. Sometimes it
may have no analytic expression and must be evaluated
through a model, such as a simulation model, a data
mining model, or other application-dependent models.
One advantage of the NP method is that it is effective
for optimization when f is known analytically (deter-
ministic optimization), when it is noisy (stochastic op-
timization), or even when it must be evaluated using an
external process.

Methods

The NPmethod is best viewed as ametaheuristic frame-
work, and it has similarities to branching methods in
that like branch-and-bound it creates partitions of the
feasible region. However, it also has some unique fea-
tures that make it well suited for very hard large-scale
optimization problems.

Metaheuristics have emerged as the most widely
used approach for solving difficult large-scale combina-
torial optimization problems [2]. A metaheuristic pro-
vides a framework to guide application-specific heuris-
tics, such as a greedy local search, by restricting which
solution or set of solutions should or can be visited next.
For example, the tabu search metaheuristic disallows
certain moves that might otherwise be appealing by
making the reverse of recent moves tabu or forbidden.
At the same time it always forces the search to take the
best nontabu move, which enables the search to escape
local optima. Similar to tabu search, most metaheuris-
tics guide the search from solution to solution or pos-
sibly from a set of solutions to another set of solutions.
In contrast, the NP method guides the search by deter-
mining where to concentrate the search effort. Any op-
timization method, such as an application-specific lo-

cal search, other general purpose heuristic, or a math-
ematical programming method, can then be integrated
within this framework.

The development of metaheuristics and other
heuristic search methods has been made largely in iso-
lation from the recent advancements in the use ofmath-
ematical programming methods for solving large-scale
discrete problems. It is a very important and novel char-
acteristic of the NP method that it provides a natu-
ral metaheuristic framework for combining the use of
heuristics and mathematical programming and taking
advantage of their complementary nature. Indeed, as
far as we know, the NP method is the first systematic
search method that enables users to simultaneously re-
alize the full benefits of incorporating lower bounds
through various mathematical programming methods
and using any domain knowledge or heuristic search
method for generating good feasible solutions. It is this
flexibility that makes the NP method so effective for
practical problems.

To concentrate the search effort, the NP method
employs a decomposition approach similar to that
of branch-and bound. Specifically, in each step the
method partitions the space X of feasible solutions into
the most promising region and the complementary re-
gion, namely, the set of solutions not contained in the
most promising region. The most promising region is
then partitioned further into subregions. The partition-
ing can be done exactly as branching for a branch-and-
bound algorithm, but instead of focusing on obtain-
ing lower bounds and comparing those bounds with
a single primal feasible solution, the NP methods fo-
cuses on generating primal feasible solution from each
of the subregions and the complementary region. This
results in an upper bound on the performance of each
of these regions. The region with the best feasible so-
lution is judged the most promising and the search
is focused accordingly. A best upper bound does not
guarantee that the corresponding subset contains the
optimal solution, but since the NP method also finds
primal feasible solutions for the complementary re-
gion it is able to recover from incorrect moves. Specif-
ically, if the best solution is found in one of the sub-
regions this becomes the new most promising region,
where if it is in the complementary region the NP
method backtracks. This focus on generating primal
feasible solutions and the global perspective it achieves
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through backtracking are distinguishing features of the
NP method that set it apart from similar branching
methods.

Unlike exact optimization methods such as branch-
and-bound the NP method does not guarantee that the
correct region is selected in each move of the algorithm.
Incorrect moves can be corrected through backtrack-
ing, but for themethod to be both effective and efficient,
the correct move must be made frequently. How this is
accomplished depends on how the feasible solutions are
generated.

In what we refer to as the pure NP method feasi-
ble solutions are generated using simple uniform ran-
dom sampling. To increase the probability of making
the correct move the number of samples should be in-
creased. A purely uniform random sampling is rarely
efficient, however, and the strength of the NPmethod is
that it can incorporate application-specific methods for
generating feasible solutions. In particular, for practical
applications domain knowledge can often be utilized
to very effectively generate good feasible solutions. We
call such implementations knowledge-based NP meth-
ods. We will also see examples of what we refer to as
hybrid NP methods where feasible solutions are gen-
erated using either general heuristic methods such as
greedy local search, genetic algorithm, or tabu search,
or mathematical programming methods. If done effec-
tively, incorporating such methods into the NP frame-
workmakes it more likely that the correct move is made
and hence makes the NP method more efficient. In-
deed, such hybrid and knowledge-based implementa-
tions are often an order of magnitude more efficient
than uniform random sampling.

In addition to the method for generating feasible so-
lutions, the probability of making the correct move de-
pends heavily on the partitioning approach. A generic
method for partitioning is usually straightforward to
implement but by taking advantage of special structure
and incorporating this into intelligent partitioning the
efficiency of the NPmethod may be improved by an or-
der of magnitude. The strength of the NP method is in-
deed in this flexibility. Special structure, local search,
any heuristic search, and mathematical programming
can all be incorporated into the NP framework to de-
velop optimization algorithms that are more effective
in solving large-scale optimization problems than when
these methods are used alone.

Cases

Here we introduce three application examples that il-
lustrate the type of optimization problems for which
the NP method is particularly effective. For each ap-
plication the optimization problem has a complicating
aspect that makes it difficult for traditional optimiza-
tion methods. For the first of these problems, resource-
constrained project scheduling, the primary difficulty
is in a set of complicating constraints. For the second
problem, the feature selection problem, the difficulty
lies in a complex objective function. The third prob-
lem, radiation treatment planning, has both difficult-
to-satisfy constraints and a complex objective function
that cannot be evaluated through an analytical expres-
sion. Each of the three problems can be solved effec-
tively by the NP method by incorporating our under-
standing of the application into the framework.

Resource-Constrained Project Scheduling

Planning and scheduling problems arise as critical chal-
lenges in many manufacturing and service applications.
One such problem is the resource-constrained project
scheduling problem that can be described as follows.
A project consists of a set of tasks to be performed and
given precedence requirements between some of the
tasks. The project scheduling problem involves finding
the starting time of each task so that the overall comple-
tion time of the project is minimized. It is well known
that this problem can be solved efficiently using what
is called the critical path method that uses forward re-
cursion to find the earliest possible completion time
for each task. The completion time of the last task de-
fines the makespan or the completion time of the entire
project.

Now assume that one or more resources are re-
quired to complete each task. The resources are lim-
ited so if a set of tasks requires more than the available
resources they cannot be performed concurrently. The
problem now becomes NP-hard and cannot be solved
efficiently to optimality using any traditional methods.
To state the problem we need the following notation:
V is the set of all tasks, E is the set of precedence con-
straints, pi is the processing time of task i 2 V , R is
the set of resources, Rk are the available resources of
type k 2 R, and rik are resources of type k required by
task i.
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The decision variables are the starting times for each
task: xi is the starting time of task i 2 V .

Finally, for notational convenience we define the set
of tasks processed at time t as

V (t) D fi : xi � t � xi C pig : (4)

With this notation, we now formulate the resource-
constrained project scheduling problem mathemati-
cally as follows:

minmax
i2V

xi C pi ; (5)

xi C pi � x j; 8(i; j) 2 E ; (6)

X
i2V (t)

rik � Rk; 8k 2 R; t 2 Z1
C ; xi 2 Z1

C : (7)

Here the precedence constraints (6) are easy, whereas
the resource constraints (7) are hard. By this we mean
that if the constraints (7) are dropped then the prob-
lem becomes easy to solve. Such problems, where com-
plicating constraints transform the problem from easy
to very hard, are common in large-scale optimization.
Indeed the classic job shop scheduling problem can
be viewed as a special case of the resource-constrained
project scheduling problem where the machines are the
resources. Without the machine availability constraints
the job shop scheduling problem reduces to a simple
project scheduling problem. Other well-known combi-
natorial optimization problems have similar properties.
For example, without the subset elimination constraints
the classic traveling salesman problem reduces to a sim-
ple assignment problem that can be solved efficiently.

The flexibility of the NP method allows us to ad-
dress such problems effectively by taking advantage of
special structure when generating feasible solutions. It
is important to note that it is very easy to use sampling
to generate feasible solutions that satisfy very compli-
cated constraints. Therefore, when faced with a prob-
lem with complicating constraints we want to use ran-
dom sampling to generate partial feasible solutions that
resolve the difficult part of the problem and then com-
plete the solution using the appropriate efficient opti-
mization method.

For example, when a feasible solution for the re-
source-constrained-project scheduling problem is gen-
erated, the resource allocation should be generated

using random sampling and the solution can then be
completed by applying the critical path method to de-
termine the starting times for each task. This requires
reformulating the problem so that the resource and
precedence constraints can be separated, but such a re-
formulation is rather easily achieved by noting that the
resource constraints can be resolved by determining
a sequence between the tasks that require the same re-
source(s) at the same time. Once this sequence has been
determined it can be added as precedence constraints
and the remaining solution can be generated using the
critical path method. Feasible solutions can therefore
be generated in the NP method by first randomly sam-
pling a sequence to resolve resource conflicts and then
applying the critical path method. Both procedures are
very fast, so complete sample solutions can be gener-
ated rapidly.

We also note that constraints that are difficult for
optimization methods such as mathematical program-
ming are sometimes very easily addressed in prac-
tice by incorporating domain knowledge. For exam-
ple, a domain expert may easily be able to specify
priorities among tasks requiring the same resource(s)
in the resource-constrained project scheduling prob-
lem. The domain expert can therefore, perhaps with
some assistance from an interactive decision support
system, specify some priority rules to convert a very
complex problem into an easy-to-solve problem. The
NP method can effectively incorporate such domain
knowledge into the optimization framework by using
the priority rules when generating feasible solutions.
This is particularly effective because the domain expert
would not need to specify priority rules to resolve all
resource conflicts. Rather, any available priority rule or
other domain knowledge can be incorporated to guide
the sampling.

The same structure can be used to partition intelli-
gently. Instead of partitioning directly using the deci-
sion variables (xi), we note that it is sufficient to par-
tition to resolve the resource conflicts. Once those are
resolved then the problem is solved. This approach is
applicable to any problem that can be decomposed in
a similar manner.

Feature Selection
Knowledge discovery and data mining is a relatively
new field that has experienced rapid growth owing to
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its ability to extract meaningful knowledge from very
large databases. One of the problems that must usu-
ally be solved as part of practical data mining projects
is the feature selection problem, which involves select-
ing a good subset of variables to be used by subse-
quent inductive data mining algorithms. The problem
of selecting a best subset of variables is well known
in the statistical literature as well as in machine learn-
ing. The recent explosion of interest in data mining for
addressing various business problems has led to a re-
newed interest in this problem. From an optimization
point of view, feature selection can clearly be formu-
lated as a COP where binary decision variables deter-
mine if a feature (variable) is included or excluded. The
solution space can therefore be stated very simply as all
permutations of a binary vector of length n, where n
is the number of variables. The size of this feasible re-
gion is 2n, so it experiences exponential growth, but typ-
ically there are no additional constraints to complicate
its structure.

On the other hand, there is no consensus objec-
tive function that measures the quality of a feature or
a set of features. Tens of alternatives have been pro-
posed in the literature, including both functions that
measure the quality of individual features and functions
that measure the quality of a set of features. However,
no single measure is satisfactory in all cases and the
ultimate measure is therefore: Does it work? In other
words, when the features selected are used for learn-
ing does it result in a good model being induced? The
most effective feature selection approach in terms of so-
lution quality is therefore the wrapper approach, where
the quality of a set of features is evaluated by apply-
ing a learning algorithm to the set and evaluating its
performance. Specifically, an inductive learning algo-
rithm, such as decision tree induction, support vector
machines or neural networks, are applied to training
data containing only the features selected. The perfor-
mance of the induced model is evaluated and this per-
formance is used to measure the quality of the feature
subset. This objective function is not only nonlinear,
but since a new model must be induced for every fea-
ture subset it is also very expensive to evaluate.

Mathematically, the feature selection can be stated
as the following COP:

min
x2f0;1gn

f (x) ; (8)

that is, X D f0; 1gn. Feature selection is therefore a very
hard COP not because of the complexity of the feasible
region, although it does grow exponentially, but owing
to the complexity of an objective function that is very
expensive to evaluate. However, this is also an example
where application-specific heuristics can be effectively
exploited by the NP method.

Significant research has been devoted to methods
for measuring the quality of features. This includes
information-theoretic methods such as using Shan-
non’s entropy to measure the amount of information
contained in each feature: the more information, the
more valuable the feature. The entropy is measured for
each feature individually and it can hence be used as
a very fast local search or a greedy heuristic, where the
features with the highest information gain are added
one at a time. While such a purely entropy based fea-
ture selection will rarely lead to satisfactory results, the
NP method can exploit this by using the entropy mea-
sure to define an intelligent partitioning.

We let X(k) � X denote the most promising region
in the kth iteration and partition the set into two dis-
joint subsets (note that X(0) D X):

X1(k) D fx 2 X(k) : xi D 1g ; (9)

X2(k) D fx 2 X(k) : xi D 0g : (10)

Hence, a partition is defined by a sequence of features
x1; x2; : : : ; xn , which determines the order in which
the features are either included (xi D 1) or excluded
(xi D 0).

We calculate the information gain Gain(i) of fea-
ture i, which is the expected reduction in entropy that
would occur if we knew the value of feature i, that is,

Gain(i) D I � E(i) ; (11)

where I is the expected information that is needed to
classify a given instance and E(i) is the entropy of each
feature. The maximum information gain, or equiva-
lently the minimum entropy, determines a ranking of
the features. Thus, we select

i1 D arg min
i2f1;2; ::: ;ng

E(i) ;
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i2 D arg min
i2f1;2; ::: ;ngnfi1g

E(i) ;

:::

in D arg min
i2f1;2; ::: ;ngnfi1; ::: ;in�1g

E(i) :

The feature order i1; i2; : : : ; in defines an intelligent
partition for the NP method and this has been found
to be an order of magnitude more efficient than an av-
erage arbitrary partitioning [3]. We can use a similar
idea to generate feasible solutions from each region us-
ing a sampling strategy that is biased towards including
features with high information gain. A very fast greedy
heuristic can thus greatly increase the efficiency of the
NP method while resulting in much higher quality so-
lutions that the greedy heuristic is able to achieve on its
own.

Radiation Treatment Planning

Health care delivery is an area of immense importance
where optimization techniques have been used increas-
ingly in recent years. Radiation treatment planning is
an important example of this and intensity-modulated
radiation therapy (IMRT) is a recently developed com-
plex technology for such treatment. It employs a mul-
tileaf collimator to shape the beam and to control, or
modulate, the amount of radiation that is delivered
from each of the delivery directions (relative to the pa-
tient). The planning of the IMRT is very important be-
cause it needs to achieve the treatment goal while in-
curring the minimum possible damage to other organs.
Because of its complexity the treatment planning prob-
lem is generally divided into several subproblems. The
first of these is termed the beam angle selection (BAS)
problem. In essence, BAS requires the determination
of roughly four to nine angles from 360 possible angles
subject to various spacing and opposition constraints.

Designing an optimal IMRT plan requires the selec-
tion of beam orientations from which radiation is de-
livered to the patient. These orientations, called beam
angles, are currently manually selected by a clinician
on the basis of his/her judgment. The planning process
proceeds as follows. A dosimetrist selects a collection of
angles and waits 10–30min while a dose pattern is cal-
culated. The resulting treatment is likely to be unac-
ceptable, so the angles and dose constraints are ad-
justed, and the process is repeated. Finding a suitable

collection of angles often takes several hours. The goal
of using optimization methods to identify quality angles
is to provide a better decision support system to replace
the tedious repetitive process just described. An integer
programming model of the problem contains a large
number of binary variables and the objective value of
a feasible point is evaluated by solving a large, contin-
uous optimization problem. For example, in selecting
five to ten angles, there are between 4:910 and 8:9 � 1019

subsets of 0, 1, 2, . . . , 359.
The BAS problem is complicated by both an ob-

jective function with no analytical expression and con-
straints that are hard to satisfy. In the end an IMRT plan
is either acceptable or not and the considerations for
determining acceptability are too complex for a simple
analytical model. Thus, the acceptability and hence the
objective function value for each plan must be evalu-
ated by a qualified physician. This makes evaluating the
objective not only expensive in terms of time and ef-
fort, but also introduces noise into the objective func-
tion because two physicians may not agree on the ac-
ceptability of a particular plan. The constraints of the
BAS problem are also complicated since each beam an-
gle will result in radiation of organs that are not the
target of the treatment. There are therefore two types
of constraints: the target should receive the minimum
amount of radiation and other organs should receive no
more than some maximum amount of radiation. Since
these bounds need to be specified tightly the constraints
are hard to satisfy.

The BAS problem illustrates howmathematical pro-
gramming can be effectively incorporated into the NP
framework. Since the evaluation of even a single IMRT
plan must be done by an expert and is hence both time-
consuming and expensive, it is imperative to impose
a good structure on the search space that reduces the
number of feasible solutions that need to be generated.
This can be accomplished through an intelligent parti-
tioning, and specifically by computing the optimal so-
lution of an integer programwith amuch simplified ob-
jective function [1]. The output of the integer program
then serves to define an intelligent partitioning. For ex-
ample, suppose a good angle set (50°, 80°, 110°, 250°,
280°, 310°, 350°) is found by solving the integer pro-
gram. We can then partition on the first angle in the
set, which is 50° in this example. Then one subregion
includes angle 50°, and the other excludes 50°.
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Conclusions

The NP method is a powerful metaheuristic for solv-
ing large-scale discrete optimization problems. The
method systematically partitions the feasible region
into subregions and moves from one region to another
on the basis of information obtained by randomly gen-
erating feasible sample solutions from each of the cur-
rent regions. The method keeps track of which part of
the feasible region is the most promising in each iter-
ation and the number of feasible solutions generated,
and hence the computational effort is always concen-
trated in this most promising region.

The efficiency of the NP algorithm depends onmak-
ing the correct move frequently. This success probabil-
ity depends in turn on both the partitioning and the
method for generating feasible solutions. For any prac-
tical application it is therefore important to increase
the success probability by developing intelligent par-
titioning methods, incorporating special structure into
weighted sampling, and applying randomized heuris-
tics to generate high-quality feasible solutions.

The NP method has certain connections to stan-
dard mathematical programming techniques such as
branch-and-bound. However, the NP method is pri-
marily useful for problems that are either too large or
too complex for mathematical programming to be ef-
fective. But even for such problems mathematical pro-
gramming methods can often be used to solve either
a relaxed problem or a subproblem of the original and
these solutions can be effectively incorporated into the
NP framework.

The three application examples presented here illus-
trate the broad usefulness of the NP method in both
manufacturing and service industries, and how it can
take advantage of special structure and application-
specific heuristics to improve the efficiency of the
search.
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Scientific or engineering applications usually require
solving mathematical problems. Such applications in
accordance with networks span a wide range, from
modeling the evolution of species in biology to mod-
eling soap films for grids of wires; from the design
of collections of data to the design of heating or air-
conditioning systems in buildings; and from the cre-
ation of oil and gas pipelines to the creation of com-
munication networks, road and railway lines. These are
all network design problems of significant importance
and nontrivial complexity. The network topology and
design characteristics of these systems are classical ex-
amples of optimization problems.

I. Intuitively speaking, a network is a set of points
and a set of connections where each connection joins
one point to another and has a certain length. The com-
binatorial structure of such a network is described as
a graph G which is defined to be a pair (V , E) where
� V is any finite set of elements, called vertices, and
� E is a finite family of elements which are unordered

pairs of vertices, called edges.
Additionally, assume that a function l: E! R is given
for the edges of the graph G. Usually, assume that l
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has only positive values and call it a length-function.
A (connected) graph equipped with a length-function
is called a network.

The length of a subgraph G0 D (V 0; E0), V 0 � V ,
E0 � E \

�V 0
2

�
, of the network G is defined as

L(G0) :D
X
e2E0

l(e):

Each network G = (V , E) with the length-function l: E
! R is a metric space (V , �) by defining the distance
function in the way that �(v, v0) is the length of a short-
est path between the vertices v and v0 in G. That means
that �: V × V! R is a real-valued function satisfying:
i) �(v, v0)� 0 for all v, v0 in V ;
ii) �(v, v0) = 0 if and only if v = v0;
iii) �(v, v0) = �(v0, v) for all v, v0 in V ; and
iv) �(v, v0) � � (v, w)+ � (w, v0) for all v, v0, w in V

(triangle inequality).
The problem of finding shortest paths in a graph with
a length-function is an important and well-studied
problem. Such a path is easy to find by an algorithm
created by E.W. Dijkstra [7]:

PROCEDURE shortest path
InputInstance();
Start with the vertex v;
Label the vertex v with 0 : L(v) = 0;
REPEAT

Select an edge ww0 between a labeled ver-
tex w and an unlabeled vertex w0 such that
the quantity L(w)+ l(ww0) is minimal as pos-
sible;
Label w0 : L(w0) = L(w) + l(ww0)

UNTIL v0 is achieved
END shortest path;

A pseudocode for a procedure finding a shortest path be-
tween two vertices v and v0 in a network

Assume that the procedure runs if all vertices of
the network are achieved then the procedure creates
a spanning tree rooted at the vertex v containing short-
est paths from v to every vertex. Moreover, the label
L(w) denotes the distance from v to w, in other terms,
�(v, w) = L(w).

Conversely, each finite metric space can be repre-
sented as a graph with a nonnegative length-function
[23].

Graphs lend themselves as natural models of trans-
portation as well as communication networks. Conse-
quently, it is natural to study network design problems
such as optimal facility location problems for graphs
and as graphs in metric spaces.

The core network design problem is the minimum
spanning tree problem, where one wish to design a min-
imum cost network contains a path from each vertex
to each other. Such a network must be a tree, which is
called aminimum spanning tree (MST). Creating amin-
imum spanning tree is the problem one has the longest
history of all ND problems, starting with O. Borůvka
[2] in 1926. See [19] for an excellent historical survey.

All the known efficient minimum spanning tree al-
gorithms are special cases of a general greedy method,
in which one builds up an MST edge-by-edge, includ-
ing appropriate short edges and excluding appropriate
long edges ones. Perhaps the simplest method to find
an MST is due to J.B. Kruskal [30]:

PROCEDUREminimum spanning tree
InputInstance();
Start without any edge;
REPEAT

Choose the shortest edge that does not form
form a circle with edges already chosen

UNTIL j V j �1 edges are chosen
END minimum spanning tree;

A pseudocode for a procedure finding a minimum spanning
tree in a network G D (V; E)

About an efficient implementation of Kruskal’s al-
gorithm and several more effective procedures compare
[3].

II. A general ND problem is for a given configura-
tion of vertices and/or edges to find a network which
contains these objects, fulfilling some predetermined
requirements and minimizes a given objective function.
This is quite general and models a wide variety of prob-
lems.

J. McGregor Smith [40] presents a classification of
applications for network design problems. Generalizing
this is
� Large region networks. The metric in large geo-

graphic regions is given by the shortest great cir-
cle distance between the points on the (Euclidean)
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sphere. Large region location problems arise when
the difference between the Euclidean and the great
circle metrics is considerable. Location of inter-
national headquarters or distribution centers and
planning oil or natural gas pipelines or long distance
telephone lines are examples [27] and [38].

� Regional networks. Consider inter-urban networks,
like communication networks, railway lines and in-
terstate highway networks. R.F. Love and J.G. Mor-
ris [33] study a variety of mathematical forms as
samples for intercity, urban and rural road dis-
tances. Moreover, they found that the p-norms, and
linear combinations of these, are the best possible.
Recent surveys are [4] and [34].

� Macro scale networks. Chemical processing plants,
urban arterial systems and similar intra-urban sys-
tems are typical applications. In these situations the
rectilinear metric is often used. If the structure of the
possible connections is predetermined it is also pos-
sible to formulate the problem as a network design
problem in graphs.

� Intermediate scale networks. Electric, heating and
air-conditioning systems in buildings are examples
of network optimization problems where Steiner
points can reduce the overall minimum cost solu-
tion of the network. The rectilinear metric is the
most frequent measure of the distance in these ap-
plications. For models and methods see [26].

� Micro scale networks. The design of very large
scale integration (VLSI) networks is an example of
Steiner’s problem where the overall interconnect-
ing length of the network is crucial for the solution.
In this class of applications, the rectilinear metric is
again the most frequent metric. It is also conceivable
to use a linear combination of rectilinear and maxi-
mum norm [26] and [32].

� Evolutionary networks. Molecular sequences are
used to reconstruct the course of the evolution.
Since the evolution is assumed to have proceed from
a common ancestral species in a tree-like branch-
ing of species, this process is generally modeled by
a tree. The key question is the reconstruction of
this tree based on the contemporary data. Molec-
ular data comes as either DNA sequences (com-
posed of nucleotides from an alphabet of four let-
ters; namely the four nucleic acids Adenine, Gua-
nine, Thymine and Cytosine) or sequences of pro-

teins (composed of amino acids from an alphabet
of 20 letters; namely Alanine, Arginine, Asparagine,
. . . , Valine). As the metric often the Hamming dis-
tance is used. Surveys are given in [13] and [39].
III. Considering a group of ND problems which are

the problems with connectivity requirements one finds:
� The bounded degree minimum spanning tree prob-

lem (abbreviated: BDMST-problem), which is de-
fined as follows: Given a finite set N of points in
a metric space and an integer ˇ > 1. Find a span-
ning tree T = (N, E) such that T has minimal length
among all candidates with a maximum degree of the
vertices less or equal than ˇ.
Finding a BDMST of maximum degree ˇ = 2 is
equivalent to solving the traveling salesman prob-
lem, which is known to be NP-hard. The border-
line which divides the classes NP-hard and P for the
BDMST problem depending on the space and the
quantity ˇ are described in [5] and [37].

� Many modified (minimum) spanning tree problems
are presented in the literature, for instance
– find a spanning tree interconnecting all vertices

with minimal maximum degree;
– find a spanning tree interconnecting all vertices

with at least k leaves in the tree;
– find a spanning tree T = (V , E) such that the

quantity
X

v;v 02V

L(the path from v to v0 in T)

is minimal;
– find a spanning tree isomorphic to a given tree;
These problems are NP-complete in general, but it is
shown that they can be solved more easily in several
specific cases, [15,17], and [28].

� The Steiner minimal tree problem, where one seek
a minimum network that connects a set N of des-
ignated terminal points. Any network solving this
problem must be a tree, which is called a Steiner
minimal tree (SMT). It may contain vertices differ-
ent from the points which are to be connected. Such
points are called Steiner points. In other terms; an
SMT for N is a minimum spanning tree on N [ Q,
where Q is a set of additional vertices inserted into
the metric space in order to achieve a minimal solu-
tion. In general, however, it is impossible to com-
pute the number of Steiner points in an easy way
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independently from the determination of an SMT.
Additionally, Steiner point locations in the space are
not prespecified from a candidate list of point loca-
tions.
Steiner’s problem for graphs was originally formu-
lated by S.B. Hakimi [22] in 1971. Since then, the
problem has received considerable attention in the
literature. Several exact algorithms and heuristics
have been suggested and discussed.
R.M. Karp [29] showed that Steiner’s problem is
NP-complete. An algorithm which finds a solution
in exponential time is given in [8]. The algorithm is
based on the dynamic programming methodology
using a decomposition property. On the other hand,
Hakimi [22] remarked that an SMT for N in a net-
work G = (V , E) can be found by the enumeration
of minimum spanning trees of subgraphs of G in-
duced by supersets of N. E.L. Lawler [31] suggested
a modification of this algorithm, using the fact that
the number of Steiner points is bounded by |N| � 2
which shows that not all subsets V 0 must be consid-
ered.
A recent survey about Steiner minimal trees in net-
works is given in [26].
Algorithmic problems on arbitrary graphs often re-
main NP-complete even when restricted to spe-
cial classes of graphs, yet may becomes solvable in
polynomially bounded time on others. For instance,
Steiner’s problem remains NP-complete even for
planar graphs [14]; yet, it can be solved in linear time
in several specific graphs [41,43,44].
The geometric version of the Steiner minimal tree
problem was originated by P. Fermat [10] early in
the 17th century and by C.F. Gauss [16] in 1836. Per-
haps starting with the book [6], in 1941, the Gauss
problem became popularized under the name of
Steiner’s problem. That is: Given finite set of points
in a Euclidean space, find a network which connects
all points of the set with minimal length.
A classical survey of Steiner’s problem in the Eu-
clidean plane is [18] and is termed ‘Steiner minimal
tree’ for the shortest interconnecting network and
‘Steiner points’ for the additional vertices.
Without loss of generality, the following is true for
any SMT for a finite set N of points:

1) the degree of each vertex is at most three;

2) the degree of each Steiner point equals three; and
two edges is incident to a Steiner point meet at as
angle of 120°;

3) there are at most |N| � 2 Steiner points.

In the Euclidean plane one has a geometric con-
struction by ruler and compass originated in [35]
and [42]. Recent (1999) surveys about Steiner min-
imal trees, also in other geometries than the Eu-
clidean ones, are given in [4] and [26].
Clearly, an MST is an approximation of an SMT.
More exactly: One can find a tree interconnecting
a finite set of points in a metric space in fast time
(namely,O(n2)-time, where n is the number of given
points or the number of vertices in N, respectively)
with a length at most twice the length of a shortest
possible tree, namely an SMT. Hence, it is of interest
to consider the quantity

inf
�
L(SMT for N)
L(SMT for N)

: N a finite set
of points

	
;

which is called the Steiner ratio of the space and says
how much the total length of an MST can be de-
creased by allowing Steiner points.

space Steiner ration source
Plane with recti- 2/3 = 0:66666 � � � [25]
linear norm
Euclidean norm

p
3/2 = 0:86602 � � � [9]

Plane with p-norm 2/3 � m �
p
3/2 [4]

IV.Most of the ND problems can be modeled by an
integer program.

Let G = (V , E be a graph. A cut S in G is a partition
of the vertex-set V into two nonempty parts, S and V \
S. An edge e crosses the cut S, written by e 2 �(S), if it
has exactly one endpoint in each part. Now, let l: E!R
be a length-function. Define the following integer linear
program:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X
e2E

l(e) � xe

s.t.
X
e2�(S)

xe � p(S); ; ¤ S � V ;

xe 2 f0; 1g; e 2 E;
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whereby p: 2V ! N is a function parametrizing the
ND problem which is to solve. If one has two vertices
v and v0, and sets p(S) = 1 when S contains v but not
v0, then the program models the shortest path problem
(between v and v0). If p(S) = 1 for all cuts S, then the
program models the minimum spanning tree problem.
Other ND problems with connectivity constraints dis-
cussed by integer linear programs arementioned in [20]
and [21].

V. The second group of ND problems are the prob-
lems with capacity constraints.

Let G = (V , E) be a directed graph, usually called
a digraph, that is
� V is a finite set of elements, called vertices, and
� E� V × V is a finite family, called the set of edges.
Assume, that there are two distinguished vertices,
a source v0 and a sink v1 in G, and that there is a (di-
rected) path from v0 to v1. Additionally, assume that
there is a nonnegative capacity-function c: E! R.

A flow f on the digraph G is a nonnegative function
on the edges such that
1) f does not exceed the capacities: 0 � f (e) � c(e) for

every edge e; and
2) f satisfies the so-called Kirchhoff-condition

X
(u;v)2E

f (u; v) D
X

(v;w)2E

f (v;w)

for every vertex v 2 V \ {v0, v1}.
The quantity

X
(v0;v)2E

f (v0; v) D
X

(v;v1)2E

f (v; v1)

is called the value of the flow f . The problem is to find
a flow of maximum value, called amaximum flow.

The fundamental theory of network flows was de-
veloped by L.R. Ford Jr. and D.R. Fulkerson [11,12]:
Similarly as above, a cut is defined to be a vertex par-
tition S and V \ S such that v0 2 S and v1 2 V \ S. The
capacity of the cut is

c(S) D
X

e2�(S)

c(e):

Ford and Fulkerson’s main result, themax-flowmin-cut
theorem, states that the maximum flow value equals the
minimum cut capacity.

Ford and Fulkerson proved this theorem by devis-
ing an algorithm that, given a flow f , either finds a cut

whose capacity equals the flow value or finds a way to
increase the the flow value along an augmenting path
from v0 to v1.

PROCEDUREmaximum flow
InputInstace();
Start with the zero flow;
REPEAT

find an augmenting path from v0 to v1;
increase the flow value by altering the flows
along the edges of the path

UNTIL it no longer applies
END maximum flow;

A pseudocode for a procedure finding amaximum flow from
a source v0 to a sink v1 in a graph G D (V; E) equipped with
a capacity-function

If all capacities are integers this procedure produces
a maximum flow. Note, if the capacities are arbitrary
real numbers the algorithm need never terminate, and
successive flow values, though they will converge, need
not converge to the maximum flow value.

Surveys for network flow algorithms, including clas-
sical work and a discussion of complexity, are [1] and
[36].

VI. Combining ND problems with connectivity and
capacity constraints there is the minimum cost flow
problem, which is to determine a least cost shipment
of a commodity through a network in order to satisfy
the network possibilities.

Let G = (V , E) be a digraph. Associated with
each vertex v there is a number b(v) 2 R, satisfyingP

v 2 Vb(v) = 0. A vertex v is called a source, a sink
or a transshipment vertex if b(v) is positive, negative
or zero, respectively. Additionally, assume that there is
a nonnegative capacity-function c: E!R and a positive
cost-function (i. e., length-function) l: E! R. Then the
minimum cost flow problem is formulated as
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
e2E

l(e) � xe

s.t.
X

(w;v)2E

x(w;v) �
X

(v;w)2E

x(v;w) D b(v);

v 2 V ;
0 � xe � c(e); e 2 E;
xe 2 f0; 1g; e 2 E:
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This problem is discussed in the literature many times;
one of several available good sources is [1] which in-
cludes several polynomial time algorithms. A general
background is [24].
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3. Cheriton D, Tarjan RE (1976) Finding minimum spanning
trees. SIAM J Comput 5:724–742

4. Cieslik D (1998) Steiner minimal trees. Kluwer, Dordrecht
5. Cieslik D (1998) Using Hadwiger numbers in network de-

sign. In: DIMACS, 40. AmMath Soc, Providence, pp 59–78
6. Courant R, Robbins H (1941) What is mathematics? Oxford

Univ. Press, Oxford
7. Dijkstra EW (1959) A note on two problems in connection

with graphs. Numer Math 1:269–271
8. Dreyfus SE, Wagner RA (1972) The Steiner problem in

graphs. Networks 1:195–207
9. DuD-Z, Hwang FK (1992) A proof of the Gilbert–Pollak con-

jecture on the Steiner ratio. Algorithmica 7:121–136
10. Fermat P (1934) Abhandlungen über Maxima und Minima.

Oswalds Klassiker der exakten Wissenschaft, vol 238. H.
Miller, reprint from original.

11. Ford LR Jr, Fulkerson DR (1956) Maximal flow through
a network. Canad J Math 8:399–404

12. Ford LR Jr, Fulkerson DR (1962) Network flow theory.
Princeton Univ. Press, Princeton

13. Foulds LR (1994) Graph theory applications. Springer,
Berlin

14. Garey MR, Johnson DS (1977) The rectilinear Steiner tree
problem is NP-complete. SIAM J Appl Math 32:826–834

15. Garey MR, Johnson DS (1979) Computers and intractibility.
Freeman, New York

16. Gauss CF (1917) Briefwechsel Gauss–Schuhmacher. In:
Werke, vol. X. pp 459–468

17. Gavish B (1982) Topological design of centralized com-
puter networks - Formulations and algorithms. Networks
12:355–377

18. Gilbert EN, Pollak HO (1968) Steiner minimal trees. SIAM J
Appl Math 16:1–29

19. Graham RL, Hell P (1985) On the history of the minimum
spanning tree problem. Ann Hist Comput 7:43–57

20. Grötschel M, Monma CL (1990) Integer polyhedra arising
from certain network design problems with connectivity
constraints. SIAM J Discret Math 3:502–523

21. Grötschel M, Monma CL, Stoer M (1994) Design of surviv-
able networks. In: Handbook Oper Res and Management
Sci. North-Holland, Amsterdam

22. Hakimi SB (1971) Steiner’s problem in graphs and its impli-
cations. Networks 1:113–133

23. Hakimi SL, Yau SS (1964) Distancematrix of a graph and its
realizability. Quart Appl Math 22:305–317

24. Horst R, Pardalos PM, Thoai NV (1995) Introduction to
global optimization. Kluwer, Dordrecht

25. Hwang FK (1976) On Steiner minimal trees with rectilinear
distance. SIAM J Appl Math 30:104–114

26. Hwang FK, Richards DS, Winter P (1992) The Steiner tree
problem. North-Holland, Amsterdam

27. Ivanov AO, Tuzhilin AA (1994) Minimal networks - The
Steiner problem and its generalizations. CRC Press, Boca
Raton

28. Jungnickel D (1994) Graphen, Netzwerke und Algorith-
men. BI Wissenschaftsverlag, Mannheim

29. Karp RM (1962) Reducibility among combinatorial prob-
lems. In: Miller RE, Thatcher JW (eds) Complexity of Com-
puter Computations. Springer, New York, pp 85–103

30. Kruskal JB (1956) On the shortest spanning subtree of
a graph and the travelling salesman problem. Proc 7:48–
50

31. Lawler EL (1976) Combinatorial optimization - Networks
and matroids. Holt, Rinehart and Winston, New York

32. Lengauer T (1990) Combinatorial algorithms for integrated
circuit layout. Teubner and Wiley, Stuttgart

33. Love RF, Morris JG (1972) Modelling inter-city road dis-
tances by mathematical function. J Oper Res Soc 23:61–71

34. Love RF, Morris JG, Wesolowsky G (1989) Facilities location
- Models and methods. North-Holland, Amsterdam

35. Melzak ZA (1961) On the problem of Steiner. Canad Math
Bull 4:143–148



Network Location: Covering Problems N 2545

36. Papadimitriou CH, Steiglitz K (1982) Combinatorial opti-
mization. Prentice-Hall, Englewood Cliffs

37. Robins G, Salowe JS (1995) Low-degree minimum span-
ning trees. Discrete Comput Geom 14:151–165

38. Rubinstein JH, Weng JF (1997) Compression theorems and
Steiner ratios on spheres. J Combin Optim 1:67–78

39. Setubal J, Meidanis J (1997) Introduction to computational
molecular biology. PWS, Boston, MA

40. Smith JM (1985) Generalized Steiner network problems in
engineering design. In: Design Optimization. pp 119–161

41. Wald JA, Colbourn CJ (1983) Steiner trees, partial 2-trees,
and minimum IFI networks. Networks 13:159–167

42. Winter P (1985) An algorithm for the Steiner problem in the
Euclidean plane. Networks 15:323–345

43. Winter P (1986) Generalized Steiner problem in series-
parallel networks. J Algorithms 7:549–566

44. Winter P (1987) Steiner problems in networks: A survey.
Networks 17:129–167

Network Location:
Covering Problems

TIMOTHY J. LOWE

University Iowa, Iowa City, USA

MSC2000: 90C35, 90B10, 90B80

Article Outline

Keywords
See also
References

Keywords

Maximum coverage location problem; Uncapacitated
facility location problem

The covering problem on a network involves the de-
cision problem of determining the location of one or
more ‘facilities’ or ‘centers’ to provide service to several
clients located at known points on the network. To pro-
vide service to a client, a facility must be located ‘close
enough’ to the client. In a more general version of the
problem, there may be fixed costs associated with lo-
cating facilities, and also there may be penalty costs as-
sociated with not serving clients (not locating a facility
close enough to the client). In this situation, to mini-

mize total cost there is a trade-off between establishing
facilities and not serving clients.

Let N(V , A) be a connected undirected network
with node set V = {v1, . . . , vm} and arc set A. Each arc
a 2 A has a given length la � 0. If we consider a = [vi,
vj] as a line segment with length la, then any point on a
can be defined by its distance from vi (or from vj). We
denote by d(x, y) the shortest path distance on the arcs
of N between the points x and y on N. If X is a set of
points on N, then D(X, y) denotes the distance between
y and a point in X which is closest to y.

Without loss of generality, we assume that the
clients are located at the nodes of N. Furthermore, we
assume that each node vi 2 V is the site of exactly one
client. To specify the notion of ‘coverage’, for i = 1, . . . ,
m, let the ‘covering radius’ ri � 0 be associated with vi.
In order for client i to be covered, we require that at
least one facility x be located so that d(x, vi)� ri. Equiv-
alently, if X is a set of located facilities, D(X, vi) � ri.

In our version of the problem, we assume that facil-
ities can only be located at members of a subset V 0 of V ,
where V 0 = { v1, . . . , vn}, n � m. Since both clients and
facilities are located at nodes of N, we can define an m
× n (0�1) covering matrix A, where aij = 1 if and only
if d(vj, vi)� ri. Thus if aij = 1 and if there is a facility lo-
cated at vj, then client i is covered. Let cj > 0 be the cost
of locating a facility at node vj, j = 1, . . . , n, and let bi >
0 be the penalty cost associated with not covering client
i. Finally, let zi, i = 1, . . . ,m be a (0–1) variable. Also, let
xj, j = 1, . . . , n be a (0–1) variable. Then with the above,
we can formulate the covering problem as the following
(0–1) integer programming problem:

(P) min
nX

jD1

c jx j C

mX
iD1

bi zi

subject to:

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
jD1

ai jx j C zi � 1; i D 1; : : : ;m;

x j 2 f0; 1g; j D 1; : : : ; n;
zi 2 f0; 1g; i D 1; : : : ;m:

In an optimal solution to problem (P), note that zi = 1
only when client i is not covered. That is, only when xj
= 0 for every j where d(vj, vi)� ri.
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For some versions of the problem there is a ‘bud-
get constraint’ imposed on the facilities. This constraint
usually takes the form:

nX
jD1

c jx j � M: (1)

In the special case where each cj = 1, the budget con-
straint simply limits the number of facilities that can be
located (to a total of M). This problem, when each bi
= 1 and the cost of locating facilities is eliminated from
the objective function, is often called themaximum cov-
erage location problem, since when the objective func-
tion is minimized, a minimum number of clients are
not covered and so a maximum number of clients are
covered. Henceforth, we will only consider versions of
problem (P) that do not include (1).

Several applications of problem (P) and its variants
have been reported in the literature (see [11] for a par-
tial list of applications). Besides direct applications of
the problem, in [9] it is shown that the p-center prob-
lem on a network (the problem of locating no more
than p facilities to minimize the maximum distance be-
tween any client and its closest facility) can be solved
by solving a sequence of covering problems. As further
evidence of its applicability, in [7] it is shown that the
uncapacitated facility location problem can be formu-
lated as a covering problem. Thus, the covering prob-
lem is one of the very fundamental network location
problems.

On a general network, the covering problem is
known to beNP-hard. Heuristics for general (0–1) cov-
ering problems have been well-studied ([3,4,5,8,10]).

A popular heuristic is the greedy heuristic which
works as follows. (For notational convenience, in the
following discussion of the heuristic we assume that
each client must be covered. Thus the zi variables can
be removed from (P). If this is not the case, modifi-
cations to the heuristic are obvious.) At each iteration
t, let At be the submatrix of A that consists of rows
and columns of A that have not been removed thus far.
For each column j of At compute rtj = cj/I tj , where I

t
j is

the number of nonzero entries in column j of At . Set
xj� to 1 where j� is an index j for which rtj is mini-
mum.

Remove j� from At as well as every row i where ai j�
= 1. The resulting matrix is At+1 and the heuristic con-

tinues until there are no nonzero entries remaining in
the matrix.

Thus the heuristic chooses the column of At for
which the corresponding facility covers uncovered
clients at ‘least cost per coverage’. The procedure con-
tinues until all clients are covered.

There is a performance guarantee of the greedy
heuristic that is independent of the cost coefficients, but
does depend upon the entries in the matrix A. It can be
shown that the ratio of the objective function value de-
rived via the greedy approach to the optimal objective
function value will not exceed H(d) =

Pd
kD1 1/k, where

d is the maximum number of nonzero entries in any
column of A.

When the underlying network, N(V , A), is a tree, T
(a connected undirected network without cycles), prob-
lem (P) can be solved in polynomial time. A. Kolen and
A. Tamir [7] have shown that in the case of a tree net-
work, the rows and columns of A can be permuted (in
polynomial time) so that the matrix A is in standard

greedy form (does not contain the submatrix
�
1 1
1 0

�
).

They then show that any covering problem (P) where A
is in standard greedy form can be solved in O(mn). See
[1] for the existence of covering problems where A is
standard greedy, but where the problem cannot be de-
rived from a tree network location problem. Thus, the
Kolen–Tamir approach may be applicable to a broader
class of covering problems on networks.

In the special case of (P) on a tree, where each cj = 1
and every client must be covered (bi is sufficiently large
to prohibit noncoverage), even more efficient solution
methods are possible (see [2,6], and [12]). With each cj
= 1, problem (P) reduces to the problem of minimizing
the number of facilities located subject to the condition
that every client is covered.

The procedure of B.C. Tansel, R.L. Francis, T.J.
Lowe, and M.L. Chen [12] involves a physical ‘string
model’. Their approach does not involve direct use of
the formulation (P) and facilities can be located any-
where (on nodes or arcs) on the tree T. The procedure
begins by inscribing straight-line segments on a planar
surface such that each segment represents an arc of T.
Next, a string of length ri is fastened to each node vi of
the inscribed tree.

The procedure involves pulling the strings toward
the interior of the tree by first considering strings fas-
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tened to nodes at the tips of the tree. Facilities are lo-
cated at points on the tree where the ends of tight
strings reach. Once a facility is located each remain-
ing string that reaches the facility is removed from the
model, since the corresponding client is covered by that
facility.
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Most of the engineering design problems and applica-
tions can be formulated as a nonlinear programming
problem in which the objective function to be opti-
mized is nonlinear and has many local optima in its fea-
sible region. It is desirable to find a local optimum that
corresponds to a near global optimum. The problem of
finding a global minimum or maximum is known as
the global optimization problem. The main difficulties
in finding a global optimum are that there are no op-
erationally useful optimality conditions for identifying
whether a point is indeed a global optimum, except in
cases of special structured problems [16].

In this article, one class of global optimization prob-
lems, specifically combinatorial optimization problems
will be mainly discussed. The combinatorial optimiza-
tion problems deal with problems of maximizing or
minimizing an objective function subject to inequal-
ity and/or equality constraints over a set of combina-
torial alternatives. Finding optimal solutions to such
problems where the decision variables are combinato-
rial or discrete is known as combinatorial optimization
problems. A naive way to solve combinatorial optimiza-
tion problems is to list all of the feasible solutions of
a given problem, then evaluate its objective function,
and choose the best one as an optimum solution. How-
ever, even though it is possible in principle to solve the
problem in this way, in practice it is not, because of the
large number of possible feasible solutions to any prob-
lem of a reasonable size. Most of the combinatorial op-
timization problems are NP-complete [34]. Because of
the combinatorial structure of these problems the time
needed to solve them grows exponentially with the size
of the problem. For NP-complete problems, there is no
algorithm that provides an exact solution to the prob-
lem in polynomial time.

Over the last three decades, the combinatorial opti-
mization problem is one of the most challenging prob-
lems that has received considerable attention. The tra-
ditional solution methodologies for combinatorial opti-
mization problems can be categorized into three groups
as exact, heuristic, and approximation methods [50].
Exact methods guarantee to obtain an optimum solu-
tion, but the computational time for obtaining an opti-
mum solution is usually an exponential function of the
number of variables. The simplex method and branch
and bound methods are some examples of exact meth-
ods. The heuristic methods are problem-specific meth-
ods based on success without formal analysis of perfor-
mance. Simulated annealing (SA), tabu search, and ge-
netic algorithms are some examples of heuristic meth-
ods [45]. On the other hand, the approximation meth-
ods generate feasible solutions that are near optimal so-
lutions. Neural networks based methods are perceived
as approximation methods.

This article reviews the use of NNs for combina-
torial optimization problems and provides a survey of
most of the NN approaches that have been applied to
combinatorial optimization problems. In Section 2, ba-
sic definitions, classifications and applications of NNs
are introduced. In Section 3, the mathematical basis of
problem formulation for NNs based on an energy func-
tion is explained. In Section 4, various combinatorial
optimization problems studied on NNs are presented.
Finally, Section 5 is the conclusion.

Neural Networks

Neural Network (NN) models are algorithms for intel-
lectual tasks such as learning and optimization that are
based on the concept of how the human brain works.
A NN model is composed of a large number of pro-
cessing elements called neurons. Each neuron is con-
nected to other neurons by links, each with an asso-
ciated weight. Neurons without links toward them are
called input neurons and with no link leaving away from
them are called output neurons. The neurons are repre-
sented by state variables. State variables are functions
of the weighted-sum of input variables and other state
variables. Each neuron performs a simple transforma-
tion at the same time in a parallel-distributed man-
ner. The input-output relation of the transformation
in a neuron is characterized by an activation function.
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Some examples of activation functions are the thresh-
old function, linear, and sigmoidal functions. The com-
bination of input neurons, output neurons, and links
between neurons with associated weights constitute the
architecture of the NN.

Mathematically, a NN model is a directed graph
with the following properties [12]:
1) Each neuron (node) is associated with a state vari-

able Si and an activation threshold (bias) vi.
2) Each link (edge) between two neurons i and j asso-

ciates with it a weight wij.
3) Each neuron (node) defines a transfer function f i(Si,

wij, vi), which determines the state of the neuron.
The classification of NNs can be done in different

ways. According to the nature of activation, they can
be categorized as deterministic and stochastic NNs.De-
terministic NNs activate their states by using determin-
istic activation functions such as the threshold, linear,
or sigmoidal functions. Most of the existing NN mod-
els are deterministic. Stochastic NNs activate their states
according to a probability distribution. A typical exam-
ple of stochastic NNs is the Boltzmann Machine (BM).
According to the nature of the connectivity, NNs can be
categorized as feed-forward and recurrent NNs. If a di-
rected graph has no closed paths, then it is called a feed-
forward NN. A typical example of the feed-forward
NN is the popular multilayer perceptron. Conversely, if
a directed graph has closed paths, then it is called a re-
current NN. A typical example of the recurrent NN is
the Hopfield NN ([9,12]).

Modern era of NNs is said to have begun with
the introductory work of W.S. McCullough and W.
Pitts [28]. They have proposed a general theory of infor-
mation processing based on networks of neurons. Each
one of these neurons can only take the output values 1
or 0 by representing the active and resting states of neu-
rons respectively. NNs have come a long way from the
early days of McCullough and Pitts. NNs have estab-
lished themselves as an interdisciplinary subject with
rich connections in the neuroscience, psychology, phys-
ical sciences, mathematics and engineering.

NNs have very close ties with optimization and the
ties are manifested mainly into two aspects. On one as-
pect, a lot of learning algorithms have been developed
based on optimization techniques to train NNs to per-
form modeling tasks ([2,9,12,37,39]). On the other as-
pect, NNs have been developed for solving optimiza-

tion problems ([4,6,12,26,36,40,44,50,51]). Because of
the inherent nature of parallel and distributed informa-
tion processing in NNs, they are promising computa-
tional models for solving large scale optimization prob-
lems in real-time ([3,5,21,22,23,49]).

Neural Networks and Combinatorial
Optimization Problems

NNs have been proposed as a model of computation
to solve combinatorial optimization problems. To solve
combinatorial optimization problems using NNs re-
quires a mapping of the problem onto the NNs in such
a way that one can identify a solution from outputs of
the neurons. In other words, to solve the combinatorial
optimization problems using NNs, the key is to map the
problem into the architecture of the NN for which the
stable state represents the solution of the combinatorial
optimization problem.

Combinatorial optimization problems can be solved
using NNs by following two approaches.
1) By formulating a combinatorial optimization prob-

lem in terms of minimizing an energy function of
either discrete or continuous variables ([1,3,4,5,8,13,
15,35,36,40]).

2) By designing competition based NNs in which neu-
rons are allowed to compete to become active under
certain conditions ([7,9]).
These two approaches suggest that NNs are an alter-

native for solving combinatorial optimization problems
as compared to other optimization techniques. Moti-
vations for using NNs include the improvement in the
speed of the operation through massively parallel com-
putation and possible hardware design advantages. One
of the main advantages of NN approaches to classical
optimization approaches is the inherently parallel and
distributed nature of the dynamic solution procedure.
Therefore, NNs are capable to solve large scale opti-
mization problems in real time ([3,5,21,22,23,49]).

NNs have been used to solve many combinatorial
optimization problems since the pioneering work of
J.J. Hopfield and D.W. Tank [15]. They formulated the
traveling salesman problem (TSP) on a highly inter-
connected NN and made exploratory numerical stud-
ies on a 10-city and 30-city TSP. They showed that
an energy function can be defined for an analog Hop-
field NN and the NN always converges to a local min-
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imum of this function. To find the (near) global min-
imum of the energy function, the Boltzmann Machine
(BM) was proposed [2]. The BM was the first attempt
to combine SA and NN architectures to solve combi-
natorial optimization problems. However, BM is de-
signed for discrete variables with the disadvantage of
being so slow. Another approach by combining SA and
NNs was proposed in [24]. In this study, a noise term
has been added to the neural dynamics. The intensity
of that noise term has been shown to depend on the
state of the neuron as well as on a temperature parame-
ter T. By selecting an appropriate temperature schedule
T(t), the resulting NN converged to a near global min-
imum of the NN energy function that is in the neigh-
borhood of the global minimum of the combinatorial
optimization problem. The Hopfield NN was extended
to handle inequality constraints and simplified its con-
vergence characteristics by the eigenvalue analysis [1].
The mathematical basis of the behavior of the Hop-
field NN by means of an idealization of the Hopfield
network was given in [47]. This study helped to give
a better understanding of the relationship between NNs
and the combinatorial optimization. The analog neu-
ral solution of the combinatorial optimization prob-
lem was considered [48]. The solution method was an-
alyzed based on the Lagrange multiplier for the contin-
uous relaxation problem of 0-1 integer programming.
The theory and methodology of the deterministic NNs
for the combinatorial optimization were presented in
[50]. This study was extended to the convex program-
ming [51]. The use of NN methods for the combinato-
rial optimization problems was reviewed ([13,26,44]).
A systematic approach to design competition based
NNs for the combinatorial optimization was presented
in [7]. The competition based NNs were studied in de-
tail [9].

The procedure of NN approaches to the combina-
torial optimization mostly begins with the formulation
of an energy function. Ideally, the minimum of this
energy function corresponds to the optimal solution
of the combinatorial optimization problem. Most of
the existing NN approaches to combinatorial optimiza-
tion problems formulate an energy function by incor-
porating an objective function and constraints through
functional transformation and numerical weighting.
A functional transformation is usually used to con-
vert constraints to a penalty function to penalize the

violations of constraints. Numerical weighting is of-
ten used to balance constraint satisfaction and objec-
tive minimization. In the NN formulation for combina-
torial optimization problem, constraint violations en-
ter to the energy function in an explicit way. In gen-
eral, such an energy function will have the following
form:

E D
X
i

Ai (constraint violation)i C cost (1)

where Ai > 0 and cost is an objective function that is
independent from the constraint violations. By mini-
mizing the energy function E, we attempt to minimize
the cost while at the same time minimize the constraint
violations.

The second step in designing NNs for combinato-
rial optimization problems is to derive a dynamic equa-
tion (also known as state equation or motion equation).
The dynamic equation of the NN prescribes the mo-
tion of the activation states of the NN. A properly de-
rived dynamic equation can ensure that the state of the
NN reaches equilibrium and the equilibrium-state of
the NN satisfies the constraints and optimizes the ob-
jective function of the problem. Currently, the dynamic
equations of most NNs for optimization problems are
derived by letting the time derivative of a state vector
to be directly proportional to the negative gradient of
an energy function. The dynamic equations and energy
functions for a wide variety of combinatorial optimiza-
tion problems were studied [28]. The last step is to de-
termine the architecture of the NN in terms of neurons
and connections based on the derived dynamic equa-
tion in such a way that one can identify a solution from
the outputs of the neurons.

The success of optimization using NNs lies in the
formulation of an energy function, based on the objec-
tive function and constraints of the given optimization
problem, and the derivation of a dynamic equation of
NNs, based on the formulated energy function.

The NN approaches to optimization problems have
been started with [14]. He has pioneered an approach
for solving minimization problems by utilizing the
collective computational capabilities of NNs. He has
mapped the objective function and the problem con-
straints onto a quadratic energy function of the neural
states that presents the energy of the system of neurons.
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The energy function had the following form:

E(S) D �
1
2

NX
iD1

NX
jD1

Ci jSi S j�

NX
iD1

Si Ii ; (2)

where Si represents the output state of neurons. Cij rep-
resents the strength of the link between neurons i and j.
Ii represents the input bias; the input of neurons is de-
noted as xi. The motion equations of neurons is defined
by

dxi
dt
D �xi C

NX
j¤i

Ci jSi C Ii ;

where Si D fi(xi) :

(3)

Hopfield showed that for a NNwith symmetric con-
nections and nonnegative elements on the diagonal of
the C matrix, the NN will always converge by perform-
ing the gradient descent to a stable state, which is a local
minimum of the energy function. Many difficult opti-
mization problems can be formulated as the minimiza-
tion of a quadratic form and thus can be mapped onto
the NN model. Hopfield and Tank [15] extended the
discrete model to an analog model where 0 � Si � 1.
The modified energy function is:

E(S) D �
1
2

NX
iD1

NX
jD1

Ci jSi S j �

NX
iD1

Si Ii

C

NX
iD1

1
Ri

Z v i

0
g�1i (S) dS ;

(4)

where Ri is the input resistance to unit i, and gi is the
activation function. The dynamics of the neuron update
is defined by

dxi
dt
D �xi C

NX
j¤i

Ci jSi C Ii ;

where Si D
1
2
(1C tanh(xi)) :

(5)

This model is synchronous, continuous and determin-
istic.

NNs to minimize the energy function are composed
of either discrete or continuous neurons. The possibili-
ties of using different types of NNs such as discrete-state

and discrete-time, continuous-state and discrete-time,
and continuous-state and continuous-time networks to
solve combinatorial optimization problems were inves-
tigated [29]. One usually prefers to use continuous neu-
rons rather than discrete ones for two reasons. First,
a continuous network tends to avoid oscillations be-
tween stable states. Second, solutions are much better
than those provided by discrete NNs, because the valley
of energy landscapes are wider and neuron outputs are
not restricted to corners of the hypercube during con-
vergence. NNs do not guarantee globally optimal solu-
tions but they compute locally optimal solutions.

In the last two decades, spin glass theories of statis-
tical physics have been extensively studied because of
their applications to other areas like optimization and
neural networks ([10,30,46]). A similarity between an
NN of the type proposed in [28] and a system of el-
ementary magnetic spins was pointed in [25]. These
ideas were developed further [14] by studying how such
a NN or a spin system can store and retrieve informa-
tion. The idea of an energy function was used to for-
mulate a new way of understanding the computation
performed by NNs.

To solve combinatorial optimization problems us-
ing NNs and the mean field theory (MFT) of the statis-
tical physics ([3,4,5,17,18,20,31,40]) was introduced by
C. Peterson and J.R. Anderson [38]. This was the first
detailed attempt to use the MFT and NNs for solving
combinatorial optimization problems after a brief de-
scription by Hopfield and Tank [15]. The problem was
mapped onto the NN such that a neuron being ‘on’ cor-
responded to a certain decision and then relaxed the
system using the MFT in order to escape from local
minima. In this study, the problem was mapped onto
an Ising glass model ([10,11,31,40]). Another method
for finding approximate solutions to combinatorial op-
timization problems within NNs and the MFT con-
cept was presented [40]. The problem was mapped
onto a Potts glass model ([19,31,40,46,52]) in this study.
A mean field annealing (MFA) was described based on
the MFT and SA. Similar studies based on the MFT
of statistical physics to solve combinatorial optimiza-
tion problems have been studied ([4,5,49]). A general
framework for the MFA algorithm was derived and
its relationship with to Hopfield NNs was shown [4].
A NNmapping and the MFT solution method for find-
ing good solutions to combinatorial optimization prob-



2552 N Neural Networks for Combinatorial Optimization

lems containing inequality constraints like the knap-
sack problem were developed ([32,33]).

A method to solve combinatorial optimization
problems was proposed ([17,18]) based on ‘two-layer
random field model’ using the technique of the MFA.
This method determined the appropriate values of the
weights of two kinds of terms in objective function;
a cost term that should be minimized and a con-
straint term that expresses constraints imposed on so-
lutions. A parallel MFT method and a new tempera-
ture scheduling method named as maximum entropy
cooling schedule were proposed [43]. The relation-
ship between the MFT NN model and the continu-
ous-time Hopfield NN was analyzed [20] by using the
theory of dynamical systems. This study showed that
the asynchronous MFT model was equivalent to the
continuous-time Hopfield NN on the nature of the
fixed points and hence guaranteed theoretically usage
of the MFT model for solving combinatorial optimiza-
tion problems in place of the continuous-time Hop-
field NN.

Combinatorial Optimization Problems

In this section, we list some of the combinatorial opti-
mization problems that have been studied to be solved
using NNs. Most of these problems are NP-complete
[34]. Themapping of combinatorial optimization prob-
lems onto NNs by focusing graph problems such as
graph K-partitioning, maximum graph matching, and
maximum clique problems was studied [13]. The use of
NNs for combinatorial optimization problems was re-
viewed [26]. A number of interesting combinatorial op-
timization problems such as graph partitioning, travel-
ing salesman problem, vertex cover, maximum clique,
maximum independent set, number partitioning, max-
imum matching, set cover, and graph coloring were
studied to show how to map these problems into NNs
[44]. A NN mapping and the MFT solution method
for finding good solutions to combinatorial optimiza-
tion problems containing inequality constraints like the
knapsack problem were developed [32]. The MFT ap-
proach to the knapsack problem was extended to mul-
tiple knapsacks and generalized assignment problems
[33]. The following three problems have been stud-
ied mostly by several researchers using different ap-
proaches.

Quadratic Assignment Problem

The quadratic assignment problem (QAP) represents
a large class of combinatorial optimization problems
arising in a variety of planning and designing contexts.
The QAP seeks to minimize a quadratic cost function
for assignment of a number of objects to positions that
can be mathematically described as follows [50]:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min f (x) D
NX
iD1

NX
jD1

NX
kD1

NX
lD1

ci jk l xi jxk l

s.t.
NX
iD1

xi j D 1; j D 1; : : : ;N;

NX
jD1

xi j D 1; i D 1; : : : ;N;

xi j 2 f0; 1g; i; j D 1; : : : ;N;

(6)

where cijkl denotes the cost associated with assigning
object i to position j and object k to position l for i, j,
k, l = 1, . . . , N.

An energy function for this problem can be written
as follows [8]:

E(S) D
A
2
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X
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X
l¤k
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SikSi l C
C
2
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1 �

nX
iD1

Sik

!2

:

(7)

The first term is the just cost function. The second term
specifies the constraint that at most one position can be
assigned to each object and the third term specifies the
constraint that every object must be assigned by exactly
one assignment. This term prevents the solution of no
assignments. The QAP was studied in ([6,7,8,50]).

Graph Partitioning Problem

The graph partitioning (GP) problem can be defined as
follows: Given a set of N nodes with a given connec-
tivity, partition them into K sets each with N/K nodes
such that the net connectivity (cut-size) is minimal be-
tween each set. If K = 2, then this problem is known as
the graph bipartitioning problem.

An energy function for this problem can be written
as follows [42]: For each vertex i, a binary unit Si = +1
or �1 is assigned, and for each pair of vertices Si, Sj, i 6D
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j, a value Tij = 1 if they are connected, and Tij = 0 if they
are not connected is assigned:

E(S) D �
1
2

NX
iD1

NX
jD1

Ti jSi S j

C
˛

2

0
@
 NX

iD1

Si

!2

�

NX
iD1

S2i

1
A ;

(8)

where ˛ is an imbalance parameter. The first term cor-
responds to the cost function and the second term cor-
responds to the constraints of the problem that guar-
antee equal partition. TijSiSj is 0 whenever vertices i
and j are not connected at all, positive whenever con-
nected vertices i and j are in the same partition and neg-
ative when they are in separate partition. The GP was
studied in ([5,6,38,40,41,42,44,49]). The graph biparti-
tioning was studied in ([4,6,36,40,41,42]). The graph K-
partitioning was studied in ([13,44]).

Traveling Salesman Problem

The traveling salesman problem (TSP) can be defined
as follows: Given a list of N cities and the distances, dij,
among them, find the shortest possible tour through
a set of N cities, visiting each one exactly once. Note
that the TSP is a special case of the GP problem where
K =N. For the n-city TSP, the number of possible tours
are n!. However, a tour describes an order in which
cities are visited. For the n-city TSP, there are 2n tours
of equal path-length. Therefore, there are 2!/2n distinct
paths for closed TSP tours. The total of N = n2 neurons
required to map the n-city TSP to NNs. To enable the
N neurons in the TSP network, to compute a solution
to the problem, the network must be described by an
energy function in which the lowest energy state cor-
respond to the best path. Hopfield and Tank [15] used
the following energy function to solve the TSP problem.
The output Sij indicates whether city i is assigned to po-
sition j in the tour or not.
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(9)

The first three terms characterize the general problem
constraints. The first triple sum is zero if and only if
each city row X contains no more than ‘1’, (the rest of
the entries being zero). The second triple sum is zero
if and only if each ‘position in tour’ column contains
no more than ‘1’, (the rest of the entries being zero).
The third triple sum is zero if and only if there are n
entries of ‘1’ in the entire matrix. The last triple sum is
the cost term, the length of the path corresponding to
a given tour. The TSP was studied in ([6,15,17,18,26,27,
35,40,41,42,43,50]).

In addition to these problems, the following prob-
lems have been also studied:
� The Airline Crew Scheduling [21].
� The Constraint Satisfaction Problem [26].
� The Generalized Assignment Problem ([7,33]).
� The Graph Coloring Problem [44].
� The Job Scheduling [7].
� The Knapsack Problem ([1,7,32,33,36,41,42]).
� The Maximum Clique Problem ([13,22,23,44]).
� The Maximum Independent Set Problem [44].
� The Maximum Matching Problem ([13,44]).
� The Morphism Problems [13].
� The Number Partitioning [44].
� The Satellite Broadcasting Scheduling [3].
� The School Scheduling ([41,42]).
� The Set Cover Problem [44].
� The Vertex Cover Problem [44].

Conclusions

The use of NNs for the combinatorial optimization
problems and the NN approaches that have been ap-
plied to combinatorial optimization problems were re-
viewed. These approaches suggest that NNs are an al-
ternative for solving combinatorial optimization prob-
lems as compared to other optimization techniques.
Motivations for using NNs include the improvement
in the speed of the operation through massively paral-
lel computation, and possible hardware design advan-
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tages. One of the main advantages of NN approaches
to classical optimization approaches is the inherently
parallel and distributed nature of the dynamic solution
procedure. Therefore, NNs are capable to solve large
scale optimization problems in real time. This is essen-
tial in many engineering design, control, and optimiza-
tion problems. Because of the inherent nature of paral-
lel and distributed information processing in NNs, they
are promising computational models for solving large
scale optimization problems in real-time.

See also

� Neuro-dynamic Programming
� Replicator Dynamics in Combinatorial

Optimization
� Unconstrained Optimization in Neural Network

Training
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Neuro-dynamic programming (NDP for short) is a rel-
atively new class of dynamic programmingmethods for
control and sequential decision making under uncer-
tainty. These methods have the potential of dealing with
problems that for a long time were thought to be in-
tractable due to either a large state space or the lack
of an accurate model. The methods discussed combine
ideas from the fields of neural networks, artificial in-
telligence, cognitive science, simulation, and approxi-
mation theory. In this article, we delineate the major
conceptual issues, we survey a number of recent devel-
opments, we describe some computational experience,
and we address a number of open questions.



2556 N Neuro-Dynamic Programming

We consider systems where decisions are made in
stages. The outcome of each decision is not fully pre-
dictable but can be anticipated to some extent before
the next decision is made. Each decision results in some
immediate cost but also affects the context in which
future decisions are to be made and therefore affects
the cost incurred in future stages. Dynamic program-
ming (DP for short) provides a mathematical formal-
ization of the trade-off between immediate and future
costs.

Generally, in DP formulations there is a discrete-
time dynamic system whose state evolves according to
given transition probabilities that depend on a deci-
sion/control u. In particular, if we are in state i and we
choose decision u, we move to state j with given proba-
bility pij(u). Simultaneously with this transition, we in-
cur a cost g(i, u, j). In comparing, however, the available
decisions u, it is not enough to look at the magnitude of
the cost g(i, u, j); we must also take into account how
desirable the next state j is. We thus need a way to rank
or rate states j. This is done by using the optimal cost
(over all remaining stages) starting from state j, which
is denoted by J�(j). These costs can be shown to satisfy
some form of Bellman’s equation

J�(i) D min
u

E fg(i; u; j)C J�( j)ji; ug ;

for all i ;

where j is the state subsequent to i, and E{�|i, u} denotes
expected value with respect to j, given i and u. Gener-
ally, at each state i, it is optimal to use a control u that
attains the minimum above. Thus, decisions are ranked
based on the sum of the expected cost of the present
period, and the optimal expected cost of all subsequent
periods.

The objective of DP is to calculate numerically the
optimal cost function J�. This computation can be done
off-line, i. e., before the real system starts operating. An
optimal policy, that is, an optimal choice of u for each
i, is computed either simultaneously with J�, or in real
time by minimizing in the right-hand side of Bellman’s
equation. It is well known, however, that for many im-
portant problems the computational requirements of
DP are overwhelming, mainly because of a very large
number of states and controls (Bellman’s ‘curse of di-
mensionality’). In such situations a suboptimal solution
is required.

Cost Approximations in Dynamic Programming

NDP methods are suboptimal methods that center
around the approximate evaluation of the optimal cost
function J�, possibly through the use of neural net-
works and/or simulation. In particular, we replace the
optimal cost J�(j) with a suitable approximationeJ(j, r),
where r is a vector of parameters, and we use at state i
the (suboptimal) controle�(i) that attains the minimum
in the (approximate) right-hand side of Bellman’s equa-
tion

e�(i) D argmin
u

E
˚
g(i; u; j)CeJ( j; r)ji; u� :

The functioneJ will be called the scoring function, and
the valueeJ(j, r) will be called the score of state j. The
general form ofeJ is known and is such that once the
parameter vector r is determined, the evaluation ofeJ(j,
r) of any state j is fairly simple.

We note that in some problems the minimization
over u of the expression

E
˚
g(i; u; j)CeJ( j; r)ji; u�

may be too complicated or too time-consuming for
making decisions in real-time, even if the scoreseJ(j, r)
are simply calculated. In such problems we may use a
related technique, whereby we approximate the expres-
sion minimized in Bellman’s equation,

Q(i; u) D E fg(i; u; j)C J�( j)ji; ug ;

which is known as the Q-factor corresponding to (i, u).
In particular, we replace Q(i, u) with a suitable approx-
imation eQ(i, u, r), where r is a vector of parameters. We
then use at state i the (suboptimal) control that mini-
mizes the approximate Q-factor corresponding to i:

e�(i) D argmin
u
eQ(i; u; r) :

Much of what will be said about approximation of the
optimal cost function also applies to approximation of
Q-factors. We thus focus primarily on approximation
of the optimal cost function J�.

We are interested in problems with a large num-
ber of states and in scoring functionseJ that can be de-
scribed with relatively few numbers (a vector r of small
dimension). Scoring functions involving few parame-
ters are called compact representations, while the tabu-
lar description of J� are called the lookup table represen-
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tation. Thus, in a lookup table representation, the val-
ues J�(j) are stored in a table for all states j. In a typical
compact representation, only the vector r and the gen-
eral structure of the scoring functioneJ(�, r) are stored;
the scoreseJ(j, r) are generated only when needed. For
example,eJ(j, r) may be the output of some neural net-
work in response to the input j, and r is the associated
vector of weights or parameters of the neural network;
oreJ(j, r) may involve a lower-dimensional description
of the state j in terms of its ‘significant features’, and r is
the associated vector of relative weights of the features.
Thus determining the scoring functioneJ(j, r) involves
two complementary issues:
1) deciding on the general structure of the functioneJ(j,

r); and
2) calculating the parameter vector r so as to minimize

in some sense the error between the functions J�(�)
andeJ(�, r).

Approximations of the optimal cost function have been
used in the past in a variety of DP contexts. Chess play-
ing programs represent a successful example. A key idea
in these programs is to use a position evaluator to rank
different chess positions and to select at each turn a
move that results in the position with the best rank.
The position evaluator assigns a numerical value to each
position, according to a heuristic formula that includes
weights for the various features of the position (mate-
rial balance, piece mobility, king safety, and other fac-
tors). Thus, the position evaluator corresponds to the
scoring functioneJ(j, r) above, while the weights of the
features correspond to the parameter vector r. Usually,
some general structure of position evaluator is selected
(this is largely an art that has evolved over many years,
based on experimentation and human knowledge about
chess), and the numerical weights are chosen by trial
and error or (as in the case of the champion program
Deep Thought) by ‘training’ using a large number of
sample grandmaster games.

As the chess program paradigm suggests, intuition
about the problem, heuristics, and trial and error are
all important ingredients for constructing cost approx-
imations in DP. However, it is important to supplement
heuristics and intuition with more systematic tech-
niques that are broadly applicable and retain as much
as possible the nonheuristic aspects of DP.

NDP aims to develop a methodological foundation
for combining dynamic programming, compact repre-

sentations, and simulation to provide the basis for a ra-
tional approach to complex stochastic decision prob-
lems.

Approximation Architectures

An important issue in function approximation is the se-
lection of architecture, that is, the choice of a parametric
class of functionseJ(�, r) or eQ(�, �, r) that suits the prob-
lem at hand. One possibility is to use a neural network
architecture of some type. We should emphasize here
that in this article we use the term ‘neural network’ in a
very broad sense, essentially as a synonym to ‘approx-
imating architecture’. In particular, we do not restrict
ourselves to the classical multilayer perceptron struc-
ture with sigmoidal nonlinearities. Any type of univer-
sal approximator of nonlinear mappings could be used
in our context. The nature of the approximating struc-
ture is left open in our discussion, and it could involve,
for example, radial basis functions, wavelets, polynomi-
als, splines, etc.

Cost approximation can often be significantly en-
hanced through the use of feature extraction, a process
that maps the state i into some vector f (i), called the fea-
ture vector associated with the state i. Feature vectors
summarize, in a heuristic sense, what are considered
to be important characteristics of the state, and they
are very useful in incorporating the designer’s prior
knowledge or intuition about the problem and about
the structure of the optimal controller. For example in
a queueing system involving several queues, a feature
vector may involve for each queue a three-value indica-
tor, that specifies whether the queue is ‘nearly empty’,
‘moderately busy’, or ‘nearly full’. In many cases, anal-
ysis can complement intuition to suggest the right fea-
tures for the problem at hand.

Feature vectors are particularly useful when they
can capture the ‘dominant nonlinearities’ in the opti-
mal cost function J�. By this we mean that J�(i) can
be approximated well by a ‘relatively smooth’ function
bJ(f (i)); this happens for example, if through a change
of variables from states to features, the function J� be-
comes a (nearly) linear or low-order polynomial func-
tion of the features. When a feature vector can be cho-
sen to have this property, one may consider approxima-
tion architectures where both features and (relatively
simple) neural networks are used together. In partic-
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ular, the state is mapped to a feature vector, which is
then used as input to a neural network that produces
the score of the state. More generally, it is possible that
both the state and the feature vector are provided as in-
puts to the neural network.

A simple method to obtain more sophisticated ap-
proximations, is to partition the statee space into sev-
eral subsets and construct a separate cost function
approximation in each subset. For example, by us-
ing a linear or quadratic polynomial approximation in
each subset of the partition, one can construct piece-
wise linear or piecewise quadratic approximations over
the entire state space. An important issue here is the
choice of the method for partitioning the state space.
Regular partitions (e. g., grid partitions) may be used,
but they often lead to a large number of subsets and
very time-consuming computations. Generally speak-
ing, each subset of the partition should contain ‘simi-
lar’ states so that the variation of the optimal cost over
the states of the subset is relatively smooth and can
be approximated with smooth functions. An interest-
ing possibility is to use features as the basis for parti-
tion. In particular, one may use a more or less regular
discretization of the space of features, which induces a
possibly irregular partition of the original state space. In
this way, each subset of the irregular partition contains
states with ‘similar features’.

Simulation and Training

Some of the most successful applications of neural net-
works are in the areas of pattern recognition, nonlin-
ear regression, and nonlinear system identification. In
these applications the neural network is used as a uni-
versal approximator: the input-output mapping of the
neural network is matched to an unknown nonlinear
mapping F of interest using a least squares optimiza-
tion. This optimization is known as training the net-
work. To perform training, one must have some train-
ing data, that is, a set of pairs (i, F(i)), which is repre-
sentative of the mapping F that is approximated.

It is important to note that in contrast with these
neural network applications, in the DP context there is
no readily available training set of input-output pairs (i,
J�(i)), which can be used to approximate J� with a least
squares fit. The only possibility is to evaluate (exactly
or approximately) by simulation the cost functions of

given (suboptimal) policies, and to try to iteratively im-
prove these policies based on the simulation outcomes.
This creates analytical and computational difficulties
that do not arise in classical neural network training
contexts. Indeed the use of simulation to evaluate ap-
proximately the optimal cost function is a key new idea,
that distinguishes the methodology of this presentation
from earlier approximation methods in DP.

Using simulation offers another major advantage: it
allows the methods of this article to be used for sys-
tems that are hard to model but easy to simulate; that
is, in problems where an explicit model is not avail-
able, and the system can only be observed, either as it
operates in real time or through a software simulator.
For such problems, the traditional DP techniques are
inapplicable, and estimation of the transition probabil-
ities to construct a detailed mathematical model is often
cumbersome or impossible.

There is a third potential advantage of simulation:
it can implicitly identify the ‘most important’ or ‘most
representative’ states of the system. It appears plausible
that if these states are the ones most often visited dur-
ing the simulation, the scoring function will tend to ap-
proximate better the optimal cost for these states, and
the suboptimal policy obtained will perform better.

Neuro-Dynamic Programming

The name ‘neuro-dynamic programming’ expresses the
reliance of the methods of this article on both DP and
neural network concepts. In the artificial intelligence
community, where the methods originated, the name
reinforcement learning is also used. In common arti-
ficial intelligence terms, the methods allow systems to
‘learn how to make good decisions by observing their
own behavior, and use built-in mechanisms for im-
proving their actions through a reinforcement mech-
anism’. In less anthropomorphic DP terms, ‘observing
their own behavior’ relates to simulation, and ‘improv-
ing their actions through a reinforcement mechanism’
relates to iterative schemes for improving the quality of
approximation of the optimal cost function, or the Q-
factors, or the optimal policy. There has been a grad-
ual realization that reinforcement learning techniques
can be fruitfully motivated and interpreted in terms
of classical DP concepts such as value and policy it-
eration; see the survey [1], and the book [6], which
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point out the connections between the artificial intel-
ligence/reinforcement learning viewpoint and the con-
trol theory/DP viewpoint, and give many references.

The currently most popular methodology in NDP
iteratively adjusts the parameter vector r of the scoring
functioneJ(j, r) as it produces sample state trajectories
(i0, . . . , ik + 1, . . . ,) by using simulation. These trajecto-
ries correspond to either a fixed stationary policy, or to
a ‘greedy’ policy that applies, at state i, the control u that
minimizes the expression

E
˚
g(i; u; j)CeJ( j; r)ji; u� ;

where r is the current parameter vector. A central no-
tion here is the notion of a temporal difference, defined
by

dk D g(ik; uk ; ikC1)CeJ(ikC1; r) �eJ(ik ; r) ;

and expressing the difference between our expected
cost estimateeJ(ik, r) at state ik and the predicted cost
estimate g(ik, uk, ik + 1) +eJ(ik+1, r) based on the out-
come of the simulation. If the cost approximations
were exact, the average temporal difference would be
zero by Bellman’s equation. Thus, roughly speaking,
the values of the temporal differences can be used to
make incremental adjustments to r so as to bring about
an approximate equality (on the average) between ex-
pected and predicted cost estimates along the simulated
trajectories. This viewpoint, formalized by R.S. Sutton
in [5], can be implemented through the use of gra-
dient descent/stochastic approximation methodology.
Sutton proposed a family of methods of this type, called
TD(�), and parameterized by a scalar �2[0, 1]. One ex-
treme, TD(1), is closely related to Monte-Carlo sim-
ulation and least squares parameter estimation, while
the other extreme, TD(0), is closely related to stochas-
tic approximation. A related method is Q-learning, in-
troduced by C.J.C.H. Watkins [9], which is a stochas-
tic approximation-like method that iterates on the Q-
factors. While there is convergence analysis of TD(�)
and Q-learning for the case of lookup table representa-
tions (see [8,4]), the situation is much less clear in the
case of compact representations. A number of results
have been derived for approximate policy and value it-
eration methods, which are obtained from the tradi-
tional DP methods after compact representations of the
various cost functions involved are introduced.

While the theoretical support for the NDP method-
ology is only now emerging, there have been quite a few
reports of successes with problems too large and com-
plex to be treated in any other way. A particularly im-
pressive success is the development of a backgammon
playing program as reported by G. Tesauro [7]. Here a
neural network provided a compact representation of
the optimal cost function of the game of backgammon
by using simulation and TD(�). The training was per-
formed by letting the program play against itself. Af-
ter training for several months, the program nearly de-
feated the human world champion. Variations of the
method used by Tesauro have been used with success
in a variety of applications.

The recent experience of several researchers, involv-
ing several engineering applications, has confirmed that
NDPmethods can be impressively effective in problems
where traditional DP methods would be hardly appli-
cable and other heuristic methods would have a limited
chance of success. We note, however, that the practi-
cal application of NDP is computationally very inten-
sive, and often requires a considerable amount of trial
and error. Fortunately, all the computation and exper-
imentation with different approaches can be done off-
line. Once the approximation is obtained off-line, it can
be used to generate decisions fast enough for use in
real time. In this context, we mention that in the ma-
chine learning literature, reinforcement learning is of-
ten viewed as an ‘on-line’ method, whereby the cost ap-
proximation is improved as the system operates in real
time. This is reminiscent of the methods of traditional
adaptive control.

Extensive references for the material of this article
are the research monographs [3,6]. Amore limited text-
book discussion is given in [2]. The survey [1], and the
overviews [10,11], and other papers in the edited vol-
ume [12] point out the connections between the artifi-
cial intelligence/reinforcement learning viewpoint and
the control theory/DP viewpoint, and give many refer-
ences.

See also

� Dynamic Programming: Average Cost Per Stage
Problems

� Dynamic Programming in Clustering
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� Dynamic Programming: Continuous-time Optimal
Control

� Dynamic Programming: Discounted Problems
� Dynamic Programming: Infinite Horizon Problems,

Overview
� Dynamic Programming: Inventory Control
� Dynamic Programming and Newton’s Method in

Unconstrained Optimal Control
� Dynamic Programming: Optimal Control

Applications
� Dynamic Programming: Stochastic Shortest Path

Problems
� Dynamic Programming: Undiscounted Problems
� Hamilton–Jacobi–Bellman Equation
�Multiple Objective Dynamic Programming
� Neural Networks for Combinatorial Optimization
� Replicator Dynamics in Combinatorial

Optimization
� Unconstrained Optimization in Neural Network

Training
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New hybrid conjugate gradient algorithms are pro-
posed and analyzed. In these hybrid algorithms the
famous parameter ˇk is computed as a convex com-
bination of the Polak–Ribière–Polyak and Dai–Yuan
conjugate gradient algorithms. In one hybrid algorithm
the parameter in convex combination is computed in
such a way that the conjugacy condition is satisfied, in-
dependent of the line search. In the other, the param-
eter in convex combination is computed in such a way
that the conjugate gradient direction is the Newton di-
rection. The algorithm uses the standard Wolfe line
search conditions. Numerical comparisons with con-
jugate gradient algorithms using a set of 750 uncon-
strained optimization problems, some of them from
the CUTE library, show that the hybrid computational
scheme based on the conjugacy condition outperforms
the known hybrid conjugate gradient algorithms.
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Introduction

Let us consider the nonlinear unconstrained optimiza-
tion problem

min f f (x) : x 2 Rng ; (1)

where f : Rn ! R is a continuously differentiable func-
tion, bounded from below. For solving this problem,
starting from an initial guess x0 2 Rn , a nonlinear con-
jugate gradient method generates a sequence fxkg as

xkC1 D xk C ˛kdk ; (2)

where ˛k > 0 is obtained by line search, and the direc-
tions dk are generated as

dkC1 D �gkC1 C ˇk sk ; d0 D �g0 : (3)

In (3) ˇk is known as the conjugate gradient param-
eter, sk D xkC1 � xk and gk D r f (xk). Consider k:k
the Euclidean norm and define yk D gkC1 � gk . The
line search in the conjugate gradient algorithms is of-
ten based on the standard Wolfe conditions:

f (xk C ˛kdk ) � f (xk) � �˛k gTk dk ; (4)

gTkC1dk � � g
T
k dk ; (5)

where dk is a descent direction and 0 < � � � < 1.
Plenty of conjugate gradient methods are known, and
an excellent survey of these methods, with special at-
tention to their global convergence, was given by Hager
and Zhang [19]. Different conjugate gradient algo-
rithms correspond to different choices for the scalar
parameter ˇk . Some of these methods, such those of
Fletcher and Reeves (FR) [16], Dai and Yuan (DY) [12]
and conjugate descent (CD) proposed by Fletcher [15],
have strong convergence properties, but they may have
modest practical performance owing to jamming:

ˇFR
k D

gTkC1gkC1

gTk gk
; ˇDY

k D
gTkC1gkC1

yTk sk
;

ˇCD
k D

gTkC1gkC1

�gTk sk
:

On the other hand, the methods of Polak and Ribiè-
re [23] and Polyak (PRP) [24], Hestenes and Stiefel
(HS) [20] or Liu and Storey (LS) [22] in general may

not be convergent, but they often have better computa-
tional performances:

ˇPRP
k D

gTkC1yk
gTk gk

; ˇHS
k D

gTkC1yk
yTk sk

; ˇLS
k D

gTkC1yk
�gTk sk

:

In this contribution we focus on hybrid conjugate
gradient methods. These methods are combinations of
different conjugate gradient algorithms; mainly they are
proposed to avoid the jamming phenomenon. One of
the first hybrid conjugate gradient algorithms was in-
troduced by Touati-Ahmed and Storey [28], where the
parameter ˇk is computed as

ˇTS
k D

8̂
<̂
ˆ̂:

ˇPRP
k D

gTkC1 yk

kgkk
2 ; if 0 � ˇPRP

k � ˇFR
k ;

ˇFR
k D

kgkC1k
2

kgkk
2 ; otherwise:

The PRP method has a built-in restart feature that di-
rectly addresses jamming. Indeed, when the step sk
is small, then the factor yk in the numerator of ˇPRP

k
tends to zero. Therefore, ˇPRP

k becomes small and the
search direction dkC1 is very close to the steepest de-
scent direction �gkC1. Hence, when the iterations jam,
the method of Touati-Ahmed and Storey uses the PRP
computational scheme.

Another hybrid conjugate gradient method was
given by Hu and Storey [21], where ˇk in (3) is

ˇHuS
k D max

˚
0;min

˚
ˇPRP
k ; ˇFR

k
��
:

As above, when the method of Hu and Storey is jam-
ming, then the PRP method is used instead.

The combination of LS and CD conjugate gradient
methods leads to the following hybrid method:

ˇLS�CD
k D max

˚
0;min

˚
ˇLS
k ; ˇ

CD
k
��
:

The CD method of Fletcher [15] is very similar to the
FR method. With an exact line search, the CD method
is identical to the FRmethod. Similarly, for an exact line
search, the LS method is identical to the PRP method.
Therefore, the hybrid LS–CDmethod with an exact line
search has similar performances as the hybrid method
of Hu and Storey.

Gilbert and Nocedal [17] suggested a combination
between PRP and FR methods as

ˇGN
k D max

˚
�ˇFR

k ;min
˚
ˇPRP
k ; ˇFR

k
��
:
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Since ˇFR
k is always nonnegative, it follows that ˇGN

k can
be negative. The method of Gilbert and Nocedal has the
same advantage of avoiding jamming.

Using the standard Wolfe line search, the DY
method always generates descent directions and if the
gradient is Lipschitz-continuous the method is glob-
ally convergent. In an effort to improve their algorithm,
Dai and Yuan [13] combined their algorithm with other
conjugate gradient algorithms, and proposed the fol-
lowing two hybrid methods:

ˇhDY
k D max

˚
�cˇDY

k ;min
˚
ˇHS
k ; ˇ

DY
k
��
;

ˇhDYz
k D max

˚
0;min

˚
ˇHS
k ; ˇ

DY
k
��
;

where c D (1 � �)/(1C �). For the standard Wolfe
conditions (4) and (5), under the Lipschitz continuity of
the gradient, Dai and Yuan [13] established the global
convergence of these hybrid computational schemes.

In the following we propose another hybrid con-
jugate gradient as a convex combination of PRP and
DY conjugate gradient algorithms. We selected these
two methods for combination in a hybrid conjugate
gradient algorithm because the PRP algorithm has
good computational properties, on one hand, and the
DY algorithm has strong convergence properties, on
the other hand. Often the PRP method performs bet-
ter in practice than the DY method and we specu-
late this in order to have a good practical conjugate
algorithm. The structure of this chapter is as fol-
lows. In Sect. “New Hybrid Conjugate Gradient Al-
gorithms” we introduce our hybrid conjugate gra-
dient algorithm and prove that it generates descent
directions satisfying in some conditions the sufficient
descent condition. Section “The New Hybrid Algo-
rithms (CCOMB, NDOMB)” presents the algorithms
and in Sect. “Convergence Analysis” we show the con-
vergence analysis. In Sect. “Numerical Experiments”
some numerical experiments and performance pro-
files of Dolan–Moré [14] corresponding to this new
hybrid conjugate gradient algorithm and some other
conjugate gradient algorithms are presented. The per-
formance profiles corresponding to a set of 750 un-
constrained optimization problems in the CUTE test
problem library [6] as well as some other unconstrained
optimization problems presented in [1] show that this
hybrid conjugate gradient algorithm outperforms the
known hybrid conjugate gradient algorithms.

NewHybrid Conjugate Gradient Algorithms

The iterates x0; x1; x2; : : : of our algorithm are com-
puted by means of recurrence (2) where the step size
˛k > 0 is determined according to the Wolfe condi-
tions (4) and (5), and the directions dk are generated
by the rule:

dkC1 D �gkC1 C ˇ
N
k sk ; d0 D �g0 ; (6)

where

ˇN
k D (1 � �k)ˇPRP

k C �kˇ
DY
k

D (1 � �k)
gTkC1yk
gTk gk

C �k
gTkC1gkC1

yTk sk

(7)

and �k is a scalar parameter satisfying 0 � �k � 1,
which needs to be determined. Observe that if �k D 0,
then ˇN

k D ˇ
PRP
k , and if �k D 1, then ˇN

k D ˇ
DY
k . On the

other hand, if 0 < �k < 1, then ˇN
k is a convex combi-

nation of ˇPRP
k and ˇDY

k .
Referring to the PRP method, Polak and

Ribière [23] proved that when function f is strongly
convex and the line search is exact, then the PRP
method is globally convergent. In an effort to under-
stand the behavior of the PRP method, Powell [25]
showed that if the step length sk D xkC1 � xk ap-
proaches zero, the line search is exact and the gradient
r f (x) is Lipschitz-continuous, then the PRP method
is globally convergent. Additionally, assuming that the
search direction is a descent direction, Yuan [29] es-
tablished the global convergence of the PRP method
for strongly convex functions and a Wolfe line search.
For general nonlinear functions the convergence of
the PRP method is uncertain. Powell [26] gave a three-
dimensional example, in which the function to be mini-
mized is not strongly convex, showing that even with an
exact line search the PRP method may not converge to
a stationary point. Later on Dai [7] presented another
example, this time with a strongly convex function for
which the PRP method fails to generate a descent di-
rection. Therefore, theoretically the convergence of the
PRP method is limited to strongly convex functions.
For general nonlinear functions the convergence of the
PRP method is established under restrictive conditions
(Lipschitz continuity, exact line search and the step size
tends to zero). However, the numerical experiments
presented, for example, by Gilbert and Nocedal [17]
proved that the PRPmethod is one of the best conjugate
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gradient methods, and this was the main motivation to
consider it in (7).

On the other hand, the DY method always gener-
ates descent directions, and in [8] Dai established a re-
markable property for the DY conjugate gradient algo-
rithm, relating the descent directions to the sufficient
descent condition. It was shown that if there exist con-
stants �1 and �2 such that �1 � kgkk � �2 for all k, then
for any p 2 (0; 1) there exists a constant c > 0 such that
the sufficient descent condition gTi di � �c kgik

2 holds
for at least bpkc indices i 2 [0; k]; where b jc denotes
the largest integer � j. Therefore, this property is the
main reason we consider the DY method in (7).

It easy to see that

dkC1 D �gkC1C(1��k)
yTk gkC1

gTk gk
skC�k

gTkC1gkC1

yTk sk
sk :

(8)

Supposing that dk is a descent direction (d0 D �g0),
then for the algorithm given by (2) and (8) we can prove
the following result.

Theorem 1 Assume that ˛k in algorithm (2) and (8)
is determined by Wolfe line search (4) and (5). If
0 < �k < 1, andˇ̌

ˇ̌
ˇ
gTk sk
yTk sk

ˇ̌
ˇ̌
ˇ kgkC1k

2 �
(gTkC1yk)(g

T
kC1sk)

kgkk2
; (9)

then direction dkC1 given by (8) is a descent direction.

Proof Since 0 < �k < 1, from (8) we get

gTkC1dkC1 D �kgkC1k
2 C (1 � �k)

yTk gkC1

gTk gk
gTkC1sk

C �k
gTkC1gkC1

yTk sk
gTkC1sk

� �kgkC1k
2 C

yTk gkC1

gTk gk
gTkC1sk

C
gTkC1gkC1

yTk sk
gTkC1sk

D

 
�1C

gTkC1sk
yTk sk

!
kgkC1k

2

C
yTk gkC1

gTk gk
gTkC1sk

D
gTk sk
yTk sk
kgkC1k

2 C
yTk gkC1

gTk gk
gTkC1sk :

But, yTk sk > 0 by (5) and since gTk sk � 0, it follows that

gTk sk
yTk sk
kgkC1k

2 � 0 :

Therefore, from (9), it follows that gTkC1dkC1 � 0, i. e.,
the direction dkC1 is a descent one. �

Theorem 2 Suppose that (gTkC1yk)(g
T
kC1sk ) � 0. If

0 < �k < 1, then the direction dkC1 given by (8) satis-
fies the sufficient descent condition

gTkC1dkC1 � �

 
1 � �k

gTkC1sk
yTk sk

!
kgkC1k

2 : (10)

Proof From (8) we have

gTkC1dkC1 D �kgkC1k
2 C (1 � �k)

gTkC1yk
gTk gk

gTkC1sk

C �k
gTkC1gkC1

yTk sk
gTkC1sk

D �kgkC1k
2 C �k

gTkC1sk
yTk sk

kgkC1k
2

C (1 � �k)
(gTkC1yk)(g

T
kC1sk)

gTk gk

� �

 
1 � �k

gTkC1sk
yTk sk

!
kgkC1k

2 � 0 :

Observe that since yTk sk > 0 by (5) and since gTkC1sk D
yTk sk C gTk sk < yTk sk , then yTk sk/g

T
kC1sk > 1. Therefore,

if 0 < �k < 1; it follows that �k < yTk sk /g
T
kC1sk . There-

fore,

1 � �k
gTkC1sk
yTk sk

> 0 ;

proving the theorem. �

To select the parameter �k we consider the following
two possibilities. In the first hybrid conjugate gradient
algorithm the parameter �k is selected in such a manner
that the conjugacy condition yTk dkC1 D 0 is satisfied at
every iteration, independent of the line search. Hence,
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from yTk dkC1 D 0 after some algebra, using (8), we get

�k D �
CCOMB
k �

(yTk gkC1)(yTk sk) � (yTk gkC1)(gTk gk)
(yTk gkC1)(yTk sk) � kgkC1k

2 kgkk2
:

(11)

In the second algorithm the parameter �k is selected in
such a manner that the direction dkC1 from (8) is the
Newton direction, i. e.,

�r2 f (xkC1)�1gkC1 D �gkC1 C (1 � �k)
yTk gkC1

gTk gk
sk

C �k
gTkC1gkC1

yTk sk
sk :

(12)

Having in view that r2 f (xkC1)sk D yk , from (12) we
get

�k D �
NDOMB
k

�
(yTk gkC1 � sTk gkC1) kgkk2 � (gTkC1yk)(y

T
k sk )

kgkC1k
2
kgkk2 � (gTkC1yk)(y

T
k sk )

:

(13)

Observe that the parameter �k given by (11) or (13)
can be outside the interval [0; 1]. However, in order
to have a real convex combination in (7) the follow-
ing rule is considered: if �k � 0, then set �k D 0 in (7),
i. e., ˇN

k D ˇ
PRP
k ; if �k � 1, then take �k D 1 in (7), i. e.,

ˇN
k D ˇ

DY
k . Therefore, under this rule for �k selection,

the direction dkC1 in (8) combines the properties of the
PRP and DY algorithms.

The New Hybrid Algorithms (CCOMB, NDOMB)

Step 1 Initialization. Select x0 2 Rn and the param-
eters 0 < � � � < 1. Compute f (x0) and g0:
Consider d0 D �g0 and set the initial guess:
˛0 D 1/ kg0k :

Step 2 Test for continuation of iterations. If kgkk1 �
10�6, then stop.

Step 3 Line search. Compute ˛k > 0 satisfying the
Wolfe line search conditions (4) and (5) and update
the variables xkC1 D xk C ˛kdk . Compute f (xkC1),
gkC1 and sk D xkC1 � xk , yk D gkC1 � gk .

Step 4. �k parameter computation. If (yTk gkC1)(yTk sk)
�kgkC1k

2 kgkk2 D 0, then set �k D 0, otherwise
compute �k as follows:

CCOMB algorithm (�k from the conjugacy condi-
tion): �k D �CCOMB

k .
NDOMBalgorithm (�k from the Newton direction):
�k D �

NDOMB
k .

Step 5 ˇN
k conjugate gradient parameter computation.

If 0 < �k < 1; then compute ˇN
k as in (7). If �k � 1,

then set ˇN
k D ˇ

DY
k . If �k � 0, then set ˇN

k D ˇ
PRP
k :

Step 6 Direction computation. Compute d D �gkC1

CˇN
k sk . If the restart criterion of Powell,
ˇ̌
gTkC1gk

ˇ̌
� 0:2 kgkC1k

2 ; (14)

is satisfied, then set dkC1 D �gkC1; otherwise de-
fine dkC1 D d. Compute the initial guess ˛k D
˛k�1 kdk�1k / kdkk, set k D k C 1 and continue
with step 2.

It is well known that if f is bounded along the di-
rection dk then there exists a step size ˛k satisfying
the Wolfe line search conditions (4) and (5). In our
algorithm when the Powell restart condition is satis-
fied, we restart the algorithm with the negative gradient
�gkC1. More sophisticated reasons for restarting the al-
gorithms have been proposed in the literature [10], but
we are interested in the performance of a conjugate gra-
dient algorithm that uses this restart criterion, associ-
ated with a direction satisfying the conjugacy condition
or that is equal to the Newton direction. Under reason-
able assumptions, conditions (4), (5) and (14) are suffi-
cient to prove the global convergence of the algorithm.
We consider this aspect in the next section.

The first trial of the step length crucially affects the
practical behavior of the algorithm. At every iteration
k � 1 the starting guess for step ˛k in the line search is
computed as ˛k�1 kdk�1k2 / kdkk2. This selection was
considered for the first time by Shanno and Phua [27]
in CONMIN. It is also considered in the packages SCG
by Birgin and Martínez [5] and in SCALCG by An-
drei [2,3,4].

Convergence Analysis

Throughout this section we assume that
1. The level set S D fx 2 Rn : f (x) � f (x0)g is

bounded.
2. In a neighborhood N of S, the function f is con-

tinuously differentiable and its gradient is Lipschitz-
continuous, i. e., there exists a constant L > 0
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such that kr f (x)� r f (y)k � L kx � yk, for all
x; y 2 N.

Under these assumptions for f , there exists a constant
� � 0 such that kr f (x)k � � , for all x 2 S.

It was proved in [11] that for any conjugate gradi-
ent method with strong Wolfe line search the following
lemma holds.

Lemma 1 Suppose that assumptions 1 and 2 hold and
consider any conjugate gradient method (2) and (3),
where dk is a descent direction and ˛k is obtained by the
strong Wolfe line search. If

X
k�1

1
kdkk2

D 1 ; (15)

then

lim inf
k!1

kgkk D 0 : (16)

For uniformly convex functions which satisfy the
above assumptions we can prove that the norm of dkC1

generated by (8) is bounded above. Thus, by Lemma 1
we have the following result.

Theorem 3 Suppose that assumptions 1 and 2 hold.
Consider the algorithm (2) and (8), where dkC1 is a de-
scent direction and ˛k is obtained by the strong Wolfe
line search.

f (xk C ˛kdk ) � f (xk) � �˛k gTk dk ; (17)

ˇ̌
gTkC1dk

ˇ̌
� �� gTk dk : (18)

If for k � 0; kskk tends to zero and there exist the non-
negative constants �1 and �2 such that

kgkk2 � �1 kskk2 and kgkC1k
2 � �2 kskk ; (19)

and the function f is a uniformly convex function, i. e.,
there exists a constant � � 0 such that for all x; y 2 S

(r f (x)� r f (y))T(x � y) � � kx � yk2 ; (20)

then

lim
k!1

gk D 0 : (21)

Proof From (20) it follows that yTk sk � � kskk
2. Now,

since 0 � �k � 1, from uniform convexity and (19) we

have

ˇ̌
ˇN
k

ˇ̌
�

ˇ̌
ˇ̌
ˇ
gTkC1yk
gTk gk

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ
gTkC1gkC1

yTk sk

ˇ̌
ˇ̌
ˇ

�
kgkC1k kykk
�1 kskk2

C
�2 kskk
� kskk2

:

But kykk � L kskk; therefore,

ˇ̌
ˇN
k

ˇ̌
�

� L
�1 kskk

C
�2

� kskk
:

Hence,

kdkC1k � kgkC1k C
ˇ̌
ˇN
k

ˇ̌
kskk � � C

� L
�1
C
�2

�
;

which implies that (15) is true. Therefore, by Lemma 1
we have (16), which for uniformly convex functions is
equivalent to (21). �

Powell [25] showed that for general functions the
PRP method is globally convergent if the step lengths
kskk D kxkC1 � xkk tend to zero, i. e., kskk � ksk�1k
is a condition of convergence. For convergence of
our algorithms from (19) we see that along the it-
erations, for k � 1, the gradient must be bounded
as �1 kskk2 � kgkk2 � �2 ksk�1k. If the Powell con-
dition is satisfied, i. e., kskk tends to zero, then
kskk2 � ksk�1k and therefore the norm of the gradi-
ent can satisfy (19). In the numerical experiments we
observed that (19) is always satisfied in the last part of
the iterations.

For general nonlinear functions the convergence
analysis of our algorithm exploits insights developed by
Gilbert and Nocedal [17], Dai and Liao [9] and Hager
and Zhang [18]. Global convergence proof of these
new hybrid conjugate gradient algorithms is based on
the Zoutendijk condition combined with the analysis
showing that the sufficient descent condition holds and
kdkk is bounded. Suppose that level set S is bounded
and function f is bounded from below.

Lemma 2 Assume that dk is a descent direction andr f
satisfies the Lipschitz condition kr f (x)� r f (xk)k �
L kx � xkk for all x on the line segment connecting xk
and xkC1, where L is a constant. If the line search satis-
fies the second Wolfe condition (5), then

˛k �
1 � �
L

ˇ̌
gTk dk

ˇ̌

kdkk2
: (22)



2566 N New Hybrid Conjugate Gradient Algorithms for Unconstrained Optimization

Proof Subtracting gTk dk from both sides of (5) and us-
ing the Lipschitz condition, we have

(� � 1)gTk dk � (gkC1 � gk)Tdk � L˛k kdkk2 : (23)

Since dk is a descent direction and � < 1, (22) follows
immediately from (23). �

Theorem 4 Suppose that assumptions 1 and
2 hold, 0 < �k � 1; (gTkC1yk)(g

T
kC1sk ) � 0, for every

k � 0 there exists a positive constant !, such that
1 � �k(gTkC1sk )/(y

T
k sk) � ! > 0, and there exist the

constants � and � , such that for all k; � � kgkk � � .
Then for the computational scheme (2) and (8), where
˛k is determined by the Wolfe line search (4) and (5),
either gk D 0 for some k or

lim inf
k!1

kgkk D 0 : (24)

Proof By the Wolfe condition (5) we have

yTk sk D (gkC1�gk)Tsk � (��1)gTk sk D �(1��)g
T
k sk :

(25)

By Theorem 2, and the assumption 1 � �k (gTkC1sk )/
(yTk sk) � !, it follows that

gTk dk � �

 
1 � �k�1

gTk sk�1
yTk�1sk�1

!
kgkk2 � �! kgkk2 :

Therefore,

� gTk dk � ! kgkk
2 : (26)

Combining (25) with (26), we get

yTk sk � (1 � �)!˛k�2 :

On the other hand kykk D kgkC1 � gkk � L kskk;
hence,
ˇ̌
gTkC1yk

ˇ̌
� kgkC1k kykk � � L kskk :

With these, from (7) we get

ˇ̌
ˇN
k

ˇ̌
�

ˇ̌
ˇ̌
ˇ
gTkC1yk
gTk gk

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ
gTkC1gkC1

yTk sk

ˇ̌
ˇ̌
ˇ :

But
ˇ̌
ˇ̌
ˇ
gTkC1yk
gTk gk

ˇ̌
ˇ̌
ˇ �
kgkC1k kykk

�2
�
� L kskk
�2

�
� LD
�2

;

where D D max fky � zk : y; z 2 Sg is the diameter of
the level set S.

On the other hand,
ˇ̌
ˇ̌
ˇ
gTkC1gkC1

yTk sk

ˇ̌
ˇ̌
ˇ �

� 2

(1 � �)!˛k�2
:

Therefore,

ˇ̌
ˇN
k

ˇ̌
�
� LD
�2
C

� 2

(1 � �)!˛k�2
� E : (27)

Now, we can write

kdkC1k � kgkC1k C
ˇ̌
ˇN
k

ˇ̌
kskk � � C ED : (28)

Since the level set S is bounded and the function f is
bounded from below, using Lemma 2, from (4) it fol-
lows that

0 <
1X
kD0

(gTk dk )
2

kdkk2
<1 ; (29)

i. e., the Zoutendijk condition holds. Therefore, from
Theorem 2 using (29), the descent property yields

1X
kD0

�4

kdkk2
�

1X
kD0

kgkk4

kdkk2
�

1X
kD0

1
!2

(gTk dk )
2

kdkk2
<1 ;

which contradicts (28). Hence, � D lim inf
k!1

kgkk D 0.�

Therefore, when 0 < �k � 1 our hybrid conjugate gra-
dient algorithms are globally convergent, meaning that
either gk D 0 for some k or (24) holds. Observe that in
the conditions of Theorem 2 the direction dkC1 satisfies
the sufficient descent condition independent of the line
search.

Numerical Experiments

In this section we present the computational perfor-
mance of a Fortran implementation of the CCOMB and
NDOMB algorithms for a set of 750 unconstrained op-
timization test problems. The test problems are the un-
constrained problems in the CUTE [6] library, along
with other large-scale optimization problems presented
in [1]. We selected 75 large-scale unconstrained op-
timization problems in extended or generalized form.
Each problem was tested ten times for a gradually in-
creasing number of variables: n D 1000; 2000; : : : ;
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10000. At the same time we present comparisons with
other conjugate gradient algorithms, including the per-
formance profiles of Dolan and Moré [14].

All algorithms implement the Wolfe line search
conditions with � D 0:0001 and � D 0:9, and the same
stopping criterion kgkk1 � 10�6, where k:k1 is the
maximum absolute component of a vector.

The comparisons of algorithms are given in the
following context. Let f ALG1

i and f ALG2
i be the opti-

mal values found by ALG1 and ALG2, for problem
i D 1; : : : ; 750, respectively. We say that, in the particu-
lar problem i; the performance of ALG1was better than
the performance of ALG2 if

ˇ̌
f ALG1
i � f ALG2

i

ˇ̌
< 10�3 (30)

and the number of iterations, or the number of func-
tion-gradient evaluations, or the CPU time of ALG1
was less than the number of iterations, or the number
of function-gradient evaluations, or the CPU time cor-
responding to ALG2, respectively.

All codes were written in double-precision Fortran
and compiled with f77 (default compiler settings) on an
Intel Pentium 4, 1.8 GHz workstation. All these codes
were authored by Andrei. The performances of these al-
gorithms were evaluated using the profiles of Dolan and
Moré [14]. That is, for each algorithm we plotted the
fraction of problems for which the algorithm is within
a factor of the best CPU time. The left side of these
figures gives the percentage of the test problems, out
of 750, for which an algorithm is more performant;
the right side gives the percentage of the test problems
that were successfully solved by each of the algorithms.
Mainly, the right side represents a measure of an algo-
rithm’s robustness.

In the first set of numerical experiments, we com-
pared the performance of the CCOMB algorithm with
the performance of the NDOMB algorithm. Figure 1
shows the Dolan and Moré CPU performance profile
of the CCOMB algorithm compared with that of the
NDOMB algorithm.

Observe that the CCOMB algorithm outperforms
the NDOMB algorithm in the vast majority of prob-
lems. Only 730 problems out of 750 satisfy crite-
rion (30). Referring to the CPU time, the CCOMB al-
gorithm was better in 575 problems, in contrast to the
NDOMB algorithm, which solved only 72 problems in
a better CPU time.

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 1
Performance based on CPU time: CCOMB algorithm com-
pared with the NDOMB algorithm

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 2
Performance based on CPU time: CCOMB algorithm com-
pared with the Polak–Ribière–Polyak (PRP) algorithm

In the second set of numerical experiments we com-
pared the performance of the CCOMB algorithm with
the performances of the PRP and DY conjugate gradi-
ent algorithms. Figures 2 and 3 show the Dolan and
Moré CPU performance profiles of the CCOMB al-
gorithm compared with those of the PRP and DY
algorithms, respectively.

When comparing the CCOMB and PRP algorithms
(Fig. 2), subject to the number of iterations, we see that
the CCOMB algorithm was better in 324 problems (i. e.,
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New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 3
Performance based on CPU time: CCOMB algorithm com-
pared with the Dai–Yuan (DY) algorithm

it achieved the minimum number of iterations in 324
problems), the PRP algorithm was better in 196 prob-
lems and they achieved the same number of iterations
in 191 problems, etc. Out of 750 problems, only for 711
problems does criterion (30) holds. Similarly, in Fig. 3
we see the number of problems for which the CCOMB
algorithm was better than the DY algorithm. Observe
that the convex combination of the PRP and DY algo-
rithms, expressed as in (7), is far more successful than
the PRP or the DY algorithm.

The third set of numerical experiments refers to
the comparisons of the CCOMB algorithm with hybrid
conjugate gradient algorithms: hDY, hDYz, GN, HuS,
TS and LS-CD. Figures 4–9 presents the Dolan and
Moré CPU performance profiles of these algorithms, as
well as the number of problems solved by each algo-
rithm in the minimum number of iterations, the min-
imum number of function evaluations and the mini-
mum CPU time, respectively.

From these figures we see that the CCOMB algo-
rithm is the top performer. Since these codes use the
same Wolfe line search and the same stopping criterion
they differ in their choice of the search direction. Hence,
among these conjugate gradient algorithms we consid-
ered here, the CCOMB algorithm appears to generate
the best search direction.

In the fourth set of numerical experiments we com-
pared the CCOMB algorithm with the CG_DESCENT

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 4
Performance based on CPU time: CCOMB algorithm com-
pared with the hybrid Dai–Yuan (hDY) algorithm

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 5
Performance based on CPU time: CCOMB compared with the
hybrid Dai–Yuan (hDYz) algorithm

conjugate gradient algorithm of Hager and Zhang [18].
The computational scheme implemented in the
CG_DESCENT algorithm is a modification of the HS
method which satisfies the sufficient-descent condi-
tion, independent of the accuracy of the line search.
The CG_DESCENT code, authored by Hager and
Zhang, contains the variant CG_DESCENT (HZw)
implementing the Wolfe line search and the variant
CG_DESCENT (HZaw) implementing an approximate
Wolfe line search. There are two main points associated
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New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 6
Performance based on CPU time: CCOMB comparedwith the
Gilbert–Nocedal (GN) algorithm

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 7
Performance based on CPU time: CCOMB algorithm com-
pared with the Hu–Storey (HuS) algorithm

with the CG_DESCENT algorithm. Firstly, the scalar
products are implemented using the loop unrolling of
depth 5. This is efficient for large-scale problems (over
106 variables). Secondly, the Wolfe line search is im-
plemented using a very fine numerical interpretation of
the first Wolfe condition (4). The Wolfe conditions im-
plemented in the CCOMB and CG_DESCENT (HZw)
algorithms can compute a solution with accuracy of the
order of the square root of the machine epsilon.

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 8
Performance based on CPU time: CCOMB algorithm com-
pared with the Touati-Ahmed–Storey (TS) algorithm

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 9
Performance based on CPU time: CCOMB algorithm com-
pared with the Liu–Storey–conjugate descent (LS-CD) algo-
rithm

In contrast, the approximate Wolfe line search im-
plemented in the CG_DESCENT (HZaw) algorithm
can compute the solution with accuracy of the or-
der of machine epsilon. Figures 10 and 11 present the
performance profile of these algorithms in compari-
son with that of the CCOMB algorithm. We see that
the CG_DESCENT algorithm is more robust than the
CCOMB algorithm.
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New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 10
Performance based on CPU time: CCOMB algorithm com-
pared with the CG_DESCENT algorithm with Wolfe line
search (HZw)

New Hybrid Conjugate Gradient Algorithms for Uncon-
strained Optimization, Figure 11
Performance based on CPU time: CCOMB algorithm com-
pared with the CG_DESCENT algorithm with approximate
Wolfe line search (HZaw)

Conclusion

We know a large variety of conjugate gradient al-
gorithms. The known hybrid conjugate gradient al-
gorithms are based on projection of classical conju-
gate gradient algorithms. In this chapter we have pro-
posed new hybrid conjugate gradient algorithms in
which the famous parameter ˇk is computed as a con-

vex combination of ˇPRP
k and ˇDY

k , i. e., ˇk D (1 �
�k)ˇPRP

k C �kˇ
DY
k . The parameter �k is computed in

such a manner that the conjugacy condition is sat-
isfied, or the corresponding direction in the hybrid
conjugate gradient algorithm is the Newton direction.
For uniformly convex functions if the step size sk ap-
proaches zero, the gradient is bounded in the sense
that �1 kskk2 � kgkk2 � �2 ksk�1k and the line search
satisfies the strong Wolfe conditions, then our hybrid
conjugate gradient algorithms are globally convergent.
For general nonlinear functions if the parameter �k
from the ˇN

k definition is bounded, i. e., 0 < �k < 1,
then our hybrid conjugate gradient is globally con-
vergent. The Dolan and Moré CPU performance pro-
file of the hybrid conjugate gradient algorithm based
on the conjugacy condition (CCOMB algorithm) is
better than the performance profile corresponding to
the hybrid algorithm based on the Newton direction
(NDOMB algorithm). The performance profile of the
CCOMB algorithm was better than those of the well-
established conjugate gradient algorithms (hDY, hDYz,
GN, HuS, TS and LS-CD) for a set consisting of 750 un-
constrained optimization test problems, some of them
from CUTE library. Additionally the proposed hybrid
conjugate gradient algorithm CCOMB is more robust
than the PRP and DY conjugate gradient algorithms.
However, subject to robustness the CCOMB algorithm
is outperformed by the CG_DESCENT algorithm.
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A large number of problems in mechanics, engineering
and economics can be defined by means of appropri-
ate differentiation of an energy function. This function
is sometimes called a potential. On the assumption of
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differentiability one may write the first order optimality
condition that the gradient of the function is equal to
zero at some point. All points which satisfy this condi-
tion are called critical points. The set of nonlinear equa-
tions derived this way are the governing equations (the
model) of the studied problem. Equivalently, one may
consider the requirement that the directional derivative
of the function at this critical point and in all directions
emanating from this point is equal to zero, or that all
possible small variations of the energy function around
the critical point is equal to zero. This way the critical
point is described by a variational inequality and one
speaks about a variational formulation of the problem.
Whether a critical point is also a minimum of the con-
sidered energy function, or, for example, amaximum or
a saddle point requires the consideration of second or-
der optimality conditions. One should mention in pass-
ing that (possibly local) minima are of outmost impor-
tance in applications. For instance, in mechanics they
provide stable equilibria of the studied mechanical sys-
tems. Convexity and coercivity of the energy function
guarantees that a critical point is a minimum while
strict convexity ensures its uniqueness as well.

Lack of differentiability of the energy function, or
the consideration of inequality constraints in the min-
imization problem changes the picture. As far as the
convexity property holds, one may use the powerful
tools of convex analysis to study the problem. The gra-
dient of the nonsmooth but convex function is replaced
by the subgradient, the differential by a set-valued sub-
differential (in the sense of J.-J. Moreau and R.T. Rock-
afellar) and the critical point equation by the differential
inclusion: zero must be an element of the subdifferen-
tial of the energy function at minimum. Accordingly,
in the variational formulation a variational equation is
replaced by a variational inequality. Analogous consid-
erations hold true for the case of inequality constraints.
Here, one has, in principle, two ways to study the prob-
lem. Either all admissible variations are taken into ac-
count in the derivation of the optimality conditions,
or the inequality constraints are included by means of
the indicator function of the admissible set in the set
of the problem’s variables. Following Moreau, who in-
troduced and studied convex analysis and applied it for
the solution of mechanical problems, a convex nondif-
ferentiable potential energy function is called a super-
potential.

Admittedly, convexity is a convenient assumption
too good to be true in real life applications. The study
of nonconvex energy functions requires new tools and
methods, which are being developed within the area
of nonconvex analysis. Among them, the notion of the
generalized gradients in the sense of F.H. Clarke, Rock-
afellar [2] has found several applications. Concerning
the search for minima of a nonconvex energy func-
tion one may formulate critical point problems. Under
certain assumptions the generalized gradient of Clarke
provides a useful tool for the formulation and the study
of nonconvex and nonsmooth energy function prob-
lems. In the area of mechanics, P.D. Panagiotopoulos
has been the first to introduce and use this notion.
He called the resulting nonconvex variational inequal-
ities hemivariational inequalities. Initially, the notion
of Clarke, which is suitable for locally Lipschitz energy
functions, has been used. Later, the extended notion
of Rockafellar, which roughly speaking includes infi-
nite vertical branches, has been considered. Later, he
extended this analysis by incorporating inequality con-
straints or convex superpotential terms (as in the case of
convex problems), which have been inspired from the
engineering applications he studied. Thus, he formu-
lated and studied variational-hemivariational inequal-
ity problems. On the analogy of convex analysis, the
nonconvex and possibly nondifferentiable energy func-
tions have been called by Panagiotopoulos nonconvex
superpotentials. Once more, it should be emphasized
here that hemivariational inequalities are not equiva-
lent to minimum problems but to substationarity prob-
lems. Nevertheless, they constitute a consistent exten-
sion of variational inequalities, and they include them
for the case of convex energy functions. Furthermore,
and this is important for some numerical algorithms,
as with the subdifferential of convex analysis the gen-
eralized subdifferential of Clarke involves one convex
set in the set-valued approximation of the differential
of a nonconvex and nonsmooth energy function. Con-
sequently, the development of theory and algorithms
runs in parallel with the ones developed for problems of
convex analysis and of variational inequalities. It should
be mentioned that propositions of substationary poten-
tial and complementary energy generalize the classical
minimum energy propositions of mechanics (where,
for historical reasons, they are known as principles).
Moreover, following the example of nonsmooth analy-
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sis, Panagiotopoulos named the whole area of mechan-
ics which deals with nondifferentiable functions nons-
mooth mechanics.

In this article the notions of generalized deriva-
tive of Clarke and Rockafellar and the definition of
the substationarity points are first given. After that, the
hemivariational and the variational-hemivariational in-
equalities of Panagiotopoulos are presented. Short
comments on the theoretical tools which are used for
their study, examples of applications and numerical al-
gorithms which have been proposed for their solution
complete the paper. Details on all previous issues can
be found in the cited publications. See also� hemivari-
ational inequalities: applications in mechanics.

Clarke’s GeneralizedDerivative

Let a function f be locally Lipschitz at x 2 X and let y be
a vector in X. The directional differential in the sense of
Clarke of f at x in the direction y, denoted by f 0 (x, y),
is defined by the relation:

f 0(x; y) D lim sup

!0C
h!0

f (x C hC �y) � f (x C h)
�

:

f 0 (x, y) is also called a generalized directional differen-
tial.

By means of the directional differential f 0 (x, y) one
can now define the generalized gradient @ f (x) : X !
X�:

@ f (x)

D

�
x� 2 X� : f 0(x; x1 � x) � (x�; x1 � x)

8x1 2 X

	
:
(1)

One may also use the definition

@ f (x)

D
˚
x� 2 X� : (x�;�1) 2 Nepi f (x; f (x))

�
;

(2)

where NC (x) denotes the normal cone to a set C at
point x and epi f is the epigraph of the function f .

Note that @ f (�) is a multivalued mapping; it is
a nonempty convex, closed and bounded subset of X?

and the following relation holds true:

f 0(x; y) D max
n
hy; x�i : x� 2 @ f (x)

o
: (3)

For didactical reasons the notation @ is used here (and
in most of the work of Panagiotopoulos). In honor of

Clarke who proposed it, the notation @CL is sometimes
used. When misunderstanding is not expected, the no-
tation @, which is usually reserved for the convex anal-
ysis subdifferential, is also used. It should also be noted
here that @ should not be confused with the superdiffer-
ential used in the theory of quasidifferentiability in the
sense of V.F. Demyanov.

Relation (1) can be used to define the generalized
gradient @ f (x) for any type of function f : X ! R
which is finite at the point x. Note that @ f (x) may be
empty. The above definition of @ f (x) for any function
f : X ! R makes sense, because the normal cone NC

(x) can be defined with respect to any set epi f . The gen-
eralized directional differential f " (x; y) at x in the di-
rection y is defined by the relation:

f "(x; y) D sup
n
hy; x�i : x� 2 @ f (x)

o
: (4)

Thus one may write the relation:

@ f (x)

D

�
x� 2 X� : f "(x; x1 � x) � hx�; x1 � xi

8x1 2 X

	
:
(5)

The directional differential f " (x; y) is also called direc-
tional differential in the sense of Rockafellar [15]. Note
that @ f (x) D ; if f " (x, 0) = � 1, while if f " (x, y) is
finite for every y, then @ f (x) ¤ ;.

It should be noted that for a convex function f one
has

f "(x; y) D lim infey!y
f 0(x;ey); 8y 2 X; (6)

where f 0 (�, �) denotes the one-sided directional Gâteaux
differential. Moreover, for a locally Lipschitz function f
at point x one has

f "(x; y) D f 0(x; y); 8y 2 X; (7)

and for a continuously differentiable f :

@ f (x) D fgrad f (x)g: (8)

Examples

For a convex function f one has

@ f (x) D @ f (x); (9)
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and for a concave and bounded below on a neighbor-
hood of x function f :

@ f (x) D �@(� f )(x) (10)

at every point x where f is finite. The indicator function
IC of a (generally nonconvex) set C is defined by IC (x)
= 0 if x 2 C, and IC (x) =1 otherwise. It can be proved
that

@IC (x) D NC (x) (11)

and

I"C (x; y) D ITC(x) (y): (12)

In the finite-dimensional case X� Rn, for a locally Lip-
schitz function f at a point x, @ f (x) is the convex hull
of all points y 2 Rn of the form

y D lim
i!1

grad f (xi); (13)

where xi converges as i ! 1 to x, avoiding the non-
differentiability points and any other points of a set of
measure zero (in the sense of Lebesgue) and such that
grad f (xi) converges.

For amaximum-type function f , i. e., when the func-
tion is defined by means of continuously differentiable
functions ' i = ' i (x), i = 1, . . . ,m, x 2Rn by the relation:
f = max {' i, . . . , 'm}, one has

@ f (x) D co fgrad 'i(x) : i 2 I(x)g ; (14)

where I(x) = {i:' i(x) = f (x)} is the active index set.
The normal cone to a set defined by: C = {x 2

Rn:f (x)� 0} at a point x0 with f (x0) = 0 is described by
the relation

NC (x0) �
n
�x� : x� 2 Rn ; � � 0; x� 2 @ f (x0)

o
;

whenever f is Lipschitzian on a neighborhood of x0 and
0 … @ f (x0). The notion of @-regularity assures that di-
rectional derivative information can be regained from
the Clarke’s notion. For a locally Lipschitz function one
requires that f 0 (x, y) = f 0 (x, y), 8y 2 X, holds at x.
This definition is equivalent to the statement that epi f
is regular at (x, f (x)). For instance, a convex function
and a maximum type function are @-regular at a point

x where they are finite. For example, for the max-type
function f = max {'1, . . . , 'm} one has

NC (x0) D @IC (x0)

D

8<
:z D

mX
iD1

�i grad 'i(x0) :
�i � 0;

'i(x0) � 0;
�i'i(x0) D 0

9=
; ;

(15)

if 0 … @ f (x0). The above relation permits the extension
of the Lagrange multiplier rule for optimization prob-
lems subjected to the nonconvex inequality constraints
' i (x)� 0, i= 1, . . . ,m. This becomes obvious, e. g. if one
considers the search for a local minimum problem of
a continuously differentiable function g: Rn ! R over
C = {x 2 Rn: ' i(x) � 0, i = 1, . . . , m}. A necessary con-
dition is 0 2 @(g C IC )(x), which implies that

� grad g(x) 2 @IC (x); (16)

which together with (15) leads to the Lagrange multi-
plier rule.

Critical Points and Substationarity

The notion of substationarity plays an important role
in the theory of hemivariational inequalities because
it permits the formulation of the propositions of sub-
stationary potential and complementary energy which
generalize the corresponding classical minimum energy
propositions in mechanics [12,13,14]. Point x0 is a sub-
stationarity point of a functional f : X ! R if

0 2 @ f (x0): (17)

Equivalently one has:

f "(x0; y) � 0; 8y 2 X: (18)

Substationarity points are all the classical stationarity
points, all the local minima, a large class of local max-
ima, as well as all the saddle points. Point x is said to be
a substationarity point of f with respect to a set C, if f +
IC is substationary at x.

Nonconvex Energy Functions

The nonconvex superpotentials resulting by integrating
discontinuous functions ˇ 2 L1loc (R) play an important
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role in the formulation of hemivariational inequalities
for several types of mechanical problems. After some
technical details about filling in gaps in a multifunction,
nonmonotone laws in mechanics which admit a non-
convex energy function will be introduced.

Filling the Gaps in a Multifunction

Suppose that ˇ: R! R is a function such that ˇ 2 L1loc
(R), i. e. a function which is essentially bounded on any
bounded interval of R. For any � > 0 and � 2 R let us
define

ˇ�(�) D essinf
k�1��k��

ˇ(�1) (19)

and

ˇ�(�) D esssup
k�1��k��

ˇ(�1): (20)

Obviously, the monotonicity properties of � ! ˇ�(�)

and � ! ˇ�(�) imply that the limits as � ! 0+ exist.

Therefore one may write that: ˇ(�) D lim�!0C ˇ�(�).
Furthermore, one defines the multivalued function:

ě(�) D
h
ˇ(�); ˇ(�)

i
; (21)

where [�, �] denotes an interval between the two given
arguments. Then, a locally Lipschitz function j can be
determined, up to an additive constant, by the relation

j(�) D
Z �

0
ˇ(�1) d�1; (22)

such that @ j(�) � ě(�). If moreover ˇ (�˙) exist for
each � 2 R, then one has @ j(�) D ě(�).

Superpotential Nonmonotone Laws

Let us assume that one has an one-dimensional
mechanical law which is described by the graph
of a discontinuous function. For instance, a force-
displacement law (S� u) is considered, which may cor-
respond to an one-dimensional nonlinear spring law,
to a nonlinear boundary condition, etc. The law is con-

sidered to be of the form ˇ: u ! � S where u 2 R
and S 2 R. The procedure of (19)–(22) is used in order
to define a locally Lipschitz nonconvex superpotential
energy function j(u). The mechanical law is produced,
in turn, by using the previously introduced generalized
subdifferential operator @CL D @ and the nonconvex
superpotential j as follows:

� f 2 @CL j(u): (23)

By definition, (23) is equivalent to the inequality

j"(u; u� � u) � h� f ; u� � ui ; 8u� 2 U; (24)

for u 2 U, which Panagiotopoulos has called a hemi-
variational inequality, and to the inclusion

(� f ;�1) 2 Nepi j(u; j(u)): (25)

For j Lipschitzian, j" in (23) is replaced by j0 Obviously,
if j is a convex superpotential, one has superpotential
laws which can be described by monotone graphs with
complete vertical branches. The procedure would be
identical in that case as well, where @CL is replaced by
the subdifferential of convex analysis. The result would
be a variational inequality. Note also that extensions to
multidimensional laws (e. g., material constitutive rela-
tions) can be considered within this formulation.

Hemivariational Inequalities

An abstract coercive hemivariational inequality is writ-
ten first. Let V be a real Hilbert space with the property
that V � [L2(˝)]n � V?, where V? denotes the dual
space ofV , and the injections are continuous and dense.
Let moreover a boundary value problem be defined in
an open, bounded subset ˝ of Rn. Here (�, �) denotes
the [L2(˝)]n inner product and the duality pairing, k�k
is the norm of V and |�|2 is the [L2(˝)]n-norm. One
should recall that the form (�, �) extends uniquely from
V × L2 [(˝)]n to V × V?. Moreover let L: V! L2(˝),
Lu D bu, bu(x) 2 R be a linear continuous mapping.
Further, assume that l2V?, that L:V! L2(˝) and that
eV D ˚

v 2 V : bv 2 L1(˝)
�
is dense in V for the V-

norm, and has a Galerkin base in V . It is also assumed
that a(�, �): V × V! R is a bilinear symmetric continu-
ous form which is coercive, i. e. there exists a constant c
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> 0 such that

a(v; v) � c kvk2 ; 8v 2 V : (26)

A coercive hemivariational inequality problem reads:
Find u 2 V such that

a(u; v � u)C
Z
˝

j0(bu;bv �bu) d˝ � (l ; v � u);

8v 2 V :
(27)

For example, a linear elastostatic structural analysis
problem with additional nonlinear elements of non-
monotone type which admit a nonconvex superpoten-
tial j(u) can be written in the hemivariational inequal-
ity form (25). In this context u are the displacements
at the various points of the structure, which occupies
˝ in its undeformed configuration. For a plate prob-
lem one has ˝ � R2, for a three-dimensional contin-
uum ˝ � R3, etc. Moreover the functional space V is
dictated from the kind of the assumed application and
from the (natural, support) boundary conditions of the
structure. The operator L and the energy form (u, u) de-
pend on the mechanical theory used for the elastic part
of the structure, while l denotes the external loading. Fi-
nally, coercivity usually means that a well-defined me-
chanical theory has been assumed and sufficient bound-
ary conditions are assigned so that, for example, no
rigid body motions of the structure are allowed. Finally,
one should note that the familiar form of the princi-
ple of virtual work (i. e., a variational equality) can be
obtained back from the hemivariational inequality (27)
if the effect of the nonlinear terms is neglected, i. e., if
the second term on the left-hand side of (27) is absent
and if an equality is assumed in the place of the inequal-
ity.

Theoretical Studies

One recalls that the theory of the existence of solution
of variational inequalities is a well-developed theory in
mathematics which is closely connected with the con-
vexity of the energy functionals involved. Indeed the
existence theory of variational inequalities is based on
monotonicity arguments. On the contrary the study
of hemivariational inequalities, due to the absence of
convexity is based on compactness arguments. Exis-
tence and approximation results for hemivariational in-
equalities have been studied for several applications.

See [11,14] for details and citations to related refer-
ences.

Semicoercive Case

Noncoercive problems arise in mechanics, for exam-
ple, when the existing classical boundary conditions
are not sufficient to prevent (even infinitesimal) rigid
body displacements and rotations of the structure. In
classical, equality mechanics, one may write conditions
that guarantee the existence of a solution to the con-
sidered boundary value problem. Nevertheless, unique-
ness of some quantities may be lost. One may consider,
as an example, a free elastic body subjected to self-equi-
librated external forces. In this case stresses and defor-
mations of the elastic body can be determined, but its
displacements are only determined modulo some rigid
body displacements and rotations. In the presence of
inequality (e. g., unilateral contact) constraints analo-
gous relations have also been provided by G. Fichera
(see, e. g., [13, Chap. 4]). It is interesting to observe that
some inequality constraints may be activated and sta-
bilize the body, a result that has certain applications in
robotics [1].

For hemivariational inequalities, analogous results
have been obtained by Panagiotopoulos and coworkers
(see also [4]). One such result for an abstract hemivari-
ational inequality is given here, without proof. Here a(�,
�) is assumed to be semicoercive, i. e., a(�, �) is contin-
uous and symmetric but it has a nonzero kernel, i. e.
ker a(�, �) = {q: a(q, q) = 0} 6D {0}. Moreover let ker
a be finite dimensional. Let us assume that the norm
kvk on V is equivalent to kkvkk D p(ev)C kqk2, where
v D ev C q, q 2 ker a,ev 2 ker a? (i. e. (ev; q) D 0,
8 q 2 ker a) and p(ev) is a seminorm on V such that
p(v) = p(v + q), 8 v 2 V , q 2 ker a, and let a(v, v) �
c(p(v))2, 8v 2 V , c = const > 0. This semicoercivity in-
equality replaces (26) for the coercive case. Moreover,
let q+ and q� be the positive and negative parts of bq,
wherebq D Lq, i. e. qC D maxf0;bqg, q� D maxf0;�bqg.
The following quantities will also be used: ˇ(�1) = lim
sup�!�1ˇ(�) and ˇ(1) = lim inf�!1 ˇ(�). On the
assumption that

ˇ(�1) � ˇ(�) � ˇ(1); 8� 2 R; (28)

a necessary condition for the existence of a solution u 2
V of a semicoercive hemivariational inequality problem
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is the following inequality:
Z
˝

[ˇ(�1)qC � ˇ(1)q�] d˝ � (l ; q)

�

Z
˝

[ˇ(1)qC � ˇ(�1)q�] d˝;

8q 2 ker a:

(29)

If (28) holds strictly (with < instead of�), then (29) also
holds strictly.

Substationarity of the Energy

Equivalent to the hemivariational inequality is the fol-
lowing substationarity problem: Find u 2 V such that
the superpotential energy functional

˘ (v) D
1
2
a(v; v)C

Z
˝

j(bv) d˝ � (l ; v) (30)

is substationary at v = u. Here, the integral
R
˝

j(bv) d˝
is set equal to1 if it is not defined.

Recall that the latter problem is, by definition,
equivalent to: Find u 2 V which is a solution of the in-
clusion

0 2 @˘ (u): (31)

The equivalence of the above defined substationarity
problem with the hemivariational inequality can be
proved, on the assumption that j is locally Lipschitz and
@-regular

Applications

Several types of hemivariational inequalities have al-
ready been studied (see, for example, [13,14], and the
references given there) with respect to certain engineer-
ing problems, e. g. in nonmonotone semipermeability
problems, in the theory of multilayered plates (delam-
ination), in the theory of composite structures, in the
theory of partial debonding of adhesive joints etc.

Numerical Algorithms

Till now (1998), the following methods have been in-
vestigated for the numerical solution of hemivariational
inequality problems in mechanics.
� Nonsmooth optimization algorithms (in particular,

of the bundle algorithm optimization type), for the
solution of the inclusion (31). See [6,9] and, for the
bundle nonsmooth optimization concept, e. g., [7].

� Decomposition into a series of convex subproblems
(for instance, into a number of variational inequal-
ities). For the numerical treatment of problems in
elastostatics this approach has been the most fruit-
ful, according to the experience of the authors. The
decomposition has been based either on engineer-
ing motivated methods and heuristics (cf., [8]), or
on mathematical programming techniques. In the
last case results from the theory of quasidifferen-
tiability [3], of difference-convex optimization [10]
and of enumeration-type or branch and bound pro-
cedures [16] have been tested. More details can be
found in [3,5,10,14].
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The basic network flow problem can be formulated as
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min
X

(i; j)2A

�i j(xi j)

s.t.
X

(n; j)2A

xn j �
X

(i;n)2A

xin D bn ;

8n 2 N;
li j � xi j � ui j; 8(i; j) 2 A;

(1)

where A is the (directed) arc set with generic element (i,
j);N is the node set with generic element n; bn is the net
supply (if bn > 0) or net demand (if bn < 0) at node n; uij
(respectively, lij) is the flow upper (respectively, lower)
bound for arc (i, j); xij is the flow decision variable for
arc (i, j); and � ij (xij) is the cost function for arc (i, j).
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It is assumed that
P

n 2 N bn = 0 (otherwise, a dummy
supply node or demand node can be added to N to en-
force this condition). The objective function in (1) min-
imizes total costs in the network; the first constraints
are node flow balance equations; and the second con-
straints are arc flow bounds. Extensions to the basic net-
work flow problem given above include multicommod-
ity networks, generalized networks (i. e., networks with
arc flow gains or losses), and augmented networks (i. e.,
formulations with additional constraints and/or deci-
sion variables in addition to xij) (see, for example, [1]).

If the cost function � ij (xij) is a nonconvex function
for one or more of the arcs in set A, then (1) is referred
to as a nonconvex network flow problem (NNFP). The
most commonly used cost function in a NNFP is a fixed
charge function, of the form

�i j(xi j) D

(
0 if xi j D 0;
˛i j C ˇi j � xi j if xi j > 0;

(2)

where ˛ij and ˇij are coefficients with ˛ij � 0 (and lij =
0). By incurring the quantum of cost ˛ij before flow can
be carried on arc (i, j), fixed charge NNFPs can be used
to model a variety of network design and expansion
[29], lot sizing [17], and facility location [6,30] prob-
lems. Classical combinatorial problems, such as travel-
ing salesperson and 0–1 knapsack problems, can also be
represented as fixed charge NNFPs. In fact, anymathe-
matical programming problem that can be formulated
as an integer program with integer coefficients can be
recast as a fixed charge NNFP [28].

Another common form of cost function in a NNFP
is a concave quadratic function, of the form

�i j(xi j) D ˛i j C ˇi j �
�
xi j � �i j

�2
; (3)

where ˛ij, ˇij, and � ij are coefficients with ˇij � 0.
Concave quadratic NNFPs are used to model arc flow
economies of scale which are present in many commu-
nication [32], water resource [10], and physical distri-
bution [22] problems.

A third type of cost function used in NNFPs is the
‘sawtooth’ function. A simple two-piece sawtooth func-
tion is given by

�i j(xi j) D

(
˛i j � xi j if xi j < �i j;
ˇi j � xi j if xi j � �i j;

(4)

where ˛ij, ˇij, and � ij are coefficients with ˛ij � ˇij and
lij � � ij � uij. Functions of the form (4) are used to
represent price-breaks and other types of all-units dis-
counting [7] that occur, for instance, in network repre-
sentations of inventory [33] and cash flowmanagement
problems [24].

The NNFP is in the class of NP-hard problems [14].
Thus, determining the global minimum to an NNFP is
challenging because of the existence of many feasible
points that are locally, but not globally, optimal. G.M.
Guisewite [18] distinguishes between NNFPs with con-
cave cost functions (such as (2) and (3)) and indefinite
cost functions (that is, functions that are neither con-
cave nor convex, such as (4)). For concave NNFPs, if
the constraints in (1) are feasible, then there exists an
optimal extreme point solution. Further, if the coeffi-
cients bn, lij, and uij in (1) are integer-valued, then the
optimal arc flows x�i j will also be integer-valued [4].

One of the earliest solution methods for concave
NNFPs was proposed by B. Yaged [32]. This method
uses successive linearizations of the concave cost func-
tion. It quickly converges to a local (but not necessar-
ily global) minimum. Other approximate methods for
concave NNFPs involve dual ascent [2,9], Lagrangian
relaxation [11], local extreme point search techniques
[13,21], and tabu search methods [16].

Exact methods for concave NNFPs generally rely on
the underlying network topology. For problems with
an arbitrary network topology, branch and bound pro-
cedures using rectangular partitioning are the most
widely used techniques [3,5,26,30]. If the number of
supply nodes or demand nodes in the set N is limited,
then dynamic programming approaches are tractable
[8,17,20]. Alternatively, if there are only a small num-
ber of arcs in the set A with a nonlinear cost function,
then parametric programming techniques may be em-
ployed [25].

For the second type of NNFP – with an indefinite
form of cost function – the optimal solution to (1) is
not necessarily at an extreme point of the feasible re-
gion. For cases where the indefinite cost function is
piecewise-linear but not necessarily continuous (as is
the case in (4)), then the problem can be formulated
and solved as a mixed integer program. If the indefinite
function is continuous (and satisfies certain regularity
properties), then it can be converted to a difference con-
vex function (d.c. function) and the indefinite NNFP
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can be solved as a specialized difference convex pro-
gramming problem [31]. For more general functions,
the indefinite NNFP can be converted (at least in princi-
ple) to a concave NNFPon an expanded network. Then,
the concave NNFP solution techniques can be applied
the problem on the expanded network [27].

See [12,15,18,19,22,23] for additional discussion of
applications and solution methods for NNFPs.
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Problems in unilateral mechanics involving bothmono-
tone and nonmonotone unilateral boundary condi-
tions have as variational formulations the so-called
variational-hemivariational inequalities [5]. Solutions
of these mathematical models can be determined as the
critical points of some energy functionals which can
usually be expressed as the sum of a locally Lipschitz
function ˚ : X ! R and a proper, convex and lower
semicontinuous function � : X!R[ {+1}. The criti-
cal points of I :=˚ +� are here defined as the solutions
of the variational-hemivariational inequality:

u 2 X :
˚ o(u; v � u)C � (v) � � (u) � 0; 8v 2 X :

(1)

For example, let us consider a linear elastic body identi-
fied with an open bounded subset˝ � R3. The bound-
ary � of the body˝ is assumed to consist of three open
disjoint parts � 1, � 2 and � 3, i. e. � D � 1 [ � 2 [ � 3.
Let us denote by u = (ui), � = (� ij), " = ("ij), S = (Si) the
displacement vector, the stress tensor, the strain tensor
and the stress vector, respectively. It is supposed that
the body is subject to a body density force f 2 L2(˝ ;R3).
Moreover, one compels the part � 1 of the body to sat-
isfy the constraint

u(x) 2 Q(x); 8x 2 �1 ; (2)

where Q(x) is defined as follows:

Q(x) :D
˚
y 2 R3 : g(x; y) � 0

�
; (3)

where g: � 1 × R3! R is continuous and convex in the
second variable. Moreover, we assume that g(x, 0) � 0,
8x 2 � 1. Thus Q(x) is a nonempty, closed and convex
subset for all x 2� 1. The formulation of these unilateral
constraints has to encompass the associated forces of
constraints r(x). We assume a normal reaction law of
the form

� r(x) 2 NQ(x)(u(x)); 8x 2 �1 ; (4)

where for a vector v 2 R3, NQ(x)(v) denotes the normal
cone of Q(x) at v. Note that the system (2–4) is equiva-
lent to the variational inequality

u(x) 2 Q(x) :

r(x)>(v � u(x)) � 0; 8v 2 Q(x); 8x 2 �1 :
(5)
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The part � 2 (it is assumed that meas(� 2) > 0) of the
boundary is assumed to be fixed, that is,

u(x) D 0; 8x 2 �2 : (6)

On � 3, we consider conditions of a unilateral contact
between the body and a Winkler-type support which
may sustain only limited values of traction, that is (we
consider the usual decompositions v = vNn + vT , S =
SNn + ST , vN , SN 2 R, vT , ST 2 R3, where n denotes the
unit outward normal vector on � ):

� SN 2 @ j(x; uN (x)); 8x 2 �3 ; (7)

where

j(x; y) :D

8̂
<̂
ˆ̂:

0 if y < 0;
ko(x)y2

2 if 0 � y < ";
ko(x)"2

2 if y � ";

and

ST D CT on �3 (8)

with CT given in L2(� 3; R3). We refer the reader to [4]
for the details concerning the formulation of the subd-
ifferential law (7). From (7), (8) and the orthogonality
between SNn and uT and between ST and uNn, we ob-
tain the hemivariational inequality

S>v C joy(x; uN (x); vN) � C>T vT � 0;

8v 2 R3; 8x 2 �3 :

Here @ j(x, �) stands for the Clarke subdifferential of j
with respect to the second variable while joy(x, u; v) de-
notes the generalized directional derivative of j at u in
the direction v [2]. In the framework of a small defor-
mation theory, one has the equilibrium equations

�i j; j C fi D 0 ; (9)

"i j(u) D
1
2
(ui; j C uj;i ) ; (10)

�i j D Ci jk l"k l (u) ; (11)

where Cijkl 2 L1(˝) denotes the elasticity tensor as-
sumed to satisfy the usual symmetry and ellipticity
properties. Suppose now that all the data are sufficiently

smooth to justify the following computations. From (9)
and for a virtual displacement v� uwe obtain the equa-
tion

�

Z
˝

�i j; j(vi � ui ) dx D
Z
˝

f>(v � u) dx:

Using the Green–Gauss theorem and relations (10) and
(11), we get

Z
˝

Ci jk l "i j(u)"k l (v � u) dx

D

Z
˝

f>(v � u) dx C
Z
�

S>(v � u) ds :

Using now the boundary conditions, we derive for v
and u satisfying (6):

Z
˝

Ci jk l "i j(u)"k l (v � u) dx

D

Z
˝

f>(v � u) dx C
Z
�3

SN (vN � uN) ds

C

Z
�3

C>T (vT � uT) ds C
Z
�1

r>(v � u) ds :

A combination of this last expression expressing the
principle of virtual work with the mechanical laws (4)
and (7), we obtain the variational-hemivariational in-
equality problem: Find u satisfying (2) and (6) such that

Z
˝

Ci jk l"i j(u)"k l(v � u) dx

C

Z
�3

jo(x; uN ; vN � uN ) ds

�

Z
˝

f>(v � u) dx �
Z
�3

C>T (vT � uT ) ds � 0 ;

for all v satisfying (2) and (6). This mathematical model
expresses the principle of virtual works in its inequality
form. Let us now present a suitable framework to for-
mulate this last inequality model. The boundary � of
the body is assumed sufficiently regular and we denote
by � : H1 (˝ , R3) ! H1/2(� ; R3), �N : H1 (˝ ; R3) !
H1/2 (� ) and �T :H1 (˝ ;R3)!HT (see e. g., [6] for the
notations) the usual trace mapping, normal trace map-
ping and tangential trace mapping, respectively. We set

X D
˚
u 2 H1(˝ ; R3) : �(u(x)) D 0 a.e. x 2 �2

�

and

C D fu 2 X : �(u(x)) 2 Q(x) a.e. x 2 �1g :
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We define the operator A: X! X0, the element h 2 X0

and the functional J: X! R by the formulas:

hAu; vi :D
Z
˝

Ci jk l (x)"i j(u)"k l(v) dx;

8u; v 2 X;

hh; vi :D
Z
˝

fivi dx C
Z
�3

C>T vT ds;

8v 2 X;

J(v) :D
Z
�3

j(x; �N (v(x)) ds;

8v 2 X :

Using the rules concerning the subdifferentiation of in-
tegral functionals and composite mappings [2], we can
show that

Jo(u; v) �
Z
�3

jo(x; �N(u(x)); �N(u(x)) ds;

8u; v 2 X :
(12)

Setting

˚(u) D
1
2
hAu; ui � hh; ui C J(u)

and using the relation (12) we see that the equilibri-
ums of our system can be determined by means of the
variational-hemivariational inequality:

u 2 C : ˚ o(u; v � u) � 0; 8v 2 C;

or equivalently

u 2 X : ˚ o(u; v � u)C �C (v) � �C (u) � 0;
8v 2 X ;

(13)

where �C denotes the indicator function of C. It is now
natural to introduce a concept of generalized critical
point of the energy functional I = ˚ + �C as a solu-
tion of the variational-hemivariational inequality (13)
(which is a particular case of the general model given in
(1)).

Various other examples in mechanics leading to a
variational-hemivariational inequality like (1) are de-
scribed in [5]. As a rule, the formulation of concrete
problems involving both monotone and nonmonotone
boundary conditions introduces a general nonsmooth
and nonconvex energy functional (expressed as the sum

of a locally Lipschitz function ˚ : X! R and a proper,
convex and lower semicontinuous function � : X! R
[ { +1 }) whose critical points are defined as the solu-
tions of the variational-hemivariational inequality (1).
If ˚ 2 C1 (X; R) then problem (1) reduces to a classi-
cal variational inequality. A critical point theory to deal
with such case has been developed by A. Szulkin [7].
Defining a compactness condition of Palais–Smale type
related to the variational inequality model and using
the famous Ekeland principle, Szulkin provided a de-
formation lemma and extended the well-known moun-
tain pass theorem, the saddle point theorem, the main
results for even functionals, etc. Several examples in-
cluding variational inequalities are given in [7]. If � =
0, the problem (1) reduces to the problem studied by
K.-C. Chang [1]. Motivated by the study of partial dif-
ferential equations involving discontinuous nonlinear-
ities, Chang extended the concept of critical point, the
Palais–Smale condition and the deformation lemma so
as to be applicable to locally Lipschitz functionals. The
minimax method developed by Chang is now one of the
most efficient and appreciated tools to deal with hemi-
variational inequalities arising in unilateral mechanics
and partial differential equations involving discontinu-
ous nonlinearities. It has been in particular extensively
used by D. Goeleven, D. Motreanu, and P.D. Pana-
giotopoulos [3] so as to develop in several directions the
theory of hemivariational inequalities (see for instance
the references cited in [3]). So, the theory of Szulkin
and the one of Chang has been shown very efficient
to deal with problems in unilateral mechanics involv-
ing some given classes of boundary conditions. How-
ever, one has seen it above, to deal efficiently with prob-
lems in unilateral mechanics involving both monotone
and nonmonotone boundary conditions it is necessary
to deal with a critical point theory for functions which
can be written as the sum of a locally Lipschitz function
and a proper, convex and lower semicontinuous func-
tion. Such theory has now recently been developed by
Goeleven, Motreanu, and Panagiotopoulos [3]. The ap-
proach combines the approach of Szulkin and the one
of Chang in a nontrivial way. A general linking theorem
is obtained and then used to generalize the mountain
pass theorem, the saddle point theorem and the main
results for even functionals. This last theory constitutes
a contribution in the field of nonconvex-nonsmooth
calculus of variations that unifies the theory of Szulkin
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and Chang. Moreover it can be used to develop the the-
ory of variational-hemivariational inequalities and con-
sequently to study various concrete problems in me-
chanics involving different types of unilateral boundary
conditions.
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Nondifferentiable, or nonsmooth, optimization (NDO)
is concerned with problems where the smoothness as-
sumption on the functions involved is relaxed. ‘Non-
differentiability’ means that the gradient does not exist,
implying that the function may have kinks or corner
points. Consequently, the function cannot be approxi-
mated locally by a tangent hyperplane, or by a quadratic
approximation. In NDO, the smoothness assumption is
usually replaced by weaker ones, which at least guaran-
tees the existence of directional derivatives.

NDO problems arise in a variety of contexts, and
methods designed for smooth optimization may fail to
solve them. This justifies developing specialized theory
and methods that are the object of this short introduc-
tion. In the sequel, we will often refer to convex NDO,
a subclass of nondifferentiable optimization, in which
functions are further assumed to be convex. Due to its
global property, convexity allows stronger convergence
results and finer analyses. Yet, the difficulties linked
with the presence of kinks remain an important aspect,
justifying special interest for this class of problems.

In the following Section, we give some basic defini-
tions, then discuss examples of nondifferentiable opti-
mization problems and finally, describe a few different
solution techniques.

Basic Definitions

The basic nondifferentiable optimization problem takes
the form

[NDP] min
x2Rn

f (x); (1)

where f is a real valued, continuous, nondifferentiable
function. Convexity of f implies that it has at least one
supporting hyperplane at every point of Rn. The slopes
of such hyperplanes form the set of subgradients, which
is known as the subdifferential set or the generalized
gradient [7]. At differentiable points there is a unique

supporting hyperplane whose slope is the gradient. At
nondifferentiable points, there is an infinite set of sub-
gradients and, hence, an infinite set of supporting hy-
perplanes.

A supporting hyperplane to f at a point x0 is given
by

y D f (x0)C �>0 (x � x0);

where �0 is any element of the subdifferential @f (x0) of
f at x0. Recalling the fact that it is a supporting hyper-
plane leads to the subgradient inequality

f (x0)C �>0 (x � x0) � f (x): (2)

Subgradients are defined by this inequality.
Determining the whole subdifferential set is gener-

ally an extremely difficult, or impossible, task. If the
function f is polyhedral, the number of extreme points
of the subdifferential may be exponential in the dimen-
sion of the underlying space. A complete description of
the subdifferential can be accomplished for simple situ-
ations, such as the one when f is the maximum of a fi-
nite number of convex differentiable functions: f (x) =
maxi 2 I f i(x). The subdifferential @f (x0) is then given
by

@ f (x0) D

8<
:
X

i2I(x0)

˛ir fi(x0) :
P

i2I(x0) ˛i D 1;
˛i � 0

9=
;

I(x0) D fi : fi(x0) D f (x0)g :

When f is a Lipschitz function, the subdifferential set
can be defined as being the set of cluster points of the
gradients rf (xi) as a sequence of differentiable points
xi approaches x [7]. The precise definition of @f (x0) is
given by

conv flimr f (xi) : xi ! x0 : r f (xi) existsg :

In nondifferentiable optimization, the whole subd-
ifferential set is never calculated. Subgradients are cal-
culated when needed and often a single element suf-
fices. It is common practice to isolate the procedures for
calculating subgradients into an oracle. The number of
calls to the oracle can be a basis for comparing different
NDO methods.

A natural solution method in nonsmooth analysis
is an iterative method, where a search is done follow-
ing descent directions. A descent direction is one along
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which a small movement of f leads to a strict improve-
ment. In other words

f 0(x0; d) D lim
t!0

f (x C td) � f (x)
t

should be strictly negative. f 0(x0;d) is called the direc-
tional derivative and it is related to the subgradient
through the relation

f 0(x0; d) D sup
˚
�>d : � 2 @ f (x0)

�
: (3)

This relation implies that for d to be a descent direction,
�d has to make an acute angle with every subgradient
of f at x0.

Sources of NDO Problems

Nonsmooth problems are encountered in many disci-
plines. In some instances, they occur naturally and in
others they result from mathematical transformations.

In statistics, for example, rectilinear data fitting,
which was long discovered to be superior to the Eu-
clidean one – it has the advantage of overcoming the
effect of outliers, [25] – results directly in anNDOprob-
lem. Similarly, functions involving `1 or `1 norms, Eu-
clidean or Chebyshev distances, a maximum of convex
functions are typical NDO problems. As an example,
the `1 solution of an overdetermined linear system is
found by solving the nondifferentiable convex function:

min
x2Rn
kAx � bk1 D min

x2Rn
max

iD1;:::;m

ˇ̌
a>i x � bi

ˇ̌
; (4)

where x 2 Rn, b 2 Rm and A 2 Rm×n with rows a>i . This
problem can be traced back to the Russian mathemati-
cian P.L. Chebyshev who studied it in the 1850s [25].

Among the mathematical transformations that lead
to NDO problems is the technique that changes con-
strained problems into unconstrained ones through the
use of exact penalty functions [11] (cf. also � Qua-
sidifferentiable optimization: Exact penalty methods).
Equality constraints, �(x) = 0 and inequality con-
straints '(x) � 0 are placed in the objective us-
ing penalty parameters and nondifferentiable functions
|�(x)| and max {0, '(x)}, respectively. In other word,
a solution to the constrained problem

8̂
<̂
ˆ̂:

min f (x)
s.t. �(x) D 0;

'(x) � 0;

(5)

is determined by solving

min f (x)C t1 j�(x)j C t2 maxf0; '(x)g

for large enough values of t1 and t2.
Still, the major source of optimization problems are

master problems resulting from the application of re-
laxation/restriction techniques such as Lagrangian re-
laxation [14] (cf. also � Integer programming: La-
grangian relaxation), [12], Benders decomposition (cf.
also � Generalized Benders decomposition) [4,13] and
Dantzig–Wolfe decomposition [9,10].

These different approaches are conceptually similar,
at least in the linear case, and end up solving the same
NDO problem. To show that, let us consider the linear
program

[LP]

8̂
ˆ̂̂<
ˆ̂̂̂
:

min c>x
s.t. Ax � b;

Dx � d;
x � 0:

Where, we assume for the ease of exposition that {x: Ax
� b; x � 0} is a bounded, nonempty polytope. The dual
of [LP] is

[LD]

8̂
<̂
ˆ̂:

max b>u C d>v
s.t. A>uC D>v � c;

u; v � 0:

Applying Lagrangian relaxation to [LP] is equivalent to
relaxing Dx � d using positive dual multipliers v, lead-
ing to

max
v�0

�
min
x�0

c>x C v>(d � Dx) : Ax � b
	
: (6)

Benders decomposition applied to [LD] results in

max
v�0

�
max
u�0

b>uC d>v : A>u � c � D>v
	
;

where v is assumed to be the complicating variable. Re-
placing the inside problem by its dual leads to

max
v�0

�
min
x�0

c>x C v>(d � Dx) : Ax � b
	
: (7)

Dantzig–Wolfe decomposition replaces [LP] by its
convex representation in terms of the convex points of
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{x: Ax � b; x � 0} that is indexed by E, to get
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
h2E

˛h(c>xh)

s.t.
X
h2E

˛h(Dxh) � d;
X
h2E

˛h D 1;

˛h � 0; h 2 E:

Taking the dual results in
8<
:
max
v�0;v0

v0 C d>v

s.t. c>xh C v>Dxh � v0; 8h 2 E;

which is equivalent to

max
v�0

�
min
h2E

c>xh C v>(d � Dxh)
	
: (8)

The equivalence between (6) and (7) is obvious. Us-
ing the fact that there is always an extreme point solu-
tion to a linear program, the equivalence between (6),
(7) and (8) is established. Therefore, Lagrangian relax-
ation applied to the primal is exactly Benders decompo-
sition applied to the dual, and is equivalent by duality to
Dantzig–Wolfe decomposition. Furthermore, all three
solve (8), which is the maximum of a concave piecewise
linear function that is nondifferentiable at intersection
points.

F.H. Clarke [7] and [8] discusses further examples
from physics, engineering, economics and optimal con-
trol. Other mathematical problems leading to NDO op-
timization include semi-infinite programming, eigen-
value optimization and variational inequalities [16].

Solution Approaches

Due to the existence of successful solution methods
for differentiable optimization, one other solution ap-
proach tries to transform nonsmooth problem into
smooth ones. As an example, the absolute value func-
tion |x|, which is nondifferentiable at zero can be ap-
proximated by
8̂
<̂
ˆ̂:

�x; x � t;
x2
t ; �t � x � t;
x; x � t;

for small values of the parameter t. For these trans-
formations to be successful, the right transformation
should be found and the the nondifferentiable points
should be known. A solution approach based on this
transformation is discussed in [21].

Other solution approaches that try to eliminate
nondifferentiability, do so by transforming an un-
constrained nonsmooth problem into a constrained
smooth one. This approach is highly efficient for prob-
lems that can be transformed into easily solvable con-
strained problems such as linear programs. The `1 op-
timization problem described in (4) is equivalent to the
linear program
8̂
<̂
ˆ̂:

min y
s.t. Ax � ye � b;

Ax C ye � b;

where e is the appropriate dimension vector whose en-
tries are all ones. Being a linear program with a special
type of matrix, most linear programming techniques
were modified to solve (4). This includes the simplex-
like algorithm in [3] and the interior point algorithms
in [23] and [27].

Subgradient Methods

The first methods for nondifferentiable optimization
tried to extend the gradient-based methods that were
successful for smooth optimization. The transition
from gradients to subgradients is not straightforward as
some subgradient-based search direction are not nec-
essarily improving directions. P. Wolfe [26] gives an
example where the extension of the steepest descent
method fails. To overcome that, some designed meth-
ods [18,20] will only take a serious step when the next
iterate is a better one.

Subgradient methods (cf. also � Nondifferentiable
optimization: Subgradient optimization methods) were
developed by N.Z. Shor [24] in the 1960s. They are ba-
sically an iterative technique where iterates are updated
using a current subgradient and a carefully-chosen
stepsize. Applied to (1), iterates are given by

xkC1 D xk C tk�k ;

where xk is the current point, �k is a subgradient of f
at xk and tk is a stepsize. Shor [24] states that a constant
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stepsize does not converge, even for the simple function
|x|. He proposes the use of a stepsize that satisfies

1X
kD0

tk D1; tk ! 0:

In practice, the most widely used stepsize is �[f (xk)
� f �]/ k �k kwhere � 2 (0, 2] and f � is the best estimate
of the optimal value f (x�).

Steepest Descent and E-SubgradientMethods

Subgradient methods are not monotonic, as they do
not guarantee to improve the value of the minimized
function. Descent methods are designed to overcome
this drawback. As an example we discuss the steepest
descent method which chooses its search direction by
solving

min
kdk�1

f 0(x; d):

Using relation (3), the steepest descent direction, at
a point xk, is given by

dk D
�k

k�kk
; �k D arg max

�2@ f (x0)
k�k :

The method proceeds iteratively, updating the iterates
by

xkC1 D xk C ˛k�k

and choosing the steplength ˛k so that f (xk+1) < f (xk).
The main difficulty with the steepest descent re-

sides in the calculation of the direction dk which ne-
cessitates the knowledge of the whole differential set
@f (x). To overcome that, �-subgradient methods prefer
to calculate approximate steepest descent direction by
searching through subgradients of neighboring points
through the use of the �-subdifferential set

@� f (x)

D f� : f (x0)C �(x � x0)C � � f (x); 8xg :

Details of the method can be found in [5].

Cutting Plane Methods

J.E. Kelley [17] and W. Cheney and A.A. Goldstein [6]
were the first to realize the potential of such methods

for convex programming. Applied to (1), cutting plane
algorithms use the subgradient inequality to approxi-
mate f by

f (x) Š max
i2I

f (xi)C �>i (x � xi);

where � fi , i 2 I are subgradients of f at xi, i 2 I. Thus,
(1) is replaced by

min
x

�
max
i2I

f (xi)C �>i (x � xi )
	
;

which is equivalent to,
(
min v
s.t. f (xi)C �>i (x � xi) � v; 8i 2 I:

(9)

Problem (9) is a linear program that is easier to deal
with than the original problem. It is to note, however,
that this is only an approximation of (1), which gets
better as more constraints are added. Let us denote by
[MPk] the relaxed master problem (9) with index set Ik.

By transforming (1) to (9), a nondifferentiable prob-
lem is replaced by a constrained problem having a large
number of constraints. Cutting plane methods use only
a subset of these constraints and generate the rest as
needed. In fact, they would solve a series of relaxed mas-
ter problems [MPk] and stop when an optimal (satisfac-
tory) solution to (1) is reached.

Various cutting plane methods were proposed over
the years. Each variant generates cuts at a different
point called the query point. Kelley’s classical cutting
plane method [17] chooses the minimum of the relaxed
master problem [MPk] as a query point. Although, it
may work well for some problems, this method suffers
from slow convergence [22]. The analytic center cut-
ting planemethod (ACCPM) [15,16], on the other hand,
chooses the analytic center as its query point. Its cal-
culation makes use of interior point concepts and has
shown promising results for a number of applications
[1,2]. Bundle methods [19,20], choose the query point
by solving a quadratic program that contains a small
number of cutting planes. The information (bundle of
cutting planes) is updated regularly and kept moder-
ately small.

Conclusion

Nondifferentiable optimization tackles a class of prob-
lems that are intractable to classical optimization meth-
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ods. Most of the theory is based on the notion of sub-
gradients and most of the work is done for the convex
case. It has an abundance of applications in real life, be-
cause the nondifferentiability aspect captures some of
the inherent complexity in real-life problems. Like all
disciplines, favoring an easily implementable and un-
derstood method will not necessarily lead to a good
solution method. This corresponds to the subgradient
method in NDO. Although it is easily implementable,
it has slow convergence. More sophisticated methods,
such as bundle methods or ACCPM are more promis-
ing from a computational point of view but require
more knowhow of the method and of numerical linear
algebra.
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Cutting plane methods were proposed independently
by J.E. Kelley [27] and W. Cheney and A.A. Goldstein
[5] as a solution technique for constrained convex op-
timization problems. Although they may not compete
with some of the efficient methods for smooth opti-
mization, they are one of the first and fundamental

solution approaches for nondifferentiable optimization
(cf.�Nondifferentiable optimization).

The fact that they rely on polyhedral approxima-
tions of convex functions, makes the technique suitable
for nondifferentiable optimization. It forms with sub-
gradient optimization [38] the two major solution ap-
proaches for nondifferentiable problems. The cutting
plane algorithms that are being designed over the years
are getting more sophisticated and ultimately, showing
promising computational results and stable numerical
properties.

In this article, we give an overview of cutting plane
methods for nondifferentiable optimization problems.
We start with a brief introduction to cutting planes. We
then give a generic cutting plane algorithm, that will be
used to describe some of the main variants.

A Generic Cutting Plane Algorithm

To describe the general cutting plane approach, we con-
sider the following nondifferentiable problem

[NDP]
�

min f (x)
s.t. g(x) � 0 ;

where f and g are real-valued, continuous, nondifferen-
tiable, convex functions. Convexity implies that there is
at least one supporting hyperplane to f at every point x0
of the domain, whose equation is given by

y D f (x0)C �
f
0 (x � x0) ;

where � f
0 is any element of the subdifferential @f (x0) of

f at x0. (For ease of notation we assume that subgradi-
ents are row vectors.) Recalling that a supporting hy-
perplane gives an under-estimate of f , the subgradient
inequality

f (x0)C �
f
0 (x � x0) � f (x) (1)

can be used to approximate f by the maximum of a set
of piecewise linear functions. Therefore, given a set of
points xi, i 2 I and their corresponding subgradients
�
f
i , f is tangentially approximated by

f (x) D max
i2I

n
f (xi)C �

f
i (x � xi)

o
: (2)

Inequality (1) implies that f (x) � f (x) for any in-
dex set I. Larger sets will give better approximations.
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The same can be said about g, leading to the polyhedral
approximation

g(x) D max
j2J

g(x j)C �
g
j (x � x j) ;

where � gj are subgradients of g at a collection of points
xj indexed by J. Thus, [NDP] can be approximated by,
8̂
<
:̂
min

�
max
i2I

f (xi)C �
f
i (x � xi )

	

s.t. max
j2J

g(xi)C �
g
j (x � x j) � 0 ;

which is equivalent to,
8̂
<̂
ˆ̂:

min v
s.t. f (xi)C �

f
i (x � xi ) � v; 8i 2 I;

g(x j)C �
g
j (x � x j) � 0; 8 j 2 J:

(3)

Problem (3) is a linear program that is easier to deal
with than the original problem. It is to note, however,
that this is only an approximation of [NDP], that gets
better as more constraints are added. Let us denote by
[MPk] the relaxed master problem (3) with index sets Ik
and Jk whose optimal solution is denoted by (xk, vk).

By transforming [NDP] into (3), nondifferentiabil-
ity is eliminated at the cost of having a problem with
a very large number of constraints. To get around that,
cutting plane methods use only a subset of these con-
straints and generate the rest as needed. In fact, they
would handle a series of relaxedmaster problems [MPk]
and stop when an optimal (satisfactory) solution to
[NDP] is reached. [MPk] is a relaxation of [NDP] as,
by convexity of g,
�
x : max

j2Jk

n
g(x j)C �

g
j (x � x j)

o
� 0

	

contains {x: g(x)� 0}, while, by convexity of f ,

max
i2Ik

n
f (xi)C �

f
i (x � xi)

o
� f (x)

for all x 2 {x: g(x) � 0}. This implies that the optimal
value vk is a lower bound on the optimal value f (x�).
The relaxation gets tighter as more points are included
in the index sets I and J. The hope is that termination
occurs before the sets I and J get enormously big.

The idea described above can be put into the generic
cutting plane algorithm below.

In the course of the cutting plane algorithm, upper
bounds are usually achieved through the objective eval-
uation at a feasible point. Lower bounds are either given
by the optimal solution of the relaxed master problem,
or by evaluating the dual objective at a feasible dual so-
lution. For the stopping criteria, the algorithm may be
stopped if the bound on the duality gap drops below
a certain threshold. This is given by the difference be-
tween the best known upper and lower bounds.

Initialize:
1 Get an initial upper bound vu and a lower

bound vl for the optimal solution f (x�).
2 Get an initial relaxed master problem [MP0].

Iterate (k)
1 Get a query point xk and a corresponding

lower bound v+l .
2 If xk is infeasible to [NDP] (g(xk) > 0), then

the oracle of g generates a feasibility cut of
type g(xk) + �

g
j (x � xk) � 0.

3 If xk is feasible to [NDP] (g(xk) � 0), then the
oracle of f generates an optimality cut of type
f (xk)+�

f
i (x�xk) � v and an upper bound v+u .

4 Update the bounds:
a) if xk is feasible to [NDP], then vu =
maxfvu; v+ug.
b) vl = minfvl ; v+l g

5 Update index sets:
a) If a feasibility cut is added then Ik+1 := Ik
and Jk+1 := Jk \ fkg.
b) If an optimality cut is added then
Ik+1 := Ik\fkg and Jk+1 := Jk \ fkg:

6 Either STOP or k := k + 1.

At each iteration of the method, we can construct
a bounded polyhedral set, namely the localization set.
Given an upper bound vku to [MPk], it is given by

Fk(vku) D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂
(x; v) :

v � vku ;
f (xi)C �

f
i (x � xi) � v;
i 2 Ik ;

g(x j)C �
g
j (x � x j) � 0;
j 2 Jk

9>>>>>=
>>>>>;
:

The localization set Fk(vu) is a bounded polyhedral
subset of the feasible region of [MPk] that contains any
optimal solution (x�, f (x�)) to [NDP]. To see that, f (x�)
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� vku as vku is an upper bound on the optimal value. Fur-
thermore, by the feasibility of x� and the subgradient
inequality g(xj) + �

g
j (x
� � xj) � g(x�) � 0 for all j 2 Jk

and by the fact that [MPk] is a relaxation of [NDP], f (xi)
+ � f

i (x
� � xi) � vk � f (x�) for all i 2 Ik.

Although every cutting plane method follows the
above general scheme, different query point choices
produce different algorithms. Prior to discussing a few
of them, we would like to stress that some methods are
explicitly based on the localization set, and require that
this set be bounded. This might not hold in particular in
the initialization phase, since no cut is yet present, and
no upper and lower bounds on the objective are known.
Therefore, one has to introduce box constraints. This
may not even suffice if the first generated cut is not an
optimality one, because the localization set remains un-
bounded in the z variable. One must then proceed with
a an auxiliary phase I problem.

Kelley’s Cutting PlaneMethod

This is the classical cutting plane method that was orig-
inally described in [27] and is present in the origi-
nalDantzig–Wolfe decomposition [7,8] and Benders de-
composition [4]. At iteration k, the method solves the
relaxed master [MPk] and uses its solution xk to gener-
ate further cuts.

As [MPk] is a relaxation of [NDP], vk gives a lower
bound to f (x�) which is monotonically increasing. In
addition, when xk is feasible, f (xk) gives an upper bound
that, unfortunately, is not monotonically decreasing.
The difference between the updated bounds gives an es-
timate of the duality gap and can be used as a practical
stopping criteria. The exact optimal solution of [NDP]
is detected when xk is feasible and f (xk) = vk, which is
equivalent to having 0 2 @f (xk).

This optimal point strategy assumes that the relax-
ation is a good approximation of the original problem,
but this is only true when a big number of cuts has been
generated. The method is globally convergent [47], but
in practice, it sometimes shows a slow pattern of con-
vergence [35].

Center of GravityMethod

This method was first proposed in [32] as the first cut-
ting plane method that generates query points at the
center of the localization set. Choosing the center of

gravity to generate query points seems to be the natu-
ral choice. In fact cutting through the center of gravity
of the a localization set of volume V and dimension n
produces two sets, each with a volume of at least
�
1 � (1 �

1
nC 1

)n
�
V :

Therefore, after k iterations the volume of the localiza-
tion set shrinks at a constant rate of 1/(1� exp(1)). This
rate of convergence is the best that can be obtained [46].
Unfortunately, finding a single center of gravity could
be as difficult as solving the original problem.

For some simple convex bodies such as ellipsoids,
cubes or spheres, calculating the center of gravity is
relatively easy. This idea is the motivation behind the
largest inscribed sphere method of [11], the volumet-
ric method of [43] and the analytic center cutting plane
method (ACCPM) of [18,19,21].

Largest Inscribed SphereMethod

The query point of this method is chosen as the cen-
ter of the largest inscribed sphere in the localization set.
Its calculation is based on work of G.L. Nemhauser and
W.B.Widhelm [34], who showed that the minimization
of the simple linear program
(
min �

s.t. a>i x C


a>i



 � � bi ; i 2 I;

gives the radius � and the center x of the largest in-
scribed sphere in the bounded polyhedron {x: a>i x �
bi, i 2 I}. The method is detailed in [11].

Volumetric Method

P.M. Vaidya [43] proposed the volumetric center as
a query point. It is the maximizer of the determinant of
the Hessian matrix of the logarithmic barrier function.
This choice is motivated by the observation that for ev-
ery point of the localization set, an inscribed ellipsoid
can be constructed. The point that gives the maximum-
volume inscribed ellipsoid is the minimizer of

1
2
log

 
det

 X ai a>i
(bi � a>i x)2

!!
;

where ai are the columns of the matrix defining the lo-
calization set.
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Bundle Methods

These methods were first proposed by C. Lemaréchal
[30]. The method has developed over the years, [28,31],
building upon the pioneering work [30].

The method adds a regularization term to the esti-
mation of f and solves

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
�
max
i2Ik

f (xi)C �
f
i (x � xi )

C 1
2˛k
kx � xk�1k2

o

s.t. max
j2Jk

n
g(x j)C �

g
j (x � x j)

o
� 0;

(4)

to get the next query point xk. Themain idea is based on
the fact that (2) is a good approximation of f when the
next iterate is not far from the previous ones. Problem
(4) is equivalent to the quadratic program

8̂
<̂
ˆ̂:

min v C 1
2˛k
kx � xk�1k2

s.t. f (xi)C �
f
i (x � xi) � v; i 2 Ik ;

g(x j)C �
g
j (x � x j) � 0; j 2 Jk :

The nice feature of bundle methods is that they limit
the number of hyperplanes that are used to approxi-
mate f . The set of subgradients (the bundle) is updated
at each iteration and kept moderately small. As a result,
(4) is solved very quickly.

Techniques to estimate ˛k are treated in [28] where
three different values are proposed.

Analytic Center Cutting PlaneMethod (ACCPM)

To overcome the difficulty associated with the calcu-
lation of centers of polyhedrons and still use a central
point strategy, ACCPM uses concepts form the interior
point literature that have proven to be highly efficient.

The query point for ACCPM is the analytic center
of the localization set Fk(vu). This new notion of center
was first introduced in [40,41,42] as the the unique pair
(xka , vka) that minimizes

log(vku � v)C
X
i2Ik

log[v � f (xi) � �
f
i (x � xi )]

C
X
i2Jk

log[�g(xi) � �
g
i (x � xi)]:

This function is a potential function similar to the
one used by N.K. Karmarkar [26] when presenting the
first interior point algorithm. Its minimization is equiv-
alent to the solution of a linear program by any inte-
rior point method. The primal projective algorithm (cf.
also � Linear programming: Karmarkar projective al-
gorithm) is favored due to its ability to deal with dual
infeasibilities when new cuts are added. It is, in prin-
ciple, a modified Newton method applied to the mini-
mization of the potential function [16].

The Newton procedure for computing a central
point (xka , vka) of Fk(vu) identifies, upon termination,
a dual feasible solution to [MPk]. Evaluating the dual
objective at this point, gives a lower bound to the opti-
mal solution of [NDP]. In addition, if xka is feasible to
[NDP], i. e. g(xka) � 0, then f (xka) is an upper bound.
Unfortunately, xka never coincides with the original op-
timizer x�, as it can never be a vertex, so the stopping
criteria can only be based on the difference between the
upper a lower bounds. The algorithm would stop if that
gap is sufficiently small.

The convergence analysis of the method is done
in [20] and [36]. ACCPM is readily implemented [25]
and has shown promising results in solving different
large scale problems [2,3,17,33]. The method was mod-
ified to use weighted analytic centers as a query point
[22], to add multiple cuts at once [24], to use a primal-
dual interior point algorithm for the calculation of
analytic centers [9] and to accommodate quadratic
cuts [10].

Concluding Remarks

Cutting plane methods are an effective solution ap-
proach for nondifferentiable optimization. This has
proven to be true when advanced methods such as bun-
dle and analytic center methods were designed. Not
only they make use of recent advances in optimization
theory, they also resulted in efficient computer imple-
mentations.

Manipulating the set of cuts is an important en-
hancement factor to cutting plane methods. In the ad-
dition of cuts, introducing a whole set at once is more
effective than introducing single cuts as it allows the fast
accumulation of information about the problem. This is
possible for certain classes of problems where disaggre-
gation is possible. This is true for Dantzig–Wolfe and
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Benders decompositions with primal and dual block di-
agonal matrices respectively.

The second improvement is in the manipulation of
number of cuts in the relaxed master problem. Keeping
all cuts may lead to a better approximation but it also
requires huge amounts of storage space and solution
time. Thus well defined cut-dropping strategies will
considerably improve the performance of the method.

A final remark concerns the use of heuristics with
cutting planes. They can be used to initialize the
method so that sufficient cutting planes are obtained to
start the method, or take over the search for optimal so-
lutions when the method stalls.
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Max-Type Functions

Let S�Rn be an open set. A standardminimax problem
(MMP) is the problem of minimizing a function

f (x) D max
y2G

'(x; y); (1)

where G is a compact set of some space Y , the function
': S ×G!R is continuous jointly in [x, y] on S ×G and
continuously differentiable in x (the function ' 0x(x, y)
is continuous in [x, y] on S × G). The function f is, in
general, nonsmooth though ' is smooth in x.

Remark 1 The function

f (x) D max
y2G
j'(x; y)j

can be rewritten in the form (1) since

f (x) D max
y2G

maxf'(x; y);�'(x; y)g

D max
y2G

'(x; y);
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where

G D f[1; y] : y 2 Gg
[
f[�1; y] : y 2 Gg

� R � Y D Y ;

'(x; y) D

(
'(x; y); y D [1; y];
�'(x; y); y D �[1; y]:

The first serious study of minimax problems was per-
formed by P.L. Chebyshev who may be considered as
Godfather of nonsmooth analysis. He treated the prob-
lem of minimizing the function

f (x) D max
y2[a;b]

j� (y) � P(x; y)j; (2)

where x = (x0, . . . , xn�1) 2 Rn, P(x, y) =
Pn�1

iD0xiy
i. The

function P(x, y) is a polynomial (in y). If x� 2 Rn and

f (x�) D min
x2Rn

f (x)

then P(x�, y) is called the polynomial of best approxima-
tion (for the function � (y)). If � (y) = yn, [a, b] = [�1,
1] then

P�n (y) D yn � P(x�; y) D
1

2n�1
Tn(y);

where Tn(y) is the famous Chebyshev polynomial:

T0(y) D 1; T1(y) D y;

TmC1(y) D 2yTm(y) � Tm�1(y); 8m � 2:

On the interval [�1, 1] the relation Tn(y) = cos(n arccos
y) holds.

Let '1(x, y) = � (y) � P(x, y). The following condi-
tion holds (see [4,9]): For a point x� 2 Rn to be a min-
imizer of f (see (2)) it is necessary and sufficient that n
+ 1 points y0, . . . , yn exist such that

yi 2 G; 8i 2 0; : : : ; n;

y0 < � � � < yn ;

'1(x�; yiC1) D �'1(x�; yi ); (3)

8i 2 0; : : : ; n � 1; (4)

j'1(x�; yiC1)j D '(x�; yi) D f (x�): (5)

The set {y0, . . . , yn} satisfying (3)–(5) is called
a Chebyshev alternation (or alternance).

The following properties of a max-function will be
used in the sequel (see [1,4,5]).

1) Let a function f be described by (1). Then it is direc-
tionally differentiable at any point x 2 S and

f 0(x; g) D lim
˛#0

f (x C ˛g) � f (x)
˛

D max
v2@ f (x)

(v; g);
(6)

where

@ f (x) D co
˚
' 0(x; y) : y 2 R(x)

�
;

g 2 Rn ;

R(x) D fy 2 G : '(x; y) D f (x)g :

(6) means that f is subdifferentiable, @f (x) is the sub-
differential of f at x (it is a convex compact set). The
subdifferential mapping @f is not, in general, Haus-
dorff continuous.

2) For a point x� 2 S to be a (local or global) minimizer
of f on S it is necessary that

0n 2 @ f (x�): (7)

Here 0n = (0, . . . , 0) 2 Rn.
A point x� 2 S satisfying (7) is called an inf-

stationary point of f .

Remark 2 Note that for a point x� � 2 S to be a (local
or global) maximizer of f on S it is necessary that

@ f (x��) D f0ng: (8)

If the function f is convex (it is the case, e. g., if ' is
convex in x for any y 2 G), then condition (7) is also
sufficient for x� to be a global minimizer of f on an
open set S. Therefore condition (8) implies that a con-
vex function f does not attain its maximal value on an
open convex set S.

3) If x0 is not inf-stationary then the direction

g(x0) D �
v0
kv0k

; (9)

where

kv0k D max
v2@ f (x0)

kvk;

is the steepest descent direction of f at x0, i. e.

f 0(x0; g(x0)) D min
kgkD1

f 0(x0; g):
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4) The following expansion holds

f (x C	) D f (x)

Cmax
y2G

['(x; y)� f (x)C (' 0x(x; y); 	)]

C ox (	);

where

ox (	)
k	k

k�k!0
�! 0:

This expression can be rewritten as

f (x C	) D f (x)

C max
[a;v]2d f (x)

[aC (v; 	)]C ox (	);

(10)

where

d f (x) D co
8<
:[a; v] 2 R � Rn :

a D '(x; y) � f (x);
v D ' 0x(x; y);

y 2 G

9=
;

(11)

is the hypodifferential of f at x. Note that a � 0 and
max[a, v] 2 df (x)a = 0. The mapping df is Hausdorff-
continuous on S.

5) Necessary condition (7) is equivalent to

0nC1 2 d f (x�): (12)

6) If x0 is not inf-stationary, then let us find

min
z2d f (x�)

kzk D kz0k;

where z0 = [a0, v0]. In this case v0 6D 0n. The direction

eg(x0) D � v0
kv0k

(13)

is a descent (not necessary steepest descent) direc-
tion of f at x0.
The vector-functioneg(x) (see (13)) is continuous.

7) If the function ' in (1) is twice continuously differ-
entiable at x then the following relation holds:

f (x C	) D f (x)

Cmax
y2G

�
'(x; y) � f (x)C (' 0x(x; y); 	)

C
1
2
('xx (x; y)	;	)

�
C ox (	2);

(14)

where

ox (	2)
kk	k

2
k�k!0
�! 0:

(14) can be rewritten as

f (x C	) D f (x)

C max
[a;v;A]2d2 f (x)

�
aC (v; 	)C

1
2
(A	;	)

�

C ox (	2);

(15)

where

d2 f (x) D co
�
[a; v;A] 2 R � Rn � Rn�n :

a D '(x; y) � f (x);
v D ' 0x(x; y);
A D 'x(x; y);

y 2 G

9>>=
>>;
:

(16)

Here Rn×n is the space of real (n × n)-matrices.
The set d2f (x) is called the second hypodifferential of f
at x. It is closed, bounded and convex. The mapping
d2f is Hausdorff continuous on S. In this case f is twice
continuously hypodifferentiable.

Algorithms for UnconstrainedMinimization

Assume that in (1) S = Rn. Then the problem of mini-
mizing f is an unconstrained minimax problem. There
are a lot of numerical methods to solve this problem
based on the properties of max-functions.

Method of Steepest Descent

Let x0 2 Rn be arbitrary. Assume that xk has already
been defined. If 0n 2 @f (xk) then xk is an inf-stationary
point and the process terminates. If 0n 62 @f (xk) then let
us take gk = g(xk) (see (9)) and find

min
˛�0

f (xk C ˛gk) D f (xk C ˛k gk): (17)

Now, put xk+1 = xk + ˛kgk. Continuing in the same
manner we construct a sequence {xk} such that

f (xkC1) < f (xk): (18)

If this sequence {xk} is finite, then, by construction, the
last point is a stationary one.
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Let {xk} be not finite. Assume that the set Q(x0) = {x
2 Rn: f (x) � f (x0)} is bounded (then it is closed). Due
to (18) xk 2 Q(x0) and, hence, there exist a point x� 2
Q(x0) and a subsequence {xks } such that xks ! x�. One
may expect that x� is inf-stationary. However, in gen-
eral, this is not the case and the reason is the disconti-
nuity of the mapping @f .

To ensure the convergence it is necessary to over-
come the discontinuity of @f .

Let us introduce the set R"(x) = {y 2 G: f (x) � '(x,
y) � "} where "� 0. Put

L"(x) D co
˚
' 0x (x; y) : y 2 R"(x)

�
:

Find

min
v2L"(x)

kvk D kv"(x)k:

If kv�(x)k = 0, the point x is called an "-stationary
point. Choose any " > 0. Let us construct the follow-
ing method. Take any x0 2 Rn. Let xk have already been
found. If kv"(xk)k = 0 then xk is "-stationary. If kv"(xk)k
> 0 then let us find

min
˛�0

f (xk � ˛v"(xk)) D f (xk � ˛kv"(xk))

and put xk+1 = xk � ˛kv"(xk). Continuing analogously
we get a sequence {xk}.

Proposition 3 If the set Q(x0) is bounded then in a fi-
nite number of steps we arrive at a point xk such that

0n 2 L2"(xk):

Thus, in a finite number of steps we shall find a 2"-
stationary point.

Now it is not difficult to modify this method to get
an inf-stationary point of f .

Choose any "0 > 0 and x0 2 Rn. Assume that Q(x0)
is bounded. Applying the above method, in a finite
number of steps we shall find a point x0 such that
0n 2 L2"0 (x0). Let xk 2 Q(x0) be found such that
0n 2 L2"k (xk) where "k = 2�k"0. Take "k+1 = "k/2 and
xk D xk . Applying the above method, in a finite num-
ber of steps a point xkC1 2 Q(x0) will be found such
that 0n 2 L2"kC1 (xkC1). Clearly, xkC1 2 Q(x0). The se-
quence fxkg is bounded.

Proposition 4 Any limit point of the sequence {xk} is
an inf-stationary point of f .

Hypodifferential Descent

Another method is based on expansion (10). Take x0 2
Rn. Let xk have been found. Compute

min
z2d f (xk )

kzk D kzkk;

where zk = [ak, vk]. If k zk k = 0 then the point xk is
inf-stationary and the process terminates.

If k zk k > 0 then vk 6D 0n and let us find

min
˛�0

f (xk � ˛vk) D f (xk � ˛kvk)

and put xk+1 = xk � ˛k vk.
If the sequence {xk} thus constructed is finite then

the last point is inf-stationary. If {xk} is infinite then the
following result holds:

Proposition 5 If the set Q(x0) is bounded then any limit
point of the sequence {xk} is inf-stationary.

Remark 6 The two algorithms described above are
‘conceptual’ (according to the terminology of E. Po-
lak). These algorithms are computationally effective in
the case where the set G (see (1)) contains only a finite
number of points. Different practical implementations
of the above ideas can be found in [2,4,10,11,12].

Newton-Type Method

If the function ' in (1) is twice continuously differen-
tiable, one can employ the expansion (14)–(15).

Take any x0 2 Rn. Let xk have already been defined.
Find

min
�2Rn

Fk(	) D Fk(	k);

where

Fk(	) D max
[a;v;A]2d2 f (xk )

�
aC (v; 	)C

1
2
(A	;	)

�
:

Now put xk+1 = xk +�k.
Under some additional conditions (see [3]) the se-

quence {xk} thus constructed converges at least to a lo-
cal minimizer of f (and the rate of convergence is
quadratic).

A ConvexMax-Function

Extremal Basis Method

Now let us consider the case where f is described by (1)
and the function ' in (1) is strongly convex in x with
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a constant m > 0 for every fixed y 2 G, i. e.

'(x C	; y) � '(x; y)

C (' 0x(x; y); 	)C mk	k2;
8[x; y] 2 Rn � G; 8	 2 Rn :

(19)

The function f is also strongly convex and has a unique
minimizer.

Choose an arbitrary set of n + 2 points from G:

�0 D fy01; : : : ; y0;nC2g;

y0i 2 G; 8i 2 1; : : : ; nC 2:

The set �0 will be called a basis.
Assume that the points x0, . . . , xk�1 and the basis �k

= {yk1, . . . , yk, n+2} have already been found.
Let us define the function

fk(x) D max
i21;:::;nC2

'(x; yki)

and choose a point xk 2 Rn such that

fk(xk) D min
x2Rn

fk(x): (20)

If f (xk) = f k(xk) then xk is the minimizer of f , and the
process terminates.

The minimization problem in (20) is simpler than
that of minimizing f .

Consider the case f (xk) > f k(xk). By the necessary
and (in our convex case) sufficient condition (7)

0n 2 Lk ; (21)

where Lk = coHk,Hk = {'x
0(xk, yki): i 2 Rk}, Rk = {i 2 1,

. . . , n + 2: '(xk, yki) = f k(xk)}. By the Carathéodory the-
orem [7] every point of Lk can be represented as a con-
vex combination of not more than n + 1 points of Hk.
Therefore, there exists at least one index ik 2 1, . . . , n+
2 such that either ik 62 Rk or the origin in (21) may be
‘constructed’ without the vector 'x

0(xk, ykik ).
Let yk 2 G be such that

'(xk; yk) D f (xk) D max
y2G

'(xk; y):

Now let us construct a new basis

�kC1 D fykC1;1; : : : ; ykC1;nC2g

where

ykCi;i D

(
yki ; i ¤ ik;
yk ; i D ik:

The basis �k+ 1 differs from �k by one point and also
contains n + 2 points. For the basis �k+ 1 again define
the function f k+1(x) and the point xk+ 1.

As a result, a sequence {xk} is constructed. If this se-
quence is finite, its last point is the minimizer. If not,
the following property holds.

Proposition 7 (See [6 Sect. III.10].) The sequence {xk}
converges to the minimum point of f .

Remark 8 The extremal basis method can be extended
(with necessary adjustments) to the case where ' is just
convex at x, not necessarily strongly convex.

Remark 9 If the function ' in (1) is not convex then
condition (7) and the Carathéodory theorem produce
the following properties:
1) There exist points y1, . . . , yk+1 such that yi 2 Y for

any i 2 1, . . . , k + 1 and a minimizer x� of f is an
inf-stationary point of the function

F(x) D max
i21;:::;kC1

'(x; yi):

2) There exist points y1, . . . , yk+1 and coefficients ˛1,
. . . , ˛k+1 such that

yi 2 Y ; ˛i � 0;

8i 2 1; : : : ; k C 1;
X

i21;:::;kC1

˛i D 1;

and a minimizer x� is a stationary point of the
smooth function

L(x) D
X

i21;:::;kC1

˛i'(x; yi):

These properties can be used to derive correspond-
ing numerical algorithms.

ConstrainedMinimax Problems

Let f be defined by (1) on an open set S � Rn and ˝ �
S be a closed set. The problem is to find

min
x2˝

f (x) D f �:

Take x 2˝ . The set

� (x;˝) D

8̂
<̂
ˆ̂:
g 2 Rn :

9 f[˛k ; gk]g :
[˛k ; gk]! [C0; g];
x C ˛k gk 2 ˝;

8k

9>>=
>>;
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is the Bouligand cone to ˝ at x. It is nonempty and
closed.

The function f is subdifferentiable (see (6)).
The following necessary condition holds ([4,5]):
For a point x� 2˝ to be a minimizer of f on˝ it is

necessary that

f 0(x�; g) � 0; 8g 2 � (x�;˝): (22)

The cone � (x�,˝) may be represented in the form

� (x�;˝) D
[
i2I

Ai ; (23)

where theAi are closed convex cones, I is some set (e. g.,
� (x�, ˝) can always be given as the union of all its
rays). Of course, from practical considerations we are
interested to have as few elements in I as possible (the
best case is the one where ˝ is convex, then � (x�, ˝)
is also convex).

Taking into account (6), condition (22) can be
rewritten in the equivalent form

@ f (x�) \ ACi ¤ ;; 8i 2 I; (24)

where ACi is the cone conjugate to Ai:

ACi D fv 2D Rn : (v; g) � 0; 8g 2 Aig :

A point x� 2 ˝ satisfying (24) is called an inf-
stationary point of f on˝ .

Let x 2˝ be not inf-stationary. For every i 2 I let us
find

min
v2@ f (x)
w2ACi

kv � wk D kvi � wik D �i (25)

and

max
i2I

�i D �i0 D kvi0 � wi0k : (26)

Then the direction

gi0 (x0) D
wi0 � vi0
�i0

is a direction of steepest descent of the function f at the
point x0 (on the set˝):

f 0(x; gi0 (x0)) D min
g2� (x0;˝)
kgkD1

f 0(x; g):

It may happen that there exist several steepest de-
scent directions (s.d.d.). If� (x0,˝) is convex then such
a direction is unique.

Many numerical methods for minimizing f on ˝
employ condition (24) (see [2,6,10,11,12]).

Let us discuss in detail the case where˝ is described
in the form

˝ D fx 2 S : h(x) � 0g ; (27)

where

h(x) D max
z2G1

 (x; z);

G1 is a compact set of some space Z,  : S × G1! Rn is
continuous jointly in x and z on S × G1 and is contin-
uously differentiable in x. Assume that ˝ is nonempty.
Note that˝ is closed.

The function h is also subdifferentiable and

@h(x) D co
˚
 0x (x; z) : z 2 Q(x)

�
;

Q(x) D fz 2 G1 :  (x; z) D h(x)g :

Note that if h(x) = 0 and 0n 62 @h(x) then

� C(x;˝) D fv D �w : � � 0; w 2 @h(x)g :

If h(x) < 0 the � + (x,˝) = {0n}.
The cone � (x,˝) is convex and closed and, hence,

there exists only one steepest descent direction.
The following necessary condition is true: Let x� 2

˝ , h(x�) = 0. For a point x� to be a minimizer of f on
˝ it is necessary that

0n 2 cof@ f (x�); @h(x�)g D L(x�): (28)

If 0n 62 @h(x�) then conditions (22) and (28) are
equivalent. If 0n 2 @h(x�) then (28) holds automatically
but (22) does not.

If 0n 62 L(x0), h(x0) = 0 then the direction

g(x0) D �
v(x0)
kv(x0)k

where

kv(x0)k D min
v2L(x0)

kvk

is a descent direction and it is an admissible direction,
i. e. there exists ˛0 > 0 such that x0 + ˛ g(x0) 2 ˝ , 8˛
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2 [0, ˛0]. Observe that the steepest descent direction is
not necessarily admissible.

Note also that for any � > 0 condition (28) is equiv-
alent to

0n 2 cof@ f (x�); �@h(x�)g D L	(x�):

Method of Hypodifferential Descent

The function h (as well as f ) is continuously hypodiffer-
entiable with the hypodifferential (cf. (11))

dh(x) D co

8<
:[a; v] :

a D  (x; z) � h(x);
v D  0x (x; z);

z 2 G1

9=
; : (29)

Let

L(x) D cofd f (x); dh(x)C [h(x); 0n]g:

Proposition 10 For a point x� 2 ˝ to be a minimizer
of f on˝ it is necessary that

0nC1 2 L(x�): (30)

A pointX� 2˝ satisfying (30) is an inf-stationary point
of f on˝ .

If x 2˝ is not inf-stationary, then

�(x) D min
z2L(x)

kzk D kz(x)k > 0:

Here

z(x) D [�(x); z(x)];

�(x) 2 R; z(x) 2 Rn ; z(x) ¤ 0n:

The direction g(x) = � z(x)/ k z(x) k is an admissible
descent direction. The vector-function z(x) is continu-
ous on˝ .

Let us describe the following method (see [5, Chap.
5, Sect. 5]):

Take any x0 2 ˝ . Let xk 2 ˝ have already been de-
fined. If �(xk) = 0 then xk is inf-stationary. If �(xk) > 0
then let us find

min
˛�0;

(xk�˛z(xk ))2˝

f (xk � ˛z(xk))

D f (xk � ˛kz(xk)):

Now put

xkC1 D xk � ˛k z(xk):

By construction xk 2˝ , 8k.
If the sequence {xk} is finite, its last point is an inf-

stationary one. If it is infinite the following result holds:

Proposition 11 If the set

fx 2 ˝ : f (x) � f (x0)g

is bounded, then any limit point of the sequence {xk} is
inf-stationary.

Remark 12 The method described is ‘conceptual’. For
its practical implementation it is necessary to avoid the
computation of df and dh (by (11) and (29)) and take
some smaller sets (since the hypodifferential mapping
is not uniquely defined).

Remark 13 If both functions ' and  are convex in
x then the extremal basis method (given above) can be
extended for minimizing f on˝ (see [6]).

The KelleyMethod

Let us consider the problem of minimizing a function

f (x) D max
y2G

'(x; y)

D max
y2G

['1(x; y)C f1(x)]

on a convex compact set˝ 2 Rn, where '1:˝ ×G!R
is convex in x on ˝ for any y 2 G and continuous in y
on G and f 1:˝R is continuous on˝ . Then the follow-
ing modification of the Kelley cutting plane method [8]
can be used:

Choose any x0 2 ˝ and find y0 2 G such that '(x0,
y0) = f (x0). Take any v0 2 @'1(x0, y0) (where @'1(x0, y0)
is the subdifferential of the convex function '1(x, y0) at
x0). Put

B0(x) D f1(x)

C '1(x0; y0)C (v0; x � x0):

Let xk 2 ˝ have already been defined. Find yk 2 G
such that '(xk, yk) = f (xk), take any vk 2 @'1(xk, yk) and
put

Bk(x) D f1(x)

C '1(xk; yk)C (vk ; x � xk):
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Let

fk(x) D max
i20;:::;k

Bi (x)

D f1(x)C max
i20;:::;k

['1(xi ; yi )C (vi ; x � xi)]:

Find

min
x2˝

fk(x) D fk(x�k ):

If f k(x�k ) = f (x�k ) then x�k is a minimizer of f on ˝
and the process terminates. Otherwise, take x�k = xk+1
and proceed as above. If the sequence {xk} thus con-
structed is finite, its last point is a minimizer. If not, the
following statement holds.

Proposition 14 Any limit point of the sequence {xk} is
a minimizer of f on˝ .
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One of the main approaches to solving equations
and unconstrained optimization problems with differ-
entiable functions involved is based on the Newton
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method (NM). The classical version of this method (in
a finite-dimensional setting) deals with an equation

F(x) D 0 (1)

with a differentiable mapping F. Having an approxi-
mate solution xk (k = 0, 1, . . . ) we wish to find a new one
xk+1 = xk + y which is ‘better’ than xk. Since there exists
the derivative rF, we can approximate the mapping y
7�! F(xk + y) by the mapping y 7�! F(xk)+ rF(xk)y
and hence approximate the equation F(xk + y) = 0 by
the equation

F(xk)CrF(xk)y D 0 : (2)

It is assumed that the linear mapping rF(xk) is in-
vertible. A new approximation xk+1 to the solution has
a form xk+1 = xk + yk where yk = � (rF(xk))�1 (F(xk) is
a solution of the equation (2). (Sometimes it is more
convenient to add a degree of freedom and consider
a vector xk+1 = xk + tk yk with tk > 0 as a new approxi-
mation.) Thus a classical smooth version of the NM has
a form

xkC1 D xk � (F 0(xk))�1(F(xk) : (3)

There are many methods for solving an unconstrained
minimization problem

f (x)! min (4)

based on the scheme (3) and its modifications. The sim-
plest scheme:

xkC1 D xk �
�
r2 f (xk)

��1
r f (xk) (5)

is suitable for twice-continuously differentiable (C2)
functions f . This scheme allows us to find critical points
of the function f .

As it turns out many optimization and related prob-
lems even with smooth objective functions and con-
straints can be reduced to the solution of special kinds
of nonsmooth equations (see, for example, [20]).

We shall consider as an example a variational in-
equality problem (VIP): find a vector x 2 D such that

(y � x)>F(x) � 0 for all y 2 K ; (6)

where K is a closed convex subset of Rn and F is a con-
tinuously differentiable (C1) mapping defined on an

open set D � K. Let PK be the metric projection onto
the set C (that is k x � PK x k = miny 2 K k x � y k with
the Euclidean norm k � k ) and

eFK(x) D x � PK(x � F(x));

FK(z) D F(PK(z))C (z � PK (z)):
(7)

It can be shown (see, for example, [20]) that a vector x
satisfies (6) if and only if x is a solution of the equation
eFK(x) D 0 and if and only if z = x � F(x) is a solu-
tion of the equation FK(z) = 0. Since PK is not necessar-
ily a smooth mapping it follows that both mappingseFK

and FK are not necessarily smooth.
A special case of VIP (6) with K = Rn

C is a nonlinear
complementary problem (NCP): find a vector x2D such
that

x � 0; F(x) � 0; x>F(x) D 0 ; (8)

whereD�Rn is an open set containing the nonnegative
orthant Rn

C and F is a continuously differentiable (C1)
function defined on D. Since PRn

C

(x) = x+, the map-
pings (7) have the following form:

eFK(x) D min(x; F(x));

FK(z) D F(xC) � x�;
(9)

where x+ = max(x, 0) and x� = min(x, 0); max and min
stand for componentwise maximum and minimum, re-
spectively. Thus NCP reduces to equations with max
and min operators.

The following properties of the function m(b, c) =
min(b, c) are important for application to NCP: m is
positive homogeneous of the first degree and the set {x
= (x1, x2): x1 � 0, x2 � 0, m(x) = 0} coincides with the
union of two positive semi-axes. Sometimes it is more
convenient to consider functions with the same proper-
ties and also being C1 on R2 except the origin. One ex-
ample from this large class of functions is the so-called
Fischer–Burmeister function [8])

�(b; c) D (b2 C c2)1/2 � (bC c) : (10)

If

H(x) D (�(x1; F1(x)); : : : ; �(xn; Fn(x)))> ; (11)

then x is a solution of NCP if and only if H(x) = 0.
Thus it became necessary to extend the NM to

enable the efficient solution of nonsmooth equations.
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Note that this extension is not generally possible. B.
Kumer [15] has found an example of a function F de-
fined on the real line, which enjoys very good proper-
ties (F is Lipschitz, strictly monotone, directionally dif-
ferentiable everywhere and Fréchet differentiable at the
solution of the equation (1)) and such that NM alter-
nates for almost all starting points.

One of the first contributions to nonsmooth NM
was given by S.M. Robinson [27] for solving feasibil-
ity problems involving inequality constraints and byM.
Kojima and S. Shindo [14] for solving (1) with a piece-
wise smooth mapping F. Various versions and modifi-
cations of the NM for nonsmooth equations have been
developed during the last decade. In particular damped
NM and smoothing NM enjoy global convergence un-
der certain monotonicity assumptions. There are finite-
dimensional and infinite-dimensional settings of this
problem. Here we consider only finite-dimensional ver-
sions of the nonsmooth NM. For infinite-dimensional
problems see for example [7,16].

The first problem which arises in the study of non-
smooth NM is to find suitable approximations of nons-
mooth mappings. Many authors suggested various ver-
sions of such approximations. Two types of approxi-
mations are mainly considered. One of them is an ap-
proximation by a certain set-valued mapping x! V(x)
where V(x) is a set of invertible matrices. In this case
the equation (2) is replaced by a linear equation F(xk)
+ Aky = 0, where Ak is an arbitrary matrix from V(xk).
Thus NM in such a setting has a form

xkC1 D xk � A�1k F(xk): (12)

The second type is based on an approximation by
means of a certain nonlinear mapping F0. In such a case
the method can be presented in the following form: xk+1
= xk + yk, where yk is a solution of the nonlinear equa-
tion

F(xk)C F 0(xk)(y) D 0: (13)

It is assumed that the auxiliary nonlinear equation (13)
can be solved relatively easily.

There is a general approach [16] based on the set-
valued approximation F(x, y) of a single-valued lo-
cally Lipschitz mapping F which includes both of the
above mentioned types. This approach clarifies two
conditions which lead to convergence of NM: first the

uniform injectivity (invertibility) of the approximating
mapping at a neighborhood Y of a solution x�: there
exists c > 0 such that

kuk � c kyk for all y 2 Y ; u 2 F(x; y); (14)

and secondly, that the mapping F should accomplish
a relatively good approximation at this neighborhood:

F(x)C F(x; y) � F(x; y C (x � x�)

C o(kx � x�k);
(15)

where o(y)/kyk ! 0 as kyk! 0.
It can be shown (see [16]) that for many concrete

situations (15) is equivalent to

F(x)C F(x; x� � x) � o(kx � x�k)B; (16)

where B is the unit ball. The local speed of convergence
is determined by the number c and the function o in
(15). Conditions (14) and (15) are necessary for con-
vergence of NM under some additional assumptions
([16]).

We now turn to the first type of approximation. If F
is a locally Lipschitz mapping then the B-subdifferential
@B F(x) and Clarke generalized Jacobian @ClF(x) are
considered as approximations. By definition

@BF(x) D
�
lim
xk!x

rF(xk) :
F differentiable

at xk

	

and @ClF(x) is the convex hull of @B F(x). L. Qi sug-
gested another approximation, the C-differential [23],
which can be applied to all continuous (not just Lip-
schitz) mappings. By definition the C-subdifferential
T is a compact-valued upper-semicontinuous mapping
such that F(x + u) = F(x) + A(u) + o(u) for any
A 2 T(x + u). (It is important that T is a mapping,
not an individual set at the point x; approximation
near the point x is accomplished by matrices from the
sets T(y) for all y sufficiently close to x.) Close con-
struction of point-based set-valued approximation is
studied in [30], where connections with constructions
from [16,28] are mentioned. There exist exact calcu-
lus rules for C-differentials which allow their relatively
easy computation. An interesting example of approxi-
mation is given by approximate Jacobians (see, for ex-
ample, [10]). This construction is again applicable for
all continuous mappings and allows the unification of
various approaches to approximation.
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Local convergence based on a matrix approxima-
tion V(x) can be proved only if all matrices A belonging
toV(x) with x sufficiently close to a solution x�, accom-
plish a sufficiently good approximation (compare with
[16]). Convergence can be, in particular, proved if the
mapping F is semismooth (see [25]) at the point x� or
enjoys some properties close to semismoothness (see,
for example, [10]). The mapping F is called semismooth
with respect to a matrix approximation V(x) at a point
x� if the directional derivative F0(x, �) exists at all points
x close to x� and

Au � F 0(x; u) D o(kuk);

A 2 T(x C u); u! 0;
(17)

that is, each matrix A 2 T(x + u) approximates the di-
rectional derivative at the point x in the direction u.
(Semismoothness was originally introduced by R. Mif-
flin for real-valued functions in 1977.) In some applica-
tions strong semismoothness is required. The mapping
F is called strongly semismooth at a point x if there exists
a number K such that



Au � F 0(x; u)


 � K kuk2 ;

A 2 T(x C u); u! 0:
(18)

Semismoothness and strongly semismoothness can be
easily verified inmany concrete situations. The simplest
example of a strongly semismooth mapping is a coordi-
natewise maximum (or minimum) of a finite number
of C2 mappings.

It is well known that the NM produces for differen-
tiable mappings a sequence which converges to a solu-
tion very fast. As it turns out this property holds also in
nonsmooth setting under some regularity conditions.
Qi and J. Sun demonstrated that for semismooth map-
pings the rate of convergence isQ-superlinear [25], that
is

lim
k!C1

kxkC1 � x�k
kxk � x�k

D 0:

Under some additional assumptions (for example,
strong semismoothness) [25] it can be shown that the
rate of convergence is Q-quadratic:

lim
k!C1

kxkC1 � x�k
kxk � x�k2

< C1:

The so-called Kantorovich scheme [12] in the study
of NM can also be extended for nonsmooth equations

(see for example [16,25,27,29]). This scheme allows one
to prove not only the convergence of the NM but also
the existence of a solution in a small neighborhood of
the starting point xo if some combinations of such pa-
rameters as kF(xo)k and the uniform boundary of norm
of inverse matrices, the value K in (18), the radius of
neighborhood, are sufficiently small.

Various kinds of nonlinear approximation are used
for setting the NM in the framework of the second ap-
proach.

The B-derivative [19,22], that is uniformly (with re-
spect to direction) directional derivative, is often used
as a nonlinear approximation. One more tool for such
an approximation is the codifferential [5]. One of the
difficult tasks arising under application of the NM
based on nonlinear approximation is to solve the aux-
iliary subproblem (13). For B-derivative based NM,
J.S. Pang [19] proposed solving this problem inexactly.
A version of NM under the assumption that each ma-
trix of @B F(x) is invertible (the so-called BD-regularity)
was studied in [22]. This assumption is weaker than
invertibility of B-derivative and also nonsingularity of
all matrices of @Cl F(x). A different approach to non-
linear approximation was proposed by Robinson [28],
who introduced the so-called point-based approxima-
tion. This approach is convenient in the study of equa-
tions with mappings FK (see (7)) generated by the
projection PK on a convex set K. Q-superlinear con-
vergence and (for strong approximations) Q-quadratic
convergence can be proved for various kinds of nonlin-
ear approximations.

An abstract version of the second approach, based
on the Kantorovich scheme, was proposed in [29]. The
mapping Fˇ(x, v) is called an approximator for the
mapping F at the point x in the direction v if F(x + v) =
F(x) + Fˇ(x, v) + o(v) where limt! +0t�1o(tv) = 0. As-
sume that an approximator Fˇ accomplishes a strong
approximation: there exist a number K such that kF(x
+ u) � F(x) � Fˇ (x, u) k � Kkuk2 for all x close to
the starting point x0, and Fˇ enjoys the following prop-
erty (which is weaker than the pseudo-Lipschitz prop-
erty [1]): there exists a number L such that the equa-
tion Fˇ(x, u) = y has a solution u with kuk � L kyk
for all sufficiently small y. Then the convergence of
the NM based on Fˇ can be proved [29] by means of
the Kantorovich scheme under some typical for this
scheme assumptions. The inequality kx� � xkk � �
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2�k holds for the Newton sequence (xk) with a number
� > 0.

As a rule NM converges to a solution (even in the
smooth setting) only if a starting point is sufficiently
close to this solution. Thus the question arises: is it
possible to find modifications of NM which provide
global convergence for some equations, that is conver-
gence from an arbitrary initial point? One of such mod-
ifications is the damped Newtonmethod. For instance, if
the NM uses a positively homogeneous approximation
F0(xk, u), such as a Jacobian in the smooth case, or di-
rectional derivative [7,13,15,19], then xk+1 is chosen as
xk + �k yk for some �k 2 (0, 1] such that

kF(xkC1)k Š (1 � �k) kF(xk)k < kF(xk)k : (19)

This can be generalized to nonpositively homogeneous
approximations such as point based approximations
[3,21] by setting up a path pk(�) joining xk = pk(0) to
xk + yk = pk(1), where yk is found by the NM, such that
F(pk(�)) = (1� �) F(xk) + o(�). Then it is easy to deter-
mine �k 2 (0, 1] such that for xk+1 = pk(�k), (19) holds.

There is a close connection between the damped
NM and the so-called list square merit function of the
operator F:

�(x) D
1
2
kF(x)k2 :

For some nonsmooth operators F arising from NCP
and related problems the function � is continuously dif-
ferentiable. This property is very useful in the study of
NM and damped NM [11].

One of modifications of the nonsmooth NM is
the so-called smoothing Newton method, which is also
called splitting NM or homotopy NM. This method
based on an approximation of the operator F in (1) by
a smooth function G. Usually a smoothing damped NM
is studied. This method has the following form

xkC1 D xk � tkrGx (xk; "k)�1F(xk); (20)

where G(x, ") is a smoothing approximation of the
mapping F, that is for any " > 0 the function x 7�! G(x,
") is continuously differentiable and kF(x) � G(x, ") k
! 0 as "! 0.

Various types of smoothing functions are used in op-
timization for a long time (see, for example, [13]). Some

of them can be constructed by means of the so-called
Chen–Harker–Kanzow–Smale function:

�(u; ") D
1
2

�
(u2 C 4"2)

1
2 C u

�
; (u; e) 2 R2;

which serves for an approximation of max(0, u) (see,
for example, [24]). In particular, it is possible to find
smoothing operators for operators defined by (9) by
means of the function �. An interesting approach to the
smoothing methods can be found in [3]. Global con-
vergence of the method (20) can be proved under some
assumptions. If the gradient of the smoothing function
G is fairly close to some approximations of the operator
F then the method convergesQ-superlinearly (quadrat-
ically) [4,24].

There is a close connection between smoothing NM
and interior point methods (see, for example, [21]).

For some special classes of problems it is possible to
obtain stronger results than in the general setting (see,
for example, [6,11,18,26]). On the other hand there are
modifications of the nonsmooth Newton method for
the solution of generalized equations of the form y 2
F(x) with a set-valued mapping F (see, for example,
[2,7,16]).

See also

� Automatic Differentiation: Calculation of Newton
Steps

� Dini and Hadamard Derivatives in Optimization
� Dynamic Programming and Newton’s Method in

Unconstrained Optimal Control
� Global Optimization: Envelope Representation
� Interval Newton Methods
� Nondifferentiable Optimization
� Nondifferentiable Optimization: Cutting Plane

Methods
� Nondifferentiable Optimization: Minimax Problems
� Nondifferentiable Optimization: Parametric

Programming
� Nondifferentiable Optimization: Relaxation

Methods
� Nondifferentiable Optimization: Subgradient

Optimization Methods
� Unconstrained Nonlinear Optimization:

Newton–Cauchy Framework
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Mathematical descriptions of real-life problems are typ-
ically stated in terms of decision variables x and param-
eters � . These objects may be related through a system
of equations and inequalities such as

x 2 F(�) D
�
x 2 Rn : gi (x; �) � 0; i 2 I;

h j(x; �) D 0; j 2 J

	
;

where gi, hj: Rn × Rp ! R, i 2 I, j 2 J, are some func-
tions, and I and J are finite index sets. Problems of the
form
8<
:
min
(x)

f (x; �)

s.t. x 2 F(�);

where � is allowed to vary over some set F in Rp, are
termed parametric programming models (PPM). Para-
metric programming (PP) is the study of parametric
programming models. A local analysis of these mod-
els, around a fixed � , is referred to as sensitivity analysis
(SA). In particular, SA is concerned with changes of the
minimal value subject to small perturbations of the pa-
rameter. Parametric programming is a huge area con-
taining, or closely related to, many topics, such as path
following methods (cf.� Parametric optimization: Em-
beddings, path following and singularities), sensitivity
in semi-infinite programming, constraint qualifications
(cf. also � First order constraint qualifications; � Sec-
ond order constraint qualifications), bilevel program-
ming (cf.� Bilevel programming: Introduction, history
and overview), etc. We will refer to some of these topics
hereby only in passing. Since every equality constraint
can be replaced by two inequalities, one can assume that
J = ;. Then the model is said to be linear (resp. convex)
if the functions f (�, �), gi (�, �): Rn! R, i 2 I, are linear
(resp. convex) for every � 2 Rp.

Historical Outline

Parametric programming has its roots in the study of
linear programs:

LP

(
min c>x
s.t. Ax � b; x � 0;

where one or more coefficients of the vectors b and c,
or the matrix A, are considered as parameters and al-
lowed to vary. The study can be traced to the 1950s lit-
erature. According to [16], the right-hand side changes
in a linear program were investigated by W. Orchard-
Hays in his unpublished Master’s thesis (1952). The
term ‘parametric’ LP was used in [41]. The classical
problems of SA and PPM dealt mainly with pivoting
and the simplex method. A different approach that uses
polyhedral structures rather than the simplex method
was developed in [46,47,48,49]. A classical parametric
problem in LP is to determine the range of perturba-
tions for specific parameters in b and c, that preserve
optimal bases. A related problem is to determine the
range for which an optimal solution exists. This range
is called the ‘critical set’. Various approaches to solving
these problems have been successfully implemented in
commercial software packages and adjusted to partic-
ular situations, e. g., data envelopment analysis [45]. It
is well known that difficulties may arise when the prob-
lem under consideration is degenerate (i. e., when op-
timal basis is not unique). In that case the commer-
cial packages may provide essentially different results,
that is to say, the information could be ‘confusing and
hardly allows a solid interpretation’; see, e. g., [5], where
the claim is demonstrated on a transportation prob-
lem. The study of changes of the parameters in [5] is
a departure from the classical approach. Instead of em-
ploying local analysis and pivoting, the authors make
use of the strict complementarity condition and opti-
mal partitioning in order to construct and study the be-
havior of the optimal value function for the right-hand
side and objective-function perturbations. They do it
for both LP and convex quadratic programming and
obtain sharp intervals. Other approaches used to study
the effect of perturbations of parameters in LP, includ-
ing the ‘tolerance approach’ (where variations may oc-
cur simultaneously and independently), are described
in [63,64]. The classical texts on sensitivity analysis and
parametric linear programming include [9,15,37,48,49].
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([15] lists 1031 references.) Almost 1000 items only on
degeneracy in LP are listed in [17].

A major obstacle to using linear algebra and calcu-
lus methods in the study of linear models is that these
methods are not suited to explain continuity properties
of themodel. Indeed, the model does not generally react
‘continuously’ to continuous changes of the parameters
in the coefficient matrix. Let us illustrate such a situa-
tion.

Example 1 Consider the model
8̂
<̂
ˆ̂:

min x
s.t. �x D 0;

�1 � x � 1:

When � = 0, then the feasible set F(�) is the segment
� 1 � x � 1, the optimal solution is x = � 1, and the
optimal value is � 1. For any perturbation � 6D 0, all
three objects jump to zero.

An example of a linear model where the critical set is
disjoint and not closed is given in [9, pp. 114–116]. An-
other one with a matrix of full row rank where both the
feasible set and the set of optimal solutions experience
jumps under continuous perturbations of the parame-
ter in the interior of the critical set is given in [42]. We
extend this example to an LP in canonical form with
a full row rank matrix below.

Example 2 Consider the model
8̂
ˆ̂̂<
ˆ̂̂̂
:

min �x2;
s.t. x1 C x2 C x3 D 1;

x1 C �x2 � x4 D 1;
xi � 0; i D 1; : : : ; 4:

A unique optimal solution at � = 1 is x = (xi) = (0, 1, 0,
0) and the optimal value is �1. However, for any per-
turbation � = 1 � �, � > 0, the solution jumps to an-
other unique optimal solution (1, 0, 0, 0), and the opti-
mal value becomes zero.

In order to study reactions of a model to continu-
ous perturbations of data, the feasible set and the op-
timal solutions set can be viewed as images of point-
to-set mappings with a domain in the space of param-
eters. Hence the study of continuity of these and re-
lated objects, such as Lagrange multiplier sets, requires

basic tools of point-to-set topology. These tools have
been used in mathematical programming sporadically
and in different contexts, e. g., in an analysis of con-
vergence of numerical algorithms in [50,65]. After pa-
pers such as [26], the point-to-set approach to the study
of parametric programming has become standard. The
first text on the theory of nonlinear parametric opti-
mization is [4], written by several authors from the
‘Berlin school of parametric optimization’ initiated by
F. Nožička. (Twenty nine students obtained doctorates
under his supervision.) This text contains 30 pages of
bibliography on PP. A classical text on methodology
used in perturbation analyses in nonlinear program-
ming is [13], and one on path following methods in
PP is [25]. A unified approach to general perturbations
with applications to system analysis and numerical op-
timization is given in [34]. Since the late 1970s there
has been an outburst of research activities in PP. For
instance, to date (1998) there have been 20 annual sym-
posia on mathematical programming with data pertur-
bations held at the George Washington Univ., and the
International Conference on Parametric Optimization
and Related Topics is being held bi-annually since 1985.
There have been at least 15 books written on parametric
programming.

The study of parametric programming can be
roughly divided into three general areas: stability, op-
timality and numerical methods, and applications.

Stability

In this area one mainly studies continuity properties
of the feasible set F(�), the set of all optimal solutions
F°(�) = {x°(�)}, the set of all Lagrange multipliers U =
U(�), and the optimal value f °(�) = f (x°(�), �), as the
parameter � varies. Here f ° is a function, while F: � !
F(�), F°: � ! F°(�), and U ! U(�) are point-to-set
mappings. If the constraints in a parametric program-
ming model are continuous functions, then F is a closed
mapping. In order to guarantee continuity of the map-
ping F one requires an extra condition, e. g., that F be
lower-semicontinuous (or, equivalently, open). If the
PPM is convex and F°(��) 6D ; and bounded, at some
��, then continuity of F locally implies both the exis-
tence of optimal solutions and continuity of the optimal
value function, and the mapping F° is closed. However,
continuity of F does not imply continuity of U.
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Conditions for the existence of a differentiable path
of solutions x°(�) in a general model, as the parameter
� varies, are given in [14]. They are extended to a con-
tinuously differentiable path of saddle points in [13];
see also [19,20]. The results are established by applying
an appropriate implicit function theorem to a necessary
condition for optimality. The reference [14] also con-
tains an explicit formula for the partial derivatives, as
well as approximations based on classical penalty func-
tions. For a state-of-the-art about Lipschitz stability for
linear and quadratic (also nonconvex) programs up to
1987, see [30]. For a recent (1998) guided tour of sensi-
tivity analysis that yields lower and upper estimates for
the optimal value function see [6].

If the feasible set mapping F is continuous and
the set of optimal solutions is nonempty and bounded,
then such models are often termed stable. In convex
parametric programming continuity of F is implied by
Slater’s condition. In the fundamental paper [51], sta-
bility for linear systems in the canonical form, subject
to perturbations of all data, is characterized by the ex-
istence of a positive feasible solution x > 0. The result
is stated for linear inequalities in partially ordered Ba-
nach spaces. It is extended in [52] to nonlinear inequal-
ities over a closed convex set. When perturbations of
specific coefficients are considered, then the existence
of a positive solution is not a necessary, but it is rather
a sufficient condition for stability. Also, in this case,
chunks (regions) of the parameter space attached to
a fixed parameter ��, where F is lower semicontinu-
ous, are termed regions of stability at �� see [73,74]. (In
the model from Example 2, a region of stability at �� =
1 is � � 1.) Such regions can often be calculated glob-
ally; one of these is the set of all paths emanating from
�� on which the constraints satisfy Slater’s condition.
For a list of regions of stability and a necessary condi-
tion for stability in convex PP see [69]. These regions
are of independent interest in, e. g., the study of ran-
dom decision systems with complete connections [66]
and linear programming [7]. The radius of the largest
ball centered at ��, with the property that the model
is stable at its every interior point � , is the radius of
stability at ��, e. g., [69]. It is a measure of how much
the system can be uniformly strained from �� before it
starts breaking down. In a linear parametric program-
ming model in canonical form with a full row rank co-
efficient matrix, stability is implied by the existence of

a nondegenerate basic feasible solution. On the other
hand, instability (i. e., loss of continuity of the feasible
set mapping) typically occurs in situations of ‘enforced
optima’ such as lexicographic and multilevel program-
ming, including von Stackelberg games of market econ-
omy. For example, in bilevel programming, instabil-
ity occurs when the optimal solutions set of the fol-
lower (lower level decision maker) loses its lower semi-
continuity. The leader’s (upper level decision maker’s)
model is then unstable, because its feasible set is the set
of optimal solutions of the follower. In this situation
the leader’s optimal value function typically experiences
a discontinuity even if the follower’s model is globally
stable; see [43, Chapt. 13; 16]. The notion of stability
is not uniquely defined, see, e. g. [4,13,21,31,34]. Struc-
tural stability and continuous deformations of nonlin-
ear programs have been studied in, e. g., [22,28,29,33].
In particular, the ‘topological stability’ of the feasible set
(i. e., homeomorphy with respect to all sufficiently small
perturbations up to second order of the involved func-
tions) is proved to be equivalent to the Mangasarian–
Fromovitz constraint qualification being satisfied at the
feasible points; see [24]. Characterizations of stability
(local existence and uniqueness) of stationary points
and Karush–Kuhn–Tucker points with respect to all
sufficiently small perturbations up to second order are
given, respectively, in [32,53]. For a study of stability
with nondifferentiable data see [3,44], also [57]. Some
difficulties with an abstract formulation of parametric
programming are mentioned in [43, Chapt. 14]; see also
[2,58,75]. Stability in optimal control is studied in, e. g.,
[38,39].

Optimality and Numerical Methods

A parameter � is said to be locally (resp. globally) op-
timal if it locally (resp. globally) optimizes the optimal
value function f °(�) over its feasible set F = {� : F(�) 6D
;}. Calculation and characterization of optimal param-
eters are basic problems of parametric programming.
For convex PPM one can formulate necessary and suf-
ficient conditions for local (and global) optimality of
the parameter, e. g., [68,69,70,71]. These conditions are
expressed in terms of saddle-point inequalities and lo-
cal results typically require conditions such as unique-
ness of the optimal solution in the x component and
lower semicontinuity of the feasible set mapping. They
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are simplified under input constraint qualifications [55].
The optimal value function is not generally known an-
alytically, it is generally nondifferentiable, nonconvex
(nonconcave), and discontinuous even for linear mod-
els. However, for the right-hand side and objective-
function perturbations in linear models it can be con-
structed, e. g., [5].

Calculation of optimal parameters is often achieved
by using the so-called ‘marginal value formula’. This
formula gives the derivative of the optimal value func-
tion on a prescribed path in terms of the derivatives of
the Lagrangian function relative to x and � . At each
iteration the calculation consists of two parts: first, an
improvable feasible path is determined and then a step-
size problem is solved on the path by a search method.
Optimization of the optimal value function by stable
perturbations of the parameters (also called input op-
timization) in convex PP is a challenging problem and
no satisfactory theory or numerical methods presently
seem to exist, e. g., [71]. In contrast, the theory of
path following methods, based on nonlinear program-
ming optimality conditions and used when data depend
on one scalar parameter, is well developed, although
‘not successful in every case’ see, e. g., [23,25]. In or-
der to improve the path following approach these au-
thors propose jumps between connected components
in the sets of local minimizers and generalized critical
points.

Applications

Classical sensitivity analysis, when applied to the right-
hand side perturbations in linear programming, pro-
vides interpretation of Lagrange multipliers as shadow
prices. The results have been extended to convex pro-
gramming using the marginal value formula, e. g., in
[12]. Genuine applications of parametric programming
extend far beyond classical sensitivity analysis. Some of
them are related to the fundamental notion of a well-
posed problem in the sense of Hadamard. These are
problems in applied mathematics which have a unique
solution and the solution changes continuously when
the parameters (e. g., boundary conditions in differ-
ential equations) change continuously. Problems that
are not well-posed are called ill-posed. According to
Fritz John (see [62, p. ix]) ‘the majority of applied
problems are, and always have been, ill-posed, partic-

ularly when they require numerical answers’. There is
a more general notion of well-posedness (for problems
with nonunique solutions); see [10]. Many problems of
mathematical physics can be formulated as optimiza-
tion problems and continuous dependance of the so-
lution on the boundary conditions can be studied us-
ing PP. In the context of mathematical programming,
some of the first applications of PP included the study
of convergence of numerical algorithms. The rate of
convergence can be determined using continuity prop-
erties of point-to-set mappings; see, e. g., [14,50,54,65].
Some of the ambiguities that occur while solving or-
dinary LP can be understood and resolved by PP. For
example, in some models describing real-life problems,
such as the one reported in [62, pp. 212–213], signifi-
cant jumps of optimal solutions occur when some data
are perturbed, while the respective values of the objec-
tive function are comparatively close. This is a typical
behavior of stable linear programming models when
the optimal solutions mapping is not continuous. The
authors of [62] suggest a method for stabilization of op-
timal solutions of such programs by ‘Tikhonov regular-
ization’.

The results on optimal parameters in parametric
programming have many applications including ma-
chine scheduling [61,67], restructuring of the work
force in a textile mill [71,72], ranking of efficiently ad-
ministered university libraries by their robustness of
data [40,72], the study of systems of differential equa-
tions under matrix perturbations in robust analysis and
control [27], as well as approximation theory, especially
in the problems of best fitting to data. These problems
are formulated as follows: given a set of points, one
wishes to determine a function (from a prescribed class
of functions, e. g., linear) that best approximates these
points. After forcing the points to satisfy the function,
the problem generally reduces to an inconsistent sys-
tem of equations for which one determines a best ap-
proximate solution. The solution is given in terms of
decision variables (such as the slope of the line and its
intersection with the y-axis, in the linear cases of two-
dimensional data in the (x, y)-plane). If the Euclidean
norm is used then the solutions are called the least
squares solutions. However, the problem can also in-
corporate estimates of errors made in measuring data.
The errors may fall within some known lower and up-
per bounds. One can consider the data vector as a pa-
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rameter in which case the best approximation prob-
lem assumes a more general form. It consists of finding
perturbations of data, within specified boundaries, for
which one achieves the best fit. The problem is called
the generalized least squares problem in the context of
the Euclidean space. If the analytic form of the func-
tion that approximates data is known, and if it contains
some ‘parameters’ to be determined, then the best ap-
proximation problem is called the parameter identifica-
tion problem.

Example 3 One may wish to determine the constant
of gravity g, the initial position s0, and the initial veloc-
ity v0 of a falling object. It is known that the object is
governed by Newton’s second law of motion s = s0 +
v0t + gt2/2. Measuring s = s(t) at various times t, one
obtains a generally inconsistent system of linear equa-
tions in the ‘parameters’ s0, v0, and g. After minimizing
a norm of the residual vector one identifies the parame-
ters. However, onemay also take into consideration rel-
ative errors that have been made in reading t and s(t).
The generalized parameter identification problem is to
determine the best fit within the allowable errors. This
approach typically gives more accurate results. In the
context of parametric programming models, the opti-
mal errors are optimal values of the parameter, while
the ‘parameters’ to be identified, like s0, v0, and g, are
actually decision variables.

Parameter identification problems are used in many ar-
eas. For example, in the biological sciences they are used
in attempts to find kinetic constants which can quan-
titatively describe certain biochemical processes. Typi-
cally, experiments are performed with tracers (labeled
with radioactive or stable isotopes), then experimen-
tal tissue radioactivity curves are fitted to a biological
model to find kinetic parameters. On the basis of these
kinetic parameters one can calculate regional glucose
utilization in the brain [60], serotonin synthesis [8],
aromatic amino acid activity [18] and receptor densi-
ties [36].

Optimal parameters are also important for post-
optimality analyses of linear programs. Using PP one
can answer basic questions like: Given an optimal solu-
tion of an LP, for what perturbations of data does the
solution remain optimal? The following example ex-
poses the problem.

Example 4 Consider the linear program in one variable
with zero-value objective function:
(
min 0 � x
s.t. �1 � x � 1:

A (global)minimizer is x� =�1. Now suppose that this
program belongs to the class of perturbed programs
(
min �2 � x;
s.t. �1 � x � 1;

when � is fixed at �� = 0. Then, for perturbations � 6D
0, the point (x�, ��) is actually a localmaximizer! In sit-
uations like these some optimal solutions of linear pro-
grams may be ‘better’ than others. Here, say, x = 1 is
‘better’ than x� = �1, because its local optimality is not
affected by perturbations of (x, �).

The optimality-preserving problems, at the global op-
timality level, are solved for linear models using the
saddle-point optimality conditions along �-paths and
after setting the terms corresponding to the compo-
nents of the x variable equal to zero. Two closely related
problems are:
i) given an infeasible point x (e. g., a prescribed profile

of production that one wishes to achieve), find per-
turbations of data � that make the point feasible; and

ii) given a feasible but nonoptimal point, find pertur-
bations that make the point optimal.
Many results from convex parametric program-

ming can be adjusted to work for partly convex pro-
grams (PC) and more general mathematical programs,
e. g., [1,23,70]. Partly convex programs are programs
which, after ‘freezing’ some of the coordinates in x, be-
come convex programs in the remaining variables. The
program from Example 4, with the objective function
x22 � x1 and the constraint �1� x1 � 1, is a PC program.
(Identify x2 = � .) Since every mathematical program
with twice continuously differentiable functions can be
formulated as a partly convex program, see [35], one can
in principle study (and solve) many mathematical pro-
grams by studying PC programs and convex parametric
programming models.

Numerous applications of parametric programming
are mentioned in the classical texts [4,14,15,34]. Para-
metric programming has found many applications in
discrete optimization, transportation problems (e. g.,
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[59]), economics and finance (e. g., [11,56]), approx-
imation, as well as in multi-objective, multilevel,
stochastic and global optimization (e. g., � Parametric
global optimization: Sensitivity). Some of the recent re-
search in parametric programming has been focused on
connections between polynomial complexity and per-
turbation theory, stability results for nonunique solu-
tions, control, semi-infinite programs (e. g., [28]), and
nonsmooth problems.
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Relaxation methods for convex nondifferentiable op-
timization have their origin in relaxation methods for
finding a solution to a system of linear inequalities, see
[1] and [6]. In mathematical terms, one wants to find
a vector x 2 Rn such that a>i x � bi � 0 for i = 1, . . . , m.
In the simplest form, such a relaxation method iterates
an initial guess x0 2 Rn with the iteration scheme

xkC1 D xk � � k a
>
ik xk � bik

aik



2
2

aik ; (1)

where ik 2 Argmaxi = 1, . . . , m a>i xk � bi, and � k 2 [ı,
2� ı] and ı 2 (0, 1). The iterations stop once a feasible
solution is found. With � k = 1 the iteration formula (1)
corresponds to a projection of xk onto the most violated
hyperplane at xk.

The problem of finding a solution to an inequality
system can be cast into a convex nondifferentiable op-
timization problem with known optimal value, namely
the following

min
x

f (x) D min
x

max
�

max
iD1;:::;m

a>i x � bi ; 0
	
;

which has optimal solution value equal to zero if the
system is consistent.

The iteration scheme (1) can be generalized to con-
vex nondifferentiable minimization with known opti-
mal value in the following manner. Suppose that we
want to find x 2 Rn such that f (x) � f lev, where f lev �
f � = inf f (x) is known. Let mf denote the set of affine
functions minorizing f ,

m f D

�
(a; b) 2 Rn �R : a>y � b � f (y)

for all y 2 Rn

	
:
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Assume as is customary in nondifferentiable optimiza-
tion that we at x 2 Rn can evaluate f (x) and one arbi-
trarily chosen subgradient

g 2 @ f (x)

D

�
g 2 Rn : f (y) � f (x)C g>(y � x)

for all y 2 Rn

	
:

Then, (g, g|x � f (x)) 2mf and by definition of mf ,

f (x) � sup
(a;b)2m f

fa>x � bg

� g>x � (g>x � f (x)) D f (x) :

Hence f (x) D sup(a;b)2m f
fa>x � bg.

Thus, finding an x such that f (x) � f lev can be seen
as solving an infinite system of inequalities, a|x� b �
f lev � 0 for all (a, b) 2 mf . The analog of (1) then be-
comes

xkC1 D xk � � k f (xk) � flev
kgkk22

gk ; (2)

where gk 2 @f (xk). It can be shown that if X� = {x: f (x)
� f lev 6D ; then xk! xlev 2 X�.

This steplength rule has often in the literature been
called the Polyak II rule perhaps since it appears as the
second numbered equation in B.T. Polyak’s classical pa-
per [8], where its convergence properties are studied. It
is shown there that, under certain mild conditions on
f , the convergence rate is linear to an optimal solution,
should it exist.

The step (2) corresponds to a projection onto a hy-
perplane. With � k = 1, xk+1 solves the quadratic pro-
gramming problem

(
min kx � xkk22 ;
s.t. flev � f (xk)C gTk (x � xk) :

(3)

One may in this framework add previously generated
subgradients in order to obtain faster convergence, i. e.
let xk+1 solve

8̂
<̂
ˆ̂:

min kx � xkk22 ;
s.t flev � f (x j)C gTj (x � x j);

j 2 Jk ;

(4)

where Jk is a subset of {1, . . . , k} including k.

Constraints on the Variables

The classical way to handle constraints on the variables,
i. e. when x has to be in some closed and convex set X as
well as in the set {x: f (x) � f lev, is to let

xkC1 D PX

 
xk � � k f (xk) � flev

kgkk22
gk

!
; (5)

where PX(y) = argminx 2 Xky�xk22 denotes the projec-
tion of y onto the feasible set X.

However, it is often better to let xk+1 be the projec-
tion of xk onto the set X \ {x: � k(f lev� f (xk)) � gTk (x�
xk)}, i. e. for � k = 1 to add x 2 X to the constraint set of
(3). If X consists of simple bounds or the unit-simplex
then it can be shown that this latter way results in a new
iteration point which is closer to the desired set {x 2 X:
f (x) � f lev than does (5) (see [2]). In these two cases
the computational burden of solving this one projec-
tion problem does not need to be larger, than solving
the two very simple projections involved in (5).

Finding aMinimum Point

Suppose one wants to find a minimum point x� of
a convex function f . Then if the optimal value f � is
known a priori then the algorithms mentioned above
can be successfully used with f lev = f �. But, prior knowl-
edge of f � is not usually the case. However, when solv-
ing the dual problem in applications of Lagrangian re-
laxation to obtain upper bounds on a primal maximiza-
tion problem, it is often the case that a (good) lower
bound, f low, on f � is known from a primal feasible so-
lution. In these applications, iterations schemes as the
ones above can be applied heuristically and often suc-
cessfully by replacing f lev in (2) by f low.

To be specific, one such heuristic goes as follows.
Suppose that at iteration k a lower bound f klow on f � is
known, which is used in place of f lev in (2). Initially, �0
= 2 and at iteration k, � k is reduced by a constant factor
˛ 2 (0, 1), if there has been no decrease in terms of the
function values for the last Kmax iterations (which could
indicate that too large steps are taken). Here ˛ andKmax

are parameters which need to be chosen appropriately
for the application in question. Typical values are ˛ =
0.5 and Kmax = 5.
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0 (Initialization)
Select a point x1 2 Rn and ı1 > 0 and �max >

0.
Set �1 = 0 and f 0rec = 1. Set k = 1; l = 1 and
k(1) = 1.

1 (Function call)
Calculate f (xk) and gk 2 @ f (xk).
IF k gk k= 0
THEN terminate (xk 2 Argmin f ). Set f krec =
minf f (xk); f k�1rec g and update xk

rec correspond-
ingly.

2 (Sufficient Descendent?)
If f (xk) � f k(l )rec � ıl /2, set k(l +1) = k; �k = 0;
ıl+1 = ıl ; l = l + 1 and skip next step.

3 (Oscillation?)
If �k > �max, set k(l + 1) = k; �k = 0;
ıl+1 = ıl /2, replace xk by xk

rec and gk corre-
spondingly.

4 (New point)
Set f klev = f k(l )rec � ıl ,

xk+1 = xk �
f (xk) � f klev
k gk k22

gk :

5 (Path update)
Set �k = �k+ k xk+1 � xk k. Set k = k + 1 and
return to Step 1.

A simple convergent method, [2] and [4], based
on (2) for minimizing f with no assumption on prior
knowledge of the optimal value is motivated as follows.
It is a fact that if the set {x 2 R: f (x) � f lev} is empty
then the iteration scheme (2) generates a path whose
length

P
1
kD1 kxk+1� xkk is unbounded, and if the set is

nonempty then the path length is bounded. If the for-
mer seems to be occurring then f lev should be increased
and if the algorithm seems to be converging to f lev then
a lower f lev could be used. The mechanics of the algo-
rithm should be clear from the following description.
Let f krec = minl = 1, . . . , k f (xl) denote the best function
value found up to iteration k and let xkrec be the point
at which this occurs. Let f klev denote the ‘level’ which we
are aiming for. The number k(l) denotes the iteration
of the lth change of f klev. The number �k is the length of
the path since the last update of f lev.

Note that the level f klev remains fixed in between the
iterations k(l) and k(l+1) � 1. For this algorithm it is
possible to derive so called efficiency estimates. In par-

ticular, it can be shown that for ‘small’ � > 0 the algo-
rithm produces f krec � f � < � for k � K/�3, where K is
a positive constant.

Of course, one may in Step 4 use (4) instead of (2)
to obtain a new iteration point. However, when using
(4) in Step 4, more sophisticated schemes to adjust the
aiming level f klev are possible. A scheme suggested in [3]
uses ideas from so called proximal point bundle meth-
ods, in which sufficient descent in terms of function val-
ues is enforced by means of so called null steps. An-
other method by C. Lemaréchal, A.S. Nemirovsky and
Yu.E. Nesterov, [5], for the case when x is constrained
to a compact set X, uses f klev = ˛ f

k
rec + (1� ˛) f klow, where

f klow is the best lower bound possible, that is

f klow D min
x2X

max
jD1;:::;k

f (x j)C gTj (x � x j):

This algorithm has a complexity estimate given by f krec
� f � < � for k � K/�2, where K is a positive constant.
Such a complexity estimate is optimal in the sense that
it can not be improved uniformly with respect to the di-
mension by more than an absolute constant factor (for
details, see [7]).
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Subgradient methods for minimization of a convex func-
tion f : Rn! R over a closed convex set X have proven
to be an efficient mean to solve large scale optimization
problems. In particular, this is the case when X is a sim-
ple set, such asRn or the positive orthant and when high
accuracy of the solution is not required, e. g. in the con-
text of Lagrangian relaxation of integer programming
problems (cf. � Integer programming: Lagrangian re-
laxation).

A subgradient at a point x 2 Rn of a convex function
f is a vector g 2 Rn satisfying f (y)� f (x) + g|(y� x) for
all y 2 Rn. The set of subgradients at a point x is known
as the subdifferential @f (x). At points where the func-
tion is differentiable, the gradient is the sole member of
the subdifferential.

Gradient based iterative methods, e. g. the steepest
descent method designed for minimization of a smooth
functions fail when one attempts to use their analogs,

i. e. replacing gradients by subgradients, for minimiza-
tion of convex nonsmooth functions. This is because
the negative subgradient may not be a descent direc-
tion and even if it were at all points generated along
the path, the sequence of iterates would not necessar-
ily minimize f .

The basic subgradient algorithm takes the following
form:

0 (Initialize)
Choose a point x0 2 Rn and set k = 0.

1 (Function call)
Calculate gk 2 @ f (xk).
IF k gk k = 0 THEN terminate since xk 2
Argmin f .

2 (New point)
Set

xk+1/2 = xk � tk gk
kgkk

;

and
xk+1 = argmin

y2X
k y � xk+1/2 k;

replace k by k + 1. Return to Step 1.

It can be shown, see [4], that if

tk # 0 and
1X
kD0

tk D 1; (1)

then lim inf f (xk) = infx 2 X f (x) = f � and furthermore,
if also

1X
kD0

t2k <1;

then xk converges to a minimum point, if there is one
(see [2]).

As can be expected, the rate of convergence for the
above algorithm with the divergent series rule (1) is very
slow. In fact, it can be shown that the algorithm can
not have so-called geometric convergence rate. An al-
gorithm is said to have geometric convergence rate, or r-
linear convergence rate, if for any convex function and
any starting point there existM and q 2 (0, 1) such that
kxk � x�k � Mqk, where x� is an optimal point. J.-L.
Goffin has [3] shown that it is possible to obtain geo-
metric convergence rate with the geometric series rule

tk D M�k kgkk ;
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if M and � 2 (0, 1) are chosen large enough. In prac-
tice, though, for a particular f and starting point x0 it is
impossible to know what sufficiently large is.

Another often used steplength rule is the so-called
relaxation rule, or Polyak II rule, where tk is chosen ac-
cording to

tk D �k
f (xk) � f klev
kgkk

;

where f klev is an estimate of the minimum value value f �

and � k 2 [ı, 2 � ı], and ı 2 (0, 1). See also � Nondif-
ferentiable optimization: Relaxation methods.

Pure subgradient methods have a tendency to zig-
zag, i. e. a step in the direction �gk tends to be followed
by a step which is almost parallel with gk. Several so-
lutions to overcome this behavior have been proposed.
One such solution is the concept of space dilation of
N.Z. Shor (see [5]). This approach is related to quasi-
Newton methods for differentiable optimization. An-
other solution to the zig-zagging problem is the method
proposed in [1], in which a step is taken in a direction
which is a sum of the previous direction and the current
subgradient. This approach is analogous to conjugate
gradient methods for differentiable optimization.

See also
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� Nondifferentiable Optimization: Cutting Plane
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� Nondifferentiable Optimization: Relaxation

Methods
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Nonlinear least squares problems can be phrased in
terms of minimizing a real valued function that is a sum
of some nonlinear functions of several variables. Effi-
cient solution for unconstrained nonlinear least squares
is important. Though some problems that arise in prac-
tical areas usually have constraints placed upon the
variables and special techniques are required to handle
these constraints, eventually the numerical techniques
used rely upon the efficient solution of unconstrained
nonlinear least squares problems.

The unconstrained nonlinear least squares problems
have the form

min f (x) D
1
2

mX
iD1

[ri(x)]2 D
1
2
r(x)>r(x);

where r(x) = (r1(x), . . . , rm(x))| and ri(x), i = 1, . . . , m
are nonlinear functions of x 2 Rn. When r(x), hence
f (x) is twice continuously differentiable, the gradient
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and the Hessian matrix of f (x) are given by

g(x) Dr f (x) D A(x)r(x);
G(x) Dr2 f (x)

DA(x)A(x)> C
mX
iD1

ri(x)r2ri(x)

where A(x) = [rr1(x) � � � rrm(x)]. The special struc-
tures of these derivatives had been exploited in de-
veloping effective solution methods for nonlinear least
squares.

As a general unconstrained minimization problem,
the Newton method plays a central role in the de-
velopment of numerical methods for nonlinear least
squares solution. Most commonly used nonlinear least
squares methods can be viewed as variations on New-
ton’s method. The Newton method for general opti-
mization is derived based upon the quadratic model

qk(ı) D fk C g>k ı C
1
2
ı>Gkı;

where f k = f (x(k)), gk = g(x(k)), Gk =G(x(k)), ı = x � x(k),
and x(k) is an approximation to a local minimizer x�

of the objective function f (x). qk(ı) is a local approxi-
mation to f (x) at x(k) obtained from the truncated Tay-
lor approximation. If this approximation is appropriate,
then a presumably better approximation x(k+1) = x(k) +
ı(k) can be obtained by requiring that the step ı(k) be
a minimizer of qk(ı). Thus the Newton method takes
an initial approximation x(1) to x� and attempts succes-
sively to improve the approximation through the itera-
tion
� Solve the system Gkı = � gk for ı = ı(k).
� Set x(k+1) = x(k) + ı(k).
If Gk = Mk + Ck withMk = AkA>k , Ck = C(x(k)) =

Pm
iD1

ri(x(k))r2ri(x(k)) is positive definite, the solution ı(k) of
the system is the global minimizer of qk(ı), and if the
starting point x(1) is sufficiently close to x� at which
g(x�) = 0 and G(x�) is positive definite, the Newton
method is well defined and converges at a quadratic
rate.

Unfortunately, the basic Newton method as it
stands is not suitable for a general purpose use since Gk

may not be positive definite when x(k) is remote from x�

and even if Gk is positive definite, the convergence may

not occur since {f k} may not decrease. Though both the
possibilities can be eliminated by incorporating either
trust region technique for the former case or line search
technique for the later case, the main disadvantage of
the Newton method is the demand for evaluation of
second order derivatives of problem functions.

Since r(x) is being minimized in the least squares
sense, it may be the case that ri(x�), i = 1, . . . , m are
zero or very small. Thus when x(k) is close to x�, com-
pared with Mk, the second part Ck in Gk may be neg-
ligible. This suggests that Mk is a good approximation
to Gk and gives the well known full-step Gauss–Newton
method
� Solve the system Mkı = � Akrk for ı = ı(k).
� Set x(k+1) = x(k) + ı(k).
An important feature of the Gauss–Newton method is
that the approximation to the Hessian Gk is directly ob-
tained only from the first order derivatives of the prob-
lem functions. The approximation will be exact when
the functions ri(x), i = 1, . . . , m, are all either linear
or zeros. Since the Gauss–Newton method is obtained
from the Newton method by neglecting the part Ck

of Gk, the convergence property of the method greatly
depends on the size of the omitted part. If C(x�) is
large relative toM(x�) in the sense �m(x�) = kM(x�)�1

C(x�)k > 1 which is regarded as combined relative mea-
sure of the nonlinearity and residual size of the problem
(assuming A(x�) is full rank), then the method does not
converge. If �m(x�) � � < 1 and the initial point x(1)

is close to x� enough, the Gauss–Newton method con-
verges. In case convergence occurs, the rate of conver-
gence also depends upon the size of �m(x�). If C(x�)
= 0, the method is rather satisfactory in the sense that
the method converges quadratically for zero residual
problems, and if C(x�) 6D 0, the convergence rate of
the method is linear and the speed of convergence de-
creases as the relative nonlinearity or the residual size
increases.

Since the matrix Mk is at worst positive semidefi-
nite, the solution, denoted now by s(k), determined in
the Gauss–Newton system is not uphill on f (x). A pos-
sible modification to force the Gauss–Newton method
to converge is to incorporate line search techniques. If
the matrix Ak has full rank, then Mk is positive defi-
nite and the solution s(k) in the Gauss–Newton system is
a descent direction of f (x) at x(k). A line search along the
direction s(k) determines a steplength ˛k such that f (x(k)
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+ ˛ks(k)) < f (x(k)) and a new approximation to x� is then
obtained as x(k+1) = x(k) + ˛ks(k). This modification was
first suggested by H.O. Hartley [7] and is generally re-
ferred as damped Gauss–Newton method. This method
does prevent divergence and usually have a larger do-
main of convergence than the full-step Gauss–Newton
method. In fact convergence follows if the condition
number K(AkA>k ) is uniformly bounded above. Since
Ak will usually be bounded above, this essentially re-
quires that Ak does not loss rank in limit. Unfortunately
this can happen [11] and convergence to a noncritical
point can occur. Also when Ak is rank deficient, the
solution s(k) of the Gauss–Newton system becomes nu-
merically orthogonal to gk at some distance from a local
minimizer x� and no further progress can be made by
line searches.

A further modification to the full-step Gauss–
Newton method is to incorporate the trust region tech-
nique. In this modification, the trust region subproblem

(
min qk(ı) D fk C r>k A

>
k ı C

1
2ı
>Mkı

s.t. kık � 	k

is solved for ı(k) with properly adjusted radius �k and
the new point is obtained as x(k+1) = x(k) + ı(k). The trust
region radius is adjusted in such a way that the model
function qk(ı) is believed to have adequately approxi-
mated the function f (x) in the region k ı k � �k. This
modification with a different form was first suggested
by K. Levenberg [8] and D.W. Marquardt [9]. J.J. Moré
used the modification in the above form [10].

An aspect of the Gauss–Newton method is the effi-
cient solution of the Gauss–Newton system. It must be
emphasized here that the solution of the system can not
be done by first forming the product AkA>k and then
performing a factorization on the product, because this
will worse the conditioning of the system and lead to
substantial loss in precision. A stable and efficient way is
to factorize the augmented matrix [A>k rk] using either
Householder transformation or Given’s transformation.

Regarded as a general optimization problem, an-
other way to obtain approximations to the Hessian
matrix Gk from first order derivative information of
problem functions is to use quasi-Newton updates and
the resulting Newton type methods are called quasi-
Newtonmethods. LetBk denote an approximation to the

Hessian Gk in the quadratic model qk(ı). Any Newton
type method with line searches has the following basic
framework.
� Solve the system Bks = � gk for a descent direction

s(k).
� Determine a steplength ˛k along the direction s(k) by

line searches.
� Set x(k+ 1) = x(k) + ˛ks(k).
In order to ensure global convergence and to have
a rapid local convergence rate, quasi-Newton updates
require the matrix Bk to satisfy the following condi-
tions:
� since Gkık 	 � k, Bk should satisfy the so-called

quasi-Newton equation

BkC1ı
(k) D � (k);

where

ı(k) D x(kC1) � x(k); � (k) D gkC1 � gk :

� Bk is symmetric.
� Bk+1 is effectively obtained from Bk using lower rank

updating

BkC1 D Bk C Ek

so that the calculation of Bk+1 is less expensive.
� Bk is positive definite so that the solution s(k) ob-

tained as the minimizer of qk(ı) is a descent direc-
tion of f (x) at x(k).

There exist numerous updating formulas to achieve
these conditions and the Broyden family with single pa-
rameter

BkC1(�) D Bk �
Bkı

(k)ı(k)
>Bk

ı(k)
>Bkı(k)

C
� (k)� (k)

>

ı(k)
>
� (k)
C �w(k)w(k)>

is the most important, where

w(k) D (ı(k)
>
Bkı

(k))1/2

�

"
� (k)

ı(k)
>
� (k)
�

Bkı
(k)

ı(k)
>Bkı(k)

#
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and � is a parameter [3]. If ı(k)>� (k) > 0 for all k, then
Bk+1(�) preserves positive definiteness for all values

� > � D
1

1 � akbk
(< 0);

where

ak D
� (k)
>Hk�

(k)

ı(k)
>
� (k)

; bk D
ı(k)
>Bkı

(k)

ı(k)
>
� (k)

and Hk = B�1k . The � is the value which causes Bk+1

(�) to be singular. The condition ı(k)>� (k)> 0 is real-
istic and can always be achieved when the steplength ˛k
either is determined from exact line search or satisfies
the Goldstein conditions. The Broyden family includes
the famous BFGS (� = 0) formula

BBFGS
kC1 D Bk C

� (k)� (k)
>

ı(k)
>
� (k)

�
Bkı

(k)ı(k)
>Bk

ı(k)
>Bkı(k)

;

DFP (� = 1) formula

BDFP
kC1 D Bk C

 
1C

ı(k)
>Bkı

(k)

ı(k)
>
� (k)

!

�
� (k)� (k)

>

ı(k)
>
� (k)

�
� (k)ı(k)

>Bk C Bkı
(k)� (k)

>

ı(k)
>
� (k)

and the selfdual rank one formula (� = 1/(1�bk))

BkC1 D Bk C
yk y>k
ı(k)
>yk

; yk D � (k) � Bkı
(k):

Both the DFP and BFGS methods was found to work
well in practice and have been widely used. These two
methods have a number of important properties as fol-
lows:
1) For quadratic functions (with exact line searches)

– terminate in at most n iterations with (Bn + 1 =G);
– preserve the hereditary property

Biı
( j) D � ( j); j D 1; : : : ; i � 1;

– generate conjugate directions, and conjugate gra-
dients (when B1 = I)

2) For general functions
– preserve positive definite Bk;
– global convergence for strictly convex functions

(with exact line searches);
– local superlinear convergence rate.

The BFGS method is even better than the DFP method
and has usually been used with low accuracy line
searches. In fact, global convergence and superlinear
convergence rate of the BFGS method with inexact line
searches have been proved [12]. The Broyden family is
important in that many of the properties of the BFGS
and DFP formulas are common to whole family. L.C.W.
Dixon showed that when applied to any continuously
differentiable function, all Broyden methods generate
the same sequence {x(k)} from the same starting point,
assuming that the multiple local minima in line search
are resolved consistently, degenerate values of � are
avoided and the algorithm is well-defined.

When any above quasi-Newton updating formula is
used in a method, the system Bks = �gk needs solved
to get the direction s(k) and this needs O(n3) arithmetic
operations. In early versions of quasi-Newton methods,
the search direction s(k) is obtained as a product of ama-
trix and a vector from

s(k) D �Hk gk

and the matrix Hk is an inverse approximation to Gk

(Hk 	 G�1k obtained from an inverse quasi-Newton up-
dating formula. This avoids the solution of the system
and only requires O(n2) arithmetic operations. The in-
verse updating formulas can be similarly derived from
the quasi-Newton equation

HkC1�
(k) D ı(k):

or can be derived from above updating formulas using
the Sherman–Morrison formula. For example, the Broy-
den family of inverse updatings is given by

HkC1(�) DHk �
Hk�

(k)� (k)
>Hk

� (k)
>Hk� (k)

C
ı(k)ı(k)

>

ı(k)
>
� (k)
C �v(k)v(k)

>
;
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where

v(k) D
�
� (k)
>
Hk�

(k)
�1/2

�

"
ı(k)

ı(k)
>
� (k)
�

Hk�
(k)

� (k)
>Hk� (k)

#

and � is a parameter related to � by

� D
1 � �

1C �(akbk � 1)
:

The corresponding inverse BFGS, DFP and rank one
updating formulas can be obtained by setting � = 1, �
= 0 and � = 1/(1 � ak). It can be seen that one kind
of updating formulas is obtained from another kind by
simply making interchanges Bk $ Hk and ı(k) $ � (k).
Although, the matrixHk preserves the positive definite-
ness in theory when ı(k)> � (k) > 0, the loss of the posi-
tive definiteness may occur in practical calculations due
to round-off errors and it can not be easily recognized
whether the matrix Hk is positive definite or not. Now
the widely used versions of quasi-Newton methods is
to represent the matrix Bk in a factorized form LkDkL>k
and to update the factors in O(n2) operations to obtain
the factors Lk+1Dk+1L>kC1 of the matrix Bk+1 where L is
a unit lower triangular matrix and D is a diagonal ma-
trix with positive diagonals [5]. The solution of the sys-
tem Bks = �gk is then obtained in O(n2) operations by
using forward and backward substitutions. The positive
definiteness of the matrix Bk is indicated by the diago-
nal elements of Dk and can be maintained by control-
ling round-off errors. Methods with quasi-Newton up-
dating in LDL| form preserve the convergence prop-
erties of quasi-Newton methods and reduce the arith-
metic operations at each iteration.

When quasi-Newton updating formulas are used
to generate approximations to the Hessian matrices
or their inverses for nonlinear least squares problems,
A1A>1 can be selected as the initial matrix B1 if A1A>1 is
positive definite. One more modification to the quasi-
Newton updatings for nonlinear least squares is the def-
inition of the vector � (k). Let � (k)o denote previous de-
fined vector � (k). From the Taylor expansion of g(x),
a new definition of � (k)

� (k)n D MkC1ı
(k) C (AkC1 � Ak)rkC1

can be used to replace � (k)o in any quasi-Newton up-
dating formula. This idea is essentially suggested by

M.C. Bartholomew-Biggs [2]. However, the condition
ı(k)
>

� (k)n > 0, required for maintaining the positive def-
inite approximations, may not be guaranteed by line
searches. This difficulty can be avoided by using a safe-
guarded value

max
n
ı(k)
>
� (k)n ; 0:01ı(k)

>
� (k)o

o

in place of ı(k)>� (k) in updating formulas [1].
For nonlinear least squares problems, both the

quasi-Newton and Gauss–Newton methods generate
approximations to Hessian matrices of objective func-
tions only from their first order derivative information.
The convergence rate is superlinear when any quasi-
Newton, such as BFGS method is used to any differ-
entiable nonlinear least squares problem, but the spe-
cial structure of the problem functions is not taken
into account and many iterations are required to build
up a satisfactory approximation to the Hessian. The
Gauss–Newton method takes the advantage of the spe-
cial form of nonlinear least squares and better approxi-
mations to Hessian matrices are directly obtained from
the Jacobian matrix A(x) of r(x) for zero and small
residual problems. The dampedGauss-Newton method
converges at a quadratic rate for zero residual problems
and at a fast linear rate for small residual problems,
which in limited precision may be preferable to super-
linear convergent methods. However, the method con-
verges slowly for large residual problems, even fails on
singular problems. Hence, the damped Gauss–Newton
method is generally preferred for zero and small resid-
ual problems, but should be avoided for large resid-
ual and singular problems. Attempts have been made
to combine the best features of both kind of methods.
These include adaptive methods [4,13], hybrid methods
[1,6], and factorized quasi-Newton methods [14,15].

In adaptive methods approximations to Hessian
G(x) are obtained by approximating the nonlinear term
Ck in Gk by a symmetric matrix Sk and keeping the
Gauss–Newton matrixMk unchanged, that is, to define

Bk D Mk C Sk

and to develop updating formulas for the matrix Sk.
This idea was first suggested by K.M. Brown and J.E.
Dennis in 1973. In their method Sk =

Pm
iD1ri(x

(k))
S(k)i and S(k)i approximates r2ri(x(k)) obtained from
S(k�1)i using certain quasi-Newton updating formula. In
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methods of C.G. Broyden and Dennis (1973), J.T. Bett
(1976), Bartholomew-Biggs (1977), P.E. Gill and W.
Murray (1978), and Dennis, D.M. Gay and R.E. Welsch
(1981) the formulas for updating Sk are defined by us-
ing certain quasi-Newton-like updating formulas, for
example, Gill and Murray used the BFGS-like formula

SkC1 D Sk C
� (k)� (k)

>

ı(k)
>
� (k)
�

Wkı
(k)ı(k)

>Wk

ı(k)
>Wkı(k)

;

where Wk = Mk+1 + Sk, while Dennis, Gay and Welsch
developed an updating formula for Sk:

SkC1 D Sk �
�(k)� (k)

>
C � (k)�(k)

>

ı(k)
>
� (k)

C
�(k)
>
ı(k)

(ı(k)>� (k))2
� (k)� (k)

>
;

where �(k) = Skı(k) � y(k) and y(k) = (Ak+1� Ak) rk+1.
These methods attempt to get better approximations to
Gk from first order derivative information by using the
special structure of nonlinear least squares. However,
since the positive definiteness of the resulting approxi-
mation Bk =Mk + Sk can not be guaranteed, these meth-
ods must be incorporated with trust region techniques.
This increases the complexity of methods. Theoretical
analysis and practical calculations show that the Den-
nis–Gay–Welsch adaptive method is superlinearly con-
vergent and effective.

At each iteration of a hybrid method, the approxi-
mation Bk is simply chosen either the Gauss–Newton
matrix Mk or a quasi-Newton matrix, for example
BFGS matrix, by defining a test Tk, that is,

BkC1 D

(
BFGS(Bk ; ı

(k); � (k)) if Tk holds;
MkC1 otherwise;

where BFGS(Bk, ı(k), � (k)) denotes the BFGS updat-
ing formula. Thus each step of a hybrid method is ei-
ther a Gauss–Newton step or a BFGS step. In develop-
ing a hybrid method, a test must be derived to distin-
guish between these two steps. A reasonable test should
have the capability to differentiate problems so that the
method ultimately takes the damped Gauss–Newton
method for zero and small residual problems or the
BFGS method for large residual and singular problems.
M. Al-Baali and R. Fletcher [1] proposed a test

Tk : 	(Bk ; ı
(k); � (k)) � 	(MkC1; ı

(k); � (k));

based on the quantity

	(A; ı(k); � (k)) D
�
a2k � 2

1
bk
C 1

�1/2

;

which is regarded as a measure of the approximation
error of the matrix A to Gk+1, where

ak D
� (k)
>A�1� (k)

ı(k)
>
� (k)

; bk D
ı(k)
>Aı(k)

ı(k)
>
� (k)

:

Though the resulting hybrid method is robust and ef-
fective, the test needs extra O(n2) arithmetic operations
at each iteration and the resulting method is only lin-
early convergent [6]. Fletcher and C.X. Xu [6] proposed
a simple test

Tk :
fk � fkC1

fk
� �;

where � 2 (0, 1) is a preset parameter. Numerical ex-
periences show that the method is not sensitive to the
choice of the value �, but the value � = 0.2 is rec-
ommended. The test is simple and theoretical analy-
sis shows that the method ultimately takes the Gauss–
Newton method for zero residual problems and the
BFGS method for nonzero residual problems. There-
fore, the method maintains the convergence properties
of BFGSmethod and combines the best features of both
the Gauss–Newton and BFGSmethods. Practical calcu-
lations show that the later hybrid method is better than
the Fletcher–Al-Baali hybrid method.

Factorized quasi-Newton methods for nonlinear
least squares take the approximations Bk in the form

Bk D (Ak C Lk)(Ak C Lk )>

and develop updating formulas for the matrix Lk such
that LkL>k +AkL>k + LkA>k approximates the second part
Ck of Gk. If the matrix (Ak + Lk) is of full rank, the
search direction s(k) obtained from the system Bks =�gk
is guaranteed to be descent. The updating formulas for
Lk can similarly derived from the quasi-Newton equa-
tion

(AkC1 C LkC1)(AkC1 C LkC1)>ı(k) D � (k):

Using the theory of generalized inverses of matrices, Xu,
X.F. Ma and M.Y. Kong derived a class of updating for-
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mulas for Lk

LkC1 D Lk C (a � d)
Vkı

(k)� (k)
>

ı(k)
>
� (k)

C b
VkW�1k � (k)� (k)

>

ı(k)
>
� (k)

� c
Vkı

(k)ı(k)
>Wk

ı(k)
>Wkı(k)

;

where

Vk D AkC1 C Lk ; Wk D VkV>k

a, b, c and d are parameters satisfying the following
equations:

ı(k)
>Wkı

(k)

ı(k)
>
� (k)

a2 C 2abC
� (k)
>W�1k � (k)

ı(k)
>
� (k)

D 1;

ad

ı(k)
>
� (k)
D

bc

ı(k)
>Wkı(k)

;

c C d D 1:

The resulting approximation Bk+1 = (Ak+1 + Lk+1)(Ak+1

+ Lk+1)| are a class of Broyden-like updating formulas

BkC1 D ˛BBFGS
kC1 C ˇB

DFP
kC1;

where ˛ = c2 + 2cd, ˇ = d2 and ˛ + ˇ = (c+d)2 =
1, BBFGS

kC1 and BDFP
kC1 are in previous forms with Bk be-

ing replaced by Wk. Both these formulas for BFGS-
like and DFP-like are first obtained by H. Yabe and T.
Takahashi [15] from their proposed updating formu-
las for Lk+1 which can be obtained in the above updat-
ing formulas of Lk+1 by setting c = 0, d = 1, b = (ı(k)>

� (k)/� (k)>W�1k �
(k))1/2 for BFGS-like and c = 1, d = 0, a

= (ı(k)>� (k)/ı(k)>Wkı
(k))1/2 for DFP-like, respectively.
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Nonlinear least squares problems are among the most
commonly occurring and important applications of op-
timization techniques. The problem is to find minima
of a real valued function that has the form of a sum of
some nonlinear functions of several independent vari-
ables

min f (x) D
1
2

mX
iD1

[ri(x)]2 D
1
2
r(x)>r(x) ;

where ri(x), i = 1, . . . , m, are m nonlinear functions de-
fined on Rn, r(x) is the vector representation of ri(x), i
= 1, . . . , m, m � n, and the real number 1/2 is generally
placed for convenience.

Approaches for least squares can be traced back to
more than two hundred years ago. It is well-known that
C.F. Gauss proposed the method, called Gauss–Newton
method, in 1809 to estimate motion orbits of planets

from observation data. However, early in the 1750s
some methods had been suggested by P.S. Laplace, L.
Euler, etc. to deal with measuring data in astronom-
ical observations. In 1805, A.M. Legendre proposed
a method to determine the orbit of comets and the
meridian of the earth. He called it least squares method,
but did not demonstrate its optimality in theory. The
advent of computer promoted the development and ap-
plications of numerical analysis including optimization
methods and nonlinear least squares solutions.

Nonlinear least squares problems arise in various
practical areas such as scientific computing, scientific
experiments, engineering designs, survey and observa-
tions, geological prospecting, physical science, mathe-
matics and so on. It is particularly useful in data pro-
cessing and error estimations. Here are a few examples
to illustrate the applications of nonlinear least squares
problems.

Solution of Simultaneous Equations

It is frequently concerned with in scientific computing
to find a solution of a system of nonlinear equations

f1(x1; : : : ; xn) D 0 ;

� � � � � �

fm(x1; : : : ; xn) D 0 ;

where x1, . . . , xn are unknowns. The system is underde-
termined ifm < n, well-determined ifm = n and overde-
termined ifm > n. It is usually not possible to obtain an
exact solution for an overdetermined system and one
possibility is to seek a best least squares solution, that
is, to find x� such that the function

f (x) D
1
2

mX
iD1

[ fi(x)]2

is minimized at x�.

Curve (Data) Fitting

Perhaps the most frequently solved of all nonlinear least
squares problems are data fitting problems. In scien-
tific researches, for example chemical or physical exper-
iments, it is often encountered that the dependence of
some observable quantity y on some independent vari-
able(s) t is predicted, based on theoretical ground, to
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have the form

y D h(x; t)

and m values y1, . . . , ym are measured for points t1, . . . ,
tm where x 2 Rn is an adjustable parameter vector. We
are required to choose an optimal parameter vector x�

such that the function h(x, t) best fits the data in the
least squares sense, that is, define the function f (x) by

f (x) D
1
2

mX
iD1

[h(x; ti) � yi ]2 D
1
2
r(x)>r(x) ;

and x� is found by minimizing the function f (x) where
ri(x) = h(x, ti) � yi, i = 1, . . . ,m are called residuals.

In practice, both the values y1, . . . , ym and t1, . . . ,
tm are usually subject to measured errors. In the above
conventional approach, implicit assumptions are made
that only the values y1, . . . , ym are subject to measured
errors and that the values t1, . . . , tm are either exact or
contain negligible errors. In many applications, how-
ever, this is an oversimplification and the use of the
above nonlinear least squares problemsmay lead to bias
in the estimated parameters and variance values. It is
then necessary to take proper account of errors in all
variable values. The function of the resulting problem
has the form

f (x; �) D
1
2

mX
i

[(h(x; �i) � yi )2 C (�i � ti )2]

D
1
2
[r(x; �)>r(x; �)C e(�)>e(�)] ;

where � = (�1, . . . , �m)| and r(x, �), e(�) are m-vectors
with components ri(x, �) = h(x, � i) � yi and ei(�) = � i
� ti, i = 1, . . . , m, respectively. Taking errors in all vari-
ables into account increases the complexity of the prob-
lem. For example, the simplest linear problem h(x, t) =
x1 + x2t is no longer a linear problem when errors in all
variables are taken into account.

Optimal Designs

Let us consider the optimal design of a coaxial cable cir-
cuit. Let x1, . . . , xn be the design parameters. For a given
circuit, its performance index is a function of x1, . . . , xn
and !

h(x1; : : : ; xn ; !) ;

where ! is the frequency of the circuit. The aim of the
circuit optimal design is to determine the circuit pa-
rameters x1, . . . , xn such that the performance index
of the circuit best approximates a given characteristic
function  (!) in a given interval [˛, ˇ] of the fre-
quency !. This can be expressed as to find x� 2 Rn

which minimizes the function

f (x) D
1
2

mX
iD1

[ri(x)]2

D
1
2

mX
iD1

[h(x1; : : : ; xn ; !i ) �  (!i )]2

where ˛ � !1 < � � � < !m � ˇ. Meanwhile the circuit
parameters are generally subject to some restricted fac-
tors of supplied cables such as geometric shapes, diam-
eters, medium materials and so on. These subjects can
be expressed as constrained conditions in the form

c j(x1; : : : ; xn) � 0; j D 1; : : : ; p :

Therefore, the mathematical model of the optimal de-
sign of a circuit generally has the form
8̂
<
:̂
min f (x) D

1
2

mX
iD1

[ri(x)]2

s.t. c j(x) � 0; j D 1; : : : ; p :

Nonlinear least squares problems can be classified
into unconstrained and constrained ones depending on
whether there exist constraints on variables x 2 Rn. For
example, the resulting problem in the optimal design of
the coaxial cable circuit is a constrained nonlinear least
squares problem while the problem formed in the so-
lution of simultaneous equations is an unconstrained
nonlinear least squares problem. In some situations,
the solution of a unconstrained nonlinear least squares
problem may be unacceptable. To avoid such a situa-
tion, some restrictions on parameter vector x can be
imposed in the form of constraints. For example, some
variables are required to be nonnegative, some may be
bounded by lower and/or upper bound(s), and some
dependent relationships among variables must be sat-
isfied. This also results in constrained nonlinear least
squares problem. When errors in all variables are taken
into account, the resulting problem is generally called
a generalized nonlinear least squares problem. This in-
creases not only the problem complexity, but also the



2628 N Nonlinear Least Squares Problems

problem dimension. An advantage of the generalized
nonlinear least squares problems that can be exploited
is that the problem variables are separable. An opti-
mization problem is called separable if the optimization
with respect to some of the variables is easier than with
respect to the others. Of course, there are other sep-
arable nonlinear least squares problems such as arose
in curve fitting, component analysis and orthogonal re-
gression (see [14]).

When r(x), and hence f (x) is twice continuously dif-
ferentiable, the gradient and the Hessian matrix of f (x)
are given by

r f (x) DA(x)r(x);

r2 f (x) D A(x)A(x)> C
mX
iD1

ri (x)r2ri (x) ;

where A(x) = [rr1(x), . . . , rrm(x)]. Let x� be a mini-
mizer of a NLS problem. The problem is called a zero
residual problem if r(x�) = 0 and hence f (x�) = 0 and
a nonzero residual problem if r(x�) 6D 0. A nonzero
residual problem is called small residual if r(x�) is small
or the second part of r2f (x�) is relatively small com-
pared with the first part ofr2f (x�), otherwise it is called
large residual.

Methods for nonlinear least squares are iterative
type and are based upon trying to find a point x� at
which the so-called Kuhn–Tucker optimality condition
is satisfied. These methods are generally of descent type.
From a given initial point, these methods generate a se-
quence {x(k)} such that either one point of the sequence
or any accumulation point of {x(k)} is a Kuhn–Tucker
point (referred to as a KT point). The typical behavior
of a method is that if the iteration is not terminated
at some point x(k), the values �(x(k)) of a merit func-
tion for the problem are monotonically decreased so
that the iterates x(k) move steadily towards a neighbor-
hood of a KT point x�, and then converges rapidly to
the point x�. The basic structure of the kth iteration of
such a method has the form
� Check if x(k) is a KT point.
� If x(k) is not a KT point, determine a ı(k) such that

�(x(k) C ı(k)) < �(x(k)):

� x(k+1) = x(k) + ı(k).
The information of second order derivatives of

problem functions are required to determine if a KT

point is a local minimizer. Since the evaluation of sec-
ond order derivatives are time consuming and some-
times the second order derivatives of functions are not
available, most nonlinear least squares methods do not
evaluate second order derivatives and just try to locate
a KT point. A KT point may not be a local minimizer.
However, there exist other features of methods such
as the monotonic decreasing property of the sequence
{�(x(k))}, which usually imply that a KT point is a local
minimizer, except in rare cases. A descent method with
this property is called globally convergent, that is, the
method does not require the initial point x(1) close to
x�.

A globally convergent method for optimization usu-
ally defines a merit function � to force convergence
from poor starting points. For unconstrained nonlin-
ear least squares problems, the choice of � is simple.
It is natural to choose the objective function f as �.
For constrained nonlinear least squares problems, the
choice of � is complicated by the fact that x(k) + ı(k)

should move closer to satisfying the constraints than
x(k) and ı(k) yields a reasonable decrease in the objective
function. A number of merit functions are available for
constrained nonlinear least squares problems solution.
These include the `1 penalty function proposed by S.P.
Han [11] and used by R. Fletcher [9], the augmented
Lagrange functions of M.R. Hestenes [12] and Fletcher
[7], the merit function of G. Di Pillo and L. Grippo [6]
and the merit function of P.T. Boggs and J.W. Tolle [2].

Strategies are available to achieve the descent prop-
erty in nonlinear least squares methods. These are: line
search strategy and trust region strategy. Line search
strategy transfers a multivariable minimization prob-
lem into a series of sub-minimization problems with
single variable, and are the most commonly used in
practice. In line search methods, ı(k) is obtained in the
form ı(k) = ˛ks(k) where s(k) is a descent direction of the
merit function �(x) at x(k) and ˛k > 0 is a steplength
along the direction s(k). The descent direction s(k) is gen-
erally obtained as a minimizer of some model problem
which is a local approximation to the original problem
at x(k) and the steplength ˛k is determined by some line
search method so that x(k) + ˛ks(k) gives a sufficient de-
crease in a chosen merit function from x(k). Specifically,
˛k is determined such that �(x(k) + ˛ks(k)) < �(x(k)). For
methods with line search, the convergence and the con-
vergence rate depend upon the reduction on the merit
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function at each iteration, which relies on the choices
of the descent direction s(k) and the steplength ˛k . The-
oretically, exact line searches satisfying ˛k = argmin
�(x(k) + ˛s(k)) usually gives the maximal reduction on
the function �(x(k) + ˛s(k)). But determining ˛k by ex-
act line search is not necessary and inefficient when it-
erate x(k) is remote from x�. Practical line search meth-
ods search for a steplength satisfying certain condi-
tions. These conditions are readily satisfied so that the
steplength can be effectively determined and guarantee
the convergence of a method when the search direction
s(k) is sufficient descent [1]. Among various conditions,
Goldstein’s conditions are widely used in practice. These
conditions require the steplength ˛k to satisfy

�(x(k) C ˛s(k)) � �(x(k))C �˛r�(x(k))>s(k);

�(x(k) C ˛s(k)) � �(x(k))C �˛r�(x(k))>s(k);

where 0 < � < � < 1. Usually, these two conditions de-
fine an interval of acceptable ˛-values. A disadvantage
of the second condition is that the minimum of �(x(k) +
˛s(k)) may be excluded to the left of the interval. A rem-
edy to avoid this case is to use

r�(x(k) C ˛s(k))>s(k) � �r�(x(k))>s(k)

to replace that condition. Numerous line search meth-
ods are available. Strategies used in line search methods
generally consist of bracketing and sectioning. The sim-
plest line search methods are pattern searches such as
golden section search and Fibonnaci section search [1].
These pattern searches use only evaluated function val-
ues. When the first order derivative information are
available, the simplest line search is the backtracking
which seeks the smallest integer i satisfying

�(x(k) C t i˛0s(k)) � �(x(k))C �t i˛0r�(x(k))>s(k)

and set ˛k = tj ˛0 if j is such an integer. Effective line
search methods to determine ˛k satisfying the Gold-
stein conditions are also available [1]. These methods
employ sectioning schemes and interpolations.

Trust region strategy generates ı(k) by solving some
model subproblem with a trust region constraint. The
trust region defined by k ı k � �k is a neighborhood
about the current point x(k) and is adjusted in such
a way that the subproblem model is believed to have
adequately approximated the chosen merit function in

that region. For a given trust region radius �k, the so-
lution ı(k) of minimizing the subproblem model within
the region k ı k � �k is sought. If a satisfactory reduc-
tion on the merit function is obtained at x(k) + ı(k), x(k)

+ ı(k) is accepted as x(k+1). If the computed step ı(k) is
not acceptable, the sub-problem model is not accurate
enough in that region and the radius of the trust region
is reduced to improve the accuracy of the approxima-
tion and the step is recomputed. The trust region radius
may be increased after an acceptable step.Methods with
trust region converge globally. An obstacle preventing
the trust region methods from common use is the effec-
tive solution of trust region subproblems. Repeated so-
lution of system of linear equations with modified co-
efficient matrices are required to obtain a satisfactory
ı(k) and increase the complexity of trust region meth-
ods. Now effective approximate solution methods for
the solution of trust region subproblems exist. These in-
clude positive definite dogleg pathmethod [5,13], indef-
inite dogleg path methods [19], optimal path method in
two-dimensional subspaces [3] and conjugate gradient
method [15].

Subproblem models are generally local approxima-
tions to a chosen merit function at current iterate
point x(k). These approximations are generally linear or
quadratic. A linear approximation is the simplest func-
tion and a quadratic approximation is usually more ac-
curate than linear approximation in certain neighbor-
hood of x(k). The quadratic function is one of the sim-
plest smooth functions and the minimum of a model
problem with quadratic function is well-determined
and is relatively easy to determine.

As an important class of optimization problems,
any method for general minimization can be used to
solve nonlinear least squares problems. However, spe-
cial methods which take the advantage of the spe-
cial structure of the objective function in nonlin-
ear least squares are available. Most special methods
are based on the well-known Gauss–Newton (G-N)
method which requires only the first order derivatives
of problem functions. In the G-N method, the matrix
A(x(k)) A(x(k))| is used to approximate the Hessian ma-
trix r2f (x(k)). Since r(x�) may be small or zero as f (x)
is minimized, this may be a good approximation when
x(k) is close to x�. It is well known that for zero resid-
ual problems, the local convergence rate of the G-N
method is quadratic, but for small residual problems,
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the convergence of the method is at most linear and
even not converge for large residual problems. Accord-
ing to the information used in a method, methods for
nonlinear least squares can be divided into first order
derivative methods, second order derivative methods
and methods without derivatives. Among them the first
order derivative methods are the most commonly used.
These include (damped) G-N method, quasi-Newton
methods, hybrid methods [1,10], adaptive method [4],
factorized quasi-Newton methods [17,18] and meth-
ods with quasi-Newton corrections to Gauss–Newton
matrix. As for second order derivative methods, the
Newton method is the most famous. However, the dis-
advantages of the Newton method such as the eval-
uation of second order derivatives and convergence
only local make the method rarely used in practice. As
for methods without using derivatives, one can make
a choice among the direction set methods [8] and the
hybrid Gauss–Newton–Broyden method [16]. Theo-
retical analysis and numerical results show that these
methods have good convergence properties and are ro-
bust and trust.
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Descent methods for nonlinear least squares problems
generate a sequence {x(k)} such that f (x(k+1)) < f (x(k))
and x(k) converges to a local minimizer of the objective
function f (x). Methods with line searches generate the
sequence using the iteration

x(kC1) D x(k) C ˛k s(k) ;

where s(k) is a descent direction of f (x) at x(k) and ˛k
is a steplength along the direction s(k) determined by
line searches. The search direction s(k) is obtained as the
solution of the system

Bks D �gk ;

where gk is the gradient of f (x) at x(k) and Bk is ei-
ther the Hessian Gk of f (x) at x(k) or its approximation.
The matrix Bk is required to be positive definite, so that
the solution s(k) which is the unique minimizer of the
quadratic model

qk(ı) D fk C g>k ı C
1
2
ı>Bkı

is guaranteed to be a descent direction, where qk(ı) is
a local approximation to f (x) at x(k), f k = f (x(k)) and ı =
x � x(k).

When the matrix Bk is not positive definite that
are often encountered in practical calculation, the
quadratic model does not have a unique minimizer and
methods with line searches may not be defined. Amore
realistic approach is to take x(k+1) = x(k) + ı(k). The ı(k)

minimizes the quadratic model within a neighborhood
N(x(k),�k) of the point x(k) in which the quadratic func-
tion is believed adequately to approximate the function
f (x). The neighborhood N(x(k), �k) is generally called
a trust region and methods having this framework are
called trust region methods. These methods can retain
the rapid rate of convergence of Newton type methods,
but are also generally applicable and globally conver-
gent.

The development of trust region methods can be
traced back to the work of K. Levenberg [8] and D.W.
Marquardt [9] on unconstrained nonlinear least squares

problems

min f (x) D
1
2

mX
iD1

[ri(x)]2 D
1
2
r(x)>r(x) ;

where r(x) = (r1(x), . . . , rm(x))| and ri(x), i = 1, . . . , m,
are nonlinear functions of x 2 Rn. Assuming that ri(x),
i = 1 � � � , m, hence f (x) is twice continuously differen-
tiable, the gradient and the Hessian matrix of f (x) are
defined by

g(x) Dr f (x) D A(x)r(x);

G(x) Dr2 f (x)

DA(x)A(x)> C
mX
iD1

ri(x)r2ri(x) :

The Levenberg–Marquardt method is a modification of
the well-known Gauss–Newton method and is based
upon the idea that when the full Gauss–Newton step
fails, a proper bias towards the steepest descent direc-
tion may generate a satisfactory reduction on the func-
tion f (x). Thus the step ı(k) between iterates of the Lev-
enberg–Marquardt method is a solution of the system

(AkA>k C �k I)ı D �gk

for some properly chosen �k � 0. The application of
the Levenberg–Marquardt method to general uncon-
strained minimization is given by S.M. Goldfeld, R.E.
Quandt and H.F. Trotter [6], in which the matrix AkA>k
in the above system is just replaced by the matrix Bk,
that is,

(Bk C �k I)ı D �gk :

Let ı(k) be the solution of the system. Then ı(k) solves
the trust region subproblem
(
min qk(ı) D fk C g>k ı C

1
2ı
>Bkı

s.t. kık � 	k

with �k = kı(k)k. Also for any given �k, the solution
ı(k) of the trust region subproblem usually satisfies the
system

(Bk C �k I)ı D �gk ;



ı(k)




 D 	k ;

where �k � 0 such that Bk+ �kI is at least positive
semidefinite, except for the case when Bk is positive def-
inite and kB�1k gkk � �k, then the solution is ı(k) = �
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B�1k gk. It can be seen that the solution ı(k) can be ob-
tained by controlling either the value �k or the radius
�k.

Early versions of the Levenberg–Marquardt and
Goldfeld–Quandt–Trotter methods determined ı(k)

from the system by controlling �k and recently used
trust region methods determined ı(k) by controlling the
radius �k. Direct control of �k has a number of disad-
vantages. One is that there does not seem to have a rea-
sonable and automatic initial choice for the value �1,
while a reasonable value for initial �1 can be a small
fraction of the size kx(1)k of the starting point x(1). One
more problem occurs when x(k) + ı(k) leads to an in-
crease in the objective function f (x). In this case, the
function and derivative information evaluated at x(k)

and x(k)+ ı(k) can be used to estimate a required de-
crease in radius �k, but it is not clear how these in-
formation are used to estimate a reasonable increase
for �k.

In implementing recent forms of trust region meth-
ods, there are two main problems. One problem is how
the trust region radius �k shall be chosen. To prevent
undue restriction of the step ı(k), the trust region radius
�k should be as large as possible under the condition
that qk(ı) adequately approximates f (x) in that region.
Let ı(k) be the solution of the trust region subproblem
for given �k, the agreement between qk(ı) and f (x) in
the neighborhood N(x(k), �k) can be measured by the
comparison between the actual reduction in f (x)

ared(ı(k)) D f (x(k)) � f (x(k) C ı(k))

and the reduction predicted by the quadratic model

pred(ı(k)) D f (x(k)) � qk(ı(k))

D � g>k ı
(k) �

1
2
ı(k)
>
Bkı

(k) ;

where Bk is either the Hessian matrix Gk of f (x) or its
approximation, for example AkA>k . If ared(ı

(k)) is sat-
isfactory compared with the pred (ı(k)), which implies
a good reduction in f , the trust region is referred to
as proper. Then x(k) + ı(k) is accepted as a new iterate
point x(k+1) and the trust region radius may either keep
unchanged or be increased in case the reduction in f
is sufficient and the trust region constraint is active. If
the computed step ı(k) is not acceptable, which occurs
when qk(ı) is not accurate enough in N(x(k), �k), then

the radius�k is reduced to improve accuracy of the ap-
proximation and the step is recomputed from the trust
region subproblem with reduced �k. A model trust re-
gion method with direct control of �k can now be de-
scribed as follows:
1) Give parameters 0 < �1< 1< �2, 0 < �1 < �2 < 1 and
�max > 0, initial point x(1) and �1( � �max) and set
k = 1.

2) Calculate f k, gk. If gk = 0 then terminate, else form
Bk.

3) Solve the trust region subproblem for ı(k).
4) Compute �k = ared(ı(k))/pred(ı(k)).
5) If �k < �1, then �k = �1�k and go to step 3).
6) x(k+1) = x(k) + ı(k),

	kC1 D

8̂
<̂
ˆ̂:

	 if �k � �2
and



ı(k)

 D 	k ;

	k otherwise;

set k = k + 1, where	 D minf�2	k; 	maxg

The most important issue to implement a trust re-
gion method is the efficient solution of the trust region
subproblem. There are three possible cases to deter-
mine the solution of the trust region subproblem:
a) Newton step case: Bk is positive definite and kB�1k gkk
��k. The solution is ı(k) = � B�1k gk.

b) General case: Bk is positive definite and kB�1k gkk >
�k or Bk is indefinite and k(Bk� �

(k)
1 I)+ gkk � �k

where (A)+ denotes the generalized inverse of the
matrix A and �(k)

1 is the smallest eigenvalue of Bk.
The solution is ı(k) =� (Bk +�k I)�1gk with �k >�`
= max {0, � �(k)

1 }, kı(k)k =�k.
c) Hard case [11]: Bk is indefinite and k(Bk� �

(k)
1 I)+

gkk <�k. The solution is ı(k) = � (Bk � �
(k)
1 I)+ gk +

tku(k)1 where u(k)1 is the eigenvector of Bk correspond-
ing to �(k)

1 and tk is determined from the equation k
(Bk� �

(k)
1 I)+ gk+ tu(k)1 k =�k.

Since the hard case rarely occurs, the solution of trust
region subproblem is closely related to the solution of
the equation

�k(�) D kık(�)k �	k

D


(Bk C �I)�1gk



 �	k D 0 :

This is a nonlinear equation with respect to� and there
is generally no finite method to find its exact solution.
Since �k(�`)> 0 and �k(1) = � �k, it is clear that the
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solution can be found in the interval (�`, 1). Since
�k(�) is a convex and continuous monotonic decreas-
ing function in the interval (�`,1), the solution of the
equation is unique. M.D. Hebden [7] used the practi-
cal structure of the function �k(�) to propose a method
that generates a sequence {�(j)} such that �(j)! �k. Let
�(j) be a current estimation to �k, a fractional function

 k(�) D
˛

�C ˇ
�	k

is used to approximate the function �k(�) such that

 k(�( j)) D �k(�( j));  0k(�
( j)) D �0k(�

( j))

where

˛ D �
(�k(�( j))C	k)2

�0k(�( j))
;

ˇ D �
�k(�( j))C	k

�0k(�( j))
� �( j) :

Setting  k(�) = 0 and substituting ˛ and ˇ give the it-
eration

�( jC1) D�( j) C �(�( j))

"

ık(�( j))




	k
� 1

#
;

�(�( j)) D



ık(�( j))


2

ık(�( j))>(Bk C �( j)I)�1ık(�( j))
:

J.J. Moré and D.C. Sorensen [11] also derived the itera-
tion by applying the Newton method to the equation

hk(�) D
1
	k
�

1
kık(�)k

:

The iteration can be calculated in the following way.
i) Factorize the matrix (Bk+ �(j)I) = R|R with R an

upper triangular matrix.
ii) Solve R|Rı = �gk for ık(�(j)) using forward and

backward substitutions.
iii) Solve R|z = ık(�(j)) for zj using forward substitu-

tion.
iv) �( jC1) D�( j)

C



ık(�( j))


2



z j


2

"

ık(�( j))




	k
� 1

#
:

To start the iteration, an initial value for�(1) is required.
A natural choice is the value �(1) = �`. This choice

needs the calculation of the smallest eigenvalue of the
matrix Bk and will cause numerical difficulties when Bk

is not positive definite. Moré [10] used the choice

�(1) D �k�1
	k�1

	k

as the initial value of �k at the kth iteration where �k�1

is the accepted value of the equation �k�1(�) = 0 at the
(k � 1)th iteration. J.E. Dennis and R.B. Schnabel [4]
proposed the choice

�(1) D �k�1 C �(�k�1)
�
kık�1(�k�1)k

	k
� 1

�
;

�(�k�1)

D
kık�1(�k�1)k2

ık�1(�k�1)>(Bk�1 C �k�1I)�1ık�1(�k�1)
;

which is an analog to the iteration for �(j+1). Of course,
a safeguard strategy is imposed to force convergence,
that is, lower and upper bounds for �(j) are provided
and updated in iteration process. The iteration finds an
approximate solution ı(k) satisfying the Hebden condi-
tions [7]

pred(ı(k)) � �( fk � q�k ) ;ˇ̌
ˇ



ı(k)




 �	k

ˇ̌
ˇ � �	k ;

where � and � are positive constants and q�k is the opti-
mal value of the trust region subproblem for given �k.
Then strong convergence result can be obtained (see
[5]).

In the general case, the repeated solution of the sys-
tem (Bk +�(j)I)ı =� gk for different values of�(j) to de-
termine a satisfactory approximate solution ı(k) of the
trust region subproblem for given value �k and the re-
computation of ı(k) for reduced values �k may be re-
quired at each iteration. It is this complication that pre-
vent trust region methods from wide use in past two
decades. Most practical trust region methods attempt
to find an approximate solution of the trust region sub-
problem in a reasonable amount of computational ef-
fort. G.A. Shultz, Schnabel and R.H. Byrd [13] proposed
general conditions on the approximate solution ı(k) to
ensure a satisfactory reduction on qk(ı) so that resulting
trust region methods have strong convergence proper-
ties. These conditions are as follows:
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A) There exist constants ˇ1> 0 and �1> 0 such that for
all �k and Bk

pred(ı(k)) � ˇ1 kgkkmin
�
	k; �1

kgkk
kBkk

	
:

B) There exists a ˇ2> 0 such that for all�k and Bk

pred(ı(k)) � �ˇ2�(k)
1 	

2
k :

C) If the matrix Bk is positive definite and kB�1k gkk �
�k, then

ı(k) D �B�1k gk :

Condition A) ensures the global convergence of a trust
region method to a point satisfying the first order nec-
essary condition and a trust region method satisfy-
ing condition B) will converge to a point at which
the second order necessary conditions are satisfied.
When condition C) is satisfied, a convergent trust re-
gion method converges at a quadratic rate if G(x�) is
positive definite at the limit point x�.

Let�k vary in the interval (0,1), then the solution
ık(�) of the trust region subproblem forms a continu-
ous optimal path � (k)(�) in the space Rn. The optimal
path can be expressed as

� (k)(�) D � (k)
1 (t(�))C � (k)

2 (�(�))

where

�
(k)
1 (t(�)) D �

X
i2I

t(�)

�
(k)
i t(�)C 1

v(k)i � t(�)
X
i2N

v(k)i ;

�
(k)
2 (�(�)) D �(�)u(k)

1 ;

t(�) D

(
� if � < 1


`
;

1

`

if � � 1

`
;

�(�) D

8<
:
0 if �` D 0;

max
�
� �

1
�`
; 0
	

if �` > 0;

I D
n
i : �(k)

i ¤ 0
o
; N D

n
i : �(k)

i D 0
o

v(k)i D u(k)
i
>
gku(k)

i ; i D 1; : : : ; n ;

and �(k)
1 � � � � � �

(k)
n are eigenvalues of Bk and u(k)i , i =

1, . . . , n, are corresponding orthonormal eigenvectors.
The optimal path has two properties. As a point x pro-
ceeds from x(k) along the path: i) the distance to x(k) is

monotonically increasing, and ii) the value of qk(ı) is
monotonically decreasing. These properties guarantee
that for any given �k, the solution of the trust region
subproblem is ı(k) = � (k)(�k) where �k is uniquely de-
termined from the equation k � (k)(�) k = �k. The for-
mulation of the path � (k)(�) needs the calculation of all
eigenvalues and eigenvectors of the matrix Bk. This is
time consuming and is unrealistic. J.P. Bulteau and J.-
Ph. Vial [1] restrict the solution of the trust region sub-
problem in a two-dimensional subspace S = span[a1a2]
and choose the solution of the problem
(
min qk(ı) D fk C g>k ı C

1
2ı
>Bkı ;

s.t. kık � 	k; ı 2 S ;

as an approximate solution of the subproblem. The vec-
tors a1 and a2 are chosen in such a way that A = [a1a2],
A|A = I. Then any ı 2 S can be expressed as ı = Az for
any z 2 R2 and the restricted subproblem can be sim-
plified as
(
min qk(z) D fk C g>k Az C

1
2 z
>A>BkAz ;

s.t. kzk � 	k :

This is a trust region subproblem in the space R2 and
can be easily solved using the optimal path method,
since we only need calculate the whole eigensystem
of a (2 × 2)-matrix A|BkA to form the optimal path
�

(k)
S (�). The subspace S is generally chosen in the fol-

lowing way:

S D

(
span[�gk ;�B�1k gk ] if Bk P.D. ;
span[�gk ; u(k)

1 ] if Bk I.D. ;

where P.D. and I.D. denote positive definite and indef-
inite, respectively. In fact the path � (k)

S (�) can be re-
garded as a projection of the optimal path � (k)(�) in the
subspace S and is an approximation of the path � (k)(�).
Based on this idea, the recent efficient solution meth-
ods for trust region subproblems first form an approxi-
mate path � (k)

a (�) and then choose ı(k) = � (k)
a (�k) with

k � (k)
a (�k) k =�k. This greatly reduce the complication

for the solution of the trust region subproblem, since
for any given�k the solution is obtained from the solu-
tion of the equation k � (k)

a (�) k = �k and the reformu-
lation of the path for any reduced �k is not required.
When formulating an approximate path, it is required
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to satisfy the two properties i) and ii) that the optimal
path has.

Dogleg pathmethods are most effective and are first
suggested by M.J.D. Powell and modified by Dennis
and H.H.W. Mei [3] for positive definite matrices and
extended to indefinite matrices by J.Z. Zhang and C.X.
Xu [15]. Powell’s method uses a single dogleg path in
the form

� (k)
ps D [0; ı(k)c p ; ı

(k)
np ]

to approximate the optimal path, where

ı(k)c p D �
g>k gk

g>k Bk gk
gk

is the minimizer of qk(ı) in the steepest descent direc-
tion and

ı(k)np D �B
�1
k gk

is the global minimizer of qk(ı). Then the solution ı(k)

of the problem

min
n
qk(ı) : kık � 	k ; ı 2 �

(k)
ps

o

is taken as an approximate solution of the trust region
subproblem. The solution ı(k) can be obtained in the
following way

ı(k) D

8̂
<̂
ˆ̂:

�B�1k gk if



ı(k)np




 � 	k ;

� �k

kgkk
gk if




ı(k)c p




 � 	k ;

ı
(k)
c p C tk(ı(k)np � ı

(k)
c p ) otherwise ;

where tk 2 (0, 1) is determined from the equation k ı(k)c p

+ t(ı(k)np� ı
(k)
c p ) k = �k. Dennis and Mei modified the

single dogleg path to form a double dogleg path

�
(k)
dm D [0; ı(k)c p ; ı

(k)
� ; ı

(k)
np ] ;

where

ı(k)� D �ı
(k)
np ;

kgkk4

g>k Bk gk � g>k B
�1
k gk

< � < 1 :

The solution ı(k) in both the methods satisfies the gen-
eral conditions A) and C). Hence both the methods are
global convergent and convergence rate is quadratic if
G(x�) is positive definite at limit point x�.

Both the single and double dogleg path methods do
work well when all the matrices Bk are positive definite.
But they are unable to deal with the nonpositive definite
case which occurs very often in practice. Zhang and Xu
proposed indefinite dogleg paths for indefinite matrices
Bk. One of these indefinite dogleg paths has the form

�
(k)
i p D [0; ı(k)
p; ı

(k)

 ; d) ;

where

ı(k)
p D �
g>k gk

g>k (Bk C �k I)gk
gk ;

ı(k)
 D � (Bk C �k I)�1gk ;

d is a negative curvature direction of the matrix Bk and
�k is chosen such that (Bk+ �kI) is positive definite.
Since the optimal path � (k)(�) is infinite when Bk is in-
definite, this is an infinite dogleg path. The solution ı(k)

obtained in the path has the following form

ı(k) D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

� �k

kgkk
gk if




ı(k)
p




 � 	k ;

ı
(k)

 C tkd; tk > 0 if




ı(k)




 � 	k ;

ı
(k)

p C tk(ı(k)
 � ı

(k)

p);

tk 2 (0; 1) otherwise ;

where both tk are determined from the equation
kı(k)(t)k =�k. When this indefinite dogleg path is com-
bined with either the single or the double dogleg path,
the resulting trust region method generates the solution
ı(k) satisfying all the three general conditions A)–C).

The negative curvature direction d can be effectively
obtained from the Bunch–Parlett factorization

PBkP> D LDL>

for symmetric matrices [2], where P is a permutation
matrix, L a unit lower triangular matrix and D a block
diagonal matrix with 1 × 1 and 2 × 2 diagonal blocks.
Since matrices Bk and D have the same inertia, the neg-
ative curvature directions of Bk can be directly obtained
from the eigenvectors of D corresponding to its nega-
tive eigenvalues. Let v1 be the eigenvector correspond-
ing to the smallest eigenvalue ofD and v = (v>1 L|Pgk)v1.
Then

d D � sgn(g>k P
>L�1v)P>L�1v

is a satisfactory negative curvature direction of Bk [15].
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For large scale problems, methods with matrix fac-
torizations generally are not suitable. T. Steihaug [14]
proposed to use a conjugate gradient method for the sys-
tem Bkı = � gk to find an approximate solution of the
trust region subproblem. After ı1, h1 and d1 are given,
the iteration of the conjugate gradient method has the
form:

ı jC1 D ı j C ˛ jd j ;

˛ j D
h>j h j

d>j Bkd j
;

hjC1 D hj � ˛ j Bkd j ;

djC1 D hjC1 C ˇ jd j ;

ˇ j D
h>jC1hjC1

h>j h j
;

j D 1; : : : ; n :

When this iteration is used to generate an approximate
solution to the trust region subproblem, the solution is
obtained in the following way. Assume that d>j Bkdj > 0
for j = 1, . . . , i� 1 and k ıik <�k and that hi and di have
been calculated. In case either d>i Bkdi < 0 or d>i Bkdi >
0 but k ıi+ ˛idik � �k, ıi + tidi is chosen as ı(k) where
the value ti is determined from the equation k ıi+ tdik
= �k. If d>j Bk dj > 0 for all j = 1, . . . , n and k ın+ 1k �

�k, then it follows from the properties of the conjugate
gradient method that the matrix Bk is positive definite,
hn+1 = 0 and ın+1 = � B�1k gk is the exact solution of the
system Bkı = � gk. Therefore, ın+1 is the desired solu-
tion of trust region subproblem. The conjugate gradient
method for the solution of the trust region subproblem
has the form.
1) Give ı1 = 0, h1 = � gk, d1 = h1, �k 2 (0, 1), j = 1.
2) If d>j Bkdj < 0 then go to 6) below, else calculate ˛j =

h>j hj/d
>
j Bkdj and ıj+1 = ıj+ ˛jdj.

3) If k ıj+1k ��k, go to 6) below.
4) Calculate hj+1 = hj � ˛jBkdj. If khj+1k � �kkgkk,

choose ı(k) = ıj+1.
5) ˇj = h>jC1hj+1/h

>
j hj, dj+1 = hj+1 + ˇjdj, j = j + 1, then

go to 2).
6) Determine tj such that k ıj + tjdjk = �k and choose
ı(k) = ıj + tjdj.

In fact, the conjugate gradient method for the approx-
imate solution of the trust region subproblem is essen-
tially a multiple dogleg path method. When the matrix

Bk is positive definite, the multiple dogleg path is

� (k)
mp D [0; ı1; : : : ; ınC1]

and when the matrix Bk is indefinite, the multiple dog-
leg path is

�
(k)
mi D [0; ı1; : : : ; ıi ; di )

where di is the first calculated negative curvature direc-
tion in the iteration process. Then the solution ı(k) is
obtained either in the path � (k)

mp or in the path � (k)
mi .

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� ABS Algorithms for Optimization
� Conjugate-gradient Methods
� Gauss–Newton Method: Least Squares, Relation to

Newton’s Method
� Generalized Total Least Squares
� Large Scale Trust Region Problems
� Least Squares Orthogonal Polynomials
� Least Squares Problems
� Local Attractors for Gradient-related Descent

Iterations
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
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An azeotrope occurs when a liquid mixture boils at
a constant temperature, producing a vapor with the
same composition as the liquid. This is a significant
phenomenon in distillation processes. An azeotrope
represents a barrier to distillation, beyond which fur-
ther separation of the components in the mixture is
not possible. Therefore, the problem of locating all
azeotropes in a chemical mixture is more than simply
a thermodynamic curiosity, it is important for a num-
ber of reasons. First, the task of locating all azeotropes
in a chemical mixture is essential for the synthesis of sep-
aration processes. A separation process that is designed
without complete knowledge about the azeotropes in
the system is likely to be infeasible.

In addition, many thermodynamic models have
been proposed which can predict the phase behavior
of nonideal mixtures. Unfortunately, the accuracy of
these models is not uniform over a wide range of mix-
tures. One useful way of testing the accuracy of a model
for a given mixture is to compare the compositions of
the azeotropes predicted by the model with those deter-
mined by experiment.

Despite the considerable interest in the area of pre-
dicting phase equilibria for chemical mixtures, rela-
tively few methods for enumerating the azeotropes for
a given system have been reported. The thermodynamic
conditions for azeotropy constitute a nonlinear system
of equations. This problem presents the additional chal-
lenge of finding all of the solutions to the nonlinear sys-
tem of equations where the number of solutions is not
known.

Nonlinear System of Equations

The most common type of azeotropes studied to date
are called homogeneous azeotropes and occur when
a single liquid phase is in equilibrium with the va-
por phase. The thermodynamic conditions for homo-
geneous azeotropy are therefore gives,
1) equilibrium between the vapor phase and a single

liquid phase, and
2) composition of the vapor phase is identical to the

composition of the liquid phase.
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Two other classifications of azeotropes, heterogeneous
and reactive, will be discussed later in this article.

Condition 1: Phase Equilibrium

The equilibrium condition requires that the chemical
potential of each component must be the same in the
liquid and the vapor phases. If we consider a mixture of
N components,

�V
i D �

L
i ; 8i 2 N ;

where �V
i and �L

i represent the chemical potential of
component i in the vapor and liquid phases. From the
definition of the fugacity of component i in a mixture,
bf i ,
bf Vi Dbf Li ; 8i 2 N ;

hence,

yib�V
i P D xi� L

i f
L
i ; 8i 2 N : (1)

The symbol b�V
i represents the mixture fugacity coeffi-

cient of component i in the vapor phase. For the liquid
phase, � L

i is the activity coefficient, and f Li is the fugac-
ity of component i in the liquid phase. Rearranging (1)
gives,

yi
xi
D
� L
i f

L
i

b�V
i P

; 8i 2 N :

A common simplification is to assume that at low
pressure the vapor phase can bemodeled as an ideal gas,
for which b�V

i D 1. For the liquid phase the fugacity is
equal to f Li = �

sat
i Psat

i (PF)i. But, for an ideal gas, � sat
i

= 1, and (PF)i = 1. Therefore,

yi
xi
D
� L
i P

sat
i

P
: (2)

Condition 2: Equality of Phase Compositions

The azeotropy condition requires that the composition
of the vapor phase is identical to the composition of the
liquid phase.

yi D xi ; 8i 2 N : (3)

Equations must also be added to require that the
mole fractions in each phase sum to unity and have val-
ues between 0 and 1.8<

:

X
i2N

yi D
X
i2N

xi D 1 ;

0 � yi ; xi � 1 ; 8i 2 N :
(4)

Equations (2), (3), (4) constitute the nonlinear sys-
tem of equations that are satisfied by a homogeneous
azeotrope. Typical nonlinear equation solvers cannot
be used robustly to find all of the solutions to this sys-
tem of equations, since it is a nonlinear, constrained
problemwithmultiple solutions. Many systems contain
multiple azeotropes, each of which is a solution to the
system. In addition, each pure component is a solution,
giving at least N solutions.

Solution Methodologies

Most of the previous work reported in the literature has
been limited to calculating homogeneous azeotropes
using local nonlinear equation solvers. This means that
the ability of these methods to predict azeotropes is de-
pendent upon choosing good starting points for the so-
lution technique. These methods cannot guarantee that
all of the azeotropes have been located in a particular
system. [1] calculated ternary homogeneous azeotropes
using the Wilson model under isothermal conditions.
[10] calculated homogeneous azeotropes of binary mix-
tures using an equation of state as the thermodynamic
model. Their approach was to fix temperature and vary
composition and volume until thermodynamic equilib-
rium conditions were satisfied. [12] also used an equa-
tion of state to calculate homogeneous azeotropes for
binary mixtures.

[2] presented a search method for finding ho-
mogeneous and heterogeneous azeotropes which uses
a Levenberg–Marquardt algorithm to find homoge-
neous azeotropes and then checks the stability of each
solution with the tangent plane criterion described by
[8]. A solution which is found to be unstable is then
used as the starting point for a new search for an het-
erogeneous azeotrope. Again, this technique relies on
local solution techniques and cannot guarantee that all
azeotropes are located.

[4] proposed a method for locating all homoge-
neous azeotropes in multicomponent systems. This
method uses a homotopy continuation technique for
tracking branches of solutions to the nonlinear system
of equations. They demonstrated that the technique
performed robustly for systems containing up to five
components using the Wilson activity coefficient equa-
tion. Recently, [3] have extended this method for het-
erogeneous azeotropes, and [9] have used it to predict
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reactive azeotropes. [7] have formulated the problem of
locating all homogeneous azeotropes as a global opti-
mization problem in which each global minimum solu-
tion corresponds to an azeotrope. They applied this ap-
proach robustly using the Wilson, NRTL, UNIQUAC
and UNIFAC activity coefficient equations for systems
containing up to five components.

An excellent review on nonideal distillation, includ-
ing a discussion on the computation of azeotropes has
recently been published in [13].

Global Optimization Approach

In order to find all azeotropes, one must find all solu-
tions to the system of nonlinear equations constituted
by (2), (3), and (4). The method proposed in [6] refor-
mulates the problem of enclosing all solutions of non-
linear systems of constrained equations into a global
optimization problem in which the task is to enclose all
global minimum solutions. In this approach, each non-
linear equality is replaced by two inequalities and a sin-
gle slack variable is introduced. For the location of all
homogeneous azeotropes, this corresponds to employ-
ing equations (2), (3), and (4) and reformulating them
as the following global optimization problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
x;T;s

s

s.t. ln P � ln Psat
i � ln �i � s � 0; 8i;

� ln P C ln Psat
i C ln �i � s � 0; 8i;X

i2N

xi D 1;

0 < x < 1;
s � 0:

(5)

Problem (5)may have multiple global minima. Each
global minimum of Problem (5) (where the solution s�

= 0) corresponds to an homogeneous azeotrope since
when s = 0 the constraints (2), (3), and (4) are satisfied.
Note that the first two sets of constraints of (5) cor-
respond to the nonlinear equations (2) of the equilib-
rium constraint written as two inequalities. In addition,
note that the nonlinear term Psat

i � ixi appears as both
a positive and a negative term. Thus, this term must be
nonconvex in at least one of the two constraints. This
means that if a local optimization approach is used to
solve Problem (5), some or all of the global solutions
may be missed.

For azeotropes in which less than N of the com-
ponents participate (a k-ary azeotrope where k � N),
the case where xi = 0 for one or more component must
be accounted for. This can be done by multiplying the
equilibrium constraints used in (5) by xi. The general
search for all k-ary homogeneous azeotropes is formu-
lated as:8̂

ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;T;s

s

s.t. xi(ln P � ln Psat
i � ln �i) � s � 0;

8i 2 N;
xi(� ln P C ln Psat

i C ln �i) � s � 0;
8i 2 N;X

i2N

xi D 1;

0 � x � 1;
s � 0:

(6)

0 Start with an initial guess for a solution (this
does not affect the convergence of the algo-
rithm).

1 Determine if the current solution satisfies the
original nonlinear system of equation.
IF it does, THEN store the solution, it corre-
sponds to an azeotrope.

2 Is the current region smaller than the mini-
mum size tolerance?
IF it is, THEN fathom the region.

3 Partition the region into two subdomains.
4 Solve a lower bounding problem in each sub-

domain.
IF the solution is greater than zero, THEN
fathom the region.
ELSE the solution is stored in the list of lower
bounding solutions.

5 Choose among the active regions the one with
the minimum lower bounding solution and
update the current solution point. Return to
Step 1.
IF there are no regions remaining, THEN ter-
minate.

Global optimization procedure

In [7], the authors have applied a global optimiza-
tion approach to enclose all of the solutions to Prob-
lems (5) and (6). In this approach, each nonconvex term
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is identified, and replaced by a convex underestimator.
The solution of the convexified problem is then a lower
bound on the solution to the original nonconvex prob-
lem. A branch and bound procedure is used to im-
prove the lower bound. Regions that cannot contain an
azeotrope have a positive lower bound and can be fath-
omed. Regions whose lower bound is less than or equal
to zero are refined further until all of the azeotropes
have been located. [7] have analyzed theWilson, NRTL,
UNIQUAC, and UNIFAC equations and have devel-
oped tight convex underestimators for all of the non-
convex terms for these thermodynamic functions.

Example 1 In this quaternary system (methanol, ben-
zene, i-propanol, n-propanol) three binary azeotropes
have been reported in the literature, as shown in Ta-
ble 1. No experimental data was found for the ternary
and quaternary systems.

Using the global optimization approach of [7], both
the Wilson and NRTL equations predicted only the
three reported azeotropes. The results for the Wilson
equation are very close to the reported compositions
and temperatures of the azeotropes. The results for the
NRTL equation are also close to the reported values,
with the exception of the Methanol-Benzene azeotrope.

Homotopy Continuation Approach

The method proposed in [4] is based on tracking
branches of solutions to nonlinear systems of equations
that are perturbed from the original system. The key
idea is to start with an equilibrium surface, on which all
of the solutions are known a priori. The postulation is
that every solution is connected to one of the branches
of the initial surface. This surface is then gradually de-
formed, and the solution branches are tracked, ending
with the actual nonideal equilibrium surface.

If the original equilibrium condition, (2), is rear-
ranged so that the vapor mole fraction, yi, is represented
as a function of xi, we obtain an equation of the form

yi D
� L
i P

sat
i

P
xi :

The ideal system can be represented by Raoult’s law:

yidi D
Psat
i

P
xi :

Nonlinear Systems of Equations: Application to the Enclo-
sure of All Azeotropes, Table 1
Solution for methanol (1) – benzene (2) – i-propanol (3) –
n-propanol (4)

Azeo x1 x2 x3 x4 T(deg C)
experimental data from [5]

1 � 2 0:605 0:395 � � 58:08
1 � 3 no azeotrope
1 � 4 no azeotrope
2 � 3 � 0:600 0:400 � 71:80
2 � 4 � 0:791 � 0:209 77:10
3 � 4 no azeotrope

Wilson equation
1 � 2 0:624 0:376 � � 58:129
2 � 3 � 0:586 0:414 � 71:951
2 � 4 � 0:780 � 0:220 76:946

NRTL equation
1 � 2 0:063 0:937 � � 80:166
2 � 3 � 0:588 0:412 � 71:832
2 � 4 � 0:776 � 0:224 77:131

One of the most convenient ways to represent the
gradual deformation of the equilibrium surface is to use
the linear convex combination of the ideal and nonideal
equilibrium surfaces, where the homotopy parameter, t,
determines the degree of deformation.

eyi D
�
(1 � t)C t� L

i
� Psat

i

P
xi :

The problem now is to find the roots of

h(x; t) D 0 ; (7)

where

h(x; t) Dey � x :

In [4], the authors use a homotopy continuation
method to find the roots of (7). At t = 0, the pure com-
ponents are used at the initial solutions to the ideal
equilibrium equation. The homotopy parameter is then
increased by a small amount and the solution branches
are tracked. At each step, the determinant of hx is cal-
culated, where

hx D
�
@hi

@x j

�

i D 1; : : : ;N � 1; j D 1; : : : ;N � 1 :
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Nonlinear Systems of Equations: Application to the Enclo-
sure of All Azeotropes, Table 2
Solution for acetone (1) – chloroform (2) – methanol (3)

Azeo x1 x2 x3 T (deg C)
experimental data from [5]

1 � 2 0:360 0:640 � 64:50
1 � 3 0:800 � 0:200 55:70
2 � 3 � 0:653 0:347 53:35

1 � 2 � 3 0:318 0:241 0:441 57:67
Wilson equation

1 � 2 0:3437 0:6563 � 65:47
1 � 3 0:7944 � 0:2056 55:34
2 � 3 � 0:6481 0:3519 53:91

1 � 2 � 3 0:3234 0:2236 0:4530 57:58

If det[hx] = 0, then a bifurcation may occur, and
an additional solution branch is started, which corre-
sponds to an azeotrope.

[4] applied this method to a range of well-
understood systems using the Wilson activity coeffi-
cient equation. Even though the homotopy continua-
tion approach does not offer theoretical guarantee of
locating all azeotropes, [4] observed that the method
predicted all of the azeotropes that have been verified
experimentally for these systems.

Example 2 [4] examined the ternary system of acetone,
chloroform, and methanol They found that their ho-
motopy continuation approach predicted all three bi-
nary azeotropes that are reported in the literature, using
theWilson equation. Their results are shown in Table 2.

Heterogeneous Azeotropes

Azeotropy is not limited to systems with a single liq-
uid phase. In the more general case, where multiple liq-
uid phases exist in equilibrium, a liquid mixture that
boils at a constant temperature is called a heteroge-
neous azeotrope. Heterogeneous azeotropes can be of
two different types. Type I heterogeneous azeotropes
occur when the overall liquid composition is identical
to the vapor composition. Conversely, Type II hetero-
geneous azeotropes occur when the overall liquid com-
position is not equal to the vapor composition. Type II
heterogeneous azeotropes are possible theoretically, but
have never been verified experimentally.

The phase equilibrium condition for a heteroge-
neous azeotrope in a system with M liquid phases is
written:

�V
i D �

L j
i ; 8i 2 N; 8 j 2 M :

When the definitions of the chemical potentials are
applied and simplifications are made, the expression
becomes,

yi
x j
i

D
�
L j
i Psat

i

P
:

In Type I heterogeneous azeotropes, the overall
composition of the liquid is equal to the composition
of the vapor,

yi D
MX
jD1

 j x j
i ; 8i 2 N ;

where  j is the mole fraction of liquid phase j in the
liquid mixture. The additional constraints are:

NX
iD1

yi D 1 ;

NX
iD1

x j
i D 1; 8 j 2 M ;

MX
jD1

 j D 1 ;

An extension of the homotopy continuation
method for homogeneous azeotropes of [4] was devel-
oped by [3] in order to examine the problem of finding
all Type I heterogeneous azeotropes.

Reactive Azeotropes

Azeotropic behavior can also occur in reacting mix-
tures, [11]. The authors derived necessary and sufficient
conditions for reactive azeotropes. These are:

Yi � Xi D 0 ; i D 1; : : : ;N � 1 ;

where

Xi D
�kxi � �i xk
�k � �Txk

;

Yi D
�k yi � �i yk
�k � �T yk

;
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where � i is the vector of reaction stoichiometric coeffi-
cients for component i, the index k refers to the refer-
ence component, and �T is the vector of the sum of the
stoichiometric coefficients for each reaction.

In addition to this requirement, the system must
also be in phase equilibrium, and in chemical equilib-
rium. The chemical equilibrium expression for each re-
action r is written,

 
Kr
eq

Kr
eq C 1

! Y
i2react

(xi�i)j�
r
reactj

�

 
1

Kr
eq C 1

! Y
i2prod

(xi�i)
ˇ̌
ˇ� rprod

ˇ̌
ˇ
D 0 ;

where Kr
eq is the equilibrium coefficient for reaction r.

[9] have applied an arc-length continuation ap-
proach to search for all reactive azeotropes at fixed Keq

for systems with a single chemical reaction.

See also

� Contraction-Mapping
� Global Optimization Methods for Systems of

Nonlinear Equations
� Interval Analysis: Systems of Nonlinear Equations
� Nonlinear Least Squares: Newton-type Methods
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Basic Problem Formulation

Sensitivity analysis problems typically reduce to deter-
mining the response of a vector x� = (x�1 , . . . , x�n) to
changes in a scalar ˛�, where x� and ˛� are required to
satisfy an n-dimensional system of nonlinear equations
of the form

0 D  (x; ˛) � ( 1(x; ˛); : : : ;  n(x; ˛))> : (1)
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This problem formulation, with a scalar parameter ˛,
is more general than it might first appear. For example,
suppose an analyst wishes to investigate the surface of
function values x = f (z) taken on by some function f :
Rm ! Rn as z ranges over a specified region Z in Rm.
One approach is to consider a suitably smooth curve s:
[0, 1]! Z which roughly fills this region, of the form
z = s(˛), and to define a new function of the form  (x,
˛) � x � f (s(˛)). Solving the system of equations  (x,
˛) = 0 for x as a function of ˛ as ˛ ranges from 0 to 1
then yields a curve of points x(˛) on the function sur-
face which gives some idea of the shape of this surface
over the region Z.

Assuming  : Rn+1 ! Rn is twice continuously
differentiable and has a nonsingular Jacobian matrix
 x(x�, ˛�), the implicit function theorem guarantees
the existence of a continuously differentiable function
x(˛) taking some neighborhood N(˛�) of ˛� into Rn

such that

0 D  (x(˛); ˛) ; ˛ 2 N(˛�) ; (2)

with x(˛�) = x�. From (2) one obtains the fundamental
equation for sensitivity analysis,

dx(˛)
d˛

D �  x (x(˛); ˛)�1 ˛(x(˛); ˛) ;

˛ 2 N(˛�) :
(3)

As it stands, (3) is an analytically incomplete sys-
tem of ordinary differential equations. That is, a closed
form representation for the Jacobian inverse J(˛)�1 �
 x(x(˛), ˛)�1 as a function of ˛ is often not obtain-
able for n � 3. Thus, the integration of (3) from initial
conditions would typically require the supplementary
algebraic determination of the Jacobian inverse J(˛)�1

at each step in the integration process.
Why not simply incorporate a linear equation solver

to accomplish the needed matrix inversions? Two rea-
sons can be given. First, the Jacobian matrix might have
one or more eigenvalues which are small in absolute
value. Consequently, as can be seen using a singular
value decomposition, the inverse matrix can be highly
ill-conditioned in the sense that its elements have large
absolute values and take on both positive and negative
values. In this case, small roundoff and truncation er-
rors can cause large errors in the resulting numerically
determined component values of the sensitivity vector

dx(˛)/d˛. Second, there exists an alternative approach
[14] that has proven its reliability and efficiency in nu-
merous contexts over the past twenty years: replace the
algebraic operation of matrix inversion by an initial
value problemhighly suited formodern digital comput-
ers.

The latter approach is taken in [10]. The differen-
tial system (3) is extended by the incorporation of or-
dinary differential equations for the Jacobian inverse.
More precisely, letting A(˛) and ı(˛) denote the ad-
joint and the determinant of the Jacobian matrix J(˛),
and recalling that the inverse of any nonsingular matrix
can be represented as the ratio of its adjoint to its de-
terminant, the following differential system is validated
for x(˛), A(˛), and ı(˛):

dx(˛)
d˛

D �A(˛)
 ˛(x(˛); ˛)

ı(˛)
; (4)

dA(˛)
d˛

D
A(˛) Trace(A(˛)B(˛)) � A(˛)B(˛)A(˛)

ı(˛)
;

(5)

dı(˛)
d˛

D Trace(A(˛)B(˛)) : (6)

The ijth component of the matrix B(˛)� dJ(˛)/d˛ ap-
pearing in equations (5) and (6) is

nX
kD1

�
 i

jk (x(˛); ˛)
dxk(˛)
d˛

�
C i

j;nC1(x(˛); ˛) ; (7)

where i
jk denotes the second partial of i with respect

to xj and xk, and  i
j;nC1 denotes the second partial of

 i with respect to xj and ˛. Given (4), note that each of
the components (7) is expressible as a known function
of x(˛), A(˛), ı(˛), and ˛. Initial conditions for equa-
tions (4)–(6) must be provided at a parameter point ˛�

by specifying values for x(˛�), A(˛�), and ı(˛�) satis-
fying 0 =  (x(˛�), ˛�), A(˛�) = Adj(J(˛�)), and ı(˛�)
= Det(J(˛�)) 6D 0.

In summary, the system of equations (4)–(6) pro-
vides an analytically complete system of ordinary dif-
ferential equations for the nonlocal sensitivity analysis
of the original system of interest, 0 =  (x, ˛). That is, it
permits the tracking of the solution vector x(˛) and the
sensitivity vector dx(˛)/d˛, together with the adjoint
A(˛) and the determinant ı(˛) of the Jacobian matrix
J(˛), over any ˛-interval [˛�, ˛� �] where the determi-
nant remains nonzero.
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Fully Automated Implementation

The complete differential system (4)–(6) was initially
implemented in [10] by means of a Fortran program
incorporating a fourth-order Adams–Moulton integra-
tion method with a Runge–Kutta start and hand-coded
partial derivatives. High numerical accuracy was ob-
tained in illustrative applications, even near critical
points ˛ where the determinant ı(˛) became zero.
Nevertheless, hand-coding of partial derivatives was
clearly an undesirable feature of the program. The par-
tial derivative expressions in (7) involve the second or-
der partial derivatives of  (�); and  (�) in turn could
involve the partial derivatives of some still more basic
function, such as the criterion function for an optimiza-
tion problem. This is indeed the typical case for eco-
nomic problems (e. g., the profitmaximization problem
handled in [10]), since such problems invariably incor-
porate the decision-making processes of various types
of economic agents.

In consequence, a more fully automated Fortran
program for nonlocal sensitivity analysis was eventu-
ally developed in [11]. This program is referred to as
Nasa (an acronym for Nonlocal Automated Sensitiv-
ity Analysis); it is available for downloading as free-
ware from the Web site http://www.econ.iastate.edu/
tesfatsi/. Nasa incorporates a fairly substantial library
for the forward-mode automatic evaluation of partial
derivatives through order three [13] as well as an adap-
tive homotopy method [12] for automatically obtaining
all required initial conditions. The following sections
briefly describe these features. A recent example of how
Nasa has been applied to an applied general equilibrium
problem in economics is detailed in [2].

Incorporation of Automatic Differentiation

Four basic approaches (see Jerrell [8] for an interest-
ing comparative discussion of these four alternative ap-
proaches) can be used to obtain computer-generated
numerical values for derivatives: hand-coding; numer-
ical differentiation; symbolic differentiation; and au-
tomatic derivative evaluation, or automatic differen-
tiation for short. Recently, computational differentia-
tion has come to be the preferred term for automatic
differentiation; see [1]. To avoid confusion, the more
traditional term is used here. Numerical differentia-

tion methods substitute discrete approximate forms
for derivative expressions. For example, finite differ-
ence methods involve the approximation of deriva-
tives by ratios of discrete increments; e. g., f 0(t) 	
[f (t + h) � f (t)]/h for some suitably small h. Sym-
bolic differentiation methods generate exact symbolic
expressions for derivatives that can be manipulated al-
gebraically as well as evaluated numerically. In con-
trast, automatic differentiation methods do not gener-
ate explicit derivative expressions, either approximate
or symbolic. Rather, these methods focus on the gen-
eration of derivative evaluations by breaking down the
evaluation of a derivative at a given point into a se-
quence of simpler evaluations for functions of at most
one or two variables. These evaluations are exact up to
roundoff and truncation error.

For the nonlocal sensitivity analysis problem out-
lined above, the primary requirement is for partial
derivative evaluations through order three to be ob-
tained in a reliable and efficient manner. The use of
numerical differentiation methods such as finite differ-
ence introduces systematic approximation errors into
applications that can be reduced but not eliminated en-
tirely due to the risk of catastrophic floating point er-
ror. Symbolic differentiation software packages such as
Macsyma, Mathematica, and Maple produce analytical
expressions for derivatives but are notorious for ‘ex-
pression swell’, that is, for the great many lines of code
they produce for the derivative expressions of even rel-
atively simple functional forms despite repeated use of
reduction routines; see [5] for explicit examples (note
that automatic differentiation has now been introduced
into Maple, see [6]). Thus, an automatic derivative eval-
uation routine would seem to be the preferred alterna-
tive for the application at hand.

Automatic differentiation appears to have been in-
dependently developed by R.E. Moore [16] and R.
Wengert [20]. The key idea of Moore and Wengert was
to decompose the evaluation of complicated functions
of many variables into a sequence of simpler evalua-
tions of special functions of one or two variables, re-
ferred to below as a ‘function list’. Total differentials
of the special functions could be automatically evalu-
ated along with the special function values, and partial
derivatives could then be recovered from the total dif-
ferentials by solving certain associated sets of linear al-
gebraic equations.

http://www.econ.iastate.edu/tesfatsi/
http://www.econ.iastate.edu/tesfatsi/
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Nonlocal Sensitivity Analysis with Automatic Differentiation, Table 1
Illustrative application of the Feed algorithm

Function List @/@x @/@y @2/@x2 @3/@x3

a = x 1 0 0 0
b = y 0 1 0 0
c = ab axb + abx ayb + aby axxb + 2axbx + abxx axxx b + 3axxbx + 3axbxx + abxxx
d = log(c) c�1cx c�1cy �c�2c2x + c�1cxx 2c�3c3x � 3c�2cx cxx + c�1cxxx
z = a + d ax + dx ay + dy axx + dxx axxx + dxxx

As detailed in [1] and [4], great strides have been
made over the past thirty years in developing fast and
reliable automatic differentiation algorithms. The Nasa
program incorporates one such algorithm, originally
developed in [13], that is now referred to as Feed (an
acronym for Fast Efficient Evaluation of Derivatives).
A detailed discussion of the use of this automatic dif-
ferentiation algorithm for both optimization and sen-
sitivity analysis can be found in [9]. Total differentials
are replaced by derivative arrays in order to avoid re-
peated function evaluations and the need to recover
partial derivatives from total differentials for each suc-
cessively higher-order level of differentiation.

As a simple illustration of Feed, consider the func-
tion F: R2

CC! R defined by

z D F(x; y) � x C log(xy) : (8)

Suppose one wishes to evaluate the function value z and
the partial derivatives zx, zy, zxx and zxxx at a given do-
main point (x, y). Consider Table 1.

The first column of Table 1 constitutes the func-
tion list for the function (8); it sequentially evaluates the
function value z = x + log(xy) at the given domain point
(x, y). The remaining entries in each row give the indi-
cated derivative evaluations of the first entry in the row,
using only algebraic operations. The first two rows ini-
tialize the algorithm, one row being required for each
independent variable. The only input required for the
first two rows is the domain point (x, y). Each subse-
quent row outputs a one-dimensional array of the form
(p, px, py, pxx, pxxx), using the arrays obtained from pre-
vious row calculations as inputs. The final row yields
the desired evaluations (z, zx, zy, zxx, zxxx). Note that the
limitation to this collection of partial derivative evalua-
tions is for expositional simplicity only. The evaluation
of any additional desired partial derivative of z, say zxyy

or zxxxy, can be obtained in a similar manner by suit-
ably augmenting Table 1 with an additional column of
algebraic operations.

The elements in each of the rows in Table 1 can be
numerically evaluated by means of sequential calls to
Feed calculus subroutines. These evaluations are exact
up to roundoff and truncation error. For expositional
simplicity, Table 1 only depicts evaluations for partial
derivatives through order three. However, Feed calcu-
lus subroutines can in principle be constructed to eval-
uate the function value and the distinct partial deriva-
tives through order k of any real-valued multivariable
function that can be sequentially evaluated in a finite
number of steps by means of the two-variable functions

w D uC v; w D u � v; w D uv ;

w D
u
v
; w D uv (9)

and arbitrary nonlinear one-variable kth-order differ-
entiable functions such as

cos(u); sin(u); exp(u); cu ;

log(u); aub C c;
(10)

for arbitrary constants a, b, and c. Systematic rules for
constructing general kth-order calculus subroutines for
special functions such as (10) are derived in [13]. Ref-
erences to other work focusing on recurrence relations
for the derivatives of special functions such as (10) can
be found, for example, in [15]. A detailed discussion of
the library of Feed calculus subroutines currently incor-
porated into Nasa is given in [11].

The Feed algorithm thus envisions the successive
transformation of arrays of partial derivatives through
any specified order k into similarly-configured arrays
as one forward sweep is taken through the function list
for a specified kth-order differentiable function. A sim-
ilar approach is proposed in [15] and [18, p. 280]. In
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contrast, the partial derivative evaluation methods pro-
posed in [17, Chapter VI, pp. 91–111] and [21] have
a tree structure; that is, gradient operations are used to
generate evaluations for each successively higher-order
collection of partial derivatives using the results of pre-
vious gradient operations as inputs. Another approach
that has attracted a great deal of interest is reverse-
mode differentiation; see [3] and [7].

Automatic Initialization
via Adaptive Homotopy Continuation

The initial conditions needed to integrate the complete
differential system (4)–(6) from a given initial parame-
ter point ˛� consist of a solution vector x(˛�) together
with evaluations for the adjoint A(˛�) and determinant
ı(˛�) of the Jacobian matrix  x(x(˛�), ˛�). For many
nonlinear problems, finding an initial solution vector is
a difficult matter in and of itself.

Nasa incorporates an adaptive homotopy method
[12] for automating these needed initializations. A stan-
dard (linear) homotopy method applied to the problem
of finding a solution x� for a system of equations 0 =
F(x) proceeds by introducing a homotopy of the form

0 D tF(x)C [1� t][x � c] (11)

and solving for x as a function of t as t varies from 0 to
1 along the real line, where c represents any initial guess
for the solution vector x�. In contrast, an adaptive ho-
motopy is a homotopy for which the usual continuation
parameter t varying from 0 to 1 on the real line is re-
placed by an adaptive continuation ‘agent’ that makes
its way by trial and error from 0 + 0i to 1 + 0i in the
complex plane in accordance with certain stated objec-
tives.

Specifically, the continuation agent designed in [12]
adaptively selects a path of ˇ values from 0 + 0i to 1 +
0i in the complex plane for the homotopy

0 D [F(x)� F(c)]C ˇF(c) ; (12)

where c again represents any initial guess for the so-
lution vector x�. The path for ˇ is selected in accor-
dance with the following multiple objective optimiza-
tion problem: Reach the point 1 + 0i starting from the
point 0 + 0i by taking as few steps as possible along
a spider-web (spoke/hub) grid centered at 1 + 0i in the

complex plane, but do so in a way that avoids regions
where the Jacobian matrix becomes ill-conditioned.

The adaptive homotopy method introduced in [12]
and incorporated into Nasa is thus an example of what
might more generally be called an adaptive computa-
tional method, i. e., a computational method that em-
bodies the following principle important for applied
researchers: Let the computational algorithm adapt to
the physical problem at hand instead of requiring users
to reformulate their physical problems to conform
to algorithmic requirements. For sufficiently smooth
functions F(�), a properly constructed homotopy (e. g.,
a probability one homotopy as formulated in [19])
is theoretically guaranteed to have no singular points
along the real continuation path from 0 to 1 for al-
most all initial starting points c. However, successful
implementation of such homotopy methods can re-
quire a mathematically sophisticated reformulation of
the user’s original problem.

The homotopy (12) is solved for x as a function of
ˇ as ˇ varies from 0 + 0i to 1 + 0i in the complex plane
by making use of a complete system of ordinary differ-
ential equations analogous to the system set out in the
basic problem formulation above. At each ˇ point one
obtains a solution vector x�(ˇ) together with evalua-
tions A�(ˇ) and ı�(ˇ) for the adjoint and determinant
of the homotopy Jacobian matrix J�(ˇ) = Fx(x�(ˇ)).
Note that the homotopy Jacobian matrix coincides with
the Jacobian matrix for the original function of interest
F(�), implying that singularities are not artificially in-
duced into the problem by the homotopy method per
se. In principle, the solution vector x�(1 + 0i) obtained
for (12) at ˇ = 1 + 0i yields a solution vector for the
original system of interest, 0 = F(x). In particular, let-
ting F(x)�  (x, ˛�), one obtains complete initial con-
ditions for the original problem of interest, the nonlocal
sensitivity analysis of the system 0 =  (x, ˛) over an in-
terval of ˛ values starting at ˛�.

See also

� Automatic Differentiation: Calculation of the
Hessian

� Automatic Differentiation: Calculation of Newton
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and Tracking Stations
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The routing of traffic requirements is one of the im-
portant problems that have to be solved when design-
ing a telecommunication network. Another important
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problem is the computation of standby capacities that
must be set up to enable the rerouting of the traf-
fic requirements affected by any network failure of
some given types. Both problems can be formulated
as nonoriented multicommodity network flow models
sometimes also called undirected multicommodity net-
work flow models. The routing problem captures the
main aspects of such models and is therefore consid-
ered in more details hereafter. The reader interested
in the computation of standby capacities is referred to
[11,12].

A transmission network can be viewed as an undi-
rected graph. An edge (i. e. a link of the network) is
characterized by a pair of nodes, a transmission cost
per circuit and a transmission capacity in the number
of circuits. The routing problem is the determination of
the most economical way of using the available trans-
mission capacities to route a traffic matrix (a number
of circuits between various pairs of nodes) through the
network. This problem can be expressed as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
X
k; j

ckj
ˇ̌
ˇxk

j

ˇ̌
ˇ

s.t. Axk D rk ; k 2 K ;X
k

ˇ̌
ˇxk

j

ˇ̌
ˇ � b j ; j 2 J ;

where:
� A is the node-arc incidence matrix corresponding to

an arbitrary orientation of the network graph (i. e.
Aij = +1 if arc j is directed away from node i,Aij =�1
if arc j is directed towards node i, Aij = 0 otherwise);

� J D f1; : : : ; Jg is the set of arcs of the network;
� k is a commodity characterized by a number of cir-

cuits, dk, to be routed through the network between
a given pair of nodes, sk and tk;

� K D f1; : : : ;Kg is the set of commodities to be
routed;

� rk is the requirement vector for commodity k (i. e.
rksk = dk, rktk = �d

k and rkl = 0 when l 62 {sk, tk});
� xk is the flow vector for a given commodity k (i. e. xkj

is the flow on arc j = (s, t) with xkj > 0 if the flow goes
from s to t and xkj < 0 if the flow goes from t to s);

� bj is the capacity of link j;
� ckj is the cost per unit of flow on link j for commodity

k.

The first group of constraints contains one block of
constraints per commodity. These so-called flow con-
straints specify that x is a routing of the traffic re-
quirements. The second group of constraints ties to-
gether the various commodities. These coupling con-
straints specify that only a limited number of circuits
can be routed through any given edge of the network.
The above formulation is called a node-arc formulation
of the problem.

If we assume that cost coefficient ckj are non neg-
ative, this nonlinear problem can be replaced with
an equivalent standard (linear) multicommodity flow
problem by using the transformation of the network
graph depicted in the following figure where the figures
over edges and arcs denote capacities.

The structure of the resulting model is similar to
that of the original model except that absolute values
are removed and nonnegativity restrictions on the flow
variables are introduced. The transformation is justified
by the fact that the support of the flow associated with
any given commodity does not contain any directed cy-
cle in the optimal solution of the transformed problem.
The transformed model could be solved by any code
designed for the solution of directed multicommodity
flow problems. However, as this model is much larger
than the original nonlinear model a better approach has
to be devised when a computationally efficient solution
method is sought for. Assuming that ckj > 0, one can in-
troduce nonnegative variables, xkCj and xk�j , such that
xkj = xkCj � xk�j and |xkj | = xkCj + xk�j to obtain an equiv-
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alent linear formulation [11]:
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
k; j

ckj
�
xkC
j C xk�

j

�

s.t. A
�
xkC � xk�� D rk ; 8k;X

k

�
xkC
j C xk�

j

�
� b j; 8 j 2 J;

xkC
j � 0; 8k 2 K; 8 j 2 J;

xk�
j � 0; 8k 2 K; 8 j 2 J:

For real networks such as the Paris district transmission
network, the number of nodes, I, can be larger than 100
and the number of links larger than 300. If one assumes
that there can be a traffic requirement between any pair
of nodes, the size of the problem can be larger than ap-
proximately M 	 5 × 105 constraints and N 	 3 × 106

variables, since K D I(I � 1)/2 in this case. However,
the formulation can be often simplified and an equiva-
lent smaller problem solved. In fact, when the cost per
unit of flow on a given link does not depend on the
commodity (i. e. ckj = c1j for any k) all the commodities
which have a common endpoint can be ‘merged’. More
precisely, consider a particular node, i, and the set, Ki,
of commodities, k, such that sk = i or tk = i. As the orien-
tation of the commodities is arbitrary the commodities
in Ki can be replaced with a single commodity charac-
terized by a requirement vector, r, of components, ri =P

k2Ki dk, rj = � dk for all j 2 [k2Ki {sk, tk} � {i} and rj
= 0 for all j 62 [k2Ki {sk, tk}. A merging of commodities
that minimizes the number of merged commodities can
be found by solving a minimum node cover problem in
a nondirected graph (cf.� Network location: Covering
problems) where the vertices correspond to the end-
points of the commodities and the edges correspond
to the commodities. In practice a satisfactory solution
to this problem can be obtained by a greedy algorithm
where at each iteration the node that covers the larger
number of edges not yet covered is selected. In any case,
the problem reduces to a number of commodities not
larger than I. Assuming that K D I, one obtains M
	 10,000 constraints and N 	 60,000 variables. This
size of problem is within the reach of modern general
purpose linear programming codes. However, if extra
constraints were to be included in the initial formula-
tion the merging of the commodities might not be any
longer possible. For example, this would be the case if
quality of service constraints were introduced to impose

that no more than p percent of any traffic requirement
is routed on any link. Constraints of the form xkCj + xk�j
� pdk/100 would have to be added to the above formu-
lation. The size of this new model would be huge.

Fortunately, specialized algorithms that exploit
both the block structure of the problem and the struc-
ture of each block of flow constraints can be designed
to provide efficient solution methods. A primal parti-
tioning simplex algorithm specialization is presented in
[3]. Specializations based on price-directive decompo-
sition (cf. � Branch and price: Integer programming
with column generation), resource-directive decompo-
sition and partitioning of linear systems (simplex and
dual affine scaling algorithm) are reviewed in [5]. Tech-
nical details on specializations as well as comparative
experiments are presented in [4].

It is worth giving more details on one of the most at-
tractive specialization method obtained by applying the
Dantzig–Wolfe decomposition principle to the above
formulation. The advantage of this specialization is
threefold. First, it leads to a reformulation of the prob-
lem that appeals to network planners (as the concept
of routing path is more directly part of the model)
and is easily understood without any references to the
Dantzig–Wolfe decomposition principle. Secondly, it
can be easily implemented using modern linear pro-
gramming libraries. Thirdly, and more importantly it is
computationally efficient for real-life instances that are
usually weakly constrained (no more than 10% edges
saturated at optimality) (see [4]).

By applying the Dantzig–Wolfe decomposition
principle it can be shown that the routing problem can
be reformulated as follows [5]:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
k;l

[ck]>vkl ˛
k
l

s.t.
X
l

˛k
l D dk ; k 2 K;

X
k;l

˛k
l v

k
l � (b1; : : : ; bJ)

>;

˛k � 0; k 2 K:

vkl is the characteristic vector of a path, p
k
l , that connects

sk to tk in the undirected network graph, i. e. the com-
ponents j of vkl is 1 if link j belongs to p

k
l and is 0 other-

wise. [ck]| vkl is the cost of p
k
l per unit of flow routed on

that path (i. e. the sum of the costs ckj of its links) and
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˛k
l is the amount of traffic routed on path pkl . The first

set of constraints expresses that dk units of traffic have
to be routed between sk and tk whereas the second set
of constraints expresses the limitation on the capacity
available on the links to route the traffic. The formula-
tion above is known as the node-path formulation of the
multicommodity flow problem.

This formulation has an exponential number of
columns but it is not necessary to express all the
columns of this linear program. Indeed, the reduced
cost of variable ˛k

l is wk
l = [ck + �]| vkl � 
k, where

� � is the vector of simplex multipliers associated with
the capacity constraints and 
k is the vector of sim-
plex multipliers associated with the constraint corre-
sponding to commodity k in the first group of con-
straints. Therefore minl wk

l can be obtained by comput-
ing a shortest path between sk and tk in the undirected
network graph where the edge lengths are given by the
vector ck + �.

In the decomposition algorithm the formulation
given above is called the (full) master program. The
K shortest path problems which are solved to gener-
ate columns of the master program are called the satel-
lite problems. At each stage of the algorithm a reduced
master program, i. e. a program that contains a sub-
set of the columns of the master program, is solved.
The first reduced master program is initialized with
a set of columns corresponding to a basic matrix and
the columns corresponding to the slack variables. If no
such initial set of columns is available, artificial vari-
ables are added to the formulation and a first phase
or a big-M method have to be used to drive the pro-
gram to a feasible basis. After solving a reduced mas-
ter program to optimality, the K satellite problems are
solved to check whether the solution obtained is opti-
mal for the full master program. If the reduced costs
corresponding to the solution of the satellite problems
are nonnegative the solution to the reducedmaster pro-
gram is an optimal solution to the full master program,
otherwise the master program is increased with the new
columns candidate for basis entry and the simplex al-
gorithm goes on. After the solution of a reduced master
program the reduced cost of all variables in that pro-
gram are nonnegative. Hence, as � is the reduced cost
vector associated with the slack variables of the cou-
pling constraints we deduce that � � 0 and that in turn
the edge lengths in the satellite problems are nonnega-

tive. The satellite problems can therefore be solved us-
ing the Dijkstra algorithm (see [9] and [13] for details
of efficient implementations).

The solution of each master program can be made
more efficient by using a refinement of the GUB spe-
cialization of the simplex algorithm (see [4] for de-
tails). Some variations of the algorithm may be also ap-
plied. For example, some columns generated may be
discarded from the reduced master program at later
stages, the generation of new columns may be carried
out before optimality is reached provided that the sim-
plex multipliers � are nonnegative.

Finally it is worth mentioning that a new cutting
plane technique based on interior point method and
called the analytic center cutting plane method (AC-
CPM) was recently proposed to solve large scale convex
optimization problems [8]. Its application to the dual
of the above formulation gives performances that are
roughly similar to those of the Dantzig–Wolfe decom-
position algorithm [4] but ACCPM is much more effi-
cient for highly nonlinear problems [7].

Further details on network programming and mod-
eling can be found in [1,2,6,10].

See also
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�Minimum Cost Flow Problem
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Introduction

Being natural generalizations of the classical Fréchet
derivative and the subdifferential in the sense of con-
vex analysis, Fréchet subdifferentials have been known
for more than 30 years. They were probably first in-
troduced in finite dimensions in [1] (under the name
“lower semidifferentials”). Some of their properties
in the infinite-dimensional setting were investigated
in [18,21]. During the first decade Fréchet subdifferen-
tials were not widely used because of rather poor (di-
rect) calculus. They mostly served as building blocks
for more sophisticated limiting (Fréchet) subdifferen-
tials [19,23,30,31].

The discovery of the “fuzzy rules” in the
1980s [11,12,15,29] revitalized interest in Fréchet sub-
differentials. It was shown that calculus results and
optimality conditions can be formulated in terms of
Fréchet and other “simple” subdifferentials computed
not at the given point, but at some points arbitrarily
close to it, thus incorporating “differential” properties
of the function at nearby points. Such results are ac-
tually at the core of the corresponding statements for
limiting subdifferentials.

Being the smallest among all “simple” subdifferen-
tials with reasonable properties, the Fréchet subdiffer-
entials have proved to be convenient tools for the anal-
ysis of nondifferentiable functions on Asplund spaces,
a very important subclass of general Banach spaces.
Furthermore, the main fuzzy results in terms of Fréchet
subdifferentials present characterizations of Asplund
spaces themselves [6,12,13,34,35,38,45].

The article contains no proofs. A more detailed sur-
vey of Fréchet subdifferentials can be found in [25].

Mostly standard notations are used throughout the
article. X and Y denote normed linear spaces and X�

and Y� denote their topological duals. h�; �i is a bilinear
form defining a canonical paring between a space and
its dual. B�(x) stands for a closed ball with center x and
radius �. We write B� instead of B�(0) and just B if � D
1 (unit ball).
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Definitions

Fréchet Subdifferentials

Let f : X ! R1 D R [ fC1g ; f (x) <1. The set

@ f (x) D
�
x� 2 X� :

lim inf
u!x

f (u) � f (x) � hx�; u � xi
ku � xk

� 0
	 (1)

is called the Fréchet subdifferential of f at x. This set is
(norm) closed and convex. The next proposition shows
that it generalizes the notions of the Fréchet derivative
and the subdifferential in the sense of convex analysis.

Proposition 1
1. If f is Fréchet-differentiable at x with the derivative
r f (x) then @ f (x) D fr f (x)g.

2. If f is convex then

@ f (x) D
n
x� 2 X� :

f (u)� f (x) � hx�; u � xi;8u 2 X
o
:

Note that the Fréchet subdifferential does not change if
another equivalent norm on X is used in (1).

Example 1 The set (1) can be empty. Take f : R !
R : f (u) D �juj; u 2 R.

One can also consider the Fréchet superdifferential

@C f (x) D
�
x� 2 X� :

lim sup
u!x

f (u)� f (x) � hx�; u � xi
ku � xk

� 0
	
:

(2)

While the set (1) consists of linear continuous func-
tionals “supporting” f from below, the functionals from
(2) “support” f from above. Unlike the classical case, the
existence of two different derivative-like objects is quite
natural for nonsmooth analysis: “differential” proper-
ties of a function “from below” and “from above” could
be essentially different.

Subdifferentials and superdifferentials are related by
the equality

@(� f )(x) D �@C f (x) : (3)

Surely, in the nondifferentiable case at least one of
the sets (1) and (2) must be empty.

Proposition 2 @ f (x) ¤ ; and @C f (x) ¤ ; if and
only if f is Fréchet-differentiable at x. In this case one
has @ f (x) D @C f (x) D fr f (x)g.

Example 2 Both sets (1) and (2) can be empty simulta-
neously. Take f : R! R : f (u) D u sin(1/u) if u ¤ 0,
and f (0) D 0.

Example 3 The fact that the set (1) is a singleton does
not imply differentiability. Take f : R ! R : f (u) D
max(u sin(1/u); 0) if u ¤ 0, and f (0) D 0. Then f
is nondifferentiable at 0, although one evidently has
@ f (0) D f0g.

Example 4 Fréchet differentiability is essential in
Proposition 1 Gâteaux differentiable functions can be
nonsubdifferentiable in the Fréchet sense. Take f :
R2 ! R : f (u1; u2) D �

p
ju1j2 C ju2j2 if u2 D u2

1,
f (u1; u2) D 0 otherwise. The Gâteaux derivative of f
is 0, while @ f (0) D ;.

Remark 1 One can define the Gâteaux subdifferen-
tial on the basis of the notion of the Gâteaux dif-
ferentiability. For this subdifferential, the analogs of
Propositions 1 and 2 and some other results hold
true. Considering Gâteaux (and other types of) “sim-
ple” subdifferentials can be useful in some applica-
tions. The Gâteaux subdifferential always contains the
Fréchet subdifferential.

If dim X < 1 the Fréchet subdifferential can be ex-
pressed equivalently in terms of certain generalized di-
rectional derivatives [1,16,18,39,42,43].

Fréchet Normal Cone

Now consider a set ˝ � X and let x 2 ˝ . Similarly
to definition (1) of the Fréchet subdifferential one can
define the Fréchet normal cone

N(xj˝) D

8<
:x� 2 X� : lim sup

u
˝
!x

hx�; u � xi
ku � xk

� 0

9=
; (4)

to˝ at x. Here u
˝
! x means that u! x with u 2 ˝ .

It is a norm closed and convex cone closely related
to the subdifferential defined above. It is actually the
Fréchet subdifferential @ı˝(x) of the indicator function
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ı˝ of ˝ (ı˝(u) D 0 if u 2 ˝ and ı˝(u) D 1 other-
wise).

This fact allows one to deduce some properties of
normal cones from the corresponding statements about
subdifferentials. Thus, it follows from Proposition 1,
that the normal cone (4) generalizes the corresponding
notion of convex analysis.

In finite dimensions the Fréchet normal cone co-
incides with the polar of the tangent (contingent,
Bouligand tangent) cone to ˝ at x. If X is reflex-
ive it coincides with the polar of the weak tangent
cone [1,2,9,14,43].

The relationship between Fréchet subdifferentials
and normal cones is bilateral. For a function f : X !
R1 one can consider its epigraph epi f D f(u; �) 2
X � R : f (u) � �g. If the norm on X � R is compat-
ible with that on X (that is, k(x; 0)k D kxk), then the
following equivalent definition of the Fréchet subdiffer-
ential holds true:

@ f (x) D
n
x� 2 X� : (x�;�1) 2 N(x; f (x)jepi f )

o
:

(5)

“Horizontal” normals to the epigraph can also be of
interest. They define the singular Fréchet subdifferential
of f at x:

@1 f (x) D
n
x� 2 X� : (x�; 0) 2 N(x; f (x)jepi f )

o
:

Of course, if f is calm at x [7,42], that is, k f (u)� f (x)k �
lku�xk for some l > 0 and for all u in a neighborhood
of x, then the latter set is empty.

Strict Fréchet ı-Subdifferentials

As mentioned in “Introduction,” Fréchet subdifferen-
tials have poor calculus and their direct application has
been rather limited. There exists a way of enriching
the properties of the subdifferentials. It consists in con-
sidering differential properties of a function at nearby
points.

Consider a new derivative-like object based on the
Fréchet subdifferential:

@̂ı f (x) D
[

u 2 Bı(x)
jcl f (u)� f (x)j � ı

@(cl f )(u): (6)

It depends on some positive ı. cl f denotes here the
lower semicontinuous envelope of f (its epigraph is the
closure of the epigraph of f in X � R). Unlike (1) the
set (6) can be nonconvex. It is called the strict Fréchet
ı-subdifferential of f at x [24].

The strict Fréchet ı-superdifferential @̂C
ı
f (x) of f at x

can be defined in a similar way. The equality @̂C
ı
f (x) D

�@̂ı (� f )(x) holds true. The strict subdifferentials and
superdifferentials can be nonempty simultaneously and
can be essentially different. The set @̂0

ı
'(x) D @̂ı f (x)[

@̂C
ı
f (x) can be useful in some situations. It is called the

strict Fréchet ı-differential of f at x.
The strict Fréchet ı-normal cone to a set˝ at x 2 ˝

is defined similarly:

N̂ı(xj˝) D
[

u2cl˝\Bı (x)

N(ujcl˝) :

The goal of introducing strict Fréchet ı-subdifferen-
tials is mainly notational. They are convenient for for-
mulating “fuzzy” results, but such results can certainly
be formulated in terms of ordinary Fréchet subdifferen-
tials.

Limiting Subdifferentials

The limiting Fréchet subdifferentials are defined as lim-
its of “simple” ones [23,30,31,34]. To simplify the defi-
nitions we assume in this subsection that f : X ! R1
is lower semicontinuous in a neighborhood of x.

The limiting Fréchet subdifferential of f at x is de-
fined as

@̄ f (x) D fx� 2 X� : 9 sequences

fxkg �X; fx�k g � X�such that

xk
f
! x; x�k

w�
! x� and x�k 2 @ f (xk); k D 1; 2; : : : g :

(7)

The notations xk
f
! x and x�k

w�
! x� here mean, re-

spectively, that xk ! x with f (xk)! f (x) (f-attentive
convergence [42]), and x�k converges to x

� in the weak �

topology of X�.
@̄ f (x) is a weakly� sequentially closed set in X�.

In general it is nonconvex. If f is strictly differentiable
at x the set (7) reduces to the derivative.
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Using strict ı-subdifferentials, one can rewrite (7) in
the following way:

@̄ f (x) D
\
ı>0

cl�@̂ı f (x) ;

where cl� denotes the weak� sequential closure.
Other limiting objects (the limiting superdifferen-

tial, the limiting differential, the limiting normal cone,
the singular limiting subdifferential, and the limiting
coderivative) can be defined in a similar way.

Thus, the limiting normal cone to a closed set ˝ is
defined by the equality

N̄(xj˝) D
\
ı>0

cl�N̂ı(xj˝) :

It coincides with the limiting subdifferential of the in-
dicator function of˝ . The analog of (5) is also valid:

@̄ f (x) D fx� 2 X� : (x�;�1) 2 N̄(x; f (x)jepi f )g :

The limiting subdifferentials and normal cones have
been well investigated. They possess good calculus
(which is the consequence of the fuzzy calculus of
Fréchet subdifferentials; see [19,23,30,31,32,34,36,42]
for the properties of these objects and some exam-
ples). They have proved to be very efficient for for-
mulating optimality conditions in nonsmooth opti-
mization [20,22,29,30,31,32,34,36], especially in finite
dimensions. When applying limiting subdifferentials in
infinite dimensional spaces, one must be careful about
nontriviality of the limits in the weak� topology. Ad-
ditional regularity conditions are needed (compact epi-
Lipschitzness, sequential normal compactness, partial se-
quential normal compactness [4,34,36], etc.)

Fréchet "-Subdifferentials and "-Normals

In some cases it can be convenient to use "-ex-
tensions of the Fréchet subdifferentials and normal
cones [21,23,29,44]. For instance, the Fréchet "-sub-
differential and the Fréchet "-superdifferential of f at x
are defined as

partial" f (x) D
�
x� 2 X� :

lim inf
u!x

f (u)� f (x)� hx�; u � xi
ku � xk

� �"

	
;

@C" f (x) D
�
x� 2 X� :

lim sup
u!x

f (u)� f (x)� hx�; u � xi
ku � xk

� "

	
:

Unlike (1) and (2), these sets depend on the specific
norm on X (when " > 0).

The next two propositions extend Propositions 1
and 2 respectively.

Proposition 3 If f is convex then
@" f (x) D @ f (x)C "B� D fx� 2 X� : f (u) � f (x) �
hx�; u � xi � "ku � xk; 8u 2 Xg.

Remark 2 Note that the above "-subdifferential dif-
fers from the corresponding notion of convex analysis,
which is usually defined [41] as the set of all x� 2 X�,
such that f (u)� f (x) � hx�; u � xi � " for all u 2 X:

Proposition 4 If x�1 2 @"1 f (x); x�2 2 @C"2 f (x);
"1 � 0; "2 � 0 then kx�1 � x�2 k � "1 C "2.

Formulation

Direct Calculus

The propositions below present some simple calculus
results for Fréchet subdifferentials. Most of them fol-
low directly from the definitions. More advanced state-
ments of fuzzy calculus are presented in the next sub-
sections.

Proposition 5 If f attains a local minimum at x then
0 2 @ f (x).

Proposition 6 @(� f )(x) D �@ f (x) for any � > 0.

Proposition 7 Let f1; f2 : X ! R1 be finite at x. Then

@( f1 C f2)(x) � @ f1(x)C @ f2(x) : (8)

The above proposition presents an example of a Sum
Rule. Usually the sum rule is the central result of
any subdifferential calculus. Unfortunately, the inclu-
sion (8) is almost useless: it does not allow one to de-
compose elements of the subdifferential of the sum of
functions in terms of elements of subdifferentials of the
original functions. Simple examples show that inclu-
sion (8) can be strict even in the convex case. The next
proposition gives two important cases when the equal-
ity holds true in (8).
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Proposition 8 Let f1; f2 : X ! R1 be finite at x.
1. If f 1 and f 2 are convex and one of them is continuous

at x then

@( f1 C f2)(x) D @ f1(x)C @ f2(x):

2. If f 1 is Fréchet-differentiable at x then

@( f1 C f2)(x) D r f1(x)C @ f2(x) : (9)

Part 1 of Proposition 8 is known as the Moreau–
Rockafellar theorem [41]. Part 2 is a simple corollary
of Proposition 7. It is an interesting example, when an
inclusion implies an equality. Indeed, applying Propo-
sition 7 to the sum of the functions f1 C f2 and� f2 and
making use of (3), one gets

@ f2(x) � @( f1 C f2)(x) � @C f1(x) : (10)

Taking into account Proposition 2, the inclusions
(8) and (10) imply (9).

Proposition 8 yields a simple necessary optimality
condition generalizing Proposition 5.

Proposition 9 Let f1 : X ! R be Fréchet-dif-
ferentiable at x where f2 : X ! R1 is finite. If f1 C f2
attains a local minimum at x then �r f1(x) � @ f2(x).

The next two assertions are corollaries of Propositions 7
and 9.

Proposition 10 Let x 2 ˝1 \˝2.
Then N(xj˝1 \˝2) � N(xj˝1)C N(xj˝2).

Proposition 11 Let f be Fréchet-differentiable at x.
If f attains at x a local minimum on ˝ then
�r f (x) 2 N(xj˝).

For a set ˝ � X and u 2 X consider the distance
d˝ (u) D inf!2˝ ku � !k.

Proposition 12 ([18]) For any x 2 ˝ one has
@d˝ (x) D fx� 2 N(xj˝) : kx�k � 1g.

Strict Differentiability

Recall that f is called strictly differentiable [34,42] at x
(with the strict derivative r f (x)) if

lim
u! x; u0 ! x

u ¤ u0

f (u0) � f (u)� hr f (x); u0 � ui
ku0 � uk

D 0 :

In the case of a strictly differentiable function the
Fréchet subdifferentials and superdifferentials at nearby
points cannot differ much from the strict derivative.

Proposition 13 ([25]) If f is strictly differentiable at x
with the derivative r f (x) then for any " > 0 there exists
a ı > 0 such that:
1. @̂0

ı
f (x) � r f (x)C "B�.

2. r f (x) 2 @" f (u)\ @C" f (u) for all u 2 Bı(x).

The rest of the section is devoted to “fuzzy” results
in terms of Fréchet subdifferentials and strict Fréchet
ı-differentials.

Variational Principles

The variational principles by Ekeland [10], Borwein
and Preiss [3] as well as their subsequent followers
[6,8,34,40,42] are very powerful tools of modern vari-
ational analysis. They make it possible to substitute an
“almost minimal” point (up to ") by another point, ar-
bitrarily close to the initial one, which is the local mini-
mizer for a slightly perturbed (usually by adding a small
term) function. Thus, such principles can be viewed as
fuzzy results.

The next assertion is valid for an arbitrary Asplund
space. It is known as the Subdifferential Variational
Principle. Let us recall that a Banach space is called As-
plund [6,8,34,40] if any continuous convex function on
it is Fréchet-differentiable on a dense Gı set of points.
Asplund spaces form a rather broad subclass of Banach
spaces. It includes, for instance, all spaces which ad-
mit Fréchet-differentiable bump functions (in particu-
lar, Fréchet smooth spaces). Reflexive spaces are exam-
ples of Fréchet smooth spaces.

Asplund spaces provide a very convenient frame-
work for investigating “differential” properties of non-
smooth functions. Actually the Asplund property of
a Banach space is not only sufficient but also a neces-
sary condition for the fulfillment of some basic results
in nonsmooth analysis involving Fréchet normals and
subdifferentials (see [6,13,34,35,38] and the statements
below).

Theorem 1 (Mordukhovich and Wang [38]) Let
X be Asplund, f : X ! R1 be lower semicontinu-
ous and bounded below, " > 0, � > 0. Suppose that
f (x) < inf f C ": Then there exists a u 2 B	(x) and an
x� 2 @ f (u), such that f (u) � f (x) and kx�k� < "/�.
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The following theorem states that the class of Fréchet
subdifferentiability spaces [15] coincides with Asplund
spaces.

Theorem 2 The following assertions are equivalent:
1. X is an Asplund space.
2. For any lower semicontinuous function f : X ! R1

the set fu 2 X : @ f (u) ¤ ;g is dense in dom f .
3. For any lower semicontinuous function f : X ! R1

there exists an x 2 dom f such that @ f (x) ¤ ;.

Sum Rules

After the sum rule was first established in the limiting
form in [19] (see [23,31]) the fuzzy versions were de-
rived in [12,15] (see also [6,17,37]). Now two main ver-
sions of the fuzzy sum rule are known. For simplicity
they are formulated below in terms of strict ı-subdif-
ferentials.

Rule 1 Weak Fuzzy Sum Rule Let f1; f2 : X ! R1
be finite at x and lower semicontinuous near x. Then
@( f1 C f2)(x) � @̂ı f1(x)C @̂ı f2(x)C U� for any ı > 0
and any weak� neighborhood U� of 0 in X�.

Rule 2 Strong Fuzzy Sum Rule Let f1 : X ! R1
be finite at x and lower semicontinuous near x
and f2 : X ! R be Lipschitz continuous near x.
Then @( f1 C f2)(x) � @̂ı f1(x)C @̂ı f2(x)C ıB� for any
ı > 0.

A Banach space is called a trustworthy space [15] (for
some kind of a subdifferential) if Rule 1 is valid in it.
The following theorem proved by Fabian [12] states
that for the Fréchet subdifferential the class of trustwor-
thy spaces coincides with Asplund spaces.

Theorem 3 The following assertions are equivalent:
1. X is an Asplund space.
2. The Weak Fuzzy Sum Rule is valid in X.
3. The Strong Fuzzy Sum Rule is valid in X.

The Weak Fuzzy Sum Rule yields the following rep-
resentation of Fréchet normals to the intersection of
closed sets.

Proposition 14 Let ˝1, ˝2 be closed subsets
in an Asplund space X and x 2 ˝1 \˝2. Then
N(x;˝1 \˝2) � N̂ı(x;˝1)C N̂ı(x;˝2)C U� for
any ı > 0 and any weak� neighborhood U� of 0 in X�.

Other fuzzy calculus results (chain rules, formulas for
maximum-type functions, mean value theorems, etc.)

for functions and multifunctions can be deduced from
(some form of) the sum rule [5,16,24,37].

Extremal Principle

The Extremal Principle continues the line of variational
principles discussed above and is in a sense equivalent
to them as well as to the sum rules.

Let ˝1, ˝2 be closed subsets in X. They are
called locally extremal [29,30] near x 2 ˝1 \˝2

if there exists a neighborhood U of x and se-
quences faikg 2 X; i D 1; 2; k D 1; 2; : : :, such that
aik ! 0 when k!1 and (˝1 � a1k) \ (˝2 � a2k) \
U D ;; k D 1; 2; : : :

This means that by an arbitrarily small shift the sets
can be made unintersecting in a neighborhood of x.
The definition represents a rather general notion of ex-
tremality: some locally extremal system corresponds to
a local solution of any optimization problem (see vari-
ous examples in [22,29,31,33]).

The Extremal Principle, first established in [29] (see
also [22,30,31]) for the case of a Fréchet smooth space
(and in terms of "-normals) and in [35] (see [34]) in the
Asplund space setting, provides a dual space character-
ization of locally extremal systems in terms of Fréchet
normals. It can be viewed as a fuzzy form of the separa-
tion property.

Extremal Principle If a system of sets˝1,˝2 is locally
extremal near x 2 ˝1 \˝2 then for any ı > 0 there ex-
ist elements x�1 2 N̂ı(xj˝1), x�2 2 N̂ı(xj˝2) such that
kx�1 C x�2 k < ı, kx�1 k C kx�2 k D 1.

The following theorem proved in [35] shows that the
Extremal Principle provides an extremal characteriza-
tion of Asplund spaces.

Theorem 4 The following assertions are equivalent:
1. X is an Asplund space.
2. The Extremal Principle is valid in X.

Due to Theorems 3 and 4 the Extremal Principle
is equivalent to the Sum Rules. It is also equiva-
lent to some other basic results of nonsmooth analy-
sis [6,34,45].

The Extremal Principle can be viewed as a certain
extension of the classical separation theorem for convex
sets. It was used in [22,29,30,31,36] and in many other
papers as a main tool for deducing calculus formulas
and necessary optimality conditions.
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The local extremality assumption in the Extremal
Principle can be replaced by a weaker stationarity
condition [26,27,28]. The resulting Extended Extremal
Principle is formulated as a necessary and sufficient
condition and is also equivalent to the asplundity of the
space.

As noticed in [35], considering the extremal sys-
tem provided by the pair fxg;˝, where x is a boundary
point of a closed set˝ makes it possible to deduce from
Theorem 4 the following nonconvex generalization of
the well-known Bishop–Phelps theorem [40].

Corollary 1 Let ˝ be a closed subset in an Asplund
space X and let x 2 bd˝. Then for any ı > 0 there exists
x� 2 N̂ı(xj˝) such that kx�k D 1.

See also

� Nonsmooth Analysis: Weak Stationarity
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Introduction

The article considers different stationarity and regular-
ity concepts for extended real-valued functions on met-
ric spaces.

All the properties can be characterized in terms of
certain local constants. A function is said to be station-
ary at a point (in some sense) if the corresponding con-
stant is zero (a critical point). Otherwise the function is
said to be regular at this point (in the same sense), and
the constant provides a quantitative estimate of regu-
larity.

Traditionally the stationary behavior of a function
at a point (stationary point) means that it is arbitrar-
ily close to a constant near this point, that is the rate of
change of the function is infinitely small compared to
the increment of the variable. Of course, this is equiv-
alent to the derivative being equal to zero (dual char-
acterization of stationarity). The classical examples of
the stationary behavior of a function, found in the text-
books, are given by the functions y D x2, y D �x2, and
y D x3. These three examples characterize the three
possible types of stationary behavior in the differen-
tiable case.

Stationarity arises naturally in optimization theory:
a point of minimum or maximum is necessarily a sta-
tionary point. At the same time it is easy to see that
weaker stationarity concepts are applicable to optimiza-
tion problems. For instance, when dealing with mini-
mizing a real-valued function, only its decrement must
be infinitely small at a stationary point, and the func-
tion itself does not need to be arbitrarily close to a con-
stant or even differentiable at the point. Of course, if



Nonsmooth Analysis: Weak Stationarity N 2659

it is differentiable, one has the same classical stationar-
ity concept. In the nondifferentiable case more types of
the stationary behavior are possible. The examples are:
y D jxj and y D max(x;�x2) (both functions are con-
sidered near the point x D 0). One can speak about inf-
stationarity (the term suggested by Vladimir F. Demi-
anov). From the point of view of maximization a con-
cept of sup-stationarity can be considered in a similar
way. Thus in the nondifferentiable case the stationarity
splits into two “semi-stationarity” concepts.

Another pair of stationarity concepts can be of in-
terest in optimization theory: the point itself may not be
stationary (inf or sup), but in any of its neighborhood
there exists another point in which the behavior of the
function is arbitrarily close to stationary (a “fuzzy” con-
dition). We will speak about weak stationarity (inf or
sup). The exact definitions will be given below.

An example of this type of stationary behavior is
given by the function y D x sin(1/x) if x ¤ 0, and
y D 0 if x D 0. One can easily see that this func-
tion is differentiable on Rnf0g, and there exists a se-
quence fxkg such that xk ! 0 and xk is a point
of local minimum, k D 1; 2; : : : Another example:
y D x C x2 sin(1/x) if x ¤ 0, and y D 0 if x D 0. This
function is everywhere differentiable, y0(0) D 1, and
there exists a sequence fxkg such that xk ! 0 and
y0(xk) D 0, k D 1; 2; : : :

Stationarity concepts can also be defined in terms
of dual space elements (subdifferentials). The relations
between primal and dual definitions provide dual char-
acterizations of (primal space concepts of) stationarity.

This article contains no proofs. A more detailed de-
scription of the stationarity and regularity concepts for
real-valued functions can be found in [11].

Mostly standard notations are used throughout this
article. X denotes a metric space with distance d. B�(x)
stands for a closed ball with center x and radius �.

Definitions

Inf-
-Stationarity and Inf-
-Regularity

Let f be a function on a metric space X with values in
the extended real line R1 D R [ fC1g. It is assumed
to be finite at some point xı 2 X.

For � > 0 define the constant

��[ f ](xı) D inf
x2B�(xı)

f (x)� f (xı) : (1)

Note that ��[ f ](xı) � 0 and the equality ��[ f ](xı) D 0
for some � > 0 (for all � > 0) means that xı is a point
of local (global) minimum of f .

Of course, the infimum in (1) can be limited to
the set fx 2 B�(xı) : f (x) � f (xı)g, or even to the set
fx 2 B�(xı) : f (x) < f (xı)g under the additional
agreement that the infimum over the empty subset of
R� is 0.

The function �! ��[ f ](xı) is nonincreasing on
RC and lim�!C0 ��[ f ](xı) � 0. The equality lim�!C0

��[ f ](xı) D 0 means that f is lower semicontinuous at
xı. In the latter case it can be important to know how
quickly ��[ f ](xı) approaches 0 compared to �.

Define two more “derivativelike” constants based
on (1):

�[ f ](xı) D lim sup
�!C0

��[ f ](xı)
�

; (2)

�̂[ f ](xı) D lim sup
x

f
!xı;�!C0

��[ f ](x)
�

; (3)

where x
f
! xı means that x ! xı with f (x)! f (xı).

Due to the variations of x in (3), �̂[ f ](xı) gains some
properties of the strict derivative.

The constants (2) and (3) are nonpositive too, and
“zero cases” correspond to certain kinds of stationary
behavior of f near xı. If a constant is strictly negative,
this can be considered as a kind of regularity.

Definition 1 f is
(i) inf-�-stationary at xı if �[ f ](xı) D 0;
(ii) weakly inf-�-stationary at xı if �̂ [ f ](xı) D 0;
(iii) inf-�-regular at xı if �[ f ](xı) < 0;
(iv) strongly inf-�-regular at xı if �̂[ f ](xı) < 0.

The purpose of the “inf” prefix in this definition is to
emphasize that minimization problems are addressed
here. Unlike the classical case, stationarity-regularity
properties of nondifferentiable functions “from below”
and “from above” can be essentially different.

Inf-�-Stationarity and Inf-�-Regularity

Another way of defining stationarity-regularity is based
on using slightly modified versions of (2) and (3):

�[ f ](xı) D lim inf
x!xı

[ f (x)� f (xı)]�
d(x; xı)

; (4)
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�̂[ f ](xı) D lim sup
x

f
!xı; �!C0

inf
u2B�(x)nfxg

[ f (u)� f (x)]�
d(u; x)

:

(5)

The notation [˛]� D min(˛; 0) is used here. Again,
only the points x 2 B�(xı) with f (x) < f (xı) and
u 2 B�(x) with f (u) < f (x) are of interest in (4) and
(5), respectively. The role of the notation is to handle
the case where the set of such points is empty. Similarly
to (2) and (3), these constants are nonpositive.

Remark 1 �[ f ](xı) coincides up to a sign with the
strong slope jr f j(xı) of f at xı [1] (see also [5]).

Definition 2 f is
(i) inf-�-stationary at xı if �[ f ](xı) D 0;
(ii) weakly inf-�-stationary at xı if �̂[ f ](xı) D 0;
(iii) inf-�-regular at xı if �[ f ](xı) < 0;
(iv) strongly inf-�-regular at xı if �̂ [ f ](xı) < 0.

The relations between the constants (2), (3) and (4), (5),
as well as between the corresponding stationarity and
regularity concepts will be discussed in the next section.

Sup-Stationarity and Sup-Regularity

Similarly to (1)–(5) corresponding “maximization”
constants can be defined. To do this one has to replace
“inf,” “lim inf,” “lim sup,” and [�]� by “sup,” “lim sup,”
“lim inf,” and [�]C, respectively, in the corresponding
definitions. The resulting constants are nonnegative.
They are related to (1)–(5) by the following equalities:

�C� [ f ](xı) D ���[� f ](xı) ;

�C[ f ](xı) D ��[� f ](xı) ;

�̂C[ f ](xı) D ��̂[� f ](xı) ;

�C[ f ](xı) D ��[� f ](xı) ;

�̂C[ f ](xı) D ��̂[� f ](xı)

and lead to similar sup-stationarity and sup-regularity
concepts.

Of course, for a function f the set of sup-stationary
(sup-regular) points is different in general from that of
inf-stationary (inf-regular) points.

The “combined” concepts can also be of interest. It
is natural to say that a function is stationary (in some
sense) at a point if it is either inf-stationary or sup-sta-
tionary at this point. In constrast, the regularity prop-

erty for a function is satisfied when this function is both
inf-regular and sup-regular at the point.

Definition 3 f is
(i) �-stationary at xı

if max(�[ f ](xı); �[� f ](xı)) D 0;
(ii) weakly �-stationary at xı

if max(�̂[ f ](xı); �̂[� f ](xı)) D 0;
(iii) �-regular at xı

if max(�[ f ](xı); �[� f ](xı)) < 0;
(iv) strongly �-regular at xı

if max(�̂[ f ](xı); �̂[� f ](xı)) < 0;
(v) �-stationary at xı

if max(�[ f ](xı); �[� f ](xı)) D 0;
(vi) weakly �-stationary at xı

if max(�̂[ f ](xı); �̂[� f ](xı)) D 0;
(vii) �-regular at xı

if max(�[ f ](xı); �[� f ](xı)) < 0;
(viii) strongly �-regular at xı

if max(�̂[ f ](xı); �̂[� f ](xı)) < 0.

Strong inf-regularity can be interpreted in the following
way: all points in a neighborhood of a given point have
“descent sequences,” and the rate of descent is uniform.
In contrast to that, strong regularity is equivalent to the
existence of both descent and ascent sequences with the
uniformity property.

Dual Stationarity and Regularity

All definitions in the preceding subsections are primal
space definitions. As in the classical analysis, dual char-
acterizations of stationarity and regularity concepts are
important. In the case of a normed linear space, such
characterizations can be formulated in terms of Fréchet
subdifferentials.

Let X be a normed linear space. Its (topological)
dual is denoted X�. h�; �i is the bilinear form defining
the duality pairing. Recall that the Fréchet subdifferen-
tial of f at xı is defined as

@ f (xı) D
�
x� 2 X� :

lim inf
x!xı

f (x)� f (xı) � hx�; x � xıi
jjx � xıjj

� 0
	
: (6)

Definition 4 f is
(i) inf-d-stationary at xı if 0 2 @ f (xı);
(ii) inf-d-regular at xı if 0 62 @ f (xı).
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It follows immediately from the definitions that in the
normed space setting inf-�-stationarity (inf-�-regular-
ity) is equivalent to inf-d-stationarity (inf-d-regularity).

Somewhat more complicated constructions are
needed for the characterization of weak stationarity and
strong regularity.

Let us assume for simplicity that f is lower semicon-
tinuous near xı.

In the general nonconvex setting the subdifferential
mapping @ f (�) fails to possess good (semi-)continuity
properties. In fact, the set @ f (x) can be empty rather
often. Based on (6) one can define amore robust deriva-
tivelike object:

@̂ı f (xı) D
[

x2Bı (xı)

j f (x)� f (xı)j�ı

@ f (x) : (7)

This object depends on a positive parameter ı and ac-
cumulates information on “differential” properties of
f at nearby points, thus attaining some properties of
the strict derivative. The set (7) is called the strictı-
subdifferential of f at xı (see [7,8,9]). In contrast to (6),
set (7) can be nonconvex. However, it possesses certain
subdifferential calculus.

Using (7) one more constant can be defined for
characterizing stationarity/regularity properties of f :

�[ f ](xı) D lim
ı!0

inffjjx�jj : x� 2 @̂ı f (xı)g : (8)

Unlike the constants considered in the preceding sub-
sections, this constant is nonnegative.

Definition 5 f is
(i) inf-�-stationary at xı if �[ f ](xı) D 0;
(ii) inf-�-regular at xı if �[ f ](xı) > 0.

Note that the inf-�-stationary condition �[ f ](xı) D 0
does not imply the inclusion 0 2 @̂ı f (xı).

Example 1 Take f (x) D x, if x < 0, and f (x) D x2

otherwise. One has @ f (0) D ;, 0 62 @̂ı f (0) for any
ı > 0, while �[ f ](0) D 0.

Fortunately (8) happens to be closely related to (3) and
(5).

Sup-d-stationarity and sup-�-stationarity as well as
the corresponding regularity concepts can be defined in
a similar way.

Formulation

Relations Between the “Elementary” Constants

Proposition 1 The following assertions hold true:
(i) �[ f ](xı) � �[ f ](xı);
(ii) If ��[ f ](xı) D 0 for some � > 0, then �[ f ](xı) D

�[ f ](xı) D 0.

Proposition 1 (i) implies the relations between the cor-
responding stationarity and regularity concepts:
� inf-�-stationarity) inf-�-stationarity;
� inf-�-regularity) inf-�-regularity.

Proposition 1 (ii) means that at a point of local min-
imum a function is both inf-�-stationary and inf-�-sta-
tionary.

Inequality (i) in Proposition 1 can be strict even for
functions fromR toR.

Example 2 Take f (x) D �jxj, if jxj D 1/2n ,
n D 1; 2; : : :, and f (x) D 0 otherwise. Obviously
�[ f ](0) D �1. At the same time, for any � 2 �n D

f� : 1/2n � � < 1/2n�1g one has ��[ f ](0) D �1/2n and

sup
�2$n

��[ f ](0)
�

D
�1/2n

1/2n�1
D �

1
2
:

Thus, �[ f ](0) D �1/2.

It is possible to modify the above example to make
�[ f ](0) equal zero.

Example 3 Take f (x) D �jxj, if jxj D 1/nn ,
n D 1; 2; : : :, and f (x) D 0 otherwise. One still has
�[ f ](0) D �1 while �[ f ](0) D 0.

Thus, in the above example f is inf-�-regular at 0 while
being inf-�-stationary at this point.

It is possible to modify the example further to make
f continuous and even differentiable near 0 (but not
strictly differentiable!) while keeping the inequality (i)
in Proposition 1 strict.

Relations Between the “Strict” Constants

The relations between the elementary constants and
their “strict” counterparts, as well as between the two
“strict” constants, are given by the following theorem.

Theorem 1 The following assertions hold true:
(i) �̂ [ f ](xı) � lim sup

x
f
!xı

�[ f ](x);
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(ii) �̂ [ f ](xı) D lim sup
x

f
!xı

�[ f ](x);

(iii) �̂ [ f ](xı) � �̂[ f ](xı);
(iv) If X is complete and f is lower semicontinuous near

xı, then �̂[ f ](xı) D �̂[ f ](xı).

Parts (i) and (ii) of Theorem 1 imply the inequalities

�[ f ](xı) � �̂[ f ](xı) ; �[ f ](xı) � �̂[ f ](xı) ;

and both of them can be strict.

Example 4 Take the function f from Example 1. Ev-
idently, f attains a local minimum at xn D 1/2n

for any n D 1; 2; : : :, and consequently, ��[ f ](xn) D 0
for some � > 0. It follows from Proposition 1 (ii) that
�[ f ](xn) D �[ f ](xn) D 0. Consequently, �̂[ f ](0) D
�̂[ f ](0) D 0. Recall that �[ f ](0) D �1 and �[ f ](0) D
�1/2.

Inequalities (i) and (iii) in Theorem 1 can be strict, too.

Example 5 Define the function f : R! R in the
following way: f (x) D x if x � 0, f (x) D x � 1/n if
1/n < x � 1/(n � 1), n D 2; 3; : : :, f (x) D x � 1/2 if
x > 1/2. It is easy to see that �[ f ](x) D �[ f ](x) D �1
for any x 2 R. Then �̂[ f ](0) D �1. On the other hand,
take xn D 1/n C 1/n2, �n D 1/n, n D 1; 2; : : : Then
f (xn) D 1/n2, and consequently, ��n [ f ](xn) � �1/n2.
It follows immediately that �̂[ f ](0) D 0.

Due to part (iv) of Theorem 1, in the case of a lower
semicontinuous function on a complete metric space
two weak stationarity concepts as well as two strong
regularity concepts coincide and the prefixes � and �
can be omitted.

Corollary 1 The following assertions hold true:
(i) Inf-�-stationarity) weak inf-�-stationarity;

strong inf-�-regularity) inf-�-regularity;
(ii) Inf-�-stationarity) weak inf-�-stationarity;

strong inf-�-regularity) inf-�-regularity;
(iii) Weak inf-�-stationarity ) weak inf-�-stationar-

ity;
strong inf-�-regularity) strong inf-�-regularity;

(iv) If X is complete and f is lower semicontinuous near
xı, then
weak inf-�-stationarity, weak inf-�-stationarity;
strong inf-�-regularity, strong inf-�-regularity.

The next “fuzzy” characterization of weak inf-�-
stationarity can be convenient for applications. It fol-
lows directly from definition (5).

Proposition 2 f is weakly inf-�-stationary at xı if and
only if for any " > 0 there exists an x 2 B"(xı) such that
j f (x) � f (xı)j � " and

f (u)C "d(u; x) � f (x) for all u near x : (9)

Remark 2 A point x satisfying (9) is referred to in [12]
(see also [6]) as a local Ekeland point of f (with factor
"). If all the conditions in Proposition 2 are satisfied,
then xı is said to be a stationary point of f with respect
to minimization [12]. Thus, stationarity with respect to
minimization is equivalent to weak inf-�-stationarity
and, in the case of a lower semicontinuous function on
a complete metric space, also to weak inf-�-stationarity.

Relations Between the Primal and Dual Constants

Henceforth X is assumed to be a normed linear space.
The next assertion is straightforward and has already
been mentioned in the previous section.

Proposition 3
(i) inf-�-stationarity, weak inf-d-stationarity;
(ii) inf-�-regularity, inf-d-regularity.

Remark 3 Due to Propositions 1 and 3 the inclusion
0 2 @ f (xı) is sufficient for inf-�-stationarity of f at xı.
The opposite implication is not true in general (see Ex-
amples 2 and 3).

In what follows f is assumed to be lower semicontinu-
ous near xı.

Theorem 2
(i) �̂[ f ](xı)C �[ f ](xı) � 0.
(ii) If X is Asplund, then

�̂[ f ](xı)
[1C �̂[ f ](xı)]C

C �[ f ](xı) � 0 :

This theorem follows from [10], Theorem 2. The first
part of the theorem is elementary. The proof of the sec-
ond part is based on the application of the two fun-
damental results of variational analysis: the Ekeland
variational principle [2] and the fuzzy sum rule due to
Fabian [3].

Thus, in an Asplund space the constants �̂[ f ](xı)
and �[ f ](xı) can be zero or nonzero only simulta-
neously. Recall that a Banach space is called Asplund
(see [4,13,14]) if any continuous convex function on it
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is Fréchet differentiable on a dense Gı subset. Note that
in a Banach space �̂[ f ](xı) D �̂[ f ](xı) due to Theo-
rem 1.

Corollary 2
(i) inf-�-stationarity) weak inf-�-stationarity;
(ii) strong inf-�-regularity) inf-�-regularity;
(iii) If X is Asplund, then

weak inf-�-stationarity, weak inf-�-stationarity
, inf-�-stationarity;
strong inf-�-regularity , strong inf-�-regularity
, inf-�-regularity.

Differentiable Functions

The constants and corresponding stationarity/regu-
larity concepts defined above take quite a traditional
form when the function is assumed differentiable or
convex. Fortunately, the number of different constants
and concepts reduces significantly.

Theorem 3 If f is Fréchet differentiable at xı with the
derivative r f (xı), then

�[ f ](xı) D �[ f ](xı) D ��C[ f ](xı)
D ��C[ f ](xı) D �jjr f (xı)jj :

If, additionally, the derivative is strict, then

�̂[ f ](xı) D �̂[ f ](xı) D ��̂C[ f ](xı)

D ��̂C[ f ](xı) D �jjr f (xı)jj :

Recall that f is called strictly differentiable [13,15] at xı

(with the derivative r f (xı)) if

lim
x!xı; u!xı

f (u) � f (x) � hr f (xı); u � xi
jju � xjj

D 0:

This condition is stronger than the traditional
Fréchet differentiability. Thus, condition r f (xı) ¤ 0
does not guarantee strong regularity in the sense of Def-
inition 1 (or Definition 2) unless f is strictly differen-
tiable at xı.

Example 6 Take f (x) D x C x2 sin(1/x), if x ¤ 0 and
f (0) D 0. This function is everywhere Fréchet differen-
tiable and r f (0) D 1. Thus, f is regular at zero. At the
same time �̂ [ f ](0) D �̂C[ f ](0) D 0: there exists a se-
quence xk ! 0 such that r f (xk)! 0, and the asser-
tion follows from Theorem 1, part (ii). Consequently, f

is both weakly inf-stationary and weakly sup-stationary
at zero.

Corollary 3 If f is Fréchet differentiable at xı with
the derivative r f (xı), then the following conditions are
equivalent:
(i) f is inf-�-stationary at xı;
(ii) f is inf-�-stationary at xı;
(iii) f is �-stationary at xı;
(iv) f is �-stationary at xı;
(v) r f (xı) D 0.
If, additionally, the derivative is strict, then the above
conditions are also equivalent to the following ones:
(vi) f is weakly inf-�-stationary at xı;
(vii) f is weakly inf-�-stationary at xı;
(viii) f is weakly �-stationary at xı;
(xi) f is weakly �-stationary at xı.

Remark 4 Stationarity and weak stationarity in the
above corollary can be replaced with regularity and
strong regularity, respectively, if one replaces the equal-
ity in (v) with the inequality r f (xı) ¤ 0.

Convex Functions

In the convex case, as one might expect, all versions of
inf-stationarity coincide and appear to be equivalent to
just (local and global) minimality.

Theorem 4 Let f be convex.
(i) If ��[ f ](xı) < 0 for some � > 0, then ��[ f ](xı) <

0 for all � > 0.
(ii) The functions �! ��[ f ](xı)/� and � !

�C� [ f ](xı)/� are nondecreasing onRCnf0g.
(iii) The following equalities hold true:

�̂[ f ](xı) D �̂ [ f ](xı) D �[ f ](xı) D �[ f ](xı)

D inf
�>0

��[ f ](xı)
�

D inf
x¤xı

[ f (x) � f (xı)]�
jjx � xıjj

;

�C[ f ](xı) D �C[ f ](xı) D inf
�>0

�C� [ f ](xı)
�

D inf
�>0

sup
jjx�xı jjD�

[ f (x)� f (xı)]C
�

:

(iv) �[ f ](xı)C �C[ f ](xı) � 0.
(v) �̂ [ f ](xı)C �̂C[ f ](xı) � 0.
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(vi) If �[ f ](xı)C �C[ f ](xı) D 0 and fxkg � X is a se-
quence defining �[ f ](xı), that is xk ! 0 and

�[ f ](xı) D lim
k!1

f (xı C xk) � f (xı)
jjxkjj

then f�xkg is a sequence defining �C[ f ](xı):

�C[ f ](xı) D lim
k!1

f (xı � xk) � f (xı)
jjxkjj

:

Corollary 4 If f is convex, then the following conditions
are equivalent:
(i) f attains a global minimum at xı;
(ii) f attains a local minimum at xı;
(iii) f is inf-�-stationary at xı;
(iv) f is inf-�-stationary at xı;
(v) f is �-stationary at xı;
(vi) f is �-stationary at xı;
(vii) f is weakly inf-�-stationary at xı;
(viii) f is weakly inf-�-stationary at xı;
(ix) f is weakly stationary at xı.

Remark 5 The conditions �[ f ](xı) D �C[ f ](xı) D 0
imply Fréchet differentiability of f at xı (with the
derivative equal to zero). The weaker condition
�[ f ](xı)C �C[ f ](xı) D 0 in Theorem 4, (vi) implies
linearity of the directional derivative of f along the di-
rection of steepest descent (if the latter exists) with the
opposite direction being automatically the direction of
steepest ascent. This condition is not sufficient for dif-
ferentiability of f at xı unless X D R. Note also that
the direction opposite to the direction of steepest ascent
does not need to be a direction of steepest descent.

Example 7 (1) Take the function f (x; y) D max(x; y)
on R2 and assume that R2 is equipped with the max
type norm: jjx; yjj D max(jxj; jyj). f is obviously not
differentiable at 0. At the same time �[ f ](0) D �1,
�C[ f ](0) D 1. The vector (�1;�1) defines the (unique)
direction of steepest descent. The opposite vector (1; 1)
defines the direction of steepest ascent and f is linear
along the line defined by these vectors. Note that the
direction of steepest ascent is not unique. For instance,
the vector (1; 0) also defines the direction of steepest as-
cent, while the opposite vector does not define the di-
rection of steepest descent and f is not linear along this
line.

1The example was suggested by Alexander Rubinov (personal
communication).

Remark 6 Stationarity and weak stationarity in asser-
tions (iii)–(ix) of the above corollary can be replaced
with regularity and strong regularity, respectively, if
one replaces (i) and (ii) with the opposite assertions: xı

is not a point of (local or global) minimum of f .

See also

� Nonsmooth Analysis: Fréchet Subdifferentials

References

1. De Giorgi E, Marino A, Tosques M (1980) Problemi di
evoluzione in spazi metrici e curve di massima pendenza.
Atti Accad. Nat. Lincei. Cl Sci Fiz Mat Natur 68:180–187

2. Ekeland I (1974) On the variational principle. J Math Anal
Appl 47:324–353

3. Fabian M (1989) Subdifferentiability and trustworthiness
in the light of a new variational principle of Borwein and
Preiss. Acta Univ Carolinae 30:51–56

4. Fabian M (1997) Gâteaux Differentiability of Convex Func-
tions and Topology. Weak Asplund Spaces. Canadian
Mathematical Society Series of Monographs and Ad-
vanced Texts. Wiley, New York

5. Ioffe A D (2000) Metric regularity and subdifferential calcu-
lus. Russian Math Surveys 55:501–558

6. Klatte D, Kummer B (2002) Nonsmooth Equations in Opti-
mization: Regularity, Calculus, Methods and Applications,
vol 60 of Nonconvex Optimization and Its Applications.
Kluwer, Dordrecht

7. Kruger AY (1996) On calculus of strict "-semidifferentials.
Dokl Akad Nauk Belarusi 40(4):34–39 (in Russian)

8. Kruger AY (2002) Strict ("; ı)-semidifferentials and ex-
tremality conditions. Optimization 51:539–554

9. Kruger AY (2003) On Fréchet subdifferentials. J Math Sci
(NY) 116:3:3325–3358. Optimization and related topics, 3

10. Kruger AY (2004) Weak stationarity: eliminating the gap
between necessary and sufficient conditions. Optimization
53(2):147–164

11. Kruger AY (2006) Stationarity and regularity of real-valued
functions. Appl Comput Math 5(1):79–93

12. Kummer B (2000) Inverse functions of pseudo regular
mappings and regularity conditions. Math Program Ser B
88:313–339

13. Mordukhovich BS (2006) Variational Analysis and General-
ized Differentiation. I Basic theory, vol 330 of Grundlehren
derMathematischenWissenschaften (Fundamental Princi-
ples of Mathematical Sciences). Springer, Berlin

14. Phelps RR (1993) Convex Functions, Monotone Operators
and Differentiability, 2nd edn. Lecture Notes in Mathemat-
ics, vol 1364. Springer, Berlin

15. Rockafellar RT, Wets RJ-B (1998) Variational Analysis.
Springer, Berlin



Nonsmooth Optimization Approach to Clustering N 2665

Nonsmooth Optimization Approach
to Clustering
ADIL BAGIROV

Centre for Informatics and Applied Optimization,
School of Information Technology and Mathematical
Sciences, University of Ballarat, Victoria, Australia

MSC2000: 90C26, 90C56, 90C90

Article Outline

Introduction
Formulation
Methods

Modified Global k-means Algorithm
Nonsmooth Optimization Clustering Algorithm
Solving Optimization Problems

Conclusions
References

Introduction

Clustering is the unsupervised classification of the pat-
terns. Cluster analysis deals with the problems of orga-
nization of a collection of patterns into clusters based
on similarity. It has found many applications, includ-
ing information retrieval, document extraction, image
segmentation etc.

In cluster analysis we assume that we have been
given a set A of a finite number of points of n-dimen-
sional spaceRn , that is

A D fa1; : : : ; amg; where ai 2 Rn ; i D 1; : : : ;m :

The subject of cluster analysis is the partition of the set
A into a given number q of overlapping or disjoint sub-
sets Ci ; i D 1; : : : ; q with respect to predefined criteria
such that

A D
q[

iD1

Ci :

The sets Ci ; i D 1; : : : ; q are called clusters. The
clustering problem is said to be hard clustering if ev-
ery data point belongs to one and only one cluster. Un-
like hard clustering in the fuzzy clustering problem the
clusters are allowed to overlap and instances have de-
grees of appearance in each cluster. In this paper we will

exclusively consider the hard unconstrained clustering
problem, that is we additionally assume that

Ci
\

Ck D ;; 8i; k D 1; : : : ; q; i ¤ k :

and no constraints are imposed on the clusters Ci ; i D
1; : : : ; q. Thus every point a 2 A is contained in exactly
one and only one set Ci.

Each cluster Ci can be identified by its center (or
centroid). Then the clustering problem can be reduced
to the following optimization problem (see [12,26]):

minimize '(C; x) D
1
m

qX
iD1

X
a2Ci

kxi � ak2 (1)

subject to C 2 C; x D (x1; : : : ; xq) 2 Rn�q

where k � k denotes the Euclidean norm, C D fC1;

: : : ;Cqg is a set of clusters, C is a set of all possible q-
partitions of the set A, xi is the center of the cluster Ci ;

i D 1; : : : ; q:

xi D
1
jCi j

X
a2Ci

a ;

and jCi j is a cardinality of the set Ci ; i D 1; : : : ; q. The
problem (1) is also known as the minimum sum-of-
squares clustering. The combinatorial formulation (1)
of the minimum sum-of-squares clustering is not suit-
able for direct application of mathematical program-
ming techniques. The problem (1) can be rewritten as
the following mathematical programming problem:

minimize  (x;w) D
1
m

mX
iD1

qX
jD1

wi jkx j � aik2 (2)

subject to
qX

jD1

wi j D 1; i D 1; : : : ;m ;

and
wi j 2 f0; 1g; i D 1; : : : ;m; j D 1; : : : ; q :

Here

x j D

Pm
iD1 wi jaiPm
iD1 wi j

; j D 1; : : : ; q

and wij is the association weight of pattern ai with clus-
ter j (to be found), given by

wi j D

(
1 if pattern ai is allocated to cluster j
0 otherwise :

w is an m � q matrix.
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There exist different approaches to clustering in-
cluding agglomerative and divisive hierarchical clus-
tering algorithms as well as algorithms based on
mathematical programming techniques. Descriptions
of many of these algorithms can be found, for example,
in [15,20,21,26].

Problem (2) is a global optimization problem.
Therefore different algorithms of mathematical pro-
gramming can be applied to solve this problem. Some
review of these algorithms can be found in [16]. How-
ever, most of these algorithms are applicable for clus-
tering on small data sets.

Different heuristics can be used for solving cluster-
ing problems on large data sets and k-means is one
such algorithm. Different versions of this algorithm
have been studied by many authors (see [26]). This
is a fast algorithm. k-means gives good results when
there are few clusters but deteriorates when there are
many [16]. This algorithm achieves a local minimum of
problem (1) (see [24]), however results of numerical ex-
periments presented, for example, in [19] show that the
best clustering found with k-means may be more than
50% worse than the best known one.

Much better results have been obtained with meta-
heuristics, such as simulated annealing, tabu search and
genetic algorithms [23]. The simulated annealing ap-
proaches to clustering have been studied, for example,
in [13,25,27]. Application of tabu search methods for
solving clustering problem is studied in [1]. Genetic
algorithms for clustering have been described in [23].
The results of numerical experiments, presented in pa-
per [2] show that even for small problems of cluster
analysis when the number of entities m � 100 and the
number of clusters q � 5 these algorithms take 500–700
(sometimes several thousands) times more CPU time
than the k-means algorithms. For relatively large data
sets one can expect that this difference will increase.
This makes metaheuristic algorithms of global opti-
mization ineffective for solving many clustering prob-
lems.

The paper [18] develops variable neighborhood
search algorithm and the paper [17] presents j-means
algorithm which extends k-means by adding a jump
move. The global k-means heuristic, which is an in-
cremental approach to minimum sum-of-squares clus-
tering problem, is developed in [22]. The incremental
approach is also studied in the paper [19]. Results of

numerical experiments presented show the high effec-
tiveness of these algorithms for many clustering prob-
lems.

As mentioned above the problem (2) is the global
optimization problem and the objective function in
this problem is multimodal. However, global optimiza-
tion techniques are highly time-consuming for solv-
ing many clustering problems. It is very important,
therefore, to develop clustering algorithms that com-
pute near global minimizers of the objective function.
We propose the clustering algorithms based on nons-
mooth optimization approach. The algorithms provide
the capability of calculating clusters step-by-step, grad-
ually increasing the number of data clusters until termi-
nation conditions are met, that is it allows one to calcu-
late as many cluster as a data set contains with respect
to some tolerance.

Formulation

The problems (1) and (2) can be reformulated as the
following mathematical programming problem [7,8,12]

minimize f (x1; : : : ; xq)

subject to x D (x1; : : : ; xq) 2 Rn�q ;
(3)

where

f (x1; : : : ; xq) D
1
m

mX
iD1

min
jD1;:::;q

kx j � aik2 : (4)

It is shown in [12] that problems (2) and (3) are equiva-
lent. However, there are some differences between these
two formulations:
� The number of variables in problem (2) is (mCn)�q

whereas in problem (3) this number is only n � q
and the number of variables does not depend on
the number of instances. It should be noted that in
many real-world databases the number of instances
m is substantially greater than the number of at-
tributes n.

� In the hard clustering problem (2) the coefficients
wij are integer, that is the problem (2) contains both
integer and continuous variables. In the nonsmooth
optimization formulation variables are only contin-
uous.

� Nonsmooth optimization formulation of the clus-
tering problem allows one to easily consider differ-
ent similarity measures.
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All these circumstances can be considered as advan-
tages of the nonsmooth optimization formulation (3).

If q> 1, the objective function (4) in problem (3)
is nonconvex and nonsmooth. If the number q of clus-
ters and the number n of attributes are large, we have
a large-scale global optimization problem. Moreover,
the form of the objective function in this problem is
complex enough not to be amenable to the direct appli-
cation of general purpose global optimization methods.
Therefore, in order to ensure the practicality of the non-
smooth optimization approach to clustering, proper
identification and use of local optimization methods
is very important. Clearly, such an approach does not
guarantee a globally optimal solution to problem (3).
On the other hand, this approach provides a “near”
global minimum of the objective function that, in turn,
provides a good enough clustering description of the
data set under consideration.

Note also that a meaningful choice of the number
of clusters is very important for clustering analysis. It
is difficult to define a priori how many clusters repre-
sent the set A under consideration. In order to avoid
this difficulty, a step-by-step calculation of clusters is
implemented in algorithms discussed in the next sec-
tion.

Methods

In this section we will describe two incremental clus-
tering algorithms. Both algorithms are based on nons-
mooth optimization approach to clustering. In the first
algorithm nonsmooth optimization approach is used to
find starting points for k-means algorithm. This algo-
rithm is a modification of the global k-means algorithm
proposed in [22]. The second algorithm is an optimiza-
tion based clustering algorithm.

Modified Global k-Means Algorithm

k-means algorithm and its different variations are
known to be fast algorithms for clustering and they are
applicable to large data sets. In this subsection we pro-
pose a new version of k-means algorithm: the modified
global k-means algorithm, which in its turn is the modi-
fication of the global k-means algorithm. First we briefly
describe k-means and the global k-means algorithms.

k-means algorithm proceeds as follows

Step 1. Choose a seed solution consisting of k cen-
troids (not necessarily belonging to A).

Step 2. Allocate data points ai 2 A to its closest cen-
troid and obtain k-partition of A.

Step 3. Recompute centroids for this new partition
and go to to Step 2 until no more data points change
their clusters.

Nonsmooth Optimization Approach to Clustering, Algo-
rithm 1
k-means algorithm

Step 1. Compute the centroid x1 of the set A:

x1 = 1
m
Pm

i=1 a
i

and set k = 1.

Step 2. Set k = k + 1 and consider the centers x1;
x2; : : : ; xk�1 from the previous iteration.

Step 3. Consider each point a of A as a starting point
for the k-th cluster center, thus obtaining m initial
solutions with k points (x1; x2; : : : ; xk�1; a); apply
k-means algorithm starting from each of
them; keep the best k-partition obtained and its cen-
ter (x1; x2; : : : ; xk�1; xk).

Step 4. If k = q stop, otherwise go to Step 2.

Nonsmooth Optimization Approach to Clustering, Algo-
rithm 2
The global k-means algorithm

The effectiveness of this algorithm highly depends
on a starting point. It converges only to a local solu-
tion which can significantly differ from the global one
in large data sets.

The global k-means algorithm proposed in [22] is
the modification of k-means algorithm and it computes
clusters successively that is in order to compute k-th
cluster centroid this algorithm uses centroids of k � 1
clusters from the previous iteration. To compute q � m
clusters this algorithm proceeds as follows.

This version of the algorithm is not applicable for
clustering on middle sized and large data sets. Two



2668 N Nonsmooth Optimization Approach to Clustering

procedures were introduced to reduce its complexity
(see [22]). We mention here only one of them. Let

di
k�1 D min

n
kx1 � aik2; : : : ; kxk�1 � aik2

o
: (5)

For each ai 2 Awe compute:

ri D
mX
jD1

min f0; kai � a jk2 � d j
k�1g

and we take the data point al 2 A for which

l D argminiD1;:::;mri :

Then k-means algorithm is applied starting from the
point (x1; x2; : : : ; xk�1; al ) to find k cluster centers.

Now we will describe a new version of the global
k-means algorithm where a starting point for k-th clus-
ter center is computed using nonsmooth optimization
approach. Let us consider the problem of finding k clus-
ter center assuming that the centers x1; : : : ; xk�1 for
(k � 1)-clustering problem are known. We introduce
the following function:

f̄ k(y) D
1
m

mX
iD1

min
˚
di
k�1; ky � aik2

�
(6)

where y 2 Rn stands for k-th cluster center and
di
k�1 is defined as in (5). Consider a set

D D
˚
y 2 Rn : ky � aik2 � di

k�1
�
:

This is a set where the distance from any point y to
any data point is no less than the distance between this
data point and its cluster center. We also consider the
following set

D0 D Rn n D �
n
y 2 Rn : 9I � f1; : : : ;mg;

I ¤ ; : ky � aik < di
k�18i 2 I

o
:

The function f̄ k is a constant on the set D and its value
over this set is

f̄ k(y) D d0 �
1
m

mX
iD1

di
k�1; 8y 2 D :

It is clear that x j 2 D for all j D 1; : : : ; k � 1 and
ai 2 D0 for all ai 2 A; ai ¤ x j; j D 1; : : : ; k � 1. It is
also clear that f (y) < d0 for all y 2 D0.

Step 1. For any ai 2 D0
T

A calculate the set S2(ai),
the centroid ci of this set and calculate the value Nf k(ci)
of the function Nf k at this point.

Step 2. Compute

Nf kmin = min
a i2D0

T
A
Nf k(ci) ;

a j = argmina i2D0
T

A
Nf k(ci) :

and the corresponding center c j .

Step 3. Compute the set S2(c j) and its centroid.

Step 4. Recompute the set S2(c j) and its centroid un-
til no more data points escape this set or return to
this set.

Nonsmooth Optimization Approach to Clustering, Algo-
rithm 3
An algorithm for finding the initial point

Any point y 2 D0 can be taken as a starting point
for the k-th cluster center. Probably more preferably
among them is a global minimizer of the function f̄ k .
This function is a nonconvex and nonsmooth and its
minimization is difficult task. We consider a scheme for
finding its local minimizer.

For any y 2 D0 we consider the following sets:

S1(y) D
˚
ai 2 A : ky � aik2 D di

k�1
�
;

S2(y) D
˚
ai 2 A : ky � aik2 < di

k�1
�
;

S3(y) D
˚
ai 2 A : ky � aik2 > di

k�1
�
:

Since y 2 D0 the set S2(y) ¤ ;. We suggest the follow-
ing algorithm to find a starting point for the k-th cluster
center.

Now we can describe the modified global k-means
algorithm.

It is clear that f k� � 0 for all k � 1 and the se-
quence f f k�g is decreasing, that is,

f kC1;� � f k;� for all k � 1:

The latter implies that after k̄> 0 iterations the stop-
ping criterion in Step 4 will be satisfied.
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Step 1. (Initialization). Select a tolerance " > 0.
Calculate the centroid x1� 2 Rn of the set A. Let
f 1� be the corresponding value of the objective func-
tion (4). Set k = 1.

Step 2. (Computation of the next cluster center). Let
x1�; : : : ; xk� be the cluster centers for k clustering
problem. Apply Algorithm 3 to find an initial point
yk+1;0 2 Rn for the k + 1-th cluster center.

Step 3. (Refinement of all cluster centers). Take
xk+1;0 = (x1�; : : : ; xk�; yk+1;0) as a new starting point,
apply k-means algorithm to solve clustering problem
for q = k + 1. Let x1�; : : : ; xk+1;� be a solution to
this problem and f k+1;� be the corresponding value
of the objective function (4).

Step 4. (Stopping criterion). If

f k� � f k+1;�

f 1�
< "

then stop, otherwise set k = k + 1 and go to Step 2.

Nonsmooth Optimization Approach to Clustering, Algo-
rithm 4
Modified global k-means algorithm

Nonsmooth Optimization Clustering Algorithm

In this subsection we propose an algorithm for cluster-
ing where nonsmooth optimization techniques are used
to find a starting point for the k cluster center and to
solve k-clustering problems.

It is clear that f k� � 0 for all k � 1 and the se-
quence f f k�g is decreasing that is,

f kC1;� � f k;� for all k � 1:

The latter implies that after k̄ > 0 iterations the stop-
ping criterion in Step 4 will be satisfied.

Remark 1 One of the important questions when one
tries to apply Algorithms 4 and 5 is the choice of the
tolerance "> 0. Large values of " can result in the ap-
pearance of large clusters whereas small values can pro-
duce small and artificial clusters.

Remark 2 Algorithms 2, 4 and 5 are incremental
clustering algorithms. Main difference between Algo-
rithms 2 and 4 is in the way they compute starting

Step 1. (Initialization). Select a tolerance " > 0.
Calculate the centroid x1� 2 Rn of the set A. Let
f 1� be the corresponding value of the objective func-
tion (4). Set k = 1.

Step 2. (Computation of the next cluster center). Se-
lect a point y0 2 Rn and solve the following mini-
mization problem:

minimize Nf k(y) subject to y 2 Rn (7)

where Nf k is defined by (6).

Step 3. (Refinement of all cluster centers). Let Nyk+1;�
be a solution to problem (7). Take xk+1;0 = (x1�; : : : ;
xk�; Nyk+1;�) as a new starting point and solve the fol-
lowing minimization problem:

minimize f k+1(x) subject to

x = (x1; : : : ; xk+1) 2 Rn�(k+1) (8)

where

f k+1(a) = 1
m

mP
i=1

min
j=1;:::;k+1

kx j � aik2 :

Step 4. (Stopping criterion). Let xk+1;� be a solution
to the problem (8) and f k+1;� be the corresponding
value of the objective function. If

f k� � f k+1;�

f 1�
< "

then stop, otherwise set k = k + 1 and go to Step 2.

Nonsmooth Optimization Approach to Clustering, Algo-
rithm 5
Nonsmooth optimization clustering algorithm

points for the next cluster center. Algorithm 2 uses
data points whereas Algorithm 4 uses local minimizers
of the function f̄ k . Algorithm 5 uses nonsmooth op-
timization techniques for the finding of both starting
points and k-partition of a data set.

Remark 3 Computational results on gene expression
data sets presented in [6] demonstrate that Algorithm 4
is more efficient than Algorithm 2.However, the former
requires more computational time.
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Remark 4 Results of numerical experiments presented
in [11] demonstrate that Algorithm 5 is efficient for
solving large scale clustering problems in a reasonable
CPU time. Moreover, its success to locate global solu-
tions is higher than that for Algorithms 2 and 4. How-
ever, this algorithm requires significantly more CPU
time than other algorithms.

Solving Optimization Problems

The objective functions in problems (7) and (8) are
nonsmooth and nonconvex. If the number of attributes
and clusters are large then the problem (8) is large
scale problem. Both objective functions are non-regular
and the computation of even one their subgradient
may become very difficult problem (for the definition
of non-regular function, see [14]). Therefore, subgra-
dient-based methods are not always efficient for solv-
ing problems (7) and (8). We use the discrete gradient
method to solve these problems [3,4,5]. This is a deriva-
tive free method.

The objective functions in problems (7) and (8) are
piecewise partially separable (for the definition of piece-
wise partially separable functions, see [9]). The discrete
gradient method was modified taking into account this
special structure of the objective functions. This modi-
fied discrete gradient method is described in [10].

Conclusions

In this paper we discussed a nonsmooth optimiza-
tion approach to clustering problems. Many cluster-
ing problems are large scale global optimization prob-
lems. The nonsmooth optimization approach allows
one to significantly reduce the number of variables in
this problem. It also can easily handle different similar-
ity measures.

We introduced two algorithms based on the nons-
mooth optimization approach. Both algorithms are in-
cremental clustering algorithms. As these algorithms
compute clusters step by step, they allow the decision
maker to easily vary the number of clusters according
to the criteria suggested by the nature of the decision
making situation not incurring the obvious costs of the
increased complexity of the solution procedure. The
suggested approach utilizes a stopping criterion that
prevents the appearance of small and artificial clusters.
Nonsmooth optimization problems from cluster anal-

ysis have special structure which allows one to design
efficient algorithms for their solution.
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Given a nonempty closed set X � Rn and a mapping
F: Rn! Rn, assumed to be continuously differentiable,

the variational inequalities (abbreviated: VI) are to find
an x� 2 X such that

(x � x�)>F(x�) � 0 ; 8x 2 X : (1)

When X = Rn
C (the positive orthant), (1) is equivalent

to the nonlinear complementarity problem (abbreviated:
NCP): Find x� 2 Rn such that

x� � 0; F(x�) � 0; x�>F(x�) D 0 : (2)

Usually, X is represented by several inequalities and
equalities. By considering the Karush–Kuhn–Tucker
(KKT) conditions of (1) if necessary, X is assumed to be
a closed convex subset of Rn here. It has been proved by
B.C. Eaves in [9] that solving (1) is equivalent to finding
a solution of the equation

H(x) :D x �˘X[x � F(x)] D 0 ; (3)

where ˘X is the orthogonal projection onto X. When
X = Rn

C, (3) becomes

H(x) D min(x; F(x)) D 0 ; (4)

where the operation min is taken componentwisely.
This means that finding a solution of NCP is equivalent
to finding a root of (4). It also has been shown by A. Fis-
cher in [10] that finding a solution of NCP is equivalent
to finding a root of another equation, namely of:

Hi (x) :D �(xi ; Fi (x)) D 0; i D 1; : : : ; n ; (5)

where � is called the Fischer–Burmeister function (FB
function), defined in [10] as

�(a; b) D
p
a2 C b2 � (aC b); a; b 2 R :

Due to the nonsmoothness of the orthogonal projec-
tion operator ˘X , the min function and the FB func-
tion, the function H defined either in (3), in (4) or in
(5) is, in general, not smooth (i. e. continuously differ-
entiable) no matter how smooth F is. This prevents one
from using classical Newton methods to find solutions
of these (nonsmooth) equations.

Suppose that H:Rn!Rn is a locally Lipschitz func-
tion (the function H defined in either (3), (4) or (5)
is a locally Lipschitz function) but is not necessarily
smooth. By Rademacher’s theorem, H is almost every-
where differentiable. Let

DH D fx : H is differentiable at xg :
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Then the generalized Jacobian of H at x in the sense of
F.H. Clarke [6] can be defined by

@H(x) D conv @BH(x) ;

where @B H(x) [20] is defined by

@BH(x) D

8̂
<
:̂

lim
x j!x
x j2DH

H0(x j)

9>=
>;
:

The nonsmooth Newton method for solving

H(x) D 0; x 2 Rn ; (6)

can be defined as follows: Having the vector xk 2 Rn,
compute xk+1 by

xkC1 D xk � V�1k H(xk) ; (7)

where Vk 2 @H(xk). The nonsmooth Newton method
(7) reduces to the classical Newton method for a sys-
tem of equations ifH is continuously differentiable. The
classical Newton method has the favorable feature that
the sequence {xk} generated by (7) is locally superlin-
early (quadratically) convergent to a solution x� ofH(x)
= 0 ifH0(x�) is nonsingular (andH0 is Lipschitz contin-
uous) [8,18]. However, in general the iterative method
(7) is not convergent for nonsmooth equations (6). See
[16] for a counterexample.

In order to establish some superlinearly convergent
results for the nonsmooth Newton method (7), we use
the concept of semismoothness. Let H be directionally
differentiable at x. H is said to be semismooth at x if

Vd � H0(x; d) D o(kdk); d ! 0 ;

and H is called strongly semismooth at x if

Vd � H0(x; d) D O(kdk2); d ! 0 ;

where V 2 @H(x + d). Semismoothness was originally
introduced by R. Mifflin [17] for functionals. L. Qi and
J. Sun [24] extended the concept of semismoothness
to vector-valued functions. See [19] for several forms
of semismooth equations. Using semismoothness, they
[24] presented the following convergence theorem for
the generalized Newton method (7):

Theorem 1 Suppose that H(x�) = 0 and that all V 2
@H(x�) are nonsingular. Then the generalized Newton

method (7) is Q-superlinearly convergent in a neighbor-
hood of x� if H is semismooth at x�, and quadratically
convergent if H is strongly semismooth at x^ �.

Note that the nonsingularity of @H(x�) in the above
theorem is somewhat restrictive in some cases. Qi [20]
presented a modified version of (7), which may be
stated as follows

xkC1 D xk � V�1k H(xk) ; (8)

where Vk 2 @B H(xk). The difference of this version
from (7) is that Vk is chosen from @B H(xk) rather than
the convex hull of @B H(xk). Analogous to the above
theorem, Qi [20] established the following result:

Theorem 2 Suppose that H(x�) = 0 and that all V 2
@B H(x�) are nonsingular. Then the generalized Newton
method (8) is Q-superlinearly convergent in a neighbor-
hood of x� if H is semismooth at x�, and quadratically
convergent at x� if H is strongly semismooth at x�.

In general, neither (7) nor (8) can be globalized because
� is not necessarily continuously differentiable, where
for any x 2 Rn, �(x) = kH(x)k2/2. However, if � is con-
tinuously differentiable (e. g., � is defined via (5); [14]),
the nonsmooth Newton direction is a descent direction
of � and thus globalized methods can be designed. See
[7] for a line search model and [13] for a trust region
model.

The feature of smoothing methods is to construct
a smoothing approximation function G: Rn × R++ !

Rn of H such that for any " > 0 and x 2 Rn, G(", �) is
continuously differentiable on Rn and satisfies

kH(x)� G("; x)k ! 0 as " # 0 ; (9)

and then to find a solution of H(x) = 0 by (inexactly)
solving the following problems for a given positive se-
quence {"k} with "k! 0 as k!1,

G("k ; x) D 0 : (10)

It was suggested in [21] to use the convolution to con-
struct smooth approximations of the nonsmooth func-
tion H. A function ˚ : Rn ! R+ is called a kernel func-
tion if
Z
Rn
˚(x) dx D 1 :
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Suppose ˚ is a smooth kernel function. Define 
: R++

× Rn! R+ by


("; x) D "�n˚("�1x) ;

where (", x) 2 R++ × Rn. Then a smooth approximation
of the projection operator˘X can be described by

P("; x) D
Z
Rn
˘X(x � y)
("; y) dy ; (11)

where (", x) 2 R++ × Rn. Suppose that

� :D
Z
Rn
kyk˚(y)dy < C1 :

Then for any x 2 Rn and " > 0 one has

kP("; x) �˘X(x)k � �" :

In general, P(", x) is intractable because a multidimen-
sional integration is involved. However, it can be writ-
ten explicitly if X is of special structure (for exam-
ple, X is a rectangular) and ˚ is chosen particularly
(see [3,12]). In fact, already in 1986 S. Smale [26] gave
a smooth function (wC

p
w2C"2)
2 to approximate max(0,

w), w 2 R, and used it to study linear complementar-
ity problems. Also see [2,15]. The paper [1] stimulates
much recent study about smoothing methods for solv-
ing NCP and VI. For the convenience of discussion, for
any " < 0, define P(", x) = P(�", x) and P(0, x) =˘X(x),
x 2 R. Then the smooth approximation G: Rn+1 ! Rn

of H defined in (6) can be described by

G("; x) D x � P("; x � F(x)) ; (12)

where (", x) 2 R × Rn. Thus, for any (", x) 2 R × Rn,

kG("; x) � H(x)k � �" :

See [21] for a general case ifH is not of the form defined
in (3).

Note that, for variational inequalities, if the function
F is only defined on X and not well defined outside X,
then the functionH defined in (3) is not well defined on
Rn. In this case, one can use the normal map introduced
by S.M. Robinson [25] to overcome this difficulty. It is
also noted that solving (1) is equivalent to finding a so-
lution of the equation

H(x) :D x �˘X[x � F(˘X(x))] D 0 ; (13)

where x 2 Rn. The above-defined H only requires F be-
ing defined on X instead of on Rn as required by the
function defined in (3). Unlike Robinson’s normal map,
the above map does not need to work on a transformed
space, it works on the original space directly. By us-
ing the definition of P, the smoothing approximation
G: Rn+1! Rn of H defined in (13) can be described by

G("; x) D x � P("; x � F(P("; x))) ; (14)

where (", x) 2 R × Rn.
The first globally and superlinearly (quadratically)

convergent smoothing Newton method was proposed
by X. Chen, Qi and D. Sun in [4], where the authors ex-
ploited a Jacobian consistency property and applied this
property to an infinite sequence of smoothing approx-
imation functions to get high-order convergent meth-
ods. The smoothing function defined by (12) satisfies
the Jacobian consistence property while the one defined
in (14) does not satisfy this property. The method in [4]
was further studied by Chen and Y. Ye in [5].

Suppose that G: Rn+1! Rn is a smoothing approxi-
mation of H. Define E: Rn! Rn by

E(z) :D
�

"

G("; x)

�
; (15)

where z := (", x) 2 R × Rn. Then solving H(x) = 0 is
equivalent to finding a solution of E(", x) = 0. Note that
E is continuously differentiable at any (", x) 2 R × Rn

with " 6D 0 and is possibly nonsmooth at (0, x) 2 R ×
Rn. We call E a smoothing-nonsmooth reformulation of
H. Then classical Newton methods for solving smooth-
ing equations can be used to solve E(z) = 0 with one
additional requirement: " must be positive during the
process of iteration. The latter can be done by solving
a slightly modified Newton equation:

E(z)C E0(z)	z D ˇz ; (16)

where ˇ 2 (0,1) and z :D ("; 0) with " > 0. It is obvi-
ous that one should control " such that it neither con-
verges too fast (no stronger global convergence results
guaranteed) nor too slow (no fast local convergence re-
sults guaranteed). A special line search model involving
ˇ and z was designed in [23] to achieve this: Choose
" 2 RCC and � 2 (0, 1) such that �" < 1. Choose con-
stants ı, � 2 (0, 1). Let "0 :D "; x0 2 Rn be an arbitrary
point. For k = 0, 1, . . . , find a solution � zk of (16) with
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z := zk and ˇ := � min{1, e(z)}, where for any y 2 Rn+1,
e(y) = kE(y)k2. Let lk be the smallest nonnegative inte-
ger l satisfying

e(zk C ı l	zk) � [1 � 2�(1 � �")ı l ]e(zk) :

Define zk := zk+ı lk�zk. It is often verified that G is also
semismooth everywhere jointly with " and x [23]. So the
semismooth theory of nonsmooth Newtonmethods for
solving nonsmooth equations can be used to obtain su-
perlinear (quadratic) convergence of (", x) for the above
smoothing Newton method while the global conver-
gence is based on the particular designed line search.
See [23] for details.

Conclusion

In this paper semismooth Newton methods and
smoothing Newton methods for solving NCP and VI
based on nonsmooth equations have been briefly re-
viewed. These topics are still undergoing a very fast de-
velopment. See [22] for an up-to-date review. Another
nonsmooth approach for solving NCP and VI is to re-
formulate these problems as unconstrained optimiza-
tion problems whose objective functions are once but
not twice differentiable, (see [11]).

See also

� Composite Nonsmooth Optimization
� Nonconvex-Nonsmooth Calculus of Variations
� Solving Hemivariational Inequalities by Nonsmooth

Optimization Methods
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Given a combinatorial problem, one tries to exploit its
structure so as to develop a solution algorithm that
guarantees identifying an optimal solution for every in-
stance of the problem. For some problems, the inher-
ent structure is such that one can develop an algorithm
that progressively builds an optimal solution, or selects
among a small number of candidate solutions. Such
algorithms are quite desirable as their computer time
requirements are small, and often a bounded polyno-
mial function of the number n of parameters needed
to specify the problem (e. g. O(n) or O(n2); see [9] for
details on algorithmic complexity). Thus, such algo-
rithms are called polynomial algorithms. Problems solv-

able by a polynomial algorithm may be solved quickly
on a computer.

Unfortunately, not all combinatorial problems pos-
sess enough structure to allow for a polynomial algo-
rithm. Hence, when we encounter a new problem for
which we cannot identify enough structure, we would
like to know whether this lack of structure is due to
the problem itself, or to incomplete analysis. To ad-
dress this issue, one idea is to compare the structure
of the problem at hand with the structure of other
well known and notoriously hard problems; such prob-
lems are known in literature as NP-complete problems.
Specifically, if we can show that our problem is ‘equiv-
alent’ to an NP-complete problem, then any algorithm
that solves our problem can be used to solve the hard
one and vice versa. Then, we can justifiably suggest
that our problem is very difficult. With this informa-
tion, we can either continue focusing our efforts in find-
ing a polynomial time optimal algorithm (admitting that
our chances for success are low) or consider heuristics
or enumeration techniques.

If we are ever able to find a polynomial time algo-
rithm for a NP-complete problem, we will make one of
the most important discoveries in human knowledge.
This will mean that we are able to solve all hard com-
binatorial problems very quickly (for details about the
relationship between the class of polynomially solvable
problems and the class of NP-complete problems see
[4]). If we believe that this is unlikely, then we focus our
analyses on enumeration techniques. Hence, in the lat-
ter case, the equivalence between the problem at hand
and the NP-complete problem have dictated our ap-
proach towards the problem at hand. Since 1971 when
the foundations of complexity theory were developed
by S.A. Cook in [2], all the papers that have appeared in
the literature have taken the latter route – namely, they
focus on heuristics and/or enumeration techniques. In
this sense, complexity theory is a very useful tool for de-
termining our approach towards solving difficult com-
binatorial problems. In this article, we present some of
the fundamental techniques that have been used in the
literature to prove equivalence among problems. We
start in the next section by presenting a list of combina-
torial optimization problems. Then, we describe some
basic methodology for theorem proving in complex-
ity theory, and conclude with a few illustrative example
proofs.
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Some KnownNP-Complete Problems

In what follows we present some problems commonly
used in the literature to prove equivalence between
problems. All of these problems are notoriously hard,
they belong to the class of NP-complete problems, and
hence, no polynomial algorithm is known for them. In
the rest of this article we present methods for proving
the equivalence between selected pairs among of these
problems. Our selected problems span a sample of ar-
eas in combinatorial optimization including set parti-
tion, logic, graph theory, network theory, and schedul-
ing theory.

The following two problems are representative of
problems in set partition. The problems are stated in
their decision form, i. e., we only require a ‘yes/no’ an-
swer to resolve them. Each instance is described by
the input data required to define the problem, and
each question requires a ‘yes/no’ answer. This presen-
tation of combinatorial problems follows the presenta-
tion form adopted in [4] which was the first text de-
voted to a systematic compilation of hard combinato-
rial problems.

Definition 1 (Partition) INSTANCE: Set A = {a1, . . . ,
an} of elements, and a set function s: A! Z+.

QUESTION: Does there exist a set A0 � A such that

X
a2A0

s(a) D
1
2

X
a2A

s(a) ?

Definition 2 (3-Partition) INSTANCE: Set A = {a1,
. . . , a3n} of elements, set function s:A! Z+, and thresh-
old value B.

QUESTION: Are there subsets Ak � A, k = 1, . . . , n,
such that

X
a2Ai

s(a) D B and jAk j D 3 for 1 � i � n ?

These problems are among the most popular problems
found in complexity theory. Note that in ‘Partition’,A is
partitioned in two sets with no restriction on the num-
ber of elements per set. For this reason, ‘Partition’ is of-
ten referred to in the literature as 2-partition. In con-
trast, ‘3-partition’ involves the partition of A in n sets
each consisting of precisely three elements.

Definition 3 (3-Satisfiability) INSTANCE: A Boolean
expression B in literals xi, i = 1, . . . , q,

B D (p11 _ p12 _ p13) ^ � � � ^ (pn1 _ pn2 _ pn3)
D ^n

iD1 _
3
jD1pi j

where each pij is either xk or its negation xk for some 1
� k � q.

QUESTION: Is there an assignment for the literals
xk such that B is true?

This problem is also referred to in the literature as 3-
Sat. The related problem where every clause has an ar-
bitrary number of literals (rather than precisely three)
is known in the literature as the satisfiability problem,
or Sat, and has the distinction of being the first NP-
complete problem (see [2]). Note that, if we were able
to solve ‘Sat’ in polynomial time, then we would be able
to determine the truth value of all possible statements
in propositional calculus. Effectively, we could cast ev-
ery imaginable theorem in propositional form, and let
a computer answer it. This would be equivalent to the-
orem proving using computers.

Definition 4 (Maximum clique) INSTANCE: Graph
G = (V , E) and positive integer k.

QUESTION: Does there exist a complete subgraph
of G on k vertices?

The ‘maximum clique’ is a very important problem in
graph theory with applications in diverse fields. The
following problem is encountered when one wants to
identify a path (with certain properties) in a given net-
work.

Definition 5 (Impossible pairs constrained path prob-
lem (IPP)) INSTANCE: Directed graph G = (V , A)
with source s and sink t, and pairs of nodes (ai, bi) for i
= 1, . . . , n.

QUESTION: Does there exist a directed s � t path
containing at most one node from each pair (ai, bi) for
i = 1, . . . , n?

The following problems are found in scheduling theory
where a set of jobs is to be processed in a production
system so as to optimize a given objective. We use the
standard 3-field notation ˛/ˇ/� (see [6]) where ˛ de-
notes the number and type of processors, ˇ describes
the job characteristics, and � the objective function.
For example, ˛ = 1 indicates a single processor, and ˛
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= Pm denotes m identical processors operated in par-
allel. Job characteristics include completion deadlines,
start times, precedence constraints among jobs, or pro-
cessing characteristics. A popular scheduling objective
is the minimization of the makespan, Cmax – the max-
imum completion time, where the maximum is taken
over all jobs. Evidently, Cmax may be the preferred ob-
jective when a manager wants to maximize the utiliza-
tion of processors.

Definition 6 1/ri, di/Ci � di INSTANCE: Set J = {J1,
. . . , Jn} of jobs, each with a processing time pi, a due-
date di, and a release time ri, 1 � i � n.

QUESTION: Is there a schedule of the jobs in J such
that each job starts after time ri and completes at time
Ci � di?

In the above problem one wants a single processor
schedule where every job Ji starts no earlier than time ri
and finishes no later than time di. Such schedule would
allow on time delivery of jobs to the customers.

Definition 7 Pm//Cmax INSTANCE: SetM = {M1, . . . ,
Mm} of parallel identical processors, set J = {J1, . . . , Jn}
of jobs each with a processing time pi, and threshold
value B.

QUESTION: Is there a nonpreemptive assignment
of the n jobs to the m processors so that at any time
every machine processes at most one job, and the com-
pletion time of Ji is Ci � B for every 1� i� n?

Here we seek a schedule of the n jobs on the m pro-
cessors so as to minimize the completion time of the
last job. Every processor can process at most one job at
a time, and every job must be processed in its entirety
without being interrupted by any of the processors.

Definition 8 P//prec, pi = 1/Cmax INSTANCE: Set J
= {J1, . . . , Jn} of jobs with processing time pi = 1 for 1
� i � n, and set A of precedence constraints between
jobs in J. Also, set P of parallel identical processors, and
a threshold value B.

QUESTION: Is there a nonpreemptive assignment
of jobs to processors so that at any time every ma-
chine processes at most one job, the job precedence
constraints are satisfied, and the completion time of Ji
is Ci � B for every 1 � i � n?

Unlike the previous problem, the number of parallel
identical processors is not specified in this problem,
i. e., ˛ = P. Every job has unit processing time. These
unit jobs must satisfy a set of precedence constraints.
Among all nonpreemptive schedules that satisfy these
constraints, we seek one that minimizes the completion
time of the last job.

The following section presents a general methodol-
ogy for NP-completeness proofs with the problems de-
scribed above as examples.

Methodology for NP-Completeness Proofs

We start by presenting the four basic steps of a com-
plexity proof. Such proofs demonstrate that a new
problem ˘ can be transformed to a known NP-
complete problem P 2NPC. To indicate this reduction
we use the notation P /˘ .
1) Show that˘ 2NP.
2) Construct a transformation from P to˘ .
3) Show that the transformation in step 2 can be ef-

fected by a polynomial time algorithm.
4) Show that there exists a solution SP for P, if and only

if there exists a solution S˘ for˘ , and that the trans-
formations SP to S˘ and vice versa is done by a pseu-
dopolynomial algorithm for strong NP-complete re-
ductions, and by a polynomial algorithm for ordi-
nary NP-complete reductions.

Step 1 requires that, given a solution S˘ of ˘ we can
check whether S˘ provides a ‘yes’ or ‘no’ answer for˘ ,
using a polynomial algorithm. Given an arbitrary in-
stance I of P, step 2 requires constructing an instance
I0 of˘ . Step 3 requires that the construction of I0 from
I is polynomial on the number of input data required
to specify I. Finally, Step 4 requires proving that, given
a solution SP for the instance I, we can construct a so-
lution S˘ for I0 and vice versa. In almost all reductions
that have appeared in literature, steps 1–3 are quite sim-
ple and usually straightforward, while step 4 often re-
quires considerable creativity.

Step 4 refers to strong and ordinary NP-complete
problems. In a nutshell, this is one of many classifica-
tions of NP-complete problems into smaller subclasses.
For a detailed description of these classes see [4]. In
practical terms, an ordinary NP-complete problem can
be solved using implicit enumeration algorithms like
dynamic programming. In this case, the complexity of



2678 N NP-complete Problems and Proof Methodology

the algorithm is not polynomial on the length of in-
put data, but it is polynomial on the size of these data.
For instance, Partition is a NP-complete problem solv-
able by dynamic programming in O(n

P
i s(ai)) time

(see [8]). Evidently, this complexity is polynomial on
the size

P
i s(ai) of the data. To see that this complex-

ity bound is not polynomial on the length of the data,
consider the binary encoding scheme. In this scheme
each s(ai) can be represented by a string of length O(log
s(ai)), and hence s(a1), . . . , s(an) can be described by
a string of length O(

P
i log s(ai)) which is no greater

than O(n logB) where B =
P

i s(ai). We see that the time
complexity O(nB) of the dynamic program (DP)
� is polynomial on the size B of the data.
� but not polynomial on the length of the input data

for the instance I of ‘partition’, where length(I) =
O(n log B).

Notice that the complexity of this DP, O(nB), is not
bounded by any polynomial function of n log B. When
the complexity of an algorithm is polynomial on the
size of the data, but not the length of the input, we re-
fer to the algorithm as a pseudopolynomial algorithm.
A NP-complete problem solvable by a pseudopolyno-
mial algorithm is called ordinary NP-complete. Else, the
problem is strongly NP-complete.

As indicated by its complexity, solving ‘partition’ is
easier than solving any problem not solvable by implicit
enumeration. Such problems require explicit enumer-
ation algorithms like branch and bound. In the list of
problems given earlier, ‘partition’ is the only problem
solvable by dynamic programming.

Given the complexity status of the known NP-
complete problem P, we can determine whether a new
problem˘ is strongly or ordinary NP-complete, if one
of the following happens:
� P is strongly NP-complete, and P / ˘ . Then, ˘ is

strongly NP-complete.
� P is ordinary NP-complete, P / ˘ , and a pseu-

dopolynomial algorithm exists for˘ . Then,˘ is or-
dinary NP-complete.

As indicated in the following tree, all other outcomes
result to incomplete determination of the exact com-
plexity status of problem˘ .

Example Proofs

In this section we present some simple applications of
the four step reduction process outlined previously.

Example 9 Partition / P2//Cmax. Step 1 requires us to
show that P2//Cmax 2NP, i. e., given a schedule S of the
n jobs, we can check whether the associated makespan
Cmax(S)� B in polynomial time. To perform the check,
we need to find the completion time of the last job pro-
cessed by each of the processors. This requires no more
than n additions involving the processing times of the
jobs in J. Hence, Cmax(S) can be computed inO(n) time,
and subsequently, whether Cmax(S) � B or not can be
established in O(1) time. Hence, P2//Cmax 2 NP. This
completes step 1.

For step 2 we must construct an instance of
P2//Cmax, given an instance of ‘partition’. Let I be an
instance of ‘partition’, and s(a1), . . . , s(an) be the values
of the n elements a1, . . . , an in I. We construct an in-
stance I0 of P2//Cmax as follows. Let pi = s(ai), i 2 {1, . . . ,
n}. The number of processors is m = 2 and the number
of jobs is n. The threshold value B is set to B = (1/2)

P
i

pi. This completes Step 2.
This construction of I0 required n + 2 assignments,

and n + 1 basic operations to compute B. Evidently, the
total amount of effort required to construct I0 is O(n).
This concludes step 3.

In step 4, we need to show that, there exists a solu-
tion for the instance I of ‘partition’ if and only if there
exists a solution for the instance I0 of P2//Cmax. Indeed,
let A1, A2 be a partition of A such that

X
ai2A1

s(ai) D
X
ai2A2

s(ai ) D
1
2

X
ai2A

s(ai) :

From this, we can construct a solution for I0 by assign-
ing all jobs in J1 = {Ji: ai 2 A1} to be processed (in any
order) by processorM1, and all jobs in J2 = {Ji: ai 2 A2}
to be processed (in any order) by processorM2. Let S be
the resulting schedule for P2//Cmax. By definition of A1

and A2,
X
J i2J1

pi D
X
J i2J2

pi D
1
2

X
i

pi D B :

Clearly, the schedule S is constructed from A1, A2 in
O(n) time. Similarly, given a schedule S that solves
P2//Cmax one can construct the partition A1, A2 in O(n)
time as well.

Since ‘partition’ is an ordinary NP-complete prob-
lem, to completely determine the status of P2//Cmax, we
will have to develop a pseudopolynomial algorithm for
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it. Such algorithm can in fact be developed (see [1])
which means that P2//Cmax belongs to the class of or-
dinary NP-complete problems.

Example 10 3-partition / 1/ri, di/Ci � di For Step 1,
consider a given schedule S for 1/ri, di/Ci � di. By scan-
ning the n jobs of S in sequence, we can obtain the
start and completion times of the n jobs in O(n) time.
Then, we can perform the n comparisons ri � Ci � di in
O(n) time. Hence, 1/ri, di/Ci � di 2NP. This completes
step 1.

For Step 2, suppose we are given an instance I of 3-
partition, that is, a set A = {a1, . . . , a3n} with associated
values s(a1), . . . , s(a3n), and threshold value B. For rea-
sons that will become clear later, we make the follow-
ing assumptions. Firstly, s(ai) < B for every 1 � i � 3n,
otherwise we can immediately conclude that there is no
solution for the instance I of 3-partition. Secondly, we
assume that the elements a1, . . . , a3n possess the prop-
erty

) B/4 < s(ai) < B/2 for i = 1, . . . , 3n.
Indeed, if this condition does not hold, we can replace
the value of each element ai by s0(ai) = s(ai) + B, and the
threshold value B by B0 = 4B. Then, it is easy to see that,
B < s0(ai) < 2B (because s(ai) <B), and hence B0/4 < s0(ai)

< B0/2 for i = 1, . . . , 3n. In this case, the elements a1,
. . . , a3n possess the required property with respect to the
values s0(ai) and the threshold B0. Hence, without loss of
generality, we assume that the elements of the instance
I of 3-partition satisfy property 
 ). This ensures that, ifP

ai 2 Ak� A s(ai) = B, then |Ak| = 3.
From I, we construct the instance I0 of 1/ri, di/Ci �

di 2 NP with 4n jobs as follows. Set, pi = s(ai), ri = 0
and di = nB + n � 1 for i = 1, . . . , 3n. Also include in I0

n ‘filler’ jobs, F1, . . . , Fn with processing times pFi = 1,
start times rFi = iB + i � 1 and due-dates dFi = iB + i
for i = 1, . . . , n. Note that pFi = dFi � rFi = 1 so the filler
jobs have no slack. This completes step 2.

Clearly, The construction of I0 is done in O(n) time.
To prove step 4, let Ak, k = 1, . . . , n be a solution of I.
By definition of the 3-partition problem, each set Ak is
such that |Ak| = 3, and

P
a2Ak s(a) = B, k = 1, . . . , n.

From this, construct a schedule S for I0 as follows. Let Jk

= {Ji: ai 2 Ak} for k = 1, . . . , n, and schedule the jobs in
Jk to be processed (in any order) starting at time (k� 1)
B + k � 1 and finishing at time kB + k� 1 as in Fig. 2.

Evidently, the schedule S is constructed in O(n)
time. Alternatively, if S is a schedule that solves I0, then
the filler jobs should partition the 3n regular jobs in n
distinct sets, say Jk = {Ji : Ji starts after Fk�1 and is com-
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NP-complete Problems and Proof Methodology, Figure 2
Instance of 1/ri/Ci

NP-complete Problems and Proof Methodology, Figure 3
Instance of IPP

pleted before Fk} for k = 1, . . . , n. Note that for k = 1,
J1 contains jobs that start after time t = 0 (F0 is not de-
fined) and complete prior to F1. As the filler jobs have
no slack, in each Jk the sum of the processing times
must be precisely B units. By construction of the in-
stance I, each Jk must contain precisely 3 jobs. There-
fore, the sets Ak = {ai 2 A: Ji 2 Jk} for k = 1, . . . , n par-
tition A into n triplets such that

P
ai2Ak s(ai) =

P
J i2Jk

pi = B for k = 1, . . . , n, i. e., the collection {Ak}nkD1 solves
I. Hence, given a schedule S that solves I0, we can con-
struct a partition {Ak}nkD1 that solves I, in O(n) time.
This completes step 4.

This example demonstrates that we can often construct
the instance I so that it satisfies certain properties that
may become handy in proving step 4. As seen so far,
quite often steps 1 and 3, as well as parts of step 4 are
trivial, in such cases the details are often omitted. A typ-
ical example is provided next.

Example 11 3-Sat / IPP Given a Boolean expression
B, construct a digraph G as indicated in Fig. 3.

Specifically, the arc set of G is

E D
˚
(s; v1 j) : j D 1; 2; 3

�

[
˚
(vi j; viC1;k) : 1 � i � m � 1; 1 � j; k � 3

�

[
˚
(vmj; t) : j D 1; 2; 3

�
:

Also, let the set of restricted pairs be M D˚
(vi j; vkl ) : pi j D pkl

�
.

Let P = sv1l1 . . .vmlm t be a constrained path. Bymak-
ing pi l i true for i = 1, . . . ,m, we force B to be true. Since
P satisfies the constraints in M, these assignments do
not conflict. Therefore the existence of a path P implies
the satisfiability of B and vice versa. This construction
took only O(m) time, and the reduction is complete.

Our last example demonstrates how complexity theory
can be used to derive approximation results.

Example 12 Max Clique / P/prec, pj = 1/Cmax Given
G = (V , E) construct a digraph D as follows. Introduce
a job Jv for every v 2 V , a job Je for every e 2 E, and an
arc Jv! Je whenever v is an endpoint of e. Let l D

�k
2

�
be the number of edges in a k-clique, k0 = |V| � k the
number of nodes not in the clique and l0 = |E|�l, the
number of edges not in the clique.

Let the number of processors bem =max(k, l+k0, l0)
+ 1. Introduce three sets of dummy nodes

Xx ; x D 1; : : : ;m � k ;

Yy ; y D 1; : : : ;m � l � k0 ;

Zz ; z D 1; : : : ;m � l 0 :

and the arcs Xx! Yy! Zz . Note that the total number
of jobs is 3m.

We will show that there exists a feasible schedule for
the instance I of P/prec, pj = 1/Cmax = 3 if and only if
there exists a clique of size k. Or, in other words, there
is a clique of size k if and only if we can complete the
jobs in 3 periods.

(( ). Suppose a k-clique exists. Then,
� Schedule the jobs corresponding to the k clique ver-

tices in period 1 (see Fig. 4).
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� Schedule them�k jobs corresponding to each Xx in
the remaining processors in the first period.

� Schedule the l jobs corresponding to the clique edges
in period 2, schedule the k0 =m� k remaining vertex
jobs in period 2, and the m � l � k0 jobs from Yy in
period 2.

� Finally, schedule the l0 = |E| � l remaining edge jobs
in period 3 and the m � l0 jobs from Zz in period 3
(see Fig. 4).

This is a feasible schedule on three periods.
() ). We prove this by contradiction. Suppose no

k-clique exists. We will demonstrate that no 3-period
schedule can exist either. Since there are m machines
and 3m jobs, in a three period schedule all machines
must be busy for all the three periods. Certainly, due to
the precedence constraints Xx ! Yy ! Zz , all m � k
jobs must be done in period 1, all Yy in period 2 and all
the Zz in period 3. Then, the remaining k slots in pe-
riod 1 must be taken by vertex jobs. Since no k-clique
exists, the edge jobs that can be scheduled in period 2
is no greater than l � 1. Then the jobs scheduled in pe-
riod 2 are the l � 1 edge jobs, all the Yy jobs and the
m� k remaining vertex jobs. The total number of these
jobs does not exceed m � 1. Hence, there must be at
least one machine that stays idle for a period. Hence no

schedule on three periods can exist, which is a contra-
diction.

This completes the reduction, and since ‘Max
Clique’ is strongly NP-complete, so is P/prec, pj =
1/Cmax.

Observe that, in Example 12, the number m of proces-
sors is not fixed. Therefore, Example 12 does not set-
tle the complexity status for the problem in which m is
specified beforehand. For example, it does not resolve
the complexity status of P3/prec, pj = 1/Cmax. A careful
examination of Example 12 can enable us to construct
error bounds. Suppose we develop a heuristicH to solve
P/prec, pj = 1/Cmax. Then, given an instance of Max
Clique, we generate the associated instance of P/prec,
pj = 1/Cmax described in Example 12, and applyH on it.
Since H cannot always solve P/prec, pj = 1/Cmax opti-
mally (unless P = NP), there will be instances where
an optimal schedule on three periods exists, but our
heuristic H fails to find it. Since the instance of P/prec,
pj = 1/Cmax produced in Example 12 uses integer pro-
cessing times, whenever H fails to produce an optimal
solution, its makespan CH will be CH � 4 rather than 3.
Equivalently, the worst-case error bound forH must be
p = CH/C� � 4/3. This observation is true for any pos-
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sible heuristic for P/prec, pj = 1/Cmax. Therefore, unless
P = NP, no heuristic algorithm can exist with worst-
case error bound p < 4/3. Therefore, research efforts for
worst-case analyses for P/prec, pj = 1/Cmax must be fo-
cused on values of p = 4/3 or larger.

Conclusion

In this article we presented some basic techniques used
in proving NP-completeness results. Following Cook’s
seminal paper [2], the first list of reductions for combi-
natorial problems was compiled in [5]. The four exam-
ples described in this article are illustrative of diverse
optimization areas. They can be found in [3,4,7], and
[6], respectively.
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We give a survey of numerical methods for the unary
optimization problem: min f (x) =

Pm
iD1Ui(˛i(x)), x 2

Rn, where U(�) is a function of a single argument and
˛i(x) = a>i x, ai 2 R

n, i = 1, . . . , m.
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Introduction

Consider the unconstrained optimization problem:

min f (x); x 2 Rn : (1)

If f (x) takes the form

f (x) D
mX
iD1

Ui (˛i(x)); x 2 Rn ; (2)

where Ui(�) is a smooth function of a single argument
and ˛i(x) = a>i x, ai 2 R

n, i = 1, . . . ,m, then we call prob-
lem (1) a unary optimization problem. Usually m � n.
Unary optimization problems appear in many practical
fields such as linear robust regression, portfolio selec-
tion and chemical equilibrium, see, e. g. [1,2,9].

The unary optimization problem was first proposed
by G.P. McCormick and A. Sofer [9]. They exploited
the special structure of derivatives of the unary func-
tion and applied the resulting algorithm to the solution
of the classical chemical equilibrium problem. D. Gold-
farb and S. Wang [7] first proposed an implementable
algorithm specially for the unary optimization problem.
Using the special structure of unary functions, in or-
der to save computation cost, they modified the regu-
lar Newton method to develop a partial-update Newton
method. In recent years some Chinese scholars worked
on this subject and published several papers. We will
review the state of art in this new interesting field.

Goldfarb–WangAlgorithmGW

If the unary functions Ui(�), i = 1, . . . , m, in (2) are all
differentiable and the Hessian matrix r2f (x) is nonsin-
gular for all x 2 Rn, then we can use Newton method
to solve the problem (1), i. e., starting from the current
point xk, we compute the new iterate by

xkC1 D xk C sk ;

where the increment sk is obtained by solving the New-
ton equation

r2 f (xk)s D �r f (xk) : (3)

Goldfarb and Wang noticed that the Hessian r2f (x) of
the unary function has the following form:

r2 f (x) D
mX
iD1

�i(x)ai a>i ; (4)

where

�i (x) D d2Ui
˛i (x)
d˛2i

: (5)

Let ˚(x) = diag(�1(x), . . . , �m(x)), and A| = (a1, . . . ,
am). Then we can write

r2 f (x) D A>˚(x)A : (6)

Notice that only � i(x) on the right-hand side of (4) or
(6) may vary when x changes and the rank of the ma-
trix � i(x) aia>i is one for any nonzero value � i. Suppose
that only the jth diagonal element of˚(xk) and˚(xk�1)
differs at iteration k, i. e.,

A>˚(xk)A D A>˚(xk�1)AC(� j(xk)�� j(xk�1))aja>j ;

(7)

or equivalently,

r2 f (xk) D r2 f (xk�1)C(� j(xk)�� j�1(xk))aja>j : (8)

Therefore, r2f (xk)�1 can be obtained from
r2f (xk�1)�1 by the well-known Sherman–Morrison
rank-one update formula, and the next iteration can
be obtained in only O(n2) arithmetic operations after
evaluating rf and � i, i = 1, . . . , m.

The essential point of the GW algorithm is, in the
kth iteration, to construct an approximation Bk to the
Hessian r2f (xk). Goldfarb and Wang compute the in-
crement sk by solving the approximate Newton equa-
tion

Bks D �r f (xk) ; (9)

where Bk =A|˚kA, and˚k = diag(�k
1 , . . . , �k

m). So their
method can be viewed as a special type of inexact New-
ton method. The diagonal matrix ˚k is introduced to
approximate ˚(xk), and is defined by setting, for i = 1,
. . . , m, �0

i = � i(x0), and

�kC1
i D �k

i ; (10)

if � i(xk+1) is ‘replaceable’ by �k
i ; and

�kC1
i D �i(xkC1) otherwise; (11)

for k � 0. Choleski factorization is then used to solve
(9). Notice that

BkC1 D Bk C
X

i2Sk

(�kC1
i � �k

i )ai a
>
i : (12)
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where Sk is the set of indices i such that � i(xk+1) is not
‘replaceable’ by �k

i , i = 1, . . . , m. We can exploit rank-
one updates starting from the Choleski factorization of
Bk, which needs O(|Sk|n2) operations, where |Sk| is the
number of elements in Sk. So it is possible to save com-
putation cost if |Sk| is not very large.

Consider the assumptions:
A1) there exists a point x� 2 Rn with rf(x�) = 0;
A2) r2f (x�) is nonsingular;
A3) ˚(x) is continuous in a neighborhood of x�.
Goldfarb and Wang proved the following

Theorem 1 Let assumptions A1)–A3) hold. Then there
exists ı > 0 such that if kx0 � x�k � ı, the sequence
xk generated by the partial-update Newton method con-
verges to x
. Moreover, the convergence is linear, i. e.,




xkC1 � xk



 � t




xk � x�



 ; 8k (13)

where 0 < t < 1.

In order to get a higher rate of convergence, they pro-
posed two ‘replacement’ criteria for the method:
� Criterion 1: For i = 1, . . . , m, �k

i is replaceable by
�k�1
i if

ˇ̌
�i(xk) � �k�1

i

ˇ̌
ˇ̌
�i(xk) � �k�1

i

ˇ̌
C


r f (xk)



 < � ; (14)

where 0 < � < 1.
� Criterion 2: For i = 1, . . . , m, �k

i is replaceable by
�k�1
i if k� p or

ˇ̌
�i (xk) � �k�1

i

ˇ̌

maxk�pC1� j�k
ˇ̌
�i(xk) � �i (x j�1)

ˇ̌ � 1 ; (15)

where p is a given positive integer.
Consider the additional assumption
A4) ˚(x) is Lipschitz continuous at x�.
The authors proved the following

Theorem2 Let assumptions A1), A2) and A4) hold and
let xk be the sequence generated by GW algorithm. Then
1) xk is locally quadratically convergent to x� if Crite-

rion 1 is used;
2) xk is locally superlinearly convergent to x� with R-

order at least rp, where rp is the unique positive root
of tp+1 � tp � 1 = 0 if Criterion 2 is used.

In order to obtain global convergence of the method,
the authors modified the ‘working approximation’ ˚k

of ˚(x) to a b̊k , i. e., they modified the replacement
criterion to ensure A>b̊kA to be positive definite. But
the modified globally convergent algorithm is only R-
linearly convergent.

The authors’ numerical results show the method
takes less time to solve some types of problems than the
modified Newton methods, but not always so.

Analysis of the Replacement Criterion

The GW algorithm opened a new field for unary op-
timization, but, to our knowledge, during nearly five
years no more papers in this field were published. Re-
cently (as of 1999), J.Z. Zhang, N.Y. Deng and L.H.
Chen [10] discussed the efficiency of the GW algorithm.
They asked whether it was more efficient than New-
ton’s method when xk approaches the solution x�. They
showed that, generally speaking, we can not expect the
number kSkk to be small enough such that the compu-
tation cost to factorize Bk+1 by rank-one updates is less
than that to factorize r2f (xk+1) directly. The efficiency
of GW algorithm heavily depends on the magnitude of
the number |Sk|, so the frequency by which the replace-
ment takes place is a key point. Based on this idea, the
authors extended the Criterion 1 of GW algorithm to
the so-called
� Criterion R˛ : For i = 1, . . . ,m we replace � i(xk+1) by
�k
i if

ˇ̌
ˇ�i (xkC1) � �k

i

ˇ̌
ˇ < �




r f (xkC1)




˛

; (16)

where � and ˛ are two constants satisfying � > 0 and
˛ 2 (0, 1].

It is easy to see that the GW’s Criterion 1 is a special
case of Criterion R˛ with ˛ = 1 and � = �/(1 � �).

Consider the assumptions
A1) For i = 1, . . . , m, Ui(�) is three times continuously

differentiable;
A2) problem (1) has a solution x� and r2f (x�) is posi-

tive definite;
A3) the initial point x0 is close enough to the solution

x�.
They proved two theorems:

Theorem 3 Let assumptions A1)–A3) hold. Consider
the sequence xk generated by Algorithm R˛ with ˛ >

˛ JC1, where J is a nonnegative integer and ˛ JC1 is the
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unique positive root of the equation

(1C ˛)JC1˛ D 1 : (17)

Suppose that for a fixed i, we have
1) d3Ui(˛i(x�)/d˛3i 6D 0, and
2) there exists K > 0 such that

�k
i ¤ �i(x�) ;8k > K : (18)

Then
a) for any K0 > 0, there exists an integer k > K0 such that

�k
i D �i(xk) ; (19)

b) for any � > 0, there exists a K > 0 such that if

k > K ; (20)

�k
i D �i(xk) ; (21)

and
ˇ̌
ˇ̌
ˇ̌a>i

sk


sk





ˇ̌
ˇ̌
ˇ̌ > � : (22)

Then, for xk D xkC1; xkC2; : : : ; �i (xk) is replaceable by
�k�1
i successively for at most J times.

Theorem 4 The conditions are the same as Theorem 3.
Suppose there exist M1, M2 > 0 such that when k is large
enough,

M1




xk � x�




1C˛
�



xkC1 � x�




 (23)

� M2




xk � x�




1C˛

: (24)

Then there exists K > 0, such that if

k > K (25)

and

�k
i D �i (xk) : (26)

Then for xk D xkC1; xkC2; : : : ; �i(xk) is replaceable by
�k�1
i successively for at least J times.

When J = 0, then the positive root of (1 + ˛)˛ = 1 is
˛1 D

(
p
5�1)
2 . For GW’s Criterion 1, ˛ D 1 > ˛1,

so from Theorem 3, � i(xk) will never be replaceable by
�k�1
i when k is large enough. So the GW algorithm with

Criterion 1 cannot be expected to bemore efficient than
Newton method. The authors’ numerical results also
supported this conclusion.

But the authors pointed out, the idea of the GW al-
gorithm to use the approximate Hessian Bk is promis-
ing, and efficient algorithms can hopefully be con-
structed.

Using the Trust Region Approach

In GW algorithm, in order to ensure global conver-
gence, the authors modified the criteria such that the
approximate Hessian Bk be positive definite. However,
this prevents the algorithms from having a locally su-
perlinear convergence, may lead to Bk being a poor ap-
proximation and may increase the computation cost.
Motivated by this observation, Chen, Deng and Zhang
[3] removed the requirement for Bk to be positive def-
inite, and proposed two modified partial-update algo-
rithms based on trust region stabilization. They also im-
proved the replacement criteria of GW algorithm and
constructed the matrix Bk in a different way such that it
may be a better approximation to the Hessian.

Besides the replacement of the line search technique
by the trust region strategy, the main differences be-
tween their algorithms and the GW algorithm are as
follows:
a) As mentioned above, in order to get a better approx-

imation tor2f (xk), they abandoned the positive def-
initeness requirement for Bk. This change requires
an efficient method to handle a trust region sub-
problem with indefinite matrix, so they used the in-
definite dogleg method suggested in [11]. The main
feature of the method is that it solves the TR sub-
problem approximately. It first uses a Bunch–Parlett
(B-P) factorization for Bk, and then forms a dogleg
curve. Instead of minimizing the objective function
within the whole trust region, it makes a curvilinear
search along the dogleg curve in the region.

b) They introduced a threshold value l	 n/6 to control
the algorithm to get the B-P factorization directly or
to use a rank-one update, this motivated by the fact
that the number of multiplications of the two meth-
ods is

cn D
1
6
n3 C O(n2)
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1 Set parameters p > 0, positive integers w and
l . Choose the initial point x0 2 Rn . Set k = 0.

2 IF r f (xk) = 0, stop.
3 IF k = 0, go to Step 4; ELSE, define the set

Sk =
�

i :
ˇ
ˇ�i (xk) � �k�1

i

ˇ
ˇ >

ˇ
ˇ
ˇ
ˇr f (xk)

ˇ
ˇ
ˇ
ˇ1/p

�

:

(30)
IF

ˇ
ˇSk

ˇ
ˇ � w; (31)

where j Sk j is the number of elements in the
set Sk , go to Step 5; otherwise go to Step 4.

4 Set

�k
i = �i(xk); i = 1; : : : ;m; Bk = r2 f (xk):

(32)
Compute the Choleski factorization
r2 f (xk) = LkDkL>

k and the increment
sk by solving the Newton equation

r2 f (xk)s = �r f (xk):

Set xk+1 = xk + sk . Go to Step 7.
5 Set

�k
i =

(
�i (xk); i 2 Sk ;
�k�1
i ; i … Sk ;

(33)

and

Bk = Bk�1 +
X

i2S k

(�i(xk) � �k�1
i )aia>

i : (34)

Compute the Choleski factorization Bk =
LkDkL>

k which is obtained by successive j Sk j
rank-one corrections from the Choleski factor-
ization

Bk�1 = Lk�1Dk�1L>
k�1:

6 The increment s̃k is given by

s̃k =  (r2 f (xk); r f (xk); Bk ; l); (35)

where  (r2 f (xk); r f (xk); Bk ; l) is a map-
ping defined by solving approximately the
Newton equation

r2 f (x)s = �r f (x) (36)
with preconditioned conjugate gradient inner
iterations, and the preconditioner is given by
the inverse of B. The initial point is selected as
s = 0. The number of inner iterations is l . The
PCG method used here is a standard one, e.g.
see [8, Algorithm 2.5.1]. Set xk+1 = xk + s̃k .

7 Set k = k + 1, and then go to Step 2.

� Numerical Methods for Unary Optimization, Algorithm 1
Deng-Wang-Zhang algorithm

and

c1 D n2 C O(n)

respectively, and cn/c1 = n/6. That is, if k = 1 or |Sk| >
l, one performs the B-P factorization of Bk directly;
otherwise, one uses the rank-one updates of the B-P
factorization |Sk| times to get the factorization of the
matrix

Bk D B�k C
X

i2Sk

(�k
i � �

�k
i )ai a>i

where �k is the index of the iteration at which the
latest B-P factorization was performed.

c) They considered the effect of ai on the replacement
criteria. From the expression

r2 f (x) D
mX
iD1

[kaik2 �i (x)]
�

ai
kaik

��
ai
kaik

�>

(27)

they define Sk by

Sk D fi :

kaik2
ˇ̌
�i(xk) � ��ki

ˇ̌

[kaik2
ˇ̌
�i(xk) � ��ki

ˇ̌
Cminf�;



r f (xk)


g] > �;

1 � i � mg ;
(28)

where � > 0 is a constant. Then they gave two modi-
fied replacement criteria:
– Modified replacement criterion 1: For k = 1 and i
2 {1, . . . , m}, set �1

i = � i(x1). For k > 1, define �k
i

as follows:

1) If |Sk| � l, set

�k
i D

(
�i(xk) if i 2 Sk ;
�
�k
i if i … Sk :

2) Otherwise, set

�k
i D �i(xk) :

2) Modified replacement criterion 2: The same as
modified replacement criterion 1 except choose
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an extra integer parameter p > 0 and if k � p, Sk

is the same; otherwise, define

Sk D fi :ˇ̌
ˇ�i (xk) � ��ki

ˇ̌
ˇ � max

k�pC1� j�k

ˇ̌
ˇ�i(xk) � �i (x j�1)

ˇ̌
ˇ ;

0 � i � mg :
(29)

Consider the assumptions
[A1] For i = 1, . . . , m, U(�) is twice continuously dif-

ferentiable;
[A2] For any real constant f , the level set fx : f (x) �

f g is compact;
[A3] For i = 1, . . . , m, the function � i(x) is Lipschitz

continuous.
Under these assumptions the authors proved that the
two algorithms are globally convergent, and if xk con-
verges to x� and r2 f (x�) is positive definite, then the
convergence rate of the first algorithm is quadratic,
while for the second algorithm, xk is locally superlin-
early convergent to x� with R-order at least rp, where rp
is the unique positive root of tp+1 � tp � 1 = 0.

The authors’ numerical experiments showed that
the two algorithms outperform the trust region method
which uses GW’s criteria 1 and 2.

An Inexact NewtonMethod Using Preconditioned
Conjugate Gradient Techniques

More recently (1999), Deng, Wang and Zhang [6] de-
veloped Goldfarb and Wang’s idea further and ex-
ploited the preconditioned conjugate gradient tech-
nique proposed in [5] and [4] to derive a new inexact
Newton method. They showed that, when n � 31, the
local behavior of this algorithm is superior to that of
both the GW algorithms and the algorithm mentioned
in the above section [3] from the efficiency point of
view. Their algorithm model is given below.

Suppose problem (1) has a solution x� and the fol-
lowing conditions are valid in a neighborhood of x�:
[A1] For i = 1, . . . , m, the second derivative � i(x) of

Ui(�) defined by (5) is Lipschitz continuous with
the constant L;

[A2] r2f (x�) > 0, i. e. the Hessian is symmetric posi-
tive definite.

The authors proved the following local quadratic con-
vergence theorem about the Deng–Wang–Zhang algo-
rithm.

Theorem 5 Let Assumptions A1)–A2) hold. If l � p,
then there are positive scalars ı and M such that if kx0

� x�k � ı, the Deng–Wang–Zhang Algorithm (Algo-
rithm 1) is well-defined and, furthermore, the sequence
{xk} generated by it satisfies



xkC1 � x�




 � M



xk � x�





2
:

In other words, the sequence {xk} converges to x� with
q-order at least 2.

The authors also studied the precisely quadratic con-
vergence of the Deng–Wang–Zhang Algorithm, that
is essential for the estimation of its computation cost.
Consider the following additional assumption:
[A3] For any nonzero h 2 Rn, we have

mX
iD1

�0i (x
�)(a>i h)

2ai ¤ 0 : (37)

The authors proved

Theorem 6 Consider the sequence {xk} generated by the
Deng–Wang–Zhang Algorithm with l > p. Let Assump-
tions (A1)–(A3) hold. Then there is a positive scalar ı1
and M1 > 0 such that if kx0 � x�k � ı1, then for any k =
0, 1, . . .

M1




xk � x�




2
�



xkC1 � x�




 � M



xk � x�





2
;

(38)

where M is defined in Theorem 5. In other words, the
sequence {xk} converges to x� with Q-order equal to 2.

In order to obtain an implementable algorithm, the au-
thors specified the values of the parameters l, p and w in
the Algorithm with the following purposes in mind:
1) retain the quadratic convergence;
2) keep the computation cost per iteration as little as

possible.

Here the computation cost is only concerned with the
arithmetic operations in solving the Newton equation
in Step 4 and Steps 5–6. For simplicity, they only con-
sidered the number of multiplicative operations. For
example, for Step 4, the arithmetic operations refer to
the number QN of multiplications to compute the solu-
tion sk to (36) by a direct Choleski factorization, which
is

QN D QN(n) D
n3

6
C

3n2

2
�

2n
3
: (39)
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Numerical Methods for Unary Optimization, Table 1

n = 100 200 400 500 800 1000 2000
w = 0 0 0 0 0 0 0
p = (2; 3) (4; 5) (4; 5) (8; 9) (8; 9) (8; 9) (16; 17)
l = 3 5 5 9 9 9 17
Q(n)
QN (n)

� 0:67 0:53 0:43 0:41 0:35 0:33 0:28

Similarly, the arithmetic operations in one conjugate
gradient inner iteration in Step 6 refers to the number
of multiplications, denoted by QCG, in calculating the
right-hand side of (35), but with l there being replaced
by 1:

QCG D QCG(n) D 2n2 C 6nC 2 : (40)

Using the minimization of an upper bound of the
average computation cost per iteration, the authors ob-
tained the optimal parameter values of w, p and l, then
established an implementable algorithm for problem
(1) with n � 9 as follows.

The same as the Deng-Wang-Zhang algo-
rithm, except that the parameters are specified
as follows:

1 The parameter w: set w = 0.
2 The parameter p: when 19 � n � 9, set

p 2 (0; 1); when 30 � n � 20, set p 2
(0; 2); when n � 31, set p 2 (2i�; 2i� + 1),
where the integer i� can be determined as
follows: Let N = [QN/QCG ], divide interval
(0;N) by the points 2i ; i = 1; : : : ; into subin-
tervals (0; 2]; (21; 21+1]; : : : ; (2 j�1; 2 j]; (2 j;N],
where 2 j + 1 � N � 2 j+1, then compare the
values

u(i) =
QN

1 + i
+
i(2i + 1)QCQ

1 + i

for i = 1; : : : ; j. The integer i� is defined as the
index corresponding to the smallest value u�
of u(i) : u(i�) = u�.

3 The parameter l : set l = l(p), where l(p) is de-
fined by
p + 1 � l(p) > p.

Then the authors proved the following theorem
about the computation cost:

Theorem 7 Let A1)–A3) hold. Then compared with the
corresponding number QN = QN(n) of Newton’s method
with Choleski factorization, the average arithmetic oper-
ations per iteration Q D Q(n) of the improved Deng–
Wang–Zhang algorithm has the following properties:
1) When 30� n � 9, Q(n) � QN (n);
2) when n � 31, Q(n) < QN (n);
3) limn!1

Q(n)
QN (n)

! 0.

Corresponding to the theoretical result in Theorem 7,
some numerical values are listed in Table 1. For exam-
ple, for n = 200, we have i� = 2, p 2 (4, 5), l = 5 and u� =
u(2) = 0.53QN , whichmeans that the average cost per it-
eration of the improved Deng–Wang–Zhang algorithm
is no more than 0.53 QN .

The authors also pointed out that the parameter se-
lection problem in the Deng–Wang–Zhang algorithm
is worth of further study from both theoretical and nu-
merical points of view. Better performance than the one
listed in Table 1 is expected due to a better parameter
selection method.

See also

� Broyden Family of Methods and the BFGS Update
� Unconstrained Nonlinear Optimization:

Newton–Cauchy Framework
� Unconstrained Optimization in Neural Network

Training
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An oligopoly consists of a finite number (usually few)
firms involved in the production of a good. Oligopolies
are a basic economic market structure, with exam-
ples ranging from large firms in automobile, computer,
chemical, or mineral extraction industries to small
firms with local markets. Oligopolies are examples of
imperfect competition in that the producers or firms are
sufficiently large that they affect the prices of the goods.
Amonopoly, on the other hand, consists of a single firm
which has full control of the market.

Oligopoly theory dates to A. Cournot [1], who con-
sidered competition between two producers, the so-
called duopoly problem, and is credited with being the
first to study noncooperative behavior, in which the

agents act in their own self-interest. In his study, the
decisions made by the producers or firms are said to be
in equilibrium if no producer can increase his income
by unilateral action, given that the other producer does
not alter his decision.

J.F. Nash [18,19] generalized Cournot’s concept of
an equilibrium for a behavioral model consisting of
several agents or players, each acting in his own self-
interest, which has come to be called a noncoopera-
tive game. Specifically, consider m players, each player i
having at his disposal a strategy vector xi = {xi1, . . . , xin}
selected from a closed, convex set Ki � Rn, with a util-
ity function ui: K ! R1, where K = K1 × . . . × Km �

Rmn. The rationality postulate is that each player i se-
lects a strategy vector xi 2 Ki that maximizes his utility
level ui(x1, . . . , xi�1, xi, xi+1, . . . , xm) given the decisions
(xj)j 6D i of the other players. In this framework one then
has:

Definition 1 (Nash equilibrium) A Nash equilibrium
is a strategy vector x� = (x�1 , . . . , x�m) 2 K, such that

ui (x�i ;bx�i ) � ui (xi ;bx�i ) ; 8xi 2 Ki ; 8i ;

wherebx�i D (x�1 ; : : : ; x�i�1; x
�
iC1; : : : ; x

�
m).

It has been shown (cf. [6,10]) that Nash equilibria sat-
isfy variational inequalities. In the present context, un-
der the assumptionthat each ui is continuously differ-
entiable on K and concave with respect to xi, one has

Theorem 2 (variational inequality formulation) Un-
der the previous assumptions, x� is a Nash equilibrium
if and only if x� 2 K is a solution of the variational in-
equality

hF(x�); x � x�i � 0; 8x 2 K;
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where F(x) � (� rx1u1(x), . . . , � rxm um(x)), and is
assumed to be a row vector, where rxi ui(x) denotes the
gradient of ui with respect to xi.

If the feasible set K is compact, then existence is guar-
anteed under the assumption that each utility func-
tion ui is continuously differentiable. J.B. Rosen [22]
proved existence under similar conditions. S. Karamar-
dian [12] relaxed the assumption of compactness of K
and provided a proof of existence and uniqueness of
Nash equilibria under the strong monotonicity condi-
tion. As shown by D. Gabay and H. Moulin [6], the im-
position of a coercivity condition on F(x) will guarantee
existence of a Nash equilibrium x� even if the feasible
set is no longer compact. Moreover, if F(x) satisfies the
strict monotonicity condition then uniqueness of x� is
guaranteed, provided that the equilibrium exists.

We begin with the presentation of a classical
oligopoly model and then present a spatial oligopoly
model which is related to the spatial price equilibrium
problem.

The Classical Oligopoly Problem

We now describe the classical oligopoly problem
(cf. [1,4]. [5,6,7,13,20,21]) in which there arem produc-
ers involved in the production of a homogeneous com-
modity. The quantity produced by firm i is denoted by
qi, with the production quantities grouped into a col-
umn vector q 2 Rm. Let f i denote the cost of producing
the commodity by firm i, and let � denote the demand
price associated with the good. Assume that

fi D fi(qi)

and

� D �

 mX
iD1

qi

!
:

The profit for firm i, ui, which is the difference between
the revenue and cost, can then be expressed as

ui (q) D �

 mX
iD1

qi

!
qi � fi(qi):

Given that the competitive mechanism is one of
noncooperative behavior, one can write down imme-
diately:

Theorem 3 (variational inequality formulation) As-
sume that the profit function ui(q) for each firm i is con-
cave with respect to qi, and that ui(q) is continuously dif-
ferentiable. Then q� 2 Rm

C is a Nash equilibrium if and
only if it satisfies the variational inequality:

mX
iD1

"
@ fi(q�i )
@qi

�
@�(
Pm

iD1 q
�
i )

@qi
q�i � �

 mX
iD1

q�i

!#

� [qi � q�i ] � 0; 8q 2 Rm
C :

Example 4 In this oligopoly example there are three
firms. The data are as follows: the producer cost func-
tions are given by:

f1(q1) D q21 C q1 C 10 ;

f2(q2) D
1
2
q22 C 4q2 C 12 ;

f3(q3) D q23 C
1
2
q3 C 15 ;

and the inverse demand or price function is given by:
�(
P3

iD1 qi) = �
P3

iD1 qi+ 5.
The equilibrium production outputs are as follows:

q�1 D
23
30
; q�2 D 0 ;

q�3 D
14
15

;
3X

iD1

q�i D
17
10
:

We now verify that the variational inequality is sat-
isfied: � @u1(q�)/ @q1 is equal to zero, as is � @u3(q�)/
@q3, whereas � @u2(q�)/ @q2 = 7/10. Since both q�1 and
q�3 are greater than zero, and q�2 = 0, one sees that, in-
deed, the above variational inequality is satisfied.

Computational approaches can be found
in [2,4,8,14,16,17], and the references therein.

In the special case where the production cost func-
tions are quadratic (and separable) and the inverse de-
mand or price function is linear, one can reformu-
late the Nash equilibrium conditions of the Cournot
oligopoly problem as the solution to an optimization
problem (see [16,23]).

A Spatial OligopolyModel

We now describe a generalized version of the oligopoly
model due to S.C. Dafermos and A. Nagurney [3] (see,
also, [11]), which is spatial in that the firms are now
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located in different regions and there are transporta-
tion costs associated with shipping the commodity be-
tween the producers and the consumers. For the rela-
tionship between this model and the perfectly competi-
tive spatial price equilibrium problem, see [3]. For algo-
rithms for the computation of solutions to this model,
see [15] (see, also, e. g., [9,16]). For additional back-
ground, including qualitative properties and references,
see [16]. In [17] dynamic oligopolistic models are pre-
sented both spatial and aspatial (see also [4] and [20])
and stability analysis results given.

Assume that there are m firms and n demand mar-
kets that are generally spatially separated. Assume that
the homogeneous commodity is produced by the m
firms and is consumed at the n markets. As before,
let qi denote the nonnegative commodity output pro-
duced by firm i and now let dj denote the demand for
the commodity at demand market j. Let Qij denote the
nonnegative commodity shipment from supply market
i to demand market j. Group the production outputs
into a column vector q 2 Rm

C, the demands into a col-
umn vector d 2Rn

C, and the commodity shipments into
a column vector Q 2 Rmn+.

The following conservation of flow equations must
hold:

qi D
nX
jD1

Qi j ; 8i ;

dj D

mX
iD1

Qi j ; 8 j ;

where Qij � 0, 8i, j.
As before, we associate with each firm i a produc-

tion cost f i, but allow now for the more general situa-
tion where the production cost of a firm i may depend
upon the entire production pattern, that is,

fi D fi(q) :

Similarly, allow the demand price for the commodity at
a demand market to depend, in general, upon the entire
consumption pattern, that is,

� j D � j(d):

Let cij denote the transaction cost, which includes
the transportation cost, associated with trading (ship-
ping) the commodity between firm i and demand mar-
ket j. Here we permit the transaction cost to depend, in

general, upon the entire shipment pattern, that is,

ci j D ci j(Q) :

The profit ui of firm i is then given by:

ui D

nX
jD1

� j ci j � fi �
nX

jD1

ci jQi j ;

which, in view of the conservation of flow equations
and the functions, one may write as

u D u(Q) :

Now consider the usual oligopolistic market mech-
anism, in which the m firms supply the commodity
in a noncooperative fashion, each one trying to maxi-
mize his own profit. We seek to determine a nonnega-
tive commodity distribution pattern Q for which the m
firms will be in a state of equilibrium as defined below.

Definition 5 (spatial Cournot–Nash equilibrium)
A commodity shipment distribution Q� 2 Rmn

C is said
to constitute a Cournot–Nash equilibrium if for each
firm i, i = 1, . . . ,m,

ui (Q�i ;bQ�i ) � ui (Qi ;bQ�i ) ; 8Qi 2 Rn
C ;

where

Qi �fQi1; : : : ;Qing ;

bQ�i � (Q�1 ; : : : ;Q
�
i�1;Q

�
iC1; : : : ;Q

�
m) :

The variational inequality formulation of the Cournot–
Nash equilibrium is given in the following theorem.

Theorem 6 (variational inequality formulation; [3])
Assume that for each firm i the profit function ui(Q)
is concave with respect to the variables {Qi1, . . . , Qin},
and continuously differentiable. Then Q� 2 Rmn

C is
a Cournot–Nash equilibrium if and only if it satisfies the
variational inequality

�

mX
iD1

nX
jD1

@ui (Q�)
@Qi j

� (Qi j � Q�i j) � 0 ;

8Q 2Rmn
C :

Using the expressions for the utility functions for this
model and the conservation of flow equations this varia-
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tional inequality may be rewritten as:

mX
iD1

@ fi(q�)
@qi

� (qi � q�i )

C

mX
iD1

nX
jD1

ci j(Q�) � (Qi j � Q�i j)

�

nX
jD1

� j(d�) � (dj � d�j )

�

mX
iD1

nX
jD1

nX
lD1

�
@�l (d�)
@dj

�
@ci l (Q�)
@Qi j

�

� Q�i l (Qi j � Q�i j) � 0 ;

8(q;Q; d) 2 K ;

where K � {(q, Q, d): Q � 0, and the conservation of
flow equations hold}.

Note that, in the special case, where there is only a sin-
gle demand market and the transaction costs are identi-
cally equal to zero, this variational inequality collapses
to the variational inequality governing the aspatial or
the classical oligopoly problem.

See also

� Equilibrium Networks
� Financial Equilibrium
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Spatial Price Equilibrium
� Traffic Network Equilibrium
�Walrasian Price Equilibrium
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Operations research

Operations research originated circa 1945. The Web-
ster’s Ninth New Collegiate Dictionary (1989) defines
it as: The application of scientific and especially mathe-
matical methods to the study and analysis of problems
involving complex systems (as firm management, eco-
nomic planning, and the waging of war).

Case Institute of Technology (presently part of Case
Western Reserve Univ.) located in Cleveland, Ohio,
USA, was the first institution of higher learning in the
world to establish a graduate program in Operations
Research leading towards the MSc and PhD degrees.
The first PhD degree in operations research in the USA
was awarded to L. Friedman circa 1957, at Case. In the
1950s and early 1960s, Case was one of the leading in-
stitutions in the field of operations research. The fa-
mous operations research group at Case was well estab-
lished and reputed internationally. The operations re-
search philosophy at Case was essentially based on the
premise that operations research is science. An appro-
priate definition of operations research is: The applica-
tion of scientific methods to analyze, model, solve, and
control human-created ormanagement problems using
mainly quantitative techniques [2]. Operations research
provides the decision maker either with an optimum
option from among a set of feasible alternative courses
of action or with an optimum allocation of limited re-
sources so as to minimize or maximize a given criterion
or objective function [1]. The seven steps used in order
to carry on an operations research study are:
1) Observation.
2) Analysis of the present systems. This includes:

a) qualitative analysis, quantitative analysis and
data collection;

b) components to be incorporated such as: man,
machine, material, management, money, con-
sumer, competitors, public, government, safety,
reliability, aesthetics, ethics.

3) Definition and formulation of the problem. These
must involve:
a) the decision-maker;
b) the objectives or criteria used;
c) the environmental or system constraints;
d) the feasible alternative courses of action.

4) Construction of a model (synthesis/design). Four
models are possible:
a) mathematical (or symbolic or abstract) model;
b) iconic model (e. g. CAD, graphics, drawings);
c) analog model;
d) simulation model.
As an example, the construction of a mathematical
model involves abstracting the operation of the sys-
tem including:
a) defining and quantifying

i) the decision or control variables;
ii) the parameters or uncontrollable variables;

b) establishing functional relationships between
variables and parameters;

c) developing a mathematical function for the crite-
rion (objective function to be minimized or max-
imized). One must specify:
i) the horizon period;
ii) the units;
iii) the measures used such as: cost or profit (e. g.

average, total, discounted), reliability, avail-
ability;

d) setting up the constraints.
5) Derivation of a solution to the problem. This typi-

cally consists in selecting the best from among the
set of feasible alternative courses of action to meet
the defined objective function and satisfy the con-
straints through optimization techniques and tools
using analytic or numerical procedures.

6) Testing and/or Validation. This involves:
a) validation of data;
b) validation of the model;
c) testing the solution. The testing methodology

uses:
i) retrospective testing;
ii) prospective testing;
iii) simulation (accelerated testing);
iv) others.

7) Control and implementation of the solution. The
control methodology uses, for example:
a) sensitivity analysis;
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b) statistical quality control.
The implementation methodology uses, for exam-
ple:
a) statistical inference;
b) sampling techniques.

Let me say that the above definition of operations re-
search and the outlined methodology were not exactly
the ones proposed in the late 1950s. However, they may
be considered close enough for all practical purposes.
One may consider to what extent the definition and the
methodology have been altered throughout the years.
In my opinion very little! In the foreword [3] Aristotle
is quoted: ‘And the science which knows to what end
each thing must be done is the most authoritative of the
sciences, and more authoritative than any ancillary sci-
ence; and the end is the good of that thing, and in gen-
eral the supreme good in the whole of nature’.

See also

� History of Optimization
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From the 1950s onwards, a strong relationship between
operations research, OR, and finance has developed, re-
sulting in a large and rapidly growing literature. Al-
though most applications have been of OR techniques
to finance, finance problems have also stimulated the
development and refinement of OR techniques.

Finance problems, and especially those relating to
financial markets, are particularly well suited to analy-
sis using OR techniques. These problems are generally
separable and well defined, have a clear objective (of-
ten to maximise profit or minimise risk), and have vari-
ables which are quantified in monetary terms. The re-
lationships between the variables in finance models are
usually stable and well defined, so that the resulting OR
model is a good representation of the problem. As there
are few concerns about human behavior ruling out the
implementation of some solutions, the solutions pro-
duced by the analysis can usually be implemented. In
addition, large amounts of data, both historic and real
time, are readily available and can be used in OR mod-
els. Some finance problems involve very large sums of
money, so that even a very small improvement in the
quality of the solution is profitable to implement.
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This review describes the application of OR to prob-
lems in the analysis of financial markets (e. g., the mar-
kets for debt, equity and foreign exchange markets and
the corresponding derivatives markets). For a review of
the application of OR to other areas of finance, such as:
the management of the firm’s finances: working capi-
tal management, capital investment, multinational tax-
ation, and financial planning models (such as those de-
veloped for banks) see [3].

Portfolio Theory

A seminal application of OR techniques to finance was
by H.M. Markowitz [67,68] when he specified the port-
folio problem in terms of optimization over the means
and variances of the assets available, and proposed the
solution of this problem through quadratic program-
ming, see [11] for a survey. In addition to specify-
ing the portfolio problem in terms of OR techniques,
Markowitz also developed solution algorithms formore
general quadratic programming problems. This pro-
vides an example of the interaction between OR tech-
niques and finance, with the former sometimes being
adapted to meet the needs of the latter.

Although the most obvious application of portfolio
theory is to the choice of equity portfolios, and empir-
ical papers, e. g., [10,81] have used quadratic program-
ming to compute efficient equity portfolios, the tech-
nique can be applied more widely (e. g., to portfolios of
currencies, bonds, or commercial loans). Multiperiod
portfolio problems have been specified as dynamic pro-
gramming problems [35], while [75], uses a stochastic
generalized network model.

OR researchers have also modified or replaced the
quadratic programming approach to portfolio prob-
lems, often by explicitly specifying the relevant utility
function and using stochastic linear programming with
recourse to model risk in a multiperiod framework. For
example, in [15] forming bond portfolios is proposed
to maximize their expected value, using stochastic lin-
ear programming to allow for interest rate risk. Early
references in this area are [50,59,109,110]. The scenar-
ios included in portfolio models may be generated by
Monte-Carlo simulation, prior to the use of stochas-
tic programming to maximise expected utility, e. g.,
[37,97,102,103] and [105], where this approach is ap-
plied to form portfolios of mortgage backed securities.

The investment policy of a pension fund can be for-
mulated using asset-liability management models that
allow for the correlations between the values of the
fund’s assets and liabilities. While these problems can
be formulated using quadratic programming, they have
usually been solved in other ways (see [113]). For exam-
ple, in [74] it is assumed that the objective was to max-
imise the expected value of a nonlinear utility of wealth
function, and specified the problem as a nonlinear net-
work problem, with the simulation of future pension
fund liabilities. Similar asset-liability problems are also
faced by insurance companies, for example [19,20,21]
formulate this problem for a Japanese insurance com-
pany. See also [50,59,76]. In [52] it is pointed out that
the use of Monte-Carlo simulation can bias the results
by including arbitrage opportunities in the sampled
scenarios. To avoid this, an arbitrage-free event tree is
aggregated before its inclusion in a multistage stochas-
tic programming model of the asset-liability problem.

Another application of quadratic programming is
generalized hedging, in which the objective is usually to
minimise the variance of a portfolio of a given set of as-
sets and the chosen hedging instruments. If the hedging
instruments include options, this introduces a nonlin-
earity into the hedging decision, and [77] devises a non-
linear programming model to hedge foreign currency
exposure using a mixture of currency forward and op-
tions contracts. Similarly, quadratic programming has
been used to construct index tracking portfolios, where
the purpose is to select a portfolio of assets (e. g., eq-
uities or bonds) which, when combined with a match-
ing short position in the index to be tracked, has mini-
mum risk [69,70,86,88].Multistage stochastic program-
ming with recourse, in conjunction with Monte-Carlo
simulation to generate the scenarios, has been used
in [97] and [105] to track an index of mortgage backed
securities.

A related problem is that of portfolio immunization
in which the objective is to construct a portfolio of in-
terest rate dependent securities whose value is the same
as some target asset (usually another interest rate de-
pendent asset). (There is also a literature on manag-
ing the assets and liabilities held by banks (which are
taken to exclude equities), where the objective is usually
to maximise the value (or expected value) of the port-
folio over one (or many) time periods (net of penalty
costs from constraint target violations), subject to re-
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strictions of the total investment, maximum capital loss
and various bank regulations.) By matching the dura-
tion of the portfolio with that of the target asset, the
portfolio is immunized against small parallel shifts in
the yield curve (which shows the interest rates for dif-
ferent maturities), [36,55,78] and [2]. These immuniza-
tion studies use a risk measure which does not involve
squares or cross products of the decision variables, and
so linear programming, not quadratic programming, is
the solution technique.

In some applications of portfolio theory, the deci-
sion variables must be integer. Quadratic integer pro-
gramming is used to compute hedging strategies in-
volving futures in [82] and [89]. A. Shapiro, 1988, used
stochastic integer programming with recourse to con-
struct bond portfolios that allow for some of the bonds
being called (or redeemed early) if interest rates are low.

Some authors have argued that formulation and
solving quadratic programming portfolio problems is
too onerous, and proposed simplified solution tech-
niques. W.F. Sharpe [91] proposed a single indexmodel
which can be solved by the use of special purpose
quadratic programming algorithms. When each asset
represents only a small proportion of the portfolio,
he [92] showed that his single index model can be
treated as having a linear objective function. In 1971,
he suggested using a piecewise linear approximation
to the quadratic objective function, enabling the appli-
cation of linear programming to solve portfolio prob-
lems. Another proposal is to minimize the mean abso-
lute deviation (MAD), which can be solved using lin-
ear programming, rather than quadratic programming
(e. g., [53,54,101,106], and [100]). Another approach is
to specify the problem as choosing between a range of
pre-specified equity portfolios using data envelopment
analysis [84]. A further approach is to reformulate the
portfolio problem as a nonlinear generalized network
model for which efficient solution algorithms exist [73].

Portfolio problems, with the twin objectives of max-
imising returns and minimising risk, can also be viewed
as goal programming problems with two goals. Addi-
tional goals can be introduced, and a number of authors
have solved portfolio problems using goal program-
ming, among them [57,58], and [61]. Capital growth
theory, see [40] for a survey, has been used in a number
of applications for the optimal investment of repeated
investments over time, see e. g. [64,65,66,111].

Pricing Derivatives

It is very important when trading in financial markets
to have a good model for valuing the asset being traded,
and OR techniques have made a substantial contribu-
tion in this area. Indeed, the very rapid growth of these
markets is partly due to the application of OR tech-
niques in pricing models.

P.P. Boyle [12] proposed the use of Monte-Carlo
simulation as an alternative to the binomial model for
pricing options for which a closed form solution is not
readily available. Monte-Carlo simulation has the ad-
vantage over the binomial model that its convergence
rate is independent of the number of state variables
(e. g., the number of underlying asset prices and interest
rates), while that of the binomial model is exponential
in the number of state variables. Simulation is used to
generate paths for the price of the underlying asset un-
til maturity. The cash flows from the option for each
path, weighted by their risk neutral probabilities, are
discounted back to the present using the risk free rate,
allowing the average present value across all the sample
paths to be computed, thus yielding the current price of
the option [14]. Risk neutral probabilities are inferred
from prices assuming that investors have linear util-
ity functions. Monte-Carlo simulation can also be used
to compute various option price sensitivities, which in-
clude the hedge ratio. These sensitivities, or ‘Greeks’,
are essential for many trading strategies [17].

Until recently it was thought that Monte-Carlo sim-
ulation could not be used to price American style op-
tions which can be exercised at any time before the op-
tion expires, because no closed form solutions for their
price exist. This is a major problem, as the majority of
options are American style. However, progress is be-
ing made in developing Monte-Carlo simulation tech-
niques for pricing American style options [18,39]. Op-
tions have also been priced using finite difference ap-
proximations, and it has been proposed, [27] and [28],
to use of linear programming to solve the finite dif-
ference approximations to the price of American style
put options. In addition, American style options can be
priced using dynamic programming, [29].

Provided a price history is available, a neural net-
work can be trained to produce prices using a specified
set of inputs, which can then be used for the out-of-
sample pricing [49] of securities.
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Mortgage backed securities (MBS) are created by
the securitization of a pool of mortgages. For any spe-
cific mortgage, the borrower has the right to repay the
loan early – the prepayment option, or may default on
the payments of capital and interest. Thus MBS are hy-
brid securities, as they are variable interest rate securi-
ties with an early exercise option. Monte-Carlo simula-
tion can be used to generate interest rate paths for fu-
ture years. Forecasts of the mortgage prepayment rates
then permit the computation of the cash flows from
each interest rate path, and these sequences of cash
flows are used to value the MBS [6,13,104]. This pro-
cedure, which can be used to identify mispriced MBS
in real time, is computationally demanding and paral-
lel (and massively parallel) and distributed processing
have been used in the solution of the problem. Simu-
lation has also been used to price collateralized mort-
gage obligations or CMOs [80]. Other hybrid securi-
ties, such as callable and putable bonds and convertible
bonds face similar valuation problems to MBS and re-
quire similarly intensive solution methods.

There is an active secondary market in loan portfo-
lios which may carry a significant default risk. In [26]
a Markov chain analysis with 14 loan performance
states is used andMonte-Carlo simulation is performed
to generate the probability distribution of the present
value of loan portfolios.

Trading Tactics

Besides pricing financial securities, traders are inter-
ested in finding imperfections in financial markets
which can be exploited to make profits. See [51] for
a survey of equity anomalies. One aspect of this is
the search for weak form inefficiency (i. e. that an as-
set’s past prices can be used as the basis of a prof-
itable trading rule). An early attempt to find such ex-
ploitable regularities in stock prices is the use ofMarkov
chains [30,31]. Such strategies have been found in
horserace betting markets, see [42,43,44,45], and the
survey book [41].

Arbitrageurs seek to exploit small price discrepan-
cies to give riskless profits. Network models have been
used to find arbitrage opportunities between sets of
currencies ([22,55,73,75]). This problem can be spec-
ified as a maximal flow network, where the aim is to
maximise the flow of funds out of the network, or as

a shortest path network. A risk arbitrage, convergence
type hedgefund trade on discrepancies between various
markets for Nikkei puts is described in [94].

There has been a growing interest in using artifi-
cial intelligence based techniques (expert systems, neu-
ral networks, genetic algorithms, fuzzy logic and induc-
tive learning) to develop trading strategies for financial
markets (e. g., [38,85,96,99]). Such approaches have the
advantage that they can pick up nonlinear dynamics,
and require little prior specification of the relationships
involved.

Funding Decisions

OR techniques have also been used to help firms de-
termine the most appropriate method by which to raise
capital from the financial markets. In [16] a chance con-
strained linear programming model is put forward to
compute the values of the debt-equity ratio each period
that maximize the value of the firm. Other studies have
specified the choice between various types of funding as
a linear goal programming problem [48,60].

A different approach to the debt problem is to as-
sume that the firm has found its desired debt-equity ra-
tio, and is purely concerned with raising the requisite
debt as cheaply as possible. In this case, debt can be
treated like any other input to the productive process,
and inventory models used to determine the optimal
‘reorder’ times and quantities [9,62].

The design of callable bonds has been addressed
in [23,24], using nonlinear programming, while [47]
uses a simulated annealing algorithm. Firms which
have issued callable debt face the bond-scheduling
problem, in which they must decide when to call (re-
pay) the existing debt and refinance it with a new issue,
presumably at a lower cost. This dynamic programming
problem has been modeled in [35,56] and [98].

Finally, the problem facing borrowers of choosing
between alternative mortgage contracts (e. g., fixed rate,
variable rate and adjustable rate mortgages) has been
modeled using decision trees [46,63].

Strategic Problems

In recent years, some of the decisions facing traders
andmarket makers in financial markets have been anal-
ysed using game theory [32,79]. Traders in stock mar-
kets seek to trade at the most attractive prices and large
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trades are often broken up into a sequence of smaller
trades in an effort to minimise the price impact. This
can be viewed as a strategic problem, and [8] uses
stochastic dynamic programming to compute an opti-
mal trading strategy.

In [83] game theory is applied to the situation where
a company has two major shareholders, and a large
number of very small shareholders. This can be mod-
eled as an oceanic game, in which the two large players
behave strategically while the many small shareholders
(the ocean) do not. This approach can be used to de-
rive the highest price a large shareholder will pay in the
market for corporate control.

Regulatory and Legal Problems

Financial regulators have become increasingly con-
cerned about financial markets with their very large and
rapid international financial flows. OR techniques have
proved useful in regulating the capital reserves held by
banks and other financial institutions to cover their risk
exposure. OR techniques have also been used to ensure
compliance with various legal requirements by design-
ing appropriate strategies, and to solve other legal prob-
lems relating to financial markets.

A key regulatory issue is determining the capital re-
quired by financial institutions to underpin their ac-
tivities in financial markets. An increasingly popular
approach to this problem is the value at risk (VAR),
which involves quantification of the lower tail of the
probability distribution of outcomes from the firm’s
portfolio. Portfolios usually include options (or fi-
nancial securities with option-like characteristics), and
these have highly asymmetric payoffs. For such se-
curities, analytical solutions to finding the probabili-
ties in the lower tail of the payoff distribution are un-
reliable. RiskmetricsTM uses approximations based on
‘the Greeks’ for options that are at or near the money
(i. e. the current price of the underlying asset is close
to the price at which the option can be exercised),
and Monte-Carlo simulation for other options posi-
tions [72]. (A related application of Monte-Carlo simu-
lation is stress testing, which quantifies the sensitivity
of a portfolio to specified, often adverse, market sce-
narios.) Some securities are also subject to credit risk,
which has a highly nonnormal distribution for all in-
struments. Therefore, Monte-Carlo simulation is rele-

vant to modeling the credit risk of portfolios of finan-
cial instruments (e. g., loans, letters of credit, bonds,
trade credit, swaps, forwards) as in CreditMetricsTM

[71]. Y. Zhao and Ziemba [107,108] discuss how to
model downsized risk in continuous and discrete time
models.

Data envelopment analysis has been used to assist
in bank regulation by measuring bank efficiency, which
is then used to predict bank failure [4,5].

Traders are required to put up margin when they
trade options, see [87] for a linear programming model
in which the problem was modeled as a transportation
problem.

An extensive set of rules governs the way in which
a ‘to-be-announced’ MBS can be structured, leading
to a complexproblem in devising a feasible solution.
This can be specified as a complicated integer program-
ming problem (with the objective of maximising the
originator’s profit). Collateralized mortgage obligations
(CMOs) also involve the securitization of a mortgage
pool, but in this case the pool is structured into a series
of bonds (or tranches), each with a different maturity
and risks. See [25] for a complex zero-one program-
ming model for solving this problem, with the objective
of maximizing the proceeds from the issue.

In [90] a linear programming formulation is pro-
posed to establish the maximum loss that investors
could have sustained from trading in a company’s
shares. This figure can then be used by the company’s
lawyers in lawsuits claiming damages from a mislead-
ing statement by the company.

In August 1982, the Kuwait Stock Market collapsed
leaving $94 billion of debt to be resolved. This led to the
problem of devising a fair method for distributing the
assets seized from insolvent brokers among the other
brokers and private investors. This problem was solved
using linear programming, which reduced the total un-
resolved debt to $20 billion, saving an estimated $10.34
billion in lawyer’s fees [33,34,95].

Economic Understanding

OR can help in trying to understand the economic
forces shaping the finance sector. Using a linear pro-
gramming model of a bank, [7] employs annual data
to compute movements in the shadow prices of the
various constraints. They suggested that a rise in the
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shadow price of the deposits constraint led to the finan-
cial innovation of negotiable CDs.

Arbitrage pricing theory (APT) seeks to identify the
factors which affect asset returns. Most tests of the APT
use factor analysis, and have difficulty in determining
the number and definition of the factors that influence
asset returns. To overcome these problems [1] suggests
using a neural network, which also has the advantage
that the results are distribution free.

Conclusions

Mathematical programming is the OR technique that
has been most widely applied in financial markets.
Most types of mathematical programming have been
employed – linear, quadratic, nonlinear, integer, goal,
chance constrained, stochastic, fractional, DEA and dy-
namic. Monte-Carlo simulation is also widely used in
financial markets – mainly to value exotic options and
securities with embedded options, and to estimate the
VAR for various financial institutions. In some cases
the use of OR techniques has influenced the way finan-
cial markets function since they permit traders to make
better decisions in less time. For example, exotic op-
tions would trade with much wider bid-ask spreads, if
they traded at all, in the absence of the accurate prices
computed using Monte-Carlo simulation.

Other OR techniques are less used in financial
markets. Arbitrage and multiperiod portfolio problems
have been formulated as network models, while mar-
ket efficiency has been tested using neural networks.
Game theory has been applied to battles for corporate
control, decision trees to analyse mortgage choice, in-
ventory models to set the size and timing of corporate
bond issues, and Markov chains to valuing loan port-
folios and testing market efficiency. One important OR
technique – queueing theory – has found little applica-
tion in financial markets

This review has shown that OR techniques have
been usefully applied to portfolio problems and the ac-
curate pricing of complex financial instruments. They
are also used by financial regulators and financial insti-
tutions in setting capital adequacy standards. It is clear
from this that OR techniques play an important role in
financial markets and that this role is likely to increase
over time.
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A supply chain is ‘a connected series of activities which
is concerned with planning, coordinating and control-
ling materials, parts, and finished goods from sup-
plier to customer. It is concerned with two distinct
flows (material and information) through the organiza-
tion’, [67]. Supply chain management (SCM) is the co-
ordination and integration of these activities with the
goal of achieving a sustainable competitive advantage.
SCM therefore encompasses a wide range of strategic,
financial, and operational issues.

With the emergence of supply chain management
as a new discipline, the role of operations research (OR)
models in effective SCM has become significant. From
1985 onwards the performance, design, and analysis of
the supply chain has received increased attention. Opti-
mizing the performance of an entire supply chain is one
of the most comprehensive strategic problems facing
managers today. See [63] for 23 different kinds of OR
models for logistics activities in supply chain manage-
ment and strong arguments that OR/MS techniques are
essential for supporting the redesign of logistics pro-
cesses. They suggest, however, that these various mod-
els must be coordinated effectively to properly model
a multistage supply chain.

This entry considers past literature encompassing
both strategic and operational issues in supply chain
management and design. Our goal is to highlight many
of the recent (and some not so recent, as of 2000)
papers that have led to the current increased level of
activity in supply chain research. Due to the volume
of work done over from 1985 onwards we limit our-
selves to a discussion of papers that use OR model-
ing techniques in both the overall design of the sup-
ply chain and the design of operations coordination
and control systems within the supply chain. We do
not consider work done in the growing areas of sup-
ply chain negotiation and contracts (except where such
contracts may be driven by production and transporta-
tion system models) or in the value of information in
the supply chain; for a detailed discussion on these
and many other developments in the field of supply
chain management, see [68], which provides a com-
prehensive view of the field of quantitative modeling
applications in supply chain management. Other re-
cent reviews of the literature in supply chain mod-
eling include [72] and [9]. Our work complements
these reviews by including the evolution of models for

combined location-routing and inventory-routing de-
cisions.

The strategic design of a supply chain requires man-
agers to determine:
1) which suppliers and vendors to select for supplying

raw materials;
2) the number, location, and capacity of manufactur-

ing plants and warehouses;
3) specific transportation channels and modes for ma-

terial movement between facilities;
4) raw material and end-item production amounts and

control mechanisms for flows between suppliers,
plants, warehouses, and customers; and

5) strategies for managing raw material, intermediate
product, and finished goods inventory at each of the
various locations.
Operational decisions in the supply chain, which

are often constrained by choices made in the strate-
gic design phase, include deciding short-term distribu-
tion and logistics flows between locations and produc-
tion planning and inventory control policies at each lo-
cation. Such decisions include determining the amount
and timing of material flows from suppliers to plants,
through plants and warehouses, and to retailers and
customers. At the more detailed level, production and
logistics operations planners must create detailed pro-
duction sequencing and product delivery schedules.

We classify the literature we review into three broad
categories:
� strategic supply chain design models;
� production and logistics coordination and control

models; and
� supply chain simulation models.

The next three Sections consider models in each of
these three areas. Note that within each section we have
attempted to present past papers in chronological order
of publication with a few exceptions to maintain conti-
nuity of presentation.

Strategic DesignModels

This Section summarizes the evolution of ORmodels in
the broad area of supply chain design. We first consider
approaches that decide important long-term strategic
factors such as location of facilities and assignment of
products and/or customers to these facilities. Note that
these models attempt to determine the supply chain de-
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sign that provides the best combination of service and
cost performance from an overall system view. That is,
in these approaches, a central planner determines the
best overall system configuration. We then take a look
at models that combine location and transportation de-
cisions in the subsection on location-routing models.

Distribution System Design

A.M. Geoffrion and G.W. Graves [36] present the first
comprehensive supply chain design model for Hunt–
Wesson foods. They develop a Benders decomposition-
based algorithm that successfully solves a multicom-
modity production and distribution system design
problem. This system contains several plants (with
known and fixed capacities), distribution centers with
limits on throughput, and retailer zones (each of which
must be sourced to a single distribution center). The
model finds the optimal distribution center configu-
ration by considering fixed plus variable costs for op-
erating warehouses as well as detailed production and
transportation costs.

J.E. Hodder and M.C. Dincer [43] describe an inter-
national plant location model and develop a large scale
nonlinear programming model. The objective function
captures the difference between the expected value of
profit and the variance of profit, which is scaled by a risk
aversion factor. The model incorporates constraints on
plant capacities, market demands, and financial invest-
ment limits. Their formulation considers the impacts
of market prices, international interest rates, exchange
rate fluctuations, production and transportation costs,
import tariffs, and export taxes.

M.A. Cohen and H.L. Lee [22] present a single-
period, multicommodity, nonlinear programming
model to develop a global resource deployment pol-
icy. This paper provides a good initial effort to create
a fully integrated logistics chain model by linking a set
of distinct stochastic submodels. The objective function
maximizes the total after-tax profit for the manufactur-
ing facilities and distribution centers in all countries.
The submodels incorporate plant production capacity
limits, plant material requirements constraints, inven-
tory balance constraints at both the plants and dis-
tribution centers, demand and supply capacity limits,
and offset trade requirements. The model decides the
assignment of products and subassemblies to plants,

vendors to distribution centers, and distribution cen-
ters to market regions. It also determines the amounts
of components, subassemblies, and final products to
produce at each plant and how to ship these items
between vendors, manufacturing facilities, and distri-
bution centers.

J.H. Bookbinder and K.E. Reece [10] extend the Ge-
offrion–Graves [36] model to consider multicommod-
ity distribution system design with vehicle routing and
transportation fleet-sizing decisions. They combined
the Geoffrion–Graves [36]Benders decomposition ap-
proach with the vehicle routing approach ofM.L. Fisher
and R. Jaikumar [33]. The master problem in their al-
gorithm determines the number and locations of ware-
houses. The subproblems then determine the best set of
vehicle routes (including the number and sizes of vehi-
cles used by location), given the warehouse configura-
tion specified by the master problem.

Cohen and Lee [23] built on their prior work by cre-
ating a deterministic model for designing a large scale
distribution network. This model also incorporates off-
set trade requirements and estimates before and after
tax profits. Although they provide a comprehensive for-
mulation of the global supply chain design problem, no
detailed solution procedure for determining the opti-
mal configuration is provided.

Cohen and S. Moon [24] formulate a mixed in-
teger, multicommodity model that determines the as-
signment of product lines and production volumes to
plants. For each plant they determine inbound raw ma-
terial flows and outbound finished product flows. This
research provides a restricted optimization algorithm to
solve production-distribution problems with piecewise
linear concave production costs. The objective func-
tion consists of fixed and variable production and trans-
portation costs. The model includes supply, capacity,
assignment, demand, and raw material requirements
constraints. A variant of the Benders decomposition
technique is applied to solve each problem instance.

Cohen and P.R. Kleindorfer [21] present a norma-
tive model for global manufacturing operations that di-
rects plant location and capacity decisions as well as
product mix, material flow, and cash flow amounts.
The model consists of several submodels (a stochastic
supply chain network model, a financial flow model,
a stochastic exchange rate model, and a price-demand
model). The submodels link a multiperiod stochastic



Operations Research Models for Supply Chain Management and Design O 2707

master problem to a set of single-period stochastic sub-
problems. See [23] for a description of an implementa-
tion of this model framework.

B.C. Arntzen et al. [3] present one of the most com-
prehensive supply chain design models to date, which
they use to redesign Digital Equipment Corporation’s
(DEC’s) supply chain. They develop a multiperiod,
multicommodity, mixed integer programming model
called GSCM (Global Supply Chain Model) to optimize
the configuration of DEC’s global supply chain. The
model accommodates multiple facilities, stages (eche-
lons), time periods, and transportation modes. GSCM
minimizes a composite function of activity days and the
total cost of production, inventory, material handling,
overhead, and transportation. The constraints enforce
requirements on meeting customer demands, produc-
tion and throughput capacity limits at each facility, and
bounds on decision variables. GSCM encodes the global
bill-of-materials (BOM) for each product and enforces
inventory balance constraints for every product and lo-
cation. Their formulation reflects offset trade and local
content restrictions as well as duty payment and draw-
back for flows through various countries. The model
decides the number and location of distribution cen-
ters, the customer-to-distribution center assignments,
and product-to-plant assignments. Arntzen et al. [3]
describe how DEC used GSCM to evaluate global sup-
ply chain alternatives and develop worldwide manufac-
turing and distribution strategies. DEC used GSCM to
guide a worldwide restructuring that saved the com-
pany over $100 million.

J.D. Camm et al. [15] develop an integer program-
ming model using an uncapacitated facility location
formulation for Procter & Gamble’s distribution net-
work. The model minimizes the total cost of distribu-
tion center location selection and distribution center-
to-customer assignments, subject to assignment con-
straints and a maximum number of distribution cen-
ters in operation. This model chooses the best location
and scale of operation for producing items in Procter &
Gamble’s product line.

H. Pirkul and V. Jayaraman [58] propose a mixed
integer programming model for designing a three-level
distribution network. The model defines the physical
flows of commodities from plants to warehouses and
from warehouses to customer zones. Their method de-
termines the locations of plants and warehouses that

result in the minimum total operating plus fixed costs
for the distribution network. They [58] develop a La-
grangian relaxation-based heuristic that assigns cus-
tomers to open warehouses based on their demand for
products, and then assigns open warehouses to open
plants.

Recent approaches (as of 2000) for dynamic distri-
bution system design, in which customer demands vary
over a finite planning horizon, have been developed
in [60,61] and [34]. These papers consider a set of ca-
pacitated plants with associated (uncapacitated) ware-
houses that must distribute products to a set of cus-
tomers in each period. Each of these models requires
assigning every customer to a single source, or ware-
house, and hence employs heuristics for generalized as-
signment formulations of the problem. H.E. Romeijn
and D. Romero Morales [60,61] show the asymptotic
optimality of specific greedy heuristic procedures for
the cyclic (repeating demand patterns) and acyclic de-
mand cases. R. Freling et al. [34] apply a branch and
price algorithm to the single sourcing problem under
seasonal demands.

L.M.A. Chan and D. Simchi-Levi [17] consider
a transportation-inventory-routing design problem
and provide amodel and algorithm for a three-level dis-
tribution system. The system contains a single vendor,
multiple cross-docking warehouses, and multiple re-
tailers with constant demand rates. We include this pa-
per in the design section because, unlike the inventory-
routing problems covered in the following section, this
work develops insights regarding distribution system
design strategy. The authors argue that this system cor-
responds closely to the Wal-Mart distribution system,
which has proven immensely successful over the past
decade. Their algorithm assigns each retailer to a ware-
house using a bin-packing scheme, and partitions the
assigned retailers into clusters using a capacitated con-
centrator location algorithm. They then combine re-
tail clusters into groups that share the same reorder in-
terval. The model minimizes asymptotic long-run av-
erage transportation plus inventory costs, and the au-
thors show an optimal solution that forces each ware-
house to receive fully loaded trucks from the vendor,
but never to hold inventory. The warehouse therefore
serves only as a coordinator of the frequency, time, and
size of deliveries to retailers, i. e., as a cross-docking
facility.
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Location-Routing Models

Next we briefly summarize work done on so-called
location-routing models. This research area has re-
ceived vast attention starting in the 1970s and we there-
fore highlight a few of the more significant devel-
opments. For a detailed summary of location-routing
models, see [8] and [53]. Since traditional facility lo-
cation models consider only the cost of assigning cus-
tomers or markets to facilities (see, for example, [25]),
many researchers have shown the value of explicitly
considering integrated location models that incorpo-
rate detailed vehicle routing decisions.

Perhaps the earliest work to take such an integrated
view was done by I.R. Webb [73], who randomly gen-
erates depot locations and considers the impact of us-
ing straight-line distances as a substitute for route dis-
tances in a deterministic setting with vehicle capacity
restrictions. The paper concludes that a significant loss
of accuracy can result from using straight-line models.
S.K. Jacobsen andO.B.G.Madsen [45] subsequently use
sophisticated heuristic approaches to solve a two-level
newspaper distribution system design problem in prac-
tice.

G. Laporte and Y. Nobert [47] and Laporte et al. [48]
give exact integer programming approaches for the
location-routing problem in the absence of vehicle ca-
pacity restrictions (the first paper considers a single de-
pot, while the second extends this to multiple depots).
To solve a set of randomly generated problems they em-
ploy a branch and bound algorithm with the addition of
violated subtour constraints.

J. Perl and M.S. Daskin [55,56] use optimization-
based heuristic approaches for solving the multiple-
depot routing problem with depot throughput costs
and capacities. Their heuristic initially opens all depots
and solves a routing problem for each. They then use
fixed cost and depot capacity considerations to deter-
mine which depots to keep open and heuristically real-
locate customers to open facilities.

Laporte et al. [46] extend the analysis to consider the
location of a depot that collects goods from customers
and returns them to the depot. In this model customer
supplies are random variables and a vehicle must return
to the depot once it is filled to capacity. The problem
is modeled as a two-stage stochastic program with re-
course.

R. Srivastava andW.C. Benton [65] consider the im-
pact of environmental and operational factors on so-
lutions to location-routing problems. These factors in-
clude the customers’ spatial distribution and the ratio
of location cost to routing costs. The authors apply sev-
eral combinations of well-known routing and location
heuristics to determine the effects of specific factors on
heuristic performance.

Other recent heuristics and case studies in
the location-routing literature include [4,41,54,64],
and [52]. The following section considers shorter-term
operations decisions in supply chain management.

Production and Logistics Control Models

This Section considers models that decide more de-
tailed operational decisions such as the timing and
quantities of flows between facilities. These issues and
decisions have been addressed for many years within
the context of single-stage models. We focus on mod-
els that consider the impacts such decisions have on
multiple entities in a supply chain. These entities
may or may not belong to the same firm and may
have either the same or conflicting objectives. With
a few exceptions we have not summarized the vo-
luminous literature in the area of multi-echelon in-
ventory control. Papers in this area tend to develop
cost models of multistage inventory systems under var-
ious cost, demand, and operational assumptions. They
then seek to minimize overall production and inven-
tory related costs. With the exception of the paper
[20] noted in the following paragraph, we focus on
models that consider inventory costs in conjunction
with distribution and logistics related costs. For a de-
tailed discussion of multi-echelon inventory analysis,
see [39,49,68].

This Section first focuses on models that combine
inventory and transportation decisions. (For in-depth
analyses of general vehicle routing and inventory-
routing models, see [30] and [11].) We then look at pa-
pers that consider the coordination of material flows
and inventory placement in the supply chain. Finally
we look at the phenomenon known as the ‘bullwhip
effect’, (which describes the commonly observed in-
creased demand variance at upstream stages in a supply
chain) and models that have attempted to mitigate this
effect.
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Combined Inventory and Transportation Decisions

A.J. Clark and H. Scarf [20] provide perhaps the ear-
liest work considering the operational interaction be-
tween two separate members of a distribution chain.
They develop a periodic review inventory management
model for a serial distribution system. They use a sim-
ple system consisting of a single distribution center and
a single retailer to show the optimality ofmodified base-
stock policies for the retailer’s inventory control. Mod-
ified base-stock policies require a fixed base-stock level
that the retailer attempts to bring inventory up to at the
beginning of each period. If the retailer cannot reach
its target base-stock level (because the distribution cen-
ter has insufficient stock), the retailer attempts to get as
close to the base-stock level as possible by exhausting
distribution center stock.

In one of the initial efforts to provide an exact
model that incorporates combined inventory and trans-
portation costs with stochastic demands, A. Federgruen
and P. Zipkin [31] consider a single-period problem in
which a central depotmust allocate its inventory among
multiple retailers. Their model minimizes expected in-
ventory holding and shortage costs plus vehicle routing
costs. Each of a set of vehicles has a fixed capacity and
incurs a cost equal to cij for travel between locations i
and j. The model determines vehicle routes and the al-
location of inventory among the retailer locations that
minimizes combined inventory and routing costs.

L.B. Burns et al. [12] present themodel behind a sys-
tem developed in a streamlining effort for GM’s Delco
Electronics Division distribution network. The model
examines the trade-offs between inventory and trans-
portation costs and determines which plants should
supply a variety of assembly facilities in North Amer-
ica. The key decision involved was between the current
practice of straight-line deliveries to a single central-
ized warehouse versus a peddling strategy that delivers
parts directly to the assembly plants. The model recom-
mended a new peddling strategy for Delco components
and resulted in a 26.9% logistics savings opportunity.

C.A. Yano and Y. Gerchak [76] consider a two-stage
system where a manufacturing plant supplies an assem-
bly plant with Just-in-time (JIT) shipments of a high-
volume part. The model assumes that the retailer ob-
serves stochastic, periodic demand of a single product.
They allow for emergency shipments of parts when in-

sufficient vehicle capacity exists. They determine the
order-up-to point (base-stock level) for the part, the
time between successive deliveries of the part, and the
number of vehicles contracted for deliveries between
the supplier and assembly plant. The model minimizes
the sum of assembly plant expected inventory costs,
contracted shipment costs, and emergency shipment
costs. R. Ernst and Pyke [29] build on the work of Yano
and Gerchak [76] by including the manufacturer’s (or,
in their case, the warehouse’s) expected inventory costs
plus per unit shipping costs (as opposed to a per truck
shipping cost only).

We find a more detailed treatment of the trade-
off between vehicle routing and inventory costs in [2],
which considers a system with a central depot and mul-
tiple geographically dispersed retailers. All stock en-
ters the system through the depot and each retailer ob-
serves deterministic demand that occurs at a constant
rate. The model minimizes inventory costs at the retail-
ers (the depot holds no stock) plus distribution costs
incurred by combining retailer deliveries into routes
served by a set of vehicles with fixed capacities. The au-
thors develop bounds on both the optimal solution and
solutions from a class of heuristics they develop. They
then show the asymptotic optimality of their heuristics
(within a class of strategies that partitions retailers into
regions, and if a vehicle visits a region it must visit all
retailers in the region). For other algorithms for and ex-
tensions to the inventory-routing model see [19,27,28],
and [74].

P. Chandra and Fisher [18] consider the problem
of coordinating production runs with vehicle routing
decisions for a single facility with multiple customers.
They compared the case of separately optimizing pro-
duction planning and vehicle routing decisions to a co-
ordinated approach that attempts to minimize the total
combined cost of production and routing. They found
increased value in coordinating these decisions under
higher production capacity, longer time horizons, and
low holding and setup costs (i. e., the more flexible and
less constrained the production planning situation).

M. Henig et al. [42] consider the problem of de-
termining the optimal inventory replenishment policy
structure and truck capacity when a distribution center
imposes a variable cost for each unit ordered in excess
of distribution center truck capacity, R. They show that
the optimal periodic ordering policy under such a cost
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contains two base-stock levels, S1 and S2 (S2 � S1). The
policy structure requires that if initial inventory posi-
tion before ordering is less than S2, we either order up
to S1, order exactly R units, or order up to S2, depend-
ing on the value of the initial inventory position; other-
wise we do not order. The paper also specifies a method
to determine the best level of truck capacity under the
given cost structure.

Due to the increased reliance by manufacturers on
third party less-than-truckload (LTL) carriers, Chan
et al. [16] consider a multiperiod distribution model
with LTL shipments. Their model assumes that a set of
customers observe periodic, deterministic demand for
multiple products over a finite planning horizon. The
distribution network contains both suppliers and ware-
houses and the model allows for backlogging customer
demands. The authors pose the problem as a fixed-
charge minimum concave cost network flow problem
over an equivalent distribution network, where the
costs include LTL shipping costs plus inventory hold-
ing and shortage costs. The paper develops proper-
ties of optimal solutions and shows conditions under
which the linear programming (LP) relaxation (under
piecewise-linear concave costs) value equals the opti-
mal mixed integer solution value. The heuristic solution
algorithm proposed is based on effectively characteriz-
ing the cost of modifying a fractional integer variable
found in the LP relaxation solution. Their results com-
pare favorably to an original solution approach for the
problem proposed in [7].

Material Flows and Inventory Placement

We next consider several papers that deal with more ef-
fectively managing material flows and inventory place-
ment in the supply chain.

Lee and C. Billington [50] develop a stochas-
tic model for managing material flows in Hewlett-
Packard’s deskjet printer supply chain. They assume
that each site observes stochastic demand and employs
a periodic, order-up-to inventory system and that a pre-
determined value is set for either a target service level or
base-stock level (for each site). Their model character-
izes the demand transmission process (whereby a site
translates its demand into orders on its’ suppliers) and
the availability transfer process, which describes the
availability of goods at the supplier location. They de-

termine the review period and order quantity for each
product type and location and address the trade-offs be-
tween inventory investment and service level in a mul-
tistage supply chain.

Pyke and Cohen [59] develop a stochastic model
for managing material flows in an integrated three-
level production-distribution system. The system con-
tains multiple products, a single manufacturing facil-
ity, one warehouse, and a single retailer. The retailer
promises its customers a minimum service level and
the model minimizes total cost under constant setup
and processing times at the factory. Although the trans-
portation time from factory to retailer is constant, an
option exists for the retailer to receive an expedited
shipment if the finished goods stockpile at the fac-
tory cannot satisfy retailer demand. The model assumes
stochastic production times and lead times between the
factory and its finished goods stockpile, and approxi-
mates key inventory and service time distributions nec-
essary for expressing expected total system cost. The
outputs of the model include the economic reorder in-
terval and replenishment batch size for each product
type.

T. Altiok and R. Ranjan [1] analyze a multistage
pull-type production system containing one final prod-
uct, FIFO (first in, first out) processing rules, inter-
mediate buffers, and Poisson demand. Each stage fol-
lows an (R, r) inventory policy (when inventory posi-
tion falls below r, order up to R) and backorders when
stock is insufficient to meet demand. They develop an
iterative procedure that separately considers the flow in
each two-node subsystem as a function of the policy pa-
rameters. The procedure terminates when the average
throughput values of all subsystems are approximately
equal. The outputs include the inventory level in each
buffer and the backorder probability, P. The authors
show that when P does not exceed 0.3, their approxi-
mation method provides acceptable results.

S.C. Graves and S. Willems [40] consider the place-
ment (location) of safety stock in a multistage supply
chain. They represent the supply chain as a network
and assume that each stage follows a base-stock policy
(a stage represents a processing function, such as pro-
curement of raw material, component production, as-
sembly, testing, etc.). Demand occurs only at nodes that
have no successors and each stage provides a guaran-
teed service time formeeting downstream demand. The
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model minimizes system-wide safety stock costs while
meeting the guaranteed service times (which constitute
the decision variables). They [40] validated their model
through a successful implementation in Eastman Ko-
dak’s digital camera supply chain.

Graves et al. [38] study requirements planning
in multistage production systems. They begin with
a single-stage model that produces one (aggregated)
product to stock for a finished goods stockpile. They as-
sume that each stage forecasts demandH periods in ad-
vance and revises forecasts in each period. These fore-
casts drive the production plan, which is also planned
H periods in advance and is revised each period. They
measure three significant parameters: the smoothness
of the production plan, the stability of the production
plan, and the safety stock level (smoothness of the pro-
duction plan differs from stability in that smoothness
characterizes the variability of actual production out-
put while stability characterizes the variability of the
production schedule). The paper captures the trade-
off between production capacity and inventory require-
ments. The authors show how to extend the single-stage
model to a multiple-stage dynamic requirements plan-
ning (DRP) model by replicating single-stage models.
An application of the model to film manufacturing at
Kodak resulted in a 60% decrease in inventory require-
ments for two items, while increasing one item’s inven-
tory by 20%, with a significant net savings reported for
the business line.

The Bullwhip Effect

Several recent papers (as of 2000) have described and
quantified the phenomenon known as the bullwhip ef-
fect in supply chains – the tendency for demand vari-
ability to increase at upstream stages in the chain. This
demand variability places a burden on suppliers be-
cause of the increased safety stock and excess vehicle
capacity requirements.

C.C. Holt, F. Modigliani, and J.P. Shelton [44] first
showed evidence that the variation in orders can in-
crease at upstream points in the television manufactur-
ing chain. J.D. Sterman’s [66] documentation of expe-
rience with supply chain simulation experiments shows
how rational decision making can lead to the bullwhip
effect in the absence of full information about partners
in the chain.

Lee, V. Padmanabhan, and S. Whang [51] offer four
factors to explain the existence of the bullwhip effect
(demand forecast updating, order batching, price fluc-
tuation, and shortage gaming), along with mathemati-
cal models of these phenomena. They provide insights
on how coordination between channel partners can di-
minish the bullwhip effect. Z. Drezner et al. [26] specif-
ically consider the impact of forecast errors on the bull-
whip effect. Their model shows that even in supply
chains with perfect information shared among all mem-
bers, errors in demand forecasts can still create a bull-
whip effect.

M.P. Baganha and Cohen [5] consider conditions
under which demand stabilization (or damping) be-
comes economically attractive in a two-echelon distri-
bution system containing a warehouse and multiple re-
tailers. Their model assumes that each retailer incurs
a fixed order cost, which results in the optimality of
(s, S) inventory policies at each retailer (when inven-
tory position falls below s, order up to S). Following
an (s, S) policy results in autocorrelated orders from
each retailer since we can expect that a retailer will not
place an order in a period immediately following one
in which an order was placed. Baganha and Cohen [5]
therefore apply an autoregressive model to describe the
distribution of retailer orders (which constitutes ware-
house demand) and show situations in which retailer
order damping can lead to lower system cost.

G.P. Cachon [13] studies supply chain demand vari-
ability in a model with one supplier and N retailers that
face stochastic demand. Retailers follow a periodic (R,
nQ) policy (order up to R using integer multiples of
some base quantity, Q). The model develops exact ex-
pressions for supply chain (inventory) costs under sta-
tionary retailer demand distributions. The results show
how the supplier’s demand variance declines as the re-
tailers’ order intervals are lengthened or as batch size
increases. The main result of the paper shows that a bal-
anced ordering strategy (when the same number of re-
tailers order in each period) can lead to significant sav-
ings in supply chain inventory costs.

Cachon and Zipkin [14] consider competition and
cooperation in a two-stage serial supply chain. The
model assumes stationary stochastic demand occurs at
a single retailer who then orders from a supplier. They
consider both the competitive and cooperative scenar-
ios: in the competitive case each firmminimizes its own
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cost, while a coordinated approach minimizes system
costs (both firms follow a base-stock policy). The paper
shows how the competitive approach reduces efficiency
by leading to a Nash Equilibrium point that differs from
the system optimal solution. A sequence of linear trans-
fer payments allows the firms to achieve the system op-
timal solution while operating independently.

A. Balakrishnan et al. [6] consider a two-echelon
supply chain with a single-distribution center, multiple
retailers, and multiple products. Like Cachon and Zip-
kin [14], they compare expected chain costs under au-
tonomous decisions (competitive scenario) to those un-
der coordination mechanisms. The model differs from
that of Cachon and Zipkin [14] since it considers in-
ventory plus transportation costs, and the coordination
mechanisms differ from linear transfer payments. Bal-
akrishnan et al. [6] offer both cost- and policy-driven
mechanisms that effectively use the retailer order vari-
ability as a decision variable. By tuning to the best level
of order variability they show that the coordination
mechanisms can lead to better system costs than un-
der autonomous decisions by damping retailer demand
variation.

Supply Chain SimulationModels

Because of the large number of decision variables and
the complexity of the constraints required in develop-
ing exact cost models of large scale distribution systems,
many researchers have used simulation models to pro-
vide valuable insight into complex supply chain dynam-
ics. We next briefly consider models that have used sim-
ulation to derive such insights.

J. Wikner et al. [75] examine five supply chain
improvement strategies using a simulation model for
a three-level supply chain that includes one factory,
multiple distribution centers and retailers, and carries
inventory at each facility. The five strategies include
1) reducing system delays;
2) fine tuning order policy parameters;
3) removing the distribution center echelon from the

system;
4) changing different echelon decision rules; and
5) improving information integration between stages.

They conclude that integrating information flow be-
tween channel partners is the most effective strategy for
minimizing supply chain operating costs.

D.R. Towill et al. [70] then extend the simulation
model to consider a just-in-time (JIT) delivery strategy.
The JIT strategy combined with the removal of the dis-
tribution center echelon was shown to be more effec-
tive than the integration of information flow or mod-
ification of the order policy parameters. Towill and A.
Del Vecchio [69] use methods from filter theory com-
bined with a simulation model to analyze the effects of
demand variability in the supply chain. They liken each
stage in the chain to an electrical filter (with a response
function) and analyze various supply chain responses
to randomness in demand patterns. The simulated re-
sponses determine the minimum safety stock required
to achieve a desired service level.

S. Tzafestas and G. Kapsiotis [71] present a math-
ematical programming based approach to optimize
a portion of the supply chain and use simulation tech-
niques to numerically analyze the performance of the
optimized model. They consider a two-echelon sys-
tem in which a manufacturer supplies multiple assem-
bly plants. They then consider three decision scenar-
ios. In scenario I the manufacturer minimizes its cost
and its customers must accept the deliveries imposed
by the manufacturer. Scenario II incorporates a cen-
tral decision-maker that attempts to minimize overall
system costs. Scenario III presents a decentralized de-
cision framework where the supplier minimizes its cost
subject to the demand imposed by the assembly plants
under their optimal decisions. They perform the simu-
lation under three scenarios: manufacturing facility op-
timization, global supply chain optimization, and de-
centralized optimization at each level. The numerical
examples chosen by the authors do not result in signif-
icant differences in cost performance under any of the
three tested scenarios.

D. Petrovic et al. [57] use fuzzy modeling to deter-
mine order-up-to levels at various stages in a supply
chain. They develop a supply chain simulator that an-
alyzes the effects of order-up-to levels on cost and the
dynamic behavior of the chain in an uncertain envi-
ronment. The fuzzy model handles uncertainty in both
customer demand and external supply of rawmaterials.
The model attempts to determine the stock levels and
order quantities at each stage in the chain that give ac-
ceptable delivery performance at a reasonable total cost.

R. Ganeshan [35] presents a near optimal (s, Q)
inventory policy (when inventory position falls below
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s, order Q units) for a production/distribution net-
work with multiple suppliers, a central warehouse, and
multiple retailers. This model develops a system-wide
cost equation (by describing the demand process at the
warehouse) that includes warehouse and retailer in-
ventory costs and uses a conjugate gradient method to
find the best policy parameters. The paper verifies the
costs implied by the prescribed policy parameters using
a SLAM-based supply chain simulation model.

Summary

Fisher [32] notes that the performance of supply chains
today is extremely poor despite advances in the areas of
quick response systems, mass customization, lean man-
ufacturing, and new technologies. As firms increase
their operations throughout the world, they will have
even greater need for tools that integrate operations and
information among geographically dispersed locations.

The key to success in SCM requires an emphasis
on integrating activities through cooperation, coordi-
nation, and information sharing throughout the entire
chain. To have the greatest benefit, the supply chain
must be managed as a single entity, which requires im-
proved OR models and tools so that supply chain man-
agers can solve problems that reflect the relationships
among all supply chain activities.

Many research opportunities exist for developing
global supply chain models that take into account el-
ements necessary for providing a complete and inte-
grated view of the system. New areas for research in-
clude the following:
� modeling the effects of a greater number of stochas-

tic elements;
� accounting for international economic issues (in-

cluding exchange rate fluctuations and risks);
� incorporating and modeling detailed BOM relation-

ships;
� product differentiation and mass customization

strategies;
� capitalizing on advances in information technolo-

gies; and
� the value of important strategic global alliances.

We have commented on many significant develop-
ments and applications of OR models. Despite these
advances, Geoffrion and Powers [37] report that many
of the most popular commercial software packages still

use simple heuristic approaches that result in signif-
icantly suboptimal cost performance. Because of the
proliferation of desktop computers and software pack-
ages with sophisticated graphical user interfaces, logis-
tics executives have almost exclusively selected overly
simplified heuristic-based software for the design and
analysis of the supply chain.

Shapiro et al. [62] note that now is the perfect time
for developing sophisticated OR supply chain models
for personal computers and describe their success in
doing so for a large consumer products company. The
OR/MS profession has recently created many powerful
decision tools that provide opportunities for improved
SCM. It is important that these tools continue to find
widespread application in industry through the devel-
opment of comprehensive and user-friendly SCM sys-
tems.

See also

� Global Supply Chain Models
� Inventory Management in Supply Chains
� Nonconvex Network Flow Problems
� Piecewise Linear Network Flow Problems
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Mechanical Model

Considered is the rotation of a flexible arm in a hori-
zontal plane around an axis through the arm’s fixed end
and driven by a motor whose torque is controlled. The
equations of motion of the motor are given by

(

̇(t) D !(t);
!̇(t) D u(t) D �(t)

J ;
(1)

where 
 is the angle of rotation, ! is the angular ve-
locity, � is the torque generated by the motor, and J is
the moment of inertia of the motor and the arm. J is as-
sumed to be constant, since the displacement of the arm
due to the vibration caused by the rotation is assumed
to be small.

In addition, we assume the arm to be homogeneous
and of length 1. Following [6] the displacement y = y(t,
x) of the arm from the rotating zero line is modeled by
the differential equation

ytt(t; x)C ˛yxxxx (t; x)

�
!(t)2

2
@

@x
[(1�x2)yx (t; x)]�!(t)2y(t; x) D �xu(t)

for all t 2 (0; T)and x 2 (0; 1) ; (2)

where T > 0 is some given time and ˛ = EI� with E
being Young’s modulus of the arm material, I being the
moment of inertia of the cross-section of the arm, and
� being the mass per unit length.

The left end of the arm is clamped, and the right end
is free. This leads to the boundary conditions

y(t; 0) D yx (t; 0) D yxx (t; 1) D yxxx (t; 1) D 0

for all t 2 [0; T] :
(3)

At the beginning of the motion the arm is assumed to
be in rest which leads to the initial conditions

y(0; x) D yt(0; x) D 0
for all x 2 (0; 1)

(4)

and


(0) D 
̇(0) D 0: (5)

The Problem of Controllability
andMinimumNorm Controllability

Let some angle 
T 2 R with 
T 6D 0 be prescribed.
Then we look for some control function u 2 L2(0, T)
such that the solution y = y(t, x), t 2 [0, T], x 2 [0, 1] of
(2), (3) and (4) satisfies the end conditions

y(T; x) D yt(T; x) D 0

for all x 2 (0; 1)
(6)

and the angle 
 = 
(t), t 2 [0, T], of rotation satisfies
the end conditions


(T) D 
T and 
̇(T) D 0 : (7)

If this problem of controllability is solvable, then a con-
trol function u 2 L2(0, T) is looked for which solves the
problem of controllability and whose norm

kukL2(0;T) D
�Z T

0
u(t)2 dt

� 1
2

is as small as possible.
On using (1) and (5) we get


̇(t) D!(t) D
Z t

0
u(s) ds ;


(t) D
Z t

0
(t � s)u(s) ds

for t 2 [0, T] so that the differential equation (2) can be
rewritten in the form

ytt(t; x)C ˛yxxxx (t; x) �
�Z T

0
u(s) ds

�2

�

�
1
2
@

@x
[(1 � x2)yx (t; x)]C y(t; x)

	
D �xu(t)

for t 2 (0; T) and x 2 (0; 1)

(8)



Optimal Control of a Flexible Arm O 2717

and the end conditions (7) are equivalent to

8̂
ˆ̂<
ˆ̂̂:

�

Z T

0
tu(t) dt D 
T ;

Z T

0
u(t) dt D 0 :

(9)

Solvability of the Problem of Controllability

At first we consider the special case where the cross-
section areas behave like rigid bodies, i. e., they stay
plane, do not change their measurements and do not
rotate around their centers. Further, it is assumed that
they stay orthogonal to the zero line. Then the differen-
tial equation (2) can be replaced by

ytt(t; x)C ˛yxxxx (t; x) D �xu(t)

for t 2 (0; T) and x 2 (0; 1)
(10)

(see [1] and [2]).
In this case it can be shown that the problem of con-

trollability is solvable for every T > 0 and the problem
of controllability with minimum norm has a unique so-
lution (see, for instance [3]). The main tool in the proof
of this result is linear moment theory (see [4]).

In the general case where the displacement y = y(t,
x) of the arm from the rotating zero line is modeled by
the differential equation (2), the problem of controlla-
bility is not exactly solvable as being shown in [5]. The
main tool in the proof of this result is nonlinear mo-
ment theory. However, if one determines the unique
control u = u1 2 L2(0, T) which satisfies (9) with min-
imal norm such that the corresponding solution y = y1

= y1(t, x) of (10), (3) and (4) satisfies the end condi-
tions (6) and then determines the unique control u =
u2 2 L2(0, T) which satisfies (9) with minimum norm
such that the solution y = y2 = y2(t, x) of the differential
equation

y2t t(t; x)C ˛y
2
xxxx (t; x) D

�Z t

0
u1(s) ds

�2

�

�
1
2
@

@x
[(1 � x2)y1x(t; x)]C y1(t; x)

	
� xu2(t)

for t 2 (0,T), x2 (0, 1) the boundary conditions (4), and
the initial conditions (3) satisfies the end conditions (4),

then the solution y = y� = y�(t, x) of

y�t t(t; x)C ˛y
�
xxxx (t; x) �

�Z t

0
u2(t) dt

�2

�

�
1
2
@

@x
[(1 � x2)y�x (t; x)]C y�(t; x)

	
D �xu2(t)

for t 2 (0, T), x 2 (0, 1), the boundary conditions (3),
and the initial conditions (4) satisfies the end condi-
tions (6) up to a very small error.
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Designing a composite stiffened panel is a complicated
process, and optimization techniques are proving help-
ful to engineers in designing a cost-effective, practical
structure. Random search algorithms (cf. also � Ran-
dom search methods), such as simulated annealing and
genetic algorithms, are being used in the design of com-
posite structures [3]. A benefit of these algorithms is
that they can optimize functions that cannot be han-
dled with traditional optimization techniques. In this

article, a structural design problem for composite fuse-
lage is described which involves solving a mixed inte-
ger global optimization problem. The objective func-
tion may be discontinuous, have many local optima,
and the feasible region may be disconnected. The ran-
dom search algorithm, improving hit and run [23], that
is used to solve these composite structural optimiza-
tion problems is also described in � Global optimiza-
tion: Hit and run methods. Although a random search
algorithm can only provide a probabilistic guarantee
of finding the global optimum, the benefits of having
a more realistic formulation outweigh the disadvantage
of not having a 100% guarantee of finding the global
optimum. The near optimal solutions found using this
approach have been well-received by Boeing engineers
and have demonstrated significant reductions in weight
and cost [15].

Three optimization formulations for a composite
design problem will be described, each increasing in
complexity and incorporating more realism. The first
two formulations are point designs, where a single
cross-section of a composite panel is optimized. The
first formulation assumes a fixed number of plies, while
the second one allows the number of plies to be a vari-
able in the optimization. The third formulation extends
a ‘point’ optimization to a ‘blended’ panel optimization,
by dividing a panel into elements. This third formula-
tion is applied to the design of a large panel with vary-
ing cross-sections. Manufacturing considerations lead
to constraints in the third formulation to ensure a prac-
tical, consistent, panel. A sample problem is also pre-
sented.

Point Design

The first formulation optimizes a laminated compos-
ite structure, with skin and stiffeners. Laminated com-
posites are composed of several thin layers, called plies,
which are bonded together to form a composite lam-
inate. A single ply consists of long reinforcing fibers
(e. g., graphite fibers), embedded within a relatively
weak matrix material (e. g., epoxy). Composite lami-
nates are usually fabricated such that all fibers within
an individual ply are oriented in one direction, how-
ever the angle may vary from ply to ply. The angle of
the fibers in the ith ply is denoted by � i. The design
variables for the first formulation include: the fiber an-
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Optimal Design of Composite Structures, Figure 1
Design variables for a hat stiffened composite laminate

gles for each ply in the skin and stiffeners, denoted � skini
for i = 1, . . . , nskin and � stiffeneri for i = 1, . . . , nstiffener,
and stiffener geometry variables; height, width of cap,
width of flange, angle of web, and stiffener spacing, as
shown schematically in Fig. 1. In the first formulation,
it is assumed that the numbers of plies in the skin and
stiffeners, nskin and nstiffener, are fixed. This assumption
is relaxed in the second formulation, where the number
of plies will also be allowed to vary.

The first optimization formulation is stated as:
8̂
<̂
ˆ̂:

min f (x)
s.t. g j(x) � 0 for j D 1; : : : ;m;

xl
i � xi � xui for i D 1; : : : ; n;

(1)

where the n variables consist of the nskin + nstiffener fiber
angles and five stiffener geometry variables, and are
real-valued, x 2Rn. The objective function, f (x), may be
cost, weight, or a combination of cost and weight, f (x)
= ıcost 
 f cost(x)+ ıweight 
 f weight(x). An alternate ob-
jective may be to maximize performance, such as max-
imize margin of safety.

The constraints are composed of simple upper and
lower bounds on the variables, xli � xi � xui , and
themore complicated structural mechanics constraints,
gj(x) � 0. The structural mechanics constraints are
composed of margins of safety for strain, strength,
damage tolerance and buckling analyses [16]. The in-
equality constraints are formed so that a feasible design
has a positive margin of safety. This first formulation
has been described in [1,2,4,20].

Optimal Design of Composite Structures, Figure 2
Graph of in-plane stiffness for a four ply symmetric laminate,
[�1, �2, �2, �1]

The margin-of-safety functions to be used as con-
straints and/or the objective function can be described
as black-box functions where the functions often are
only available in the form of a computer subroutine. For
example, stiffness of a composite laminate can be calcu-
lated using classical lamination theory [5] or it could
involve a finite element analysis [10,12].

To illustrate the global nature of these equations,
a plot of the in-plane stiffness of a four ply, symmet-
ric laminate, [�1, �2, �2, �1], using classical lamination
theory, is shown in Fig. 2. The greatest in-plane stiff-
ness occurs when the fiber angles are all 0 degrees, as
makes sense intuitively. See [20] for the equations used
to generate the plot. The plateau in the graph represents
infeasible designs, with a stiffness that is less than a pre-
scribed critical value. If stiffness is used as an objective
function, it can be seen to be nonlinear and nonconvex.
If stiffness is used in the constraints to allow only those
design above a threshold of critical stiffness, the feasi-
ble region itself is nonconvex and even has holes in it.
This indicates what a difficult problem even attaining
feasibility can be.

It is also possible to define a hierarchy of objectives.
For example, we might minimize cost and when there
is a tie on cost, we minimize weight, and when there is
a tie on weight, then maximize margin of safety. This
hierarchy is natural to the formulation because weight
is not directly affected by the fiber angles, but vary-
ing the fiber angles can increase margin of safety while
maintaining a low cost and weight. A two phase ap-
proach was used, where phase 1 maximized the min-
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imum margin of safety until a positive value was ob-
tained, and then phase 2 maintained feasibility while
optimizing the hierarchy of cost, weight and margin of
safety. A contrasting approach using a penalty method
with a variable penalty factor was compared numeri-
cally in [10,11]. Numerically the penalty method was
better than the hierarchical approach, although the hi-
erarchical approach was more intuitive to the engi-
neers.

An improvement to the first formulation involves
relaxing the requirement to specify the numbers of plies
in the skin and stiffener. Since the composite laminate
is manufactured by laying down individual plies, it is
realistic to treat the number of plies as an integer vari-
able. Other optimization techniques have treated thick-
ness of a ply as a continuous variable, and then rounded
to the appropriate number of plies [3,17]. This is not as
accurate as treating the number of plies as integer vari-
ables directly. The second formulation is very similar
to the first, with additional binary variables to indicate
whether a ply exists in the laminate; tskini for i = 1, . . . ,
nskin and tstiffeneri for i = 1, . . . , nstiffener, where ti = 1 if ply
i exists and takes on fiber angle � i, and ti = 0 if ply i is
dropped from the laminate. The upper bounds on the
number of plies needed in the skin and stiffener, nskin

and nstiffener are now easier to provide and not a critical
aspect of the inputs.

The complete second optimization formulation, in-
cluding the binary variables is summarized as:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x; t)
s.t. g j(x; t) � 0 for j D 1; : : : ;m;

xl
i � xi � xui for i D 1; : : : ; n;

ti 2 f0; 1g for i D 1; : : : ; n0;

(2)

where n is the total number of continuous variables, in-
cluding fiber angles and geometry variables, and n0 is
the largest number of plies, n0 = nskin + nstiffener.

The random search algorithm had to be modified
in order to solve the second formulation. See � Global
optimization: Hit and run methods, or [10,11,13] for
details on the algorithm for mixed discrete-continuous
global optimization. Once this capability was available,
it was possible to create other discrete variables. The
most interesting are the fiber angles, which may take
on continuous values between +90 and �90 degrees,
but for practical purposes are often restricted to dis-

crete values, such as 0, ˙ 45, or 90 degrees. This flex-
ibility in the formulation provides the ability to in-
vestigate manufacturing considerations. For example,
running the optimization problem allowing the fiber
angles to be continuous values may not be practical
for manufacturing, but can provide a lower bound
on weight. Then the problem can be run again to
investigate the additional weight associated with us-
ing a discrete set of fiber angles. In this way, trade-
offs can be carefully evaluated early in the design
process.

Blended Panel

The third formulation expands the optimization prob-
lem beyond considering a single point to include an
entire panel. In the point optimization, it is assumed
that the loads are constant and uniformly distributed
over the section, and the design is also constant over
the section. To be more realistic, the loads over a large
panel such as a crown panel in a fuselage, are not evenly
distributed. We could use the second formulation for
the entire panel using the heaviest loads, but then we
would essentially overdesign parts of the panel where
the loads are much lighter. Therefore, in the third for-
mulation, the panel is divided up into elements, where
the loads are assumed constant for each element, but
the loads may vary between different elements [16,19].
The elements cannot be point-optimized individually
because the result may be impractical for manufac-
turing. For example, the stiffener spacing could in-
crease and decrease in adjacent elements, or a 45o ply
could change to a �30o in adjacent elements. This
would not be considered manufacturable, since it is as-
sumed that once a ply is in place, the orientation of
the fiber angle cannot change, although the ply may
be dropped off. The third formulation must ensure
that the elements can be produced into a consistent
panel, or what we call a ‘blended’ panel. By including
binary variables for each ply in each element, ‘blend-
ing rules’ are established to reflect these manufacturing
considerations.

Figure 3 illustrates the main blending rule for
a panel divided into four elements. Consider any ply
as it passes through the four elements. The fiber ori-
entation of ply i is � i, and there are also four binary in-
teger variables associated with the ply. As described in
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Optimal Design of Composite Structures, Figure 3
Design variables for a blended panel

the second formulation, if the binary variable ti(j, k) = 1
then ply i in element (j, k) exists with fiber angle � i, and
if ti(j, k) = 0 then ply i has been dropped in element (j, k).
By adding constraints on the binary variables, we can
force plies to be dropped in such a way that the panel
is manufacturable. We assume that the heaviest load on
the panel exists in the upper left corner, and we want to
be able to drop a ply, but once it is dropped we do not
allow it to be added back into the panel. Thus the main
blending rule is nicknamed the ‘less-than-or-equal-to
rule’, and includes the following constraints:

ti( j;k) � ti( j;kC1);

ti( j;k) � ti( jC1;k)

for all plies i, and for all rows j and columns k of the
panel.

For the panel illustrated in Fig. 3, the above con-
straints would be:

ti(1;1) � ti(1;2);
ti(2;1) � ti(2;2)

and

ti(1;1) � ti(2;1);

ti(1;2) � ti(2;2):

In the example, if ply i exists in element (1, 1) but is
dropped in element (1, 2), then it must also be dropped
in element (2, 2). Ply i may exist or be dropped in el-
ement (2, 1) and still satisfy the blending rule. This

blending rule has been very useful in structuring the
optimization over a panel where the loads are allowed
to vary, and a realistic design would make use of ply
drops.

To summarize the third formulation, the second
formulation is expanded to span several elements, and
the blending rule is introduced as additional con-
straints:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min f (x; t)
s.t. g j(x; t) � 0; j D 1; : : : ;m;

xl
i � xi � xui ; i D 1; : : : ; n0;

ti( j;k) � ti( j;kC1); i D 1; : : : ; n;
ti( j;k) � ti( jC1;k); i D 1; : : : ; n;
ti( j;k) 2 f0; 1g; i D 1; : : : ; n;

(3)

for all defined elements (j, k).
Another aspect in blending of a panel has to do with

the variation allowed in stiffener geometry across ele-
ments. For example, stiffener spacing cannot vary in the
axial direction, but is allowed to vary across elements
in the hoop direction. In the third formulation, we in-
clude a design variable for stiffener spacing, xstspj that
is only subscripted by row of the elements, which cor-
responds to the hoop direction. For example, in the il-
lustration in Fig. 3 the stiffeners are one unit apart in
the first row where the loads are heaviest, and two units
apart in the second row which has lighter loads. No ad-
ditional constraints are needed to incorporate this re-
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striction, since the definition of the variable has ensured
that stiffener spacing is constant in the axial direction.
The other geometry variables are also allowed to vary
across rows in the hoop direction, but remain constant
in the axial direction. For example, as the stiffeners get
spaced farther apart, they may also become shorter. In
the sample problem presented here, it was assumed that
the height of a stiffener remained constant for its entire
length.

The main difference between the second and third
formulation is the difference between a point design
and a ‘blended’ panel design. The panel design is of
greater use to the engineers, but there is a penalty in
computational complexity. The addition of elements
for a blended panel greatly increases the number of de-
sign variables for the optimization problem. Suppose
the panel is divided into P 
 Q elements. Then there
will be (nskin+ nstiffener) 
 P 
Q binary integer variables.
There will be (nskin+ nstiffener) continuous variables for
the fiber angles, and 5 
 P continuous geometry vari-
ables. An alternative formulation has been developed
to reduce the number of variables by using integer vari-
ables that capture the number of elements, or distance,
for which a ply is runs. Details of this formulation and
numerical results are presented in [6,14,22].

We next present a sample problem and discuss the
differences between a point design and a ‘blended’ panel
design.

Sample Problem

The sample problem presented here is taken from [18],
and is intended to demonstrate the difference between
the point formulation and the blended panel formula-
tion. It uses two sets of loading conditions for each ele-
ment as shown in Table 1., and uses the material prop-
erties associated with AS4–3501 graphite/epoxy, as in
[1]. There are 2 
 3 elements with a maximum number
of 16 plies (symmetric) in the skin and stiffeners. For
this sample problem there are 96 binary integer vari-
ables, and 26 continuous variables, and the computer
algorithm used 25,000 function evaluations.

For the sample problemwe first did a point by point
optimization for each element independently to obtain
a lower bound on weight, and to observe the trends of
the designs. The point by point optimization results for
this sample problem are presented in Table 2. Notice

Optimal Design of Composite Structures, Table 1
Loading conditions for the sample problem, where Nx , Ny ,
and Nxy are in lb andMx ,My ,Mxy are in lb-in

Nx 3000 3000 2500 2500 2500 2500
Ny 2000 2000 1500 1500 1000 1000
Nxy 1500 �1500 1500 �1500 1000 �1000
Mx 2000 2000 2000 2000 2000 2000
My 0 0 0 0 0 0
Mxy 0 0 0 0 0 0
Nx 2500 2500 2000 2000 2000 2000
Ny 2000 2000 1500 1500 1000 1000
Nxy 1000 �1000 1000 �1000 500 �500
Mx 2000 2000 2000 2000 2000 2000
My 0 0 0 0 0 0
Mxy 0 0 0 0 0 0

that fiber angles vary in a way that would be imprac-
tical for manufacturing. For example, the fiber angles
vary drastically between adjacent elements, such as be-
tween element (1, 1) and element (1, 2). Also notice
that stiffener spacing also varies in an impractical fash-
ion. In the first row, stiffener spacing changes from 21
inches, to 22 inches, and then up to 30 inches. This is
not a manufacturable design. Table 3 depicts the opti-
mal design of the blended panel using the third formu-
lation. Although the overall weight increased, the opti-
mal design is now considered a practical design. Notice
that the first ply in the first element of 35o stays in the
entire panel, while the second ply in the first element
of 26o gets dropped immediately. This type of tailored
ply dropoffs is manufacturable, and makes use of the
ability to tailor composite materials. Also, the stiffener
spacing is fixed in the axial direction at 20.6 inches in
the first row, as desired, and has a slight change to 20.8
inches in the second row. This also satisfies the blending
rule.

The formulations presented thus far have been for
a stiffened composite panel, but the point and the
blended panel formulations have also been extended
to a sandwich composite panel, as depicted in Fig. 4.
A sandwich panel consists of an inner core, with plies
on the outside. Typically the depth of the entire panel is
constant, but the core increases to compensate for plies
that are dropped. The sandwich formulation was used
to design a fuselage keel panel in [7].
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Optimal Design of Composite Structures, Table 2
Point by point optimization of the sample problem

Skin 12 plies 10 plies 8 plies
[49/52/� 42/10/ � 45/ � 72/]s [36/45/ � 39/ � 82/� 39]s [25/50 � 25/ � 51]s

Stiffener 8 plies 10 plies 10 plies
[1/� 47/1/53]s [28/17/ � 23/ � 20/� 80]s [5/� 8/5/ � 53/53]s

Spacing 21 inches 22 inches 30 inches
Weight 634 E � 5 lb/in2 577 E� 5 lb/in2 450 E� 5 lb/in2

Skin 10 plies 8 plies 6 plies
[�85/55/34/� 34/� 44]s [�36/77/ � 38/35]s [1/57/� 48]s

Stiffener 8 plies 12 plies 10 plies
[41/� 3/� 58]s [�10/14/42/� 7/ � 59/ � 59]s [�33/69/12/� 17/14]s

Spacing 21 inches 24 inches 24 inches
Weight 548 E � 5 lb/in2 506 E� 5 lb/in2 396 E� 5 lb/in2

� The overall weight of this nonblended panel is 3; 111 E � 5 lb/in2.

� The stiffener geometry variables were always at their upper and lower bounds; Height: 2 inches; Width of
flange: 1 inch; Width of cap: 2 inches, and Angle of web: 90 degrees.

Optimal Design of Composite Structures, Table 3
Blended panel optimal design for the sample problem

Skin 12 plies 10 plies 8 plies
[35/26/� 35/41/ � 42/ � 89/]s [35/ � 35/41/ � 42/� 89]s [35/� 35/41/� 42/ � 89]s

Stiffener 12 plies 10 plies 8 plies
[�3/33/ � 53/� 2/53/ � 88]s [�3/33/� 53/ � 2/53]s [�3/� 53/� 2/53]s

Spacing 20:6 inches 20:6 inches 20:6 inches
Weight 702 E � 5 lb/in2 585 E� 5 lb/in2 552 E� 5 lb/in2

Skin 10 plies 10 plies 8 plies
[35/� 35/41/ � 42/ � 89]s [35/ � 35/41/ � 42/� 89]s [35/� 35/41/� 89]s

Stiffener 12 plies 10 plies 8 plies
[�3/33/ � 53/� 2/53/ � 88]s [�3/33/� 53/ � 2/53]s [�3/� 53/� 2/53]s

Spacing 20:8 inches 20:8 inches 20:8 inches
Weight 616 E � 5 lb/in2 583 E� 5 lb/in2 466 E� 5 lb/in2

� The overall weight of this nonblended panel is 3:504 E� 5 lb/in2.

� The stiffener geometry variables were always at their upper and lower bounds: Height: 2 inches; Width of
flange: 1 inch; Width of cap: 2 inches, and Angle of web: 90 degrees.

COSTADE

Through the collective efforts of Boeing, NASA, the
University of Washington and others, a prelimi-

nary design software package called COSTADE (Cost/
Composite Optimization Software for Transport Air-
craft Design Evaluation) has been developed [7,8,9].
The three optimization formulations described here are
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Optimal Design of Composite Structures, Figure 4
Design variables for a sandwich composite panel

available in the software. The optimization software has
been applied to the design of aircraft composite panels,
including a crown panel [15], a keel panel [7], a window
belt [9], and most recently to a full fuselage barrel [10].
Research continues in defining more general blending
rules [6], and more accurately reflecting the manufac-
turing considerations. The modified hit and run al-
gorithm has been robust enough to solve the mixed
integer-continuous global optimization problem with
a hierarchy of objective functions efficiently. The design
optimization has proved to be an effective aid in the de-
sign process of composite structures.

See also

� Bilevel Programming: Applications in Engineering
� Design Optimization in Computational Fluid

Dynamics
� Interval Analysis: Application to Chemical

Engineering Design Problems
�Multidisciplinary Design Optimization
�Multilevel Methods for Optimal Design
� Optimal Design in Nonlinear Optics
� Structural Optimization: History
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Over the past two decades, significant technology ad-
vances have been made in nonlinear optics due to rapid
developments of laser technology and nonlinear optical
materials. Applications of nonlinear optics are every-
where, for example, lasers, spectroscopy, optical switch-
ing, parametric amplifiers and oscillators, optical com-

puting, and communications. A remarkable applica-
tion is to generate powerful coherent radiation at a fre-
quency that is twice that of available lasers, so-called
second harmonic generation (SHG). However, nonlin-
ear optical effects are generally very weak. In order to
obtain useful nonlinear optical effects, several methods
may be employed. First, extremely high intensity laser
beams or materials with very high nonlinearities could
be used. Unfortunately, limited by the availability of
technology and high costs of such lasers/materials, this
method is often impractical. Another method is to in-
crease the effective nonlinearity of the medium by us-
ing composite materials. Such a method is currently
an active research topic in material sciences. The third
method is a structure assisted method. The idea is to
enhance the nonlinear interaction between the mate-
rial and the light by using gratings, waveguide, or other
diffractive structures. The advantage is that the method
is very practical and can make good use of available
lasers and materials [10].

This work is devoted to optimal design or param-
eter identification problems that arise in modeling of
nonlinear optical thin films [2]. We shall restrict our
attention to second order nonlinear effects, which are
the simplest and representative to other nonlinear ef-
fects. The following problems are of particular inter-
est: From the measured transmittance and reflectance
at both frequencies, what kind of information might be
retrieved about the medium? Given nonlinear films and
coating materials in amulti-layered form,maximize the
transmittance of the second harmonic field, i. e., maxi-
mize the nonlinear optical effects. Note that in the sim-
plest setting, the problem may be formulated as a two-
point boundary value problem for first order nonlinear
system of ordinary differential equations (ODEs). One
goal of this research is to identify physical properties of
the medium by probing the medium with light or other
energy sources. Another goal is to design new materials
with desirable properties, i. e., solving an optimal design
problem.

Throughout we shall view the optimal design prob-
lem as a parameter identification problem. Because
of important applications in diverse areas of science
and engineering, parameter identification problems for
nonlinear systems of ODEs have been studied exten-
sively. The advent of computers and parallel machines
has greatly accelerated activity in this area and has
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driven the need for efficient computational methods
and algorithms. For closely related parameter identifi-
cation for nonlinear ODE initial value problems, three
general approaches have been developed. We refer to
[5] for a detailed discussion. Among them, the black
box approach is the simplest one which essentially
separates the numerical solution of differential equa-
tions from the optimization process. The ODE solver
is treated as a ‘black box’ with a minimum commu-
nication with the optimization procedure. However,
there is a severe drawback of the approach. Due to the
nonlinearity of the problem, the model often does not
have a solution for all parameters. Without the neces-
sary communication, the optimization algorithm may
ask for a solution to the ODE with parameter values
for which the ODE solver fails. The second approach,
the all-together approach, first discretizes the ODE sys-
tem and then formulates the identification problem
as an optimization problem with equality constraints
resulting from the ODE discretization. The third ap-
proach often referred to as the domain decomposition
or in-between approach divides the interval into a num-
ber of subintervals, and uses a black box procedure
to solve the problem on each subinterval. In order to
solve the ODE system over the entire interval, matching
conditions are introduced to patch together solutions
over subintervals. Recently, J.E. Dennis, G. Li, and K.A.
Williamson [5] have developed two families of algo-
rithms, the in-between and altogether approaches, for
solving ODE inverse problems. Their model problem is
a nonlinear initial value problem. Efficient algorithms
are introduced by a nonlinear programming formula-
tion of the problem coupled with an orthogonal collo-
cation scheme for solving the model ODE. The general
idea is to tailor the algorithm to best fit the level of in-
teraction between the optimization algorithm and the
ODE solution technique.

In this article, we propose a domain decomposition
approach for solving the parameter identification prob-
lem of nonlinear ODE two-point boundary value prob-
lems. We introduce an in-between approach for solv-
ing the parameter identification problems for nonlinear
ODE two point boundary value problems, which has
the following distinct features:
1) The problem is formulated as a constrained opti-

mization problem as opposed to the standard data
fitting least squares problem. The set of variables is

decomposed into two parts: a set of explicit variables
and a set of implicit variables, which is shown to be
efficient through a complexity analysis. The conti-
nuity and boundary conditions are treated as explicit
constraints for the optimization problem. Hence, the
parameters and the function values at the subdivi-
sion points are EXPLICIT variables only need to be
satisfied and determined at the solution or the final
step. At each iteration step, the differential equation
(the IMPLICIT variables) is solved over each subin-
terval independently. Furthermore, the extremely
large number of linear systems for computing the Ja-
cobian, the gradient of the constraints, and the Hes-
sian of the Lagrangian, which account for more than
95% of the total computation, are all solved com-
pletely independently over each of the subintervals.

2) The optimization approach adopted from [4] and
[5] is a much refined version of the successive
quadratic programming (SQP) together with a glob-
alization strategy. The basic idea of the optimiza-
tion approach together with a discussion on sparsity
structures may be found in [5].We point out that the
approach is very complicated which involves com-
putations of Jacobians and Hessians with respect to
the implicit variables. Since our goal in this article
is to present the main ideas of the in-between ap-
proach, the tedious technical details of the optimiza-
tion techniques will be left out.
We follow the general idea of Dennis, Li, and

Williamson [5]. However, the situation here is more
complicated for the following reasons:
1) Unlike in [5], we do not assume availability of the

data in the interior of the interval. This feature is es-
sential in many practical applications, for example,
in nondestructive testing. On the other hand, we use
a set of samples that correspond to a set of experi-
ments. The samples are taken, only on the boundary,
by varying the sources.

2) Because the boundary value varies from sample to
sample, the size of the system of differential equa-
tions is a multiple of the samples. Unlike in the ini-
tial value problem case where the unknowns are in-
dependent of the number of data points, the number
of unknowns in our case is the number of sources
(or experiments) multiplied by the number of un-
knowns introduced in the domain decomposition
approach. As a result, the number of nonlinear equa-



Optimal Design in Nonlinear Optics O 2727

tions and linear systems needed to be solved for im-
plicit differentiations and computing the Hessian of
the Lagrangian is a multiple of the square of the
number of sources. Consequently, even with a mod-
erate number of experiments, the computational and
spatial cost may be so high that even main frame
computers may not be able to solve it unless spe-
cial efforts are taken to take advantage of the sparsity
structures of the gradient of the constraints and the
Hessian of the Lagrangian to reduce the number and
the size of the resulting systems of linear and nonlin-
ear equations.
Our approach has the flavor of themultiple or paral-

lel shooting method for solving ODE two point bound-
ary value problems [9]. We point out that a straightfor-
ward modification of the approach gives rise to a vari-
ant of the multiple shooting method. However, our em-
phasis here is not on solving the direct problem but
rather on solving the parameter identification problem
or the inverse problem.

Model Formulation

We make the following assumptions: the fields are
transverse; the medium is stratified; and the surface
is flat. Since the medium is stratified, the fields vary
only in one direction. The transversality assumption al-
lows us to reduce the Maxwell system to a system of
Helmholtz equations.

Let us specify the geometry of the model. Assume
that a slab of stratified nonlinear material (say, com-
posed of many layers of different nonlinear media) is
placed between two linear homogeneous materials, say
in the domain˝ = (0, l). Suppose that the whole space
is filled with material in such a way that the indexes of
refraction q1(x) and q2(x) at frequencies !1 and !2 =
2!1, respectively, satisfy

q j(x) D

8̂
<̂
ˆ̂:

q j1; x � l ;
q j0; x 2 ˝ ;

q j2; x � 0 ;

for j = 1, 2, where qj1 and qj2 are fixed constants, and qj0
may be some piecewise constant.

Assume that a plane wave with electric field (0,
EIeiq11x , 0) is incident on ˝ from the above. Using the
jump conditions, we can derive the following two-point

boundary value problem

�
d2

dx2
C q21

�
E1 D�1E1E2 in˝ ;

�
d2

dx2
C q22

�
E2 D�2E2

1 in˝

E01(l)C iq11E1(l) D 2iq11eiq11 l EI ;

E02(l)C iq21E2(l) D 0 ;

E01(0)� iq12E1(0) D 0 ;

E02(0)� iq22E2(0) D 0 ;

where E1 = E1(x, !1), E2 = E(x, !2), and �1, �2 char-
acterize the nonlinearity of the medium at frequencies
!1, !2, respectively. The most striking feature of sec-
ond harmonic generation is that new frequency com-
ponents (at !2) are present.

By introducing new variables, the system may be
simplified as a first order system of ODEs. From now
on, we shall consider the following two point boundary
value problem for a general system of nonlinear ODEs

y0 D F(x; y; p; k) ;

Ay(l)C By(0) D g(k) ;

where x 2 (0, l) is the independent variable, y = y(x) 2
Rny is the solution, p 2 Rnp denotes the parameters, k 2
Rnd represents the source terms, A and B are matrices
possibly depending on the parameters p. Here ny is the
number of dependent variables, np is the number of pa-
rameters, and nd is the number of samples or sources.

The direct problem is to determine solutions y =
y(x, p, k), given the parameters p and source terms g(k).
Mathematically, the problem is well understood. It is
well known that due to the nonlinearities, existence of
solutions is not obvious. Roughly speaking, it depends
on the regularity of F. Further, even a solution does
exist, because of the boundary conditions, it may not
be unique. Throughout the article, we assume that the
two-point boundary value problem has a unique solu-
tion.

The parameter identification problem or inverse
problem is to determine the parameters p from the
additional boundary data. We consider the data set:
ydata(0)s, ydata(l)s, s = 1, . . . , nd, where once again nd
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is the number of samples by varying k. Define

˚(p) D
1
2

ndX
sD1

ky(0; p; ks) � ydata(0)sk2

C
1
2

ndX
sD1

ky(l ; p; ks) � ydata(l)sk2 ;

where k � k is the vector norm defined by kuk2 = u| � u.
We are interested in identifying the parameters in

the least squares sense, i. e., to find a p� which best fits:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min ˚(p)
s.t. y0 D F(x; y; p; ks) ;
b.c. Ay(l ; ks)C By(0; ks) D g(ks) ;

s D 1; : : : ; nd :

Collocation Scheme

We next describe a collocation scheme for solving the
nonlinear system of ODEs. Here, we follow the general
procedure given in [5]. Let us begin by dividing the in-
terval (0, l) into ns subintervals: [xi, xi+ 1), for i = 1, . . . ,
ns, and x1 = 0, xns = l. On the ith subinterval, the func-
tion y(x) may be approximated by a polynomial: y(x)
	
P

j = 0nc zij � ij(x), where nc is the number of col-
location points in one subinterval, {� ij(x)} is a basis of
Lagrange polynomials of degree nc at the points tij, zij
are the collocation coefficients to be determined, and tij
is the jth collocation point on the ith subinterval.

The collocation method requires the above piece-
wise polynomial approximation to satisfy the ODE at
the collocation points on each of the subintervals. For
the sth sample, s = 1, . . . , nd, solving for {zsi j} leads to an
approximation to y at the collocation points. This step
leads to the following collocation conditions:

hs1(p; z) D 0 ;
where for s D 1; : : : ; nd; j D 1; : : : ; nc; i D 1; : : : ; ns ;

hs1(p; z) D
ncX
kD0

d�i k (ti j)
dx

zsik � F(ti j; zsi j ; p) :

In order to approximate the solution y(x) over the
interval (0, l), we need to patch together approxima-
tions over subintervals. This can be done by enforcing
continuity conditions at all end points of the subinter-
vals except the two end points x1 = 0, xns = l. The conti-

nuity conditions are natural by assuming that the solu-
tion is continuous:

hs2(p; z) D 0; where fors D 1; : : : ; nd; i D 2; : : : ; ns ;

hs2(p; z) D zsi0 �
ncX
kD0

zsi�1;k�i�1;k(ti0) :

In addition, we want to enforce the boundary value con-
ditions:

hs3(p; z) D 0; where for s D 1; : : : ; nd ;

hs3(p; z) D Azs00 C B
ncX
kD0

zsns;k�ns;k(l) :

Set for q = 1, 2, 3,

hq D (h1q; : : : ; h
nd
q ) :

We then have by combining the above conditions, that

h(p; z) D 0; h D (h1; h2; h3)> : (1)

Domain Decomposition

It follows that the parameter identification problem
may be formulated as a nonlinear programming prob-
lem:8<
:
min
p;z

˚(p; z)

s.t. h(p; z) D 0 :

If both the parameters and the collocation coefficients
are treated as independent variables, i. e., the variables
are treated all together, then the approach is called all
together or all-at-once. In this approach, the nonlin-
ear system of equations h(p, z) = 0 gives rise to a set
of explicit constraints. Thus, p, z only need to satisfy
the constraints at the solution. Readily, one can verify
that the dimension of the problem or number of un-
knowns in this case is np+(ns+ nc× ns)×ny×nd. There
are two potential drawbacks for this approach. First, by
treating all of the variables as independent variables,
the size of the resulting nonlinear programming prob-
lem can be very large. Sophisticated optimization tech-
niques are impractical for large size problems. Also, the
approach does not support parallel structures. It is dif-
ficult to make it efficient in a parallel environment.

In order to exploit parallelism and reduce the size of
the nonlinear programming problem, we propose a do-
main decomposition or in-between approach which
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follows in principle [5]. The basic idea of the domain
decomposition approach is to identify a set of implicit
constraints, i. e., constraints that are satisfied at every
iteration. More specifically, for each sample, this ap-
proach allows us to treat only the model parameters p
and a subset of collocation coefficients corresponding
to the ends of subintervals zsi0, i = 0, . . . , ns� 1, as the
independent variables of the nonlinear programming
problem. Thus the dimension of the problem is reduced
to np + ns × ny × nd.

We decompose the set of collocation coefficients
into a set of explicit variables

zE �
˚
zs10; : : : ; z

s
ns;0
�
;

and a set of implicit variables

zI �
˚
zs11; : : : ; z

s
1;nc; z

s
21; : : : ; z

s
ns;nc

�
;

where again zsi j, j 6D 0, are determined by the collocation
conditions.

Given p and zis0, we then solve the nonlinear system
h1(p, zsi j) = 0 for the implicit variables, independently
on each subinterval. The dimension of the system is ny
× nc × nd on a subinterval. The special structure of the
problem allows us to break the nonlinear system into nd
independent systems, where the dimension of each sys-
tem is ny×nc. Note that the continuity conditions and
the boundary conditions are constraints of the nonlin-
ear programming problem. They are satisfied only at
the final solution (p�, z�) of the optimization problem.

Therefore, the problem becomes:
8̂
<̂
ˆ̂:

min
p;zE

˚(p; zE ; zI (p; zE))

s.t. h2(zE ; zI(p; zE )) D 0;
h3(zE ; zI(p; zE )) D 0;

where zI (p; zE ) solves h1(zI ; p; zE ) D 0.

Remark 1 A simple calculation indicates that the di-
mension of the new nonlinear programming prob-
lem is np + ny×nd and the number of constraints is
ns×ny×nd.

We now briefly discuss some implementation issues for
the domain decomposition approach. The number of
nonlinear systems on one subinterval is (np + ny×nd +
1)× nd. Implicit differentiation should be used to com-
pute the first order partial derivatives of the implicit

variables with respect to the explicit variables. The to-
tal number of linear systems to be solved for the im-
plicit differentiation on one subinterval is (np + ny×nd
+ 1)× nd × (ny + np). This number is usually quite
large. However, the linear systems are independent not
only on each of the subintervals but also for each of
the samples. Furthermore, for one sample on one inter-
val, the coefficient matrices of the linear systems are all
the same. Therefore, only one LU factorization is nec-
essary. The rest are hundreds of independent triangular
solvers. The second order derivatives are computed by
using the finite-difference technique. The main advan-
tage of this approach is that the resulting nonlinear sys-
tems are independent on each of the subintervals. Thus,
there is no communication between the subintervals –
an ideal feature for parallel computation.

Optimization

We have formulated the problem as a nonlinear pro-
gramming problem by using the domain decomposi-
tion approach. We next describe a general method de-
veloped originally in [5] for solving this type of op-
timization problems. The optimization algorithm is
based on the successive quadratic programming (SQP)
with a trust region globalization. The idea is to adopt
different techniques based on how close the current ap-
proximate is from the solution. If it is ‘close’ to the solu-
tion, we choose a step to be the solution of the quadratic
program:
(
minimize A Quadratic Model
subject to Linearized Constraints:

Otherwise, if it is ‘far’ from the solution, we choose the
step to be the solution to a trust region subproblem.

The algorithm for the QP is robust. It forms the re-
duced Hessian and determines whether a solution ex-
ists. Note that if the reducedHessian is not positive defi-
nite, then the QPmay have infinite number of solutions
or no solution at all. If a solution does exist, the algo-
rithm will find it. The algorithm will calculate a descent
direction when the QP does not have a solution. The
trust region globalization technique of [4] is employed
to deal with the possible lack of positive definiteness of
the reduced Hessian. Thus the algorithm handles de-
generacies in the linearized constraints by using eigen
decomposition.



2730 O Optimal Design in Nonlinear Optics

Numerical Experiment

Our test problem is based on a simplified model of the
system of nonlinear Maxwell’s equations that arises in
modeling second harmonic generation of nonlinear op-
tical thin films. Under some assumptions [2]. Let Y =
(y1, y2, y3, y4)|. The model problem takes the following
form:

Y 0 D (y2;�p1y1 C p3 y1y3; y4; p4y21 � p2 y3) ;

with the boundary condition

AY(l)C BY(0) D g ;

where

A D

0
BB@

a11 1 0 0
0 0 a21 1
0 0 0 0
0 0 0 0

1
CCA ;

B D

0
BB@

0 0 0 0
0 0 0 0
a12 1 0 0
0 0 a22 1

1
CCA ;

and g = (gk, 0, 0, 0)|.
In this over-simplified case, the inverse problem is

to determine the parameters p = (p1, p2, p3, p4) from
the measured Y(0) and Y(l) for a given source term gk.
Since p which characterizes the physical properties of
the medium is independent of gk, it is natural to expect
better reconstruction of p by performing a set of exper-
iments or using a number of gk. Here the constant gk
represents the intensity (power) of the incident light,
which may vary with k in a given range.

In our experiment, the known constants were cho-
sen in the following way: a11 = 5, a21 = 4, a12 = � 2 and
a22 = � 3. We used five pairs of sample boundary data
at the end points. These data were generated by using
the fixed parameters p1 = 0.005, p2 = 0.003, p3 = 0.0015
and p4 = 0.025. We used five samples gk, k = 1, . . . , 5,
where g1 = 2, g2 = 5, g3 = � 2, g4 = � 3 and g5 = � 5.
We chose the number of collocation points nc = 4. It is
obvious that in this example, np = 4 and ny = 4. From
the data, we then tried to recover the parameters p. The
experiment was done on a Cray J916 which is a 16 CPU
shared memory computer. The results are shown in the
following three tables where ns is the number of sub-
intervals, nd is the number of samples, nx is the num-
ber of variables of the NLP problem, nh is the number of

Optimal Design in Nonlinear Optics, Table 1
Accuracy improvement with increasing number of samples
(ns = 20, ncpu = 4)

nd nx nh nit error CPU time
1 84 80 8 1:36e-2 6:16
2 164 160 5 1:12e-6 12:17
3 244 240 5 8:16e-7 26:43
4 324 320 5 6:29e-7 47:76
5 404 400 5 6:12e-7 69:04

Optimal Design in Nonlinear Optics, Table 2
Convergence effect on different number of sub-intervals (nd
= 4, ncpu = 4)

ns nx nh nit error CPU time
8 100 96 12 1:28e-5 19:18
16 260 256 5 8:81e-6 31:97
32 516 512 5 3:65e-7 93:45

constraints, nit is the number of iterations for the algo-
rithm to converge, error is the l2-norm of the relative
error between the estimated parameter and the exact
parameter, ncpu is the number of CPUs used for solv-
ing the problem.

Table 1. shows the accuracy improvement when
the number of samples is increased from one to five.
One may observe that after some point, additional data
make very little difference in terms of reconstruction of
the parameters. This is largely due to the fact that the
accuracy for solving nonlinear systems of equations has
already been reached. In Table 2., we demonstrate the
effect of increasing the number of sub-intervals, i. e., re-
fining the grids. Finally, we show in Table 3. the total
CPU time and the speed up with different number of
CPUs.

Discussion

We present a general approach on parameter identi-
fication for nonlinear ODE two-point boundary value
problems that arise in optimal design of nonlinear op-
tics. The data for our parameter identification prob-
lems are only given at the boundary points. Conse-
quently, the problem size is a multiple of the number of
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Optimal Design in Nonlinear Optics, Table 3
Speed-up on different number of CPUs (nx = 644, nh = 640,
nd = 5, ns = 32)

ncpu Total CPU time Speed-up
1 118:7 1
2 117:0 2:03
4 118:4 4:01
6 122:1 5:83
8 124:3 7:64
10 127:4 9:32
12 131:6 10:82
14 136:1 12:21
16 140:4 13:53

boundary data pairs. Our approach is based on ideas of
nonlinear programming and domain decompositions.
It generalizes [5] to a more general setting. Our prelim-
inary numerical results indicate that the methods not
only efficient on parallel machines but also effective on
sequential machines. We also develop a technique to re-
duce the size of linear and nonlinear systems resulting
from the approach.

A new research topic is to use the general approach
developed in this article and [5] to solve inverse scat-
tering and diffraction (PDE) problems. A crucial step
is to develop a fast and efficient domain decomposi-
tion solver for the direct problem. Similar ideas have
recently been used by Dennis and R.M. Lewis [6] for
solving an inverse conductivity problem. The interested
reader is referred to [1] [3] [8] for other results on re-
lated optimal design problems.
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The multiphase, multireaction chemical equilibrium
problem (the CEP) is a nonlinear optimization problem
in chemical thermodynamics that is of interest in many
fields. Some examples of application areas include bio-
chemistry [23], chemical engineering [32], chemistry
[2], geochemistry [3], metallurgy [21], and plasma sci-
ence [10]. The CEP has a number of special features
arising from its unique structure [9,28]. This makes
its numerical solution especially challenging, leading to
difficulties associated with multiple local minima and
numerical scaling. General references to the CEP in-
clude [8,27], and [33]. A recent review of aspects of the
CEP has been given in [24].

The CEP may be expressed in two general ways.
The one more commonly encountered is formulated
as a global optimization problem, when the objective
function is specified at a ‘macroscopic level’ in terms of
its analytical dependence on the underlying composi-
tion variables and an appropriate set of parameters. The
other is formulated at a ‘molecular level’, in terms of
an underlying intermolecular force model, and the op-
timization problem solved by means of a Monte-Carlo
simulation method based in statistical mechanics [30].
In this article, we consider only the former viewpoint,
and aspects of its formulation and solution.

The formulation and numerical solution of the CEP
require, first, an assumption about which chemical sub-
stances are to be considered; and, second, about their
distribution over possible phases. The latter may take
two forms. One form of the CEP assumes that all sub-
stances are represented in all possible phases, and is re-
ferred to as the universally accessible form (UAF). The
other form prohibits at least one substance from be-
ing present in all phases, and is referred to as the re-
stricted accessibility form (RAF). Distinguishing these
two forms has important consequences, as discussed
below.

A special case of the CEP is the phase equilibrium
problem (PEP), which involves a set of chemical sub-
stances which can distribute themselves among two or
more phases, in the absence of chemical reaction. An
example of UAF-PEP is the system n-butanol + water
+ n-butyl acetate [5]. This type of problem is impor-
tant in the chemical processing industry, and there is
much current interest in the development of efficient
algorithms for its numerical solution. Elementary ex-
amples of RAF-PEP are ‘simple eutectic’ systems and
‘steam distillation’, as usually modeled.

UAF and RAF forms also arise in the general
CEP in which chemical reactions occur, complicating
their formulation and numerical solution. Examples
of RAF-CEP include multiphase problems involving
condensed phases, and multiphase problems involving
ionic species accessible to only a single phase.

Problem Formulation

Defining a CEP requires specifying two thermody-
namic variables from the set {P, V , T, U, H, S, G, A}.
{T, P} is a common choice and is primarily considered
here; this choice implies that the objective function to
be optimized is theGibbs function, G. Other choices can
be formulated in terms of this choice (see the section
‘Sensitivity Analysis’ below).

One of the most general problem formulations has
been given in [25], which we summarize here. We as-
sume the following are given:
1) a substance formula matrix, AS 2 EM × S, where M

is the number of elements and S is the number of
substances, each of which is described by a formula
vector ai with entries aji, which is a column of AS

(electric charge is considered to be an element; in
the unusual situation in which ionic species are ac-
cessible to more than one phase, a ‘charge row’ must
be included in AS for each phase); we assume here
that (AS) < S and is usually given by M (as assumed
herein);

2) an elemental-abundance vector, b2 EM , with entries
bj � 0 and b 6D 0;

3) a set of 
 chemical potentialmodels or phase classes,
�ˇ (T, P, xˇ , ˛ˇ ):ˇ = 1, . . . , 
 , where:
– �ˇ : E2CeIˇCęˇEeIˇ
– xˇ 2 EĨˇ is the composition (e. g., mole-fraction)

vector for�ˇ ;
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– ˛ˇ is the vector of parameters for �ˇ ;
– Iˇ is the substance index set for phase class ˇ,

containing the set of subscripts of substances that
are accessible to the phase class. For a UAF, Iˇ

= {1, . . . , S} for all ˇ. For an RAF, at least one
substance subscript is absent from at least oneeIˇ
denotes the number of substances deemed to be
accessible to any phase consistent with �ˇ ;

– ęˇ is the number of chemical potential model pa-
rameters given by ˛ˇ ;

– each phase class satisfies the Gibbs–Duhem equa-
tion, as well as the limiting law limxˇi

! 0 �ˇi =
�1.

To elaborate on the term ‘phase class’ and to relate
it to the term ‘phase’, we note that:
3.1) every substance in the system is represented in at

least one phase class; i. e., [ˇ = 1� Iˇ = {1, . . . ,
S}; we emphasize that all substances need not be
represented in every phase class.

3.2) there may be more than one phase accessible to
a given phase class ˇ; for each such phase k arising
from a particular chemical potential model�ˇ , we
have �ˇ , k ��ˇ (T, P, xˇ , k, ˛ˇ ), where xˇ , k 2 EĨˇ

is the composition vector for the phase.
3.3) although the number of phase classes, 
 , is spec-

ified a priori, the number of phases, 
ˇ , ‘acces-
sible’ to the phase class �ˇ , may not be known
a priori; furthermore, 
 and 
ˇ are distinct from
the total number of phases present at equilibrium
in nonzero amounts, ˘ , which is also not known
a priori, but is a result of the equilibrium compu-
tation.

3.4) The term species refers to a substance in a specific
phase. Since 
ˇ is generally unknown, construc-
tion of a species index set is not always possible.

The general statement of the chemical equilibrium
problem at specified T, P and b is given by (omitting
the dependence of �ˇ on T, P ˛ˇ ):

minenˇ;k ;xˇ;k G D
�X
ˇD1

�ˇX
kD1

enˇ;k
X

i2Iˇ

xˇ;ki �
ˇ
i (x

ˇ;k) ; (1)

subject to

enˇ;k � 0; ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (2)

xˇ;ki � 0; i 2 Iˇ ; ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (3)

�X
ˇD1

�ˇX
kD1

enˇ;k
X

i2Iˇ

aji x
ˇ;k
i � b j D 0 ; j D 1; : : : ;M ;

(4)

X

i2Iˇ

xˇ;ki �1 D 0; ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ;

(5)

where ñˇ , k is the total number of moles in phase ˇ, k.
In all cases we assume that at least one feasible solution
exists.

The Special Case of Phase Equilibrium (PEP)

In the PEP case, the problem statement is given by (1)–
(3) and (5), with the element-balance equations (4) re-
placed by the substance balance:

�X
ˇD1

�ˇX
kD1

enˇ;kxˇ;ki � qi D 0; i D 1; : : : ; S ; (6)

where qi (� 0) is the (constant) total number of moles
of substance i in the system.

Kuhn–Tucker (KT) Conditions

We call a solution {ñˇ , k, xˇ , k, �, 
} (� and 
 are La-
grange multipliers) of the following equations a Kuhn–
Tucker point (KT point):

enˇ;k
0
@�ˇi

�
xˇ;k

�
�

MX
jD1

� j a ji

1
A D 0 ;

i 2 Iˇ ; ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (7)

�ˇ;k D
X

i2Iˇ

xˇ;ki

0
@�ˇi

�
xˇ;k

�
�

MX
jD1

� j a ji

1
A � 0 ;

ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (8)

�ˇ;kenˇ;k D 0 ;ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (9)

�X
ˇD1

�ˇX
kD1

enˇ;k
X

i2Iˇ

aji xˇ;ki � b j D 0 ; j D 1; : : : ;M :

(10)
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Alternative Form of KT Conditions

Kuhn–Tucker conditions The KT conditions given
above are referred to as the nonstoichiometric form of
the equilibrium conditions [27, pp. 46–48]. These con-
ditions may be expressed in an alternative form, the sto-
ichiometric form [27, pp. 45–46]. These arise from ex-
pressing the element abundances in terms of component
species ([27, Chap. 2], [29]). Equations (7), (8), and (10)
are replaced, respectively, by

enˇ;k
0
@�ˇi

�
xˇ;k

�
�

MX
jD1

� j�i j

1
A D 0 ;

i 2 Iˇ ; ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (11)

�ˇ;k D
X

i2Iˇ

xˇ;ki

0
@�ˇi

�
xˇ;k

�
�

MX
jD1

� j�i j

1
A � 0 ;

ˇ D 1; : : : ; 
 ; k D 1; : : : ; 
ˇ ; (12)

�X
ˇD1

�ˇX
kD1

enˇ;k
X

i2Iˇ

�i j x
ˇ;k
i � q j D 0 ; j D 1; : : : ;M ;

(13)

where � ij is a stoichiometric coefficient for species i
with respect to component species j, and qj is the total
amount of component j.

Global Optimality Conditions (Reaction
Tangent-Plane Criterion, RTPC)

A necessary and sufficient condition for global opti-
mality of a KT point is that the objective function is
nowhere smaller than its value at that point. This may
be expressed as:

	G� �
�X
ˇD1

�ˇX
kD1

enˇ;k
X

i2Iˇ

xˇ;ki

�

0
@�ˇ;ki (xˇ;k) �

MX
jD1

�
�
j a ji

1
A � 0 (14)

over all {ñˇ , k, xˇ , k} satisfying 2–(5), where�† is the La-
grange multiplier at the KT point.

The above criterion takes different special forms for
a UAF and for an RAF. If formation of a potential new
phase is feasible in terms of the element-balance equa-
tions (which is always the case for a UAF, but not neces-
sarily for an RAF), then wemay consider the phase class
individually, and obtain a simpler set of conditions in-
volving only the mole fraction variables for the phase
class from the inner summation in relation (14):

X

i2Iˇ

xˇi

0
@�ˇi (x) �

MX
jD1

�
�
j a ji

1
A � 0 (15)

over all {ñˇ , k, xˇ , k} satisfying equations (2) to (6).
This is called the reaction tangent-plane criterion
(RTPC) [9,25].

For a UAF, all Iˇ contain the complete set of sub-
stances, which means, from equation (7), that each
summation involving the Lagrange multipliers � j

† in
the above gives the chemical potential �i

† at the KT
point. Criterion (15) then becomes

SX
iD1

xi
�
�
ˇ
i (x) � �

�
i

�
� 0 : (16)

This is the tangent-plane criterion (TPC) for a PEP [4]
(see also [15,18]).

For an RAF, criterion (15) is not equivalent to crite-
rion (16). A simple example arises in the system con-
taining {CO(g), CO2(g), O2(g), C(s)}. There are two
phase classes, with index sets I1 = {1, 2, 3} and I2 =
{4}. Consider a KT point at which only the gas phase
is present, and denote the Lagrange multipliers as �C †,
�O

†. To test for the presence of the solid phase, crite-
rion (15) is

�4 � �
�
C � 0 : (17)

If this criterion is satisfied, C(s) is not present at equi-
librium; otherwise C(s) is present in nonzero amount at
equilibrium.

Similar, but more involved, RAF problems often
arise in metallurgical applications [12]. More complex
RAF problems, in which a test must be made for the
simultaneous presence of multiple phases, have been
considered in [7].

Chemical Potential Models

The chemical potential of substance i in phase class ˇ,
�i
ˇ , may be expressed in terms of activity, ai, or fugac-
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ity f i, or activity coefficient, � i (for ease of notation we
omit the superscript ˇ):

�i (T; P; x) D ��i (T; P
�; x�)CRT ln ai(T; P; x) ; (18)

�i (T; P; x) D ��i (T; P
�; x�)

C RT ln
�

fi(T; P; x)
f �i (T; P�; x�)

�
; (19)

�i (T; P; x) D ��i (T; P
�; x�)C RT ln �i (T; P; x)xi ;

(20)

where R is the universal gas constant, 8.3145J mol� 1
K�1 (see also [27, pp. 48–57, 62–73]).

Each form consists of two parts on the right side,
��i (T, P

�, x�) and a logarithmic term (which has its ori-
gins in the use of the ideal-gas equation of state). ��i (T,
P�, x�) is the chemical potential in a standard state at
(T, P�, x�), as a reference state. The superscript � de-
notes the requirement to specify the standard-state con-
ditions P� and x�. Methods of obtaining ��i (T, P

�, x�)
are discussed in the next section.

The logarithmic term is obtained from an equation
of state (EOS), or a specific model (e. g., a particular �
model), or a free-energy model (e. g., [17]). A simple
phase-class model is the ideal-solution model

�i (T; P; x) D ��i (T; P
�; x�)C RT ln xi : (21)

In this case, the objective function G is convex. More
generally, G may be nonconvex, leading to multiple lo-
cal minima.

Methods of Obtaining

��i . Analysis of (11), together with (18)–(20), reveals
that the equilibrium composition is determined not by
the set of individual values of ��i (T, P

�, x�), but by the
linear combinations {� G�j (T): j = 1, . . . , R}, where R =
N�M is the maximum number of linearly independent
stoichiometric vectors (or chemical equations), �j, with
elements � ij (R as defined here is not to be confused
with the universal gas constant R), and N is the num-
ber of chemical species [27, p. 17]. For a single-phase
system, N = S; for a multiphase system, N> S. � G�j is
defined by

	G�j � �RT lnK�j �
SX

iD1

�i j�
�
i (22)

and ��i is the standard chemical potential of substance
i in a particular (specified) phase.

In order to give rise to the same set of equilibrium
solutions, any choice of {��i } in (7) and (8) must yield
an invariant value of�G�j (T) for any possible chemical
equation j involving the system substances. This means
that [27, p. 73] for any two choices ��i (1) and �

�
i (2),

SX
iD1

�i j(��i (2) � �
�
i (1)) D 0 : (23)

Equation (22) may be viewed as an undetermined
set of R linearly independent equations in the N ��i val-
ues, in terms of a specified {� G�j }. A set of ��i may
then be constructed by assigning arbitrary values (zero
is the most convenient) to M substances with linearly
independent formula vectors [6,27, pp. 214–217]. This
approach must be followed if values of ��i are required
in cases for which data are only available in the form
of � G�j (as, for example, in many situations involving
biochemical and/or ionic systems).

Values of ��i obtained for a particular system using
equation (22) cannot normally be used for other chem-
ical systems. A universal set of ��i values that can be
used for any chemical system requires assigning {��j }
to a set of species containing all possible chemical ele-
ments and whose formula vectors are linearly indepen-
dent, and then assigning all ��i values relative to these
as a datum. The minimum number of such species is
equal to the number of chemical elements; thus, the
simplest andmost common choice is the set of elements
themselves.

Even using the elements as a reference chemical
state, various routes to obtaining a universal {��i } are
possible, and one must take great care when combining
data from different sources.

For a given standard-state pressure, the temperature
dependence of the thermochemical properties h (en-
thalpy), s (entropy), and � is given by

h�i (T) D h�i (Tr)C
Z T

Tr

CPi(T)dT ;

s�i (T) D s�i (Tr)C
Z T

Tr

CPi (T)
T

dT ;

��i (T) D h�i (T) � Ts�i (T) ;

(24)

s�i (T) D s�i (Tr)C
Z T

Tr

CPi(T)
T

dT ; (25)
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��i (T) D h�i (T) � Ts�i (T) ; (26)

where Tr is an arbitrary reference temperature, and CP

is molar heat capacity at constant pressure. An alterna-
tive route to ��i (T) is equation (24) together with inte-
gration of

@[

�

i (T)
T ]
@T

D �
h�i (T)
T2 : (27)

Other routes to ��i (T) are described in [27, pp. 65–73].
The above equations require a choice of Tr , values

of h�i (Tr), one of {s�i (Tr),��i (Tr)}, and values of CPi(T).
Common choices of Tr are 0K and 298.15K. The former
is a convenient choice when the quantities are deter-
mined from statistical mechanical considerations, and
the latter is convenient from an ambient temperature
consideration.

Given any set of data, {��i (1)(T)}, another set may
be formed via

�
�(2)
i (T) D ��(1)i (T) �

MX
jD1

aji c j(T) ; (28)

where {cj(T)} is a set of arbitrary constants for the el-
ements; such a set ensures that (23) is satisfied. The
choice

c j(T) D ��(1)j (T) (29)

for each element in some specified (standard) state at T
gives ��j (2)(T)� 0 for each element. {��i (2)(T)} is then
called the set of formation values of ��i . This choice is
often used, but is not computationally convenient, since
its calculation at an arbitrary T requires an agreed-upon
set of choices of the element standard states at each T, as
well as information for the elements concerning CP(T)
and possible phase transition values of enthalpy.

Some sources of ��i and other thermochemical data
are listed at the web site [34].

Sensitivity Analysis

In many cases, it is desired to calculate the rate of
change of the optimal solution with respect to one or
more than one member of the set of underlying param-
eters, {T, P, ��i , bj}. The set of sensitivity parameters of
interest are the first order derivatives @ni/ @pj, and the
second order derivatives @2 ni/ @pj @pk, where pj denotes
a parameter. These quantities can be used in the calcu-

lation of:
1) the solution of problems with specified thermody-

namic variables other than (T, P);
2) the effect of inaccurate ��i data on the equilibrium

composition;
3) thermodynamic properties of the equilibrium react-

ing mixture (e. g.,Heq, Ceq
P , Ceq

V , . . . );
4) the effect of changes in the specified overall (initial)

composition on the equilibrium composition (e. g.,
buffer capacity of aqueous systems).

These topics are discussed in ([26]; [27, Chap. 8]), and
an application is described in [19].

Stoichiometric Restrictions

Stoichiometric restrictions for a CEP arise when not all
solutions of the element-balance equations, (4) and (5),
are allowed. Stoichiometric restrictions typically arise
from kinetics. The CEP can be solved by increasing the
‘effective number’ of component species, removing the
restrictions [27, pp. 27–36, 218–219]). A simple illus-
tration is provided by the permanganate-peroxide re-
action [16].

Equilibrium Constraints

Equilibrium constraints for a CEP result from the a pri-
ori specification of some function of the equilibrium
composition. Examples include fixed pH problems and
solubility calculations in aqueous chemistry. Additional
examples are explored in [6,20], and [1].

Numerical Implementation

Phase-class models giving rise to a convex G are impor-
tant in many areas, including rocket propellant eval-
uation, aqueous speciation, gas-phase chemical pro-
cessing, and metallurgical operations. Solution of such
problems and implementation of the RTPC when nec-
essary (in the case of pure condensed phases or of ideal-
solution phases) is relatively straightforward in such
cases ([27, pp. 58–59, 204–212], [28]).

In the case of nonconvex G, most workers have fo-
cused on numerical algorithms for the UAF, and in
particular the PEP. See [31] for an implementation of
a homotopy continuation method for the PEP. Global
optimization algorithms have been applied in [11,13],
and [22]. See [14] for the use of an algorithm based



Optimality Criteria for Multiphase Chemical Equilibrium O 2737

on interval analysis. Numerical implementation of the
RTPC has not yet been fully developed.

Some computer software packages to solve certain
types of chemical reaction equilibrium problems are
listed at the web site [34].

See also

� Global Optimization: Application to Phase
Equilibrium Problems

� Global Optimization in Phase and Chemical
Reaction Equilibrium
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Introduction

Offshore oilfield infrastructure planning is a challeng-
ing problem encompassing both complex physical con-

straints and intricate economical specifications. An
offshore oilfield infrastructure consists of Production
Platforms (PP), Well Platforms (WP), wells and con-
necting pipelines (see Fig. 1), and is constructed for the
purpose of producing oil and/or gas from one or more
oilfields. Each oilfield (F) consists of a number of reser-
voirs (R), while each reservoir in turn contains a num-
ber of potential locations for wells (W) to be drilled.

Offshore oilfield facilities are often in operation over
several decades and it is therefore important to take fu-
ture conditions into consideration when designing an
initial infrastructure. This can be incorporated by di-
viding the operating horizon into a number of time
periods and allowing planning decisions in each pe-
riod, while design decisions are made for the horizon
as a whole. The corresponding optimization model is
then run periodically with updated information on the
oilfields in order to reoptimize the planning decisions
of the offshore oilfield facilities.

Design decisions involve the capacities of the PPs
andWPs, as well as decisions regardingwhichPPs,WPs
and wells to install over the whole operating horizon.
Planning decisions involve the production profiles in
each period, as well as decisions regarding when to in-
stall PPs, WPs, and wells included in the design. De-
cision variables can also be grouped into discrete vari-
ables, for example those representing the installation
of PPs, WPs and wells in each period, and continuous

Optimal Planning of OffshoreOilfield Infrastructure, Figure 1
Configuration of fields, well platforms and production plat-
forms
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variables, for example those representing the produc-
tion profiles and pressures in each period.

Iyer and Grossmann [7] proposed a multi-period
MILP model that optimizes the planning and schedul-
ing of investment and operation decisions that include
the selection of reservoirs to develop, selection of well
sites and the production rates from wells at each time
period. The model incorporates the nonlinear reser-
voir through piecewise linear approximations. Van den
Heever and Grossmann [14] proposed a multi-period
MINLP model for oil field infrastructure planning. As
opposed to Iyer and Grossmann [7], a non-linear reser-
voir model was incorporated directly into the formu-
lation. Meister, Clark and Shah [9] proposed a model
for selecting the optimal information-gathering process
during the exploration phase, and simultaneously opti-
mizing the operating policies. Jonsbraten [8] presented
an MILP model for optimal development of an oil field
under oil price uncertainty. The author uses progressive
hedging algorithm that is very similar to Lagrangean
decomposition to solve the problem. Ahmed, Gorman
and Bagajewicz [1] discuss the financial risk manage-
ment in the planning and scheduling of offshore oil
infrastructure. They introduce uncertainty, risk man-
agement and budgeting constraints to the model by
Iyer and Grossmann [7] employing a sampling average
algorithm to overcome the numerical difficulties and
compare the results with optimum results found using
upper bound risk curves. Goel and Grossmann [4,5] ex-
tended this research to gas field development planning
under uncertainty. The major uncertainties were in the
size and initial deliverability of the fields. The authors
assumed that the uncertainty in the size and initial de-
liverability of the fields resolve immediately when a well
platform is built on the field. Linear reservoir mod-
els were used, which provide a reasonable approxima-
tion for gas fields. The authors proposed a multistage
stochastic programming model and a solution algo-
rithm based on the problem structure. Ulstein, Nygreen
and Sagli [13] presented a model for tactical planning
of Norwegian petroleum production. The model maxi-
mizes the net income before taxes from the production
and sale of petroleum products. Different cases with de-
mand variations, varying quality constraints and sys-
tem breakdowns are considered. The model is solved
for different scenarios and solutions are compared with
the base case scenario. The benefit of the model is to

identify feasible ways to satisfy the demand for varying
network configurations.

We describe in this chapter the deterministic model
proposed by Van den Heever and Grossmann [14]
which incorporates nonlinearities directly into the op-
timization model. Specifically, these are the reservoir
pressures, gas to oil ratio, and cumulative gas produced
expressed as nonlinear functions of the cumulative oil
produced.

Problem Statement

The design and planning of an offshore oilfield infras-
tructure (refer to Fig. 1) is considered over a planning
horizon of Y years, divided into T time periods (e. g.
quarterly time periods). An oilfield layout consists of
a number of fields, each containing one or more reser-
voirs and each reservoir contains one or more wellsites.
After the decision has been made to produce oil from
a given well site, it is drilled from a WP using drilling
rigs. A network of pipelines connects the wells to the
WPs and the WPs to the PPs. For our purposes, we
assume that the location/allocation problem has been
solved, i. e. the possible locations of the PPs and WPs,
as well as the assignment of wells to WPs and WPs to
PPs, are fixed. In the model, one can easily relax the
assumption of fixed allocation of each well to a WP
and consider that each well may be allocated to two
of more WPs. However, this will clearly increase the
computational effort significantly. A more practical op-
tion might be to consider allocating each well to up to
two WPs. In this case, the two different allocations are
treated as two choices of identical wells of which only
one can be selected.

The design decisions we consider are valid for the
whole planning horizon and are:
1 whether or not to include each PP, WP, and well in

the infrastructure over the planning horizon
2 the capacities of the PPs and WPs
The planning decisions are made in each time period
and are:
1 whether or not to install each PP and WP
2 whether or not to drill each well
3 the production profile of each well
These decisions are made under the assumption that
operating conditions are constant during a given time
period.
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OptimizationModel

The following is a complete Generalized Disjunctive
Programming [6] model of the offshore oilfield infras-
tructure planning problem. Please refer to the list of
nomenclature at the end of this chapter.

Objective Function

The objective function is to maximize the Net Present
Value (NPV)which includes sales revenues, investment
costs and depreciation.

max� D
TX

tD1

(
Revt �

X
p2PP

�
CIpt

C
X

�2WP(p)

�
CI�;pt C

X
w2WWP (�)

CIw;�;pt

	�)

(1)

The cost of exploration and appraisal drilling is not in-
cluded in the objective, seeing that this model will be
used after the results from exploration and appraisal
have become available. Costs related to taxes, royal-
ties and tariffs are not included in this model. The
treatment of complex economic objectives is described
in [15]. Costs that we have not included are the costs of
decommissioning and well maintenance.

Constraints Valid for theWhole Infrastructure

In (2) the sales revenue in each time period is calcu-
lated from the total oil produced, which is in turn cal-
culated in (3) as the sum of the oil produced from all
production platforms. (4) calculates the amount of oil
flow from each reservoir in each time period to be the
sum of all oil flowrates from wells associated with that
reservoir times the duration of the time period. The cu-
mulative flow of oil from each reservoir is calculated in
(5). Note that (5) is one of the linking constraints that
links the time periods together and thus prevents a so-
lution procedure where each period is solved individu-
ally. The cumulative flow of oil is used in (6) to calculate
the reservoir pressure through the exponential function
which is obtained by fitting a nonlinear curve to the lin-
ear interpolation data used by Iyer et al. [7].

Revt D c1t xtotalt (2)

X
p2PP

x p
t D xtotalt (3)

l r; ft D �t
X

(w;�;p)2WF;R( f ;r)

xw;�;pt 8r 2 R( f ); f 2 F (4)

xcr; f


D


�1X
tD1

l r; ft 8r 2 R( f ); f 2 F (5)

vr; ft D �
r; f
p1 exp(� r; f

p2 xc
r; f
t ) 8r 2 R( f ); f 2 F

for t D 1 : : : T (6)

Disjunction for each PP, WP andWell

We exploit the hierarchical structure of the oilfield to
formulate a disjunctive model. The production plat-
forms are at the highest level of the hierarchy, and the
disjunction includes all constraints valid for that PP, as
well as the disjunction for the next hierarchical level,
i. e. for all WPs associated with that PP. In turn, the dis-
junction for each WP, which is located within the dis-
junction of a PP, contains all constraints valid for that
WP, as well as the disjunctions for all wells associated
with that WP. We present the disjunctions here with
numbers indicating the constraints present, and follow
with the explanation of the individual constraints con-
tained in each disjunction (Fig. 2)

The outer disjunction is valid for each PP in each
time period and can be interpreted as follows: If pro-
duction platform p has been installed during or before
period t (discrete expression _t


D1 z
p


D true), then all

constraints in the largest bracket are applied:
2
4

zpt D 1
CIpt D cp2t C cp3t e

p
t (7)

ept � U (8)

3
5 _

�
zpt D 0

CIpt ; e
p
t D 0

�

xp
t � dp

t (9)

dp
t D dp

t�1 C ept (10)

X
�2WP(p)

x�;pt D xp
t (11)

X
�2WP(p)

g�;pt D gpt (12)
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]
∨

[ ¬zπ,p
t

CIπ,p
t , eπ,p

t = 0

]

(15), (16), (17), (18), (19)

⎡
⎢⎢⎢⎢⎢⎣

t∨
θ=1

zw,π,p
θ[

zw,π,p
t

(20)

]
∨

[ ¬zw,π,p
t

CIw,π,p
t = 0

]

(21), (22), (23), (24), (25),
(26), (27), (28), (29)

⎤
⎥⎥⎥⎥⎥⎦
∨

⎡
⎢⎢⎢⎢⎢⎢⎣

¬ t∨
θ=1

zw,π,p
θ

xw,π,p
t = 0

gw,π,p
t = 0

xcw,π,p
t = 0

gcw,π,p
t = 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∀w ∈ WWP (π)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∨

⎡
⎢⎣

¬ t∨
θ=1

zπ,p
θ

xπ,p
t = 0

gπ,p
t = 0

⎤
⎥⎦

∀π ∈ WP (p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∨

⎡
⎢⎣

¬ t∨
θ=1

zp
θ

xp
t = 0

gp
t = 0

⎤
⎥⎦

∀p ∈ PP, t ∈ T

Optimal Planning of Offshore Oilfield Infrastructure, Figure 2

First, the smaller nested disjunction is used to calcu-
late the discounted investment cost (including depreci-
ation) of the production platform in each time period.
This cost is calculated if production platform p is in-
stalled in period t (zpt D True), otherwise it is set to
zero. (7) relates the cost as a function of the expansion
capacity, which is set to zero if the production platform
is not installed (zpt D False), while (8) sets an upper
bound on the expansion. (9) determines the design ca-
pacity to be the maximum flow among all time periods,
and this is modeled linearly by defining the expansion
variable which can take a non-zero value in only one
time period. (11) and (12) are mass balances calculat-
ing the oil/gas flow from the PP as the sum of the flow
from all WPs associated with that PP. If the production
platform has not been installed yet (discrete expression
_t

D1 z

p


= false), the oil/gas flows, as well as investment

cost, are set to zero.
Themiddle disjunction is valid for all well platforms

associated with production platform p and is only ap-
plied if the discrete expression _t


D1 z
p


is true. This dis-

junction states that if well platform 
 has been installed
before or during period t (discrete expression_t


D1 z
�;p



= true), then the constraints present in that disjunction
are applied:

2
64

z�;pt

CI�;pt D c�;p2t C c�;p3t e�;pt (13)
e�;pt � U (14)

3
75

_

"
:z�;pt

CI�;pt ; e�;pt D 0

#

x�;pt � d�;pt (15)

d�;pt D d�;pt�1 C e�;pt (16)

X
�2WWP (�)

xw;�;pt D x�;pt (17)

X
�2WWP (�)

gw;�;pt D g�;pt (18)

vpt D v�;pt � ˛x�;pt � ˇg�;pt � ı
�;p
t (19)

Again, the smaller nested disjunction is used to calcu-
late the discounted investment cost (including depre-
ciation) of the well platform in each time period. This
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cost is calculated if well platform 
 is installed in pe-
riod t (z�;pt D True), otherwise it is set to zero. (13) re-
lates the cost as a function of the expansion capacity,
which is set to zero if the well platform is not installed
(z�;pt D False), while (14) sets and upper bound on the
expansion. (15) and (16) determine the design capac-
ity as described in the case of the production platform.
(17) and (18) are mass balances calculating the oil/gas
flow from the WP as the sum of the flow from all wells
associated with that WP. (19) relates the pressure at the
WP to the pressure at the PP it is associated with. The
pressure at the PP is the pressure at the WP minus the
pressure drop in the corresponding pipeline, which is
given by the remaining terms in (19). If the production
platform has not been installed yet (discrete expression
_t

D1 z

�;p



= false), the oil/gas flows, as well as invest-
ment cost, are set to zero.

The innermost disjunction is valid for each well
w associated with well platform 
 , and is only in-
cluded if well platform 
 has already been installed
(discrete expression _t


D1 z
�;p


D true). If well w has

been drilled during or before period t (discrete ex-
pression _t


D1 z
w;�;p



D true), then the following con-
straints are applied:

"
zw;�;pt

CIw;�;pt D cw;�;p2t (20)

#
_

"
:zw;�;pt

CIw;�;pt D 0

#

v�;pt D vw;�;pt � ˛xw;�;pt � ˇgw;�;pt � ı
w;�;p
t (21)

xw;�;pt D �w;�;p(vr; ft � vw;�;pt ) (22)

gw;�;pt � xw;�;pt GORmax (23)

xw;�;pt � �w;�;pPmax (24)

xcw;�;pt D

t�1X

D1

xw;�;pt �t (25)

gcw;�;pt D

t�1X

D1

xw;�;pt �t (26)

xw;�;pt � xw;�;ptC1 (27)

gcw;�;pt D �
r; f
g1 C �

r; f
g2 xcw;�;pt C �

r; f
g3 (xcw;�;pt )2

8(w; 
; p) 2 WF;R( f ; r)
(28)

GORw;�;p
t D �

r; f
gor1 C �

r; f
gor2xc

w;�;p
t C �

r; f
gor3(xc

w;�;p
t )2

8(w; 
; p) 2 WF;R( f ; r)
(29)

The smaller nested disjunction is used to calculate the
discounted investment cost (including depreciation) of
the well in each time period. This cost is calculated in
(20) if well w is drilled in period t (zw;�;pt D True), oth-
erwise it is set to zero. (21) relates the pressure at the
well to the pressure at the WP it is associated with.
The pressure at the WP is the pressure at the well mi-
nus the pressure drop in the corresponding pipeline,
which is given by the remaining terms. (22) states that
the oil flowrate equals the productivity index times the
pressure differential between reservoir and well bore.
(23) restricts the gas flowrate to be the oil flow times
the GOR, while (24) restricts the maximum oil flow
to equal the productivity index times the maximum
allowable pressure drop. The productivity index and
the reservoir pressure determine the oil production
rate from a well in a given time period. The well is
usually capped when the GOR (gas to oil ratio) ex-
ceeds a certain threshold limit or when the pressure of
the reservoir is lower than a minimum pressure. (25)
and (26) calculate the cumulative flow to be the sum
of flows over all periods up to the current one. Note
that (25) and (26) are linking constraints that link the
time periods together and prevent a solution procedure
where every time period is solved separately. (27) de-
notes a specification by the oil company which restricts
the flow profile to be non-increasing. While this com-
pany does not require a lower bound on the quantity
of oil flowing through a pipeline, one could consider
adding such a lower bound in the form of a thresh-
old constraint where the flow is either zero or above
some minimum, in order to address concerns that the
pipeline may seize up if the flow rate were to drop be-
low a certain level. The linear interpolation to calcu-
late cumulative gas and GOR as functions of cumula-
tive oil, are replaced by the nonlinear constraints (28)
and (29). These quadratic equations are obtained from
a curve fit of the linear interpolation data from Iyer
et al. [7]. If the well has not been drilled yet (discrete
expression _t


D1 z
w;�;p



= false), the oil/gas flows, cu-
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mulative flows, as well as investment cost, are set to
zero.

Logical Constraints

These represent logical relationships between the dis-
crete decisions. (30)–(32) specify that each well, WP
and PP can be drilled/installed in only one period. (33)
states that if a WP has not been installed by t; then any
well w associated with that WP cannot be drilled in t.
Likewise, (34) states that if a PP has not been installed
by period t, then any WP associated with that PP can-
not be installed in t. The restriction that only Mw wells
can be drilled in any given time period, is given by (35).

T
_
tD1

zw;�;p



8w 2 WWP (
); 
 2 WP(p); p 2 PP (30)

T
_
tD1

z�;p



8
 2 WP(p); p 2 PP (31)

T
_
tD1

zp


8p 2 PP (32)

:
t
_

D1

z�;p


) :zw;�;pt

8w 2 WWP(
); 
 2 WP(p); p 2 PP
(33)

:
t
_

D1

zp


) :z�;pt 8
 2 WP(p); p 2 PP (34)

_
(w;�;p)

zw;�;pt � Mw (35)

SolutionMethod

Van den Heever and Grossmann [14] proposed an iter-
ative aggregation/disaggregation algorithm, where the
time periods are aggregated in the design problem, and
subsequently disaggregated when the planning prob-
lem is solved for the fixed infrastructure obtained from
the design problem. Both of these subproblems are
described with the logic-based outer approximation
method [6,12]. The solution from the planning problem
is used to update the aggregation scheme after each it-
eration. This is done through a dynamic programming
subproblemwhich determines how time periods should
be aggregated to yield an aggregate problem that re-
sembles the disaggregate problem as close as possible.
Convex envelopes are used to deal with non-convexities
arising from non-linearities.

Optimal Planning of Offshore Oilfield Infrastructure, Figure 3
The final configuration

Optimal Planning of Offshore Oilfield Infrastructure, Table 1
The optimal investment plan

Item Period invested
PP Jan. 1999
WP1 Jan. 1999

Reservoir Well
2 4 Jan. 1999
3 1 Jan. 1999
5 3 Jan. 1999
4 2 Apr. 1999
7 1 Jul. 1999
6 2 Oct. 1999
1 2 Jan. 2000
9 2 Jan. 2000

10 1 Jan. 2000

Figures 3 and 4, together with Table 1 show the op-
timal solution obtained for the largest problem instance
of 25 wells in Fig. 1 for the planning horizon of 24 pe-
riods. The final configuration is shown in Fig. 2. Note
that only 9 of the potential 25 wells are drilled over the
24 periods. Of these, 3 are drilled in the first period, 1 in
the second, 1 in the third, 1 in the fourth, and 3 in the
fifth period as shown in Table 1.

Figure 4 shows the production profile for the whole
infrastructure over the 24 time periods encompassing
the six years from January 1999 up to December 2004.
The net present value obtained for the profit is $67.99
million. This final solution is found in less than 25min
by the proposed algorithm, whereas a traditional solu-
tion approach such as the OA algorithm needs more
than 5 h to find the solution. Due to the short solution
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Optimal Planning of Offshore Oilfield Infrastructure, Figure 4
Production profile over six years

time, the model can quickly be updated and resolved
periodically as more information about the future be-
comes available. Also, different instances of the same
problem can be solved in a relatively short time to de-
termine the effect of different reservoir simulations on
the outcome.

Nomenclature

Sets and Indices

PP set of production platforms
p production platform p 2 PP
WP(p) set of well platforms associated with plat-

form p

 well platform 
 2 WP(p)
F set of fields
f field f 2 F
R( f ) set of reservoirs associated with field f
r reservoir r 2 R( f )
WWP (
) set of wells associated with well platform




WR(r) set of wells associated with reservoir r
WWP;R(r; 
) set of wells associated with reservoir r and

well platform 


w well w 2W(:)(:)
t time periods
T aggregated time periods
T disaggregate time periods
TA aggregate time periods
t disaggregate time period t 2 T
� aggregate time period � 2 TA

To denote a specific well w that is associated with
a specific well platform 
 , which is in turn associated
with a specific production platform p, we use the index
combination (w, 
 , p). Similarly, the index (
 , p) ap-
plies to a specific well platform 
 associated with a spe-
cific production platform p.We omit superscripts in the
variable definition for the sake of simplicity.

Continuous Variables

xt oil flow rate in period t
xct cumulative oil flow up to period t
gt gas flow rate (volumetric) in period t
gct cumulative gas flow up to period t
lt oil flow (mass) in period t
�t gas-to-oil ratio (GOR) in period t
vt pressure in period t
ıt pressure drop at choke in period t
dt design variable in period t
et design expansion variable in period t
Revt sales revenue in period t
CIt investment cost in period t (including deprecia-

tion)
s� state at the end of aggregate period � , i. e. number

of disaggregate periods available for assignment
at the end of aggregate period �

m� length of aggregate period �

Boolean Variables

zt D true if facility (well, WP or PP) is drilled/installed
in period t
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Parameters

� productivity index of well
Pmax maximum pressure drop from well bore to

well head
GORmax maximum GOR
m� number of periods in aggregate time period �
Ta number of aggregate time periods, � D 1::Ta

Mw maximum number of wells drilled in a time
period

�t length of time period t
U upper bound parameter (defined by the re-

spective constraint)
˛ pressure drop coefficient for oil flow rate
ˇ pressure drop coefficient for GOR
c1t discounted revenue price coefficient for oil

sales
c2t discounted fixed cost coefficient for capital

investment
c3t discounted variables cost coefficient for capi-

tal investment
�p1 first coefficient for pressure vs. cumulative oil
�p2 second coefficient for pressure vs. cumulative

oil
�g1 first coefficient for cumulative gas vs. cumu-

lative oil
�g2 second coefficient for cumulative gas vs. cu-

mulative oil
�g3 third coefficient for cumulative gas vs. cumu-

lative oil
�gor1 first coefficient for GOR vs. cumulative oil
�gor2 second coefficient for GOR vs. cumulative oil
�gor3 third coefficient for GOR vs. cumulative oil
finv;t discounting factor for investment in period t
fd pr;t discounting factor for depreciation in period t
frev;t discounting factor for revenue in period t
It investment costs in period t
Rt revenue in period t

Superscripts

(w; 
; p) variables associated with well w 2 W , with
well platform 
 and production platform p

(
; p) variables associated with well platform 
 and
production platform p

(p) variables associated with production plat-
form p

(r) variables associated with reservoir r
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Background

Sensor networks are a collection of devices designed to
detect and/or measure characteristics of targets within
an environment or traits of an environment itself.
These measurements are then used to estimate states
within the system as modeled by the designer. The de-
sign goal is to provide an optimal estimate of these
states against predetermined measures of goodness.
The combining of all available measurements into op-
timal estimates of a dynamic system is a well-studied
problem and is widely implemented in variants of
Kalman filters throughout many current applications
(see the Analytical Science Corporation, [10]).

However; in many applications, practical limita-
tions preclude the collection of data by all sensors at
any given instance in time. In fact, systems are often
limited to collecting information from a single sensor
at each instance. [1,7]. For example, radar or sonar
systems may be precluded from simultaneously trans-
mitting pulses due to inter-pulse interference, or data
transmission rates may exceed system bandwidth ca-
pabilities. Under these conditions, the question is no
longer how to combine the measurements to obtain
an optimal state estimate, but instead is in what order
should the sensors be visited in order to obtain an opti-
mal estimate. The determination of this visitation order
is called the sensor scheduling problem. A variant is the
single sensor, multiple-site problem, where a sensor is
moved between discrete locations while maintaining an
estimate of a dynamic physical attribute at each site.

Numerous optimization techniques have been used
to address the sensor scheduling problem. In general,
sensor scheduling has been shown to be a combinato-
rial optimization problem, but with certain simplifying
assumptions, several successful approaches employing
dynamic, linear modeling techniques have been devel-
oped. These techniques have the benefit of the extensive
development of filter theory and are often incorporated
directly into existing filter designs or immediate exten-
sions to their application. In this paper, selected tech-
niques are presented in chronological order of their de-
velopment. Each is presented with a brief overview of its
theoretical development followed by observations on its
significant implications and application.

Methods

Linear Plant Control Model

In an early and oft cited publication, Meier et al. [8]
posed the sensor selection problem as an adaptive plant
control problem, in which a sequence of plant con-
trol vectors, uP

k and measurement control vectors, uM
k

are sought to optimize plant performance. The mea-
surement control vector selects which sensor (or sen-
sors, in the more general case), if any, that the mea-
surement subsystem would collect, creating a measure-
ment matrix, Zk D fz0; z1; : : : ; zkg, where zk is a n-di-
mensional column vector. Initial development is for
the general discrete case. Since, in the general case,
the problem is of undetermined dimensionality and
unbounded in many cases of practical interest, further
development is made under the assumptions that the
plant and measurement subsystem are linear in nature
and that both the system disturbance and measurement
noise are Gaussian processes. It is also assumed that the
cost function is quadratic in nature. The examination of
this special case allows more definitive results to be ob-
tained. The resulting dynamic linear system is modeled
as follows.

xkC1 D Fkxk C GkuP
k C wk

zk D Hk
�
uM
k
�
xk C vk

J D E
� NX

kD0

h
xTk Qkxk C uP

k
TRkuP

k C lMk
�
uM
k
�i

C xTNC1PNC1xNC1
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where xk is the state of the system at time k, Fk is the
state transition matrix, Gk is the input matrix, wk is
zero-mean, Gaussian system noise with a covariance of
Qk, zk is the measurement vector, HK is the observa-
tion matrix, and vk is zero-mean, Gaussian measure-
ment noise with covariance Rk, which is uncorrelated
with Qk. The system state and its associated error co-
variance matrix are optimally propagated in accordance
with the following equations.

uP
k D �Kk x̂k

ˇ̌
k

where x̂
k
ˇ̌
k
is the optimal state estimate and

Kk D
�
GT

k PkC1Gk C Rk
��1 GT

k PkC1Fk
Pk D Qk C FT

k PkC1Fk C P�kC1

P�kC1 D FT
k PkC1Gk

�
GT

k PkC1Gk C Rk
��1 GT

k PkC1Fk ;

k D 0; 1; : : : ;N ;

where a superscript� indicates a variable that has been
updated with the current measurement and lack thereof
indicates the value as propagated through the model
with prior to the measurement update.

Noting that the gain matrix, Kk, and the covariance
matrices, Pk and P�k , are independent of Rk and Hk in-
dicates that they are also independent of the measure-
ment control vector, uM

k . This leads to a major conclu-
sion, that the measurement control vector, uM

k , can be
solved separately from the plant control vector, uP

k , and
can in fact be determined a priori. This allows the com-
putation of the measurement control matrix to be per-
formed through the following equivalent nonlinear, de-
terministic control problem:

Minimize J� D
NX

kD0

˚
tr
�
P�kC1P̂kjk

�
C lMk

�
uM
k
��
:

Once in this form the problem can be solved em-
ploying dynamic programming or gradient method
techniques, with examples of each presented by Meier,
et al. In the presence of possible local minima, the dy-
namic programming approach is preferred to ensure
a global minimum obtained. The inclusion of a cost for
taking the measurement as part of the cost function al-
lows for the dropping of unnecessarily expensive mea-
surements. All following techniques focus on the min-
imization of the error covariance, P, and assume that

exactly one measurement will always be made each it-
eration.

Bounded Open-Looped Covariance
PropagationModel

A technique for a weighted random sampling of sensors
is proposed by Gupta, et al. and developed in a series
of publications [4,5,6]. Here a discrete linear system is
assumed and the error covariance matrix is allowed to
propagate open looped (that is without measurement
updates) for a predetermined number of iterations, k.
Dropping the plant portion of the model used in the
above model, we have the following equations.

xk D Fk�1xk�1 C Bwk�1

zk D Hkxk C vk
PkC1 D FkP�k F

T
k C Qk

where xk is the state of the system at time k, Fk is the
state transition matrix, wk is zero-mean, Gaussian sys-
tem noise with a covariance of Qk, B is the noise input
matrix, zk is the measurement vector, Hk is the obser-
vation matrix, and vk is zero-mean, Gaussian measure-
ment noise with covariance Rk, which is uncorrelated
with Qk. (Note that the lack of the Gk uP

k term in this
model reflects the pure sensor approach taken here vice
the plant control approach taken by Meier, et al.). The
error covariance matrix propagates in accordance with
the following equations.

fH (P) D FPFT C BQBT

� FPHT �HPHT C R
��1 HPFT

f kH (P) D fH( fH( fH: : : fH(P)));

fH is applied k times :

While a general solution to this equation appears
intractable, the concept is developed further by prov-
ing the existence of both upper and lower bounds un-
der certain conditions. Requirements for the existence
of these bounds include that P is positive semi-definite,
R is positive definite, and the selection of sensor i for the
jth measurement independent of all other selections.
The upper bound is

X D BQBT C AXAT

�

NX
iD0

qiA
�
XCT

i
�
Ri C CiXCT

i
�
CiX

�
AT



2748 O Optimal Sensor Scheduling

and lower bound is

qi
ˇ̌
�max

�
Ā j
�ˇ̌2
� 1 :

The final step in the development of this technique
is to show that sensors chosen according to a Markov
chain fall within these bounds, which in terms of the
Markov chain parameters are

XkC1 D

NX
jD1



j
k X

j
kC1;



j
k X

j
kC1 D

NX
iD1

fC j

�
Xi
k
�
qi j
 i

k

Yk D

kX
iD1

qi�1j j

�



j
kC1�i � q j j


j
k�i

�
f iC j

�
�
BQBT�C qk�1j j 


j
0 f

k
C0
(P0) :

The bounds provided by this technique are loose
and a designer has the opportunity to fine tune the sys-
tem’s performance by adjusting qi. Selection of this pa-
rameter is known to also create a thresholding effect
where use of a particular sensor is disallowed. Once im-
plemented, this algorithm has a computational burden
that is orders of magnitude less than a tree-search al-
gorithm and finds a near-optimal solution in the steady
state.

Branch-and-Bound Search Method

The next technique, developed by Feng, et al. [3], is
a branch-and-bound method, also built on a discrete
time, time-varying model. The sensor schedule is repre-
sented by vector u, where element uk D imeans sensor
i is in use at time k 2 f1; 2; : : : ;Ng and U is the set of
all possible u vectors. Since U is a finite set, at least one
vector u will provide an optimal solution. To avoid an
exhaustive search, a lower bound is developed for the
propagation of the error covariance matrix and the al-
gorithm performs a tree search for the optimal solution,
pruning branches based on this lower bound. While the
system model is similar to the previous model, the cost
function is modified as following to reflect use of the u
vector.

J(u) D
N�1X
kD0

Tr f˙(k)Pu(k)gdt C c � Tr fPu(N)g

where ˙ is an n× n positive definite matrix-valued
function with

ˇ̌
˙i j(k)

ˇ̌
� L; k 2 f1; 2; : : : ;Ng ;

i; j D 1; 2; : : : ; n ;

where L and c are positive constants, and

Pu(k) D E
˚
(x(k) � x̂(k))(x(k)� x̂(k))T

ˇ̌
Fu
�

is the error covariance matrix and Fu is the smallest
�-algebra for which z is measurable for u 2 U .

For two symmetric matrices P1 and P2 of similar
dimension, the notation P1 � P2 was used to indicate
P1�P2 is a positive semi-definite matrix. Feng, et al. [3]
proceeded to prove the lower bound on the covariance
matrix exists by showing if

P�u1 (k) � P�u2 (k) for k 2 f1; 2; : : : ;Ng ;
then J(u1) � J(u2) ;

and if

2Pi i �
nX
jD1

ˇ̌
Pi j
ˇ̌
; 8i D 1; 2; : : : ; n ;

then P, a n× n positive matrix, is positive semi-definite.
Hence, choosing

� (k) D max
iD1;2;:::;N

�i(k) ;

where �i(k) is a diagonal matrix chosen such that

HT
i (k)(Di(k)DT

i (k))
�1Ci (k) � �i (k)

then the lower bound is given by

LB(u(1); u(2); : : : ; u(i))

D

N�1X
kD0

Tr
˚
˙(k)P�u (k)

�
dt C c � Tr

˚
P�u (N)

�
;

subject to the system propagation equations,

xk (k) D Fk�1 (k) xk�1 C B (k)wk�1

zk D Hk (k) xk C D (k) vk

where k 2 f0; 1; : : : ; T � 1g and Qk and Rk are uncor-
related covariance matrices for wk and vk , respectively.
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Branching is now implemented by noting, if
�i (k) � � j(k), then for any sequences,
fu(1); u(2); : : : ; u(k � 1); i; u(k C 1); : : : ; u(T)g ;

and fu(1); u(2); : : : ; u(k � 1); j; u(kC 1); : : : ; u(T)g,
the solution for the covariance matrix will also be less
than or equal to the solution for the second sequence,
where HT

i (k)(Di(k)DT
i (k))

�1Ci (k) D �i(k).
Feng, et al. [3] present the associated algorithm and

provide an illustrative example. An exhaustive search
of the solution space for the example would have taken
1012 checks, while the branch and bound approach
found the solution after branching 6842 times and ex-
amining 435 solutions.

Multi-site ProblemOverview

In the multi-site single-sensor version of the sensor
scheduling problem, the objective is for a single sen-
sor to maintain an estimate of a dynamic physical at-
tribute (e. g., position) of multiple targets. Tiwari, et
al. [11] present a feasibility criterion for a single sensor
to maintain a bounded estimate of an attribute at n lo-
cations. Yerrick, et al. [13] demonstrates by simulation
the feasibility criterion presented in Tiwari, et al. [11]
and develops a heuristic to find a good sensor motion
model given the dynamics of the system under obser-
vation. Yerrick, et al. [14] provide an optimal sensor
coverage solution for two sensor motion models given
a model of the observed system’s dynamics. The first
model they study is based on i.i.d. transition probabil-
ities among the sites. That is, the next site to be visited
by the sensor is chosen according to a stationary proba-
bility distribution that is independent of the previously
visited site. Their second model is more sophisticated
as the moves are chosen according to a transition prob-
ability matrix.

All these mentioned works investigate probabilistic
strategies for the motion of the single sensor among the
sites. A deterministic approach overcomes one disad-
vantage of probabilistic motion: with any random mo-
tion strategy, there is nonzero probability that a par-
ticular site will not be visited at all in any finite time
horizon. Yavuz and Jeffcoat [12] build an optimization
model and show that it is NP-Hard. The authors also
develop valid lower and upper bounds for the objec-
tive function of their model. This paper also exploits
the relationships between the sensor scheduling prob-

lem and periodic scheduling problems. In particular,
pinwheel scheduling and just-in-time manufacturing
scheduling literatures are exploited and useful results
are incorporated to sensor scheduling. The authors pro-
pose two constructive heuristic procedures to solve the
sensor scheduling problem and evaluate their perfor-
mance through a computational study.

Conclusions

The three approaches presented demonstrate the power
of using a dynamic linear model to address the sensor
scheduling problem. These approaches also integrate
easily into existing linear filter algorithms and systems.
As with linear filtering schemes, small system non-
linearities are masked by the system and measurement
noises. Should system non-linearities, prevent achiev-
ing the required level of performance needed, a filter-
type of approach may still be achievable with nonlinear
filters and potential approaches to the sensor schedul-
ing problem using nonlinear filters are presented by
Oshman [9] and Baras, et al. [2].

The recent contributions to multi-site single-sensor
scheduling explore both probabilistic and deterministic
solution approaches. The formulation of the problem
is relatively new and in fact a wide range of different
versions of the problem remain to be studied. Such ver-
sions should consider multiple sensors or relax one or
more of the underlying assumptions; e. g., statistically
independent sites, uniform transition times, no cost of
movement or measurement, or time-invariant models
of system dynamics and measurement.
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Introduction/Background

Solvents find widespread use throughout the chemical
industry, from separations in bulk chemical processing
to reactions, transport and separations in the fine chem-
icals and pharmaceutical industries. Solvents are use-
ful for dissolving solid materials in order to enhance
reaction rates, to facilitate the transport of solid ma-
terials, to provide a heat sink during highly exother-
mic reactions and to allow difficult separations to take
place (liquid–liquid separations, absorption or extrac-
tive distillation). The choice of solvent has an impact
on the economic performance of a given process, and
on the quality of the products manufactured. For in-
stance, different solvents can lead to different crystal
structures being formed during crystallization; the re-
generation of a solvent leaving a separation unit can be
more or less energy-intensive, as in the case of chemical
absorption versus physical absorption, leading to differ-
ent operating costs; the amount of solvent required to
process a certain amount of material may vary signifi-
cantly, leading to different equipment sizes and hence
capital investment.

The identification of an optimal solvent is a diffi-
cult task for several reasons. First of all, solvent design
is a very complex problem in which many trade-offs
must be considered. In absorption, for instance, a sol-
vent which has a high capacity for the compound it
must remove may be comparatively expensive to re-
generate, and may be lost with the separated com-
pound in larger quantities during regeneration. In re-
actions, a solvent which leads to a high product yield
may also favor side reactions and thus result in the loss
of valuable reactants. In addition, the optimal solvent
is closely linked to the choice of operating conditions
for a process. Thus, the decoupling of the choice of sol-
vent and of operating conditions can lead to subopti-
mal solvent designs. Early methods for the computer-
aided selection of solvents were based on enumeration
or “generate-and-test” techniques [3,7]. However, be-
cause of the complexity of the problem, optimization
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provides a natural framework for solvent design. In its
most complete form, the solvent design problem is in
fact an integrated plant-wide process and solvent de-
sign problem. The plant-wide aspect is required as a sol-
vent which is optimal for a reactor may cause prob-
lems in separations (e. g., difficult recovery, poor behav-
ior in crystallization) and vice versa. The design vari-
ables to be considered include equipment sizes and op-
erating conditions (continuous variables), as well as the
molecular structure of the solvent (integer or binary
variables). The general problem structure is therefore
a mixed-integer program. Usually, this problem is non-
linear in nature and, depending on the type of process
model used, it may involve differential and algebraic
equations.

From a practical point of view, it is not yet feasible
to tackle the integrated plant-wide design problem for
processes including both reaction and separation. The
first publications on the use of optimization in solvent
design focused on the optimization of physical property
metrics such as solvent capacity and heat of vaporiza-
tion [25,29]. There has since been steady progress on
extensions of the problem formulation, with more di-
rect measures of performance being used. The design
of solvents for gas–liquid and liquid–liquid separations
is a well-studied problem and some of the techniques
developed are now used in industry. Much remains
to be done on solvent design for reactions and solid–
liquid separations (crystallization). For these unit op-
erations, solvents are often chosen on the basis of in-
tuition, similarity with other known systems and ex-
perimentation. The choices being made are thus often
suboptimal. One major hurdle remains problem for-
mulation because meaningful relations between solvent
structure and solvent properties do not exist, or existing
relations are very complex (e. g., Monte Carlo simula-
tions or quantum-mechanical calculations).

In this article, the state-of-the-art in problem for-
mulation is reviewed, and methods used to solve the
problem are briefly discussed. There has been extensive
and successful work on solvent selection based on “gen-
erate-and-test” approaches [3,15]. This approach is par-
ticularly well suited to the case where all decisions are
integer and can therefore be enumerated but is not con-
sidered here because it does not usually rely on the for-
mulation and solution of an optimization problem, but
rather on matching certain property constraints [26].

Perspectives for further developments of optimization-
based solvent design are considered at the end of this
article.

Formulation

General Problem Formulation

The general formulation of the optimal solvent design
problem is given by

min
x;y

f (x; y)

subject to hsp(x; y) D 0 ;

gsp(x; y) � 0 ;

hc f (x; y) D 0 ;

gc f (x; y) � 0 ;

hp(x; y) D 0 ;

gp(x; y) � 0 ;
x 2 Rm ;

y 2 f0; 1gq ;

(1)

where f is the objective function; hsp is a set of struc-
ture–property equality constraints, which relate sol-
vent molecular structure to physical properties; hcf is
a set of chemical feasibility and complexity equality
constraints, which ensure that only meaningful solvent
molecules are designed; hp is a set of equality con-
straints describing the process, such as mass balances,
energy balances and sizing constraints; gsp is a set of
structure–property inequality constraints; gcf is a set
of chemical feasibility, complexity and solvent prop-
erty inequality constraints, such as limits on the sol-
vent boiling point; gp is a set of process performance
constraints; x is anm-dimensional vector of continuous
variables denoting operating conditions, physical prop-
erties or process variables; and y is a q-dimensional vec-
tor of binary variables describing the solvent structure.

Representation of the Solvent

Atom Groups The solvent is usually represented as
a set of atom groupswhich are commonly used in group
contribution methods [34], such as CH3, CH2, OH and
COOH. Any given molecule can thus be represented by
a vector of integer variables, n, where the ith element
corresponds to the number of groups of type i. Thus,
n-butanol is represented by nCH3 D 1, nCH2 D 3 and
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nOH D 1. In order to allow the solution of the problem
by mixed-integer programming algorithms such as the
outer approximation [12,42], the integer variables are
mapped onto a set of binary variables with the following
constraints:

KX
kD0

2k yi;k � ni D 0; 8i 2 G ; (2)

where G denotes the set of groups, each yi;k denotes
a binary variable and K is such that

PK
kD0 2

k is equal
to the maximum number of groups of any given type
allowed in the optimal solvent. This allows the variable
vector n to be treated as a vector of continuous vari-
ables. This approach has been used extensively in the
optimal solvent design literature.

AtomGroups and Connectivity Information An al-
ternative approach, which allows a more detailed rep-
resentation of the molecule and the use of alterna-
tive structure–property relations such as second-order
group contribution techniques [1,28] or connectivity
indices [20], is based on a graph-theoretic representa-
tion of the compound via an adjacency matrix or sim-
ilar tools. This has been proposed in the context of
computer-aided molecular design by a number of au-
thors [4,9,10,35].

Chemical Feasibility Constraints In order to ensure
that the solvent designed is indeed physically meaning-
ful, a number of constraints must be imposed to limit
the combinations of binary variables. On the basis of
typical boiling point constraints on solvents, it is first
noted that solvents are usually acyclic, monocyclic aro-
matic or, more rarely, bicyclic aromatic molecules. This
can be represented by three binary variables. ya D 1
for an acyclic molecule, yb D 1 for a bicyclic solvent
molecule and ym D 1 for a monocyclic molecule [29]:

ya C yb C ym D 1 : (3)

Furthermore, a continuous variable, m, is defined to
represent represent the type of molecule. For a mono-
cyclic molecule, m D 0, for an acyclic molecule, m D 1
and for a bicyclic molecule, m D �1 . This is expressed
in terms of the binary variables as

m � (ya � yb) D 0 : (4)

The octet rule [29] ensures that the solvent molecule
designed is structurally feasible and that there are no
remaining free attachments in the molecule. It is based
on the valency (�i ) of different structural groups:X

i2G

(2 � �i )ni � 2m D 0 : (5)

To prevent any group being bonded to itself, the
formation of a double bond or the formation of more
than one molecule, the following constraint can be in-
cluded [29]:

nj(� j � 1)C 2 m �
X
i2G

ni � 0 8 j 2 G : (6)

The following constraint ensures that the molecule
contains at least two groups:

2 �
X
i2G

ni � 0 : (7)

In an aromatic molecule, the number of aromatic
groups must be 6 if the molecule is monocyclic or 10 if
it is bicyclic:

X
i2GA

ni � 6ym � 10yb D 0 ; (8)

where GA is the set of aromatic groups.
In a bicyclic molecule the number of aromatic car-

bon groups (naC) must be greater than or equal to 2:

2yb � naC � 0 : (9)

Chemical complexity constraints can be imposed
to describe the presence of side chains on cyclic
molecules [13]. Finally, limits can be placed on the to-
tal number of groups in the molecule, on the number
of specific functional groups and on particular com-
binations of groups. This reduces the solvent design
space, making the problem more tractable and it also
accounts for the fact that group contribution methods
typically work well for medium-sized compounds with
a few functional groups.

Design of Solvent Mixtures Several authors have ex-
panded the size of the solvent design space by consider-
ing solvent mixtures, in which the solvents in the mix-
ture and its composition are determined as part of the
problem solution [8,38]. The presence of continuous
variables to describe composition makes the use of op-
timization techniques, as opposed to enumeration tech-
niques, especially suitable.
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Methods/Applications

Having introduced some general concepts on the for-
mulation of the optimal solvent design problem, we
now turn our attention to the specific problems which
have been tackled to date, and to the solution methods
which have been employed. The applications are clas-
sified in terms of the type of objective function used.
Most applications are in the area of fluid–fluid separa-
tions, but there have been a few publications on reac-
tions and on solid–fluid separations.

Design for Property Targets

Properties from Group Contribution and Correla-
tions Initial work in the area of solvent design was
focused on identifying solvents that maximize property
performance measures. In a separation process, solvent
capacity and selectivity could be taken as metrics for the
effectiveness of the separation and solvent loss as a met-
ric for the difficulty of the solvent regeneration. This ap-
proach was adopted in [29], where the following func-
tion was considered as an objective:

Capacity � selectivity � 100 � solvent loss: (10)

This early work on optimal solvent design was applied
to multicomponent gas absorption and liquid–liquid
extraction using a mixed-integer nonlinear program-
ming (MINLP) formulation, thus extending an earlier
approach based on a nonlinear programming (NLP)
formulation [25]. The required physical properties were
calculated using group contribution techniques and
similar correlations. In particular, phase equilibria was
predicted using the UNIFAC approach [21]. This ac-
tivity coefficient model has found many applications in
solvent design thanks to its versatility.

The use of group contribution techniques and cor-
relations allows many important selection criteria to be
taken into account. Issues such as toxicity and environ-
mental impact as deduced from octanol–water parti-
tion coefficients can be incorporated in the formulation
as constraints [2]. Correlations provide a route to ex-
tending the scope of solvent design formulations. The
design of solvents for crystallization can be considered
by incorporating effects such as the influence of solvent
choice on crystal shape [18]. Solvent choice for an ex-
tractive fermentation process can be considered by in-
corporating issues such as biocompatibility, inertness

and ability to cause phase splitting [43]. This captures
the effect of the solvent on yield in terms of its ability to
promote product extraction from the mixture. The im-
pact of solvent on reaction rate constants can be taken
into account via a combination of group contribution
techniques and the solvatochromic equation of [11], as
shown in [13]. In all these cases, the MINLP formula-
tion provides a single integrated framework to consider
the trade-offs between the different solvent properties.

Properties from More Detailed Models Group con-
tribution techniques are usually most accurate for
medium-sized molecules which contain few functional
groups [34]. While this is often appropriate for the sol-
vent being designed, the solutes considered are often
more complex and this may result in a poor representa-
tion of the solvent–solute interactions. This has reper-
cussions on the quality of the phase equilibria predic-
tions and can have a significant impact on the design.
To address this issue, recent work has been aimed at in-
corporating more realistic representations of the solute
and of the solvent-solute systems.

In [22,36] it was shown how continuum solvation
models, in which the solvent is modeled as a continuum
but the solute is modeled at the quantum-mechanical
level, can be used in solvent design. Lehmann and
Maranas [22] used the model of [24] to predict activ-
ity coefficients for solvent–solute pairs. This informa-
tion was used to optimize the capacity and selectiv-
ity of the solvent, while taking environmental consid-
erations into account. The use of such models poses
additional difficulties in the context of optimization-
based solvent design, because the evaluation of the
quantum-mechanical quantities requires the solution
of an optimization problem (energy minimization).
This naturally leads to a bilevel formulation with a very
expensive inner problem. Lehmann and Maranas [22]
successfully applied their approach to a small case
study, using a genetic algorithm to solve the outer sol-
vent design problem. However, they concluded that
the presence of adjustable parameters in the solvation
model limited the applicability of the method because
these parameters are hard to determine reliably. Shel-
don et al. [36] used a different solvation model [23]
and focused onminimizing the free energy of solvation.
This particular problem can be formulated as a single-
level problem and the authors applied this formula-
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tion to a set of case studies, using the outer-approx-
imation algorithm [12,42]. A solvent design space of
over 3000 molecules was considered in each case study
and the algorithm systematically converged to the opti-
mal solution after evaluating less than 12% of the can-
didate molecules. Despite the high computational cost
of quantum-mechanical calculations, the best solvents
were identified in reasonable CPU time. However, work
remains to be done to incorporate such detailed prop-
ertymodels intomore realistic solvent design problems.

Another possibility to improve the quality of prop-
erty prediction is to resort to group contribution equa-
tions of state which provide a description of gas and
liquid phases, in contrast to activity coefficient mod-
els which are limited to the liquid phase. This allows
the representation of nonideal vapor phases, which
is especially relevant for high-pressure processes. Ta-
mouza et al. [40] and Thi et al. [41] have proposed
a group contribution version of the statistical associat-
ing fluid theory (SAFT) equation of state which takes
into account molecular shape and hydrogen bonding
and can thus be used to model complex fluid mixtures
reliably. Recently, Keskes et al. [19] have shown that
a solvent for a high-pressure absorption process for
CO2 removal from natural gas can be designed based
on a group contribution version of the SAFT equation
of state. A limited solvent design space was used, but
this opens the way for further uses of equations of state
in solvent design.

Design for Process Targets

Since the mid-1990s, the formulation of the solvent
design problem has become increasingly sophisticated
as researchers have attempted to capture the com-
plex trade-offs that are necessary to design an optimal
process-solvent system. Twomain classes of techniques
have been developed: sequential approaches, in which
some features of the solvent are preselected before turn-
ing to the process optimization problem, and integrated
solvent and process design approaches.

Sequential Approaches In sequential approaches,
a first step consists in identifying candidate solvents, or
features of “good” solvents on the basis of property tar-
gets. In a second step, an optimal process is designed for
the solvents selected in the first step. Such an approach

was proposed by Pistikopoulos et al. [33,39] based on
a multiobjective framework which accounts for eco-
nomic and environmental considerations. A list of sol-
vents is first generated on the basis of environmental
and property-based criteria. The solvents chosen are
then verified in different process flowsheets/designs.

In a series of papers, Papadopoulos and
Linke [30,31,32] proposed an approach in which candi-
date solvents are first designed on the basis of property
targets. A clustering algorithm is then used to extract
information from the set of high-performance can-
didates. This information is then incorporated into
a multiobjective process design problem. Both opti-
mization problems (initial solvent design and process
design) are solved using a stochastic optimization al-
gorithm. This approach has been applied to several
separation process design problems.

Integrated Solvent Design and Process Operation
The simultaneous optimization of the operation of
a dynamic separation process and of the solvent was
considered in [14]. In this case, the process equations
hp and gp in formulation (1) are given by a set of dif-
ferential and algebraic equations, resulting in a mixed-
integer dynamic optimization (MIDO) problem. The
authors applied the MIDO algorithm of [5,6] and a de-
composition approach based on the work of [33], in
which feasibility of key property constraints is tested
before solving the computationally intensive MIDO
primal problem. The system considered in this work
was a batch extractive distillation process, with the ob-
jective to debottleneck existing equipment.

Integrated Process and Solvent Design

Single-Objective Framework Hostrup et al. [16] pro-
posed an MINLP formulation of the integrated process
synthesis and solvent design problem. They used a se-
ries of analysis steps to explore the properties of can-
didate compounds and the properties of mixtures in-
cluding candidate compounds. This allowed them to
eliminate some candidate compounds on the basis of
heuristics or on the basis of specific process constraints.
Depending on the number of solvent candidates re-
maining after this study, a set of NLP process design
problems or an MINLP is solved to identify the optimal
process/solvent combination.
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Multiobjective Framework Buxton et al. [8] extended
the approach of [33]. Their approach is based on for-
mulating a multiobjective problem in which economic
and environmental criteria are taken into account. An
approach to life-cycle analysis has been included in
the formulation [17]. The large and highly nonlinear
mixed-integer problem which results from this formu-
lation is solved using a decomposition-based approach.

Solution Techniques

Several solution techniques have been brought to
bear on the range of problem formulations devel-
oped so far. Many researchers have focused on for-
mulation rather than solution technique, and have
applied local optimization algorithms such as the
outer-approximation [12,42] and MIDO [5,6] algo-
rithms. Others have used decomposition-based ap-
proaches [33] or sequential approaches [30] to reduce
the complexity of the problem and avoid unnecessary
evaluations of large sets of equations.

The solvent design problem is inherently noncon-
vex: whenever phase equilibria are considered, as is
always the case for separation design, highly nonlin-
ear constraints are introduced in the problem formu-
lation. To address this issue, there have been a few at-
tempts at deploying and adapting global optimization
techniques. Sinha et al. [37] have developed a special-
ized branch-and-bound algorithm. They later devel-
oped an approach based on interval analysis to tackle
the same problem [38]. Wang and Achenie [44] pro-
posed a hybrid stochastic/deterministic approach based
on a combination of simulated annealing and local
MINLP (outer approximation). Marcoulaki and Kokos-
sis [27] demonstrated the use of a simulated anneal-
ing algorithm to solve solvent design problems in sepa-
ration process design (liquid–liquid extraction, extrac-
tive distillation, gas absorption). Finally, genetic algo-
rithms have been used, for instance, by Lehmann and
Maranas [22].

Conclusions

The solvent design problem can naturally be framed
as a mixed-integer optimization problem in which
trade-offs between different properties can be consid-
ered through property targets or, more realistically,
by measuring their effect on process metrics such as

environmental impact or economic performance. The
main difficulties in the formulation and solution arise
from the complexity of the performance–structure re-
lationships, which can be highly nonlinear, as in the
case of phase-equilibrium models, or very expensive
to evaluate, as in the case of detailed process models
or quantum-mechanical calculations. Although much
progress has been made in formulating problems for
fluid–fluid separations, much remains to be done for re-
active processes and solid–fluid separations. In partic-
ular, reliable property–structure relations must be de-
veloped and incorporated into the formulation of the
problem. This may require new solution techniques to
be developed, especially when the property–structure
model requires an optimization problem to be solved.
Furthermore, the nonconvexity of the problemmust be
addressed more generally so that reliable solutions can
be guaranteed.
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Introduction

A triangulation of a given set S of n points in the Eu-
clidean plane is a maximal set of non-crossing straight
line segments (called edges) which have both endpoints
in S. As an equivalent definition, a triangulation of S is
a partition of the convex hull of S into triangular faces
whose vertex set is exactly S. Triangulations are a versa-
tile means for partitioning and/or connecting geomet-
ric objects. They are used in many areas of engineer-
ing and scientific applications such as finite element
methods, approximation theory, numerical computa-
tion, computer-aided geometric design, computational
geometry, etc. Many of their applications are surveyed
in [8,11,20,61].

A triangulation of S can be viewed as a planar graph
whose vertex set is S and whose edge set is a subset of
S � S. The Eulerian relation for planar graphs implies
that the number e(S) of edges, and the number t(S) of
triangles, do not depend on the way of triangulating S.
In particular

e(S) D 3n � 3 � h

t(S) D 2n � 2 � h

where h denotes the number of edges bounding the
convex hull of S. The number of different triangulations
of S is, however, an exponential function of n. More
precisely, the number of triangulations every set of n
points (in general position) must have is˝(2:63n) [57].
A general upper bound is O(43n) [68], and point sets
can be constructed that exhibit 
(

p
72 n) triangula-

tions [6]. All these bounds are very recent, and various
prior bounds have been given; see the citations listed
in [6,57,68].

The problem of automatically generating optimal
triangulations for a point set S has been a subject of
research since decades. Enumerating all possible tri-
angulations and selecting an optimal one (exhaustive
search) is too time-consuming even for small n. In fact,
constructing optimal triangulations in polynomial time
is a challenging task. This becomes more apparent as
greedy methods, such as deleting candidate triangles or
edges from worst to best, are doomed to fail by the NP-
completeness of the following problem; see Lloyd [56]:
Given a point set S and some set E of edges on S, decide
whether E contains a triangulation of S.

Results on optimizing combinatorial properties of
triangulations, such as their degree (Jansen [39]) or
connectivity (Dey et al. [21] and Dillencourt [25]) are
rare. Most optimization criteria for which efficient algo-
rithms are known concern geometric properties of the
edges and triangles.

Delaunay Triangulations

The most commonly constructed and maybe the most
famous triangulation for a point set S is the Delau-
nay triangulation, DT(S). See [8,27,34,45] for exten-
sive treatments and surveys. DT(S) contains – for each
triple of points in S – the corresponding triangle pro-
vided its circumcircle is empty of points in S. Sib-
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son [70] proved that DT(S) can be constructed from
any given triangulation T of S by applying any sequence
of good edge flips. These are exchanges of diagonals in
one of T’s convex quadrilaterals Q such that – after the
flip – the two new triangles are locally Delaunay, i. e.,
have circumcircles empty of vertices of Q.

Various global optimality properties of DT(S) can
be proved by observing that every good flip gives a lo-
cal improvement of the respective optimality measure.
Lawson [47] observed that equiangularity of a triangu-
lation, which is the sorted list of its angles, increases
lexicographically in this way. DT(S) thus maximizes
the minimum angle. Coarseness of a triangulation is
measured by the largest circumcircle that arises for its
triangles. D’Azevedo and Simpson [19] showed that
DT(S) minimizes coarseness in this sense, and also if
smallest enclosing circles are taken rather than circum-
circles. The latter property – unlike others – gener-
alizes to higher-dimensional Delaunay triangulations;
see Rajan [64]. Similarly, fatness may be defined as the
sum of triangle inradii. Lambert [46] pointed out that
DT(S) maximizes fatness or, equivalently, the mean in-
radius. Triangular surfaces obtained from lifting DT(S)
to 3-space (for any given heights at triangle vertices)
minimize roughness, which is the integral of the squared
gradient; see Rippa [66]. It is also known that a vari-
ant of DT(S) minimizes the minimum angle; see Epp-
stein [31].

The Delaunay triangulation is a special instance of
regular triangulations, which are obtained by project-
ing the lower boundary part of a convex polytope in
3-space; see e. g. Edelsbrunner and Shah [28]. Regular
triangulations are, thus, obviously optimal in the sense
that they allow for a convex lifting surface. Some more
optimality properties of DT(S) can be derived from this
fact; see Musin [60]. Delaunay and regular triangula-
tions can be constrained to live in nonconvex polygons
(rather than in the convex hull of the underlying point
set S), see [48] and [1], respectively. Equiangularity and,
with it, various other optimality properties carry over to
constrained Delaunay triangulations [48].

DT(S) is the geometric dual of the famous Voronoi
diagram of a point set S and can be computed in
O(n log n) time and O(n) space by various different ap-
proaches; see e. g. [8,27,34]. Su and Drysdale [71] gave
a thorough experimental comparison of available De-
launay triangulation algorithms.

On the negative side, DT(S) fails to fulfill opti-
mization criteria similar to those mentioned above,
such as minimizing the maximum angle, or minimiz-
ing the longest edge. Edelsbrunner et al. [29,30] gave
O(n2 log n) time and O(n2) time algorithms, respec-
tively, for computing triangulations optimal in these re-
spects. The former algorithm is based on an edge in-
sertion paradigm which is shown in Bern et al. [10]
to lead – in polynomial time – to triangulations with
maxmin triangle height, minmax triangle eccentricity,
and minmax gradient surface, respectively.

MinimumWeight Triangulations

Most longstanding open was another optimal trian-
gulation problem, the minimum weight triangulation.
Here the criterion is weight, which is defined as the
sum of all edge lengths. The complexity of computing
a minimum weight triangulation, MWT(S), for arbi-
trary planar point sets S was open since 1975 when it
was mentioned in Shamos and Hoey [67]. Minimum
weight triangulation is included in Garey and John-
son’s [35] list of problems neither known to be NP-
hard, nor known to be solvable in polynomial time.
Very recently, its complexity status has been resolved;
Mulzer and Rote [59] proved that minimum weight tri-
angulation is NP-hard.

Earlier attempts to prove the minimum weight tri-
angulation problem NP-hard have resulted in some re-
lated NP-completeness results; they are listed in [38].
Several heuristic algorithms have been proposed to solve
this problem; see Lingas [53], Plaisted and Hong [63],
and Heath and Pemmaraju [38]. None of these is
known to produce a constant approximation in weight,
although progress in this respect has been made later,
see below.

It is well known that the Delaunay triangulation
DT(S) may exceed MWT(S) in weight by a factor
of 
(n); see Kirkpatrick [42]. Another popular tri-
angulation, the greedy triangulation, GT(S), also may
fail to approximate MWT(S) well. GT(S) is obtained
by a greedy algorithm intended to yield small weight:
Edges are inserted in increasing length order unless
previously inserted edges are crossed and until the
triangulation is completed. Several fast implementa-
tions have been proposed, e. g. by Dickerson et al. [22]
who also give a brief history. Levcopoulos [49] showed
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a lower bound of˝(
p
n) on the approximation factor.

A matching upper bound has been given in Levcopou-
los and Krznaric [50]. The same paper introduces an
interesting modification of GT(S) that achieves a con-
stant weight approximation for MWT(S) in polyno-
mial time, though with a very large constant. Very re-
cently, Remy and Steger [65] developed an algorithm
that finds an (1C ")-approximation of MWT(S) in
quasi-polynomial time, nO(log8 n).

For uniformly distributed point sets S, both triangu-
lations GT(S) and DT(S) yield satisfactory approxima-
tions for MWT(S); see e. g. Lingas [54]. In fact, GT(S)
seems to perform slightly better, as reported in Dick-
erson et al. [23]. GT(S) can be constructed in O(n)
expected time in this case, by an algorithm in Drys-
dale et al. [26] or by a modification of the algorithm in
Levcopoulos and Lingas [52].

The weight of a triangulation may decrease when
additional points (so-called Steiner points) are admit-
ted. Eppstein [32] showed that the weight of aminimum
weight Steiner triangulation for S may be ˝(n) times
smaller than the weight of MWT(S). The same pa-
per gives efficient triangulation algorithms that approx-
imate the weight of the former within a constant factor,
thus improving over previous results in Bern et al. [12].
No polynomial-time algorithms are known for the ex-
act minimum weight Steiner triangulation problem.

Dynamic programming is a powerful tool to deal
with discrete optimization problems which are decom-
posable in a certain sense. It leads to polynomial-time
solutions for some restricted instances of the minimum
weight triangulation problem. For example, if S is the
vertex set of a convex polygon then MWT(S) can be
computed in O(n3) time and O(n2) space. The basic
observation used is that – once some triangle of the tri-
angulation has been fixed – the problem splits into sub-
problems (subpolygons) whose solutions can be found
recursively, thereby avoiding recomputation of com-
mon subproblems. The triangulation method, first pro-
posed by Gilbert [36] and Klincsek [44], does not really
exploit convexity. It works as well for nonconvex poly-
gons, and in fact for any interior face of a planar straight
line graph. It is worth mentioning that, in the convex
polygon case, MWT(S) is approximated by GT(S) up
to a constant factor; see Levcopoulos and Lingas [51].
Anagnostou and Corneil [7] consider the case where S
gives rise to a small number k of convex layers (nested

convex hulls). Their dynamic programming approach
works in timeO(n3kC1) and thus is polynomial for con-
stant k. Meijer and Rappaport [58] later improved the
bound to O(nk ) when S is restricted to lie on k non-
intersecting line segments.

The minimum weight triangulation problem can
also be formulated as a linear programming problem.
To this end, a variable xi is assigned to each of the

�n
2

�
edges ei defined by S. The objective is to minimize

X
e i

xi jei j

subject to the constraints

0 � xi � 1

xi C x j � 1 for ei \ e j ¤ 6 0

xi C
X

e j\e i¤ 60

x j � 1 :

The last two constraints express the property that a tri-
angulation is a maximal set of non-crossing edges. An
integer solution of this linear program yields a mini-
mum weight triangulation: For each edge ei, inclusion
into, or exclusion fromMWT(S) is indicated by xi D 1
or xi D 0, respectively. An optimal solution need not
be integer, however, and insisting on an integer solu-
tion results in an integer programming problem whose
general version is known to beNP-complete [35]. Using
amodified version of this approach, Ono et al. [62] were
able to compute MWT(S) for up to a hundred points.

The afore-mentioned polynomial-time results for
triangulating polygonal domains (rather than point
sets) give motivation for the following subgraph ap-
proach to compute MWT(S), proposed e. g. in Xu [73]
and Cheng et al. [14]: Find a (suitable) subgraph G of
MWT(S). If G contains k connected components, try
all possibilities to add k � 1 edges to make it a con-
nected graph C. Complete each of these graphs C to
a triangulation by optimally triangulating its faces, and
select a triangulation with minimum weight, which
gives MWT(S). This approach, which basically is ex-
haustive search, can be implemented to run in O(nkC2)
time. The problem, of course, is to find candidates for
G with k small.

The subgraph approach should be distinguished
from the heuristic approaches in [38,53,63] we men-
tioned before, which also first fix some graph G for S
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(for example, the minimum spanning tree) and then tri-
angulate out its faces. The difference is thatGwill not be
a subgraph of MWT(S) in general, and thus does not
lead to an exact solution.

Locally Defined Subgraphs of MWT

Many efforts have been put into the study of subgraphs
of MWT(S). Gilbert [36] pointed out that the shortest
edge defined by S always belongs to MWT(S). Another
simple observation is that unavoidable edges, which are
edges not being crossed by any other edge in S � S,
have to appear in any triangulation of S and thus are
in MWT(S). For example, all edges of the convex hull
of S are unavoidable. The number of unavoidable edges
does not exceed 2n � 2, see Xu [74], and usually is very
small.

Only in recent years, several more substantial sub-
graphs of MWT(S) have been identified. One of them
arises from a class of empty neighborhood graphs intro-
duced by Kirkpatrick and Radke [43]. Let p; q 2 S and
ˇ � 1. The edge pq is included in the ˇ-skeleton, ˇ(S),
if the two discs of diameter ˇjpqj and passing through
both p and q are empty of points in S. It is not hard
to see that ˇ(S) always is a subgraph of the Delaunay
triangulation DT(S). In fact, ˇ(S) can be constructed
from DT(S) in O(n) time; see Lingas [55] or Jarom-
czyk et al. [40].

Interestingly, ˇ(S) is a subgraph of MWT(S) for ˇ
large enough. The original bound ˇ �

p
2 in Keil [41]

has been improved later in Cheng and Xu [17] to
ˇ > 1:1768, which is close to the largest value 2/

p
3

for which a counterexample is available [41]. Only
for point sets S in convex position it is known
that ˇ > 2/

p
3 always implies inclusion of ˇ(S) in

MWT(S); see Hainz et al. [37]. Whereas ˇ(S) is a con-
nected graph for ˇ D 1 (known as the Gabriel graph of
S), it may be highly disconnected for larger ˇ-values.
Cheng et al. [14] prove that – for uniformly distributed
point sets S – the number of components is expected to
be 
(n).

Yang et al. [76] formulated and proved a different
inclusion region: If the union of the two disks with ra-
dius jpqj and centered at p and q, respectively, is empty
of points in S, then pq is an edge of MWT(S). That is,
points p and q are mutual nearest neighbors. The skele-
ton generated in this way and the ˇ-skeleton do not

contain each other for ˇ > 2/
p
3, but for smaller ˇ-val-

ues the ˇ-skeleton contains the former as a subgraph.
Note that both graphs are defined via a symmetric and
local condition. A sufficient asymmetric condition can
be found in Wang et al. [72]. We refer to Eppstein [33]
for a survey paper on geometric graphs.

A distinct attempt to find a sufficient local condi-
tion defines an edge e as a light edge [2] if there is
no edge in S � S crossing e and shorter than e. Let
L(S) denote the graph formed by the light edges for S.
L(S) obviously contains all unavoidable edges, and in
fact contains both Cheng and Xu’s 1:1768-skeleton and
the skeleton in Yang et al. [76] By construction, L(S)
is a subgraph of the greedy triangulation GT(S), as
light edges cannot be blocked by any edge previously
inserted by the greedy strategy. On the other hand,
L(S) is no subgraph of MWT(S) in general. However,
if L(S) happens to be a full triangulation of S, then
L(S) D MWT(S) D GT(S). This allows for a fast com-
putation of MWT(S) for a certain class of point sets S,
using greedy triangulation algorithms.

These results are observed in Aichholzer et al. [2]
as a consequence of the following matching theorem
for planar triangulations, proved in Aichholzer et al. [4]
and in Cheng and Xu [16]: For any two triangulations
T1 and T2 of a fixed point set S, there is a perfect match-
ing between the edge set of T1 and the edge set of T2

such that matched edges either cross or are identical.
A similar matching exists for the triangle sets of T1 and
T2, where matched triangles either overlap or are iden-
tical. The paper [2] further gives several polynomially-
time computable lower weight bounds forMWT(S), the
simplest one being the weight of L(S). Another bound
can be stated as

min
g2X(E)

X
e2E

jg(e)j

where E is any set of non-crossing edges, and X(E) is
the set of all matchings g : E ! S � S with the property
g(e) D e or g(e) crosses e.

The concept of light edges gives rise to a partition of
the greedy triangulation GT(S) into levels L1; : : : ; Lk :
Let L1 D L(S) be the set of edges that are light with re-
spect to S � S, let L2 be the set of edges that are light
with respect to (S � S) nC1, where C1 is the set of edges
crossing L1, and so on. Upper bounds on the ratio in
weight between GT(S) and MWT(S) that depend on
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the number k of levels are observed in Levcopoulos and
Krznaric [50] and Aichholzer et al. [5]. In particular,
GT(S) is a constant-factor approximation of MWT(S)
provided k D O(1).

Globally Defined Subgraphs of MWT

We have seen that several subgraphs of MWT(S) can
be found from local conditions, namely, via emptiness
of particular inclusion regions. The subgraphs below
are defined in a global way, via intersection of triangu-
lations.

Call a triangulation T of S locally minimal if every
4-sided and point-empty polygon drawn by T is opti-
mally triangulated. That is, every convex quadrilateral
contains the shorter one among its two diagonals. It is
easy to see that GT(S) is locally minimal and DT(S), in
general, is not. Let LMT(S) denote the intersection of
all locallyminimal triangulations for S. Then LMT(S) is
a subgraph of MWT(S), as this triangulation of course
is locally minimal, too.

Whereas it is not known how to compute LMT(S)
in polynomial time, a surprisingly large subgraph of
LMT(S), the so-called LMT-skeleton can be identi-
fied by a simple and efficient method, proposed in
Belleville et al. [9] and in Dickerson andMontague [24]:
Consider some edge set E � S � S. An edge e 2 E is
called redundant in E if there is no convex quadrilateral
formed by E that has e as its shorter diagonal. Edge e
is called unavoidable in E if no other edge in E crosses
e. The LMT-skeleton algorithms puts E D S � S and
proceeds in several rounds. Each round first identifies
all edges redundant in E and eliminates them from the
set, and then includes all edges that are unavoidable in
the reduced set E into the LMT-skeleton. The algorithm
stops when no more edge in E can be classified as ei-
ther redundant or unavoidable. The number of rounds
(but not the produced LMT-skeleton) depends on the
ordering in which the edges are examined. In particu-
lar, there always exists an ordering such that one round
suffices; see Hainz et al. [37].

The fact that the LMT-skeleton for S, and thus
LMT(S), tend to be connected even for large point
sets comes at a surprise. From the practical point of
view, the LMT-skeleton almost always nearly triangu-
lates S. On the other hand, a 19-point counterexam-
ple to connectedness exists [9], and for uniformly dis-

tributed points, the expected number of components
is 
(n); see Bose et al. [13]. The constant of propor-
tionality is extremely small, however. It is interesting
to note that the LMT-skeleton, and the graph of light
edges L(S), exhibit a similar behavior of connectedness,
but do not contain each other in general. We mention
further that the improved LMT-algorithm in [37], that
tends to yield some additional edges of LMT(S), in-
deed constructs LMT(S) provided the original LMT-
skeleton for S is connected.

The LMT-skeleton clearly can be constructed in
polynomial time, and several variants have been con-
sidered in order to gain efficiency [9,15,24,37]. A pow-
erful tool is pre-exclusion of edges before starting the
LMT-algorithm, using the exclusion region in Das and
Joseph [18]: For an edge e, consider the two triangu-
lar regions with base e and base angles 
/8. If both
regions contain points in S then e cannot be part of
MWT(S). If S is drawn from a uniform distribution,
reduction to an expected linear number of candidate
edges for MWT(S) is achieved [22], and near-linear
expected-time implementations of the LMT-algorithm
exist [37,69]. The LMT-skeleton based subgraph ap-
proach enables the computation of a minimum weight
triangulation for some tenthousand points in reason-
able time.

Some Related and Open Problems

Let us briefly state a few open problems related to opti-
mal triangulations.

A fast algorithm for computing the minimum
weight triangulation of a simple polygon would have
many applications and thus is of practical interest.
Even for convex polygons, no algorithm using less than

(n3) time and
(n2) space is known [44].No progress
has been made since 1980 on this problem.

Minimality in weight may be relaxed to k-
optimality, meaning that all k-sided and point-empty
polygons in a triangulation are optimally triangulated.
This is a generalization of local minimality which con-
stitutes the instance k D 4. Whereas it is easy to com-
pute 4-optimal triangulations (the greedy triangula-
tion is one), no results are known on how to compute
a 5-optimal triangulation in polynomial time. An algo-
rithm based on the edge insertion paradigm is proposed
in [75].
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The maximal number of triangulations of a set of n
points is a quantity still not well understood. The gap
between the best known upper bound, O(43n) [68], and
lower bound, ˝(

p
72 n) [6], is large. The common be-

lief is that the latter function is closer to the truth.
In the last ten years, a relaxation of triangula-

tions, so-called pseudo-triangulations, have been be-
come popular, especially in computational geometry. In
addition to triangles, pseudo-triangles (polygons with
exactly three convex internal angles) are used as faces.
Unfortunately, not much is known about optimality
properties of pseudo-triangulations. Some basic prop-
erties of minimum weight pseudo-triangulations are
given in the paper [3], which also shows that the greedy
pseudo-triangulation always has to be a triangulation.
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Introduction

Optimization techniques have found wide applica-
tions in solving various problems in ad hoc networks.
Many problems in topology control, routing, maximum
flow and resource allocation [23,29,33] can be formu-
lated as optimization problems. Compared with wired
networks, there are many challenges exclusive to ad
hoc networks. Owing to the interdependencies across
multiple layers, many factors have to be considered
in a unified framework. The interdependencies com-
plicate both problem formulation and algorithm de-
sign. For instance, interference among transmissions
is a critical constraint to throughput of wireless net-
works; the channel is shared by all nodes in the net-
work. Power control determines the interference range
of each node. Therefore, to achieve the maximum flow
in a static wireless network, power control should also
be considered.

In our research, we have applied optimization-
based approaches to routing, maximum flow and cross
layer design problems in ad hoc networks and WSNs.
The optimization problems formulated are usually
nondeterministic polynomial-time (NP) hard, so the
computation complexity is not affordable for resource-
constrained nodes. We have devised distributed or
approximation algorithms to solve the problems effi-
ciently. In the rest of this chapter, we present some of
the successful approaches that we have developed.

Applications

Multiconstrained Quality-of-Service
Multipath Routing

Although small in size, sensor nodes are built with sens-
ing, processing and computing capabilities. They report
the information collected to the sink for further pro-
cessing. Depending on different applications, the pack-
ets generated show diverse attributes. Different traffic
has different requirements regarding packet delivery, so
quality-of-service (QoS) routing is an important issue
in WSNs. We have investigated both reliability and de-
lay constraints in QoS routing. Here, reliability is de-
fined as the packet delivery ratio. Prone to link changes
and failures, sensor networks are unreliable. The em-
pirical result from Berkeley [28] shows that the aver-
age packet loss ratio increases 5–10% per link in sen-
sor networks. Multiconstrained routing is faced with



Optimization in Ad Hoc Networks O 2765

time complexity and/or space complexity. For wireless
networks, complete and accurate state information is
not available owing to the time-varying traffic and link
quality. Only soft-QoS provisioning is attainable in no-
toriously unpredictable wireless communications. Here
soft QoS is defined as guaranteeing the QoS require-
ments with probability. It approximates hard QoS when
the probability approaches 1. It is known that finding
a path subject to two or more additive constraints is
NP-complete [19]. Therefore, solving the problem in
a heuristic and approximate way is the only reason-
able approach for resource-limited sensor nodes. Soft
QoS follows naturally from the inherent random link
characteristics of ad hoc networks andWSNs. Owing to
the inherent difficulty of end-to-end QoS and the lim-
ited functionality of sensor nodes, some approximate
methods have to be applied to deal with the compu-
tational complexity. We first formulate the end-to-end
soft-QoS problem as a stochastic program. Then we
propose a distributed routing algorithm based on the
linear program, which is a deterministic approximation
of the original end-to-end QoS routing. Our proposed
routing algorithm is hop-based, so it is scalable and
convenient to implement. As another favorable feature,
it circumvents the formidable computational complex-
ity of the multiconstrained path problem.

For wired networks, many papers have proposed
exact or heuristic algorithms targeted at multicon-
strained path or multiconstrained optimal path prob-
lems [13,18,19,26,27,42,43]. However, WSNs differ
from wired networks in the limited energy, memory
and computation capabilities of nodes, and link char-
acteristics. Multipath routing has been applied to ad-
dress QoS in ad hoc networks [38], but we formulate
the problem in a more rigorous way and consider mul-
tiple QoS constraints.

For a given path p, the end-to-end reliability can be
computed as

Y
(i; j)2p

ri j ; (1)

where rij is the reliability of link (i,j) on path p. If
there is no single feasible path satisfying the reliabil-
ity requirement, multipath routing can be used to im-
prove the reliability. Carefully choosing a subset of ex-
isting paths, one can transfer the packet on all those
paths. Although an individual path cannot achieve the

performance goal, multiple paths may meet it aggre-
gately as shown in Fig. 1. In Fig. 1, the source node
assigns reliability R1 to its next hop node 1. Neither
link l12 nor l13 could satisfy this reliability requirement
alone, so node 1 distributes reliability requirement R2

to link l12 and R3 to link l13, so that R2 C R3 � R1.
The same process is performed at each intermedi-
ate node. Finally at sink node d, the three paths,
s ! 1! 2! 4! d, s! 1! 3! 5! 7! d and
s ! 1! 3! 6! 7! d, can achieve the desired re-
liability additively. The assembly efficiency of multiple
paths is a great boon to unreliable sensor networks. Ob-
viously, there exist many feasible combinations. To save
the energy cost, the set with the minimum number of
paths is chosen as the forwarding set. We argue that
sending a packet on more paths induces a higher energy
cost, because more data packets have to be transmitted.
Using more paths introduces more contention, which
degrades energy efficiency. Although some paths in the
set may have more hops, it is still more energy efficient
to confine packets to a few paths.

First of all, the question of how to quantify the re-
liability achieved by a subset of paths needs to be ad-
dressed. Then how to choose the energy-efficient path
set subject to the delay constraint is our main focus.
Denote d as the sink, which is assumed to be station-
ary. Let P(s,d) denote the path set of P possible paths
from a source node s to d. Each path pj in P(s,d),
j D 1; 2; : : : ; P, is associated with delay dj and reliabil-
ity rj. The aggregate reliability of multiple paths is ap-
proximated as the sum of the reliability of those paths.
We formulate the problem as follows: 8p 2 P(s; d), at

Optimization in Ad Hoc Networks, Figure 1
Reliability distribution between a source–destination pair
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Optimization in Ad Hoc Networks, Table 1
Notation

Notation Meaning

(i,j) Link from node i to node j
N(i) Neighbor set of node i
hi Hop count from current node i to the sink
rij Reliability of link lij
˛ Soft-QoS probability for delay
ˇ Soft-QoS probability for reliability
Ldi Hop requirement for delay at node i
Lri Hop requirement for reliability at node i
Di Actual delay of the packet arriving at node i
Ri Reliability requirement assigned to the path

through node
i
dij Delay of link lij , described as a random variable
rij Reliability of link lij , described as a random

variable
xj Decision variable of whether link (i,j) is used
dij Mean of dij
rij Mean of rij
�d

ij Standard deviation of dij
�r

ij Standard deviation of rij

source node s,

Minimize
PX
jD1

x j

subject to x jd j � D ;

r D 1 �
PY
jD1

1 � x jr j � R ;

x j D 0 or 1; for all j D 1; 2; : : : ; P ;

(2)

where D and R are denoted as the delay and reliabil-
ity QoS requirements respectively, and the xj are the
decision variables for whether path j is chosen or not.
This defines a 0–1 integer programming problem. For
clarity, the notation used in this chapter is explained in
Table 1.

The problem definition requires exact information
about path quality, which is almost impossible to obtain
in WSNs; hence, only soft-QoS provisioning is achiev-
able. We can formulate the constraints of the defined

problem in a probabilistic way:

Minimize
PX
jD1

x j

subject to P(x jd j � D) � ˛; for D > 0

P(r � R) � ˇ

x j D 0 or 1; 8 j 2 N(i) ;

(3)

Constraint (3) can be further simplified as

P

0
@

PX
jD1

log(1 � x jr j) � log(1 � R)

1
A � ˇ :

This formulation is a nonlinear program, which
could have more than one solution. Solving this non-
linear program at each node once a packet has been
received is not practical. So an approximate method,
which could significantly simplify the computation of
the original problem, while providing comparably fine
results, may be more practical.

Though the end-to-end QoS problem formulation
provides the exact optimal routing solution, it is subject
to many inextricable challenges. First, wireless links are
susceptible to fading, interference and traffic variation;
therefore, it is almost impossible to obtain the exact in-
stantaneous link state information. So path informa-
tion, which is accumulated along all links on it, is even
more unpredictable. Second, keeping path metrics con-
sistent at all nodes is an even more formidable problem.
Since it takes some time for updates to propagate across
the network, some nodes refresh their path information
with the new updates received, while other nodes are
still using obsolete information for routing decisions.
A packet going through nodes with asynchronous path
information may miss the QoS requirement. Third,
storage of voluminous end-to-end path information is
dreadfully memory demanding. Possible paths between
two nodes may be numerous given densely deployed
nodes, whereas a sensor node is equipped with very
limited memory. Furthermore, manipulation of end-
to-end information is computationally burdensome for
sensor nodes. The delay-constrained path problem is
known to be NP-hard. The complexity is beyond the
computation and energy tolerance of sensors.

The preceding reasons shed light on link-based QoS
routing. Per hop information is convenient to acquire
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and maintain at a low overhead cost. The acquired
neighbor information is enough to make routing de-
cisions, which saves a large amount of computation.
Thus, sensor nodes are free of intricate computation.
For those superior features of per hop routing, we pro-
pose approximating path quality on the basis of link
quality. In wireless networks, delay and reliability tend
to fluctuate with time. To model this phenomenon, we
assume that the link delay and reliability are random
processes dij(t) and rij(t). The time index, t, is omitted
for simplicity in the following discussion. We assume
that links are independent in terms of delay and relia-
bility. Our goal is to develop a method so that both de-
lay and reliability are ensured with high probability. We
only employ the first and second moments of delay and
reliability in our derivation. Now the new approximate
problem to be addressed based on local information is
formulated as

Minimize
X
j2N(i)

x j

subject to P(x jdi j � Ldi ) � ˛; for L
d
i > 0 ;

P(
X
j2N(i)

x jri j � Lri ) � ˇ ;

x j D 0 or 1; 8 j 2 N(i) ;

(4)

where the x0j s are the decision variables, and dij and rij
are the delay and reliability of link lij at the routing de-
cision instant, respectively. This is a probabilistic in-
teger program. In the original problem definition, the
nonlinear program is to be solved only at the source
based on end-to-end information. In contrast, the ap-
proximate problem is to be resolved at all intermediate
nodes since the approximate problem is based on hop
information. We further reduce the computation com-
plexity of the approximation constraints [10]. The final
problem formulation is

Formulation: At each node i,

minimize
X
j2N(i)

x j

s.t. x j

� ˛

1 � ˛
�
�d

i j
�2
C 2Ldi di j � d2i j

�
� Ldi

2
;

when Ldi � di j > 0X
j2N(i)

x j(ri j C Q�1(ˇ)�r
i j) �

hi
p
Ri ;

x j D 0 or 1; 8 j 2 N(i) :

The new optimization problem is a deterministic es-
timate of the problem formulated in (4). The problem
size is proportional to the number of neighbors, which
is usually small, so it can be conveniently solved by ex-
isting algorithms.

Maximum Flow Problem in Wireless Ad Hoc
Networks with Directional Antennas

Owing to the hostile wireless channel, and interference
within and among flows, how to achieve the maximum
throughput in multihop wireless ad hoc networks has
been of great interest over the past few decades. Espe-
cially for resource-constrained ad hoc networks, how
to improve the system capacity is even more impor-
tant. With switched-beam technology, the directional
antenna is shown to be an appealing option for wire-
less ad hoc networks. By concentrating RF energy in the
intended transmission direction, the spatial transmis-
sion region shrinks proportionally to the beam width
of a sector. A directional antenna is able to reduce in-
terference and energy consumption, and improve the
spatial reuse ratio; thus, it can significantly boost the
channel capacity. So the problem of interest is as fol-
lows: Given a network topology and existing traffic
load, how can we achieve the maximum flow between
a given source–destination pair through optimal path
selection?

Owing to the different interference patterns induced
by directional antennas in ad hoc networks, constraints
for the maximum flow are novel and distinct. The max-
imum flow problem to be addressed here is different
from the classical maximum flow problem in network
flow theory [1,4,5,6,7,16,20,36,39]. In wired networks,
there is no interference among transmissions. Any link
can be active at any instant without interference from
other links. However, the broadcasting nature of the
wireless medium makes the shared wireless channel
bottleneck for network flow. To avoid collision, links
in a close neighborhood may not be active simulta-
neously. Furthermore, the interference condition of
wireless networks with directional antennas is different
from those with omnidirectional antennas. The asymp-
totic throughput bounds under certain assumptions re-
garding network topology and node configuration have
been derived in many papers [9,14,17,30,40]. Without
assumptions regarding the network topology or homo-



2768 O Optimization in Ad Hoc Networks

Optimization in Ad Hoc Networks, Figure 2
The directional antenna model

geneity of link capacity, we attempt to solve the prob-
lem in a generalized setting. For the first time, the
interference-constrained maximum flow problem in ad
hoc networks with directional antenna is formulated as
an optimization problem [12]. This problem is inher-
ently a joint multipath routing and optimal scheduling
problem.

According to the beam pattern (beam radius, beam
width, beam orientation), we have omnidirectional an-
tennas, single-beam directional antennas (e. g., sin-
gle-beam switched-beam antennas) and multibeam di-
rectional antennas (e. g., multibeam switched-beam
antennas or sectorized beam antennas). The beam ra-
dius is the distance that a transmission reaches. The
beam width is determined by the angle of a sector. For
a six-beam directional antenna, the angle of a beam
is 
/3. The direction that a beam is targeting is de-
fined as the beam orientation. For directional anten-
nas, both directional transmission and directional re-
ception are enabled. To be clear, for single-beam di-
rectional antennas, we assume only one directional
transmitting beam or one directional receiving beam
can be active at a time; for multibeam directional
antennas, multiple directional transmission beams or
multiple directional receiving beams can be active at
a time. However, a beam can only be either trans-
mitting or receiving at any instant. An illustration of
a switched-beam antenna with six beams is shown in
Fig. 2. Assume that the antenna is directed to dis-
crete directions, with fixed beam radius and beam
width. There is a link between nodes i and j if the dis-
tance from node j to node i is shorter than the beam
radius.

An illustration of a node graph comprising nodes
with directional antennas is shown in Fig. 3, though
a realistic node graph is always more complex. Node 1

Optimization in Ad Hoc Networks, Figure 3
Node graph G D (V; E)

and node 6 are considered the source node and the des-
tination node, respectively.

The problem to be addressed here is given network
G(V ,E) and existing flows, find the maximum flow sup-
ported by the network between pair s–d. Before the
complete problem formulation is presented, we define
the constants and variables used:.
� xi,j indicates the flow over link (i,j).
� f is the flow from source node s to source node d.
� bi,j(i,l) indicates whether link (i,j) is in the l beam of

node i.
� B is the total number of beams at each node.
� E is the set of edges.
� V is the set of nodes.
� � i

j is the beam of node i that node j resides in.
Now the maximum flow problem can be formulated as
the following optimization problem.

Maximize f

subject to
X

f j:(i; j)2Eg

xi; j �
X

f j : ( j;i)2Eg

x j;i

D

8̂
<̂
ˆ̂:

f i D s ;
0 i D V � fs; dg ;
� f i D d ;

X
(k;l )2Ai; j

xk;l � ui; j ; 8(i; j) 2 E ;

xi; j � 0 ; 8(i; j) 2 E ;

(5)

where ui,j is the normalized remaining capacity or
bandwidth (0 � ui; j � 1) for link (i,j). The second con-
straint specifies the contention for the resource of each
link. This is a traditional maximum flow problem with
an added interference constraint.
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Optimization in Ad Hoc Networks, Figure 4
Interference caused by (u,v) to (i,j)

In wireless networks, a transmission collision oc-
curs when a receiver is in the communication range
of two transmitters, because the receiver receives both
time-overlapping signals and cannot decode them cor-
rectly. We assume that an antenna both transmits and
receives directionally, but that it cannot transmit and
receive simultaneously. With a directional antenna,
two links interfere with each other if a receiver is in
the transmitting beams of both transmitters, shown
in Fig. 4. To guarantee a successful reception at node
j, any node in the receiving beam of node j cannot
transmit towards node j before current transmission
finishes.

The protocol model: In the protocol model, the
transmission from node i to node j is successful if
(1) node j is in the transmission range of node i,
di j � R, where R is the transmission range; (2) any
node u that is in the receiving beam of node j from
node i is not transmitting in the beam covering node j
(when interference range equals transmission range).
This means that node j must be outside the transmis-
sion beam of node u.

Since the interference region is a beam, the informa-
tion about the beam to which a link belongs is essential
for routing and scheduling. Assume there are B fixed
beams for each antenna. Now we can recapitulate con-
dition (2) of the protocol model in the following way:

(20)When (i,j) is active, for any node u in node j’s re-
ceiving beam towards node i, the beam �

j
u should keep

silent. Denote b(i,l) as the lth beam of node i, where
l D 1; : : : ; B.

A single-beam directional antenna can only target
one beam at a time. So the channel utilization is shared
by all links in all beams. For a single-beam directional
antenna, we can formulate the maximum flow problem
as the following mixed-integer program (MIP).

Problem formulation:

Maximize f

subject to
X

f j : (i; j)2Eg

xi; j �
X

f j : ( j;i)2Eg

x j;i

D

8̂
<̂
ˆ̂:

f i D s ;
0 i D V � fs; dg ;
� f i D d ;
X

u2b(i;l )

X
(u;v)2E

xu;vbu;v(u; � i
u)

„ ƒ‚ …
interfering links in the lth beam

C

X
(k;i)2E

xk;i bk;i(i; l)

„ ƒ‚ …
incoming flows

� 1 ; 8l ; i;

BX
lD1

 X
(k;i)2E

xk;ibk;i(i; l)

C
X

(i; j)2E

xi; jbi; j(i; l)

!
� 1 ; 8i 2 V ;

bi; j(i; l) D

(
1; if (i; j) 2 b(i; l) ;
0; otherwise

xi; j � 0 ; 8(i; j) 2 E :
(6)

The first constraint describes the in-flow and the
out-flow at each node. The second constraint indicates
the flow interference around i as specified by condition
(20) in the protocol model. The first term represents the
sum of flows causing interference to node i in beam l.
When those flows are active, node imust restrain from
receiving. The second term stands for the total incom-
ing flows to node i in beam l. The sum of these two
terms should be less than the normalized beam capacity
of 1. By beam capacity, we mean the channel capacity
or bandwidth, which is a constant. The third constraint
describes the time-sharing constraint. The second and
third constraints aggregately describe the interfering
flows at a node. The contention region includes flows
over all arcs in the one-hop area of a node.

Denote M as the number of links in the network,
N as the number of nodes in the network. The num-
ber of variables and constraints in this MIP are M and
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O(N CM), respectively, where O(x) indicates the vari-
able on the order of x.

For a single pair of source and destination nodes
in wireless networks with multibeam directional anten-
nas, the problem formulation in (5) can be expanded
more specifically as follows: Problem formulation:

Maximize f

subject to
X

f j : (i; j)2Eg

xi; j �
X

f j : ( j;i)2Eg

x j;i

D

8̂
<̂
ˆ̂:

f i D s ;
0 i D V � fs; dg ;
� f i D d ;

X
u2b(i;l )

X
(u;v)2E

xu;vbu;v(u; � i
u)

C
X

(k;i)2E

xk;i bk;i(i; l) � 1 ; 8l ; i

X
(k;i)2E

xk;i bk; j(i; l)

C
X

(i; j)2E

xi; jbi; j(i;m) � 1 ;

81 � l ;m � B; 8i 2 V ;

bi; j(i; l) D

(
1; if l D � j

i ;

0; otherwise

xi; j � 0 ; 8(i; j) 2 E :

(7)

The first two constraints are the same as those in (6).
The third constraint guarantees that the flow is feasible
because the in-flow and the out-flow share the capacity
at the node. This constraint also implies that the in-flow
from any beam should not be greater than 1. The num-
ber of variables and constraints in this MIP are M and
O(N CM), respectively.

Joint Mobility Control and Power-Efficient Routing
in SparseWireless Sensor Networks

Many WSNs have been deployed for environmental
monitoring. Such networks are typically sparse and
consist of nodes of various capabilities. In a sparse net-
work, a target node may be far away from other nodes
and data stations. It has to transmit at high power to
reach another node when it reports information col-
lected to the sink. A transmission over a long hop con-

sumes considerable energy, and thus undermines the
purpose of long-term monitoring. For certain appli-
cations demanding an end-to-end path, communica-
tion over long distance is too expensive for energy-
constrained sensor nodes.

Current routing protocols for intermittently con-
nected networks are designed for collecting delay-
tolerant data in the network [24,34,35,37]. They are
incapable of supporting certain applications owing to
the large delay and the lack of a path between the
source and the destination. In order to support end-to-
end data delivery in the sparse network, a novel rout-
ing algorithm is proposed to establish energy-efficient
paths. Our idea is to utilize the mobility of controllable
robots to realize energy-efficient on-demand routing in
a sparse WSN. Adding another dimension, mobility, to
our design, our work is different from traditional joint
power control and routing [2,3,8,15,21,22,25,31,41].
Through optimal placement of mobile robots along
with optimal power assignment and path selection, en-
ergy efficiency can be significantly improved.

We assume that all nodes have the same receiver
sensitivity, or receiving power threshold, PR. If the re-
ceived power is greater than the threshold, the recep-
tion is successful. Otherwise, the node cannot decode
the packet correctly. Since nodes transmit at the same
data rate, the transmission time of a packet is a con-
stant. So minimizing energy consumption is equivalent
to minimizing power because the constant transmis-
sion time does not impact the result. Denote Pr

ij and
Pt

ij as the receiving power and the transmission power
over the directed link (i,j), respectively. Assume the Eu-
clidean distance between nodes i and j is dij. The prop-
agation model [32] used in our paper is

Pi j
r D

Pi j
t h(Gt;Gr ; ht; hr ; L; �)

d�i j
D
˛Pi j

t

d�i j
; (8)

where Gt and Gr are the gain factors of the transmitter’s
and the receiver’s antenna and ht and hr are the antenna
heights of the transmitter and the receiver, respectively.
L is the system loss factor not related to propagation. �
is the wavelength. ˛ is determined by Gt , Gr, ht , hr , L
and �, which is a constant in our paper. � indicates the
path loss exponent, 2 � � � 6. To correctly receive the
data, the transmission power over link (i,j) must satisfy
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the following condition

Pi j
t D

Pi j
r d�i j
˛
�

PRd�i j
˛

: (9)

Denote (xi,yi) as the coordinates of node i. Substituting
dij with coordinates into (9) gives

Pi j
t �

PR((xi � x j)2 C (yi � y j)2)� /2

˛
: (10)

Assume the power consumed in packet reception is Pr ,
which is the same for all nodes. The problem of concern
is how to actively place robots so that the total power
consumption for data delivery is minimized. Therefore,
determining the best positions of the robots, say (xr,yr),
is one of the objectives. Besides, choosing the path and
the corresponding transmission powers of all interme-
diate nodes on the path also determines the total power
expenditure in communications. The energy consumed
in mechanical movement is not considered, because the
robot is constantly roaming in its territory to collect
data messages.

Single Robot Assume there are N sensor nodes and
one robot in the field. A single path is to be established
from the source node to the data station. Therefore,
each node on the path just transmits to a single next-
hop node. The transmission power over a link is deter-
mined by the hop distance. Wireless links are of poor
quality, so the link error rate plays an important role
in energy consumption. We use expected transmission
count (ETX) to quantify the retransmissions caused by
link error. ETX is the expected number of transmis-
sions for a successful reception. Assume the expected
transmission count over link (i,j) is ETXij, then the ex-
pected power consumption for transmitting a packet
with a link retransmission mechanism is Pt

ijETXij. An
indicator variable Aij is used to identify if link (i,j) is
active. Then the transmission power of node i, Pt

i, is

Pi
t D

NC1X
jD1; j¤i

Ai jETXi jP
i j
t :

When only one robot is deployed, we name it as the
N C 1th node. Now the problem of finding the min-
imum power path from the source sensor node s to
the data station d can be formulated as an optimization

problem

Minimize
NC1X
iD1

0
@

NC1X
jD1; j¤i

Ai jETXi jP
i j
t C

NC1X
kD1;k¤i

Aki Pi
r

1
A

(11)

subject toAi jP
i j
t D Ai j

PR((xi � x j)2 C (yi � y j)2)� /2

˛
;

(12)

NC1X
jD1; j¤i

Ai j � 1 ; 8i (13)

NC1X
kD1;k¤i

Aki �

NC1X
jD1; j¤i

Ai j D

(
�1; i D s
0; otherwise

(14)

Ai j D 0 or 1 : (15)

In this optimization problem, the Aij determine the
path between the source and the destination. Since the
locations of the sensor nodes are known and fixed by
the sink, their coordinates are constant. We only need
to determine the coordinates of the robot, which are
xNC1 and yNC1. Clearly, this is a three-dimensional
problem. The objective in (11) is to minimize the to-
tal power consumption of all nodes on the end-to-end
path. The same as for (10), to reach node j from node
i, the transmission power has to satisfy (12). Since only
a single path is chosen to carry the traffic, at most one
incoming link can be active for every node, as shown
in (13). Constraint (14) requires that only one outgoing
link is selected for the node on the chosen path except
the destination. As an indicator of whether a link is se-
lected, Aij is set to 1 if the corresponding link is selected,
otherwise it is 0.

As the power consumption for reception is rather
fixed, we could simplify Pi

r to Pr . According to (14), the
objective can be rewritten as the following expression:

min
NC1X
iD1

0
@

NC1X
jD1; j¤i

Ai j

�
Pi j
t ETXi j C Pr

�1A :

As shown in [11], ETX is a constant for all links
in our scenario. Then the problem of minimum energy
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routing with the consideration of link retransmission is

Minimize f (A; P) D
NC1X
iD1

0
@

NC1X
jD1; j¤i

Ai j(P
i j
t ETX C Pr)

1
A

s. t. Ai jP
i j
t D Ai j

PR((xi � x j)2 C (yi � y j)2)� /2

˛
;

8i
NX

jD1; j¤i

Ai j � 1 ; 8i

NX
kD1;k¤i

Aki�

NX
jD1; j¤i

Ai j D

(
�1; i D s
0; otherwise

Ai j D 0 or 1 :
(16)

Define EPCi j D Pi j
t ETXC Pr as the expected power

consumption over link (i,j). The decision variables
in (16) include variables with integer and real values.
The optimization problem is a nonlinear MIP, which
is usually hard to solve. So we will decompose the for-
mulated problem into subproblems, then solve them
sequentially. The strategy of decomposition is as fol-
lows. First, we assume routing is fixed for any eA 2 � ,
where � denotes the solution space specified by the
routing constraints (13)–(15). Given the restriction of
the original problem, we could obtain the optimal so-
lution with the coordinates of the mobile robot repre-
sented as a function of A. The physical meaning of this
subproblem is that given a schedule, what is the optimal
location of the robot which yields the minimum-energy
path? The expected energy consumption associated
with each link is the link weight. The energy consump-
tion is the measurement of the path quality. By vary-
ing the placement of the robot over a limited number
of locations in each iteration, one can discover the op-
timal route through the shortest-path problem. Among
all the shortest paths for each specific location of the
robot, the one with the optimal quality is selected. This
algorithm can solve the problem in polynomial time.

In the derivation, it is interesting to observe that
the optimal coordinates of the robot are the average of
the coordinates of its upstream and downstream nodes;
therefore, on the minimum-energy path, the robot is al-
ways situated in the middle of two sensor nodes. With

this observation, the solution space of the potential op-
timal position of the robot is reduced to the possible
links between sensor nodes, say N(N C 1)/2. This re-
sult helps us develop an algorithm to solve the mini-
mum power routing problem efficiently. Given the pos-
sible locations of the mobile robot, the optimization
problem (16) is

Minimize f (A) D
NC1X
iD1

0
@

NC1X
jD1; j¤i

Ai jEPCi j

1
A

subject to
NX

jD1; j¤i

Ai j � 1 ; 8i

NX
kD1;k¤i

Aki �

NX
jD1; j¤i

Ai j D

(
�1; i D s
0; otherwise

Ai j D 0 or 1 :
(17)

Taking EPCij as the weight of the associated link, the
above problem is actually a shortest-path problem. It
can be conveniently solved by a shortest-path algo-
rithm, such as Dijkstra’s algorithm.

Multiple Robots When multiple robots are deployed
in the field, the problem becomes more complicated.
Suppose there are R robots; we number them as the
N C 1;N C 2; : : : ;N C R nodes, respectively. Now the
problem can be formulated as follows:

Minimize f (A; P) D
NCRX
iD1

0
@

NCRX
jD1; j¤i

Ai j(P
i j
t ETXC Pr)

1
A

s. t. Ai jP
i j
t DAi j

PR
�
(xi � x j)2 C (yi � y j)2

�� /2
˛

;

8i
NCRX

jD1; j¤i

Ai j � 1 ; 8i

NCRX
kD1;k¤i

Aki �

NCRX
jD1; j¤i

Ai j D

(
�1; i D s
0; otherwise

Ai j D 0 or 1 :

In this problem, we need to determine the best po-
sitions of all robots, which may correlate with each
other. In the single-robot case, the optimal location of
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the robot solely depends on the locations of the sen-
sor nodes, which are known; therefore, it is much more
difficult to compute the optimal locations of multiple
robots than it is to compute the optimal location of
a single robot.

Following a similar technique in the single-robot
case, we decompose the optimization problem into
a subproblem and a master problem. The subprob-
lem computes the best positions for the robots, while
the master problem determines the optimal path. De-
noteG D (V ; E;W) as the graph of the sensor network.
V is the set of vertices with N C 1 nodes (including
data station t). E contains all the edges between each
pair of vertices. W specifies the weight which is EPC-
associated with each edge.
Theorem 1 Denote Ĝ(V̂ ; Ê; Ŵ) as the resulting graph
with the optimal placement of robots in the sensor net-
work, which minimizes the energy consumption to de-
liver a packet from node s to node t over all possible
paths. Given a path from node s to node t in graph Ĝ,
the robots must be situated on the edges in G(V,E,W).
More specifically, each robot is located at the spot that
equally divides the distance along the edge in G.
Please refer to [11] for the detailed proof. Although
Theorem 1 reveals the potential locations of robots
given a path, it is still hard to solve the minimum-
energy problem in the multiple-robots case owing to
the large solution space. It remains to select the edges in
Gwhere robots reside and determine howmany robots.
Denote Qij as the number of robots on edge (i,j). The
problem can be formulated as follows:

Minimize
NX
iD1

0
@

NX
jD1; j¤i

Ai j

�
Pi j
t ETX

(Qi j C 1)��1
C (Qi j C 1)Pr

�1
A

subject to Ai jP
i j
t D Ai j

PRd�i j
˛

; 8i
NX
iD1

NX
jD1; j¤i

Qi j � R

NX
jD1; j¤i

Ai j � 1 ; 8i

NX
kD1;k¤i

Aki �

NX
jD1; j¤i

Ai j D

(
�1; i D s
0; otherwise

Ai j D 0 or 1 :

The formulation is a nonconvex integer program,
which is NP-hard. In [11], an approximation algorithm
is proposed to solve the problem efficiently.
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Introduction

Cancer is the second leading cause of death in the
United States [2]. Treatment options are determined by
the type and the stage of the cancer and include surgery,
radiation therapy, chemotherapy, etc. Physicians often
use a combination of those treatments to obtain the best
results. Our application is based on radiation therapy.
Thanks to the continuous development of new treat-
ment machines and technologies, it is now possible to
have much greater control over the treatment delivery
than was possible in the past. Researchers in optimiza-
tion community have made significant contributions
in improving the quality of such treatment plans for
cancer patients [5,6,12,13,24,26,27,29,36,40,42,46,47].
The common objective of radiotherapy planning is to
achieve tumor control by planning a significant total
dose of radiation to the cancerous region to sterilize the
tumor without damaging the surrounding healthy tis-
sues. One of the major difficulties in treatment planning
is due to the presence of organs-at-risk (OARs). An
OAR is a healthy organ located close to the target. The
dose of radiation must be severely constrained to avoid
reaching an OAR because an overdose in the OAR
may lead to medical complications. OAR is also termed
“sensitive structure” or “critical structure” in the liter-
ature. There are several survey articles that cover the
essential elements of the radiation treatment planning
problem, see [17,31,37,40].

Our aim in this chapter is to describe optimiza-
tion techniques to improve the delivery of radiation
for cancer patients. Two types of radiation therapy
are the most common and include teletherapy (or ex-
ternal beam therapy) and brachytherapy. Radiation is
delivered from outside the body and directed at the
patient’s tumor location using special radiation de-
livery machines in teletherapy, (see Fig. 1). Different
devices produce different types of radiation and they
include Cobalt-60 machines (such as Gamma Knife ra-
diosurgery), linear accelerators (such as intensity mod-
ulated radiation therapy), neutron beam machines,
orthovoltage x-ray machines, and proton beam ma-
chines. In brachytherapy, radioactive substances are
placed within the tumor region in the form of wires,
seeds, or rods. Types of brachytherapy are categorized
depending on how the radioactive sources are placed
inside the body such as interstitial brachytherapy, in-

Optimization Based Framework for Radiation Therapy, Fig-
ure 1
An external beam therapy machine

tracavitary brachytherapy, intraluminal radiation ther-
apy, and radioactively tagged molecules given intra-
venously. There are two types of radiation treatment
planning: forward planning and inverse planning. In
forward planning, treatment plans are typically gener-
ated by a trial and error approach. Therefore this pro-
cess can be very tedious and time-consuming, and does
not necessarily produce “high-quality” treatment plans.
On the other hand, there has been a significant move
toward inverse treatment planning. Such a move is due
to significant advances in modern technologies such
as imaging technologies and computer control to aid
the delivery of radiation. The inverse treatment plan-
ning procedure allows modeling highly complex treat-
ment planning problems from brachytherapy to exter-
nal beam therapy. Inverse planning is also called com-
puter based treatment planning.

In inverse treatment planning, an objective function
is defined to measure the goodness (quality) of a treat-
ment plan. Two types of objective functions are often
used: dose-based models and biological (radiobiologi-
cal) models. The biological model argues that optimiza-
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tion should be based on the biological effects resulting
from the underlying radiation dose distributions. The
treatment objective is usually to maximize the tumor
control probability (TCP) while keeping the normal tis-
sue complication probability (NTCP) within acceptable
levels. In the dose based model, achieving accurate ra-
diation dose distributions on organs of interest is the
main concern. The treatment objective is to minimize
the deviation between the projected dose that the pa-
tient will receive and the prescribed dosage that the
physician provides. This is the main approach we will
describe in this chapter. The biological aspect is implic-
itly given in the physician’s prescription.

Applications andMethods

The Radiation Treatment Planning Procedure

When a patient comes in for a treatment, the doctor
will choose what type of radiation beam to use for the
treatment. The choice of radiation will depend on the
type of the cancer the patient has and how far into the
body the radiation should penetrate to reach the tumor
volume.

The next step is to identify the three-dimensional
shapes of organs of interest in the patient’s body. The
location and the volume of organs are obtained by using
three-dimensional imaging techniques such as com-
puter tomography (CT) ormagnetic resonance imaging
(MRI). Based on three-dimensional images, a physi-
cian specifies the tumor region as gross tumor volume
(GTV), clinical target volume (CTV), planning target
volume (PTV), and OARs. GTV represents the volume
of the known tumor. CTV represents the volume of the
suspected microscopic spread. PTV is the marginal vol-
ume necessary to account for setup variations and or-
gan and patient motion, i. e. PTV = GTV + marginal
volume. Typically, PTV is used in designing treatment
plans and we call PTV a target in this chapter. Organ
geometries are the key input data for designing a treat-
ment plan.

A radiation physicist and a dosimetrist meet to de-
cide what kind of radiation delivery machine to use and
the number of treatments for the patient. Optimiza-
tion algorithms are crucial to determine howmuch and
where to deliver radiation in the patient’s body. For
most types of cancer, radiation therapy is administered
5 days each week for 5 to 8 weeks. Using small radiation

doses daily rather than a few large doses helps protect
normal body tissues in the treatment area. Resting over
the weekend will allow some time for normal cells to
recover from the radiation damage.

In optimization, the three-dimensional volume is
represented by a grid of voxels. There are several in-
puts required in optimization approaches in radiation
treatment planning. The first input describes the ma-
chine that delivers radiation. The second and trou-
blesome input is the dose distribution of a particu-
lar treatment problem. A dose distribution consists of
dose contribution to each voxel of the region of interest
from a radiation source. It can be expressed as a func-
tional form or a set of data. However, a difficulty of us-
ing such distributions are either the functional form is
highly nonlinear [13] or the amount of data that speci-
fies the dose distribution is too large [27]. This problem
needs to be overcome in a desirable automated treat-
ment planning tool. The third common input is the set
of organ geometries that are of interest to the physician.
Further common inputs are the desired dose levels for
each organ of interest. These are typically provided by
physicians. Other types of inputs can also be specified
depending on the treatment planning problems. How-
ever, a desirable treatment planning system should be
able to generate high quality treatment plans with min-
imum additional inputs and human guidance.

Use of Optimization Techniques

Two major goals in treatment planning optimization
are speed and quality. Solution quality of a treatment
plan can be measured by uniformity, conformity, and
avoidance [12,27,29]. Fast solution determination in
a simple manner is another essential part of a clinically
useful treatment planning procedure. Acceptable dose
levels of these requirements are established by various
professional and advisory groups.

It is important for a treatment plan to have uni-
form dose distributions on the target so that cold and
hot spots can be minimized. A cold spot is a portion of
an organ that receives below its required radiation dose
level. On the other hand, a hot spot is a portion of an
organ that receives more than the desired dose level.
The uniformity requirement ensures that radiation de-
livered to tumor volume will have minimum number
of hot spots and cold spots on the target. This require-
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ment can be enforced using lower and upper bounds
on the dose, or approximated using penalization. The
conformity requirement is used to achieve the target
dose control while minimizing the damage to OARs
or healthy normal tissue. This is generally expressed as
a ratio of cumulative dose on the target over total dose
prescribed for the entire treatment. This ratio can be
used to control conformity in optimization models. As
we mentioned earlier, a great difficulty of producing ra-
diation treatment plans is the proximity of the target
to the OARs. An avoidance requirement can be used to
limit the dose delivered to OARs. Finally, simplicity re-
quirements state that a treatment plan should be as sim-
ple as possible. Simple treatment plans typically reduce
the treatment time as well as implementation error. In
this chapter, we introduce a few optimization mod-
els and solution techniques that are practically useful
for radiation treatment modalities: Gamma Knife ra-
diosurgery, conventional three-dimensional conformal
therapy (3DCRT) [27], intensity modulated radiation
therapy (IMRT) [4,18]. Many treatment planning mod-
els are developed for proton therapy [48] and tomother-
apy [11,22]. But they are beyond the scope of this
chapter.

Gamma Knife Radiosurgery

Problem The Gamma Knife is a highly specialized
treatment unit that provides an advanced stereotactic
approach to the treatment of tumor and vascular mal-
formations within the head [14]. The Gamma Knife de-
livers a single, high dose of radiation emanating from
201 Cobalt-60 unit sources. All 201 beams simultane-
ously intersect at the same location in space to form an
approximately spherical region that is typically termed
a shot of radiation.

Gamma Knife Radiosurgery begins by finding the
location and the size of the tumor. After administer-
ing local anesthesia, a stereotactic head frame is fixed
to the patient’s head using adjustable posts and fixa-
tion screws. This frame establishes a coordinate frame
within which the target location is known precisely and
serves to immobilize the patient’s head within an at-
tached focussing helmet during the treatment. An MRI
or CT scan is used to determine the position of the
treatment volume in relation to the coordinates de-
termined by the head frame. Once the location and

Optimization Based Framework for Radiation Therapy, Fig-
ure 2
Radiation delivery: a collimator is positioned on patient’s
head

the volume of the tumor are identified, the neurosur-
geon, the radiation oncologist, and the physicist work
together in order to develop the patient’s treatment
plan. Multiple shots are often used in a treatment using
a Gamma Knife due to the irregularity and size of tu-
mor shapes and the fact that the focussing helmets are
only available in four sizes (4, 8, 14 and 18mm).

The plan aims to deliver a high dose of radiation to
the intracranial target volume with minimum damage
to the surrounding normal tissue. The treatment goals
can vary from one neurosurgeon to the next. But the
following requirements are typical for a treatment plan,
although the level of treatment and importance of each
may vary.
1. A complete 50% isodose line coverage of the tar-

get volume. This means that the complete tumor
volume must receive at least 50% of the maximum
dosage delivered to the target. This can be thought
of as a “uniformity” requirement.

2. Minimize the nontarget volume that is covered by
a shot or the series of delivered shots. This require-
ment is clear and can be thought of as a “conformity”
requirement.

3. Limit the amount of dosage that is delivered to or-
gans at risk that are close to the target. Such require-
ments can be thought of as an “avoidance” require-
ment.
There are standard rules established by the Radi-

ation Therapy Oncology Group (RTOG) that recom-
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mend the acceptable uniformity and conformity re-
quirements. In addition to these requirements, it is also
preferable to use a small number of shots to limit the
treatment times and thus increase the number of pa-
tients that can be treated.

Optimization Model Formulation Most commonly
known optimization models include mixed integer pro-
gramming (MIP) model and mixed integer nonlinear
programming (MINLP) model. MIP models guarantee
the global optimality, but they are not practically use-
ful due to the long computation time. We discuss an
MINLP model that has shown to be practically use-
ful [12]. A variant of this approach has been successfully
implemented for planning treatments [39].

Suppose that the number of radiation shots for the
treatment is given a priori. Adding the goal of minimiz-
ing this number is typically straightforward in the opti-
mization model. However, solving such models can be
extremely difficult.

Decision Variables: Consider a grid G of voxels. Let
T denote the subset of voxels that are within the target
andN represents the subset of voxels that are not in the
target. Let Di; j;k denote the amount of radiation dose
that a voxel (i; j; k) receives. In general, there are three
types of decision variables.
1. A set of discrete coordinates (xs ; ys ; zs). These are the

target locations for the (ellipsoidal) shots.
2. A discrete set of collimator sizes w: currently four dif-

ferent sizes of focussing helmets are available (4mm,
8mm, 14mm, 18mm).

3. Radiation exposure time ts;w : the amount of radia-
tion to be delivered for each shot centered at location
(xs ; ys ; zs):

Constraints:
1. Uniformity – Isodose line coverage: A treatment plan

is normally considered acceptable if a �% isodose
curve encompasses the tumor region. For example,
50% isodose curve is a curve that encompasses all
voxels that receive at least 50% of the maximum ra-
diation dose that is delivered to any voxels in the tar-
get volume.

� � Di; j;k � 1; (i; j; k) 2 T (1)

2. Choosing shot sizes: The location of the shot cen-
ter is chosen by a continuous optimization process.

Choosing the particular shot width at each shot loca-
tion is a discrete optimization problem that is treated
by approximating the step function

H(t) D
�

1 if t � 0
0 if t D 0

by a nonlinear function,

H(t) 	 H˛(t) :D
2 arctan(˛t)



:

For increasing values of ˛, H˛ becomes a closer ap-
proximation to the step function H. This process is
typically called smoothing.

An Optimization Model:

min
X

(i; j;k)2N
Di; j;k

s.t. Di; j;k D
X

(s;w)2S�W
ts;wDw(S;i; j;k)

� � Di; j;k � 1; 8(i; j; k) 2 T
n D

X
(s;w)2f1;:::;ng�W

H˛(ts;w)

ts;w � 0:

(2)

Solution Techniques The most critical problem for
solving the optimization model (2) is the large number
of voxels that are needed when dealing with large ir-
regular tumors (both within and outside of the target).
This makes the optimization problem computationally
intractable. One approach to overcoming this problem
is to remove a large number of the non-target voxels
from the model. While this improves the computation
time, this typically weakens the conformity of the dose
to the target. Ferris et al. [12] propose a sequential solu-
tion approach to speed up the time while maintaining
conformality. First, a coarse grid problem is solved as
a nonlinear programming (NLP) model using reduced
data points. Then the finer grid NLP problem with full
data points is solved using the starting point that was
obtained by the coarse grid model in the previous stage.
Typically, the solution from this finer grid model is very
close to a good local optimum for the MINLP. Using
this solution, the full MINLP model is finally solved to
determine the values of the three decision variables for
this problem.
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Three-Dimensional Conformal Radiation Therapy

Problem We learned from Section “Gamma Knife
Radiosurgery” that the Gamma knife is specifically de-
signed for treating diseases in the human brain. Three-
dimensional conformal radiation therapy (3DCRT)
adds much greater flexibility to radiation treatments
that can treat various cancer patients in the brain,
breast, prostate, etc. One of the main strategies for min-
imizing morbidity in 3DCRT is to reduce the dose de-
livered to normal tissues that are spatially well sepa-
rated from the tumor. This can be done by using mul-
tiple beams from different angles. A single radiation
beam leads to a higher dose delivered to the tissues in
front of the tumor than to the tumor itself. In conse-
quence, if one were to give a dose sufficient to control
the tumor with a reasonably high probability, the dose
to the upstream tissues would likely lead to unaccept-
able morbidity. A single beam would only be used for
very superficial tumors, where there is little upstream
normal tissue to damage. For deeper tumors, one uses
multiple cross-firing beams delivered within minutes of
one another: All encompass the tumor, but successive
beams are directed toward the patient from different
directions to traverse different tissues outside the tar-
get volume. The delivery of cross-firing beams is greatly
facilitated by mounting the radiation-producing equip-
ment on a gantry: multileaf-collimator (MLC).

Optimization Based Framework for Radiation Therapy, Fig-
ure 3
Effect of multiple beams: a hot spot is formed in the middle
by five beams

Optimization Based Framework for Radiation Therapy, Fig-
ure 4
A beam’s-eye-view is a 2D shape of a tumor viewed by the
beam source at a fixed angle

Several directed beams noticeably change the distri-
bution of dose, as is illustrated in Fig. 3. As a result,
dose outside the target volume can often be quite tol-
erable even when dose levels within the target volume
are high enough to provide a substantial probability of
tumor control.

The leaves of the multileaf collimator are computer
controlled and can be moved to the appropriate po-
sitions to create the desired beam shape. From each
beam angle, three-dimensional anatomical information
is used to shape the beam of radiation to match the
shape of the tumor. Given a gantry angle, the view of the
tumor that the beam source can see through the multi-
leaf collimator is called the beam’s-eye-view of the target
(see Fig. 4); [15]. This beam’s-eye-view (BEV) approach
ensures adequate irradiation of the tumor while reduc-
ing the dose to normal tissue.

Wedge Filters: A wedge (also called a “wedge fil-
ter”) is a tapered metallic block with a thick side (the
heel) and a thin edge (the toe); (see Fig. 5). This metal-
lic wedge varies the intensity of the radiation in a lin-
ear fashion from one side of the radiation field to the
other. When the wedge is placed in front of the aper-
ture, less radiation is transmitted through the heel of
the wedge than through the toe. Figure 5b shows an ex-
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Optimization Based Framework for Radiation Therapy, Fig-
ure 5
Wedges

ternal 45ı wedge, so named because it produces isodose
lines that are oriented at approximately 45ı. The quality
of the dose distribution can be improved by incorpo-
rating a wedge filter into one or more of the treatment
beams. Wedge filters are particularly useful in compen-
sating for a curved patient surface, which is common in
breast cancer treatments.

Two different wedge systems are used in clinical
practice. In the first system, four different wedges with
angles 15ı, 30ı, 45ı, and 60ı are available, and the ther-
apist is responsible for selecting one of these wedges
and inserting it with the correct orientation. In the sec-
ond system, a single 60ı wedge (the universal wedge)
is permanently located on a motorized mount located
within the head of the treatment unit. This wedge can
be rotated to the desired orientation or removed alto-
gether, as required by the treatment plan.

Optimization Model Formulation Suppose that the
data to the optimization models are given. LetD(i; j;k);A

be the dose contribution to voxel (i; j; k) from a beam
of weight 1 from angle A, S be a collection of vox-
els on the sensitive structure(s), and N be a collec-

tion of voxels on the normal tissue. When wedges are
allowed in the optimization, the data will be provided
as D(i; j;k);A;F that represents the dose contribution to
voxel (i; j; k) from a beam of weight 1 from angle A,
using wedge orientation F.

BeamWeight Optimization: The classical optimiza-
tion problem in conformal radiation therapy is to
choose the weights (or intensity levels) to be delivered
from a given set of angles. Suppose wA represent the
beam weight delivered from angle A, D(i; j;k) for the
total dose deposited to voxel (i; j; k) and � represent
the relative weighting factors in the objective function.
Given a set ˝ D T [ S [N , a general optimization
model that determines optimal radiation intensity is

min
w

�t f (DT )C �s f (DS)C �n f (DN )

s.t. D˝ D
X
A2A

D˝;AwA;

l � DT � u;

0 � wA; 8A 2A:

(3)

Hard upper and lower bound constraints are imposed
on the target dose so that, in the worst case, the result-
ing solution will satisfy the minimum requirement for
a treatment plan. Objective function f (D) can be de-
fined based on the planner’s preference, but a general
function can be written as

f (D�) D kD(�) � �kp; p 2 f1; 2;1g :

Note that � is the desired dose level for an organ of in-
terest. These problems can be cast as a quadratic pro-
gramming (QP) problem (p D 2), minimizing the Eu-
clidean distance between the dose delivered to each
voxel and the prescribed dose [6,35,40,41]. Further-
more, linear programming (LP) has also been exten-
sively used to improve conventional treatment plan-
ning techniques [3,24,32,37,40]. The strength of LP is
its ability to control hot and cold spots or integral dose
on the organs using constraints, and the presence of
many state-of-the-art LP solvers. The LP model re-
places the Euclidean norm objective function of a QP
with a polyhedral one, for which standard reformula-
tions (see [27,30]) result in linear programming prob-
lems. While these techniques still suffer from large
amounts of data in D(i; j;k);A, they are typically solved
in acceptable time frames. These models tend to find
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optimal solutions more quickly than the corresponding
QP formulations.

Another technique to convert the quadratic (or
more generally convex) problem to a linear program
is via a piecewise-linear approximation of the objective
(see [36]). For a quadratic function, a uniform spac-
ing for the breakpoints guarantees small approxima-
tion errors from the piecewise linear interpolant [23].
Since the piecewise linear interpolant is convex, stan-
dard techniques can be used to reformulate this as a lin-
ear program [16,23].

Equivalent Uniform Dose (EUD): Recently, some of
the medical physics literature has been advocating the
use of other forms of objective function in place of
the ones outlined above. A popular alternative to those
given above is that of generalized equivalent uniform
dose (EUD). This is defined on a per structure basis as

EUDa(D;˝) :D

0
@ 1
card (˝)

X
(i; j;k)2˝

Da
(i; j;k)

1
A

1
a

:

Note that EUD is a scaled version of the a-norm of the
dose to the particular structure, and hence is known
to be a convex function for any a � 1 and concave for
a � 1 [7]. Thus the problem

max
w

EUDa(D;T )

s.t. D˝ D
X
A2A

D˝;AwA; ˝ D T [ S [N ;

EUDb (D; S) � � ;
EUDc (D;N ) � u ;

0 � wA; 8A 2A :

is a convex optimization problem provided a � 1 and
b; c � 1. As such, nonlinear programming algorithms
will find global solutions to these problems.

Beam Angle Selection and Wedge Orientation Opti-
mization: Optimization also lends itself to solving the
more complex problem of selecting which angles and
wedge orientations to use as well as their intensities.
Mixed integer programming (MIP) is a straightfor-
ward technique for these type of problems. We describe
an optimization model that simultaneously optimizes
beam angles, wedge orientations, and beam intensities.
Wedges are placed in front of the collimator to pro-
duce a gradient over the dose distribution and can be

effective for reducing dose to organs at risk. This can be
done by adding an extra dimension F to the variable wA:

min
w; 

�t f (DT )C �s f (DS)C �n f (DN )

s.t. D˝ D
X
A2A

D˝;A;FwA;F ;

wA;F � M �  A ;

l � DT � u ;X
a2A

 a � K ;

 A 2 f0; 1g; 8A 2A :

(4)

The variable  A is used to determine whether or not
to use an angle A for delivery. The choice of M plays
a critical role in the speed of the optimization; further
advice on its choice is given in [27]. Note that the data
for this problem is considerably larger, increasing by
a factor related to the number of wedge orientations
allowed.

Solution Techniques Simulated Annealing (SA) has
been well adopted in the medical community [33,44].
But the weakness of SA in the optimization point is its
inability to verify the optimality. On the other hand, it is
possible to find a global optimal solution for (4). How-
ever, due to its slow convergence, using the MIP model
has not been very useful for designing a treatment plan
in the hospital. Recently, Lim et al. [27] proposed an it-
erative solution approach that solves the MIP problem
fast (within 20min in two clinical case examples). It is
termed A Three-Phase Approach.

Three-Phase Approach is a multiphase technique
that “ramps up” to the solution of the full problem via
a sequence of models. Essentially, the models are solved
in increasing order of difficulty, with the solution of one
model providing a good starting point for the next. The
models differ from each other in the selection of vox-
els included in the formulation, and in the number of
beam angles allowed.

If the most promising beam angles can be identified
in advance, the full problem can be solved with a small
number of discrete variables. One simple approach
for removing unpromising beam angles is to remove
from consideration those that pass directly through any
OAR [38]. A more elaborate approach [34] introduces
a score function for each candidate angle, based on
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the ability of that angle to deliver a high dose to the
PTV without exceeding the prescribed dose tolerance
to OAR or to normal tissue located along its path. Only
beam angles with the best scores are included in the
model. We now describe the Three-Phase Approach:
1. Phase 1: Selection of Promising BeamAngles:The aim

in this phase is to construct a subset of beam angles
A1 that are likely to appear in the final solution of
(4). We solve a collection of rMIPs, where each MIP
is constructed from a reduced set of voxels consist-
ing of the voxels in the PTV, a randomly sampled
10% of the OAR voxels (S), and the voxels inR�(T );
that is,

˝1 D fT [ S [R�(T )g :

We define A1 as the set of all angles A 2A for
which wA > 0 for at least one of these r sampled
problems.

2. Phase 2: Treatment Beam Angle Determination: In
the next phase, we select K or fewer treatment beam
angles from A1. We solve (4) using A1 and a re-
duced set of voxels defined as follows:

˝2 D fT [ S [R�(T ) [N1g :

Note that jA1j is typically greater than or equal to K,
so the binary variables play a nontrivial role in this
phase.

3. Phase 3: Final Approximation: In the final phase, we
fix the K beam angles (by fixing  A1 D 1 for the
angles selected in Phase 2 and  A D 0 otherwise)
and solve the resulting simplified optimization prob-
lem over the complete set of voxels. This final ap-
proximation typically takes much less time to solve
than the full-scale model, because of both the smaller
amount of data (due to fewer beam angles) and the
absence of binary variables.
Although there is no guarantee that this technique

will produce the same solution as the original full-scale
model (4), Lim et al. [27] have found that the quality
of its approximate solution is close to optimal based on
several numerical experiments.

Intensity Modulated Radiation Therapy

Introduction A sophisticated form of treatment
planning approach known as intensity modulated ra-
diation therapy (IMRT) allows a number of differently

shaped beams with different uniform radiation intensi-
ties to be delivered from each direction, which allows
a high degree of flexibility in delivering radiation dose
distribution from each beam angle [4,18]. In IMRT
treatment planning, two-dimensional (2D) beams are
divided into several hundred or thousand pencil beams
to generate very precise dose distribution on the treat-
ment volume.

Decision Variables: First, one needs to decide how
many beam angles need to be coordinated for the treat-
ment (beam angle optimization). For each beam an-
gle, radiation is delivered using a multi-leaf collima-
tor (MLC). In practice, an MLC is designed so that
one leaf can only move one direction with a discrete
distance. Therefore, we divide an MLC as an M � N
grid of pixels. M is for the number of leaves in an
MLC (note that this number can vary from one man-
ufacturer to another), and N is for the number of
discrete units that a leaf can move. Second, radiation
intensity maps (fluence maps) for such beam angles
need to be optimized to conform the three dimen-
sional radiation dose requirement to control the tu-
mor (fluence map optimization). For a fixed beam an-
gle, the fluence map contains real numbers in a set of
two-dimensional discrete coordinates that are associ-
ated with the MLC. Since no machine can deliver such
a non-uniform real intensity map, the intensity maps
are first approximated as multiples of a physically de-
liverable minimum discrete unit (this number can be
a fraction). For example, an approximated intensity
map for a 3 � 4 MLC may look as follows (we assume
that the minimum discrete value allowed is 0.5 in this
case):

W D

0
@

0 0:5 2:0 1:5
0:5 2:5 3:5 2:0
0 1:0 2:0 1:5

1
A

D0:5 �

0
@

0 1 4 3
1 5 7 4
0 2 4 3

1
A :

(5)

Third, since we cannot deliver non-uniform radia-
tion (see (5)) to the treatment volume with one open
beam shape, an intensity map is decomposed into sev-
eral unique shape matrices such that each matrix can
contain zeros and uniform value. This is called beam
segmentation problem.
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Optimization Model Formulations
Problem 1; Beam Angle and Fluence Map Optimiza-
tion Since the optimal set of beam angles are inti-
mately related to the optimal fluence map for each
angle, these two problems must be dealt with to-
gether in the problem formulation. Let a denote an
angle, a 2A, l denote the leaf index of the collima-
tor, l D 1; 2; : : : ;m; and p represent the position of the
leaf, p D 1; 2; : : : ; n: Then, formulating an optimiza-
tion model for optimizing both beam angles and the
fluence maps is a simple extension to (4) that we dis-
cussed for the conventional 3DCRT and the model is
given as

min
w; 

�t f (DT )C �s f (DS)C �n f (DN )

s.t. D˝ D
X
a2A

D˝;a;l ;pwa;l ;p ;

wa;l ;p � M �  a ;

l � DT � u ;X
a2A

 a � K ;

 a 2 f0; 1g; 8a 2A :

(6)

See more details of this formulation and others
in [26,28].

Solution Methods Solving this problem using any
classical optimization techniques will take too long for
any clinicians to use for their daily treatment planning.
Lim et al. [28] proposes a fast MIP solution approach
and an LP-based iterative method that exploits score
functions. However, due to the computational difficul-
ties with large data in solving the optimization problem,
heuristic methods are often used in practice [25].

Problem2; BeamSegmentationOptimization Con-
sider a matrix

W D

0
B@

w1;1 w1;2 � � � w1;n
:::

:::

wm;1 wm;2 � � � wm;n

1
CA ;

where wi; j 2 Z; for i D 1; : : : ;m; j D 1; : : : ; n: Our
objective is to decompose the matrixW into K binary
matrices Sk such that

W D
KX

kD1

�k � Sk ; (7)

where, Sk D
h
ski; j
i
; ski; j 2 f0; 1g; i 2 f1; 2; : : : ;mg; j 2

f1; 2; : : : ; ng; �k 2 Z; k 2 f1; 2; : : : ;Kg: Solving (7) is
quite easy in general. However, this problem becomes
extremely difficult to solve when we impose the follow-
ing two objectives and a physical constraint.
Objectives:
1. Minimize the value of K.
2. Minimize T := the sum of thematrix multipliers, i. e.,

T D
PK

kD1�k :

Consecutive One Constraint: For each row of a binary
matrix Sk, if there are more than one non-zero elements
(1’s), their sequence must be consecutive, i. e. zeros are
not allowed to break the non-zero sequence. For exam-
ple,

0 1 1 1 0

is a feasible sequence. But,

0 1 0 1 0

is not allowed because the sequence of ones is not con-
tinuous.

Note that there can be many more constraints to
this problem depending on the machine that is used
for radiation delivery. Some of the common constraints
are overlap elimination constraint, interleaf collision
constraint, and tongue-and-groove constraint. Details
about these more elaborate constraints can be found
in [1,19,20,43].

Solution Methods This is a combinatorial optimiza-
tion problem that is proven to be strongly NP-hard [9].
Optimization formulations have been proposed includ-
ing integer nonlinear program (INLP) and integer pro-
gramming (IP) [28]. IP models are easier to solve than
INLP models. IP models with relatively small num-
bers of rows and columns can be solved within a rea-
sonable amount of time using a branch-and-bound
method [45]. However, as the matrix size increases (say,
larger than 10) and the maximum value of the matrix
W increases, finding global solutions for the IP models
can take too long for treatment planners to use. There-
fore, both researchers and planners use various heuris-
tics. Engel [10] proposed a heuristic that generates op-
timal T, but K is still not optimal. Other approaches
and extension to this problem can be found in [21].
A genetic algorithm has also been used by other re-
searchers [8].



2784 O Optimization Based Framework for Radiation Therapy

References

1. Alfredo R, Siochi C (1999) Minimizing static intensity mod-
ulation delivery time using an intensity solid paradigm. Int
J Radiat Oncol Biol Med 43(3):671–680

2. American Cancer Society (2008) Cancer facts and figures
2008. www.cancer.org (4/3/2008)

3. Bahr GK, Kereiakes JG, Horwitz H, Finney R, Galvin J, Goode
K (1968) The method of linear programming applied to ra-
diation treatment planning. Radiology 91:686–693

4. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ
(1994) Realization and verification of three-dimensional
conformal radiotherapy with modulated fields. Int J Radiat
Oncol Biol Phys 30(4):899–908

5. Bortfeld T, Schlegel W (1993) Optimization of beam orien-
tations in radiation therapy: some theoretical considera-
tions. Phys Med Biol 38(2):291–304

6. Chen Y, Michalski D, Houser C, Galvin JM (2002) A deter-
ministic iterative least-squares algorithm for beam weight
optimization in conformal radiotherapy. Phys Med Biol
47:1647–1658

7. Choi B, Deasy JO (2002) The generalized equivalent uni-
form dose function as a basis for intensity-modulated
treatment planning. Phys Med Biol 47:3579–3589

8. Cotrutz C, Xing L (2003) Segment-based dose optimization
using a genetic algorithm. Phys Med Biol 48:2987–2998

9. Ehrgott M, Baatar D, Hamacher HW, Woeginer GJ (2005)
Decomposition of integer matrices and multileaf collima-
tor sequencing. Discret Appl Math 152:6–34

10. Engel K (2005) A new algorithm for optimal multileaf colli-
mator field segmentation. Discret Appl Math 152:35–51

11. Fang G, Geiser B, Mackie TR (1997) Software system for
UW/GE tomotherapy prototype. In: Leavitt DD, Starkshall
G (eds) Proceedings of the 12th International Conference
on the Use of Computers in Radiation Therapy, Salt Lake
City, Medical Physics Publishing, St. Louis, pp 332–334

12. Ferris MC, Lim J-H, Shepard DM (2003) Optimization ap-
proaches for treatment planning on a Gamma Knife. SIAM
J Optim 13:921–937

13. Ferris MC, Lim J-H, Shepard DM (2003) Radiosurgery treat-
ment planning via nonlinear programming. Ann Oper Res
119:247–260

14. Ganz JC (1997) Gamma Knife Surgery. Springer, Wien
15. Goitein M, Abrams M, Rowell S, Pollari H, Wiles J (1983)

Multi-dimensional treatment planning: II. beam’s eye-
view, back projection, and projection through ct sections.
Int J Radiat Oncol Biol Phys 9:789–797

16. Ho JK (1985) Relationships among linear formulations of
spearable convex piecewise linear programs. Math Pro-
gram Study 24:126–140

17. Holder A (2004) Radiotherapy treatment design and linear
programming. In: Brandeau ML, Saintfort F, Pierskalla WP
(eds) Operations Research And Health Care: A Handbook
of Methods and Applications. Kluwer, Boston, pp 741–
774

18. Intensity Modulated Radiation Therapy Collaborative
Working Group (2001) Intensity-modulated radiotherapy:
Current status and issues of interest. Int J Radiat Oncol Biol
Phys 51(4):880–914

19. Jordan TJ, Williams PC (1994) The design and performance
characteristics of a multileaf collimator. Phys Med Biol
39:231–251

20. Kalinowski T (2005) Realization of intensity modulated ra-
diation fields using multileaf collimators. Electron Notes
Discret Math 21:319–320

21. Kalinowski T (2005) A duality based algorithm formultileaf
collimator field segmentation with interleaf collision con-
straint. Discret Appl Math 152:52–88

22. Kapatoes JM, Olivera GH, Balog JP, Keller H, Reckwerdt
PJ, Mackie TR (2001) On the accuracy and effectiveness
of dose reconstruction for tomotherapy. Phys Med Biol
46:943–966

23. Kontogiorgis S (2000) Practical piecewise-linear approxi-
mation for monotropic optimization. INFORMS J Comput
12(4):324–340

24. Langer M, Leong J (1987) Optimization of beam weights
under dose-volume restriction. Int J Radiat Oncol Biol Phys
13:1255–1260

25. Langer M, Morrill S, Brown R, Lee O, Lane R (1996) A com-
parison of mixed integer programming and fast simulated
annealing for optimized beam weights in radiation ther-
apy. Med Phys 23:957–964 (1996)

26. Lee EK, Fox T, Crocker I (2006) Simultaneous beam geome-
try and intensity map optimization in intensity-modulated
radiation therapy. Int J Radiat Oncol Biol Phys 64(1):301–
320

27. Lim GJ, Ferris MC, Wright SJ, Shepard DM, Earl MA (2007)
An optimization framework for conformal radiation treat-
ment planning. INFORMS J Comput 19(3):366–380

28. Lim GJ, Choi J, Mohan R (2008) Iterative solution methods
for beam angle and fluence map optimization in Inten-
sity Modulated Radiation Therapy Planning. OR Spectrum
30(2):289–309

29. Lim J-H (2002) Optimization in Radiation Treatment Plan-
ning. PhD thesis, University of Wisconsin

30. Lim J-H, Ferris MC, Shepard DM (2004) Optimization tools
for radiation treatment planning in matlab. In: Brandeau
ML, Saintfort F, Pierskalla WP (eds) Operations Research
And Health Care: A Handbook of Methods and Applica-
tions. Kluwer, Boston, pp 775–806

31. LodwickW,McCourt S, Newman F, Humphries S (1999) Op-
timizationmethods for radiation therapy plans. In: Borgers
C, Natterer F (eds) Computational Radiology and Imaging:
Therapy and Diagnosis, IMA Series in Applied Mathemat-
ics. Springer, Berlin

32. Morrill S, Lane R, Wong J, Rosen II (1991) Dose-vol-
ume considerations with linear programming. Med Phys
6(18):1201–1210

33. Morrill SM, Lam KS, Lane RG, Langer M, Rosen II (1995) Very
fast simulated annealing in radiation therapy treatment

http://www.cancer.org


Optimization-Based Visualization O 2785

plan optimization. Int J Radiat Oncol Biol Phys 31:179–
188

34. Pugachev A, Xing L (2002) Incorporating prior knowledge
into beam orientation optimization in IMRT. Int J Radiat
Oncol Biol Phys 54:1565–1574

35. Redpath AT, Vickery BL, Wright DH (1976) A new technique
for radiotherapy planning using quadratic programming.
Phys Med Biol 21:781–791

36. Romeijn HE, Ahuja RK, Dempsey JF, Kumar A (2006) A new
linear programming approach to radiation therapy treat-
ment planning problems. Oper Res 54(2):201–216

37. Rosen II, Lane R, Morrill S, Belli J (1990) Treatment plan op-
timization using linear programming. Med Phys 18(2):141–
152

38. Rowbottom CG, Khoo VS, Webb S (2001) Simultaneous op-
timization of beam orientations and beam weights in con-
formal radiotherapy. Med Phys 28(8):1696–1702

39. Shepard DM, Chin LS, DiBiase SJ, Naqvi SA, Lim J, Ferris MC
(2003) Clinical implementation of an automated planning
system for Gamma Knife radiosurgery. Int J Radiat Oncol
Biol Phys 56:1488–1494

40. Shepard DM, Ferris MC, Olivera G, Mackie TR (1999) Opti-
mizing the delivery of radiation to cancer patients. SIAM
Rev 41:721–744

41. Starkschall G (1984) A constrained least-squares optimiza-
tion method for external beam radiation therapy treat-
ment planning. Med Phys 11:659–665

42. Tervo J, Kolmonen P (2000) A model for the control of
a multileaf collimator in radiation therapy treatment plan-
ning. Inverse Problems 16:1875–1895

43. Kung J Que W, Dai J (2004) Tongue-and-groove effect in
intensity modulated radiotherapy with static multileaf col-
limator fields. Phys Med Biol 49:399–405

44. Webb S (1989) Optimisation of conformal radiotherapy
dose distributions by simulated annealing. Phys Med Biol
34(10):1349–1370

45. Wolsey LA (1998) Integer Programming. Wiley, New York
46. Wu X, Zhu Y (2001) A global optimization method

for three-dimensional conformal radiotherapy treatment
planning. Phys Med Biol 46:109–119

47. Xiao Y, Censor Y, Michalski D, Galvin JM (2003) The least-
intensity feasible solution for aperture-based inverse plan-
ning in radiation therapy. Ann Oper Res 119:183–203

48. Yoda K, Saito Y, Sakamoto H (1997) Dose optimization of
proton and heavy ion therapy using generalized sampled
pattern matching. Phys Med Biol 42:2411–2420

Optimization-Based Visualization

ANTANAS ŽILINSKAS, JULIUS ŽILINSKAS

Institute of Mathematics and Informatics,
Vilnius, Lithuania

MSC2000: 91C15, 65K05, 90C30, 90C27, 90C57

Article Outline

Keywords and Phrases
Introduction
Formulation
Methods/Applications
See also
References

Keywords and Phrases

Global optimization; Unidimensional scaling;
Multidimensional scaling

Introduction

Very often scientific data are defined by multidi-
mensional vectors of numerical values. To enable ex-
ploratory data analysis involving heuristic abilities of
human expert’s visualization of data is highly desirable:
a picture is worth a thousand words. There are different
approaches to visualization [8]. We consider one of the
most popular approaches known as multidimensional
scaling (MDS) [2,9,14,27,31,39,42]; it will be shown be-
low that an essential part of the technique is optimiza-
tion of a function possessing many optimization-ad-
verse properties. By means of MDS a set of multidi-
mensional vectors can be represented as a set of points
in a low-dimensional space and exposed in this way to
a human expert for heuristic analysis. Even more gen-
eral sets of objects can be visualized: it is sufficient to
know pairwise similarity/dissimilarity between the ob-
jects. Application areas of MDS vary from psychomet-
rics [41] and market analysis [15,36] to mobile commu-
nications [22] and pharmacology [45].

Formulation

A set of n objects is considered whose pairwise dis-
similarities are given by an (n � n) matrix (ıi j),
i; j D 1; : : : ; n. It is supposed that dissimilarities are
nonnegative: ıi j � 0, symmetric: ıi j D ı ji , and ıi i D 0.
Frequently the considered objects are vectors, and dis-
similarities are defined by ametric in the corresponding
vector space. Sometimes (a reciprocal to dissimilarity)
the proximity relation between objects is defined; this
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case can be considered similarly to the case of dissimi-
larity relation.

An image of a set of objects is sought as a set of
points xi 2 Rm ; i D 1; : : : ; n in a (low-dimensional
metric) embedding space with pairwise distances be-
tween the image points fitting the corresponding dis-
similarities; normally Minkowski distances dp(xi ; x j)
between the points xi and x j are used where

dp(xi ; x j) D

 mX
kD1

ˇ̌
xik � x jk

ˇ̌p
!1/p

:

The formula defines Euclidean distances when p D 2
and city-block distances when p D 1.

The problem of constructing images of the consid-
ered objects is reduced to the minimization of an accu-
racy-of-fit criterion, e. g., of a least-squares stress func-
tion,

�r (X) D
X
i< j

wi j
�
d
�
xi ; x j

�
� ıi j

�2
;

whereweights wij are nonnegative: wi j � 0.Normalized
stress defined by

�n(X) D

P
i< j wi j

�
d
�
xi ; x j

�
� ıi j

�2
P

i< j wi jı
2
i j

shows the proportion of unexplained sum of squares
and can be used for comparison of results of different
problems. Stress is not everywhere differentiable. The
function normally has many local minima. It is invari-
ant with respect to translation, rotation, and mirror-
ing. The minimization problem of stress is high dimen-
sional: the number of variables is N D n � m. There-
fore minimization of the stress function is a difficult
global optimization problem.

Many global optimization methods for minimiza-
tion of stress include auxiliary local minimization al-
gorithms. Differentiability of an objective function at
a minimizer is an important factor for a proper choice
of a local minimization algorithm. The well-known re-
sult on differentiability of stress with Euclidean dis-
tances at a local minimizer [12] is generalized for
Minkowski distances in [21]: positiveness of distances
holds at a local minimizer – image points in the embed-
ding space do not coincide. In the case of Minkowski
distances p > 1 or m D 1, this means that stress is dif-
ferentiable at a local minimizer.

The result on differentiability of stress with
Minkowski distances at a local minimizer [21] does not
include the case of city-block distances (p D 1). It was
shown in [44] that positiveness of distances at a local
minimizer does not imply differentiability of stress with
city-block distances. Examples of images at minimiz-
ers show that values of coordinates of image points in
the embedding space m > 1 may be equal and there-
fore stress may be nondifferentiable at minimizer in the
case of city-block distances.

Everywhere differentiable S-stress is defined by

SS (X) D
X
i< j

wi j

�
d2
�
xi ; x j

�
� ı2i j

�2
:

Sometimes instead of the least-squares stress, a least
absolute deviation (L1-norm) function is used:

SL1(X) D
X
i< j

wi j
ˇ̌
d
�
xi ; x j

�
� ıi j

ˇ̌
:

Examples of two-dimensional images produced us-
ing minimization of stress with city-block and Eu-
clidean distances are shown in Fig. 1. Vertices of multi-
dimensional geometrical figures are considered as ob-
jects to be visualized. The dissimilarity between ver-
tices is measured by the distance in the original vec-
tor space. Although it is not possible to imagine geo-
metrical figures in the space of dimensionality larger
than 3, properties of well-understood geometrical fig-
ures are known. Multidimensional simplices and cubes
are special on the symmetric location of vertices, and
this feature is expected in the images. Besides this com-
mon feature, the central location of the “zero” vertex is
characteristic of a multidimensional simplex. The other
vertices of a simplex are equally distant from the “zero”
vertex. The vertices of a multidimensional cube com-
pose clusters of 2k vertices corresponding to edges and
faces. The vertices of a cube are equally distant from the
center.

The images of a 63-dimensional simplex are shown
in the left column of Fig. 1, and the images of a 6-di-
mensional cube are shown in the right column. Both ge-
ometrical figures have n D 64 vertices. The images pro-
duced by city-block MDS are shown in the upper row,
and the images produced by Euclidean MDS are shown
in the lower row. The images of vertices are shown by
circles.
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Optimization-Based Visualization, Figure 1
Images of vertices of multidimensional simplices and cubes

The image of the “zero” vertex of the simplex is lo-
cated at the center of the structures. The images of the
other vertices tend to form a square with a vertical di-
agonal when city-block distances are used and circles
when Euclidean distances are used. A square with a ver-
tical diagonal in city-block metric is equivalent to a cir-
cle in Euclidean metric – the points on such a figure
are equally distant to the center. Therefore the images
of the vertices are similarly distant to the “zero” ver-
tex when city-block distances are used. The images of
vertices on different circles are differently distant to the
“zero” vertex when Euclidean distances are used.

The images of the vertices of the multidimensional
cube tend to form a square with a vertical diagonal too
when city-block distances are used; therefore they are
visualized similarly distant to the center of the image.
In the case of Euclidean metric, the images of the ver-
tices of the cube tend to fill a circle; however, there is no

uniformity in the location of the images of the vertices.
The images of the vertices form clusters representing
lower-dimensional cubes in the cases of both metrics.

Methods/Applications

MDS is a generalization of unidimensional scaling
(UDS) (m D 1) [33] to the multidimensional case
(m > 1).

Minimization of the stress function with equal
weights for m D 1 can be changed to a combinatorial
maximization problem [10]:

max
 2�

nX
iD1

 X
j>i

ı (i) ( j) �
X
j<i

ı (i) ( j)

!2

;

where � is the set of all possible permutations of
1; : : : ; n. The optimal permutation  � found using
maximization defines the optimal sequence of objects.
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Then the coordinate values of image points are found
by

x �(1) D 0;

x �(iC1) D x �(i) C
1
n

0
@X

j>i

ı �(i) �( j)

�
X
j<i

ı �(i) �( j) �
X
j>iC1

ı �(iC1) �( j)

C
X
j<iC1

ı �(iC1) �( j)

1
A ;

i D 1; : : : ; n � 1 :

The number of local minima for the problem of
UDS was estimated in [37]. There a “smoothing tech-
nique” approach was presented to locate the globally
optimal solution.

A branch-and-bound method for obtaining the
guaranteed globally optimal solution to the problems of
UDS was presented in [7]. An interchange test and new
bounding procedures were used to improve computa-
tional performance.

Guaranteed solution of larger problems is not pos-
sible; therefore heuristic approaches are used. A simu-
lated annealing (SA) approach for the problem of UDS
via maximization of the Defays criterion was presented
in [5]. This algorithm includes efficient storage and
computation methods to facilitate rapid evaluation of
trial solutions.

Quadratic assignment methods to generate initial
permutations for UDS were developed in [6]. Methods
include locally optimal pairwise interchange, SA, and
hybrid. It was shown that substantial improvements of
UDS can be achieved using starting permutations ob-
tained via solution to a quadratic assignment problem.

A heuristic algorithm based on SA for provision of
good starting solutions for combinatorial algorithms is
proposed in [3]. The heuristic starts with the partition
of equally spaced discrete points. A SA algorithm is
used to search the lattice defined by these points with
the objective of minimizing least-squares or least abso-
lute deviation loss function.

An algorithm implementing SA for UDS in a dif-
ferent way is presented in [35]. A strategy is based
on a weighted alternating process: permutations and

pointwise translations are used to locate the optimal
configuration.

A recursive dynamic programming strategy for
some problems including UDS is discussed in [23].
Four different optimization strategies for UDS have
been compared in [24]: dynamic programming, iter-
ative quadratic assignment heuristic, smoothing tech-
nique [37], and nonlinear programming reformula-
tion [28]. The results show that the first two strategies
are better than the other two and should lead to optimal
solutions if some random starts are used.

A mixed-integer programming formulation for the
least absolute deviation UDS is developed in [40]. In-
teger linear programming models for UDS were dis-
cussed in [4]. In the case of least absolute deviation
UDS, the objective function is piecewise linear.

The special geometry of squared error loss function
for UDS is employed in [38]. The developed algorithm
is linear in the number of parameters, as the global
minimum for every coordinate is conditioned on every
other coordinate being held fixed.

One of the most popular algorithms for MDS is
SMACOF [11]. The algorithm is based on a majoriza-
tion approach [17] that replaces iteratively the original
objective function by an auxiliary majorization func-
tion, which is much simpler to optimize. The conver-
gence properties of MDS algorithms are studied in [13].
It was proved that the majorization method is globally
convergent. In almost all cases the convergence is lin-
ear, with a convergence rate close to unity. The ma-
jorization algorithm has been extended to deal with
Minkowski distances with 1 � p � 2, and an algorithm
that is partially based on majorization for p outside this
range is suggested in [21].

A tunneling method for global minimization
was introduced and adjusted for MDS with general
Minkowski distances in [18]. The tunneling method al-
ternates a local search step, in which a local minimum is
sought, with a tunneling step, in which a different con-
figuration is sought with the same value of stress as the
previous local minimum. In this manner successively
better local minima are obtained and the last one is of-
ten the global minimum.

A method for MDS based on combining a local
search algorithm with an evolutionary strategy of gen-
erating new initial points was proposed in [32]. Its ef-
ficiency is investigated by numerical experiments. The
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testing results in [22,30] proved that the hybrid algo-
rithm combining an evolutionary global search with an
efficient local descent is the most reliable, though the
most time-consuming method for MDS with Euclidean
distances. The advantages of genetic algorithms inMDS
with nonstandard stress criteria were discussed in [16].

The concept of sequential estimation in MDS was
introduced in [34]. The sequential estimation method
refers to continually updating estimates of a configu-
ration as new observations are added. Locally optimal
design of the experiment was constructed.

A globalized Newton method for stress and S-stress
is developed in [25]. A deterministic annealing algo-
rithm for the S-stress is presented in [26] and experi-
mentally compared with gradient-descent methods.

General methods forMDS can be applied in the case
of city-block distances if they do not rely on the dif-
ferentiability of the objective function at a minimizer.
However, there are some methods developed especially
for city-block MDS.

A survey of city-blockMDS is presented in [1]. Top-
ics include theoretical issues, algorithmic developments
and their implications for seemingly straightforward
analyses, isometries with other distances, and links to
graph-theoretic models.

A distance smoothing approach for city-block MDS
was proposed in [19]. The technique allows avoiding
of local minima in optimization. The technique was
extended to any Minkowski distance, and a majoriza-
tion algorithm with a monotone nonincreasing series
of stress values was suggested in [20].

A heuristic algorithm based on SA for two-
dimensional city-block scaling was proposed in [3]. The
heuristic starts with the partitioning of each coordinate
axis into equally spaced discrete points. A SA algorithm
is used to search the lattice defined by these points with
the objective of minimizing least-squares or least ab-
solute deviation loss function. The object permutations
for each dimension of the solution obtained by the SA
algorithm are used to find a locally optimal set of coor-
dinates by quadratic programming.

A two-stage approach for city-block MDS was pro-
posed in [29]. The least-squares regression is used to
obtain a local minimum of stress function in the first
stage. SA is used in the second stage of the method.

A bilevel method for city-block MDS was proposed
in [44]. The method employs a piecewise quadratic

structure of stress with city-block distances reformulat-
ing the global optimization problem as a two-level op-
timization problem:

min
P

S(P) ;

s.t. S(P) D min
X2A(P)

S(X) ;

where the upper-level combinatorial problem is defined
over the set of all possible permutations of 1; : : : ; n
for each coordinate of the embedding space and the
lower-level problem is a quadratic programming prob-
lem with a positively defined quadratic objective func-
tion and linear constraints setting the sequences of val-
ues of coordinates defined by m permutations in P.
The lower-level problems are solved using a quadratic
programming algorithm. The upper-level combinato-
rial problem can be solved by guaranteed methods for
small n and using evolutionary search for larger prob-
lems.

Interaction between optimization and visualization
means not only application of optimization methods
to implement visualization algorithms but also appli-
cation of visualization methods to analyze properties
of optimization problems. For example, optimal design
of the chemical engineering process considered in [43]
includes a minimization problem in nine-dimensional
space where the feasible region is defined by interval
constraints, and a nonexplicit (black box) indicator-
type constraint. Properties of the feasible region are of
interest while choosing the optimization algorithm and
while making a final decision about process parameters.
The properties of interest cannot be proven analytically,
but heuristic analysis of the image of the set of points
consisting of vertices of the nine-dimensional cube and
300 randomly generated points of the feasible region is
helpful to guess the form and dimensionality of the re-
gion and its location in the hypercube.

See also

� Continuous Global Optimization: Models,
Algorithms and Software

� Dynamic Programming in Clustering
� Evolutionary Algorithms in Combinatorial

Optimization
� Integer Programming
� Integer Programming: Branch and Bound Methods
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� Nonlinear Least Squares: Newton-type Methods
� Simulated Annealing
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There are many situations in which it is necessary or
desirable to classify objects into two or more mutually
exclusive sets or classes.Medical diagnosis, for example,
has been the focus of numerous research efforts over
the past several years. Given a set of attributes, or rele-
vant characteristics which describe a patient, the prob-
lem then is the extraction and identification of various
biological and/or historical attributes in order to deter-
mine the correct diagnosis or classification.

To illustrate the magnitude of the problem, consider
the case of breast cancer diagnosis. Based on a patient’s
medical history and on the results of mammography
screening (the most effective diagnostic tool available
to health care professionals), doctors attempt to clas-
sify breast tumors as being suspicious for malignancy
or benign. Unfortunately, of all breast tumors which are
suspected to be malignant, over 70% are later found to
be benign through an expensive and emotionally try-
ing surgical procedure called a biopsy [5]. In addition,
almost 50% of those patients who actually have breast
cancer are classified as benign by their physicians, so
that many malignancies go unrecognized [27].

The decision maker, in this example the medical
doctor, must infer from existing information the char-
acteristics or combinations of characteristics which are
indicative of a benign or malignant tumor in order to
correctly classify new cases. In their most basic form,
the characteristics used to describe each patient are rep-
resented by one or more binary attributes. That is, each
object (patient) may be represented by a Boolean vec-
tor in which an attribute value is either 1 (true) or
0 (false). Often, the problem is compounded by the
fact that complete information is not available. Con-
tinuing with the breast cancer example, suppose that
the information related to all pertinent characteristics
is not available due to the patient’s inability to un-
dergo certain tests because of excessive cost, the pos-
sibility of indeterminate test results, lack of knowledge
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related to family histories, etc. Thus, in addition to
the binary data indicating the presence or absence of
a given characteristic, the attribute value or level of
some characteristics may be unknown. The doctor is
then faced with the problem of assessing a limited set
of characteristics to determine whether a biopsy is war-
ranted. He/She must decide if the available characteris-
tics and/or combinations of characteristics provide suf-
ficient information for an accurate classification of the
tumor.

This problem, referred to as the inductive inference
problem or Boolean classification problem, is illustra-
tive of a vast number of similar situations through-
out business, industry and medicine. Technological ad-
vances have created a ‘data explosion’, providing de-
cision makers with ever increasing amounts of in-
formation. Unfortunately, this information is usually
not exploited in an optimal way, and at times, not at
all. Clearly, the classification problem becomes more
complex as the amount of information related to the
object increases. Individuals, or groups of individu-
als find themselves incapable of consistently and reli-
ably handling, manipulating and analyzing the avail-
able information. As a result, the creation of com-
puter systems capable of learning the concepts under-
lying the data and subsequently classifying new exam-
ples accurately and efficiently has become a practical
necessity.

Background Information

As informally presented above, solving the Boolean
classification problem generally involves the develop-
ment of a system that learns from feature-based ex-
amples. That is, each example is described by a set of
Boolean attributes. The binary vector [0 1 1 1], for
instance, describes an example in which the first at-
tribute (or characteristic) is false, and the remaining at-
tributes are true. Each example also carries a classifica-
tion: positive or negative. The goal of a learning algo-
rithm is to infer from these examples a Boolean func-
tion (logical system) that is capable of accurately pre-
dicting the class of new examples. Generally, the in-
ferred system is expressed as a Boolean function in con-
junctive normal form (CNF) or disjunctive normal form
(DNF).

The general form of a CNF and DNF Boolean func-
tion is defined as (1) and (2), respectively. That is:

k̂
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i2� j

ai

1
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where ai is either Ai or Ai . That is, a CNF expression is
a conjunction of disjunctions, while a DNF expression
is a disjunction of conjunctions. Any Boolean function
can be transformed into CNF or DNF format [15].

To clarify the concepts presented thus far, suppose
that the following sets of positive and negative examples
are somehow known:
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The goal of a learning algorithm is to infer a Boolean
function which correctly classifies all the examples. One
such function (in CNF) is as follows:

(A2 _ A4) ^ (A2 _ A3) ^ (A1 _ A3 _ A4) :

These three clauses, when are taken together, accept the
previous four positive examples and reject the six nega-
tive examples.

Traditionally, there are two main methods with the
goal of creating these intelligent systems: decision trees
and neural networks. These tools, which have evolved
over a forty-year period, represent a large portion of
the literature on learning algorithms which propose to
solve the Boolean classification problem. When applied
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to classification problems in which the goal of the sys-
tem is to learn from feature-based examples, decision
trees have been one of the most popular methodologies
for the extraction of knowledge. Because of the natu-
ral interpretation of knowledge, symbolic decision trees
can be easily translated into a set of rules suitable for
use in rule-based systems. The size and form of the de-
cision tree is significantly affected by the ordering of
the attributes, and often the resulting tree is nonopti-
mal or it may be overspecialized. A complex tree is not
only more difficult to validate, but as J.R. Quinlan [16]
demonstrated, a simpler tree is more likely to capture
structures inherent in the data.

Neural networks comprise the other extreme in arti-
ficial intelligence approaches. These systems consist of
a set of programs based on the structure of biological
neural systems. Knowledge is represented in the form of
a series of interconnected neurons, the structure of their
interconnections, and the strength of their interconnec-
tions. To the user the process is a ‘black box’. Though
these systems have demonstrated the ability to provide
accurate classifications in many applications, the exam-
ples are classified without explanations or justifications.
In an attempt to overcome this deficiency, hybrid sys-
tems which combine neural networks and rule-based
systems have been developed [4]. While these hybrid
systems are efficient and effective in terms of both time
and storage requirements, unfortunately, an exponen-
tial number of rules may be derived [17]. This renders
attempts at justification of the process virtually useless
due to the complexity of the explanation. The problem
is that the logical rules are not derived within a com-
plete logical framework.

Optimization Approaches

Recognizing the need to minimize the resulting system,
the problem of inferring a Boolean system from positive
and negative examples was formulated as a satisfiabil-
ity problem (SAT) and a method for inferring a mini-
mal DNF system was proposed [8]. The SAT problem is
next translated into an integer programming (IP) prob-
lem that is then solved by using an interior point method
developed in [9]. The method makes use of a parame-
ter, say k, which preassumes the number of disjunctions
in the DNF system to be derived. The IP problem, if
feasible is solved and k is successively lowered until in-

feasibility is encountered and then it is concluded that
there exists no system of size k or smaller which accepts
all positive examples and rejects all negative examples.
Many solution methods exist for solving the SAT prob-
lem (see, for instance, [6,7,8] and [26]). Unfortunately,
trying to determine a minimum size Boolean function
may be computationally very difficult since it is much
harder to prove that a given SAT problem is infeasi-
ble than to prove it is feasible. Thus, while the SAT ap-
proach can be used with success on small data sets and
a minimal number of DNF clauses thus to be derived,
when dealing with real world data, minimizing the size
of the system may be neither feasible nor desirable due
to the vast amounts of time and storage required by
such algorithms.

In [25] a logical (Boolean) function approach to the
classification problem has been introduced with the one
clause at a time (OCAT) approach. Like the SAT ap-
proach, the OCAT approach formulates the Boolean
classification problem as a series of integer program-
ming problems. The OCAT algorithm is sequential and
greedy in nature. The first iteration takes as input the
E+ and E� sets, and generates a single clause which
accepts all positive examples and rejects as many neg-
ative examples as possible. This is the greedy aspect
of the method. In the next iteration, it performs the
same task using the original E+ set and a revised E�

set which includes only those negative examples not re-
jected by the preceding CNF clause. The iterations con-
tinue until a set of clauses is constructed which rejects
all the negative examples and, of course, each clause
accepts all the positive examples. This algorithm is as
follows:

i = 0; C = ;;
DO WHILE (E� ¤ ;)
1 i  i + 1;
2 Find a clause ci which accepts all

members of E+ while it reflects as
many members of E� as possible;

3 Let E�(ci) be the set of members of E�
which are reflected by ci ;

4 Let C  C [ ci ;
5 Let E�  E� � E�(ci);
REPEAT;

The one clause at a time (OCAT) approach (the CNF case)
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The core of the method lies in step 2, the application
of a branch and bound algorithm. Through the devel-
opment of new search strategies and fathoming tests, E.
Triantaphyllou [19] improved the performance of the
branch and bound step. Still, like all branch and bound
algorithms, it suffers from exponential time complex-
ity. However, computational experiments indicate that
the OCAT approach, when combined with the branch
and bound algorithm, is a very efficient method for in-
ferring logical clauses from sets of positive and nega-
tive examples. In fact, in over half of the test cases, this
approach generated a minimum number of clauses. In
addition, when compared to the SAT approach of [8],
OCAT and the branch and bound was found to be con-
siderably faster while performing at the same level of
predictive accuracy [19]. Thus, while the OCAT ap-
proach may not always derive an absolute minimal sys-
tem, computationally it is much less expensive that the
SAT approaches and therefore more applicable to real
world applications.

Continued research in this area resulted in the de-
velopment of two randomized heuristics [2]. It should
be stated here that this approach is similar, in prin-
cipal, to the GRASP (greedy random adaptive search
procedure) approach presented in [3]. The first heuris-
tic (RA1) was developed to overcome the exponential
time complexity of the OCAT’s branch and bound algo-
rithm. That is, RA1 derives a Boolean system from pos-
itive and negative examples in polynomial (quadratic)
time. The primary difference between the branch and
bound algorithm and the RA1 heuristic is that in each
iteration, the branch and bound attempts to reject as
many negative examples as possible; while RA1 at-
tempts only to reject many negative examples. Again,
the increased speed resulted in generally larger sys-
tems. When comparing the two algorithms, A.S. Desh-
pande and Triantaphyllou [2] found that the branch
and bound used in the original OCAT approach pro-
duced in general, fewer conjunctions and required
higher CPU times than the RA1 heuristic. Additionally,
it was concluded that a conjunction of the RA1 heuris-
tic and the branch and bound method performs much
better in terms of both computational time/memory re-
quirements of the process and the size of the derived
system than either approach used alone.

Faced with real-world problems, in which there is
often incomplete information related to both the at-

tribute values and the classifications, the goal to opti-
mize the system becomes more desirable and necessary.
Each of the methods discussed thus far have consid-
ered only positive and negative examples with complete
data. That is, there is nomissing information in the data
set. Often, the complete examples represent only a por-
tion of the available data, since in general data bases are
plagued bymissing information. In [1] a logical method
for deriving a Boolean function from positive and neg-
ative examples was introduced in which some of the
attribute values may be unknown. Since the missing
information did not inhibit the classification process,
these attributes are treated as ‘don ’t care’ values by the
algorithm. Using a network flow algorithm, the method
has been shown to efficiently derive a Boolean function
with a very high predictive accuracy. The fact that the
algorithm is capable of effectively handling missing in-
formation makes it more applicable to real data bases.
Note, however, that the method makes no attempts at
minimizing the size of the derived function.

Deshpande and Triantaphyllou [2] extended the
RA1 heuristic for complete positive and negative exam-
ples, to include the use of incomplete data through the
development of a second randomized heuristic, termed
RA2. This method, allows not only for the inclusions
of missing information in the attribute values, but it
also makes use of examples which are unclassifiable due
to the presence of missing information. That is, for
some examples, the correct classification cannot be de-
termined due to the lack of sufficient information. The
objective of the second heuristic, similar to the first one,
is to interactively derive a small-sized Boolean function
from these three mutually exclusive sets: positive, neg-
ative, and unclassifiable examples. The algorithm con-
sists of two phases. In each iteration of the first phase,
the objective of the algorithm is to reject many negative
examples while accepting all positive examples, and re-
jecting no unclassifiable examples. Once all negative ex-
amples have been rejected by the current set of clauses,
phase II then assures that none of the unclassifiable ex-
amples are accepted by the system. When compared
to the RA1 the accuracy obtained with the inclusion
of unclassifiable data was always higher than the cor-
responding accuracy obtained without the inclusion of
the unclassifiable data. This method has satisfactorily
addressed the issues of efficiency and system size. Fur-
thermore, it demonstrated that the process of extracting
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knowledge from examples can be expedited by exploit-
ing the patterns contained in missing information and
unclassifiable examples.

A related issue in this area is the development of ap-
proaches for partitioning large scale problems in opti-
mal or semi-optimal ways [24]. That was done by using
a graph-theoretic approach. The same approach also al-
lows to establish lower limits on the minimum number
of clauses derivable from two given collections of in-
put examples. Also, an approach for guided learning of
a target Boolean function is proposed in [22]. In [10,21],
and [18] the above problemwas studied when the prop-
erty of monotonicity can be established in the input
data. Finally, in [12,13] and [11] some methods were
presented for dealing with fuzziness and uncertainty.

Concluding Remarks

Clearly, minimizing the size of the inferred system is
an attractive goal. A complex system is difficult to val-
idate, difficult to apply, and difficult to understand. On
the other hand, a method which seeks to minimize the
size of the system creates an inefficient process which is
both computationally difficult and limits the method’s
applicability due to the vast time and storage require-
ments. In light of the success of the RA2 heuristic,
the authors of this article are currently conducting re-
search aimed at the development of an ‘optimal’ logical
method which has the ability to handle missing infor-
mation not only in the attribute values, but in the clas-
sification of the examples as well.

The new method works in conjunction with the
OCAT approach. Through the application of a modi-
fied B &B algorithm, CNF clauses are interactively gen-
erated such that the set of clauses, when taken together,
accepts all positive examples, rejects all negative exam-
ples and neither accepts nor rejects any unclassifiable
example. We consider in this effort three optimization
goals: efficiency of the process, accuracy of the derived
function and the number of clauses which comprise the
derived function. Thus‘optimal’ in this sense implies
the derivation of a small (hopefully minimum) and ac-
curate Boolean system through the efficient exploita-
tion of information contained in unclassifiable exam-
ples and, of course, the positive and negative examples.

In our current research efforts, optimization be-
comes even more vital. By allowing missing informa-

tion and unclassifiable examples, the amount of avail-
able data increases and necessitates the use of a learning
algorithm which does not require excessive amounts
of time and/or memory requirements. In addition, the
goal of a logical approach is to derive a system capa-
ble of accurately classifying new examples and provid-
ing justification for the decision. A logical system de-
rived from incomplete data may encounter an example
which cannot be classified due to insufficient informa-
tion. This systemmust be capable of explaining why the
example is unclassifiable. That is, it has the additional
responsibility of assisting the decision maker in iden-
tifying the minimal amount of additional information
required for classification of the example. In a minimal
system, this information is more readily accessible.
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From the 1950s onwards, the search for computerized
tools and mathematical models that can speed up the
classification of large collections of documents has been
the focus of many research efforts. These efforts have
been centered in developing tools that can speed up the
classification of documents according to some underly-
ing context. A current example of this situation is the
Internet. In this worldwide conglomerate of databases,
one can easily see the speed at which documents on
the topic, say, ‘basketball’ are retrieved from among the
millions of documents produced daily on the Internet.
Document classification is also of paramount impor-
tance in many information retrieval applications, such
as news routing [7], classification/declassification of of-
ficial documents [15] e-mail filtering [27], and context
derivation of electronic meetings [3].

From the 1950s onwards, various fields of the hu-
man knowledge have produced several solutions for
the document classification problem (see, for exam-
ple, [21,23], and [2]). Some examples of these fields
are mathematical optimization, computational linguis-
tics, expert systems, neural networks, and genetic algo-
rithms. These methodologies have been severely limited
to some degree by the huge amounts of information,
both textual and graphical, generated by today’s infor-
mation driven society. On the other hand, this ‘techno-
logical’ limitation has been the boost for the develop-
ment of more efficient and effective classification pro-
cedures [15].

The purpose of this article is to exhibit some con-
tributions of discrete optimization during the process
of automatic document classification. This paper illus-
trates these contributions by presenting three cases (ap-
plication areas) in which optimization is used in the
classification process. The first case deals with a generic
procedure for the selection of a set of indexing terms
(keywords or context descriptors). The second case deals
with the selection of an optimal set of indexing terms to
minimize the overlapping of keywords used in different
documents. The last case deals with the classification of
text documents from mutually exclusive classes. These
three cases are only a tiny sample of a vast collection
of related instances in the field of information retrieval
systems; see [1,11], and [25] for additional literature.

This article is organized as follows. The next section
presents an overview of the document classification
process. The subsequent section illustrates the three ap-

plication areas in which optimization has contributed
in the solution of the classification problem. Finally,
a summary section is given.

Overview of Automatic Classification
of Documents

The automatic classification of text documents consists
of grouping documents of similar context into mean-
ingful groups in order to facilitate their storage and re-
trieval [22].Text classification can be viewed as a four-
step process. In the first step, a representative sample of
documents from various classes is presented to a com-
puterized system, and a list of the co-occurring words
with their frequencies is secured (see, for example, [22]
and [4]).

In the second step the frequency of the words is an-
alyzed, and only the most ‘meaningful’ words are ex-
tracted as indexing terms (keywords or context descrip-
tors) [14]. The ‘meaningful’ words or keywords are the
words with moderate co-occurring frequencies. H.P.
Luhn [13], G. Salton [21], D. Cleveland and A.D. Cleve-
land [4], and Ch. Fox [6] suggest the elimination of
the ‘common’ and ‘rare’ words (i. e., frequent and in-
frequent words, respectively) as indexing terms because
they convey little lexical meaning. Some examples of
common words are ‘a’, ‘an’, ‘and’, and ‘the’ [6]; ‘rare’
words are dependent on the document’s subject [13].

In the third step the context of unclassified doc-
uments is determined by affixing them with the key-
words that occur in their text. According to [4], ‘the
assignment of these keywords to a document is correct
because authors usually repeat words that conformwith
the document’s subject.’ Finally, the documents which
were indexed with similar keywords are grouped to-
gether [22].

The set of keywords attached to each document dur-
ing the third step is often referred to as a document sur-
rogate or just a document [4]. A surrogate is a conve-
nient way to represent and to computationally process
the context of real documents. For instance, the surro-
gate of seven words { ‘document classification’, ‘doc-
ument indexing’, ‘optimization’, ‘vector space model’,
‘logical analysis approach’, ‘OCAT algorithm’, and ‘ma-
chine learning’ } is a condensed and convenient way
to represent the context of this article which contains
thousands of words, symbols, and numbers.
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Optimization in Classifying Text Documents, Figure 1
A collection of N surrogates

Often, a surrogate is further simplified by defining it
as a binary vector. (For nonbinary surrogates, see [22].)
In this case, when a surrogate’s element wij = 1 (or 0),
it indicates the presence (or absence) of keyword Ti (i
= 1, . . . , t) in document Dj (j = 1, . . . , N). For example,
the surrogate Dk = [ 0 1 1 1 1 0] of six binary elements
indicates the presence of keywords T2, T3, T4, and T5

and the absence of keywords T1 and T6 in Dk. Figure 1
shows a popular way to summarize a collection of N
documents (surrogates) which are defined on t [22]:

In the last step, documents sharing similar key-
words are grouped together. This classification fol-
lows from the pairwise comparison of the surrogates in
Fig. 1 [22]. More on this is described in the following
section.

Examples of Optimization
in Document Classification

Optimization techniques have been used in various ar-
eas of text classification with various levels of success.
Their utilization has been limited mainly because the
size of the document classification problem is so large
that even with the current computerized technologies,
it would take them very long time to produce an op-
timal solution. Despite these technological limitations,
the contributions of optimization in this field can be
seen, for example, in the selection of keywords, auto-
matic classification of documents, automatic retrieval,
etc. Some applications of these techniques are presented
next.

The first example illustrates the principle of least ef-
fort [29]. This principle is used for the derivation of an
indexing vocabulary based solely on the frequency of
the co-occurring words in a collection of documents.
The second example illustrates the application of the
vector space model [23] for the derivation of an opti-

mal indexing vocabulary to minimize the overlapping
of keywords used by different documents. The third
example illustrates the utilization of a machine learn-
ing and operations research algorithm called the one
clause at a time (OCAT) algorithm [28] for the classi-
fication of documents which belong to mutually exclu-
sive classes.

Optimization in the Principle of Least Effort

The principle of least effort (PLE) can be viewed as one
of the first optimization attempts in the area of docu-
ment classification. It was introduced by H.P. Zipf [29].
Although the PLE does not have a strict mathematical
formulation, the problem it solves can be stated as fol-
lows. Given a collection of documents, the question is
how to derive the ‘best’ set of indexing terms that will be
used to identify the subject of documents in the collec-
tion. The set of the best indexing terms (or keywords)
is often referred to as indexing vocabulary (see, for ex-
ample, [4]). Hence, the goal of the PLE is to derive an
optimal indexing vocabulary with the most meaningful
words occurring in these documents.

Under the PLE an indexing vocabulary is derived
as follows. At first all the co-occurring words and their
frequencies are extracted from the collection of docu-
ments. Then, these words are ranked in descending or-
der according to their frequencies. Finally, the words
with frequencies in between some preestablished upper
and lower frequency limits are selected as the index-
ing vocabulary. The frequency boundaries of the mean-
ingful words are determined by a trial-and-error ap-
proach [13]. Other words with co-occurring frequen-
cies above or below the preestablished limits are known
as ‘common’ and ‘rare’ words (the frequent and infre-
quent words, respectively) and usually are discarded
for indexing purposes because they convey little lexical
meaning (see, for example, [13] and [16]).

It is interesting to notice here that although the
PLE does minimize the number of keywords, its un-
wise utilization may jeopardize the quality of the in-
dexing vocabulary. This can be illustrated by consider-
ing the word ‘a’. The word ‘a’ is one of the most com-
mon words in the English language (other such words
are ‘an’, ‘and’, and ‘the’; see, for example, [6]). Thus, if
the collection of documents is about nutrition, then ‘a’
may represent the name of the vitamin ‘a’ or ‘A’, and its
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elimination clearly would jeopardize the quality of the
indexing vocabulary.

Optimization in the Vector Space Model

One of the most successful models in information re-
trieval systems is the vector space model (VSM). It was
introduced in the mid 1970s in [23]. The VSM solves
problems of the following nature: Given are samples of
documents. Then, the question here is how to derive an
optimal indexing vocabulary such that keywords used
in one document are minimally used in other docu-
ments. In [23], the VSM was also extended to deter-
mine a vocabulary that minimizes the overlapping of
keywords used in different classes. That is, keywords
used in documents belonging to one class areminimally
used in other classes.

The VSM derives this optimal vocabulary as follows.
At first, a sample of t words is taken from all the words
co-occurring in a collection of N documents. This sam-
ple of words is used as a candidate indexing vocabu-
lary. Then, all documents in the collection are indexed
(their subject is defined) by using words from this can-
didate vocabulary. Document surrogates are formed in
this step. Next, the VSM computes the similarity of all
the surrogates in the collection according to

F D
NX
iD1

sim(Di ;Dj)

for j D 2; : : : ;N and i ¤ j :

(1)

Where sim(Di, Dj) measures the similarity between
documents Di and Dj. Usually, sim(Di, Dj) is replaced
by a function that relates any two vectors, such as the
functions illustrated in Table 1. This procedure is re-
peated by using various candidate vocabularies. Finally,
the candidate vocabulary that minimizes the expres-
sion in (1) is selected as the optimal indexing vocab-
ulary [23]. The following example illustrates an appli-
cation of the VSM with binary surrogates. The cosine
coefficient is used to solve (1).

Example 1 Let the words T1, . . . , T7 be the set of all
the words which were found in documents D1 and D2.
(In real practice, this set may contain hundreds or even
thousands of words.) Next, let D1 and D2 be indexed
with only four of these words. Hence, the question here
is: what is the ‘optimal’ indexing vocabulary of four

words that make document D1 to be indexed with key-
words that are minimally used by D2?

It is not difficult to realize that the number of candi-
date vocabularies of four words that can be formed out
of seven words is equal to (74) = 35. Table 2 shows the
similarities between D1 and D2 for only three vocab-
ularies. The first column of this table shows these vo-
cabularies. For example, words T1, T2, T4, and T7 cor-
respond to the first vocabulary. The second and third
column show the binary surrogates of documents D1

and D2. For instance, the surrogate D1 = [ 1 0 1 1] indi-
cates the absence of word T2 and the presence of words
T1, T4, and T7 in D1. Similarly, the surrogate for D2 =
[ 0 0 1 1] indicates the absence of T1 and T2 and the
presence of words T4 and T7 in D2. Finally, the fourth
column shows the CC similarity values, or sim(D1,
D2)), between D1 and D2 for the three vocabularies.

The CC similarity values in Table 2 indicate that
when words T3, T4, T5, T6 are used as indexing terms,
the similarity of documents D1 and D2 is minimal. Fur-
thermore, the similarity value sim(D1, D2) = 0.00 indi-
cates that both documents are completely different be-
cause their surrogates do not contain common words.
Therefore, according to the VSM the optimal indexing
vocabulary corresponds to terms T3, T4, T5, and T6.
Thus, the other words T1, T2, and T7 can be discarded
as indexing terms.

The solution presented in this table seems to be
a trivial one. However, it can be easily shown that for
realistic indexing problems such a solution can be quite
an elaborate one. Suppose, for example, that the num-
ber of words extracted from D1 and D2 is not seven,
but fifty (which still is a small number for realistic sit-
uations). Furthermore, if this time one is interested in
finding candidate vocabularies of ten words, rather than
combinations of four words, then the number of vocab-
ularies that can be constructed is (5010) = 10.27 billions.
That is, in addition to finding the minimization of (2),
the VSM must also use an efficient search strategy to
quickly eliminate many non optimal vocabularies. By
the same token, it can be easily shown that if vocab-
ularies of all sizes are considered, then the number of
such vocabularies is determined by 2t �1 (where t is the
number of extracted words), which even for moderate
values of t this expression is a too large number.

As a result of these humongous searching spaces,
researchers have been compelled to design fast heuris-
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Optimization in Classifying Text Documents, Table 1
Measures of vector similarity (taken from [22, Chap. 10]

similarity measure sim(X;Y) Evaluation for binary term evaluation for weighted term
vectors vectors

inner product (IP) j X \ Y j
Pt

i=1 xi � yi

dice coefficient (DC) 2 jX\Y j
jXj+jY j 2

Pt
i=1 xi �yiPt

i=1 x
2
i +
Pt

i=1 y
2
i

cosine coefficient (CC) jX\Y j
jXj1/2: jY j1/2

Pt
i=1 xi �yipPt

i=1 x
2
i �
Pt

i=1 y
2
i

Jaccard coefficient (JC) jX\Y j
jXj+jY j�jX\Y j

Pt
i=1 xi �yiPt

i=1 x
2
i +
Pt

i=1 y
2
i�
Pt

i=1 xi y i

X = (x1; : : : ; xi )
j X j= number of terms in j X j.
j X \ Y j= number of terms appearing jointly in X and Y .

Optimization in Classifying Text Documents, Table 2
Similarity sim(D1, D2) for three candidate vocabularies of
four words

Surrogates
Vocabularies D1 D2 sim(D1;D2)
T1; T2; T4; T7 [1011] [0011] 0:50�
T2; T4; T5; T6 [0100] [0110] 0:25
T3; T4; T5; T6 [0100] [0011] 0:00
� : sim(D1;D2) = 2/(41/2 � 41/2) = 0:50.

tic search strategies at the expense of optimality. Fur-
thermore, because the size of the indexing problem can
be very large, suboptimal heuristic solutions have been
preferred over optimal but slow ones [2].

Optimization in the Classification
of Text Documents

The process of document classification consists of
grouping documents according to their underlying sub-
ject. Some examples of familiar document subjects are
history, geography, music, engineering, etc. Usually,
this underlying subject is determined by the set of in-
dexing terms which was attached to each document.
That is, documents about History share indexing terms
whose content describes past events. Similarly, the in-

dexing terms of documents about geography share con-
tent which describes different geographic places on
earth. Hence, the problem that this process of docu-
ment classification attempts to solve is described as fol-
lows: Given samples of preclassified documents (i. e.,
their surrogates), the question is how to use the infor-
mation contained in their surrogates such that new un-
classified documents can be grouped into the appropri-
ate classes.

There are many methodologies for solving this doc-
ument classification problem. Some examples of such
methodologies are: the vector space model for doc-
ument classification [22]; fuzzy set theories [12] and
[17]; semantic analysis methodologies [10] and [19];
and some others which use artificial intelligence ap-
proaches, [3], and [2]. To some extent all these method-
ologies use optimization in order to maximize (or min-
imize) some performance measure, which usually is the
similarity between indexing terms. In what follows, we
present only one methodology which is based on arti-
ficial intelligence and operations research approaches.
This methodology is the one clause at a time (OCAT)
algorithm [28] for the classification of examples (e. g.,
documents) in mutually exclusive classes. The OCAT
algorithm uses optimization methodologies for con-
structing classification clauses (e. g., word patterns) of
minimal (or near minimal) size. Figure 2 shows this al-
gorithm.
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Input: E+ and E�
Output: Logical rules in CNF (or DNF) form.

i = 1;C = ;;
DO WHILE (E� ¤ ;)
1: i  i +1; /� i indicates the ith iteration

/
2: find a clause ci which accepts all mem-

bers of E+ while it rejects as many mem-
bers of E� as possible;

3: let E�(ci ) be the set of members of E�
which are rejected by ci ;

4: let C  C + ci ;
5 let E�  E� � E�(ci);

END;

Optimization in Classifying Text Documents, Figure 2
The one clause at a time (OCAT) algorithm

The OCAT algorithm is also a machine learning al-
gorithm. It uses logical analysis and branch and bound
approaches to extract knowledge (sets of rules) from
sets of preclassified examples. It takes as input data
samples of examples from (usually two)mutually exclu-
sive classes and extracts knowledge that is represented
in a compact form of key data patterns which can be
used to classify new unclassified examples into these
two classes.

The twomutually exclusive classes are referred to as
the sets of positive and negative examples (denoted by
E+ and E�, respectively). Furthermore, the collections
of examples in both classes are defined over the same
set of parameters (also called atoms, characteristics, or
factors) which are assumed binary valued. Figure 3 il-
lustrates a set of four positive examples: e1, e2, e3, e4
and a set of six negative examples: e5, e6, e7, e8, e9, e10.
All ten examples are defined on the four atoms A1, A2,
A3, and A4. For instance, example e1 = [ 0 1 0 0] indi-
cates the presence of atom A2 and the absence of atoms
A1, A3, and A4 in e1. On the other hand, example e5 =
[ 1 0 1 0] indicates that atoms A1 and A3 are present and
that atoms A2 and A4 are absent.

When the OCAT algorithm is used to solve the doc-
ument classification problem, E+ and E� (i. e., the sets
with the positive and negative examples, respectively)
correspond to the sets of documents which belong to
two mutually exclusive classes. That is, documents in
the positive class are the ones that belong in only one of

Optimization in Classifying Text Documents, Figure 3
Two illustrative sets of positive and negative examples

the two classes, while the documents in the other class
are the negative examples. Hence, Fig. 3 may represent
a set of ten documents (surrogates) which were indexed
by using four keywords.

The OCAT algorithm is a greedy algorithm which
determines a set of compact clauses either in the con-
junctive normal form or disjunctive normal form (CNF
or DNF, respectively, as defined below). For example,
CNF clauses are determined as follows. In the first iter-
ation it determines a clause that accepts all the examples
in E+ while it rejects as many examples in E� as possi-
ble. In the second iteration it performs the same oper-
ation using the original E+ set but this time the current
E� set contains only the negative examples that have
not been rejected by any of the previous clauses. The it-
erations continue until the set of constructed clauses re-
ject all the negative examples. Hence, when these CNF
or DNF clauses are taken together, they accept all the
positive examples while they reject all the negative ex-
amples.

The conjunctive normal form and disjunctive nor-
mal form (see, for example, [24]) are defined as in ex-
pressions (2) and (3), respectively.

k̂

jD1

0
@_

i2� j

ai

1
A ; (2)

k_
jD1

0
@^

i2� j

ai

1
A : (3)
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Where ai can be either Ai or Ai . Thus, a CNF ex-
pression (also called a logical clause) over a vector v 2
{ 0, 1 }t is a conjunction of disjunctions defined on the
terms Ai (i = 1, . . . , t). Similarly, a DNF expression is
a disjunction of conjunctions on the same terms Ai.

Let n be the number of atoms andM1 the number of
positive examples. It can be easily shown that the max-
imum number of clauses that can be formed using n
atoms and M1 examples is equal to M1 [28]. To form
these clauses consider the first example e1 = [ 0 1 0 0]. It
can be observed that in order to accept this positive ex-
ample at least one of the four atoms A1, A2, A3, A4 must
be specified as follows: (A1 = FALSE; i. e., A1 D TRUE),
(A2 = TRUE), (A3 = FALSE; i. e., A3 D TRUE), and (A4

= FALSE; i. e., A4 D FALSE). Hence, any valid CNF
clause must include A1, or A2, or A3, or A4. Similarly,
the second positive example e1 = [ 1 1 0 0 ] indicates
that any valid CNF clause must include AA1, or AA2, or
A3, or A4. In this manner, all valid CNF clauses must
include at least one atom as specified from each of the
following sets: fA1;AA2;A3;A4g, fAA1;AA2;A3;A4g,
fA1;A2;A3;AA4g, and fA1;A2;A3;A4g. Relation (4)
shows a CNF system which was derived by using the
OCAT algorithm on the examples in Fig. 3:

(A2 _ A4) ^ (A2 _ A3) ^ (A1 _ A3 _ A4) : (4)

Example 2 An application of the OCAT algorithm
can be illustrated by using a new example, say, e11 = [
0 0 1 0]. When e11 is ‘tested’ by the above CNF expres-
sion, then it can be seen that e11 is classified as a negative
example. This is as follows. The clause A2 _ A4 evalu-
ates to 0 because e11 does not contain neither the second
nor the fourth atoms. On the other hand, both clauses
A1_A3 and A1_A3^A4 evaluate to 1. However, when
the three clauses are taken together, expression (4) eval-
uates to 0, thus indicating that e11 is a negative example.

Conclusions and Future Research

This article illustrated some contributions of opti-
mization for solving the document classification prob-
lem. These contributions were illustrated by present-
ing three cases (application areas) in which optimiza-
tion has been used. The first case dealt with the princi-
ple of least effort (PLE) which is used for the selection
of an indexing vocabulary based solely in the frequency
of the co-occurring words. The second case dealt with

the vector space model (VSM) for the selection of an
indexing vocabulary that minimizes the overlapping of
words used in various documents (or in various docu-
ment classes). The third case illustrated the one clause
at a time (OCAT) algorithm for the classification of
documents into mutually exclusive classes.

A common characteristic of these three cases is the
huge amounts of information that need to be processed
before optimal solutions can be found. Therefore, the
optimization techniques presented in these examples
have been used extensively only on document classifi-
cation problems of small size. The main reason for this
limitation is that even with the current computerized
technologies, these techniques would take unacceptable
processing times to find optimal solutions for larger
classification problems. As a consequence, scientific re-
search efforts have focused their attention in developing
effective and efficient heuristics for solving problems of
more realistic size.
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The engine is an essential part of a motor car but it is
useless if it is not embedded in a car body with chairs,
windshields, tyres, brakes, etc. Similarly, an optimiza-
tion algorithm is useless if it is not embedded in an ap-
propriate model and if it is not linked to the outside
world via a system that helps the decision makers to use
the data and the model.

Optimization systems may be found at all levels of
decision making: at the level of operational planning
with a short-term horizon (hours or days), such as the
scheduling of the production of corrugated cardboard,
glass, iron, and steel, the operational control of a water-
management system, and the load dispatching in elec-
tricity generation; at the level of tactical planning with
a medium-term horizon (months), such as the capacity
planning of assembly-line production; and at the level
of strategic planning with a long-term horizon (years),
such as the choice of a strategy for the national energy
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supply or the design of the infrastructure of a water-
management system. In what follows we shall describe
some of these systems in more detail.

In the voluminous literature on linear programming
applications one constantly comes across references to
the cutting-stock problem or the trimloss problem in
the corrugated-cardboard industry, where long strips
or rectangular plates of material are cut into smaller
rectangles. The objective is to set the circular and the
guillotine cutters in such a way that the cardboard pro-
duction machine supplies the required number of rect-
angular plates for each client with a minimum of waste.
Real-life conditions on the factory floor impose addi-
tional requirements, such as the reduction of the set-
up costs due to the resetting of the cutters, which can-
not be formulated in pure linear programming terms.
They can be allowed for in a mixed integer program-
ming model but this tends to become intractable for ex-
isting numerical methods because the number of zero-
one variables may be large. A more successful approach
is the generation of a number of promising cutting pat-
terns followed by the selection of a small number of
patterns for the actual production of corrugated card-
board. This is a pure integer programming formula-
tion of the trimloss problem. An additional complica-
tion is that the format of the rectangular plates is not
necessarily hard. Under certain conditions the plan-
ners may deviate from the ordered dimensions, and
also from the required number of plates. This greatly
alleviates their task to reduce the losses of time and
material as much as possible. An interesting feature
of the systems for the planning of cardboard produc-
tion is that they do not only reduce the losses, but they
also contribute to a smooth processing of orders, plan-
ning lists, deliveries, and invoices. Thus, these systems
do not only tend to control the actual production but
they also support the administrative processes in the
factory.

Electricity generation is subject to the iron law that
demand has to be satisfied, as and when it occurs. Un-
der these constraints electricity companies usually pur-
sue the economic objective of minimizing the fuel costs.
The calculation of the cheapest production schedule is
divided into several parts, each with its own time hori-
zon. One of these parts is the static dispatch problem,
the allocation of the electricity demand predicted for
the next fifteen or sixty minutes to the available power

units. Another part is the unit-commitment problem,
the daily selection of the units for actual production. In
its mathematical form the dispatch problem can be writ-
ten as the minimization of a nonlinear fuel-cost func-
tion subject to a linear demand constraint whereas up-
per and lower bounds are imposed on the variables.
In general, the fuel-cost function can be simplified and
written as a convex, separable, quadratic function of the
loads assigned to the respective power units. The dis-
patch problem is accordingly a quadratic continuous
knapsack problem which, in its primal form, can ef-
ficiently be solved via gradient methods for nonlinear
optimization. A dramatic acceleration occurs when the
dispatch problem is considered in its dual form. In each
step, after the unconstrained minimization of the asso-
ciated Lagrangian function, one can immediately find
a number of variables which are at their optimal val-
ues so that they can be removed from the problem for-
mulation. This rapidly reduces the size of the dispatch
problem [1]. More strongly, it implies that the dispatch
problem can efficiently and reliably be solved, even if
there are hundreds of variables. This problem size is
normal in the electricity generation for a country of 15
or 20 million inhabitants.

After the oil crisis of the early 1970s many countries
stimulated the development of so-called energy mod-
els which could be used to analyze long-term strate-
gies for the national energy supply via linear program-
ming. Such a model has three parts at a high aggre-
gation level: winning and/or import of primary en-
ergy carriers like crude oil, natural gas, and coal; con-
version (refineries and power plants) into secondary
energy carriers like petrol and electricity; and con-
sumption in various sectors of the national economy
like heavy industry, light industry, transportation, and
households. Because there is a flow of materials from
winning/import to consumption, the linear program-
ming model is largely a network flow model. In the
first and the second part there are certain limits to be
set by the decision makers: upper limits on import and
winning, and upper limits on the nuclear capacity for
electricity generation, for instance. In the third part the
decision makers can introduce the scenario-dependent
projections of the future energy demand. In practice,
since the supply of oil and natural gas is in the hands
of large multi-national companies, these models are
mainly concerned with strategies for the national elec-
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tricity supply. For a prespecified year, using as input the
projection of the electricity demand in various sectors
of the economy, the projected prices of primary energy
carriers, the estimates of the investment costs of new
energy technologies, and the estimated supply restric-
tions, capacity limitations, and conversion efficiencies,
the linear programming model yields an optimal mix
of secondary energy carriers and technologies. An ob-
vious extension of an energy model is the incorporation
of multiple objective functions representing the policy
objectives:
a) to minimize the environmental damage;
b) to maximize the

– economic benefits;
– safety of the energy system;
– strategic independence of the country.

The analysis of the model usually shows that the ex-
ploitation of nuclear energy is strongly in conflict with
the exploitation of fossil fuels. Nuclear energy is felt
to reduce the safety of the energy system, but it also
reduces the environmental damage of CO2 and NOx

emissions, and it enhances the strategic independence
by the reduction of crude-oil imports.

In the 1980s energy modeling strongly contributed
to the popularity of scenario analysis. It became fash-
ionable to explore the future and to judge various long-
term strategies for the national electricity generation
within the framework of a number of scenarios. The
increasing electricity demand could be covered by an
increased nuclear capacity, by the construction of new
andmore powerful fossil-fuel plants, and/or by interna-
tional cooperation and diversification. Scenarios were
designed as follows. First, the factors were identified
which would affect the economic, political, and so-
cial developments until a predetermined horizon and
which were beyond the decision maker’s control. Be-
cause these factors are mostly interconnected, the hy-
pothetical future developments could be bundled in
a small number of coherent scenarios. Strategic plan-
ners designed a trend-following business-as-usual sce-
nario where the current developments were smoothly
continued, an optimistic scenario where the develop-
ments proceeded in an upward direction, and a pes-
simistic scenario with a less upward or even down-
ward direction of the future developments. Each strat-
egy had certain desirable and/or undesirable conse-
quences within the context of the respective scenarios.

These consequences could be evaluated via the anal-
ysis of linear programming energy models, at least to
some extent. In choosing a strategy, the decision mak-
ers would have to weigh the consequences and to take
into account the scenario probabilities. This compli-
cated process was usually prepared in a network of pol-
icy committees and advisory councils who were ex-
pected to suggest a preferred strategy on the basis of
a national energy outlook [2] with a horizon of ten or
twenty years.

The decision support systems just described have
been used for decades. The systems for operational
planning support the short-term decisions of the plan-
ners who work in situations where the rules and the
data are fairly well-known. Nevertheless, even in short-
term planning the objectives and the constraints are
not necessarily hard. The planners in a corrugated-
cardboard factory, for instance, have to find a compro-
mise between the objective to minimize the losses of
material and the objective to smooth the administrative
processes on the factory floor. The demand constraints
may also be relaxed. The planners may deviate from the
required dimensions, and they may ask the clients, ei-
ther to order a larger quantity of rectangular plates now,
or to postpone the delivery to the next planning period,
because the order can nicely be combined with the or-
der of another regular client.

In the systems for strategic planning, not only the
rules and the data are imprecise, but also the users are
difficult to identify. Strategic planning is largely a dis-
tributed decision-making process wherein many actors
are involved: members of policy committees and advi-
sory councils, managers of energy-producing compa-
nies, representatives of trade unions, members of pres-
sure groups, the press, etc. They all have contradictory
views and conflicting objectives in the energy sector,
and they have widely varying power positions. In the
eighties their views have been analyzed via multicriteria
decision analysis and multi-objective optimization [3].
The study clearly identified the critical issues in the en-
ergy debate: safety and environmental protection. The
proposed compromise solution to the long-term energy
supply problem contained a significant contribution of
nuclear energy so that it was ignored after the Cher-
nobyl disaster.

In the late 1980s the study had to be taken up again
because the choice of primary energy carriers cannot
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be postponed indefinitely, certainly not when obsolete
power plants have to be redesigned and replaced within
the next planning period [5]. There were several op-
tions: new nuclear power plants, or larger and more
sophisticated fossil-fuel plants using oil, coal, or nat-
ural gas. The objectives of the electricity companies
were clear. The two small nuclear power plants in the
country covered some 7% of the national demand, and
the companies were convinced that the nuclear option
should be increased. However, any proposal to start the
design of a new nuclear plant would be rejected by the
Ministry of Economic Affairs: it would politically be
unfeasible. Hence, in order to avoid a negative decision
that would be irreversible for a period of ten or twenty
years, the electricity companies proposed to cover the
peak demand in the next planning period via special
contracts with foreign companies. This strategy would
enable them to delay the design of nuclear power plants
beyond the planning horizon of ten years. The compro-
mise appeared to be acceptable, at least in the late eight-
ies, and even today the consequences do not constitute
an issue for the political parties and the environmen-
tal groups. The domestic nuclear capacity will be closed
down within a few years, but by the electricity imports
from neighboring countries the national economy will
remain dependent on nuclear power, even more than in
the 1980s.

We have briefly summarized the course of events in
order to sketch the fortunes of a decision support sys-
tem in a field full of controversies. The system cannot
dictate a solution, but it can easily identify the conflict-
ing views of the actors and the relative importance of
their arguments. It makes the criteria operational be-
cause it shows the effects of the weights assigned to
them.

Particular attention must be given to the interface
with the decision makers. Many decisions are made
in groups: in boards, councils, committees, where the
members have contradictory views, opinions, aspira-
tions, and power positions. Single-objective optimiza-
tion models therefore tend to be inadequate. A realis-
tic model has multiple objective functions, and usually
these functions have different weights for the decision
makers. In fact, multi-objective optimization has two
subfields: the identification of the nondominated so-
lutions, and the selection of a nondominated solution
where the objective functions are felt to be in a proper

balance. The first-named subfield can be studied in the
splendid isolation of mathematical research. The sec-
ond subfield, however, straddles the boundary between
mathematics and other disciplines because human sub-
jectivity is an integral part of the selection process. One
cannot just leave it to an optimization expert to formu-
late a model and to calculate an acceptable nondomi-
nated solution. At various stages the expert has to in-
terrupt the computational process in order to fathom
the preferences of the decision makers. Certain param-
eters (weights, targets, desired levels) are adjusted on
the basis of new preference information, whereafter the
computations proceed in a somewhat modified direc-
tion. It is not always clear, however, how the param-
eters should be adjusted in order to guarantee a rapid
convergence towards an acceptable compromise. This
is crucial because decision makers cannot spend much
time on a particular decision problem. It is an illusion
to think that many interruptions would be possible to
elicit preference information. One or two sessions of
the decision-making body, communication via the mail
and the telephone in the time intervals between inter-
ruptions, and that ’s all.

In the 1980s, experts could work with question-
naires to fathom the preferential feelings in a group.
The decision makers leisurely answered the questions
in their office or at home, and returned the responses
via the mail. In the next session of the group the cal-
culated results were available for discussion [3]. To-
day, however, information technology provides sophis-
ticated facilities for group decision making. Group De-
cision Rooms with networked PCs and a public screen
for electronic brainstorming and weighted voting are
commercially available. The sessions in a GDR have
more impact than the questionnaires. First, the tech-
nology of the GDR eliminates the advantages of cer-
tain discussion techniques. The group members with
strong verbal skills who usually dominate a meeting
lose their grip on the silent majority as soon as the but-
tons are to be pressed. Second, the anonymous brain-
storming and voting procedures promote an egalitar-
ian attitude in the group (this may be a stumbling block
in authoritarian cultures where decisions are deferred
to the boss). GDR sessions create a certain commit-
ment among the participants, possibly due to the in-
tense communication, so that the decisions cannot eas-
ily be reverted thereafter. In summary, one may observe
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a power shift in a GDRwhich strongly affects the choice
of a strategy [4].
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The piecewise sequential quadratic programming
(PSQP) method is a numerical method for solving
certain mathematical programs with equilibrium con-
straints (MPEC), based on the classical sequential
quadratic programming (SQP) method for nonlinear
programming (NLP) problems [2,12]. This description
draws on both [9] and [6], which extend the original
proposal for PSQP [13] that was restricted to the case of
MPEC with linear complementarity constraints. See [7]
for a brief account of an application of PSQP to a prob-
lem in civil engineering. Its performance on randomly
generated quadratic programs with affine equilibrium
constraints is documented in [6] and also in [9,10].

PSQP can be applied directly to any MPEC whose
lower-level problem is a mixed complementarity prob-
lem, and indirectly to any MPEC where the lower-level
problem belongs to the class of variational inequalities
(cf. also � Variational inequalities) (VI) that can be
written via its Karush–Kuhn–Tucker conditions (KKT
conditions).

The formulation of the KKT-constrained MP is

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x; y)
s.t. G(x; y) � 0;

F(x; y)C
X̀
iD1

�iry gi (x; y) D 0;

� � 0; g(x; y) � 0; �>g(x; y) D 0;

(1)

where f fRn+m ! R, G: Rn+m ! Rs and FRn+m !

Rm, are twice continuously differentiable; g: Rn+m R`

is thrice continuously differentiable; and rygi(x, y) is
the gradient with respect to y of gi at (x, y). This is
a special case of MPEC with mixed complementarity
constraints. It includes the subclass of MPEC whose
equilibrium constraints are nonlinear complementar-
ity problems by taking g(x, y) = �y. Note that to ease
notation, equality constraints have been omitted in the
constraints both at the upper level (G(x, y)� 0) and the
lower level (g(x, y) � 0); these can be included without
any difficulties.

A selection of MPEC applications including Stack-
elberg games, network design, and design of mechani-
cal structures, is given in the monograph [9]. Also note
that in many cases the equilibrium constraints arise as
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the first order conditions of a (usually convex) opti-
mization problem, in which case an MPEC problem is
closely related, if not equivalent to a bilevel program (cf.
also � Bilevel programming: Introduction, history and
overview). The volume [1] is a good source of applica-
tions of hierarchical optimization; see also the volume
containing [10].

For comparison, and also later reference in the sec-
tion on mathematical programs with affine equilibrium
constraints, consider the general MPEC with upper-
level constraints G(x, y) � 0 and the equilibrium con-
straint that, given x, y solves the parametric variational
inequality VI(F(x, �), C(x)), i. e.

y 2 C(x) ; 8y0 2 C(x); F(x; y)>(y0� y) � 0 ; (2)

where C(x) = {y:g(x, y) � 0}. Under some conditions
on the vector function g, any pair (x, y) satisfying these
constraints is associated with a KKT multiplier � such
that (x, y, �) is feasible for (1). One such condition is
that g is affine, i. e. linear plus a constant; another is
that each component function gi is convex and that the
Slater constraint qualification holds: There existsby such
that gi(x;by) < 0 for all i. Conversely, under convexity
of g, each feasible point (x, y, �) of (1) satisfies the gen-
eral MPEC constraints.

Local Decomposition of the Feasible Set

Let FKKT denote the set of feasible points (x, y, �) 2
Rn+m+` of (1). Let w D (x; y; �) 2 FKKT. For any other
feasible point (x, y, �), the conditions

� � 0; g(x; y) � 0; �>g(x; y) D 0 ;

imply complementarity: For each i, either �i = 0 or
gi(x, y) = 0. It follows for each (x, y, �) 2 FKKT near
((x; y; �)), that (x, y, �) is also feasible for some nonlin-
ear program of the form

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min f (x; y)
s.t. G(x; y) � 0;

L(x; y; �) D 0;

8i 2 J1
(
�i D 0;
gi (x; y) � 0;

8i 2 J2
(
�i � 0;
gi (x; y) D 0;

(3)

where L(x, y, �) = F(x, y) +
P

i �i rygi(x, y) and the
index sets J1, J2 partition {1, . . . , `} such that J1 �
fi : gi (z) < 0g and J2 � {i: �i > 0}.

For each such pair (J1, J2), the feasible set of (3) is
called a branch of the feasible set FKKT at w. Decompo-
sition is given by an easy but critical observation: The
union of the branches (3) of FKKT at a feasible point w
is a neighborhood of w in FKKT.

Each branch can be called a ‘local piece’ of FKKT.
The PSQP method takes advantage of this piecewise,
or disjunctive, or decomposition approach to FKKT,
hence is one of the class of disjunctive programming
methods.

A decomposition scheme at infeasible points is re-
quired, to allow for disjunctive methods that work with
infeasible iterates. This decomposition is based on an-
other easy observation that for a point (z; �) 2 FKKT,
where z D (x; y):

fi : gi (z) < 0g D
n
i : gi (z)C �i < 0

o
;

n
i : �i > 0

o
D
n
i : gi (z)C �i > 0

o
:

Let w = (x, y, �) 2 Rn+m+ ` with �� 0, and write z =
(x, y). Let A(w) denote the family of index set pairs (J1,
J2) that partition {1, . . . , `} and satisfy

(
J1 � fi : gi (z)C �i < 0g ;
J2 � fi : gi (z)C �i > 0g :

(4)

The Algorithm

Consider multiplier vectors, called MPEC multipliers,
� 2 Rs and 
 2 Rm and � 2 R` corresponding to the
constraints G(z) � 0, L(z, �) = 0 and the block of con-
straints gi(z) � ( = ) 0, respectively; and define the
MPEC Lagrangian as

LMPEC(z; �; �; 
; �)

D f (z)C �>G(z) � 
>L(z; �)C �>g(z) :

Multipliers corresponding to the constraints �i � 0 (or
= 0) are omitted here and in the sequel, since these turn
out not to play a role in the PSQP method as a result of
being linear.



Optimization with EquilibriumConstraints: A Piecewise SQP Approach O 2809

PSQP can now be presented. At iteration k, given
wk = (zk, �k) and a triple of multipliers vk = (�k, 
k,
�k), pick an arbitrary member (J1, J2) of A(wk). Corre-
sponding to this pair (J1, J2), form the quadratic pro-
gram associated with the NLP (3) at (zk, �k); the vari-
ables of this quadratic program are given by the vector
dw = (dz, d�), with dz = (dx, dy):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min r f (zk)> dz
C 1

2dw
>r2

wwLMPEC(wk ; vk)dw
s.t. G(zk)CrG(zk ) dz � 0;

L(wk)CrL(wk) dw D 0;

8i 2 J1
(
(�k C d�)i D 0;
gi (zk)Cr gi(zk)> dz � 0;

8i 2 J2
(
(�k C d�)i � 0;
gi (zk)Cr gi(zk)> dz D 0:

(5)

Here gradients of real-valued functions are denoted by
r , e. g.r f (zk); whereas the derivative r G(zk) is the s×
(n+m) Jacobian matrix of G at zk; and r2

wwLMPEC(wk,
vk) is the Hessian or second-derivative matrix, with re-
spect to w, of the MPEC Lagrangian at (wk, vk). A KKT
tuple of this quadratic program will be used to define
the next iterate.

The PSQP method for (1) is summarized below.
Recall, for use in Step 1, the definition of a station-

arity: A point z is stationary for the general nonlinear
program

8̂
<̂
ˆ̂:

min f (z)
s.t. h(z) D 0;

g(z) � 0;

(6)

for smooth functions f , g, h, if there are vectors �h and
�g , with dimensions matching h(z) and g(z), respec-
tively, such that the KKT conditions hold: r f (z)+ r
h(z)| �h + r g(z)| �g = 0, h(z) = 0, g(z) � 0, � � 0
and �|g(z) = 0. See [6] for details on using approxi-
mate stationarity in Step 1, namely checking whether
the KKT conditions approximately hold, instead of
stationarity.

0. Let w0 = (z0; �0) 2 Rn+m � R`+; v0 =
(�0; �0; �0) 2 Rs+m+`; A0 = A(w0); and
k = 0.

1. (Direction finding.)
Choose a pair (J k

1 ; J k
2 ) 2Ak .

IF the QP (5) is found to be the infeasible or
unbounded below, THEN go to Step 3.
ELSE find a stationary point dw of (5), with
multipliers v = (�; �; �) as above.
IF dw = 0 (hence wk is stationary for (3))
THEN go to 3.

2. (Serious step.)
Let wk+1 = wk + dw; vk+1 = v; andAk+1 =
A(wk+1). Let k = k + 1 and go to Step 1.

3. (Null step.)
Let wk+1 = wk ; vk+1 = vk ; Ak =
Aknf(J k

1 ; J k
2 )g; and k = k + 1.

4. (Stopping rule.)
IF the stopping condition is satisfied THEN
STOP ELSE go to 1.

Algorithm PSQP

At each iteration PSQP selects a nonlinear program,
indexed by (J1, J2), and updates (wk, vk) to (wk+ 1, vk+ 1)
by applying one step of the SQP method to this sub-
problem. The idea of selecting one of possibly several
subproblems at each iteration is based on the Kojima–
Shindo method [8] for solving piecewise smooth equa-
tions ˚(x) = 0, where the mapping ˚Rn}Rn is the con-
tinuous selection of a finite family of smooth functions
{˚ i} each of which maps Rn to itself. Given xk 2 Rn, an
arbitrary index i = i(k) is chosen with ˚(xk) = ˚ i(xk),
and then xk is updated to xk+ 1 by applying a single New-
ton iteration to ˚ i at xk.

Superlinear or quadratic convergence of PSQP and
of the method of [8] can be shown under appropriate
conditions.

Moreover, PSQP can be viewed as a localized ver-
sion of previous disjunctive approaches to finding
global solutions of MPEC rather than local solution or
stationary points. For instance, papers on finding global
optima are given in [11], and [5]. In connection with
the latter on a branch and bound approach, note that
the concept of the relaxed problem, like the problem
(7), can be used to generate bounds for approximat-
ing the global optimal value of an MPEC. Both [5] and
[11] address problems which can be cast as MPEC with
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affine equilibrium constraints; these will be discussed in
a later section.

To discuss stopping conditions for Step 4, observe
that if all branches of FKKT at the current point wk are
such thatwk is stationary for each of the associated non-
linear programs (3), thenwk is stationary for theMPEC.
This follows because the union of branches of FKKT at
wk form a neighborhood of wk in FKKT.
A) (Stopping condition A) Ak = ;.

Stopping condition A requires an exhaustive check
of stationarity of wk for each NLP (3) where (J1, J2)
2 A(wk). Thus, if wk is a local minimizer, then ver-
ifying stationarity at wk amounts to checking sta-
tionarity of the current point for 2ˇ nonlinear pro-
grams where ˇ is the cardinality of the set I0(wk) =
{i : gi(zk) = 0 = �ki }.
To provide amore efficient stopping rule, introduce
the relaxed nonlinear program at wk, in which the
complementarity condition �i gi(x, y) = 0 is relaxed
for indices i in I0(wk). Let I+ (wk) = {i: gi(zk)< �ki },
I� (wk) = {i :gi(zk)> �ki }. The relaxed NLP is:
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min f (x; y)
s.t. G(x; y) � 0;

L(x; y; �) D 0;
gi (x; y) � 0 D �i ; 8i 2 IC(wk);
gi (x; y) � 0 � �i ; 8i 2 I0(wk);
gi (x; y) D 0 � �i ; 8i 2 I�(wk):

(7)

Our interest in the relaxed NLP stems from the ob-
vious fact that if wk 2 FKKT, then the feasible set
of (7) contains every branch of FKKT at the current
iterate wk. Hence if the current iterate is stationary
for (7), then it must also be stationary for the MPEC
(1).

B) (Stopping condition B.) Either Ak = ; or wk is a sta-
tionary point of (7) with corresponding multipliers
vk (corresponding to G, L and g).
Stopping condition B, first used in [10], is an often

effective heuristic to reduce the number of branches ex-
amined (null steps executed) in order to either iden-
tify a stationary point of the MPEC, or find a branch
where progress can be made. It is guaranteed to ver-
ify or disprove stationarity by checking just one branch
[10], provided that the active constraints atwk of the re-
laxed nonlinear program (7) have linearly independent
gradients. Also, see computational examples in [6,10],

where the algorithm executes considerably fewer null
steps when using stopping condition B instead of the
exhaustive stopping condition A, even when the relaxed
NLP has linearly dependent active gradients.

Convergence of PSQP

Superlinear local convergence of the PSQP algorithm
can be shown if, as well as a second order condition,
there is a uniqueness condition on the optimal multi-
pliers associated with each nonlinear program (3) for
relevant pairs of index sets (J1, J2). The proof of con-
vergence [9] relies on the convergence analysis of [2]
and [12], which applies to stationary points of nonlin-
ear programs such that the corresponding KKT mul-
tipliers are unique and the second order sufficient op-
timality condition holds. For superlinear convergence
of PSQP it is also needed that the optimal multipliers
be independent of the pairs (J1, J2), so that the current
value of the multipliers is (locally) a reasonable estimate
for the NLP subproblem corresponding to any branch.

Recall the second order sufficient condition for the
general nonlinear program (6); this condition will be
needed below for the NLP associated with each branch
of FKKT at a solution point of the KKT-constrained MP.
Let z be a stationary point of the NLP (6). For conve-
nience assume (as below) that the associated KKTmul-
tipliers �g , �h are unique. Let H be the Hessian matrix,
with respect to z, at D z of the Lagrangian mapping
f (z)+ �>h h(z)+ �>g g(z); and C be the critical cone of
(6) at z, namely the set of vectors d in z-space such that
hr f (z); di D 0, rh(z)d D 0, and r gI(z)d � 0, where
r g(z)I is the submatrix of the Jacobian of g at z con-
sisting of rows i such that i(z) D 0. The second order
sufficient condition says that H is strictly copositive on
C, i. e. d| Hd > 0 for 0 6D d 2 C.

The main convergence result for PSQP is:

Theorem 1 In the context of the KKT-constrained
MPEC (1), let the functions f and F be twice contin-
uously differentiable, and g be thrice continuously dif-
ferentiable. Let w D (x; y; �) be a point in FKKT and
v D (�; 
; �) 2 RsCmC` be such that, for each (J1, J2)
inA(w),
1) w is stationary for (3);
2) v is the unique KKTmultiplier for (3) associated with

w; and
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3) the second order sufficient condition for (3) holds at
w.

Then w is a strict local minimizer of the MPEC (1).
Moreover, for each (w0, v0) sufficiently close to (w; v), the
PSQP algorithm is well defined and produces a sequence
{(wk, vk)} that converges Q-superlinearly to (w; v). Fi-
nally, convergence is Q-quadratic if, in addition,r2f ,r2

F and r3 g are Lipschitz continuous near (x; y).

If (x; y; �) 2 FKKT is stationary for the relaxedNLP (7),
it is clear that the linear independence constraint qual-
ification for (7) at this point – linear independence of
gradients of the constraints that are active at (x; y; �) –
implies the uniqueness condition on the multipliers
v D (�; 
; �) required in the above result.

The above convergence result is local in the sense
that a starting point near to an eventual solution point
is needed. To improve the performance of the method
particularly from starting points that may be far from
being optimal, it is typical in the context of nonlinear
programming to use a line search or trust region strat-
egy [3]. See [6] for a line search approach to MPEC
where the objective function f is smooth and convex,
the upper constraints are affine, and the lower or equi-
librium constraints form an affine variational inequal-
ity. (PSQP also has special properties for this case as
seen shortly.)

In this case, assuming wk = (zk, �k) is feasible and
dw = (dz, d�) is the direction computed by solving the
QP (5), the update in Step 2 of the PSQP method is
modified to choose a step size t > 0 such that f (zk + t
dz) < f (zk), amongst other conditions; and then setwk+ 1

= wk + t dw. Attempts to globalize PSQP for problems
with nonlinear constraint functions, by adding penalty
terms to the objective to replace these constraints, and
then using line search or trust region strategies, are the
subject of research. See [14,15], for example.

Quasi-Newton variants on PSQP, in which the Hes-
sian matrix r2

wwLMPEC(wk, vk) is replaced by an easily
updated approximation, for example, are also the sub-
ject of research. See [3] for motivation from nonlinear
programming.

Affine Equilibrium Constraints

An important special case of the PSQP method is its
application to mathematical programs with affine equi-
librium constraints (MPAEC), that is, problems whose

equilibrium constraints are in the form of affine varia-
tional inequalities (AVI). MPEC with equilibrium con-
straints which can be expressed as in linear comple-
mentarity problems (cf. also� Linear complementarity
problem), such as [5,11,13], fall into this subclass.

Specifically, we consider the MPAEC formulated
with KKT constraints, for which the upper-level con-
straint function G, and the functions F and g in the
lower-level VI are affine (linear plus a constant):

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x; y)
s.t. Ax C By C a � 0;

Px C Qy C qC E>� D 0;
Dx C EyC b � 0; � � 0;
�>(Dx C EyC b) D 0;

(8)

for some A 2 Rs× n, B 2 Rs×m, a 2 Rs; P 2 Rm× n, Q 2
Rm×m, q 2 Rm; and D 2 R`× n, E 2 R` ×m, b 2 R`. This is
the problem (1) with

G(x; y) D Ax C ByC a ;

F(x; y) D Px C Qy C q ;

g(x; y) DDx C EyC b :

(9)

Note that a point (x, y, �) is feasible for (8) if and
only if G(x, y) � 0 and y solves the affine variational in-
equality VI(F(x, �) C(x)) described in (2), where C(x) =
{y:g(x, y)� 0 is a polyhedral convex set. Thus the KKT-
constrained MP (8) is equivalent to the MPAEC prob-
lem in its standard form:

8̂
<̂
ˆ̂:

min f (x; y)
s.t. Ax C By C a � 0 ;

y solves the AVI (2) :

(10)

Some differences between the special PSQP method
for MPAEC and the general method should be noted:
First, in the QP subproblem (5) solved in Step 1, the
objective function simplifies to

r f (zk)> dz C
1
2
dz>r2 f (zk) dz :

Second, therefore, the vector vk of MPEC multipliers
is not needed except perhaps if stopping rule B is em-
ployed. Third, the specialized algorithm requires a fea-
sible starting point and maintains feasibility of iterates.
A heuristic ‘phase-1’ procedure [6] for finding a feasible
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starting point is to find a local minimizer or stationary
point of the indefinite quadratic program:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min �>F(x; y)
s.t. G(x; y) � 0;

F(x; y)C E>� D 0;
� � 0;
g(x; y) � 0:

See [4] for conditions under which all stationary points
of the phase-1 problem are indeed feasible for the
MPAEC.

Similar to SQP applied to nonlinear programs with
linear constraints, the PSQP algorithm specialized to
MPEC with affine KKT constraints exhibits locally su-
perlinear convergence if the Hessian of the objective
function r2 f (x; y) satisfies a second order sufficient
condition, regardless of whether either the KKT mul-
tiplier vector � or the MPEC multiplier vectors �, 
 , �
are unique. To make this precise, suppose z D (x; y)
is feasible for the MPAEC (10), and let �(z) be the
set of all KKT multipliers � such that (z; �) is feasible
for (8), i. e. (z; �) 2 FKKT. Now for each � 2 �(z)
and (J1; J2) 2 A(z; �), let CKKT(J1, J2) be the critical
cone of the linearly constrained NLP (3) at (z; �); and
define the associated z-critical cone Cz{KKT}(J1, J2) as
the set of vectors dz such that (dz, d�) 2 CKKT(J1, J2)
for some d� 2 Rm. The second order sufficient condi-
tion for (z; �) to be a local minimizer of (8) for each
� 2 �(z) is that the Hessian matrix r2 f (z) be coposi-
tive on each of these z-critical cones.

The second order conditions act in the following
way:

Theorem 2 Consider the MPAEC problems (8) and
(10) where the function f is twice continuously differ-
entiable, and the functions G, F and g are given by
(9). Let z be a feasible point of (10) and �(z) be the
(nonempty) set

˚
� 2 Rm : (z; �) 2 FKKT�. Suppose for

each � 2 �(z) and (J1; J2) inA(z; �) that (z; �) is sta-
tionary for the NLP (3); and thatr2 f (z) is strictly copos-
itive on the z-critical cone CKKT

z (J1; J2) defined above.
Then fzg��(z) consists of local minimizers of the KKT-
constrained MP (8); in fact, z is a strict local minimizer
of the MPAEC (10).

The local convergence properties of PSQP applied to
MPAEC are now presented.

Theorem 3 Let f , G, F, g, z, and�(z) be as above; and
the associated first- and second order conditions hold.
Then for each (z0, �0) near z � �(z), the PSQP algo-
rithm specialized to MPAEC is well defined and pro-
duces a sequence {(zk, �k)} such that {zk} converges Q-
superlinearly to z. Convergence of {zk} is Q-quadratic if,
in addition, r2f is Lipschitz near z.

See also

� Feasible Sequential Quadratic Programming
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Sequential Quadratic Programming: Interior Point

Methods for Distributed Optimal Control Problems
� Successive Quadratic Programming
� Successive Quadratic Programming: Applications in

Distillation Systems
� Successive Quadratic Programming: Applications in

the Process Industry
� Successive Quadratic Programming: Decomposition

Methods
� Successive Quadratic Programming: Full Space

Methods
� Successive Quadratic Programming: Solution by

Active Sets and Interior Point Methods
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A k-leveled graph or a k-level hierarchy is defined as
a graph G = (V , E) = (V1, . . . , Vk, E) with vertex sets
V1, . . . , Vk, V = V1 [ � � � [ Vk, Vi \ Vj = ; for i 6D j,
and an edge set E connecting vertices in levels Vi and
Vj with i 6D j (1 � i, j � k). Vi is called the ith level. In
a geometric representation of a k-leveled graph, the ver-
tices in each level Vi are drawn on a horizontal line Li
with y-coordinate k� i, and the edges are drawn strictly
monotone, i. e., an edge (vi, vj) 2 E, vi 2 Vi, vj 2 Vj, i
< j, is drawn with decreasing y-coordinates. Essentially,
a k-leveled graph is a k-partite graph that is drawn in
a special way.

A proper k-leveled graph is a k-leveled graph G =
(V1, . . . , Vk, E) in which any edge in E connects ver-
tices in two consecutive levels Vi and Vi + 1 for i 2 { 1,
. . . , k � 1 }. Figure 1 shows a proper leveled graph on k
= 4 levels. This graph represents the face lattice of the
cuboctahedron [4].

Optimization problems in leveled graphs arise in
applications in computational biology and in automatic
graph drawing.

Multiple Sequence Alignment

In computational biology the vertices in each level Vi

represent letters of a sequence Si over a finite alphabet
˙ . The optimization problem which arises is themulti-
ple sequence alignment problem. Here, the k sequences
S1, . . . , Sk should be aligned so that the cost of the align-

Optimization in Leveled Graphs, Figure 1
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ment is maximized. An alignment can be interpreted
as an array with k rows, one row for each Si. Two let-
ters of distinct sequences are said to be aligned if they
are placed in the same column. There are many ways
to measure the quality of an alignment, leading to dif-
ferent problem formulations. One of them is the maxi-
mumweight trace formulation introduced in [14].Here,
the letters of the sequences Si = (si1, . . . , sin i ) are viewed
as vertices in level i in a k-leveled graph G = (V1, . . . ,
Vk, E). Every edge e 2 E has a nonnegative weight rep-
resenting the gain of aligning the endpoints of the edge.
We say that an alignmentbS realizes an edge if it places
the endpoints into the same column of the alignment
array.

The set of edges realized by an alignmentbS is called
the trace ofbS, and the weight of an alignmentbS is the
sum of the weights of all edges in the trace ofbS. The goal
is to compute an alignmentbS of maximum weight.

The maximum weight trace problem is NP-hard,
and can be solved in polynomial time for fixed k.
A dynamic programming approach gives an algorithm
with time complexity O(k22kN) and space complexity
O(N), where N =

Q
i ni, which is feasible only for very

small problem instances. J. Kececioglu [15] presented
a branch and bound algorithm whose implementation
could optimally align six sequences of length 250 in
a few minutes.

K. Reinert et al. [19] presented a first formulation as
an integer linear program. It is based on a graph theo-
retical characterization of traces given in [19]. For this,
the alignment graph G = (V1, . . . , Vk, E) is extended to
a mixed graph G0 = (V1, . . . , Vk, E, H) by adding a set
of directed edges H = {(vij, vij + 1): 1 � i � k, 1 � j <
ni }. This graph is called the extended alignment graph.
The weight function is extended to E [ H by assigning
weight 0 to all the edges in H. A cycle in G0 is called
a mixed cycle if it contains at least one arc of H. In [19]
it has been shown that an edge set in T � E is a trace in
G = (V , E) if and only if there is no mixed cycle in G0 =
(V , T, H). This characterization can be strengthened to
substitute ‘mixed cycle’ by ‘critical mixed cycle’ which is
essentially a simple mixed cycle visiting each sequence
at most once.

Figure 2 shows an alignment graph and its extended
alignment graph. Two critical mixed cycles are shown
by the dotted lines. A formulation in the form of an in-
teger linear program is now straightforward. Let G0 =

Optimization in Leveled Graphs, Figure 2

(V , E, H) be an extended alignment graph. For every
edge e 2 E we introduce a variable xe 2 { 0, 1 } indicat-
ing whether e is in the trace or not. Let we denote the
alignment weight of edge e 2 E. The formulation is as
follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
X
e2E

wexe

s.t.
X

e2C\E

xe � jE \ Cj � 1;

8 critical mixed cycles C in G0

xe 2 f0; 1g; 8e 2 E:

This integer linear program can be solved via
a branch and cut approach based on polyhedral combi-
natorics. Reinert et al. define the trace polytope as the
convex hull of the characteristic vectors of all possi-
ble traces of G = (V , E). Their investigation leads to
some classes of tight inequalities which can be used
in a branch and cut algorithm. An implementation of
a branch and cut algorithm based on ABACUS [13]
could optimally align 15 sequences (arising from prion
proteins) of length 230 within 2.5 hours of computation
time on a SparcStation Ultra 1/170.

For two sequences, Reinert et al. have given a com-
plete description of the trace polytope. The set (E,
) =
(E, {T: T � E is a trace in G }) is an independence sys-
tem, since ; 2
 and for any T1 2
 and T2 � T1, also
T2 2 
. The minimal dependent subsets or circuits of
(E,
) have size two. Hence, the set (E,
) is a 2-regular
independence system. A set F � E is a clique in a 2-
regular system (E, 
) if kFk � 2 and all (kFk2 ) 2-subsets
of F are circuits of (E,
).

For two sequences, the trace polytope is completely
described by the trivial inequalities 0 � xe � 1 and by
the clique inequalities

P
e 2 C xe � 1, where C is a maxi-

mal clique in the independence system (E,
). Since the
separation problem for the clique inequalities can be
solved in polynomial time, this provides an algorithm
to solve the maximum weight trace problem for two se-
quences in polynomial time.
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An efficient combinatorial algorithm for solving the
maximum weight trace problem for two sequences has
been given in [14]. Kececioglu has shown how to trans-
form the problem into the heaviest increasing subse-
quence problem. This can be solved in time O(n log n),
where n is the length of the sequence [9].

One can show that the maximumweight trace prob-
lem is equivalent to the 2-level planarization problem
with two fixed levels arising in automatic graph drawing
(see the section ‘Level Planarization’). For further infor-
mation on multiple sequence alignment or on combi-
natorial optimization problems in computational biol-
ogy, see, e. g., [23].

Leveled CrossingMinimization

In automatic graph drawing the task is to compute
a layout of a given graph that is easy to read and un-
derstand. Applications include flow diagrams, organi-
zation charts, entity-relationship diagrams, or PERT-
diagrams.

A common method for drawing directed graphs is,
as a first step, to partition the vertices into a set of k lev-
els so that no edges have their endpoints in the same
level and most of the edges point downwards. This can
easily be done using a depth-first-search or a topolog-
ical sorting algorithm when the graph is acyclic. The
crucial step is the second one. Given a k-leveled graph,
the vertices within the levels need to be permuted so
that the resulting drawing is easy to read [22]. A widely
used criterion for a ‘nice’ drawing is a minimum num-
ber of crossings.

The k-level crossing minimization problem arises:
Given a k-leveled graph G = (V1, . . . , Vk, E), permute
the vertices within the levels so that the resulting geo-
metric representation of G contains a minimum num-
ber of crossings.

The k-level crossing minimization problem is NP-
hard, even when the numbers of levels is two [5]. The
problem can be solved in polynomial time for 2-leveled
permutation graphs [21] and for 2-leveled trees [20].

An integer linear programming formulation has
been given in [10]. This is the first approach attacking
the k-level crossing minimization problem via polyhe-
dral combinatorics. Recently (1999), P. Healy and A.
Kuusik [8] have shown that the original formulation
can be tightened using additional inequalities derived
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in the so-called vertex-exchange graph. They are able to
solve instances with up to 100 vertices, 100 edges, and 8
levels to provable optimality.

Figure 3 shows a k-level crossing minimum drawing
of the face lattice graph shown in the first figure of this
article. It turns out to be a symmetrical drawing.

F. Shahrokhi et al. [20] have suggested algorithms
approximating the 2-level minimum crossing number
by a factor of O(n log logn) and O(log2n), respectively,
for a certain class � of graphs. The approximation al-
gorithms are based on the relationship between the 2-
level crossing minimization problem and the linear ar-
rangement problem. The linear arrangement problem
for a graph G = (V , E) is to find a bijection f : V ! { 1,
. . . , kVk } of minimum length. The length of the bijec-
tion f is given by Lf =

P
(v, w) 2 E k f (v) � f (w) k.

Shahrokhi et al. have shown that for a certain graph
class � the order of magnitude for the optimal num-
ber of crossings is bounded from below, and above, re-
spectively, by the minimum degree times the optimal
arrangement value, and by the arboricity times the op-
timal arrangement value. The arboricity aG of a graph
G = (VG, EG) is defined as

max
H

�
jEHj

jVHj � 1

�
;

where the maximum is taken over all subgraphs H of G
with kVH k� 2. Equivalent to aG is theminimum num-
ber of edge disjoint acyclic subgraphs needed to cover
G. The graph class � includes, e. g., connected 2-level
graphs G of degree at most a constant k with kEk � (1
+ �) kVk, where � > 0 is fixed. It also includes regu-
lar graphs, degree bounded graphs, and genus bounded
graphs, which are not too sparse.
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In practice, the crossing minimization problem for
k-leveled graphs is reduced to a series of 2-level crossing
minimization problems in the following way: In a pre-
processing step, we add artificial vertices to the levels Li
for all the edges traversing Li(i = 2, . . . , k � 1). For i =
1, . . . , k � 1, we solve the 2-level crossing minimization
problem for the two adjacent levels Li and Li + 1 with Li
fixed, repermuting the vertices on level Li + 1. Then we
go backward, fixing level Li and repermuting the ver-
tices on level Li� 1 for i = k, k � 1, . . . , 2. The heuristic
consists of repeating these two loops until no more im-
provement is obtained.

Unfortunately, the 2-level crossing minimization
problem in which the permutation of the vertices in
one level is fixed is also NP-hard [3]. Therefore, a lot
of effort went into the design of efficient heuristics (see,
e. g., [1,22]). P. Eades and N. Wormald [3] have shown
that the drawings constructed using the median heuris-
tic lead to a number of crossings that is within a factor
of three times the optimal crossing number.

M. Jünger and P. Mutzel [12] transformed the 2-
level crossing minimization problem with a fixed level
to a linear ordering problem:

Any solution is obviously completely specified by
the fixed permutation 
1 of V1 and a permutation 
2

of V2. For k = 1, 2 let yki j = 1 if 
k(i) < 
k(j) and 0 oth-
erwise. Thus 
k (k = 1, 2) is uniquely characterized by
the vector yk 2 { 0, 1 }(

nk
2 ). Let n1 = k V1 k, n2 = k V2 k,

m = kEk, and let N(v) = { w 2 V : (v, w) 2 E } denote the
set of neighbors of v 2 V = V 1 [ V2 in G. The number
of edge crossings between the levels V1 and V2 is given
by

C(
2) D
n2�1X
iD1

n2X
jDiC1

X
k2N(i)

X
l2N( j)

y1k l y
2
ji C y1l k y

2
i j :

Let

ci j D
X

k2N(i)

X
l2N( j)

y1l k

denote the number of crossings among the edges adja-
cent to i and j if 
2(i) < 
2(j). Then

C(
2) D
n2�1X
iD1

n2X
jDiC1

ci j y2i j C c ji (1 � y2i j)

D

n2�1X
iD1

n2X
jDiC1

(ci j � c ji)y2i j C
n2�1X
iD1

n2X
jDiC1

c ji :

For n = n2, yij = y2i j and aij = cij � cji we solve the linear
ordering problem

(LO)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
n�1X
iD1

nX
jDiC1

ai j yi j

0 � yi j C y jk � yik � 1;
1 � i < j < k � n;

yi j 2 f0; 1g;
1 � i < j � n:

If z is the optimum value of the linear ordering prob-
lem, then

z C
n�1X
iD1

nX
jDiC1

c ji

is the minimum number of crossings in the corre-
sponding 2-level drawing. The constraints of (LO)
guarantee that the solutions indeed precisely corre-
spond to all permutations 
2 of V2.

Jünger and Mutzel [12] have shown that the result-
ing linear ordering problem can be solved efficiently via
a branch and cut algorithm for instances containing up
to 250 vertices per level. Extensive computational ex-
periments show that the running time of their exact
branch and cut algorithm is comparable to that of the
widely used heuristics for instances with up to 60 ver-
tices per level.

They combined this branch and cut algorithm with
a branch and bound algorithm in order to achieve
a practically efficient exact algorithm for the 2-level
crossing minimization problem for instances with up
to 15 vertices on the smaller level. Computational ex-
periments have shown that the results achieved via
heuristic methods are far from the optimum solution
(see [12]).

In Fig. 4 an example of a 2-level graph with 20 edges
is shown. The first two drawings have been computed
via heuristics (LR-heuristic and barycenter heuristic,
respectively) and have 30 and 10 crossings, respectively.
The third one is the optimum solution with only 4
crossings. This is only one example showing that it is
worth searching for better algorithms for leveled graph
drawing.
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Level Planarization

Several authors have suggested minimizing the num-
ber of edges ‘producing’ crossings instead of min-
imizing the number of crossings in hierarchical
drawings.

Figure 5 shows two drawings of the same graph.
Figure 5a) has been generated after first removing the
edges that ‘produce’ crossings, and then drawing the re-
maining graph without crossings before finally insert-
ing the four edges again. Although the drawing shown
in Fig. 5a) has 34 crossings, that is 41% more crossings
than the crossing minimum drawing shown in Fig. 5b),
the reader will not recognize this fact.

This example motivates careful consideration of the
k-level planarization problem. A k-level graph G is level
planar if a k-level representation of G exists in which
no two edges cross except at common endpoints. Level
planarity can be tested in linear time [11]. Given a k-

level graph G = (V1, . . . , Vk, E) with weights we > 0 on
the edges, the k-level planarization problem is to extract
a level planar subgraph G0 = (V1, . . . , Vk, F), F � E, of
maximum weight, i. e., the sum

P
e 2 Fwe is maximum.

The k-level planarization problem is NP-hard, even for
k = 2 levels.

So far (1999), no exact algorithm for the k-level pla-
narization problem on k � 3 levels is known. For k = 2,
Mutzel [17] has presented a branch and cut algorithm
based on polyhedral studies of the associated polytope.
The integer programming formulation for the 2-level
planarization problem is based on the following char-
acterization of 2-level planar graphs (first presented
in [7]).

A 2-level graph is 2-level planar if and only if it con-
tains no cycle and no double claw.

Figure 6 shows a double claw (Fig. 6a) and a cy-
cle (Fig. 6b). Although both graphs are planar bipar-
tite graphs, they are not 2-level planar (see Fig. 6c) for
the cycle). For double claw free graphs, the 2-level pla-
narization problem is equivalent to the maximum for-
est subgraph problem that can be solved via a simple
greedy algorithm. Shahrokhi et al. [20] have given a lin-
ear time algorithm for solving the 2-level planarization
problem for 2-level acyclic graphs.

In order to get an integer linear programming for-
mulation for the 2-level planarization problem, we in-
troduce variables for all edges e 2 E of the given 2-level
graphG = (V1,V2, E). For any set P� E of edges we de-
fine a characteristic vector �P 2 RkEk with the ith com-
ponent �P(ei) getting value 1 if ei 2 P, and 0 otherwise.
Any 0 –1 vector x| = (xe1 , . . . , xekEk), that is the char-
acteristic vector of a 2-level planar graph satisfies the
following inequalities:

X
e2C

xe � jCj � 1; 8 cyclesC � E ;

X
e2T

xe � jTj � 1; 8 double claws T � E ;

xe 2 f0; 1g; 8e 2 E ;

and vice versa. Hence, solving the integer linear system
max

P
e 2 Ewe xe with the constraints described above

will give us the solution of the maximum 2-level planar
subgraph problem for a given graph G = (V1, V2, E)
with weights we on the edges e 2 E.
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Optimization in Leveled Graphs, Figure 5

Optimization in Leveled Graphs, Figure 6

The computational experiments presented in [17]
show that although most of the instances (from 20 to
100 vertices) could not be solved to optimality, solu-
tions could be obtained which are provably within 5%
of the optimum value.

As in the 2-level crossing minimization problem,
the case in which the permutation in one of the two
levels is fixed has also been investigated [18]. Unfortu-
nately, this version of the problem is also NP-hard [2].

While the fixed version of the crossing minimiza-
tion problem turned out to be ‘easier’ to attack in prac-
tice than the free version, unfortunately, this is not true
for the one level fixed version of the 2-level planariza-
tion problem. The integer programming formulation
suggested in [18] contains variables yij 2 { 0, 1 } for i
< j, i = 1, . . . , n2 � 1, j = i + 1, . . . , n2 coding the per-
mutation 
2 of the vertices in level V2 and variables xe
2 { 0, 1 } for e 2 E coding the edges contained in the
subgraph. In the following integer linear programming
formulation for the one level fixed 2-level planarization

problem let (p, i) and (q, j) be edges in E:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

max
X
e2E

wexe

0 � yi j C y jk � yik � 1;
1 � i < j < k � jV2j ;

yi j 2 f0; 1g;
1 � i < j < k � jV2j ;

yi j C x(p;i) C x(q; j) � 2;
i < j; 
1(q) < 
1(p);

�yi j C x(p;i) C x(q; j) � 1;
i < j; 
1(p) < 
1(q);

xe 2 f0; 1g; 8e 2 E:

The first two constraints require the variable vector y to
respect a linear ordering 
2. The last three constraints
are responsible for introducing no crossings with re-
spect to the ordering 
2 coded by y.

Mutzel and R. Weiskircher have shown that all the
tight inequalities of the linear ordering polytope (see,
e. g., [6]) are still tight inequalities for the polytope in-
vestigated here. In particular, all the knowledge about
the linear ordering polytope can be used in order to
get a practically efficient algorithm. Hence, the prob-
lem considered here is tightly connected with the 2-
level crossing minimization problem in which the per-
mutation of one level is fixed.
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Optimization in Leveled Graphs, Figure 7

Figure 7 shows two drawings computed via itera-
tively solving the one level fixed 2-level crossing min-
imization problem and the 2-level planarization prob-

Optimization in Leveled Graphs, Figure 8

lem with one fixed level. In both drawings, the subprob-
lems have been computed optimally.

A comparison of both drawings shows that it is
worthwhile to also consider planarization and not only
crossing minimization in hierarchical graph drawing.
The ultimate goal is to solve these problems not lev-
elwise but in one step. This will improve hierarchical
drawings tremendously (see [12]). The authors in [18]
conjecture that it will be easier to solve practical in-
stances of the k-level planarization problem than of the
k-level crossing minimization problem.

The question arises whether the 2-level planariza-
tion problem can be solved efficiently when the permu-
tations of the vertices in both levels are fixed. This prob-
lem, however, is equivalent to the maximum weight
trace problem for two sequences (see the section ‘Multi-
ple Sequence Alignment’). The transformation in both
directions is indicated in Fig. 8.

If the graph shown in Fig. 8a) is an instance of
a fixed 2-level planarization problem, it is equivalent to
solving the maximum weight trace problem on the in-
stance shown in Fig. 8b). In the case that Fig. 8a) shows
an instance of the maximum weight trace problem, it
is equivalent to solving the fixed 2-level planarization
problem in the graph shown in Fig. 8c).

It follows that the fixed 2-level planarization prob-
lem can be solved in polynomial time. Moreover, we
know the complete description of the associated poly-
tope (see also [18]). This information is very helpful for
solving the 2-level planarization problem in which the
permutation of one level is fixed.

Besides the application in automatic graph drawing,
the 2-level planarization problem comes up in compu-
tational biology. In DNA mapping, small fragments of
DNA have to be ordered according to the given over-
lapping data and some additional information. M.S.
Waterman and J.R. Griggs [24] have suggested combin-
ing the information derived by a digest mapping exper-
iment with the information on the overlap between the
DNA fragments. If the overlapping data is correct, the
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maps can be represented as a 2-level planar graph. But,
in practice, the overlapping data may contain errors.
Hence, they suggested solving the 2-level planarization
problem (see also [23]). Furthermore, the 2-level pla-
narization problem arises in global routing for row-
based VLSI layout (see [16]).

See also

� Graph Planarization
� Integer Programming
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By allowing physicians to peer into the human body,
medical imaging technologies provide vital informa-
tion for medical diagnosis, treatment and research. Be-
yond the mere visualization of anatomical structures,
these imaging technologies are now being used in such
roles as surgical planning, cancer diagnosis and prog-
nosis, intra-operative navigation, radiotherapy treat-
ment planning, and the tracking of disease progression.
A key component in the effectiveness of medical imag-
ing technologies is the development of sophisticated
computer algorithms, which extract and analyze use-
ful information. Such algorithms enable reliable and re-
peatable quantitative data to be extracted in order to
support accurate medical diagnosis and treatment as
well as clinical research. The development of such im-
age analysis algorithms remains a rich area of research,
involving numerous applications of optimization.

Medical images are generated by a variety of tech-
nologies. Among the most widely used are X-ray com-
puted tomography (CT), emission computed tomogra-
phy, magnetic resonance imaging (MRI), biomagnetic
source imaging, ultrasound, and digital subtraction an-
giography. (See [1] for a tutorial of these medical imag-
ing technologies). Images from these machines are typ-
ically stored as two-, three-, or four-dimensional arrays
of data elements, corresponding to two or three spatial
coordinates, and possibly a temporal coordinate. These
data elements are generally referred to as pixels, but are
also called voxels in three-dimensions and hypervoxels
in four dimensions. The values of these elements can be
scalars, such as tissue density, or vectors, such as relax-
ation time pairs in magnetic resonance imaging.

A central issue in extracting information frommed-
ical images is the problem of segmenting the image, ei-
ther by identifying boundaries of critical structures in
the image (spatial segmentation), or by classifying pix-

els according to some set of features, such as texture or
gray levels (feature segmentation). In the first case, the
image is segmented spatially into a number of regions
which correspond to anatomical objects, such as or-
gans. These regions typically form connected sets with
well-behaved boundaries. In the second case, spatial in-
formation plays little or no role. For example, microcal-
cifications, which may be an early sign of breast cancer,
may be scattered throughout otherwise healthy tissue.
In detecting such microcalcifications, the pixels of an
image would be classified either as healthy tissue or as
microcalcifications. In this case, the pixel classes are not
connected spatially, and can have very complex bound-
aries.

In either case, segmenting medical images requires
the integration of low-level information about the im-
age along with a priori high-level information about
what the image represents. Extracting low-level infor-
mation involves detecting features such as edges or tex-
tures. Once these features are detected, they can then
be combined with high-level information either in the
form of an expert system or some mathematical model
of the knowledge. This integration task is made more
difficult by the fact that medical images tend to suf-
fer from sampling artifacts, spatial aliasing and noise,
which can cause boundaries of structures to be indis-
tinct and disconnected.

Low-Level Feature Detection

Numerous algorithms have been developed for identi-
fying low-level features of images. The most common
are edge-detection methods and texture transforms.
Edge detection methods work by applying a digital fil-
ter, which emphasizes edges in the image. As an exam-
ple, vertical edges can be detected by convolving the im-
age with the Sobel edge filter

1 0 �1
2 0 �2
1 0 �1

After applying this filter, the resulting image will have
values close to zero, except at vertical edges, which will
have values which are relatively large in magnitude. By
changing the elements of the filter, edges with different
orientations can be detected.
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Another important low-level feature is texture.
Generally speaking, this is a measure of image coarse-
ness, smoothness and regularity. Numerous texture
transforms have been proposed, including statistical,
spectral and structural measurements. These trans-
forms quantify various attributes of texture at every
pixel in the image. Thus, after applying the texture
transforms, each image pixel is represented by a vector
of numbers which represent the texture.

Edge detection methods and texture transforms are
described in detail in most recent image processing
textbooks. (see, for example, [7]).

Spatial Segmentation

Once low-level features of the image have been ex-
tracted, they can then be combined with high-level in-
formation to segment the image. In the case of spa-
tial segmentation, this generally involves determining
boundaries between various regions of interest. Figure 1
provides an example of a CT scan of a human abdomen
which has been partially segmented spatially. In this
picture, boundaries of critical organs have been high-
lighted in white.

More than a thousand different algorithms have
been proposed for automatically segmenting images.
Among the techniques used in these algorithms are
thresholding, region splitting, region merging, clus-
tering, multiscale analysis, surface fitting, rule-based
expert systems, relaxation, and deformable models.

Optimization in Medical Imaging, Figure 1
Partially segmented CT image of human abdomen. Organ
boundaries are shown in white

A common theme underlying many of these techniques
is the minimization of an energy functionwhich in some
way measures the quality of the segmentation.

Deformable Models

A spatial segmentation technique which has attracted
much recent attention, particularly in the medical field,
is the use of deformable models. Deformable models
have the capability of combining low-level information
derived from the image data with high-level knowl-
edge about the characteristics of anatomical structures.
An extensive survey of deformable models in medi-
cal image processing is given in [6]. Deformable mod-
els in the form of snakes were first introduced by M.
Kass, A. Witkin, and D. Terzopoulos [5] to segment
contour objects in 2D images. Deformable models are
curves or surfaces, often defined using splines, which
are controlled by an energy function. The energy func-
tion has two major components: the external energy,
which measures how well the spline matches image fea-
tures, such as edges, and the internal energywhich mea-
sures nonaffine deformations from some model curve.
By minimizing the sum of these two energy functions,
a reasonable balance is achieved between matching im-
age features and determining boundaries which are
consistent with the a priori knowledge.

In two dimensions, the internal energy of a curve
c(s) can be determined by the formula

E D
Z
s
Eelasticityc(s)C Ebendingc(s) ds ;

where s is the arclength of the curve, Eelasticity represents
the energy due to the elasticity of the spline and Ebending
represents the energy due to bending. Minimizing this
internal energy results in a curve which is as close as
possible to the original shape of the model curve.

The external energy of a curve is determined by how
well the curve matches image features. In particular, the
external energy is minimized when the curve is aligned
with edges or when textures on either side of the curve
are different.

Figure 2 and Fig. 3 give an example of the use of
snakes to segment an image representing a breast tis-
sue sample [9]. In Figure 2 an initial estimate of the
cell boundaries is entered by a technician using amouse
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Optimization in Medical Imaging, Figure 2
Initialization of snake contours for cell boundaries (Copied
with permission from [9])

Optimization in Medical Imaging, Figure 3
Cell contours minimizing energy (Copied with permission
from [9])

to define approximate contours of cell boundaries. Af-
ter these snakes are initialized, a greedy algorithm is
used to achieve a local minimum of the energy func-
tion. If the energy function value at a particular snake
point can be lowered by moving the point to an adja-
cent pixel, then the point is moved. The process is re-
peated for each point until all points settle into a local
minimum of the energy function. The result is shown
in Fig. 3.

Early implementations of deformable models pos-
sessed only generic a priori knowledge (for example,
smoothness criteria) of what region boundaries should
look like. More sophisticated tools, called deformable
templates [8] have been studied which incorporate
more specific a priori information with respect to ex-
pected shapes and their spatial relationships.

Optimization Techniques
for Minimizing the Energy Function

The energy function governing the deformable mod-
els or templates is, in general, a nonconvex function.
Worse, in some cases, this energy function may actu-
ally be discontinuous. Consequently, local optimization
techniques are usually inadequate unless the initializa-
tion of the deformable models is very accurate. This
generally requires human intervention to provide an
acceptable initialization.

Alternatively, global optimization techniques have
been considered for minimizing the energy function.
Among the more frequently used algorithms in this
arena are simulated annealing (cf.� Simulated anneal-
ing) and genetic algorithms (cf.� Genetic algorithms).

Feature Segmentation

In applications where regions of interest are not ex-
pected to be spatially connected, it is more natural
to segment according to features. To accomplish this,
a number of features are evaluated at each pixel of the
image. These features might include, for example, gray
levels or texture transforms. The collection of measure-
ments for a pixel forms a vector in n-dimensional fea-
ture space, where n is the number of features evaluated.
It is then possible to classify pixels according to where
they are located in feature space.

Clustering

One approach to classifying points in feature space is
called clustering. Here, the m points representing the
image are assigned to a predetermined number k of
clusters. The problem can be stated more explicitly as
that of determining k centers in Rn such that the sum
of the distances of each point to the nearest center is
minimized. This amounts to solving the following min-
imimization problem:

min
C1;:::;Ck

mX
iD1

k
min
jD1



xi � Cj


 ;

where Cj, j = 1, . . . , k, represent the centers and xi, i =
1, . . . ,m, are the feature vectors for them points. When
the norm is the 2-norm, this problem is solved by the k-
mean algorithm [4]. Whereas when the norm is the 1-
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norm, the problem reduces to a bilinear programwhich
is solved by the k-median algorithm [3].

Clustering algorithms are unsupervised classifica-
tion schemes in that no a priori knowledge is used to
determine the classification. However, the choice of the
number of clusters k can play a significant role. If k is
too large, it may be difficult to attach meaning to the
clusters. Whereas, if k is too small, critical information
may be missed; for example, microcalcifications may be
clustered together with healthy tissue.

Supervised Classification

Another approach to classifying pixels is to partition
feature space into a number of regions according to
some a priori knowledge. This knowledge can be pro-
vided by a training set of data taken from a large col-
lection of images. Each element of the training data in-
cludes the vector of features, along with the known clas-
sification of that vector. These data elements can be par-
titioned into a collection of subsets, with each subset
corresponding to a unique classification.

With this training data, a discriminant function can
be constructed that distinguishes between the different
classifications. If the conical hulls of the subsets cor-
responding to each classification are disjoint, then the
subsets can be discriminated by a piecewise-linear func-
tion, which can be calculated by solving a single linear
program (cf. also � Linear programming) [2]. Other-
wise, a decision tree can be constructed by solving a fi-
nite sequence of linear programs.

Once the discriminant function has been deter-
mined, new images can be segmented by evaluating the
features of each pixel, and then applying the discrimi-
nant function to classify the pixel.

Summary

These applications give a sense of the applicability of
optimization techniques to medical image processing.
Global optimization methods, such as simulated an-
nealing and genetic algorithms, are used to minimize
energy functions corresponding to deformable mod-
els; bilinear programs arise in clustering approaches to
image segmentation; and linear programs arise in the
training of image classification schemes.

See also
� Entropy Optimization: Shannon Measure of

Entropy and Its Properties
�Maximum Entropy Principle: Image Reconstruction

References
1. Acharya R, Wasserman R, Stevens J, Hinojosa C (1995)

Biomedical imaging modalities: A tutorial. Computerized
Medical Imaging and Graphics 19:3–25

2. Bennett KP, Mangasarian OL (1993) Multicategory discrimi-
nation via linear programming. OptimMethods Softw 3:27–
39

3. Bradley PS, Mangasarian OL, Street WN (1997) Clustering via
concave minimization. Adv Neural Inform Process Systems
9:368–374

4. Jain AK, Dubes RC (1998) Algorithms for clustering data.
Prentice-Hall, Englewood Cliffs

5. Kass M, Witkin A, Terzopoulos D (1987) Snakes-active con-
tour models. Internat J Comput Vision 1:259–268

6. McInerney T, Terzopoulos D (1996) Deformable models in
medical image analysis: A survey. Medical Image Anal 1:91–
108

7. Pitas I (1993) Digital image processing algorithms. Prentice-
Hall, Englewood Cliffs

8. Rueckert D, Burger P (1997) Geometrically deformable tem-
plates for shape-based segmentation and tracking in car-
diac MR images. In: Pelillo M, Hancock ER (eds) Energy Min-
imization Methods in Computer Vision and Pattern Recog-
nition. Lecture Notes Computer Sci. Springer, Berlin, pp 83–
98

9. Street WN, Wolberg WH, Mangasarian OL (1993) Nuclear
feature extraction for breast tumor diagnosis. In: Biomedi-
cal Image Processing and Biomedical Visualization. SPIE-The
Internat. Soc. for Optical Engineering, Bellingham, pp 861–
870

Optimization in Operation
of Electric and Energy Power Systems
PETER G. HARHAMMER

Department Energy Economics,
Techn. University Vienna, Vienna, Austria

MSC2000: 90C35, 90C30, 90C10

Article Outline

Keywords
Problem Definition
Modeling

Thermal Plant
Storage Plant



Optimization in Operation of Electric and Energy Power Systems O 2825

Hydro-Reservoir
Run-of River Plant
Energy Purchase Contract
Power Balance
Objective Function

Optimization
Computer Implementation: Optimization in Practice

Model Formulation
Model Generator Formulation (EasyModeler/6000)

Numerical Example
Input Data
Numerical Results

Summary and Future Trends
Note
References

Keywords

Electric power system; Load dispatcher; Operation
planning; Load curve; Thermal plant; Run-of-river
plant; Storage plant; Energy purchase contract;
Co-generation plant

From the 1960s onwards the computer-assisted solu-
tion of the problem to distribute the load of an elec-
tric power system among all generation units in opera-
tion (economic dispatch) attracted the attention of load
dispatchers (persons, responsible for economic and se-
cure operation of a power system) in utilities and en-
gineering scientists [12]. Hand in hand with the devel-
opment of computer hardware to high internal speed,
large main storages and low costs, different optimiza-
tion methods have been applied to more and more
complex operation planning models of power systems
to better reflect their reality [3,4,10,13]. Today, the
operation planning problem is of high economic im-
portance to the electric power industry in presence
of deregulation measures, privatization, and an up-
coming competitive marketing environment. This dra-
matic move to a market-based industry will signifi-
cantly change power system operations. New pricing
mechanisms (e. g., spot-market, auctions) will come in
place and require a fast solution of new optimization
problems to economically plan the operation of future
power systems under new marketing conditions.

Therefore, this paper outlines the basic principles of
how to model and optimize a power system to econom-
ically plan its operation.

ProblemDefinition

The objectives of the operation planning problems of
electric power systems are dependent on their plan-
ning period. Short-term planning problems cover a day,
a weekend or a week and are designed to solve
the scheduling of generation units and contracts in
the most economic way possible. Long-term planning
problems cover a planning period of a season or a year
and more and must allocate the resources available
(e. g., fuels, storage water, contracted energy amounts)
to smaller time periods. Medium-term problems for
more than a week or a month are often to be solved in
presence of small hydro-reservoirs or amounts of fuels
to be disposed in short intervals. These three planning
problems with different objectives are not independent
from each other. They form an hierarchical model sys-
tem (long-term, medium-term, short-term) to be run
continuously to plan the operation economically from
a day to a year.

Electrical energy is not storable in large amounts.
Therefore, the load dispatcher of a power system must
balance its load Pl(t) and the generation Pg(t) including
energy purchase contracts Pc(t) for each point in time,
expressed by equation (1).

Pg(t)C Pc(t) D Pl(t) ; (1)

Pl(t) is defined by the load curve (total power sys-
tem load over the time of day) and is given as input
data representing constant load values for short time-
intervals (e. g., 1 hour), called time-steps in modeling
terms. This simplification replaces the continuous load
curve by a stepwise representation. The transformation
into a stepwise load curve Fig. 1, is necessary to be
able to apply mathematical programming optimization
methods.

The power system load Pl[t] (time-discretized rep-
resentation of load curve with [t]) is covered partially by
an energy purchase contract and by generators located
in different power plants.

There are two main types of power plants: thermal
plants (including nuclear plants) and hydro plants, to be
distinguished by their energy input (primary energy) to
produce electricity (secondary energy). Thermal plants
use coal, oil and gas whereas hydro plants need wa-
ter of rivers or stored in reservoirs as input. More-
over, thermal generation units (a generator in a thermal
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Optimization in Operation of Electric and Energy Power Sys-
tems, Figure 1
Load curve representation

plant) are characterized by other operational conditions
than hydro ones. These different operational conditions
must be taken into account to correctly model the dif-
ferent types of generation units.

Thermal generation units have, in a first approach,
unlimited access to their fuels (coal, oil, gas) to be
payed for. The operational costs of thermal units are de-
fined by the cost curve for fuels between a minimal and
a maximal electric power output. Moreover, their start-
up or shut-down procedure lasts a number of hours and
also causes procedure costs. Finally, their electric power
output can be changed with a small time gradient only.

There are also two types of hydro plants to be distin-
guished. Firstly, the run-of-river plants that are located
on a river. They generate electricity out of the (no-cost)
water transported by the river. Therefore, their electric
power output is constant over longer time periods (e. g.,
a day) and changes only when the amount of the wa-
ter freight of the river changes. There is no degree of
freedom for the optimization but a run-of-river plant
must be taken into account to compute correct genera-
tion schedules, accepted by load dispatchers.

Secondly, storage plants which can only use a small
amount of their reservoir-stored water during the plan-
ning period. This condition makes the model dynamic
in time and requires special attention when modeling
a storage plant. Fast changes of their electric power out-
put are possible within their generation limits. This is
necessary to follow large differences of the power sys-
tem load of consecutive time-steps.

Sometimes, storage plants have pumping-units too
which transport water from a lower reservoir to

a higher one at times when the energy costs needed
to pump the water are low (e. g. during the night).
When the energy costs are high, the pumped water is
released from the upper reservoir to generate electricity
by running into the lower one. This pumping possibil-
ity makes the operation of a power system more flexible
but also more complex. Therefore, pumping units are
not considered here to not overburden the reader.

The last important power system element that con-
tributes to cover the power system load is the energy
purchase contract with an outside utility. Such a con-
tract is defined by the costs for the delivered energy
and is limited by a maximum power and often by a cer-
tain amount of energy allowed to be purchased during
a given time period (e. g., day).

Summarizing the afore described power system ele-
ments, equation (1) can be enhanced as follows:

Pg[t] D Pth[t]C Prr[t]C Ps[t] (2)

Pth[t]CPrr[t]C Ps[t]C Pc[t] D Pl[t] ; (3)

where
� Pth[t]: generation of thermal plants at time-step t;
� Prr[t]: generation of run-of-river plants at time-step

t;
� Ps[t]: generation of storage plants at time-step t.

Equation (3) describes the power balance of a so-
called hydro-thermal system in its most general form
(pumping not included).

The short-term scheduling problem is chosen as
a sample of the operation planning problem for the
complete planning cycle (day to year). The load dis-
patcher must solve this operation planning problem on
a regular (daily) basis in order to achieve his objective to
operate the power system and its elements in the most
economic way possible.

Modeling

In the following, all power plants discussed before, the
energy purchase contract, the power balance, and the
objective to minimize operational costs are modeled
in MIP-terms (mixed integer programming). Simple
modeling approaches with linear relationships are cho-
sen for the power system elements involved to sup-
port the understanding of the reader for the short-term
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Optimization in Operation of Electric and Energy Power Sys-
tems, Figure 2
Cost curve of a thermal unit

scheduling problem of the operation planning process
in power systems.

Before starting with the model descriptions of the
power system elements involved in covering the power
system load, it is necessary to summarize the time pa-
rameters used for modeling.

The planning period is the time horizon (e. g., day,
weekend, week, month, year) covered by the opti-
mization problem. Each time horizon is split up into
so-called time-steps with equal length (e. g., 1 hour,
0.5 hour) during which the power system load is ap-
proached as a constant value (see Fig. 1). This simplifi-
cation makes the application of mathematical program-
ming methods possible since the right-hand side of the
matrix is transformed into a constant value.

In general, there are always more than one unit in
a power plant. Here, only one generation unit is as-
sumed. Therefore, the term unit is used synonymously
with plant in the following.

Thermal Plant

A linear relationship of the cost Cth[t] to electric gen-
eration Pth[t] is chosen for the sake of simplicity, not
altering the modeling approach of the thermal unit it-
self.
� Fuel costs:

Cth[t] D a 
 Y[t]C b 
 Pth[t] : (4)

� Limits on electric generation:

pn 
 Y[t] � Pth[t] � px 
 Y[t] : (5)

� Start-up indicator:

U[t] � Y[t]� Y[t � 1] ; (6)

U[t] 2 (0; 1); Y[t] 2 (0; 1) : (7)

� Start-up costs:

Cs[t] D csth 
 U[t] : (8)

� Data (thermal unit)
– a: fixed costs;
– b: incremental costs;
– pn: minimum electric power output;
– px: maximum electric power output;
– csth: start-up costs.

� Variables (thermal unit)
– Cth[t]: fuel costs at time-step t;
– Cs[t]: start-up costs at time-step t;
– Pth[t]: electric generation at time-step t;
– Y[t]: on/off indicator at time-step t;
– U[t]: start-up indicator at time-step t.

Storage Plant

In a first modeling approach, the water discharge curve
is assumed to be linear between zero and a maximum
discharge value qx. Moreover, a constant head H =
Hs(t) is also permissible:

Ps(t) D k 
 Qs(t) 
 Hs(t) : (9)

Therefore the equation (9) for the electric generation
Ps(t) of a storage plant with a water discharge Qs(t) and
a water height Hs(t) can be transformed into (12) by
applying equation (11):

Ps(t) D k 
 Qs(t) 
 Hs(t) ; (10)

Hs(t) D H D const ; (11)

Ps(t) D kHs 
 Qs(t) ; (12)

� Electric generation

Ps[t] D kHs 
 Qs[t] : (13)

� Limits on water discharge

0 � Qs[t] � qx : (14)

� Data (hydro unit; storage plant)
– kHs : gradient of the linear water discharge curve;
– qx: maximum possible water discharge.
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Optimization in Operation of Electric and Energy Power Sys-
tems, Figure 3
Water discharge curve

� Variables (hydro unit; storage plant)
– Ps[t]: electric generation at time-step t;
– Qs[t]: water discharge (cubicmeter per second)

for electric generation at time step t.

Hydro-Reservoir

Each storage plant is connected to at least one hydro-
reservoir. The content of the hydro-reservoir changes
form time-step to time-step and can be computed from
the so-called storage equation (15) expressing the water
volume V[t] in the reservoir at the end of each time-
step t:
� Water volume

V[t] DV [t � 1] � 3600 
 Qs[t]dt

C 3600 
 Qin[t] 
 dt :
(15)

� Volume limits

vn � V[t] � vx : (16)

� Storage condition

AT D V[0] � V [T] : (17)

The equation (15) defines the amount of water al-
lowed for generation of the storage plant during the
planning period. In short-term planning (e. g., daily op-
timization) it is often required that the water volume at
the end of the planning horizon V[T] equals the start-
ing volume V[0].
� Data (hydro-reservoir)

– V[0]: volume in the reservoir at the beginning of
the planning period;

– AT : water volume available for generation to the
storage plant during the planning period;

– vn: minimum volume allowed in the reservoir;
– vx: maximum volume allowed in the reservoir;
– Qin[t]: natural inflow into the reservoir at time-

step t;
– dt: time-steplength in hours.

� Variables (hydro-reservoir)
– Ps[t]: electric generation at time-step t;
– Qs[t]: water discharge (cubicmeter per second)

for electric generation at time-step t.

Run-of River Plant

The electric generation of a run-of-river plant is directly
dependent form the water freight of the river. In gen-
eral, the water freight of a river remains constant during
a short-term planning period of a day or even a week-
end. Therefore, the electric generation of a run-of-river
plant remains constant during the planning period and
has no degree of freedom in mathematical terms con-
cerning its (constant) generation. Although of nomath-
ematical importance to the optimization, run-of-river
plants must be considered in the model because of
practice-related reasons. A load dispatcher needs the
economic dispatch problem to be solved in engineering
terms, taking into account all power system elements,
including run-of-river plants, contributing to cover the
power system load.
� Data (hydro unit; run-of-river plant)

– Prr[t]: hydro-unit (run-of-river plant) – electric
generation.

Energy Purchase Contract

Although there is a wide variety of different contract
conditions, a very simple contract is modeled here to
demonstrate the basic principles.

Constant incremental costs are assumed for the pur-
chased energy between Pc = 0 and Pc = pcx, the maxi-
mum power allowed to be purchased from the selling
utility during the planning period.
� Contract costs

Cc[t] D Tc 
 Pc[t] 
 dt : (18)

� Contracted electric power limits

0 � Pc[t] � pcx : (19)



Optimization in Operation of Electric and Energy Power Systems O 2829

Optimization in Operation of Electric and Energy Power Sys-
tems, Figure 4
Contract cost curve

In addition to the above (basic) model of a contract,
there is often a maximum amount of contracted energy
allowed to be purchased from the selling utility during
the planning period as follows:

TX
tD1

Pc[t] 
 dt � acx (20)

� Data (energy purchase contract)
– Tc: tariff for the purchased energy;
– dt: time-steplength (already defined);
– pcx: maximum power allowed to be purchased

from the selling utility;
– acx: maximum energy allowed to be purchased

from the selling utility during the planning pe-
riod.

� Variables (energy purchase contract)
– Cc[t]: contract costs at time-step t;
– Pc[t]: electric power of purchased energy at time-

step t.

Power Balance

The power balance equation (3) is the most important
part of an operation planning optimization model and
is therefore repeated here again:

Pth[t]C Prr[t]C Ps[t]C Pc[t] D Pl[t] : (21)

Both the variables Pth[t], Ps[t] and Pc[t] and the in-
put data Prr[t] and Pl[t] were already defined when the
different power system elements were modeled.

Objective Function

One of the main goals of utilities is to operate their
power system as economic as possible. Therefore, the

operational costs during the planning period must be
minimized to meet the overall target of a load dis-
patcher. This objective formulates as follows:

Z D
TX

tD1

(Cth[t]C Cc[t]) dtC
TX

tD1

Cs[t]! min : (22)

The variables Cth[t], Cc[t] and Cs[t] were already
defined when describing the model of the thermal plant
and the model of the contract.

Optimization

Since the model of the power system was formulated
in MIP-terms (mixed integer programming) an opti-
mization code with integrated MIP-techniques (linear
programming followed by branch and bound method)
must be applied. Each professional optimization code
offers MIP methods to the user in different modular-
ity; sometimes as package with a control language (e. g.,
MPSX/370 and MIP/370 [6]) or as a subroutine library
(e. g., OSL [9]).

Moreover, the solution time and the accuracy of re-
sults are two main aspects that must be taken into ac-
count when planning the operation of an electric power
system by applying optimization techniques. Therefore,
a careful selection of the solution procedure is neces-
sary to cope with both the accuracy of results required
and a practice-related solution time that are primarily
conflicting goals. But today, the solution of each oper-
ation planning problem of an electric power system as
an MIP-optimization-model is possible in the solution
time required and with the accuracy necessary, even
for highly nonlinear and combinatorial problems (e. g.,
unit commitment: scheduling of a large number of ther-
mal units taking into account time-dependent start-
up costs) [2,14]. Moreover, multiprocessor hardware
(e. g. RS/6000-SP) and related optimization codes (e. g.,
OSLp [8]) are further elements to speed up the solution
time for time critical applications, sometimes arising
in the operational planning environment of very large
scale electric power systems. It must be emphasized
in this context that three elements must be taken into
account to successfully meet challenging solution-time
targets. An appropriate modeling approach [14], an op-
timization procedure with acceleration techniques im-
plemented and a problem dependent hardware with
a professional optimization code.
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Computer Implementation:
Optimization in Practice

The computer implementation is an important step
when developing an optimization model for the load
dispatch practice. The problem definition, the model-
ing approach, and the optimization techniques are rel-
atively easy to define. However, it is much more diffi-
cult to transform the optimization model, written on
a paper, into a computer executable form. This bot-
tleneck can be overcome by modeling tools, so-called
model generators (e. g., EasyModeler/6000 [7]), allow-
ing to formulate the optimization model in algebraic
terms and at the same time offering ease-of-use sup-
port for data input and debugging. Moreover, a close
program interaction between the model generation tool
and an optimization code is a must for a fast and suc-
cessful model development and model usage in the util-
ity practice of planning the operation of its power sys-
tem. Therefore, tools with algebraic model formula-
tions are widely accepted by engineers.

In the sequel, the power balance equation (21) is ap-
plied as a demonstration example concerning the ease-
of-use of a model generator (EasyModeler/6000) ap-
propriate for application by utility engineers and load
dispatchers.

Model Formulation

Optimization in Operation of Electric and Energy Power Sys-
tems, Figure 5
Power balance

Pth[t]C Prr[t]C Ps[t]C Pc[t] D Pl[t] : (23)

Model Generator Formulation (EasyModeler/6000)

� DATA
– � � �
– Pl[t] (power system load);

– Prr[t] (generation; run-of-river plant! constant
power output);

– � � �
� ENDDATA
� VARIABLE

– � � �
– Pth[t] (generation; thermal plant);
– Ps[t] (generation; storage plant);
– Pc[t] (energy purchase contract; power);
– � � �

� ENDVARIABLE
� CONSTRAINTS

– � � �
– Load (FORALL t)

Pth[t]C Ps[t]C Pc[t] D Pl[t]� Prr[t];

– � � �
� ENDCONSTRAINT

Comparing the power balance equation (21) with
the formulation of the model generator (Prr[t] as a con-
stant value for each t appears on the right-hand side),
no relevant differences occur in their algebraic rep-
resentation. The same is valid for the modeling ap-
proaches of all other power system elements. Therefore,
the application of a model generator to real-life prob-
lems can be learned very easily, even by self-education.
Moreover, it supports a very fast development of opti-
mization models occurring in the operational practice
of utilities.

Numerical Example

In order to support the reader’s understanding of the
given problem, the numerical example is based on the
(simplified) model of a power system, described before,
to economically plan its operation. The result of the op-
timization run in Table 1 offers the schedules of the
power system elements in operation and the associated
costs as well as the value of the objective function.

Input Data

t = 1, . . . , 7, dt = 1.
� Thermal plant

– pn: 100MW;
– px:950MW;
– a: 0MW;
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Optimization in Operation of Electric and Energy Power Sys-
tems, Table 1
Schedule for all power system elements (7 time steps)

t Po[t] Pth[t] Prr [t] PIo [t] Po[t]
1 200 110 90 � �

2 300 210 90 � �

3 600 410 90 � 100
4 800 615:4 90 � 94:6
5 1000 798:5 90 11:5 100
6 700 510 90 � 100
7 200 100 90 4:6 5:4

– b: 26.3158MU/MW (MU denoting money unit);
– csth: 1000MU.

� Run-of-river plant
– Prr[t]: 200MW.

� Storage plant
– kHs : 2.304MW second/m3;
– qx: 34.72m3/second.

� Hydro-reservoir
– v[o]: 41.23 
 103m3;
– vn: 0m3;
– vx: 150 
 103m3;
– AT : 0m3;
– qin: 1m3/second.

� Energy purchase contract
– Tc: 25MU/MWh;
– pcx: 100MW;
– acx: 400MWh.

Numerical Results

– Objective function: 82 470.3MU.

Summary and Future Trends

Today, operational planning tools are state-of-the-art
in utilities to support load dispatchers in meeting their
objective to economically operate their power sys-
tems [15]. These planning tools are based on computer-
assisted optimization models. From the 1960s onwards,
these models have been closely linked to the develop-
ment of computer hardware, modeling tools and op-
timization codes. With decreasing price/performance
of computers, power system models became larger and

larger, taking into account more details of the power
system elements involved and so coming closer to their
technical and operational reality. It must be empha-
sized in this context that MIP modeling and optimiza-
tion methods have turned out to be the best and most
effective strategy as an overall compromise of the con-
flicting targets: accuracy of results and solution time.
Multiprocessor hardware and an associated optimiza-
tion code are also available for time critical applications
with combinatorial and highly nonlinear models.

In the future, utilities (sometimes privatized) will
have to operate their power systems in a widely dereg-
ulated environment of a competitive market. This ex-
pected move to a market driven industry will signifi-
cantly change electric utility operations [11]. New pric-
ingmechanisms of energy trading (e. g. spot-marketing,
auctions) will require the formulation of new optimiza-
tion problems [1,5]. They will have to be solved much
faster than up to now in order to support effectively and
efficiently the decision making process in the business
environment to come for utilities in the future. This
new situation of utilities is a great but fascinating chal-
lenge for future research concerning the new operation
planning targets of power systems.

Although this contribution referred to electric
power systems only, the same modeling and optimiza-
tion principles can be applied for other line-based en-
ergy systems (e. g., gas, district heating), even for cou-
pled ones with co-generation plants (plants, that pro-
duce electricity and steam for industrial or public use
in district heating systems).

Note

In memoriam Felix Schlaepfer, my friend, who con-
tributed relevantly to the economic dispatch problem.
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Introduction

Unit-Disk Graphs (UDGs) are intersection graphs of
equal diameter (or unit diameter w.l.o.g.) circles in the
Euclidean plane. In the geometric (or disk) representa-
tion, each circle is specified by the coordinates of its
center. Three equivalent graph models can be defined
with vertices representing the circles [18]. In the in-
tersection graph model, two vertices are adjacent if the
corresponding circles intersect (tangent circles are also
said to intersect). In the containment graph model, two
vertices are adjacent when one circle contains the cen-
ter of the other. In the proximity graph model, an edge
exists between two vertices if the Euclidean distance
between the centers of corresponding circles is within
a specified bound. Recognizing UDGs is NP-hard [10]
and hence no polynomial time algorithm is known for
deriving the geometric representation from the graph
model. From an algorithmic perspective this places an
textitasis on whether or not the geometric representa-
tion is needed as input. UDGs are not necessarily per-
fect or planar [18] as several other geometric intersec-
tion graph classes are and thus motivate the need for
dedicated theoretical study.

The remainder of this article is organized as fol-
lows. We introduce the necessary definitions and nota-
tions for the various optimization problems on graphs
considered in this article in Sect. “Definitions”. A brief
survey of applications modeled using UDGs and the
role of optimization problems discussed in this chapter
are presented in Sect. “Applications”. A survey of algo-
rithms and their key ideas for cliques, independent sets,
vertex covers, domination, graph coloring and clique
paritioning are presented in Sect. “Models”. We con-
clude with a summary in Sect. “Conclusions”.

Definitions

We consider simple, undirected graphs on n ver-
tices and m edges denoted by G D (V ; E). For
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a vertex v 2 V , N(v) is its neighborhood and
N[v] D N(v) [ fvg is its closed neighborhood. We
denote the complementary graph by Ḡ D (V ; Ē) and
the subgraph induced by S � V by G[S]. We denote
by ı(G) and �(G) the minimum and maximum vertex
degrees in G respectively. Denote by d(u, v) the shortest
distance between u; v 2 V , then the k-neighborhood of
v is defined as Nk(v) D fu 2 V : d(u; v) � kg. We also
use the notation G � v and G � I to refer to the graph
obtained from G by deleting vertex v (and incident
edges) and by deleting a subset of vertices I (and inci-
dent edges), respectively. That is G � v D G[V n fvg]
and G � I D G[V n I].

A clique is a subset of pairwise adjacent vertices inG.
The maximum clique problem is to find a largest cardi-
nality clique in G and the clique number !(G) is the
size of a maximum clique. An independent set (or sta-
ble set) is a subset of mutually non-adjacent vertices
and the maximum independent set problem is to find
an independent set of maximum cardinality. The inde-
pendence number (or stability number) of a graph G is
denoted by ˛(G) and it is the size of a maximum in-
dependent set. A maximal clique (independent set) is
one that is not a proper subset of another clique (in-
dependent set). Cliques and independent sets are com-
plementary to each other in the sense that C � V is
a clique in G if and only if C is an independent set in Ḡ.
For arbitrary graphs, the maximum clique and inde-
pendent set problems are equivalent and possess sim-
ilar complexity and approximation results. Algorithms
and heuristics for one can be adapted via complement
for the other. However, this equivalence is not natu-
rally extended to geometric graphs that do not preserve
upon complementing, their geometric property. For
instance planar independent set is NP-complete [30]
while clique is trivial. Results onUDGswill be discussed
in Sect. “Cliques”, “Independent Sets”. A vertex cover S
is a subset of vertices such that every edge in G has at
least one end point in S. We denote by ˇ(G), the size of
a minimum vertex cover. Clearly if I � V is indepen-
dent, then V n I is a vertex cover of G.

A proper coloring of a graph is one in which every
vertex is colored (assigned a natural number) such that
no two vertices of the same color are adjacent. A graph
is said to be k-colorable if it admits a proper coloring
with k colors. Vertices of the same color are referred
to as a color class and they induce an independent set.

The chromatic number of the graph, denoted by �(G)
is the minimum number of colors required to prop-
erly color G. Note that for any graph G, !(G) � �(G),
as different colors are required to color the vertices
of a clique. The famous theorem by Brooks on graph
coloring [11] states that �(G) � �(G) if G is neither
a complete graph nor an odd cycle. A related problem
is theminimum clique partitioning problem which is to
partition the given graph G into a minimum number of
cliques, �̄(G). Note that this is exactly the graph color-
ing problem on Ḡ and �̄(G) D �(Ḡ).

A dominating set D is a subset of vertices such that
every vertex in the graph is either in this set or has
a neighbor in this set. A minimal dominating set con-
tains no proper subset which is also dominating. The
minimum cardinality of a dominating set is called the
domination number, denoted by �(G). Note that every
maximal independent set is also a minimal dominat-
ing set. If a dominating set D is independent, it is called
an independent dominating set. A a dominating set D is
called a connected dominating set if G[D] is connected.
The independent and connected domination numbers
(obviously defined) are denoted by �i (G) and �c(G).
Naturally, G is assumed to be connected when we con-
sider connected domination.

An approximation algorithm with approximation
ratio � > 1 for an optimization problem˘ , outputs for
every instance x of ˘ with an optimal value opt(x),
a solution of value sol(x) in time polynomial in size of
x, such that sol(x) � � � opt(x) if˘ is a minimization
problem or sol(x) � opt(x)/� if ˘ is a maximization
problem.

An optimization problem ˘ admits a fully polyno-
mial time approximation scheme (FPTAS) if there is
an approximation algorithm with approximation ratio
1C � for any � > 0 that runs in time polynomial in size
of the input and 1/�. ˘ is said to admit a polynomial
time approximation scheme (PTAS) if it has a polyno-
mial time approximation algorithm with approxima-
tion ratio 1C � for each fixed � > 0. A problem that is
NP-hard in the strong sense [30], does not admit a FP-
TAS unless P =NP.

Applications

A major application area for UDG models is in wire-
less communication. Here the underlying connectivity
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graph of the wireless nodes with equal and omnidirec-
tional transmission-reception range can be modeled as
a UDG [5,33]. Various optimization problems studied
on UDGs are solved to facilitate effective operation of
such networks.

For instance, a maximum independent set corre-
sponds to a largest set of wireless nodes that can broad-
cast simultaneously without interference [56]. Alter-
nately in location logistics, ˛(G) is also the maximum
number of facilities that can be located in n potential lo-
cations if proximity between any two facilities is unde-
sirable [45,61]. Clique and clique partitioning are pop-
ular approaches for clustering wireless networks [40].
Maximal cliques are also used to model and avoid link
interference in ad-hoc networks [32]. A dominating
set in UDGs modeling wireless network function as
a small set of nodes that can send an emergency com-
munication to the entire graph [18]. Domination and
connected domination are also used to cluster wireless
networks. The vertices in a dominating set D are des-
ignated as cluster-heads and N[v] for each v 2 D forms
a cluster. Inside a cluster formed in this fashion, 2-hop
communication is possible between any pair of nodes
via the cluster-head. In mobile wireless networks, the
nodes are weighted appropriately to find a weighted
dominating that can yield cluster-heads that are less
mobile [8,16]. Alternately, if a virtual backbone is desir-
able among the cluster-heads, a connected dominating
set is used in clustering [19,20]. Clustering is an impor-
tant problem in wireless networks as it helps routing
and improves efficiency and throughput [57]. Graph
coloring problems are used to solve channel assignment
problems in wireless networks such as frequency as-
signment, code or time slot assignment depending on
the protocols used [33]. The idea is that the chromatic
number of the connectivity graph is the smallest set of
frequency bands (time-slots or codes) required to com-
municate without interference. The UDG recognition
problem also has applications in determining molecu-
lar conformations [34].

Models

Cliques

An O(n4:5) time algorithm for finding a maximum
clique in a UDG G D (V ; E) given the disk repre-
sentation is presented in [18]. We briefly describe

Optimization Problems in Unit-Disk Graphs, Figure 1
The region Rij is shaded

the ideas presented in [18]. Consider the set of disks
V D f1; : : : ; ng with centers at ci ;8i 2 V . For a pair
i; j 2 V , (i; j) 2 E if and only if the Euclidean distance
L(ci ; c j) � 1. Denote by Rij the region of intersection of
two disks of radius L(ci ; c j) centered at ci and cj (see
Fig. 1). Let Hi j � V denote the disks with centers in
the region Rij. Consider a maximum clique C and let
i; j 2 C be the farthest pair (in terms of Euclidean dis-
tance) of vertices in C, then C � Hi j . If such a far-
thest pair i, j in some maximum clique C is known, then
we only need to find a maximum clique in G[Hi j] to
find a maximum clique in G. Since such an i, j pair is
unknown, we can enumerate over all (i; j) 2 E to de-
rive a polynomial time algorithm, if we can solve the
maximum clique problem in polynomial time on every
G[Hi j]. This is facilitated by the following observation
made in [18]. Consider the region Rij with L(ci ; c j) � 1.
The line joining ci and cj bisects Rij into R1

i j and R
2
i j . The

disk centers located in each half form a clique and hence
the complement G[Hi j] is a bipartite graph. Since max-
imum independent set problem in bipartite graphs can
be solved in O(n2:5), we can find the maximum clique
in G[Hi j] in the same time which results in the claimed
polynomial runtime. After the polynomial solvability
was established in [18], the running time has been im-
proved to O(n3:5 log n) in [9].
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A relevant notion of robust algorithms for restricted
graph classes such as UDGs was introduced recently
in [55]. A robust algorithm for solving a problem on
UDGs would accept only the graph G in standard for-
mat (adjacency list or matrix) as an input and solve
the problem if it is indeed a UDG, or report that G is
not a UDG. A polynomial time robust algorithm is pre-
sented in [55] for finding a maximum clique in UDGs
(without the geometric representation) which returns
a maximum clique or reports that G is not a UDG.
The existence of a polynomial time robust algorithm
for the maximum clique problem on UDGs is a sur-
prising result given the NP-hardness of UDG recog-
nition. A key idea is an ordering L D e1; e2; : : : ; em
of edges of G (input in standard format) referred to
as a cobipartite neighborhood edge elimination ordering
(CNEEO). Denote byGL(i) the subgraph ofGwith edge
set fei ; eiC1; : : : ; emg. Define for each edge ei D (u; v)
the set NL(i) to be the set of vertices adjacent to both u
and v in GL(i). The authors define an edge ordering L
to be CNEEO if for each ei, NL(i) induces a cobipartite
(complement of bipartite) graph inG. The authors then
prove that given G and a CNEEO L, a maximum clique
can be found in polynomial time and describe a greedy
algorithm for determining a CNEEO L if it exists or cer-
tifying that G has none in polynomial time. Finally, the
authors show that every UDG admits a CNEEO there
by completing the robust polynomial time algorithm
for maximum clique problem on UDGs (in fact for the
larger class of graphs that admit a CNEEO).

Independent Sets

Contrary to maximum clique, the maximum indepen-
dent set (MIS) problem on UDGs is known to be NP-
hard, even when the disk representation is given [18].
However, simple constant factor approximation algo-
rithms and PTASs have been developed for this prob-
lem. Note that the strong NP-hardness of the MIS
problem precludes the possibility of a FPTAS unless
P =NP [30].

Given a graph G that does not contain a (pC 1)-
claw as an induced subgraph, an O(n log nC m) algo-
rithm is presented in [37] to find an independent set
of size at least ˛(G)

ı
p. A p-claw is a graph on pC 1

vertices Vp D fu0; u1; : : : ; upg such that u0 is adjacent
to all other vertices and Vp n fu0g is an independent

set. The algorithm proceeds by adding a vertex v 2 V
to I followed by the removal of v and its neighbors
i. e., N[v] from the graph. This step is repeated un-
til V is empty, and the resulting independent set I is
maximal. Let I* denote a MIS in G. Suppose for the
sake of argument that we sequentially removed ver-
tices of N[v] from I* for each v removed from I. In
any step, if v removed from I is also in I*, the num-
ber of vertices in I* deleted in that step is exactly one.
If v 2 I n I�, the number of vertices removed from I*

is at most p since a MIS in N(v) has at most p vertices.
Since I is maximal, I* will be empty when I is empty and
˛(G) D jI�j � jI \ I�j C p � jI n I�j � pjIj. By geom-
etry, UDGs do not contain a 6-claw [45] and the above
algorithm is a 5-approximation for the MIS problem on
UDGs.

A simple 3-approximation algorithm is presented
in [45] that, given a UDG G constructs an indepen-
dent set of size at least ˛(G)

ı
3. This algorithm is based

on the observation that every UDG has some vertex v
such that ˛(G[N(v)]) � 3. In particular, this is true for
the vertex corresponding to the disk with minimum x-
coordinate. Since every induced subgraph of a UDG is
also a UDG, we can apply the same algorithm stated be-
fore from [37] and the observation will continue to hold
in each step. But the vertex v added to I in each step is
one with a MIS of size at most 3 in N(v) yielding the
desired approximation ratio. Given the disk represen-
tation, such a vertex v can be found easily in each step
and without the disk representation such a vertex can
certainly be found in polynomial time (O(n5)).

The shifting strategy for geometric graphs intro-
duced in [38], analogous to techniques for planar
graphs introduced in [4] is the key ingredient in the
PTASs developed for the MIS problem in [39,47]. The
approaches are similar and we follow the presenta-
tion in [39]. Let G D (V ; E) be the UDG and the cen-
ter of each disk in V is specified. If we seek an in-
dependent set IS[G] such that jIS[G]j � (1 � �)˛(G),
then choose parameter k to be the smallest integer for
which (k

ı
(k C 1))2 � 1 � �. Grid the region contain-

ing G with unit squares by dividing into horizontal
and vertical strips of unit width. Assume that the in-
tervals on the axes corresponding to each strip are left
closed and right open. This is necessary to deal with
disks with centers on the boundary of two strips. For
some 0 � i � k, delete all the disks with centers in ev-
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Optimization Problems in Unit-Disk Graphs, Figure 2
An example UDG Gwith a unit grid applied

ery horizontal strip congruent to i mod (k C 1) and
denote the resulting UDG by G(i). This leaves r disjoint
horizontal “super”-strips of width k containing disjoint
UDGs G(i)1;G(i)2; : : : ;G(i)r such that

G(i) D
[

1� j�r

G(i) j :

See Fig. 2 and Fig. 3. Varying i varies the deleted hori-
zontal strips and hence permits us to shift the horizontal
super-strips vertically over the graph G.

Now for some 1 � j � r, select the jth horizon-
tal super-strip. For some 0 � l � k, delete from the
super-strip G(i) j , all disks with centers in every verti-
cal strip congruent to l mod (k C 1) and denote the
resulting UDG by G(i; l) j . Parameter l can similarly
be seen as the horizontal shift parameter for the ver-
tical super-strips. This partitions G(i; l) j into sj UDGs
G(i; l) j;1; : : : ;G(i; l) j;s j each contained in a square
block of side k. See Fig. 4. Thus any MIS of G(i; l) j;t
with 1 � j � r and 1 � t � s j is of size at most O(k2)
and can be found in time nO(k2) by enumeration. The
independent set returned is the union of independent
sets from disjoint UDGs, but the one corresponding
to the best block partition which depends on the shift
parameters i, l. This can be expressed as follows. For
a fixed vertical shift i and horizontal super-strip j, and

Optimization Problems in Unit-Disk Graphs, Figure 3
Graph G(i) with i D k D 2. Disks centered in the underlined
horizontal strips (2,5) have been deleted leaving 2 horizon-
tal super-strips corresponding to disjoint graphs G(2)1 and
G(2)2

Optimization Problems in Unit-Disk Graphs, Figure 4
Graph G(2; 0)2 with l D 0 (above). Disks centered in the un-
derlined vertical strips (0, 3, 6) have been deleted leaving
two 2× 2 square blocks. GraphG(2; 0)2;2 inside a 2 ×2 square
block (below)

for some choice of l,

IS[G(i; l) j] :D
[

1�t�s j

MIS[G(i; l) j;t] :
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The best independent set in super-strip j is then ob-
tained by horizontally shifting the grid, i. e., varying l,
thus

IS[G(i) j] :D max
0�l�k

IS[G(i; l) j] :

For each i, having found the best independent set in
each super-strip,

IS[G(i)] :D
[

1� j�r

IS[G(i) j] :

By varying the horizontal shift parameter i, we can se-
lect the best independent set for the graph as

IS[G] :D max
0�i�k

IS[G(i)] :

It is shown in [39] that

jIS[G]j � (k
ı
(k C 1))2˛(G)

and the algorithm has a running time of nO(k2). By the
choice of k, this implies a PTAS for the MIS problem
on UDGs. Suggestions for improving running time and
solution quality are presented in [39,47]. After a vertical
shift i, this involves solving the MIS problem optimally
on each horizontal super-strip j using dynamic pro-
gramming (DP) instead of approximating by horizontal
shifting. This results in jIS[G]j � (k

ı
(k C 1))˛(G) and

a total running time of nO(k).
In either version, the shifting strategy helps us to

divide-and-conquer by breaking down the graph into
pieces on which optimal resolution is possible (by enu-
meration or DP) in polynomial time, but at the same
time bound the error created by the division process as
division is flexible. We refer to [39] for details on the
performance guarantees mentioned.

Clearly, the disk representation is required for the
above PTAS to work. The open problem of whether
a robust PTAS exists for the problem in the sense de-
scribed in Sect. “Cliques” was settled positively in [51].
Given a graph G D (V ; E) (in standard format) and
a desired error � > 0 we seek an independent set of
size at least ˛(G)

ı
� where � D 1C �. The algorithm

starts with some arbitrary vertex v and finds a MIS Ik
in G[Nk(v)] for k D 0; 1; 2; : : : sequentially until the
condition jIkC1j > �jIk j is violated. Let r denote the
smallest k � 0 for which jIrC1j � �jIr j. The authors
show that there exists a constant (dependent on �)

c(�) such that r � c(�) and each MIS Ik can be found
in polynomial time. By the choice of r, we know that
˛(G[NrC1(v)]) � �jIr j, i. e., Ir is a �-approximate MIS
for G[NrC1(v)]. Suppose we have a �-approximate MIS
I0 for G0 D G[V nNrC1(v)], then clearly I D I0 [ Ir is
independent since I0 � V nNrC1(v) and Ir � Nr(v).
Furthermore, ˛(G) � ˛(G[NrC1(v)])C ˛(G0) � �jIj,
i. e., I is a �-approximate MIS of G. This fact com-
bined with the fact that every vertex induced sub-
graph of a UDG is also a UDG, we have an induc-
tive argument leading to the required PTAS. Robust-
ness of the above algorithm is due to the following
observations. The performance guarantee does not re-
quire G to be a UDG, and the algorithm always returns
a (1C �)-approximate solution. However, geometry of
UDGs is required to establish polynomially bounded
running times for finding MIS in k-neighborhoods and,
the existence of a constant c(�). The proof of these
claims also shows that if there exists an independent set
Ir > (2rC 1)2 (bound assumes unit-radius disk repre-
sentation, which is equivalent to other representations
discussed before) then G is not a UDG. Since this cer-
tificate can be obtained in polynomial time, this PTAS
is robust.

Vertex Cover

The minimum vertex cover problem on UDGs is also
NP-hard as shown in [18]. Given a UDG G D (V ; E),
a polynomial time heuristic that does not require a disk
representation to find a vertex cover of size at most
1:5ˇ(G) is presented in [45]. This algorithm requires
results from [37,50]. The first result is the well-known
Nemhauser-Trotter (NT) decomposition [50] which
states given an arbitrary graph G D (V ; E) there exist
disjoint vertex subsets P andQ such that (1) there exists
a minimum vertex cover containing P; (2) if D is a ver-
tex cover for G[Q] then D [ P is a vertex cover for G;
(3) any minimum vertex cover ofG[Q] contains at least
jQj
ı
2 vertices. The second result from [37] states that

following a NT decomposition, if G[Q] can be colored
using k colors, then P [ (Q n S) is a vertex cover of size
at most 2(1 � 1

ı
k)ˇ(G), where S is the largest color

class in G[Q].
The authors of [45] show that triangle-free UDGs

can be colored using 4 colors. Given a UDG G, the
heuristic first deletes vertices that form a triangle in
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G (call it V 0). With G :D G � V 0, NT decomposition
is then applied to the resulting triangle-free UDG G
to identify sets P and Q. G[Q] is then colored us-
ing 4 colors and the set S � Q corresponding to the
largest color class is identified. The heuristic then re-
turns V 0 [ P [ Q n S as the approximate vertex cover.
The approximation ratio follows by applying the local-
ratio principle [6,7,45] as follows. In V 0 we pick 3 ver-
tices for each triangle, and we have to pick at least 2.
And for the triangle-free UDG, which is 4-colorable,
the result from [37] applies. The running time of the
heuristic is dominated by the time to obtain NT de-
composition which can be accomplished in polynomial
time.

A PTAS has been developed in [39] for min-
imum vertex cover that uses an approach similar
to the PTAS for the MIS problem described in
Sect. “Independent Sets” from the same article. For
0 � i < k, instead of deleting a horizontal strip con-
gruent to i mod (k C 1), this approach uses super-
strips of width k C 1 overlapping at horizontal strips
congruent to i mod k. Then solving the MIS problem
exactly using DP on each super-strip G(i) j also yields
a minimum vertex cover. For a fixed i, the union over
0 � j � r of minimum vertex covers of each G(i) j is
a valid vertex cover for G and the smallest vertex cover
found over all i has size at most ((k C 1)

ı
k)ˇ(G). De-

tails are available in [39].

Domination

Minimum dominating set (MDS) problem, minimum
independent dominating set (MIDS) problem and min-
imum connected dominating set (MCDS) problem are
known to be NP-hard for UDGs [18]. In fact, they are
NP-hard even when restricted to a subclass of UDGs
called grid graphs on which MIS is polynomial time
solvable [18]. The observation that a maximal indepen-
dent set is also a minimal dominating set is used fre-
quently in approximating dominating sets. It has been
proven in [45] that any maximal independent set in
a UDG G is no larger than five times its domination
number, i. e., ˛(G) � 5�(G) � 5�i(G). This follows
from the observation that ifD is amaximal independent
set in a UDG G, then any vertex in a MDS (or a MIDS)
can dominate at most 5 vertices in D. Any maximal
independent set is hence a 5-approximate solution for

the minimum dominating set (MDS) problem and the
minimum independent dominating set (MIDS) prob-
lem. A 10-approximate algorithm forMCDS problem is
also presented in [45]. This bound has been improved
to 8 in several papers [2,12,14,60] which present dis-
tributed implementations that are applicable in a prac-
tical setting in wireless networks. These heuristics con-
struct a maximal independent set (which is dominat-
ing) and then connect it using a tree approach to obtain
a CDS. This approach is based on the result from [2]
that for a UDG G,

˛(G) � 4�c(G)C 1 : (1)

The maximal independent set I that is constructed (in
polynomial time [60]) also has the property that for any
I0 � I, I0 and I n I0 are exactly distance two away from
each other i. e., there exist u1 2 I0 and u2 2 I n I0 with
d(u1; u2) D 2. The maximal independent set is con-
nected using a spanning tree approach in [2,12,60] and
using a Steiner tree in [14]. The bound (1)was improved
recently in [62] to

˛(G) � 3:8�c(G)C 1:2 : (2)

This tighter bound shows that the 8-approximate algo-
rithms such as the ones from [14,60] are in fact 7.8-ap-
proximate. It is also observed in [62] that if

˛(G) � a�c(G)C b ;

then 2:5 � a � 3:8, which suggested that further im-
provement of their result was possible. Recently in [28],
it has been shown that

˛(G) � 3:453�c(G)C 8:291 (3)

for UDGs and a distributed algorithm is presented that
finds a CDS of size at most 6:91�c(G)C 16:58.

Using the bound (2), a 6.8-approximate algorithm
for the MCDS problem has also been proposed recently
in [48] that connects a maximal independent set using
a Steiner tree approach. Given a set of vertices desig-
nated as terminals, a tree connecting the terminals such
that every leaf is a terminal is called a Steiner tree. The
non-terminal nodes are called Steiner nodes. In princi-
ple, we could find a Steiner tree with minimum number
of Steiner nodes (ST-MSN) with a maximal indepen-
dent set I as terminals and the Steiner nodes S�I union
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I yields a CDS for the UDG G. Instead of solving ST-
MSN optimally, the authors approximate this problem.
This is sufficient if we make the following observation.

From a MCDS D, we can obtain a solution for ST-
MSN problem with terminals I as follows. We can find
a spanning tree in G[D]; add an edge between each ver-
tex in I nD and some vertex in D; and remove any leaf
which is not a terminal in the resulting tree. The Steiner
nodes in this solution are contained in D. Hence in the
optimal solution to the ST-MSN problem, the number
of Steiner nodes is at most �c(G).

In the approach taken in [48], first a maximal inde-
pendent set I is found such that every subset of I and its
complement are exactly distance two apart. The authors
develop and use a 3-approximate algorithm for the ST-
MSN problem on UDGs given terminals I (see [48] for
details). Denote the Steiner nodes in the 3-approximate
solution for the ST-MSN problem by SI , then its size is
at most 3�c(G). Thus, the CDS SI [ I has size at most
6:8�c(G)C 1:2. This appears to be the approach with
best performance guarantee available presently.

The weighted version of the MDS and MCDS prob-
lems, where the vertices of the UDG G are weighted
and the objective is to find a dominating or a connected
dominating set of minimumweight (sum of the weights
of the selected vertices) have only been studied recently
and the first constant factor approximation algorithms
have been developed in [3]. A factor 72 approximation
for MWDS and a factor 89 approximation forMWCDS
are available and these problems appear to be more
complicated than their unweighted counterparts.

A PTAS for the MDS problem given the disk rep-
resentation was developed in [39], along similar lines
as the schemes proposed for maximum independent
set and minimum vertex cover problems. MCDS prob-
lem also has a PTAS developed in [17] for UDGs
when the UDG is presented in its disk representation.
In this work, an approximation algorithm running in
time nO((s log s)2) is presented that constructs a CDS of
size no larger than (1C 1

ı
s)�c(G). The algorithm uses

a grid based divide-and-conquer approach in combi-
nation with the shifting strategy. A robust PTAS for
the MDS problem on UDGs was proposed recently
in [52].

We briefly describe the robust PTAS for MDS on
UDGs from [52]. Given a graph G D (V ; E), the au-
thors define a 2-separated collection of subsets S, as

S D fS1; : : : ; Skg with Si � V ; i D 1; : : : ; k satisfying

8i ¤ j; d(s; t) > 2;8s 2 Si ;8t 2 Sj :

If D(S) denotes a MDS of G[S], the authors show that
for a 2-separated collection S in G,

�(G) D jD(V)j �
kX

iD1

jD(Si)j :

Furthermore, if we have subsets Ti such that
Si � Ti ; i D 1; : : : ; k and a bound � � 1 such that

jD(Ti)j � �jD(Si)j;8i D 1; : : : ; k; (4)

and

D0 D
[

iD1;:::;k

D(Ti ) dominates G; (5)

then D0 is a �-approximateMDS ofG. This is true since,

jD0j �
kX

iD1

jD(Ti)j � �
kX

iD1

jD(Si)j

� �jD(V)j D ��(G) :

Given a UDG G D (V ; E) and an � > 0, the al-
gorithm in [52] constructs in polynomial time (for
fixed "), a 2-separation Si and the supersets Ti with
� D 1C � satisfying the required properties (4), (5).
This is accomplished as follows. First, we start with
an arbitrary vertex v1 2 V1 :D V and compute a MDS
D(Nk(v1)) of Nk(v1) for k D 0; 1; 2; : : : until the condi-
tion

jD(NkC2(v1))j > �jD(Nk(v1))j

is violated. Denote by r1 the smallest k for which the
above condition is violated, i. e., jD(Nr1C2(v1))j �
�jD(Nr1(v1))j. Then we iterate this procedure for
the graph induced by ViC1 :D Vi nNriC2(vi) un-
til ViC1 D ;. Note that in the subsequent itera-
tions, the k-neighborhood is defined with respect to
the current graph G[ViC1]. Suppose this procedure
terminates after K iterations, let Ti D NriC2(vi) and
let Si D Nri (vi) for i D 1; : : : ;K . The authors then
show that S1; : : : ; SK is a 2-separated collection andSK

iD1 D(Ti ) dominates G. The termination condition
for each iteration, jD(Ti))j � �jD(Si)j, guarantees the
required approximation ratio.
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It is noted in [52] that G needs not be a UDG
to derive the approximation ratio, however it is nec-
essary to show polynomial time solvability. The run-
ning time guarantee is provided by the following results
from [52]. Firstly, the number of iterations K � n and
in each iteration i, the MDS in each k-neighborhood
Nk(vi) can be found in polynomial time since its size
is shown to be bounded by a polynomial function of k,
and finally the number of k-neighborhoods considered
is also bounded since ri � c(�) where c(�) is a constant
that depends only on the desired approximation factor
�. Finally, this PTAS can be made robust by utilizing
the same certification approach to show the graph is
not a UDG used for the MIS problem developed by the
same authors, described in Sect. “Independent Sets”.

Coloring and Clique Partitioning

The graph coloring problem on UDGs is known to be
NP-hard. In [18], 3-colorability of UDGs is shown to
be NP-complete and hence it follows that no approxi-
mation algorithm can achieve a ratio within 4

ı
3, unless

P =NP. In fact k-colorability of UDGs is NP-complete
for any fixed k � 3 [31]. A simple 3-approximation al-
gorithm for the problemwas presented in [45] based on
results from [37,58]. Let

p(G) D max
H
G

ı(H) ;

the largest p such that G contains a subgraphH of min-
imum degree p. Then

�(G) � p(G)C 1[58]

and p(G) can be found in O(mC n) steps [37,58] as
follows. Let p :D 0 and let v be a vertex of minimum
degree in G. Repeating the steps, p :D maxfp; ı(G)g
followed by G :D G � v until no vertices remain in
G, finds p(G). If we denote by vi, the vertex removed
in step i, each vi then has at most p(G) neighbors
in viC1; : : : ; vn . Processing the vertices in the order
vn ; : : : ; v1, and coloring each vertex with the small-
est color not yet assigned to any of its neighbors al-
ready colored, guarantees a coloring of G with at most
p(G)C 1 colors. If G is a UDG, then it is proven in [45]
that

p(G)
3
C 1 � �(G) :

Using similar approaches, it has also been shown in [54]
that a UDG G can be colored using no more than
3!(G) � 2 colors. A 3-approximate algorithm for col-
oring UDGs using network flow and matching tech-
niques is also available from [31].

Clique partitioning is NP-complete even when re-
stricted to coin graphs (UDGs where all overlaps are
tangential) [15]. A polynomial time 3-approximate al-
gorithm for this problem that uses the disk represen-
tation is available from [15]. The algorithm proceeds
by first partitioning the plane into horizontal strips of
width

p
3. A disk belongs to strip i if its center lies on

the strip. A disk with its center on the boundary is as-
signed to the strip on top. Let Gi denote the UDG in-
duced by disks in strip i and V(Gi) are vertex disjoint.
Solve the minimum clique partitioning problem exactly
on each Gi and let Zi denote the collection of cliques.
The authors observe that this can be accomplished
in polynomial time by coloring the complement since
each Gi is a cocomparability graph [9,15]. The clique
partition returned by the algorithm is Z :D

S
i Zi and

it can be shown that jZj � 3�̄(G) as follows. Let Z* de-
note a minimum clique partition of UDG G and let
Z�i be the restriction of Z* to Gi obtained by exclud-
ing the vertices not in V(Gi) from the cliques in Z*. Z�i
is a valid clique partition of Gi and hence jZ�i j � jZi j.
If C is a clique in Z*, the authors observe that based
on geometric arguments, the centers of disks in C
must lie inside three consecutive strips. Hence, each C
in Z* is a union of at most 3 disjoint cliques from
Z�j�1; Z

�
j ; and Z�jC1 for some j. Hence we have,

jZj D
X
i

jZi j �
X
i

jZ�i j � 3jZ�j :

The running time of the approximation algorithm is
dominated by the exact solution step on each strip re-
sulting in O(n C m̄) where m̄ denotes the number of
edges in Ḡ.

Related Results

A survey of on-line and off-line approximation algo-
rithms for independent set and coloring problems on
UDGs and general disk graphs (intersection graphs of
disks of arbitrary radii) can be found in [23]. A short
survey of results for cliques, independent sets and col-
oring of disk graphs is also available in [27]. A survey



Optimization Problems in Unit-Disk Graphs O 2841

of complexity results on recognizing several variants
of UDGs can be found in [36]. PTAS for maximum
weighted independent set and minimum weighted ver-
tex cover problems on intersection models of disks are
available in [24].

A notion of thickness of UDGs is introduced and
fixed parameter tractability of maximum independent
set, minimum vertex cover and minimum (connected)
dominating set problems (with thickness as parameter)
is established in [59]. A parameterized algorithm run-
ning in nO(

p
k) for finding an independent set of size k

on bounded ratio disk graphs (the ratio of maximum di-
ameter tominimumdiameter is bounded by a constant)
are presented in [1].

Several variants of the classical vertex coloring
problem have been considered on UDGs, primarily
motivated by different frequency assignment problems
that arise in wireless networks. Apart from natural gen-
eralizations of UDGs such as general disk graphs, and
bounded ratio disk graphs mentioned before, other
generalizations of UDGs such as Quasi UDGs [42], bi-
sectored UDGs [53] and double disk graphs [44] have
also been developed motivated by wireless applications.
Coloring problems have been studied in the context of
these generalizations.

Algorithms for distance constrained labeling, which
is a generalization of the well-known vertex coloring
problem, for disk graphs are presented in [26]. Another
variant of coloring called the multicoloring problem on
UDGs is considered in [49]. The notion of conflict-free
coloring is introduced and studied in the context of
disk graphs in [25]. A k-improper coloring of a graph
is one in which each color class induces a subgraph of
maximum degree k. Note that 0-improper coloring is
a proper coloring by the standard definition. For fixed
k, the k-improper coloring problem has been shown
to be NP-complete in [35]. Coloring and other prob-
lems on bisectored unit disk graphs, which generalize
UDGs to allow for the phenomenon of cell sectoriza-
tion in wireless communication are studied in [53]. An-
other generalization of UDGs motivated by frequency
assignment problems in wireless networks are double
disk graphs. Here, two concentric disks of arbitrary radii
are associated with each vertex, and two vertices are ad-
jacent if the inner disk of one intersects the outer disk
of the other. For instance, one could think of the in-
ner disk as the receiver range and the outer disk as the

transmission range. Coloring problems on these graphs
are studied and constant factor approximation algo-
rithms are developed in [22,44]. Hierarchical models of
UDGs formed by a sequence of labeled UDGs is consid-
ered in [46]. PTAS for the maximum independent set,
minimum dominating set, minimum clique cover, and
minimum vertex coloring problems for UDGs specified
hierarchically are developed in [46].

The notion of well-separated pair decomposi-
tion [13] with applications in geometric proximity
problems is studied in the context of UDGs and algo-
rithms for the same are developed in [29]. In [41], the
hardness of approximately embedding UDGs is con-
sidered. Given a UDG G D (V ; E), let L(cu ; cv) denote
the Euclidean distance between centers cu ; cv of discs
u; v 2 V in an embedding emb(G). The authors define
the quality of an embedding emb(G) as

q(emb(G)) D
max

(u;v)2E
L(cu ; cv )

min
(u;v)…E

L(cu ; cv )
:

Note that for any proper unit disk embedding emb(G),
the numerator of q(emb(G)) is at most 1 and the de-
nominator is more than 1. The authors of [41] then
show that finding an embedding emb(G) for a UDG

G such that q(emb(G)) �
q
3
ı
2 � � where � ! 0 as

n!1 is NP-hard.
A data structure referred to as extended doubly con-

nected edge list is developed in [43] for representing
UDGs which facilitate faster implementation of routing
algorithms in mobile wireless networks.

Max-cut and max-bisection problems in UDGs are
shown to be NP-hard in [21].

Conclusions

In this chapter, we have surveyed results from literature
on classical combinatorial optimization problems such
as the maximum clique, maximum independent set,
minimum vertex cover, minimum (connected) domi-
nation, graph coloring and minimum clique partition-
ing on unit-disk graphs. Brief descriptions of the ap-
proaches taken to solve these problems and the key
ideas involved have been explained. Several recent re-
sults from literature have also been presented. A sum-
mary of important results surveyed can be found in Ta-
ble 1.
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Optimization Problems in Unit-Disk Graphs, Table 1
A summary of results surveyed in this chapter

Problem Complexity Constant
factor

PTAS Robust algo.

Clique In P [18] N/A N/A Poly-time [55]

Independent
Set

NPC [18] 3 [45] � [39] 
 PTAS [51]

Vertex cover NPC [18] 1.5 [45] � [39] 


Domination NPC [18] 5 [45] � [39] 
 PTAS [52]
Connected
Domination

NPC [18] 6.8 [48] � [17] 


Coloring NPC [18,31] 3 [45] �

Clique
Partitioning

NPC [15] 3 [15] �


 Algorithm requires disk representation. � Algorithmdoes not
use a disk representation, but graph must be a UDG to ensure
running time and/or performance guarantees.
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The origin of the term mathematical software can be
traced back to J.R. Rice, who organized a symposium on
this topic in 1969 [20,21]. Today, the term ‘mathemat-
ical software’ refers to accurate, efficient and reliable
software for the solution of mathematical problems that

arise in scientific and engineering applications. Differ-
ent applications are described by similar mathemati-
cal models, leading to common computational kernels.
Mathematical software provides solutions to these ker-
nels, and supplies building blocks for the development
of application software. Therefore, the availability of
mathematical software simplifies the solution of ap-
plication problems by relieving users from having to
deal with details related to basic algorithms and their
implementations, while exploiting the experience and
know-how of mathematical software developers that is
needed to produce reliable, accurate and robust mod-
ules. Mathematical software is therefore the result of the
collaboration of experts in different fields of scientific
computing, as it is confirmed by the existence of or-
ganized mathematical software repositories and cross-
indexed catalogs [1,10,18].

The production of mathematical software is a com-
plex process, ranging from the development of algo-
rithms, to their implementation in specific environ-
ments, to the development of user-friendly interfaces,
and to intensive testing and quality assurance of the fi-
nal product. Moreover, this activity is largely influenced
by the evolution of computer architectures.

To solve real world problems, hardware must be
‘dressed’ with a suitable suite of software products. This
software can be grouped into three main layers that we
refer to as low-level,medium-level and high-level. These
terms indicate how close the software is to the hardware
(with low-level referring to the closest layer), and, at the
same time, how close the software is to the real-world
problem (with high-level software referring to the layer
closest to the application).

We divide mathematical software into the following
main categories [23]:
a) individual routines, sometimes gathered into collec-

tions,
b) packages of basic routines,
c) packages for specific mathematical areas,
d) general-purpose libraries,
e) problem solving environments (PSE).
Note that problem solving environments have been in-
cluded among the above categories although they do
not consist only of mathematical software, in order to
give an idea of the trends in the development of scien-
tific software and of the role of mathematical software
in such contexts.
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In the field of optimization, a lot of sequential soft-
ware is available within each one of the above cate-
gories. The continuing evolution of most optimization
algorithms and software makes hard both the task to
give an exhaustive overview of the current (1999) state-
of-the-art and the process to rapidly individuate a soft-
ware among the existing ones which is able to take ad-
vantage of the special nature of the particular problem
to be solved.

A first step along such direction should be to formu-
late the optimization problem as one of the standard op-
timization paradigms. This usually leads to a taxonomy,
according to which most optimization problems can be
classified. One of the most complete classifications can
be found in [17]. It provides an up-to-date (1999) on-
line optimization tree guide to the different subfields
of optimization and includes an overview of the ma-
jor algorithms in each area, with pointers to software
packages where appropriate. The first two branches of
such optimization tree provide pathways through con-
tinuous and discrete problems. Following these path-
ways we are able to meet the most relevant classes of
optimization problems, ranging from nonlinear equa-
tions and nonlinear least squares for the unconstrained
continuous optimization, to linear programming and
general nonlinearly constrained problems for the con-
strained continuous optimization.

The choice of an algorithm, and related software,
to solve an optimization problem has to be made tak-
ing into account either some intrinsic properties of the
problem, such as:
� type of the objective function and constraints,
� size (number of variables and constraints),
� sparsity degree,
or the main factors that determine the computational
cost of the algorithm, such as:
� evaluation of objective functions, constraints,

and/or derivatives,
� number of evaluations of objective functions, con-

straints, and/or derivatives,
� number of variables or constraints,
� number of iterations (optimization algorithms are

essentially iterative).
We point out that a large number of available optimiza-
tion software belongs to category c), that is it consists of
packages which are specifically aimed to optimization
problems and that can be divided into the following two

groups:
� single-class, that is packages which address a specific

problem class;
� multiple-class, that is packages that cover more than

one class of problems.
Among the software collections belonging to the
first group, we mention WHIZARD [25] for linear
programming which uses primal, dual and network
simplex algorithms, and L-BFGS-B [5] for bound-
constrained optimization problems, which uses a lim-
ited memory BFGS algorithm and it is suitable for solv-
ing large problems.

Among the packages belonging to the multiple-
class we mention MINPACK-1 [14] which is intended
to solve systems of nonlinear equations and nonlinear
least squares problems, and it is based on the trust re-
gion concept.

One of the most recently developed packages of the
multiple-class group is LANCELOT [6,12], which pro-
vides solvers for unconstrained optimization problems,
systems of nonlinear equations, bound-constrained
optimization problems, and general nonlinearly con-
strained optimization problems.

We observe that in many cases software packages
which can be used for more than one problem class
would sacrifice some efficiency by handling some spe-
cial nature of the main target problem as the general
one.

We also mention three general numerical software
libraries, NAG, Harwell and IMSL (category d)), which
contain optimization capabilities.

In the 1990s, much research effort has been ad-
dressed to develop modeling languages and optimiza-
tion systems (category e), that is PSEs). The basic idea
of a modeling programming language is to provide user
with common notation and familiar concepts to formu-
late optimization models and examine solutions, while
computer manages communication with an appropri-
ate solver. One of the most used modeling languages is
AMPL [9], which offers an interactive command envi-
ronment for setting up and solving linear and nonlinear
optimization problems, in continuous or discrete vari-
ables.

An optimization system is a complete system
formed by modeling languages to formulate the opti-
mization problem, as well as by easy-to-use user inter-
faces to solve it and other utilities, like report writing,
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model management and execution control. An exam-
ple of currently available optimization systems is the
NEOS Server [17] which allows to solve optimization
problems automatically over the Internet, with mini-
mal input from the user and with state-of-the-art op-
timization software without downloading and linking
code. Furthermore, the NEOS Server provides deriva-
tives and sparsity patterns determined automatically
with ADIFOR, which is a tool for the automatic differ-
entiation of Fortran programs [3].

Finally, we observe that, as pointed out in [7,26],
computational kernels that frequently appear in nu-
merical optimization are those of dense and sparse
linear algebra (matrix factorization, orthogonalization,
preconditioning, etc.). In most optimization software
computational kernels are solved by using efficient rou-
tines from standard packages designed for basic linear
algebra problems (BLAS, LAPACK).

While the quality of mathematical software can be
considered satisfactory for ‘traditional’ computing en-
vironments, the widespread and effective use of high
performance computing (HPC) resources, required for
the solution of the so-called grand challenges, is still
inhibited by the lack of software suitable for such ad-
vanced computational environments [23].

Design and implementation of mathematical soft-
ware for high performance computing environments
has to take into account a number of issues in addi-
tion to the ones faced for sequential and vector systems.
The new features to be dealt with include a variety of
processor and memory system architectures, the lack of
standard language features for specifying parallel oper-
ations or data distribution, and nondeterminism in ex-
ecution.

The number of available parallel optimization pack-
ages is small if compared with the large number of
sequential packages. Among them, we mention BTN
(block truncated Newton) [16], for unconstrained min-
imization in shared and distributed memory comput-
ing environments and PDS, a collection of routines for
solving unconstrained nonlinear optimization prob-
lems using direct search methods, which has been
developed for distributed memory architectures [24].
Moreover, versions of GENOS (generalized network op-
timization system), for solving unconstrained optimiza-
tion problems with network and generalized network
constraints, are available for vector and parallel ma-

chines [8]. Routines for unconstrained nonlinear prob-
lems based on Newton-type methods, are included in
the NAG parallel library. Other efforts to produce opti-
mization software for HPC environments are gathered
into a few projects currently under development. A well
know project is MINPACK-2, aimed mainly at devel-
oping a version of MINPACK-1 suitable for advanced
architectures [2].

Two basic strategies for introducing parallelism into
optimization algorithms, and more generally into nu-
merical algorithms, can be identified:
� parallelizing the computational kernels;
� parallelizing the methods.

One of the already mentioned computational ker-
nel in optimization algorithms is the evaluation of ob-
jective functions and/or derivatives, which can domi-
nate the overall execution time. If the evaluations are
computationally intensive, one can exploit parallelism
in each of them, and the exploitation depends on the
type of the objective function. For example, in the case
of partially separable functions, i. e. functions expressed
as the sum of element functions on which small subsets
of variables have disjoint effects, one can exploit paral-
lelism by having different processors compute different
element functions concurrently, as in [11].

With the strategy of ‘parallelizing the method’, par-
allelism is introduced at a level higher than compu-
tational kernels, often leading to new optimization
methods. For example, in the context of quasi-Newton
methods, parallelism has been introduced using line-
searches that evaluate the objective function at multiple
points concurrently. The basic idea consists in choosing
several points along a search direction, evaluating the
objective function in each of them concurrently, and
using the point with the lowest function value at the
next iterate.

A further example can be found in the area of global
optimization. The idea is to partition the feasible region
into subregions, where each processor searches for a lo-
cal minimum; the global minimum is obtained by com-
paring the local results (see for example [4,19]).

Finally we observe that an effective implementation
of the parallelization strategies described requires the
use of dynamic load balancing techniques, to ensure as
much as possible that the workload is uniformly dis-
tributed among the processors and, hence, to minimize
processor idle time.
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Interest in dynamic simulation and optimization of
chemical processes has increased significantly during
the 1980s– 1990s. Common problems include control
and scheduling of batch processes; startup, upset, shut-
down and transient analysis; safety studies and the
evaluation of control schemes. Chemical processes are
modeled dynamically using differential-algebraic equa-
tions (DAEs). The DAE formulation consists of differ-
ential equations that describe the dynamic behavior of
the system, such as mass and energy balances, and al-
gebraic equations that ensure physical and thermody-
namic relations.

The general dynamic optimization problem can be
stated as follows:

min
z(t);y(t);u(t);t f ;p

'(z(t f ); y(t f ); u(t f ); t f ; p) (1)

s.t. DAE model:
dz(t)
dt
D F

�
z(t); y(t); u(t); t; p

�
; (2)

G
�
z(t); y(t); u(t); t; p

�
D 0 ; (3)

initial conditions:

z(0) D z0 ; (4)

point conditions:

Gs
�
z(ts); y(ts); u(ts); ts ; p)

�
D 0 ; (5)

bounds:8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

zL � z(t) � zU ;
yL � y(t) � yU ;
uL � u(t) � uU ;

pL � p � pU ;
tLf � t f � tUf ;

(6)

where

' is a scalar objective function,
F are differential equation constraints,
G are algebraic equation constraints,
Gs are additional point conditions at times ts,
z are differential state profile vectors,
z0 are the initial values of z,
y are algebraic state profile vectors,
u are control state profile vectors,
p is a time-independent parameter vector.

We assume, without loss of generality, that the index of
the DAE system is one and that the objective function
is in linear Mayer form. Otherwise, it is easy to refor-
mulate most problems to this form. Dynamic optimiza-
tion problems can be solved either by the variational
approach or by applying some level of discretization
that converts the original continuous time problem into
a discrete problem. The first approaches are focused on
obtaining a solution to the classical necessary condi-
tions for optimality. These approaches are also known
as indirect methods.

The methods that discretize the original continuous
time formulation can be divided into two categories,
according to the level of discretization. Here we dis-
tinguish between the methods that discretize only the
control profiles (partial discretization) and those that
discretize the state and control profiles (full discretiza-
tion). Basically, the partially discretized problem can be
solved either by dynamic programming or by apply-
ing a nonlinear programming (NLP) strategy (direct-
sequential). A basic characteristic of these methods is
that at every iteration a feasible solution of the DAE
system, for given control values, is obtained by integra-
tion. The main advantage of these approaches is that
they generate smaller discrete problems than full dis-
cretization methods.

The methods that fully discretize the continuous
time problem also apply NLP strategies to solve the
discrete system and are known as direct-simultaneous
methods. These methods can use different NLP and dis-
cretization techniques but the basic characteristic is that
they solve the DAE system only once, at the optimum.
In addition, they have better stability properties than
partial discretization methods, especially in the pres-
ence of exponentially increasing modes. On the other
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hand, the discrete problem is larger and may require
special solution techniques.

With this classification we take into account the de-
gree of discretization used by the different methods.
Some authors might prefer to classify the methods ac-
cording to the solution strategy as indirect methods,
methods based on dynamic programming and direct
methods [41].

This article is organized as follows. In the next sec-
tion we present the description of the variational meth-
ods. Following this we describe methods that partially
discretize the dynamic optimization problem, and we
then discuss full discretization methods as well. Finally,
we conclude with a brief description of some of the
emerging areas related to dynamic optimization such as
interior point methods and the solution ofmixed integer
dynamic optimization problems and multistage prob-
lems.

VariationalMethods

These methods are based on the solution of the first
order necessary conditions for optimality that are ob-
tained from Pontryagin’s maximum principle [37]. For
the problem (1)–(4), the optimality conditions are for-
mulated as a set of differential-algebraic equations

dz
dt
D
@H
@�
D F(z(t); y(t); u(t); p) ; z(0) D z0 ;

(7)

d�
dt
D �

@H
@z
; �(t f ) D

@'

@z
C
@G f

@z f
� f ; (8)

@H
@y
D
@F
@y
�C

@G
@y
� D 0 ;

@H
@u
D 0 ;

Z t f

0

@H
@p

dt D 0 ;

G
�
z(t); y(t); u(t); t; p

�
D 0 ;

(9)

where the Hamiltonian, H, is a scalar function of the
form

H(t) D �(t)>F(t)C �(t)>G(t) (10)

and �, � are vectors of the adjoint variables and � f is
the multiplier associated with the final time constraint,
Gf (z(tf ), y(tf ), u(tf ), tf , p)) = 0.

The main problem in obtaining a solution to these
equations are the boundary conditions. Normally the
state variables are assigned initial conditions and the
adjoint variables are assigned final conditions. This
procedure leads to a two-point boundary value problem
(TPBVP) that can be solved with different approaches:
single shooting, invariant embedding, multiple shoot-
ing, collocation on finite elements and finite differences.

In the single shooting methods the missing initial
conditions values are guessed. Then, an initial value
solver integrates the DAE forward and a Newton iter-
ation is applied to adjust the guessed initial conditions
so that the final conditions are equal to the given values.
The main disadvantage of this method is that in many
cases the problem cannot be solved for a given set of
guessed initial conditions, due to nonlinearities and in-
stabilities of the DAE system.

Invariant embedding [45] is a procedure for con-
verting the TPBVP to a initial value problem (IVP).
It is based on assuming the structure of the solution,
and results in solution procedures analogous to the Ric-
cati matrix differential equation. The main disadvan-
tage here is the high dimensionality of the resulting
problem.

Multiple shooting methods follow the same idea as
single shooting, but now the integration horizon is di-
vided into smaller subintervals. In this way, state vari-
able values are not only guessed at initial time, but also
at several points in between. Then the system equa-
tions are decomposed by either solving a collocation
system for each region or using a direct integrator along
the nominal trajectory on each subinterval. The New-
ton iteration is also needed to enforce the continuity
between subintervals. The discretization methods (or
global methods) are known as the most stable. The so-
lution to the TPBVP is obtained simultaneously for the
whole horizon, so the initial conditions do not need to
be guessed.

For the multiple shooting and discretization meth-
ods, special decomposition strategies are usually used to
decompose the structured linear algebraic system that
is obtained at every iteration of the solution procedure.
Efficient factorizations schemes, based on structured
Gaussian elimination [27,30] and structured orthogo-
nal factorization [50] can be used in order to minimize
the computational effort. Although these methods work
well for problems without bounds, handling inequality
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constraints is difficult, unless a priori information about
the active constraints is known.

Partial Discretization

Dynamic Programming

The use of iterative dynamic programming (IDP) for the
solution of dynamic optimization problems has been
limited largely because of the high dimensionality usu-
ally associated with it. This problem is often avoided by
allowing a very coarse grid, which in some cases can
be accurate enough [13]. Although the IDP algorithm
is slower than most gradient-based algorithms, it can
be useful to cross-check results of relatively small prob-
lems (n < 100). This is especially true when the global
optimum is unknown, as the probability of obtaining
the global optimum is usually high once the grid is not
poorly chosen [20]. For these techniques the time hori-
zon is divided into P time stages, each of length L. Then,
the control variables are usually represented as piece-
wise constant or piecewise linear functions in each in-
terval. The piecewise linear functions in each interval
(tk, tk+ 1), usually takes the form

u(t) D ui C
�uiC1 � ui

L

�
(t � ti) ;

where ui and ui+ 1 are the values of u at ti and ti+ 1, re-
spectively.

The dynamic optimization problem is to find ui, i =
0, . . . , P� 1, that minimize a given objective function.
The basic search algorithm is the following [33]:
1) Divide the time interval [0, tf ] into P time stages,

each of length L.
2) Choose the number of allowable valuesM for u.
3) Choose an initial profile for each ui, initial region

size ri, and the contraction factor � .
4) By using the initial control policy, integrate the sys-

tem from t = 0 to tf to generate the state trajectory
and store the values of the states at the beginning
of each time stage, so that the states at (i� 1) cor-
responds to the value of the states at the beginning
of stage i.

5) Starting at stage P, integrate the system from tf � L
to tf using as initial value the states at P� 1 from
step 4 once with each of the allowable values for the
control vector. Choose the control uP� 1 that gives
the minimum value for the objective function, and
store the value.

6) Step back to stage P� 1, corresponding to time
tf � 2L. For each allowable value of uP� 2 integrate
the system by using as initial value the states at P� 2
chosen from step 4 and the given control policy
(constant or linear). Continue integration until t =
tf using for the last stage the value uP� 1 from step 5.
Compare theM values of the objective function and
choose the uP� 2 that gives the smallest value.

7) Continue the procedure until stage 1, corresponding
to the initial time t = 0.

8) Reduce the region for allowable control, rk+ 1 = � rk,
where k is the iteration index. Use the control policy
from step 7 as the midpoint for the allowable values
for the control u at each stage.

9) Increment the iteration index and go to step 5. Con-
tinue the procedure for a specified number of itera-
tions and examine the results.
This algorithm works well when the dynamic op-

timization problem does not include bounds on state
variables. In order to include them, a penalty term
has to be added into the objective function to penal-
ize the constraint violation. This can be done by adding
a state variable for each inequality that measures the
constraint violation over time [35] or by computing the
constraint violation at given points in time [20].

Sequential Methods

In the sequential methods, only the control variables are
discretized. This is why these techniques are also known
as control parametrization methods. Given the initial
conditions and a given set of control parameters, the
DAE system is solved with a differential algebraic equa-
tion solver at each iteration. This produces the value
of the objective function, which is used by a nonlinear
programming solver to find the optimal parameters in
the control parametrization. The sequential method is
of the feasible path type, that is, in every iteration the
DAE system is solved. This procedure is very robust
when the system contains only stable modes. If this is
not the case, finding a feasible solution for a given set of
control parameters can be difficult.

The time horizon is divided into P time stages and
at each stage the control variables are represented with
a piecewise constant, a piecewise linear or a polynomial
approximation [22,48]. Also, a common practice is to
use a set of Lagrange polynomials. So, in each stage i,
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the control variables can be written as:

ui(t) D
ncolX
qD1

 q

�
t � ti�1

Li

�
ui;q ; (11)

where ui, q represent the values of the control variables,
in stage i at collocation point q. Here,  q is a Lagrange
polynomial of order ncol satisfying,

 q(�r) D ıq;r :

The gradients of the objective function with respect
to the control parameters can be calculated with the
sensitivity equations of the DAE system or by integra-
tion of the adjoint equations.

Sensitivity-Based Gradients

The sensitivity equations are found by differentiating
the DAE system after the control has been discretized
with the parameter set � [21,45], and for each element,
� j, we write:

@
� dz
dt

�

@� j
D

d
�
@z
@
 j

�

dt

D

�
@F
@z

�>�
@z
@� j

�
C

�
@F
@y

�>�
@y
@� j

�
C

�
@F
@� j

�
;

�
@G
@z

�>�
@z
@� j

�
C

�
@G
@y

�> �
@y
@� j

�
C

�
@G
@� j

�
D 0:

The solution of the sensitivity equations is simpli-
fied because the Jacobians in the sensitivity equations
(@F/ @z, @G/ @z, @F/ @y, @G/ @y) are equal to the DAE
system Jacobians calculated at each step (or given num-
ber of steps) of the integration. The computational ef-
fort is reduced to one matrix multiplication per param-
eter per Jacobian evaluation. Once the sensitivities of
the states with respect to the parameters are known, the
gradient of the objective function and the constrains c,
can be calculated as follows [21,45]:

d'
d�
D

�
@'

@�

�
C

�
@z
@�

��
@'

@z

�
C

�
@y
@�

��
@'

@y

�
;

dc
d�
D

�
@c
@�

�
C

�
@z
@�

��
@c
@z

�
C

�
@y
@�

��
@c
@y

�
:

Although there have been a lot of advances in solv-
ing sensitivity equation more efficiently [23], the com-
putational effort of solving them is still an expensive
part of the optimization algorithms. The cost of solving
these equations is strongly dependent on the number
of input variables. Current directions for handling the
computational load include exploitation of faster com-
puter hardware and parallel computer programming
architectures, as well as more efficient solution strate-
gies that avoid repeated factorization of Jacobians [5].

The methods that are based in this approach can-
not treat the bounds on state variables directly, be-
cause the state variables are not included in the nonlin-
ear programming problem. Special methods have been
developed to address this problem. Most of the tech-
niques for dealing with inequality path constraints rely
on defining a measure of the constraint violation over
the entire horizon, and then penalizing it in the objec-
tive function, or forcing it directly to zero through an
end-point constraint [49].

An alternative is to transform the inequality con-
straints into equalities by adding a square slack variable
[26]. The slack variables can then be treated as control
variables and the proper bounds can be imposed in the
NLP. The problem of this approach is that it can gen-
erate high-index problems, and special index reduction
techniques have to be applied at the same time.

In [49], inequality path constraints are handled
through a hybrid approach which is the result of the
combined application of the discretization of these con-
straints at a finite number of points, and forcing an in-
tegral measure of their violation to zero. Each inequal-
ity path constraint requires the introduction of an addi-
tional ordinary differential equation, and it is converted
to 2P (P = number of stages) point constraints and one
end-point constraint.

The use of initial value solvers that can handle di-
rectly the path constraints has also been studied [22].
The main idea is to use an algorithm for constrained
dynamic simulation so that any admissible combina-
tion of the control parameters produces an initial value
problem that is feasible with respect to the path con-
straints. The algorithm proceeds by detecting activation
and deactivation of the constraints during the solution,
and solving the resulting high-index DAE system and
their related sensitivities.
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Adjoint-Based Gradients

The gradients can also be calculated through adjoint
methods [14,25,40] at a cost independent of the num-
ber of input variables. The DAE adjoint equations are
determined from the Hamiltonian function (10). The
adjoint profiles � and � form a semi-explicit index one
DAE that can be solved easily. Once the adjoint system
(8)–(9) is solved, the gradients are obtained from

ı' D

Z t f

0

�
@F
@u
�C

@G
@u
�

�
ıu dt:

If the control profile is discretized into piecewise con-
stants ui. The gradient with respect to ui can be ex-
pressed as

ı' D

Z t1

0

�
@F
@u
�C

@G
@u
�

�
dt du1 C � � �

C

Z tP

tP�1

�
@F
@u
�C

@G
@u
�

�
dt duP

and

d'
dui
D

Z t i

t i�1

�
@F
@u
�C

@G
@u
�

�
dt :

Adjoint methods are not difficult to automate, but
they require the storage of the state profiles for the sub-
sequent adjoint calculation. Also, Jacobians for system
and adjoint equation integration can be evaluated at
different times, in general, sparse LU factors of Jaco-
bians from system equation integration are not used
while solving adjoint equations. The use of implicit
Runge–Kutta methods that transform the DAE system
into discrete-time implicit equations [38] can solve this
problem.

As in the sensitivity based methods, in the adjoint-
based methods, the bounds of the states variables can
not be treated directly. Usually, when state constraints
are imposed a separate adjoint system is developed for
each constraint. However, if path constraints are han-
dled individually, we face a daunting task because of
the number of adjoint systems that must be developed.
Special techniques that reduce the number of adjoints
variables have been developed to overcome this prob-
lem [38]. Other techniques approximate the constraint
satisfaction (constraint aggregation methods) by intro-
ducing an exact penalty function [10,40] or a Kreis-
selmeier–Steinhauser function [10] into the problem.

Full Discretization

Full discretization methods explicitly discretize all the
variables of the DAE system and generate a large scale
nonlinear programming problem that is usually solved
with a successive quadratic programming (SQP) algo-
rithm. These kinds of methods follow a simultaneous
approach (or infeasible path approach); that is, the DAE
system is not solved at every iteration. It is only solved
at the optimum point. Because of the size of the prob-
lem, special decomposition strategies are used to solve
the NLP efficiently. Despite this characteristic, the si-
multaneous approach has advantages for problemswith
state variable (or path) constraints and for systems
where instabilities occur for a range of inputs. In ad-
dition, the simultaneous approach can avoid interme-
diate solutions that may not exist, be difficult to obtain,
or require excessive computational effort.

The are two main different approaches to discretize
the state variables explicitly, multiple shooting [12] and
collocation on finite elements [19]. We briefly describe
both of them in the following sections.

Multiple Shooting

In these methods the control variables are approxi-
mated by suitable parametrizations using only a finite
set of control parameters. Usually a piecewise constant
or piecewise linear representation is used. On each stage
i = 0, . . . , P� 1 a time transformation is used [29]

�I(�; v) D ti C �hi ; ti D t0 C
i�1X
kD0

hi ; � 2 [0; 1] ;

with v = (t0, d0, d1, . . . , dP� 1), with a dimensionless dis-
cretization grid

0 D �i;0 < �i;1 < � � � < �i;mi D 1

such that � I(� i, 0, v) = ti and � i(� i;mi , v) = ti+ 1. A piece-
wise approximation ui of the control ui is then defined
by

bui (�) D 'i; j(�; qi j)

using local control parameters qij. The functions ' i, j are
given basic functions, typically vectors of polynomials.
If a piecewise constant approximation is chosen, this
function takes the form ' i, j(� , qij) = qij. For a piecewise
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linear approximation the functions are expressed as

'i; j(�; qi j) D q1i j C
� � �i j

�i; jC1 � �i j

�
q2i j � q1i j

�
;

qi j D

 
q1i j
q2i j

!

by linear interpolation between the values q1i j and q2i j
at the endpoints of the stage. With this representation,
a continuous approximation can be obtained by impos-
ing continuity equations between the stages.

After this, the DAE system is explicitly discretized
on each stage i = 0, . . . , P� 1 at the points � ij of the
discretization grid using multiple shooting [11,43]. At
each grid point the values of the state variables sij = (szi j ,
syi j) are chosen as additional unknowns. In this way a set
of relaxed decoupled initial value problems (IVP) is ob-
tained:

dzi
d�
D fi

�
zi (�); yi(�); 'i; j(�; qi j); p; �i (�; v)

�
hi ;

0 D gi
�
zi (�); yi(�); 'i; j(�; qi j); p; �i (�; v)

�

� gi
�
szi j; s

y
i j; 'i; j(�i j; qi j); p; �i (�i j; v)

�

(12)

with initial conditions

zi (�i j) D szi j ; yi(�i j) D syi j :

By including into the NLP the continuity conditions
for the differential variables and the consistency condi-
tions

0 D gi
�
szi j; s

y
i j ; 'i; j(�i j; qi j); p; �i (�i j; v)

�

as equality constraints, the final solution satisfies the
DAE system. With this approach, the inequality con-
straints for states and controls can be imposed directly
at the grid points. For piecewise constant or linear
controls this approximation is adequate, but path con-
straints for the states may not be satisfied between grid
points. This problem can be avoided by applying spe-
cial techniques to enforce feasibility, like the ones used
in the sequential methods.

The resulting NLP is solved using an SQP-type
method that requires at each iteration the calculation of
the objective function gradient and the constraint Jaco-
bians. For almost all the different functions explicit for-
mulas are available, and the corresponding derivatives

can easily be calculated. The only exception is zi(� i, j+ 1),
which is computed by numerical integration of the re-
laxed decoupled IVP, hence the sensitivities with re-
spect to initial values and parameters must be deter-
mined. This task is performed with the same techniques
used in sequential methods. The only difference is that
they are applied at every stage, and this allows a paral-
lel implementation of this kind of algorithm. The SQP-
type methods used for the solution of the NLP are very
similar to the algorithms used after the full discretiza-
tion using collocation. For this reason, we consider the
collocation methods next.

Collocation

The continuous time problem is converted into an NLP
by approximating the profiles as a family of polynomi-
als on finite elements. Different polynomial represen-
tations are used in the literature. In [16,46] a mono-
mial basis representation [4] for the differential profiles
is used. This representation is recommended because of
smaller condition number and smaller rounding errors:

z(t) D zi�1 C hi

ncolX
qD1

˝q

�
t � ti�1

hi

�
dz
dt i;q

; (13)

where zi� 1 is the value of the differential variable at
the beginning of element i, hi is the length of element
i, dz/dti, q is the value of its first derivative in element
i at the collocation point q, and ˝q is a polynomial of
order ncol, satisfying

˝q(0) D 0; for q D 1; : : : ; ncol ;
d
dt
˝q(�r) D ıq;r for q D 1; : : : ; ncol ;

where �r is the collocation point within each element.
One disadvantage of the representation (13) is that state
path constraints can only be enforced directly at the
mesh points dividing each element. However, we can
solve this problem by adding bounded algebraic vari-
ables to the problem formulation. The control and al-
gebraic profiles are approximated using Lagrange poly-
nomials of the form

y(t) D
ncolX
qD1

 q

�
t � ti�1

hi

�
yi;q ; (14)

u(t) D
ncolX
qD1

 q

�
t � ti�1

Li

�
ui;q ; (15)
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where yi, q and ui, q represent the values of the algebraic
and control variables, respectively, in element i at col-
location point q.

Here, q is a Lagrange polynomial of order ncol sat-
isfying,

 q(�r) D ıq;r :

Other authors also prefer to use low order Lagrange
polynomials [7,31] for the differential variables.

z(t) D
ncolX
qD1

 q

�
t � ti�1

hi

�
zi;q : (16)

NLP Techniques

The large scale NLP problems that arise from the full
discretization of the DAE system are usually solved us-
ing successive quadratic programming (SQP) methods.
These methods can be classified into full space and re-
duced space approaches.

Full Space SQP Approaches

Full space methods take advantage of the DAE op-
timization problem structure and the sparsity of the
model. They are very efficient for problems with many
degrees of freedom [7,8] as the optimality conditions
can be easily stored and factored. Two important dis-
advantages of these methods are that second derivatives
of the objective function and constraints are usually re-
quired, and special precautions are necessary to ensure
descent properties. In [1], a full space algorithm which
exploits the almost block diagonal structure of the DAE
optimization problem was developed. This approach
decouples the optimality conditions for each block of
the quadratic programming (QP) subproblem using an
affine transform. This way, the first order conditions in
the state and control variables can be solved recursively,
making the effort of solving it increase linearly with the
number of blocks. Also in [7,8] a full space method is
presented. In this work, the sparsity and the block diag-
onal structure are also exploited, but the degrees of free-
dom of the problems solved are relatively large com-
pared to the number of variables. reduced space SQP
In process engineering problems, the degrees of free-
dom are relatively few, as the number of state variables
is much larger than the number of control variables.

In these cases, a reduced space SQP approach (rSQP)
can be very efficient. With this approach, either pro-
jected Hessian matrices or their quasi-Newton approx-
imations may be used, avoiding the necessity of second
derivatives. An efficient algorithm can be constructed
by decoupling the search direction into its components
in range and null spaces and solving a smaller QP sub-
problem at every iteration. When using collocation, this
decomposition allows to exploit the structure of the col-
location matrix [32] decreasing the computational ef-
fort of these methods.

A partially reduced strategy using multiple shoot-
ing was developed in [42] and more recently in [29]. In
this strategy, the structured NLP is projected onto the
reduced space of differential variables plus control pa-
rameters, utilizing the natural decomposition of the dis-
cretized states into differential and algebraic variables.
This algorithm is particularly efficient for problems
with relatively large number of algebraic constraints. In
addition to these methods, specialized decomposition
procedures that take advantage of the structure of the
Hessian were explored in [44].

Emerging Areas

In this final section we briefly summarize areas of re-
search that emerge (as of 2000) for dynamic optimiza-
tion. These extend the methods presented so far to
larger and more challenging applications and can be
classified as improvements to nonlinear programming
solvers, extensions to include discrete decisions and the
treatment of multistage dynamic systems.

Addressing Bottlenecks in NLP Solvers

Several features in the above NLP strategies lead to per-
formance bottlenecks for dynamic optimization. As the
problem size increases, the selection of the correct ac-
tive set can be expensive, especially for tightly con-
strained NLPs. It has been noted that the normally effi-
cient active set strategies in [7,8] can become time con-
suming as many state and control profiles become con-
strained by their bounds. To overcome this problem,
interior point and barrier methods allow us to deal with
many active constraints in an efficient manner. This ad-
vantage is rooted in improved complexity properties
of interior point methods. Whereas active set strate-
gies have an exponential worst-case complexity, inte-
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rior point methods typically have a complexity pro-
portional to a low power of the number of variable
bounds. In actual practice the resulting performance for
active set strategies exhibits a polynomial increase in
the number of active set iterations, whereas the number
of interior point iterations is independent of problem
size.

The barrier (or interior point) method can be mo-
tivated by representing the NLP (resulting from a dis-
cretization of (1)–(6)):
8̂
<̂
ˆ̂:

min f (x)
s.t. c(x) D 0;

x � 0

as
8<
:
min f (x) � �

X
i

ln(xi)

s.t. c(x) D 0

and solving the equality constrained problem for a de-
creasing sequence of positive �. This transformation
can be applied directly to the NLP or at the QP level
for the subproblem derived from an SQP algorithm. In
the latter case, an interior point method can be derived
that follows a central path for decreasing �. Very effi-
cient implementations (e. g., predictor corrector algo-
rithms [34] have been developed for this purpose and
these have desirable convergence rates. However, de-
spite these properties, interior point QP solvers, em-
bedded within SQP, are not competitive with active
set strategies unless the number of active constraints is
large. Here active set solvers take advantage of warm
starts from previous QP solutions, while so far inte-
rior point solvers still require a fixed computational cost
(typically about ten linear factorizations and solutions
of the KKT system) regardless of the number of ac-
tive constraints. To reduce this fixed cost to only one
KKT factorization per NLP integration, it becomes ad-
vantageous to develop the barrier method at the NLP
level. Recently efficient barrier NLP solvers have been
developed, including the LOQO solver in [47] and the
NITRO solver in [15]. For these methods there are
still some limitations on convergence properties, due to
nonconvex NLPs.

NLP methods based on interior point concepts al-
low us to exploit directly all of the features mentioned

above for dynamic systems. Examples that demonstrate
the performance of these approaches include the so-
lution of linear model predictive control (MPC) prob-
lems [39] and nonlinear MPC problems [1] using inte-
rior point QP solvers and the solution of large optimal
control problems using barrier NLP solvers [17].

Discrete Decisions In Dynamic Optimization

Along with the DAE models described in (2)–(3), it be-
comes important to consider the modeling of discrete
events in many dynamic simulation and optimization
problems. In chemical processes, examples of this phe-
nomena include phase changes in vapor-liquid equi-
librium systems, changes in modes in the operation of
safety and relief valves, vessels running dry or over-
flowing, discrete decisions made by control systems and
explosions due to accidents. These actions can be re-
versible or irreversible with the state profiles and should
be modeled with appropriate logical constraints. An in-
teresting presentation on modeling discrete events can
be found in [6]. The simulation of these events is of-
ten triggered by an appropriate discontinuity function
which monitors a change in the condition and leads
to a change in the state equations. These changes can
be reformulated either by using complementarity con-
ditions (with positive continuous variables x and y al-
ternately set to zero) [24] or as binary decision vari-
ables [6]. These additional variables can then be embed-
ded within optimization problems. Here complemen-
tarity conditions can be reformulated through smooth-
ing [18] to yield an NLPwhile the incorporation of inte-
ger variables leads to mixed integer optimization prob-
lems.

For the latter case, several studies have considered
the solution of mixed integer dynamic optimization
(MIDO) problems. In particular, [3] developed a com-
plete discretization of the state and control variables to
form a mixed integer nonlinear program. On the other
hand, [2] apply a sequential strategy and discretize only
the control profile. In this case, careful attention is paid
to the calculation of sensitivity information across dis-
crete decisions that are triggered in time.

Multistage Applications

The ability to solve large dynamic optimization prob-
lems and to model discrete decisions allows the inte-
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gration of multiple dynamic systems for design and
analysis. Here different dynamic stages of operation
can be considered with individual models for each dy-
namic stage. Multistage applications in process engi-
neering include startups and transients in dynamic sys-
tems with different modes of operation, design and
operation of periodic processes with different models
(e. g., adsorption, regeneration, pressurization, in a dy-
namic cycle, [36]), synthesis of chemical reactor net-
works [28], changes in physical phenomena due to dis-
crete changes (as seen above) and multiproduct and
multiperiod batch plants where scheduling and dynam-
ics need to be combined and different sequences and
dynamic operations need to be optimized.

For these applications each stage is described by
separate state variables and models as in equations (2)–
(3). These stages include an overall objective function
with parameters linking among stages and control pro-
files that are manipulated within each stage. Moreover,
multistage models need to incorporate transitions be-
tween dynamic stages. These can include logical con-
ditions and transitions to multiple models for different
operation. Moreover, the DAE models for each stage
require consistent initializations across profile discon-
tinuities, triggered by discrete decisions.

The solution of multistage optimization problems
has been considered in a number of recent studies. See
[9] for the simultaneous design, operation and schedul-
ing of a multiproduct batch plant by solving a large
NLP. More recently (as of 2000), multistage problems
have been considered as mixed integer problems using
sequential strategies [2] as well as simultaneous strate-
gies [3,28]. These applications only represent the initial
stages of dynamic systems modeling, in order to deal
with an integrated analysis and optimization of large
scale process models. With the development of more
efficient decomposition and solution strategies for dy-
namic optimization, much more challenging and di-
verse multistage applications will continue to be con-
sidered.

See also

� Dynamic Programming: Continuous-Time Optimal
Control

� Dynamic Programming: Infinite Horizon Problems,
Overview

� Dynamic Programming and Newton’s Method in
Unconstrained Optimal Control

� Dynamic Programming: Optimal Control
Applications

� Dynamic Programming: Stochastic Shortest Path
Problems

� Hamilton–Jacobi–Bellman Equation
� Infinite Horizon Control and Dynamic Games
� Quasidifferentiable Optimization: Stability of

Dynamic Systems
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Introduction

The 3D structure of molecules is important for a mul-
titude of reasons, prominent in contemporary studies:
structure-property relations, reaction kinetics and dy-
namics, and drug design. Determining these structures
is not straight forward, however, and a variety of tech-
niques have been developed, including X-ray diffrac-
tion, NMR spectroscopy, and electron spectroscopy.
Despite the many techniques available, at least in the
area of protein structures, more than 85% of struc-
tures present in the PDB have been solved using X-ray
diffraction methods [10].

In a single-crystal X-ray diffraction experiment,
X-rays are focused on a molecular structure which has
been crystallized. The incident rays are then diffracted
and their intensity is sampled using a detector. The
resulting pattern is recorded and analyzed, yielding
data which primarily includes a reciprocal space metric
(h; k; l), termed Miller index, followed by a diffraction
intensity at each individual coordinate set. The coordi-
nates (h; k; l) describe an infinite set of parallel planes

through a given crystal using the primitive reciprocal
lattice vectors as a basis.

An ideal crystal can be described as a periodic ar-
rangement of atoms repeated infinitely in space. This
allows for a characterization of 3-D crystal structure in
terms of a Fourier series known as the density function:

�(x) D
1
V

X
m

FHm exp(�2
{Hm � x); (1)

where V is the unit cell volume, m is an index for the
set of reflections, H is a (h; k; l) Miller index, and FH is
a structure factor defined as:

FH D
X
j

f j exp(2
{H � x j); (2)

where j is an index for the set of atoms in the structure,
f j is an atomic scattering factor for atom j, and x j is the
position of atom j. A structure factor can also be written
in terms of an amplitude and phase:

FH D jFHj exp({�H): (3)

Hence, full characterization of a crystal structure re-
quires both amplitude and phase data for a large num-
ber of reflections, H. In a traditional X-ray diffrac-
tion experiment, the diffraction intensity measured,
IH, is directly proportional to the structure factor am-
plitude, jFHj. Phase data, however, is not directly avail-
able, yet vital for reconstructing the density function of
a crystal. It is therefore in the difficult task of phase re-
trieval, for which this article is concerned.

First, a discussion of the Patterson and MAD tech-
niques is presented. Traditionally, these techniques do
not directly rely on optimization. Thus, the treatment
of these methods is brief, focusing on some interest-
ing uses of optimization in their context. Then, two
prominent direct methods are discussed, both of which
rely on the solution of difficult nonconvex optimiza-
tion formulations. Minimal principle methods are ad-
dressed first, with particular emphasis on the solution
of centrosymmetric structures. Then, maximum en-
tropy methods are presented, with a focus on the maxi-
mum determinant method.

Patterson Methods

Derivation of an electron density map requires ampli-
tude and phase information for a large number of recip-
rocal lattice vectors, H. As mentioned previously in the
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introduction, phase information is not directly measur-
able in a traditional X-ray diffraction experiment, a se-
rious obstacle in calculation of a density map. In 1934,
with this severe limitation in mind, it was Arthur Lindo
Patterson, who first began to look at a Fourier trans-
form of diffraction intensities instead of structure fac-
tors. Such a transform does not require any knowledge
of phase information. Naturally, this image is not iden-
tical to the original density function. However, certain
structural information is still contained in the resultant
map. Hence, techniques based on a Fourier transform
of intensity, still used in some contemporary structural
solution methods, form the global class of Patterson
methods.

The Patterson function is simply the convolution of
the density function with its inverse:

P(u) D �(x) ? �(�x): (4)

The discrete form of the Patterson function is written
as:

P(u) D
1
V

X
m

jFHm j
2 exp(�2
{Hm � u): (5)

A Patterson map can therefore be constructed from
a sufficient set of diffraction intensities measured for
a set of reciprocal lattice vectors, H, in a single-crystal
X-ray diffraction experiment.

The physical meaning of a Patterson map in rela-
tion to the original structure is easiest to interpret when
atomic contributions to the density function are con-
sidered point-like. Hence, for the time, assume electron
density is large at the exact position x j of each atom in
the crystal and 0 at non-atomic site coordinates. Then,
it is clear from (4) that the Patterson function at u will
only be substantial when it is a difference of two atomic
position vectors, namely u D x j � xi . Thus, for ev-
ery possible combination of interatomic differences we
observe a Patterson peak, with intensity proportion-
ally to the product of the atomic scattering factors of
the participant atoms. Consequently, a N-atom struc-
ture, without consideration of overlap, yields a Patter-
son map with N(N�1) peaks and a highly pronounced
central peak. In other words, a Patterson map is the su-
perposition of many copies of the original electron den-
sity map.

Solution by Patterson methods requires a technique
for deconvolution of the density function from the Pat-

terson map. In traditional techniques [2], the Patterson
function, P(u), is displaced by two vectors, xi and xk .
Then, the two shifted Patterson maps are superim-
posed,

Pik (u) D P(u � xi )C P(u � xk) (6)

Ideally, the difference of the two vectors chosen to de-
rive Pik (u) represents an interatomic difference vector.
In such a case, the structural image in Pik (u) is en-
hanced. This procedure is repeated until sufficient in-
formation is available to construct the original density
function. A Patterson map is particularly useful in the
case of heavy atom structures since the atomic scat-
tering factor of an atom is proportional to the atomic
number of its composite element. Hence, when a heavy
atom is present at position xk , all peaks at u D xk � x j

are pronounced in the map. Naturally, from such a Pat-
tersonmap, it is much easier to deconvolute the original
density function.

A function for the selection of appropriate displace-
ment vectors, used for the solution of Patterson maps,
is presented in [11] and [9]. The generalized symmetry
minimum function, SMF, can be written as:

SMF(u) D
X
i

min
s

P(Rsxi C vs � u); (7)

where i is the set of sampled points, xi , in the Patter-
son map, R represents a symmetry rotation operator, v
a translational operator, and s the set of symmetry re-
lations present. This form of the SMF is applicable to
the full space of the Patterson map. The positions of
atoms are chosen from peaks in SMF(u). SMF is still
used in contemporary algorithms for displacement vec-
tor selection, and has yielded structural solutions for
molecules containing up to 6,000 non-hydrogen atoms
in the asymmetric unit [3]. The success, however, is still
largely restricted to structures containing heavy atoms.

In terms of optimization, solution by Patterson
methods is classically posed in terms of a search over
a set of interatomic distance vectors calculated from
a Patterson map. In [8] this was done for the solution of
myoglobin, based on the ‘minimum average’ function:

max Z D
X
m2M

Pm
. X

m2M

Wm (8)

s:t: Pm D P(wm);8m 2 M (9)



2860 O Optimization Techniques for Phase Retrieval Based on Single-Crystal X-Ray Diffraction Data

Wm DW(wm);8m 2 M (10)

w 2 ˝; (11)

where M is a subset of all available ratios having the
lowest values of Pm/Wm , Pm and Wm are the values of
the Patterson and test functions, and w is a vector cho-
sen from ˝ , the set of all possible orientations in the
Patterson map. Traditionally, this problem is solved in
a stochastic manner: a large set of trials is constructed
with randomly generated orientations for w. The merit
function is then calculated for each trial, and the best
solution is selected subject to further solution filtering.

MAD

Multiple anomalous diffraction, MAD, directly solves
the phase problem by means vector analysis of diffrac-
tion amplitudes sampled for at least three wavelengths.
The list of available elements, which produce anoma-
lous differences is limited by the set of experimentally
available wavelengths. With the exception of sulfur,
none of the elements commonly found in biological
macromolecules yield sufficient anomalous scattering.
Hence, some sort of chemical substitution is often re-
quired. The calculation of phases is straight forward
and simply requires knowledge of the position of the
anomalous scatterers in the unit cell.

Since most elements which anomalously scatter are
heavier, Patterson methods are often sufficient to locate
the substituted atoms. Determining the candidates for
substitution and calculation of the heavy atom struc-
ture is, however, at times difficult when a large num-
ber of substitution sites exist. In [13], a figure of merit
is proposed for automated selection of the correct trial
heavy atom structures. This figure of merit is composed
of four individual tests: Patterson function, difference
Fourier, phasing figure of merit, and solvent location.

Direct Methods

Direct methods refers to a class of techniques which
rely on probability theory to determine phases in re-
ciprocal space using data from a single-crystal X-ray
diffraction experiment. These methods, revolutionary
at the time they were introduced, pushed the limit of
solvable structures substantially. Unfortunately, the ac-
curacy of direct methods fall as the size of the asym-

metric unit increases. In addition, these methods typi-
cally rely on near atomic data resolution. Finally, since
all direct methods operate primarily in reciprocal space,
a Fourier transform of the phases derived is required to
construct the electron density function. From this den-
sity function, atomic positions are then selected.

Most direct methods rely on the use of origin-
independent combinations of phases, most prominent
of which are the triplet phase relations:

˚ D �H C �K C ��H�K: (12)

In the sequel, minimal principle methods for phasing
are first discussed. These techniques rely on solution of
a NLP, with triplets defining the constraint set. Then,
focus is placed on the class of maximum entropy meth-
ods for phasing, with particular emphasis on maximum
determinant methods.

The Minimal Principle

The minimal principle methods are certainly some of
the most well-known phasing techniques. Like all direct
methods, they represent a phasing technique, which is
applied in the reciprocal space of a crystal. Specifically,
a phase solution is determined from the minimal prin-
ciple by minimizing a merit function in the framework
of a nonconvex NLP. The optimization program, first
proposed by [5], is as follows:

min Rmin D
X
t

At
�
cos(˚t)�!t

�2ı�X
t

At
�

(13)

s:t: �Ht C �Kt C ��Ht�Kt D ˚t ; 8t 2 T; (14)

�Hm 2 [0; 2
] ; 8m 2 M; (15)

where M denotes the total number of reflections from
an X-ray diffraction experiment after all the sym-
metry equivalent reflections have been removed, T
denotes the set of triplet phase invariants, At D

2N�1/2jEHjjEKjjE�H�Kj, !t D I1(At)/I0(At), jEj is
a normalized structure factor amplitude, N is the num-
ber of atoms in the unit cell, In is a modified Bessel
function of order n, andH and K denote Miller indices.

In all practical cases, it has been demonstrated [7]
that a set of phases which minimizes Rmin and satisfies
atomicity constraints represent the true phase solution
for a structure.
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Most contemporary phasing algorithms, which
make use of the minimal principle, rely on a combina-
tion of local search and stochastic optimization tech-
niques. One commonly used direct methods package
for phasing is known as SnB [16].

For centrosymmetric structures, an integer pro-
gramming model of the minimal principle has been de-
rived by [12]:

min Rmin D
X
t

At
�
4ˇtC1�2!tC!

2
t
�ı�X

t

At
�
(16)

s:t: �HtC�KtC��Ht�Kt D 2˛tCˇt ; 8t 2 T ; (17)

�Hm C �HmRs D 1 ; 8m 2 M;8s 2 Sm ; (18)

�Hm D �HmRu ; 8m 2 M;8u 2 Um ; (19)

˛t ; ˇt 2 f0; 1g ; 8t 2 T ; (20)

�Hm 2 f0; 1g ; 8m 2 M ; (21)

whereM, as before, denotes the total number of reflec-
tions from an X-ray diffraction experiment after all the
symmetry equivalent reflections have been removed,
Sm is the set of shifted phases related to Hm by ro-
tational symmetry Rs , and Um is the set of unshifted
phases related to Hm by rotational symmetry Ru . So-
lution of this model is nontrivial. In addition, it has
been shown [17] that a global solution to the minimal
principle model can in fact represent a false minimum,
which does not correspond to a true phase solution.
False minima result when a true structural solution
contains triplet invariants, which sum to an odd multi-
ple of 
 , termed ‘odd triplets’. Such odd triplets are typ-
ically absent from strong A-value triplet sets. This has
motivated the formulation of a modified integer mini-
mal principle, which solves over a subset, T0 of the full
triplet set T. The global minimum of this model can
easily be obtained by simply finding a phase solution
which satisfies the constraint set when all invariants are
set to zero:

�Ht C �Kt C ��Ht�Kt D 0 ; 8t 2 T0 (22)

�Hm C �HmRs D 1 ; 8m 2 M;8s 2 Sm (23)

�Hm D �HmRu ; 8m 2 M;8u 2 Um (24)

� 2 f0; 1g: (25)

This model can be solved in polynomial time, and
has been shown to greatly enhance computational ef-
ficiency for a variety of structures when compared to
a standard crystallography package [12].

MaximumDeterminant

One of the first papers, which would lay a foundation
for maximum entropy methods for phasing was pub-
lished in 1950. By constructing the Hermitian forms
of the structure factor function in terms of electron
density and noting the positivity of electron density,
[6] showed that a system of determinants containing
certain FH’s must be non-negative. This yielded the
concept of a Karle–Hauptman matrix, abbreviated as
KH matrix.

Later, [14] proposed a method by which KH matri-
ces could be utilized for phasing of crystal structures.
First, consider the Sayre equation:

hEKEH�Ki
K D �EH; (26)

where E is a normalized structure factor at a particu-
lar Miller index, � is a normalization constant, and the
brackets around the left-hand side indicate an average
over K. If substitutions are made, H D Hi � H j and
K D L C Hi , in terms of the rows i 2 r and columns
j 2 c of a KH matrix, L a random vector, (26) reduces
to:

hEiE ji
? D hELCHi E�L�H ji

L D �EHi�H j i;8 j 2 c:

(27)

The values of EHi�H j , in the corresponding KHmatrix,
represent correlation coefficients, and consequently
form a covariance matrix. If the following assumptions
are then taken: a large number of atoms in the unit cell,
the positions of which are mutually independent, then
it is possible to derive a conditional joint probability law
of the basic form:

p(E1; : : : ; Em) D C exp
�
N
ımC1

Dm

�
; (28)

whereDm is the determinant of a KHmatrix of orderm,
denoted by Am , and ımC1 is the determinant of Am



2862 O Optimization Techniques for Phase Retrieval Based on Single-Crystal X-Ray Diffraction Data

with one additional row and column appended. In this
situation, the structure factors which compose the Am

matrix are known, the phases of the appended struc-
ture factors are varied. Ultimately, (28), implies that the
most probable value for the phases of the structure fac-
tors added to Am will maximize the determinant ımC1.
A generalized rule was also suggested by Tsoucaris [14]:
given a KH matrix which contains structure factors
with unknown phases, the most probably set of phases
will maximize the determinant of the KH matrix. In
terms of an optimization framework:

max Z D detA (29)

s:t: A 
 0 (30)

A D A(�) (31)

�Hm 2 f0; 2
g ; 8m 2 M: (32)

CRUNCH is a well known crystallography package [4] in
which the phasing is done primarily based on solution
of the maximum determinant formulation. The deter-
minant is maximized using a local search technique in
combination with an expression of the derivative of the
determinant of A in terms of element i; j:

ı detA
ı˛i j

D 2jai jjjbi jj sin(ˇi j � ˛i j) detA; (33)

where ˛ and ˇ are phases of elements ai j and bi j re-
spectively and bi j is related to ai j through the inverse
of A. In addition, programs such as CRUNCHwill often
maximize the determinant for a large number of small
matrices until enough phase information is available to
compose a full density function. Each of these matrices
will typically contain a small amount of overlap to fix
origin specification. It has also been shown by [15], that
the eigenvalues of KH matrices can be used to assess
phase set quality and for phase refinement.

Entropy Maximization

The more general technique of entropy maximization
is discussed in detail by [1]. Essentially, the optimiza-
tion model described involves both entropy and phys-
ical considerations. In general, the solution is done by
maximizing entropy defined as:

S(q) D �
Z
V
q(x) log [ q (x) /m (x) ] d3x; (34)

where q is the probability density of atoms and m is
a ‘prior prejudice’, typically taken as a uniform distribu-
tion. It then remains to write q in terms of the normal-
ized structure factors U of the crystallography problem.
In the space group P1, this is achieved as:

q(x) D
1
V

X
M

UHm exp(�2
{Hm � x) (35)

UH D

Z
V
q(x) exp(2
{H � x)d3x: (36)

Solution of the maximum entropy formulation will typ-
ically allow phasing of structures beyond the size limi-
tations of other direct methods.

Conclusion

Phase information is not directly measurable from
a traditional X-ray diffraction experiment. Numerous
techniques have been developed for phasing of crys-
tal structures, most well-known are the Patterson, di-
rect, and MAD methods. Typically Patterson methods
rely on the presence of one or more heavy atoms in the
structure. MADmethods require the presence of amea-
surable anomalous difference. Direct methods phase in
reciprocal space and are typically subject to size and
resolution limits. In the field of direct methods, much
work with regard to optimization has been done. Still,
despite the age of the crystallography field, many prob-
lems are still open in the area of robust and reliable de-
termination of crystal structures.
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ProblemDescription

The complexity of water-related problems is escalat-
ing as the uses of water and the (environmental and
others) objectives to fulfill continue to expand. Most
of the easier structural solutions for greater water re-
sources utilization have already been implemented and
new projects, including interbasin transfers, find some
opposition in the Society. In these circumstances the
need for a rational water resources planning is becom-
ing stronger than ever as a result of the impact of the
changes in the general climatic conditions and the in-
creasing demand of water resources using.

To ensure the successful catchment management of
complex water resource systems (interaction of reser-
voirs and channels in the surface of rivers as well as
aquifers and other groundwater resources), it is essen-
tial that the most reliable models and supporting tools
can be used. In the field of conjunctive use of water re-
source systems, the reality is complex and, so, the mod-
els for planning are large (in terms of the number of
decision variables) and stochastic (there are parameters
such as the hydrological exogenous inflow and demand
for different uses whose values cannot be controlled by
the decision maker and are uncertain). The property of
uncertainty makes the water resources planning diffi-
cult to tackle, but yet the solution is critical for a proper
utilization of the (scarce) water resources.

The multiperiod optimization modeling framework
should aim to confer the ability to solve vital problems
to water resources planning agencies. The problem con-
sists of water resources planning under uncertainty on
hydrological exogenous inflow and demand for a set of
inter-related (and transboundary) basin systems along
a given planning horizon. It should have a direct bear-
ing on the assignment of water resources to the require-
ments of the different uses, by operating significant de-
mand savings and minimizing the degradation in qual-

http://www.pdb.org/pdb/home/home.do
http://www.pdb.org/pdb/home/home.do
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ity of both water environment and natural environment
associated with its use. The main elements of the prob-
lem are the water resource sources (such as the surface
and groundwater systems), the water demand centers
to satisfy current and potential future needs (for hy-
dropower generation, irrigation, industrial, domestic,
recreative and ecological purposes among others) and
the infrastructure of reservoirs and water transporta-
tion systems including artificial, natural and would-to-
be basin and inter-basin channels.

A water resource system is included by a surface
subsystem and a groundwater subsystem, both inter-
connected. The system can be viewed as a physical net-
work whose nodes and arcs are as follows:
1) Nodes with water storage capacity (i. e., reservoirs

including lakes), where evaporation and losses by
infiltration to groundwater should be considered.
This type of nodes can have associated hydropower
generation units that make use of water but it does
not reduced it practically.

2) Physical junction nodes. They are points in the river
where the waterflow has somemodification such as
river confluences, hydrological inflows, diversions,
etc.

3) Demand nodes. Other demand uses are irrigation,
urban, industrial, recreation and for ecological
purposes among others. They can be represented
by consumptive and (partially) nonconsumptive
water demand nodes.

4) Return nodes. They are nodes (points in the river)
where water is (partially) returned from some de-
mand nodes.

5) On-the-river hydropower nodes. They are nodes
without water storage capacity, so, they can only
make use of the waterflow for satisfying hy-
dropower generation needs, but without regulating
it, nor reducing it either.

6) Surface water pumping facilities. These nodes allow
water pumping to upstream reservoirs.

7) Natural stream arcs. Different types of arcs can be
modeled as network arcs, such as natural chan-
nels (i. e., river reaches in multireservoir systems),
canals, ditches, interbasin transfers, etc.

8) Aquifers. They are nodes from the groundwater
system with water storage capacity. Conjunctive
use of surface water and groundwater is of great
importance in many basins, given the scarcity of

water resources and the competition between con-
flicting uses.

9) Controlled recharge facilities. These nodes allow di-
rect injection of surface water into the aquifers.

10) Groundwater pumping facilities. These nodes al-
low direct pumping of groundwater to the natural
stream arcs.

The main purpose of optimization in the field consists
of determining the water resources availability and de-
mand balancing for each period of the planning hori-
zon under study. In case of no balancing feasible so-
lution, the approach should provide a water resources
planning to minimize the weighted unbalancing devia-
tion. The water flows through interbasin transfer chan-
nels along a given time planning horizon. Technically,
the problem is converted to a time replicated network.
Novel modeling schemes for multistage linking con-
straints to force upper bounds on the water demand
cumulated deficit for given consecutive time periods
should be considered, see [8]. This type of constraints
force water management policies to avoid disastrous
consequences of drought out events. For the same pur-
pose a constraint type can be modeled to preserve ‘ear-
marked’ reserve stored water in (directly and nondi-
rectly) upstream reservoirs along the river to satisfy po-
tential future needs in selected demand centers at given
time periods.

The decision maker should decide about the water
volume to be stored at each reservoir and controlled
aquifer and, then, the water volume to be released, such
that physical structural constraints are satisfied and wa-
ter utilization policies are prioritized and optimized.
These policies are related to environmental objectives,
hydroelectrical production, irrigation, urban and in-
dustrial demands and other uses, reservoirs’ water lev-
els, aquifers’ artificial recharge and pumping policies,
reserve stored water at reservoirs to satisfy potential fu-
ture needs at selected demand centers during drought
out events, etc. So, the objective function to minimize
is the expected value of a composite function included
by the penalization of the deficits on the satisfaction
target levels, the weights of water flow through natu-
ral stream and surface pumping arcs and the weights of
water pumping from aquifers along the planning hori-
zon.

As an important byproduct the system should de-
termine the risk of significant water deficiencies and to
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mitigate the consequences of extreme events as drought
outs and floods. The assessment of the impact on water
balancing due to water channelling infrastructure mod-
ifications, as well as modifications onwater resource us-
ing policies for some demand types are some other use-
ful results. See some approaches in [1,2,7,9] and [12] -
[13] among others.

Other results from using optimization schemes for
water resources planning are as follows.
� Assessing environment protection by enforcing

lower bounds on the flow through natural stream
arcs and water quality.

� Assessing the degree of systems’ reliability.
� Determining the risk of significant water deficien-

cies even over very extended areas.
� Qualifying the water demand according to the re-

quirements of the different uses, and assessing the
impact on each other use.

� Advancing and quantifying the potential repercus-
sions on the Environment and the Economy of cer-
tain water utilization policies at given time periods
under a variety of potential scenarios.

� Determining the structural works and management
changes that should be performed to mitigate disas-
trous consequences of drought out and flood events.

� Assessing the rational use of groundwater by help-
ing to decide when and how much aquifer pump-
ing should be performed (and when and how much
aquifer artificial recharge should be commanded) to
preserve their structural constitution, given the sce-
nario tree that is foreseen (see below), and the rank-
ing and weighting of the demand uses to consider.

� Assessing the need and timing of inter-basin trans-
fers by considering the potential scenarios to occur
and the demand uses in the different river basin ar-
eas. Similar impact for transboundary rivers.

Stochastic Approach

The optimization problem described above can be ex-
pressed in the following model structuring,

8̂
<̂
ˆ̂:

min
v

c>v

s.t. Av D p
v � 0;

(1)

where c is the vector of the objective function coeffi-
cients, A is the m × n constraint matrix, p is the right-

hand sidem-vector and v is the n-vector of the decision
variables to optimise. It must be extended in order to
deal properly with uncertainty in the values of some pa-
rameters, say, c and p in this case, hydrological exoge-
nous inflow and demand in various uses. The class of
optimization problems with uncertainty in the param-
eters is among the most intractable class in numerical
computation.

In any case one needs to consider two additional
features. In the first place, one must model the avail-
ability of hydrological information over time, and state
what sort of water resource using decisions can bemade
at each of the various stages. Secondly, to compute an
optimal water resources solution in the stochastic area
any proposed solution should also be compared with
other candidate solutions as it is done in the determin-
istic field. But, in the stochastic setting, the criteria by
which this comparison can be performed are much less
clear. Thus, one needs an approach to model the un-
certainty in the problem data. The traditional approach
is to make probabilistic distribution assumptions, es-
timate the parameters from historical data and, then,
develop an stochastic model to take the uncertainty
into account. Such an approach may not be appropriate
if only limited information is available. In many such
cases one may employ a technique so-called scenario
analysis, where the uncertainty is modeled via a set of
scenarios [6].

Let S denote the set of scenarios to consider, and ws

the likelihood that the decision maker assigns to sce-
nario s for s2 S. So, in contrast to traditional mathemat-
ical programming approaches, state-of-the-art schemes
model the uncertainty by using scenarios to character-
ize the uncertain parameters. A scenario tree is gener-
ated and, through the use of full recourse techniques,
an implementable solution is obtained for the first time
stage by considering all scenarios but without subordi-
nating to any of them; additionally, a coordinated so-
lution for each scenario group at the other time stages
should also be provided. While this approach is used,
the so-called deterministic equivalent model (DEM)
has a huge number of constraints and variables. So, very
often the problem structure (network-like and others)
is lost as a consequence of the need to impose additional
conditions on the value of the variables to ensure the
coherence of the water resource using decisions taken
at different time stages.
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The minimization of the expected value of the com-
posite function included by the penalization of the
deficit on the satisfaction target levels can be expressed

8̂
ˆ̂<
ˆ̂̂:

min
v

X
s2S

ws cs>v

s.t. Av D ps ; 8s 2 S;
v � 0:

(2)

Note that (2) gives an implementable policy based
on the so-called simple recourse scheme. (See that the
whole vector of decision variables is anticipated at
stage 1).

NonanticipativeWater Resources Policies

Model (2) does anticipate decisions in v that for mul-
tistage environments may not be needed at stage r = 1.
Very frequently the decisions for stage r = 1 are the de-
cisions to be made since at stage r = 2 one may realize
that some of the data has been changed, some scenarios
vanish, etc. In this case, the model will be usually re-
optimized in a rolling planning horizon mode. When
only spot decisions (i. e., decisions for the first stage) are
to be made, the information about future uncertainty is
taken into account for a better spot decision making.
This type of scheme is termed full recourse.

Let R denote the set of stages and vsr the vector of the
variables related to stage r under scenario s for r 2R and
s 2 S, and vs is the set of vectors vsr 8r 2 R. The so-called
nonanticipative principle is stated as follows, see [15]: If
two different scenarios, say, s and s0 are identical up to
stage r on the basis of the information available about
them up to that stage, then the values of the v-variables
must be identical up to stage r. This principle guaran-
tees that the solution obtained from the model is not
dependent at stage r on the information that is not yet
available. To illustrate this concept, consider a so-called
scenario treewhere each node represents a point in time
where a decision on water resource using can be made.
Once a decision is being made several contingencies can
happen, and information related to these contingencies
is available at the beginning of the next stage. This in-
formation structure is visualized as a tree, where each
root-to-leave path represents one specific scenario and
corresponds to one realization of the uncertain param-
eters.

In order to introduce the implications of this prin-
ciple, see [8], in water resources planning optimization,
let us define a set of scenario groups, say, Gr for each
stage r, such that all scenarios having the same realiza-
tions of the uncertainty up to stage r belong to the same
scenario group, say, g for g 2 Gr. Let Sg, r denote the set
of scenarios that belong to group g at stage r for Sg, r �
S. Let a node in the scenario tree be represented by the
pair, say, (k, r) for k 2 Gr, r 2 R, such that the scenario
tree is defined by the set of nodes [k 2 Gr, r 2 R(k, r)
and the set of directed arcs E, where (k, `) 2 E if and
only if S`, r+ 1 � Sk, r for k 2 Gr and ` 2 Gr+ 1. Let Gk

r
� {` 2 Gr + 1}(k, `) 2 E. Finally, let N denote the set
of solutions that satisfy the so-called nonanticipativity
constraints. That is,

v 2 N �

8<
:v

s :
vsr D vs0r ;
8s; s0 2 Sg;r ;
g 2 Gr ; r 2 R

9=
; : (3)

So, the DEM of the so-called full recourse version of
model (1) can be expressed

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
v

X
s2S

ws cs>vs

s.t. Avs D ps ; 8s 2 S;
v 2 N;
vs � 0; 8s 2 S:

(4)

Model (4) has a nice structure that we may exploit. Two
approaches can be used to represent the nonanticipa-
tivity constraints (3). One approach is based on a com-
pact representation, where (3) is used to eliminate vari-
ables in (4) as well as for reducing model size, so that
there is a single variable for each element at each sce-
nario group of each stage, but any special structure of
the constraints in (1) is destroyed. In this case let the
variables vector v = (x, y, z) have the following struc-
ture: xg, r , vector of variables with nonzero coefficients
in the constraints related to stage r alone for g 2 Gr, r 2
R; yg, r, vector of variables with nonzero elements in the
constraints related to the stages r and r+ 1 (for the water
resources planning problem this type of variables rep-
resent the stored water in the reservoirs and aquifers at
the last time period of stage r); and zg, r , vector of vari-
ables with nonzero elements in the constraints related
to stage r as well as in the constraints related to sets of
stages to be defined below.
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Introduce the following additional notation. U is
the set of z-related constraint blocks through time
stages, so-called multistage linking constraints, Ru is the
set of time stages related to constraint block u for 2 U ,
ru and ru are the smallest and largest elements from Ru,
respectively, and Ng, u is the set of nodes in the directed
path through the set of time stages (i. e., set Ru) whose
ending node is node (g; ru) and the unique origin node
is, say, (i; ru). So, the pair (k, r) index for variable zk, r
is such that (k, r) 2 Ng, u for ending node (g; ru) and
constraint block u. This type of constraint block can be
represented as follows:

Zg;u

8̂
<
:̂

X
(k;�)2Ng;u

Du;�zk;� D dg;u

8g 2 Gru ; u 2 U;
(5)

where Du, � is the matrix for constraint block u related
to the z-variables from stage � , and dg, u is the right-
hand side of constraint block u for scenario group g
from stage ru ; u 2 U . (See that constraint block u has
jGru j versions.) For the water resources planning this
type of constraints prevent that the cumulated water de-
mand deficit in given nodes through consecutive time
stages can violate given upper bounds under given sce-
nario groups.

The compact representation of model (4) can be ex-
pressed as follows:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min
x;y

X
r2R

X
g2Gr

wg;r

�(a>g;rxg;r C b>g;r yg;r C c>g;r zg;r)
s.t. 0 � xg;r ; yg;r ; zg;r 2 Xg;r

8g 2 Gr ; r 2 R;
zg;r 2 Zg;u ; 8g 2 Gru ; u 2 U;

(6)

such that

Xg;r

8̂
<̂
ˆ̂:

Arxg;r C B0r y`;r�1 C Br yg;r
CCg;r zg;r D pg;r
8g 2 Gr ; r 2 R;

(7)

where wg, r gives the weight for scenario group g at
stage r, such that ag, r, bg, r and cg, r are the x-, y- and z-
variables related objective function coefficients respec-
tively, for the pair (g, r), Ar , Br and Cr are the appropri-
ate constraint matrices and pg, r is the right-hand side,

all with the conformable dimensions, and `: {g 2 G`r� 1
for g 2 Gr, r 2 R}, and

wg;r D
X
s2Sg;r

ws : (8)

One of themain inconveniences of the compact rep-
resentation (5)–(7) is the inherent difficulty for its de-
composition in smaller models. Given the large scale
instances of the model, easy decomposition is a key for
success. It can be obtained from the so-called splitting
variable representation. It requires to produce sibles of
the y- and z-variables.

For this purpose let Ng, r denote the set of pairs (k,
�) such that k 2 G� , � 2 R� � r and 9u 2 U

�
D ru for

(g, r) 2 Nk, u. That is, (g, r) and (k, �) for g 2 Gr and k
2 G� are any two nodes in the scenario tree for r, � 2 R,
such that there is a constraint block u for u 2 U where
� � ru and there is a path from some node, say, (i; ru)
to node (k, �) through node (g, r).

In order to introduce the new representation, let us
rename the y- and z-variables such that yg, r and zg, r will
be replaced by y0g;r and zg;rg;r , respectively, and add the
new variables y`, r� 1g , where ` : g 2 G`r� 1, and zk, � g, r ,
8(k, �) 2 Ng, r, g 2 Gr, r 2 R. So, the splitting variable
representation is as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
x;y;z

X
r2R

X
g2Gr

wg;r

�(a>g;rxg;r C b>g;r y0g;r C c>g;r z
g;r
g;r )

s.t. Xg;r ;

Zg;u ;

Y`g;r ;
Zk;�
g;r ;

x; y; z � 0;

(9)

where

Xg;r :

8̂
<̂
ˆ̂:

Arxg;r C B0r y
g
`;r�1 C Br y0g;r

CCrz
g;r
g;r D pg;r ;

8g 2 Gr ; r 2 R;
` : g 2 G`r�1

9>>=
>>;
; (10)

Zg;u :

( P
(k;�)2Ng;u

Du;�z
g;ru
k;� D dg;u ;

8g 2 Gru ; u 2 U;

)
; (11)

Y`g;r :

(
y`g;r � y`C1

g;r D 0;
8` 2 f0g [ Gg

r ; g 2 Gr ; r 2 R

)
; (12)



2868 O Optimization in Water Resources

Zk;�
g;r :

(
zg;rg;r � zk;�g;r D 0;

8(k; �) 2 Ng;r; g 2 Gr ; r 2 R

)
: (13)

Remark 1 The two constraint blocks (12) and (13) in
(9) are the expressions for the nonanticipativity con-
straints (3).

Different types of decomposition approaches can be
used for solving model (8); namely, augmented La-
grangian and Benders [3] decomposition schemes, both
being very amenable for using parallel computing ap-
proaches, see [4,5,10,11,14,16], and [17] among others.

Conclusions

Full recourse based mathematical programming
schemes have been used as the kernels of decision
support systems for water resource planning under wa-
ter exogenous inflow and demand uncertainty, where
the uncertainty is treated via scenario analysis. This
methodology results in a huge deterministic equiva-
lent model (with hundreds of thousands of constraints
and variables), where care should be taken to preserve
the constraint structure of the original problem. Two
very useful constraint types are considered for the de-
mand centers, namely, upper bounds on the deficit of
reserve stored water in (directly and nondirectly) up-
stream reservoirs to satisfy potential future needs, and
upper bounds on the consecutive time periods cumu-
lated water demand deficit (so-calledmultistage linking
constraints).

A splitting variable scheme for the reservoirs and
controlled aquifers stored water modeling represen-
tation can be used, as well as decomposition frame-
works based on Benders and augmented Lagrangian
approaches. On the other hand, given the separability of
the subproblems attached to the nodes of the scenario
tree as well as the reduced overhead required, one can
be motivated to develop parallel computing versions of
the decomposition approaches on a distributed envi-
ronment. It will significantly help to solve large scale
water resource planning problems under uncertainty in
water exogenous inflow and demand parameters.

See also

� Global Optimization in the Analysis and
Management of Environmental Systems

References

1. Andreu J, Capilla J (1993) Optimization and simulation
models applied to the Segura water resources system. In:
Marco JB, Harboe R, Salas JD (eds) Stochastic Hydrology
and its use inWater Resources Systems Simulation andOp-
timization. Kluwer, Dordrecht, pp 425–438

2. Andreu J, Capilla J, Sanchs E (1996) AQUATOOL, a gener-
alized decision support system for water-resources plan-
ning and operational management. J Hydrology 177:269–
291

3. Benders JF (1962) Partitioning procedures for solving
mixed variables programming problems. Numerische
Math 4:238–252

4. Birge JR (1985) Decomposition and partitioning meth-
ods for multistage stochastic linear programs. Oper Res
33:1089–1107

5. Dempster MAH, Thompson RT (1996) Parallelization of
EVPI based importance sampling procedures for solving
multistage stochastic linear programmes on MIMD archi-
tectures. Parallel Optimization Colloquium. Lab. PRiSM,
University Versailles, Versailles

6. Escudero LF (1994) Robust decision making as a decision
making aid under uncertainty. Decision Theory and Deci-
sion Analysis. In: Ríos S (ed) Kluwer, Dordrecht, pp 127–
138

7. Escudero LF Pastor JI (ed) (1996) Modelización de la opti-
mización de la gestión hídrica. Sistemas de Informacín y
Control en la Gestión del Agua. IBERDROLA Institute Tec-
nol., pp 317–338

8. Escudero LF (1998) On usingmultistage linking constraints
for stochastic optimization. Rev Acad Ciencias 92:371–
376

9. Escudero LF (2000) WARSYP, a robust modelling approach
for water resources system planning under uncertainty.
Ann Oper Res 95:313–339

10. Escudero LF, de la Fuente JL, García C, Prieto FJ (1996)
Hydropower generation management under uncertainty
via scenario analysis and parallel computation. IEEE Trans
Power Systems 11:683–689

11. Gassmann MI (1990) MSLiP: A computer code for the
multistage linear programming problem. Math Program
47:407–423

12. Labadie JM, Brazil LE, Corbu I, Johnson LE (eds) (1989)
Computerized decision support systems for water man-
agers. Amer. Soc. Civil Engineers, Reston

13. Marco JB, Harboe R, Salas JD (eds) (1993) Stochastic hydrol-
ogy and its use in water resources systems simulation and
optimization. Kluwer, Dordrecht
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Abstract

Finding the median (or minisum) point in continuous
space relative to a set of weighted demand points (cus-
tomers, markets, existing facilities) is a classical prob-
lem in location theory. We examine an extension of
the problem where the existing facilities are modeled
as fixed areas, and the median point is determined rel-
ative to the closest distances to these areas. Two popu-
lar distance metrics are considered: the Euclidean and
rectangular norms. These demonstrate the differences
between the classes of round (or smooth) norms and
block norms. Mathematical properties of the new mod-
els are used to adapt existing solution methods to solve
them.

Keywords

Euclidean norm; Rectangular norm; Closest distance;
Median

Introduction

In continuous location theory, facilities to be optimally
located are generally represented by points, and the cus-
tomers or markets that they serve are also geometri-
cal points in space. The objective is to find the optimal
site of one or more facilities with respect to a specified
performance measure such as the sum of transporta-
tion costs. This is one of the oldest formal optimization
problems in mathematics and has a long and interest-
ing history ([15] Section 1.3, [7,9,21]). Many variants of
the problem exist. A very basic version of the location
problem is to minimize:

W(x) D
nX

iD1

wiK(x � ai ) ; (1)

where x D (x1; x2) is the unknown facility location
in <2, wi is a positive weight representing transporta-
tion cost per unit distance for customer i, and K(x�ai)
is a norm measuring distance from the facility loca-
tion x to the fixed location ai D (ai1; ai2) of demand
point i. The most common distance measure is Eu-
clidean or straight-line distance and in this case, the
most common solution procedure is some form of non-
linear optimization such as gradient descent.

A simple yet elegant solution procedure for the min-
isum problem (1) with Euclidean (`2) distances was
proposed by Weiszfeld in 1937 [20]. Setting the first-
order partial derivatives ofW(x) to zero, we obtain the
following system of equations for a stationary point:

nX
iD1

wi(xt � ai t)
`2(x � ai)

D 0 ; t D 1; 2 : (2)

Since the objective function is convex, the above equa-
tions are both necessary and sufficient for any differ-
entiable point to be a global solution of (1). However,
since the system of equations cannot be solved explic-
itly, Weiszfeld developed the following one-point iter-
ative scheme by isolating the coordinates on one side:

xqC1
t D

P
i
wi ai t/`2(xq � ai)
P
i
wi/`2(xq � ai )

; t D 1; 2; (3)

where q D 0; 1; 2; : : : , denotes the iteration number.
The Weiszfeld procedure is equivalent to a gradi-

ent descent with predetermined step size. In a semi-
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nal paper by Kuhn [14], global convergence of the pro-
cedure was proven provided that no iterate coincides
with a fixed point ai , where the iteration functions
are undefined. The local convergence rate is always lin-
ear when the optimal solution occurs at a differentiable
point; however, when the optimal solution coincides
with a fixed point, the convergence rate may be sub-
linear or quadratic under certain conditions [13]. The
Weiszfeld procedure has been generalized to other dis-
tance functions, and convergence properties have been
studied e. g. see [1,2] for `p distances. We note that
global convergence is guaranteed for the `p norm if the
parameter p 2 [1; 2], that is, for the rectangular norm
(p D 1), the Euclidean norm (p D 2), and all `p norms
in between.

The `p norm, with 1 < p <1, belongs to the class
of round norms that are characterized by unit circles
with no ‘flat spots’. Block norms, on the other hand,
have unit circles that are polygons in <2 (or polyhe-
drons in higher dimensional space). With this property,
the objective function in (1) becomes convex piecewise
linear. Block norms play a useful role in location mod-
els (e. g., see [17,19]), as the search in continuous space
may now be confined to a finite set of points, and lin-
ear programming or related techniques may be used.
Similarly, many other types of problems become much
easier to solve when absolute values occur in a certain
form. Examples of block norms include the rectangu-
lar norm (p D 1), Tchebycheff norm (p D 1), and
a linear combination of the two that has been used to
approximate the `p norm [18].

When distances are rectangular, that is, when:

K(x � ai) D ( jx1 � ai1j C j x2 � ai2j ) ; (4)

minimizing W(x) is accomplished by simply finding
weighted median locations separately along the x1 and
x2 axes (e. g., see [15] Chapter 2, or [9]). For example, if
the ai1’s are ordered from smallest to largest, with their
weights attached, then the ai1 associated with the me-
dian of the weights would determine the optimal so-
lution for x1. The separability property of rectangular
distances allows for the solution of more complex prob-
lems. For example, the demand points may be replaced
by demand ‘areas’, and the distance becomes the ex-
pected distance between the facility and each demand
for a given density function of space distributed de-
mand [6,22].

TheModel

We now consider the problem of locating a new fa-
cility denoted by point x 2 <2 to service a set of
n specified demand regions (or market areas) denoted
by Ai � <

2; i D 1; : : : ; n. The Ai are assumed to be
fixed areas in the plane that are bounded and closed,
with known demands again specified by weighting con-
stants, wi > 0; i D 1; : : : ; n. The objective is to find the
point x that minimizes the weighted sum of distances to
the n demand regions.

What makes our problem different from the well-
studied minisum problem discussed above is that the
travel distance separating the facility from a demand
region Ai is now defined as the distance measured by
norm K from x to the closest point in Ai. This may be
interpreted as flow from the facility entering the given
market at the closest entry point. Internal distribution
costs within the market area are assumed to be unim-
portant or ‘someone else’s concern’ (see [4,5] for fur-
ther discussion).

The idea of closest distances is well known in set
theory (e. g. [11]). Area demands have been used many
times in location problems, but along with the assump-
tion that travel distances within areas are relevant: e. g.
see [6,10,22]. If some form of aggregation is used, then
the expected travel distance from the facility to some
‘mean’ point in the interior of the demand area deter-
mines the transportation cost.

Denote the closest point in Ai by ai(x). Since this
point is determined by the intersection of the smallest
possible circle of norm K centered at x with Ai, it fol-
lows that if Ai is a convex region, and K a round norm,
then, ai(x) is always uniquely defined. The travel dis-
tance now becomes:

d(x;Ai ) D min
y2Ai

K(x � y) D K(x � ai(x)) : (5)

The single facility minisum problem with closest dis-
tance function then takes the form:

minW(x) D
nX

iD1

wid(x;Ai ) D
nX

iD1

wiK(x� ai (x)) :

(6)

Property 1 (Brimberg and Wesolowsky, [4]) If Ai is
a convex region, then d(x;Ai ) is a convex function of x
for any norm K.
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It follows that if all the Ai are given as convex regions,
then W is a sum of convex functions that is itself con-
vex. In this case a general descent algorithm may be
used to obtain the optimal solution. However, more
specialized methods may be devised based on proper-
ties of the particular model.

Euclidean Closest Distances

We now specify the norm K to be the Euclidean norm,
that is,

d(x;Ai ) D `2(x � ai(x))

D [(x1 � ai1(x))2 C (x2 � ai2(x))2]1/2 ;

8x D (x1; x2); ai(x) D (ai1(x); ai2(x)) 2 <2 :

(7)

Let int(Ai) and Bi denote, respectively, the interior
and boundary of Ai ; i D 1; : : : ; n. Let ai (x) represent
the “fixed point” ai(x) which is assumed to be unique.
When x 2 int(Ai), it is clear that @(d(x;Ai ))/@x j ex-
ists, and is equal to 0 for all j. However, since the func-
tional form of W(x) changes crossing from the inte-
rior to the exterior of Ai, it also follows that when
x 2 Bi ; @(d(x;Ai ))/@x j is undefined for at least one
direction j. The following result [5] provides an inter-
esting relation when x is a point outside Ai.

Property 2 Consider any x … Ai . Then the par-
tial derivative @(d(x;Ai ))/@x j is defined 8 j; its value
at x is the same when ai(x) is replaced by the fixed
point ai(x).

It follows that if x is external to all the Ai, the gradi-
ent vector of W(x) may be calculated by replacing all
the demand regions by the associated fixed points ai(x).
Meanwhile if x is inside a region, we simply delete that
region from the calculation. Thus the problem may be
converted, at least locally, to the standard form given
in (1). The basic idea behind the algorithm given in [5]
may now be summarized as follows:

Given an initial location x0, we determine the clos-
est point ai (x0) for each demand region Ai not contain-
ing x0. These ai(x0)are then treated as fixed points re-
placing the respective areas Ai. This allows us now to
make use of the well-knownWeiszfeld procedure intro-
duced above. One Weiszfeld iteration produces a new
location x1 with lower objective function value relative
to the set fai(x0); i D 1; : : : ; ng, although reduction of
the step size may be required if x0 falls within a demand

Optimizing Facility Location with Euclidean and Rectilinear
Distances, Figure 1
Closest distances with an area facility

region. Using the new location x1, we then recalculate
the closest points to obtain fai(x1); i D 1; : : : ; ng, and
a further improvement in the objective function. The
whole process is repeated to provide a sequence of de-
scent moves. The algorithm will converge to the opti-
mal solution if all the Ai are convex regions; otherwise,
since the objective function is no longer convex, we are
only guaranteed a local minimum.

Suppose now that instead of being a point, the new
facility is represented by an area of fixed dimensions
and orientation, denoted by S(x), where x is a specified
‘center’ point. The closest distance between the facility
and demand region Ai is then defined as:

d(x;Ai ) D min
z2S(x);y2Ai

f`2(z� y)g D `2(ci(x)�ai(x));

(8)

where ci(x) and ai(x) are the closest points in S(x)
and Ai, respectively. As illustrated in Fig. 1, we may
replace ci(x) by x and ai(x) by a0 i(x) D ai(x) C (x
� ci(x)).

Using this insight, the problem may be converted
to the original form by replacing each Ai by an en-
larged area A0i [5]. This is illustrated in Fig. 2, where
S(x) is a rectangle, and Ai a polygon. Note that A0i is
also a polygon but with a larger number of sides.

Rectilinear Closest Distances

The norm K is now specified by the rectangular norm;
hence,

d(x;Ai ) D `1(x�ai(x)) D jx1�ai1(x)jCjx2�ai2(x)j:

(9)
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Optimizing Facility Location with Euclidean and Rectilinear
Distances, Figure 2
Enlarged Area A0

i

Optimizing Facility Location with Euclidean and Rectilinear
Distances, Figure 3
Distances from area Ai

The problem now becomes:

minW(x) D
nX

iD1

wi(jx1�ai1(x)jCjx2�ai2(x)j): (10)

If the area Ai is a rectangle, then the dis-
tance d(x;Ai ) has a very convenient form. Referring to
the notation and closest distances given in Fig. 3, it fol-
lows that

d(x;Ai ) D
1
2

2X
jD1

2X
kD1

jx j � ai jk j � �i ; (11)

where

�i D
ai12 � ai11

2
C

ai22 � ai21
2

(12)

from which we can conclude that this problem is equiv-
alent to solving:

minW(x) D
nX

iD1

2X
jD1

2X
kD1

wi jx j � ai jk j (13)

This problem is now separable, and is very easily solv-
able by ordering coordinates and taking medians, as
discussed previously (see [15], Chapter 2). The physi-
cal interpretation of this problem is also interesting. If
each rectangle Ai with weight or demand wi is replaced
by two fixed points with the same weights wi at diago-
nally opposing vertices, then the original problem be-
comes an equivalent problem with point demands.

In common with many location models using rec-
tilinear distances, W(x) remains piecewise-linear along
any straight line in the solution space when closest rect-
angular distances are in use. Specifically, W(x) is lin-
ear in segments of the plane marked off by lines drawn
through the vertices of polygonal demand areas. This is
particularly important in location problems, such as the
maximin location problem, where the objective func-
tion is not convex. It means that the problem can be
decomposed into a number of problems with linear ob-
jective functions [3,4,8,10,12].

Another characteristic of this problem in common
with other rectilinear location problems (and block
norms in general) is that it can be solved with lin-
ear programming; that is, optimizing W(x) can be ex-
pressed as a set of linear programming formulations.

The rectangular distance function has discontinu-
ities in its derivatives, so that associated location prob-
lems provide difficulties for gradient descent based pro-
cedures. One way around this is to use hyperbolic ap-
proximations for the terms represented by absolute dif-
ferences [16,23].

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems

� Competitive Facility Location
� Facility Location with Externalities
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� Global Optimization in Weber’s Problem with
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�MINLP: Application in Facility Location-allocation
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The introduction of the order complementarity prob-
lem in complementarity theory can be justified by the
following two reasons:
1) In the study of some particular classical comple-

mentarity problems the essential fact is not the or-
thogonality in the sense of an inner-product, but im-
portant is the lattice orthogonality. It is very use-
ful, in some circumstances, to represent the classical
complementarity problem as an order complemen-
tarity problem.

2) In several practical problems the complementarity
condition appears with more than one operator. We
have this situation, for example in Economics, in
Lubrication Theory, in Stochastic Optimal Control
Theory, etc. [16]. The study of order complementar-
ity problems is a new chapter in Complementarity
Theory. This chapter is now in developing.

Preliminaries

Denote by E(�) (respectively, by (E, k � k) and (E, h�i, �))
a locally convex space (respectively, a Banach space and
a Hilbert space). Suppose that E is ordered by a pointed
convex cone K � E, i. e., K is a subset of E satisfying the
following properties:
1) K + K � K;
2) � K� K for all � 2 R+; and
3) K \ (� K) = {0}.
Denote by � the ordering defined by K, that is, x � y if
and only if y � x 2 K. Assume that the ordered vector
space (E, K) is a vector lattice, i. e., for every pair (x, y)
2 E×E, the supremum _ (x, y) and the infimum ^ (x,
y) with respect to the ordering� exist in E. In this case,
for every x, y, z 2 E we have:
1) _ (x, y) + z = _ (x + z, y + z);
2) ^ (x, y) + z = ^ (x + z, y + z);
3) _ (x _ y, z) = _ [ _ (x, y), _ (y, z)] = _ (x, y, z).
We can show that _ (x, y) = � ^ (�x, �y) for all x,
y 2 E.

Let E(�) be a locally convex space andK� E a closed
convex cone.

We say that K is regular (respectively, completely
regular) if all monotone increasing and order bounded
(resp. topological bounded) sequences of elements of K
are �-convergent. LetD� E be a subset. An operator T:
D! E is said to be isotone (respectively, antitone) if x1
� x2 (x1, x2 2 D) implies T(x1) � T(x2) (respectively,

T(x2) � T(x1)). If S is a subset of D, we denote by �(S)
the measure of noncompactness of S i. e., �(S) = inf{r >
0: S can be recovered by a finite family of subsets of E
whose diameter < r}.

We say that T is a k-set-contraction (k � 0) if it
is continuous, bounded and �(T(S)) � k�(S) for any
bounded set S�D. A k-set-contraction is called a strict-
set-contraction if k < 1. T is called condensing if it is con-
tinuous, bounded and �(T(S)) < �(S) for any bounded
set S � D with �(S) > 0. If K � E is a pointed convex
cone we say that a bilinear form h�, �i on E is K-local if
and only if hx, yi = 0, whenever x, y 2 K and ^ (x, y)
= 0.

Order Complementarity Problems

The order complementarity problems represent a rela-
tively new chapter in complementarity theory. The or-
der complementarity problems are necessary since, in
many situations some classical complementarity prob-
lems must be represented as a lattice orthogonality
problem. Furthermore in some practical problems, we
must use the complementarity condition simultane-
ously with respect to several operators.

Let (E, K) be a vector lattice with respect to the or-
der defined by the pointed convex cone K. Let D be
a nonempty subset of E. In particular, the set D can be
the cone K. Given m linear or nonlinear functions f 1,
. . . , f m:E! E, the order complementarity problem asso-
ciated with the family of functions and with the set D
is:

OCP(f figniD1;D)

8̂
<̂
ˆ̂:

find x0 2 D
s.t. ^( f1(x0); : : : ; fm(x0))

D 0:

In [16] this problem is named the implicit general order
complementarity problem. We have several interesting
particular cases:
1) If m = 2, D = E, f 1 = Id (the identity mapping) and

f 2(x) = Tx + q, where T: E! E is a linear mapping
and q an element in E, we have the linear order com-
plementarity problem denoted by LOCP(T, q). This
problem was studied systematically for the first time
in 1989 in [2] where several interesting new classes
of linear operators were introduced. We find, for ex-
ample, the operators of classes (H+), (S), (Z), (K), (P)
and (A).
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2) Ifm is arbitrary and the functions f i (i= 1, . . . ,m) are
affine mappings we have the generalized linear order
complementarity problem. Several results about this
problem are obtained in [9,16,25].

3) If m = 2, D = K and f 1, f 2 are nonlinear mappings
we have the nonlinear order complementarity prob-
lem studied for the first time in 1986, in [12].

4) If m = 3, D = E, f 1 = Id and f 2, f 3 are nonlinear
we have the order complementarity problem intro-
duced in lubrication theory in 1986 in [22].

5) If m is arbitrary, D = K, f 1 = Id and f 2, . . . , f m
are nonlinear but having the form f i(x) = x � Ti(x)
(i = 1, . . . , m), with every Ti a nonlinear mapping,
we have the generalized order complementarity prob-
lem studied systematically in [17], and for set-valued
mappings in [18].

Order Complementarity Problem
as Mathematical Model

The order complementarity problems can be consid-
ered also as mathematical models for many practical
problems. We indicate in this section some of such
models.

Mixed Lubrication Problem

Consider the mixed lubrication in the context of a jour-
nal bearing with elastic support. The problem is to
study the contact pressure X. In this case, E = H1(˝)
(defined over L2(˝)) and the cone is K = {� 2 H1(˝):
� � 0 a.e. on ˝}. We have two operators, T1 (X) and
T2(X), where T1 is generally an integral operator and
T2 is the Reynolds’ partial differential operator. For the
definition of these operators, the reader is referred to
[16,17,22]. In this case, there are three distinct functions
which cause the decomposition of the spatial area into
three disjoint regions: the innermost region (solid-to-
solid contact), the elasto-hydrodynamic lubrication re-
gion (solid-to-fluid contact), and the cavity region (in
which the pressure returns to the ambient value). The
complementarity formulation is based on the observa-
tion that the contact pressure X satisfies the following
equations specified for every region:
1) X � 0, T1(X) = 0, T2(X)� 0 (solid-to-solid contact);
2) X = 0, T1(x)� 0, T2(X)� 0 (cavity point);
3) X � 0, T1(X) � 0, T2(X) = 0 (lubrication point).

The problem to know the contact pressure X is equiva-
lent to the solvability of the problemOCP(Id, T1, T2;K).
Initially, this problemwas defined in [22] and until now
it is not solved.

Global Reproduction of an Economic System
Working with Several Technologies

Consider a nonlinear economic system which is a gen-
eralization of the classical linear input-output system
defined by Leontief. Suppose that the system has n pro-
duction sectors and every sector works with m tech-
nologies to produce one type of output. The number of
technologies is the same for every sector. Every sector
is constrained to use the production of the others. Let
xj be the level in units of the gross activity performed in
the sector j. Suppose that to produce xj units in the sec-
tor j, f ki j(xj) units from the technology k of sector i are
needed as inputs. We make the following assumptions:
for all i, j, k:
1) all f ki j(xj) are continuous;
2) f ki j (0) = 0;
3) 0 � uj � vj implies f ki j(uj) � f ki j(vj).
The balances between total activities and final demands
for the technology k are given by xi =

Pn
jD1 f ki j(xj) +

yj, i = 1, . . . , n, where yi is the final demand for the sec-
tor i. Denote this system by S({f ki j}). This is the classi-
cal Leontief nonlinear input-output system studied by
several authors (see the references cited in [17]). We re-
place condition 3) by the following more realistic con-
dition:
4) there exists a continuous mapping˚ :Rn!Rn such

that:
i) Id + ˚ is invertible and (Id + ˚)�1 is isotone

(with respect to the ordering defined by Rn
C);

ii) ˚(x) +
Pn

jD1f
k
j (xj) is isotone for every k, where

x = (x1, . . . , xn)| and f kj (xj) = [f ki j(xj)]
n
iD1.

If S({f ki j(xj)}) satisfies 1), 2) and 4) we say that it is a tol-
erant system and in this case ˚ is a tolerance. We define
Fk(x) = x �

Pn
jD1f

k
j (xj) and for any y0 > 0,

Sy0 D

8̂
<
:̂
x 2 Rn

C :
F1(x) � y0 � 0

:::

Fm(x) � y0 � 0

9>=
>;
:

For this model, the problem is to show that given y0 > 0
with Sy0 nonempty, the problem OCP(T1, . . . , Tm, Rn

C)
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has a solution x0 > 0 which is the least element of Sy0 ,
where

T1(x) D F1(x) � y0; : : : ; Tm(x) D Fm(x) � y0 :

In this case we say that the production x0 is realizing y0

with a minimal social cost. This model was studied in
[17]. In this paper it is shown that a tolerant economic
system, which is locally nonlinear and with the func-
tions f ki j not necessarily isotone, has a behavior similar
to a classical Leontief model.

Discrete Dynamic Complementarity Problem

One of the recent discoveries in complementarity the-
ory is the dynamic complementarity problem. It seems
that this problem was defined in [10] and it is a unify-
ing framework for fluid and diffusion approximation of
stochastic flow networks. Now we consider the discrete
dynamic complementarity problem (DDCP). Let (Rm, h�,
�i) be the Euclidean space ordered by Rm

C. Let x = {x(0),
. . . , x(n), . . . } be a sequence of vectors in Rm. Assume
that x(0)� 0 and R is a real (m ×m)-matrix. The prob-
lem (DDCP) is the following: given the sequence x and
the matrix R find the sequence y = {y(0), . . . , y(n), . . . }
such that for all n 2 N:
i) z(n) = x(n) + Ry(n) � 0;
ii) y(0) = 0,� y(n) = y(n) � y(n � 1)� 0;
iii) hz(n),� y(n)i = 0.
We assume by convention that y(�1) = 0 and N = {0,
1, 2, . . . }. Consider the vector space S = {x: x: N! Rm,
ordered by the convex cone

K D fx 2 S : x(n) � 0 for all n 2 Ng

and endowed with the Fréchet locally convex topology
defined by the family of seminorms {pr}r 2 N, where pr =Pr

nD0 k x(n) k. The space S is a vector lattice and K is
normal. We define the following operators from S into
S:

T1(y) Dfx(0)CRy(0); : : : ; x(n)CRy(n); : : :g ;

T2(y) Df0; y(1) � y(0); : : : ; y(n) � y(n � 1); : : :g ;

We put A = {y 2 S: y(0) = 0}. The solvability of problem
DDCP is equivalent to the solvability of the problem
OCP(T1, T2;A). The study of dynamic complementar-
ity problem is an interesting new research domain in
Complementarity Theory. The reader can find other ex-
amples of order complementarity problems in [14,16],

where it is shown that the generalized linear comple-
mentarity problem in Cottle and Dantzig’s sense or the
Bellman routing problem can be reformulated as on or-
der complementarity problem.

Solution Methods

Let E(�) be a locally convex space ordered by a closed
pointed convex cone K � E suppose that E is a vector
lattice. Given the operators T1, . . . , Tm E { E and the
set D � E, we consider the problem OCP({Ti}miD1, D).
Because the fact that the operator ‘^’ is used in the def-
inition of this problem, many classical methods appli-
cable to the solvability of nonlinear equations or to the
solvability of fixed point problems are not applicable.
For example the operator ‘^’ can distroy the compact-
ness or the differentiability of operators Ti (i = 1, . . . ,
m). However, some fixed point methods or some topo-
logical methods are applicable. In this sense several ex-
istence theorems and iterative methods for solvability
of the problem OCP({Ti}miD1, D) are presented in the
papers [12,13,14,15,16,17,18]. Several existence results
can be obtained using the fixed point theory and the
following result.

Theorem 1 If ˚0: E! E is an arbitrary function such
that (Id + ˚0)�1 exists, then x� 2 D is a solution of the
problem OCP({Ti}miD1, D) if and only if x� is a fixed point
of the mapping H(x) defined by

H (x) D (IdC˚0)�1

� (_f(IdC˚0 � T1)(x); : : : ; (IdC˚0 � Tm)(x)g)

for every x 2 E.

The importance of this Theorem is the fact that for
practical problems we can choose the mapping˚0 such
that H(x) has some good properties. We denote H(x) =
^ (x � T1(x), . . . , x � Tm(x)), for all x 2 E.

Definition 2 We say that H is˚0-isotone onD if there
exists a mapping ˚ : E! E such that H + ˚ is isotone
on D, (Id + ˚) is invertible and (Id + ˚)�1 is isotone.

We recall that D is order convex if u, v 2 D and u � w
� v imply that w 2 D.

Theorem 3 Let (E(�), K) be a locally convex vector lat-
tice and D � E an ordered convex set. If the following
assumptions are satisfied:
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1) K is a regular cone;
2) H is ˚-isotone;
3) (Id + ˚)�1(H + ˚) is continuous;
4) there exist x0, y0 2 D such that x0 � y0, x0 � H(x0)

and H(y0) � y0,
then the problem has a minimal and a maximal solu-
tions, both computable by iterative methods.

Proof The proof is in [16].

Suppose that Id � Ti = Ri + Si, where Ri is isotone and
Si antitone. In this case we can associate to the mapping
H the mapping

bH(x; y) D ^fR1(x)C S1(y); : : : ; Rm(x)C Sm(y)g

for all x, y 2 E. We obtain that H is a heterotonic op-
erator in Opoitsev’s sense (see [23]). We say that (x�,
y�) is a coupled fixed point forH if bH(x�; y�) D x� and
bH(y�; x�) D y�. We have the following result:

Theorem 4 Let (E, k � k) be a uniformly convex Banach
space ordered by a regular pointed closed convex cone K
� E. If one of the following assumptions are satisfied:
1) bH is nonexpansive;
2) bH is condensing with respect to ameasure of noncom-

pactness;
3) bH is continuous and dim E < +1,
then for very conical interval [x0, y0] strongly invariant
for H (i. e., x0 � bH(x0; y0) and bH(y0; x0) � y0), there
exists a coupled fixed point (x�, y�) for H and a solution
bx of the problem OCP({Ti}miD1, K) such that x� � bx �
y�. Moreover x� = limk!1xk and y� = limk!1yk,
where xk D bH(xk�1; yk�1) and yk D bH(yk�1; xk�1).

Proof The proof of this theorem is in [16].

Several interesting existence results based on a special
topological index, defined on cones, are presented in
[15]. This topological index was defined in [23]. The
problem OCP({Ti}miD1, D) can be also studied by the
topological degree. Several results in this sense have
been obtained especially for the Linear Order Comple-
mentarity Problem [8,9,25]. The results obtained for
the problem OCP({Ti}miD1, D) can be applied to the
problem NCP(f , K) when E is a Hilbert space and the
inner product is K-local, since in this case the problem
NCP(f , K) is equivalent to the problem OCP(Id, f , K).

See also

� Convex-Simplex Algorithm
� Equivalence Between Nonlinear Complementarity

Problem and Fixed Point Problem
� Generalized Nonlinear Complementarity Problem
� Integer Linear Complementary Problem
� LCP: Pardalos–Rosen Mixed Integer Formulation
� Lemke Method
� Linear Complementarity Problem
� Linear Programming
� Parametric Linear Programming: Cost Simplex

Algorithm
� Principal Pivoting Methods for Linear

Complementarity Problems
� Sequential Simplex Method
� Topological Methods in Complementarity Theory
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Matroids have been defined in 1935 as generalization of
graphs and matrices.

Starting from the 1950s they have had increasing
interest and the theoretical results obtained have been
used for solving several difficult problems in various
fields such as civil, electrical, and mechanical engineer-
ing, computer science, and mathematics. Oriented ma-
troids are a special class ofmatroids. They can be viewed
as a combinatorial abstraction of real hyperplanes ar-
rangements, of point configurations over the reals, of
convex polytopes, or of directed graphs. Scope of this
article is to introduce the reader to the theory of ori-
ented matroids, providing an extensive discussion of
the axiom systems for them and illustrating the differ-
ent aspects that characterize these objects.

Historical Review

In 1935 H. Whitney in [35] studied the linear depen-
dence and its important application in mathematics.
A number of equivalent axiomatic systems for matroids
is contained in his pioneering paper, that is considered
the first scientific work about matroid theory.

In the 1950s and 1960s, starting from the Whit-
ney’s ideas, W. Tutte in [22,23,24,25,26,27,28,29,30]
built a considerable body of theory about the structural
properties of matroids, which became popular in the
1960s, when J. Edmonds in [7,8,9,10,11,12,13] intro-
duced the matroid theory in combinatorial optimiza-
tion. From 1965 on, a growing number of researchers
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became interested in matroids. The origins of oriented
matroids go back to these years due to R.G. Bland, J.
Folkman, M. Las Vergnas, and Lawrence. Among the
first results, see [17] and [15], which contains the fun-
damental topological representation theorem for ori-
ented matroids. To the same years further notions of
oriented matroids go back due to Bland, who was mo-
tivated by linear programming duality theory ([3,4]),
and, independently, to Las Vergnas, who wasmotivated
by graph theory ([31,32,33,34]). In 1978 appeared [5].

In the literature there are several other early papers,
among them [16,19], and [21].

[2] contains a comprehensive and tutorial treatment
of oriented matroids, whose current research updates
are provided in [36].

Axiom Systems for OrientedMatroids.

Researchers from various mathematical areas arrived at
four basic, equivalent, axiom systems:
1) circuit axioms;
2) orthogonality axioms;
3) chirotopes, or basis orientations;
4) vector axioms.
In order to understand these axiom systems, some no-
tions and definition are needed.

Definition 1 A signed set X is a set X together with
a partition (X+, X�) of X. X+ is the positive set; X� is
the negative set. X is positive (negative), if X+ = ; (X�

= ;). X = X+ [ X� is the support of X.

Definition 2 Let X and Y be two signed sets, X is a re-
striction of Y if and only if X+ � Y+ and X� � Y�.

Definition 3 Let F be an unsigned set and X be
a signed set. Then, the restriction of X to F, denoted
X|F , is a signed set Y = X [ F, such that Y+ = X+ [ F
and Y� = X� [ F.

Definition 4 A signed set X can be defined also
throughout a mapping sgX : X! {�1, 1}, such that X+

= {x: sgX(x) = 1} and X� = {x: sgX(x) =�1}. sgX is called
the signature of X.

In the following, X \ Y denotes the restriction of X to X
\ Y .

Definition 5 LetX andY be two signed sets, their com-
position X ı Y is a signed set such that (X ı Y)+ = X+ [

(Y+ \ X�) and (X ı Y)� = X� [ (Y� \ X+).

Note that ı is associative, while X ı Y = Y ı X if and
only if the restrictions of X and Y to their intersection
are equal.

Definition 6 The opposite of a signed set X, denoted
�X, is the signed set such that (�X)+ = X� and (�X)�

= X+.

Definition 7 Let X and Y be two signed sets. X and
Y are called orthogonal signed sets, denoted by X ? Y ,
if either X \ Y = ;, or the restrictions of X and Y to
their intersection are neither equal nor opposite, i. e.
there must exist x, y 2 X \ Y such that X(x)Y(x) =
�X(y)Y(y).

Definition 8 Let E be any set. A signed subset of E is
a signed set whose support is contained in E.

A signed subset of E can be identified with an element of
{�1, 0, 1}E, which is usually abbreviated by {�, 0, +}E.
If E = {1, . . . , n} and X 2 {�, 0, +}E, X is a sign vector
having n entries �, 0, or +.

Circuits and Circuit Axioms.

In this Section we provide the definition of an oriented
matroid in terms of its signed circuits.

Definition 9 (Circuit axioms) A collection C of signed
subsets of a set E is the set of signed circuits of an ori-
ented matroid M on E if and only if C satisfies the fol-
lowing axioms:
1) ; 62 C;
2) symmetry: C = � C;
3) incomparability: 8X, Y 2 C, if X � Y , then X = Y or

X = �Y ;
4) weak elimination: 8X, Y 2 C,X 6D �Y , and x 2X+ \

Y� there exists a Z 2 C such that Z+ � (X+ [ Y+)\{x}
and Z� � (X� [ Y�) \ {x}.

Note that the Axioms 1), 3), and 4) of Definition 9 are
the circuit axioms of an ordinary matroid.

Corollary 10 The circuit supports C = {X: X 2 C} in
an oriented matroidM are the circuits of a matroidM,
called underlying matroid ofM.

Definition 11 C is called a circuit orientation of M,
which has the same rank ofM.

An ordinary matroid M is orientable if it has a cir-
cuit orientation.
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Deciding the orientability of a matroid is a difficult
problem. Bland and Las Vergnas [5] proved that a bi-
nary matroid is orientable if and only if it is regular.

Definition 12 Let M be an oriented matroid on a set
E and let x 2 E. Then x is a loop of M if ({x}, ;) 2 C.

If x 62 X for every X 2 C, x is called coloop of M.

Bland and Las Vergnas [5] and, independently, Folk-
man and Lawrence [15] obtained the following result.

Theorem 13 Let C be a collection of signed subsets of
a set E satisfying 1), 2), and 3) of Definition 9. Then 4) of
Definition 9 is equivalent to
4’) strong elimination: 8 X, Y 2 C, x 2 X+ \ Y�, and f
2 (X+ \ Y�) [ (X� \ Y+), there is a Z 2 C such that
f 2 Z, Z+ � (X+ [ Y+) \ {x}, and Z� � (X� [ Y�) \
{x}.

Minors

As for the ordinary case also for an oriented matroid M

on a set E, it is possible to define submatroids orminors
induced by a subset F of E by deletion and/or contrac-
tion.

For any S � {�, 0, +}E, let MinS be the collection
of nonempty signed sets in S with inclusion-minimal
support and let MaxS be the collection of signed sets in
Swith inclusion-maximal supports. Then the following
properties hold.

Proposition 14 (Deletion) Let M be an oriented ma-
troid on a set E with set of signed circuits C, and let F �
E. Then C0 = {X 2C: X � F} is the set of circuits of an ori-
ented matroid on F called the submatroid of M induced
on F and denoted by M(F).

Proposition 15 (Contraction) Let M be an oriented
matroid on a set E with set of signed circuits C, and let
F � E. Then Min{X|F: X 2 C}) is the set of circuits of an
oriented matroid on F called the contraction of M to F
and denoted by M/A, where A = E \ F.

Proposition 16 Let M be an oriented matroid on a set
E, and let A, B be two disjoint subsets of E. It holds

(M n A) n B DM n (A[ B) ;

(MA )
B
D

M
(A[ B)

;

(M n A)
B

D (
M
B
) n A :

Definition 17 A circuit signature of a matroid assigns
to each circuit C two opposite signed sets X and �X
supported by C.

Theorem 18 Let M be a matroid on a set E, and let S be
a circuit signature of M. Suppose that for all x 2 E the in-
duced circuit signatures S \ {x} and S/{x} are circuit ori-
entations of M \ {x} and M/{x}, respectively. Then, one
of the following condition holds:
1) S is a circuit orientation of M;
2) |E| = 3;
3) |E| = 4.

Duality.

LetM be an oriented matroid on a set E, B a basis ofM,
and x 2 E \ B, then there is a unique circuit c(x, B) ofM.
c(x, B) is contained in B [ {x} and supports a unique
signed circuit of M. Let c(x, B) be the basic circuit of x
with respect to B, the signed circuit supported by c(x,
B) which has x in its positive part. On the other hand,
given x 2 B, c�(x, B) denotes a unique cocircuit ofM
disjoint from B \ {x}. c�(x, B) denotes the correspond-
ing signed cocircuit ofM which is positive on {x} with
respect to B. The existence and uniqueness of c�(x, B) is
proved in the following Proposition.

Proposition 19 LetM be an oriented matroid on a set
E with set of circuits C. Then the following three proper-
ties hold.
1) There exist a unique signature C� of the cocircuits of
M such that X ? Y, for all X 2 C and Y 2 C�.

2) The collection C� is the set of signed circuits of an
oriented matroid on E called the dual matroid (or or-
thogonal matroid) ofM, denoted byM�.

3) M� � =M.

The following Theorem, proved in [5], states the ax-
iomatic definition of an oriented matroid in terms of
its dual.

Theorem 20 (Orthogonality axioms) Let M be a ma-
troid, C be a circuit signature of M, andC� be a cocircuit
signature of M. Then the following properties are equiv-
alent.
1) C and C� are the circuit collections of a pair of dual

matroids.
2) X ? Y, 8X 2 C, 8Y 2 C�.
3) X ? Y, 8X 2 C, 8Y 2 C�, with |X \ Y| � 3.
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Bland and Las Vergnas have given [5] and [6] a fur-
ther axiom system, called painting axioms by them, ex-
pressed in the following theorem.

Theorem 21 (Painting axioms) Let C and C� be two
collections of signed subsets of a set E. Then, C is the set
of circuits and C� is the set of cocircuit of an oriented
matroid on E if and only if they satisfy the conditions 1)–
3) in Definition 9 and one of the two following equivalent
properties.
1) 3-painting: For all 3-partitions E = B [ G [ R and x
2 B either there exists an X 2 C such that x 2 X � B
[ G and X \ B � X+, or there exists a Y 2 C� such
that x 2 Y � B [ R and Y \ B� Y+, but not both.

2) 4-painting: For all 4-partitions E = B [W [ G [ R
and x 2 B[W either there exists an X 2 C such that
x 2 X � B[W [G, X \ B� X+, and X \W � X�,
or there exists a Y 2 C� such that x 2 Y � B [W [
R, Y \ B� Y+, and Y \W � Y�, but not both.

Corollary 22 Each element of an oriented matroid be-
longs either to a positive circuit or to a positive cocircuit,
but not to both.

The previous Corollary is helpful to define a special type
of oriented matroid, called acyclic oriented matroid.

Definition 23 An oriented matroid M = (E, C) is
acyclic if it does not contain a positive circuit.
M is totally acyclic if all its elements are contained

in a positive circuit.

The identification of the minors ofM� with the duals of
the minors ofM follows from Theorem 20, as showed
in the following proposition.

Proposition 24 LetM be an oriented matroid on a set
E and A be a subset of E. Then,

(M n A)� DM�/A ;
(M/A)� DM� n A :

Chirotopes and Basis Orientations

An oriented matroid can be also defined by giving a sign
to its bases. In the following are reported some defini-
tions, needed to understand how to construct a basis
orientation of a given oriented matroid, which becomes
characterized in terms of signed bases, as shown in [32]
and [34].

Definition 25 The basis signature of an oriented ma-
troid is called chirotope.

Definition 26 LetM be an oriented matroid on a set
E with signed circuits C. The bases ofM are those max-
imal subsets of E that do not contain any circuit, i. e.
they are the bases ofM.

Definition 27 A basis orientation of an oriented ma-
troidM is a mapping � of the set of ordered bases ofM
to {�1, 1} such that
1) � is alternating;
2) for each two ordered bases ofM of the form (a, x2,

. . . , xr) and (b, x2, . . . , xr), a 6D b, it holds that

�(b; x2; : : : ; xr) D �C(a)C(b)�(a; x2; : : : ; xr) ;

where C is one of the two opposite signed circuits of
M in the set (a, b, x2, . . . , xr).

Condition 2) in Definition 27 is also known as pivoting
property.

Las Vergnas [32] and [34] has proved that every ori-
ented matroid M has exactly two basis orientations,
which are opposite. He also showed that if � is a ba-
sis orientation ofM, thenM is uniquely determined by
M and �.

The pivoting property 2) in Definition 27 can be
rewritten also as follows.

Definition 28 A basis orientation � of an oriented ma-
troidM is such that
2*) for each two ordered bases ofM of the form (a, x2,

. . . , xr) and (b, x2, . . . , xr), a 6D b, it holds that

�(b; x2; : : : ; xr) D D(a)D(b)�(a; x2; : : : ; xr) ;

whereD is one of the two opposite signed cocircuits
complementary to the hyperplane spanned by {x2,
. . . , xr} inM.

Conditions 2 and 2� of Definitions 27 and 28, respec-
tively, are equivalent for a map �, if M is an oriented
matroid.

Definition 29 (Chirotope axioms) Let E be a finite
set and let r � 1 be an integer. A chirotope of rank r
is a mapping �: Er! {�1, 0, 1} satisfying the following
three properties:
1) � is not identically zero;
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2) � is alternating, i. e.

�(x�1 ; : : : ; x�r ) D sign(�)�(x1; : : : ; xr) ;

for each permutation � and each x1, . . . , xr 2 E;
3) for all x1, . . . , xr , y1, . . . , yr 2 E such that for i = 1, . . . ,

r, �1 � �2 � 0, where

�1 D�(yi ; x2; : : : ; xr) ;

�2 D�(y1; : : : ; yi�1; x1; yiC1; : : : ; yr ) ;

it holds that

�(x1; : : : ; xr) � �(y1; : : : ; yr) � 0 :

J. Lawrence [18] proved the following result.

Theorem 30 Let E be a set and let r � 1 be an integer.
Then, a mapping �: Er: {�1, 0, 1} is a basis orientation
of an oriented matroid of rank r on E if and only if it is
a chirotope.

Vectors and Covectors

The concept of vectors and covectors for oriented ma-
troids has been introduced in 1978 by Bland and Las
Vergnas [5].

Definition 31 A vector of an oriented matroid is any
composition of circuits.

A covector of a vector of the dual oriented matroid,
i. e. any composition of cocircuits.

The set of vectors V of an oriented matroidM can be
viewed as partially ordered set. The partial order ‘�’ is
given by

Y � X if Y is a restriction of X :

(V ,�) is a pure ordered set of rank �� = �(M�). It has
a unique minimal element 0 and its atoms (covering 0)
are the circuits ofM. Note that all above definitions and
properties of vectors can be easily dualized for covec-
tors.

The formal characterization of the set of vectors of
an oriented matroid is contained in the following theo-
rem due to Edmonds and A. Mandel in 1982 [14].

Theorem 32 (Vectors axioms) A collection V of
signed subsets of a set E is the set of vectors of an oriented
matroid if and only if the following properties hold:

1) ; 2V .
2) symmetry: V = �V ;
3) composition: 8X, Y 2V , X circY 2V ;
4) strong vector elimination: 8X, Y 2 V , a 2 X+ \ Y�

and b 2 (X \ Y) [ (Y \ X) [ (X+ \ Y+) [ (X� \
Y�), there exists Z 2V such that
i) Z+ � (X+ [ Y+)\{a};
ii) Z� � (X� [ Y�)\{a};
iii) b 2 Z.

In Theorem 32, condition 3) can be replaced by one of
the following two conditions:
30) vector elimination: 8 X, Y 2 V and a 2 X+ \ Y�,

there exists Z 2V such that
i) Z+ � (X+ [ Y+)\{a};
ii) Z� � (X� [ Y�)\{a};
iii) (X\Y) [ (Y\X) [ (X+ \ Y+) [ (X� \ Y�)� Z.

3) Y-approximation of X: 8X, Y 2V with Y � X and
XC \ Y� ¤ ;, there is a proper restriction Z of X
such that
i) Z 2V ;
ii) (X+ \ Y�) [ (X� \ Y+)� Z

The oriented matroid operations of deletion and con-
traction, and the duality concept can be formulated
in terms of vectors as formalized in the following two
propositions.

Proposition 33 Let M be an oriented matroid on E
with set of circuits C and set of vectorsV , and let A� E.
� The set of vectors of the deletion matroidM\A is the

set

V n A D fX 2 V : X \ A D ;g :

� The set of vectors of the contraction matroidM/A is
the set

V /A D fX n A : X 2 V g :

Proposition 34 Let M be an oriented matroid on E
with set of circuits C and set of vectors V . Then the set
of vectors of its dual matroidM� is the set L = {Y 2 {+,
�, 0}E: X ? Y, 8X 2 C} = {Y 2 {+, �, 0{E: X ? Y, 8X 2
V }.

General Topics

This Section is devoted to showing how the oriented
matroids collocate in both pure and applied mathemat-
ics and how their four axioms systems arise from the
following four topics:
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� directed graphs;
� orthogonal pairs of real vector subspaces;
� point configurations and convex polytopes;
� real hyperplane arrangements.

Directed Graphs

Let D = (V , E) be a digraph and let C be the set of its
simple cycles. Each cycle c 2 C is associated with an
orientation, i. e. each of them consists of some forward
(positive) edges and some backward (negative) edges.
Therefore, any c 2 C can be viewed as a signed subset of
E with positive and negative parts. A signed subset of E
deriving from a cycle c 2 C is called a signed circuit ofD
and all signed circuits of D form the collection

C D
˚
X D (XC; X�) : X a signed circuit of D

�
:

The oriented matroid M = MD of D, also denoted by
M =M(E), is given by the pair (E, C).

For a digraph D it is also possible to define the set
of its signed cocircuits as follows. Let V = (V1, V2)
be a minimal cut of D, i. e. a partition of the nodes of
D such that the removing of the edges connecting el-
ements in V1 to elements in V2 increases by one the
number of components of the underlying undirected
graph. Let Y+ be the set of edges in D from V1 to V2

and Y� be the set of edges from V2 to V1, then the sets
Y = (Y+, Y�) are signed sets called signed cocircuits of
D, which form the collection

C� D
�
Y D (YC;Y�) : Y a signed

cocircuit of D

	
;

where C� provides the collection of circuits of the dual
oriented matroid ofMD.

It is quite easy to show that the digraph D satisfies
the properties 1)–4) of circuit axioms expressed by Def-
inition 9 and that all properties of D are reflected in C
and C�. For example, ifD does not contain any oriented
cycle, then C will contain no positive circuit, i. e. the
matroid corresponding to D will be an acyclic oriented
matroid.

Real Vectors Spaces

In this Section the two most important ways to relate
oriented matroids to real vector spaces are considered:
point configurations and hyperplane arrangements.

Vector Configurations

Generally speaking, given an arbitrary field F and a fi-
nite set of vectors that spans a vector space of dimen-
sion r over F, the minimal linear dependences gener-
ate the circuits of a matroid of rank r. In order to get
an oriented matroid, the field F must to be ordered. In
more detail, given a finite set E = {v 1, . . . , vn} of vec-
tors that spans a vector space of dimension r over an
ordered field {v1, . . . , vn} � Rr , then a minimal linear
dependence is such that

nX
iD1

�i vi D 0 ;

with �i 2 R and the circuits of the associated oriented
matroidM = (E, C) of a vector configuration E are the
sets X = (X+, X�) such that

XC :D fi : �i > 0g ; X� :D fi : �i < 0g

for all the minimal dependences among the vectors vi.
The bases of the matroid corresponding to a vector

configuration E are the subsets of E that form vector
space bases, i. e. all subsets {vi1 , . . . , vir } of E such that
det({vi1 , . . . , vir }) 6D 0.

For a vector configuration over the real field R, let
consider the signs of the determinants of ordered r-sub-
sets of {v1, . . . , vn}, then the basis orientation or chiro-
tope of the vector configuration is defined as

�(i1; : : : ; ir) :D sign detfvi1 ; : : : ; virg ;

where �(i1, . . . , ir) 2 {+, �, 0}. � is an asymmetric func-
tion and satisfies the properties 1)–3) of chirotope ax-
ioms expressed in Definition 29.

Point Configurations

In the following, starting from the observation that ev-
ery vector configuration in Rr\{0} corresponds to an
affine point configuration in an (r � 1)-dimensional
affine space, it will be showed how any point configu-
ration in a real affine space leads to an acyclic oriented
matroid. In fact, after choosing a linear form l0(vi) 6D 0
for all i it is possible to define an (r � 1)-dimensional
affine space as

Ar�1 :D fx 2 Rr : l0(x) D 1g ;
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and to associate with each vector vi the point 1/l0(vi)vi
2 Ar� 1. Vectors vi with l0(vi) < 0 correspond to points
called ‘points with negative weight’. If the given vector
configuration does not contain any positive linear de-
pendences, i. e.
X
i

�i vi D 0; �i � 0 ;

then it is possible to choose l0 such that l0(vi) > 0 for
all i. This corresponds to the situation where the ori-
ented matroid is acyclic, which can be always achieved
by simply replacing some of the vectors vi by their nega-
tives. The circuits of the corresponding acyclic oriented
matroid are given by the signs of the coefficients in the
minimal affine dependences (

P
i�ivi = 0, �i � 0). For

example, the vertices of a complex polytope describe an
acyclic oriented matroid.

The sign patterns of arbitrary (possibly non mini-
mal) affine dependences can be derived from the cir-
cuits by compositions as follows. Given two signed sets
X and Y ,

X ı Y D
�
XC [ (YC n X�); X� [ (Y� n XC)

�
:

The signed sets so obtained are called vectors of the ori-
ented matroid.

Hyperplane Arrangements.

A real hyperplane arrangement H = {H1, . . . ,Hn} is a fi-
nite set of hyperplanes through the origin in Rr. Since
every hyperplane is defined by giving a linear function
li(x) =

Pr
jD1 aijxj, any hyperplane can be defined as Hi

= {x 2 Rr : li(x) = 0}. Since li can be viewed as vectors
in the dual space (Rr)�, they form a vector configura-
tion in Rr)�, which determines an oriented matroid. In
fact, once chosen the vectors li, a positive side HCi = {x
2 Rr: li(x) � 0} of Hi is distinguished and the oriented
matroid corresponds to the arrangement of halfspaces
{HCi : 1 � i � n} in Rr .

As showed below in Theorem 36, not only every real
arrangement of hyperplanes gives rise to an oriented
matroid, but the inverse is also ‘nearly’ true.

Topological Representation Theorem

In [15] Folkman and Lawrence showed that each ori-
ented matroid has a pseudosphere representation. This

property, expressed in the so called topological represen-
tation theorem, is a generalization of the hyperplane ar-
rangement model to arbitrary oriented matroids. In this
Section the topological representation theorem will be
treated superficially, giving only its meaning and some
of the most important consequences that it implies. For
more details about this fundamental result in the theory
of oriented matroids, see [2].

Let E be a finite, parallel-free, spanning set of
nonzero vectors in Rr + 1, and let C � {+, �, 0}E be the
set of signed circuits of the corresponding oriented ma-
troid. For each e 2 E, let Se = {x 2 Rr + 1: hx, ei = 0, kxk =
1}. The positive and negative parts of Se are respectively
SCe = {x 2 Rr + 1: hx, ei � 0, kxk = 1} and SCe =�SCe . It is
easy to prove that
1) SCe and S�e are subsets of the unit r-sphere Sr = {x 2

Rr + 1: kxk = 1};
2) Se is a linear (r � 1)-sphere;
3) SCe and S�e are the two closed hemispheres of Se,

which is the intersection of Sr and the hyperplane
orthogonal to e, so that the arrangement of spheres
A = (Se)e 2 E is equivalent to an arrangement of hy-
perplane discussed above.

In fact, once established the arrangement of spheres A

and distributed the signs + and � to the hemispheres,
such signed arrangements of (r � 1)-spheres in Sr iden-
tify an oriented matroid of rank r + 1. In more details,
the signed circuits C in this case are the vectors X 2 {+,
�, 0}E such that

c1) [e2XSXe
e = Sr, where SXe

e is either SCe or S�e ;
c2) X = {e 2 E: Xe 6D 0} is minimal with property c1.

A subset S of Sr is called a pseudosphere if there exists
a homomorphism h: Sr ! Sr such that S = h(Sr � 1),
where Sr� 1 = {x 2 Sr : xr + 1 = 0}.

Definition 35 An arrangement of pseudospheres A =
(Se)e 2 E is a finite set of pseudospheres Se in Sr such that
� for A� E each SA =\e 2 A Se 6D ;, is homeomorphic

to a sphere of some dimension;
� for every e 2 E and every nonempty intersection SA

such that SA 6� Se, the intersection SA \ Se is a pseu-
dosphere in SA with sides SA \ SCe and SA \ S�e .

Theorem 36 (Topological representation) Let A be
a signed arrangement of pseudospheres, and let C(A) be
the family of the sign vectors X 2 {+, �, 0}E that satisfy
c1 and c2, then
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tr1) if A = (Se)e 2 E is a signed arrangement of pseudo-
spheres in Sr, then C(A) is the family of circuits of
an oriented matroid on E and whose rank is r + 1;

tr2) if (E, C) is an oriented matroid of rank r + 1, then
there exists a signed arrangement of pseudospheres
A in Sr such that C = C(A);

tr3) given two signed arrangements A and A0, then C =
C(A) = C = C(A0) if and only if A0 = h(A) for some
self-homomorphism h of Sr.

Corollary 37 There is a 1-to-1 correspondence between
arrangement of pseudospheres in Sr and oriented ma-
troid of rank r + 1.

Conclusions

Starting from the 1950s, matroids and oriented ma-
troids have had increasing interest. A huge number of
scientific works have been published on those subjects
and a large collection of matroid theorems and theoret-
ical results exists.

This article has introduced the combinatorial theory
of oriented matroids, providing their axiomatic defini-
tions and their basic properties.

See also

�Matroids
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Triangularization is a process of reducing a square
(rectangular) matrix into upper-triangular (upper-
trapezoidal) form by applying a series of elementary
transformations. There are basically two types of ele-
mentary transformations: orthogonal and nonorthog-
onal. Examples of nonorthogonal transformations in-
clude classical Gaussian transforms, and Gauss–Jordan
transforms.

Orthogonal Factorization

Here the matrix A 2 Rm×n is reduced to an upper-
trapezoidal form using a sequence of elementary or-
thogonal transformations (such as Householder or
Givens transformations; see � QR factorization for
more details).

Rank Revealing Factorizations

Orthogonal factorizations can also be used effectively
for computing the numerical rank [2] of a matrix. The
general idea is to identify the independent columns of
the matrix and permute them to the left-hand side; i. e.
find a permutation matrix˘ such that

Q>A˘ D
� r n � r

r R11 R12

m � r 0 R22

�
; (1)

where R11 is nonsingular, upper triangular and k R22 k

< �. It is said that the �-rank of A is r. The following QR
factorization with column-pivoting computes factoriza-
tion in (1). Given A 2 Rm×n with m � n, the following
algorithm computes r = rank(A) by permuting columns
while computing the QR factorization (see [2] for de-
tails).

for j = 1 : n
c( j) = A(1 : m; j)>A(1 : m; j);

end;
r = 0;
find k s.t. c(k) = max(c(1 : n));

t = c(k);
while t > �

r = r + 1;
exchange columns i and k;
exchange c(k) and c(i);
v = house(A(r : m; r));
Apply to rest of the columns;
for i = r + 1 : n

c(i) = c(i) � A(r; i)2;
end;
if r < n

find k such that
c(k) = max(c(r + 1 : n));
t = c(k);

else t = 0;
end;

Complete Orthogonal Factorization

Sometimes, it is desirable to reduce the matrixA2Rm×n

to the following form

Q>AZ D
�
T11 0
0 0

�
;
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where T11 2 Rr×r is nonsingular and upper triangular.
Such a factorization is rank revealing and the rank of
A will be r. Such factorizations are very useful in rank-
deficient optimization problems (such as rank-deficient
least squares) [1].

The first step towards complete orthogonal factor-
ization is to apply QR factorization with column pivot-
ing. Thus,

Q>A˘ D
�
R11 R12

0 0

�
:

Then apply a series of orthogonal transformations on
the right-hand side so that R12 is zeroed. While R12 is
being zeroed, values in R11 will change, and let us call
the modified R11 as T11. The only trick here ismake sure
that while R12 is being zeroed, zeros that are already in
R11 are not disturbed.

Let us consider an example of a matrix A 2 R5×6

whose rank is three. After the QR with column pivot-
ing, let

Q>A˘ D

0
BBBBB@

a11 a12 a13 a14 a15 a16
0 a22 a23 a24 a25 a26
0 0 a33 a34 a35 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56

1
CCCCCA
;

where





�
a44 a45 a46
a54 a55 a56

�




2
< �

andQ is orthogonal and˘ is some permutation matrix.
The following sequence of Givens transformations,

Q>A˘G3
36G

3
35G

3
34G

2
26G

2
25G

2
24G

1
16G

1
15G

1
14

will zero R12 without disturbing the zeros that are al-
ready present in R11.
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A classical problem in the field of multiple criteria de-
cision making (MCDM) is to build a preference rela-
tion on a set of multi-attributed alternatives on the basis
of preferences expressed on each attribute and ‘inter-
attribute’ information such as weights. Based on this
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preference relation (or, more generally, on various re-
lations obtained following a robustness analysis) a rec-
ommendation is elaborated (e. g. exhibiting a subset
likely to contain the ‘best’ alternatives).

A common way [20] to do so is to attach a number
v(x) to each alternative x 2 X and to declare that x is ‘at
least as good as’ y if and only if v(x) � v(y). The num-
ber v(x) depends on the evaluations x1, . . . , xn of x on
the n attributes and we have v(x) = V(x1, . . . , xn). The
most common form for V is an additive value function
in which V(x1, . . . , xn) =

Pn
iD1kivi(xi); in that case the

task of the analyst reduces down to assessing the partial
value functions vi and the scaling constants ki. The pref-
erence relation that is built using this value function ap-
proach is a weak order, i. e. a complete and transitive bi-
nary relation. Using such information it is not difficult,
in general, to elaborate a recommendation. The defini-
tion of the aggregation function V may not always be
simple however. Making all alternatives comparable in
a ‘nice transitive way’ requires much information and,
in particular, a detailed analysis of trade-offs between
attributes.

Outranking methods (OMs) were first developed in
France in the late 1960s following difficulties experi-
enced with the value function approach in dealing with
practical problems. They are closely associated with the
name of B. Roy, who developed the well-known family
of ELECTRE methods. A large part of the literature on
OMs was written in French which has been prejudicial
to their international diffusion; good accounts in En-
glish are [18,32,38,39,46,53,56,57], while detailed refer-
ences in French include [24,31,41,47,48].

Basic Ideas

As in the value function approach, OMs build a pref-
erence relation, usually called an outranking relation,
among alternatives evaluated on several attributes. Roy
defines an outranking relation as a binary relation S on
the set X of alternatives such that xSy if, given what is
known about the preferences of the decision-maker, the
quality of the evaluations of the alternatives and the na-
ture of the problem, there are enough arguments to de-
cide that x is at least as good as y, while there is no es-
sential reason to refute that statement.

In most OMs the outranking relation is built
through a series of pairwise comparisons of the alter-

natives (this implies that these methods deal with fi-
nite sets of the alternatives; their underlying principles
may however be adapted in order to deal with infinite
sets [19]). Although pairwise comparisons can be done
in many ways, the concordance-discordance principle is
prevalent in most OMs (exceptions include [2,50]). It
consists in declaring that an alternative x is at least as
good as an alternative y(xSy) if:
� a majority of the attributes supports this assertion

(concordance condition); and
� the opposition of the other attributes (the minority)

is not ‘too strong’ (nondiscordance condition).
This principle is at variance with the ones under-

lying the value function approach. It rests on a ‘vot-
ing’ analogy and may be used without having recourse
to a subtle analysis of trade-offs between attributes. It
mainly uses ordinal considerations and has a strong
noncompensatory flavor [3,11]. The application of this
principle gives rise, in general, to binary relations which
are neither complete (i. e. it is possible that Not(xSy)
and Not(ySx)) nor transitive (i. e. we may have xSy, ySz
and Not(xSz)). Exploiting an outranking relation in or-
der to arrive at a recommendation is therefore not an
easy task and calls for the application of specific tech-
niques [41,53].

We briefly describe below ELECTRE I [35], which
is the oldest and simplest OM before coming to some
extensions and comments.

ELECTRE I

Consider a finite set of alternatives X evaluated on
a family N = {1, . . . , n} of attributes. A first step in the
comparison of two alternatives x = (x1, . . . , xn) and y =
(y1, . . . , yn) is to know how they compare on each at-
tribute. ELECTRE I uses a traditional preference model
for this purpose: a weak order (i. e. a complete and tran-
sitive binary relation) Si is supposed to be defined on
each i 2 N, xiSiyi meaning that x is judged at least as
good as y on attribute i. Dealing with a finite set, it is not
restrictive (see [15]) to assume the existence of a real
valued function gi such that

xi Si yi , gi (xi) � gi (yi ) :

Quite often in practice, numbers are used to evaluate
the alternatives on the various attributes and the rela-
tions Si stem from the comparison of these numbers [4].
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In ELECTRE I, the analysis of the proposition xSy
rests on the partition of the set N of attributes into
a concordant coalition C(xSy) = {j 2 N: gj(xj) � gj(yj)}
and a discordant coalition D(xSy) = {j 2 N: gj(xj) <
gj(yj)}. The proposition xSy will be accepted if the
concordant coalition C(xSy) is ‘sufficiently important’
(concordance condition) and if on any of the attributes
in D(xSy) the ‘difference of preference’ in favor of y is
not considered to be ‘large’ (condition of nondiscor-
dance). In order to implement the concordance condi-
tion, a positive weight kj is assigned to each attribute
j 2 N and the importance of a coalition is supposed
to be represented by the sum of the weights of the at-
tributes belonging to that coalition. Thus the concor-
dance index c(x, y) =

P
j 2 C(xSy)kj/

P
j 2 Nkj represents

the relative importance of the coalition C(xSy) in the
set N of all attributes; we have c(x, y) 2 [0, 1]. Whether
or not C(xSy) is ‘sufficiently important’ is then judged
comparing c(x, y) to a concordance level s 2 [1/2, 1].
It is worth noting that the partition of N into C(xSy)
and D(xSy) and the computation of the concordance
index c(x, y) rest on purely ordinal comparisons: alter-
ing the functions gj without altering the binary relations
Sj will not change the values of the concordance index.
Suppose that c(x, y) � s. Concluding that xSy) would
give no power to the attributes in D(xSy)). If on any of
these attributes the, positive, preference difference be-
tween y and x is ‘large’ there are good reasons to re-
ject the proposition xSy). The definition of ‘large’ pref-
erence differences is done in ELECTRE I via the defini-
tion of nonnegative veto thresholds vj (which may vary
with gj) on each attribute; a preference difference is de-
clared ‘large’ as soon as gj(yj) � gj(xj) > vj. It should
be noticed that the implementation of the nondiscor-
dance principle through the definition of veto thresh-
olds vj linked to a particular functions gj is a matter of
commodity only; what is in fact looked for is a subset of
the asymmetric part of Sj corresponding to ‘large’ pref-
erence differences, which may be done independently
of any numerical representation. In summary, we have
in ELECTRE I:

xSx
m

c(x; y) � s
and

g j(y j) � g j(x j) < v j; 8 j 2 D(xSy) :

When s = 1 (which amounts to requiring unanimity of
the attributes in order to accept outranking) or vj = 0
for all j (implying that all positive preference differences
are ‘large’), the outranking relation S is nothing but the
so-called dominance relation� defined by

x	y , [x jS j y j for all j 2 N] :

It is not difficult to see that it is always true that �
� S. An outranking relation may be usefully seen as
an enrichment of the dominance relation � in which
unanimity of the attributes is not required and not all
positive preference differences are considered ‘large’;
decreasing the value of s and/or increasing the values
of the vj results in a richer but somewhat riskier out-
ranking relation. Although, the dominance relation �
is clearly reflexive and transitive (but not complete),
simple examples, inspired by Condorcet’s paradox [49],
show that, in general, S is neither complete nor transi-
tive when s < 1 and vj > 0.

It is important to note that in ELECTRE I, the
weights kj cannot be interpreted as substitution rates or
trade-offs; they are thus fundamentally different from
the scaling constants that are used in the value func-
tion approach. In line with the voting analogy underly-
ing the concordance-discordance principle, it is useful
to interpret kj as the ‘number of votes’ given to attribute
j (this number of votes being independent of the choice
of the function gj), the concordance threshold s speci-
fying a level of ‘qualified majority’.

ELECTRE I was originally designed to lead to
‘choice-type’ results. Since S may not be complete or
transitive, the set {x 2 X: xSy for all y 2 X} of maxi-
mal alternatives (in X given S) can be empty. In order
to overcome this difficulty, ELECTRE I determines the
minimal (with respect to inclusion) set of alternatives
not outranking each other such that all the alternatives
outside of this set are outranked by at least one alterna-
tive from this set. Technically, this leads to the determi-
nation of the kernel of the graph (X, S) after the detec-
tion and elimination by reduction of possible circuits (a
well-known result in graph theory proves the existence
and unicity of kernels in graphs without circuits).

Extensions

Besides ELECTRE I, many other OMs have been
proposed in the literature [13,14,23,33,36,40,42,45,58].
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They mainly differ on:
� the type of result that is looked for (e. g. one may

wish to use S to rank order alternatives or to sort
them into pre-defined categories);

� the way the outranking relation is built. It is indeed
possible to implement the concordance-discordance
principle in various ways (e. g. allowing for synergy
effects in D(xSy)). Moreover, varying the values of s
and of the thresholds vj lead to several different rela-
tions S; such variations are incorporated in methods
which use several nested outranking relations (as
in [40,42]) or a fuzzy outranking relation in which
a ‘credibility’ is attached to each arc in the graph (X,
S) as in ([13,14,36,58]) (on the notion of fuzzy out-
ranking relation see ([17,28]);

� the way alternatives are compared on each attribute.
In ELECTRE I it is postulated that alternatives can
be compared on each attribute according to a weak
order. This traditional preference model may be
inappropriate considering the inevitable elements
of imprecision, uncertainty and inaccurate deter-
mination entering the evaluations of the alterna-
tives. Indifference on each attribute may not be
fully transitive; moreover there may exist cases in
which the transition from indifference to strict pref-
erence is not without ambiguity giving rise to mod-
els involving ‘weak preference’ relations (such mod-
els involve indifference and/or preference thresholds
[34,37,51,52].
The following table summarizes the main charac-

teristics of the existing ELECTRE methods and might
help in choosing an appropriate OM. See [41] and [56]
for a complete description of these methods and of
many others in a similar vein, in particular the TACTIC
method [54] and the family of PROMETHEE methods
[13,14].

Practical Considerations

We give here some indications on how to give a value
to the parameters used in ELECTRE I: weights kj, veto
thresholds vj and the concordance threshold s (they
may be transposed to all ELECTREmethods; for amore
detailed account see [24,26,41,48] and for an alterna-
tive approach [21]). Before doing so, it is important
to note that the underlying philosophy of OMs is not
to describe as accurately as possible the preferences of

Outranking Methods, Table 1
Main characteristics of existing ELECTRE methods; adapted
from [41]

Electre
methods

Prefer-
ence
model on
each
attribute

Use of
weights

No. of
outrank.
rel. used

Type of
result

I [35] trad. yes 1 Choice
IS [45] nontrad. yes 1 Choice
II [40] trad. yes 2 Ranking

(partial)
III [36] nontrad. yes 1 (fuzzy) Ranking

(partial)
IV [42] nontrad. no up to 5 Ranking

(partial)
Tri
[41] [58]

nontrad. yes 1 Assignm.
into
predef.
categ.

a decision-maker. This decision-maker is often a re-
mote abstract entity (the state, the region, the firm);
when this is not the case he/she is frequently not very
accessible and his/her preferences may be only very
partially structured. Searching for the ‘true’ values of
kj, vj or s makes little sense under these conditions.
The concordance-discordance principle is best seen as
a useful and easily understandable convention to help
structuring preferences. The ‘assessment’ of the param-
eters of the method should therefore aim at transform-
ing what appears to be the stable basic judgements of
the actors to be helped into numerical values. Needless
to say that, under these conditions, the elaboration of
a recommendation should be preceded by a thorough
robustness analysis.

In order to give a numerical value to the weights
kj it is useful to envisage imaginary but realistic alter-
natives combining plausible evaluations on the various
attributes. Consider two such alternatives x and y such
that gj(xj) > gj(yj) for all j 2 J � N and gi(yi) > gi(xi) for
all i 62 J. If the differences between the evaluations of x
and y have been chosen in such a way as to avoid ‘large’
preference differences and if it may be agreed that x is at
least as good as y while y is not at least as good as x, we
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can then infer that
P

j 2 Jkj � s and
P

i 62 Jki < s, suppos-
ing without loss of generality that

P
j 2 Nkj = 1. Com-

bining several questions of this type gives rise to a poly-
hedron of plausible values for kj and s to be explored
during the robustness analysis, see [43,44]. It should be
noted here that the precise numerical values of kj and
s are irrelevant in ELECTRE I as long as they imply
a similar partition of subsets of attributes into ‘winning’
coalitions (for which the sum of the weights exceed the
concordance threshold) and ‘losing’ ones.

Consider now two imaginary alternatives x and y
such that gj(xj) > gj(yj) for all j 2N\{i} and choose gi(yi)
to be one of the best evaluations on attribute i and gi(xi)
to be one of the worst. We have D(xSy) = {i}. If it can be
accepted that xSy, then it is clear that no veto power
should be conferred to attribute i, which amount to set-
ting vi to an arbitrarily large number. If not, attribute i
has a veto power; in order to give a value to vi one can
then increase gi(xi) and/or decrease gi(yi) till xSy is ac-
cepted. A slightly larger value than the difference gi(yi)
� gi(xi) leading to the acceptance of xSy gives a plau-
sible value for vi (note that before choosing a constant
value of vi it should be checked that the maximum dif-
ference gi(yi)� gi(xi) on attribute i compatible with xSy
does not vary along the scale of gi; when this is the case
variable thresholds can be easily used).

Theoretical Appraisal

OMs have often been criticized for their lack of ax-
iomatic foundations; ELECTRE I was proposed on
a more or less ad hoc basis and subsequent methods
aimed at extending it. The situation has changed dra-
matically in recent years giving rise to a variety of stud-
ies investigating the foundations of these methods. In
particular, it is worth mentioning that:
� the links between concordance-discordance princi-

ple leading to possibly intransitive and incomplete
outranking relations and classical aggregation prob-
lems in social choice theory (exemplified by Arrow’s
impossibility theorem; see [49]) has been studied in
depth [1,5,27];

� outranking methods may be axiomatised in more
or less the same way as the various instances of the
value function approach (see [3,10,11,30,54]), the
axioms emphasizing the ‘ordinal’ and ‘noncompen-
satory’ features of the methods;

� the structural properties of outranking relations
have been studied in depth [7], this problem having
strong links with the classical problems of the con-
struction of voting paradoxes [25] and the binary
choice probabilities problem [16];

� various ways of exploiting outranking relations
have been carefully analyzed and/or axiomatized see
[6,8,9,12,22,29,55].
This literature on the foundations of OMs while still

being in its early stages has already greatly contributed
to a better understanding of these methods and their
underlying hypotheses.

Practical Applications

OMs have been applied in real-world studies since their
creation. It is impossible to give here a complete list of
applications and references. We only mention a few sig-
nificant applications in various fields (detailed biblio-
graphical indications may be found in [41]).

Environment

Forestry management (Canada), Nuclear waste man-
agement (Belgium), Pollution prevention and control
(France), Solid waste management (Finland, Greece),
Water resource management (France, Hungary, USA);

Finance

Allocation of grants (Belgium), Analysis of the interna-
tional diversification of portfolios (Canada), Equitable
burden sharing in international institutions (Belgium),
Investment planning (France), Portfolio management
(Canada);

Health

Computer-aided diagnosis (France), Epidemiology
(France), Identification of bacteria (Belgium), Manage-
ment of hospitals (Canada);

Location

Airports (Canada, the Netherlands), High voltage elec-
tric lines (France, Canada), Schools (France), Thermal
power plants (Algeria);
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Transportation

Choice of a highway route (France), Planning the reno-
vation of metro stations (France), Selection of suburban
metro extensions projects (France);

Miscellaneous

Analysis of tenders (France, Portugal), Choice between
forecasting models (Belgium), Choice of a market-
ing strategy (France), Inventory management (France),
Production planning in a job-shop (Canada), Promo-
tion of navy officers (Portugal), Regional planning (The
Netherlands).
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Consider a set of experimental observations repre-
sented by a vector b 2 Rn. The goal is to estimate a set
of parameters x 2 Rm with the help of a matrix of in-
dependent input conditions represented by A 2 Rn ×m.
In other words, one wishes to express b in terms of A.
However, one may have a larger number of experimen-
tal observations than parameters to be estimated, i. e., it
may be the case that n > > m. The problem described
above is a typical estimation problem which gives rise
to an overdetermined system of linear equations:

Ax D b : (1)

In general one cannot expect to obtain a vector x
which satisfies (1) even if A hasm linearly independent
columns. This feature of the problem leads to the search
for a vector x which makes Ax as close as possible to b.
The closeness is measured in some suitable normwhich
is usually either the 2-norm, or the 1-norm, or the1-
norm. The most common is the 2-norm which yields
the well-known linear least squares problem:

min
x
kAx � bk2 D

p
(Ax � b)>(Ax � b) : (2)

The linear least squares approach is usually preferred
because it leads to a simpler problem. More precisely,
it admits a closed-form solution which can be obtained
by solving the linear system of equations:

A>Ax D 2A>b : (3)

Since A| A is a symmetric positive (semi)definite ma-
trix (it is positive definite when A has m linearly inde-
pendent columns, in which case the solution is unique)
it can be decomposed in the form of LDL| (or, Choleski
factorization) where L is unit lower triangular, and D is
diagonal. The factored form can then be used to solve
(3) which has always a solution. However, this method
is only reliable when A is a well-conditioned matrix.
A more numerically stable way to solve (3) is to use
an orthogonal factorization (e. g., QR) combined with
a pivoting strategy. A detailed treatment of the linear
least squares problem can be found in [8].

In some instances, the set of observations includes
gross inaccuracies or wild points. In such cases, it may
be preferable to use the 1-norm which leads to the fol-
lowing estimation problem

min
x
kAx � bk1 D

nX
iD1

j(Ax � b)i j ; (4)

where (Ax � b)i is used to represent the ith component
of Ax � b. The function in (4) is not differentiable at
those points where (Ax � b)i = 0 for some i 2 {1, . . . ,
n}. The problem is commonly referred to as the `1 es-
timation problem. The parameter values obtained from
the minimization problem (4) will not be as adversely
affected by the presence of wild points as the estimates
obtained using (3). On the other hand, in contrast to the
linear least squares problem (4) is a combinatorial opti-
mization problem because it can be shown that a mini-
mizing point x has the property that some of the com-
ponents of the residual vector Ax � b are equal to zero,
some are positive and some are negative (this property
is what makes this approach immune to wild points).
Hence, if one had access to the information as to which
components are zero, positive, and negative, respec-
tively, one could find a minimizing point x by solving
the following linear program:
8<
:
min
x

X
i2Ac

s�i (Ax � b)i

s.t. (Ax � b)i D 0; 8i 2A;

where A is the set of indices corresponding to zero
components of Ax � b, Ac is its complement with re-
spect to {1, . . . , n}, and s�i is the sign function which as-
sumes the value + 1 for positive residuals, and � 1 for
negative residuals, respectively.
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Unfortunately, one has a priori no idea about s�i and
A. An alternative way to pose (4) leads to the following
problem:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min
c�0
d�0
u�0
v�0

nX
iD1

(ui C vi )

s.t. u � v C A(c � d) D b;

with (Ax � b)i = ui + vi and xj = cj � dj. The equiva-
lence of (4) and the above linear program is discussed
in [17]. Themost successful attempts at solving (4) were
based on the above reformulation and its dual problem.
Notably, I. Barrodale and F.D.K. Roberts [4] specialized
the simplex algorithm of linear programming to the
above formulation by taking advantage of the comple-
mentarity between the uj and vj variables in the pivot-
ing process. R.D. Armstrong, E.L. Frome and D.S. Kung
[1] developed a revised simplex algorithm for the linear
programming formulation of the problem. A different
algorithm which aims at minimizing the nondifferen-
tiable 1-norm function (4) was given in [6].

A more recent idea for solving the `1 estimation
problem was given in [12]. This idea is quite different
from those mentioned above in that it replaces the orig-
inal function with a once continuously differentiable
function, and leads to the following problem:

min
x

nX
iD1

�((Ax � b)i) ; (5)

where

�(t) D

(
t2
2� if jtj � �;
jtj � �

2 if jtj > �;
(6)

with t being a knock-off variable, and � a positive scalar.
This function is known as Huber’s M-estimator func-
tion ([9]) in the statistics literature as it was intro-
duced by P.J. Huber as a robust estimator in the face
of inaccuracies in the observations. K. Madsen and H.B.
Nielsen observed that they can obtain a solution (4) by
repeatedly solving (5) for decreasing values � tending
to zero. They were also able to avoid the potentially ill-
conditioning effects of driving � to zero.

As far as obtaining a set of parameters ‘immune’ to
grossly inaccurate observations, one has the option to

use the 1-normor (4), or the Huber problem (5). It is in-
teresting that Huber’s problem was used as a subprob-
lem to solve (4). The relationship between problems (4)
and (5) were further explored in [13] and [11].

Another popular choice for the solution of overde-
termined systems of linear equations is to compute a so-
lution to minimize the1-norm of the residual vector.
This approach yields the problem

min
x

max j(Ax � b)i j : (7)

The problem is commonly known as the Chebyshev
problem. Here, one faces again a problem of a combi-
natorial nature as it can be proved that a solution to
(7) has certain residual values equal to the maximum
in absolute value, and others smaller than this value in
modulus, respectively. This partition of the residuals at
a minimizing point is obviously unknown. Hence, one
must resort to some algorithm to compute a solution to
(7) much the same way as in the case of (4). Here, again
there exist approaches based onminimizing the nondif-
ferentiable function in (7) (nondifferentiable at points
where at least two residuals attain the maximum value
inmodulus). Themost notable of suchmethods are that
of Bartels–Golub [7], Bartels–Conn–Charalambous [5].
There exist also methods based on the linear program-
ming formulation which is given as follows in [17]:
8<
:
min
x;z

z

s.t. �z � (Ax � b)i � z; 8i D 1; : : : ; n:

Some of the approaches based on linear program-
ming favored the above primal formulation for use in
a penalty function algorithm [10,15]. Some others used
the dual formulation:
8̂
ˆ̂<
ˆ̂̂:

min
v�0
w�0

(v � w)>b

s.t. A>(v � w) D 0
e>(v C w) D 1;

where e represents a vector of all ones. Among these ap-
proaches, the most successful is the simplex adaptation
of [2].

A survey of the use of the 2-norm, 1-norm and1-
norm criteria in linear regression in statistics is given in
[14], but contains only developments until 1981.
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Some of the algorithms mentioned above are avail-
able as software packages. In particular, the 1-norm al-
gorithms of Barrodale–Roberts and of Bartels–Conn–
Sinclair are available in the NAG (Numerical Algo-
rithms Group) software library. The 1-norm and Hu-
ber algorithms of Madsen–Nielsen are available from
the authors. The Chebyshev algorithm of Barrodale–
Phillips is available in the NAG library, and also in
the ACM collection [3]. The Chebyshev algorithm of
Pı̆nar–Elhedhli is available from the authors. A copy of
the Bartels–Golub algorithm for the Chebyshev prob-
lem can be obtained from [16].
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The packet annealing method [1,7,9] was motivated
and developed specifically for thermodynamic global
minimization problems such as those encountered in
protein structure prediction [3], but it may be applica-
ble to other global minimization problems as well. It
uses the intrinsic variable-scale coarse-grained hierar-
chical structure [11] of the potential energy (objective
function) landscape to guide a deterministic search to
the global minimum. The method is similar to simu-
lated annealing [4] in that it assumes that each point
in the search space, parameterized bymultidimensional
vector R, corresponds to a conformation of a physical
system whose motion is governed by the potential en-
ergy V(R). According to statistical mechanics, at tem-
perature T, the conformational probability distribution
is the Gibbs–Boltzmann distribution [5],

pB(T; R) D
exp

�
�ˇV (R)

�
R
exp

�
�ˇV (R)

�
dR

;

where ˇ � 1/kBT is the inverse temperature (kB
is Boltzmann’s constant which relates the energy and
temperature scales). As T ! 0, all probability is con-
centrated in the vicinity of the global minimum, Rg,
of V. Simulated annealing attempts to find Rg by follow-
ing pB(ˇ; R) as the system is cooled using the Metropo-
lis [6] or other (e. g., molecular dynamics) search pro-
cedures to simultaneously search the entire space. In
contrast, during cooling, packet annealing recursively
subdivides conformation space into a sequence of com-
pact macrostate regions which are separated from each
other by potential energy barriers that are large com-
pared to the current T. By this means, the space is
subdivided into a growing number of smaller and
smaller macrostates which are searched in parallel.
The hierarchical relationships between the macrostates
are represented in tree-like macrostate trajectory dia-
grams which describe the thermodynamic properties of
the macrostates as functions of temperature. This al-
lows computational effort to be focussed on the most
promising subregions of conformation space. A key
feature is that both the characteristic energetic and spa-
tial scales of each macrostate are computed during the
search process so that each macrostate can be searched
using appropriately coarse-grained energetic and spa-
tial variables. The nature of the linkage between these
scales, the scaling properties of the system, determines
the difficulty of finding the minimum.

For illustration, consider the problem of finding
the global minimum of the two-dimensional potential
shown in Fig. 1a. At a high temperature where kB T
exceeds the internal energy barriers (right panel,
Fig. 1b), the probability distribution is spread fairly
smoothly over a compact region and can be coarsely ap-
proximated by a single Gaussian characteristic packet
�0
˛ (right panel, Fig. 1c) which is characterized by its
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Packet Annealing, Figure 1
Packet annealing analysis

centroid (vector R0
˛) and root-mean-square size (ten-

sor �0
˛) (Fig. 1d). As T is reduced to the point where

the central energy barrier becomes larger than kB T,
the distribution bifurcates into two lobes ˇ and �

which can be approximated by two child packets (cen-
ter panels, Fig. 1b, Fig. 1c, Fig. 1d). As temperature
is further decreased, ˇ bifurcates into two children
ı and " (left panels). By this temperature it is evi-

dent that the peak within the �0
ı
packet corresponds

to the global minimum of V. While this could be
found by a random search (as in simulated anneal-
ing), it is clear that it would be more efficient to
use the hierarchically coarse-grained structure mani-
fested by the characteristic packet analysis to direct the
search.
� A model two-dimensional potential, V(r1, r2).
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� The corresponding Gibbs–Boltzmann probabil-
ity distribution pB at three temperatures Thi>
Tmed> Tlo.

� Superposition of the Gaussian packets that are so-
lutions of the characteristic packet equations at the
three temperatures (a large number of characteristic
packets, corresponding to the very small-scale fluc-
tuations of V, will appear at lower temperatures).

� The characteristic packets are characterized by the
positions of their center-of-masses (R0) and by their
root-mean-square fluctuation tensors (�0), repre-
sented here by ellipses.

� Free-energy vs. temperature trajectory diagram
for this temperature range. Solid lines represent
metastable macrostate trajectories and dotted lines
represent transitions. The discontinuities in the tra-
jectories correspond to branch points at which pack-
ets bifurcate (from [1])
The characteristic packets are computed by solv-

ing a coupled set of self-consistent equations intentify-
ing Gaussian distributions which are metastable in the
stochastic physical system having potential V(R) [10].
This is equivalent to finding which locallyminimize, the
Hellinger distance, between pB and [2]. The character-
istic packets only coarsely approximate pB; their main
role is to determine the boundaries of the macrostate
regions and thus dissect conformation space. Thermo-
dynamic properties such as entropy and free energy can
then be computed for each macrostate region and com-
pactly represented in trajectory diagrams (Fig. 1e). All
trajectories are tracked in this simple example, so find-
ing the global minimum is guaranteed. This is not the
case in more complicated problems where the number
of branches exceeds computational capacity, and it is
necessary to prune the trajectory diagram and pursue
only a limited subset of branches. These are selected by
a branch selection algorithm which uses the macrostate
thermodynamic properties to predict those which are
most likely to contain the global minimum. While the
global minimum in Fig. 1 could be found by following
only the trajectory having the lowest free-energy at each
bifurcation, in general, multiple trajectories will have to
be followed. The efficiency of the method will largely
be determined by the ability of the branch selection al-
gorithm to minimize the number of needed search tra-
jectories. This is problem-dependent and requires the
existence of underlying regularities within the class of

potentials being studied. It has been suggested that such
regularities do exist for protein potential functions [1];
this is an active area of research.

A key feature is that reduced accuracy is sufficient
until the final (low) temperature is reached—it is only
necessary that each trajectory remain within the catch-
ment region of its macrostate. Within each macrostate
region V(R) can be replaced with an approximation
which has been spatially smoothed on a scale com-
mensurate with the size of the macrostate. The use of
smoothing is somewhat analogous to that occurring in
the diffusion equation [8] and Gaussian density anneal-
ing [12] methods [11].
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Unrestricted Parallelism

For simplicity, complexity theory usually focuses on de-
cision problems. A complexity class consists of all deci-
sion problems solvable with given resource bounds.

The depth of a Boolean circuit is the most obvious
measure of parallel time, because all gates can work in
parallel. Problems solvable by uniform families of cir-
cuits of depth O(log n) have long been recognized as
an important complexity class. Here n always denotes
the length of an input, and it is assumed that the family
contains one circuit for each n.

Complexity theory for parallel computations really
started with the observation of the strong correspon-
dence between parallel time and Turing machine space
complexity discovered by A. Borodin [1]. In terms of
circuit complexity, this means that not only is the depth
of a Boolean circuit equal to the parallel time, but for
every narrow circuit there is an equivalent shallow cir-
cuit. The close relationship between space in sequential
machines and time in parallel machines is known as the
parallel computation thesis [8].

This relationship between space and time complex-
ity classes has been strengthened by the introduction of
alternating Turing machines [2] as a computing model
with unbounded parallelism. These machines have uni-
versal states in addition to the existential states present
in nondeterministic machines. For universal configura-
tions, all successor configurations must lead to accep-
tance, while for existential configurations at least one
successor must lead to acceptance.

For time functions T(n) and space functions
S(n), alternating Turing machines define the com-
plexity classes ATIME(T(n)) and ASPACE(S(n)). With
ALOGSPACE = ASPACE(log n) and APTIME = [c

ATIME(nc), the correspondence between sequential
and parallel complexity classes is ALOGSPACE = P
(polynomial time) and APTIME = PSPACE (polyno-



Parallel Computing: Complexity Classes P 2901

mial space). Similar relations hold at higher levels of the
time and space hierarchy.

Restricted Amount of Hardware, Circuits

More practical complexity classes (for parallel com-
puting) simultaneously restrict the parallel time and
the amount of hardware used. S.A. Cook [3] has pro-
posed to consider complexity classes obtained by simul-
taneously bounding the time and space of Turing ma-
chines. The most important of these classes has later
been named SC (Steve’s class). SCk consists of all de-
cision problems that can be solved simultaneously in
polynomial time and O(logk n) space. Finally, SC is de-
fined as SC = [k SCk.

Similarly, N. Pippenger has studied the complexity
classes (later called NCk) consisting of all problems that
can be solved by uniform families of Boolean circuits
such that the size of the nth circuit is polynomial in n
and its depth is O(logk n) (see [9]). Again, NC is de-
fined as NC = [kNCk. The classes NC and NCk are
much more widely used than the classes SC and SCk,
because NC directly measures the parallel time. Infor-
mally, it consists of all decision problems that can be
solved very fast (in polylogarithmic time) on a parallel
machine with only a moderate (polynomial) amount of
hardware. It is an open problem (as of 2000) whether
NC = SC [1].

If Boolean circuits are allowed to have ‘AND’ and
‘OR’ gates with an arbitrary number of inputs, then the
restriction to polynomial size and depth O(logkn) de-
fines the class ACk. It is easy to see that NCk � ACk �

NCk+ 1.
By allowing randomized computations, NC extends

to RNC. Formally, these circuits may contain gates
(without inputs) producing independent random out-
puts 0 and 1 (representing false or true) with equal
probability. Such a randomized circuit solves a prob-
lem, if it rejects every negative instance, while accept-
ing every positive instance with probability at least 1/2.
Deciding whether a graph has a perfect matching is in
RNC, but is not known to be in NC.

For good reasons, practical parallel computing has
initially focused on utilizing the obvious parallelism
present in many scientific computations due to the
presence of matrices, vectors or simple loops. At the
same time, theoretical research has tried to classify

problems according to their efficient solvability by par-
allel algorithms, the central question being whether
a problem is in NC.

Restricted Amount of Hardware, PRAMs

To showmembership in NC, and for designing any par-
allel algorithm while abstracting from all communica-
tion issues, the PRAMmodel of parallel computing has
been defined. A PRAM [6,13] consists of many cooper-
ating processors, each being a random access machines
(RAM, [4]). Each processor can do local computations
consisting of additions, subtractions, shifts, conditional
and unconditional jumps, as well as indirect address-
ing. Arbitrary long shifts and multiplications of large
numbers are not allowed in one step, as these opera-
tions would make a single processor impractically pow-
erful.

The processors in a PRAM are synchronized, and
communication between processors is accomplished by
a global memory. The intention is not to suggest that
synchronized operation and global memory are easy to
realize, but that it simplifies programming of a parallel
machine. Simulation of global memory (by local mem-
ory and communication) can be handled by a compiler
or even directly implemented in hardware ([10]). Sev-
eral flavors of PRAM have been defined.
� In an EREW PRAM, different processors are not al-

lowed to access the same memory location simulta-
neously.

� In a CREW PRAM, only writing to memory is so re-
stricted.

� In a CRCW PRAM, simultaneous reading and writ-
ing is allowed.

There are three kinds of CRCW PRAMs with different
ways to handle concurrent writing.
� In the COMMON model, all processors writing to

the same location simultaneously, are required to
write the same data.

� In the ARBITRARY model, an arbitrary processor
succeeds (i. e., it writes last).

� In the PRIORITY model, the lowest numbered pro-
cessor succeeds with writing.
Interesting complexity classes are obtained by re-

stricting computations to be uniform. Technically, it
is assumed that a logspace Turing machine produces
the programs for all processors. Then the complexity
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classes EREWk, CREWk and CRCWk are defined as the
classes of problems solved by a uniform PRAM of the
given type in time O(logk n) with polynomially many
processors. (For CRCWk the most powerful type PRI-
ORITY is assumed.) It is known that NCk � EREWk �

CREWk � CRCWk = ACk � NCk+ 1 (see [9]).
Besides minimizing the parallel time, a key issue in

parallel computing is tominimize thework, which is the
product of the parallel time with the number of pro-
cessors. An algorithm is said to be optimal if the ratio
between the work and the optimal sequential time is
bounded by a constant, and it is said to be efficient if
that ratio is bounded by a polylogarithmic factor.

While the PRAM model abstracts from communi-
cation issues, another branch of research has focused
exactly on communication for various interesting ar-
rangements of processors, like arrays, trees and hyper-
cubes [11].

Theoretically, it has been shown that PRAM algo-
rithms can be implemented by some fixed networks of
communicating processors with very little loss of speed
[7,14]. Yet, it has been felt that the constant factors in
the speed loss could be too big to warrant the restriction
of the algorithm designer to simply program a PRAM
and let the compiler handle all communication.

BSP and LogP

Several parallel machine models have been proposed
with two goals in mind.
� Programs (like PRAM programs) are portable to

various types of physical parallel machines.
� The programmer (unlike a PRAM programmer) has

some control over the communication between pro-
cessors in order to obtain high efficiency.
These two somewhat contradicting goals can be

achieved by letting the programmer choose the source
and target, but not the path and detailed timing of each
message. The two most influential such models are the
BSP model (bulk synchronous parallel model) of L.G.
Valiant [15,16] and the LogP model [5].

The BSP model is called a bridging model, because
it is intended to bridge the gap between hardware and
software for parallel computing, as the von Neumann
model did for sequential computing. Thanks to compil-
ers, the programmer does not have to know too many
details of the actual machine.

The BSP model performs a sequence of supersteps,
each consisting of three phases, local computation,
global communication and a barrier synchronization.
The latter is a global check that all components have
finished a superstep. The BSP model is characterized by
two parameters, L and g. The time unit is the duration
of a local operation. The periodicity parameter L mea-
sures the length of a superstep, while g measures the
length of a global operation.

The LogP model has basically the same goals as the
BSP model, but intends to give the programmer slightly
more flexibility to address important performance is-
sues without having to deal with unnecessary details.
The LogP model is characterized by four parameters,
the latency L, the overhead per message o, the time gap
between messages g (for each processor) and the ratio
P between the number of processors and the number
of memory modules. This allows each parallel machine
to be characterized by only a few parameters. The al-
gorithm designer can prescribe different methods for
different ranges of the parameters. Then such an algo-
rithm can compile efficiently on various parallel ma-
chines.

The BSP and LogP models, as well as the QSM
(queueing shared-memory model), are actually quite
closely related as indicated by various simulation results
(e. g., [12]).
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The rapid growth and large availability of high speed
networking have brought high performance computing
systems (HPCS) to the reach of many people wish-
ing to process very large data and difficult problems
as fast as possible. Such systems evolve at an incred-
ible pace and different machines with new architec-
tures, programming models and paradigms, and com-
putation granularity are proposed every year. For in-
stance, the use of personal computers (PC) clusters in-
terconnected by high performance local networks with
raw throughput close to 1Gb/s and latency smaller than
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10�s yielded, in the late 1990s, parallel systems whose
computing power was close to or even better than the
one of super-computers of the middle of the 1980s, for
a hundredth to a tenth of their nominal price. Their
local networks were either realized with off-the-shelf
ware (e. g. Myrinet and Fast Ethernet), or application-
driven devices, in which case additional functionali-
ties were built-in, mainly at the memory access level.
Such clusters supported the Linux operational system,
among others, and offered a system level virtualiza-
tion for user-friendly programming environments like
multi-threading, communication libraries, automatic
load-balance, I/O systems, etc.

When using an HPCS to solve computationally in-
tensive problems, the first aspect to be understood is
the level of concurrency existing in the problem, i. e.,
which tasks can be executed simultaneously and which
cannot. For instance, there are cases where a problem
is not adapted at all to the parallel setting and only very
small benefit from parallelism can be obtained. There-
fore, the choice of a model for parallel computing is of
primeval importance.

Models

Parallel computing models can be roughly divided into
those which implicitly hide or assume the value of its
parameters and those which explicitly set these values,
as follows. The machine size can be defined by a pa-
rameter p or be (implicitly) connected to the problem
input size n. The topology of the communication net-
work is either explicit (ring, grid, hypercube, etc.) and
the processors communicate only with neighbors, or
hidden, i. e., the processors can communicate with any
other processor through a high speed interconnection
medium. The communication costs may depend on the
size of the messages sent and on the distance they travel,
or be fixed by message or even by set of messages sent.
Finally, although parallel computers are asynchronous,
and some models take this into consideration, most
of the existing models suppose a synchronized mode,
with some kind of barrier of synchronization – even
light ones, based on rendez-vous communications. In
the following, we briefly describe the most important
models for parallel computing and the way they deal
with the parameters above. For more details, we refer
to [11,12,14,22,23,24,29].

Atomic Models

In these models, a parallel machine consists of a large
set of atomic processors communicating by the ex-
change of atomic messages at a constant cost per mes-
sage. The number of processors is usually taken as
a function of n, the input size of the problem to be
solved.

PRAM

The shared memory model known as parallel random
access machine (PRAM) [19,22,23] is the best known
model for parallel algorithm design, because of its high
abstraction level. In this model, a parallel machine con-
sists of a large set of atomic processors. They commu-
nicate through a shared memory, where any position
can be accessed in constant time. In order to design an
algorithm we just have to describe a sequence of syn-
chronous parallel operations executed by the proces-
sors on the shared memory, without worrying about
scheduling the communications between the proces-
sors. This model is perfectly adapted to determine the
level of parallelism inherent to a problem, since all pa-
rameters are implicit or hidden [10,21]. Unfortunately,
however, only small shared-memory parallel comput-
ers have been built so far, because of technological con-
straints regarding the concurrent access to the mem-
ory in constant time, when the number of processors is
large.

Atomic GRAM

One way to solve the problem raised by the fully con-
nected shared memory was to consider distributed
memory machines and make explicit the topology
through which the atomic processors communicate.
Among the most used GRAMs (where G stands for the
graph defining the topology of the communication net-
work), we find grids and hypercubes [11,24], whose def-
initions follow.

The 2-dimensional grid

The 2-dimensional grid (called grid in the remainder)
of size N is composed of N processors PEi, j, 1 � i; j �
p
N, such that processor PEi, j is linked to processors

PEi � 1, j, PEi+ 1, j, PEi, j� 1, PEi, j+ 1, for 2 � i; j �
p
N �

1. The grid has degree 4, diameter O(
p
N) (a longest
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A 4 × 4 grid

path existing between processors PE1, 1 and PEpN;
p

N ,
for instance), and bisection width

p
N (which can

be obtained by deleting all links between processors
PE

i;
p

N
2

and PE
i;
p

N
2 C1

, for 1 � i �
p
N).

Grids can be generalized in two ways. The first one
is to consider d-dimensional grids which are defined on
N processors PEi1; :::;id , 1 � ik � N1\d, with links be-
tween PEi1; :::;ik ; :::;id and PEi1; :::;ik˙1; :::;id , for 1 � k �
d. The second classic generalization is to add links in
the 2-dimensional grid between processors PE1, j and
PEpN; j and between PEi, 1 and PEi;

p
N for 1 � i; j �

p
N . The obtained structure is called a 2-dimensional

torus. As 2-dimensional grids, 2-dimensional tori can
be generalized to d-dimensional tori.

Processors of a grid are usually numbered in a row
major order by using a unique index. PEi, j is then de-
noted by PE(i�1)

p
NC j�1, that is, processors are linearly

numbered from left to right and from top to bottom,
with indices in the range 0, . . . , N � 1.

The Hypercube

An interconnection network with the topology of a d-
dimensional hypercube, denoted H(d), is composed of
N = 2d processors, labeled from 0 to N � 1, and dN\2
communication links. Let (i)2 be the binary string rep-
resenting i and ik denote the k-th digit, from right to
left, in (i)2. Then, the neighbors of PEi are all PEj such
that (i)2 and (j)2 differ in exactly one bit position, say k,

Parallel Computing: Models, Figure 2
A Hypercube H(5) with 32 nodes and diameter 5. We can see
its decomposition in four H(3), in bold

0 � k < d, implying that its degree is d. In this case, we
say that PEi and PEj are neighbors along dimension k.
It is not difficult to see that the maximum distance in
a hypercube is given by those pairs of processors whose
binary string differ in all d positions, implying that its
diameter is d = log N. Finally, the bisection width of
a hypercube is N/2.

Figure 2 shows that processors are the vertices of
a hypercube of dimension d, each connected to d neigh-
bors. Notice further that, for instance, PE0 and PE4 are
neighbors along dimension 2 in any d > 2-dimensional
hypercube.

A hypercube H(d) can be decomposed in d differ-
ent ways into two copies of H(d � 1), with N/2 edges
connecting them. In order to find one such decomposi-
tion, it suffices to fix any one bit position in the proces-
sors’ addresses, say position k, 0 � k < d. Then, the two
copies ofH(d� 1) are composed of the vertices id� 1 � � �

ik+ 1 0 ik� 1 � � � i0 and id� 1 � � � ik+ 1 1 ik� 1 � � � i0, respec-
tively. It is interesting to notice that one can use these
decompositions in order to implement divide and con-
quer algorithms in hypercubes.

Let us further remark that the hypercube is vertex
and edge symmetric, making it easy to use. Very infor-
mally, we could say that, as far as the neighbors are con-
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cerned, the hypercube looks the same from every node.
Note that this is also true for the torus, but false for the
grid.

Bulk Models

Parallel algorithm designers who dealt with real prob-
lems to solve, soon discovered that they needed not
only to determine a problem’s inherent parallelism, but
also to write algorithms that could be efficiently imple-
mented. Hence, atomic models were not of help, since
parallel computers cannot expand endlessly in order to
reflect the size of the problem at hand, and distributed
memory bulk models appeared.

In opposition to the atomic models, the number of
processors, p, becomes a parameter and each processor
is supposed to be able to hold n/p data. A parallel algo-
rithm is then a sequence of supersteps, composed of lo-
cal computations followed by a communication round,
where messages are exchanged among the processors.
Notice that such an algorithm, where the number of su-
persteps is small and independent of n, will be efficient
in any HPCS, provided that the communication proce-
dures are implemented in an efficient manner, what is
usually the case.

Bulk GRAM

One difference between bulk and atomic GRAMs is the
number of processors, that here is set to an independent
value p. In each communication phase, processors can
then send a message of varying length to their neigh-
bors. The cost of these communications is also mod-
eled, according to a value proportional to the initializa-
tion of the communication channel plus the time spent
by the message to arrive at the destination [5,11,20].

BSP

The BSP model (for bulk synchronous parallel) [28],
uses slackness in the number of processors andmemory
mapping via hash functions to hide communication la-
tency and provide for the efficient execution of atomic
PRAM algorithms on existing hardware.

An input of size n is distributed evenly across a p-
processor parallel computer. In a single superstep each
processor may send h and receive h0messages (called an
(h, h0)-relation) and then perform an internal computa-
tion on its internal memory cells using the messages it

has just received. To avoid any conflicts that might be
caused by asynchronies in the network (whose topology
is left undefined) the messages sent out in a round t by
some processor cannot depend upon any messages that
the processor receives in round t (but, of course, they
may depend upon messages received in round t � 1).

Communication costs depend on two parameters,
namely the latency L and the throughput g. The cost
of an (h, h0)-relation performed by a processor is then
L + max(h, h0) g, and the total cost of a communica-
tion round is maxi = 1, . . . , pL + max(hi, hi0) g where
hi (respectively, hi0) represents the amount of data sent
(respectively, received) by processor i. Precise models
of parallel computers can be obtained by assigning re-
alistic values to L and g. More detailed BSP models and
algorithms can be found in [2,3,27,29].

CGM

The coarse grainedmulticomputermodel, or CGM(n, p)
for short, was introduced in [7]. The CGM(n, p) is a BSP
model consisting of a set of p processors with O(n/p)
local memory each, in which each superstep has h = h0

= O(n/p).
The originality of CGM stems from its cost model.

The algorithm designer will no longer try to minimize
the overall amount of data exchanged, as in the BSP,
but rather design algorithms with a small number of
supersteps, independent of the input size n. As a conse-
quence, these algorithms will be very efficient in prac-
tice. Ideally, algorithms should run for a constant num-
ber of supersteps, as it is the case for sorting [27] and
many problems in image processing [17,18], compu-
tational geometry [13,15], and optimization [8,16]. On
the other hand, graph problems seem to be somewhat
more complex, some of them requiring O(log p) com-
munication rounds to be solved [4].

LogP

This model uses the BSP model as a starting point and
focuses on the technological trend from fine-grained
parallel machines towards coarse-grained systems, ad-
vocating portable parallel algorithm design [6]. It char-
acterizes a distributed memory parallel computer by
four parameters (whence its name), as follows.
� L: the latency of a small message being communi-

cated from user-space to user-space.
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� o: the overhead incurred in a communication. It is
defined as the time interval during which a proces-
sor cannot do anything else because it is communi-
cating.

� g: the gap between two consecutive message trans-
missions (or receptions) by one processor. It is de-
fined as the inverse of the bandwidth of the commu-
nication processing element.

� P: the number of processors.
Memory resources are considered finite. Hence,

only L/g messages can be at the same time in the net-
work. The cost to communicate an elementary packet
between two processors is L+ 2o. If a reception ac-
knowledgment is required, this cost becomes 2L+ 2o.
Designing algorithms in LogP may become an elabo-
rate task, because of the several parameters involved,
and the asynchronous character of the models [1,9,26].
It is also very interesting to notice that work on LogP
algorithms are very similar to those on bulk GRAM al-
gorithms, done some 10 years earlier [5,25].
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Optimization –
Parallel Search Algorithms – Heuristics

Many applications in the field of artificial intelligence
and operations research rely on heuristic search (cf.
Heuristic search) as their primary solution method. Be-
cause these applications often spawn very large deci-
sion trees, the design of efficient parallel algorithms is
of prime importance. Depending on the level of paral-
lelism (fine-grained or coarse-grained) and the degree
of parallelism (moderately or massively parallel), the
techniques used in parallel heuristic search can be cate-
gorized into one of three classes:
� task partitioning
� parallel window search
� tree partitioning

Task Partitioning

The method of task partitioning (or operator parti-
tioning) provides a fine-grained parallelism at the low-
est level, the operator level. It speeds up the process-
ing of individual nodes by performing repetitive steps
like successor generation, node evaluation, and book-
keeping in parallel.

Task partitioning is especially popular in the field of
computer chess, where special purpose hardware was
built to assist in the move generation and board eval-
uation. The world computer chess champions Deep
Thought [3] and Deep Blue, for example, employ
special-purpose coprocessors for generating all moves
of a position and for evaluating all 64 fields of a board
in parallel. In the early years, hardware implementa-
tions were only feasible for simple operators that could
be easily implemented in silicon. With the advent of
programmable hardware accelerator chips like FPGAs
(field programmable gate arrays), more complex parts
of the tree search could be implemented in hardware,
which dramatically improved the performance of com-
puter chess programs, most notably that of the world
champion Shredder.



Parallel Heuristic Search P 2909

Parallel Window Search

In parallel window search, all processors examine the
entire tree, but each with another search bound. This
method was originally developed to speed up game
playing programs. As first suggested by Baudet [1], the
total range of values in a game tree is subdivided into
p nonoverlapping alpha-beta windows (where p is the
number of processors), so that approximately one third
is covered. The advantage is, that the processor hav-
ing the true minimax value in its window will find it
faster by virtue of starting with a narrow search window
instead of using the full-width window. Even the un-
successful processors are productive: They determine
whether the minimax value lies below or above their
assigned search interval. If the true minimax value does
not lie in one of the initial pwindows, the processors are
re-scheduled to cover some of the remaining intervals.
The iterative re-scheduling process is continued (like in
binary search) until the final solution is found by one of
the processors.

In some favorable cases, parallel window search
may even cause superlinear speedup s(p) > p when the
minimax value is found early in the search. Moreover,
the communication and synchronization overheads are
quite low, allowing efficient execution on loosely cou-
pled parallel systems. On the negative side, however,
is the limited scalability of parallel window search.
Even with an infinite number of processors, a maxi-
mal speedup of five or six can be attained in chess trees,
because in the best case all w dd/2e + w bd/2c� 1 nodes
of the minimal tree (with width w and depth d) must
be examined by the ‘successful’ processor returning the
minimax value. For this reason, parallel window search
is suitable for small systems with up to three processors
only.

Parallel window search can also be applied to single-
agent searches like iterative-deepening A
 (IDA
) [7].
Here, different processors are used to search the entire
tree up to different thresholds (windows), hoping that
one of them would find a solution. If not, a global ad-
ministration scheme determines the next larger thresh-
old, and the node expansion starts over again. Note,
that this scheme works only in applications where the
increments in the threshold are known a priori. In the
15-puzzle, for example, the first processor’s threshold
would be set to the heuristic estimate h(n) of the ini-

tial position n, the next processor gets the threshold
h(n) + 2, and so on.

As in adversary game tree search, the maximum
scalability is limited to the maximum number of iter-
ations. Because the iterations with consecutive thresh-
olds are not explored in sequential order, the first solu-
tion may not be optimal. Optimality can, however, be
guaranteed by completing all shallower iterations than
that of the best solution found so far. The better the
node ordering, the faster the solution speed. In the ex-
treme case, superlinear speedup can be achieved when
the solution is found early in some ‘left’ part of the tree.

Because of its nonoptimality and its limited scala-
bility, parallel window search is mainly used for quickly
determining a (possibly suboptimal) solution which is
then improved by other means [7].

Tree Partitioning

In tree partitioning, the total search space is split into
smaller parts (subtrees) for simultaneous exploration
by different processors. Once the subtrees have been
distributed among the processors, only little commu-
nication is necessary for broadcasting improved bound
values and for termination detection.

Compared to the other two techniques, tree parti-
tioning is the only parallelization strategy that allows
(in principle) to employ an unlimited number of pro-
cessors. This is especially true for the use of tree parti-
tioning in parallel depth-first search (DFS). Here, appli-
cations have been successfully tested on massively par-
allel systems with more than a thousand processors.

Because DFS trees tend to be highly irregular in
practice, i. e. they exhibit varying branching degrees
and search depths, static tree partitioning methods are
insufficient to keep all processors busy during the whole
computation. Two dynamic work partitioning methods
have been proposed: stack splitting and search-frontier
splitting.

Stack Splitting

In the stack splitting scheme [5], the local work is par-
titioned by splitting the donor’s search stack into two,
one of which is given to the requester. Care must be
taken to select a suitable amount of work for shipment.
On the one hand, the transferred work must be large
enough to vindicate the communication costs, and on
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Stack splitting

the other hand, not too much work should be sent to
avoid thrashing effects. Several strategies for selecting
nodes from a donor’s stack have been proposed:
� Removing nodes from the tree levels near the root

give coarse-grained work packets, which are likely
to be splitted a second time during the search.

� Removing nodes near a cut-off level deep in the
tree give fine-grained work packets, making it some-
times necessary to send more requests for obtaining
enough work.

� Removing a ‘vertical slice of nodes’, one from each
level, may be useful in trees with large branching fac-
tors and irregular search depths.
Stack-splitting works for simple DFS as well as for

iterative DFS. The iterative-deepening search PIDA

(Parallel IDA
, [4]) starts a new iteration with an in-
creased cost-bound when all processors have finished
their current iteration without success. The end of an
iteration is determined by a barrier synchronization,
e. g., the distributed termination detection algorithm of
Dijkstra [2].

Search-Frontier Splitting

Rather than subdividing a processor’s stack, search-
frontier splitting initially generates a suitable number of
‘work packets’. A work packet is a node from a ‘search-
frontier’ in the tree, containing nodes n with the same
cost value f(n). Search-frontier splitting has two phases:

Parallel Heuristic Search, Figure 2
Search-frontier splitting

� In an initialization phase, the nodes of a search-
frontier are distributedly generated by a cost-
bounded BFS or an iterative DFS. The bound is in-
crementally increased until at least p nodes with the
same cost f(p) are generated and stored in the local
memories. Each frontier forms the root of a subtree
that represents an indivisible piece of work used in
the second phase.

� In the main asynchronous search phase, each pro-
cessor expands its own frontier nodes in DFS or
DFBB fashion. When a processor gets idle, it sends
a request for a work packet (unprocessed frontier
node) to another processor.
The initialization phase is only short. A suitable

amount of frontier nodes is generated to provide a fine
work granularity. As before, the work packets must nei-
ther be too small (to pay off for the communication
costs) nor too large (to avoid thrashing effects).

In practice, little load balancing is required, be-
cause the expansion of the local frontier nodes keep
the processors busy for most of the time. Search-
frontier splitting is applicable to DFS and iterative DFS.
The iterative-deepening variant AIDA
 (asynchronous
IDA
 [8]) starts a new iteration on the previously used
frontier nodes. This has the effect of a self-improving
load balancing scheme, because all subtrees tend to
grow at approximately the same rate when searching to
the next larger cost-bound. In practice, the communi-
cation overhead decreases with increasing search time.
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Work Distribution

The work distribution is either initiated by the sender
(donor) or by the receiver (recipient). In the sender ini-
tiated work distribution, the generation of subtasks is
independent from idle processors. It is based on the ra-
tionale that the local work-load of any two processors
in the system should not differ by a factor � ı [6].
Work packets are delivered to weakly loaded processors
either on demand (when they become idle) or when
imbalances occur. In conjunction with a node prior-
ity scheme, sender initiated work distribution may help
avoiding speedup anomalies, but at the cost of a re-
duced execution speed.

The receiver initiated work distribution scheme,
also known as work stealing, is more popular. Work
requests are only sent by processors that became idle.
When a donor has work to share, it returns a work
packet, otherwise it notifies the requester accordingly.
More sophisticated variants start issuing work requests
as soon as there are fewer than ı work packets left
on their stack, thereby reducing communication la-
tency by overlapping communication and computa-
tion.

But which processor should best be addressed to ob-
tain a work packet? The answer depends on the topol-
ogy and characteristic of the interconnection network
of the parallel system. Four receiver initiated work dis-
tribution methods have been extensively tested and
analysed:
� ARR: In the asynchronous round robin strategy,

each processor maintains a local variable target
pointing to the next donor. Whenever a processor
runs out of work, it sends a work request to the
target processor and increments target (modulo p)
thereafter.

� GRR: The global round robin method works simi-
lar to ARR, but with a global target variable instead.
Whenever a processor runs out of work, it looks up
the global target variable, increments it, and sends
a work request to the assigned donor. Hence, four
messages are sent for a single work request. Memory
contention can be reduced by introducing a hierar-
chy of distributed target variables.

� RP: In random polling, idle processors send work re-
quests to randomly chosen processors. Each donor
is selected with the same probability.

� PF: In packet forwarding, unsuccessful work re-
quests are not returned to the sender, but forwarded
to the next neighbor. On ring topologies, work re-
quests are forwarded until a processor responds with
a work packet, or the message makes a full round
through the ring, thereby indicating that no work is
available.
Which of the work distribution schemes to choose

depends on the interconnection topology of the tar-
get platform. On systems with a small communica-
tion diameter (e. g. hypercube), RP and ARR give
best speedups, while PF performs better on sys-
tems with a large communication diameter (e. g. ring,
torus) [4,8].

Table Driven Search

In many domains, application-specific heuristics and
search enhancements introduce interdependencies be-
tween the generated states, making efficient paralleliza-
tion a challenging task. Much of this information is
stored in memory tables (e. g. transposition tables or
refutation lists), which are essentially large caches in
which the generated nodes and some book-keeping in-
formation are stored. Before expanding a new node,
a table lookup is performed to check whether infor-
mation on that node is available. This is especially
useful when a node can have multiple predecessors,
i. e. when the search space is a graph rather than
a tree.

In parallel implementations the transposition ta-
ble is partitioned among the processors. Each time
a processor extends a new node, it first does a remote
lookup by sending a message to the processor respon-
sible for that portion of the table and waiting for the
result. This results in a large time-overhead – even with
asynchronous message passing. As an efficient alterna-
tive, transposition-driven work scheduling (TDS) [9]
was introduced, which migrates the node to be ex-
panded to the processor that may contain the corre-
sponding transposition table entry. From that moment
on, the receiving processor is responsible for the ta-
ble lookup and, depending on the result, for extend-
ing the subtree of that node to the given search depth.
TDS was introduced for parallel single-agent search
(like IDA*) but can also be applied to multi-agent
search.
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For finite-dimensional optimization problems with in-
finitely many inequality constraints (‘semi-infinite’ op-
timization), the topological concept of global stabil-
ity and its algebraic characterization are introduced in
the following. Global stability refers to perturbations of
the defining functions and their derivatives up to sec-
ond order. Then, transitions between stable problems
via one-parametric families are considered. Necessar-
ily, certain unstable situations will be met and they will
be discussed by means of the underlying singularities.

The considered optimization problems are of the
following type:

(SIP)

(
min f (x)
s.t. x 2 M[h; g];

where

M[h; g] D

8<
:x 2 Rn :

hi(x) D 0; i 2 A;
g(x; y) � 0
for all y 2 Y

9=
; ;

Y D
�
y 2 Rr : ui (y) D 0; i 2 I;

vj(y) � 0; j 2 J

	
;
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h = (hi, i 2 A), u = (ui, i 2 I), v = (vj, j 2 J), |A| < n, |I|
< r, |J| <1. The index set Y is assumed to be compact.
All defining functions are assumed to be of class Ck (k
� 2), i. e., f 2 Ck(Rn, R), g 2 Ck(Rn×Rr, R), etc.

The Reduction Ansatz

Under certain assumptions it is possible to reduce (SIP)
locally to an optimization problem with a finite num-
ber of inequality constraints. In fact, put Y0(x) = {y 2
Y : g(x, y) = 0} and let x 2 M[h; g]. Then, all points of
Y0(x) are global minima for g(x; �)jY . Consequently, if
Y0(x) D fy1; : : : ; ypg are ‘nondegenerate’ respectively
‘strongly stable’ (cf. [16]), then the implicit function
theorem guarantees the existence of local C1- respec-
tively Lipschitz continuous, mappings yj(x), where yj(x)
is a local minimum for g(x, �)|Y , j = 1, . . . , p. But then,
in a neighborhood of x, we can describe the feasible set
M[ h, g] by means of the equalities hi = 0, i 2 A, and the
finite number of C2-, respectively C1, 1-, inequality con-
straints ' j(x) � 0, j = 1, . . . , p, where ' j(x) = g(x, yj(x))
(localmarginal function) (cf. [4]).

Global (Structural) Stability

In this section, global (structural) stability of (SIP) will
be introduced and characterized by using the concept
of topological stability of the feasible set M[ h, g] and
the concept of strong stability of stationary points for
(SIP). Throughout this section assume that for all y 2 Y
the gradients Dui (y), i2 I,Dvj(y), j 2 J0(y) are linearly
independent, where J0(y) D

˚
j 2 J : v j(y) D 0

�
.

Topological Stability ofM[ h, g]

The set M[ h, g] is called topologically stable with re-
spect to the strong C2-topology (briefly: C2

s -stable) if
there exists a C2

s -neighborhood U of (h, g) in C2 such
that M[ h, g] is homeomorphic with M[eh;eg] for every
(eh;eg) 2 U. Here, a C2

s -neighborhood of (h, g) is gen-
erated by perturbations of (h, g) and their derivatives
up to second order which are controlled by a positive
continuous function "(�): Rn! R (for details, cf. [6]).

The topological stability of M[ h, g] is closely re-
lated with theMangasarian–Fromovitz constraint qual-
ification (MFCQ). The (MFCQ) is said to hold at x 2
M[h; g] if the (row) vectors Dhi(x), i 2 A are linearly
independent and if there exists a vector � 2 Rn satis-

fying Dhi(x) � � D 0, i 2 A and Dx g(x; y) � � > 0
for all y 2 Y0(x). In [12] it is shown that topological
stability of M[ h, g] can be characterized by an equiv-
alent algebraic condition: If M[ h, g] is compact, then
M[ h, g] is C2

s -stable if and only if (MFCQ) holds at
all x 2 M[h; g]. This equivalence was proved first in
[2] for finite optimization problems (i. e. for those with
finitely many constraints) and, then, it was generalized
for semi-infinite problems in [12]. A generalization to
noncompact feasible setsM[ h, g] under a stronger con-
straint qualification is presented in [9].

Strong Stability of Stationary Points

The strong stability of a stationary point for a finite
problem and its equivalent algebraic characterization
have been introduced in [16].

A point x 2 M[h; g] is called a stationary point for
(SIP) if there exist y1; : : : ; yp 2 Y0(x), and reals ˇ i , i 2
A, � j � 0, j = 1, . . . , p such that

D f (x) D
X
i2A

ˇ iDhi(x)C
pX

jD1

� jDx g(x; y j) :

A stationary point can be a local minimum or a saddle
point for (SIP). Let SIP(f , h, g) denote the semi-infinite
problem that is generated by the function vector (f , h,
g). The strong stability of a stationary point x(f , h, g) for
SIP(f , h, g) is a local property; it means the existence
and local uniqueness of a stationary point x(ef ;eh;eg) for
SIP(ef ;eh;eg) where all local sufficiently small perturba-
tions of (f , h, g) and their derivatives up to second order
are considered and where x(ef ;eh;eg) depends continu-
ously on the perturbed function vector (ef ;eh;eg). Here,
the function vector (f , h, g) is considered as a parame-
ter, and under certain assumptions equivalent algebraic
conditions for strong stability can be obtained by us-
ing the implicit function theorem in the correspond-
ing function space. This was done first in [16] for finite
problems, a generalization to semi-infinite problems is
given in [17] where the following three cases are distin-
guished for the considered point x D x( f ; h; g).
1) The set Y0(x) is finite with Y0(x) D fy1; : : : ; ypg,

and all points y1; : : : ; yp are strongly stable local
minima for g(x; �)jY . Furthermore, the linear in-
dependence constraint qualification (LICQ) holds
at x 2 M[h; g], i. e. the vectors Dhi(x), i 2 A,
Dx g(x; y j), j = 1, . . . , p are linearly independent.
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2) Y0(x) D fy1; : : : ; ypg, and all points y1; : : : ; yp are
strongly stable local minima for g(x; �)jY . Further-
more, (MFCQ) holds at x 2 M[h; g but not (LICQ).

3) Not all points from Y0(x) are strongly stable local
minima for g(x; �)jY .
In Case 1 and Case 2 the reduction Ansatz is fulfilled

at x 2 M[h; g] can be described locally by means of
finitely many C1, 1-constraints. Therefore, the Karush–
Kuhn–Tucker system (written as a system of equations
as in [16,17]) is Lipschitz continuous and has a gen-
eralized Jacobian. Then, an equivalent algebraic char-
acterization for the strong stability of x 2 M[h; g] in
Case 1 and Case 2 is a condition on a certain subset of
this generalized Jacobian (for details, cf. [17]): In Case 1
one obtains a condition on coherent orientation; here,
all elements (matrices) of this subset of the generalized
Jacobian restricted to the corresponding tangent space
have a nonvanishing determinant with a common sign.
In Case 2, all elements of this subset restricted to the
corresponding tangent space are positive definite. In
particular, in Case 2 a strongly stable stationary point
x 2 M[h; g] has to be a local minimum for SIP(f , h, g).

In Case 3 the active index set Y0(x) might contain
infinitely many points! The equivalent algebraic charac-
terization for strong stability in that case is also a pos-
itive definiteness condition but a rather technical one
(for details, see [17]). In Case 3 a strongly stable sta-
tionary point x 2 M[h; g] has to be a local minimum
for SIP(f , h, g) as well.

Global (Structural) Stability of SIP(f, h, g)

Two problems SIP(f , h, g) and SIP(ef ;eh;eg) are called
equivalent if there exist continuous mappings 'R× Rn:
Rn,  R! R with the following properties:
1) The mapping '(t, �): Rn! Rn is a homeomorphism

for each t 2 R.
2) The mapping  is a homeomorphism and mono-

tonically increasing.
3) For all t 2 R: 't[Lt( f ; h; g)] D L (t)(ef ;eh;eg), where
't := '(t, �) and Lt(f , h, g) = {x 2M[ h, g]: f (x) � t}.

The semi-infinite problem SIP(f , h, g) is called struc-
turally stable if there exists a C2

s -neighborhood V of the
defining triple (f , h, g) such that SIP(ef ;eh;eg) and SIP(f ,
h, g) are equivalent for all (f , h, g) 2 V.

The structural stability of SIP(f , h, g) can be charac-
terized by means of the introduced topological stability

of M[ h, g] as well as the strong stability of stationary
points as follows. If M[h, g] is compact, then SIP(f , h,
g) is structurally stable if and only if (MFCQ) holds at
all x 2M[ h, g], every stationary point for SIP(f , h, g) is
strongly stable and different stationary points have dif-
ferent f -values. This result was proved first in [1,4] for
finite problems and, then, it was (partially) generalized
to semi-infinite problems in [8,20].

Generic Transitions

In this section one-parametric families (SIP)t of semi-
infinite optimization problems are considered:

(SIP)t

8<
:
min
x

f (x; t);

s.t. x 2 M(t);

where all defining functions f , h, g, u, v depend on one
additional variable t (the parameter), i. e., one consid-
ers f (x, t), hi(x, t), i 2 I, g(x, t, y), etc. Note that, in
particular, the index set Y(t) now also depends on the
parameter t. This is in contrast to one-parametric fi-
nite optimization problems (i. e., Y(t) finite), where the
index set of inequality constraints is not assumed to
be parameter-dependent (i. e., Y(t) constant; cf., e. g.,
[5,7,13,15]). It is assumed (in the sequel briefly referred
to by ACUSC) that each set Y(t) � Rr , t 2 R, is com-
pact, and that the set-valued mapping t! Y(t) is upper
semicontinuous at each t 2 R.

A point x 2 M(t) is called a generalized criti-
cal point (shortly, g.c.point) for (SIP)t if the family of
vectors Dx f (x; t), Dxhi(x; t), i 2 I, Dx g(x; t; y), y 2
Y0(x; t)) is linearly dependent. Here,Dx f stands for the
row vector of first partial derivatives, and Y0(x; t) de-
notes the parameter-dependent set of active inequality
constraints, i. e., Y0 (x, t) = {y 2 Y(t): g(x, t, y) = 0}.
The generalized critical point set is defined to be the set
˙ = {(x, t) 2 Rn× R: x is a g.c.point for (SIP)t}. By the
well-known first order necessary optimality condition
of F. John, for every local minimizer x of (SIP)t one has
z D (x; t) 2 ˙ .

The main idea for the investigation of parameter-
dependent local minimizers is to study the larger set ˙
which contains also local maximizers and several kinds
of saddle points. For a fixed generic problem, these dif-
ferent classes of g.c.points can easily be distinguished
by algebraic conditions which use the so-called linear
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and quadratic (co-)indices. In particular, the linear (co-
)index refers to the number of (positive) negative La-
grange multipliers corresponding to active inequality
constraints; the quadratic (co-)index counts the num-
ber of (positive) negative eigenvalues of the restriction
of the Hessian of a Lagrangian to the tangent space.
For a one-parametric problem, these numbers may only
change at singularities in ˙ . The nonsingular points in
˙ are termed nondegenerate critical points (for details,
cf. [13]). In the finite case, i. e., when Y(t) is a con-
stant and finite set, a nondegenerate critical point is
a local minimizer if and only if its linear as well as its
quadratic index vanish. Moreover, at a non-degenerate
critical point z, the set ˙ can locally be described by
the implicit function theorem which yields a regular
parametrization of˙ by t. Since the quadruple of linear
and quadratic (co-)indices remains constant in a neigh-
borhood of z, a nondegenerate local minimizer remains
stable under small pertubations of the parameter t.

In [5,7], H.Th. Jongen, P. Jonker, and F. Twilt
showed for one-parametric finite optimization prob-
lems that, apart from non-degenerate critical points
(points of type 1) generically there occur exactly four
different types of singularities in˙ (points of type 2, 3,
4, and 5). At each singularity the change of the index
quadruple is completely described by certain character-
istic numbers which can be computed from the prob-
lem data at the singularity. Results about the topologi-
cal structure of ˙ around the singular points yield the
fundamentals for the design of numerical path follow-
ing methods (for details, cf. [3]).

In one-parametric semi-infinite optimization, gener-
ically three additional singularities come into play. Let
all defining functions of (SIP)t be three times continu-
ously differentiable and define the set CUSC to be the
subset of C3(Rr× R, R)|I|+|J| consisting of all functions
(u, v) which define index sets Y(t) such that ACUSC

holds. Then there exists a C3
s -open dense subset F of C3

(Rn ×R,R)|A|+ 1 ×C3(Rn ×R×Rr ,R) × CUSC, such that
for all (f , h, g, u, v) 2 F each point of the corresponding
g.c.point set ˙ is one of eight types. The latter result is
given in [10] and proved in detail in [18].

In the remainder of the present section, this type
classification is motivated and the local structure of ˙
at the typically semi-infinite singularities is discussed.
Since in the generic case the number of active indices
at a point (x; t) 2 ˙ cannot exceed n+ 1 (cf. [10]), one

deals with finitely many solutions of the so-called lower
level problemmin g(x, t, �)|Y(t), as well as with the upper
level problem f (�, t)|M(t). The idea of the type classifica-
tion in the semi-infinite case is that in exactly one of
these finitely many finite optimization problems a sin-
gularity of codimension one occurs.

First, assume that all active indices are nondegener-
ate global minimizers of the lower level problem. Then
a local reduction of the semi-infinite to a finite one-
parametric optimization problem can be performed, as
described in the previous section about the Reduction
Ansatz. Here, the assumption ACUSC is needed. In this
reduced problem, all five types from one-parametric
finite programming can occur. In particular, (x; t) is
a nondegenerate critical point of (SIP)t if it is of type
1 for the reduced problem. Moreover, this shows that
the four singularities from the finite case persist in the
semi-infinite setting.

The typically semi-infinite singularities arise if ex-
actly one of the active indices in Y0(x; t) D fy1; : : : ; ypg
is degenerate. Let this be the index ȳp . In the generic
case, the degeneracy can only be due to situations such
as at points of type 2, 3, 4, and 5. As points of type 3
are never local minimizers (cf. [10]), one is left with
three possibilities which give rise to the typically semi-
infinite singularities of type 6, 7, and 8. The present sur-
vey will not handle all details of the type definitions
and of the local structures of ˙ . For locally simplified
problems these definitions are given in [10], whereas
the definitions in terms of the original problem data
are given in [18]. In the following a one-dimensional
manifold � in Rn× R is said to exhibit a turning point
at z D (x; t) 2 � if the function ˚(x, t) � t, re-
stricted to � , possesses a local extremum at z. If, addi-
tionally, � is locally a C2-manifold and the extremum
of˚ is nondegenerate, then z is called a quadratic turn-
ing point.

A g.c.point z of type 6 can roughly be character-
ized by the fact that the gradients of constraints which
are active at yp in the lower level problem are lin-
early independent, and exactly one of the multipliers
corresponding to active inequality constraints vanishes.
Now consider two auxiliary problems (SIP)et and (SIP)dt
where this inequality constraint is treated as an equality
constraint, respectively deleted as a constraint. It can
be shown that z is a non-degenerate critical point of
both (SIP)et and (SIP)dt , which gives rise to two solu-
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tion curves � e and � d in Rn× R, both being regularly
parametrized by t. Exactly one branch � e

C and � d
C of

each curve belongs to˙ , so that at z the set˙ is locally
a one-dimensional manifold which is piecewise of dif-
ferentiability class C2. In the case |A|+ p = n, the curves
� e and � d meet tangentially, and ˙ does not exhibit
a turning point at z, whereas in the case |A| + p < n
the curves � e and � d meet under a nonvanishing an-
gle. Moreover, it can be shown that the linear index and
co-index remain constant when passing a point of type
6 along ˙ , whereas the quadratic index and co-index
change if and only if ˙ exhibits a turning point at z.
In the latter case, the quadratic index changes by one,
and characteristic numbers determine the direction of
change. In particular, a local minimizer can only be lost
at a point of type 6, if ˙ exhibits a turning point there.
In this case, a feasible direction of quadratic descent
(i. e., a jump direction) can be given (cf. [3,11,18]).

At a g.c.point z of type 7, the number of active con-
straints at yp in the lower level problem does not exceed
r, and their gradients are linearly dependent. It turns
out that necessarily a component of the index set Y(t)
vanishes under pertubations of the parameter (cf. also
[8]). As a consequence, the feasible set mapping t !
M(t) is not upper semicontinuous at t, and a branch of
˙ emanates, respectively ends at z. More precisely, ˙
coincides locally with one branch of a one-dimensional
C2-manifold which exhibits a quadratic turning point
at z. A feasible direction of linear descent can be given
if˙ consists locally of local minimizers (cf. [11,18]).

At a g.c.point z of type 8, the number of active con-
straints at yp in the lower level problem equals r + 1.
If the Mangasarian–Fromovitz constraint qualification
holds at yp , one calls z to be of type 8a, else of type 8b.
First consider points of type 8a. Similarly to the situa-
tion at points of type 6, there are two auxiliary problems
which give rise to two C2-curves � 1, � 2 of nondegen-
erate critical points, both being regularly parametrized
by t, where exactly one branch of each curve belongs to
˙ . Since � 1 and � 2 meet in z under a nonvanishing
angle, ˙ is locally a one-dimensional manifold which
is piecewise of differentiability class C2. It can be shown
that ˙ does not exhibit a turning point at z and that
the index quadruple remains constant when passing z
along˙ . Now let z be a g.c.point of type 8b. Similarly to
the situation at points of type 7, a component of the in-
dex set Y(t) vanishes under pertubations of the param-

eter, and a branch of˙ emanates, respectively ends at z.
More precisely, ˙ coincides locally with one branch of
a one-dimensional C2-manifold which can be regularly
parametrized by t. Again a feasible direction of linear
descent can be given if ˙ consists locally of local mini-
mizers (cf. [11,18]).

Finally, there is a remarkable phenomenon con-
cerning the global structure of˙ . In contrast to the case
of one-parametric finite programming where the singu-
lar points form the (relative) boundary of the set of non-
degenerate critical points (cf. [5,7]), in the semi-infinite
case there appears an additional type of boundary point
which does not belong to ˙ . This so-called trap-door
point occurs when a new component of Y(t) is born at
a parameter value t (recall that at points of type 7 and
type 8b such a component vanishes). The occurrence of
trap-door points as well as of points of type 7 and 8b
can be avoided if the mapping t! Y(t) is not only as-
sumed to be upper but also lower semicontinuous. In
this case, the singular points form the (relative) bound-
ary of the set of non-degenerate critical points. For de-
tails, cf. [18,19].
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In this article, we describe solution approaches for two
types of linear problems involving uncertain parame-
ters. The first problem that is discussed, involves a sin-
gle uncertain parameter present on the right-hand side
of the constraints, and the second problem involves un-
certainty in coefficients of the objective function. The
significance of solving these problems is that, while the
first problem takes into account the case when a pa-
rameter associated with the model equations, such as
demand and supply is uncertain, the second problem
incorporates uncertainty in the coefficients of variables
which define the objective function, such as cost of raw
materials and selling price of products. Mathematically,
the former problem depicts the value of objective func-
tion as the feasible region shrinks (or enlarges), and
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Parametric Linear Programming: Cost Simplex Algorithm,
Figure 1
Right-hand side parametrization

the latter characterizes the ‘fixed’ feasible region with
a number of regions corresponding to different sets of
active and inactive constraints.

For the first problem, in Fig. 1, PQRS represents
an initial feasible region corresponding to the value �1
of the uncertain parameter, and C represents the con-
straint involving � . As �1 changes from �1 to �2, the
feasible region and the set of active constraints changes.
For a given range of � , the aim is then to identify inter-
vals of � within which the optimal value function func-
tion, z(�), preserves its optimality. For the second prob-
lem, in Fig. 2, where z(�) represents the objective func-
tion and � represents the vector of uncertain parame-
ters in the objective function coefficients, although the
feasible region PQRS remains constant, the slope of ob-
jective function changes with change in �. The aim in
this case is to identify regions rather than the intervals
of uncertain parameter space. Next we will describe so-
lution approaches for both the problems.

Parametric Linear Programming

Consider the following parametric linear programming
problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

z(�) D min
x

c>x

s.t. Ax D bC f �;
x � 0;
�min � � � �max;

x 2 Rn ;

(1)

Parametric Linear Programming: Cost Simplex Algorithm,
Figure 2
Objective function parametrization

Parametric Linear Programming: Cost Simplex Algorithm,
Figure 3
Optimal value function (right-hand side case)

where x is a vector of continuous variables; A is a con-
stant matrix, and c, b and f are constant vectors of ap-
propriate dimensions; � is a scalar uncertain parame-
ter. The solution of (1) is approached by incorporating
the uncertain parameter, � , in the simplex tableau. The
solution procedure consists of two phases. In the first
phase, an optimal solution for any � in [�min, �max] is
obtained. Let B1 denote the corresponding optimal ba-
sis, and x1B(�) = B� 1(b + f �), the vector of correspond-
ing basic variables. The critical region, CR1 (Fig. 1), as-
sociated with this basis is given by the condition of pri-
mal feasibility, x1B (�) � 0, together with the condition
that �min� � � �max. The optimal value function, z(�)1,
is given by z(�)1 = c>B x1B(�). This completes the first
phase. In the second phase, the neighboring bases (B0

or B2) are identified by one dual step. The procedure is
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repeated until the complete range of � has been charac-
terized by critical regions and corresponding optimal
value functions. While solving problems of the form
given in (1) is usually computationally expensive, it is
better than exhaustively obtaining the optimal solutions
for all the values of � that lie within �min and �max.
However, in the worst case the computational require-
ments for solving (1) are not bounded by a polynomial
in the size of the problem [10]. Some other references
on the subject are [1,2,3,11] and [12].

Objective Function Parametrization

Consider the following linear programming problem
with uncertain objective function coefficients:

8̂
ˆ̂̂<
ˆ̂̂̂
:

z(�) D min
x

c>(�)x

s.t. Ax D b;
x � 0;
x 2 Rn ; � 2 Rs ;

(2)

where c(�) = c + H �, such that c is a constant vector
and H is a constant matrix; b is a constant vector; � is
a vector of uncertain parameters, such that for each �
2 K, � 2 Rs, (2) has a finite optimal solution, and has
no optimal solution for � 2 Rs � K. Further, consider
the following restriction on � 2 � , � = {�: G� � g},
where G is a constant matrix and g is a constant vector.
By defining new variables v and z, (2) can be rewritten
as:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

z(�) D min
x
�>v C z

s.t. Ax D b;
v D H>x;
z D c>x;
x � 0;
x 2 Rn ; � 2 Rs :

(3)

In the simplex based solution algorithm [4], asso-
ciated with each optimal basis is a region of � which
can be uniquely defined for that basis. The basic idea of
the solution approach is then to identify all such bases
so that � is completely characterized by a number of
regions, and the corresponding value of the objective
function. This can be achieved as follows.

Let B denote an optimal basis and xB denote the cor-
responding optimal solution; also let � denote the cor-

responding index, also let the basic variables in H be
denoted by HB, then we can write:

�H> DH>B Y � H> ;
�z> D c>B Y � c> ;

hNC1 DH>B xB ;

z(�) D c>B xB ;

(4)

where

Y D B�1A ; xB D B�1b :

The set of equations in (3) can now be rewritten as fol-
lows:

Ax D b ;

v C �H>x D hNC1 ;

z C �z>x D z(�) ;

where � z = c>B Y , and using appropriate transforma-
tion, the objective function can be written as:

z(�) D �(�z> C �>�H>)x C �>hNC1 C z(�) : (5)

By denoting cB (�) = cB + HB �, and substituting in (4)
the following is obtained:

�z(�) D �z C �H� : (6)

As described later, this is an important relation for
characterizing the region of � associated with the opti-
mal basis B. In order to obtain parametric solution and
the corresponding regions of �, we first need the fol-
lowing:
� The optimal value function, zmin(�), is concave, lin-

ear and continuous over K.
� Two bases are said to be neighboring bases if and

only if

i) there exists �� 2 K such that both bases are opti-
mal bases for �� 2 K, and

ii)it is possible to pass from one bases to the another
by one primal simplex step.

� The critical region where the basis B remains opti-
mal is given by the following condition of dual fea-
sibility: � z(�) � 0, or � � H � �� z, together with
the restriction on � given by G � � g.

� item Two critical regions are said to be neighbors
(or neighboring critical regions) if their correspond-
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ing optimal bases are neighbors (or neighboring
bases).
The solution algorithm then relies on finding an

initial optimal solution and the corresponding critical
region, and then identifying all the critical regions by
passing from one region to its neighbor by a primal
simplex step. The procedure is continued until the com-
plete space of �, along with the corresponding opti-
mal value function, has been characterized. Also see
[5,6,7,8,9,13,14] and [3] for further details.
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In this article we will present some developments in the
subject of parametric programming for problems in-
volving 0–1 integer variables and nonlinearities in the
model. For pure quadratic integer problems, [13] pro-
posed an algorithm by extending some of the concepts
described in [10] for the case of linear models. The
problem they considered can be stated as follows:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z(�) D min
y

p(y)

s.t. Ay � bC r�;
0 � � � 1;
y 2 f0; 1gm;

(1)
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where � is a scalar uncertain parameter; p(y) � y|Qy;
r is a nonnegative n-vector, such that only r1 � 0; Q is
an (m × m) matrix; A is an (n × m) matrix. The solu-
tion procedure is based upon the observation that as �
is increased from 0 to 1, it results in shrinking of the
feasible region (because r � 0) of (1) and hence only
a solution worse than (greater than or equal to) the so-
lution at 0 can be obtained, i. e., z(�) is a nondecreasing
function of � (see Fig. 1). Another interesting feature
of the formulation in (1) is that since � is bounded be-
tween lower and upper bounds, there is a finite number
of (integer) solutions that will lie between these bounds.
Further, because the optimal solution of (1) at a fixed
value of � corresponds to lattice points of a polyhedron,
it remain optimal for a range of � until another lattice
point becomes optimal (this results in a finite number
of intervals of � corresponding to the finite number of
solutions that lie in [0, 1]; Fig. 1). [13] proposed the fol-
lowing procedure for identifying these (critical) inter-
vals and corresponding optimal solutions:

0 Set k = 1 and let � = 0.
1 For (1) find the optimum solution yk and the

corresponding p(yk). Also find �k using:

�k =
a1yk � b1

r1
;

where a1 denotes the first row of A.
IF no such yk exists, THEN go to 3,
ELSE go to 2.

2 Set k = k + 1 and let � = �k�1 + ı, where

� =
a1yk�1 � b1 + g

r1
= �k�1 + ı;

where ı = g/r1 and g is the greatest common
divisor of the elements of a1.
IF � � 1, THEN go to 1, else go to 3.

3 Stop, all critical solutions have been found.

[2] extended their previous work on dynamic pro-
gramming to present a solution procedure for pure in-
teger nonlinear programming problems. [18] extended
the branch and bound technique of [17] for linear pro-

Parametric Mixed Integer Nonlinear Optimization, Figure 1
z(�) is a discontinuous nondecreasing step function

grams to nonlinear programs. They also discussed the
extension of their results to the mixed integer case. We
next consider the following parametric mixed integer
nonlinear programming problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

z(�) D min
y;x

c>yC f (x)

s.t. h(x) D 0;
By C g(x) � bC r�;
�min � � � �max;

x 2 X; y 2 f0; 1gm;

(2)

where f and g are continuously differentiable and con-
vex on the n-dimensional compact polyhedral convex
set X = {x: x 2 Rn, A1x� a1; h is affine with respect to x;
� is a scalar uncertain parameter; c, b and r are constant
vectors and B is a constant matrix.

The solution of (2) can be approached by using
i) outer-approximation (OA) [3]; or,
ii) generalized Benders decomposition (GBD) princi-

ples [9].
See [7] for details and some applications of these algo-
rithms. The basic idea in both the approaches is to de-
compose the problem into a primal and a master sub-
problem, and the basic difference between the two ap-
proaches is in the formulation of the master subprob-
lem. The solution of primal subproblem, which is ob-
tained for fixed y, represents a parametric upper bound,
whereas, the solution of master subproblem, which is
obtained for a relaxation of the initial problem, repre-
sents a parametric lower bound. The solution algorithm
is based upon iterating between these two subproblems
(upper and lower bounds).
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The primal subproblem is formulated by fixing y D
y in (2) to obtain a parametric NLP (pNLP) of the fol-
lowing form:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

z(y; �) D min
x

c>y C f (x)

s.t. h(x) D 0;
ByC g(x) � bC r�;
�i � � � �iC1;

x 2 X:

(3)

Under appropriate continuity and convexity properties
([4,5,6,11]), the solution of (3) is approximated by cre-
ating linear parametric upper and lower bounds at the
extreme points of the interval [� i, � i + 1]. A parametric
upper bound is given by:

bz(y; �) D ˛z�(y; �i)C (1 � ˛)z�(y; �iC1);
˛ 2 (0; 1) (4)

and a parametric lower bound is given by:

z(y; �) D maxfLBi ; LBiC1g ;

LBi D z�(y; �i)Cr
 z�(y; �i)(� � �i) ;

LBiC1 D z�(y; �iC1)Cr
z�(y; �iC1)(� � �iC1) ;
(5)

where z�(y; �i) and z�(y; �iC1) are the solutions of (3)
at � i and � i + 1, respectively; r
z� is evaluated through
the Lagrange multipliers. The parametric upper and
lower bounds are tightened at the intersection point
(in �) of LBi and LBi + 1 breaking the interval of � into
two smaller intervals, within which another set of upper
and lower bounds are obtained. This approximation is
continued until the difference between upper and lower
bounds is within �. If an infeasibility is found at an ex-
treme point, the following problem is solved to obtain
the feasible interval:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;


� (or max
x;


�)

s.t. h(x) D 0;
By C g(x) � r� � b;
x 2 X;
�i � � � �iC1:

(6)

The final solution of a primal subproblem is given by
parametric upper bounds obtained in their correspond-
ing intervals of � .

The master subproblem can then be constructed
by using either OA or GBD principles. Using OA
principles, master subproblem is formulated as follows
([1,15,16]):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

z0(�) D min
y;x;


c>yC �

s.t. T(�)[h(x�)Crh(x�)(x � x�)] � 0;
By C g(x�)Cr g(x�)(x � x�)
� b0 C r�;

f (x�)Cr f (x�)(x � x�) � � � 0;X
j2J

y j �
X
j2L

y j � jJj � 1;

�i � � � �iC1;

x 2 X; y 2 f0; 1gm;

(7)

where � is a scalar variable; T(�) is a diagonal matrix
with elements

tp;p D

8̂
<̂
ˆ̂:

�1; �p < 0;
0; �p D 0;
1; �p > 0;

where �p is the Lagrange multiplier of equation hp, p =
1, . . . , P, [12]; x� are the solutions of (3) obtained at the
extreme points of intervals of � while solving the primal
subproblem; J = {j: y = 1} and L = {j: y = 0}, and |J| is the
cardinality of J.

Alternatively, using GBD principles, the master
subproblem is formulated as follows [14]:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

z0(�) D min
y;


�

s.t. � � c>yC f (x�)C �>[h(x�)]
C�>[ByC g(x�) � b � r�];

�>inf[h(x
�)]

C�>inf[ByC g(x�) � b � r�] � 0;
�i � � � �iC1;

y 2 f0; 1gm;

(8)

where � and � are Lagrange multipliers obtained at ex-
treme points of intervals of � in the primal subproblem;
and the subscript inf corresponds to the Lagrange mul-
tipliers in the infeasible interval of � , where following
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relaxed problem is solved:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;s1;s2;�

(s1 C s2 C �)

s.t. h(x)C s1 � s2 D 0;
By C g(x) � b � r�inf � �;
s1; s2; � � 0;
x 2 X;

(9)

where s1, s2 and � are positive slack variables and the
subscript inf corresponds to infeasible � points.

Note that (7) and (8) are parametric mixed integer
linear programming (pMILP) problems, which can be
solved using the following algorithm proposed by [15].
The solution is approached by fixing � at the lower
value of the interval, in the master subproblem. This
results in a deterministic MILP, which is then solved
to obtain an integer solution given by y0. Fixing y = y0 in
the master subproblem results in a parametric LP (pLP)
problem. The solution of this pLP, obtained by using an
algorithm described by [8], is given by a linear paramet-
ric profile,bz0(�), and represents an upper bound on the
solution of master subproblem. Another MILP is for-
mulated, to obtain a breakpoint �bp, where some other
integer solution is lower than the upper bound,bz0(�), as
follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

�bp D min
x;


�

s.t. T(�)[h(x�)Crh(x�)(x � x�)] � 0;
By C g(x�)Cr g(x�)(x � x�)
� b0 C r�;

f (x�)Cr f (x�)(x � x�) � � � 0;X
j2J

y j �
X
j2L

y j � jJj � 1;

� �bz0(�);
�i � � � �iC1;

x 2 X;
y 2 f0; 1gm; y ¤ y0:

(10)

For the interval [� i, �bp] the solution is given by z0(�) D
bz(�)0, and for the rest of the interval, [�bp, � i + 1] the
procedure is repeated until (10) is infeasible. The final
solution is given by a set of parametric profiles valid in
their corresponding intervals.

0 (initialization) Define an interval of � ; toler-
ance, �; an upper boundbz�(�) = 1; initial
y = y.

1 (primal problem) For each interval with a
new integer structure, y:

1a Solve problem (3) to obtainbz(y; �) such that
tolerance, �, is satisfied.

1b If bz(y; 0) � bz�(�) update the best upper
bound function, and the corresponding inte-
ger solutions, y�.

2 (master problem) For each interval, solve ei-
ther (7) or (8) to obtain a lower bound z0(�)
and the corresponding break points. Define
the new set of intervals.

3 (convergence) If for some interval bz�(�) �
z0(�), or the master problem is feasible, the
solution is given by the current solution, oth-
erwise return to primal problem with new in-
teger solution.

This solution of the master subproblem represents
a parametric lower bound. If in an interval the lower
bound, z0(�), exceeds the upper bound, ž(y; �), or the
master subproblem is infeasible the algorithm stops
with the current solution in those intervals as the final
solution, otherwise, the new vector y along with the cor-
responding interval obtained from the solution of the
master subproblem is returned back to the primal sub-
problem.

The main steps of the algorithm are summarized
above.

These algorithms have been tested on a number of
applications including process synthesis and planning,
heat exchanger network synthesis, multi-objective opti-
mization and simultaneous product and process design
([1,14,15]).

See also

� Bounds and Solution Vector Estimates for
Parametric NLPs

� Branch and Price: Integer Programming with
Column Generation

� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Integer Linear Complementary Problem
� Integer Programming
� Integer Programming: Algebraic Methods
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�Multi-objective Integer Linear Programming
�Multi-objective Mixed Integer Programming
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�Multiparametric Mixed Integer Linear

Programming
� Nondifferentiable Optimization: Parametric
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� Parametric Global Optimization: Sensitivity
� Parametric Linear Programming: Cost Simplex

Algorithm
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Following and Singularities
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Introduction

The principle of embedding for nonlinear equations has
been known for more than 40 years (cf. e. g. [9, Chapt.
11], and the historical remarks there, [10]). We con-
sider the nonlinear system of equations

F(x) D 0 (1)

defined by F: Rn! Rn (e. g. F 2 C2 (Rn, Rn)) and equa-
tion (1) is embedded by

H(x; t) D 0 ; t 2 [0; 1] ;

with the following properties:

H(x0; 0) D 0 ; H(x; 1) D F(x) ;

where H: Rn × R! Rn, x0 2 Rn arbitrarily chosen and
fixed.

The following so-called standard embedding is one
example:

H(x; t) :D F(x)C (t � 1)F(x0) :

Moreover, there are many practical examples, in partic-
ular from mechanics and electrotechnics, which, a pri-
ori, depend on one real parameter t. Then the function
H is given explicitly. In order to find a solution for (1),
we have to find a discretization of the interval [0, 1]:

0 D t0 < � � � < ti < tiC1 < � � � < tN D 1 (2)

and corresponding (x(ti), ti) with H(x(ti), ti) = 0, i =
1, . . . , N, using the starting point x0. The main tools for
finding such a discretization are path followingmethods
(also called homotopy methods or continuation meth-
ods). The general principle will be explained under the
following assumptions:

E1) H 2 C2(Rn × R, R).
E2) There exists a function x 2 C1([t; t];Rn) such that

H(x(t), t) = 0.
If we denote by r(t) the radius of convergence, for in-
stance for the Newton method solving H(x, t) = 0 in
a neighborhood of x(t), then we have (cf. [3])

Theorem 1 Assume E1) and E2). Then there exists
a real number r > 0 such that r() � r for all t 2 [t; t].

Path following methods are realized by so-called
predictor-corrector schemes. The main idea of such
a scheme is the following: ti ! ti + 1 beginning at
some t with known x(t) is the predictor, and the New-
ton method is the corrector. More precisely, using the
known point (exi ; ti) as an approximation of (x(ti), ti),
we compute an approximation (exiC1; tiC1) of (x(ti +),
ti + 1) by a finite number of Newton steps, where ti + 1

has to be chosen in such a way thatexi lies in the con-
vergence region of the problem

H(x; tiC1) D 0

if |ti + 1 � ti| is chosen sufficiently small.
For example, consider H(x, t) = 3/x + t � 4.5. The

point (exi ; ti) D (0:7499; 0:5) is an approximation of
(x(ti), ti) and for ti + 1 = 0.6,exi lies in the convergence
region of H(x, 0.6) = 0, starting atexiC1 D 0:7692.

Let t be the endpoint of the scheme. In case of
[t; t] D [0; 1], we obtain, in a finite number of steps,
a point lying in r(1) and having at least superlinear con-
vergence.

Concerning parameter-dependent equations we re-
fer to [1] and the very good and informative bibliogra-
phy therein.

Now we consider a nonlinear optimization prob-
lem:

(P)min
�
f (x) :

hi(x) D 0; i 2 I;
g j(x) � 0; j 2 J

	
;

(where I := {1, . . . , m}, J = {1, . . . , s} and assume that
f , hi, gj 2 Ck(Rm, R), i 2 I, j 2 J, and k � 1 will be
specified later) and the corresponding Karush–Kuhn–
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Tucker system (shortly KKT-system)
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

D f (x)C
X
i2I

�i Dhi(x)

C
X
j2J

� jDg j(x) D 0;

hi (x; t) D 0; i 2 I;
g j(x) � 0; j 2 J;
� j � 0; j 2 J;
� j � g j(x) D 0; j 2 J

(3)

(here Df (x) := (@f / @x1, . . . , @f / @xn) is a row vector).
In the literature we can distinguish two general ap-

proaches to realize the idea explained above for nonlin-
ear optimization problems.
� First approach: Transform the KKT system into

a system of equations or into a generalized equation.
� Second approach: (P) will be embedded by a one-

parametric optimization problem.
In the first approach, both transformations are well

known. The KKT system (3) is a mixture of equations
and inequalities. The reformulation to a system of equa-
tions is quite simple. For y 2 R we define

yC :D maxfy; 0g ; y� :D minfy; 0g :

We can formulate the KKT system as an equivalent sys-
tem of equations:

H (x; y) :D

2
6664

D( f (x)C
P

i2I yiDhi(x)
C
P

j2J y
C
j Dg j(x);

hi(x); i 2 I;
y�j � g j(x); j 2 J

3
7775 D 0 (4)

(cf. e. g. [3, Ref. 134 and 135]).H(x, y) is called aKojima
function. We refer to the interesting article [7], and the
references therein. Here, f , hi, gj 2 C1, 1(Rn, R), i 2 I, j
2 J (i. e., there exist derivatives which are locally Lips-
chitz). Two embeddings (parametrizations) of H(x, y,
t) = 0 are investigated. In particular, this permits new
interpretations of the related solution methods (penalty
and a new barrier method) and allows for estimates of
the solutions by using implicit function theorems.

There are also possibilities to reformulate the KKT
system into a k-times (k � 1) continuously differen-
tiable nonlinear parameter-dependent system of equa-
tions (cf. e. g. [3, Ref. 62] and the references there).
Then we can use standard methods for parameter-
dependent equations (cf. the literature mentioned

above). Furthermore, we can also consider the KKT sys-
tem as a generalized equation (cf. [3, Ref. 193] and the
references there) and use the corresponding path fol-
lowing methods (cf. [3, Ref. 177]).

Before we come to the second approach, we intro-
duce a general one- parametric nonlinear optimization
problem

min f f (x; t) : x 2 M(t)g ;

t 2 R; resp. t 2 [0; 1] ;

M(t) D
�
x 2 Rn :

hi(x; t) D 0; i 2 I ;
g j(x; t) � 0; j 2 J

	
;

f ; hi ; g j 2 Ck(Rn � R;R) ;
i 2 I; j 2 J; k � 2 ;

I :D f1; : : : ;mg; J :D f1; : : : ; sg :

Furthermore, we introduce the following notations:

˙gc :D

8<
:(x; t) 2 Rn � R :

x a generalized
critical point of

P(t)

9=
; ;

˙stat :D
�
(x; t) 2 Rn � R :

x a stationary
point of P(t)

	
;

˙loc :D

8<
:(x; t) 2 Rn � R :

x a local
minimizer of

P(t)

9=
; ;

(a generalized critical (g.c.) point is defined in [3] for
instance).

We adapt the concept of embedding to the problem
(P) using the problem P(t) with at least the following
properties:
A1) A local minimizer x0 for P(0) is known;
A2) P(1) is equivalent to (P).
The conditions A1) and A2) are fulfilled if we choose
e. g. P(t) defined by

f (x; t) :D t f (x)C (1 � t)


x � x0



2 ;
hi(x; t) :D hi (x)C (t � 1)hi(x0); i 2 I ;

g j(x; t) :D g j(x)C (t � 1)
ˇ̌
g j(x0)

ˇ̌
; j 2 J ;

where x0 2 Rn is arbitrarily fixed.
Here too, we have to find a discretization (2) of

the interval [0, 1] and corresponding points (x(ti), ti)
2 ˙ loc (˙ stat or ˙gc), i = 1, . . . , N. We can also use
a predictor-corrector scheme applied to the full prob-
lem P(t) in some interval [t; t] � [0; 1] (a modification
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of the above Theorem holds, cf. [3]) or to a finite num-
ber of reduced problems with equality constraints only:

PJ0 (t) : min
�
f (x; t) : hi(x; t) D 0; i 2 I;

g j(x; t) D 0; j 2 J0;

	
;

t 2 [ts; tsC1] ;

where J0 is the index set of active constraints, which is
constant in a certain interval [ts, ts + 1]� [0, 1]. We call
this procedure an active index set strategy. In order to
understand how difficult it is to find such a discretiza-
tion (2), we give a very brief summary on two classes
of functions (f , H, G) (H = (h1, . . . , hm)|, G = (g1, . . . ,
gs)|), namely, the Jongen–Jonker–Twilt class F (cf. [3]
and the original articles [3, Ref. 115 and 118]) and the
Kojima–Hirabayashi class (cf. [3, Ref. 135]).

Generic Singularities, the Approach via Piecewise
Differentiability and Topological Stability

First, we introduce two well-known constraint qualifi-
cations.

The linear independence constraint qualification
(LICQ) is satisfied at x 2 M(t) if the vectors Dxhi(x; t),
i 2 I, Dx gj(x; t), j 2 J0(x; t), are linearly independent
(J0(x, t) := {j 2 J: gj(x, t) = 0}).

The Mangasarian–Fromovitz constraint qualifica-
tion (MFCQ) is satisfied at x 2 M(t) if:
MF1) Dxhi(x; t), i 2 I, are linearly independent
MF2) there exists a vector � 2 Rn with

Dxhi(x; t)� D 0; i 2 I;

Dx gj(x; t)� < 0; j 2 J0(x; t):

We consider the Kojima function H(x, y, t) corre-
sponding to P(t) and H(x, y, t) is piecewise continu-
ously differentiable (shortly PC1) (see [4]). The classical
definition of a regular value of a continuously differ-
entiable function is generalized for PC1 functions. Fur-
thermore, it is shown that, if 0 is a regular value of H,
then the set H�1(0) is PC1 manifold (cf. [3, Ref. 135].

Next, we cite our short characterization of the class
F introduced by H.Th. Jongen, P. Jonker and F. Twilt.

The space C3(Rn × R, R) will be endowed with the
strong (or Whitney-) C3

s -topology, the C3
s -topology of

the product of a finite number of copies of C3(Rn ×
R, R) being the induced product topology. A typical
C3
s base-neighborhood N of the zero function in C3(Rn

× R, R) is induced by means of a continuous positive
function ": Rn × R! R as follows:

N" Df� 2 C3(Rn � R) :

k�(z)k C
X





@�

@zi
(z)




C

X




@2�

@zi@z j
(z)






C
X





@3�

@zi@z j@zk
(z)




 < "(z)

for all z 2 RnC1g ;

where z = (x, t) 2 Rn × R. A typical C3
s base-

neighborhood of f 2 C3(Rn × R, R) will be the set f +
N".

The local structure of˙gc is completely described if
(f , H, G) belongs to a C3

s -open and dense subset F of
C3(Rn × R, R)1+m+s.

If (f ,H,G) 2F then˙gc can be divided into 5 types:
� Type 1: A point z D (x; t) 2 ˙gc is of Type 1 if the

following conditions are satisfied
0
@Dx f C

X
i2I

�iDx hi C
X
j2J0(z)

� jDx g j

1
A
ˇ̌
ˇ̌
ˇ̌
zDz

D 0 ;

(5)

the LICQ is satisfied at x 2 M(t) ; (6)

� j ¤ 0 ; j 2 J0(z) ; (7)

D2
xL(x)

ˇ̌
T(z) is nonsingular: (8)

Here, D2
xL is the Hessian of the Lagrangian

L D f C
X
i2I

�i hi C
X
j2J0(z)

� j g j ;

and the uniquely determined numbers �1�j are
taken from (5).
Furthermore,

T(z) D
�
� 2 Rn : Dxhi(z)� D 0; i 2 I;

Dx gj(z)� D 0; j 2 J0(z)

	

is the tangent space at z. D2
xL(z)|T(z) represents

V|D2
xLV , where V is a matrix whose columns form

a basis of T(z).
A point of Type 1 is called a nondegenerate criti-
cal point. The set ˙gc is the closure of the set of all
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Parametric Optimization: Embeddings, Path Following and
Singularities, Figure 1

points of Type 1, the points of the Types 2–5 consti-
tute a discrete subset of˙gc. The points of the Types
2–5 represent three basic degeneracies:

� Type 2: violation of (7).
� Type 3: violation of (8).
� Type 4: violation of (6) and

jIj C jJ0(z)j � 1 < n :

� Type 5: violation of (6) and

jIj C jJ0(z)j D nC 1 :

For each of these five types Fig. 1 illustrates the local
structure of˙gc. Let˙�

gc , � 2 {1, . . . , 5} be the set of g.c.
points of Type �. Figure 2 illustrates the local structure
of F in˙ loc and˙ stat.The class F is defined by

F D
˚
( f ;H;G) 2 C3(Rn � R;R)1CmCs :

˙gc � [
5
�D1˙

�
gc

o
:

The following theorem (cf. [4, Ref. 15]) provides
a special perturbation of (f , H, G) with additional pa-
rameters that can be chosen arbitrarily small such that
the perturbed function vector belongs to the class F.

Theorem 2 Let (f , H, G) 2 C3(Rn × R, R1+m+s). Then,
for almost all (b, A, c, D, e, F) 2 Rn × Rn(n+1)/2 × Rm ×

Rmn × Rs × Rsn, we have

( f (x; t)C b>x C x>Ax;H(x; t)C c C Dx ;

G(x; t)C e C Fx) 2 F :

Here ‘almost all’ means: each measurable subset of

f(b;A; c;D; e; F) : ( f (x; t)C b>x C x>Ax;

H(x; t)C c C Dx;G(x; t)C e C Fx) … Fg

has Lebesgue-measure zero.

Remark 3 There is also a perturbation theorem for the
Kojima–Hirabyashi class with a linear perturbation in
the objective and scalar perturbations in the constraints
(cf. [3, Ref. 135])

Remark 4 (cf. [3]) Considering ˙ stat we note that the
condition (f , H, G) 2 F implies that zero is a regular
value of the Kojima-mapping H.

Definition 5 Let K � R [ {˙1}.
i) The problem P(t) is called regular in the sense of Jon-

gen–Jonker–Twilt (briefly: JJT-regular) (with respect
to K) if

( f ;H;G) 2 F
 
(Rn � K) \˙gc �

5[
�D1

˙�
gc

!
:

ii) The problem P(t) is called regular in the sense of
Kojima–Hirabayashi (briefly: KH-regular) (with re-
spect to K) if 0 2 Rn+m+s is a regular value of H

(H|Rn�Rm�Rs�K ).

Now, we present some facts about path following meth-
ods (for more details see [3]). For this, we assume A1),
A2) and that (f , H, G) 2 F. The algorithm PATH III
(cf. [3, Chap. 4]) computes a numerical description of
a compact connected component in ˙gc and ˙ stat, re-
spectively.

In the last part of this section we present two the-
orems that are essential for the analysis of considered
embeddings in the literature and for modifying embed-
dings that are successful under certain assumptions.

Theorem 6 ([3, Ref. 71]) We assume
C1) M(t) is nonempty and there exists a compact set C

with M(t)� C for all t 2 [0, 1].
C2) P(t) is KH-regular with respect to [0, 1].
C3) There exists a t1 > 0 and a continuous function x:

[0, t1)! Rn such that x(t) is the unique stationary
point for P(t) for t 2 [0, t1).
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Parametric Optimization: Embeddings, Path Following and Singularities, Figure 2
The full curve stands for the curve of local minimizers and the dotted curve represents a curve of stationary points

C4) MFCQ is satisfied for all x 2M(t) for all t 2 [0, 1].
Then there exists a PC1-path in ˙ stat that connects (x0,
0) with some point (x�, 1).

Applying our first Remark we obtain

Corollary 7 We assume C1), C3), C4) and
D2) P(t) is JJT-regular with respect to [0, 1].
Then there exists a PC2-path K(x0, 0) in˙ stat connecting
(x0, 0) with some point (x�, 1). Furthermore, if (x, t) 2
K(x0, 0), then (x, t) belongs to [� 2 {1, 2, 3, 5}˙

�
gc .

Finally we present a consequence of a general topologi-
cal stability result given in [3, Ref. 87]:

Theorem 8 We assume C1) and C4). Then M(t1) is
homeomorphic with M(t2) for all t1, t2 2 [0, 1].

Remark 9 We see that the MFCQ plays an important
role in both theorems above. Unless the MFCQ is sat-
isfied, we do not attain a point (bx; 1) 2 ˙stat by path
following methods only, g.c. points of the Types 4 and
5 may appear and the path ends in˙ stat.

From this point of view we refer to the analysis of
possible jumps from one connected component to an-
other in ˙ stat and ˙gc, respectively (cf. [3, Chap. 5]).
In the worst case we have to find all connected compo-
nents in ˙gc. Since we do not have jumps in all cases,
this problem has not been solved yet. This is not sur-
prising because, in case we surely find a discretization
(1) and a corresponding point (xi, ti) 2 ˙gc, i = 1, . . . ,
N, the problem of global optimization is solved (cf. e. g.
[3, Sect. 6.3]).

Concluding Remarks

i) We have restricted ourselves to parametric optimiza-
tion problems in Rn so far. We refer to semi-infinite
problems (cf. e. g. [6, pp. 161–176], and the refer-
ences in that article).

ii) The theory and methods described in the section
above are used for an analysis and appropriate mod-
ifications of the standard embedding (cf. [6, pp. 59–
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84]), the penalty, exact penalty, and Lagrange multi-
plier embeddings (cf. [4] and [4, Refs. 2, 3, 6]), and
for constructing new methods [2]. Summarizing, we
have now more clearness concerning the problem of
what kind of difficulties (mainly singularities) may
appear and how to overcome them in some cases
(see also [5]).

iii) We refer to further applications: One parametric
optimization problems arising for instance in practi-
cal problems, multi-objective optimization, stochas-
tic optimization etc. (cf. [3, Chap. 1]). Of course,
on the one hand, the applications described there
are not complete and, on the other hand, there is
a stormy development in several fields.

iv) Finally, we would like to refer to so-called interior
point methods, which are path following methods,
too (cf. e. g. [8]).
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Introduction

Peptide and protein identification is of fundamental
importance in the study of proteomics. Tandem mass
spectrometry (MS/MS) coupled with high performance
liquid chromatography (HPLC) has emerged as a pow-
erful protocol for high-throughput and high sensitiv-
ity peptide and protein identification experiments. In
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recognition of the extensive amount of sequence infor-
mation embedded in a single mass spectrum, tandem
MS has served as an impetus for the recent develop-
ment of numerous computational approaches formu-
lated to sequence peptides robustly and efficiently with
particular emphasis on the integration of these algo-
rithms into a high throughput computational frame-
work. The twomost frequently reported computational
approaches in the literature are (a) de novo and (b)
database search methods, both of which can utilize
deterministic, probabilistic and/or stochastic solution
techniques.

The majority of peptide identification methods
used in practice are database search methods [2,11,19,
21,30,31,32,36,37] due to their accuracy and ease of
implementation. A variety of techniques for peptide
identification via databases are currently available.
One approach, as implemented in the SEQUEST al-
gorithm [11,36,37], uses cross-correlation to mathe-
matically determine the similarity between a theoret-
ical tandem mass spectrum predicted from a peptide
sequence in the database and the experimental tan-
dem mass spectrum under investigation. The more fre-
quently used technique, known as probability-based
matching, utilizes a probabilistic model to determine
whether an ion peak match between the experimen-
tal and theoretical tandem mass spectrum is actual or
random [2,19,30,32]. Various models have been formu-
lated for this purpose, ranging from a likelihood ratio
hypothesis test [2,19] to the null hypothesis that peptide
matches are random [32]. The major limitation of data-
base methods is they are ineffective if the database in
which the search is conducted does not contain the cor-
responding protein responsible for generating the tan-
dem mass spectrum.

De novo methods are advantageous over database
techniques since they can be used to find novel pro-
teins, amino acid mutations and study the proteome
before the genome. A prominent methodology for the
de novo peptide identification problem is the spec-
trum graph approach [3,4,5,6,8,12,18,22,25,34,35]. In
the majority of spectrum graph representations, the
peaks in the tandem mass spectrum as translated as
nodes on a directed graph, where the nodes are con-
nected by edges if the mass difference between them
is equal to the weight of an amino acid. The nodes
or edges of the spectrum graph are typically assigned

scores based on empirically-derived weights. Various
alternative techniques to the spectrum graph approach
have also been developed. For example, the de novo
algorithm PEAKS [26] generates 10,000 potential se-
quences using a dynamic programming algorithm and
then in a subsequent step reevaluates the predicted
sequences using a stricter confidence scorer. Another
technique addresses the peptide identification prob-
lem via stochastic optimization using genetic algo-
rithms to solve multi-objective models and can em-
pirically test for independence between scoring func-
tions [20,27,28]. The algorithm NovoHMM [13] uses
a hidden Markov model to solve the peptide identifica-
tion problem, where the observable random variables
are the observed mass peaks and the hidden variables
correspond to the unknown peptide sequence. Despite
the vast potential of de novo methods, they can be com-
putationally demanding and may exhibit variable pre-
diction accuracies.

In this work, we present a novel mixed-integer lin-
ear optimization (MILP) approach to efficiently ad-
dress the de novo peptide identification problem so
as to form a basis for a high-throughput compu-
tational framework for peptide identification [9,10].
This framework is denoted as PILOT, which stands
for Peptide identification via Mixed-Integer Linear
Optimization and Tandem mass spectrometry.

Formulation

This section provides a thorough description of the
mathematical model and algorithmic framework for
the de novo identification of peptides of spectra result-
ing from tandem mass spectrometry.

Mathematical Model for Peptide Identification

The essential components of the mixed-integer linear
programming problem formulation are the parameters,
sets, binary variables, constraint equations and objec-
tive function [10].

Parameters Each tandem mass spectrum of a pep-
tide contains the mass of the parent peptide, its charge
state, and a list of mass-to-charge ratios and their corre-
sponding intensities of the fragment ions of the peptide.
It is important to note that the mass of the parent pep-
tide and the masses of the ion peaks in the tandemmass
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spectra are subject to a certain degree of experimental
error [8]. The parameters are:

mP mass of parent peptide

mass(ion peak i) mass of ion peak i

�i intensity of ion peak i

Set Definitions The first set to consider is the mass
difference between all of the peaks in the tandem mass
spectrum, which we denote by the matrix M defined in
Eq. (1).

M D
˚
Mi; j D mass(ion peak j) �mass(ion peak i) :

mass(ion peak j) > mass(ion peak i)g
(1)

The index i corresponds to the rows and the index j cor-
responds to the columns of the matrix Mi; j . The con-
struction of the peptide sequence should be restricted to
using only those peaks whose mass difference is equal to
the weight of an amino acid. The indices corresponding
to these peak pairs are stored in the matrix S, defined in
Eq. (2).

S D
˚
Si; j D (i; j) : Mi; j D mass of an amino acid

�

(2)

Thus, the mass difference between peak i and peak j is
equal to the weight of some amino acid for every (i; j) 2
Si; j . The subsequent problem formulation will only be
considered over this set, Si; j .

The physical relationships between fragment ions
can be used to construct additional sets. The sequenc-
ing of a candidate peptide must be done using ions
from the same ion series (i. e., b, y, etc.). While it is not
known a priori of what ion type a given mass peak is,
there do exist important relationships among the dif-
ferent ions. As the charged parent peptide undergoes
collision-induced dissociation (CID), it primarily frag-
ments into two ion pairs: either a and x, b and y, or c
and z, where all three pairs are what are known as com-
plementary ions by definition. These ion pairs are easily
identified a priori since the sum of two complementary
ions is equal to the weight of the parent peptide, mP, as
determined experimentally. The indices of peak pairs
which satisfy this relationship are stored in the set C,

defined in Eq. (3).

C D
˚
Ci; j D (i; j) : mass(ion peak i)

C mass(ion peak j) D mP C 2; i ¤ jg (3)

This set will be useful for eliminating certain ions in
the sequencing calculations. However, one should note
that further fragmentation of these ions is possible
and frequently observed, which places limitations on
how many complementary ions are actually detected in
a tandem mass spectrum.

Different types of ion series begin and end at differ-
ent m/z values in the tandem mass spectrum. For in-
stance, a candidate peptide derived using the y-ion se-
ries must begin at the weight of water (19 Daltons) and
terminate at the weight of the parent peptide (mP C 1),
whereas deriving the same sequence using the b-ion se-
ries, the appropriate bounds become zero mass (1 Dal-
ton) and the weight of the parent peptide subtracted
by the weight of water (mP � 17), in respective order.
To model this mathematically, two new sets are created
which correspond to the boundary conditions at the
“head” of the peptide and the “tail” of the peptide. Note
that the sets presented below consider only the possibil-
ity for b- or y-ions in the candidate sequence.

BChead
i D f1; 19g Daltons (4)

BCtail
j D fmP � 17; mP C 1g Daltons (5)

Binary Variables Binary {0-1} variables are utilized
in the problem formulation to model which peaks (pi)
and paths connecting peaks (wi; j) are used in the con-
struction of the candidate sequence. The use of binary
variables also allows us to invoke logical inference when
formulating the model constraints.

pi D
�

1; if peak (i) is selected
0; otherwise

wi; j D

8<
:

1; if peaks (i) and ( j) are connected by
a path (i: e:; pi D p j D 1)
0; otherwise

Constraints Several constraints derived from ion
properties and graph theory are formulated in terms
of the binary variables via logical inference. The first
constraint exploits the fact that the candidate peptide
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must be sequenced using ions of the same type and that
complementary ions are of different type by definition.
Thus, if peak i is used to construct a candidate sequence
and the peak pair (i; j) belong to the complementary
ion set defined in Eq. (3), then peak j should be elim-
inated from consideration in the sequencing calcula-
tions. This is modeled mathematically by Eq. (6).

pi C p j � 1 8 (i; j) 2 Ci; j (6)

An obvious but important constraint to impose on
the candidate sequence is that the summation of the
weights of its amino acids is equal to the mass of the
parent peptide (mP). It is well-known that the exper-
imentally measured parent peptide mass is subject to
a certain degree of experimental error [8], which is
dependent on the resolution of the mass spectrome-
ter used. Thus, exact conservation of mass cannot be
achieved but must be relaxed by some tolerance of er-
ror, as shown in Eq. (7).

X
(i; j)2Si; j

Mi; j � wi; j � (mP � 18)C tolerance (7)

X
(i; j)2Si; j

Mi; j � wi; j � (mP � 18) � tolerance (8)

The algorithm typically uses a tolerance of error of ˙2
Daltons above and below the parent peptide mass. It is
also possible to formulate the tolerance term as a vari-
able and then incorporate it into the model such that its
value is minimized.

The sequencing of the candidate peptide is best en-
visioned as connecting peaks in the tandem mass spec-
trum with paths that correspond to weights of amino
acids. To ensure that the paths selected are continu-
ous and non-degenerate, we use the flow conservation
law from graph theory which has been used extensively
in process synthesis problems [1,15,16,17,24,29,33], as
shown in Eq. (9).

X
j2S j;i

w j;i �
X
k2Si;k

wi;k D 0

8i; i … BChead
i ; i … BCtail

i (9)

The above constraints ensure that the number of input
paths entering a peak is equal to the number of output
paths leaving that peak.

To anchor the beginning and end of the candidate
sequence, the peaks denoted as the boundary condi-
tions for the sequencing are activated, as shown in Eqs.
(10) and (11).

X

i2BChead
i

X
j2Si; j

wi; j D 1 (10)

X

j2BC tail
j

X
i2Si; j

wi; j D 1 (11)

One should note that the existence for certain
boundary condition elements (contained in the sets
BChead and BCtail) are checked for by the preprocessing
algorithm (described in a subsequent section) and can
be adjusted if information is missing from the tandem
mass spectrum. Furthermore, these constraints enforce
the non-degeneracy of paths since only one path can ini-
tiate and terminate the sequence, respectively.

The final set of constraints constitutes the mathe-
matical relationship between the binary variables rep-
resenting the peaks, pi, and the paths connecting the
peaks, wi; j:

X
j2S
fi; jg

wi; j D pi 8i 2 BChead
i (12)

X
j2Si; j

w j;i D pi 8i … BChead
i (13)

These constraints ensure that if there exists a path
entering and leaving a peak k (i. e., wi;k D 1 and wk; j D

1), then peak k will be activated in the construction of
the candidate sequence (i. e., pk D 1). These constraints
also allow the option for removing peaks (and the paths
connected to these peaks) from the sequencing calcu-
lations by simply deactivating the binary variables that
represents those peaks (pi). For instance, this is useful
for eliminating the precursor ion and multiply-charged
ions from consideration.

Objective Function The b- and y-ion peaks are on
average the most abundant in intensity throughout the
entire m/z range [23]. Based on this observation, the
objective function is postulated as an explicit function
of the peak intensities in attempt to maximize the num-
ber of b- and y-ions used in constructing the candidate
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sequence.

MAX
pk ; wi; j

X
(i; j)2Si; j

� j � wi; j (14)

Equations (1–14) comprise the entire mathematical
model for the de novo peptide sequencing problem us-
ing tandemmass spectrometry. The entire problem for-
mulation is summarized in problem (P).

MAX
pk ; wi; j

X
(i; j)2Si; j

� j � wi; j

s:t:
X

(i; j)2Si; j

Mi; j � wi; j � mP C tolerance

X
(i; j)2Si; j

Mi; j � wi; j � mP � tolerance

pi C p j � 1 8 (i; j) 2 Ci; jX
j2Si; j

wi; j D pi 8i 2 BChead
i

X
j2Si; j

w j;i D pi 8i … BChead
i

X

i2BChead
i

X
j2Si; j

wi; j D 1 (P)

X

j2BC tail
j

X
i2Si; j

wi; j D 1

X
j2S j;i

w j;i �
X
k2Si;k

wi;k D 0

8i; i … BChead
i ; i … BCtail

i

wi; j; pk D f0; 1g 8(i; j); (k)

The resulting problem (P) is a mixed-integer linear pro-
gramming (MILP) problem and can be solved to op-
timality using existing methods (e. g., CPLEX [7]). To
generate a rank-ordered list of candidate sequences, in-
teger cuts are used to exclude previous solutions from
be revisited. That is, for every solution, an integer cut is
incorporated into the model using the following general
form[14]:

X
(i; j)2B

wi; j �
X

(i; j)2NB

wi; j � jBj � 1 (15)

where B D f(i; j) : wi; j D 1g

NB D f(i; j) : wi; j D 0g

jBj is the cardinality of B

Peptide Identification via Mixed-Integer Optimization, Ta-
ble 1
Ions identified by the preprocessing algorithm

Ion Type Relation to the b2-ion
yn-2 mP C 2� b2
a2 b2 - 28
b1 AA1 or AA2 where AA1 + AA2 + 1 = b2
yn-1 mP C 2� AA1 ormP C 2� AA2

where AA1 + AA2 + 1 = b2

Algorithmic Framework

The overall algorithm PILOT is comprised of: (1) a pre-
processing algorithm used to identify certain peaks
and to validate boundary conditions, (2) a two-stage
mixed-integer linear optimization framework to ad-
dress missing ion peaks due to residue-dependent frag-
mentation characteristics, and (3) a post-processing
technique for selecting the most probable sequence by
cross-correlating the theoretical tandemmass spectra of
the candidate sequences with the experimental tandem
mass spectrum [9].

Preprocessing of Spectral Data Before formulating
the MILP problem, the raw tandem mass spectrum is
analyzed using a preprocessing algorithm to elucidate
key spectral features that can be exploited in the se-
quencing calculations. In particular, certain ion peaks
are sought to confirm the proposed boundary condi-
tions previously mentioned. First, the raw spectrum is
examined for the existence of the typically abundant in
intensity b2-ion [23], whose validity can be confirmed
by its complementary yn-2-ion. If the corresponding
yn-2-ion also exists in the spectrum, then the two pos-
sible yn-1-ions are back-calculated using the mass of the
parent peptide (mP) and the weights of the amino acids
which constitute the b2-ion (see Table 1), and the spec-
trum is once again searched to confirm these ions.

Every b2-ion amino acid pair found by the algo-
rithm is then ranked based on the intensities of their
supporting ions (i. e., yfn�2g; yfn�1g; af2g and their iso-
topic offsets and neutral losses of water and ammo-
nia). The highest scoring b2-ion amino acid pair is then
selected to represent N-terminal boundary conditions
for the sequencing calculations. The preprocessing al-
gorithm is also used to identify the C-terminal amino
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acid based on known ion peaks. For example, if the pep-
tide is a result of tryptic digestion, then its C-terminal
amino acid must be lysine (indicated by an ion peak
at 147Da) or arginine (indicated by an ion peak at
175Da). Multiply-charged ions and immonium ions
are also searched for in the experimental tandem mass
spectrum to guide the interpretation process.

Missing Ion Peaks: Two-Stage AlgorithmicApproach
In the mixed-integer linear optimization model (see
problem P), the algorithm attempts to derive sev-
eral candidate sequences using only single amino acid
weights to connect mass peaks. However, if the spec-
trum is missing certain mass peaks then it might not
be possible to fully construct the correct sequence in
this fashion. To accommodate this issue, the sequenc-
ing problem is split into two stages: stage one derives
the candidate peptides using only single amino weights
and stage two allows for the possibility of using two
amino acid weights. That is to say, in the second stage
the additional option is available to connect two peaks
via the weight of any two combined amino acids. In
this stage the emphasis is again placed on primarily us-
ing the weights of single amino acids to construct the
candidate sequences by penalizing the use of combined
amino acid weights. This is accomplished in the ob-
jective function by multiplying the path variable cor-
responding to multiple residues by a penalty weighting
fraction which is less than one and decreases with in-
creasing mass error. As a result, the driving force for the
algorithm is the single residue weights, while the dou-
ble residue weights are utilized only to bridge the gap
between disjoint single residue segments of the candi-
date sequence.

Postprocessing: Scoring Candidate Sequences
A subsequent scoring of the candidate peptide se-
quences is necessary in order to: (a) assign amino
acids to regions of the peptide not considered in the
sequencing calculations due to boundary condition ad-
justments, (b) resolve doublet and triplet amino acid
combinations due to missing peaks, and (c) validate the
“b” or “y” ions used to construct the candidate sequence
by looking for other supporting ions in the raw tandem
mass spectrum. For cases (a) and (b), the weight in
the candidate sequence is replaced by permutations of
amino acids consistent with this mass. This results in

a super set of candidate sequences whose theoretical
tandemmass spectra can be predicted and compared to
the experimental tandem mass spectrum for validity.

Since only the y- or b- ion series were used in con-
structing the peptide sequences, it would be beneficial
to utilize various other types of ions when scoring these
candidate peptides in order to exploit as much infor-
mation from the tandem mass spectrum as possible.
In particular, the assignment of a peak as a b- or y-
ion can be confirmed by the existence of supporting
isotopes, neutral losses of small molecules (i. e.,-H2O,
-NH3, -H2O-NH3, -H2O-H2O) and multiply-charged
ions. To introduce dependencies among the ion se-
ries, a reward/penalty system was created. For instance,
a match between a predicted y-ion and a peak in the
experimental spectrum is more probable if the corre-
sponding y-ions isotopes and offsets are also found in
the experimental spectrum [18]. Thus, the score from
a match between b- or y-ion is assigned a reward pro-
portional to the number of its corresponding isotopes
and offsets that also match with the experimental spec-
trum. Conversely, the existence of isotopic offsets and
and neutral loss ions without a corresponding y- or
b-ion are penalized in the score. These conventions ad-
dress the likelihood that the peaks used in the construc-
tion of the candidate sequence are actually of the b- or
y-ion series.

Cases

The proposed framework is for the de novo identifica-
tion of doubly-charged tryptic peptides that were ion-
ized via electrospray ionization. A comparative study is
presented with several existing de novo peptide identi-
fication methods to demonstrate the predictive capabil-
ities of the proposed framework, PILOT. The de novo
peptide identifications algorithms Lutefisk, LutefiskXP,
PepNovo, PEAKS, EigenMS, NovoHMM, were selected
on the basis of availability and reported performance.
Tandem MS for quadrupole time-of-flight mass spec-
trometers were analyzed in the comparative study.

Quadrupole Time-of-Flight, QTOF, Spectra

To test the method’s performance on quadrupole time-
of-flight tandem mass spectra, we selected an exist-
ing data set that is publicly available [26]. These spec-
tra were collected with Q-TOF2 and Q-TOF-Global
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mass spectrometers for a control mixture of four known
proteins: alcohol dehydrogenase (yeast), myoglobin
(horse), albumin (bovine, BSA), and cytochrome C
(horse). A total of 38 doubly-charged tryptic peptides
were examined using Lutefisk, LutefiskXP, PepNovo,
PEAKS, EigenMS and PILOT [9]. The top-ranked se-
quence reported from each of these methods is used in
the comparison.

The results of the comparison can be summarized
using various measures. First, consider the overall pep-
tide identification accuracy of the de novo methods,
which is reported in Table 2. In terms of correct identi-
fications, PILOT is superior to the other de novo meth-
ods with an identification rate of about 66%, followed
by PEAKS and EigenMS, both at about 53%. A com-
mon limitation of de novo methods is the inability to
assign the correct N-terminal amino acid pair or re-
solve isobaric residues (i. e., Q or GA, W or SV, etc.).
To accommodate this limitation in the comparison, we
also reported the percentage of predictions for which
there are only one, two, or three incorrect amino acid
assignments in the entire sequence. In Table 2, it is seen
that allowing for up to three incorrect amino acids in-
creases the identification rate for all methods on the or-
der of 30%, which supports the hypothesis that these
limitations are inherent in all the de novo methods. The
last entry in Table 2 reports the number of correctly as-
signed residues normalized by the total number of ac-
tual residues (which is 418 for the 38 doubly-charged
peptides considered). PILOT outperforms the other de
novo methods with a residue accuracy of 91%.

Another alternative metric of performance is the
percentage of correct continuous subsequences of
a given number of amino acids [13,18]. These trends
are summarized in Fig. 1 for all of the de novo methods.
This alternative metric reveals that although LutefiskXP
has a lower overall identification rate than Lutefisk, it
exhibits a much better accuracy over subsequences of
varying length (as shown in Fig. 1). Note that some of
the trends in Fig. 1 exhibit an increase in accuracy for
correct subsequences greater than 8 consecutive amino
acids in length. This is because these counts are normal-
ized by the total number of peptides that are of at least
the length specified, which decreases from 37 for subse-
quences of length 8 to 30 for subsequences of length 9
to 25 for subsequences of length 10. For each of the 38
QTOF peptides, PILOT predicts at least 6 consecutive

Peptide Identification via Mixed-Integer Optimization, Fig-
ure 1
Comparison of correct subsequences of varying length for
quadrupole time-of-flight predictions

amino acids correctly for every peptide and performs
consistently better than the other de novomethods over
the entire range of subsequences considered.

Conclusions

A novel mixed-integer linear optimization (MILP)
framework, PILOT, was proposed for the de novo iden-
tification of peptides using tandem mass spectrome-
try data. PILOT is the first reported mixed-integer lin-
ear optimization formulation for the peptide identi-
fication problem which can introduce integer cuts to
generate a rigorous rank-ordered list of candidate se-
quences, introduce complementary ions directly into
the sequencing calculations and allow for the error
tolerance to be introduced as a variable term. For
a given experimental MS/MS spectrum, PILOT gen-
erates a rank-ordered list of potential candidate se-
quences and a cross-correlation technique is employed
to select the most probable peptide by assessing the
degree of similarity between the theoretical tandem
mass spectra of the predicted sequences and the exper-
imental tandem mass spectrum. A comparative study
using tandem mass spectra from quadrupole time-of-
flight was presented to benchmark the performance of
the proposed framework with several existing de novo
methods.



Peptide Identification via Mixed-Integer Optimization P 2937

Peptide Identification via Mixed-Integer Optimization, Table 2
Identification rates for QTOF spectra

Lutefisk LutefiskXP PepNovo PEAKS Online EigenMS PILOT
Correct Identifications 10 (0.263) 9 (0.237) 16 (0.421) 21 (0.553) 20 (0.526) 25 (0.658)
with in 1 Residue 11 (0.290) 10 (0.263) 17 (0.447) 22 (0.579) 21 (0.553) 25 (0.658)
with in 2 Residue 23 (0.605) 22 (0.579) 25 (0.658) 29 (0.763) 29 (0.763) 33 (0.868)
with in 3 Residue 23 (0.605) 25 (0.658) 27 (0.711) 32 (0.842) 30 (0.790) 35 (0.921)
Total Correct Residues 245 (0.586) 294 (0.703) 337 (0.806) 366 (0.876) 353 (0.845) 381 (0.912)
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Introduction

Conjugate-gradient methods represent an important
class of unconstrained optimization algorithms with
strong local and global convergence properties and
modest memory requirements. An excellent survey
of the development of different versions of nonlinear
conjugate-gradient methods, with special attention to
global convergence properties, is presented by Hager
and Zhang [22]. This family of algorithms includes a lot
of variants, well known in the literature, with important
convergence properties and numerical efficiency. The
purpose of this chapter is to present these algorithms
as well as their performances to solve a large variety of
large-scale unconstrained optimization problems.

For solving the nonlinear unconstrained optimiza-
tion problem

min f f (x) : x 2 Rng ; (1)

where f : Rn ! R is a continuously differentiable func-
tion bounded from below, starting from an initial guess
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x0 2 Rn a nonlinear conjugate-gradient method gener-
ates a sequence fxkg as

xkC1 D xk C ˛kdk ; (2)

where ˛k > 0 is obtained by line search, and the direc-
tions dk are generated as

dkC1 D �gkC1 C ˇk sk ; d0 D �g0 : (3)

In (3)ˇk is known as the conjugate-gradient param-
eter, sk D xkC1 � xk and gk D r f (xk). Consider k:k
the Euclidean norm and define yk D gkC1 � gk . The
line search in the conjugate-gradient algorithms is of-
ten based on the standard Wolfe conditions:

f (xk C ˛kdk ) � f (xk) � �˛k gTk dk ; (4)

gTkC1dk � � g
T
k dk ; (5)

where dk is a descent direction and 0 < � � � < 1.
For some conjugate-gradient algorithms, stronger ver-
sions of the Wolfe conditions are needed to ensure con-
vergence and to enhance stability. According to the
formula for ˇk computation, the conjugate-gradient
algorithms can be classified as classical, hybrid, scaled,
modified and parametric. In the following we shall
present these algorithms and insist on their numeri-
cal Dolan andMoré ’s performances profiles for solving
large-scale unconstrained optimization problems.

The history of conjugate-gradient method begins
with the seminal paper of Hestenes and Stiefel [23], who
presented an algorithm for solving symmetric, positive-
definite linear algebraic systems. In 1964 Fletcher and
Reeves [18] extended the domain of application of con-
jugate-gradient method to nonlinear problems, thus
starting the nonlinear conjugate-gradient research di-
rection. The main advantages of the conjugate-gradient
method are its low memory requirements and its con-
vergence speed. A large variety of nonlinear conjugate-
gradient algorithms are known. For each of them con-
vergence results have been proved in mild conditions
which refer to the Lipschitz and boundedness assump-
tions. To prove the global convergence of nonlinear
conjugate-gradient methods, often the Zoutendijk con-
dition is used combined with analysis showing that the
sufficient descent condition gTk dk � �c kgkk

2 holds,
and that there exists a constant ı such that kdkk2 � ık.
Often, the convergence analysis of conjugate-gradient

algorithms, for general nonlinear functions, follows in-
sights developed by Gilbert and Nocedal [19]. The idea
is to bound the change ukC1 � uk in the normalized di-
rection uk D dk/ kdkk, which is used to conclude, by
contradiction, that the gradients cannot be bounded
away from zero.

Classical Conjugate-Gradient Algorithms

These algorithms are defined by (2) and (3), where the
parameter ˇk is computed as in Table 1. Observe that
these algorithms can be classified as algorithms with
kgkC1k

2 in the numerator of ˇk and algorithms with
gTkC1yk in the numerator of parameter ˇk .

The FR, CD and DY methods (see the tables for
the definitions of the acronyms used for the algo-
rithms throughout the text), with kgkC1k

2 in the nu-
merator of ˇk , have strong convergence theory, but all

Performance Profiles of Conjugate-Gradient Algorithms for
Unconstrained Optimization, Table 1
Classical conjugate-gradient algorithms

No. Formula Author(s)

1. ˇHS
k D

yTk gkC1

yTk sk
Hestenes and Stiefel [23]
(HS).
The first conjugate-
gradient algorithm for
linear algebraic systems

2. ˇ FR
k D

gTkC1gkC1

gTk gk
Fletcher and Reeves [18]
(FR).
The first conjugate-
gradient algorithm for
nonlinear functions

3. ˇPRP
k D

yTk gkC1

gTk gk
Polak-Ribiere [31] and
Polyak [32] (PRP)

4. ˇ
PRPC
k D max

�
0;

yTk gkC1

gTk gk

	
Polak-Ribiere and Polyak
+ (PRP+) suggested by
Powell [33]

5. ˇCD
k D �

gTkC1gkC1

gTk dk
Conjugate descent (CD)
introduced by
Fletcher [17]

6. ˇ LS
k D �

yTk gkC1

gTk dk
Liu and Storey [26] (LS)

7. ˇDY
k D

gTkC1gkC1

yTk sk
Dai and Yuan [13] (DY)



2940 P Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization

these methods are susceptible to jamming. They be-
gin to take small steps without making any significant
progress to the minimum. On the other hand, the HS,
PRP and LS methods, with gTkC1yk in the numerator
of parameterˇk , have a built-in restart feature that ad-
dresses the jamming phenomenon. When the step sk is
small, the factor yk D gkC1 � gk in the numerator ofˇk

tends to zero. Therefore, ˇk becomes small and the new
direction dkC1 in (3) is essentially the steepest descent
direction �gkC1. With other words, the HS, PRP and
LS methods automatically adjust ˇk to avoid jamming,
and their performances are better than the performance
of methods with kgkC1k

2 in the numerator of ˇk .

Hybrid Conjugate-GradientMethods

These algorithms have been devised to exploit the at-
tractive features of the classical conjugate-gradient al-
gorithms. They are defined by (2) and (3), where the
parameter ˇk is as in Table 2. There are two classes of
hybrid algorithms. The first class of the hybrid algo-
rithms combines in a projective manner the algorithms
having kgkC1k

2 in the numerator of ˇk with the al-
gorithms having gTkC1yk in the numerator of ˇk . The
second class of hybrid algorithms, more recently es-
tablished, considers convex combinations of algorithms
with kgkC1k

2 in the numerator of ˇk and the algorithms
having gTkC1yk in the numerator of ˇk . In general, the
performances of hybrid conjugate-gradient algorithms
are better than the performances of classical conjugate-
gradient algorithms.

Scaled Conjugate-Gradient Algorithms

The algorithms in this class generate a sequence xk of
approximations to the minimum x� of f , in which

xkC1 D xk C ˛kdk ; (6)

dkC1 D ��kC1gkC1 C ˇk sk ; (7)

where �kC1 is a parameter. The iterative process is ini-
tialized with an initial point x0 and d0 D �g0. Ob-
serve that if �kC1 D 1, then we get the classical con-
jugate-gradient algorithms according to the value of
the scalar parameter ˇk . On the other hand, if ˇk D 0,
then we get another class of algorithms according to the
selection of the parameter �kC1. Considering ˇk D 0,
there are two possibilities for �kC1: a positive scalar or

a positive-definite matrix. If �kC1 D 1, then we have the
steepest-descent algorithm. If �kC1 D r

2 f (xkC1)�1, or
an approximation of it, then we get the Newton or
the quasi-Newton algorithms, respectively. Therefore,
we see that in the general case, when �kC1 ¤ 0 is se-
lected in a quasi-Newton manner, and ˇk ¤ 0, (7) rep-
resents a combination between the quasi-Newton and
the conjugate-gradient methods. However, if �kC1 is
a matrix containing some useful information about the
inverse Hessian of function f , we are better off using
dkC1 D ��kC1gkC1 since the addition of the term ˇk sk
in (7) may prevent the direction dk from being a de-
scent direction unless the line search is sufficiently ac-
curate. Therefore, in the following we shall consider
�kC1 as a positive scalar which contains some useful in-
formation on the inverse Hessian of function f .

To determine ˇk consider the following proce-
dure [1,2,3,4]. As we know, the Newton direction for
solving (1) is given by dkC1 D �r

2 f (xkC1)�1gkC1.
Therefore, from the equality

�r2 f (xkC1)�1gkC1 D ��kC1gkC1 C ˇk sk ;

we get

ˇk D
sTkr

2 f (xkC1)�kC1gkC1 � sTk gkC1

sTkr2 f (xkC1)sk
: (8)

Using the Taylor development, after some algebra, we
get

ˇk D
(�kC1yk � sk)T gkC1

yTk sk
; (9)

where yk D gkC1 � gk . Birgin and Martínez [10], who
first introduced scaled conjugate-gradient algorithms,
arrived at the same formula for ˇk , but using a geomet-
ric interpretation of quadratic function minimization.
The parameter ˇk in (7) can be defined, as in Table 3,
where the scaling parameter �k is computed as

�kC1 D
sTk sk
yTk sk

: (10)

Another scaled conjugate-gradient algorithm was
presented by Andrei [1,2,3,4]. This is a scaled memory-
less Broyden–Fletcher–Goldfarb–Shanno (BFGS) pre-
conditioned conjugate-gradient algorithm. The basic
idea is to combine the scaled memoryless BFGSmethod
and the preconditioning technique in the frame of the
conjugate-gradient method. The preconditioner, which
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Table 2
Hybrid conjugate-gradient algorithms

Nr. Formula Author(s)

1. ˇhDY
k D max

˚
cˇDY

k ;min
˚
ˇHS
k ; ˇ

DY
k

��
Hybrid Dai–Yuan [15] (hDY)

2. ˇhDYz
k D max

˚
0;min

˚
ˇHS
k ; ˇ

DY
k

��
Hybrid Dai–Yuan zero [15] (hDYz)

3. ˇGN
k D max

˚
�ˇ FR

k ;min
˚
ˇPRP
k ; ˇ FR

k

��
Gilbert and Nocedal [19] (GN)

4. ˇHuS
k D max

˚
0;min

˚
ˇPRP
k ; ˇ FR

k

��
Hu and Storey [24] (HuS)

5. ˇ TaS
k D

8<
:
ˇPRP
k 0 � ˇPRP

k � ˇ FR
k ;

ˇ FR
k otherwise

Touati-Ahmed and Storey [37] (TaS)

6. ˇ LS�CD
k D max

˚
0;min

˚
ˇ LS
k ; ˇ

CD
k

��
Hybrid Liu–Storey, conjugate descent (LS-CD)

7. ˇCCOMB
k D (1� 
k)

gTkC1yk
gTk gk

C 
k
gTkC1gkC1

yTk sk
,


k D
(yTk gkC1)(y

T
k sk )�(y

T
k gkC1)(g

T
k gk )

(yTk gkC1)(y
T
k sk )�kgkC1k

2
kgkk2

:

If 
k � 0, then set 
k D 0, i. e., ˇCCOMB
k D ˇPRP

k ;
if 
k � 1, then take 
k D 1, i. e., ˇCCOMB

k D ˇDY
k

Andrei [7]. Convex combination of PRP and DY where 
k
is obtained by a conjugacy condition (CCOMB)

8. ˇNDOMB
k D (1� 
k)

gTkC1yk
gTk gk

C 
k
gTkC1gkC1

yTk sk
,


k D
(yTk gkC1�s

T
k gkC1)kgkk

2
�(gTkC1yk )(y

T
k sk )

kgkC1k
2
kgkk2�(gTkC1yk )(y

T
k sk )

:

If 
k � 0, then set 
k D 0, i. e., ˇNDOMB
k D ˇPRP

k ;
if 
k � 1, then take 
k D 1, i. e., ˇNDOMB

k D ˇDY
k

Andrei [7]. Convex combination of PRP and DY where 
k
is obtained using the Newton direction (NDOMB)

9. ˇNDHSDY
k D (1� 
k)

gTkC1yk
yTk sk

C 
k
gTkC1gkC1

yTk sk
,


k D �
sTk gkC1

gTk gkC1
.

If 
k � 0, then set 
k D 0, i. e., ˇNDHSDY
k D ˇHS

k ;
if 
k � 1, then take 
k D 1, i. e., ˇNDHSDY

k D ˇDY
k

Andrei [8]. Convex combination of HS and DY, where 
k
is obtained using the Newton direction (NDHSDY)

Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Table 3
Scaled conjugate-gradient algorithms

No. Formula Author(s)

1. ˇBM
k D

gTkC1(�kyk�sk )

yTk sk
Scaled Perry. Suggested by Birgin and Martínez [10] and Andrei [1,2,3,4] (BM)

2. ˇ
BMC
k D max

�
0;
�kgTkC1yk

yTk sk

	
�

gTkC1sk
yTk sk

Scaled Perry+. Suggested by Birgin and Martínez [10] (BM+)

3. ˇ sPRP
k D

�kgTkC1yk
˛k�k�1gTk gk

Scaled Polak-Ribière–Polyak. Suggested by Birgin and Martínez [10] and
Andrei [1,2,3,4] (sPRP)

4. ˇ sFR
k D

�kgTkC1gkC1

˛k�k�1gTk gk
Scaled Fletcher–Reeves. Suggested by Birgin and Martínez [10] and
Andrei [1,2,3,4] (sFR)

5. ˇ sHS
k D 
kC1

gTkC1yk
yTk sk

Scaled Hestenes–Stiefel (sHS) [1]
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Table 4
Modified conjugate-gradient algorithms

No. Formula Author(s)

1. dkC1 D �gkC1 C ¯̌N
k dk; d0 D �g0,

¯̌N
k D max

˚
ˇN
k ; �k

�
,

�k D
�1

kdkkminf�;kgkkg
; � D 0:01

ˇN
k D

1
yTk dk

�
yk � 2k

ykk
2

yTk dk
dk

�T

gkC1

Introduced by Hager and Zhang [20,21]
(CG_DESCENT).
This is a modification of the HS method

2. ˇACGA
k D 1

yTk sk

�
yk �

gTkC1yk
yTk sk

sk

�T

gkC1 Suggested by Andrei [9] (ACGA)

3. ˇ
ACGAC
k D max

�
0;

yTk gkC1

yTk sk

	 �
1�

sTk gkC1

yTk sk

�
Suggested by Andrei [9] (ACGA+)

4. dkC1 D �
kC1gkC1 C ˇ
CGSD
k dk; d0 D �g0;

ˇCGSD
k D 1

yTk sk

�
gkC1 �

gTkC1yk
yTk sk

sk

�T

gkC1


kC1 D
kgkC1k

2

yTk gkC1

Introduced by Andrei [5] (CGSD) as
a modification of the DY method

5. ˇAPRP
k D 1

yTk sk

�
yk �
kykk

2

kgkk
2 sk

�T

gkC1 Suggested by Andrei [9] (APRP).
This is a modification of the PRP method

is also a scaled memoryless BFGS matrix, is reset when
the Powell restart criterion holds. The parameter scal-
ing the gradient is selected as the spectral gradient (10).

SCALCG Algorithm

Step 1. Initialization. Select x0 2 Rn; and the parame-
ters 0 < � � � < 1. Compute f (x0) and g0 D r f (x0).
Set d0 D �g0 and ˛0 D 1/ kg0k : Set k D 0.
Step 2. Line search. Compute ˛k satisfying the Wolfe
conditions (4) and (5). Update the variables xkC1 D

xk C ˛kdk . Compute f (xkC1); gkC1 and sk D xkC1 �

xk ; yk D gkC1 � gk .
Step 3. Test for continuation of iterations. If this test is
satisfied the iterations are stopped, else set k D k C 1:
Step 4. Scaling factor computation. Compute �k us-
ing (10).
Step 5. Restart direction. Compute the (restart) direc-
tion dk as

dkC1 D ��kC1gkC1 C �kC1

 
gTkC1sk
yTk sk

!
yk

�

" 
1C �kC1

yTk yk
yTk sk

!
gTkC1sk
yTk sk

� �kC1
gTkC1yk
yTk sk

#
sk :

Step 6. Line search. Compute the initial guess
˛k D ˛k�1 kdk�1k2 / kdkk2 : Using this initialization
compute ˛k satisfying theWolfe conditions. Update the
variables xkC1 D xk C ˛kdk : Compute f (xkC1); gkC1

and sk D xkC1 � xk ; yk D gkC1 � gk .
Step 7. Store: � D �k ; s D sk and y D yk :
Step 8. Test for continuation of iterations. If this test is
satisfied the iterations are stopped, else set k D k C 1:
Step 9. Restart. If the Powell restart criterionˇ̌
gTkC1gk

ˇ̌
� 0:2 kgkC1k

2 is satisfied, then go to step 4
(a restart step), otherwise continue with step 10 (a stan-
dard step).
Step 10. Standard direction. Compute the direction dk
as

dkC1 D� v C
(gTkC1sk)w C (gTkC1w)sk

yTk sk

�

 
1C

yTk w
yTk sk

!
gTkC1sk
yTk sk

sk ;

where v and w are computed as

v D� gkC1 � �

 
gTkC1s
yT s

!
y

C

"�
1C �

yT y
yT s

� gTkC1s
yT s

� �
gTkC1y
yTs

#
s ;
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Table 5
Parametric conjugate-gradient algorithms

No. Formula Author(s)

1. ˇDL
k D

gTkC1(yk�tsk )

yTk sk
; t > 0 is a constant Dai and Liao [12] (DL)

2. ˇ
DLC
k D max

�
0;

yTk gkC1

yTk sk

	
� t

sTk gkC1

yTk sk
;

t > 0 is a constant

Dai and Liao + [12] (DL+)

3. ˇYT
k D

gTkC1(zk�tsk )

dTk zk
;

where zk D yk C
ı�k
sTk uk

uk;

�k D 6(fk � fkC1)C 3(gk C gkC1)T sk;
ı � 0 is a constant and uk 2 Rn satisfies
sTk uk ¤ 0;
for example uk D dk

Suggested by Yabe and Takano [38] (YT) based on
a modified secant condition given by Zhang et
al. [39]

4. ˇ
YTC
k D max

�
0;

gTkC1zk
dTk zk

	
� t

gTkC1sk
dTk zk

Suggested by Yabe and Takano plus [38] (YT+)

5. ˇk D
kgkC1k

2

�kkgkk
2
C(1��k )dTk yk

; 	k 2 [0; 1]:

The FR algorithm corresponds to 	k D 1.
The DY algorithm corresponds to 	k D 0

Suggested by Dai and Yuan [14]

6. ˇk D

kkgkC1k

2
C(1�
k )gTkC1yk

�kkgkk
2
C(1��k )dTk yk

; 	k; 
k 2 [0; 1] Suggested by Nazareth [28].
This two-parameter family includes the methods FR,
DY, PRP and HS in extreme cases

7. ˇk D

kkgkC1k

2
C(1�
k )gTkC1yk

(1��k�!k )kgkk2C�kdTk yk�!kdTk gk
;

	k; 
k 2 [0; 1] and!k 2 [0; 1� 	k]

Suggested by Dai and Yuan [14]
This three-parameter family includes the six classical
conjugate-gradient algorithms, as well as the
previous one-parameter and two-parameter families

and

w D� yk � �

 
yTk s
yT s

!
y

C

"�
1C �

yT y
yT s

�
yTk s
yT s
� �

yTk y
yT s

#
s ;

with saved values � , s and y.
Step 11. Line search. Compute the initial guess
˛k D ˛k�1 kdk�1k2 / kdkk2. Using this initialization
compute ˛k satisfying theWolfe conditions. Update the
variables xkC1 D xk C ˛kdk . Compute f (xkC1); gkC1

and sk D xkC1 � xk ; yk D gkC1 � gk .
Step 12. Test for continuation of iterations. If this test
is satisfied the iterations are stopped, else set k D k C 1
and go to step 9.

To a great extent, the SCALCG algorithm [1,2,3,4]
is very close to the Perry–Shanno computational
scheme [30,34,35]. SCALCG is a scaled memory-
less BFGS preconditioned algorithm where the scal-
ing factor is the inverse of a scalar approxima-
tion of the Hessian. If the Powell restart criterionˇ̌
gTkC1gk

ˇ̌
� 0:2 kgkC1k

2 is used, for general functions
f bounded from below with bounded second partial
derivatives and bounded level set, using the same ar-
guments considered by Shanno in [35], one can prove
that either the iterates converge to a point x� satisfying
kg(x�)k D 0 or the iterates cycle.

Modified Conjugate-Gradient Algorithms

We know a large variety of modified conjugate-gradi-
ent algorithms. All of them are designed to improve the
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performances of the classical computational schemes
using the idea of preconditioning or the modification
of classical schemes in order to satisfy the sufficient-
descent condition. The algorithms in this class are char-
acterized by (2) and (3), where the parameter ˇk is com-
puted as in Table 4.

Maximization in the formula for the ¯̌N
k compu-

tation scheme by Hager and Zhang plays the role of
the truncation operation like in the PRP+ scheme, for
example. Hager and Zhang obtained this algorithm
by deleting a term from the search direction for the
memoryless quasi-Newton scheme of Perry [30] and
Shanno [34]. Hager and Zhang [20] proved the global
convergence with inexact line search, showing that
for any line search and any function, the sufficient-
descent condition gTk dk � �(7/8) kgkk

2 is satisfied and
the jamming is avoided essentially owing to the yTk gkC1

term in the formula for ˇN
k .

The ACGA and ACGA+ computational schemes
are a modification of the DY conjugate-gradient algo-
rithm, designed to satisfy the sufficient-descent con-
dition. Andrei [9] proved that for uniformly convex
functions under a strong Wolfe condition the ACGA
is globally convergent. The CGSD algorithm is also
a modification of the Dai and Yuan conjugate-gradient
algorithm. Andrei [9] proved the global convergence of
CGSD for general nonlinear functions under the Wolfe
conditions.

One of the best conjugate-gradient algorithms in
this class is CONMIN by Shanno [34] and Shanno and
Phua [36]. Using the Hestenes and Stiefel formula for
updating ˇk , Perry [30] suggested a formula for com-
puting the search direction dkC1 which satisfies a sys-
tem of linear equations, similar but not identical to the
quasi-Newton equation. Shanno [34] reconsidered the
method of Perry and interpreted it as a memoryless
BFGS updating formula. In this algorithm gkC1 is mod-
ified by a positive-definite matrix which best estimates
the inverse Hessian, without any additional storage re-
quirements. For convex functions, under inexact line
search, Shanno [35] proved the global convergence of
CONMIN.

Parametric Conjugate-Gradient Algorithms

The parametric conjugate-gradient algorithms were in-
troduced in the same way as the quasi-Newton methods

were combined to get the Broyden or the Huang fami-
lies. These algorithms are defined by (2) and (3), where
the parameter ˇk is as in Table 5.

Performance Profiles

In this section we present the computational perfor-
mance of a Fortran implementation of conjugate-gra-
dient algorithms on a set of 750 unconstrained op-
timization test problems. The test problems are the
unconstrained problems in the CUTE [11] library,
along with other large-scale optimization problems
presented in [6]. We selected 75 large-scale uncon-
strained optimization problems in extended or gen-
eralized form. For each function we have considered
ten numerical experiments with the number of vari-
ables n D 1000; 2000; : : : ; 10000. CG_DESCENT was
authored by Hager and Zhang [20,21], CONMIN by
Shanno and Phua [36]. The CG_DESCENT code con-
tains the variant CG_DESCENT(w) implementing the
Wolfe line search and the variant CG_DESCENT(aw)
implementing an approximate Wolfe line search. The
Wolfe conditions implemented in CG_DESCENT(w)
can compute a solution with an accuracy on the or-
der of the square root of machine epsilon. In con-
trast, the approximate Wolfe line search implemented
in CG_DESCENT(aw) can compute a solution with

Performance Profiles of Conjugate-Gradient Algorithms for
Unconstrained Optimization, Figure 1
Performance profiles of the HS, FR, PRP, PRP+, CD, LS and DY
methods. See the tables for the definitions of the acronyms
used for the algorithms referred to in all the figures
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 2
Performance profiles of some hybrid conjugate-gradient algorithms (continued on next page)

an accuracy on the order of machine epsilon. The
rest of the algorithms considered in this study are au-
thored by Andrei. All codes were written in double-
precision Fortran and compiled with f 77 (default com-
piler settings) on an Intel Pentium 4, 1.8 GHz worksta-
tion.

All algorithms implement the Wolfe line search
conditions with � D 0:0001 and� D 0:9, and the same
stopping criterion kgkk1 � 10�6, where k:k1 is the
maximum absolute component of a vector.

The comparisons of the algorithms are given in
the following context. Let f ALG1i and f ALG2i be the op-
timal value found by ALG1 and ALG2, for problem
i D 1; : : : ; 750, respectively. We say that, in the particu-
lar problem i, the performance of ALG1 was better than
the performance of ALG2 if
ˇ̌
f ALG1i � f ALG2i

ˇ̌
< 10�3

and the number of iterations, or the number of func-
tion-gradient evaluations, or the CPU time of ALG1
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 2
(continued)

was less than the number of iterations, or the number
of function-gradient evaluations, or the CPU time cor-
responding to ALG2, respectively.

The performances of these algorithms were evalu-
ated using the profiles of Dolan and Moré [16] cor-
responding to this set of 750 test problems we ex-
tracted from the CUTE collection [11] and from [6].
For each algorithm, we plot the fraction of problems
for which the algorithm is within a factor of the best
CPU time. The left side of the figures gives the per-

centage of the test problems, out of 750, for which
an algorithm is more performant; the right side gives
the percentage of the test problems that were success-
fully solved by each of the algorithms. Mainly, the right
side represents a measure of an algorithm’s robust-
ness.

In the first set of numerical experiments we com-
pare the classical conjugate-gradient algorithms. Fig-
ure 1 shows the CPU time performance profiles of these
algorithms.
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 3
Performance profiles of the NDHSDY algorithm compared with those of some classical conjugate-gradient algorithms

From Fig. 1 we see that the FR, CD and DY meth-
ods, although they have strong convergence properties,
may not perform well in practice owing to jamming. In
contrast, although the HS, PRP and LS methods in gen-
eral may not converge, they often perform better than
the FR, CD and DY methods.

Figure 2 presents the performance profiles of some
hybrid conjugate-gradient algorithms.

Figure 3 presents the performance profiles of the
NDHSDY algorithm compared with those of the classi-
cal conjugate-gradient algorithms: PRP, PRP+, LS and
CD. It seems that the best algorithm is the hybrid algo-
rithm NDHSDY given by a convex combination of HS
and DY, where the parameter in the convex combina-
tion is obtained using the Newton direction.

In the next set of numerical experiments we com-
pare the scaled conjugate-gradient algorithms. Figure 4
shows the performance profiles of SCALCG, BM, BM+,
sPRP and sFR. We see that the SCALCG algorithm is

Performance Profiles of Conjugate-Gradient Algorithms for
Unconstrained Optimization, Figure 4
Performance profiles of scaled conjugate-gradient algo-
rithms

top performer among the scaled conjugate-gradient al-
gorithms.
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 5
Performance profiles of the SCALCG algorithm compared with those of the PRP, PRP+, CCOMB and NDHSDY algorithms

Figure 5 shows the performance profile of the
SCALCG algorithm compared with those of the clas-
sical conjugate-gradient algorithms PRP and PRP+, as
well as the hybrid algorithms CCOMB and NDHSDY.

In the following we compare the modified con-
jugate-gradient algorithms CG_DESCENT(w), ACGA,
ACGA+, CGSD and APRP. Figure 6 presents the per-
formance profiles of these algorithms.

Figure 7 presents the performance profiles of the
CG_DESCENT(w) algorithm compared with those of
the PRP, PRP+, NDHSDY and SCALCG algorithms.

Now, comparing CONMIN with some other mod-
ified conjugate-gradient algorithms, ACGA, ACGA+,
CGSD and APRP, we obtained the performance pro-
files as in Fig. 8.

We see that CONMIN is the top performer. Figure 9
presents the performances profiles of the CONMIN al-
gorithm compared with those of the PRP, NDHSDY,
SCALCG and CG_DESCENT algorithms.

Finally, let us consider the parametric conjugate-
gradient algorithms DL(t=1) and DL+(t=1). Figure 10

Performance Profiles of Conjugate-Gradient Algorithms for
Unconstrained Optimization, Figure 6
Performance profiles of the CG_DESCENT, ACGA, ACGA+,
CGSD and APRP algorithms

shows the performance profiles of the DL and DL+ al-
gorithms compared with those of the PRP, SCALCG
and CONMIN algorithms.
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 7
Performance profiles of the CG_DESCENT(w) algorithm compared with those of the PRP, PRP+, NDHSDY and SCALCG algo-
rithms

Conclusion andDiscussion

Conjugate-gradient algorithms are one of the most el-
egant and probably the simplest algorithms for com-
putational nonlinear optimization. Their theory is well
established [22] and they have proved to be surpris-
ingly effective in solving real practical applications. The
computational study presented here, which include 29
conjugate-gradient algorithms, shows that the most ef-
fective are CONMIN, CG_DESCENT and SCALCG.
Close to these algorithms is NDHSDY, a convex combi-
nation of HS and DY conjugate-gradient algorithms in
which the parameter is computed using the Newton di-
rection. Concerning the robustness, CG_DESCENT is
in first place.

This computational study involved a large variety
of nonlinear test functions. However, to draw con-
clusions about the effectiveness of these algorithms,
the test functions must be organized on some classes
with well-established characteristics, and one must see
which conjugate-gradient algorithm is more successful.
This remains to be explored.

Performance Profiles of Conjugate-Gradient Algorithms for
Unconstrained Optimization, Figure 8
Performance profiles of the CONMIN, ACGA, ACGA+, CGSD
and APRP algorithms

It is worth seeing a comparison between the most
successful conjugate-gradient algorithms and the quasi-



2950 P Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization

Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 9
Performance profiles of the CONMIN algorithm compared with those of the PRP, NDHSDY, SCALCG and CG_DESCENT algo-
rithms

Newton limited BFGS (LBFGS) algorithm of No-
cedal [29]. Figure 11 shows the performance pro-
files of the CONMIN, SCALCG, CG_DESCENT and
NDHSDY algorithms compared with those of the
LBFGS (m= 3) algorithm, an implementation given by
Liu and Nocedal [25] using the line search of Moré and
Thuente [27].

From Fig. 11 we see that LBFGS (m= 3) is way
more successful than any conjugate-gradient algorithm.
Closest to LBFGS is CONMIN.

Even though conjugate-gradient methods are rele-
vant nonlinear optimization methods, there are some
open problems which deserve additional research:
1. In contrast to the quasi-Newton methods for which

the step length for the vast majority of iterations
is equal to 1, the step length in conjugate gradient
methods differs from 1, being larger or smaller up
by to two order of magnitude depending on how
the problem is scaled. In conjugate-gradient meth-
ods the size of ˛k varies in a very unpredictabe
way.

2. Another open problem is the preconditioning of
conjugate-gradient algorithms. The scaled conju-
gate-gradient algorithms by Birgin and Martí-
nez [10] and Andrei [1,2,3,4] introduce a scaling of
gkC1 in the direction dkC1 computation. However,
if the definition of �kC1 in (7) does contain enough
information about the inverse Hessian of the min-
imizing function, then it is better to use the search
direction dkC1 D ��kC1gkC1, since the addition of
the term ˇk sk in (7) may prevent dkC1 from be-
ing a descent direction unless the line search is suf-
ficiently accurate. In scaled conjugate-gradient al-
gorithms there is a very delicate balance between
��kC1gkC1 and ˇk sk , which brings to attention the
preconditioning question.

3. Another open problem with conjugate-gradient
methods is that the structure of the minimizing
problem is not taken into account to design more ef-
ficient computational schemes. This is in sharp con-
trast to quasi-Newton or truncated Newton meth-
ods.
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Performance Profiles of Conjugate-Gradient Algorithms for Unconstrained Optimization, Figure 10
Performance profiles of the DL(t=1) and DL+(t=1) algorithms compared with those of the PRP, SCALCG and CONMIN algo-
rithms
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The phase problem of X-ray crystallography is formu-
lated as one in constrained global minimization. The
problem of reaching this minimum is solved by the
Shake and Bake algorithm which effectively by-passes
the myriad of (unconstrained) local minima. The func-
tion whose constrained global minimum is sought is
known as the minimal function.

Introduction

When a beam of monochromatic X-rays strikes a crys-
tal, the crystal scatters the incident beam in different
directions and with different intensities determined by
the crystal structure, that is the arrangement of the
atoms in the unit cell of the crystal. From the intensi-
ties of the scattered X-rays, the directions of which are
labeled by the so-called reciprocal lattice vectorsH, a set
of numbers |EH| may be derived, one corresponding to
each scattered X-ray. The phases �H of the scattered X-
rays are lost in the scattering (diffraction) experiment,
that is to say cannot be measured. However, the eluci-
dation of the crystal structure requires a knowledge of
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the complex numbers

EH D jEHj exp(i�H) ; (1)

the so-called normalized structure factors, of which
only the magnitudes |EH| can be determined from ex-
periment. Thus the phase �H, unobtainable from the
diffraction experiment, must be assigned to each |EH|.
The problem of determining the phases �H when only
the magnitudes |EH| are available, is called the ‘phase
problem’. A major advance in the early 1950s was the
recognition that the lost phase information was to be
found in the measurable intensities of the diffraction
pattern. In fact, owing to the known atomicity of crystal
structures and the redundancy of observed magnitudes
|EH|, the phase problem is not only solvable in principle
but is a greatly overdetermined one.

The phase problem is here formulated as one in
constrained global minimization. The ability to impose
constraints, in the form of identities among the phases
which must, of necessity, be satisfied, even if only in-
completely and approximately, enables one to avoid the
countless local minima of the minimal function and to
arrive at the unique constrained global minimum. The
shake and bake algorithm, which implements the mini-
mal principle formulated here, provides a routine and
completely automatic solution of the phase problem
when diffraction intensities to atomic resolution (1.2Å
or better) are available.

Identities Among the Phases

The relationship between the crystal structure and the
diffraction pattern, in the case that the structure con-
sists of N identical atoms in the unit cell (the only case
to be considered here), is given by the pair of equations

EH D
1
p
N

NX
jD1

exp(2
 iH � r j) ; (2)

hEH exp(�2
 iH � r)iH D

(
1p
N

if r D r j;

0 if r ¤ r j;
(3)

where |EH| is obtained directly from the intensity of the
X-ray scattered in the direction labeled by the recipro-
cal lattice vector H, whose three components are in-
tegers, r is an arbitrary three-dimensional vector, and
rj is the position vector of the atom labeled j. Thus

the positions of the maxima of the triple Fourier series
(3), a function of the position vector r, yield the crys-
tal structure directly. However, in order to calculate (3)
both the phases �H and magnitudes |EH| (in (1)) are
needed. Since only the magnitudes |EH| are obtainable
from the measured intensities in the diffraction experi-
ment while the phases �H are lost, (3) makes clear why
the phase problem has historically been regarded as the
central problem of X-ray crystallography.

The system of equations (2) implies the existence
of relationships among the normalized structure factors
EH since the (relatively few) unknown atomic position
vectors rj may, at least in principle, be eliminated. In
this way one obtains a system of equations among the
normalized structure factors EH alone, that is, among
the phases �H and magnitudes |EH|:

F(E) D G(�; jEj) D 0 (4)

which depends on N but is independent of the atomic
position vectors rj. For a specified crystal structure the
magnitudes |E| are determined (by (2)). Thus the sys-
tem of equations (4) leads directly to a system of iden-
tities among the phases � alone:

G(�; jEj)! H (�jjEj) D 0 (5)

dependent now on the presumed known magnitudes
|E|, which must of necessity be satisfied. The direct
methods are those which exploit these relationships to
go directly from known magnitudes |EH| to the desired
phases �H

Structure Invariants

Equation (3) implies that the normalized structure fac-
tors EH, that is to say magnitudes |EH| and phases �H,
determine the crystal structure. Equation (2) however
does not imply that, conversely, the crystal structure
determines unique values for the normalized structure
factors EH since the atomic position vectors rj depend
not only on the crystal structure but on the choice of
origin as well. As it turns out, however, the magni-
tudes |EH| are in fact uniquely determined by the crystal
structure independently of the choice of origin, but the
values of the individual phases depend on the choice
of origin as well as on the crystal structure. Never-
theless there exist special linear combinations of the
phases, the so-called structure invariants, whose values
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are uniquely determined by the crystal structure and are
independent of the choice of origin. The most impor-
tant class of structure invariants, the so-called triplets,
are the linear combinations of three phases

�HK D �H C �K C ��H�K (6)

whereH and K are arbitrary reciprocal lattice vectors.

Probabilistic Background

It is assumed that the atomic position vectors rj are
random variables which are uniformly and indepen-
dently distributed. Under this assumption the nor-
malized structure factors EH, as functions ((2)) of the
primitive random variables rj, are themselves random
variables. Since the magnitudes |EH| are known from
the diffraction experiment, (1) and (2) imply that the
phases �H also are random variables. Hence it makes
sense to ask for the conditional probability distribution
of the special linear combinations of three phases, (6),
the triplets �HK, assuming that the values of an appro-
priate set of observed magnitudes |E| have been given.

For Fixed H and K, the Conditional Probability
Distribution of the Triplet˚HK

Under the assumptions of the previous section, the con-
ditional probability distribution of the triplet �HK, (6),
given the three magnitudes |EH|, |EK|, |EH+K| is

P(
˚

AHK
) D

1
2
 I0(AHK)

exp(AHK cos˚) ; (7)

where ˚ represents the triplet �HK, the parameter AHK

is defined by

AHK D
2
p
N
jEHEKEHCKj > 0 (8)

and I0 is the modified Bessel function. Since AHK > 0,
the distribution (7) implies that the mode of �H is zero
and the conditional expectation (or average) of cos�H,
given AHK, is

E(cos�HK) D
I1(AHK)
I0(AHK)

> 0 ; (9)

where I1 is the modified Bessel function. It is also
readily confirmed that the larger the value of AHK the
smaller is the conditional variance of cos�HK, given
AHK. It is to be stressed that the conditional expected
value of the cosine, (9), is always positive since AHK > 0.

Minimal Principle

It is assumed that a crystal structure consisting of N
identical atoms in the unit cell is fixed, but unknown,
that the magnitudes |E| of the normalized structure fac-
tors E are known, and that a sufficiently large base of
phases, corresponding to the largest magnitudes |E|, is
specified. In view of (9), one is led to construct the so-
called minimal function:

R(�) D
1P

H;K AHK

�
X
H;K

AHK

�
cos �HK �

I1(AHK)
I0(AHK)

	 2

(10)

which, because of (6), is seen to be a function of the
phases �, dependent on known magnitudes |E|. Again
in view of (9), one is led to conjecture that the global
minimum of R(�) constrained to satisfy the identities
(5) yields the correct values of all the phases (the min-
imal principle). It is to be emphasized that the uncon-
strained global minimum of R(�) does not give us the
answer we seek, nor do any of the (innumerable) local
minima.

Computer Program ‘Shake and Bake’

The six-part shake and bake phase determination pro-
cedure, shown by the flow diagram in Fig. 1, combines
minimal-function phase refinement and real-space fil-
tering. It is an iterative process that is repeated until
a solution is achieved or a designated number of cycles
have been performed. With reference to Fig. 1, the ma-
jor steps of the algorithm are described next.
A) Generate invariants. Normalized structure-factor

magnitudes (|E|’s) are generated by standard scal-
ing methods and the triplet invariants that involve
the largest corresponding |E|’s are generated. Pa-
rameter choices that must be made at this stage in-
clude the numbers of phases and triplets to be used.
The total number of invariants is ordinarily chosen
to be at least 100 times the number of atoms whose
positions are to be determined.

B) Generate trial structure. A trial structure or model
is generated that is comprised of a number of ran-
domly positioned atoms equal to the number of
atoms in the unit cell. The starting coordinate sets
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Phase Problem in X-ray Crystallography: Shake and Bake Ap-
proach, Figure 1
Flow chart for Shake and Bake, the minimal-function phase
refinement and real-space filtering procedure

are subject to the restrictions that no two atoms are
closer than a specified distance (normally 1.2Å) and
that no atom is within bonding distance of more
than four other atoms.

C) Structure-factor calculation. A normalized struc-
ture-factor calculation based on the trial coordi-
nates is used to compute initial values for all the de-
sired phases simultaneously. In subsequent cycles,
peaks selected from the most recent Fourier series
are used as atoms to generate new phase values.

D) Phase refinement. The values of the phases are
perturbed by a parameter-shift method in which
R(�), which measures the mean-square difference
between estimated and calculated structure invari-

ants, is reduced in value. R(�) is initially computed
on the basis of the set of phase values obtained from
the structure-factor calculation in step C. The phase
set is ordered in decreasing magnitude of the associ-
ated |E|’s. The value of the first phase is incremented
by a preset amount and R(�) is recalculated. If the
new calculated value of R(�) is lower than the pre-
vious one, the value of the first phase is incremented
again by the preset amount. This is continued until
R(�) no longer decreases or until a predetermined
number of increments has been applied to the first
phase. A completely analogous course is taken if,
on the initial incrementation, R(�) increases, except
that the value of the first phase is decremented un-
til R(�) no longer decreases or until the predeter-
mined number of decrements has been applied. The
remaining phase values are varied in sequence as
just described. Note that, when the ith phase value is
varied, the new values determined for the previous
i� 1 phases are used immediately in the calculation
of R(�). This process, when convergent, often, but
not always, yields the constrained global minimum
of R(�). The stepsize and number of steps are vari-
ables whose values must be chosen.

E) Fourier summation. Fourier summation is used
to transform phase information into an electron-
density map (refer to (3)). The grid size must be
specified.

F) Real-space filtering (identities among phases im-
posed). Image enhancement has been accomplished
by a discrete electron-density modification consist-
ing of the selection of a specified number of the
largest peaks on the Fourier map for use in the next
structure-factor calculation. The simple choice, in
each cycle, of a number of the largest peaks cor-
responding to the number of expected atoms has
given satisfactory results. No minimum-interpeak-
distance criterion is applied at this stage.

Applications

Shake and Bake has been tested successfully, with no
failure, using experimentally measured atomic resolu-
tion data for some 30 structures, many of which had
been difficult to solve with existing techniques or had
defeated all previous attempts. These structures range
in size from 25 to 1000 independent nonhydrogen
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Phase Problem in X-ray Crystallography: Shake and Bake Ap-
proach, Figure 2
Final values of the minimal function R(	) after 255 cycles for
1619 shake and bake trials for the 624 atom Tox II structure
clearly showing the separation between the single solution
and the 1618 nonsolutions

Phase Problem in X-ray Crystallography: Shake and Bake Ap-
proach, Figure 3
The course of R(	) for Tox II, as a function of cycle number,
for the solution trial and for a typical nonsolution trial

atoms. Although a number of these structures had been
previously known, this fact was not used in these appli-
cations. In all cases those trials which led to solutions
were readily identified by the behavior of the minimal
function R(�) (See Fig. 2; Fig. 3).

A Notable Application: Determination by Shake
and Bake of the Previously Known Crystal Structure
of Toxin II From the Scorpion

Androctorius australis Hector. This structure, consist-
ing of 64 amino acid residues (512 protein atoms, the
heaviest comprising four disulfide bridges) and 112 wa-
ter molecules (a total of 624 atoms), crystallizes in the
space group P212121 and diffracts to a resolution of
0.96Å. A total of 50,000 triplets having the largest val-
ues of AHK were generated from the 5, 000 phases with
the largest values of |E| and used in the definition of the
minimal function R(�). A total of 1619 Shake and Bake
trials were run, each for 255 cycles. The final value of
R(�) for the trial which led to the solution was 0.467,
the value of the constrained global minimum of R(�).
The range of final values of R(�) for the remaining 1618
trials was [0.507, 0.532] (see histogram, Fig. 2), clearly
nonsolutions.

Figure 3 shows the course of the minimal function
R(�), as a function of cycle number, for the trial which
led to the solution and for a typical nonsolution trial.
Both trials show almost identical behavior for some 130
cycles when R(�) for the solution trial drops precipi-
tously from a value of about 0.50 to 0.467 and remains
at about that level for all remaining cycles. For the non-
solution trial however, R(�) oscillates between 0.51 and
0.52 for all remaining cycles.
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In this article, the minimum cost network flow prob-
lems [38] are considered with piecewise linear arc costs,
so called piecewise linear minimum cost network flow
problem (PLNFP). As a special subclass of minimum
cost network flow problems, general piecewise linear
network problems can be classified according to the

type of piecewise cost functions. Using general network
flow constraints, PLNFP can be stated as follows:

Given a directed graphG = (N,A) consisting of a set
N ofm nodes and a set A of n arcs, then solve [PLNFP]:

minimize f (x) D
X

(i; j)2A

fi j(xi j)

subject to
X

(k;i)2A

xki �
X

(i;k)2A

xik D bi ; 8i 2 N ; (1)

0 � xi j � ui j ; 8(i; j) 2 A ; (2)

where f is separable and each f ij is piecewise linear. For
instance, the arc cost f ij(xij) can be defined as follows:

fi j(xi j) D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

c1i j xi j C s1i j; 0 � xi j < �1i j;
c2i j xi j C s2i j; �1i j � xi j < �2i j;
:::

:::

cri ji j xi j C sr i ji j ; �
r i j�1
i j � xi j � �

r i j
i j ;

where �k
i j for k = 1 to rij � 1 are breakpoints in the given

interval [0, uij]. The constraints in (1) are called the con-
servation of flow equations. The constraints in (2) are
called capacity constraints on the arc flows. The prob-
lem is uncapacitated if uij =1, 8(i, j) 2 A.

Three specific classes of PLNFP are identified based
on the arc costs, f ij as follows:
1) Convex PLNFP.
2) Concave PLNFP.
3) Indefinite PLNFP.

In some cases, indefinite PLNFP is called discontin-
uous PLNFP, since it usually results from a set of dis-
continuities in the arc cost functions. Since the fixed
charge network flow problem (FCNFP) has a very close
relation to the PLNFP, it is important to understand
the special structure of FCNFP to solve PLNFP. Due
to the global optimality property of concave minimiza-
tion [19,33], global solutions can be obtained at ex-
treme points of feasible regions for the cases of FC-
NFP and concave PLNFP. A recent survey on min-
imum concave-cost network flow problems can be
found in [16].

Convex PLNFP

Firstly, let us consider a convex PLNFP. Suppose con-
straints are all linear, and the cost function to be mini-
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mized is separable and piecewise linear. Then the pro-
portionality assumption is violated for the cost func-
tion. However, if the piecewise linear function is con-
vex, the problem can still be modeled as an LP [29].

Let f ij(xij) denote the contribution of xij to the sep-
arable objective function. Suppose that there are rij � 1
breakpoints at which f ij(xij) changes slope, such that

0 D �0i j < �
1
i j < � � � < �

r i j�1
i j < �

r i j
i j D ui j :

Let the slope in the subinterval �k�1
i j � xij � �k

i j be c
k
i j

for k = 1 to rij, and let yki j be the portion of xij lying in
the kth subinterval, �k�1

i j to �k
i j, (i. e., y

k
i j is the length of

the overlap of the interval 0 to xij with the subinterval
�k�1
i j to �k

i j), k = 1 to rij. When defined in this manner,
the new variables y1i j , . . . , y

ri j
i j partition xij such that

xi j D y1i j C � � � C yri ji j : (3)

These variables are subject to the constraints:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

y1i j � �
1
i j

0 � y2i j � �
2
i j � �

1
i j

:::

0 � yri j�1i j � �
r i j�1
i j � �

r i j�2
i j

0 � yri ji j � �
r i j
i j � �

r i j�1
i j

(4)

and:

for every t, if yti j > 0, then each of yki j is equal to
its upper bound

�k
i j � �

k�1
i j ; 8k < t : (5)

Defining the new variables as shown above, it is
clear that f ij(xij) is equal to c1i jy

1
i j + � � � + cri ji j y

r i j
i j . If the

original separable piecewise linear objective function to
be minimized is continuous and convex so that it holds
the following increasing conditions

c1i j < � � � < cri ji j ; (6)

constraints on the new variables of the type (5) can
be ignored in the transformed model. Since convex
PLNFP is reformulated as an LP using the above tech-
nique and has specially structured network constraints,
it can be solved efficiently in polynomial time. If f ij

is not continuous the slopes do not satisfy the condi-
tion (6), then the constraints (5) must be specifically
included in the model. Since these constraints are not
linear, the transformed model is no longer an LP.

FCNFP

Due to the similarity of its structure with the piecewise
linear case, the fixed charge network flow problem (FC-
NFP) has close relations to PLNFP. It is very important
and useful to investigate some features of FCNFP even
if FCNFP does not belong to the class of PLNFP.

The FCNFP is a special case of minimum concave
cost network flow problems (MCNFP) [19], whose arc
cost function has a discontinuity at the origin. The arc
cost function f ij(xij) of the FCNFP has a form

fi j(xi j) D

(
0 if xi j D 0
si j C ci jxi j if xi j > 0;

(7)

where sij � 0 is a fixed cost for arc (i, j) 2 A.
In many practical problems, the cost of an activity

is the sum of a fixed cost and a cost proportional to
the level of the activity. FCNFP is obtained by impos-
ing a fixed cost of sij � 0 if there is positive flow on
arc (i, j) and a variable cost cij. Due to the discontinuity
of f ij, the problem can be transformed to a 0–1 mixed
integer programming problem by introducing n binary
variables, indicating whether the corresponding activ-
ity is being carried out or not. Assuming sij > 0, f ij can
be replaced by

fi j D ci jxi j C si j yi j

with

xi j � 0 and yi j D

(
0 if xi j D 0
1 if xi j > 0:

(8)

The above condition (8) can be incorporated into the
capacity constraints to yield

0 � xi j � ui j yi j; yi j 2 f0; 1g:

Hence we obtain the following formulation of the fixed
charge network flow problem FCNFPMIP:

min
X

(i; j)2A

(ci jxi j C si j yi j)
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subject to

Mx D b (9)

0 � xi j � ui j yi j ; (i; j) 2 A ; (10)

yi j 2 f0; 1g ; (i; j) 2 A ; (11)

where M is an m × n node-arc incidence matrix and
b is an m-dimensional column vector. This FCNFPMIP

can be solved by using any type of classical branch and
bound algorithms that use LP relaxations [30]. These
LP relaxations can be solved efficiently by existing lin-
ear network algorithms exploiting the special structure
of their feasible domain [18].

As we can see later, many concave and indefinite
PLNFPs can be reduced to a FCNFP model by intro-
ducing new variables and modifying problem struc-
tures. It is noticed that FCNFP models reduced from
original PLNFPs can be also transformed to a 0–1
mixed integer programming problem. Consequently,
the size of the resulting model grows very fast even if
the original PLNFP is just of medium size. This stimu-
lates the reason that many researchers have developed
new efficient schemes to improve their exact methods
(especially the branch and bound method). Indeed, the
computational effort and memory requirement to solve
large scale FCNFPmodels have been gradually reduced
in various application areas. Yet, since there is a lim-
itation for improving exact solution methods to solve
the problem in practical sense, developing a effective
approximate method is still in need.

Concave PLNFP

As different from the convex case, concave PLNFPs are
more difficult to solve since we cannot use the same
technique in the convex case to reduce the problem into
an LP. However, a concave PLNFP can be transformed
to a fixed charge network problem in an extended net-
work. The size of the extended network depends on the
number of linear pieces in each arc cost function. An
arc separation procedure (ASP) is required to solve the
problem in this way and ASP can be valid due to the
concavity of arc cost functions.

Let us consider an arc (i, j) 2 A and its arc cost f ij,
and suppose f ij has rij linear pieces as defined previ-
ously. Then arc (i, j) can be separated into rij arcs be-

tween nodes i and j for (i, j) 2 A. Each separated arc (i,
j)k for k = 1 to rij has a fixed charge cost function f kij (see
Fig. 1) defined by

f ki j(xi j) D

(
0 if xi j D 0
ski j C cki jxi j if xi j > 0:

This extended network is denoted by Ge(N, Ae) where
the number of arcs |Ae| is given by

ne D jAe j D
X

(i; j)2A

ri j :

After the ASP modification shown in Fig. 2, the origi-
nal concave piecewise linear objective function can be
expressed as a sum of fixed charge arc cost functions as
follows:

f (x) D
X

(i; j)2A

fi j(xi j)

D
X

(i; j)2A

ri jX
kD1

f ki j(x
k
i j)

D
X

(i; j)2A

ri jX
kD1

(cki jx
k
i j C ski j) : (12)

It is easy to see that the equality in (12) can not be true
in general cases without a set of constraints to restrict
a domain for each separated arc cost function. How-
ever, due to the following property from the concavity
of arc cost functions:

c1i j > � � � > cri ji j > 0 ; (13)

the equality holds for true in this case. More precisely,
f ij(xij) is equal to at most one of arc cost among all sep-
arated arc costs between node i and j at the optimality
of minimization problems. This argument can be gen-
eralized as the following property.

Proposition 1 Given an extended network described
above, if a positive flow x�i j is optimal for a minimum
concave PLNFP and if �q�1

i j < x�i j � �
q
i j for 1 � q � rij,

then it takes only one arc, (i, j)q (i. e. qth arc) among all
separated arcs between node i and j, (i, j)k for k = 1, . . . ,
rij.

Based on this, the original concave PLNFP can be re-
duced to a FCNFP with the objective function given
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Piecewise Linear Network Flow Problems, Figure 1
Example of a concave piecewise linear arc cost function

Piecewise Linear Network Flow Problems, Figure 2
Arc separation procedure

in (12) and some extended network constraints corre-
sponding to the constraints in (1). The resulting formu-
lation of a concave PLNFP is shown as follows:

min f (x) D
X

(i; j)2A

ri jX
kD1

f ki j(x
k
i j)

subject to

X
(l ;i)2A

ri jX
kD1

xk
l i �

X
(i;l )2A

ri jX
kD1

xk
i l D bi ; 8i 2 N ;

r i jX
kD1

xk
i j D xi j;8(i; j) 2 A ;

xk
i j � 0;8(i; j) 2 A; k D 1; : : : ; ri j ;

0 � xi j � ui j;8(i; j) 2 A : (14)

In the formulation, it is clear that any other set of con-
straints is not necessary to specify lower and upper

bounds for separated arcs (i, j)k 2 Ae, 8i, j 2 N, due
to the above proposition.

As a result, the solution of concave PLNFP can be
found by solving the fixed charge network problem for-
mulated as above. Thus, developing an efficient algo-
rithm to solve a FCNFP (exactly or approximately) is
a key to solve PLNFPs in this approach.

Indefinite PLNFP

Lastly, we consider a PLNFP with indefinite arc cost
functions, which is the most difficult case in this class.
The major difficulty to find exact solutions for indefi-
nite PLNFPs is originated from the structure of their arc
cost function. Obviously such cost functions are neither
convex nor concave, and possibly have a finite set of dis-
continuities. However, due to the nature of real world
applications of the model, we focus on two certain types
of arc cost function in indefinite PLNFP models, so
called staircase arc cost function [6,17,26] and sawtooth
arc cost function [26] arc cost functions, respectively.

Both arc cost functions have a very similar structure
in overall shape, however, they have a different aspect at
breakpoints. It can be described in mathematical form
as follows:
� ‘Staircase’ arc cost function (see Fig. 3):

f k�1i j (�k�1
i j ) < f ki j(�

k�1
i j C ") ;

for any " > 0 and k = 2, . . . , rij.
� ‘Sawtooth’ arc cost function (see Fig. 4):

f k�1i j (�k�1
i j � ") > f ki j(�

k�1
i j ) ;

for any " > 0 and k = 2, . . . , rij.

Moreover, it is assumed that the property of slopes
shown in (13) is still valid since it is a very general phe-
nomenon in real applications. Note that extreme point
solutions are not guaranteed in this cases since objec-
tive functions are no longer concave.

Now, we introduce an equivalent (FCNFP)MIP for-
mulation of the problem with some additional parame-
ters and binary variables. Let us define the size of inter-
val between adjacent breakpoints as

	�k
i j D �

k
i j � �

k�1
i j ;8(i; j) 2 A; k D 1; : : : ; ri j ;

(15)



2962 P Piecewise Linear Network Flow Problems

Piecewise Linear Network Flow Problems, Figure 3
Staircase arc cost function

Piecewise Linear Network Flow Problems, Figure 4
Sawtooth arc cost function

and define the gap of function values at each breakpoint
in arc cost functions as

	dk
i j D (cki j�

k�1
i j C ski j) � (ck�1i j �k�1

i j C sk�1i j )

D ski j � sk�1i j C (cki j � ck�1i j )�k�1
i j ; 8(i; j) 2 A; k ;

(16)

where s0i j = 0 and c0i j = 0 (also clearly � d1i j = s1i j). We
now let xki j be the part of xij that lies within level k (i. e.
kth subinterval), in the following sense,

xk
i j D

8̂
<̂
ˆ̂:

0 if xi j � �k�1
i j ;

xi j � �k�1
i j if �k�1

i j < xi j � �k
i j;

	�k
i j if xi j � �k

i j;

(17)

and we obtain the following equation for substitution
into (FCNFP)MIP model. We then introduce new binary
variables defined by

yki j D

(
1 if �k�1

i j < xi j
0 otherwise:

(18)

Using (15)–(18), the indefinite PLNFP under con-
sideration can be formulated as an MIP version of FC-
NFP as follows:

min
X

(i; j)2A

ri jX
kD1

(cki jx
k
i j C	dk

i j y
k
i j)

subject to constraints in (1) and

xi j D
r i jX
kD1

xk
i j 8(i; j) ; (19)

xk
i j � 	�

k
i j y

k
i j 8(i; j); k D 1; : : : ; ri j ; (20)

xk�1
i j � 	�

k�1
i j yki j 8(i; j); k D 2; : : : ; ri j ; (21)

xk
i j � 0 8(i; j); k D 1; : : : ; ri j ; (22)

yki j 2 f0; 1g 8(i; j); k D 1; : : : ; ri j : (23)

It is noticed that combining one constraint from
(20) and one from (21) yields ��k�1

i j yki j � xk�1i j �

��k�1
i j yk�1i j , which implies yki j � yk�1i j , 8(i, j), k > 1.
There is another approach to formulate the prob-

lem as a concave minimum cost network flow prob-
lem (MCNFP)model. In [26], B.W. Lamar described an
equivalent formulation ofMCNFPwith general nonlin-
ear arc costs (including the problem considered in this
section) as a concave MCNFP on an extended network.
The equivalence between the problems is based on con-
verting each arc with an arbitrary cost function in the
original problem into an arc with a concave piecewise
linear cost function in series with a set of parallel arcs,
each with a linear arc cost function (cf. [26] for de-
tails). Thus, the resulting problem is a concave MCNFP,
which is different from the FCNFP formulation model
shown above.



Piecewise Linear Network Flow Problems P 2963

Applications

Piecewise linear network models have a number of ap-
plications in various areas such as transportation prob-
lems, location problems, distribution problems, com-
munication network design problems, and economic
lot-sizing problems. Due to the structure of objective
functions (especially in concave and indefinite PLNFP
models), many real-world situations listed above can
be modeled as PLNFP. There are major applications in
the following two fields which have been studied exten-
sively by researchers.

Transportation Problems

The first major field is transportation-related prob-
lems with concave cost functions including fixed charge
cost functions. The concave cost functions in this field
are usually assumed to be piecewise linear in many
cases. A number of algorithms developed with differ-
ent schemes and their computational results have been
reported. These can be found in a limited list of refer-
ences [2,3,4,7,11,15,20,21,24,25,31,34,35].

The category of exact solution approach contains
diverse techniques based on extreme point ranking,
branch and bound, and dynamic programming meth-
ods. Since the problems can be formulated asMIPmod-
els, branch and bound approach with various branch-
ing schemes has been a major interest in the literature.

K.G. Murty [28] introduced an extreme point rank-
ing method for solving fixed charge problems. P. McK-
eown [27] extended Murty’s method to avoid some de-
generacy of the problem. Recently, Pardalos [32] dis-
cussed a range of enumerative techniques based on ver-
tex enumeration or extreme point ranking.

P. Rech and L.G. Barton [34] investigated a noncon-
vex transportation algorithm using branch and bound
approach to problems with piecewise linear cost func-
tions. These functions are approximated by a convex
envelope and solved using out-of-kilter method. C.T.
Bornstein and R. Rust [6] specialized this approach to
the problem with staircase cost function, using succes-
sive linearizations of the objective function. P.T. Thach
[37] proposed a method for decomposing the prob-
lem with a staircase structure into a sequence of much
smaller subproblems.

Lamar [25] developed a branch and bound ap-
proach for cases of capacitated MCNFP in which the

costs consist of piecewise linear segments. The problem
is formulated an MIP, with the branching variables de-
termining which linear cost region an arc flow falls into.

Recently, D. Kim and P.M. Pardalos [23] developed
a heuristic procedure for solving general FCNFP with-
out formulating it as an MIP. The procedure is consist
of solving a series of LPs to update slopes and search-
ing extreme points of the convex feasible region with
the updated slopes. This approach provides a potential
possibility of parallel implementation with different ini-
tial solutions to improve the quality of solutions. Some
heuristic approaches can be found in [8,11,21,24].

Location Problems

Another major application area is to solve location
problems. Since the problem in this field is to locate fa-
cilities and determine the size of facilities to minimize
total cost [13], it naturally involves fixed costs and/or
piecewise linear costs. Since solution methods in this
field have used network formulation in many cases,
they are quite similar to those for solving FCNFP or
PLNFP [1,10,12,22,36]. However, exploiting their cer-
tain problem structures, there are some Lagrangian ap-
proaches [5,14] to the problems.

Recently, K. Holmberg [17] proposed a decomposi-
tion and linearization approach for solving the facility
location problem with staircase costs. A comparison of
heuristic and relaxation approaches in this field can be
found in [9].

Concluding Remarks

In this article, three categories of PLNFP are identified
and formulated in general formats. Some properties
of problems in each category are investigated to show
the insight of problems including FCNFP. The concave
PLNFP is formulated as a FCNFP in MIP structure ex-
ploiting the concavity of arc cost functions. Moreover,
the indefinite (nonconvex) PLNFP is also transformed
to a FCNFP with a reduced feasible region. This implies
that the extreme point solution of the transformed FC-
NFP may not be an extreme point solution of the origi-
nal indefinite PLNFP.

A major advantage of the formulations introduced
in the paper is that solutions can be found by solving
fixed charge problems instead of solving difficult non-
convex optimization problems. As we can see in the
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transformation to FCNFP, the size of FCNFP is usually
quite large because of new binary variables introduced
in the model. Thus, developing an efficient algorithm
for large scale FCNFP can provide a key to solve con-
cave and indefinite PLNFP in practice.
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We present a new class of simplex type algorithms
for solving general linear problems. The distinguished
characteristic of the new algorithms is their capability of
generating two paths to the optimal solution. One path
is of simplex type while the other is not. The basic solu-
tions of the simplex path are not feasible. The nonsim-
plex path consists of feasible segments the endpoints of
which lie on the boundary of the feasible region. Pre-
liminary computational results indicate that the new al-
gorithms are substantially faster than the classical sim-
plex algorithm.

Introduction

The classical simplex algorithm [6] had been the most
efficient method for solving practical linear problems
until the middle of 1980s. Then N.K. Karmarkar [9] de-
veloped the first interior point algorithm. Subsequent
research led to the development of efficient interior
point algorithms which outperform the simplex algo-
rithm on large linear problems. Despite this fact the de-
velopment of pivoting algorithms that clearly outper-
form the classical simplex method remained of great in-
terest. It seems that a new class of pivoting algorithms
developed recently is more efficient than the simplex
method.

The new algorithms differ radically from the clas-
sical simplex algorithm. The basic solutions generated
are not feasible. In that sense the algorithms are ex-
terior point methods. However, the algorithms gener-
ate a second path, which consists of feasible points. In
fact, it consists of line segments the end point of which
lie on the boundary of the feasible region. As a result,
the movement between adjacent basic feasible solutions
is avoided. The geometry reveals that the new algo-
rithms are faster than the well known simplex method,
a fact that is verified by the available preliminary com-
putational results, see [2,5,8]. However, more computa-
tional results are needed to drawmore safe conclusions.

The first exterior point simplex type algorithm de-
veloped by K. Paparrizos [11] for the assignment prob-
lem. Other exterior point algorithms for network flow
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problems can be found in [1,10,15]. Paparrizos [12]
generalized his exterior point method to the general lin-
ear problem by developing a dual in nature algorithm.
Independently, a similar primal algorithm solving a se-
quence of linear subproblems is developed in [3]. The
algorithms in [12] and [3] generate two paths. One path
is feasible, the other is not. However, both paths are of
simplex type. In [13] the algorithms in [12] and [3] are
generalized, so that the feasible path is not of simplex
type. Themain algorithm presented in this paper is very
similar to the algorithm described in [13]. The algo-
rithm in [5] also generates two paths of simplex type.
One path is feasible to the primal problem while the
other is feasible to the dual problem. A generalization
to this algorithms can be found in [14].

AlgorithmDescription

Wewill describe the algorithm using the linear problem
in the standard form

(P1)

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b

x � 0

where c, x 2Rn, b 2Rm,A 2Rm × n and T denotes trans-
position. Without loss of generality we assume that A is
of full row rank, i. e., the row rank of A is m (with m <
n).

A submatrix of A consisting of m independent
columns is called basic matrix. The jth column of a ma-
trix or tableau A is denoted by aj and the ith row by
Ai. A column in a basic matrix B is called basic. The
columns not in B are called nonbasic. The submatrix of
A consisting of all the nonbasic variables is called a non-
basic matrix and it is denoted by N. Also, with B and N
we denote the sets B = {j : aj is basic}, N = {j : aj is non-
basic}. The basic and nonbasic components of a vector
x (respectively, c) are denoted by xB, xN (respectively,
cB, cN). Setting xN = 0 in the equality constraints of (P1)
we have BxB = b. From the last equation we have

xB D B�1b

The solution xB = B�1b, xN = 0 is called basic. A solution
that satisfies all the constraints of (P1) is called feasible.
Clearly, a basic solution is feasible if and only if xB � 0.

Given a basic matrix B we can use the equality con-
straints of (P1) to express the basic components xB as
a function of the nonbasic components xN :

xB D B�1b � B�1NxN :

Substituting in the objective function of (P1) we have

z D c>x D c>B xB C c>N xN
D c>B (B

�1b � B�1NxN )C c>N xN
D c>B B

�1bC (c>N � c>B B
�1N)xN :

We set

z j D c j � c>B B
�1aj

and

H D �B�1N :

The current basis B is optimal if zj � 0, j 2 N.
Now, we are ready to describe an exterior point al-

gorithm. Let B be a nonoptimal basic matrix not neces-
sarily feasible to (P1), i. e., xB = B�1b � 0. Set Q = {j: zj
< 0, j 2 N} and R = N � Q = {j: zj � 0, j 2 N}. If Q
= ;, then B is an optimal basis and xB, xN is an opti-
mal solution to (P1). In this case the algorithms stops.
Otherwise, a leaving variable xBr = xk is determined as
follows.

First an improving direction d (c|d < 0) such
that dR = 0 and dQ > 0 is constructed. The direc-
tion d is constructed in such a way so that the ray
fx : x D x C td; t > 0g must intersect the feasible re-
gion of problem (P1). In the case xB � 0, d is very easily
computed. Just set dR = 0, dQ > 0 and

dB D
X
j2Q

hjd j ; (1)

where hj = � B�1aj. The leaving variable is determined
by the following minimum ratio test,

xBr

�dBr

D min
�

xBi

�dBi

: dBi < 0
	
: (2)

Observe that the above minimum ratio test is precisely
that used by the primal simplex algorithm. However,
keep in mind that our algorithm is an exterior point
method and, hence, the basic solutions are not feasible
in general. Similar to the simplex method, the exterior
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point algorithm stops in the case dB � 0. In this case, it
can be easily shown that problem (P1) is unbounded.

After the choice of the leaving variable xBr = xk, we
proceed to the choice of the entering variable xl. It is
worth mentioning that the exterior point algorithm, al-
though of primal nature, chooses the entering and leav-
ing variables in the reverse order of that of the primal
simplex algorithm. First the leaving variable is chosen
and then the entering one. In that sense, the exterior
point algorithm resembles to the dual simplex method.
The entering variable is chosen as follows. It is set

�zp
�hr p

D min
�
�z j
�hr j

: hr j < 0; j 2 Q
	

(3)

and
�zs
�hrs

D min
�
�z j
�hr j

: hr j > 0; j 2 R
	
: (4)

Then it is set l = p, if
�zp
�hr p

�
�zs
�hrs

; (5)

and l = s, otherwise. From the way the entering variable
is chosen, it is easily seen that priotity is given to the
variables in Q.

Let by be the feasible point from which the ray
fx : x C td; t � 0g exits the feasible region. LetbB be the
new basis,bB D (B � fkg) [ flg. Also, letbx be the new
basic solution. The new direction isbd Dby�bx and a new
iteration can be initiated.

Formally, the algorithm can be described as follows.
[0] (Initialization) Start with a feasible basis B. Set N

= {1, . . . , n} � B, Q = {j 2 N : zj < 0, R = N � Q.
Construct the improving direction d, where dR = 0,
dQ = 1 and dB =

P
j 2 Qhj. Set also d0 =

P
j 2 Qzj.

[1] (Test of optimality) IfQ = ;, STOP. The current ba-
sic solution is optimal.

[2] (Choice of the leaving variable) If dB � 0, STOP.
Problem (P1) is unbounded. Otherwise, choose the
leaving variable xBr = xk from relation (2).

[3] (Choice of the entering variable) Choose the enter-
ing variable xl using the following two relations. Set

�zp
�hr p

D min
�
�z j
�hr j

: hr j < 0; j 2 Q
	

and
�zs
�hrs

D min
�
�z j
�hr j

: hr j > 0; j 2 R
	

If
�zp
�hr p

�
�zs
�hrs

;

then set l = p. Otherwise, i. e., if

�zp
�hr p

<
�zs
�hrs

;

set l = p.
[4] (Pivot operation) Set B (B � {k}) [ {l}. If l 2 Q,

then Q Q� {l} and R R [ {k}. If l 2 R then Q
 Q and R (R� {l})[ {k}. Let y be the boundary
point from which d exits the feasible region and x
the new basic solution. Set d  y � x, x  x
compute d0 =

P
j 2 Qzj and go to Step 1.

Example 1 We further illustrate the algorithm by ap-
plying it to the following linear problem.
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min z D �2x1 � 3x2 C x3 C 4x4
s.t. x1 C 4x2 C 2x3 C x4 C x5 D 8

x1 C 3x2 � 4x3 � x4 C x6 D 8
x1 C 3x2 C 2x3 � x4 C x7 D 10
x1; x2; x3; x4; x5; x6; x7 � 0:

In Step 0 we set B = [5, 6, 7]. It is easily seen that Q
= [1, 2] and R = [3, 4]. Also, (xB)| = (x5, x6, x7) = (8, 8,
10). We set d3 = d4 = 0 and d1 = d2 = 1. Then, we have
(dB)| = (d5, d6, d7) = (� 1 � 4, � 1 � 3, � 1 � 3) = (�
5, � 4, � 4). Finally, we have z1 = � 2, z2 = � 3, z4 = 1,
z5 = 4, and z6 = z7 = z8 = 0.

The algorithm does not stop in Step 1 because Q 6D
;. As dB � 0 we can choose the leaving variable. It is

min
�

x5
�d5

;
x6
�d6

;
x7
�d7

	

Dmin
�
8
5
;
8
4
;
10
4

	
D

8
5
D

x5
�d5

:

Hence, r = 1 and k = 5 (B[1] = 5). Variable xk is leaving.
For the choice of the entering variable we first com-

pute

min
�
�z1
�h11

;
�z2
h12

	
D min

�
2
1
;
3
4

	
D
�z2
h12

:

There is no j 2 R such that h1j > 0. Hence, l = 2 2 Q.
The new sets B, Q and R are B = [2, 6, 7], Q = [1] and
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R = [3, 4, 5]. The point y from which the improving
direction exits the feasible region is given by y D xCtd,
where t D x5

(�d5)
D 8

5 . Hence, y| = (0, 0, 0, 0, 8, 8, 10)
+ 8/5(1, 1, 0, 0, � 5, � 4, � 4) = (8/5, 8/5, 0, 0, 0, 8/5,
18/5). It is easily verified that the new basic solution is
x> D (0; 2; 0; 0; 0; 2; 4). The new direction is

d> D (y � x)> D
�
8
5
;
�2
5
; 0; 0; 0;

�2
5
;
�2
5

�
:

Observe that c>d < 0, dQ > 0 and dR D 0.
The algorithm is initialized with a basic feasible so-

lution. As a result a two phase or a big-M method very
similar to that of the primal simplex algorithm can be
used to solve general linear problems.

Algorithm Justification

In this section we show that the algorithm correctly
solves linear problems.We also show that the algorithm
is finite under the usual non degeneracy assumptions.

Lemma 2 If the algorithm stops at step 1, then the last
basic solution is optimal.

Proof The proof is by induction on the number of it-
erations. Assume that zj � 0 for j 2 R. It is easily seen
that this induction hypothesis is satisfied by the initial
basis. Let B be the next basis, R the updated set R and z j
the corresponding reduced costs. Then we have

z j D z j �
zl
hrl

hr j � 0; j ¤ k; j 2 R : (6)

Because of the choice of the entering variable xl we have
zl/hrl � 0. If hrj � 0, then z j � 0. If hrj > 0, (6) is equiv-
alent to

z j
hr j
�

zl
hrl

;

which holds because of the choice of the entering vari-
able. If j = k, then zk D z l

hrl
� 0. Hence, z j � 0 for

j 2 R̄.
Denote now by B the basis just before the last ba-

sis B. From the stopping condition Q = ;, we conclude
that Q D flg. A simple induction on the number of it-
erations shows that dR D 0 and dl > 0. Let d be the
direction corresponding to the increase of the entering
variable xl, l 2 Q. Then d D �d, where � > 0. Let y be

the boundary point from which d exits the feasible re-
gion. It is easily concluded that x = y� 0. Hence, the last
basic solution x is feasible. By the well known Theorem
of duality we conclude that x is optimal.

Lemma 3 If the algorithm stops at Step 2, problem (P1)
is unbounded.

Proof From d = y � x we conclude that Ad = 0. From
dR = 0 we have

c>d D
X
j2Q

z jd j

From relation (6) and a simple induction we conclude
that zj < 0 for j 2 Q. As dj � 0 we have c| d < 0. This
concludes the proof.

We show finiteness of the algorithm under the assump-
tion that the dual problem of (P1) is nondegenerate,
i. e., zj 6D 0, for j 2 N. We also assume that the initial
basic feasible solution x is nondegenerate.

Theorem4 The algorithm solves problem (P1) correctly
after a finite number of iterations.

Proof The correctness of the algorithm is an immedi-
ate consequence of Lemmas 2 and 3. Let B be the cur-
rent basis and B the previous one. Let d correspond to
B and y be the boundary point from which d exits the
feasible region. Then d D y � x, where x is the basic
solution corresponding to B. Also x D xC td � 0 for 1
� t � xbr /(� dBr ). Indeed, for t = 1 we have x D y � 0.
We conclude that xBr > 0. From the nondegeneracy as-
sumption we have zl 6D 0. Hence, the objective func-
tion decreases strictly from iteration to iteration. The
decrease is (� zl/hrl) xBr < 0. This concludes the proof.

The algorithm cycles on degenerate problems, see [12].
The primal-dual pivoting rule [5] also cycles, see [8].
However, refinements of these algorithms employing
the least index rule [4] or the lexicographic rule are cy-
cling free, see [3,12] and [8].

Computational Improvements

The algorithm performs two minimum ratio tests; one
for choosing the entering and one for choosing the leav-
ing variable. This fact may mislead someone to con-
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clude that no modifications of the algorithm are pos-
sible. This is not true. Consider the current basis B.
From the previous iteration, a boundary point y, which
is used to construct the current direction d, is available.
In [17] several heuristics for improving the point y and,
hence, reducing the number of iterations, have been de-
veloped.

The algorithm is capable of choosing the entering
variable xl so that l 2 R. Consequently, a minimum ra-
tio test involving all the nonbasic variables is necessary.
We can reduce the work per iteration by choosing the
entering variable among those belonging to Q. Then,
a variant consisting of stages is constructed. The mini-
mum ratio test of this variant is restricted to the set Q.
As a result the condition zj � 0, j 2 R is not satisfied.
However, the objective function improvement per iter-
ation is larger.

As long as the basic solutions are exterior the
boundary points y must satisfy yR = 0. This restric-
tion does not permit computation of good boundary
point. One way to cure this computational deficiency
is to force the basic solutions to be feasible to the dual
problem of (P1). This way a new primal dual algorithm
is constructed. This algorithm can be seen as a gen-
eralization of the primal dual pivoting rule discussed
in [5].

The pivoting algorithms that generate two paths
seem to be more efficient than the classical simplex al-
gorithm. Preliminary computational results reported in
[1,7] and [5] support this belief. It is worth mention-
ing that the algorithm is up to 10 times faster than the
simplex algorithm employing the maximum coefficient
rule on some specially structured linear problems of
rather small size (n � 1000), see [2]. In all computa-
tional results we are aware of the computational superi-
ority of two path pivoting algorithms over the simplex
method increases as the size of the problems increases.
This fact is very encouraging for the new algorithms.
Certainly, more computational results, particularly on
benchmark problems, are required to draw more safe
conclusions. A computational study of this type is now
under way in [16].

See also
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Introduction

Since there has been tremendous progress in planning
in the process industry during the last 25 years, it might
be worthwhile to give an overview of the current state-
of-the-art of planning problems in the process industry.
This is the purpose of the current contribution, which
has the following structure.We start with some concep-
tional thoughts and some comments on special features
of planning in the process industry. What is said in
this article applies to the chemical but also to the phar-
maceutical as well as to the food industry. The reader
will find an orientation on production planning, strate-
gic and design planning, planning under uncertainty
and multiobjective planning. In the Sect. “Model Fea-
tures in Planning Problems” the focus is on planning
features one would expect in a process industry plan-
ning model. The Sect. “Planning Under Uncertainty”
and “Multi-Criteria Planning Problems” address plan-
ning under uncertainty and multi–criteria planning.

A Definition of Planning

A definition of the term “planning” leads to a group of
related terms such as “strategic planning,” “design plan-
ning,” “master planning,” “operative planning,” and

“production planning.” Planning needs also be distin-
guished from scheduling.

A starting point could be Pochet and Wolsey (p. 3
in [21]) in their definition of production planning: Pro-
duction planning is defined as the planning of the acqui-
sition of the resources and raw materials, as well as the
planning of the production activities, required to trans-
form raw materials into finished products meeting cus-
tomer demand in the most efficient or economical way.
Note that this does not say anything about the length
of the time horizon. Their definition of supply chain
planning is similar to that of production planning, but
extends its scope by considering and integrating pro-
curement and distribution decisions. They distinguish
supply chain design problems which cover a longer
time horizon and include additional decisions such as
the selection of suppliers, the location of production fa-
cilities, and the design of the distribution system.

In this article we use planning for any type of
strategic, design, or operative planning. We always
assume that we are dealing with multisite produc-
tion networks. Operative planning includes production
planning within multisite production networks and
scheduling of individuals sites. While in production
planning the focus is rather on optimizing the trade-
off between economic objectives such as cost minimiza-
tion or maximization of contribution and the less tangi-
ble objective of customer satisfaction, in scheduling due
dates, makespan, or machine utilization becomes more
relevant. So, instead of the term “production planning”
we use the term “operative planning” (or just, “plan-
ning”), with the target of supporting decisions which
have an operative impact on a time scale of several
months, maybe up to a year. Planning involves the de-
termination of operational plans that support differ-
ent short- or mid-term objectives for the current busi-
ness and for a given multisite topology. Planning covers
a horizon from a few months to 12 months, and can be
extended to cover years (when it comes to strategic or
design planning) and time-discrete models are used. If
the time horizon becomes smaller we are in the realm
of scheduling where time-continuous models become
more efficient. Whenwe extend the time horizon we are
dealing with strategic planning or design planning cov-
ering 1 year up to 20 years. Design planning includes
those parts of the Pochet–Wolsey definition given ear-
lier that allow beyond the topology also for the design of
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production units, or the capacity of warehouses. Strate-
gic planning is more concerned with product and cus-
tomer portfolio optimization but also with the acquisi-
tion of whole production sites. Kallrath [16] elaborates
more on the concept of operative planning and the de-
sign planning problem and promotes the idea of com-
bining both in one single model.

Special Planning Features in the Process Industry

In the process industry continuous and batch produc-
tion systems can be distinguished. There exists also
semibatch production, which combines features from
both. Plants producing only a limited number of prod-
ucts each in relatively high volume typically use spe-
cial purpose equipment allowing a continuous flow of
materials in long campaigns, i. e., there is a continuous
stream of input and output products with no clearly
defined start or end time. Alternatively, small quanti-
ties of a large number of products are preferably pro-
duced using multipurpose equipment which is oper-
ated in batch mode. Batch production is characterized
by well-defined start-ups, e. g., filling in some products
and follow-up steps defined by specific tasks for heat-
ing, mixing, and reaction, and a clearly defined end for
extracting the finished product. Batch production in-
volves an integer number of batches, where a batch is
the smallest quantity to be produced; the batch size may
also vary between a lower and an upper bound. Sev-
eral batches of the same product following each other
immediately establish a campaign. Production may be
subject to certain constraints, e. g., campaigns are built
up by a discrete number of batches, or a minimal cam-
paign length (or minimal production quantity) has to
be observed. Within a fixed planning horizon, a certain
product can be produced in several campaigns; this im-
plies that campaigns have to be modeled as individual
entities. One might argue that details of the batch pro-
duction could be rather found in a scheduling model
than in scheduling. However, the model provided in
Kallrath andMaindl (Chap. 8 in [17]) is a clear example
where batch and campaign features have been incor-
porated into a time-discrete planning model enhanc-
ing it by some continuous time aspects. This problem
was solved first by Kallrath [10]. An elegant and nu-
merically more efficient formulation to add time con-
tinuity to discrete-time models was developed more re-

cently by Sürie [24]. However, it seems that this formu-
lation still needs to be extended to support multistage
production.

Chemical products produced using different pro-
duction equipment could lead to different performance
when used. Therefore, customers might require that
a product always is produced using one particular ma-
chine, or at least it is always produced using the same
machine. This feature is called origin tracing and is
treated in Kallrath [15]. Certain performance chemi-
cals or goods in the food industry have a limited shelf-
life and are subject to an expiration date, or can only
be used after a certain aging time. To trace those time
stamps requires that individual storage means are con-
sidered, e. g., containers or drums, which carry the time
stamp or the remaining shelf-life. A model formulation
is provided in Kallrath [15].

Another special feature in the refinery or petro-
chemical industry or process industry in general is the
pooling problem (see, for instance, [1], or Chap. 11
in [18]). This is an almost classic problem in non-
linear optimization. It is also known as the fuel mix-
ture problem in the refinery industry but it also
occurs in blending problems in the food industry.
The pooling problem refers to the intrinsic nonlin-
ear problem of forcing the same (unknown) frac-
tional composition of multicomponent streams emerg-
ing from a pool, e. g., a tank or a splitter in a mass-
flow network. Structurally, this problem contains in-
definite bilinear terms (products of variables) ap-
pearing in equality constraints, e. g., mass balances.
The pooling problem occurs in all multicompo-
nent network flow problems in which the conserva-
tion of both mass flow and composition is required
and both the flow and composition quantities are
variable.

Nonlinear programming (NLP) models have been
used by the refining, chemical, and other process in-
dustries for many years. These nonlinear problems are
nonconvex and either approximated by linear ones
which can be solved by linear programming (LP) or
approximated by a sequence of linear models. This se-
quential LP technique is well established in the refinery
industry but suffers from the drawback of yielding only
locally optimum solutions. Although many users may
identify obviously suboptimal solutions from experi-
ence, there is no validation of nonobvious suboptimal
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solutions, as this would require truly globally optimal
solutions. Recent advances in optimization algorithms
have yielded experimental academic codes which do
find globally optimal solutions to large scale pooling
NLPmodels [20]. Nonconvex nonlinear models are not
restricted to the oil refining and petrochemical sector,
but arise in logistics, network design, energy, environ-
ment, and waste management as well as in finance and
their solution requires global optimization.

Some Comments on Planning and Scheduling
in the Process Industry

Planning and scheduling is part of company-wide lo-
gistics and supply chain management. Planning and
scheduling are often treated as separate approaches to
avoid mathematical complexity. Depending on the level
of detail required, the borderlines between planning
and scheduling are diffuse. There could be strong over-
laps between scheduling and planning in production,
distribution, or supply chain management and strate-
gic planning. The main structural elements of planning
and scheduling in the process industry are:
� Multipurpose (multi-product, multi-mode) reac-

tors,
� Sequence-dependent set-up times and cleaning cost,
� Combined divergent, convergent, and cyclic mate-

rial flows,
� Non-preemptive processes (no interruption), buffer

times,
� Multistage, batch, and campaign production using

shared intermediates,
� Multicomponent flow and nonlinear blending,
� Finite intermediate storage, dedicated, and variable

tanks.
Structurally, in scheduling these features often lead to
allocation and sequencing problems, knapsack struc-
tures, or to the pooling problem. Although the hori-
zon of scheduling problems is usually only days to
a few weeks, time-discrete models lead to too many bi-
nary variables. Thus, time-continuous formulations are
preferable; see Janak et al. [8] or the reviews by Floudas
and Lin [4] or Floudas [2]. The largest scheduling prob-
lem using a continuous-time approach was solved by
Janak et al. [6,7]. It includes over 80 pieces of equip-
ment, considers the processing recipes of hundreds of
different products and leads to a linear mixed integer

programming (MILP) problem with up to 463,025 con-
straints, 55,531 variables, among them 8,981 binary
variables, and 1,472,365 non-zeroes.

In production or supply chain planning, we usu-
ally consider material flow and balance equations con-
necting sources and sinks of a supply network avoid-
ing some of the complicating details of scheduling.
Time-indexed models using a relative coarse discretiza-
tion of time, e. g., a year, quarters, months, or weeks,
are usually accurate enough. LP, MILP and nonlin-
ear mixed integer programming (MINLP) technologies
are often appropriate and successful for problems with
a clear quantitative objective function as outlined in
the section “Model Features in Planning Problems” or
quantitative multicriteria objectives. A typical size plan-
ning problem with four sites, 800 different products,
1,500 different combinations of product and produc-
tion plant, 10,000 different combinations of customer,
product, package and month is reported in Sect. 5.1 in
Kallrath [15]. This problem leads to over 200,000 vari-
ables, 380,000 nonzero elements, 400 integer variables,
and 900 semi-continuous variables. The number of dis-
crete variables usually can reach a few thousand.

Model Features in Planning Problems

In the literature and in available software packages
we usually find discrete-time models supporting multi-
period analysis, i. e., nearly all the data may vary over
time and allow one to evaluate scenarios that involve
time-dependent aspects such as seasonal demand pat-
terns, new product introductions, and shutdown of
production facilities for maintenance periods. These
models include the following main structural objects
which are represented by the corresponding indices of
the model:
� Locations can be production or storage sites, host-

ing plants and tanks, or demand points hosting
tanks.

� Facilities are typically production, wrapping, or in-
ventory units that are characterized by their func-
tional properties. Especially, in the process industry
we find multistage production systems involv-
ing units with general product-mode relationships.
Their functional properties are attributes such as
capacity, throughput rates, product recipes, yields,
minimum production utilization rates, fixed and
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variable costs, or storage limitations. Facilities can
be existing or potential (for design studies). Produc-
tion facilities may be subject to batch and campaign
constraints across periods.

� Demand points may represent customers, regional
warehouse locations, or distributors who specify the
quantity of a product they request. A demand point
can be also seen as a sink of the planning model,
i. e., a point where a product leaves the system and
is not traced further. Demand may be subject to cer-
tain constraints, e. g., satisfying aminimum quantity
of demand, observing origins of production, or sup-
plying a customer always from the same origin.

� Inventories may be physically fixed entities such as
tanks or warehouses but also moveable entities (e. g.,
drums, containers, boxes). They can be defined as:
1. Dedicated to a single product from one produc-
tion source,

2. Dedicated to a specific product,
3. Free to accept any product from any source or-

origin.
Wemay encounter tank farms, and especiallymulti-
purpose storage entities, i. e., variable andmultiprod-
uct tanks.

� Products may be classified as raw materials, inter-
mediates, finished, and salable products. A product
may have several of these attributes, and it can be
purchased from suppliers, produced, or sold. Prod-
ucts are produced according to the capabilities at
the facilities and the recipes assigned; they may es-
tablish a product group, e. g., additives. Product re-
quirements are based on market demand, which is
characterized by volume, selling price, package type,
time, origin, and location or by other products in
which they are used as intermediate products.

� Suppliers or vendorsmay provide products for pur-
chase under different offering schemes. This in-
cludes the ability to link the product supply to loca-
tions and describe contractual pricing mechanisms
or availability. The solver may choose the optimal
supplier.

Regarding the overall business and strategic objectives
the model needs to incorporate data describing the:
� Costs, i. e., certain fixed costs, variable costs (pro-

duction, transportation, inventory, external product
purchase, energy, resources and utilities), and other
costs,

� Commercial aspects: financial aspects such as depre-
ciation plans, discount rates, investment plans, for-
eign currency exchange rates, duties and tariffs, as
well as site-dependent taxes,

Maximize operating cash flow andmaximize net present
value (NPV) objective functions are used to determine
the financial and operating impacts of mergers, acqui-
sitions, consolidation initiatives, and capital spending
programs affecting business. In detail this may include:
1. Maximize the net profit (free design reactors; open

and close facilities),
2. Maximize the contribution margin for a fixed sys-

tem of production units,
3. Maximize the contribution margin while satisfying

a minimum percentage of demand,
4. Minimize the cost while satisfying full demand (al-

low external purchase of products),
5. Maximize total sales neglecting cost,
6. Maximize total production for a fixed system of

production reactors,
7. Maximize total production of products for which

demand exists,
8. Minimize energy consumption or the usage of

other utilities,
9. Minimize the deviation of the usage of resources

from their average usage,
10. Multicriteria objectives, e. g., maximize contribu-

tion margin and minimize total volume of trans-
port.

Objective functions 2–10 support different short- or
mid-term objectives for the current business. By using
different objective functions, one can create operational
plans that support strategies such as market penetra-
tion, top-line growth, or maximization of cash flow to
support other business initiatives.

If, besides this broad structure, the focus is on
a more detailed representation of physical entities, we
find that planning models and their constraints may in-
volve the following features (in alphabetic order):
� Batch production (see Kallrath [10]): The quan-

tity of a specific product being produced in a cam-
paign possibly over several periods must be an inte-
ger multiple of some pre-defined batch size.

� Buy, build, close, or sell specific production as-
sets (see Kallrath [12]): This feature is used for clos-
ing, or selling acquisition, consolidation and capac-
ity planning to determine the NPV and operational
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impacts of adding or removing specific assets or
groups of assets to the network.

� Campaign production (see Kallrath [10]): This al-
lows one to impose a lower and/or an upper bound
on a contiguous production run (campaign) possi-
bly across periods; this feature is also known under
the name minimal runs.

� Delay cost: Penalty costs apply if customer orders
are delivered after the requested delivery date.

� Minimum production requirements: Minimum
utilization rates modeled as semicontinuous vari-
ables have to be observed for specific production
units and/or entire production locations for each
production time period.

� Multilocations: These can be production sites, stor-
age sites, and demand points.

� Multipurpose production units (see Kallrath and
Wilson [18] or Chap. 8 in Kallrath andMaindl [17]):
If a unit is fixed to a certain mode, several prod-
ucts are produced (with different mode-dependent
daily production rates), and vice versa, a product
can be produced in different modes. Daily produc-
tion can be less than the capacity rates. A detailed
mode-changing production scheme may be used to
describe the cost and time required for sequence-
dependent mode changes.

� Multistage production (see Chap. 8 in Kallrath and
Maindl [17]): Free and fixed recipe structures can
be used for the production of multiple intermediate
products before the production of the final product
with convergent and divergent product flows. The
recipes may depend on the mode of the multipur-
pose production unit.

� Multitime periods (see Timpe and Kallrath [25]):
Nonequidistant time period scales are possible for
commercial and production needs. For instance, de-
mand may be forecast weekly for the first quarter of
the year and then quarterly for the remainder of the
year.

� Nonlinear pricing for the purchase of products [12]
or utilities (energy, water, etc.) or nonlinear cost
for inventory or transportation may lead to convex
and concave structures in order to model volume
and price discount schemes for the products or ser-
vices purchased, while, in addition, contract start-up
and cancellation fees may lead to additional binary
variables.

� Order lost cost: Penalty costs are incurred if prod-
ucts are not delivered as requested and promised.

� Packaging machines are optimized to increase ma-
chine throughput and ensure that priority is given
to the most profitable products.

� Product swaps: With the objective of saving trans-
portation and other costs companies often arrange
joint supply agreements called swaps. For example,
company 1 based in Europe as well in the USA has
a production shortage of product A in the USA and
thus purchases a defined quantity of product A in
the USA from company 2. Company 2 (also located
in the USA and Europe) has a customer in Europe
requesting product A and thus purchases a defined
quantity of product A from company 1 in Europe.
Both companies get product A where they need it
and avoid the cost of shipping the product. With-
out this type of supply agreement company 1 would
have to ship product A from its European plant to
the USA, and company 2 would have to ship prod-
uct A from its US manufacturing plant to Europe.

� Production origin tracing (see Kallrath [15]): It is
possible to define fixed, free, or unique origins for
specific demands. For example, a customer may re-
quire that his demand is satisfied only from a specific
plant in the network, or it may not be supplied from
a set of plants, or the customer only requests that he
is supplied from one unique plant during the whole
planning horizon.

� Shelf-life (see Kallrath [15]): Product aging time can
be traced. This allows for the application of con-
straints such as maximum shelf-life, disposal costs
for time-expired products, and the setting of selling
prices as a function of product life.

� Transportation and logistics (see Kallrath [13]):
Transportation quantities are appropriately mod-
eled by the use of semicontinuous variables. This
allows minimum and maximum shipment quanti-
ties to be defined for each source location, destina-
tion location, product, and transport means combi-
nation. The logistics involves the costs, lead times,
and constraints (minimum shipment quantities) as-
sociated with moving intermediate and finished
products between facilities and demand points. The
means of transport may be chosen by the optimizer
and nonlinear cost functions have to be considered
as well.
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This list covers many features but may be enhanced de-
pending on the planning problem at hand. A model
supporting these features caters to the overall busi-
ness and strategic objectives. The model incorporates
data describing the variable costs for production, trans-
portation, inventory, external product purchase, en-
ergy, resources, utilities, and further commercial as-
pects: financial aspects such as depreciation plans,
discount rates, investment plans, foreign currency
exchange rates, duties and tariffs, as well as site-depen-
dent taxes. Maximize operating cash flow andmaximize
NPV objective functions can also be used to determine
the financial and operating impacts of mergers, acqui-
sitions, consolidation initiatives, and capital spending
programs affecting business. One would expect that
a planning model supports various objective functions,
among them net profit (free design reactors; open and
close facilities), contribution margin, cost, sales, total
production, or multicriteria objectives, e. g., maximize
contribution margin and minimize total transportation
volume.

A possible extension which could relatively easily be
connected to such a model is customer or product port-
folio features as described in Kallrath [15].

Planning Under Uncertainty

In many instances, the data are not in a determinis-
tic form and this naturally leads to optimization under
uncertainty, that is, optimization problems in which at
least some of the input data are subject to errors or un-
certainties, or in which even some constraints hold only
with some probability or are just soft. Those uncertain-
ties can arise from many reasons:
1. Physical or technical parameters which are only

known to a certain degree of accuracy. Usually, for
such input parameters safe intervals can be specified.

2. Process uncertainties, e. g., stochastic fluctuations in
a feed stream to a reactor, processing times.

3. Demand and price uncertainties occur in many situ-
ations: supply chain planning, investment planning,
or strategic design optimization problems involving
uncertain demand and price over a long planning
horizon of 10–20 years.

For planning, the third point is most relevant. It is diffi-
cult to predict demand and prices, especially in strategic
or design planning problems where the time horizon

covers several years. Scenario-based optimization in the
sense of stochastic optimization leads to large number
of variables. A decision taker might be more inclined to
hedge against certain risks than to find the most proba-
ble scenario. Therefore, the robust optimization frame-
work developed by Lin et al. [9,19] seems to be more
appropriate. It provides (1) an explicit trade-off be-
tween the effect of uncertainties on the objective func-
tion of choice, (2) the unified treatment of uncertain-
ties in product demands, processing times, processing
rates, prices of products, and prices of raw materials,
and (3) the alternative deterministic equivalent models
for a variety of types of representations of uncertain-
ties through bounded, symmetric, normal, difference
of normal, binomial, discrete, and Poisson probability
distributions.

Multi-Criteria Planning Problems

In planning we may encounter the situation that there
are conflicting objectives. Maximizing the contribution
margin andminimizing the amount of stocked material
might conflict. The novice might think if the storage
costs are appropriately included in the objective func-
tion both objectives would go along with each other
very well. However, some promising sales could be lost
because not enough material had been stocked. Thus,
the goal to minimize the amount of stock is different
from maximizing the contribution margin. At least in
this example it might be possible to measure both goals
in the same unit of measure, in this case a monetary
unit. The more general situation is that we are facing
conflicting goals which cannot even be measured on
a common scale.

Multiobjective optimization, also called multicrite-
ria optimization or vector minimization problems, al-
lows one to involve several objective functions. A sim-
ple approach to solve such problems is to express all
objectives in terms of a common measure of goodness
leading to the problem how to compare different objec-
tives on a common scale. Basically, one can distinguish
two cases. Either the search is for Pareto optimal solu-
tions, or the problem has to be solved for every objective
function separately.

When minimizing several objective functions si-
multaneously the concept of Pareto optimal solutions
turns out to be useful. A solution is said to be Pareto op-
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timal if no other solution exists that is at least as good
according to every objective, and is strictly better ac-
cording to at least one objective. When searching for
Pareto optimal solutions, the task might be to find one,
find all, or cover the extremal set.

A special solution approach to multiple objective
problems is to require that all the objectives should
come close to some target, measured each in its own
scale. The targets we set for the objectives are called
goals. Our overall objective can then be regarded as to
minimize the overall deviation of our goals from their
target levels. The solutions derived are Pareto optimal.

Goal programming can be considered as an exten-
sion of standard optimization problems in which tar-
gets are specified for a set of constraints. There are
two basic approaches for goal programming: the pre-
emptive (lexicographic) approach and the Archimedian
approach. In the Archimedian approach weights or
penalties are applied for not achieving targets. A lin-
ear combination of the violated targets weighted by
some penalty factor is added, or establishes the objec-
tive function. We consider only the first approach.

In preemptive goal programming, goals are ordered
according to importance and priorities. Especially, if
there is a ranking between incommensurate objectives
available, this method might be useful. The goal at pri-
ority level i is considered to be infinitely more impor-
tant than the goal at the next lower level, i C 1. But
they are relaxed by a certain absolute or relative amount
when optimizing for the level i C 1. In a reactor design
problem we might have the following ranking: reactor
size (i D 1), safety issues (i D 2), and production out-
put rate (i D 3).

Here we provide an illustrative example for preemp-
tive (lexicographic) goal programming with two vari-
ables x and y subject to the constraint 42xC 13y � 100
as well as the trivial bounds x � 0 and y � 0. We are
given

Name Criterion Type A/P �

Goal 1 (OBJ1): 5xC 2y � 20 Max P 10
Goal 2 (OBJ3): �3xC 15y � 48 Min A 4
Goal 3 (OBJ2): 1:5xC 21y � 3:8 Max P 20

where the attribute A or P indicates whether we have
to interpret � as an absolute value or percentage-wise.
The multi-criteria LP or MILP problem is converted to
a sequence of LP or MILP problems. The basic idea is

to work down the list of goals according to the prior-
ity list given. Thus, we start by maximizing the LP with
respect to the first goal. This gives us the objective func-
tion value z�1 . Using this value z�1 enables us to convert
goal 1 into the constraint

5x C 2y � 20 � Z1 D z�1 �
10
100

z�1 : (1)

Note how we have constructed the target Z1 for
this goal (P indicates that we work percentage-wise).
In the example we have three goals with the opti-
mization sense fmax;min;maxg. Two times we apply
a percentage-wise relaxation, one time an absolute one.
Solving the original problem with the additional in-
equality (1) we get:

z�1 D �4:615385

) 5xC2y�20 � �4:615385�0:1� (�4:615385)
(2)

Now we minimize with respect to goal 2 adding (2) as
an additional constraint. We obtain

z�2 D 51:133603

) �3x C 15y � 48 � 51:133603C 4 (3)

Similarly as for the first goal, we now have to con-
vert the second goal into a constraint (3) (here we al-
low a deviation of 4) and maximize according to goal
3. Finally, we get z�3 D 141:943995 and the solution
x D 0:238062 and y D 6:923186. To be complete, we
could also convert the third goal into a constraint, giv-
ing

1:5x C 21y � 3:8 � 141:943995 � 0:2 � 141:943995

D 113:555196 :

Note that lexicographic goal programming based on
objective functions provides a useful technique to tackle
multicriteria optimization problems. The great advan-
tage is that the absolute or percentage-wise deviations
used in lexicographic goal programming based on ob-
jectives are easy to interpret. However, we have to keep
in mind that the sequence of the goals influences the
solution strongly. Therefore, the absolute or percentage
deviations have to be chosen with care. It is very im-
portant that the optimization problem can be solved to
exact optimality or at least closely to optimality because
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otherwise the interpretation of the permissible devia-
tion from targets becomes difficult if not impossible.

Goal programming offers an alternative approach
but should not be regarded as without defects. The spe-
cific goal levels selected greatly determine the answer.
Therefore, care is needed when selecting the targets. It
is also important in which units the targets are mea-
sured. Detailed treatment of goal programming appears
in such books as those by Ignizio [5] and Romero [22],
who introduce many variations on the basic idea, as
well as in that by Schniederjans [23].

Solution Approaches

Most of the planning problems in the process industry
lead toMILP orMINLPmodels and contain the follow-
ing building blocks: tracing the states of plants,modeling
production, balance equations for material flows, trans-
portation terms, consumption of utilities, cost terms, and
special model features. Mode changes, start-up and can-
cellation features, and nonlinear cost structures require
many binary variables. Minimum utilization rates and
transportation often require semicontinuous variables.
Special features such as batch and campaign constraints
across periods require special constraints to implement
the concept of contiguity [10,24]. The model, however,
remains linear in all variables. Only if the pooling prob-
lem occurs, e. g., in the refinery industry or the food in-
dustry, we are really facing a MINLP problem. For a re-
view on algorithms used in LP,MILP, NLP, andMINLP
the reader is referred to [11]. State-of-the art global
solution techniques to nonconvex nonlinear problems
were reviewed by Floudas et al. [3].

It is very convenient and saves a lot of maintenance
work if the planning model is implemented in an al-
gebraic modeling language. In modeling languages one
stores the knowledge about a model. A model coded in
a modeling language defines the problem; it usually does
not specify how to solve it. Unlike procedural languages
such as Fortran or C, modeling languages are declara-
tive languages containing the problem in a declarative
form by specifying the properties of the problem. Alge-
braic modeling languages [14] are a special subclass of
declarative languages, and most of them are designed
for specifying optimization problems, i. e., the model
can be written in a form which is close to the mathe-
matical notation. Usually they are capable of describing

problems of the form

Minimize f (x) (4)

subject to g(x) D 0 (5)

h(x) � 0 ; (6)

where x denotes a subset of X D IRm �Zn .
The problem is flattened, i. e., all variables and con-

straints become essentially one-dimensional, and the
model is written in an index-based formulation, us-
ing algebraic expressions in a way which is close to the
mathematical notation. Typically, the problem is de-
clared using sets, indices, parameters, and variables.

In a modeling language, model and model data are
kept separately. There is a clear cut between the model
structure and the data. Thus, many different instances
of the same model class with varying data can be solved.
Many systems provide an open database connectivity
(ODBC) interface for automatic database access and an
interface to the most widely used spreadsheet systems.
This relieves the user from the laborious duty of search-
ing for the relevant data every time the model is used.
A second advantage of this concept is that during the
development phase of the model (in the cycle) the ap-
proach can be tested on toy problems with small artifi-
cial data sets, and later the model can be applied with-
out change for large scale industry-relevant instances
with real data.

In an algebraic modeling language, the formulation
of the model is independent of solver formats. Differ-
ent solvers can be connected to the modeling language,
and the translation of models and data to the solver for-
mat is done automatically. This has several advantages.
The formerly tedious and error-prone translation steps
are done by the computer, and after thorough testing
of the interface errors are very unlikely. There is a clean
cut between the problem definition and the solution ap-
proach, i. e., between the modeling and the numerical,
algorithmic part. In addition, for hard problems dif-
ferent solvers can be tried, making it more likely that
a solution algorithm is found which produces a useful
result.

Modern algebraic modeling languages such as
AIMMS, GAMS, LINGO, MPL, Mosel, or OPL studio
are well suitable to implement such models (see Kall-
rath [14] to get a flavor of all of them), use state-of-
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the art commercial solvers, e. g., XPressMP (by Dash
Optimization, http://www.dashoptimization.com) or
CPLEX (by ILOG, http://www.ilog.com), and allow
one to solve even huge MILP problems with several
hundred thousand variables and constraints quite ef-
ficiently. In the case of MINLP, the solution efficiency
depends strongly on the individual problem and the
model formulation. However, as stressed in [11] for
both problem types, MILP and MINLP, it is recom-
mended that the full mathematical structure of a prob-
lem is exploited, that appropriate reformulations of
models are made, and that problem-specific valid in-
equalities or cuts are used. Software packages may also
differ with respect to the ability of presolving techniques,
default strategies for the branch-and-bound algorithm,
cut generation within the branch-and-cut algorithm,
and last but not least diagnosing and tracing infeasibili-
ties, which is an important issue in practice.

There is great progress in solving planning prob-
lems more efficiently by constructing efficient valid in-
equalities for certain substructures of planning prob-
lems. The well-written books by Wolsey [26] and
Pochet and Wolsey [21] contain many examples. These
inequalities may a priori be added to amodel, and in the
extreme case they would describe the complete convex
hull. As an example we consider the mixed-integer in-
equality

x � C� ; 0 � x � X ; x 2 IRC0 ; � 2 IN ; (7)

which has the valid inequality

x � X � G(K � �) ; where K :D
�
X
C

�
and

G :D X � C (K � 1) : (8)

This valid inequality (8) is the more useful, the more K
and X/C deviate. A special case arising often is the sit-
uation � 2 f0; 1g. Another example, taken from ([26],
p. 129) is

A1˛1CA2˛2 � BCx ; x 2 IRC0 ; ˛1; ˛2 2 IN ; (9)

which for B … IN leads to the valid inequality

bA1c˛1C

�
bA2c˛2 C

f2 � f
1 � f

�
� bBcC

x
1 � f

; (10)

where the following abbreviations are used:

f :D B�bBc ; f1 :D A1�bA1c ; f2 :D A2�bA2c : (11)

The dynamic counterpart of valid inequalities added
a priori to a model leads to cutting plane algorithms
which avoid adding a large number of inequalities a pri-
ori to the model (note this can be equivalent to finding
the complete convex hull). Instead, only those useful in
the vicinity of the optimal solution are added dynami-
cally.

With use of these techniques, for some BASF plan-
ning problems including up to 100,000 constraints and
up to 150,000 variables with several thousand binary
variables, good solutions with integrality gaps below 2%
have been achieved within 30 min on standard Pentium
machines [11].

Conclusions

Planning is strongly based on mathematical optimiza-
tion exploiting large MILP problems. Strategic, design,
and operative planning models including several hun-
dred thousand variables and constraints can be solved
efficiently using commercial algebraic modeling lan-
guages and attached MILP solvers. These models are
connected to company-wide databases.
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Introduction

Increased competition leads contractors and chem-
ical companies to look for potential savings at ev-
ery stage of the design process. Process plant lay-
out is an important part of the design or retrofit
of chemical plants, and involves decisions concern-
ing the spatial allocation of equipment items and the
required connections between them [21]. Equipment
items are allocated to one floor (single-floor case) or
many floors (multifloor case) considering a number
of cost and management or engineering drivers such
as:
� Connectivity cost, which involves the cost of piping

and other required connections between equipment
items. In addition, other related network operating
costs such as pumping may also be taken into ac-
count.

� Construction cost, which leads to the design of com-
pact plants. The trade-off between the cost of occu-
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pied area (land) and height (multifloor plants) must
also be considered here.

� Retrofit, i. e. fitting new equipment items within an
existing plant layout.

� Operation, which involves scheduling issues (e. g.
pipeless plants).

� Safety, which introduces constraints with respect
to the minimum allowable distance between equip-
ment items.

Trade-offs between connectivity, pumping, construc-
tion, financial risk and installation of potential pro-
tection devices are necessary. In order to resolve
these trade-offs optimally, computer-aided methods are
needed to support engineers in the identification of op-
timal layouts subject to multiple design criteria.

Traditionally, process plant layout decisions are ei-
ther ignored or do not receive appropriate attention
during the design or retrofit of chemical plants. Fur-
thermore, safety aspects are usually not considered
systematically within process layout, design and op-
eration frameworks, thus resulting in inefficient and
unsafe plants. It is critical that systematic and effi-
cient computer-aided methods are developed to sup-
port engineers in the rapid generation of alternative,
safe, chemical process plant layouts.

The process plant layout problem shares many sim-
ilarities with the facility layout problem, which has been
the center of interest for industrial engineers for several
years (for comprehensive reviews, see [14,18,22,36]).
Here, we focus on the chemical process plant lay-
out, which has attracted attention within the research
community because of the particular production, en-
vironmental and safety considerations of the process
industries. Such considerations affect both the objec-
tive functions and the constraints of any optimization
model used.

In this chapter, a brief review of chemical plant lay-
out research is given for the process plant layout prob-
lem and this is followed by a detailed description of an
optimization-based framework. Illustrative research is
presented by integrating traditional plant layout frame-
works with sustainability aspects. Special attention is
given to aspects associated with land use, safety and
plant location. Issues related to design/operation, pro-
duction organization and pipe routing are also dis-
cussed. Finally, other applications based on plant layout
principles are presented.

Approaches to Process Plant Layout

The initial approaches to the process plant layout prob-
lem were based on heuristics [2,35]. Although heuris-
tic approaches may be efficient from the computational
point of view, they do not offer any guarantee for the
optimality of the solution obtained. Graph-theoretic
approaches have been applied to the problem of orga-
nizing equipment items into sections for single-floor
plants [15]. A method to aid decisions concerning the
assignment of equipment items to floors in multifloor
arrangements was proposed [16], albeit with no con-
sideration of the detailed layout within each floor. Ap-
plication of stochastic optimization techniques to the
process plant layout problem was demonstrated [6,7]
by developing software tools capable of tackling larger
problems.

Recently, a number of mathematical program-
ming approaches have emerged based either on land
space discretization [11,12,34] or continuous-domain
representation [3,9,13,23,24,30]. Most of these mod-
els accommodate various important issues of the lay-
out problem, such as rectangular equipment footprints,
rectilinear distances, equipment orientation, restric-
tions on available space, layout organization into pro-
duction sections and some safety aspects (e. g. mini-
mum distances between equipment items).

The process plant layout problem is well known
as a hard computational problem. Most literature ap-
proaches, which are based on mathematical program-
ming and use branch-and-bound solution procedures,
can usually tackle flowsheets with up to 12 equip-
ment items. It has been demonstrated that the solu-
tion performance can greatly be improved with ad-
ditional simple constraints to eliminate symmetrical
layout solutions and/or tighten mathematical formu-
lation [8,9,33,37]. Furthermore, iterative optimization-
based procedures have recently been developed us-
ing construction and/or improvement solution phases,
which are suitable for larger flowsheets [17,28,40].

Next, a representative mathematical programming
framework is described, based on a continuous-domain
representation.

A Continuous-Domain Mathematical Model

A mathematical programming model for the optimal
single-floor process plant layout problem in a two-



Plant Layout Problems and Optimization P 2981

Plant Layout Problems and Optimization, Table 1
Notation

Indices

i,j Equipment items
Parameters
˛i ,ˇ i Dimensions of item i
Cij Connection cost between items i and j
Xmax Maximum x coordinate
Ymax Maximum y coordinate
Decision variables
Oi 1 if length of item i (parallel to the x axis) is equal to ˛i ; 0 otherwise
E1ij , E2ij Nonoverlapping binary variables
li Length of item i
di Depth of item i
Xi ,Yi Coordinates of the geometrical center of item i
Rij Relative distance in x coordinates between items i and j, if i is to the right of j
Lij Relative distance in x coordinates between items i and j, if i is to the left of j
Aij Relative distance in y coordinates between items i and j, if i is above j
Bij Relative distance in y coordinates between items i and j, if i is below j
Dij Total rectilinear distance between items i and j

dimensional continuous space is described here as pro-
posed previously by Papageorgiou and Rotstein [24]. In
the formulation presented here, rectangular shapes are
assumed for equipment items following current indus-
trial practice. Rectilinear distances between the equip-
ment items are used for a more realistic estimate of pip-
ing costs as either aerial or underground corridors are
usually used for the piping and instrumentation net-
work. Equipment items, which are allowed to rotate
90°, are assumed to be connected through their geomet-
rical centers.

Overall, the single-floor process plant layout prob-
lem can be stated as follows:

Given
� A set ofN pieces of equipment and their dimensions
� Connectivity network and associated costs
� Space and equipment allocation limitations
� Minimum safety distances, if any, between equip-

ment items
� Production sections
Determine
� The allocation of each equipment item (i. e. coordi-

nates and orientation)
So as to optimize a suitable criterion (here, minimize
equipment connection cost).

The indices, parameters and decision variables (bi-
nary and continuous) associated with the mathematical
model are listed in Table 1.

Next, the main mathematical constraints of the
single-floor process plant layout model are described.

Equipment Orientation Constraints The values of
length, li, and depth, di, of equipment item i depend on
its orientation in the space and can be determined by

li D ˛iOi C ˇi (1 � Oi ) 8i ; (1)

di D ˛i C ˇi � li 8i : (2)

Distance Constraints The relative distances between
items i and j are given by the following equalities:

Ri j � Li j D Xi � Xj 8(i; j) : Ci j > 0 ; (3)

Ai j � Bi j D Yi � Yj 8(i; j) : Ci j > 0 ; (4)

Di j D Ri j C Li j C Ai j C Bi j 8(i; j) : Ci j > 0 : (5)

It should be noted that the above constraints (3–5)
are written only for those equipment pairs whose rela-
tive distance occurs in the objective function (i. e. terms
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Plant Layout Problems and Optimization, Figure 1
Equipment nonoverlapping

with nonzero connection costs, Ci j > 0), which is min-
imized. As a consequence, it is guaranteed that at most
one variable of each pair (Rij,Lij) and (Aij,Bij) will be
nonzero at the optimal solution of each linear program-
ming problem during the branch-and-bound solution
procedure.

Nonoverlapping Constraints In order to avoid the
overlapping of the two equipment items i and j occu-
pying the same physical location, appropriate mathe-
matical constraints should be included in the model to
prohibit overlapping of the projections of each equip-
ment footprint either in the x or y in the dimension as
clearly shown in Fig. 1

Nonoverlapping is guaranteed if at least one of the
following conditions is active:

Xi � Xj �
(li C l j)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N ;

(6)

Xj � Xi �
(li C l j)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N ;

(7)

Yi � Yj �
(di C dj)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N ;

(8)

Yj � Yi �
(di C dj)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N :

(9)

These nonoverlapping disjunctive conditions can
mathematically be modelled by including appropriate
“big M” constraints and introducing two additional sets
of binary variables; E1ij and E2ij. Each pair of values (0
or 1) for these variables determines which constraint
from (6) to (9) is active. For every pair (i,j) such that
i < j, we have:

If constraint (6) is active, then E1i j D 0, E2i j D 0.
If constraint (7) is active, then E1i j D 1, E2i j D 0.
If constraint (8) is active, then E1i j D 0, E2i j D 1.
If constraint (9) is active, then E1i j D 1, E2i j D 1.
In summary, the nonoverlapping constraints in-

cluded in the mathematical model are:

Xi � Xj CM(E1i j C E2i j) �
(li C l j)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N

(10)

Xj � Xi CM(1 � E1i j C E2i j) �
(li C l j)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N

(11)

Yi � Yj CM(1C E1i j � E2i j) �
(di C dj)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N

(12)

Yj � Yi CM(2 � E1i j � E2i j) �
(di C dj)

2
8i D 1; : : : ;N � 1; j D i C 1; : : : ;N ;

(13)

where M is a suitable upper bound on the dis-
tance between two equipment items. Note that the
above constraints can easily be modified to include
minimum/maximum distances between specific items
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for safety and/or operational reasons (see, for exam-
ple, [24]). More systematic frameworks to account for
safety aspects are described in Sect. “Other Applica-
tions”.

Additional Layout Design Constraints Lower-
bound constraints on the coordinates of the geometri-
cal center of each equipment item should be included
in order to avoid intersection of items with the origin
of axes, achieved by

Xi �
li
2
8i ; (14)

Yi �
di
2
8i : (15)

Similarly, upper-bound constraints can be used to
force all equipment items to be allocated within a rect-
angular shape of land area defined by the corners (0,0)
and (Xmax,Ymax):

Xi C
li
2
� Xmax 8i ; (16)

Yi C
di
2
� Ymax 8i : (17)

Objective Function The objective function consid-
ered in this model is the minimization of the total con-
nection cost:

Min
X
i

X
j¤i

Ci jDi j : (18)

Other cost terms can be considered, such as land
area, construction/building, vertical/horizontal pump-
ing, protection devices and accident property damage.

All continuous variables in the formulation are de-
fined as nonnegative. Overall, the single-floor process
plant layout problem has been formulated as a mixed-
integer linear programming (MILP) model (con-
straints 1–5, 10–18). This model has also been extended
for multifloor process plant layout problems [26], com-
bined with safety aspects [25] and integrated with de-
sign/operation of pipeless batch plants [29].

Integration Aspects

In this section, additional important aspects are dis-
cussed with respect to their integration into traditional
plant layout frameworks.

Use of Land

The cost of land is an important component that should
be included in the mathematical model of the pro-
cess pant layout problem. Land cost has been implic-
itly taken into account [30] where the surface area has
been assumed to be proportional to the land occupied
by equipment items and not the space around items.
A stochastic optimization technique [7] includes ex-
plicitly the cost of land in the objective function. Both
previous efforts [7,30] refer to single-floor layouts prob-
lems.

For the multifloor plant layout case, the trade-off
between the cost of occupied area (land) and that of
construction (multiple floors) should be considered
and resolved in an optimal manner. Mathematical pro-
grammingmodels that have crucially addressed such is-
sues have been developed by Georgiadis et al. [12] and
Patsiatzis and Papageorgiou [26].

Sole consideration of land cost (and possibly to-
gether with construction, connection and pumping
costs) may result in quite a compact layout and con-
sequently a conservative layout solution from a safety
point of view. Therefore, sufficient integration of safety
aspects into existing frameworks is necessary. Such rep-
resentative research efforts are described next.

Safety

Safety aspects should be considered during the early
stages of the design process by using appropriate quan-
titative indices. Such aspects are either ignored or con-
sidered through rather simplistic terms (e. g. minimum
distances [3,24]). The safety of a chemical plant can fur-
ther be improved by either putting the plant equipment
items far apart from each other or by installing protec-
tion devices at additional capital cost, which would re-
duce the area of exposure and consequently reduce the
propagation of a potential accident. Various trade-offs
should be considered simultaneously within the process
plant layout, such as:
� Piping, pumping and land costs that increase as the

distance between equipment items increases;
� Financial risk component cost, which decreases as

equipment items are put far apart or by installing
extra protection devices; and

� Cost of protection devices, which eliminate accident
escalation.
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Along the above directions, a mathematical program-
ming model-based approach was introduced by Pen-
teado and Ciric [30], which resulted in mixed-integer
nonlinear programming (MINLP) models determining
simultaneously the process plant layout, the number
and the type of protection devices and the financial
risk associated with accidents and their propagation to
neighboring units, assuming circular equipment foot-
prints. An alternative MINLP model has also been pro-
posed [27] by adopting rectangular shapes and recti-
linear distances between units. Both these studies were
based on a risk representation related to accidents prop-
agating from a source to a target unit utilizing the
equivalent TNT method [19]. An evolutionary proce-
dure was proposed by Fuchino et al. [10] for the ar-
rangement of equipment models in the early design
phase by considering simultaneously the position and
the orientation of equipmentmodules, as both affect the
propagation of an accident.

Two widely used indices for risk assessment and
safety evaluation are the Mond Index [20] and the Dow
Fire and Explosion Index [1]. The use of the Mond
Index was illustrated by Castell et al. [7] by adding
a penalty term in the objective function, which mini-
mizes any violations of Mond safety distances. User in-
tervention is crucial in this work to ensure the feasibil-
ity of all separation distance requirements. Finally, the
use of the Dow Fire and Explosion Index was demon-
strated by Patsiatzis et al. [25] by proposing an MILP
approach to safe process plant layout. This index de-
termines the realistic maximum loss occurring under
the most adverse operating conditions and is applicable
to processes where flammable, combustible or reactive
material is stored or processed. It is based on historic
loss data, the energy potential of the processed materi-
als in the chemical plants and the current application of
loss-prevention practices.

Location Information

Integration of location-specific information with the
decision-making procedure for the process plant lay-
out problem was successfully demonstrated by Ozyurt
and Realff [23]. Such information is related to existing
infrastructure, geographic aspects, climate conditions,
elevation and soil characteristics. The location-specific
information system is first used to derive conclusions

about the plant environment, and these are then trans-
lated into additional mathematical constraints on the
process plant layout problem by restricting some equip-
ment locations.

Design and Operation

The process plant layout decisions are traditionally
considered after the plant design stage has been com-
pleted. However, it is obvious that strong interactions
exist between plant layout and plant design and there-
fore significant benefits could be gained by develop-
ing systematic, simultaneous approaches. Such an ap-
proach was proposed by Barbosa-Povoa et al. [4], where
an MILP model was shown to be particularly suitable
for cases with equipment of rectangular and irregular
shapes as well as flexible equipment input/output point
locations. The latter model has been integrated with
operating aspects and applied to multipurpose batch
plants [5].

It should be noted that layout considerations are of
particular significance for pipeless plants as they deter-
mine the vessel transfer times, which can then affect
the schedule of the plant. Simultaneous optimization-
based approaches have also been developed for pipeless
batch pants, which offer enhanced production flexibil-
ity and piping-free cleaning requirements, by consider-
ing plant design, layout and operation aspects [29,31].

Layout Organization into Production Sections

The organization of the plant layout problem into well-
defined production sections is often required for vari-
ous reasons, such as safety, efficient material handling
and workforce management. The boundaries of these
sections are drawn by walls or corridors, which facili-
tate the movement of materials and/or operators.

The organization of the plant layout into sections
can formally be incorporated into the process plant lay-
out mathematical model presented in Sect. “A Continu-
ous-Domain Mathematical Model”. The basic assump-
tion is that the equipment items are partitioned into
subsets by using either rule-based/intuitive techniques
or algorithmic approaches (see, for example, [15]).
Each subset of equipment items constitutes a section,
and then each section can then be represented by
a well-defined rectangular box. New constraints must
be introduced to guarantee that no overlapping occurs
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(1) among different sections and (2) among the foot-
prints within each section [24]. The aim of the op-
timization is then to determine the location of both
production sections and equipment items within each
section so that the total layout cost is minimized.

Pipe Routing

The design of the piping system in a chemical plant
constitutes an important part of deriving an efficient
plant layout (apart from pipeless plants) and should
be considered as early as possible in the design pro-
cess. A number of factors should be taken into ac-
count, such as cost, safety, operability and struc-
tural/mechanical aspects. A pipe-routing method was
proposed by Schmidt-Traub et al. [32] using grid
and vector router algorithms. Optimization-based and
graph theory methods have also been described by Gui-
rardello and Swaney [13], which could include capacity
constraints, pipes with branches and stress analysis.

Other Applications

This section demonstrates the application of basic plant
layout principles to two interesting problems: alloca-
tion and data classification.

Allocation

Allocation problems, which include plant layout prob-
lems, with different numbers of dimensions have been
research topics of great activity for many years. Most
allocation problems are large-scale combinatorial op-
timization problems, occurring in several different in-
dustrial applications. A general purpose MILP model
for allocation problems in any given number of dimen-
sions has been presented [38]. This mathematical for-
mulation utilizes a type of nonoverlapping constraints
similar to those presented in Sect. “A Continuous-Do-
main Mathematical Model”. The proposed model deals
with the allocation of items in an N-dimensional space.
Several problems, previously presented in the litera-
ture, have been solved using the proposed model, such
as one-dimensional scheduling problems, two-dimen-
sional cutting problems, as well as plant layout prob-
lems and three-dimensional packing problems. Prob-
lems defined in four dimensions are also presented and
solved using the model described above.

Data Classification

Beyond chemical plant design, basic plant layout prin-
ciples can also be applied to data classification problems
as illustrated here. Data classification, a fundamental
problem in data mining and machine learning, deals
with the identification of patterns and the assignment of
new samples into known groups. A rigorous mixed-in-
teger optimization model for multiclass data classifica-
tion problems has been proposed [39] using a hyperbox
representation. The optimal location and dimension of
each box is determined by minimizing the total num-
ber of misclassifications. Special constraints are intro-
duced to avoid overlapping of boxes that belong to dif-
ferent classes. These constraints simply represent an
extension of those described in Sect. “A Continuous–
Domain Mathematical Model” to cover more than two
dimensions.

Concluding Remarks

In this chapter, a comprehensive review of the chemical
plant layout research has been presented. Systematic,
optimization-based frameworks for plant layout have
the potential to offer contractors and chemical compa-
nies significant savings and increase business competi-
tiveness. The future will show additional benefits if is-
sues related to dynamic plant layout, uncertainty and
more efficient solution procedures for larger problems
are resolved.
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It is considered that the behavior of an object at any in-
stant of time is characterized by n real numbers x1, . . . ,
xn. The vector space X of the vector variable x = (x1, . . . ,
xn) is the phase space of the object under consideration.
The motion of the object consists of the fact that the
variables x1, . . . , xn change with time. It is assumed that
the object’s motion can be controlled, i. e., that the ob-
ject is equipped with certain controllers on whose po-
sition the motion of the object depends. The positions
of the controllers are characterized by points u = (u1,
. . . , ur) of a certain control region U, which may be any
set in some r-dimensional Euclidean space. In applica-
tions, the case where U is a closed region in the space is
especially important.

In the statement of the problem it is assumed that
the object’s law of motion can be written in the form of
a system of differential equations

dxi

dt
D fi(x; u); i D 1; : : : ; n ; (1)

or in vector from

dx
dt
D f (x; u) ; (2)

where the functions f i are defined for x 2 X and u 2 U.
They are supposed to be continuous in the variables x1,
. . . , xn, u and continuously differentiable with respect to
x1, . . . , xn.

If the control law is given, i. e., a certain admissible
control u = u(t) is chosen, (2) takes the form

dx
dt
D f (x; u(t)) ; (3)

fromwhich, for any initial condition x(t0) = x0, the mo-
tion of the object x = x(t) is uniquely determined, i. e.,
the solution of (3) is defined for a certain time inter-
val. The solution x(t) is called the solution of (2) cor-
responding to the control u(t) for the initial condition
x(t0) = x0. The solution may not be defined on the en-
tire interval t0 � t � t1 on which u(t) is given as it may
run off to infinity.

It is said that the admissible control u(t), t0 � t �
t1 transfers the phase point from the position x0 to the
position x1 if the corresponding solution x(t) of (2), sat-
isfying the initial condition x(t0) = x0, is defined for all
t, t0 � t� t1, and passes through the point x1 at the time
t1.

It is supposed that an additional function f 0(x, u),
which is defined and continuous together with its par-
tial derivatives @f 0/ @xi, i = 1, . . . , n, on all of X × U, is
given. The fundamental problem of finding the optimal
controls is formulated as follows [1].

In the phase space X two points x0 and x1 are given.
Among all the admissible controls u = u(t) which trans-
fer the phase point from the position x0 to the position
x1 (if such controls exist), find one for which the func-
tional

J D
Z t1

t0
f0(x(t); u(t)) dt (4)

takes on the least possible value. Here x(t) is the solu-
tion of (2) with initial condition x(t0) = x0 correspond-
ing to the control u(t) and t1 is the time at which this so-
lution passes through x1. The control u(t) which yields
the solution of the problem is called an optimal control
corresponding to a transition from x0 to x1. The corre-
sponding trajectory x(t) is called an optimal trajectory.

An important special case of the fundamental prob-
lem is the one where f 0(x, u)� 1. In this case, the func-
tional (4) takes the form

J D t1 � t0

and the optimality of the control u(t) signifies minimal-
ity of the transition time from x0 to x1. The problem of
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finding the optimal controls and trajectories in this case
is called the time-optimal problem.

In order to formulate the necessary optimality con-
dition it is convenient to adjoin a new coordinate x0 to
the phase coordinates x1, . . . , xn, which vary according
to (1). Let x0 vary according to the law

dx0

dt
D f0(x1; : : : ; xn ; u(t))

and consider the system of differential equations

dxi

dt
D fi(x; u); i D 0; : : : ; n ; (5)

whose right-hand sides do not depend on x0. Introduc-
ing the vector

x D (x0; : : : ; xn)

in the (n + 1)-dimensional vector space X, system (5)
may be rewritten in vector form

dx̄
dt
D f (x; u) ;

where f (x; u) is the vector in X with coordinates f 0(x,
u), . . . , f n(x, u). Note that f (x; u) does not depend on
the coordinate x0 of the vector x.

To formulate the theorem, which yields the solution
of the fundamental problem, in addition to the funda-
mental system (5) another system of equations

d i

dt
D �

nX
jD0

@ f j(x; u)
@xi  j ; i D 0; : : : ; n ; (6)

in the auxiliary variables  0, . . . ,  n is considered.
If we choose an admissible control u(t), t0 � t �

t1, and have the corresponding phase trajectory x(t) of
system (5) with initial condition x(t0) = x0, system (6)
takes the form

d i

dt
D �

nX
jD0

@ f j(x(t); u(t))
@xi  j ; (7)

where i = 0, . . . , n.
This system is linear and homogeneous. Therefore,

for any initial condition it admits the unique solution

 D ( 0; : : : ;  n)

for the  i, which is defined on the entire interval t0 �
t � t1. Just as the solution x(t) of (5), the solution of
(7) consists of continuous functions  i(t) which have
everywhere, except at a finite number of points, i. e., at
the points of discontinuity of u(t), continuous deriva-
tives with respect to t. For any initial condition each so-
lution of (7) is called the solution of (6) corresponding
to the chosen control u(t) and phase trajectory x(t).

Systems (5) and (6) are combined into one entry. To
do so the function

H( ; x; u) D ( ; f (x; u)) D
nX

jD0

 j f j(x; u)

of the variables

x1; : : : ; xn ;  0; : : : ;  n ; u1; : : : ; ur

is considered.
The systems (5) and (6) may be rewritten with the

aid of the function H in the form of the Hamiltonian
system

dxi

dt
D
@H
@ i ; i D 0; : : : ; n ; (8)

d i

dt
D �

@H
@xi ; i D 0; : : : ; n : (9)

Thus, taking an arbitrary admissible, i. e., piecewise
continuous, control u(t), t0 � t � t1, and the initial
condition x(t0) D x0, the corresponding trajectory
x(t) D (x0(t); : : : ; xn(t)) can be found. After that the
solution of (9),

 (t) D ( 0(t); : : : ;  n(t)) ;

corresponding to the functions u(t) and x(t) can be
found. It should be emphasized that the vector func-
tions x(t) and  (t) are continuous and have every-
where, except at a finite number of points, continuous
derivatives with respect to t.

For fixed values of  and x the function H becomes
a function of the parameter u 2 U. The least upper
bound of the values of this function is denoted by

M( ; x) D sup
u2U

H( ; x; u) :

If the continuous function H achieves its upper bound
on U, then M( ; x) is the maximum of the values of H
for fixed  and x.
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A necessary condition for optimality is given by
Theorem 1, which is called themaximum principle [1].

Theorem 1 Let u(t), t0 � t � t1, be an admissible con-
trol such that the corresponding trajectory x(t)which be-
gins at the point x0 at the time t0 passes at some time
t1 through a point on a line ˘ . In order that u(t) and
x(t) be optimal it is necessary that there exist a nonzero
continuous vector function  (t) D ( 0(t); : : : ;  n(t))
corresponding to u(t) and x(t) such that
1) for every t, t0 � t � t1, the function H( (t); x(t); u)

of the variable u 2 U attains its maximum at the
point u = u(t),

H( (t); x(t); u(t))D M( (t); x(t)) ; (10)

2) at the terminal time t1 the relations

 0(t1) � 0; M( (t1); x(t1)) D 0 (11)

are satisfied. Furthermore, it turns out that if
 (t); x(t) and u(t) satisfy system (8)–(9) and condi-
tion 1), the time functions  0(t) and M( (t1); x(t1))
are constant. Thus, (11) may be verified at any time
t, t0 � t � t1, and not just at t1.

From Theorem 1 an analogous necessary condition for
time optimality can be derived. To do this, it is neces-
sary to set f 0(x, u) of Theorem 1 equal to 1. The function
H then takes the form

H D  0 C

nX
jD1

 j f j(x; u) :

Introducing the n-dimensional vector  = ( 1, . . . , n)
and the function

H0( ; x; u) D
nX

jD1

 j f j(x; u) ;

equations (1) and (6) can be rewritten in the form of the
Hamiltonian system

dxi

dt
D
@H0

@ i
; i D 1; : : : ; n ; (12)

d i

dt
D �

@H0

@xi ; i D 1; : : : ; n : (13)

For fixed values of and x,H0 is a function of u. The
upper bound of the values of this function is denoted by

M0( ; x) D sup
u2U

H0( ; x; u) :

Because

H0( ; x; u) D H( ; x; u) �  0 ;

then

M0( ; x) D M( ; x) �  0 ;

and therefore (10) and (11) now take the form

H0( (t); x(t); u(t))DM0( (t); x(t))

D �  0 � 0 :

Thus, the following theorem is valid [1].

Theorem 2 Let u(t), t0 � t � t1, be an admissible con-
trol which transfers the phase point from x0 to x1 and let
x(t) be the corresponding trajectory, so that x(t0) = x0,
x(t1) = x1. In order that u(t) and x(t) be time-optimal it
is necessary that there exist a nonzero, continuous vector
function  (t) = ( 1(t), . . . ,  n(t)) corresponding to u(t)
and x(t) such that
1) for all t, t0 � t � t1, the function H0( (t), x(t), u) of

the variable u 2 U attains its maximum at the point
u = u(t),

H0( (t); x(t); u(t))D M0( (t); x(t)) ;

2) at the terminal time t1 the relation

M0( (t1); x(t1)) � 0 (14)

is satisfied. Furthermore, it turns out that if (t), x(t)
and u(t) satisfy system (12)–(13) and condition 1), the
time function M0( (t), x(t)) is constant. Thus, (14)
may be verified at any time t, t0 � t � t1, and not just
at t1.

From among all the trajectories which start at x0 and
end on some point of ˘ (as well as the corresponding
controls), Theorem 1 allows us to single out those sep-
arate, isolated trajectories and controls which satisfy all
the formulated conditions. In fact, there are 2n + 3 rela-
tions (8)–(10) for 2n + 3 variables xj, j and u. Further-
more, since (10) is not differential and the number of
differential equations equals 2n + 2, the solutions of the
system (8)–(10) in general depend on 2n + 2 parame-
ters. However, one of these parameters is redundant as
the functions  j(t) are defined only up to a common
multiple. In addition, one of the parameters is deter-
mined by the condition that

max
u2U

H( (t0); x(t0); u)

vanishes.
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Thus, there are 2n parameters, on which the whole
manifold of solutions of (8)–(10) depends. It follows
that 2n parameters must be chosen in such a way that
the trajectory x(t) passes through x̄0 at the given time
t = t0 and through a point of ˘ for some t > t0. The
number t1 � t0 is also a parameter, so that there are al-
together 2n + 1 essential parameters. The condition that
the trajectory must pass through the point x0 and the
line˘ gives rise to 2n + 1 relations. Hence, one can ex-
pect that there exist only separate, isolated trajectories
joining the point x0 with the line ˘ , which satisfy the
conditions of Theorem 1. Only these separate, isolated
trajectories can turn out to be optimal.

See also

� Dynamic Programming: Continuous-Time Optimal
Control

� Hamilton–Jacobi–Bellman Equation
� High-Order Maximum Principle for Abnormal

Extremals
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Portfolio Selection Problem

The heart of the portfolio problem is the selection of an
optimal set of investment assets by rational economic
agents. Elements of portfolio problems were discussed
in the 1930’s and 1940’s by J.R. Hicks, [19], J. Marschak
[46], D.H. Leavens [37], J.B. Williams [62], and oth-
ers; see [45] for a survey of these early contributions.
However, the first formal specification of such a selec-
tion model was by H.M. Markowitz [40,42] who de-
fined a mean-variance model for calculating optimal
portfolios; see also A.D. Roy [51], whose first safety
model is very close to the mean value model. Follow-
ing [55,58,59] and [50], this portfolio selection model
may be stated as:

8̂
<̂
ˆ̂:

min x0Vx
s.t. x0r D rp

x0e D 1;

(1)

where x is a column vector of investment proportions
in each of the risky assets, V is a positive semidefinite
variance-covariance matrix of asset returns, r is a col-
umn vector of expected asset returns, rp is the investor’s
target rate of return and e is a column unit vector. An
explicit solution for the problem can be found using the
procedures described in [47,66], or [50].

Restrictions on short selling can bemodeled by aug-
menting (1) by the constraints:

x � 0 ; (2)

where 0 is a column vector of zeros. The problem now
becomes a classic example of quadratic mathematical
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programming; indeed, the development of the portfo-
lio problem coincided with early developments in non-
linear programming. Markowitz’s [41] critical line al-
gorithm is a systematic solution procedure. Formal in-
vestigations of the properties of both formulations, and
variants, appear in [22,57], and the references above.

The Use of Mean And Variance

The economic justification for this model is based on
the von Neumann–Morgenstern expected utility re-
sults, discussed in this context by Markowitz [42]. The
model can also be viewed in terms of consumer choice
theory together with the characteristics model devel-
oped by K. Lancaster [36]. His argument is that goods
purchased by consumers seldom yield a single, well de-
fined service; instead, each goodmay be viewed as a col-
lection of attributes each of which gives the consumer
some benefit (or dis-benefit). Thus preference is defined
over those characteristics embodied in a good rather
than over the good itself. The analysis focusses atten-
tion on the attributes of assets rather than on the assets
per se. This requires the assumption that utility depends
only on the characteristics. With k characteristics, Ck,
we need

U D f (W) D g(C1; : : : ;Ck ) ;

where U and W represent utility and wealth. Model-
ing too few characteristics will yield apparently false
empirical results. Clearly, the benefits of this approach
increase as the number of assets rises relative to the
number of characteristics. The objects of choice are the
characteristics C1, . . . , Ck. In portfolio theory, these are
taken to be payoff (return) and risk.

At Markowitz’s suggestion, when dealing with
choice among risky assets, payoff is measured as the
expected return of the distribution of returns, and risk
by the standard deviation of returns. Apart from mi-
nor exceptions, see [66], this pair of characteristics form
a complete description of assets which is consistent
with expected utility theory in only two cases: assets
have normal distributions, or investors have quadratic
utility of wealth functions. The adequacy of these as-
sumptions has been investigated by a number of au-
thors (e. g., [5,16,60]). Although returns have been
found to be nonnormal and the quadratic utility has
a number of objectionable features (not least diminish-

ing marginal utility of wealth for high wealth), several
authors demonstrate approximation results which are
sufficient for mean variance analysis ([39,49,52]).

A number of authors, including Markowitz [42],
consider alternatives to the variance and suggest the
use of the semivariance. This suggestion has been ex-
tended into workable portfolio selection rules. E. Fama
[14] and S. Tsiang [61] have argued the usefulness of
the semi-interquartile range as a measure of risk. A.
Kraus and R.F. Litzenberger [35] and others have ex-
amined the effect of preferences defined in terms of the
third moment which allows investor choice in terms of
skewness. J.G. Kallberg and W.T. Ziemba [31,32] show
that risk aversion preferences are sufficient to deter-
mine optimal portfolio choice if assets have normally
distributed returns whatever the form of the assumed,
concave, utility function.

Solution of Portfolio Selection Model

In the absence of short sales restrictions, (1) can be
rewritten as

min L D
1
2
x0Vx � �1(x0r � rp) � �2(x0e � 1) : (3)

The first order conditions are

Vx D �1r C �2e ;

which shows that, for any efficient x, there is a linear re-
lation between expected returns r and their covariances,
Vx.

Solving for x:

x D �1V�1r C �2V�1e D V�1[r e]A�1[rp 1]0 ; (4)

where

A D
�
a b
b c

�
D

�
r0V�1r r0V�1e
r0V�1e e0V�1e

�
:

Substituting (4) into the definition of portfolio variance,
x0V x, yields

Vp D [rp1]A�1[rp1]0 ;

Sp D

"
cr2p � 2brp C a

ac � b2

# 1
2

;
(5)

where Vp and Sp represent portfolio variance and stan-
dard deviation, respectively. This defines the efficient
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set, which is a hyperbola in mean/standard-deviation
space (or a parabola in mean/variance space). The min-
imum risk is at Smin = c½ and rmin = b/c (both strictly
positive). Rational risk averse investors will hold port-
folios lying on this boundary with r � rmin.

Each efficient portfolio, p, has an orthogonal port-
folio z (i. e., such that Cov(rp, rz) = 0) with return

rz D
a � brp
b � crp

:

Using this, the efficient set degenerates into the straight
line tangent to the hyperbola at p which has intercept
rz :

r D rz C �s ; (6)

where r and s represent vectors of the expected return
and risks of efficient portfolios, and � = (rp � rz)/Sp can
be interpreted as the additional expected return per unit
of risk. This is known as the Sharpe ratio [54,56]. Equa-
tion (6) shows a two-fund separation theorem, that lin-
ear combinations of only two portfolios are sufficient to
describe the entire efficient set.

Under the additional assumptions of homogeneous
beliefs (so that all investors perceive the same param-
eters) and equilibrium, (6) becomes the capital mar-
ket line. The security market line (i. e. the relationship
between expected returns and systematic risk or beta),
which is the outcome of the capital asset pricing model
(CAPM), can be derived by premultiplying (4) byV and
simplifying using the definitions of Vp and rz :

r D rz e C (rp � rz)ˇ ; where ˇ D
Vx
Vp

: (7)

If it exists, the risk-free rate of interest may be substi-
tuted for rz (definitionally, the risk-free return will be
uncorrelated with the return on all risky assets). Equa-
tion (7) then becomes the original CAPM in which
expected return is calculated as the risk-free rate plus
a risk premium (measured in terms of an asset’s co-
variance with the market portfolio). The CAPM forms
one of the cornerstones of modern finance theory and
is not addressed here. Discussion of the CAPM can be
found in [22] and [17], while systematic fundamental
and seasonal violations of the theory are presented in
[63] and [34].

Short Selling

The assumption that assets may be sold short (i. e., xi
< 0) is justified when the model is used to derive an-
alytical results for the portfolio problem. Also, when
considering equilibrium (e. g., the CAPM), none of the
short selling constraints should be binding (because in
aggregate, short selling must net out to zero). However,
significant short selling restrictions do face investors
in most real markets. These restrictions may be in the
form of absolute prohibition, the extra cost of deposits
to back short selling or self imposed controls designed
to limit potential losses. For example, the NYSE im-
poses the ‘uptick rule’ under which short sales are al-
lowed only if the price of the immediately preceding
trade was higher than, or equal to, the trade preceding it
(as short selling is profitable when themarket is falling),
this rule substantially limits its attractiveness.

The set of quadratic programming problems to find
the efficient frontier when short sales are ruled out can
be formulated as either minimising the portfolio risk
for a specified sequence of portfolio returns (rp) by re-
peatedly solving equations (1) and (2), or maximising
the weighted sum of portfolio risk and return for a cho-
sen range of risk-return trade-off parameters (�) by re-
peatedly solving (8). This latter approach has the ad-
vantages of locating only points on the efficient frontier
and, for evenly spaced increments in �, locating more
points on the efficient frontier where its curvature is
greatest.

8̂
<̂
ˆ̂:

max ˛ D x0Vx � �(x0r � rp)
s.t. x � 0

x0e D 1:

(8)

When short sales are permitted, a position (long or
short) is taken in every asset, while when short sell-
ing is ruled out, the solution involves long positions in
only about 10% of the available assets. When short sell-
ing is permitted, about half the assets are required to
be sold short, often in large amounts, and sometimes
in amounts exceeding the initial value of the invest-
ment portfolio. Indeed, this is the main activity of ‘short
seller’ funds.

In contrast, most models based on portfolio theory,
in particular the CAPM, ignore short selling constraints
[43,44]. This change is consistent with the development
of equilibrium models for which institutional restric-
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tions are inappropriate (and if imposed would not be
binding). However, when short selling is permitted, the
number of asset return observations is required to ex-
ceed the number of assets, while complementary slack-
ness means that this condition need not be met when
short selling is ruled out. Computational procedures to
solve mean-variance models with various types of con-
straints, and the optimal combination of safe and risky
assets for various utility functions are discussed in [65].

Estimation Problems

The model (1) requires estimates of r and V for the
period during which the portfolio is to be held. This
estimation problem has been given relatively little at-
tention, and many authors, both practitioners and aca-
demics, have used historical values as if they were pre-
cise estimates of future values. However, S.D. Hodges
and R.A. Brealey [21], among others, demonstrate the
benefits obtained from even slight improvements on
historical data.

Estimation risk can be allowed for either by using
different methods to forecast asset returns, variances
and covariances, which are then used in place of the
historical values in the portfolio model, or by using
the historical values in a modified portfolio selection
technique [2]. Since the portfolio selection model of
Markowitz takes these estimates as parametric, there is
no theoretical guidance on the estimation method and
a variety of methods have been proposed to provide the
estimates. The Sharpe single index market model [53]
has been widely applied to forecast the covariance ma-
trix. Originally proposed to reduce the computation re-
quired by the full model, it assumes a linear relation
between stock returns and some measure of the mar-
ket, r = ˛ + ˇ0m + " (for market index m and residuals
"). This uses historical estimates of the means and vari-
ances; however, the implied covariance matrix is V1 =
�m ˇˇ

0 + V , where �m is the variance of the index, ˇ
is a column vector of slope coefficients from regressing
each asset on the market index and V is a diagonal ma-
trix of the variances of the residuals from each of these
regressions. A number of studies have found that mod-
els based on the single index model outperform those
based on the full historical method, see e. g. [4].

The overall mean method, first proposed in [12],
is based on the finding that, although historical esti-

mates of means are satisfactory, data are typically not
stable enough to allow accurate estimation of the N(N
� 1)/2 covariance terms. The crudest solution is to as-
sume that the correlations between all pairs of assets
expected in the next period are equal to the mean of
all the historic correlations. An estimate of V can then
be derived from this. E.J. Elton, M.J. Gruber and T.J.
Urich [13] compared the overall mean method of fore-
casting the covariance matrix with forecasts made us-
ing historical values, and four alternative versions of
the single index model. They concluded that the over-
all mean model was clearly superior. A simplified pro-
cedure for estimating the overall mean correlation ap-
pears in [1].

In recent years, statisticians have shown increas-
ing interest in Bayesian methods [20] and particularly
James–Stein estimators ([10,11,30,48]). The intuition
behind this approach is that returns which are far from
the norm have a higher chance of containing mea-
surement error than those close to it. Thus, estimates
of returns, based on individual share data, are cross-
sectionally ‘shrunk’ towards a global estimate of ex-
pected returns which is based on all the data. Although
these estimators have unusual properties, they are gen-
erally expected to perform well in large samples.

P. Jorion [27,28] examined the performance of
Bayes–Stein estimation using both simulated and small
real data sets and concluded that the Bayes–Stein ap-
proach outperformed the use of historical estimates of
returns and the covariance matrix. However, he found
[29] that the index model outperformed Stein and his-
torical models. J.L.G. Board and C.M.S. Sutcliffe [4] ap-
plied these and other methods to large data sets. They
found that, in contrast to earlier studies, the relative
performance of Bayes–Stein was mixed. While it pro-
duced reasonable estimates of the mean returns vec-
tor, there were superior methods (e. g., use of the over-
all mean) for estimating the covariance matrix when
short sales were permitted. They also found that, when
short sales were prohibited, actual portfolio perfor-
mance was clearly improved, although there was lit-
tle to choose between the various estimation meth-
ods.

An alternative approach is to try to control for
errors in the parameter estimates by imposing addi-
tional constraints on (1). Clearly, ex-ante the solu-
tion to such a model cannot dominate (1), however,
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ex-post, dominance might emerge (i. e., what seems,
in advance, to be an inferior portfolio might actu-
ally perform better than others). The argument is that
adding constraints to (1) to impose lower bounds (i. e.,
prohibiting short sales) and/or upper bounds (forc-
ing diversification) can be used as an ad hoc method
of avoiding the worst effects of estimation risk. Of
course, extreme, but possibly desirable, corner solu-
tions will also be excluded by this technique. K.J. Co-
hen and J.A. Pogue [8] imposed upper bounds of 2.5%
on any asset. Board and Sutcliffe [3] studied the ef-
fects of placing upper bounds on the investment pro-
portions, which may be interpreted as a response to
estimation risk. Using historical forecasts of returns
and the covariance matrix, and with short sales ex-
cluded, they found that forcing diversification leads to
improved actual performance over the unconstrained
model. C.R. Hensel and A.L. Turner [18] have also
studied adjusting the inputs and outputs to improve
portfolio performance.

V.R. Chopra and Ziemba [7], following the work of
Kallberg and Ziemba [33], showed that errors in the
mean values have a much greater effect than errors in
the variances, which are in turn more important than
errors in the covariances. Their simulations show errors
of the order of 20 to 2 to 1. This quantifies the earlier
findings and stresses the importance of having good es-
timates of the asset means. Chopra [6] shows that mean,
variance and covariance errors affect turnover in the
same way.

Another approach is to use fundamental analysis to
provide external information to modify the estimates
[21]. Clearly, among the simplest external data to add
are the seasonal (e. g., turn of the year, and month and
weekend) effects which have been found in most stock
markets around the world. Incorporation of these into
the parameter estimates can substantially improve the
performance of the model. Ziemba [63] demonstrated
the benefits of factor models to estimate the mean
returns.

Summary

We have considered only the single period mean-
variance portfolio theory model. Although recent de-
velopments have focussed on extending the model
to multiple periods, most of these models which as-

sume frictionless capital markets require the solution
of a sequence of instantaneous mean-variance mod-
els in which the existence of transactions costs adds
enormously to the complexity of the problem. Surveys
covering dynamic portfolio theory appear in [9,22,66],
and [23]; see also [64].
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Portfolio selection concerns the problem of finding the
most attractive stocks and the determination of their

proportions in a portfolio, which is essentially a matter
of arbitration between the risk and the return. In 1952
H.M. Markowitz [17] proposing the mean-variance
model gives the start of a theory that had known since
a great development. According to this approach, an
investor follows two conflicting objectives that are the
maximization of the expected return and the minimiza-
tion of the risk measured by the variance of the return.
On the same basis (essentially measuring the risk by the
variance or another measure of the variation of the re-
turn) several other models were developed. A complete
overview of these models can be found in [5], includ-
ing the single-index models, the multi-index models,
the average correlation models, the mixed models, the
utility model and models using different criteria such
as the geometric mean return, stochastic dominance,
safety first and skewness.

However, an analysis of risk nature in portfolio
management shows that the latter comes from vari-
ous origins and then its nature is multidimensional.
The traditional theoretical approach mentioned above
does not take into account this multidimensional mea-
sure of risk. Also, individual goals and investor’s pref-
erences cannot be incorporated in these models. Mul-
tiple criteria decision making (MCDM) provides the
methodological basis to resolve the inherent multicri-
teria nature of portfolio selection problem. Addition-
ally, it builds realistic models by taking into account,
apart of the two basic criteria of return and risk (mean-
variance model), a number of important criteria, such
as marketability, price earning ratio (PER), growth of
the dividends, and others. Furthermore, MCDM, have
the advantage of taking into account the preferences of
any particular investor. Recently, several authors have
developed a new approach, using MCDM for portfolio
management.

In this article we develop some arguments for the
use of MCDM in portfolio management and we present
a brief review of the existing articles concerning this
new approach (Section 2). Then, we propose a multi-
criteria methodological framework in two stages (Sec-
tion 3). In the first stage the ELECTRE TRI [28] method
and the MINORA ([24,25]) systems are used to select
attractive stocks. In the second stage, the ADELAIS [23]
system is used to construct a portfolio of the attrac-
tive stocks chosen in the first stage. This methodolog-
ical framework is illustrated on a case study. Finally,



Portfolio Selection and Multicriteria Analysis P 2997

we summarize the used methodological framework and
underline its advantages then give some concluding re-
marks.

MCDM and Portfolio Selection

Portfolio Selection: A Multicriteria Problem

To manage efficiently portfolio selection, it is neces-
sary to take into account all the factors that influence
the financial markets. Then, portfolio management is
a multicriteria problem. Effectively, multifactor models
and APT (arbitrage pricing theory) point out the exis-
tence of several influence factors for the determination
of the stock prices. Furthermore, fundamental analy-
sis models, commonly used in practice, underlines that
stock prices are also dependent on the firm health and
its capacity to pay dividends. The latter problem itself
is a multicriteria problem because, in order to solve it,
we must appreciate the profitability of the firm, its debt
level (in the short and long terms) and quality of man-
agement. Finally, in practice, an investor has a personal
attitude and particular objectives.

By reducing the risk to its probabilistic dimen-
sion, the classical approach cannot take into account
its multidimensional nature and risk measures that do
not have a concrete and practical economical meaning.
In addition, this approach imposes a norm to the in-
vestor’s behavior that can be restrictive. Also, it can-
not take into account the personal attitude and prefer-
ences of a real investor confronted with a given risk in
a particular situation. However, experience has proved
that the classical approach is useful, for instance con-
cerning the diversification principle and the use of the
beta as measure of risk. Thus, the use of the classical
approach seems to be necessary but not sufficient, to
manage portfolio selection efficiently. Some additional
criteria must be added to the classical risk-return crite-
ria. In practice, these additional criteria can be found in
fundamental analysis or constructed following the per-
sonal goals of the investor.

Note that the application of the above principles
is difficult because of the complexity of multicriteria
problems on the one hand and the use of criteria from
different origins and of conflicting nature on the other
hand. Furthermore MCDM will facilitate and favor the
analysis of compromise between the criteria. It equally
permits to manage the heterogeneity of criteria scale

and the fuzzy and imprecise nature of the evaluation
that it will contribute to clarify. (Here the words fuzzy
and imprecise refer to: a) the delicacy of an investor’s
judgement (the human nature and the lack of informa-
tion), that will not always allow to discriminate between
two close situations; and b) the use of a representation
model, which is a simplification of reality that expresses
itself in an error term.)

Linking the multicriteria evaluation of an asset port-
folio and the research of a satisfactory solution to the
investor’s preferences, the MCDM methods allow to
take into account the investors’ specific objectives. Fur-
thermore, these methods do not impose any normative
scheme to the comportment of the investors. The use
of MCDMmethods allows to synthesize in a single pro-
cedure the theoretical and practical aspects of portfolio
management, then it allows a non normative use of the-
ory.

The originality of MCDM provides the possibility
to obtain a gain of time and/or to increase the number
of stocks considered by the practitioner by systematiz-
ing the decision process. Moreover, in a market close to
efficiency, as are all the big markets, it is the good and
fast use of all available information that ensures infor-
mational efficiency of capital markets and will permit
the investor to compete.

Review of Existing Study

In this section we present a brief review of articles con-
cerning MCDM and portfolio management. An analy-
sis and a more complete presentation of most of these
papers can be found in [7] or [12]. T.L. Saaty, P. Rogers
and R. Pell [22] proposed in 1980 to construct a portfo-
lio using the analytic hierarchy process (AHP) method-
ology. They consider that stocks must be compared fol-
lowing the investor objectives and the criteria that in-
fluence the prices. In addition, the latter criteria are
themselves influenced by some global economic fac-
tors. In AHP, factors, criteria and stocks are succes-
sively weighed following their relative importance. Fi-
nally, the weight of each stock gives its proportion in
the portfolio.

S.M. Lee and L. Chesser [16] present a goal pro-
gramming (GP) model to construct a portfolio. The
used objectives are the research of a minimum return,
minimization of risk (using ˇ), various diversification
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objectives and some specific objectives to the investors.
In GP, the investor can set his desires in preference or-
der in a simple and natural way.

A. Rios-Garcia and S. Rios-Insua [20] construct
a portfolio using multi-attribute utility theory (MAUT)
and multi-objective linear programming (MOLP). Par-
ticularly, the authors propose the use of Bayesian
econometrics to update the investor multi-attribute
utility function, and examine the problem posed by the
nonlinear criteria in MOLP.

Y. Evrard and R. Zisswiller [6] use MAUT to per-
form a valuation of some stocks. The aim is to show
how it is possible to construct models that link the at-
tributes of the stocks (return, risk, PER and earnings
per share) and the investors’ preferences.

H. Nakayama, T. Takeguchi and M. Sano [19] pro-
pose a graphics interactive methodology to construct
a portfolio using the expected return, the variance and
the evolution of the return in the past.

J.M.Martel, N.T. Khoury andM. Bergeron [18] per-
form a portfolio selection using the outranking meth-
ods ELECTRE I and ELECTRE II. From the stocks in-
cluded in two portfolios selected by a real investor, they
generate 50 portfolios. These portfolios are compared
using ELECTRE I and II and follow four criteria: the
return, the logarithmic variance, the PER, and the liq-
uidity. The aim is to determine which portfolio fits well
to the decision criteria.

G. Colson and C. De Bruyn [1] propose a system
that performs a stock valuation and allows the con-
struction of a portfolio. The heart of this system is the
confrontation of the following objectives:
1) Obtain a minimum level of gain.
2) Maintain the risk under a predetermined level.
3) Obtain a minimum level of gain as dividends and

interests.
4) Insure a sufficient level of diversification, firm con-

trol or liquidity.
This system is subdivided between two subsystems,
the single decision model (SDM) and the simultaneous
management model (SMM). The SDM ranks the stocks
using various statistics criteria and information com-
ing from correspondents. The SMM is a GP model as
in [16].

A. Szala [26] performs stock evaluation in collabo-
ration with a French investment company. For the fi-
nancial analyst of the company, that examines a small

number of stocks using numerous criteria, Szala uses
the outranking method ELECTRE III to obtain a rank-
ing of the stocks. For traders or portfolios managers, it
is not realistic to use many criteria because they gener-
ally manage a great number of stocks. Then, concerning
traders and portfolio managers, Szala decided to amal-
gamate the financial criteria in a synthesis criterion ob-
tained by using the PREFCALC system (PREFCALC is
an interactive system of the same nature as MINORA
that will be presented in the following section of this
paper).

Khoury, Martel and Bergeron [14] use the outrank-
ing methods ELECTRE IS and ELECTRE III to select
international index portfolios. They generate 19 index
portfolios from the indexes of 16 countries. The crite-
ria that have been used are: return, standard deviation,
transaction costs, country risk, available cover for for-
eign currencies and exchange risk.

The purpose of Colson and M. Zeleny ([2,29]) is
to construct an efficient frontier in concordance with
the principles of stochastic dominance. To achieve their
aim, they propose to use a three-dimensional vector,
the ‘prospect ranking vector’ (PRV), as a measure of
risk. The first component of the PRV is the probability
not to achieve a minimal return, the second component
is the expected return and the third component is the
probability to exceed a maximum return. We find an
interest updating the PRV in order to perform a port-
folio selection rather than construct an efficient fron-
tier [9]. To achieve this result, it is necessary to mod-
ify the PRV in order to obtain more complete measures
of risk. Then, the first component is divided into two
components: the first is destined to protect the investor
against strong losses and the second is used to take into
account the other possible losses (not so strong but sig-
nificant). Concerning the third component, the proba-
bility to exceed a maximum level of return is changed
in the probability to significantly exceed the expected
return. Then, this new version of the PRV can be asso-
ciated to other criteria to perform a multicriteria port-
folio selection. In [9] portfolio selection is managed by
using the MINORA system that will be presented in the
following section.

C. Zopounidis, D.K. Despotis and I. Kamaratou [31]
propose the use of the ADELAIS system to construct
a portfolio using some diversification constraints, some
constraints representing the investor’s personal pref-
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erences and the following criteria: return, dividends,
ˇ, earnings per share growth, marketability, PER. The
ADELAIS system is also used in our methodology that
will be presented later.

M. Tamiz, R. Hasham and D.F. Jones [27] propose
to use GP for portfolio evaluation and selection. The
proposed method consists of two stages: the first stage
estimates the sensitivity of the stocks to specific factors
using GP and regression analysis. They use twelve fac-
tors: UK, US and German interest rates, US and Ger-
man inflation rates, Dow Jones index, Nikkei average
index, Hang Sang index, oil price, gold price, house
price and sterling index. The sensitivities obtained by
the GP model and those of the regression analysis are
compared. In the second stage, a portfolio is selected by
using a GP model based on the decision maker’s sce-
narios and preferences.

C. Dominiak [4] presents a procedure for secu-
rity selection that uses a multicriteria discrete analysis
method based on the idea of reference solution. The cri-
teria he used are divided into three groups:
1) Valuation measures that contain Price book value

ratio and PER.
2) Fundamental variables that contain profit margin

ratio and changes in quarterly net profits.
3) Technical indicators that contain rate of change, rel-

ative strength index and price appreciation during
the last 3 months.

Ch. Hurson and N. Ricci [8] propose to combine ar-
bitrage pricing theory (APT) and MCDM to model
the portfolio management process. First, APT is used
to construct some efficient portfolios, to estimate their
expected return and to identify influence factors and
risk origins. Then, two multicriteria decision meth-
ods: the ELECTRE TRI outranking method and the
MINORA interactive system are used to select attrac-
tive portfolios, using APT factors as selection criteria.
This methodology is illustrated by an application to the
Greek market.

Methodological Framework

In this section we will present our methodology and il-
lustrate it on a case study. For a more detailed presen-
tation and applications on Greek and Belgium market,
see [7,10,11,12,32]. A first application of MINORA to
portfolio management can also be found in [30].

Portofolio data
- Balance sheets
- Income statements
- Prices of shares
- Volume of transactions

Evaluation of the criteria
Financial ratios
Stock market ratios
Risk and Return (CAPM, market model)
Qualitative criteria

Multicriteria analysis for
selection of attractive stocks

MINORA
Ranking

ELECTRE TRI
Sorting

Multicriteria analisys for determination of
attractive stocks’ proportions in a portofolio

ADELAIS
Composition

Portfolio Selection and Multicriteria Analysis, Figure 1
Basic components of the methodological framework

Basic Components

The basic components of the proposed methodological
framework are presented in Fig. 1.

Portfolio Data and Criteria

For the analysis and the selection of stocks, it is nec-
essary to possess the following basic information for
at least three consecutive years: balance sheets, income
statements and stock market information, i. e. prices
of shares and volume of transactions. This consecutive
financial information allows the investor or portfolio
manager to evaluate the evolution of the stock’s situ-
ation, and to form financial and stock market ratios rel-
evant to portfolio management.

On the basis of the portfolio data one can cal-
culate financial and stock market ratios (return on
equity, return on investment, current ratio, interest
charges/sales, earnings per share, price earnings ra-
tio, dividend per share, etc.), the pair risk/return from
the theoretical portfolio models capital assets pricing
model (CAPM) and market model. Apart from the
quantitative criteria, the investor or portfolio manager
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needs to have more general information so that his eval-
uation would be as objective and complete as possi-
ble. Such information about a stock may be its quality
of management, image, security of information, posi-
tion on the market, etc. This qualitative information is
sometimes more important than the financial, because,
for example, if the firm does not have good managers,
its financial results (sales, net income, return) will not
be satisfactory.

Financial and stock market ratios have become an
accepted evaluation technique of financial analysts and
portfolio managers. They provide a quantitative view
of every element that concerns the internal operation
of a firm as well as its relations with the outer world,
and permit fast processing of a large volume of finan-
cial data. The financial ratios have already been used in
many fields of financial management. C.F. Lee [15] has
grouped every financial ratio that has been used in the
forecasting of firm failure, bond rating, market return
and mergers. The risk and the return issue of theoreti-
cal portfolio models (CAPM and market model) are the
basic criteria in portfolio selection. Qualitative criteria
are modeled according to the preferences of each user
(portfolio manager) with the aid of an ordinal scale (3
better than 2 and 2 better than 1).

Multicriteria Analysis for the Selection
of Attractive Stocks

In this step the two MCDM methods MINORA and
ELECTRE TRI are used to help the portfolio manager
in the selection of a set of attractive stocks taking into
consideration his preferences and experiences. Here,
only a short description of the two methods is given.

MINORA System

MINORA is an interactive multicriteria decision mak-
ing system that ranks a set of alternatives from the best
ones to the worst ones using several criteria. In this pur-
pose the MINORA system uses the UTA ranking algo-
rithm [13]. From the ranking by the decision maker of
a subset of well-known alternatives, UTA uses ordinal
regression to estimate a set of separable additive utility
functions of the following form:

u(g) D u1(g1)C � � � C uk(gk) ;

where g = (g1, . . . , gk) is the performance vector of an
alternative and ui(gi) is the marginal utility function
of criteria i, normalized between 0 and 1. The ordi-
nal regression is performed using linear programming
(for more details see [3]). In MINORA the interaction
takes the form of an analysis of inconsistencies between
the ranking established by the decision maker and the
ranking obtained from the utility function estimated by
UTA. Two measures of these inconsistencies are used
in MINORA:
1) The F indicator which is the sum of the deviations of

the ordinal regression curve (global utility versus de-
cision maker’s ranking), e. g. the sum of estimation
errors.

2) The Kendall’s t that gives a measure, from � 1 to 1,
of the correlation between the decision maker rank-
ing and the ranking resulting from the utility func-
tion.

At optimality, when the two rankings are similar, the F
indicator is equal to 0 and the Kendall’s t to 1. The in-
teraction is organized around four questions presented
to the decision maker:
1) Is he ready to modify his ranking?
2) Does he wish to modify the relative importance of

a criterion, its scale or the marginal utilities (trade-
off analysis)?

3) Does he wish to modify the family of criteria used:
to add, cancel, modify, divide or join some criteria?

4) Does he wish tomodify the whole formulation of the
problem?

These questions send back to the corresponding stages
of MINORA and the method stops when an acceptable
compromise is determined. Then the result (a utility
function) is extrapolated to the whole set of alternative
to give a ranking of them.

The MINORA system presents two main advan-
tages:
� It furnishes a ranking of stocks that is a natural pre-

occupation frequently used by portfolio managers.
� The formof the interactivity, all the originality of the

MINORA system can be found in the inconsisten-
cies analysis in an interactive way. It allows to help
the decision maker to construct his own model in
a non normative way and organizes, in an unique
procedure, all the activity of decision making, from
the model formulation to the final result (a ranking
of the alternatives from the best to the worst in the
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case of MINORA). At the same time the decision
maker is constantly integrated to the resolution pro-
cesses and can control its evolution at any moment.

Finally, it should be noted that theMINORA system has
been used successfully to solve numerous management
problems.

The ELECTRE TRI Outranking MCDMMethod

ELECTRE TRI is an outranking method specially con-
ceived for sorting problems. In our methodology the
ELECTRE TRI method is used to sort the stocks in
three categories: attractive stocks, uncertain stocks (to
be studied further) and nonattractive stocks. ELECTRE
TRI deals only with ordered categories (complete or-
der). The categories are defined by some reference al-
ternatives or reference profiles (one down profile and
one up profile) which are themselves defined by their
values on the criteria. Next we can define the categories
Ci, i = 1, . . . , c, where C1 is the worst category and Cc

the best one. We can also define the profiles ri, i = 1,
. . . , c � 1, where r1 and rc� 1 are the lower and the up-
per profile respectively. Then, the profile ri is the theo-
retical limit between two categories Ci and Ci + 1 and ri
represents a fictitious stock which is strictly better than
ri� 1 on each criterion. In ELECTRE TRI, the informa-
tion asked from the decision maker about his prefer-
ences takes the form, for each criterion and each profile,
of a relative weight and an indifference, preference and
veto thresholds. To sort the stocks, ELECTRETRI com-
pares each of them to the profiles using the concepts
of indifference, preference and veto thresholds in order
to construct a concordance index, a discordance index
and finally a valued outranking relation as in ELECTRE
III method (cf. [21]). This valued outranking relation
ss(a, b) 2 [0, 1] measures the strength of the relation ‘a
outranks b’ (a is at least as good as b). This valued out-
ranking relation is transformed in a ‘net’ outranking re-
lation in the following way: ss(a, b) � �, aSb, where
S represents the net outranking relation, a and b two
stocks and � a ‘cut level’ (0.5� � � 1) above which the
relation a outranks b is considered as valid. Then the
preference P, the indifference I and the incomparability
R are defined as follows:
� aIb, aSb and bSa,
� aPb, aSb and no bSa,
� aRb, no aSb and no bSa.

In ELECTRE TRI there are two non total compensation
sorting procedures (the pessimistic one and the opti-
mistic one) to assign each alternative into one of the
categories defined in advance. In the sorting procedure,
stock a is compared at first to the worst profile r1 and in
the case of aPr1, a is compared to the second profile r2,
etc., until one of the following situations appears:
i) aPri or aIri + 1 and ri + 1 Pa;
ii) aPri and ri + 1 Ra, . . . , ri +m Ra, ri +m + 1 Pa.
In situation i) both the procedures assign stock a to
category i + 1. In situation ii), the pessimistic pro-
cedure classifies stock a to category i + 1, while the
optimistic procedure classifies stock a to category i
+ m + 1. When the value of � gradually decreases,
the pessimistic procedure becomes less compulsive and
the optimistic procedure less permissive. Evidently the
optimistic procedure tends to classify the stocks to
the higher possible category, in contrast to the pes-
simistic procedure that tends to classify the stocks
to the lower possible category. In general, the pes-
simistic procedure is applied when a policy of pru-
dence is necessary or when the available means are
very constraining. The optimistic procedure is applied
to problems where the decision maker desires to fa-
vor the alternatives that present some particular inter-
est or some exceptional qualities. In portfolio manage-
ment the optimistic procedure will be well adapted to
an optimistic investor with a speculative investment
policy, while a prudent investor, following a passive
investment policy, will prefer the pessimistic proce-
dure.

ELECTRE TRI manages incomparability in such
a way that it will point out the alternatives that have par-
ticularities in their evaluations. In cases where some al-
ternatives belong to different categories in both proce-
dures, the conclusion is that they are incomparable with
one or more reference profiles (as the number of cate-
gories between the two assignments is increasing, the
‘particularities’ of the alternatives are becoming more
important). This is because these alternatives have good
values for some criteria and, simultaneously, bad values
for other criteria; moreover, these particular alterna-
tives must be examined with attention. In this way the
notion of incomparability included in ELECTRE TRI
brings an important information to the decision maker
and for this reason the best way to employ ELECTRE
TRI is to use the two assignments procedures and to



3002 P Portfolio Selection and Multicriteria Analysis

compare the results. The advantages of ELECTRE TRI
are the following:
� ELECTRE TRI by sorting the stocks is well adapted

to the purpose of portfolio management (acceptable
stocks, stocks to be studied further and unacceptable
stocks).

� ELECTRE TRI, as all the methods of the ELECTRE
family, accepts intransitivity and incomparability. In
ELECTRE TRI this is done in such a way that the
method will point out the alternatives that have par-
ticularities in their evaluation.

� The ELECTRE family uses techniques that are easily
understandable by the decision maker.

The methods from the ELECTRE family are very popu-
lar and they have been used with success in a great num-
ber of studies [21].

Multicriteria Analysis for the Determination
of Attractive Stocks’ Proportions in a Portfolio:
The ADELAIS System

MINORA and ELECTRE TRI give the possibility to the
portfolio manager to select the most attractive stocks he
desires to include in his final portfolio. Then, the ADE-
LAIS system helps him to determine the proportions
(percentage) of capital invested in the above attractive
stocks. ADELAIS is an interactive computer system de-
veloped to support the search for a satisfactory solution
in MOLP problems of the general form:

(
max f f1(x); : : : ; fn(x)g
s.t. x 2 A;

where x = (x1, . . . , xm) is the vector of decision vari-
ables, f 1 (x), . . . , f n(x) are linear functions of the de-
cision variables and A is the set of the feasible solu-
tions defined by linear constraints A � Rm. The sys-
tem provides extensive data management capabilities
and concerning the solution process it provides a ‘two
level’ interaction: interactive assessment of the portfo-
lio manager’s utility function and interactive modifi-
cation of the satisfaction levels. The system operates
in two phases: a preliminary phase that is performed
once and an iterative phase. In the preliminary phase,
ADELAIS provides the upper and lower bounds for
each objective function, the pay-off matrix, the start-
ing efficient solution in a minimax sense and its rate of

closeness to the ideal values (upper bounds). At each
iteration of the iterative phase a new efficient solu-
tion is presented the portfolio manager with the up-
per and lower bounds for each objective, the achieve-
ment percentages with respect to the upper bounds, the
satisfaction levels (i. e., the revised lower bounds) es-
tablished in previous iterations. Then, the system asks
the portfolio manager to indicate the objectives he de-
sires to improve and if he intends to decrease some
other objectives in compensation. The portfolio man-
ager’s answers, combined with relative answers of pre-
vious iterations, form the basis for the establishment
of new satisfaction levels. The new satisfaction levels
limit the feasible set but the system provides the port-
folio manager with the possibility to relax them if de-
sired by analyzing the local trade-offs among the objec-
tives. If the portfolio manager does not intend to de-
crease some objectives the system stops on the current
efficient solution (best compromise), otherwise a ref-
erence set of decision alternatives (i. e. a set of vectors
that might be assumed by the objectives) is constructed
and the UTA method is used to estimate an additive
utility function as in the MINORA system. Once a sat-
isfactory utility function is assessed, this is maximized
over the set A in order to obtain a new efficient solu-
tion taking into account the portfolio manager’s prefer-
ences.

The advantages of the ADELAIS system for the
portfolio manager, are the following:
� It allows determining the proportions of the attrac-

tive stocks in the portfolio that is not possible with
ranking or sorting methods.

� The interactive analysis of the inconsistencies as
in the MINORA system, which helps the portfolio
manager to understand the portfolio selection prob-
lem.

� The interactive revision of the satisfaction levels ori-
entates in a way easy to understand the research of
the best compromise that is well adapted to the port-
folio manager’s preferences.

Example 1 We will illustrated our methodology by
a case study coming from [10]. The sample considered
in the study consists of 40 stocks coming from the fi-
nancial and commercial sectors of the Athens Stock Ex-
change (ASE). These stocks are evaluated using the 7
following criteria:
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� g1: Return that must be maximized.
� g2: Marketability (percentage of shares traded) that

must be maximized.
� g3: Beta risk that must be minimized.
� g4: Price earnings ratio (price of the share/earnings

per share). Since there are negative values of earn-
ings (losses), we choose to maximize the inverse of
this criterion

� g5: Growth of dividend per share that must be max-
imized.

� g6: Acid test (current assets minus invento-
ries/current liabilities) that must be maximized.

� g7: Return on equity (i. e. net income/stockholder
equity) that must be maximized.

All the stocks of the sample have been evaluated on the
five stock market criteria g1, . . . , g5, while, in order to
obtain most significant results, the criterion g6 is used
for the stocks of the commercial sector (CS1 to CS20)
and the criterion g7 for the stocks of the financial sector
(FS1 to FS20).

Table 1 presents the multicriteria evaluation for the
stocks of the commercial sector. Qualitative criteria are
not included because they are dependent to the portfo-
lio manager’s personal information that was not avail-
able in this application.

Ranking of Stocks Using the MINORA System

The reference set and its ranking for the commercial
sector is the following: CS16; CS18; CS12, CS19; CS9,
CS3; CS7, CS8; CS1; CS20; for this purpose the port-
folio manager can use a graphic help. The MINORA
system provides two basic results: the criteria’s graphics
(i. e. marginal utilities, Fig. 2 and the ordinal regression
curve (ranking versus global utility, Fig. 3). An impor-
tant graphic help is at the disposal of the portfolio man-
ager in order to interpret these results. In Fig. 2 there are
three utility curves for the return criterion (min, middle
and max). The middle one corresponds to the above
presented model of additive utility and, also, gives the
relative weight for the criterion. The two others show
the entire range of the possible marginal utility func-
tions and gives an idea of the sensitivity of the crite-
ria. Figure 3 shows the ordinal regression curve (stocks’
ranking versus global utility).

Table 2 presents the pre-ordering of the portfolio
manager (D.R.), the stock names (Actions), the global

Portfolio Selection and Multicriteria Analysis, Table 1
Multicriteria evaluation of stocks for the commercial sector

g1 g2 g3 g4 g5 g6
CS1 0:82 0:45 0:26 �4:7 �100 0:45
CS2 0:41 0:63 0:03 2:28 �20 2:04
CS3 0:57 0:2 0:1 6:08 �33:3 1:08
CS4 0:24 0:02 0:08 2:41 �53:5 0:62
CS5 0 0:46 0:62 5:04 �76:5 3:02
CS6 0:93 0:02 0:14 2:82 6:38 0:72
CS7 0:01 0:69 0:77 7:55 �40 3:23
CS8 0:86 0:86 0:86 4:28 3:71 0:57
CS9 2:16 0:6 0:12 2:11 56:3 0:51
CS10 1:24 0:12 0:62 11:65 12:5 1:17
CS11 0:8 0:58 0:62 13:7 34:6 1:54
CS12 1:23 0:37 0:64 8:97 45:9 0:96
CS13 0:24 0:28 0:73 �1:75 0 0:72
CS14 0:26 0:65 0:58 4:88 7:14 0:9
CS15 1:1 0:76 0:54 0:29 0 0:73
CS16 1:79 0:55 0:73 5:88 �100 2:69
CS17 1:02 1:06 0:82 5:5 6:38 0:73
CS18 1:32 1:12 0:94 12:06 �61 2:69
CS19 1:36 0:04 1:02 1:79 110 2:31
CS20 0:57 0:17 0:23 �11:5 0 0:52

Portfolio Selection and Multicriteria Analysis, Figure 2
Marginal utility curves of the criterion return

utility of every stock (G.U.) and the ordering from MI-
NORA (M.R.).

Sorting of Stocks Using the ELECTRE TRI Method

The objective is to sort the stocks in the following three
categories: attractive stocks (C3), uncertain stocks to be
studied further (C2), non attractive stocks (C1). The
reference profiles and the thresholds related to the con-
cordance and discordance indices are fixed by the port-
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Portfolio Selection and Multicriteria Analysis, Table 2
Global utility for the sample of 40 Greek stocks (extrapolation phase); (�) Stocks not included in the reference set

Actions G.U. D.R. M.R. Actions G.U. D.R. M.R.
CS16 0:761 1 1 FS5 0:679 � 1
CS18 0:745 2 2 FS10 0:665 1 2
CS11 0:684 � 3 FS20 0:570 2 3
CS12 0:656 3 4 FS9 0:570 2 3
CS19 0:656 3 4 FS6 0:555 � 5
CS2 0:643 � 6 FS2 0:554 � 6
CS17 0:635 � 7 FS18 0:549 4 7
CS3 0:632 5 8 FS3 0:549 4 7
CS9 0:632 5 8 FS17 0:534 � 9
CS10 0:622 � 10 FS19 0:532 � 10
CS7 0:596 7 11 FS4 0:511 6 11
CS8 0:596 7 11 FS15 0:504 � 12
CS15 0:582 � 13 FS14 0:499 7 13
CS5 0:559 � 14 FS7 0:490 8 14
CS1 0:554 9 15 FS8 0:490 8 14
CS14 0:554 � 16 FS16 0:484 � 16
CS13 0:495 � 17 FS12 0:476 � 17
CS6 0:471 � 18 FS1 0:433 � 18
CS4 0:388 � 19 FS11 0:395 10 19
CS20 0:362 10 20 FS13 0:210 � 20

Portfolio Selection and Multicriteria Analysis, Figure 3
Portfolio manager’s ordinal regression curve

folio manager according to his experience and prefer-
ences. Table 3 presents this preferential information.
Table 4 presents the sorting results of the ELECTRE
TRI method and recapitulates the MINORA results for

Portfolio Selection and Multicriteria Analysis, Table 3
Reference profiles and thresholds

Parameters g1 g2 g3 g4 g5 g6
High ref. profile 1 0:35 0:6 6 10 1:1
Low ref. profile 0:5 0:7 0:25 2:5 0 0:7
Indiff. threshold 0:05 0:05 0 0:1 8:72 0:05
Pref. threshold 0:25 0:2 0:2 0:5 10 0:25
Veto threshold 2 1 1 10 180 2:75

comparison. The stocks that belong to the best cate-
gory (C3) in both optimistic and pessimistic sorting are
proposed without hesitation to the portfolio manager
for selection. The stocks that belong to the worst cat-
egory (C1) in both optimistic and pessimistic sorting
are not proposed to the portfolio manager. When the
stocks belong to the uncertain category (C2) for both
optimistic and pessimistic sorting, this means that these
have moderate values on all criteria and, consequently,
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Portfolio Selection and Multicriteria Analysis, Table 4
Sorting of stocks

Optimistic Pessimistic
C1 CS4, CS13, CS20, CS1, CS4, CS13,

FS1, FS7, FS11, CS19, CS20, FS1,
FS12, FS13 FS7, FS9, FS11,

FS12, FS13, FS14
C2 CS1, CS2, CS3, CS2, CS3, CS5,

CS5, CS6, CS8, CS6, CS7, CS8,
CS14, CS15, CS17, CS9, CS12, CS14,
FS8, FS9, FS14, CS15, CS17, FS3,
FS19 FS8, FS10, FS16,

FS19
C3 CS7, CS9, CS10, CS10, CS11, CS16,

CS11, CS12, CS16, CS18, FS2, FS4,
CS18, CS19, FS2, FS5, FS6, FS15,
FS3, FS4, FS5, FS17, FS18, FS20
FS6, FS10, FS15,
FS16, FS17, FS18,
FS20

they must be studied further. In the cases where some
stocks belong to different categories in both optimistic
and pessimistic sorting, this means that they are incom-
parable with one or two reference profiles. This is due to
the fact that these stocks have good values for some cri-
teria and, simultaneously, bad values for other criteria.
Thus, the notion of incomparability underlies the par-
ticularities of these stocks that must be examined fur-
ther and brings an important information to the portfo-
lio manager. Comparing the ranking results of the MI-
NORA system with the sorting results of the ELECTRE
TRI method, one can remark, generally, that there is an
agreement, that is, the stocks which are well ranked (i. e.
top of the ranking) by MINORA are in the best cate-
gory C3 by ELECTRE TRI, and vice versa. This agree-
ment between these two methods asserts the interest of
the methodology and allows the portfolio manager to
be confident with their results.

Determination of the Attractive Stocks’ Proportions
in a Portfolio Using the ADELAIS System

According to the results obtained above, the portfolio
manager can choose a subset of the best stocks from

each sector and then, using the ADELAIS system, de-
termine the proportions invested in each selected stock.
The chosen set is the following: FS10, FS5, FS20, FS6,
FS2 from the financial sector and CS16, CS18, CS12,
CS11, CS9 from the commercial sector.

The decision variables, Xi, are the percentages of
capital invested in each stock. For the needs of the study
we note: X1 = FS10, X2 = FS5, X3 = FS20, X4 = FS6, X5

= FS2, X6 = CS16, X7 = CS18, X8 = CS12, X9 = CS11,
X10 = CS9.

Since, the return, the marketability, the beta, the
price earnings ratio and the growth dividend per share
of the constructed portfolio are directly related to the
percentages of capital invested in each stock, only these
five criteria are used in the application of the ADELAIS
system. On the other hand, the acid test ratio and the
return on equity can only be used as evaluation crite-
ria of the financial soundness of each stock, and they
do not characterize the constructed portfolio. Conse-
quently, the objective functions are:
� Maximize the return (g1): max R1X1 + � � � + R10X10.
� Maximize the marketability (g2): max M1X1 + � � � +

M10X10.
� Minimize the beta (g3): min B1X1+ � � � + B10X10.
� Maximize the price earnings ratio (g4): max

PER1X1+ � � � + PER10X10.
� Maximize the growth of dividends per share (g5):

max GD1X1+ � � � + GD10X10.
Here, Ri, Mi, Bi, PERi, and GDi are the values of the
corresponding objective for the stock i. The constraints
are:
� X1 + � � � + X10 = 1, all the available capital must be

invested.
� 0.05 < X1 < 0.2, . . . , 0.05< X10< 0.2 upper and lower

limits of the amount to be invested in each stock (%
of capital).

At the beginning (preliminary phase) ADELAIS pro-
ceeded to the estimation of an initial efficient portfolio
of stocks (compromise) and presents it as in Table 5.
A pay-off table for the objectives was also given to the
portfolio manager.

With respect to the initial solution, the port-
folio manager being satisfied by the attained val-
ues of the marketability and the growth of divi-
dends per share asked for an improvement of the
other objectives. On the basis of this information
the system generated a set of portfolios, and asked
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Portfolio Selection and Multicriteria Analysis, Table 5
Initial efficient solution; Rc is the rate of closeness to the ideal (upper bound)

Criteria
Initial solution g1 g2 g3 g4 g5
Upper bound 1:61 0:64 0:672 13:98 49:92
Compromise 1:44 0:58 0:745 11:9 47:5
Satisfaction Level 12:05 0:34 0:933 9:08 �6:33
Lower bound 12:05 0:34 0:933 9:08 �6:33
Rc 58:2% 81:2% 60:5% 57:5% 95:7%

Portfolio Selection and Multicriteria Analysis, Figure 4
Portion of capital invested in the portfolio

Portfolio Selection and Multicriteria Analysis, Table 6
Best compromise solution

Solution g1 g2 g3 g4 g5
Attained
values

1:47 0:52 0:73 11:9 47:22

Rc 65% 61:9% 65:8% 57:5% 95:2%

the portfolio manager to rank them. On the ba-
sis of these data, ADELAIS assesses an additive util-
ity model and use it to determine a new refer-
ence solution. Finally, after three iterations ADE-
LAIS determines the best compromise solution that
could not be improved. Table 6 presents the val-
ues of the objectives and the rate of closeness to
the ideal point, the corresponding portfolio appears
in Fig. 4.

Concluding Remarks

In this article a review of articles is presented concern-
ing MCDM and portfolio management and a method-
ological framework for portfolio selection. MCDM is
a new supportive tool for portfolio selection. The use of
multicriteria decision making methods allows to take
into consideration the investors personal preferences
and all the relevant criteria, whatever their origins, for
portfolio selection. In our methodology, the conjoined
use of the MINORA system and the ELECTRE TRI
method have shown some advantages as the comple-
mentarity and the similarity of the obtained results that
state the portfolio manager’s confidence in the con-
stitution of his portfolio; also, they satisfy one of the
portfolio managers’ preoccupation which is the rank-
ing and the sorting of stocks in portfolio selection. Sec-
ondly, ELECTRE TRI with the notion of incompara-
bility brings an important information to the portfo-
lio manager, especially when the evaluation of stocks
appears difficult. Thirdly, ADELAIS and MINORA sys-
tems provide a considerable aid to the portfolio man-
ager to construct his own model of portfolio selection
in an interactive way. This portfolio selection model is
without any normative consideration proposed by the
classical portfolio theory. Finally, the topic of portfolio
management also covers the portfolio diversification by
categories of securities (stocks, bonds, options, interna-
tional securities, etc.), in order to compensate the risks.
The construction of a portfolio for each of these securi-
ties and the diversification problem also are multicrite-
ria. Thus, it will be interesting to look at the contribu-
tion that MCDM can bring to these problems. The final
aim is to regroup these problems in order to formalize
and improve all the processes of portfolio management.
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Consider the linear programming (LP) problem in the
standard form:

8̂
<̂
ˆ̂:

min c>x
s.t. Ax D b;

x � 0;

(1)

where the given matrices A 2 Rm× n, c 2 Rn, b 2 Rm, and
the unknown vector x 2 Rn. The dual of (LP), (DLP),
can be written as:

8̂
<̂
ˆ̂:

max b>y
s.t. A>y C s D c;

s � 0;

(2)

where the unknown vector y 2 Rm. Let F be the feasible
set of (x, y, s), and let the interior of F be denoted by int
F, i. e., this is the set of feasible (x, y, s) such that x > 0
and s > 0.

Potential reduction algorithms for linear program-
ming are generally equipped with various potential
functions that are solely used to measure the solu-
tion’s progress. There is no restriction on either path
following or stepsize during the iterative process; the
greater the reduction of the potential function, the
faster the convergence of the algorithm. These potential
functions represent the logarithmic volumes of certain
coordinate-aligned ellipsoids containing the optimal so-
lution set. There are three types of potential functions
(see the references). For (x, y, z) 2 int F, the first is the
primal-dual potential function

 (x; s) D � log(x>s) �
nX

jD1

log(x js j) ;

where �� n. This function is also called Tanabe–Todd–
Ye potential function. Note that for � = n

 (x; s) D n log(x>s) �
nX

jD1

log(x js j) � n log n :

Thus, for � > n,  (x, s) approaching � 1 implies x|s
converging to 0.
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Let z = b|y and z D c>x for some strictly feasible x
and (y, s), respectively. Then, consider

�p(x; z) D � log(c>x � z) �
nX

jD1

log(x j)

and

�d (y; s; z) D � log(z � b>y) �
nX

jD1

log(s j) :

�p is called Karmarkar’s potential function or the pri-
mal potential function, and �d is called the dual poten-
tial function. The three functions are closely related:

 (x; s) D �p(x; z) �
nX

jD1

log s j ;

and

 (x; s) D �d (y; s; z) �
nX

jD1

log x j :

Thus, the reduction in �p(x, z) or �d (y; s; z), when (y,
s) or x is fixed, implies the same reduction in  (x, s).

Depending onwhich potential being used as the pri-
mary reduction, there are also three types of potential
reduction algorithms. Here, we describe the primal and
primal-dual algorithms.

Primal Potential Reduction Algorithm

Consider a pair of (xk, yk, sk) 2 int F. Fix zk = b|yk, then
the gradient vector of the primal potential function with
respect to xk is

r�p(xk ; zk) D
�

(sk)>xk c � (Xk)�1 e

D
�

c>xk � zk
c � (Xk)�1 e :

We directly solve the ball-constrained linear problem
for direction dx:8̂
<̂
ˆ̂:

min r�p(xk ; zk)>dx
s.t. Adx D 0;

(Xk)�1dx



 � ˛:
Let the minimizer be dx. Then

dx D �˛
Xk pk

pk

 ;

where

pk D p(zk)

:D
�
I � XkA>(A(Xk)2A>)�1AXk

�

� Xkr�p(xk; zk ) :

Update

xkC1 D xk C dx D xk � ˛
Xk pk

pk

 ; (3)

and we have

�p(xkC1; zk ) � �p(xk ; zk) � �˛



pk




C ˛2

2(1 � ˛)
:

Thus, as long as k pk k � � > 0, we may choose an ap-
propriate ˛ such that

�p(xkC1; zk ) � �p(xk ; zk) � �ı

for some positive constant ı. By the relation between
 �(x, s) and �p(x, z), the primal-dual potential function
is also reduced. That is,

 �(xkC1; sk) �  �(xk ; sk) � �ı :

However, even if k pk k is small, we will show that the
primal-dual potential function can be reduced by a con-
stant ı by increasing zk and updating (yk, sk).

We focus on the expression of pk, which can be
rewritten as

pk D
�
I � XkA>(A(Xk)2A>)�1AXk

�

�
� �

c>xk � zk
Xkc � e

�

D
�

c>xk � zk
Xks(zk) � e ; (4)

where

s(zk) D c � A>y(zk) (5)

and

y(zk) D y2 �
c>xk � zk

�
y1 ;

y1 D (A(Xk)2A>)�1b ;

y2 D (A(Xk)2A>)�1A(Xk)2c : (6)



3010 P Potential Reduction Methods for Linear Programming

One can show that, when k p(zk) k is small, then (xk,
y(zk), s(zk)) is in the neighborhood of the central path
and b|y(zk) > zk. Thus, we can increase zk to b|y(zk).
Moreover, �(xk, s(zk)) is reduced from �(xk, sk) by
a constant. Overall, we have the following potential re-
duction theorem to evaluate the progress.

Theorem 1 Given (xk, yk, sk) 2 int F. Let � D nC
p
n,

zk = b|yk, xk+ 1 be given by (5), and yk+ 1 = y(zk) in (6)
and sk+ 1 = s(zk) in (5). Then, either

 (xkC1; sk ) �  (xk ; sk ) � ı

or

 (xk ; skC1) �  (xk ; sk ) � ı ;

where ı > 1/20.

This theorem establishes an important fact: the primal-
dual potential function can be reduced by a constant no
matter where xk and yk are. In practice, one can perform
the line search to minimize the primal-dual potential
function. This results in the following primal-dual po-
tential reduction algorithm.

Given a central path point (x0; y0; s0) 2 intF .
Let z0 = b>y0.
Set k := 0.
WHILE (sk)>xk � � DO
1 Compute y1 and y2 from (6).
2 IF there exists z such that s(z) > 0,

THEN compute

z̄ = arg min
z
 p(xk ; s(z));

FI
IF  p(xk; s(z̄)) <  p(xk ; sk),
THEN yk+1 = y(z̄); sk+1 = s(z̄) and
zk+1 = b>yk+1;
ELSE yk+1 = yk ; sk+1 = sk and zk+1 = zk .
FI

3 Let xk+1 = xk � ˛Xk p(zk+1) with ˛ =
arg min˛�0 p(xk � ˛Xk p(zk+1); sk+1).

4 Set k := k + 1 and return to Step 1.

Primal algorithm

The performance of the algorithm results from the
following corollary.

Corollary 2 Let � D n C O(
p
n). Then, the primal

algorithm terminates in at most O(
p

n log((x0)>s0)
�

) itera-
tions with

c>xk � b>yk � � :

Primal-Dual Potential Reduction Algorithm

Another technique for solving linear programs is the
symmetric primal-dual algorithm. Once we have a pair
(x, y, s) 2 int F with � = x|s/n, we can generate a new
iterate x+ and (y+, s+) by solving for dx, dy and ds from
the system of linear equations:

Sdx C Xds D ��e � Xs ;
Adx D 0 ;

�A>dy � ds D 0 :

(7)

Let d := (dx, dy, ds). To show the dependence of d on
the current pair (x, s) and the parameter � , we write d =
d(x, s, �). Note that d>x ds = � d>x A|dy = 0 here.

The system (7) is the Newton step starting from (x,
s) which helps to find the point on the central path with
duality gap � n�. If � = 0, it steps toward the optimal
solution characterized by the optimality conditions of
(LP) and (DLP); if � = 1, it steps toward the central
path point of �; if 0 < � < 1, it steps toward a central
path point with a smaller complementarity gap. In the
algorithm presented here, we choose � = n/� < 1. Each
iterate reduces the primal-dual potential function by at
least a constant ı, as does the previous potential reduc-
tion algorithm.

Let the direction d = (dx, dy, ds) be generated by
equation (7) with � = n/�, and let

� D
˛
p
min(Xs)


(XS)� 1

2

�
x>s
�

e � Xs
�




; (8)

where ˛ is a positive constant less than 1. Let

xC D x C �dx ;

yC D yC �dy ;

sC D sC �ds :
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Then, we should have (x+, y+, s+) 2 int F and

 �(xC; sC) �  �(x; s)

� �˛
p
min(Xs)




(XS)� 1
2

�
e �

�

x>s
Xs
�




C
˛2

2(1� ˛)
:

Let v 2 Rn be a positive vector and � �
p
n. Then, we

can prove

p
min(v)




V� 1
2

�
e�

�

e>v
v
�


 �

r
3
4
:

Combining these we have

 �(xC; sC)�  �(x; s) � �˛
r

3
4
C

˛2

2(1 � ˛)
D �ı

for a constant ı. This result will provide a competitive
theoretical iteration bound, but a faster algorithm may
be again implemented by conducting a line search along
the direction d to achieve the greatest reduction in the
primal-dual potential function. This leads to the follow-
ing algorithm.

Given (x0; y0; s0) 2 intF .
Set p �

p
n and k := 0.

WHILE (sk)>xk � � DO
1 Set (x; s) = (xk ; sk) and � = n/p;

compute (dx ; dy ; ds) from (7).
2 Let xk+1 = xk + ˛dx ; yk+1 = yk + ˛dy ,

and sk+1 = sk + ˛ds , where ˛ =
arg min˛�0 � (x

k + ˛dx ; sk + ˛ds ).
3 Set k := k + 1 and return to Step 1.

Primal-dual algorithm

Theorem3 Let � D nCO(
p
n). Then, the primal-dual

algorithm terminates in at most O
�p

n log( (x
0)>s0
�

)
�
it-

erations with

c>xk � b>yk � � :

Potential reduction methods have been successively
extended to solving nonlinear conic programs, see,
e. g., [13].
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The Powell method in its basic form can be viewed as
a gradient-free minimization algorithm. It requires re-
peated line search minimizations, which may be car-
ried out using univariate gradient free, or gradient based
procedures. It was introduced by M.J.D. Powell [1]. The
procedure is described in the algorithm steps below.

The minimization problem considered is:

min
x

f (x) :

1. Initialization
Select an accuracy � > 0, and a starting point x(0).

Set the initial search directions s(i) to be the unit vectors
along each coordinate axis, for i = 1, . . . , n. Set the main
iteration counter to k = 0, and the cycle counter i = 1.
Initialize z(1) = x(0). Set counter j = 0 for the case where
step 2.2a is used.

2. Directional univariate minimization

2:1 Determine a univariate minimizer ��i for the
problem f (z(i) + �is(i)).
Set z(i+1) = z(i) + ��i s

(i), and increment
i  i + 1.
Repeat step 2:1 until i = n + 1.
Check for termination (i.e. use the criterion
in step 3)
Go to step 2:2a if the original version is de-
sired, or
go to step 2:2b if the variant avoiding linearly
dependent directions is chosen

2:2a New direction selection (pattern search di-
rections)
(Original version of the method)
Set j j + 1.
IF j � n
THEN replace s( j) by z(n+1) � x(k).
ELSE reset search direction set to the coor-
dinate directions.
END IF
Set x(k+1) = z(n+1);
initialize z(1) = x(k+1);
increment counter k k + 1;
set i = 1, go to step 2:1.
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2:2b New direction selection
(Modified variant to avoid linearly depen-
dent directions)
At the present kth main iteration calculate
	 = max1;:::;nf f (z(i)) � f (z(i+1))g and the
index m for which this occurs. The corre-
sponding direction for which this occurs is
designated as s(m).
Calculate f1 = f (x(k)); f2 = f (z(n+1));
f3 = f (2z(n+1) � x(k)):
IF either f3 � f1 and/or ( f � 1 � 2 f2 + f3)
( f1 � f2 �	)2 � 0:5	( f1 � f2)2
THEN

use the old set of directions
[s(1); : : : ; s(n)];
set x(k+1) = z(n+1) or
x(k+1) = 2z(n+1) � x(k), whichever
yields the lowest value of f (x);
initialize z(1) = x(k+1);
increment counter k k + 1;
set i = 1, go to step 2:1.

ELSE define the search direction (pattern)
s = z(n+1) � x(k);
find the value �� minimizing the
function f (z(n+1) + �s).
define the new set of directions
[s(1); : : : ; s(m�1); s(m+1); : : : ; s(n); s];
set x(k+1) = z(n+1) + ��s;
initialize z(1) = x(k+1);
increment counter k k + 1;
set i = 1, go to step 2:1.

END IF

3. Termination check
A satisfactory termination criterion is generally to

stop whenever at any stage of the algorithm the change
in the variables is less than the required accuracy, that
is when k z(n+ 1) � x(k) k � �.

In terms of the termination criterion, Powell [1]
gives a more elaborate termination check procedure.
This is defined by the following steps:
� Specify a set of accuracies, for each variable inde-

pendently, �1, . . . , �n, each of which is greater than
zero.

� Apply the standard Powell’s method until a com-
plete cycle of n directional minimizations causes
a change of less than 1/10th of the desired accuracy

in the variables, individually. Call the resulting point
y(A).

� Increase every variable by 10 times the correspond-
ing specified accuracy.

� Apply the standard Powell’s method from this point
until a complete cycle of n directional minimizations
causes a change of less than 1/10th of the desired ac-
curacy in the variables, individually. Call the result-
ing point y(B).

� Define a search direction s(AB) = y(A) � y(B). Calcu-
late �� minimizing f (y(A) + � s(AB)). Set y(C) = y(A) +
� s(AB).

� Assume that the process has converged if the com-
ponents (individually) of the vectors (y(A) � y(C))
and (y(B) � y(C)) are less than 1/10th of the set ac-
curacies. If this does not hold, proceed to the next
step.

� Replace the search direction s(1) by (y(A) � y(C)) and
restart the procedure from step 2 onwards (present
termination control procedure).
The termination procedure proposed above by

Powell is expected to be more reliable, but it is more
expensive since the entire minimization problem has to
be resolved at least twice, until the tight convergence
criteria are satisfied.

The method has a quadratic termination prop-
erty, minimizing quadratic functions in predeter-
mined number of operations, requiring n2 + O(n) line
searches. The directions generated also by the method
can be shown to be conjugate (e. g. [2]).

To remedy the case where directions will tend grad-
ually to become linearly dependent (in the original ver-
sion, step 2.2a) a modification, originally proposed by
Powell, is also given in step 2.2b.

See also

� Cyclic Coordinate Method
� Rosenbrock Method
� Sequential Simplex Method
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Introduction

We are concerned with Nonlinear Programming prob-
lems defined in the following way:

Minimize f (x)
subject to h(x) D 0

g(x) � 0

x 2 ˝ ;

(1)

where h : Rn ! Rm ; g : Rn ! Rp; f : Rn ! R are
continuous and ˝ � Rn is a closed set. From now
on k � k represents the Euclidean norm and v+ means
maxf0; vg. The setR+ will be the set of nonnegative real
numbers.

The Powell–Hestenes–Rockafellar (PHR) Aug-
mented Lagrangian [42,54,56] is given by:

L�(x; �; �) D f (x)C
�

2

� mX
iD1

�
hi(x)C

�i

�

�2

C

pX
iD1

��
gi (x)C

�i

�

�

C

�2	
; (2)

for all x 2 Rn ; � 2 Rm ; � 2 R
p
C.

PHR-based Augmented Lagrangian methods for
solving (1) are based on the iterative (approximate)
minimization of L� with respect to x 2 ˝, followed by
the updating of the penalty parameter � and the La-
grange multipliers approximations � and �. The most
popular practical Augmented Lagrangian method gave
rise to the LANCELOT package [24,25,26]. LANCELOT

does not use inequality constraints g(x) � 0 in its
problem formulation. When an inequality constraint
gi (x) � 0 appears in a practical problem, it is re-
placed by gi (x)C si D 0; si � 0. The convergence of
the LANCELOT algorithm to KKT points was proved
in [24] using regularity assumptions. Under weaker
assumptions that involve the Constant Positive Lin-
ear Dependence (CPLD) constraint qualification [4,55],
KKT-convergence was proved in [2] for a variation
of the LANCELOT method. In the original LANCELOT

method ˝ was a box. A generalization where ˝ is
a polytope may be found in [23].

The motivation of (2) comes from the classical Ex-
ternal Penalty method [27,34,36]. In this method one
minimizes the function given by

˚�(x) D f (x)C
�

2

� mX
iD1

hi (x)2C
pX

iD1

[gi (x)C]2
�
; (3)

for successive values of � that tend to infinity. If, after
minimizing (3) for a given �, a satisfactory feasibility is
not achieved, the External Penalty philosophy leads to
increase the value of �. If � is very large, the problem of
minimizing ˚� may become very difficult for ordinary
minimization solvers.

The Augmented Lagrangian philosophy is different.
Assume that the result of minimizing ˚�, for a given �
is not satisfactory, in terms of feasibility. Then, instead
of increasing � (or, perhaps, besides increasing �) one
modifies the origin with respect to which infeasibility
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is penalized. For example, suppose that, after the min-
imization of ˚� we obtain x such that hi(x) D c ¤ 0.
A common sense conjecture would be that this “disap-
pointing” result was obtained because we punished the
deviation of hi(x) with respect to 0, whereas the correct
strategy would be to punish the deviation with respect
to �c. This leads to the Shifted Penalty idea, in which,
instead of ˚�, one uses the Shifted Penalty function:

˚�(x; c; d) D f (x)C
�

2

� mX
iD1

(hi(x)C ci )2

C

pX
iD1

[(gi (x)C di )C
�2
: (4)

Writing ci D �i/� and di D �i /� we observe that the
Shifted Penalty strategy coincides with the Augmented
Lagrangian one. The naive modification of the shifts ci,
di sketched above gives rise to the best known (first-
order) updating formula for the Lagrange multipliers
in the Augmented Lagrangian method. It is interest-
ing to observe that this intuitive reasoning is indepen-
dent of the smoothness of f ; h and g. In this article
we give preference to matrix-free updating procedures,
which excludes the consideration of higher order esti-
mates [28,35].

In [3] a new PHR-like algorithm was introduced
that does not use slack variables to complete inequal-
ity constraints and admits general constraints in the
lower-level set ˝ . In the box-constraint case, subprob-
lems are solved using a technique introduced in [13],
which improves the GENCAN algorithm [12]. CPLD-
based convergence and penalty-parameter bounded-
ness were also proved in [3] under suitable conditions
on the problem.

In addition to its intrinsic adaptability to the case
in which arbitrary constraints are included in ˝ , the
following positive characteristics of the Augmented La-
grangian approach for solving (1) must be mentioned:
1. Augmented Lagrangian methods proceed by se-

quential resolution of simple problems. Progress
in the analysis and implementation of simple-
problem optimization procedures produces an al-
most immediate positive effect on the effective-
ness of Augmented Lagrangian algorithms. Box-
constrained optimization is a dynamic area of prac-
tical optimization from which we can expect Aug-
mented Lagrangian improvements.

2. Global minimization of the subproblems implies
convergence to global minimizers of the Aug-
mented Lagrangian method [11]. There is a large
field for research on global optimization methods
for box-constraint optimization. When the global
box-constraint optimization problem is satisfacto-
rily solved in practice, the effect on the associated
Augmented Lagrangian method for the Nonlinear
Programming problem is immediate.

3. Most box-constrained optimization methods are
guaranteed to find stationary points. In practice,
good methods do more than that. The line-search
procedures of [12], for example, include extrap-
olation steps that are not necessary at all from
the point of view of KKT convergence. However,
they enhance the probability of convergence to
global minimizers. As a consequence, the proba-
bility of convergence to Nonlinear Programming
global minimizers of a practical Augmented La-
grangian method is enhanced too.

4. The global convergence theory of Augmented La-
grangianmethods [11] does not need differentiabil-
ity of the functions that define the Nonlinear Pro-
gramming problem. In practice, this indicates that
the Augmented Lagrangian approach may be suc-
cessful in situations were smoothness is dubious.

5. The Augmented Lagrangian approach can be
adapted to the situation in which analytic deriva-
tives are not computed. See [47] for a derivative-
free version of LANCELOT.

6. In many practical problems the Hessian of the La-
grangian is structurally dense (in the sense that
any entry may be different from zero at different
points) but generally sparse (given a specific point
in the domain, the particular Lagrangian Hessian
is a sparse matrix). As an example of this situation,
consider the following formulation [18,19] of the
problem of fitting circles of radii r within a circle of
radius R without overlapping:

Min
X
i< j

max
˚
0; 4r2 � kpi � p jk

2
2
�2

subject to kpik22 � (R � r)2 :

TheHessian of the objective function is structurally
dense but sparse at any point such that points pi
are “well distributed” within the big circle, since
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only pairs of overlapping small circles appear in
the expression of the objective function. Newtonian
methods usually have difficulties with this situa-
tion, both in terms of memory and computer time
since the sparsity pattern of the matrix changes
from iteration to iteration. This difficulty is almost
irrelevant for the Augmented Lagrangian approach
if one uses a low-memory box-constraint solver.

7. Independently of the Lagrangian Hessian density,
the structure of the KKT system may be very poor
for sparse factorizations. This is a serious difficulty
for Newton-based methods but not for suitable im-
plementations of the Augmented Lagrangian PHR
algorithm.

8. If the Nonlinear Programming problem has many
inequality constraints the usual slack-variable
approach of Interior-Point methods (also used
in [2,24]) may be inconvenient. There are several
approaches to reduce the effect of the presence of
many slacks, but they may not be as effective as not
using slacks at all.

9. Huge problems have obvious inconvenients in
terms of storage requirements. The Augmented
Lagrangian approach provides a radical remedy:
problem data may be computed “on the flight”,
used when required in the subproblem, and not
stored at all. This is not possible if one uses matri-
cial approaches, independently of the sparsity strat-
egy adopted.

10. If, at the solution of the problem, some strong con-
straint qualification fails to hold, the performance
of Newton-like algorithms could be severely af-
fected. The Augmented Lagrangian is not as sen-
sitive to this type of inconvenient.

The amount of research dedicated to Augmented La-
grangian methods decreased in the 21th century. Mod-
ern methods, based on interior-point techniques, se-
quential quadratic programming, trust regions, restora-
tion, nonmonotone strategies and advanced sparse lin-
ear algebra procedures attracted much more attention.

A theoretical reason, and its practical consequence,
seems to be behind this switch of interest. Roughly
speaking, under suitable assumptions, Interior-Point
Newtonian techniques converge quadratically (or, at
least, superlinearly) whereas practical Augmented La-
grangian generally converge only linearly. Therefore, if
both methods converge to the same point, and the pre-

cision required is strict enough, an Interior-Point New-
tonian method will require less computer time than an
Augmented Lagrangian method, independently of the
work per iteration. Several attempts have been made to
alleviate both the slow-convergence behavior as the ill-
conditioning of the subproblems [14,21,32,33,39,49].
Behind these attempts is the fact that the optimality
conditions of the Augmented Lagrangian (and Penalty)
subproblems may be decomposed in such a way that,
for � large, resemble the KKT conditions of the origi-
nal problem. This fact may be exploited in several ways
and makes it possible that good implementations of the
Augmented Lagrangian method be quite competitive
with Interior-Point Newtonian techniques, even when
high precision is the main requirement at the solution.

The general form of the Augmented Lagrangian
method based on the PHR formula considered in this
article is the following.

Algorithm 1

Let �min < �max, �max > 0, � > 1, 0 < � < 1. Let
f"kg be a sequence of nonnegative numbers such that
limk!1 "k D 0. Let �1i 2 [�min; �max]; i D 1; : : : ;m,
�1

i 2 [0; �max]; i D 1; : : : ; p, and �1 > 0. Initialize
k 1.

Step 1. Solving the subproblem.
Compute xk 2 Rn an approximate solution of

Minimize L�k (x; �
k ; �k) subject to x 2 ˝ : (5)

Step 2. Define

Vk
i D max

�
gi(xk);�

�k
i

�k

	
; i D 1; : : : ; p :

If k D 1 or

max
n
kh(xk)k1; kVkk1

o

� � max
n
kh(xk�1)k1; kVk�1k1

o
; (6)

define �kC1 D �k . Otherwise, define �kC1 D ��k .

Step 3. Compute �kC1
i 2 [�min; �max]; i D 1; : : : ;m

and �kC1
i 2 [0; �max]; i D 1; : : : ; p. Set k k C 1

and go to Step 1.
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In the practical implementation of Algorithm 1, we
will compute �kC1

i D minfmaxf�min; �
k
i C �k hi(xk)g,

�maxg and�kC1
i D minfmaxf0; �k

i C �k gi (x
k)g; �maxg.

These are safeguarded first-order estimations of the
Lagrange multipliers. The safeguards defined by
�min; �max and �max are necessary to prove the global
convergence results. Some authors prefer to define
Augmented Lagrangian algorithms without safeguards
for the Lagrange multipliers [9,26]. However, bounded-
ness of the multiplier estimates are necessary to prove
the main convergence results and, if this boundedness
is not algorithmically forced, it may be guaranteed only
by means of strong problem assumptions.

Different Augmented Lagrangian algorithms will
differ only in Step 1. In each case we will need a pre-
cise definition for the approximate solution of (5).

Cases

Augmented Lagrangians and Global Optimization

In this section we will only assume continuity of the
functions f , h and g. Throughout the section we will as-
sume that a global minimizer of (1) exists. Several ver-
sions of the Augmented Lagrangian method generate
sequences that converge to global minimizers, provided
that global minimizers of the subproblems are available.
This property is inherited from the analogous prop-
erty of the External Penalty method. A practical con-
sequence of this property is the fact that Augmented
Lagrangian methods tend to find feasible points with
lower objective function values than other nonlinear
programming solvers, when clever agressive algorithms
are used for solving the subproblems.

Here we will assume we are able to find an approx-
imate global minimizer defined by the tolerance "k. At
each iteration, xk will belong to ˝ \ Pk , where Pk is an
auxiliary set to which a global minimizer of (1) neces-
sarily belongs. For example, Pk may be a set that con-
tains the feasible region of (1). The presence of the con-
straints defined by Pk helps in the global resolution of
the subproblems. Obviously, in the absence of algorith-
mic advantages, Pk may be defined as being Rn . Algo-
rithm 2 will be Algorithm 1, where Step 1 is defined as
follows.

Step 1. Let Pk � Rn be a closed set such that a global
minimizer z (the same for all k) belongs to Pk.
Find an "k-global minimizer xk of the problem

Min L�k (x; �k ; �k) subject to x 2 ˝ \ Pk . That is
xk 2 ˝ \ Pk is such that:

L�k (x
k; �k ; �k) � L�k (x; �

k; �k )C "k ; (7)

for all x 2 ˝ \ Pk . The "k-global minimum can be
obtained using a deterministic global optimization
approach, such as the ˛BB method [37].

In most deterministic global optimization methods for
solving (7) the point xk�1 is not used as “initial approx-
imation” as most local optimization solvers do. In fact,
the concept of “initial point” has no meaning at all in
this case. The information used by the Outer iteration
k is the set of approximate Lagrange multipliers com-
puted after iteration k � 1, and nothing else.

Theorems 2 [11] is the main convergence result re-
lated to Algorithm 2. Limit points of sequences gener-
ated by this algorithm are feasible global minimizers.

Theorem 2 Assume that the sequence {xk} is well
defined and admits a limit point x*. Then, x* is
a global minimizer of (1). If, instead of "k ! 0 we
assume only that "k ! " � 0, x* will be feasible and
f (x�) � f (x)C " for all feasible x.

The problem of finding xk 2 ˝ \ Pk satisfying (7) con-
sists of finding an "k-global solution of the problem:

Minimize L�k (x; �
k; �k ) subject to x 2 ˝ \ Pk : (8)

When ˝ and Pk are defined by linear equality and/or
inequality constraints and f ; h; g admit continuous sec-
ond derivatives, this problem has been solved in [11]
using the ˛BB algorithm [37].

The practical results presented in [11] corroborate
the theory and give hints on the effectivity of the Aug-
mented Lagrangian method for global optimization.

Augmented Lagrangian Algorithm
with Arbitrary Lower-Level Constraints

In [2,3] safeguarded Augmented Lagrangian methods
were defined that converge to KKT points under the
CPLD constraint qualification and exhibit good prop-
erties in terms of penalty parameter boundedness. AL-
GENCAN, which is publicly available in the TANGO

Project web page http://www.ime.usp.br/~egbirgin/
tango/, is the application of the main algorithm in [3] to
problem (1).

http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/tango/
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In this section we will assume that f ; h; g admit
continuous first (and, sometimes, second) derivatives.
Observe that the function L� , defined in (2) has con-
tinuous first derivatives with respect to x, but sec-
ond derivatives are not defined at the points such that
gi (x)C �i /� D 0.

In Algorithm 3 we will assume that the set ˝ is de-
fined by

˝ D fx 2 Rn j h(x) D 0; g(x) � 0g ; (9)

where h : Rn ! Rm ; g : Rn ! Rp are as smooth as
necessary. The constraints defined by ˝ are called
lower-level constraints. Algorithm 3 is identical to Al-
gorithm 1 except at Step 1. The subproblem resolution
at Algorithm 3 is as given below.

Step 1. Compute (if possible) xk 2 Rn such that there
exist vk 2 Rm ; uk 2 Rp satisfying

krL�k (x
k ; �k; �k )C

mX
iD1

vki rhi(x
k)

C

pX
iD1

uk
i r gi (x

k)k � "k ; (10)

uk
i � 0; g

i
(xk) � "k for all i D 1; : : : ; p ; (11)

g
i
(xk) < �"k ) uk

i D 0 for all i D 1; : : : ; p ; (12)

kh(xk)k � "k: (13)

The conditions (10)–(13) are approximate KKT condi-
tions for the minimization of L�k subject to the lower
level constraints. If˝ D Rn these conditions reduce to
krL�k (xk; �k ; �k)k � "k .

The CPLD (Constant Positive Linear Dependence)
condition defined by Qi and Wei [55] is a crucial tool
in the convergence theory of Algorithm 3. In [4] it
has been proved that CPLD is a constraint qualifica-
tion and its relation with other constraint qualifications
have been reported.

A First-Order Constraint Qualification is a prop-
erty of feasible points of a Nonlinear Programming
problem such that, when verified at a local minimizer,
implies that the local minimizer is a KKT point. The
Linear-Independence Constraint Qualification (LICQ),

also called regularity, says that the gradients of the
active constraints at the feasible point x are linearly
independent.

Assume that the feasible set of a nonlinear program-
ming problem is given by h(x) D 0; g(x) � 0, where
h : Rn ! Rm and g : Rn ! Rp . Let I(x) � f1; : : : ; pg
be the set of indices of the active inequality constraints
at the feasible point x. Let I1 � f1; : : : ;mg, I2 � I(x).
The subset of gradients of active constraints that corre-
spond to the indices I1 [ I2 is said to be positively lin-
early dependent if there exist multipliers �;� such that

X
i2I1

�irhi (x)C
X
i2I2

�ir gi (x) D 0 ; (14)

with �i � 0 for all i 2 I2 and
P

i2I1 j�i j C
P

i2I2 �i >

0. Otherwise, we say that these gradients are positively
linearly independent.

The Mangasarian–Fromovitz Constraint Qualifica-
tion MFCQ says that, at the feasible point x, the gradi-
ents of the active constraints are positively linearly in-
dependent [48,57].

The CPLD Constraint Qualification says that, if
a subset of gradients of active constraints is positively
linearly dependent at the feasible point x (i. e. (14)
holds), then there exists ı > 0 such that the vectors

frhi (y)gi2I1 ; fr g j(y)g j2I2

are linearly dependent for all y 2 Rn such that
ky � xk � ı.

The main convergence theorems related to Algo-
rithm 3 were proved in [3]. Theorem 3 says that, if
a limit point satisfies the CPLD condition with respect
to the lower-level constraints, then this point is station-
ary with respect to a natural infeasibility measure. In
other words, this theorem says that, if the limit point
is not feasible, then (very likely) it is a local minimizer
of the upper-level infeasibility, subject to lower-level
feasibility.

Theorem 3 Let fxkg be a sequence generated by Algo-
rithm 3. Let x� be a limit point of fxkg. Then, if the se-
quence of penalty parameters f�kg is bounded, the limit
point x� is feasible. Otherwise, at least one of the follow-
ing possibilities hold:
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(i) x� is a KKT point of the problem

Minimize
1
2

� mX
iD1

hi(x)2 C
pX

iD1

[gi (x)C]2
�

subject to x 2 ˝:

(15)

(ii) x� does not satisfy the CPLD constraint qualifica-
tion associated with˝ .

From the point of view of optimality, we are interested
in the status of feasible limit points. Theorem 4 says
that, under the CPLD constraint qualification, feasible
limit points are stationary (KKT) points of the original
problem. Since CPLD is strictly weaker than the Man-
gasarian–Fromovitz (MF) constraint qualification, it
turns out that Theorem 4 is stronger than results where
KKT conditions are proved under MF or regularity
assumptions.

Theorem 4 Let {xk} be a sequence generated by Algo-
rithm 3. Assume that x* is a feasible limit point of (1)–
(9) that satisfies the CPLD constraint qualification re-
lated to set of all the constraints. Then, x* is a KKT point
of the problem (1)–(9).

Theorems 3 and 4 are interesting and useful but they
do not explain why it is better to use the Augmented
Lagrangian instead of a pure penalty method. In fact,
if we define �k D 0; �k D 0 for all k these two theo-
rems remain valid and we are in presence of a variation
of the External Penalty method. The use of Lagrange
multipliers estimates is justified in Theorem 5, which is
also proved in [3]. Theorem 5 says that, under appro-
priate conditions, the sequence of penalty parameters
{�k} do not tend to infinity. In practice, this means that
the minimization subproblems tend to remain well-
conditioned and that minimization algorithms for solv-
ing the subproblems will not face difficulties associated
to very large values of �k.

Theorem 5 Assume that:
1. The sequence {xk} is generated by the appli-

cation of Algorithm 3 to problem (1)–(9) and
limk!1 xk D x�.

2. In Algorithm 3 we use the updating rules
�kC1
i D maxf�min;minf�k

i C �k hi(xk); �maxgg and
�kC1

i D maxf0;minf�k C �k gi (xk); �maxgg.
3. The point x* is feasible (h(x�) D 0, h(x�) D 0,

g(x�) � 0 and g(x�) � 0).

4. The gradients of the active constraints at x* are lin-
early independent. The associated (unique) Lagrange
multipliers are �*, �*, u*, v*.

5. The functions f ; h; g; h and g admit continuous sec-
ond derivatives in a neighborhood of x*.

6. Define the tangent subspace T as the set of
all z 2 Rn such that rh(x�)Tz D rh(x�)Tz D 0,
r gi (x�)Tz D 0 for all i such that gi (x�) D 0 and
r g

i
(x�)Tz D 0 for all i such that g

i
(x�) D 0. Then,

for all z 2 T; z ¤ 0,

zT
�
r2 f (x�)C

mX
iD1

��i r
2hi(x�)

C

pX
iD1

��i r
2gi (x�)C

mX
iD1

v�i r
2hi(x

�)

C

pX
iD1

u�i r
2gi (x�)

�
z > 0 :

7. For all i D 1; : : : ;m; j D 1; : : : ; p,��i 2 (�min; �max),
��j 2 [0; �max).

8. For all i such that gi (x�) D 0, we have��i > 0. (Strict
complementarity in the upper level.)

9. There exists a sequence �k ! 0 such that
"k � �k maxfkh(xk)k; kVkkg for all k D 0; 1; 2 : : :

Then, the sequence of penalty parameters {�k} is
bounded.

Observe that strict complementarity is imposed only to
the constraints in the upper-level set. In the lower-level
set it is admissible that g

i
(x�) D u�i D 0. Observe, too,

that the assumption on the reduced positive definite-
ness on the Hessian of the Lagrangian is weaker than
the usual second-order sufficiency assumption [36],
since the subspace T is orthogonal to the gradients of
all active constraints, and no exception is made with
respect to active constraints with null multiplier u�i . In
fact, this is not a second-order sufficiency assumption
for local minimizers. It holds for the problem of min-
imizing x1x2 subject to x2 � x1 � 0 at (0; 0) although
(0; 0) is not a local minimizer of this problem.

The last hypothesis of Theorem 5 imposes that
the precision in which subproblems are solved should
tend to zero faster than the measure of infeasibility-
noncomplementarity. Some authors [30,31,40,41], in
slightly different contexts, also used convergence toler-
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ances that depend on the degree of infeasibility of the
current inner iterate.

The Augmented Lagrangian method is the only ef-
ficient nonlinear programming algorithm that can take
obvious advantage of the existence of case-oriented op-
timization solvers for problems whose constraints are
a subset of the original problem constraints. The par-
tition of the constraints in “easy” and “complicate” is
very common in engineering applications. In the Aug-
mented Lagrangian framework, easy constraints go to
the lower level and complicate constraints contribute
to the Augmented Lagrangian function. The most com-
mon situation is the one in which lower level con-
straints are linear. Location problems of this type are
described in [3]. Problems with more than 3 � 106 vari-
ables and 14 � 106 constraints are solved in this way,
using moderate computer time. The codes are free for
download through the TANGO Project web page http://
www.ime.usp.br/~egbirgin/tango/. The key for the effi-
ciency of the Augmented Lagrangian method in these
problems is the use of the Spectral Projected Gradient
method [15,16,17] for solving the subproblems.

Augmented Lagrangian Algorithm
with Lower-Level Box Constraints

Inmost applications, the definition of the lower level set
˝ in (1) is:

˝ D fx 2 Rn j a � x � bg ; (16)

where a; b 2 Rn ; a � b. In other words, ˝ is an n-di-
mensional box. By the continuity of the Augmented
Lagrangian function and the compactness of ˝ , this
definition guarantees that a global minimizer of the
subproblem exists. Many times one adds bound con-
straints in the lower level of a nonlinear programming
problem in order to guarantee solubility of the subprob-
lems and boundedness of the sequence {xk}.

Obviously, the constraints (16) may be written in
the form (9) and, so, Algorithm 3 may be applied and
Theorems 3, 4 and 5 hold. However, many specific al-
gorithms for box-constrained optimization exist that
use stronger convergence criteria than the one given
in (10)–(13). Namely, in box-constrained minimization
one usually declares convergence when

xk 2 ˝ and kP˝ (xk � rL�k (x
k ; �k; �k )kk � "k ;

(17)

where P˝ denotes de Euclidean projection on ˝ . The
condition (17) implies (10)–(13). This leads us to de-
fine Algorithm 4 as Algorithm 1 where Step 1 is defined
by (17). Theorems 3, 4 and 5 obviously apply to Algo-
rithm 4. It must be observed, however, that, since all
the points of ˝ satisfy CPLD, Theorem 3 guarantees
that the limit points of the generated sequence {xk} are
KKT points of

Pm
iD1 hi(x)2 C

Pp
iD1[gi(x)C]

2 subject
to x 2 ˝ .

Algorithm 4, with the subproblems solved by the
box-constraint solver GENCAN [12], with the modifi-
cations introduced in [13], is called ALGENCAN. The
code that implements ALGENCAN is free for download
in the TANGO Project web page http://www.ime.usp.
br/~egbirgin/tango/. It is written in Fortran 77 (double
precision) and interfaces with AMPL, CUTEr, C/C++,
Python and R (language and environment for statistical
computing) are available.

The default version of ALGENCAN uses � D 0:5;
� D 10; �min D �1020; �max D �max D 1020; "k D 10�4

for all k; �1 D 0; �1 D 0 and �1 D max
˚
10�6;

minf10; (2j f (x0)j)/(kh(x0)k2 C kg(x0)Ck2g
�
. The de-

fault convergence criterion is maxfkh(xk)k1; kVkk1g

� 10�4. The condition kVkk1 � 10�4 guaran-
tees that, for all i D 1; : : : ; p, gi (xk) � 10�4 and that
(�k

i C �k gi (xk))C D 0 whenever gi (xk) < �10�4.
This means that, approximately, feasibility and comple-
mentarity hold at the final point. Dual feasibility with
tolerance 10�4 is guaranteed by (17) and the choice
of "k.

The celebrated package LANCELOT also solves the
basic Nonlinear Programming problem with box con-
straints, but each inequality constraint is completed
with a slack variable to become an equality constraint
plus a lower-level bound.

A comparison between the default versions of AL-
GENCAN and LANCELOT B using all the (1023) prob-
lems of the CUTEr collection was reported in [3]. The
executions were stopped when the precision 10�4 was
achieved or when the allowed CPU time (5 min on an
1.8GHz AMD Opteron 244 processor, 2Gb of RAM
memory and Linux operating system) was exhausted.
Codes are in Fortran 77 and the compiler option “–O”
was adopted.

Given a fixed problem, for each method M 2{LAN-
CELOT, ALGENCAN}, xMfinal was defined in [3] as the final
point obtained by M when solving the given problem.

http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/tango/
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Practical Augmented Lagrangian Methods, Table 1
Efficiency means number of times that method M obtained
the best rM. Robustness means the number of times in which
rM <1

ALGENCAN LANCELOT B
Efficiency 692 544
Robustness 809 763

The point xMfinal is considered to be feasible if

max
n

h �xMfinal

�


1
;



g �xMfinal

�
C





1

o
� 10�4 :

Define

fbest D min
M

˚
f
�
xMfinal

�
j xMfinal is feasible

�
:

It is said that the method M found a solution of the
problem if xMfinal is feasible and

f
�
xMfinal

�
� fbest C 10�3j fbestj C 10�6

or max
˚
fbest; f

�
xMfinal

��
� �1020 :

Finally, let tM be the computer CPU time that method
M used to arrive to xMfinal. Define

rM D

(
tM; if method M found a solution,
1; otherwise.

The quantity r was used as performance measurement
in [3]. The results of the comparison are reported in the
form of performance profiles [29] and a small numeri-
cal table. See Fig. 1 and Table 1.1

Alternative Augmented Lagrangians

The main drawback of the PHR formula (2) is that
the objective function of the subproblems is not twice

1When LANCELOT B solves a feasibility problem (problem
with constant objective function), it minimizes the squared in-
feasibility instead of addressing the original problem. As a result,
it sometimes finishes without satisfying the user required stop-
ping criteria (feasibility and optimality tolerances on the the orig-
inal problem). In 35 feasibility problems, LANCELOT B stopped
declaring convergence but the user-required feasibility tolerance
was not satisfied at the final iterate. 16 of the 35 problems seem
to be problems in which LANCELOT B converged to a station-
ary point of the infeasibility (large objective function value of the
reformulated problem). In the remaining 19 problems (less than
2% of the total number of problems), LANCELOT B seems to stop
prematurely. This easy-to-solve inconvenientmay slightly deteri-
orate the robustness of LANCELOT B reported here.

Practical Augmented Lagrangian Methods, Figure 1
Performance profiles of ALGENCAN and LANCELOT B in the
problems of the CUTEr collection. Note that there is a CPU
time limit of 5 min for each pair method/problem. The sec-
ond graphic is a zoom of the left-hand side of the first one

continuously differentiable. This is the main motiva-
tion for the introduction of many alternative Aug-
mented Lagrangian methods. See, for example, [1,5,6,
7,8,22,38,43,45,46,50,51,52,53,58]. Most of them have
interesting interpretations as proximal point meth-
ods for solving the dual problem, when the origi-
nal nonlinear programming problem is convex [44].
In [10] a comparison of many different Augmented
Lagrangian formulae within an algorithmic framework
similar to the one of Algorithm 1 has been performed
using the CUTE collection [20]. In general, the PHR
formula seems to be more efficient than the alter-
native ones for the resolution of the selected prob-
lems.
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Introduction

The protein folding question is one of the most chal-
lenging problems in computational biology. Although
the structures of approximately 40,000 proteins have
been determined via experimental techniques and cat-
aloged in the Protein Data Bank (PDB) [3], there are
thousands more to be discovered. Modeling proteins
with computational techniques is especially critical for
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proteins that do not easily crystallize or cannot be ad-
dress by NMR techniques.

Protein structure prediction requires searching
through a vast conformational space for the native
structure. This challenge can be met through the appli-
cation of powerful algorithms, such as the ˛BB global
optimization method [1,2,11]. Many ab initio protein
structure prediction methods rely on databases and
statistical methods to predict short peptide fragments
which are subsequently assembled using scoring func-
tions [8,9,23,37,38,39,40,41,44,45]. Other successful
approaches apply detailed physics-based force fields
and search for the minimum free energy of a pro-
tein [5,6,16,17,18,19,20,21,24,25,26,27,28,29,30,31,34,
36,42]. For a detailed summary of protein structure
prediction methods, the reader is directed to two recent
reviews [12,13].

The prediction of residue contacts within ˛-helical
bundles is critical to the prediction of the overall ter-
tiary structure of these proteins. Predicted interhelical
distance restraints can be used to significantly reduce
the conformational search space in the protein fold-
ing problem. Both modeling [22] and experiments [35]
have shown that the residues that define the hydropho-
bic core are most crucial for folding, limiting the con-
formational search space. The preference of nonpolar
atoms for nonaqueous environments is called the hy-
drophobic effect [4]. This occurrence is due to the in-
ability of nonpolar molecules to participate in hydrogen
bonding in an aqueous environment. The hydrophobic
effect is a major stabilization factor for proteins, nu-
cleic acids, and membranes. Because of the dominance
of such hydrophobic interactions in protein folding,
this paper focuses upon predicting specific hydropho-
bic residue pair contacts in protein structure. The im-
portant contributions of electrostatic, van der Waals,
hydrogen bonded, torsional, and solvation energetic
terms are included using secondary and tertiary struc-
ture prediction methods (e. g., the ASTRO-FOLD ap-
proach [16,17,18]).

Methods

There are three main aspects of the overall approach to
the helical topology prediction problem. First a dataset
of helical proteins was assembled. This dataset is then
used to develop hydrophobic residue-based interheli-

cal contact probabilities. Two optimization models are
then presented to minimize these contact probabilities
subject to constraints that enforce physically realistic
topologies. A summary of the important details of the
approach are presented here. A more detailed descrip-
tion of the method is available elsewhere [32].

Dataset Selection

A database PDB set of 318 helical protein struc-
tures was compiled to generate probabilities for spe-
cific hydrophobic-to-hydrophobic PRIMARY residue
contacts and associated hydrophobic-to-hydrophobic
WHEEL residue contacts between helices of the same
helical protein (this terminology is explained below).
They were taken from the following sources: 20 from
Table 2 of Zhang et al. [43]; 7 from Table 1 of Huang et
al. [15]; 62 from the CATH database [33]; and 229 from
the PDB Select 25 Database [14].

Probability Generation and Probability Sets

The probabilities will be established for both a contact
at position i (denoted as a PRIMARY contact) and any
associated contacts in the helical wheel position (de-
noted asWHEEL contacts). For the purpose of calculat-
ing the PRIMARY probabilities, two helices of a given
protein in the database PDB set were considered to in-
teract if they had a contact between a pair of residues
with a PRIMARY distance between 4.0 Å and 10.0 Å.
Unless otherwise specified, distances in this paper refer
to C˛-C˛ distances.

For a parallel helix-to-helix interaction, WHEEL
contacts include the following residue combinations:
(iC3) to ( jC3); (iC3) to ( jC4); (iC4) to ( jC3); (iC4)
to ( jC 4); (i � 3) to ( j� 3); (i � 3) to ( j� 4); (i � 4) to
( j�3); and (i�4) to ( j�4). For an antiparallel helix-to-
helix interaction, the following are the possibleWHEEL
contacts: (iC 3) to ( j� 3), (i C 3) to ( j � 4); (iC 4) to
( j�3); (iC4) to ( j�4); (i�3) to ( jC3); (i�3) to ( jC4);
(i�4) to ( jC3); and (i�4) to ( jC4). Figure 1 illustrates
the PRIMARY and WHEEL contacts for an antiparal-
lel helical interaction. Two residues k and l that were
WHEEL residues of i and j, respectively, were consid-
ered to interact if the WHEEL distance between them
was greater than or equal to 4.0 and less than 12.0Å.

Formulating the problem as a set of PRIMARY and
WHEEL contacts provides a significant advantage over
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Predictive Method for Interhelical Contacts in Alpha-Helical
Proteins, Figure 1
Two interacting ˛-helices in the test set protein 1rop (PDB).
The helices here interact in an antiparallel manner, hy-
drophobic residues i and j form a PRIMARY contact, and the
residues (i+3), (i+4) can each interact with (j � 3), (j � 4) to
form WHEEL contacts if both residues of a given pair are hy-
drophobic. This figure was created with PyMol [7]

other methods. Instead of making assumptions about
the form of the helix, such as representing the helix as
a simple cylinder, the proposed method is able to ad-
dress irregular helices. By selecting a set of interheli-
cal point contacts within a specified distance range, the
approach can handle the most difficult cases, including
those containing helices that bend or kink.

Two helices may interact in one of three possible
ways. They may be parallel or antiparallel to one an-
other. The third type of possible interaction will be la-
beled unclassified. These are cases for which neither the
parallel nor the antiparallel label applies. For the model
prediction section of this paper, only parallel and an-
tiparallel helical interactions were predicted.

The occurrence frequencies of each of the 36 pos-
sible hydrophobic pairs were determined by count-
ing the number of occurrences of hydrophobic-to-
hydrophobic minimum interhelical distances within
the 4.0 to 10.0 Å distance range. The frequency for each
pair was then split into two groups, parallel and an-
tiparallel, based on the relative direction of the inter-
acting helices. The total number of hydrophobic-to-
hydrophobic minimum distance contacts was identi-
fied as the sum of these 36 occurrence frequencies. The
PRIMARY probabilities are then established as the oc-
currence frequency of a specific hydrophobic pair for
a specific directionality divided by the total number of
hydrophobic-to-hydrophobic contacts.

Conditional WHEEL probabilities were generated
for interacting helices in the database PDB set. Given

that two ˛-helices have an interaction with a corre-
sponding hydrophobic-to-hydrophobic minimum in-
teraction distance within 4.0 to 10.0 Å the conditional
probability that the residues on the same side of the he-
lical wheel form any hydrophobic-to-hydrophobic con-
tact within 4.0 to 12.0Å was determined. These prob-
abilities were calculated by considering the number
of hydrophobic-to-hydrophobic WHEEL contacts and
the total number of possible WHEEL contacts for every
specific helix to helix interaction individually, calculat-
ing the probability for each interhelical residue contact
by averaging over the total number of such contacts af-
ter the entire database PDB set has been considered.

Interhelical Contact Prediction Model

Given the locations of helices in a protein’s primary
sequence, the next step in the proposed method is to
predict the interhelical PRIMARY andWHEEL residue
contacts. This is done in order to impose distance con-
straints upon such contacts in the tertiary structure pre-
diction section of the framework.

To accomplish this task, two mixed-integer lin-
ear programming (MILP) optimization problems were
formulated. The first MILP problem, denoted as the
Level 1 Model, identifies a set of the most probable in-
terhelical PRIMARY contacts. The PRIMARY contacts
selected by the Level 1 Model are enhanced by the pres-
ence of the most probable WHEEL contacts predicted
in the Level 2 Model. This second model also provides
a method to distinguish between equally likely results
of the Level 1 model.

Level 1 Model: PRIMARY Interhelical Contacts In
the Level 1 problem, the binary variables yamn and ypmn

are activated if the helices m and n of the same protein
interact in an antiparallel or a parallel fashion, respec-
tively. In addition, the binary variables wmn

i j are defined
as active when the hydrophobic residue pair (i; j) forms
a PRIMARY contact, where i is in helixm and j is in he-
lix n.

Objective Function: The objective function of Level
1, Eq. (1), corresponds to maximizing the sum of
the most probable hydrophobic contacts (i; j) for the
given primary sequence by considering the product of
the binary variable wmn

i j , representing the existence of
a residue-residue contact, the binary variables yamn and
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ypmn , representing the existence of a helix-helix contact,
and the probability of a parallel or antiparallel contact,
ppi j;mn or p

a
i j;mn , respectively.

max
X
m

X
n

yamn �
X
i

X
j

wmn
i j � p

a
i j;mn

C
X
m

X
n

ypmn �
X
i

X
j

wmn
i j � p

p
i j;mn (1)

yamn ; y
p
mn ;wmn

i j D f0; 1g (2)

This objective function is nonlinear due to the prod-
ucts of binary variables that result. The objective func-
tion can be reformulated as a linear objective function
by introducing a second pair of variables, as described
elsewhere [10].

Residue Contact Rules: Every hydrophobic amino
acid of helix m, i, can have at most one PRIMARY con-
tact with another hydrophobic amino acid of helix n, j,
and this is given by Eq. (3). The two terms in this equa-
tion are necessary due to the model formulation; it is
assumed that the second index is always larger than the
first index for any potentially active variables wi j in or-
der to reduce the number of binary variables.

X
j; j> i

wi j C
X
j; j<i

wi j � 1 (3)

Equation (4) prevents any pairs of contacts (i; j) and
(i0; j0) from both being specified if either the number
of residues between i and i0 or j and j0 is less than five
or the number of residues between i and i0 is different
than the number of residues between j and j0 by more
than two residues. This requires that (i0, j0) cannot be
a WHEEL contact to the PRIMARY contact (i; j) and
also limits the size of kinks in the protein backbone that
result from a differing separation between (i and i0) and
(j and j0).

wmn
i j C wmn

i 0 j0 � 1

8(i; i0; j; j0) :
ˇ̌
diff(i; i0) � diff( j; j0)

ˇ̌
> 2

or either
ˇ̌
diff(i; i0)

ˇ̌
< 5

or
ˇ̌
diff( j; j0)

ˇ̌
< 5 (4)

In this equation, diff(i; i0) refers to the difference in se-
quence numbering between i and i0.

Equation (5) states that if a PRIMARY contact (i; j)
occurs, then none of the WHEEL residues for i can also

be part of a PRIMARY contact themselves.

wmn
kl C wmn

i j � 1 8(i; j; k; l) : i; k 2 m and

k is in a WHEEL position of i (5)

Helix Contact Rules: For every helix m, Eq. (6) es-
tablishes the maximum number of PRIMARY con-
tacts that can be specified involving m. The parameter
counth(m) is established based upon the number of hy-
drophobic residues within a helix that are not WHEEL
residues to each other.

X
n

�
yamn C ypmn

�
� counth(m) 8m (6)

Equations (7)–(8) require a minimum number of loop
residues between two ˛-helices to yield helical interac-
tions of a given orientation.

ypmn D 0 8(m; n) : loop between (m; n)

has less than 6AA (7)

yamn D 0 8(m; n) : loop between (m; n)

has less than 1AA (8)

Equation (9) states that two helices m and n can either
interact in a parallel or antiparallel fashion, if they in-
teract at all, but in only one manner.

yamn C ypmn � 1 8(m; n) (9)

Equations (10)–(13) restrict the topology of helical in-
teractions based upon transitive rules.

yamn C yanp C yamp � 2 8(m; n; p) : m ¤ n ¤ p ;

nhel � 3 (10)

ypmn C yanp C ypmp � 2 8(m; n; p) : m ¤ n ¤ p ;

nhel � 3 (11)

yamn C ypnp C ypmp � 2 8(m; n; p) : m ¤ n ¤ p ;

nhel � 3 (12)

ypmn C ypnp C yamp � 2 8(m; n; p) : m ¤ n ¤ p ;

nhel � 3 (13)
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Relating Residue Contacts to Helix Contacts:A direct
link between the wi j PRIMARY contact variables and
the yamn and ypmn helical interaction variables is pro-
vided by Eqs. (14)–(15).

wmn
i j � yamn C ypmn (14)

yamn C ypmn �
X
i

X
j

wmn
i j � 0 (15)

Equations (16)–(17) require the PRIMARY contact
predictions, wmn

i j , to be consistent with the variables
representing the interaction directions, yamn and ypmn .

wmn
i j C wmn

i 0 j0 C yamn � 2 8(i; j; i0; j0) :

i0> i; j0> j andˇ̌
i0 � i

ˇ̌
<
ˇ̌
j0 � j

ˇ̌
C 3 orˇ̌

i0 � i
ˇ̌
>
ˇ̌
j0 � j

ˇ̌
� 3

(16)

wmn
i j C wmn

i 0 j0 C ypmn � 2 8(i; j; i0; j0) :

i0> i; j> j0 andˇ̌
i0 � i

ˇ̌
<
ˇ̌
j0 � j

ˇ̌
C 3 orˇ̌

i0 � i
ˇ̌
>
ˇ̌
j0 � j

ˇ̌
� 3

(17)

Equations (18) and (19) specify that a PRIMARY con-
tact pair (i; j) may be predicted only if it results in an
overlap between the two helices of at least two-thirds of
the length of the shorter helix.

wmn
i j C yamn � 1 if m; n overlap < 2/3

of shorter helix (18)

wmn
i j C ypmn � 1 if m; n overlap < 2/3

of shorter helix (19)

Additional Features: Obtaining a rank-ordered list
of the most likely sets of helical contacts is more de-
sirable than a single solution. Equation (20) introduces
the idea of integer cut constraints into the model. Af-
ter each successive solve of the above model, the previ-
ous solution can be excluded from the feasible solution

space using this equation. Here A is the set of active
variables, I is the set of inactive variables and card(A)
is the cardinality of set A.

X
(m;n);(i; j)2A

�
yamn C ypmn C wmn

i j

�

�
X

(m;n);(i; j)2I

�
yamn C ypmn C wmn

i j

�
� card(A)�1

(20)

Equation (21) indicates an upper limit on the num-
ber of PRIMARY contacts that two interacting helices
m and n can have specified. This upper contact limit is
shown as max_contact in Eq. (21).

X
i

X
j

wmn
i j � max_contact �

�
yamn C ypmn

�
8(m; n)

(21)

Equation (22) eliminates a number of helical interac-
tions from the Level 1 solutions equal to the value of the
parameter subtract. The subtract parameter effectively
loosens the helical packing, which may be desired in
predicting only the most essential and hopefully small-
est distance contacts.

X
m

X
n

�
yamn C ypmn

�
�

 X
m

counth(m)/2

!

� subtract (22)

Equations (1)–(22) represent the Level 1 mathemati-
cal model which is a mixed-integer linear optimization
problem (MILP).

Level 2 Model: WHEEL Interhelical Contacts The
Level 2MILP problem serves as a check on the ordering
of the solutions found in Level 1.

Objective Function: The Level 2 objective func-
tion, Eq. (23), maximizes the most probable hydropho-
bic (k; l) WHEEL contacts based on probabilities cal-
culated using the database PDB set. Although this was
done with the (i; j) pairs and parallel or antiparallel ori-
entations already fixed from Level 1, the model could be
altered to allow for only fixing the helical orientations
after Level 1, for example. The parameters pakl ;i j;mn and
ppkl ;i j;mn give the probabilities that any hydrophobic
(k; l) pair will occur on the same side of the helical
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wheel as a specific PRIMARY pair (i; j) for antiparallel
or parallel orientations, respectively. The Level 2 objec-
tive function must be based upon not only the pakl ;i j;mn

and ppkl ;i j;mn probabilities, but also upon the probabil-
ities pai j;k l ;mn and ppi j;k l ;mn as shown in Eq. (23). These
latter probabilities treat the (k; l) WHEEL contacts as
PRIMARY contacts themselves, and the values reflect
the relative weights of the different (i; j) WHEEL con-
tacts to these (k; l) PRIMARY contacts. This approxi-
mation allows for distinguishing between the possible
(k; l) hydrophobic contacts that may be specified when
there is a choice of more than one pair.

max
X
m;n

X
i; j

X
k;l

wmn
kl ;i j �

h
pakl ;i j;mn C pai j;k l ;mn

i

� yamn � w
mn
i j

C
X
m;n

X
i; j

X
k;l

wmn
kl ;i j �

h
ppkl ;i j;mn C ppi j;k l ;mn

i

� ypmn � wmn
i j (23)

yamn ; y
p
mn ;wmn

i j ;w
mn
kl ;i j; y

a
i jmn ; y

p
i jmn D f0; 1g (24)

Like the objective function in the Level 1 model,
Eq. (23) is also nonlinear due to the products of binary
variables that result. It can be linearized in a similar
fashion [10].

Wheel Residue Contact Rules: Equation (25) states
that a maximum of one WHEEL contact is allowed to
be specified per primary contact.

X
k

X
l

wmn
kl ;i j � wmn

i j 8(m; n; i; j) : yamnC ypmn D 1

(25)

Applications

The Level 1 and Level 2 MILP optimization problems
were applied to 26 target proteins with known struc-
tures in the PDB, termed the test PDB set. For each
of these proteins, only the primary amino acid se-
quence and the experimentally-determined locations of
the helices were presented to the model. The model
predicted the interhelical hydrophobic residue con-
tacts between such helices using the PRIMARY and
WHEEL probabilities developed from globular helical
proteins.

A predicted set of interhelical contacts (a solu-
tion) was evaluated by computing the average of the
distances of these contacts from the experimentally-
determined structure. The proposed framework was
used to generate 20 solutions for each protein and each
parameter value by applying integer cuts. The solutions
in this list are ranked by objective value, from best to
worst. The best contact distance average value is defined
as the lowest contact distance average value identified
for a specific protein. An upper limit of 14Å was iden-
tified as a goal for the average distance corresponding
to a contact prediction, since such a distance constraint
would significantly improve the structure refinement.

Figure 2 displays the lowest combined PRIMARY
and WHEEL contact distance averages for every test
protein. For the parameters given, these are the best so-
lutions: the experimentally-determined distance aver-
ages corresponding to contacts predicted by the model
are lower for those solutions than for all other solutions
in each protein system. Figure 2 demonstrates that the
predictive results of the model are highly encouraging.
A general goal of 5.0 to 14.0Å for the actual distance
range of contacts predicted by the model was set, since
such a distance range would significantly improve the
structure refinement. This goal was attained and sur-
passed for the entire set of the test proteins.

The error bars of one standard deviation for the dis-
tance averages indicate that 1fc3, 1ash, 1cc5, and 2ezh
may fall close to this limit and that 1a17 is beyond this
target. The averages for a large number of the target
proteins fall far below 14.0Å, suggesting that lower dis-
tance restraints such as 12.0 Å or even 10.0Å and below,
may be appropriate in some or even most cases.

The successful predictions of this model using
both experimentally-determined helix locations as well
as predicted helical regions support the thesis that
hydrophobic-to-hydrophobic interactions are key to
the folding of the native structures of ˛-helical globular
proteins. Despite the variety of structural motifs present
in the test PDB set, the hydrophobic-to-hydrophobic
interactions based model was able to identify low dis-
tance interhelical PRIMARY and WHEEL contacts for
each of the 26 proteins analyzed. This observation is
also supported by the success of the subtract parame-
ter in identifying themost essential contacts and further
reinforces the utility of the probability values developed
for the model.
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Predictive Method for Interhelical Contacts in Alpha-Helical Proteins, Figure 2
Lowest contact distance averages for identified solutions to the target proteins as explained in the text. Error bars for one
standard deviation of the contact distances are given
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In decision making involving to multiple criteria, the
basic problem stated by analysts and decision mak-

ers concerns the way that the final decision should be
made. In many cases, however, this problem is posed in
the opposite way: assuming that the decision is given,
how is it possible to find the rational basis through
which the decision was made? Or equivalently, how
is it possible to assess the decision maker’s preference
model leading to the exact same decision as the actual
one or at least the most ‘similar’ decision? The philoso-
phy of preference disaggregation in multicriteria analy-
sis is to assess/infer preference models from given pref-
erential structures and to address decision-aiding activ-
ities through operational models within the aforemen-
tioned framework.

Definitions and Notations

Under the term multicriteria analysis two basic ap-
proaches have been developed involving:
a) a set of methods or models enabling the aggregation

of multiple evaluation criteria to choose one or more
actions from a set A;

b) an activity of decision-aid to a well-defined decision
maker (individual, organization, etc.).

In both cases the set A of potential actions or deci-
sions is analysed in terms of multiple criteria in or-
der to model all the possible impacts, consequences
or attributes related to the set A (for instance, see
[11,27,47,49,69]).

B. Roy [47] outlines a general modeling methodol-
ogy of decision making problems, which includes four
modeling steps beginning with the definition of the ob-
ject of the decision and ending with the activity of deci-
sion aid, as follows:
� Level 1: Object of the decision, including the defini-

tion of the set of potential actions A and the deter-
mination of a problematic on A (see below).

� Level 2: Modeling a consistent family of criteria as-
suming that these criteria are nondecreasing value
functions, exhaustive and nonredundant.

� Level 3: Development of a global preference model,
to aggregate the marginal preferences on the criteria.

� Level 4: Decision-aid or decision support, based
on the results of level 3 and the problematic in
level 1.

In level 1, Roy [47] distinguishes four referential prob-
lematics, each of which does not necessarily preclude
the others. These problematics can be employed sepa-
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rately or in a complementary way in all phases of the
decision making process. The four problematics are the
following:
� Problematic ˛: Choosing one action from A

(choice).
� Problematic ˇ: Sorting the actions in well defined

categories which are given in a preference order
(sorting).

� Problematic � : Ranking the actions from the best
one to the worst one (ranking).

� Problematic ı: Describing the actions in terms of
their performances on the criteria (description).

In level 2, the modeling process must conclude on
a consistent family of criteria {g1, . . . , gn}. Each crite-
rion is a nondecreasing real valued function defined on
A, as follows:

gi : A! [gi� ; g�i ] �
R
a
! g(a) 2 R ; (1)

where:
� [g i� , g�i ] is the criterion evaluation scale;
� gi � is the worst level of the ith criterion;
� g�i is the best level of the ith criterion;
� gi(a) is the evaluation or performance of action A on

the ith criterion;
� g(a) is the vector of performances of action A on the

n criteria.
From the above definitions the following preferen-

tial situations can be determined:

gi (a) > gib), a > b (a is preferred to b);

gi (a) D gi (b), a � b (a is indifferent to b):

In multicriteria analysis four types of criteria are
used with the following properties:
� Measurable criterion: The criterion enables the pref-

erential comparison of intervals of the evaluation
scale. It can be distinguished in the following sub-
types [69]:
– true criterion (without any threshold);
– semicriterion (with indifference threshold);
– pseudocriterion (with indifference and prefer-

ence thresholds).
� Ordinal criterion: The criterion defines only an or-

der on A; thus the evaluation scale is discrete (qual-
itative criterion);

� Probabilistic criterion: It covers the case of un-
certainty in the actions’ performances modeled by
probability distributions (see the Section ‘Disaggre-
gation Under Uncertainty’ below);

� Fuzzy criterion: The actions’ performances are inter-
vals of the criterion’s evaluation scale.
The modern theoretical steams in the field of multi-

ple criteria decision-aid (MCDA) can be distinguished
into four groups:
1) Multi-objective optimization (see the Section ‘Dis-

aggregation in Multi-objective Optimization’);
2) Value-focused approaches ([29,30]);
3) Outranking methods ([1,49])
4) Disaggregation methods.

Roy and D. Bouyssou [48] point out the major
conceptual andmethodological differences distinguish-
ing value-focused approaches from outranking meth-
ods using the classical example regarding the location
of a thermo-nuclear electrical production plant. On the
conceptual level, the authors characterize the value-
focused approach as descriptive of the decision maker’s
preferences, while outranking methods are character-
ized as a constructive way of building these prefer-
ences. On the methodological level, the value-focused
approach proposes a value or utility function to model
the decision maker’s global preference (functional sys-
tems), whereas outranking methods propose outrank-
ing relations (relational systems).

Outline of the Article

The development of disaggregation methods has actu-
ally begun in 1978, with the presentation of the UTA
method in the ‘Cahiers du LAMSADE’ series. We will
summarise all the progress made in this scientific field
from that moment.

The subsequent sections include: the background of
the UTAmethod through the use of goal programming
techniques in regression analysis; some thoughts about
the usefulness of the disaggregation; a brief presenta-
tion of the UTA algorithm; variants of UTA; other dis-
aggregation methods; methods for decision making un-
der uncertainty; multi-objective optimization. Finally,
the last two sections show the implementation of dis-
aggregation methods through decision support systems
and potential real-world applications.
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History

The history of the disaggregation principle in multi-
dimensional/multicriteria analyses begins with the use
of goal programming techniques, a special form of lin-
ear programming structure, in assessing/inferring pref-
erence/aggregation models or in developing linear or
nonlinear multidimensional regression analyses [52].

A. Charnes, W.W. Cooper and O. Ferguson [9] pro-
posed a lineal model of optimal estimation of executive
compensation by analysing or disaggregating pairwise
comparisons and given measures (salaries); the model
was estimated so that it could be as consistent as possi-
ble with the data from the goal programming point of
view.

O.J. Karst [28] minimized the sum of absolute de-
viations via goal programming in linear regression
with one variable, while H.M. Wagner [70] generalises
Karst’s model in the multiple regression case. Later,
J.E. Kelley [31] proposed a similar model to minimize
Tchebycheff’s criterion in linear regression.

Later, V. Srinivasan and A.D. Shoker [65] outlined
the ORDREG ordinal regression model to assess a lin-
ear value function by disaggregating pairwise judge-
ments. N. Freed and G. Glover [17] proposed goal pro-
gramming models to infer the weights of linear value
functions in the frame of discriminant analysis (prob-
lematic ˇ).

The research on handling ordinal criteria has be-
gun with the studies [71] and [25]. Both research teams
faced the same problem: to infer additive value func-
tions by disaggregating a ranking of reference alterna-
tives. F.W. Young, J. de Leeuw and Y. Takane [71] pro-
posed alternating least squares techniques, without en-
suring, however, that the additive value function is op-
timally consistent with the given ranking. In the case of
the UTA method proposed by E. Jacquet-Lagrèze and
J. Siskos [25] optimality is ensured through linear pro-
gramming techniques.

The Disaggregation Paradigm inMCDA

In the traditional aggregation paradigm, the criteria ag-
gregation model is known a priori, while the global
preference is unknown. On the contrary, the philoso-
phy of disaggregation involves the inference of prefer-
ence models from given global preferences (Fig. 1).

Preference Disaggregation, Figure 1
The aggregation and disaggregation paradigms in MCDA

Global Preference As Datum

The clarification of the decision maker’s global prefer-
ence necessitates the use of a reference set of actions AR.
Usually, this set could be:
1) a set of past decision alternatives (AR: past actions);
2) a subset of decision actions, especially when A is

large (AR � A);
3) a set of fictitious actions, consisting of performances

on the criteria which can be easily judged by the de-
cision maker to perform global comparisons AR: fic-
titious actions).
In each of the above cases the decision maker is

asked to externalise and/or confirm his/her global pref-
erences on the set AR taking into consideration the per-
formances of the reference actions on all criteria. Usu-
ally, the form of the global preference follows the fol-
lowing typology:
� Measurable judgements on AR;
� Ranking (weak order relation) on AR (problematic
�);

� Pairwise relation;
� Sorting of reference actions (problematic ˇ).

The ‘Famous’ UTAMethod

Objective of the Method

The UTA method proposed by Jacquet-Lagrèze and
Siskos [26] aims at inferring one or more additive value
functions from a given ranking on the reference set
AR. The method uses special linear programming tech-
niques to assess these functions so that the ranking(s)
obtained through these functions on AR is (are) as con-
sistent as possible with the given one.
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The Additive Value Model

The criteria aggregation model in UTA is assumed to be
an additive value function of the following form [30]:

u(g) D
nX

iD1

piui(gi ) (2)

subject to normalization constraints:

ui(gi�) D 0 ; ui (g�i ) D 1 ;

8i D 1; : : : ; n ;
nX

iD1

pi D 1 ;
(3)

where ui, i = 1, . . . , n, are nondecreasing real valued
functions, named marginal value or utility functions,
which are normalized between 0 and 1, and pi is the
weight of ui.

Both the marginal and the global value functions
have the monotonicity property of the true criterion.
For instance, in the case of the global value function the
following properties hold:

u
h
g(a)

i
> u

h
g(b)

i
, a 
 b (preference);

u
h
g(a)

i
D u

h
g(b)

i
, a � b (indifference):

The UTA method infers an unweighted form of the
additive value function, equivalent to the form defined
from relations (2)–(3), as follows:

u(g) D
nX

iD1

ui (gi) (4)

subject to normalization constraints:

ui(gi�) D 0 ; 8i D 1; : : : ; n ; (5)

nX
iD1

ui (g�i ) D 1 : (6)

Of course, the existence of such a preference model
assumes the preferential independence of the criteria
for the decision maker [30], although this assumption
does not pose significant problems in a posteriori anal-
yses such as disaggregation analysis.

Preference Disaggregation, Figure 2
Ordinal regression curve (ranking versus global value)

The UTASTARAlgorithm.

In order to assess every marginal value function, the
evaluation scales of each criterion (especially in the case
of measurable criteria) is discretised in a limited set of
points:

Gi D
˚
gi� D g1i ; g

2
i ; : : : ; g

ai
i D g�i

�
: (7)

On the other hand, the set of reference actions AR

= {a1, . . . , ak} is ‘rearranged’ in such a way that a1 is
the head of the ranking and ak its tail. Since the ranking
has the form of a weak order, for each pair of consecu-
tive actions (aj, aj+1) one of the two following relations
holds:

aj 
 ajC1 (preference);

aj � ajC1 (indifference):

In the original version of UTA [26], for each packed
action a 2 AR a single error �(a) is introduced to be
minimised. Later, Y. Siskos and D. Yannacopoulos [60]
introduced two errors leading to better results (Fig. 2).
This variant of UTA, is now called UTASTAR.

The main computational procedure employed in
UTASTAR employs linear programming techniques to
find additive value functions which are as consistent as
possible with the ranking on AR:
1) Express the global value of reference actions

u[g(aj)], j = 1, . . . , k, first in terms of marginal val-
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ues ui(gi), then in terms of variables:

wil D ui (glC1
i ) � ui(gli ) � 0; i D 1; : : : ; n ;

l D 1; : : : ; ˛i � 1 ;

by means of the relations

ui(gli ) D
l�1X
tD1

wit; ui (g1i ) D 0; 8i and l > 1:

2) Introduce two error functions �+ and �� on AR by
writing for each pair of consecutive actions in the
ranking, the analytic expressions:

	(aj; ajC1) D u[g(aj)] � �C(aj)C ��(aj)

� u[g(ajC1)]C �C(ajC1) � ��(ajC1) : (8)

3) Solve the linear program

min z D
kX

jD1

[�C(aj)C ��(aj)]

subject to the set of constraints:
(
	(aj; ajC1) � ı if aj 
 ajC1;

	(aj; ajC1) D 0 if aj � ajC1;
8 jD 1; : : : ; k�1;

(9)

nX
iD1

ai�1X
lD1

wil D 1 ;

wil � 0 ;

i D 1; : : : ; n; l D 1; : : : ; ˛i � 1 ;

(10)

�C(aj) � 0; ��(aj) � 0 ; j D 1; : : : ; k ; (11)

� being a small positive number.
4) Test the existence of multiple or near optimal solu-

tions of the linear program in step 3 (stability anal-
ysis); in case of nonuniqueness, find the mean addi-
tive value function of those (near) optimal solutions
which maximise the objective functions pi = ui(g�i ) =P

lwil for all i = 1, . . . , n on the polyhedron (9)–(11)
bounded by the new constraint:

kX
jD1

�
�C(aj)C ��(aj)

�
� z� C " ; (12)

z� being the optimal value of the linear program in
step 3 and " a very small positive number.

Variants andMeta-UTA Techniques

After the development of the UTAmethod several vari-
ants have been developed incorporating different forms
of global preference or different forms of optimality cri-
teria used in the linear programming formulation. The
main variants include:
� Inferring u from pairwise comparisons [26].
� Maximising Kendall’s � , a consistency measure be-

tween the two rankings, via a mixed linear program-
ming formulation [26].

� Inferring u from assignment examples in the case of
problematic ˇ ([14,22,26,78]).

� Optimising lexicographic criteria without dis-
cretization of criteria scales Gi [41].

� Inferring u in the presence of nonmonotonic prefer-
ences on the criteria evaluation scales [13].
Other techniques, named meta-UTA, aimed at the

improvement of the value function with respect to near
optimality analysis or to its exploitation for decision
support.

D.K. Despotis, Yannacopoulos and C. Zopouni-
dis [12] propose to minimise the error’s dispersion
(Tchebycheff criterion) within the UTA’s step 4. In the
case where UTA gives a sum of error equal to zero
(z� = 0), M. Beuthe and G. Scanella [5] propose the
meta-UTA techniques UTAMP1 maximising ı (mini-
mumdifference between the global value of two consec-
utive reference actions) in near optimality analysis, and
UTAMP2 maximising ı plus the minimum of marginal
value step wil of UTA’s step 1.

Beuthe and Scanella [7] propose similar techniques
for the case of z� > 0 and provide some comparative
analysis results for different UTA variants.

Finally, Siskos [51] suggests the construction of
fuzzy outranking relations based on multiple value
functions u provided by UTA’s near optimality analy-
sis.

Other DisaggregationMethods

The disaggregation logic has been employed almost
in all aggregation models in multicriteria analysis. Of
course, in some cases, it is not easy to infer aggregation
models or procedures from their output.

A first attempt to infer ELECTRE III from a given
ranking was made in [45] without satisfactory results.
L.N. Kiss et al. [33] developed the ELECCALC system
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that estimates indirectly the parameters of the ELEC-
TRE II method from the decision maker’s responses
to questions of the system regarding his/her global
preferences. V. Mousseau and R. Slowinski [40] and
Mousseau et al. [39] present linear programming for-
mulations to infer the parameters of ELECTRE TRI, ex-
cept the veto thresholds, from assignment example in
the case of problematic ˇ.

P. Spiliopoulos [63] and Siskos and N.F. Matsatsi-
nis [55] employ the UTA method iteratively as a model
to analyse consumers’ behavior, through the MARKEX
system providing decision support during new product
development [37].

The disaggregation of measurable judgements in
order to infer additive value functions for prediction
purposes is proposed in [32]. Siskos et al. [58] devel-
oped an ordinal regression formulation to measure cus-
tomer satisfaction by disaggregating multiple satisfac-
tion judgements. The method was implemented in the
MUSA system and it was applied in several real-world
studies (for instance, see [38]).

UTA was used in several works for conflict resolu-
tion in multi-actor decision situations ([8,24,36]).

Additive value functions are usually assessed in
two phases: in the first phase the marginal value
functions are assessed under the preferential inde-
pendence conditions and in the second phase their
weights are assessed by disaggregating a ranking of
a small number of reference actions [50]. Two-phase
disaggregation methods were implemented through
the MACBETH system ([2,3]) and the MIIDAS sys-
tem ([59,64]).

The general scheme of the disaggregation philos-
ophy is also employed in other approaches, includ-
ing rough sets ([16,43,62,72]), machine learning [44]
and neural networks ([35,66]). All these approaches are
used to infer some form of decision model (a set of de-
cision rules or a network) from given decision results
involving assignment examples, ordinal or measurable
judgements.

DisaggregationUnder Uncertainty

Within the framework of multicriteria decision aid un-
der uncertainty, Siskos [52] developed a specific ver-
sion of UTA (Stochastic UTA), in which the aggrega-
tion model to infer from a reference ranking is an addi-

Preference Disaggregation, Figure 3
Distributional evaluation and marginal value function

tive utility function of the form:

u(ıa) D
nX

iD1

aiX
jD1

ıai (g
j
i )ui(g

j
i ) (13)

subject to normalization constraints (5)–(6), with the
following additional notation (see also Fig. 3):
� ıai is the distributional evaluation of action A on the

ith criterion;
� ıai (g

j
i ) is the probability that the performance of ac-

tion A on the ith criterion is g j
i ;

� ui(g
j
i ) is the marginal value of the performance g j

i ;
� ıa is the vector of distributional evaluations of ac-

tion A;
� u(ıa) is the global utility of action A.

Of course, the additive utility function (13) has the
same properties as the value function:

u(ıa) > u(ıb), a 
 b ( preference);

u(ıa) D u(ıb), a � b ( indifference):

Similarly to the case of the UTA described above,
the stochastic UTA method disaggregates a ranking
of reference actions [53]. The algorithmic procedure
could be expressed in the following way:
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1) Express the global expected utilities of reference ac-
tions u(ıa j ) in terms of variables wil = ui (g lC1

i ) �
ui(g li ) � 0.

2) Introduce two error functions �+ and ��:

	(aj; ajC1) D u(ıa j ) � �C(aj)C ��(aj) (14)

�u(ıa jC1)C�C(ajC1)���(ajC1) : (15)

3) Solve the linear program:

min z D
kX

jD1

[�C(aj)C ��(aj)]

subject to the set of constraints:

(
	(aj; ajC1) � ı if aj 
 ajC1;

	(aj; ajC1) D 0 if aj �eajC1;
8 j D 1; : : : ; k � 1 ;

(16)

X
i

X
l

wi l D 1 ;

wil � 0 ;

i D 1; : : : ; n; l D 1; : : : ; ˛i � 1 ;

�C(aj) � 0; ��(aj) � 0 ;

j D 1; 2; : : : ; k ;

(17)

ı being a small positive number.
4) Test the existence of multiple or near optimal solu-

tions.
Of course, the ideas employed in all variants of the

UTA method are also applicable in the same way in the
case of the stochastic UTA.

Disaggregation inMulti-objective Optimization

The disaggregation approach is also applicable in the
specific field of multi-objective optimization, mainly in
the field of linear programming with multiple objective
functions. For instance, in the classical methods of [18]
and [73] the weights of the linear combinations of the
objectives are inferred locally from trade-offs or pair-
wise judgements given by the decision maker at each
iteration of the methods.

T.J. Stewart [67] proposed a procedure of pruning
the decision alternatives using the UTA method, while

Jacquet-Lagrèze, R. Meziani and Slowinski [23] devel-
oped a disaggregation method, similar to UTA, to assess
a whole value function of multiple objectives for linear
programming systems.

Siskos and Despotis [54] proposed an interactive
method named ADELAIS that uses UTA iteratively,
in order to optimise an additive value function within
the feasible region defined on the basis of the satisfac-
tion levels determined during each iteration. Finally,
A. Tangian and M.J. Gruber [68] propose a different
form of disaggregation techniques for the assessment of
quadratic multi-objective functions.

Interactive Disaggregation Systems

Except for the normative features that a disaggregation
approach provides, it also constitutes a basis for the in-
teraction between analysts and decision makers. The is-
sues involved during this interactive dialog and negoti-
ation include:
� the consistency between the assessed preference

model and the a priori preferences of the decision
maker;

� the assessed values (values, weights, utilities, etc.);
and

� the overall evaluation of potential actions (extrapo-
lation output).
A general interaction scheme is given in Fig. 4.
Several decision support software have been de-

veloped on the basis of disaggregation methods, most
of them being UTA based. They include: PREF-
CALC [21], MINORA-MIIDAS [59], ADELAIS [54],
MARKEX [55], UTA+ [34], FINEVA [81], FINCLAS
[75], PREFDIS [77], MUSTARD [6].

Applications and Conclusions

From their first appearance in 1978 onwards, pref-
erence disaggregation methods have been applied in
several real-world decision making problems from the
fields of financial management, marketing, environ-
mental management, as well as human resources man-
agement. The following list reports some of these appli-
cations (list not exhaustive):
� financial management

– venture capital [56];
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Preference Disaggregation, Figure 4
Simplified decision support process based on disaggregation analysis

– portfolio selection and management ([20,79]);
– business failure prediction ([74,76]);
– business financing ([61,75,81]);
– country risk assessment ([10,42,80]);

� marketing
– marketing of new products ([4,55,63]);
– sales strategy problems ([46,57]);
– customer satisfaction ([38,58]);

� environmental management ([15,19,53]);

� industrial project evaluation [22];
� job evaluation [64].

The above applications have provided insight on
the applicability of preference disaggregation analysis
in addressing real-world decision problems and its effi-
ciency. The future research developments on this field
required to explore further the potentials of the pref-
erence disaggregation philosophy within the context of
multicriteria decision aid, include:
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Inference of More Sophisticated AggregationModels
by Disaggregation

Currently most preference disaggregation methods lead
to the assessment of additive value functions. How-
ever, in many cases such additive models fail to com-
prise the decision maker’s preference in a satisfactory
way, either because their underlying assumptions do
not hold (preferential independence), or because they
do not consider the existing interactions between the
criteria. In that respect it is worth examining the devel-
opment of alternative aggregation models, for instance
in the form of multiplicative value functions or even
outranking relations.

Evaluation of the Aggregation-Disaggregation
Relationship

Both aggregation and disaggregation procedures share
the same objective: to aggregate all criteria into a global
preference model that will support decision making. Of
course, as this paper has demonstrated, there are sig-
nificant differences in the process employed in both
approaches to accomplish this objective. However, it
would be interesting to explore the relationship of ag-
gregation and disaggregation procedures in terms of
similarities and/or dissimilarities regarding the evalu-
ation results obtained by both approaches. This will en-
able the identification of the reasons and the condi-
tions under which aggregation and disaggregation pro-
cedures will lead to different or the same results.

Experimental Evaluation
of Disaggregation Procedures

Real-world applications can be used to illustrate the de-
cision support provided by preference disaggregation
approaches in practice. However, a thorough investiga-
tion of their performance and ability to capture the de-
cision maker’s preferences requires the conduct of ex-
perimental studies. Through such studies it is possible
to examine how different data conditions and preferen-
tial structures affect the efficiency of preference disag-
gregation approaches and the aggregation models used.

Implementation of Disaggregation Methods
into DSSs and Group DSSs

Preference disaggregation procedures operate on an in-
teractive and iterative way. The decision maker inter-

acts with the procedure to achieve a consistent rep-
resentation of his/her preferences in the aggregation
model through an iterative trial and error process. The
DSSs technology is well adapted to both these features,
enabling the decision maker to take full advantages
that preference disaggregation approaches provide, in
real-time. Furthermore, this framework could be ex-
tended bearing in mind the fact that many crucial de-
cisions are taken by a group of decision makers work-
ing in a negotiating or cooperative environment to con-
clude to a consensus decision. Group DSSs provide the
means required in supporting such decision making
situations.

See also

� Bi-objective Assignment Problem
� Decision Support Systems with Multiple Criteria
� Estimating Data for Multicriteria Decision Making

Problems: Optimization Techniques
� Financial Applications of Multicriteria Analysis
� Fuzzy Multi-objective Linear Programming
�Multicriteria Sorting Methods
�Multi-objective Combinatorial Optimization
�Multi-objective Integer Linear Programming
�Multi-objective Optimization and Decision Support

Systems
�Multi-objective Optimization: Interaction of Design

and Control
�Multi-objective Optimization: Interactive Methods

for Preference Value Functions
�Multi-objective Optimization: Lagrange Duality
�Multi-objective Optimization: Pareto Optimal

Solutions, Properties
�Multiple Objective Programming Support
� Outranking Methods
� Portfolio Selection and Multicriteria Analysis
� Preference Disaggregation Approach: Basic

Features, Examples From Financial Decision
Making

� Preference Modeling
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Multicriteria decision aid (MCDA) has emerged during
the last three decades as a promising scientific field in
operations research and management science, and to-
day it has consolidated its position with a wide set of
methods and tools confronting in a realistic and flex-
ible way decision problems where multiple conflicting
criteria should be considered. The tools provided by
MCDA are not just some mathematical models, which
aggregate several criteria, points of view or attributes,
but furthermore they are decision support oriented. Ac-
tually, ‘support’ is a key issue in MCDA, implying that
the models are not developed through a straightforward
sequential process where the decision maker’s role is
passive. Instead an iterative process is employed to ana-
lyze the preferences of the decisionmaker and represent
them as consistently as possible in an appropriate deci-
sion model. Throughout this process the interaction of
the decision maker with the analyst is essential, provid-
ing significant preferential information to the analyst.
This decision support nature of MCDA is the basic fea-
ture that distinguishes it from the classical models that
the optimization approach employs.

Within the methods and tools provided by MCDA,
several approaches and theoretical disciplines can be
defined, although their distinction and the existing
boundaries among them are often difficult to deter-
mine. In fact several authors provided different catego-
rizations of the MCDA approaches ([19,21,34,36]). Fol-
lowing the proposal of P.M. Pardalos et al. [15] and C.
Zopounidis [40], one can identify fourmajor streams in
MCDA:
1) multi-objective programming ([30,32,35]),
2) multi-attribute utility theory [11],
3) outranking relations ([18,20]),
4) preference disaggregation analysis [10].
The differences among these approaches can be iden-
tified in terms of the types of problems that they ad-
dress, in terms of the preference models that they de-
velop, as well as in term of the process that is employed
to develop these models. As far as the type of problem
is concerned, multi-objective programming addresses
decision problems where there is not a finite set of al-
ternative solutions, but instead the possible alternatives
are determined implicitly through a set of constraints
imposed by the nature of the problem. On the other
hand, multi-attribute utility theory, outranking rela-
tions, and preference disaggregation analysis are used
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to study decision problems involving the evaluation of
a well-defined finite set of alternatives.

Concerning the form of the model that is employed,
in multi-objective programming the decision problem
is formulated as a mathematical programming model,
with more than one objective functions representing
the objectives of the decision maker. In both multi-
attribute utility theory and preference disaggregation
analysis the model is a utility function either addi-
tive or multiplicative. Finally, outranking relations are
based on pairwise judgments between the alternatives
of the form ‘alternative a is at least as good as alterna-
tive b’.

Although there are significant differences between
the four MCDA approaches regarding the types of
problems that they address and the model formulation,
the most significant differences involve the informa-
tion that they require from the decision maker, and
the procedure that is used to elicit this information.
In multi-objective programming the process employed
to develop the model and to obtain the best compro-
mise solution is an interactive one. Once the decision
problem has been consistently formulated as a mathe-
matical programming problem, the efficient (nondom-
inated) set of solutions is determined. The decision
maker is then asked to provide some preferential infor-
mation usually in terms of some reference points, indi-
cating the way that the efficient set should be investi-
gated. In multi-attribute utility theory, a direct interro-
gation process is employed to elicit information from
the decision maker concerning the trade-offs among
the conflicting criteria, attributes or points of view.
These trade-offs are then used to construct the global
preference model in the form of a utility function that
the decision maker implicitly uses to make decisions.
The modeling of the decision makers preferences in
outranking relations is achieved similarly to the pro-
cess used in multi-attribute utility theory (direct inter-
rogation of the decision maker), although the type of
information required differ (the decision maker must
determine the weights of the evaluation criteria, as well
as preference, indifference and veto thresholds). Com-
pared to the other three approaches, preference dis-
aggregation requires the minimal amount of informa-
tion from the decision maker. The weights, trade-offs,
reference points, or any other preferential information
does not have to be determined a priori by the decision

maker. Instead, the decision maker, based on his/her
past experience is asked to provide some characteris-
tic examples of his decision making policy through the
evaluation of a ‘reference’ set of alternatives. Then us-
ing ordinal regression techniques, the utility function
that has been implicitly used by the decision maker is
estimated.

This indirect estimation of the decision makers’
preferences in preference disaggregation analysis is
a quite appealing characteristic compared to the direct
interrogation procedures employed in multi-objective
programming, multi-attribute utility theory and out-
ranking relations.

The preference disaggregation analysis found an ap-
propriate field of applications in the domain of finan-
cial decision making. Most financial decision making
problems such as corporate failure prediction, credit
granting, portfolio selection and management, venture
capital investment, country risk assessment, etc., have
a repetitive character [37], while the decisions have to
be taken in real time. These two characteristics of fi-
nancial decision making problems are in accordance
with the general methodological framework of prefer-
ence disaggregation analysis. The repetitive character
of financial decision problems enables the decision an-
alyst to exploit the experience and the past decisions
of the decision maker (financial/credit analyst, portfo-
lio manager, etc.) in order to develop the appropriate
decision model. Once this model is validated, it can
be used to support real time financial decision making.
Zopounidis [40] provides a comprehensive discussion
of the applications of preference disaggregation anal-
ysis and multicriteria analysis in general in the study
of financial decision making problems, while the books
([38,39]) and [7] illustrate the application of preference
disaggregation analysis in venture capital investments,
business failure prediction, and portfolio selection and
management.

The rest of this article will focus with more details
on the basic concepts, principles and techniques used
in preference disaggregation analysis. More specifically,
Section 2 describes the foundations of preference dis-
aggregation analysis, while Sections 3, 4 and 5 illus-
trate how the preference disaggregation analysis can
be applied in the study of ranking, sorting and choice
problems respectively using simple illustrative exam-
ples from the field of credit granting. Finally, Section 6
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concludes the article and discusses some possible future
research direction in this field.

Preference DisaggregationAnalysis

The preference disaggregation approach refers to the
analysis (disaggregation) of the global preferences of
the decision maker to deduce the relative importance
of the evaluation criteria, using ordinal regression tech-
niques based mainly on linear programming formula-
tions.

The preference disaggregation analysis is based on
the simple finding that generally, in real world situa-
tions, decision makers are either unable or unwilling to
provide in a direct way specific information regarding
their preferences including weights or trade-offs. Even
if this is possible, the procedure that will be employed
to elicit such information from the decision maker is
time consuming which may prevent its practical appli-
cations in real decision problems where decisions have
to be taken in real time.

On the contrary, instead of describing the proce-
dure that leads to the final decision, it would be eas-
ier for the decision maker to provide the analyst with
the actual decision he/she would take considering the
specific characteristics and conditions of the problem
at hand.

For instance, when a committee of professors inves-
tigates the profiles of candidates for a graduate course,
in order to rank them from the most appropriate to the
less appropriate ones, the past evaluations that the com-
mittee has made can be used. These evaluations can ei-
ther have the form of a ranking or they may express
the intense of preference between two candidates (how
many times an alternative is preferred compared to an-
other alternative) [12]. Furthermore, it is even possi-
ble to consider more detailed information that the de-
cision maker can provide, for instance the ranking of
the alternatives on each evaluation criterion combined
with the ranking of the criteria according to their sig-
nificance [1].

The purpose of gathering such information from
the decision maker is to have some representative ex-
amples of decisions taken by the decision maker. These
examples reflect the decision policy and the preferences
that the decision maker has implicitly used in mak-
ing the decision. Consequently, through the analysis of

such decision instances, the analyst can derive useful in-
formation concerning the global preference system of
the decision maker.

Decision makers when making decisions evaluate
each alternative over a set of factors, criteria, attributes
or points of view that affect the overall evaluation of
the alternatives. Then, these partial evaluations are ag-
gregated to derive the final decision. Following the
same approach, the aim of the preference disaggrega-
tion analysis is to disaggregate the overall decision into
the partial evaluations on each one of the evaluation cri-
teria. The disaggregation should be performed in such
a way so that the aggregation of partial evaluations will
lead to the overall evaluation that the decision maker
provided. If this is not possible then the deviations that
occur should be minimized.

In such a disaggregation process it is clear that the
form that the partial evaluations will have, as well as
the selection of the model which will be used to aggre-
gate the partial evaluations are two key issues. The first
preference disaggregation approaches employed a sim-
ple weighted sum model of the form:
X

wjdi j ;

where wj denotes the weight of each criterion and dij
denotes the distance of the evaluation of an alternative
i on criterion j from the ideal point for this criterion
([6,16,31]). However, such a model is just an oversim-
plification of real world situations, which suffers from
two major drawbacks.
� Firstly, it is obvious that this formulation implies

both the overall value (score) of an alternative as well
as the partial value of the alternative on an evalu-
ation criterion, are linear functions (the weights of
the evaluation criteria are independent on the crite-
ria’s values).

� Furthermore, this model is not appropriate for con-
sidering criteria which are measured through a qual-
itative scale. This would require the transformation
of this qualitative scale into a numerical one, which
can not be unique and it may not be in accordance
with the preferential information that a qualitative
scale provides.

To overcome such limitations, utility functions may be
used. Utility functions are nonlinear increasing or de-
creasing functions of the criteria’s values, indicating the
value of the alternatives in the global preference system
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of the decision maker. The most common forms of util-
ity functions used in practice include the additive form
and themultiplicative form. An additive utility function
can be expressed as:

U(g) D
X
j

u j(g j) ;

whereas a multiplicative utility function can be ex-
pressed as:

U(g) D

Q
j(ku j(g j)C 1) � 1

k
;

where U(g) denotes the global utility of an alternative
described by the vector of criteria g, uj(gj) is the partial
or marginal utility of an alternative on criterion gj, and
k is a scaling factor. R.L. Keeney and H. Raiffa in their
book [11] provide a comprehensive discussion of utility
theory and the underlying assumptions of the several
types of utility functions.

The aim of preference disaggregation analysis is to
estimate the marginal utilities of each evaluation cri-
terion so that their aggregation using either an addi-
tive or a multiplicative utility function results in an
evaluation of the alternatives which is consistent with
the decision maker’s preferences and judgement pol-
icy. This estimation is achieved through mathematical
programming techniques with the objective being the
optimization of a measure of consistency. Multiplica-
tive utility functions can generally be more appropri-
ate for modeling decision makers’ preferences in real
world decisions taking into account possible interac-
tions among the decision makers’ preference on sev-
eral criteria [14]. However, their estimation results in
nonlinear programs that are computationally intensive
and difficult to solve. Consequently, in practice additive
utility functions are commonly used instead of multi-
plicative ones, since they provide a simple but also pow-
erful approach for modeling decision makers’ prefer-
ence in multiple criteria decision making problems.

A well known preference disaggregation method
which incorporates additive utility functions to model
decision maker’s preferences is the UTAmethod (UTil-
ités Additives) proposed in [10]. The subsequent three
subsections illustrate the UTA method as it has been
proposed in [10], as well as some of its variants which
have been proposed for the study of ranking, sort-
ing and choice decision problems. More specifically

the UTASTAR method [28] for ranking problems, the
UTADIS method ([3,9,42]) for sorting problems, as well
as two methodologies proposed in [22] and [33] for
choice problems are presented.

Preference DisaggregationAnalysis
in Ranking Problems

The UTAmethod performs an ordinal regression based
on the preference disaggregation approach of MCDA.
Following the general methodological framework of
preference disaggregation analysis, the decision maker
is asked to provide a ranking (pre-ordering) of a refer-
ence set of alternatives which will be used to construct
the additive utility model. This reference set may con-
sist of examples of past decisions, or of a subset of the
alternatives under consideration for which the decision
maker can express a global evaluation.

Given this pre-ordering, the aim of the UTA
method is to estimate a set of additive utility functions
which are as consistent as possible with the decision
maker’s preferences (pre-ordering). The marginal utili-
ties are piecewise linear (Fig. 1). The range of values of
each criterion is divided into ai�1 equal intervals. The
number of these subintervals can be specified by the
decision maker, or it can be determined by the ana-
lyst so that there is at least one alternative falling into
each subinterval. The estimation of the marginal utili-
ties is achieved through the following linear program-
ming formulation:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min F D
X
a2A

�(a)

s.t. U(a) � U(b)C �(a) � �(b) � ı
if aPb; 8a; b 2 A;

U(a) � U(b)C �(a) � �(b) D 0
if aIb; 8a; b 2 A;

ui (g
jC1
i ) � ui (g

j
i ) � 0;X

i

ui(gi�) D 1; ui(gi�) D 0; 8i;

where P and I represent the preference and the indif-
ference relations, respectively, A is the set of reference
alternatives used to develop the additive utility model,
U(a) =

Pn
iD1ui[gi(a)] is the global utility of an alterna-

tive a 2 A, �(a) is an error function (�(a) � 0), and ı
is a threshold used to ensure the strict preference of an
alternative a over an alternative b (ı � 0).
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Preference Disaggregation Approach: Basic Features, Exam-
ples from Financial Decision Making, Figure 1
Piecewise linear form of marginal utilities

Solving the above linear program a utility func-
tion is estimated which minimizes the deviations �(a).
However, it has been observed that in many cases this
utility function is not the most consistent one with
the pre-ordering provided by the decision maker. On
the contrary, utility functions that correspond to sub-
optimal solutions of the above linear program often
provide a more consistent representation of the deci-
sionmaker’s preferences. Furthermore, the above linear
program has often multiple optimal solutions (degen-
eracy). Therefore, in order to examine these two essen-
tial issues, in a second stage the UTA method proceeds
to a post-optimality analysis, trying to find some char-
acteristic sub-optimal or multiple optimal solutions.
A heuristic post-optimality procedure that has been
proposed by E. Jacquet-Lagrèze and Y. Siskos [10] finds
the solutions which correspond to extreme weights of
the evaluation criteria. This is achieved by incorporat-
ing an additional constraint of the form: F� F� + k(F�),
where F� is the optimal value of the objective function
obtained by solving the above linear program and k(F�)
is a small portion of it. The new linear program that
is obtained is solved with the objective being the mini-
mization or the maximization of the weight of each cri-
terion:

8̂
<
:̂
min (or max )

nX
iD1

�i ui(gi�)

with �i D 0 or 1; 8i:

Siskos and D. Yannacopoulos [28] proposed the UTAS-
TARmethod, an improved variant of the UTAmethod.
The differences between the two methods can be iden-
tified in the following two aspects:
1) Instead of using the marginal utilities ui(g

j
i ) as

decision variables, the difference wij between the
marginal utilities of two successive values of a crite-
rion is used: wij = ui(g

jC1
i ) � ui(g

j
i ) � 0. In this way

the constraints ui(g
jC1
i )� ui(g

j
i )� 0 are transformed

in nonnegativity constraints wij � 0.
2) Two error functions are used instead of one. The

two error functions denoted as �+(a) and ��(a) rep-
resent the overestimation or underestimation error
that may occur in the decision maker’s pre-ordering.
The overestimation error involves alternatives that
have been ranked by the decision maker higher than
their rank according to the additive utility model,
while the underestimation error involves alterna-
tives which have been ranked by the decision maker
lower than their rank according to the additive util-
ity model.

Considering these two differences the new linear pro-
gram that is solved is the following:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
a2A

[�C(a) � ��(a)]

s.t. U(a) � U(b)C �C(a) � ��(a)
��C(b)C ��(b) � ı
if aPb;

U(a) � U(b)C �C(a) � ��(a)
��C(b)C ��(b) D 0
if aIb;X

i

X
j

wi j D 1;

wi j; �
C(a); ��(a) � 0; 8a 2 A;8i; j;

ui(gki ) D
ai�1X
kD1

wik ; 8i; j; k:

The UTA and the UTASTAR methods have been
applied successfully in a variety of decision prob-
lems, including environmental decisions [24], market-
ing decisions and sales strategy problems ([13,17,23]),
customer satisfaction [25], venture capital invest-
ments [29], country risk assessment [2], evaluation of
bankruptcy risk [37], as well as research and develop-
ment decisions [5].
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Preference Disaggregation Approach: Basic Features, Exam-
ples from Financial Decision Making, Table 1
Evaluations of the firms

EBIT/TA NU/NW TL/TA (CA-I)/CL
F1 10% 24% 33% 2:97
F2 5% 9% 78% 1:11
F3 13% 18% 80% 0:84
F4 15% �8% 72% 0:85
F5 8% �30% 93% 0:60

In the subsequent subsection, a simple example is
used to illustrate how the UTASTARmethod can be ap-
plied in the study of ranking problems.

Example 1 Consider a decision problem concerning
credit granting. Five firms (F1, F2, F3, F4, F5) are seeking
financing by a bank. The credit managers of the bank
evaluate the firms along four financial ratios:
1) earnings before interest and taxes/total assets

(EBIT/TA);
2) net income/net worth (NI/NW);
3) total liabilities/total assets (TL/TA); and
4) (current assets-inventories)/current liabilities [(CA-

I)/CL].
For the ratios EBIT/TA, NI/NW and (CA-I)/CL the
preferences of the credit managers are increasing func-
tions of their values. Hence, the higher the values of
these ratios the more creditworthy a firm is. On the con-
trary, for the ratio TL/TA the preference of the credit
managers is a decreasing function of its value, since
high values of this ratio mean that the firm is highly in-
debted. Table 1 illustrates the evaluations of the firms
along these four criteria.

According to the credit policy of the bank, the fol-
lowing preferential structure (pre-ordering) is defined:

F1 P F2 P F3 P F4 P F5 :

The first step of the UTASTARmethod consists ofmak-
ing explicit the utilities of the alternatives (firms). The
range of values of each criterion (financial ratio) is di-
vided into a number of subintervals, so that there is at
least one firm belonging to each interval. Following this

rule the following scales are retained:

[g1�; g�1 ] D [5%; 7:5%; 10%; 12:5%; 15%] ;

[g2�; g�2 ] D [�30%;�16:5%;�3%; 10:5%; 24%] ;

[g3�; g�3 ] D [93%; 73%; 53%; 33%] ;

[g4�; g�4 ] D [0:6; 1:785; 2:97] :

Using linear interpolation the global utilities of the
firms can be written as follows:

U(F1) D u1(10%)C u2(24%)C u3(33%)C u4(2:97) ;

U(F2) D u1(5%)C 0:11u2(�3%)C 0:89u2(10:5%)
C 0:25u3(93%)C 0:75u3(73%)

C 0:57u4(0:6)C 0:43u4(1:785) ;

U(F3) D 0:8u1(12:5%)C 0:2u1(15%)

C 0:44u2(10:5%)C 0:56u2(24%)

C 0:35u3(93%)C 0:65u3(73%)

C 0:80u4(0:6)C 0:20u4(1:785) ;

U(F4) D u1(15%)C 0:37u2(�16:5%)
C 0:63u2(�3%)

C 0:95u3(73%)C 0:05u3(53%)

C 0:79u4(0:6)C 0:21u4(1:785) ;

U(F5) D 0:8u1(7:5%)C 0:2u1(10%)

C u2(�30%)C u3(93%)C u4(0:6) :

Using the transformation ui(gki ) =
Pai�1

kD1 wik, the
global utilities can be expressed as:

U(F1) D w11 C w12 C w21 C w22 C w23

C w24 C w31 C w32 C w33 C w41 C w42 ; (1)

U(F2) D w21Cw22C0:89w23C0:75w31C0:43w41 ; (2)

U(F3) Dw11 C w12 C w13 C 0:20w14

C w21 C w22 C w23 C 0:56w24

C 0:65w31 C 0:20w41 ; (3)

U(F4) Dw11 C w12 C w13 C w14 C w21

C 0:63w22 C w31 C 0:05w32 C 0:21w41 ;

U(F5) Dw11 C 0:2w12 : (4)
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Taking into account the pre-ordering that was de-
fined, and the global utilities of the firms the following
linear program is formulated (ı = 0.05):

minf�C(F1)C ��(F1)C �C(F2)C ��(F2)

C �C(F3)C ��(F3)C �C(F4)C ��(F4)

C �C(F5)C ��(F5)g

s.t.

w11 C w12 C 0:11w23 C w24

C 0:25w31 C w32 C w33 C 0:57w41 C w42

C �C(F1)� ��(F1)� �C(F2)C ��(F2) � 0:05 ;
(5)

� w11 � w12 � w13 � 0:2w14 � 0:11w23

� 0:56w24 C 0:1w31 C 0:23w41

C �C(F2)� ��(F2)� �C(F3)C ��(F3) � 0:05 ;
(6)

� 0:8w14 C 0:37w22 C w23 C 0:56w24

� 0:35w31 � 0:05w32 � 0:01w41

C �C(F3)� ��(F3)� �C(F4)C ��(F4) � 0:05 ;
(7)

0:8w12 C w13 C w14 C w21 C 0:63w22

C w31 C 0:05w32 C 0:21w41

C �C(F4)� ��(F4)� �C(F5)C ��(F5) � 0:05 ;
(8)

w11 C w12 C w13 C w14 C w21 C w22

Cw23Cw24Cw31Cw32Cw33Cw41Cw42 D 1 :
(9)

Constraint (5) involves the pairwise comparison of F1

with F2, constraint (6) involves the pairwise compar-
ison of F2 with F3, constraint (7) involves the pair-
wise comparison of F3 with F4, constraint (8) involves
the pairwise comparison F4 with F5, while constraint
(9) is used to normalize the global utilities between
0 and 1. The optimal solution to this linear problem
is as follows. (The solver of Microsoft Excel has been
used to solve all the presented linear programs. Since
most of the solutions presented are not unique, differ-
ent solutions may be obtained through other linear pro-
gramming packages depending upon their particulari-

ties and vagaries.)

w13 D 0:0152; w14 D 0:0357 ;

w21 D 0:0758; w22 D 0:0786 ;

w23 D 0:0959; w24 D 0:011 ;

w31 D 0:1301; w32 D 0:0754; w33 D 0:0758 ;

w41 D 0:3306; w42 D 0:0758 :

This solution is fully consistent with the predefined pre-
ordering. More specifically, the global utilities obtained
through this solution are:

U(F1) D 0:9491; U(F2) D 0:4795 ;

U(F3) D 0:4295; U(F4) D 0:3795 ;

U(F5) D 0 :

In a second stage, through the post-optimality analy-
sis, the existence of multiple optimal solutions is inves-
tigated. In order to find the most characteristic solu-
tions the weight of each criterion is maximized. This
is achieved by solving four new linear programs with
the objectives being the maximization of w11 + w12 +
w13 + w14, w21 + w22 + w23 + w24, w31 + w32 + w33, and
w41 +w42, respectively. For instance, the linear program
to maximize the weight of the first criterion (EBIT/TA)
would be the following:

maxfw11 C w12 C w13 C w14g

s.t.

w11 C w12 C 0:11w23 C w24 C 0:25w31 C w32

C w33 C 0:57w41 C w42 � 0:05 ;
� w11 � w12 � w13 � 0:2w14 � 0:11w23

� 0:56w24 C 0:1w31 C 0:23w41 � 0:05 ;

� 0:8w14 C 0:37w22 C w23 C 0:56w24

� 0:35w31 � 0:05w32 � 0:01w41 � 0:05 ;

0:8w12 C w13 C w14 C w21 C 0:63w22

C w31 C 0:05w32 C 0:21w41 � 0:05 ;

w11 C w12 C w13 C w14 C w21 C w22 C w23

C w24 C w31 C w32 C w33 C w41 C w42 D 1 :

Solving this linear program the obtained solution is:w14

= 0.2296, w23 = 0.2390, w41 = 0.5314. Similarly solving
the other three linear programs the following solutions
are obtained:
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For max{w21 + w22 + w23 + w24}:

w21 D 0:4297; w22 D 0:3529; w41 D 0:2174 :

For max{w31 + w32 + w33}:

w23 D 0:0524; w33 D 0:7051; w41 D 0:2425 :

For max{w41 + w42}:

w23 D 0:0524; w41 D 0:2425; w42 D 0:7051 :

A simple way to select a unique utility function is to
consider the mean of all the solutions obtained through
the post-optimality stage:

w14 D 0:0574; w21 D 0:1074 ;

w22 D 0:0882; w23 D 0:0860 ;

w33 D 0:1763; w41 D 0:3084; w42 D 0:1763 :

Consequently, the marginal utilities of the financial ra-
tios are:

u1(5%) D u1(7:5%) D u1(10%) D u1(12:5%) D 0 ;

u1(15%) D 0:0574 ;

u2(�30%) D 0; u2(�16:5%) D 0:1074 ;

u2(�3%) D 0:1957 ;

u2(10:5%) D 0:2816 u2(24%) D 0:2816 ;

u3(93%) D u3(73%) D u3(53%) D 0 ;
u3(33%) D 0:1763 :

u4(0:6) D 0; u4(1:785) D 0:3084 ;

u4(2:97) D 0:4847 :

According to this solution the global utilities of the
firms are:

U(F1) D 0:9426; U(F2) D 0:4048 ;

U(F3) D 0:3548; U(F4) D 0:2852; U(F5) D 0 :

It is obvious that the ranking of the firms according to
their global utilities is fully consistent with the prede-
fined pre-ordering. Furthermore, the bank can use the
obtained additive utility function to evaluate any new
firm.

Preference DisaggregationAnalysis
in Sorting Problems

The preference disaggregation analysis except for the
study of ranking problems can also be used to study

sorting problems. In this case, the primary objective is
not to rank a set of alternatives from the best ones to
the worst ones, but instead the aim is to sort the alter-
natives into two or more predefined ordered homoge-
neous classes denoted asC1, . . . ,Cq (C1 is the class of the
best alternatives, and Cq is the class of the worst alter-
natives). The sorting of the alternatives can be accom-
plished in several ways. The most simple and common
one is based on the comparison of the score of each
alternative with some thresholds (u1, . . . , uq�1) which
distinguish the classes. Following the methodological
framework of the UTA method the score of each alter-
native is its global utility U(a). The sorting of an alter-
native a is accomplished through the following compar-
isons:

U(a) � u1 ) a 2 C1 ;

u2 � U(a) < u1 ) a 2 C2 ;

� � �

uk � U(a) < uk�1 ) a 2 Ck ;

� � �

U(a) < uq�1 ) a 2 Cq :

J.M. Devaud et al. [3] (see also [9] and [42]) pro-
posed the UTADIS method (UTilités Additives DIS-
criminantes) a variant of the UTA method which is es-
pecially conceived for the study of sorting problems.
The objective of the method is to estimate a global
utility model (additive utility function) and the utility
thresholds in order to minimize the classification error.
The classification error is measured through two error

Preference Disaggregation Approach: Basic Features, Exam-
ples from Financial Decision Making, Figure 2
Classification errors
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functions denoted as �+(a) and ��(a), representing the
deviations of a misclassified alternative from the utility
threshold. Figure 2 illustrates these two types of errors
for the two-group (class) sorting problem.

In the UTADIS method the additive utility model
and the utility thresholds are estimated through the fol-
lowing linear program (using the transformation wij =
ui(g

jC1
i ) � ui(g

j
i ) proposed in [28]):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min F D
X
a2C1

�C(a)C � � �

C
X
a2Ck

[�C(a)C ��(a)]C � � �

C
X
a2Cq

�C(a)

s.t. U(a) � u1 C �C(a) � 0; 8a 2 C1;

U(a) � uk�1 � �
�(a) � �ı; 8a 2 Ck ;

U(a) � uk C �
C(a) � 0; 8a 2 Ck ;

U(a) � uq�1 � �
�(a) � �ı; 8a 2 Cq;

mX
iD1

ai�1X
jD1

wi j D 1;

uk�1 � uk � s; k D 2; : : : ; q � 1;
wi j � 0; �C(a) � 0; ��(a) � 0:

The first constraint implies that the global utility of an
alternative a 2 C1 should be greater or equal to the util-
ity threshold u1. If this is not possible, then an amount
of utility equal to �+(a) should be added to the global
utility of this alternative, indicating that the alternative
is classified to a lower class than the one it actually be-
longs (cf. Fig. 2). The second set of constraints is used
for alternatives that are classified by the decision maker
in an intermediate class Ck. In such cases, the global
utility of the alternative should be strictly lower than the
utility threshold uk�1 (a positive small real number ı is
used to ensure the strict inequality) and greater or equal
to the utility threshold uk. If either of these two condi-
tions is not satisfied then the corresponding amount of
utility �+(a) or ��(a) should be added (subtracted) to
the global utility of the alternative. Similarly, the third
constraint is used for alternatives which belong to the
worst class Cq. The global utility of these alternatives
should be strictly lower than the utility threshold uq�1;
otherwise an amount of utility equal to ��(a) should
be subtracted from the global utility of the alternatives,
indicating that these alternatives are classified by the

model to a higher (better) class than the one they ac-
tually belong (cf. Fig. 2). The fourth constraint is used
as a normalization constraint, so that the global utilities
and the utility thresholds are normalized between 0 and
1. Finally, the fifth constraint is used to ensure that u1
> � � � > uq�1 (a positive real number s > ı > 0 is used to
ensure the strict inequality between the utility thresh-
olds). The post-optimality analysis stage is performed
similarly to the UTA method.

In [4] and [41] three variants of the UTADIS
method were proposed to improve the classification ac-
curacy of the obtained additive utility models. The first
variant (UTADIS I) except for the classification errors
also incorporates the distances of the correctly classi-
fied alternatives from the utility thresholds which have
to be maximized. The second variant (UTADIS II) is
based on a mixed integer programming formulation
minimizing the number of misclassifications instead of
their magnitude, while the third variant (UTADIS III)
combines UTADIS I and II, and its aim is to minimize
the number of misclassifications and maximize the dis-
tances of the correctly classified alternatives from the
utility thresholds.

Except for the classification of the alternatives in the
predefined classes, the global utilities of the alternatives
that are estimated through the family of the UTADIS
methods can be used to rank the alternatives belong-
ing in each class. Hence, the decision maker is provided
with an additional information that can be used to iden-
tify the best and the worst alternatives within each class.
The applications of the UTADIS method include sales
strategy problems [3], the evaluation of research and
development projects [9], and several financial deci-
sion problems such as credit risk and bankruptcy risk
evaluation, country risk assessment, credit card evalua-
tion, evaluation of bank branches’ efficiency, and port-
folio selection and management ([4,41,42]). In the sub-
sequent subsection, a simple example is used to illus-
trate how the UTADIS method can be applied in the
study of sorting problems.

Example 2 Let us consider again the credit granting
problem which has been used previously to illustrate
the application of the UTASTAR method. In this case
we assume that the credit managers of the bank are not
interested in ranking the firms from the most credit-
worthy to the less creditworthy ones, but instead they
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are interested in sorting them in two classes: the credit-
worthy firmswhich could be financed by the bank (class
C1), and the untrustworthy firms which should not be
financed (classC2). Suppose according to the credit pol-
icy of the bank, that the firms F1, F2 and F3 can be con-
sidered as creditworthy firms, whereas the firms F4 and
F5 can be considered as risky (untrustworthy) firms.
The global utilities of the firms have the same form as in
the case of the UTASTAR method (1)–(4). The new lin-
ear program that is used to estimate the additive utility
model is the following:

min �C(F1)C �C(F2)C �C(F3)C ��(F4)C ��(F5)

s.t.

w11 C w12 C w21 C w22 C w23 C w24

C w31 C w32 C w33

C w41 C w42 � u1 C �C(F1) � 0 ; (10)

w21 C w22 C 0:89w23 C 0:75w31

C 0:43w41 � u1 C �C(F2) � 0 ; (11)

w11 C w12 C w13 C 0:20w14

C w21 C w22 C w23 C 0:56w24

C 0:65w31 C 0:20w41 � u1 C �C(F3) � 0 ; (12)

w11 C w12 C w13 C w14

C w21 C 0:63w22 C w31 C 0:05w32

C 0:21w41 � u1 � ��(F4) � 0:001 ; (13)

w11 C 0:2w12 � u1 � ��(F5) � 0:001 ; (14)

w11 C w12 C w13 C w14

C w21 C w22 C w23 C w24

C w31 C w32 C w33 C w41 C w42 D 1 : (15)

Constraints (10)–(12) involve the firms F1, F2 and F3

which belong in class C1 and consequently their global
utility should be greater or equal to the utility thresh-
old u1. On the contrary, constraints (13)–(14) involve
the firms F4 and F5 which belong in class C2 and con-

sequently their global utilities should be strictly lower
than the utility threshold u1 (a small positive number
ı = 0.001 is used to ensure the strict inequality). Con-
straint (15) is used similarly to the UTASTAR method
for normalization purposes. Solving the above linear
program the following solution is obtained:

w22 D 0:1779; w23 D 0:8018; w31 D 0:0203 :

The estimated utility threshold is u1 = 0.9067. Accord-
ing to this solution the global utilities of the firms are:

U(F1) D 1; U(F2) D 0:9067 ;

U(F3) D 0:9929; U(F4) D 0:1324; U(F5) D 0 :

Obviously, all the firms are correctly classified into
their original class, however the obtained solution is
not unique. Consequently, the method proceeds to the
post-optimality analysis stage to identify the most char-
acteristic multiple optimal solutions. This is achieved
similarly to the UTASTAR method. However in this
case, five new linear programs are solved. The first four
correspond to the maximization of the criteria’s weights
(as in the UTASTAR method), while the fifth corre-
sponds to the maximization of the utility threshold u1.
For example, the linear programming formulation for
maximizing the weight of the ratio EBIT/TA is the fol-
lowing:

minfw11 C w12 C w13 C w14g

s.t.

w11 C w12 C w21 C w22 C w23 C w24

C w31 C w32 C w33

C w41 C w42 � u1 � 0 ;
w21 C w22 C 0:89w23

C 0:75w31 C 0:43w41 � u1 � 0 ;

w11 C w12 C w13 C 0:20w14

C w21 C w22 C w23 C 0:56w24

C 0:65w31 C 0:20w41 � u1 � 0 ;

w11 C w12 C w13 C w14 C w21 C 0:63w22

C w31 C 0:05w32 C 0:21w41 � u1 � �0:001 ;

w11 C 0:2w12 � u1 � �0:001 ;

w11 C w12 C w13 C w14

C w21 C w22 C w23 C w24

C w31 C w32 C w33 C w41 C w42 D 1 :
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The solution to this linear program is:

w14 D 0:4704; w23 D 0:5296 ;

and the utility threshold is u1 = 0.4714.
Similarly solving the other four linear programs the

following solutions are obtained.
For max{w21 + w22 + w23 + w24}:

w21 D 0:2772; w22 D 0:1619 ;

w23 D 0:2837; w24 D 0:2772 ;

u1 D 0:3802 :

For max{w31 + w32 + w33}:

w23 D 0:0011; w33 D 0:9989; u1 D 0:001 :

For max{w41 + w42}:

w23 D 0:0010; w41 D 0:0005 ;

w42 D 0:9985; u1 D 0:0011 :

For max{u1}:

w21 D 0:9861; w22 D 0:0139 ;

u1 D 1 :

Similarly to the UTASTAR method, the mean of these
solutions is considered as a unique solution:

w14 D 0:0941; w21 D 0:2527 ;

w22 D 0:0352; w23 D 0:1631 ;

w24 D 0:0554; w33 D 0:1998 ;

w41 D 0:0001; w42 D 0:1997 :

The utility threshold is u1 = 0.3707. Consequently, the
marginal utilities of the financial ratios are:

u1(5%) D u1(7:5%) D u1(10%) D u1(12:5%) D 0 ;

u1(15%) D 0:0941 :

u2(�30%) D 0; u2(�16:5%) D 0:2527 ;

u2(�3%) D 0:2878; u2(10:5%) D 0:4509 ;
u2(24%) D 0:5064 :

u3(93%) D u3(73%) D u3(53%) D 0 ;

u2(33%) D 0:1998 :

u4(0:6) D 0; u4(1:785) D 0:0001 ;

u4(2:97) D 0:1998 :

According to this solution the global utilities of the
firms are:

U(F1) D 0:9059; U(F2) D 0:4330 ;

U(F3) D 0:5008; U(F4) D 0:3689; U(F5) D 0 :

It is obvious that the sorting of the firms according to
their global utilities is fully consistent with the prede-
fined classification. The utility function that has been
constructed through the above procedure is the follow-
ing:

U(g) D 0:0941u1(g1)C 0:5064u2(g2)

C 0:1998u3(g3)C 0:1998u4(g4) :

Preference DisaggregationAnalysis
in Choice Problems

Except for the study of ranking and sorting problems
the preference disaggregation analysis is also applicable
in choice problems. In this case the decision maker is
concerned with the selection of the most appropriate al-
ternative. T.J. Stewart [33] demonstrated how the pref-
erence disaggregation analysis could be applied in such
types of problems. The methodology that he proposes
combines the UTAmethod with an interactive pruning
of the alternatives until the best alternative is selected.
The proposed approach proceeds in five steps:
1) Initially, a subset of the alternatives under consider-

ation is selected.
2) Following the methodology of the UTAmethod, the

decision maker is asked to provide a ranking (pre-
ordering) of the subset of the alternatives that was
selected in step 1.

3) According to the ranking defined in the previous
step and using the UTA method the corresponding
utility function is estimated. In the same step, for
each alternative a not belonging to the reference set
used to construct the additive utility model, a lin-
ear program is solved in order to investigate the ex-
istence of a utility function for which U(a) > U(o)
(where o is the best alternative among the alterna-
tives belonging to the reference set) while retaining
the correct (consistent) ranking of the other alterna-
tives of the reference set. If such a utility function
does not exist, then a can be eliminated from further
consideration.
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4) If such a utility function exists then, in step 4, the
utilities of all the alternatives (based on the utility
function developed on the reference set of alterna-
tives) are presented to the decision maker along with
all the alternatives not belonging to the reference set
that can be considered as best alternatives (for which
there is a utility function that makes them the best
alternatives).

5) If the decision maker is satisfied with the best solu-
tion then the process stops, otherwise in step 5 the
decision maker selects the alternative not belonging
to the reference set which outperforms the current
best alternative among the reference set. This new
alternative is included in the initial reference set and
the decision maker is asked to provide a new rank-
ing of the alternatives in the new reference set. The
methodology proceeds from step 3, until all the al-
ternatives not belonging into the reference set have
been considered.
Another way or applying the preference disaggre-

gation approach in choice problems has been proposed
in [22]. This approach is based on constructing a fuzzy
outranking relation [20] using the set of utilities esti-
mated through the post-optimality analysis performed
through the UTA method. The relation suggested is
based on the calculation of the percentage of utilities
for which an alternative is better than another. In this
way the degree of credibility of the affirmation ‘alter-
native a is at least as good as alternative b’ is estimated.
The construction of this outranking relation enables the
decision maker to identify the best alternative(s) which
are not outranked by any other alternative(s), while
furthermore, the incomparabilities which may occur
among the alternatives due to their dissimilar charac-
teristics are identified.

Conclusions and Future Research

In this article the main features, disciplines and char-
acteristics of the preference disaggregation approach of
MCDA were presented. Furthermore, the applicability
of the preference disaggregation analysis in the study of
several types of problems (ranking, sorting, and choice)
was demonstrated through the description of the UTA
method and several of its variants.

Preference disaggregation analysis using mini-
mal information from the decision maker constitutes

a promising and powerful approach for modeling the
decision makers’ preference and developing a global
preference model through an interactive and iterative
procedure.

Multicriteria decision support systems (MCDSSs)
implementing this MCDA approach can be very helpful
tools both for decision analysts as well as for decision
makers in making decisions in real world situations
where the time is limited while the cost of taking a deci-
sion is a very significant factor. Researchers in this field
have already explored the potentials of MCDSSs incor-
porating preference disaggregation procedures. Some
representative examples are the PREFCALC system [8],
the MINORA system [26], the MIIDAS system [27], the
PREFDIS system [44], the FINCLAS system [43] and
the FINEVA system [45] for corporate assessment, as
well as the MARKEX system [13] for marketing de-
cisions. Recently (1998), researchers have also inves-
tigated the contribution of artificial intelligence tech-
niques in the framework of an integrated decision sup-
port system (intelligent multicriteria decision support
systems), combining the preference disaggregation ap-
proach as well as other MCDA approaches with the ca-
pabilities provided by expert systems and neural net-
works. The appealing features of such an integration,
constitute a significant field of further research both in
preference disaggregation analysis as well as in MCDA
in general.
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Preference modeling is an inevitable step in a lot of
fields, that include economy, psychology, sociology, op-
erational research, decision support systems.

This step is sometimes implicit, as in operational
research and economy, where the preferences of the
decision-maker are often represented by a function to
be optimized; sometimes it is studied in detail and
based on experiments or inquiries, as in psychophysics
or multicriteria analysis. Of course, people coming
from different disciplines will, in general, have differ-
ent points of view on preference modeling. It is useful
to distinguish the normative perspective (attitude which
consists in defining how to take a decision in order to
satisfy predefined norms or properties; here the main
questions are: how to be rational? howmust be the pref-
erences in order to reach that goal?), the descriptive per-
spective (attitude which consists in modeling, as real-
istically as possible, the behavior of a decision-maker;
how do people take decisions?) and the prescriptive one
(attitude which consists in helping a decision-maker to
be as coherent as possible with his own goals and pref-
erences; how to help somebody to decide?).

However, people working on preferences, even they
come from different fields and have different perspec-
tives, use more or less the same tools. The purpose of
this article is to give a brief overview of these tools.

Basic Preference Relations

Let A be the set of elements (decisions, candidates for
a job, commodities, consumption levels, locations, . . . )
to be compared or evaluated. It is often assumed that,
comparing two elements a and b, the decision-maker
can have three attitudes: preference for one element (a
decision-maker prefers a decision a over a decision b
(eventually according to a particular point of view) if,
in a situation where he has to select one of them, he
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chooses a), indifference between a and b (a decision-
maker is indifferent between two decision a and b
(eventually according to a particular point of view) if
both decisions are equally acceptable for him), and in-
comparability between them (two decisions a and b are
incomparable (at a given moment of a decision process)
if the decision-maker is not able or refuse to express
a preference or an indifference, due to a lack of data or
contradictory information). We will denote:
8̂
ˆ̂̂<
ˆ̂̂̂
:

aPb if a is preferred to b;
bPa if b is preferred to a;
aIb in case of indifference;
aJb in case of incomparability:

The basic preference relations P, I and J are the sets of
couples (a, b) such that, respectively, aPb, aIb and aJb.
These relations are used in most of the works devoted
to preference modeling. Moreover, it is traditionally ac-
cepted that these relations are mutually exclusive and
verify the following basic properties: 8a, b 2 A,
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

aPb) b 6 Pa (P is asymmetric);
aIa (I is reflexive);
aIb) bIa (I is symmetric);
a 6 Ja (J is irreflexive);
aJb) bJa (J is symmetric):

Defining the ‘preference-indifference relation’ S by aSb
if and only if aPb or aIb, it is not difficult to see that
all the above situations can be characterized using only
relation S:
8̂
<̂
ˆ̂:

aPb if and only if aSb and b 6 Sa;
aIb if and only if aSb and bSa;
aJb if and only if a 6 Sb and b 6 Sa:

Traditional PreferenceModel

A usual attitude is to associate numbers (valuations) to
the elements of A and to declare that a is preferred to
b if the ‘value’ of a is greater (or smaller if the ‘value’ is
a cost for example) than the value of b and that there
is indifference if the values are equal. This is the tradi-
tional approach in operational research, decision the-
ory, economy or finance, where decision problems are
considered as optimization ones. This attitude leads to

a preference model with the following strong assump-
tions: 8a, b, c 2 A,
8̂
ˆ̂̂<
ˆ̂̂̂
:

aPb and bPc ) aPc (P transitive);
aIb and bIc ) aIc (I transitive);
aPb and bIc ) aPc;
aIb and bPc ) aPc;

and J is empty (there is no incomparability).
In terms of relation S, this means that, 8a, b, c 2 A,
(
aSb and bSc ) aSc (S transitive);
a 6 Sb ) bSa (S complete);

characterizing what is usually called a weak order (i. e.,
a transitive and complete relation). In this case, indiffer-
ence I is an equivalence (i. e., a reflexive, symmetric and
transitive relation) and the set of equivalence classes is
totally ordered by relation P.

When A is finite or enumerable, the weak order
structure is sufficient to represent preferences by num-
bers as explained here above; in the nonenumerable
case, some topological conditions have to be added
(see [7]).

Extensions of the Traditional Model

The transitivity of indifference is incompatible with
the existence of a ‘sensitivity threshold’ under which
the decision-maker does not feel any difference be-
tween two elements or refuses to accept a strict pref-
erence for one of the elements. Moreover, the fron-
tier between indifference and preference is not always
clear, leading to new situations (and new relations)
called ‘hesitation between indifference and preference’
or ‘weak, strong, very strong, . . . preferences’. Finally
it is also necessary to extend the traditional model
by taking into account incomparability situations (J is
not always empty). All these considerations have led
to new models called semi-orders, interval orders, par-
tial orders, pseudo-orders, suborders, embedded fami-
lies of preferences, . . . , which were extensively stud-
ied in the literature. The interested reader can consult
[5,6,8,11,14,20,22,26].

Valued Preferences

Modelers sometimes want to quantify preferences to
express either an intensity of preference, either a num-
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ber (or a percentage) of votes in favor of an element
over another, either a probability of preference, or
a ‘degree’ (without any specific property). In this case,
a number is associated to each couple (a, b), lead-
ing to so-called valued, fuzzy, probabilistic relations.
The study of the properties of these relations, of their
representations by numerical functions and of their
use in decision models, is illustrated, for instance,
by [9] or [12].

Preferences on Structured Sets

The set A may have a special structure: the elements
of A are sometimes points in a topological space (as in
economy), vectors of evaluations on several dimensions
(as in multicriteria analysis), probability distributions
on a set of consequences (as in decision-making under
risk), sets of possible consequences depending on the
states of the nature (as in decision-making under un-
certainty). All these situations have led to a lot of mod-
els, concepts or methodologies that include value the-
ory, utility theory, multi-attribute utility theory, multi-
ple criteria decision analysis, subjective expected utility
theory and conjoint measurement theory.

Some references in this abundant literature are
[7,10,15,16,18,19,23,25,28,29].

Other Topics Connected to PreferenceModeling

We briefly mention in this section some topics which
cannot be ignored by people interested in preference
modeling:
� the ‘art’ of collecting preference information from

subjects (see for example [30]),
� the statistical analysis of preferences (see [4] or

[13]),
� the geometrical representation of preferences (see

for example [2]),
� the problem of meaningfulness ([21]),
� the evolution of preferences over time (see [17]),
� the philosophical aspects of preference modeling

([3,31])
� the social choice theory ([24]),
� the preference aggregation problem ([1,27].
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A two-stage stochastic linear program with random
right-hand side (and with discrete random variables) is
normally written as follows
8<
:
min
x�0

cx CQ(x)

s.t. Ax D b

where

Q(x) D
X
j

p jQ(x; � j) ;

and

Q(x; �) D min
y�0
fqy : Wy D h(�) � T(�)xg :

Here, pj is the probability that the random vector e�
takes on its jth possible value � j, and W is an (m × n)
matrix. This way of formulating a two-stage stochas-
tic program is partly motivated by solution procedures
([1,8]), partly by the time structure of the problem. For
this article, the latter is the most important. The inter-
pretation of the problem is that first (now) we make
a decision x, then we observe a value ofe�, and finally
we make a recourse decision y based on our earlier deci-
sion x and the observed value ofe� .

Many aspects of preprocessing (pre-analysis) are in
no way particular to multistage stochastic problems.
For example, the issue of removing redundant rows
and columns, as well as that of consistency, are well
discussed for deterministic (one-stage) problems, see
for example the work on preprocessing in linear pro-
gramming by H.J. Greenberg [5]. Details referring to
stochastic programs are found in [10], and in [7, Chapt.
5; 6]. The one major point to make for stochastic pro-
grams is that since, for example, the matrixW shows up
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in the formulation as many times as there are possible
values ofe� , it may be worthwhile to spend a lot of ef-
fort just to simplify the matrix a little. This may not be
true for deterministic LPs, as it may cost more to sim-
plify the matrix than to solve the problem to optimality
without simplifications. Hence, although technically the
issues are the same, the motivation for simplifications
may be rather different.

An x0 � 0 satisfying Ax0 = bmay produce a recourse
problem Q(x0, � j) which is infeasible for some j. In other
words, the requirement that Q(x, �) be feasible for all
� produces implied constraints on the first-stage deci-
sions x. The cone posW is a cone containing all vectors
which are such that if they are put as right hand sides in
the second-stage problem, they produce a feasible prob-
lem. Formally,

posW D ft : t DWy; y � 0g :

If pos W = Rm we say that we have complete recourse.
That is easy to test for [10]. If h(�) � T(�) x 2 pos
W for all possible � and all x � 0 satisfying Ax =
b, we have relatively complete recourse. This is hard
to test, but possible to generate. The rest of this ar-
ticle will discuss the generation of relatively complete
recourse. The clue is that if we find all implied con-
strains, and add them to Ax = b, the expanded set
of constraints will imply relatively complete recourse
by construction. These implied constraints are useful
in two directions, a) when solving the stochastic pro-
gram we can use methods requiring relatively com-
plete recourse, and b) the implied constraints will show
the modeler things he has assumed, but never writ-
ten down explicitly. Hence, the constraints are use-
ful for both error detection and increased understand-
ing. A small numerical example can be found in [7,
Sect. 6.4].

To find an implied constraint for a given x0 is equiv-
alent to finding a feasibility cut in Benders decomposi-
tion (cf. also � Generalized Benders decomposition).
However, the purpose of preprocessing is not to find
just one, but to find all implied constraints (feasibility
cuts). More formally, we look for a polar matrix W�

(with a minimal number of columns), which is such
that

y 2 posW , yTW� � 0 :

PROCEDURE support(W;W�);
BEGIN

frame(W);
done:=false;
FOR i = 1 TO n DO

IF NOT done THEN BEGIN
˛ := WT

i W
�;

I+ := fk : ˛(k) > 0g;
I� := fk : ˛(k) < 0g;
I= := fk : ˛(k) = 0g;
done:= (I� [ I= = ;);
IF done THENW� := 0;
IF I+ ¤ ; AND NOT done THEN
BEGIN

IF I� = ; THENW� := W�I=
ELSE BEGIN

FOR ALL k 2 I+, j 2 I� DO
Ck j := W�k � (˛(k)/˛(l))W�j ;
W� := W�I= [W�I� [k j Ck j ;
frame(W�);

END; (�ELSE�)
END; (�IF�)

END; (�FOR�)
END support;

Pseudocode for finding the polar matrixW�

Finding W� is a problem of exponential complexity,
equivalent to extreme point enumeration. An algo-
rithm tailored to the problem is found in [10], and
presented above. For reasonably large LPs one can-
not, in general, expect to be able to find all implied
constraints. However, if there are few implied con-
straints (and that is in any case the more interest-
ing situation) the algorithm will find them quickly.
Hence, this procedure may in some situations yield
a lot of insight into a problem, in other cases it leads
nowhere. Only by checking can that be found out.
A pseudocode for the algorithm is given below. Two
calls are made to a procedure frame(W). This pro-
cedure finds a frame of pos W, i. e., it removes all
columns fromW that are nonnegative linear combina-
tions of other columns. The variable done} is boolean.
The recourse matrix W is input to the procedure,
and the polar matrix W� is output. An illustrated ex-
ample of the use of this procedure is found in [7,
Sect. 5.2].
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For networks there are some more specific results.
The starting point is the well known result by D. Gale
[2] and A.J. Hoffman [6]. Let a network be given by a set
of arcs A = {1, . . . , n} and a set of nodes N = {1, . . . , m}.
An arc k may be described by its start node i and end
node j by k � (i, j). We let ˇ(i) be the external flow in
node i (with a positive number meaning supply), and
let �(k) be the capacity of arc k. By Q+ = [Y , N\ Y]+ we
understand the set of arcs starting in a node in Y and
ending in N\ Y . We define Q� similarly, and defineQ =
Q+ [Q� as a cut. Finally, we letG(Y) be the graph con-
sisting of the nodes in Y , and the arcs connecting nodes
in Y . The Gale–Hoffman (GH) result says that a capac-
itated network flow problem is feasible if and only if for
every cut Q = [Y , N\ Y], the net supply in Y is less than
or equal to the capacity of Q+, i. e. if the GH-inequality

X
i2Y

ˇ(i) �
X

k2QC

�(k) (1)

is satisfied. Following [11] this has been strengthened to
show that a GH-inequality is needed if and only if G(Y)
and G(N\ Y) are both connected. If either of them is
disconnected, the GH-inequality is not needed as it is
implied by other GH-inequalities. This is an interesting
result as it shows that a linear dependency argument
can be obtained by looking only at one inequality at
a time.

An algorithm for finding all necessary GH-
inequalities can be found in [12], and one for updat-
ing the inequalities when new arcs or nodes are intro-
duced is given in [3]. The latter can be seen as a net-
work interpretation of procedure support. These re-
sults are shown for uncapacitated networks in [4,9].
They can be found directly or deduced from the ca-
pacitated case by observing that (1) will always be sat-
isfied as long as Q+ 6D ;. Hence, we keep only those
GH-inequalities for which Q+ = ;. The result that
G(Y) and G(N\ Y) both must be connected still ap-
plies.

If the recourse problem is a network flow problem,
the W-matrix is the node-arc incidence matrix (with
a row removed), and both external flows and arc capac-
ities are functions of the first stage decisions x and the
random variables e�. If ˇ and � in (1) are replaced by
the appropriate expressions in x and �, and the results
added toAx = b, we obtain relatively complete recourse,
which was our goal. Since this must be true for all � j for

a given x, we can normally perform a worst-case analy-
sis with respect to � j, and add this result to the first case
constraints.

If a capacitated network flow problem is formu-
lated as an LP, with the upper bounds written explic-
itly as constraints, and procedure support is applied, the
columns of W� will correspond to an index vector for
ˇ and � (with negative signs on the index vector for �)
in (1).
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Introduction

The classical paradigm in mathematical programming
is to develop a model that assumes that the input data
is precisely known and equal to some nominal values.
This approach, however, does not take into account the
influence of data uncertainties on the quality and fea-
sibility of the model. It is therefore conceivable that as
the data takes values different than the nominal ones
several constraints may be violated, and the optimal so-
lution found using the nominal data may be no longer
optimal or even feasible. In a numerical case study on
linear optimization problems from the Net Lib library,
Ben-Tal and Nemirovski [1] concluded that in in real-
world applications of linear optimization problems, one
cannot ignore the possibility that a small uncertainty
in the data can make the usual optimal solution com-
pletelymeaningless from a practical viewpoint. This ob-
servation raises the natural question of designing solu-
tion approaches that are immune to data uncertainty,
that is they are “robust”. Modern robust linear op-
timization models are proposed by Ben-Tal and Ne-
mirovski [1], Bertsimas and Sim [2] and Chen, Sim
and Sun [3]. While the proposals of Ben-Tal and Ne-
mirovski [1] and Chen, Sim and Sun [3] lead to second
order cone optimization problems (SOCP), the pro-
posal of Bertsimas and Sim [2] preserves the linearity
of the model. We focus on the results of Bertsimas and
Sim [2].
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Formulation

We consider the following nominal linear optimization
problem,

maximize c0x
subject to ã0ix � b̃i i D 1; : : : ;m

(1)

in which the data at every constraint, (ã i ; b̃i),
i D 1; : : : ;m are potentially uncertain at the time when
the decision x 2 <n needs to be made. For simplicity
of our exposition, we assume without loss of generality
that the data at the objective c is not subject to uncer-
tainty, since we can use the objective maximize t and
add the constraint t � c̃0x � 0 to the model.

Affine Data Dependency

We focus on constraint-wise uncertainties. Clearly, un-
certainties appearing at various parts of the data in any
ith constraint (ãi ; b̃i) may be correlated. To capture
such correlation, we assume that the uncertain data at
the ith constraint is affinely dependent on some primi-
tive uncertainty vector, z̃ i 2 <Ni as follows

ã i D a i(z̃ i )
´
D a0i C

NiX
jD1

a j
i z̃

i
j ;

b̃i D bi(z̃ i )
´
D b0i C

NiX
jD1

b j
i z̃

i
j ;

where (a j
i ; b

j
i ) 2 <

nC1, j D 1; : : : ;Ni are non zeros
vectors. Note that we can always define a bijection
mapping from a vector space of z̃ i 2 <Ni at the ith
constraint to the corresponding data space of (ãi ; b̃i).
Therefore, under the affine data dependency, it is al-
ways possible to map all the data uncertainties affecting
the ith constraint to the primitive uncertainty vector,
z̃ i . The affine data mapping can easily represent linear
relations among data entries. As an illustration,

0
@

a1
a2
b

1
A (z1; z2)

´
D

0
@

100
200
300

1
AC

0
@

2
�5
0

1
A z1C

0
@

0
0
1

1
A z2;

the data is a vector in <3 and has two primitive un-
certainties. The first and second elements are related
such that when a1 increases by two units, a2 decreases

by five units. The values of b can change indepen-
dently of a1 or a2 and it is controlled by another
primitive uncertainty, z2. For the case when all data
entries in (ãi ; b̃i) are independently distributed, we
would have Ni D nC 1 and that the vector (a j

i ; b
j
i ),

j D 1; : : : ; n C 1 is a vector taking a non-zero value
only at the jth row. We assume that the distributions
of the primitive uncertainty vector, z̃ i , i D 1; : : : ;m are
mildly characterized as follows:

Model of Data Uncertainty U We assume that z̃ ij ,
j D 1; : : : ;Ni are independently (but not necessar-
ily identically) distributed random variables with zero
means and support in [�1; 1].

Under the model of data uncertainty U, the nomi-
nal value of z̃ i is a zero vector. Hence, it follows natu-
rally that (a0i ; b

0
i ) is the nominal value of the uncertain

data (a i(z̃ i ); bi(z̃ i )). Similarly, (a j
i ; b

j
i ), j D 1; : : : ;Ni is

the direction of data perturbation under the influence
of the primitive uncertainty z̃ ij .

In robust optimization, we represent data uncer-
tainty using uncertainty sets instead of probability dis-
tributions. At each constraint, we allow the primitive
uncertainty vector, z̃ i to vary within an uncertainty set,
Ui without having to violate the ith constraint. We call
the following problem the robust counterpart of Prob-
lem (1)

maximize c0x
subject to a i (z i )0x � bi(z i)

8z i 2 Ui i D 1; : : : ;m :

(2)

Indeed, given any solution to the robust counterpart,
we are able to guarantee deterministically that the so-
lution will remain feasible if the primitive uncertainty
vector, z̃ lies within the uncertainty set Ui . Under the
model of data uncertainty U, we are able to design un-
certainty sets that guarantee feasibility in constraints
with high probability without being overly conserva-
tive.

Although the robust counterpart (2) has possibly
exponential or even infinite number of constraints, it
is nevertheless a convex optimization problem with re-
spect to its decision variable, x. In fact, the computa-
tional complexity of the robust counterpart depends on
the nature of the uncertainty set,Ui . Here, we focus on
polyhedral uncertainty sets in which the robust coun-
terparts are computationally tractable in the form of
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linear optimization problems that are moderately larger
in size as compared to the nominal problems.

Using linear programming duality, we show how to
convert the robust counterpart (2) into a concise linear
optimization problem. We focus on the following poly-
hedral uncertainty set,

Pi
´
D fz 2 <Ni : S iz C T iu � r i for some ug:

Theorem 1 The robust counterpart

a i (z i )0x � bi(z i) 8z i 2 Pi ; (3)

is equivalent to

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

9p :
r0i p � b0i � a0i

0x

S0i p D

0
B@

a1i
0x � b1i
:::

aNi
i
0
x � bNi

i

1
CA

T 0i p D 0
p � 0:

(4)

Proof 1 For notational convenience, we ignore the
constraint index i. Under the affine data dependency,
we can represent the constraint (3) as

NX
jD1

(a j 0x � b j)z j � b0 � a00x 8z 2 P

or equivalently as

max
z2P

8<
:

NX
jD1

(a j 0x � b j)z j

9=
; � b0 � a00x: (5)

By standard linear programming duality, the objective
of the following problem

maximize d0z
subject to Sz C Tu � r

is the same as

minimize r0p
subject to S0p D d

T 0p D 0
p � 0:

Hence, the constraint (5) is equivalent to

minimize r0p � b0 � a00x

subject to S0p D

0
B@

a10x � b1
:::

aN 0x � bN

1
CA

T 0p D 0
p � 0:

(6)

Finally, to ensure the feasibility of x, we only need to
find a vector p feasible in the left hand side optimization
problem of constraint (6) such that r0p � b0 � a00x. If
such vector, p exists, the corresponding minimizer, p�

should also satisfy r0p� � b0 � a00x. �
Hence, the robust counterpart (2) in which

Ui D Pi , i D 1; : : : ;m is equivalent to

maximize c0x
subject to r i 0pi � b0i � a0i

0x i D 1; : : : ;m

S0i pi D

0
B@

a1i
0x � b1i
:::

aNi
i
0
x � bNi

i

1
CA i D 1; : : : ;m

T 0i pi D 0 i D 1; : : : ;m
pi � 0 i D 1; : : : ;m :

(7)

Worst Case Uncertainty Set

Under the model of data uncertainty U, the primitive
uncertainty vector z̃ i at the ith constraint has support
in [�1; 1]Ni . Hence, we define the following worst case
uncertainty set

Wi
´
D fz 2 <Ni : �1 � z � 1g

for the primitive uncertainty corresponding to the i
constraint. Such uncertainty set is first considered by
Soyster [4].

Theorem 2 The robust counterpart

a i (z i )0x � bi(z i) 8z i 2Wi ;
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is equivalent to
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

9p; q :
10(pC q) � b0i � a0i

0x

p � q D

0
B@

a1i
0x � b1i
:::

aNi
i
0
x � bNi

i

1
CA

p; q � 0 :

(8)

The robust counterpart (2) in which Ui DWi ,
i D 1; : : : ;m is equivalent to

maximize c0x
subject to 10(pi C qi ) � b0i � a0i

0x i D 1; : : : ;m

pi � qi D

0
B@

a1i
0x � b1i
:::

aNi
i
0
x � bNi

i

1
CA i D 1; : : : ;m

pi ; qi � 0 i D 1; : : : ;m :
(9)

Uncertainty Set with a Budget

Under the model of data uncertainty U, the worst case
uncertainty set is can be over conservative. Speaking in-
tuitively, when Ni is large, it may be unlikely for the
primitive uncertainty vector z̃ i to deviate unanimously
towards the violation of the constraint. Bertsimas and
Sim [2] consider an uncertainty set that is able to with-
stand parameter uncertainty without excessively affect-
ing the objective function as follows:

Bi (�i)
´
D

8<
:z 2 <

Ni : �1 � z � 1;
NiX
jD1

jz jj � �i

9=
; :

The goal is to be protected against all cases that up to
�i of the primitive uncertainties z̃ ij , j D 1; : : : ;Ni are
allowed to to change deviate maximally in [�1; 1]: In
other words, Bertsimas and Sim stipulate that nature
will be restricted in its behavior, in that only a subset of
the primitive uncertainties will change in order to ad-
versely affect the solution. They propose an approach,
that has the property that if nature behaves like this,
then the robust solution will be feasible deterministi-
cally.

The parameter �i , commonly known as the budget
of uncertainty controls the size of the uncertainty set,

Bi (�i) such that Bi (0) D f0g and Bi (Ni) DWi . Note
that the uncertainty set is a polytope as follows

Bi (�i)
´
D
˚
z 2 <Ni : u � 1; 10u � �i ;�u � z � u;

for some u
�
:

Theorem 3 The robust counterpart

a i (z i )0x � bi (z i ) 8z i 2 Bi (�i);

is equivalent to
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

9t; s; p; q :
�i t C 10s � b0i � a0i

0x
sC 1t D pC q

p � q D

0
B@

a1i
0x � b1i
:::

aNi
i
0
x � bNi

i

1
CA

p; q; s � 0; t � 0:

(10)

The robust counterpart (2) in which Ui D Bi (�i),
i D 1; : : : ;m is equivalent to

maximize c0x
subject to �i ti C 10s i � b0i � a0i

0x i D 1; : : : ;m
s i C 1ti D pi C qi i D 1; : : : ;m

pi � qi D

0
B@

a1i
0x � b1i
:::

aNi
i
0
x � bNi

i

1
CA i D 1; : : : ;m

pi ; qi s i � 0; ti � 0 i D 1; : : : ;m :
(11)

If more than �i of the primitive uncertainties z̃ ij ,
j D 1; : : : ;Ni change, the robust solution will be fea-
sible with very high probability.

Theorem 4 Under the model of data uncertainty U, if
x is feasible in the robust counterpart (10) then

Pr
�
a i (z̃ i )0x > bi(z̃ i)

�
� exp

�
�
� 2
i

2Ni

�
: (12)

Note the original bound proposed in Bertsimas and
Sim [2] require symmetrically bounded distribution.
However, this condition is relaxed by Chen, Sim and
Sun [3]. Nevertheless, tighter bounds can be achieved if
the distributions are also symmetrically distributed.
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Theorem 5
1. Suppose z̃ij , j D 1; : : : ;Ni are independent symmet-

rically distributed random variables in [�1; 1], then
if x is feasible in the robust counterpart (10), we have

Pr
�
a i (z̃ i )0x > bi(z̃ i )

�
� B(n; �i ); (13)

where

B(n; �i ) DD
1
2Ni

8<
:(1 � �)

 
Ni

b�c

!
C

NiX
lDb�cC1

 
Ni

l

!9=
; ;

(14)

where � D �iCNi
2 and � D � � b�c.

2. For �i D �
p
Ni,

lim
Ni!1

B(Ni ; �i) D 1 � ˚(�); (15)

where

˚(�) D
1
p
2


Z 


�1

exp
�
�
y2

2

�
dy

is the cumulative distribution function of a standard
normal.

We next compare the bounds: (12) (Bound 1), (13)
(Bound 2), and the approximate bound (15). Table 1
illustrates the choice of �i as a function of Ni so that
the probability that a constraint is violated is less than
1%, where we used Bounds 1 and 2 and the approxi-
mate bound to evaluate the probability. It is clear that
using Bounds 2 or the approximate bound gives essen-
tially identical values of �i , while using Bound 1 leads
to unnecessarily higher values of �i when the prim-
itive uncertainties are symmetrically distributed. For
Ni D 200, we need to use � D 33:9, i. e., only 17% of
the number of uncertain data, to guarantee violation
probability of less than 1%. For constraints with fewer
number of uncertain data such as Ni D 5, it is neces-
sary to ensure full protection, which is equivalent to the
worst case or the Soyster’s method. Clearly, for con-
straints with large number of uncertain data, the pro-
posed approach is capable of delivering less conserva-
tive solutions compared to the Soyster’s method.

Applications

Most of the practical optimization problems are in the
form of a mixed integer programming (MIP) model,

Price of Robustness for Linear Optimization Problems,
Table 1
Choice of
i as a function ofNi so that the probability of con-
straint violation is less than 1%.

Ni �i from
Bound 1

�i from
Bounds 2

�i from
Approx.

5 5 5 5
10 9.6 8.2 8.4

100 30.3 24.3 24.3
200 42.9 33.9 33.9

2000 135.7 105 105

i. e., some of the variables in the vector x take inte-
ger values. Fortunately, the robust model (11) in the
case in which the nominal problem is a MIP is still
a MIP formulation, and thus can be solved in the same
way that the nominal problem can be solved. Moreover,
both the deterministic guarantee as well as the proba-
bilistic guarantee (Theorem 2) is still valid. As a result,
the robust approach applies for addressing data uncer-
tainty for MIPs. In our computational studies, we apply
the robust formulation to a zero-one knapsack prob-
lems that are subject to data uncertainty. We examine
whether this approach is computationally tractable, and
whether it succeeds in reducing the price of robustness.

The zero-one knapsack problem is the following
discrete optimization problem:

maximize c0x
subject to w0x � b

x 2 f0; 1gn

Although the knapsack problem is NP-hard, for prob-
lems of moderate size, it is often solved to optimal-
ity using state-of-the-art MIP solvers. For this experi-
ment, we use CPLEX 6.0 to solve to optimality a ran-
dom knapsack problem of size, n D 200.

Regarding the uncertainty model for data, we as-
sume the weights w̃i are uncertain, independently
distributed and follow symmetric distributions in
[w̄i � ıi ; w̄i C ıi]. Hence, under the affine data depen-
dency, we have

wi(z̃) D w̄i C ıi z̃i i D 1; : : : ; n

in which z̃i , i D 1; : : : ; n are independently distributed
and follow symmetric distributions in [�1; 1]. An ap-
plication of this problem is to maximize the total value
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Price of Robustness for Linear Optimization Problems, Fig-
ure 1
Optimal value of the robust knapsack formulation as a func-
tion of


of goods to be loaded on a cargo that has strict weight
restrictions. The weight of the individual item is as-
sumed to be uncertain, independent of other weights
and follows a symmetric distribution. In our robust
model, we want to maximize the total value of the goods
but allowing a maximum of 1% chance of constraint vi-
olation. The robust model is as follows:

maximize c0x
subject to w̄0x C

Pn
iD1 ıi xi z̃i � b 8z 2 B(� )

x 2 f0; 1gn :

For the random knapsack example, we set the ca-
pacity limit, b to 4000, the nominal weight, wi being
randomly chosen from the set f20; 21; : : : ; 29g and the
cost ci randomly chosen from the set f16; 17; : : : ; 77g.
We set the weight uncertainty ıi to equal 10% of the
nominal weight. The time to solve the robust discrete
problems to optimality using CPLEX 6.0 on a Pentium
II 400 PC ranges from 0.05 to 50 s.

Figure 1 illustrates the effect of the protection level
on the objective function value. In the absence of pro-
tection to the capacity constraint, the optimal value
is 5592. However, with maximum protection, that is
admitting the Soyster’s method, the optimal value is
reduced by 5.5% to 5283. In Fig. 2, we plot the opti-
mal value with respect to the approximate probability
bound of constraint violation. In Table 2, we present

Price of Robustness for Linear Optimization Problems, Fig-
ure 2
Optimal value of the robust knapsack formulation as a func-
tion of the probability bound of constraint violation given
in (13)

Price of Robustness for Linear Optimization Problems,
Table 2
Results of Robust Knapsack Solutions

� Probability
Bound

Optimal
Value

Reduction

2.8 4:49� 10�1 5585 0.13%
14.1 1:76� 10�1 5557 0.63%
25.5 4:19� 10�2 5531 1.09%
36.8 5:71� 10�3 5506 1.54%
48.1 4:35� 10�4 5481 1.98%
59.4 1:82� 10�5 5456 2.43%
70.7 4:13� 10�7 5432 2.86%
82.0 5:04� 10�9 5408 3.29%
93.3 3:30� 10�11 5386 3.68%

104.7 1:16� 10�13 5364 4.08%
116.0 2:22� 10�16 5342 4.47%

a sample of the objective function value and the proba-
bility bound of constraint violation.

It is interesting to note that the optimal value is
marginally affected when we increase the protection
level. For instance, to have a probability guarantee of
at most 0.57% chance of constraint violation, we only
reduce the objective by 1.54%.
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Conclusions

The robust methodology provides solutions that ensure
deterministic and probabilistic guarantees that con-
straints will be satisfied as data change. Moreover, the
protection level determines probability bounds of con-
straint violation, which do not depend on the solution
of the robust model. As the robust model remains a lin-
ear optimization problem, the method naturally applies
to discrete optimization problems. It is also possible to
build uncertainty sets that are mapped from asymmet-
rical distributions. The interested reader may refer to
Chen, Sim and Sun [3].
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LCP

Linear complementarity problems in the general form
are given as follows (cf. also � Linear complementarity
problem):

�Mu C v D q ;

u; v � 0 ;
uivi D 0 ; i D 1; : : : ; n ;

where M is a given (n × n) matrix, q 2 Rn. The non-
negative variables ui and vi, i = 1, . . . , n, should be non-
negative and complementary. The solvability of LCPs
depend on the special properties of the coefficient ma-
trix M. For illustration we will give some well solvable
classes in the sequel.

LCPs are natural generalizations of linear program-
ming (linear optimization) and quadratic program-
ming. In the first case

M D
�

0 A
�A> 0

�
and q D

�
�b
c

�
;

where the matrix A and the vectors b and c are the prob-
lem data of the linear optimization problem

min
˚
c>x : Ax � b; x � 0

�
:

This way a block diagonal skew-symmetric matrix M is
obtained. When the LCP is obtained from the convex
quadratic optimization problem

min
�
c>x C

1
2
x>Qx : Ax � b; x � 0

	
;

where Q is a positive semidefinite symmetric matrix,
then

M D
�

0 A
�A> Q

�
and q D

�
�b
c

�
:
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Here M is a positive semidefinite bisymmetric matrix.
Bisymmetry means that the matrix has a block diagonal
structure, and it is the sum of a symmetric block diag-
onal positive semidefinite, and a skew-symmetric block
diagonal matrix.

Some other classes of solvable LCPs occur when M
is
� a P-matrix,
� a sufficient matrix or, equivalently, a P�-matrix [21].
LCPs are solvable by using pivot methods or interior
point methods (cf. also � Linear programming: Inte-
rior point methods). Here the basics of some of the
most popular principal pivot methods are discussed.

Principal Pivoting

When one solves and LCP by using pivoting, then the
equality constraints �Mu+v = q always hold. The co-
efficient matrix of the vector v, the unit matrix might
serve as a natural initial basis. Then the basic solution u
= 0 and v = q is complementary as well. A basis is called
complementary when exactly one of the complementary
variables (ui, vi), for all i = 1, . . . , n, is a basis variable.

In a pivot algorithm, because we are working with
basic solutions, the equality constraints always hold.
We strive for nonnegativity while some variables leave
the basis and others enter. Because the initial basis is
complementary, it is a natural idea to preserve the com-
plementarity property. This imposes that, if a set of
variables leaves the basis, then precisely the variables in
the complementary set must enter the basis. Such a step
is called principal pivoting.

Principal pivoting was introduced by A.W. Tucker
[19,20]. The theory of principal pivoting, or comple-
mentary pivot theory, was extensively studied [4,5,6,7,
13,14,16].

Principal Pivot Algebra

When we write the basis (or simplex) tableau of the
LCP down, then by leaving out the basis part we get the
tableau:

u
v q M

Let (�; �) be a partition of the index set {1, . . . , n}
and let us assume that the principal submatrix M��

is nonsingular. Then the current representation of the
LCP can be written as

v� D q� CM��u� CM��u� ;

v� D q� CM��u� CM��u� :

This in the usual tableau form can be written as A prin-
cipal pivot, when the variables v� leave the basis and
their complementary pair u� enters the basis can be ex-
plained both in the equation and tableau form as fol-
lows. Using the assumption that M�� is nonsingular,
we may write

u� D q0� CM�1��v� �M�1��M��u� ;

v� D q0� CM��M�1��v� CM0��u�

where
M0�� DM�� � M��M�1��M�� ;

q0� D � M�1��q� ;

q0� D q� �M��M�1��q� :

This representation corresponds to the tableau
Further, the matrix

M0 D
�

M�1�� �M�1��M��

M��M�1�� M�� � M��M�1��M��

�

is called a principal pivotal transform of the matrix M.
If we define

u0 D
�
v�
u�

�
; v0 D

�
u�
v�

�
; q0 D

 
q0�
q0�

!
;

then the LCP can equivalently be reformulated as

�M0u0 C v0 D q0 ;

u0; v0 � 0 ;

u0i v
0
i D 0 ; i D 1; : : : ; n :

This way, without loss of generality, we may assume
that the current principal pivot transform of the LCP
contains v0 as the vector of basis variables; u0 = 0, v0 = q0

as the current complementary solution; and, M0 is the
coefficient matrix of the nonbasic variables.

When only one variable leaves the basis, i. e. � = {k}
for some index, while its complementary pair enters,
then this operation is called a simple principal pivot, or
diagonal pivot, because in this case M{k}{k} = mkk, the
kth diagonal element of the matrix M. When two vari-
ables are coming in and at the same time their pairs
leave the basis, then this 2 × 2 principal pivot is called
an exchange pivot or double pivot.
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Invariant Matrix Classes

Let a class of matrices K be given. Then one say that the
matrix class is invariant under principal pivoting, if for
all M 2 K and for all principal pivot transforms M0 of
M the relationM0 2 K holds.

It is known, that several matrix classes enjoy the in-
variance property. The most important invariant ma-
trix classes are the following:
� the class of P-matrices;
� the class of P0-matrices;
� the class of positive definite matrices;
� the class of positive semidefinite matrices;
� the class of bisymmetric positive semidefinite matri-

ces;
� the class of column sufficient matrices;
� the class of row sufficient matrices;
� the class of sufficient matrices;
� the class of Q-matrices.
Detailed discussion on matrix classes, their characteri-
zation, invariance and other properties can be found in
[7,16].

Simple Principal Pivoting Methods

Simple principal pivoting methods are using only sim-
ple principal pivots, i. e. principal pivots of order one.
The best known variant of this method is due to Y. Bard
[1] and G. Zoutendijk [22].

Let us assume that the matrixM is a P-matrix. Then
all of its principal submatrices, in particular all of its 1
× 1 principal submatrices are nonsingular.

Due to the P-matrix property, the steps of the algo-
rithm are executable, however there is no guarantee that
themethod in this form is finite. The finiteness of a vari-
ant of this most simple principal pivoting algorithmwas
proved by K.G. Murty [15]. Murty’s least-index refine-
ment is as follows:
� Let an ordering of the pairs of the complementary

variables be fixed.
� In Step 1, choose the least indexed infeasible basic

variable, i. e. let k = min{i: vi0 < 0, i = 1, . . . , n}.
Finally, remark that a finite variant of the Zoutendijk–
Bard principal pivot rule can also be developed by us-
ing an appropriate lexicographic pivot selection rule (cf.
also � Lexicographic pivoting rules).

Principal Pivoting Methods for Linear Complementarity
Problems, Table 1

u� u�̄
v� q� M�� M��̄

v�̄ q�̄ M�̄� M�̄ �̄

Principal Pivoting Methods for Linear Complementarity
Problems, Table 2

v� u�̄
u� q0� M�1�� �M�1��M��̄

v�̄ q0�̄ M�̄�M�1�� M�̄ �̄ � M�̄�M�1��M��̄

0 (Initialization)
Let the unit matrix, the coefficient matrix of
the v variables be the initial complementary
basis.

1 (Leaving variable selection)
IF no infeasible variable exist,
THEN stop; the LCP is solved.
Choose an infeasible basis variable, say v0k .

2 (Principal pivot)
Do a simple principal pivot on m0kk ¤ 0. The
chosen infeasible variable leaves the basis while
its complementary pair enters.
Go to Step 1.

Zoutendijk–Bard principal pivot rule

General Principal PivotingMethods

As mentioned earlier, general principal pivoting meth-
ods use not only simple principal pivots of order one,
but also use larger pivot blocks. Frequently, these blocks
are not determined at once, the principal blocks are
build-up step-by step.

Three variants of more general principal pivoting
methods will be described. The (complementary) basis
tableaus will be considered in the form as given in Ta-
ble 1 and Table 2.

Criss-Cross Methods

The first one is the least-index criss-cross method
[3,9,10,12], which uses first and second order principal
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0 (Initialization)
Let the unit matrix, the coefficient matrix of
the v variables be the initial complementary
basis.
Let an ordering of the pairs of the comple-
mentary variables be fixed.

1 (Leaving variable selection)
IF no infeasible variable exist,
THEN stop; the LCP is solved.
Choose the least indexed infeasible basis vari-
able, say v0k , where k = minfi : v0i < 0;
i = 1; : : : ; ng.

2 (Entering variable selection)
IF the pivot (v0k ; u

0
k) is possible, i.e. m

0
kk ¤ 0,

THEN go to Step 3a.
IF m0kk = 0,
THEN look for positive coordinates in row k
of M0.
IF all coordinates in row k are nonpositive,
THEN stop; the LCP is infeasible.
Choose the least indexed positive coordinate,
say with index r, in row k: r = minfi : m0ki >
0; i = 1; : : : ; ng.
Go to Step 3b.

3a (Diagonal pivot)
Do a simple principal pivot on m0kk . Then
chosen infeasible variable v0k leaves the basis
while its complementary pair u0k enters.
Go to Step 1.

3b (Exchange pivot)
Do a 2 � 2 principal pivot on the principal

submatrix
�

m0kk m0kr
m0rk m0rr

�
. The variables v0k

and v0r leave the basis while their complemen-
tary pairs u0k and u0r enter.
Go to Step 1.

Least-index criss-cross pivot rule for sufficient LCPs

pivots. During the execution of the algorithm all the ba-
sis solutions are complementary.

Let us assume that the matrix M is a sufficient ma-
trix. As it was mentioned above, the class of sufficient
matrices is closed under principal pivot transforms.

Due to the assumption that the matrix M is suffi-
cient and the class of sufficient matrices is closed un-
der principal pivoting, the steps of the algorithm are
executable. It is also known that this least index criss-

cross method solves sufficient LCPs in a finite number
of steps [3,9,10,11,12].

Observe, that if the matrix M is a P-matrix, then
only simple principal pivots are executed. Thus, the
least index criss-cross rule reduces to the simple princi-
pal pivoting algorithm with Murty’s least index refine-
ment.

Lemke’s Algorithm

The second algorithm is the complementary pivoting
algorithm of C.E. Lemke [13,14]. This algorithm can
be interpreted on different ways, here only the simplest
version is presented.

If q � 0, then the vector u = 0, v = q solves the LCP.
If q� 0; then let d = (�1, . . . ,�1)| 2Rn and let consider
the augmented LCP:

�Mu C v C d� D q ;

u; v; � � 0 ;

uivi D 0 ; i D 1; : : : ; n :

The solution u = 0, v = q� d�, where � = min {qi: 1 � i
� n} has the following properties:
� �Mu + v + d� = q holds;
� all coordinates are nonnegative;
� it is complementary, i. e. uivi = 0, 8i;
� there is an index k with both uk and vk are nonbasic,

and thus zero, further � = qk.

Those solutions of the augmented LCP, which sat-
isfy these properties, will be referred to as almost com-
plementary solutions. Lemke’s complementary pivot al-
gorithm traverses through a sequence of almost com-
plementary solutions. At the last step the variable �
reaches the value zero, and, this way a complementary
solution of the original LCP is obtained.

Lemke’s algorithm builds-up a big principal pivot
block via a series of pivots which produce almost com-
plementary basic solutions. It does not make explicit
use of any special property of the coefficient matrix,
however the conclusion, at Step 2, that the LCP is in-
feasible might not always be valid. For large classes of
LCPs, e. g. if M is a copositive matrix, the infeasibility
conclusion is true. For detailed discussions see e. g. [7].

The algorithm in this form terminates in a finite
number of steps only for instances when all almost
complementary basis of the augmented LCP are nonde-



Principal Pivoting Methods for Linear Complementarity Problems P 3071

0 (Initialization)
Form the augmented LCP as discussed above.
The initial almost complemen-
tary feasible basis is given by
v1; : : : ; vk�1; �; vk+1; : : : ; vn .
(The actual basis variables, and the variable
that just have left the basis will again be de-
noted by v0�, while their complementary non-
basic pairs by u0�.)

1 (Entering variable selection)
The entering variable is u0k , the complemen-
tary pair of the variable which just have left
the basis.

2 (Leaving variable selection)
IF all coordinates in the column of u0k are
nonnegative,
THEN stop; the LCP is infeasible.
Make a primal simplex ratio test in the col-
umn of u0k .
IF the pivot (�; u0k) comes out of the ratio
test,
THEN go to Step 3a.
IF for some r the pivot (v0r; u0k) comes out of
the ratio test,
THEN go to Step 3b.

3a (Solution)
Do a pivot on (�; u0k), stop. The resulting
feasible basis is complementary; the LCP is
solved.

3b (Pivot)
Do a pivot on (v0r ; u0k) and let k := r.
Go to step 1.

Lemke’s algorithm

generate. Degeneracy resolution is possible on the ba-
sis of lexicographic pivot selection [7,18] as well as by
using least index resolution [3]. A particularly interest-
ing result is the lexicographic Lemke rule of M.J. Todd
[18]. To date (2000), this is the only simplex method for
oriented matroid programming [2] and, it is a particu-
larly interesting simplex algorithm for linear optimiza-
tion [17].

Symmetric PPM

Finally, a general form of the symmetric principal piv-
oting method is presented. In the major cycles the PPM

0 (Initialization)
Let the unit matrix, the coefficient matrix of
the v variables be the initial complementary
basis; thus the initial solution is u = 0; v = q.
Let � < minfqi : 1 � i � ng.

1 (The distinguished variable)
IF no infeasible variable exist,
THEN stop; the LCP is solved.
Choose an infeasible variable as the distin-
guished variable which has, let say, index k.
We have two cases:

1i The distinguished variable is u0k = � < 0.
1ii The distinguished variable is v0k < 0.

In both cases we use u0k as the driving vari-
able.

2 (Blocking variable selection)
Increase the value of u0k .
Let #k be the largest possible value of u0k sat-
isfying the following two conditions:

2a IF v0k is the distinguished variable THEN v0k
stays nonpositive;

2b for all basic variables v0i � � holds.
IF #k =1, THEN stop; the LCP is infeasible.
IF #k = 0, THEN no pivot is needed;
let u0k := 0; u0i for all i ¤ k remain un-
changed and let v0 := q + Mu0. Go to Step
1.
ELSE, let r be the index of the variable which
blocks the increase of u0k .

3a (Diagonal pivot if m0rr > 0)
IFm0rr > 0 THEN do a simple principal pivot
on m0kk and make v0r nonbasic at its blocking
lower bound value.
IF r = k, THEN go to Step 1.
IF r ¤ k, THEN go to Step 2.

3b (Exchange pivot if m0rr = 0)
IF m0rr = 0 THEN do a 2 � 2 principal pivot

on the principal submatrix
�

m0kk m0kr
m0rk m0rr

�
.

The variables v0k and v0r leave the basis while
their complementary pairs u0k and u0r enter.
Let k := r and go to Step 2.

Symmetric principal pivot algorithm

drives an infeasible variable, called the distinguished
variable to zero. In this process an artificial lower bound
� < 0 is used. The nonbasic variables ui0 are either zero,
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or equal to � < 0. This way, the ‘complementary’ basic
solution v0 = q + Mu0, in fact, will not be complemen-
tary. LetM be a row sufficient matrix.

Although the symmetric principal pivoting algo-
rithm is not finite for nondegenerate problems, it also
can be turned into a finite one by using least index res-
olution [3] or lexicographic pivot selections [7].

Several variants of the principal pivoting method –
symmetric, parametric, asymmetric etc. – were devel-
oped in the last decades. Good surveys of this extensive
theory can be found in [7,16].

Complexity

Finally, some notes are due on worst-case behavior.
As it was mentioned, and was proved in the cited lit-
erature, the presented algorithms are finite when they
are furnished with either least-index resolution or lex-
icographic selection rules. However, in the worst case
they may require exponentially many pivots to solve
the LCP. The best known exponential example is due
to Murty. The data is given as follows: qi = � 1, 8i, and

mi j D

8̂
<̂
ˆ̂:

0 if i > j ;
1 if i D j ;
2 if i < j :

Clearly the matrix M is an upper triangular P-matrix.
Further, the vector u| = (0, . . . , 0, 1) and v| = (1, . . . , 1,
0) is the unique solution of this LCP. It can be shown
that, e. g., Murty’s simple principal pivoting method
and the least-index criss-cross method needs 2n�1 steps
to solve this LCP. On the other hand, although it is not
proved in general, the results of the paper [8] indicate,
that analogously to simplex methods, principal pivot-
ing methods need a polynomial number of iteration in
average.
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Solving linear programming problems (cf. also � Lin-
ear programming) is of enormous relevance in real
world applications, which contain a lot of data and

of unknown variables. Hence, the computational effi-
ciency of solution methods is a crucial criterion for their
applicability.

Today, we have a competition between the simplex
method (invented around 1947 by G.B. Dantzig) and
interior point methods (starting with Karmarkar’s al-
gorithm in 1984; cf. also � Sequential quadratic pro-
gramming: Interior point methods for distributed opti-
mal control problems).

This article concentrates on simplex methods and
on an investigation of their arithmetical effort, mea-
sured in terms of the average number of pivot steps.

Throughout the paper we discuss the following type
of linear programming problems:

8̂
ˆ̂̂<
ˆ̂̂̂
:

maximize v>x
subject to a>1 x � b1; : : : ; a>mx � bm

where v; a1; : : : ; am 2 Rn ; b 2 Rm

and m � n:

(1)

For abbreviation we use

A :D

0
B@
a>1
:::

a>m

1
CA 2 Rm�n and b D

0
B@
b1
:::

bm

1
CA :

The matrix A collects the m gradient vectors to the re-
strictions as row vectors, and the vector b gives the m
capacities. X := {x :Ax� b, x 2Rn} is the feasible region,
respectively the feasible polyhedron, to the problem (1),
which can also be written in the form

maximize v>x subject to Ax � b : (2)

Other types of programs as

maximize v>x subject to Ax � b; x � 0 ; (3)

maximize v>x subject to Ax D b; x � 0 (4)

and hybrids or variations of such forms can easily be
translated into (1). But for form (1) our discussion on
the influence of distributions, dimensions and variants
can be made much better in geometrical, verbal terms.
All the stated results hold – after adaption – for the
other forms, too.

If X has vertices and if there are optimal solutions
to (1), then there is a vertex in the optimal set. In each
vertex of X at least n restrictions of (1) will be active or
tight. And in each edge of X at least n � 1 restrictions
are active. Every nonoptimal vertex is incident to an
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edge improving the objective. And if an optimal vertex
exists, every iterative construction of a connected path
over such improving edges leads to the optimal vertex
after a finite number of steps. These facts are exploited
in the design of the simplex method, which works in
two phases:

I Find a vertex x0 2 X;
IF there is no vertex,
THEN STOP.

II Construct a sequence of vertices x0; : : : ; xs 2
X, such that for i = 0; : : : ; s�1 the vertices xi
and xi+1 are adjacent and vTxi < vTxi+1.
IF xs is optimal OR
IF at xs the nonexistence of an optimal solu-
tion becomes obvious,
THEN STOP at xs .

Phase I works in a similar manner to Phase II. Since
Phase II admits a better geometrical explanation, and is
simpler to analyze, we concentrate (for the beginning)
on Phase II.

Note that our definition of Phase II still gives the
freedom, how we determine the successor vertex (if
more then one are possible). A rule for that decision will
fix a ‘variant’ of the simplex algorithm. The complexity
of Phase II (the so-called ‘simplex algorithm’) is mainly
determined by the number s. Less difficult to analyze is
the effort to perform a single pivot step, which costs at
most O(mn) arithmetic operations for updating an (m
× n)-tableau under all reasonable variants.

In this article we are interested in the average case
behavior of the random number s, when our problems
(1) follow a given distribution. Since nobody knows the
‘real world distribution’, we have to introduce and to
use a self-made stochastic model about the appearance
of special instances of (1).

Based on that model, we will evaluate the stochastic
behavior of s. It is clear that this will massively depend
on
� the variant under use;
� the stochastic model, respectively distribution, cho-

sen.
A probabilistic analysis of the behavior of an algorithm
consists of three essential steps:
� a study of the way the algorithm is working on given,

deterministic problem-instances including a charac-

terization of the desired figures (e. g. s) for that in-
stance;

� a consensus about an underlying stochastic model
on the distribution of occurring problem-instances;

� a cumulation over all possible instances, weighted
with their occurrence probability, leading to
stochastic information on the random behavior.

So, we study the procedure of a deterministic algorithm,
which is employed to solve random problem-instances.

This stands in contrast to the situation with ran-
domized algorithms, where random parameters decide
how the algorithm shall proceed in solving a given, de-
terministic problem.

Throughout the paper we shall rely on a nondegen-
eracy assumption: All submatrices of (A, b) and of (A)|,
v are of full (i. e., maximal) rank.

This is compatible with our models either by di-
rect conditioning or by the fact that in such a prob-
abilistic model the set of degenerate problems is
a nullset.

In this paper, we shall briefly report on experiments
and their (limited) information-value. After that we
come to two different stochastic models which admitted
a successful probabilistic analysis. The first is the sign-
invariance model, whose analysis reached its summit in
the middle of the 1980s. And the second is the rotation-
symmetry model, whose evaluation had started even
earlier. But the refinement of that approach is still going
on.

Numerical Experiments
and Comparison of Variants

The first idea to learn more about the average case be-
havior of s is to carry out controlled numerical (Monte-
Carlo) experiments. For that purpose, one has to fix
several dimension-pairs (m, n), to use a stochastic
model for generating the data, and to solve the created
problem-instances by application of a given variant.

These experiments can be employed for a variety of
purposes, as for forecasting the number of pivot steps s
(on the basis of (m, n) for a fixed variant and model) or
for comparing different variants or for recognizing the
different influences of stochastic models.

All of that had been done and tried in the past.
Studying the huge number of reports on such exper-
iments leads to a very confusing and frustrating im-
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pression. Since stochastic models, employed variants,
dimensions and problem-types vary excessively, the re-
sults and methods can hardly be compared. In particu-
lar, it is not possible to summarize the outcome briefly,
since all the test parameters would have to be men-
tioned exactly. So, we refer to the very informative sur-
vey by R. Shamir in [19], who comes to the following
overall conclusion:

The smaller dimension n (respectively, the di-
mension of the polyhedra) enters the mean value
function of s in a slightly superlinear way and
the larger dimension m (respectively, the num-
ber of inequality restrictions, including sign-
constraints) has only a significantly sublinear in-
fluence.

Easier to understand and to interpret are exper-
iments, when they are done parallel to a theoretical
study, because then both results, the empirical and the
theoretical one, can be checked whether they justify
and confirm each other. This has been achieved in ex-
periments for the so-called rotation-symmetry model
(RSM):
� Let b D E1 and let a1 . . . , am, v (and an auxiliary vec-

tor u) be distributed independently, identically and
symmetrically under rotations on Rn \ {0}.

Note that only b > 0 is essential. Choosing b D E1 (i. e.
the vector of ones) means a simplifying standardization
only.

The experiments could more or less confirm the
theoretical results on Em;n(s) (the expected number of
pivot steps required for (m, n) problems). These theo-
retical results will be presented later. Rather informative
was the comparison of the behavior of different variants
and of the influence of different stochastic distributions.
In [11] we tested seven variants belonging to three cat-
egories (A, B, C), whose geometric description can be
given as follows.

Note that in each vertex a decision has to be made,
which one of the (exactly) n tight restrictions should be
de-activated. This means that a choice among the sub-
set of the improving edges (originating from that ver-
tex) is made. The current basis is the set of the n gradi-
ents (a)i) corresponding to the active restrictions at the
current vertex.
� Category A: Variants exploiting information on the

shape of X and on the objective v|x.

– (rule of steepest ascent) Choose that incident im-
proving edge with smallest angle to the gradient
of the objective function.

– (rule of greatest improvement) Take that edge
which leads to the maximal improvement of v|x
in the next step.

� Category B: Variants exploiting information on the
objective only.
– (Dantzig’s rule) Since a vertex x is optimal if

and only if v is in the cone of the gradients ai
of the current basis, we can calculate in each
step the representation of v by that basis of Rn.
So every basis-gradient is associated with its v-
representation coordinate. Since optimality re-
quires a completely nonnegative representation,
Dantzig’s rule suggests to take the edge that de-
activates the restriction whose gradient has the
most negative coordinate.

– (shadow-vertex algorithm or parametric rule)
This is the variant for which theoretical studies
worked very well. The results will be presented
in the following sections. Therefore, we explain
it in detail. This variant leads from a vertex op-
timizing an alternative objective u|x to the op-
timal solution for v|x (or an unbounded edge),
by providing all optimal vertices to the family of
objectives (� v + u)|x with � 2 [0,1).
For � starting at 0 and increasing, the sequence
of optimal vertices gives just the parametric sim-
plex path, which had also been constructed in
the early parametric variant of S.I. Gass and T.L.
Saaty. They had introduced the parametric con-
cept for another type of problems and without
the geometric shadow-vertex interpretation: If
we project X on Span(u, v), then our variant
constructs a path starting in the u|x-optimum
visiting only shadow-vertices. These are vertices
which keep their vertex-property even after the
projection. The projection-image of the con-
structed path is again a path along the boundary
of the two-dimensional image ofX. The choice of
the right edge is organized by calculation of the
basis representations of v and u (as in Dantzig’s
rule) and by minimizing the quotient of corre-
sponding coordinates.

� Category C: Rules evaluating combinatorial princi-
ples only.
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– (rule of random choice) Select randomly one of
the improving edges.

– (rule of justice) De-activate the tight restriction
that had been active most often.

– (rule of Bland) De-activate the tight restriction
that has the least original index.

These variants were compared under three different
rotation-symmetric distributions for the vectors ai:
� uniform distribution on !n (the unit sphere of Rn);
� uniform distribution on˝n (the full unit ball of Rn);
� Gaussian distribution on Rn.
In general, it turned out that results for Gaussian dis-
tribution were better (smaller) than for unit ball and
the latter were better than the unit sphere results. This
effect is simply caused by different ‘redundancy-rates’.
A restriction is redundant, if its existence or nonexis-
tence has no impact on the shape of X. Here, the ith
restriction is redundant if and only if ai belongs to
Conv(0, a1, . . . , ai� 1, ai + 1, . . . , am). This will never hap-
pen when all points come from !n and rather seldom
when all points come from˝n, but very often when the
points are Gaussian distributed. And, it is obvious, that
under normal circumstances a problem becomes easier,
if more restrictions are redundant, respectively if the re-
dundancy rate is high.

The quality of the different variants can be ordered
consistently. The best performance shows the rule of
steepest ascent. It is slightly better than the rule of great-
est improvement. These two variants show a very good
performance in particular when the current vertex is
still far away from the optimal one.

A bit worse are the variant of Dantzig and the
shadow-vertex algorithm. The reason may be that they
do not exploit information on the polyhedron itself
(which may make the edge-choice more ineffective, but
saves computation time in the single pivot step).

Considerably worse is the performance of the com-
binatorial variants. The best among these is random
choice, followed by rule of justice, and finally comes
Bland’s rule.

The overall impression is that the differences be-
tween Category A and Category B are not dramatic, but
that the differences between Category B and Category
C are striking.

We have also tested the standard deviation of s and
the more meaningful quotient between standard devi-
ation and mean value (for the number of pivot steps).

This quotient was less, but close to 1, when m was in
the order of n. But the quotient became quite small for
m� n. We understand this as a hint that in the RSM
form!1 and fixed n (the ‘asymptotic case’) the shape
of X, the number of facets as well as their size, and the
length of edges will stabilize more and more.

However, all these experiments and their outcome
are not at all satisfactory for a final judgement. One rea-
son is that the computation time for a sufficient number
of repetitions of the experiments is irresponsibly high.
Hence we cannot advance to reasonably high dimen-
sions. Also complexity theory investigations cannot be
settled by limited experiments. A third argument con-
cerns potential regression analysis attempts based on
the data of the results. It is almost impossible to mod-
elize the qualitative structure of Em;n(s) as a function of
m and n with parameters to be specified by the regres-
sion, as long as we do not understand (theoretically)
the interaction between m, n and the stochastic model.
Many such attempts failed as the model structures did
always fit only in a bounded range ofm and n.

Much more meaningful is the outcome of theoreti-
cal (arbitrary dimension) considerations. In the follow-
ing, we present two successful approaches.

Results Under the Sign-InvarianceModel

The first investigation under this kind of model was
done by S. Smale [20]. He analyzed problems of type
(3):

maximize v>x subject to Ax � b; x � 0

and treated this problem as a special case of the linear
complementarity problem (cf.� Linear complementar-
ity problem)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Find w; z 2 RmCn

such that for given q 2 RmCn ;

M 2 R(mCn)�(mCn);

w � Mz D q; w>z D 0;
w � 0; z � 0:

(5)

When

M D
�

0 �A
A> 0

�
and q D

�
b
�v

�
;

then a solution of (5) yields a solution of (3) and its dual.
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As solution procedure, Smale employs the Lemke al-
gorithm. One starts with a solution for E1 replacing q.
Then one moves on [E1; q] forward and performs pivot
steps whenever one of the coordinates of the vector w
reaches the value 0, in order to keep all components
nonnegative.

The analysis amounted to the question, how many
cones of a special type will be intersected by a line seg-
ment. This is a typical question for a parametric algo-
rithm. The expected number of pivot steps Em, n(sL) was
analyzed under the following stochastic model:
1) (A, b, v) is distributed absolutely continuous.
2) The columns of (A, b) and v are independent.
3) The measure of (A, b) is invariant under coordinate

permutations in columns of (A, b).
Smale proved for problems distributed under that
model:

Theorem 1 ([20])

Em;n(sL) � C(n) (1C ln(mC 1))n(nC1) :

This shows polynomiality in m (for fixed n), but not in
n. C(n) is an (exponential) function of n.

Smale’s studies gave a motivation for the analysis
of the so-called sign-invariance model (SIM). It is ex-
tremely simple and only relies on a finite number of re-
flections and symmetries.

Let A, b and v define a nondegenerate dataset for

problem (3). Let the occurrence of
�
A b
v> 0

�
and of

�
S1AS2 S1b
v>S2 0

�
be equiprobable for every sign matrix

S1 2 Rm ×m and S2 2 Rn × n. (A sign matrix is a diago-
nal matrix with +1 or �1 in the diagonal entries). To
explain the impact of that model, it suffices to consider
a somehow relaxed version of sign-invariance, the so-
called flipping model, where we consider only the sign
matrix S1 and deal with problem instances of form (1):

(
max v>x
s.t. a>1 x �� b1; : : : ; a>mx �� bm :

(6)

Here, � � indicates that one of the relations � or �
shall be valid in the formulation of the instance. We
get � if sii = 1 and � if sii = � 1 in (6), respectively in
S1. Since all sign matrices S1 shall be equiprobable, this
means that we independently determine the m direc-

tions of the relations, each one with probability ½ for�
and with probability ½ for�.

By the way, we generate exactly 2m problem-
instances out of one data set. The idea of averaging is
to solve all 2m instances, to sum up the required pivot
steps and to divide by the number of instances.

This set of problem instances can be solved (as far
as Phase II is concerned) by application of the shadow-
vertex algorithm explained in the section above. There
we realize a simplex-path over all (temporarily) optimal
vertices when we traverse the set of objectives (u + �
v)|x for � � 0.

If we add the corresponding set of (optimal) vertices
for negative values of �, then the total set will be called
the set of co-optimal vertices.

With s for the number of pivot steps, Scoop for the
number of co-optimal vertices and S for the number of
shadow-vertices, the following relation is obvious: s �
Scoop � S.

Using simple combinatorial enumeration argu-
ments, I. Adler and M. Haimovich [13] showed

Theorem 2 ([13]) For type (1) under SIM:

Em;n(Scoopja co-optimal path exists)

� n
m � nC 2
mC 1

� n :

So far, the analysis considers only the procedure of
moving from a u|x-optimum to a v|x-optimum. But
this does not fit exactly into a probabilistic analysis of
a complete solution method (as Smale’s method), be-
cause the u|x-optimum is not given beforehand and
calculating it would be as troublesome as calculating the
v|x-optimum.

In 1983–1984, the combination of this result with
a design of a complete algorithm was done in three
papers by M.J. Todd [21], Adler and N. Megiddo [3],
Adler, R.M. Karp, Shamir [2]. They all came to the same
result for Em;n(st), the expected number of pivot steps
required to solve the LP completely (including Phases I
and II).

Theorem 3 ([2,3,21]) For problems of type (1), respec-
tively of type (3), distributed under SIM, the expected
number of pivot steps for the complete solution by a lexi-
cographic version of Lemke’s algorithm (st) is

Em;n(st) � 2(nC 1)2 ;

(respectively, � 2 min(m2, n2)).
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In the first two papers, analyzing type-(3) problems, the
proof was based – as in Smale’s analysis – on the eval-
uation of a probability that a typical cone is intersected
by a line. But this time, this is the line

[d; E1]

with 0 < d = (ı, ı2, . . . , ım + n)| and ı as small as desired.
Closer to our geometrical interpretation and easier

to explain is the third approach in [2].
To explain the solution process of a type-(1) prob-

lem, we use

X(nCk) :D
n
x 2 Rn : a>1 x � b1; : : : ; a>nCkx � bnCk

o

for 0� k �m � n and X(m) = X.
The following complete algorithm works directly in

the space Rn and is called the lexicographic variant of
the constraint-by-constraint method:

Initialization
Determine the unique vertex x2X(n) and choose u
as u = ı1a1 + : : : + ınan with ı > 0 sufficiently
small.

Stage k (1 � k � m � n)
START at x, the maximal vertex for u>x
on X(n+k�1).
IF x 2 X(n+k)

THEN go to stage k + 1.
ELSE

use the shadow-vertex algorithm to improve
the value of a>n+kx (note that so far a>n+kx >

bn+k),
START at x and minimize a>n+k on
X(n+k�1).
STOP as soon as a>n+kx � bn+k .
On the last traversed edge find a pointex with
a>n+kex = bn+k .

ENTER stage k + 1 withex; replace x.
This is possible, because we have moved on
a co-optimal path, hence ex maximizes u>x
on X(n+k).
STOP if it is impossible to achieve a>n+kx � bn+k ,
because then the original problem is infeasible.

Stage m � n + 1
START at x, which maximizes u>x on X(m) = X.
Apply the shadow-vertex algorithm to find the
optimal point for v>x or discover that v>x
is unbounded on X.

In principle, this amounts to solving (m� n + 1)
problems, for which the average number of steps is less
n each (Theorem 2). But now, due to the lexicograph-
ical choice of u, it can be exploited that (when we en-
ter stage k + 1) most of the work to optimize the cur-
rent objective has already been done in earlier stages.
Thus, the effort of stage k + 1 becomes much smaller
than n.

Finally, the order of the total average number of
steps is O(n2) instead of O(mn).

With slight additional conditions on the distribu-
tions of the A entries, Adler and Megiddo [3] could es-
tablish also a lower bound of type C � n2.

They argued that form� 2n, since the share of fea-
sible problems is at least n� ½, the conditional expected
number of pivot steps for solving LP’s of that model,
under the condition that the problem instance is feasi-
ble, is O(n2.5).

As for every probabilistic model, one should ask
about the direct impact of the model on the results.

An important feature of SIM is the fact that many
instances will be infeasible, precisely

number of feasible instances
number of generated problems

D

�m
0

�
C � � � C

�m
n

�

2m
! 0

as m!1 while n is fixed:

Only conditioning on feasible problem instances avoids
averaging over a lot of easy problems. But even if we
do so, we meet a remarkably small expected number of
vertices:

Em;n(vertices per feasible instance) D
2n
�m
n

�
�m
0

�
C � � � C

�m
n

� ;

which is less than 2n and converges to that value for m
!1, n fixed.

Now it is not astonishing, that for a large class of
variants the average number of pivot steps for the com-
plete solution will be bounded from above by a function
of n only (cf. [1]).

But the most important cause for simplification of
problem instances with m � n is the average redun-
dancy rate (the share of the restrictions without impact
on X). This expected number (conditioned on feasible
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problems) is
�m�1

n

�
�m
0

�
C � � � C

�m
n

� ! 1

as m!1 while n is fixed:

Simultaneously, the absolute number of nonredundant
constraints (conditioned on feasibility) tends to 2n for
m!1 and fixed n.

So, for m � n, even for the feasible instances, the
average nonredundancy ratewill be very small. This will
of course make these problems easy. And it says that the
sign-invariance model gives reasonable andmeaningful
information only form = O(n).

SIM relies on symmetries and reflections only. The
combinatorial methods for evaluation make it un-
likely that a calculation of higher moments of the s-
distribution can easily be done. Besides that, the model
is somehow inflexible. For every set of data, the reflec-
tion procedure leads to exactly the same cumulated sta-
tistical characteristics in the total set of the 2m instances.
There is no way to choose a desired redundancy share
or a size of the expected number of vertices and to
parametrize certain figures in order to study their im-
pact.

Apparently (in particular form� n), the small up-
per bounds in Theorem 2 and Theorem 3 do rather
reflect the special properties of the model than confirm
the efficiency of the simplex method, which had been
pointed out in [1].

Results Under the Rotation-Symmetry Model

The theoretical analysis based on the rotation-
symmetry model RMS above started in 1977 [4] by
work of K.H. Borgwardt and is still (1998) develop-
ing. The most important among his results, a polyno-
mial upper bound for the expected number of shadow-
vertices, was derived in 1996–1997 [10] and it had pre-
decessors with slightly cruder bounds in 1987 [6] and
1982 [5].

Theorem 4 ([10]) For every rotation-symmetry distri-
bution as in RMS and for every pair (m, n) with m � n,
the expected number S of shadow-vertices (and of pivot
steps s in Phase II) satisfies

4Em;n(s) 	 Em;n(S) � const � m
1

(n�1) � n2 :

This result and its predecessors have been derived by
translating the question about S into the dual space of
the vectors ai. Candidates for being a vertex are only the�m
n

�
basic solutions x� solving a system of n equations

a�1
>x D 1; : : : ; a�n>x D 1

with

	 D f	1; : : : ; 	ng � f1; : : : ;mg :

x� is actually a vertex if all other restrictions are satis-
fied, i. e. a>i x� � 1 for all i 62�.

It becomes a shadow-vertex if the projection on
Span(u, v) preserves its vertex property.

Now there is a one-to-one correspondence

x� $ 	 D f	1; : : : ; 	ng $ Conv(a�1 ; : : : ; a�n ) :

Besides X = {x : Ax � b} we consider its polar poly-
hedron Y = Conv(0, a1, . . . , am).

The following equivalences enable us to derive the
average number of shadow-vertices directly from the
input data:

Lemma 5
1) x� is a vertex of X if and only if Conv(a�1 , . . . , a�n )

is a facet of Y.
2) A vertex x� is a shadow-vertex of X if and only if

Conv(a�1 ; : : : ; a�n ) \ Span(u; v) ¤ ;:

The addition theorem for expectation values and the
symmetry of index choices yield

Em;n(S) D

 
m
n

!
P
�

Conv(a1; : : : ; an) is a facet
intersected by Span(u; v)

�
:

Here, one integrates over all possible configurations of
a1, . . . , am, u, v and weights with regard to the un-
derlying distribution. The resulting multiple integral is
very hard to evaluate. For the case of moderate dimen-
sions (m, n arbitrary), we could only compare our inte-
gral with known results about a closely related integral.
Much more efficient are the tools for evaluating the so-
called asymptotic case (m!1, n fixed), because there
the integrals behave like Laplace integrals and can con-
veniently be evaluated. So it was much easier to derive
asymptotic results for specific RSM-distributions.
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In the sequel, we write Em;n(S) � f (m; n) as m!
1, n fixed, when we mean that

C1 � lim inf
m!1
n fixed

Em;n(S)
f (m; n)

� lim sup
m!1
n fixed

Em;n(S)
f (m; n)

� C2

for certain constants C1, C2 > 0. Besides that, we speak
of an RSM-distribution on ˝n with algebraically de-
creasing tail if

P(kxk � r) � (1 � r)�

for r! 1 for a � > 0.

Theorem 6 ([4,6,14,16,18]) For fixed n and m!1,
the following distributions lead to the following behavior
of Em;n(S):
� Gaussian distribution on Rn:

Em;n(S) �
p
lnmn

3
2 :

� Uniform distribution on˝n:

Em;n(S) � m
1

(nC1) n2 :

� Uniform distribution on !n:

Em;n(S) � m
1

(n�1) n2 :

� There are RSM-distributions such that

Em;n(S) � C(n) :

� For RSM-distributions on ˝n with algebraically de-
creasing tail:

Em;n(S) � m
1

(n�1C2� ) n2 :

These results should be compared with corresponding
results on the average number of vertices of X, respec-
tively facets of Y , denoted by Em;n(V) in our model.

Theorem 7 ([6,8,16]) For fixed n and m ! 1, the
following distributions lead to the following behavior of
Em;n(V):
� Gaussian distribution on Rn:

Em;n(V ) � [lnm]
(n�1)

2 2n � 

(n�1)

2 �
1
p
n
:

� Uniform distribution on˝n:

Em;n(V) � m
(n�1)
(nC1) 2

n
2 � 


n
2 n�

1
4 (nC 1)

(n�1)
2 :

� Uniform distribution on !n:

Em;n(V) � m
(n�1)
(n�1) 2

n
2 � 


n
2 n�

5
4 (n � 1)

(n�1)
2 :

� For distributions on˝n with algebraically decreasing
tail:

Em;n(V) � m
(n�1)

(n�1C2� ) 2
n
2 


n
2 n�

3
4

� (n � 1C 2�)
(n�1)

2

�n
2

�� (n�1)
2(n�1C2� )

:

Obviously, the simplex method is able to select a rather
short path through the huge set of vertices. Hereby it
visits (on the average and approximately) only the nth
root of the total number of available vertices.

Another very important point is the variance of the
number of shadow-vertices, respectively of the number
of required pivot steps. Due to the technical difficulties
mentioned above, so far (1998) only the asymptotic case
has been analyzed. K. Küfer [17] showed

Theorem 8 ([17]) For distributions with algebraically
decreasing tail on ˝n, the quotient of variance and
square of expected value behaves asymptotically as fol-
lows:

Varm;n(s)
E2m;n(s)

�
1
n
;

Varm;n(S)
E2m;n(S)

� m
�1

(n�1C2� ) :

Here, s is the number of pivot steps of the shadow-vertex
algorithm (Phase II) and S is the number of shadow-
vertices.

So far, we have dealt only with a fictive Phase II algo-
rithm, starting at an optimal vertex for an auxiliary ob-
jective. But this vertex is impracticable to find. Now let
us talk about a safe Phase I.

A special feature of our problems is the feasibility
of the origin, which makes (in contrast to the sign-
invariance model) every instance feasible. Based on that
information, we can employ a method (cf. [5] and[6]),
which applies the shadow-vertex algorithm n� 1 times,
and each time the dimension of the problem is in-
creased. In each of these stages all the stochastic re-
quirements of our model are satisfied.
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Here we introduce

X(k) D
n
x : Ax � E1; xkC1 D � � � D xn D 0

o
;

and formulate the dimension-by-dimension algorithm:

Initialization(Stage k=1)
Starting from the origin, find a vertex of X(1)

maximizing v>x = v1 � x1.
IF this maximal vertex does not exist,
THEN STOP.

Stage k, 2 � k � n,
Use the optimal point (x1; : : : ; xk�1;

0; : : : ; 0)> for v>x on X(k�1), which is
located on an edge of X(k).

1: Find an adjacent vertex in X(k) to that edge.
2: Apply the shadow-vertex algorithm using e>k x

and v>x as pair of objectives for maximizing
v>x on X(k).
IF v>x turns out to be unbounded on X(k),
STOP.

3: IF k < n, set k = k+1 and enter the next stage.
IF k = n, PRINT the optimal vertex for X.

One can derive an upper bound for this cumulation
of n � 1 applications of the shadow-vertex algorithm
by summing up all the expected numbers of shadow-
vertices. But this would significantly overestimate the
actual number of pivot steps in this algorithm, since we
would ignore that the original distribution comes from
Rn and that only projection distributions (from Rn to
Rk) can determine the behavior in stage k. Since the set
of projection distributions is only a small subset of the
RSM-distributions in dimension k, the corresponding
bound for the expected number of steps in stage k is
much better. Consequently, we obtain the following re-
sult, which also holds for problems of type (3), includ-
ing sign-constraints:

Theorem 9 ([9,10]) For every pair (m, n) with m �
n and every RSM-distribution on Rn, the expected total
number of pivot steps for the dimension-by-dimension
algorithm satisfies

Em;n(st) � m
1

(n�1) � n3 � C ;

as well for problems of type (1) as for problems of type
(3).

But, as observed in the analysis of the constraint-by-
constraint method (cf. Theorem 3), it is plausible that
most work of optimizing in stage k + 1 has already been
prepared in prior stages, such that the actual number of
steps in stage k + 1 is much smaller. This was precisely
clarified by G. Höfner [14] for the asymptotic case:

Theorem 10 ([14]) For every RSM-distribution the ex-
pected total number of pivot steps in the dimension-by-
dimension algorithm satisfies

Em;n(st) � m
1

(n�1) � n
5
2

when m!1 and n is fixed for problems of type (1) and
(3).

It must be clear that this algorithm is crude and lengthy
and has been introduced only for meeting the condi-
tions of RSM and for making the probabilistic analysis
possible.

In order to confirm the ‘folklore’ observation, that
Phase I can be done with an effort not exceeding that of
Phase II, Höfner analyzed another complete algorithm.
But unfortunately, this method is assured to work only
in the asymptotic case.
1) Solve the problem

max E1>x subject to Ax � E1; x � 0

by use of the shadow-vertex algorithm starting at the
vertex 0. The optimal vertex x will (in the asymptotic
case) with extremely high probability be a vertex of
X D

n
x : Ax � E1

o
.

2) Start the shadow-vertex algorithm at x, forget about
the sign constraints and optimize v|x on X.

It can be shown that both applications of the shadow-
vertex algorithm require (on the average) at most
m1(n � 1) � n2 � const pivot steps.

So, this is an algorithm with a Phase I effort not ex-
ceeding that of Phase II.

So far, the plausible and natural very good behav-
ior of Phase I can only be guaranteed in the asymptotic
case. In the moderate cases, the situation is similar to
that of the sign-invariance results, where the constraint-
by-constraint method needs a factor nmore pivot steps
than Phase II does.

As we have discussed the advantages and drawbacks
of SIM, we now consider similar questions for RSM.
Seemingly it is a tremendous advantage of RSM that it
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generates only (the hard) feasible problems. But simul-
taneously it turns out to be a drawback that the given
Phase I algorithms are designed in a way such that they
exploit this fact and are dependent on the guarantee of
‘0 being feasible’.

One way to overcome that drawback lies in the fol-
lowing idea. Remember that we want to solve all prob-
lem instances of the type
(
max v>x
s.t. a>1 x � b1; : : : ; a>mx � bm

with arbitrary values of bi (not necessarily positive).
For integrating all these problems in our analysis,

we use a ‘homogenization method’. We introduce the
notation Pn := {x : Ax� b} and reformulate our restric-
tions as
� a>i x � bi corresponds to a>i x � 1 � ebi when bi D

1 � ebi .
So we can demand that

a>1 x C
eb1 � 1 � 1; : : : ; a>mx Cfbm � 1 � 1

and define a polyhedron in Rn + 1 by

�
a1i ; : : : ; a

n
i ;
ebi
�
0
B@

x1
:::

xnC1

1
CA � 1 ;

which means that a>i x C
ebi xnC1 � 1(x 2 Rn) for i D

1; : : : ;m.
This system defines a new polyhedron Pn + 1 �

Rn + 1. The set of feasible points with xn + 1 = 0 is a one-
to-one copy of

n
x : Ax � E1

o
. The set of feasible points

with xn + 1 = 1} corresponds one-to-one to the set of
points in Pn.

It is now clear that in level {xn + 1 = 0} the prob-
lem satisfies all RSM-requirements. So we can solve the
optimization problem for v|x on that artificial polyhe-
dron. But then we can use one further stage (n + 1) of
the dimension-by-dimension algorithm to reach level
{xn + 1 = 1} (by maximizing xn + 1 = e>nC1 x on Pn + 1). If
we use the shadow-vertex algorithm starting at the level
{xn + 1 = 0}-optimum, then wewalk on a co-optimal path
all the time. And there will be two possible outcomes:
1) max{xn + 1 : x 2 Pn + 1} < 1.

Then level {xn + 1 = 1} has no feasible points and Pn

is proven to be empty, respectively infeasible.

2) max{xn + 1 : x 2 Pn + 1} � 1.
Then the shadow-vertex path in stage n + 1 will tra-
verse the desired level. We calculate the intersection
point, drop the last coordinate 1 and have the opti-
mal point formax�|x subject toAx� b. This results
from the co-optimality of our path.

Now the following probabilistic result is obvious:

Theorem 11 ([7]) If

 
a1
eb1
!
; : : : ;

�
amfbm
�
are distributed

on Rn + 1 according to the RSM, then general problems of
type (1) can be solved for every (m, n) with an expected
total number of pivot steps as

Em;n(st) � m
1
n (nC 1)3 � C :

But this condition has a quite artificial flavor, because
the RSM-distribution of the augmented vectors may
lead to dependencies between the gradients ai and the
capacities bi.

We know of one special distribution where both
wishes (RSM-distribution and independency) can be
combined, namely the Gaussian distribution on Rn + 1.
This is the only RSM-distribution where the compo-
nents of the generated vectors are independent. We ob-
tain:

Theorem 12 ([7]) If the vectors
 
a1ebi
!
; : : : ;

�
amfbm
�

are independent and Gaussian distributed, then

Em;n(st) � m
1
n (nC 1)3 � const:

For more general independent distributions of the right
sides (the capacities), as for uniform distribution, we
could not derive satisfactory bounds so far (1998).
However, this seems to be caused by technical difficul-
ties only. The special results in Theorems 11 and 12
indicate that general problems with arbitrary indepen-
dent capacity distribution may be solvable on the aver-
age with the same effort.

We conclude our report with a look on general vari-
ants. In [15] and [12] P. Huhn proved a lower bound on
the average number of pivot steps, which is valid for
all variants. Assume that Phase I has provided us with
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a vertex x0 of X, and that the objective v|x had no im-
pact on Phase I. Then we start at x0 with Phase II and try
to reach the optimal vertex xopt. To bridge the distance,
every variant has to use edges of the polyhedronX. Now
stochastic geometry can provide information on the dis-
tribution of the length of these edges. If one can show
that there are extremely few ‘long’ edges, then a large
number of ‘small’ edges has to be used for our walk.
This has been done in [15] and [12] and it gave a guar-
antee that no variant can (on the average) do its job
with less than a certain (computable) number of steps.
Quantitatively, this reads as follows. We present only
the result for a special distribution, the uniform distri-
bution on !n (corresponding results have been derived
for a large class of distributions).

Theorem 13 [15] In a typical RSM problem with uni-
form distribution on !n, every variant of the simplex al-
gorithm will, on the average, require a certain number
Eavm;n(s) of pivot steps, and

Eavm;n(s) � C � m
1

(n�1) � n0 with C > 0:

Despite the fact that here the n-order is n0 (compare
with n2 for the shadow-vertex algorithm), this shows
that no variant can perform substantially better. This
means that there is no algorithm (variant) running
essentially faster than the shadow-vertex algorithm,
which can exploit the increasing number of options
with n, and which avoids the typical order m1/(n � 1) in
the RSM.

Thus, a posteriori, the results on the shadow-vertex
algorithm have proved to be quite representative. It is
not the very best variant, but not much worse than the
very best.

Note that the lower bound in Theorem 13 is mean-
ingful only when m� n, because only then it becomes
significantly greater than 1, although the inequality is
valid for all (m, n). This is different from the results
about the variance (Theorem 8) and the speedup for
Phase I (Theorem 10), where it is uncertain, whether
these results will be valid in moderate dimensions, too.
(Perhaps not the technical difficulties are to blame.) It
may as well be possible that these results essentially
rely on a regularization effect of the polyhedra for large
number of points, as we know it from the approxima-
tion of a ball from inside by the convex hull of a huge
number of random points.

To clarify these questions, remains an important
challenge for future research.

See also

� Criss-Cross Pivoting Rules
� Least-Index Anticycling Rules
� Lexicographic Pivoting Rules
� Linear Programming
� Pivoting Algorithms for Linear Programming

Generating Two Paths
� Principal Pivoting Methods for Linear

Complementarity Problems
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When formulating stochastic programming problems
one usually starts from an underlying deterministic

problem which, in case of probabilistic constrained lin-
ear programming (PCLP), is the linear programming
(LP) problem. In game theoretical formulation, the LP
primal-dual pair of problems is the following:
8<
:
sup
y2Y 0
fyAxg ! min;

x 2 X0 D fx 2 Rn : Ax � b; x � 0g ;

and8<
:

inf
x2X0
fyAxg ! max;

y 2 Y 0 D fy 2 Rm : yA � c; y � 0g ;

where A is a given matrix of dimension m × n, b and
c are given vectors of dimension m and n, and x and
y are decision vectors of dimension n and m, respec-
tively. In order to extend the LP duality concept [2] we
reformulate the feasibility sets of the two problems by
introducing probability constraints as follows:
8<
:
sup
y2Y
fyAxg ! min;

x 2 X D fx 2 Rn : P(Ax � ˇ) � p; x � 0g ;
(1)

and8<
:
inf
x2X
fyAxg ! max;

y 2 Y D fy 2 Rm : P(yA � �) � q; y � 0g :
(2)

Hereˇ and� � are random vectors of dimensionm and
n with given joint continuous probability distribution
functions F and G, p and q are reliability levels in (0, 1);
A, x, y are defined as above.

The pair of problems (1) and (2) was introduced
in [3]. Each of them is a generalization of problems
with probabilistic constraints and linear objective, in-
troduced by A. Charnes and W.W. Cooper [1], by B.L.
Miller and H.M. Wagner [6], and by A. Prékopa [7].
The formulation of a dual problem can be of help in
elaborating a solution method, in analysing sensitivity
of a solution, in assessing the closeness of the objective
function value at a solution at hand from the optimal
value.

Because of the presence of the bilinear function yAx,
the objective functions of both (1) and (2) directly de-
pend on the feasibility set of the other problem. It is de-
sirable, therefore, to find objective functions for Prob-
lems (1) and (2) such that either of them could be in-
terpreted in itself. The idea is similar to that applied
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in LP where cx and yb can replace the corresponding
objective functions. The argumentation leading to such
a pair of self-contained problems follows.

Define the following sets:

B D fb 2 Rm : F(b) � p; b 2 supp Fg ;

X(b) D fx 2 Rn : Ax � b; x � 0g ;

for given b 2 Rm ;

C D fc 2 Rn : G(�c) � q; �c 2 suppGg ;

Y(c) D fy 2 Rm : yA � c; y � 0g ;

for given c 2 Rn :

The sets X(b) and Y(c) are convex polyhedral sets. The
sets B and C are closed because F and G are assumed
to be continuous, and their interiors are not empty be-
cause p, q < 1, B (respectively, C) is convex if F (re-
spectively, G) is quasiconcave. The set B is bounded
if the support set supp F (the smallest closed subset of
Rm whose probability measure generated by F is 1) is
bounded. Similarly, the set C is bounded if supp G is
bounded. Assume, in the course of the transformation
below, that B and C are bounded. Obviously,

X D fx 2 Rn : x 2 X(b); b 2 Bg ;

Y D fy 2 Rm : y 2 Y(c); c 2 Cg ;

so (1) and (2) can be rewritten in the following equiva-
lent form:

min
b2B

(
min
x2X(b)

(
sup
c2C

(
sup
y2Y(c)

yAx

)))
; (3)

and

max
c2C

�
max
y2Y(c)

�
inf
b2B

�
inf

x2X(b)
yAx

			
: (4)

Observe that

sup
y2Y(c)

yAx D inf
x02X(Ax)

˚
cx0
�
;

for any given c 2 Rn and x 2 Rn, with inf cx0 = � 1 if
Y(c) = ;, by the LP duality theorem. It means that

sup
c2C

(
sup
y2Y(c)

yAx

)
D sup

c2C

�
inf

x02X(Ax)

˚
cx0
�	
;

and both sides are defined to be�1 if Y(c) = ; for all c
2 C. The function cx0 is convex in c, concave in x0, and

continuous on the product set C˝ X(Ax) provided C is
convex. Assume that C is convex. Then the saddle value
of cx0 exists with respect to minimizing over X(Ax) and
maximizing over C [9]:

sup
c2C

�
inf

x02X(Ax)
cx0
	
D inf

x02X(Ax)

�
sup
c2C

cx0
	
:

In fact, cx0 has a saddle point if {c 2 C : Y(c) 6D ;} sat-
isfies the Slater condition: its interior is nonempty. The
reason is that infx0 2 X(Ax)cx0 as a function of c is closed,
convex hence continuous over its domain {c : Y(c) 6D ;}
[10]. Therefore, it attains its maximum over the com-
pact set {c 2 C : Y(c) 6D ;}, say at c°. Then, by the LP
duality theorem, infx0 2 X(Ax)c° x0 is attained, say at x°. It
implies that, in the presence of the Slater condition, (c°,
x°) is a saddle point, with respect to minimizing over
X(Ax) and maximizing over C [5]. This fact is needed
to ensure that not all the optimal solutions of (1) are lost
during the transformation.

Relax the minimization of supC supY(c)yAx over
X(b) in (3) and use infimum instead. Observe that X(b)
= {x0 � 0 : 9x 2 X(b) such that Ax0 � Ax} for any fixed
b 2 Rm, so that

inf
x2X(b)

�
inf

x02X(Ax)

�
sup
c2C

cx0
		
D inf

x2X(b)

�
sup
c2C

cx
	
;

where both sides are defined to be +1 ifX(b) =;. Then
restore the minimization over X(b) and obtain the fol-
lowing problem which corresponds to (1):

8̂
<̂
ˆ̂:

sup
c2C

cx ! min;

x 2 X D

(
x :

Ax � b; x � 0;
F(b) � p; b 2 supp F

)
:

(5)

By assuming that B is convex, a similar argumentation
leads to the following problem which corresponds to
(2):

8̂
<̂
ˆ̂:

inf
b2B

yb ! max;

y 2 Y D

(
y :

yA � c; y � 0;
G(�c) � q; �c 2 suppG

)
:

(6)

Next, we summarize the relation between (1) and (5),
and (2) and (6), respectively.

If the probability distribution function G is quasi-
concave, suppG is bounded, (b°, x°) is optimal for (5),
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then x° is optimal for (1). If the probability distribution
function G is quasiconcave, supp G is bounded, the set
{c 2 C : Y(c) 6D ;} fulfills the Slater condition, x° is op-
timal for (1), then (b°, x°) is optimal for (5), where b° =
Ax°.

If the probability distribution function F is quasi-
concave, suppF is bounded, (c°, y°) is optimal for (5),
then y° is optimal for (2). If the probability distribution
function F is quasiconcave, supp F is bounded, {b 2 B :
X(b) 6D ;} fulfills the Slater condition, y° is optimal for
(2), then (c°, y°) is optimal for (6), where c° = y°A.

It remains to state the duality theorem, the proof of
which can be found in [4].

Theorem 1 (Duality theorem) Suppose that the prob-
ability distribution functions F and G are quasiconcave,
that F is a strictly increasing function of its components,
that supp G is bounded, and that the Slater condition
int {b 2 B : X(b) 6D ;} 6D ; holds. If (5) is unbounded
in value, then (6) is inconsistent. Otherwise, (6) is con-
sistent, their values are equal, and that value is attained
in (6).

Suppose that the probability distribution functions F
and G are quasiconcave, that G is a strictly increasing
function of its components, that suppF is bounded, and
that the Slater condition int {c 2C : Y(c) 6D ;} 6D ; holds.
If (6) is unbounded in value, then (5) is inconsistent. Oth-
erwise, (5) is consistent, their values are equal, and that
value is attained in (5).

Suppose that the probability distribution functions F
and G are quasiconcave, that each of them is a strictly
increasing function of its components, that supp F and
supp G are bounded, and that the following regularity
conditions hold: int {b 2 B : X(b) 6D ;} 6D ; and int c 2
C : Y(c) 6D ;} 6D ;. Then (1) has an optimal solution x°,
and (2) has an optimal solution y° such that (x°, y°) is
a saddle point of yAx with respect to minimizing over X
and maximizing over Y.

The rich class of quasiconcave probability distribu-
tion functions includes, among others, the multidimen-
sional normal, exponential, uniform, gamma distribu-
tions [8]. In practical problems, the support set of the
probability distribution in question is usually bounded.
Although the approximating theoretical distribution
often has an unbounded support, reasonable truncation
can be applied.
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The general form of a probabilistic constraint is the fol-
lowing:

P
�
g1(x; �) � 0; : : : ; gr(x; �) � 0

�
� p ;

where gr(x, y), x 2 Rn, y 2 Rq, i = 1, . . . , r, are some
functions, � is a q-variate random vector and p is a fixed
probability. In the simplest case gr(x, y) = Tix � yi,
where Ti is the ith row of a matrix T, i = 1, . . . , r. In
this case the above constraint take the form: P(Tx �
�) � p.

The most important theorem in connection with
the probabilistic constraint states that if g1, . . . ,
gr are concave, or quasiconcave functions in Rn +q

and � has a continuous probability distribution with
logconcave probability distribution function, then
P
�
gi(x; �) � 0; i D 1; : : : ; r

�
is a logconcave function

in Rn ([4,5]).
There are, however, important cases where the

functions gi(x, y) are not concave or quasiconcave. S.
Kataoka [2] and C. van de Panne and W. Popp [3] con-
sidered the probabilistic constraint of the form:

P(�1x1 C � � � C �nxn � b) � p ;

where � = (�1, . . . , �n)| has a multivariate normal dis-
tribution and b is constant. The practical problems were
investment and animal feed problems, respectively. If
� D E(�), C D E

�
(� � �)(� ��)>

�
, then the above

probabilistic constraint is shown to be equivalent to

�>xC ˚�1(1 � p)
p
x>Cx � b ;

where ˚ is the univariate standard normal probability
distribution function. If p � 1/2, then ˚�1(1 � p) � 0
and the set of x vectors satisfying the probabilistic con-
straint is convex.

Generalizations of this result have been given in
[1,4]. We look at the joint probabilistic constraint:

P(�i1x1 C � � � C �inxn � bi ; i D 1; : : : ; r) � p ;

where we assume that the altogether rm random vari-
ables � ij have a joint normal distribution. The statement
is that if the covariance matrices of the rows (� i1, . . . ,
� in), i = 1, . . . , r, are constant multiples of a fixed co-
variance matrix C1, or the covariance matrices of the
columns (�1j, . . . , �rj)|, j = 1, . . . , n, are constant mul-
tiples of a fixed covariance matrix C2, then the set of x
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vectors satisfying the probabilistic constraint is convex,
provided that p� 1/2. For further convexity statements
see [5].

See also

� Approximation of Extremum Problems with
Probability Functionals

� Approximation of Multivariate Probability Integrals
� Discretely Distributed Stochastic Programs: Descent

Directions and Efficient Points
� Extremum Problems with Probability Functions:

Kernel Type Solution Methods
� General Moment Optimization Problems
� Logconcave Measures, Logconvexity
� Logconcavity of Discrete Distributions
� L-shaped Method for Two-Stage Stochastic

Programs with Recourse
�Multistage Stochastic Programming: Barycentric

Approximation
� Preprocessing in Stochastic Programming
� Probabilistic Constrained Linear Programming:

Duality Theory
� Simple Recourse Problem: Dual Method
� Simple Recourse Problem: Primal Method
� Stabilization of Cutting Plane Algorithms for

Stochastic Linear Programming Problems
� Static Stochastic Programming Models
� Static Stochastic Programming Models: Conditional

Expectations
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Stochastic Linear Programs with Recourse and

Arbitrary Multivariate Distributions
� Stochastic Network Problems: Massively Parallel

Solution
� Stochastic Programming: Minimax Approach
� Stochastic Programming Models: Random

Objective
� Stochastic Programming: Nonanticipativity and

Lagrange Multipliers
� Stochastic Programming with Simple Integer

Recourse
� Stochastic Programs with Recourse: Upper Bounds

� Stochastic Quasigradient Methods in Minimax
Problems

� Stochastic Vehicle Routing Problems
� Two-Stage Stochastic Programming: Quasigradient

Method
� Two-Stage Stochastic Programs with Recourse

References

1. Burkauskas A (1986) On the convexity problem of proba-
bilistic constrained stochastic programming problems. Al-
kalmazott Mat Lapok (Applied Math Papers) 12:77–90.(In
Hungarian)

2. Kataoka S (1963) A stochastic programming model. Econo-
metrica 31:181–196

3. Panne Cvan de, Popp W (1963) Minimum cost cattle feed
under probabilistic constraint. Managem Sci 9:405–430

4. Prékopa A (1974) Programming under probabilistic con-
straints with a random technologymatrix.MathOperations-
forsch Statist Ser Optim 5:109–116

5. Prékopa A (1995) Stochastic programming. Kluwer, Dord-
recht

Production-Distribution System
Design Problem

ABDULLAH DASCI1, VEDAT VERTER2

1 School of Administrative Studies, York University,
Toronto, Canada

2 Desautels Faculty of Management,
McGill University, Montreal, Canada

MSC2000: 90B06

Article Outline

Introduction
Prevailing Models
PDSDP in Practice
Concluding Remarks
Acknowledgement
References

Introduction

Management of a firm’s production-distribution sys-
tem involves tactical and operational decisions along
with strategic ones. The policies that enable a firm to
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meet its strategic goals comprise a collection of struc-
tural and infrastructural decisions, which typically in-
volve long-term commitments with regards to the con-
figuration and coordination of its supply chain. These
structural decisions, a.k.a., facility design decisions in-
clude location, capacity, product range, and production
or operating technologies at various facilities. The usual
objective is minimizing costs or maximizing gross prof-
its while leaving other manufacturing tasks (e. g., goals
set for quality, flexibility, etc.) for prior or subsequent
analysis. Mathematical models of this nature are gen-
erally called as “production-distribution system design
problems” (PDSDP).

Traditionally, location, capacity, technology, and
product range decisions have been dealt with sepa-
rately. Facility location models, in general, ignore the
geographical differences in capacity and technology ac-
quisition/operation costs. Whereas, capacity expansion
models mostly deal with the temporal aspects of mar-
ket demand and do not incorporate location decisions
with regards to the establishment of new plants. The
interactions between facility design decisions, however,
can be significant and PDSDP research takes its motiva-
tion from these interactions. The governments of many
countries provide subsidies to support economic activ-
ities of specific sectors or regions with high rate of un-
employment. In taking advantage of the capital and/or
employment subsidies, preferential tax rates, and free
trade zones provided by governments, firms, especially
multinationals need to take interdependencies between
their location, capacity and technology decisions into
account. These decisions could further be complicated
due to varying scale and scope economies inherent in
different technologies.

A production-distribution network provides an ef-
fective representation of the manufacturing and logis-
tics activities of a firm and assists researchers with
a framework to study various systems. In a typical net-
work, nodes represent suppliers, manufacturing facili-
ties, distribution centers, warehouses and customers of
the firm. The arcs on the network delineate the flow of
items between nodes. An example network of five ech-
elons is depicted in Fig. 1. There are mainly two impor-
tant feature that define the difficulty of PSDSP: first, is
the number of echelons in the system and second, is the
number of different types of configurational, most no-
tably locational, decisions that need to be made.

Production-Distribution System Design Problem, Figure 1
A production-distribution network

Our objective is to provide an overview of the
prevailing methodology for designing production-
distribution systems. The remainder of this article is
organized as follows: In the next section we give an
overview and taxonomy of the prevailing PDSDPmod-
els. Subsequently, an overview of PDSDP in practice is
given. The paper concludes with our remarks.

PrevailingModels

Location decisions have been attracting researchers
since the end of nineteenth century. But a rigorous
methodology for production-distribution systems did
not come out until sixties during which two compet-
ing approaches have appeared. For a warehouse loca-
tion problem, Shycon and Maffei [71] propose a simu-
lation model claiming that, a proper model should be
descriptive, whereas Kuehn and Hamburger [46] favor
prescriptive models and propose a mixed integer lin-
ear program (MILP) and a heuristic solution procedure.
After these two pioneering works, MILP formulations
received considerably more attention in both practice
and theory.

It is evident that PDSDP refers to a family of prob-
lems. The purpose here is to provide an overview
of production-distribution system design literature,
rather than an exhaustive review. The uncapacitated fa-
cility location problem (UFLP) is the simplest type of
PDSDP, with a single-commodity, a network of two
echelons (i. e., facilities and customers) of which only
a single echelon of nodes (i. e. facilities) is to be located.
The following is the most popular formulation known
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in the literature:

min
X
i2I

fi yi C
X
i2I

X
j2J

ci jxi j (1)

s.t.
X
i2I

xi j D 1; j 2 J; (2)

xi j � yi ; i 2 I; j 2 J; (3)

xi j � 0; i 2 I; j 2 J; (4)

yi 2 f0; 1g; i 2 I (5)

xi j : proportion of customer j’s demand satisfied by fa-
cility i,

yi : 1 if facility i is opened, 0 otherwise,
ci j : the total production and distribution costs for

supplying all of the customer j’s demand from fa-
cility i,

fi : fixed cost of opening facility i,
I; J : the set of candidate facility sites and customers.

The objective is to minimize the sum of the fixed
setup costs of opening facilities and the variable costs
of serving the customers. Constraints (1) guarantee that
each customer’s demand is satisfied, and (2) ensure that
only open plants can make shipments.

Beginning with Kuehn and Hamburger, most re-
search has been directed towards devising more ef-
ficient solution procedures to UFLP. Efroymson and
Ray [19] propose an LP based branch-and-bound algo-
rithm. However, in order to solve the arising LPs more
efficiently and to minimize the memory requirements,
they devised a more compact but weaker formulation
of UFLP by replacing constraints (2) with the following
equivalent set of constraints:

X
j2J

xi j � ni yi ; i 2 I; (6)

where ni is the number of customers that facility i can
serve. Later, Spielberg [75] proposed another branch-
and-bound (implicit enumeration) algorithm using the
same weaker formulation. The largest stride towards an
efficient solution procedure came in late seventies. Bilde
and Krarup [8] and Erlenkotter [22], independent from
each other, took advantage of the tighter formulation
and proposed one of the most remarkable solution pro-

cedures. Instead of solving LPs at nodes to optimally,
they devised quick procedures to obtain good solutions
to the dual of LPs. Using these “good” dual solutions,
they generated integer feasible primal solutions using
complementary slackness conditions and a heuristic.
Erlenkotter reports that most of the time the optimal
solution is found after single pass. If there is a gap left, it
is eliminated by branch-and-bound. After these works,
this type of procedure (called dual-based branch-and-
bound) has been repeatedly applied to other location
problems.

The normative work on UFLP has been extended in
several ways so as to analyze more realistic production-
distribution systems. One of the earliest attempts was
to incorporate the limited availability of land and other
production factors at the alternative sites. The formula-
tion of the capacitated version is quite similar to UFLP,
where capacity constraints are appended to the formu-
lation. Using identical formulations, Akinc and Khu-
mawala [2] and Nauss [55] propose linear program-
ming and Lagrangean relaxation based branch-and-
bound solution techniques, respectively. On the other
hand, Geoffrion and McBride [28] solve a generaliza-
tion of the capacitated model in which there are lower
as well as upper bounds and arbitrary constraints over
structural variables (yi).

Multicommodity models have also been widely
studied in the literature(e. g. Warszawski [88], Neebe
and Khumawala [56], and Karkazis and Boffey [41]).
The problem is an immediate generalization of UFLP
where there are multiple products. Even though they
offered different formulations, all of them assumed that
only one product can be assigned to a facility. This as-
sumption is later relaxed in Klincewicz and Luss [43].
Quite a few researchers have focused on increasing the
number of echelons to be located. This line of research
constitutes a major stride towards the development
of analytical models that are capable of representing
PDSDPs of the size managers typically encounter in
real life. Kaufman, Eede, and Hansen [42] and Tcha
and Lee [76] are among the earlier works. The for-
mer deals with location of plants and warehouses to
minimize that total cost of respective fixed costs and
production and distribution costs. Tcha and Lee how-
ever deals with arbitrary number of echelons. The
commonality between both models is that they ig-
nore any cost that might arise from the interaction be-
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tween plants and warehouses. Later, Gao and Robin-
son [26] propose an efficient dual-based branch-and-
bound algorithm and Barros and Labbe [6] present
a profit maximization version of the same prob-
lem. They proposed various heuristics and an exact
Lagrangian relaxation-based branch-and-bound algo-
rithm.

Thus far, works on UFLP and some of its immedi-
ate generalizations are reviewed. Arguably one of the
most influential model in PDSDP literature is proposed
and solved by Geoffrion and Graves [27]. Their model
consists of three echelons; plants, warehouses, and cus-
tomers. The objective is to minimize the total costs
of production, transportation, warehousing and total
fixed costs of opening the warehouses. The capacity re-
strictions over DCs can be both from above or below,
which enables modeling piecewise linear concave DC
throughput costs. Furthermore, each customer is to be
supplied from one DC and there may be certain re-
strictions on the configurational decisions. They pro-
posed a solution procedure based on Benders’ decom-
position.

The most important contribution of Geoffrion and
Graves [27] is the paradigm change triggered by this pa-
per. In multi-echelon models, the usual practice was to
represent flow between neighbor echelons by different
sets of variables and impose flow conservation at the
nodes. Geoffrion and Graves [27] represent the flows
on the network by a single set of variables from nodes
in the first echelon to the nodes in the last (i. e. using
more indices). With this modeling technique the num-
ber of variables grow considerably with the size but the
formulation becomes tighter, which could be useful in
devising more efficient algorithms.

Later, Moon [54] extended the model and solu-
tion procedure considering economies of scale in DC
throughput costs. In this case the DC throughput costs
are represented by general concave cost functions.
Pirkul and Jayaraman [59] propose a similar model that
differs in the following aspects:

i) The opening decisions are not only for ware-
houses but also for plants,

ii) The capacity limitations are only from above, and
iii) There are upper bounds on the number of plants

and warehouses that can be opened. They devise a La-
grangean relaxation based heuristic solution procedure.
In a subsequent paper [60], they also include supplier

selection. Elhedli and Goffin [20] present one of the
most recent advances in this area.

In designing an production-distribution system, it
is crucial to optimize the configurational decisions si-
multaneously because a sequential approach is bound
to produce suboptimal results especially when the in-
teractions between these decisions and scope and scale
economies are present. One of the earliest attempts to
develop a model that consider scale economies is due to
Soland [73]. His model is a simple extension of UFLP
where fixed facility costs are replaced by a concave
function of the size of the facility. Later, Holmberg [37]
and Holmberg and Ling [38] propose a capacitated fa-
cility location problem where capacity acquisition cost
is an arbitrary piecewise linear function. Verter and
Dincer [85] propose alternative model where capacity
costs are assumed to be general concave functions of
total acquisition. More recently, Dasci and Verter [17]
and Verter and Dasci [84] extend these models to
a multi-product environment and selection of various
dedicated and flexible technologies that display dif-
ferent forms of scale and scope economies. A num-
ber of authors propose models that integrate inventory
control and logistics decisions into a PDSDP frame-
work. The inventory related costs also display scale
economies and therefore, necessitate a concave or non-
linear cost modeling, as in the aforementioned works.
Shen [69] present a unifying work on this issue. Sney-
der et al. [77] and Sourirajan et al. [74] present more
recent location models that consider logistics related
costs.

Since the mid-eighties, the world witnessed the
emergence of global manufacturing firms, which diver-
sify their operations to different countries. Globaliza-
tion provides the firm with many advantages, such as
access to cheap labor, raw material and other produc-
tion factors, presence at regional markets, and access
to locally available technological resources and know-
how. The arising supply chain structures, however, are
usually more challenging from the perspective of the
manager. The strategic management of international
production-distribution networks are further compli-
cated due to the price and exchange rate uncertain-
ties. In a series of papers, Hodder and Jucker [35,36]
and Hodder and Dincer [34] propose scenario based
approaches to model these uncertainties. Their models
maximize expected profit less a constant portion of the
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variability of the profit, which is an appropriate way to
represent a risk-averse decision-maker. Later, Gutierrez
and Kouvelis [31] also used a scenario-based approach
to find robust solutions under all possible scenario re-
alizations. More recently, Canel and Khumawala [11]
and Kouvelis et al. [45] proposed models that include
subsidies and tariffs. The prevailing studies in this field
suggest that the scenario-based approach is a popular
way of modeling the various types of uncertainties that
characterize the international environment. The num-
ber of possible scenarios however quickly proliferate as
the problem size increases, making not only the evalu-
ation of the scenarios but also the generation of them
a formidable task.

As we have seen, there are families of PDS-
DPs involving capacity limitation on sites, multiple
products, multiple echelons, or time phased system
design models. Almost all of these models are for-
mulated as mixed integer programs and are solved
usually by branch and bound. In general, Lagrangean
relaxation, linear programming (LP) relaxation, and
dual-based procedures (see for example, Erlenkot-
ter [22] are the most common lower bounding tech-
niques. While dual-based procedures are usually shown
to be computationally more efficient than the former
two, it is very much dependent on the special structures
of the problems. On the other hand, Lagrangean and
LP relaxation techniques can essentially be used for any
formulation. Starting with Geoffrion and Graves [27],
Bender’s decomposition, which is able to handle arbi-
trary side constraints on structural variables, has been
used few times. Nevertheless, it is among the less popu-
lar solution methods like dynamic programming. From
the perspective of heuristic solution techniques, La-
grangean relaxation based and pairwise improvement
type procedures are the most commonly used tech-
niques.

While the match between a formulation and a so-
lution procedure is certainly the defining factor in the
efficiency of a solution method, tighter formulations
usually lead to more efficient solutions procedures. For
example in UFLP, while constraints (2) and (6) are in-
terchangeable, the former provides a tighter formula-
tion, which eventually led to very efficient dual-based
solution procedures. Similarly, as pioneered by Geof-
frion and Graves [27], defining the flows on a network
by a single set of variables from nodes in the first ech-

elon to the nodes in the last. While this formulation
causes the number of decision variables to propagate,
it leads to tighter formulation.

While we try to give an overview of the prevailing
PDSDPmodels and solution methodologies, space pro-
hibits us from mentioning tens if not hundreds other
works. Therefore, we have devised a classification of
the prevailing analytical models along differentiating
PDSDP features in Table 1. This table gives a quick
snapshot of PDSDP literature in the last 40 years. This
classification is intended to reveal the strengths and
weakness of the existing methodology as well as the
major trends in the literature. Analytical approaches
have been such a focus of research that even the table
is far from exhaustive. Therefore, we refer the inter-
ested reader to the following review and critique pa-
pers: Aikens [1], Verter and Dincer [86], Vidal and
Goetschalckx [87], Goetschalckx et al. [30], Klose and
Drexl [44], Meixell and Gargeya [51]), Snyder [72],
Sahin and Sural [64], and Shen [70].

PDSDP in Practice

In this section, we provide an overview PDSDP applica-
tion in practice. In their seminal paper, Geoffrion and
Graves [27], have not only provided one of the most in-
fluential models on PDSDP, but also reported arguably
the first industrial implementation. They assisted Hunt-
Wesson Foods, Inc in re-locating their distribution cen-
ters (DCs). The firm had been producing several hun-
dred commodities at 14 sites and distributing through
a dozen DCs. They recommended five changes in the
configuration of DCs as well as the establishment of
a new DC.

After this work PDSDP implementations have
started to appear in the literature. Arguably, the
most comprehensive implementation is presented by
Arntzen et al. [4]. This paper reports on the devel-
opment and use of Global Supply Chain Management
(GSCM), a large scale optimization model that con-
tributed to the re-organization of the Digital Equip-
ment Corporation (DEC) in the late 80s and early 90s.
Although its development had started as a small project,
GSCM has become an essential tool to examine all as-
pects of supply chain management in DEC. GSCM is
arguably the most comprehensive system that consid-
ers production, inventory, material handling, taxes, fa-
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Production-Distribution System Design Problem, Table 1
A taxonomy of analytical approaches for production-distribution system design problems
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Kuehn and Hamburger [46] C 3 1 M + D S � � �

Efroymson and Ray [19] C 2 1 S � D S � � �

Spielberg [75] C 2 1 S � D S � � �

Elson [21] C 3 1 M + D M + + �

Warszawski [88] C 2 1 M � D S � � �

Geoffrion and Graves [27] C 3 1 M + D S + � +
Wesolowski and Truscott [89] C 2 1 S � D M � � �

Balachandran and Jain [5] C 2 1 S + S S � � �

Akinc and Khumawala [2] C 2 1 S + D S � � �

LeBlanc [47] C 2 1 S + S S � � �

Kaufman et al. [42] C 3 2 S � D S � � �

Erlenkotter [22] C 2 1 S � D S � � �

Geofrrion and McBride [28] C 2 1 S + D S � � +
Nauss [55] C 2 1 S + D S � � �

Karkazis and Boffey [41] C 2 1 M � D S � � �

Neebe and Khumawala [56] C 2 1 M � D S � � �

Van Roy and Gelders [83] C 3 1 S + D S + � +
Van Roy and Erlenkotter [82] C 2 1 S � D M � � �

Tcha and Lee [76] C M M S � D S � � �

Hodder and Jucker [36] P 2 1 S � D S � � �

Hodder and Jucker [35] P 2 1 S � D S � � �

Hodder and Dincer [34] P 2 1 S + D S + � �

Klincewicz and Luss [43] C 2 1 M � D S � � �

Moon [54] C 3 1 M + D S + + +
Gao and Robinson [26] C 3 2 S � D S � � �

Holmberg [35] C 2 1 S � D S + + +
Robinson et al. [63] C 3 2 S � D S � � �

Barros and Labbe [6] P 3 2 S � D S � � �

Gutierrez and Kouvelis [31] C 2 1 S � D S � � �

Verter and Dincer [86] C 2 1 S +/� D S � + +
Pirkul and Jayaraman [59] C 3 2 M + D S + � �

Holmberg and Ling [38] C 2 1 S + D S � + +
Pirkul and Jayaraman [60] C 4 2 M + D S + � �

Lim and Kim [49] C 2 2 S � D M + + �

Dogan and Goetschalckx [18] C 4 1 M + D M + � �

Melachrinoudis and Min [52] M 2 1 S + D M + � �

Hinojosa et al. [33] C 3 2 M + D M � � �

Dasci and Verter [17] C 2 2 M � D S � + +
Tsiakis et al. [78] C 4 2 M + D/S S + + +
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Production-Distribution System Design Problem, Table 1 (continued)
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Jayaraman and Pirkul [40] C 3 2 M + D S + � �

Canel and Khumawala [11] C 2 1 S � D M � � �

Canel et al. [12] C 2 2 M � D M + � �

Verter and Dasci [84] C 2 2 M � D S � + +
Jang et al. [39] C 3 2 M + D S + � �

Kouvelis et al. [36] P 3 2 M � D M + + �

Paquet et al. [57] C M 2 M � D S + + +
Rantala [62] C 4 2 M + D S + � +
Shen [52] C 2 1 M � S S � � +
Elhedhli and Goffin [14] C 3 1 M � D S + � �

Park [58] P 2 1 M + D S + � �

Melo et al. [53] C M M M � D M + + �

Santoso et al. [66] C M M S + D S + � �

Amiri [3] C 3 2 S + D S � + �

Cordeau et al. [14] C 4 3 M + D S + + �

Sneyder et al. [60] C 2 1 S � S S � � +
Sourirajan et al. [57] C 2 1 S + S S + � +

cility fixed charges, production line fixed charges, trans-
portation costs, duty costs, duty drawbacks and duty
avoidance. In an effort to establish the optimal sup-
ply chain structure, GSCM reduced the number of
plants from 31 to 12, which enabled the major cus-
tomer regions (America, Europe, and Pacific Rim) to
become self-contained. Estimated savings as of 1995
were $1.2 billion. GSCM was also used to determine
the optimal network structure for distribution of spare
parts and collection of defective items. Repair cen-
ter facility locations and capacities were determined.
Total savings of this project were estimated to be
$200 million.

A set of published industrial applications are sum-
marized in Table 2.While such works appear at a steady
pace, the literature on the applications of PDSDP is
quite sparse. There seem to be a few possible explana-
tions: First, (re)-configuration of a firm’s supply chain
is a long-term process, which requires a genuine com-
mitment by top management. In many cases, the pos-

sibility of success in adopting an analytical approach
for (re)-designing the supply chain is severely dimin-
ished due to the lack of support from top management.
Second, we are aware of many firms who choose not
to report their experiences in production-distribution
system design simply due to the strategic nature of
these decisions. Finally, the level of many industrial
projects might not justify publication in academic jour-
nals.

Most of the models developed in these projects
are different from each other and the past models ap-
peared in the literature. This might be taken as a nega-
tive sign on the applicability of generic models. How-
ever, there are several commercial software packages
that have built-in functions and off-the-shelf general-
ized programs. The companies developing these soft-
ware packages report hundreds of firms in their client
roster.

One such software package is called, Strategic Lo-
gistics Integrative Modeling System (SLIM). It is an
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Production-Distribution System Design Problem, Table 2
A Sample of Published Industrial Applications

Published Paper Company Industry Region Facilities Estimated Savings
Geoffrion and Graves [27] Hunt-Wesson Foods USA 14 plants, 12 DCs2 $1–5 million/year

9–25% of dist. cost
Van Roy and Gelders [83] N.V. ESSO LPG Belgium 1 plant, 7 depots N/A
Breitman and Lucas [10] GM Auto Multinational $1 billion total
Cohen and Lee [13] Apple Computer Multinational N/A
Martin et al. [50] Libbey-Owens-Ford Glass USA 4 plants $2 million/year
Robinson et al. [63] Dow Consumer

Products
Home- and
Food-care

USA 13 CDCs3, 23 RDCs4 $1.5 million/year

Pooley [61] Ault Foods Limited Dairy Canada 4 plants, 12 depots $3 million/year
Arntzen et al. [4] DEC Computer Multinational 33 plants $1.5 billion total
Feigin et al. [23] IBM Europe Computer Europe 1 plant, 13 DCs $40 million/year
Sankaran and Raghavan [65] S. Shakti LPG Limited LPG India 2 ports, 5 plants $1 million/yearN/A
Koksalan and Sural [64] Efes Group Brewery Turkey 6 plants
Sery et al. [67] BASF Corporation Chemical North America 67 plants, 86 DCs 6% annual
Wouda et al. [90] Nutricia Dairy and

Drinks
Foods Hungary 9 plants, 17 DCs N/A

Tyagi et al. [79] GE Plastics Chemical Multinational 29 plants N/A
LeBlanc et al. [48] Nu-kote Imaging Multinational 5 plants, 4 warehouses $1 million/year
Ulstein et al. [80] Elkem Metallurgy Multinational 9 plants N/A
Fleischmann et al. [24] BMW Auto Multinational 19 plants N/A

DC: Distribution Center, CDC: Central Distribution Center, RDC: Regional Distribution Center

advanced decision support system that is used to
evaluate strategic production and distribution plan-
ning problems. SLIM is developed by Prof. B. Shapiro
of MIT and his associates, who have collaborated
with over 100 companies in the US, Canada, Eu-
rope, and Australia [68]. Another software package is
called Strategic Analysis of Integrated Logistics Sys-
tem (SAILS), which was developed by A. Geoffrion
and his colleagues at the Insight Inc. In this package,
extensive data management functions and optimiza-
tion tools are integrated. Geoffrion and Powers [29]
report that there have been 50 or more studies done
by SAILS or one of its earlier versions. The projects
result with 5–15% reduction in total transportation
costs.

Generic models have the advantage of having
a shorter development time and lower costs whereas
custom-made models have the advantage of ability
to incorporate various firm specific practices. Either
generic or custom-made, above studies have shown
that there are considerable savings possible from
(re)designing production-distribution systems through
an analytical model.

Concluding Remarks

At the time, the first edition of the encyclopedia has ap-
peared, we stressed that the development of analytical
models that could effectively represent supply chains
of the sizes that are typically encountered in real life
was crucial. Recent advances in PDSDP research and
computing enabled researchers to analyze more com-
plex systems and achieve this objective. A quick glance
at Table 1 would show that the advances made in the
last 10 years are far greater than the advances made ear-
lier. The existing methodology on PDSDP however still
needs to be improved.We see two general directions the
methodology should be improved: integration of strate-
gic and tactical decisions and including international
features in PDSDPs.

It is well known that structural decisions would re-
strict how the firms make their tactical decisions sub-
sequently. Therefore, integration of this decisions in
a PDSDP framework should help firms improve their
profits. Although few works have recently appeared in
the literature that integrates these decisions [74,77], the
literature still has gaps.
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While issues such as globalization, outsourcing, in-
ternational plant location have been around quite some
time, the literature is still scant on the issue. Among
the 56 works that we have classified in Table 1, only
six papers consider international features such as sub-
sidies, tariffs, and exchange rate uncertainty explic-
itly. There has also been a skepticism as to the im-
pact of certain aspects globalization on firms’ config-
uration decisions. For example, according to one sur-
vey, conducted among the plant managers of 73 large
multinational firms, subsidies and free trade zones are
ranked among the least important factors. However,
a number of studies, mostly conducted in the US Na-
tional Bureau of Economic Research, report that both
international and domestic firms have been quite re-
sponsive to subsidies, free trade zones, taxes, and la-
bor costs in deciding their plant locations. For exam-
ple, Head, Ries, and Swenson [32], in their investi-
gation of location patterns of Japanese manufacturing
establishments, conclude that these firms have been
quite responsive to trade zones. Similarly, Coughlin
and Segev [15], in their study of foreign investment
in the US, concludes that higher average labor den-
sity (as a surrogate measure of average wage rate) and
higher taxes in a state are found to deter foreign invest-
ment. Finally, both Fuest and Huber [25] and Bergman,
Fuss, and Regev [7] provide anecdotal and empirical ev-
idence about how subsidies alter the location choices of
domestic firms in the Eastern Germany and Israel re-
spectively.

We can conclude that the interactions between fa-
cility design decisions are especially important for in-
ternational companies. They face not only a multitude
of location and technology choices but also a com-
plex array of cost structures due to regional differ-
ences as well as governments’ tax, subsidy, and free
trade policies. These decisions are further complicated
by manufacturing strategy options and scale and scope
economies. Therefore, it is important that analytical
approaches for PDSDP incorporate demand and ex-
change rate uncertainties as well as the other distin-
guishing features of the international environment.
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Abstract

We briefly review the development of generalized-
ensemble optimization techniques and their applica-
tion since publication of “Protein Folding: Generalized-
Ensemble Algorithms” was published in the first edition
of this book.

Keywords

Energy landscape sampling; Model hopping; Parallel
tempering

“Protein Folding: Generalized-Ensemble Algorithms”
was submitted to the editors in February 1999 as
a contribution for the “Encyclopedia of Optimiza-
tion.” While the article has remained useful as a short
and concise introduction, the remarkable success over
the last 8 years in the forming and application of
generalized-ensemble techniques to optimization prob-
lems warrants some comments. New generalized-
ensemble algorithms have been developed, and the sim-
ulation of small proteins (of order 	 50 residues) has
become feasible.

One example for the recent algorithmic develop-
ments is energy landscape paving (ELP) [5]. Like all
successful stochastic optimization techniques, it aims at
avoiding entrapment in local minima and to continue
the search for further solutions. For this purpose, one
performs in ELP low-temperature Monte Carlo simu-
lations with an effective energy:

w(Ẽ) D e�Ẽ/kBT with Ẽ D E C f (H(q; t)) : (1)

Here, T is a (low) temperature and f (H(q, t)) a func-
tion of the histogram H(q, t) in a prechosen “order pa-
rameter” q. The weight of a local minimum state de-
creases with the time the system stays in that state, i. e.,
ELP deforms the energy landscape locally till the local
minimum is no longer favored, and the system will ex-
plore higher energies. It will then either fall in a new
local minimum or walk through this high-energy re-
gion till the corresponding histogram entries all have

similar frequencies and the system again has a bias to-
ward low energies. Note that for f (H(q; t))D f (H(q))
ELP reduces to the older generalized-ensemble meth-
ods. We have evaluated the efficiency of ELP in simu-
lations of the 20-residue trp-cage protein whose struc-
ture we could “predict” within a root-mean-square de-
viation (rmsd) of 1Å [8].

Note also that ELP allows even the possibility
of zero-temperature simulations [8]. For T ! 0 only
moves with �Ẽ � 0 will be accepted. If we choose
Ẽ D E C cH(E; t), we find as acceptance criterion:

�E C c�H(q; t) � 0$ c�H(q; t) � ��E ; (2)

where E is the physical energy. Hence, within ELP the
system can overcome even at T D 0 any energy barrier.
The waiting time for such a move is proportional to the
height of the barrier that needs to be crossed. Factor c
sets now only the time scale, and in this sense the T D 0
form of ELP is parameter free.

Today, the most popular generalized-ensemble
technique in protein science is parallel tempering (also
known as replica exchange) [1,3]. In its most com-
mon form, one considersN noninteracting copies of the
molecule, each at a different temperature Ti. In addi-
tion to standard Monte Carlo [3] or molecular dynam-
ics moves [3,9] that affect only one copy, parallel tem-
pering introduces a new global update [1]: the exchange
of conformations between two copies i and j D i C 1
with probability

w(Cold ! Cnew) D min(1; exp(�ˇi E(Cj)�ˇ jE(Ci )

C ˇi E(Ci )C ˇ jE(Cj))) : (3)

This exchange of conformations leads to a faster con-
vergence than is observed in regular low-temperature
canonical simulations. Note that parallel tempering
does not require Boltzmann weights but can be com-
bined easily with other generalized-ensemble tech-
niques [3].

A variant of parallel tempering is “model hop-
ping” [6], where sampling of low-energy configurations
is enhanced by performing a random walk through an
ensemble of systems with slightly altered energy func-
tions. In that way, information is exchanged between
varying stages of coarse graining or different local envi-
ronments. We assume that the energy function can be
divided into two terms: E D EA C aEB . As in parallel
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tempering, “model hopping” considers N noninteract-
ing copies of the molecule, but adjacent copies are now
exchanged with probability

w(Cold ! Cnew) D min(1; expf�ˇ[EA(Cj)

C aiEB(Cj)C EA(Ci )C ajEB(Ci)

� EA(Ci ) � aiEB(Ci) � EA(Cj)

� ajEB(Cj)]g) :
(4)

Here, �a D aj � ai and �EB D EB(Cj) � EB(Ci).
Configurations perform a random walk on a ladder of
models with a1 D 1 > a2 > a3 > : : : > aN that differ
by the relative contributions of EB to the total energy
E of the molecule. For instance, barriers in the energy
landscape of proteins often arise from van der Waals
repulsion between atoms that come too close. Hence,
we have considered an implementation of “model hop-
ping” with successively smaller contributions from the
van der Waals energy. While the “physical” system is
on one side of the ladder (at a1 D 1), the (nonphysical)
model on the other end of the ladder (at aN � 1) may
allow atoms to share the same position in space. As the
protein “tunnels” through energy barriers, sampling of
low-energy configurations is enhanced in the “physical”
model (at a1 D 1).With this realization of “model hop-
ping” we could “predict” the structure of a 46-residue
protein A in an all-atom simulation within a root mean
square deviation (rmsd) of 3.2 Å [6]

Model hopping also allows guiding a simulation by
information obtained from homologous structures [2].
Usually, such spatial constraints introduce an addi-
tional roughness into the energy landscape and there-
fore often lead to extremely slow convergence of the
simulation. This problem is circumvented in our ap-
proach through a random walk in an ensemble of repli-
cas that differ by the strength with which the constraints
are coupled to the system. We have demonstrated the
usefulness of this approach on some examples of the
CASP6 competition [2].

Generalized ensemble, as discussed in “Protein
Folding: Generalized-Ensemble Algorithms” and in
this addendum, now allows the in silico study of small
proteins (built out of 	 50 amino acids) using all-
atom models. Examples include the 34-residue hu-
man parathyroid hormone fragment PTH(1-34) [4],
the 28-residue FSD, the 36-residue villin headpiece

subdomain [5,7,10], and fragment B of protein A (46
residues)[6]. Current work aims at extending the ap-
plicability of these methods to all-atom simulations of
proteins built out of 50 to 100 residues.
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Introduction

One of themost demanding problems in computational
biology is the so-called ab initio protein structure pre-
diction problem. In ab initio prediction the objective is
to predict protein structure solely from physically based
force fields that describe the interactions between the
amino acids and interactions between amino acids and
the protein’s environment. The ab initio protein struc-
ture prediction problem can be cast as an optimiza-
tion problem in which the minimum free energy of the
molecule is sought, because this configuration corre-
sponds to the most stable structure of the protein.

In this contribution the problem of protein loop
structure prediction is addressed. By the term loops we
refer to any amino acid subsequence within a protein
that is not of the geometrically regular type of an ˛-he-
lix or a ˇ-strand. The importance of loops for the over-
all three-dimensional structure and function of pro-
teins has been pointed out before (see, e. g., Fiser et
al. [5]). Even though loops are short amino acid sub-
sequences, they are of major importance to the overall
structure. Loops are often exposed to the surface and
contribute to active and binding sites. Without loops,
many proteins could not fold into compact structures.

Unfortunately, loop structure is considerably more
difficult to predict than the geometrically regular
ˇ-strands and ˛-helices, since loops possess greater
structural flexibility than strands and helices, and since
they have relatively few contacts with the remainder of
the structure.

Methods for loop structure prediction have been in-
vestigated for at least two decades [2]. Recent progress
in loop structure prediction has been achieved with ap-
proaches that combine dihedral angle sampling, steric
clash detection, clustering, and scoring or energy func-
tion evaluation to build up ensembles of loop confor-
mations.

In the so-called loop reconstruction problem, the an-
chor geometry of the protein into which the loop must
fit is assumed to be known. Here we address the prob-
lem of loop structure prediction when no information
on the anchor geometry is available. More precisely, we
assume the secondary structure of the stem residues is
assumed to be known, but the geometry of the protein
into which the loop must fit is considered to be un-
known in our methodology. This loop structure predic-
tion with flexible stems must be considered more diffi-
cult than the loop reconstruction problem.

Ultimately, the optimization based method for loop
structure prediction summarized here is going to be
embedded in an existing ab initio protein structure pre-
diction method [10,11,12,13,14,15,16,17,18,19].

Method and Applications

This section first introduces a new methodology for
loop structure prediction for loops with flexible stems.
Subsequently, results are summarized that have been
obtained for a large test set of 3215 loops of known
structure.

Method

The loop prediction method proceeds along the fol-
lowing steps: (i) generating conformers by high-reso-
lution dihedral angle sampling, (ii) structure optimiza-
tion with a physically based energy function, (iii) itera-
tive clustering of ensembles to discard conformers that
are likely to have a large rmsd with respect to the native
loop structure, and (iv) strategies for selecting optimal
loops from the ensemble that remains after step (iii).
These steps are briefly described. For details we refer
to [20].

The description of the geometry of a loop consists
of two elements. The geometry of the backbone is de-
scribed in terms of the dihedral angles, � and  . Cor-
respondingly, the side chains of each amino acids are
described by side chain dihedral angles. The number of
the side chain dihedral angles depends on the type of
amino acid. Step (i) generates a large number of candi-
date backbone conformations by sampling n � 1 dihe-
dral angle pairs (�i ;  i ), i D 1; : : : ; n � 1 from appro-
priate probability distributions for a loop that consists
of n amino acids. Conformers are generated with prob-
ability functions in a discretized (�; )-space [20]. In
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this approach the (�; ) space is divided into 722 an-
gular bins of size 5ı � 5ı. Functions for the probability
to find a (�; ) pair in any of the 5ı � 5ı bins are de-
rived for each of the 20 amino acids in each of three
types of secondary structure, resulting in 60 probabil-
ity functions. The three types considered are ˛-helical,
ˇ-strand, and loop. More precisely, helical and strand-
type amino acids are defined by the DSSP classification
codes H, E [9]. To qualify as a loop, an amino acid se-
quence must not be at either terminal of the protein
and must be located between strands or helices. Proba-
bility functions are derived by counting occurrences of
(�; )-pairs for each amino acid in each bin for a refer-
ence set of known protein structures. The reference set
is chosen to be all proteins with experimental resolution
of 2.2 Å or better in the PdbSelect25 set (http://www.
cmbi.kun.nl/gv/dssp/)[9]. This results in a set of 939
reference proteins, and an overrepresentation of angu-
lar bins due to considering structures that are too simi-
lar is avoided. Similar dihedral angle bin sets have suc-
cessfully been used before [3,4]. Compact and compu-
tationally efficient representations of the dihedral angle
bin sets and their sampling for conformer generation
exist. We refer to [20] for details.

Having generated a backbone geometry by dihe-
dral angle sampling, side chain angles are optimized
for each amino acid by looping over the amino acids
and identifying the lowest energy conformation that
can be achieved with any combination of angles from
a well-established library of side chain conformations
(the Dunbrack rotamer library [1]). While determining
the optimal side chain configuration for an amino acid,
the backbone and side chain angles of the remaining
amino acids are fixed. The side chain optimization iter-
ates over the sequence of amino acids that constitute the
protein and terminates when no further improvement
can be achieved. Energies are calculated with a physi-
cally based force field, the ECEPP/3 force field [21]. Co-
valent bond lengths and bond angles are fixed at their
equilibrium values, so that the conformation is a func-
tion of the torsional angles only. The energy comprises
electrostatic, nonbonded, hydrogen-bonded, and tor-
sional contributions. After backbone generation by di-
hedral angle sampling, and after side chain optimiza-
tion, the entire structure is subjected to an energy mini-
mization in which all degrees of freedom, both all back-
bone angles, and all side chain angles, are optimized si-

multaneously. For this purpose a sequential quadratic
programming algorithm [6] is used.

Using the approach described so far, a sufficiently
large number n(0)c of geometrical conformations is gen-
erated and the resulting ensemble is subjected to clus-
tering. In all results reported here, the ensemble size
was chosen to be n(0)c D 2000. Before introducing the
clustering algorithm we need the following definitions.
The cluster size Ni is defined by

Ni D # f j j r(i; j) � rthreshg : (1)

In Eq. (1) r(i, j) denotes the root mean square deviation
(rmsd) between conformer i and j, and the pound sym-
bol is the cardinality operator. For details on the rmsd
calculation we refer to [20]. Note that the number of
conformers nc must be chosen with care, as the com-
plexity of the pairwise rmsd calculation is O(n2c ). In the
algorithm the upper index k is introduced to count the
number of iterations. The symbols n(k)c , N (k)

i;max and r(k)max
denote the number of conformers in the ensemble in
iteration k, the number of conformers Ni as defined in
Eq. (1) in the largest cluster found in iteration k

N (k)
i;max D max

iD1;:::;n(k)c

Ni (2)

and the largest pairwise rmsd found in the ensemble in
iteration k

r(k)max D max
i; jD1;:::;n(k)c

r(i; j): (3)

The relative rmsd threshold rthresh;rel 2 (0; 1) and the
relative critical cluster size Ncrit;rel 2 (0; 1) are used to
express rthresh and Ncrit in terms of the largest pairwise
rmsd r(k)max and the largest cluster N (k)

i;max in each itera-
tion,

r(k)thresh D rthresh;relr(k)max (4)

N (k)
crit D Ncrit;relN (k)

i;max: (5)

The algorithm can now be stated as follows [20].
1. Initialization

Reset the iteration counter, k D 0. Choose the en-
semble size n(0)c and generate the ensemble. Choose
relative thresholds rthresh;rel and Ncrit;rel. Sample val-
ues are rthresh;rel D 0:5 and Ncrit;rel D 0:5.

http://www.cmbi.kun.nl/gv/dssp/
http://www.cmbi.kun.nl/gv/dssp/
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2. Determination of rmsd threshold r(k)thresh
Calculate pairwise rmsds r(i, j) for i D 1; : : : ; n(k)c ,
j D 1; : : : ; n(k)c .
Determine r(k)max from Eq. (3) and set r(k)thresh according
to Eq. (4).

3. Determination of clusters size threshold N (k)
crit

Calculate cluster sizes N (k)
i for all conformers

i D 1; : : : ; n(k)c according to Eq. (1), where
rthresh D r(k)thresh in Eq. (1).
Calculate N (k)

i;max according to Eq. (2). Set N (k)
crit ac-

cording to Eq. (5).

4. Termination criterion
If Ni � N (k)

crit for all i D 1; : : : ; n(k)c , stop.

5. Discarding far-from-native conformations
Increment the iteration counter k.
Discard conformations i for which Ni < N (k)

crit. Con-
sider the remaining conformations to constitute the
new ensemble. Set n(k)c to the number of conformers
in the new ensemble, re-enumerate the conformers
in the new ensemble with numbers i D 1; : : : ; n(k)c ,
and go to step 2.

We stress that the clustering algorithm is based on the
idea of discarding structures that are likely not to be
close to the native structure. In contrast, existing clus-
tering algorithms are based on selecting structures that
are close to native [3,4,7,8,22].

For test cases with known three-dimensional struc-
ture, the quality of the sampling approach can be as-
sessed by identifying the lowest rmsd to the known
structure in an ensemble. This check reveals that sam-
pling is not restricting the overall prediction strat-
egy [20].

Ultimately, a valid strategy is needed for selecting
one or a few conformers from an ensemble that are
likely to have a small rmsd with respect to the na-
tive structure when the native structure is not known.
The potential energy has been reported not to be
a useful criterion [8,22]. Among other things, this
can be accounted to the fact that the potential en-
ergy does not take entropic contributions into ac-
count. As a remedy, the so-called colony energy has
been suggested as an approximate approach to tak-
ing entropic contributions into account [22]. Alterna-
tively one can disregard potential energy completely
and identify conformers that are likely to be close
to native based on the size of clusters they form

within the ensemble. We tested the potential en-
ergy, colony energy, cluster size, and a hybrid ap-
proach on a large set of 3215 loops with known struc-
ture.

Applications

In this section we summarize the results that have been
obtained for a large test set of loops with known struc-
ture. Using the PdbSelect25 we identified a test set
of 716 loops of total length 10 (4 loop residues and
6 stem residues), 656 loops of length 11 (5 loop residues
and 6 stem residues), 387 loops of length 12 (6 loop
residues and 6 stem residues), 366 loops of length 13
(7 loop residues and 6 stem residues), 283 loops of
length 14 (8 loop residues and 6 stem residues), 223
loops of length 15 (9 loop residues and 6 stem residues),
176 loops of length 16 (10 loop residues and 6 stem
residues), 138 loops of length 17 (11 loop residues
and 6 stem residues), 115 loops of length 18 (12 loop
residues and 6 stem residues), 75 loops of length 19
(13 loop residues and 6 stem residues), and 80 loops
of length 20 (14 loop residues and 6 stem residues). To
our knowledge, this is the largest dataset for which loop
structure prediction results have been reported to date.
We refer to [20] for details.

The results are summarized in Fig. 1. The results la-
beled average rmsds by energy are obtained by identify-
ing the lowest ECEPP/3 energy conformer in each en-
semble, recording its rmsd to native, and subsequently
averaging over the rmsds for all ensembles of loops of
a given length. The average rmsds by colony energy re-
sults when using the colony energy [22] instead of the
ECEPP/3 energy. The remaining data shown in Fig. 1
is obtained with the clustering algorithm. For all of
the loops reported here, the clustering algorithm termi-
nated after k D 2 steps.

Figure 1 shows that the conformer that generates
the largest cluster after any clustering step k D 0; 1; 2
is on average a better prediction for the native struc-
ture than both the lowest energy and lowest colony
energy conformer. From this we infer that the cluster
size is a better criterion for the identification of con-
formers than energy or colony energy. Furthermore,
the largest cluster conformer found after step k C 1 of
the clustering algorithm is as good as, or better than, the
largest cluster conformer found in step k. In this sense,
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Protein Loop Structure Prediction Methods, Figure 1
Average of rmsds as a function of total loop length for the loops from the PdbSelect25 proteins. Lines are added as a guide
to the eye. Results are reproduced from [20]

repeatedly applying the clustering algorithm improves
the largest cluster conformer on average.

In order to assess the computational demand cre-
ated by the suggested approach, we measured the cpu
times needed by our approach for 20 randomly selected
loops of each sequence length. The resulting average
times are 1.5 h, 5 h, and 11.25 h for a single loop with 4
loop and 6 stem residues, 10 loop and 6 stem residues,
14 stem and 6 loop residues, respectively, when the en-
semble size is chosen to be 2000 conformers. These
times were obtained on a single Intel Xeon 3GHz ma-
chine running RedHat Linux 9.0.

The ensemble generation step needs a negligible
fraction of the total time. The second step, energy mini-
mization, is the computationally most demanding step.
The times needed for pairwise rmsd calculations con-
tribute between 3.5min and 7min to the total times
given above. The time needed for the application of
the clustering algorithm detailed in Sect. “Method” is
independent of the loop length and contributes about
4min per loop to the total times given above. The time-
consuming step of energy minimization is amenable to
parallelization, since the loops in an ensemble can be
treated separately.
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Introduction/Background

Pseudomonotone maps were introduced by Karamar-
dian as a generalization of monotone maps [22]. Other
generalizations include various kinds of quasimono-
tone maps (quasimonotone, strictly quasimonotone,
semistrictly quasimonotone . . . ). These generalizations,
the relations between them, as well as the relation to
generalized convexity are discussed in other articles of
the Encyclopedia (see � generalized monotone single
valued maps and � generalized monotone multivalued
maps and in [16].

It should be noted that the same term a “pseu-
domonotone map” has been introduced by Brezis to
denote a totally different class of maps [4]. The main
difference between the two classes is that pseudomono-
tone maps in the sense of Brézis are defined through
a kind of continuity property, whereas Karamardian
used only the order relation of real numbers in his defi-
nition. For this reason some authors, starting by Gwin-
ner [12], use the term “topologically pseudomonotone”
for pseudomonotone maps in the Brezis sense. Al-
though it is possible to give a definition that includes
both kinds of pseudomonotonicity [11], we will use the
term “pseudomonotone” only in the sense defined by
Karamardian.

Pseudomonotone maps have the advantage that
they lead to generalizations of existence theorems for
the Stampachia variational inequality problem (VIP),
without imposing additional assumptions, and with
practically the same proof as for monotone maps [16].
However, this quasi-identical treatement of the VIP is
not extended to other topics, and the properties of the
two classes of maps are often quite dissimilar. For in-
stance, while the sum of two monotone maps is mono-



3106 P Pseudomonotone Maps: Properties and Applications

tone, this is false for pseudomonotone maps. A vast the-
ory has been developed for monotone maps, based on
the concept of maximal monotonicity. By contrast, un-
til recently it was believed that maximality plays no rôle
for pseudomonotone maps. Consequently, some algo-
rithms for finding the solution of VIP with maximal
monotone maps have no extension to the pseudomono-
tone case.

This article will present some recent developments
that can be considered as a first step towards filling the
lacunae in the theory of pseudomonotone maps. In par-
ticular, maximal pseudomonotonicity will be discussed.
The main tool is the definition of an equivalence re-
lation in the set of all pseudomonotone maps. Also,
a generalization of paramonotone maps and their use
in cutting plane algorithms will be described. Finally,
recent results on pseudoaffine maps and on the relation
to monotone maps will be presented.

Definitions

Let X be a real Banach space and X� be its dual. Given
x; y 2 X, [x; y] denotes the line segment f(1� t)xC t y :
t 2 [0; 1]g. For K � X�,RCCK will be the set

[
t>0tK.

A multivalued map T : X ! 2X� is a map whose values
are subsets of X�, possibly empty. The domain D(T)
of T is the set fx 2 X : T(x) ¤ ;g, its graph the set
gr(T) D f(x; x�) 2 X � X� : x� 2 T(x)g and its set of
zeros is the set ZT D fx 2 X : 0 2 T(x)g. The map T
is called upper sign-continuous [13] if for all x 2 D(T)
and v 2 X, the following implication holds:

�
8t 2 (0; 1); inf

x�2T(xCtv)
hx�; vi � 0

�

) sup
x�2T(x)

hx�; vi � 0:

If T is upper hemicontinuous (i. e., its restriction
on line segments is upper semicontinuous with respect
to the weak� topology in X�), then it is upper sign-
continuous.

The map T is called monotone if for every (x; x�),�
y; y�

�
2 gr(T), hy� � x�; y � xi � 0; it is called max-

imal monotone if its graph is not strictly contained in
the graph of any other monotone map. Also, T is called
D-maximal monotone if its graph is not strictly con-
tained in the graph of any other monotone map with
the same domain.

The map T is called pseudomonotone if for ev-
ery (x; x�),

�
y; y�

�
2 gr(T), the following implication

holds.

hx�; y � xi � 0) hy�; y � xi � 0:

Obviously, every monotone map is pseudomono-
tone.

Given a locally Lipschitz function f : X ! R [
fC1g, we denote by @0 f its Clarke subdifferential [7].
The locally Lipschitz function f is called pseudoconvex
if for every x 2 dom( f ) and x� 2 @0 f (x) the following
implication holds:

hx�; y � xi � 0) f (y) � f (x):

It is known that a locally Lipschitz function f is
pseudoconvex if and only if @0 f is a pseudomonotone
map [23].

Formulation

Maximal Pseudomonotonicity

In order to introduce maximal pseudomonotone
maps, one first defines an equivalence relation in the
set of pseudomonotone maps. Two pseudomonotone
maps T1 and T2 are called equivalent if they have the
same domain, the same set of zeros, and for each x
which is not a common zero, the elements of T1(x)
are positive multiples of the elements of T2(x) and vice
versa. In other words,
(a) D(T1) D D(T2)
(b) ZT1 D ZT2 ,
(c) for every x 2 XnZT1 , RCCT1(x) D RCCT2(x).

In this case we write T1 � T2. This is an equivalence
relation. Another aspect of this equivalence is pro-
vided by the Stampacchia variational inequality. Given
a map T and a convex subset K of X, we denote by
S(T;K) the set of all x 2 K which are solutions of the
VIP:

8y 2 K; 9x� 2 T(x) : hx�; y � xi � 0:

The following result holds [14].

Proposition 1 Let T1; T2 be pseudomonotone maps. If
T1 � T2, then S(T1;K) D S(T2;K) for every convex set
K � X. Conversely, if S(T1;K) D S(T2;K) for every
line segment K and T1; T2 have weak�-compact convex
values, then T1 � T2.
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Since all equivalent maps provide the same solutions
to VIP, one can choose any element of the equivalence
class to study or even find the solutions.

Given a pseudomonotone map T, its equivalence
class has a maximum with respect to graph inclusion.
This is simply the map T̂ defined by T̂(x) D [S�TS(x)
for all x 2 D(T). It can be shown [13] that T̂ is also
given by the formula

T̂(x) D

8̂
<̂
ˆ̂:

;; if x … D(T)
RCCT(x); if x 2 D(T)nZT

NLT;x ; if x 2 ZT

where NLT;x is the normal cone at x to the set LT;x D

fy 2 X : 9y� 2 T(y); hy�; y � xi � 0g.
A pseudomonotone map T̂ is called D-maximal

pseudomonotone, if the graph of T̂ is not properly con-
tained in the graph of any other map with the same
domain. When the domain of T is convex, there is an
equivalent, more appealing definition for D-maximal
pseudomonotonicity [14]:

Proposition 2 Let T be pseudomonotone and such that
D(T) is convex. Then T is D-maximal pseudomonotone
if, and only if, every pseudomonotone extension of T with
the same domain is equivalent to T.

Some properties of the set of zeros of T are provided by
the following proposition [14].

Proposition 3 Let T be D-maximal pseudomonotone.
Then ZT is weakly closed in D(T). If in addition D(T) is
convex, then ZT is also convex, and z 2 ZT is equivalent
to

8(y; y�) 2 gr(T); hy�; y � zi � 0:

The following proposition provides a simple criterion
for showing the D-maximal pseudomonotonicity of
a map [13].

Proposition 4 Assume that T is pseudomonotone,
upper-sign continuous, with weak�-compact, convex val-
ues and open domain D(T). Then T is D-maximal pseu-
domonotone.

A simple consequence of the above proposition is:

Corollary 5 The Clarke subdifferential @0 f of a locally
Lipschitz, pseudoconvex function f : X ! R [ fC1g
is a D-maximal pseudomonotone map.

As was explained before, from the point of view of VIP
one can use any element of the equivalence class. This is
fortunate, since in many cases instead of showing that
a D-maximal pseudomonotone map has a “nice” prop-
erty (as is the case with maximal monotone maps), one
shows that an equivalent map has this property. For in-
stance, one has:

Proposition 6 If T is D-maximal pseudomonotone,
then T̂(x) is convex for every x 2 D(T). If in particu-
lar the assumptions of Proposition 4 are satisfied, then
T̂(x) [ f0g is weak�-closed.

Here is a case where one can find an equivalent map
with a better continuity property [13]:

Proposition 7 Let T : Rn ! 2Rn be a pseudomono-
tone map, upper sign-continuous, with compact convex
values. If D(T) is open and convex, then there exists an
equivalent upper semicontinuous map T1 with compact
convex values.

For instance let T be a single-valued pseudomonotone
map defined on an open convex subset of Rn . If T is
hemicontinuous (i. e., continuous along line segments)
then the above proposition guarantees that there exists
an equivalent map which is continuous. Likewise, one
can show that under some fairly general assumptions,
T is equivalent to a map which is generically single-
valued (i. e., is single valued except on a set of the first
category). See Corollary 3.10 in [13].

A Generalization of ParamonotoneMaps

A monotone multivalued map T is called para-
monotone if for every (x; x�),

�
y; y�

�
2 gr(T),

hy� � x�; y � xi D 0 implies that x� 2 T(y) and
y� 2 T(x). It can be shown that the subdifferential
of a proper lsc convex function is paramonotone [5].
Other examples of paramonotone maps are given
in [21]. Paramonotone maps have been extensively
used in algorithms for the solution of VIP [5,6,24]. The
main reason is that these maps have the following “cut-
ting plane property”:

x 2 S(T;K)
y 2 K

hy�; x � yi � 0
for some y� 2 T(y)

9>>=
>>;
) y 2 S(T;K): (1)
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Assume that a map has property (1). If at the nth
iteration of an algorithm one finds a point yn that is
not a solution of VIP, then all solutions of VIP belong
to the intersection of K with the halfspace fx 2 X :˝
y�n ; x � yn

˛
< 0g where y�n is an arbitrary element of

T(yn).
Let K � X be nonempty, closed and convex. A sin-

gle valued pseudomonotone map T : K ! X� is called
pseudomonotone� if for all x; y 2 K,

hT(x); y � xi D hT(y); y � xi D 0

implies that T(x) D kT(y), for some k > 0 [8]. Note
that single-valued pseudomonotone� maps are a gener-
alization of single-valued paramonotone maps. To ex-
tend this generalization to the multivalued case, one
needs the tools presented in the previous subsection.

Definition 8 [17] A map T : X ! 2X� is pseudo-
monotone� on K if it is pseudomonotone and for every
x; y 2 K and x� 2 T(x), y� 2 T(y), hx�; y � xi D
hy�; y � xi D 0 imply x� 2 T̂(y) and y� 2 T̂(x).

It is easy to see that every paramonotone map is
pseudomonotone� . Other classes of pseudomonotone�
maps is provided by the following propositions [17].

Proposition 9 The Clarke subdifferential @0 f of a lo-
cally Lipschitz pseudoconvex function f is pseudo-
monotone� .

Proposition 10 If the map T is pseudomonotone� , then
any map equivalent to T is pseudomonotone� .

Proposition 9 is a particular case of a more general
situation. A map T is called cyclically pseudomono-
tone [9,10] if for every

�
xi ; x�i

�
2 gr(T), i D 1; 2; : : : ; n,

the following implication holds:
˝
x�i ; xiC1 � xi

˛
� 0; 8i D 1; 2; : : : ; n � 1

)
˝
x�n ; x1 � xn

˛
� 0:

Proposition 11 If T is D-maximal pseudomonotone
and cyclically pseudomonotone with convex domain,
then it is pseudomonotone� .

Since the Clarke subdifferential of a locally Lipscitz
pseudoconvex function is D-maximal pseudomono-
tone and cyclically pseudomonotone, we see that the
previous proposition implies Proposition 9.

We saw that paramonotone maps have the cut-
ting plane property (1). The same is true for

pseudomonotone� maps; what is more interesting is
that these maps are characterized in some sense by the
cutting plane property:

Proposition 12 Let T be pseudomonotone on the con-
vex set K. If T is pseudomonotone� , then property
(1) holds on every subset of K. Conversely, if prop-
erty (1) holds on every convex, compact subset of K
and T has convex, weak�-compact values, then T is
pseudomonotone� on the interior of K.

If T is single-valued, the assumption of pseudomono-
tonicity becomes redundant:

Proposition 13 Let T : K ! X� be hemicontinuous.
If T has property (1) on each convex compact subset of K,
then T is pseudomonotone on K and pseudomonotone�
on its interior.

In Sect. “Methods/Applications” we will show how to
apply pseudomonotone� maps for the solution of vari-
ational inequalities.

Pseudoaffine Maps

Given a convex subset K of Rn , a single-valued map
T : K ! Rn is called pseudoaffine (or PPM, as in [3]) if
both T and �T are pseudomonotone. These maps were
studied in [3] in connection with VIP. It is easy to see
that a differentiable function f : K ! R is pseudolin-
ear (i. e., both f and �f are pseudoconvex) if and only
if r f is pseudoaffine. It is not hard to show that pseu-
dolinear functions defined on the whole space Rn have
a very particular form [2,25]:

Proposition 14 A differentiable function f : Rn ! R
is pseudolinear if and only if there exist a vector u 2
Rn and a one-variable differentiable function h whose
derivative is always positive or identical to zero, such
that f (x) D h (hu; xi).

If T D r f in this case, then T(x) D h0 (u; x), i. e.,
T is equal to a positive multiple of a constant vector.
For general pseudoaffine maps (i. e., those that are not
necessarily equal to a gradient) that are defined on the
whole space, the following elegant characterization has
been shown:

Proposition 15 Amap T : Rn ! Rn is pseudoaffine if
and only if there exists a positive function g : Rn ! R,
a skew-symmetric linear map A and a vector u such that

8x 2 Rn ; T(x) D g(x)(Ax C u):
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The proof of the above result needs some “global” argu-
ments provided by algebraic topology and by projective
geometry [2].

Pseudomonotone vs. MonotoneMaps

One of the basic differences between the class of mono-
tone maps and the class of pseudomonotone maps has
to do with their stability with respect to some opera-
tions. For instance, the class of monotone maps is stable
with respect to addition (i. e., the sum of two monotone
maps is monotone), while this is not the case for pseu-
domonotone maps. By contrast, the product of a pseu-
domonotone map with a positive function produces
a pseudomonotone map while this is not the case for
monotone maps.

In particular, it was noted in [1] that a map T : X !
2X� is monotone if and only if for every x� 2 X� the
map TCx� is pseudomonotone. More recently He [18]
and Isac and Motreanu [20] obtained another result in
this direction. Assume that X is a Hilbert space (in [18]
one considered X D Rn) and K � X is a convex set
with nonempty interior. Let further T : K ! X� be
a continuous single-valued map which is Gâteaux dif-
ferentiable in the interior of K. Then T is monotone if
and only if T C x� is pseudomonotone for all x� in
a straight line of X�. The differentiability assumption
is essential in the argument of both papers [18,20] be-
cause the proof is based on a first-order characteriza-
tion of generalized monotonicity.

In a recent paper [15] it was shown that the differ-
entiability assumption is redundant, and one can also
weaken considerably the assumption that the interior
of K is nonempty. Given x� 2 X� and a set K � X,
one says that x� is perpendicular to K if the value of x�

is constant on K, i. e., hx�; y � xi D 0 for all x; y 2 K.
The following proposition holds.

Proposition 16 Let K � X be nonempty and con-
vex and T : K ! 2X� be a map with nonempty
values. Assume that there exists a straight line S D
fx�0 C tx� : t 2 Rg in X� such that x� is not perpendic-
ular to K, and for all z� 2 S, TC z� is pseudomonotone.
Then T is monotone.

In case K has nonempty interior or, more generally,
nonempty quasi-interior, the assumption “x� is not
perpendicular to K” is automatically fulfilled. It should
also be noted that the results of this subsection are also

true if we replace “pseudomonotone” by “quasimono-
tone” (see the article � generalized monotone multi-
valued maps in this Encyclopedia for the definition).

Methods/Applications

Many of the algorithms used to find a solution of a vari-
ational inequality with a paramonotone map, can be
also used in the more general case of a pseudomono-
tone� map. We illustrate this by an example of a per-
turbed auxiliary problem method. Let K be a closed
convex subset of a Hilbert space H, T : K ! 2H

a map with nonempty values. Choose a Gâteaux dif-
ferentiable strongly convex function M : H ! R
with a weakly continuous derivative (we can take for in-
stanceM(x) D kxk2 /2). Construct a sequence fxkgk2N

by the following algorithm.

(i) Choose an arbitrary x0 2 K.
(ii) Having chosen xk , find xkC1 2 K

and x�kC1 2 T(xkC1) such that

8y 2 K; h�kx�kC1 CM0(xkC1)

�M0(xk); y � xkC1 i � 0

where f�kgk2N is a sequence of positive constants
bounded from below. Note that finding xkC1 amounts
to solving VIP for the perturbed map TkC1(�) D
�kC1T(�)CM0(�)�M0(xk). This problem can be much
easier than the original one, since for instance if T
is weakly monotone and �kC1 is small, then TkC1 is
strongly monotone.

Assume that VIP has a solution and that the se-
quence fxkgk2N is well-defined. Then it can be shown
that if T is pseudomonotone� and satisfies a fairly gen-
eral continuity condition, then the sequence fxkgk2N

converges weakly to a solution of VIP for T. Details can
be found in [17].

Conclusions

The theory of pseudomonotone maps is far from been
developed to a satisfactory level. By contrast, the theory
of monotone maps has reached a high level of matu-
rity [19]. It is hoped that some of the recent advances
presented here, and in particular the ideas on maxi-
mality of pseudomonotone maps, will provide a firm
background for the study of pseudomonotone maps.
This is illustrated by the ease and naturalness with
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which notions like paramonotonicity can be general-
ized to pseudomonotone maps, a task that seemed al-
most impossible before the introduction of maximal
pseudomonotone maps. In addition, the new notion of
a pseudomonotone� map seems to be ideally fit the cut-
ting plane property (see Proposition 12) and this adds
some confidence that the definition of maximality is on
the right way.
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Introduction

Most problems of process design, process control, pro-
cess operations, and molecule design are determined
by the optimal solutions; however, those problems
are mainly characterized by the existence of multiple
minima and maxima, as well as first-, second-, and
higher-order saddle points. During the last decade we

have experienced a rapid development of new meth-
ods for deterministic global optimization as well as the
application of available global optimization algorithms
in important engineering fields [1,2,9,10,11,12,13,14].
Recently, in order to locate the global solutions to the
nonconvex phase stability analysis problems [3,4,5],
a quadratic underestimation function based branch-
and-bound algorithm, i. e., QBB, was developed for
twice-differentiable nonlinear programs (NLPs) in
terms of the simplicial partition of the constrained re-
gion [6,7].

Formulation

The nonconvex optimization problem considered in
this section can be formulated as

(P)

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

f (x)

subject to gi (x) � 0 i D 1 ; : : : ; m ;

x 2 S0 � <n ;

where f and gi belong to C2, the set of twice-
differentiable functions, and S0 is a simplex defined by

S0 D

(
x 2 <n : x D

nC1X
iD1

�iVi ; �i � 0;
nC1X
iD1

�i D 1

)
;

where Vi 2 V � <n ; i D 1; 2; : : : ; nC 1 are the
n C 1 vertices of the simplex S0, and V is the set of
its vertices. Let Dg be a subset of<n defined by

Dg D fx 2 <n : gi(x) � 0 ; i D 1; 2; : : : ; mg :

In general, the set Dg is nonconvex and even dis-
connected. We assume throughout this section that
problem (P) has an optimal solution, unless otherwise
stated. For any nonconvex optimization problem, i. e.,
(P), the QBB algorithm proposed in this section belongs
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to a branch-and-bound scheme. During each iteration
of this framework, a branching step and a bounding
step must be finished simultaneously.

Simplicial Partition

For the branching procedure, the simplex S0 will be di-
vided into refined subregions by using simplicial parti-
tion. For such kind of branching, it is a simple matter to
check that for every i 2 I, where I is the vertex set of S0,
the points V1, . . . ,Vi-1,U,Vi+1 , . . . ,Vn+1 are vertices of
a simplex Si � S; S is the current simplex, and that

(int Si) \
�
int S j

�
D � 8 j ¤ i ; [

i2I
Si D S :

Then, the simplexes Si, i 2 I, form a subdivision of the
simplex S via U. Each Si will be referred to as a sub-
simplex of S. An important special case is the bisection
where U is a point of the longest edge of the simplex S,
for example, U 2 [Vm ;Vn], i. e.

kVm � Vnk D max
i< j

i; jD1; ::: nC1

˚

Vi � V j

� ;

where k�k denotes any given norm in <n, and U D
aVm C (1 � a)Vn with 0 < a � 1/2. Adjiman et al. [9]
proved that this simplicial bisection is exhaustive since
ı (Sk)! 0 as k! C1.

Quadratic Underestimation Function
for General Non-convex Structures

In the bounding step of a branch-and-bound algo-
rithm, a lower bound is always obtained by construct-
ing a valid convex underestimation problem for the
original one appearing in the problem (P), and solving
the relaxed convex NLP to global optimality. For the
current simplex given by

S D

(
x 2 <n : x D

nC1X
iD1

�iVi ; �i � 0;
nC1X
iD1

�i D 1

)
;

(1)

where Vi 2 V � <n ; i D 1; 2; : : : ; n C 1 are the
n C 1 vertices of the current simplex S, and V is the set
of these vertices. Then, we intend to compute a lower
bound �(S) of the objective function f on S \ Dg . In
other words, we compute a lower bound for the optimal

value of the problem

(P(S))

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

f (x)

subject to gi (x) � 0 i D 1; : : : ; m ;

x 2 S � <n :

As mentioned above, f and gi are generic nonconvex
functions belonging to C2, then the main idea for com-
puting a lower bound �(S) is to construct from prob-
lem (P(S)) a convex problem by replacing all those non-
convex functions with their respective convex under-
estimation functions, then solving the resulting relaxed
convex problem. In order to achieve this, we see the fol-
lowing definition:

Definition 1 Given any nonconvex function
f (x) : S ! <; x 2 S � <n belonging to C2, the
following quadratic function is defined by

F(x) D
nX

iD1

aix2i C
nX

iD1

bixi C c ; (2)

where x 2 S � <n and F(x) D f (x) holds at all ver-
tices of S. The ai’s are nonnegative scalars and are large
enough such that F(x) � f (x); 8x 2 S.

It is trivial to see that F(x) is convex since all quadratic
coefficients, i. e., ai’s , are nonnegative. Theorem 2.2.1
in [7] ensures that F(x) defined by Definition 1 is a con-
vex underestimator of f (x) if the difference function be-
tween them, i. e., D(x) D F(x) � f (x), is a convex func-
tion. It is well known that D(x) is convex if and only
if its Hessian matrix HD(x) is positive semidefinite in
the current simplex. A useful convexity condition is de-
rived by noting thatHD(x) is related directly to the Hes-
sian matrix Hf (x) of f (x), x 2 S by the following equa-
tion:

HD(x) D 2� �H f (x) ;

where � is a diagonal matrix whose diagonal elements
are ai’s defined in Definition 1. Analogous to the “di-
agonal shift matrix” defined in [9], � here is referred
to as the diagonal underestimation matrix, since these
parameters guarantee that F(x) defined by Eq. 2 is a rig-
orous underestimator of the generic nonconvex func-
tion f (x). D(x), as defined, is convex if and only if
2� � Hf (x) D 2diag(ai) � Hf (x) is positive semidefi-
nite for all x 2 S.
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In order to simplify the parameter calculation, the
underestimator F(x) is reformulated by using a single
nonnegative a value, as follows:

F(x) D a
nX

iD1

x2i C
nX

iD1

bi xi C c : (3)

Then, all diagonal elements of the diagonal underes-
timation matrix � are therefore equal to the uniform
quadratic coefficient a defined by Eq. 3. Some interval
arithmetic approaches are provided in [5,7] to estimate
the quadratic coefficients with theoretical guarantee in
the current simplex.

After the quadratic coefficients have been identified,
the linear and constant coefficients of F(x) defined by
Eqs. 2 or 3, i. e., bi’s and c, can be given by the quadratic
coefficients ai’s and the current simplex. In view of Def-
inition 1, we know F(x) D f (x) holds at all vertices of S,
so the following linear equation group can be obtained
as

VkT�VkCbTVkC c D f
�
Vk
�

k D 1; : : : ; nC1 ;

where � 2 <n�n is the diagonal underestimation ma-
trix whose diagonal elements are the quadratic term co-
efficients, ai’s defined in Eqs. 2 or 3. b 2 <n is the lin-
ear coefficient vector whose elements are bi’s defined in
Eqs. 2 or 3, and c is a scalar:

bTVkC c D f
�
Vk
�
�VkT�V k D 1; : : : ; nC 1 :

The vector b 2 <n is augmented as (b; c) 2 <nC1,
in order to include the scalar c. In the same way,
the matrix V 2 <(nC1)�n is augmented as (V; 1) 2
<(nC1)�(nC1), where 1 is a column unity matrix of <n .
(V; 1) 2 <(nC1)�(nC1) is a regular square matrix since
V 2 <(nC1)�n is the coordinate matrix of the simplex
which is linearly independent. Then we have

(b; c)T D (V; 1)�1
�
f (V) � VT�V

�
;

where [ f (V)� VT�V] 2 <nC1 is a column vector for
the nC 1 vertices of the current simplex. By virtue of
this equation, it is obvious that the linear and con-
stant coefficients defined by Eqs. 2 or 3 are determined
uniquely by the quadratic coefficients and the current
simplex.

By replacing all the nonconvex functions in prob-
lem (P(S)) with their corresponding quadratic function

based convex underestimators described by Eq. 3, we
have the following relaxed convex programming prob-
lem (QP(S)):

(QP(S))

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

F(x)

subject to Gi(x) � 0 i D 1; : : : ; m ;

x 2 S � <n ;

where

F(x) D
nX

iD1

a f
i x

2
i C

nX
iD1

b f
i xi C c f ;

G j(x) D
nX

iD1

ag j
i x

2
i C

nX
iD1

bg j
i xi C cg j

j D 1; 2; : : : ; m :

Let DG be a subset of<n defined by

DG D fx 2 <n : Gi (x) � 0 ; i D 1; 2; : : : ; mg :

Obviously, the set DG is convex and compact. It should
be noted that only additional mC 1 quadratic parame-
ters, i. e., af and agi for i D 1; 2; : : : ; m, are introduced
during the above transformation process if the uniform
underestimation function is used, since all other lin-
ear and constant coefficients can be calculated by those
quadratic parameters and the current simplex.

QBB Underestimators for Special Structures

For the concave function structure, denoted by
f CA(x), whose eigenvalues are all nonpositive, i. e.,
�i; x2S(x) � 0. Then, the quadratic coefficient of its un-
derestimator defined by Eq. 2 is zero, so the valid
lower bound of the concave function structure over
the current simplex is a linear function. In fact, the
valid bound constructed by Eq. 2 is equivalent to the
convex envelope of the concave function over a sim-
plex [7]. Let S be a simplex generated by the ver-
tices V1,V2, . . . ,Vn+1, i. e., S D fx 2 <n : x DPnC1

iD1 �iVi ; �i � 0;
PnC1

iD1 �i D 1g, and let f CA(x) be
a concave function defined on S. Then the con-
vex envelope of f CA(x) over S is the affine function
LCA(x) D bTxC c that is uniquely determined by the
system of linear equations f CA(Vi) D bTVi C c for
i D 1; : : : ; n C 1.

For the general quadratic function presented by

f (x) D xTQxC qTx



3114 Q QBB Global Optimization Method

(note H f (x) D Q), we have the diagonal underestima-
tion matrix, �, constructed on the basis of interval
arithmetic [7], as

a D max
i

�
0;

1
2
�
Q
i

	

for the uniform case, and for the nonuniform case, we
get

ai D max

8<
:0;

1
2

�
Qi i C

X
j¤i

ˇ̌
Qi j
ˇ̌�
9=
; :

Then, we have the quadratic underestimation function
as

F(x) D xT�xC bTxC c ;

where the linear and constant coefficients, i. e., (b, c),
can be determined uniquely by the quadratic coeffi-
cients calculated above and the current simplex.

Properties of the QBB Underestimator

For construction of the QBB underestimator, only
quadratic coefficients need to be calculated since the
linear and constant ones defined by Eqs. 2 or 3 can be
determined uniquely by the quadratic coefficients and
the current simplex. Another important property of the
QBB algorithm is that the quadratic function based un-
derestimator is always convex throughout the problem
space. A potential benefit of this property is that it al-
lows the convex solver applied to get the solution to the
underestimator to have a feasible or an infeasible con-
vergence path. Geometrically speaking, the QBB uses
a convex quadratic function to approximate the convex
part of a general nonconvex function directly, which
can bypass the concave parts and avoid the overestima-
tion for them.

Function Decomposition

It should be noted that the relaxed convex pro-
gramming problem (QP(S)) can contain not only the
quadratic underestimation functions for the generic
nonconvex terms, but also the convex function
terms which are not necessarily transformed into the
quadratic underestimators. Then, the final underesti-
mation strategy of the relaxed problem (QP(S)) can

be slightly decomposed into the following convex pro-
gramming formulation, as

(QP(S)0)

ˇ̌
ˇ̌
ˇ̌
ˇ

min
x

F 0(x)

subject to G0i (x) � 0 i D 1; : : : ; m ;

x 2 S � <n ;

where

F 0(x) D f L(x)C f C(x)C LCA
f (x)C FNC(x) ;

G0i (x) D gLi (x)C gCi (x)C LCA
gi (x)C GNC

i (x)

i D 1; 2; : : : ; m ;

and f L(x), f C(x),Lf CA(x), giL(x), giC(x), and LCA
gi (x)

represent the linear terms, convex terms, and the lin-
ear underestimation functions for the concave terms in
the objective function and the constraints, respectively.
FNC(x) and Gi

NC(x) represent the quadratic convex
underestimation functions for the generic nonconvex
terms. Comparedwith the relaxed problem (QP(S)), the
relaxed problem (QP(S)0) contains not only quadratic
function terms, but also the generic convex terms of the
original problem.

Algorithmic Procedure of QBB

At the start of this section, problem (P) is formulated
over an initial simplex S0 which can be easily obtained
by using an outer approximation approach. Now, we
are in a position to present the proposed algorithm for
solving problem (P) by using the basic operations de-
scribed in previous sections.

Step 1 – Initialization. A convergence tolerance, "c,
and a feasibility tolerance, "f , are selected and the itera-
tion counter k is set to be zero. The global lower and up-
per bounds �0 and �0 of the global minimum of prob-
lem (P) are initialized and an initial current point xk, c is
randomly selected.

Step 2 – Local solution of problem (P) and up-
date of upper bound. The nonconvex and nonlin-
ear optimization problem (P) is solved locally within
the current simplex S. If the solution f klocal of problem
(P) is "f -feasible, the upper bound � k is updated as
�k D min(�k; f klocal).

Step 3 – Partitioning of the simplex. The current
simplex, Sk , is partitioned into the following two sim-
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plexes ( r D 1; 2 ):

Sk; 1 D
�
Vk; 0; : : : ; Vk;m ; : : : ;

Vk;m C Vk; l

2
; Vk; n

�
;

Sk; 2 D
�
Vk; 0; : : : ;

Vk;m C Vk; l

2
; : : : ; Vk; l ; Vk;n

�
;

where, k,m and k, l correspond to the vertices with
the longest edge in the current simplex, i. e., (k; m);
(k; l) D argmaxi< j

˚

Vk; j � Vk; i


�.

Step 4 – Update of ark; f ; b
r
k; f ; c

r
k; f and ark; g i ;

brk; g i ; c
r
k; g i inside both subsimplexes r D 1; 2. The

nonnegative parameters ark; f and ark; g i of the general
nonconvex terms in the objective function and the
constraints are updated inside both simplexes r D 1; 2
according to the methods presented in former sections,
and the corresponding linear and constant coefficients,
i. e., brk; f ; c

r
k; f and brk; g i ; c

r
k; g i , are renewed accord-

ingly.
Step 5 – Solutions inside both subsimplexes

r D 1; 2. The convex programming problem (QP(S)0)
is solved inside both subsimplexes (r D 1; 2) by using
some nonlinear programming solver. If a solution Fk; r

sol
is feasible and less than the current upper bound, � k,
then it is stored along with the solution point xk; rsol .

Step 6 – Update iteration counter k and lower
bound �k. The iteration counter increases by 1,

k k C 1 ;

and the lower bound �k is updated to the minimum so-
lution over the stored ones from the previous iterations.
Furthermore, the selected solution is erased from the
stored set:

�k D Fk0; r0
sol ;

where, Fk0; r0
sol D min

r; I
fFI; r

sol ; r D 1; 2; I D 1; : : : ;

k � 1g. If the set I is empty, set �k D �k and go to step
8.

Step 7 –Update the current point xk; c and the cur-
rent simplex Sk. The current point is selected to be the
solution point of the previously found minimum solu-
tion in step 6,

xk; c D xI
0; r0
sol ;

and the current simplex becomes the subsimplex con-
taining the previously found solution,

Sk D

 
Vk0; 0; : : : ; Vk0;m ; : : : ;

Vk0;m CVk0; l

2
; : : : ;

Vk0; n
�
; if r0 D 1 ;

Sk D

 
Vk0; 0; : : : ;

Vk0;m C Vk0; l

2
; : : : ;

Vk0; l ; : : : ; Vk0; n
�
; otherwise:

Step 8 – Check for convergence. If (�k � �k) > "c ,
then return to step 2. Otherwise, "c-convergence has
been reached. The global minimum solution and the so-
lution point are given as

f �  f c; k
00

;

x�  xc; k
00

;

where, k00 D argI
˚
f c; I D �k

�
; I D 1; : : : ; k.

Conclusion

The QBB algorithm is guaranteed to identify the global
optimum solution of problems belonging to the broad
class of twice-differentiable NLPs. For any such prob-
lem, the ability to generate progressively tighter con-
vex lower bounding problems in a branch-and-bound
framework guarantees the convergence of this algo-
rithm to within " of the global optimum solution un-
der the exhaustive simplicial partition of the initial sim-
plex. Different methods [7] have been developed for
the construction of the convex valid underestimators
for special function structures and the generic noncon-
vex function structures, where the maximal eigenvalue
analysis of the interval Hessian matrix provides the rig-
orous guarantee for the QBB algorithm to converge to
the global solution.
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QR factorization is a process of reducing a square (rect-
angular) matrix into upper triangular (upper trape-
zoidal) form by applying a series of elementary orthog-
onal transformations.

Properties of Orthogonal Transforms

Orthogonal transforms are where the transformation
matrices are orthogonal. Orthogonal matrices are
square matrices where each column is a unit vector and
each column is mutually orthogonal to every other col-
umn. This implies that Q 2 Rn × n is orthogonal if and
only if Q | Q = QQ| = I (i. e. the transpose of an or-
thogonal matrix is its inverse). Orthogonal transforma-
tions are invariant under the 2-norm; i. e. k Qx k2 = k
x k2. More details can be found in [8]. There are two
popular orthogonal transformations: Householder and
Givens.

Householder Transformations

These are named after A.S. Householder, who popu-
larized their use in matrix computations. However, the
properties of these matrices have been known for quite
some time. For any nonzero v 2 Rn, a matrix H of the
form

H D I � 2
vv>

v>v

is called Householder transformation. It is easy to ver-
ify that H is symmetric, and orthogonal (which also
means that it is its own inverse). Identity matrices are
not Householder matrices. Geometrically, Householder
matrices merely rotate a given vector in n-dimensions
(without stretching or shrinking). Given any two vec-
tors x and y such that k x k2 = k y k2, there exists
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a Householder transformation H such that Hx = y (it is
easy to verify that v = y� x satisfies this equation). Note
that v completely characterizesH (in the sense that even
though H is an n × nmatrix, v is enough to reconstruct
H, and to apply H). Also, scaling v by a scalar factor ˛
will not change the transformation H.

QR Factorization
Using Householder Transformations

Since Householder transformations rotate vectors in n-
dimensions, they can be used to introduce zeroes se-
lectively. Specifically, given any vector x 6D 0 2 Rn, one
can construct a Householder matrix H such that Hx is
a multiple of e1 (the first column of the identity matrix),
i. e. make everything except the first row ofHx zero. Ge-
ometrically, this amounts rotating the vector such that
it is parallel to the principal axis. It is easy to see that
such H has the form H = I � 2vv| v| v where v = x ˙
˛ e1 and ˛ = k x k2. In order to avoid subtracting close
numbers (while dealing with floating point arithmetic),
v is often chosen as v = x + sign(�1) ˛ e1, where �1 is the
first element of x.

The following function House will compute the vec-
tor v, given x, that characterizes H so that H = I �
2vv|/v|v and that Hx = � ˛ e1. Also, v is scaled such
that v(1) = 1, as the scaling does not affect H (using
a notation similar to MATLAB [5]).

To apply H to a vector y, note that

Hy D
�
I � 2

vv>

v>v

�
y D y�2

v(v>y)
v>v

D y�2
v>y
v>v

v ;

and hence, one can computeHywithout explicitly com-
putingH. The same idea can be extended to applyingH
to a set of columns C 2 Rn × k. Let us call that function
row. House(v, C).

function: v = House(x)
n = length(x);
v(1) = x(1) + sign(x(1)) � norm(x; 2);
v(2 : n) = x(2 : n)/v(1);
v(1) = 1;

end;

SupposeH1 = House(x) with x taken as the first col-
umn of a matrix A 2 Rm × n. Then H1A will have zeros
on the first column below the first row. Then one can

find H2
0 = House(A(2 : m, 2)) such that everything be-

low the second row of the second column is zeroed. Ef-
fectively, applying H2

0 to the lower (m � 1) × (n � 1)
matrix is the same as applying

H2 D

� 1 m � 1
1 1 0
m � 1 0 H02

�

to A. Note that H2 does not affect the first row and col-
umn of H1A. If this process is continued by applying
a sequence of Householder transformations to A, it is
reduced to an upper-trapezoidal matrix R; i. e.

Hn�1Hn�2 � � �H1A D R : (1)

Since each Hi is orthogonal, the product Q| = Hn� 1

Hn� 2 � � � H1 is also orthogonal. Then rearranging the
equation,

A D QR ; (2)

where Q is orthogonal and R is upper-trapezoidal. This
form of factorization is called QR factorization (or or-
thogonal factorization). The following algorithm com-
putes the QR factorization of a matrix A.

function: QR(A;m; n)
for i = 1 : min(m; n),
v = House(A(i : m; i));
A(i + 1 : m; i) = v(2 : m � i + 1);
A(i+1 : m; i+1 : n) = row.House(v;A(+1 : m;

i + 1 : n));
end;

end;

In the above algorithm, the essential components of
the Householder vectors are stored right where the ze-
ros are going to be introduced. Here are the different
parts of a matrix A after the algorithm is applied (su-
perscripts indicate how many times an entry has been
modified):
0
BBBBB@

a111 a112 a113 � � � a11n
v21 a222 a223 � � � a22n
v31 v32 a333 � � � a33n
:::

:::
:::

: : :
:::

vm1 vm2 vm3 � � � vmn

1
CCCCCA
:
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vij is the ith component of vector v produced by the
above algorithm during the jth iteration. Note that the
matrix Q is available in in the lower triangular portion
of the matrix in a factored form.

Givens Rotations

These rotations are named after W. Givens; they are
also referred to as Jacobi iterations. C.G. Jacobi devised
a symmetric eigenvalue algorithm based on these trans-
formations in 1846. Consider the following 2 × 2matrix
of the form

G(�) D
�

cos � sin �
� sin � cos �

�

applied to a vector x 2 R2. It is easy to see that G|x
is a mere rotation of x by an angle of � in counter-
clockwise direction. Such transformations are called ro-
tations and as such are orthogonal. A straightforward
extension that applies to an n-vector is given by matri-
ces of the following form

G(i; j; �) D

0
BBBBBBBBBBB@

i j
1 � � � 0 � � � 0 � � � 0
:::

: : :
:::

:::
:::

i 0 � � � c � � � s � � � 0
:::

:::
: : :

:::
:::

j 0 � � � �s � � � c � � � 0
:::

:::
:::

: : :
:::

0 � � � 0 � � � 0 � � � 1

1
CCCCCCCCCCCA

with c2 + s2 = 1. Here G|(i, j, �) x is a rotation of x 2
Rn by an angle � in counterclockwise direction in the
(i, j)-plane. It is easy to verify that G|(i, j, �) only mod-
ifies the rows i, j of the vector that is applied to and the
remaining entries are unaffected; i. e.

G>(i; j; �)x D

8̂
<̂
ˆ̂:

cxi � sx j ith component;
sxi C cx j jth component;
unchanged otherwise:

Given any vector x 2 Rn, G|(i, j, �) can be constructed
such that only the rows i, j are affected and that xj is
zeroed. Solving the following equations

sxi C cx j D 0 and c2 C s2 D 1

will yield

c D
xiq

x2i C x2j
; s D

�x jq
x2i C x2j

: (3)

Let G(k)
i j denote the application of a Givens rotation

that uses rows i and j and zeros Ajk entry. The first col-
umn below the first row can be zeroed using a sequence
of Givens rotations such as

Q1 D G(1)
1m � � �G

(1)
12 :

Similarly, the second column can be zeroed below the
diagonal by

Q2 D G(2)
2m � � �G

(2)
23 :

Repeating this process for each column, A is reduced to
upper-trapezoidal form, as in

Qn � � �Q1A D R :

The beauty about using Givens rotations is that there
are various ways of applying these rotations and yet get-
ting the same final QR factorization. In fact, this fact can
be exploited in parallel processing very effectively. De-
tailed parallel QR factorization algorithms can be found
in [6,7] and [3].

Fast Givens Transformations

Fast Givens Transformations involve half the number of
multiplications compared to Givens rotations and they
can be used to zero without an explicit square root com-
putation. They are also referred to as square-root-free
Givens transformations. Details can be found in [1,2,4].

Finally, it can be shown that if A has full rank, then
it has a unique QR factorization if wemake the diagonal
elements of R positive [8].

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� Cholesky Factorization
� Interval Linear Systems
� Large Scale Trust Region Problems
� Large Scale Unconstrained Optimization
� Linear Programming
� Orthogonal Triangularization
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� Overdetermined Systems of Linear Equations
� Solving Large Scale and Sparse Semidefinite

Programs
� Symmetric Systems of Linear Equations
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The quadratic assignment problem (QAP) is a combi-
natorial optimization problem, that although there is
a substantial amount of research devoted to it, it is still,
up to this date, not well solvable in the sense that no ex-
act algorithm can solve problems of size n > 20 in rea-
sonable computational time. The QAP can be viewed
as a natural extension of the linear assignment problem
(LAP; cf. also � Assignment and matching). Let Sn de-
note the set of all permutations �:N ! N, where N =
{1, . . . , n} 2 Z+. Given a cost matrix C = (cij) 2 Rn × n we
can formulate the LAP using permutations as:

min
�2Sn

nX
iD1

nX
jD1

c�(i)�( j) D min
�2Sn

nX
iD1

ci�(i) : (1)



3120 Q Quadratic Assignment Problem

The general formulation of the QAP as introduced by
E.L. Lawler in [88] is obtained by increasing the dimen-
sion of the cost array C:

min
�2Sn

nX
iD1

nX
jD1

nX
kD1

nX
lD1

c�(i)�( j)�(k)�(l )

D min
�2Sn

nX
iD1

nX
jD1

ci j�(i)�( j) : (2)

Formulation (2) will be referred to as the general QAP,
while an instance will be denoted by QAP(C). The most
widely used formulation of the QAP, and its first ap-
pearance in the literature, is that of T.C. Koopmans
and M.J. Beckmann [85] which is a special case of (2).
Used as a mathematical model for the location of a set
of indivisible economical activities, the formulation of
Koopmans and Beckmann involves three n × n input
matrices with real elements F = (f ij), D = (dkl) and
B = (bik), where f ij is the flow between the facility i
and facility j, dkl is the distance between the location
k and location l, and bik is the cost of placing facility
i at location k. The objective is to assign each facility
to a location such that the total cost is minimized. The
Koopmans–Beckmann QAP formulation is given as fol-
lows:

min
�2Sn

nX
iD1

nX
jD1

fi jd�(i)�( j) C
nX

iD1

bi�(i) : (3)

In the context of facility location (cf. also � Facilities
layout problems) the matrices F and D are symmet-
ric with zeros in the diagonal, and all the matrices are
nonnegative. An instance of a QAP with input matri-
ces F, D and B will be denoted by QAP(F, D, B), while
we will denote an instance by QAP(F, D), if there is
no linear term (i. e., B = 0). It can be seen that (3) is
a special case of (2) by setting cijkl = f ijdkl for all i, j, k,
l with i 6D j or k 6D l and cikik = f iidkk + bik, otherwise.
In terms of computational complexity (cf. also� Com-
plexity theory;� Computational complexity theory), S.
Sahni and T. Gonzalez [129] have shown that the QAP
is NP-hard and that even finding an approximate solu-
tion within some constant factor from the optimal so-
lution cannot be done in polynomial time unless P =
NP.

Formulations

The QAP can be formulated as the following 0-1 integer
programming problem with quadratic objective func-
tion (hence the name ‘quadratic assignment problem’):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
nX

i; jD1
i ¤ k

nX
k;lD1
j ¤ l

ci jk l xik x jl C

nX
i; jD1

ci ji jxi j

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j 2 f0; 1g; i; j D 1; : : : ; n:

(4)

The above formulation is a direct consequence of for-
mulation (2), where the constraints imposed by the per-
mutations are expressed algebraically. A QAP in Koop-
mans–Beckmann form can be formulated in a more
compact way using the inner product between two ma-
trices:

(
min

˝
F; XDX>

˛
C hB; Xi

s.t. X 2 Xn ;
(5)

where Xn is the set of all permutation matrices X = (xij)
such that their elements satisfy the constraints in (4).
In the objective function of (4), let the coefficients cijkl
be the entries of an n2 × n2 matrix S, such that cijkl is
on row (i � 1) n + k and column (j � 1)n + l. Now let
Q := S � ˛I, where I is the (n2 × n2) unit matrix and
˛ is greater than the row norm kSk1 of matrix S. The
subtraction of a constant from the entries on the main
diagonal of S does not change the optimal solutions of
the corresponding QAP, it simply adds a constant to the
objective function. Hence we can consider a QAP with
coefficient array Q instead of S. Let x = (x11, . . . , x1n,
x21, . . . , xnn)| = (x1, . . . , xnn)|. Then we can rewrite the
objective function of the QAP with array of coefficients
Q as a quadratic form x| Qx, where it can be shown
that Q is symmetric and negative definite. Therefore
we have a quadratic concave minimization problem (cf.
also � Concave programming) and can formulate the
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QAP as:
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min x>Qx

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j � 0; i; j D 1; : : : ; n;

(6)

The above formulation was introduced in [14], and
was used to derive cutting plane procedures (cf. also
� Integer programming: Cutting plane algorithms). By
adding the term ˛ I to the matrix Q instead of subtract-
ing it, we could always assume that the objective func-
tion of the QAP is convex. This leads to the formulation
of the QAP as a quadratic convex minimization prob-
lem. The QAP can also be formulated using the trace of
a matrix as:(

min tr(FXD> C B)X>

s.t. X 2 Xn:
(7)

The trace formulation of the QAP first appeared in [47],
and was used in [51] to introduce eigenvalue lower
bounding techniques for symmetric QAPs.

Let vec(X) 2 Rn2 be the vector formed by the
columns of a permutation matrix X. The QAP can be
formulated using the Kronecker product as

8̂
<̂
ˆ̂:

min vec(X)>(F ˝ D) vec(X)
C vec(B)> vec(X)

s.t. X 2 Xn :

(8)

Using the Kronecker product, Lawler [88] provided an
alternative formulation for the QAP as an n2 × n2 LAP.
An n2 × n2 matrix C is constructed from the n4 costs
cijkl, such that the (ijkl)th element corresponds to the
((i � 1) n + k, (j � 1) n + l)th element of C. The QAP
then is equivalent to an LAP of dimension n2 with C as
the cost matrix, and with the additional constraint that
the n2 × n2 permutation matrix which defines a feasible
solution, must be the Kronecker product of two permu-
tation matrices of dimension n. In other words the QAP
is equivalent to

8̂
<̂
ˆ̂:

min hC;Yi
s.t. Y D X ˝ X;

X 2 Xn :

(9)

The resulting LAP however cannot be solved efficiently
(i. e., in O(n6) time) because Y , although it is an n2 ×
n2 permutation matrix, is constrained to have a special
structure.

Linearizations

Linearization is a technique which involves the elimi-
nation of the nonlinear term in a given objective func-
tion, in order to make it linear, through the intro-
duction of new variables and new linear (binary) con-
straints. The objective is to transform a 0–1 nonlinear
integer program into a provably equivalent 0–1 linear
integer program, such that existing methods for lin-
ear integer programs will provide a relaxed problem
where lower bounds may be computed. Though there
are several ways to linearize a given nonlinear inte-
ger program, it is desirable to have a linearization that
will introduce the least amount of new variables and
constraints. Moreover, the ‘tightness’ of the relaxation
of the resulting linear integer program is very impor-
tant.

The first attempt to devise solution techniques for
solving the QAP had to do with the elimination of the
quadratic term in the objective function of (4), in order
to transform the problem into a 0–1 linear program.
Four such linearizations of the QAP will be presented
in this section. The first is due to Lawler [88], which is
the first linearization suggested for the QAP, and the
second by Kaufman and F. Broeckx [80] which is the
smallest with regard to the number of new variables
and constraints introduced. The third is a more recent
(1983) one that is due to A.M. Frieze and J. Yadegar
[56], which unifies most of the previous linearizations
for the QAP, and is closely related to the fourth lin-
earization presented in this section due to W.P. Adams
and T.A. Johnson [2].

Lawler’s Linearization

Lawler [88] replaces the quadratic terms xijxkl in the ob-
jective function of (4), with n4 variables

yi jk l :D xi jxk l ; i; j; k; l D 1; : : : ; n ;

which results in a 0–1 linear program of n4 + n2 binary
variables and n4 + 2n2 + 1 constraints. More specifically,
it is proved in [88] that the QAP is equivalent to the
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following 0–1 linear program8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
nX

i; jD1

nX
k;lD1

ci jk l yi jk l

s.t. (xi j) 2 Xn;
nX

i; jD1

nX
k;lD1

yi jk l D n2;

xi j C xkl � 2yi jk l � 0;
yi jk l 2 f0; 1g;
for i; j; k; l D 1; : : : ; n:

Kaufman–Broeckx Linearization

Rearranging terms in the objective function (4) we ob-
tain

nX
i; jD1

xi j
nX

k;lD1

ci jk l xk l :

Kaufman and Broeckx [80] defined n2 new real vari-
ables

wi j :D xi j
nX

k;lD1

ci jk l xk l ; i; j D 1; : : : ; n ;

resulting in an equivalent linear objective function
nX

i; jD1

wi j :

Introducing n2 constants aij :=
Pn

k;lD1cijkl for i, j = 1,
. . . , n, the QAP becomes equivalent to the following
mixed 0–1 linear program:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

i; jD1

wi j

s.t. (xi j) 2 Xn;

ai jxi j C
nX

k;lD1

ci jk l xk l � wi j � ai j;

wi j � 0;
i; j D 1; : : : ; n:

The above formulation employs n2 new real variables,
n2 binary variables and n2 + 2n constraints. The ele-
ments cijkl are all assumed to be nonnegative, which is
a valid assumption since the addition of a constant to
each element will not affect the optimal solution. The
proof of equivalence of the QAP to the above linear in-
teger program can be found in [80].

Frieze–Yadegar Linearization

In [56] the products of the binary variables are re-
placed by continuous variables (i. e. yijkl := xijxkl), and
the QAP(C) is proved to be equivalent to the following
mixed 0–1 linear program:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
nX

i; jD1

nX
k;lD1

ci jk l yi jk l

s.t. (xi j) 2 Xn;
nX

iD1

yi jk l D xkl ;

8 j; k; l ;
nX

jD1

yi jk l D xkl ;

8i; k; l ;
nX

kD1

yi jk l D xi j;

8i; j; l ;
nX

lD1

yi jk l D xi j;

8i; j; k;
yi ji j D xi j;

8i; j;
0 � yi jk l � 1;

8i; j; k; l ;

(10)

where i, j, k, l = 1, . . . , n. The above program has n4 new
real variables, n2 binary variables, and n4 + 4n3 + n2 +
2n constraints. Note that the constraint yijij = xij is re-
dundant since it follows from the definition of the yijkl
variables. Frieze and Yadegar considered a Lagrangian
relaxation of the above 0–1 linear program, and estab-
lished a relationship between the lower bounds derived
by the solution of the relaxation, and the lower bounds
derived from decomposition techniques applied to the
Gilmore–Lawler bound for the QAP.

Adams–Johnson Linearization

Adams and Johnson presented in [2] a new 0–1 linear
integer formulation for the QAP, which resembles the
one of Frieze and Yadegar described previously. It is
based on the general linearization technique for general
0–1 polynomial programs introduced by Adams and
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H.D. Sherali [3,4]. The QAP(C) is proved to be equiva-
lent to the following mixed 0–1 linear program:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
nX

i; jD1

nX
k;lD1

ci jk l yi jk l

s.t. (xi j) 2 Xn ;
nX

iD1

yi jk l D xkl ; 8 j; k; l ;

nX
jD1

yi jk l D xkl ; 8i; k; l ;

yi jk l D ykl i j; 8i; j; k; l ;
yi jk l � 0; 8i; j; k; l ;

(11)

where i, j, k, l = 1, . . . , n, and each yijkl represents the
product xijxkl. The above formulation contains n2 bi-
nary variables xij, n4 continuous variables yijkl, and n4 +
2n3 + 2n constraints excluding the nonnegativity con-
straints on the continuous variables. Although as noted
in [3] a significant smaller formulation in terms of both
the number of variables and constraints could be ob-
tained, the structure of the relaxation of the above for-
mulation is favorable for solving it. As noted in [2], the
constraint set of the above relaxation describes a solu-
tion matrix Y which is the Kronecker product of two
permutation matrices (i. e. Y = X ˝ X where X 2 Xn),
showing clearly the equivalence of the above formula-
tion with the QAP as formulated in (9). The theoretical
strength of the above linearization of the QAP lies on
the fact that, as shown in [2] and [73], the constraints of
the relaxations derived from all previous linearizations,
can be expressed as a linear combination of the con-
straints of the continuous relaxation of the above lin-
earization. Moreover, many of the previously published
lower-bounding techniques, can be explained based on
the dual-space of this relaxation.

Complexity Issues

The first two parts of this section bring evidence to the
fact that the QAP is a ‘very hard’ problem from the
theoretical point of view. Not only the QAP cannot be
solved to optimality efficiently but it even cannot be ap-
proximated efficiently within some constant approxi-
mation ratio. Furthermore, finding local optima is not
a trivial task even for simply structured neighborhoods
like the 2-opt neighborhood. The asymptotic behavior

of the QAP and polynomially solvable special cases of
the QAP are mentioned in the last two parts of this sec-
tion.

Computational Complexity

Two early results obtained by Sahni and Gonzalez [129]
in 1976 settled the complexity of solving and approxi-
mating the QAP. It was shown that the QAP isNP-hard
and that even finding an �-approximate solution for the
QAP is a hard problem, in the sense that the existence
of a polynomial �-approximation algorithm implies P =
NP.

Theorem 1 [129] The quadratic assignment problem is
strongly NP-hard. For an arbitrary � > 0, the existence
of a polynomial time �-approximation algorithm for the
QAP implies P = NP.

The proof is done by a reduction from the Hamiltonian
cycle problem [58].

M. Queyranne [121] derives an even stronger result
which further confirms the widely spread belief on the
inherent difficulty of the QAP in comparison with other
difficult combinatorial optimization problems. It is well
known and very easy to see that the traveling salesman
problem (TSP) is a special case of the QAP. The TSP
on n cities can be formulated as a QAP(F, D) where
F is the distance matrix of the TSP instance and D is
the adjacency matrix of a Hamiltonian cycle on n ver-
tices. In the case that the distance matrix is symmetric
and satisfies the triangle inequality, the TSP is approx-
imable in polynomial time within 3/2 as shown in [37].
Queyranne [121] showed that, unless P = NP, QAP(A,
B) is not approximable in polynomial time within some
finite approximation ratio, even if A is the distance ma-
trix of some set of points on a line and B is a symmetric
block diagonal matrix.

A more recent result of S. Arora, Frieze and H. Ka-
plan [6] answers partially one of the open questions
stated by Queyranne [121]. What happens if matrix A
is the distance matrix of n points which are regularly
spaced on a line, that is, points with abscissae given by
xp = p, p = 1, . . . , n? This special case of the QAP is
termed linear arrangement problem and is a well stud-
ied NP-hard problem. In the linear arrangement prob-
lem the matrix B is not restricted to have the block di-
agonal structure mentioned above, but is simply a sym-
metric 0–1 matrix. Arora, Frieze and Kaplan [6] give
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a polynomial time approximation scheme (PTAS) for
the linear arrangement problem in the case that the 0–1
matrix B is dense, that is, the number of ‘1’ entries in
B is in ˝(n2), where n is the size of the problem. They
show that for each � > 0 there exists an �-approximation
algorithm for the dense linear arrangement problem
with time complexity depending polynomially on n and
exponentially on 1/�, hence polynomial for each fixed
� > 0.

PLS-Complexity

Assume that an optimization problem P is given by
specifying a ground set E, a set F � 2E of feasible so-
lutions and an objective function f : F! R. A globally
optimal solution S� 2 F of the problem P is defined as:

f (S�) :D min
S2F

f (S) :

For any given S 2 F denote the neighborhood of S by
N(S)� F. The neighborhood of S consists of other fea-
sible solutions which are topologically ‘close’ to S. A lo-
cally optimal solution or a local minimum S 2 F of the
problem P, given the neighborhood N is defined as:

f (S) D min
S2N (S)

f (S) :

Recently (as of 1999) it has been shown that even
finding a locally optimal solution for the QAP can be
prohibitively hard, that is, even local search is hard
in the case of the QAP. Consider the following ques-
tion ‘How easy it is to find a locally optimal solution
for the QAP?’ Since local optimality is defined through
a specific neighborhood structure, the answer depends
on the involved neighborhood structure. If the neigh-
borhood N is replaced by new neighborhood N0, one
would generally expect changes in the local optimal-
ity status of a solution. The theoretical basis for fac-
ing this kind of problems was introduced by D.S. John-
son, C.H. Papadimitriou and Yannakakis [72]. They de-
fine the so-called polynomial time local search problems,
shortly PLS problems. A pair (P, N), where P is a (com-
binatorial) optimization problem and N is an associ-
ated well defined neighborhood structure, defines a lo-
cal search problem in which the objective is to find a lo-
cally optimal solution of P with respect to the neigh-
borhood structure N. Without going into technical de-
tails a problem in the PLS class is a local search problem

for which local optimality can be checked in polyno-
mial time. In analogy with decision problems, there ex-
ist complete problems in the class of PLS problems. The
PLS-complete problems, are – in the usual complexity
sense – the most difficult among the PLS problems.

K.A. Murthy, Pardalos and Y. Li [103] introduce
a neighborhood structure for the QAP which is sim-
ilar to the neighborhood structure proposed by B.W.
Kernighan and S. Lin [81] for the graph partitioning
problem. For this reason we will call it a K-L type neigh-
borhood structure for the QAP. Murthy, Pardalos and Li
[103] show that the corresponding local search prob-
lem is PLS-complete. Consider a permutation �0 2 Sn.
A swap of �0 is a permutation � 2 Sn obtained from
�0 by applying a transposition (i, j) to it, � = �0ı (i, j).
A transposition (i, j) is defined as a permutation which
maps i to j, j to i, and k to k for all k 62 {i, j}. A greedy
swap of permutation �0 is a swap � which maximizes
Z(F, D, �0) � Z(F, D, �) over all swaps � of �0, where
Z(F, D, �) is the objective function value of QAP(F, D)
with permutation � (see formulation (3)). Let �0, . . . ,
� l be a sequence of permutations in Sn, each of them
being a greedy swap of the preceding one. Such a se-
quence is called monotone if for all k = 0, . . . , l, in the
pair (�k, �k + 1) where �k = �k� 1 ı (ik, jk) and �k + 1

= �k ı (ik + 1, jk + 1), we have {ik, jk} \ {ik + 1, jk + 1} =
;. The neighborhood of �0 consists of all permutations
which occur in the (unique) maximal monotone se-
quence of greedy swaps starting with permutation �0.
Let us denote this neighborhood structure for the QAP
by NK � L. It is not difficult to see that, given a QAP(F,
D) of size n and a permutation � 2 Sn, the cardinal-
ity of NK � L(�) does not exceed bn/2c + 1. It is eas-
ily seen that the local search problem (QAP, NK � L) is
a PLS problem. This result can be found in [112], where
the authors show that the graph partitioning problem
with the neighborhood structure defined in [81] is PLS-
reducible to (QAP, NK � L).

Theorem 1 [112] The local search problem (QAP,
NK � L), where NK � L is the Kernighan–Lin type neigh-
borhood structure for the QAP, is PLS-complete.

The PLS-completeness of (QAP,NK � L) implies that, in
the worst case, a general local search algorithm as de-
scribed above involving the Kernighan–Lin type neigh-
borhood finds a local minimum only after a time which
is exponential on the problem size. Numerical results,
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however, show that such local search algorithms per-
form quite well when applied to QAP test instances, as
reported in [103].

Another simple and frequently used neighborhood
structure is the so-called pair-exchange (or 2-opt)
neighborhood N2. The pair-exchange neighborhood of
a permutation �0 2 Sn consists of all permutations � 2
Sn obtained from �0 by applying some transposition (i,
j) to it. Specifically,

N2(�) :D f� ı (i; j) : i; j D 1; : : : ; n; i ¤ jg :

It can also be shown that (QAP, N2) is PLS-complete.
A.A. Schräffer and Yannakakis [130] have proven that
the graph partitioning problem with a neighborhood
structure analogous to N2 is PLS-complete. A similar
PLS-reduction as in [112] implies that the local search
problem (QAP, N2) is PLS-complete.

Finally, let us mention that no local criteria are
known for deciding how good a locally optimal solu-
tion is as compared to a global one. From the complex-
ity point of view, deciding whether a given local opti-
mum is a globally optimal solution to a given instance
of the QAP is a hard problem, see [108].

Asymptotic Behavior

Under certain probabilistic conditions on the coeffi-
cient matrices of the QAP, the ratio between its ‘best’
and ‘worst’ values of the objective function approaches
1, as the size of the problem approaches infinity. R.E.
Burkard and U. Fincke [29] identify a common com-
binatorial property of a number of problems which,
under certain probabilistic conditions on the problem
data, behave as described above.

In an early work Burkard and Fincke [28] investi-
gate the relative difference between the worst and the
best values of the objective function for the Koopmans–
Beckmann QAP. They first consider the case where the
coefficient matrix D is the matrix of pairwise distances
of points chosen independently and uniformly from the
unit square in the plane. Then the general case where
entries of the flow and distance matrices F and D are
independent random variables taken from a uniform
distribution on [0, 1] is considered. In both cases it is
shown that the relative difference mentioned above ap-
proaches 0 with probability tending to 1 as the size of
the problem tends to infinity.

Later Burkard and Fincke [29] consider the ratio be-
tween the objective function values corresponding to
an optimal (or best) and a worst solution of a generic
combinatorial optimization problem. They find that for
each � > 0, the ratio between the best and the worst val-
ues of the objective function lies on (1 � �, 1 + �), with
probability tending to 1, as the size of the problem ap-
proaches infinity. Under additional combinatorial con-
ditions, W. Szpankowski [132] strengthens this result
and improves the range of the convergence to almost
surely. In the almost sure convergence the probability
that the above mentioned ratio tends to 1 is equal to 1.
The asymptotic behavior of the QAP can be stated in
the following theorem:

Theorem 3 Consider a sequence of problems QAP(A(n),
B(n)) for n 2 N, with n × n coefficient matrices A(n) =
(a(n)i j ) and B

(n) = (b(n)i j ). Assume that a(n)i j and b(n)i j , n 2 N,
1 � i, j � n, are independently distributed random vari-
ables on [0, M], where M is a positive constant. More-
over, assume that the entries a(n)i j , n 2 N, 1 � i, j � n,
have the same distribution, and the entries b(n)i j , n 2 N,
1 � i, j � n, have also the same distribution, which does
not necessarily coincide with that of a(n)i j . Furthermore,
assume that these variables have finite expected values,
variances and third moments. Let �(n)

opt and �(n)
wor denote

an optimal and a worst solution of QAP(A(n), B(n)), re-
spectively, that is,

Z
�
A(n); B(n); �

(n)
opt

�
D min
�2Sn

Z
�
A(n); B(n); �

�
;

and

Z
�
A(n); B(n); �(n)

wor

�
D max

�2Sn
Z
�
A(n); B(n); �

�
:

Then the following equality holds almost surely:

lim
n!1

Z
�
A(n); B(n); �

(n)
opt

�

Z
�
A(n); B(n); �

(n)
wor

� D 1 :

The above result suggests that the value of the objective
function of the problem QAP(A(n), B(n)) (correspond-
ing to an arbitrary feasible solution) gets somehow close
to its expected value n2E(A)E(B), as the size of the prob-
lem increases, where E(A) and E(B) are the expected
values of a(n)i j and b(n)i j , n 2 N, 1 � i, j � n, respectively.
J.C.B. Frenk, M. van Houweninge, and A.G. Rinnooy
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Kan [54] andW.T. Rhee [126,127] provide different an-
alytical evaluations for this ‘getting close’, by imposing
different probabilistic conditions on the data.

Results on the asymptotic behavior of the QAP have
been exploited by M.E. Dyer, Frieze, and C.J.H. McDi-
armid [46] to analyze the performance of branch and
bound algorithms for QAPs with randomly generated
coefficients as described above. They have shown that
for such QAPs the optimal value of the continuous
relaxation of Frieze–Yadegar linearization as stated in
(10), is in O(n) with probability tending to 1 as the size
n of the QAP tends to infinity. Hence the gap between
the optimal value of this continuous relaxation and the
optimal value of the QAP grows like O(n) with proba-
bility tending to 1 as n tends to infinity.

Polynomially Solvable Cases

Since the QAP is NP-hard, restricted versions which
can be solved in polynomial time are an interesting as-
pect of the problem. A basic question arising with re-
spect to polynomially solvable versions is the identifica-
tion of those versions and the investigation of the bor-
der line between hard and easy versions of the prob-
lem. There are two ways to approach this topic: first,
find structural conditions to be imposed on the coef-
ficient matrices of the QAP so as to obtain polynomi-
ally solvable versions, and secondly, investigate other
combinatorial optimization or graph-theoretical prob-
lems which can be formulated as QAPs, and embed the
polynomially solvable versions of the former into spe-
cial cases of the later. These two approaches yield two
groups of restricted QAPs which are briefly reviewed in
this section. For a detailed information on this topic, see
[35].

Most of the restricted versions of the QAP with spe-
cially structured matrices involve Monge matrices or
other matrices having analogous properties. A matrix
A = (aij) is a Monge matrix if and only if the following
Monge inequalities are fulfilled for each 4-tuples of in-
dices i, j, k, l, i < k, j < l:

ai j C akl � ai l C ak j :

A matrix A = (aij) is an anti-Monge matrix if and only
if the following anti-Monge inequalities are fulfilled for
each 4-tuples of indices i, j, k, l, i < k, j < l:

ai j C akl � ai l C ak j :

A simple example of Monge and anti-Monge matrices
are the sum matrices; the entries of a sum matrix ma-
trix A = (aij) are given as aij = ˛i + ˇj, where (˛i) and
(ˇj) are the generating row and column vector, respec-
tively. A product matrix A is defined in an analogous
way: its entries are given as aij = ˛iˇj, where (˛i), (ˇj)
are the generating vectors. If the row generating vector
(˛i) and the column generating vectors (ˇi) are sorted
nondecreasingly, then the product matrix (˛iˇj) is an
anti-Monge matrix.

In contrast with the traveling salesman problem, it
turns out that the QAP with both coefficient matrices
being Monge or anti-Monge is NP-hard, whereas the
complexity of a QAP with one coefficient matrix be-
ing Monge and the other one being anti-Monge is still
open, see [23] and [35]. However, some polynomially
solvable special cases can be obtained by imposing ad-
ditional conditions on the coefficient matrices. These
special cases involve very simple matrices like prod-
uct matrices or so-called chess-board matrices. A ma-
trix A = (aij) is a chess-board matrix if its entries are
given by aij = (�1)i + j. These QAPs can either be for-
mulated as equivalent LAPs, or they are constant per-
mutation QAPs (see [23,35]), that is, their optimal so-
lution can be given before hand, without knowing the
entries of their coefficient matrices. A few other ver-
sions of the QAP involving Monge and anti-Monge
matrices with additional structural properties can be
solved by dynamic programming. Other restricted ver-
sions of the QAP involve matrices with a specific di-
agonal structure such as circulant and Toeplitz ma-
trices. An n × n matrix A = (aij) is called a Toeplitz
matrix if there exist numbers c� n + 1, . . . , c� 1, c0, c1,
. . . , cn� 1 such that aij = cj� i, for all i, j. A matrix
A is called a circulant matrix if it is a Toeplitz ma-
trix and the generating numbers ci fulfill the condi-
tions ci = cn� i, for 0 � i � n � 1. In other words,
a Toeplitz matrix has constant entries along lines par-
allel to the diagonal, whereas a circulant is given by
its first row and the entries of the i � th row re-
sembles the first row shifted by i � 1 places to the
right.

In general versions of the QAP with one anti-
Monge (Monge) matrix and one Toeplitz (circulant)
matrix, remain NP-hard unless additional conditions,
such as monotonicity, are imposed on the coefficient
matrices. A well studied problem is the so called anti-
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Monge–Toeplitz QAP where the rows and columns
of the anti-Monge matrix are nondecreasing, investi-
gated in [26]. It has been shown that this problem is
NP-hard and contains as a special case the so-called
turbine balancing problem (TBP) introduced in [99]
and formulated as a QAP in [87]. In the TBP we are
given a number of blades to be welded in regular spac-
ing around the cylinder of the turbine. Due to inac-
curacies in the manufacturing process the weights of
the blades differ slightly and consequently the gravity
center of the system does not lie on the rotation axis
of the cylinder, leading to instabilities. In an effort to
make the system as stable as possible, it is desirable
to locate the blades so as to minimize the distance be-
tween the center of gravity and the rotation axis. The
mathematical formulation of this problem leads to an
NP-hard anti-Monge–Toeplitz QAP. (For more details
and for a proof of NP-hardness see [26].) It is prob-
ably interesting that the maximization version of this
problem is polynomially solvable. Further polynomi-
ally solvable special cases of the anti-Monge–Toeplitz
QAP arise if additional constraints such as benevo-
lence or k-benevolence are imposed on the Toeplitz
matrix. These conditions are expressed in terms of
properties of the generating function of these matri-
ces, see [26]. The polynomially solvable QAPs with
one anti-Monge (Monge) matrix and the other one
Toeplitz (circulant) matrix described above, are all con-
stant permutation QAPs. The techniques used to prove
this fact and to identify the optimal permutation is
called reduction to extremal rays. This technique ex-
ploits two facts: first, the involved matrix classes form
cones, and secondly, the objective function of the QAP
is linear with respect to each of the coefficient matri-
ces. These two facts allow us to restrict the investi-
gations to instances of the QAP with 0–1 coefficient
matrices which are extremal rays of the above men-
tioned cones. Such instances can then be handled by el-
ementary means (exchange arguments, bounding tech-
niques) more easily that the general given QAP. The
identification of polynomially solvable special cases of
the QAP which are not constant permutation QAPs
and can be solved algorithmically remains a challeng-
ing open question.

Another class of matrices similar to the Monge ma-
trices are the Kalmanson matrices. A matrix A = (aij) is
a Kalmanson matrix if it is symmetric and its elements

satisfy the following inequalities for all indices i, j, k, l, i
< j < k < l:

ai j C akl � aik C ajl ; ai l C ajk � aik C ajl :

For more information on Monge, anti-Monge and
Kalmanson matrices, and their properties, see [32].
The Koopmans–Beckmann QAP with one coefficient
matrix being a Kalmanson matrix and the other one
a Toeplitz matrix, has been investigated in [44]. The
computational complexity of this problem is an open
question, but analogously as in the case of the anti-
Monge–Toeplitz QAP, polynomially solvable versions
of the problem are obtained by imposing additional
constraints to the Toeplitz matrix.

Further polynomially solvable cases arise as QAP
formulations of other problems, like the linear ar-
rangement problem, minimum feedback arc set prob-
lem, packing problems in graphs and subgraph iso-
morphism, see [23,35]. Polynomially solvable versions
of these problems lead to polynomially solvable cases
of the QAP. The coefficient matrices of these QAPs
are the (weighted) adjacency matrices of the underly-
ing graphs, and the special structure of these matrices
is imposed by properties of these graphs. The meth-
ods used to solve these QAPs range from graph the-
oretical algorithms (in the case of the linear arrange-
ment problem and the feedback arc set problem), to dy-
namic programming (in the case of subgraph isomor-
phism).

Lower Bounds

Lower bounding techniques are primarily used with
implicit enumeration algorithms, such as branch and
bound, to perform a limited search of the feasible re-
gion of a minimization problem, until an optimal so-
lution is found. A more limited use of lower bound-
ing techniques, is also for evaluating the performance of
heuristic algorithms, by providing a relative measure of
proximity of the suboptimal solution to the optimum.
In comparing lower bounding techniques, the follow-
ing criteria should be taken into consideration:
� complexity of computing the lower bound;
� tightness of the lower bound (i. e. closest to the op-

timum solution);
� efficiency in computing lower bounds for subsets of

the primal feasible set.
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Since there is no clear ranking of the performance of
the lower bounds that will be discussed below, all of the
above criteria should be kept in mind while reading the
following paragraphs. Considering the asymptotic be-
havior of the QAP, it should be fair to assume that the
tightness of the lower bound probably dominates all of
the above criteria. That is, if there is a large number of
feasible solutions close to the optimum, then a lower
bound which is not tight enough, will fail to eliminate
a large number of subproblems in the branching pro-
cess.

Gilmore–Lawler Type Lower Bounds

Based on the formulation of the general QAP as a LAP
of dimension n2 stated in formulation (9), Lawler [88]
derived lower bounds for the QAP, by constructing
a solution matrix Y in the process of solving a series of
LAPs. If the resulting matrix Y is a permutation matrix,
then the objective function value is optimal, otherwise
it is bounded from below by hC, Yi. Specifically, con-
sider an instance of QAP(C), where the matrix C is par-
titioned into n2 minors, C(i, j) = (cijkl)n × n for i, j = 1, . . . ,
n. Each minor C(i, j) essentially contains the costs asso-
ciated with the assignment xij = 1. Partition the solution
matrix Y also into n2 minors, Y (i, j) = (yijkl)n × n for i, j =
1, . . . , n, whose actual values are to be determined in the
process. Solve the n2 LAPs associated with each minor
C(i, j),

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

li j D min
nX

kD1

nX
lD1

ci jk l yi jk l

s.t.
nX

kD1

yi jk l D 1; l D 1; : : : ; n;

nX
lD1

yi jk l D 1; k D 1; : : : ; n;

yi ji j D 1;
yi jk l 2 f0; 1g; i; j D 1; : : : ; n:

(12)

Observe that the last constraint essentially reduces the
problem into an LAP of dimension (n� 1), obtained by
deleting the ith row and jth column of the matrix C(i, j).
Denote the solution matrix for each of the above LAPs
by Y (i, j). Using the values lij from above, solve the LAP
to obtain the Gilmore–Lawler lower bound for general

QAPs:
8̂
<̂
ˆ̂:
GLB(C) D min

nX
iD1

nX
jD1

li j xi j

s.t. (xi j) 2 Xn ;

(13)

and denote its solution matrix by X� = (x�i j). If

1
n

X
i j

x�i jY
(i j) 2 Xn ;

then Y� = (x�i j Y
(ij))n2�n2 is a Kronecker product of two

permutation matrices of dimension n, and then it is also
an optimal solution. Otherwise the optimal solution to
the QAP is bounded below by GLB(C) = hC, Y�i. Con-
sidering that each LAP can be solved in O(n3) time, the
above lower bound for the general QAP of dimension n
can be computed in O(n5) time.

For the more special Koopmans–Beckmann for-
mulation of the QAP (cf. formulation (3)) where the
quadratic costs are derived by the pairwise product of
two matrices F and D, the structure of the problem can
be used to reduce the computational effort. Before we
proceed, let us make some definitions. For vectors a, b2
Rn, define the following extremal variations of the usual
inner product between vectors, by imposing an order-
ing in the elements of the vectors:

ha; bi� :D
nX

iD1

aibi ; (14)

where ai � ai + 1, bi � bi + 1, 8i, and

ha; biC :D
nX

iD1

aibi ; (15)

where ai � ai + 1, bi � bi + 1, 8i. The following is a well
known result:

Proposition 4 [69] For a, b 2 Rn the following inequal-
ities hold for any � 2 Sn:

ha; bi� �
nX

iD1

aib�(i) � ha; biC :

Consider an instance QAP(F, D, B), and recall that this
can be transformed into an instance of QAP(C) by as-
signing the values

ci jk l D

(
fi kd jl ; for i ¤ k; j ¤ l ;
fi id j j C bi j; for i D k; j D l :
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Each minor C(i, j) in the partitioned matrix C, is now
C(i, j) = f (i �) d>( j�), where f (i �) and d(j �) is the ith and jth
row of matrix F and D respectively. Therefore, using
the result of Proposition 4, instead of solving n2 LAPs
we can easily compute the values lij as

li j D fi id j j C bi j C
Dbf (i �);bd( j�)

E�
; (16)

where the vectors bf (i �);bd( j�) 2 Rn�1 are obtained by
removing the ith and jth element of the vectors f (i �)
and d(j �) respectively. Finally by solving the resulting
LAP as in (12), we obtain the Gilmore–Lawler lower
bound for the Koopmans–Beckmann QAPs, denoted
by GLB(F, D), in O(n3) time. Its name is due to the fact
that Lawler [88] and P.C. Gilmore [60] independently
derived this lower bound, while the first author consid-
ered the case for general QAPs also. The simplicity of
the Gilmore–Lawler lower bound makes it one of the
most efficient to compute, although it deteriorates fast
as n increases. The quality of the lower bound can be
improved if the contribution of the quadratic term in
the objective function is made to be smaller than that
of the linear term. Consider the formulation of the gen-
eral QAP where the linear and the quadratic terms are
separated for clarity. By the above discussion the lower
bound will be the solution to the LAP
8̂
<̂
ˆ̂:
min

nX
iD1

nX
jD1

(li j C ci ji j)xi j

s.t. (xi j) 2 Xn :

We want to decompose the cost coefficients in the
quadratic term of (4) and transfer some of their value
into the linear term such that cijij� lij, which will result
in a tighter lower bound since the LAP can be solved
exactly. This procedure known as reduction was intro-
duced in [41], and it has been investigated by many
researchers (see [18,47,56,128]). The general idea is to
decompose each quadratic cost coefficient into several
terms, which in turn will end up being linear cost co-
efficients and will be moved in the linear term of the
objective function. Consider the following general de-
composition for each quadratic cost coefficient in the
objective function in (4):
D1) ci jk l D ci jk l C ei jk C gi jl C hik l C t jk l , i 6D k, j 6D

l.

Here e, g, h, t 2 Rn3 . Substituting the above and sep-
arating terms, the objective function in (4) becomes

nX
i D 1
i ¤ k

nX
j D 1
j ¤ l

nX
k;lD1

ci jk l xi jxk l

C

nX
i D 1
i ¤ k

nX
j D 1
j ¤ l

nX
k;lD1

(ei jk C gi jl C hik l C t jk l )xi jxk l

C

nX
i; jD1

ci ji jxi j :

Consider now the term associated with the eijk:

nX
i; jD1

nX
k D 1
k ¤ i

nX
l D 1
l ¤ j

ei jk xi jxk l

D

nX
i; jD1

xi j

2
6664

nX
k D 1
k ¤ i

ei jk

0
BBB@

nX
l D 1
l ¤ j

xk l

1
CCCA

3
7775 :

We can add the term
nX

k D 1
k ¤ i

ei jk

to the (i, j)th element of the LAP that composes the
linear term of the objective function, since xij = 1
) xkj = 0)

P
l 6D j xkl = 1, 8k. Using similar argu-

ments for the vectors g, h and t, their costs become
linear and the objective function with decomposed
quadratic costs become

nX
i D 1
i ¤ k

nX
j D 1
j ¤ l

nX
kD1

nX
lD1

ci jk l xi jxk l C
nX

iD1

nX
jD1

bci jxi j ;

where

bci j D ci ji j C
nX

k D 1
k ¤ i

ei jk

C

nX
l D 1
l ¤ j

gi jl C
nX

k D 1
k ¤ i

hki j C

nX
l D 1
l ¤ j

tl i j :
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Therefore we can apply the Gilmore–Lawler bound
in the quadratic term of the decomposed objective
function, whereas we can get an exact solution to the
LAP that composes the linear term, and the sum of
these two values will constitute a lower bound for
the QAP. In the case of the Koopmans–Beckmann
formulation of the QAP were we have two matrices
F and D, the general decomposition scheme is:

D2)
(
fi j D f i j C �i C � j; i ¤ j;
dkl D dkl C �k C pl ; k ¤ l :

Here �, �, �, p 2 Rn. Substituting to the product f ijdkl
it is easily seen that D2) reduces to the general decom-
position D1) with vectors e, g, h, t 2 Rn3 . Frieze and
Yadegar [56] showed that the inclusion of the vectors
h and t in D1) does not affect the value of the lower
bound, and therefore are redundant (similarly the vec-
tors � and p for the Koopmans–Beckmann QAP are
redundant in D2)). The same authors in [56] derived
lower bounds for the QAP based on a Lagrangian re-
laxation (cf. also � Integer programming: Lagrangian
relaxation). Specifically, consider the Lagrangian relax-
ation of the 0–1 linear programming formulation of
the QAP (see (10)), where the second and third con-
straints are included in the objective function, using as
Lagrangian multipliers the elements of the vectors e and
g. The Lagrangian function is thus defined as

L(e; g) :D8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
i jk l

ci jk l yi jk l

C
X
jk l

e jk l

 
xkl �

X
i

yi jk l

!

C
X
i k l

gik l

0
@xkl �

X
j

yi jk l

1
A

D
X
i jk l

(ci jk l � e jk l � gik l )yi jk l

C
X
i j

 X
k

eki j C
X
l

gl i j

!
xi j

s.t. first constraint in (10);
fourth constraint in (10)
: : :

last constraint in (10):

The authors prove in [56] that for any choice of e and
g, the solution to the above minimization problem will
equal the value of the Gilmore–Lawler lower bound as
applied to the QAP, with decomposed quadratic cost
coefficients, as dictated by using the vectors e and g
only in D1). Therefore, maxe, g L (e, g) constitutes an
upper bound on the lower bounds for the QAP, ob-
tained by using the Gilmore–Lawler bound with de-
composed quadratic cost coefficients. Using subgradi-
ent algorithms (cf. also � Nondifferentiable optimiza-
tion: Subgradient optimization methods) the authors
derive near optimal solutions for maxe, g L (e, g) re-
sulting in two lower bounds, denoted by FY1 and FY2,
corresponding to the two different solution approaches
proposed. As suggested by the experimental results in
[56], these bounds seem to be sharper than previously
reported Gilmore–Lawler based lower bounds using re-
duction techniques. Almost all of the other approaches
for obtaining lower bounds for the QAP with reduction
techniques, are special cases of the general decomposi-
tion scheme D2) (see [18,47,128]).

Variance Reduction Lower Bounds

The variance reduction lower bounds were intro-
duced in [93]. Consider an instance of the Koopmans–
Beckmann formulation of the QAP, with inputmatrices
F = (f ij), D = (dij) 2 Rn × n. Now partition both matrices
into a sum of two matrices, F = F1 + F2 and D = D1 +
D2, were F1 = (f (1)i j ), F2 = (f (2)i j ) and D1 = (d(1)i j ), D2 =
(d(2)i j ). Construct an n × nmatrix L = (lij), by solving the
following n2 LAPs:

li j D min
� 2 Sn
�(i) D j

nX
kD1

f (1)i k d
(1)
j�(k) C f (1)ki d�(k) j

C fkid(2)�(k) j � f (2)ki d
(2)
�(k) j (17)

It is proved in [93] that the solution of the LAP with
cost matrix L as constructed above, constitutes a lower
bound for QAP(F, D). The problem of concern now,
is to find a way to partition the matrices F and D such
that the resulting lower bound is maximized. Observe
that when F1 = F and D1 = D (i. e. no partitioning), we
essentially derive the GLB(F, D).

Let M 2 Rm × n, and denote its rows and columns
respectively asm(i �), andm(�, j), i, j = 1, . . . , n. Think ofM
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as a data set of mn elements mij, and define an average
� (M) and a variance V(M) as,

�(M) :D
1
mn

mX
iD1

nX
jD1

mi j ;

V(M) :D
mX
iD1

nX
jD1

(�(M)� mi j)2 :

Also define the total variance,

T(M; �) :D �
mX
iD1

V(m(i �))C (1 � �)V(M) ;

where � 2 [0, 1]. The term V(m(i �)) stands for the vari-
ance ofm(i �), treated as a 1 × nmatrix. The authors ob-
served that, as the variances of the matrices F and D
decrease, the GLB(F, D) increases, while it is optimal if
the variances of the rows of the matrices are zero. The
partition scheme considered is of the form, F1 = F +	F ,
F2 = �	F , and D1 = D +	D, D2 = �	D. Considering
only the matrix F, the problem is to find a matrix 	F ,
such that the variances of F1 and F2 and the sum of the
variances of the rows for each F1 and F2 are minimized.
We will only describe how 	F is obtained since 	D is
obtained in the same way. The problem of minimizing
the variances can be stated mathematically as

min �T(F C	F ; �)C (1 � �)T(�	>F ; �) ; (18)

where 	F 2 Rn × n and � 2 [0, 1] is a parameter. Two
approximate solutions were proposed in [93], corre-
sponding to the two reduction schemes
R1) ıij = �(f nn � f ij) + ınn,
R2) ıij = �(�(f (�, n)) � �(f (�, j)).
Here i, j = 1, . . . , n, 	F = (ıij), and with ınn being free
to take any value (it was given a value of zero in the
experiments conducted in [93]). In obtaining R2), the
problem of minimizing the variances such that the ma-
trix	F is constrained to have constant columns, is con-
sidered. The matrix	D is constructed in the same way.
Based on the two reductions schemes above, the result-
ing lower bounds from the solution of (17) are denoted
by LB1(�), and LB2(�). The above procedure for com-
puting	F ,	D has O(n2) computational complexity.

After the partitioning of the matrices F and D, the
solution to the LAP with cost matrix L = (lij), were lij are
defined in (17), will yield LB1(�) or LB2(�) according to

what reduction scheme used. If LB2(�) is used, the fact
that the matrices F2 and D2 have constant columns can
be exploited to compute the lij, i, j = 1, . . . , n, efficiently
as

li j D
Dbf (1)(i �);

bd(1)
( j�)

E�
C f (2)1i

nX

k D 1
k ¤ j

dk j

C d(2)1 j

nX

k D 1
k ¤ i

fk j � (n � 1) f (2)1i d
(2)
1 j C fi id j j ;

where bf (1)(i �);
bd(1)
( j�) 2 Rn�1 are the ith and jth row of F1

and D1 respectively, with the ith and jth elements re-
moved from each, and h�, �i� is defined in (14). In the
case that LB1(�) is used, the direct approach would be
to solve the n2 LAPs defined in (17), which will require
O(n5) computational effort. A different approach is to
calculate lower bounds for the values lij, i, j = 1, . . . , n,
as follows:

li j D
Dbf (1)(i �);

bd(1)
( j�)

E�
C
Dbf (2)(�;i);

bd(�; j)

E�

C
Dbf (�;i);bd(2)

(�; j)

E�
C
Dbf (2)(�;i);

bd(2)
(�; j)

EC
;

where each vector in the above extremal inner products,
is of dimension n� 1, and corresponds to the ith row or
column of the indicated matrix, upon removal of the ith
element. Similarly as before the extremal inner prod-
ucts h�, �i� and h�, �i+ are defined in (14) and (15). Using
the above approach would require O(n3) time to com-
pute lower bounds for the lij, i, j = 1, . . . , n, thus the
total computational complexity of the variance reduc-
tion lower bounds isO(n3). It is worth noting that there
is also a closed form solution to problem (18) given in
[71] which is

ıi j D ��
1 � �
1 � ��

�( f(i �))

C
�(1 � �)C ��2(1 � �) � �2�2(1 � �)

(1 � ��)(1 � �C ��)
�(F)

�
��(1� �)
1 � �C ��

�( f(� j)) � � fi j ;

for i, j = 1, . . . , n. However it was reported in [93]
that using the above closed form in the computation
of the lower bounds, poses implementation obstacles.
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The experimental results conducted in [93], also sug-
gest that the settings of � = 0.5 for LB1(�), and � = 1 for
LB2(�) as best choices. Finally, these lower bounds per-
form well on QAPs with input matrices that have high
variances, but their performance reduces to that of the
Gilmore–Lawler bounds when the variance of the ma-
trices is small.

Eigenvalue Based Lower Bounds

These bounds were introduced in [50,51], and are ap-
plied to the Koopmans–Beckmann formulation of the
QAP. This approach utilizes known results on per-
mutation matrices and eigenvalues, and exploits the
special structure of QAP(F, D). Upon the introduc-
tion of the method in [50,51], many improvements
and generalizations have appeared (see for example
[65,66,67,68,123,124]). There is a resemblance with the
Gilmore–Lawler based lower bounds, in the sense that,
based upon a general lower bound, reduction tech-
niques are applied to the quadratic terms of the ob-
jective function in order to improve its quality. The
reduction techniques that applied to eigenvalue based
lower bounds however, yield a significant improve-
ment, which is not really the case with the Gilmore–
Lawler bounds under certain reductions.

Considering the trace formulation of the QAP in
(7), with F and D being real symmetric matrices, there-
fore with all their eigenvalues being real, the following
result can be stated for the quadratic term [51]:

Theorem 5 [51] Let F, D 2 Rn × n be symmetric matri-
ces, and denote by � = (�1, . . . , �n)| and x1, . . . , xn the
eigenvalues and eigenvectors of F, and by � = (�1, . . . ,
�n)| and y1, . . . , yn the the eigenvalues and eigenvectors
of D. Then the following two relations are true for all X
2 Xn,
i) tr FXDX| =

Pn
iD1

Pn
jD1 �i�jhxi, Xyj}2 = �|S(X)�.

Here S(X) = (hxi, Xyji2) is a doubly stochastic matrix,
ii) h�, �i� � tr FXDX| � h�, �i+.

Using Theorem 5ii) a lower bound for QAP(F,D) based
on the eigenvalues of F and D is then

EVB D h�;�i� C min
X2Xn

tr BX> ;

where the second term is an ordinary LAP that can be
solved exactly. Observe that in Theorem 5, the smaller

the interval [h�, �i�, h�, �i+] is, the closest h�, �i�

is to tr FXDX|. A possible way of making the interval
smaller, is to decompose the matrices F and D such that
some of their value will be transfered in the linear term,
and the eigenvalues of the resulting matrices that com-
pose the quadratic term, are as uniform in value as pos-
sible. Define the spread of the matrix F as

spread(F) :D max
˚ˇ̌
�i � � j

ˇ̌
: i; j D 1; : : : ; n

�
:

Based on the above discussion, we want to minimize
the spreads of the matrices that compose the quadratic
term. There is no simple closed form for expressing
spread(F) in terms of f ij, however we can minimize in-
stead a formula for the upper bound given in [98]:

spread(F) � m(F) D

2
42

nX
iD1

nX
jD1

f 2i j �
2
n
(tr F)2

3
5

1
2

:

(19)

The decomposition scheme that the authors use in [51],
is the following:

fi j D f i j C ei C e j C ri j ; (20)

dkl D dkl C gk C gl C sk l ; (21)

where rij = sij = 0, for i 6D j.
Consider the decomposition for matrix F and let

F̄ D ( f i j). Minimizing the function f (e; r) D m(F)
obtained by substituting the values of f i j in (19), the
following values are obtained [51]:

z D
1

2(n � 1)

0
@

nX
iD1

nX
jD1

fi j � tr F

1
A ; (22)

ei D
1

n � 2

0
@

nX
jD1

fi j � fi i � z

1
A ; (23)

ri i D fi i � 2ei ; (24)

for i = 1, . . . , n. Analogously we obtain the values for g
and s for the decomposition of D. Replacing F and D in
(7) we obtain

tr(FXDC B)X> D tr(FXDC B)X> ;
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where bi j D bi j C fi id j j C 2ei
Pn

kD1
k¤ j

d jk , and matrices

F and D have respective eigenvalues � D (�1; : : : ; �n)
and � D (�1; : : : ; �n). The corresponding eigenvalue
lower bound is then

EVB1 D
D
�;�

E�
C min

X2Xn
tr BX> :

If we restrict ourselves only to pure quadratic (f ii =
dii = 0, 8i, B = 0) symmetric QAPs, the matrix B in the
above decomposition becomes B D cw>, where c D
2(e1; : : : ; en)> and w = (

P
jd1j, . . . ,

P
jdnj)|. Therefore

minX2Xn tr BX> D hc;wi
�, and

EVB1 D
D
�;�

E�
Chc;wi� � min

X2Xn
tr(FXDCB)X> :

We can however obtain further improvement as sug-
gested by F. Rendl [123], who examined the linear term
hc, wi�, and proposed a method where EVB1 is itera-
tively improved, until some specified number of itera-
tions is reached, or we have satisfied an optimality con-
dition. More specifically, let Sk := {X1, . . . , Xk} � Xn,
and

L(Xi) :D min fhc; Xiwi : Xi 2 Xn n Si�1g ;

so for any integer k � 1, L(X1) � L(X2) � � � � � L(Xk).
In other words the set Sk contains the k first solu-
tions (permutation matrices) of the problem minX2Xn

hc, Xiwi, where the first solution X13 L(X1) = hc, wi�.
Let

QAP(F;D; Xi ) D tr(FXiDC B)X>i ;

and also define the following

Z(k) :D min
˚
QAP(F;D; Xi) : i D 1; : : : ; k

�
:

The following inequalities [123] result:

Z(1) � � � � � Z(k) �
D
�;�

E�

C L(Xk) � � � � �
D
�;�

E�
C L(X1) ;

where if Z(i) D
D
�;�

E�
C L(Xi) for some i, then Xi

is the optimal solution to the problem. So essentially,
we try to close or reduce the gap between the optimal
solution of the QAP and the lower bound EVB1, by

increasing the value of the linear term hc, wi� in the
bound in k steps, where k is specified as a parameter.
The generation of the set Sk or ranking as it is called,
is a special case of the problem of ranking the k first
solutions of an assignment problem with cost matrix
(ciwj) where, as shown in [104], has time complexity
O(kn3). Rendl [123] presents an O(n log n + (n + log
k)k) for this special case. There are two issues regard-
ing the effectiveness of the above ranking procedure, in
improving the lower bound, addressed in [123]. First,
observe that if the vectors c and w have m � n equal
elements, then there are at least m! permutation matri-
ces {Xi} such that the values hc, Xiwi are equal. This in
turn, implies that there will be none or small improve-
ment in the lower bound while generating Sk for quite
some number of iterations. As dictated by the decom-
position in (22), (23), c and w will have equal elements
if the row sums of F and D are equal. One condition
then for applying the ranking procedure, is that most of
the row sums of F and D are not equal. Secondly, Rendl
[123] also defines a ratio called the degree of linearity
based on the ranges of the quadratic and linear terms
that compose the lower bound

L :D

D
�;�

EC
�
D
�;�

E�

hc;wiC � hc;wi�
:

The influence of the linear term on the lower bound
then is inversely proportional to the value of L. A small
value of L suggests that the ranking procedure would be
beneficial for the improvement of EVB1 for symmetric,
pure quadratic QAPs. For large values of L, we can ex-
pect that the quadratic term dominates the linear term
in the objective function, and [51] suggest the follow-
ing improvement on EVB1. Considering Theorem 5i)
as applied to the reduced matrices F and D, denote the
elements of the matrix S(X) by sij = hxi, Xyji2. We can
apply the bounds lij � sij � uij where

ui j D maxf(
˝
xi ; y j

˛�)2; (˝xi ; y j
˛C)2g;

li j D

(
0 if

˝
xi ; y j

˛�
;
˝
xi ; y j

˛C differ in sign;
minf(

˝
xi ; y j

˛�)2; (˝xi ; y j
˛C)2g otherwise:

Recalling the fact that the sij are the elements of a dou-
bly stochastic matrix, we can then form the capacitated
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transportation problem

CTP�

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

iD1

nX
jD1

�i� j si j

s.t.
nX

iD1

si j D 1; j D 1; : : : ; n;

nX
jD1

si j D 1; i D 1; : : : ; n;

li j � si j � ui j:

The new lower bound then would be

EVB2 D CTP� C hc;wi� :

A more generalized approach to eigenvalue based
lower bounding techniques, was employed in [66], that
led to new lower bounds. Consider the following sets of
n × n matrices, where I 2 Rn × n is the identity matrix,
and u := (1, . . . , 1)| 2 Rn is the vector of ones,

O :D
˚
X : X>X D I

�
;

E :D
˚
X : Xu D X>u D u

�
;

N :D fX : X � 0g :

It is a well known result that Xn =O \ E\N, while the
set of doubly stochastic matrices˝ = E\N. Moreover,
by Birkhoff’s theorem [15] we know that ˝ is a convex
polyhedron with a vertex set Xn, that is, ˝ = conv{X :
X 2 Xn}. Considering the above characterization of Xn,
we can see that any solution to a relaxation of the QAP
obtained from excluding one or two of the matrix sets
O, E and N, will yield a lower bound. Naturally the re-
laxation, and therefore the lower bound, will be tighter
if only one of the matrix sets is excluded. In relation to
Theorem 5, Rendl and Wolkowicz [124] showed that

min
X2O

tr FXDX> D tr F�F�
>
DD�D�

>
F D h�;�i

� ;

max
X2O

tr FXDX> D tr F�F�
>
DD�D�

>
F D h�;�i

C ;

where�F ,�D are the matrices with columns the eigen-
vectors of F andD respectively, in the order specified by
the minimal (maximal) inner product of the eigenval-
ues. In other words, the lower bound on the quadratic
part of the QAP as obtained from the EVB, is derived
by relaxing the feasible set to that of orthogonal ma-
trices. In [124] a new lower bound is derived, similar
to EVB2 but using a different approach to decompose

the matrices F and D. More specifically, denote the de-
composition scheme in (20) and (21) by the vector d :=
(e|, g|, r|, s|) 2 R4n, where r = (r11, . . . , rnn)| and s =
(s11, . . . , snn)|, and consider EVB1 as a function of d.
Maximizing this function with respect to d will result
in a lower bound with the best possible decomposition
that involves both the linear and quadratic terms. This
leads to a nonlinear, nonsmooth, nonconcave function
which is hard to solve, and a steepest ascent algorithm
is proposed for maximizing it in [124]. The new bound,
denoted EVB3, produces some of the best lower bounds
for the QAP, with the expense however of high compu-
tational requirements.

All of the above discussed lower bounds, relax the
set of permutation matrices to O. A tighter relaxation
was proposed in [67], where the set of permutation ma-
trices was relaxed to O \ E, by incorporating E in the
objective function, by exploiting the fact that the vec-
tor of ones u is both a left and right eigenvector with
eigenvalue 1, for any X 2 Xn. More specifically define

P :D [u/kuk
:::V] ;

where V| u = 0, V| V = In� 1. therefore V is an or-
thonormal basis for {u}?, whileQ := VV| is the orthog-
onal projection on {u}?. The following characterization
of the permutation matrices is given in [67]

Lemma 6 [67] Let X 2 Rn × n and Y 2 Rn� 1 × n � 1. If

X D P
�
1 0
0 Y

�
P> ; (25)

then

X 2E ;

X 2N , VYV> � �
uu>

kuk

2

;

X 2O, Y 2 On�1 :

Conversely if X 2 E then there exists a Y such that (25)
holds.

Note that the above characterization of the permuta-
tion matrices, preserves the orthogonality and the trace
structure of the problem. Substituting X = � uu|/ kuk2

+ VYV| as suggested by (25), in the trace formula-
tion of the QAP in (7), we have an equivalent projected
problem (PQAP) of dimension n � 1 on the variable
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matrix Y . The new lower bound IVB is obtained by re-
laxing Y to On� 1, therefore deriving a lower bound for
the quadratic part of PQAP, while the linear part can
be solved exactly as an LAP. Decompositions for im-
proving the IVB are also considered in [67], where it is
shown that the quadratic term in the projected problem
is unaffected by e and g in the decomposition scheme
in (20), (21). Obtaining a lower bound by considering
both the quadratic and linear term is also considered
in [78].

The symmetry assumption on the QAP is required
by any of the eigenvalue based lower bounding tech-
niques described above. Hadley, Rendl and Wolkowicz
[68] show that any real QAP can be transformed into an
equivalent QAP where the matrices F andD are Hermi-
tian, which allows the application of eigenvalue based
bounds.

Bounds Based on Semidefinite Relaxations

Recently (as of 1999), semidefinite programming (SDP)
relaxations for the QAP were considered [76,77,137].
The SDP relaxations considered in these papers are
solved by interior point methods or cutting planemeth-
ods (cf. also � Linear programming: Interior point
methods;� Extended cutting plane algorithm), and the
obtained solutions are valid lower bounds for the QAP.
In terms of quality the bounds obtained in this way are
competitive with the best existing lower bounds for the
QAP. For many test instances from QAPLIB [31] such
as some instances of Hadley [26], Roucairol [128], Nu-
gent et al. [105], and Taillard [133], they are the best ex-
isting bounds. However, due to prohibitively high com-
putation time requirements, the use of such approaches
as basic bounding procedures within branch and bound
algorithms is up to now not feasible. See [77,78] for
a detailed description of SDP approaches to the QAP
and illustrate the idea by describing just one semidefi-
nite programming relaxation for the QAP.

The set of n × n permutation matrices Xn is the in-
tersection of the set of n × n 0–1 matrices, denoted by
Zn, and the set En of n × n matrices with row and col-
umn sums equal to 1. Moreover, Xn is also the inter-
section of Zn with the set of n × n orthogonal matrices,
denoted by On. Hence

Xn D Zn \ En D Zn \ On :

Recall that

On D
˚
X 2 Rn�n : XX> D X>X D I

�

and

En D
˚
X 2 Rn�n : Xu D X>u D u

�
;

where I is the n × n identity matrix and u is the n-
dimensional vector of all ones. Then, the trace formu-
lation of the QAP (7) with the additional linear term

�2
nX

iD1

nX
jD1

bi jxi j;

can be represented equivalently as follows:

QAPE

8̂
ˆ̂̂<
ˆ̂̂̂
:

min tr(FXDX> � 2BX>)
s.t. XX> D X>X D I;

Xu D X>u D u;
x2i j � xi j D 0:

In order to obtain a semidefinite relaxation for the QAP
from the formulation QAPE above, we introduce first
an n2-dimensional vector vec(X). vec(X) is obtained as
a columnwise ordering of the entries of matrix X. Then
the vector vec(X) is lifted into the space of (n2 + 1) × (n2

+ 1) matrices by introducing a matrix YX ,

YX D

�
x0 vec(X)>

vec(X) vec(X) vec(X)>

�
:

Thus, YX has some entry x0 in the left-upper corner fol-
lowed by the vector vec(X) in its first row (column). The
remaining terms are those of the matrix vec(X) vec(X)|

sitting on the right lower n2 × n2 block of YX . Secondly,
the coefficients of the problem are collected in an (n2 +
1) × (n2 + 1) matrix K given as

K D
�

0 � vec(B)>

vec(B) D˝ F

�
;

where the operator vec is defined as above and D˝ F is
the Kronecker product of D and F.

It is easy to see that with these notations the objec-
tive function of QAPE equals tr(KYX). By setting y00
:= x0 = 1 as done in [77], one obtains two additional
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constraints to be fulfilled by the matrix YX : YX is pos-
itive semidefinite and matrix YX is a rank-one matrix.
Whereas the semidefiniteness and the equality y00 = 1
can be immediately included in an SDP relaxation, the
rank-one condition is hard to handle and is discarded
in an SDP relaxation. In order to assure that the rank-
one positive semidefinite matrix YX is obtained by an n
× n permutation matrix as described above, other con-
straints should be imposed to YX . Such conditions can
be formulated as valid constraints of an SDP formula-
tion for the QAP by means of some new operators, act-
ing on matrices or vectors as introduced below. Given
a matrix A 2 Rn × n, the operator diag(A) 2 Rn produces
a vector containing the diagonal entries of matrix A
in their natural order, that is, from top-left to bottom-
right. The adjoint operator Diag acts on a vector V 2
Rn and produces a matrix Diag(V) 2 Rn × n with off-
diagonal entries equal to 0 and the components of V on
the main diagonal. For some matrix Y 2 R(n2C1)�(n2C1),
operator arrow(Y) 2 R(n2C1), is defined as arrow(Y) :=
diag(Y) � (0, Y0;1:n2 ), where (0, Y (0;1:n2)) is an n2 + 1-
dimensional vector with first entry equal to 0 and other
entries coinciding with the entries of Y lying on the 0th
row and in columns between 1 and n2, in their natural
order. The adjoint operator Arrow acts on an n2 + 1-
dimensional vectorW and produces an (n2 + 1) × (n2 +
1) matrix Arrow(W)

Arrow(W) D
�

w0
1
2W
>
1:n2

1
2W(1:n2) Diag(W1:n2 )

�
;

where W(1:n2) is the n2-dimensional vector obtained
fromW by removing its first entry w0. Furthermore, we
are going to consider an (n2 + 1) × (n2 + 1) matrix Y as
composed of its first row Y (0�), of its first column Y (�, 0),
and of n2 submatrices of size n × n each, which are ar-
ranged in an n × n array of n × nmatrices and produce
its remaining n2 × n2 block (this is similar to the struc-
ture of a Kronecker product of two n × nmatrices. The
entry y˛ˇ , 1� ˛, ˇ � n2, will be also denoted by y(ij)(kl) ,
with 1 � i, j, k, l � n, where ˛ = (i � 1) n + j and ˇ = (k
� 1) n + l. Hence, y(ij)(kl) is the element with coordinates
(j, l) within the n × n block with coordinates (i, k).

With these formal conventions let us define the
so-called block-0-diagonal and off-0-diagonal operators,
acting on an (n2 + 1) × (n2 + 1) matrix Y , and denoted
by b0 diag and o0 diag, respectively. b0 diag(Y) and o0

diag(Y) are n × nmatrices given as follows:

b0 diag(Y) D
nX

kD1

Y(k�)(k�) ;

o0 diag(Y) D
nX

kD1

Y(�;k);(�;k) ;

where, for 1� k� n, Y (k �)(k �) is the kth n × nmatrix on
the diagonal of the n × n array of matrices, defined as
described above. Analogously, Y (�, k), (�, k) is an n × nma-
trix consisting of the diagonal elements sitting on the
position (k, k) of the n × n matrices (n2 matrices al-
together) which form the n2 × n2 lower right block of
matrix Y . The corresponding adjoint operators B0 Diag
and O0 Diag act on an n × n matrix S and produce (n2

+ 1) × (n2 + 1) matrices as follows:

B0 Diag D
�
0 0
0 I ˝ S

�
;

O0 Diag D
�
0 0
0 S ˝ I

�
:

Finally, let us denote by e0 the n2 + 1-dimensional unit
vector with first component equal to 1 and all other
components equal to 0, and let R be the (n2 + 1) × (n2 +
1) matrix given by

R D
�

n �u> ˝ u>

�u ˝ u I ˝ E

�

C

�
n �u> ˝ u>

�u˝ u E ˝ I

�
;

where E is the n × n matrix of all ones. With these no-
tations, a semidefinite relaxation for QAPE is given as
follows

QAPR0

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min tr(KY)
s.t. b0 diag(Y) D I;

o0 diag(Y) D I;
arrow(Y) D e0;
tr(RY) D 0;
Y � 0;

where 4 is the so-called Löwner partial order, that is,
A 4 B if and only if B � A < 0, that is B � A is pos-
itive semidefinite. In [77] it was shown that an equiv-
alent formulation for the considered QAP is obtained
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from QAPR0 by imposing one additional condition on
the matrix Y , namely, the rank-one condition.

Exact SolutionMethods

Several exact solution approaches for solving the QAP
will be presented in this section. Specifically the ex-
act algorithms that have been used for the QAP are
dynamic programming, cutting plane algorithms, and
branch and bound which appears to be the most suc-
cessful one.

Branch and Bound

Branch and bound algorithms appear to be the most ef-
ficient exact algorithms for solving the QAP. For the
QAP there are three types of branch and bound algo-
rithms, namely:
� Single assignment algorithms ([60,88]).
� Pair assignment algorithms ([59,86,105]).
� Relative positioning algorithm ([97]).
All of the above algorithms work by iterative construct-
ing an optimal permutation starting from an empty
permutation. The single assignment algorithms seem to
be themost efficient and the pair assignment algorithms
do not have favorable computational results.

We will now describe a recent branch and bound
algorithm for the QAP, that was proposed in [111]. In
the description that follows we will consider the Koop-
mans–Beckmann formulation of the QAP. First let us
define the necessary notation used in describing the
branch and bound algorithm. A partial permutation for
the set of integers Sn = {1, . . . , n} is denoted by

�k :D
�

1 2 � � � k
�k(1) �k(2) � � � �k(k)

�

where k� n. From now wewill write �k = (�k(1), �k(2),
. . . , �k(k)) for short. An assignment of a facility i to a lo-
cation jwill be denoted by i! j, while if imust never be
assigned to j we will write i¹ j. Note that �k is essen-
tially a partial assignment of facilities to locations. If we
want to add an extra assignment to some �k, say k+ 1!
j, we will write �k + 1 = �k [ k + 1! j, thereby �k + 1(i)
= �k(i) for i = 1, . . . , k, and �k + 1(k + 1) = j. Given some
�k let its range be Qk := {�k(i) : i = 1, . . . , k}, and define
the sets of nonpermissible assignments to be Ek + 1 := {j
2 Sn \ Qk : k + 1¹ j}. Given an instance QAP(F, D, B),

a pair of �k and Ek + 1 completely defines a subproblem
Pi as

Pi

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
�2Sn

nX
i

nX
j

f i jd�(i)�( j) C
nX
i

bi�(i)

s.t. �(i) D �k(i); i D 1; : : : ; k;
�(kC 1) … EkC1:

The original problem P0 is obtained for an empty par-
tial permutation �0 and E1 = ;. For each Pi a lower
bound g(Pi) can be computed, using any of the lower
bounds described previously, and let the optimal solu-
tion to Pi be denoted by f (Pi). In the branch and bound
algorithm, a forest of n binary trees is constructed,
where each node of the tree corresponds to a partial
subproblem Pi. The branching process is as follows.
Given a node Pi (i. e. a subproblem) defined by some
�k and Ek + 1, two descendant nodes are created, the left
child Pl

i and the right child Pr
i . For P

l
i we set �

l
kC1 = �k

[ k + 1! j for some j 62 Ek and El
kC2 = ;, while for P

r
i

we set �r
k = �k and Er

kC1 = Ek + 1 [ j. A node which has
�k with k = n � 1 cannot decomposed further, and it is
called a terminal node. Immediately we can identify the
following properties
� g(Pi) � f (Pi) for any node Pi,
� g(Pi) = f (Pi) if Pi is a terminal node,
� g(Pj)� g(Pi) if Pj has descended from Pi.
A node defined by some �k and Ek + 1 will have two ter-
minal nodes as children if k = n � 2. Moreover, for any
node |Ek + 1| + k � n � 1, while if equality holds then
there is only one j 62 Ek + 1 and only one left child is gen-
erated with �k + 1 = �k [ k + 1! j and Ek + 2 = ;.

The branch and bound algorithm in [111] starts by
computing an upper bound solution to the original sub-
problem P0 by means of a heuristic (cf. also � Heuris-
tic search). Let the corresponding permutation be � =
(�(1), �(2), . . . , �(n)). Note that during the process of
the algorithm the upper bound is continuously updated
whenever a better feasible solution is found. Then n
nodes are created, where for each Pi for i = 1, . . . , n,
we set �1 = �0 [ 1! �(i). E2 = ;, and g(P}i) = 0. Then
the following steps are performed at each iteration
1) Selection: Here we choose which node to examine

next, and we choose the node with the maximum
g(Pi).

2) Branching: Given the chosen node Pi from step
1, we create two new nodes Pl

i and Pr
i , based on
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the branching scheme described previously. We set
g(Pr

i ) = g(Pi) and we compute g(Pl
i).

3) Elimination: If g(Pl
i ) is less than or equal to the cur-

rent upper bound, then the node Pl
i is pruned, that

is, marked not to be considered in step 1) in the fu-
ture.

4) Termination: The algorithm stops if, and only if,
there are no more nodes to be considered in step 1).

The authors in [111] applied the above described
branch and bound algorithm for the QAP in con-
junction with the variance reduction lower bounds de-
scribed previously.

Traditional Cutting Plane Methods

Traditional cutting plane algorithms for the QAP have
been developed by a different authors, [7,8,9,13,14], and
[80]. These algorithms make use of mixed integer linear
programming (MILP) formulations for the QAP which
are suitable for Benders decomposition. In the vein
of Benders, the MILP formulation is decomposed into
a master problem and a subproblem, called also slave
problem, where the master problem contains the orig-
inal assignment variables and constraints. For a fixed
assignment the slave problem is usually a linear pro-
gram and hence, solvable in polynomial time. The mas-
ter problem is a linear program formulated in terms of
the original assignment variables and of the dual vari-
ables of the slave problem, and is solvable in polyno-
mial time for fixed values of those dual variables. The
algorithms work typically as follows. First, a heuristic
is applied to generate a starting assignment. Then the
slave problem is solved for fixed values of the assign-
ment variables implied by that assignment, and optimal
values of the primal and dual variables are computed. If
the dual solution of the slave problem satisfies all con-
straints of the master problem, we have an optimal so-
lution for the original MILP formulation of the QAP.
Otherwise, at least one of the constraints of the mas-
ter problem is violated. In this case, the master prob-
lem is solved with fixed values for the dual variables of
the slave problem and the obtained solution is given as
input to the slave problem. The procedure is then re-
peated until the solution of the slave problem fulfills all
constraints of the master problem.

Clearly any solution of the master problem obtained
by fixing the dual variables of the slave problem to some

feasible values, is a lower bound for the considered
QAP. On the other side, the objective function value
of the QAP corresponding to any feasible setting of the
assignment variables is an upper bound. The algorithm
terminates when the lower and the upper bounds co-
incide. Generally, the time needed for the upper and
the lower bounds to converge to a common value is too
large, and hence these methods may solve to optimal-
ity only very small QAPs. However, heuristics derived
from cutting plane approaches produce good subopti-
mal solutions in early stages of the search, see for exam-
ple, [21] and [14].

Polyhedral Cutting Planes

Similarly to traditional cutting plane methods also
polyhedral cutting planes or branch and cut algorithms
(cf. also � Integer programming: Branch and cut al-
gorithms) make use of an LP or MILP relaxation of
the combinatorial optimization problem to be solved,
in our case the QAP. Additionally, polyhedral cutting
plane methods make use of a class of (nontrivial) valid
or facet defining inequalities known to be fulfilled by all
feasible solutions of the original problem. If the solu-
tion of the relaxation is feasible for the original prob-
lem, we are done. Otherwise, some of the above men-
tioned valid inequalities are probably violated. In this
case a ‘cut’ is performed, that is, one or more of the
violated inequalities are added to the LP or MILP re-
laxation of our problem. The latter is resolved and the
whole process is repeated. In the case that none of the
valid inequalities is violated, but some integrality con-
straint is violated, the algorithm performs a branch-
ing step by fixing (feasible) integer values for the cor-
responding variable. The branching steps produce the
search tree like in branch and bound algorithms. Each
node of this tree is processed as described above by per-
forming cuts and then by branching it, if necessary.
Clearly, related elements of branch and bound algo-
rithms like upper bounds, selection and branching rules
play a role in branch and cut algorithms. Hence, such
an approach combines elements of cutting plane and
branch and bound methods. The main advantage of
polyhedral cutting plane algorithms with respect to tra-
ditional cutting planes relies on the use of cuts which
are valid for the whole polytope of the feasible solutions,
and possibly facet defining. Traditional cutting planes
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instead rely frequently on cuts which are not valid for
the whole polytope of the feasible solutions. In this case
the whole computation has to be done from scratch for
different variable fixings. This requires additional run-
ning time and additional amounts of memory. Another
and not less important drawback of traditional cutting
plane algorithms is due to the ‘weakness’ of the cuts
they involve. In contrast with cuts produced by facet
defining inequalities, the weak cuts cannot avoid the
slow convergence.

Polyhedral cutting plane methods for the QAP are
not yet backed by a strong theory. However, some ef-
forts to design branch and cut algorithms for the QAP
have been made in [106] and [75]. M.W. Padberg and
M.P. Rijal [106] have tested their algorithm on sparse
QAP instances. The numerical results are encouraging,
although the developed software is of preliminary na-
ture, as claimed by the authors. V. Kaibel [75] has used
branch and cut to compute lower bounds for QAP in-
stances. His results are promising especially in the case
where box inequalities are involved.

Heuristics

There is a large amount of research directed toward
heuristic algorithms for solving the QAP. This is par-
tially due to the fact that, although substantial improve-
ments have been done in the development of exact al-
gorithms for the QAP, problems of dimension n > 20
are still not practical to solve because of very high com-
puter time requirements. The following types of heuris-
tic algorithmic approaches have been applied towards
the QAP:
� construction methods (CM);
� limited enumeration methods (LEM);
� improvement methods (IM);
� tabu search (TS);
� simulated annealing (SA);
� genetic algorithms (GA);
� greedy randomized adaptive search procedures

(GRASP);
� ant systems (AS).

ConstructionMethods

Construction methods were introduced in [60]. They
are iterative approaches which usually start with an
empty permutation, and iteratively complete a partial

permutation into a solution of the QAP by assigning
some facility which has not been assigned yet to some
free location.

PROCEDURE construction(
0 ; � )

 = fg;
DO i = 1; : : : ; n � 1!

IF (i; j) … � !
j = heur(i);
update(
i ; (i; j));
� = � [ (i; j);

FI;

 = 
i ;

OD;
RETURN(
)

END construction;

Pseudocode for construction method

A generic construction method is presented in pseu-
docode under the name PROCEDURE construction
(�0, � ). Here �0, �1, . . . , �n� 1 are partial permuta-
tions, and heur(i) is some heuristic procedure that as-
signs facility i to some location j, and returns j. � is
the set of already assigned pairs of facilities to loca-
tions. The procedure update constructs a permutation
� i by adding the assignment (i, j) to � i� 1. The heuris-
tic heur(i) employed by update could be any heuristic
which chooses a location j for facility i, (i, j) 62 � , in
a greedy fashion or by applying local search. One of the
oldest heuristics used in practice, the CRAFT heuris-
tic, developed in [17], is a construction method. An-
other construction method which yields good results
has been proposed in [100].

Limited Enumeration Methods

It has been observed that often enumeration methods
(e. g. branch and bound algorithms) find good solu-
tions in early stages of the search, and then employ a lot
of time to marginally improve that solution or prove
its optimality. Based on this observation, limited enu-
meration methods impose a limit on the enumeration
process, which can be either a maximum number of it-
erations or time limit, to produce a heuristic solution.
Another strategy which serves the same goal is to ma-
nipulate the lower bound. This can be done by increas-
ing the lower bound if no improvement in the solution
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is achieved during a large number of iterations, and
would yield deeper cuts in the search tree to speed up
the process. Clearly, such an approach may cut off the
optimal solution and hence should be used carefully,
possibly in conjunction with certain heuristics that per-
form elaborate searches in the feasible space.

Improvement Methods
These methods are otherwise called local search algo-
rithms. For a comprehensive discussion of theoretical
and practical aspects of local search in combinatorial
optimization, see [1].

Basic ingredients of improvement methods are the
neighborhood and the order in which the neighbor-
hood is searched. A frequently used neighborhood for
the QAP is the k-exchange neighborhood which we will
define as follows. Let the difference between two per-
mutations � and  be ı(�,  ) := {i : �(i) 6D  (i)}, and
define the distance between the two permutations to
be d(�,  ) := |ı(�,  )|. The k-exchange neighborhood
Nk(�) for a permutation � 2 Sn is

Nk(�) :D f : d(�; ) � k; 2 � k � ng :

The size of the neighborhood used in the k-exchange
local search is (nk) = n!/k!(n� k)!. For the QAP the most
frequently used values for k are 2 and 3, withN2(�) pro-
ducing better empirical results.

Another important ingredient of improvement
methods is the order in which the neighborhood is
scanned. This order can be either fixed previously or
chosen at random. Given a neighborhood structure and
a scanning order, a rule for the update of the current
solution (from the current iteration to the subsequent
one) should be chosen. The following update rules are
frequently used:
� first improvement;
� best improvement;
� Heider’s rule [70].
In the case of first improvement the current solution
is updated as soon as the first improving neighbor solu-
tion is found. Best improvement scans the whole neigh-
borhood and chooses the best improving neighbor so-
lution (if such a solution exists at all). Heider’s rule
starts by scanning the neighborhood of the initial solu-
tion in a prespecified cyclic order. The current solution
is updated as soon as an improving neighbor solution
is found. The scanning of the neighborhood of the new

solution starts there where the scanning of the previous
one was interrupted (in the prespecified cyclic order).

Tabu Search
Tabu search was introduced in [62,63] as a technique to
overcome local optimality. See [61] for a comprehen-
sive introduction to tabu search algorithms.

Different implementations of tabu search have been
proposed for the QAP, for example, a tabu search with
fixed tabu list ([131]), the robust tabu search ([133]),
where the size of the tabu list is randomly chosen be-
tween a maximum and a minimum value, and the reac-
tive tabu search ([12]) which involves a mechanism for
adopting the size of the tabu list. Reactive tabu search
aims at improving the robustness of the algorithm. The
algorithm notices when a cycle occurs, and increases
the tabu list size according to the length of the detected
cycle. The numerical results show that generally the re-
active tabu search outperforms other tabu search al-
gorithms for the QAP (see [12]). More recently, also
parallel implementations of tabu search have been pro-
posed, see for example, [36]. Tabu search algorithms al-
low a natural parallel implementation by dividing the
burden of the search in the neighborhood among sev-
eral processors.

Simulated Annealing
Simulated annealing exploits the analogy between com-
binatorial optimization problems and problems from
statistical mechanics. S. Kirkpatrick, C.D. Gelatt and
M.P. Vecchi [82] and V. Černý [135] were among the
first authors who recognized this analogy, and showed
how the Metropolis algorithm (see [96]) used to sim-
ulate the behavior of a physical many-particle system
can be applied as a heuristic for the traveling salesman
problem.

Burkard and Rendl [33] showed that a simulated
cooling process yields a general heuristic which can be
applied to any combinatorial optimization problem, as
soon as a neighborhood structure has been introduced
in the set of its feasible solutions. In particular, they
applied simulated annealing to the QAP. Other simu-
lated annealing (SA) algorithms for the QAP have been
proposed by different authors, see for example, [136]
and [40]. All these algorithms employ the 2-exchange
neighborhood. They differ on the way the cooling pro-
cess or the thermal equilibrium is implemented. The
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numerical experiments show that the performance of
SA algorithms strongly depends on the values of the
control parameters, and especially on the choice of the
cooling schedule.

Genetic Algorithms
The so-called genetic algorithms (GA) are a nature in-
spired approach for combinatorial optimization prob-
lems. The basic idea is to adapt the evolutionary mech-
anisms acting in the selection process in nature to com-
binatorial optimization problems. The first genetic al-
gorithm for optimization problems was proposed by
Holland [53] in 1975. For a good coverage of theoret-
ical and practical issues on genetic algorithms, see [43]
and [64].

A number of authors have proposed genetic algo-
rithms for the QAP. Standard algorithms, like the one
developed in [134], have difficulties to generate the best
known solutions even for QAPs of small or moder-
ate size. Hybrid approaches, such as combinations of
GA techniques with tabu search as the one developed
in [52] seem to be more promising. More recently an-
other hybrid algorithm, the so-called greedy genetic al-
gorithm proposed in [5], produced very good results on
large scale QAPs from QAPLIB [31].

Greedy Randomized Adaptive Search Procedure
The greedy randomized adaptive search procedure
(GRASP) was introduced in [48] and has been ap-
plied successfully to different hard combinatorial opti-
mization problems [49,83,84,125] and among them to
the QAP [94,109,110] and the BiQAP [95]. See [48]
for a survey and tutorial on GRASP, and to [117] for
a comprehensive presentation of the implementation of
GRASP to the QAP and related problems.

GRASP is a combination of greedy elements with
random search elements in a two phase heuristic. It
consists of a construction phase and a local improve-
ment phase. In the construction phase good solu-
tions from the available feasible space are constructed,
whereas in the local improvement phase the neigh-
borhood of the solution constructed in the first phase
is searched for possible improvements. A pseudocode
of GRASP is shown below. The input parameters are
the size RCLsize of the restricted candidate list (RCL),
a maximum number of iterations, and a random seed.
RCL contains the candidates upon which the sampling

related to the construction of a solution in the first
phase will be performed.

PROCEDURE
GRASP(RCLSize,MaxIter,RandomSeed)

InputInstance();
DO k = 1; : : : ;MaxIter!

ConstructSolution(RCLSize,RandomSeed);
LocalSearch(BestSolutionFound);
UpdateSolution(BestSolutionFound);

OD;
RETURN BestSolutionFound

END GRASP;

Pseudocode for generic GRASP

Ant Systems
Ant systems (AS) is a recently developed heuristic for
combinatorial optimization problems which tries to
imitate the behavior of an ant colony in search for food.
AS was originally introduced in [45] and [38] and has
already produced good results for well known problems
like the traveling salesman problem (TSP) and the QAP
[39,57]. Numerical results in [39,57] show that ant sys-
tems are competitive heuristics especially for real life
instances of the QAP with a few very good solutions
clustered together. For randomly generated instances
which have many good solutions distributed somehow
uniformly in the search space, AS are outperformed
by other heuristics, that is, genetic algorithms or tabu
search approaches.

Related Problems

Generalizations of the QAP appeared almost as soon as
the problem itself. Specifically, Lawler [88] addressed
the issue of extending to cubic, quartic, and N-adic as-
signments problems in general, in the same fashion as
the LAP was extended to QAP in formulation (1). For
the cubic assignment problem for example, we have n6

cost coefficients cijklmp where i, j, k, l,m, p = 1, . . . , n, and
the problem is then defined to be
8̂
<̂
ˆ̂:
min

nX
i; jD1

nX
k;lD1

nX
m;pD1

ci jk lmpxi jxk l xmp

s.t (xi j) 2 Xn :

As it is noted [88], we can construct an n3 × n3 matrix
S containing the cost coefficients, such that the cubic
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assignment problem is equivalent to the LAP

8̂
<̂
ˆ̂:

min hS;Yi
s.t. Y D X ˝ X ˝ X;

X 2 Xn :

In an analogous way the LAP can be extended to anyN-
adic assignment problem, by considering the solution
matrix Y to be the Kronecker Nth power of a permu-
tation matrix in Xn. In this section several generaliza-
tions and related problems of the QAP are presented,
for which real applications have been found that initi-
ated an interest in analyzing them and proposing solu-
tion techniques.

Biquadratic Assignment Problem

A generalization of the QAP is the biquadratic assign-
ment problem (BiQAP), which is essentially a quar-
tic assignment problem with cost coefficients formed
by the products of two four-dimensional arrays. More
specifically, consider two n4 × n4 arrays F = (f ijkl) andD
= (dmpst). The BiQAP can then be stated as:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
nX

i; j;k;lD1

nX
m;p;s;tD1

fi jk l dmpst ximx jpxksxl t

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j 2 f0; 1g; i; j D 1; : : : ; n:

The major application of the BiQAP arises in very large
scale integrated (VLSI) circuit design. A detailed de-
scription of the mathematical modeling of the VLSI
problem to a BiQAP can be found in [24]. Determin-
istic improvement methods and variants of simulated
annealing and tabu search have been developed for
the BiQAP in [22]. Computational experiments on test
problems of size up to n = 32, with known optimal so-
lutions (a test problem generator is presented in [24]),
suggest that one version of simulated annealing is best
among those tested. The GRASP heuristic has also been
applied to the BiQAP in [95], and produced the optimal
solution for all the test problems generated in [24].

Multidimensional Assignment Problems

A close relative to the class ofM-adic assignment prob-
lems is that of the multidimensional assignment prob-
lems (MAPs), often referred to as multi-index assign-
ment problems, that also arise as natural extensions
from the LAP. The general formulation of the MAP is
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
M1X
i1D1

� � �

MNX
iND1

ci1���iN xi1���iN

s.t.
M2X
i2D1

� � �

MNX
iND1

xi1���iN D 1;

for i1 D 1; : : : ;M1;
M1X
i1D1

� � �

Mk�1X
ik�1D1

MkC1X
ikC1D1

� � �

MNX
iND1

xi1���iN D 1;

for ik D 1; : : : ;Mk ; k D 2; : : : ;N � 1;
M1X
i1D1

� � �

MN�1X
iN�1D1

xi1���iN D 1;

for iN D 1; : : : ;MN ;

xi1���iN 2 f0; 1g
for all i1 � � � iN ;

with nN cost coefficients ci1���iN . A feasible solution to
the above problem will be an N-dimensional permu-
tation array. Multidimensional assignment problems
in their general form have found many applications
as a means of solving the data association problem.
More specifically, the central problem in any mul-
titarget tracking and multisensor surveillance is the
data association problem of partitioning the observa-
tions into tracks and false alarms. General classes of
these problems can be formulated as multidimensional
assignment problems. For a detailed description on
the application of MAPs for multiple target tracking
applications, as well as for solution approaches, see
[101,102,118].

Various applications are also contributed to special
cases of the MAP. Specifically, the five-dimensional as-
signment problem has been successfully used for track-
ing elementary particles. By solving a five-dimensional
assignment problem, physicists reconstruct tracks gen-
erated by charged elementary particles produced by
the large electron-positron collider (LEP) at CERN in-
stitute [119]. The 3-index assignment problem is also
a special case of the MAP.
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Bottleneck QAP

In the bottleneck quadratic assignment problem (BQAP)
of size n we are given an n × n flow matrix F and an n ×
n distance matrix D, and wish to find a permutation �
2 Sn which minimizes the objective function

max
˚
fi jd�(i)�( j) : 1 � i; j � n

�
:

A more general BQAP analogous to the QAP in (2) is
obtained if the coefficients of the problem are of the
form cijkl, 1� i, j, k, l � n:

min
�2Sn

max
1�i; j�n

ci j�(i)�( j) :

Besides the application in backboard wiring mentioned
above, the BQAP has many other applications. Basi-
cally, all QAP applications give raise to applications of
the BQAP because it often makes sense to minimize the
largest cost instead of the overall cost incurred by some
decision. A well studied problem in graph theory which
can be modeled as a BQAP is the bandwidth problem.
In the bandwidth problem we are given an undirected
graph G = (V , E) with vertex set V and edge set E, and
seek a labeling of the vertices of G by the numbers 1,
. . . , n, where |V| = n, such that the minimum absolute
value of differences of labels of vertices which are con-
nected by an edge is minimized. In other words, we seek
a labeling of vertices such that the maximum distance
of 1-entries of the resulting adjacency matrix from the
diagonal is minimized, that is, the bandwidth of the ad-
jacency matrix is minimized. It is easy to see that this
problem can be modeled as a special BQAP with flow
matrix equal to the adjacency matrix of G for some ar-
bitrary labeling of vertices, and distance matrix D = (ji
� jj).

The BQAP is NP-hard since it contains the bottle-
neck TSP as a special case. Some enumeration algo-
rithms to solve BQAP to optimality have been proposed
in [19]. These algorithms employ a Gilmore–Lawler-
like bound for the BQAP which involves in turn the
solution of bottleneck linear assignment problems. The
algorithm for the general BQAP involves also a thresh-
old procedure useful to reduce to 0 as many coefficients
as possible. Burkard and Fincke [27] investigated the
asymptotic behavior of the BQAP and proved results
analogous to those obtained for the QAP: If the coef-
ficients are independent random variables taken from

a uniform distribution on [0, 1], then the relative dif-
ference between the worst and the best value of the ob-
jective function approaches 0 with probability tending
to 0 as the size of the problem approaches infinity.

The BQAP and the QAP are special cases of a more
general quadratic assignment problem which can be
called the algebraic QAP (in analogy to the algebraic
linear assignment problem (LAP) introduced in [30]).
If (H, 
,�) is a totally ordered commutative semigroup
with composition 
 and order relation �, the algebraic
QAP with cost coefficients cijkl 2 H is formulated as

min
�2Sn

c11�(1)�(1) 
 : : : 
 c1n�(1)�(n) 
 : : : 
 cnn�(n)�(n) :

The study of the bottleneck QAP and more generally
the algebraic QAP was the starting point for the inves-
tigation of a number of algebraic combinatorial opti-
mization problem with coefficients taken from linearly
ordered semimodules, that is, linear assignment and
transportation problems, flow problems, and other. See
[34] for a detailed discussion on this topic.

Other ProblemsWhich Can Be Formulated As QAPs

There are a number of other well known combinato-
rial optimization problems which can be formulated as
QAPswith specific coefficient matrices. Of course, since
QAP is not a well tractable problem, it does not make
sense to use algorithms developed for the QAP to solve
these other problems. All known solution methods for
the QAP are far inferior compared to any of the special-
ized algorithms developed for solving these problems.
However, the relationship between the QAP and these
problems might be of benefit for a better understanding
of the QAP and its inherent complexity.

Two well studied NP-hard combinatorial optimiza-
tion problems which are special cases of the QAP, are
the graph partitioning problem (GPP) and the maxi-
mum clique problem (MCP). In GPP we are given an
(edge) weighted graph G = (V , E) with n vertices and
a number k which divides n. We want to partition the
set V into k sets of equal cardinality such that the total
weight of the edges cut by the partition is minimized.
This problem can be formulated as a QAPwith distance
matrix D equal to the weighted adjacency matrix of G,
and flow matrix F obtained by multiplying with �1 the
adjacency matrix of the union of k disjoint complete
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subgraphs with n/k vertices each. For more informa-
tions on graph partitioning problems, see [90]. In the
maximum clique problem we are again given a graphG
= (V , E) with n vertices and wish to find the maximum
k � n such that there exists a subset V1 � V with |V1|
= k, which induces a clique in G, that is, all vertices of
V1 are connected by edges of G. In this case consider
a QAP with distance matrix D equal to the adjacency
matrix of G and flow matrix F given as adjacency ma-
trix of a graph consisting of a clique of size k and n �
k isolated vertices, multiplied by �1. A clique of size k
in G exists only if the optimal value of the correspond-
ing QAP is �k2. For a review on the maximum clique
problem, see [114].

The traveling salesman problem (TSP) is another
well known combinatorial optimization problemwhich
is NP-hard, and much research has been devoted to
finding efficient algorithms that will provide near-
optimal solutions. In the TSP we are given a set of
cities and the distances between them, and our task is
to find the optimal tour that will visit each city once
and will minimize the total distance traveled. In formu-
lating the TSP as a QAP the distance matrix D is the
corresponding distance matrix of the TSP, and the flow
matrix F is the adjacency matrix of a complete cycle of
length n. Without loss of generality the distance matrix
D is considered to be symmetric. A complete cycle or
tour is then defined by a permutation �. The traveling
salesman problem (TSP) is a notorious NP-hard com-
binatorial optimization problem. Among the abound-
ing literature on the TSP, [89] is a comprehensive ref-
erence.

In the linear arrangement problem we are given
a graph G = (V , E) and wish to place its vertices at the
points 1, . . . , n on the line so as to minimize the sum
of pairwise distances between vertices of G which are
joined by some edge. If we consider the more general
version of weighted graphs than we obtain the back-
board wiring problem. This is an NP-hard problem as
mentioned in [58]. It can be formulated as a QAP with
distance matrix the (weighted) adjacency matrix of the
given graph, and flow matrix F = (f ij) given by f ij = |i �
j|, for all i, j. In the minimum weight feedback arc set
problem (FASP) a weighted digraph G = (V , E) with
vertex set V and arc set E is given. The goal is to re-
move a set of arcs from Ewithminimum overall weight,
such that all directed cycles, so-called dicycles, in G are

destroyed and an acyclic directed subgraph remains.
Clearly, the minimum weight feedback arc set problem
is equivalent to the problem of finding an acyclic sub-
graph ofGwithmaximumweight. The unweighted ver-
sion of the FASP, that is a FASP where the edge weights
of the underlying digraph equal 0 or 1, is called the
acyclic subdigraph problem and is treated extensively in
[74]. An interesting application of the FASP is the so-
called triangulation of input-output tables which arises
along with input-output analysis in economics used to
forecast the development of industries, see [91]. For de-
tails and a concrete description of the application of
triangulation results in economics, see [41] and [122].
Since the vertices of an acyclic subdigraph can be la-
beled topologically, that is, such that in each arc the la-
bel of its head is larger than that of its tail, the FASP
can be formulated as a QAP. The distance matrix of the
QAP is the weighted adjacency matrix ofG and the flow
matrix F = (f ij) is a lower triangular matrix, that is, f ij
= �1 if i � j and f ij = 0, otherwise. The FASP is well
known to be NP-hard (see [58,79]).

Another well known NP-hard problem which can
be formulated as a QAP is the graph packing problem
(cf. [16]). The graph packing problem can be formu-
lated as a QAP with distance matrix equal to the adja-
cency matrix of G2 and flow matrix equal to the adja-
cency matrix of G1. A packing of G2 into G1 exists if
and only if the optimal value of this QAP is equal to
0. In the positive case the optimal solution of the QAP
determines a packing.

QAP ProblemGenerators

Since the QAP is a very hard problem from a practi-
cal point of view, often heuristics are the only reason-
able approach to solve it, and so far there exists no per-
formance guarantees for any of the algorithms devel-
oped for the QAP. One possibility to evaluate the per-
formance of heuristics and to compare different heuris-
tics is given by QAP instances with known optimal so-
lution. Heuristics are applied to these instances and
the heuristic solution is compared to the optimal one
known before hand. The instances with known optimal
solution should ideally have two properties: first, they
should be representative in terms of their hardness, and
secondly, they should not be especially easy for any of
the heuristics.
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Two generators of QAP instances with known opti-
mal solution have been proposed so far: Palubeckis’ gen-
erator [107] and the Li–Pardalos generator [92].

The first method for generating QAP instances
with a known optimal solution was proposed by G.S.
Palubeckis [107] in 1988. The input of the Palubeckis’
algorithm consists of the size n of the instance to be
generated, the optimal solution (permutation) � of the
output instance, two control parameters w and z, where
z < w, and the distance matrix A of an r × s grid with rs
= n. A contains rectilinear distances also called Man-
hattan distances, that is, the distance aij between two
given knots i, j lying in rows ri, rj and in columns ci, cj,
respectively, is given by aij = |ri � rj| + |ci � cj|. The out-
put of the algorithm is a second matrix B such that � is
an optimal solution of QAP(A, B). The idea is to start
with a matrix B such that QAP(A, B) is a trivial instance
with optimal solution �. Then B is transformed such
that QAP(A, B) is not any more trivial, but � continues
to be its optimal solution.

Palubeckis starts with a constant matrix B = (bij)
with bij = w. QAP(A, B) is a trivial problem because
all permutations yield the same value of the objective
function and thus, are optimal solutions. Hence, also
the identity permutation id is an optimal solution of
QAP(A, B). Then matrix B is iteratively transformed
so that it is not a constant matrix any more and the
identity permutation remains an optimal solution of
QAP(A, B). In the last iteration the algorithm con-
structs an instance QAP(A0, B) with optimal solution
� with the help of QAP(A, B) with optimal solution the
identity permutation id, by setting A0 = (a�(i)�(j)). The
optimal value of QAP(A0, B) equals w

Pn
iD1

Pn
jD1 aij.

D. Cyganski, R.F. Vaz and V.G. Virball [42] have ob-
served that the QAP instances generated by Palubeckis’
generator are ‘easy’ in the sense that their optimal value
can be computed in polynomial time by solving a linear
program.

Another generator of QAP instances with known
solution has been proposed by Li and Pardalos [92]. As
Palubeckis’ generator, Li and Pardalos starts with a triv-
ial instance QAP(A, B) with the identity permutation id
as optimal solution and iteratively transforms A and B
so that the resulting QAP instance still has the optimal
solution id but is not trivial any more. The transforma-
tions are such that for all i, j, i0, j0, aij � ai0 j0 is equivalent
to bij � b0ij at the end of each iteration.

If the coefficient matrices are considered as
weighted adjacency matrices of graphs, each itera-
tion transforms entries corresponding to some spe-
cific subgraph equipped with signs on the edges and
hence called sign-subgraphs. The application of the
Li–Pardalos algorithm with different sign-subgraphs
yields different QAP generators. A number of gener-
ators involving different sign-subgraphs, for example,
subgraphs consisting of a single edge, signed triangles
and signed spanning trees have been tested. It is per-
haps interesting and surprising that QAP instances gen-
erated by involving more complex sign-subgraphs are
generally ‘easier’ than those generated by involving sub-
graphs consisting of single edges. Here a QAP instance
is considered to be ‘easy’, if most heuristics applied to
it find a solution near to the optimal one in a relatively
short time. Nothing is known about the complexity of
QAP instances generated by the Li–Pardalos generator,
since the arguments used to analyze Palubeckis’ gener-
ator do not apply in this case.

Surveys and Books

In this concluding section a list of survey articles and
books which cover all the aspects of the QAP in depth
is given.

One of the early survey articles is [51] where the
eigenvalue based lower bounds for the QAP are in-
troduced. The survey papers [20,112] and [25] cover
every aspect of the QAP. Specifically, the article [25]
is the most recent one, and the most comprehensive.
A collection of articles with theoretical and algorithmic
contributions for the QAP can be found in the book
[113]. The book [35] has a comprehensive introduction
on the QAP, and focuses on special cases of the QAP
which can be solved in polynomial time. Finally the
book [106] focuses on polyhedral aspects of the QAP.
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Given two continuous functions f : Rn! R and gRn!

R defined on a polyhedral set S � Rn such that g(x) > 0
for all x 2 S, the fractional programming problem is to
find some point x� which satisfies

f (x�)
g(x
)

D max
x2S

f (x)
g(x)

: (1)

Applications and algorithms for fractional programs
have been treated in considerable detail since the early
work of J.R. Isbell and W.H. Marlow [5]. Included
among the many applications are portfolio selection,
stock cutting, game theory, and numerous decision
problems in management science. See [3] for work
known to up to 1971 and [1,4,12,13] for the most re-
cent surveys.

If f (x) is concave and nonnegative and g(x) and
S are convex (and S is bounded), then (1) is called
a concave-convex fractional program. It was shown in
[10] that such problems can be solved by a single con-
cave problem using a simple variable transformation.
This provides an efficient approach for solving a lim-
ited class of fractional programming problems. Unfor-
tunately, even in some of the simplest cases (for exam-
ple when f (x) and g(x) are quadratic) a new constraint,
which may be nonlinear, must be added (to the trans-
formed feasible region), and the transformed problem
becomes very difficult to solve. In addition, if the prob-
lem is not concave-convex initially, then the transfor-
mation does not even necessarily yield a concave prob-
lem. In fact, in the most general case, Eq (1) may have
many local maxima which are different from the opti-
mal one, and hence determining the global maximum
is very difficult (i. e., NP-hard).

A different and more recent method is to replace the
nonlinear functions by suitable linear underestimators
and then obtain the global optimum by a vertex rank-
ing procedure. This method, due to P.M. Pardalos [6],

is applicable only when f (x) is a convex quadratic func-
tion and g(x) is linear (hence the ratio is quasiconvex).

Another well-known approach, and one of the old-
est, is to consider the global optimization problem

max
x2S

f (x)� �g(x) ; (2)

where � 2 R is a constant. This ‘parametric’ approach,
which was first proposed by W. Dinkelbach [2], gener-
ates a sequence of values �i that converges to the global
optimum function value [11]. This method has since
then been applied to many specific types of fractional
programs including the concave-convex type, but very
little work has been done to solve fractional programs
where the ratio of two concave, two convex, or the ratio
of a convex and a concave function is to be maximized.
In addition, this method does not provide a sequence
of improving upper bounds, and hence even though the
sequence �i may be converging to the global optimum
function value, no bound on the error is available at any
iteration.

The method discussed here improves Dinkelbach’s
algorithm by providing a means for obtaining a se-
quence of improving upper bounds which, along
with the corresponding sequence of improving lower
bounds, will provide a bound on the error at each it-
eration of the solution procedure. In addition, both
the sequence of lower bounds and the sequence of
upper bounds converge to the global optimum func-
tion value at a ‘superlinear’ rate. This algorithm is also
appropriate for the class of quadratic fractional pro-
grams (i. e., one or both of f (x) and g(x) are quadratic)
where the ratio may involve concave, convex, or even
indefinite terms. It combines Dinkelbach’s approach
with a method guaranteed to solve linearly constrained
quadratic programming problems regardless of the def-
initeness of the quadratic from [8].

Two algorithms which are similar to the one pre-
sented here are given in [4,11]. Schaible’s method [11]
first computes a sequence of improving upper and
lower bounds using an efficient section method.Dinkel-
bach’s algorithm is then started as soon as the section
method achieves a set of bounds that differ by some
pre-specified tolerance. The algorithm presented here
differs from Schaible’s method in that the upper and
lower bounds are continuously improving throughout
the procedure. Nevertheless, in both algorithms the se-
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quence of upper and lower bounds converges superlin-
early.

Likewise, [4] presents a variety of related algorithms
which also provide upper and lower bounds. These al-
gorithms combine Dinkelbach’s approach with various
search techniques (e. g., Newton, binary, modified bi-
nary). The result is a set of related algorithms with con-
vergence rates that vary depending on the search tech-
nique employed. T. Ibaraki [4] also provides a collec-
tion of computational results for the fractional knap-
sack problem and quadratic fractional programs.

Problem Formulation and Properties

The fundamental result which relates the global op-
timization problem (2) to the general fractional pro-
gramming problem (1) is as follows: x� solves the frac-
tional programming problem (1) if and only if x� solves
the global optimization problem (2) with constant �� =
f (x�)/g(x�).

Dinkelbach’s original iterative algorithm is based on
this theorem and can be described as follows:

1 Select some x(0) 2 S.
Set �(0) = f (x(0))/g(x(0)) and k = 0.

2 Solve the constrained global optimization
problem (2) to get the optimal solution point
x(k+1).

3 IF f (x(k+1)) � �(k)g(x(k+1)) = 0,
THEN set x� = xk+1; �� = �(k),
STOP.

4 IF f (x(k+1)) � �(k)g(x(k+1)) > 0,
THEN set �(k+1) = f (x(k+1))/g(x(k+1)) and k =
k + 1.
Go to Step 2.

Dinkelbach(S; f; g)

The efficiency of this algorithm depends on the
number of times the constrained global optimization
problem must be solved, and on the time spent solving
it during each iteration. Also note that a test of the form
f (x(k + 1)) � �(k)g(x(k + 1)) < 0 is not necessary since, for
any fixed k,

f (x(kC1)) � �(k)g(x(kC1)) D max
x2S

f (x)� �(k)g(x)

� f (x(k)) � �(k)g(x(k))

D 0 :

Now consider the functionM(�) defined as

M(�) D max
x2S

f (x) � �g(x) : (3)

The function M(�) has two interesting properties that
are important in guaranteeing convergence of upper
and lower bounds to �� and in determining the rate of
this convergence. The first of these properties is that for
any lower bound � of ��, M(�) is positive, and for any
upper bound � of ��, M(�) is negative. Secondly, the
functionM(�) is convex. That is,
1) M(�) > 0 for all � < ��, andM(�) < 0 for all � > ��;

and
2) M(�) is convex.
The sequence of iterates �(0), �(1), . . . generated by the
algorithm Dinkelbach(S, f , g) is strictly monotone in-
creasing, and satisfy M(�(i)) > 0 for i = 0, 1, . . . [2].
Hence, by the properties ofM(�) listed above, they pro-
vide a strictly monotone increasing sequence of lower
bounds for ��.

Bounds and Convergence Rates

The sequence of lower bounds �(i) converges superlin-
early to �� � f (x�) : g(x�) ! where x� is any opti-
mal solution for (1) as shown in [7]. However, as it
now stands, the algorithm Dinkelbach(S, f , g) does not
provide upper bounds on the global optimum function
value ��. One way to obtain an initial upper bound is
to solve the following two problems:

max
x2S

f (x) (3a)

to get the optimal solution f (x0), and

min
x2S

g(x) (4)

to get the optimal solution g(x00). Then an initial upper
bound is clearly given by � (� 1) � f (x0)/g(x00). In fact,
according to the properties ofM (part 1), any � 2R sat-
isfyingM(�) < 0 would also be an upper bound. Hence,
if we define

� (n) � � (n�1)�M(� (n�1)) �
�

� (n�1) � �(n)

M(� (n�1)) �M(�(n))

�

where �(n) is the most recent lower bound of �� and
� (n� 1) is the most recent upper bound of ��, then the
new upper bound is given by � (n). As Fig. 1 illustrates,
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� (n) is just the root of the line segment joining the points
(�(n),M(�(n))) and (� (n� 1),M(� (n� 1))).

This leads to an important modification of the algo-
rithm Dinkelbach(S, f , g):

1 Select some x(0) 2 S.
Set �(0) = f (x(0))/g(x(0)).

2 Solve the constrained global optimization
problems (4) and (5) to get the optimal func-
tion values f (x0) and g(x0), respectively.
Set � (�1) = f (x0)/g(x") and k = 0.
IF � (�1) � �(0) � ı,
THEN set �� = �(0) and x� = x(0);
STOP.

3 Solve the constrained global optimization
problem

M(�(k)) = max
x2S

f (x)� �(k)g(x) (6)

to get the optimal solution point x(k+1).
4 IF M(�(k)) = 0,

THEN set x� = x(k+1) and �� = �(k);
STOP.

5 Solve the constrained global optimization
problem

M(� (k�1)) = max
x2S

f (x) � � (k�1)g(x) (7)

to get the optimal solution point y(k).
6 IF M(� (k�1)) = 0,

THEN set x� = y(k) and �� = � (k�1);
STOP.

7 Set

� (k) = � (k�1)

�M(� (k�1)) �
�

� (k�1) � �(k)

M(� (k�1)) �M(�(k))

�
:

8 IF � (k) � �(k) � ı,
THEN set �� = �(k) and x� = x(k+1);
STOP.

9 Set �(k+1) = f (x(k+1))/g(x(k+1)) and k = k + 1.
Go to Step 3.

Fract(S; f; g; ı)

Quadratic Fractional Programming: DinkelbachMethod, Fig-
ure 1

Note that the parameter ı � 0 is a user supplied
stopping tolerance. The following assertion from [7]
shows that the sequence iterates � (� 1), � (0), � (1), . . . is,
in fact, a sequence of upper bounds on ��, and that the
sequence is strictly monotonically decreasing:

�� � � (iC1) � � (i) for i D �1; 0; 1; : : : :

In fact, the sequence of upper bounds � (i) also con-
verges to ��, and this convergence is superlinear as
well [7].

Special Cases

If the feasible set S is polyhedral and the functions f (x)
and g(x) are either linear or quadratic, then the al-
gorithm solves a sequence of linear or quadratic pro-
grams, respectively. In particular, if f (x) = c|x and g(x)
= d|x then the algorithm solves the sequence of linear
programs

max
x2S

(c � �(k)d)>x (8)

If both f (x) and g(x) are quadratic, i. e., f (x) = (½) x|Qx
+ c|x and g(x) = (½) x|Px + d|x, then the algorithm
solves the sequence of quadratic programs

max
x2S

1
2
x>(Q � �(k)P)x C (c � �(k)d)>x : (9)

Notice that the matrix (Q� �(k)P) may be indefinite, in
which case the algorithm is required to find the global
maximum of a linearly constrained indefinite quadratic
function. Even though this is anNP-hard problem (e. g.,
when (Q � �(k)P) is positive definite), the method de-
veloped by A.T. Phillips and J.B. Rosen [8] is guaran-
teed to find an �-approximate global maximum (i. e.,
the relative error is no larger than �) for any specified �
> 0.
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Furthermore, if f (x) and g(x) are such that f (x) � �
g(x) is only ‘partially separable’, then the method devel-
oped in [9] can be used to find an �-approximate global
maximum for any � > 0. Specifically, the method in [9]
is guaranteed to find solutions to the sequence of sub-
problems (6) and (7) if x can be partitioned into two
components x = (w, z) such that f (x) � � g(x) (where
the constant � = �(k) or � (k� 1)) can be written in the
form �(w) +  (z) where �(w) is a separable convex
function of w and  (z) is a concave (but not necessar-
ily separable) function of z. The applicability of these
methods to the solution of these subproblems greatly
extends the class of fractional programming problems
that can be solved in practice.
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Introduction

In this paper we consider a quadratic programming
(QP) problem of the following form:

min f (x) D
1
2
xTQx C cTx

s.t. x 2 D
(1)

where D is a polyhedron in Rn , c 2 Rn . Without
any loss of generality, we can assume that Q is a real
symmetric (n � n)-matrix. If this is not the case, then
the matrix Q can be converted to symmetric form by
replacing Q by (Q C QT)/2, which does not change
the value of the objective function f (x). Note that if
Q is positive semidefinite, then Problem (1) is consid-
ered to be a convex minimization problem. When Q
is negative semidefinite, Problem (1) is considered to
be a concave minimization problem. When Q has at
least one positive and one negative eigenvalue (i. e., Q
is indefinite), Problem (1) is considered to be an indefi-
nite quadratic programming problem.We know that in
the case of convex minimization problem, every Kuhn-
Tucker point is a local minimum, which is also a global
minimum. In this case, there are a number of classical
optimization methods that can obtain the globally opti-
mal solutions of quadratic convex programming prob-
lems. These methods can be found in many places in
the literature. In the case of concave minimization over
polytopes, it is well known that if the problem has an
optimal solution, then an optimal solution is attained at
a vertex of D. On the other hand, the global minimum
is not necessarily attained at a vertex of D for infinite
quadratic programming problems. In this case, from
second order optimality conditions, the global mini-
mum is attained at the boundary of the feasible domain.
In this research, without loss of generality, we are inter-
ested in developing solution techniques to solve general
(convex, concave and indefinite) quadratic program-
ming problems.

Complexity of Quadratic Programming

In this section we discuss the complexity of quadratic
programming problems. The complexity analysis can

give an idea of the possibility of developing efficient al-
gorithms for solving the problem. In [10], the QP was
shown to beNP-hard in the case of a negative definite
matrix Q. The QP was also proven to beNP-hard by
reduction to the satisfiability problem [11], and reduc-
tion to the knapsack feasibility problem [5]. Moreover,
it has also been shown that checking local optimality for
the QP itself is anNP-hard problem [11]. In addition,
checking for strict convexity (checking local optimal-
ity as part of the second order necessary conditions) in
the QP was proven to be NP-hard [8]. In fact, find-
ing a local minimum and proving local optimality of
such a solution to the QP may take exponential time.
This is true even in the case of a small number of con-
cave variables. For instance, although the matrix Q is of
rank one with exactly one negative eigenvalue, the QP
is stillNP-hard [9]. However, a large number of neg-
ative eigenvalues does not necessarily make the prob-
lem harder to solve. For example, consider the follow-
ing problem:

min
1
2
xTQx C cTx

s.t. x � 0 :

If the matrix Q has (n � 1) negative eigenvalues, then
there must be at least (n � 1) active constraints at the
optimal solution [3]. Correspondingly, it is sufficient to
solve (n � 1) different problems, in each case setting
(n � 1) of the constraints to equalities, to find the opti-
mal solution. In general, if the matrixQ has (n�k) neg-
ative eigenvalues, then we are required to solve n!

k!(n�k)!
independent problems. In addition, the total computa-
tional time required to solve this problem is propor-
tional to k3ck n!

k!(n�k)! . Thus, if k is an constant and indepen-
dent of n, then the computational time is bounded by
a polynomial in n. On the other hand, if k grows with
n, then the computational time can grow exponentially
with n [3].

Equivalence Between Discrete
and Continuous Problems

Before we show the equivalence between discrete and
continuous programs, it is important to discuss an
equivalence property between two extremum prob-
lems [2]. Therefore, we refer to the following theorem
(see [2] for a proof).
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Theorem 1 Let Z̄ and X̄ be compact sets in Rn ; R be
a closed set inRn, and let the following hypotheses hold.

H1) f : Rn ! R is a bounded function on X̄, and
there exists an open set A � Z̄ and real number
˛; L > 0 such that, for any x; y 2 S; f satisfies
the following Hölder condition: j f (x) � f (y)j
� Lkx � yk˛ .

H2) It is impossible to find ' : Rn ! R such that
(i) ' is continuous on X̄,
(ii) '(x) D 0; x 2 Z̄; '(x) > 0; x 2 X̄ � Z̄;
(iii) 8z 2 Z̄; there exists a neighborhood S(z) and

a real "̄ > 0 such that, for any x 2 S(z)\(X̄�
Z̄); '(x) � "̄kx � zk˛ .

Then a real �0 exists such that for any real � � �0,
min f (x); x 2 Z̄ \ R is equivalent to min[ f (x) C
�'(x)]; x 2 X̄ \ R.

Now we can show an equivalence between discrete and
continuous programs from the following theorem [2].

Theorem2 Let eT D (1; 1; : : : ; 1); Z̄ D Bn; X̄ D fx 2
Rn ; 0 � x � eg; R D fx 2 Rn ; g(x) � 0g. Consider
the problem

min f (x)

s.t. g(x) � 0; x 2 Bn ;
(2)

and the problem

min [ f (x)C �xT(e � x)]

s.t. g(x) � 0; 0 � x � e :
(3)

Then we suppose that f verifies assumption H1 from The-
orem 1 with ˛ D 1; that is, it is bounded on X̄ and Lip-
schitz continuous on an open set A � Z̄. Subsequently,
there exists some �0 2 R such that 8� < �0 Prob-
lems (2) and (3) are equivalent.

Integer Programming Problems
and Complementarity Problems

The connections between integer programs and com-
plementarity problems can be exhibited by applying
KKT conditions. The results can be generalized in the
quadratic programming case [4].

Theorem 3 Let us first assume
3a) f : Rn ! R; g : Rn ! R are continuously differ-

entiable functions.

3b) g(x) satisfies a constraint qualification condition at
x0 to ensure that KKT conditions are validated.

Then the nonlinear programming problem

min f (x)
s.t. g(x) � 0; x � 0 ;

(4)

has an optimal solution x0 if there exist u0 2 Rn ;

y0; v0 2 Rv such that (x0; y0; u0; v0) is an optimal solu-
tion to the following problem:

min f (x)

s.t. f 0(x) � yTg0(x) � u D 0;
g(x) � v D 0;

yTv D 0

xTu D 0

x; y; u; v � 0 :

(5)

Proof 1 Necessity. If x0 is an optimal solution to Prob-
lem (4), from KKT conditions we obtain (y0; u0) such
that

f 0(x0) � y0
T
g(x0) � u0 D 0;

g(x0) � 0;

x0
T
u0 D 0;

x0; y0; u0 � 0 :

Let v0 D g(x0), then (x0; y0; u0; v0) is an optimal solu-
tion to Problem (5).

Sufficiency. The proof is trivial. �

We now generalize the results of Theorem 3 to the
quadratic programming case. Consider the following
problem

min
1
2
xTQx C cTx

s.t. Ax � b;

x 2 Bn ;

(6)

whereQ is a symmetricmatrix. Using Theorem 2, Prob-
lem (6) is equivalent to

min
�
1
2
xT(Q � 2�I)x C (cT C �eT)x

�

s.t. Ax � b;

x � e;

x � 0 :

(7)
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Applying Theorem 3 to Problem (7), we then obtain

min
�
1
2
xT(Q � 2�I)x C (cT C �eT)x

�
(8)

s.t. c C Qx C �(e � 2x) � yTAC t D u ; (9)

b � Ax D v ; (10)

e � x D w; (11)

xTu D 0 ; (12)

yTv D 0 ; (13)

tTw D 0 ; (14)

x; y; t; u; v;w � 0 : (15)

Arrange the terms in (9), we then have Qx � 2�x D
�(c C �e)C yTA� t C u. Consequently, (8) becomes
min[ 12 (c

T C �eT)x C 1
2 (b

Ty � eTt). From (12), (13),
and (14), we have

xTu D 0;

0 D yTv D yTb � yTAx;

0 D tTw D tTe � tTx ;

therefore, yTb D yTAx and tTe D tTx. Taken all to-
gether, Problem (6) is equivalent to the following prob-
lem.

min ĉT x̂

s.t. Âx̂ C û D b̂;

x̂û D 0;

x̂; û � 0 ;

where

x̂T D (xT; yT; tT);

ûT D (uT; vT;wT);

Â D

0
@
�Q C 2�I AT �I

A 0 0
I 0 0

1
A ;

ĉT D
1
2
(cT C �eT C eT; bT; eT);

b̂T D (cT; bT; eT) :

Note that there are no restrictive assumptions made on
Q, this transformation is applicable to the convex case
as well as the nonconvex case.

Integer Programming Problems
and Quadratic Integer Programming Problems

Integer programming is used to model a variety of im-
portant practical problems in operations research, engi-
neering, and computer science. Consider the following
linear zero-one programming problem:

min cTx

s.t. Ax � b; xi 2 f0; 1g; (i D 1; : : : ; n)

where A is a real (m � n)-matrix, c 2 Rn and b 2 Rm .
Let eT D (1; : : : ; 1) 2 Rn denote the vector whose
components are all equal to 1. Then the zero-one in-
teger linear programming problem is equivalent to the
following concave minimization problem:

min f (x) D cTx C �xT(e � x)
s.t. Ax � b; 0 � x � e

where� is a sufficiently large positive integer. We know
that the function f (x) is concave because �xTx is con-
cave.

The equivalence of the two problems is based on
the facts that a concave function attains its minimum
at a vertex and that xT(x � e) D 0; 0 � x � e, implies
xi D 0 or 1 for i D 1; : : : ; n. We note that a vertex
of the feasible domain is not necessarily a vertex of the
unit hypercube 0 � x � e, but the global minimum is
attained only when xT(e � x) D 0, provided that � is
a sufficiently large number.

These transformation techniques can be applied to
reduce quadratic zero-one problems to equivalent con-
cave minimization problems. For instance, consider
a quadratic zero-one problem of the following form:

min f (x) D cTx C xTQx

s.t. x 2 f0; 1g

where Q is a real symmetric (n � n) matrix. Given any
real number �, let Q̄ D Q C �I where I is the (n � n)
unit matrix, and c̄ D c � �e. Because of f̄ (x) D f (x),
the above quadratic zero-one problem is equivalent to
the problem:

min f (x) D c̄Tx C xTQ̄x

s.t. xi 2 f0; 1g; (i D 1; : : : ; n)
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In this case, if we choose � such that Q̄ D Q C �I be-
comes a negative semidefinite matrix (e. g., � D ��;
where � is the largest eigenvalue of Q), then the objec-
tive function f̄ (x) becomes concave and the constraints
can be replaced by 0 � x � e. Thus, this problem is
equivalent to the minimization of a quadratic concave
function over the unit hypercube [4].

Various Equivalent Forms
of Quadratic Zero-One Programming Problems

The problem considered here is a quadratic zero-one
program, which has the form

min f (x) D xTQx;

s.t. xi 2 f0; 1g; i D 1; : : : ; n;
(16)

where Q is an n � n matrix [6,7]. Throughout this sec-
tion the following notation will be used.
� f0; 1gn : set of n dimensional 0–1 vectors.
� Rn�n : set of n � n dimensional real matrices.
� Rn: set of n dimensional real vectors.
In order to formalize the notion of equivalence we need
some definitions.

Definition 1 The problem P is “polynomially re-
ducible” to problem P0 if given an instance I(P) of prob-
lem P, an instance I(P0) of problem P0 can be obtained
in polynomial time such that solving I(P) will solve
I(P0).

Definition 2 Two problems P1 and P2 are called
“equivalent” if P1 is “polynomially reducible” to P2 and
P2 is “polynomially reducible” to P1.

Consider the following three problems:

P : min f (x) D xTQx; x 2 f0; 1gn;

Q 2 Rn�n ;

P1 : min f (x) D xTQx C cTx; x 2 f0; 1gn;
Q 2 Rn�n ; c 2 Rn :

P2 : min f (x) D xTQx; x 2 f0; 1gn;

Q 2 Rn�n ;

nX
iD1

xi D k for some k

s.t. 0 � k � n;

where x D (x1; x2; : : : ; xn) :

Next we show that problems P, P1, and P2 are all “equiv-
alent”. Then, formulation P2 will be used in the rest of
the sections.

Lemma 1 P is “polynomially reducible” to P1.

Proof 2 It is very easy to see that P is a special case of
P1. �

Lemma 2 P1 is “polynomially reducible” to P.

Proof 3 Problem P1 is defined as follows: min f (x) D
xTQx C cTx; x 2 f0; 1gn;Q 2 Rn�n ; c 2 Rn . If Q D
(qi j) then let B D (bi j) where

bi j D

(
qi j if i ¤ j
qi j C ci if i D j :

Since x2i D xi (because xi 2 f0; 1g), we have g(x) D
xTBx D xTQx C cTx. So the following problem is
equivalent to problem P1 : min g(x) D xTBx; x 2
f0; 1gn; B 2 Rn�n . �

Using Lemma 1 and Lemma 2, it is evident that P and
P1 are “equivalent”.

Lemma 3 P2 is “polynomially reducible” to P.

Proof 4 Problem P2 is as follows: min f (x) D

xTQx; x 2 f0; 1gn; Q 2 Rn�n ;
Pn

iD1 xi D k for
some k s.t. 0 � k � n. If Q D (qi j) then let M D

2[
Pn

jD1
Pn

iD1 jqi jj] C 1. Now, define the following
problem P : min g(x) D xTQxCM(

Pn
iD1 xi � k)2 s.t.

x 2 f0; 1gn;Q 2 Rn�n . Let xb D (xb1 ; : : : ; xbn) and x0 D
(x01 ; : : : ; x0n) such that

Pn
iD1 x

b
i ¤ k and

Pn
iD1 x

0
i D k;

then g(x0) � M�1
2 as

Pn
iD1 x

0
i D k; g(xb) � �(M�1)

2
C M or g(xb) � MC1

2 as j
Pn

iD1 x
b
i � kj � 1. There-

fore, g(x0) < g(xb) if
Pn

iD1 x
b
i ¤ k and

Pn
iD1 x

0
i D k.

Hence, if min g(x) D g(x0) where x0 D (x01; : : : ; x0n)
then

Pn
iD1 x

0
i D k. So min f (x) D min g(x). From the

above discussion, it can be easily seen that P2 is “poly-
nomially reducible” to P. �

The proof of Lemma 3 also illustrates how equality
(knapsack) constraints in a quadratic zero-one program
can be eliminated.

Lemma 4 P is “polynomially reducible” to P2.

Proof 5 Let problem P be defined as follows:
min f (x) D xTQx; x 2 f0; 1gn; Q 2 Rn�n . De-
fine a series of (nC1) problems: P2(0); P2(1); P2(2); � � � ;
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P2(n), where P2(j) is the following problemmin f (x) D
xTQx; x 2 f0; 1gn; Q 2 Rn�n ,

Pn
iD1 xi D j.

Let the minimum of the problem P2(j) be yj, then the
minimum of problem P is easily seen to be the min
fy0; y1; : : : ; yng. �

Lemma 3 and Lemma 4 imply that P and P2 are “equiv-
alent”. Since “equivalent” is a transitive relative, P, P1,
P2 are all “equivalent”.

Complexity of Quadratic Zero-One
Programming Problems

Quadratic zero-one programming is a difficult prob-
lem. We next will show that the quadratic knapsack
zero-one problem in (P2) is a NP hard problem by prov-
ing that it is equivalent to the k-clique problem. A k-
clique is a complete graph with k vertices.

k-clique Problem

Given a graph G=(V , E) (V is the set of vertices and E
is the set of edges), does the graph G have a k-clique as
one of its subgraphs?

k-clique problem is known to be NP-complete. We
will show that the k-clique problem is “polynomially re-
ducible” to problem P2 defined in the previous subsec-
tion.

Theorem 4 The k-clique problem is “polynomially re-
ducible” to P2.

Proof 6 Problem P2 was defined as min f (x) D xTQx,
s.t. xi 2 f0; 1g; i D 1; � � � ; n,

Pn
iD1 xi D m for some

0 � m � n. Given the graph G D (V ; E), define Q D
(qi j) such that

qi j D

(
0 if (vi ; v j) 2 E
�1 if (vi ; v j) 62 E ;

where n D jV j;m D k (we are trying to find a k-
clique). The meaning attached to the vector x 2 f0; 1gn

in problem P2 is as follows

xi D

(
1 means that vi is in the clique;
0 means that vi is not in the clique :

We can easily prove that the graph G has a k-clique if
and only if min f (x) D �k(k�1). So the k-clique prob-
lem is “polynomially reducible” to P2. �

Problem P2 is “equivalent” to P, so problem P is also
NP-hard. Therefore, as the dimension of the problem
increases, the necessary CPU time to solve the problem
increases exponentially.

Quadratic Zero-One Programming
andMixed Integer Programming

In this section, we consider a quadratic zero-one pro-
gramming problem in the following form:

min f (x) D xTQx;

s.t.
nX

iD1

xi D k; x 2 f0; 1gn :
(17)

Let Q be n � n matrix, whose each element qi; j � 0.
Define x D (x1; : : : ; xn), where each xi represents bi-
nary decision variables. We will show that the problem
in (17) can be linearized as the following mixed integer
programming problems. The first linearization tech-
nique is trivial and can be found elsewhere. Recently,
more efficient linearization technique was introduced
in [1]. In addition, the linearization technique for more
general case (where qi; j 2 real) and multi-quadratic
programming was also proposed in [1].

Conventional Linearization Approach

For each product xixj in the objective function of the
problem (17) we introduce a new continuous variable,
xi j D xi x j(i ¤ j). Note that xi i D x2i D xi for
xi 2 f0; 1g. The equivalent mixed integer programming
problem (MIP) is given by:

min
X
i

X
j

qi jxi j

s.t.
nX

iD1

xi D k;

xi j � xi ; for i; j D 1; : : : ; n(i ¤ j)
xi j � x j; for i; j D 1; : : : ; n(i ¤ j)

xi C x j � 1 � xi j; for i; j D 1; : : : ; n(i ¤ j)

0 � xi j � 1; for i; j D 1; : : : ; n(i ¤ j)
(18)

where xi 2 f0; 1g, i; j D 1; : : : ; n.
The main disadvantage of this approach is that the

number of additional variables we need to introduce is
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O(n2), and the number of new constraints is alsoO(n2).
The number of 0–1 variables remains the same.

A New Linearization Approach

Consider the following mixed integer programming
problem:

min
x;y;s

g(s) D
nX

iD1

si D eTs

s.t.
nX

iD1

xi D k;

Qx � y � s D 0;

y � �(e � x);

xi 2 f0; 1g; for i D 1; : : : ; n

yi ; si � 0; for i D 1; : : : ; n :

(19)

where Q is an n � n matrix, whose each element
qi; j � 0.

In [1], the mixed integer 0–1 programming problem
in (19) was proved equivalent to the quadratic zero-one
programming in (17). The main advantage of this ap-
proach is that we only need to introduce O(n) addi-
tional variables and O(n) new constraints, where the
number of 0–1 variables remains the same. This lin-
earization technique provedmore robust andmore effi-
ciently solving quadratic zero-one and multi-quadratic
zero-one programming problems [1].
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The quadratic knapsack problem is one of the sim-
plest quadratic programming problems as defined be-
low (cf. also � Quadratic programming with bound
constraints):

(P)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x) D 1
2 x
>Qx C c>x

s.t.
nX

iD1

ai xi D M;

0 � xi � 1; i D 1; : : : ; n;

where x 2 Rn is a variable vector, Q 2 Rn × n, c 2 Rn and
M is a scalar.
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The problems are mainly classified by the nature
of matrix Q. When the matrix Q is positive semidefi-
nite, i. e., the objective function f (x) is convex, prob-
lem (P) can be solved in polynomial time by the ellip-
soid algorithm [8], and several kinds of interior point
algorithms (e. g. [5,7,11], which solve general convex
quadratic problems including (P) as a special case).
Also, P.M. Pardalos, Y. Ye and C.G. Han [15] show
a potential reduction algorithm for the special case of
(P) defined below:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min 1
2 x
>Qx

s.t.
nX

iD1

xi D 1;

xi � 0; i D 1; : : : ; n:

In particular, when (P) has a diagonal matrix Q with
positive elements, anO(n) algorithm has been proposed
by P. Brucker [3]. The algorithm generates the corre-
sponding KKT condition using binary search. Pardalos
and N. Kovoor [13] also propose an O(n) randomized
method.

The convex case is important because of its frequent
appearance as a subproblem in many application areas.
Among those are general convex quadratic program-
ming [9], multicommodity network flow problems [1],
resource management [2], and portfolio selection prob-
lems [10].

The problem becomes extremely difficult if f (x) is
not convex. S. Sahni [16] shows that the problems with
the negative diagonal matrix Q are NP-hard (cf. also
� Computational complexity theory; � Complexity
theory), which implies that the general indefinite case
is also NP-hard.

Let a1, . . . , an and b be positive integers, and let us
consider the subset sum problem, which finds a feasible
solution of the set defined below:(

x :
nX

iD1

ai xi D b; xi 2 f0; 1g; i D 1; : : : ; n

)
:

The feasibility is determined by the the following con-
cave quadratic knapsack problem:
8̂
ˆ̂̂<
ˆ̂̂̂
:

min
nX

iD1

xi(1 � xi)

s.t.
nX

iD1

ai xi D M; 0 � xi � 1; i D 1; : : : ; n:

The subset sum problem is feasible if and only if the
global optimum value of the corresponding quadratic
knapsack problem is zero.

As we see in the above, the indefinite case arises in
several combinatorial optimization problems. For ex-
ample, given a graph G(V , E) where V = {1, . . . , n} is
a set of vertices and E � V2 is a set of edges, find the
maximum clique of G. This problem can be formulated
in the following way:
8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
X

(i; j)2E

�xi x j

s.t.
nX

iD1

xi D 1;

xi � 0; i D 1; : : : ; n:

If G has a maximum clique of size k, then the global
maximum is (1/k � 1)/2. We can also formulate the
maximum independent set problem and the node cov-
ering problem in a similar fashion.

One can also formulate any quadratic minimization
problem over a convex hull by the quadratic knapsack
problem. Consider the problem of the form:

(
min q(z) D z>Mz C r>z
s.t. z 2 P;

(1)

where z, r 2 Rm,M 2 Rm ×m and P� Rm is the polytope
described as the convex hull of a given set of points {v1,
. . . , vn}. It can be verified easily that the above general
quadratic problem has the following equivalent formu-
lation

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x) D x>(V>MV)x C r>Vx

s.t.
nX

iD1

xi D 1;

xi � 0; i D 1; : : : ; n;

(2)

where V = [v1, . . . , vn]. Let z� and x� be optimum solu-
tions of (1) and (2), respectively. Then we have

q(z�) D f (x�) ;

and moreover z� = Vx�.
There exist only a few algorithms for obtaining

a global optimum solution for the case of the general
indefinite Q. See [15] for a partitioning approach as
well as an interior point method, while [4] surveys al-
gorithms for general nonconvex quadratic problems.
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The case when the objective function is separa-
ble has also been well investigated by several authors.
Some practical algorithms to obtain an exact solu-
tion are reported in [6,14]. S.A. Vavasis [18] shows an
O(n(log n)2) algorithm for finding a local minimum of
the problem, while K.G. Murty and S.N. Kabadi [12]
show that verifying a local minimum for an indefinite
quadratic problem with general constraints is NP-hard.
Also, [17] gives an �-approximation algorithm which is
weakly polynomial in the problem size if the number of
negative diagonal elements is fixed.

See also

� ˛BB Algorithm
� Complexity Theory: Quadratic Programming
� D.C. Programming
� Integer Programming
�Multidimensional Knapsack Problems
� Quadratic Assignment Problem
� Quadratic Fractional Programming: Dinkelbach

Method
� Quadratic Programming with Bound Constraints
� Quadratic Programming Over an Ellipsoid
� Reverse Convex Optimization
� Standard Quadratic Optimization Problems:

Algorithms
� Standard Quadratic Optimization Problems:

Applications
� Standard Quadratic Optimization Problems:

Theory
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Problem Statement

The bound constrained quadratic problem has the fol-
lowing form:

min
x2˝

f (x) D min
x2˝

1
2
x>Qx C c>x ;

˝ D fx 2 Rn : l � x � ug ;
(1)

where Q = (qij) 2 Rn × n is an indefinite symmetric ma-
trix and x, c, l, u 2 Rn. Here (as always in the sequel),
all inequalities involving vectors are interpreted com-
ponentwise, and r f (x) = Qx + c is the gradient of f .
The region ˝ is assumed to be nonempty (i. e. li � ui
for each i 2 {1, . . . , n}) and may be unbounded (i. e. li
= � 1 and/or ui = +1 for some i 2 {1, . . . , n}). The
function f (x) is assumed to be bounded below on ˝ .
For each x 2˝ , the active set A(x) is defined as:

A(x) D fi : xi 2 fli ; uigg :

Problems of the form (1) naturally arise in a number of
different applications. Moreover, QPwBC is a basic sub-
routine for many nonlinear programming codes, and
the monotone linear complementarity problem can be
written in the above form. For the convex case (i. e.
Q positive semidefinite), which is known to be poly-
nomially solvable [16], many efficient algorithms ex-
ist [4,5,7,9,10,12,18,36].However, not many algorithms
exist for the efficient solution of the general nonconvex
problem [8,17,22,24,25,26].

From the complexity point of view, problem (1) is
NP-hard [32], and even checking local optimality for
a feasible point is NP-hard [20,27]. The complexity of
finding a stationary point for (1) is an open question (in

the concave case this problem is PLS-complete [15]).
Algorithms to construct approximate solutions [33] in
polynomial time exist.

Optimality Conditions

For problem (1) the classical local optimality conditions
can be stated in a very special form. Moreover, there
exist interesting results about global optimality which
lead to efficient numerical procedures.

Local Optimality Conditions

Proposition 1 If x� 2 ˝ is a local minimum for prob-
lem (1) then:
A) if qii � 0, then

i) [r f (x�)]i = 0; or
ii) [r f (x�)]i> 0 and x�i = li; or
iii) [r f (x�)]i< 0 and x�i = ui.

B) if qii < 0, then
i) [r f (x�)]i > 0 and x�i = li; or
ii) [r f (x�)]i< 0 and x�i = ui.

Proposition 1 specializes the classical KKT stationarity
conditions, which only involve first order information,
to problem (1) by taking into the account the sign of the
second order pure derivatives. If x� is nondegenerate,
i. e.

(x�i � li)(x�i � ui )C
ˇ̌�
r f (x�)

�
i

ˇ̌
¤ 0

for each i 2 A(x�), then the conditions A)–B) are suffi-
cient for local minimization.

The following proposition states a relationship be-
tween the number of negative eigenvalues of the matrix
Q and the cardinality of the active set at a stationarity
point x�.

Proposition 2 If the matrix Q has k negative eigenval-
ues counting multiplicities, then at least k constraints are
active at a local solution x� of problem (1).

Because of Proposition 2, if f is concave, the problem is
bounded if and only if all upper and lower bounds are
finite, and the solution can be found by checking all the
vertices of ˝ . Therefore the concave QPwBC problem
is equivalent to a quadratic zero-one problem [1,22].
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Global Optimality Conditions

Global optimality conditions for problem (1) can be
stated in terms of copositivity [14] of the Hessian ma-
trix.

Definition 3 An n × n matrix Q is copositive with re-
spect to a polyhedral cone � � Rn (denoted by � -
copositive) if and only if

v>Qv � 0 for all v 2 � n f0g

(for strict copositivity, � has to be replaced by >).

Definition 4 Given x 2 ˝ , the tangent cone � (x) of
˝ in x is defined as

� (x) D fv 2 Rn : x C ˛v 2 ˝ for some ˛ > 0g :

Definition 5 Given x 2 ˝ and v 2 Rn, we define
�(x; v) as follows:

�(x; v) D max f� � 0 : x C �v 2 ˝g :

Let us consider the following decomposition for the
cone � (x):

� (x) D

 n[
iD1

� Ci (x)

!
[

 n[
iD1

� �i (x)

!
;

where

� Ci (x) D fv 2 � : [x C �(x; v) � v]i D uig ;

� �i (x) D fv 2 � : [x C �(x; v) � v]i D lig ;

i D 1; : : : ; n ;

i. e. if v 2 � Ci (x)\{0} (or v 2 �
�
i (x) \ {0}), then vi 6D 0

and the maximum stepsize along v moving from x sat-
urates the ith upper (lower) constraint (see Fig. 1).

Proposition 6 A KKT point x yields a global minimum
if and only if x is stationary point and the QCi (or Q�i )
are � Ci -copositive (respectively, �

�
i -copositive), where

QCi D
�
(ui � xi )Q C 2r f (x)e>i

�
;

Q�i D
�
(xi � li)Q � 2r f (x)e>i

�
:

Finally, the following Proposition [21] gives a sufficient
condition for a KKT point to be a global minimum, in
terms of convexity of some augmented function L(x).

Quadratic Programming with Bound Constraints, Figure 1
Partitioning of the set 
 (x) for the two-dimensional case

Proposition 7 Let x be a KKT point for problem (1).
Let li and ui be finite for each i 2 {1, . . . , n}. Let

D D diag
�
j[r f (x)]1j
u1 � l1

; : : : ;
j[r f (x)]nj
un � ln

�
:

If L(x) D f (x)C (x� x)>D(x� x) is convex in˝ , then
x is a global solution of (1). Moreover, if L(x) is strictly
convex in˝ , then this solution is unique.

This kind of result can be a useful tool for branch and
bound algorithms for global optimization. Moreover,
Proposition 7 allows one to construct test problems in
quadratic programming with known global minimum.

More results on the global optimization criteria for
(1) exist in the literature (see, for example, [21] and ref-
erences therein).

Algorithms for Local Minimization

Most of the algorithms to locally solve problem (1)
can be classified in the so-called active set strategies,
which reduce the solution of the problem to a sequence
of auxiliary unconstrained subproblems on affine sub-
spaces of Rn (faces). They generate a sequence of feasi-
ble points x(k), each x(k) associated with a working set
W(k) � A(x(k)). The active set algorithms can be de-
scribed according to the very general framework in Ta-
ble 1.

These methods differentiate on the way they solve
the subproblems P(x(k), W(k)) and on the definition of
a new face. One of the first of such algorithms, due to
B.T. Polyak [29], uses a conjugate gradient algorithm to
solve P(x(k),Wk)). Since then, many modifications have
been proposed for the solution of the auxiliary problem.
In particular, the approximate solution of such prob-
lems is suitable to deal with large scale problems. With
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Quadratic Programming with Bound Constraints, Table 1
Active set algorithm for QPwBC

Initialization:
take a first point x(0) 2 ˝ ;
W (0) = A(x(0)); k = 0;
REPEAT

Solve the quadratic unconstrained problem:
P(x(k);W (k)) = min f (x(k) + v),
vi = 0;8i 2 W (k);
IF P(x(k);W (k)) is unbounded below THEN

ACT1) choose x(k+1) 2 ˝ :
A(x(k+1)) = A(x(k)) and f (x(k+1)) < f (x(k));
choose W (k+1) 	W (k);

ELSE
ACT2) ˛(k) = maxf˛2 [0; 1] : x(k)+˛v(k)2˝g;
x(k+1) = x(k) + ˛(k)v(k);
choose W (k+1)

such that A(x(k+1)) 
 W (k+1) ¤W (k);
ENDIF
k = k + 1;

UNTIL(stop condition holds)

regard to the definition of a new working set, in ACT2)
a projected gradient step can be taken in order to add
more than a new variable to the new working set [18].
Arguments of combinatorial nature show that, in non-
degeneracy assumptions, an active set strategy termi-
nates in a finite number of steps at a stationary point,
provided that the exact minimization of the subprob-
lems is performed (at least once every j steps, for some
prefixed j). In case of degeneracy, the finite termination
still holds for some active set algorithms. Specialized
versions of active set strategies have been successfully
proposed for solving large sparse problems [4,5,19].

On a completely different approach are based the
algorithms that belong to the family of the interior
point methods (cf. also � Linear programming: Inte-
rior point methods); after Karmarkar’s polynomial al-
gorithm for linear programming, many interior point
algorithms have been developed for the convex linear
complementary problem (and therefore for the convex
QPwBC). They include the primal-dual potential re-
duction algorithm and the path following algorithms
[34]. For more detail see � Linear complementarity
problem. Finally, penalty techniques have been success-
fully proposed for the convex QPwBC [6].

Algorithms for Global Minimization

The global optimality conditions expressed in Propo-
sition 6, suggest a very simple algorithmic framework
for solving (1), whose main ingredient is the procedure
COPOS(Q, � , d). Such a procedure [2], given an n ×
n matrix Q and a polyhedral cone � , detects either the
� -copositivity ofQ or a direction d 2 � such that d|Qd
< 0. In the sequel all Qi matrices and the cones � i are
relative to the stationary point x.

In the algorithm in Table 2, COPOS is used to es-
cape from local solution which are not global.

In [3] the basic algorithm escape has been improved
using pseudoconvexity and a preprocessing procedure.
However, because of complexity reasons (the problem
of exactly checking copositivity is itself NP complete!)
algorithms based on copositivity are suitable only for
very small size problems.

A different approach [23], originally proposed for
concave quadratic problems [30], uses a separable for-
mulation based on the eigenstructure of the quadratic
form. Using the linear variable transformation x = Py,
where P is an orthogonal matrix whose columns are the
eigenvectors of Q, the original problem is transformed
into the separable form

min
y2M

�1(y)C �2(y) ;

Quadratic Programming with Bound Constraints, Table 2
Global QPwBC algorithm

Initialization:
take a first stationary point x;
i = 1;
REPEAT

IF � +
i ¤ f0g THEN call COPOS(Q+

i ; �
+
i ; d);

IF � �i ¤ f0g THEN call COPOS(Q�i ; �
�
i ; d);

IF a direction d is found such that d>Q+d < 0
or d>Q�d < 0;
THEN

x� = x + �max(d)d;
use x� as starting point for a procedure that
generates a new stationary point x;
i = 0;

ENDIF
i = i + 1;

UNTIL(i = n + 1).
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where M is a rectangle of minimum volume that con-
tains b̋ D fy 2 Rn : l � Py � ug. The functions
˚1(y) and ˚2(y) are, respectively, the concave part and
the convex part of the objective function.

The function ˚2(y) can be underestimated by using
a piecewise linear approximation and this gives a con-
vex problem which approximates the original problem
and for which an error bound can be given, depending
both on the size of the negative eigenvalues ofQ and on
the size of the range of allowed displacements along the
respective eigenvectors. This technique can be incorpo-
rated within a branch and bound framework. A way
to improve the approximation is to make a partition-
ing of the domain along the eigendirections, based on
the error estimate, and bounding techniques can be de-
vised. An efficient parallel implementation is described
in [28].

The reformulation-linearization/convexification
techniques [31] are based on a suitable linearized re-
formulation of the problem (1). The goal of RLT is to
try to approximate the convex envelope of the objective
function over the feasible region in deriving tighter and
tighter lower bounding linear programs.

Based on the combinatorial nature of the problem
some branch and bound enumerative techniques have
been proposed [13], that can be very expensive from
a computational point of view, and therefore only suit-
able for small size problems or problems whose spar-
sity allows only a low number of subproblems to be ex-
plored.

More attracting from the computational point of
view are algorithms based on interior point methods,
whose main drawback is unfortunately that no guaran-
tee exist about the convergence to the global solution of
problem (1) [11].
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Quadratic programming (QP) plays an important role
in optimization theory. In one sense it is a continuous
optimization and a fundamental subroutine for general
nonlinear programming, but it is also considered one of
the most challenging combinatorial optimization prob-
lems.

One of QP problems is to minimize a quadratic
function over an ellipsoid constraint. Since any ellipsoid
can be transformed to a ball by an affine transforma-
tion, without of loss generality, we consider the follow-
ing ball-constrained QP problem BQP (r):

(
min 1

2 x
>Qx C c>x

s.t. x 2 B(r) D fx 2 Rn : kxk � rg ;
(1)

where Q 2 Rn × n, c 2 Rn, and superscript | denotes the
transpose operation. Here, k � k denotes L2 norm and
r > 0 is the radius of the ball. A main recent result is
that this problem is an ‘easy’ problem, even when the
objective function is nonconvex.

We begin with a brief history of this problem.
There is a class of nonlinear programming algorithms
called model trust region methods. In these algorithms,
a quadratic function is used as an approximate model of
the true objective function around the current iterate.
Then the main step is to minimize the model function.
In general, however, the model is expected to be accu-
rate or trusted only in a neighborhood of the current
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iterate. Accordingly, the quadratic model is minimized
in a L2-norm neighborhood, which is a ball, around the
current iterate. Recently (1996), it was demonstrated
[5] that a class of combinatorial optimization problems
can be solved by solving a sequence of ball-constrained
QP problem.

The model-trust region method is due to K. Leven-
berg [7] and D.W. Marquardt [8]. These authors con-
sidered only the case where Q is positive definite. J.J.
Moré [10] proposed an algorithm with a convergence
proof for this case. D.M. Gay [4] and D.C. Sorenson
[15] proposed algorithms for the general case, see also
[2]. These algorithms work very well in practice, but
no theoretical complexity result was established for this
problem then.

It is well known [4,15] that the solution x of problem
BQP (r) satisfies the following necessary and sufficient
conditions:

(Q C �I)x D � c ;

� � maxf0;��g ;

kxk D r ;

(2)

where � denotes the least eigenvalue of matrix Q. Since
Q is not positive semidefinite, we must have � < 0.

Let �� and x� satisfy conditions (2). It has been
shown that �� is unique and

�� � j�j C
kck
r
: (3)

It is also known that

j�j � nmaxf
ˇ̌
qi j
ˇ̌
g ;

where qij is the (i, j)th component of matrix Q. Thus,
we have

0 � �� � �0 :D nmaxf
ˇ̌
qi j
ˇ̌
g C
kck
r
; (4)

where �0 is a computable upper bound. It is further
proved that ([19])

1
2
r2 j�j �

1
2
r2�� � q(0)�q(x�) �

1
2
r2 j�jCr kck : (5)

This inequality can be used to develop an approxima-
tion algorithm for general quadratic optimization, see
[3].

We now analyze the complexity of solving BQP (r).
A simple bisection method was proposed in [18] and in

[19]. For any given �, denote solutions of the top linear
equations by x
 in conditions (2), i. e.,

x
 :D �(Q C �I)�1c ; 8� > j�j : (6)

For any given�we can check to see if�� |�| by check-
ing the positive definiteness of matrix Q + � I, which
can be solved as a LDL| decomposition. These facts lead
to a bisection method to search for the root of k x
 k
= r over the interval � 2 [|�|, �0] � [0, �0]. Obvi-
ously, for a given �00 2 (0, 1), a � such that, say 0 �
� � �� � �0 ��/8, can be obtained in O(log(�0/��)
+ log(1/�0)) bisection steps, and the cost of each step is
O(n3) arithmetic operations (for performing LDL| de-
composition).

The remaining question is what �0 would be suffi-
cient to generate an �-minimizer of q(x) over the ball
B(r), that is, an x satisfying

q(x)� q(x�)
q(0)� q(x�)

� � :

Let � denote the right endpoint of the interval gen-
erated by the bisection search. Then, � � ��. If � =
��, then we get an exact solution x� = x
� . Thus, we
assume � > �� � �. By the positive semidefiniteness of
Q + �� I, we have



x



 < kx�k D r :

We consider two cases.

Case I. In the first case we assume
�
1 �

�

8
p
n

�
�� � j�j

or

�� � j�j C
�

8
p
n
�� :

Using the relation (6) and simplifying, we obtain

kx�k2 �


x




2 D (x�)>

� (I � (Q C ��I)(Q C �I)�2(Q C ��I))x�

D (x�)>(2(�� ��)(Q C �I)�1

� (� � ��)2(Q C �I)�2)x� :
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Next we bound the above expression by using the small-
est eigenvalue � of Q. This gives

kx�k2�


x




2 �
�
2(�� ��)
(�� j�j)

�
(� � ��)2

((� � j�j))2

�
kx�k2

D

�
2(�� ��)

(�� ��)C (�� � j�j)

�
(� � ��)2

((� � ��)C (�� � j�j))2

�
kx�k2

D
(�� ��)2 C 2(�� ��)(�� � j�j)

((� � ��)C (�� � j�j))2
r2

D

�
1 �

(�� � j�j)2

((�� ��)C (�� � j�j))2

�
r2

�

0
@1 �

( �

�

8
p
n )

2

((�� ��)C �
�

8
p

n )
2

1
A r2 ;

where in the last step we used the assumption

�� � j�j C
�

8
p
n
�� :

Therefore, if we have � � �� � �0 ��/8, then

kx�k2�


x




2 �
�
2
p

n�0
�

�
C
�p

n�0
�

�2
�
1C

�p
n�0
�

��2 r2 �
2
p
n�0

�
r2 :

(7)

On the other hand, note that

q(x
) � q(x�)

D
1
2
x>
Qx
 C c>x
 �

1
2
(x�)>Qx� � c>x�

D
1
2
(Qx
 C c)>(x
 � x�)

C
1
2
(Qx� C c)>(x
 � x�)

D �
1
2
�x>
 (x
 � x�) �

1
2
��(x�)>(x
 � x�)

D �
1
2
(� � ��)x>
 (x
 � x�)

�
1
2
��(



x



2 � kx�k2) :

(8)

Now we use the bound (7), the assumption � � �� �
�0��/8 and the fact k x
 k � k x� k = r to obtain:

q(x
) � q(x�) �
��r2�0

8
C r2��

p
n�0

�

D

�
�0

4
C

2
p
n�0

�

�
��r2

2

�

�
�0

4
C

2
p
n�0

�

�
(q(0)� q(x�)) ;

where the last step is due to (5). Thus, if we select

�0 �
�2

2
p
nC 1

4

;

then x
 is feasible for BQP(r) and

q(x
) � q(x�) � �(q(0)� q(x�)) ;

i. e., x
 is an �-minimizer to x�.
Case II. In this case, we have
�
1 �

�

8
p
n

�
�� < j�j

or

�� < j�j C ��
�

8
p
n
:

Again, if we have � � �� < �0 ��/8, then � � j�j <
�0
�

8 C

��

8
p

n . However, unlike Case I, we find that k x

k is not sufficiently close to r.Whenwe observe this fact,
we do the following computation, essentially due to S.A.
Vavasis and R. Zippel [18], to enhance x
.

Let q,



q



 D 1, be an eigenvector associated with

the eigenvalue �. Then, one of the unit vectors ej, j = 1,
. . . , n � m, must have

ˇ̌
ˇe>j q

ˇ̌
ˇ � 1p

n . (In fact, we can use

any unit vector q to replace ej as long as q>q � 1p
n .

A randomly generated q will do it with high probabil-
ity.) Now we solve for y from

(Q C �I)y D e j

and let

x D x
 C ˛y ;

where ˛ is chosen such that kxk = r. Note we have

(Q C �I)x D �c C ˛e j ;
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and in the computation of x
 and y, matrix Q + � I
needs to be factorized only once.

It is easy to show that

kyk �
1

p
n(� � j�j)

and

j˛j � 2r(�� j�j)
p
n � 2r

�
�0��

8
C
���

8
p
n

�
p
n :

Then, we have from (8)

q(x)� q(x�)

D
1
2
(Qx C c)>(x � x�)

C
1
2
(Qx� C c)>(x � x�)

D
1
2
(Qx C c � ˛e j)>(x � x�)

C
1
2
˛e>j (x � x�) �

1
2
��(x�)>(x � x�)

D �
1
2
�x>(x � x�)

C
1
2
˛e>j (x � x�) �

1
2
��(x�)>(x � x�)

D �
1
2
(�x C ��x�)>(x � x�)

C
1
2
˛e>j (x � x�)

D �
1
2
(� � ��)x>(x � x�)C

1
2
˛e>j (x � x�) ;

where the last step follows from kxk = k x� k = r. Now
we use���� < �0��/8 and the preceding upper bound
on ˛ to estimate the right-hand side:

q(x)� q(x�) �
r2���0

8
C 2

�
�0��

8
C
���

8
p
n

�
r2
p
n

D

�
�0

4
C

p
n�0

2
C
�

2

�
��r2

2

�

�
�0

4
C

p
n�0

2
C
�

2

�
(q(0)� q(x�)) ;

where the last step is due to (5). Thus, if we choose

�0 �
�

p
nC 1

2

;

then x is feasible for BQP(r) and

q(x)� q(x�) � �(q(0)� q(x�)) � �(z � z) ;

i. e., x is an �-minimizer of q(x) over B(r).
Hence, the bisection method will terminate with an

�-minimizer of BQP(r) in at most

O
�
log

�
�0

��

�
C log

�
1
�

�
C log n

�

steps, or in a total of O(n3(log(�0/��) + log(1/�) + log
n)) arithmetic operations.

Theorem The total running time of the bisection al-
gorithm for generating an �-minimal solution to the
ball-constrained QP is bounded by O(n3(log(�0/��) +
log(1/�) + log n)) arithmetic operations.

Recently, F. Rendl and H. Wolkowicz [14] showed that
BQP(r) can be reformulated as a positive semidefinite
problem, which is a convex nonlinear problem. There
are polynomial interior point algorithms (see [11]) to
compute an dx0 such that q0(dx0) � q(dx 0(�k)) � �0 in
O(n3 log(Mk/�0)) arithmetic operations. This will also
establish an

O
��

n6

�
log

1
�
C n4 log n

��
log

1
�
C log n

��

arithmetic operation bound for the algorithm.
The polynomial complexity in Theorem 1 can be

further improved. In particular, see [20] for a mixed bi-
section and Newton method for solving BQP(r) and for
an arithmetic operation bound O(n3 log(log(�0/��) +
log(1/�0))) to yield a � such that 0 � � � �� � �0. The
brief idea of the method is to first find an approximate
� to the absolute value of the least eigenvalue |�| and an
approximate eigenvector q to the true q, such that 0 �
� � � � �0 and q|qk � 1 � �0 . This approximation can
be done in O(n3 log(log(1/�0))) arithmetic operations.
Then, we will use q to replace ej in Case II (i. e., k x
 <
r) to enhance x(�) and generate a desired approxima-
tion. Otherwise, we know �� > � and, using the mixed
method in [20], we will generate a� 2 (�,�0) such that
|����|� �0 ��/8 inO(n3 log(log(�0/��) + log(1/�0)))
arithmetic operations.

Finally, let Q and c have integer data. Consider the
decision problem: Is there an x 2 Rn satisfying kxk �
1, and q(x) < 0? Under the Turing machine computa-
tional model, this problem can be answered in polyno-
mial time (see [18]).
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Consider that we have n ‘objects’ and m ‘locations’, n >
m, and we want to assign all objects to locations with at
least one object to each location, so as to minimize the
overall distance covered by the flow of materials mov-
ing between different objects. Given a flow matrix F =
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(f ij) and a distance matrix D = (dij), we can formulate
the quadratic semi-assignment problem as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
nX

iD1

nX
jD1

m�1X
kD1

mX
lDkC1

fi jdk l xki xl j

C

mX
iD1

nX
jD1

bi jxi j

s.t.
nX

jD1

xi j D 1; i D 1; : : : ;m;

xi j 2 f0; 1g;
i D 1; : : : ;m; j D 1; : : : ; n:

Comparing the above formulation with that of the
quadratic assignment problem (cf.� Quadratic assign-
ment problem), we can see that the QSAP is a re-
laxed version of the QAP, where instead of assign-
ment constraints we have semi-assignment constraints.
SQAP unifies some interesting combinatorial optimiza-
tion problems like clustering and m-coloring. In a clus-
tering problemwe are given n objects and a dissimilarity
matrix F = (f ij). The goal is to find a partition of these
objects into m classes so as to minimize the sum of dis-
similarities of objects belonging to the same class. Obvi-
ously this problem is a QSAP with coefficient matrices
F and D, where D is an m × m identity matrix. In the
m-coloring problem we are given a graph with n vertices
and want to check whether its vertices can be colored by
m different colors such that each two vertices which are
joined by an edge receive different colors. This problem
can bemodeled as a SQAPwith F equal to the adjacency
matrix of the given graph and D them ×m identity ma-
trix. The m-coloring has an answer ‘yes’ if and only if
the above SQAP has optimal value equal to 0. Practical
applications of the SQAP include distributed comput-
ing [5] and scheduling [1].

SQAP was originally introduced by D.E. Greenberg
[2]. As pointed out in [3], this problem is NP-hard.
I.Z. Milis and V.F. Magirou [5] propose a Lagrangian
relaxation algorithm for this problem, and show that
similarly as for for the QAP, it is very hard to provide
optimal solutions even for SQAPs of small size. Lower
bounds for the SQAP have been provided in [4], and
polynomially solvable special cases have been discussed
in [3].

See also

� Feedback Set Problems
� Generalized Assignment Problem
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� Graph Planarization
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� Quadratic Assignment Problem
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Smoothness, or the existence of the classical derivative
information for a function plays a significant role in the
theory and the tools used today for modeling, approxi-
mation, optimization and for their applications. Never-
theless, nature seems to be more rich than the assump-
tions done within currentmathematical or physical the-
ories. Nonsmoothness arises in a very large number of
applications. The arising phenomena, including com-
plex dynamics, pattern formation and chaos, are ap-
pealing for both theoretical investigations and practi-
cal applications. Most of them have not yet been stud-
ied. Abandoning smoothness assumptions one arrives
at the area of nonsmooth analysis.

Within nonsmooth approximation the classical no-
tion of the derivative is replaced by some set-valued
generalized derivative. This is required for the con-
struction of qualitative and quantitative first order ap-
proximations of a function with points of nondifferen-
tiability (kinks) or, respectively of a set with corners. In
fact, the linearization (i. e., the linear or affine approx-
imation) of a function at a given point which is based
on the familiar Taylor expansion formula is based on
the assumption that the derivative of the function (or
its gradient) exists at the considered point.

Historically, for convex nondifferentiable functions,
a suitable set-valued extension of the derivative has
been provided by the subdifferential of convex analy-
sis, in the sense of J.-J. Moreau and R.T. Rockafellar
[8,12]. For the general case of nonconvex, nondifferen-
tiable functions, a direct extension of the convex analy-
sis subdifferential has been provided by the generalized
subdifferential in the sense of F.H. Clarke and Rockafel-
lar [1,2,13]. This notion has been used in a variety of ap-
plications, although it does not possess the above men-
tioned first order approximation property. One should
note that a large number of notions have been proposed
for the approximation of nonconvex and nonsmooth
functions (or sets) or of the solution of affiliated opti-

mization problems. A complete list would go beyond
the limits of this short article. This activity demon-
strates the large practical interest of this area.

The quasidifferential in the sense of V.F. Demyanov
and A.M. Rubinov is an appropriate tool for the con-
struction of first order approximations of functions and
sets and, subsequently, for the solution of nonsmooth
and nonconvex optimization problems. By treating sep-
arately convex and concave contributions of the func-
tion the quasidifferential introduces an ordered pair of
convex sets. Intuitively speaking, the convex analysis
subdifferential is present, for the convex contribution,
while the superdifferential takes into account the con-
cave parts (which, in turn, can also be studied by means
of convex analysis arguments, since a concave function
becomes convex if one changes its sign). The links of
the quasidifferential with other notions of nonsmooth
analysis have been discussed in � Quasidifferentiable
optimization: Dini derivatives, Clarke derivatives and
[4]). More important is that certain calculus rules have
been developed for the calculation of the quasidifferen-
tial of sums, differences, products, quotients and, more
general, of every function that can be constructed by
using finite number times the minimum and maximum
operators over a finite number of classical, smooth con-
stituent functions (see � Quasidifferentiable optimiza-
tion: Calculus of quasidifferentials and [7]). Finally,
based on the notion of the quasidifferential, certain new
variational formulations can be constructed which gen-
eralize the notion of variational inequalities of convex
analysis. These variational formulations have the form
of sets of variational inequalities, are valid for the gen-
eral nonsmooth and nonconvex case (see also � Qua-
sidifferentiable optimization: Variational formulations
[6,11]) and give a computationally advantageous form
to the hemivariational inequalities in the sense of P.D.
Panagiotopoulos (see, among others,�Nonconvex en-
ergy functions: Hemivariational inequalities; � Hemi-
variational inequalities: Applications in mechanics and
[6,9,10,11]).

Here, the definition of the quasidifferential for one-
dimensional and finite-dimensional functions is given
and hints for its extension into functionals are dis-
cussed. Finally, some information on the related, and
more convenient for the numerical applications notion
of the codifferential and on the construction of opti-
mization algorithms is provided.
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One-Dimensional Nonsmooth Functions

Let f be a real-valued finite function defined on the real
line R. The most powerful and widely used tool to study
the properties of f is the notion of derivative. Function f
is called differentiable at x 2 R if there exists its deriva-
tive f 0(x) at x, which is defined by

f 0(x) D lim
˛!0

1
˛

�
f (x C ˛) � f (x)

�
: (1)

If this limit exists for every point of some open set S 2
R, the function f is called differentiable on S.

Among the variety of applications of the deriva-
tive one recalls here the first order approximation (lin-
earization) of f in the neighborhood of a point x:

f (x C	) D f (x)C f 0(x)	C ox (	) (2)

with

ox (	)
	
! 0 as	! 0 : (3)

Moreover, x� is a minimum of the function f if

f 0(x�) D 0 : (4)

Relation (4) defines a stationary point of f , since it also
holds true for amaximum and for a saddle point of f . As
is usual, higher order derivatives are checked in order to
specify the nature of the stationary point.

One-Sided Differentials

Assume now that the limit (1) does not exist, but at
the same time the following directional derivatives ex-
ist: the right-hand side derivative f 0+(x) and the left-
hand side derivative f 0�(x) of f at x. The right-hand side
derivative is defined by:

f 0C(x) D lim
˛#0

1
˛

�
f (x C ˛) � f (x)

�
: (5)

Analogously, the left-hand side derivative is defined by
the limit:

f 0�(x) D lim
˛"0

1
˛

�
f (x C ˛) � f (x)

�
: (6)

Here ˛ # 0 means that ˛! 0, by taking positive values
˛ > 0 and ˛ " 0 means that ˛! 0, with negative values
˛ < 0.

It is clear that for a function f to be differentiable at
x it is necessary and sufficient that f 0+(x) = f 0�(x).

The directional derivative of a function f at point x
and in the direction x 2 R is defined by the limit:

f 0(x; g) D lim
˛#0

1
˛

�
f (x C ˛g) � f (x)

�
; (7)

if this limit exists.
The notion of directional derivative is a proper ex-

tension of the notion of the derivative. For example, it
can be used to linearize a given function (cf. (2)) along
a direction g. In this case relation (2) holds along a given
direction, a different value holds for the opposite di-
rection, etc, so that it provides the basis for a quasilin-
earization of the function f .

From the definition one may easily see that a neces-
sary condition for a directionally differentiable function
f to attain a minimum at point x� is that:

f 0(x�; g) � 0 ; 8g 2 R : (8)

If strict inequality holds in (8) for every direction g not
equal to zero, the condition becomes also sufficient for
x� to be a strict local minimum of f . On the other hand,
a necessary condition for a directionally differentiable
function f to attain a maximum at point x� is that:

f 0(x��; g) � 0 ; 8g 2 R ; (9)

with analogous implications for a strict local maximum.
A point x� which satisfies relation (8) is called an

inf-stationary point of f , while a point x� � satisfying
(9) is called a sup-stationary point. It is interesting to
observe that for a nonsmooth function first order opti-
mality conditions may, in some cases, become sufficient
for a minimum or a maximum.

Quasidifferential

A function f : R! R is called quasidifferentiable (q.d)
at a point x if it is directionally differentiable at x and
there exists a pair of closed intervals @f (x) = [v1, v2] and
@ f (x) D [w1;w2] such that

f 0(x; g) D max
v2@ f (x)

vg C min
w2@ f (x)

wg ; 8g 2 R : (10)

The pair of intervals D f (x) D [@ f (x); @ f (x)] is called
a quasidifferential of f at x. The set @f (x) is called the
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subdifferential and the set @ f (x) the superdifferential of
f at x.

It is clear that a quasidifferential is not uniquely de-
fined. In fact, if a function f is quasidifferentiable at
x and Df (x) is its quasidifferential at this point, i. e.,
D f (x) D [@ f (x); @ f (x)], then every pair of the form
[@ f (x) C C@ f (x) � C], where C is an interval C = [c1,
c2] 2 R, with c1 � c2 is also a quasidifferential of f at
x. In fact, the quasidifferential is a class of equivalent
ordered pairs of convex sets.

Necessary and Sufficient Optimality Conditions

For a quasidifferentiable function the necessary and
sufficient optimality conditions (see (8)–(9)) can be
written as follows. Let D f (x) D [@ f (x); @ f (x)] be
a quasidifferential of f at x. A necessary condition for
function f to attain a minimum at point x� is that:

� @ f (x�) � @ f (x�) : (11)

The condition

� @ f (x�) � int @ f (x�) (12)

is sufficient for x� to be a strict local minimum of f .
Analogously, a necessary condition for a maximum of f
at x� � is that:

� @ f (x��) � @ f (x��) ; (13)

with an analogous result for a sufficient condition for
a strict local maximum:

� @ f (x��) � int @ f (x��) : (14)

Finite-Dimensional Nonsmooth Functions

Subdifferentiable Functions

Let a function f defined on an open set X � Rn be di-
rectionally differentiable at a point x 2 X. The function
f is subdifferentiable at x if its directional derivative is
a superlinear function, i. e. there exists a convex com-
pact set U such that

f 0(x; g) D max
h2U

(h; g);8g 2 Rn : (15)

Superdifferentiable Functions

A function is superdifferentiable at x if its directional
derivative can be written by means of a convex compact
set V as

f 0(x; g) D f 0x(g) D min
h2V

(h; g); 8g 2 Rn : (16)

Quasidifferentiable Functions

A directionally differentiable function f defined on an
open set X � Rn is called quasidifferentiable at a point
x 2 X, if there exists an ordered pair of convex compact
sets [U, V] in Rn × Rn which produces the directional
derivative of the function by:

f 0(x; g) D f 0x(g) D max
h2U

(h; g)Cmin
h2V

(h; g); 8g 2 Rn :

(17)

Clearly, the first term on the right of (17) is a sublinear
function while the second term is a superlinear func-
tion. Thus, the directional derivative of a quasidiffer-
entiable function belongs to the space L of functions
which can be written as the sum of a sublinear func-
tion and a superlinear function. Moreover with an ele-
ment [U,V] of the space of compact sets it is associated
the class of equivalent ordered pairs of compact convex
sets.

Thus, the class of equivalent ordered pairs of convex
compact sets [U, V] of (17) (the quasidifferential Df (x)
of f at x) fully describes the first order derivative of the
directionally differentiable function f and gives rise to
the quasilinearization (17) and, subsequently, to a qual-
itative and quantitative first order approximation of f
in the sense of (2).

As an example, let us mention that for a differen-
tiable function f either Df = [rf , {0}] or Df = [{0}, rf ]
can be used as the quasidifferential of f . For a convex,
nondifferentiable function f , Df = [ @f, {0}], where @f
denotes the classical subdifferential of convex analysis
[12] can be used. Analogously, for a concave function
f , one may uses Df = [{0}, @f ], where @f denotes the
superdifferential of the concave function f . A difference
convex function (d.c. function) is a function f which can
be expressed as the difference of two appropriately de-
termined convex constituents, i. e., f (x) = f 1(x) � f 2(x),
8x 2 X, where f 1(x) and f 2(x) are convex functions.
In this case one constructs a quasidifferential simply by
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Df (x) = [ @f 1(x), @f 2(x)], where the convex subdifferen-
tials of the functions f 1(x) and f 2(x) are used.

Further Related Topics

Extension of the theory of quasidifferentiability to
infinite-dimensional function spaces has not been stud-
ied till now (1999) in details. First hints can be found in
[3,6].

The notion of the quasidifferential has been ex-
tended by Demyanov to the notion of the codifferen-
tial, which has certain advantages for numerical appli-
cations (see � Quasidifferentiable optimization: Cod-
ifferentiable functions and [4]). Several applications of
the quasidifferentiability concept and related references
are given in� Quasidifferentiable optimization: Appli-
cations and in [5].
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Quasidifferentiability and codifferentiability extend the
notion of the subdifferential of convex analysis for
a quite general class of nonconvex and nonsmooth
functions. If for a directionally differentiable function f :
Rn! R there exists an ordered pair of convex compact
sets [U, V] in Rn × Rn which produces the directional
derivative of f at x in the direction g by the expression:

f 0(x; g) D max
h2U

(h; g)Cmin
h2V

(h; g) ; (1)

this function is called quasidifferentiable in the sense of
V.F. Demyanov and A.M. Rubinov.

If moreover the quasidifferential of the above func-
tion is of the form [U, 0] (where 0 is considered as an
element of the space Rn), then function f is called subd-
ifferentiable.

More details on this notion, the calculus rules for
computing quasidifferentials, its connection to other
notions of nonsmooth analysis and it applications
can be found in � Quasidifferentiable optimization;
� Quasidifferentiable optimization: Calculus of qua-
sidifferentials;�Quasidifferentiable optimization: Dini
derivatives, Clarke derivatives; � Quasidifferentiable
optimization: Applications; as well as in [1,2,3].

The quasidifferential, as well as the subdifferential
of convex analysis, are set-valued quantities which in-
clude discontinuities at the points of nondifferentiabil-
ity. In numerical algorithms this may cause problems.
A notion that takes into account neighboring informa-
tion would be more appropriate. This led Demyanov to
extend the notion of the quasidifferential and to define
the notion of the codifferential.

Let X be an open subset of Rn and let a function f be
defined and finite for every x 2 X. A function f is called
codifferentiable at x if there exist convex, compact sets
d f (x) � RnC1 and d f (x) � RnC1 such that the func-
tion admits a first order approximation in a neighbor-
hood of x of the form

f (x C	) D f (x)C max
[˛;v]2d f (x)

[˛C (v; 	)]

C min
[b;w]2d f (x)

[bC (w; 	)]C ox (	) ;
(2)

where ox(˛�)/˛! 0, as ˛ # 0, 8� 2 Rn. The ordered
pair of convex, compact sets D f (x) D [d f (x); d f (x)]
is called a codifferential of f at x, where d f (x) is a hy-
podifferential and d f (x) is a hyperdifferential.

If there exists a codifferential of the form D f (x) D
[d f (x); 0], where 0 is considered as an element of space
Rn + 1, the function f is called hypodifferentiable.

One recalls that classical convex nondifferentiable
functions are subdifferentiable (resp. hypodifferen-
tiable) in the above outlined framework, since one may
use the classical convex analysis subdifferential in the
above definitions for the construction of the subdiffer-
ential (resp. the hypodifferential) at a given point.

More details about codifferentiability (including ex-
tensions to higher order codifferentials) can be found
in�Quasidifferentiable optimization: Codifferentiable
functions.

Hypodifferentiable Optimization

Efficient nonsmooth optimization algorithms can be
constructed for hypodifferentiable functions. In fact,
the technique of replacing a nondifferentiable opti-
mization problem by an enlarged, classical, inequality
constrained optimization problem has been success-
fully used for convex or for composite optimization
problems [4,13]. For hypodifferentiable functions a di-
rection of descent at each given point can be deter-
mined and used in an iterative optimization procedure.
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Let us consider a conceptual iterative steepest de-
scent optimization algorithm and the form it takes for
nondifferentiable (hypodifferentiable) functions. First,
recall that a nondifferentiable function does not possess
derivatives in the classical sense. One uses set-valued
approximations of the derivative (cf., the subdifferen-
tial or the hypodifferential) at the points of the nondif-
ferentiability instead.

Accordingly optimality conditions (which will also
provide the stopping rules for an optimization algo-
rithm) and the calculation of the steepest descent di-
rection must appropriately be modified.

The first order necessary condition for a hypodif-
ferentiable function f to attain a minimum at point x0
reads:

0 2 d f (x0) : (3)

Points x0 for which relation (3) is satisfied are called inf-
stationary points. Note that the previous relation hold
in the space Rn + 1.

If at a given point xk, at the kth iteration of an iter-
ative optimization scheme, relation (3) is not satisfied,
then one may always find the point z with minimum
norm in the closed convex set d f (xk), such that:

z�(xk) D (��(xk); z�(xk)) D arg min
z2d f (xk )

kzk : (4)

Since (3) is not satisfied, one has


z�(xk)



 > 0. The
direction

gk(xk) D �
z�; (xk)
kz�(xk)k

(5)

can be used as a descent direction within an optimiza-
tion algorithm.

In the conceptual manner used in this note, the next
step of the iterative algorithm will have the form:

xkC1 D xk C ˛k xk ;

where steplength ˛k will be determined from the so-
lution of the one-dimensional optimization problem
(along the direction gk):

˛k D argmin
˛�0
f f (xk C ˛gk )g :

For more general quasidifferentiable and codifferen-
tiable functions one may construct appropriate solution
algorithms, see �Quasidifferentiable optimization: Al-
gorithms for QD functions and in the original literature
(see, e. g., [1]).

Comments

Nondifferentiable optimization procedures have at-
tracted the attention of several researchers and practi-
tioners in the last decade. The lost of information which
is connected with smoothing approaches is, for sev-
eral applications, critical for the quality of the results.
Beyond the quasidifferentiable optimization literature,
previously mentioned in this note, general methods and
theory for descent type methods for nonsmooth func-
tions can be found in [7,12]. In this respect, the bun-
dle concept has been found useful (see, among others,
[6,8,9,11]). An application of this method for the solu-
tion of hemivariational inequality problems arising in
mechanics can be found in [10] and [5].

Closing one would like to mention again the addi-
tional requirements of nonsmooth optimization with
respect to classical, smooth one. First, stopping crite-
ria must take into account the set-valued nature of the
nonsmooth optimality conditions. Otherwise cycling in
an iterative scheme or premature exit at a noncritical
point may occur. This is the more critical point. More-
over, the line search must take into account the non-
differentiability of the involved function. This require-
ment is, usually, easily taken into account (for instance,
by means of a derivative-free technique).
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Codifferentiable (c.d.) Functions

f : Rn ! R is called quasidifferentiable at x 2 Rn if
it is directionally differentiable (in the sense of Dini
or Hadamard) and there exists a pair D f (x) Dh
@ f (x); @ f (x)

i
of compact convex sets of Rn such that

f 0(x; g) D max
v2@ f (x)

(v; g)C min
w2@ f (x)

(w; g) : (1)

Here f 0(x, g) is either the Dini or Hadamard derivative
of f at x in a direction g 2Rn. (See�Quasidifferentiable
optimization: Optimality conditions).
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In the sequel we discuss only the problem of min-
imizing the function f . In � Quasidifferentiable opti-
mization: Optimality conditions, necessary conditions
for a minimum of f were formulated in terms of qua-
sidifferentials (q.d.) and a formula for computing steep-
est descent directions was derived. However, it is diffi-
cult to apply steepest descent directions for construct-
ing numerical methods for minimizing the function f
since the quasidifferential mapping Df is, in general,
discontinuous in the Hausdorff metric. This is why we
need some other tool to overcome the discontinuity of
Df .

A function f : Rn ! R is called Dini codifferen-
tiable (D.c.d.) at x 2 Rn if there exists a pair D f (x) D
[d f (x); d f (x)] of compact convex sets of Rn + 1 such
that

f (x C	) D f (x)C max
[a;v]2d f (x)

�
aC (v; 	)

�

C min
[b;w]2d f (x)

�
bC (w; 	)

�
C ox (	) :

(2)

ox (˛	)
˛

! 0 ; 8	 2 Rn : (3)

Here a, b 2 R; v, w 2 Rn. If in (2)

ox (	)
k	k

k�k!0
! 0 ; 8	 2 Rn ; (4)

then f is called Hadamard codifferentiable (H.c.d) at x.
Without loss of generality it may be assumed that

max
[a;v]2d f (x)

a D min
[b;w]2d f (x)

b D 0 : (5)

If it causes no misunderstanding, we shall use the term
codifferentiable (c.d.) for both Dini and Hadamard
codifferentiable functions.

The pair D f (x) D [d f (x); d f (x)] is called a cod-
ifferential of f at x, df (x) is a hypodifferential, d f (x) is
a hyperdifferential. A codifferential (like quasidifferen-
tial) is not uniquely defined. If there exists a codifferen-
tial of the formDf (x) = [df (x), {0n + 1}], the function f is
called hypodifferentiable at x. If there exists a codifferen-
tial of the form D f (x) D [f0nC1g; d f (x)], the function
f is called hyperdifferentiable at x.

It is easy to see that the class of Dini (Hadamard)
codifferentiable functions coincides with the class of
Dini (Hadamard) quasidifferentiable functions.

For example, if D f (x) D [d f (x); d f (x)] is a cod-
ifferential of f at x such that (5) holds, then the pair
D f (x) D [@ f (x); @ f (x)], where

@ f (x) D fv 2 Rn : [0; v] 2 d f (x)g ;

@ f (x) D
n
w 2 Rn : [0;w] 2 d f (x)

o
;

is a quasidifferential of f at x.
A function f is called continuously codifferentiable

at x if it is codifferentiable in some neighborhood of x
and there exists a codifferential mapping Df which is
Hausdorff continuous at x.

Remark 1 Of course, it is possible to introduce the no-
tion of continuously quasidifferentiable function; how-
ever, if f is continuously q.d. at x then it is just differen-
tiable at x.

For a fixed � the functions (see (1) and (2))

˚1x (	) D f (x)C max
v2@ f (x)

(v; 	)C min
w2@ f (x)

(w; 	)

and

˚2x (	) D f (x)C max
[a;v]2d f (x)

�
aC (v; 	)

�

C min
[b;w]2d f (x)

�
bC (w; 	)

�

are both first order approximations of f in a neighbor-
hood of x. The function F1(�) = ˚1x(�)�f (x) is pos-
itively homogeneous (of degree one) in � while the
function F2(�) = ˚2x(�)�f (x) is, in general, not pos-
itively homogeneous. The loss of homogeneity is the
price to be paid for the continuity (if any) of the cod-
ifferential mapping.

Note again that the ‘value’ of the mapping Df at any
x is a pair of convex compact sets in Rn + 1.

If turns out that most of the known functions are
continuously codifferentiable (see [3,4]). For example,
all smooth, convex, concave and concavo-convex func-
tions are continuously codifferentiable. The class of c.d.
functions enjoys a very rich calculus similar to that for
q.d. functions (see � Quasidifferentiable optimization:
Optimality conditions) which is a generalization of the
classical differential calculus. The class of c.d. functions
was introduced in [3].

First we discuss the problem of minimizing a c.d.
function on the entire space (in the absence of con-
straints).
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For a c.d. function the following necessary condi-
tion holds:

Proposition 2 For a point x� 2 Rn to be a minimizer of
f on Rn it is necessary that

0nC1 2 fd f (x�)C [0;w]g ;

8[0;w] 2 d f (x�)
(6)

(it is assumed that condition (5) holds).

A point x� satisfying (6) is called inf-stationary. Let x
be not inf-stationary. Then there exists w D [0;w] 2
d f (x) such that

0nC1 … fd f (x�)C wg D Lw (x) : (7)

Find

min
z2Lw (x)

kzk D kzw(x)k :

(7) implies that

zw (x) D
�
�w (x); zw(x)

�
¤ 0nC1

(�w (x) 2 R ; zw (x) 2 Rn) :

It is also possible to show that zw (x) ¤ 0n and that for
the direction

gw (x) D �
zw(x)
kzw(x)k

the inequality f 0(x; gw (x)) � �kzw (x)k holds.

Method of Codifferential Descent (MCD)

Let a function f be defined, Lipschitz and continuously
codifferentiable on Rn. Fix any � > 0. Choose an arbi-
trary x0 2 Rn. Let xk have already been found. If con-
dition (6) holds at xk, then xk is inf-stationary and the
process terminates. Otherwise, for every w 2 d
 f (xk)
where

d
(x) D
n
w 2 d f (x) : w D (!;w); 0 � ! � �

o
(8)

we find

min
z2Lw (xk )

kzk D kzkwk

with

zkw D [�kw ; zkw] ; Lw (xk) D [d f (xk)C w] :

Now, for every w 2 d
 f (xk) we find

min
˛�0

f (xk � ˛zkw ) D f (xk � ˛kwzkw) (9)

and then

min
w2d
 f (xk )

f (xk � ˛kwzkw ) D f (xk � ˛kwk zkwk ) :

Put xkC1 D xk � ˛kwk zkwk . Continuing in the same
manner we construct a sequence {xk} such that f (xk+1)
< f (xk).

Proposition 3 (See [4, Thm. V.5.1].) Let the set {x 2
Rn: f (x) � f (x0)} be bounded, x� be a limit point of the
sequence {xk} and let relation (4) hold uniformly in x
from some neighborhood of x� and in � from S = {�
2 Rn: k�k = 1}.

Then the point x� is an inf-stationary point of f (i. e.
condition (6) holds).

Remark 4 The above described MCD is a conceptual
method (according to the terminology of E. Polak). It
should be adjusted to a specific class of functions. The
MCD is a generalization of the classical steepest descent
method.

For example, if for every x 2 Rn the set d f (x) is the
convex hull of a finite number of points then in (8) one
can take only points w D (w; !) which are ‘vertices’ of
d f such that 0 � ! � �.

In this case at each step it is required to solve only
a finite number of one-dimensional optimization prob-
lems (9).

Method of Hypodifferential Descent (MHD)

Let f be defined, Lipschitz and continuously hypodif-
ferentiable on Rn, i. e. there exists a codifferential map-
ping of the form D f (x) D [d f (x); f0nC1g] which is
Hausdorff continuous. Then the necessary condition
for a minimum (6) takes the form

0nC1 2 d f (x�) : (10)

If x 2 Rn is not an inf-stationary point (i. e., (10) does
not hold) then let us find

min
z2d f (x)

kzk D k(�(x); z(x))k D �(x) D kz(x)k :

Since �(x) > 0 then z(x) ¤ 0nC1. It is possible to show
that z(x) 6D 0n. The direction g(x) = � z(x)/ k z(x) k
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is a descent direction (not necessarily the steepest de-
scent direction). The vector function g(x) is continuous
at any point which is not inf-stationary.

Take any x0 2 Rn. Let xk have already been con-
structed. Let us find �(xk) D kz(xk)k. If �(xk) = 0 then
xk is inf-stationary and the process terminates. Other-
wise, take gk = �z(xk)/ k z(xk) k and find

min
˛�0

f (xk C ˛gk) D f (xk C ˛k gk) :

Put xk + 1 = xk + ˛kxk. Continuing analogously we con-
struct a sequence {xk} such that f (xk + 1) < f (xk).

Proposition 5 Let x� be a limit point of the sequence
{xk} and the hypotheses of Proposition 3 hold. Then 0n + 1

2 df (x�) i. e. x� is an inf-stationary point of f .

Difference of Convex (d.c.) Functions

Let f (x) = f 1(x)� f 2(x) where f 1, f 2:Rn!R are convex.
A d.c. function is quasidifferentiable with the quasidif-
ferentialD f (x) D [@ f (x); @ f (x)] where @f (x) = @f 1(x),
@ f (x) D �@ f2(x), @f 1(x) and @f 2(x) are subdifferentials
(in the sense of convex analysis) of the functions f 1 and
f 2 respectively:

@ fi(x) D
�
v 2 Rn : fi(z) � fi(x) � (v; z � x);

8z 2 Rn

	
:

The sets @f i are convex and compact. The necessary
condition for a minimum (6) takes the form

@ f2(x�) � @ f1(x�) : (11)

If f 2 is a polyhedral function (i. e. f 2(x) = maxi 2 I{ai +
(vi, x)} where ai 2 R, vi 2 Rn, I = 1, . . . , N) then condi-
tion (11) is sufficient for the point x� to be a local min-
imizer of f .

Since the mappings @f 1 and @f 2 are discontinuous
then Df is also discontinuous.

If F is a convex function, " � 0 then the set

@"F(x) D

8<
:v 2 Rn :

F(z) � F(x)
� (v; z � x) � ";
8z 2 Rn

9=
;

is called the "-subdifferential of F at x.
We shall use the following properties of a convex

function (see, e. g., [7]):
1) @"F(x) is a closed compact set.

2) The mapping @"F is Hausdorff continuous jointly in
" and x on (0,1) × Rn.

3)

max
v2@"F(x)

(v; g) D inf
˛�0

1
˛

�
F(x C ˛g) � F(x)C "

�

:D F 0"(x; g) :

In [6] the following necessary and sufficient condi-
tion for a global minimum is stated:

For a point x� to be a global minimizer of a d.c.
function f (x) = f 1(x) � f 2(x) it is necessary and suffi-
cient that

@" f2(x�) � @" f1(x�) ; 8" � 0 : (12)

Note that if "1 > "2 and

f 0"1"2 (x; g) :D f 01"1(x; g) � f 02"2(x; g) � 0 (13)

then

inf
˛�0

f (x C ˛g) � f (x)C "2 � "1 : (14)

Let us construct the following method for finding an
inf-stationary point of f (i. e. a point satisfying (11)).

Fix "0,�0 = "0/2. Take an arbitrary x00 2Rn. Assume
that the set

C D fx 2 Rn : f (x) � f (x00)g

is bounded (then it is closed since f is continuous). If

B00 :D @
0 f2(x00) � A00 :D @"0 f1(x00)

then we put x0 = x00. If

@
0 f2(x00) 6� @"0 f1(x00)

then let us find

max
w2B00

min
v2A00

kv � wk D kv00 � w00k D �00

and put g00 = (w00 � v00)/ k w00 � v00 k. Since �00 > 0
then

f 0"0
0
(x00; g00) < 0
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and, by (13) and (14), we conclude that

inf
˛�0

f (x00C˛g00) D f (x00C˛00g00) � f (x00)�
"0

2
:

(15)

Now take x01 = x00 + ˛00g00 and check the condition

B01 :D @
0 f2(x01) � A01 :D @"0 f1(x01) :

Continuing in the same manner, in a finite number of
steps we shall find a point x0s0 such that

B0s0 :D @
0 f2(x0s0 ) � A0s0 :D @"0 f1(x0s0 ) (16)

(it is due to (15) and the boundedness of C).
Put x0 = x0s0 . By (16)

B0 :D @
0 f2(x0) � A0 :D @"0 f1(x0) :

Let xk be constructed such that

@
i f2(xk) � @"i f1(xk) ; 8i 2 0; : : : ; k ; (17)

where �i = �0/2i, " = "0/2i.
Put xk + 1, 0 = xk. If

@
kC1 f2(xkC1;0) � @"kC1 f1(xkC1;0) (18)

then we take xk + 1 = xk + 1, 0. If (18) does not hold, we
continue as above and in a finite number of steps a point
xkC1;skC1 will be found such that

@
kC1 f2(xkC1;skC1 ) � @"kC1 f1(xkC1;skC1 )

and we put xk + 1 = xkC1;skC1 .
As a result we construct a bounded sequence {xk}

satisfying (17).

Proposition 6 Any limit point of the sequence {xk} is
an inf-stationary point of f .

Difference of Max-Type (d.m.) Functions

Let

f (x) D f1(x) � f2(x)

where f 1, f 2: Rn! R are max-type functions:

f1(x) D max
y2G1

'1(x; y) ;

f2(x) D max
y2G2

'2(x; y)

where '1 and '2 are continuous on Rn × G1 and Rn

× G2, respectively, and there exist derivatives '1x
0 and

'2x
0 which are continuous. The function f (called a d.m.

function) is quasidifferentiable. It is also continuously
codifferentiable:

f (x C	) D f (x)C max
[a;v]2d f (x)

�
aC (v; 	)

�

C min
[b;w]2d f (x)

�
bC (w; 	)

�
C ox (	) ;

where

d f (x) D co

8<
:[a; v] :

a D '1(x; y) � f1(x);
v D ' 01x(x; y);

y 2 G1

9=
;

� R � Rn ;

d f (x) D co

8<
:[b;w] :

b D f2(x) � '2(x; y);
w D �' 02x(x; y);

y 2 G2

9=
;

� R � Rn :

Here a, b 2 R; v, w 2 Rn.
Now it is possible to employ the MCD for finding

inf-stationary points.

Twice Codifferentiable Functions

A function f : Rn ! R is called twice codifferentiable at
x 2 Rn if there exist convex compact sets d2f (x) and
d
2
f (x) � R � Rn � Rn�n such that

f (x C	) D f (x)

C max
[a;v;A]2d2 f (x)

�
aC (v; 	)C

1
2
(A	;	)

�

C min
[b;w;B]2d

2
f (x)

�
bC (w; 	)C

1
2
(B	;	)

�

C o(	2)

where

o((˛	)2)
˛2

˛!0
! 0 ; 8	 2 Rn :

Here Rn×n is the space of real (n × n)-matrices.
The pair of sets D2 f (x) D [d2 f (x); d

2
f (x)] is called

a second order codifferential of f at x. If f is twice c.d. in
some neighborhood of x and the mapping D2f is Haus-
dorff continuous at x, then the function is called twice
continuously codifferentiable at x.
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The class of twice c.d. functions is quite rich and en-
joys a well-developed calculus (see [4]).

Let f be twice continuously c.d. on Rn. Then the fol-
lowing second order Newton-type method can be em-
ployed to find inf-stationary points of f .

Take any x0 2 Rn. Let xk have already been con-
structed. Put

Fk(	) D max
[a;v;A]2d2 f (xk )

�
aC (v; 	)C

1
2
(A	;	)

�

C min
[b;w;B]2d

2
f (xk )

�
bC (w; 	)C

1
2
(B	;	)

�
;

find

min
�2Rn

Fk(	) D Fk(	k)

and take xk + 1 = xk +�k.
The sequence {xk} thus constructed converges (un-

der some additional assumptions) to an inf-stationary
point of f (see [1]).

Quasidifferentiable Programming Problems

Let functions f and hi: Rn ! R (i 2 I = 1, . . . , N) be
quasidifferentiable on Rn and let

˝ D fx 2 Rn : hi(x) � 0; 8i 2 Ig :

Assume that ˝ 6D ;.
It is required to find

(P)min
x2˝

f (x) D f � :

The set ˝ is called quasidifferentiable, problem (P)
is a quasidifferentiable (q.d.) programming problem.
Necessary conditions for a minimum of f on ˝ are
stated in � Quasidifferentiable optimization: Optimal-
ity conditions. If all the functions f and f i0 are, in addi-
tion, continuously codifferentiable then it is possible to
extend the MCD to problem (P) (see [4]).

Another approach to problem (P) is based on the
penalization technique.

We say that problem (P) is calm if

lim sup
"#0

f � � f"
"

� B <1 (19)

where
f" D inf

x2˝"
f (x) ;

˝" D fx 2 Rn : hi(x) � "; 8i 2 Ig ;

" > 0 :

Proposition 7 If the calmness condition (19) holds then
there exists A� <1 such that, for any A > A�, the set of
minimizers of the function f on˝ coincides with the set
of minimizers of the function

F(x;A) D f (x)C A
X
i2I

hCi (x) (20)

on Rn. Here h+i (x) = max{0, hi(x)}.

Remark 8 Thus, the constrained optimization problem
(P) is reduced to the unconstrained one. Since the func-
tion F(x, A) is again quasidifferentiable, one can use
methods for unconstrained optimization. Another con-
dition (different from (19)) under which Proposition 7
is valid was stated in [2].

Remark 9 Problem (P) is called a d.c. programming
problem if all the functions f and hi0 (i 2 I) are d.c., i. e. f
= f 1 � f 2, hi = h1i � h2i where f 1, f 2, h1i, h2i are convex.
If the calmness condition (19) holds then, by Proposi-
tion 7, problem (P) is reduced to that of minimizing the
function F(x,A) (see (20)) (ifA is sufficiently large). We
have

hCi (x) D maxf0; hi(x)g

D maxf0; h1i(x)� h2i(x)g D h1i(x) � h2i (x) ;

where

h1i (x) D maxfh1i(x); h2i(x)g ;

h2i (x) D h1i(x)C h2i(x) :

The functions h1i and h2i are convex, therefore hCi
is d.c. and, hence, the function F(x, A) is also d.c. and
one may use the method described above for d.c. func-
tions.

See also
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� Hemivariational Inequalities: Applications in
Mechanics
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Quasidifferentiability and the notion of the quasidif-
ferential extend the subdifferential of convex analysis
for a quite general class of nonconvex and nonsmooth,
but directionally differentiable functions. By using an
ordered pair of convex sets, the quasidifferential copes
in a nice way with both nonsmoothness and noncon-
vexity issues. Since its introduction by V.F. Demyanov,
a number of quasidifferential optimization problems
have been studied. Moreover calculus rules have been
developed and applications, among others in mechan-
ics and engineering [5] have been considered. In addi-
tion, the related, more appropriate for numerical pur-
poses notion of the codifferential has been introduced.

Let us consider a classical optimization algorithm,
the (anti)gradient optimization, and how it is modi-
fied for quasidifferentiable functions. First, recall that
a nondifferentiable function does not has derivatives in
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the classical sense. One should use set-valued approx-
imations at the points of the nondifferentiability in-
stead. This replacement introduces the following two
problems in a gradient optimization algorithm. First,
one has to calculate an appropriate direction of de-
scent, which should be followed at a given iteration
step. Moreover, the optimality conditions for a non-
differentiable function have a form dictated by the set-
valued approximation of the derivative (i. e., one should
check, at a given point, if zero is element of a set, or if
some relation between sets is satisfied). Several appli-
cations of the quasidifferentiability concept are briefly
reviewed in this short article.

Nonsmooth Modeling

Let us recall first the notion of quasidifferentiability in
the sense of Demyanov. A function f which is defined
on an open set X � Rn and which is directionally dif-
ferentiable at a point x 2 X is called quasidifferentiable
if there exists an ordered pair of convex compact sets
[@ f (x); @ f (x)] in Rn × Rn which produces the direc-
tional derivative of the function by the following for-
mula

f 0(x; g) D max
w2@ f (x)

hw; gi C min
v2@ f (x)

hv; gi ; (1)

for all directions g 2 Rn. More details are given in
� Quasidifferentiable optimization.

Relation (1) gives rise to a qualitative and quantita-
tive nonsmooth approximation (quasilinearization) of
a nonsmooth and nonconvex function f at point x. The-
oretical results on nonsmooth modeling can be found,
among others, in [8,9,14].

The notion of the quasidifferential gives rise to non-
smooth models, with applications in mechanics [5,11].
In particular, interesting nonconvex variational formu-
lations can be written, as it is discussed in more de-
tail in � Quasidifferentiable optimization: Variational
formulations. They extend the variational inequalities,
which are valid for the convex, nondifferentiable case,
and constitute a parallel development to the hemivaria-
tional inequalities in the sense of P.D. Panagiotopoulos
(see also � Nonconvex energy functions: Hemivaria-
tional inequalities; �Hemivariational inequalities: Ap-
plications in mechanics as well as [12]). Furthermore,
quasidifferential and codifferential optimization tech-
niques can be used for the construction of numerical

algorithms for problems of nonsmooth computational
mechanics [5].

Nonsmooth and Nonconvex Optimization

The notion of the quasidifferential allows one to calcu-
late one steepest descent direction of a quasidifferen-
tiable function f (x) at a given point x0. Assume that at
point x0 one has the subdifferential @f (x0) and the su-
perdifferential @ f (x0). Then, a steepest descent direc-
tion h can be calculated by:

h D
w�1 C w�2
kw�1 C w�2 k

; (2)

for w�1 2 @f (x0), w�2 2 @ f (x0), such that

kw�1 C w�2 k D max
w12@ f (x0)

(
min

w22@ f (x0)
kw1 C w2k

)
:

Moreover, there exists necessary (and in some cases
sufficient) set-valued optimality conditions for quasid-
ifferentiable optimization problems (see � Quasidif-
ferentiable optimization). Thus one has whatever is
needed for the construction of a numerical algorithm.
Calculus rules exist for the construction of the quasid-
ifferential (see�Quasidifferentiable optimization: Cal-
culus of quasidifferentials), if this is not obvious from
the definition of the optimization problem. Stopping
rules for an optimization algorithm can also be ex-
tracted. In fact, if the optimality criteria are satisfied,
then (at least local) minimum point has been calculated.
Otherwise, one can calculate a steepest descent direc-
tion by (2) and proceed with a (steepest descent like)
numerical optimization scheme. In this respect the af-
filiated notion of the codifferentiability has certain ad-
vantages for the numerical implementation. More de-
tails can be found in � Quasidifferentiable optimiza-
tion: Codifferentiable functions and in [3,6].

It is worth noting to observe here that formula (2)
may admit multiple solutions. This should be expected
since one deals with nonconvex (global) optimization
problems. This is actually one of the advantages of the
quasidifferentiability concept since, theoretically, if one
follows all possible directions of descent which may
arise along an iterative algorithm one should be able to
calculate multiple solutions (i. e., local minima).

More information on smooth (convex and noncon-
vex) optimization and appropriate algorithms devel-
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oped for these problems can be found, among others,
in [2,7]. Note also the multi-objective programming ap-
proach for the solution of systems of quasidifferentiable
equations which has been developed in [13].

Multilevel andMarginal Function Optimization

Interesting results on the application of the quasidiffer-
entiability concept for the sensitivity analysis and algo-
rithms for multilevel optimization problems have been
presented in [1,10].

Applications in nonsmoothmechanics

Quasidifferential modeling and optimization have been
used for nonsmooth mechanics applications. As it is al-
ready mentioned these results can be found in [5,11].
A number of recent (2000) applications of quasidiffer-
entiability can be found in [4].
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Certain semipermeability or temperature control prob-
lems in thermoelasticity, which may be combined with
analogous mechanical unilateral contact effects, can be
formulated and studied in a unified framework by non-
smooth modeling techniques [7]. The theory of qua-
sidifferentiable optimization, in the sense of V.F. De-
myanov and A.M. Rubinov, provides a general frame-
work for the treatment of both convex and noncon-
vex, nonsmooth modeling problems [1,2,3,4]. Coupled
thermal and kinematical nonconvex unilateral effects
will be modeled in the sequel by using the quasidif-
ferentiable optimization approach. Analogous formu-
lations which have been based on the notion of hemi-
variational inequalities have been proposed and stud-
ied for semipermeability and thermal problems by P.D.

Panagiotopoulos et al. [6,7]. An extension to thermo-
viscoelasticity has recently been published in [5].

This short article is mainly based on the results pre-
sented in [4,7], where more details can be found.

Classical Thermoelastic Model

Let us consider a thermoelastic medium in the Eu-
clidean space R3. A point is denoted by x and its co-
ordinates with respect to a fixed Cartesian coordinate
system 0x1x2x3 by xi, i = 1, 2, 3. The time variable t takes
values in the interval [0, T]�R. Moreover, let u = u(x,
t) be the displacement of the material point x at time t
with reference to the natural state of the body, which is
characterized by zero stresses and a constant absolute
temperature �0 > 0. The density at point x of the natu-
ral state is denoted by � = �(x) and the open, bounded,
connected subset of R3 occupied by the body is denoted
by ˝ . As usual, the boundary � of˝ is assumed to be
regular.

The behavior of a linear thermoelastic body is gov-
erned by the following constitutive equations for the
stress tensor � = {� ij}, i = 1, 2, 3, and the specific en-
tropy deviation � � �0 (where �0 is the specific entropy
of the natural state)

�i j D ti j � mi j(� � �0)

D Ci jhk"hk � mi j(� � �0);
(1)

� � �0 D
1
�0

cD(� � �0)C
1
�
mi j"i j: (2)

Here � = �(x, t) is the absolute temperature, and " =
{"ij} the strain tensor, which is related to the displace-
ments by the small deformation elasticity relation

"i j(u) D
1
2
(ui; j C uj;i ):

Here C = {Cijhk}, i, j, h, k = 1, 2, 3, is the elasticity tensor,
which satisfies the well-known symmetry and ellipticity
conditions, m = {mij} is the symmetry tensor of thermal
expansion, and cD = cD(x)> 0 is the specific heat at zero
strain of the body. C(x), m(x) and cD(x) are referred to
the natural state of the body. The equations of motion
read:

�u00i D �i j; j C fi ; (3)

and the law of conservation of energy has the form

��0�
0

D �qi;i C Q: (4)
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Here f = {f i}, f i = f i(x, t), is the volume force vector, q
= {qi}, qi = qi(x, t), is the heat flux vector and Q = Q(x,
t) is the radiant heating per unit volume. Fourier’s law
of heat conduction reads:

qi D �ki j�; j: (5)

The symmetric tensor of thermal conductivity k = {kij},
kij = kij(x), refers to the natural state of the body and
satisfies the condition

ki j ai a j � cai ai ; 8a D faig 2 R3;

where c is a positive constant. These relations lead to
the following system of differential equations, which
describe the linear thermoelastic behavior of a generally
nonhomogeneous and nonisotropic body:

�u00i D fi C (Ci jhk"hk); j �
�
mi j(� � �0)

�
; j ;

in˝ � (0; T) ; (6)

�cD� 0 � (ki j�; j);i C mi j�0"
0
i j D Q;

in˝ � (0; T):
(7)

In the sequel the following initial conditions at t = 0 are
assumed:

ui D u0i (x); u0i D u1i(x) in˝; (8)

and

� D �(x) in˝: (9)

Let the following bilinear forms be introduced:

a(u; v) D
Z
˝

Ci jhk"i j(u)"hk(v) d˝;

(u; v) D
Z
˝

uivi d˝;

M1(�; v) D
Z
˝

(mi j�); jvi d˝;

M2(u; ') D
Z
˝

mi jui; j' d˝;

K(�; ') D
Z
˝

ki j�; j';i d˝;

(�; ') D
Z
˝

�' d˝:

(10)

Quasidifferential Thermal Boundary Conditions

In order to complete the description of the previous
boundary value problem one needs to specify boundary
conditions for the thermal and for the elasticity prob-
lem. First, let us assume that between the boundary
temperature and the heat flux the following quasidif-
ferential (QD) superpotential relation holds:

qini D �ki j�; jni D w1(�; t)C w2(�; t);

with fw1(�; t);w2(�; t)g 2 Dj(�; t);
on �1 � (0; T);

(11)

where � 1 �� and on the remaining part of the bound-
ary one assumes, for simplicity, that:

� D 0 on � � �1: (12)

For the displacements, a simple boundary condition is
considered:

ui D 0 on � � (0; T): (13)

Here n = {ni} denotes, as usual, the unit normal to �
directed towards the exterior of˝ .

Variational Formulation

One follows here the usual way for the construction
of the variational or weak formulation of the previ-
ous boundary value problem (see also � quasidifferen-
tiable optimization: variational formulations; � hemi-
variational inequalities: applications in mechanics). Let
the virtual variations v� u0 and ' � � are sufficiently
smooth. Then, by multiplying (6) and (7) by v� u0

and ' � � respectively, integrating over ˝ , and using
the Green—Gauss theorem, one obtains the variational
equalities

(�u00; v � u0)C a(u; v � u0)CM1(� � �0; v � u0)

D ( f ; v � u0)C
Z
�

ti jn j(vi � u0i) d�

in˝ � (0; T)
(14)

and

(�cD� 0; ' � �)C K(�; ' � �)CM2(�0u0; ' � �)

D (Q; ' � �)C
Z
�

ki j�; jni (' � �) d�

in˝ � (0; T):
(15)
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Now let us assume that Cijhk, kij, mij, �> 0 and cD>
0 are elements of L1(˝), and that f (t)2 [L2(˝)]3 and

Q(t)2 L2(˝). Moreover, the spaces [
0
H1(˝)]3 for v, u0

and H1(˝) for ', � are introduced.
Let us recall that a QD boundary condition (for in-

stance, the relation (11)), gives rise, due to the definition
of the quasidifferential, to a min-max relation. This re-
lation, is used for the formulation of nonconvex vari-
ational problems, as it is discussed in more details in
� quasidifferentiable optimization: variational formu-
lations.

Thus, the variational equalities (14) and (15) are
combined with the boundary conditions (11)–(13), and
lead to the following variational problem: find func-

tions u : [0; T] ! [
0
H1(˝)]3 and � : [0, T]! ˚ =

H1(˝): � = 0 on � � � 1}, with u0(t) 2 [
0
H1(˝)]3,

u0 0(t)2 [L2(˝)]3, � 0 (t)2 L2(˝), which satisfy the initial
conditions and the variational expression

(�u00; v � u0)C a(u; v � u0)CM1(� � �0; v � u0)

D ( f ; v � u0); 8v 2 [
0
H1(˝)]3;

(16)

and

(�cD� 0; ' � �)C K(�; ' � �)

CM2(�0u0; ' � �)

Cmax fhw�1 ; � � �i : w�1 2 @J(�; t)g

Cmin
n
hw�2 ; � � �i : w�2 2 @J(�; t)

o

D (Q; ' � �); 8' 2 ˚:

(17)

Quasidifferential Elastic Boundary Conditions

Assume now simple thermal boundary conditions, i. e.,

� D �0 on � � (0; T): (18)

For the elasticity problem let a nonmonotone, possibly
multivalued quasidifferential (QD) boundary law holds
on a part � S of the boundary � :

� S D f�Sig D f��i jnig

D S1(u0; x; t)C S2(u0; x; t);

fS1(u0; x; t); S2(u0; x; t)g 2 D (u0; x; t)

on �S � (0; T):

(19)

On the remaining part of the boundary one assumes
simply that:

ui D Ui on �U � (0; T): (20)

Here � D � U [� S , where � U and � S are nonempty,
disjoint, open sets,Ui =Ui(x, t) is a prescribed displace-
ment vector on � U (which should be compatible with
the initial conditions (8)–(9)).

In an analogous way one proceeds with the bound-
ary value problemwhich is defined by the relations (6)–
(9) and (18)–(19). Let v, u0 2 [H1(˝)]3 be such that v
= u0 = U 0(t) on � U and ', � 2 H1(˝) with ' = � =
�0 on � . In this case one gets the variational problem:
find u: [0, T]! [H1 (˝)]3 with u0 = U on � U and � 2
H1(˝) with � = �0 on � with u0 (t)2 [H1(˝)]3, u0 0(t)2
[L2(˝)]3, � 0(t)2 L2(˝), which satisfy the initial condi-
tions and the variational expression

(�u00; v � u0)C a(u; v � u0)

CM1(� � �0; v � u0)

Cmax
˚˝
S�1 ; v � u0

˛
: S�1 2 @� (u0; t)

�

Cmin
˚˝
S�2 ; v � u0

˛
: S�2 2 @� (u0; t)

�

D ( f ; v � u0);

8v 2 [H1(˝)]3 with v D U 0(t) on �U

(21)

and

(�cD� 0; ' � �)C K(�; ' � �)

CM2(�0u0; ' � �)

D (Q; ' � �);

8' 2 H1(˝) with ' D �0 on �:

(22)

More general thermoelastic problems may be consid-
ered by considering QD laws for both the elasticity and
the thermal part of the problem, or even mixed laws.

See also

� Generalized monotonicity: Applications to
variational inequalities and equilibrium problems

� Hemivariational inequalities: Applications in
mechanics

� Hemivariational inequalities: Eigenvalue problems
� Hemivariational inequalities: Static problems
� Nonconvex energy functions: hemivariational

inequalities
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A function f defined on an open set X � Rn and di-
rectionally differentiable at a point x 2 X is called qua-
sidifferentiable (in the sense of V.F. Demyanov) if there
exists an ordered pair of convex compact sets [U, V] in
Rn ×Rn which produces the directional derivative of the
function by the following formula

f 0(x; g) D max
h2U

(h; g)Cmin
h2V

(h; g) ; (1)

for all directions g 2 Rn.
Quasidifferentiability is a genuine generalization

of the classical differentiability concept which is valid
for smooth differentiable functions, and of the con-
vex analysis subdifferential, which, in turn, is a set-
valued differential valid for convex, nondifferentiable
functions. An ordered pair of convex sets is used for the
approximation of the directional derivative in (1). More
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details can be found in the companion article � Qua-
sidifferentiable optimization, the links with other no-
tions of nonsmooth analysis are discussed in � Qua-
sidifferentiable optimization: Dini derivatives, Clarke
derivatives and applications are briefly presented in
� Quasidifferentiable optimization: Applications. One
may also consult the original publications [2,3,4,5,6].

Using classical differential calculus and on the
assumption of smooth (differentiable) functions the
derivative of sums, of differences or of composite func-
tions etc may easily be calculated. To this end one uses
calculus rules and the derivatives of the involved func-
tions (cf., the chain rule of differentiation). For quasid-
ifferentiable functions there exist appropriate calculus
rules [2]. The situation is more complicated here, since
one manipulates ordered pairs of convex sets. Further-
more, calculus rules have been developed for composite
functions which can be produced from a finite num-
ber of smooth constituents and from the application of
a finite number of minimum or maximum operators.
Moreover, as the quasidifferential of a given function is
not uniquely determined (it is actually a class of equiv-
alent ordered pairs of convex sets) one may wishes to
simplify the results of such a calculus operation.

It is clear that, since quasidifferentials have found
a number of applications, among others in optimiza-
tion, in mechanics, in control theory and in economy,
the need for refining the quasidifferential calculus and
for incorporating it into automatic computational pro-
cedures (e.g, in computer algebra systems, in analogy
to classical systems [1]) is obvious. For the latter task,
which at the present remains open for future research
efforts, use of results developed within the theory of in-
terval analysis may be advantageous.

Calculus rules for one-dimensional functions (de-
fined on R) and for functions defined on Rn are given
without proofs here. See [2,3] for more details.

One-Dimensional Case

A function in R1 and sets which are intervals of the real
line R1 are considered first. Let D1 and D2 be two pairs
of closed intervals: D1 = [A1, B1], D2 = [A2, B2], where
A1 = [v11, v12], B1 = [w11, w12], A2 = [v21, v22], B2 = [w21,
w22], with vi1 � vi2, wi1 � wi2, 8i 2 {1, 2 }. Addition of
intervals is defined as follows: D = D1 + D2 = [A1+ B1,
A2+ B2] = [A, B], where A = [v11+ v21, v12+ v22] and B

= [w11+w21, w12+ w22]. Moreover, for D = [A, B], A =
[v1, v2], B = [w1, w2], v1 � v2, w1 � w2, multiplication
by a scalar quantity � is defined by:

�D D

(
�[A; B]; � � 0;
�[B;A]; � < 0;

where, on the right-hand side one has � [A, B] = [[� v1,
� v2], [� w1, � w2]], etc.

Based on these results concerning calculus of closed
intervals one derives calculus rules for quasidifferentials
in the one-dimensional case.

Let f 1 be a directionally differentiable function at
a point x and let D f1(x) D [@ f1(x); @ f1(x)] be its qua-
sidifferential at a point x 2 R1: @ f1(x) D [v11; v12],
@ f1(x) D [w11;w12], v11 � v12, w11 � w12. Then the
function f = � f 1 is also directionally differentiable at
x and admits a quasidifferential of the form D f (x) D
[@ f (x); @ f (x)], where

@ f (x) D

(
[�v11; �v12] ; � � 0;
[�w12; �w11] ; � < 0;

@ f (x) D

(
[�w11; �w12] ; � � 0;
[�v12; �v11] ; � < 0:

If in addition, f 1(x) 6D 0 then the function f = 1/f 1 is
also directionally differentiable at x and

D f (x) D �
1
f 21
D f1(x) D [@ f (x); @ f (x)] ;

where

@ f (x) D
�
�

1
f 21
w12;�

1
f 21
w11

�
;

@ f (x) D
�
�

1
f 21
v12;�

1
f 21
v11
�
:

Let us consider two directionally differentiable
functions f 1, f 2 at a point x and let D f 1(x), D f 2(x) be
their quasidifferentials

D f1(x) D [@ f1(x); @ f1(x)] ;

D f2(x) D [@ f2(x); @ f2(x)] ;

with the corresponding intervals denoted by:

@ f1(x) D [v11; v12] ; @ f1(x) D [w11;w12] ;

@ f2(x) D [v21; v22] ; @ f2(x) D [w21;w22] ;

vi1 � vi2 ; wi1 � wi2 ; 8i 2 f1; 2g :



3192 Q Quasidifferentiable Optimization: Calculus of Quasidifferentials

Then the function f = f 1+ f 2 is also directionally differ-
entiable at x and one can take D f (x) D [@ f (x); @ f (x)],
where

@ f (x) D @ f1(x)C @ f2(x) D [v1; v2]

@ f (x) D @ f1(x)C @ f2(x) D [w1;w2] ;

with v1 = v11+ v21, v2 = v12+ v22, w1 = w11+ w21 and w2

= w12+ w22.
Analogously one proceeds with the product of two

functions f = f 1f 2, where

D f (x) D f1(x)D f2(x)C f2(x)D f1(x)

D [@ f (x); @ f (x)] :

Furthermore, let ' i(x) (i 2 I = {1, . . . , N}) be direc-
tionally differentiable functions at a point x. The func-
tions

f1(x) D max
i2I

'i(x) ; f2(x) D min
i2I

'i(x)

are also quasidifferentiable.
Finally, let f (z1, . . . , zm) be a smooth function and

let y1, . . . , ym be quasidifferentiable functions at a point
x0. Then the function F(x) = f (y1(x), . . . , ym(x)) is also
quasidifferentiable at x0.

One concludes that the family of quasidifferentiable
functions is a linear space, closed with respect to all
smooth operations, as well as the operations of taking
the pointwise maximum and minimum over a finite
number of functions.

Finite-Dimensional Case

In this case one needs calculus rules for pairs of convex
sets of Rn (see, e. g. [4,6]).

Let the functions f , f 1, f 2 be quasidifferentiable at x
and � be a real number. Then the sum, the product, the
function � f and the function 1/f (x) (or every point x
such that f (x) 6D 0) are also quasidifferentiable and an
element of their quasidifferential can be calculated as
follows:

D( f1 C f2)(x) DD f1(x)C D f2(x) ;
D( f1 � f2)(x) D f1(x)D f2(x)C f2(x)D f1(x) ;

D(� f )(x) D�D f (x) ;

D
�
1
f

�
(x) D �

1
f 2(x)

D f (x) :

Let moreover the functions f 1, . . . , f m be defined on
an open set X � Rn and be quasidifferentiable at x 2 X.
Then, the functions

�1(x) D max
i2f1;:::;mg

fi(x); �2(x) D min
i2f1;:::;mg

fi(x)

are quasidifferentiable at x as well. The following rela-
tions hold:

D� j(x) D
h
@� j(x); @� j(x)

i
; j D 1; 2 ;

with

@�1(x) D co
[

k2R(x)

0
BBBBBB@
@ fk(x) �

X

i 2 R(x);
i ¤ k

@ fi(x)

1
CCCCCCA
;

@�1(x) D
X

k2R(x)

@ fk(x); @�2(x) D
X
k2q(x)

@ fk(x);

@�2(x) D co
[

k2Q(x)

0
BBBBBB@
@ fk(x) �

X

i 2 Q(x);
i ¤ k

@ fi(x)

1
CCCCCCA
:

Here, [@ fk(x); @ fk(x)] is a quasidifferential of f k at x
and the following activity sets have been used:

R(x) D fi 2 I : fi(x) D �1(x)g ;

Q(x) D fi 2 I : fi(x) D �2(x)g ;

where I = {1, . . . , n}.
Finally, consider the case of a composite function.

Let a mappingH(x) = (h1(x), . . . , hm(x)) be defined such
that H(x): X! Y , where X is an open set in Rn and Y
is an open set in Rm and every function hi is quasid-
ifferentiable at x0 2 X. Let us assume that a function
f is defined on Y and is Hadamard differentiable and
quasidifferentiable at y0 = H(x0). Then the composite
function

�(x) D f (H(x))
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is quasidifferentiable at x0 and its quasidifferential
D�(x0) D [@�(x0); @�(x0)] is expressed by the formu-
las:

@�(x0)

D

8̂
<̂
ˆ̂:
p :

p D
mP
iD1

(�(i)(�i C �i ) � �(i)�i � �
(i)�i );

� D (�(1); : : : ; �(m)) 2 @ f (y0);
�i 2 @hi(x0); �i 2 @hi(x0)

9>>=
>>;

@�(x0)

D

8̂
<̂
ˆ̂:
l :

l D
mP
iD1

(�(i)(�i C �i )C �(i)�i C �
(i)�i );

� D (�(1); : : : ; �(m)) 2 @ f (y0);
�i 2 @hi(x0); �i 2 @hi(x0)

9>>=
>>;
;

where � and � are arbitrary vectors such that

� � � � � ; 8� 2 @ f (y0) [
�
�@ f (y0)

�
:

Concrete examples and the derivation of the above
rules can be found in the above given literature. One
should only mention that if some of the involved sets
(i. e., the subdifferential or the superdifferential) hap-
pens to be polyhedral, then certain of the previous rules
can be simplified significantly (see, e. g., [7]). The latter
case appears, among others, in the applications of qua-
sidifferential calculus within a finite element method
environment for applications in mechanics (see also
�Quasidifferentiable optimization: Variational formu-
lations; � Quasidifferentiable optimization: Applica-
tions to thermoelasticity, and [5]).
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If for a directionally differentiable function there exists
an ordered pair of convex compact sets [U, V] in Rn

×Rn which produces the directional derivative of f at x
in the direction g by the expression:

f 0(x; g) D max
h2U

(h; g)Cmin
h2V

(h; g) ; (1)

this function is called quasidifferentiable in the sense of
V.F. Demyanov and A.M. Rubinov. This notion cov-
ers a large number of structured nonconvex and non-
smooth functions, which can be used for the solution
of nonconvex and global optimization problems. For
instance, the class of difference convex functions is in-
cluded.

More details on this notion, the calculus rules for
computing quasidifferentials, its connection to other
notions of nonsmooth analysis and it applications
can be found in � Quasidifferentiable optimization;
� Quasidifferentiable optimization: Calculus of qua-
sidifferentials;�Quasidifferentiable optimization: Dini
derivatives, Clarke derivatives; � Quasidifferentiable
optimization: Applications, as well as in [1,2,3].

The quasidifferential, as well as the subdifferential
of convex analysis, are set-valued quantities which in-
clude discontinuities at the points of nondifferentiabil-
ity. In numerical algorithms this may cause problems.

A notion that takes into account neighboring informa-
tion would be more appropriate. This led Demyanov
to extend the notion of the quasidifferential by intro-
ducing the codifferential. Accordingly, the notions of
subdifferential and superdifferential are extended to the
notions of hypodifferential and hyperdifferential. One
should mention that all quasidifferentiable functions
are codifferentiable as well. Moreover, calculus rules ex-
ists, in analogy to the quasidifferential calculus rules.

These notions, which are useful for the construction
of numerical algorithms in nonsmooth optimization
[1] and nonsmooth computational mechanics [2] are
introduced in this short paper. More details are given
in the cited literature and in the previously mentioned
lemmas.

Codifferentiable Functions

Let X be an open subset of Rn and let a function f be
defined and finite for every x 2 X. A function f is called
codifferentiable at x if there exist convex compact sets
d f (x) � RnC1 and d f (x) � RnC1 such that the func-
tion admits a first order approximation in a neighbor-
hood of x of the form

f (x C	) D f (x)C max
[˛;v]2d f (x)

[˛C (v; 	)]

C min
[b;w]2d f (x)

[bC (w; 	)]C ox (	) ;
(2)

where ox(˛ 	)/˛! 0 as ˛ # 0, 8	 2 Rn. The ordered
pair of convex compact sets D f (x) D [d f (x); d f (x)] is
called a codifferential of f at x, where df (x) is a hypodif-
ferential and d f (x) is a hyperdifferential.

If moreover there exists a codifferential Df which is
Hausdorff continuous in a neighborhood of x, the func-
tion f is called continuously codifferentiable at x.

If there exists a codifferential of the form Df (x)
= [df (x), {0}], the function f is called hypodifferen-
tiable, while if there exists a codifferential of the form
D f (x) D [f0g; d f (x)] the function is called hyperdif-
ferentiable.

Note here that for a continuously codifferentiable
function the first order approximation which is based
on (2) is a continuous function in both x and � (recall
that the analogous approximation based on the quasid-
ifferential is a continuous function of only�).
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Twice Codifferentiable Functions

Twice codifferentiable functions present a suitable tool
for constructing higher order approximations of non-
differentiable functions. They extend the notion of sec-
ond order derivatives of classical smooth analysis.

Let a function f be defined on an open set X � Rn

and let it be finite there. The function f is twice codif-
ferentiable at x 2 X if there exist convex compact sets
d2f (x), and d

2
f (x), both subsets of R ×Rn ×Rn+n such

that

f (xC	) D f (x)

C max
[˛;v;A]2d2 f (x)

�
˛ C (v; 	)C

1
2
(A	;	)

�

C min
[b;w;B]2d

2
f (x)

�
bC (w; 	)C

1
2
(B	;	)

�

C o(	2) ;

with o((˛ �)2)/˛2 ! 0 as ˛ # 0 and 8� 2 Rn. Here
Rn+n is the space of real (n × n)-matrices.

The ordered pair of convex sets D2 f (x) D

[d2 f (x); d
2
f (x)] is called a second order codifferential

of f at x, the set d2f (x) is a second order hypodifferen-
tial and the set d2f (x) is a second order hyperdifferen-
tial of f at x. Moreover, if f is twice codifferentiable in
some neighborhood of a point x and the mapping D2

f is Hausdorff continuous at x, then the function f is
called twice continuously codifferentiable at x.

Analogously to the quasidifferentiable and codiffer-
entiable functions, twice hypodifferentiable functions
and twice hyperdifferentiable functions may be defined.
Calculus rules do also exist for twice codifferentiable
functions (see [1, p. 216]).

For example, let f be convex and finite on a convex
set X � Rn, x 2 X, and let X0 be an arbitrary closed
convex and bounded subset of X with x 2 int X0. In this
case one may consider the second order codifferential
D2f (x) = [d2f (x), 0]>, with

d2 f (x) D co

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂
[˛; v;A] :

˛ D f (z)� f (x)
C(v(z); x � z);
v(z) 2 @ f (z);
A D 0 2 RnCn ;

z 2 X0

9>>>>>=
>>>>>;
:

Here v(z) 2 @f (z) is an arbitrary element of the set val-
ued mapping, which is kept fixed for every z 2 X0 and

@f (z) is equal to the classical convex analysis subdiffer-
ential.

Moreover, for a twice continuously differentiable
function f it is well-known that

f (xC	) D f (x)C( f 0(x); 	)C
1
2
( f 00(x)	;	)Co(	2);

where f 0 0(x) is the matrix of second order derivatives
(Hessian) of f at x. The function f is twice continuously
codifferentiable and one may consider (among other
choices) one of the following second order codifferen-
tials of f :

d2 f (x) Df[0; f 0(x); f 00(x)]g ;

d
2
f (x) Df0; 0; 0g ;

or

d2 f (x) Df0; 0; 0g ;

d
2
f (x) Df[0; f 0(x); f 0(x)]g :

Applications

Efficient nonsmooth optimization algorithms can be
constructed based on the notion of the codifferential,
or, for hypodifferentiable functions, on the notion of
the hypodifferential. In fact, the technique of replac-
ing a nondifferentiable optimization problem by an
enlarged, classical, inequality constrained optimization
problem has been successfully used for convex or for
composite optimization problems [4,15]. For hypod-
ifferentiable functions a direction of descent at each
given point can be determined and used in an iterative
optimization procedure. For general, codifferentiable
functions, several directions of descent can be deter-
mined. This can be expected, given that one deals with
nonconvex, global optimization problems. Some details
in this direction are given in � Quasidifferentiable op-
timization: Applications and in the original publica-
tions [3,11].

Furthermore, twice (or higher order) quasidiffer-
entials and codifferentials provide set-valued approxi-
mations of the higher order derivatives of a function.
For numerical optimization tasks this information may
lead to more efficient algorithms, in analogy to the use
of Hessian matrices in classical, smooth optimization.
Other attempts for generalized second order deriva-
tives can be found, for convex functions in [5] and
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for nonconvex functions in [10,12]. For more informa-
tion in the area of nonsmooth optimization see, e. g.,
[6,7,8,9,13].

Another area of interest for practical applications
will be the use of this information for the construc-
tion of necessary and sufficient (local)optimality condi-
tions. Applications of these results include stability and
sensitivity analysis for quasidifferentiable and codiffer-
entiable optimization problems. In mechanics, this in-
formation can be used for the study of the stability of
structures governed by quasidifferentiable superpoten-
tials (cf. e. g., [14] and � Quasidifferentiable optimiza-
tion: Stability of dynamic systems). Applications in eco-
nomics will be of interest as well. Much work remains
to be done in this area, which is open for further inves-
tigations (as of 1999).
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The notion of the quasidifferential in the sense of V.F.
Demyanov and A.M. Rubinov [5] constitutes a set-
valued extension of the classical differential, which is
appropriate for nonsmooth and generally nonconvex
but directionally differentiable functions. This class of
functions covers a large number of applications in non-
smooth analysis and, among others, includes the pop-
ular in global optimization class of difference convex
functions. The quasidifferential approximates the di-
rectional derivative of a function by using an ordered
pair of convex sets, the subdifferential and the superdif-
ferential. Definitions are given in�Quasidifferentiable

optimization. Information on the corresponding calcu-
lus can be found in�Quasidifferentiable optimization:
Calculus of quasidifferentials.

Here, the relation between quasidifferentials and
more classical notions in nonsmooth analysis is briefly
addressed. In particular, the Dini directional derivatives
and the F.H. Clarke [2,3] derivatives are considered.
Other notions of nonsmooth analysis may be found,
among others, in the recent publications [1,3,11].

Dini Derivatives

The Dini upper derivative of a function f : Rn ! R at
a point x 2 dom f in a direction g 2 Rn is defined by:

f "D D lim sup
˛#0

1
˛
[ f (x; ˛g) � f (x)] : (1)

Note that the upper limit in (1) is not necessarily finite.
Analogously, the Dini lower derivative of f at x is de-
fined by the relation

f #D D lim inf
˛#0

1
˛
[ f (x; ˛g) � f (x)] :

Recall that if the limit

f 0(x; g) D lim
˛#0

1
˛
[ f (x C ˛g) � f (x)]

exists it is called the derivative of a function f at a point
x in a direction g, or theDini derivative and it is denoted
by f D0(x, g).

Since the Dini derivative (resp. the Dini upper or
lower derivative) is just the one-sided (resp. the one-
sided upper or lower) derivative of an ordinary real-
valued function, one can uses the methods developed
to study functions of one variable. Thus, for instance,
calculus rules for directional derivatives can be con-
structed.

A function f defined on an open set˝ is called Dini
uniformly directionally differentiable at a point x 2 ˝
if it is directionally differentiable at x and there exists
a real number ˛0 such that

1
˛
[ f (x C ˛g) � f (x)� ˛ f 0(x; g)] < � ;

8˛ 2 (0; ˛0) ; 8g 2 S ;
(2)

where S = {g |g| = 1 is the unit sphere. By setting ˛ g =
v in (2) one gets:

ˇ̌
f (x C v) � f (x) � f 0x(v)

ˇ̌
< � kvk ;

8v such that kvk � ˛0 :
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Thus the uniform directional differentiability means
that 1

kvk

ˇ̌
f (x C v) � f (x) � f 0x(v)

ˇ̌
tends to zero, as kvk

! 0.
More details on Dini derivatives and their use in op-

timization can be found in [9].

Clarke Derivatives

Let us consider the upper and lower Dini derivatives of
a function f for a fixed direction g, i. e. the functions x
! f "D(x, g) and x! f #D(x, g). Let us also consider the
upper (resp. the lower) regularizations of these func-
tions:

f "D(x; g) D max
�
f "D (x; g); lim sup

x0!x
f "D (x; g)

	
;

respectively

f #D(x; g) D min
�
f #D (x; g); lim inf

x0!x
f #D (x; g)

	
:

For a Lipschitz function f , the upper and lower Dini
derivatives are bounded in some neighborhood of x,
hence both previous limits are finite.

The Clarke upper and lower derivatives are defined
as upper and lower regularizations of the Dini upper
and lower derivatives, i. e.

f "CL(x; g) D f "D(x; g) ;

f #CL(x; g) D f #D(x; g) :

For the initial, equivalent definition of these quantities,
see [2,6 p. 69]. Here the approach of [8] has been fol-
lowed. For every fixed direction g, the function x !
f "CL(x, g) is upper semicontinuous and the function x
! f #CL(x, g) is lower semicontinuous.

It is appropriate to recall here some properties of the
Clarke derivatives. For every fixed point x, the function
g! f "CL(x, g) is sublinear and the function g! f #CL(x,
g) is superlinear, thus the subdifferential @ f "CL(x, g) and
the superdifferential @ f #CL(x; g) can be determined, such
that

f "CL(x; g) D max
l2@ f"CL(x;g)

(l ; g) ;

f #CL(x; g) D min
w2@ f#CL(x;g)

(w; g) :

Moreover, the following relations hold

f "CL(x;�g) D (� f )"CL(x;�g) ;

f "CL(x; g) D � f "CL(x;�g) :

From the above properties it results that

max
l2@ f"CL(x;g)

(l ; g) D max
w2@ f#CL(x;g)

(w; g) ;

thus the two compact convex sets coincide. The Clarke
subdifferential is thus defined as

@CL f (x) D @ f "CL(x; g) D @ f
#
CL(x; g) :

The mapping x! @CLf (x) is upper semicontinuous. An
element of the Clarke subdifferential is called a general-
ized gradient of f at x.

Concerning the relation between the directional
derivative of the function (if it is directionally differen-
tiable) and the Clarke upper and lower derivatives one
has, in general,

f #CL(x; g) � f 0(x; g) � f "CL(x; g) : (3)

Thus Clarke upper and lower derivatives are a sublinear
majorant and a superlinear minorant of f 0(x, g) respec-
tively. Only in the case of an u.s.c. (resp. l.s.c.) direc-
tional derivative f 0(x, g) the second (resp. the first) in-
equality in (3) holds as an equality. The latter property
is considered to be the major drawback of the Clarke
subdifferential in nonsmooth analysis applications, be-
cause it does not always gives rise to an approximation
of the directional derivative at the points of nondiffer-
entiability.

For further reference we recall here the necessary
optimality conditions for a locally Lipschitz function f
at a point x:

0 2 @CL f (x):

Note also that since approximations of sets and func-
tions are linked, the notion of Clarke subdifferen-
tial gives rise to a notion for the generalized tangent
cone (and respectively a generalized normal cone). The
reader is referred to [2,3] [6, p. 83], [10] for more de-
tails.

Quasidifferential and Clarke Subdifferential

Before giving some information on the links between
the quasidifferential and the Clarke subdifferential,
some elements on the several definitions of the differ-
ence of convex compact sets are in order.
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Differences of Convex Sets

Before stating the definition, some introductory mate-
rial must be given. The max-face of a compact set U
generated by x 2 Rn is defined by

Gx (U) D
�
h 2 U : (h; x) D max

g2U
(x; g)

	
:

Recall that the max-face set coincides with the subdif-
ferential of the support function of U, i. e. Gx(U) = @
pU(x). Recall also that for a convex function defined on
Rn the set of points of T � Rn where max-face is a sin-
gleton is of measure zero is a set of full measure (with
respect to Rn, i. e. Rn \ T is a set of measure zero).

The difference of two sets U and V , U�̇V is de-
fined on the set of full measure T where both Gx(U)
and Gx(V) are singletons by:

U�̇V D clco frpU (x) � rpV (x) : x 2 Tg ;

where r g denotes the gradient of function g. One may
observe here that if U = V +W then U�̇V DW .

An equivalent definition of U�̇V is given by

U�̇V D clco

0
@ [

x2TU;V

[Gx(U) � Gx (V )]

1
A ; (4)

where the dependence of T on both U and V is explic-
itly indicated.

An extension of (4) leads to the quasidifference op-
eration �̈, defined by

U�̈V D clco

0
@[

x¤0

[Gx (U) � Gx (V)]

1
A : (5)

Unfortunately �̈ is not invariant with respect to the
equivalence relation	. Nevertheless an estimate of the
form U�̈V � U�̇V , for every sets U and V always
holds and in some cases there exist conditions under
which the inclusion holds as an equality (see e. g. [6, p.
117]).

Estimation Results

The Clarke subdifferential can also be generated, in
some cases, by the set operators difference �̇ and qua-
sidifference �̈ applied on the subdifferential @ f (x) and
the superdifferential @ f (x) of a quasidifferentiable func-
tion f (x).

Under appropriate assumptions on f , and for ap-
propriate choice of the elements of the subdifferential
and the subdifferential of f at x, an estimate of the fol-
lowing form can be extracted:

A � @CL f (x) � B:

with set A D @ f (x)�̇(�@ f (x)) and set B D

@ f (x)�̈(�@ f (x)), as it is discussed in [6, pp. 143–155].
A different approach to the study of the relationship be-
tween the Clarke subdifferential and the quasidifferen-
tial is followed in [7] (see also [6, pp. 156–159]). More
details in this direction can also be found in [4].
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Penalty function methods are used for solving many
constrained optimization problems of the form: Find

inf
x2X

f (x) D f � ; (1)

where f is a locally Lipschitz quasidifferentiable func-
tion defined on Rn,D f (x) D [@ f (x); @ f (x)] is its qua-
sidifferential at a point x 2 Rn, X � Rn is a closed set.

It is always possible to define X in the form (see [2])

X D fx 2 Rn : '(x) D 0g ; (2)

where ' is also a locally Lipschitz quasidifferentiable
function defined on Rn, the pair of sets D'(x) D
[@'(x); @'(x)] is a quasidifferential of ' at x 2 Rn and

'(x) > 0 ; 8x … X :

Thus the set X is the set of global minimum points
of the function ' on Rn. Hence, it is closed. We shall
assume that the set X � Rn is not empty and bounded.

As the function ' is quasidifferentiable then the fol-
lowing expansion holds:

'(x C ˛g) D '(x)C ˛' 0(x; g)C o(˛; x; g) ;

where

o(˛; x; g)
˛

˛#0
! 0 :

We shall assume that in this expansion at each point x
2 Rn the convergence to 0 is uniform with respect to g
2 Rn, kgk = 1.

The idea of penalty function methods consists in
reducing the problem (1) to a problem of the un-
constrained optimization. Among the different ap-
proaches existing for such reduction we shall consider
the method of exact penalty functions.
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For solving the problem (1) a penalty function

F(c; x) D f (x)C c'(x)

is introduced, where c is a nonnegative number, and
then the problem

inf
x2Rn

F(c; x) (3)

is considered.
We assume that infx 2RnF(c, x) is attained for every

c � 0. In practice it would be useful to find conditions
which guarantee that there exists an exact penalty pa-
rameter c� � 0 such that the set�

x 2 Rn : x D arg min
x2Rn

F(c�; x)
	

coincides with the set�
x 2 Rn : x D argmin

x2X
f (x)

	
:

At first such a problem was investigated in [5,10]
for the problem of convex programming. Now there are
many works in this field of mathematics. (See, for exam-
ple, [1,4,6,8,9]).

The implementation of exact penalty function
methods first of all depends on the properties of the
function '. Therefore various conditions are imposed
on ' to make it possible to solve our problem. We shall
consider some of them.

Regularity Condition 1

(See [3].)
We say that a regularity condition is satisfied for the

function ' if for any boundary point x� 2 bdX there
exist positive real numbers "(x�) and ˇ(x�), such that

o(˛; x; g)
˛

> �' 0(x; g)C ˇ(x�)

D �

"
max

v2@'(x)
hv; gi C min

w2@'(x)
hw; gi

#
C ˇ(x�) ;

8x 2A(X) \ S"(x�)(x�) ;

8˛ 2 (0; "(x�)] ;

8g 2 N(X; x) : kgk D 1 ;

where bd X is the set of boundary points of X,

S"(x�)(x�) D fx 2 Rn : kx � x�k � "(x�)g ;

A(X) D
�
x 2 bd X : 9z … X :

x is a projection of z

	
;

N(X, x) is the normal cone to the set X at the point x 2
X:

N(X; x) D
�
g 2 Rn : hg1; gi � 0;

8g1 2 � (X; x)

	

and

� (X; x) D

8<
:g 2 Rn :

9gk 2 Rn ; ˛k � 0;
gk ! g; ˛k # 0;
x C ˛k gk 2 X

9=
; :

The regularity condition 1 is a condition about the
behavior of the function ' only at the boundary points
of the set X.

If for the function ' the regularity condition 1
holds, then there exists an exact penalty parameter c�.

Since in practice the exact penalty parameter is
a priori unknown, a sequence of real values ck is con-
structed, satisfying the conditions

0 D c0 < � � � < ck < � � � ;

lim
k!C1

ck D C1 :

Let us find

x(�k) D arg min
x2Rn

F(�k; x) :

As a result, a decreasing sequence of real values {'
(x(ck))} is constructed. There exists an integer K> 0
such that x(ck) 2 X, 8k> K. Thus, for k> K, the points
x(ck) will be global minimum points of a function F(ck,
x) on Rn, i. e. will be solutions of problem (1). The value
of the penalty parameter c� is directly proportional to
the Lipschitz constant of the function f on the set

L(x��) D fx 2 Rn : '(x) � '(x��)g ;

where

x�� D min
x2Rn

f (x) ;

and inversely proportional to the number ˇ(x�), where
the point x� is a limit point of the sequence {x(ck)}. In
this method the regularity condition 1 is used only in
a neighborhood of the point x�.

Note that the function ' is essentially nondifferen-
tiable at the boundary points of the set X.
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For differentiable functions at the boundary points
of the set X, the regularity condition 1 does not hold.
For this reason, if the function ' at the boundary points
of the setX is superdifferentiable, then it cannot be used
for constructing a sequence of exact penalty functions
F(c, x).

An example of a function, which can be used for
constructing a family of exact penalty functions (even
not requiring the set X to be bounded) is the Euclidean
distance function. For it as an exact penalty parameter it
is possible to take the Lipschitz constant of the function
f on the set L (x� �). However this function is not suit-
able for practical use due to computational problems.

We shall notice, that the regularity condition 1 is not
constructive. Sometimes instead of it one uses another
regularity condition.

Regularity Condition 2

(See [3].)
We shall assume that there exists a real number ˇ>

0, such that the following inequality holds

inf
x2A(X)

min
kgk D 1;

g 2 N(X; x)

' 0(x; g) D inf
x2A(X)

min
kgk D 1;

g 2 N(X; x)

"
max

v2@'(x)
hv; gi C min

w2@'(x)
hw; gi

#
�ˇ :

(4)

If the set X is bounded and does not consist of iso-
lated points, and the regularity condition 2 is fulfilled
for the family of penalty functions {F(ck, x)} then there
exists an exact penalty parameter.

Under some assumptions on the set X it is possible
to get an analytical representation of the normal cone
for this set at each boundary point and then, having
calculated the constant ˇ, it is possible to evaluate the
exact penalty parameter c�.

We shall assume, that for the function ' at each
point x 2 bd X the regularity condition 2 holds. Then
the representation of the normal cone N(X, x) to the
given set X at the point x 2 bd X,

N(X; x) D
\

w2@'(x)

cl cone(@'(x)C w) ;

holds. Here, clA is the closure ofA, coneA is the conical
hull of A.

For example, if the function ' is subdifferentiable at
each boundary point of the set X, then

N(X; x) D cl cone(@'(x)) ;

and (4) can be rewritten as

inf
x2A(X)

min
kgkD1;

g2cl cone(@'(x))

max
v2@'(x)

hv; gi � ˇ > 0 : (5)

Example 1 Let

f0(x) D
1
2
hA0x; xi C hb0; xi ; x; b0 2 Rn ;

fi(x) D
1
2
hAix; xi C hbi ; xi C ci ;

x; bi 2Rn ; ci 2 R1; i 2 I D 1; : : : ; p ;

where f i, i 2 (0, . . . , p) are strongly convex functions.
All the matrices Ai, i = 0, . . . , p, are positive definite.

Consider the problem

min
x2X

f0(x) ; (6)

where

X D fx 2 Rn : fi(x) � 0; i 2 Ig :

Let

'(x) D maxf0; '1(x)g ;

'1(x) D max
i2I

fi(x) ;

x 2Rn :

Then

X D fx 2 Rn : '(x) D 0g :

Let

x D arg min
x2Rn

'1(x) :

We shall assume that '1(x) < 0.
Problem (6) is a convex programming problem. For

this problem the regularity condition 1 is valid.
Let d be the radius of the maximal ball centered at

the point x and inscribed into the set X. Then the num-
ber c� = L/2 md is an exact penalty parameter for the
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problem (6). In this equality L is a Lipschitz constant of
the function f 0 on the set

X1 D fx 2 Rn : '(x) � '(x��)g ;
x�� D arg min

x2Rn
f0(x) ;

i. e. the number

L D max
x2X1
kA0x C b0k

can be taken as a Lipschitz constant of f on X1, m is
a strong convexity constant of the function '1 m D
mini2I mi , where mi is constant of strong convexity of
the function f i, i 2 I).

Example 2 Consider the optimization problem

min
x2X

f (x) ; (7)

where

f (x) D f1(x) � f2(x) ;

X D fx 2 Rn : '1(x) � '2(x) � 0g ;

f 1, f 2, '1, '2 are convex functions defined on Rn.
Let the set X be bounded. It can be defined in the

form

X D fx 2 Rn : '(x) D 0g ;

where '(x) = max {0, '1(x)� '2(x)}.
The function ' can be represented as the difference

of convex (d.c.) functions

'(x) D maxf'1(x); '2(x)g � '2(x) :

We shall consider only points x 2 X where '1(x) =
'2(x). Then the pair of convex sets

D'(x) D
�
cof@'1(x); @'2(x)g;�@'2(x)

�

is a quasidifferential of the function ' at a point x,
where @' i(x), i= 1, 2, is the subdifferential of the convex
function ' i at x in the sense of convex analysis. Here co
A is the convex hull of A.

If the regularity condition 2 is valid for the function
', i. e. there exists a real value ˇ> 0 such that

inf
x2A(X)

min
kgk D 1

g 2 N(X; x)
�

max
v2cof@'1(x);@'2(x)g

hv; gi � max
w2@'2(x)

hw; gi
	
� ˇ ;

then there exists an exact penalty parameter c� for the
sequence of penalty functions

F(ck; x) D f (x)C ck'(x)

D
�
f1(x)C ck maxf'1(x); '2(x)g

�

�
�
f2(x)C ck'2(x)

�
:

Let the set X be defined as

X D fx 2 Rn : '1(x) � '2(x) D 0g ;

then it can be rewritten as

X D fx 2 Rn : '(x) D 0g ;

where '(x) = max{0, |;'1(x)� '2(x)|}.
In this case the function ' can be represented as the

difference of convex functions, namely

'(x) D max f2'1(x); 2'2(x); '1(x)C '2(x)g
� ('1(x)C '2(x)) :

If the regularity condition 2 is valid for the function
', i. e. there exists a real value ˇ> 0 such that

inf
x2A(X)

min
kgk D 1

g 2 N(X; x)
�

max
v2cof2@'1(x);2@'2(x);@'1(x)C'2(x)g

hv; gi

� max
w2@['1(x)C'2(x)]

hw; gi
	
� ˇ;

then there exists an exact penalty parameter c� for the
sequence of penalty functions

F(ck ; x) D f (x)C ck'(x)

D f1(x)C ck maxf2'1(x); 2'2(x); '1(x)

C '2(x)g �
�
f2(x)C ck'1(x)C ck'2(x)

�
:

Thus the solution of the problem (7) can be ob-
tained as the result of unconstrained optimization of
d.c.functions.

V.F. Demyanov [2] considers the following condition
for constructing a family of exact penalty functions. Put

d(x) D min
kgkD1

' 0(x; g)

D min
kgkD1

"
max

v2@'(x)
hv; gi C min

w2@'(x)
hw; gi

#
;

�X(x) D lim sup
x0!x;x0…X

d(x0) :
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Regularity Condition 3

If for some " > 0 the set

X" D fx 2 Rn : '(x) � "g

is bounded and

�X(x) < 0 ; 8x 2 bd X ;

then for the family of penalty functions F(ck, x) there
exists an exact penalty parameter c�<1.

To use the regularity condition 3 it is necessary to
know the behavior of the function ' in the neighbor-
hood of the set X.

Sometimes the following regularity condition is
used (see [7]).

Regularity Condition 4

(Condition of �-regularity). We say that the problem
(1) with the set X is �-regular if there exists a positive
number ˇ such that the inequality

'(x) � ˇ�X(x) ; 8x 2 RnnX ;

holds, where �X is the Euclidean distance function.
It is not difficult to observe that the regularity condi-

tion 4 is not constructive. In [7] the existence of an ex-
act penalty parameter for a family of penalty functions
is proved for problems of nonlinear programming if the
condition of �-regularity is satisfied.
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Directionally Differentiable Functions

Let f be a real-valued function defined on an open set X
� Rn, x 2 X. The function f is called Dini differentiable
at the point x in a direction g 2 Rn if there exists the
finite limit

f 0D(x; g) D lim
˛#0

1
˛
[ f (x C ˛g) � f (x)] : (1)

Here ˛ # 0means that ˛! 0, ˛ > 0. The quantity f 0D(x,
g) is called the Dini derivative of f at x in a direction g.

The function f is called Hadamard differentiable at
the point x in a direction g 2 Rn if there exists the finite

limit

f 0H(x; g) D lim
[˛;g0]![C0;g]

1
˛
[ f (x C ˛g0) � f (x)] : (2)

Clearly, if f is Hadamard differentiable at x in a direc-
tion g then it is Dini differentiable as well and

f 0H(x; g) D f 0D(x; g) : (3)

If the limit in (1) exists and is finite for every g 2 Rn

then the function f is called Dini directionally differen-
tiable (D-d.d) at x. The quantity f 0D(x, g) is called the
Hadamard derivative of f at x in a direction g.

If the limit in (2) exists and is finite for every g 2 Rn

then the function f is called the Hadamard direction-
ally differentiable (H-d.d) at x. Of course, every H-d.d.
function at x is D-d.d., the converse is not necessarily
true.

The directional (and generalized directional)
derivatives may be used to describe optimality con-
ditions (see � Dini and Hadamard derivatives in opti-
mization). However, using properties of special classes
of functions one can expect to get more ‘constructive’
conditions. One of such classes is the family of quasid-
ifferentiable functions.

Quasidifferentiable Functions

Let f be a real-valued function defined on an open set X
� Rn, x 2 X. The function f is called Dini (Hadamard)
quasidifferentiable (q.d) at x if it is Dini (Hadamard)
directionally differentiable at x and if its directional
derivative f 0D(x, g) (f 0H(x, g)) can be represented in the
form

f 0D(x; g) D max
v2@ fD(x)

(v; g)C min
w2@ fD(x)

(w; g);

 
f 0H(x; g) D max

v2@ fH(x)
(v; g)C min

w2@ fH(x)
(w; g)

!
;

where the sets @ fD(x); @ fD(x); @ fH(x); @ fH(x) are con-
vex compact sets of Rn. The pair

D fD(x) D [@ fD(x); @ fD(x)] ;�
D fH(x) D [@ fH(x); @ fH(x)]

�

is called a Dini (Hadamard) quasidifferential of f at x.
Most of the results stated below are valid for both Dini



3206 Q Quasidifferentiable Optimization: Optimality Conditions

and Hadamard q.d. functions, therefore we shall use the
notation D f (x) D [@ f (x); @ f (x) for both DDf (x) and
DHf (x) and the pair Df (x) will just be called a quasid-
ifferential of f at x. Analogously, the notation f 0(x, g) is
used for both f 0D(x, g) and f 0H(x, g).

The directional derivative f 0(x, g) is positively ho-
mogeneous (in g) of degree one:

f 0(x; �g) D � f 0(x; g) ; 8� > 0 : (4)

Note that Hadamard quasidifferentiability implies Dini
quasidifferentiability, the converse not necessarily be-
ing true.

Thus for a quasidifferentiable (q.d) function

f 0(x; g) D max
v2@ f (x)

(v; g)C min
w2@ f (x)

(w; g) ;

8g 2 Rn :

(5)

The set @f (x) is called a subdifferential of f at x, and
the set @ f (x) is called a superdifferential of f at x. Note
that a quasidifferential is not uniquely defined: If a pair
D = [A, B] is a quasidifferential of f at x then, e. g., for
any convex compact set C � Rn the pair D1 = [A +
C, B � C] is a quasidifferential of f at x (since, by (5),
both these pairs produce the same function f 0(x, g)).
The equivalence class of pairs of convex compact sets
D f (x) D [@ f (x); @ f (x) producing the function f 0(x, g)
by formula (5) is called the quasidifferential of f at x (we
shall use the same notation Df (x) for the quasidifferen-
tial of f at x).

If there exists a quasidifferential Df (x) of the form
Df (x) = [@f (x), {0n}] then f is called subdifferentiable at
x. If there exists a quasidifferential Df (x) of the form
D f (x) D [f0ng; @ f (x)] then f is called superdifferen-
tiable at x. Here 0n = (0, . . . , 0) 2 Rn.

Examples of q.d. Functions

1) If f is a smooth function on X then

f 0(x; g) D ( f 0(x); g) ; (6)

where f 0(x) is the gradient of f at x. It is clear that

f 0(x; g) D max
v2@ f (x)

(v; g)C min
w2@ f (x)

(w; g) ; (7)

with

@ f (x) D f f 0(x)g ; @ f (x) D f0ng :

Hence, f is Hadamard quasidifferentiable and even
subdifferentiable. Since in (7) one can also take

@ f (x) D f0ng ; @ f (x) D f f 0(x)g ;

then f is superdifferentiable as well.
2) If f is a convex function on a convex open set X �

Rn then (as it is known from convex analysis) f is
H-d.d. on X and

f 0(x; g) D max
v2@ f (x)

(v; g) ;

where @f (x) is the subdifferential of f (in the sense of
convex analysis):

@ f (x) D
�
v 2 Rn : f (z) � f (x) � (v; z � x)

8z 2 X

	
:

Therefore f is Hadamard quasidifferentiable and one
can take the pair Df (x) = [ @f (x), {0n}] as its quasid-
ifferential. Thus, f is even subdifferentiable.

3) If f is concave on a convex set X then f is H-d.d. and

f 0(x; g) D min
w2@ f (x)

(w; g);

where

@ f (x) D
�
w 2 Rn : f (z) � f (x) � (w; z � x)

8z 2 X

	
:

Hence, f is Hadamard quasidifferentiable and one
can take the pair

D f (x) D [f0ng; @ f (x)]

as its quasidifferential. Thus, f is even superdifferen-
tiable.

Calculus of Quasidifferentials

The family of q.d. functions enjoys a well-developed
calculus: First let us define the operation of addition of
two pairs of compact convex sets and the operation of
multiplication of a pair by a real number.

If D1 = [A1, B1], D2 = [A2, B2] are pairs of convex
compact sets in Rn then

D1 C D2 D [A; B]

with

A D A1 C A2 ; B D B1 C B2 :
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If D = [A, B] where A and B are convex compact sets, �
2 R then

�D D

(
[�A; �B] ; � � 0;
[�B; �A] ; � < 0:

Let X � Rn be an open set.

Proposition 1 ([1, Chap. III])
1) If functions f 1, . . . , f N are quasidifferentiable at

a point x 2 X, and �1, . . . , �N are real numbers then
the function

f D
NX
iD1

�i f i

is also quasidifferentiable at x with a quasidifferential
D f (x) D [@ f (x); @ f (x)] where

Df (x) D
NX
iD1

�iD fi(x) ; (8)

Df i(x) being a quasidifferential of f i at x.
2) If f 1 and f 2 are quasidifferentiable at a point x 2 X

then the function f = f 1� f 2 is also q.d. at x and

Df (x) D f1(x)Df2(x)C f2(x)Df1(x) : (9)

3) If f 1 and f 2 are quasidifferentiable at a point x 2 X
and f 2(x) 6D 0 then the function f = {f 1f 2} is also q.d.
at x and

Df (x) D
1

f 22 (x)
�
f2(x)Df1(x) � f1(x)Df2(x)

�
: (10)

4) Let functions f 1, . . . , f N be quasidifferentiable at
a point x 2 X. Construct the functions

'1(x) D max
i21;:::;N

fi(x) ;

'2(x) D min
i21;:::;N

fi(x) :

Then the functions '1 and '2 are q.d. at x and

D'1(x) D [@'1(x); @'1(x)] ;

D'2(x) D [@'2(x); @'2(x)] ;
(11)

where

@'1(x) D co

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@ fk(x) �
X

i 2 R(x)
i ¤ k

@ fi(x) : k 2 R(x)

9>>>>>>=
>>>>>>;

;

@'1(x) D
X

k2R(x)

@ fk ;

@'2(x) D
X

k2Q(x)

@ fk ;

@'2(x) D co

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@ fk(x) �
X

i 2 Q(x)
i ¤ k

@ fi(x) : k 2 Q(x)

9>>>>>>=
>>>>>>;

:

Here [@ fk(x); @ fk(x)] is a quasidifferential of the
function f k at the point x,

R(x) D fi 2 1; : : : ;N : fi(x) D '1(x)g ;

Q(x) D fi 2 1; : : : ;N : fi(x) D '2(x)g :

The following composition theorem holds.

Proposition 2 [1, Chap. III]) Let X be an open set in
Rn, Y be an open set in Rm and let a mapping H(x) =
(h1(x), . . . , hm(x)) be defined on X, take its values in Y
and its coordinate functions hi be quasidifferentiable at
a point x0 2 X. Assume also that a function f is defined
on Y and is Hadamard quasidifferentiable at the point
y0 = H(x0). Then the function

'(x) D f (H(x))

is quasidifferentiable at the point x0.

The corresponding formula for the quasidifferential of
' at x0 is presented in [Thm. III.2.3]

Remark 3 Thus, the family of quasidifferentiable func-
tions is a linear space closed with respect to all ‘smooth’
operations and, what is most important, the operations
of taking the pointwise maximum and minimum. For-
mulas (8)–(10) are just generalizations of the rules of
classical differential calculus. Most problems and re-
sults of classical differential calculus may be formulated
for nonsmooth functions in terms of quasidifferentials
(see, e. g., [1,3]). For example, a mean value theorem is
valid [5].
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Necessary and Sufficient Conditions
for an UnconstrainedOptimum

The following results hold due to the properties of di-
rectionally differentiable functions.

Let X � Rn be an open set, f be a real-valued func-
tion defined and directionally differentiable on X.

Proposition 4 For a point x 
 2X to be a local or global
minimizer of f on X it is necessary that

f 0(x�; g) � 0 ; 8g 2 Rn : (12)

If f is Hadamard d.d. at x 
 and

f 0H(x
�; g) > 0 ; 8g 2 Rn ; g ¤ 0n ; (13)

then x 
 is a strict local minimizer of f .
For a point x 
 
 2 X to be a local or global maxi-

mizer of f on X it is necessary that

f 0(x��; g) � 0 ; 8g 2 Rn : (14)

If f is Hadamard d.d. at x 
 
 and

f 0H(x
��; g) < 0 ; 8g 2 Rn ; g ¤ 0n ; (15)

then x 
 
 is a strict local maximizer of f .

These conditions may be restated in terms of quasidif-
ferentials. Let f be quasidifferentiable on an open set X
� Rn.

Proposition 5 (see [1,3,5]) For a point x 
 2 X to be
a local or global minimizer of f on X it is necessary that

� @ f (x�) � @ f (x�) : (16)

If f is Hadamard quasidifferentiable at x 
 and

� @ f (x�) � int @ f (x�); (17)

then x 
 is a strict local minimizer of f .
For a point x� � 2X to be a local or global maximizer

of f on X it is necessary that

� @ f (x��) � @ f (x��) : (18)

If f is Hadamard quasidifferentiable at x� � and

� @ f (x��) � int @ f (x��) ; (19)

then x� � is a strict local maximizer of f .

Remark 6 The quasidifferential represents a general-
ization of the notion of gradient to the nonsmooth case
and therefore conditions (16)–(19) are first order opti-
mality conditions.

In the smooth case one can take D f (x) D

[@ f (x); @ f (x)] where @ f (x) D f f 0(x)g, @ f (x) D f0ng;
therefore condition (16) is equivalent to

f 0(x�) D 0n ; (20)

condition (18) is equivalent to

f 0(x��) D 0n ; (21)

and, since both sets @ f and @ f are singletons, the con-
ditions (17) and (19) are impossible. Thus, conditions
(17) and (19) are essentially ‘nonsmooth’.

A point x� 2 X satisfying (16) is called an inf-stationary
point, a point x� � 2 X satisfying (18) is called a sup-
stationary point of f . In the smooth case the necessary
condition for a minimum (20) is the same as the neces-
sary condition for a maximum (21).

Directions of Steepest Descent and Ascent

Let x 2 X be not an inf-stationary point of f (i. e. condi-
tion (16) is not satisfied). Take w 2 @ f (x) and find

min
v2@ f (x)

kv C wk D kv(w)C wk D �1(w):

Since @ f (x) is a convex compact set, the point v(w)
is unique. Find now

max
w2@ f (x)

�1(w) D �1(w(x)):

The point w(x) is not necessarily unique. As x is not an
inf-stationary point, then �1(w(x)) > 0. The direction

g1(x) D �
v(w(x))C w(x)
kv(w(x))C w(x)k

D �
v(w(x))C w(x)

�1(w(x))
(22)

is a steepest descent direction of the function f at the
point x, i. e.

f 0(x; g1(x))) D min
kgkD1

f 0(x; g) :

Here k � k is the Euclidean norm. The quantity f 0(x,
g1(x)) = � �1(w(x)) is the rate of steepest descent of f
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at x. It may happen that the set of steepest descent di-
rections is not a singleton (and it need not be convex
too). Recall that in the smooth case the steepest descent
direction is always unique (if x is not a stationary point).

Similarly, if x 2 X is not a sup-stationary point of f
(i. e. condition (18) does not hold) then let us take v 2
@f (x) and find

min
w2@ f (x)

kv C wk D kv C w(v)k D �2(v)

and

max
v2@ f (x)

�2(v) D �2(v(x)) :

The direction

g2(x) D
v(x)C w(v(x))
kv(x)C w(v(x))k

D
v(x)C w(v(x))
�2(v(x))

(23)

is a steepest ascent direction of the function f at x, i. e.

f 0(x; g2(x))) D max
kgkD1

f 0(x; g) :

The quantity f 0(x, g2(x)) = �2(v(x)) is the rate of steepest
ascent of f at x. As above it may happen that there exist
many steepest ascent directions.

Remark 7 Thus, the necessary conditions (16) and (18)
are ‘constructive’: in the case where one of these condi-
tions is violated we are able to find steepest descent or
ascent directions.

The condition for a minimum (16) can be rewritten in
the equivalent form

0n 2
\

w2@ f (x�)

[@ f (x�)C w] :D L1(x�) ; (24)

and the condition for a maximum (18) can also be rep-
resented in the equivalent form

0n 2
\

v2@ f (x��)

[@ f (x��)C v] :D L2(x��) : (25)

However, if, for example, (24) is violated at a point
x, we are unable to recover steepest descent directions,
it may even happen that the set L1(x) is empty (see [1,
Sects. V.2 and V.3]).

Therefore, condition (24) is not ‘constructive’: if
a point x is not inf-stationary then condition (24) sup-
plies no information about the behavior of the function

in a neighborhood of x and we are unable to get a ‘bet-
ter’ point (e. g., to decrease the value of the function).
The same is true for the condition for a maximum (25).
Nevertheless conditions (25) and (25) may be useful for
some other purposes.

Example 8 Let x = (x(1), x(2)) 2 R2, x0 = (0, 0), f (x) =
jx(1)j� jx(2)j. We have f (x) = f 1(x)� f 2(x), where f 1(x)
= max{f 3(x), f 4(x)}, f 2(x) = {f 5(x), f 6(x)}, f 3(x) = x(1),
f 4(x) = � x(1), f 5(x) = x(2), f 6(x) = � x(2). The functions
f 3–f 6 are smooth therefore (see (7))

D f3(x) D [@ f3(x); @ f3(x)] ;

with @ f3(x) Df(1; 0)g; @ f3(x) D f(0; 0)g ;

D f4(x) D [@ f4(x); @ f4(x)] ;

with @ f4(x) Df(�1; 0)g; @ f4(x) D f(0; 0)g ;

D f5(x) D [@ f5(x); @ f5(x)] ;

with @ f5(x) Df(0; 1)g; @ f5(x) D f(0; 0)g ;

D f6(x) D [@ f6(x); @ f6(x)] ;

with @ f6(x) Df(0;�1)g; @ f6(x) D f(0; 0)g ;

Applying (11) one gets D f1(x0) D [@ f1(x0); @ f1(x0)],
where

@ f1(x0) D eratornamecof@ f3(x0) � @ f4(x0)

@ f4(x0) � @ f3(x0)g D cof(1; 0); (�1; 0)g ;

@ f1(x0) Df(0; 0)g ;

D f2(x0) D [@ f2(x0); @ f2(x0)] ;

where

@ f2(x0) D cof@ f5(x0) � @ f6(x0); @ f6(x0) � @ f5(x0)g

D cof(0; 1); (0;�1)g ;

@ f2(x0) Df(0; 0)g :

Finally, formula (8) yields

D f (x0) D [@ f (x0); @ f (x0)] ;

where

@ f (x0) D cof(1; 0); (�1; 0)g ;

@ f (x0) D cof(0; 1); (0;�1)g :

Since (see Fig. 1) conditions (16) and (18) are not sat-
isfied, the point x0 is neither inf-stationary nor sup-
stationary.
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Quasidifferentiable Optimization: Optimality Conditions,
Figure 1

Quasidifferentiable Optimization: Optimality Conditions,
Figure 2

Applying (22) and (23) we conclude that there exist
two directions of steepest descent: g1 = (0, 1), g10 = (0,
� 1) and two directions of steepest ascent: g2 = (1, 0),
g20 = (� 1, 0).

It is also clear that the sets (see (24), (25))

L1(x0) D
\

w2@ f (x0)

[@ f (x0)C w]

and

L2(x0) D
\

v2@ f (x0)

[@ f (x0)C v]

are both empty.

Remark 9 If a function f is directionally differentiable
but not quasidifferentiable, and if its directional deriva-
tive f 0(x, g) is continuous as a function of direction (this
is the case, e. g., if f is directionally differentiable and
Lipschitz) then (by the Stone–Weierstrass theorem) its
directional derivative may be approximated (to within
any given accuracy) by the difference of two positively
homogeneous convex functions, i. e.

f 0(x; g) 	 max
v2A

(v; g)Cmin
w2B

(w; g) ; (26)

where A and B are convex compact sets in Rn. Rela-
tion (26) shows that f 0 can be studied by means of qua-
sidifferential calculus (e. g., one is able to find an ap-
proximation of a steepest descent direction etc.). Cor-
responding results can be found in [1,4].

Remark 10 In many cases of practical importance the
quasidifferential of a function f is a pair of sets each of
them being the convex hull of a finite number of points
or/and balls. If this happens it is easy to store and op-
erate with the quasidifferential, to check necessary con-
ditions, to find directions of descent or ascent, to con-
struct numerical methods.

Necessary and Sufficient Conditions
for a ConstrainedOptimum

Let a function f be defined and finite on some open set
X �Rn and let˝ � X. Consider the problem of finding
a minimum or a maximum of f on˝ . For the definite-
ness in the sequel we shall consider only the problem of
minimizing f on ˝ since the problem of maximizing f
is the problem of minimizing the function f 1 = � f .

Let x 2˝ . The set

� (x;˝) D

8̂
<̂
ˆ̂:
g 2 Rn :

9f[˛k ; gk]g :
[˛k ; gk]! [C0; g]
x C ˛k gk 2 ˝

8k

9>>=
>>;

(27)

is called the Bouligand cone to the set ˝ at the point x
(or the cone of feasible directions). It is nonempty and
closed. If x 2 int˝ then � (x,˝) = Rn.

Proposition 11 Let f be Hadamard directionally differ-
entiable at a point x� 2˝ . For the point x� to be a local
or global minimizer of f on˝ it is necessary that

f 0H(x
�; g) � 0 ; 8g 2 � (x�;˝) : (28)
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If

f 0H(x
�; g) > 0 ; 8g 2 � (x�;˝); g ¤ 0n ; (29)

then x� is a strict local minimizer of f on ˝ , i. e. there
exists ı> 0 such that

f (x) > f (x�) ;

8x 2 ˝; kx � x�k < ı; x ¤ x� :

The set ˝ � Rn is called quasidifferentiable if it can be
represented in the form

˝ D fx 2 Rn : h(x) � 0g ; (30)

where h is a quasidifferentiable function.
Take x 2˝ and consider the cones

�1(x) D
˚
g 2 Rn : h0(x; g) < 0

�
;

�1(x) D
˚
g 2 Rn : h0(x; g) � 0

�
:

Let h(x) = 0.We say that the ‘regularity condition is sat-
isfied at x’ if

cl �1(x) D �1(x) : (31)

If h(x) = 0 (i. e., by (30), x 2 ˝) and the regularity
condition (31) holds then

� (x;˝) D �1(x) : (32)

Now we are able to express condition (28) and (29)
in terms of quasidifferentials of the functions f and h.

If h(x)< 0 then x 2 int ˝ , � (x, ˝) = Rn and, by
Proposition 5, conditions (16) and (17) hold. Therefore
let us consider the case h(x) = 0.

Proposition 12 Let functions f and h be Hadamard
quasidifferentiable at a point x� 2˝ and h(x�) = 0. As-
sume also that the regularity condition (31) is satisfied at
x�. For the point x� to be a local or global minimizer of f
on˝ it is necessary that

�
@ f (x�)C w

�\�
� cl(cone(@h(x�)C w0))

�
¤ ;

(33)

for all w 2 @ f (x�), w0 2 @h(x�).

Condition (33) is equivalent to the condition

� @ f (x�) � L(x�) ; (34)

where

L(x) D
\

w2@h(x)

�
@ f (x)C cl(cone(@h(x)C w))

�
:

The set L(x) is nonempty and convex.
If h(x�) = 0 and

� @ f (x�) � int L(x�) ; (35)

then x� is a strict local minimizer of f on˝ .
A point x� 2˝ is called an inf-stationary point of f

on˝ if condition (28) holds.
Let x 2 ˝ , h(x) = 0. Assume that x is not an inf-

stationary point and find

min
z2[@ f (x)Cw]



z C z0


 D 

z(w;w0)C z0(w;w0)





D


v(w;w0)C w C v0(w;w0)C w0




D


q(w;w0)

 D d(w;w0)

and

�(x) D max
w 2 @ f (x)
w0 2 @h(x)

d(w;w0)

D d(w0;w00) D


q(w0;w00)



 :
(36)

Since x is not inf-stationary then �(x)> 0.

Proposition 13 If h(x) = 0 and the regularity condition
(31) holds then the direction

g0 D �
q(w0;w00)
�(x)

(37)

is a steepest descent direction of f on ˝ at x and g0 2
� (x,˝),

f 0(x; g0) D min
kgkD1;g2� (x)

f 0(x; g)

D �


q(w0;w00)



 D ��(x)
i. e. � �(x) is the rate of steepest descent.

Remark 14 If there exist several pairs [w0;w00](w0 2

@ f (x);w00 2 @h(x)) satisfying (36), then (by (37)) there
are several steepest descent directions.

Remark 15 Condition (33) is also equivalent to

0n 2
\

w 2 @ f (x 0)
w 0 2 @h(x�)

�
@ f (x�)C w C cl(cone(@h(x�)C w0))

�

D L0(x�) :
(38)
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However, condition (38) is not ‘constructive’ since
the set L0(x) may happen to be empty if x is not a sta-
tionary point (we consider the case h(x) = 0).

Proposition 16 Let x� 2˝ and h(x�) = 0. Assume that
the functions f and h are quasidifferentiable at x�. For
the point x� to be a local or global minimizer of f on ˝
it is necessary that

L1(x�) � L2(x�) ; (39)

where

L1(x) D � [@ f (x)C @h(x)] ;

L2(x) D cof@ f (x) � @h(x) ; @h(x)� @ f (x)g:

If, in addition, f and h are Hadamard q.d. at x�,
h(x�) = 0 and L1(x�)� int L2(x�) then x� is a strict local
minimizer of f on˝ .

Proposition 17 Let h(x�) = 0, f and h be Hadamard
q.d. at x�. If the regularity condition (31) holds at x� then
condition (39) is equivalent to condition (28).

Let x 2 ˝ , h(x) = 0. Assume that (39) does not hold.
Find

d(x) D max
v2L1(x)

�(v) D �(v(x));

where

�(v) D min
w2L2(x)

kv � wk D kv � w(v)k :

Since (39) is not satisfied then �(v(x)) > 0.

Proposition 18 The direction

g00 D
v(x) � w(v(x))

�(v(x))
(40)

is a descent direction of f on˝ at x.

Remark 19 While the steepest descent direction g0 (see
(37)) may be not admissible, the direction g00 (see (40))
is always admissible, i. e. for sufficiently small ˛> 0 we
have x + ˛ g00 2˝ .

Recent results and the state-of-the-art in quasidifferen-
tial calculus can be found in [2].
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Problems in mechanics whose governing relations can
be obtained from a generally nondifferentiable and
nonconvex, but quasidifferentiable (in the sense of V.F.
Demyanov and A.M. Rubinov) potential function are
considered. They consider a fairly general form for the
modeling and the study of nonsmooth problems in
mechanics [4] and they cover certain classes of varia-
tional and hemivariational inequality problems of me-
chanics [14,15]. The notion of hemivariational inequal-
ities has been introduced and thoroughly studied in
mechanics by P.D. Panagiotopoulos (see also � Non-
convex energy functions: Hemivariational inequalities;

� Hemivariational inequalities: Applications in me-
chanics). Moreover, there exists extensive theoretical
support for the use of quasidifferentiable calculus and
optimization techniques, see, e. g., [3,4]. For methods
and heuristic algorithms of nonconvex optimization
in computational mechanics, see [12]. In this short
note some techniques for treating stability problems
for nonsmooth structures are outlined. This way re-
sults for classical, smooth structures (e. g., [1,10,11])
can be extended to cover nonsmooth ones (cf., also
[8,9]). This work and the preliminary results outlined
here are based on [18,19].

All previously mentioned potentials are piecewise-
differentiable and may be described, in general, as con-
tinuous selections of differentiable functions. In turn,
the structural analysis problem results from minimality
or in general critical point conditions of the potential
(see examples in [2,6,7,14,15]).

Results from stability analysis of parametric opti-
mization problems for nondifferentiable functions are
used for the study of a stepwise holonomic, incremental
structural analysis problem. In particular the system-
atic first and second order linearizations proposed in
respectively, and the arising normal forms are adopted
for the potential energy function.

The techniques outlined here may be useful both for
the analysis of the stability of structures which involve
nonmonotone and possibly multivalued nonlinearities
(in a holonomic or a stepwise holonomic setting) and
for the design of incremental-iterative algorithms for
structural analysis purposes.

Smooth Potentials and Stability in Mechanics

Let a discretized elastostatic analysis problem be formu-
lated as a potential energy minimization problem:

min
u2Uad

˚
˘ (u; �) D ˘ (e(u))� p(u; �)

�
: (1)

Here u is the n-vector of displacement degrees of free-
dom, e is the m-vector of discrete element deforma-
tions, ˘ (e) 2 R is the internal energy density, p (u, �)
2 R is the external loading potential, parametrized by
a loading scalar � 2 R1 and U ad � Rn is the space of
admissible displacements. Displacement u and defor-
mation e vectors are connected by the geometric com-
patibility operator A(u):Rn!Rm such that e (u) = A (u)
holds.
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On the assumption that ˘ (u; �) is smooth, the
equilibrium configurations for the structural system are
critical points of this potential, i. e. for fixed � D � one
has:

˙crit D
n
u 2 Rn : ru˘ (u; �) D 0

o
: (2)

Moreover, inspection of the second order deriva-
tives (the Hessian matrix of ˘ (u; �)) gives us stability
information [1]. If u is a nondegenerate critical point,
i. e. u 2 ˙ crit and r2

u˘ (u; �) is regular, then a positive
or negative definite Hessian r2

u˘ (u; �) indicates that
the point u is a local minimum or maximum, respec-
tively. Only local minima correspond to stable equilib-
rium configurations. If r2

u˘ (u; �) is singular in u 2
˙ crit, then higher order derivatives of ˘ (u; �) must be
examined for stability [1].

If u0 is either a noncritical or a nondegenerate crit-
ical point of ˘ (u; �), which is assumed here to be at
least a C2-function, i. e. two times continuously differ-
entiable, then˘ (u; �) is C1-equivalent to its second or-
der approximation around u0, i. e.

(˘ ı ˚)(u) D˘ (u0; �)Cru˘ (u0; �)>(u � u0)

C
1
2
(u � u0)>r2

u˘ (u0; �)(u � u0) ;

(3)

where˚ is a C1-coordinate transformation (diffeomor-
phism). In the vicinity of a nondegenerate critical point
the behavior of˘ (u; �) is characterized by the number
of negative eigenvalues of r2

u˘ (u; �) (the quadratic in-
dex).

In the coordinates � u = u � u0 and the notation
	˘ (	u; �) D ˘ (u; �) � ˘ (u0; �) we can determine
(cf. [5, p. 21]) a local C1-coordinate transformation ˚ :
U ! V , where U, V are neighborhoods of the origin,
such that:

	˘ ı ˚�1(y) D � y21 � � � � � y2k C y2kC1 C � � � C y2n ;

8y 2 V :
(4)

Qualitative stability results for fixed load � D � are rec-
ognized in the normal form (4).

Incremental Algorithm

Incremental-iterative solution algorithms are based on
appropriate approximations of (1). Let us consider the

one-parametric load incrementation on the following
case of (1) (cf. [10]):

min
u2Rn
f˘(u; �) D ˘ (u) � �p>ug : (5)

For equilibrium we have

ru˘ (u; �) D 0 ) ru˘ (u) � �p D 0 (6)

For the examination of the stability of a solution we
study the following relation in terms of � � �0 = � �,
(defining �u as a function of��, if r2

u ˘ (u0) is regu-
lar)

r2
u˘ (u0)	uC	�p D 0 ; (7)

which connects the incremental displacement � u for
a change of loading equal to � � p. Relation (7) can be
produced by subtraction of the Taylor expansions of the
equilibrium equation (6) in (u0 + � u, �0 + � �) and
(u0, �0), respectively, and by using the approximation
(up to higher order terms)

ru˘ (u0 C	u) D ru˘ (u0)Cr2
u˘ (u0)	u : (8)

Consider the coordinate transformation: � u =˚�1 (y)
= � i yi = F y where � i are the eigenvectors of r2 ˘ (u0)
and the summation convention over repeated indices is
used. Then equation (7) is written in the new coordi-
nate system as:

r2˘ (u0)Fy � p	� D 0

) F>r2˘ (u0)Fy � F>p	� D 0

)
�
!i yi

�
� F>p	� D 0 :

(9)

Here !i are the eigenvalues of the local tangential stiff-
ness matrix K (u0) = r2 ˘ (u0), which act as stability
coefficients for the linearized equation of equilibrium
(7) [10,11].

Nonsmooth Superpotentials

Let us assume problem (1) with a nonsmooth potential
energy function. For simplicity let only the internal en-
ergy function˘ (u) be nonsmooth and Uad = Rn in (1).

Let V denote an open subset of Rn. We call a func-
tion f : V!R a continuous selection of the Cr-functions
gi: V! R, 1 � i � k, (briefly, f 2 CS{g1, . . . , gk}), if f is
continuous and 8u 2 V 9i 2 {1, . . . , k}: f (u) = gi(u). Let
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˘ (u) in (1) be a piecewise differentiable PCr) function
of appropriate order r > 1, defined on an open set U �
Rn. This means that (cf. [7]) at every point u0 2 U there
exists an open neighborhood V � U and a finite col-
lection of Cr-functions {˘ 1, . . . ,˘ k} defined on V such
that˘ |V 2 CS{˘ 1, . . . ,˘ k}.

Let I(u) be the active index set set{i:˘ (u) =˘ k (u)}
One considers a smooth external loading potential p (u,
�), which depends on the one-dimensional loading pa-
rameter � (cf. (1)).

The assumption of a PCr-potential energy function
is very general and covers a large number of nonsmooth
mechanics applications (see, also, [13, Chap. 8]). More
detailed analysis of the requirements which are neces-
sary in order for a PCr-function to be the potential of
a certain structural analysis problem must be investi-
gated on a case-by-case basis.

Any PCr-potential is locally Lipschitz continuous
and Bouligand differentiable with the B-derivative at
a point u0 2 Rn in the direction d 2 Rn being a con-
tinuous selection of the functions r˘i(u0)>d; i 2
bI(u0). HerebI(u0) denotes the essentially active index set
bI(u0) D fi 2 I(u0) : u0 2 cl(int(fu 2 U : ˘ (u) D
˘i (u)g))g, with cl (resp. int) abbreviating the closure
(resp. the interior) of a set. For completeness, recall
that Clarke’s generalized subdifferential is given by [7]
@Cl˘ (u0) D conv

n
r˘i(u0) : i 2bI(u0)

o
where conv

stands for the convex hull.

Nonsmooth Local Approximations

For the needs of the applications in mechanics the first
and the second order differentiation, or the appropriate
analogous nonsmooth notions, and suitable local non-
smooth approximations which generalize the (second
order) Taylor expansion of a smooth function are used.
A local coordinate transformation will provide us with
a simple formulation of the energy minimization prob-
lem, cf. (4), which, in turn, will be used for the extrac-
tion of stability information analogous to (9).

Following [6], a critical point u0 of a PC2-potential
function ˘ (u) is called a nondegenerate critical point if
˘ is locally representable as a continuous selection of
functions ˘ 1; : : : ; ˘ k such that the following proper-
ties are true:
ND1) the vectors r˘ j(u0); j 2 I(uO )nfig are linearly

independent 8i 2 I (u0),

ND2) the restricted Hessian of the Lagrangian, the ma-
trix r2 L(u0) |V (u0), is invertible.
Here V(u}0) denotes the space
�
y 2 Rn : [r˘ i(u0) � r˘ j(u0)]>y D 0;

i; j 2 I(u0)

	
:

For the Lagrangian

L(u) D
X

i2I(u0)

�i˘ i (u)

holds
X

i2I(u0)

�ir˘ i(u0) D 0 ;

X
i2I(u0)

�i D 1 ; �i � 0 :
(10)

The qualitative behavior of the potential energy func-
tion, the link to the stability of the described mechanical
system, can be shown if one considers the normal form
(cf. (4))). In this context, the following result of [6] is of
importance.

Let ˘ 2 CS(˘ i ; i 2 I) and let u0 2 Rn be a nonde-
generate critical point for˘ with quadratic index equal
to q. Suppose moreover that |I0(u0)| = k + 1. Then at u0,
the potential is topologically equivalent to g(y), where

g(y1; : : : ; yn) D˘ (u0)C CS

 
y1; : : : ; yk ;�

kX
iD1

yi

!

�

kCqX
jDkC1

y2j C
nX

rDkCqC1

y2j :

(11)

One observes that the second term in the right-hand
side of (11) is sufficiently rich to describe locally every
type of nonsmooth, finite-dimensional functions.

Furthermore, following [7] one notes that a PC2-
function can always be transformed into the min-max
normal form:

˘ (u) D max
1�i�k

min
j2Mi

˘ j(u) ; (12)

where (12) is considered as a local representation of the
potential in a neighborhood of u0,Mi � {1, . . . , m} and
the functions ˘ j : U ! R, j 2 {1, . . . , m}, are C2-
functions.
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In this case a consistent nonsmooth second order
approximation of the PC2-potential, expressed by the
normal form (12), is given by:

max
1�i�k

min
j2Mi

�
˘ j(u0)Cr˘ j(u0)>(u � u0)
C 1

2 (u � u0)>r2˘ j(u0)(u � u0)

	
:

(13)

Note here that the previously denoted min-max form is
not defined in an unique way.

Stability Results. Discussion

For a structural analysis system with a structured non-
smooth PC2-potential with (11) and for a nondegener-
ate critical point u0 2 Rn, the local approximation (11)
is available. Let us assume a potential of the external
loading equal to � p| u, as in (5) and let for the present
the load parameter � be fixed to a given value. From
(11) the following complete subdivision of the coordi-
nate space Rn arises:

Rn D Rk ˚Rq ˚Rn�k�q D Rnon˚Run˚Rst ; (14)

where Rnon stands for the essentially nondifferentiable
subspace, Run for the unstable subspace and Rst for
the stable subspace. Let, moreover, the local coordinate
transformation that leads to (11) be traced for the com-
ponents of the vector � p (cf. (6)–(9)). Let the compo-
nents of the last vector in the three subspaces of ((14))
beepnon,epun andepst, respectively.

Further one considers the type of the CS in the lin-
ear term of the right-hand side in (11) in comparison
with the three above defined components of the load-
ing vector. This information can be used for stability
analysis. Smooth and nonsmooth contributions should
be treated separately. For the nonsmooth part, for ex-
ample, if one has a max-type function and q = 0, then
only stable local minima of the potential energy func-
tion arise.

The above outlined scheme can be followed for the
derivation of stability considerations for a structure at
a given point and for a given loading level (� is con-
stant). For the examination of the stability question
along a given loading path (one-parametric change of
�) one should take into account that the local repre-
sentation (11) may change as � changes. The results
are qualitative of the same nature, but, for practical ap-

plications, a combinatorial problem arises, which con-
cerns the way of possible changes of the subdivision
(14) as loading changes. Further work in this direc-
tion will generalize the computational mechanics tech-
niques for the tracing of post-buckling equilibria in
nonsmooth mechanics’ applications. Theoretical sup-
port will be provided by the theory of parametric op-
timization (cf., e. g., [5] and the applications in contact
mechanics [16,17]).

See also

� Generalized Monotonicity: Applications to
Variational Inequalities and Equilibrium Problems

� Hemivariational Inequalities: Applications in
Mechanics

� Hemivariational Inequalities: Eigenvalue Problems
� Hemivariational Inequalities: Static Problems
� Nonconvex Energy Functions: Hemivariational

Inequalities
� Nonconvex-Nonsmooth Calculus of Variations
� Optimization Strategies for Dynamic Systems
� Quasidifferentiable Optimization
� Quasidifferentiable Optimization: Algorithms for

Hypodifferentiable Functions
� Quasidifferentiable Optimization: Algorithms for

QD Functions
� Quasidifferentiable Optimization: Applications
� Quasidifferentiable Optimization: Applications to

Thermoelasticity
� Quasidifferentiable Optimization: Calculus of

Quasidifferentials
� Quasidifferentiable Optimization: Codifferentiable

Functions
� Quasidifferentiable Optimization: Dini Derivatives,

Clarke Derivatives
� Quasidifferentiable Optimization: Exact Penalty

Methods
� Quasidifferentiable Optimization: Optimality

Conditions
� Quasidifferentiable Optimization: Variational

Formulations
� Quasivariational Inequalities
� Sensitivity Analysis of Variational Inequality

Problems
� Solving Hemivariational Inequalities by Nonsmooth

Optimization Methods
� Variational Inequalities



Quasidifferentiable Optimization: Variational Formulations Q 3217

� Variational Inequalities: F. E. Approach
� Variational Inequalities: Geometric Interpretation,

Existence and Uniqueness
� Variational Inequalities: Projected Dynamical

System
� Variational Principles

References

1. Bazant ZP, Cedolin L (1991) Stability of structures. Elastic,
inelastic, fracture and damage theories. OxfordUniv. Press,
Oxford

2. Curnier A, He Q-C, Zysset Ph (1995) Conewise linear elastic
materials. J Elasticity 37:1–38

3. Demyanov VF, Rubinov AM (1985) Quasidifferentiable cal-
culus. Optim. Software, New York

4. Demyanov VF, Stavroulakis GE, Polyakova LN, Pana-
giotopoulos PD (1996) Quasidifferentiability and nons-
mooth modelling in mechanics, engineering and eco-
nomics. Kluwer, Dordrecht

5. Guddat J, Guerra Vasquez F, Jongen ThH (1990) Paramet-
ric optimization: Singularities, path following and jumps.
Teubner and Wiley, New York

6. Jongen ThH, Pallaschke D (1988) On linearization and con-
tinuous selection of functions. Optim 19(3):343–353

7. Kuntz L, Scholtes S (1995) Qualitative aspects of the local
approximation of a piecewise differentiable function. Non-
linear Anal Th Methods Appl 25(2):197–215

8. Kurutz M (1993) Stability of structures with nonsmooth
nonconvex energy functionals. The one dimensional case.
Europ J Mechanics A Solids 12(3):347–385

9. Rohde A, Stavroulakis GE (1997) Genericity analysis for
path-following methods. Application in unilateral con-
tact elastostatics. Z Angew Math Mechanics (ZAMM)
77(10):777–790

10. Kurutz M (1994) Equilibrium paths of polygonally elas-
tic structures. Mechanics of Structures and Machines
22(2):181–210

11. Li L-Y (1991) The criteria of identifying the type of critical
points. Arch Appl Mechanics 61:231–235

12. Li L-Y (1994) Determination of stability in nonlinear analy-
sis of structures. Arch Appl Mechanics 64:119–126

13. Mistakidis ES, Stavroulakis GE (1997) Nonconvex optimiza-
tion in mechanics. Algorithms, heuristics and engineering
applications by the F.E.M. Kluwer, Dordrecht

14. PallaschkeD, Rolewicz S (1997) Foundations ofmathemati-
cal optimization. Convex analysis without linearity. Kluwer,
Dordrecht

15. Panagiotopoulos PD (1985) Inequality problems in me-
chanics and applications. Convex and nonconvex energy
functions. Birkhäuser, Basel

16. Panagiotopoulos PD (1993) Hemivariational inequalities.
Applications in mechanics and engineering. Springer,
Berlin

17. Rohde A, Stavroulakis GE (1995) Path–following energy
optimization in unilateral contact problems. J Global Op-
tim 6:347–365

18. Stavroulakis GE, Rohde A (1996) Stability of structures with
quasidifferentiable energy functions. In: Sotiropoulos D,
Beskos DE (eds) 2nd Greec Conf. Computational Mechan-
ics, Chania, June 1996. GRACAM, pp 406–413

19. Stavroulakis GE, Rohde A (1999) Normal forms and sta-
bility in nonsmooth potential elastostatics. Mechanics Res
Comm 26(2):185–190

QuasidifferentiableOptimization:
Variational Formulations
GEORGIOS E. STAVROULAKIS

Carolo Wilhelmina Techn. University,
Braunschweig, Germany

MSC2000: 74G99, 74H99, 74Pxx, 49J40, 49M05, 49S05

Article Outline

Keywords
Variational Formulation of Subdifferential Laws
Variational Formulation of Quasidifferential Laws
Example: an Elastostatic Problem Involving
QD-Superpotentials
Variational Equality
Convex Variational Inequality
QD Laws and Systems of Variational Inequalities

See also
References

Keywords

Variational problems; Variational inequalities;
Nonsmooth optimization; Nonsmooth mechanics;
Quasidifferentiability

In science and, especially in engineering, the variational
or weak formulation of a given boundary value prob-
lem has certain advantages. Instead of writing point-
wise relations (for example, partial differential equa-
tions) which hold for each point of the considered sys-
tem, one multiplies the governing relation with an ar-
bitrary virtual variation, integrates over the entire area
and requires that the latter integral be equal to zero.
This is a weak or a variational formulation of the prob-
lem. Since the considered virtual variation is arbitrary
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one gets back, on the assumption of sufficient regular-
ity, the initial pointwise relations.

Variational formulations provide the basis for the
development of numerical approximation methods (for
example, by the finite element method). One of the ad-
vantages is that by performing partial integration one
transfers differentiability requirements from the actual
variables of the problem to the virtual ones, which, in
turn, results in less demanding requirements on the
complexity of the required finite element basis approx-
imation functions. The literature on variational prob-
lems is very large, so that every selection of references
would be incomplete. In this sense, let us mention here
the publications [1,3,7,8,14].

In the language of smooth optimization, instead of
considering the first order optimality condition that the
derivative of a function at a given point is equal to zero,
one proceeds as follows. The latter equation is multi-
plied by a virtual change of the variables along an arbi-
trary direction. Then, one considers the equivalent re-
lation that the directional derivative of the function is
equal to zero for all directions emanating from the as-
sumed point.

In mechanics the arising quantities have a physical
meaning (for instance, they correspond to the virtual
work of a system). For historical reasons one speaks
about variational principles. Moreover, on adequate
smoothness assumptions one writes variational equal-
ities. Finally, for engineering applications, and depend-
ing on the nature of the studied problem, one has to
solve, after numerical discretization, systems of linear
or nonlinear equations.

In connection with convex, nondifferentiable po-
tentials or for convex problems with inequality con-
straints it is intuitively conceivable that not all virtual
variations are allowed for. The theory of variational in-
equalities has been developed for the study of this class
of problems. It is connected with the subdifferential of
convex analysis and it is appropriate for the study of
monotone operators [5,9]. In simple cases, or after ap-
propriate reformulations one gets linear or nonlinear
complementarity problems (see, e. g. [6] for a recent re-
view).

For general nonconvex and nonsmooth problems
a nonconvex extension of the notion of the variational
inequality is required. For potential operators and by
using the generalized subdifferential in the sense of F.H.

Clarke, this class of variational problems have been
developed and studied by P.D. Panagiotopoulos, who
called them hemivariational inequalities. See � Non-
convex energy functions: Hemivariational inequalities;
� Hemivariational inequalities: Applications in me-
chanics or [9,11] for more details.

The notion of quasidifferentiability, in the sense of
V.F. Demyanov and A.M. Rubinov, provides an ele-
gant way for the formulation and study of noncon-
vex variational inequality problems. By taking advan-
tage of the ability of the quasidifferentials to provide
a qualitative and quantitative nonsmooth approxima-
tion of a nonsmooth function one arrives at a very pow-
erful variational description of the problem. This link
has been studied for several applications in mechanics
in [4,10,12]. One should mention that the author’s un-
derstanding of this theory and their first attempts have
been based on previous theoretical results of C.A. Stuart
and J.F. Toland [13] and G. Auchmuty [2] concerning
difference convex energy functions. Of course, the class
of difference convex functions is included in the class of
quasidifferentiable functions, so that the here presented
approach is sufficiently general.

Variational Formulation of Subdifferential Laws

Let us assume a monotone possibly multivalued (i. e.,
with complete vertical branches) relation (a law) be-
tween the quantities u and �f . To be more precise, one
may think about a nonlinear boundary law which con-
nects boundary reactions �f with boundary displace-
ments u in mechanics. Let a convex l.s.c. and proper
function ˚ exists, the convex superpotential in the
sense of J.-J. Moreau, and that the previously men-
tioned law is written in the subdifferential form:

� f 2 @˚(u) : (1)

Here @ denotes the subdifferential of convex analysis.
Function ˚(u) can be considered as the potential en-
ergy corresponding to the mechanical law (1).

By definition, (1) is equivalent to the following vari-
ational inequality:

˚(u�) �˚(u) � �h f ; u� � ui ; 8u� 2 R : (2)

For example, if ˚ is the indicator IK of a convex
closed interval K of R, then one has

� f 2 @IK (u) : (3)
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This is a unilateral constraint as one easily recognizes by
considering the equivalent variational inequality (for u
2 K):

h f ; u� � ui � 0 ; 8u� 2 K : (4)

Indeed, if u? � u is an admissible variation of u (in
the sense that it satisfies (4)), then the same does not
hold for the variation u � u?. Of course in the one-
dimensional case h�, �i is a simple multiplication. For
multidimensional problems it will be an inner product.

Analogous subdifferential relations can be written
for multidimensional laws (for example, for constitu-
tive laws in elastoplasticity [9]).

Variational Formulation
of Quasidifferential Laws

Let us assume now a nonmonotone possibly multival-
ued relation. By means of a real-valued, quasidifferen-
tiable superpotential energy function ˚ , one may ex-
presses this relation in the form:

� f D w1 C w2 ; (5)

with fw1;w2g 2 D˚(u) D [@˚(u); @˚(u)].
By definition, (5) is equivalent to the relation:

h� f ; u� � ui D max
w�1 2@˚(u)

hw�1 ; u
� � ui

C min
w�2 2@˚(u)

hw�2 ; u
� � ui ;

8u� 2 U ;

(6)

for u 2 U, or with the system of variational inequalities

h� f ; u� � ui � hw�2 ; u
� � ui � max

w�1 2@˚(u)
hw�1 ; u

� � ui ;

8u� 2 U ; 8w�2 2 @˚(u) ;
(7)

and

h� f ; u� � ui � hw�1 ; u
� � ui � min

w�2 2@˚(u)
hw�2 ; u

� � ui ;

8u� 2 U ; 8w�1 2 @˚(u) :
(8)

Space U is in general a subspace of Rn and depends on
the considered application.

Analogously one treats multidimensional relations
(for example, boundary adhesive layers) or constitutive
laws (e. g., materials with softening effects). A number
of concrete examples have been given in [4, Chap. 3].

Example: an Elastostatic Problem Involving
QD-Superpotentials

Let ˝ � R3 be an open bounded subset occupied by
a deformable body in its undeformed state. On the as-
sumption of small deformations one writes the virtual
work relation
Z
˝

�i j(u)"i j(v � u) d˝

D

Z
˝

fi(vi � ui) d˝ C
Z
�

�i jn j(vi � ui)d� ;

8v 2 V ;

(9)

for u 2 V . Here V denotes the function space of the
displacements which will be defined further. As it has
been outlined previously, for the derivation of (9) one
multiplies the equilibrium equation:

�i j; j C fi D 0 ; (10)

where f i is the volume force vector, by a virtual dis-
placement vi � ui and then we have integrated over ˝ .
On the assumption of appropriately regular functions,
one applies the Green–Gauss theorem by taking into
account the strain-displacement relation

"i j D
1
2
(ui; j C uj;i ): (11)

Let us assume further that the body is linearly elastic,
i. e. that

�i j D Ci jhk"hk ; (12)

whereC = {Cijhk}, i, j, h, k = 1, 2, 3, is the elasticity tensor
which obeys to the well-known symmetry and ellipticity
conditions. The energy bilinear form of linear elasticity
is further denoted by ˛ (u, v) =

R
˝Cijhk"ij(u)"hk(v)d˝ .

Variational Equality

For example, let us assume first that on the boundary �
of the structure the classical boundary conditions SN =
0 and uTi = 0, i = 1, 2, 3, hold. Then one gets the classical



3220 Q Quasidifferentiable Optimization: Variational Formulations

variational equality: Find u 2 V0 = {v: v 2 V , vTi = 0 on
� } such that

˛(u; v) D
Z
˝

fivi d˝ ; 8v 2 V0 :

Convex Variational Inequality

Furthermore, let us assume now that on � the general
monotone multivalued subdifferential boundary condi-
tion (1) holds. Using (2) and (9) one obtains the follow-
ing variational inequality: find u 2 V with ˚(u) <1,
such that

˛(u; v � u)C
Z
�

(˚(v) �˚(u)) d�

�

Z
˝

fi(vi � ui) d˝ ;

8v 2 V : j(v) <1 :

QD Laws and Systems of Variational Inequalities

Let us assume that on � the nonmonotone, possibly
multivalued boundary condition (5) holds, where ˚ is
a quasidifferentiable functional. It has the form

�S D w1 C w2 ;

with fw1;w2g 2 Dj(u) D f@˚(u); @˚(u)g.
Then one has, by definition, the relation (6), where

˚ 0(u, v) = h�S, vi. Finally, by an analogous way, one has
the variational problem: find u 2V , w1, w2 2W such as
to satisfy the relation

˛(u; v � u) �
Z
˝

fi(vi � ui) d˝

C max
w�1 (x) 2 @˚(u(x))

a.e. on �

hw�1 ; v � ui

C min
w�2 (x) 2 @˚(u(x))

a.e. on �

hw�2 ; v � ui D 0 ;

8v 2 V :

(13)

The function spaces V and W depend on the studied
application. For instance, for three-dimensional elasto-
statics the following choice has been proposed in [4]:
V = [H1(˝)]3,W = [L2(� )]3. A more general formula-
tion, also proposed in the previously given original pub-
lication, would be to assume that w1, w2 2 [H�1/2(� )]3.

Then in the left-hand side of (13) on should replace
w1(x) 2 @˚(u(x)) a.e. on � byw1 2 @F(u) andw2(x) 2
@ ˚(u(x)) a.e. on � by w2 2 @F(u), where one assumes
that

F(u) D

8<
:

Z
�

˚(u(x)) d� if ˚(�) 2 L2(� );

1 otherwise:

Then instead of (13) one has the following problem:
find u 2 [H1(˝)]3, w1, w2 2 [H� 1/2(� )]3 such that

˛(u; v � u) �
Z
˝

fi(vi � ui ) d˝

Cmax
w�1
fhw�1 C w�2 ; v � ui : w�1 2 @F(u)g

Cmin
w�2
fhw�1 C w�2 ; v � ui : w�1 2 @F(u)g D 0 ;

8v 2 [H1(˝)]3 :

One should mention that the related questions con-
cerning the extension of QD-superpotentials to func-
tion spaces remain still open.

Moreover we can write the min-max form which
reads: find u 2 [H1(˝)]3 such as to satisfy the relation:

˛(u; v � u) �
Z
˝

fi(vi � ui ) d˝

C min
w�2 2@F(u)

max
w�1 2@F(u)

fhw�1 C w�2 ; v � ui D 0 ;

8v 2 [H1(˝)]3 :

If in particular the superpotential F can be expressed
as the difference of two convex functions, i. e. if F =
˚1� ˚2, with ˚1 and ˚2 convex, then one has

@F D @˚1 ; @F D �@˚2 ;

where @is the subdifferential of the convex analysis. In
this case the following system of variational inequalities
results, as it can easily be shown by using the definition
of the subdifferential: find u 2 [H1(˝)]3, such as to sat-
isfy

˛(u; v � u)�
Z
˝

fi(vi � ui) d˝

� hw�2 ; v � ui C ˚1(v) � ˚1(u) � 0 ;

8v 2 [H1(˝)]3

for all w?2 2 [H�1/2(� )]3 such that

hw�2 ; v � ui � ˚2(v)�˚2(u); 8v 2 [H1(˝)]3 :
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Further information on variational formulations in
elastostatics can be found in � Hemivariational in-
equalities: Applications in mechanics.
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Variational or weak formulations of boundary value
problems in science and, in particular, in engineering
are integral, energetic expressions of all involved quan-
tities (involving differential equations and boundary
conditions). Usually, under differentiability (smooth-
ness) assumptions of the involved variables and equal-
ities throughout the considered model one gets vari-
ational equality problems. The strong formulation of
the initial problem (i. e., constitutive relations, bound-
ary conditions, etc) can be reconstructed if one con-
siders certain values for the (otherwise arbitrary) varia-
tions in the weak form, i. e., in the variational equality.
Variational formulations provide the basis for modern
computational mechanics techniques (e. g., the finite el-
ement method) and for this reason they have been ex-
tensively studied in the affiliated literature (see, among
others, [22]). In terms of optimization they can be con-
sidered as stationary point statements for the total dif-
ferential of an appropriately constructed (convex or
nonconvex) potential energy function, provided that
the studied problem admits a potential. Namely, the
weak formulation expresses the fact that the variation
of a function for every small variation of the involved
independent variables is equal to zero, which, due to
the arbitrariness of the variations, is equivalent to the
more classical requirement that the first derivative of
the function vanishes at a critical point.

Due to inequality-type constraints or due to lack of
differentiability in the involved functions one is some-

times obliged to consider one-sided (unilateral) varia-
tions of the problem’s variables. A systematic way of
doing so is provided by the theory of variational in-
equalities [13]. They are related to monotone opera-
tors, to convex, nondifferentiable optimization prob-
lems and to complementarity problems. Variational in-
equalities have been applied for the study of problems
in engineering [17,20], economics, transportation plan-
ning and flow in networks (see also [6,8,10]).

Extensions for nonconvex variational inequalities,
which are based on the generalized gradient ap-
proach in the sense of F.H. Clarke, have been pro-
posed and studied by P.D. Panagiotopoulos who named
them hemivariational inequalities. Details are given in
� Nonconvex energy functions: Hemivariational in-
equalities and � Hemivariational inequalities: Appli-
cations in mechanics. Parallel developments which are
based on the notion of the quasidifferentiability in the
sense of V.F. Demyanov and A.M. Rubinov are de-
scribed in � Quasidifferentiable optimization: Varia-
tional formulations.

Furthermore, there exist problemswhere the admis-
sible space (for the variables and their variations) or the
involved potentials depend on the solution of the prob-
lem. This class of implicit variational inequality prob-
lems are called quasivariational inequalities. They have
been used for the modeling of stochastic impulsive con-
trol problems, in free boundary problems, in mechanics
and in economy. The interested reader may find more
information in the references [1,2,7,9,15]. Here a short
outline of quasivariational inequality problems is given.
A model application arising in unilateral contact prob-
lems with Coulomb friction in engineering mechan-
ics demonstrates the discussed ideas. This approach is
based on early theoretical and numerical studied of [19]
(see also numerical applications in [11,12]) and, among
others, have recently been tested for several convex and
nonconvex problems of mechanics in [14].

Variational Inequalities

Let us first consider abstract variational formulations of
a boundary value problem which is defined in a subset
˝ of Rn, n = 1, . . . , n, with boundary � . Let V be a real
Hilbert space and V 0 be its dual space. Let a(�, �): V × V
! R be a symmetric, continuous and coercive bilinear
form and (l, �) be a continuous linear form on V . An
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abstract variational problem reads: find u 2 V such that

a(u; v � u) D (l ; v � u) ; 8v 2 V : (1)

Let moreover K be a closed convex subset of V and
assume that a solution of the boundary value problem
within the set K is sought. It can be shown that this so-
lution is characterized by the following abstract vari-
ational inequality (of the G. Fichera type, see [20, p.
188]):

8̂
<̂
ˆ̂:

Find u 2 K � V
s.t. a(u; v � u) � (l ; v � u);

8v 2 K:

(2)

For a convex, l.s.c. proper functional ˚ on V one
may define the more general (nonlinear) variational in-
equality ([14]):

8̂
ˆ̂̂<
ˆ̂̂̂
:

Find u 2 V
s.t. ˛(u; v)C˚(v) � ˚(u) �

� (l ; v � u);
8v 2 V :

(3)

It is obvious that (2) is a special case of (3), with˚ = IK ,
where the indicator function of the set K is defined by
IK(v) = 0 if v 2 K, +1 otherwise.

Let moreover j: R ! R denotes a locally Lipschitz
function and let j0(u, v�u) denotes the generalized gra-
dient of the nonconvex and nonsmooth function j. By
definition, one has the following connection with the
generalized gradient, in the sense of Clarke:

j0(u; v) D fmax hw; vi : w 2 @CL j(u)g : (4)

A hemivariational inequality problem reads:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

find u 2 V

s.t. a(u; v � u)C
Z
˝

j0(u; v � u) d˝

� (l ; v � u);
8v 2 V :

(5)

Implicit Variational Inequalities
and Quasivariational Inequalities

If one assumes for instance that the linear form (l, �) or
the set K in the previous relations depend on the so-

lution u, one gets various types of implicit variational
inequalities or quasivariational inequalities.

Let the set K be a variable of the solution u. Then
from (2) one gets the quasivariational inequality:
8̂
<̂
ˆ̂:

find u 2 K(u) � V
s.t. ˛(u; v) � (l ; v � u);

8v 2 K(u):

Along the same lines one formulates from (3) the im-
plicit variational inequality:
8̂
ˆ̂̂<
ˆ̂̂̂
:

find u 2 V
s.t. ˛(u; v)C ˚(u; v) � ˚(u; u)

� (l ; v � u);
8v 2 V :

Here the first argument in ˚(�, �) is tackled as a pa-
rameter. A concrete application of this method will be
demonstrated by the mechanical problem in the next
section.

Finally, in analogy to the previous extensions, for
a continuous mapping h(u) the following quasihemi-
variational inequality (which may also be characterized
as implicit hemivariational inequality) problem can be
written (see [16, p. 128]):

8̂
ˆ̂̂<
ˆ̂̂̂
:

find u 2 V
s.t. a(u; v � u)C h(u) j0(u; v � u)d

� l(v � u);
8v 2 V :

(6)

Mechanical Example:
Coupled Unilateral Contact Problemwith Friction

Let ˝ 2 R3 be an open bounded subset occupied by
a deformable body in its undeformed state. On the as-
sumption of small deformations one writes the virtual
work relation (for u 2 V)
Z
˝

�i j"i j(v � u) d˝ D
Z
˝

fi(vi � ui) d˝

C

Z
�

SN (vN � uN ) d�

C

Z
�

STi (vTi � uTi ) d� ;

8v 2 V :

(7)
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Here V denotes the function space of the displace-
ments, which in general is an appropriate subset of
H1(˝) and f i, SN , STi 2 L2(� ). Recall here that the ab-
stract bilinear form ˛(�, �) reads in this case of linear
elasticity

˛(u; v) D
Z
˝

Ci jhk"i j(u)"hk(v) d˝ : (8)

Moreover the underlying elastostatic equilibrium equa-
tion boundary value problem has the form:

�i j; j C fi D 0 ; (9)

where the f i is the volume force vector. One recalls
here the strain-displacement relation (small deforma-
tion theory):

"i j D
1
2
(ui; j C uj;i ) : (10)

Let a linearly elastic body be assumed, i. e., the consti-
tutive material relation reads:

�i j D Ci jhk"hk ;

where C = {Cijhk}, i, j, h, k = 1, 2, 3, is the elasticity tensor
which satisfies the well-known symmetry and ellipticity
properties.

Recall here that on the assumption that classical
support conditions hold on � (i. e., say uN = 0 and uTi =
0, i = 1, 2, 3) one gets the following variational equality:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

Find u 2 V0 D

8̂
<̂
ˆ̂:
v 2 V :

vN D 0;
vTi D 0
on �

9>>=
>>;

s.t. ˛(u; v) D
Z
˝

fivi d˝;

8v 2 V0:

(11)

Signorini–Coulomb Unilateral Frictional Contact

Let us assume the pointwise unilateral contact relations
(known as Signorini condition, for the frictionless uni-
lateral contact case):

� SN � 0 ; uN � g � 0 ;

� SN (uN � g) D 0 on � :
(12)

Here, the inequalities on the boundary tractions corre-
spond to the mechanical restriction that no tensile trac-

tions are permitted. Moreover, the normal boundary
displacements should not be greater that a given initial
distance g, because no penetration is allowed. Finally,
the complementarity relation expresses the physical fact
that either contact is realized or a separation takes place.

A simplified static version of the Coulomb’s friction
law connects the tangential (frictional) forces STi with
the normal (contact) forces SN by the relation

� D � jSN j � jST j � 0 : (13)

Here | 
 | denotes the norm in R3 and � is the fric-
tion coefficient. The friction mechanism is considered
to work in the following way: If |ST | < �|SN | (i. e. � > 0)
the slipping value � must be equal to zero and if |ST | =
�|SN | (i. e. � = 0) then we have slipping in the opposite
direction of ST . Explicitly we have:

8̂
<̂
ˆ̂:

if � > 0 then yT D 0;
if � D 0 then there exists � > 0

s.t. yTi D ��STi ;

(14)

where i = 1, 2, 3 refers to the components of vector ST
with respect to a reference Cartesian coordinate system.

Contact law (12) can be written in the superpoten-
tial form:

� SN 2 @IUad (uN ) D @˚N (u) DNUad (uN ) : (15)

Here the set of admissible displacements is introduced:

Uad D fu 2 V : uN � g � 0g (16)

and the notions of the convex analysis subdifferential
and of the normal cone to a set have been used. The
corresponding variational inequality reads

� SN (uN )(vN � uN) � 0 ; 8vN 2 Uad : (17)

For the friction law one writes, analogously:

� ST 2 @uN (� jSN j juN j) D @˚T (SN ; uT ) ; (18)

where the involved potential is nondifferentiable (due
to the absolute value nonlinearity of |uN |) and de-
pends on the normal contact traction SN , thus, implic-
itly, on the solution of the problem u, i. e. one consid-
ers the parametrized potential ˚T(u;uT) = ˚T(SN ;uT)
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= �|SN ||uN |. The corresponding variational inequality
reads

� ST (uT )(vT � uT ) � ˚T (u; vT) � ˚T (u; uT) ;

8vT 2 Uad :
(19)

Combining relations (7), (9) and (15) one gets the
implicit variational inequality: find u 2 Uad such that
Z
˝

�i j"i j(v � u) d˝ C ˚T (u; vT) �˚T (u; uT)

�

Z
˝

fi(vi � ui ) d˝ ;

8v 2 Uad :

(20)

A dual problem in terms of stresses provides us a corre-
sponding quasivariational inequality problem. For sim-
plicity, a two-dimensional problem is considered fur-
ther. Moreover, the following set of admissible bound-
ary tractions for the Signorini–Coulomb unilateral con-
tact problem is assumed:

Sad D
˚
(SN ; ST ) : g j(SN ; ST ) � 0; j D 1; 2

�
;

where the constraint functions have the form:

g1(SN ; ST ) D�SN � ST ;

g1(SN ; ST ) D�SN C ST :

Moreover one needs the set of admissible stresses
(which include the boundary tractions):˙(�) = {� : � ij, j

+ f i = 0} \ Sad. It may be shown that in this case the
previous problem is expressed in the form of the quasi-
variational inequality:
8̂
ˆ̂<
ˆ̂̂:

find � 2 ˙(�)

s.t.
Z
˝

"i j(�i j � �i j) d˝ � 0;

8� 2 ˙(�)

Numerical Algorithms: Applications

Theoretical results and numerical algorithms can be
found in several books dealing with variational inequal-
ities, convex analysis and their applications. For the nu-
merical solution, usually one solves, iteratively, a num-
ber of variational inequality problems. The resulting se-
ries approximates the solution of the initial quasivaria-
tional inequality. Further information and references,
mainly connected with the mechanical problems used

as model applications in this paper and their general-
izations, can be found in [3,5,14,18,21]. Finally iterative
solution methods can be based on multilevel optimiza-
tion techniques, as it is discussed in � Multilevel opti-
mization in mechanics.
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Introduction

Crew scheduling problems (CSPs) consist of assign-
ing crews to trains and creating rosters for each crew,

while satisfying several Federal Railway Administration
(FRA) regulations and trade-union work rules. The ob-
jectives are to minimize the cost of operating trains on
one hand and to improve the quality of life for crew
on the other hand. This chapter gives a comprehen-
sive description of the existing literature related to crew
scheduling, an overview of CSP for the North American
Railroads and describes an application of space-time
network flow based multi-commodity methods [13] to
solve this problem. Network flow models have found
successful applications in a large number of diverse
fields which include applied mathematics, computer
science, engineering, management, and operations re-
search [1].

Crew scheduling has been historically associated
with airlines and mass-transit companies. Several pa-
pers on crew schedule management have appeared
in the past literature; most notable among these are
due to [4,6,8,15,16]. All these articles explore a set
covering based approach to solve the crew schedul-
ing problem. Crew scheduling is conventionally di-
vided into two stages: (1) Crew pairing: A crew pair-
ing is a sequence of connected segments that start
and end at the same crew base and satisfy all legal-
ity constraints. The objective is to find the minimum-
cost set of crew pairings such that each flight or train
segment is covered. (2) Crew rostering: The objective
here is to assign individual crew members to trips or
sequences of crew pairings. This pairing and roster-
ing approach uses a set covering formulation and is
usually solved using column generation embedded in
a branch-and-bound framework (also called branch-
and-price [10]). This approach has gained wide ac-
ceptance and application in both the airline indus-
try [2,3,11] and in European [5], Asian [7], and Aus-
tralian railroads [9,14].
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While there have been several papers devoted to the
study of railroad crew scheduling problems in Europe,
Asia, and Australia, North American railroad problems
are yet to be addressed satisfactorily. One application
of optimization methods to North American railroad
crew scheduling is due to [12]. They studied crew bal-
ancing in the context of a major North American Rail-
road, BNSF Railway and developed a dynamic pro-
gramming approach to solve this problem. The major
short-coming of their approach is that they did not con-
sider the possibility of different crew types; each gov-
erned by a different set of rules. Another drawback
is that their approach could handle only a particular
crew district configuration (single-ended crew district).
While most crew districts in North America are single-
ended, there are several which are double-ended or even
more complex (these configurations are described in
the next section). The multi-commodity network flow
approach described here models all the rules consid-
ered by [12] and also handles the case where different
crew pools have different sets of rules. It is also applica-
ble to all the crew district configurations encountered
in North America.

Crew pairing and rostering approaches which use
column generation have been the predominantly suc-
cessful methods to solve crew scheduling problems.
However, this approach is not suited for North Ameri-
can railroads due to the following reasons:
1. The rail network of North American railroad is di-

vided into several crew districts. As a train follows
its route, it goes from one crew district to another,
picking up and dropping off crew at crew change
terminals. Almost all crew districts consist of two or
three terminals. Hence, a pairing and rostering ap-
proach is needlessly complex and not required since
most pairings would consist of two trains, a train
from home to away and a train from away to home.
In addition, rail networks typically consist of 200–
300 crew districts and the emphasis is on an ap-
proach which is simple and fast, and column genera-
tion techniques which are computationally intensive
are not appropriate.

2. The FRA regulations governing North American
railroads are extremely complex. The most com-
plicating of these rules is First-In-First-Out (FIFO)
requirement. FIFO constraints require that crews
should be called on duty in the order in which they

become qualified for assignment at a location. The
success of all approaches using column generation
or branch-and-price algorithms is contingent on the
ease of solving the sub-problem. It should be noted
that the addition of the FIFO side constraints to the
problemwould spoil the special structure of the sub-
problem and blow up the computational times.

Henceforth, whenever CSP is mentioned, it is men-
tioned in the context of the North American railroad
CSP.

Definitions

This section gives an overview of the CSP and defines
some of the essential terminology needed to under-
stand the problem. It also gives an overview of some of
the typical regulations which govern crew management
and lists the set of inputs required to properly define
and formulate the crew scheduling problem.

Terminology

Crew District: The rail network of a railroad is di-
vided into crew districts that constitute a subset of ter-
minals (nodes). Each crew district is typically a geo-
graphic corridor over which trains can travel with one
crew. A typical railroad network for a major railroad
in the U.S. may be divided into as many as 200 to 300
crew districts. As a train follows its route, it goes from
one crew district to another, picking up and dropping
off crew at crew change terminals.

Crew Pools: Within a crew district, there are several
types of crews called crew pools or crew types, which
may be governed by different trade-union rules and
regulations. For example, a crew pool may have prefer-
ence for the trains operated in a pre-specified time win-
dow. Similarly, a crew pool consisting of senior crew
personnel is assigned only to pre-designated trains so
that crews in that pool know their working hours ahead
of time.

Home and Away Terminals: The terminals where
crews from a crew pool change trains are designated ei-
ther as home terminals or away terminals. The railroad
does not incur any lodging cost when a crew is at its
home terminal. However, the railroad has to make ar-
rangements for crew accommodation at their away ter-



Railroad Crew Scheduling R 3229

minals. A crew district with one home terminal and one
away terminal is called a single-ended crew district. The
other type of crew district is a double-ended crew dis-
trict, in which more than one terminal is a home ter-
minal for different crew pools. Some of the other crew
district configurations are crew districts with one home
terminal and several away terminals, and crew districts
with several home terminals and corresponding sets of
away terminals.

Crew Detention: Once a crew reaches its away ter-
minal and rests for the prescribed hours, the crew is
ready to head back to its home terminal. However, if
there is no train scheduled to depart, then the crew may
have to wait in a hotel. According to the trade-union
rules, once a crew is at the away terminal for more than
a pre-specified number of hours (generally 16 hours),
the crew earns wages (called detention costs) without
being on duty.

Crew Deadheading: Crew deadheading refers to the
repositioning of crew between terminals. A crew nor-
mally operates a train from its home terminal to an
away terminal, rests for a designated time, and then op-
erates another train back to its home terminal. Some-
times, at the away terminal, there is no return train pro-
jected for some time, or there is a shortage of crews
at another terminal. Thus, instead of waiting for train
assignment at its current terminal, the crew can take
a taxicab or a train (as a passenger) and deadhead to the
home terminal. Similarly, the crew may also deadhead
from a home terminal to an away terminal in order to
rebalance and better match the train demand patterns
and avoid train delays.

On-duty and Tie-up Time: Whenever a crew is as-
signed to a train, it performs some tasks to prepare the
train for departure, and hence crews are called on-duty
before train departure time. The time at which the crew
has to report for duty is called the on-duty time. Sim-
ilarly, a crew performs some tasks after the arrival of
the train at its destination, and hence crews are released
from duty after the train arrival. The time at which the
crew is released from duty is called tie-up time. The
duty duration before train departure is referred to as
duty-before-departure and the duty duration after train
arrival as duty-after-arrival. Hence, the total duty time

(or duty-period) of a crew assigned to a train is the sum
of the duty-before-departure, the duty-after-arrival, and
the travel time of the train.

Duty Period: In most cases, duty-period of a crew
assigned to a train is the total duration between the
on-duty time and the tie-up time. In some cases when
a crew rests for a very short time at an away location
before getting assigned to a train, the rest time and the
duration of the second train may also included in the
duty period of the crew.

Dead Crews: By federal law, a train crew can only
be on duty for a maximum of 12 consecutive hours, at
which time the crew must cease all work and it becomes
dead or dog-lawed.

Train Delays: When a train reaches a crew-change
location and there is no available crew qualified to
operate this train, the train must be delayed. Train
delays due to crew unavailability are quite common
among railroads. These delays are very expensive (some
estimate $ 1000 per hour) and can be reduced sig-
nificantly through better crew scheduling and train
scheduling.

Regulatory and Contractual Requirements

Assignment of crews to trains is governed by a vari-
ety of Federal Railway Administration (FRA) regula-
tions and trade-union rules. These regulations range
from the simple to the complex. The regulations also
vary from district to district and from crew pool to crew
pool. Some examples of these kinds of constraints and
their typical parameter values:
� Duty-period of a crew cannot exceed 12 hours.

Duty-period of a crew on a train is usually calcu-
lated as the time interval between the on-duty time
and tie-up time of the train.

� When a crew is released from duty at the home ter-
minal or has been deadheaded to the home terminal,
they can resume duty only after 12 hours (10 hours
rest followed by 2 hours call period) if duty-period
is greater than 10 hours, and after 10 hours (8 hours
rest followed by 2 hours call period) if duty-period
is less than or equal to 10 hours.

� Whenever a crew is released from duty at the away
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Railroad Crew Scheduling, Figure 1
An example of crew assignment decision tree

terminal, they usually must go for a minimum 8
hours rest, except for a few exceptions.

� Crews belonging to certain pools must be assigned
to trains in a FIFO order.

� A train can only be operated by crews belonging to
pre-specified pools.

� Every train must be operated by a single crew.
� Crews are guaranteed a certain minimum pay per

month regardless of whether or not they work.
Figure 1 gives an example of the kind of decision pro-
cess that needs to be followed by crew planners.

Problem Inputs

The inputs for the mathematical formulation of the
crew scheduling problem are:

� Train Schedule: The train schedule contains infor-
mation about the departure time, arrival time, on-
duty time, tie-up time, departure location, and ar-
rival location for every train in each crew district it
passes through.

� Crew Pool Attributes: This includes attributes of
various crew types, namely their home locations,
their away locations, minimum rest time, train pref-
erences, etc.

� Crew Initial Position: This provides the position of
crew at the beginning of the planning horizon. This
includes information of the terminal at which a crew
is released from duty, the time of release, the num-
ber of hours on duty in the previous assignment, and
the crew pool the crew belongs to.

� Train-Pool Preferences: The train-pool prefer-
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ences, if any, contain information about the set of
trains that can be operated by a crew pool.

� Away Terminal Attributes: This consists of infor-
mation about the away terminals for each crew pool.
It includes the rest rules and the detention rules for
each crew pool at each corresponding away termi-
nal.

� Deadhead Attributes: This consists of the time
taken to travel by taxi between two terminals in
a crew district.

� Cost parameters:Cost parameters are used to set up
the objective function for the crew scheduling prob-
lem. They consist of crew wage per hour, deadhead
cost per hour, detention cost per hour, and train de-
lay cost per hour.

Formulation

The CSP is formulated as a multi-commodity network
flow problem on a space-time network. The construc-
tion of the space-time network is described first and
then the formulation of the CSP as an integer program-
ming problem is given.

Space-Time Network

The CSP is decomposed into a separate problem for
each crew district. In the space-time network, each
node corresponds to a crew event and has two defin-
ing attributes: location and time. The events that are
modeled while constructing the space-time network are
departure of trains, arrival of trains, departure of dead-
heads, arrival of deadheads, supply of crew, and termi-
nation of crew duty to mark the end of the planning
horizon. Figure 2 presents an example of the space-time
network in a crew district. Note that for the sake of clar-
ity, this network only represents a subset of all the arcs.

For each crew, a supply node whose time corre-
sponds to the time at which this crew is available for
assignment, and whose location corresponds to the ter-
minal from which the crew is released for duty is cre-
ated. Each supply node is assigned a supply of one unit
and corresponds to a crew member. The network also
has a common sink node for all crews at the end of the
planning horizon. This sink has no location attribute
and has the time attribute equal to the end of the plan-
ning horizon. The sink node has a demand equal to the
total number of crew supplied.

Railroad Crew Scheduling, Figure 2
Space-time network for a single-ended district with a single
crew type. Node legend: green (supply), blue (arrival), yellow
(departure), red (demand) Arc legend: green (train), orange
(rest), blue (deadhead), black (demand)

For each train (say l) passing through a crew district,
a departure node (say l0) is created at the first depart-
ing station of the train in the crew district and an ar-
rival node (say l00) at the last arriving station of the train
in the crew district. Each arrival or departure node has
two attributes: place and time. For example, place (l0)
= departure-station (l) and time (l0) = on-duty-time (l);
and similarly, place (l00) = arrival-station (l) and time
(l00) = tie-up-time (l).

Train arc (l0, l00) is created for each train l connecting
the departure node and arrival node of train l. Dead-
head arcs are constructed to model the travel of crew
by taxi. A deadhead arc is constructed between a train
arrival or crew supply node at a location and a train de-
parture node at another location. All the deadhead arcs
which satisfy the contractual rules and regulations are
created. Rest arcs are constructed to model resting of
a crew at a location. A rest arc is constructed between
a train arrival node or a crew supply node at a loca-
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tion and a train departure node at the same location.
Rest arcs are created in conformance to the contractual
rules and regulations. Since the contractual regulations
are often crew pool specific, deadhead arcs and rest arcs
are created specific to a crew pool. Finally, demand arcs
are created from all train arrival nodes and crew supply
nodes to the sink node. Each arc has an associated cost
equivalent to the crew wages, deadhead costs, or deten-
tion costs, depending on the type of the arc. It can be
noted that all contractual requirements other than the
FIFO constraint are easily handled in the network con-
struction.

The space-time network does not model the case
when qualified crews are not available for assignment
to a train causing train delays. Train delays are mod-
eled by the construction of additional arcs. To do this,
rest arcs and deadhead arcs which do not honor the rest
regulations are constructed and flows on these arcs are
penalized to ensure that flows on these arcs occur only
when qualified crews are not available for assignment.
The flows on these arcs denote that the train will be de-
layed until crew becomes qualified for train operation.
However, as the delay of a train may have propagating
effect in the availability of crews in subsequent assign-
ments, it is assumed that the crew assigned to a delayed
train has sufficient slack in the rest time at the train ar-
rival node to make it qualified for subsequent assign-
ments.

Integer Programming Formulation

The CSP is formulated as an integer multi-commodity
flow problem on the space-time network described in
the previous section. Each crew pool represents a com-
modity. Crew enters the system at crew supply nodes,
takes a sequence of connected train, rest, and deadhead
arcs before finally reaching the sink.

Decision Variables

xcl : Flow of crew pool c 2 C on each train arc l 2 L

xd : Flow on deadhead arc d 2 D

xr : Flow on rest arc r 2 R

Objective function

Min
P
l2L

P
c2C

ccl x
c
lC

P
d2D

cd xd C
P
r2R

cr xr

Constraints
X
c2C

xcl D 1; for all l 2 L (1)

X

a2iC

xa D 1; for all i 2 Ns (2)

X
a2N�d

xa D f (3)

xcl D
X

a 2 tail(l )�c

xa; for all l 2 L; c 2 C (4)

xcl D
X

a 2 head(l )Cc

xa; for all l 2 L; c 2 C (5)

X
r02Ar

xr0 �M(1 � xr) � 0; for all r 2 R (6)

xcl 2 f0; 1g and integer, for all l 2 L; c 2 C (7)

xd 2 f0; 1g and integer, for all d 2 D (8)

xr 2 f0; 1g and integer, for all r 2 R (9)

Constraint (1) is the train cover constraint which
ensures that every train is assigned a qualified crew to
operate it. Constraint (2) ensures flow balance at a crew
supply node. Constraint (3) ensures the flow balance at
the sink node. Constraints (4) and (5) ensure flow bal-
ance at train departure and arrival nodes respectively.
Constraint (6) ensures that the crew assignment honors
the FIFO constraint. Constraints (7), (8), and (9) spec-
ify that all the decision variables in the model are bi-
nary. The objective function is constructed to minimize
the total cost of crew wages, deadheading, detentions
and train delays. Note that the detention and delay costs
are taken into account while calculating the cost of rest
arcs.

Theorem 1 There is a one to one correspondence be-
tween a feasible flow on the space-time network satisfy-
ing constraints (1)–(9) and a feasible solution to the crew
scheduling problem.

Most crew districts have two terminals, and a typi-
cal train schedule has around 500 trains running in
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Railroad Crew Scheduling, Table 1
Notation

N Set of nodes in the space time network iCc Set of outgoing arcs specific to crew pool c at node i
L Set of train arcs in the network, indexed by l i�c Set of incoming arcs specific to crew pool c at node i
D Set of deadhead arcs in the network, indexed by d Ar Set of arcs on which flow will violate FIFO constraint if

there is flow on rest arc r
R Set of rest arcs in the network, indexed by r f Total number of available crew
A Set of arcs in the space-time network, indexed by a M A very large number
G(N; A) Space-time network ccl Cost of crew wages for crew pool c 2 Con train arc l 2 L
Ns Set of crew supply nodes cd Cost of deadhead arc d 2 D
Nd Sink node cr Cost of rest arc r 2 R
C Set of crew pools in the system, indexed by c tail(l) The node fromwhich arc l originates
i+ Set of outgoing arcs at node i head(l) The node at which arc l terminates
i� Set of incoming arcs at node i

a couple of weeks in a crew district. Each crew district
could have two to four crew types and around 50 crews.
Therefore, the space-time network could have around
50 + 2 x 500 = 1,050 nodes. The number of deadhead
arcs is typically around 25,000, and the number of rest
arcs is around 100,000.

Since the number of rest arcs for a typical prob-
lem is of the order of 100,000, and as each rest arc has
one FIFO constraint, the number of FIFO constraints
in the model would be 100,000, which makes the prob-
lem very large. In addition, these constraints spoil the
special structure of the problem and a direct approach
to solve the CSP suffers from intractability and does
not converge to a feasible solution in several hours
of computational time. However, the integer program-
ming problem with FIFO constraints relaxed (Relaxed
Problem) can be solved to optimality within minutes.
Efficient methods to solve the CSP are described in the
next section.

Methods and Applications

Successive Constraint Generation (SCG)

The SCG algorithm works by iteratively pruning out
crew assignments which violate the FIFO constraints
from the current solution of a more relaxed problem.
The SCG algorithm starts with the optimal solution of
the Relaxed Problem. The algorithm scans the rest arcs
in the current solution with positive flow, and for each
rest arc assignment which violates FIFO constraints, it
adds the corresponding FIFO constraints. The problem

is then re-solved and the solution re-checked for FIFO
infeasibilities. This process is repeated until all FIFO in-
feasibilities are pruned.

Algorithm-SCG
1. Solve the Relaxed Problem. If a feasible solution ex-

ists, then proceed to Step 2. Otherwise STOP as the
instance is infeasible.

2. Examine all the rest arcs with positive flow in the so-
lution of Step 1. Add FIFO constraints to the integer
program on those rest arcs assignments which vio-
late FIFO requirements.

3. If FIFO constraints are added in Step 2, re-optimize
the modified integer program and go to Step 2. Oth-
erwise, STOP. The current solution is optimal.

The SCG algorithm is an exact algorithm guaranteeing
optimal solution to the original problem. However, in
the worst case, SCG could add all the FIFO constraints
to the integer program and would hence become an in-
tractable approach. Fortunately, this seldom happens in
practice. Computational results show that the number
of constraints added is usually much less than the total
number of rest arcs in the network.

While SCG is an exact algorithm and produces
provably optimal solutions, the running time of this al-
gorithm could be quite high. Some instances had run-
ning times in the order of minutes while others had
much higher running times. While these running times
are acceptable in the planning environment, they re-
strict the applicability of this algorithm in the real-time
environment.
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Quadratic Cost-Perturbation (QCP) Algorithm

The QCP algorithm penalizes FIFO violations. This
method guarantees zero FIFO violations in the case
where there is no priority in assigning crews to trains
and serves as a heuristic method for the other case when
there are priority restrictions. The basic intuition be-
hind this approach is that the costs of arcs while solving
the Relaxed Problem is perturbed in a way that it guar-
antees FIFO compliance.

The cost perturbation strategy is presented through
the illustration shown in Fig. 3 for the case when there is
only one crew pool type. In case (I), crew assignments
are made in a non-FIFO manner, and in case (II), the
assignments are made in a FIFO manner. Consider the
case when crews are detained at the Terminal 2. Then,
due to the nature of detention costs, the cost of the as-
signment (II) would definitely be less than or equal to
the cost of assignment (I), and hence the solution to the
Relaxed Problem would honor FIFO constraints. On
the other hand, suppose all the rest arcs had a cost of
zero; then both the assignments would have the same
cost, and the Relaxed Problem would have no cost in-
centive to choose assignment (II) over assignment (I).
Thus, a solution to the Relaxed Problem may violate
the FIFO constraints. In order to provide an incentive
to the Relaxed Problem to choose case (II) over case (I),

Railroad Crew Scheduling, Figure 3
Illustrating the FIFO assignments

the cost assignments on rest arcs are perturbed so that
the solution of the Relaxed Problem has assignments of
type (II) and not assignments of type (I).

The cost perturbation scheme that is used is a func-
tion of the duration of rest arcs. Suppose that the
time duration between events corresponding to nodes
2 and 4, 4 and 5, and 5 and 7 are a, b, and c, re-
spectively. Consider a cost assignment which is pro-
portional to the square of the duration of rest arcs.
The constant of proportionality is represented by k (k
is set to a very small value).

Then,
Cost of assignment (I)

D k(duration of arc (2; 7))2

C k(duration of arc (4; 5))2

D k(aC bC c)2 C kb2

D k(a2 C 2b2 C c2 C 2abC 2bc C 2ca)

Cost of assignment (II)

D k(duration of arc (2; 5))2

C k(duration of arc (4; 7))2

D k(aC b)2 C k(bC c)2

D k(a2 C 2b2 C c2 C 2abC 2bc)
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It can be observed that the cost of assignments in
case (II) is less than that in case (I). Hence, when the rest
arcs have zero costs, the QCP scheme applied to the Re-
laxed Problem gives FIFO compliant assignments un-
less there is priority in assigning crew pools to trains.
These observations are stated as the following theorem.

Theorem 2 Quadratic Cost Perturbation applied to the
Relaxed Problem guarantees FIFO compliant crew as-
signments if there is no priority in assigning crews to the
trains.

The solution time of QCP is very short and is compara-
ble to that of the Relaxed Problem. Note that in the case
where there are priorities, this approach could be used
to obtain a solution with a small number of violations
and the SCG algorithm can be then used to prune out
these violations. An interesting observation was that
for most of the instances tested, this method produced
solutions with objective function values same as those
for the Relaxed Problem. This implies that FIFO con-
straints can be satisfied with little or no impact on the
solution cost. Hence, QCP can be used to obtain ex-
cellent quality solutions using much less computational
time. Due to its attractive running times and high solu-
tion quality, this method has the potential to be used in
both the planning and the real-time environment.

Applications

The crew scheduling model has applications in the tac-
tical, planning and strategic environments. Some spe-
cific examples of how the model can be used as an ef-
fective tool for decision making are provided in this sec-
tion.

Tactical Crew Scheduling: Tactical scheduling refers
to the decisions that need to be taken in the real-time
planning environment on daily basis. The model for
the CSP has several potential applications in the tacti-
cal scheduling environment. Some of the applications
are: (i) Assign crews to trains, (ii) Recommend which
crews to place in hotels and which crews to deadhead
home, (iii) Minimize trains delayed due to shortage of
crew, and (iv) Disruption management.

Crew Planning: The essence of the crew planning
problem for operations or planning is to determine

how many crews should be deployed in each crew
pool. A planning problem is solved every month as
the train pattern changes with seasonal traffic demand
fluctuations. Currently, railroads solve the pool siz-
ing problem based on historical precedent and rules-
of-thumb, through negotiation with the union, and
by trial and error. The network flow model can sat-
isfy the need for a structured approach that captures
all of the considerations, quantifies the various costs,
and recommends the best way to define and staff
crew pools. Some of the applications of the model in
the planning environment are: (i) Develop and eval-
uate crew schedules, and (ii) Analyze robustness of
the plan with respect to availability of the crew in the
pool.

Crew Strategic Analysis: Strategic management in-
volves development of policies and plans and allocat-
ing resources to implement these plans. The timeframe
of strategic management extends over several months
or even years. Strategic crew problems include fore-
casting future head-count needs and evaluating major
policy changes such as negotiating changes to trade-
union rules or changing the number and location of
crew change points on a network. The model can be
used to quickly calibrate efficient frontiers for each crew
district and show what number of crews minimizes the
sum of train delay costs and crew costs. Some of the
applications of the network flow model in the strate-
gic environment are: (i) Determining the number of
crew districts and territory of crew districts, (ii) Effect
of changing crew trade-union rules, and (iii) Forecast-
ing crew requirement.

Conclusions

The crew scheduling problem for North American rail-
roads is governed by several Federal Railway Adminis-
tration (FRA) regulations and trade-union work rules.
In addition to satisfying these regulations, the objective
is to minimize the total wage costs, train delay costs,
deadhead costs, and detention costs. The railroads di-
vide their network into a number of crew districts, and
each crew district has several crew pools. Each crew
pool in a district could have a different set of operat-
ing rules. These factors make this a complex problem
to model and solve.
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The network flow formulation for the crew schedul-
ing problem described in this article is both flexible and
robust and can be easily manipulated to represent each
of the possibilities encountered in real-life. The crew
scheduling problem is formulated as an integer pro-
gram on a space-time network. The network is con-
structed in such a way that all FRA regulations and
trade-union work rules other than FIFO constraints are
enforced during the network construction phase itself.
The operational constraints are handled in the integer
programming formulation. Two efficient approaches to
solve the problem are described.

The crew scheduling model has applications in
a wide range of settings. The broad spectrum of appli-
cations varies from the short-term problem of assign-
ing crews to trains over the next few days to the long-
term problem of forecasting crew requirements based
on future demand patterns. The model gives railroad
executives a method to calibrate and quantify the im-
pact of current decisions on future operations by run-
ning several “what-if ” scenarios. It has the potential to
make a significant impact on the railroad’s on-time per-
formance, crew utilization, and productivity, while also
improving the quality-of-life for crew and improving
railroad safety.
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Introduction

Everyday railroad managers need to assign hundreds of
locomotives to hundreds of different trains. Locomo-
tive scheduling entails optimally assigning a set of lo-
comotives to each train so that the assignment satisfies
a variety of business constraints and minimizes the to-
tal scheduling cost. Major US railroad companies have
several billions of dollars of capital investment in loco-
motives. Thus, solving this problem effectively is of crit-
ical importance for railroads. This chapter gives a de-
scription of the existing literature related to locomotive
scheduling, an overview of the North American rail-
road locomotive scheduling problem (LSP) and sum-
mary of the key features of two comprehensive models
for locomotive scheduling developed by [1] and [15].

The set of locomotives assigned to a train is called
consist. When a train arrives at its destination, its con-
sist is either assigned to an outbound train in its en-
tirety, or its consist goes to the pool of locomotives
where new consists are formed. The former case is re-
ferred to as a train-to-train connection between the in-
bound and outbound trains, and the latter case is re-
ferred to as a consist-busting. The cost of assembling
and disassembling consists must be controlled by de-
veloping plans that minimize consist-busting.

Locomotives which provide power to the train are
referred to as active locomotives. Due to difference in
power demand at different stations, locomotives are
also repositioned from one station to another. The lo-
comotives can be repositioned by simply deadheading
on an existing train, or by dispatching a set of loco-
motives which travel independently from one station to
another, also referred to as light travel.

LSPs are notoriously hard combinatorial optimiza-
tion problems. The paper [7] presents an excellent
survey of existing locomotive scheduling models and
algorithms for this problem. The models described
in existing literature can broadly be classified in two
categories: Single locomotive type and Multiple locomo-
tive type models. Single locomotive scheduling models as-
sume that there is only one type of locomotive available
for assignment. These models can be viewed as min-
imum cost flow problems with side constraints; some
papers on single locomotive scheduling models are due
to [3,4,8,10,16]. Single locomotive assignment mod-
els are appropriate for some European railroad com-
panies but are not suited for US railroad companies
since most trains are assignedmultiple types of locomo-
tives. Multiple locomotive assignment models have been
studied by [5,6,9,12,13,14,17,18]. The most recent and
comprehensive multiple locomotive assignment model
is due to [1] which has been further refined by [15].
While [1] develop the initial framework to solve this
problem; [15] improve the initial effort on several di-
mensions leading to the development of a practical lo-
comotive scheduling approach.

Definitions

This section lists the set of inputs required to define and
formulate the LSP. It also describes the constraints that
govern the problem and the objective function.

Problem Inputs

Locomotive Data: A railroad typically has several dif-
ferent types of locomotives with different pulling and
cost characteristics and different number of axles (often
ranging from four to nine). The set of all the locomotive
types is denoted by K and the index k represents a par-
ticular locomotive type. The following data is associated
with each locomotive type k 2 K: (i) hk: the horsepower
provided by a locomotive of type k; (ii) �k : the number
of axles in a locomotive of type k; (iii) Gk: the weekly
ownership cost for a locomotive of type k; and (iv) Bk:
fleet size of locomotives of type k, that is, the number of
locomotives available for assignment.

Train Data: Locomotives pull a set of trains L from
their origins to their destinations. Trains have different
weekly frequencies; some trains run every day, while
others run less frequently. The same train running on
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different days is considered as different train entities;
that is, if a train runs five days a week, it is consid-
ered as five different trains. The index l is used to
denote a specific train. Each train has the following
associated information: (i) dep-time(l): the departure
time for the train l; (ii) arr-time(l): the arrival time for
train l; (iii) dep-station(l): the departure station for train
l; (iv) arr-station(l): the arrival station for train l; (v)
Tl: tonnage requirement of train l; (vi) ˇl : horsepower
per tonnage needed for train l; (vii) Hl : horsepower re-
quirement of train l , which is defined as Hl D ˇl Tl ;
and (viii) El : the penalty for using a single locomotive
consist for train l.

Locomotive-Train Combinations: The following
information is specified for each train-locomotive type
combination: (i) ckl : the cost incurred in assigning an
active locomotive of type k to train l; (ii) dkl : the cost
incurred in assigning a deadheaded locomotive of type
k to train l; and (iii) tkl : the tonnage pulling capa-
bility provided by an active locomotive of type k to
train l. Also specified for each train l are three disjoint
sets of locomotive types: (i) MostPreferred[l], the pre-
ferred classes of locomotives; (ii) LessPreferred[l]: the
acceptable (but not preferred) classes of locomotives;
and (iii) Prohibited[l], the prohibited classes of loco-
motives. When assigning locomotives to a train, loco-
motives from the classes listed as MostPreferred[l] and
LessPreferred[l] can be assigned (a penalty is associated
for using LessPreferred[l]).

Hard Constraints
Hard constraints are mandatory constraints which have
to be satisfied for a locomotive assignment plan to be
feasible.

Power Requirement for Trains: Each train must be
assigned locomotives with at least the required tonnage
and horsepower.

Locomotive Class to Train Type: Each train type
(e. g., auto train, or merchandise train, or intermodal
train) is targeted to use specific classes of locomotive
types.

Geographic: Each geographic region permits the
travel of only specific locomotive types. For example,
it may be specified that Atlanta can only use: CW40,
AC44, and AC60 locomotives.

Locomotive Balance Constraints: The number of
incoming locomotives of each type into a station must

be equal to the number of outgoing locomotives of that
type at that station.

Active Axle Constraints: Each train must be as-
signed locomotives with atmost 24 active axles. Exceed-
ing 24 powered axles may overstress the couplers and
cause a train separation.

Consist Size Constraints: Each train can be as-
signed at most 12 locomotives including both the ac-
tive and deadheading locomotives. This business policy
reduces risk exposure if the train were to suffer a catas-
trophic derailment.

Fleet Size Constraints: The number of assigned lo-
comotives of each type is at most the number of avail-
able locomotives of that type.

Repeatability of the Schedule: The routing of lo-
comotives should be such that the number of locomo-
tives of each type at each station at the end of the week
should be equal to the number of locomotives of each
type at each station at the beginning of the next week
(so that the plan is repeatable every week).

Soft Constraints

These constraints are flexible constraints and they de-
fine characteristics of a solution which are preferred but
not mandatory.

Consistency in Locomotive Assignment: A train
should be assigned the same consist each day that it
runs. Railroads believe that crews will performmore ef-
ficiently and more safely if they operate the same equip-
ment on a particular route and train.

Consistency in Train Connections: If locomotives
traveling on a train to its destination station connect
to another train originating at that station, then they
should preferably make the same connection on each
day that both of the trains run.

Avoid Consist Busting: Since consist busting in-
volves the use of more resources, it is preferable to avoid
consist busting.

Avoid Single LocomotiveConsists: If a single loco-
motive is assigned to a train and this locomotive breaks
down, then the train will get stranded.

Objective Function

The objective function for the LSP is to minimize the
sum of: (i) Cost of ownership, maintenance, and fuel-
ing of locomotives; (ii) Cost of active and deadheaded
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locomotives; (iii) Cost of light traveling locomotives;
(iv) Penalty for consist-busting; (v) Penalty for incon-
sistency in locomotive assignment; and (vi) Penalty for
using single locomotive consists.

Formulation

The LSP is formulated as a multi-commodity flow
problem with side constraints on a network called the
weekly space-time network. Each locomotive type de-
fines a commodity in the network.

Space-Time Network

The weekly space-time network is denoted as G7 = (N7,
A7), where N7 denotes the node set and A7 denotes the
arc set. Figure 1 displays a part of the weekly space-time
network at one location. The network is constructed as
follows:

Nodes in the Weekly Space-Time Network: The
network contains a train arc (il, jl) for each train l. The
tail node il of the arc denotes the event for the de-
parture of train l at dep-station(l) and is called a de-
parture node. The head node jl denotes the arrival

Railroad Locomotive Scheduling, Figure 1
A part of the weekly space-time network

event of train l at arr-station(l) and is called an arrival
node. For each arrival event, an arrival-ground node
is created, and for each departure event, a departure-
ground node is created. Each node in the network is
associated with two attributes: time and place. Time(i)
denotes the time attribute of node i in the weekly
space-time network. The sets of departure, arrival, and
ground nodes are denoted by the sets DepNodes, ArrN-
odes, and GrNodes, respectively. Let the set AllNodes =
DepNodes[ArrNodes[GrNodes.

Arcs in theWeekly Space-Time Network: The net-
work contains four types of arcs. The first is the set
of train arcs, denoted by the set TrArcs, and con-
tains an arc for every train. Each arrival node is con-
nected to the associated arrival-ground node by a di-
rected arc called the arrival-ground connection arc.
Each departure-ground node is connected to the asso-
ciated departure node through a directed arc called the
ground-departure connection arc. All the ground nodes
at each station are sorted in the chronological order of
their time attributes and each ground node is connected
to the next ground node through directed arcs called
ground arcs. The ground arcs allow inbound locomo-
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tives to stay in an inventory pool as they wait to be con-
nected to the outbound trains. The last ground node in
the week at a station is connected to the first ground
node of the week at that station through the ground
arc; this ground arc models the ending inventory of lo-
comotives for a week, which becomes the starting in-
ventory for the following week. The possibility of an in-
bound train sending its entire consist to an outbound
train is modeled by creating train-train connection arcs
from train arrival nodes to train departure nodes when-
ever such a connection can be feasibly made. Therefore,
the four kinds of arcs are: train arcs (TrArcs), connec-
tion arcs (CoArcs), and ground arcs (GrArcs). Let Al-
lArcs = TrArcs[CoArcs[ GrArcs.

The LSP can be formulated as a flow of differ-
ent types of locomotives in the weekly space-time net-
work. Locomotives flowing on train arcs are either ac-
tive or deadheading; and those flowing on connection
and ground arcs are idling (that is, waiting between two
consecutive assignments). The following additional no-
tation for the weekly space-time networks is used in
the MIP formulations: (i) I[i]: the set of incoming arcs
into node i 2 AllNodes; (ii) O[i]: the set of arcs em-
anating from node i 2 AllNodes; (iii) dk

l : defined for
every arc l 2 AllArcs (for a train arc l, dk

l denotes the
cost of deadheading of locomotive type k on train arc l ,
and for every other arc it denotes the cost of travel-
ing for a non-active locomotive of locomotive type k on
arc l); (v) CB: the set of all connection arcs from arrival
nodes to ground nodes; alternatively, CB = {(i, j) 2 Al-
lArcs: i 2ArrNodes and j 2GrNodes}; (vi) CheckTime:
a time instant of the week when no event takes place
(that is, no train arrives or departs at any station); and
(vii) S: the set of arcs that cross the CheckTime [that is,
S = {(i, j) 2 AllArcs: time(i) < CheckTime< time(j)}].

Problem Size and Computational Issues

The integer programming formulation of the LSP con-
tains around 200,000 variables and 100,000 constraints
and cannot be solved to optimality or near optimal-
ity using commercial state-of-the-art software. Even the
linear programming relaxation of this problem cannot
be solved in a reasonable amount of time. Addition-
ally, the formulation given above cannot capture the
consistency constraints effectively. The main contribu-
tion made in [1] was to develop a two-stage solution

approach to solve this problem. In the first stage, the
daily locomotive scheduling problem which is a simpli-
fied problem is solved, and in the second stage the daily
locomotive schedule is modified to obtain the feasible
weekly locomotive schedule.

This approximate two stage approach was moti-
vated by the observation that in a typical problem more
than 90% of the train arcs in the space-time network
correspond to the trains that run 5, 6, or 7 days. Based
on this observation, the daily locomotive scheduling
model that is a simplification of the weekly locomotive
scheduling model is created in the following manner.
(i) all trains that run p days or more per week run ev-
ery day of the week; and (ii) all trains that run fewer
than p days do not run at all. (Note: This assumption
results in an approximation in the sense that locomo-
tives are provided to some trains that do not exist, and
locomotives are not provided to some trains that ex-
ist.)

To transform the solution of the daily locomo-
tive scheduling solution into a feasible solution to
the weekly scheduling problem, locomotives are taken
from the trains that exist in the daily problem but do
not exist in the weekly problem (Type 1 trains) and as-
signed to the trains that do not exist in the daily prob-
lem but exist in the weekly problem (Type 2 trains).
This may lead to the model using additional loco-
motives to meet the constraints. The solution of the
daily problem can be translated into the solution of the
weekly problem more effectively if the number of Type
1 trains is less than the number of Type 2 trains but still
as close as possible.

Another contribution made in [1] is determination
of good train-train connections and good light arcs.
Railroads often specify some “candidate” train-train
connections and “candidate light arcs” out of which
a certain number are fixed in the final solution. In
the basic formulation, each “candidate” train connec-
tion or light arc has a fixed charge variable associated
with it and these fixed charge variables make the MIP
very hard to solve. This issue is handled in the follow-
ing manner. The space-time network that contains all
the candidate train-train connection arcs and candidate
light arcs is constructed. The linear programming relax-
ation of the LSP has no fixed charge variables, and has
large costs for all the train-to-ground and ground-to-
train arc flows to discourage the flow on such arcs (or,
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Railroad Locomotive Scheduling, Figure 2
Overview of the multi-stage locomotive scheduling algorithm

alternatively, to discourage consist-busting), is solved.
Let '(l) denote the total flow of locomotives (of all
types) on any arc l in the daily space-time network. The
candidate train-train connection arc h with the largest
value of '(h) is selected. This arc indicates a success-
ful potential train-train connection. Connection arc h
is made the unique connection arc for the two corre-
sponding trains and the linear programming relaxation
is resolved. If this linear programming relaxation is in-
feasible or if it increases the cost of the new solution by
an amount greater than � , then the train-train connec-
tion is not made; otherwise, it is fixed as a good con-
nection. This iterative procedure is repeated until ei-
ther the desired number of train-train connections is
reached (as specified by some parameter �), or until
the set of candidate train-train connections becomes
empty. Using a similar greedy iterative approach, the
set of good light moves is also determined. Figure 2
gives an overview of the overall approach in [1].

Consist Flow Formulation for the LSP

Consist busting is such an anathema to real world rail-
road managers that most managers stipulate that a high
quality locomotive plan is one designed such that no

consist busting is required. Consist busting affects crew
requirements, station fluidity, locomotive productivity,
and mechanical maintenance processes. Consist bust-
ing consumes between two and six additional hours per
locomotive within the station, asset time that could be
productively used to pull trains on the mainline. Upon
reassembly, each consist must undergo extensive op-
erational testing as well. In addition, consist-busting
often results in outbound trains getting their locomo-
tives from several inbound trains. If any of these in-
bound trains is delayed, the outbound train is also de-
layed, which potentially propagates to further delays
down the line. Consequently, railroad managers seek to
streamline and simplify processes in order to eliminate
fragility in the operating plan. In reality, consists will be
tactically busted as part of real-time operations to com-
pensate for unplanned events.

In order to minimize consist busting, [15] extended
the locomotive flow formulation described in [1]. Most
features of the model are kept identical but consists
are routed over the network instead of individual loco-
motives. In this formulation, referred to as consist flow
formulation, each consist type (that is, a group of lo-
comotives) is defined to be a commodity that flows on
the network. Thus, the consist flow formulation differs
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from the locomotive flow formulation in the sense that
locomotive types are replaced by the consist types. Ob-
serve that each feasible solution of the consist flow for-
mulation has a corresponding feasible solution to the
locomotive flow formulation with the same cost, but
the converse is not true. Thus, the reader might be led
to believe that consist formulation is quite restrictive
and may produce significantly inferior optimal solution
compared to the flow formulation. However, computa-
tional results revealed that if the number and types of
consists are judiciously chosen, then both formulations
produce solutions with comparable quality.

The consist flow formulation is a multi-commodity
integer program. The network is constructed in a simi-
lar way to that described in Sect. “Space-TimeNetwork”

Additional Notation

C: Denotes the set of consist types available for as-
signment and c 2 Crepresent a particular con-
sist.

ccl : Cost of assigning an active consist of type c 2
Cto train l.

dc
l : Defined for every arc l 2 AllArcs. For a train arc

l 2 TrArcs, dc
l captures the cost of deadheading

a consist of type c 2 Con arc l. For an arc l 2
CoArcs[GrArcs, dc

l captures the cost of idling for
a consist type c 2 Con arc l.

˛ck : Number of locomotives of type k 2 K in consist
type c 2 C.

I[i]: Set of arcs entering node i.
O[i]: Set of arcs leaving node i.
S: Set of overnight arcs or arcs that cross the Sun-

day midnight timeline. (This time is chosen as
the time for counting the number of locomotives
used in the solution.)

Decision Variables

xcl : Binary variable representing the number of active
consists of type c 2 C on arc l 2 TrArcs.

ycl : Integer variable representing the number of non-
active consists (deadheading, light-traveling or
idling) of type c 2 C on arc l 2 AllArcs.

zl : Binary variable which takes value 1 if at least one
consists flows on arc l 2 LiArcs and 0 otherwise.

sk : Integer variable indicating the number of unused
locomotives of type k 2 K:

Objective Function

min z D
X

l2TrArcs

X
c2C

ccl x
c
l C

X
l2AllArcs

X
c2C

dc
l y

c
l

C
X

l2LiArcs

Fl zl �
X
k2K

Gksk (1)

Constraints

X
c2C

xcl D 1 ; for all l 2 TrArcs ; (2)

X
c2C

X
k2K

˛ck (xcl C ycl ) � 12; for all l 2 TrArcs; (3)

X
l2I[i]

(xcl C ycl ) D
X
l2O[i]

(xcl C ycl ) ;

for all i 2 AllNodes; c 2 C ; (4)

X
k2K

X
c2C

˛ck ycl � 12zl ; for all l 2 LiArcs ; (5)

X
l2S

X
c2C

˛ck (xcl C ycl )day(l)C sk D Bk ;

for all k 2 K ;
(6)

xcl 2 {0,1} ; for all l 2 TrArcs; c 2 C ; (7)

ycl � 0 and integer ; for all l 2 AllArcs; c 2 C ; (8)

zl 2 f0; 1g ; for all l 2 LiArcs : (9)

sk � 0 ; for all k 2 K (10)

Constraint (2) ensures that every train l is assigned
exactly one active consist. Constraint (3) ensures that
the locomotive flow upper-bound on each train arc is
satisfied. Constraint (4) ensures that flow is balanced at
every node for every consist type. Constraint (5) en-
sures that the locomotive flow upper-bound on each
light arc is satisfied. Constraint (6) ensures that the
number of locomotives used for each fleet type is no
more than the fleet size.

Note that in this formulation, it is not required to
explicitly specify the constraints that each train gets the
required tonnage, horsepower and does not exceed the
24-active axle requirement. These constraints are im-
plicitly handled in the formulation. The active axle con-
straints are handled by not creating consists which have
more than 24 active axles. The tonnage and horsepower
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constraints are handled implicitly in the following way;
if assigning consist c 2 Cas an active consist to train
l 2 TrArcs violates the tonnage or horse power con-
straints, then the corresponding variable is set to zero
(xcl D 0); thus disallowing the assignment of consist c
to train l. The consist flow formulation has significantly
less side constraints compared to the locomotive flow
formulation, resulting in faster solution time. Another
speed-up in the consist flow formulation comes from
the fact that each active consist assignment variable,
xcl ;is a binary variable, whereas in the locomotive flow
formulation, it is an integer variable and can take values
0, 1, 2, 3, . . . etc. The MIP optimization engine, which is
typically a branch and bound algorithm, is likely to ex-
plore lesser branches for a binary integer program com-
pared to a general integer program as there are lesser
options to pursue. There are instances where the loco-
motive flow formulation could not give a feasible inte-
gral solution in 10 hours, but the consist flow formula-
tion gave an optimal solution within a few minutes of
computational time.

Railroads often impose complex rules on what lo-
comotive types may be combined into ideal consists.
Some locomotives do not work well together. Some rail-
roads segregate AC powered locomotives and DC pow-
ered locomotives. These requirements are often very
hard or impossible to honor in the locomotive flow
formulation but are rather trivial in the consist flow
formulation. Further, in the locomotive flow formula-
tion, an outbound train often obtains its planned con-
sist from locomotives coming from multiple trains and
if any of these inbound trains is delayed, the outbound
train is delayed as well. But in the consist flow formula-
tion, all outbound trains derive their active consist only
from one inbound train (but may derive their deadhead
consists from other trains) thus reducing the impact of
train delays. In summary, the benefits of using the con-
sist formulation are (1) solution speed and robustness
greatly improved, (2) consist busting is reduced to zero,
and (3) constraints are more easily incorporated, result-
ing in more practical solutions.

Computational tests show that the consist flow for-
mulation may have its optimal objective function value
as much as 5% higher than that of the locomotive flow
formulation. However, the solution is far superior in
terms of consistency, simplicity, and robustness. Thus,
it may be easier to comply with and may need overall

fewer locomotives in practice (considering train delays,
for example).

Methods and Applications

In [15], the authors describe methods to use the consist-
based formulation to incorporate several practical re-
quirements to generate an implementable plan. These
include incremental locomotive planning, satisfying
cab-signal requirements, incorporating foreign power
requirements, and accounting for shop power require-
ments. The interested reader may refer to [15] for fur-
ther details.

In this section, the result of two case studies to il-
lustrate the uses of the model to assist decision making,
are presented. The aspects of the problem observed are:
(1) Effect of varying minimum connection time on so-
lution cost, and (2) Effect of varying transport volumes
on key transport performance characteristics.

Effect of Varying Minimum Connection Time
on Solution Cost

Freight trains do not run on time and often arrive later
than their planned arrival time, which makes it diffi-
cult for locomotive dispatchers to adhere to the loco-
motive plan. One method commonly recommended to
improve plan compliance is to increase the train-train
minimum connection times. Although increasing the
minimum connection time may improve plan adher-
ence, it also increases locomotive costs as more locomo-
tives will be held in inventory at terminals. This study
quantifies the impact of increasing the minimum con-
nection times.

The following conclusions can be drawn from the
study (see Fig. 3):
� The minimum connection time could have a signif-

icant impact on the solution cost.
� The solution cost increases linearly with the increase

in connection times at the rate of around $200,000
per hour.

Depending upon the lateness of trains and the willing-
ness of railroad planners to improve locomotive plan
compliance, appropriate connection times can be used.
As shown in this study, railroads can use the model to
estimate the benefit of reducing locomotive connection
times at terminals; this reduction may involve the in-
vestment of resources to improve efficiency of termi-
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Railroad Locomotive Scheduling, Figure 3
Solution cost vs. minimum connection time

nal activities like fueling and servicing locomotives, and
consist-busting overheads.

Effect of Varying Transport Volume
on Key Performance Characteristics

In this study, the impact of varying transport volumes
(or train tonnages) on the following key transport char-
acteristics: number of locomotives used, solution cost,
mean pulling power of a consist, and mean miles trav-
eled per consist, is measured. The results of these tests
are presented in Table 1 and Fig. 4.

The following conclusions can be drawn from this
study:

Railroad Locomotive Scheduling, Table 1
Effect of varying transport volumes

% increase
in tonnage

Mean tonnage
of trains

Locos
Used

Solution
Cost ($)

Mean pulling
power/consist

Mean miles/
consist

�20 6,183 1,026 7,502,802 10,099 405.05
�15 6,570 1,026 7,588,421 10,373 405.04
�10 6,956 1,042 7,726,579 10,464 404.17
�5 7,342 1,040 7,910,331 10,841 405.14
0 7,729 1,049 8,120,134 11,093 403.73
5 8,115 1,079 8,437,334 11,457 403.86

10 8,502 1,117 8,812,467 11,828 405.27
15 8,888 1,171 9,296,423 12,483 403.98
20 9,275 1,214 9,635,790 12,715 405.12

Railroad Locomotive Scheduling, Figure 4
Impact of transport volumes on solution cost

� As the transport volume (mean tonnage) increases,
the solution cost increases as a quadratic function
as shown in Fig. 4. The nature of the variation indi-
cates that the rate of change of cost with respect to
tonnage (slope) is a linear increasing function.

� The mean pulling power of each consist and the
number of locomotives used increase as expected
but the surprising observation is that the average
number of miles traveled by each consist remains
roughly the same.

As demonstrated in this study, railroads can use the
model as a generic approach for modeling the optimal
number of locomotives needed or the cost as a function
of the rail freight transport volume over the entire net-
work.
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Conclusions

The LSP creates a blueprint for use by managers to as-
sist them in making tactical, day-to-day decisions re-
garding locomotive assignments. This article provides
an overview of some of the recent work done in this
area. The locomotive planning tools presented in this
article have the potential to serve as a core component
in a strategic fleet sizing model. Each year, railroads de-
velop five year outlooks and forecast the demand for
freight transportation and the associated train sched-
ules to handle that demand. Railroads also must project
locomotive fleet supply, as units reach their economic
limit of repair and are retired from the fleet. The gap be-
tween the future supply of locomotives and the future
demand for locomotives must be closed with a com-
bination of improved productivity and new purchases.
This planning tool will go a long way towards helping
railroad financial executives and strategic planners set
asset goals and negotiate the purchase of new locomo-
tives. The planning tool can also be used to perform
“what-if ” kind of analysis and allow railroad managers
to take informed decisions after analyzing their global
impacts.
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A general global optimization problem is a problem of
the form
(
max f (x)
s.t. x 2 S;

where f is a continuous function on S, and S � Rd is
a compact body, and the goal is to find a point in the set

S� � fx 2 S : f (x) D f �g

where

f � � max
x2S

f (x):

It is well-known that, without additional assumptions,
this problem is inherently unsolvable in a finite number
of steps. Therefore, the global optimization problem is
usually considered solved if a point is found in

B�� � fx 2 S : kx � x�k � � for some x� 2 S�g

or in the level set

S� � fx 2 S : f (x) � f � � �g

for some � > 0 [17].
Stochastic methods are methods that contain some

stochastic elements. This means that either the out-
come of the method is a random variable, or the ob-
jective function itself is considered to be a realization
of a stochastic process. Therefore, the possibility of an
absolute guarantee of success is sacrificed. Instead, it is
usually possible to prove that, as the effort increases to
infinity, an element of B�� or S� will be found with prob-
ability one. Surveys on the topic of stochastic meth-
ods for global optimization can be found in [10,29,38]
and [33].

Random search methods are those stochastic meth-
ods that rely solely on the random sampling of a se-
quence of points in the feasible region of the problem,
according to some prespecified probability distribution,
or sequence of probability distributions. These methods
are applicable to, and enjoy an asymptotic performance
guarantee for, a very wide class of problems. There-
fore, these methods have, during the last decade, en-
joyed increasing interest for its ability to handle prob-

lems whose mathematical structure is difficult (or un-
desirable, or even impossible) to analyze.

Conceptual Methods

The methods discussed here are of a conceptual nature,
in the sense that at this point there does not exist an
efficient implementation of these methods. However,
the theoretical results that can be obtained for these
methods are interesting in itself. Moreover, they have
shown potential for inspiring (or theoretically support-
ing) practical algorithms for global optimization.

(Pure) Random Search

The simplest stochastic method for global optimiza-
tion is pure random search (PRS) ([12] and [5]). This
method consists of generating a sequence of indepen-
dent and identically distributed uniform points in the
feasible region S, while keeping track of the best point
that is found. In pseudocode, the method is given be-
low.

The sequence of points generated by this method
converges to a global optimum with probability one. In
particular, the probability that a point in S� is reached
within the first N iterations is equal to

1 � (1 � '(S�))N ;

where ' denotes the uniform distribution on S. In other
words, this method offers a probabilistic asymptotic
guarantee.

PROCEDURE pure random search()
InputInstance();
Set y = �1;
DO

Generate a point x from the uniform dis-
tribution over S;
Set y = max(y; f (x));

OD;
RETURN(y);

END pure random search;

A pseudocode for PRS

In [37], F.J. Solis and R.J-B.Wets introduce a class of
random search methods whose most important feature,
as compared to pure random search, is that disimprove-



Random Search Methods R 3247

ments are disallowed through a generalization of the
acceptance-rejection approach. Moreover, sampling is
not limited to the uniform distribution, but to a (pre-
specified) sequence of (absolutely continuous) proba-
bility distributions on S. Asymptotic convergence with
probability one can again be shown.

If the random search method is adaptive, i. e. if we
allow the distributions to be sampled from to depend
on the values of previously found solutions, then con-
vergence cannot be assured in general.

Pure Adaptive Search

Pure adaptive search (PAS) differs from PRS, and re-
sembles the random search methods of Solis and Wets,
in that it forces improvement in each iteration. How-
ever, the improving force is much stronger in that the
algorithm is truly adaptive, without using any form of
acceptance-rejection. In particular, an iteration point is
generated from the uniform distribution on the subset
of points that are improving with respect to the previ-
ous iteration point. More formally, the method reads:

PROCEDURE pure adaptive search()
InputInstance();
Set y = �1;
DO

Generate a point x from the uniform dis-
tribution over fx 2 S : f (x) > yg;
Set y = f (x);

OD;
RETURN(y);

END pure adaptive search;

A pseudocode for PAS

This method has been introduced and analyzed in [27]
for convex programming problems, and by Z.B. Zabin-
sky and R.L. Smith [42] for more general global opti-
mization problems. For Lipschitz continuous problems
with convex feasible regions, the expected number of
iterations to achieve a solution with a given precision
increases at most linearly in the dimension d of the
problem. This result suggests there is hope for an effi-
cient random searchmethod for global optimization. In
fact, several random search methods have reported em-
pirical linearity in dimension for optimizing quadratic
functions ([34,35] and [37]). PAS has been extended to

the case of a finite domain in [44], with analogous per-
formance results.

Adaptive Search

It is generally very difficult to generate a point uni-
formly distributed in a level set of the global opti-
mization problem. A method that avoids this issue,
at the cost of having to generate from other distri-
butions than the uniform, is adaptive search (AS). In
this method, a sequence of improving points is gen-
erated by generating points according to a sequence
of distributions in the feasible region S, while using
an acceptance-rejection approach to attain improve-
ment. The sequence of generating distributions should
be chosen in such a way that, as the method progresses,
these distributions concentrate more and more around
the global optimum of the problem. An example of
a family of distributions having this property is the fam-
ily of Boltzmann distributions. This family of distribu-
tions, parameterized by a positive parameter T, are ab-
solutely continuous on S with densities

gT (x) / e f (x)/T :

Note that, as the parameter T approaches infinity, the
sequence of distributions approaches the uniform dis-
tribution on S. On the other hand, it can be shown that,
as the parameter T approaches zero, the sequence of
distributions converges to a distribution that concen-
trates on the set of points where the global optimum is
attained. Using this family of distributions, the adaptive
search method reads:

PROCEDURE adaptive search()
InputInstance();
Set y = �1;
Set T =1;
DO

Generate points x from the Boltzmann
distribution with parameter T
until a point is found with f (x) > y;
Set y = f (x);
Decrease T;

OD;
RETURN(y);

END adaptive search;

A pseudocode for AS
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This method was introduced by H.E. Romeijn and
Smith [30] with the objective of studying the behav-
ior of simulated annealing (see below). They general-
ized the key result for pure adaptive search as follows.
If the value of the parameter T depends, in a mono-
tonely decreasing way, on the current record value, then
the expected number of improving points to achieve
a solution with a given precision increases at most lin-
early in the dimension d of the problem for a wide class
of global optimization problems. The parameter T can
be used to limit the total number of iterations (includ-
ing the nonrecord values generated in the acceptance-
rejection phase). Ideally, one should choose the value of
the parameter T in such a way that, during the next iter-
ation, the probability of obtaining an improving point
is at least equal to some fixed value.

Hesitant Adaptive Search

One way of implementing PAS would be to use an
acceptance-rejection approach for generating points in
level sets of S (assuming the problem of generating
a uniformly distributed point in S itself is relatively
easy). In terms of total number of iterations, this ap-
proach would be equivalent to PAS, with the following
modification. At each iteration, either a new PAS iter-
ate is generated (with some probability b) or the pre-
vious iteration point is repeated (with probability 1 �
b), where b depends on the current record value. More
precisely, b is the relative measure of the level set cor-
responding to the current record value. hesitant adap-
tive search (HAS), introduced by D.W. Bulger and G.R.
Wood [13] with the objective of studying localization
search algorithms (see below), generalizes this way of
viewing PAS by relaxing the specific choice of b men-
tioned above. An explicit expression for the expected
number of iterations required to obtain a point with
a given objective function value (or better), and even
the full distribution of this random variable, can be de-
rived (see also [40]).

Algorithms

Simulated Annealing

Simulated annealing (SA) is a random search method
that avoids getting trapped in local maxima by accept-
ing, in addition to transitions corresponding to an in-
crease in function value, also transitions correspond-

ing to a decrease in function value. The latter is done
in a limited way by means of a probabilistic acceptance
criterion. In the course of the maximization process, the
probability of accepting deteriorations descends slowly
towards zero. These ‘deteriorations’ make it possible to
move away from local optima and explore the feasible
region S in its entirety.

SA originated from an analogy with the physical an-
nealing process of finding low energy states of a solid
in a heat bath [26]. M. Pincus [28] developed an algo-
rithm based on this analogy for solving discretizations
of continuous global optimization problems. Many ap-
plications to date have been to discrete (combinatorial)
optimization problems (see e. g. [1,23] and [2]).

All SA algorithms for global optimizations can be
viewed as approximative versions of AS. The main
problem with directly implementing AS is that, in gen-
eral, it will be extremely difficult to generate points ex-
actly from the Boltzmann distribution on S. The ap-
proximative character of SA lies in the fact that SA algo-
rithms use a Markov chain sampling approach instead.
This means that a Markov chain is defined on S hav-
ing the property that the limiting distribution of this
Markov chain is the desired Boltzmann distribution.
One way of achieving this is the following. First, create
a Markov chain on S that has the uniform distribution
as its limiting distribution. Examples of such Markov
chains are the hit and run generator (see [8,9,36] and
[32]), and the random ball walk (see [25]). This Markov
chain can then be filtered as follows to change the lim-
iting distribution to the Boltzmann distribution. If the
current iteration point is x, and the current value of the
temperature parameter is T, then the candidate point
(say z) that is generated by theMarkov chain is accepted
with probability

minf1; e( f (z)� f (x))/Tg

(the Metropolis criterion). Otherwise, we discard the
candidate point and remain at the current iteration
point.
C.J.P. Bélisle [7] showed that, although successive iter-
ations of SA may experience deteriorations in objec-
tive function value, these effects are, under mild con-
ditions, transient if the Markov chain reaches globally,
i. e., if each feasible point can be reached from any other
feasible point in one iteration. In particular, if the se-
quence of temperature parameters T decreases to zero
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PROCEDURE simulated annealing()
InputInstance();
Set y = �1;
Set T =1;
Choose x 2 S;
DO

Generate a point z according to some
Markov chain transition distribution;
With probability minf1; e( f (z)� f (x))/Tg,
set x = z;
If f (x) > y set y = f (x);
Adjust T;

OD;
RETURN(y);

END simulated annealing;

A pseudocode for SA

in probability, SA will eventually be absorbed in arbi-
trarily small neighborhoods of the global maximum.
The cooling schedule controlling the way the parameter
T is decreased should be chosen in accordance with AS.
In practice, this means that the temperature parameter
should be proportional to (an estimation of) the value
error corresponding to the current record value. If the
temperature value is held constant at 0 (which means
that no deteriorations are ever accepted), we obtain the
improving hit and run algorithm (see [43]). In [24], M.
Locatelli derives convergence results for simulated an-
nealing algorithms with nonglobally reaching Markov
chains.

Examples of specific SA algorithms can be found in
[3,11,15,16,21,31,39] and [32]. In [22], the first polyno-
mial time implementation of an SA algorithm is pre-
sented, albeit for the unimodal problem of minimizing
a linear function over an up-monotone convex set in
the positive orthant. The authors derive an SA algo-
rithm using the rapidly mixing Markov chains devel-
oped in [18].

Finally, a class of algorithms closely related to the
SA algorithms discussed above are algorithms based on
the Langevin stochastic differential equation

dx(t) D r f (x(t)) dt C �(t) dw(t); (1)

where rf is the gradient of f and w(t) is a standard
d-dimensional Wiener process. If �(t) is constant, then
the limiting distribution of the sequence of points thus

generated is precisely the Boltzmann distribution at
temperature �2/2. In other words, algorithms based on
this result can be viewed as SA algorithms, but us-
ing continuous time instead of discrete time Markov
chains. See e. g. [19] and [14] for theoretical results, and
[4] for a practical implementation.

PROCEDURE pure localization search()
InputInstance();
Set y = �1;
Set L = S;
DO

Generate a point x uniformly in L;
IF f (x) > y, set y = f (x);
Shrink L (while remaining a superset of the
current record level set);

OD;
RETURN(y);

END pure localization search;

A pseudocode for PLS

Pure Localization Search

The aim of pure localization search (PLS) is to approxi-
mate PAS. The approximation consists of the following.
Instead of generating a point uniformly from a level set,
a point is generated uniformly from a superset of the
level set, called a localization. Note that PRS is an in-
stance of PLS, where the superset of each level set is the
entire feasible region S.

This class of algorithms was introduced in [6]
where, in addition, an example of a particular PLS al-
gorithm for one-dimensional Lipschitz optimization is
provided.

Conclusions

The main advantage of random search methods for
solving global optimization problems is that they are
applicable to a very wide class of optimization prob-
lems, and nevertheless provide a convergence guaran-
tee, albeit an asymptotic one. Therefore, random search
methods have been applied most successfully to prob-
lems that are black-box and/or unstructured, so that
approaches that make use of a particular mathematical
structure cannot be used. Examples include industrial
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design problems and the design of composite laminates
[20,41]. Moreover, these methods are usually very eas-
ily implemented. As such, they are also often used as
a first approach towards solving a problem, until insight
into the structural properties of the problem warrant
the development of new, or application of existing, spe-
cial purpose optimization methods.

See also

� Adaptive Simulated Annealing and its Application
to Protein Folding

� Bayesian Global Optimization
� Genetic Algorithms for Protein Structure Prediction
� Global Optimization Based on Statistical Models
�Monte-Carlo Simulated Annealing in Protein

Folding
� Packet Annealing
� Simulated Annealing
� Simulated Annealing Methods in Protein Folding
� Stochastic Global Optimization: Stopping Rules
� Stochastic Global Optimization: Two-phase

Methods
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Introduction

The purpose of reactive scheduling is to adjust a pro-
duction schedule upon the occurrence of unexpected
or unforeseen events. The original schedule is usually
obtained a priori and then reactive scheduling is per-
formed upon the breakdown of a piece of equipment,
when new customer orders are received, or when ex-
isting orders are modified or deleted. Thus, in order to
be effective, reactive scheduling systems must be able
to generate updated production schedules relatively
quickly. It is not desirable to do full-scale reschedul-
ing for every unexpected event and usually heuristic ap-
proaches are developed to achieve the desired sched-
ule modifications. Recent reviews on scheduling ap-
proaches that include reactive scheduling issues can be
found in Floudas and Lin [3,4].

The proposed scheduling formulation uses the
continuous-time scheduling formulation for short-
term scheduling proposed by Floudas and cowork-
ers [5,8,9] and themedium-term scheduling framework
developed by Lin et al. [10] and Janak [6]. Full-scale
rescheduling of each production schedule is avoided by
fixing binary variables for a subset of tasks from the
original production schedule. The subset of tasks to fix
is determined using a detailed set of rules that reflect
the production needs and can be modified for different
production facilities. The fixing of tasks results in a re-
duced computational effort required to solve the result-
ingMILP problem and thus a suitable, updated produc-
tion schedule can be determined in a shorter amount of
CPU time.
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Problem Statement

In the batch plant investigated, there are several dif-
ferent types of operations (or tasks) possible and the
plant has many different types of units where over 80
are modeled explicitly. Also, there are hundreds of dif-
ferent products that can be produced through a variety
of processing recipes resulting in hundreds of different
tasks. Each product is made using one of the process-
ing recipes shown in Fig. 1 or a slight variation. The
recipes are represented in the form of State-Task Net-
work (STN), in which the state node is denoted by a cir-
cle and the task node by a rectangle.

The information on which units are suitable for
each product is given. All the units are utilized in
a batch mode with the exception of the type 5 and 6
units, which operate in a continuous mode. The capac-
ity limits of the type 1, 2, and 3 units vary from one
product to another, while the capacity limits of the type
4a, 4b, 5, and 6 units are the same for all suitable prod-
ucts. The processing time or processing rate of each task
in the suitable units is also specified. Additional infor-
mation for the plant under investigation can be found
in Janak et al. [6].

Reactive Scheduling of Batch Processes, Figure 1
State-task network (STN) representation of plant

The time horizon considered for production
scheduling is a few weeks or longer and customer or-
ders are fixed throughout the time horizon with speci-
fied amounts and due dates. There is no limitation on
external raw materials and we apply the zero-wait stor-
age condition or limited intermediate storage capacity
for all materials based on actual plant data. There are
two different types of products produced, category 1
and 2. The solution of this medium-term scheduling
problem, even for only a few days, results in a large-
scale scheduling problem that can be very computa-
tionally complex. New techniques need to be developed
in order to both efficiently and accurately carry out re-
active scheduling.

Formulation

The overall methodology for solving the reactive
scheduling problem in a medium-term production
scheduling framework can be summarized in the fol-
lowing steps. The flowchart for the overall reactive
scheduling framework is shown in Fig. 2.

Step 1. Obtain a nominal production schedule for
the full scheduling horizon using the medium-term
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Reactive Scheduling of Batch Processes, Figure 2
Flowchart of the reactive scheduling framework

scheduling framework proposed in Janak et al. [6] by
decomposing the full scheduling horizon into smaller
short-term scheduling subproblems in successive time
horizons.

Step 2.Upon the realization of an unexpected event,
perform the following steps.
a. Fix all the tasks in the short-term scheduling sub-

horizons which have already taken place using the
nominal schedule.

b. For the subhorizon that is currently in produc-
tion, there are two cases of unexpected events which
are considered: breakdown of a unit or the addi-
tion/modification of orders. If a unit breaks down,
then fix the appropriate tasks for the current sub-
horizon using the rules outlined in Sect. “Reactive
Scheduling: Unit Shutdowns”. For the case when or-
ders are added or modified, then fix the appropriate
tasks for the current subhorizon using the rules out-
lined in Sect. “Reactive Scheduling: New orModified
Orders”. Note that a combination of both can also be
performed.

c. Once the tasks have been fixed, then the overall
short-term scheduling model presented in Janak
et al. [6] with some modifications can be used to
perform rescheduling. First, the formulation is en-
hanced so that the results of the level 1 decompo-
sition model are fixed to match the results from
the nominal schedules. Thus, the days in each sub-
horizon are fixed so that the horizons match the
nominal schedules. Next, modifications need to
be made to reflect changes from the unexpected
events. Each of the two cases of unexpected events
that can occur in a particular subhorizon requires
a different modification to the model. Complete
information on these modifications can be found
in Sect. “Reactive Scheduling: Unit Shutdowns”
and “Reactive Scheduling: New or Modified Orders”

Step 3. Once the items in Step 2 have been com-
pleted, then the horizon with the current reactive events
is ready to be rescheduled. This is done in the same
manner as the nominal schedule, however, a smaller
time limit or integer solution limit may be employed,
if desired. Next, the remaining overall time horizon
is rescheduled from scratch. This is necessary since
changes in the reactive time horizon can cause changes
in the inventory, demand satisfaction, and unit avail-
ability which can make the nominal solution for the re-
maining time horizons infeasible or severely subopti-
mal.

Reactive Scheduling: Unit Shutdowns

For the case when a piece of equipment breaks or is
shut down during a subhorizon, then, for Step 2b in
the overall framework, the following tasks need to be
performed. For the current subhorizon, tasks are fixed
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in a particular unit at a specific event point by setting
the associated binary variable to one. For the case of
unit shutdown, we also fix the starting time and batch
size of all tasks that are fixed. Tasks are fixed for the
unit shutdown case if they start processing before the
unit shutdown in all unaffected units or if they start and
finish processing before the shutdown time in the unit
that is shut down. For Step 2c in the overall framework,
some additional information needs to be included in
the model before rescheduling is performed. For the
case of unit shutdown, the starting and finishing times
of all tasks in the particular unit that shuts down need
to be appropriately bounded so that the unit becomes
unavailable during the shutdown period. Also, for the
subsequent scheduling horizon, the starting time of the
unit that was shut down needs to be set to either the end
of the last task or to the time the unit became available
again, depending on which is later. This ensures that no
task will be scheduled during the blocked off time if it
overlaps into the next horizon.

The mathematical formulation for reactive schedul-
ing with unit shutdowns uses the same sets of con-
straints developed for short-term scheduling in Janak
et al. [6] including constraints (22)–(52), (56)–(58), and
the overall objective function given in constraint (66).
In addition, the above additional requirements can be
described mathematically as follows:

wv(i; j; n) D 1;8i 2 Ifix; j 2 Ji ; n 2 N (1)

Ts(i; j; n) D Ts(i; j; n)const ;

8i 2 Ifix; j 2 Ji ; n 2 N (2)

B(i; j; n) D B(i; j; n)const ;

8i 2 Ifix; j 2 Ji ; n 2 N (3)

Ts(i; j; n); T f (i; j; n) � Shutdownstartj ;

8i 2 I; j 2 Jsd; n 2 N; n � N int (4)

Ts(i; j; n); T f (i; j; n) � Shutdownendj ;

8i 2 I; j 2 Jsd; n 2 N; n > N int (5)

where Ifix is the set of tasks (i) to be fixed, Jsd is the set
of units (j) which experience a shutdown, N int is an in-
termediate event point, Ts (i; j; n)const is the value of the

starting time of the task from the nominal scheduling
run, B(i; j; n)const is the batch size of the task from the
nominal scheduling run, Shutdownstartj is the beginning
of the shutdown in unit (j), and Shutdownendj is the end
of the shutdown in unit (j).

Reactive Scheduling: New or Modified Orders

For the case when new orders are added to a schedul-
ing horizon, then, for Step 2b in the overall framework,
the following actions need to be performed. For the cur-
rent subhorizon, tasks can be fixed in a particular unit
at a specific event point for a variety of reasons. Some
of the possible cases for fixing tasks from the nominal
schedule considered in this work are as follows.
1. If the task takes place in a unit that is not suitable

for any products which have new or changed orders.
This is done so that production is free in any unit
which may need to accommodate a new order or re-
move an old order.

2. If the task takes place in a unit that is heavily utilized
(e. g., more than a specified percentage). This is done
because well utilized units should not be resched-
uled, if possible. Note that in this case, a task is only
fixed in a unit that is heavily utilized if the unit does
not have any tasks taking place in it which corre-
spond to new or modified orders.

3. If the task corresponds to a product with one of the
top four largest demands in the current subhorizon.
This is done to help ensure that the larger demands
in the horizon can be met.

4. If the task is suitable in three or less processing units.
These tasks are fixed because they most likely cannot
be processed anywhere else.

5. If the task occurs in a special processing unit, spe-
cific to the problem at hand. For instance, if the task
occurs in a unit which has very tight production or
predetermined production.

6. If the task occurs in one of the larger processing
units, such as the large type 1 units, and corresponds
to a product with demand that is greater than or
equal to some amount. These tasks are fixed because
they represent a good utilization of resources. Larger
demands should be assigned to the larger processing
units.

Thus, if a task satisfies one or more than one of the
items above, then it is fixed in the reactive scheduling
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formulation using the data from the nominal sched-
ule. Note that a task which corresponds to a reduced or
deleted order cannot be fixed, regardless of whether or
not it satisfies any of the above items. For Step 2c in the
overall framework, some additional information needs
to be included in the model before rescheduling is per-
formed. For the case of new orders, the demands used
in the mathematical framework need to be updated to
reflect any changes.

The mathematical formulation for reactive schedul-
ing with new or modified orders also uses the same sets
of constraints developed for short-term scheduling in
Janak et al. [6] including constraints (22)–(52), (56)–
(58), and the overall objective function given in con-
straint (66). In addition, the above additional require-
ments can be described mathematically using Eq. (1)
given for reactive scheduling with unit shutdowns.

Extensions of Reactive Scheduling Formulation

As mentioned previously, it is also possible to consider
a combination of reactive events. For instance, multi-
ple units could become unavailable and multiple orders
could be added or modified in a single horizon. This
case can be addressed using the same methodology de-
scribed in the previous section. In order to fix a task, we
would need to check that the task does not correspond
to a modified order and that it does not occur during
a blocked time in any of the unavailable units. Then, if
both of these conditions are met and if the task satisfies
one or more of the above criteria, it can be fixed. Note
that asmore reactive events take place, most likely fewer
tasks will be able be fixed in the reactive scheduling for-
mulation, making the resulting problem more compu-
tationally complex.

Cases

In this section, an example problems is presented
to demonstrate the effectiveness of the proposed ap-
proach. Additional examples can be found in Janak et
al. [7]. The example considers the production schedul-
ing of an industrial batch plant including campaign
mode production. We use the nominal schedule ob-
tained in Janak et al. [6] and we consider reactive
scheduling in the event of unit shutdowns. The example
is implemented with GAMS 2.50 [1] and solved using
CPLEX 9.0 [2] with a 3.20GHz Linux workstation. The

dual simplex method is used with best-bound search
and strong branching. The short-term scheduling hori-
zon where reactive scheduling is performed is run with
a relative optimality tolerance equal to 0.001% along
with a 30 minute time limit. The subsequent short-
term scheduling horizons are fully rescheduled and are
run with a relative optimality tolerance equal to 0.001%
along with a three hour time limit and an integer solu-
tion limit of 40.

Nominal Production Schedule

The nominal production schedule was determined in
Janak et al. [6] where the total time period is 19 days,
fromD0 to D18. The nominal problem is solved includ-
ing campaign mode production so that production in
the type 5 unit is fixed to yield campaigns of predeter-
mined length. The rolling horizon framework decom-
poses the time horizon into 8 individual subhorizons,
each with its own products and demands. The results of
the decomposition for each time horizon can be seen in
Table 1.

The final production schedule for the entire time
period can be seen in Fig. 3 and 4 where the process-
ing units (operation type 1, 2, 3, and 5) are shown in
the first figure and the other units (operation type 4a,
4b, and 6) are shown in the second. Each short-term
scheduling horizon is represented with a different color.

The total demand for the entire 14-day period is
2323.545 and the total production is 2719.859, where
15.00 of the demands are not met. The production
schedules obtained satisfy demands for all but one
product, though some due dates are relaxed, and also

Reactive Scheduling of Batch Processes, Table 1
Decomposition results for nominal problem

Days Event Points Main Products Additional
Products

H1 D0–D2 9 27 1
H2 D3–D4 7 31 0
H3 D5–D6 9 51 0
H4 D7–D8 6 53 0
H5 D9–D10 10 43 0
H6 D11–D12 9 53 0
H7 D13–D14 6 56 0
H8 D15–D18 10 40 0
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Reactive Scheduling of Batch Processes, Figure 3
Overall production schedule for processing units for nominal problem
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Reactive Scheduling of Batch Processes, Figure 4
Overall production schedule for non-processing units for nominal problem
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Reactive Scheduling of Batch Processes, Table 2
Unit utilization statistics for nominal problem

Unit Time Used (h) Time Left (h) Percent Utilized
Type 1-1 152.00 304.00 33.33%
Type 1-2 327.00 129.00 71.71%
Type 1-3 270.60 185.40 59.21%
Type 1-4 368.00 88.00 80.70%
Type 1-5 264.80 191.20 58.07%
Type 1-6 368.00 88.00 80.70%
Type 1-7 368.00 88.00 80.70%
Type 1-8 323.60 132.40 70.96%
Type 1-9 311.60 144.40 68.33%
Type 1-10 268.60 187.40 58.90%
Type 1-11 303.20 152.80 66.49%
Type 1-12 167.00 289.00 36.62%
Type 1-13 162.00 294.00 35.53%
Type 5 374.52 81.48 82.13%

produce 17.06% more material than the demands re-
quire. Note that many of the processing units are not
fully utilized, as shown in Table 2, indicating the poten-
tial for even more production in the given time period
which may be incorporated using reactive scheduling.

Case 1: Reactive Scheduling with Unit Shutdown

In the example, we consider reactive scheduling for the
first time horizon where several units are unavailable
for a period of time. We will use the nominal produc-
tion schedule as our base schedule where the first time
horizon covers three days (i. e., D0 to D2) and utilizes
nine event points. The three different unit shutdowns
considered can be seen in Table 3.

The reactive scheduling framework for unit shut-
downs fixes tasks that start before the latest shutdown
start time in units which are unaffected and fixes tasks
that start and end before the shutdown time in units
which experience a shutdown. Thus, for this example,

Reactive Scheduling of Batch Processes, Table 3
Unit shutdowns for case 1

Unit Unavailable
Start Time (h)

Unavailable
End Time (h)

Type 1-3 24 48
Type 1-5 36 72
Type 1-11 48 72

all the tasks starting before time 48 hours in all the units
except Type 1-3, Type 1-5, and Type 1-11 are fixed.
This means that both the binary variable (wv(i; j; n)),
starting time (ts(i; j; n)), and batch size (b(i; j; n)) of
the task need to be fixed for each task (i) in those units
(j) at the event point (n) they occurred in the nominal
production schedule. Thus, if we consider the nominal
production schedule for the first time horizon shown in
Fig. 5, then the tasks shown in Table 4 are fixed in each
unit.

In addition, in each of the units which experience
a shutdown, bounds need to be placed on the starting
and finishing times for all tasks at event points which
do not already have tasks fixed to them. An intermedi-
ate event point is chosen and all of the event points be-
fore and including the intermediate event point have an
upper bound placed on the starting and finishing times
of tasks to be less than or equal to the start of the shut-
down. Similarly, all of the event points after the inter-
mediate event point have a lower bound placed on the
starting and finishing times of tasks to be greater than
or equal to the end of the shutdown. Note that the inter-
mediate event point is unit specific and is determined so
that there are approximately the same number of event
points before and after the shutdown while excluding
event points that already have tasks assigned to them.

Reactive Scheduling of Batch Processes, Table 4
Tasks to fix in case 1

Unit Task Event Point
Type 1-1 R_P160 N1
Type 1-2 R_P26 N2
Type 1-3 R_P105 N1
Type 1-4 R_P89 N1, N3, N5
Type 1-5 R_P107 N4
Type 1-6 R_P89 N1, N3, N5
Type 1-7 R_P89 N1, N4, N7
Type 1-8 R_P171 N1

R_P26 N7
Type 1-9 R_P26 N2

R_P98 N7
Type 1-10 R_P26 N2
Type 1-11 R_P209 N3

R_P423 N5
Type 1-12 R_P181 N1
Type 1-13 R_P181 N1
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Reactive Scheduling of Batch Processes, Figure 5
Nominal production schedule for the processing units in the first horizon
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Reactive Scheduling of Batch Processes, Figure 6
Reactive production schedule for the processing units in the first horizon from case 1
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Reactive Scheduling of Batch Processes, Table 5
Bounds on timing in units in case 1

Unit Fixed
Event
Points

Bounds

Type 1-3 N1 ts(i; j; n); tf (i; j; n)� 24 for N2, N3, N4, N5
ts(i; j; n); tf (i; j; n)� 48 for N6, N7, N8, N9

Type 1-5 N4 ts(i; j; n); tf (i; j; n)� 36 for N1, N2, N3, N5
ts(i; j; n); tf (i; j; n)� 72 for N6, N7, N8, N9

Type 1-11 N3, N5 ts(i; j; n); tf (i; j; n)� 48 for N1, N2, N4, N6
ts(i; j; n); tf (i; j; n)� 72 for N7, N8, N9

Thus, considering the nominal production schedule for
the first time horizon, the bounds shown in Table 5 are
placed for each of the units which experience a shut-
down.

Then, fixing the above sets of tasks fromTable 4 and
imposing the bounds defined in Table 5, we obtain a re-
active production schedule which excludes production
in the affected units during the shutdown periods and
maintains all of the production that has already taken
place. The reactive schedule for this example can be
seen in Fig. 6. Note that once a reactive schedule is ob-
tained for the first time horizon which incorporates the
unit shutdown information, the subsequent horizons
must each rescheduled from scratch due to the changes
in inventory, demand satisfaction, and unit availability.

Conclusions

In this chapter, we presented a reactive scheduling
framework which provides an immediate response to
unexpected events such as equipment breakdown or
the addition or modification of orders. The reactive
scheduling formulation takes into account the sched-
ule currently in progress as well as planned produc-
tions that are not affected by the unexpected event.
The proposed mathematical framework utilizes an ef-
ficient MILP mathematical framework developed for
short-term scheduling problems with modifications in-
troduced to reflect the effects of the unforeseen event.
To avoid full rescheduling of the current production
schedule, the formulation determines tasks which are
not affected by the unforeseen event, either directly or
indirectly, and can be carried out as scheduled. The
resulting tasks along with additional subsets of tasks
are then fixed in the MILP problem and the rest of

the horizon is rescheduled. We considered two types
of unexpected events: unit shutdown and the addition
or modification of orders, as well as their combination.
All the cases of unexpected events utilize the nomi-
nal production schedule, the original MILP formula-
tion for short-term scheduling with modifications, and
a program to determine which tasks may be fixed before
rescheduling. The formulation is then able to determine
an updated production schedule for the remaining time
horizon in a reasonable amount of CPU time. Reac-
tive scheduling of a large-scale industrial batch plant
was performed to demonstrate the effectiveness of the
proposed approach. Results indicate that the reactive
scheduling framework is capable of determining up-
dated production schedules to account for unexpected
events and can also be used to improve existing produc-
tion schedules.
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A typical nonlinear program is to find a point in a feasi-
ble region that will minimize an objective function. The
feasible region is often represented by a finite set of
algebraic inequalities called constraints. If a constraint
can be removed from the set without causing a change
to the feasible region it is said to be redundant with re-
spect to the remaining constraints. A constraint that is
not redundant is said to be nonredundant, irredundant,
or necessary.

A more formal definition requires some notation.
Let R � Rn denote a nonempty feasible region. The set
of constraints indexed by I = {1, . . . ,m} is given by G(I)
= {gi � 0 : i 2 I}, where gi(x): Rn ! R, and the region
determined by G(I) is R(I) = {x: gi(x) � 0, i 2 I}. Sup-
pose that R = R(I). We then call G(I) a representation of
R. The kth inequality constraint ‘gk(x)� 0’ is redundant
with respect to G(Ik) if R(Ik) = R(I), where Ik = I � {k}.
Further definitions, such as those for relatively redun-
dant constraints, weakly necessary constraints, etc., can
be found in [3,5].

Of course, there can be more than one redundant
constraint. IfbI is a proper subset of I, and if R(bI) D
R(I), the constraint setG(bI) is called a reduction ofG(I).
Further, G(bI) is called a common dependency set for the
set of redundant constraints G(I �bI) [8]. If all the con-
straints in G(bI) are nonredundant, then G(bI) it is called
a prime representation of the feasible region. A related
concept is that of aminimal representation.

For linear constraints, i. e., when gi (x) = a>i x � bi,
where ai 2 Rn and bi 2 R, a minimal representation is
one having the fewest constraints. In [11] it is proved
that a representation is minimal if and only if it con-

tains no redundant constraints and no implicit equal-
ity constraints. The constraint ‘gk(x) � 0’ is an implicit
equality in G(I) if gk(x) = 0 for all x 2 R(I). In order
to obtain a minimal representation the implicit equal-
ities must first be replaced with explicit equalities, and
then the redundant constraints must be removed one at
a time. (The definition of redundancy is easily modified
to include equality constraints.)

For the quadratic case, i. e., when gi(x) = a>i x +
(1/2) x| Hi x � bi, where the Hi are symmetric, posi-
tive definite matrices, a minimal representation is de-
fined as one having the least number of quadratic con-
straints, and, among those with the same number of
quadratic constraints, the least number of linear con-
straints. It was proved in [10] that a representation was
minimal if and only if it contained no redundant con-
straints, no implicit equality constraints, and no pseu-
doquadratic constraints. A pseudoquadratic constraint
is one that can be replaced by a finite number of linear
constraints without causing a change to the feasible re-
gion. For example, since {x 2 R2: x2 = 0, x21 + x22 � 1 }
equals {x 2 R2: x2 = 0, � 1� x1 � 1 }, the constraint ‘x21
+ x22 � 1’ was pseudoquadratic.

Algorithms used to detect redundant constraints
can usually be classified as either deterministic methods
or probabilistic methods. The deterministic methods are
optimization based. Consider the nonlinear program
max {gk(x): x 2 R(Ik)}. If there is no solution; that is,
if the program is either unbounded or infeasible (R(Ik)
= ;), then it follows from the definition of redundancy
that the kth constraint is necessary. Otherwise the pro-
gram has a solution x�. If gk(x�) > 0, then again the kth
constraint is necessary, and if gk(x�)� 0, the constraint
is redundant. This method can work quite well in the
linear case [6,9] as each of the constraints can be classi-
fied by solving a linear program. Consequently, for the
linear case, the redundancy problem is polynomial. The
importance of redundancy detection to the solution of
large sparse linear programs is discussed in [1]; and the
importance of redundancy detection for model analy-
sis is discussed in [7]. For the nonlinear case, this ap-
proach has the drawback that it requires the solution of
nonconvex programs. For example, if all the constraint
functions are convex, then max {gk(x) : x 2 R(Ik) } is
a nonconvex program.

An alternative to the deterministic, optimization
based methods are the probabilistic methods. The first
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such method, which became known as the hyperspheres
direction hit and run method was introduced in [4]. (A
description of the method can be found in [9].) This
technique generates a sequence of random lines that
pass through the feasible region. The lines are generated
as follows. A given feasible point x 2 R and a direction
s, sampled from a uniform distribution over the surface
of the unit hypersphere, determines the line {x + � s :
� 2 R }. The next feasible point is sampled uniformly
from the feasible segment of the line. Note that in or-
der to determine the feasible line segment the intersec-
tion points of the line with all the constraint bound-
aries must be calculated. Under appropriate assump-
tions, the constraints hit by the feasible line segment
are nonredundant. This technique requires a stopping
rule after which all constraints that have not been hit are
classified, possibly with error, as redundant. The main
advantages of hit and run methods are that they can
very quickly identify most of the necessary constraints,
and that they can be applied to a large class of nonlin-
early constrained regions. The main disadvantages are
the need for an initial feasible point, and the need to
calculate the intersection points.

For general nonlinear programs it may well be that
neither the deterministic nor the hit and run methods
are applicable. For these problems, there is an algo-
rithm [2] based on a connection between the redun-
dancy problem and the constraints in a set covering
problem. This method only requires that for any x 2 Rn

it can be determined if gi(x) is negative or nonnegative.
In fact, the method does not even require a nonempty
feasible region. This technique is probabilistic in that it
samples points from Rn. Each point that is sampled is
used to generates an m-bit binary word whose kth bit
is unity if and only if the kth constraint is violated at
that point. Upon termination of the sampling process,
the collection of all the generated binary words form the
rows of a set covering matrix E having m columns, one
corresponding to each constraint. Let y be a nontrivial
feasible solution to the set-covering problem, i. e., Ey �
e, where e is a vector of ‘ones’, and where y has at least
one zero component. Then G(bI) is a reduction of G(I),
where i 2 bI if and only if yi = 1. An objective func-
tion can be introduced to the set-covering problem so
that any set covering heuristic can be used to find an
approximately minimal representation. Here the defi-
nition of minimal will depend on the choice of objec-

tive. The main disadvantage to the approach is the need
to generate the set covering rows. The main advantage
is its general applicability.

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� Inequality-constrained Nonlinear Optimization
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Discrete and continuous nonconvex programming
problems arise in a host of practical applications in
the context of production planning and control, loca-
tion-allocation, distribution, economics and game the-
ory, quantum chemistry, and process and engineering
design situations. Several recent advances have been
made in the development of branch-and-cut type al-
gorithms for mixed-integer linear and nonlinear pro-
gramming problems, as well as polyhedral outer-ap-
proximation methods for continuous nonconvex pro-
gramming problems. At the heart of these approaches
is a sequence of linear (or convex) programming relax-
ations that drive the solution process, and the success
of such algorithms is strongly tied in with the strength
or tightness of these relaxations.

The Reformulation-Linearization-Technique (RLT)
is a method that generates such tight linear program-
ming relaxations for not only constructing exact solu-
tion algorithms, but also to design powerful heuristic
procedures for large classes of discrete combinatorial
and continuous nonconvex programming problems.
Its development originated in [4,5,6], initially focus-
ing on 0-1 and mixed 0-1 linear and polynomial
programs [21,22], and later branching into the more
general family of continuous, nonconvex polynomial
programming problems [18,45,49]. For the family of
mixed 0-1 linear (and polynomial) programs in n
0-1 variables, the RLT generates an n-level hierarchy,
with the n-th level providing an explicit algebraic char-
acterization of the convex hull of feasible solutions
[21,22]. The RLT essentially consists of two steps—a re-
formulation step in which certain additional nonlin-
ear valid inequalities are automatically generated, and
a linearization step in which each product term is re-

placed by a single continuous variable. The level of
the hierarchy directly corresponds to the degree of the
polynomial terms produced during the reformulation
stage. Hence, in the reformulation phase, given a value
of the level d 2 f1; : : : ; ng, the RLT constructs vari-
ous polynomial factors of degree d comprised of the
product of some d binary variables xj or their com-
plements (1 � x j). These factors are then used to mul-
tiply each of the defining constraints in the problem
(including the variable bounding restrictions), to cre-
ate a (nonlinear) polynomial mixed-integer zero-one
programming problem. Suitable additional constraint-
factor products can be used to further enhance the pro-
cedure. In general, for a variable restricted to lie in the
interval [l j; uj], the nonnegative expressions (x j � l j)
and (uj � x j) are referred to as bound-factors, and for
a structural inequality ˛x � ˇ, for example, the expres-
sion (˛x � ˇ) is referred to as a constraint-factor; im-
plied product constraints can be generated using ei-
ther bound-factors or constraint-factors. After using
the relationship x2j D x j for each binary variable xj,
j 2 f1; : : : ; ng, which in effect accounts for the tight-
ening of the relaxation, the linearization phase substi-
tutes a single variable wJ (respectively, vJk), in place
of each nonlinear term of the type

Q
j2J x j (respec-

tively, yk
Q

j2J x j), where y represents the set of con-
tinuous variables. Hence, relaxing integrality, the non-
linear polynomial problem is linearized into a higher
dimensional polyhedral set Xd defined in terms of the
original variables (x; y) and the new variables (w; v).
Denoting the projection of Xd onto the space of the
original (x; y)-variables as XPd , it is shown that as d
varies from 1 to n, we get,

XP0 � XP1 � XP2 � : : : � XPn D conv(X) ;

where XP0 is the ordinary linear programming relax-
ation, and conv(X) represents the convex hull of the
original feasible region X. An extension of this de-
velopment to the case of general integer/discrete vari-
ables is presented in [7,25], where the bound-factors
are replaced by suitable Lagrange interpolating poly-
nomials, and a further extension to 0-1 mixed-inte-
ger as well as general mixed-discrete semi-infinite and
bounded convex programming problems is presented
in [26] (see also [50]). Lovasz and Shrijver [16] and
Boros et al. [9] have also independently developed var-
ious concepts related to the RLT process. This RLT



Reformulation-Linearization Technique for Global Optimization R 3265

process has also been extended and enhanced in [27]
through the use of more generalized constraint-factors
that imply the bounding restrictions 0 � x j � 1 for
j 2 f1; : : : ; ng. A similar hierarchy of relaxations lead-
ing to the convex hull representation is obtained based
on the use of these generalized factors in the refor-
mulation phase, in lieu of simply the bound-factors xj
and (1 � x j), for j 2 f1; : : : ; ng. In addition, this hier-
archy embeds within its construction stronger logical
implications than only x2j D x j, 8 j 2 f1; : : : ; ng. For
example, consider an RLT constraint that has been gen-
erated by taking the product of some nonnegative poly-
nomial factor F with a defining constraint �>x � ı to
yield [F(�>x � ı)]L � 0, where [�]L denotes the lin-
earization of the polynomial expression [�] under the
RLT substitution process. Then, this constraint can be
tightened by deriving a stronger valid inequality of the
type �̂>x � ı̂ under the condition that F > 0, and
then imposing the RLT constraint [F(�̂>x � ı̂)]L � 0,
which is valid whenever F D 0 or F > 0. The resulting
overall RLT process is shown in [27] to not only sub-
sume the previous development, but also provide the
opportunity to exploit frequently-arising special struc-
tures such as generalized/variable upper bounds, cov-
ering, partitioning, and packing constraints, as well as
sparsity.

The hierarchy of higher-dimensional representa-
tions produced in this manner markedly strengthens
the usual continuous relaxation, as is evidenced not
only by the fact that the convex hull representation
is obtained at the highest level, but that in computa-
tional studies on many classes of problems, even the
first level representation helps design algorithms that
significantly dominate existing procedures in the liter-
ature [4,6,20,27,30,41]. Based on a special case of the
RLT process that employs the bound-factors for only
a single variable at a time, Balas et al. [8] describe a lift-
and-project cutting plane algorithm that is shown to
produce encouraging results. The theoretical implica-
tions of this hierarchy are noteworthy; the resulting
representations subsume and unifymany published lin-
earization methods for nonlinear 0-1 programs, and
the algebraic representation available at level n pro-
motes new methods for identifying and characterizing
facets and valid linear inequalities in the original vari-
able space, as well as for providing information that
directly bridges the gap between discrete and contin-

uous sets [3,38,40]. Indeed, since the level-n formula-
tion characterizes the convex hull, all valid inequalities
in the original variable space must be obtainable via
a suitable projection; thus such a projection operation
serves as an all-encompassing tool for generating valid
inequalities. References [38,40] provide discussions on
generating facets and tight valid inequalities for sev-
eral classes of problems. Reference [3] discusses persis-
tency issues for certain constrained and unconstrained
pseudo-Boolean programming problems whereby vari-
ables that take on 0-1 values at an optimum to an
RLT relaxation would persist to take on these same
values at an optimum to the original problem. Ref-
erences [1,2,13,34,39,42], respectively discuss the use
of RLT to generate improved model representations
for the set partitioning, quadratic assignment, traveling
salesman problems, and to 0-1 mixed-integer programs
subject to various assignment constraints.

Although the Reformulation-Linearization Tech-
nique was originally designed to employ factors in-
volving 0-1 variables in order to generate 0-1 (mixed-
integer) polynomial programming problems that are
subsequently re-linearized, the approach has also been
extended to solve continuous, bounded variable poly-
nomial programming problems. Problems of this type
involve the optimization of a polynomial objective
function subject to polynomial constraints in a set
of continuous, bounded variables, and arise in nu-
merous applications in engineering design, produc-
tion, location, and distribution problems. Reference
[45] prescribes an RLT process that employs suitable
polynomial-factors (bound-factors based on bounding
restrictions l j � x j � uj , j 2 f1; : : : ; ng, as well as con-
straint factors) to generate additional polynomial con-
straints through a multiplication process, which upon
linearization through variable redefinitions as above,
produces a linear programming relaxation. The result-
ing relaxation is used in concert with a suitable de-
signed partitioning technique that attempts to reduce
the error between the original nonlinear and their re-
sulting linearized terms, in order to develop an al-
gorithm that is proven to converge to a global opti-
mum for this problem. Special classes of polynomial
constraints based on grid factors, Lagrange interpolat-
ing polynomials, and mean value theorem constraints
can be generated to further tighten these RLT relax-
ations [48]. In some cases (e. g., see [47]), it is benefi-
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cial to retain certain simple convex constraints in the
relaxation, resulting in a more general Reformulation-
Linearization/Convexification Technique. Additionally,
Sherali and Fraticelli [35] have proposed a class of
semidefinite cuts based on semidefinite relaxation en-
hancements that can be used to significantly tighten
RLT representations. While RLT essentially operates
on polynomial functions having integral exponents,
many engineering design applications lead to polyno-
mial programs having general rational exponents. For
such problems, a global optimization technique has
been designed [18] by introducing a new level of ap-
proximation at the reformulation step, and accordingly,
redesigning the partitioning scheme in order to induce
the overall sequence of relaxations generated to become
exact in the limit. Further extensions for solving non-
linear factorable programs for which the objective and
constraint functions involve sums of products of uni-
variate functions have also been developed [49]. Here,
suitable under/over-approximating nonconvex polyno-
mial functions are derived for the defining univariate
functions in the problem, and then an appropriate par-
titioning scheme is devised that drives the errors from
these approximations and those for the RLT process ap-
plied to the resulting polynomial program simultane-
ously to zero in the limit, in order to obtain a global
optimum for the given factorable program. For non-
convex programs that are defined in terms of black-
box functions, a new concept of a pseudo-global RLT
approach has been developed by Sherali and Gane-
san [36], which has been successfully applied to the de-
sign of containerships.

A special application of the RLT to mixed-in-
teger quadratic problems subject to linear equality
constraints that yields exact reformulations having
fewer quadratic terms and some additional support-
ing RLT constraints has been developed to produce
tighter convex relaxations [10,11,12,14,15]. More pre-
cisely, we multiply a subset of equality constraints
Ax D b by an appropriate subset of problem vari-
ables fxk j k 2 Kg, to obtain a reduced RLT system
8k 2 K(Awk D bxk), wherewk � (xkx1; : : : ; xkxn) for
all k 2 K. This is equivalent to the homogeneous linear
system 8k 2 K(Azk D 0) where zk D (wk1� xkx1; : : : ;
wkn � xkxn), which may be written in a more compact
way as A0z D 0. If we partition A0 into basic and non-
basic submatrices B;N , and accordingly partition z into

zB and zN , we have (BjN)z D 0, whence NzN D 0 im-
plies that BzB D 0. We therefore conclude that enforc-
ing the reduced RLT system and the subset of quadratic
relations wki D xkxi for (k; i) corresponding to nonba-
sic columns of N is enough to infer wki D xkxi for all
(k; i). In other words, by letting the RLT process ensure
that zN D 0, we automatically obtain as an implication
of the RLT linearized constraints that the quadratic re-
lation zB D 0 will hold true as well.

For the continuous case, there exist special instances
where RLT can produce convex hull or convex enve-
lope representations [17,28]. Various classes of applica-
tions have been studied for which specialized RLT de-
signs have been used to develop enhanced effective al-
gorithms. This list, which is ever expanding, includes
bilinear programming problems [15,28], general indefi-
nite quadratic programming problems [12,13,47], loca-
tion-allocation problems employing different distance
metrics [20,29,41,46], water distribution network de-
sign problems [43,44], the solution of Hartree-Fock
equations in quantum chemistry [14], the linear com-
plementarity problem [37], and hard and fuzzy clus-
tering problems [31,32]. References [11,19,23,24,25,33]
provide expository discussions and a survey of RLT the-
ory and applications.
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Consider the following general problem of regression.
Given nmeasurements or observations f = (f 1, . . . , f n)2
Rn with f i =�i + �i, where� = (�1, . . . ,�n) is unknown
but is in some predefined subset K of Rn, and �i is the
noise generated by sampling, it is required to find a best
fit or an estimate g of �. The set K is dictated by the
underlying system which generates f . A best fit or an
optimal solution g is obtained by minimizing a suitable
distance function d(f , g) subject to g 2K. Ifw = (w1, . . . ,
wn) > 0 is a given weight function, we use the following
distance functions in our analysis:

d1( f ; g) D max fwi j fi � gi j : 1 � i � ng ;

d1( f ; g) D
X
fwi j fi � gi j : 1 � i � ng ;

d2( f ; g) D
X˚

wi( fi � gi )2 : 1 � i � n
�
:

Note that (d2 (f , g))1/2 and not d2 (f , g) is a distance
function in that it satisfies the well known triangle in-
equality. Let the primed entries d10 (f , g), d10 (f , g) and
d20 (f , g) denote the corresponding distances when wi

= 1 for all i. As will be seen later that the results for the
two sets of distances are different. We call f , g, w etc.
‘functions’ because they may be considered as such on
some underlying set S = {x1, . . . , xn}, where f i = f (xi),
gi = g(xi), wi = w(xi) etc. The best known example of
a regression problem is the linear regression where K
consists of linear functions given by gi = a xi + b with x1
< � � � < xn, and the numbers a and b are unknowns to
be determined by minimizing d2(f , g). In this article we
are concerned with the following three cases: K formed
by
� istone or monotone functions,
� quasiconvex and umbrella functions, and, finally
� convex and concave functions.
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We develop algorithms to compute best fits and obtain
their computational complexity . In most cases the al-
gorithms are of polynomial complexity . Wherever pos-
sible we derive explicit expressions for best fits. Ap-
plications can be cited to problems in reliability engi-
neering, economics, social sciences, order restricted sta-
tistical inference etc. [10,13,14,15,18,24]. For example,
the failure rate of a system increases with the age of the
system (isotonicity), the human mortality rate (or the
number of auto accidents) first decreases and then in-
creases with age (quasiconvexity), the efficiency of an
organization first increases and then decreases with its
size (quasiconcavity). Similarly, in economics assump-
tions of convexity/concavity are made about functions
representing utility, marginal utility, productivity, sup-
ply, demand etc.

We briefly discuss the significance of different dis-
tance functions used in regression. In the classical ap-
proach to optimization and regression, the least squares
distance function d2 (f , g) was extensively used. Its dif-
ferentiability properties led to certain simplification of
mathematical analysis. For some time now, both d1 (f ,
g) (mean absolute deviation) and d1 (f , g) (maximum
absolute deviation) distance functions are being used.
For example, see MINMAD and MINMADAX regres-
sion in [2] and the least absolute value (LAV) or L1-
norm estimation and L1-norm estimation in [11]. See
also [6]. If we write dp(f , g) =

P
{wi |f i � gi |p: 1 � i

� n}, 1 � p <1, then (dp(f , g))1/p is a distance func-
tion, and kf kp = dp (f , 0)1/p, 1 � p< 1, and kf k1
= d1 (f , 0) are, respectively, the Lp and L1 norms on
Rn. Both d1 and d1 distances have the strong advantage
that their form allows transformation of the regression
problem to a linear program which facilitates compu-
tation of its solution [2,19]. The nature of the problem
essentially determines the choice of the distance func-
tion. Then the algorithms developed for the solution,
their computational complexities and the properties of
the best fits obtained, all in turn, depend on the distance
function used.

Isotonic Regression

A function g = (g1, . . . , gn) 2 Rn is called isotonic or
monotonic (nondecreasing) if g1 � � � � � gn. We let K be
the set of all isotonic functions and consider the isotonic
regression problem of minimizing d2 (f , g) subject to g 2

K. Since d2 (f , g) is strictly convex in g and K is a closed
convex cone, the solution of this problem is unique. (K
is a cone if � h 2 K whenever h 2 K and �� 0.)

We describe the pool adjacent violators algorithm
(PAV) for computing the solution. See [24] and other
references given there. The form presented below ap-
pears in [5]. Let N = {1, . . . , n}. A partition J of N is
a decomposition of N into disjoint sets of consecutive
integers such that their union isN. Each member of J is
called a block and is denoted by B. We let�B(c) =

P
{wi

(f i � c)2: i 2 B}. We let g(J) be any n-vector whose ith
coordinate gi(J), i 2 N, is given by gi(J) = �B, where B
is the unique block of J containing i and �B is the min-
imizer of �B. Clearly, gi(J) has identical values for all i
in a block. Also �B equals the ‘block average’

P
{wi f i:

i 2 B} /
P

{wi: i 2 B}. The PAV algorithm starts with
the finest partition whose blocks are single integers in
N and an initial infeasible solution g violating the con-
straint g1 � � � � � gn. It successively merges blocks to
reduce infeasibility and obtains a new coarser partition
J and an infeasible solution g(J). It terminates when g(J)
becomes feasible obtaining the optimal solution and the
final optimal partition. Let B = {p, . . . , q}, 1 � p � q �
n, denote a block of a partition J during any iteration of
the algorithm. The predecessor and successor blocks of
B, denoted respectively by B� and B +, of the same par-
tition J, are defined as follows: If p > 1, then B � is the
block containing p � 1, otherwise B � = ;. Similarly, if
q < n, then B + is the block containing q + 1, otherwise
B + = ;.

It can be shown that [4,21] the algorithm is of lin-
ear time complexity (O(n)) in the usual unit cost RAM
model [1]. We now describe an interesting implement-
ing of the algorithm [21]. Let Wi =

P
{wj: 1 � j � i}

and Fi =
P

{wj f j: 1 � j � i} withW0 = F0 = 0. Clearly,
Wi� 1 < Wi. By plotting the n + 1 points Pi = (Wi, Fi),
0 � i � n, in the plane we obtain the cumulative sum
diagram (csd). Note that the slope of the line segment
joining Pi� 1 and Pi is f i. LetQi = (Wi, Gi), be the great-
est convex minorant (gcm) or the lower convex hull of
the csd. This is the largest convex function which does
not exceed the csd at any point. It is easy to see that P0

= Q0 and Pn = Qn. Also since the gcm is convex, the
slopes (Gi � Gi� 1)/(Wi �Wi� 1) are nondecreasing. It
has been shown that gi = (Gi � Gi� 1)/(Wi �Wi� 1), 1
� i � n, give an optimal solution to the isotonic regres-
sion problem. Graham ’s scan [12] can be easily modi-
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Initialization: Set J = ffig : i 2 Ng;
compute the minimizer �B of	B , B2 J
(if B=fig, then �B = fi).
Set B = f1g, B+ = f2g, B� = ;;
WHILE B+ ¤ ;

IF �B > �B+ THEN
merge B and B+
(i.e. set J = JnfB; B+g [ fB[ B+g and
B = B [ B+);
compute the new �B ;
set B+ appropriately
(B� remains unchanged);
WHILE B� ¤ ; and �B� > �B

merge B and B�
(i.e. set J = JnfB; B�g [ fB [ B�g
and B = B [ B�);

compute the new �B ;
set B� appropriately

(B+ remains unchanged);
ENDWHILE

ELSE set B = B+;
set B� and B+ appropriately;

END IF
ENDWHILE
xi (J) = �B , i 2 B 2 J, is an optimal solution

Regression by Special Functions: Algorithms and Complex-
ity, Algorithm 1
Algorithm PAV (pool adjacent violators)

fied to obtain the gcm in O(n) time. See e. g. [28]. Thus
the overall algorithm is again O(n). The treatment and
the results for d20 are identical to those of d2.

Now consider the problem of isotonic medium re-
gression which is the problem of minimizing d10 (f , g)
subject to g 2 K [7,23]. The PAV algorithm can be ap-
plied to this problem with �B(c) =

P
{|f i � c | : i 2 B}.

A minimizer �B of �B can be easily shown to be a me-
dian of the set {f i: i 2 B}. We choose �B to be the central
medium of the set {f i: i 2 B} defined as follows. For an
ordered (ascending) {c1, . . . , cr}, it is c(r + 1)/2 if r is odd,
and

c r
2
C c r

2C1

2

if r is even. (If r is even, then both the lower and
upper mediums, cr/2 and cr/2 + 1, or any point in be-

tween the two, minimize �B(c). The nonuniqueness of
the medium is addressed later.) The PAV algorithm
with this choice of the central medium is of complexity
O(n2), since the median of an unordered set of cardinal-
ity r can be computed in linear timeO(r) ([1, Algorithm
3.6]). Now consider minimizing d1(f , g). In this case,
let �B(c) =

P
{wi |f i � c | : i 2 B}, whose minimizer

�B is a weighted median of the set {f i: i 2 B}. Again
it is not unique. We use the unique weighted central
medium of an ordered (ascending) set {c1, . . . , cr} with
weight !i for ci defined as follows. Let � =

P
{!i: 1 �

i � n}.The central median is cq if
P

{!i: 1 � i � q �
1} < �/2 <

P
{!i; q � i � r} for some q. It is (cq� 1 +

cq)/2 if
P

{!i: 1 � i � q � 1} = �/2 (As before both the
lower and upper mediums, cq� 1 and cq, or any point
in between the two, minimize �B(c)). Again it can be
computed in linear time by extending ([1, Algorithm
3.6]) to the weighted case. It will be seen that the ratio
max {wi} / min {wi} plays an important role in analysis.
The PAV algorithm for this case is of complexity O(n2).
Now consider the nonuniqueness of the medium. We
may use the lower or upper medium for �B in the PAV
algorithm since both minimize�B(c). When we consis-
tently use the lower (resp. upper) medium in the algo-
rithm for d1 or d10, we get the minimal (resp. maximal)
optimal solution to the problem. This has been estab-
lished in [5] for a general case of minimizing a separa-
ble convex function subject to the monotonicity con-
straint. This problem includes, as special cases, the iso-
tonic regression with distances d1 and d2, and other
situations such as in [25,26]. Now consider the prob-
lem of isotone optimization, i. e., minimizing d1 and
d10 [27]. Define tij = wi wj/(wi + wj) and � = max {tij
(f i � f j): 1 � i � j � n}. Define two isotonic func-
tions g and g by g

i
D max

n
f j � 


w j
: 1 � j � i

o
, gi D

min
n
f j C 


w j
: i � j � n

o
, 1 � i � n. Then both g and

g are optimal solutions to isotone optimization with
distance function d1 and � D d1( f ; g) D d1( f ; g).
Furthermore, a monotonic g is an optimal solution if
and only if g � g � g. The computation of the solution
clearly takesO(n2) time. The above results are also valid
for d10, but in this case the results can be simplified and
an O(n) algorithm for the computation can be obtained
(28, [Sect. 6]). Define k1 D f1, ki D maxfki�1; fig, i
= 2, . . . , n, and kn D fn , ki D minfkiC1; fig, i = n
� 1, n � 2, . . . , 1. Let � D d0

1
( f ;k)
2 D

d0
1

( f ;k)
2 . Then
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gi D ki � � and gi D ki C � . Clearly, the algorithm
is O(n). For isotonic regression problems with integer
constraints see [10] and [18].

Quasiconvex and Umbrella Regression

A function g = (g1, . . . , gn) 2 Rn is called quasiconvex if
gi �max {gp, gq} holds for all i with p� i� q for all 1�
p� q� n [22]. A g is called quasiconcave or umbrella if
� g is quasiconvex. It can be shown that g 2 Rn is qua-
siconvex if and only if there exists an index r, 1 � r �
n, such that g1 � � � � � gr � gr + 1 � � � � � gn. (Thus gr
= min {gi: 1 � i � n}.) [8,29]. If r = 1 (resp. n), then g
is nondecreasing (resp. nonincreasing). Similar results
may be stated for a quasiconcave function. In what fol-
lows we discuss regression by quasiconvex functions,
the results for quasiconcave functions are symmetric.
The quasiconvex problem can be transformed into 2n
isotonic subproblems by the observation made above.
Let K denote the set of all quasiconvex g, and let Kr de-
note all g = (g1, . . . , gn) with g1 �, . . . , � gr and gr + 1

� � � � � gn, where 1 � r � n. Note that Kr is the set of
all quasiconvex g such that gr or gr + 1 equals min {gi:
1 � i � n}. Clearly, K = [ {Kr : 1 � r � n}. It is easy to
see thatK is a closed cone which is not convex, although
Kr , for each fixed r, is a closed convex cone. Hence opti-
mal solutions obtained in this section are not necessar-
ily unique. To solve the quasiconvex Regression prob-
lem ofminimizing d2 (f , g) subject to g 2K, we consider
the following two subproblems for each r:
� P1r: Find gi, 1 � i � r, and � 1r so that � 1r = minP

{wi (f i � gi)2: 1 � i � r} subject to g1 � � � � � gr;
and

� P2r: Find gi, r + 1 � i � n, and � 2r so that � 2r =
min

P
{wi (f i � gi)2: r + 1 � i � n} subject to gr + 1

� � � � � gn.
We then minimize � 1r + � 2r subject to 1 � r � n.
Note that both P1r and P2r are isotonic regression prob-
lems. They can be solved in O(r) and O(n � r) time re-
spectively, using the PAV algorithm of the previous sec-
tion. Thus, the quasiconvex regression problem can be
solved in O(n 2) time. We have shown in [31] that the
complexity can be improved to O(n) by using special
mathematical results and suitable data structures. Our
algorithm uses one forward and one backward pass on
indexes 1, . . . , n to obtain the unique optimal solutions
of both P1r and P2r and the values of �r = � 1r and

� 2r for all r. Although we use Graham ’s scan and the
gcm discussed in the previous section to compute the
solutions of the isotonic regression subproblems P1r
and P2r, alternative schemes without using the gcm can
be easily devised. Another algorithm of unknown com-
plexity appears in a later article [9]. Now consider the
quasiconvex medium regression problem ofminimizing
d 1(f , g) subject to g 2 K. We may consider problems
P1r and P2r as above where

P
w i (f i � g i)2 is replaced

by
P

w i |f i � g i |. These isotonic medium regres-
sion problems can be solved in quadratic time giving an
overall complexity of O(n 3). Whether this complexity
can be improved or not is an open issue at this time.

The strategy of transforming the quasiconvex prob-
lem into 2n isotonic subproblems can also be used for
d1. Since each isotonic subproblem can be solved in
O(n2) time as for isotonic regression (see above), it may
seem that the complexity of the quasiconvex problem
is O(n3). A little reflection will show that the compu-
tations can be organized in O(n2) time. Indeed, using
the notation for isotonic regression above, the constants
tij(f i � f j), 1� i� j� n, can be computed inO(n2) time.
Then the � ’s needed for the subproblems can be com-
puted recursively in O(n2) time. The rest of the compu-
tations are O(n). If d10 is used, then the complexity can
be improved to O(n). Let f m = min {f i: 1 � i � n}, m
is not unique. Define km D fm , ki D maxfki�1; fig, i
= m + 1, m + 2, . . . , n, ki D maxfkiC1; fig, i = m � 1,
m �2, . . . , 1, � D d0

1
( f ;k)
2 and gi D ki � � , 1 � i �

n. Then g is an optimal solution to the problem. Also,
define k1 D f1, ki D minfki�1; fig, i = 2, . . . , m � 1,
kn D fn , ki D minfkiC1; fig, i = n � 1, n � 2, . . . , m
+ 1, km D fm , � D

d0
1

( f ;k)
2 and gi D ki C � , 1 � i

� n. Then k is the greatest quasiconvex minorant of f ,
i. e., the largest quasiconvex function such that ki � fi
for all i, and g is the maximal optimal solution to the
problem. Clearly, the computations are O(n) [29]. This
problem on an interval is considered in [30].

Convex and Concave Regression

We consider functions f , g etc. on a set S = {x1, . . . ,
xn} so that f i = f (xi), gi = g(xi) etc. Then g is convex
if (gi � gi� 1)/ ıi� 1 � (gi + 1 � gi)/ ıi, 2 � i � n � 1,
where ıi = xi + 1 � xi, 1 � i � n � 1. These constraints
are linear. If the points xi are equally spaced, i. e., all ıi
have identical values, then the convexity condition be-
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comes gi + 1 � 2 gi + gi� 1 � 0, 2 � i � n � 1. Let K be
the set of all convex functions. Then K is a closed con-
vex cone. We first consider the convex regression prob-
lem of minimizing d2 (f , g)(d20 (f , g)) subject to g 2
K. Clearly, this is a quadratic programming problem
where d2 (d20) is a strictly convex function of g. Its solu-
tion is unique. The problemmay be formulated as a lin-
ear complementarity problem and solved [3,20]. Special
methods as in [16,17] and other references given there,
may be applied. Some earlier work appears in [13,14].
Results on complexity analysis of algorithms for these
problems, in general, are lacking. The problem with d1,
d10 or d1 distance function can be formulated as a lin-
ear programming problem [2,19] and solved. Now con-
sider d10. Let k be the greatest convex minorant of f ,
i. e., the largest convex function such that ki � fi for all
i. It may be easily computed inO(n) time using Graham
’s scan as for isotonic regression. Let � D d0

1
( f ;k)
2 and

gi D kiC� , 1� i� n. Then g is a solution to the prob-
lem computed in O(n) time. Indeed, it is the maximal
optimal solution to the problem [28,32].

Since regression problems are indeed approxima-
tion problems, some of the results of [33] are applica-
ble to our problems. In particular, note the significance
of the dual cone of the cone K of isotone functions as
stated in the last paragraph there.

See also

� Isotonic Regression Problems
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Projections

Projection methods have become a useful technique for
solving the convex feasibility problem

(CFP) Find x 2 C;

where C is a closed, convex nonempty set defined in
a Hilbert space H endowed with an inner product h �,
� i :H2! R, and the induced norm kxk2 = hx, x i.

Projection methods are iterative. Given xi 62 C, the
standard iterative scheme is

xiC1 D xi C !i (PSi (xi) � xi ); (1)

where Si � C is a closed convex set, PSi (xi) is the pro-
jection of xi on the set Si, and !i 2 R is the relaxation
parameter. If !i < 1 we call it an underprojection, and if

!i > 1 we call it an overprojection. In general, 0 < �� !i

� 2 � � is required to ensure convergence.
We attempt to present an overview of projection

techniques. This section will cover the choice of the
supersets {Si}11 . Next section will study the relaxation
parameter and a third section offers additional mate-
rial on the subject, including pertinent references. We
use a standard notation with minor peculiarities that
should cause no difficulty to the reader.

Let us start by recalling that PS(x), the projection of
x on a closed convex nonempty set S, is the point in S
closest to x, namely,

PS (x)
def
D argmin

z2S
kz � xk2 : (2)

By the minimum principle, (2) holds if and only if PS(x)
2 S and

[z 2 S] ) [hz � PS (x); x � PS (x)i � 0]: (3)

Since

hPS (x)� x; x � zi
D hPS (x) � x; x � PS (x)C PS (x) � zi ;

we immediately obtain that (3) is equivalent to

[z 2 S] ) hPS (x) � x; x � zi � �kPS (x)� xk2 :

(4)

In general, the projection problem (2) is difficult,
but sometimes it is a straightforward computation. If
S is a halfspace given by S def

D fz 2 H : ha; zi � ˇg,
where a 2 H, ˇ 2 R, the projection of x onto S is given
by:

PS (x) :D

8<
:
x x 2 S;

x �
ha; xi � ˇ
ha; ai

a otherwise:
(5)

We can easily verify that (3) holds.
In most techniques based on (1) Si is a halfspace,

a hyperplane, or an appropriate set that renders (2) an
easy problem. For instance, if C is the solution set of
a linear system of equations in the Euclidean space Rn,
i. e., C = {z 2 Rn: Az = b}, block action methods split the
system in p subsystems, i. e.,

[Az D b] :D

0
B@
A1z D b1

:::

Apz D bp

1
CA :
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Let Ck = {z 2 Rn: Ak z = bk}, for k = 1, . . . , p.
If Ak is full rank, and Ak

0 its transpose, then

PCk (xi) D xi � A0k(AkA0k)
�1(Akxi � bk):

Observe that (3) and (4) hold as equalities. A standard
method chooses

Si D Ck ; k D (i mod p)C 1

Convergence will be apparent in the next section.
An important CFP is to find x 2 C, where C is de-

fined by convex inequalities, i. e.,

C D
˚
z 2 H : f j(z) � b j; j D 1; : : : ;m

�
; (6)

where f j(�): H ! R are convex subdifferentiable func-
tions and bj are scalars, for j = 1, . . . , m. Convexity of C
can be shown by well known properties of convex func-
tions that we state for completeness

Lemma 1 Let f (�): H!R. Let v1, . . . , vp be vectors in H,
and �1, . . . , �p be nonnegative scalars such that

Pp
kD1

�k = 1. Then f (�) is convex if and only if

f

 pX
kD1

�kvk

!
�

pX
kD1

�k f (vk): (7)

Lemma 2 f 1(�), . . . , f m(�): H! R are convex functions,
and �1, . . . , �m are nonnegative scalars. Then

Pm
jD1 � j

f j(�) is also convex.

Lemma 3 If f (�): H ! R is convex and subdifferen-
tiable, with subgradient @f (�): H! H, then

[y; x 2 H] ) f (y) � f (x)C h@ f (x); y � xi

and (obviously)

[ˇ � f (y)] ) [ˇ � f (x)C h@ f (x); y � xi]:

We turn our attention to the choice of {Si}11 for solving
z 2 C defined by (6). Given xi define the halfspace

Cj(xi) D
˚
z 2 H : f j(xi)C

˝
@ f j(xi); z � xi

˛
� b j� :

(8)

As [z 2 C]) [bj � f j(z)] we assert by Lemma 3 that
Cj(xi) � C. In the next section it will be evident that
convergence of (1) is ensured if j = (imodm) + 1 and Si
= Cj(xi).

Let fC(�) def
D max(0; f j(�)). Another possible choice

for Si is

Si D

(
z 2 H :

Pm
jD1 f

C
j (xi)( f j(xi)

C
˝
@ f j(xi); z � xi

˛
� b j)

)
: (9)

By Lemma 3, Si contains the convex set Ci given next. It
is obvious that Ci � C:

Ci D

8<
:z 2 H :

mX
jD1

fCj (xi)( f j(z) � b j)

9=
; :

Relaxation

Both {Si}11 , and {!i}11 influence the quality of conver-
gence of projection methods significantly. This section
is concerned with the relaxation parameter. We would
like to choose {!i}11 , such that z 2 C is obtained with
the fewest number of iterations possible. Using the iter-
ative scheme (1) we have for all z 2 Si that

kxiC1 � zk2 D kxi � z C !i (PSi (xi) � xi)k2

D kxi � zk2 C 2!i hxi � z; PSi (xi) � xii
C !2

i kPSi (xi) � xik2 :

Since Si � C, we conclude by (4) that

[z 2 C] ) kxiC1 � zk2

� kxi � zk2 � !i (2 � !i ) kPSi (xi) � xik2 :
(10)

Wemay reasonably expect that!i = 1 is the ‘best’ choice
because !(2 � !) achieves its maximum value at ! = 1
and therefore xi + 1 is the ‘closest’ to the set C; however,
!i = 1 for all i can be a very poor choice. Let us illustrate
this fact with the following example in the Euclidean
space R2, z = (z1, z2):

Example 4 Let

C D fz2 � 0; (sin˛)z1 C (cos˛)z2 � cos ˛g;

Si D

(
(sin˛)z1 C (cos˛)z2 � cos˛ i even;
z2 � 0 i odd:

Now the problem is: Starting at x = 0, estimate the num-
ber of iterations needed to generate z 2 C.
� (Scheme 1) Assume exact projections, i. e.8i: xi + 1 =

PSi (xi).
We deduce from Fig. 1 that for all i:

kxiC1 � zk D kxi � zk cos˛: (11)
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Relaxation in Projection Methods, Figure 1
Successive projections

Consequently:

kxi � zk D kx0 � zk cosi ˛; for all i; (12)

which means that the smaller ˛, the bigger the num-
ber of iterations. Indeed, if ˛ = 10o and x0 is the ori-
gin we need more than 700 iterations (i > 700) to
ensure that k xi � z k � 10�4.

� (Scheme 2) Assume

xiC1 D

(
xi C 2(PSi (xi) � xi ) i even;
PSi (xi) i odd:

We deduce from Fig. 2 for i even that

kxiC1 � zk D kxi � zk ;

kxiC2 � zk D kxiC1 � zk cos(2˛)

D kxi � zk cos(2˛):

Relaxation in Projection Methods, Figure 2
Overprojections

Consequently:

kx2i � zk D kx0 � zk cosi (2˛): (13)

If ˛ = 10o and x0 is the origin then k xi � z k � 10�4

for all i� 350, a significant reduction in the number
of iterations.

A small angle ˛ means a small rate of convergence, and
overprojection (! > 1) has the desirable practical ef-
fect of opening up this angle. Convergence of projec-
tion methods may significantly improve if an optimum
value of the relaxation parameter is chosen; however
this choice is often difficult. We argue that, in general,
it is beneficial to overproject (! > 1), despite some rare
examples require underprojection (! < 1) to achieve
a better (linear) rate of convergence. Figure 3 illustrates
this latter possibility. The convex set C is the unique
point intersection of a bundle of straight lines passing
through it.

Relaxation in Projection Methods, Figure 3
Under projection �, . . . , �; Projection!

Fejér Property

Most convergence analysis of projection methods are
derived from the so called Fejér property, namely, the
monotonicity of the sequence {k xi � z k}11 . Note from
(10) that

�
z 2 C

0 � !i � 2

�
) [kxiC1 � zk � kxi � zk]: (14)

Hence, a sufficient condition to preserve the Fejér
property is that the value of the relaxation parameter
!i belongs to the interval [0, 2]. To ensure conver-
gence a stronger condition is usually imposed. {!i}11
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must stay uniformly bounded away from 0, and 2. We
will show below that this condition is not necessary.
We will obtain a relaxation parameter ! > 2, preserv-
ing the Fejér property, and not impairing convergence.
Even more, numerical results reveal that the quality of
convergence improves significantly. In order to present
the key facts without obscuring our presentation, we fo-
cus our attention on parallel algorithms for solving the
convex intersection problem (CIP), namely: Find z 2 C,
where C is a nonempty intersection of a finite collection
of p convex sets, that is,

C D C1 \ � � � \ Cp:

We assume (again for the sake of clarity) that the
projection problem

yik D argmin
x2Ck

kx � xik2 (15)

is easily solved.

Problem CIP
Data x0, an estimate to z 2 C,

�: 0 < � � 1,
ı: 0 < ı � 1/p,
i = 0, the iteration number

REPEAT
FOR k = 1; : : : ; p DO
IN parallel
Let yik be defined by (15)
dik = yik � xi
END parallel
Choose !i k : � � !i k � (2 � �),
Choose �i k � ı:

Pp
k=1 �i k = 1,

END FOR
xi+1 = xi +

Pp
k=1�i k!i kdik ; i = i + 1

UNTIL Convergence

Parallel projection algorithm (PPA)

Above we have presented a parallel projection algo-
rithm (PPA); we will now sketch its proof of conver-
gence under suitable standard conditions. Then we in-
troduce a � factor to modify the relaxation parameters
and argue that the solution of a quadratic program-
ming problem will lead to optimal relaxation. Finally
we present the accelerated projection algorithm (APA)
that subsumes our work.

Convergence of PPA

By using (10), (7) on the convex function f (�) = k � k2,
and the definitions of !ik and �ik we obtain for z 2 C
that

kxiC1 � zk2 D






xi C
pX

kD1

�i k!i kdik � z







2

D







pX

kD1

�i k (xi C !i kdik � z)







2

�

pX
kD1

�i k kxi C !i k dik � zk2

�

pX
kD1

�i k
�
kxi � zk2 � !i k (2 � !i k ) kdikk2

�

� kxi � zk2 � �2
pX

kD1

�i k kdikk2

� kxi � zk2 � pı�2
pX

kD1

kdikk2 :

From the last inequality we observe that the Fejér prop-
erty is maintained. Hence, {xi}11 is a bounded sequence.
Moreover, {k xi � z k}11 decreases monotonically and
is bounded below, therefore it has a limit. This forces
{
Pp

kD1 k dik k
2}11 ! 0. Hence, {dik}11 ! 0, k = 1, . . . ,

p, which happens to be a convenient convergence test.
So far the relaxation parameters �ik !ik belong to

(0, 2), as required by standard convergence analysis for
projection methods. We now show the existence of a �
factor that, in general, takes the relaxation parameters
out of the interval (0, 2), but the Fejér property of the
sequence {k xi � z k}11 and the desired convergence
condition are preserved.

Let us put

x(�) def
D xi C �

pX
kD1

�i k!i k dik : (16)

We then obtain for �� 0 that

[z 2 C] )
�
kx(�) � zk2 � kxi � zk2 C '(�)

�
; (17)

where by (4)

'(�) D �2�
pX

kD1

�i k!i k kdikk2C�2







pX
kD1

�i k!i k dik







2

:

(18)
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The minimum of '(�) occurs at

�i D

Pp
kD1�i k!i k kdikk2


Pp
kD1�i k!i kdik





2 > 0 (19)

and for any ˛ � 0 we obtain that

'(˛�i) D �˛(2 � ˛)

hPp
kD1�i k!i k kdikk2

i2



Pp

kD1 �i k!i kdik




2 : (20)

If we choose ˛i: �� ˛i � 2 � � and let xiC1
def
D x(˛i�i),

we ensure by (17) and (20) that the Fejér property is
preserved. Consequently {'(˛i �i)}11 ! 0 and we can
assert that {dik}11 ! 0, k = 1, . . . , p, as long as the se-
quences {�ik!ik}1iD1, k = 1, . . . , p, remain uniformly pos-
itive. Note that no upper bounds and no other condi-
tions whatsoever are imposed on the latter sequences.

To observe that �i may cause an overprojection, as-
sume that !ik = 1, k = 1, . . . , p, at all iterations; then xi + 1

:= x(˛i �i) becomes

xiC1 :D xi C
Pp

kD1�i k kdikk2


Pp
kD1�i kdik





2

„ ƒ‚ …
	i

˛i

pX
kD1

�i k dik

„ ƒ‚ …
di

; (21)

where �i � 1 by (7).
Figure 4 shows one iteration on Example 4 with ˛i

= 1, and �ik = 0.5.
The net effect of the � factor is to pull the sequence

{xi}11 out of a wedge of small angle. In the optimiza-
tion jargon we look for the minimum of a given up-
per bound of the distance from x(�) to C along the

Relaxation in Projection Methods, Figure 4
� factor

direction di :=
Pp

kD1 �ik!ik dik starting from xi. It is
worth noticing that sometimes inequality (17) becomes
an equality; for instance, when C is a linear system of
equations. In this case x(�i) is indeed the closest point
to C along di.

Let us proceed one step further with our analysis.
Denote the vector w in the Euclidean space Rp with
components wk = �k !k, k = 1, . . . , p. We then write

x(w) D xi C
pX

kD1

wkdik (22)

and obtain (almost verbatim as argued for '(�))

kx(w) � zk2 � kxi � zk2 C '(w);

'(w) D �2
pX

kD1

wk kdikk2 C







pX

kD1

wkdik







2

:

Hence we argue that

wi D argmin
wk�ı

'(w) (23)

should yield ‘good’ (over)relaxation parameters. But the
parallel algorithm can degrade severely, unless we have
at hand an efficient algorithm for solving the quadratic
program (23). Otherwise, any acceptable value for wi

combined with the � factor can be advantageous.
The net effect of wi is to obtain ‘locally’ the best di-

rection of search to locate some z 2 C. Thus, wi can
be considered as the optimum relaxation parameter. In
Example 4, z is obtained in one step.

Table 1 summarizes the accelerated parallel algo-
rithm (APA) that subsumes our work. We dropped the
iteration number i for convenience.

Discussion

The literature on projection methods is rather vast
and rapidly growing. Reviews on projection methods
and/or their applications in mathematics, physics and
social sciences published in the 1990s include [1,4,5,7,
10,13,21,23], and others.

Projection methods have a long history. In their
early inceptions [6,20,22] no relaxation parameters
were introduced, but soon it was noticed that overre-
laxation (or overprojection) could speed convergence.
Successive over relaxation techniques were introduced
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Relaxation in Projection Methods, Table 1
Accelerated parallel algorithm

Problem Find z 2 C = C1 \ : : : \ Cp
Data x, an estimate of z,

0 < � � 1, 0 < ı � 1/p,
0 < � for the convergence test

REPEAT
FOR k = 1; : : : ; p DO
IN parallel
yk = argminy2Ck

ky � xk2,
dk = yk � x
END parallel
Find wk � ı

END FOR
� =

PP
k=1 wkkdkk2

k
PP

k=1 wkdkk2

Choose ˛: � � ˛ � 2 � �
Update: x := x + �˛

PP
k=1 w

kdk
UNTIL

PP
k=1 kdkk < �

in the solution of large linear system of equations. Sig-
nificant work on determining and computing the opti-
mum relaxation was performed in the 1950s ([19] gives
a good list of references on the subject). R. Bramley
and A. Sameh [2] found that underprojection could im-
prove convergence, at least theoretically, in the solution
of a nonsymmetric linear system of equations.

Convergence rate of projection methods is linear
under mild conditions, i. e., k xi + 1 � z k � � i k xi �
z k, where {� i 2 R}11 is uniformly positive and strictly
less than one. The value of � i depends strongly on the
angle ˛i between supporting hyperplanes of Si and Si + 1

[11,18,24]. Overprojection andmost techniques used to
improve the quality of convergence of projection meth-
ods merely attempt to reduce � i. For the convex in-
equality problem, see [12,14]. In [12] projection aggre-
gation methods were developed and the choice of (9)
was justified. In [14] a projection algorithm with a su-
perlinear rate of convergence is presented, where {!i}11
! 1 is needed.

We proved that the sequence {xi}11 generated by
the parallel algorithms (PPA and APA) satisfies the Fe-
jér property. Strong convergence in Hilbert spaces for
a countable number of sets can be proved under mild
additional conditions [1,9, Thm. 2.16]. It is straight-
forward to show that convergence is preserved if we

project on closed supersets Sik � Ck, k = 1, . . . , p. We
only need


PSik (x) � x



 � ı 

PCk (x) � x




for some ı > 0.
The � factor has been suggested in [8,12], and [15].

Numerical results reported in the latter paper, in [9,25]
and [17] are impressive. However, the actual theoretical
improvement of the quality of convergence is an open
question. See [16] for theoretical results when C is the
intersection of affine sets (hyperplanes). In [12,15] the
use of the � factor is analysed for sequential versions of
the projection method.

We suggest the solution of the quadratic problem
(23) to obtain ‘optimal’ relaxation parameters. K.C. Ki-
wiel recommends the solution of the nonlinear pro-
gramming problem (20) [21]. To the author’s knowl-
edge, there exists no evidence of the superiority of ei-
ther approach. We do not believe that the exact solu-
tion of either problem is a good strategy, because this
can degrade the performance of a parallel algorithm.
Our recommendation is to obtain some acceptable ini-
tial values for the relaxation parameters, and then use
the � factor.

Throughout the paper we have assumed that C 6D ;.
The inconsistency case, i. e., C = ;, has attracted a lot of
attention lately. See [3] and references therein.

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� Inequality-constrained Nonlinear Optimization
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Replicator equations are a class of dynamical systems de-
veloped and studied in the context of evolutionary game
theory, a discipline pioneered by J. Maynard Smith [36]
which aims to model the evolution of animal behavior
using the principles and tools of game theory. Because
of their dynamical properties, they have been recently
applied with significant success to a number of combi-
natorial optimization problems. It is the purpose of this
article to provide a summary and an up-to-date bibli-
ography of these applications.
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TheModel and its Properties

In this Section we discuss the basic intuition behind
replicator equations and present a few theoretical prop-
erties that are instrumental for their application to op-
timization problems. For a more systematic treatment
see [23,55].

Consider a large, ideally infinite population of indi-
viduals belonging to the same species which compete
for a particular limited resource, such as food, terri-
tory, etc. This kind of conflict is modeled as a game,
the players being pairs of randomly selected population
members. In contrast to traditional application fields of
game theory, such as economics or sociology [33], play-
ers here do not behave ‘rationally,’ but act instead ac-
cording to a pre-programmed behavior pattern, or pure
strategy. Reproduction is assumed to be asexual, which
means that, apart from mutation, offspring will inherit
the same genetic material, and hence behavioral phe-
notype, as its parent. Let J = {1, . . . , n} be the set of
pure strategies and, for all i 2 J, let xi(t) be the rela-
tive frequency of population members playing strategy
i, at time t. The state of the system at time t is simply
the vector x(t) = (x1(t), . . . , xn(t))|. Clearly, the states
are constrained to lie in the standard simplex of the n-
dimensional Euclidean space Rn:

Sn D
˚
x 2 Rn : xi � 0; 8i 2 J; e>x D 1

�
:

Here and in the sequel, the letter e is reserved for
a vector of appropriate length, consisting of unit entries
(hence e|x =

P
i xi).

One advantage of applying game theory to biology
is that the notion of ‘utility’ is much simpler and clearer
than in human contexts. Here, a player’s utility can sim-
ply be measured in terms of Darwinian fitness or re-
productive success, i. e., the player’s expected number
of offspring. Let W = (wij) be the n × n ‘payoff’ (or fit-
ness) matrix. Specifically, for each pair of strategies i, j
2 J, wij represents the payoff of an individual playing
strategy i against an opponent playing strategy j. With-
out loss of generality, we shall assume that the payoff
matrix is nonnegative, i. e., wij � 0 for all i, j 2 J. At
time t, the average payoff of strategy i is given by:


i (t) D
nX

jD1

wi jx j(t); (1)

while the mean payoff over the entire population isPn
iD1 xi(t)
 i(t).
In evolutionary game theory the assumption is

made that the game is played over and over, generation
after generation, and that the action of natural selection
will result in the evolution of the fittest strategies. If suc-
cessive generations blend into each other, the evolution
of behavioral phenotypes can be described by the fol-
lowing set of differential equations [53]:

ẋi (t) D xi(t)

0
@
i (t)�

nX
jD1

x j(t)
 j(t)

1
A (2)

for i = 1, . . . , n, where a dot signifies derivative with re-
spect to time. The basic idea behind this model is that
the average rate of increase ẋi(t)/xi(t) equals the differ-
ence between the average fitness of strategy i and the
mean fitness over the entire population. It is straight-
forward to show that the simplex Sn is invariant under
equation (2) or, in other words, any trajectory starting
in Sn will remain in Sn. To see this, simply note that
(d/dt)

P
i xi(t) =

P
i ẋi(t) = 0, which means that the

(relative) interior of Sn (i. e., the set defined by xi > 0,
for all i = 1, . . . , n) is invariant. The additional observa-
tion that the boundary too is invariant, completes the
proof.

Similar arguments provide a rationale for the fol-
lowing discrete-time version of the replicator dynam-
ics, assuming nonoverlapping generations, which can
be obtained from (2) by setting 1/� t =

Pn
jD1 xj(t)
 j(t):

xi (tC	t) D
xi(t)
i(t)Pn
jD1 x j(t)
 j(t)

(3)

for i = 1, . . . , n. Because of the nonnegativity of the fit-
ness matrix W and the normalization factor, this sys-
tem too makes the simplex Sn invariant as its continu-
ous counterpart.

A point x = x(t) is said to be a stationary (or equi-
librium) point for the dynamical systems under con-
sideration if ẋi(t) = 0 in the continuous-time case, and
xi(t + �t) = xi(t) in the discrete-time case (i = 1, . . . ,
n). Moreover, a stationary point is said to be asymp-
totically stable if any trajectory starting in its vicinity
will converge to it as t!1. It turns out that both the
continuous-time and discrete-time replicator dynamics
have the same set of stationary points, namely all the
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points in Sn satisfying, for all i = 1, . . . , n, the condition

xi(t)

0
@
i (t)�

nX
jD1

x j(t)
 j(t)

1
A D 0;

or, equivalently, 
 i(t) =
Pn

jD1 xj(t)
 j(t) whenever xi >
0.

Equations (2) and (3) arise independently in differ-
ent branches of theoretical biology [23]. In population
ecology, for example, the famous Lotka–Volterra equa-
tions for predator-prey systems turn out to be equiva-
lent to the continuous-time dynamics (2), under a sim-
ple barycentric transformation and a change in veloc-
ity. In population genetics they are known as selection
equations [17]. In this case, each xi represents the fre-
quency of the ith allele Ai and the payoff wij is the fit-
ness of genotype Ai Aj. Here the fitness matrix W is
always symmetric. The discrete-time dynamical equa-
tions turn out to be a special case of a general class of
dynamical systems introduced in [2] and studied in [3]
in the context of Markov chain theory. They also rep-
resent an instance of the so-called relaxation labeling
processes, a class of parallel, distributed algorithms de-
veloped in computer vision to solve (continuous) con-
straint satisfaction problems [25,44,50]. An indepen-
dent connection between relaxation labeling processes
and game theory has recently been described in [37].

The following theorem states that under replicator
dynamics the population’s average fitness always in-
creases, provided that the payoff matrix is symmetric
(in game theory terminology, this situation is referred
to as a doubly symmetric game).

Theorem 1 Suppose that the (nonnegative) payoff ma-
trix W is symmetric. Then, the quadratic polynomial F
defined as

F(x) D x>Wx (4)

is strictly increasing along any nonconstant trajectory of
both continuous-time (2) and discrete-time (3) replicator
equations. In other words, for all t � 0 we have

d
dt

F(x(t)) > 0

for system (2), and F(x(t +� t)) > F(x(t)) for system (3),
unless x(t) is a stationary point. Furthermore, any such
trajectory converges to a (unique) stationary point.

The previous result is known in mathematical biol-
ogy as the fundamental theorem of natural selection
[17,23,55] and, in its original form, traces back to [18].
As far as the discrete-time model is concerned, it can be
regarded as a straightforward implication of the Baum–
Eagon theorem [2,3] which is valid for general polyno-
mial functions over product of simplices. F.R. Waugh
and R.M.Westervelt [54] also proved a similar result for
a related class of continuous- and discrete-time dynam-
ical systems. In the discrete-time case, however, they
put bounds on the eigenvalues ofW in order to achieve
convergence to fixed points.

The fact that all trajectories of the replicator dynam-
ics converge to a stationary point has been proved in
[32,34]. However, in general, not all stationary points
are local maximizers of F on Sn. The vertices of Sn,
for example, are all stationary points for (2) and (3)
whatever the landscape of F. Moreover, there may ex-
ist trajectories which, starting from the interior of Sn,
eventually approach a saddle point of F. However, a re-
sult proved by I. Bomze [5] asserts that all asymp-
totically stable stationary points of replicator dynam-
ics correspond to (strict) local maximizers of F on Sn,
and vice versa (see [10] for additional results relating
the fields of optimization theory, evolutionary game
theory and the qualitative behavior of dynamical sys-
tems).

Under continuous-time replicator dynamics, the
trajectories approach their limits most efficiently in
the sense that (2) is a gradient system if one uses the
(non-Euclidean) Shahshahani metric [23] which, for
any point u 2 Sn, is defined as

du(x; y) D
X

fi : ui>0g

1
ui

xi yi :

This efficiency result is called Kimura’s maximum prin-
ciple.

Maximum Clique Problems

Let G = (V , E) be an undirected graph, where V = {1,
. . . , n} is the set of vertices and E � V × V is the set of
edges. The order of G is the number of its vertices, and
its size is the number of edges. Two vertices i, j 2 V are
said to be adjacent if (i, j) 2 E. The adjacency matrix of
G is the n × n symmetric matrix AG = (aij) defined as
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follows:

ai j D

(
1 if (i; j) 2 E;
0 otherwise:

A subset C of vertices in G is called a clique if all its
vertices are mutually adjacent, i. e., for all i, j 2 C, with i
6D j, we have (i, j) 2 E. A clique is said to bemaximal if it
is not contained in any larger clique, andmaximum if it
is the largest clique in the graph. The clique number, de-
noted by !(G), is defined as the cardinality of the max-
imum clique. The maximum clique problem is to find
a clique whose cardinality equals the clique number.

The maximum clique problem is a well-known ex-
ample of combinatorial optimization problem, not only
because it was one of the first problems shown to be
NP-complete [19], but also for its theoretical as well as
practical implications. Due to the inherent computa-
tional complexity of the problem, exact algorithms are
guaranteed to return a solution only in a time which in-
creases exponentially with the number of vertices in the
graph, and this makes them inapplicable even to mod-
erately large problem instances. Moreover, a series of
recent theoretical results show that the problem is in
fact difficult to solve even in terms of approximation.
Because of these negative results, much effort has re-
cently been directed towards devising efficient heuris-
tics for finding large cliques, for which no formal guar-
antee of performance may be provided, but are anyway
of interest in practical applications. We refer to [8] for
a recent survey of results concerning algorithms, com-
plexity and applications of this problem.

In 1965, T.S. Motzkin and E.G. Straus [38] estab-
lished a remarkable connection between the maximum
clique problem and a certain quadratic programming
problem. Consider the following quadratic function,
sometimes called the Lagrangian of G:

fG(x) D x>AGx (5)

and let x� be a global maximizer of f G on Sn, n being the
order of G. In [38] it is proved that the clique number
of G is related to f G(x�) by the following formula:

!(G) D
1

1 � fG(x�)
: (6)

Additionally, it is shown that a subset of vertices C is
a maximum clique of G if and only if its characteristic

vector xC, which is the vector of Sn defined as

xCi D

8<
:

1
jCj

if i 2 C;

0 otherwise;

is a global maximizer of f G on Sn. In [21,47], the
Motzkin–Straus theorem has been extended by provid-
ing a characterization of maximal cliques in terms of
local maximizers of f G on Sn.

Once that the maximum clique problem is formu-
lated in terms of maximizing a quadratic polynomial
over the standard simplex, the use of replicator dynam-
ics naturally suggests itself [42]. In fact, consider a repli-
cator system with payoff matrix defined as:

W D AG :

From the fundamental theorem of natural selection, we
know that the replicator dynamical systems, starting
from an arbitrary initial state, will iteratively maximize
the Lagrangian f G in Sn, and will eventually converge
to a local maximizer which, by virtue of the Motzkin–
Straus formula provides an estimate of the clique num-
ber of G. Additionally, if the converged solution hap-
pens to be a characteristic vector of some subset of ver-
tices of G, then we are also able to extract the vertices
comprising the clique from its nonzero components.
Clearly, in theory there is no formal guarantee that the
converged solution will be a global maximizer of f G.
However, experimental work suggests that the basins
of attraction of global maximizers are quite large, and
frequently the algorithm converges to one of them.

In [42], M. Pelillo presents extensive experimental
results with the previous approach over thousands of
randomly generated graphs. The discrete-time dynam-
ics (3) was used, and the system was started from the
vector (1/n, . . . , 1/n)| which corresponds to the simplex
barycenter. Two series of experiments were conducted.
In the first one, graphs with a relatively small number
of vertices were considered, i. e. with up to 500 vertices
and densities ranging from 0.10 to 0.90. The solutions
found by the algorithm were always very close to the
optimal ones, as found by standard exact algorithms. In
the second part of the study, graphs with up to 2000 ver-
tices and about onemillion edges were used (in this case
all graphs had density 0.50). Here to gauge the quality of
the solutions found theMatula estimate was employed,
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which accurately predicts the clique number in a ran-
dom graph, when the number of vertices is sufficiently
large [35]. Specifically, let

M(n; ı)

D 2 log1/ı n � 2 log1/ı log1/ı C2 log1/ı
e
2
C 1 :

D.W. Matula proved that, as n ! 1, the order of
the maximum clique in an n-vertex ı-density random
graph is either bM(n, ı)c or dM(n, ı)e with probabil-
ity tending to 1, where bxc denotes the largest inte-
ger less than or equal to x, and dxe denotes the small-
est integer greater than or equal to x. Interestingly, it
was also shown that the smallest maximal clique is ex-
pected to have M(n, ı)/2 vertices [4]. Experimentally,
in [42] it was found that the cardinality of the cliques
found by the replicator dynamical system turned out
to be significantly larger than the estimated minimum,
thereby contradicting what is known as the Jerrum con-
jecture [27], which states that in a large 0.5-density ran-
dom graph it may be hard to find a clique whose or-
der is even a bit larger than that of the smallest maxi-
mal clique. A similar conclusion was also drawn in [26].
Overall, the results presented in [42] were competitive
with those obtained using more sophisticated neural
network heuristics, both in terms of quality of solutions
and speed.

One drawback associated with the original Motz-
kin–Straus formulation, however, relates to the ex-
istence of spurious solutions, i. e., maximizers of f G
which are not in the form of characteristic vectors. This
was first observed in [40]. To illustrate, consider the
path P3, i. e. the graph with three vertices {1, 2, 3} and
two edges, one between 1 and 2, and the other between
2 and 3. Clearly, C = {1, 2} and D = {2, 3} are maxi-
mum cliques, and from the Motzkin–Straus theorem it
follows that their characteristic vectors xC and xD are
global maximizers of the Lagrangian of P3 in S3. How-
ever, it can easily be proved that all the points lying on
the segment connecting xC and xD, which is a subset
of S3 since the simplex is convex, are also global so-
lutions of the Motzkin–Straus program. See [47] for
general characterizations of such spurious solutions. In
principle, spurious solutions represent a problem since,
while providing information about the cardinality of
the maximum clique, they do not allow us to easily ex-
tract its vertices.

The spurious solution problem has been solved in
[5]. Consider the following regularized version of f G:

bf G(x) D x>AGxC
1
2
x>x; (7)

which is obtained from (5) by substituting the adja-
cency matrix AG of G with

bAG D AG C
1
2
In ;

where In is the n × n identity matrix. Unlike the
Motzkin–Straus formulation, it can be proved that all
maximizers ofbf G on Sn are strict, and are characteristic
vectors of maximal/maximum cliques in the graph [5].

Theorem 2 Let C be a subset of vertices of a graph G,
and let xC be its characteristic vector. Then, C is a max-
imum (maximal) clique of G if and only if xC is a global
(local) maximizer ofbf G in Sn. Moreover, all local (and
hence global) maximizers ofbf G over Sn are strict.

In an exact sense, therefore, a one-to-one correspon-
dence exists between maximal cliques and local max-
imizers of bf G in Sn on the one hand and maximum
cliques and global maximizers on the other hand.

Preliminary experiments with this regularized for-
mulation (7) on random graphs are reported in [5], and
a more extensive empirical study on DIMACS bench-
mark graphs is presented in [10]. The emerging picture
is the following. The solutions produced by the replica-
tor models are typically very close to the ones obtained
using more sophisticated continuous-based heuristics.
Moreover, the original version of the Motzkin–Straus
problem performs slightly better than its regularized
counterpart, but the former often returns spurious so-
lutions. This may be intuitively explained by observing
that, since all local maxima ofbf G are strict, its landscape
is certainly less smoothed than the one associated to
the nonregularized version. This therefore enhances the
tendency of local optimization procedures to get stuck
into local maxima. This is the price to pay for the algo-
rithm to return nonspurious, ‘informative’ solutions.

In order to study the effects of varying the start-
ing point of clique finding replicator dynamics, Bomze
and F. Rendl [12] implemented various sophisticated
heuristics and compared them with the usual (less ex-
pensive) strategy of starting from the simplex barycen-
ter. Surprisingly, they concluded that the amount of
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sophistication seems to have no significant impact on
the quality of the solutions obtained. Additionally, they
showed that using (Runge–Kutta discretizations of) the
continuous-time dynamics (2) instead of (3) does not
improve efficiency. This analysis indicates that to im-
prove the performance of replicator dynamics on the
maximum clique problem one has necessarily to resort
to some escape strategies. Various attempts along this
direction can be found in [5,6,9,13].

The Motzkin–Straus theorem has been generalized
to the weighted case in [21]. Let G = (V , E, w) be
a weighted graph, where V = {1, . . . , n} is the vertex set,
E�V ×V is the edge set andw2Rn is theweight vector,
the ith component of which corresponds to the weight
assigned to vertex i. It is assumed that wi > 0 for all i 2
V . Given a subset of vertices C, the weight assigned to
C is defined as

W(C) D
X
i2C

wi :

A maximal weight clique C is one that is not contained
in any other clique having weight larger than W(C).
Since we are assuming that all weights are positive, it is
clear that the concepts of maximal clique and maximal
weight clique coincide. A maximum weight clique is
one having largest total weight, and the weighted clique
number of G, denoted !(G, w), is its weight. The max-
imum weight clique problem is to find a clique C such
that W(C) = !(G, w) (see [8] for a recent review). The
classical (unweighted) version of the maximum clique
problem arises as a special case when all vertices have
the same weight. For this reason the maximum weight
clique problem has at least the same computational
complexity as its unweighted counterpart.

Note that the original Motzkin–Straus program for
unweighted graphs can be reformulated as a minimiza-
tion problem by considering the function

g(x) D x>(I C AG)x;

where AG is the adjacency matrix of the complement
graph G, which is the graph having the same vertex set
as G and E D f(i; j) 2 V � V : i ¤ j and (i; j) … Eg
as its edge set. It is straightforward to see that if x� is
a global minimizer of g in Sn, then !(G) = 1/g(x�). This
is simply a different formulation of the Motzkin–Straus
formula (6). Now, consider a weighted graph G = (V ,

E, w), and let M(G, w) be the class of symmetric n × n
matricesM = (mij)i, j 2 V defined as 2mij �mii +mjj if (i,
j) 62 E and mij = 0 otherwise, and mii = 1/wi for all i 2
V . Given a global solution x� of the following quadratic
program, which is in general indefinite,

(
min g(x) D x>Mx
s.t. x 2 Sn ;

(8)

we have [21]:

!(G;w) D
1

g(x�)

for any matrix M 2 M(G, w). Furthermore, denote by
xC(w) the weighted characteristic vector of C, which is
the vector in Sn with coordinates

xCi (w) D

8<
:

wi

W(C)
if i 2 C;

0 otherwise:

It turns out that a subset C of vertices is a maximum
weight clique if and only if its characteristic vector
xC(w) is a global minimizer of (8). Notice that the ma-
trix ICAG belongs toM(G, e). In other words, the orig-
inal Motzkin–Straus theorem turns out to be a special
case of the preceding result.

As in the unweighted case, this formulation suffers
from the existence of spurious solutions, and this en-
tails the lack of a one-to-one correspondence between
the solutions of the continuous optimization problem
and those of the original, discrete one. In [11] these spu-
rious solutions are characterized and a regularized ver-
sion which avoids this kind of problems is introduced
(see also [7]). Specifically, let N(G, w) be the the class
of n × n symmetric matrices M = (mij)i, j 2 V defined as
mij � mii + mjj if (i, j) 62 E and mij = 0 otherwise, and
mii = 1/2wi for all i 2 V . The following theorem is the
weighted counterpart of Theorem 2.

Theorem 3 Let C be a subset of vertices of a weighted
graph G = (V, E, w), and let xC(w) be its characteristic
vector. Then, for any matrix M 2 N(G, w), C is a max-
imum (maximal) weight clique of G if and only if xC(w)
is a global (local) solution of program (8). Moreover, all
local (and hence global) solutions of (8) are strict.

Note that N (G, w) is isomorphic to the positive or-
thant in (n2) � |E| dimensions. This class is a polyhedral
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pointed cone with its apex given by the matrix M(w) =
(mij(w))i, j 2 V with entries

mi j(w) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1
2wi

if i D j;
1

2wi
C

1
2wj

if i ¤ j; (i; j) … E;

0 if i ¤ j; (i; j) 2 E:

Observe that in the unweighted case, M(e) D ee> �
bAG D bAG , the regularized adjacency matrix of the com-
plement graph G. This reflects the elementary property
that an independent set of G, i. e. a subset of pairwise
nonadjacent vertices, is a clique of G. Hence, while the
local maximizers of x>bAGx over Sn correspond to max-
imal cliques of G, the local minimizers of x>bAGx over
Sn correspond to maximal independent sets.

Theorem 3 suggests using replicator equations to
approximately solve the maximum weight clique prob-
lem. Indeed, note that replicator equations are max-
imization procedures, while ours is a minimization
problem. However, it is a straightforward exercise to see
that the problem of minimizing a quadratic form x| M
x on Sn is equivalent to maximizing �ee| � M, where
� is an arbitrary constant. Therefore, the payoff matrix
for replicator dynamics to be used in this case is:

W D �ee> �M

whereM = (mij) is any matrix in N(G, w), and

� D max
i; j2V

mi j:

Experiments with this approach on both random
graphs and DIMACS benchmark graphs are reported in
[11]. Weights were generated randomly in both cases.
The results obtained with replicator dynamics (3) were
compared with those produced by a very efficient maxi-
mum weight clique algorithm of the branch and bound
variety. The algorithm performed remarkably well es-
pecially on large and dense graphs, and it was typically
an order of magnitude more efficient than its competi-
tor.

Graph Isomorphism

Given two graphs G0 = (V 0, E0) and G00 = (V 00, E00), an
isomorphism between them is any bijection �: V 0V 00

such that (i, j) 2 E0 , (�(i), �(j)) 2 E00, for all i, j 2

V0. Two graphs are said to be isomorphic if there exists
an isomorphism between them. The graph isomorphism
problem is therefore to decide whether two graphs are
isomorphic and, in the affirmative, to find an isomor-
phism.

The graph isomorphism problem is one of those few
combinatorial optimization problems which still resist
any computational complexity characterization [19,28].
Despite decades of active research, no polynomial time
algorithm for it has yet been found. At the same time,
while clearly belonging to NP, no proof has been pro-
vided that it is NP-complete. Indeed, there is strong ev-
idence that this cannot be the case, for otherwise the
polynomial hierarchy would collapse [14,52]. The cur-
rent belief is that the problem lies strictly between the P
and NP-complete classes.

The subgraph isomorphism problem is more gen-
eral and in fact more difficult, being NP-complete [19].
Given two graphs, it is the problem of determining
whether one is isomorphic to a subgraph of the other.
At the highest level of generality we find the maxi-
mum common subgraph problem, which consists of
finding the largest isomorphic subgraphs of two graphs.
A simpler version of this problem is to find a maximal
common subgraph, i. e., an isomorphism between sub-
graphs which is not included in any larger subgraph iso-
morphism.

H.G. Barrow and R.M. Burstall [1], and also D.
Kozen [30], introduced the notion of an association
graph as a useful auxiliary graph structure for solv-
ing general graph/subgraph isomorphism problems.
Specifically, the association graph derived from graphs
G0 = (V 0, E0) and G00 = (V 00, E00) is the undirected graph
G = (V , E) where

V D V 0 � V 00

and

E D f((i; h); ( j; k)) 2 V � V : i ¤ j; h ¤ k;

(i; j) 2 E0 , (h; k) 2 E00g :

The following straightforward result establishes an
equivalence between the graph isomorphism problem
and the maximum clique problem [46].

Theorem 4 Let G0 = (V 0, E0) and G00 = (V 00, E00) be two
graphs of order n, and let G be the corresponding associa-
tion graph. Then, G0 and G00 are isomorphic if and only if
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!(G) = n. In this case, any maximum clique of G induces
an isomorphism between G0 and G00, and vice versa. In
general, maximum (maximal) cliques in G are in one-to-
one correspondence with maximum (maximal) common
subgraph isomorphisms between G0 and G00.

By virtue of Theorem 2, it is a straightforward exercise
to formulate the graph isomorphism problem in terms
of a quadratic programming problem. Let G0 and G00

be two arbitrary graphs of order n, and let AG denote
the adjacency matrix of the corresponding association
graph G, whose order is n2. The graph isomorphism
problem is equivalent to the following program:

(
max bf G(x) D x>(AC 1

2 In2 )x
s.t. x 2 Sn2 :

(9)

More precisely, G0 and G00 are isomorphic if and only
if bf G(x�) D 1 � 1/2n. In this case, any global solu-
tion to (9) induces an isomorphism between G0 and
G00, and vice versa. In general, local (global) solutions
to (9) are in one-to-one correspondence with maximal
(maximum) common subgraph isomorphisms between
G0 and G00.

The previous result allows one to use replicator dy-
namics with payoff matrix

W D AG C
1
2
In2

as a heuristic for graph isomorphism problems. Start-
ing from an arbitrary initial state, the dynamical system
will converge to a local solution of (9). This will cor-
respond to a characteristic vector of a maximal clique
in the association graph G which, in turn, will induce
an isomorphism between two subgraphs of G0 and G00

which is maximal, in the sense that there is no other
isomorphism between subgraphs of G0 and G00 that in-
cludes the one found.

The algorithm outlined above has been tested over
hundreds of random 100-vertex graphs with expected
densities ranging from 1% to 99%. Except for very
sparse and very dense instances, the algorithm was al-
ways able to obtain a correct isomorphism very effi-
ciently. In terms of quality of solutions, the result com-
pare favorably with those obtained using more sophisti-
cated state-of-the-art deterministic annealing heuristics
which, in contrast to replicator dynamics, are explicitly
designed to escape from poor local solutions. As far as

computational time is concerned, replicator dynamics
turned out to be significantly faster.

In [46] experiments were also done using the fol-
lowing exponential version of replicator equations,
which arises as a model of evolution guided by imita-
tion [22,23,24,55]:

ẋi (t) D xi(t)

 
e��i (t)

Pn
jD1 x j(t)e�� j(t)

� 1

!
; (10)

i = 1, . . . , n, where � is a positive constant. As � tends
to 0, the orbits of this dynamics approach those of
the standard, ‘first order’ replicator model (2), slowed
down by the factor �; moreover, for large values of �
the model approximates the so-called ‘best-reply’ dy-
namics [24]. As it turns out [22], these models behave
essentially in the same way as the standard replicator
equations (2), the only difference being the size of the
basins of attraction around stable equilibria.

A customary way of discretizing equation (10) is
given by the following difference equations [15,20]:

xi (tC 1) D
xi(t)e��i (t)

Pn
jD1 x j(t)e�� j(t)

; (11)

i = 1, . . . , n. The extensive results reported in [46] with
this dynamics show that exponential replicator dynam-
ics may be considerably faster and even more accurate
than the standard, first order model.

The approach just described is general and can
clearly be extended to deal with subgraph isomorphism
or relational structure matching problems [45]. Prelim-
inary experiments, however, seem to indicate that lo-
cal optima may represent a problem here, especially in
matching sparse and dense graphs. In these cases escape
procedures like those presented in [5,6,9,13] would be
helpful.

Subtree Isomorphism

Given a graph G = (V , E), a path is any sequence of dis-
tinct vertices i0 � � � in such that for all k = 1, . . . , n, (ik� 1,
ik) 2 E; in this case, the length of the path is n. If i0 = in
the path is called a cycle. A graph is said to be connected
if any pair of vertices is joined by a path. The distance
between two vertices i and j, denoted by d(i, j), is the
length of the shortest path joining them (by convention
d(i, j) =1, if there is no such path). Given a subset of
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vertices C � V , the induced subgraph G[C] is the graph
having C as its vertex set, and two vertices are adjacent
in G[C] if and only if they are adjacent in G.

A connected graph with no cycles is called a tree.
A rooted tree is one which has a distinguished vertex,
called the root. The level of a vertex i in a rooted tree, de-
noted by lev(i), is the length of the path connecting the
root to i. Note that there is an obvious equivalence be-
tween rooted trees and directed trees, where the edges
are assumed to be oriented. We shall therefore use the
same terminology typically used for directed trees to
define the relation between two adjacent vertices. In
particular, if (i, j) 2 E and lev(j)� lev(i) = + 1, we say
that i is the parent of j and, conversely, j is a child of
i. Trees have a number of interesting properties. One
which turns out to be very useful for our characteriza-
tion is that in a tree any two vertices are connected by
a unique path.

Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted
trees. Any bijection �H1!H2, with H1 � V1 and H2

� V2, is called a subtree isomorphism if it preserves
the adjacency and hierarchical relationships between
the vertices and, in addition, the subgraphs obtained
when we restrict ourselves to H1 and H2, i. e., T1[H1]
and T2[H2], are trees. The former condition amounts
to stating that, given i, j 2 H1, we have (i, j) 2 E1 if
and only if (�(i), �(j)) 2 E2, and i is the parent of j
if and only if �(i) is the parent of �(j). A subtree iso-
morphism is maximal if there is no other subtree iso-
morphism �0: H1

0!H2
0 with H1 a strict subset of H1

0,
and maximum if H1 has largest cardinality. The max-
imal (maximum) subtree isomorphism problem is to
find a maximal (maximum) subtree isomorphism be-
tween two rooted trees. This is a problem solvable in
polynomial time [19].

Let i and j be two distinct vertices of a rooted tree
T, and let i = x0 � � � xn = j be the (unique) path joining
them. The path-string of i and j, denoted by str(i, j), is
the string s1 � � � sn on the alphabet {�1, +1} where, for
all k = 1, . . . , n, si = lev(xk)� lev(xk� 1). By convention,
when i = j we define str(i, j) = ", where " is the null
string (i. e., the string having zero length). The path-
string concept has a very intuitive meaning. Because of
the orientation induced by the root, only two types of
elementary moves can be done from any given vertex,
i. e., going down to one of the children (if one exists)
or going up to the parent (if the vertex is not the root).

Assigning to the first move the label +1, and to the sec-
ond the label �1, the path-string of i and j is simply the
string of elementary moves required to move from i to
j, following the unique path joining them.

The tree association graph (TAG) of two rooted
trees T1 = (V1, E1) and T2 = (V2, E2) is the graph G
= (V , E) where

V D V1 � V2 (12)

and, for any two vertices (i, h) and (j, k) in V , we have

((i; h); ( j; k)) 2 E, str(i; j) D str(h; k): (13)

The following theorem establishes a one-to-one cor-
respondence between the maximum subtree isomor-
phism problem and the maximum clique problem [48].

Theorem 5 Any maximal (maximum) subtree iso-
morphism between two rooted trees induces a maximal
(maximum) clique in the corresponding TAG, and vice
versa.

In many practical applications the trees being matched
have vertices with an associated vector of symbolic
and/or numeric attributes. The framework just de-
scribed can naturally be extended for solving attributed
tree matching problems [48].

Formally, an attributed tree is a triple T = (V , E, ˛),
where (V , E) is the ‘underlying’ rooted tree and ˛ is
a function which assigns an attribute vector ˛(i) to each
vertex i 2 V . It is clear that in matching two attributed
trees, the objective is to find an isomorphism which
pairs vertices having ‘similar’ attributes. To this end,
let � be any similarity measure on the attribute space,
i. e., any (symmetric) function which assigns a positive
number to any pair of attribute vectors. If �:H1!H2 is
a subtree isomorphism between two attributed trees T1

= (V1, E1, ˛1) and T2 = (V2, E2, ˛2), the overall simi-
larity between the induced subtrees T1[H1] and T2[H2]
can be defined as follows:

S(�) D
X
i2H1

�(˛1(i); ˛2(�(i))):

The isomorphism � is called a maximal similarity sub-
tree isomorphism if there is no other subtree isomor-
phism �0: H01!H02 such that H1 is a strict subset of
H1
0 and S(�)< S(�0). It is called a maximum similarity

subtree isomorphism if S(�) is largest among all subtree
isomorphisms between T1 and T2.
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The weighted TAG of two attributed trees T1 and T2

is the weighted graph G = (V , E, w), where V and E
are defined as in (12) and (13), and w is a vector which
assigns a positive weight to each vertex (i, h) 2 V = V1

× V2 as follows:

wih D �(˛1(i); ˛2(h)):

The following result is the weighted counterpart of
Theorem 5 [48].

Theorem 6 Any maximal (maximum) similarity sub-
tree isomorphism between two attributed trees induces
a maximal (maximum) weight clique in the correspond-
ing weighted TAG, and vice versa.

Theorems 5 and 6 provide a formal justification for ap-
plying replicator dynamics to find maximal subtree iso-
morphisms. In [48] this approach has been applied in
computer vision to the problem ofmatching articulated
and deformed visual shapes described by ‘shock’ trees,
an abstract representation of shape based on the sin-
gularities arising during a curve evolution process. The
experiments, conducted on a number of shapes repre-
senting various object classes, yielded very good results,
both in the weighted and in the unweighted case. The
system typically converged towards the globally opti-
mal solutions in only a few seconds, and compared
favorably with another powerful tree matching algo-
rithm.

AGeometric Problem

Let G = {x1, . . . , xm} be a finite set of points in Rn.
The convex hull of G, denoted by conv(G), is defined
as the smallest convex set containing G. A basic prob-
lem in computational geometry is to determine whether
a given query point y is inside or outside conv(G) [49].
This task can easily be accomplished by a replicator dy-
namical system [43]. Such an algorithm can be used as
a subroutine for solving more general geometric prob-
lems, such as the polygon inclusion and the convex hull
problems.

Consider the n × m real matrix defined as X = [x1
� � � xm]. It is well known that conv (G) can be written as

conv(G) D fu 2 Rn : u D Xv; v 2 Smg :

Given an arbitrary point y 2 Rn the measure

E(y;G) D min
v2Sm
kXv� yk2 ;

sometimes called the exteriority of y to conv(G), is just
the Euclidean distance between y and its closest point
in conv(G). The exteriority measure can provide use-
ful information about the ability of neural networks to
generalize well [16]. Clearly, y 2 conv(G) if and only if
E(y,G) = 0, in which case the closest point to y is y itself.

For convenience, the problem of evaluating E(y, G)
is translated into the equivalent (but more manageable)
quadratic program:

(
min C(v) D 1

2 kXv � yk22
s.t. v 2 Sm :

(14)

It is a well-known fact that C is convex (strictly con-
vex indeed if the vectors x1, . . . , xm happen to be lin-
early independent), and this implies that all local min-
ima ofC are also global minima. Any descent procedure
is therefore guaranteed to approach the global optimal
solution in this case, without the risk of getting trapped
into poor local minima.

It is interesting to note that a similar optimization
problem, known as the problem of ‘optimal stability’,
also arises in the context of learning in perceptron neu-
ral networks, where the goal is to derive the parameters
of the network so as to ensure larger basins of attraction
[31,51]. Moreover, our problem turns out to be closely
related to that of determining whether a given set of
prototype vectors can be stored in a neural network as-
sociative memory [29].

Note that the quadratic objective function in (14) is
explicitly written as follows:

C(v) D
1
2
v>X>Xv� y>XvC

1
2
y>y;

which is a nonhomogeneous quadratic polynomial. In
order for replicator equations to find a solution of prob-
lem (14), we need to construct the payoff matrix as

W D X>X

and to replace the 
 function defined in (1) with:


i (t) D
nX

jD1

wi jx j(t)C si ;

where si equals the ith component of �X|y. After
a proper rescaling of W and the si’s, it is readily seen
that C is a Liapunov function for both continuous-time
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(2) and discrete-time (3) dynamics. The algorithms will
converge to a local solution of (14), say v�, starting from
any interior point. Owing to the convexity of C, v� will
be also a global minimizer of C, so that the exteriority
can be calculated as:

E(y;G) D
p
2C(v
):

In [43], experiments with a simple toy problem demon-
strate the validity of the approach.

MultipopulationModels

The single-population replicator equations discussed so
far can easily be generalized to the case where inter-
actions take place among n � 2 individuals randomly
drawn from n distinct populations [23,55]. In this case,
the continuous-time dynamics (2) becomes

ẋ
i (t) D x
i (t)

 




i (t)�

X
�

x�i (t)

�
i (t)

!
; (15)

and its discrete-time counterpart is

x
i (tC	t) D
x
i (t)




i (t)P

� x
�
i (t)


�
i (t)

: (16)

The function 
 can either be linear, as in (1), or can
take a more general form. If there exists a polynomial F
such that





i D

@F
@x
i

;

then it can be proved that F strictly increases along any
trajectory of both dynamics [2,3,23].Note that these dy-
namics work in a product of standard simplices.

H. Mühlenbein et al. [39] used multipopulation
replicator equations to approximately solve the graph
partitioning problem, which isNP-complete [19]. Given
a graph G = (V , E) with edge weights wij, their goal was
to partition the vertices of G into a predefined number
of clusters in such a way as to maximize the overall in-
trapartition traffic

F D
Y



K
;

where

K
 D
X
i

X
j

wi jx


i x



j

is the intrapartition traffic for cluster �. Here, x
i can
be interpreted as the probability that vertex i belongs to
cluster �.

By putting





i D

2F
P

j wi jx
j
K


;

the replicator equations seen above will indeed con-
verge toward a maximizer of F. However, in so do-
ing the system typically converges towards an inte-
rior attractor, thereby giving an infeasible solution. To
avoid this problem, Mühlenbein et al. [39] put a ‘selec-
tion pressure’ parameter S on the main diagonal of the
weight matrix, and altered it during the evolution of the
process. Intuitively, S = 0 has no influence on the sys-
tem. Negative values of S prevent the vertices to decide
for a partition, whereas positive values force the ver-
tices to take a decision. The proposed algorithm starts
with a negative value of S, and makes the discrete-time
dynamics (16) evolve. After convergence, if an infeasi-
ble solution has been found, S is increased and the al-
gorithm is started again. The entire procedure is iter-
ated until convergence to a feasible solution. A similar,
but more principled, strategy for the maximum clique
problem can be found in [9]. The results presented in
[39] on a particular problem instance are fairly encour-
aging. However, more experiments on larger and di-
verse graphs are needed to fully assess the potential of
the approach.

Multipopulation replicator models have also been
used in [39,41] to solve the traveling salesman prob-
lem, which asks for the shortest closed tour connecting
a given set of cities, subject to the constraint that each
city be visited only once. The results presented on small
problem instances, i. e., up to 30 cities, are encouraging
but it seems that the results do not scale well with the
size of the problem.

Conclusions

Despite their simplicity and inherent inability to escape
from local solutions, replicator dynamics have proved
to be a useful heuristic for attacking a variety of com-
binatorial optimization problems. They are completely
devoid of operational parameters, which typically re-
quire a lengthy, problem-dependent tuning phase, and
are especially suited for parallel hardware implementa-
tion.
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This article describes resource allocation for control of
epidemics of infectious diseases in humans, particularly
diseases that are spread directly between individuals,
such as sexually-transmitted diseases and influenza. In
its most general form, the problem is to determine the
optimal amount to spend over time and in different
populations on programs for controlling the spread of
an infectious disease. Restricted versions of the prob-
lem include that of determining the level of investment
over time in a single program targeted to a single popu-
lation; determination of the appropriate investment in
competing interventions targeted to the same popula-
tion; and determination of the appropriate allocation of
resources for a single intervention targeted to different
populations.

While resource allocation problems have been stud-
ied by economists and operations researchers for many
years (see, for example, [4,10,26]), resource allocation
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for epidemic control poses special challenges. Epidemics
of infectious diseases are dynamic and are inherently
nonlinear: while an epidemic is growing, saving one
person today from getting infected could translate into
scores of people being saved from infection over time.
In addition, an epidemic may progress differently in
different populations, and different programs for the
control of an infectious disease can have very different
costs and effectiveness.

Approaches to the problem of resource alloca-
tion for epidemic control include analytical deriva-
tions for simple epidemic models, numerical analysis of
more sophisticated epidemic models, and heuristic ap-
proaches for decision makers. Before these approaches
are described, a simple epidemic model is presented.
Understanding this type of model is key to understand-
ing the resource allocation problem.

Epidemic Models

One of the simplest types of epidemic models assumes
transmission of an infectious disease within a closed
population that is divided into three subgroups: unin-
fected individuals, infected individuals, and those re-
moved from the infection-transmission process [12,13].
To specify the model, let x(t) represent the number of
uninfected individuals in the population at time t, y(t)
the number of infected individuals in the population at
time t (these individuals are assumed to be infectious),
and z(t) the number of individuals removed from the
infection-transmission process at time t. Let ˇ(t) be the
rate of infection-transmitting contacts at time t, u(t) the
rate at which susceptibles are immunized at time t, and
�(t) the rate of removal from the population at time t.
The model can be written as

dx(t)
dt
D �ˇ(t)x(t)y(t)� u(t); (1)

dy(t)
dt
D ˇ(t)x(t)y(t)� �(t)y(t); (2)

dz(t)
dt
D �(t)y(t)C u(t) (3)

This model and similar models provide the founda-
tion for much of the work that has been done on opti-
mal resource allocation for epidemic control.

A key feature of this and other models of infectious
disease is a nonlinear growth rate that is a function of
the size of the uninfected group multiplied by the size
of the infected group. More sophisticated models may
include features such as entry into and exit from the
population, further subdivision of the population by
risk group and disease stage, different types of infec-
tious contacts, variable infectivity rates, and stochastic
parameters. Comprehensive expositions of mathemati-
cal epidemic models can be found in [2] and [3].

Analytical Results

A number of researchers have considered the applica-
tion of control theory to simple epidemic models sim-
ilar to that outlined above with the goal of obtaining
analytical results characterizing the form of the optimal
solution. The parameters of the model may be assumed
to be deterministic or stochastic. Examples of controls
typically considered include vaccination of susceptibles
(which increases the rate u(t)), treatment or removal of
infectious persons (which increases the rate �(t)), and
reduction in the sufficient contact rate (ˇ(t)) between
susceptibles and infectious persons. A finite or infinite
time horizon may be considered. The goal is to deter-
mine the optimal control over time: for example, the
optimal rate of immunization u(t) for 0 � t � T. For
analytical tractability, most analyses assume that only
one type of control is applied (and thus only one pa-
rameter is affected by the control).

A typical objective in the application of such control
might be to minimize the cost of control (e. g., immu-
nization cost plus the fixed cost of establishing the im-
munization program) plus the cost associated with the
number of individuals who become infected. With the
exception of the fixed cost of establishing a control pro-
gram, costs are usually assumed to be linear: the cost of
control is a constant multiplied by the affected param-
eter, and the cost of disease is a constant multiplied by
the number of individuals who become infected.

Use of simple epidemic models and linear cost func-
tions allows for characterization of the form of the op-
timal solution: for example, immunization of all indi-
viduals until the epidemic is reduced to a certain level
(a ‘bang-bang’ solution with a single switching point).
A survey up to 1977 of the application of control the-
ory to infectious diseases can be found in K. Wickwire
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[27]. More recent work of this type can be found in
D. Greenhalgh [6], S.P. Sethi [23], and Sethi and P.W.
Staats [24].

A related type of analysis considers the optimal tim-
ing of interventions for epidemic control. For exam-
ple, H.L. Lee and W.P. Pierskalla [15] considered mass
screening for a contagious disease with no latent period.
The goal is to minimize the average number of infected
individuals in the population over a fixed time horizon.
The authors showed that under certain assumptions, an
optimal strategy is mass screening at equal time inter-
vals.

Another type of analysis considers allocation of re-
sources among different population subgroups with the
goal of disease eradication (reducing the disease equi-
librium in each population to zero). Use of an equilib-
rium condition allows for analytical tractability. For ex-
ample, R.M. May and R.M. Anderson [17] considered
the distribution of vaccine among several heteroge-
neously mixing populations. The goal is to eradicate the
disease with as little vaccine as possible. They character-
ized the optimal fraction of each population that should
be immunized. As another example, J. Abounadi and
L.M. Wein [1] analyzed resource allocation for control
of human immunodeficiency virus (HIV) among ho-
mogeneously mixing and heterogeneously mixing pop-
ulation groups. Expenditure of resources on a given
population group reduces that group’s contact rates.
The goal is to eradicate the disease while minimizing
the total cost of control (which is a monotonically in-
creasing function of the reduction in the contact rates).
The authors developed analytical results characterizing
the amount of resource that should be spent on each
population.

More recent analytical work by A. Richter, M.L.
Brandeau and G.S. Zaric [22] considers allocation of
resources across nonmixing populations with the goal
of minimizing the total number of new infections that
occur over a fixed time horizon. Resources for trans-
mission reduction are to be allocated among the popu-
lation groups subject to a constraint on total available
resources (cost of control is a monotonically increas-
ing function of the reduction in the transmission rate)
and subject to limits on attainable transmission rates in
each population. The authors establish conditions un-
der which the resource allocation problem is convex or
concave, as well as other analytical results. Zaric [28]

extended such analyses to more sophisticated epidemic
models.

Numerical Analyses

Another approach to the problem of resource allocation
for epidemic control uses numerical analysis of more
sophisticated epidemic models, often tailored for spe-
cific diseases. Several notable examples are mentioned
here.

Using a model of tuberculosis epidemiology, poli-
cies for the control of tuberculosis in developing coun-
tries were analyzed by C. ReVelle and colleagues in [18]
and [19]. Numerical analysis was used to determine the
set of interventions that minimizes the cost of control
required to achieve a specified number of active cases at
the end of a given time horizon. I.M. Longini, E. Acker-
man and L.R. Elveback [16] used numerical analysis to
determine the optimal distribution of a fixed amount of
vaccine among different age groups during an Influenza
A epidemic. H.W.Hethcote and J.A. Yorke [8] andHet-
hcote, Yorke and A. Nold [9] used numerical analysis
of an epidemic model to evaluate the equilibrium epi-
demic state for policies aimed at controlling the spread
of gonorrhea. Although the results were not compared
explicitly with program cost, the authors suggested that
such comparison must be made before the appropriate
allocation of resources can be determined.

A framework similar to that of [22] was used by
Richter, Brandeau and D.K. Owens [21] to evaluate al-
location of HIV prevention resources among different
programs targeted to different risk groups in the patient
population of a large health care system. The authors
estimated the cost-effect function associated with each
intervention as applied to each population (defined as
the reduction in transmission that could be achieved as
a function of expenditure), and used numerical analy-
sis to determine the optimal allocation of a fixed budget
across the prevention programs and the populations.

In [5], C.M. Friedrich and Brandeau investigated
the optimal level of funding for a single HIV prevention
program targeted to a single population using a sim-
ple epidemic model. Via simulation, the authors devel-
oped qualitative insights into the nature of the optimal
investment (e. g., spend no money, spend some of the
money, or spend as much money as possible) for differ-
ent types of cost-effect functions.
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Another approach to the resource allocation prob-
lem uses ideas from artificial intelligence. W.Y. Tan and
S. Yakowitz [25] proposed the application of amachine-
learning algorithm for a Markov decision process (e. g.,
see T.L. Lai and Yakowitz [14]) to determine the op-
timal policy for control of an epidemic. The approach
was illustrated using numerical analysis of a stochas-
tic model of the HIV epidemic in a single population.
The goal is to minimize the number of new infections
by continuously allocating a fixed amount of resources
between programs that either lower the contact rate or
lower the infectivity per contact. As the learning algo-
rithm progresses, the resource allocation progresses to
an equilibrium; [25] showed that this equilibrium is the
optimal allocation.

Practical Tools for DecisionMakers

Existing analytical work on resource allocation for epi-
demic control has limited applicability due to the sim-
ple epidemic models and simple control policies that
are assumed. Numerical approaches can provide ap-
plicable results, but require the development of real-
istic epidemic models and the collection of a signifi-
cant amount of data. As an alternative, E.H. Kaplan
[11] has proposed a heuristic approach for community
planners who must allocate HIV prevention resources.
He also suggests that decision makers subjectively con-
struct production functions that estimate the number of
new HIV infections that would occur in a particular
population group if x incremental dollars were spent on
a given HIV prevention program targeted to that group.
Then the problem of allocating a fixed prevention bud-
get among prevention programs and populations so as
to minimize newHIV cases reduces to a knapsack prob-
lem.

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems
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The purpose of this article is to introduce the complex
reverse convex programming problem. As such, this ar-
ticle is not a complete survey of the research into solu-
tion methods for reverse convex programs. This article

will provide several examples that demonstrate the im-
portance or relevance of the problem class, and will in-
troduce the reader to some typical solution strategies
that illustrate the combinatorial nature of the problem.
Much of the early work in reverse convex programming
deals with finding local minima [1,2,15,17]. The discus-
sion of this article is directed toward the global opti-
mization of reverse convex programs.

Definitions

Let X and C denote two convex subsets of Rn, where X
is closed. Let G = cl(Cc); that is, G is the closure of the
complement of a convex subset of Rn. We call such a set
a reverse convex set. The corresponding reverse convex
feasible region is defined as

F D X \ G: (1)

Let f : O! R1}, where O is an open subset of Rn such
that O � F. The general reverse convex programming
problem (RCP) is defined as

min f f (x) : x 2 X \ Gg : (2)

Clearly, F is generally a nonconvex set and, moreover,
F is often disconnected. As a result, (2) is a member of
a class of difficult optimization problems, whether or
not f is a convex function.

Examples

The first two examples below are well-known difficult
examples in their own right; each can be rewritten as an
equivalent reverse convex optimization problem. There
is no computational significance of this conversion;
however, the conversion is included so the reader may
better understand the general complexity of the reverse
convex class of optimization problems.

Example 1 Let

XI D
�
x 2 Rn : Ax � b; x j 2 f0; 1g;

j D 1; : : : ; n

	
;

where A is (m × n)-matrix and b is anm-vector. Then

min
˚
c>x : x 2 XI

�
: (3)

is the well-known 0–1 linear integer programming
problem. Define the two sets X = {x 2 Rn: Ax � b, 0
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� xj � 1, j = 1, . . . , n} and G = {x 2 Rn:
P

j xj(1 � xj) �
0}. We see that G is a reverse convex set and that (3) is
equivalent to the reverse convex optimization problem

min
˚
c>x : x 2 X \ G

�
: (4)

Example 2 Let XA = {x 2 Rn: Ax � b, x � 0} and let f
be a concave function on Rn. The problem

min f f (x) : x 2 XAg (5)

is the well-known, and difficult, concave minimization
problem (f is continuous since we assume it is defined
on Rn). Introduce an additional variable, �, and the in-
equality constraint �� f (x)� 0. Let X = {(x, �) 2 Rn + 1:
Ax + �0 � b, x � 0}, where 0 is a column m-vector of
zeros and let G = {(x, �): �� f (x)� 0}, a reverse convex
set. Then (5) is equivalent to the reverse convex opti-
mization problem

min
x;�
f� : (x; �) 2 X \ Gg : (6)

Example 3 Let E denote the node-arc incidence ma-
trix of a connected, directed graph (assume there are
m nodes and n arcs). Let f i, j denote the nonnegative
flow on arc (i, j) and let ki, j � 0 denote the capacity
of arc (i, j). Assume the capacity of arc (i, j) can be in-
creased by an amount xi, j � 0 at a corresponding cost
of ci, j (xi, j)� 0. Also assume, for each arc (i, j), we have
ci; j(xi; j) < ci; j(xi; j) if xi; j < xi; j, ci, j (xi, j) ! 1, as
xi, j !1, and ci, j is continuous. Let B > 0 denote the
capacity expansion budget; it is desired to increase the
flow capacity (from the source to the sink, respectively
represented by the first and last rows of E) as much as
possible. We assume the network at hand has the prop-
erty that there are economies of scale present. That is,
the average cost of capacity expansion, for each arc, is
a decreasing function. That is, each incremental capac-
ity cost function, ci, j, is concave. Let v denote the value
of a feasible flow vector f . Let q = (� 1, 0, . . . , 0, 1)0. The
optimization problem may be written as

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

max
f ;x;v

v

s.t. E f � vq D 0
f � x � kX
i; j

ci; j(xi; j) � B

f � 0; x � 0:

(7)

Since each ci, j is concave and continuous, the set G = {x
� 0:

P
i, jci, j(xi, j)� B} is a reverse convex set.

Example 4 Consider the following problem, an exam-
ple of the linear bilevel optimization problem [5],8<

:
min
x;y

c>x C d> y

s.t. A1x C D1y � b1;
(8)

where y solves8<
:
min
z

f>z

s.t. A2x C D2z � b2:

The interpretation of this problem is that a ‘king’ de-
cides upon a vector pair, (x�, y�). He imposes his choice
of x� upon his subjects; however, this benevolent king
will allow his subjects to choose the vector y (since the
king is optimistic and, he assumes, omniscient as well,
he assumes his subjects’ optimal choice of y, when faced
with x�, will be the same as his choice, y�). Let

�(b2 � A2x) D

8<
:
min
z

f>z

s.t. A2x C D2z � b2;
(9)

denote the so-called optimal value function for the
king’s subjects, as a function of the king’s choice of x.
The king’s problem (8) is equivalent to8̂

ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
x;y

c>x C d> y

s.t. A1x C D1y � b1

A2x C D2y � b2

�(b2 � A2x) � f>y � 0:

(10)

Since � is a convex polyhedral function of x, we see that
the last constraint of (10) is a reverse convex constraint.
That is, the set G = {(x, y): �(b2 � A2x) � f |y � 0} is
a reverse convex set. Of course this problem is quite dif-
ficult in that, unlike the previous examples, the reverse
convex constraint is not explicitly known.

Example 5 Consider the reverse convex optimization
problem with several reverse convex constraints:

min f f (x) : x 2 X; gi (x) � 0; i D 1; : : : ;mg (11)

where each gi is a convex function. By the addition
of a variable, (11) can be converted to a reverse con-
vex optimization problemwith one reverse convex con-
straint [21]. Let

g(x) D min fgi(x) : i D 1; : : : ;mg (12)
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and let

p(x) D
X
i

gi (x);

q(x) D max

8<
:
X
j¤i

g j(x) : i D 1; : : : ;m

9=
; :

(13)

Then 0 � g(x) = p(x) � q(x) is equivalent to the two
constraints, in (x, t),(

q(x)� t � 0;
p(x) � t � 0;

(14)

where, of course, the last constraint is a reverse convex
constraint. See U. Ueing [22] for an early branch and
bound approach to the global optimization of (11).

Example 6 Consider the separable optimization prob-
lem8̂

<
:̂
min
x2X
y2Y

f1(x)C f2(y)

s.t. g1(x)C g2(y) � 0;
(15)

whereX, Y are convex sets of, perhaps, different dimen-
sions; f 1 is convex, f 2 is concave, g1 is a vector of con-
cave functions, and g2 is a vector of convex functions.
Assume for each y 2 Y , that the problem

(Py)

8<
:
min
x2X

f1(x)

s.t. g1(x) � �g2(y)

has a saddle point. Let yi, i = 1, . . . , k, be points of Y and
let (xi, �i) denote a saddle point for (Pyi ), i = 1, . . . , k.
The kth relaxed master of Benders’ decomposition pro-
cedure [6,8] is8̂

ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
y2Y
�

�

s.t. � �
�
f2(y) � �i>g2(y)

�

� f1(xi) � �i>g1(xi );
i D 1; : : : ; k:

(16)

This is a problem with several reverse convex con-
straints. Note that a simple change of variable, � = �
� f 2(y), leads to the equivalent problem8̂

ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
y2Y
�

� C f2(y)

s.t. � C �i>g2(y)
� f1(xi) � �i>g1(xi );

i D 1; : : : ; k:

(17)

This problem involves the minimization of a concave
function subject to several reverse convex constraints,
a very difficult formulation of the relaxed master.

Some Basic Concepts for SolutionMethods

Let f : Rn ! R1 and g: Rn ! R1 be convex functions
and let G = { x 2 Rn: g(x) � 0}, a reverse convex set.
Also assume

9w 2 X \ Gc 3 f (w) < f �; (18)

where f � is the optimal value of the reverse convex
problem (2). Then any optimal solution x has the prop-
erty that g(x) D 0; it then follows that

0 D max fg(x) : x 2 X; f (x) � f (x)g (19)

and, therefore, x is optimal for (19). Under certain ad-
ditional ‘stability’ [21] conditions, it is also the case that
if x satisfies (19) then x is optimal for (2).

X a Convex Polytope, f Linear

In order to develop an understanding of the combi-
natorial nature of the problem, it is useful to consider
the following. If, in addition to the above assumptions,
X is a convex polytope then the feasible region (1) is
also a convex polytope (see [11,12]). This, in turn, im-
plies that there is an optimal solution for (2) on an edge
of the feasible region (1) if f is a linear function (or,
of course, if f is a concave function). In this case we
refer to the reverse convex programming problem as
LRCP to denote that we are dealing with linear pro-
grams with an additional reverse convex constraint. As-
sume a vertex, x of X, can be found with the property
that g(x) � 0. Then pivot via the simplex algorithm, so
as to decrease f (x) = c|x, until a neighboring pair of ver-
tices, u and v, is found with the property g(u) � 0 and
g(v) < 0. Let z 2 [u, v] be the last point on the edge [u,
v] with the property g(z) = 0. Consider the convex poly-
tope X \ {x: c| x = c|z} and generate the n � 1 neigh-
bors (we assume nondegeneracy for this discussion) of
z on the hyperplane {x: c| x = c|z}. If one of those neigh-
bors, say �, is such that g(�) � 0 then we consider the
edge, [�1, �2] of X, that contains � and continuing piv-
oting, via the simplex algorithm, from that edge’s end-
point which is feasible. On the other hand, if no neigh-
bor of z is feasible, we solve (19) with x D z. If x is
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optimal for (19) then, under ‘stability’, x is optimal for
(2). If x is not optimal for (19), let x0 be optimal; then x0

is a vertex of X (if c>x0 < c>x) or x0 is on an edge of X
(if c>x0 D c>x) and, of course, g(x0) > 0. Note that we
have made an implicit assumption that (19) is an easier
problem to solve than the original problem (2). There
is no theoretical justification for this assumption; often
however, in practice, the assumption appears to hold.
Also, all that is needed is an x0 with the aforementioned
properties; an optimal x0 is not necessarily required.

See [3,4] for an early usage of the concave minimiza-
tion problem (19) in the context of the application of
Benders’ decomposition [6,8] to an economies-of-scale
network capacity expansion problem of the form of (7).
Also see [11] for a full discussion of the above pivoting
method.

Since an edge optimal solution exists, a branch and
bound edge search strategy may be in order. The first
is due to R.J. Hillestad [10]; also, see [14]. We will not
discuss this approach.

There is also a large literature, employing cutting
planes based on the seminal paper of H. Tuy [20],
which discusses the usefulness and difficulties of cut-
ting planes for reverse convex optimization (e. g., see
[7,9,12,13,18]). This literature will not be discussed in
this article.

X Convex, F Convex

Under assumption (18), and following Tuy [21], define
the mapping 
 : X \ G! Rn by

˛ D min fı 2 [0; 1] : g(x C ı(w � x)) D 0g ;


(x) D x C ˛(w � x) :
(20)

If z solves (19) but g(z) > 0, then f (
(z)) < f (x). This
suggests the following:

Select x 2 X \ @G(@G = fx : g(x) = 0g)
Repeat Let z solve (19)

If g(z) > 0; x  �(z)
Until fg(z) = 0g

Under a few technical assumptions, this method
will, in the limit, produce an optimal solution. How-
ever, the major step in the algorithm involves a convex

maximization problem over a convex set and, in some
sense, illustrates the relationship between convex max-
imization (concave minimization) and reverse convex
programs. Of course, the convex maximization prob-
lem is often as difficult to solve as the original reverse
convex program (2) and, therefore, solving the latter by
a sequence of convex maximization problems may not
be effective. However, there are excellent concave mini-
mization methods (cf. e. g.,� Concave Programming).

There are various algorithmic strategies that at-
tempt to overcome the inherent difficulties for solving
(19) directly. Let ıx denote a support for g at the point
x. Let x 2 X\G and let z solve the convex optimization
problem, with a linear objective,

max
˚
ı>x (x � x) : x 2 X; f (x) � f (x)

�
: (21)

If ıx (z � x) > 0, then g(z) > 0 and f (
(z)) < f (x). To
see the latter, observe

f (
(z)) � f (z)C ˛( f (w) � f (z))

< f (z)C ˛( f (w) � f �) < f (z) � f (x) ;

where the strict inequalities hold since (18) implies that
˛ > 0 and that z cannot be optimal for (2). This suggests
the following:

Select x 2 X \ G
DO Repeat

Let z solve (21)
If ı>x (z � x) > 0, x  �(z)
Until

˚
ı>x (z � x) = 0

�
x  �(z)
let z solve (19)
If g(z) > 0; x  �(z)

WHILE fg(z) > 0g

Of course, the point of solving (21) is to avoid, as
long as possible, addressing problem (19). Nevertheless,
(19) must be dealt with eventually. Another approach
is to use an outer approximation method for problem
(19). For instance, see Tuy [21] for a method which
generates a sequence of convex polytopes, {Sk}, with the
properties Sk� Sk� 1 and each Sk �X \G. Other meth-
ods, and combinations of methods, have been devel-
oped for problem (2) and the reader is referred to [13]
as well as to the ‘Journal of Global Optimization’.
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Test ProblemConstruction

At this point in time, as one might imagine, there are
no generally applicable and efficient methods for solv-
ing (2), the general RCP. Therefore, in order to test new
procedures, it is important to have at hand a method
for generating problems for which we know the opti-
mal vector. There are several such methods; we will de-
velop one, the first, due to Y. Sung and J.B. Rosen [19]
(also, see [16]), for constructing a concave minimiza-
tion problem, over a convex polytope, whose answer is
known. A slight modification of that method leads to
the construction of an LRCP whose answer is known.
We proceed as follows.

Let X = {x 2 Rn: Ax � b}, where A is m × n, m >
n (e. g., nonnegativity constraints are included), and it
is assumed that X is bounded. Let f (x) = c|x and let x
be any edge point of X that is not a vertex of X. Then
x is a vertex of X \

˚
x : c>x � c>x

�
. Without loss of

generality, assume the first n � 1 rows of (A, b) define
the edge of X of which x is an element. That is, x is the
unique solution of the system of equations

a>i x D bi ; i D 1; : : : ; n � 1;

c>x D c>x̄
(22)

(we assume c| is not a linear combination of the rows
a>i , i = 1, . . . , n � 1). Let Dx = d denote the matrix rep-
resentation of (22). Let

vi D min
˚
a>i x : Ax � b; c>x � c>x

�
;

i D 1; : : : ; n � 1 ;

vn D min
˚
c>x : Ax � b

� (23)

and, for arbitrarily small " > 0, define v|(") = (v1 � ",
. . . , vn � "). Let the jth component of the vector r be de-
fined by rj = (dj + vj("))/2. Then x is the unique optimal
solution for the LRCP

min
�
c>x : Ax � b;

kDx � rk2 � kd � v(")k2 /4 � 0

	
;

where k � k denotes the Euclidean norm.

See also

� ˛BB Algorithm
� D.C. Programming
� Quadratic Knapsack
� Quadratic Programming with Bound Constraints
� Standard Quadratic Optimization Problems: Theory
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Control engineers are interested in the amount of mod-
eling uncertainty that can be tolerated in feedback con-
trol systems. Robust control theory concerns the eval-
uation and optimization of uncertainty tolerance, oth-
erwise known as stability margin. The purpose of ro-
bust control theory is to enable control engineers to de-
termine quantitatively whether or not a feedback con-
trol design is capable of maintaining satisfactory perfor-
mance for all perturbations within a given class. Beyond
this, they may also seek to optimize control system ro-
bustness by choosing a feedback controller that maxi-
mizes uncertainty tolerance. In either case, the problem
is essentially a nonconvex optimization problem.

Canonical Robust Control Problem

By a suitable choice of variables, most robust con-
trol problems can be cast in the general framework of
the canonical uncertain control system (S) depicted in
Fig. 1 (cf. [25, p. 62]). Given the plant P(s) and a set
� of uncertain feedback perturbations�, the canonical
robust control synthesis problem is to find a controller
K(s) so that the closed-loop transfer function matrix re-
mains stable for all block diagonal perturbation matri-
ces

	 D

0
BBB@

	1 0 � � � 0
0 	2 � � � 0
:::

: : :
:::

0 0 � � � 	n

1
CCCA 2 �:

The �i’s are called uncertainties and the set � is called
the uncertainty set. Via the introduction of an addi-
tional fictitious uncertainty, J.C. Doyle, J. Wall and G.
Stein [10] observed that one may embed performance
issues such a noise attenuation requirements within the
robust stability framework; so, the focus on stability ro-
bustness is not overly restrictive.

When the controller K(s) is given beforehand, then
the resulting simplified problem is called the robustness
analysis problem, also known as the multivariable sta-

Robust Control, Figure 1
Canonical uncertain control system (S)
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bility margin analysis problem. On an abstract level,
M.G. Safonov [25] showed the analysis problem to be
equivalent to testing for the topological separation of the
graphs of the operators T and� – this is so even in very
general cases where T and � are nonlinear operators.

Themultivariable stability margin Km(T) associated
with a given controller K is [26,27]

Km(T)
�
D

8̂
<̂
ˆ̂:

inf
��0

�

s.t. system (S) is unstable
	 2 ��:

Thus, the quantity Km is the smallest nonnegative real
number � for which the ‘scaled’ set � � contains
a destabilizing �. In cases where there is no � � 0 for
which there is a destabilizing � 2 ��, one defines Km

= 1. Clearly, a controller K(s) solves the robust con-
trol synthesis problem if and only if the nominal closed-
loop transfer function T(s) satisfies

Km(T) > 1:

It may be assumed without loss of generality that
dim(u1) = dim(y1).

Linear Time-Invariant Robustness

If, as is often assumed by control engineers, both� and
T are linear time-invariant with stable rational Laplace
transforms, then robustness analysis may be related to
the characteristic equation of system (S)

det(I �	(s)T(s)) D 0: (1)

The system (S) is said to be stable for a given�(s) if and
only if (1) has no solution CC where CC denotes the
closed right-half of the complex plane.

Suppose, additionally, that the set � is specified in
the frequency-domain as simply the set of stable �’s
for which �(j!) 2 �(j!) where, for each !, �(j!) is
a given set of matrices. Then, the multivariable stability
margin can be evaluated as

Km D inf
!

km( j!)

where

km(T( j!))
�
D

8̂
<̂
ˆ̂:

inf
��0

�

s.t. det(I � �	( j!)T( j!)) D 0;
	( j!) 2 �( j!):

(2)

Closely related to the multivariable stability margin
km(j!) is the structured singular value [9]

�(T( j!)) �D
1

km(T( j!))
:

Thus, an ‘optimal’ solution to the robust control syn-
thesis problem is obtained if one can solve the so-called
�-synthesis control problem

min
K(s)

sup
!
�(T( j!)):

The exact computation of�(T(j!)) is in general im-
practical, except for very simply structured uncertainty
sets �. Indeed, the optimization problem (2) is in gen-
eral NP-hard, meaning that it cannot be computed in
polynomial time in the worst cases [6]. Still, easy to
compute conservative upper-bounds on � abound, but
even for these it is usually necessary to first reformulate
the robustness analysis problem.

Topological Separation, Sectors and IQCs

The robustness analysis problem (2) can be interpreted
in terms of a ‘topological separation’ of the graphs of
�(j!) and T(j!) (e. g., [15,16,25]):

graph(	) �D
�
z D

�
u1
y1

�
2 range

�
	

I

�	
(3)

graph(�T) �D
�
z D

�
u1
y1

�
2 range

�
I
�T

�	
: (4)

In particular, the robustness condition km(T) > 1 is
equivalent to the existence of a complex matrix Q such
that the quadratic functional z�Qz topologically sepa-
rates graph(�) and graph(�T) in the sense that [15,25]

Re(z�Qz) � 0 for all z 2 graph(	); z ¤ 0; (5)

Re(z�Qz) < 0 for all z 2 graph(�T); z ¤ 0: (6)

Indeed, for � > 0 sufficiently small one such matrix is
[16]

Q( j!) D
�
�T�( j!)
�I

� �
�T( j!) �I

�
� �I:

Safonov [25], building on the 1960s nonlinear sta-
bility work of I.W. Sandberg [32,33] and G. Zames
[37], called this quadratic form of the topological sep-
aration condition the sector stability criterion. Later, A.
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Megretski and A. Rantzer [19] have dubbed it the in-
tegral quadratic constraint (IQC) approach and linked
it to the S-procedure nonlinear stability concept of V.A.
Yakubovich.

In formulating robustness analysis as an optimiza-
tion problem, the conditions (3)–(4) are usually rewrit-
ten as matrix definiteness conditions

herm

 �
	( j!)

I

��
Q( j!)

�
	( j!)

I

�!
� 0

for all	 2 � (7)

herm

 �
I

�T( j!)

��
Q( j!)

�
I

�T( j!)

�!
< 0; (8)

where

herm(X) �D
1
2
(X C X�):

Consequently, the problem (2) can be reformulated as
the optimization km(T(j!)) , inf� � 0 � subject to the
LMI constraints (7)–(8). Unfortunately, verifying that
there exists aQ satisfying (7)–(8) is not in general easier
than the original problem. The problem remains inher-
ently NP-hard [6].

As is apparent from (7)–(8), the problem in this
form is an instance linear matrix inequality (LMI)
problem, but with possibly infinitely many LMI con-
straints: (7) has one LMI for each element of the set �
which in general may be infinite – for example, even the
unit interval � = [0, 1]� R has infinitely many points.

Restrictions on Q

The class of matrices Q which may potentially solve the
optimization (7)–(8) is inherently restricted. K.C. Goh
and Safonov [15] established that every IQC topolog-
ical separating functional is isomorphic to the positiv-
ity and small gain stability criteria of Zames [37]. More
precisely, for some invertible matrix eF, the change of
variables
�eu1

ey1
�
�
DeF

�
u1
y1

�
DeFz

causes the topological separation conditions (5)–(6) to
simplify to the so-called ‘small gain’ form

key1k2 � keu1k
2 � 0 for all z 2 graph(	); z ¤ 0;

key1k2 � keu1k
2 < 0 for all z 2 graph(�T); z ¤ 0;

which corresponds to Q DeF�
�
�I 0
0 I

�
eF: Similarly, if

one defines

bF �
D

�
�I I
I I

�
eF;

then under the invertible change of variables
�bu1

by1
�
�
DbF

�
u1
y1

�
DbFz

conditions (5)–(6) assume the ‘positivity’ form

Re(by�1bu) � 0 for all z 2 graph(	); z ¤ 0;

Re(by�1bu) < 0 for all z 2 graph(�T); z ¤ 0;

which corresponds to Q D bF�
�
0 0
I 0

�
bF. One impli-

cation of these results is that, without loss of general-
ity, one may restrict the Q matrices to those for which
rank(Q) = dim(Q)/2 without introducing any conser-
vativeness in solving the optimization. Another impli-
cation is that anyQ that solves (7)–(8) must have a Her-
mitian part whose signmatrix has exactly as many 1’s as
�1’s. But, despite these freedoms to further restrictQ as
above, the problem of exact computation of km remains
inherently NP-hard.

Linear Matrix Inequalities

Since exact computation of the multivariable stability
margin is inherently NP-hard, one must settle for com-
puting upper and/or lower bounds on km. In particu-
lar, ‘conservative’ lower-bounds are preferred by con-
trol engineers, since these give conservative sufficient
conditions for stability of the uncertain system.

Many practical algorithms for computing a lower-
bound km on the multivariable stability margin in-
volve the solution of finite-dimensional linear matrix
inequalities of the form

km(T( j!)) � km(T( j!))

�
D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

inf
��0

�

s.t.

herm

  
I

�T( j!)

!�
Q(M)

 
I

�T( j!)

!!

< 0;
herm(M(�)) > 0:

(9)
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Casting the km lower-bounding problem in this frame-
work typically involves assuming additional ‘structural’
characteristics for the uncertainty set � and exploiting
these characteristics to identify linearly parametrized
subsets of matrices Q(�) and M(�) for which (7) is
known to hold a priori. Then, having eliminated the
constraint (7), the problem assumes the form of the
semidefinite programming problem (9), which is prac-
tical to solve. Indeed, for each fixed � � 0 it is a con-
vex linear matrix inequality (LMI) optimization prob-
lem. The key to success here is identify which classes of
linearly parametrized matrices Q(�) and M(�) go with
which sorts of uncertainty structure.

Uncertainty Structure

Several commonly encountered uncertainty structures
(cf. [13]) are listed in the table below along with linearly
parametrizedM(�) and Q(M) such that

�
	

I

��
Q(M)

�
	

I

�
� 0

for all

(
	 2 �;

M(�) with herm(M(�)) > 0:

Uncertainty 	 M(�) and Q(�)
Small gain
	 2 Cm�m

k 	 k� 1,

M = � I; � 2 R,

Q = �
�
�M 0
0 M

�

Positive 	 2 Cm�m M(�) = � I; � 2 R,

herm(	) � 0, Q =
�

0 0
M 0

�

Repeated small gain
ı 2 R
	 = ıIm�m , j ı j� 1,

M(�) = � 2 Cm�m ,

Q =
�
�M M
�M M

�

Repeated positive ı 2 R M(�) = � 2 Cm�m ,

	 = ıIm�m ; ı � 0, Q =
�

0 0
M 0

�

Repeated positive ı 2 C M(�) = � 2 Cm�m ,
	 = ıIm�m , M(�) = M�(�),

Re(ı) � 0, Q =
�

0 0
M 0

�

When it is known that each of the individual uncer-
tainties �i satisfies such a condition for a Qi (i = 1, . . . ,
m) partitioned evenly as

Qi
�
D

 
Q(11)

i Q(12)
i

Q(21)
i Q(22)

i

!
;

then it follows that inequality (7) holds for a likewise
partitioned Q having (for j, k = 1, 2)

Q( jk) D

0
BB@
Q( jk)

1 (M1) � � � 0
:::

: : :
:::

0 � � � Q( jk)
n (Mn)

1
CCA :

State-Space Robustness Analysis

Insofar as stability analysis is concerned, the ‘state-
integrator’ operator (1/s)I may be regarded as a re-
peated positive uncertainty ı I, ı 2 CC, [34]. This leads
to a rearrangement of the block diagram of the system
(S) so that the state-integrator is relocated from inside
the nominal plant T(s) = C(Is� A)�1B + D into the the
� block as an additional fictitious uncertainty. Thus, �
and T become

	 

0
BBB@

1
s I 0 � � � 0
0 	1 � � � 0
:::

: : :
:::

0 0 � � � 	n

1
CCCA ; T  

�
A B
C D

�
;

whence T becomes a constant matrix.

History and Further Reading

The origins of robust control theory can be traced to
1970s research work headed by M. Athans at the MIT
Electronic Systems Laboratory. Up to this time, most
mathematical control theorists generally assumed that
untried 1960s optimal control theories would produce
superior feedback designs. In 1971, researchers Athans
[1] and H.H. Rosenbrock [24] began to voice cau-
tious doubts about the this popular view. By 1975 the
worst expectations had been confirmed when early at-
tempts to apply linear-quadratic Gaussian (LQG) opti-
mal control theory to practical feedback designs pro-
duced unacceptable results, see [2,21,30]. The prob-
lem was quickly identified to be a lack of attention to
themultivariable stability margin problem [36]. Athans
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and Safonov [25,29] introduced the use of the term ro-
bustness to describe this problem and laid the foun-
dation for its solution based on quadratic separating
functionals. The idea of computing lower-bounds on
km via LMI optimization is due to M.K.H. Fan and A.L.
Tits [12].

The evolution robust control theory during its in-
fancy and up to 1982 is accurately described in [30].
Bibliographies focusing on more recent developments
in the theory of multivariable stability margin may
be found in references [8,22]. The article [27] pro-
vides an elementary introduction to robust control the-
ory including motivating examples and a sampling of
nonoptimization techniques for estimating conserva-
tive bounds on multivariable stability margin. Books
on robust control design methods include J.M. Ma-
ciejowski [18], S. Skogestad and I. Postlethwaite [35],
and B.R. Barmish [4]. Linear matrix inequality (LMI)
optimization methods in control theory are emphasized
in books of S.P. Boyd, L. ElGhaoui, E. Feron and V. Bal-
akrishnan [5] and of ElGhaoui and S. Niculescu [11].
References [17,17,23] describe classes of optimal H1
robust control synthesis problems can be reduced to
LMI optimizations using embeddings based on Par-
rott’s theorem and Finsler’s theorem. Bilinear matrix in-
equality (BMI) formulations of the robust control syn-
thesis problems are described in [20,31]. Commercial
software packages for robust control include [3,7,14].
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Consider the robust stability analysis of linear, time-
invariant, discrete-time control systems with uncertain
real parameters qi, i = 1, . . . , `, with given lower and up-
per bounds q�i � qi � qCi . The scalars qi form a vector
q = [q1, . . . , q`]| that is bounded by a hyperrectangle
Q = {q:q�i � qi � qCi , i = 1, . . . , `}. The characteristic
polynomial is

P(z; q) D
nX

kD0

ak(q)zk ; q 2 Q:

For simplicity we assume an(q)> 0 for all q 2 Q. Sup-
pose the coefficients ak(q1, . . . , q`) depend (affine) lin-
early on the uncertain parameters, i. e.

ak(q) D ak0 C ak1q1 C � � � C ak`q`:
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Then P(z, Q) = {P(z, q): q 2 Q} is a polytope of poly-
nomials. The question of robust Schur stability of the
polytope is now: Are all roots of P(z, Q) located inside
the unit circle of the complex z-plane?

Solution

Define the vertex polynomials Pi(z), i = 1, . . . , 2`, for
which all qi take on their maximum or minimum value.
An obvious necessary condition for robust Schur stabil-
ity is that all vertex polynomials Pi are Schur stable.

The following derivation of a necessary and suffi-
cient condition was given in [1]. In the first step the
edge theorem [2] is used. For the present problem is
says, that the polytope of polynomials is Schur stable
if and only if all exposed edges are Schur stable. The
notion of ‘exposed’ edge is illustrated by the case `
= 2. The admissible region is a rectangle in the (q1,
q2)-plane. The four edges of the rectangle are exposed,
the two diagonals are, however, not exposed. In the `-
dimensional hyperrectangle each vertex is connected to
` neighboring vertices by exposed edges. Counting each
edge only once there are ` 2` � 1} edges. The edge the-
orem reduces the test of an `-dimensional continuum
to a finite number of one-dimensional stability tests for
the edges.

The second step is now the Schur stability test for
an edge between vertices qB and qC with correspond-
ing polynomials PB(z) and PC(z). A point on the edge is
described by

PA(z; ˛) D ˛PB(z)C (1 � ˛)PC (z); ˛ 2 (0; 1):

Starting from a stable polynomial PA(z, 0) = PC(z)
there are three possibilities how PA(z, ˛) can become
unstable with increasing ˛:
i) a real root crosses the point z = +1;
ii) a real root crosses the point z = � 1; and
iii) a complex conjugate pair of roots crosses the unit

circle.
By stability of the vertices PB(1) > 0, PC(1) > 0 and
therefore PA(1, ˛)> 0 for ˛ 2 (0, 1). A similar argument
holds for PB(� 1) and PC(� 1).

Condition iii) is checked by the following test. For
a polynomial

P(z) D
nX

kD0

akzk D an
nY

iD1

(z � zi );

define the (n � 1)× (n� 1) matrices

X D

0
BBBBBBB@

an an�1 � � � � � � a2

0 an
:::

:::
:::

::: an an�1
0 � � � � � � 0 an

1
CCCCCCCA
;

Y D

0
BBBBBBB@

0 � � � � � � 0 a0
::: a0 a1
:::

:::

0 a0
:::

a0 a1 � � � � � � an�2

1
CCCCCCCA
;

S(P) D X � Y :

It is shown in [4] that

det S(P) D an�1n �

nY
kD1
i<k

(1 � zi zk):

Notice that S(P) = 0 for zi = 1/zk, which is true for com-
plex conjugate roots on the unit circle (and for pairs zi,
zk for which |zi| > 1 or |zk| > 1, i. e. the stability bound-
ary has been crossed already). The following arguments
from [1] follow closely a corresponding argument in [3]
for Hurwitz stability. PA (z, ˛), ˛ 2 (0, 1), has no com-
plex conjugate roots on the unit circle if and only if

S(PA) D S[˛PBC(1�˛)PC ] D ˛S(PB)C(1�˛)S(PC )

is nonsingular for all ˛ 2 (0, 1). Equivalently,

S(PA)
˛
D S(PB) � �S(PC )

(with � = (˛ � 1)/˛) is nonsingular for all � 2 (�1, 0)
and equivalently

S(PA)S(PC )�1

˛
D S(PB)S(PC )�1 � �I

is nonsingular for all � 2 (�1, 0). That is S(PB) S(PC)�

1 has no negative real eigenvalues.

Summary

A polytope of polynomials of degree n with ` interval
parameters is Schur stable if and only if



Robust Design of Dynamic Systems by Constructive Nonlinear Dynamics R 3307

i) all 2` vertices are Schur stable;
ii) for all `2` � 1 edges a testing matrix has no nega-

tive real eigenvalues. The computation of the testing
matrix involves forming two (n� 1)×(n� 1) matri-
ces from the coefficients of the corresponding vertex
polynomials, one inversion and one multiplication.

Since the sequence of vertices is arbitrary, the total
number of inversions is `2`� 2.
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Introduction

In engineering applications, optimization problems of-
ten arise in which an optimal steady state of a dynam-
ical system is sought. Chemical production plants, for
example, can often be described by ordinary differen-
tial equations and algebraic equations, and an optimal
continuous operation corresponds to an optimal steady
state of the differential algebraic (DAE) model.

Because an optimal steady state is sought, the dy-
namical optimization problem reduces to an algebraic
optimization problem. This point of view, however, ne-
glects the stability properties of the dynamical system.
While a steady state of a dynamical system is the solu-
tion of a nonlinear set of algebraic equations, these al-
gebraic equations do not reveal anything about the sta-
bility of the resulting steady state. In fact, a steady state
that is optimal with respect to a profit function may be
found, but this steady state may turn out to be unsta-
ble. This problem has been addressed with the use of
matrix measures before [2,14,17]. Unfortunately, ma-
trix measures overestimate the region of instability in
the process design space and therefore lead to subopti-
mal results.
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The present contribution summarizes recent
progress on a new approach to take stability bound-
aries into account in steady state optimization. The
new methodology, which is based on ideas from non-
linear dynamics, permits to consider the stability of
nonlinear dynamical systems without having to in-
troduce approximations. The approach is based on
the notion of the distance to critical manifolds in the
parameter space [16]. This idea proves to be very gen-
erally applicable. As a result, the approach cannot only
be used to consider stability boundaries in steady state
optimization, but other boundaries that are critical for
the systems’ dynamics as well as feasibility boundaries.

In engineering models, some or all parameters are
often uncertain, i. e., they are only known up to a con-
siderable error. In a chemical production plant, for ex-
ample, a precise value of some or all kinetic constants of
the chemical reactions may not be known. In fact, un-
certainty of this kind arises systematically in engineer-
ing models, because precise measurements of system
parameters create cost themselves. Therefore, a trade-
off usually exists between measuring unknown system
parameters to desirable precision on the one hand, and
affordable precision on the other hand.

Definitions

In this section the problem is introduced. For a more
detailed introduction we refer to [24].

A large class of dynamical systems can be modeled
by differential-algebraic (DAE) systems of the form

ẋd(t) D f d(xd(t); xa(t); u(t); d(t); #; t); xd(0) D xd0 ;

0 D f a(xd(t); xa(t); u(t); d(t); #; t);

y(t) D h(xd(t); xa(t); u(t); d(t); #; t) ;
(1)

where x D (xdT; xaT)T 2 Rnx , u 2 Rnu , d 2 Rnd ,
# 2 Rn# , y 2 Rn y are state variables, inputs, dis-
turbances, parameters, and outputs of the system.
In (1), t denotes time, and f :D ( f dT; f aT)T and h
are smooth functions which map from some subset
U � Rnx � Rnu � Rnd � Rn# � R onto Rnx and
Rn y , respectively. The state variables x and the cor-
responding equations have been partitioned into dy-
namic state variables xd and differential equations f d,
and algebraic variables xa and equations f a. In the se-

quel we assume that inputs u, and disturbances d vary
only quasi-statically compared to the system dynam-
ics. Mönnigmann and Marquardt [24] show that the
system (1) can be simplified considerably under this
assumption. The simplified system reads

ẋ D f (x; ˛; p); x(0) D x0;

y D h(x; ˛; p);
(2)

where p denotes all inputs, references, and parameters
that can be assumed to be known precisely, while ˛ de-
notes inputs, references, disturbances, and parameters
that can bemodeled in terms of an average value and an
uncertainty. The parameters ˛ therefore have the form

˛i 2 [˛] :D [˛(0)i ��˛i ; ˛
(0)
i C�˛i ];

i D 1; : : : ; n˛ :
(3)

By a slight abuse of notation, we use the same symbols
f and h in (1) and (2).

The steady state optimization problem for the un-
certain dynamical system (2) with stability constraints
can now be stated:

min
x(0);˛(0);p(0)

�(x(0); ˛(0); p(0)) (a)

subject to 0 D f (x(0); ˛(0); p(0)); (b)

0 D f (x̃; ˜̨; p(0))
Re(�) < 0 8� 2 �(J(x̃; ˜̨; p(0))

	
8 ˜̨ 2 [˛]; (c)

0 � g(x̂; ˆ̨; p(0)) 8 ˆ̨ 2 [˛]; (d)

x 2 X; ˛ 2 A; p 2 P : (e)
(4)

where � is the merit function and (4b) ensures that
the optimal point of operation is a steady state of the
dynamical system. Equations (4c) constitute a semi-
infinite constraint that guarantees all eigenvalues in the
spectrum �(J) of the Jacobian J(x; ˛; p) of f with re-
spect to x to be in the open left half of the complex
plane. This constraint ensures stability of the nonlin-
ear system. Since constraint (4c) enforces this condition
for all ˛ within the uncertainty region (3), the resulting
optimal steady state will be robust with respect to the
uncertainty in ˛. In (4d), g is a twice continuously dif-
ferentiable function that maps into Rng , ng � 1. Equa-
tion (4d) is a semi-infinite constraint that ensures the
inequality constraints to hold for all ˛. Finally, (4e) de-
notes bounds on x, ˛, and p. In a typical application
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there exist box constraints on some or all of the state
variables and parameters. We note that some or all of
the nominal values of the uncertain parameters ˛(0)

may be degrees of freedom in the optimization.

Method

Mönnigmann et al. [19] introduced an algorithm for
solving the semi-infinite problem (4). This algorithm is
based on detecting and backing-off critical manifolds.
We first introduce the notion of a critical manifold and
a normal vector, and then present the algorithm for
solving (4).

Critical Manifolds and Normal Vectors

In order to introduce the notion of a critical manifold,
consider a single feasibility constraint

0 � gi (x; ˛; p) (5)

from among the feasibility constraints in (4d). In this
simple case, the critical manifold, denoted byMc, is de-
fined by the set of points at which the constraint (5) is
active,

Mc D f (x; ˛; p)j 0 D f (x; ˛; p); 0 D gi (x; ˛; p)g :
(6)

This critical manifold MC
i separates the part of the

space of uncertain parameters ˛ in which the constraint
holds from the part in which the constraint is violated,
cf. Fig. 1.

Robust Design of Dynamic Systems by Constructive Nonlinear Dynamics, Figure 1
CriticalmanifoldMc and robustness regionR. This figure is reproduced from [16].Wenote that the overestimation introduced
by the circle in (b) can bemitigated by other descriptions [9].

In Fig. 1 the dot marks a candidate steady state of
operation in the feasible regime. The shortest distance
in the space of the uncertain parameters (˛1; ˛2) be-
tween this candidate point of operation and the criti-
cal manifold occurs along the marked direction that is
normal to the critical manifold. By imposing a mini-
mum distance from the candidate point of operation
to the critical boundary, we can ensure that the critical
boundary is not crossed, regardless of the actual values
of the uncertain parameters in the uncertainty region
(3). This amounts to overestimating the uncertainty re-
gion by a circle and forcing the circle to at most touch
the critical boundary tangentially, or to stay at a larger
distance from the critical boundary, cf. Fig. 1. In the sit-
uation sketched in Fig. 1 we assume that the uncertain
parameters have been scaled appropriately. This can be
done, for example, by measuring them in units of their
uncertainties �˛i [18]. In the general case, the uncer-
tainty region (3) defines a hyperrectangle and the circle
shown in Fig. 1b becomes a hyperellipsoid. Regardless
of the number n˛ and scaling of the uncertain parame-
ters, the distance between the candidate point of oper-
ation and the critical manifold, or the distance between
the uncertainty region and the critical manifold can be
measured with the aid of the normal vector. We refer
to [18] for details.

The concepts of a critical manifold and of measur-
ing the distance to a critical manifold along a normal
vector have been introduced for feasibility constraints.
The most important application of the normal vector
approach, however, is the use of normal vectors to en-
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sure a parametric distance from stability boundaries in
order to guarantee robust stability. Critical points for
stability of ODE and DAE systems have been investi-
gated in bifurcation theory. A thorough discussion of
the use of normal vectors to manifolds of bifurcation
points is beyond the scope of this paper and we refer the
reader to textbooks in applied bifurcation theory (see,
for example, [15]) and previous papers on the use of
normal vectors in steady state optimization [18,21].We
give a sketch of the idea, however.

A simple result of nonlinear systems theory states
that a steady state (x(0); ˛(0); p(0)) of a nonlinear system
(2) is stable if all eigenvalues of the Jacobian A(x; ˛; p)
defined by

Ai j D
@ fi
@x j

(x; ˛; p) ;

evaluated at this steady state, lie in the left half of
the complex plane. Since A is non-symmetric in gen-
eral, stability may be lost due to either a real eigen-
value or a complex conjugate pair of eigenvalues in
the open right half of the complex plane. In bifur-
cation theory, these two cases are known as saddle-
node or Hopf bifurcation [15]. Under genericity con-
ditions [15], a manifold of saddle-node (Hopf) bifur-
cations exists in the vicinity of a saddle-node (Hopf)
bifurcation point. Saddle-node bifurcations are usually
characterized by the necessary conditions

0 D f (x?; ˛?; p?) (a)
0 D A(x?; ˛?; p?)v (b)
0 D vTv � 1 (c)

(7)

where (x?; ˛?; p?) is the bifurcation point. Equations
(7a) ensure that the bifurcation point is a steady state.
Equations (7b) are eigenequations with a real eigen-
value zero, the critical eigenvalue. Finally, (7c) is a regu-
larization that is necessary because (7b) determines the
eigenvector v up to its length only. Based on these nec-
essary conditions the manifold

Mc :D
˚
(x?; ˛?; p?) j9v 2 Rn such that (7) holds

�

(8)

can be stated. Similar necessary conditions can be stated
for Hopf bifurcation points. Note that the determinant
of A is zero if and only if a real zero eigenvalue exists.

The determinant therefore can be used as a test func-
tion for checking if a steady state may be a saddle-node
bifurcation (numerically more robust test functions ex-
ist, see [15], for example). Test functions of this type
will be used in the algorithm to detect the crossing of
critical manifolds.

Mönnigmann and Marquardt [18] presented
a scheme for the derivation of systems of equations for
the calculation of normal vectors. This scheme can be
applied to defining equations for manifolds of the form
(5) or (6). Mönnigmann and Marquardt [18] applied
this scheme to a number of bifurcation point types.
The saddle-node normal vector system, for example,
comprises of

Equation (7) and

0 D
nxX
iD1

v j
@ f j
@˛i

(x?; ˛?; p?) � ri ; i D 1; : : : ; n˛ ;
(9)

where r 2 Rn˛ is the desired normal vector. This sys-
tem has first been stated and used by Dobson [4]. Sim-
ilar systems for the calculation of normal vector can
be derived for the feasibility constraints, Hopf bifurca-
tions, and other critical dynamical points [18]. In gen-
eral, these systems have the form

0 D G(�)(x; x̄� ; ˛; p; r); (10)

where x̄ denote auxiliary variables such as the eigenvec-
tor v in (7). The upper index � is introduced to distin-
guish between the various types of critical points and
manifolds such as � D saddle-node, � D Hopf, or
� D feasibility.

Algorithm

Based on the normal vector systems (10) an algo-
rithm for solving (4) can be stated. Before proceed-
ing to the algorithm a few remarks are necessary. For
brevity, these remarks are given in an informal fash-
ion. For a more detailed and precise discussion we refer
to [20,21].

Loosely speaking, the optimization algorithm will
move the robustness region (3) (or an approximation
thereof such as the circle in Fig. 1) in the parameter
space while seeking a minimum for the profit function
(4a). In this process, critical manifolds may be crossed.
Test functions, like the determinant introduced in Sect.
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“Critical Manifolds and Normal Vectors”, can be used
to signal the crossing of critical manifolds. Whenever
a critical point is detected, this point is added to a set of
known critical points denoted by J . Later in the algo-
rithm these points are used to initialize normal vector
constraints. Critical points that have been used to ini-
tialize normal vector constraints are collected in a set
I. Points in J can be processed to I by solving an opti-
mization problem that is not discussed here for brevity.
We refer to [20] for details.

Given the index set I, the following optimization
problem is solved:

min
x(0);˛(0);p(0)

�(x(0); ˛(0); p(0)) (a)

subject to 0 D f (x(0); ˛(0); p(0)) (b)

0 D G(�i ;i)(x(i); x̄(�i ;i); ˛(i); p(0); r(i)); 8i 2 I; (c)

0 D ˛(0) � ˛(i) C l
r(i)

jjr(i)jj2
; 8i 2 I; (d)

0 � l (i) �
p
n˛ ; 8i 2 I (e)

x 2 X; ˛ 2 A; p 2 P : ( f )
(11)

Because the crossing of critical manifolds is only de-
tected at the nominal point of operation, critical man-
ifolds may enter the robustness region without being
detected [20]. For this reason, a rigorous numerical test
for critical points in the robustness region is neces-
sary. Interval arithmetics can be used to carry out this
test [21] for problems of moderate complexity.

Finally, an adjustable parameter l̂ , l̂ >
p
n˛ , has to

be chosen. This parameter is used to switch off normal
vector constraints.

The algorithm can now be stated as follows.
1. (Initialization) Choose a steady state of (2) that is

stable in the sense of (4c) and feasible with respect
to the constraints (4d). Choose a value for l̂ . If criti-
cal point in the vicinity of the steady state are known
a priori, put them into J . Set I D ;.

2. (Update of I) Process points in J to I [21]. Remove
critical points from I for which l (i) > l̂ .

3. (Optimization) Solve problem (11) using the current
index set I.

4. (Detection of critical manifolds) Analyze the path
between the starting and end point of step 3. If a crit-
ical manifold has been crossed along this path, put

this point into J and return to step 2. Otherwise pro-
ceed to step 5.

5. (Rigorous search for critical points) Check for crit-
ical points in the robustness region (3). If a critical
point exists that has not been detected in step 4, put
it into J and return to step 2. Otherwise stop.

For several details on the practical implementation we
refer to [20]. For details on step 5 we refer to [21].

Cases

The normal vector based optimization approach has
successfully been applied to different types of problems
and a number of cases. The treated models range from
a few to a few hundred model equations in size:
� Steady state optimization of parametrically uncer-

tain dynamical systems with constraints for stabil-
ity [1,9,21,22,24];

� Steady state optimization of parametrically uncer-
tain systems with constraints on the location of
higher codimension critical points. Normal vector
constraints on the location of these points can be
used to guarantee parametric robustness with re-
spect to hysteresis, for example [7,18].

� Steady state optimization with parametrically robust
pole placement. In applications of this type, the al-
gorithm is applied to simultaneously seek an op-
timal plant design and to tune controller parame-
ters [5,8,10,11,12,13,16,19,23].

� Optimization of parametrically uncertain transient
processes [3,6].

Here the use of the normal vector based methodology is
demonstrated with a small example. Because only two
uncertain parameters exist in this example, the results
can be visualized. The result for this example have first
been published in [24].

The system treated here is a simple model for the
solution free radical homopolymerisation of vinyl ac-
etate. The model has been analyzed thoroughly with re-
spect to its nonlinear dynamic behavior by numerical
bifurcation analysis. We refer to [25] for details on the
model and its analysis. The process is optimized with
respect to an economic cost function that takes the cost
of monomer, the cost of an initiator of the polymeriza-
tion, and the cost of the solvent into account [24]. Two
parameters are assumed to be uncertain. These are the
residence time in the reactor � and the concentration of
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Robust Design of Dynamic Systems by Constructive Nonlinear Dynamics, Figure 2
Optimum which results in the first sweep through the algorithm with J D ;, I D ;. The optimum that results in step three
is marked by the cross. These results were first reported in [24]

initiator If :

�� D �˛1 D 5 min;

�I f D �˛2 D 0:005 mol/l:
(12)

Assuming that nothing is known about the location
of critical boundaries, the algorithm proceeds with
J D I D ;. The parameter l̂ is set to l̂ D 2. The value of
l̂ is not important, since normal vector constraints are
never switched off in step two in this particular exam-
ple. The result of the optimization solved in step three
is shown in Fig. 2a. Figure 2b shows the location of the
stability boundaries which result from saddle-node and
Hopf bifurcations as a function of � and If . The partic-
ular value of If , at which Fig. 2a was obtained, is marked

Robust Design of Dynamic Systems by Constructive Nonlinear Dynamics, Figure 3
Optimumwhich results from the optimization with constraint on the minimal distance to the saddle-node bifurcation mani-
fold. The optimum from Fig. 2 is marked for reference. These results were first reported in [24]

by the horizontal dashed line in Fig. 2b. While the opti-
mal point of operation lies on a stable branch of steady
states, the optimal point is obviously not robust with re-
spect to variations in � . The analysis in step 4 or 5 will
therefore reveal that a loss of stability is likely due to the
saddle-node bifurcations in the vicinity of the candidate
optimal point.

In the next step a close saddle-node bifurcation is
therefore added to J , and the optimization (11) is re-
peated with a single normal vector constraint. The re-
sult is shown in Fig. 3. Since the robustness region
marked by the ellipse contains no critical points, the
algorithm terminates. An optimal point of operation
that is stable despite the parametric uncertainty (12) has
therefore been found.



Robust Design of Dynamic Systems by Constructive Nonlinear Dynamics R 3313

Conclusions

This contribution summarizes recent progress in the
development of methods for the optimization of non-
linear dynamical systems with parametric uncertain-
ties. The approach has successfully been applied to
various problems in plant design and integrated plant
design and controller tuning. Cases discussed here are
restricted to steady state optimization. The extension to
the robust optimization of transient processes is subject
to current investigations [3,9].
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Introduction

Many deficiencies in global optimization methods for
problems with nonconvex constraints require the ne-
cessity to reexamine certain concepts of approximate
optimal solutions and to develop a robust approach to
these problems.

Difficulties of Problems
with Nonconvex Constraints

A wide class of global optimization problems have the
form

minf f (x)jgi(x) � 0(i D 1; : : : ;m); x 2 [a; b]g ; (P)

where f ; g1; : : : ; gm are nonconvex continuous real-
valued functions on Rn ; a; b 2 Rn , and [a; b] :D fx 2
Rn ja � x � bg. When the feasible set

D :D fx 2 [a; b]jgi(x) � 0; i D 1; : : : ;mg

is highly nonconvex, computing just one feasible solu-
tion may be almost as hard as solving the problem it-
self. Therefore, most current methods for solving these
problems are confined to finding only an approximate
optimal value rather than an approximate optimal solu-
tion. Even within these limitations, many methods are
deficient in one way or another, providing approximate
optimal solutions which are not guaranteed to be close
enough to the true optimum, or in other cases that very

unstable with respect to perturbations of the data or re-
finements of the tolerances.

Typically, the given problem is relaxed to

minf f (x)jgi(x)C" � 0(i D 1; : : : ;m)x 2 [a; b]g; (R)

where " > 0 is the tolerance. Although this problem is
a bit easier than (P) because it satisfies the regularity as-
sumption, an optimal solution of it can rarely be com-
puted exactly in finitely many iterations. So the best that
one can expect to compute in finitely many iterations is
an �-optimal solution of (R), i. e., a feasible solution x*
of (R) such that f (x�) � f (x)C � for every other feasi-
ble solution x. Such an x* is sometimes referred to as
an (", �)-approximate optimal solution of the original
problem. Unfortunately, the inadequacy of this concept
has been shown on simple examples where an (", �)-ap-
proximate optimal solution lies so far away from the
true optimum that it can hardly be accepted as an ap-
proximation of the latter in some reasonable sense.

In view of these limitations and deficiencies, a ro-
bust approach to nonconvex global optimization prob-
lems is desirable which could provide the user with
reliable good feasible solutions, stable under small per-
turbations of the data and easily implementable, though
not necessarily the best among all possible feasible so-
lutions.

D(C)-Optimization Problems

The basic idea of this robust approach is to transform
an optimization problem with a complicated noncon-
vex constraint set into a sequence of problems with
nice constraint sets. Such a transformation is possible if
the functions describing the problem belong to certain
classes we are going to define.

For any two functions g1; g2 : Rn ! R write g D
g1_g2; h D g1^g2 if g(x) D maxfg1(x); g2(x)g; h(x) D
minfg1(x); g2(x)g.

Let C be a family of real-valued functions on Rn

such that
(i) f1; f2 2 C; ˛1; ˛2 2 RC) ˛1 f1 C ˛2 f2 2 C;
(ii) g1; g2 2 C ) g1 _ g2 2 C.
Proposition 1 Under assumptions i and ii the family
D(C) D C � C is a vector lattice with respect to the two
operations _ and ^.

Also note that if f 2 D(C) then j f j 2 D(C) because
j f j D maxf f ;� f g.
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An optimization problem of the form (P) where
f ; gi 2 D(C); i D 1; : : : ;m, is called aD(C)-optimiza-
tion problem.

Proposition 2 Assume C satisfies assumptions i and ii
and also that:
(iii) Every function x 7! xi , with i 2 f1; : : : ; ng, belongs
to C.

Then by simple manipulations any D(C)-optimiza-
tion problem can be rewritten in the form (called “stan-
dard”)

minf f (x)jg(x) � 0; x 2 [a; b]g ;

where f 2 C ; g 2 D(C) : (1)

Two most important cases when C satisfies assump-
tions i, ii, and iii are:

1) C is the family of convex functions. Any
f 2 D(C) is then called a dc function and a D(C)-
optimization problem is called a dc optimization prob-
lem. Until recently most problems studied in global op-
timization could be shown to belong to this class [1].

2) C is the family of increasing functions, i. e.,
functions f (x) such that x0 � x ) f (x0) � f (x). Any
f 2 F is then called a dm function and a D(C)-
optimization problem is called a dm optimization, or
else a monotonic optimization problem. A theory of
monotonic optimization has emerged in recent years
that has been shown to parallel dc optimization in sev-
eral respects [2,5,6].

As a result, any dc (dm, respectively) optimization
problem can be written in the form (1) where f , g1, and
g2 are convex (increasing, respectively) functions.

Since any polynomial can be viewed either as a dc
or as a dm function, the set of dc functions or dm func-
tions on a box [a, b] is dense in the space C[a, b] of con-
tinuous functions on [a, b] with the supnorm topology.
Virtually every global optimization of interest belongs
to either of the basic classes described above.

A Robust Approach

In a continuous nonconvex optimization problem, an
isolated optimal solution is usually very difficult to
compute and very difficult to implement when it is
computable. To avoid these difficulties most global op-
timization methods assume that the feasible set D satis-

fies

D D cl(int)D ;

where clA, intA denote the closure and the interior, re-
spectively, of the set A. However, this condition is gen-
erally very hard to check. Practically we often have to
consider feasible sets which are not known a priori to
contain isolated points or not.

Therefore, from a practical point of view it is desir-
able to know how to discard isolated feasible solutions
without having to check for their presence.

A nonisolated feasible solution x* of (P) is called an
essential optimal solution if

f (x�) � f (x) 8x 2 D� ;

where D* denotes the set of nonisolated points (ac-
cumulation points) of D :D fx 2 [a; b]jg(x) � 0g. In
other words, an essential optimal solution is an optimal
solution of the problem

minf f (x)jx 2 D�g :

For a given tolerance " � 0 a point x 2 [a; b] satis-
fying g(x) � " is said to be "-feasible, and an "-feasible
point which is nonisolated is called an essential "-feasi-
ble solution. In other words, an essential "-feasible so-
lution is a nonisolated point of the set D" :D fx 2
[a; b]jg(x) � "g. For given tolerances " > 0; � > 0,
an essential "-feasible solution x* is called an essential
(", �)-optimal solution if

f (x�) � f (x)C � 8x 2 D�" ;

where D*" is the set of all essential "-feasible solutions.
An essential (", �)-optimal solution for " D 0; � D 0 is
obviously essential optimal.

The above discussion suggests that instead of try-
ing to find an optimal solution to (P), it would be more
practical and reasonable to look for an essential (", �)-
optimal solution.

The robust approach embodies this point of view
forD(C)-optimization, i. e., for a class of problems that
includes virtually every nonconvex global optimization
problem of interest.

Interchangeability BetweenObjective andConstraint
From now on we consider problem (P) where g1;
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: : : ; gm 2 D(C). Setting g(x) D miniD1;:::;m gi(x), we
rewrite (P) as

minf f (x)jg(x) � 0 ; x 2 [a; b]g ; (P)

where f ; g 2 D(C). Further, by Proposition 2, without
loss of generality we can assume f 2 C. Given "; � 2 R,
let us consider the pair of optimization problems

minf f (x)jg(x) � "; x 2 [a; b]g ; (P")

maxfg(x)j f (x) � �; x 2 [a; b]g ; (Q� )

where the objective and constraint functions are inter-
changed. Owing to the fact f 2 C, a key feature of prob-
lem (Q� ) for our purpose is that its feasible set is a con-
vex set (if C is the set of convex functions) or a normal
set (if C is the set of increasing functions), so in either
case problem (Q� ) has no isolated feasible solution and
computing a feasible solution to (Q� ) can be done at
cheap cost.

Proposition 3 If max (Q� ) < " then min (P")> � .

On the basis of this property, the robust approach to
D(C)-optimization consists in replacing the original
problem (P), possibly very difficult, by a sequence of
easier, stable, problems (Q� ), where the parameter �
can be iteratively adjusted until a stable (robust) solu-
tion to (P) is obtained.

Successive Incumbent Transcending

A key step towards finding a global optimal solution of
a problem (P) is to deal with the following question of
incumbent transcending.

(*, �) Given a real number � , check whether prob-
lem (P) has an essential "-feasible solution x satisfying
f (x) � � , and find one such solution if it exists.

Using Proposition 3, consider a convergent branch-
and-bound (BB) algorithm for solving problem (Q� )
generating a sequence of partition setsMk together with
numbers ˛(Mk ) 2 R [ f�1g, and points xk ; yk such
that

xk 2 Mk ; f (xk) � � ; (2)

˛(Mk ) � max(7) ; (3)

˛(Mk ) � g(xk)! 0 (k! C1) : (4)

˛(M) is an upper bound over M and (3) holds because
Mk is the partition set with largest ˛(M) among all par-
tition sets currently of interest, while (4) is the conver-
gence condition.

From (4) we have g(xk)! max (Q� ) and hence, for
" > 0 given, either g(xk) > 0 for some k or ˛(Mkk) < "
for some k. In the former case, xk is an essential "-
feasible solution of (P) satisfying f (xk) � �: In the lat-
ter case, max (Q� )< "; hence by Proposition 3, min
(P")> � , so no feasible solution x of (P) exists such that
f (x) � � (hence, if � D f (x̄) � � and x̄ is an essential
"-feasible solution, then x̄ is an �-optimal solution of
(P)).

Thus, with the stopping criterium “g(xk) > 0
or ˛(Mk ) < "” a convergent BB procedure for solving
(Q� ) will help to transcend a given incumbent value � ,
i. e., to solve the subproblem (*, �).

For brevity a convergent BB procedure for solving
(Q� ) with stopping criterion “˛(M) < " or g(xk) > 0”
will be referred to as procedure (*, �).

Using this finite procedure, one can solve problem
(P) according to the following successive incumbent
transcending (SIT) scheme, where �0 denotes an arbi-
trary real number larger than maxf f (x)jx 2 [a; b]g.

SIT (Successive Incumbent Transcending)
Scheme
Start with � D �0:

Call procedure (*, �). If an essential "-feasible so-
lution x̄ of (P) is obtained with f (x̄) � � , reset
�  f (x̄) � � and repeat. Otherwise, stop: x̄ is
an �-optimal solution if � D f (x̄) � �; problem
(P) has no "-feasible solution if � D �0.

Since f (D) is compact and � > 0 this scheme is nec-
essarily finite.

The SIT Algorithm forD(C) Optimization

Incorporating procedure (*, �) into the SIT scheme, we
obtain the following SIT algorithm for (P).

Let �0 be any real number such that � > maxf f (x)j
x 2 [a; b]g.

SIT algorithm for (P)
Select tolerances " > 0; � > 0.

Step 0. Let P1 D fM1g;M1 D [a; b];R1 D ;:

Let � D �0. Set k D 1.
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Step 1. For each box (hyperrectangle) M 2

Pk compute an upper bound ˛(M) for
maxfg(x)jx 2 M \ ˝; f (x) � �g. Delete ev-
eryM such that ˛(M) < ".

Step 2. Let P0k be the collection of boxes re-
sulting from Pk after completion of step 1. Let
R0k D Rk [ P0k .

Step 3. If R0k D ; then terminate. If � D �0
the problem (P) is essentially "-infeasible; oth-
erwise, the essential feasible solution x̄ such that
� D f (x̄) � � is an essential �-optimal solution
of (P).

Step 4. IfR0k ¤ ;, let Mk 2 argmaxf˛(M)jM 2
R0kg. Divide Mk into two subboxes using the
standard bisection. Let PkC1 be the collection of
these two subboxes of Mk ;RkC1 D R0k n fMkg.
Increment k, and return to step 1.

Proposition 4 The SIT algorithm terminates after
finitely many steps, yielding an ("; �)-optimal solution
or evidence that the problem has no essential "-feasible
solution.

Extensions

So far all constraints have been assumed to be of in-
equality type: gi (x) � 0; i D 1; : : : ;m. In the case when
there are equality constraints such as

hj(x) D 0 ; j D 1; : : : ; s ;

one can use linear equalities to eliminate certain vari-
ables, so without loss of generality it can always be as-
sumed that all equality constraints are nonlinear. Since
an exact solution to a nonlinear system of equations
cannot be expected to be computable in finitely many
steps, one should be content with replacing every given
equality constraint hj(x) D 0 by an approximate one:

�ı � hj(x) � ı ; j D 1; : : : ; s ;

where ı > 0 is the tolerance. A mixed system with both
inequality and equality constraints can thus be replaced
with an approximate system involving only inequality
constraints to which the above approach can be applied.
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Abstract

The various robust linear programming models inves-
tigated so far in the literature essentially appear to be
based either on what is referred to as rowwise uncer-
tainty models or on columnwise uncertainty models
(these basically assume that the rows, or the columns,
of the constraint matrix are subject to changes within



3318 R Robust Linear Programming with Right-Hand-Side Uncertainty, Duality and Applications

a well-specified uncertainty set). In this chapter, we dis-
cuss a special case of columnwise uncertainty, namely
the subclass of robust linear programming (LP) models
with uncertainty limited to the right hand side (RHS)
only (this subclass does not appear to have been sig-
nificantly investigated so far). In this context we in-
troduce the concept of a ‘two-stage robust LP model’
as opposed to the standard case (which might be re-
ferred to as a ‘single-stage robust LP model’) and we
address the question of whether LP duality can be used
to convert a LP problem with RHS uncertainty into
a robust LP problem with uncertainty on the objec-
tive function. We show how to derive both statements
of (a) the dual to the robust model and (b) the ro-
bust version of the dual. The resulting expressions of
the objective function to be optimized in both cases,
appear to be clearly distinct. Moreover, from a com-
plexity point of view, one appears to be efficiently
solvable (it reduces to a convex optimization prob-
lem), whereas the other, as a nonconvex optimiza-
tion problem, is expected to be computationally diffi-
cult in the general case. As an application of the two-
stage robust LP model introduced here, we next inves-
tigate the PERT (program evaluation and review tech-
nique) scheduling problem, considering two possible
natural ways of specifying the uncertainty set for the
task durations: the case where the uncertainty set is
a scaled ball with respect to the L1 norm; the case
where the uncertainty set is a scaled Hamming ball
of bounded radius (which, though leading to a quite
different model, bears some resemblance to the well-
known Bertsimas–Sim approach to robustness). We
show that in both cases the resulting robust optimiza-
tion problem can be efficiently solved in polynomial
time.

Keywords and Phrases

Robust linear programming; Duality; PERT scheduling

Introduction

Various models for handling robustness objectives
with respect to uncertainties on some specified co-
efficients in linear programming (LP) models have
been proposed in the literature. We can mention Soys-
ter [9], Ben-Tal and Nemirovski [1,2] and Bertsimas
and Sim [3,4].

The various approaches proposed can roughly be
divided into two distinct categories, depending on
whether the underlying uncertainty model refers to
possible fluctuations on the row vectors of the con-
straint matrix (we call this ‘rowwise uncertainty’), or
on the column vectors (we call this ‘columnwise uncer-
tainty’).

Columnwise uncertainty was first considered by
Soyster [9]. In this model each column Aj of the
m � n constraint matrix is either supposed to be ex-
actly known, or is only known to belong to a given sub-
set Kj � Rm (‘uncertainty set’). The cost vector and the
right hand side (RHS) are supposed to be certain. A ro-
bust solution is a solution which is feasible for all pos-
sible choices of the uncertain column vectors in their
respective uncertainty sets. With this definition, assum-
ing nonnegativity constraints on all variables of the LP,
it can easily be shown that the problem of finding an
optimal robust solution reduces to solving an ordinary
LP with constraint matrix A D (ai; j), where 8i; j; and
the coefficient ai,j is defined as
� ai; j D maxv2K jfvig in case of a ith constraint of the

form �
� ai; j D minv2K jfvig in case of a ith constraint of the

form �.
Note that the above maximization (or minimiza-

tion) can easily be carried out if we assume the uncer-
tainty sets are either of finite cardinality (and not too
big!) or closed convex.

As observed by many authors, a drawback of Soys-
ter’s model is that it usually leads to rather conservative
solutions, in other words the price to pay for robustness
in the above sense is often too high.

Contrasting with the above, rowwise uncertainty
has attracted more interest and has been studied by,
among others, Ben-Tal and Nemirovski [1,2], and more
recently by Bertsimas and Sim [3,4].

Ben-Tal and Nemirovski start with the assump-
tion that each row Ai of the constraint matrix belongs
to a known uncertainty set consisting of an ellipsoid
Ei � Rn , and a solution x 2 Rn ; x � 0 is said to be ro-
bust in this context if and only if it satisfies

for all i : Aix � bi ;8Ai 2 Ei :

Ben-Tal and Nemirovski then show that finding an
optimal robust solution reduces to solving a conic
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quadratic problem, which can be done in polynomial
time.

A way to obviate nonlinearity, while retaining the
idea of rowwise uncertainty, was proposed by Bertsimas
and Sim [3,4], considering a slightly different model of
uncertainty. More precisely, they assume that each un-
certain coefficient ai,j can take values in a given interval
[ai; j � ˛i; j; ai; j C ˛i; j] and, for each row i, a positive
parameter �i > 0 (not larger than the total number of
uncertain coefficients in row i) is considered. A solution
x is then qualified as � -robust (in the sense of Bertsi-
mas and Sim) if and only if for all i D 1; : : : ;m this so-
lution satisfies the ith constraint for all possible choices
of the coefficients in row i such that at most � i of the
uncertain coefficients in the row are allowed to devi-
ate from the nominal values ai,j (note that the above
statement implicitly assumes the � i parameters to be
integers, but Bertsimas and Sim show that a slightly
more general definition, allowing for nonintegral val-
ues of the � i’s can be handled in the same way). With
this model of uncertainty, Bertsimas and Sim show that
finding an optimal � -robust solution can be reduced
to solving an ordinary linear program only moderately
increased in size, thus opening the way to large-scale
applications. Moreover the approach readily extends to
optimization problems including integrality constraints
on all or part of the variables; in that case the robust ver-
sion of the problem is a mixed-integer program, but,
again, the resulting robust model is only moderately in-
creased in size compared with the original model.

In the present chapter we investigate a specific sub-
class of robust LP decision problems with columnwise
uncertainty, namely LP problems with uncertainty on
the RHS coefficients only. To handle such problems,
a first natural idea would be to use duality to reformu-
late them as robust LPs with uncertainty on the objec-
tive. This is the subject of Sect. “Duality and Robustness
for LPs with Uncertainty on the RHS”.

Duality and Robustness for LPs
with Uncertainty on the RHS

We first address in this section the question of whether
duality can prove in any way useful to convert a colum-
nwise uncertain linear program into a rowwise un-
certain linear program, assuming of course the same
uncertainty model for the columns of the given linear

program and for the corresponding rows in the dual.
Intuitively, no nice (i. e. strong) duality result is to

be expected when taking into account robustness con-
straints since, in both the primal and the dual, there is
a price to pay for uncertainty; therefore, if we maximize
in the primal, the robust primal optimal solution value
will be (in general strictly) less than the optimal solu-
tion value of the ‘nominal’ primal LP, and minimizing
in the dual will lead to a robust dual optimal solution
value (in general) strictly larger than the same value.

Let us illustrate the phenomenon for a small typi-
cal example. Consider the following LP (a continuous
knapsack problem actually) with two uncertain coeffi-
cients a1 and a2 in the constraint matrix

Maximize 4x1 C 3x2
(P) subject to

a1x1 C a2x2 � 4

x1 � 0; x2 � 0 ;

the standard LP dual of which reads

Minimize 4u
(D) subject to

a1u � 4

a2u � 3

u � 0 :

Let us assume that the uncertainty set for a1 is the real
interval [2; 3], the uncertainty set for a2 is the real in-
terval [1; 2], and let us take as the definition of a robust
solution in both (P) and (D) a solution which is feasible
for any possible values of a1 and a2 in their respective
uncertainty sets. Then it is easily seen that the optimal
robust primal solution is x0 D [0; 2] with correspond-
ing primal objective function value 6; and the optimal
robust dual solution is u0 D 3 with corresponding dual
objective function value 12. This example thus clearly
shows that no natural extension of the usual properties
related to LP duality is to be expected in the context of
robust LP.

A special case of columnwise uncertainty in LP is
when uncertainty only concerns the coefficients of the
RHS. Such problems frequently arise in practical ap-
plications. As a typical example, we mention the ro-
bust program evaluation and review technique (PERT)
scheduling problem with uncertainty on the durations
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of (some of) the tasks, assuming that a robust earliest
termination date has to be determined. More precisely,
we want to determine the minimum total duration of
the project under any possible assignment of task dura-
tions, taken in a given uncertainty set. The two-stage ro-
bust model discussed in Sect. “Two-Stage Robust (LP)
Decision Model” will appear to be relevant to such ap-
plications.

Consider the following LP

max cTx

Ax � b

x � 0

and assume that the RHS b is not known exactly, but is
only known to belong to some uncertainty set B � Rm .
The set B may be finite or infinite (we will introduce
additional assumptions for this set when necessary).

Two distinct robustness models for LPs with uncer-
tain RHS will be successively discussed in the following
sections, namely single-stage robust decision models
(Sect. “Single-Stage Robust (LP) Decision Model”) and
two-stage robust decision models (Sect. “Two-Stage
Robust (LP) Decision Model”). For both cases it will be
shown that, even in the restricted situation addressed
here (uncertainty on the RHS only), one cannot use
standard duality theory to convert a columnwise un-
certain linear program into a rowwise uncertain linear
program while preserving equivalence. Also, examples
will be provided to show that the two-stage robust LP
decision model is capable of producing less conserva-
tive solutions than the single-stage robust LP model.

Single-Stage Robust (LP) DecisionModel

We first consider the simplest case where the values of
all the decision variables x have to be fixed (taking into
account uncertainty) before we get any kind of infor-
mation on the actual realization of the uncertain pa-
rameters. In such a simple model (indeed a special case
of Soyster’s model) feasibility has to be ensured for any
b 2 B , and the problem to be solved simply reduces to

max cTx
Ax � b

x � 0 ;

where 8i; bi D minb2Bfbig.

The (standard) LP dual to the above problem reads

(D1) min uTb

uTA � c

u � 0 :

On the other hand, if we consider the dual to

max cTx

Ax � b
x � 0

we get

min uTb
uTA � c

u � 0 :

Now consider the robust version of this dual prob-
lem where the cost vector b is uncertain and can take
any value in B. A simple and natural objective in this
context is to find u achieving a minimum value of
max uTb over all possible b 2 B, thus leading to

(D2) min
u

max
b2B

fuTbg

subject to uTA � c

u � 0 :

It is clearly realized that (D1) and (D2) are completely
different optimization problems for the same solution
sets since

8u � 0; uTb � max
b2B
fuTbg ;

with strict inequality holding in the general case.
If the set B is either finite or closed convex, it is ob-

served that (D2) can be efficiently solved via standard
convex optimization techniques since the function

u! max
b2B
fuTbg

is convex. Also, in this case, b can be efficiently com-
puted since minb2Bfbig too is a convex optimization
problem; therefore problem (D1), too, can be efficiently
solved.
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Two-Stage Robust (LP) DecisionModel

It frequently arises in applications that the process of
decision making under uncertainty can be decomposed
into two successive steps (two-stage decision making)
or more (multistage decision making). For simplicity of
presentation, we restrict ourselves here to the case of
two-stage decision making. In this case, the set of de-
cision variables x is decomposed (partitioned) into two
distinct sets of variables which we denote y and z. The
y variables concern the decisions to be taken in the first
stage (before knowing anything about which realization
of uncertainty will arise) and the z variables concern the
decisions to be taken in the second stage (after realiza-
tion of uncertainty).

Limiting ourselves, to make the discussion easier to
follow, to the case where the objective function only de-
pends on the decision variables of the first stage, our
decision problem can thus be rewritten

(I) max �Ty
subject to FyC Gz � b

y � 0; z � 0 ;

where � and b are vectors and F and G are matri-
ces of appropriate dimensions. (Observe that the rea-
son for restricting ourselves to the case of an objec-
tive not depending on the z variables is only for the
sake of simplicity in the presentation; our two-stage
robust decision model would readily handle the gen-
eral case of an objective depending on both the y and
the z variables). Now, since the RHS b in (I) is uncer-
tain, we have to make our robustness objectives pre-
cise. In the sequel, we consider robustness for a so-
lution y by requiring that feasibility can be ensured
for any possible RHS b 2 B by using the second-stage
decision variables z (by analogy with the terminology
used in stochastic programming, the z variables might
be referred to as ‘recourse’ variables). So, if we define
Y D fy/y � 0 and8b 2 B; 9z � 0 : Gz � b � Fyg, we
want to solve

max
y2Y
f�Tyg:

Note that in the above, for any given robust solution
y, the value taken by the z variables depends on which
b 2 B is actually realized. This is an important feature
of our model which explains why it can produce less

conservative solutions than Soyster’s model (see the ex-
ample given in Remark 1 below).

According to Farkas’ lemma, we know that, for fixed
b 2 B, a necessary and sufficient condition for the exis-
tence of z � 0 verifying Gz � b � Fy is that

uT(b � Fy) � 0 8u in the polyhedral cone:

C D fu/uTG � 0 and u � 0g:

Denoting u1; u2; : : : ; up; the extreme rays of the above
cone, we can equivalently represent the set Y as the sys-
tem of linear inequalities

(u j)TFy � (u j)Tb;8b 2 B;8 j D 1; : : : p ;

which is equivalent to

(u j)TFy � wj D min
b2B

(u j)Tb:

The robust two-stage decision problem is then re-
formulated as

(I)0 max �Ty

subject to (u j)TFy � wj;8 j D 1; : : : ; p

y � 0 :

Since we are interested in investigating duality
in the context of robustness, let us state the (stan-
dard) dual to (I)0. So, introducing dual variables
� j; ( j D 1; : : : p), the dual to (I)0 can be written as

min
X
j

� jw j D
X
j

� j min
b2B

(u j)Tb

subject to
X
j

� jFTu j � �

� j � 0;8 j D 1; : : : ; p

and since: fu/u D
P
� ju j; � j � 0g D fu/GTu �

0; u � 0g, this can be rewritten as

(DI)0 min
u

min
b2B

uTb

subject to FTu � �

GTu � 0

u � 0

or, equivalently if we denoteW as the set of solutions to
(DI)0,

min
u2W

min
b2B
fuTbg : (1)
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An a priori different way of using duality in our con-
text would be to take the (standard) LP dual to (I) for
fixed b, and then to carry out robustness analysis with
respect to the coefficients b of the objective in the dual,
allowing b to take all possible values in B . The LP dual
to (I) reads

(DI) min uTb

subject to FTu � �

GTu � 0

u � 0 :

A natural robust version of (DI) consists in finding the
dual solution u minimizing the value of uTb produced
by the worst possible b:

min
u2W

max
b2B
fuTbg ; (2)

which is to be contrasted with (1): indeed, it is seen
that the robust version of the dual significantly differs
from the dual of the robust version of the initial (pri-
mal) problem (I) because the function of u to be min-
imized is minb2BfuTbg in one case, and maxb2BfuTbg
in the other case.

It is worth observing that this structural difference
between the two functions also implies a difference with
respect to the practical solvability of the corresponding
problems. The objective function in (2) is convex in u,
making the robust version of (DI) efficiently solvable,
whereas the objective in (1) is concave in u, making
(DI)0 and thus (by standard LP duality) (I)0 also diffi-
cult problems in the general case.

Remark 1 As already suggested, the two-stage robust
decision model proposed here is capable of producing
less conservative solutions than Soyster’s model. The
reason for this is that if, for a given uncertainty set B,
we consider Soyster’s model for problem (I), the prob-
lem to be solved is

max
y2YS
f�Tyg ;

where the set YS is defined as fy/y � 0 and 9z � 0 :
Gz � b � Fyg with b defined as

8i; bi D min
b2B
fbig :

It is easily seen that YS � Y D fy/y � 0 and 8b 2
B; 9z � 0 : Gz � b � Fyg and cases where strict inclu-
sion holds (leading to an improved robust optimal so-
lution value over the optimal value of Soyster’s model)

can easily be found, as illustrated by the following ex-
ample.

In this example we consider three variables, y �
0; z1 � 0 and z2 � 0; and three constraints,

y � z1 � b1
y � z2 � b2
z1 C z2 � b3 ;

and the uncertainty set B is taken as the set contain-
ing the two vectors (1; 0; 1)T and (0; 1; 1)T. The objec-
tive function is to maximize y. It is easily checked that
the set YS corresponding to Soyster’s model is in this
case the real interval [0; 1/2] leading to an optimal ro-
bust solution value 0.5. On the other hand, the set Y
corresponding to our two-stage model is the real inter-
val [0; 1] leading to the (less conservative) optimal ro-
bust solution value 1. Indeed, the value y D 1 is feasible
in our model because, in the case where b D (1; 0; 1)T

occurs, we can take z1 D 0 and z2 D 1, and in the
case where b D (0; 1; 0)T occurs, we can take z1 D 1
and z2 D 0. (Observe, as already pointed out, that the
value taken by the z variables indeed depends on which
b 2 B is actually realized.) Of course, this example does
not rule out the possibility of having Y D YS for some
special instances. As will be seen in the next section,
this possibility will arise in connection with the robust
PERT scheduling problem, in the special case (referred
to there as Case 1) where the uncertainty set on the task
durations is the Cartesian product of a family of real in-
tervals.

An Application of the Two-Stage Robust LP Model
with RHS Uncertainty: Robust PERT Scheduling

In this section we specialize the general two-stage ro-
bust LP decision model investigated earlier to robust
PERT scheduling, with an uncertainty set D on the du-
rations of the tasks, supposed to be given as a (finite
or infinite) list of ‘scenarios’. More precisely, we want
to determine an earliest termination date which can be
achieved for any realization of the task durations d in
a given uncertainty set D.

Formulation as a Two-Stage Robust LP Model

Consider a PERT network represented as a directed cir-
cuitless graphN in which the nodes correspond to tasks
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(the tasks are numbered i D 1; 2; : : : n; the set of tasks
is denoted I), and there is an arc (i, j) with length (du-
ration) di whenever there is a precedence constraint
stating that processing of task j should not start before
completion of task i. The set of arcs is denoted U. We
assume that node 1 has no immediate predecessor (it
thus represents the initial task) and node n has no di-
rect successor (it thus represents the terminal task of
the project). Denoting yj ( j D 1; : : : n) the starting date
for each task j, and assuming first that the task dura-
tions di are exactly known, we want to minimize the
total duration of the project while satisfying all prece-
dence constraints; in other words

Maximize � yn
subject to

y1 D 0

yi � y j � �di ;8(i; j) 2 U :

Indeed, it is easy to check that in the above, y1 D 0 can
be replaced by y1 � 0, or equivalently �y1 � 0; thus,
the problem can be rewritten

Maximize � yn
subject to

�y1 � 0

yi � y j � �di ;8(i; j) 2 U :

This model is recognized as a special case of (I), the con-
straint matrix [F;G] being formed by the transpose of
the node-arc incidence matrix of N with an additional
row involving variable y1 only (with associated coeffi-
cient �1). F is reduced in this case to a single column
(the column corresponding to node n in the transpose
of the incidence matrix of N). The RHS vector b is the
vector with coefficients equal to the opposite of the task
durations (more specifically, the RHS coefficient for the
constraint corresponding to arc (i; j) 2 U is equal to
�di ). Note that we do not state explicitly the nonneg-
ativity conditions on y, since they are implied by the
precedence constraints and nonnegativity of the di co-
efficients.

Thus, the problem is cast in a form very similar to
that of (I), the only difference being that the nonneg-
ativity conditions on y and z are dropped. The conse-
quence of this for the analysis in Sect. “Two-Stage Ro-
bust (LP) Decision Model” is just that we have to con-
sider the polyhedral cone C0 D fu/uTG D 0 and u �

0g instead of the polyhedral cone: C D fu/uTG �
0 and u � 0g.

Owing to the special structure of the G matrix aris-
ing in the PERT scheduling problem, we have the fol-
lowing result.

Proposition 1 The extreme rays of the polyhedral cone
C0 are in 1-1 correspondence with the characteristic vec-
tors of the various paths between node 1 and node n in N.

Proof: By observing that GT is the node-arc incidence
matrix of the graph N without the row associated with
node n but with an extra column with coefficient �1 in
the first row and all other coefficients 0, we realize that
u satisfying GTu D 0 and u � 0 corresponds to a non-
negative flow between node 1 and node n in N with
value equal to u1,1, the component of u corresponding
to the extra column with coefficient �1 in the first row
and all other coefficients 0. Therefore the extreme rays
of the cone C0 correspond to the incidence vectors of
the various paths connecting node 1 to node n in N. �
Let us denote P D f
1; 
2; : : : ; 
Kg the set of all paths
between 1 and n in N, u1; u2; : : : ; uK the correspond-
ing characteristic vectors and the condition (uk)T(b �
Fy) � 0 specializes to�

P
i2� k di C yn � 0 (this is be-

cause, in that case

(uk)Tb D �
X

i2� k

di and(uk)TFy D �yn):

So the condition for feasibility is that for each path

 k , yn �

P
i2� k di . In view of this, the robust PERT

scheduling problem can be reformulated as

max �yn
subject to

yn �
X

i2� k

di ;8
 k 2 P;8d 2 D ;

where we recall that D denotes the uncertainty set for
the task durations.

This problem therefore reduces to determining the
path 
k maximizing, over the set P of all possible paths
in N, the objective function

max
d2D
f
X

i2� k

dig :

In other words we want to solve

max
�2P

max
d2D
f
X
i2�

dig (RPS) ;
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where RPS stands for robust PERT scheduling problem.
Now, if we want to go further into the analysis of

(RPS), we have to specify how the uncertainty set D
is defined. Of course there are many possible ways for
this; we content ourselves below with examining two
among the most natural possible definitions, and show
that, for each of them, the above robust optimization
problem (RPS) can be efficiently solved.

Case 1:D is a scaled ball with respect to the L1 norm.
The first easy special case is when, for each task i, the

duration di can take any value in a given real interval
[d�i ; d

C
i ] with 0 � d�i � dCi . In this caseD is the Carte-

sian product [d�1 ; d
C
1 ] � [d�2 ; d

C
2 ] � � � � � [d�n ; dCn ],

which may be viewed as a scaled ball with respect to the
L1 norm (using component-wise scaling to have all in-
tervals of equal width). It is easily seen that an optimal
robust solution for problem (RPS) can be obtained in
this case by looking at a longest path (critical path) inN
when each of the tasks i is assigned the longest possible
duration dCi .

As an illustration of the above, consider the follow-
ing example with n D 7 tasks, where the graph of prece-
dence constraints has the following arcs: (1; 2); (1; 3);
(2; 3); (2; 5); (2; 6); (3; 4); (3; 7); (4; 5); (5; 7) and (6;
7). Thus, task 2 cannot be started before completion of
task 1, etc. Also note that the tasks are numbered ac-
cording to a topological ordering of the graph, since
there is no arc (i, j) with i > j. The associated intervals
[d�i ; d

C
i ] for the durations of the tasks are given in Ta-

ble 1:

Robust Linear Programming with Right-Hand-Side Uncer-
tainty, Duality and Applications, Table 1
Associated intervals [d�

i , d+i ] for the durations of the tasks

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
[2; 4] [4; 8] [3; 6] [4; 8] [4; 8] [8; 16]

Task 7 is not shown in the table because it is
a dummy task (of duration 0, without uncertainty) rep-
resenting the end of the schedule. It is easy to see that
in this example, the optimal solution to the (RPS) prob-
lem has duration 34 and corresponds to the critical path
(1; 2; 3; 4; 5; 7). Indeed 34 is the earliest achievable ter-
mination date if we require that the schedule remains
feasible for any possible choice of the task durations
in the Cartesian product [d�1 ; d

C
1 ] � [d�2 ; d

C
2 ] � � � � �

[d�6 ; d
C
6 ]. This corresponds to the situation where the

duration of each task i is dCi .
Case 2: D is a scaled Hamming ball of bounded ra-

dius � .
Here again we assume that, for each task i, the du-

ration di can take any value in a given real interval
[di ; di C�i] with di � 0. di is called the nominal value
of the duration for task i, di C�i being the possible
extreme (or worst-case) value for the task duration. As
is actually the case in many practical applications, it
is unlikely that all tasks simultaneously take on worst-
case values. To take this observation into account, we
will impose an upper bound � on the number of task
durations which are allowed to take on a worst-case
value, given that all task durations which do not take on
a worst-case value are assumed to have a value equal to
their nominal value. More formally, if we associate with
each task i a 0-1 integer variable ui, the uncertainty set
D corresponding to this definition is

D D f� D(�i)iD1;:::;n ; �i D di C�iui

(i D 1; : : : ; n) such that
nX

iD1

ui � �; ui 2 f0; 1g;8ig :

As can be seen from the above definition, in the spe-
cial case where all �i are equal to 1, D is recog-
nized as the Hamming ball of radius � centered at
d D (di ); i D 1; : : : n (in other words, � � d can be any
0-1 vector with at most � components equal to 1).
When the �i’s take on arbitrary positive values, the
Hamming ball structure is still present after applying
scaling to each component i with respect to the corre-
sponding �i value.

We note here that, in spite of the fact that the def-
inition above is close in spirit to the concept of uncer-
tainty suggested by Bertsimas and Sim [3,4], our model
is fairly different from the one studied by those authors,
since they restricted themselves to rowwise uncertainty,
whereas in our robust PERT scheduling problem, we
have uncertainty on the RHS only (a special case of
columnwise uncertainty). For more detailed discussion
of this issue, see Sect. “Differences with Bertsimas and
Sim’s Approach”.

We now show that, with the above definition of
the uncertainty set D, problem (RPS) can be efficiently
solved via a dynamic programming recursion. To that
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aim, we will consider the problem with parameter
� as only one representative of the class of prob-
lems (RPS[i; k]) for i running from 1 to n (the num-
ber of tasks) and k running from 0 to � . More pre-
cisely, assuming that the tasks are numbered accord-
ing to a topological ordering of the circuitless graph N,
(RPS[i; k]) consists of the robust PERT scheduling sub-
problem corresponding to the subset of tasks 1, 2,. . . ,i,
the durations of at most k of which are allowed to take
on their worst-case values. The case k D 0 (no devia-
tion allowed) corresponds to the usual PERT schedul-
ing problem in terms of the nominal values for the
task durations. We denote v�[i; k] the optimal objec-
tive function value for problem (RPS[i; k]), and for any
task i, we denote Pred[i] the set of tasks j such that (j, i)
is an arc of N (the set of direct predecessors of node i).
Bellman’s optimality principle then leads to the follow-
ing dynamic programming recursion:

8i 2 [1; n];8k D 0; 1; : : : � :

v�[i; k] D max
j2Pred[i]

maxfv�[ j; k]C dj ;

v�[ j; k � 1]C dj C� jg : (3)

The optimal value of the robust PERT scheduling prob-
lem we are interested in is then v�[n; � ]. The ratio-
nale behind (3) can easily be explained as follows. Con-
sider the set of all paths from 1 to j 2 Pred[i]. The du-
ration of arc (j, i) has nominal value dj and worst-case
value dj C� j . The maximum duration of a path from
1 to i through j with at most k tasks allowed to devi-
ate from their nominal values can be obtained: either
by allowing for at most k deviations on the subset of
tasks f1; 2; : : : ; jg and taking the nominal duration for
arc (j, i) or by allowing at most k � 1 deviations on the
subset of tasks f1; 2; : : : jg and taking the worst-case du-
ration for arc (j, i). Thus, the optimal value for node i
via node j is the maximum value among these two al-
ternatives, and the optimal value for node i is the max-
imum taken on the set of all direct predecessors of i.
Obviously, solving the recursion (3) is achieved in poly-
nomial time O(m � n), where m is the number of arcs
and n the number of nodes of the PERT network; more
precisely the complexity is O(m � � ), where � , the pa-
rameter defining the uncertainty set, is at most n, the
number of tasks (but is often significantly smaller than
n in practical applications).

Robust Linear Programming with Right-Hand-Side Uncer-
tainty, Duality and Applications, Table 2

i D 2 i D 3 i D 4 i D 5 i D 6 i D 7

k D 0 2 6 9 13 6 17
k D 1 4 10 13 17 10 22
k D 2 4 12 16 21 12 26
k D 3 4 12 18 24 12 29

Let us illustrate the above for the same seven-task
example as the one considered to illustrate Case 1. We
thus consider the same intervals for the task durations,
the lower bound of each interval representing the nom-
inal task duration, and the upper bound representing
the worst-case duration. For � D 3, application of the
recursion (3) leads to the v�[i; k] values shown in Ta-
ble 2.

For instance the value v�[4; 2] D 16 corresponds to
the path (1; 2; 3; 4) with three arcs of nominal durations
2, 4 and 3, respectively. If, in this path, two arcs out
of three are allowed to take on their worst-case dura-
tions, the worst case (maximum) is obtained when task
2 has duration 8 and task 3 has duration 6 (task 1 keep-
ing its nominal duration 2), the resulting length of the
path being 8 + 6 + 2 = 16. Let us also illustrate how the
recursion (3) works for computing, e. g., v�[7; 2] and
v�[7; 3]. We have

v�[7; 2] Dmaxfv�[3; 2]C 3; v�[3; 1]C 6;

v�[5; 2]C 4; v�[5; 1]C 8;

v�[6; 2]C 8; v�[6; 1]C 16g
Dmaxf15; 16; 25; 25; 20; 26g D 26:

The maximum above is obtained for j D 6 and the cor-
responding optimal path is (1; 2; 6; 7).

Similarly we have

v�[7; 3] Dmaxfv�[3; 3]C 3; v�[3; 2]C 6;

v�[5; 3]C 4; v�[5; 2]C 8;

v�[6; 3]C 8; v�[6; 2]C 16g

Dmaxf15; 18; 28; 29; 20; 28g D 29:

The maximum above is obtained for j D 5 and the
corresponding optimal path is (1; 2; 3; 4; 5; 7). It is thus
seen that, depending on the choice of the control pa-
rameter � , various optimal paths are obtained which,
of course, may differ from the optimal solution to the
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nonrobust PERT scheduling problem (considering only
the nominal values for the task durations). Also, ob-
serve that the value v�[7; 3] D 29 corresponds to a less
conservative robust solution than the one obtained in
Case 1.

Differences with Bertsimas and Sim’s Approach

We now turn to show that, in spite of the similarity in
the definition of the uncertainty sets, the robust version
of the PERT scheduling problem investigated here is es-
sentially different from the model proposed by Bertsi-
mas and Sim [3] for the robust version of the short-
est-path problem. From an abstract point of view, the
difference basically stems from the fact that, in our case,
we are faced with a LP problem with uncertainty on
the RHS, whereas Bertsimas and Sim addressed a LP
problemwith uncertainty on the cost coefficients. How-
ever, to further understand the source of this differ-
ence, we show below which difficulties would arise if
we wanted to apply the Bertsimas–Sim approach to the
robust longest (critical) path problem on a directed cir-
cuitless graph G.

Following these authors, the robust shortest s-t path
problem in G with uncertainty parameter � (assuming
� 2 N) is formulated as

(RSP) min
x2X

8<
:
X

(i; j)2U

ci; jxi; j C max
S
U ;jSj��

X
(i; j)2S

�i; jxi; j

9=
; ;

where X denotes the set of incidence vectors of all s-
t paths in G, ci; j denotes the nominal cost of arc (i, j)
and ci; j C�i; j is the worst-case cost of arc (i, j). Af-
ter transformation of (RSP) using the duality theorem
to convert the second term in the braces into a mini-
mization, the problem is reformulated as a standard LP,
the solution of which reduces to mC 1 applications of
a standard shortest-path algorithm. Observe that one of
the reasons for all the above to work so nicely is that the
second term in the braces, as a function of x, is convex
in x, since it is the pointwise maximum of a finite num-
ber of linear functions.

The above approach is still valid if, instead of look-
ing for an optimum robust minimum cost path, we are
looking for an optimum robust maximum benefit path:
ci; j > 0 being interpreted as a reward associated with
the use of arc (i, j), the effect of uncertainty being to re-
duce the nominal reward ci,j by the amount �i,j. The

problem would then take the form

max
x2X

8<
:
X

(i; j)2U

ci; jxi; j � max
S
U ;jSj��

X
(i; j)2S

�i; jxi; j

9=
; ;

which is essentially analogous to the above robust min-
imum cost path, up to a change in the signs of the co-
efficients in the objective (still assuming, of course, that
the graph G under consideration is circuitless). In par-
ticular, we note that the function to be maximized is
concave, so we still have a convex optimization prob-
lem.

By contrast, the robust PERT scheduling problem
addressed in the present paper is formulated as

max
x2X

8<
:
X

(i; j)2U

ci; jxi; j C max
S
U ;jSj��

X
(i; j)2S

�i; jxi; j

9=
; ;

with ci; j > 0 and�i; j > 0.
It is then readily observed that this problem consists

in maximizing a convex function of x on f0; 1gm , and
it is well known that this cannot be simply reduced to
ordinary LP as is the case for Bertsimas and Sim’s ap-
proach. Thus, robust PERT scheduling may be viewed
as a typical illustration of the big differences between
models featuring rowwise uncertainty and models fea-
turing columnwise uncertainty in robust LP.

Conclusions

In this chapter, various robust LP problems have been
investigated, and the question of whether LP duality
can still be used to help solve such problems has been
addressed and answered negatively. Among the prob-
lems considered, robust LP problems with uncertainty
on the RHS only have been recognized as an interesting
subclass of problems, for which the solution techniques
should not confine themselves to the classical approach
proposed by Soyster [10]. In this respect we have been
led to propose a new class of robust LP models referred
to here as ‘two-stage robust decision models’ which can
be expected to lead to less ‘conservative’ optimal ro-
bust solutions than those usually obtained from Soys-
ter’s model. In order to show the practical usefulness of
this two-stage model, a specialization to robust PERT
scheduling was discussed, leading, under two natural
ways of defining the uncertainty set with respect to
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the task durations, to efficient solution methods. Also
some fundamental differences between our approach
to robust PERT scheduling and the one proposed by
Bertsimas and Sim [3] in the context of the robust
shortest-path problem were pointed out. We think that
many other possible applications of this two-stage ro-
bust modeling approach deserve further investigations,
for instance in dynamic inventory management, opti-
mal resource allocation problems and telecommunica-
tion problems.
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The analyst who attempts to build a mathematical
model for a real-world system is often faced with the
problem of uncertain, noisy, incomplete or erroneous
data. This is true for several application domains. In
business applications noisy data are prevalent. Returns
of financial instruments, demand for a firm’s products,
the cost of fuel, and consumption of power and other
resources are examples of model data that are known
with some probabilistic distribution at best. In social
sciences data are often incomplete – for example, par-
tial census surveys are carried out periodically in lieu
of a complete census of the population. In the phys-
ical sciences and engineering data are usually subject
to measurement errors, as in models of image restora-
tion from remote sensing experiments. For some appli-
cations not much is lost by assuming that the value of
the uncertain data is known and then developing a de-
terministic mathematical programming model. Worst
case or mean values can be used in this respect be-
cause they provide reasonable approximations when ei-
ther the level of uncertainty is low, or when the uncer-
tain parameters have a minor impact on the system we
want to model. For many applications, however, uncer-
tainty plays a key role in the performance of the real-
world system: worst-case analysis often leads to conser-
vative and potentially expensive solutions, and solving
the mean value problem, i. e., a problem where all ran-
dom variables are replaced by their mean values, can
even lead to nonsensical solutions since the mean of
a random variable might not be a value that can be re-
alized in practice.

A general approach to dealing with uncertainty is
to assign to the unknown parameters a probability dis-
tribution, which should then be incorporated into an
appropriate mathematical programming model. Early
models for dealing with data uncertainty were in the
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form of sensitivity analysis of the mean value model.
Later developments formulated stochastic linear pro-
grammingmodels whereby the data uncertainty was in-
corporated in the estimation of the expected value of
the objective function. This chapter addresses the prob-
lem of planning under uncertainty using robust opti-
mization models.

Robust OptimizationModels

Robust optimization formulations are applicable to op-
timization models that have two distinct components:
a structural component that is fixed and free of any noise
in its input data; and a control component that is subject
to noisy input data. In some cases the robust optimiza-
tion model is identical to a two-stage stochastic pro-
gram with recourse. But it also allows additional flexi-
bility in dealing with noise. In order to define the model
we introduce two sets of variables:
� x 2 Rn0 denotes the vector of decision variables that

depend only on the noise-free structural constraints.
These are the design variableswhose values are inde-
pendent of realizations of the noisy parameters.

� y 2 Rn1 denotes the vector of control variables that
can be adjusted once the uncertain parameters are
observed. Their optimal values depend both on the
realization of uncertain parameters, and on the op-
timal values of the design variables.

The optimization model we are interested in has the fol-
lowing structure:

min hc; xi C hd; yi (1)

such that

Ax D b; (2)

Bx C Cy D e; (3)

x 2 Rn0
C ; (4)

y 2 Rn1
C ; (5)

where b, c, d, e are given vectors,A, B,C are given matri-
ces and h�, �i is the inner product of its arguments. Equa-
tion (2) denotes the structural constraints that are free
of noise. Equation (3) denotes the control constraints.
The coefficients of these constraints, i. e., the elements

of B, C and e are subject to noise. The cost vector d is
also subject to noise, while A, b and c are not.

To define the robust optimization problem we in-
troduce an index set˝ := {1, . . . , N}. With each index s
2 ˝ we associate the scenario set {d(s), B(s), C(s), e(s)}
of realizations of the control coefficients. Reference to
an index s implies reference to the scenario set associ-
ated with this index. The probability of the sth scenario
is ps, and

P
s 2˝ ps = 1. Now the following question

is posed: What are the desirable characteristics of a so-
lution to problem (1)–(5) when the coefficients of the
constraints (3) take values from some given set of sce-
narios? The solution is considered robust with respect
to optimality if it remains ‘close’ to optimal for any real-
ization of the scenario index s 2˝ . The problem is then
termed solution robust. The solution is robust with re-
spect to feasibility if it remains ‘almost’ feasible for any
realization of s. The problem is then termed model ro-
bust. The concepts of ‘close’ and ‘almost’ are precisely
defined later through the choice of appropriate norms.

It is unlikely that a solution to the mathematical
program will remain both feasible and optimal for all
realizations of s. If the system being modeled has sub-
stantial built-in redundancies, then it might be possible
to find solutions that remain both feasible and optimal.
Otherwise a model is needed that permits a trade-off
between solution and model robustness. Robust opti-
mization models formalize a way to measure this trade-
off.

First let us introduce a set {y1, . . . , yN} of control
variables for each scenario s 2 ˝ , and another set {z1,
. . . , zN} of feasibility error vectors that measure the in-
feasibility of the control constraints under each sce-
nario.

The real-valued objective function � (x, y) = hc, xi+
hd, yi is a random variable taking the value �s (x, ys) :=
hc, xi+ hd(s), ysi with probability ps. Hence, there is no
longer a simple single choice for an aggregate objective
function. The expected value

�(�) :D
X
s2˝

ps�s(�) (6)

is precisely the objective function used in stochastic
programming formulations. Another choice is to em-
ploy worst-case analysis and minimize the maximal
value. The objective function is then defined by

�(�) :D max
s2˝

�s(�):
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The robust optimization formulation also allows the in-
troduction of higher moments of the distribution of �
(�) in the optimization model. Indeed, the introduction
of higher moments is one of the features of robust op-
timization that distinguishes it from the stochastic pro-
gramming model. For example, we could use a nonlin-
ear utility function that embodies a trade-off between
mean value and variability in this mean value. IfU(�s)
denotes the utility of �s, then the function

�(�) :D
X
s2˝

psU(�s(�))

captures the risk preference of the user. A popular
choice of utility functions, typically used in portfolio
management applications, is the logarithmic function
U(�s) D log �s . The general robust optimization model
includes a term �(x, y1, . . . , yN) in the objective func-
tion to denote the dependence of the function value on
the scenario index s. This term controls solution robust-
ness, and can take different forms depending on the
application. The examples mentioned above are some
popular choices.

The robust optimization model introduces a sec-
ond term in the objective function to control model
robustness. This term is a feasibility penalty function,
denoted by �(z1, . . . , zN), and it is used to penalize vi-
olations of the control constraints under some of the
scenarios. The introduction of this penalty function
also distinguishes the robust optimization model from
the stochastic programming approach for dealing with
noisy data. In particular, the model recognizes that it
may not always be possible to arrive at a feasible solu-
tion to a problem under all scenarios. Infeasibilities will
inevitably arise, and they will be dealt with outside the
optimization model. The robust optimization model
generates solutions that present the modeler with the
fewest infeasibilities to be dealt with outside the model.

The specific choice of penalty function is problem
dependent, and it also has implications for the choice
of a solution algorithm. Two suitable penalty functions
are the following:
� �(z1, . . . , zN) :=

P
s 2˝ ps k zs k2. This quadratic

penalty function (i. e., a weighted `2-norm) is ap-
plicable to equality control constraints where both
positive and negative violations of the constraints
are equally undesirable. The resulting quadratic pro-
gramming problem is twice continuously differen-

tiable, and can be solved using standard quadratic
programming algorithms, although it is typically
large scale.

� �(z1, . . . , zN) :=
P

s 2˝ ps max (0, maxj zsj), where z
s
j

is the jth element of vector zs. This penalty function
is applicable to inequality control constraints when
only positive violations are of interest (negative val-
ues of some zj indicate slack in the inequality con-
straints). With this choice of penalty function, how-
ever, the resulting mathematical program is nondif-
ferentiable.

The robust optimization model takes a multicriteria ob-
jective form. A goal programming weight parameter �
is used to derive a spectrum of answers that trade off so-
lution formodel robustness. The general formulation of
the robust optimization model is stated as follows:
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min �(x; y1; : : : ; yN )C ��(z1; : : : ; zN )
s.t. Ax D b;

B(s)x C C(s)ys C zs D e(s); 8s 2 ˝;
x 2 Rn0

C ;

ys 2 Rn1
C ; 8s 2 ˝;

zs 2 Rm
C; 8s 2 ˝:

Comparisons of Robust Optimization
with Sensitivity Analysis
and Stochastic Linear Programming

We compare here the alternative approaches for dealing
with uncertainty. In particular, we contrast robust op-
timization (RO), stochastic linear programming (SLP)
and sensitivity analysis (SA). We will see that RO en-
joys several advantages, but it is not without its short-
comings.

Sensitivity analysis is a reactive approach to con-
trolling uncertainty. It just measures the sensitivity of
a solution – typicallly of the solution to the mean value
problem – to changes in the input data. It provides no
mechanism by which this sensitivity can be controlled.

Stochastic linear programming and robust opti-
mization are constructive approaches for controlling
uncertainty in the values of model parameters. In this
respect they are both superior to SA. With stochastic
linear programming models the decision maker is af-
forded the flexibility of recourse variables. These corre-
spond to the control variables of RO and provide the
mechanism with which the model recommendations
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can be adjusted to account for the realizations of ran-
dom data.

The SLP model, however, optimizes only the first
moment of the distribution of the objective value � (�).
It ignores higher moments of the distribution, and the
decision maker’s preferences towards risk. These as-
pects are particularly important for asymmetric distri-
butions, and for risk averse decision makers. Further-
more, aiming at expected value optimization implicitly
assumes an active management style whereby the con-
trol (i. e., recourse) variables are easily adjusted as sce-
narios unfold. Large changes in the objective values �s
may be observed across different scenarios, but their
expected value will be minimal. The RO model mini-
mizes higher moments as well, e. g., the variance of the
distribution of �(�). Hence, it assumes a more passive
management style. Since the value of �s will not differ
substantially among different scenarios, little or no ad-
justment of the control variables will be needed. In this
respect RO can be viewed as a SLPwhereby the recourse
decisions are implicitly restricted.

This distinction between RO and SLP is important,
and defines their domain of applicability. Applied to
personnel planning, for example, a SLP solution will
design a workforce that can be adjusted (by hirings or
layoffs) to meet demand at the least expected cost. The
important consideration of maintaining stability of em-
ployment can not be captured. The RO model, on the
other hand, will design a workforce that will need few
adjustments in order to cope with demand for all sce-
narios. However, the cost of the RO solution will be
higher than the cost of the SLP solution.

Another important distinction of RO from SLP is
the handling of the constraints. Stochastic linear pro-
gramming models aim at finding the design variables
x such that for each realized scenario s a control vari-
able setting ys is possible that satisfies the control con-
straints. For systems with some redundancy such a so-
lution might always be possible. The SLP literature
even allows for the notion of relatively complete re-
course, whereby a feasible solution ys exists for all sce-
narios, and for any value of x that satisfies the de-
sign constraints. What happens in cases where no fea-
sible pair (x, ys) is possible for every scenario? The SLP
model is declared infeasible. RO explicitly accounts for
this possibility. In engineering applications (e. g., image
restoration) such situations inevitably arise due to mea-

surement errors. Multiple measurements of the same
quantity may be inconsistent with each other. Hence,
even if the underlying physical system has a solution
(in this case an image does exist!) it will not satisfy all
the measurements. The RO model, through the use of
error terms {zs} and the infeasibility penalty function
�(�), will find a solution that violates the constraints by
the least amount. This approach is receiving increasing
attention in the operations research literature.

While RO has some distinct advantages over SA and
SLP, it is not without limitations. First, RO models are
parametric programs and we have no mechanism for
specifying a priori a ‘correct’ choice of the parameter
�. Of course, this problem is prevalent in multicriteria
programming optimization. Second, the scenarios in˝
are just one possible set of realizations of the problem
data. RO does not provide a means by which the sce-
narios can be specified. This problem is prevalent in
SLP models as well. Substantial progress has been made
in recent years in integrating variance reduction meth-
ods, such as importance sampling, into stochastic linear
programming, and these techniques also apply to RO.

Despite these potential shortcomings, we emphasize
that working only with expected values (as in the lin-
ear programming formulations) is fundamentally lim-
ited for problemswith noisy data. Even going a step fur-
ther – that is, working with expected values and hedging
against small changes in these values – is also inappro-
priate. In this respect, RO provides a significantly im-
proved modeling framework.

Robust optimization integrates the methods of
multi-objective programming with stochastic program-
ming. It also extends SLP with the introduction of
higher moments of the objective value, and with the
notion of model robustness. Both RO and SLP pro-
vide constructive mechanisms for dealing with uncer-
tain data.

Notes

The material in this article is drawn from [1, Chap. 13],
where additional material and extensive discussion of
the literature can be found.

The robust optimization model was suggested in
[7], which also discussed example applications of ro-
bust optimization to the classic diet problem, and prob-
lems in finance, engineering design and capacity plan-
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ning. J.K. Sengupta [10] had discussed earlier the ro-
bustness of stochastic linear programming solutions.
Another approach for enforcing robustness in stochas-
tic programs by means of restricted recourse models
was introduced in [11].

The terminology of ‘structural’ and ‘control’ vari-
ables is borrowed from the flexibility analysis of man-
ufacturing systems; see [9].

Applications of robust optimization are discussed in
[5] (for environmental planning), [2] (for image recon-
struction from projections), [8] (for capacity planning),
[12] (for matrix balancing), [6] (for capacity expansion
for power generation firms), [4] (for capacity expansion
planning in manufacturing). A robust optimization ap-
proach to capacity planning for a multiproduct, multi-
facility production firm was suggested in [3], and ap-
plied to plan car manufacturing facilities for the Gen-
eral Motors Company.

See also

� Competitive Ratio for Portfolio Management
� Financial Applications of Multicriteria Analysis
� Financial Optimization
� Portfolio Selection and Multicriteria Analysis
� Semi-infinite Programming and Applications in

Finance
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Introduction

The research area of production scheduling has re-
ceived considerable attention from both academia and
the chemical processing industries over the past decade.
Most of the work in the literature assumes that all data
are deterministic - that is, they are of constant, known
values. However, in reality, uncertainty is prevalent in
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many scheduling problems due to lack of accurate pro-
cess models and variability of process and environmen-
tal data. Thus, an emerging area of research aims at de-
veloping methods to address the problem of scheduling
under uncertainty, in order to create reliable schedules
which remain feasible in the presence of parameter un-
certainty.

The issue of robustness in scheduling under uncer-
tainty has received relatively little attention, in spite of
its importance and the fact that there has been a sub-
stantial amount of work to address the problem of de-
sign and operation of batch plants under uncertainty.
Most of the existing work has followed the scenario-
based framework, in which the uncertainty is modeled
through the use of a number of scenarios, using either
discrete probability distributions or the discretization
of continuous probability distribution functions, and
the expectation of a certain performance criterion, such
as the expected profit which is optimized with respect to
the scheduling decision variables. The scenario-based
approaches provide a straightforward way to implicitly
incorporate uncertainty. However, they inevitably en-
large the size of the problem significantly as the number
of scenarios increases exponentially with the number of
uncertain parameters. This main drawback limits the
application of these approaches to solve practical prob-
lems with a large number of uncertain parameters. An
alternative approach for scheduling under uncertainty
is reactive scheduling. It is carried out to adjust a sched-
ule, which is usually obtained a priori in a deterministic
manner, upon realization of the uncertain parameters
or occurrence of unexpected events. Due to the “on-
line” nature of reactive scheduling, it is required to gen-
erate updated schedules in a timely manner and often,
heuristic approaches are developed for schedule modi-
fications.

In this chapter, we propose a novel robust opti-
mization approach to address the problem of schedul-
ing under uncertainty. The underlying framework is
based on a robust optimization methodology first intro-
duced for Linear Programming (LP) problems by Ben-
Tal and Nemirovski [1] and extended in this work for
Mixed-Integer Linear Programming (MILP) problems.
The approach produces “robust” solutions which are, in
a sense, immune against uncertainties in both the coef-
ficients and right-hand-side parameters of the inequal-
ity constraints. The approach can be applied to address

the problem of production scheduling with uncertain
processing times, market demands, and/or prices of
products and raw materials. We consider uncertainty
in scheduling problems which can be characterized as
bounded or bounded and symmetric as well as uncer-
tainty described by a known probability distribution
function, such as a uniform or normal distribution. Ad-
ditional work on the robust optimization of short-term
scheduling problems can be found in Lin et al. [2] and
Janak et al. [3].

AMotivating Example

Consider the following example process that was first
presented by Kondili et al. [4] and has been widely
studied in the literature. Two different products can be
produced from three feeds according to the State-Task
Network as shown in Fig. 1. Five processing tasks are
considered including Heating, Reaction 1, Reaction 2,
Reaction 3, and Separation. Four units are available and
four intermediate materials are processed in-between
tasks. The initial stock level for all intermediates and
products is assumed to be zero. Each task has a unit-
specific, variable processing time. The relevant data are
shown in Table 1. The objective is to maximize the
profit from the sale of products manufactured in a time
horizon of 12 hours.

The continuous-time formulation proposed by
Floudas and coworkers [5,6,7,8] is used to solve this
simple scheduling problem. The “nominal” solution is
shown in Fig. 2, which features intensive utilization of
the two reactors and an objective function value (profit)
of 3638.75. However, this solution can become com-
pletely infeasible when there is uncertainty in the pro-
cessing times of the tasks. That is, when a task requires
a longer processing time than its nominal value, it may
not be able to finish processing within the time interval
assigned in the nominal schedule. In this example, even
a very small perturbation may make the schedule infea-
sible, especially for the two reactors, and can have a sub-
stantial effect on the scheduling decisions. For instance,
if the processing time of each task is increased by sim-
ply 10% of its nominal value, then the nominal schedule
will become infeasible and the optimal schedule with
the slightly increased processing times will be signifi-
cantly different from the nominal schedule, as shown
in Fig. 3. In the Heater and the Separator, the number
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Robust Optimization: Mixed-Integer Linear Programs, Figure 1
State-task network for the motivating example

Robust Optimization: Mixed-Integer Linear Programs, Ta-
ble 1
Data for the motivating example

Units Capacity Suitability Processing Time
Heater 100 heating 1.0
Reactor 1 50 reaction1,2,3 2.0,2.0,1.0
Reactor 2 80 reaction1,2,3 2.0,2.0,1.0
Separator 200 separation 2.0

States Storage Capacity Initial Amount Price
Feed A Unlimited Unlimited 0.0
Feed B Unlimited Unlimited 0.0
Feed C Unlimited Unlimited 0.0
Hot A 100 0.0 0.0
IntAB 200 0.0 0.0
IntBC 150 0.0 0.0
ImpureE 200 0.0 0.0
Product 1 Unlimited 0.0 10.0
Product 2 Unlimited 0.0 10.0

of tasks as well as processing amounts change, while in
Reactor 1 and Reactor 2, even the task sequences are dif-
ferent. Furthermore, the profit is reduced to 3264.69.

It is clear that solving a scheduling problem at the
nominal values of the uncertain data is not enough. To
obtain reliable and efficient schedules, systematic and
effective approaches which take into account uncer-

tainty are required. In the rest of this chapter, we pro-
pose a new robust optimization framework to generate
schedules that are reliable in the presence of uncertainty
arising from various sources.

Formulation

Consider the following generic Mixed-Integer Linear
Programming (MILP) problem

Min/Max
x; y

cTx C dT y

s:t: Ex C Fy D e

Ax C By � p

x � x � x̄ y D 0; 1 :

(1)

Assume that the uncertainty arises from both the coef-
ficients and the right-hand-side parameters of the in-
equality constraints, namely, alm , bl k and pl . We are
then concerned about the feasibility of the following in-
equality:

X
m

ãlmxm C
X
k

b̃l k yk � p̃l ; (2)

where alm , bl k , and pl are the nominal values of the
uncertain parameters and ãlm , b̃l k , and p̃l are the “true”
values of the uncertain parameters.

As shown in the previous section with the motivat-
ing example on scheduling, the optimal solution of an
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Robust Optimization: Mixed-Integer Linear Programs, Figure 2
Optimal solution with nominal processing times (profit = 3638.75)

Robust Optimization: Mixed-Integer Linear Programs, Figure 3
Optimal solution with processing times increased by 10% (profit = 3264.69)

MILP problem may become infeasible – that is, one or
more constraints are violated substantially – if the nom-
inal data is slightly perturbed. Our objective here is to
develop a robust optimization methodology to gener-
ate “reliable” solutions to the MILP problem, which are
immune against uncertainty. This robust optimization
methodology was first introduced for Linear Program-
ming (LP) problems with uncertain linear coefficients
by Ben-Tal and Nemirovski [1] and is extended in this
work to MILP problems under uncertainty. We con-
sider several different types of uncertainty including:
(i) bounded uncertainty, (ii) bounded and symmetric
uncertainty, and (iii) uncertainty described by a known
distribution such as a uniform or normal distribution.

Bounded Uncertainty

Suppose that the uncertain data range in the following
intervals:

jãlm � alm j � �jalm j; jb̃l k � bl k j � �jbl k j;

jp̃l � pl j � �jpl j ; (3)

where ãlm , b̃l k and p̃l are the “true” values, alm , bl k and
pl are the nominal values, and � > 0 is a given (relative)
uncertainty level.

We call a solution (x,y) robust if it satisfies the fol-
lowing conditions: (i) (x,y) is feasible for the nom-
inal problem, and (ii) whatever are the true val-
ues of the coefficients and right-hand-side parameters
within the corresponding intervals, (x,y) must satisfy
the lth inequality constraint with an error of at most
ı �max[1; jpl j], where ı is a given infeasibility toler-
ance.

Theorem 1 Given an infeasibility tolerance, (ı), to gen-
erate robust solutions, the following so-called (�,ı)-Inter-
val Robust Counterpart (IRC[�,ı]) of the original uncer-
tain MILP problem can be derived.

Min/Max
x; y; u

cT x C dT y

s:t: Ex C Fy D e

Ax C By � pX
m

almxm C �
X
m2Ml

jalm jum C
X
k

bl k yk

C �
X
k2Kl

jbl k jyk

� pl � �jpl j C ı �max[1; jpl j]; 8l
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� um � xm � um ; 8m
x � x � x̄

yk D 0; 1; 8k (4)

where Ml and Kl are the set of indices of the x and y
variables, respectively, with uncertain coefficients in the
lth inequality constraint.

Proof 1 We want to find a robust solution (x,y) which
satisfies condition (i) and condition (ii), that is:

8l ; 8(ãlm : jãlm � alm j � �jalm j; b̃l k :

jb̃l k � bl kj � �jbl k j; and p̃l : jp̃l � pl j � �jpl j) :X
m 62Ml

almxm C
X
m2Ml

ãlmxm

C
X
k 62Kl

bl k yk C
X
k2Kl

b̃l k yk

� p̃l C ı �max[1; jpl j] :
(5)

Using the worst-case values of the uncertain param-
eters, or those that make the inequality constraint the
most difficult to satisfy,

ãlmxm � almxm C �jalm jjxmj;

b̃l k yk � bl k yk C �jbl k jyk;

and p̃l � pl � �jpl j

(6)

and substituting into Eq. (5) and rearranging terms, it
is clear that a solution (x,y) is robust if and only if it is
a feasible solution of the following optimization prob-
lem.

Min/Max
x; y

cT x C dT y

s:t: Ex C Fy D e
Ax C By � pX
m

almxm C �
X
m2Ml

jalm jjxmj

C
X
k

bl k yk C �
X
k2Kl

jbl kjyk

� pl � �jpl j C ı �max[1; jpl j]; 8l

x � x � x̄

yk D 0; 1; 8k :

(7)

The above problem is equivalent to problem (4) where
the absolute value operator is represented with a set

of auxiliary variables (um) and a set of additional con-
straints. �
For each inequality constraint that involves uncer-
tain coefficients and/or right-hand-side parameters,
an additional constraint is introduced to incorporate
the uncertainty and maintain the relationships among
the relevant binary and continuous variables under
the uncertainty level and the given infeasibility toler-
ance. Essentially, this constraint considers the worst-
case values of the uncertain parameters which make
the inequality the most difficult to maintain. At the
same time, a certain degree of relaxation is introduced
to allow tolerable violations of the constraint. Note
that mathematical model (4) remains an MILP model.
Compared to the original deterministic MILP problem,
the robust counterpart has a set of auxiliary variables
(um) and a set of additional constraints relating the vari-
ables xm and um.

Uncertainty with Known Probability Distribution

Assume that for the inequality constraint l, the true val-
ues of the uncertain parameters are obtained from their
nominal values by the random perturbations

ãlm D (1C ��lm)alm
b̃l k D (1C ��l k)bl k
p̃l D (1C ��l )pl

(8)

where � lm, � lk and � l are independent random variables
and � > 0 is a given (relative) uncertainty level.

In this situation, we call a solution (x,y) robust if it
satisfies the following: (i) (x,y) is feasible for the nom-
inal problem, and (ii) for every inequality l, the proba-
bility of violation of the uncertain inequality is at most
�, or

Pr

(X
m

ãlmxm C
X
k

b̃l k yk > p̃l C ı �max[1; jpl j]

)

� � (9)

where ı > 0 is a given feasibility tolerance and � > 0 is
a given reliability level. Thus, � represents the probabil-
ity of violation of constraint l where � D 0% indicates
that there is no chance of constraint violation, yielding
the most conservative solution.

If the probability distributions of the random vari-
ables � lm, � lk and � l in the uncertain parameters are
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known, it is possible to obtain a more accurate estima-
tion of the probability measures involved. The MILP
from (1) can be rewritten as an uncertain MILP as fol-
lows

Min
x; y

cTx C dT y

s:t: Ex C Fy D e

Max
�2Z

�
Ãx C B̃y � p̃ � ı �max[1; jpj]

�

x � x � x̄

y D 0; 1

� � [A; B; p] 2 Z

(10)

where the data set � � [A; B; p] varies in a given uncer-
tainty set Z, Ã, B̃, and p̃ represent the “true” values of
the uncertain coefficients, and ı � 0 is an infeasibility
tolerance introduced to allow a certain amount of in-
feasibility into the inequality constraint. The inequality
can be written in expanded form as

Max
�2Z

hX
m

ãlmxmC
X
k

b̃l k yk� p̃l � ı �max
�
1; jpl j

�i

(11)

for every constraint l where ãlm , b̃l k , and p̃l are again
the true values of the uncertain coefficients. Using the
expressions for the true values of the uncertain coeffi-
cients given in constraint (8), the uncertain inequality
in (11) can be rewritten as follows

Max
�2Z

hX
m

(1C ��lm)almxm C
X
k

(1C ��l k )bl k yk

� (1C ��l )pl � ı �max
�
1; jpl j

�i
:

(12)

Rearranging terms, we get

Max
�2Z

"X
m

almxm C
X
k

bl k yk � pl C �

 X
m2Ml

�lmalmxm C
X
k2Kl

�l kbl k yk � �l pl

!

� ı �max
�
1; jpl j

�#
(13)

where Ml and Kl define the sets of uncertain param-
eters alm and bl k , respectively, for constraint l. Then,

a solution (x,y) to the original uncertain MILP given
in Eq. (10) which satisfies this constraint is called “re-
liable” because it takes into account the maximum
amount of uncertainty � 2 Z and allows an amount of
infeasibility ı. Now, to transform the constraint into
a deterministic form, we instead consider the following
formulation

Pr

( X
m

almxm C
X
k

bl k yk � pl C �

 X
m2Ml

�lm almxm C
X
k2Kl

�l kbl k yk � �l pl

!

> ı �max
�
1; jpl j

�)
� � : (14)

This constraint enforces that the probability of viola-
tion of the uncertain inequality is at most �, where
ı � 0 is a given feasibility tolerance (i. e., amount of er-
ror allowed in the feasibility of constraint l) and � � 0
is a given reliability level (i. e., the probability of vio-
lation of constraint l where � D 0 indicates that there
is no chance of constraint violation). Thus, if we know
a probability distribution function for the sum of the
random variables,

� D
X
m2Ml

�lm almxm C
X
k2Kl

�l kbl k yk � �l pl (15)

we can use this information in the probabilistic con-
straint (14) to write a deterministic form for the un-
certain constraint which is “almost reliable”, depend-
ing on the value of �. This is done using the definition
of a probability distribution function and the following
relationship

F�(�) D Prf� � �g D 1� Prf� > �g D 1� � (16)

to replace the stochastic elements in constraint (13),
generating a deterministic constraint that is “almost re-
liable” for the given uncertainty level, �, infeasibility tol-
erance, ı, and reliability level, �. The final form of the
deterministic constraint (or robust counterpart prob-
lem) is simply determined using the inverse distribu-
tion function (quantile) of the random variable �

F�1� (1 � �) D f (�; jalm jxm; jbl kjyk ; jpl j) : (17)
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Thus, the additional constraints in the Robust Counter-
part (RC) problem can be written as
X
m

almxm C
X
k

bl k yk C � f (�; jalm jxm; jbl kjyk ; jpl j)

� pl C ı �max[1; jpl j]; 8l
(18)

where � is a given uncertainty level, ı is a given infeasi-
bility tolerance, and � is determined from � using con-
straint (16) and the probability distribution function
for �.

Uncertainty with Normal Probability Distribution
Suppose that the distributions of the random variables
� lm, � lk and � l in (8) are all standardized normal distri-
butions with zero as the mean and one as the standard
deviation. Then, the distribution of � defined in (15) is
also a normal distribution, with zero as the mean andqP

m2Ml
a2lmx2m C

P
k2Kl

b2l k yk C p2l as the standard
deviation.

Theorem 2 Given an uncertainty level (�), an infeasi-
bility tolerance (ı), and a reliability level (�), to generate
robust solutions, the following (�,ı,�)-Robust Counter-
part (RC[�,ı,�]) of the original uncertain MILP problem
can be derived.

Min/Max
x;y

cT x C dT y

s:t: Ex C Fy D e

Ax C By � pX
m

almxm C
X
k

bl k yk C ��

sX
m2Ml

a2lmx2m C
X
k2Kl

b2l k yk C p2l

� pl C ı �max[1; jpl j]; 8l

x � x � x̄

yk D 0; 1; 8k

(19)

where � D F�1n (1 � �) and F�1n is the inverse distribu-
tion function of a random variable with standardized
normal distribution. Thus, � and � are related as follows

� D 1 � Fn(�)

� D 1 � Prf� � �g

� D 1 �
Z 	

�1

1
p
2


exp
�
�x2

2

�
dx

where � is a random variable with standardized normal
distribution.

Proof 2 Let (x,y) satisfy the following

X
m

almxm C
X
k

bl k yk C ��

sX
m2Ml

a2lmx2m C
X
k2Kl

b2l k yk C p2l

� pl C ı �max[1; jpl j]

(20)

where � D F�1n (1 � �) and F�1n is the inverse distribu-
tion function of a random variable with standardized
normal distribution. Then

Pr
�X

m

ãlmxm C
X
k

b̃l k yk > p̃l C ı �max[1; jpl j]
	

D Pr
�X

m

almxm C �
X
m2Ml

�lm jalm jxm

C
X
k

bl k yk C �
X
k2Kl

�l k jbl kjyk

> pl C ��l jpl j C ı �max[1; jpl j]
	

� Pr
�� X

m2Ml

�lm jalm jxm

C
X
k2Kl

�l k jbl k jyk � �l jpl j
�
/

sX
m2Ml

a2lmx2m C
X
k2Kl

b2l k yk C p2l > �
	

D 1 � Pr
�� X

m2Ml

�lm jalm jxm

C
X
k2Kl

�l k jbl k jyk � �l jpl j
�
/

sX
m2Ml

a2lmx2m C
X
k2Kl

b2l k yk C p2l � �
	

D 1 � Fn(�) D 1 � (1 � �) D � : �

Note that
(
P

m2Ml
�lm jalm jxm C

P
k2Kl

�l k jbl kjyk � �l jpl j)/qP
m2Ml

a2lmx2m C
P

k2Kl
b2l k yk C p2l is also a ran-
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dom variable with standardized normal distribution.
This formulation results in a convex MINLP problem,
but can still be solved efficiently using a mixed-integer
nonlinear solver (e. g., DICOPT [9], MINOPT [10]).

In the discussion above, for simplicity, we have as-
sumed that there is a single common uncertainty level
(�), infeasibility tolerance (ı), and reliability level (�)
in each MILP or convex MINLP problem with uncer-
tain parameters. However, the proposed robust opti-
mization techniques can easily be extended to account
for the more general case in which the uncertainty level
varies from one parameter to another and the infeasibil-
ity tolerance and reliability level are dependent on the
constraint of interest. Furthermore, note that for each
type of uncertainty addressed, one additional constraint
is introduced for each inequality constraint with un-
certain parameter(s) and auxiliary variables are added
if needed. Because the transformation is carried out at
the level of constraints, in principle, the various ro-
bust optimization techniques presented can be applied
to a single MILP or convex MINLP problem involving
different types of uncertainties. More specifically, for
each inequality constraint, as long as all of its uncer-
tain parameters are of the same type, an additional con-
straint that corresponds to the uncertainty type can be
introduced to obtain the deterministic robust counter-
part problem. It should be pointed out that the afore-
mentioned robust optimization methodology circum-
vents any need for explicit or implicit discretization or
sampling of the uncertain data, avoiding an undesir-
able increase in the size of the problem. Thus, the pro-
posed methodology is potentially capable of handling
problems with a large number of uncertain parame-
ters.

Applications

The robust optimization methodology proposed in the
previous section can be applied to address the prob-
lem of scheduling under uncertainty. In this work, we
employ the continuous-time formulation presented by
Floudas and coworkers [5,6,7,8], which leads to MILP
models, to develop new robust scheduling approaches
for the following three classes of uncertainties: (i) un-
certainty in processing times/rates of tasks, (ii) uncer-
tainty in market demands for products, and (iii) uncer-
tainty in market prices of products and raw materials.

Uncertainty in Processing Times

The parameters of processing times/rates of tasks par-
ticipate in the duration constraint and appear as linear
coefficients of the binary variable (i. e., ˛ij) and the con-
tinuous variable (i. e., ˇij) as follows:

T f (i; j; n)�Ts (i; j; n) D ˛i j �wv(i; n)Cˇi j �B(i; j; n) ;

(21)

where wv(i,n) is a binary variable indicating whether or
not task (i) starts at event point (n), B(i,j,n) is a con-
tinuous variable determining the batch-size of the task,
and Ts(i,j,n) and Tf (i,j,n) are continuous variables rep-
resenting the starting and finishing time of the task, re-
spectively. Note that this is an equality constraint. Thus,
in order to apply the robust optimization techniques
proposed in the previous section for inequality con-
straints with uncertain parameters, the duration con-
straint is relaxed to an inequality constraint

T f (i; j; n)�Ts (i; j; n) � ˛i j �wv(i; n)Cˇi j �B(i; j; n) :

(22)

Consequently, the variable Tf (i,j,n) represents the
lower bound on the finishing time of the task, instead
of the exact finishing time as determined by the orig-
inal duration constraint. Using this modified duration
constraint, the various robust optimization techniques
can be readily applied to consider uncertainty in the pa-
rameters ˛ij and ˇij.

For example, consider a task with parameters ˛ij
and ˇij exhibiting bounded uncertainty in the follow-
ing ranges

˛L
i j � ˜̨ i j � ˛U

i j ; ˇ
L
i j �

˜̌i j � ˇU
i j : (23)

According to Theorem 1, to obtain the deterministic
robust counterpart problem, the following constraint is
added to the original scheduling model

T f (i; j; n)�Ts (i; j; n) � ˛U
i j �wv(i; n)Cˇ

U
i j �B(i; j; n)�ı:

(24)

Note that no auxiliary variables need to be introduced
because the variable B(i,j,n) (batch-size of the task) is
non-negative by definition.

Alternatively, consider a batch task with fixed pro-
cessing time represented by parameter ˛ij. Then, the
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true value of the processing time can be represented in
terms of the nominal processing time as follows:

˜̨ i j D (1C ��˛i j )˛i j ; (25)

where �˛i j is a random variable with known distribu-
tion.

For the case where the uncertainty is characterized
by a standardized normal distribution, then, according
to Theorem 2, to obtain the deterministic robust coun-
terpart problem, the following constraint is added to
the original scheduling model:

Ts (i; j; n)�T f (i; j; n)C[1C��]˛i j �wv(i; n) � ı ; (26)

where � D F�1(1 � �) and F�1n is the inverse distribu-
tion function of a random variable with a standardized
normal distribution.

Uncertainty in Product Demands

The product demands (i. e., dems) appear as the right-
hand-side parameters in the demand constraints

STF(s) � dems ; 8s 2 Sp (27)

where STF(s) is a continuous variable representing the
amount of state (s) accumulated at the end of the time
horizon and Sp is the set of final products.

The robust optimization techniques can be directly
applied to these inequality constraints with uncertain
parameters. For example, in the case of bounded un-
certainty,

demL
s �

˜dems � demU
s ; (28)

and according to Theorem 1, the constraint to be added
to the original scheduling model to derive the deter-
ministic robust counterpart problem is as follows:

STF(s) � demU
s � ı : (29)

Alternatively, for case of uncertainty with a known
distribution, if we consider an uncertain product de-
mand represented by parameter dems, then the true
value of the product demand can be represented in
terms of the nominal product demand as follows:

˜dems D (1C ��s )dems ; (30)

where �s is a random variable with known distribution.

For the case of normal uncertainty, according to
Theorem 2, the constraint to be added to the origi-
nal scheduling model to derive the deterministic robust
counterpart problem is

STF(s) � dems(1C �� � ı) (31)

where � D F�1n (1 � �) and F�1n is the inverse distribu-
tion function of a random variable with standardized
normal distribution.

Uncertainty in Market Prices

The market prices (i. e., prices) participate in the objec-
tive function for the calculation of the overall profit:

Maximize Profit D
X
s2S p

prices � STF(s)

�
X
s2S r

prices � STO(s) ;
(32)

where Sp and Sr are the sets of final products and raw
materials, respectively, and STO(s) and STF(s) are con-
tinuous variables representing the initial amount of
state (s) at the beginning and the final amount of state
(s) at the end, respectively. The objective function can
be expressed in an equivalent way as follows:

Maximize Profit

s:t:Profit �
X
s2S p

prices � STF(s)

�
X
s2S r

prices � STO(s) :

(33)

Now the uncertain parameters price>s appear as linear
coefficients multiplying the continuous variables STF(s)
and STO(s) in an inequality constraint and the robust
optimization techniques can be readily applied.

For example, if the uncertainty is normally dis-
tributed,

˜prices D (1C ��s)prices (34)

where �s is a standardized normal random variable,
then according to Theorem 2 the deterministic ro-
bust counterpart problem can be obtained by introduc-
ing the following constraint to the original scheduling
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model:

Profit �
X
s2S p

prices � STF(s) �
X
s2S r

prices � STO(s)

� ��

sX
s2S p

price2s � STF(s)
2 C

X
s2S r

price2s � STO(s)
2

C ı ;

(35)

where � D F�1(1 � �) and F�1n is the inverse distribu-
tion function of a random variable with standardized
normal distribution.

Cases

In this section, the robust optimization formulation
is applied to two example problems. Both the exam-
ples are implemented with GAMS [11] on a 3.20GHz
Linux workstation. The MILP problems are solved us-
ing CPLEX 8.1 while the MINLP problems are solved
using DICOPT [9].

Case 1: Bounded Uncertainty
in the Processing Times

Let us revisit the motivating example in Sect. “A Mo-
tivating Example”. Assume that the uncertainty of the
processing times is bounded and the (relative) uncer-
tainty level (�) is 15%, that is,

0:85˛ � ˜̨ � 1:15˛ (36)

and the infeasibility tolerance level (ı) is 10%.
By solving the IRC[�; ı] problem, a “robust” sched-

ule is obtained, as shown in Fig. 4, which takes into ac-
count uncertainty in the processing times. The nom-

Robust Optimization: Mixed-Integer Linear Programs, Figure 4
Robust solution for case 1 (� D 15%; ı D 10%, profit = 2887.19)

Robust Optimization: Mixed-Integer Linear Programs, Ta-
ble 2
Model and solution statistics of case 1

Nominal solution Robust solution
Profit 3638.75 2887.19

CPU time (s) 2.68 114.47
Binary Variables 96 96
Continuous Variables 378 378
Constraints 553 713

inal schedule can be seen in Fig. 2 in Sect. “A Moti-
vating Example”. Compared to the nominal solution
which is obtained at the nominal values of the pro-
cessing times, the robust solution exhibits very differ-
ent scheduling strategies, including both task-unit as-
signments and task timings. Even the sequences of tasks
in the two reactors in Fig. 4 deviates significantly from
those in the nominal solution in Fig. 2. The robust so-
lution ensures that the robust schedule obtained is fea-
sible with the specified uncertainty level and infeasibil-
ity tolerance. However, the resulting profit is reduced,
from 3638.75 to 2887.19, which reflects the effect of un-
certainty on overall production. A comparison of the
model and solution statistics for the nominal and ro-
bust solutions can be found in Table 2.

Figure 5 summarizes the results of the IRC problem
with three different levels of uncertainty. It is shown
that with a given infeasibility tolerance, the maximal
profit that can be achieved decreases as the uncer-
tainty level increases, which indicates more “conserva-
tive” scheduling decisions because of the existence of
uncertainty. On the other hand, at a given uncertainty
level, the profit increases as the infeasibility tolerance
is increased, which means more “aggressive” schedul-
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Robust Optimization: Mixed-Integer Linear Programs, Figure 5
Profit vs. infeasibility tolerance at different uncertainty levels for case 1

ing arrangements can be incorporated if violations of
related timing constraints can be tolerated to a larger
extent. These results are consistent with intuition and
other approaches, however, with the robust optimiza-
tion approach, the effects of uncertainty and the trade-
offs between conflicting objectives are quantified rigor-
ously and efficiently. It should be noted that at a given
uncertainty level, the objective value of profit as well as
the corresponding schedule change dramatically at dis-
crete points as the infeasibility tolerance increases. This
behavior is caused by special characteristics of the ex-
ample problem, including the fixed time horizon and
the fixed processing times of tasks.

Robust Optimization: Mixed-Integer Linear Programs, Figure 6
Nominal solution for case 4 (profit = 1088.75)

Case 2: Uncertainty with a Normal Distribution
in the Market Prices

In this example, we consider uncertainty with a normal
distribution in the market prices for the same process
and processing time data given in Case 1. The objective
function is the maximization of profit in a time horizon
of 8 hours. The uncertainty level (�) is 5%, the infea-
sibility tolerance (ı) is 5%, and the reliability level (�)
is 5%. The nominal schedule is shown in Fig. 6 with
a profit of 1088.75. The robust schedule is obtained
by solving the robust counterpart problem, as shown
in Fig. 7, and the corresponding profit is 966.97. By
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Robust Optimization: Mixed-Integer Linear Programs, Figure 7
Robust solution for case 2 (� D 5%; ı D 5%; �D 5%, profit = 966.97)

Robust Optimization: Mixed-Integer Linear Programs, Figure 8
Profit vs. reliability level at different uncertainty and infeasibility levels for case 2

executing this schedule, the profit is guaranteed to be
least 966.97 with a probability of 95% in the presence
of the 5% uncertainty in the prices of the products and
raw materials. A comparison of the model and solution
statistics for the nominal and robust solutions can be
found in Table 3.

Figure 8 summarizes the results of the RC problem
at several different levels of uncertainty and an infea-
sibility tolerance of 0% at increasing values of the reli-
ability level. It is shown that at a given reliability level,
the maximal profit that can be achieved decreases as the
uncertainty level increases, which indicates more con-
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Robust Optimization: Mixed-Integer Linear Programs, Ta-
ble 3
Model and solution statistics for case 2

Nominal
solution

Robust
solution

Profit 1088.75 966.97
CPU time (s) 0.02 0.05
Binary
Variables

60 60

Continuous
Variables

280 280

Constraints 334 334

servative scheduling decisions because of the existence
of uncertainty. Also, at a given uncertainty level and in-
feasibility tolerance, the profit increases as the reliability
level increases, meaning that as the probability of viola-
tion of the uncertain constraint, or �, increases, then �
decreases and according to Eq. (35), the profit takes on
a larger value.

Conclusions

In this chapter, we propose a new approach to ad-
dress the scheduling under uncertainty problem based
on a robust optimization methodology, which when
applied to MILP problems, produces “robust” solu-
tions that are, in a sense, immune against uncertain-
ties in both the coefficients in the objective function,
the left-hand-side parameters and the right-hand-side
parameters of the inequality constraints. A unique fea-
ture of the proposed approach is that it can address
many uncertain parameters. The approach can be ap-
plied to address the problem of production schedul-
ing with uncertain processing times, market demands,
and/or prices of products and raw materials. Our com-
putational results show that this approach provides an
effective way to address scheduling problems under un-
certainty, producing reliable schedules and generating
helpful insights on the tradeoffs between conflicting ob-
jectives.
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The Rosenbrock method is in its basic form a gradient-
free minimization algorithm. It was introduced by H.H.
Rosenbrock [2], and avoids the use of line searches. It is
based on orthogonal search directions with alternating
minimizations between these and using pattern search
at the end of each orthogonal direction search cycle.
The algorithm is given below. The minimization prob-
lem considered is:

min
x

f (x):

1. Initialization
Set the search directions to be the coordinate directions,
d(1), . . . , d(n), where the d(i) are vectors of zeros, except
for a 1 in the ith position. Select a scalar value � > 0 to be
used as the termination tolerance, an expansion factor
ˇ1 > 1 and a contraction factor ˇ2 such that � 1 < ˇ2

< 0. Set the initial stepsizes ı(0)i , i = 1, . . . , n, along each
of the above defined search directions. Select an initial
point x(0) and initialize by setting z(1) = x(0). Set the pat-
tern iteration counter k = 0 and the direction search
counter i = 1. Initialize the stepsizes along each direc-
tion to ıi = ı(0)i .

2. Main Iteration Step (direction Search)

2:1 Forward search
IF f (z(i) + ıid(i)) < f (z(i))
THEN

forward search step i is successful;
set z(i+1) = z(i) + ıid(i);
set ıi  ˇ1ıi .

ELSE (if f (z(i) + ıid(i)) � f (z(i)))
forward search step is unsuccessful;
set z(i+1) = z(i);
set ıi  ˇ2ıi .

END IF;
IF i < n,

increment search counter i  i + 1;
go to step 2:1.

ELSE (if i = n) go to step 2:2.
END IF;

2:2 IF f (z(n+1)) < f (z(1))
(at least one improvement achieved in 2:1);
set z(1) = z(n+1); i = 1;
go to step 2:1.

ELSE (if f (z(n+1)) = f (z(1)))
(no improvement achieved in 2:1);
IF f (z(n+1)) < f (x(k))

(one improvement in iteration k);
go to step 3.

ELSE (if f (z(n+1)) = f (x(k)))
(no improvement in iteration k);
IF j ıi j� � for all i,
THEN x(k) is an estimate of the optimal
solution;

STOP.
ELSE

set z(1) = z(n+1);
set i = 1, go to step 2:1.

END IF;
END IF;

END IF;

3. Pattern Search and New Search Direction Set Genera-
tion

3:1 Set x(k+1) = z(n+1).
IF kx(k+1) � x(k) k< �,
THEN x(k+1) is an estimate of the optimal so-
lution; STOP.
ELSE solve the linear system
[d(1); : : : ; d(n)]�[�1; : : : ; �n]>=x(k+1)�
x(k) for �i ;
go to step 3:2

3:2 Orthonormalization of new search direc-
tions (Gram-Schmidt procedure)

a set a(i) = d(i) if �i = 0;
set a(i) =

Pn
j=i d

(i) if �i ¤ 0.
b set b(1) = a(1);

set b(i) = a(i)�
Pi�1

j=1

�
(a(i))>bd( j)

�bd( j) , i � 2,

wherebd(i) = b(i)/ k b(i) k;
denote these new directionsbd(i) as d(i).

3:3 Reset the stepsizes ıi = ı(0)i , for i = 1; : : : ; n.
set the initial point z(1) = x(k+1);
increment the main cycle counter k k+1;
set i = 1;
Go to step 1.
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The procedure as described in the algorithm above
can be seen to be taking discrete steps along each of the
n directions. Success in each of these is followed by an
expansion of the stepsize, while a failure is marked by
a reduction of the stepsize, changing direction using ˇ2

which is negative, to be taken in the next cycle. Upon
a single success of the cycle of n searches a new set of
search directions is generated by the orthogonalization
procedure (Gram–Schmidt). Continued failures in the
search directions will result in stepsize shrinking and
triggering of the termination criterion (within � toler-
ance) eventually.

It is possible to derive a continuous minimization
procedure along each of the search directions, by re-
placing the discrete step search with a line search pro-
cedure. Such a scheme can be found for example in [1],
where it is also demonstrated that under differentiabil-
ity assumptions on the objective function f it is possible
to show that Rosenbrock’s method converges to a sta-
tionary point of f (minimum under convexity assump-
tions).

See also

� Cyclic Coordinate Method
� Powell Method
� Sequential Simplex Method
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The gradient projectionmethod proposed by J.B. Rosen
in 1960 [82,83] is one of earliest methods in the history
of mathematical programming for solving constrained
optimization problems. The importance of this method
in the literature also stems from the fact that manymore
efficient algorithms, in linear and nonlinear program-
ming, developed later (e. g. by D. Goldfarb [42], by B.H.
Murtagh and R.W.H. Sargent [63] and by N.K. Kar-
markar [53]) incorporated the basic ideas propounded
by Rosen.

The global convergence of Rosen’s method was
a long-standing open problem. Since Rosen’s method
is included in many textbooks, the convergence prob-
lem became quite well-known. In fact, almost all books
(such as [3,4,57,67]) that have a chapter or a section
to introduce Rosen’s method recognize the problem on
the global convergence of Rosen’s method. Through ef-
forts of 26 years, the proof was finally found [35,36,47].

The study on the global convergence of Rosen’s
method had a great impact on the development of
a general theory of global convergence in nonlinear
programming. In fact, many new techniques [28,29]
were discovered to reach the final solution. It is desir-
able to solve other open problems with them.

One of big remaining open problems about global
convergence in nonlinear programming is Powell’s con-
jecture that theDFPmethod (Davidon–Fletcher–Powell)
for unconstrained optimization is globally convergent.
Progress has been made slowly [69,70,71].

This article will review the story about Rosen’s
method and survey the results in theory of global con-
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vergence and the development about Powell’s conjec-
ture.

Rosen’s Method

Consider linearly constrained optimization problems in
the following form:

(
max f (x)
s.t. a>j x � b j; j D 1; : : : ;m;

(1)

where x 2 Rn; Rn is the n-dimensional Euclidean
space whose points are represented as column vectors.
A point is called a feasible point if it satisfies the con-
straints. The set of all feasible points is called the fea-
sible region. Without special mentioning, we always as-
sume that the function f is continuously differentiable
in a convex set containing the feasible region. The func-
tion f is always referred to be an objective function. For
simplicity of notations, we denote g (x) = r f(x), and
especially gk = g (xk) and g� = g (x�).

A nonzero vector d is called a feasible direction at
a feasible point x if there exists � > 0 such that for any
� 2 [0; �], x + � d is feasible.

A constraint is called an active constraint at a fea-
sible point x if its equality sign holds at the point. The
set of indices of active constraints is called the active set,
denoted by J(x), i. e.

J(x) D
n
j : a>j x D b j

o
:

In particular, we denote

Jk D J(xk) and J� D J(x�):

For simplicity, we also denoteM = {1, . . . ,m}. Note that
J � J0 will stand for J � J0 and J 6D J0. For a singleton
{h}, we write J \ h and J [ h instead of J \ {h} and J [
{h}, respectively.

For the feasible region in the considered problem
(1), a direction d is feasible at a feasible point x if and
only if a>j d = 0 for j 2 J(x). In fact, if d is a feasible
direction at point x, then there exists a number � > 0
such that x + � d is a feasible point. Thus, a>j (x + � d)
� bj for j 2 M. Since a>j x = bj for j 2 J(x), we have �
a>j d � 0 for j 2 J(x). Therefore, a>j d � 0 for j 2 J(x).

Conversely, suppose a>j d� 0 for j 2 J(x). Set

� D

8̂
ˆ̂̂<
ˆ̂̂̂
:

min

(
b j � a>j x

a>j d
: a>j d < 0

)
if 9 j :

a>j d < 0;
1 otherwise:

Clearly, � > 0 and for � 2 [0; �];, x + � d is feasible.
Now, define

D1(x) D
n
d : a>j d D 0 for j 2 J(x)

o
:

Then D1(x) is exactly the set of all feasible direction at
point x.

A feasible point x 
 is said to be a local maximum of
problem (1) if there exists a neighborhood of the point
x� such that for any feasible point x in the neighbor-
hood, f (x) � f(x�).

A nonzero vector d is called an ascendant direction
at a feasible point x if g (x)| d > 0. Clearly, if d is a fea-
sible ascendant direction at x, then we can find a feasi-
ble point x0 along the direction d such that f (x0) > f (x).
Therefore, x is a local maximum only if there does not
exist a feasible ascendant direction at x. That is, a feasi-
ble point x is a local maximum only if

D1(x) \ D2(x) D ;;

where

D2(x) D
˚
d : g>d > 0

�
:

The following Theorem states a necessary and sufficient
condition for D1(x) \ D2(x) = ;.

Theorem 1 Let x be a feasible point. Then D1(x) \
D2(x) = ; if and only if there exist uj, j 2 J(x), such that

g(x) D
X
j2J(x)

uja j (2)

and

uj � 0 for j 2 J(x): (3)

A feasible point x is called a Kuhn–Tucker point if
there exist uj, j 2 J(x), satisfying (2) and (3). Clearly,
for a linearly constrained optimization problem, ev-
ery local maximum is a Kuhn–Tucker point. However,
a Kuhn–Tucker point may not be a local maximum.
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A feasible point x is regular if all active constraints at
x are linearly independent, i. e. aj for j 2 J(x) are linearly
dependent. The problem (1) is nondegenerate if its con-
straints satisfy the following regularity condition: Every
feasible point is regular.

Suppose the problem (1) is nondegenerate. At each
feasible point x, the subspace DJ = {d:a>j d = 0, j 2 J}
where J = J(x) is the tangent plane at the point. The or-
thogonal projection operator on DJ is denoted by PJ . It
is not hard to find out that

PJ D I � AJ(A>J AJ)�1A>J ;

where AJ denotes the matrix consisting of column vec-
tors aj, j 2 J. An important property of gradient projec-
tion is as follows.

Theorem 2 Let 0 < c� +1. For J = J(x), define

d D

(
PJg if kPJgk > c � uh ;

PJnhg otherwise;

where uh = maxj 2 J uj. Then d = 0 if and only if x is
a Kuhn–Tucker point. Furthermore, if d 6D 0, then d is
an ascendant feasible direction.

Theorem 2 suggests the algorithm Rosen’s method be-
low.

The global convergence of Rosen’s method relies
on a parameter chosen at each iteration. To avoid the
zigzag phenomena, Rosen chose the parameter to be
a positive number with an upper bound. He also gave
a convergence proof in his paper. However, it did not
take very long for someone to point out that there is
a serious mistake in the proof. Since then, substantial
efforts have been made on the problem.Maybe, it is due
to a natural expectation for seeking simplicity. Most
books incorrectly state Rosen’s method by setting the
parameter to be zero which is exactly what Rosen tried
to avoid. See [30] for a counterexample to the method
described in those books. It was indicated in [35] that
this counterexample also works for the case in which
the parameter varies and converges to zero as the com-
putation runs from the first iteration to the infinity. It
follows that Rosen’s restriction on the parameter is not
sufficient for the convergence.

Initially, choose a feasible point x1. At each it-
eration k = 1; 2; : : :, the algorithm carries out
the following steps.

1 Choose a positive number ck . Compute
a search direction by the following formula:

dk =
�

PJkgk if k PJkgk k> ckukhk ;

PJknhk otherwise,

where

(uk j; j 2 Jk)> = (A>Jk AJk )
�1A>Jkg

k

and

ukhk = maxfuk j : j 2 JnM0g:

2 If dk ¤ 0, then stop; xk is a Kuhn-Tucker
point.
If dk ¤ 0, then compute

m = minf
b j � a>j xk
a>j dk

: a>j dk < 0g;

�k =
�

1 if a>j dk � 0 for all j … Jk ;
m otherwise,

and find a new point xk+1 = xk + �kdk ;

(0 < �k � �k) by a line search procedure.

Rosen’s method

The first convergent version was found by E. Polak
[66]. Compared with the original one, Polak’s version
is too complicated. First of all, he used the �-active set
strategy. Secondly, the version contains a special pro-
cedure, which involves computing the gradient projec-
tion several times. Polak proved the convergence of his
version under a condition, named by �-hypothesis. X.-
S. Zhang [96] showed that �-hypothesis is equivalent to
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the regularity condition. Zhang’s work motivated from
a Yue–Han theorem [92].

M. Yue and J. Han utilized Polak’s procedure to
study the reduced gradient method. The reduced gradi-
ent method was first proposed by P.Wolfe [87]. An im-
portant step in the reduced gradient method is to com-
pute a reduced basis. There are several ways for find-
ing a reduced basis [33,85,86,92,93]. It has been known
to be quite efficient in practice. Wolfe’s original version
of reduced gradient method is not globally convergent.
A counterexample has been given by Wolfe [90] him-
self. Several convergent versions [57,85,86,92,93] ap-
peared later. Among them, Wang [85] derived his ver-
sion from the Levitin–Polyak’s method [56]. Levitin–
Polyak’s method is a gradient projection method differ-
ent from Rosen’s method. In each iteration, they chose
the search direction to be the projection of gradient on
the feasible region. In general, we cannot find a closed
form formula for such a projection. However, theoret-
ically, the method can be put in very a general setting
[1,46,52,60].

Yue and Han [92] also obtained a new property of
a linearly constrained set in the format of the standard
form of linear programming. These types of properties
are very useful for the application of �-active set strat-
egy. See [32] for a generalization. D.-Z. Du [22] also
found a simpler convergent version for Rosen’s method
by deleting Polak’s special procedure.

Although several convergent versions have been
found, one still wanted to know what would happen
when the parameter is also bounded below by a posi-
tive number. In fact, all the above convergent versions
use some ideas different from Rosen’s one for anti-
zigzaging. Thus, it was still open whether Rosen’s orig-
inal idea that keeps the parameter away from zero and
infinity works or not. (Allowing the parameter to ap-
proach zero as the iteration varies was considered as an
oversight in [82].)

Zhang [97] made the first breakthrough in this di-
rection; he showed that if the parameter ck equals a pos-
itive constant at every iteration, then Rosen’s method is
convergent in the three-dimensional space. Soon later,
Du and Zhang [35] established a more general result
that if the parameter ck is chosen to be a positive con-
stant with a specific upper bound, then Rosen’s method
is convergent in the n-dimensional space. This is the
first solution for the convergence problem. In the same

paper, Du and Zhang also conjecture that the upper
bound on the constant can be deleted, that is, as long
as the parameter does not vary as the iteration varies,
it can be chosen to be any positive number. This con-
jecture was settled through several efforts including
[26,47], and [36]. Finally, [34] showed a convergence
theorem with a more general rule for selecting the pa-
rameter.

The global convergence of Rosen’s method also de-
pends on the choice of line search. In [36] it is as-
sumed that the line search is normal, including exact
line search, Curry test, Goldstein test, Wolfe test, and
Armijo rule [2].

Theorem 3 Consider Rosen’s method with a normal
line search procedure. Let ˛ and ˇ be two positive num-
bers with ˛ � ˇ. Suppose in Rosen’s method the parame-
ters ck are chosen to satisfy ˛ � ck � ˇ. Then the method
either stops at a Kuhn–Tucker point or generates an in-
finite sequence whose cluster points are all Kuhn–Tucker
points.

If the line search is not normal, X.-D. Hu [48] showed
that the global convergence of Rosen’s method may fail
But, with Hu’s counterexample, the method in [22] still
has the global convergence property. If the steplength
in the line search is uniformly bounded, the choice of
parameter can be further relaxed [29], which gives an
improvement of Ritter’s result [80].

Theorem 4 Consider Rosen’s method with a normal
line search procedure of uniformly bounded steplength.
Let ˛ and ˇ be two positive numbers and ` and `0 two
positive integers. Suppose in Rosen’s method the param-
eters ck are chosen to satisfy
a) ck � ˛ whenever Jk = � � � = Jk� `; and
b) ck � ˇ whenever Jk 6D � � � 6D Jk� `0 and |Jk| = � � � =

|Jk� `0|.
Then the method either stops at a Kuhn–Tucker point or
generates an infinite sequence whose cluster points are all
Kuhn–Tucker points.

Finally, we would like to mention that [45] gives
a method to deal with this degenerative case. This
method uses the lexicographic simplex procedure to
deal with degenerate line constraints. It is worth men-
tioning that Bland’s rule [5] can also be used here in-
stead of the lexicographic simplex procedure.
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Global Convergence

The significance of the solution for the global conver-
gence problem of Rosen’s method is not only on a sin-
gle algorithm. In fact, the solution is obtained based on
discovery of new techniques and new developments of
global convergence theory in nonlinear programming.

To give a unified convergence theorem, W.I. Zang-
will [94,95] introduced a point-to-set mapping; each it-
eration that finds a new point from the current point is
viewed as taking an element from the image set of the
point-to-set mapping. He showed an abstract conver-
gence theorem under the closeness of the mapping.

Let X and Y be two topological spaces. Denote by
P (X) the collection of all subsets of X. A mapping
from X to P (Y) is usually called a point-to-set mapping.
A point-to-set mappingA:X!P (Y) is said to be closed
at a point x if

8̂
<̂
ˆ̂:

xk ! x
yk ! y
yk 2 A(xk)

! y 2 A(x): (4)

A point-to-set mapping is closed if it is closed at every
point in its definition domain.

Consider the following abstract algorithm.

Let � be a subset of a topological space X.
Let A be a point-to-set mapping from Xn� to
P(X).

0 Choose an initial point x1.
k If xk 2 � , then stop. Otherwise, choose

xk+1 2 A(xk).

Zangwill’s algorithm

Theorem 5 (Zangwill’s theorem) Let f be a continu-
ous function on a topological space X and � a subset of
X. Let A be a closed point-to-set mapping from X\ � to
P(X) such that
a) the closure of[1kD1A(xk) is compact for every conver-

gent sequence of points x1, x2, . . . in X \ � ; and
b) for every x 2 X\ � and y 2 A(x), f (y)> f (x).
Then Zangwill’s algorithm either stops at a point in � or
generates an infinite sequence whose cluster points are all
in � .

However, for a constrained optimization problem, the
closeness is lost when the line search procedure is
stopped by a constraint. Du [23] proved a result to tell
when an algorithm has the global convergence prov-
able by Zangwill’s theorem. G.P. McCormick [58] sug-
gested to search along a broken line, that is, if the search
is stopped by reaching a new constraint then do not
stop there and, keeping the constraint active, find a new
direction to continue the search. K. Ritter [78,79,80]
decomposed the broken line search into several line
searches and applied it to a family of feasible direc-
tion method including the gradient projection method.
Since the discovery of Zangwill’s theorem, many ab-
stract convergence results based on the point-to-set
mapping have been established. See [50,51,61,62] for
some of them. Some necessary or sufficient conditions
for global convergence, such as Bazaraa–Shetty’s con-
dition [4] and Wolfe’s work [88,89,90], also appeared.
However, none of them is powerful enough to show the
convergence of Rosen’s gradient projection method.

As the open problem on Rosen’s method is resolved,
a number of new techniques [28,29] for studying the
global convergence of ‘nonclosed’ algorithms have been
discovered. These techniques have now been known as
slope lemmas.

Lemma 6 (first slope lemma) Let {xk} be a sequence of
feasible points such that f (xk)< f (xk+1) for k = 1, 2, . . . .
Let x� be a cluster point of the sequence such that for any
subsequence {xk}k 2 K converging to x�, xk+1� xk! 0 as
k!1, k 2 K. If {xk} does not converge to x�, then there
exists a subsequence {xk}k 2 K such that xk! x� as k!
1, k 2 K, and

lim
k!1;k2K

g>k (xkC1 � xk)
kxkC1 � xkk

D 0: (5)

Lemma 7 (second slope lemma) Let {xk} be a sequence
of feasible points, in a linearly constrained region, con-
vergent to x�. Suppose f (xk)< f (xk+ 1) for all k. Then
there exists a subsequence {xk}k 2 K such that for every
J with J = Jk for infinitely many k,

0 � lim
k!1;k2K

g>k (xkC1 � xk)
kxkC1 � xkk

� kPJg(x�)k :

Lemma 8 (third slope lemma) Let {xk} be a se-
quence of feasible points such that for all k, f (xk)<
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f (xk+ 1). Let x� be a cluster point of the sequence. Sup-
pose that for any subsequence {xk}k 2 K converging to x�,
limk!1, k 2 K(xk+ 1� xk) = 0. If there exists a positive
number � such that for all k,

g>k (xkC1 � xk)
kxkC1 � xkk

� �maxf


PJkgk



 ; 

PJkC1gk


g;

then the following two statements are equivalent:
a) there exists a subsequence {xk}k 2 K converging to x�

such that

lim
k!1;k2K

g>k (xkC1 � xk)
kxkC1 � xkk

D 0: (6)

b) For every subsequence {xk}k 2 K converging to x�, (6)
holds.

The first and the second slope lemmas have intuitive
background as follows.

When you passed by a mountain, you may have no-
ticed that the road somehow looks like a snake in s-
shape. Why was the road built in such a way? The an-
swer is easy, increase the length to decrease the slope.
The longer its length is, the smaller its slope is. How-
ever, did you think that as its length approaches infinity
its slope approaches zero? This is what the first slope
lemma states.

Consider a path going up on a mountain. The aver-
age slope is the ratio of the height increment over the
length of the projection of the path onto the level plane.
Clearly, the average slope of any path cannot exceed the
slope of the direct path connecting the two endpoints.
This is what the second slope lemma states.

The power of the first slope lemma is surprising. It
can show that a large class of feasible direction meth-
ods share a convergence property that if the generated
sequence of points has a cluster point but does not con-
verge to it, then every cluster point of the sequence
is a Kuhn–Tucker point. It is interesting to point out
that Wolfe [90] has showed by a counterexample that
Zoutendijk’s method [4,98] can generate a sequence of
points converging to a point which is not a Fritz John
point. However, with the first slope lemma, we can still
show that it generates a sequence of points which do
not converge to a point, then every cluster point of the
sequence is a Fritz John point.

Powell’s Conjecture

Consider an unconstrained optimization problem as
follows:

max f (x);

where f is continuously differentiable in Rn.
The first quasi-Newton method was initially pro-

posed by W.C. Davidon [16] in 1959, but his work was
published nine years later [17]. The public attention on
Davidon’s work was largely due to the introduction of
R. Fletcher andM.J.D. Powell [41] in 1963. This method
is called the DFP method(Davidon–Fletcher–Powell).

Choose an initial point x1 and an initial posi-
tive definite symmetric matrix H1. Set k = 1.

1 Compute gk . If gk = 0, then stop: else, go to
step 2;

2 If k > 1, then compute a positive definite sym-
metric matrix Hk with an updating formula

Hk = Hk�1 �



 k�1




>
k�1




>k�1yk�1
�

Hk�1yk�1(Hk�1yk�1)>

y>k�1Hk�1yk�1
;

where yk�1 = gk � gk�1 and 


 k�1 = xk � xk�1.
Compute a search direction dk = Hkgk . Set
xk+1 = xk + �dk and k := k + 1, where � is
chosen by a line search. Go to step 1.

DFP method

Since then, many variations and generalizations of
quasi-Newton methods [6,7,44,49,84,91] appeared in
the literature. There are three issues on the conver-
gence of quasi-Newton methods: quadratic termina-
tion, global convergence, and convergence rate. All
quasi-Newton methods have quadratic termination un-
der certain conditions [8,9]. However, the global con-
vergence is a difficult problem for quasi-Newton meth-
ods. Powell [69] in 1971 established the first con-
vergence theorem that if the objective function is
twice continuously differentiable and uniformly con-
cave, then the DFP method with exact line search gen-
erates a sequence convergent to a stationary point.
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L.C.W. Dixon [20,21] at the same period found that
all methods in Broyden’s family with exact line search
actually generate an identical sequence. This discov-
ery extended Powell’s result to all members in Broy-
den’s family. It is interesting to point out that although
Powell in 1971 obtained a convergence theorem, he did
not believe that DFP method in general is globally con-
vergent. Thus, he conjectured in 1971 that there exists
a twice continuously differentiable objective function
such that DFPmethod generates a sequence convergent
to a point which is not a stationary point. However, one
year later he changed his mind. In fact, after eighteen
months he worked on his own conjecture, but he did
not find such a counterexample. Instead, he [70] proved
that his conjecture in 1971 is false for objective func-
tions with two variables and that the uniform concavity
in his convergence theorem can be replaced by concav-
ity and an upper bound on the objective function.

Theorem 9 Let f be a twice continuously differentiable
concave real function on Rn. Suppose that the level set
{x: f (x) � f (x1)} is bounded. Then the DFP method with
exact line search and initial point x1 either stops at the
maximum or generates an infinite sequence whose func-
tion value converges to the maximum value of f (x).

Therefore, since 1972, the following is considered as the
conjecture of Powell:

Conjecture 10 (Powell’s conjecture) Suppose the ob-
jective function is continuously differentiable. Then every
cluster point of the sequence generated by DFP method
with exact line search is a stationary point. D. Pu and
W. Yu [77] made an important progress on Powell’s con-
jecture. They showed the following.

Theorem11 Suppose DFPmethod generates an infinite
sequence {xk} converging to x�. If the objective function f
belongs to the class C1, 1, that is, there exists a constant L
such that for every x and y

kg(x) � g(y)k � L kx � yk ;

then

lim inf
k!1

kgkk D 0:

Powell [72] also showed a global convergence theorem
for BFGS method with inexact line search (Wolfe test)

for twice continuously differentiable and concave ob-
jective functions with a upper bound. Ritter [81] tried
to generalize Powell’s result to whole Broyden’s family.
However, the restriction on search step in line search
restricts success of his result. R.H. Byrd, J. Nocedal,
and Y. Yuan [12] successfully generalized Powell’s re-
sult to all members in Broyden’s family except DFP
method. It is an very interesting open problem whether
the DFPmethod with theWolfe test has the same global
convergence. With a modified Wolfe test and a suit-
ably smooth objective function, Pu [76] showed that if
a member in Broyden’s family generates a convergent
sequence, then the sequence converges to a stationary
point.

For the convergence rate, Powell [69] showed that
if the objective function is uniformly concave and its
Hession matrix satisfies the Lipschitz condition, then
DFPmethod with exact line search is superlinearly con-
vergent. This can be extended to all members in Broy-
den’s family by Dixon ’s theorem. Similarly, Powell
[72] also showed that if the objective function is uni-
formly concave and its Hession matrix satisfies Lips-
chitz condition, then BFGS method with Wolfe test is
superlinearly convergent. Byrd, Nocedal, and Yuan [12]
generalized this result to Broyden’s family except DFP
method under the condition that the Hession matrix is
Hölder continuous. Pu [75] showed that with the mod-
ified Wolfe test, DFP method is one-step superlinearly
convergent.

Combining Rosen’s method with variable metric
methods, Goldfarb [42] and Murtagh and Sargant
[63] obtained two efficient algorithms. Powell [71]
showed that these two algorithms are actually equiv-
alent. The convergence of such algorithms is still an
open problem. However, several convergent variations
[55,59,79,80] have been established. The convergence
of quasi-Newton methods for nonlinearly constrained
optimization can be found in [15,65,73,74].

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� First Order Constraint Qualifications
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The notion of a saddle point is a fundamental concept
in many areas of science and economics. A classical in-
stance is the famous saddle point theorem for a zero-
sum matrix game due to J. von Neumann [2]. We shall
here emphasize the utility of saddle points in the con-
text of optimization.

Saddle Points

Let us first recall some fundamental observations about
saddle points and duality. Consider a function K(x, y):
X × Y ! R, where X � Rn and Y � Rm. We say that
(x0, y0) 2 X × Y is a saddle point of K on the sets X and
Y if

K(x; y0) � K(x0; y0) � K(x0; y) (1)

for all x 2 X and y 2 Y .

Consider next the following two programs:

z D max
x2X

inf
y2Y

K(x; y) (2)

and

w D min
y2Y

sup
x2X

K(x; y): (3)

Since one program is derived from the other via an in-
terchange of the optimization directions they constitute
a pair of so-called dual programs.

We say that x0 2 X is an optimal solution of the pro-
gram (2) if infy 2 Y K(x0, y) = maxx 2 X infy 2 Y K(x, y)).
Similarly, y0 2 Y is an optimal solution of the program
(3) if miny 2Y supx 2 X K(x, y) = supx 2 X K(x, y0). Ob-
serve that

inf
y2Y

K(x0; y) � K(x0; y0) � sup
x2X

K(x; y0) (4)

for any (x0, y0) 2 X × Y . This implies that we always
have so-called weak duality: z � w. We speak of strong
duality when optimal solutions (x0, y0) exist for pro-
gram (2) and (3), respectively, so that z = w. If so, the
inequalities of (4) are turned into equations. In this case
supx 2 X K(x, y0) is obtained by x0, so that the sup oper-
ator is naturally replaced by the max operator. Similarly
for the inf operator and we obtain that

min
y2Y

K(x0; y) D K(x0; y0) D max
x2X

K(x; y0):

However, this expression is equivalent to the definition
of a saddle point.

This leads us to the result that (x0, y0) is a saddle
point if and only if x0 and y0 are optimal solutions of
the programs (2) and (3), respectively, and with equal
values, i. e. z = w.
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Mathematical Programming

We shall now study the particular situation where K(x,
y) is the Lagrange function of a mathematical program-
ming problem. Let f (x): Rn ! R and g(x): Rn ! Rm.
Further let K(x, y) = f (x) � yg(x) + yb, where b 2
Rm, and Y = Rm

C, the nonnegative orthant. In this set-
ting program (2) becomes an ordinary mathematical
programming problem stated in the following so-called
primal form:

zp D

8̂
<̂
ˆ̂:

max f (x)
s.t. g(x) � b

x 2 X:

(5)

The dual form of (5) is derived from program (3):

min
y2Rm
C

sup
x2X

f (x) � yg(x)C yb

or with u 2 R alternatively as

wp D

8̂
<̂
ˆ̂:

min u C yb
s.t. u C yg(x) � f (x); 8x 2 X;

u 2 R; y 2 Rm
C:

(6)

Since the programs (5) and (6) are special cases of the
dual programs (2) and (3), we get that optimal solutions
x0 and y0 exist for (5) and (6), respectively, and with zp
= wp if and only if (x0, y0) is a saddle point for K(x, y) =
f (x) � yg(x) + yb.

The condition (1) for a saddle point (x0, y0) looks
here as follows:

f (x)� y0g(x)C y0b

� f (x0) � y0g(x0)C y0b

� f (x0) � yg(x0)C yb

(7)

for all x 2 X and y 2 Rm
C.

We shall show in this particular case that the condi-
tion for a saddle point can be restated in an alternative
form as the so-called optimality conditions:
i) x0 maximizes f (x) � y0g(x) over X;
ii) y0(g(x0) � b) = 0;
iii) y0 � 0; and
iv) g(x0) � b.
So, assume that we have a saddle point (x0, y0) satisfy-
ing (7). Then condition i) is implied by the left inequal-
ity of (7). If g(x0) 6� b then by an appropriate choice

of nonnegative elements y we can violate the right in-
equality of (7). This implies iv). Condition iii) is im-
plied directly. Conditions iii) and iv) imply that y0(g(x0)
� b) � 0. If this inequality is strict then y0 does not
minimize over R+ according to the right inequality of
(7). This proves ii). Conversely, by similar arguments
we can show that i)–iv) imply the saddle point condi-
tion (7).

We shall next study the mathematical programming
problem (5) and provide conditions leading directly to
the existence of a saddle point or equivalently to the sat-
isfaction of the optimality conditions. In this context
we shall study the perturbation function of the primal
program (5) by varying the right-hand side of the con-
straints. Let d 2 Rm. The perturbation function �(d) is
then defined as follows:

�(d) D

8̂
<̂
ˆ̂:

max f (x)
s.t. g(x) � d

x 2 X:

Let D = {d 2 Rm : 9x 2 X s.t. g(x) � d}. Consider next
the following program:

8̂
<̂
ˆ̂:

min u C yb
s.t. u C yd � �(d); 8d 2 D;

u 2 R; y 2 Rm
C:

(8)

We shall show that (8) is equivalent to the dual program
(6). Assume (u, y) is a feasible solution of (8), i. e. it sat-
isfies the constraints of (8). For x 2 X and d = g(x) we
then obtain that u + yg(x) = u + yd � �(d) = �(g(x))
� f (x). Hence (u, y) is also feasible in (6). Conversely,
assume that (u, y) is feasible in (6). If x 2X and g(x)� d
we immediately get that f (x) � �(d) and moreover that
u + yd � u + yg(x)� f (x). Hence u + yd � �(d) imply-
ing that (u, y) is also feasible in (8). So with equal set of
feasible solutions and with the same objective function
the two programs are equivalent.

The dual program in the form of (8) has a nice geo-
metric interpretation. For a given set of coefficients (u,
y) the sum u + yd becomes an affine function in d 2 Rm.
The objective of (8) is to select the coefficients in such
a way that this function always is above the perturba-
tion function, but with the lowest possible value at the
point b. (This confirms the existence of weak duality for
the dual programs (5) and (6)). For an optimal solution
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of the primal programming problem (5) we thus addi-
tionally have strong duality if the affine function coin-
cides with the perturbation function at the point b. In
mathematical terms the perturbation function � satis-
fies the following condition:

�(d) � �(b)C y(d � b); 8d 2 D; (9)

and we say that the perturbation function is superdiffer-
entiable at b.

Significant cases exist for this to occur. For exam-
ple, if the perturbation function is finite and concave
over the set D of feasible right-hand sides then it is su-
perdifferentiable at points in the relative interior of D.
Moreover, at the boundary the perturbation function is
not superdifferentiable if and only if the perturbation
function has a directional derivative of value +1 at the
selected point. This case rarely occurs, and if this does
not happen the perturbation function is said to be sta-
ble.

These mainly geometrical observations can be
treated more rigorously applying some classical results
about conjugate functions and supporting hyperplanes
in convex analysis, see [3].

Convex Programming

In this last section we assume that X =Rn
C, f (x) is differ-

entiable and concave and that the components of g(x)
are convex and differentiable. These assumptions are
indeed fulfilled in many applications. In this case the
perturbation function is finite and concave on Rm

C. We
also assume that the perturbation function is stable. By
the observations above we then get the following funda-
mental property: If an optimal solution x0 exists for the
primal program (5), then a vector y0 exists such that (x0,
y0) constitutes a saddle point (or equivalently that (x0,
y0) satisfies the optimality conditions).

Moreover by the assumptions made on convexity
and differentiability the optimality conditions can be
restated into the famous Karush–Kuhn–Tucker condi-
tions [1]:
� (rxf (x0) � y0rxg(x0))� 0;
� (rxf (x0) � y0rxg(x0))x0 = 0;
� y0(g(x0) � b) = 0;
� g(x0) � b and (x0, y0)� 0.
Therefore and subject to the assumptions made, the
Karush–Kuhn–Tucker conditions provide necessary

and sufficient conditions for an optimal solution of the
mathematical programming problem (5). This result
has had a tremendous impact on the development of
algorithms to solve mathematical programming prob-
lems. Moreover, if the perturbation function �(d) is
also differentiable at b then it is approximated by the
right-hand side of (9). This happens in many applica-
tions. Thus with numerically small deviations d � b the
vector y0 measures the marginal effects on the optimal
value of the objective function of (5). Due to this prop-
erty y0 is often denoted as the vector of shadow prices
and as such it plays a central role in the discussion and
interpretation of results obtained by mathematical pro-
grams, in particular when modeled over problems in
economics.
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A second order constraint qualification (SOCQ) is
a condition which is imposed on the analytical descrip-
tion of the constraint set of an optimization problem
and which usually involves second order approxima-
tions of the data functions. second order constraint
qualifications are essential in order to establish second
order optimality conditions, but they play also a cer-
tain role in the perturbation analysis for optimization
problems. Roughly speaking, second order constraint
qualifications establish a link between the geometry of
the given set and certain kinds of second order approx-
imations of the analytical data. Second order constraint
qualifications are closely related to first order constraint
qualifications (cf. � First Order Constraint Qualifica-
tions), in particular, see that article for notions such as
LICQ, MFCQ, Robinson CQ and others.

Historically, SOCQs were first introduced in studies
of second order optimality conditions for smooth non-
linear programs, see, e. g., [11,12,19,20]. Given twice
continuously differentiable functions gi: Rn ! R (i =
0, . . . , r), the smooth mathematical programming prob-
lem is

(P)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min g0(x)
s.t. gi (x) � 0;

i 2 I :D f1; : : : ;mg;
g j(x) D 0;

j 2 J :D fmC 1; : : : ; rg:

(1)

A (dual) second order necessary optimality condition
of Fritz John type is the following one: If x is a local
minimizer of (P), then for every critical direction d, i. e.,
every d satisfying
(
hDgi (x); di � 0; i 2 I0x ;˝
Dgj(x); d

˛
D 0; j 2 J;

where Ix :D fi 2 I : gi (x) D 0g and I0x :D Ix [ f0g,
there exist multipliers ui � 0 for i 2 I0x and uj 2 R for j
2 J, not all zero, such that

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

ui hDgi(x); di D 0; i 2 I0x ;X

k2I0x[J

ukDgk(x) D 0;

X

k2I0x[J

uk
˝
d;D2gk(x)d

˛
� 0;

(2)

see [2,3,16,18]. A SOCQ comes into play if one asks
when u0 can be chosen as 1 in order to have an
objective-independent condition of Kuhn–Tucker type.
Suppose d is a critical direction. Then under the above
assumptions, the multiplier u0 in (2) can be chosen as 1
if there holds (see [2]) the
� Ben-Tal SOCQ: Dgj(x), j 2 J are linearly inde-

pendent, and there exists some h 6D 0 such that
hh;Dgi(x)i C

˝
d;D2gi (x)d

˛
< 0 for i 2 I(x; d),

and
˝
h;Dgj(x)

˛
C
˝
d;D2g j(x)d

˛
D 0 for j 2 J, where

i 2 I(x; d) if and only if i 2 Ix and hDgi (x); di D 0.
A similar SOCQ plays a role in infinite-dimensional set-
tings [3]. If MFCQ holds at a local minimizer x of (P),
then the Ben-Tal SOCQ is fulfilled at x for each critical
direction d [2,3,25]. The Ben-Tal SOCQ does not guar-
antee that the same multiplier vector can be taken such
that (2) is satisfied (with u0 = 1) for each critical direc-
tion. However, under LICQ this so-called strong neces-
sary condition holds, see [2]. For other SOCQs imply-
ing the strong necessary condition, see [12]. Classical
textbooks like [11,19] often apply the
� McCormick SOCQ at x 2 M: Any vector d satisfying
hDgi(x); di D 0 for i 2 Ix [ J is the tangent of an
arc ˛(�), twice differentiable, along which gi(˛(�))
� 0 for all i 2 Ix [ J, where � 2 [0, "], " > 0. M
denotes the constraint set of (P).

If McCormick’s SOCQ, together with a first order CQ,
holds, then a strong necessary condition is fulfilled in
a much weaker form, namely, only for critical direc-
tions d satisfying additionally hDgi(x); di D 0 for all
i 2 Ix . Note that LICQ implies the McCormick SOSC
[11], but the Kuhn–Tucker (first order) CQ does not
imply the McCormick SOSC [11].

While strong necessary optimality conditions and
the corresponding (restrictive) SOCQs rely on assump-
tions ensuring that active inequalities may be han-
dled as equations, the approach which goes back to
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A. Ben-Tal [2,3] is based on verification of optimality
along curves that have a second order expansion, so-
called parabolic curves. On the one hand, the concept
of parabolic curves and related second order tangent
sets requires only weak and ‘natural’ constraint qualifi-
cations, on the other hand, it leads to explicit second or-
der optimality conditions involving second order terms
of the original data.

This approach was continued in the remarkable pa-
per [9] for problems of the type

(bP)
(
min f (x)
s.t. G(x) 2 C

(3)

(with (smooth) abstract constraints), where G maps
a Banach space X into a Banach space Y , f maps X into
R, f , G are twice continuously differentiable, and C is
a nonempty closed convex subset of Y . The following
discussion of the role of SOCQs in this context takes
pattern from [5,6,9,21,24].

Assume X = Rn. Define the Lagrange function by
L(x, u): = f (x)+hu, G(x)i. The first order tangent set
TC (x) to C at x consists of all directions p satisfying
dist(x C tp;C) � o(t), the second order tangent set
T2
C (x; p) to C at x in direction p consists of all direc-

tions q satisfying

dist
�
x C tpC

1
2
t2q;C

�
� o(t2);

where dist(x, C) denotes the Euclidean point-to-set dis-
tance from x to C, and '(t) � o(tk) means the Landau
notation, i. e., limt # 0'(t)/tk = 0. Now the direction h 2
X is said to be critical at the feasible point x if and only
if DG(x)h 2 TC (G(x)) and hD f (x); hi � 0. Then one
has [9]:

Theorem1 Let x be a local minimizer for f on the feasi-
ble set S defined by (3). If Robinson’s CQ holds at x, then
for all critical directions h at x,

sup
u2�(x)

˚˝
h;D2

xx L(x; u)h
˛
� �(u;Qh)

�
� 0; (4)

where �(x) is the set of Lagrange multipliers associated
with x for (bP), Qh :D T2

C (G(x);DG(x)h), and �(�, Q)
is the support function of Q, u 7�! �(u, Q) = supq 2 Qhu,
qi.

In order to have a narrow gap between necessary and
sufficient optimality conditions, the following direc-
tional SOCQ, introduced in [4,6], is very important:

� Directional SOCQ: The set C is said to be second or-
der regular at y 2C in a direction p2 TC(y) and with
respect to a linear mappingM: X! Y , if for any se-
quence yn 2 C of the form

yn :D yC tn pC
1
2
t2nqn ;

where t # 0, qn : = Mwn + an, {an} converging in Y ,
wn 2 X, tnwn! 0, one has lim dist(qn, T2

C (y, p)) = 0.
If C is second order regular at y with respect to all such
p,M, X then C is called second order regular at y.

For example, the polyhedral convex cone C in the
setting of a nonlinear program (1) is second order regu-
lar. Further, the cones of positive and negative semidef-
inite matrices are second order regular (which is used
for deriving optimality conditions in semidefinite pro-
gramming [23]). For several other settings of C, for
example in semi-infinite programming and composite
optimization, the directional SOCQ has been specified
in [6], where also the following crucial result can be
found (known as the equivalence theorem):

Theorem 2 If Robinson’s CQ holds at a feasible point
x, and if for every critical direction h, the set C is sec-
ond order regular at G(x) in the direction DG(x)h and
with respect to DG(x)(�), then the inequality (4) holds
strictly (i. e., with > 0) for nonzero critical directions h if
and only if f satisfies, with some positive c, the quadratic
growth condition f (x) � f (x)C c kx � xk2 for feasible
x near x.

In this sense, there is no gap between second or-
der necessary and sufficient conditions. Similar second
order optimality characterizations under some direc-
tional second order regularity were derived in [21] for
so-called parabolically regular (extended-valued) func-
tions. Note that the latter concept is weaker than that of
the directional SOCQ.

If the abstract constraint (3) reduces to the nonlin-
ear programming form (1), then the term �(u, Qh) in
(4), called ‘shifting term’ or ‘�-term’, vanishes. Hence,
the equivalence theorem reduces to a well-known fact
for smooth nonlinear programs (see, e. g., [2,25]), since
MFCQ and Robinson’s CQ coincide in this situation.

In contrast to this, for more general settings, �(u,
Qh) is essential. Conditions which allow a concrete rep-
resentation of the �-term can be considered as SOCQs.
For standard semi-infinite programs with compact in-
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dex set I (i. e., C is the cone of nonnegative continu-
ous functions on I), this has been done in [5,24]. Con-
ditions which ensure the local reduction of a semi-
infinite program to a standard nonlinear program (‘re-
duction approach’) also allow a concrete representation
of �(u, Qh), for standard semi-infinite programs see,
e. g., [13,22], for generalized semi-infinite programs see,
e. g., [14,17].

The directional SOCQ defined above (or some
stronger versions, respectively), together with a first or-
der directional CQ, have been essentially used (e. g., in
[5,7,8]) in sensitivity and stability analysis of problem
(bP) under perturbations along certain directions: sec-
ond order expansion of optimal values, first order ex-
pansion of optimal solutions, differential stability, Lip-
schitz stability, etc.

Remarks

In this article, the focus was on smooth problems.
Though the notion SOCQ is not often used in non-
smooth optimization, the study of higher-order tan-
gent sets and their influence in optimality conditions
of higher order could be considered as an analogy to
SOCQs. For many material in this direction see, e. g.,
[1,21]. A special case between smooth and nonsmooth
programs are so-called C1, 1 optimization problem (i. e.,
problems of type (P), but the data are differentiable with
locally Lipschitzian gradients). A SOCQ for this class of
problems is a stronger variant of the Abadie CQ: the
Bouligand (contingent) cone has to coincide with the
linearization cone [15]. This SOSC, together with some
first order CQ, is again of interest in deriving necessary
second order optimality conditions, see [10,15].
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The quest for optimality conditions for nonlinear opti-
mization problems started a long time ago, however, un-
til calculus was invented there was little progress. Cal-
culus has enriched and accelerated this endeavor signif-
icantly.

In the following discussion x = (x1, . . . , xn)| de-
notes the column vector of decision variables whose
optimal values need to be determined. All functions
are assumed to be continuous real valued functions of
x. When discussing the first (second) order optimality
conditions, we make the assumption that all functions
are continuously differentiable (twice continuously dif-
ferentiable).

For any real valued function f (x), we denote the gra-
dient vector of f (x) at x, (@ f (x)/@x1; : : : ; @ f (x)/@xn),
written as a row vector, by rx f (x) and the n × n Hes-
sian matrix of f (x) at x, (@2 f (x)/@xi@x j), by r2

xx f (x).
We discuss the nonlinear optimization problem in

terms of ‘minimization’ of the objective function. In-
stead, if an objective function F(x) is required to be
‘maximized’, this problem is equivalent to minimizing
�F(x) subject to the same constraints. Because of this,
we state all our results in terms of minimization prob-
lems.

Nonlinear optimization problems can be classified
into three broad types, which are of the following forms:
� Unconstrained minimization

(
min �(x)
s.t. x 2 Rn :

(1)

� Equality-constrained optimization
(
min �(x)
s.t. gi (x) D 0; i D 1; : : : ;m:

(2)

� General constrained optimization
8̂
<̂
ˆ̂:

min �(x)

s.t. gi (x)

(
D 0; i D 1; : : : ;m;
� 0; i D mC 1; : : : ;mC p:

(3)

The general problem (3) is said to be a convex pro-
gramming problem [2,3] if the objective function to
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be minimized, �(x), is convex; the equality-constraint
functions gi(x), i = 1, . . . , m, are affine; and the inequal-
ity (�) constraint functions gi(x), i = m + 1, . . . , m + p
are concave; a nonconvex programming problem other-
wise.

In linear programming, we only talk about an opti-
mum solution, but in nonlinear optimization, we need
to consider different types of optimum solutions. In
minimization problems the feasible solution x is said
to be a:
� local (or relative) minimum if �(x) � �(x) for all

feasible x satisfying kx � xk � � for some positive
�.

� strong (or strict) local (or relative) minimum if
�(x) > �(x) for all feasible x ¤ x satisfying
kx � xk � � for some positive �.

� global minimum if �(x) � �(x) for all feasible x.
� stationary point if it satisfies one of the necessary

conditions for a local minimum.
Corresponding concepts (weak or strong local max-
imum, global maximum) for maximization problems
are defined analogously. We illustrate these concepts in
Fig. 1 for the problem of minimizing the graphed func-
tion f (x) of a single variable x 2 R1 in the interval a �
x� b. The points a, x5, x7, x10, x12 are strong local min-
ima; x0, x4, x6, x11, b are strong local maxima; x12 is the
global minimum, and x6 is the global maximum. x1, x2

are weak local minima; and x8, x9 are weak local max-

Second Order Optimality Conditions for Nonlinear Optimization, Figure 1

ima. x3 is a stationary point even though it is neither
a local maximum nor a local minimum. In each of the
intervals x1 � x � x2, and x8 � x � x9, f (x) is a con-
stant; and every point in the interior of these intervals
(i. e., points x satisfying x1 < x < x2 or x8 < x < x9) is both
a weak local minimum and a weak local maximum.

In linear programming all local minima are global
minima, hence we only talk about an ‘optimum solu-
tion’ there. As seen above, in nonlinear programming
models these concepts could be different.

The original intent of the problem is of course to
find a global minimum. Using existing algorithms, this
is possible with reasonable efficiency only for convex
programming problems (which includes linear pro-
grams and convex quadratic programs as special cases).
As discussed in [3,4], for general nonconvex program-
ming problems, even finding a local minimum is hard;
existing efficient algorithms can at best guarantee con-
vergence to a stationary point on such problems.

Unfortunately, there are no known useful condi-
tions that can efficiently characterize a global minimum
for the general nonlinear programming problem. We
only know some necessary, and some sufficient con-
ditions for a local minimum for this general problem.
In convex programming problems however, every local
minimum is a global minimum; so for this nice class of
problems we have useful necessary and sufficient con-
ditions for a global minimum.



Second Order Optimality Conditions for Nonlinear Optimization S 3363

Optimality Conditions
for the UnconstrainedMinimization Problem (1)

These were developed first for one-dimensional mini-
mization problems in the 17th century as Newton was
developing calculus, and very soon after extended to
multidimensional minimization problems. These con-
ditions are:
� First order necessary conditions for x to be a local

minimum: rx�(x) D 0.
� Second order necessary conditions for x to be a local

minimum: rx�(x) D 0 and r2
xx (�(x)) is positive

semidefinite (PSD).
� Second order sufficient conditions for x to be a strict

local minimum: rx�(x) D 0, and r2
xx (�(x)) is pos-

itive definite (PD).
� Necessary and sufficient conditions for x to be

a global minimum if �(x) is convex: rx�(x) D 0.
The computational effort needed to check whether
a given square matrix is PSD or PD is O(n3). Hence,
given x, each of the above conditions can be checked
efficiently.

When �(x) is nonconvex, there is a slight gap be-
tween the necessary and sufficient conditions for a local
minimumwhen rx�(x) D 0 andr2

xx (�(x)) is PSD and
not PD. In this case we are unable to conclude that ei-
ther x is a local minimum, or that it is not. To bridge
this gap, more complicated conditions involving higher
order derivatives are needed, but they are impractical,
particularly when n is large.

Optimality Conditions for the Equality
ConstrainedMinimization Problem (2)

Inspired by the study of problems in mechanics, these
conditions, which form the foundation of nonlinear
programming theory, were developed in the 18th and
19th centuries. Major results were obtained by L. Eu-
ler and J.L. Lagrange and were first published in a book
written by Lagrange in 1788.

The necessary conditions are derived under a con-
dition on the constraints in (2) known as a constraint
qualification (CQ). A well known CQ is known as the
regularity condition.

The feasible solution x for (2) is said to satisfy the
regularity condition (and hence called a regular point
for (2)) if frx g1(x); : : : ;rx gm(x)g is linearly indepen-
dent.

The optimality conditions for a feasible solution x
to be a local minimum for (2) are:
� First order necessary conditions for x to be a local

minimum for (2): If x is a local minimum for (2),
and either all the constraints are linear constraints,
or x is a regular feasible solution, there exists 
 D
(
1; : : : ; 
m) such that

rx�(x) D
mX
iD1


 irx gi (x):

The vector 
 in the above condition is known as the
Lagrange multiplier vector. The function L(x; 
) D
�(x) �

Pm
iD1 
 i gi (x) is known as the Lagrangian

function for (2) with Lagrange multiplier vector 
 .
The above necessary condition can also be written
as rx L(x; 
) D 0.

� Second order necessary conditions for x to be a local
minimum for (2): If x is a local minimum for (2),
and either all the constraints are linear constraints,
or x is a regular feasible solution, there exists 
 D
(
1; : : : ; 
m) such that

rx�(x) D
mX
iD1


 irx gi (x)

and

y>r2
xx (L(x; 
))y � 0 for all y 2 T;

where T D fy : rx gi(x)y D 0 for all i D 1; : : : ;mg.
� Sufficient condition for x to be a strict local mini-

mum for (2): If x is a feasible solution for (2), and
there exists a 
 D (
1; : : : ; 
m) such that

rx�(x) D
mX
iD1


 irx gi (x)

and

y>r2
xx (L(x; 
))y > 0 for all 0 ¤ y 2 T;

where T is defined above, then x is a strict local min-
imum for (2).

Given a regular feasible solution x, the existence of a La-
grange multiplier vector 
 which satisfies either of the
necessary conditions given above together with x, can
be checked efficiently.

Here again, in nonconvex programs, there is a small
gap between the necessary and sufficient optimality
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conditions for a local minimum. If the second order
necessary condition holds at x, but not the sufficient
condition, then using these conditions we are not able
to guarantee that either x is a local minimum, or that it
is not.

Optimality Conditions for the General
Constrained Optimization Problem (3)

Fundamental ideas about necessary optimality condi-
tions for nonlinear optimization problems including
some inequality constraints, have been investigated be-
ginning with J.B.J. Fourier in 1798; and later by A.
Cournot, M. Ostrogradsky, C.F. Gauss, J. Farkas, and G.
Hamel among others. Rigorous development of these
conditions in the form we know them today has been
completed by W. Karush in 1939, and later in essen-
tially the same form by H.W. Kuhn and A.W. Tucker in
1951.

Given a feasible solution x for (3), the ith constraint
in (3) is said to be active at x if gi (x) D 0, inactive oth-
erwise. Thus all equality constraints are active at every
feasible solution, and an inequality constraint is active
at a feasible solution if it holds as an equation there. We
will denote the index set of active constraints at a feasi-
ble solution x, fi : gi (x) D 0g by B(x).

Necessary optimality conditions are derived under
a CQ. There are several CQ, some weaker than the oth-
ers. The principal ones are:
� Regularity condition: The feasible solution x satisfies

this CQ and is therefore called a regular point for (3)
if frx gi (x) : i 2 B(x)g is linearly independent. This
condition can be checked efficiently.

� First order CQ: The feasible solution x for (3) satis-
fies this CQ if for each

y 2

8̂
<̂
ˆ̂:
y :

rx gi (x)y D 0;
i D 1; : : : ;m;

rx gi (x)y � 0;
i 2 fmC 1; : : : ;mC pg \ B(x)

9>>=
>>;
;

y is the tangent direction to a differentiable curve
emanating from x and lying in the feasible region.
This condition is hard to check.

� Second order CQ: The feasible solution x for (3) sat-
isfies this CQ if for each y 2 fy : rx gi(x)y D 0; i 2
B(x)g, there exists a twice differentiable curve ema-
nating from x and lying in the region fx : gi (x) D 0;

i 2 B(x)g, for which y is the tangent direction at x.
This condition is hard to check.

� Mangasarian–Fromovitz CQ: The feasible solution x
for (3) satisfies this CQ if the set

fd : rx gi (x)d D 0; i D 1; : : : ;mg

\

�
d : rx gi(x)d > 0;

for i 2 fmC 1; : : : ;mC pg \ B(x)

	

is nonempty, and frx gi (x) : i D 1; : : : ;mg is lin-
early independent. This condition can be checked
efficiently.

The Lagrangian function for (3) with Lagrange multi-
plier vector 
 D (
1; : : : ; 
mCp) is L(x; 
) D �(x) �PmCp

iD1 
 i gi (x). The optimality conditions for a feasible
solution x to be a local minimum for (3) are:
� First order necessary conditions for x to be a local

minimum for (3): If x is a local minimum for (3),
and either all the constraints are linear constraints,
or x satisfies the regularity, or the 1st order, or
the Mangasarian–Fromovitz CQs, there exists a La-
grange multiplier vector 
 D (
1; : : : ; 
mCp) such
that

rx�(x) D
mCpX
iD1


 irx gi (x);


 i � 0 for i 2 fmC 1; : : : ;mC pg;


 i gi (x) D 0 for i 2 fmC 1; : : : ;mC pg:

In the literature, these conditions are commonly
referred to as the KKT conditions (Karush–Kuhn–
Tucker conditions). Given x, checking for the ex-
istence of a Lagrange multiplier vector which to-
gether with x satisfies these conditions can be posed
as a linear programming problem and solved effi-
ciently.

� Second order necessary conditions for x to be a local
minimum for (3): If x is a local minimum for (3),
and either all the constraints are linear constraints,
or x satisfies the regularity, or the 2nd order, or
the Mangasarian–Fromovitz CQs, there exists a La-
grange multiplier vector 
 D (
1; : : : ; 
mCp) such
that

rx�(x) D
mCpX
iD1


 irx gi (x);


 i � 0 for i 2 fmC 1; : : : ;mC pg;


 i gi (x) D 0 for i 2 fmC 1; : : : ;mC pg
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and

y>(r2
xx L(x; 
))y � 0 for all y 2 T1;

where

T1 D fy : rx gi (x)y D 0; i 2 B(x)g :

Given x, the existence of a Lagrange multiplier vec-
tor which together with x satisfies these conditions
can be checked efficiently using linear programming
and PSD checking methods.

� Sufficient conditions for x to be a strict local min-
imum for (3): If the feasible solution x for (3) is
such that there exists a Lagrange multiplier vector

 D (
1; : : : ; 
mCp) which together with x satisfies

rx�(x) D
mCpX
iD1


 irx gi (x);


 i � 0 for i 2 fmC 1; : : : ;mC pg;


 i gi (x) D 0 for i 2 fmC 1; : : : ;mC pg

and

y>(r2
xx L(x; 
))y > 0 for all y 2 T2;

where

T2 D fy : rx gi(x)y D 0

for i 2 f1; : : : ;mg [ (fi : 
 i > 0g
\ fmC 1; : : : ;mC pg \ B(x)

�

and

rx gi (x)y � 0 for all i in the set

fi : 
 i D 0g \ fmC 1; : : : ;mC pg \ B(x)g:

If (3) is a nonconvex program, verifying whether the
last condition among the sufficient optimality con-
ditions holds is hard (K.G. Murty and S.N. Kabadi
[4] have shown that the simple special case of this
problem: checking whether x|Dx� 0 for all x� 0 is
hard if D is not a PSD matrix).
Aweaker sufficient condition for x to be a strict local
minimum for (3) is obtained by replacing T2 in the
above condition by the set

T3 D fy : rx gi (x)y D 0

for all i 2 f1; : : : ;mg [ (fi : 
 i > 0g
\ fmC 1; : : : ;mC pg \ B(x)

�
:

This weaker sufficient condition can be checked ef-
ficiently.

� Necessary and sufficient conditions for x to be
a global minimum of (3) if it is a convex program: If
(3) is a convex program, then the first order neces-
sary conditions stated above are necessary and suffi-
cient for a given feasible solution to be a global min-
imum.

If (3) is a nonconvex program [2,3], the gap between
the second order necessary conditions, and the suffi-
cient conditions for a local minimum is small, but in
case the problem under consideration falls in this gap,
we are unable to confirm that either x is or is not a local
minimum using these conditions. [1,5]

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� First Order Constraint Qualifications
� Inequality-constrained Nonlinear Optimization
� Kuhn–Tucker Optimality Conditions
� Lagrangian Duality: Basics
� Rosen’s Method, Global Convergence, and Powell’s

Conjecture
� Saddle Point Theory and Optimality Conditions
� Second Order Constraint Qualifications
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Introduction

Gene expression microarray experiments have been
celebrated as a revolution in biology, attracting sig-
nificant interest because they allow for the analysis of
the combined effects of numerous genetic and envi-
ronmental components. This global approach will al-
low a fundamental shift from “. . . piece-by-piece to
global analysis and from hypothesis driven research to
discovery-based formulation and subsequent testing of
hypotheses . . . ” [7,8,10,15,24,29,41]. One of the major
challenges is to extract in a systematic and rigorous way
the biologically relevant components from the array ex-
periments in order to establish meaningful connections
linking genetic information to cellular function. Be-
cause of the significant amount of experimental infor-
mation that is generated (expression levels of thousands
of genes), computer-assisted knowledge extraction is
the only realistic alternative for managing such an in-
formation deluge. A number of excellent publications
have focused on different aspects of gene expression
experiments [1,2,3,6,15,20,25,32,35,36,38]. Novel com-
putational approaches that exploit large warehouses of
gene expression data have been identified as major en-
ablers for realizing fully the potential of this technol-
ogy [4]. A significant concern with microarray analyzes
is the ability to assign a certain level of significance
to smaller subsets of genes whose expression patterns
could potentially indicate a more direct involvement in
the biological process under study.

The identification of smaller sets of “informative
genes” is a manifestation of a boarder problem in the
machine learning community, namely the problem of
“feature selection”. Feature selection has received in-
creased attention with the recent advances in function-
al genomics that resulted in the creation of high-di-

mensional feature sets. A number of recent publica-
tions [11,13,20,47] have devised various approaches
for extracting critical, differentially expressed genes in
a systematic manner. The advantage of multivariate
methods is that they take into account collaborative ef-
fects of gene expression activities. Reducing the number
of measured variables reduces the degrees of freedom,
hence avoiding pointless over-fitting. Too few genes
will not discriminate or predict; too many genes might
introduce noise to the model rather than information.
Therefore, the identification of informative genes is
a significant component of an integrated, computer-
assisted analysis of array experiments. In most cases the
question of identifying differentially expressed genes is
restated as a hypothesis-testing problem in which the
null hypothesis of no association between expression
levels and responses of interest is tested [15].

One of the reasons for performing gene selection,
which will be the focus of this chapter, is in tissue clas-
sification. Samples from multiple cell types (for exam-
ple different cancer types, cancerous and normal cells
etc.) are comparatively analyzed using microarray gene
expression measurements. The question therefore be-
comes how to identify which genes provide consis-
tent signatures that distinctly characterize the different
classes. The problem can be viewed as either a super-
vised classification problem in which the classes are al-
ready known, or as an unsupervised clustering problem
in which we attempt to identify the classes contained
within the data. In gene selection, the computational
problem is equivalent to that of feature selection in
multidimensional data sets. Identifying the minimum
number of gene markers is however critical because this
reduced set can provide information about the biology
behind the experiment as well as define the basis for fu-
ture therapeutic agents. Typical examples are discussed
in [12,20,23,33].

The obvious way to simplify the complexity of the
model (classifier) is to minimize the number of de-
grees of freedom used for building the model. Tradi-
tionally this problem is approached in a stepwise fash-
ion as a feed-forward or backward feature selection pro-
cess [30]. This approach is widely used in analyzing
microarray data [20]. The problem however is that syn-
ergistic effects are not properly captured, and it is of-
ten difficult to come to a conclusion as to what the
actual number of informative features is [27]. There-
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fore, a search algorithm must explicitly account in the
objective for the actual number of features used in
the model. For linear discriminant models, concepts
such as the Akaike and Bayesian Information Criteria
(AIC, BIC) have been used, albeit in a stepwise fash-
ion. In either case the objective (maximum likelihood
estimation) is augmented to account for the number
of features (variables) used in the model. Recently, re-
searchers incorporated the number of features in their
search objective [19]. Therefore, we treat the total num-
ber of features used in the model explicitly as one of
our complexity criterion. The definition of model com-
plexity is not an easy task. When the decision boundary
is a hyper-plane, it is rather straightforward to require
a minimum number of non-zero coefficients (AIC and
BIC criteria discussed earlier). In nonlinear classifiers,
or when the separations are defined as the intersection
of multiple hyper-planes, it is not obvious how to de-
cide which model is “simpler” as the notion of simplic-
ity is ill defined.

In this article we will discuss two integer optimiza-
tion formulations for selecting informative genes. The
first formulation is based on a mixed integer linear for-
mulation that while minimizing the classification error,
attempts to simultaneously minimize the complexity of
the classifier by controlling directly the number of fea-
tures used. The second formulation expands the com-
plexity quantification attempting to control both the
number of features and the complexity of the classifier
while maximizing its performance.

Formulations

AMixed Integer Formulation for Gene Selection

A mixed-integer linear formulation was recently pro-
posed [46]. Feature selection is always considered
within the framework of a given analysis. This could
be model development/fitting, classification, clustering
etc. In other words we want to extract the minimum
number of required independent variables necessary
to perform a particular task. Therefore, an objective
measuring the “goodness of fit” will be required. The
parameters associated with the model naturally define
a continuous optimization problem. The notion of se-
lecting a subset of variables, out of a superset of possi-
ble alternatives, naturally lends itself to a combinatorial
(integer) optimization problem. Therefore, depending

on the model used to describe the data the problem
of feature selection will end up being a mixed inte-
ger (non) linear optimization problem. Furthermore,
this problem is a multi-criteria optimization since one
wishes to simultaneously minimize the model error and
the number of features used. Let m denote the number
of observations for a two-class problem such that k and
l denote the number of samples in each class (for exam-
ple number of benign and cancerous cells respectively).
We also denote as I1 and I2 the indices of the corre-
sponding samples and I D I1 [ I2 denotes the entire set
of samples. Finally the set J denotes the set of all genes
recorded in the observations and J0 � J denotes the set
of genes (features) that are required to develop an ac-
curate model. The expression data is presented in the
form xij, i D 1; : : : ; I, j D 1; : : : ; J. A linear classifier is
constructed as:

8̂
<̂
ˆ̂:

ˇ0 C
X
j2J

ˇ j xi j < 0 ; i 2 I1

ˇ0 C
X
j2J

ˇ j xi j > 0 ; i 2 I2
:

However, because the observations are not, in general,
perfectly separable by a linear model a goal program-
ming formulation can be proposed whose goal is to esti-
mate the coefficients that minimize the deviations from
the classifier model, Fig. 1.

In order to minimize the number of variables used
in the classifier, thereby extracting the most relevant
features for the specific linear model, binary variables
need to be introduced to define whether a particular

min :
∑
i∈I1

d1
i +

∑
i∈I2

d2
i

s.t.
β0 +

∑
j∈J

βjxij − d1
i + d2

i = −σ, i ∈ I1

β0 +
∑
j∈J

βjxij − d1
i + d2

i = σ, i ∈ I2

βj ∈ R

d1
i , d

2
i ∈ R

+

Selection of Maximally Informative Genes, Figure 1
Optimization-based classification model
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min :
∑
i∈I1

d1
i +

∑
i∈I2

d2
i

s.t.
β0 +

∑
j∈J

βjxij − d1
i + d2

i = −σ, i ∈ I1

β0 +
∑
j∈J

βjxij − d1
i + d2

i = σ, i ∈ I2

∑
j∈J

yj ≤ ε

βj − Myj ≤ 0
−βj − Myj ≤ 0
βj ∈ R, j ∈ J

d1
i , d

2
i ∈ R

+, i ∈ I

yj ∈ 0, 1

Selection of Maximally Informative Genes, Figure 2
Mixed integer formulation of the feature selection problem

variable is used in the model or not. Therefore:

y j D

(
1 ; j 2 J0

0 ; j … J0
:

The number of “active” genes can therefore be con-
strained (that is introduced parametrically in the for-
mulation in order to avoid the solution of a multi-
criteria optimization problem). According to the "-con-
straint method one additional constraint of the form:P

j2J0 y j � " is introduced. The complete MIP formu-
lation is shown in Fig. 2.

AMixed Integer Formulation for Feature Selection
and Classifier Complexity Minimization

An interesting idea was recently introduced [45] in
the context of oblique multicategory classification trees,
whereby the class assignment is modeled through the
use of the concept of purity of a partition. Ideally,
one wishes to construct a multivariate classifier in such
a way that each “partition” is occupied by elements of
a single class (orthogonal partitions). However, this for-
mulation is faced with a number of complexities. First,
it is highly non-linear, second it does not perform fea-
ture selection and finally it builds classifiers sequen-
tially, in the sense of the one-against-all concept. How-
ever, the purity concept introduces a very intelligent

way of quantifying the ability of a classifier to parti-
tion the data. Furthermore, with proper modifications
to be discussed shortly, it allows the quantification of
the complexity of the classifier.

We will discuss the basic elements of recently pro-
posed approach [53] which can be effectively gener-
alized in the context of a mixed-integer optimization.
This generalization will be used to develop a general
framework of oblique multi-category trees to address
the question of how to build simple, yet informative,
classifiers that simultaneously perform informative fea-
ture selection. We assume that we are given the ensem-
ble of gene expression data in the form of an f -dimen-
sional vectors belonging to k distinct classes. The ques-
tion is to identify how many, and which, of these f fea-
tures are critical for the construction of a simplified,
yet informative, classifier. An oblique multi-category
classifier is defined by the intersection of a number
of planes. We term these intersections “partitions”,

 D 2p where p is the number of planes. We define
complexity as the number of occupied partitions that
are required to properly classify the data. qn;� is a bi-
nary variable indicating whether point “n” belongs in
a partition 
 . The total number of points of class k in
partition 
 is termed �k;� whereas vk;� denotes the
fraction of points of class k in said partition. Finally,
yk;� is a binary variable which is 1 if that partition con-
tains even a single point from class k, and 0 otherwise.
The location of a point relative to a particular plane
is defined according to the binary variable zn;p which
is 1 if the point is below the plane, and 0 otherwise.
This variable is a critical one since it basically defines all
the auxiliary variables in the formulation. Finally sf is
a binary variable indicating whether feature “f ” is used
in the construction of the classifier. Give that p planes
create 2p partitions, we wish to identify the partitions,
and the corresponding spatial distribution of points in
the reduced space defined by sf which will create the
“purest” possible partition. We model this by analyz-
ing the product yk;�vk0;� ; k ¤ k0. In order to account
for non-linearly classifiable problems we are basically
looking for partitions that satisfy the set of constraints
depicted in Fig. 3.

The modeling idea is that (i) the partition contains
no point of class “k” and the maximum numbers of “k”
(empty partition), (ii) the partition contains points of
class “k” and contains the minimum number of points
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yk,πνk′ ,π ≤ E ⇒

⎧⎪⎨
⎪⎩

yk,π = 0 ∧ νk′ ,π ≤ 1
yk,π = 1 ∧ νk′ ,π ≤ E

yk,π = 0 ∧ νk′ ,π ≤ E

or

yk′ ,πνk,π ≤ E ⇒

⎧⎪⎨
⎪⎩

yk′ ,π = 0 ∧ νk,π ≤ 1
yk′ ,π = 1 ∧ νk,π ≤ E

yk′ ,π = 0 ∧ νk,π ≤ E

Selection of Maximally Informative Genes, Figure 3
Modeling occupied partitions

of class “k”, and (iii) if no points of class “k” are present,
then it may contain an arbitrary number of points of
class “k”. Obviously, the point is to maximize the num-
ber of type (i) partitions while satisfying the “purity”
requirements. The objective thus becomes to minimize
the “slack” variable E. The novelty of our approach is
that it allows the complete control of the complexity of
the model by treating explicitly the number of features,
and number of occupied partitions. The detailed for-
mulation is summarized in Fig. 4.

The proposed formulation optimizes simultane-
ously for a number of design criteria:
� the feature selection;
� the construction of a multivariate, multi-class clas-

sifier; and
� the creation of multiple structurally alternative solu-

tions via the introduction of integer cuts [5].
The overall framework remains linear and the solution
is done parametrically for a given number of occupied
partitions and number of features. This is a simple way
for decoupling the objectives, however, more elaborate
multi-objective schemes can, and will be, explored. We
will discuss a number of computational studies to illus-
trate the method.

Cases

Gene Selection and Complexity Minimization

Our case study will focus on the model proposed in
mainly because these results will demonstrate how to
interpret computational results in their biological con-
cept. This analysis demonstrated that there is indeed
a string relationship between computational complex-
ity, as modeled through the various optimization for-
mulations, and biological relevance.

“Small Round Blue Cell Tumors” (SRBCT) is a de-
scriptive category encompassing a large number of
malignant tumors that tend to occur in childhood.
They are united by their similar histo-pathological ap-
pearance. However, subtle clues may be present to
distinguish between the tumors. For proper character-
ization, pathologists often employ immunohistochem-
istry, electron microscopy, and molecular analysis for
chromosomal abnormalities. The SRBCTs of child-
hood include neuroblastoma (NB), rhabdomyosar-
coma (RMS), non Hodgkin lymphoma (NHL), and the
Ewing family of tumors (EWS). Currently no single bi-
ological or chemical test exists that can detect SRBCTs.
A comprehensive study was presented in which a large
number of genes were monitored. The data were re-
duced by SVD decomposition and the leading factors
were used to train an Artificial Neural Network to build
a predictive diagnostic device.

In order to analyzed this data set with the mixed
integer formulation, Fig. 4 the raw data are first pre-
processed used an extension of the signal-to-ratio ap-
proach introduced by [20]. The original method was
extended for multiclass-class problems in order to as-
sist in the elimination of irrelevant features. This step
reduced the initial number of features to 500. Multiple
cuts were generated for a multitude of features/plane
combinations and we discuss representative results to
illustrate the extracted information. The maximally in-
formative model has 3 features and 2 planes (4 occupied
partitions), Fig. 5. As a standard validation, it was ver-
ified that scrambling the data (systematic error) does
significantly deteriorate the performance of the classi-
fier which is a further validation that the underlying
structure in the data in the result of a random process.

Through the aforementioned analysis several con-
served key genes across multiple solutions were identi-
fied, all of which are integral in tumor progression. The
first of these genes, caveolin-1 (CAV-1), has been docu-
mented, when its expression patterns are altered, to be
a key component in the formation of a variety of tu-
mors, such as prostate [50], bladder [37], esophageal,
and mammary [26,51]. The effects of CAV-1 in tumori-
genesis fall into three major categories: 1) deregulation
of cell cycle control [49]; 2) metalloproteinase produc-
tion [51]; and 3) induction of angiogenesis [44]. The
second gene identified, neurofibromatosis 2 (NF2), has
also been shown to be involved in cancer formation, in
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Selection of Maximally Informative Genes, Figure 4
Mixed formulation for minimizing informative genes and classifier complexity

neural based tumors such as schwannomas and menin-
giomas [17,31,40,52]. NF2 exerts its effect through its
gene product, merlin, which is involved in the regula-
tion of cell motility and cell proliferation. Recent stud-
ies have highlighted the involvement of merlin in tumor
suppression through the inhibition of Rac signaling.
In cases where the production of NF2 is diminished,
RAC signaling becomes activated, and the tumor sup-

pression capabilities of NF2 are lost. The third major
gene identified is a myeloid/lymphoid or mixed-lineage
leukemia marker (AF1Q). While the literature on this
gene is limited, it is known that this gene is necessary
for neuronal differentiation [28]. Thus it may be possi-
ble that uncontrolled regulation of this gene may lead
to neuronal-based tumors. The fourth gene, sarcogly-
can, alpha (SGCA), is a component of the dystrophin-
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Selection of Maximally Informative Genes, Figure 5
Optimal space decomposition for the SRBCT problem

glycoprotein complex, and has been linked to the onset
of mammary tumorigenesis [48]. Tumorgenesis is in-
duced whenmutations inhibit the production of SGCA.
This leads to a subsequent loss of control over a variety
of functions such as growth control, cell survival, cy-
toskeletal organization, basement membrane assembly,
branching morphogenesis, polarity, and tumor sup-
pression in epithelial cells. As mentioned previously in
the case of CAV-1, when these key components of cel-
lular function become aberrant, tumorigenesis ensues.
The final gene identified through our analysis is the
CD99 antigen (CD99), which has been determined to
be a marker of lung carcinomas as well as mammary
tumors. It is thought that CD99 might play an integral
role in the aggregation of breast cancer cells, the ini-
tiating step of tumorigenesis. CD99 also assists in the
invasive processes characteristic of metastatic tumors.
Finally, the gene for receptor, IgG, alpha chain trans-
porter (FCGRT, FCRN) was also selected. This gene, as
well as a few others, has been detected through the use
of cDNAmicroarrays, in studies involved in elucidating
the underlying genomic profile of astrocytomas [22].
Specifically FCRN is known to mediate immune de-
fense in response to the onset of pilocytic astrocytomas,
possible keeping the astroctyoma in a benign state. In
addition, FCRN is known to be expressed by dendritic
cells [54] and may serve as a basal mechanism of im-
mune function.

Conclusions

This summary presented a number of optimization-
based formulation, with emphasis on mathematical
programming, for addressing the problem of gene se-
lection. Numerous issues can be raised for future re-
search. In fact the advantage of a MP-based formalism
is the tremendous flexibility it provides.

Multi-objective optimization: Interpretation of bi-
ological information needs to tackle multiple simul-
taneous objectives. In this short review we discussed
simultaneous optimization of accuracy and size of clas-
sifier (number of features). In clustering applications
the number of clusters is yet another level of complex-
ity, hence an additional decision variable. Therefore,
multicriteria trade-off curves (Pareto solutions) have to
be developed for these high-dimensional mixed integer
(non) linear optimization problems.

Incorporation of biological constraints: One of the
advantages of using mathematical programming tech-
niques is that constrains can be readily accounted for.
Thus far microarray analyzes approaches treat the ar-
ray data as raw unconstrained measurements. One of
the targets of microarray analysis is to identify potential
correlations among the data. However, prior biologi-
cal knowledge is not taken into account mainly because
most data mining methods cannot handle implicit or
explicit constraints. Recently, the need to account for
biological driven constraints when clustering expres-
sion profiles was demonstrated [42].

Large-scale combinatorial optimization: The devel-
opment of scalable algorithms is a daunting task in
optimization theory. With the recent developments in
genomics we should be expecting routinely that the
analysis of gene arrays composed of tens of thou-
sands of probes (hence tens of thousands of binary
variables in the MIP gene selection formulation). Re-
cent works [14,18,39], discuss various mixed-integer re-
formulations to the classification problem. The recent
work of Shioda et al. [43], identified opportunities for
successful reformulations of various data mining tasks
in the context of linear integer optimization. Busygin et
al., present some more recent ideas for addressing the
bi-clustering problem as a fractional 0-1 optimization
problems [9]. Undoubtedly, integer optimization will
play a prominent role in feature algorithmic develop-
ments as recent results demonstrate the complemen-
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tarity of the different methodologies, suggesting that
a unified approach may help to uncover complex ge-
netic risk factors not currently discovered with a single
method [34].

Global optimization: The development of general
non-linear, non-convex separating boundaries natu-
rally leads to requirements of solving large-scale com-
binatorial non-linear problems to global optimality. Re-
cent advances in the theory and practice of determinis-
tic global optimization are also expected to be critical
enablers [16].

Analyzing almost empty spaces: The sparseness of
the data set is a critical roadblock. Accurate models
can be developed using convoluted optimization ap-
proaches. However, we would constantly lack appropri-
ately populated datasets in order to achieve a reasonable
balance between the thousands of independent vari-
ables (genes measured) and necessary measurements
(tissue samples) for a robust identification. Informa-
tion theoretic approaches accounting for complexity
(Akaike and Bayesian Information Criteria) should be
developed to strike a balance between the complexity
and the accuracy of the model so as to avoid pointless
over fitting of the sparsely populated datasets.

Uncertainty considerations: Noise and uncertainty
in the data is a given. Therefore, data mining algorithms
in general and mathematical programming formula-
tions in particular have to account for the presence of
noise. Issues from robustness and uncertainty propa-
gation have to be incorporated. However, an interest-
ing issue emerges: how do we distinguish between noise
and an infrequent, albeit interesting observation? This
in fact maybe a question with no answer especially if
we consider the implications of sparsely populated data
sets.
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In this article we will describe the selfdual parametric
method for solving linear programs (LPs) of the follow-
ing form:8<

:
min
x

c>x

s.t. Ax D b ; x � 0 ; x 2 Rn ;
(1)

where x is a vector of continuous variables; A is a con-
stant matrix; c and b are constant vectors and we as-
sume that (1) does not contain redundant constraints
(see [8] or [7] for a procedure for removing redundant
constraints). The solution of (1) can be approached by
primal or dual simplex methods, or their variants [4,8];
however, see [9] for interior point methods. Primal and
dual simplex algorithms start from a primal or dual fea-
sible solution, which is then solved to optimality by us-
ing primal or dual simplex pivot steps respectively. On
the other hand, the selfdual parametric method, which
is also called the criss-cross method, does not require
a starting feasible solution and uses a combination of
primal and dual simplex pivot steps. The criss-cross
method is based upon introducing a parameter, � , into
the model, (1), and then minimizing � by using primal
or dual simplex pivot steps. If � decreases to zero the
problem is primal or dual feasible and then the opti-
mal solution is found by using primal or dual simplex
method respectively, otherwise, the problem is infeasi-
ble.

In order to apply the selfdual parametric method,
the parameter � is introduced and the problem in (1) is
rewritten in the following form [4,8]:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
x

nX
jD1

(c0j C �bc j)x j

s.t. xi C
nX

jDmC1

a0i jx j D b0i C �bbi ;

i D 1; : : : ;m;
x j � 0 for all j
x 2 Rn ;

(2)

where (x1, . . . , xm) is the vector of the selected basic
variables; (0, . . . , 0, cm+1

0, . . . , cn0) and (b10, . . . , bm0) are
the updated c and b vectors after pricing out the ba-
sic columns;bbi D 0 if b0 � 0,bbi D 1 otherwise; and,
bci D 0, if c0 � 0,bci D 1 otherwise. The basic idea of the
selfdual parametric method is to minimize � by using
primal or dual simplex pivot steps – the smallest value
of � corresponding to an optimal tableau is called the
critical value,e� . When bi0, cj0 � 0 thene� D 0, and the
problem can be solved to an optimal solution by using
primal or dual simplex method. Otherwise,e� > 0 and
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Selfdual Parametric Method for Linear Programs, Figure 1
Criss-cross method

is given by

max

((
�
b0i
bbi

: with i s.t. b0i < 0

)
;

(
�
c0j
bc j : with j s.t. c0j < 0

) )
:

In such a case, i. e., whene� > 0, ife� D �(b0i/bbi ), the ith
row of the current tableau is defined as a critical row and
ife� D �(c0j/bc j), then the jth row of the current tableau
is defined as a critical column. The criss-cross method
identifies a critical column or a critical row and a primal
or dual simplex step, respectively, is carried out. Either
e� decreases to zero in a finite number of steps or the
problem is primal or dual infeasible. The basic idea of
the algorithm is outlined in Fig. 1.

Other useful references on the subject are [1,2,3,5,
10,11] and [6].
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A wide variety of nonlinear convex optimization prob-
lems can be expressed in terms of linearmatrix inequal-
ities (LMIs), i. e., convex constraints of the form

x1A1 C � � � C xnAn � B

where x 2 Rn is the optimization variable, Ai = A>i 2
Rm×m, B = B| 2 Rm×m are given matrices, and the in-
equality sign denotes matrix inequality (i. e., the ma-
trix B �

P
i xiAi is positive semidefinite). Linear ma-

trix inequalities arise in systems and control, combina-
torial optimization, statistics, eigenvalue optimization,
and several other fields.

The most widely studied problem of this type is
the semidefinite programming problem (SDP), in which
we minimize a linear function subject to an LMI con-
straint:
(
min c>x
s.t. x1A1 C � � � C xnAn � B:

Semidefinite programming has received a great deal of
attention recently, motivated by the discovery of new
applications and by the development of new interior
point methods. For surveys of the theory and applica-
tions of SDP, see [1,5,14,15,16,21]. SDPs are convex op-
timization problems, since the linear matrix inequality
is a convex constraint, and the objective function is lin-
ear.

An interesting closely related problem is the prob-
lem of maximizing the determinant of a linear matrix
function, subject to LMI constraints:

8̂
<̂
ˆ̂:

max det(C0 C x1C1 C � � � C xnCn)
s.t. C0 C x1C1 C � � � C xnCn 
 0

x1A1 C � � � C xnAn � B

(1)

where Ci = C>i 2 Rp×p, Ai = A>i 2 Rm×m, and B = B|

2 Rm×m are given. Although the objective function is
not concave, this problem can be easily transformed in
a convex optimization problem. We can first note that
the function f (X) = �(det X)1/p is convex on the set

of positive definite matrices in Rp×p, so problem (1) is
equivalent to the convex minimization problem
8̂
<̂
ˆ̂:

min � (detC(x))
1
p

s.t. C(x) 
 0
x1A1 C � � � C xnAn � B;

where C(x) = C0 + x1C1 + � � � + xnCn. An alternative
formulation is8̂
<̂
ˆ̂:

min log detC(x)�1

s.t. C(x) 
 0
x1A1 C � � � C xnAn � B:

This is a convex problem, since the function log detX�1

is convex on the set of positive definite matrices.
A unified form that includes both the SDP and the

determinant maximization problem is
8̂
<̂
ˆ̂:

min c>x C log detC(x)�1

s.t. C(x) 
 0
x1A1 C � � � C xnAn � B:

(2)

It is clear that this problem reduces to an SDP when C0

= 1 and Ci = 0 for i > 0, and to a determinant maxi-
mization problem when c = 0. Moreover, as we will see
below, there exist important applications where both
terms arise.

Reference [22] gives a detailed discussion of prob-
lem (2), including an overview of applications and a de-
scription of an efficient interior point method. In this
article, we illustrate the applications of (2) with a few
examples from different areas. Following [22], we will
refer to (2) as amax-det problem.

Ellipsoidal Approximation

Our first class of examples are ellipsoidal approximation
problems. We can distinguish two basic problems. The
first is the problem of finding the minimum-volume el-
lipsoid around a given set C. The second problem is the
problem of finding themaximum-volume ellipsoid con-
tained in a given convex set C. Both can be formulated
as convex (semi-infinite) programming problems.

To solve the first problem, it is convenient to
parametrize the ellipsoid as the pre-image of a unit ball
under an affine transformation, i. e., as

E D fv : kAv C bk � 1g :
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It can be assumed without loss of generality that A = A|


 0, in which case the volume of E is proportional to det
A�1. The problem of computing the minimum-volume
ellipsoid containing C can be written as

8̂
ˆ̂̂<
ˆ̂̂̂
:

min log detA�1

s.t. A D A> 
 0
kAv C bk � 1;
for all v 2 C;

(3)

where the variables are A and b. Note that both the
objective function and the constraints are convex in A
and b.

For the second problem, where we maximize the
volume of ellipsoids enclosed in a convex set C, it is
more convenient to represent the ellipsoid as the im-
age of the unit ball under an affine transformation, i. e.,
as

E D fBy C d : kyk � 1g :

Again it can be assumed that B = B| 
 0. The volume
is proportional to det B, so we can find the maximum
volume ellipsoid inside C by solving the convex opti-
mization problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

max log det B
s.t. B D B> 
 0

By C d 2 C;
8y; kyk � 1

(4)

in the variables B and d.
For generalC, problems (4) and (3) are semi-infinite

programming problems. They reduce to finite prob-
lems in certain cases, which we now review.

We first consider the problem of finding the min-
imum volume ellipsoid that contains given points x1,
. . . , xK in Rn, i. e.,

C D fx1; : : : ; xKg;

(or, equivalently, the convex hull of {x1, . . . , xK}). This
problem has applications in cluster analysis [4,18]), and
robust statistics [19, §7]. Applying (3), we can write this
problem as

8̂
<̂
ˆ̂:

min log detA�1

s.t.


Axi C b



 � 1; i D 1; : : : ;K;
A D A> 
 0;

(5)

where the variables are A = A| 2 Rn×n and b 2 Rn.
The norm constraints kAxi + bk � 1, which are con-
vex quadratic inequalities in the variables A and b, can
be expressed as LMIs
�

I Axi C b
(Axi C b)> 1

�
� 0;

so (5) is a max-det problem in the variables A and b.
In a similar way, we can compute the maximum vol-

ume ellipsoid contained in a polytope described by a set
of linear inequalities

C D
˚
x : a>i x � bi ; i D 1; : : : ; L

�
:

To apply (4) we first work out the last constraint:

By C d 2 C; 8 kyk � 1

) a>i (ByC d) � bi ; 8 kyk � 1

) max
kyk�1

a>i By C a>i d � bi

) kBaik C a>i d � bi :

This is a convex constraint in B and d, and equivalent
to the LMI
�
(bi � a>i d)I Bai

a>i B bi � a>i d

�
� 0:

We can therefore formulate (4) as a max-det problem
in the variables B and d:8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min log det B�1

s.t. B 
 0 
(bi � a>i d)I Bai

(Bai )> bi � a>i d

!
� 0;

i D 1; : : : ; L:

These techniques extend to several interesting cases
where C is not finite or polyhedral, but is defined as
a combination (the sum, union, or intersection) of ellip-
soids. In particular, it is possible to compute the optimal
inner approximation of the intersection or the sum of
ellipsoids, and the optimal outer approximation of the
union or sum of ellipsoids, by solving a max-det prob-
lem. See [5] and [8] for details.

As an example, consider the problem of finding the
minimum volume ellipsoid E0 containing K given ellip-
soids E1, . . . , EK described as

Ei D
˚
x : x>Aix C 2b>i x C ci � 0

�
:
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The solution can be found by solving the following
max-det problem in the variables A0 = A>0 , b0, and K
scalar variables � i:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min log det A�10
s.t. A0 D A>0 
 0

�1 � 0; : : : ; �K � 00
BB@

A0 � �iAi b0 � �i bi 0
(b0 � �i bi )> �1 � �i ci b>0

0 b0 �A0

1
CCA � 0;

i D 1; : : : ;K:

(c0 is given by c0 = b>0 A�10 b0 � 1.) See [5, p. 43], for
details.

Experiment Design

The field of experiment design is another source of max-
det problems. Suppose x 2 Rn is an unknown quantity
that we want to estimate from a measurement y = Ax
+ w where w � N(0, I) is measurement noise, and A 2
RN×n (N � n) has full rank. The minimum variance es-
timator is given bybx D (A>A)�1A>y, and has an error
covariance E(x �bx)(x �bx)> D (A>A)�1. Suppose that
the rows of the matrix A can be chosen among M pos-
sible test vectors vi 2 Rn. The goal of experiment design
is to choose the rows of A so that the error covariance is
‘small’. We can writeA|A =N

PM
iD1 �iviv

>
i , where �i is

the fraction of measurements that use the test vector vi.
IfN�M we can ignore the fact that the numbers �i are
integer multiples of 1/N, and treat them as continuous
variables.

Several different criteria can be used to measure the
size of the error covariance matrix (e. g., the maximum
eigenvalue, the trace, or the determinant). A design
in which the determinant det(AA|)�1 is minimized is
called D-optimal. This problem can be expressed as
a max-det problem
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min log det

 MX
iD1

�i vi (vi )>
!�1

s.t. �i � 0; i D 1; : : : ;M;
MX
iD1

�i D 1:

This formulation of D-optimal experiment design has
the advantage that one can easily incorporate useful

convex constraints, e. g., linear inequalities on the num-
bers �i. A few interesting possibilities are mentioned in
[22]. For surveys of experiment design, see [9,12,17].

Estimation of Structured CovarianceMatrices

Suppose we want to estimate the covariance matrix˙ 2
Rp×p of a normal distribution N (0,˙) fromM samples
y(1), . . . , y(M). Themaximum likelihood estimate for˙ is
the positive definite matrix that maximizes

QM
iD1p(y

(i)),
where

p(x) D
�
(2
)p det˙

�� 1
2 exp

�
�
1
2
x>˙�1x

�
:

In other words,˙ can be found by solving
8̂
<̂
ˆ̂:
min log det˙�1 �

1
M

MX
iD1

y(i)
>
˙�1 y(i)

s.t. ˙ D ˙> 
 0;

(6)

which can be expressed as a max-det problem in the in-
verse R =˙�1:

(
min Tr SRC log det R�1

s.t. R 
 0;
(7)

where

S D
1
M

MX
iD1

y(i)y(i)
>
:

Without any additional constraints, this problem has
a straightforward analytical solution: R = S�1 (provided
S is nonsingular). The formulation as a max-det prob-
lem is useful when additional constraints are added. To
give a simple illustration, bounds on the variances ˙ ii

can be expressed as LMIs in R

˙i i D e>i R
�1ei � ˛)

�
R ei
e>i ˛

�
� 0:

Adding constraints is also useful when the matrix S is
singular (for example, because the number of samples
is too small) and, as a consequence, the max-det prob-
lem (7) is unbounded below. In this case we can impose
constraints (i. e., prior information) on ˙ , for example
lower and upper bounds on the diagonal elements of R.
See also [2,3,6], [20, §6.13], and [10].



Semidefinite Programming and Determinant Maximization S 3379

Quasi-Newton Updates

In a quasi-Newton method for unconstrained mini-
mization of a convex function f on Rn, the Newton step
� r2f (x)�1rf (x) is replaced by �H�1rf (x), where H
= H| 
 0 is an approximation of the Hessian matrix,
based on prior information and previous gradient eval-
uations. At each iteration, as the algorithm moves from
x to the next point x+, a new approximation H+ is de-
termined, based on the currentH, and on the difference
between the gradients at x+ and x. A good updating
rule for H should satisfy several properties: H+ should
be close to H, it should be easy to compute (or, more
precisely, the search direction �H+�1rf (x+) should be
easy to compute), and it should incorporate the new in-
formation obtained by evaluating the gradient rf (x+).
This last property is usually enforced by imposing the
secant condition

HC(xC � x) D r f (xC) � r f (x): (8)

R.H. Byrd and J. Nocedal [7] have proposed to mea-
sure the difference betweenH andH+ by using theKull-
back–Leibler divergence (or relative entropy), given by

1
2
�
TrH�1HC � log detH�1HC � n

�

(see also [11]). The Kullback–Leibler divergence is non-
negative for all positive definite H and H+, and zero
only if H+ = H. The update H+ that satisfies the se-
cant condition and minimizes the Kullback–Leibler di-
vergence is the solution of the following optimization
problem:

8̂
<̂
ˆ̂:

min TrH�1HC � log detH�1HC

s.t. HC 
 0
HC(xC � x) D r f (xC) � r f (x):

(9)

R. Fletcher [13] has shown that the solution is given by

HC D H �
Hss>H
s>Hs

C
gg>

s>g
; (10)

assuming that s| g > 0, where s = x+ � x and g =
rf (x+)� rf (x). Formula (10) is well known in uncon-
strained optimization as the BFGS quasi-Newton up-
date (Broyden–Fletcher–Goldfarb–Shanno).

Fletcher’s observation opens the possibility of
adding more complicated LMI constraints to (9), and

solving the resulting problem numerically. For exam-
ple, we can impose a certain sparsity pattern on H+, or
we can relax the secant condition as


HC(xC � x) � r f (xC)Cr f (x)



 � �;
where � is a given tolerance.

Updating H by numerically solving a convex opti-
mization problem will obviously involve far more com-
putation than the BFGS update. Thus, this formulation
for quasi-Newton updates is only interesting when gra-
dient evaluations are very expensive.

Conclusion

The max-det problem (2) is an extension of the
semidefinite programming problem, and includes
a wide variety of convex optimization problems as spe-
cial cases. Some of the applications we discussed have
been studied extensively in the literature, and in some
cases analytic solutions or efficient specialized algo-
rithms have been developed. The practical importance
of the general problem is that it can be handled effi-
ciently using recently developed interior point meth-
ods. This allows us to solve interesting variations of
problems for which no analytical solution or specialized
method exist, and it opens the possibility of adding use-
ful LMI constraints.

See also
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Matrices
�Matrix Completion Problems
� Semidefinite Programming: Optimality Conditions

and Stability
� Semidefinite Programming and Structural

Optimization
� Semi-infinite Programming, Semidefinite

Programming and Perfect Duality
� Solving Large Scale and Sparse Semidefinite
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In this article we discuss optimization problems of the
form

8<
:
min
x2Rn

f (x)

s.t. G(x) � 0;
(1)

where f (x) is a real valued function, G(x) is a mapping
from Rn into the space Sp of p × p symmetric matri-
ces, and the notation A4 0 (the notation A< 0) means
that A is a negative (positive) semidefinite matrix. We
refer to (1) as a semidefinite programming problem. The
above semidefinite programming problem is said to be
linear if the objective function f (x) is linear and the
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mapping G(x) is affine, i. e. is of the form
8̂
<̂
ˆ̂:

min
x2Rn

c>x

s.t. A0 C

nX
iD1

xiAi � 0;
(2)

where c 2 Rn and A0, . . . , An 2 Sp are given matrices.
Let us observe that the constraint G(x) 4 0 can be

written as G(x) 2 Sp
�, where

Sp
� :D

˚
Z 2 Sp : Z � 0

�

denotes the set of p × p negative semidefinite symmet-
ric matrices. Note that the set Sp

� forms a closed convex
cone in the space Sp, and that Sp can be viewed as a lin-
ear (vector) space of dimension p(p + 1)/2.We equip Sp

with the scalar (inner) product

A � B :D trace(AB) D
pX

i; jD1

ai jbi j;

between two matrices A = (aij) and B = (bij).
With these observations at hand one can notice

a certain similarity between problem (1) and nonlinear
programming problems. In a nonlinear programming
problem corresponding constraints can be written in
the form G(x) 2 Rm

� , where G(x) is a mapping from Rn

into Rm and Rm
� is the negative orthant of the space Rm.

That is, in both cases the constraints can be formulated
as convex cone inclusions. Let us note at this point that
the polar (negative dual) of Sp

� is given by the cone S
p
C

of positive semidefinite matrices.

Duality

With problem (1) is associated the following La-
grangian function

L(x;˝) :D f (x)C˝ � G(x)

of x 2 Rn and ˝ 2 Sp. Noting that, for a given x, the
maximum of L(x, ˝) with respect to ˝ 2 S

p
C, equals

f (x) ifG(x)2 Sp
� and +1 otherwise, we can write prob-

lem (1) in the form

min
x2Rn

max
˝2S

p
C

L(x;˝): (3)

By interchanging the order in which the operators min
and max are applied, we obtain

max
˝2S

p
C

�
�(˝) :D min

x2Rn
L(x;˝)

	
: (4)

We refer to the pair (1) and (4) as primal and dual
problems, respectively. In particular, in case the primal
problem is the linear semidefinite program (2), the dual
problem takes the form

8̂
ˆ̂<
ˆ̂̂:

max
˝2S

p
C

˝ � A0

s.t. ci C˝ � Ai D 0;
i D 1; : : : ; n:

(5)

There is a long history in mathematical programming
of considering dual problems. In semidefinite program-
ming dual problems were studied in various forms, for
example, in [1,9,12].

The optimal value of the primal problem is always
greater than or equal to the optimal value of the dual
problem. It is said that there is no duality gap between
the primal and dual problems if their optimal values
are equal. Note that in the semidefinite programming,
the duality gap can happen even in the linear case. It
is possible to give various regularity conditions, called
constraint qualifications, ensuring the ‘no duality gap’
property. In the linear case, if x and ˝ are feasible
points of the problems (2) and (5), respectively, then x
is an optimal solution of (2),˝ is an optimal solution of
(5), and there is no duality gap between these problems
if and only if the following complementarity condition

˝ � G(x) D 0 (6)

holds, where G(x) D A0 C
Pn

iD1 xiAi . This result can
be extended to a certain class of convex semidefinite
programming problems [10]. Note that since˝ is a fea-
sible point of (5) and hence ˝ 2 S

p
C, and x is a feasible

point of (2) and hence G(x) 2 Sp
�, the complementar-

ity condition (6) is equivalent to˝G(x) D O, whereO
denotes the zero p × pmatrix.

First Order Optimality Conditions

Consider now a (possibly nonlinear) semidefinite pro-
gramming problem in the form (1), and suppose that
f (x) and G(x) are continuously differentiable. Let x be
a locally optimal solution of (1).With x is associated the
following system of first order optimality conditions:

(
rx L(x;˝) D 0; ˝ � 0;
˝ � G(x) D 0:

(7)
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In case the semidefinite program is linear, the first
and second conditions in (7) ensure that ˝ is a feasi-
ble point of the dual problem (5), and the last condi-
tion corresponds to the complementarity condition (6).
Therefore, in that case, if there exists a matrix ˝ 2 Sp

satisfying conditions (7), then˝ is an optimal solution
of the corresponding dual problem. For general (pos-
sibly nonlinear) semidefinite programming problems,
conditions (7) are obtained by linearization of f (x) and
G(x) at the point x.

It should be noted that existence of a matrix ˝ sat-
isfying the first order optimality conditions (7), is not
guaranteed even in the linear case. If such a matrix ex-
ists we refer to it as a Lagrange multipliers matrix. It
is possible to show that the set of Lagrange multipli-
ers matrices is non empty and bounded if and only if
the following constraint qualification holds: there exists
a vector h 2 Rn such that the matrix G(x) C dG(x)h
is negative definite (i. e. belongs to the interior of Sp

�),
where

dG(x)h :D
nX

iD1

hi
@G(x)
@xi

is the differential of G at x.
The above constraint qualification can be viewed as

an extension of the Mangasarian–Fromovitz constraint
qualification [5], used in nonlinear programming. Note
that in the linear case the partial-derivatives matrix
@G(x)
@xi

equals Ai, i = 1, . . . , n, and hence the above con-
straint qualification is equivalent to the Slater condi-
tion: there exists x� 2 Rn such that the matrix G(x�) is
negative definite. This equivalence also holds for convex
semidefinite programming problems. For a discussion
of constraint qualifications in cone constrained prob-
lems see [6,7,8,13].

It is possible to formulate the above constraint qual-
ification in another equivalent form. Recall that for
a convex closed subset K of a finite-dimensional vec-
tor space and y 2 K, the tangent cone TK(y), to K at y, is
formed by vectors z such that the distance from y + tz
to K is of order o(t), t � 0. The condition

dG(x)Rn C TS
p
�

(G(x)) D Sp (8)

is another equivalent form of the above constraint qual-
ification. It is possible to show that the tangent cone to
the set Sp

�, at G(x), can be written in the form

TS
p
�

(G(x)) D
˚
Z 2 Sp : E>ZE � 0

�
;

where E is a p × (p� r) matrix of full column rank p� r
such that G(x)E D O and r is the rank of G(x), e. g.
[10]. (If r = p, i. e. G(x) is negative definite and hence
belongs to the interior of Sp

�, then TS
p
�

(G(x)) coincides
with the whole space Sp.)

Consider now the set Wr of p × p symmetric matri-
ces of rank r. This set forms a smooth manifold in the
space Sp, and the tangent space to Wr at the point G(x)
is given by

TWr (G(x)) D
˚
Z 2 Sp : E>ZE D 0

�
:

It follows from the above formulas that TWr (G(x)) co-
incides with the lineality space of the cone TS

p
�

(G(x)),
i. e. it is the largest linear subspace of TS

p
�

(G(x)). It is
said that the point x is nondegenerate ([2,10]) if the fol-
lowing condition holds

dG(x)Rn C TWr (G(x)) D Sp: (9)

The above condition (9) means that the mapping G
intersects Wr transversally at the point x. It immedi-
ately follows from the corresponding result in differen-
tial geometry that nondegeneracy, in a certain sense, is
a generic property (cf. [11]). It is clear that constraint
qualification (8) implies (9). Therefore we have by the
above discussion that if the point x is nondegenerate,
then there exists a Lagrange multipliers matrix ˝ sat-
isfying conditions (7). In fact it is not difficult to show
that if x is nondegenerate, then such Lagrange multipli-
ers matrix is unique.

Let us note now that it follows from the comple-
mentarity condition (6) that

rank(˝)C rank(G(x)) � p:

It is said that the strict complementarity condition holds
at x if there is a Lagrangemultipliers matrix˝ such that

rank(˝)C rank(G(x)) D p:

It is possible to show that, in a certain sense, strict com-
plementarity is also a generic property ([2]). Under the
strict complementarity condition, nondegeneracy of x
is a necessary and sufficient condition for uniqueness
of the corresponding Lagrange multipliers matrix.

Second Order Optimality Conditions

In the convex (and, in particular, in the linear) case
first order conditions (7) are also sufficient for a feasi-
ble point x to be an optimal solution of the problem (1).
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However, even in the convex case second order opti-
mality conditions can be an important part of the anal-
ysis, e. g. second order conditions are intimately related
to stability properties of the corresponding optimal so-
lutions. From now on we assume that f (x) and G(x) are
twice continuously differentiable.

Let x be a stationary point of the problem (1), i. e. x
is feasible and there exists a Lagrangemultipliers matrix
˝ satisfying first order optimality conditions (7). With
x is associated the so-called critical cone

C(x) :D
�
h : h>r f (x) D 0;

dG(x)h 2 TS
p
�

(G(x))

	
:

This critical cone represents those directions h 2 Rn for
which first order conditions (7) do not provide an in-
formation about optimality of x. Let us denote by�(x)
the set of all Lagrange multipliers matrices˝ satisfying
conditions (7), and suppose that the constraint quali-
fication (8) holds. Recall that �(x) is non empty and
bounded if and only if the constraint qualification (8)
is satisfied. We can write now second order conditions
for x to be a locally optimal solution of the problem (1)
as follows ([3,10]).
� Second order necessary conditions: for any critical

direction h 2 C(x) there exists a Lagrange multipli-
ers matrix˝ 2 �(x) such that

h>r2
xx L(x;˝)hC h>H(x;˝)h � 0: (10)

� Second order sufficient conditions: for any nonzero
critical direction h 2 C(x) there exists a Lagrange
multipliers matrix˝ 2 �(x) such that

h>r2
xx L(x;˝)hC h>H(x;˝)h > 0: (11)

Here r2
xx L(x;˝) stands for the Hessian matrix of sec-

ond order partial derivatives and H(x;˝) denotes the
n × n symmetric matrix whose ij-element is

[H(x;˝)]i j :D �2 trace
�
˝Gi[G(x)]�Gj

�
;

where Gi :D @G(x)
@xi

and [G(x)]� denotes the Moore–
Penrose pseudo-inverse of the matrix G(x).

Note that there is no gap between the above sec-
ond order necessary and sufficient conditions in the
sense that the weak inequality sign in (10) is replaced
by the strict inequality in (11). The additional term

h>H(x;˝)h, which appears in the above conditions,
represents the curvature of the set Sp

�. The matrix
H(x;˝) is positive semidefinite, and therefore this
‘curvature term’ is always nonnegative.

In fact, the above second order sufficient conditions
(11) are equivalent to the so-called second order growth
condition: there exists a constant ˛ > 0 such that for all
feasible x, i. e. satisfying G(x) 2 Sp

�, in a neighborhood
of x the inequality

f (x) � f (x)C ˛ kx � xk2 (12)

holds. If the semidefinite programming problem is lin-
ear, then all elements of the Hessian matrix r2

xx L(x;˝)
are zeros, and hence the first term in (10) and (11) van-
ishes. Nevertheless, even in the linear case the second
(curvature) term can be positive, and the second order
growth condition (12) can hold.

If the point x is nondegenerate, then there exists
a unique Lagrange multipliers matrix ˝, and if, more-
over, the strict complementarity condition holds, then
the critical cone becomes a linear space and can be writ-
ten as

C(x) D

(
h :

nX
iD1

hiE>GiE D 0

)
:

Stability Analysis

Suppose now that the considered semidefinite pro-
gramming problem is subject to perturbations. That is,
consider the following family of optimization problems

8<
:
min
x2Rn

f (x; u)

s.t. G(x; u) � 0;
(13)

depending on the parameter vector u 2Rm guiding per-
turbations of the above problem.We assume that f (x, u)
and G(x,u) are twice continuously differentiable and
that for a given value u = u0 of the parameter vector,
problem (13) coincides with the ‘unperturbed’ problem
(1). For example, in the linear case we can view some of
the matrices Ai as parameter vectors which are subject
to perturbations.

Let us denote by S(u) the set of optimal solutions of
the parametric problem (13). What can be said about
continuity properties of S(u), as a function of the pa-
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rameter vector u? Note that S(u) can have more than
one element and can be empty. It is possible to con-
struct examples where the optimal-solutions set S(u0),
of the unperturbed problem, is non empty while S(u) is
empty for arbitrary small changes in u. Of course such
examples are pathological and unsuitable for numerical
analysis since arbitrary small perturbations of the data
may result in unsolvability of the considered problem.

It is possible to give various conditions ensuring
continuity (upper semicontinuity) of S(u). For example,
in the convex (linear) case, if S(u0) D fxg is a single-
ton (i. e. the unperturbed problem has the unique opti-
mal solution x) and the Slater condition holds, then any
optimal solutionbx(u) 2 S(u), of the parametric prob-
lem (13), converges to x as u! u0. Yet even ifbx(u) is
continuous at u = u0, the rate at which it changes can
be much faster than the rate of change of u, i. e. small
perturbations in u can bring large changes in the corre-
sponding optimal solution. In that case the problem is
said to be ill-conditioned and may be difficult for a nu-
merical solution.

It is said that an optimal solution x, of the unper-
turbed problem, is stable if for all u sufficiently close
to u0 the optimal-solutions set S(u) is non empty and
bx(u) ! x, as u! u0, for anybx(u) 2 S(u). If, more-
over, there is a positive constant � such that



bx(u) � x


 � � ku � u0k ; (14)

then x is said to be Lipschitz stable.
It is not difficult to show that if the constraint map-

ping G(x, u) = G(x) does not depend on u, and hence
the feasible set of (13) is fixed, then the second order
growth condition (12) is a sufficient condition for a sta-
ble optimal solution x to be Lipschitz stable. The gen-
eral case is more subtle and, in order to ensure Lipschitz
stability of x, some additional conditions are required
(see [4] for an extensive discussion of that type results).

Let us finally remark that if the point x is nondegen-
erate and the strict complementarity condition holds,
then the optimal solutionbx(u) is a continuously differ-
entiable function of the parameter vector ([10]). In that
case one can approximately evaluate the constant � in
(14) by using the corresponding linear approximation
(first order Taylor expansion) ofbx(u) at u0. It turns out
that the rate of change ofbx(u) is closely related to con-
ditioning of the matrix r2

xx L(x;˝) C H(x;˝), used

in the corresponding second order optimality condi-
tions, restricted to the critical cone C(x) which is a lin-
ear space in that case.
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Introduction

Research on ad hoc wireless sensor networks has in-
creased greatly in recent years [24]. Sensor networks
usually consist of a large number of sensors which are
deployed to collect data of interest. Such networks are
versatile tools which provide a low-cost method of tar-
get tracking, as well as monitoring seismic activity, tem-
perature, sound levels, and light [9]. Information gath-
ered by the sensors is only useful if the positions of the
sensors are known. However, it is often the case that the
use of a GPS system is too costly or, consumes toomuch

power, or the network is being deployed in a location in
which GPS is denied [21].

Recently, techniques have been developed which es-
timate the node locations based on a mixture of dis-
tance measurements and angle measurements between
pairs of nodes in the network. This problem is referred
to as the Sensor Network Localization Problem, (SNLP)
and can be formally stated as follows: Given the true po-
sitions of some of the nodes and the pair-wise distances
between some nodes, how can the positions of all of the
nodes be estimated? [6,9,28].

Organization

Throughout the article, we will investigate the SNLP. In
the following section, we formally define the problem
statement and in Sect. “Methods”, we review several so-
lution techniques which appear throughout the litera-
ture. In Subsect. “Semidefinite Programming Model”,
we describe a semidefinite programming (SDP) model
for the problem. We then provide a general assess-
ment of this approach and describe some implementa-
tion details. We highlight this method specifically be-
cause of its advantages over heuristic methods. Par-
ticularly, the SDP method is known to localize any
network whenever a unique solution exists, and to
do so in polynomial time. We provide some conclud-
ing remarks in Sect. “Conclusion” and indicate direc-
tions of future research. Finally, a list of cross refer-
ences is provided in Sect. “See also”. We conclude this
section with an introduction to some of the symbol-
ogy that will appear most prevalently throughout the
article.

Idiosyncrasies

Here we briefly introduce some of the symbols and
notations we will employ throughout this paper. De-
fine the trace of a symmetric matrix A, denoted
Trace(A) as the sum of the diagonal entries. The stan-
dard trace inner product of two matrices A and B
is given as hA; Bi D Trace(ATB). The 2-norm of
a vector x is denoted as jjxjj and is defined to bep
hx; xi. A positive semidefinite matrix A will be de-

noted as A � 0. Agree to let Id and 0d respectively
represent the identity matrix and a vector contain-
ing all zeros, both with dimension d 2 Z. Finally,
we will use italics for emphasis, CALLIGRAPHY
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to refer to formulations, and Small Caps for prob-
lem names. Any other locally used terms and sym-
bols will be defined in the sections in which they ap-
pear.

Formulation

A wireless sensor network is typically made up of
a number of densely distributed sensors that collect
data. An instance of the SNLP consists of a set of m
so-called anchor points whose positions are known
a priori [9,12,22]. The object is to determine the loca-
tion of n sensor points in the system based upon infor-
mation obtained from the anchor sensors. Let the an-
chor points and the sensor points be respectively de-
noted as a1; a2; : : : ; am 2 Rd and x1; x2; : : : ; xn 2 Rd .
The Euclidean distances d̄k j between points ak and x j

for some k,j, and di j between xi and x j for some i < j
are also given. Let Na D f(k; j) : d̄k; j is specifiedg de-
note the sensor/sensor pairs and Nx D f(i; j) : i < j;
di j is specifiedg represent the sensor/anchor. Then
the sensor network localization problem as defined
in [9] is to find the localization (estimated position) of
xi ; x2; : : : ; xn 2 Rd such that:

SNLP : kak � x jk
2 D d̄2k j ;8(k; j) 2 Na; and

kxi � x jk
2 D d2i j;8(i; j) 2 Nx :

(1)

From this seemingly simple formulation, many difficult
questions arise. For a given instance of the SNLP, does
this instance have a realization in the required dimen-
sion? If so, is the realization unique? We should note
that these two seemingly related questions are quite
different from a computational perspective. It has been
shown that determining if an instance of the SNLP has
a unique realization inR2 can be determined efficiently
under certain assumptions [20]. On the other hand, it
remains NP-complete [17] to compute a realization
on the plane, even if the instance is known to have
a unique realization [5]. This is the main problem of
interest in this article.

Methods

In this section, we review several solution methods
which have been applied to the SNLP. Particularly in
Subsect. “Semidefinite Programming Model”, we high-
light the techniques of Ye et al. [1,8,9,28] and the ap-

plication of semidefinite programming methods for ef-
ficiently computing solutions to large-scale instances of
the SNLP under a variety of circumstances.

Review of Solution Approaches

Several techniques have been applied to the SNLP,
all having some redeeming qualities [9,16,18]. Several
techniques involve the use of distance or angle mea-
surements between the anchor points in order to com-
pute a localization [13,15,23,25,26,27]. Another com-
mon technique used by Bulusu et al. [11] and Howard
et al. [19] is to employ a grid or a set of surveyed points
whose locations are known. Then, the sensor localiza-
tion is attempted using the relative distances between
sensors and the set of beacon points [9].

The so-called “DV-Hop” technique of Niculescu
and Nash [23] is an efficient method in dense topologies
whereby the anchor nodes flood the network with their
location information. This allows other points to trian-
gulate their positions based on the information of the
anchor nodes. This information is then passed along
to other sensor nodes who use the combined locations
to triangulate their positions. However, for widely dis-
persed and irregular topologies, the relative errors in
the node estimation tends to be fairly substantial.

A similar technique proposed by Savarese et al. [25]
uses a method similar to the “DV-Hop” algorithm de-
scribed above to provide a rough estimate of the loca-
tion information. These estimates are then improved
by applying a least-squares triangulation using these
estimates as well as a new collection of estimated
positions [9].

The “iterative multilateration” technique of Sav-
vides et al. [26] is another effective method especially
when the number of anchor nodes is relatively high.
This method calculates via triangulation the positions
of those nodes that are adjacent to at least three anchor
points. Then these new localized nodes become anchor
points and the process continues. In the end every node
in the network has become an anchor.

In [15], the so-called “multidimensional scaling” al-
gorithm is proposed. The heuristic begins by making
an initial estimate of the node positions based solely on
the connectivity and basic distance and angle informa-
tion of the non-anchor nodes. Then using a variant of
singular value decomposition [29], a map is generated
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of the relative locations of the nodes. Finally, these esti-
mates are greatly improved and an absolute global map
is produced by taking into account the locations of the
anchor nodes and updating the estimates accordingly.

The work of Doherty et al. [13] involves a tech-
nique in which linear bounding hyperplanes are used
to model the proximity constraints on the nodes which
can communication with each other as convex con-
straints [1,9]. However, these constraints are often too
loose and provide solutions which are not helpful in
terms of calculating the unique realization of the sen-
sors.

As we see, the drawback with most sensor network
localization techniques involving heuristics is that they
do not always find a unique solution even when it exists,
or require excessive computation time to do so [28].
A recently developed method introduced by So and Ye
in [28] uses a semidefinite programming (SDP) model
that guarantees the discovery of a unique solution when
it exists. Furthermore, the solution can be computed
in polynomial time. In the following subsection, we
present the SDP model, discuss the motivation behind
using this approach and analyze some properties of the
model.

Semidefinite ProgrammingModel

A semidefinite program is a convex optimization prob-
lem where the objective function is linear and the con-
straint is defined by a linear matrix inequality. Given
a vector c 2 Rm , and m C 1 symmetric matrices
F0; F1; : : : ; Fm 2 Rnxn , a semidefinite program can be
written in the form:

min
x2Rm
fcTxjF(x) � 0g ;

where F(x) D F0 C
Pm

iD1 xi Fi , and F(x) � 0 im-
plies that F(x) is positive semidefinite [14,30]. Hence,
both the objective function and the constraint are con-
vex, and therefore semidefinite programs are closely re-
lated to linear programs, and many algorithms for solv-
ing linear programming problems have generalizations
that apply to semidefinite programs as well [30].

In [28], the authors note that (1) is a non-convex
optimization problem, which is difficult to solve in
general. They propose a SDP relaxation by convert-
ing the nonconvex quadratic distance constraints into
linear constraints as follows. Specifically, let X D

[x1; x2; : : : ; xn] be the d � n matrix which we are are
trying to determine. Let ei j 2 R be the vector where
the ith position is 1, the jth position is �1, and all other
entries are zeros. Then for all (i; j) 2 Nx , we have that:

jjxi � x jjj
2 D eTi jX

TXei j : (2)

Furthermore, for all (k; j) 2 Na it follows that

jjak � x jjj
2 D (ak ; e j)T[Id ; X]T[Id ; X](ak ; e j) ; (3)

where e j is a vector of all zeros except for �1 at entry j,
and (ak ; e j) 2 RdCn is a vector consisting of ak “on top
of” e j [9]. Using these definitions, we can reformulate
the problem as follows.

Find X 2 Rd�n and Y 2 Rn�n (4)

such that

eTi jYei j D d2i j;8(i; j) 2 Nx ; (5)

(ak ; e j)T
�

Id X
XT Y

�
(ak ; e j)

D d̄2k j ;8(k; j) 2 Na ; (6)

Y D XTX : (7)

The intuition behind the SDP formulation is to relax
constraint (7) to Y � XTX; thus implying that Y�XTX
is positive semidefinite. Boyd et al. [10] among others
have shown that a positive semidefinite matrix Y�XTX
can be expressed as

Z D
�

Id X
XT Y

�
� 0: (8)

Define Z1:d;1:d to be the d � d principle submatrix of Z.
Then the SDP relaxation of the SNLP as given in [28],
is to find Z 2 R(dCn)�(dCn) to:

SDP : maximize 0 (9)

subject to

Z1:d;1:d D Id ; (10)

h(0; ei j)(0; ei j)T; Zi D d2i j;8(i; j) 2 Nx ; (11)

h(ak ; e j)(ak ; e j)T; Zi D d̄2k j;8(k; j) 2 Na ; (12)

Z � 0 : (13)
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Notice that by definition, any feasible solution matrix Z
must have at least rank d [9].We can formulate the dual
of the SDP relaxation as

SDP-D : minimize

hId ;Vi C
X

(i; j)2Nx

yi jd2i j C
X

(k; j)2Na

wk jd̄2k j (14)

subject to
�

V 0
0 0

�
C

X
(i; j)2Nx

yi j(0; ei j)(0; ei j)TC

X
(k; j)2Na

wk j(ak ; e j)(ak ; e j)T � 0 :
(15)

Notice that the dual formulation is always feasible. In
particular having V D 0; yi j D 0 for all (i; j) 2 Nx , and
wk j D 0 for all (k; j) 2 Na forms a feasible solution.

In [28], So and Ye postulate and prove several re-
sults regarding the above formulations. We will high-
light the key theorems and provide a basic analysis. For
detailed proofs and a more in-depth study, see [28].

The first result provides a class of instances for
which the SDP relaxation is exact, i. e. for instances
when the matrix Z has rank d. Suppose that formu-
lation SDP is feasible. This implies that the distance
measurements di j and d̄k j are exact for the positions
X̄ D [x̄1; : : : x̄n]: Then, we have the following result.

Theorem 1 Let Z̄ be a feasible solution for SDP and
Ū be an optimal slack matrix of SDP-D. Then by the
duality theorem for semidefinite programming [4], it fol-
lows that:
1. hZ̄; Ūi D 0;
2. rank(Z̄)C rank(Ū) � d C n;
3. rank(Z̄) � d and rank(Ū) � n.

A immediate consequence of this theorem is that for
optimal dual slack matrices Ū such that rank(Ū) D n,
it follows that rank(Z̄) D d. Therefore, formulation
SNLP is equivalent to formulation SDP implying
that the SNLP formulation can be solved optimally
in polynomial time [28].

The next theorem establishes the existence of a large
group of efficiently localizable graphs.

Theorem 2 Suppose that the network in question is
connected. Then the following are equivalent:

1. Problem SNLP is uniquely localizable.
2. The max-rank solution matrix of SDP has rank d.
3. The solution matrix of SDP, represented by (8) , sat-

isfies Y D XTX.

This theorem has several significant implications. First,
we have that as long as SNLP has a unique local-
ization, then it can be computed in polynomial time
by solving the corresponding semidefinite relaxation.
The converse also holds. That is, if the solution matrix
to the semidefinite relaxation X has rank d, then X is
the unique localization for formulation SNLP [28].
Lastly, as we mentioned above we have the existence
of a family of graphs for which the localization can
be efficiently computed despite the underlying NP-
completeness of the SNLP in general.

The seminal work of So and Ye [28] which we high-
lighted above provides a baseline to which many exten-
sions can be made. To begin with, the results presented
above are based on the assumption that the distance
measurements are exact. The work of Biswas et al. in [9]
provides extensions to handle inaccurate and incom-
plete measurements. This greatly improves the robust-
ness of the SDP formulation, making the model more
applicable to real-world scenarios in which inaccuracies
are inevitable. Furthermore, in [1] the authors provide
SDP formulations of the SNLP which incorporate angle
information which can be used alone or in concert with
distance information to calculate sensor realizations.
This method is particularly useful when the sensors can
detect multiple angles [1]. We see that many exten-
sions are possible and that the by using semidefinite
programming methods, a large class of sensor network
localization problems are able to be solved more effi-
ciently and effectively than by previous heuristic tech-
niques.

Conclusion

The focus of this article was the sensor network local-
ization problem (SNLP), with particular attention given
to a set of robust solution technique based on a semidef-
inite programming model. After an introduction to the
problem, we highlighted several solution approaches
which have been applied. Next, we presented an ana-
lyzed the SDP formulation of So and Ye [28]. The re-
sults proved for the SDP relaxation of the SNLP have
provided a framework which can be extended to other
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problems in distance geometry in which angle and dis-
tance information are mutual between pairs of points.
Such problems include Euclidean ball packing andmost
recently 3-dimensional molecule conformation prob-
lems [7].
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Structural design (SD) deals with optimal design of lin-
early elastic mechanical constructions. Mathematically,
the SD problem is as follows. We are considering a me-
chanical construction S with finitely many degrees of

freedomM, so that virtual displacements of S are spec-
ified by vectors w 2 RM. We are also given a set W �
RM of kinematically admissible displacements. The en-
ergy of elastic deformation of S under a displacement
w is a nonnegative quadratic form w|Bw/2 of the dis-
placement. B is a symmetric positive semidefinite ma-
trix characterizing S; this matrix is assumed to depend
linearly on the vector t of design parameters of the con-
struction: B = B(t).

The construction can be subject to an external load;
mathematically, a load is a vector f 2 RM . The equilib-
rium displacement Wf caused by the load minimizes
the potential energy w|B(t)w/2 � f |w over w 2W:

wf 2 Argmax
w2W

�
f>w �

1
2
w>B(t)w

�
; (1)

the corresponding optimal value

compl( f ; t) D sup
w2W

�
f>w �

1
2
w>B(t)w

�
(2)

— the compliance of S under load f — indicates how
stiff is the construction w.r.t. the load (the less is the
compliance, the better).

The SD problem in its general setting is:
� Given a set F � RM of tentative loads and a set T of

admissible values of the design vector t, find t 2 |
which minimizes the worst-case, w.r.t. loads from F,

� compliance:

(Pini)

8̂
ˆ̂<
ˆ̂̂:

min complF(t)
� sup

f2F
compl( f ; t)

s.t. t 2 >:

The outlined general setting has two particular cases
of especial interest.

Truss Design

A truss is a construction, like an electric mast or the
Eifel Tower, comprised of thin elastic bars linked with
each other at nodes. In the standard truss topology de-
sign problem the nodes form a given finite set in Rd

(d = 2 for planar and d = 3 for spatial trusses), and all
pair connections of the nodes by bars are allowed. Vir-
tual displacements of a node form a given linear sub-
space of Rd, and the space RM of virtual displacements
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of the truss is the direct product of these subspaces over
all nodes. The setW of admissible displacements is cut
off RM by a number of inequality constraints (typically
linear) representing obstacles – restrictions on the dis-
placements of the nodes coming from absolutely rigid
partial supports.

The design variables of the truss are volumes t` of
all tentative bars, and the corresponding matrix B(t) is
B(t) =

PN
`D1b`b

>
`
t`, whereN is the number of tentative

bars and the vectors b` 2 RM are readily given by the
geometry of the nodal set. An external load – a collec-
tion of physical forces acting at the nodes of truss – can
be identified with a vector f 2 RM , and the equilibrium
displacement and compliance of truss associated with
load f are given by (1), (2), respectively.

The set T of feasible design vectors always is a subset
of RN

C (bar volumes must be nonnegative) satisfying the
resource constraint

PN
`D1t` � v (upper bound on the

weight of the truss); the description of T may include
also some other, normally linear, constraints.

Shape Design

A shape is a construction comprised of material con-
tinuously distributed in a given 2D or 3D domain ˝ ,
the mechanical properties of the material varying from
point to point. Thus, a shape is a distributed mechani-
cal system with infinitely many degrees of freedom. In
order to get a computationally tractable model, a finite
element approximation is applied. Specifically,
� the infinite-dimensional space of displacements of

the actual construction (the space of vector fields on
˝) is approximated by its finite-dimensional sub-
space RM;

� ˝ is partitioned intoN cellsC`, ` = 1, . . . ,N, and the
mechanical properties of the material are assumed
to be constant within every cell.
With this approximation, the energy of elastic de-
formation of shape under displacement w is

E(w)

D
1
2

NX
`D1

��1` Tr
�
t`
Z
C`

eP(w)e>P (w) dP
�
;

(3)

where Tr stands for the trace, and
� �` is the d-dimensional volume of C`;

� eP(w) is the strain tensor associated with displace-
ment w at a point P 2 ˝ ; the only property of this
tensor important in our context is that eP(w) is an
L1 function of P taking values in the Euclidean
space RD (D = d(d + 1)/2) linearly depending on w;

� ��1
`
t` is the ‘rigidity tensor’ of the material speci-

fying the mechanical properties of the material in
cell C`; mathematically, t` is a symmetric positive
semidefinite D × Dmatrix.

After finite element approximation, the set of kinemat-
ically admissible displacements becomes a subset W of
RM , an external load acting at a shape can be identi-
fied with a vector f 2 RM , the equilibrium displacement
wf of the shape minimizes the potential energy E(w) �
f |w:

wf 2 Argmax
w2W

�
f>w � E(w)

�
; (4)

and the rigidity properties of the shape w.r.t. the load
are measured by the compliance

compl(t; f ) D sup
w2W

�
f>w � E(w)

�
: (5)

The set T of feasible design vectors is always a subset of
the set (SDC)

N , SDC being the cone of positive semidefinite
D × D matrices (the rigidity tensors must be positive
semidefinite). Typical additional restrictions defining T
are the ‘resource constraints’ imposed on the quantities
Tr(t`) (these quantities in a sense measure densities of
the material in the cells). Themost important case is the
one of

T D

8̂
<̂
ˆ̂:
t D (t1; : : : ; tN ) :

t` 2 SD; t` � 0;
�` � Tr(t`) � �`;
l D 1; : : : ;N ;PN
`D1 Tr(t`) � v

9>>=
>>;
;

8̂
<̂
ˆ̂:

0 � �` � �` <1; l D 1; : : : ;N ;
NX
`D1

�` < v;

(6)

where SD is the space of symmetric D × Dmatrices and
the relation A < B for A, B 2 SD means that A � B is
symmetric positive semidefinite.

‘Standard Case’ of the SD Problem

The truss and the shape problems are covered by a sin-
gle particular case of (Pini), the one where the ‘design
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variables’ t` are positive semidefinite symmetric matri-
ces of certain row dimensionD, the constraints defining
T are restrictions on the vectors comprised of traces of
these matrices, and

B(t) D
NX
`D1

SX
sD1

b`s t`b>`s ; (7)

where b`s are givenM × Dmatrices.
Indeed, the truss problem clearly fits the indicated

scheme (with D = S = 1, �` = 1, l = 1, . . . , N). In the case
of the shape problem, there always exist S ‘quadrature
grids’ {P`s 2 C`}SsD1 and ‘quadrature weights’ {�2

`s}
S
sD1,

` = 1, . . . , N, such that

1
�`

Z
C`

eP(w)e>P (w) dP D
SX

sD1

�2l s eP`s(w)e
>
P`s(w)

identically inw 2RM . Specifying matrices b`s according
to

b>`sw D �`s eP`s(w); 8w 2 RM ;

the energy (3) becomes w>B(t)w
2 with B(t) given by (7),

and relation (5) becomes (2).

Standard Case

The ‘standard case’ of the general SD problem is as fol-
lows:

S.1 The space of the design vectors is the direct
product of N of the spaces SD of symmetric
D � D matrices, so that the design vector is
t = (t1; : : : ; tN) : t` 2 SD; ` = 1; : : : ;N .

S.2 The set T of admissible designs is given
by (6).

S.3 The mapping t 7! B(t) is given by (7), and
the matrix

PN
`=1
PS

s=1 b`s b
>
`s
is positive defi-

nite;
S.4 The set W of kinematically admissible dis-

placements is polyhedral:

W = fw 2 RM : Pw � pg; p 2 Rq; (8)

and the system of constraints Pw � p satis-
fies the Slater condition: 9w : Pw < p.

The Set of Loads

In the traditional literature on structural design (see
[1,2,3,4,5,7] and references therein) F is either a single-
ton {f } (‘single-load case’), or, more generally, a finite
set:

F D f f1; : : : ; fkg: (9)

Recently, a robust setting of the problem was proposed
and motivated [6], where F is an ellipsoid:

F D
n
f D Qu : u 2 Rk ; u>u � 1

o
: (10)

Semidefinite Reformulation of Pini

It turns out that the standard case of the multiload SD
problem can be naturally posed as a semidefinite pro-
gram; this is the case for the robust SD problem as well,
provided that there are no obstacles (W = RM). In fact,
there are three semidefinite settings of the standard SD
problem: the primal(P), the dual(D) and the equivalent
primal (P+). The relations between these forms are as
follows:
� is, basically, a straightforward semidefinite reformu-

lation of (Pini);
� (D) is obtained from the Fenchel dual of (P) by ana-

lytic elimination of part of variables,
� (P+) is obtained from the Fenchel dual of (D) by an-

alytic elimination of part of variables.
The explicit semidefinite forms of the standard truss
and shape design problems are as follows.

Multiload Truss Design

Here T, W, F are given by (6) (where D = 1), (8) and
(9), respectively.

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

� ! min0
BB@
2[� � p> yi ] y>i P � f>i

P> yi � fi
NX
`D1

b`b>` t`

1
CCA � 0;

i D 1; : : : ; k;
�` � t` � �;
` D 1; : : : ;N ;

NX
`D1

t` � v;

yi � 0; i D 1; : : : ; k;
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�
�; t` 2 R; yi 2 Rq� ;

(D)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

�2
kX

iD1

f>i wi C

NX
`D1

[�`�
C
`
� �`�

�
` ]

Cv� ! min0
BBBBBBBBB@

˛1
::: b>

`
w1

: : :
:::

:::

˛k
::: b>

`
wk

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

b>
`
w1 � � � b>

`
wk

::: � C �C
`
� ��

`

1
CCCCCCCCCA

� 0; ` D 1; : : : ;N ;
�˙
`
� 0; ` D 1; : : : ;N ;

� � 0;
Pwi � ˛i p; i D 1; : : : ; k;

2
kX

iD1

˛i D 1

�
˛i ; �

˙
` ; � 2 R; wi 2 RM�

(PC)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

� ! min0
BBBBBBBBB@

2[� � p>yi ]
::: qi1 � � � qiN

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

qi1
::: t1

:::
:::

: : :

qiN
::: tN

1
CCCCCCCCCA

� 0;

i D 1; : : : ; k;
�` � t` � �`;
` D 1; : : : ;N ;

NX
`D1

t` � v;

yi � 0; i D 1; : : : ; k;
NX
`D1

qi`b` D fi � P> yi ;

i D 1; : : : ; k;

�
�; t`; qi` 2 R; yi 2 Rq� :

The simplest truss design problem (single load, no ob-
stacles, trivial bounds on bar volumes: �` D 0, �` D v)
can be reduced to a linear programming program. In-
deed, in this case (P+)is the program

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1
2

X
`

t�1` q2` ! min

t` � 0;P
` t` � v;X
`

q`b` D f

�
t`; q` 2 R; ` D 1; : : : ;N

�
:

Partial minimization w.r.t. t` results in the program

8̂
ˆ̂<
ˆ̂̂:

1
2v

 X
`

jq`j

!2

! min

s.t.
X
`

q`b` D f ;

which is, essentially, an LP program.

Robust Obstacle-Free Truss Design

Here F is the ellipsoid (10), T is given by (6) with D = 1,
andW = RM .

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

� ! min0
BB@
2� Ik Q>

Q
NX
`D1

b`b>` t`

1
CCA � 0;

�` � t` � �;
` D 1; : : : ;N ;

NX
`D1

t` � v;

[�; t` 2 R]

(from now on, Ik is the k × k unit matrix),
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(D)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

�2 Tr(Q>w)C
NX
`D1

[�`�
C
`
� �`�

�
` ]C v�

! min 
˛ w>b`

b>
`
w � C �C

`
� ��

`

!
� 0;

` D 1; : : : ;N ;
�˙
`
� 0; ` D 1; : : : ;N ;

� � 0;
2 Tr(˛) D 1h

˛ 2 Sk ; �˙` ; � 2 R;w 2 RM�k
i
;

(PC)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

� ! min0
BBBBBBBBB@

2� Ik
::: q>1 � � � q>N

: : : : : : : : : : : : : : : : : : : : : :

q1
::: t1

:::
:::

: : :

qN
::: tN

1
CCCCCCCCCA

� 0;

�` � t` � �`;
` D 1; : : : ;N ;

NX
`D1

t` � v;

NX
`D1

b`q` D Q

h
� 2 R; t` 2 SD; q>` 2 Rk

i

Multiload ShapeDesign

Here T, W, F are given by (6) (where D = 3 for planar
and D = 6 for spatial shapes), (8), (9), respectively.

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

� ! min0
BB@
2[� � p>yi ] y>i P � f>i

P>yi � fi
NX
`D1

SX
sD1

b`s t`b>`s

1
CCA � 0;

i D 1; : : : ; k;
t` � 0; ` D 1; : : : ;N ;
�` � Tr(t`) � �; ` D 1; : : : ;N ;
NX
`D1

Tr(t`) � v;

yi � 0; i D 1; : : : ; k
�
� 2 R; t` 2 SD; yi 2 Rq�

(D)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

�2
kX

iD1
f>i wi C

NX
`D1

[�`�
C

`
� �`�

�

`
]C v� ! min

0
BBBBBBBBBBB@

˛1IS
:
:: B`[w1]

: : :
:::

˛k IS
:
:: B`[wk ]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

B>
`
[w1] � � � B>

`
[wk ]

::
: (� C �C

`
� ��

`
)ID

1
CCCCCCCCCCCA

� 0; ` D 1; : : : ;N ;
�˙
`
� 0; ` D 1; : : : ;N ;

� � 0;
Pwi � ˛i p; i D 1; : : : ; k;

2
kX

iD1
˛i D 1

h
˛i ; �

˙

`
; � 2 R; wi 2 RM

i
;

where B`[w] =

0
@
w>b`1
� � �

w>b`S

1
A,

(PC)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

� ! min0
BBBBBBBBBB@

2[� � p>yi ]
::: [qi1]

> � � � [qiN ]
>

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

qi1
:
:: t1

:::
:::

: : :

qiN tN

1
CCCCCCCCCCA

� 0;

i D 1; : : : ; k;2
6664q

i
`
D

0
BB@
qi
`1
� � �

qi
`S

1
CCA ; t` D

0
BBB@

t`
: : :

t`

1
CCCA

3
7775

�` � Tr(t`) � �`; l D 1; : : : ;N ;
NX
`D1

Tr(t`) � v;

yi � 0; i D 1; : : : ; k;
NX
`D1

SX
sD1

b`s qi`s D fi � Py>i ; i D 1; : : : ; k;

�
� 2 R; t` 2 SD; qi

`s 2 RD; yi 2 Rq� :

Robust Obstacle-Free Shape Design

Here T is given by (6) (where D = 3 for planar and D =
6 for spatial shapes), F is the ellipsoid (10) andW =RM .
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(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

� ! min0
BB@
2� Ik Q>

Q
NX
`D1

SX
sD1

b`s t`b>`s

1
CCA � 0;

t` � 0; ` D 1; : : : ;N ;
�` � Tr(t`) � �; ` D 1; : : : ;N ;
NX
`D1

Tr(t`) � v;

�
�; t` 2 R

�
;

(D)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

�2 Tr(Q>w)C
NX
`D1

[�`�
C

`
� �`�

�

` ]C v� ! min

0
BBBBBBBBBBB@

˛
::: w>b`1

: : :
:::

:::

˛
::: w>b`S

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

b>
`1w � � � b>

`Sw
::: (� C �C

`
� ��

`
)ID

1
CCCCCCCCCCCA

� 0;

` D 1; : : : ;N ;
�˙
`
� 0; ` D 1; : : : ;N ;

� � 0;
2 Tr(˛) D 1

h
˛ 2 Sk; �˙

`
; � 2 R; w 2 RM�k

i
;

(PC)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

� ! min0
BBBBBBBBB@

2� Ik
::: q>1 � � � q>N

: : : : : : : : : : : : : : : : : : : : : :

q1
::: t1

:::
:::

: : :

qN
::: tN

1
CCCCCCCCCA

� 0;

2
664q` D

0
BB@
q`1
� � �

q`S

1
CCA ; t` D

0
BB@
t`

: : :

t`

1
CCA

3
775

�` � Tr(t`) � �`; ` D 1; : : : ;N ;
NX
`D1

Tr(t`) � v;

NX
`D1

SX
sD1

b`s q`s D Q

h
� 2 R; t` 2 SD; q`s 2 RD�k

i
:

Relations between the original setting of the SD prob-
lem (Pini) and its semidefinite forms (P), (D), (P+) are
summarized in the following statement:

Theorem 1 Consider standard truss or shape case of
problem (Pini), and assume that the set of loads F is either
(9), or (10); in the latter case, assume also that there are
no obstacles, i. e., W = RM. Then
i) A pair (� , t) can be extended to a feasible solution

to problems (P) and (P+) if and only if t 2 T and
complF(t) � � ; consequently, the problems (P) and
(P+) are equivalent semidefinite reformulations of
the problem of interest.

ii) All three programs (P), (D), (P+) are strictly feasible
(i. e., for each problem there exists a feasible solution
satisfying strict forms of all inequality constraints)
and solvable. The optimal values of (P) and (P+) are
equal to each other and to the optimal value in the
problem of interest; the optimal value of (D) is minus
the one of (P) and (P+).

iii) For each program, every level set of its objective (i. e.,
the part of the feasible set where the objective is �
a constant) is bounded.

Computational Issues

Semidefinite forms of the standard SD problem are well
suited for solving by modern polynomial time interior
point methods. The ‘computational bottleneck’ is huge
sizes of SD problems of actual interest. The limitations
imposed by this bottleneck heavily depend on which
one of the forms (P), (D), (P+) is solved, and in many
cases (e. g., in truss design) (D) is by far better suited for
numerical processing than other forms of the SD prob-
lem. For detailed discussion of computational issues,
including ‘computationally cheap’ techniques for re-
covering a (nearly) optimal design {t`}N`D1 from (nearly)
optimal solution to (D), see [5,6].

See also

� Duality for Semidefinite Programming
� Interior Point Methods for Semidefinite

Programming
� Semidefinite Programming and Determinant

Maximization
� Semidefinite Programming: Optimality Conditions

and Stability
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� Semi-infinite Programming, Semidefinite
Programming and Perfect Duality

� Solving Large Scale and Sparse Semidefinite
Programs

� Structural Optimization
� Structural Optimization: History
� Topology of Global Optimization
� Topology Optimization
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Problem Statement
and Early Numerical SolutionMethods

Consider the linear semi-infinite programming prob-
lem LSIP, where ‘s.t.’ means ‘subject to’ throughout this
paper:

8̂
<̂
ˆ̂:

�P D max c>x
s.t. f (x; t) � 0;

t 2 T; d� � x � d�;

(1)

where

f (x; t) D a>(t)x � b(t); t 2 T D [t�; t�];

x; c; d�; d� 2 Rn ;

a(�) 2 Rn ; b(�) 2 R;

are differentiable functions. Its dual semi-infinite pro-
gram DLSIP is:
8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�D D inf
Z
T
b(t) d˛(t)C

nX
rD1

vCr d�r C v�r d�r

s.t.
Z
T
ar(t) d˛(t)C vCr � v�r D cr ;

r D 1; : : : ; n;

where ˛ is a nonnegative Riemann–Stieltjes measure
[13], and vCr , vr � 0.

Examples in transportation theory and wavelet filter
design are given, respectively, in [18,19]. In [4, Thm. 4]
it is proved that �P = �D, but the infimum need not be
attained. This equation is termed the duality equality.



Semi-infinite Programming and Applications in Finance S 3397

Example 1

max
�
�x1 :

�tx1 � t2x2 � 0; 8t 2 [0; 1];
�1 � xi � 1; i D 1; 2

	
:

Here the common program value is 0 but it is not at-
tained in the dual.

In the 1970s however algorithms were developed under
more regularity.

Definition 2 The linear system (1) satisfies the Slater
condition if there exists x; d� � x � d�, for which it is
satisfied strictly with x.

With the Slater condition S.-Å. Gustafson [9] sup-
plemented the necessary complementarity conditions
(analogous to LP) with the now classical matching of
derivative conditions, see also [11, (2.3)–(2.8)]. Rather
than reviewing these we focus on recent extensions (ap-
pearing in Russian) of Gustafson’s well known three
phase algorithm, see [8,10]. [12, Fig. 28-1] presents the
logic flow of semi-infinite programming algorithms ap-
pearing in 1973.

The Support ProblemsMethod Developed
in Belarus

The support problems method was suggested in [6] and
further developed and algorithmically implemented in
[24]. It is based on the principle of eliminating the
subsets of the index set (T) where the constraints
are violated. The first component consists of techni-
cal procedures for forming, solving, and analyzing se-
quences of LP problems having a small number of con-
straints which does not depend on a preassigned ac-
curacy. The second component is a finishing proce-
dure which roughly speaking employs a Newton pro-
cedure on a system of nonlinear necessary conditions
(the matching of derivatives). However, the method is
the most general available of the hybrid types [14] be-
cause it uses higher order derivatives.

We assume the set of feasible solutions of LSIP is
nonempty, namely,

X D
�
x 2 Rn : f (x; t) � 0; 8t 2 T;

d� � x � d�

	
:

Define

J D f1; : : : ; ng;

f (s)(x; t) D
@ f (x; t)
@ts

;

a(s)(t) D
�
a(s)j (t) D

ds a j(t)
dts

; j 2 J
�
;

N(q) D

(
; if q < 0;
f0; : : : ; qg if q � 0;

and let p = p(x, t) 2 {0, 1, . . . } be a positive integer satis-
fying

f (s)(x; t) D 0; s 2 N(p � 1);

f (p)(x; t) ¤ 0:
(2)

From (2) it follows that

p D p(x; t) 2

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

f0; 2; : : :g; f (p)(x; t) < 0
if t … ft�; t�g;

f0; 1; : : :g; f (p)(x; t) < 0
if t D t�;

f0; 1; : : :g; f (p)(x; t) < 0
if p is even
and t D t�;

f0; 1; : : :g; f (p)(x; t) > 0
if p is odd
and t D t�;

(3)

Definition 3 The integer q = q(t) is called the motion-
less degree (see [20]) at the point t 2 T in problem (1) if

f (s)(x; t) D 0; s 2 N(q(t)); 8x 2 X; (4)

and there exists at least one feasible solutionbx 2 X such
that

f (q(t)C1)(bx; t)

8̂
<̂
ˆ̂:

< 0 if t ¤ t� or
t D t� and p is even;

> 0 if t D t� and p is odd:

(5)

It follows from Definition 3 that

q(t) 2

(
f�1; 1; 3; 5; : : : ; p�(t) � 1g if t 2 ]t�; t�[ ;
f�1; 0; 1; 2; : : : ; p�(t) � 1g if t 2 ft�; t�g

where p�(t) = max p(x, t), x 2 X.
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Remark 4 If in problem (1) there exists at least one
point t 2 T so that q(t) � 0, then the Slater condition
does not hold.

Following [20], let us describe the algorithm for con-
structing the function q(t), t 2 T. Define

T(x) D ft 2 T : f (x; t) D 0g D fti : i 2 Ig ;

I D I(x) D f1; : : : ; k D k(x)g:

Set q(0)i = � 1, i 2 I; k = 0. Denote

I�(k) D

(
i 2 I :

ti D t�;
q(k)i C 1 an odd integer

)
;

I0(k) D I n I�(k);

X(k)
i D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

z 2 Rk :

f (s)(z; ti) D 0;
s 2 N(q(k)i );

f (q
(k)
i C1)(z; ti) � 0
if i 2 I0(k);

f (q
(k)
i C1)(z; ti) � 0
if i 2 I�(k);

d� � z � d�

9>>>>>>>>>>=
>>>>>>>>>>;

;

X(k) D
\
i2I

X(k)
i :

For each j 2 I let f (k)j (z) = f (q
(k)
i C1)(z, tj), and let x(j) be

an optimal solution of the following LP problem:

x( j) D

8̂
<
:̂

argmin
z2X(k)

f (k)j (z) if j 2 I0(k);

argmax
z2X(k)

f (k)j (z) if j 2 I�(k):
(6)

Since x 2 X(k) , it follows that an optimal solution of (6)
always exists. Set I(k) = {j 2 I: f (k)j (x(j)) = 0}. The follow-
ing cases occur.
� I(k) 6D ;. Set

q(kC1)
j D

8̂
<̂
ˆ̂:

q(k)j ; j 2 I n I(k);
q(k)j C 2; t j … ft�; t�g;
q(k)j C 1; t j 2 ft�; t�g;

� I(k) = ;. Set

q(t) D

(
�1; t 2 T n T(x)
q(k)j ; j 2 I; t D t j:

The function q(�) so defined satisfies conditions (1)–
(5), but the details must be left to [20].

Let x be the feasible solution of the problem (1). Define

T(x) D ft 2 T : f (x; t) D 0g D fti : i 2 Ig ;

I D I(x) D f1; : : : ; k D k(x)g;
pi D p(x; ti ); qi D q(ti); i 2 I;
I0 D fi 2 I : qi C 1 D pig ; I� D I n I0;
I� D fi 2 I : ti D t�; qi C 1 oddg ; I0 D I n I�:

The following result is proved in [20].

Theorem 5 The feasible solution x 2 X is the optimal
solution of problem (1) if and only if the vector x is the
optimal solution of the following LP problem:
(
max c>z
s.t. d� � z � d�;

and

f (s)(z; t j) D 0; s 2 N(q j); j 2 I; (7)

f (q jC1)(z; t j)

(
� 0 if j 2 I0 \ I�;
� 0 if j 2 I� \ I�:

(8)

Extended Support ProblemsMethod

We conclude the algorithmic part of the paper with
a very general description of the extension to problems
not having interior point (non-Slater problems).

1 Determine a feasible solution x̂ for prob-
lem (1).
In this step the LSIP problem with a floating
number of variables is solved by the support
problems method.

2 Determine motionless points t j 2 T(bx) and
the corresponding motionless degrees q j; j 2
I(bx).
In this step one finds all points in the interval T
for which f (bx; t) = 0 and solves the sequence
of the LP problems for defining the motionless
degrees at these points.

3 Determine an optimal solution of (1).
In this step the constraints (7) � (8) are added
to the constraints of the original problem (1).
The resulting problem is solved by the support
problems method.

Extended support problems method
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We turn now to very recent applications of SIP to
finance, which employ semi-infinite programs having
index sets, T, appearing in a partitioned form, corre-
sponding to units of time. A basic structure for LSIP
is an index set-partitioned form having the following
structure:

(PLSIP)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min c>x
s.t. b�(t) � A(t)x � b�(t);

8t 2 TL ;

TL D

L[
iD1

Ti D [ti�1; ti];

g� � Gx � g�;
d� � x � d�;

(9)

where c, x, d�, d� are n-dimensional vectors, b�(�),
b�(�) are m-dimensional functions, A(�) an m × n ma-
trix function, and G an p × n matrix, with g�, g�

p-dimensional vectors. We shall use the TL notation
throughout for various choices of the integer L. Typi-
cally, Ti is the ith day of an observational period.

A SIP Approach for Estimating Uncertainty
in Dynamical Systems

Generally, the problem of estimation occurring in non-
deterministic systems has been investigated by means
of many stochastic models beginning with the papers
of N. Wiener [28] and R.E. Kalman [16]. In the 1970s,
nonstochastic observation models (‘minimax’, ‘guaran-
teed’) under uncertainty were developed in [5,21,22].
During the 1980s a new approach for optimization of
linear dynamical systems under uncertainty was devel-
oped by R. Gabasov and F.M. Kirillova; see [7].

Our approach [17] to modeling uncertainty is in
contrast to other qualitative approaches, for example,
based on stochastic differential equations. In the latter
case certain mathematical assumptions are made about
the underlying stochastic processes which may be dif-
ficult to verify in real situations, for example, in the
financial derivatives and assets markets. We demon-
strate our approach by applying the following general
minimax observation problem, stated with unknown pa-
rameters under nonstochastic uncertainty, to differen-
tial equations models for interest rates of shortest du-
ration, termed the spot interest rate. The models we de-

velop are analogous to some of the stochastic differen-
tial equations models appearing in the literature.

The Minimax Observation Problem
Under Uncertainty with Perturbations

Our main model is the well known linear dynamic
system under nonstochastic uncertainty with perturba-
tions, LDSU, over the time interval, T = [0, T]:

ẋ D Ax C Dw(t);
x(0) D x0 2 X0;

X0 D

�
x 2 Rn : d� � x � d�;

g� � Gx � g�

	
;

W(t) D
n
w(t) 2 Rl : w� � w(t) � w�

o
;

D 2 Rn�l ; w�;w� 2 Rl :

(10)

The fundamental matrix F of (10) has the following
properties:

Ḟ D AF; F(0) D E;

F(t � s) D F(t � p)F(p � s);
F(tC s) D F(t)F(s);

F�1(t) D F(�t);

yielding the form of a solution of (10) by the Cauchy
formula:

x(t) D F(t)x0 C
Z t

0
F(t)F(�s)Du(s) ds: (11)

We assume that the state x(t) of the system (10) is esti-
mated from a sensor system of the form:

y(t) D h>x(t)C z(t); 8t 2 T ; (12)

which is a measurement system giving inexact informa-
tion about current state of system (10), where z(t) is
an unknown piecewise continuous measurement error
function.

Let (10), (12) generate a signal y�(t), t 2 T with some
measurement error z �(t), t 2 T. With our approach we
seekbx(�) by solving the following minimax observation
problem:

min
(x;w(�))2X0�W(�)

max
t2T
jz�(t)j : (13)

We obtain an equivalent infinite linear program from
(13) by substituting (11) into (12) in order to obtain an
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explicit expression for z�(�):

z�(t) D y�(t)

� h>F(t)x0 � h>
Z t

0
F(t)F(�s)Dw(s) ds:

Hence (13) is equivalent to:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min v
s.t. y�(t) � h>F(t)x

C

Z t

0
F(t)F(�s)Dw(s) ds C v;

h>F(t)x C
Z t

0
F(t)F(�s)Dw(s) ds

�v � y�(t);
x 2 X0; v � 0;
w� � w(t) � w�; 8t 2 T :

(14)

Our main application to state estimation is the fol-
lowing one. Suppose (x0, w0, v0) is optimal for (14).
Then

bx(t) D F(t)x0 C
Z t

0
F(t)F(�s)Dw0(s) ds

is an estimate of the state x(t) of the system (10). This
estimate gives the minimal possible maximum absolute
value of the measurement error v0. Special purpose al-
gorithms for problems of this type have been developed
in [24,25]. To implement this approach wemust specify
a class of impulse perturbations, and we illustrate one
such prototype class next

A Prototype: Analog of the VasicekModel
with Impulse Perturbations

The financial markets setting shall be that of a default-
free discount bond paying $ 1 at maturity time T. At
this point for convenience, we take the inception to be
0, while letting P(t, T) denote the price of this bond at
time t, 0 � t � T. In actuality the bond may be a 91
day treasury bill issued at 10/1/97 ( = t0) maturing on
12/31/97 = t0 + 91days. By definition, P(T, T) = 1. For
t � T, the yield to maturity R(t, T) prevailing at time t
is the internal rate of return at time t on a bond with
maturity date T:

R(t; T) D �
1

T � t
log P(t; T); 0 � t � T: (15)

Semi-infinite Programming and Applications in Finance, Fig-
ure 1
US treasury yield curve: Constant maturities

The interest rate yield curve is the plot of R against the
time to maturity, see [2,15,29]. For T � t, as a function
of T, R(t, T) is usually called the term structure of inter-
est rates at time t. Figure 1 is an illustration from recent
data.

The instantaneous short rate or spot rate prevailing
at time t, r(t), (see, [26]) is defined as:

r(t) D lim
T!t

R(t; T): (16)

Hence,

P(t; T) D e�
R T
t r(s) ds : (17)

The spot rate cannot be observed from real data, but it
is the focus of various stochastic differential equations
models. Our prototype LDSU model shall also be con-
structed around the spot rate, r. It follows from (15),
(17) that

R(t; T) D
1

T � t

Z T

t
r(s) ds: (18)

We illustrate the approach with the classical model
of O. Vasicek [26], where the standard Brownian mo-
tion, Z, underlies the stochastic differential equation for
the spot rate, and where ˛, ˇ, and � are parameters, see
[1,3,27]:

dr D (˛ C ˇr) dt C � dZ: (19)

The parameters are employed to capture shifts and
volatility of the spot rate, [3]. We hypothesize that the
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spot rate is governed by the following linear dynamic
system with unknown parameters and nonstochastic
uncertainty. Let N be a positive integer,

ṙ D ˛ C ˇr(t)C w(t);

ˇ ¤ 0; r(t0) D r0; t 2 TN ;
(20)

where TN is defined in (9), L = N. Assume that a pri-
ori information about the unknown parameters, !(�),
of this LDEU takes the form:

! D (r0; ˛; ˇ;wi ; i D 1; : : : ;N);

!� D (r�; ˛�; ˇ�;w�i ; i D 1; : : : ;N);

!� D (r�; ˛�; ˇ�;w�i ; i D 1; : : : ;N);

˝ D
˚
! 2 RNC3 : !� � ! � !�

�
;

w(t) D wi ; w�i � wi � w�i ;

t 2 Ti ; i D 1; : : : ;N;

(21)

where w(�), are piecewise-constant perturbations. Other
choices of classes of perturbations appear in [17]. Sys-
tem (20)–(21) comprise our prototype of (10).

Remark 6 We stress the dependence of the spot rate
on the parameters in (21) by writing r(�|!). However,
to emphasize the status of ! as an independent variable
we write r(t|!) = f (t, !).

We address next how the general measurement system
(12) specializes in our Vasicek-based prototype.

Estimating the Spot Rate for Bonds
with Constant Maturities

We define the period of observation to be TM , for a pos-
itive integer, M, see (9). Let � be the current time-to-
maturity (maturity term), so that with inception date t
a �-maturity bond becomes due at date t + � .

Assume that we have observed values of the treasury
yield curve giving a series of yields to maturity R(�)

i , i
= 1, . . . , M, for some given maturity term � during M
days of observation. The date tM is the last day of the
observation period, becoming the current date. Under
this interpretation we build a piecewise constant form
of the yield to maturity, for numerical stability reasons,
and consistent with LDSU:

bR(t; tC �) D R(�)
i ;

t 2 Ti ; i D 1; : : : ;M:
(22)

The table below illustrates some observations of US
treasury yield curve rates, for successive years.

Date 3-mo 6-mo 9-mo 1-yr
01/03/94 3.16 ← 1 3.39 3.67 4.66
. . . . .
. . . . .
01/18/96 5.11 5.02 5.01
01/19/96 5.1 5.06 5.02 5.03

Observations of treasury yield curves.
Legend: 1 : R(�)

i D R(3 mo)
01/03/94

Definition 7 By the ˝-based yield we mean the aver-
aged integral

p(t; !j�) D
1
�

Z tC�

t
r(sj!) ds; t 2 TM ;

! 2 ˝; the set of unknown parameters:
(23)

The estimation error, " (t, !) is the difference,

p(t; !j�) �bR(t; tC �);
t 2 TM ; ! 2 ˝:

(24)

Note that (24) corresponds to the measurement error
function in (10). We compute the estimate !0 of un-
known parameters ! by minimizing over ! 2 ˝ , the
maximum absolute value of the function of estimation
errors " (t, !) on the interval TM . This leads to the fol-
lowing problem:

min
!2˝

max
t2TM
j"(t; !)j : (25)

Problem (25) may be written as the following nonlinear
semi-infinite programming NSIP problem, see [14]:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min v�
s.t. p(t; !j�) � v� � bR(t; tC �);

bR(t; tC �) � p(t; !j�)C v� ;
t 2 TM ; ! 2 ˝; v� � 0:

(26)

We shall call problem (26) the �-programmed prob-
lem of spot rate estimation, but we must be more spe-
cific. We return to our basic model (20)–(21) and apply
the Cauchy formula to find that the solution of the dif-



3402 S Semi-infinite Programming and Applications in Finance

ferential equation (20) has the form

r(tj!) D eˇ t r0 C
˛

ˇ
(eˇ t � 1)

C

i�1X
jD1

wj
eˇ t

ˇ
(e�ˇ t j�1 � e�ˇ t j )

C wi
1
ˇ
(eˇ (t�t i�1) � 1);

t 2 Ti ; i D 1; : : : ;N; N D M C �:

(27)

To derive the explicit form of problem (26) means that
we must first specify the function

p(t; !j�) D
1
�

Z �

t
r(sj!) ds;

t 2 Ti ; i D 1; : : : ;M:

After a tedious series of integrations we obtain

p(t; !j�) D
eˇ (tC�) � eˇ t

�ˇ
r0

C

 
eˇ (tC�) � eˇ t

�ˇ2 �
1
ˇ

!
˛

C

iC�X
kD1

aik(ˇ; tj�)wk;

where aik (ˇ, t|�) =

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

eˇ (t�tk�1C�) � eˇ (t�tkC�) C eˇ (t�tk ) � eˇ (t�tk�1)

�ˇ2 ;

k < i;
eˇ (t�tk�1C�) � eˇ (t�tkC�) � eˇ (t�tk�1) C 1

�ˇ2 �
tk � t
�ˇ

;

k D i;
eˇ (t�tk�1C�) � eˇ (t�tkC�)

�ˇ2 �
tk � tk�1
�ˇ

;

i < k < i C �;
eˇ (t�tk�1C�) � 1

�ˇ2 �
t � tk�1 C �

�ˇ
;

k D i C �:
(28)

From the above we obtain the following nonlinear
semi-infinite programming problem

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min v�

s.t.
eˇ (tC�) � eˇ t

�ˇ
r0

C

 
eˇ (tC�) � eˇ t

�ˇ2 �
1
ˇ

!
˛

C

iC�X
kD1

aik(ˇ; tj�)wk � v�

� bR(t; tC �);
R̂(t; tC �)

�
eˇ (tC�) � eˇ t

�ˇ
r0

C

 
eˇ (tC�) � eˇ t

�ˇ2 �
1
ˇ

!
˛

C

iC�X
kD1

aik(ˇ; tj�)wk C v� ;

(29)

where

t 2 Ti ; i D 1; : : : ;M;

˛� � ˛ � ˛
�; ˇ� � ˇ � ˇ

�; r� � r0 � r�;

v � 0; w� � wi � w�; i D 1; : : : ;N:

Let (!0, v� 0) be the solution of problem (29), (26).
Upon substituting !0 for! in (27) yields a formula that
we term the �-estimate of the spot rate, i. e.,

r� (t) D f (t; !0); t 2 TM : (30)

It follows from (17) that the function

P(t;bt) D e�
Rbt
t r� (s) ds ;

t 2 [t0; tN ]; bt 2 [t; tN];
(31)

will be an estimate of the price at time t of a discount
bond maturing at timebt.

The function r� (t) = f (t|!0), while an estimate in
the interval [t0, tM], becomes the forecast in the future
interval (the time after the current time tM), namely,
the forecast interval [tM , tN], where N = M + � . If the
function r(t, |!0) is defined over t 2 [tN ; tMP ], where
M C � < MP , then the predicted price of a discount
bond maturing at timebt is given by:

eP(t;bt) D e�
Rbt
t r� (s) ds ;

t 2 [tN ; tMP ]; bt 2 [t; tMP ];
(32)
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and the predicted yield is

eR(t;bt) D 1
bt � t

Z bt
t
r� (bt) ds;

t 2 [tN ; tMP ];

s 2 [t; tMP ]

(33)

at time t of discount bond maturing at datebt.

ANonarbitrage Condition for LDSU

Analogous to the stochastic case, we construct a portfo-
lio with two bonds with differing maturities, T1 and T2,
selling one unit of the T1 maturity and buying � of the
T2 maturity. The value of the portfolio is (see [29, Sect.
17.5]),

˘ (t) D P(t; T1) �	P(t; T2): (34)

Analogously, we differentiate˘ (t) with respect to time,
t, recognizing that all of our parameters are indepen-
dent of time, (see also Remark 6. Hence we obtain

d˘ (t)
dt

D ˘ (t) f (t; !): (35)

But (35) states that the return on the portfolio equals
the risk-free rate, the spot rate, [29, p. 271]. But this re-
quired condition is not our complete measure of nonar-
bitrage because our approach depends on actual obser-
vations and real data. Let us be more precise.

If at time T1 $1 is invested in the risk-free market
(what the observations of actual data show) and grows
to $M at time T2, then $Mmust be compared with what
the estimated spot rate returns over this period, where
we assume f (s, !) � 0 for all !, i. e.,

e
R T2
T1

f (s;!)ds
:

If M > e
R T2
T1 f (s;!)ds , we borrow $1 at T1 at the spot

rate and invest it in the risk-free market during the pe-
riod [T1, T2]. At T1 wemake a profit ofM�e

R T2
T1

f (s;!)ds .
If M < e

R T2
T1 f (s;!)ds , we borrow $1 in the risk-free mar-

ket (supported by observed data) and invest it at the
spot rate over the period [T1, T2]. We make a profit of
e
R T2
T1

f (s;!)ds
� M. This analysis motivates the following

condition.

Assumption 8 Let f (�, �) be a nonnegative function
specified as in Remark 6. For any arbitrary T1, T2, and
W satisfying T1 < T2,W > 0, there exists a !� 2˝ such
that:

Z T2

T1
f (s; !�) ds DW: (36)

This is a necessary condition to guarantee existence of
nonarbitrage in the broader sense of using real obser-
vational data for estimation by the rules and models we
have introduced.

We conclude by presenting one of the figures ob-
tained from a solution of problem (26), (29) with
piecewise-constant perturbations for maturity term � =
91 days over the last three months of 1995. Using the
notation of (29) Fig. 2 is a three-dimensional plot of
eR(t; t C �) � p(t; !0j�) having two boundaries both
with slope 1 that have financial interpretations:
� the left-most boundary iseR(t; t C 91 days), 10/1/95
� t � 12/24/95, depicting the estimated yield curve
over the observation period;

� the right-most boundary is eR(t; t), 10/1/95 � t �
12/24/95, and depicts the unobservable estimated
spot rate over the observation period.

Semi-infinite Programming and Applications in Finance, Fig-
ure 2
Estimate of the term structure of interest rates using the ana-
log of the Vasicek model with piecewise-constant perturba-
tions for observations of yield to maturity, � = 3 mo, made
during the observation period 1/8/1995 to 31/12/1995
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It is interesting to note that in the stochastic case the
market price of risk cannot be estimated uniquely in
many cases. This result is demonstrated in [23].

See also

� Competitive Ratio for Portfolio Management
� Financial Applications of Multicriteria Analysis
� Financial Optimization
� Portfolio Selection and Multicriteria Analysis
� Robust Optimization
� Semi-infinite Programming: Approximation

Methods
� Semi-infinite Programming and Control Problems
� Semi-infinite Programming: Discretization Methods
� Semi-infinite Programming: Methods for Linear

Problems
� Semi-infinite Programming: Numerical Methods
� Semi-infinite Programming: Second Order

Optimality Conditions
� Semi-infinite Programming, Semidefinite

Programming and Perfect Duality

References
1. Back K (1996) Yield curve models: A mathematical review.

In: Ledermann J, Klein R, Nelkin I (eds) Option Embedded
Bonds. Irwin Publ, Toronto

2. Baxter M, Rennie A (1997) Financial calculus, an introduc-
tion to derivative pricing. Cambridge Univ Press, Cam-
bridge

3. Chan KC, Karolyi GA, Longstaff FA, Sanders AB (1992) An
empirical comparison of alternative models of the short-
term interest rate. J Finance 47:1209–1227

4. Charnes A, Cooper WW, Kortanek KO (1965) On represen-
tation of semi-infinite programs which have no duality
gaps. Managem Sci 12:113–121

5. Chernousko FL (1989) The estimating of state for dynamic
systems. Nauka, Moscow

6. Gabasov R, Kirillova FM, Kostyukova OI (1984) Constructive
methods of optimization. Part 2. Control problems. Univ
Press Belarus, Minsk

7. Gabasov R, Kirillova FM, Prischepova S Optimal feedback
control. no. 207 in Lecture Notes Economics and Inform.
Systems. Springer, Berlin

8. Glashoff K, Gustafson S-Å (1983) Linear optimization and
approximation. Appl Math Sci, vol 45. Springer, Berlin

9. Gustafson S-Å (1970) On the computational solution of
a class of generalized moment problems. SIAM J Numer
Anal 7:343–357

10. Gustafson S-Å (1983) A three phase algorithm for semi-
infinite programs. In: Fiacco AV, Kortanek KO (eds) Semi-

Infinite Programming and Applications. In: Lecture Notes
Economics and Math Systems, no 215. Springer, Berlin

11. Gustafson S-Å, Kortanek KO (1973) Numerical treatment of
a class of semi-infinite programming problems. Naval Res
Logist Quart 20:477–504

12. Gustafson S-Å, Kortanek KO (1992) Semi-infinite
programming-recent trends of development. In: Phillips
FY, Rousseau JJ (eds) Systems and Management Sci by
Extremal Methods Research Honoring Abraham Charnes
at Age 70. Kluwer, Dordrecht, pp 463–478

13. Gustafson S-Å, Kortanek KO, Rom WO (1970) Non-Cheby-
sevian moment problems. SIAM J Numer Anal 7:335–342

14. Hettich R, Kortanek KO (1993) Semi-infinite programming:
Theory, methods, and applications. SIAM Rev 35:380–429

15. Hull JC (1997) Options, futures, and other derivative secu-
rities, 3rd edn. Prentice-Hall, Englewood Cliffs

16. Kalman RE (1960) A new approach to linear filtering and
prediction problems. J Basic Engineering 821:34–45

17. Kortanek KO, Medvedev VG (1999) Models for estimating
the structure of interest rates from observations of yield
curves. In: Avellaneda M (ed) Quantitative Analysis in Fi-
nancial Markets. World Sci, Singapore, pp 53–120

18. Kortanek KO, Moulin P (1998) Semi-infinite programming
in orthogonal wavelet filter design. In: Reemtsen R and
RÜckmann J-J (eds) Semi-infinite Programming. Noncon-
vex Optim Appl. Kluwer, Dordrecht, pp 323–357

19. Kortanek KO, Yamasaki M (1982) Semi-infinite transporta-
tion problems. J Math Anal Appl 88:555–565

20. Kostyukova OI (Sept. 1995) Investigation of the linear ex-
tremal problem with continuum constraints. Prepr Inst
Math Acad Sci BSSR 26(336)

21. Krasovsky NN (1976) Theory of control with movement.
Nauka, Moscow

22. Kurzansky AB (1977) Control and observation in indefinite-
ness conditions. Nauka, Moscow

23. Medvedev G, Cox SH (1996) The market price of risk for
affine interest rate term structures, Proc 6th Internat AFIR-
Colloq Aktuarielle Ansätze für Finanz-Risken AFIR 1996
(Nuremberg), vol 1. VVW Karsruhe, Karlsruhe, pp 913–924

24. Medvedev VG (1994) Optimal observations of initial
state and input disturbances for dynamic systems. SAMS
14:275–288

25. Medvedev VG (1994) Positional algorithm for optimal ob-
servations of linear dynamical systems. SAMS 16:93–111

26. Vasicek O (1977) An equilibrium characterization of the
term structure. J Financial Economics 5:177–188

27. Vetzal KR (1994) A survey of stochastic continuous time
models of the term structure of interest rates. Insurance:
Math and Economics 14:139–161

28. Wiener N (1949) The extrapolation, interpolation, and
smoothing of stationary Time series. Wiley, New York

29. Wilmot P, Howson S, Dewyne J (1997) The mathematics
of financial derivatives, a student introduction. Cambridge
Univ Press, Cambridge



Semi-infinite Programming: Approximation Methods S 3405

Semi-infinite Programming:
ApproximationMethods
SVEN-ÅKE GUSTAFSON

Stavanger University, Stavanger, Norway

MSC2000: 90C34

Article Outline

Keywords
Nonlinear Semi-Infinite Programs
Computationally Equivalent Semi-Infinite Programs
Approximation in the Uniform Norm
See also
References

Keywords

Nonlinear semi-infinite programs; Computational
equivalent; Index set; Nonnegative interpolatory
operator

The class of general semi-infinite programming prob-
lemsmay be looked upon as a generalization of the class
of optimization problems with finitely many variables
and constraints since in a semi-infinite program, either
the number of variables or the number of constraints
(but not both at the same time) may be infinite. In the
present paper we will mainly deal with semi-infinite
programs with finitely many variables. The main the-
oretical as well as practical difficulty is that one needs
to verify that a proposed optimal solution satisfies in-
finitely many inequality constraints. In addition, non-
linear problems may have many local minima and one
needs to verify that a calculated optimum is indeed
global. We will discuss the concept of computational
equivalence, i. e. that for a fixed computer and soft-
ware one may construct an optimization problem with
finitely many variables and constraints which has the
same computer representation as the semi-infinite pro-
gram whose solution is sought. We will deal in detail
with the class of linear problems and give some numer-
ical examples, illustrating computational equivalence.
Wewill consider one-sided approximation and approx-
imation in the maximum norm. For the application
of global optimization to linear semi-infinite program-
ming and an illustration on the air quality control prob-

lem, see � Semi-infinite Programming: Methods for
Linear Problems. The literature on semi-infinite pro-
grams and their applications to problems in science and
engineering is extensive. For a general introduction to
this field, see [8] [10] and [14]. Recent results are to be
found, for instance, in [16].

Nonlinear Semi-Infinite Programs

We will study the following class of problems:

Definition 1 Let S be a fixed set, F:Rn!R and G:Rn ×
S! R two fixed functions. Then the following task will
be called a semi-infinite program:

min F(y) (1)

over all y 2 Rn subject to the constraint

G(y; s) � 0; s 2 S: (2)

Remark 2 The data of the semi-infinite program (1),
(2) are hence the index set S, the real-valued functions
F defined on Rn and the real-valued function G, defined
on Rn × S.

Definition 3 Use the notation of Definition 1. Put

Y D fy 2 Rn : G(y; s) � 0g ; (3)

V D inf
y2Y

F(y): (4)

If Y is empty, then we define V = � 1, i. e. the condi-
tion (2) is inconsistent.

We observe that (1) and (2) define a very general class of
problems. If we restrict S to be finite, then we get non-
linear optimization problems with finitely many non-
linear constraints. If F and G are linear with respect to
y then we get linear programs if S is finite, otherwise
linear semi-infinite programs. If we require Y , the set
of feasible solutions to be compact and F to be contin-
uous on Y , then the existence of optimal solutions is
guaranteed. We need to impose further assumptions in
order to show that a proposed computational scheme is
efficient. When a linear semi-infinite program is to be
solved, a common approach is to discretize the prob-
lem, i. e. replace the index set S by a finite subset T and
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then solve the linear program hereby arising numeri-
cally, which always can be done with a finite number of
arithmetic operations. For nonlinear problems, the nu-
merical solution of the discretized problem is still diffi-
cult, since it may have many local extrema and the ver-
ification that a calculated extremum is the global op-
timum sought is nontrivial. For this reason discretiza-
tion has not been the main approach for the treatment
of nonlinear semi-infinite programs. Instead one has
sought binding constraints, worked with penalty meth-
ods and settled for calculation of a local optimum. See
[3,4,6,7,13,14,15] and [16].Quasirandommethods have
also been used for estimating the global optimum. See,
e. g., [5].

Computationally Equivalent Semi-Infinite
Programs

As known, a computer may only store a finite number
of symbols. Symbol-manipulating languages like Maple
and Mathematica may perform relatively complicated
operations exactly by means of formula manipulations
but their capacity is limited to a certain extent. This
is illustrated by their treatment of operations on ratio-
nal numbers which may be represented exactly as pairs
of integers. However, if one would try to solve a lin-
ear systems of equations with rational coefficients ex-
actly, then one would find that the available storage ca-
pacity is exceeded already for relatively small systems.
We assume from now on that we have a language like
Fortran which may manipulate integers exactly, pro-
vided that their magnitude is limited by a bound which
is known but depends on the computer and the soft-
ware used. Arithmetic operations on real numbers may
be performed with high accuracy, but not exactly and
bounds for the errors may be derived. Since the stor-
age of the computer is limited the set R of real num-
bers must be represented by a finite subset, the com-
puter numbers. Therefore the set R may be split into
a finite number of subsets whose elements have iden-
tical representations in the computer. Two reals, which
have the same computer representations are considered
computationally equivalent, since it is not possible to
distinguish between them by means of computational
operations. As a consequence of this the index set S in
(2) must be represented by a finite subset T of computer
numbers. We introduce

Definition 3 The program

min F�(y) (5)

over all y 2 Rn subject to the constraint

G�(y; s) � 0; s 2 S; (6)

is said to be computational equivalence to the program
(1), (2) if there is a compact set Y� �Rn which contains
all the feasible solutions of both programs such that:
� F�(y) and F(y) are computationally equivalent on

Y�;
� G�(y, s) and G(y, s) are computationally equivalent

on Y� × S.

Remark 5 The requirement that the set of feasible so-
lutions should be compact may seem awkward, since
a semi-infinite program may have an unbounded feasi-
ble set even if the set of optimal solutions is bounded.
Therefore one considers regularized semi-infinite pro-
grams which have the constraint kyk � M where, the
positive number M is chosen so large that this con-
straint is not binding for at least one optimal solution.

The next issue is to construct an optimization problem
with finitely many constraints whose set of feasible so-
lutions is computationally equivalent to that of (1), (2).
We will outline the procedure for doing this which is
presented in [1,11,12]. We next introduce

Definition 6 Use the notations and definitions of (1)
and (2). Let T 2 S be a finite set with N points:

T D ft1; : : : ; tNg:

Let further w1, . . . , wN be N continuous functions de-
fined on S and having the properties:
8̂
ˆ̂̂<
ˆ̂̂̂
:

wj(s) � 0; s 2 S; j D 1; : : : ;N;
NX
jD1

wj(s) D 1; s 2 S;

wj(si ) D ıi j; i D 1; : : : ;N; j D 1; : : : ;N:

(7)

Let f be a continuous mapping defined on S and such
that f (s) is either a real number or a vector in Rn.
We now define the nonnegative interpolatory operator
based on T 2 S by

(L f )(s) D
NX
jD1

wj(s) f (t j):
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Remark 7 We note that L is a linear operator having f
as argument. Also note that (Lf )(s) = f (s) for all s 2 T.

Remark 8 In the case of linear semi-infinite program-
ming one may prove that if we replace the functions de-
fined on S with the outputs of the mapping L then this
semi-infinite program has the same feasible set as the
linear program obtained by replacing the index set S by
the grid T used for defining L. See, e. g., [8] or [12].

Example 9 We consider the simple linear semi-infinite
program:

min y1 C
y2


;

subject to the constraints

y1 C y2s �
p
1C s; 0 � s � 1:

One finds directly that the optimal y1, y2 are defined by
the condition that the straight y1+ y2s should be the tan-
gent to the curve

p
1C s at the point s = 1/
 . Assume

that we use a computer with working relative accuracy
1.0 � 10�8. We define here L as the result of equidistant
linear interpolation with stepsize h. We notice that the
functions a1(s) = 1 and a2(s) = s are interpolated exactly
and one may verify that the maximal relative interpo-
lation error for

p
1C s is given by h2/32. Therefore,

if we take h = 5 � 10�4, the discretized linear program
becomes computationally equivalent with the original
one. In this case T has 2001 elements.

Approximation in the UniformNorm

We use the same definitions as in (1) and (2). Let f be
a function which is continuous on S. We define its max-
imum norm:

k f k D max
s2S
j f (s)j :

Next we consider the problem to determine

min
y2Rn

max
s2S
jG(y; s)j :

An equivalent formulation of this task is given by the
semi-infinite program:

min y0

subject to the constraints

G(y; s)C y0 � 0; �G(y; s)C y0 � 0; s 2 S:

In this last problem, the variables are the real y0 and
the vector y 2 Rn. At each point s 2 S two inequality
conditions are to be satisfied. To calculate the optimal
value corresponding to a certain y one needs to perform
a global optimization over S. We note that the problem
is consistent. If we discretize the problem, replacing S
by a finite subset T this may be interpreted as approxi-
mating over T.

If G can be written

G(y; s) D a(s)>y � b(s); (8)

then we have a linear approximation problem and seek
to approximate b by a linear combination of a1, . . . ,
an which are real-valued functions on S. The corre-
sponding discretized problem becomes a linear pro-
gram which may be solved by means of the simplex al-
gorithm. See, e. g., [8]. Due to the special structure of
these problems the exchange algorithms by Remez, see
[2] are applicable. If these latter algorithms are used for
the original problem, one needs to perform a global op-
timization in each exchange step. The three-phase al-
gorithm described in [8,9] and [10] may be adapted to
the uniform approximation problem as well. The idea
is to seek q points {s1, . . . , sq} 2 S such that the absolute
value of G(y, s) achieves its maximum y0. One needs
to keep track of the sign of the deviation and whether
the extreme value is achieved at a boundary point of S
or in the interior. The number of local extrema as well
as their approximate positions may be obtained from
a discretized version of the problem in the case of (8),
i. e. the linear approximation problem. In the nonlin-
ear case they are generally found by other means. See,
e. g., papers in [13] and [16]. We illustrate this with an
example.

Example 10 Determine the straight line

y1 C y2s

which approximates the function exp s best in the max-
imum norm over the real interval [0, 1]. Thus we seek
the solution to the problem

min
y1;y2

max
0�s�1

jes � y1 � y2sj :

It is easy to verify, e. g., from a simple graph, that the
maximum deviation in absolute value occurs at three
points s1, s2, s3 and further, that s1 = 0, s3 = 1. Thus these
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points are at the boundary of S and s2 is in the interior.
Hence we get a condition on the derivative of the point-
wise deviation considered as a function of s at s2. Let y0
be the maximal absolute value of the deviation. Then
we obtain the following nonlinear system of equations
8̂
ˆ̂̂<
ˆ̂̂̂
:

exp(si) � y1 � y2si D y0; i D 1; 3;
� exp(s2)C y1 C y2s2 D y0;
exp(s2) � y2 D 0;
s1 D 0; s3 D 1:

This system may be solved by means of Newton’s
method. Here it was easy to guess the form of the non-
linear system giving the optimal solution. The fact that
the infinitely many constraints are satisfied, namely that
the absolute value of the deviation at each point is
less than or equal to y0 may be verified analytically. In
a more general context, the nonlinear system giving the
optimal solution may be constructed from a discretized
version of the approximation problem. Still, the verifi-
cation that the optimum approximation has been found
may be nontrivial, even in the case of linear approxima-
tion problems. In this situation, quasirandom methods
may be contemplated. Experiments with this approach
will be reported elsewhere.

See also

� Semi-infinite Programming and Control Problems
� Semi-infinite Programming: Discretization Methods
� Semi-infinite Programming: Methods for Linear

Problems
� Semi-infinite Programming: Numerical Methods
� Semi-infinite Programming: Second Order

Optimality Conditions
� Semi-infinite Programming, Semidefinite

Programming and Perfect Duality

References
1. Brans JP (eds) (1981) Operations research ’81. North-

Holland, Amsterdam
2. Cheney EW (1966) Introduction to approximation theory.

McGraw-Hill, New York
3. Conn AR, Gould NIM (1987) An exact penalty function for

semi-infinite programming. Math Program 37:19–40
4. Coope ID, Price CJ (1994) A two-parameter exact penalty

function for nonlinear programming. J Optim Th Appl
83(1):49–61

5. Coope ID, Price CJ (1998) Exact penalty function meth-
ods for nonlinear semi-infinite programming. In: Reemtsen
R, Rückmann JJ (eds) Semi-infinite programming. Kluwer,
Dordrecht, pp 49–61

6. Coope ID, Watson GA (1985) A projected Lagrangian al-
gorithm for semi-infinite programming. Math Program
32:337–356

7. FiaccoAC, Kortanek KO (eds) (1983) Semi-infiniteprogram-
ming and applications. Lecture Notes Economics andMath
Systems. Springer, Berlin

8. Glashoff K, Gustafson S-Å (1983) Linear optimization and
approximation. Springer, Berlin

9. Glashoff K, Gustafson S-Å (1978) Einführung in die Lineare
Optimierung. Wissenschaftl Buchgesellschaft Darmstadt,
Darmstadt

10. Goberna MA, López MA (1998) Linear semi-infinite opti-
mization. Wiley, New York

11. Gustafson S-Å (1981) A general three phase algorithm for
nonlinear semi-infinite programs. In: Brans JP (ed) Opera-
tional Research ’81. North-Holland, Amsterdam, pp 495–
508

12. Gustafson S-Å (1983) A three phase algorithm for semi-
infinite programs. In: Fiacco AC, Kortanek KO (eds) Semi-
Infinite Programming andApplications. Lecture Notes Eco-
nomics and Math Systems. Springer, Berlin, pp 138–157

13. Hettich R (ed) (1979) Semi-infinite programming and appli-
cations. Lecture Notes Control Inform Sci. Springer, Berlin

14. Hettich R, Zencke P (1982) Numerische Methoden der
Approximation und Semiinfiniten Optimierung. Teubner,
Leipzig

15. Price CJ (1992) Non-linear semi-infinite programming. PhD
Thesis, Univ Canterbury, Canterbury, New Zealand

16. Reemtsen R, Rückmann JJ (eds) (1998) Semi-infinite pro-
gramming. Kluwer, Dordrecht

Semi-infinite Programming
and Control Problems
J. E. RUBIO

School of Math., University Leeds, Leeds, England, UK

MSC2000: 49J27, 90C34, 03H10

Article Outline

Keywords
Integral Relationships
Metamorphosis
Existence and Structure
Approximations and Examples
Unbounded Controls and Nonstandard Methods



Semi-infinite Programming and Control Problems S 3409

See also
References

Keywords

Control theory; Calculus of variations; Measure theory;
Unbounded controls; Partial differential equations;
Diffusion equation; Nonstandard analysis; Shock

We have developed over the last twenty years an ap-
proach for the study of optimal control and variational
problems based on the consideration ofmeasure spaces;
see [11,12] and the references there. In many ways this
work has been inspired by the work of L.C. Young [19]
which, starting in the period between the Wars, opened
up a new vista for mathematics; concepts associated
with distributions and chains, for instance, are descen-
dents of his work, and so is our contribution.

Integral Relationships

The applications of measure theory to optimization
problems are based on the identification of linear func-
tionals with a class of Radon measures, by Riesz’ the-
orem [11]. We note that this theorem only applies if
the underlying space is compact, this will cause trouble
when considering unbounded sets of controls: the han-
dling of infinities there will be done by means of Loeb
measures in the setting of nonstandard analysis.

In order to use Riesz’ theorem we need to rewrite
the relationships associated with optimization prob-
lems in the form of linear functionals on appropriate
function spaces. We show how to do this in two specific
cases.

We consider first a finite-dimensional control prob-
lem, to be referred to as problem P1. Let x, u be vectors
in Euclidean n-spaces Rn and Rm respectively, t a real
variable, J := [t0, tf ] with t0 < tf , A a compact subset of
Rn, x0, xf points in A, a bounded, closed subset U of
Rm. Further, let ˝1 := J×A×U, and g˝1 ! Rn a con-
tinuous function. The control function t 2 J! u(t) 2 U
is Lebesgue-measurable, and the trajectory function t 2
J! x(t) 2 A is the (absolutely continuous) solution of

ẋ(t) D g(t; x(t); u(t)); t 2 Jı; (1)

the differential equation describing the system to be
controlled. We assume that the class F1 of all admissi-
ble trajectory-control pairs p := [x(�), u(�)] is nonempty,

and seek to minimize the functional I: F1! R

I(p) D
Z t f

t0
f01(t; x(t); u(t)) dt; (2)

for p 2 F1. Here f 01 is a continuous function defined
on˝1.

We develop now some equalities that are satisfied
by the admissible pairs. Let B be an open ball in Rn+1

containing J × A; we denote by C0(B) the space of all
real-valued functions on B that are uniformly contin-
uous on B together with their first derivatives. Let � 2
C0(B); define

b�(t; x; u) :D �x (t; x)uC �t(t; x) (3)

for all (t, x, u) 2˝1. Of course,b� 2 C(˝1). If p = [x(�),
u(�)] is an admissible pair,

Z
J
b�(t; x(t); u(t)) dt

D �(t f ; x f ) � �(t0; x0) :D 	�; (4)

for all � 2 C0(B). There are two special cases which
are of interest; in the first we put  (t, x) := xj (t),
with 1 � j � n, and  2 D(J°); see [11]. Then, putting
 j(t, x, u) := xj 0(t)+ uj (t), for 1 � j � n and  
2 D(J°), the equality (4) becomes

R
J j(t, x(t), u(t))

dt = 0, since the (test) functions in D(J°) are zero at
the boundary of J. The second case of interest happens
when the function � is chosen as a differentiable func-
tion of the time t only,  (t, x, u) := �(t), (t, x, u) 2˝1,
then b (t; x; u) D �̇(t), (t, x, u) 2 ˝1. We introduce
a subspace of C(˝1), to be denoted by Ca(˝1), consist-
ing of those functions which depend only on the first
variable t; then the equalities (4) become:

R
J h(t, x(t),

u) dt = ah, h 2 Ca(˝1), with ah the Lebesgue integral of
h(�, x, u) over J, independent of x and u. We will now
choose for each of these spaces countable sets of func-
tions whose linear combinations are dense in the corre-
sponding spaces in the appropriate topologies. Thus we
obtain countable sets of equalities.

For the space C0(˝1) we shall choose {� i}, a set of
polynomials in (t, x1, . . . , xn); for D(J°), {�j}, the se-
quence of functions of the type when the functions  
are the sine and cosine functions

sin
�
2
r

t � t0
	t

�
; 1 � cos

�
2
r

t � t0
	t

�
;
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r = 1, 2, . . . , j = 1, . . . , n, and for Ca(˝1) the sequence
{hk}, a set of polynomials in t. Thus, finally, we obtain
our set of integral equalities:
Z
J
b� i (t; x(t); u(t)) dt D 	�i ; i D 1; 2; : : : ;

Z
J
� j(t; x(t); u(t)) dt D 0; j D 1; 2; : : : ;

Z
J
hk(t; x(t); u(t)) dt D ahk ; k D 1; 2; : : : :

(5)

We will consider now an optimal control problem,
to be denoted by P2, associated with a nonlinear diffu-
sion equation. We follow the notation in [7] and [13];
see also [4], where we study a nonlinear wave equation.
Take D, a bounded domain in Rn with smooth bound-
ary @D, and T, a positive real number, and define: QT :=
D× (0, T); � T := @D × (0, T); D0 := D× {0}; DT := D×
{T}.

We also choose some functions: QTR, k 2 K;
f : R �Rn � QT ! R, f 2 C(R �Rn � QT ).

Consider the nonlinear diffusion equation:

ut(x; t)� div(k(x; t)ru(x; t))

D f (u(x; t);ru(x; t); x; t) (6)

for (x, t) 2 QT , with the initial condition u(x, 0) = 0, x
2 D, and the boundary condition ru�n|�T = v; here n
is the outward normal, and the function (s, t) 2 � T !

v(s, t) 2 V � R is the control function, taking values in
a bounded control set V .

A pair (u, v) of trajectory-function u and control-
function v is said to be admissible if:
i) The function (x, t)! u(x, t) is a classical solution

of (6), that is, it is in C2;1(QT ) \ C(QT [ �T [ D0)
and satisfies (5).

ii) The control function is continuous in � T .
iii) The terminal relationship u(�, T) = g is satisfied; g

is a given continuous function on DT .
The set of admissible pairs for this problem will be de-
noted by F2, and assumed to be nonempty. Since the
control set V is bounded, then there are bounded sets A
� R and B� Rn so that u(x, t) 2 A, ru(x, t) 2 B, for all
(x; t) 2 QT . Since there are many such sets A and B, we
choose from those the minimum sets, that is, either the
intersections \ A and \ B of all sets satisfying the rela-
tions above, or subsets of them. Thus, every point in our

set A (respectively, B) will be a state (respectively, a gra-
dient of a state) which can be reached by an admissible
control inside the time interval [0, T].

The optimization problem associated with this
equation is as follows. Let f 02, f 1 be nonnegative,
Lipschitz-continuous real-valued functions on R2n+2,
Rn+1 respectively. Then we wish to find a minimizing
pair (u, v) of admissible trajectory u and control v for
the functional

J(u; v) :D
Z
QT

f02(u(x; t);ru(x; t); x; t) dx dt

C

Z
�T

f1(v(s; t); s; t) ds dt: (7)

We transform now this problem. Let  be in K. Then
one can show [7] that the classical solution of (6), if it
exists, satisfies the integral relation

Z
QT

[u t � krur C f ] dx dt

D �

Z
�T

k v ds dt C
Z
DT

g dx; (8)

for all 2K. To these equalities wemust add the equiv-
alent of the last set of equations in (5). If a function �:
A × B × QT ! R depends only on (x, t),

R
QT �dx dt =

a� , the Lebesgue integral of � over QT . Also, if a func-
tion & : V × � T ! R depends only on (s, t),

R
�T & ds

dt = b& , the Lebesgue integral of & over � T . By choos-
ing countable dense sets as before, { i}, {� j}, {&k}, we
can obtain a countable set of equalities associated with
problem P2:

Z
QT

[u i t � krur i C f i] dx dt

D �

Z
�T

k i v ds dt C
Z
DT

g i dx;

i D 1; 2; : : : ;Z
QT

� j dx dt D a� j ; j D 1; 2; : : : ;
Z
�T

�k ds dt D b�k ; k D 1; 2; : : : :

(9)

Metamorphosis

We proceed to transform the control problems defined
above; instead of minimizing over sets of admissible
pairs trajectory-control, we find that it is possible to
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minimize over a measure space, in the case of problem
P1, and the product of two measure spaces, in that of
problem P2. In general, the minimization of the func-
tionals (2) over the set F1 and (7) over the set F2 are
not possible: the infima are not attained; it is not possi-
ble, for instance, to write necessary conditions for these
problems. We proceed then to transform them.

The advantages of the new formulations are:
i) An automatic existence theory: there always are

minimizers for our measure-theoretical problems;
ii) The new problems are linear, and then one can use

the whole paraphernalia of linear analysis;
iii) Also, our minimization is global: the value reached,

say, numerically is close to what one could reason-
ably call the global infimum of each problem.

The price to pay for these advantages is that the final
state is reached only asymptotically: that is, as the num-
ber of (linear) constraints associated with the measure-
theoretical problem tends to infinity.

Let us consider first problem P1. An admissible pair
p := [x(�), u(�)] defines a linear, bounded, positive func-
tional

p : F !
Z
J
F(t; x(t); u(t)) dt 2 R

in the space C(˝1) of continuous real-valued functions
F, with˝1 := J × A ×U. By Riesz’ theorem, the admissi-
ble pair p defines a Radon measure � on˝1 so that (2)
becomes

I(�) D �( f01); (10)

while (5) becomes

�(b� i) D 	�i ; i D 1; 2; : : : ;

�(� j) D 0; j D 1; 2; : : : ;

�(hk) D ahk ; k D 1; 2; : : : ;

(11)

where we have written �(F) :=
R
˝1 F d�. Note that

we have not achieved anything new so far; the mini-
mization of the functional (2) over (5) is exactly equiv-
alent to that of the functional �(f 01) over (11). We shall
consider below the extension of our problem, the min-
imization of (10) over the set S1 of all measures � in
M+(˝1) satisfying (11).

In the case of Problem P2, we can proceed simi-
larly. A solution of (6) defines a linear, bounded posi-

tive functional

u(�; �) : F !
Z
QT

F(u(x; t);ru(x; t); x; t) dx dt

in the space C(˝2) of continuous real-valued functions
F, with˝2 :=A × B ×QT . Also, a control v defines a lin-
ear, bounded, positive functional:

v(�; �) : G !
Z
�T

G(v(s; t); s; t) ds dt

in the space C(!) of continuous functions G, ! := V ×
� T .

By Riesz’s theorem, an admissible pair (u, v) defines
two Radon measures � and �, the first on ˝2, the sec-
ond on !, so that (9) becomes:Z

˝2

Fi d�C
Z
!

Gi d� D
Z
DT

g i dx :D ˛i ;

i D 1; 2; : : : ;
(12)

where
Fi(u;w; x; t) :D u i t(x; t)

� �(x; t)wr i(x; t)C f (u;w; x; t) i(x; t);
Gi (v; s; t) :D  i (xj@D; t)v:

Thus, the minimization of the functional (7) over F2

is equivalent to the minimization of

I(�; �) D �( f02)C �( f1); (13)

where we have written as above �(f ) for
R
˝2 f d�, and

�(g) for
R
! f d�, over the set of measures (�, �) corre-

sponding to admissible pairs, which satisfy

�(Fi)C �(Gi) D ˛i ; i D 1; 2; : : : ;
�(� j) D a� j ; j D 1; 2; : : : ;

�(�k) D b�k ; k D 1; 2; : : : :

(14)

Again, we have not achieved anything new. As in the
case of P1, we shall consider the extension of our prob-
lem, the minimization of (13) over the set S2 of all pairs
of measures (�, �) in M+(˝2) × M+(!) satisfying (14).

We have developed, therefore, two infinite-
dimensional linear programming problems, the min-
imization of linear forms (10) or (13) over sets S1 and
S2, respectively, of positive Radon measures satisfying
countably-infinite sets of linear equalities, (11) or (14).
In the next section we consider the two main problems
associated with their usefulness: do they have solutions;
and how do the solutions help us solve our optimization
problems.
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Existence and Structure

We start by choosing finite, but variable, subsets of
equalities from the sets (11) and (14); in this way we
consider two semi-infinite linear programming prob-
lems, with finite number of equalities taking place in
infinite-dimensional spaces. The first, to be denoted by
LS1 = LS1(M1,M2,M3) consists in minimizing the lin-
ear functional (10) over the subset S1(M1, M2, M3) of
M+(˝1) defined by the equalities

�(b� i ) D 	�i ; i D 1; : : : ;M1;

�(� j) D 0; j D 1; : : : ;M2;

�(hk) D ahk ; k D 1; : : : ;M3;

(15)

while the second, to be denoted by LS2 = LS2(N1, N2,
N3) consists in minimizing the linear functional (13)
over the subset S2(N1, N2,N3) of M+(˝2) × M+(!) de-
fined by

�(Fi)C �(Gi) D ˛i ; i D 1; : : : ;N1;

�(� j) D a� j ; j D 1; : : : ;N2;

�(�k) D b�k ; k D 1; : : : ;N3:

(16)

We can prove that our minimization is global [11,12].

Proposition 1
i) As M1, M2, M3!1,

inf
S1(M1;M2;M3)

�( f01)

! inf
S1
�( f01) � inf

F1
I:

(17)

ii) As N1, N2, N3!1,

inf
S2(N1;N2;N3)

[�( f02)C �( f1)]

! inf
S2
[�( f02)C �( f1)] � inf

F2
J:

(18)

Thus, we can approach the global infima by taking
a large enough number of equalities. The fact that the
global infima can be strictly less than the classical one is
discussed in [11].

There are two aspects of these semi-infinite linear
programming problems which are of interest to us; their
characteristics such as existence and characterization of
solutions, and the relationship of these solutions to the
original optimization problems. We examine first the
linear programs themselves. The conclusions of the fol-
lowing proposition follow from weak�-compactness of

the sets of measures, and Rosenbloom’s theorem [10].
We denote by ı(z) the atomic measure with support {z}.

Proposition 2
i) The linear programs LS1 and LS2 defined by (10)–

(15) and (13)–(16) respectively have minimizers.
ii) The solution of the program LS1, (10)–(15), has the

form

�opt D

MX
iD1

˛iı(ti ; xi ; ui );

with ˛i � 0, M := M1 + M2 + M3.
iii) The solution of the program LS2, (13)–(16), has the

form

(�opt; �opt)

D

 NX
iD1

˛iı(ui ;wi ; xi ; ti );
NX
iD1

ˇiı(vi ; si ; ti)

!
;

(19)

with ˛i, ˇi � 0, N := N1 + N2 + N3.

In part iii) of this Proposition we have identified (�, �)
with the product � × �; other possibilities exist [12].

We study now the other aspect of these solutions,
how useful they are. How do we construct suboptimal
pairs of trajectories and controls for our functionals,
once we have solved the linear programming problems?
We start with the problem LS1, (10)–(15), and shall
proceed in several steps:
1) We proceed to obtain a solution �opt of the form

given above in ii).
2) We obtain a weak�-approximation to this measure

by a pair of piecewise constant functions (x, u).
The exact procedure for this construction, to be ex-
plained in detail below, involves the use of the sup-
port points of �opt as well as the coefficients ˛i.

3) We use the function u as control in (1) with x(t0) =
x0 and obtain a trajectory xR(�). The pair pR := (xR,
u) can be shown to have the following properties:
a) By taking the numbers M1, M2, M3 sufficiently

large, one can make I(pR) as near as desired to
infS�(f 01).

b) The final state xR(tf ) tends to xf as M1, M2, M3

!1.
c) The constraint xR(tf ) 2 A tends to be satisfied in

a similar manner.
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In the case of problem LS2, (13)–(16), we proceed in
a similar fashion.
1) Firstly we shall obtain optimal measures (�opt, �opt)

for this problem.
2) We obtain then a weak� approximation to (�opt,
�opt) by a set of two piecewise-constant functions (u,
v) by means of results involving weak�-density.

3) The control function v obtained above is in L2(� T),
that is, for each t 2 (0, T), v(�, t) 2 L2(@D), since it is
piecewise constant and the set QT is bounded. It can
serve then as boundary function for a (necessarily
weak) solution of the system (6) to be denoted by
uv. This solution will be in H1(QT).

4) Borrowing the term from H. Rudolph [17], we shall
call the pair (uv, v) of trajectory and control func-
tions asymptotically admissible if:
a) The control function v 2 L2(QT), and v(s, t) 2 V .
b) The trajectory uv is the weak solution of (6) cor-

responding to the admissible control v 2 L2(QT).
c) The trajectory function satisfies the appropriate

constraints.
d) The final value uv(�, T) of the trajectory function

tends in L2(DT) to the prescribed function g as
N1, N2, N3!1.

5) If the numbers N1, N2, N3 are sufficiently large,
and the weak�-approximation in step ii) above suf-
ficiently good, then the value at the pair (uv, v) of the
functional J, J(uv, v), is close to the infS J, and thus
is a good suboptimal pair. Note that no use is made
of the trajectory u, obtained in step ii) together with
the control v.

We proceed in the next section to deal with approxima-
tion and examples.

Approximations and Examples

The pattern should be clear; if one wants to obtain
an estimate for a solution to problems such as P1 or
P2, one should develop semi-infinite linear program-
ming problems such as LS1 or LS2, find out the corre-
sponding solutions (the coefficients ˛i and the supports
of the atomic measures as in Proposition 1) and then
build suboptimal pairs. There are two main ways of es-
timating solutions of semi-infinite linear programming
problems such as LS1 or LS2.

The first consists in using functional analytical tech-
niques in the space of measures; see [5,17]. Rudolph’s

method has been used with great success to solve prob-
lems such as P1, in a large number of dimensions; see
[18] for a most impressive application of Rudolph’s
method, as well as of our theory.

The second approach consists in approximating the
infinite-dimensional problem by a finite-dimensional
one, taking place in a Euclidean space of large dimen-
sion. We indicate first how to do this with respect to
Problem P1. We note that in this problem the continu-
ous functions hk, k = 1, . . . , M3 have been replaced in
practice by M3 lower semicontinuous pulse-like func-
tions, also to be denoted by hk; the set J is divided into
M3 equal segments, and the function hk equals 1 in the
kth of such segments, zero elsewhere. This is explained
in detail in [11], and has been done because it brings
better stability to the numerical processes.

A further concept must be introduced now [11].
Note that we have in LS1 a nonlinear optimization
problem, in which the unknowns are the coefficients ˛i
and supports (ti, xi, ui), i = 1, . . . , M. In order to find
a linear approximation to this problem, we consider b!,
a countable dense subset of˝1 := J × A × U. Taking �
� M elements from !, we can write (10)–(15) as fol-
lows. We write w` := (t`, x`, u`), and wish to minimize

%X
`D1

˛` f01(w`) (20)

on the set defined by the elements ˛` � 0, ` = 1, . . . , � ,
which satisfy, further,
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

%X
`D1

˛`b� i(t`; x`; u`) D 	�i ; i D 1; : : : ;M1;

%X
`D1

˛`� j(t`; x`; u`) D 0; j D 1; : : : ;M2;

%X
`D1

˛`hk(t`; x`; u`) D ahk ; k D 1; : : : ;M3:

(21)

Here, then, the supports w` are fixed, in b!; the coef-
ficients ˛`, ` = 1, . . . , � , are the only unknowns; this
is an M × � (finite-dimensional) linear program. Of
course as � ! 1 the support of the optimal mea-
sure �opt in Proposition 2 can be approximated closer
and closer by that of �%opt , the solution of (20)–(21).
Note, further, that at most M of the unknown ˛-s are
nonzero; we shall assume that the problem has essential
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regularity, and that exactly M of these ˛-s are nonzero;
see [11] for a discussion of this point. Once this finite-
dimensional linear program is solved, suboptimal pairs
can be constructed as explained above; the construction
of the control function from the coefficients ˛` and sup-
ports u` is as follows.
1) The time set J = [t0, tf ]] has been divided into M3

equal subdivisions Jk, k = 1, . . . ,M3, each of measure
�t/M3, with�t := tf � t0.

2) There is a total of M indices ` associated with those
values ˛` that are nonzero. To each of the subdivi-
sion Jk of J defined above are associated a number
of these indices; if only one is so associated, then the
value of ˛` equals�t/M3; if more than one are asso-
ciated, then the sum of the corresponding ˛`-s adds
up to�t/M3.

3) Without loss of generality, let Jk, for 1 � j � M3 be
associated with two ˛`-s, ˛`1 and ˛`2 , as explained
above, a typical situation; then we build the curve
u(�) on Jk by making u(t), t 2 Jk, equal to u`1 or u`2
in each of the two partitions of Jk with lengths ˛`1
and ˛`2 respectively.

An example of this process will be given in the next sec-
tion.

In the case of problem P2, a similar construction
can be made. We have however chosen here Rudolph’s
method, for which an initial finite-dimensional esti-
mate is necessary.

It is convenient to work in M+(˝2 × !), identifying
(�, �)! � × �; see [13] for details. The system we have
chosen is

ut(x; t)� div
�

x2

1C t2
ru(x; t)

�

D
kru(x; t)k2E C 1
1C x2 C u(x; t)2

;

ux (0; t) D 0; ux(1; t) D v(t);

t 2 (0; 1); x 2 (0; 1);

(22)

that is, k(x, t) := x2/(1 + t2), f (u, w, x, t) := kw k2E + 1)/(1
+ x2 + u2). We have taken V = [�10, 10], g(x) = 0.075,
x 2 [0, 1], and we wish to minimize:

J(u; v) D
Z
QT

u(x; t)2 C kru(x; t)k2E
1C sin2(tu(t; x))

dt;

that is, f 02(u, w, x, t) := (u2+ kwk2E)/(1+sin
2(tu)), and f 1

� 0. The boundary @D is composed of two points only,

of which only one, the one at x = 1, plays an active role,
the control being the heat flow at that point.

The functions  were chosen of the form  (x, t)
= tp cos(`
x) + q(t), or  (x, t) = tp sin(h
x) + q(t);
the functions q are test functions introduced to improve
the behavior at x = 1 for the determination of an ini-
tial solution, as explained below. Ten such functions  
were chosen, with values of p = 1, 2 and ` = 1, 2, 3, h
= 1, 2. The 16 functions � were chosen by dividing the
square [0, 1] × [0, 1] into 16 equal squares, the func-
tions � being the characteristic functions of the indi-
vidual squares. Thus the total number of constraints m
equalsm = 1 + 10+ 16 = 27. The computational method
consists of three steps:
i) The most difficult problem encountered was that of

finding an initial solution from which, in part ii)
of the method, one can iterate towards the min-
imum. This was done here by means of a finite-
dimensional linear program, obtained by discretiz-
ing all the variables of the problem. It was necessary
to find an initial solution by first solving for some
of the parameters, thus the need of the functions q
introduced above, because the (rather rough) dis-
cretization tended to make the problem infeasi-
ble. Then a finite-dimensional simplex programwas
run, of rather small size, with 677 variables and,
of course, 27 constraints. Only the first phase (the
one that produces a feasible solution) was run. It is
usual in these problems to use a discretized solution
as an initial one; see [5,17, Chapts. 5, 6].

ii) Then the simplex algorithm of Rudolph was run us-
ing the output of step i) as initial solution, and after
87 iterations it converged to a value of 0.202247; it
had started with a value of 1.93919. This is a nu-
merical estimation of the global minimum.

iii) Once the optimization is performed, a nearly-
optimal control v can be constructed; the method is
shown in detail in [13], and follows the same gen-
eral rules as the previous case. The graph of the re-
sulting control is shown in Fig. 1.

Unbounded Controls and NonstandardMethods

We consider in this last section a finite-dimensional
control problem just like P1, but in which the control
set U is unbounded. We shall use the same notation for
P1 as above. The problem now is that since U is un-
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Semi-infinite Programming and Control Problems, Figure 1
Graph of the nearly-optimal control v. Note that the control
set is V = [�10, 10]

bounded we may obtain ‘impulses’ as controls and thus
discontinuous trajectories. We need to be able to handle
infinities, a role for which nonstandard analysis is well
suited. We start by extending the control space, and
consider U a subset of Rm , the m-dimensional space
generated by the extended real line R. Nothing much
has changed, but we can put a topology on ˝ := J ×
A × U which makes it compact [1]. We proceed now
with our nonstandard construction; see [2,12,14]. We
will work in a nonstandard framework given by a super-
structure V(W), R � W . The superstructure V(�V) is
also an enlargement, and N1-saturated. We study inte-
grals of the form

Z
J
f (t; x(t); u(t)) dt; (23)

with p 2 F1 and f 2 C(˝ 0). Then,

8p 2 F1 :
Z
J
f (t; x(t); u(t)) dt 2 R; (24)

by transfer,

8p 2� F1 : �
Z
� J

� f (t; x(t); u(t)) dt 2 �R: (25)

Thus, the nonstandard version of P1 consists in mini-
mizing

�I(p) :D �
Z
� J

� f01(t; x(t); u(t)) dt (26)

on the class �F1 of pairs satisfying

�

Z
� J

� fi(t; x(t); u(t)) dt D bi ; i D 1; : : : ;M; (27)

where the system (15) has been written in a compact
form. Consider now the map suggested by (24). If p 2
F1 is fixed, the map

�p : F !
Z
J
F(t; x(t); u(t)) dt 2 R;

F 2 C(˝ 0)
(28)

is linear and positive. By Riesz’s theorem, there is
a measure, to be denoted also by �p, on the Borel sets
B of˝ 0, that represents this map; remember that ˝ 0 is
compact. Then (�˝ 0, �B, � �p ) is a nonstandard measure
space and then (see [9]):

Lemma 3 There is ameasure space (�˝ 0,A,�p
L) so that

�
p
L is the Loeb measure associated with �p; then,

�

Z
� J
F(t; x(t); u(t)) dt D �p

L(F)

:D
Z
�˝0

Fd �p
L ; F 2 C(�˝ 0): (29)

The algebra A is an extension of the algebra �B.

Thus, one can write the optimization problem as the
problem of minimizing

J(�p
L) :D �

p
L( f01); (30)

over the set ML
M of measures of the form �

p
L defined by

�
p
L( fi) D bi ; i D 1; : : : ;M: (31)

Proposition 4
i) The infima associated with the problems (26)–(27)

and (30)–(31) are equal.
ii) For any positive infinitesimal s 2 �R, we can find

a near-minimizer �s 2 ML
M for the functional J in

(30) in the set ML
M, so that

J(�s) D inf
ML

M

J C s: (32)

Let, then, s be a fixed positive infinitesimal in �R, and
�s the corresponding near-minimizer for J on ML

M . We
can proceed to map back this measure to the standard
world, by means of the standard part map, see [2].

Proposition 5 There is a Baire measure �opt on ˝ 0 so
that:
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i) If S is a Baire set in˝ 0,

�opt(S) D ı�s(st�1˝0 (S));

where st�1˝0(S) is the union of the monads of the ele-
ments of S.

ii) �opt( f01) :D
Z
˝0

f01 d�opt

� inf
F1

Z
J
f01(t; x(t); ẋ(t)) dt: (33)

iii) The measure �opt is a solution of the following opti-
mization problem. Minimize

�( f01) (34)

over the set MCM(˝
0) of positive Baire measures on

˝ 0 satisfying

�( fi) D bi ; i D 1; : : : ;M: (35)

iv) The support of �opt contains subsets of ˝ 0 in which
at least one component of the variable u is either�1
or1. The measure �opt is defined by a Baire mea-
sure on J × A ×V, with V the set of all finite elements
of U, plus atomic measures on those subsets.

In problems of interest, in which the function f 01 tends
to infinity at infinity, and in which the infimum is finite,
elements (t, x, u) 2 ˝ 0 with one or more components
of value 1 or �1 do not really occur in the support
of �opt; note that expressions such as 1 �1 are not
defined for the extended real line. Thus, if |f 01(t, x, z) =
1 whenever a component of u is either1 or�1, and
that the minimum associated with the linear program
is finite, such elements are not present in the support of
�opt.

We are now in a strong position to solve our original
problem: the optimization problem P1with unbounded
U in the standard world. We proceed as in P1 in pre-
vious sections, solving for �opt, approximating its sup-
port, building suboptimal pairs.

We have solved a simple problem, taken from [6],
with n = 1 and f 01(t, x, u) := (u3 � 1)1/3, and ẋ D u; the
other parameters are t0 = 0, tf = 1, x0 = 0, xf = 2. The nu-
merical approximation was performed with the follow-
ing parameters: Q = 24, M1 = 2, M2 = 8, M3 = 30, M =
40,N = 27000. Each of the axis associated with the vari-
ables (t, x, u) was divided into 30 parts; the minimum
obtained was 0.49587, which should be compared with

Semi-infinite Programming and Control Problems, Figure 2
Graph of the control u

Semi-infinite Programming and Control Problems, Figure 3
Graph of the trajectory x

the minimum for the problem obtained by semiclassi-
cal means in [6] of 0.413. The approximation problems
for this kind of optimization problems are fierce; it is
necessary to have a large value of Q as well as very fine
mesh, thus very large linear programs. The graphs of
the control u and the trajectory x can be seen in Fig. 2
and Fig. 3.

We should note that, even in this simple problem,
we have achieved something not easily accomplished by
the more traditional methods, which would have found
it extremely hard to deal with the cube of a ‘delta func-
tion’; they mostly deal in problems in which the control
variable, our u, appears linearly.

The method employed here appears promising to
deal with partial differential equations with solutions
exhibiting shocks, such as those studied in [8]. See also
[15,16].

We have also extended these methods to the design
of optimal shapes associated with nonlinear differential
equations [3].

See also

� Control Vector Iteration
� Duality in Optimal Control with First Order

Differential Equations
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� Dynamic Programming: Continuous-time Optimal
Control

� Dynamic Programming and Newton’s Method in
Unconstrained Optimal Control

� Dynamic Programming: Optimal Control
Applications

� Hamilton–Jacobi–Bellman Equation
� Infinite Horizon Control and Dynamic Games
�MINLP: Applications in the Interaction of Design

and Control
�Multi-objective Optimization: Interaction of Design

and Control
� Optimal Control of a Flexible Arm
� Robust Control
� Robust Control: Schur Stability of Polytopes of

Polynomials
� Semi-infinite Programming: Approximation

Methods
� Semi-infinite Programming: Discretization Methods
� Semi-infinite Programming: Methods for Linear

Problems
� Semi-infinite Programming: Numerical Methods
� Semi-infinite Programming: Second Order

Optimality Conditions
� Semi-infinite Programming, Semidefinite

Programming and Perfect Duality
� Sequential Quadratic Programming: Interior Point

Methods for Distributed Optimal Control Problems
� Suboptimal Control
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Consider the following optimization problem with re-
spect to x 2 Rn, in which Y � Rm is a nonempty com-
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pact set and F 2 C(Rn) and g 2 C(Rn × Y) are given
functions:

P[Y]

(
min f (x)
s.t. g(x; y) � 0; y 2 Y :

If Y is an infinite set, this problem includes finitely
many unknowns and infinitely many inequality con-
straints and, therefore, is said to be a semi-infinite pro-
gramming (briefly: SIP) problem. The problem is de-
noted as linear if f and g(�, y), y 2 Y , are affine-linear, as
convex if these functions are convex, and as nonlinear
in all other cases.

Results which hold for P[Y] under the given gen-
eral conditions similarly apply to problems with con-
straints gj(x, y) � 0, y 2 Yj, for j = 1, . . . , p, where Yj �

Rm j is nonempty and compact and gj 2C(Rn ×Yj) (e. g.
[43]). Note in this connection that an ordinary inequal-
ity constrainteg j(x) � 0 can, for example, be expressed
as gj(x, y) � 0, y 2 {1}, for [g j(x; y) :D yeg j(x) and
that an equality constraint hj(x) = 0 can be described by
the two inequality constraints ˙hj(x) � 0. Inclusion of
equality constraints in this way, however, is not possi-
ble when the existence of a point is required at which all
inequality constraints are strictly satisfied. A compre-
hensive survey of numerical methods for the solution
of such SIP problems can be found in [43].

In the following discussion, k � k is an arbitrary
norm and k � kp, 1� p�1, the lp-norm in some space
Rs. The set N0 equals N [ {0}, the number |A| means
the cardinality of a set A, and

dist(D;Y) :D sup
y2Y

inf
z2D
ky � zk1

is the density of D� Y in Y . Moreover, for each D� Y ,
a problem P[D] is defined by

P[D]

(
min f (x)
s.t. g(x; y) � 0; y 2 D:

The set of feasible points of P[D] is denoted by

F(D) :D fx 2 Rn : g(x; y) � 0; y 2 Dg

and itsminimal value by

�(D) :D inf
x2F(D)

f (x):

In case D � Y is a finite and Y an infinite set, problem
P[D] is said to be a discretized SIP problem.

A point x� 2 F(D) is called a global solution of p[D]
if f (x�) = � (D) and a local solution if f (x�) � f (x) is
true for all x 2 F(D)\U(x�) with some open ballU(x�)
centered at x�. Usually convergence of algorithms to
a global solution of some problem p[D] can be guar-
anteed only for linear and convex problems. Therefore,
if not specified, a ‘solution’ of p[D] for some D in the
following is a point which can be obtained in practice
as the limit point of some sequence generated by an al-
gorithm. This may be a local or a global solution of the
problem or, more generally, a point at which some first
order optimality condition is satisfied.

One approach to the solution of a SIP problem p[Y]
is to (approximately) solve p[Yi] for i = 0, 1, . . . , where
{Yi} is a sequence of finite subsets (‘grids’) of Y with

lim
i!1

dist(Yi ;Y) D 0:

A procedure of the latter type is denoted as a discretiza-
tion method. The grid sequence {Yi} needed for that is
usually prescribed a priori where, typically, the grids are
equidistant and have the propertyYi+1� Yi, i2N0. Oc-
casionally {Yi} is also successively defined a posteriori
(‘adaptively’) such that information obtained on the ith
discretization level is utilized to define Yi+1.

If x�i 2 F(Yi) is a solution of p[Yi], i 2 N0, and ac-
cumulation points of {x�i} solve p[Y], then also accu-
mulation points of each sequence fexig of approximate
solutions exi of p[Yi] are solutions of p[Y] as long as
limi!1(exi � x�i ) D 0. Thus, it has to be guaranteed
that accumulation points of {x�i} solve p[Y] and that
the algorithm used for the solution of p[Yi] generates
such pointexi end after finitely many iterations. Both is
separately discussed below.

In practice, only a finite set of discretized problems
p[Yi], i = 0, . . . , I, can be solved for some I 2 N. Thus
a discretization method describes a way to efficiently
compute a solution of a (finely) discretized SIP problem
p[YI]. Such solution serves as an approximate solution
of the given SIP problem where its accuracy is usually
determined by the density of YI in Y .
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A clear advantage of discretization methods over
other SIP methods is that they exclusively work with fi-
nite subsets of Y . In particular, for the finite program
p[Yi], feasibility of a point x 2 Rn can be checked eas-
ily, other than for the SIP problem p[Y] itself. There-
fore a discretization method is especially suited for SIP
problems with a solution x� at which g(x�, �) is (al-
most) constant on Y or on parts of Y . The latter occurs,
for example, at SIP problems originating from complex
Chebyshev approximation [41].

A drawback of discretization methods is that they
require a huge number of function evaluations and that
the numerical costs for solving the discretized prob-
lems and hence for gaining accuracy with respect to the
SIP problem increase dramatically with decreasing grid
densities. Therefore, in view of reasonable computing
times, themaximal number of grid points and hence the
accuracy obtainable by discretization methods are lim-
ited in practice. (Grids with at most 50,000 to 100,000
points for problems with less than 100 variables are typ-
ical.) Furthermore, a solution x�i 2 F(Yi) of p[Yi] is
normally only an outer approximation of a solution of
the SIP problem, and hence especially an approximate
solution of p[Y] that is not feasible for p[Y]. Observe
that, for Yi � Y , a global solution x�i of p[Yi] which is
feasible for p[Y] also solves p[Y] since

f (x�i ) D inf
x2F(Yi )

f (x) � inf
x2F(Y)

f (x) � f (x�i );

but that such equivalence of a SIP problem with a finite
optimization problem is the exceptional case [43].

The solution reached by a discretization procedure,
however, often suffices for practical purposes. If this is
not the case, then, under certain conditions, the solu-
tion can be improved by a locally convergent reduction
based method [43]. Such two-phase procedures cur-
rently represent the most promising methods at least
for the solution of nonlinear SIP problems.

Convergence of Solutions
of Discretized SIP Problems

A solution of a discretized SIP problem is not nec-
essarily an approximate solution of the SIP problem
(see [23,43] for counterexamples). Such approximation
property is only given under suitable assumptions. For

that let {Yi} be a sequence of finite subsets of Y satisfy-
ing

lim
i!1

dist(Yi ;Y) D 0

and let

�(xF ;D) :D F(D) \
˚
x 2 Rn : f (x) � f (xF)

�

be a level set with respect to xF 2 F(Y) and D� Y .
Then, if Yi � Yi+1 � Y for i 2 N0 and � (xF , Y0)

is bounded for some xF 2 F(Y), the following can be
shown (see [42] for a more general form of this result):
Problem p[Yi], i 2 N0, possesses a global solution x�i

2 Rn; moreover, {x�i} has an accumulation point, each
such point is a global solution of p[Y], and {�(Yi)} con-
verges monotonically increasing to �(Y).

Especially for convex problems, a bounded set�(xF ,
Y0) exists if and only if the SIP problem p[Y] has
a nonempty bounded set of solutions [43]. Similar re-
sults were also proved for linear problems in [10,11,17],
for convex problems in [46], and for nonlinear ones in
[12]. Furthermore, for linear problems, the general pos-
sibility of discretization is studied in [4,5,6]. Some of the
given theorems do not require the inclusion Yi � Yi+1

for all i 2 N0, but efficient use of the obtained solution
of p[Yi] as a starting vector for p[Yi+1] normally sug-
gests that Yi+1 contains Yi or at least those points of Yi

which belong to constraints that are active this solution.
An extension of the above convergence result guar-

antees convergence of solutions x� i of problems p[Di],
i 2 N0, where D0 equals Y0, the set Di+1 satisfies Di [

{yi} � Di+1 � Yi+1, and Yi is a point with g(x�i, yi) =
maxy2YiC1 g(x�i, y) [40,42,43]. A variant of this state-
ment concerning also nonlinear problems is derived in
[30, p. 464] where x� i only needs to be a certain (ap-
proximate) stationary point of p[Di]. Rules which allow
to drop some of the constraints in p[Di] were given in
[7,26]. But, in this case, the size of |Di| is not easily con-
trolled and the choice of {Yi} not obvious (|Yi| should
grow slowly if e. g. Di+1 := Di [ {yi}).

Another convergence theorem refers to nonlinear
SIP problems and the practically relevant case that
p[Yi] is solved by a sequential quadratic programming
(briefly: SQP) type method. For that let f 2 C3 (Rn) and
g 2 C3, 0(Rn × Y), and define, for each x 2 Rn, � > 0, and
compact set D� Y , the exact L1-penalty function

L1(x; �;D) :D f (x)C � �C(x;D);
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where

�C(x;D) :D max
y2D

maxfg(x; y); 0g:

A stationary, respectively critical, point of L1(�, �, D)
that is feasible for p[D] is a Karush–Kuhn–Tucker point
(KKT point) of p[D], and, conversely, a KKT point of
p[D] is a stationary point of L1(�, �, D) if � is suffi-
ciently large (see e. g. [2,9] for details in the finite case
and use the definition of a KKT point of a SIP problem
from e. g. [16,17], which also applies to finite problems).

Then, if, for all i 2N0, there exists a stationary point
x�i of L1(�, �i, Yi) for some �i > 0 and if �i � � � with
some ��, one has [43]: Each accumulation point x� of
{x�i} is a stationary point of L1(�, ��, Y); if {x�i j} con-
verges to x� and limj!1�

+(x�i j , Yi j ) = 0, then x� also
is a KKT point of p[Y].

For example, the SQP type methods in [9] and [24]
for the solution of a discretized SIP problem p[Yi] (see
below) converge to a stationary point x� i of L1(�, �i,
Yi) and a KKT point of p[Yi], respectively. The exis-
tence of an accumulation point of {x� i} is especially
guaranteed for the method in [9] if a certain level set
for the exact L1-penalty function is compact [9].

Only few rate of convergence results for a sequence
of solutions of discretized SIP problems are known (cf.
[30,41,43]). Note also in this regard that the numeri-
cal costs for solving discretized SIP problems normally
tend to infinity with decreasing grid density. For a gen-
eral theory on the discretiza- tion of SIP problems, the
reader is referred to [29,30].

Solution of Discretized SIP Problems

Except for small n and |Yi|, it is not advisable to solve
a discretized SIP problem p[Yi] by an arbitrary method
for finite programming, since such methods often re-
quire the solution of subproblems which have the same
number of constraints as the problem itself and hence
do not use to advantage that the constraints in a SIP
problem originate from a continuous function. More-
over, if a finely discretized SIP problem p[YI] is to be
solved (the objective of a discretization method), it is
much more efficient to solve p[YI] via a sequence of
problems p[Yi], i = 0, . . . , I, with progressively refined
grids Yi rather than to approach p[YI] directly. (See e. g.

[9] for numerical examples showing this.) For the all-
over efficiency of a discretization method it is, there-
fore, also important that the (approximate) solutionexi

of p[Yi] (and possibly additional information) can be
exploited for the solution of p[Yi+1]. Such point exi ,
however, is usually infeasible for p[Yi+1] if Yi+1 6D Yi.
Therefore methods which start from a feasible point
of p[Yi] may turn out to be too costly within such
scheme.

A variety of methods for the efficient solution of
a discretized SIP problem p[Yi] has been suggested.
Concerning linear SIP problems, in particular the fol-
lowing algorithm has been specified and successfully
applied (let i 2 N0 be fixed and choose k := 0 if i = 0):

0 Choose k 2 N0 and Dk � Yi with
n �j Dk j<1.

1 Find a solution xk 2 Rn of P[Dk ].
Let Ak := fy 2 Dk : g(xk ; y) = 0g.

2 Find yk 2 Yi such that g(xk ; yk) = maxy2Yi

g(xk ; y).
3 IF g(xk ; yk) � 0, STOP!

ELSE choose Dk+1 � Yi with Dk+1 
 Ak [

fykg.
4 Set k := k + 1 and go to Step 1.

If the stopping criterion of the algorithm is fulfilled,
the algorithm can be continued with i := i+ 1, beginning
with Step 2 and the current index k. Especially, if {Yi} is
a sequence of grids such that Yi � Yi+1 � Y , if D0 := Y0

and if �(xF , Y0) is bounded for some xF 2 F(Y), then
each problem p[Dk] has a global solution.

It can be shown that this algorithm stops after
finitely many iterations with a global solution xk 2 F(Yi)
of p[Yi], provided that � (Dk+1) = �(Dk) is true only
for finitely many k 2 N in succession [40]. The latter
is guaranteed, for example, if the solution of problem
p[Dk] is unique [40], which is almost always the case on
a computer. In practice, such solution should be com-
puted via solution of the dual problem for p[Dk], since,
in that way, p[Dk+1] can be solved very efficiently and
much computing time is saved (e. g. [43]). The stop-
ping criterion in Step 3 may be exchanged for g(xk, yk)
� "i where {"i} is a zero sequence of nonnegative num-
bers.
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Discretization procedures of this type for linear SIP
problems were proposed in [14,17,40] with certain sets

DkC1 �
n
y 2 Yi : g(xk ; y) � #k

o

and different choices of #k � 0 (see also [15] for an ex-
tension to quadratic problems). The cardinality |Dk+1|
of such set Dk+1, however, can become quite large so
that, in practice, a proper subset of Dk+1 may have to
be selected by a cumbersome management. Another
promising choice of Dk+1, which can be motivated by
the success of the methods e. g. in [8,9,28], and [36], but
which has not been tried yet, would be to only add some
or all violating discrete local maximizers of g(xk, �) on Yi

to the set of active points Ak.
An extension of the algorithm for linear problems

from [40] to convex problems was developed in [41,42]
and applied to large filter design problems in [35] (see
also [36] for computing times and a comparison with
another method). As a cutting plane method, this latter
method requires the knowledge of a compact set X �
� (xF , Y0) for some xF 2 F(Y), which is described by
finitely many linear inequality constraints. Typically, in
practice, X is given by box constraints ˛j � xj � ˇj, j
= 1, . . . , n, where it is known or assumed that p[Y] has
a global solution which satisfies such bounds. A way to
construct a bounded set X numerically without use of
such a priori knowledge on the solution has been found
for SIP problems which correspond to linear complex
Chebyshev approximation problems [41].

An approach to finite convex programs in [13] com-
bines an interior point logarithmic barrier method with
a cutting plane technique, which allows to add and
delete constraints and hence is capable of solving finely
discretized convex SIP problems. In [20] this method
has been modified and incorporated into a ‘dynamic’
heuristic discretization procedure for the solution of
SIP problems. (See [43] for a comment on the numer-
ical results in [20].) Further ideas concerning the solu-
tion of discretized convex SIP problems can be found in
[21,22,23,47], and [48].

A number of methods is oriented towards the solu-
tion of nonlinear discretized SIP problems. In the 1970s,
some authors had developed combined methods of fea-
sible directions for nonlinear finite optimization prob-
lems, which can start from an arbitrary point in Rn

(e. g. [34]). For SIP problems, such methods have been

embedded into a discretization scheme, where conver-
gence of certain obtainable (approximate) stationary
points of p[Yi] to a related stationary point, respectively
KKT point, of p[Y] can be proven under relatively weak
assumptions [8,28,33]. In particular, in [33], the sub-
problems occurring at solution of the discretized prob-
lem p[Yi] contain one constraint for each member of
the entire set of "-most active points

YCi;"(x)

:D
˚
y 2 Yi : g(x; y) � �C(x;Yi ) � "

�
;

for some " � 0, while, in [8], the special structure of
a discretized SIP problem is exploited and constraints
are needed only for the usually much smaller set of dis-
crete ‘left’ local maximizers in YCi;"(x). The behavior of
the algorithm could be improved by addition of further
points to the latter set [28]. A numerical comparison of
the method in [8] with other methods is found in [45].

Using first order information only, these algorithms
for p[Yi] normally have at best a linear rate of conver-
gence. Indeed, the r-linear convergence of a modifica-
tion of the method for finite problems from [34] could
be shown [31], where, in this method, however, all con-
straints have to be respected for the construction of the
quadratic subproblems. The method was incorporated
into an adaptive discretization procedure such that, for
certain convex problems, the entire sequence of iter-
ates has the same r-linear rate of convergence as the
inner method for the finite subproblems [32]. Another
variant of the method from [34], using "-most active
constraints only, can be found in [30, p.279], but the
convergence rate of this method does not seem to be
known.

A combined discretization procedure and exact
penalty function method using first order information
was developed in [30, p. 479]. Another, normally at best
linearly convergent method can be found in [18,19],
where the subproblems contain constraints for all ele-
ments of the set of "-global points

Yi;"(x)

:D
�
y 2 Yi : g(x; y) � max

y2Yi
g(x; y) � "

	

at x with respect to Yi for a certain " � 0. (Note that
Yi, "(x) equals YCi;"(x) for each point x 2 Rn outside or
on the boundary of F(Yi) and that especially Yi, 0(x)
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represents the set of discrete global maximizers of g(x, �)
on Yi.) Consult, furthermore, [1] for an unconventional
discretization procedure for problemswith convex con-
straints, which generates feasible points with respect to
p[Y].

Some authors have developed SQP type algorithms
for the solution of nonlinear finite optimization prob-
lems with large numbers of constraints, as they are
given by discretized SIP problems. The purpose of such
developments is to considerably reduce the size of the
arising quadratic subproblems and the total number of
gradient evaluations in comparison to standard SQP
methods and to simultaneously preserve the good con-
vergence properties of these methods (e. g. [3]). Meth-
ods of this form were given in [9,24] (with code con-
tained in the software package CFSQP), [27,44] (with-
out convergence proofs), and, for linearly constrained
problems, in [39] (with code in [24]). A special feature
of the algorithm in [24] is that the iterates remain fea-
sible with respect to p[Yi]. The peculiarity of the algo-
rithm in [9] is that the quadratic subproblem at the kth
iteration only needs to include constraints for the usu-
ally small set of discrete �-global local maximizers

Y l
i;"(x

k) :Dn
ey 2 Yi;"(xk) : g(xk ;ey) � g(xk ; y); y 2 Ui(ey)

o
;

where Ui (ey) is a discrete neighborhood ofey in Yi, con-
sisting ofey and neighboring points ofey in Yi (see also
[43]). As an example of such SQP type algorithms for
the solution of a discretized SIP problem p[Yi], the al-
gorithm from [9] is given below in a rudimentary form
(again let i 2 N0 be fixed and choose k := 0 if i = 0).

Convergence of this algorithm to a stationary point
of the exact L1-penalty function, respectively a KKT
point, of p[Yi] is guaranteed under standard assump-
tions. If, in addition, the Maratos effect avoiding
scheme from [25] is properly incorporated into the
algorithm, then, under some additional assumptions
usually required in this context, it also converges r-
superlinearly. The final data obtained by the algorithm
(with an adequate stopping criterion) can normally
be completely employed to initialize the algorithm for
p[Yi+1], in case a sequence of discretized SIP problems
is solved.

0 Select ˛ 2 (0; 1/2); ˇ 2 (0; 1); " > 0, and k 2
N0.
Choose �k > 0; xk 2 Rn , a symmetric positive
definite matrix Hk 2 Rn�n , and a subset Dk �

Yi with Dk 
 Y l
i;"(x

k).
1 Compute the unique solution (dk ; �k) 2 Rn �

R of the quadratic problem8̂
<̂
ˆ̂:

min 1
2d
>Hkd + r f (xk)>d + �k�

s.t. g(xk ; y) + rx g(xk ; y)>d � �;
y 2 Dk ;

� � 0;
and associated Lagrange multipliers
(�k ; �̃k) 2 RjDk j � R.
IF k dk k= 0, STOPj

2 IF �k = 0 and k �k k1� �k , set
�k :=1:5 k �k k1.

3 Let ` 2 N0 be the smallest number such that
tk := ˇ` satisfies

L1(xk; �k ; Yi ) � L1(xk + tkdk ; �k ; Yi ) �

˛tkdk>Hkdk

Set xk+1 := xk + tkdk and �k+1 := �k .
4 Compute Hk+1 by Powell’s modification of the

BFGS update ([37]) with respect to the Hessian
of the Lagrangian

Li (x; �(Yi )) := f (x) +
X
y2Yi

�(y)g(x; y)

of P[Yi ], where �(Yi ) := (�(y))y2Yi , and
choose a set Dk+1 � Yi with Dk+1 
 Y l

i;"(x
k+1).

Set k := k + 1 and go to Step 1.

Applied to a discretized SIP problem, the algo-
rithm of [9] improves another one from [2, Sect. 4.2]
which, instead of Yl

i;"(x
k), employs the in this case usu-

ally much larger, upper set Yi, "(xk). But, although the
choice Dk := Yl

i;"(x
k) is suitable in the above algorithm,

addition of further points to Dk is advised to improve
the all-over efficiency of the method. In this regard, the
selection rules from [24] and [44] have turned out to be
valuable.

The SQP algorithm in [9] can be similarly used also
for the solution of the locally reduced problem in a sec-
ond phase of a two-phase approach to the solution of
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p[Y] and has shown to yield excellent results in this
way. At earlier two-phase approaches, always two dif-
ferent methods had been applied to the problems in
both phases.

In addition to the mentioned methods, also stochas-
tic discretization procedures have been developed which
are capable of providing a quasi-optimal solution of
a finely discretized SIP problem (e. g. [49]).

See also

� Semi-infinite Programming: Approximation
Methods

� Semi-infinite Programming and Control Problems
� Semi-infinite Programming: Methods for Linear

Problems
� Semi-infinite Programming: Numerical Methods
� Semi-infinite Programming: Second Order

Optimality Conditions
� Semi-infinite Programming, Semidefinite

Programming and Perfect Duality
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The class of linear semi-infinite programming prob-
lems may be looked upon as a generalization of the class
of linear programs. In a semi-infinite program, either
the number of variables or the number of constraints
(but not both at the same time) may be infinite. In the
present paper we will mainly deal with semi-infinite
programs of the latter type. The main theoretical as well



Semi-infinite Programming: Methods for Linear Problems S 3425

as practical difficulty is that one needs to verify that
a proposed optimal solution satisfies infinitely many
linear inequality constraints. We will describe two ap-
plications which illustrate this, namely global optimiza-
tion and an air quality control problem. In a companion
paper in this volume wewill describe how to solve semi-
infinite programs numerically by means of systematic
approximation with simpler problems. The literature
on linear semi-infinite programs is vast. For a general
introduction to this field, see [5,6] and [7]. Recent re-
sults are to be found for instance, in [11].

Definition of Linear Semi-Infinite Programs

We now introduce, following [6]:

Definition 1 Let S be a fixed set, a: S ! Rn, b: S !
R two fixed functions, c 2 Rn a fixed vector. Then the
following task will be called a primal linear semi-infinite
program:

min c>y; (1)

over all y 2 Rn subject to the constraint

a(s)>y � b(s); s 2 S: (2)

Remark 2 The data of the semi-infinite program (1)
and (2) are hence the index set S, the vector-valued
function a and the real-valued function b, both defined
on S as well as the fixed vector c 2 Rn.

Definition 3 Use the notation of Definition 1. Put

Y D
˚
y 2 Rn : a(s)>y � b(s]; s 2 S

�
; (3)

V D inf
y2Y

c>y: (4)

If Y is empty, then we defineV =�1, i. e. the condition
(2) is inconsistent. Y is called the set of feasible solutions
to (1), (2).

The following theorem on dual inequality holds:

Theorem 4 Use the notations of Definition 1. Assume
that there is a subset {s1, . . . , sq}� S, such that

qX
iD1

xi a(si ) D c; xi � 0; i D 1; : : : ; q: (5)

Then the following inequality holds for all y satisfying
(2):

c>y �
qX

iD1

xib(si):

Proof Let (2) and (5) be satisfied. Then

a(si )>y � b(si); i D 1; : : : ; q:

Multiplying by xi and summing over i we obtain

qX
iD1

xi a(si )>y �
qX

iD1

xib(si): (6)

The result now follows from (5).

Remark 5 The right-hand side of (6) gives a lower
bound for the optimal value of the linear semi-infinite
program defined by (1) and (2).

We next consider the task of finding the largest value of
this lower bound:

Definition 6 The dual semi-infinite program is defined
by: Determine a finite subset {s1, . . . , sq} � S and real
numbers x1, . . . , xq such that the expression

qX
iD1

xib(si ) (7)

is maximized, subject to the constraints

qX
iD1

xi a(si ) D c; xi � 0; i D 1; : : : ; q: (8)

Remark 7 If S is a finite set, then (1), (2) define a linear
program and (7), (8) is equivalent to its dual.

The problems in Definitions 1 and 6 above admit sev-
eral different geometric interpretations. Thus (8)means
that the vector c shall be written as a nonnegative lin-
ear combination of the q vectors a(s1), . . . , a(sq). The
inequality (2) means that the real-valued function b is
to be approximated from the above over S by a linear
combination of the n functions a1, . . . , an.

We note that the feasible subset Y defined by (3) is
a convex subset of Rn, if it is nonempty. For each fixed
s 2 S the relation

a(s)>y D b(s)
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defines a supporting hyperplane to Y . Hence program
(1), (2) is the task to minimize the linear form c|y over
Y . The latter problem may be formally rewritten as the
equivalent task of minimizing

c>y;

subject to the single constraint

g(y) � 0;

where

g(y) D min
s2S

a(s)>y � b(s):

Thus the evaluation of g(y) requires the solution of
a global minimization problem, which may be nontriv-
ial if S is infinite. Under fairly general assumptions the
duality results of linear programming may be extended
to semi-infinite programs. In particular, the programs
(1), (2) and (7), (8) have optimal solutions and the same
optimal value. See e. g. [5] and [6]. We state the follow-
ing theorem on complementary slackness:

Theorem 8 Let y be an optimal solution of (1), (2) and
let q, {s1, . . . , sq} 2 S, x1, . . . , xq be an optimal solution of
(7), (8). Put

d(s) D a(s)>y � b(s); s 2 S:

If the two problems also have the same optimal value, the
following relations hold:

d(s) � 0; s 2 S; (9)

qX
iD1

xi a(si) D c; (10)

xid(si ) D 0; i D 1; : : : ; q; (11)

the function d achieves its global minimum at

si ; i D 1; : : : ; q: (12)

The proof is given e. g. in [6].

Remark 9 The relations (9)–(12) give necessary con-
ditions for optimality. If the set S is finite, then (1), (2)
and (7), (8) form a dual pair of linear programs and we
recognize Theorem 8 in this case as the complementary
slackness result in linear programming.

If S is infinite, then (10), (11) may be combined to
a nonlinear system of equations with xi, si, i = 1, . . . ,
q, and y as unknown variables. Further relations may
be derived from (12) and included in the system which
then has equally many scalar unknowns as it has equa-
tions. This requires that q is known and one must
also require that the function d has continuous par-
tial derivatives of the first order. In addition it must be
known for each si whether this point is at the boundary
or in the interior of S. These considerations are used in
the three-phase algorithm. See e. g. [5,6] or [7], whose
main ideas are as follows:

1 Solve the problems (1), (2) and (7), (8) approx-
imately by replacing S with a finite subset T to
obtain a dual pair of linear programs.

2 Determine q and approximate values for the
variables xi ; si ; i = 1; : : : ; q, and y from the
results of Phase 1. Decide for each si whether
it is an interior or boundary point of S. Con-
struct a nonlinear system of equations with re-
spect to the variables sought.

3 Solve the nonlinear system of equations by
a suitable numerical scheme. Check the feasi-
bility of the calculated solution, in particular
that the infinitely many constraints in (2) are
satisfied. In case of failure return to Phase 1
and redo the whole process with a finer grid.

A GlobalMaximization Problem

We discuss now a very special instance of the prob-
lem (1), (2). The treatment of this test problem il-
lustrates some fundamental properties of semi-infinite
programs. Thus we put n = 1, a1(s) = 1, c1 = 1 and con-
sider the task

Example 10

min y; (13)

subject to the constraint

y � b(s); s 2 S: (14)

In this example y is a real number. We note that (14)
may define infinitely many constraints. The dual of the
problem (13), (14) may be written

max b(s); s 2 S: (15)
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By placing various assumptions on the function b and
the set S one may illustrate the different properties
a dual pair of semi-infinite programs may have. Thus if
S is finite, then both programs achieve their optimal val-
ues in accordance with the theory of linear programs. If
b is bounded on S, then the primal program (13), (14)
has the optimal solution

y D sup
s2S

b(s): (16)

If in addition S is compact and b continuous, then the
dual (15) also achieves its optimal value and we write

y D max
s2S

b(s): (17)

For a discussion of the various states of semi-infinite
programs, see [5,6] and [7].

Example 10 may also be used to illustrate the properties
of some suggested numerical schemes for linear semi-
infinite programs. We note that (17) is useful for nu-
merical work only if there is a way to determine all local
maxima to b on S. If b has continuous partial deriva-
tives of the first order, we may try to solve by numerical
methods the equation

rb(s) D 0: (18)

In addition one would need to study the values of b at
the boundary of S.

We discuss now the three-phase algorithm as de-
scribed in [3,5,6,7,9,10]. When applied to the problem
(13), (14) this scheme becomes:

1 Let T` , ` = 1, 2, . . . , be a sequence of grids (subsets to S)
such that each T` contains finitely many points and

lim
`!1

max
s2S

min
t2T`
ks� tk D

0: (19)
Calculate an s` which solves
max
t2T`

b(t): (20)

2 Take s` as starting value.
3 To determine the local maxima of bwith some numerical

scheme.

Example 11 We consider the following special case of
Example 10:

min b(s) D sin
1

s C 0:000001
; s 2 [0; 1]:

In this case there are many local maxima and the grid
would need to be very fine, if the three-phase method
should locate them all. A direct analytic treatment
would of course be easy, since the expression for b is
simple but the example illustrates potential difficulties.

We note that if S has several dimensions, then the
‘curse of dimensionality’ sets in, making a systematic
discretization approach inefficient, since it implies that
b must be tabulated and this table must be large in or-
der to describe b. In a practical situation there is no
assurance that the optimal solution has been found, if
this cannot be tested analytically. Since one has to ac-
cept the possibility that a nonoptimal value has been ac-
cepted one may consider pseudorandom generation of
grids instead of the deterministic approaches described
above and in the references given up to now. A major
advantage of these approaches is that the computational
complexity is not crucially dependent on the number
of dimensions and statistical estimates for the uncer-
tainty in the optimal value may be developed. For an
introduction to global optimization methods based on
random processes, see [12]. The author is working on
methods for applying random schemes for the general
semi-infinite program (1), (2).

An Air Pollution Control Problem

The three-phase approach, described above may be di-
rectly applied to general linear semi-infinite programs.
We illustrate with the air pollution control problem as
described on [6, p. 17; 184]. Here the air quality control
area is represented by the compact set A � R2. The an-
nual mean concentration of a certain inert pollutant (e.
g. sulphur dioxide, SO2) is represented by a real-valued
function p, defined on A. There are many sources emit-
ting pollution and each car, house or power plant may
contribute to the pollution. The permissible level of pol-
lution is defined by a given function v. If there is a point
s 2 A such that the standard v is exceeded, i. e. is such
that

p(s) > v(s); (21)

then the pollution concentration must be reduced. Af-
ter reduction, the remaining pollution must satisfy the
standard at each point s 2 A and this fact implies that
infinitely many inequality constraints must be met. We
will assume that the sources of pollution may be split
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into n + 1 classes and that the sources in each class will
be regulated in the same way. We further require that
the superposition principle is valid, i. e. that the con-
centration contributions add up. Therefore we write

p(s) D
nX

rD0

ur(s); s 2 A; (22)

where the concentration contribution from source-
class r is given by the nonnegative function ur . In partic-
ular, u0 represents the concentration contribution from
background sources which cannot be regulated. Next,
u1 may be the contribution from trucks, operating in A,
u2 from passenger cars, u3 from residential heating and
so on. The implementation of an abatement policy im-
plies that the contribution from class r is reduced by the
fraction Er , hence the remaining concentration contri-
bution from this class is

(1 � Er)ur(s); 0 � Er � 1:

The reduction vector E 2 Rn must therefore satisfy the
constraints

0 � Er � 1; r D 1; : : : ; n;

u0(s)C
nX

rD1

(1 � Er)ur(s) � v(s); s 2 A:

The last relation may also be written

nX
rD1

Erur(s) � p(s) � v(s); s 2 A;

which may be interpreted as the requirement that the
total removed pollution should amount at least to the
difference between the original pollution and the re-
quired standard v(s).

Assume that the cost associated with the pollution
abatement is given by the linear form K(E) where

K(E) D
nX

rD1

crEr :

The task to determine E such that the air quality stan-
dard v is satisfied at each s 2 S, while the control cost is
minimized is hence the solution to the problem: Deter-
mine

V D min
E2Rn

nX
rD1

crEr ; (23)

subject to the constraints

nX
rD1

Erur(s) � p(s) � v(s); s 2 A; (24)

Er � 0; r D 1; : : : ; n; (25)

� Er � �1; r D 1; : : : ; n: (26)

Thus the equations (23)–(26) define a linear semi-
infinite program of the type (1) and (2). We note that if
there is a point s� 2 A, such that u0(s�) > v(s�), then the
background pollution is above the standard and there is
no control policy achieving the desired goal. Hence the
program (23)–(26) is inconsistent. Otherwise we con-
clude the existence of an optimal policy if the func-
tions ur , r = 0, . . . , n are continuous. For the purpose
of numerical treatment we replace the area A by a fi-
nite grid T in (24) and solve the corresponding linear
program. In so doing, we enforce the standard at the fi-
nite grid only and hence it may be violated somewhere
between the gridpoints. However, convergence obtains
if we consider a sequence of finer and finer grids as in
(19). It is also possible to derive a nonlinear system and
use the three-phase algorithm. It is of interest here that
Theorem 8 implies that if an optimal control policy has
been calculated, there is a subset of points where the
standard is met exactly. It has been proposed to put air
quality sampling stations at these points. For further de-
tails, see [6].

Concluding Remarks

There are a large number of other applications of semi-
infinite programming. One such is the approximation
of functions in the maximum norm. Special algorithms
have been developed for classes of such applications.
For the approximation in the maximum norm, the al-
gorithms of Remez (see [2]) are applicable. But we note
also here that a global maximization needs to be carried
out at each step of the algorithm. An one-sided approx-
imation problem has been studied by [1]. The solutions
of the dual of this problem are associated with quadra-
ture rules of generalized Gauss type. However, the de-
termination of abscissaæ and weights of such rules, us-
ing only the parameters of the corresponding semi-
infinite program, is notoriously ill-conditioned. For the
so-called classical cases associated with the names of
Legendre, Hermite and Jacobi, other analytic informa-
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tion is used, for instance, the coefficients of the three-
term recurrence relation formulas for corresponding
orthogonal polynomials. See e. g. [4] and [8]. These
methods give an alternative way of finding the solutions
of certain special semi-infinite programs which may be
used for testing the accuracy and efficiency of general
methods for semi-infinite programs.
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The problem

P(T)
(
min fF(z) : z 2 Kg ;
K D fz 2 Rn : g(z; t) � 0; 8t 2 Tg ;

(1)

is considered, where T is a compact subset of the space
Rm, F and g(�, t) are continuous functions from Rn into
R and g(z, �) is continuous on T. If the functions F and
g(�, t) are assumed to be convex, we deal with convex
semi-infinite problems, and many important applica-
tions lead to linear semi-infinite problems, with linear
functions F and g(�, t).

With some additional writing effort, the content of
this article can be easily extended to the case that the set
of feasible points is given as the intersection of finitely
many sets

fz 2 Rn : gs(z; t) � 0; 8t 2 Tsg ; s 2 S;

where, for each s 2 S, Ts is a compact subset of Rms and
gs has the same properties as g.

The notion ‘semi-infinite programming problem’ is
due to the property that the feasible set K belongs to
a finite-dimensional space whereas T is an infinite set.
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The references here are not primarily intended to
give a complete documentation of the original papers
and sources or to reflect the historical development of
this field. Except for the case that reference is given
to explicit statements or techniques, it was our aim to
draw the reader’s attention to the basic approaches.

Concerning theory and properties of semi-infinite
programming, see the monographs [1,19,24], papers
[12,18] and to the proceeding volumes [6,33].

Transforming g(z, t) � 0, 8t 2 T, into maxt 2 Tg(z,
t) � 0, one could treat semi-infinite problems in the
framework of nondifferentiable optimization. We do
not adopt this approach here (see the review paper
[27]).

The algorithms for semi-infinite problems generate
usually a sequence of finitely constrained auxiliary op-
timization problems suitable for being solved by stan-
dard algorithms for finite optimization. We assume the
latter to be available. We concentrate on the different
ways these auxiliary problems may be generated and
confine ourselves to some remarks on properties the
finite optimization algorithms should favorably have.
Roughly one can distinguish three classes of methods
according to the way the auxiliary (finite) problems are
generated: Exchange methods, including cutting plane
methods (applicable only for convex problems), dis-
cretization methods and methods based on local reduc-
tion. Exchange and discretization methods are more
recommendable for a ‘first phase’ of the solution pro-
cess, whereas the reduction approach is recommend-
able for a final stage in order to provide a higher ac-
curacy of the solution and a better rate of convergence.

In order to sketch briefly the respective ideas behind
the exchange and discretization methods, we suppose
that K is a compact set and introduce the finitely con-
strained auxiliary problems

P(Ti)

(
min fF(z) : z 2 Kig ;

Ki D fz 2 Z0 : g(z; t) � 0; 8t 2 Ti g ;
(2)

with Z0 a convex compact set, Z0 � K. Sometimes Z0 is
artificially introduced in order to provide solvability of
these problems. If K 6D ;, the approximate problem (2)
has a solution for every finite set Ti � T.

Omitting detailed assumptions on the problems and
methods involved, we concentrate on the main ideas of
the numerical approaches mentioned above.

ExchangeMethods

This notion refers to the fact that in step i the set Ki+1 is
obtained from Ki by addition of at least one new con-
straint and (inmany algorithms) deletion of some of the
constraints of Ki, i. e., an exchange of constraints takes
place.
� Step i: Given Ti � T, |Ti| <1. Compute (approxi-

mately) a solution zi of P(Ti) and some (or all) local
maxima ti1, . . . , tiq i of the subproblem

Q(zi) max
˚
g(zi ; t) : t 2 T

�
:

Stop if g(zi, tij) � 0, j = 1, . . . , qi. Otherwise, choose
Ti+1 such that the following relations hold:

TiC1 � Ti [ ft i1; : : : ; t
i
q i g;

max
t2TiC1

g(zi ; t) > 0:

Necessary for convergence is

max
jD1;:::;qi

g(zi ; t ij) D max
t2T

g(zi ; t); (3)

i. e. the global solution of the nonconvex optimization
problem Q(zi) is required in each step (or at least in
a subsequence of steps) which for dimT � 2 may be
very costly. Under (3) convergence may be proved for
instance in case that constraints are never deleted from
Ti (cf. [18]).

In fact, exchange methods are similar to the classi-
cal REMES-algorithm for solving linear Chebyshev ap-
proximation problems. Special algorithms mainly dif-
fer in the choice of Ti+1. In the literature, cf., e. g.,
[14,23,30,40,41], there are different algorithms which
have important additional features: The ability to add
several constraints g(z, ti)� 0, where ti are some points
with g(zi, ti) > 0, (or to add only the constraint which
is maximally violated at zi) and to delete constraints in
an efficient way in the case of a convex problem (1). In
[23] a cutting plane algorithm for convex problems is
suggested, which ensures a linear rate of convergence
with respect to the values of the objective functional.

DiscretizationMethods

Algorithms of this type compute a solution of problem
(1) by solving a sequence of problems P(Ti), where Ti

is an hi-grid on T, i. e., a finite subset Ti � T such that
supt 2 T dist(t, Ti) � hi. In the ith step a fixed (usually,



Semi-infinite Programming: Numerical Methods S 3431

uniform) grid Ti is considered, generated by hi = � ihi�1,
with � i 2 (0, 1) chosen a priorily or defined by the solu-
tion procedure itself. In step i only subsets Ti of Ti are
used and in a number of algorithms one has (ki 2 N):

�i D
1

ki�1
with ki�1 � 2

implying Ti�1 � Ti 8i.
� Step i: Given hi�1, the last set Ti�1 � Ti�1 and a so-

lution zi�1 of problem P(Ti�1);

i1) choose hi = � ihi�1 and generate Ti;
i2) select Ti � Ti ;
i3) compute a solution z of P(Ti ). If z is feasible for

P(Ti) within a given accuracy, put zi :D z (de-
fine also � i+1 if the sequence {� k} is not a priorily
chosen) and continue with Step(i + 1). Otherwise
repeat i2) for a new choice of Ti , enlarging the
old one.

With regard to efficiency, it is important to use as much
information as possible from former grids in solving
P(Ti). Substantial differences among the algorithms of
this type are in the choice of Ti . Preferably Ti should be
chosen such that the solution of P(Ti ) approximately
solves also P(Ti). Most of the suggested algorithms se-
lect Ti such that

Ti � T˛i D ft 2 Ti : g(z; t) � �˛g ;

with ˛ > 0 some chosen threshold and z the foregoing
inner iterate (cf. i3)).

The choice of ˛ is crucial (cf. [15,31,32]): A large
value of ˛ leads to many constraints in P(Ti ) and
choosing ˛ too small one should expect a large num-
ber of steps i2), i3) for fixed Ti. Adaptive strategies for
decreasing ˛ are used in [7] and [26].

In [39] special versions of the method of feasible di-
rections coordinate the choice of the grid and the search
direction in order to obtain feasible solutions of (1)
in each step. In this and some other papers informa-
tion about the last Ti�1 and zi�1 is used in choosing
� i and the initial set Ti at ith step. In [28] discretiza-
tion processes are carried out such that, for a certain
class of convex semi-infinite programming problems,
the rate of convergence of the basic optimization algo-
rithm used for solving the discretized problems is re-
tained for the whole solution procedure. Hereby only

one step of the optimization algorithm is performed in
each problem P(Ti) to define z (see i3)).

Reduction Methods

These methods use the fact that under appropriate as-
sumptions the original (infinitely many) constraints

g(z; t) � 0; 8t 2 T;

can be replaced by finitely many constraints which lo-
cally are sufficient to describe K. In the sequel, we as-
sume that F 2 C2(Rn), g 2 C2(Rn × T). Let z 2 Rn be
a given point. Let t1; : : : ; tq(z), with q(z) <1, be all the
local solutions of

Q(z) max fg(z; t) : t 2 Tg :

Obviously, z 2 K, if and only if

g(z; t j) � 0; j D 1; : : : ; q(z):

Assume now that there exist a neighborhoodU of z and
twice continuously differentiable functions

t j : U! T; t j(z) D t j; j D 1; : : : ; q(z)

such that for all z 2 U the tj(z) are all local solutions of
Q(z). Then, with

Gj(z) :D g(z; t j(z)); j D 1; : : : ; q(z);

we have Gj 2 C2(U) and

K \U D
˚
z 2 U : Gj(z) � 0; j D 1; : : : ; q(z)

�
;

i. e. in U we may replace problem P(T) by the finite
problem

Pz(T) min
˚
F(z) : Gj(z) � 0; j D 1; : : : ; q(z)

�
:

Sufficient for the existence of U and tj as above is that
all solutions t j of Q(z) are nondegenerate (cf. [17,18]
and also � Semi-infinite Programming: Second Order
Optimality Conditions). We note that this ‘reducibility
in z’ is a generic property (see [20,44]), thus it holds
‘almost everywhere for almost all problems’.

Now, reduction methods generally can be described
as follows:
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� Step i: Given zi�1 (not necessarily feasible);

i1) compute all local maxima ti�11 , . . . , ti�1qi�1 of prob-
lem Q(zi�1);

i2) apply some steps of an algorithm for finite prob-
lems to the reduced finite-dimensional problem
Pz i�1 (T):

min
˚
F(z) : Gj(z) � 0; j D 1; : : : ; qi�1

�
;

where Gj(z) = g(z, tj(z)) and the functions tj(�)
are defined in a neighborhood of zi�1. Let zi;ki
be the last iterate of the algorithm mentioned;

i3) set zi = zi;ki and continue with Step(i + 1).

In order to apply second order methods usually sec-
ond order derivatives are required and to guarantee su-
perlinear convergence, additionally a strong second or-
der optimality condition has to be satisfied. Conditions
concerning problem (1) which provide locally super-
linear convergence of some SQP-methods applied to
problem Pz i�1 (T) are given in [9] (see also � Semi-in-
finite Programming: Second Order Optimality Con-
ditions). These conditions ensure, in particular, twice
continuous differentiability of the functions Gj. SQP-
methods, using augmented Lagrangian functions and
quasi-Newton update of their Hessians have been ef-
fective in this context (cf. [9,16,25,29,38,43]). Here, ac-
cording to the results in [9], an inexact evaluation of the
functions tj(�), and hence, of the functions Gj, is admit-
ted.

To give a more explicit version of the reduction ap-
proach, we specify the steps i2) and i3) from above, fol-
lowing [9].

Given zi, 0 = zi� 1, Bi, 0 = Bi�1 (B0 is, in principle,
an arbitrary symmetric positive definite n × n-matrix).
Then, for l = 1, . . . , ki, with given zi, l�1, Bi, l�1 do:
� compute a solution sl and a vector of Lagrange mul-

tipliers �i, l of the quadratic programming problem

8̂
<̂
ˆ̂:

min
˚
rF(zi;l�1)>s C 1

2 s
>Bi;l�1s

�

s.t. Gj(zi;l�1)CrGj(zi;l�1)>s � 0;
j D 1; : : : ; qi�1;

� compute a steplength ˛l by a rule providing a de-
crease of function (4) below (see, for instance [3]);

� update

zi;l D zi;l�1 C ˛l sl ;
Bi;l D Bi;l�1

C
yl (yl )>

(yl )>s
�

Bi;l�1sl (Bi;l�1sl )>

(sl )>Bi;l�1sl
;

(BFGS-formula), where

yl D rzLi�1(zi;l ; �i;l ; c)

� rzLi�1(zi;l�1; �i;l ; c);

Li�1(z; �; c)

D F(z)C
qi�1X
jD1

� jG j(z)C
c
2

qi�1X
jD1

(Gj(z))2

is the augmented Lagrangian of problem Pz i�1 (T),
concerning the choice of c > 0 see [18 Assumption
7.8];

� set Bi = Bi;ki , zi = zi;ki , i = i + 1.
Conditions ensuring a local q-superlinear convergence
of the sequence {(zi, l, �i, l)} to a Kuhn–Tucker point of
problem (1) are given in [9].

In the first instance SQP-methods are only lo-
cally convergent. Therefore, hybrid techniques com-
bining robust globally convergent descent algorithms
with SQP-methods have been developed (cf. [8,10,11]).
Globalization techniques for SQP-methods were intro-
duced in [13] using the exact penalty function

F(z)C d
qiX
jD1

max[0;Gj(z)] (4)

(with sufficient large d > 0) to control the stepsize. In
the papers [3,42] and [37] alternative penalty functions
with the same goal have been introduced.

The idea to apply for semi-infinite programming
a penalty technique coupled with a discretization seems
to be promising. However, numerically this may be
rather difficult: The condition number of the Hessians
of the objective functions of the auxiliary problems de-
pends essentially not only on the penalty parameter, but
also on the common influence of almost active con-
straints. The number of these constraints usually in-
creases with the number of discretization points. There-
fore, the use of exact penalty functions or their smooth
approximations has the advantage that it is possible
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to work with a fixed penalty parameter. Exact penalty
functions of integral type for semi-infinite program-
ming have been proposed in [2]. In [4] and [5] ex-
change techniques are coupled with penalization of the
auxiliary problems, which are finally solved by inte-
rior point methods. Interior point methods for solv-
ing smooth, convex semi-infinite programming are also
suggested in [35,36] and [34]. This approach requires
computations of integrals over T to obtain the compo-
nents of the gradients and Hessians of some aggregated,
logarithmic barrier functions. The solution is reached
by following the so-called central path of the problem
by a predictor-corrector method. In [21,22] proximal
penalty approaches have been proposed, with a special
deleting rule for the constraints based on the existence
of upper bounds for the Lagrange multipliers of the
regularized auxiliary problems uniform with respect to
a sequence of discretizations.
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We are concerned with semi-infinite optimization prob-
lems

SIP

(
max F(z)
s.t. z 2 Z

with feasible set

Z D fz 2 Rn : g(z; t) � 0 for all t 2 Bg ;

and

B D
˚
t 2 Rm : h j(t) � 0; j 2 J

�
;

J a finite index set, F 2 C2(Rn, R), g 2 C2(Rn × Rm, R),
hj 2 C2(Rn, R), j 2 J. We assume that B is compact.
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Later on we consider generalized semi-infinite prob-
lems GSIP, where the index set B = B(z) depends on z,
i. e. B = B(z) = {t 2 Rm: hj(z, t) � 0, j 2 J} with given hj

2 C2(Rn × Rm, R), j 2 J. In this case we assume that the
range of the set-valued mapping B remains in a com-
pact set B0 � Rm, i. e. B(z)� B0 for all z 2 Rn.

In the same way as in finite optimization, second
order optimality conditions for SIP are an important
tool for answering a number of theoretical and practical
questions. First order optimality conditions may again
be given by a system of nonlinear equations, the so-
called Karush–Kuhn–Tucker equations. Then, strong
sufficient second order conditions imply this system to
be regular and this regularity allows to answer questions
of stability of solutions, dependence of solutions on
problem parameters but also superlinear convergence
of some classes of numerical methods (cf. [3] and the
references therein). We give the conditions in a form
which is suitable for applications like these. We follow
the ‘reduction approach’ as in [3] and [4].

In the sequel, the parametric optimization problem


(z)

8<
:
max

t
g(z; t)

s.t. t 2 B

will play an important role. For z 2 Z we define the
active index set

E(z) D
˚
t 2 B : g(z; t) D 0

�
:

Obviously, any point t in E(z) is a (global) maximum of

(z). Throughout we assume that E(z) is nonempty. (If
E(z) D ;, then by the assumptions above, the point z is
an interior point of Z and the optimality conditions co-
incide with the optimality conditions in unconstrained
optimization.)

The row vectors of partial derivatives of g with re-
spect to z, t will be denoted by gz , gt . For a function v:
Rn! R we denote the directional derivative of v in z in
the direction � 2 Rn by Dv(z; �),

Dv(z; �) D lim
�!0C

v(z C ��) � v(z)
�

:

If the derivative vz is itself directionally differentiable in
the direction �, we put D2v(z; �) :D Dvz(z; �)�.

For brevity, we do not consider vector-valued func-
tions g or equality constraints in the definition of Z
and B.

The Parametric Problem� (z)

In this section we prepare the ‘reduction approach’ for
obtaining optimality conditions for SIP.We briefly out-
line a stability result (cf. [5]) for the parametric problem
(applying to SIP and GSIP as well)


(z)

8<
:
max

t
g(z; t)

s.t. t 2 B(z);

B(z) := {t: hj(z, t) � 0, j 2 J}. Let z and a point t which
is feasible for
(z) be given. We define the active index
set of
(z) as

J(z; t) D
˚
j 2 J : h j(z; t) D 0

�
:

We say that the linear independency constraint qualifi-
cation (LICQ) holds if the vectors

h j
t (z; t); j 2 J(z; t);

are linearly independent. The (weaker) Mangasarian–
Fromovitz constraint qualification (MFCQ) is said to
hold in t for 
(z), if there exists a vector � 2 Rm such
that

h j
t (z; t)� < 0; j 2 J(z; t):

Let a solution t of
(z) be given. If at t the MFCQ is sat-
isfied, then necessarily the Kuhn–Tucker condition is
fulfilled, i. e. there exists a multiplier vector � 2 RjJ(z;t)j

such that

Lt
t(z; t; �) D 0; � � 0; (1)

where Lt denotes the Lagrange function of
(z) at (z; t),

Lt(z; t; �) D g(z; t) �
X

j2J(z;t)

� j h j(z; t):

We say that strict complementary slackness (SCS) holds
if the multiplier � in (1) satisfies

� j > 0; j 2 J(z; t):

Let us introduce the following second order sufficient
optimality condition for
(z):

Ared) Let a solution t of 
(z) be given. Assume that
LICQ is satisfied. (Under LICQ there is a unique
multiplier � such that (1) is fulfilled.) We assume
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that the strong second order condition (SSOC)
holds,

�>Lt
tt(z; t; �)� < 0 for all � 2 T(z; t) n f0g;

where T(z; t) is the subspace T(z; t) D
˚
� 2

Rm : � j h
j
t(z; t)� D 0; j 2 J(z; t)

�
.

Theorem 1 Let t be a solution of
(z) such that Ared) is
satisfied. Then there exist neighborhoods U(z) of z and
V (t) of t and mappings t : U(z) ! V (t), � : U(z) !
RjJ(z;t)j such that:
� t(z) D t,
� �(z) D � ,
� and for all z 2 U(z) the value t(z) is the unique local

solution of 
(z) in V(t) \ B(z) with corresponding
multiplier �(z) such that LICQ and SSOC are satis-
fied.

The functions t, � are Lipschitz continuous and direc-
tionally differentiable. The value function

G(z) :D g(z; t(z));

is continuously differentiable in U(z) and the deriva-
tive Gz is Lipschitz continuous and directionally differ-
entiable with:

Gz(z) D gz(z; t(z))

�
X

j2J(z;t)

� j(z)h
j
z(z; t(z))

D Lt
z(z; t(z); �(z));

(2)

D2G(z; �) D �>Lt
zz(z; t(z); �(z))�

� D>t(z; �)Lt
tt(z; t(z); �(z))Dt(z; �)

� 2
X

j2J(z;t)

D� j(z; �)h
j
z(z; t(z))�:

(3)

The directional derivatives Dt(z;�) are given as the
unique solutions of the quadratic program

P(�)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

max
�

F(�; �)

s.t. h j
z(z; t(z))� C h j

t (z; t(z))�(
D 0 if � j(z) > 0
� 0 if � j(z) D 0

for j 2 J(z; t);

where

F(�; �) :D
1
2
�>Lt

tt(z; t(z); �(z))�

C �>Lt
zt(z; t(z); �(z))�

The directional derivatives D�(z;�) are given by the
unique multipliers ˇ(�) of P(�), D�(z;�) = ˇ(�).

Remark 2
a) For SIP, i. e. if the functions hj do not depend on z,

the derivatives of G and problem P(�) take the sim-
pler form:

Gz(z) D gz (z; t(z));

D2G(z; �) D �>gzz (z; t(z))�

� D>t(z; �)Lt
tt(z; t(z); �(z))Dt(z; �)

and

P(�)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

max
�

1
2�
>Lt

tt(z; t(z); �(z))�

C�>gzt(z; t(z))�
s.t. h j

t(z; t(z))�(
D 0 if � j(z) > 0
� 0 if � j(z) D 0

j 2 J(z; t):

b) If in Ared), in addition to LICQ and SSOC, we as-
sume SCS, then the functions t, � are continuously
differentiable and G is twice continuously differen-
tiable. Consequently, in (3) we can write Dt(z;�) =
tz(z)�, D�(z;�) = � z(z)�.

The Reduced Problem

Let z be feasible for SIP. By assuming that Ared) is sat-
isfied for all solutions t of 
(z) (i. e. all t 2 E(z)), by
applying Theorem 1, the problem SIP can locally be re-
duced to an equivalent finite optimization problem.

Theorem 3 Let z 2 Z be given such that Ared) is
satisfied for all t 2 E(z). Then the set E(z) is finite,
E(z) D ft1; : : : ; trg, and there is a neighborhood U(z)
of z such that with the functions

G`(z) :D g(z; t`(z)); ` D 1; : : : ; r;

in Theorem 1 (corresponding to the solutions t` of
(z))
the following holds: z 2 U(z) is a local maximizer of
SIP if and only if z is a local maximizer of the so-called
reduced problem

SIPred(z)

8̂
ˆ̂̂<
ˆ̂̂̂
:

max F(z)
s.t. z 2 U(z)

G`(z) � 0;
` D 1; : : : ; r:
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By Theorem 1, the functions G` are continuously differ-
entiable in U(z) and G`z is Lipschitz continuous and di-
rectionally differentiable.

Optimality Conditions for SIP

We consider SIP and assume, that for z 2 Z the regu-
larity conditions of Theorem 3 hold. Then, in a neigh-
borhood U(z) of z, the problem SIP is equivalent with
the finite problem SIPred(z). Let L denote the (F. John
type) Lagrangian of SIPred(z),

L(z; �) D �0F(z) �
rX
`D1

�`G`(z);

with G`(z) = g(z, t`(z)), and K the cone of critical direc-
tions for SIPred(z) in z,

K D
�
� 2 Rn : Fz(z)� � 0;

G`z (z)� � 0;
` D 1; : : : ; r

	
:

The following dual optimality conditions hold.

Theorem 4 Let z be feasible for SIP such that the as-
sumptions of Theorem 3 are satisfied. Then we have:
a) (Necessary conditions) Suppose, z is a local maxi-

mizer of SIP. Then, for any � 2 K there exist mul-
tipliers �0(�); : : : ; �r(�) � 0, not all zero, such that
(with the expressions for SSIP(�), QSIP(�) below)

SSIP(�) D 0 and QSIP(�) � 0:

The multipliers �`(�) can be chosen 0 if gz(z; t`)� <
0, and �0(�) can be chosen 0 if Fz(z)� > 0.

b) (Sufficient conditions) Suppose that for any � 2 K \
{0} there exist multipliers �0(�); : : : ; �r(�) � 0 such
that

SSIP(�) D 0 and QSIP(�) < 0:

Then z is a strict local maximizer of SIP.
The expressions for SSIP(�), QSIP(�) are:

SSIP(�) D Lz(z; �(�))

D �0(�)Fz(z) �
rX
`D1

�`(�)gz (z; t
`) (4)

QSIP(�)

D �>

 
�0(�)Fzz(z) �

rX
`D1

�`(�)gzz(z; t`)

!
�

C

rX
`D1

�`(�)D>t`(z; �)Lt`
t t (z; t

`; �`)Dt`(z; �): (5)

The proof of Theorem 4 follows by applying F. John
type optimality conditions of finite optimization to
SIPred(z) (conditions, modified to deal with functions
whose derivatives are Lipschitz continuous and direc-
tionally differentiable cf. [4]). This leads to the follow-
ing primal necessary conditions (under the assump-
tions of Theorem 4): Let z be a local solution of SIP.
Then, for any � 2 K the following system has no solu-
tion d 2 Rn:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

gz (z; t`)d C �>gzz(z; t`)�
�D>t(z; �)Lt

tt(z; t`; �`)Dt(z; �) < 0;
t` 2 E(z; �);

Fz(z)d C �>Fzz(z)� > 0;
if Fz(z)� D 0;

(6)

where E(z; �) D
˚
t` 2 E(z) : gz (z; t`)� D 0

�
. An ap-

propriate theorem of the alternative implies Theorem
4a. Correspondingly, the sufficient condition in Theo-
rem 4b is equivalent to the nonsolvability of the system
(6) with strict signs replaced by the weak signs, E(z; �)
replaced by E(z) and ‘if Fz(z)� D 0’ omitted.

In the following remark we discuss optimality con-
ditions under stronger as well as conditions under
weaker regularity assumptions.

Remark 5 Let z be feasible for SIP.
a) If in Ared), in addition to LICQ and SSOCwe assume

SCS, then (cf. Remark 2b) the functions G` in the re-
duced problem SIPred(z) are twice continuously dif-
ferentiable and in Theorem 4 the term QSIP(�) can
be replaced by

�>

 
�0(�)Fzz(z) �

rX
`D1

�`(�)gzz (z; t`)

C

rX
`D1

�`(�)t`z (z)
>Lt`

t t (z; t
`; �`)t`z (z)

!
�: (7)

Such optimality conditions have been derived in [2].
The idea of the ‘reduction approach’ goes back to
[12] where in addition, it is assumed that LICQ
holds: gz(z; t`)(D G`z (z)), ` = 1, . . . , r, are linearly
independent. Then in the terms S and Q we have
�0 D 1 (Kuhn–Tucker condition) and the multi-
pliers �1; : : : ; �r are unique (independently of �),
i. e. the matrix between parentheses in (7) is nega-
tive (semi)definite.
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b) In [3, Thm. 5.4] a sufficient optimality condition
similar to Theorem 4b is proven which does not
make use of a reduction assumption. It is based on
the idea to replace in (5) the directional derivative
Dt`(z; �) by a solution of the quadratic problem
P`(�) and assumes that condition LICQ holds at all
points t 2 E(z).

c) In [7,8] H. Kawasaki has given necessary and suffi-
cient optimality conditions under weaker regularity
assumptions and without assuming differentiability
of g with respect to t. The expressions

D>t`(z; �)Lt`
t t (z; t

`; �`)Dt`(z; �) (8)

are replaced by terms 2"(t`; �) which describe a sec-
ond order approximation of the feasible set Z at z in
the direction �. The necessary dual conditions (cf.
[8, Thm. 3.1]) do not make regularity assumptions
on
(z). A similar sufficient condition without a gap
is obtained (apart from the strong sign in the sec-
ond order condition) (cf. [8, Thm. 4.1]) under the
assumption that B is convex and conditions on the
behavior of certain functions such as g(z; t) which,
in particular, imply that the set E(z; �) is finite. In
[8] it is shown that for the special case B = [0, 1],
under the regularity conditions of Theorem 4, the
term 2"(t`; �) coincides with (8). These terms (often
called ‘shift terms’) reflect the ‘semi-infinite struc-
ture’ inasmuch as they describe the dependence of
E(z) on z.

d) In [1] the ‘shift terms’ are given in the form

�(�(�); �(�)) (9)

where� is amultiplier function (in the space of mea-
sures), �(�) describes a second order approximation
of the feasible set and � denotes the support func-
tion. There is a gap between the necessary and the
sufficient conditions (cf. [1, Thms. 3.1; 3.2]) inas-
much as (apart from the strong sign) in the suffi-
cient condition the term (9) is given with a set �(�)
which can be strictly larger than the correspond-
ing set in the necessary condition. However, under
the following assumptions there is no gap: g(�, t) is
twice differentiable, gzz is continuous on Rn × B,
g(z; �) is twice continuously differentiable, gzi (z; �)
are continuously differentiable; the constraint qual-
ification (CQ) is fulfilled: there exists � such that

gz(z; t)� < 0; t 2 E(z); g(z; t) satisfies a certain sec-
ond order growth condition; B and E(z) are smooth
(compact) manifolds.

Optimality Conditions for GSIP

We briefly outline optimality conditions for GSIP. The
statements of Theorems 3 and 4 remain true for the
generalized problem with the only modification that
due to the dependence of B (i. e. hj) on z the expres-
sions for S(�) and Q(�) (cf. Theorem 4) contain extra
terms (all terms in (2), (3)). Consequently, Theorem 4
holds for GSIP if the expressions for SSIP(�) and QSIP(�)
in (4) and (5) are replaced by:

SGSIP(�) D SSIP(�)C
rX
`D1

�`(�)
X

j2J(z;t`)

�`j h
j
z(z; t`);

QGSIP(�) D QSIP(�)C
rX
`D1

�`(�)

�
X

j2J(z;t`)

�
�`j �
>h j

zz(z; t`)� C 2D�`j (z; �)h
j
z(z; t`)�

�
:

We give some information on other optimality condi-
tions for GSIP.

Remark 6 Under the additional assumption SCS Ared),
as in the SIP case in Remark 5a, the formula forQGSIP(�)
simplify. Corresponding optimality conditions are im-
plicitly contained in [10] (see also [11]).

A second order sufficient condition not based on
a reduction (as in Remark 5b) is to be found in [4, Thm.
5.1]. For first order necessary conditions under weak
regularity assumptions, see [6] and [9]. In the first paper
no regularity assumption on
(z) is made, whereas the
latter assumes that MFCQ is fulfilled for any t 2 E(z).

See also

� Semi-infinite Programming: Approximation
Methods

� Semi-infinite Programming and Control Problems
� Semi-infinite Programming: Discretization Methods
� Semi-infinite Programming: Methods for Linear

Problems
� Semi-infinite Programming: Numerical Methods
� Semi-infinite Programming, Semidefinite

Programming and Perfect Duality



Semi-infinite Programming, Semidefinite Programming and Perfect Duality S 3439

References
1. Bonnansand F, Cominetti R, Shapiro A. Second order nec-

essary and sufficient optimality conditions under abstract
constraint, to appear

2. Hettich R, Jongen HTh (1978) Semi-infinite programming:
Conditions of optimality and applications. In: Stoer J (ed)
Optimization Techniques, Part 2. Lecture Notes Control In-
form Sci. Springer, Berlin, pp 1–11

3. Hettich R, Kortanek K (1993) Semi-infinite programming:
Theory, methods and applications. SIAM Rev 35(3):380–
429

4. Hettich R, Still G (1995) Second order optimality conditions
for generalized semi-infinite programming problems. Op-
tim 34:195–211

5. Jittorntrum K (1984) Solution point differentiability with-
out strict complementarity in nonlinear programming. In:
Fiacco AV (ed) Sensitivity: Stability and Parametric Analy-
sis. Math Program Stud, pp 127–138

6. Jongen HTh, Rückmann J-J, Stein O (1998) Generalized
semi-infinite optimization: A first order optimality condi-
tion and examples. Math Program 83:145–158

7. Kawasaki H (1988) An envelope-like effect of infinitely
many inequality constraints on second order necessary
conditions for minimization problems. Math Program
41:73–96

8. Kawasaki H (1992) Second-Order necessary and sufficient
optimality conditions for minimizing a sup-type function.
Appl Math Optim 26:195–220

9. Rückmann J-J, Shapiro A (1999) On first order optimal-
ity conditions in generalized semi-infinite programming.
J Optim Th Appl 101(1):677–691

10. Shapiro A (1985) Second order derivatives of extremal
value functions and optimality conditions for semi-infinite
programs. Math Oper Res 10:207–219

11. Still G (1999) Generalized semi-infinite programming: The-
ory and methods. Europ J Oper Res 119:301–313

12. Wetterling W (1970) Definitheitsbedingungen für relative
Extrema bei Optimierungs- und Approximationsaufgaben.
Numer Math 15:122–136

Semi-infinite Programming,
Semidefinite Programming
and Perfect Duality
K. O. KORTANEK, QINGHONG ZHANG

University Iowa, Iowa City, USA

MSC2000: 90C05, 90C25, 90C30, 90C34

Article Outline

Keywords
Duality of the Linear SIP Problem

Dual Semidefinite Programs
Perfect Duality from the View
of Linear Semi-Infinite Programming

The SDP as a Conic Convex Program
See also
References

Keywords

Semi-infinite programming; Conic convex programs;
Perfect duality; Descent vector; Perturbations

Duality of the Linear SIP Problem

Linear semi-infinite programming is a next level of ex-
tension of elementary finite linear programming where
now finitely many variables occur in infinitely many
linear inequalities. Some of the earliest papers were
by A. Charnes, W.W. Cooper, and K.O. Kortanek,
[3,4,5,6]. More recent surveys by S.-Å. Gustafson and
R. Hettich were co-authored with Kortanek, see [8,11],
and several symposium volumes on semi-infinite pro-
gramming have appeared since the late 1970s, [7,10].

In this paper we begin with the primal program de-
noted by Program I. The analogy to a primal finite lin-
ear program is thus made apparent.

Program I. Let T be a nonempty set and u = (u1,
. . . , un +1) be real-valued functions on T and b 2
Rn. Find vI = supy|b from among y 2 Rn such
that y|u(t) � un +1(t), 8t 2 T.

Clearly, if we choose a finite subset of {t1, . . . , tk} of
T, then we obtain a finite LP approximation to Program
I, namely,

Program Ik. Find vIk = maxy|b subject to y 2 Rn

and y|u(ti) � un +1(ti), i D 1; k.

Remark 1 Without sufficient regularity conditions,
Program Ik may be a very bad approximation to Pro-
gram I, and possibly useless. Here, we also use the typi-
cal Russian notation i D 1;m for i = 1, . . . ,m.

Constructing the dual program to a finite LP is a pleas-
ant task, and in this case yields the following,

Program IIk. Find vIk = min
Pk

iD1 un +1(ti) �i
with �i � 0, i D 1; k such that

Pk
iD1u(ti) �i = b.
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Now any finite LP approximation depends on a selec-
tion of a finite subset of the given SIP index set T, and
of course there are infinitely many such choices. To at-
tempt to recover the given infinite problem by this pro-
cedure requires that we at least allow the finite subsets
of T to be freely chosen. This is formulated mathemati-
cally with generalized finite sequences, a particular func-
tion space, in the dual program. There are close con-
nections between this construction and G.B. Dantzig ’s
concept of generalized linear programming with vari-
able coefficients, and some of these were explored in
a paper by Kortanek in the 1970s, [12].

Program II. Find vII = inft 2 supp 	un +1(t)�(t)
from among � 2 R(S), �(�) � 0, such thatP

t 2 supp 	u(t) � (t) = b, where � 2R(S) are gener-
alized finite sequences, namely supp � = {t: �(t)
6D 0} is a finite set.

From a probabilist ’s point of view Program II is equiv-
alent to the following:

Program IIB. Find vIIB = inf
R
T un +1 d˛ where

˛ are nonnegative Borel measures on a Borel set
T � Rn subject to

R
T ui d˛ D bi ; i D 1; k, and

where ui are Borel integrable functions, see [9].

Using analogous algebraic manipulations as in finite
linear programming, one can verify that if y and � are
feasible respectively for Programs I and II, then

y>b �
X

s2supp	

unC1(s)�(s):

When both programs are feasible, it follows that

vI � vII : (1)

Termed the duality inequality, (1) becomes an
equality when certain regularity conditions hold. The
most widespread sufficient condition is that the func-
tions u(�) are continuous on a compact set S, and the
Slater condition holds, namely there exists by such that
by>u(t) < unC1(t),8t 2 S. This condition is also termed
superconsistency, and it is defined for the dual Program
II in a different way. As reviewed in [11, Thm. 6.11],
a program is superconsistent if and only if its dual pro-
gram has bounded level sets. Bounded level sets are nec-
essary and sufficient to overcome the ‘danger’ noted be-
low Program Ik about using any one finite linear pro-
gram as an approximation to a linear semi-infinite pro-
gram.

In general, without a constraint qualification a du-
ality gap, vI < vII can occur.

Example 2

vI1 sup
˚
�y1 : � y1t � y2 t2 � �t; 8t 2 [0; 1]

�
:

Here vI1 = �1, but vII1 = +1 reflecting the inconsis-
tency of the dual program.

During the 1970s affine perturbations of the b-vector
were constructed of the form b + � v, where � > 0, v 2
Rn leading naturally to the following dual programs.

I�v

(
vI�v D sup y>(bC �v)
s.t. y>u(t) � unC1(t); 8t 2 T

and

II�v

8̂
ˆ̂̂<
ˆ̂̂̂
:

vII�v D inf
t2supp	

unC1(t)�(t)

from among � 2 R(S); �(�) � 0;
s.t.

X
t2supp	

u(t)�(t)D bC �v:

The idea was that II�v would suggest a Program II� that
would be in perfect duality with Program I. To accom-
plish this, certain properties were required of the vector
v used in the perturbation.

Definition 3 A vector v 2 Rn that satisfies the fol-
lowing property is termed a descent vector for Program
I: given any � > 0, there exists a generalized finite se-
quence ��(�) which is feasible for Program II�v such that
in addition,

X
t

unC1(t)��(t) � vI : (2)

To see how a descent vector is used, let ı > 0 but other-
wise arbitrary. Let y(ı) be I-feasible such that

vI � b>y(ı) � vI �
ı

2
: (3)

Let � < ı/2 ky(ı) | v k, where without loss of generality
y(ı) |v 6D 0). By Definition 3 there exists ��(�) which is
II�v -feasible. Hence by the duality inequality,

X
t

unC1(t)��(t) � y(ı)>bC �y(ı)>v: (4)
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Combining (2)–(4) yields

vI �
X
t

unC1(t)��(t) � vI �
ı

2
�
ı

2

D vI � ı :
(5)

The interpretation of (5) is that we can obtain a solu-
tion of II�v with objective function value as close to vI
as desired. The formal perfect dual to Program I is the
following one.

Program II�. infw from w 2 R, (v, vm +1) 2 Rm +1

which satisfy the following constraints: given any
� > 0, 9ı, 0 < ı � � such that

X
t2supp


ui (t)�(t) D ci C ıvi ; i D 1;m;

X
t2supp


u0(t)�(t)� w � ıvmC1

has a solution � 2 R(B).

Rather than pursue duality theory in depth, we look
to newly discovered relationships between of LSIP and
semidefinite programming, SDP, see [14,15,18,19].

Dual Semidefinite Programs

We begin with the following standard primal SDP pro-
gram:

P

8̂
<
:̂

sup c>x

s.t.
mX
iD1

xiQi � Q0;
(6)

where Qi, i D 0;m; are n � n symmetric matrices.

Remark 4 It is convenient to denote the value of a pro-
gram (P) by �(P), and the value of a particular feasible
point/solution, say x, simply by �(x).

D

8̂
<̂
ˆ̂:

inf U � Q0

s.t. U � Qi D ci ; i D 1;m;
U � 0:

(7)

For Programs P and D, we have the following weak
duality lemma, also termed the duality inequality.

Lemma 5 If U is D-feasible and x is P-feasible, then
�(x)� �(U).

Now let Vj, j D 1; n, be an orthonormal basis for the
linear space Sn (of n � n symmetric matrices, n D
n
2 � (n C 1)) with inner product U � W � hU, W i
= trace UW, where U;W 2 Sn , and UW denotes ordi-
nary, dimension compatible matrix multiplication.

Let

Q0 D

nX
jD1

b jV j � b>V;

Qi D

nX
jD1

ai jV j; A D (ai j)m�n ;

U D
nX
jD1

y jV j � y>V:

Definition 6 The convex cone K � Rn is defined with
respect to the given orthonormal basis by:

z D fz jg 2 K if and only if z>V � 0:

The dual cone is conveniently expressed as K� = {s 2
Rn: s|K � R+, R+ is the set of nonnegative reals. Here,
K = K�. We also use the terminology appearing in [16,
Sec. 1.5.1] namely:

Q� : Sn ! Rm ;

Q�(U) D (U � Qi )iD1;m;

Q# : Sn ! RmC1;

Q#(U) D (Q0 � U;Q�(U))>:

Perfect Duality from the View
of Linear Semi-Infinite Programming

Program (P) is equivalent to the following LSIP:

8̂
<
:̂

sup c>x

s.t.
mX
iD1

xiui(t) � u0(t); 8t 2 B;

B �
˚
t 2 Rn : ktk D ktk2 D 1

�

where ui(t) D t>Qi t; i D 0;m:

(8)
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As reviewed in [11 Sec. 6.4], we have the following per-
fect dual, DG:

�(DG) D infw;

w 2 R

s.t. (c;w)> 2 cl(MmC1);

where MmC1

D co(f(u1(t); : : : ; um(t); u0(t))>gt2B) � RmC1:

(9)

Rather than considering arbitrary paths in Mm + 1

converging to (c,w)|, we need only consider movement
along a descent ray, [13], associated with the minimiza-
tion of ProgramD�, which generates straight line paths,
(9), namely:

D�

8<
:
inf w;

w 2 R and
�
v vmC1

�>
2 RmC1

which satisfy the condition:
8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

given � > 0;
9� 2 R(B); � � 0;
s.t.

X
t2supp


ui (t)�(t) D ci C �vi ;

i D 1;m;X
t2supp


u0(t)�(t)� w � �vmC1:

(10)

We need another program using descent vectors (for
minimization) that is visibly close to the SDP structure:

DDV

(
inf (U CW) � Q0;

where U;W 2 Sn; U � 0;

satisfying: given any � > 0, 9�� > 0:

�� > ı > 0) 9Uı :

Qi � (Uı C ıW) D ci ; i D 1;m
(11)

Q0 � (Uı C ıW) � � � Q0 � (U CW): (12)

Definition 7 We say that V is feasible for DDV if there
are U;W 2 Sn with U < 0, such that V = U + W, and
the constraints of DDV are satisfied.

Our first goal is to show that ProgramsD� and DDV are
equivalent. We need two lemmas for this task.

Lemma 8 If � 2 R(B), � � 0, then 9a PSD U such that
X
t

ui(t)�(t) D Qi � U; i D 0;m:

Conversely, if U is PSD, then 9� 2 R(B), �� 0, such that
X
t

ui(t)�(t) D Qi � U; i D 0;m:

Proof Let supp �(t) = {t1, . . . , tp} with t>j D

(t j1; : : : ; t jn). Then

ui (t j) D t>j Qi t j D Qi � Uj; (13)

where Uj D (t jk t jl )k;lD1;n .
Set U =

Pp
jD1 �(tj) Uj. Since each Uj < 0, j D 1; p,

it follows that

U is PSD, and

Qi � U D
X

t2supp


ui(t)�(t); i D 0;m:

Conversely, if U is PSD, then there exists B 2 Sn

such that

B> D B�1 with BXB�1 D U; X diagonal:

Therefore,

Qi � U D Qi � BXB�1 D tr(QiBXB�1)

D tr(B�1QiBX) D B�1QiB � X:

Let

X D diagf�1; : : : ; �ng; � j � 0; j D 1; n:

Then

Qi �U D tr(B�1QiBX) D
nX
jD1

�>j B
�1QiB� j ;

where � j has
p
� j in its jth component, and zero else-

where.
Let

t j D

8̂
<
:̂
0 if � j D 0;

>j B�1



>j B�1





if � j ¤ 0

and

�(t) D

8<
:
0 if t … ft1; : : : ; tng;


�>j B�1





2

if t D t j; j 2 1; n:
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Hence, we obtain,

Qi � U D B�1QiB � X D
X

t2supp


�(t)ui(t):

For the next result we will need the following program:

D��
(
inf w;
where w 2 R and W 2 Sn satisfy:

given any � > 0, 9U� 2 Sn , U� � 0:

Qi � (U� C �W) D ci ; i D 1;m; (14)

Q0 � (U� C �W) � w: (15)

Lemma 9 Program D� is equivalent to Program D��.

Proof Let D�� be consistent with feasible point w 2 R,
W 2 Sn . Simply use Lemma 8 and set

Qi �W D �vi ; i D 1;m;

Q0 �W D �vmC1:

Hence, any feasible solution of D�� is feasible for D�.
Suppose now (v, vm + 1, w)| is feasible for D�. By

Lemma 8, for any � > 0, 9U� such that

Qi � U� D ci C �vi ; i D 1;m; (16)

Q0 � U� � w � �vmC1: (17)

Therefore, for any � > 0 the equation AY = c+ �v has
solutions and so does AY =� v, (A is the matrix defined
above Definition 6), so 9W 2 Sn such that Q�(W) = �
v. We consider two cases.
1) Q0 2 linear span {Qi}miD1.

Suppose Q0 =
Pm

iD1aiQi. Then set w0 =
Pm

iD1aici. It
follows from (17) that w0 � w and (W,w0) is feasible
for D��.

2) Q0 is linearly independent of {Qi}miD1.
For this case it follows that there exists Y1, Y2 � Rn

such that,
�

A
b>Y1

�
Y1 D

�
0

�vmC1

�

and
�

A
b>Y1

�
Y2 D

�
�v
0

�
:

Therefore, 9Wi 2 Sn , i = 1, 2, such that

Q�(W1) D 0; Q�(W2) D �v;

Q0 �W1 D �vmC1; Q0 �W2 D 0:

Hence, (W1 +W2, w) is feasible for D��.
Since the objective functions are identical, namely

w, it follows that D� is equivalent to D��.

Theorem 10 Programs D� and DDV are equivalent.

Proof It suffices to show that DDV and D�� are equiv-
alent. We begin by supposing that DDV is feasible with
feasible solution V . This means 9U < 0, W 2 Sn satis-
fying (11) and (12). Let wn = Q0 � (U +W) + 1/n. Then
(W, wn) is feasible for D�� and �(DDV)� �(D��).

Conversely, supposeD�� is feasible with feasible so-
lution, (W, w). Then 9U such that

Qi � (U CW) D ci
Q0 � (U CW) � w; i D 1;m:

1) Q0 2 linear span {Qi}miD1.
In this case Q0 � (U +W) is determined by {Qi � (U
+W)}miD1. Therefore, U +W is feasible for DDV and
�(DDV) � �(D��).

2) Q0 is linearly independent of {Qi}miD1.
In this case there exists W0 2 Sn satisfying

Qi �W0 D 0; Q0 �W0 D 1:

Now, for any � > 0, 9M > 0, M� = w � Q0 � (U +W).
Hence,

w D Q0 � (U CW CM�W0)

and

Qi � (U CW CM�W0) D ci ; i D 1;m:

But for any ı < 1/M (� �), 9Uı < 0 Uı satisfies (14)
and 15.

Hence, Qi � (Uı + ı(W + M � W0)) = ci, i D 1;m,
and

Q0 � (Uı C ı(W CM�W0))

D Q0 � (Uı C ıW)C ıM� � w C ıM�:
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Therefore,

Q0 � (Uı C ı(W CM�W0)) � ıM�

� Q0 � (U C (W CM�W0)):

So

Q0 � (Uı C ı(W CM�W0)) � �

� Q0 � (U C (W CM�W0)):

Therefore, (U +W+ (w � Q0 � (U +W))W0) is a feasi-
ble solution for DDV and it is easy to show that �(DDV)
= �(D��). Hence, in conclusion we have obtained the
following equivalence:

DDV , D��, D�:

Corollary 11 Program P and Program DDV are in per-
fect duality.

The SDP as a Conic Convex Program

Recently, M.V. Ramana [16], Zhi-Quan Luo, Jos.F.
Sturm, and Shuzhong Zhang [15], and J.F. Strum [18]
developed a perfect dual of the semidefinite program P,
(6) involving only linear and positive definiteness con-
straints. The authors [15] state that their regularized
program coincides with Ramana’s extended Lagrange-
Slater dual and that this fact was already recognized in
[17]; see also [1,2]. In [14] we investigate these connec-
tions by using results for regularized conic convex pro-
grams. We develop some relationships between all the
perfect duals including the one presented earlier in this
paper, II�. We refer the interested reader to all of these
papers, but here conclude by showing how to restate the
SDP program P as a conic convex program.

Earlier the convex cone K and the matrix A were
introduced. Clearly, Program P, (6), is equivalent to:

(
sup c>x
s.t. b � A>x 2 K� (D K)

(18)

with dual program,

(
inf b>y
s.t. Ay D c; y 2 K:

(19)

Program P is equivalent to the following conic convex
program:

P0

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

inf (0; c)>(s; t)
s.t. (s; t) 2 RnCm ;

(s; t)� (b; 0) D (A>x; x);
9x 2 Rm

and (s; t) 2 K� �Rm D K �Rm :

Program D is equivalent to:

D0

8̂
ˆ̂̂<
ˆ̂̂̂
:

inf (b; 0)>(y; u)
from among (y; u) 2 RnCm

s.t. (y; u) � (0; c) 2 ker[A I]
and (y; u) 2 K � f0g:

Program D’ is a conic convex program which in the no-
tation used in [15] becomes:

CP((0; c); (b; 0); ker[A I];K � f0g):

In [15] a finite sequence of regularized programs is con-
structed having certain properties that lead to the con-
struction of an SDP perfect dual.

See also
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Methods
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Sensitivity analysis has been extensively developed for
a variety of problems in mathematical programming
and applied mathematics [2]. It is concerned, in gen-
eral, with investigation of properties of solutions to
problems with perturbed data. This type of analysis de-
rives its importance from the fact that almost all prob-
lems in mathematical programming and applied math-
ematics are solved for a fixed, specified set of data. As
a result, the computed solution may be considerably in-
accurate or even infeasible if the data are subjected to
changes.

Nonlinear complementarity problems were origi-
nally formulated in the context of mathematical pro-
gramming and then shown to be a special case of varia-
tional inequality problems ([1,6]). Linear complemen-
tarity problems were introduced earlier as extensions
of convex quadratic programming problems (and bi-
matrix games) [1]. Initial sensitivity analysis results
were developed for linear complementarity problems
by extending corresponding results from linear and
quadratic programming [1]. In recent years it has been
widely recognized that complementarity problems gen-
eralize many economic, game-theoretic and transporta-
tion equilibrium problems ([1,6,11]). These equilibrium
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problems were modeled as finite-dimensional comple-
mentarity problems (and variational inequalities) and
the issues of computational efficiency and sensitivity
analysis became an important part of their analysis. The
computation of equilibria results in predictions of the
behavior of the underlying system. As a result, the sen-
sitivity of the equilibrium solution to changes in model
parameters and data needs to be analyzed by the mod-
eler.

The (finite-dimensional) parametric nonlinear com-
plementarity problem is defined as

NCP(�)

8̂
ˆ̂̂<
ˆ̂̂̂
:

find x
s.t. x � 0;

F(x; �) � 0;
F(x; �)>x D 0;

where F is a mapping from Rn × Rk to Rn and � 2 Rk

is the parameter vector. Observe that NCP(�) is equiva-
lent to the parametric variational inequality VI(�) with
mapping F and the fixed feasible set X(�) = K = {x: x
� 0}. The parametric linear complementarity problem is
defined as

LCP(M; q)

8̂
ˆ̂̂<
ˆ̂̂̂
:

find x
s.t. x � 0;

Mx C q � 0;
(Mx C q)>x D 0;

where M is an n × n matrix and q 2 Rn (both M and q
are considered parameters here).

Let S be the solution point-to-set map for NCP(�)
which assigns to each parameter � 2 Rk the set of solu-
tions of NCP(�)

S(�) D
˚
x � 0 : F(x; �) � 0; F(x; �)>x D 0

�
:

Similarly, let the solution point-to-set map for
LCP(M, q) be defined as

S(M; q)

D
˚
x � 0 : Mx C q � 0; (Mx C q)>x D 0

�
:

Sensitivity analysis of the parametric nonlinear comple-
mentarity problem NCP(�) is concerned with:
� The existence and (local) uniqueness of solutions of

NCP(�), that is, investigating whether the solution
set S(�) is nonempty and a singleton.

� Continuity properties of the solution set map S, such
as Lipschitz continuity, both for multivalued and
single-valued S.

� Differentiability properties of the solution set map
S, such as directional or Fréchet differentiability of
a single-valued map S and differentiability in a gen-
eralized sense of a multivalued map S.
The fundamental sensitivity analysis results were

obtained for the NCP(�) problem using the equivalent
parametric generalized equation of the form ([12,13]):

GEK(�)

(
find x
s.t. 0 2 F(x; �)C NK(x);

where NK(x) is the normal cone of the set K = {x: x� 0}
at x.

S.M. Robinson [13] showed that under the assump-
tions that the mapping F is continuously differentiable
and that the solution x� of the unperturbed problem
NCP(��) is a regular solution, the solution set S(�) of
NCP(�) is (locally) nonempty and a singleton (that is,
S(�) = {x(�)}) for all � near ��. In addition, the solution
x(�) is Lipschitz continuous in �. Under the same as-
sumptions it was also shown later that x(�) is direction-
ally differentiable at �� [7] and, under further assump-
tions on K, that x(�) is Fréchet differentiable at �� (see
surveys in [6,8]). Sensitivity analysis results described
up to now for the problem NCP(�) can be directly ap-
plied to the perturbed linear complementarity problem
LCP(�) where we substitute M(�) and q(�) for the ma-
trixM and the vector q in the formulation LCP(M, q).

Further extensions of the sensitivity analysis results
for NCP(�) were obtained for situations where the so-
lution set map S(�) is multivalued. These include con-
ditions for the existence, continuity and differentiabil-
ity (in a generalized sense) of the point-to-set map S(�)
([4,9]).

Another approach to the study of perturbed solu-
tions for nonlinear complementarity problems, called
stability analysis, was proposed in [5]. In this approach,
the mapping F itself is the problem parameter (instead
of being dependent on a parameter �) and results from
degree theory are utilized to obtain conditions for ex-
istence and (generalized) continuity of the multival-
ued solution map S as a function of F. This approach
was also applied to linear complementarity problems
LCP(M, q) where (M, q) is the problem parameter and
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conditions for stability are expressed in terms of prop-
erties of the matrix M [1]. Recent extensions of stabil-
ity analysis for linear and nonlinear complementarity
problems, using degree theory, can be found in [3,4].

Sensitivity analysis of nonlinear complementarity
problems was applied to several equilibrium prob-
lems, including the general spatial price equilibrium
model [14] and the Cournot–Nash oligopolistic equilib-
rium model [15]. Another class of problems to which
sensitivity analysis results for complementarity prob-
lems may be applied are mathematical programs with
equilibrium constraints which arise in game theory,
bilevel programming, and network design problems
[10]. These problems include constraints of the type x 2
S(�) where, in certain cases, S(�) may be the solution set
of a complementarity problem. Computational meth-
ods for solving these problems rely on the ability to cal-
culate the (generalized) derivatives of the solution set
map S(�).
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and applied mathematics [2]. It is concerned, in gen-
eral, with investigation of properties of solutions to
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problems with perturbed data. This type of analysis de-
rives its importance from the fact that almost all prob-
lems in mathematical programming and applied math-
ematics are solved for a fixed, specified set of data. As
a result, the computed solution may be considerably in-
accurate or even infeasible if the data are subjected to
changes.

Variational inequality problems were originally de-
veloped to model partial differential equations aris-
ing from applications in mechanics [5]. These prob-
lems were formulated in infinite-dimensional spaces
and sensitivity analysis issues were not addressed. How-
ever, it has been widely recognized in recent years
that variational inequalities are direct generalizations
of many economic, game-theoretic and transportation
equilibrium problems ([4,10]). These equilibrium prob-
lems were modeled as finite-dimensional variational in-
equalities and the issues of computational efficiency
and sensitivity analysis became an important part of
their analysis. The computation of equilibria results in
predictions of the behavior of the underlying system.
As a result, the sensitivity of the equilibrium solution
to changes in model parameters and data needs to be
analyzed by the modeler.

The (finite-dimensional) general parametric varia-
tional inequality problem is defined as

VI(�)

8̂
<̂
ˆ̂:

find x 2 X(�)
s.t. F(x; �)>(y � x) � 0

for all y 2 X(�);

where F is a mapping fromRn × Rk to Rn, X is a feasible
point-to-set map fromRk toRn (that is, it assigns to each
point � the feasible set X(�) of VI(�)), and � 2 Rk is
the parameter vector. Let S be the solution point-to-set
map which assigns to each parameter � 2 Rk the set of
solutions

S(�) D
�
x 2 X(�) :

F(x; �)>(y � x) � 0;
8y 2 X(�)

	
:

Sensitivity analysis of the parametric variational in-
equality VI(�) problem is concerned with:
� The existence and (local) uniqueness of solutions of

VI(�), that is investigating whether the solution set
S(�) is nonempty and a singleton.

� Continuity properties of the solution set map S, such
as Lipschitz continuity, both for multivalued and
single-valued S.

� Differentiability properties of the solution set map
S such as directional or Fréchet differentiability of
a single-valued map S and differentiability in a gen-
eralized sense of a multivalued map S.
The fundamental sensitivity analysis results were

initially obtained for the special VI(�) problem, where
X(�) = K is a fixed (closed and convex) set, using the
equivalent parametric generalized equation of the form
([12,13]):

GEK(�)

(
find x
s.t. 0 2 F(x; �)C NK(x);

where NK(x) is the normal cone of the set K at x.
S.M. Robinson [13] showed that under the assump-

tions that the mapping F is continuously differentiable
and that the solution x� of the unperturbed prob-
lem VI(��) is regular, the solution set S(�) is (locally)
nonempty and a singleton (that is S(�) = {x(�)}) for all �
near ��. In addition, the solution x(�) is Lipschitz con-
tinuous in �. Under an additional assumption that K is
polyhedral, it was also shown later that x(�) is direction-
ally differentiable at �� and, under further assumptions
on K, that x(�) is Fréchet differentiable at �� (see the
surveys in [4,7]).

Sensitivity analysis results were then extended to the
more general VI(�) problem, where X(�) = {x 2 Rn:
g(x, �) � 0, h(x, �) = 0} is defined using mappings g and
h. For this problem, the equivalent parametric general-
ized equation is of the form ([7,7]):

GKKT0(�)

8̂
<̂
ˆ̂:

find (x; u;w)
s.t 0 2 T(x; u;w; �)

CNRn�Rm
C
�Rp (x; u;w);

where

T(x; u;w; �)>

D [LD(x; u;w; �)>; g(x; �)>; h(x; �)>]

and LD (x, u,w, �) = F(x, �)�rxg(x, �)| u +rx h(x, �)|

w. The generalized equation GKKT0(�) is equivalent to
the system of generalized Karush–Kuhn–Tucker condi-
tions similar to those in nonlinear programming [2].

By applying the results obtained for VI(�) with fixed
K to GKKT0(�), Robinson [13] showed that under the
assumptions that the mapping F is once- and the map-
pings g and h are twice-continuously differentiable and
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that the solution (x�, u�, w�) of the unperturbed prob-
lem GKKT0(��) is regular, the solution set S(�) is (lo-
cally) nonempty and a singleton (that is S(�) = {(x(�),
u(�), w(�))}) for all � near ��. In addition, the solu-
tion (x(�), u(�), w(�)) is Lipschitz continuous in �. Un-
der the same assumptions, it was also shown later that
(x(�), u(�), w(�)) is directionally differentiable at �� [6]
and, under an additional strict complementarity slack-
ness condition, that (x(�), u(�), w(�)) is Fréchet differ-
entiable at �� (see the surveys in [4,7]).

Further extensions of the sensitivity analysis results
for VI(�) were obtained for situations where the solu-
tion set map S(�) is multivalued. These include condi-
tions for the existence, continuity and differentiability
(in a generalized sense) of the point-to-set map S(�)
([3,8,11]).

Sensitivity analysis of variational inequalities was
applied to a variety of equilibrium problems. These
applications include the traffic assignment or network
equilibrium model ([10,11]), the general spatial eco-
nomic equilibrium models ([1,10,14]), and the spatial
competition facility location models including spatial
price equilibrium and Cournot–Nash oligopolistic equi-
librium [15]. Another class of problems to which sensi-
tivity analysis results were extensively applied aremath-
ematical programs with equilibrium constraints which
arise in game theory, bilevel programming, and net-
work design problems [9]. These problems include con-
straints of the type x 2 S(�) where S(�) is the solution set
of a variational inequality VI(�). Computational meth-
ods for solving these problems rely on the ability to cal-
culate the (generalized) derivatives of the solution set
map S(�).
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We are interested in what happens to a solution of
a problem when there are changes in the problem data.
We shall use the term sensitivity analysis to refer to
the calculation and study of any collection of mea-
surements associated with any changes, infinitesimally
small or finite. The measure of change may be ex-
plicit or implicit, qualitative or quantitative. For exam-
ple, a qualitative characteristic may be the continuity
of a change, while a quantitative one might be a nu-
merical bound. An explicit measure is usually a closed
form expression while an implicit one is inferred by
a proof of existence of a property or quantity. Sta-
ble will mean ‘well-behaved’ or ‘well-conditioned’, in
a given context. Traditionally, well-conditioned gen-
erally meant small solution changes from small data
changes, but many subjective interpretations are pos-
sible and currently in use. The concept is relative to
a given property, data value or data change. Stochastic
changes and effects are certainly possible and frequently
encountered in applications, but our focus is determin-
istic.

Some familiar examples will hopefully clarify the
kinds of problems and conclusions that are of interest.
Suppose Ax = b, where A is an n × n matrix and x and
b are in En, n-dimensional Euclidean space. If A is non-
singular, then we know that x = A�1b. Now, if A or b
changes, we can track the change in x if we know A�1.
We have a closed form smooth stable explicit solution
x(A; b) of x as a function of A and b. Of course, com-
putationally, we may even here encounter serious diffi-
culties, since A�1 or b may be difficult to evaluate. For
example, suppose that A and b are functions of some
parameter � 2 Eq, which we denote by A(�) and b(�). If
A remains nonsingular and b remains defined for � 2 T
� Eq, then x(�) = A�1(�)b(�) for � 2 T. In this instance,
at least we know the general form of the parametric so-
lution, but even so a closed form expression x(�) of x
as a function of � might be too difficult to obtain. Issues
becomemore complicated, e. g., for what � is x continu-
ous, differentiable, rational, bounded, etc.? Can we cal-
culate x and its derivatives or bounds, relative to �, or at
least make good estimates? If A is singular or b is not in
the range of A, then x(�) may not exist or may be mul-
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tivalued. Can we characterize the solution set S(�) for
� 2 T?

This example suggests that we are thinking of a solu-
tion as a function of the problem data, though the func-
tion may be extremely complicated, multivalued and
only implicitly defined. Our central objective is to char-
acterize this functional relationship. Why? Because, in-
evitably, data are ‘soft’, subject to error or change, un-
certain. It is usually desirable to approximate new so-
lutions and the effects of data changes, once a solution
has been calculated, without requiring the calculation
of a solution for each new data value.

A closed form solution will generally not be avail-
able, except at an aggregate level for simple models such
as that noted above. There are many such models in
the sciences, in effect whenever we have a formula for
a quantity as a closed form expression. The reader will
know many examples (e. g., the quadratic formula for
the solution of ax2 + bx + c = 0 where x, a, b, c 2 E1, A
= 
r2, F =ma, E =mc2, etc.), but perhaps may not have
focused on viewing these formulas as representations
of solutions of parametric problems, in effect solutions
in terms of problem data. This is our orientation here,
albeit as noted, we will not usually have the luxury of
a closed form solution at our disposal.

We are interested in a particular problem formula-
tion that has many varied and important applications.
The model is the nonlinear programming (NLP) prob-
lem that is defined as follows: Find a vector x that solves

(P)

8̂
<̂
ˆ̂:

min
x

f (x)

s.t. gi (x) � 0 (i D 1; : : : ;m);
hj(x) D 0 ( j D 1; : : : ; p):

Since our focus is on the effect of data changes on x, we
explicitly introduce a vector � that represents the data
and study the problem of finding a solution x(�) of

P(�)

8̂
<̂
ˆ̂:

min
x

f (x; �)

s.t. gi (x; �) � 0 (i D 1; : : : ;m);
hj(x; �) D 0 ( j D 1; : : : ; p):

We assume that x 2 En (Euclidean n-space), though all
the results we mention have extensions to more gen-
eral spaces, and we assume � 2 T, a subset of Eq. In this
framework, when � is fixed, the parametric NLP P(�)
becomes a standard NLP of the form (P). We are in-

terested in a solution x(�), the ‘optimal value’ f [x(�), �]
and other quantities, when � changes.

Some simple examples may help to illustrate the
problem. Suppose we have the linear program:
8̂
<̂
ˆ̂:

min
x

x

s.t. x � �
x 2 E1; � 2 E1:

Then, the solution x(�) = � and the optimal value
f [x(�), �] = x(�) = �, where � can be any number. This
situation is rather ideal: the solution is defined and
unique for every �, the solution and optimal value are
infinitely differentiable, in this case linear in �. Every-
thing is completely stable.

As another example of a very well-behaved prob-
lem, now an NLP in E2, consider:
8̂
<̂
ˆ̂:

min
x

(x1 � �21)2 C (x2 � j�2j)2

s.t. x1; x2 � 0;
x 2 E2; � 2 E2:

It is easy to see that x(�) = [x1(�), x2(�)] = (�21, |�2|) and
f [x(�), �] = 0 for any � 2 E2. Here again, the solution
x(�) is a well-defined unique continuous function for all
� in E2. The component x1(�) is infinitely differentiable,
but now x2(�) is not differentiable at �2 = 0. The opti-
mal value is perfectly stable, indeed constant. Again, we
have x(�) and f [x(�), �] in closed form.

Unfortunately, things are not always so nice, even
for very simple problems. Consider the linear program

LP(�)

8̂
<̂
ˆ̂:

min
x

�x

s.t. x � 0;
x 2 E1; � 2 E1:

When � > 0, then x(�) = 0 solves this problem and
f [x(�), �] = 0. When � = 0, then f [x(�), �] = 0 for any
x 2 E1, hence LP(0) is solved for any x � 0, so the so-
lution set S(�) by � = 0 is given by S(0) = {x 2 E1: x �
0} and of course f [x(0), 0] = 0. When � < 0, things col-
lapse, since the objective function f (x, �) is unbounded
below in the feasible set R = {x 2 E1: x � 0}. Symboli-
cally, we see that f (x, �) = �x!�1 as x! +1 when
� < 0. Here, we say that the infimum (smallest value of
f ) is ‘not attained’, nor is the solution (minimizing value
of x) attained. Summarizing, the solution is stable for �
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> 0, unstable for � = 0, since the solution set S(0) can
vanish in every small neighborhood of � = 0, and un-
solvable for � < 0.

An equivalent example in E2 may give more per-
spective on the geometry of the problem. Consider
8<
:
min
x

x2

s.t. �x1 � x2; x1 � 0; x 2 E2; � 2 E1:

The reader is encouraged to sketch the feasible region
for � > 0, � = 0 and � < 0. Clearly, the smallest value of x2
for � > 0 or � = 0 is x2 = 0, but for � < 0, the component
x2 is not bounded below. The associated values of x1
are x1 = 0 for � > 0 and any x1 � 0 for � = 0 and x1
unbounded above as x2!�1 for � < 0. Collecting this
information, we have the following: The solution x(�) =
(0, 0) for � > 0; x(�) is any x 2 S(0) = {x 2 E2: x1 � 0,
x2 = 0} for � = 0; and the solution is not attained for �
< 0. The optimal value f [x(�), �] = 0 for � � 0 and is
not bounded below for � < 0. As before, the problem is
stable for � > 0, but unstable for � = 0 since the solution
does not exist for some � in any neighborhood of � = 0,
and unsolvable for � < 0.

What causes such erratic behavior and what guaran-
tees such stability, for different parameter values? Can
we identify conditions that imply some sort of stability
or that warn of the presence of instability? Can changes
in a solution be predicted within a specified error tol-
erance for problem data changes, without solving the
problem again for each new perturbation? A resolution
and understanding of such questions is the substance of
sensitivity and stability analysis. Note that in our small
examples, the problem functions taken individually are
continuous and differentiable and extremely well be-
haved. Clearly, we need to capture the effect of parame-
ter changes on their joint collective behavior, at least in
a neighborhood of a solution.

Some of the important tools and concepts that have
been especially useful in obtaining conditions and re-
sults for sensitivity calculations and stability character-
izations are:
i) optimality conditions,
ii) constraint qualifications,
iii) implicit function theorems,
iv) directional derivatives,
v) point-to-set maps and set and map convergence

and continuity,

vi) condition number,
vii) convexity and convex analysis, and
viii) duality.
The list is subjective and far from exhaustive. Some
of these constructs will be utilized in the preliminary
results we mention, but we cannot provide additional
coverage in this brief presentation.

We next present a few basis results that illustrate
the application of some of the mentioned mathemati-
cal tools and indicate typical assumptions and conclu-
sions. Consider the important special realization of our
general problem P(�) when the constraints g(x)� 0 and
h(x) = 0 are not present, resulting in the so-called un-
constrained problem

P1(�)

8<
:
min
x

f (x; �)

s.t. x 2 En (� 2 Eq):

Assume that f is twice jointly continuously differen-
tiable in (x, �). Let rx f (x) = [ @f (x)/ @x1, . . . , @f (x)/
@xn] denote the usual gradient of f at x and r2

x f (x) =
r[rf (x)|] (with (i, j)th element given by @2f (x)/ @xi
@xj) define the matrix called theHessian of f at x. (Note
that rxf is an n-dimensional row vector and r2

x f is an
n × n matrix.) The following result is well known and
the assumptions will be called the second order sufficient
conditions at (x, �), denoted by SOSC(x, �). Let � D �,
a fixed quantity.

Proposition 1 If rx f (x; �) D 0 and r2
x f (x; �) is pos-

itive definite, then x is a strict and locally isolated mini-
mizer of f (x; �).

This result is of intrinsic interest and is very important
and well known. What is especially intriguing is that
sensitivity results follow without additional assump-
tions.

Proposition 2 Assuming SOSC(x; �) as before, for �
near � there exists a unique once continuously differen-
tiable vector function x with value x(�) such that x(�) D
x and SOSC(x(�), �) continues to hold and hence x(�) is
a locally unique (i. e., isolated) local minimizer of f (x, �).
Furthermore, the optimal value f � is twice continuously
differentiable, where we define f �(�) = f [x(�), �].

This may be viewed as a stability result, essentially an
existence theorem (following directly from a classical
implicit function theorem) that guarantees that the as-
sumptions made at (x; �) will persist near (x; �) at [x(�),
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�], hence also the conclusions. This suggests an intu-
itively appealing definition of an ideal form of stability,
with respect to a given change in the data. Wemight de-
fine ‘assumption stability’ to be the persistence of initial
conditions and assumptions in the sense indicated.

Interestingly, we can go even further and derive
a sensitivity formula from our observations, again with-
out any new assumptions.

Proposition 3 Assuming as in Proposition 1 and with
x(�) as in Proposition 2, we obtain the following relations
at [x(�), �] near (x; �):
i) Defining the optimal value f �(�) = f [x(�), �], we

conclude from the chain rule for differentiation that

r� f �(�) D d/d�[ f [x(�); �]]

D rx f � r�x Cr� f D r� f (x; �)jxDx(�)

sincerxf [x(�), �] = 0, where F(y)|y = z means to eval-
uate F at y = z. With this understanding, we write

r� f �(�) D r� f [x(�); �]:

ii) Differentiating the last result again by �, we find that

r2
� f
�(�) D r2

x� fr�x Cr
2
� f jxDx(�):

iii) Differentiating rxf [x(�), �] = 0 by � yields

r2
x fr�x Cr

2
�x f D 0

from which we conclude that

r�x(�) D �r2
x f [x(�); �]

�1r2
�x f [x(�); �]:

Here, r2
�x f = r�(rxf |).

Thus, without additional conditions other than the op-
timality conditions SOSC and the assumption of the
presence of data in the form of a parameter vector and
appropriate smoothness, we have a characterization of
local optimality in Proposition 1, a parametric stability
and existence theorem in Proposition 2, and sensitiv-
ity measurements in the form of parameter-derivative
formulas, for both the optimal value and local mini-
mizing point, in Proposition 3. Note that the deriva-
tives are computable, once we have calculated a solu-
tion x(�) for a given �, hence in particular at � where
x(�) D x. These results are extremely important and
useful and they also dramatize some important prin-

ciples, i. e., the persistence of assumptions as a key to
stability, and the intimate connection between optimal-
ity conditions and stability and sensitivity analysis. Of
course, the conclusions are local, but this is not surpris-
ing since the results are based on information at one
point. As a postscript, we also note that SOSC is often
invoked and generally needed for the optimal conver-
gence and rate of convergence behavior of numerical
algorithms, e. g., for the quadratic convergence rate of
Newton’s method. Thus, we conclude that sensitivity
and stability analysis, optimality conditions and char-
acterizations and the convergence properties of compu-
tational algorithms are extremely closely related. Their
underlying theory can undoubtedly be unified at a gen-
eral level.

Applications of results such as those given are nu-
merous. Perhaps most directly, we can estimate f �(�)
and x(�) for small changes in � by using a truncated
Taylor’s series as follows:

i) f �(�) 	 f �(�)Cr� f �(�)(���)C
(���)>r2

� f �(�)(���)
2

where r� f � and r2
� f � are as given above in i) and

ii), and
ii) x(�) 	 x(�) C r�x(�)(� � �) D x � r2

x f �1(x; �)
r2
�x f (x; �)(� � �).

These estimates are available when a good approxima-
tion to x has been obtained.

We conclude this brief expository article by indicat-
ing a number of other applications, extensions and ref-
erences.

There is now an enormous body of literature de-
voted to sensitivity and stability results in mathemati-
cal programming, most of which have been published
starting in the 1970s. The issues surrounding well-
posedness and resulting definitions, e. g., solvability for
small data perturbations, continuous solution changes
for continuous data changes, and others are classical
however and have been studied in mathematics and
physics and other disciplines since early times. A rudi-
mentary general theory has been known for some years.
The recent burst of activity was undoubtedly stimulated
by the tremendous advances in NLP in the 1960s and
1970s, largely resulting from the preceding emergence
and computational demands of modern optimization
applications in the sciences, engineering, economics,
industry, and collectively what came to be known as
operations research, the advent of modern computers,
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and the development and success of linear program-
ming (LP) methodology.

For LP, developed in the 1940s, there quickly fol-
lowed what was called post-optimality sensitivity analy-
sis that included parametric closed form expressions for
solution changes with data changes and error bounds,
this having been recently significantly extended. Exis-
tence theorems and closed form expressions have also
been recently developed for optimal value and solution
point parameter-derivatives and directional derivatives,
as well as parametric bounds, for the general paramet-
ric nonlinear program (NLP) of the form P(�), anal-
ogous to those given in this article for the uncon-
strained problem P1(�). Significant sensitivity and sta-
bility results have been obtained for many important
and well known classes of problems, e. g., geometric
programs, separable programs, semi-infinite and infi-
nite programming, control theory, multi-objective op-
timization, integer programming and stochastic pro-
gramming. The parametric perturbation theory has
been significantly extended to more general models
as well, e. g., variational inequalities and generalized
equations. Results include many variations in optimal-
ity conditions, constraint qualifications, definitions of
continuity and differentiability, generalized convexity
and other mathematical notions and tools. A significant
body of theory now also extends to nonsmooth (i. e.,
nondifferentiable) functions, and to perturbations that
are more general than perturbation of a parameter, e. g.,
function and set perturbations.

Applications are abundant. They include solution
and optimal value extrapolation for perturbed data,
as already noted, model validation, scaling and regu-
larization, decomposition algorithms, bilevel program-
ming, optimization involving implicitly defined func-
tions, duality relations, analysis of convergence prop-
erties of algorithms, the effect of data perturbations
on algorithmic performance, approximation of sensi-
tivity measurements from algorithmic information and
much more. Computational implementations on ac-
tual practical real-world problems do exist but are still
quite limited. Much remains to be done both in theory
and practice, e. g., the provision of standard software
for user-friendly sensitivity and stability calculations in
major NLP solution computer programs, as available in
LP (though user-friendliness may need more emphasis,
even here). The theory is rich and every facet of opti-

mality characterization and algorithmic definition and
performance is a fertile field for the study of the effect
of data perturbations.

The significant contributions to this field are too nu-
merous to mention and thus we shall not attempt to
single out key contributors. Instead, we shall cite only
[1,2,3], references with which the author has been per-
sonally involved, not to presume to monopolize per-
sonal credit but because they contain numerous ref-
erences and state-of-the-art surveys and scholarly pa-
pers frommany established and emerging leaders in the
field. These books and journals and the tutorial and re-
search articles and hundreds of references therein will
hopefully quickly and surely lead the interested reader
to the central core of the published results in this vital
area.
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Differentiation
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� Sensitivity Analysis of Variational Inequality

Problems
� Sensitivity and Stability in NLP: Approximation
� Sensitivity and Stability in NLP: Continuity and

Differential Stability

References
1. Fiacco AV (ed) (1990) Optimizationwith data perturbations.

Ann Oper Res 27 Baltzer, Basel
2. Fiacco AV (1983) Introduction to sensitivity and stability

analysis in nonlinear programming. Acad. Press, New York
3. Fiacco AV (ed) (1998) Mathematical programming with

data perturbations. Lecture Notes Pure and Applied Math,
vol 195. M. Dekker, New York

Sensitivity and Stability in NLP:
Approximation
A. V. FIACCO

Department Operations Res.,
George Washington University, Washington, USA

MSC2000: 90C31



Sensitivity and Stability in NLP: Approximation S 3455

Article Outline

Keywords
Parameter Derivatives
Applications of Sensitivity Analysis
Computational Efficiencies and
AlgorithmicApproximations Computational
Efficiencies and Algorithmic Approximations
Computational Efficiencies and AlgorithmicApproximations
Computational Efficiencies and Algorithmic
Approximations

Algorithmic Approximations
Bounds

Linear Equations
Solution-Point Bounds for NLP
Computable Optimal Value Bounds f� Convex
g i Jointly Concave, hj Jointly Linear Affine
P(�)Jointly Convex
ef and f for Subsets of T
Bounds on the Distance of a Feasible Point to a Solution Point

See also
References

Keywords

Sensitivity analysis; Quadratic programming; Bounds

In this article, we describe a number of (for the most
part) computable formulas and bounds that can be used
to approximate sensitivity and stability measurements
for nonlinear programming (NLP) involving a parame-
ter. We draw freely from the definitions and results pre-
sented in � Sensitivity and stability in NLP and� Sen-
sitivity and stability in NLP: Continuity and differential
stability. The reader is advised to read these before pro-
ceeding with the results we present here.

As noted in � Sensitivity and stability in NLP and
� Sensitivity and stability in NLP: Continuity and dif-
ferential stability, the problem of interest is to find a so-
lution x(�) of

P(�)

8̂
<̂
ˆ̂:

min
x

f (x; �)

s.t. gi (x; �) � 0 (i D 1; : : : ;m);
hj(x; �) D 0 ( j D 1; : : : ; p);

where x 2 En and the parameter � 2 T � Eq. We denote
a local solution by x(�), the local optimal value by f �(�)
= f [x(�), �], solution set by S(�), and feasible region by
R(�).

Our focus is on general finite-dimensional deter-
ministic NLP involving a parameter. The reader may
know that there is a fairly fine-tuned sensitivity anal-
ysis methodology for linear programming (LP), of-
ten referred to as post-optimality analysis, including
a range-analysis concerned with maximum tolerances
on changes in the objective function coefficients within
which a solution and basis does not change, and formu-
las for right-hand side and constraint coefficient ma-
trix changes, bounds on changes, and the like. Recent
work has sharpened the classical theory to allow for
more simultaneous data changes and extend the param-
eter change tolerance idea. Likewise, sensitivity approx-
imation results have been developed for quadratic pro-
grams, networks, separable programs, geometric pro-
grams, and many other mathematical programs having
a special structure. In the direction of more general-
ity, sensitivity and stability approximation results have
been developed for semi-infinite programming, infi-
nite programming, control theory, discrete program-
ming, stochastic programming, andmany other general
programs, extending further to related generalizations
suchas variational inequalities, generalized equations,
nonsmooth analysis, and more.

We consider here three types of sensitivity and sta-
bility measurements at a general level for smooth NLP
involving a parameter:
i) parameter-derivatives of a local solution x(�) and

the local optimal value function f �(�) = f [x(�), �];
ii) algorithmic approximations of solution parameter-

derivatives using a classical and well known barrier
function (interior point) algorithm; and

iii) parameter-dependent solution bounds.

Parameter Derivatives

In � Sensitivity and stability in NLP: Continuity and
differential stability we defined the Karush–Kuhn–
Tucker conditions (KKT) at a feasible point x of P(�)
to be the existence of u� 0 and w such that (conditions
KKT(x, u, w, �)):

8̂
<̂
ˆ̂:

rxL(x; u;w; �) D 0;
ui gi (x; �) D 0 (i D 1; : : : ;m);
hj(x; �) D 0 ( j D 1; : : : ; p);
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where

L(x; u;w; �) D f (x; �)

�

mX
iD1

ui gi (x; �)C
pX

jD1

wjh j(x; �)

is the Lagrangian and u, w are called the Lagrange mul-
tipliers associated with x. Definitions of SOSC, LI and
SCS were also given in � Sensitivity and stability in
NLP: Continuity and differential stability, along with
the following result, which we repeat here for conve-
nience. For simplicity, assume that the functions defin-
ing P(�) are twice jointly continuously differentiable in
(x, �) unless otherwise specified.

Proposition 1 Assume that KKT, SOSC, LI and SCS
hold at a feasible point x of P(�) with associated La-
grange multipliers (u;w), where � 2 interior T. Then,
for � in a neighborhood of � in T we have the following
consequences:
i) There exists a locally unique once continuously dif-

ferentiable vector function y = (x, u, w) such that the
assumptions continue to hold at y(�) = [x(�), u(�)
w(�)], where y(�) D y D (x; u;w).

ii) The point x(�) is an isolated local minimizer of prob-
lem P(�) with associated unique Lagrange multipli-
ers [u(�), w(�)]; and

iii) The local optimal value function f � is twice contin-
uously differentiable in �.

This Proposition follows from the fact that the (x, u,
w)-Jacobian (i. e., the matrix of partial derivatives with
respect to (x, u, w)) of the KKT equation system given
above is nonsingular at (x; u;w; �). Thus, a classical
implicit function theorem is applicable and the results
quickly follow, once it is shown that SOSC persists near
� D �.

Remark 2 G.P. McCormick must be credited for ini-
tially identifying and applying the conditions, KKT,
SOSC, LI and SCS, which imply the existence of the
KKT y-Jacobian inverse. He initiated the use of these
assumptions to obtain extrapolation results for classi-
cal barrier function methods in terms of the algorith-
mic parameter. See [6, Chap. 5]. He also used these to
obtain results similar to those in Proposition 1 but for
a problem that has additive perturbations that may be
nonlinear in x and linear in �, a special case of prob-
lem P(�). See [6, Thm. 6]. The author showed that KKT,

SOSC, LI and SCS suffice for results for the general
problem P(�)as given in Proposition 1, as well as for
the results given in the rest of this article. These devel-
opments are pursued in detail in [2]. McCormick also
stated a partial converse of Proposition 1 as follows: If
KKT and a weakened form of SONC hold and the KKT
y-Jacobian has an inverse at (x; u;w) (for problem P(�)
with � not involved, i. e., � fixed), then SOSC must hold
at (x; u;w). This is [6, Cor. 7], where SONC () the sec-
ond order necessary condition) here means the second
order part of SOSC, weakened to z| r2

x Lz � 0 for all z
as in SOSC. We note that SCS and LI also follow from
the assumptions of [6, Cor. 7]. We can show and here
note that the following partial converse of Proposition 1
is true and equivalent to [6, Cor. 7] just cited: If x is a lo-
cal minimizer of problem P(�) (with � fixed) and KKT
and the KKT y-Jacobian inverse exist at (x; u;w), then
again all the assumptions of Proposition 1, i. e., KKT,
SOSC, LI and SCS, must hold at (x; u;w).

To obtain parameter derivatives of (x, u, w), we simply
note that KKT(x, u, w, �) is locally identically satisfied
at [x(�), u(�), w(�)] near � D �, and hence these equa-
tions can be differentiated with respect to �. We have
the following (conditions KKT[x(�), u(�), w(�), �]):
8̂
<̂
ˆ̂:

rx L[x(�); u(�);w(�); �] D 0;
ui(�)gi [x(�); �] D 0 (i D 1; : : : ;m);
hj[x(�); �] D 0 ( j D 1; : : : ; p):

With F representing the vector function of equalities on
the left, this has the form F[y(�), �] = 0 where y = (x, u,
w). Since our assumptions imply that F is differentiable
in �, we can use the chain rule for differentiation to con-
clude that dF/d� = ry Fr�y + r�F = 0. Applying this
calculation to the KKT equations we get the following:

M(�)r� y(�)C eN(�) D 0;

where

M D

0
BBBBBBBBB@

r2
x L �rg>1 � � � �rg>m rh>1 � � � rh>p

u1rx g1 g1 0
: : : � � � 0 0

umrx gm 0 gm
rh1
: : : 0 0
rhp

1
CCCCCCCCCA
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is the Jacobian of the KKT equations with respect to y
and

eN D [r2
�x L
>; u1r� g>1 ; : : : ; umr� g>m ;

r�h>1 ; : : : ;r�h
>
p ]
>

is the Jacobian of the KKT with respect to �.
Since M is nonsingular, as noted, we obtain the re-

sult

r� y(�) D M(�)�1N(�); (1)

where we have introduced N D �eN, for convenience.
Thus, (1) provides a formula for the parameter deriva-
tives of all components of (x, u, w) for � near �. In par-
ticular, once we calculate the local solution x with asso-
ciated Lagrange multipliers (x), then we can compute

r� y(�) D M(�)�1N(�); (2)

where y(�) D [x(�); u(�);w(�)] D (x; u;w) D y and
of course r�y = [r�x|, r� u|, r�w|]|. It also follows
that r�y is continuous near �, so r� y(�) ! r� y(�) as
� ! �.

We can also calculate parameter derivatives of first
and second order of the local optimal value function
f �(�) = f [x(�), �], again by repeated use of the chain
rule. The results follow. Since the KKT imply that
a) f �(�) = L[x(�), u(�), w(�), �], then, since r� f � = ry

Lr� y +r� L and since it can be shown thatry Lr�
y = 0, it follows that

b) r� f �(�) = r�L(x, u, w, �)|(x, u, w) = [x(�), u(�), w(�)], and
the derivative of this gives r2

� f �(�), i. e.,
c) r2

� f �(�) = d/d�[r� L[x(�), u(�),w(�), �]], where the
vertical bar in b) denotes evaluation at the specified
point.

As before, these expressions apply for all � near �, they
can be evaluated at � once (x; u;w) is available, and they
are continuous near �.

We derive a formula for r2
� f � in explicit form in

the next section, for the general problem P(�).
Some special realizations of problem P(�) should be

mentioned. They are intrinsically important and also
result in considerably simplified formulas.

If problem P(�) is unconstrained, then the result (as
stated in� Sensitivity and stability in NLP) is thatr� f �

=r� f [x(�), �], withr�x =�r2
x f�1 r2

�x f andr2
� f � =

r2
x� fr� x + r2

� f , which can be conveniently expressed

as

r2
� f
� D [r�x>; I]r2

(x;�) f [r�x
>; I]>;

where

r2
(x;�) f D

�
r2

x f r2
�x f

r2
x� f r2

� f

�
:

If the constraints of problem P(�) are present but inde-
pendent of �, then again r� f � = r� f [x(�), �] and r2

�

f � = rx�
2 fr�x + r2

� f , but now r�x is obtained from
(1) with N = [� r2

�x f |, 0]|.
An extremely important case is the so-called right-

hand side problem, an instance of problem P(�) with
form

P1(�)

8̂
<̂
ˆ̂:

min
x

f (x)

s.t. gi (x) � �i (i D 1; : : : ;m);
hj(x) D � j C m ( j D 1; : : : ; p):

This was mentioned also in � Sensitivity and stability
in NLP: Continuity and differential stability, in the con-
text of the directional derivative Dz f � of f � which we
found there to be Dz f �(�) = [u(�), � w(�)]|z. Consis-
tent with this result, we find for problem P1(�), under
our current assumptions, that

r� f �(�) D [u(�);�w(�)]>;

r2
� f
�(�) D [r�u(�)>;�r�w(�)>]>:

(3)

Thus, as noted in � Sensitivity and stability in NLP:
Continuity and differential stability, the rate of change
of the optimal value with respect to a small change only
in the kth constraint value is captured by the value of
the associated optimal Lagrange multiplier. In appli-
cations, since the components of � may generally be
viewed as ‘resource levels’, this establishes a direct con-
nection between a given level and its imputed value
(with regard to a marginal change in the optimal value),
given by the associated optimal Lagrange multiplier.
Thus, as noted before in � Sensitivity and stability in
NLP: Continuity and differential stability, optimal La-
grange multipliers are often called ‘shadow prices’.

The Lagrange multipliers are explicitly involved as
variables in dual programs, and constitute all the dual
variables for linear programming problems. A consid-
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erable literature is devoted to duality and dual programs
and their relationship. As noted, duality and sensitivity
analysis results are closely connected. We do not pur-
sue this here. See [2] or any standard NLP-LP textbook
for an introduction.

Applications of Sensitivity Analysis

There are numerous applications of sensitivity and sta-
bility results such as those briefly presented. One of the-
most immediate is verification of local stability and the
determination of the relative importance of each pa-
rameter at a local solution, in accordance with its rel-
ative effect on the optimal value, solution point or La-
grange multipliers. This assessment is also relevant to
model validation in determining if the relative effects
noted are reasonable, whether changes are warranted,
whether some parameters should be rescaled or calcu-
lated with more precision or others assumed constant
and locally ignored for simplicity because of their little
effect, etc.

Another immediate application is the estimation of
a solution or optimal value for perturbed data. This was
indicated in � Sensitivity and stability in NLP for the
unconstrained problem. For the general problem P(�),
under the assumptions of Proposition 1, an approxima-
tion of y(�) in a neighborhood of � is given by the first
order terms of a Taylor’s series

y(�) 	 y(�)Cr� y(�)(� � �):

Using the results of the previous section, particularly
(2), this translates into

(x(�); u(�);w(�)) 	 (x; u;w)CM(�)�1N(�)(���): (4)

Similarly, we can obtain first- or second order estimates
of the optimal value function, respectively as follows,
near � D �:

f �(�) 	 f �(�)Cr� f �(�)(� � �);

and

f �(�) 	 f �(�)Cr� f �(�)(� � �)

C
1
2
(� � �)>r2

� f
�(�)(� � �): (5)

These approximations provide computable estimates
when a close approximation of ((x; u;w)) is available,

where we can use the relationships indicated in the pre-
vious section for r� f �, r2

� f �, etc., under the various
cases that can arise.

Numerous other applications are known and docu-
mented and the reader can undoubtedly think of sev-
eral. We cannot pursue more developments here, but
we do indicate some computational efficiencies and al-
gorithmic approximation possibilities in the next sec-
tion.

Computational Efficiencies
and AlgorithmicApproximations Computational
Efficiencies and Algorithmic Approximations

First, we show how the results of Proposition 1 can
be exploited to greatly simplify the calculation of the
parameter-derivatives, and also yield some new formu-
las. Then, we show how the solution point and opti-
mal value parameter derivatives can be approximated
by a solution algorithm as a solution is approached.

Computational Efficiencies

Above, we noted that the equations KKT[y(�), �], i. e.
8̂
<̂
ˆ̂:

rx L[x(�); u(�);w(�); �] D 0;
ui(�)gi [x(�); �] D 0 (i D 1; : : : ;m);
hj[x(�); �] D 0 ( j D 1; : : : ; p);

hold in a neighborhood of �. Under the assumptions,
all is changing continuously with �, locally, and indeed
the system is once continuously differentiable. Hav-
ing calculated (x; u;w) with � D �, we have valu-
able additional information. We know which gi and ui
are 0 or positive at (y; �), and we know this relative
status of gi and ui will sustain near � D � at y(�).
Thus, we can delete the nonbinding-constraint equa-
tions and we can divide out the positive ui, without
losing any information, locally. We proceed to do this
and, for convenience, relabel the binding constraints
bg D (g1; : : : ; gr)>, and associated (all positive) La-
grange multipliers bu D (u1; : : : ; ur)>, so that gi> 0
and ui = 0 for i = r + 1, . . . , m can be ignored and
suppressed in the subsequent calculation. We redefine
the Lagrangian accordingly to bL D f �

Pr
iD1 ui gi CPp

jD1 wjh j and relabel r�y as r� y, to indicate the re-
duced derivative, so thatby D (x;bu;w).
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Given all these simplifications, the KKT system be-
comes KKT[by(�); �]:
8̂
<̂
ˆ̂:

rxbL[x(�);bu(�);w(�); �] D 0;
�gi [x(�); �] D 0 (i D 1; : : : ; r);
hj[x(�); �] D 0 ( j D 1; : : : ; p);

where we have written �gi rather than +gi to obtain
a symmetric (x, u, w)-Jacobian of this system and fur-
ther computational advantage. Now, differentiating by
� yields

bM(�)r�by(�) � bN(�) D 0

and analogously as before in (1), we obtain

r�by(�) D bM(�)�1bN(�); (6)

where the Jacobian of KKT with respect to (x;bu;w) is

bM D
 
r2

x
bL P>

P 0

!

and the negative of the Jacobian with respect to � is

bN D [�r2
�x
bL>;r� g>1 ; : : : ;r� g>r ;

� r�h>1 ; : : : ;�r�h
>
p ]
>

and

P> D [�rxbg>;rx h>]:

Remark 3 We note that the above system KKT[by(�); �]
turns out to be rbybL D 0 and we get bM D r2

bybL, all eval-
uated at [by(�); �], where we recall that by D (x;bu;w).
Also, note that r2

�bybL D �bN D r
2
by�bL
>.

Of course, all of the formulas presented in the first Sec-
tion still hold, in terms of this new reduced structure,
to provide all the relevant and nontrivial formulas for
all the cases mentioned there. In addition, we are able
to express all of the block components A11, A12, A21,
A22 of bM�1, for all cases that can arise, in terms of
the original problem derivatives, resulting in enormous
computational savings. See [2, Chap. 4, Sect. 2]. Fur-
ther economies are introducedin the special formulas
that apply for the right-hand side perturbation prob-
lem P1(�) and other particular instances of the general
problem P(�). The optimal value formulas also simplify

considerably and, for the general problem since f � DbL
and r� f � D r�bL, we obtain the elegant result

r2
� f
� D r2

by�bLr�by Cr
2
�
bL

D �bN>r�by Cr2
�
bL D �bN>bM�1bN Cr2

�
bL

(7)

which can be expressed as

r2
� f
� D [r�by>; I]r2

(by;�)bL
�
r�by
I

�

D
�
r�by>; I

�
0
@r

2
bybL r2

�bybL
r2
by�bL r2

�
bL

1
A
�
r�by
I

�

D
�
r�by> I

�  bM �bN
�bN> r2

�
bL

!�
r�by
I

�
:

This expression and the first equation in (7) are new
and were not given in [2]. It turns out that r2

� f � can be
reduced to the simpler form (presented in [2]),

r2
� f
� D

�
r�x> I

�
r2
(x;�)

bL
�
r�x
I

�

D
�
r�x> I

�  r2
x
bL r2

�x
bL

r2
x�
bL r2

�
bL

!�
r�x
I

�
:

(8)

Remark 4 If the given problem P(�) is jointly convex
in (x, �), i. e., f convex, all gi concave, all hj linear affine
in (x, �) with T convex, then it is well known that f �

is convex. This fact becomes immediately evident from
(8), since P(�) jointly convex implies that bL is jointly
convex. But this implies thatr2

(x;�)
bL is positive semidef-

inite, which means that r2
� f � is positive semidefinite,

hence f � must be convex. Of course, we need to assume
that problem P(�) has a solution for each � 2 T where
the conclusion of Proposition 1iii) holds, to guarantee
that (8) holds for each � 2 T.

Algorithmic Approximations

An intriguing possibility is the simultaneous approx-
imation of sensitivity and stability analysis informa-
tion, as a solution is being estimated by an algorithm in
progress. We illustrate the feasibility of this idea with
results that have been obtained by a classical combi-
nation barrier-exterior point algorithm, forerunner of
a powerful class of interior-exterior point methods that
are currently among the best methods available, both
for LP and NLP.
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The classical logarithmic-quadratic barrier-penalty
function for problem P(�) is defined as

W(x; �; r) D f (x; �)

� r
mX
iD1

log gi (x; �)C
1
2r

pX
jD1

h2j (x; �) : (9)

A solution procedure based on W for solving problem
P(�) for any fixed value of � is briefly described as fol-
lows: Select rk > 0 such that rk ! 0 as k! + 1 and
solve minx W(x, �, rk) s.t. gi(x, �) > 0 (for all i) to obtain
x(�, rk), for k = 1, 2, . . . . Then, ideally, x(�, rk)! x(�),
a solution of P(�), as k! +1.

At a minimizer x(�, r) of W(x, �, r), we must have
rx W = 0. Sincerx W =rx f�

Pm
iD1 (r/gi)r gi+

Pp
jD1

(hj/r)r hj and since the Lagrangianof problem P(�) is L
= f �

Pm
iD1 uigi +

Pp
jD1 wjhj, yielding rx L = rx f �Pm

iD1 uirx gi+
Pp

jD1 wjr hj, then rx W = 0 is equiv-
alent to rx L = 0 with r/gi = ui and hj/r = wj. Hence,
combined with the results ofProposition 1, we have the
following additional consequences.

Proposition 5 Under the assumptions of Proposition 1,
for any (�, r) in a neighborhood of ((�; 0), 0) with r >
0, there exists a unique once continuously differentiable
vector function y such that y(�, r) = [x(�, r), u(�, r), w(�,
r)], where the assumptions of Proposition 1 continue to
hold, and such that conditions KKT[y(�, r), �, r]:
8̂
<̂
ˆ̂:

rx L[x(�; r); u(�; r);w(�; r); �] D 0;
ui(�; r)gi [x(�; r); �] D r (i D 1; : : : ;m);
hj[x(�; r); �] D rwj ( j D 1; : : : ; p);

with y(�; 0) D (x; u;w), and suchthat x(�, r) is a locally
unique unconstrained local minimizer ofW(x, �, r), with
all gi[x(�, r), �] > 0 and r2

x W[x(�, r), �, r] positive def-
inite.

Note that the resulting equations in Proposition 5, sat-
isfied at y(�, r), are a simple perturbationof the KKT
equations exhibited above, and we have labeled them
accordingly. This is a striking example of the close re-
lationship between optimality conditions and algorith-
mic theory, and as we now indicate, sensitivity analysis
as well.

Just as above, we can immediately differentiate
equations KKT[y(�, r), �, r] withrespect to �, now to ob-
tain the perturbed formula for the parameter derivative

r�y(�) given in (1). The analogous reasoning applies
and we obtain

r� y(�; r) D M(�; r)�1N(�; r); (10)

where M and � N are the Jacobians of the perturbed
KKT system with respect to (x, u,w) and �, respectively.

The following results hold, for any � orb� sufficiently
close to � and for r > 0 and small enough:
i) y(b�; 0) D y(b�),
ii) r� y(b�; 0) D r� y(b�),
iii) y(�; r)! y(b�) as (�; r)! (b�; 0), and
iv) r� y(�; r) ! r� y(b�) D M(b�)�1N(b�) as (�; r) !

(b�; 0).
Thus, in particular, we can take b� D � and estimate
y(�) and r� y(�) by y(�, r) and r� y(�, r), for (�, r) near
(�; 0).

These results lead immediately to optimal value ap-
proximations since we find that, for � near � and r > 0
small:
i) W�(�, r)! f �(�),
ii) r�W�(�, r)!r� f �(�), and
iii) r2

� W�(�, r)!r2
� f �(�) as r! 0, whereW�(�, r)

=W[x(�, r), �, r].
We also note that since rxW = 0 and r2

xW is posi-
tive definite near rxW D 0, we have that r2

x Wr�x
+ r2

�xW = 0, yielding

r�x(�; r) D �r2
xW
�1r2

�xW; (11)

an alternative calculation for r�x, leading immediately
to simple formulas for r� ui(�, r) and r� wj(�, r),
through the relations ui = r/gi and wj = hj/r. These re-
sults provide a basis for approximating solution sensi-
tivity information at an unconstrained minimizer ofW
by exploiting algorithmic properties and calculations.
It is important to note that most of the information
required to calculate the parameter derivatives will al-
ready be available from the usual implementations of
an algorithm based onW that is used to find a solution
of problem P(�).

In the next section, we present a few basic results
that provide upper bounds on a solution point change
and upper and lower bounds on the change in the op-
timal value, when the problem data parameter is per-
turbed. Many extensions and variations are possible
and many have been reported. Our objective here is to
give an idea of the kind of bound information that can
be calculated, once a solution has been determined.
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Bounds

Linear Equations

In � Sensitivity and stability in NLP, our first example
of an important and widely encountered mathematical
model is a system of equations,

Ax D b; (12)

where A is an n × n real matrix and x and b are in En.
We briefly discussed a number of issues that might arise
in characterizing a solution x for changes in the data, A
and b. As noted, we may think of a solution or set of
solutions as a function of A and b, viewed as parame-
ters, exploit the nonsingularity of A to actually obtain
a closed form expression for x(A; b) and otherwise en-
deavor to track x asA and b vary, or at least establish ex-
istence and continuity and parameter-differentiability
properties and the like. Another approach is the devel-
opment of bounds on a solution change resulting from
the data perturbations. Since the equations model is so
important, and since many of the sensitivity results that
we have presented here and in� Sensitivity and stabil-
ity in NLP and� Sensitivity and stability in NLP: Con-
tinuity and differential stability and that have been pre-
sented elsewhere reduce the problem to equations (or
their linearization) that follow from optimality condi-
tions, the model is also quite relevant. Hence, we give
a classical result that is both important and instructive
in revealing what information is crucial in the calcula-
tion of bounds.

Let k � k denote a vector norm or its corresponding
matrix norm, as relevant in the following context. Per-
turbations in the data A and b are denoted by ı A and ı
b, respectively.

Proposition 6 Suppose A�1 exists and x solves Ax = b
while x + ıx solves (A+ ıA)(x +ıx) = b+ ıb. Suppose ˛
= k A�1ı A k < 1. Then, the corresponding change ıx in
the solution x satisfies the following inequality

kıxk
kxk

�
c(A)
1 � ˛

�
kıAk
kAk

C
kıbk
kbk

�
; (13)

where c(A) = kAk kA�1 k is the so-called condition num-
ber of A.

This result provides a bound for a generally small per-
turbation of A (since we require ˛ < 1) on the relative
change in x for relative changes in the data. For k ıA k

small enough, ˛ will be close to 0, and the crucial fac-
tor is the condition number: if c(A) is small enough,
then small relative solution changes result from small
relative data changes, but if c(A) is too large, then large
solution changes may result from small data changes.
The former and latter cases correspond to what is of-
ten termed to be ‘well-conditioned’ or ‘ill-conditioned’,
respectively. (Generally the larger the value of c(A), the
more difficult it is to solve (12) with prescribed accu-
racy.) This bound is of intrinsic interest and should
provide a useful perspective for the reader.Some of the
bounds results that follow for various classes of para-
metric programsmay be seen to be related to some vari-
ation of (13). In this context, note that the condition
number c(A) = �max/�min � 1, where �max and �min are
the positive square root of the maximum andminimum
eigenvalues of A| A, respectively, and we assume that
�min > 0. If A is a real positive definite symmetric ma-
trix, then �min and �max are simply the minimum and
maximum eigenvalues of A.

Solution-Point Bounds for NLP

We begin with a bound on the perturbed solution of
a quadratic program (QP), i. e., a mathematical pro-
gramming problem having a quadratic objective func-
tion and linear constraints:

Q(K; k)

8<
:
min
x2En

1
2 x
>Kx � k>x

s.t. Cx � c; Dx D d:

Proposition 7 Assume that K is a real positive defi-
nite and symmetric matrix, with minimum eigenvalue �.
Suppose the data K and k are perturbed to bK and bK and
let ı D maxf




bK � K



 ;



bk � k




g. Assume that x solves

Q(K, k) andbx solves Q(bK;bk). Then, provided ı < �, it
follows that



bx � x


 � ı

� � ı
(1C kxk): (14)

The following results apply to the general parametric
problem P(�) introduced above, under various assump-
tions and conditions already used here and in � Sen-
sitivity and stability in NLP: Continuity and differen-
tial stability for continuity and derivativecharacteriza-
tions. See � Sensitivity and stability in NLP: Continu-
ity and differential stability for the involved definitions.
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The next proposition invokes all the same assumptions
as Proposition 1, except that we now assume that the
functions of problem P(�) have twice differentiable par-
tial derivatives in x that are jointly continuous in (x, �),
rather than assuming twice continuous partial deriva-
tives jointly in (x, �) as was done for Proposition 1.With
this understanding, we have the following result.

Proposition 8 If the conditions KKT(x; u;w; �),
SOSC(x; u;w; �) and LI(x; �) and SCS(x; �) hold for
x 2 R(�) at � D � 2 interior T, with the differen-
tiability assumptions weakened as explained in the pre-
ceding paragraph, then there exists a locally unique con-
tinuous vector function y = (x, u, w) such that y(�) D
[x(�); u(�);w(�)] D (x; u;w) D y and such that these
assumptions continue to hold at y(�) = [x(�), u(�), w(�)]
in a neighborhood of �. This implies that x(�) is an iso-
lated local minimizer with associated unique Lagrange
multipliers [u(�), w(�)]. Furthermore, for any � 2 (0, 1),
near [u(�);w(�)], the following bound holds:

ky � y(�)k � (1 � �)�1


M(�)�1



 kF(y; �)k ; (15)

where F = [rx L, u1 g1, . . . , um gm, h1, . . . , hp]| so that
F(y; �) D 0 represents the Karush–Kuhn–Tucker condi-
tions and M = ry F, all as introduced in above.

The real-valued function � is said to be Lipschitz contin-
uous on a set S contained in a normed space X if there
exists a quantity � > 0 such that |�(x)� �(y)| � � k x�
y for all x, y 2 S.

In � Sensitivity and stability in NLP: Continuity
and differential stability we gave the following result,
summarized here for convenience.

Proposition 9 If the conditions KKT(x; u;w; �),
SSOSC(x; u;w; �) and LI(x; �) hold for a feasible x at
� D � 2 interior T, then near � there exists y = (x, u,
w) continuous and locally unique such that y(�) D y
and such that the assumptions persist at y(�); x(�) is
an isolated local minimizer with associated unique La-
grange multipliers[u(�), w(�)]; x, u and w are locally
Lipschitz and directionally differentiable; and f � is once
continuously differentiable and twice directionally dif-
ferentiable. Therefore, in particular it follows that for �
near �, there exists ˛, ˇ, � > 0 such that
a) kx(�) � xk � ˛ k� � �k;
b) ku(�) � uk � ˇ k� � �k; and
c) kw(�) � wk � � k� � �k.

Thus, we have bounds on the local solution point and
associated Lagrange multipliers that strongly regulate
the local rate of change of these quantities, assuring that
it is uniform and stable in the sense indicated and pro-
viding a sharper result than merely knowing continu-
ity. However, the result is theoretical per se and does
not give a prescription for calculating the Lipschitz con-
stants, ˛, ˇ, and � . Such issues are important and on-
going in obtaining computable solution bounds.

Many such Lipschitz continuity results have been
obtained in this area, both for a local solution point
and its associated Lagrange multipliers, as well as for
the local and global optimal value function. To cite still
another, under assumptions that we have encountered
in � Sensitivity and stability in NLP: Continuity and
differential stability, Proposition 10, we have the fol-
lowing (in addition to the several conclusions given in
� Sensitivity and stability in NLP: Continuity and dif-
ferential stability): If KKT, GSSOSC and MFCQ hold at
(x; u;w) for � D �, then the local solution x is again lo-
cally unique and Lipschitz, although here the Lagrange
multipliers associated with x are not unique in general.

Next, we present a simple general scheme for ob-
taining computable optimal value bounds for finite pa-
rameter perturbations, once a solution point is avail-
able. This will be briefly presented for the classes of
problems of the form P(�) where the optimal value
function f � is convex on a convex parameter set T.
Since a concave function is the negative of a convex
function, the results also apply to f � concave.The ap-
proach has even been extended to special classes of
problems where f � is neither convex nor concave. To
avoid any pathological exceptions, we assume solution
attainment and constraint regularity sufficient to imply
the Karush–Kuhn–Tucker conditions at any subject lo-
cal solution point, in the remainder of the article.

Computable Optimal Value Bounds f � Convex

We shall first assume that f � is convex and well-defined
for all � 2 T, aconvex subset of Eq. Conditions implying
the convexity of f � for problem P(�) are well known.
For example, in� Sensitivity and stability in NLP: Con-
tinuity and differential stability we noted the following
result:

If P(�) is jointly convex in (x, �), i. e., if f and the �
gi are jointly convex and the hj are linear-affine in (x, �)
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for all i and j and any � 2 T convex, then the optimal
value f � is convex on T. More general assumptions are
known that imply the convexity of f �. Suffice it to say
that the class is large of problems P(�) for which f � is
convex. Many results involving convexity and concav-
ity characterizations of f � are given in [4] and [7].

We are assuming that f � is convex on T, a convex
nonempty set. Consider any �1, �2 2 T, with �1 6D �2
and denote by [�1, �2] the interval from �1 to �2. We
first show how to obtain bounds on f � over [�1, �2]. De-
fine �(˛) = ˛�2 + (1� ˛)�1, where 0� ˛ � 1. Note that
for any � 2 [�1; �2], there exists a unique ˛ such that
� D �(˛). Then, we obtain a unique global upper bound
U(˛) on f � over [�1, �2] from the following result that
follows from the definition of a convex function:

f �[�(˛)] � ˛ f �(�2)C (1 � ˛) f �(�1) � U(˛): (16)

Next, suppose that r�f �(�1) and r� f �(�2) exist. Then,
again from the definition of convexity it is known that
at anyb� 2 T where r� f �(b�) exists we have

f �(�) � f �(b�)Cr� f �(b�)(��b�); for any � 2 T: (17)

Forb� D �1, orb� D �2, we thus obtain two global lower
bounds L�1 (�) and L�2 (�). Thus, L�(�) = max{L�1 (�),
L�2 (�)} gives a convex lower bound for any � 2 T. We
can apply this result to � = �(˛), with b� D �1 and
b� D �2 and denote the right-hand side of the inequal-
ity by L1(˛) and L2(˛), respectively. Next, let L(˛) =
max{L1(˛), L2(˛) }. Then, it follows that

L(˛) � f �[�(˛)]

� U(˛) for any ˛ 2 [0; 1]: (18)

This last inequality gives global upper and lower
bounds onthe optimal value f � over the interval [�1,
�2]. Note that U(˛) can be calculated when we have de-
termined only the value of f � at �1 and �2. The lower
bound L(˛) can be computed when we have also deter-
mined r� f � at �1 and �2. Thus, with f � and r� f � well-
defined at �1, �2 2 T, these quantities associated with
only two problems, P(�1) and P(�2), respectively, are
enough to provide parametric global upper and lower
bounds over any interval [�1, �2].

The bounds over [�1, �2] can be significantly im-
proved in general each time f � and r� f � are deter-
mined for a new value of � in the interval. For example,

suppose we take � = �3 2 (�1, �2). Once we determine f �

and r� f � at �3, we can calculate new upper and lower
bounds, as above, over [�1, �3] and [�3, �2]. Because of
the convexity of f �, the new bounds can only improve.
In fact, continuing this way with new intermediate pa-
rameter values in [�1, �2], it is theoretically possible to
calculate upper and lower bounds to any prescribed de-
gree of accuracy, since the bounds will converge ulti-
mately from below and above to the graph of f � over
[�1, �2].

Note that to calculate bounds over [�1, �2], we need
the convexity of f � only over the interval [�1, �2], not
over the entire set T, allowing for significant additional
generality, e. g., allowing us to drop the assumption of
convexity of T. Furthermore, the process can be ex-
tended to provide bounds over more general subsets of
T, as follows. Suppose we are interested in �1, . . . , �k 2
T and suppose we can determine f � and r�f � at the �i.
Analogously as before, define �(˛) =

Pk
iD1 ˛i�i, withPk

iD1 ˛i = 1 and ˛i � 0. Then, an upper bound at any
such �(˛) is obtained from Jensen’s inequality,

f �[�(˛)] �
kX

iD1

˛i f �(�i) � U(˛); (19)

where ˛ = (˛1, . . . , ˛k). Lower bounds L�i (�) on f � over
the entire set T are computable at each �i using (17)
withb� D �i (i = 1, . . . , k), yielding L�(�) = max{L�1 (�),
. . . , L�k (�)} as a piecewise-linear convex global lower
bound on f � over T. Adapting this to � = �(˛), we re-
place � in the lower bound inequality (17)by �(˛) and
theb� by �i to get Li(˛) (i = 1, . . . , k), finally getting L(˛)
= max{ L1(˛), . . . , Lk(˛)}. We thus have

L(˛) � f �[�(˛)] � U(˛) (20)

for any ˛ = (˛1, . . . , ˛k) such that
Pk

iD1 ˛i = 1 and ˛i �
0 (i = 1, . . . , k).

Remark 10 We note that, unlike before where �(˛) =
˛�2 + (1� ˛) �1 and there is only one ˛ for a given�
= �(˛) 2 [�1, �2], there now may be a set of values of
˛ such that �(˛) = �. Thus, for agiven � such that � =
�(˛), the upper bound U(˛) may have a range of val-
ues. In this instance, we note that the best bound U�(�)
is the optimal value of: min˛ U(˛) s.t.

Pk
iD1 ˛i�i = �,Pk

iD1 ˛i = 1, ˛i � 0 (i = 1, . . . , k), a linear program
with parameter �. (The lower bound will have only one
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value for any such �, as before.) The upper bound will
be single-valued for � = �(˛), if the set of � such that � =
�(˛) is a simplexwith vertices �i in the subset of T that is
spanned by the given �i. Thus, an effective way to gener-
ate upper bounds over any subset S of T is to systemat-
ically cover S with contiguous simplexes, using points
�i of S. The upper and lower bounds over each sim-
plex will be uniquely determined and loose bounds over
a given simplex can be sharpened by selecting a new pa-
rameter vector � in the given simplex, subdividing into
newly determined contiguous simplexes with the new
vertex �, and proceeding as indicated above, to obtain
upper and lower bounds over each simplex.

Next, we show how to obtain a simpler and sharper up-
per bound, if the constraint functions gi and hj are as
prescribed when P(�) is a jointly convex program (i. e.,
gi jointly concave and hj jointly linear-affine, for all i
and j).

gi Jointly Concave, hj Jointly Linear Affine

With gi and hj as indicated, it turns out that ifbx(�1) is
a feasible point of P(�1) andbx(�2) is a feasible point of
P(�2), then ex(˛) � ˛bx(�2) C (1 � ˛)bx(�1) is a feasi-
ble point of P[�(˛)] for any ˛ 2 [0, 1], where �(˛) =
˛�2 + (1� ˛)�1. This gives us a feasible point of P(�)
for any � 2 [�1, �2]. It also means that f �[�(˛)] �
f [ex(˛); �(˛)] D ef (˛), i. e., the optimal value of prob-
lem P[�(˛)] is bounded above by the objective function
evaluated at the feasible point ex(˛). This immediately
provides an easily computable upper bound on f � over
[�1, �2] oncebx(�1) andbx(�2) are available. There is no
requirement here that f be convex. Ifbx(�1) solves P(�1)
andbx(�2) solves P(�2), then this upper bound is exact at
�1 and �2. (Note that f � will generally be nonconvex if f
is not convex.)

P(�)Jointly Convex

If problem P(�) is jointly convex, then we not only have
the gi jointly concave and the hj jointlylinear affine as
before but now also have f jointly convex, hence f � is
convex and the upper bound has additional properties.
In this case, it turns out thatr2

� f � is also convex over [0,
1]. Furthermore, if x(�1) solves P(�1) and x(�2) solves
P(�2), and x(˛) D ˛x(�2)C (1�˛)x(�1) then it follows
that f (˛) D f [x(˛); �(˛)] gives aconvex upper bound

on f � over [�1, �2] that either agrees with or is lower
and hence sharper than the linear upper bound U(˛)
described earlier, i. e.,

f �[�(˛)] � f (˛) � U(˛) for all ˛ 2 [0; 1]: (21)

As noted, f (˛) is immediately computable once a so-
lution is determined forP(�1) and P(�2). Following the
technique for improving U(˛), this bound can be im-
proved by solving P(�) for �3 2 (�1, �2), then proceeding
as above for the sub-intervals [�1, �3] and [�3, �2].

ef and f for Subsets of T

The calculation of ef and f can be extended to bound
f � above over more general subsets of T, as well, pro-
ceeding somewhat analogously to the procedure given
above for f � convex that was indicated for U(˛). We
shall illustrate this for f (˛), and assume that P(�) is
jointly convex. Given a set of values {�1, . . . , �k}, where
�i 2 T, suppose we obtain solutions x(�i) for P(�i), i
= 1, . . . , k. Then, as before we consider �(˛) =

Pk
iD1

˛i�i, with
Pk

iD1 ˛i = 1 and ˛i � 0 for all i. If we de-
note x(˛) D

Pk
iD1 ˛i x(�i), then it follows that x(˛) is

a feasible point of P[�(˛)], hence again

f �[�(˛)] � f [x(˛); �(˛)] � f (˛) � U(˛);
for ˛ D (˛1; : : : ; ˛k); (22)

where here U(˛) =
Pk

iD1 ˛if
�(�i) as in (19) and f is

convex over ˛ and we thus have an upper bound on
f �(�) for any � 2 T such that � = �(˛) for ˛ as pre-
scribed. Similar remarks to those given previously ap-
ply regarding multiple values of ˛ corresponding to
any given � =

Pk
i = 1 ˛i�i. Again, proceeding to cover

T systematically with contiguous simplexes and calcu-
lating bounds over each simplex would eliminate this
multiple-value problem and result in unique upper and
lower bounds, and would appear to be a very effective
and natural way to proceed.

Remark 11 As for gi jointly concave and hj jointly lin-
ear affine, we candrop the convexity assumption on f
and we can also simply assume that we have only a fea-
sible point bx(�i) of P(�i) for i = 1, . . . , k (rather than
a solution point x(�i)). Then, we still obtain an upper
bound since we again haveex(˛) 2 R[�(˛)] and hence
we again have ex(˛) 2 R[�(˛)], where we now have
ex(˛) DPk

iD1 ˛ibx(�i).
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We turn last to a calculation of a bound on the distance
from a feasible point of P(�) to a solution of P(�).

Bounds on the Distance of a Feasible Point
to a Solution Point

The first bound is for a given unperturbed problem.

Proposition 12 Suppose we are given problem P(�),
with feasible region R(�) convex in x with � fixed. Assume
x(�) locally solves P(�), assume that the feasible region is
not a singleton, and assume that there exists a number
m(�) > 0 such that z|r2

x f (x, �)z � m(�) kzk2 for any x
2 R(�) and any z 2 En such that z is a feasible direction
of R(�) from x(�), i. e., x(�)+ ˇ z 2 R(�) for any ˇ and
some ˇ such that 0 < ˇ � ˇ. Then, x(�) is the unique
global minimizer and the following bound holds:

kx � x(�)k �

 
f (x; �) � f �(�)

m(�)
2

! 1
2

(23)

for any x 2 R(�).

Remark 13 The conclusions of this Proposition hold in
some neighborhood of x(�) if we assume that the uni-
form quadratic underestimation of z| r2

x fz holds only
near x(�) (rather than for any x 2 R(�)). Hence, Propo-
sitions 14 and 15 also hold if the respective distances
being bounded are sufficiently small.

Using the fact that rx f [x(�), �]z � 0 must hold, the
inequality (23)follows easily from a second order Tay-
lor’s series expansion of f around x(�). This provides
a bound on the distance from any given feasible point of
problem P(�) to the solution x(�) of P(�). This bound is
of theoretical interest but may not be computable with-
out x(�) because m, z, and f � depend on R(�) and x(�).
As for z, if we let z beany z 2 En, then the largest suit-
able m will generally be smaller than with z restricted,
but z will be free of dependency on x(�) and the results
will apply if m > 0. Also, with z unrestricted, we note
that the function f is strictly convex in R(�). Nonethe-
less, even for z unrestricted, the largest suitable value of
m is the optimal value (if positive) of a nonconvex pro-
gram, min(x, z)z|r2

x f (x, �)z s.t. kzk = 1, x 2 R(�), which
may be prohibitive except for special classes of prob-
lems. For example, if f is quadratic in x and r2

x f is pos-
itive definite, then m may be taken to be the minimum
eigenvalue of r2

x f . We deal with f � by using a com-
putable upper bound in the sequel.

Next, we allow � to change and obtain a bound on
the distance from a solution x[�(˛)] of P[�(˛)] to the
computable feasible point ex(˛), as defined in Remark
11, using the bound (23).

Proposition 14 In addition to the assumptions of
Proposition 12, suppose that for any � = �(˛), the prob-
lem constraints gi are jointly concave in (x, �) and the
hj jointly affine, and also suppose that problem P(�) has
a feasible pointbx(�) for � = �i 2 T convex, where i = 1,
. . . , k. Then it follows thatex(˛) 2 R[�(˛)] and

kex(˛) � x[�(˛)]k

�

 
f [ex(˛); �(˛)] � f �[�(˛)]

m[�(˛)]
2

! 1
2

(24)

for any ˛ = (˛1, . . . , ˛k)
Pk

iD1 ˛i = 1and ˛i � 0 (i = 1,
. . . , k), whereex(˛) D Pk

iD1 ˛ibx(�i ), �(˛) =
Pk

iD1 ˛i�i,
x[�(˛)] solves P[�(˛)] and f � [�(˛)] is the optimal value
of P[�(˛)].

The upper bound (24) involves f �[�(˛)] which would
generally not be available unless x[�(˛)] were known.
We want a computable upper bound notrequiring
x[�(˛)], and such is available if the optimal value f � of
P(�) is convex over the set of � = �(˛), using the re-
sults for f � convex above.In particular, recall that f � is
convex if P(�) is jointly convex. We obtain the follow-
ing result that gives computable bounds, once a suitable
value form has been determined.

Proposition 15 In addition to the assumptions of
Proposition 14, assume that x(�i) solves P(�i)(i = 1, . . . ,
k) and x(˛) D

Pk
iD1 ˛i x(�i), suppose that we also have

f jointly convex in the set of � = �(˛) (thus making
P(�) jointly convex and hence f � convex). Then, since
f �[�(˛)] � L(˛) from (20), we have from (24) that

kx(˛) � x[�(˛)]k �

 
f [x(˛); �(˛)] � L(˛)

m[�(˛)]
2

! 1
2

(25)

and therefore

kx(˛) � x[�(˛)]k �

0
@U(˛) � L(˛)h

m[�(˛)]
2

i
1
A

1
2

(26)

for any ˛ = (˛1, . . . , ˛k) such that
Pk

iD1 ˛i = 1 and ˛i
� 0 (i = 1, . . . , k), where U(˛) and L(˛) are given above
and we have also used (22).
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This provides computable bounds over any � = �(˛),
once the solutions x(�i) (i = 1, . . . , k) have been deter-
mined, provided m can be calculated or bounded be-
low. There are results that are applicable to the calcu-
lation of such a number for important classes of prob-
lems. For a fixed (x, �), the value m can be taken to be
theminimum eigenvalue of r2

x f . For f quadratic, this
simplifies, as noted earlier. For this and other impor-
tant computable cases, see [5].

Our last result gives bounds under the same con-
ditions as Propositions 12, 14 and 15, but using a first
order bounding condition on the objective function f ,
ratherthan the second order condition of Proposition
12. It is a simple consequence of the convexity of f .

Proposition 16 Assume as in Proposition 15, except
that we now let r f [x(�), �]z � m(�) k z k replace the
condition that z|r2

x f (x, �)z � m(�) kzk2. Then, it fol-
lows that

kx � x(�)k �
f (x; �) � f �(�)

m(�)
(27)

for any x 2 R(�). Now, adding the other assumptions of
Proposition 15, we get the bounds

kx(˛) � x[�(˛)]k �
f [x(˛); �(˛)] � L(˛)

m[�(˛)]

�
U(˛) � L(˛)
m[�(˛)]

: (28)

These bounds are mainly of theoretical interest because
the verification of our condition involving m requires
the solution x(�). Our condition, rx fz � m kzk is
a minimal growth condition on the directional deriva-
tive of f at a solution x(�) in any feasible direction.
A suitable m would be the infimum at x(�) of rxf z for
k z k = 1 and z a feasible direction from x(�), providing
this is positive. This leads to the more relaxed problem
(where x = x(�)): minz r f z s.t. r gi z � 0 for all i such
that gi = 0 and r hj z = 0 for all j and k z k = 1. See the
Remark below. This can be formulated as a linear pro-
gram and precisely corresponds to the search direction
problem required for well-known methods of feasible
directions. Thus, we obtain another connectionbetween
optimality, algorithmic and sensitivity analysis calcula-
tions.

Remark 17 With convexity, the condition r fz > 0 at
a feasible point, for any feasible direction z, is sufficient

for unique global minimization at that point. This con-
dition is frequently satisfied at a solution, e. g., it holds
at the minimizer of a nondegenerate linear program-
ming problem. We note further that rfz � 0 for any
such z is a sufficient condition for a global minimum of
a convex problem and is a necessary condition at a lo-
cal minimizer of a general (i. e., not necessarily convex)
differentiable programming problem. It should also be
mentioned that at x = x(�), the set of unit vectors z,
such that rgi z � 0 for all i such that gi = 0 and r hj
z = 0 for all j, is the same or larger than the set of unit
vectors z that are feasible directions of R(�) from x(�).
Thus, the largest acceptable number m = minz r fz at
x(�) will be the same or smaller for the former set of
z then for the latter set. However, the former set has
the advantage of having a simple algebraic formulation
and computability (as noted, it yields a linear program-
ming problem). Thus, we can strengthen the quadratic
growth condition in Propositions 12, 14 and 15, and the
linear growth condition in Proposition 16, to the in-
dicated set of z. All of these results will then be valid
with respect to the newly resulting bounds. Finally, we
should mention another appealing fact. With the set of
z so chosen, r fz > 0 at x(�) implies that x(�) is a strict
local minimizer for a general programming problem
(i. e., without convexity).

Most of the material in this article and many references
can be found in [2]. References [1] and [3] give state-
of-the-art tutorials and numerous extensions in a mod-
ern setting, along with an extensive bibliography. The
bounds result of Proposition 6 for the solution of a lin-
ear system of equations can be found in [8, Chap. 6,
Sect. 6.4]. Other bounds results may be found in [2] and
[5], and many other optimal value convexity and con-
cavity results are given in [4] and [7].

See also

� Nonlocal Sensitivity Analysis with Automatic
Differentiation

� Parametric Global Optimization: Sensitivity
� Sensitivity Analysis of Complementarity Problems
� Sensitivity Analysis of Variational Inequality

Problems
� Sensitivity and Stability in NLP
� Sensitivity and Stability in NLP: Continuity and

Differential Stability
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In � Sensitivity and stability in NLP we introduced
the parametric nonlinear programming (NLP) prob-
lem, gave several examples, mentioned various impor-
tant applications of sensitivity and stability results for
parameter changes and indicated several tools and con-

cepts that have proved effective. We suggest that the
reader peruse these preliminaries before reading this
continuation of developments.

For convenience, we again state the problem of in-
terest:

P(�)

8̂
<̂
ˆ̂:

min f (x; �)
s.t. gi (x; �) � 0 (i D 1; : : : ;m);

hj(x; �) D 0 ( j D 1; : : : ; p);

where x 2 En and the parameter (data) � 2 T � Eq.
We present some basic continuity and differentiabil-
ity results of the parameter-dependent solution point
x(�) and optimal value f �(�) of problem P(�). We focus
on concrete results for specific classes of problems that
are frequently encountered. More general results may
be found in more detailed technical treatments else-
where and a few publications will be noted for refer-
ence and further study. In particular, we do not include
nonsmooth results or the notions of point-to-set maps,
semicontinuity of maps and functions, generalized gra-
dients, alternative definitions of continuity or differen-
tiability, functional or set perturbations (e. g., f toef , g
toeg, h toeh, x 2 M to x 2 eM, etc.) and other very im-
portant mathematical concepts, models or instruments
that lead to significant extensions and generalizations
of the basic results we present. Our purpose here is to
provide a quick and hopefully unencumbered introduc-
tion and simple exposition of significant rudimentary
results.

The results we present require some well-known
smoothness properties, optimality conditions and con-
straint regularity assumptions, called constraint qualifi-
cations. We briefly review these in the next section.

If f and� gi are convex in x and hj is linear-affine in
x, for all i, j and any � 2 T, the problem P(�) is said to be
convex in x. If these function properties hold jointly in
(x, �) and T is a convex set, then P(�) is said to be jointly
convex. For simplicity, continuous differentiability and
continuity are assumed.

Optimality Conditions
and Constraint Qualification

Associated with the problem P(�) are the Lagrangian

L(x; u;w; �) D f (x; �)�
mX
iD1

ui gi (x; �)C
pX

jD1

wjh j(x; �)
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and the optimal value function

f �(�) D

8<
:

inf
x2R(�)

f (x; �) if R(�) ¤ ;;

C1 if R(�) D ;;

where the feasible region

R(�)

D

�
x 2 En : gi(x; �) � 0 (i D 1; : : : ;m)

hj(x; �) D 0 ( j D 1; : : : ; p)

	
:

If a local solution x(�) is known to exist, then it is under-
stood that the optimal value is the local optimal value
f �(�) = f [x(�), �] for local results involving x(�). The
solution set S(�) of P(�) is defined as

S(�) D fx is a local solution : f (x; �) D f �(�)g :

The following concepts and definitions are needed.
a) The directional derivative of f � at � in direction z is

Dz f �(�) D lim
˛!0C

f �(� C ˛z) � f �(�)
˛

:

In the next conditions, assume that x is feasible and
that � is fixed at some value in T. Differentiability is
assumed as needed.

b) The Karush–Kuhn–Tucker conditions (known to be
necessary under appropriate regularity conditions at
a local solution x of a differentiable problem) are:
there exist u� 0 and w such that (condition KKT(x,
u, w, �))
8̂
<̂
ˆ̂:

rx L(x; u;w; �) D 0;
ui gi (x; �) D 0 (i D 1; : : : ;m);
hj(x; �) D 0 ( j D 1; : : : ; p);

where x 2 R(�), u = (u1, . . . , um) and w = (w1, . . . ,
wp) are called Lagrange multipliers, u � 0 means ui
� 0 (i = 1, . . . ,m), and rx denotes the n-component
gradient (row vector) with respect to x.
The set of Lagrange multipliers (u, w) that satisfy
KKT(x, u, w, �) is denoted by K(x, �).

c) The second order sufficient condition, noted by
SOSC(x, u, w, �), is as follows: KKT(x, u, w, �) holds
for some (u, w) at x 2 R(�) and

z>r2
x L(x; u;w; �)z > 0

for all z 6D 0, z 2 Z, where

Z D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

z 2 En :

rx gi (x; �)z � 0
for i s.t.

gi (x; �) D 0;
rx gi (x; �)z D 0

for i s.t.
gi (x; �) D 0; ui > 0;
rx h j(x; �)z D 0
( j D 1; : : : ; p)

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

d) The general second order sufficient condition, desig-
nated GSOSC(x, u, w, �), requires that SOSC holds
for all (u, w) 2 K(x, �).

e) The strong second order sufficient condition, denoted
by SSOSC(x, u, w, �), is the same as SOSC(x, u, w,
�) with one change: the restriction in the set Z, that
rxgi(x, �)z� 0 for i such that gi(x, �) = 0, is dropped.

f) The general strong second order sufficient condition,
designated GSSOSC(x, u, w, �), requires that SSOSC
holds for all (u, w) 2 K(x, �).

g) strict complementary slackness at a point x, noted by
SCS(x, �), is said to hold if the associated KKT mul-
tipliers are such that ui > 0 for all binding gi (i. e., all
i such that gi(x, �) = 0). (This term derives from the
fact that the condition uigi = 0 in the KKT equations
is known as complementary slackness.)

There are many constraint qualifications. We shall give
results involving the following three:
i) The first is linear independence at a point x 2 R(�)

of the binding constraint gradients, designated by
LI(x, �); i. e., rxgi(x, �) for i such that gi(x, �) = 0
and rxhj(x, �) for j = 1, . . . , p are linearly indepen-
dent.

ii) The Mangasarian–Fromovitz constraint qualifica-
tion holds at x 2 R(�), noted by MFCQ(x, �), if: a)
there exists a vector z such that rx gi(x, �)z > 0 for
all i such that gi(x, �) = 0 and rxhj(x, �)z = 0 for j =
1, . . . , p; and b) the vectors rxhj(x, �) (j = 1, . . . , p)
are linearly independent.

iii) The generalized Slater constraint qualification, de-
noted by GS(�), holds for the convex problem P(�)
if there exists a feasible point x such that gi (x; �) >
0 for all i and such that rx h1(x; �); : : : ;rx hp(x; �)
are linearly independent. For P(�) convex, MFCQ
holding at each feasible point and GS are equiva-
lent.
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The following well known results can now be stated, for
the standard nonparametric problem P(�), i. e., with �
fixed:
a) SOSC(x; u;w; �) implies that x is a strict local min-

imizer (i. e., the unique global minimizer over the
intersection of the feasible region and some neigh-
borhood of x);

b) GSOSC(x; u;w; �), u, w, �) and MFCQ(x; �) imply
that x is an isolated local minimizer (i. e., the unique
local minimizer in the intersection of the feasible re-
gion and some neighborhood of x);

c) Although GSSOSC at x implies GSOSC at x
and also implies SSOSC(x; u;w; �), which implies
SOSC(x; u;w; �), u, w, �), the condition GSSOSC
alone does not imply that x is an isolated local min-
imizer. A constraint qualification is needed, along
with each second order condition, as in b) above and
as in Propositions 8, 9 and 10 below. In fact, even
the much stronger conditions, KKT(x; u;w; �) and
z| r2

x L(x, u, w, �)z > 0 for all z 6D 0 and any x and
any (u, w) 2 K(x, �), do not imply that x is an iso-
lated local minimizer. (See the counterexample by
S.M. Robinson in [2, p. 71].)

d) If x is a local minimizer and LI(x, �) or MFCQ(x; �)
holds, then KKT(x; u;w; �) holds. If LI(x; �) holds,
then the Lagrange multipliers (u, w) are unique.
MFCQ(x; �) holds if and only if the set of associ-
ated Lagrange multipliers satisfying KKT(x; u;w; �)
is nonempty, compact and convex. If LI(x; �) holds,
then MFCQ(x; �) holds. Therefore, it follows from
b) that SOSC(x; u;w; �) and LI(x; �) imply that x is
an isolated local minimizer.

Remark 1 A stronger form of MFCQ is necessary and
sufficient for a unique Lagrange multiplier, but will not
be used here.

e) If problem P(�) is convex, then any local solution
is global and the solution set is convex, and if the
KKT(x; u;w; �) holds, then x is a global solution.
Also, if GS(�) holds, then so does KKT(x, u, w, �)
at any local solution x.
With this brief perspective, we present several ba-

sic sensitivity and stability results that hold for problem
P(�). We avoid detail and focus only on certain key im-
plications of the assumptions.

Proposition 2 For the once differentiable problem with
nonempty uniformly compact feasible region R(�), for �

near �, the optimal value function f � is continuous at �
if MFCQ holds for some x 2 S(�).

Proposition 3 The optimal value function f � is convex
on T if P(�) is jointly convex in (x, �) as defined. As-
suming solution attainment, this further implies that f �

is continuous and directionally differentiable in the inte-
rior of T.

Proposition 4 If R does not vary with � and f is concave
in �, and T is convex, then f � is concave on T. Again,
assuming the solution is attained, this means f � is con-
tinuous and directionally differentiable in the interior of
T.

Proposition 5 Suppose R(�) 6D ; and compact and does
not change with �, and assume f andr� f are continuous
in (x, �). Then, at any � 2 T, it follows that S(�) 6D ; and
compact and the directional derivative Dz f � exists for
any direction z and is given by

Dz f �(�) D min
x
r� f (x; �)z s.t. x 2 S(�): (1)

Proposition 6 Assume that the problem P(�) is con-
vex in x for each � 2 T convex and the problem
functions are once continuously differentiable in (x, �).
Then, if � 2 interior T and the set of points satisfying
KKT(x; u;w; �)) is nonempty and bounded, or equiva-
lently, if the solution set S(�) 6D ; and bounded (hence
compact) and the Slater constraint qualification GS(�)
holds for P(�) with � D � 2 interior T, then in a neigh-
borhood N(�) of �, GS(�) holds, S(�) 6D ; (and S(�) is
convex) for each � 2 N(�) and S(�) is uniformly compact
in N(�). Furthermore, f � is continuous and directionally
differentiable in N(�) and in any direction z and

Dz f �(�) D min
x2S(�)

max
(u;w)2K(x;�)

r�L(x; u;w; �)z; (2)

where K(x, �) is the set of (u, w) such that KKT(x, u, w,
�) holds.

Remark 7 As indicated, the assumption GS is equiva-
lent to MFCQ or to assuming K(x, �) 6D ; and bounded
at a local solution. Dispensing with convexity but as-
suming LI(x, �) holds for each x 2 S(�), rather than
GS(�), we have for each K(x, �) a singleton set {(u(x),
w(x)} and hence

Dz f �(�) D min
x2S(�)

r�L(x; u(x; �);w(x; �); �)z: (3)
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Suppose we assume that the functions defining P(�)
are twice continuously differentiable in (x, �). Then, we
have the following second order results.

Proposition 8 If KKT(x; u;w; �), SOSC(x; u;w; �)
and LI(x; �) and SCS(x; �) hold for x 2 R(�) at � D
� 2 interior T, then there exists a locally unique and
once continuously differentiable vector function (x, u, w)
such that [x(�); u(�);w(�)] D (x; u;w) and such that
these assumptions continue to hold at [x(�), u(�), w(�)]
in a neighborhood N(�) of �. This implies that x(�) is
an isolated local minimizer with associated unique La-
grange multipliers [u(�), w(�)]. Furthermore, f � is con-
tinuous and in fact twice continuously differentiable in
N(�), where f �(�) = f [x(�), �].

Proposition 9 Suppose KKT(x; u;w; �) and
SSOSC(x; u;w; �) and LI(x; �) hold for x 2 R(�) and
� 2 interior T. Then there exists (x, u, w) continu-
ous and locally unique in N(�) such that [x(�); u(�);
w(�)] D (x; u;w) and such that the assumptions persist
at [x(�), u(�), w(�)] and as before, x(�) is an isolated
local minimizer with associated unique Lagrange multi-
pliers [u(�), w(�)]. Now, it turns out that for � 2 N(�),
x, u, w are Lipschitz and directionally differentiable, and
f � is continuous and once continuously differentiable
and twice directionally differentiable.

Proposition 10 If we again assume KKT(x; u;w; �)
and further strengthen the second order conditions to
GSSOSC(x; u;w; �) and now assume MFCQ(x; �), for
x 2 R(�) and � D � 2 interior T, it follows that there
exists a locally unique vector function x for � 2 N(�)
such that x(�) D x and once again the assumptions con-
tinue to persist at x and its associated nonempty com-
pact convex set of Lagrange multipliers also exists as a re-
sult of MFCQ continuing to hold in N(�). Again, x(�) is
an isolated local minimizer, but now we can show only
that x is continuous and f � is once directionally differen-
tiable. It follows that for � 2 N(�),

Dz f �(�) D max
(u;w)K[x(�);�]

r�L[x(�); u;w; �]z: (4)

Propositions 6–10 demonstrate what we have called as-
sumption stability (i. e., persistence of initial assump-
tions). A unique local solution with the given proper-
ties continues to be locally unique and continuous and
sometimes even differentiable, with continuous small

data changes, and satisfying characterizations follow.
All of the results we have given are now very well known
and have been finely tuned, most therefore invoking
close to ‘minimal assumptions’. Weaker conditions will
generally significantly change the conclusions. For ex-
ample if GSSOSC is replaced by the weaker condition
GSOSC in the assumptions given in Proposition 10,
then the perturbed solution x(�) need no longer be lo-
cally unique, although the initial solution x D x(�) is
an isolated local minimizer. Assumption stability is lost,
since GSOSC does not persist.

We offer a few observations concerning the rate of
change of the optimal value f �(�), with data changes.
See (2). Dz f � is itself an optimal value, a contribution
to which comes either from f or from the gi and hj,
through the Lagrangian, its value generally depending
on the problem solution set and the optimal set of La-
grange multipliers. Note that if the constraints are not
dependent on the parameter �, then (2), (3) and (4)
all collapse to formula (1): Dz f �(�) = minS(�) r� f (x,
�)z, formula (4) reducing to (1) without the min, as ex-
pected from Proposition 5. Note further that this for-
mula does not depend on the Lagrange multipliers, but
only on the behavior of f over the solution set. On
the other hand, if f does not depend on �, the depen-
dency is all on the constraints andmultipliers. In partic-
ular, consider the so-called right-hand side perturbation
problem

P1(�)

8̂
<̂
ˆ̂:

min f (x)
s.t. gi (x) � �i (i D 1; : : : ;m);

hj(x) D � j C m ( j D 1; : : : ; p):

Then, applying the results given in Propositions 6 and
10, assuming for simplicity that the local solution x(�)
and its associated optimal Lagrange multipliers (u(�),
w(�)) are unique, and using formulas (2), (3) or (4), we
find that

Dz f �(�) D [u(�);�w(�)]>z (5)

Thus, the directional rate of change of f � with respect to
changes in the constraint values is captured entirely by
the optimal Lagrangemultipliers, e. g., at the local mini-
mizer x(�) the rate of change of f �(�) along a unit vector
in the direction of �i, 1 � i � m, is given by ui(�). This
is an extremely important and well known result. In ap-
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plications, it translates to the multipliers being shadow
prices (i. e., imputed values) of resource levels.

Two simple examples may help to clarify some of
these results. The interested reader should graph these
problems to appreciate the geometry.

Example 11 (Assume |�| � 1/2.)

P(�)

8̂
<̂
ˆ̂:

min �x1 C x2
s.t. x1 � 0; x2 � 0;

x1 C x2 � 1; x21 C x22 � 4:

The solution is S(0) = {x 2 E2 : 1� x1 � 2, x2 = 0}, f �(0)
= 0; S(�) = (1, 0) and f �(�) = � for � > 0; and S(�) = (2,
0) with f �(�) = 2� for � < 0. It follows that Dzf �(0) =
minS(0) r� f [x(0), 0]z = minS(0)x1z = z if z > 0 and 2z if
z < 0, which agrees with the values that follow by direct
calculation of the closed form solution. We also note
that the optimal value is concave, agreeing with results
given previously, since f is concave in � and the feasi-
ble region R is fixed. (Note that the problem is convex
in x, Slater’s condition holds, and S(0) is bounded, so
Propositions 4, 5 and 6 all apply.)

The next example is trivial, but illustrative.

Example 12

(
min x2
s.t. x2 � x21 � �:

The solution is x(�) = (0, �), the optimal value f �(�) = �
and the optimal Lagrange multiplier is u(�) = 1, for any
�. The problem is jointly convex and Slater’s condition
holds. The solution is unique, LI and SCS hold and in
fact all the given second order conditions hold for this
problem, so all the results we have given for these will
hold. In particular, we see that Dz f �(�) = u(�)z = z,
as expected. Note that f � is convex and differentiable
and x(�) and u(�) are unique and differentiable, all as
predicted by the theory.

There are many variations and extensions of the small
sample of results that we have presented here. We have
only been able to give the reader a flavor of this inter-
esting and important subject.

Many references exist and many would have to be
cited, if we were to give proper credit to all the many re-

searchers who have contributed, even to the handful of
results presented. Rather than attempt this, we refer the
reader to three references. These references contain nu-
merous tutorials and hundreds of additional references
and should provide a quicker introduction to the sub-
ject than initially attempting to study scholarly papers
scattered in the literature.

See also

� Nonlocal Sensitivity Analysis with Automatic
Differentiation

� Parametric Global Optimization: Sensitivity
� Sensitivity Analysis of Complementarity Problems
� Sensitivity Analysis of Variational Inequality

Problems
� Sensitivity and Stability in NLP
� Sensitivity and Stability in NLP: Approximation
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The SCP (Sequential Cutting Plane) algorithm [6,7,8]
can be used for solving both NLP (Nonlinear Program-
ming) andMINLP (Mixed Integer Nonlinear Program-
ming) problems efficiently. For convex problems the al-
gorithm finds global optimal solutions. For non-convex
problems, global optimality cannot be guaranteed. Nev-
ertheless, the algorithm can also be used on non-convex
problems to find good approximations of the global op-
timal solution.

The SCP algorithm presented here uses a branch
and bound strategy to solve MINLP problems where an
NLP problem is solved in each integer node of the tree.
The NLP problems are not solved to optimality, rather
one iteration step is taken at each integer node of the
tree and linearizations of the nonlinear constraints are
added as cuts to the problem. The iteration step consists
of performing an NLP iteration as described in [6,8],
where the algorithm solves a sequence of linear pro-
gramming problems. Note that in [7], the approach was
different than the one used here. In [7], an NLP iter-
ation was performed in each node of the branch and
bound tree, which can be inefficient in difficult combi-
natorial problems where the branch and bound tree is
large.

Formulation

The SCP algorithm solves problems of the form

min f (x; y);
s:t: g j(x; y) � 0; j D 1; : : : ;m; x 2 X; y 2 Y :

(1)

The set X is a bounded, box-constrained set of the
form X D fx 2 Rnr jxLB � x � xUBg and the set Y is
a finite bounded set Y D fy 2 Znz jyLB � y � yUBg.
The functions f and g are convex and continuously dif-
ferentiable.

The performance of the algorithm on a difficult set
of block optimization problems, see [2], is presented.
The ECP (Extended Cutting Plane) algorithm [9,10]
proved to be very efficient in [2] for solving these types
of optimization problems. The SCP algorithm further

enhances the ideas from the Extended Cutting Plane al-
gorithm in order to solve these difficult MINLP prob-
lems even more efficiently.

Methods

The problem (1) is solved by the SCP algorithm by do-
ing a normal branch and bound procedure on a relaxed
version of (1). In each integer node of the tree, the in-
teger variables are fixed. An NLP iteration is then per-
formed on the NLP subproblem obtained by fixing the
integer variables. If the iterate is optimal, the solution
in the integer node is an upper bound on the optimal
solution of the original problem (1) and can be used for
dropping nodes from the tree. If not, linearizations of
the nonlinear constraints are added in the current iter-
ate as cuts to the relaxed version of (1) and the branch-
ing process is continued.

Branch and Bound

The root node P̄1 of the tree is constructed by relax-
ing (1) such that the integer requirements and the non-
linear constraints from the problem formulation are
dropped. If some of the constraints g j(x; y) � 0; j D
1; : : : ;m, are linear, they can be kept in the relaxed
problem.

A branch and bound procedure, see [4], is then per-
formed on this linear relaxation until an integer feasible
node P̄k is obtained. In this node, the integer variables
yk are fixed and an NLP iteration is performed in order
to solve the NLP subproblem

min f (x; yk) ;

s:t: g(x; yk) � 0 ; x 2 X :
(2)

Note that the problem is not solved to optimality. In-
stead one NLP iteration is performed in order to get
a good approximation of the optimal solution to the
subproblem. Let xk be the iterate obtained after the NLP
iteration on (2).

The iterate (xk ; yk) can be used to add lineariza-
tions of the violated and active nonlinear constraints in
(xk ; yk),

g j(xk; yk)Cr g j(xk ; yk)T (x � xk ; y � yk) � 0 ;

j 2 f j : g j(xk ; yk) � 0g ;

to the set of cuts˝k in order to obtain a new set of cuts
˝kC1.
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If xk is the optimal solution to (2), then f (xk; yk) is
an upper bound of the optimal solution to (1) and can
be used to drop unexplored nodes from the branch and
bound tree whenever the lower bounds of the nodes are
greater than this upper bound.

NLP Iteration

The NLP subproblem (2) is solved by performing an
NLP iteration [6,8]. In an NLP iteration, a sequence
of linear programming (LP) subiterations is performed.
In each subiteration (i) within the NLP iteration, an
LP problem LP(x(i)) is generated in the current iterate
(x(i); yk). The LP problem LP(x(i)) is of the form

min r f (x(i); yk )Td C Ct ;

s:t: g j(x(i); yk)Cr g j(x(i); yk)Td � t � 0 ;
j D 1; : : : ;m ;

(d(r))TH(i)d D 0; r D 1; : : : ; i � 1; i>1 ;
t � 0 ;

x(i) C dx 2 X; dy D 0 ;

where d D (dx ; dy), and d(r); r D 1; : : : ; i � 1, are the
previously obtained search directions within the NLP
iteration. Also, H(i) is the current estimate of the Hes-
sian of the Lagrangian

L(x; �) D f (x; yk)C
mX
jD1

� j g j(x; yk) :

The BFGS update formula was used in the implemen-
tation of the algorithm to approximate H(i).

The dual optimal solution to the LP problem
LP(x(i)) provides a Lagrange multiplier estimate, which
can be used when estimating the Hessian of the La-
grangian. Consequently, the Hessian approximation
can be updated in each LP subiteration.

The solution to each LP problem LP(x(i)) provides
a search direction d(i) D (d(i)x ; 0). A line search is per-
formed in the obtained search direction minimizing
a modified function based on the Lagrangian of (2),

L̃(x; �) D f (x; yk)C
mX
jD1

� j g j(x; yk)C

C �

mX
jD1

(g j(x; yk)C)2 ;

where g j(x; yk)C D max(g j(x; yk); 0) and � (>0) is
a penalty parameter.

The current iterate (x(i); yk) is then updated us-
ing the solution ˛(i) of the line search such that
x(iC1) D x(i) C ˛(i)d(i)x , where ˛(i) is the step length
found in the line search.

A new LP problem is then constructed in the up-
dated iterate (x(iC1); yk). The new LP problem is con-
structed in a similar way as the previous LP problem
with equality constraints requiring the new search di-
rection to be a conjugate direction to the previously ob-
tained search directions with respect to the current es-
timate of the Hessian of the Lagrangian.

The linear equality constraints

(d(r))TH(i)d D 0; r D 1; : : : ; i � 1 ;

are cutting hyperplanes ensuring that d will be a conju-
gate direction to the old directions d(r).

Initialize: Do a number of NLP iterations on
the continuous relaxation of (1) to obtain the
initial iterate for the problem. Construct the
relaxed node P̄ 1 and insert it into the branch
and bound tree as the top node and set the
upper bound U = ∞. Add cutting planes for
the initial iterate to the set of cutting planes
Ω1. Let k = 1.

While (there are unexamined nodes in the tree)
do
1. Do normal branching on the branch and

bound tree including the cutting planes Ωk

as linear cuts until integer solution (x̃k, yk)
found.

2. Fix yk and perform an NLP iteration on (2).
Let the iterate after the NLP iteration be xk.

3. If solution xk optimal for (2) Then update
upper bound U := min{U, f(xk, yk)}.

4. If (2) is found to be infeasible Then let xk be
the last iterate from the NLP iteration.

5. Let Ωk+1 = Ωk. Add cutting planes generated
in (xk, yk) for the active and violated con-
straints and add them to Ωk+1. Let k := k+1.

End While

Sequential Cutting Plane Algorithm, Algorithm 1
Pseudo-code for the SCP algorithm
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The new LP problem is then solved, a new line
search performed and the iterate updated again. The
procedure is repeated until the LP problem becomes in-
feasible, a sufficient number of steps have been taken
or the current solution to the LP problem is sufficiently
close to zero.

Normally, the NLP iteration would then be repeated
until an optimal point is found. However, in this ver-
sion of the algorithm only one NLP iteration is per-
formed in each integer node of the branch and bound
tree in order to improve the performance of the algo-
rithm.

Convergence properties of the NLP version of the
SCP algorithm have been analyzed in earlier papers,
see [6] and [8].

Algorithm Pseudo-Code

The algorithm is summarized in Algorithm 1.

Cases

The performance of the algorithm is illustrated on
a set of difficult block optimization problems presented
in [2]. The paper concerns optimizing the arrangement
of a number of departments with unequal area require-
ments. It is possible to formulate the problems as mixed
integer nonlinear programming problems, where the
constraints are department and floor area requirements
as well as department locational restrictions. The opti-
mization target is to minimize the cost associated with
the projected interactions between departments. In [2],
the Extended Cutting Plane method was compared to
a number of commercial algorithms and proved to be
superior to the other solvers.

In Table 1 the results for the solvers in [2] are sum-
marized in terms of the number of problems solved to
optimality, number of problems for which a feasible so-
lution was obtained and number of problems for which

Sequential Cutting Plane Algorithm, Table 1
Performance of the solvers on the block layout problem as
reported in [2]

Solution BARON DICOPT MINLPbb SBB ˛-ECP
Optimal 13 5 5 5 31
Feasible 16 2 27 23 1
No solution 3 25 0 4 0

no solution was obtained within 12 h of CPU time.
More information about the solvers used can be found
in [1].

The results are excellent for the ˛-ECP algorithm on
these test problems. It only failed to solve one problem
to global optimality and obtained the best integer feasi-
ble solution for the problem it could not solve to global
optimality.

In Fig. 1 the results of the new SCP algorithm are
compared with the ˛-ECP algorithm using a perfor-
mance profile [3]. The results are also compared with
a version where each integer node is solved to optimal-
ity by repeating the NLP iterations until an optimal so-
lution to (2) is found. This version of the SCP algorithm
is denoted SCP-NLP. Note that if you solve the inte-
ger nodes to optimality, the procedure is similar to the
method described in [5]. CPLEX was used as the MILP
solver and the NLP part of the algorithm was imple-
mented inMATLAB. Amaximum of 12CPU h for each
problem was used when solving the problems.

As can be seen from the results, the SCP algorithm
performed very well on the test problems. In more than
half of the cases it was the fastest solver. Considering
that some of these problems can take several hours to
solve, the performance improvement is significant.

In Fig. 2 the best-known solutions of the SCP and
˛-ECP solvers, when running the solvers for a maxi-
mum of 60 CPU s, are compared with the best-known
solutions for the other solvers in [2], when running
these solvers for a maximum of 12 CPU h.

Note that both the SCP and ˛-ECP solvers return
very good solutions after 60 CPU s in comparison with
the other solvers that were run for a maximum of 12
CPU h. In fact, the SCP algorithm reported the best-
known solution in almost half of the cases. Thus, the
SCP algorithm can also be used for efficiently finding
good solution candidates, when the problems are too
difficult to solve to the global optimum.

Conclusions

The Sequential Cutting Plane algorithm is well-suited
for solving mixed integer nonlinear programming
problems. The numerical results above for a set of chal-
lenging block layout problems support this claim. An-
other advantage is that the algorithm will efficiently find
a good feasible solution to a problem, even when the
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Sequential Cutting Plane Algorithm, Figure 1
Performance profile comparing CPU times for solving the block layout problems

Sequential Cutting Plane Algorithm, Figure 2
Performance profile comparing the optimal values of the solvers. Observe that 60 CPU seconds is used for SCP/ECP and
12 CPU hours for the other solvers
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problem is not solved to optimality. Thus, difficult com-
binatorial optimization problems in real-world applica-
tions could be solved by combining the SCP algorithm
with some non-deterministic approach such as an evo-
lutionary algorithm.
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For the purpose of this article, distributed optimal con-
trol problems are optimization problems which are
posed in function space and in which one of the con-
straints is a partial differential equation. An example of
such a problem is
8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
1
2

Z
˝

(y(x) �by(x))2 dx C !

2

Z
�

u2(x) dx

s.t. �	y(x)C y3(x) � y(x) D 0 in˝;
@

@n
y(x) D u(x) in �;

ul (x) � u(x) � uu(x) a.e. on �;
yl (x) � y(x) � yu(x) a.e. in˝;

where ˝ is a bounded open domain in R2, � is the
boundary of ˝ , ! > 0 is a given parameter, and the
functions ul, uu, by, yl, yu are given. The functions y
and u are called the states and controls, respectively.
The partial differential equation including the bound-
ary conditions is called the state equation or the govern-
ing equation.

Abstractly, a distributed optimal control problem
may be written as

min J(y; u); (1)

such that

c(y; u) D 0; (2)

u 2 Uad; (3)

y 2 Yad; (4)

where Y , C are Hilbert spaces, U is a Banach space, Yad

� Y ,Uad �U are closed convex sets, and J:Y × U! R,
c: Y ×U! C are twice Fréchet differentiable functions.
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In the previous example, Y = H1(˝), C = (H1(˝))�, U
= L2(� ), and Yad = {y 2 H1(˝):yl � y � yu a.e. in ˝},
Uad = {u 2 L2(� ):ul � u� uu a.e. in � }. Several optimal
control problems that fit into this framework are stud-
ied in [4,7,8,12]. This problem formulation also covers
optimal design problems [5,9] and parameter identifica-
tion problems.

After a discretization of the problem (1)–(4) using,
e. g., finite elements, one often obtains a nonlinear pro-
gramming problem of the form

min Jh(yh; uh); (5)

such that

ch(yh ; uh) D 0; (6)

uh
l � uh � uh

u ; (7)

yhl � yh � yhu ; (8)

where yh 2Rn y , uh 2 Rnu and JhRn yCnu!R, ch:Rn yCnu

! Rn y are twice differentiable functions. The number
of discretized states ny tends to be large. Depending on
the type of control, nu can be small (boundary control)
or large (distributed control).

Sequential quadratic programming interior point
(SQPIP) methods have been used to solve distributed
optimal control problems. See, e. g., [2,3,5,7,9,10,11].
While the various SQPIP methods differ, they share
some important design features. In each iteration a sub-
problem is solved that only involves a linearization of
the state equation (2) or (6) and a quadratic approxi-
mation of the Lagrangian Lh(yh, uh, �h) = Jh(yh, uh) +
hch(yh, uh), �hi. All iterates stay strictly feasible with re-
spect to the bounds, but the nonlinear state equation
is only satisfied in the limit. SQPIP methods attempt
to achieve feasibility and optimality at the same time.
Such all-at-once approaches are usually more efficient
than solution approaches that maintain feasibility of the
nonlinear state equation at every iteration. For a general
introduction to SQP methods and interior point meth-
ods for nonlinear programming problems see � Suc-
cessive quadratic programming: Solution by active sets
and interior point methods; � Linear programming:
Interior point methods.

This article focuses on the application of SQPIP
methods to distributed optimal control problems.

For such problems affine scaling SQPIP methods [3]
and various versions of primal-dual SQPIP methods
([2,5,7,9,10,11]) have been used. Primal-dual interior
point methods have been applied to the nonlinear
problem (5)–(8) directly or as inequality constrained
quadratic programming subproblem solvers. In all ref-
erences above, SQPIP methods have been applied to
discretized optimal control problems (5)–(8). While
these applications have been successful, there are sev-
eral open research issues. The development of SQPIP
methods for large scale nonlinear programming prob-
lems is a very active research area. Additional research
issues arise when SQPIP methods are applied to dis-
tributed optimal control problems. The latter research
issues and achievements will be described in the follow-
ing.

Distributed optimal control problems have a partic-
ular problem structure. It is derived from the under-
lying infinite-dimensional problem and from the di-
vision of optimization variables into states and con-
trols. Since one is interested in the solution of the
infinite-dimensional problem (1)–(4), one needs to
consider sequences of discretized problems (5)–(8).
While for a fixed discretization the nonlinear pro-
gramming framework may be applicable, the under-
lying infinite-dimensional problem is important when
sequences of successively refined discretizations are
considered. It is important to understand the conver-
gence behavior of the SQPIP algorithm in the infinite-
dimensional setting, because this often dominates the
convergence behavior of the algorithm for the dis-
cretized problem when the discretization is fine. Con-
vergence results in [2,11] for SQPIP algorithms applied
to elliptic optimal control problems show that in sev-
eral cases the number of optimization iterations in-
creases only slowly, if at all, when the discretization is
refined. This indicates that there might be an under-
lying infinite-dimensional convergence theory. How-
ever, such a theory is not yet known for most interior
point algorithms. Currently, the only analyses of inte-
rior point methods for infinite-dimensional problems
are [6,13,14].

Most available SQPIP algorithms for nonlinear pro-
gramming use sparse direct linear algebra to solve sub-
problems. This is not suitable for many distributed
optimal control problems. Here, subproblems involve
the solution of linearized partial differential equations,
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which is best done using problem specific solvers, such
as multigrid or domain decomposition techniques.
How to adjust the accuracy of iterative subproblem
solves within SQPIP methods to obtain an efficient,
globally convergent algorithm is not yet completely un-
derstood. An analysis of the influence of inexact prob-
lem information on the convergence of SQPIPmethods
is also important because discretizations of distributed
optimal control problems can lead to errors in the
derivative information. For example, this may happen
when derivative information for the discretized prob-
lem (5)–(8) is computed by discretizing the Fréchet-
derivatives of the infinite-dimensional problem (1)–(4).
In such cases error in derivative information often goes
to zero as the discretization is refined. An understand-
ing of the influence of inexact derivative information
on the convergence of SQPIP methods is necessary for
the development of efficient and robust algorithms, in-
cluding the development of grid refinement strategies
within the optimization.

When considering SQPIP methods for distributed
optimal control problems it is useful to distinguish be-
tween problems with and without state constraints (4),
(8). Problems (1)–(3) or (5)–(7) which include only
control constraints are often easier to solve. For con-
trol constrained problems there exist more solution ap-
proaches, like projection methods, than for state con-
strained problems. If the controls u are in U = Lp, p 2
[1,1) or p =1, which is, e. g., the case in the exam-
ple problem at the beginning of this article, then opti-
mality conditions for the infinite-dimensional problem
can be formulated in a form that is suitable for the de-
velopment of interior point methods. In particular, un-
der suitable assumptions it is possible to show that La-
grange multipliers corresponding to (3) are in L1. See,
e. g., [13,14]. Development of optimality conditions for
distributed optimal control problems (1)–(4) with state
constraints that are suitable for use in optimization al-
gorithms is an active research area. Existing results are
less general than the ones for control constrained prob-
lems. Moreover, the Lagrange multipliers correspond-
ing to the state constraints (4), which are optimization
variables inmost SQPIPmethods, are usually only mea-
sures that can not be represented by functions in Lp.
See, e. g., the discussion and references in [10]. For the
discretized problem (5)–(7) it is often possible to show
that the partial Jacobian @/ @y)ch(yh, uh) is invertible for

all uh
l � uh � uh

u , yh 2 Rn y . In this case the Jacobian

 
@
@y c

h(yh; uh) @
@u c

h(yh; uh)
0 ˙IA(uh )

!

of the active constraints (6), (7) has full row rank, i. e.,
it is appropriate to assume the linear independence con-
straint qualification for the problem (5)–(7). This as-
sumption is made in many local convergence analy-
ses for SQPIP methods for nonlinear programming.
For the problem (5)–(8) with state constraints, this as-
sumptions is often too restrictive. For example, the lin-
ear independence constraint qualification will be vio-
lated if more that nu+ny control and state constraints
(7), (8) are active ([1,15]). Finally, the quality of some
preconditioners for the iterative solution of subprob-
lems within SQPIP method is improved when control
constraints (7) are present, but decreased if state con-
straints (8) are given (see, e. g., [1]).

SQPIP methods for distributed optimal control
problems is a rapidly developing area. This class of op-
timization algorithms shows great promise, especially
for problems with state constraints. The reader will find
detailed discussions in the references and related infor-
mation in � Successive quadratic programming: Solu-
tion by active sets and interior point methods;� Linear
programming: Interior point methods on SQPmethods
and interior point methods for nonlinear programming
problems.
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The sequential simplex method is due to the original
work of W. Spendley, G.R. Hext and F.R. Himsworth
[2]. It was later developed further by J.A. Nelder and
R. Mead [1]. An exposition of the ideas underlying the
method and its operation are as follows.

The minimization problem considered is:

min
x

f (x):

First, a simplex is defined as the geometric object
formed by a set of n + 1 points in the case of n vari-
ables (dimensions). Equidistant points form a regular
simplex. In two dimensions such an object is a triangle,
in three dimensions it is a tetrahedron and so forth.

The basic idea of the downhill simplex method (for
minimization of n-dimensional functions) rests on the
ability to use the geometric object to move a vertex at
a time in the direction of descending function values.
To achieve this firstly one needs to define the initial
layout of the vertices, and then apply general types of
moves to modify the object. The basic moves are three,
namely, reflection, expansion, and contraction. A suit-
able termination criterion is also needed. All these ba-
sic characteristics of the sequential simplex algorithm
are outlined below.

1. Initial simplex construction
Generally, one can select any number of n + 1 points
to form the initial simplex, as long as each subset of n of
them is capable of spanning the n-dimensional space, in
other words there are precisely n linearly independent
vectors in the set. A simple procedure is to select for ex-
ample an initial vertex point x(1) and then arraying the
remaining n points scaled in the coordinate directions:

x(i) D x(1) C �ie(i�1); i D 2; : : : ; n C 1;

where �i is some set of constants which reflect the guess
of the problem’s characteristic scales in each of its vari-
ables. The vectors e(i) are the unit vectors along each
coordinate.

Having constructed the initial simplex each of the
vertices must be evaluated in terms of the objective
function value, leading to the corresponding values f 1,
. . . , f n+1. Following this, we denote the corresponding
index, function value and vertex vector for the lowest,
highest and replacing new vertex by the triplets {l, f l,
x(l)}, {h, f h, x(h)}, {r, f r , x(r)}. It is also useful to define
the centroid of the simplex (excluding the highest func-
tion value vertex) by:

x(c) D
1
n

nC1X
iD1;i¤h

x(i); (1)

thus having a new triplet representing this centroid
given by {c, f c, x(c)}.

2. Reflection (main operation)
This corresponds to rejecting vertex h, with maximum
function value among all other vertices, and replacing
it by a reflected point r through the opposite face of
the simplex. This is based on the expectation that such
a new point will have a smaller value. The reflected
point is constructed by:

x(r) D x(c) C ˛1(x(c) � x(h));

where ˛1 > 0 is the reflection coefficient, determining
how far the new point will be on the far side of the cen-
troid vertex c. Clearly, the definition above results in x(r)

to lie on the line joining the vectors x(h) and x(c). The
definition of the reflection coefficient is thus:

˛1 D



x(r) � x(c)



2

x(h) � x(c)



2

:

If f l � f r � f h, then the new vertex r is accepted,
defining a new simplex. It is quite easy though for
reflection-only based operation to get in a cyclic op-
eration without improvement. This may happen if the
simplex gets positioned in such a way that the reflected
point gives the same function value as the original one
(the highest) which it is replacing. One may be able to
introduce rules, such as not allowing returns to bemade
to already visited locations, or by replacing the second
highest value of the simplex by a new point.

If the function value is found to be f r < f l then the
expansion operation is carried out in step 3. If, on the
other hand, the expansion produces a point for which f r
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> f l holds for all points in the simplex except the highest
value one (point h) then the contraction operation is
carried out in step 4.

3. Expansion
If during the reflection process above, it is found that
the new point is better than all others in the previous
simplex, that is f r < f l, then the reflection is successful
in producing a new candidate minimum point. In such
a case it is expected that the direction along the centroid
defined in (1) and the replaced point h is a descent di-
rection. Hence, it is desirable to move further along this
direction by expanding the simplex. The expansion is
defined by a new index e point:

x(e) D x(c) C ˛2(x(r) � x(c));

again having as a definition of the expansion coefficient
the ratio:

˛2 D



x(e) � x(c)



2

x(r) � x(c)



2

;

which indicates how much further the original replace-
ment step is taken in the expansion phase.

If the procedure satisfies f e < f l the point x(h) is re-
placed by the point x(e) and another reflection operation
is restarted. If this does not improve the function value,
that is f e > f l holds, then the replacement is such that
the point x(h) is replaced by the point x(r) and another
reflection process is started again (going back to step 2).

4. Contraction
If the reflection process has produced a point for which
f r > f l holds for all points in the simplex except the
highest value one (point h), then the point x(h) is re-
placed by x(r). But this will cause the new highest value
point to be the one just introduced, hence it is necessary
to contract the simplex by the following rule, where s
indicates the new contracted point:

x(s) D x(c) C ˛3(x(h) � x(c)); (2)

where the parameter ˛3 is the contraction coefficient,
such that 0 � ˛3 � 1, and defines the ratio:

˛3 D



x(s) � x(c)



2

x(h) � x(c)



2

;

defining by howmuch the direction to the highest value
vertex from the centroid is contracted.

If f r > f h, then the contraction operation in (2) is
used, without of course replacing the original highest
value point h.

If the point s is such that f s < min{f h, f r} then point
x(h) is replaced by x(s) and reflection operations resume
(going to step 2).

If the contraction has failed, yielding f s � min{f h,
f r} then it is proposed to replace all points x(i) by mov-
ing closer to the lowest value point using (x(i) + x(l))/2
and restarting reflection operations (going to step 2).

5. Termination criteria
Termination criteria are necessarily by the con-

struction of the method going to have to be based on
some ‘average’ value along all current vertices in the
simplex. A suitable criterion, which may be tested each
time the simplex has been modified by any of the above
three operations, is the following:

 
1

nC 1

nC1X
iD1

( fi � f0)2
!1/2

� �;

where the value f 0 may be set to be the centroid cal-
culated in (1), or one that includes all present points,
i. e. even the highest point excluded in the summation
in (1).

The above criterion is a standard deviation measure
of all simplex points, which should be less or equal to
some � > 0 specified tolerance on its value.

The various parameters ˛1, ˛2, ˛3 appearing in the
various operations of the algorithm are either fixed, or
can be adapted using line search type operations to find
the best values that will enhance the desired effect of the
operation involved (steps 2–4).

The sequential simplex method requires only func-
tion values generally, and is a simple algorithmic proce-
dure. Generally, it is not the best derivative-free meth-
ods, requiring several function evaluations for larger
problems (in terms of number of variables). However,
whenever a quick and easy search phase is required for
an unconstrained optimization problem, without too
many variables, this method may be quite useful. An-
other advantage is that the method does not require the
objective function f (x) to be differentiable, hence it may
be useful for such practical applications.
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We consider the class of problems having the following
structure:
8̂
<̂
ˆ̂:

min cx
s.t. Ax � e>

x j D 0; 1 for j D 1; : : : ; n;

where A is a m × n matrix of zeros and ones, e = (1,
. . . , 1) is a vector of m ones and c is a vector of n (arbi-
trary) rational components. This pure 0–1 linear pro-
gramming problem is called the set covering problem.
When the inequalities are replaced by equations the
problem is called the set partitioning problem, and when
all of the � constraints are replaced by � constraints,
the problem is called the set packing problem.

Applicability of the Problem

Many applications arise having the packing, partition-
ing and covering structure. Delivery and routing prob-
lems, scheduling problems and location problems often
take on a set covering structure whereby one wishes to
assure that every customer is served by some location,
vehicle or person. Other applications include switch-
ing theory, the testing of VLSI circuits, and line balanc-
ing. Similarly, scheduling problemswhereby one wishes
to satisfy as much demand as possible, without creat-
ing conflicts often requires the set packing format. Fi-
nally, when every customer must be served by exactly
one server, the problem takes on the set partitioning
format. Commonly cited problems having this struc-
ture include the crew-scheduling problem, where every
flight leg of an airline must be scheduled by exactly one
cockpit crew; another is the political districting problem,
whereby regions must be divided into voting districts
such that every citizen is assigned to exactly one dis-
trict. See the survey [4] which contains a bibliography
on applications.

Recently (as of 2000), reformulating them as ei-
ther set-covering problems or set-partitioning prob-
lems having an extraordinary number of variables has
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solved a variety of difficult problems. Because, for even
small instances of the problem, the problem size can-
not be explicitly solved, techniques known as column-
generation, which began with the seminal work [16] on
the cutting-stock problem, are employed. An overview
of such transformation methods can be found in [5].
For specific implementations to the vehicle routing
problem, see [11], for the bandwidth packing problem,
see [27], for the generalized assignment problem see
[29] and for alternative column-generation strategies
for solving the cutting-stock problems, see [5].

J. Bramel and D. Simchi-Levi [7] have shown that
the set-partitioning formulation for the vehicle routing
problem with time windows is a tight formulation, i. e.
the relative gap between the fractional linear program-
ming solution and the global integer solution is small.
Similar results are obtained for the bin-packing prob-
lem [9] and for machine scheduling [8].

Solution Approaches

Once the problem has been formulated as a set-
covering, set-packing or set-partitioning problem, the
search for an optimal (or near-optimal) solution to this
NP-hard 0–1 linear programming problem remains.
Most solution approaches start by considering the lin-
ear programming relaxation (LP relaxation) of the re-
spective problem. If the matrix A is a perfect zero-one
matrix, see [23], then the LP relaxation of both the set
packing and the set partitioning problem have a zero-
one optimal solution for all choices of the objective
function. Likewise, if the matrixA is an ideal matrix, see
[26], then the same holds true for the set covering and
the set-partitioning problem. Problems arising in prac-
tice need not, however, have perfect or ideal matrices.
Nevertheless, it has been observed in computational
practice that as long as the problems to be solved are rel-
atively small, linear programming (or linear program-
ming coupled with branch and bound) is likely to pro-
vide integer solutions quickly. However, as the problem
size increases, the nonintegrality of the linear program-
ming solution increases dramatically as does the length
and size of the branching tree. It is for these larger in-
stances of the problem that approximation techniques,
reformulation and exact procedures have been devel-
oped that exploit the underlying structure of the prob-
lem.

Reformulation of the Linear Description
of the Problem

The natural structure of packing, covering and parti-
tioning approaches provides opportunities to automat-
ically remove any unnecessary rows or columns, and to
remove any variables that cannot exist in any optimal
solution. Checks for inconsistencies among the con-
straints are also performed. Reformulation procedures
for the set covering problem have been well known for
a long time [15] but had not been implemented into
a special-purpose code for solving very large scale prob-
lems until 1993 [19].

Heuristics for the Set Partitioning
and Covering Problems

Virtually every heuristic approach for solving general
integer programming problems has been applied to the
set-covering, packing and partitioning problems. The
set covering and packing formulations naturally lend
themselves to greedy starts (i. e. an approach that at
every iteration myopically chooses the next best step
without regard for its implications on future moves),
see e. g. [14]. Interchange approaches have also been
applied here; a swap of one or more columns is taken
whenever such a swap improves the objective function
value. Newer heuristic approaches such as genetic al-
gorithms (cf. also � Genetic algorithms), probabilistic
search [13], simulated annealing (cf. also � Simulated
annealing methods in protein folding) [5], and neural
networks (cf. also � Neural networks for combinato-
rial optimization) [1] have each been tried. Unfortu-
nately, there has not been a comparative testing across
such methods to determine under what circumstances
a specific method might perform best. J.E. Beasley [6]
maintains an extensive test set of problem instances for
these important problems.

In addition, one can embed heuristics within ex-
act algorithms so that one iteratively tightens the upper
bound at the same time that one is attempting to get
a tight approximation to the lower bound for the prob-
lem. See [19] for a description of a linear-programming
based heuristic for the set-partitioning problem with
side constraints, and [2] for heuristics based on using
Lagrangian relaxation (cf. also� Integer programming:
Lagrangian relaxation) embedded within branch and
bound to solve the set covering problem.
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Exact Solution Approaches to the Set Covering,
Packing and Partitioning Problems

Exact approaches to solving set partitioning, covering
and packing problems require algorithms that generate
both good lower and upper bounds on the true mini-
mum value of the problem instance. One can use any of
the heuristics mentioned above to obtain a good upper
bound to these problems. One should note, however,
that the set covering and packing problems are easier
problems for heuristic search because for these prob-
lems, it is, in general, easy to find feasible solutions. The
set-partitioning problem may create unique concerns
for some of these algorithms specifically because each
row must be covered exactly once.

In general, the lower bound on the optimal solu-
tion value is obtained by solving a relaxation of the op-
timization problem. That is, one solves another opti-
mization problem whose set of feasible solutions prop-
erly contains all feasible solutions of the original prob-
lem and whose objective function value is less than or
equal to the true objective function value for points
feasible to the original problem. Thus, we replace the
‘true’ problem by one with a larger feasible region that is
more easily solved. There are two standard relaxations
for covering, packing and partitioning problems: La-
grangian relaxation (where the feasible set is usually re-
quired to maintain 0–1 feasibility, but many if not all
of the constraints are moved to the objective function
with a penalty term) and the linear programming re-
laxation (where only the integrality constraints are re-
laxed and the objective function remains the original
function). For the set-covering problem, in [12] a La-
grangian formulation and subgradient optimization is
used. In [3] various Lagrangian relaxations are tested,
including some that incorporated cuts within the for-
mulation and kept a disjoint set of the original linear
constraints unrelaxed. In [2], dual and primal heuris-
tics, recursive variable fixing and subgradient optimiza-
tion are embedded within a branch and bound tree
search.

An alternative approach to solving set partitioning,
packing and set covering problems is branch and cut.
This method begins by solving the linear programming
relaxation to the problem and then tightening the for-
mulation by adding new linear inequalities to the con-
straint set.

Specifically, it requires finding linear inequalities
that are violated by a given relaxation but are satisfied
by all feasible zero-one points. The most successful cut-
ting plane approaches are based on polyhedral theory,
that is they replace the constraint set of an integer pro-
gramming problem by a convexification of the feasible
zero-one points and extreme rays of the problem. Some
of the polyhedral cuts useful for set-partitioning prob-
lems are clique inequalities, odd cycles, and the comple-
ments of odd cycles in the intersection graph associated
with the matrix A. For a complete description of how
such cuts are embedded into a tree search structure that
also uses heuristics, and reformulation and variable fix-
ing techniques, see [19].

For details on polyhedral structure see [10,22,24,25]
and [28]. Currently, the polyhedral description of these
problems is incomplete. As our understanding of the
mathematical structure of the set partitioning, packing
and covering polytopes improves, and with the contin-
uing advancement in computer technology, it is likely
that many difficult and important problems will be
solved by being able to solve larger and larger set parti-
tioning problems to proven optimality.

The Future

The recent interest (as of 2000) in reformulating hard,
important scheduling problems into set partitioning
problems via column generation has reinvigorated re-
search into both linear and integer programming solu-
tion techniques. The linear programming relaxations of
these very large set partitioning problems yield highly
degenerate problems for the primal simplex method
to solve. This degeneracy resulted in the revisiting of
both primal and dual steepest edge methods, see [17].
The fact that the column generation approaches require
the solution tomany set-partitioning problems requires
that we better understand the structure of these prob-
lems. More research into polyhedral structure, time-
staged network optimization (for the subproblem so-
lutions), and careful attention to computer implemen-
tation details are likely to yield successes to problems
(such as machine-shop scheduling) that up until now
have not allowed exact solution approaches.

See also

� Branch and Price: Integer Programming with
Column Generation
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� Decomposition Techniques for MILP: Lagrangian
Relaxation

� Graph Coloring
� Integer Linear Complementary Problem
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� Integer Programming: Algebraic Methods
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� Integer Programming Duality
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Nowadays (2000) set-valued optimization means set-
valued analysis and its application to optimization, and
it is an extension of continuous optimization to the set-
valued case. In this research area one investigates opti-
mization problems with constraints and/or an objective
function described by set-valued maps, or investiga-
tions in set-valued analysis are applied to standard op-
timization problems. In the last decade there has been
an increasing interest in set-valued optimization (e. g.,
see the special issue [7]).

General optimization problems with set-valued con-
straints or a set-valued objective function are closely
related to problems in stochastic programming, fuzzy
programming and optimal control. If the values of
a given function vary in a specified region, this fact
could be described using a membership function in the
theory of fuzzy sets or using information on the dis-
tribution of the function values. In this general setting
probability distributions or membership functions are
not needed because only sets are considered.

Optimal control problems with differential inclu-
sions belong to this class of set-valued optimization
problems as well. Set-valued optimization seems to
have the potential to become a bridge between different
areas in optimization. And it is a substantial extension
of standard optimization theory. Set-valued analysis is
the most important tool for such an advancement in
continuous optimization. And conversely, the develop-
ment of set-valued analysis receives important impulses
from optimization.

Set-valued optimization problems have been inves-
tigated by many authors for instance, there are pa-
pers on optimality conditions (e. g., [3,4,5,6,9,11,14,17,
19,21,22]), duality theory (e. g., [8,20,23,24]) and re-
lated topics (e. g., [10,15,16,25]). For further develop-
ments see [7].

In the following let X, Y and Z be real linear spaces,
let Y and Z be partially ordered by convex cones CY � Y
and CZ � Z, respectively (then�CY and�CZ denote the
corresponding partial orderings), letbS be a nonempty
subset of X, and let F : bS ! 2Y and G : bS ! 2Z be
set-valued maps. Throughout this article it is generally
assumed that the domain of a set-valued map equals its
effective domain, i. e. for every element of the domain
the image is a nonempty set.

Under these assumptions one considers the set-
valued optimization problem

(SVOP)

8̂
<̂
ˆ̂:

min F(x)
s.t. G(x) \ (�CZ ) ¤ ;;

x 2bS:
For simplicity let

S :D
n
x 2bS : G(x) \ (�CZ) ¤ ;

o

denote the feasible set of this problemwhich is assumed
to be nonempty. If G is single-valued, the constraint in
(SVOP) reduces toG(x)2�CZ orG(x)�CZ 0Z general-
izing equality and inequality constraints. If, in addition,
F is single-valued, then the problem (SVOP) is a general
vector optimization problem.

It is also possible to use a constraint of the formG(x)
��CZ . But with a simple transformation (see [20]) this
type of a constraint can be transformed to the type of
the constraint in problem (SVOP). This transformation
has the drawback that convexity and continuity proper-
ties of the map may be lost.

As a simple example for problem (SVOP) consider
the case that the objective function of a standard opti-
mization problem is not known explicitly. But one as-
sumes that for every feasible x a lower bound f (x) and
an upper bound g(x) are given. In this case one can re-
place the objective function by a set-valued map F with

F(x) :D [ f (x); g(x)] for all x 2 S:

In practice it turns out that set-valued optimization
makes only sense for a set-valued map F whose lower
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bound cannot be described by a function f (because the
minimization of F is in a certain sense equivalent to the
minimization of f ).

Now the actual minimality notion used in set-
valued optimization is presented.

Definition 1 A pair (x; y) with x 2 S and y 2 F(x) is
called aminimizer of problem (SVOP), if y is a minimal
element of the set F(S) := [x 2 SF(x), i. e.

(fyg � CY ) \ F(S) � fyg C CY :

It is known from vector optimization that the so-called
weak minimality notion is the appropriate concept for
the formulation of necessary and sufficient optimality
conditions. This fact also holds for the set-valued case.

Definition 2 If in addition int(CY ) 6D ;, then a pair
(x; y) with x 2 S and y 2 F(x) is called a weak mini-
mizer of problem (SVOP), if y is a weakly minimal ele-
ment of the set F(S), i. e.

(fyg � int(CY )) \ F(S) D ;:

In order to obtain optimality conditions generalizing
the known classical conditions a suitable differentiabil-
ity notion is now introduced.

Definition 3 [14] In addition, let X and Y be real
normed spaces, and let a pair (x; y) with x 2 S and y 2
F(x) be given. A single-valued map DF(x; y) : X ! Y
whose epigraph equals the contingent cone (e. g., see
[13]) to the epigraph of F at (x; y), i. e.

epi(DF(x; y)) D T(epi(F); (x; y))

is called contingent epiderivative of F at (x; y).

Here the epigraph of F is defined as

epi(F)

:D f(x; y) 2 X � Y : x 2 S; y 2 F(x)C CY g :

The contingent epiderivative is a possible gener-
alization of the well-known directional derivative in
the single-valued case. Under convexity assumptions
the contingent epiderivative is a sublinear map. In set-
valued optimization convex maps are introduced as fol-
lows.

Definition 4 The set-valued map F: S! 2Y is called
CY-convex, if for all x1, x2 2 S and � 2 [0, 1]

�F(x1)C (1 � �)F(x2)

� F(�x1 C (1 � �)x2)C CY :

Using the concept of the contingent epiderivative it is
also possible to introduce subgradients of a set-valued
map.

Definition 5 [2] Let the contingent epiderivative
DF(x; y) of F at (x; y) exist with x 2 S and y 2 F(x).
A linear map L: X! Y with

L(x) �CY DF(x; y)(x); for all x 2 X;

is called a subgradient of F at (x; y). The set @F(x; y) of
all subgradients L of F at (x; y) is called subdifferential
of F at (x; y).

Theorem 6 [2] In addition to the assumptions, let X
and Y be real normed spaces, let S = X, let CY be pointed,
let Y be order complete, let F be CY-convex, and let
the contingent epiderivative DF(x; y) of F at (x; y) ex-
ist with x 2 S and y 2 F(x). Then the subdifferential
@F(x; y) is nonempty.

Next, a complete characterization of weak minimizers
in convex set-valued optimization is presented.

Theorem 7 [14] In addition to the assumptions, let X
and Y be real normed spaces, let S be a convex set, let
int(CY) 6D ;, let F be CY-convex, and let the contingent
epiderivative DF(x; y) exist at x 2 S and y 2 F(x). The
pair (x; y) is a weakminimizer of problem (SVOP) if and
only if

DF(x; y)(x � x) … � int(CY ) for all x 2 S:

A corresponding result can be shown for the con-
strained case whereG describes an inequality constraint
as in problem (SVOP). This optimality condition ex-
tends the Lagrangemultiplier rule to the set-valued case.

Theorem 8 [11] In addition to the assumptions, let X
and Y be real normed spaces, let bS be a convex set, let
int(CY) 6D ;, let F be CY-convex, let G be CZ-convex, let
x 2 S and y 2 F(x) be given, and let the contingent
epiderivative of (F, G) at (x; (y; z)) exist for an arbitrary
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z 2 G(x)\ (�CZ). Moreover, let the regularity assump-
tion

fz : (y; z) 2 D(F;G)(x(y; z))(cone(S � fxg))g
C cone(CZ C fzg) D Z

be satisfied (cone(� � � ) denotes the cone generated by a set
[13]). Then (x; y) is a weak minimizer of the problem
(SVOP) if and only if there are continuous linear func-
tionals t 2 CY� \ {0Y�} and u 2 CZ� with

t(y)C u(z) � 0

for all (y; z) D D(F;G)(x(y; z))(x � x) with x 2bS, and

u(z) D 0:

General results on set-valued analysis can be found in
[1]; while [12] and [18] present the theoretical back-
ground of vector optimization.

See also

� Generalized Monotone Multivalued Maps
� Generalized Monotone Single Valued Maps
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Shape optimization is a part of the larger field called
structural optimization (cf. � Structural optimization;
� Structural optimization: History). Structural opti-
mization can be characterized as an applied branch of
the optimal control theory in which the control vari-
able is related to the geometry of structures. It can be
divided into 3 parts:
i) sizing optimization (optimization of a typical size:

a thickness optimization of beams, plates, etc.);
ii) shape optimization (optimization of a shape of

structures, keeping the topology of an initial de-
sign);

iii) topology optimization (it makes possible to change
the topology of an initial design).
An abstract formulation of a large class of optimal

shape design problems reads as follows:

(P)

8̂
<̂
ˆ̂:

Find ˝� 2 O

s.t. I(˝�; u(˝�)) � I(˝; u(˝));
8˝ 2 O:

Here O is a family of admissible domains, u(˝) is aso-
lution of a state problem (P(˝)), describing the behav-
ior of a structure, represented by a domain ˝ and I is
a cost functional. The state problem is typically given by
partial differential equations (PDEs) or by variational
inequalities (VIs). The mathematical analysis of (P) in-
cludes:
j) the study of existence of solutions to (P);
jj) discretization of (P) and the convergence analysis;
jjj) sensitivity analysis.

In order to guarantee the existence of solutions to
(P) we make several assumptions (note that there is no
uniqueness of the solution, in general). First we intro-
duce the concept of a convergence in O, i. e. if {˝n},˝n

2 O, is a sequence, we specify the meaning of saying:

‘˝n tends !’ to ˝n
O
! ˝ . With any ˝ 2 O, a Hilbert

spaceV(˝) of functions defined in˝ will be associated

(space of functions with finite energy). If˝n
O
! ˝ and

yn 2 V(˝n), y 2 V(˝), then one has to define the con-
vergence ‘yn! y’ (note that the domain of definition of
functions varies). Finally, let u: ˝ ! u(˝) 2 V(˝),˝

2 O be a state relation (PDE, VI, etc.) with u(˝) being
the solution of (P(˝)) and G = {(˝ , u(˝)):˝ 2 O} be
its graph. We suppose that:
1) G is compact in the following sense: if {˝n}, ˝n 2

O, is an arbitrary sequence, then there exist a subse-
quence {(˝nk , u(˝nk ))} and an element (˝ , u(˝))
2 G such that

˝nk

O
! ˝; u(˝nk )! u(˝); k!1 ;

in the specified sense;
2) I is lower semicontinuous: if {˝n}, {vn}, where ˝n

2 O, vn 2 V(˝n) are arbitrary sequences such that

˝n
O
! ˝ , ‘vn! v’ with˝ 2 O, v 2 V(˝) then

lim inf
n!1

I(˝n ; vn) � I(˝; v):

It holds (see [4]):

Theorem 1 Let 1)–2) be satisfied. Then (P) has a solu-
tion.

Example 2 Let O be a family of bounded domains sat-
isfying the uniform cone property (see [1]), let (P(˝))
be given by the Neumann problem

(P(˝))

(
�	uC u(˝) D f in˝ 2 O
@u(˝)
@�
D 0 on @˝;

and I(˝ , y) =
R
˝ |y� zd|2 dx, where f , zd 2 L2loc(R

m) are
given functions. We set V(˝) � H1(˝), i. e. V(˝) is
the standard Sobolev space of functions defined in ˝ ,
whose derivatives up to the order one are square inte-
grable in ˝ , i. e. elements of L2(˝) (see [7]).The weak
formulation of (P(˝)) is given by:
8̂
ˆ̂̂<
ˆ̂̂̂
:

Find u(˝) 2 H1(˝)

s.t.
Z
˝

(grad u(˝) � grad� C u�) dx

D

Z
˝

f � dx; 8� 2 H1(˝):

We define:
� ˝n

O
! ˝ if and only if �(˝n)! �(˝) in L2(Rm);

� ‘yn ! y’ if and only if �(˝n) ! �(˝) (weakly) in
L2(Rm).

Here, �(˝) is the characteristic function of ˝ , b̋ is
a domain containing all ˝ 2 O and the symbol ‘�’
stands for the uniform extension of functions from their
domain of definition to b̋ (see [1]). One can verify 1)–
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2) for the convergences introduced above (see [1,4,8]).
Thus, the corresponding SO problem has a solution.

To define an approximation of (P) we replace O by
a system ‘Oh’, h ! 0+. Any Oh contains domains ˝h

whose shapes are described by a finite number of pa-
rameters. This number depends on the discretization
parameter h (the boundary of ˝h is piecewise linear,
a spline function, etc.). In what follows we shall sup-
pose that Oh � O for any h > 0. With any ˝h 2 Oh,
a finite-dimensional space Vh(˝h) will be associated (a
finite element space, e. g.). The state problem (P(˝))
will be replaced by its suitable discretization (P(˝h))h
(by using the Ritz–Galerkin method, e. g.). Finally, the
cost functional Imay be approximated (Ih), as well. The
approximation of (P) reads as follows:

(P)h

8̂
<̂
ˆ̂:

Find ˝�h 2 Oh

s.t. Ih(˝�h ; uh(˝�h )) � Ih(˝h; uh(˝h));
8˝h 2 Oh:

Here, uh(˝h) is a solutionof (P(˝h)h). Problem (P)h
expressed in the algebraic form leads to a nonlinear
mathematical programming problem, in general.

To establish a relation between solutions to (P) and
(P)h, when h ! 0+, the following assumptions are
needed:
3) for any ˝ 2 O there exists a sequence {˝h}, ˝h 2

Oh, such that

˝h
O
! ˝; h! 0C;

4) for every sequence {(˝h, uh(˝h))}, where ˝h 2 Oh

and uh(˝h) solves (P(˝h))h, there exist its sub-
sequence {(˝ hk , uhk (˝ hk ))} and an element (˝ ,
u(˝)) 2 G such that

˝hk
O
! ˝;

‘uhk (˝ hk )! u(˝)’, k!1;

5) if ˝h
O
! ˝ with ˝h 2 Oh, ˝ 2 O and ‘uh(˝h)!

u(˝), then

lim
h!0C

Ih(˝h; uh(˝h)) D I(˝; u(˝)):

Then one can prove (see [4]):

Theorem 3 Let 3)–5) be satisfied and let for any h > 0
there exists an optimal pair (˝�h , uh(˝

�
h)). Then there

exista subsequence {(˝�hk , uhk (˝ h�k
))’ and an element

(˝�, u(˝�)) 2 G such that

6)

(
˝�hk

O
! ˝�

0uhk (˝�hk )! u(˝�)0; k!1;

and (˝�, u(˝�)) is an optimal pair for (P). Moreover
any such cluster point (˝�, u(˝�)) of a sequence {(˝�h ,
uh(˝�h))} in the sense of 6) is an optimal pair for (P).

Example 4 We describe the approximation of (P) from
Example 2, considered in R2. For any h > 0, the fam-
ily Oh contains polygonal domains, being the piecewise
linear approximations of˝ 2 O and such that

@˝h D

n(h)[
iD1

AiAiC1

(An(h)+1 � A1) with the length
ˇ̌
AiAiC1

ˇ̌
� h for any

side. Let {T(h, ˝h)}, h! 0+ be a family of triangula-
tions of˝h (see [2]) satisfying:
7) any AiAiC1 is the side of just one boundary trian-

gle T 2 T(h,˝h);
8) the number of nodes in T(h, ˝h) is the same for

any ˝h 2 Oh (h being fixed) and the nodes have
still the same neighbors;

9) the position of internal nodes of T(h,˝h) continu-
ously depends on variations of the boundary nodes
Ai, i = 1, . . . , n(h);

10) the family {T(h, ˝h)} satisfies the uniform angle
condition:

9�0 > 0 such that �T � �0

holds for any triangle T 2 T(h, ˝h), for any ˝h 2

Oh and any h > 0, where �T is the minimal interior
angle of T.

With any such T(h,˝h), the space of allpiecewise linear
functions Vh(˝h) will be associated (see [2]). Finally,
(P(˝)) is replaced by:

(P(˝h))h

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

Find uh(˝h) 2 Vh(˝h)

s.t.
Z
˝h

�
grad uh(˝h) � grad�h

Cuh(˝h)�h) dx

D

Z
˝h

f �h dx;

8�h 2 Vh(˝h):
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It can be shown (see [4]) that 3)–5) are satisfied, pro-
vided that 7)–10) hold. Thus (P) and (P)h are close on
subsequences as follows from Theorem 3.

Shape sensitivity analysis is a specific field of SO, ana-
lyzing the differentiability of the solution of state prob-
lems with respect to shape variations. There are several
concepts of the shape differential calculus: the method
of mappings [6], the material derivative approach [9]
and the boundary variation technique [8]. Higher or-
der derivatives in SO and their application are studied
in [3,5]. On the contrary, if the state problem is given
by VI, then the differentiability of the mapping: ˝ !
u(˝) is weakened due to the fact that such mapping is
only Lipschitz continuous (see [9]). Thus the resulting
minimization problem is nonsmooth, in general. Such
a type of problems can be realized or by using methods
of nonsmooth optimization or by regularizing the state
problem(see [4]). The use of global optimization meth-
ods in SO based on function evaluations only combined
with the so-called fictitious domain methods is studied
in [4].

See also

� Topological Derivative in Shape Optimization
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Introduction

Uncertainties in chemical plants appear for a variety of
reasons. There are internal reasons, such as fluctuations
of values of reaction constants and physical properties,
and external reasons, such as quality and flow rates of
feed streams. The need to account for uncertainty in
various stages of plant operations has been identified as
one of the most important problems in chemical plant
design and operation [7,8,18].

There are two main problems associated with the
consideration of uncertainty in decision making: the
quantification of the feasibility and flexibility of a pro-
cess design and the incorporation of uncertainty within
a decision stage. The quantification of process feasibil-
ity is most commonly addressed by utilizing the feasi-
bility function introduced by Swaney and Grossmann,
which requires constraint satisfaction over a specified
uncertainty space, whereas flexibility evaluation is asso-
ciated with a quantitative measure of the feasible space.
Halemane and Grossmann [10] proposed a feasibility
measure for a given design based on the worst points
for feasible operation, which can bemathematically for-
mulated as a max-min-max optimization problem:

�(d) D max

2T

min
z

max
j2J

f j(d; z; �); (1)
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where T is the feasible space of � described as T D
f� j� L � � � �Ug, where �L ; �U are lower and upper
bounds, respectively.

The general formulation for quantifying flexibility,
known as the flexibility index problem, can be defined
as the determination of maximum deviation � that
a given design d can tolerate, such that every point �
in the uncertain parameter space (T(ı)) is feasible [1].
A well-studied case is the hyperrectangle representation
ı, T(ı) D f� j�N � ı��� � � � �N C ı��Cg, where
��C and��� are the expected deviations of the uncer-
tain parameters in the positive and negative directions
and ı the deviation along a specified direction. Other
descriptions of T(ı), such as the parametric hyperellip-
soid, have also been investigated [15].

The flexibility index can be determined from the
formulation proposed by Swaney and Grossmann
[18] as:

F D max ı

Subject to max

2T(ı)

 (�; d) � 0

ı � 0 :

(2)

One approach to determining the flexibility index is by
vertex enumeration, in which the maximum displace-
ment is computed along each vertex direction. This
scheme is based on the assumption that the critical
points (� c) lie at the vertices of T(�c), which holds
only under certain convexity conditions. Other exist-
ing approaches to quantifying flexibility involves deter-
ministic measures such as the resilience index (RI) pro-
posed by Saboo et al. [16] and stochastic measures such
as design reliability proposed by Kubic and Stein [12]
and the stochastic flexibility index proposed by Pis-
tikopoulos and Mazzuchi [14] and Straub and Gross-
mann [17]. Recently Ierapetritou and coworkers [6] in-
troduced a new approach to quantifying process fea-
sibility based on the description of the feasible region
by an approximation of the convex hull. Their ap-
proach results in an accurate representation of process
feasibility.

However, the convex hull approach is limited in its
application to only convex and 1-D quasiconvex fea-
sible regions, and its performance deteriorates in the
presence of nonconvex constraints. This shortcoming
can be overcome by utilizing surface reconstruction

ideas to capture the accurate shape of the feasible re-
gion.

Definition

The main problem definition for surface reconstruction
is, given a set of range points, to reconstruct a mani-
fold that closely approximates the surface of the origi-
nal model. The range data are a set of discrete points in
three-dimensional space that have been sampled from
the physical environment or can be obtained using laser
scanners that generate data points on the surface of
an object. The problem naturally arises in a variety of
practical situations such as range scanning an object
frommultiple view points, recovery of biological shapes
from two-dimensional slices, interactive surface sketch-
ing, etc. Surface reconstruction has extensive applica-
tions in the areas of automatic mesh generation and
geometric modeling, molecular structure, and protein
folding analysis.

The problem of feasibility analysis is analogous to
that of surface reconstruction since the main effort of
feasibility analysis lies in identifying and accurately es-
timating the boundary of the feasible region. In previ-
ous approaches this boundary is approximated by lin-
ear inequalities, either by incorporating a hyperrect-
angle [18] or by describing an approximation of the
convex hull [6] inside the feasible space. These meth-
ods can have satisfactory performance in case of con-
vex, connected feasible regions but will be inaccurate
for cases of nonconvex or disjoint feasible regions. On
the other hand, the surface reconstruction scheme can
successfully describe both nonconvex and disjoint re-
gions defining the bounding surface by piecewise linear
functions. The present work proposes a feasibility anal-
ysis scheme based on surface reconstruction ideas, in
particular, the ˛-shape methodology for surface recon-
struction.

˛-Shape Approach

Various approaches are described in the literature for
determining the shape of a pattern class from sampled
points. Many of these approaches are concerned with
efficient construction of convex hulls for a set of points
in a plane. Jarvis [11] was one of the first to consider the
problem of computing shape as a generalization of the
convex hull of a planar point set.
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A mathematically rigorous definition of shape was
later introduced by Edelsbrunner et al. [3] as a natural
generalization of the convex hulls, which is referred to
as ˛ hull. The ˛ hull of a point set is based on the no-
tion of generalized discs in a plane. The family of ˛ hulls
includes the smallest enclosing circle, the set itself, and
an essentially continuous set of enclosing regions in be-
tween these two extremes.

Edelsbrunner et al. [3] also define a combinatorial
variant of the ˛ hull called the ˛ shape of a planar set,
which can be viewed as the boundary of the ˛ hull with
curved edges replaced by straight ones. Conceptually, ˛
shapes are a generalization of the convex hull of a point
set S, with ˛ varying from 0 to 1. The ˛ shape of
S is a polytope that is neither necessarily convex nor
connected. For ˛ D1, the ˛ shape is identical to the
convex hull of S. However, as ˛ decreases, the ˛ shape
shrinks by gradually developing cavities. When ˛ be-
comes small enough, the polytope disappears and re-
duces to the data set itself.

To provide an intuitive notion of the concept, Edels-
brunner describes the space R3 to be filled with styro-
foam and the point set S to be made of more solid ma-
terial, such as rock. Now if a spherical eraser with radius
˛ curves out the styrofoam at all positions where it does
not enclose any of the sprinkled rocks (the point set S),
the resulting object that formed will be called an ˛ hull.
The surface of the object can be straightened by sub-
stituting straight edges for circular ones and triangles
for spherical caps. The obtained object is the ˛ shape
of S. It is a polytope in a fairly general sense: it can
be concave and even disconnected; it can contain two-
dimensional patches of triangles and one-dimensional
strings of edges, and its components can be as small as
single points. The parameter ˛ controls the degree of
details captured by the ˛ shape.

It is possible to generalize all the concepts involved
in the construction of ˛ shape (i. e., ˛ hulls, ˛ com-
plexes, Delaunay triangulation, Voronoi diagrams) to
a finite set of points S in Rd for arbitrary dimen-
sion d. This generalization, combined with an extension
to weighted points, is developed in Edelsbrunner [2].
However, the implementation details of the problem
becomes progressively more complex with increasing
dimension, and the worst-case complexity of the prob-
lem grows exponentially.

Selection of ˛

The computed ˛ shape of a given set of sample points
explicitly depends on the chosen value of ˛, which con-
trols the level of detail of the constructed surface. Man-
dal et al. [13] present a systematic methodology for se-
lecting the value of ˛ in R2. They visualize the problem
of obtaining the shape of S as a set-estimation problem
where an unknown set A 2 B is to be estimated on the
basis of a finite number of points X1; X2; : : : ; Xn 2 A.
As n increases, S(n) will cover many parts of A, and
hence the value of ˛ for S(n) should depend on the
sample size (n); thus ˛ is a function of n. Additionally
˛ should also be a function of the interpoint distance
of the sampled n points of S(n). To account for the de-
pendence on the interpoint distance, the authors have
constructed the minimum spanning tree (MST) of the
sampled data points. If ln represents the sum of edge
weights of the MST, where the edge weight is taken to
be the Euclidean distance between the points, then the
appropriate value of ˛ for the construction of ˛ shape
is given by

hn D

r
ln
n
; (3)

where n is the total number of sample points.
To illustrate the performance of ˛ shape in captur-

ing the shape of an object, a disjoint, nonconvex object
is chosen, as illustrated in Fig. (1). The sampled points
represent a 2-D object, which is the input to the ˛-shape
construction code. The ˛ shape identifies from the in-
put data set points that lie on the boundary of the ob-
ject. These points are joined by a line to describe the
surface of the object. The above figure also illustrates
the dependence of the captured shape on the chosen
value of ˛. The ˛ value estimated by performing the
MST operation is 120, at which value the ˛ shape was
found to capture the nonconvex as well as the disjoint
nature of the object. By further increasing the value
of ˛ the performance of ˛ shape deteriorates, and at
very high ˛ the ˛ shape forms a convex hull of the ob-
ject (Fig. 1b). Hence the level of detail captured by the
˛ shape strongly depends on the chosen value of ˛, and
progressively decreasing the value of ˛ will capture the
shape more accurately.
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Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 1
Performance of ˛ shape for different ˛ values: (a) 120 (b)
100,000

Formulation

Feasibility Analysis Using ˛ Shape

The overall aim of feasibility analysis is the determina-
tion of the range of parameters over which a particu-
lar process is feasible. A formal definition of this prob-
lem is to obtain a mathematical description of the re-
gion in parameter space bounded by the process con-
straints. This region can be considered analogous to
an object whose shape or surface can be estimated us-
ing the ˛-shape technique. The input to any surface-
reconstruction algorithm needs to be a set of points rep-
resenting the object whose surface needs to be deter-

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 2
Point-in-polygon test: anoddnumberof intersectionsmeans
the point is inside; an even number of intersections means
the point is outside

mined. The steps involved in determining the feasible
region using the surface reconstruction ideas are as fol-
lows:
� Generate sample data points to adequately represent

the feasible region under consideration.
� Construct the ˛ shape for the sampled data using the
˛ estimate obtained from the MST of the data set.

� Join the identified boundary points to obtain a poly-
gonal representation of the feasible region.

Having defined the surface or shape of the feasible re-
gion, the next step involves determining whether a par-
ticular point belongs to the feasible region. Since the
feasible region has been approximated by a polygon,
a simple way to check if a point is inside the polygon
is by using one of the point-in-polygon tests [9]. One
method to determine whether a point is inside a region
is the Jordan Curve Theorem, which states that a point
is inside a polygon if, for any semi-infinite ray from this
point, there is an odd number of intersections of the ray
with the polygon’s edges (Fig. 2). Conversely, a point
is outside a polygon if the ray intersects the polygon’s
edges an even number of times or does not intersect at
all. Following this, whenever a parameter needs to be
checked for feasibility in a polygon estimated feasible
region, a semi-infinite ray is drawn from the point in
any direction, and the number of intersections is noted,
which determines whether or not the point is feasible.

Sampling Technique

The first step in the proposed approach is to have a good
representation of the feasible region. Most of the com-
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mon sampling techniques sample the parameter space
based on the distribution of the uncertain parameter,
which are considered to be uniform for the cases con-
sidered here for simplicity of presentation. Under this
condition it leads to uniform sampling of the entire pa-
rameter space, irrespective of whether or not the sam-
pled points are feasible. However, typically, the feasible
region covers only a very restricted region of the en-
tire parameter space. Hence sampling techniques cov-
ering the entire range of uncertain parameter prove to
be inefficient, particularly when evaluation of the pro-
cess constraints is an expensive operation. A new sam-
pling technique is thus introduced here that takes ad-
vantage of the fact that typically a small section of the
entire parameter space is feasible. The sampling prob-
lem is formulated as an optimization problem and is
solved using a genetic algorithm (GA). The use of a GA
as a solution procedure proves to be very efficient for
this problem since the search scheme has the inherent
property of concentrating around regions having good
solutions, which is the feasible solution for the prob-
lem addressed here, thereby reducing expensive func-
tion evaluation.

The formulation of the sampling problem as an op-
timization problem is given by

max



Vfeas

subject to ( f1)
 � 0
( f2)
 � 0
:::

( fn)
 � 0 ;

(4)

where V feas is the volume of the feasible region eval-
uated by constructing the ˛ shape using the sampled
feasible points. The optimization variables are the pa-
rameter values � , which are sampled by the GA to opti-
mize the objective, and f1; f2 : : : ; fn are the constraints
of the feasibility problem evaluated at � . However, in
this formulation there is no optimal value of the vari-
able � that will maximize the volume, but we are in-
terested in the entire sampled set of feasible � values,
using which the volume is evaluated by constructing an
˛ shape over the entire set of feasible � values. Since
the objective is to maximize the volume of the feasible
space, whenever a chosen value of � satisfies the con-
straint functions, the volume is evaluated to update the

objective function. When the value is not feasible, there
is no need to reevaluate the volume since it will not
change, but the fitness function is penalized by assign-
ing it a small value. Solving this problem using a GA
reduces the required number of function evaluations by
minimizing the unnecessary evaluation of infeasible pa-
rameter space.

Cases

The idea of using surface reconstruction for the estima-
tion of a feasible region is illustrated by a few case stud-
ies.

The feasible region is defined by the following sets
of convex and nonconvex constraints:

f1 D �2 � 2�1 � 15 � 0; (5)

f2 D
�21
2
C 4�1 � 5 � �2 � 0; (6)

f3 D �2(6C �1) � 80 � 0; (7)

f4 D 10 �
(�1 � 4)2

5
� 2�22 � 0: (8)

Figure (3) illustrates the actual nature of the feasible re-
gion bounded by inequalities (5)–(8) and the convex
hull approximation of the enclosed feasible region. The
first step in the proposed scheme is to sample the feasi-

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 3
Feasible region bounded by convex and nonconvex con-
straints and its estimation using convex hull
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ble space efficiently. The optimization problem for sam-
pling is given by

max

1;
2

Vfeas;

�2 � 2�1 � 15 � 0;

�21
2
C 4�1 � 5 � �2 � 0;

10 �
(�1 � 4)2

5
�
�22
0:5
� 0;

�2(6C �1) � 80 � 0:

(9)

Both uncertain parameters are considered to vary
within the range of (�20, 20). In order to solve the

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 4
Sampling of feasible space using (a) genetic algorithm and
(b) random sample

problem using a GA, the parameters �1 and �2 are en-
coded as bits, with 7 bits for each parameters, giving rise
to a 14-bit chromosome. A population size of 20 is cho-
sen for this problem following the guideline of Edwards
et al. [4].

The working principle of a GA is based on generat-
ing multiple numbers of good solutions. Hence evaluat-
ing the volume for each of the feasible parameter values
(�) will reduce the efficiency of the procedure because
of the repetition of the solution. To avoid this, a mem-
ory of the sampled parameter value is maintained and
updated. For every generated chromosome in the pop-
ulation of the GA simulation, the stored parameter val-
ues are searched to check for uniqueness of the new
solution. If a new solution is unique, then the con-
straints are evaluated; else it is updated from the mem-
ory. Chromosome evolution through 2000 generations
requires a total of 40,000 function calls, of which only
3064 are unique and 938 are feasible points as illus-
trated in Fig. 4. The same problem was solved by draw-
ing random samples in the range (�20, 20) for both un-
certain parameters (Fig. 4b), where 9830 function calls
were required to generate 950 feasible points. However,
this procedure is particularly advantageous when the
feasible region is a small portion of the entire parameter
range. Otherwise its performance becomes comparable
to random sampling over the entire parameter range.

In the above formulation, the volume of the feasible
region, V feas, is computed by generating an ˛ shape of
the sampled points. An alternative formulation for gen-
erating the sampled data set is given by

max
X


feas;

�2 � 2�1 � 15 � 0;

�21
2
C 4�1 � 5 � �2 � 0;

10 �
(�1 � 4)2

5
�
�22
0:5
� 0;

�2(6C �1) � 80 � 0;

(10)

where 
feas represents a feasible sample point and the
objective is to maximize the total number of sampled
feasible points. This formulation is computationally less
demanding since it does not require volume evaluation
of the feasible region at every step. However, it suffers
from the disadvantage of a lack of a convergence crite-
rion. To overcome this problem, a hybrid of these two
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Shape Reconstruction Methods for Nonconvex Feasibility Analysis, Figure 5
Modified algorithm for sampling of feasible region

formulations (9) and (10) is used, where the main al-
gorithm is evolved according to formulation (9), and
the volume is evaluated only at intermediate points to
check for convergence of the simulation. The overall
procedure is illustrated in Fig. 5.

Once a good estimate of the feasible region is ob-
tained by the sampling scheme, the surface-reconstruc-
tion algorithm is used to determine points forming the
boundary of the feasible region, which are then joined

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 6
Performance of ˛ shape in predicting feasible space using
˛ = 25

by a straight line as illustrated by Fig. 6. The value of
˛ plays a crucial role in determining the degree of de-
tail captured by the ˛ shape. The ˛ value determined by
the procedure outlined in Sect. “˛-Shape Approach” for
the 938 sampled points is 25, which was found to cap-
ture the nonconvex nature of the object with adequate
accuracy, as illustrated in Fig. 6.

Process Operation Example

This example represents the flow sheet shown in Fig. 7,
consisting of a reactor and heat exchanger [5] where
a first-order exothermic reaction A! B is taking place.
The existing design has a reactor volume (V) of 4.6 m3

and a heat exchanger area (A) of 12 m2. Two uncer-
tain parameters are considered, the feed flow rate F0

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 7
Reactor-cooler example
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and the activation energy E/R. A mathematical model
of this process is given by:

F0(cA0 � cA1)/cA0 D Vk0 exp(�E/RT)cA1
(��H)F0(cA0 � cA1)/cA0 D F0cp(T1 � T0)C QHE

QHE D F1cp(T1 � T2)

QHE D Fwcpw(Tw2 � Tw1)
QHE D AU�Tln

�Tln D
(T1 � Tw2) � (T2 � Tw1)
ln(T1 � Tw2)/(T2 � Tw1)

Vd � V

(cA0 � cA1)/cA0 � 0:9

311 � T1 � 389

T1 � T2 � 0:0
Tw2 � Tw1 � 0:0

T1 � Tw2 � 11:1

T2 � Tw1 � 11:1

T0 D 333K; Tw1 D 300K;

U D 1635 kJ/(m2hK)

cp D 167:4 kJ/kmol;
cA0 D 32:04 kmol/m3;

��H D 23260 kJ/kmol : (11)

The range of uncertain parameters E/R and F0 over
which the design remains feasible is illustrated in Fig. 8.

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 8
Performance of ˛ shape in predicting the feasible space of
reactor-cooler example

The aim is to have a description of the range of the pa-
rameters E/R and F0 over which the operation remains
feasible. Following the proposed approach for feasibil-
ity analysis, the feasible space is first sampled by solv-
ing the problem at different values of the parameters,
and a representation of the feasible region is obtained.
In the next step, these sampled points are analyzed by
˛ shape to identify points lying on the boundary of
the feasible region. These identified surface points are
joined by straight lines to obtain a polygonal estima-
tion of the feasible region. Figure 8 compares the ac-
tual feasible region with that of ˛-shape estimation ob-
tained with 400 sample points, which was found to per-
form with great accuracy. To understand the effect of

Shape Reconstruction Methods for Nonconvex Feasibility
Analysis, Figure 9
Effect of sampling density on the performance of ˛ shape
(a) 100 points (b) 25 points
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sample density on the performance of the ˛-shape pro-
cedure, the feasible region evaluation was performed
with fewer sample points of 100 and 25, as illustrated
in Fig. 9. The ˛-shape prediction was found to under-
predict the feasible region since the sampling density
was inadequate in capturing the entire region. How-
ever, there was no overprediction of the nonconvex fea-
sible region. Figure 9b also compares the performance
of the convex hull with that of ˛ shape, where it is ob-
served that even though the sampling density was very
low, ˛ shape still captured the nonconvex nature of the
feasible region. The convex hull is constructed by per-
forming line searches toward the vertices of the uncer-
tain space to locate points on the boundary of the fea-
sible region. The convex hull covers a larger percentage
of the feasible region compared to the ˛ shape for the
case of sparse sampling, but it overpredicts the feasi-
ble region over the nonconvex constraint. The perfor-
mance of ˛ shape is directly dependent on the informa-
tion captured by the sampling of the feasible space. It is
important to know, however, that in the absence of suf-
ficient information the ˛ shape will be a poor predictor
of the feasible space, but it will not lead to erroneous
results.

Conclusions

The problem of evaluating the feasible range of a pro-
cess operation is addressed in this paper using surface-
reconstruction ideas. The problem definition is to eval-
uate and quantify the uncertain parameter range over
which a process retains its feasibility. In the present ap-
proach the feasible region is viewed as an object, with
process constraints defining the boundary of the ob-
ject. Surface-reconstruction ideas are used to define the
shape of the object. The procedure starts by first sam-
pling the feasible region to obtain a representation of
the feasible space. An ˛ shape is then constructed of
the sampled points, which identifies points forming the
boundary of the object. These points are joined to have
a polygonal representation of the feasible region. Fi-
nally, determination of whether a point is feasible or not
can be done by a point-in-polygon check. Examples are
presented to illustrate the performance of the proposed
scheme in nonconvex and even disjoint problems.

The application of the proposed technique in higher
dimensions becomes computationally challenging. One

way of dealing with this issue is by reducing the dimen-
sionality of the problem. The ideas of principal compo-
nent analysis [19] can be utilized to map the original
uncertainty space to the reduced dimensional space of
important eigen directions. The ˛-shape ideas can then
be applied in the reduced space and the feasibility in-
formation mapped back to the original uncertain space.
These ideas are currently being explored by the authors.
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Introduction

The use of zeolites as molecular sieves, absorbents and
catalysts has today been well established in a wide va-
riety of processes. However, almost the totality of ap-
plications involves a very small number of nearly circu-
lar structures, like Linde type A, faujasite and ZSM-5.
These structures are usually modified to meet the spe-
cific needs of each process. Modification techniques,
such as ion exchange or coke deposition, usually re-
sult in a distribution of pore sizes and shapes, some-
thing that retards the ability of the molecular sieve to
be highly selective. On the other hand, there is a great
variety of natural and synthetic zeolites that has been
developed, but no significant effort has been made to
find potential catalysis and separation applications for
them. There could very well be existing structures that

are highly selective in their unmodified state, or requir-
ing a small amount of modification, just because their
windows happen to be of the proper size and shape.
Gounaris et al. [7,8] developed a mathematical frame-
work, which is based on optimization, to address ex-
actly this issue. The framework can identify shape se-
lective zeolite structures and provide researchers with
a rigorous way to determine the best candidate portals
for the process of interest.

Characterization of Molecular Footprints

For spherical molecules going through circular win-
dows, such as the noble gases approaching a Linde
type A window, the molecular shape and the rota-
tional orientation are not important for penetration
into a channel since every possible rotation results in
the same projection. The Lennard-Jones length is often
used as an order-of-magnitude estimation of the size of
the molecule [11]. It is also the starting point for several
attempts to compare these lengths with nominal zeo-
lite window diameters so as to identify zeolite windows
that are suitable for separating a set of molecules. For
instance, zeolite 3A has a diameter that is between that
of H2 and O2; thus, it would be a good candidate for
their separation. Since most molecules are not spheri-
cal, and most windows are not circular, we need more
accurate methods to characterize molecules.

We start from a simple model of a molecule as
atoms connected by bonds, obtained by a quantum
mechanics or a molecular mechanics calculation. In
the hard-sphere model, each atom is represented by
a sphere of van der Waals radius, and the bond lengths
and angles are considered fixed – equivalent to an in-
flexible molecule at absolute zero temperature.

When amolecule approaches the opening of a chan-
nel, various rotational orientations of the molecule give
rise to different projections on the horizontal plane.
From this ensemble of projections, the ones that are
most favorable for penetration are usually the small-
est, which we would call “footprints.” If the molecule is
a spheroid with three different axes, then the molecule
should be oriented so that the longest axis is perpendic-
ular to the plane, and the footprint is the ellipse formed
by the two smaller axes. If the molecule is a rectangu-
lar parallelepiped, then the footprint is the rectangle
formed by the two smaller axes. This suggests the fol-
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lowing useful quantitative measures of the size of a foot-
print involving no more than two parameters:
(a) The footprint is the projection that can be enclosed

by the smallest possible circle, characterized by its
radius �0.

(b) The footprint is the projection that can be enclosed
by the ellipse with the smallest possible area. This
footprint is characterized by its major and minor
radii, which are denoted, respectively, with �1 and
�2. Its eccentricity is defined as e D

p
1 � �2/�1.

(c) The footprint is the projection that can be enclosed
by the rectangle with the smallest possible area.
This footprint is characterized by its major and mi-
nor lengths, which are denoted respectively with ˛1
and ˛2. The aspect ratio is defined as AR D ˛2/˛1.

(d) The footprint is the projection that minimizes the
sum of the distances of the projected atomic nuclei
from a suitable center. This footprint can be charac-
terized by a major diameter dM, which is the largest
distance between two points on the edge of the foot-
print, and a minor one dm, which is the width in
the direction perpendicular to the major diameter.
For an exact definition and a detailed description
of the calculation of these diameters, see Gounaris
et al. [8].

(e) The footprint is the projection that minimizes the
sum of the distances of all the projected atomic nu-
clei from each other. It can be quantified with the
same parameters as in measure d.

The computations of these quantitative measures are
formulated as nonlinear programming problems or as
bilevel nonlinear programming problems, and are de-
scribed in detail in Gounaris et al. [8]. See Gounaris
et al. [7] for examples of footprints of popular
molecules and for relevant illustrations.

Definition of Strain and Calculation
of Strain Index

When a guest molecule approaches a host portal, there
are three possible outcomes: free passage, constrained
passage, and no passage. When the molecular projec-
tion of the guest can be entirely contained within the
portal, there is no hindrance and the passage is free.
When some of the atomic nuclei in the projection fall
outside the window, and no rotation and translation
can prevent this, then there is no passage. However, if

all nuclei fall inside the portal but some atomic radii
extend beyond this area, then there can be constrained
passage in the sense that the atomic spheres have to be
squeezed so as to fit in the portal.

We define the amount of distortion on a single atom
as

ı D
rs
ro

(1)

where ro is the original atomic radius and rs is the
squeezed atomic radius.

The total strain, S, for a guest to penetrate through
a host portal is quantified as

S D SGC SH D
X
i

�
1
ı12i
�

1
ı6i

�
C
X
j

 
1
ı12j
�

1
ı6j

!

(2)

where ıi and ıj are, respectively, the amounts of dis-
tortion on the ith guest (G) and jth host (H) atom. In
practice, only the oxygen atoms in the zeolite window
and the outer (often hydrogen) atoms of the molecule
make significant contributions.

There is a strain associated with every projection of
the guest molecule, but there is some optimal projec-
tion that exhibits the minimum possible strain, denoted
as S�. This optimal projection for one channel may be
different from that for another channel with a different
shape. For instance, a molecule in the shape of a cylin-
der can give a rectangular or a circular projection, de-
pending on the requirement posed by the shape of the
portal.

Since S� values could span a wide range of orders
of magnitude, the introduction of a logarithmic scale
is necessary for a better representation. We define the
“strain index” as

SI D log(1C S�) : (3)

The strain index can serve as a measure of the total dis-
tortion required for penetration to take place. A host–
guest pair exhibiting a strain index of zero would corre-
spond to a free passage, while a strain index approach-
ing infinity would correspond to no passage at all.

A rigorous algorithmic framework to calculate ro-
bustly the strain index of a given host-guest pair was de-
veloped by Gounaris et al. [7,8]. The optimization for-
mulation that models the problem is described below.
Let us first present the notation used.
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Indices:
i D 1; 2; : : : ;M Atoms in the guest molecule
j D 1; 2; : : : ;N Atoms in the host molecule
k D 1; 2; : : : ;K Constraints defining host interior

Decision variables:
'; #;  Rotation angles
xt; yt Translation of guest projection on the x-y

plane
ıi ; ı j Required distortion of guest and host atoms

Auxiliary variables:
di j Distance of the ith guest atom projection from

the jth host atom�
xi
yi

�
Position of the ith guest atom (after rotation
and projection)

Parameters:2
4

x0i
y0i
z0i

3
5 Coordinates of the ith guest atom (random

orientation)�
xh j

yh j

�
Position of jth host atom on x-y plane

ak ; bk ; ck Parameters defining the convex hull of the
host

ri ; r j Effective atomic radius of guest and host
atoms

The objective is to minimize the total strain, S, required
for penetration:

min
';�; 
x t;yt
ıi ;ı j

S

D min
';�; 
x t;yt
ıi ;ı j

8<
:
X
i

�
1
ı12i
�

1
ı6i

�
C
X
j

 
1
ı12j
�

1
ı6j

!9=
; :

(4)

For every guest atom, the position of its center should
correspond to a valid rotation that resulted from the
original conformation provided. According to the “x y
z” convention for rotation matrices, the coordinates of
the projected atom nuclei are given by

xi D cos � � cos ' � xoi C cos � � sin ' � yoi
� sin � � zoi C xt 8i

yi D (sin � sin � � cos ' � cos � sin ') � xoi
C (sin � sin � � sin ' C cos � cos ') � yoi
C cos � � sin � zoi C yt 8i :

(5)

The terms xt and yt allow for translation of the projec-
tion on the x–y plane, so as to obtain a better fit with
respect to the host. Note that the host–guest conforma-
tions are provided independently, and there is no re-
quirement that they use the same reference coordinate
system.

For every pair of host–guest atoms, we impose the
condition that their effective spheres cannot intersect
with each other, therefore implying that they have to be
squeezed to fit:

di j � ıi � ri C ı j � r j
d2i j D (xi � xh j)2 C (yi � yh j)2 8(i; j) :

(6)

In order to avoid obtaining (otherwise valid) solutions
where the guest is completely outside the portal area,
we have to include also a set of constraints that outer-
approximates the portal. A set of linear constraints that
serves the purpose is the one that describes the convex
polygon whose vertices coincide with the atom centers
of the host:

ak � xi C bk � yi � ck 8(i; k) : (7)

The parameters ak, bk,and ck can be easily calculated
from the host atom coordinates

� xh j
yh j

�
. Note that only

those atoms that participate in the host’s convex outer
approximation are used for this calculation; therefore,
K does not necessarily have to equal N. This only hap-
pens in the case of convex portals.

Finally, the following bounds have to be applied to
the decision variables of the problem:

� 
 < '; �;  � C
 (8)

0 � ıi � 1 8i

0 � ı j � 1 8 j :
(9)

The bounds on the Euler angles are imposed so as not
to obtain periodic solutions, while the bounds on the
deltas relate to their definitions. Note that no bound is
imposed on the translation variables xt and yt, which
are allowed to vary freely.

Theminimization of the objective function (4), sub-
ject to constraints (5)–(9), constitutes a nonlinear pro-
gramming problem that involves continuous variables.
The problem is nonconvex, with nonconvexities intro-
duced both by the objective function (definition of to-
tal strain) and by the constraints (projected rotations
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Shape Selective Zeolite Separation and Catalysis: OptimizationMethods, Figure 1
Complete strain index database

and atom–atom distances). This problem can be rig-
orously addressed by deterministic global optimization
methods such as ˛BB [1,2,5,6,10]. For computational
efficiency reasons, Gounaris et al. [7,8] chose instead to
employ local optimization methods with an insightful
initialization scheme that was effective in avoiding con-
vergence to nonglobal solutions.

They applied their method on a large database of
zeolite portals and molecules. In particular, they con-
sidered 38 popular molecules and 123 zeolite structures
(corresponding to a total of 217 different windows). For
an exact list of the windows considered, see Gounaris
et al. [8]. Complete reference for all these structures
can be found in the Atlas of the International Zeolite
Association [3,4]. Figure 1 shows a schematic repre-
sentation of all the results and can serve as a database
of strain indices. Such a database shows the relations
between many molecules and zeolite rings and can be

a powerful tool for the identification of portal candi-
dates that are selective between two molecules. It can
offer a systematic screening technique which has an en-
ergetic basis and does not rely exclusively on qualita-
tive measures. Once it has been identified that a zeo-
lite structure is a good candidate to admit selectively
some molecule, experimental studies should be em-
ployed to accurately determine diffusion rates or Lang-
muir isotherms. These results could also be supported
further by molecular dynamics or Monte Carlo simula-
tions [9,12,13] which are tailored to study the specific
sorbent/sorbate systems under consideration.

Strain-Based Screening

When a set of molecules approaches a zeolite channel
window, the results can be described as a triage. When
all the molecules pass, such as in the case of hydrogen,
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nitrogen and oxygen approaching the relatively large
opening of faujasite, there is no selectivity and no sepa-
ration. When none of the molecules pass, such as the
case of oleic and linoleic acid approaching the chan-
nel of SAPO-56, there is also no selectivity and no sep-
aration. When some of the molecules have strain in-
dices different from those of others, such as in the case
of ethane and ethylene approaching ERS-7, then there
is selectivity and potential for catalysis or separation.
A higher strain index may reduce the diffusion rate
or reduce the equilibrium adsorption, instead of com-
pletely denying passage, but it would nevertheless serve
the separation scheme.

When a molecule is being squeezed to fit a host
channel, some activation energy is required which
would lead to a decrease of the equilibrium concentra-
tion in the channel according to the Boltzmann equa-
tion:

C
C0
D exp

�
�

E
RT

�
D exp

�
�
4"S
RT

�
; (10)

Shape Selective Zeolite Separation and Catalysis: OptimizationMethods, Figure 2
Selectivity vs. temperature for the C3/C3= system. RRO RUB-41, TON Theta-1, AEL AlPO-11, MWW MCM-22, CZP chiral zin-
cophosphate, CGS cobalt gallium phosphate-6, AHT AlPO-H2

where " is some “hardness” coefficient. An averaged
Lennard–Jones parameter may be used.

Let us define selectivity between two molecules
A and B, �AB, as the difference between their reduced
equilibrium concentrations:

�AB D

ˇ̌
ˇ̌
ˇ
�
C
C0

�A

�

�
C
C0

�B
ˇ̌
ˇ̌
ˇ

D

ˇ̌
ˇ̌exp

�
�
EA

RT

�
� exp

�
�
EB

RT

�ˇ̌
ˇ̌ :

(11)

If the distortion energies required are similar, both
molecules will penetrate the same relative amount, and
therefore CA/CB 	 CA

0 /CB
0 and there is no selectivity

(�AB ! 0). On the other hand, if the energies are sub-
stantially different, the penetration levels will be differ-
ent and high selectivity will be achieved (�AB ! 1). In
the case where EA ! 0, selectivity is at a maximum at
very low temperatures, but a rise in temperature can ac-
tivate molecules B and selectivity will decline.
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An illustrative example of such calculations is pre-
sented in Fig. 2, where selectivity is plotted versus tem-
perature for the system of propane/propylene. RUB-41
is identified as the most promising candidate for the
separation of the two C3 molecules. It maintains a very
high selectivity along the whole range of temperatures
considered. Theta-1, AlPO-11 andMCM-22 are also se-
lective at ambient temperature, but their performance
deteriorates at higher temperatures. All these structures
correspond to the case where one of the two molecules
(propylene) enjoys a free passage through the portal,
while the second molecule (propane) has to experience
some distortion. A different trend holds for chiral zin-
cophosphate (CZP), cobalt gallium phosphate-6 and
AlPO-H2, which seem to benefit from an increase in
temperature. The potential of RUB-41 to be highly se-
lective on the C3 system can be explained by the high
degree of similarity between propylene’s projection and
the actual shape of the portal, a similarity that resembles
the analogy between a lock and a key.
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Biographical Summary

Naum Zuselevich Shor (1937–2006) is recognized as
one of the paramount researchers in the field of
optimization. He is well known for his significant
contributions to many important areas of optimiza-
tion, including nonlinear and stochastic programming,
computational methods for nonsmooth optimization,
discrete optimization problems, matrix optimization,
dual quadratic bounds in multiextremal programming
problems, and numerical algorithms for solving large-
scale optimization problems.

Biographical Details

A renowned Ukrainian mathematician, Shor was born
on January 1, 1937. His childhood took place during the
horrific years of World War II. In 1954, Shor entered
the Mechanics and Mathematics Department of Na-
tional Taras Shevchenko University in Kiev, Ukraine.
Two years later in 1956, the young brilliant scientist
Victor Mikhylovich Glushkov moved to Kiev and was

http://www.iza-structure.org/databases/
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appointed director of a newly created Computing Cen-
ter (formerly one of the laboratories at the Institute
of Mathematics) of the National Academy of Sciences
of Ukraine (NASU). Shor decided to focus his atten-
tion on differential algebra and began working on his
diploma thesis under Glushkov’s supervision.

In 1958, Shor graduated from Taras Shevchenko
University and was invited by Glushkov to join the
Computing Center, which 4 years later became the In-
stitute of Cybernetics of NASU. There Shor became an
active part of the research group guided by another
talented mathematician, Vladimir Sergeevich Mikhale-
vich. First, Shor examined the problems of modeling
and optimization of the reliability of computing de-
vices, as well as application of noise power spectrum
analysis to various problems in radiology. By 1960, the
research team of Mikhalevich had evolved into the De-
partment for Applied Problems with a focus on optimal
planning and design. This transformation had com-
pletely shifted Shor’s scientific interests toward the field
of optimization, which emerged as a new area of math-
ematics in the 1940s. Working together on the opti-
mal selection of design decisions, Shor andMikhalevich
constructed a numerical procedure for sequential anal-
ysis of variants. The proposed procedure represented
a generalization of dynamic programming algorithms.
It could easily be employed for solving various applied
problems of optimal design and planning, including,
but not limited to, gas supply systems, electrical net-
works, and transportation route systems. As a result,
their ingenious numerical scheme received a high num-
ber of citations. Continuing his work in optimal design,
Shor had also suggested a method for solving optimal
design problems for lengthy objects and treelike struc-
tures. In addition, Shor was the first to apply the sub-
gradient descent method to optimization of nonsmooth
functions in 1962. Specifically, using the subgradient
scheme, he devised an approach for solving large-scale
dual network transportation problems by reduction to
the maximization of a piecewise linear function. His ap-
proach later became well known as the generalized gra-
dient descent method. In 1964, Shor defended his Ph.D.
dissertation entitled “On the Structure of Algorithms
for Numerical Solution of Problems of Optimal Plan-
ning and Design.”

After earning his doctor of philosophy degree in
1964, Shor continued his work on application of his

generalized gradient descent method to various math-
ematical programming problems, including block pro-
gramming and two-stage stochastic programming. In
1967, he also cowrote a book with Mikhalevich on the
computational approaches to optimal selection of de-
sign decisions. Only 1 year after the book on optimal
design had been published, Yuriy Ermoliev and Shor
devised a modification of Shor’s subgradient method
for solving two-stage stochastic programming prob-
lems. This revolutionary approach was later advanced
even further by the research team led by Ermoliev and
became known as the direct quasi-gradient method for
optimization under uncertainty.

Another pioneering approach in optimization,
which was introduced by Shor in 1970, was based on
the idea of space transformation known as dilation. Al-
most concurrently, Shor worked on two methods in-
volving space dilation. The first technique is the method
with space dilation in the direction of the subgradient,
which is used for solving systems of nonlinear equa-
tions and inequalities. The second method, also known
as the r-algorithm, utilizes the operation of space di-
lation in the direction of the difference between two
consecutive subgradients. The r-algorithm has become
one of the most efficient procedures for solving com-
plex optimization problems. Nearly a decade of his re-
search on the subgradient and subgradient-type meth-
ods with space transformation was finally summarized
by Shor in his monograph Minimization Methods for
Non-Differentiable Functions and Applications, which
was first published in 1979, and just 6 years later was
translated into English.

Remarkably, the famous ellipsoid method, which
was independently formulated by A.S. Nemirovsky
and D.B. Yudin in 1975, and which was used by
L.G. Khachiyan in 1979 to prove that linear program-
ming problems can be solved in polynomial time, is ac-
tually a special case of Shor’s method with space dila-
tion in the direction of the difference between two con-
secutive subgradients.

In the early 1980s, Shor became captivated with
graph theory while working on the network opti-
mization problems. Together with his Ph.D. student
G.A. Donets, he was investigating the graph coloring
problems. In particular, they formulated a hypothe-
sis on the number of solutions for coloring of a plain
graph. This hypothesis on plain graph colorings is ev-
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idently supported by computational experiments. In
1982, their treatise on the algebraic approach to the
problems of plain graph coloring was published.

In the second half of the 1980s, Shor collaborated
with S.I. Stetsenko on quadratic extremal problems.
Later he investigated dual estimates in multiextremal
problems and produced a paper on this subject in 1992.
The same year, Shor’s joint paper with O.A. Berezovski,
where they described new procedures for constructing
optimal inscribed and circumscribed ellipsoids, also ap-
peared in the press. The scope of his research was con-
tinuously expanding to other complex areas of opti-
mization to include minimization of matrix functions
(1995), generalized set partitioning problems (1996),
polynomial optimization problems (1998), nonsmooth
optimization in stochastic programming (1999), and
Lagrangian bounds for multiextremal polynomial and
discrete optimization problems (2002). Furthermore, in
1998, his extensive analysis of polynomial problems us-
ing methods of nondifferential optimization was pub-
lished in a monograph. The book included a com-
prehensive review of techniques used in nondifferen-
tial optimization as well as their application to various
problems, such as the problems of discrete optimization
and graph optimization, polynomial problems, and op-
timal Lyapunov functions. Polynomial problems were
given special consideration. Specifically, Shor discov-
ered that in order for the dual quadratic bound of
a polynomial to be equal to the global minimum of
such a polynomial, it is necessary and sufficient that
the difference between the polynomial and its global
minimum could be represented as a sum of squares of
real polynomials. This result illustrates the connection
between the problems of nonconvex polynomial opti-
mization and David Hilbert’s 17th problem about rep-
resentation of a definite rational function as a quotient
of the sum of squares, which was posed by Hilbert in
1900 and solved by Emil Artin in 1927.

Until his death on February 25, 2006, Shor kept ac-
tively working on different intricate optimization prob-
lems. His dedication to research, immense knowledge,
and unstoppable intellect were manifested in his undis-
putable achievements in the field of mathematical pro-
gramming. During his long research career, Shor won
numerous awards. Among the most prestigious are
both the former USSR and Ukraine State Prizes in Sci-
ence and Technology (1973, 1981, 1993, and 2000). In

addition, for his great contribution to computational
methods for solving large-scale optimization problems,
Shor was recently awarded the Glushkov Prize and the
Mikhalevich Prize. In recognition of his lifelong sci-
entific accomplishments, he was elected as an Asso-
ciate Member of the National Academy of Sciences in
Ukraine in 1990, and became a full Member of the
Academy on December 4, 1997. During his life, Shor
had over 180 research papers and nine books pub-
lished and supervised Ph.D. dissertations of over 35 stu-
dents who now continue his scientific work not only in
Ukraine, but all over the world.
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The shortest path tree problem is a classical and widely
studied combinatorial problem ([1,23,24]). The scope
of this article is to provide an extensive treatment of
the major classical approaches. It then proceeds focus-
ing on the auction algorithm and some of its recently
developed variants. There is a discussion of the theoret-
ical and practical performance of the treated methods
comparing their effectiveness.

Mathematical Model

The shortest path problem can be posed in more than
one way:
1) to find the shortest path from a single source to

a single destination;
2) to find the shortest path from each of several sources

to each of several destinations;
3) to find the shortest path from one single source to

all destinations.
Problems of type 3) are also called shortest path tree
problems (SPT).

Before describing the single source-all destinations
shortest path problem, we report in the following the
needed notation and definitions.

Let G = (V , E, C) be a directed graph, where
� V is a set of nodes, numbered 1, . . . , n;
� E = {(i, j): i, j 2 V} is a set ofm edges;
� C: E! R is a function that assigns a length to any

edge (i, j) 2 E;
� a forward path P = {(i1, i2), . . . , (ik�1, ik)} is a set of

edges, whose length is the length of its edges.
In order to assure that the shortest path problem admits
a solution, it must be assumed that:
� all cycles in the graph have nonnegative length;
� the graph is strongly connected.

The last assumption can be removed by defining the
distance between not connected nodes equal to +1.

Let moreover s be the label of the source node; then
the single source shortest path tree problem (SPT) can be
formulated as

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min
X

(i; j)2E

c(i; j)x(i; j)

s.t.
X

(i; j)2E

x(i; j) �
X

(h;i)2E

x(h; i) D bi

bi D �1; i ¤ s; and bs D n � 1
x(i; j) 2 f0; 1g; 8(i; j) 2 E:

(1)

The dual problem (DSPT) is:
8̂
<
:̂
max (n � 1)
(s) �

X
j¤s


( j)

s.t. 
(i) � 
( j) � c(i; j); 8(i; j) 2 E;
(2)

where 
(i) is the dual variable associated with the
node i.

A Generic Shortest Path Algorithm

Any shortest path algorithm for the single source-all
destinations problem maintains and adjusts a vector
{
(1), . . . , 
(n)} of distance labels that can be scalars
either1 and that satisfy

Proposition 1 Let {
(1), . . . , 
(n)} be scalars satisfying


( j) � 
(i)C c(i; j); 8(i; j) 2 E; (3)

and let P be a path starting from a node i1 and ending at
a node ik. If


( j) D 
(i)C c(i; j); 8(i; j) 2 P: (4)

Then P is a shortest path from i1 to ik.

The conditions (3) and (4) are also known as comple-
mentary slackness conditions (CSC) from the connec-
tion of the shortest path problem with the minimum
cost flow problem. The generic shortest path algorithm
starts with some vector of labels {
(1), . . . , 
(n)} and
successively selects edges (i, j) that violate (4). For each
violating edge it sets


( j) D 
(i)C c(i; j)
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and stops when CSC is satisfied by all edges. Intuitively,
the labels 
(i) can be view as the length of some path
Pi from the source to the node i. Therefore, if 
(j) >

(i) + c(i, j), the path obtained by extending Pi by edge
(i, j) is shorter than Pj whose length is 
(j). This can be
iterated to find successively better paths from the source
to various destinations.

The violating edges could be arbitrarily chosen, but
a more efficient way is to establish an order of selecting
nodes from a set L, called candidate list, and checking
violation of the CSC for all of their outgoing edges.

Let the node labeled 1 be the source node; then the
pseudocode of a prototype shortest path algorithm is as
follows:

Set L = f1g; �(1) = 0; �(i) =18i ¤ 1.
WHILE L ¤ ;

select from L a node i;
FOR each outgoing edge (i; j)

IF �( j) > �(i) + c(i; j)
set �( j) = �(i) + c(i; j)
add j to L if j … L

ENDIF
ENDFOR

ENDWHILE

Pseudocode of a prototype shortest path algorithm

Implementations of the Generic Algorithm

In the literature there exist many implementations of
the generic algorithm that differ in the criterion of se-
lection of the next node to be removed from the set L.
Traditionally, they are divided into two groups:
1) Label setting methods: the node i to be removed from

L corresponds to the minimum label. If the input
data are nonnegative, it can be shown that each node
will enter L at most once and its label has permanent
value the first time that node is extracted from L. At
each iteration must be calculated the minimum label
over L and many implementations of this approach
differ in the procedure they use to obtain that mini-
mum.

2) Label correcting methods: the choice of the node i re-
quires less calculations, even if a node i can be in-
volved more than once.

Label Setting Methods

The first label setting algorithm is due to E.W. Dijkstra
in 1959 [20]. In this method the next node to be re-
moved from L is the node i such that i = arg minj 2 L


(j). There are different versions of this algorithm de-
pending on the particular data structure representing
the set L and used to facilitate the removal and the addi-
tion of nodes, as well as finding the node with the min-
imum label and this choice is crucial for good practical
and theoretical performance. Themost famous and effi-
cient Dijkstra-like algorithms are S-HEAP and S-DIAL.

Set L = f1g; �(1) = 0; �(i) =18i ¤ 1.
Set L(1) = 1; L(last) = nil; pi = nil8i
WHILE L ¤ ;

i = L(1);
replace L(1) by L(last)
order heap L
FOR each outgoing edge (i; j)

IF �( j) > �(i) + c(i; j)
set �( j) = �(i) + c(i; j)
set p j = i
IF j … L

insert j into L as L(last)
order heap L

ENDIF
ENDIF

ENDFOR
ENDWHILE

Pseudocode of S-HEAP

S-HEAP

The data structure chosen to represent the set L is a bi-
nary heap, i. e. a tree whose radix corresponds to the
node having the minimum label and in which each
node has label not greater than those of its children. By
using this data structure, the removal of the node L(1)
corresponding to the minimum label, the insertion of
a new node in the last position L (last) and the correc-
tion of the label of a node already inserted in L have
complexity O(log q) � O(log n), where q is the cardi-
nality of L and n the number of nodes. At each itera-
tion the radix of the heap L is removed and some la-
bels of nodes belonging to L may decrease. Therefore,
some nodes may have to be repositioned in L, while
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some other nodes may enter in it for the first time in
L and have to be put at the right position. Each of the
just mentioned operations takes O(log n) time. The to-
tal number of insertions is n as well as that of removals.
Therefore, the number of operations needed to keep or-
dered the heap L is O((n + r)log n), where r is the total
number of repositioning operations. To get an upper
bound on r, it is enough to observe that there is at most
one repositioning for each edge, because each edge is
involved at most once. Thus, r�m and the total opera-
tion count needed to maintain L is O(m log n). Because
this dominates the O(m) operation count to examine
each edge, the worst-case running time of S-HEAP is
O(m log n), even if experimental results ([9]) indicate
that it grows approximately likeO(m + n log n), because
usually r is a small multiple of n and considerably less
than m.

S-DIAL

This algorithm, due to R.B. Dial in 1969 [19], as-
sumes that all edge lengths are nonnegative. L is im-
plemented as a direct-address table, a dynamic array
having a number of elements equal to the maximum
number of different label values. Since every finite la-
bel is equal to the length of some path with no cycles,
the possible label values range in

[0; (n � 1) max
(i; j)2E

c(i; j)]:

The entry i of L, also called a bucket, is a double-
linked list containing each node whose label is i. The
algorithm starts with the source node 1 in the bucket
L(0) and all other buckets are empty. At the first itera-
tion the algorithm puts each node (1, i) in the bracket
L(c(1, i)) and then proceeds to examine the bucket
L(1). If L(1) is nonempty, it repeats the process, remov-
ing from L each node with label 1 and moving other
nodes to smaller numbered buckets, otherwise it pro-
ceeds checking bucket L(2) etc.

Checking the emptiness of a bucket and insert-
ing or removing a node from a bucket require O(1)
time; searching the minimum label node requires O(n
max(i, j) 2 E c(i, j)), while adjusting node labels and repo-
sitioning nodes between buckets require O(m). There-
fore, the running time of S-DIAL is pseudopolynomial
and is given by O(m + nmax(i, j) 2 E c(i, j)).

Set L(0) = f1g; �(1) = 0; �(i) =18i ¤ 1.
Set z = 0; pi = nil8i.
WHILE L ¤ ;

move on L until L(z) ¤ ;;
set i equal to the first element of L(z)
remove i from L(z)
FOR each outgoing edge (i; j)

IF �( j) > �(i) + c(i; j)
IF j 2 L THEN remove j from L(�( j))
set �( j) = �(i) + c(i; j); p j = i
insert j into L(�( j))
ENDIF

ENDIF
ENDFOR

ENDWHILE

Pseudocode of S-DIAL

Label Correcting Methods

The label correcting methods require less sophisticated
calculations to select the next node to be removed from
L, but as counterpart they may involve a node more
than once. All these methods implement the set L as
a queue and differ in the particular type of queue they
use and in the choice of the position in the queue L,
where new node labels are inserted. In this section we
will treat two among the most famous label correcting
methods: the Bellman–Ford method and the D’Esopo–
Pape method.

Bellman–Ford Method

The Bellman–Ford method is related to the method
proposed by R. Bellman [3] and L.R. Ford [22]. It uses
a FIFO strategy to maintain the queue L: a node is re-
moved only from the top of the queue and is inserted at
its bottom. This method proceeds in cycles of iterations:
the first cycle consists of iterating on the source node 1,
while in each subsequent cycle the nodes entered L dur-
ing the previous cycle are removed from L in the same
order that they were inserted.

The Bellman–Ford algorithm solves the SPT in the
more general case in which the edge lengths can be neg-
ative and fails to terminate if and only if there exists
a path starting from the source and containing a nega-
tive cycle. In the case where all cycles in the graph have
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Set L = f1g; �(1) = 0; �(i) =18i ¤ 1.
Set pi = nil; 8i.
WHILE L ¤ ;

set i = top element of the queue L
remove i from L
FOR each outgoing edge (i; j)

IF �( j) > �(i) + c(i; j)
set �( j) = �(i) + c(i; j); p j = i
IF j … L THEN

insert j into L at the bottom
ENDIF

ENDIF
ENDFOR

ENDWHILE

Pseudocode of the Bellman–Ford method

nonnegative length, the shortest distance of every node
can be obtained after at most n � 1 iteration cycles.
Since in each iteration cycle each edge is involved at
most once and each iteration cycle requires O(m) op-
erations, the running time of this method is O(nm).

D’Esopo–Pape Method

Like the Bellman–Ford method this method can be
used to detect the presence of a negative cycle and like
the Bellman–Ford method, a node is always removed
from the top of the queue L, but it is inserted at its bot-
tom if it has never been in L before, otherwise it is put at
the top. The choice of this inserting strategy comes ob-
serving that the removal and the updating of the label
of a node i affect the labels of a subset Ni of neighbor
nodes j with (i, j) 2 E. Therefore, by placing the node at
the top of the queue, the labels of nodes belonging toNi

will be updated as quickly as possible.

Auction Algorithms

The auction approach was proposed by D. Bertsekas [4]
(see also [5,6]) for solving the assignment problem. It
was then generalized for the transportation problem,
the minimum cost flow problem [10,11,12] and for the
shortest path [7]. A complete survey of the auction al-
gorithm can be found in [8, Chapt. 4].

To solve the problem SP, the standard forward auc-
tion algorithm follows a primal-dual approach and con-

sists of tree basic operations: path extension, path con-
traction and dual price increase.

Let i be the terminal node of P.
IF �(i) < min(i; j)2Efc(i; j) + �( j)g

THEN go to Step 1;
ELSE go to Step 2.

ENDIF
Step 1 (CONTRACT PATH)

Set �(i) = min(i; j)2Efc(i; j) + �( j)g.
IF i ¤ s

contract P and go to next iteration.
ENDIF

Step 2 (EXTEND PATH)
Extend P by node
ji = arg min(i; j)2Efc(i; j) + �( j)g.

The algorithm starts with a pair (P, 
) satisfying
CSC, (at start P may consist only of s and 
 may be
zero), then it proceeds in iterations, transforming (P,
)
into another pair satisfying CSC, that is at each iteration
a dual feasible solution and a primal (infeasible) solu-
tion are available for which complementary slackness
holds. Therefore, while the algorithm maintains com-
plementary slackness, it either constructs a new primal
solution (not necessarily feasible) or a new dual feasible
solution, until a primal feasible (and hence also opti-
mal) is obtained. In more detail, at each iteration the
candidate path P is either extended by adding a new
node at the end of the path or contracted by deleting
from P the last inserted node, said terminal node. At
any iteration, if no extensions or contractions are pos-
sible, the value of the dual variable corresponding to the
terminal node of P is raised. The algorithm terminates
when the candidate path P is extended by the target
node, in case of single source-single destination prob-
lem, or when each node has been involved at least once,
in case of single source-all destinations problem.

Even if the auction algorithm is introduced for solv-
ing the single source-single destination problem, it can
be easily adapted to solve the SPT problem. In fact, in
this case it terminates when each node has been visited
at least once by the algorithm.

Graph Reduction in Auction Algorithms

The original version of the auction algorithm for the
shortest path problemwasmodified by S. Pallottino and
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M.G. Scutellá [27], who found out conditions under
that it is possible to ‘prune’ the original graph. In more
detail in [27], they showed that every time the standard
forward auction algorithm reaches a node f , the opti-
mality of the candidate path P enables to delete from
the original graph all edges whose head is f , except the
edge (k, f ), if k is its predecessor in P. The set V of the
nodes becomes in that way partitioned in the set of the
nodes never visited by the algorithm and those visited at
least once and that have only one incoming edge. The
algorithm they have developed has a strongly polyno-
mial computational time equal toO(m2), wherem is the
number of edges in the graph, without requiring that
the cycle lengths must be positive, without assumptions
on the topology of the graph and whatever are the input
data.

Strengthening the graph reduction idea using upper
bounds to the node shortest distances, they developed
[13] an auction algorithm, whose computational time
is O(n min{m, n log n}), since it deletes arcs more ef-
fectively. The set V of the nodes becomes now parti-
tioned in three sets: the set of the nodes never visited
by the algorithm, the set of those visited at least once
(said tree nodes set) and that of the nodes never visited,
but connected through an edge to at least one tree node
(said border nodes set). The upper bounds uj, j 2 V , to
the node shortest distances that they use, behave exactly
as the temporary labels that Dijkstra’s algorithm asso-
ciates to each node of the graph (see e. g. [8,20,23,28]).
In fact, such an upper bound ui expresses exactly the
shortest distance from the source to i and as soon as the
border node i becomes tree node. Bertsekas, Pallottino
and Scutellá use those upper bounds in order to ‘prune’
the original graph as much as possible. In fact the al-
gorithm they developed in [13] deletes not only the in-
coming edges of the last visited node i as in [27], but
also all the edges (i, j) 2 E if ui + c(i, j)� uj or otherwise
the edge (k, j) 2 E for which k is a tree node other than i.

Modified Version
of the Standard Auction Algorithm

A modified auction algorithm (MA), due to [16],
reaches a substantial computational time improvement
over the standard algorithm. Its peculiar characteristic
is that the CSC are not longer maintained verified dur-
ing the algorithm iterations. It proceeds as the standard

auction algorithm, but it does not require that the dual
feasibility has to be maintained throughout the algo-
rithm; this allows to raise the dual prices higher than
in the standard algorithm and, consequently, the num-
ber of path contractions becomes substantially reduced.
More precisely, the dual variable associated with the
terminal node i of the candidate path P is raised to the
second minimum value in the set

f�(c(k; i)� 
(k)C 
(i); (c(i; p) � 
(i)C 
(p)) :

(i; p) 2 Eg

where k is the node that immediately comes before i in
P. The correctness and convergence of MA are showed
true through the following theoretical results, whose
proofs are in [16].

Graph Collapsing In Auction Algorithms

All graph collapsing auction algorithms due to [15], are
based on the following simple idea. When a node of the
graph is visited for the first time by the auction algo-
rithm, then the shortest path from the source to this
node is found. Moreover, during the successive compu-
tations, any sub-paths extracted from an optimal path
can be substituted by (collapsed to) a single arc of the
same length. Suppose that at the end of the kth itera-
tion of the auction algorithm the node il is visited for
the first time. This means that il is the terminal node of
the current candidate path P = {s = i0, . . . , il}. The CSC
are satisfied and for the arcs belonging to P it holds that


(i j) D 
(i jC1)C c(i j; i jC1):

Due of this property of the candidate path P, from the
point of view of the algorithm, i. e. with respect to the
sequence of nodes visited for the first time, it is equiv-
alent to consider the original graph or a graph where
a subpath is replaced by a single arc, whose length is
equal to the length of the replaced subpath. The exact
meaning of this equivalence has been clarified in [15].
Here the description of the topological transformations
has been intentionally left vague, because there are sev-
eral different methods to realize these transformations
leading to different algorithms which can performmore
or less efficiently. In the next section one of such ap-
proaches, which seem particularly fruitful, will be de-
scribed in full details. Because it performs also the graph
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Let s and d be the labels of the source and the target node respectively.
For each i 2 E let FS(i) be its forward star and let P be the candidate path.
Let pred(i) be the node k such that (k; i)2 E\P.
Step 0: Set pred(i) = oldpred(i) = NIL; 8i 2 V .

P = fsg.
Choose � 2 RjV j such that cl p � �l + �p � 0;8(l ; p) 2 E.

Step 1: Let i be the terminal node of the path P.
IF i = d, THEN stop, ELSE go to Step 2.

Step 2: Compute FS(i) := f(i; p) 2 Eg; k = pred(i).
IF i = s

�1 = min(s;p)2FS(s)fcsp + pipg
p� = arg min(s;p)2FS(s)fcsp + �pg
IF pred(p�) = NIL

remove from E each arc (l ; p�); l ¤ s
oldpred(p�) = s

pred(p�) = s
IF j FS(s) j> 1

�(s) = min(s;p)2FS(s);p¤p�fcsp + �pg
ELSE �(s) = �1
i = p� and go to Step 1.

ELSE // case i ¤ s //
IF FS(i) = ; // Construction due to FS(i) = ; //

remove from E each arc (l ; i)
i = pred(i) and go to Step 1.

ELSE // case FS(i) ¤ ; //
k = pred(i); in = �(k) � cki ,
�1 = min(i;p)2FS(i)fci p + �pg
IF in < �1 // Normal contraction //

�(i) = �1; i = k and go to Step 1.
ELSE

p� = arg min(i;p)2FS(i)fci p + �pg
�2 = min(i;p)2FS(i);p¤p�fci p + �pg
�(i) = �2
IF in > �2 // Normal extension //

IF pred(p�) = NIL
remove from E each arc (l ; p�), l ¤ i
oldpred(p�) = i

pred(p�) = i
ELSE // Graph collapsing extension //

add the arc (k; p�) to the set E
set ckp� = cki + ci p�

IF pred(p�) = NIL
remove from E each arc (l ; p�)
oldpred(p�) = i

ELSE
remove from E the arc (i; p�)

pred(p�) = k
i = p� and go to Step 1.

Pseudocode of the algorithm GCA2 solving the single source-single destination problem
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‘pruning’ operation proposed in [27], it returns a solu-
tion under the same assumptions made in [27], that is
without the requirement of positive cycle lengths, with-
out assumptions on the topology of the graph and for
any kind of input data.

The main idea of graph reduction seems to be simi-
lar to that introduced in [13], because the effectiveness
of both belongs to the reduction of the number of itera-
tions (nodes visiting), but the approaches are somewhat
different. In fact, while their method uses several crite-
ria to delete those edges that certainly will not belong to
a shortest path before passing over them, the approach
in [15] deletes edges belonging to shortest paths, replac-
ing a chain of them with a single edge.

Graph Collapsing Auction Algorithm

In this section is described an auction algorithm
(GCA2), due to [15], that applies fruitfully the graph
collapsing concept to the modified version of the
auction algorithm (MA). Note that, because dur-
ing the computation MA does not maintain verified
the CSC along the current candidate path, it is no
longer straightforward to implement the substitution
of a piece of the path with only one arc. In GCA2 this
substitution is realized during the extension step, only
when the second minimum value computed during the
price updating phase of MA results from the incoming
arc on the current node, because only in this case the
CSC are verified as equality.

Besides applying the graph collapsing concept to
the modified auction algorithm, GCA2 uses the dual
prices updating idea even when a graph collapsing oc-
curs. In fact, in step 2 of GCA2, when a graph col-
lapsing occurs, a certain amount of computational ef-
fort is achieved updating the price of the current node
through �2, the third minimum value, which after the
collapsing becomes the second minimum value. In [15]
it is shown that the computational complexity of GCA2
is not worst than that of MA, which is no worse than
that of the Pallottino’s algorithm [27].

Virtual Source Concept Applied
in Auction Algorithms

In [14] two algorithms were proposed having complex-
ity O(n2) and in which the computational effort is re-
duced fully exploiting the below described property of

Step 0: choose � 2 RjV j such that
c(l ; p) � �(l) + �(p) � 0; 8(l ; p) 2 E.
pred(i) = NIL and d(i) = +1 for each i 2 V
sort FS(s) in nondecreasing order
w(s) = �(s) = SELECT.MIN FS(s))
w(l) = �(l) for each l 2 V ; l ¤ s
E = E n f(l ; s); (g; js) : l ; g 2 Vg
Q = fsg; i = s and go to Step 1.

Step 1: IF j Q j=j V j OR w(q) = +1; 8q 2 Q,
THEN stop.
IF �(i) = SELECT.MIN FS(i)) go to Step 2
ELSE go to Step 3.

Step 2: Let j i = arg min(i;p)2FS(i)fc(i; p) + �(p)g
sort FS( j i ) in nondecreasing order
pred( j i) = i; d( j i ) = w(i)
�( j i ) = SELECT.MIN FS( j i))
w( j i ) = w(i) + �( j i )
E = E n f(l ; j i) : l 2 Vg
INSERT(Q; j i) and go to Step 3.

Step 3: IF �( j) = +1; 8 j 2 FS(i) OR FS(i) = ;
w(i) = �(i) = +1

ELSE
�(i)old = �(i)
�(i) = SELECT.MIN FS(i))
w(i) = wk(i) + (�(i) � �(i)old).

UPDATE(Q; i)
i = SELECT.MINQ) and go to Step 1.

Pseudocode for VSA2

the auction algorithm: when it reaches for the first time
a node, said current node, the shortest path from the
source to current node is found. Hence, it is obvious
that all the subtrees rooted at the current node can be
computed applying the algorithm from a virtual source
located on the current node itself, and that the com-
plete shortest path tree can be assembled joining pieces
of optimal subpaths so obtained.

In order to make well defined the joining opera-
tion, the algorithm associates a label to each virtual
source. In this aspect it resembles Dijkstra’s algorithm
[20], but the order on which new nodes are explored
remains equal to that of the auction algorithm. The vir-
tual source algorithm actually combines the good char-
acteristics of both the approaches.

The first version of the virtual source algorithm
(VSA1) evolves as the standard auction algorithm with
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two differences. First of all the algorithm maintains
a special list Q of those nodes that during the computa-
tion become virtual sources. Moreover, the contraction
phase is modified: every time it becomes needed to per-
form a contraction on a node i, the algorithm updates
the value of a parameter w(i), called weight associated
to i, which is inserted in Q if it does not belong to Q
yet. The next terminal node is that corresponding to the
actual minimum weight on Q. During the iterations of
the algorithm the list Q is maintained sorted in nonde-
creasing order of weights. The crucial characteristic of
VSA1 is the way in which the weights of the nodes are
updated. At any iteration the weight associated to each
node i expresses the shortest distance from the source
to the node i itself added to the actual minimum value
of the function c +
 on the set of edges outgoing from i.

Even if VSA1 is interesting from a theoretical point
of view, it can be easily furthermore improved to com-
pletely eliminate not only the contraction phases, as
performed by VSA1, but also extension phases. The re-
sulting algorithm, called VSA2, performs only inser-
tions of nodes in Q and updating of Q. Since any ex-
tension of the auction algorithms is followed by a con-
traction and since VSA1 creates a virtual source during
a contraction phase, the authors thought to anticipate
the virtual source placement on a node as soon as that
node is discovered by the algorithm. A relative pseu-
docode is given above.

ANew Virtual Source Algorithm

In the algorithm VSA2 described in the previous sec-
tion both the contraction and the extension phases
are completely eliminated. The computational time de-
pends exclusively on how efficiently can be performed
the dictionary operations of insertion and updating of
the data structure chosen to represent Q, the set con-
taining the virtual sources.

In order to improve the performance of VSA2, in
which Q is implemented as a queue, in the new pro-
posed algorithm the virtual sources weights are main-
tained in some sorted fashion, using the property that
VSA2 assigns nondecreasing weights. The basic idea
is similar to that realized by Dial, who chose a direct-
address table as data structure. Nevertheless, given the
bounds of the memory available on a typical computer,
storing a direct-address table of size equal to the max-

imum length of a path is impractical, or even impossi-
ble, if the number of nodes and/or the maximum arc
cost are large. In the new proposed algorithm, instead
of using the virtual sources weights as an array index
directly, the array index is computed from the weight.
The data structure resulting is called hash table. Since it
typically uses an array of size proportional to the num-
ber of elements actually stored, an hash table is more
effective than the direct addressing technique, when, as
in our case, the number of elements actually stored is
small compared to the size of the direct-address table.
In fact, while in a direct-address table a node having la-
bel k is directly stored in the slot k, with hashing the
virtual source having weight k is stored in the slot g(k),
where if n is the number of nodes of the graph and l =
(n � 1) max(i, j) 2 Ec(i, j)

g : U D f0; : : : ; lg ! f0; : : : ;m � 1g

is a function that mapsU into the slots V[0, . . . ,m� 1].
The efficiency of an hash table depends on the choice
of the hash function g. An hash function is ‘good’ if
it is such that each element is almost equally likely to
hash to any of them slots. The most popular techniques
for designing a good hash function are hashing by divi-
sion, hashing by multiplication and universal hashing.
In practice, heuristic techniques can be also used to cre-
ate hash functions that are likely to perform well. For
a detailed analysis of these techniques, see [18].

The hash function allocated in the new proposed
algorithm has been designed following the division
method, in which for creating hash functions a key k
is mapped into one of m slots by taking the remainder
of k divided by m. Formally, the general hash function
is the following:

g(k) D k mod m:

In the new virtual source algorithm m has been chosen
in order to process at most 10 elements for each unsuc-
cessful search.

Even if this line of research is still being investigated,
the hash function g above defined has already led to sat-
isfactory results, as discussed in the next section dedi-
cated to the computational results.

Computational Results

Detailed results are reported in [15,21], and [14]. Here,
we briefly describe the results obtained comparing two
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classes of algorithms that seem to be the most compet-
itive: the auction class, from that GCA algorithms de-
scend, and the class of Dijkstra-like algorithms.

In [15,21], and [14] we have considered as repre-
sentative of the first class the forward modified auction
(MA) [16], that in some preliminary performed tests
has been selected as the faster one over the all competi-
tors in all the instances. For the second class we have
chosen the forward S-HEAP and the forward S-DIAL
of [24] because they are widely known state of the art
algorithms and because all the implementations of Di-
jkstra’s forward algorithm often behaves similarly [17].

The experiments were conducted on a Digital Al-
pha 4100 running Digital UNIX V4.0B. All the auction
programs were written in C and compiled with gcc ver.
2.7.2, while for the S-HEAP and S-DIAL algorithms we
used the Fortran implementation due to [25].

To cover most of the practically encountered in-
stances different kinds of problems were studied; for
any family of problems different sizes were considered
and for any size we recorded running times employed
by any algorithm averaged over ten different random
generated instances.

The types of problems taken into account were:
square and long grid networks, generated using the
GRIDGEN code by Y. Lee and J.B. Orlin and networks
generated using the NETGEN code [26] with different
densities. For any of such networks we have solved the
SPT problem.

The following three groups of graphs are consid-
ered:
1) Square and long grid-like graphs, generated by using

the GRIDGEN code, whose node number n varies
from 1000 to 20000. The source is always placed at
one end of the grids, so the diameter is large. All
grids are planar and square with average degree for
any node equal to 4. The length/height ratio is ap-
proximatively 30.

2) General random networks generated by using the
NETGEN code [26]. Even in this case n ranges from
1000 to 20000, using as arc number m both 4n and
10n.

3) Complete networks, whose nodes number n ranges
from 100 to 500.

In all cases the arc lengths are randomly chosen in the
range 0–10000; for any of them we solved the SPP from

Shortest Path Tree Algorithms, Figure 1
Mean computational time on square grids

Shortest Path Tree Algorithms, Figure 2
Mean computational time on elongated grids

the node labelled 1 by the network generator to all the
other nodes. In all instances GCA2 has outperformed
MA.

The figures show the mean computational time of
the tested algorithms in seconds and in log. scale.

MA and GCA2 have analogous behavior, but in
each instance GCA2 leads to a computational time sav-
ing at least of 50% over MA.

Recently (as of 1999), we have realized a new imple-
mentation of the algorithm VSA2 in which the set con-
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Shortest Path Tree Algorithms, Figure 3
Mean computational time on sparse graphs

Shortest Path Tree Algorithms, Figure 4
Mean computational time on dense graphs

taining the virtual sources is an hash table. Even if the
worst-case complexity has been not improved, the new
algorithm reduces in practice the computational time
of VSA2. Even though the testing phase of this new al-
gorithm is at the moment limited to general dense ran-
dom graphs, analyzing the results obtained, it seems to
be competitive with the Dijkstra-like algorithms.

Conclusions

This article is a brief survey of the most popular al-
gorithms and of some novel approaches for solving

Shortest Path Tree Algorithms, Figure 5
Mean computational time on complete graphs

shortest path problems. The new methods proposed
are variations of the auction technique. They are based
on topological transformations of the graph, operated
during the iteration of the algorithms. The main idea
is based on the property of any auction algorithm for
the shortest path that if a node is included at a cer-
tain step in the candidate path, then the shortest path
to this node is found. Different realizations of such ap-
proaches are described leading to different algorithms:
graph collapsing algorithms and virtual sources algo-
rithms. The graph collapsing algorithms presented are
two. The former one is the straight application of the
idea to the standard auction algorithm of Bertsekas im-
proved in [27], while the latter applies the same con-
cept to the modified auction of [16]. Strengthening the
peculiar characteristics of the standard auction method,
it has been developed the family of virtual source algo-
rithms.

For all the algorithms an upper bound on the total
number of required operations is found. An extensive
set of numerical test has been carried out and looking
the results it is possible to conclude that the algorithm
GCA1 has only a theoretical relevance. GCA2, instead,
has been revealed in all cases much more efficient. It
seems to be one of the better algorithms for solving the
shortest path problem and extends the applicability of
the auction approach. GCA2 fills the performance gap
between them and the better Dijkstra-like algorithms,
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while the most recent virtual source algorithm seems to
completely eliminate it.

See also
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�Minimum Cost Flow Problem
� Network Design Problems
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� Nonconvex Network Flow Problems
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� Survivable Networks
� Traffic Network Equilibrium
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Introduction

In this chapter, we propose an enhanced state-task
network (STN) mixed-integer linear programming
(MILP) model for the short-term scheduling of multi-
product and multipurpose batch plants with interme-
diate due dates. The proposed approach extends the
continuous-time scheduling model which was origi-
nally developed by Floudas and coworkers [6,7,8,10].
This enhanced formulation is able to account for lim-
ited, renewable resources, various storage policies, in-
cluding unlimited intermediate storage (UIS), finite in-
termediate storage (FIS), no intermediate storage (NIS),

and zero-wait (ZW) conditions, and incorporates sev-
eral additional features, including variable batch sizes
and processing times, batch mixing and splitting, and
sequence-dependent changeover times. The enhanced
formulation still utilizes a continuous-time representa-
tion employing a necessary number of event points of
unknown location corresponding to the activation of
a task. However, tasks are allowed to continue over sev-
eral, consecutive event points, enabling resource and
storage quantities to be correctly determined at each
task activation. The full mathematical model and ad-
ditional computational results can be found in [9].

There are several other models in the scheduling lit-
erature which are capable of accounting for resource
constraints as well as mixed storage policies in short-
term scheduling problems. Maravelias and Gross-
mann [11] developed a global event based continuous-
time MILP model which utilizes the STN approach and
addresses the general problem of batch scheduling, in-
cluding resource constraints, variable batch sizes and
processing times, various storage policies, batch mix-
ing and splitting, and sequence-dependent changeover
times. Their model utilizes the idea of task decou-
pling, eliminates binaries for unit assignment and the
continuous variables for start times of tasks, proposes
a new class of valid tightening inequalities, and was
the first general STN-based model capable of han-
dling resource considerations. However, owing to the
continuous-time representation used, which is com-
mon for all units, their formulation always requires an
extra event point for the end of the last task, generat-
ing larger and more complex models than the proposed
formulation. In addition, Castro et al. [2] presented
a general, continuous-time MILP model for schedul-
ing of batch processes based on the resource-task net-
work (RTN) representation. It is uses a global event
based representation of time and treats all types of re-
sources in a unified way so that no special sequenc-
ing constraints are required. The authors claim that it
is a simpler and less degenerate mathematical model
than other RTN continuous-time formulations, such
as the model of Schilling [13]. In later work, Castro
et al. [3] extended their RTN formulation to consider
continuous processing tasks, better constraints to han-
dle ZW conditions for batch tasks, and tighter timing
constraints. The authors also extended their formula-
tion to deal with sequence-dependent cleaning tasks.
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Conceptual Model Enhancements:
Splitting of the Tasks

As previously mentioned, the proposed formulation
allows all tasks to continue over several consecutive
event points. This change was implemented so that the
amount of resource utilized by a task is correctly de-
termined in relationship to all other tasks which utilize
the same resource at all instances of time. For exam-
ple, consider the production schedule and associated
resource utilization given in Fig. 1 for a process which
has two tasks that utilize the same resource. Both tasks
(T1 and T2) have a processing time of 1 and utilize ten
units of the resource with each batch. The schedule on
the left, which is determined with the original schedul-
ing model, does not recognize that task T1 is active
when task T2 begins. At time 2 when task T2 starts, it
does not see that task T1 is active and thus determines
that only ten units of the resource are currently being
used instead of 20. However, if you look at the images
on the right, which were generated with the proposed
formulation, task T1 is split over two consecutive event
points. Thus, when task T2 starts at time 1, task T1 is
active at that time point and the calculated resource uti-
lization is correct.

Note that splitting of processing tasks in our
continuous-time model is also necessary to account
for several other features inherent in scheduling prob-

Short-Term Scheduling of Batch Processes with Resources,
Figure 1
Task splitting for resource utilization

lems in addition to limited, renewable resources. For
instance, in order to model FIS for a state that can be
produced or consumed by more than one task, it may
be necessary to allow the tasks to continue over more
than one event point. If the tasks have different process-
ing times or do not start and/or finish at the same time,
then task splitting will have to be incorporated to ensure
that storage limits are maintained. Also, for STNs that
employ recycle loops, the intermediate state recycled in
the loop is consumed by a task that occurs earlier in the
STN than the task that produces the recycled state, cre-
ating a complicated time dependence between the two
tasks that must be maintained in order to avoid violat-
ing material balances. If these related tasks have differ-
ent processing times, it may be necessary to allow task
splitting for the task(s) with longer processing times in
order to determine the best possible solutions.

As a consequence of tasks extending over multiple
event points, each processing task must have two sets of
binary variables and one set of continuous variables as-
sociated with it. The binary variable ws(i; n) indicates
that a task i starts at event point n, while the binary
variable,w f (i; n) indicates that a task i ends at event
point n. In addition, the continuous variable w(i; n)
indicates that a task i is active at event point n, re-
gardless of whether the task is starting, finishing, or
just processing at that event point. In response to this
change, the enhanced model has an expanded set of
constraints in order to accurately keep track of the uti-
lization of units as well as the timing and sequence of
tasks that have been split. In addition, two new sets of
tasks are introduced into the mathematical model. One
set, (ist), represents the storage of intermediate states,
while the other set, (u), gives the utilization of a re-
source. New constraints are then introduced into the
enhanced model in order to relate the timing and se-
quence of these new tasks with their associated process-
ing tasks so that specified limits can be enforced.

Formulation

The proposed formulation requires the following in-
dices, sets, parameters, and variables:

Indices:
i processing tasks;
ist storage tasks;
j units;



Short-Term Scheduling of Batch Processes with Resources S 3521

k orders;
n event points representing the beginning of a task;
s states;
u utilities;

Sets:
I processing tasks;
Ists storage tasks for state s;
I j tasks which can be performed in unit j;
Ik tasks which process order k;
Ips tasks which are processing or storing;
Ips tasks which produce state s;
Ics tasks which consume state s;
Iu tasks which consume utility u;
J units;
Ji units which are suitable for performing task i;
K orders;
Ki orders which are processed by task i;
Ks orders which produce state s;
N event points within the time horizon;
S states;
S f states with finite intermediate storage;
Sn states with no intermediate storage;
Sp states which are final products;
Sr states which are raw materials;
Sz states with ZW constraint;
U utilities;

Parameters:
˛i j constant term of processing time of task i in

unit j;
ˇi j variable term of processing time of task i in

unit j;
ıiu variable term of consumption of utility u by

task i;
�iu constant term of consumption of utility u by

task i;
�i s proportion of state s produced that is con-

sumed by task i;
amk amount of order k;
avu maximum availability of utility u;
capmax

i j maximum capacity for task i in unit j;
capmin

i j minimum capacity for task i in unit j;
capsts capacity of storage for state s;
dems demand of state s;
duek due date of order k;
H time horizon;
prices price of state s;

ST0
s initial available amount of state s;

STmax
s maximum amount of state s;

Continuous variables:
B(i; j; n) amount of material undertaking task i in

unit j at event point n;
Bs(i; j; n) amount of material starting processing at

event point n;
Bf(i; j; n) amount of material finishing processing at

event point n;
BU(i; u; n) amount of utility u consumed by task i at

event point n;
But(u; n) remaining level of utility u at event point n;
Bst(ist; n) amount of material stored by storage task

ist at event point n;
D(s; n) amount of state s delivered at event point

n;
MS makespan;
ST(s; n) amount of state s at event point n;
STF(s) final amount of state s at the end of the time

horizon;
STO(s) initial amount of state s at the beginning of

the time horizon;
Ts(i; j; n) time at which task i starts in unit j at event

point n;
Tf(i; j; n) time at which task i finishes in unit j at

event point n;
Ts
st(ist; n) time at which storage task ist starts at event

point n;
Tf
st(ist; n) time at which storage task ist finishes at

event point n;
Ts
ut(u; n) starting time of a change in utility u at

event point n;
Tf
ut(u; n) finishing time of a change in utility u at

event point n;
TTs( j; n) starting time of the active task in unit j at

event point n;
TTf( j; n) finishing time of the active task in unit j at

event point n;
w(i; n) indicates if task i is activated at event

point n;

Binary variables:
ws(i; n) assigns the beginning of task i at event

point n;
w f (i; n) assigns the ending of task i at event point n;
y(k; i; n) assigns the delivery of order k through task i

at event point n.



3522 S Short-Term Scheduling of Batch Processes with Resources

On the basis of this notation, the mathematical
model for the short-term scheduling of batch plants
with mixed storage policy and resource constraints in-
volves the following constraints.

Allocation ConstraintsX
i2I j

w(i; n) � 1; 8 j 2 J; n 2 N (1)

w(i; n) D
X
n0�n

ws(i; n0) �
X
n0<n

w f (i; n0);

8i 2 I; n 2 N (2)

X
n2N

ws(i; n) D
X
n2N

w f (i; n); 8i 2 I (3)

ws(i; n) � 1 �
X
n0<n

ws(i; n0)C
X
n0<n

w f (i; n0);

8i 2 I; n 2 N (4)

w f (i; n) �
X
n0�n

ws(i; n0) �
X
n0<n

w f (i; n0);

8i 2 I; n 2 N (5)

These constraints express the requirement that for each
unit j and at each event point n, only one of the
tasks that can be performed in this unit (i. e., i 2 I j)
should take place. Constraints (2) relate the continu-
ous variable w(i; n) to the binary variables ws(i; n) and
w f (i; n) so that w(i; n) will take on a value of 1 if task i
is activated at event point n. Constraints (3) require that
each processing task imust both start and finish during
the time horizon. Constraints (4) require that process-
ing task i cannot start at event point n if it has started at
an earlier event point n0 and has not finished by event
point n. Constraints (5) require that processing task i
cannot finish at event point n unless is has started at
an earlier event point n0 and has not finished by event
point n.

Capacity Constraints

capmin
i j � w(i; n) � B(i; j; n) � capmax

i j � w(i; n);

8i 2 I; j 2 Ji ; n 2 N (6)

Bst(ist; n) � capsts ; 8i
st 2 Ists ; n 2 N (7)

These first set of constraints express the requirement
for the batch size of a processing task i at a unit j,

B(i; j; n), to be greater than the minimum amount of
material, capmin

i j , and less than the maximum amount
of material, capmax

i j , that can be processed by task i in
unit j. Constraints (7) represent the maximum available
storage capacity for each storage task ist at each event
point n.

Batch-Size Matching Constraints: Processing Tasks

B(i; j; n) � B(i; j; n � 1)
C capmax

i j
�
1 � w(i; n � 1)C w f (i; n � 1)

�
;

8i 2 I; j 2 Ji ; n 2 N; n > 1

(8)

B(i; j; n) � B(i; j; n � 1)

� capmax
i j
�
1 � w(i; n � 1)C w f (i; n � 1)

�
;

8i 2 I; j 2 Ji ; n 2 N; n > 1

(9)

Bs(i; j; n) � B(i; j; n); 8i 2 I; j 2 Ji ; n 2 N (10)

Bs(i; j; n) � capmax
i j �ws(i; n); 8i 2 I; j 2 Ji ; n 2 N

(11)

Bs(i; j; n) � B(i; j; n) � capmax
i j [1 � ws(i; n)];

8i 2 I; j 2 Ji ; n 2 N (12)

Bf(i; j; n) � B(i; j; n); 8i 2 I; j 2 Ji ; n 2 N (13)

Bf(i; j; n) � capmax
i j �w f (i; n); 8i 2 I; j 2 Ji ; n 2 N

(14)

Bf(i; j; n) � B(i; j; n) � capmax
i j [1 � w f (i; n)];

8i 2 I; j 2 Ji ; n 2 N (15)

Constraints (8) and (9) represent the relationship be-
tween the batch size of task i in unit j at two consec-
utive event points n � 1 and n. These constraints are
required because tasks can extend over several event
points and the batch sizes at these consecutive event
points must be consistent. Constraints (10)–(12) relate
the variables B(i; j; n) and Bs(i; j; n); where Bs(i; j; n)
is the amount of material that is starting to be pro-
cessed at event point n. Similar to the previous set of
constraints, constraints (13)–(15) relate the variables
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B(i; j; n) and Bf(i; j; n), where Bf(i; j; n) is amount
of material that is finishing being processed at event
point n.

Batch-Size Matching Constraints: Utility Tasks

BU(i; u; n) D �iuw(i; n)C �iuB(i; j; n); 8u 2 U;

i 2 Iu ; j 2 Ji ; n 2 N (16)

X
i2Iu

BU(i; u; n)C But(u; n)

D
X
i2Iu

BU(i; u; n � 1)C But(u; n � 1);

8u 2 U; n 2 N; n > 1 (17)

X
i2Iu

BU(i; u; n)C But(u; n) D avu ;

8u 2 U; n 2 N; n D 1 (18)

where �iu and �iu are the constant and variable terms
of the amount of utility u consumed by task i in unit
j at event point n, BU(i; u; n) is the amount of utility
u consumed by task i at event point n, and But(u; n) is
the amount of utility u available at event point n. Con-
straints (16) represent the amount of utility required by
the unit to process B(i; j; n) of material while perform-
ing task i. Constraints (17) express the mass balance on
the utilities, requiring that the amount of utility at event
point n is equal to the amount of utility at event point
n � 1. Constraints (18) express the requirement that
the amount of utility u at the first event point, including
the amount available, But(u; n), and the amount con-
sumed,

P
i2Iu BU(i; u; n), must be equal to the original

amount of utility u available, avu .

Material Balances

ST(s; n) D ST(s; n � 1) � D(s; n)

C
X

i2Ips

�i s
X
j2J i

Bf(i; j; n � 1)

C
X
i2Ics

�i s
X
j2J i

Bs(i; j; n)

C
X
i st2Ists

Bst(ist; n � 1) �
X
i st2Ists

Bst(ist; n);

8s 2 S; n 2 N; n > 1

(19)

ST(s; n) D STO(s)C
X
i2Ics

�i s
X
j2J i

Bs(i; j; n)

�
X
i st2Ists

Bst(ist; n); 8s 2 S; n 2 N; n D 1 (20)

STF(s) D ST(s; n)�D(s; n)C
X

i2Ips

�i s
X
j2J i

Bf(i; j; n)

C
X
i st2Ists

Bst(ist; n); 8s 2 S; n 2 N; n D N

(21)

According to constraints (19), the amount of material
of state s at event point n is equal to that at event point
n � 1 increased by any amounts produced or stored at
event point n � 1, decreased by any amounts consumed
or stored at event point n, and decreased by the amount
required by the market at event point n, D(s; n). Con-
straints (20) and (21) represent the material balance on
state s at the first and last event points, respectively. The
amount of state (s) at the first event point is equal to
the initial amount, STO(s), decreased by any amounts
consumed or stored at the first event point. The total
amount of state s at the end of last event point, STF(s),
is equal to the amount at the beginning of the last event
point, ST(s; n), increased by any amounts produced
or stored at the last event point and decreased by the
amount required by the market at the last event point.

Duration Constraints

Tf(i; j; n) � Ts(i; j; n); 8i 2 I; j 2 Ji ; n 2 N (22)

Tf(i; j; n) � Ts(i; j; n)C H � w(i; n);

8i 2 I; j 2 Ji ; n 2 N (23)

Ts(i; j; n) � Tf(i; j; n � 1)C H[1 � w(i; n � 1)

C w f (i; n � 1)];

8i 2 I; j 2 Ji ; n 2 N; n > 1 (24)

Tf(i; j; n0) � Ts(i; j; n) � ˛i jws(i; n)C ˇi jBs(i; j; n)

� H[1 � ws(i; n)]

� H[1 � w f (i; n0)]

� H[
X

n�n00<n0
w f (i; n00)];

8i 2 I; j 2 Ji ; n 2 N; n0 2 N; n � n0

(25)
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Tf(i; j; n0) � Ts(i; j; n) � ˛i jws(i; n)C ˇi jBs(i; j; n)

C H[1 � ws(i; n)]

C H[1 � w f (i; n0)]

C H[
X

n�n00<n0
w f (i; n00)];

8i … Ips; j 2 Ji ; n 2 N; n0 2 N; n � n0 :
(26)

The first set of constraints represent the relationship be-
tween the starting and finishing times of task i in unit j
at event point n. Because tasks can extend over multiple
event points, the finishing time is not assigned from the
start time, but must be greater or equal to the start time.
Constraints (23) also represent the relationship be-
tween the starting and finishing times of task i in unit j
at event point n. If task i does not take place at event
point n, then along with constraints (22), the finishing
time is set equal to the starting time. Constraints (24)
relate the starting time of task i in unit j at event point
n to the finishing time of the same task in the same unit
at the previous event point, n � 1. These constraints are
relaxed unless task i is active and does not finish pro-
cessing at event point n � 1. In this case, task i must
extend to the following event point, n, so that this con-
straint, Ts(i; j; n) � Tf(i; j; n � 1), along with the se-
quencing constraints (29), Ts(i; j; n) � Tf(i; j; n � 1),
results in the two times being equal. Constraints (25)
and (26) relate the starting time of task i in unit j at
event point n with its finishing time at a later event
point n0.

Tf
st(i

st; n) � Ts
st(i

st; n); 8ist 2 Ists ; n 2 N (27)

Tf
ut(u; n) � Ts

ut(u; n); 8u 2 U; n 2 N : (28)

The first set of constraints relate the starting and finish-
ing times of a storage task ist so that the finishing time
must always be greater than or equal to the start time.
The second set of constraints relate the starting and fin-
ishing times of changes in the amount of utility u so that
the finish time must always be greater than or equal to
the start time.

Sequence Constraints: Processing Tasks

Ts(i; j; n) � Tf(i; j; n � 1);

8i 2 I; j 2 Ji ; n 2 N; n > 1 (29)

Ts(i; j; n) � Tf(i0; j; n � 1) � H[1 � w(i0; n � 1)];

8 j 2 J; i 2 I j; i0 2 I j; i ¤ i0; n 2 N; n > 1
(30)

Ts(i; j; n) � Tf(i0; j0; n� 1)�H[1�w f (i0; n� 1)];

8s 2 S; i 2 Ics ; i0 2 Ips ;

j 2 Ji ; j0 2 Ji 0 ; j ¤ j0; n 2 N; n > 1 (31)

Ts(i; j; n)

� Tf(i0; j0; n�1)CH[2�w f (i0; n�1)�ws(i; n)];

8s 2 Sz ; Sf; Sn ; i 2 Ics ; i0 2 Ips ;

j 2 Ji ; j0 2 Ji 0 ; j ¤ j0; n 2 N; n > 1 : (32)

The sequence constraints in (29) state that task i start-
ing at event point n should start after the end of the
same task performed at the same unit j which has fin-
ished at the previous event point, n � 1. The constraints
in (30) are written for tasks i and i0 that are performed
in the same unit j at event points n and n � 1, respec-
tively. If both tasks take place in the same unit, they
should be at most consecutive. Constraints (31) relate
tasks i and i0 which are performed in different units
j and j0 but take place consecutively according to the
production recipe. Constraints (32) are written for dif-
ferent tasks i and i0 that take place consecutively with
the “zero-wait” (ZW) condition owing to storage re-
strictions on the intermediate material. Combined with
constraints 31, these constraints enforce that task i in
unit j at event point n starts immediately after the end
of task i0 in unit j0 at event point n � 1 if both tasks are
activated.

Sequence Constraints: Storage Tasks

Ts(i; j; n) � Tf
st(i

st; n � 1);

8s 2 S; i 2 Ics ; j 2 Ji ; ist 2 Ists ;

n 2 N; n > 1 (33)

Ts(i; j; n) � Tf
st(i

st; n � 1)C H[1 � ws(i; n)];

8s 2 Sf; i 2 Ics ; j 2 Ji ; ist 2 Ists ;

n 2 N; n > 1 (34)
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Ts
st(i

st; n) � Tf(i0; j0; n � 1)� H[1� w f (i0; n� 1)];

8s 2 S; i0 2 Ips ; j0 2 Ji 0 ; ist 2 Ists ;

n 2 N; n > 1 (35)

Ts
st(i

st; n) � Tf(i0; j0; n� 1)CH[1�w f (i0; n� 1)];

8s 2 Sf; i0 2 Ips ; j0 2 Ji 0 ; ist 2 Ists ;

n 2 N; n > 1 (36)

Ts
st(i

st; n) D Tf
st(i

st; n�1); 8ist 2 Ists ; n 2 N; n > 1

(37)

The first two sets of constraints relate the starting time
of a processing task i at an event point n to the fin-
ishing time of a storage task ist at the previous event
point, n � 1. Note that (34) is only written for states s
with FIS. Thus, if task i starts at event point n and
consumes a state s that requires FIS, then we have
Ts(i; j; n) D Tf

st(ist; n � 1) for all storage tasks ist for
state s. Constraints (35) and (36) relate the starting time
of a storage task ist at an event point n to the process-
ing task i0 at the previous event point, n � 1. Similar
to constraints (33) and (34), these constraints enforce
the timing for a processing task that produces a FIS
state and a storage task which stores the same FIS state.
Constraints (37) relate the starting and finishing time of
a storage task ist at two consecutive event points. They
ensure that, along with constraints (33)–(36), the tim-
ing for storage of FIS states will be enforced so that stor-
age limitations are not violated.

Sequence Constraints: Utility-Related Tasks

Tf(i; j; n � 1)

� Ts
ut(u; n) � H[1 � w(i; n � 1)C w f (i; n � 1)];

8u 2 U; i 2 Iu ; j 2 Ji ; n 2 N; n > 1 (38)

Tf(i; j; n � 1) � Ts
ut(u; n)C H[1 � w(i; n � 1)];

8u 2 U; i 2 Iu ; j 2 Ji ; n 2 N; n > 1 (39)

Ts
ut(u; n) � Ts(i; j; n) � H[1 � w(i; n)];

8u 2 U; i 2 Iu ; j 2 Ji ; n 2 N (40)

Ts
ut(u; n) � Ts(i; j; n)C H[1 � w(i; n)];

8u 2 U; i 2 Iu ; j 2 Ji ; n 2 N (41)

Ts
ut(u; n) D Tf

ut(u; n � 1); 8u 2 U; n 2 N; n > 1

(42)

The first two sets of constraints relate the finishing time
of a processing task i which utilizes utility u at an event
point n � 1 to the starting time of the usage of utility u
at the next event point. Constraints (40) and (41) relate
the starting time of the usage of utility u at event point
n to the processing task i which utilizes utility u at the
current event point. Constraints (42) relate the starting
and the finishing time of the usage of utility u at two
consecutive event points. They ensure that, along with
constraints (38)–(41), the timing for the changes in the
utility level will be consistent and the amounts of utili-
ties used can be monitored exactly and specified limits
enforced.

Order Satisfaction Constraints

The order satisfaction constraints provided here are
written for problems involving network-represented
processes. Note that these constraints can easily be
modified for the case of sequential process problems.
This is done by relating orders to units in the same
manner as orders are related to tasks below.X

i2Ik

X
n2N

y(k; i; n) D 1; 8k 2 K (43)

w f (i; n) D
X
k2Ki

y(k; i; n); 8i 2 I; n 2 N (44)

D(s; n) D
X
k2Ks

X
i2Ik

amk � y(k; i; n);

8s 2 Sp; n 2 N (45)

Tf(i; j; n) � duek C H[2 � y(k; i; n) � w f (i; n)];

8s 2 S; k 2 Ks ; i 2 Ik ; j 2 Ji ; n 2 N
(46)

Tf(i; j; n) � duek � H[2 � y(k; i; n) � w f (i; n)];

8s 2 S; k 2 Ks ; i 2 Ik ; j 2 Ji ; n 2 N

(47)

The first set of constraints ensure each order k is met
exactly once; thus, each order is processed by only one
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task i and is delivered at exactly one event point n. Con-
straints (44) relate the delivery of an order k through
task i to the activation of task i at event point n. Con-
straints (45) relate the amount of state s delivered at
event point n, D(s; n), to the amount of that state due
through order k. Thus, if state s has two orders asso-
ciated with it, k1 and k2, of amounts amk1 and amk2,
respectively, and orders k1 and k2 are both delivered
at event point n, then the delivery of state s at event
point n is represented as D(s; n) D amk1 C amk2 and
the amount of the state delivered will be equal to the
amount ordered. Constraints (46) and (47) relate the
time that order k is due to the actual time that order k
is delivered.

Bound Constraints

Tf(i; j; n) � H; 8i 2 I; j 2 Ji ; n 2 N
Ts(i; j; n) � H; 8i 2 I; j 2 Ji ; n 2 N

Tf
ut(u; n) � H; 8u 2 U; n 2 N

Ts
ut(u; n) � H; 8u 2 U; n 2 N

Ts
ut(u; n) D 0; 8u 2 U; n 2 N; n D 1

STO(s) D 0; 8s … Sr

STO(s) � ST0
s ; 8s 2 Sr

ST(s; n) D 0; 8s 2 Sz ; Sf; Sn n 2 N

ST(s; n) � STmax
s ; 8s 2 S; n 2 N

D(s; n) D 0; 8s … Sp; n 2 N

0 � w(i; n) � 1; 8i 2 I; n 2 N

(48)

These constraints represent bounds on several of the
continuous variables. The starting and finishing times
of processing tasks and changes in utility level must
all be within the time horizon. The start time for the
changes in utilities at the first event point is set to zero.
The initial amounts of all non-raw-material states are
set to zero, the intermediate amounts of all ZW, NIS,
and FIS states are set to zero, and the amounts of all
nonproduct deliveries are set to zero. Also, the continu-
ous variable representing the activation of task i in unit
j at event point n, w(i; n), must fall between zero and
one.

Objective Function

There are several different objective functions that can
be employed with a general short-term scheduling

problem. Three of the most common types are reviewed
below.

Maximization of sales

max
X
s2S p

prices �

"X
n2N

D(s; n)C STF(s)

#
(50)

The objective function represents the maximization of
the value of the final products.

Minimization of makespan

Min MS (50)

s:t: MS � Tf(i; j; n); 8i 2 I; j 2 Ji ; n 2 N (51)

STF(s) D dems ; 8s 2 Sp ; (52)

where MS is the makespan. The objective function rep-
resents the minimization of the makespan of the pro-
cess for a fixed demand for each state s, dems , contained
in the set of final products, S p.

Minimization of order earliness

Min
X
k2K

duek�

2
4X

i2Ik

X
j2J i

X
n2N

Tf(i; j; n) � y(k; i; n)

3
5

(52)

The objective function represents the minimization
of the total earliness of all orders where the bilinear
term, which is a product of a continuous and a binary
variable, can be replaced with a continuous variable
and supporting constraints using a Glover transforma-
tion [4,5].

Methods

Number of Event Points

In this formulation, the number of event points is de-
termined using the same approach as proposed in [6].
First, the problem is solved with a small number of
event points to obtain a solution. Then, the number of
event points is increased by one and the problem is re-
solved to obtain a better solution. This is repeated un-
til an additional increase in the number of event points
does not result in any improvement in the objective
function.
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Tightening Constraints

Following the tightening constraints suggested by Mar-
avelias and Grossmann [11], similar constraints are in-
troduced to tighten the relaxed solution of the proposed
enhanced formulation. Specifically, constraints (54)
tighten the formulation by enforcing the condition that
the summation of the processing times of the tasks as-
signed to a specific unit j should be less than or equal to
the time horizon.
X
i2I j

X
n2N

˛i jws(i; n)Cˇi jBs(i; j; n) � H; 8 j 2 J (54)

Furthermore, this condition is also enforced for each
unit j at each event point n as follows:

X
i2I j

X
n0�n

˛i jws(i; n0)C ˇi jBs(i; j; n0)

� H � TTs( j; n); 8 j 2 J; n 2 N (55)

X
i2I j

X
n0<n

˛i jws(i; n0)C ˇi jBs(i; j; n0)

� TTf( j; n � 1)C H[1 �
X
i2I j

w f (i; n � 1)];

8 j 2 J; n 2 N; n > 1 ; (56)

where TTs( j; n) and TTf( j; n) are the starting time and
the finishing time, respectively, of the task active in unit
j at event point n. They are defined as follows:

TTs( j; n) � Ts(i; j; n)C H[1 � ws(i; n)];
8 j 2 J; i 2 I j; n 2 N

TTs( j; n) � Ts(i; j; n) � H[1 � ws(i; n)];

8 j 2 J; i 2 I j; n 2 N

(57)

TTf( j; n) � Tf(i; j; n)C H[1 � w f (i; n)];

8 j 2 J; i 2 I j; n 2 N

TTf( j; n) � Tf(i; j; n) � H[1 � w f (i; n)];

8 j 2 J; i 2 I j; n 2 N

(58)

Thus, constraints (55) enforce the condition that the
summation of the processing times of all tasks starting
in unit j at event points n or greater must be less than or
equal to the amount of time remaining. Likewise, con-
straints (56) enforce the condition that the summation
of the processing times of all tasks finishing in unit j

before event point n must be less than or equal to the
amount of time that has passed up to the beginning of
event point n. Note that constraints (56) are only active
if a task finishes at the previous event point, n � 1, oth-
erwise, TTf( j; n) will not have an exact value and the
constraint is relaxed.

The addition of constraints (54)–(58) leads to re-
laxed solutions with smaller sums of processing times,
or smaller durations. This then leads to fewer acti-
vated binary variables, ws(i; n) and w f (i; n). More-
over, the continuous variables including the batch sizes
(Bs(i; j; n), Bf(i; j; n), B(i; j; n)) and the amounts of
states (ST(s; n), STF(s)) are all bounded by the binary
variables. Finally, because these continuous variables
appear in the objective function, the addition of these
constraints results in tighter relaxations.

Sequential Processes

Single-stage and multistage sequential processes are
batch- or order-oriented and thus do not need to in-
clude tasks or states or any of the constraints involving
states. The model described in the previous section can
be applied to sequential processes with a few modifi-
cations. For instance, there are no defined tasks, states,
batch sizes, or material amounts and all material bal-
ances and capacity constraints are unnecessary. Thus,
the basic constraints (1)–(5), (22)–(26), (29)–(32), and
part of (48) all apply. The order satisfaction constraints
(43)–(47) need to be modified as previously detailed.
If storage constraints are to be considered, then con-
straints (27) and (33)–(37) need to be included and if
resource constraints are to be considered, then con-
straints (28) and (38)–(42) should also be included.
Furthermore, all of the binary and continuous variables
and their participating constraints should be modified
similarly to the order satisfaction constraints to reflect
a dependence on orders associated with units instead of
tasks associated with units.

Cases

In this section, two example problems are presented
to demonstrate the effectiveness of the proposed ap-
proach. Both general network-represented and sequen-
tial processes are considered. Comparisons with previ-
ously published approaches are also provided. All ex-
amples are implemented with GAMS 2.5 [1] and are
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solved using CPLEX 8.1 with a 3.00GHz Linux work-
station. The default GAMS/CPLEX options are used in
all runs with the exception that the CPLEX option for
feasibility is activated and a relative optimality tolerance
equal to 0.01% was used as the termination criterion.

Case 1: Resource Constraints, Mixed Storage
Policies, Variable Batch Sizes, and Processing Times

The second case also comes from Maravelias and
Grossmann [11] and involves the STN given in Fig. 2.
This example includes resource constraints, mixed stor-
age policies, and variable batch sizes, processing times,
and utility requirements. The plant consists of six units
involving ten processing tasks and fourteen states. Un-

Short-Term Scheduling of Batch Processes with Resources, Figure 2
State-task network for case 1

Short-Term Scheduling of Batch Processes with Resources, Table 1
Storage restrictions for case 1

F1 F2 S1 S2 S3 S4 S5 S6 INT1 INT2 P1 P2 P3
STmax

s (kg) 1 1 0 0 15 40 0 0 1 1 1 1 1

ST0s (kg) 100 100 0 0 0 10 0 0 0 0 0 0 0
prices ($/kg) – – – – – – – – – – 1 1 1

Short-Term Scheduling of Batch Processes with Resources, Table 2
Resource utilizations for case 1

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Unit U1 U2 U3 U1 U4 U4 U5 U6 U5 U6
capmax (kg) 5 8 6 5 8 8 3 4 3 4
˛ (h) 2 1 1 2 2 2 4 2 2 3

Utility LPS CW LPS HPS LPS HPS CW LPS CW CW
� (kg/min) 3 4 4 3 8 4 5 5 5 3
ı (kg/min/kg batch) 2 2 3 2 4 3 4 3 3 3

LPS low-pressure steam, CW cooling water, HPS high-pressure steam

limited intermediate storage (UIS) is available for raw
materials F1 and F2, intermediates I1 and I2, and final
products P1–P3 and WS. Finite intermediate storage
(FIS) is available for states S3 and S4, while no interme-
diate storage (NIS) is available for states S2 and S6 and
a ZWpolicy applies for states S1 and S5. There are three
different renewable utilities: cooling water (CW), low-
pressure steam (LPS), and high-pressure steam (HPS).
Tasks T2, T7, T9, and T10 require CW; tasks T1, T3, T5,
and T8 require LPS; and tasks T4 and T6 require HPS.
The maximum availabilities of CW, LPS, and HPS are
25, 40, and 20 kg/min, respectively. The corresponding
data for the example can be found in Tables 1 and 2.
The objective function is the maximization of sales and
time horizons of 12 and 14 h are considered.
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Short-Term Scheduling of Batch Processes with Resources, Figure 3
Schedule for case 1 with a time horizon of 12 h. HPS high-pressure steam, LPS low-pressure steam, CW cooling water

For a time horizon of 12 h, the optimal sales are
$13,000 and eight event points are required. The pro-
duction schedule and resource utilization levels can be
seen in Fig. 3. The problem involves 3318 constraints,
110 binary variables, and 1077 continuous variables. Its
optimal solution was found in 222 nodes and 1.71 s. For
a time horizon of 14 h, the optimal sales are $16,350 and
eight event points are required. The production sched-
ule and resource utilization levels can be seen in Fig. 4.
The problem involves 3354 constraints, 109 binary vari-
ables, and 1077 continuous variables. Its optimal solu-
tion was found in 2869 nodes and 15.65 s. Note that in
both cases, the limiting resource is CW, as can be seen
from the resource utilization levels. In both schedules,
tasks T2 and T7 occurring at the same time requires the
maximum amount of CW available.

Case 1 was also solved with the model M* of Mar-
avelias and Grossmann [11] to compare the two formu-
lations. Although this example was solved in their origi-
nal paper, we have re-solved it here in order to compare
the models using the same computational tools. The
model and solution statistics using both models can be
seen in Table 3. For the time horizon of 12 h using nine
time points, the model involved 2396 constraints, 180
binary variables, and 1408 continuous variables. The
same optimal solution of $13,000 was found in 23,235
nodes and 64.92 s. For the time horizon of 14 h using
ten time points, the model involved 2663 constraints,
200 binary variables, and 1564 continuous variables.
The same optimal solution of $16,350 was found in
22,625 nodes and 112.66 s. Note that the reported num-
ber of nodes and CPU seconds for both time hori-



3530 S Short-Term Scheduling of Batch Processes with Resources

Short-Term Scheduling of Batch Processes with Resources, Figure 4
Schedule for case 1 with a time horizon of 14h

zons using our application of model M* are different
from those found by Maravelias and Grossmann [11].
For a time horizon of 12 h, they reported 2107 nodes,
while our application of model M* took 23,235 nodes.
For a time horizon of 14 h, they reported 60,070 nodes,
while our application of model M* took 22,625 nodes.
In addition, for both time horizons, model M* of Mar-
avelias and Grossmann [11] takes at least one more
time point and thus involves more binary and continu-
ous variables. Also, the time horizon of 12 h took over
100 times more nodes to solve, while the time horizon
of 14 h took over 10 times more nodes to solve. This
indicates that when a larger number of time points are
considered in a problem, the proposed model performs
better computationally than the model of Maravelias
and Grossmann [11], even when the objective is the
maximization of sales.

Case 2: Sequential Process
with Order-Dependent Processing Times

The second case is taken from Pinto and Gross-
mann [12] and involves a sequential process contain-
ing one stage with four parallel extruders of unequal
capacity and with processing times depending on the
order being processed. A total of 12 orders are due at
specific times over a 30-day period. The corresponding
processing rate and due date data for the example can
be found in Table 4. The objective of the problem is to
meet all orders while minimizing earliness, as seen in
constraint (53).

The optimal processing schedule is given in Fig. 5
with an objective function value of 1.026. The prob-
lem was modeled with the formulation of Ierapetritou
and Floudas [6] using only the allocation, duration, and
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Short-Term Scheduling of Batch Processes with Resources,
Table 3
Model and solution statistics for case 1

Proposed
formulation

Maravelias and
Grossmann [11]
formulation

Horizon 12 h 14 h 12 h 14 h
Event points 8 8 9 10
Binary variables 110 110 180 200
Continuous variables 1077 1077 1408 1564
Constraints 3318 3354 2396 2663
LP relaxation 19000 19000 18423.5 22186.7
Objective $13000 $16350 $13000 $16350
Nodes1 222 2869 23235

(2107)
22625
(60070)

CPU time (s) 1.71 15.65 64.92 112.66

1Numbers in parentheses represent values reported by Mar-
avelias and Grossmann [11]

same task in the same unit and different task in the same
unit sequencing constraints along with the order satis-
faction constraints outlined in (43)–(47) and the objec-
tive given in constraint (53).

Suppose now that, owing to limited manpower,
there is a hard constraint on the number of extruders
which can operate at the same time. We will consider
the case where three extruders may operate simultane-
ously (type 1) and the case where only two extruders
may operate simultaneously (type 2). For both cases,
we employ the model outlined in Sect. “Sequential Pro-
cesses“, again using the order satisfaction constraints
and the objective function to minimize the earliness of
the orders. For type 1 with three extruders, the opti-
mal objective function value is 1.895 and the produc-
tion schedule can be seen in Fig. 6. For type 2, the op-

Short-Term Scheduling of Batch Processes with Resources, Figure 5
Schedule for case 2 without limited manpower

Short-Term Scheduling of Batch Processes with Resources,
Table 4
Data for case 2

Order
Due date
(day)

Processing time (days)
j1 j2 j3 j4

1 15 1.538 1.194
2 30 1.500 0.789
3 22 1.607 0.818
4 25 1.564 2.143
5 20 0.736 1.017
6 30 5.263 3.200
7 21 4.865 3.025 3.214

8 26 1.500 1.440
9 30 1.869 2.459

10 29 1.282
11 30 3.750 3.000
12 21 6.796 7.000 5.600

Transition 0.180 0.175 0.00 0.237

timal objective function value is 7.909 and the produc-
tion schedule can be seen in Fig. 7. Model and solution
statistics for all three cases can be seen in Table 5.

It can be seen from Table 5 that consideration of re-
source constraints in the form of limited manpower in-
creases the computational complexity of the problem.
Resource considerations require a more complicated
model involving more variables and constraints. For in-
stance, resource considerations require an event point
for every time the resource level changes, or in this
case, for each order. However, a problem without re-
sources only requires as many event points as the max-
imum number of sequential tasks. For this example,
the simpler problem without resource considerations
only requires four event points, while the more com-
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Short-Term Scheduling of Batch Processes with Resources, Figure 6
Schedule for case 2 with three extruders (type 1)

Short-Term Scheduling of Batch Processes with Resources, Figure 7
Schedule for case 2 with two extruders (type 2)

plicated problem with resource constraints requires 12
event points, resulting in many more binary variables
and thus a much more complex problem.

In order to test the effectiveness of the proposed
formulation when used with sequential processes, we
performed a computational comparison for this exam-
ple with the model of Pinto and Grossmann [12]. Al-

Short-Term Scheduling of Batch Processes with Resources,
Table 5
Model and solution statistics for case 2

4 extruders
simultan-
eously

3 extruders
simultan-
eously

2 extruders
simultan-
eously

Event points 4 12 12
Binary variables 150 458 444
Continuous
variables

513 2137 2137

Constraints 1389 10382 10382
LP relaxation 0 0 0
Objective 1.026 1.895 7.334
Nodes 7 1374 38621
CPU time (s) 0.07 6.53 236.87

though this example was solved in their original pa-
per, the objective function used was the maximization
of starting times instead of the minimization of tardi-
ness. So, we re-solved our model using the maximiza-
tion of the starting times as the objective. Pinto and
Grossmann [12] reported optimal objectives of 269.10,
268.24, and 264.98 for the three cases of no resources,
resources limited to three extruders, and resources lim-
ited to two extruders. Our optimal objective function
values with the same objective were 269.10, 268.82, and
265.74, respectively. Thus, the proposed model found
improved schedules with a better objective function
value for the case where resources are limited to three
extruders and the case where resources are limited to
two extruders. This is not unexpected, however, ow-
ing to the fact that the model used in [12] employs
the concept of time slots and all slot-based formula-
tions restrict the time representations and hence they
can result, by definition, in suboptimal solutions. Note
that the model and solution statistics found in Table 5
for this problem using an objective function of mini-
mization of order earliness are comparable to the model
and solution statistics determined using an objective of
maximization of start times. We do not make a com-
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parison with the model and solution statistics presented
in [12] because the authors did not report the integral-
ity gaps or other optimality criterion used; thus, a direct
comparison would not be meaningful.

Conclusions

In this chapter, an enhanced continuous-time formu-
lation was presented for the short-term scheduling
of multipurpose batch plants with intermediate due
dates. The proposed formulation incorporates several
features, including various storage policies (UIS, FIS,
NIS, ZW), resource constraints, variable batch sizes and
processing times, batch mixing and splitting, and se-
quence-dependent changeover times. The key features
of the proposed formulation include a continuous-time
representation utilizing a necessary number of event
points of unknown location corresponding to the ac-
tivation of a task. Also, tasks are allowed to continue
over several event points, enabling resource quantities
to be correctly determined at the beginning of each re-
source utilization. Four examples were presented to il-
lustrate the effectiveness of the proposed formulation.
The computational results were compared with those
in the literature and it was shown that the proposed
formulation is significantly faster than other general re-
source-constrained models, especially for problems re-
quiring many time points.
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Introduction

The scheduling problem ofmultiproduct andmultipur-
pose continuous plants has received relatively little at-
tention in the literature despite its practical importance
in the chemical process industries that produce a vari-
ety of products using both batch and continuous pro-
duction modes. Scheduling of a continuous plant typ-
ically involves handling continuous production, man-
agement of transitions, and accommodating inventory
constraints, while meeting demands for final products
with specified due dates. The problem deals with se-
quencing of products on each unit, quantitative deter-
mination of production amounts, optimal start and fin-
ish times of production, and storage tasks. One of the
key differences between scheduling of batch processes
and scheduling continuous processes is in handling the
processing times. In batch plants, the processing times
are typically fixed and known a priori, and the produc-
tion amount depends on the capacity of the batch unit.
In continuous plants, the processing times are a func-
tion of unit-dependent processing rates, final product
demand, and storage limitations. Additionally, in con-
tinuous plants, the production amount is available con-
tinuously while it is being produced, unlike in batch
plants, where the amount is available only after the end
time for the batch that is being processing. Owing to
these differences, the problem of scheduling of contin-
uous plants has drawn separate attention.

Floudas and Lin [3,4] presented extensive re-
views comparing various discrete-time-based and
continuous-time-based formulations. During the last
two decades, numerous formulations have been pro-
posed in the literature based on continuous-time rep-
resentation, owing to their established advantages over
discrete-time representations. On the basis of the
time representation used, the different continuous-time
models proposed in the literature can be broadly clas-
sified into three distinct categories: slot-based, global
event-based, and unit-specific event-based formula-
tions for both network-represented and sequential pro-
cesses. In the slot-based models, the time horizon is
represented in terms of ordered blocks of unknown,
variable lengths, or time slots. In addition, alternative
methods have been developed which define continuous
variables directly to represent the timings of tasks with-
out the use of time slots. These methods can be clas-

sified into two different representations of time, global
event-based models and unit-specific event-based mod-
els. Global event-based models use a set of events that
are common across all units, and the event points are
defined for either the beginning or the end (or both) of
each task in each unit. On the other hand, unit-specific
event-based models define events on a unit basis, allow-
ing tasks corresponding to the same event point but in
different units to take place at different times. For se-
quential processes, other alternative approaches based
on precedence relationships have also been used. A de-
tailed comparison of various continuous-time mod-
els for short-term scheduling of batch plants was per-
formed recently by Shaik et al. [28]. They concluded
that, owing to the heterogeneous locations of the event
points used, the unit-specific event-based models al-
ways require fewer event points and exhibit favorable
computational performance compared with both slot-
based and global event-based models.

There are two types of demand patterns for schedul-
ing of continuous processes that have been addressed in
the literature: cyclic and short-term. In cyclic schedul-
ing, a cyclic mode is assumed and the product de-
mands are specified in terms of constant demand
rates at the end of a specified time horizon, while
short-term scheduling deals with a general problem
where the product demands have different sets of due
dates. Sahinidis and Grossmann [25] proposed a slot-
based mixed-integer nonlinear programming (MINLP)
model for cyclic scheduling of single-stage continuous
parallel production lines that do not share any com-
mon resources. Pinto and Grossmann [24] modeled
cyclic scheduling for sequential operation of a multi-
stage, multiproduct continuous plant based on a slot-
based continuous-time representation, leading to an
MINLP model with explicit inventory breakpoints for
representing intermediate storage. Munawar et al. [23]
extended the slot-based cyclic scheduling formulation
of Pinto and Grossmann [24] to hybrid flowshops con-
sisting of serial and parallel configurations of process-
ing and storage units. They proposed a modified def-
inition of the time slot to account for feed losses dur-
ing product transitions. Zhang and Sargent [30,31]
proposed a global event-based MINLP model using
a resource-task network (RTN) for the optimal oper-
ation of a mixed-production facility consisting of batch
and continuous processes. Schilling and Pantelides [26]
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also used the RTN framework for their slot-based
continuous-time formulation for short-term schedul-
ing of batch and continuous processes and proposed
a special branch and bound solution that branches
both on discrete and on continuous variables. Karimi
and McDonald [15,19] developed two slot-based mod-
els for production planning and short-term schedul-
ing, which differ in the pre-assignment of slots to
the time periods for a single-stage multiproduct facil-
ity consisting of parallel semicontinuous processors.
Floudas and coworkers [7,8,9,10,11,12,13,14,16,17,18]
developed unit-specific event-based models for a vari-
ety of problems involving design, synthesis, short-term
scheduling, medium-term scheduling, reactive schedul-
ing, and scheduling under uncertainty. Ierapetritou and
Floudas [7,8] proposed a novel short-term schedul-
ing model for batch and continuous processes us-
ing a state-task-network (STN) framework deploying
a unit-specific event-based continuous-time represen-
tation. They used an approximation of the storage-task
timings for handling different storage requirements
in their model for continuous processes [8]. Mockus
and Reklaitis [21,22] proposed a global event-based
MINLP model for short-term scheduling of batch and
continuous processes in which both the start and the
end times of tasks occur at events that are common
across all units. Their formulation can handle resource
constraints such as limited availability of utilities and
manpower. Giannelos and Georgiadis [5,6] proposed
a unit-specific event-based formulation for short-term
scheduling of batch and continuous processes using
a STN representation. Their model is similar to that
of Ierapetritou and Floudas [7,8], but they relaxed
the task durations using buffer times and implicitly
eliminated the various big-M constraints of Ierapetri-
tou and Floudas [7,8]. In their models [5,6], the au-
thors introduced special duration and sequencing con-
straints to ensure feasibility of material balances. The
start and end times of the tasks producing/consuming
the same state were, respectively, enforced to be the
same. While this feature is essential for continuous pro-
cesses when bypassing of storage is allowed (the rea-
sons are discussed later in this chapter), for all other
cases, it will be very restrictive and may lead to sub-
optimal solutions. Giannelos and Georgiadis [6] en-
forced these restrictions in their model for short-term
scheduling of batch plants as well, leading to subop-

timal solutions as recently observed by Sundaramoor-
thy and Karimi [29] and Shaik et al. [28]. Mendez and
Cerda [20] proposed a production-campaign-based al-
gorithmic approach for short-term scheduling of con-
tinuous processes, leading to compact models for the
case when storage bypassing is allowed, with the as-
sumptions that only one state is produced by each task
and no initial inventories exist for intermediate states.
Castro et al. [1] developed a global event-based for-
mulation for short-term scheduling of batch and con-
tinuous processes using a RTN representation, where
changeovers are treated as additional batch tasks. Most
of the above mentioned models [1,5,8,20] can handle
different storage requirements such as unlimited, finite,
flexible, dedicated, and no intermediate storage poli-
cies. However, for an industrial case study of consumer
goods manufacturing involving making, storage, and
packing tasks, Ierapetritou and Floudas [8] solved the
cases of unlimited and finite intermediate storage and
reported approximate suboptimal solutions. Mendez
and Cerda [20] and Giannelos and Georgiadis [5] also
reported suboptimal solutions for the case of finite in-
termediate storage with no maximum demand limits.
Castro et al. [1,2] could not find the global optimal solu-
tion for the no-intermediate-storage case even at higher
event points and large computational times. They clas-
sified the problem as intractable and used a decomposi-
tion strategy [2] to improve the computational perfor-
mance.

Recently, Shaik and Floudas [27] proposed an
improved model for short-term scheduling of con-
tinuous processes using the unit-specific event-based
continuous-time representation. Theymodified and ex-
tended the formulation of Ierapetritou and Floudas [8]
and presented improved sequencing constraints to rig-
orously address the different storage requirements.
Their formulation is based on the STN representa-
tion, resulting in a mixed-integer linear programming
model that accurately accounts for various storage re-
quirements such as dedicated, finite, unlimited, and no
intermediate storage policies. The formulation allows
for unit-dependent variable processing rates, sequence-
dependent changeovers, and with/without the option
of bypassing of storage. The Shaik and Floudas model
is presented in Sect. “Formulation” for the cases with
and without storage bypassing. In Sect. “Computational
Case Study,” different variants of an industrial case
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study from fast moving consumer goods manufactur-
ing is presented to demonstrate the capability of the
model.

Formulation

The Shaik and Floudas model for short-term schedul-
ing of continuous plants is described below for several
instances of different storage requirements, which in-
clude (a) unlimited intermediate storage, (b) dedicated
finite intermediate storage, (c) no intermediate storage,
and (d) flexible finite intermediate storage. Both the
with and the without bypassing of storage requirements
options are discussed. Initially, the first case, when stor-
age bypassing is allowed, is discussed, and then, the sec-
ond case, without bypassing of storage, is discussed in
Sect. “Dedicated and Flexible Finite Intermediate Stor-
age Without Storage Bypassing.”

Unlimited Intermediate Storage

Initially, consider the simple case of unlimited interme-
diate storage . For this case, there is no need to model
the storage tasks explicitly, and hence the model is de-
scribed only using the continuous processing tasks ip.
There is no difference in the model due to whether by-
passing of storage is allowed or not, because of the avail-
ability of unlimited intermediate storage. The mathe-
matical model consists of the following allocation con-
straints, capacity constraints, material balances for raw
materials and intermediates, demand, duration, and se-
quencing constraints:

Allocation Constraints.
X
i2I j

w(i; n) � 1 8 j 2 J; n 2 N (1)

In each unit, only one task or no task takes place at any
event as represented by constraint (1).

Capacity Constraints for Processing Tasks.

Rmin
ip (T f (ip; n) � Ts(ip; n)) � b(ip; n)

� Rmax
ip (T f (ip; n) � Ts (ip; n)); 8ip 2 Ip; n 2 N

(2)

b(ip; n) D Rip (T
f (ip; n) � Ts(ip; n))

8ip 2 Ip; n 2 N (3)

The amount of material processed by a continuous pro-
cessing task is constrained by lower and upper bounds
in (2), which are a function of the duration of the corre-
sponding task ip, which is represented by the difference
between the end time and the start time of the task at
event n; (T f (ip; n) � Ts (ip; n)), and the minimum and
the maximum processing rate of the task ip. For the case
of constant processing rates, the amount of production
is related as described by constraint (3).

Material Balances. (A) RawMaterials.

ST0(s; n)C
X
ip2Is

�csipb(ip; n) D 0 8s 2 SR; n 2 N (4)

In constraint (4), the amount of raw material, as and
when required from the external resources, is related
to the amounts consumed at the corresponding event
n. On the other hand, if the entire raw material re-
quirement is supplied at the beginning of the schedul-
ing horizon, then constraint (4) is modified as follows:

ST(s; n) D ST(s; n � 1)C
X
ip2Is

�csipb(ip; n)

8s 2 SR; n 2 N; n > 1 ; (5)

ST(s; n) D ST0(s)C
X
ip2Is

�csipb(ip; n)

8s 2 SR; n D 1 : (6)

The total initial amount required from external re-
sources, ST0(s), calculated in (6), is either partly con-
sumed at the first event n D 1 or remains in the stor-
age, which is consumed during the subsequent events
as described in (5).

(B) Intermediates.

ST(s; n) D ST(s; n � 1)C
X
ip2Is

�
p
s ipb(ip; n)

C
X
ip2Is

�csipb(ip; n) 8s 2 SIN; n 2 N; n > 1 (7)

ST(s; n) D ST0(s)C
X
ip2Is

�
p
s ipb(ip; n)

C
X
ip2Is

�csipb(ip; n) 8s 2 SIN; n D 1 (8)

Similarly, for the intermediate state s, the material bal-
ance is written in constraints (7) and (8). ST(s; n)
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defines the excess amount of state s at event n. In
constraint (7), the first term on the right-hand side sig-
nifies the amount of state s stored at the previous event
(n – 1) in the storage; the second term represents the
amount of state s produced by the upstream process-
ing task at event n. This total amount is either con-
sumed in the downstream processing task indicated by
the third term or remains in the storage at event n as
shown on the left-hand side. At the first event, the ini-
tial amount of available intermediates is taken into ac-
count in (8). These constraints are based on the condi-
tion that an intermediate material is allowed to go di-
rectly to the production task bypassing the storage, be-
cause only the excess amount, ST(s; n), is stored. The
other case, where storage bypassing is not allowed, ir-
respective of whether the amount produced by the up-
stream processing unit is in excess of the amount con-
sumed by the downstream processing, is discussed in
Sect. “Dedicated and Flexible Finite Intermediate Stor-
age Without Storage Bypassing.”

Demand Constraints.

Dmin
s �

X
n2N

X
ip2Is

�
p
s ipb(ip; n) � Dmax

s 8s 2 SP (9)

Thematerial balance for the final product state s is given
in constraint (9), where the total production of state s is
limited between the specified lower and upper bounds
on the demands of the final product.

Duration Constraints for Processing Tasks.

T f (ip; n) � Ts(ip; n) � Hw(ip; n)

8ip 2 Ip; n 2 N (10)

The duration constraint for processing tasks is given
in (10), which states that the duration is zero if the cor-
responding processing task is not active, otherwise the
constraint is relaxed.

Sequencing Constraints. (A) Same Task in the
Same Unit.

Ts(i; nC1) � T f (i; n) 8i 2 I; n 2 N; n ¤ N (11)

Constraint (11) states that the start time of a task at the
next event should be greater than the finish time of the
same task at the current event.

(B) Different Tasks in the Same Unit. For two dif-
ferent tasks taking place in the same unit, the differ-
ent possible changeover requirements are (i) no setup

time required, (ii) changeover time is required but is
independent of the sequence in which the two con-
secutive tasks take place, and (iii) sequence-dependent
changeovers.

For the first case of no changeover times, the two
constraints for the same task in the same unit and dif-
ferent tasks in the same unit can be combined into one
equation as shown in (12):

Ts(i; n C 1) � T f (i0; n)

8 j 2 J; i 2 I j; i0 2 I j; n 2 N; n ¤ N : (12)

For the second case of sequence-independent
changeovers, the constraint for different tasks in the
same unit requires modification as shown in (13),
where � j is the changeover time in unit j:

Ts(i; n C 1) � T f (i0; n)C � jw(i0; n)

8 j 2 J; i; i0 2 I j ; i ¤ i0; n 2 N; n ¤ N : (13)

For the third case of sequence-dependent changeovers,
the constraint for different tasks in the same unit is gen-
eralized as follows:

Ts(i; n) � T f (i0; n0)C tcli 0 iw(i; n)

� H(1 � w(i0; n0)) � H
X
i 00

X
n0<n00<n

w(i00; n00)

8 j 2 J; i; i0 2 I j ; i ¤ i0; n; n0 2 N; n > n0 :
(14)

Note that in constraints (12)–(14), only the last con-
straint (14), has big-M terms, unlike in the previous for-
mulations of Ierapetritou and Floudas [7,8]. This fea-
ture is observed to result in better linear programming
relaxed solutions which often improve the computa-
tional performance.

(C)Different Tasks inDifferent Units for Process-
ing Tasks. The start and finish times of different pro-
cessing tasks i0p and ip, which produce or consume the
same state s, need to be aligned, and we have the follow-
ing two alternative ways of writing these constraints,
(15) and (16) or (15A) and (16A):

Ts(ip; n) � Ts(i0p; n) � H(1 � w(i0p; n))

8s 2 SIN; ip 2 Is ; i0p 2 Is ; ip ¤ i0p; �
p
s i 0p
> 0;

�csip < 0; n 2 N ; (15)
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T f (ip; n) � T f (i0p; n) � H(1 � w(i0p; n))

8s 2 SIN; ip 2 Is ; i0p 2 Is ; ip ¤ i0p; �
p
s i 0p
> 0;

�csip < 0; n 2 N ; (16)

Ts(ip; n) � Ts(i0p; n) � H(2 � w(i0p; n)

� w(ip; n)) 8s 2 SIN; ip 2 Is ; i0p 2 Is ;

ip ¤ i0p; �
p
s i 0p
> 0; �csip < 0; n 2 N ; (15A)

T f (ip; n) � T f (i0p; n) � H(2 � w(i0p; n)

� w(ip; n)) 8s 2 SIN; ip 2 Is ; i0p 2 Is ;

ip ¤ i0p; �
p
s i 0p
> 0; �csip < 0; n 2 N : (16A)

In these constraints the start and end times of the
downstream (consuming) processing tasks are enforced
to be later than the corresponding times of the up-
stream (producing) processing tasks that process the
same state s. Constraints (15) and (16) enforce the con-
dition that the start and end times of the consuming
tasks need to be always aligned to those of the corre-
sponding producing tasks whenever the producing task
is active; (15A) and (16A) state that the start and end
times of the corresponding processing tasks need to be
aligned conditionally, when both tasks are active.

Constraints (15) and (16) are required when we
use the variable ST(s; n) in the material balance con-
straint (7), for instance, when we do not consider stor-
age as a separate task for the unlimited intermediate
storage case (or for the dedicated finite intermediate
storage case discussed later). Otherwise, if we do not
have ST(s; n) (for instance, for the no intermediate
storage case discussed later) or if we consider storage
as a separate task and use the variable B(ist; n) instead
of ST(s; n) in the material balance (for instance, for
the dedicated and flexible finite intermediate storage
cases discussed later), then we need constraints (15A)
and (16A). The reason for this is that when we do not
consider storage as a separate task and use the variable
ST(s; n) in the material balance constraint (7), there
is an implicit assumption that when the downstream
consuming task starts at event n, the amount stored
in ST(s; n � 1) would be available for consumption,
which may not always be valid (because of the het-
erogeneous locations of events used), unless the con-

suming tasks are always aligned to the producing tasks
whenever the producing tasks are active, as described in
the sequencing constraints (15) and (16). It should be
noted that the fact that the model of Ierapetritou and
Floudas [8] for continuous processes results in the re-
ported approximate solutions [1,5,20] is due to lack of
the second constraint, (16) or (16A), relating the end
times of the producing and consuming tasks.

Extra Tightening Constraint. The following tight-
ening constraint gives a better linear programming re-
laxation:

X
n2N

X
i2I j

(T f (i; n) � Ts(i; n)) � H � �min
j 8 j 2 J :

(17)

It states that the sum of the durations of all tasks suit-
able in unit j is limited by the available time in the hori-
zon (H � �min

j ), where �min
j is a lower bound on the total

cleanup time required in unit j.

Dedicated Finite Intermediate Storage
with Storage Bypassing Allowed

Next, consider the case where a dedicated finite in-
termediate storage is available for each intermediate
state s. For this case as well, there is no need to model
the storage tasks explicitly, because the storage tasks are
anyway dedicated in nature. We are only interested in
constraining the finite nature of the intermediate stor-
age. Hence, the model is described here only using the
continuous processing tasks ip, and the other case when
storage is considered as a separate task is discussed in
Sect. “Flexible Finite Intermediate Storage with Storage
Bypassing Allowed.” All the above constraints for the
case of unlimited storage remain the same except for
the constraints for different tasks in different units for
processing tasks. Here, since we do not consider stor-
age as a separate task, we use constraints (15) and (16).
Additional constraints would be required depending on
whether storage bypassing is allowed or not. Initially,
we consider the case when storage bypassing is allowed
and then discuss the other case in Sect. “Dedicated and
Flexible Finite Intermediate Storage Without Storage
Bypassing”.

Storage BypassingAllowed.When an intermediate
material is allowed to go directly to the production task
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bypassing a finite intermediate storage or if there is no
intermediate storage available, then to ensure the fea-
sibility of the inventory capacity balance, the start and
finish times of processing tasks i0p and ip, which produce
and consume the same state s, respectively, need to be
the same if both tasks are active at the same event point
as shown in the following constraints:

Ts(ip; n) � Ts(i0p; n)C H(2 � w(i0p; n)

� w(ip; n)) 8s 2 SFIS; ip 2 Is ; i0p 2 Is ;

ip ¤ i0p; �
p
s i 0p
> 0; �csip < 0; n 2 N ; (18)

T f (ip; n) � T f (i0p; n)C H(2 � w(i0p; n)

� w(ip; n)) 8s 2 SFIS; ip 2 Is ; i0p 2 Is ;

ip ¤ i0p; �
p
s i 0p
> 0; �csip < 0; n 2 N : (19)

So, from constraints (15), (16), (18), and (19), both the
start and the end times of the producing and the con-
suming tasks of the same state s would be the same, if
both tasks are active at event n. If either of the tasks
is not active, then constraints (18) and (19) are relaxed
and are trivially satisfied. This zero-wait condition is re-
quired to ensure the feasibility of the inventory capacity
balance as illustrated in Shaik and Floudas [27], because
of the unit-specific nature of the continuous-time rep-
resentation used. The formulation of Ierapetritou and
Floudas [8] did not take this into account. In the for-
mulation of Giannelos and Georgiadis [6], this condi-
tion was enforced even for batch plants as well, which
is unrealistic, and hence their formulation led to sub-
optimal solutions as observed by Sundaramoorthy and
Karimi [29] and Shaik et al. [28].

Now, to constrain the finite nature of the interme-
diate storage available, the following bounds are added
for the states that have the finite storage requirements:

ST(s; n) � STmax
s 8s 2 SFIS; n 2 N : (20)

No Intermediate Storage

For the case when no intermediate storage is avail-
able, the excess amount of state s; ST(s; n), is driven
to zero at each event n or simply this variable is elim-
inated. Then, the material balance constraints (7) and

(8) reduce to the following, meaning that the amount
of state s produced at an event has to be consumed at
the same event:

X
ip2Is

�
p
s ipb(ip; n)C

X
ip2Is

�csipb(ip; n) D 0

8s 2 SIN; n 2 N : (21)

The condition of enforcing the same start and end times
of the producing and consuming tasks of the same
state s, described in constraints (15A), (16A), (18), and
(19) is again applicable because no intermediate storage
is available. Here we use (17) and (18) because in the
material balance constraint (21), there is no assumption
that the consuming task will receive material from the
storage at the previous event, and hence there is no need
to enforce the alignment unconditionally.

Flexible Finite Intermediate Storage
with Storage Bypassing Allowed

This is a general case where finite intermediate storage
is available and for each material state several suitable
storage options exist. A material state can be stored
in all or a limited number of storage units and vice
versa. To handle this general case we need to intro-
duce separate tasks for the storage activity, because the
storage cannot have more than one state at any time
and we need to accommodate additional constraints
for relating the timing of storage tasks (ist) to that of the
processing tasks (ip). The nature of these constraints
would be different depending on whether storage by-
passing is allowed or not. Initially, we consider the case
when storage bypassing is allowed and then discuss the
other case in Sect. “Dedicated and Flexible Finite Inter-
mediate Storage Without Storage Bypassing.” For the
dedicated finite intermediate storage case, in contrast to
the model discussed in Sect.“Dedicated Finite Interme-
diate Storage with Storage Bypassing Allowed,” if we al-
ternatively chose to consider storage as a separate task,
then the following same model would be applicable.

The additional constraints in the mathematical
model are described below for the case of flexible finite
intermediate storage when storage bypassing is allowed.
The allocation constraint in (1) remains the same ex-
cept that now it is written over all units (both process-
ing and storage).
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Allocation Constraints for Storage Tasks.

w(ist; nC 1) � w(ist; n)C z(ist; n) � 1
8ist 2 Ist; n 2 N (22)

Constraint (22) states that if a storage task is active and
it stores a nonzero amount at event n, then the same
storage task should be active at the next event nC 1 as
well. Additionally, this constraint also avoids unneces-
sary tank-to-tank transfer of material because the same
storage task would be active at the next event as well.

Capacity Constraints for Storage Tasks

b(ist; n) � Vmax
ist w(ist; n) 8ist 2 Ist; n 2 N (23)

b(ist; n) � Vmax
ist z(ist; n) 8ist 2 Ist; n 2 N (24)

The capacity constraints for processing tasks remain
the same as in (2) or (3), while for storage tasks the
amount of material that can be stored is limited by the
available capacity of the corresponding storage unit as
shown in constraint (23). Constraint (24) is the same
as (25), but uses a different binary variable z(ist; n) to
confine only those instances when b(ist; n) ¤ 0, which
is realized through the penalty term on the number of
binary variables in the objective function described in
(45).

Material Balances Constraint (4), for calculating the
amount of raw material as and when required from the
external resources, remains the same. For the other case
when the entire raw material requirement is supplied at
the beginning of the scheduling horizon, constraints (5)
and (6) are modified as follows:

X
ist2Ist

�
p
s istb(ist; n � 1)C

X
i2Is

�csi b(i; n) D 0

8s 2 SR; n 2 N; n > 1 ; (25)

ST0(s)C
X
nD1

X
i2Is

�csi b(i; n) D 0 8s 2 SR ; (26)

where the set Is consists of both processing and storage
tasks. The variable ST(s; n) is eliminated here because
separate storage tasks are defined explicitly. Similarly,
the material balances in (7) and (8) for the intermedi-

ates are modified as given below:

X
ip2Is

�
p
s ipb(ip; n)C

X
ist2Is

�
p
s istb(ist; n � 1)

C
X
i2Is

�csi b(i; n) D 0 8s 2 SFIS; n 2 N; n > 1 ;

(27)
X
ip2Is

�
p
s ipb(ip; n)C ST0(s)C

X
i2Is

�csi b(i; n) D 0

8s 2 SFIS; n D 1 ; (28)

where the set Is consists of both processing and storage
tasks. These constraints are based on the same condi-
tion that an intermediate material is allowed to go di-
rectly to the production task bypassing the storage. The
demand constraint in (9) remains the same.

Duration Constraints for Storage Tasks

T f (ist; n) � Ts(ist; n) 8ist 2 Ist; n 2 N (29)

The duration constraint given in (10) remains the same
for processing tasks, while for the storage tasks the fin-
ish times have to be later than the start times as shown
in (29).

The sequencing constraints, (11)–(14), (15A),
(16A), (18), (19) for the same task in the same unit, dif-
ferent tasks in the same unit, and different tasks in dif-
ferent units for the processing tasks remain the same.
Here, because storage is considered as a separate task
we use constraints (15A) and (16A). The sequencing
constraints for storage tasks are defined below.

Sequencing Constraints. Different Tasks in Different
Units for Storage Tasks The start time of a storage
task that stores the intermediate state s should be same
as the start time of the processing task that either pro-
duces or consumes state s as follows:

Ts (ist; n) � Ts(ip; n) � H(2 � w(ist; n)

� w(ip; n)) 8s 2 SIN; ist 2 Is ; ip 2 Is ; n 2 N ;

(30)

Ts (ist; n) � Ts(ip; n)C H(2 � w(ist; n)

� w(ip; n)) 8s 2 SIN; ist 2 Is ; ip 2 Is ; n 2 N :

(31)
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If the corresponding processing task that either pro-
duces or consumes state s is not active (w(ip; n) D 0),
and there is a nonzero amount in the storage
(z(ist; n) D 1), then the start time of the storage task
should be equal to the finish time of the same task at
the previous event and is realized through constraints
(32) and (11).

Ts(ist; n) � T f (ist; n�1)CH(1�z(ist; n)Cw(ip; n))
8s 2 SIN; ist 2 Is ; ip 2 Is ; n 2 N; n > 1 (32)

The finish time of the storage task for storing state s
should be greater than the finish times of both the pro-
ducing and the consuming tasks of state s as follows:

T f (ist; n) � T f (ip; n) � H(2 � w(ist; n) � w(ip; n))

8s 2 SIN; ist 2 Is ; ip 2 Is ; n 2 N : (33)

Additionally, if the amount stored in the storage is zero
(z(ist; n) D 0), then the finish time of the storage task
should be same as the finish time of the corresponding
consuming processing task and is realized from con-
straints (33) and (34).

T f (ist; n)

� T f (ip; n)CH(2�w(ist; n)�w(ip; n))CHz(ist; n)

8s 2 SIN; ist 2 Is ; ip 2 Is ; �csip < 0; n 2 N
(34)

However, if the amount stored in the storage is nonzero
(z(ist; n) D 1), then it should remain in the storage until
the start time of the processing task at the next event.
So, the finish time of the storage task should be same as
the start time of the next processing task and is realized
from constraints (35) and (36):

T f (ist; n) � Ts (ip; nC 1) � H(2 � w(ist; n)

� w(ip; nC 1)) � H(1 � z(ist; n)) ;
8s 2 SIN; ist 2 Is ; ip 2 Is ; n 2 N; n ¤ N ;

(35)

T f (ist; n) � Ts (ip; nC 1)C H(2 � w(ist; n)

� w(ip; nC 1))C H(1 � z(ist; n)) ;
8s 2 SIN; ist 2 Is ; ip 2 Is ; n 2 N; n ¤ N :

(36)

The tightening constraint given in (17) is again applica-
ble.

Dedicated and Flexible Finite Intermediate Storage
Without Storage Bypassing

The nature of constraints is different when storage by-
passing is not allowed for the cases where production
must go through finite storage (dedicated or flexible)
before consumption in the downstream units. This is
a general case and we do not need to enforce the same
start and end times for producing or consuming tasks
of the same state, because the material always goes
through storage.

Dedicated Finite Intermediate Storage Case Without
Bypassing of Storage Here again, we have the op-
tion of considering storage as a separate task or not. In
this section, we describe the model without considering
storage as a separate task, and the other case when stor-
age is considered as a separate task is discussed in the
next section along with the flexible finite intermediate
storage case.

When we do not consider storage as a separate task,
the model comprises all the constraints, (1)–(14), (15),
(16), and (17), discussed in Sect. “Unlimited Intermedi-
ate Storage.” Additionally we need constraint (20) and
the following material balance constraints for the inter-
mediate states.

Material Balance for Intermediates

ST(s; n � 1)C
X
ip2Is

�
p
s ipb(ip; n) � STmax

s

8s 2 SFIS; n 2 N; n > 1 (37)

ST0(s)C
X
ip2Is

�
p
s ipb(ip; n) � STmax

s

8s 2 SFIS; n 2 N; n D 1 (38)

In constraints (37) and (38), the total amount received
into the dedicated storage at each event is constrained
to be within the maximum capacity limits.

Flexible Finite Intermediate Storage Case Without
Bypassing of Storage For the dedicated finite inter-
mediate storage case as well, in contrast to the model
discussed in the previous section, if we alternatively
chose to consider storage as a separate task, then the
following same model would be applicable for both



3542 S Short-Term Scheduling of Continuous Processes

the dedicated and the flexible finite storage cases. Con-
straints (1), (2), (4), (9)–(11), (14), (16A), (17), (22)–
(24), (27)–(29), and (32)–(36), discussed in the previ-
ous sections, are required. Constraint (15A) is not re-
quired as it is implicitly enforced, because consuming
tasks are aligned with storage tasks, which in turn are
aligned with the producing tasks. Additionally, we need
the following allocation, material balance, and sequenc-
ing constraints.

Allocation Constraints

X
ist2�cs ist

w(ist; n) � w(ip; n)

8s 2 SFIS; ip 2 �
p
s ip ; n 2 N (39)

Constraint (39) states that whenever a producing task
of state s is active then one or more of suitable storage
tasks also need to be active for all intermediate states
that have the finite storage requirement.

Material Balance for Intermediates Here, because
the storage tasks aremodeled explicitly, constraints (37)
and (38) are modified as follows:

X
ist2Is

�
p
s istb(ist; n � 1)C

X
ip2Is

�
p
s ipb(ip; n)

�
X
ist2Is

Vmax
i s i w(ist; n) 8s 2 SFIS; n 2 N; n > 1;

(40)

ST0(s)C
X
ip2Is

�
p
s ipb(ip; n)

�
X
ist2Is

Vmax
i s i w(ist; n) 8s 2 SFIS; n D 1 : (41)

Sequencing Constraints. Different Tasks in Different
Units

Ts(ist; n) � Ts (ip; n) � H(2 � w(ist; n)

�w(ip; n)) 8s 2 SIN; ist 2 Is ; ip 2 �
p
s ip ; n 2 N

(42)

Ts(ist; n) � Ts (ip; n)C H(2 � w(ist; n)

�w(ip; n)) 8s 2 SIN; ist 2 Is ; ip 2 �
p
s ip ; n 2 N

(43)

Ts (ip; n) � Ts(ist; n) � H(2 � w(ist; n) � w(ip; n))

8s 2 SIN; ist 2 Is ; ip 2 �csip ; n 2 N (44)

Constraints (42) and (43) impose the requirement that
the start time of the storage task is the same as the start
time of the corresponding processing task that pro-
duces the intermediate state, if both the storage task and
the producing task are active. Constraint (44) states that
the start time of the processing task that consumes the
intermediate state should be later than the start time of
the corresponding storage task if both tasks are active.

Objective: Maximization of Profit

C1
X
s2SP

X
n2N

prices
X
i2Is

�
p
s i b(i; n)

� C2
X
i2I

X
n2N

w(i; n) � C3
X
ist2Ist

X
n2N

z(ist; n) (45)

The objective is maximization of profit due to sales
from the production of final products, and additionally
there are penalties for the total number of binary vari-
ables as shown in (45), where Ci is the corresponding
cost coefficient.

Objective: Minimization of Makespan For the ob-
jective of minimization of the makespan (MS) the fol-
lowing constraints need to be added:

Minimize MS and T f (i; n) � MS 8i 2 I; n 2 N :

(46)

The tightening constraint in (17) is modified as fol-
lows:

X
n2N

X
i2I j

(T f (i; n) � Ts (i; n)) � MS � �min
j

8 j 2 J : (47)

Computational Case Study

An industrial case study of a fast moving consumer
goods manufacturing plant that has been extensively
studied by several authors [1,2,5,8,20,27] is considered.
The plant follows a common production sequence:
mixing, storage, and packing. The mixing stage has
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Short-Term Scheduling of Continuous Processes, Figure 1
State-task-network representation of the plant

three parallel mixers (mixers A, B, and C) operating in
a continuous mode that produce seven intermediates
(Int1–Int7) using three different base stocks (bases A, B,
and C) available as required. These intermediates may
be stored in three storage tanks (tanks A, B, and C) or
directly packed in five continuous packing lines (lines

1–5), thus producing 15 final products (S1–S15). The
STN representation of the plant is shown in Fig. 1 along
with the unit suitability for each task.

The base stocks are available in unlimited initial
amounts. For each task suitable onmultiple units, a sep-
arate task is considered. For instance, two making tasks
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Short-Term Scheduling of Continuous Processes, Table 1
Production rates

Task (ip) Unit (Jp) Rmax
i (ton/h)

m1 Mixer A 17
m2 Mixer A 17
m31 Mixer B 17
m32 Mixer C 17
m41 Mixer B 17
m42 Mixer C 12:24

m51 Mixer B 12:24
m52 Mixer C 12:24
m61 Mixer B 12:24
m62 Mixer C 12:24
m71 Mixer B 12:24
m72 Mixer C 12:24
p1 Line 3 5:5714
p2 Line 1 5:8333
p3 Line 2 2:7083
p4 Line 1 5:8333
p5 Line 2 2:7083
p6 Line 3 5:5714
p7 Line 4 2:2410
p8 Line 1 5:8333
p9 Line 2 2:7083
p10 Line 5 5:3571
p11 Line 5 5:3571
p12 Line 4 3:3333
p13 Line 4 2:2410
p14 Line 2 2:7083
p15 Line 4 3:3333

(m31 and m32) are considered for producing “Int3” us-
ing mixers B and C, respectively. The 15 final prod-
ucts are produced using 15 packing tasks (p1–p15). The
problem data such as production rates, task-unit suit-
ability, and cleanup times used in the literature [5,27]
are given in Tables 1 and 2. The state-specific data such
as minimum demand specifications and prices for the
final products, and storage limitations are shown in Ta-
ble 3. A time horizon of 120 h is considered.

The case study with finite intermediate storage is
considered. We compare the results from the litera-
ture [1,2,5,8,20], except for the model of Giannelos and
Georgiadis [5], for which the comparison is based on
our implementation of their model. All the computa-
tions in this work were performed using a 3.2 GHz Pen-

Short-Term Scheduling of Continuous Processes, Table 2
Cleanup times

Changeover (i0p $ ip) Unit (Jp) �cli0 i �
min
j

(p2, p4)$ p8 Line 1 1 1
(p3, p5)$ (p9, p14) Line 2 4 4
p1$ p6 Line 3 1 1
(p12, p15)$ (p13, p7) Line 4 2 2

Short-Term Scheduling of Continuous Processes, Table 3
State-specific data

State(s) ST0(s) STmax
s Dmin

s Prices
Base A, B, C 1
Int1–Int7 60
S1 220 1
S2 251 1
S3 116 1
S4 15 1
S5 7 1
S6 47 1
S7 8:5 1
S8 144 1
S9 42:5 1
S10 114:5 1
S11 53 1
S12 2:5 1
S13 16:5 1

S14 13:5 1
S15 17:5 1

tium 4machine with 1 GB RAMusing GAMS (distribu-
tion 21.7) and CPLEX 9.0.2, and the case studies were
solved with an integrality gap of less than 0.3%.

Finite Intermediate Storage. Consider the case of
flexible finite intermediate storage for all the intermedi-
ates. Three storage tanks (tanks A, B, and C) are avail-
able each with a maximum capacity of 60 ton, and any
intermediate can be stored in any of the three tanks.
Since there are seven intermediates, 21 additional stor-
age tasks need to be considered. Unlike in the Shaik and
Floudas model, the start and end times of storage tasks
are not precisely calculated in the model of Giannelos
and Georgiadis [5]; rather it seems that they determine
and/or adjust these timings during postprocessing. In
our implementation of their model, we used the fol-
lowing equation to calculate the start times of all active
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storage tasks during postprocessing:

Ts
i t D �i t � �st; 8s 2 S f is ; i 2 Ists ; t 2 T : (48)

Then, in order to avoid the unnecessary activation of
storage tasks in our implementation of their model, we
used the following objective function, which is similar
to (45) of the Shaik and Floudas model:

C1
X
s2SP

prices ST(s; tn)

� C2
X
i2I

X
t2T

x(i; t)� C3
X

s2S f i s

X
t2T

y(s; t) : (49)

The model statistics are reported in Table 4. For the
objective function of maximization of profit in (45)
with C1 D 10 and C2 D C3 D 1, the Shaik and Floudas
model requires four events, and the objective function
is found to be 26910.181 in 465.61 CPU s with an in-
tegrality gap of 0.12%, which corresponds to a profit
of 2695.32. The Gantt chart for the Shaik and Floudas
model is depicted in Fig. 2.

This case is regarded as one of the hardest in-
stances to solve in the literature. The Shaik and Floudas
model finds the global optimum solution and requires
consideration of only four events compared with the
global event-based model of Castro et al. [1], which re-

Short-Term Scheduling of Continuous Processes, Table 4
Results for the case study: finite intermediate storage

Shaik and
Floudas[27]

Castro
et al.[1]

Giannelos
and Geor-
giadis[5]

Mendez
and
Cerda[20]

Events 4 10 4
Binary
variables

276 330 220 60

Continuous
variables

580 927 712 87

Constraints 4267 1127 2113 361
Nonzeros 21130 6884
RMILP 26946.72 2695.32 2695.32
MILP 26910.18 2695.32 2692.06 2670.28
Profit 2695.32 2695.32 2692.06 2670.28
Integrality
gap (%)

0.12 0 0.12

CPU time (s) 465.61 163a 60000 399a

Nodes 7144 3934 3307486

aCPU time for other models reported for completeness only

ported ten events for this case as shown in Table 4.
The campaign-based algorithmic model of Mendez and
Cerda [20], although it is very compact in terms of the
fewest problem statistics, could not find the global op-
timal solution for this case (the best solution reported
corresponds to a profit of 2670.28). The formulation of
Giannelos and Georgiadis [5] also reported a subopti-
mal solution corresponding to a profit of 2689.48 us-
ing four events. On the basis of our implementation of
their model, an improved objective value of 2692.06was
found within a maximum CPU time of 60000 s and an
integrality gap of 0.12%. However, in the Gantt chart it
was observed that the end times of some storage tasks
are not precisely calculated as discussed in Shaik and
Floudas [27].

Conclusions

In this study, the formulation of Shaik and Floudas [27],
an improved model for short-term scheduling of con-
tinuous processes based on a STN representation us-
ing a unit-specific event-based continuous-time formu-
lation, was presented. The model of Ierapetritou and
Floudas [8] for continuous processes was modified and
extended to precisely account for different storage re-
quirements, such as dedicated, flexible, unlimited, and
no intermediate storage policies. The efficacy of their
formulation was demonstrated for an industrial case
study from a fast moving consumer goods manufactur-
ing process reported in the literature.

Nomenclature

Indices
i tasks
ip processing tasks
ist storage tasks
j units
n events indicating beginning of a task
s states

Sets
I tasks
Ip processing tasks
Ist storage tasks
I j tasks which can be performed in unit j
Is tasks which process state s and either produce or

consume
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Short-Term Scheduling of Continuous Processes, Figure 2
Gantt chart for the finite intermediate storage case

J units (both processing and storage)
Jp processing units
Jst storage units
Ji units which are suitable for performing task i
N event points within the time horizon
S states
SR states that are raw materials
SIN states that are intermediates
SFIS intermediate states that have finite storage re-

quirements
SP states that are final products

Parameters
Rmin
i minimum processing rate of task i, ton/h

Rmax
i maximum processing rate of task i, ton/h

Ri processing rate of task i if it is constant, ton/h
Vmax
ist maximum storage capacity for storage task ist,

ton
H time horizon, h
prices price of state s
Dmin

s lower bound on demand for state s, ton
Dmax

s upper bound on demand for state s, ton
� j sequence independent cleanup time required in

unit j, h
tcli i 0 sequence dependent cleanup time required be-

tween tasks i and i0, h
�min
j minimum total cleanup time required for unit

j, h

�
p
s i ; �

c
si proportion of state s produced, consumed from

tasks i, respectively, �ps i � 0; �csi � 0

Variables
w(i; n) binary variable for assignment of task i at the

beginning of event n
z(ist; n) binary variable to determine if storage task ist

stores a nonzero amount at event n
b(i; n) amount of material undertaking task i at

event n, ton
ST0(s; n) amount of state s 2 SR that is required from

external resources at event n, ton
ST(s; n) excess amount of state s that needs to be

stored at event n, ton
Ts (i; n) time at which task i starts at event n, h
T f (i; n) time at which task i ends at event n, h
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Introduction

The research area of batch and continuous process
scheduling has received great attention from both
academia and industry in the past two decades. Floudas
and Lin [2,3] presented extensive reviews comparing
various discrete- and continuous-time-based formu-
lations. During the last two decades, numerous for-
mulations have been proposed in the literature based
on continuous-time representation, due to their estab-
lished advantages over discrete-time representations.
On the basis of the time representation used, the differ-
ent continuous-time models proposed in the literature
can be broadly classified into three distinct categories:
slot-based, global event-based, and unit-specific event-
based formulations. In the slot-based models, the time
horizon is represented in terms of ordered blocks of
unknown, variable lengths, or time slots. Global event-
based models use a set of events that are common across
all units, and the event points are defined for either the
beginning or end (or both) of each task in each unit. On
the other hand, unit-specific event-based models define
events on a unit basis, allowing tasks corresponding to
the same event point but in different units to take place

at different times. For sequential processes, other al-
ternative approaches based on precedence relationships
have also been used.

Motivation

A detailed comparison of various continuous-time
models for short-term scheduling of batch plants was
performed recently by Shaik et al. [8] They concluded
that, due to heterogeneous locations of event points
used, the unit-specific event-based models always re-
quire less event points and exhibit favorable compu-
tational performance compared to both slot-based and
global event-based models. For problems that do not
have resource considerations such as utility constraints,
it was found [8] that the modified model of Ierapetri-
tou and Floudas [4] as presented in Shaik et al. [8], out-
performs the other models both in terms of least prob-
lem size and fast computational performance. Similarly,
for problems with resource constraints the enhanced
model of Janak et al. [5,6] was found [5,6,8] to perform
well.

However, for an additional instance of the following
example involving a recycle stream shown in Fig. 1, it is
observed that the model of Ierapetritou and Floudas [4]
yields a suboptimal solution as discussed below.

Example 1 Consider the second example discussed in
Shaik et al. [8], in which two different products are pro-
duced through five processing stages: heating, reactions
1, 2, and 3, and separation, as shown in the STN repre-
sentation of the plant flow sheet in Fig. 1. Since each of
the reaction tasks can take place in two different reac-
tors, each reaction is represented by two separate tasks.
The processing time of task i on unit j is assumed to
be a linear function, ˛i C ˇi B, of its batch size, B. The
relevant data [8] of the constant (˛i) and variable (ˇi)
coefficients for processing times of different tasks (i),
the suitable units (j), and their minimum (Bmin

i ) and
maximum (Bmax

i ) batch sizes are shown in Table 1. The
initial stock level for all intermediates is assumed to be
zero and unlimited storage capacity is assumed for all
states. The prices of products 1 and 2 are $10/mu.

For the objective of maximization of profit and
a time horizon (H) of 10 h, this example is solved us-
ing the unit-specific event-based model of Ierapetritou
and Floudas [4] (I&F), the global event-based models
of Castro et al. [1](CBMN), and Maravelias and Gross-
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Figure 1
State-task network representation for example 1

Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 1
Data of coefficients of processing times of tasks, limits on batch sizes of units for example 1

Task(i) Unit(j) ˛i ˇ i Bmin
i (mu) Bmax

i (mu)
Heating (i = 1) Heater 0.667 0.00667 – 100

Reaction1
(i = 2) Reactor1 1.334 0.02664 – 50
(i = 3) Reactor2 1.334 0.01665 – 80

Reaction2
(i = 4) Reactor1 1.334 0.02664 – 50
(i = 5) Reactor2 1.334 0.01665 – 80

Reaction3
(i = 6) Reactor1 0.667 0.01332 – 50
(i = 7) Reactor2 0.667 0.008325 – 80

Separation (i = 8) Separator 1.3342 0.00666 – 200

mann [7] (M&G), and using the slot-based model of
Sundaramoorthy and Karimi [10] (S&K). All the result-
ing mixed-integer linear programming (MILP) mod-
els are solved in GAMS distribution 21.1 using CPLEX
8.1.0 on the same computer (3GHz Pentium 4 with
2GB RAM) as in Shaik et al. [8] Table 2 provides a com-
parative study of these models in terms of the problem
statistics such as the number of binary and continu-
ous variables, number of constraints, CPU time taken
to solve to the specified integrality gap, the number of
nodes taken to reach the optimal solution, the objective
function at the relaxed node, and so forth. It should be
noted that for the S&Kmodel, n event points are shown
to represent n�1 slots for a valid comparison with the
other global-event and unit-specific event-based mod-
els. In the CBMN model, there is an additional param-
eter (	t) that defines a limit on the maximum number
of events over which a task can occur.

For this case, the slot-based and global event-based
models require at least eight event points and are able
to find the global optimal solution of 1962.7, compared
to the unit-specific event-based I&F model, which gives
a suboptimal solution of 1943.2 with six events and with
higher events as well. When this case is solved using
the enhanced unit-specific event-based model of Janak
et al. [5,6], (JLF) it found the global optimal solution of
1962.7 using six events, as shown in Table 2. The Gantt
chart for the JLF model is shown in Fig. 2.

The reason for this exception can be attributed to the
fact that the I&F model does not allow a task to con-
tinue over several events, while the JLF model is an en-
hanced version of the I&F model that allows tasks to
take place over multiple event points in order to accu-
rately account for the resource considerations such as
utility requirements. Although, there are no resource
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 2
Model statistics and computational results for example 1 under maximization of profit

Model Events CPU Time (s) Nodes RMILP ($) MILP ($) Binary variables Continuous
variables

Constraints Nonzeros

Example 1 (H= 10)
S&K 8 105.5 88679 2690.6 1962.7 84 433 456 1615
M&G 8 507.64 184605 2690.6 1962.7 112 609 1402 4884
CBMN(�t = 1) 8 1.82 6449 2690.6 1860.7a 56 170 189 760

(�t = 2) 8 81.95 194968 3136.3 1959a 104 218 261 1238
(�t = 3) 8 207.43 366226 3136.3 1962.7 144 258 321 1635

I&F 6 2.16 6713 3078.4 1943.2a 34 140 267 859
7 43.73 101415 3551.8 1943.2a 42 165 318 1046

JLF 6 322.20 138714 5284.5 1962.7 68 386 1500 5874

a Suboptimal solution

Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Figure 2
Gantt chart for example 1 using the JLFmodel

constraints in this example, it can be observed from
the Gantt chart of Fig. 2 for the JLF model, that this
schedule will not be feasible for the I&F model. Ac-
cording to the constraint for different tasks in differ-
ent units of the I&F model, for state ‘s5’, the con-
suming task (i= 7) at event ‘N5’ should start after the
end time of the producing task (i= 8) at event ‘N4’,
which is clearly not the case in the global optimal so-
lution of Fig. 2. This constraint becomes relaxed in
the JLF model because the producing task does not
end at event ‘N4’, but it continues over the next event
and ends at event ‘N5’ in the global optimal solution.
The models of S&K, M&G, and CBMN allow tasks to
take place over multiple events, and hence, are able
to find the global optimal solution. Moreover, in these
models the events/slots are globally aligned, and hence,
they do not require the above-mentioned sequencing
constraint for different tasks in different units, which
is generally required for the unit-specific event-based
models.

This example demonstrates that, although, there are
no resource constraints, in some cases, it is a require-
ment for the unit-specific event-based models as well to
allow tasks to take place over multiple events in order
to find the global optimal solution. To understand such
cases, let us examine the constraint for different tasks
in different units that is used in the I&F model. It states
that the consuming task at the current event should
start after the end time of producing task at the previ-
ous event that processes the same state, which need not
be true if there is sufficient material for the consuming
task to start production, which happens to be the case
in the particular instance of Fig. 2. The amount of state
‘s5’ produced by the recycle stream (i= 8) at event ‘N4’
is not necessary for starting the consuming task (i= 7)
at event ‘N5’. So, this constraint needs to be relaxed de-
pending on whether there is sufficient amount for the
consuming task to start production or not, which is im-
plicitly realized by allowing the tasks to take place over
multiple events.



Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks S 3551

If we focus on the computational performance of
the JLF model in Table 2, it has poor LP relaxation, and
requires large number of constraints, nonzeros, and
CPU time, compared to the other competitive mod-
els of S&K and CBMN. Because, the JLF model was
originally developed to handle the more general case
of problems with resource constraints, it can be ob-
served that it does not reduce well, in terms of problem
statistics, to the case of no resources. With this moti-
vation, Shaik and Floudas [9], proposed a unified mod-
eling approach using unit-specific event-based contin-
uous-time representation, which (i) can handle prob-
lems with resource constraints by allowing tasks to take
place over multiple events, (ii) efficiently reduces to the
case of no resources, and (iii) is applicable for batch as
well as continuous processes with mixed storage poli-
cies. The unified model of Shaik and Floudas [9] (S&F)
for short-term scheduling of batch plants is described
in the next section. In Sect. “Computational Case Stud-
ies”, we consider examples of problems with and with-
out resources and compare the performance of the S&F
model with other models.

Formulation

The nomenclature used in the S&F formulation is given
in the Nomenclature section. The three index binary
variable w(i,n,n0) defines the assignment of task i that
starts at event n and ends at event n0 (n0 � n). To ex-
ercise control on the maximum number of events over
which a task is allowed to continue, a parameter, 	n,
is defined such that n � n0 � nC	n, 	n D 0; 1; : : :.
So, the task i that starts at event n may end either
at the same event point n(	n= 0), which would be
similar to I&F model, or it may end at a later event
nC	n (	n D 1; : : :), which would be similar to the
model of Janak et al. [5,6] In the model of Castro
et al. [1](CBMN) also such parameter (	t) was defined.
However, unlike in the S&F model [9], in all the slot-
based and global event-based models [1,7,10], a task
that starts at an event cannot end at the same event,
thus by definition, the unit-specific event-based mod-
els [5,6,9] would require at least one event less com-
pared to the slot-based and global event-based models.

The mathematical model has the following alloca-
tion, capacity, material balance, duration, sequencing,
and utility related constraints.

Allocation Constraints

X
i2I j

X
n02N;n�n0�nC�n

w(i; n; n0) � 1 8 j 2 J; n 2 N

(1)

X
i2I j

X
n2N;n�n0�nC�n

w(i; n; n0) � 1

8 j 2 J; n0 2 N; 	n > 0 (2)

X
i 02I j;i¤i 0

X
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Constraint (1) enforces that at the most one task can
start at each event and constraint (2) states that at the
most one task can end at each event. Constraint (3)
states that if a task starts at an event, a different task
cannot end at the same event, because only the task
that starts at an event can end at the same event. Con-
straint (4) states that a new task can start only if the
total number of tasks that started earlier matches the
total number of tasks ending. Constraint (5) states that
a task cannot end unless it started earlier. Note that con-
straints (2)–(5) are applicable only if	n > 0.
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Capacity Constraints

Bmin
i w(i; n; n0) � b(i; n; n0) � Bmax

i w(i; n; n0)

8i 2 I; n; n0 2 N; n � n0 � nC	n
(6)

For each task, constraint (6) enforces the minimum and
maximum batch size.

Material Balances

ST(s; n) D ST(s; n � 1)

C
X

i2I ps

X
n02N;n0�n�1�n0C�n

b(i; n0; n � 1)

C
X
i2Ics

X
n02N;n�n0�nC�n

b(i; n; n0)

8s 2 S; n 2 N; n > 1
(7)

ST(s; n) D ST0(s)C
X
i2Ics

X
n02N;n�n0�nC�n

b(i; n; n0)

8s 2 S; n D 1 (8)

In the material balance (7), the amount of a state at the
previous event is adjusted by the amount of the state
produced by the tasks that are ending at the previous
event and by the amount of the state being consumed
by the tasks that are starting at the current event. In
(8), the initial available amount of the state is taken into
account.

Duration Constraints

T f (i; n) D Ts(i; n)C ˛iw(i; n; n)C ˇi b(i; n; n)

8i 2 I; n 2 N; 	n D 0 (9)

T f (i; n) � Ts(i; n) 8i 2 I; n 2 N; 	n > 0 (10)

T f (i; n0) � Ts (i; n)C ˛iw(i; n; n0)

C ˇi b(i; n; n0) � M(1 � w(i; n; n0))

8i 2 I; n; n0 2 N; n � n0 � n C	n; 	n > 0
(11)

T f (i; n0) � Ts (i; n)C ˛iw(i; n; n0)

C ˇi b(i; n; n0)CM(1 � w(i; n; n0))

8i 2 I; n; n0 2 N; n � n0 � n C	n; 	n > 0
(12)

If	n= 0, then the finish time of a task that started at the
same event is calculated from (9). Otherwise, if 	n > 0,
then the finish time of a task that started at an earlier
event is calculated from (10)–(12). Note that, because
of the usage of three-index binary and continuous vari-
ables, the duration constraints in the S&F model are
simpler and have fewer big-M terms compared to the
duration constraints in the model of Janak et al. [5,6],
and hence it is observed to result in improved LP relax-
ations. Janak et al. [5,6] used several additional tighten-
ing constraints and bilinear variables to improve the LP
relaxation, which are not necessary in the S&F formu-
lation.

Sequencing Constraints

Same Task in the Same Unit
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8i 2 I; n 2 N; n < N; 	n > 0
(14)

If 	n= 0, then the constraint for same task in the same
unit is given in (13). Otherwise, if	n > 0, then the con-
straint for same task in the same unit is given by (13)
and (14), where the zero wait condition of (14) is ad-
ditionally applied when the task is active at event n but
not ending at event n.

Different Tasks in the Same Unit

Ts (i; nC 1) � T f (i0; n)
8i; i0 2 I j ; i ¤ i0; j 2 J; n 2 N; n < N

(15)
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Different Tasks in Different Units

Ts(i; nC 1) � T f (i0; n)

� M
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w(i0; n0; n)
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i ¤ i0; j; j0 2 J; j ¤ j0; n 2 N; n < N
(16)

For different tasks that produce or consume the same
state, the start time of the consuming task at the next
event is enforced to be later than the finish time of the
producing task at the current event, provided the pro-
ducing task is finishing at the current event.

Tightening Constraint

X
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X
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X
n02N;n�n0�nC�n
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�
� H 8 j 2 J

(17)

The sum of the durations of all tasks suitable in each
unit should be within the time horizon.

Utility Related Constraints
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(18)

The consumption of each utility at an event by all suit-
able active tasks is limited to the maximum availability
in (18).

Sequencing of Utility Related Tasks

Ts
ut(u; nC 1) � Ts

ut(u; n) 8u 2 U; n 2 N; n < N

(19)

Constraint (19) is similar to the constraint for same task
in the same unit for each utility.
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In constraints (20) and (21), at each event, the start
times of all suitable tasks that consume a utility are en-
forced to be equal, and are assigned to Ts

ut(u; n), if the
task is active.

T f (i; n � 1) � Ts
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T f (i; n � 1) � Ts
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In constraints (22) and (23), the end times of all suit-
able tasks that consume a utility at previous event are
enforced to be before Ts

ut(u; n), if the task is active. If
any of these tasks are finishing at the previous event,
then the end times are enforced to be equal to Ts

ut(u; n).
Note that, unlike in the model of Janak et al. [5,6], the
end time of utility consumption T f

ut(u; n) is not part of
the model here, but is accurately calculated as a param-
eter after solving the model.

Bounds on Variables
Ts(i; n) � H; T f (i; n) � H; Ts

ut(u; n) � H;

b(i; n; n0) � Bmax
i ; ST(s; n) � STmax

s ;

ST0(s) � ST0
s

(24)

w(i; n; n0) D 0; b(i; n; n0) D 0 8n0 < n (25)

Ts
ut(u; n) D 0; 8n D 1 (26)

ST0(s) D 0;8s … SR (27)

In (24), general bounds are added to different contin-
uous variables. The non-permissible cases of the three-
index binary and continuous variables are eliminated
in (25). In (26), Ts

ut(u; n) at the first event should be as-
signed to the reference start time of the horizon, which
is assigned to zero for simplicity. In (27), the initial
amounts of all states, except the raw materials, should
be assigned to their appropriate values, which are as-
signed to zero for simplicity. Depending on the STN of
actual process considered, additionally it is possible to
identify tasks that cannot occur at certain events and
the corresponding binary and continuous variables can
be eliminated.

Objective Function

Maximization of Profit

MaxProfit D
X

s2S f

X
nDN

�
ST(s; n)C

X

i2I ps

X
n02N;n0�n�n0C�n

b(i; n0; n)
�

(28)

For the objective of maximization of profit, the total
amount of the final products produced by the last event
is considered in (28). In all the constraints involving
big-M terms, the value ofM can be assigned to the time
horizon, H.

Minimization of Makespan (MS)

MinMS (29)

ST(s;N)C
X
nDN

X

i2I ps

X
n02N;n0�n�n0C�n

b(i; n0; n) � Ds

8s 2 S f (30)

T f (i;N) � MS 8i 2 I (31)

For the objective of minimization of makespan, MS,
the demand constraints for the final products are given
in (30). The makespan should be the upper bound on
the end time of each task at the last event. The param-
eter H, in the tightening constraint of (17) needs to be
replaced byMS.

Computational Case Studies

Example 1 Consider the same example discussed ear-
lier. There are no resource considerations, hence, con-
straints. 18–33 will disappear. For the objective of
maximization of profit, Shaik et al. [8] presented the
comparative study for two different time horizons
(H = 8 h and H = 12 h) for this example. In this study,
we will consider two more instances of this example
(H = 10 h and H = 16 h) and evaluate the performance
of the unified S&F model. The model statistics for the
objective of maximization of profit are given in Table 3.

Similar to the CBMN model, for each instance, at
each event, the S&F model is solved using increasing
values of	n D 0; 1; : : :
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 3
Model statistics and computational results for example 1 under maximization of profit

Model Events CPU Time (s) Nodes RMILP ($) MILP ($) Binary
variables

Continuous
variables

Constraints Nonzeros

Example 1a (H= 8)
S&K 5 0:07 4 1730.9 1498.6 48 235 249 859
M&G 5 0:16 26 1730.9 1498.6 64 360 826 2457
CBMN(�t = 1) 5 0:01 4 1730.9 1498.6 32 104 114 439
I&F 4 0:03 13 1812.1 1498.6 18 90 165 485

5 0:28 883 2305.3 1498.6 26 115 216 672
S&F(�n= 0) 4 0:01 9 1730.9 1498.6 18 122 193 511

(�n= 0) 5 0:22 530 2123.3 1498.6 26 155 252 696
Example 1b (H= 10)

S&K 8 105:5 88679 2690.6 1962.7 84 433 456 1615
M&G 8 507:64 184605 2690.6 1962.7 112 609 1402 4884
CBMN(�t = 1) 8 1:82 6449 2690.6 1860.7a 56 170 189 760

(�t = 2) 8 81:95 194968 3136.3 1959a 104 218 261 1238
(�t = 3) 8 207:43 366226 3136.3 1962.7 144 258 321 1635

I&F 6 2:16 6713 3078.4 1943.2a 34 140 267 859
7 43:73 101415 3551.8 1943.2a 42 165 318 1046

S&F(�n= 0) 6 2:13 6335 2730.7 1943.2a 34 188 311 881
(�n= 0) 7 27:93 64076 2780.2 1943.2a 42 221 370 1066
(�n= 1) 6 14:40 18902 2730.7 1962.7 65 219 692 2206

Example 1c (H = 12)
S&K 7 1:93 1234 3002.5 2610.1 72 367 387 1363

8 29:63 16678 3167.8 2610.3 84 433 456 1615
9 561:58 288574 3265.2 2646.8 96 499 525 1867

10 10889:61 3438353 3315.8 2646.8 108 565 594 2119
11 > 67000b 17270000 3343.4 2646.8a 120 631 663 2371

M&G 7 2:15 814 3002.5 2610.1 96 526 1210 4019
8 58:31 17679 3167.8 2610.3 112 609 1402 4884
9 2317:38 611206 3265.2 2646.8 128 692 1594 5805

10 > 67000c 10737753 3315.8 2646.8a 144 775 1786 6782
11 > 67000d 9060850 3343.4 2658.5 160 858 1978 7815

CBMN(�t = 2) 7 0:63 1039 3045.0 2610.1 88 188 224 1050
8 14:39 32463 3391.0 2610.3 104 218 261 1238
9 331:72 593182 3730.5 2646.8 120 248 298 1426

10 4366:09 6018234 4070.0 2646.8 136 278 335 1614
11 > 67000f 80602289 4409.5 2646.8a 152 308 372 1802

I&F 7 6:19 14962 3788.3 2658.5 42 165 318 1046
8 105:64 211617 4297.9 2658.5 50 190 369 1233

S&F(�n= 0) 7 5:06 10960 3301.0 2658.5 42 221 370 1066
(�n= 0) 8 96:13 171071 3350.5 2658.5 50 254 429 1251
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 3 (continued)

Model Events CPU Time (s) Nodes RMILP ($) MILP ($) Binary
variables

Continuous
variables

Constraints Nonzeros

Example 1d (H= 16)
S&K 10 809:58 231810 4318.8 3738.4 108 565 594 2119

11 38788:48 10065424 4404.8 3738.4 120 631 663 2371
M&G 10 8866:64 1402457 4318.8 3738.4 144 775 1786 6782

11 > 67000g 9225164 4404.8 3738.4 160 858 1978 7815
CBMN(�t = 1) 10 15:04 33503 4318.8 3658.1a 72 214 239 974

(�t = 2) 10 206:30 315632 4579.4 3738.4 136 278 335 1614
(�t = 2) 11 12392:47 15779526 4918.9 3738.4 152 308 372 1802

I&F 8 16:35 32106 4435.0 3738.4 50 190 369 1233
9 586:47 1057072 5054.8 3738.4 58 215 420 1420

S&F(�n=0) 8 13:68 25814 4291.7 3738.4 50 254 429 1251
(�n=0) 9 340:24 487795 4439 3738.4 58 287 488 1436

a Suboptimal solution; Relative Gap: 1.59%b, 3.16%c, 5.12%d, 28.16%e, 2.58%f, 5.46%g, 7.72%h

For the first instance, (example 1a), for H = 8h, it
can be observed that the unified model (S&F) per-
forms equally well compared to the I&F model. The
S&Fmodel requires less number of nodes and gives bet-
ter RMIP values compared to the I&F model. The S&F
model requires the same number of binary variables as
that of I&F model. For the second instance of this ex-
ample, (example 1b), for H = 10 h, as already discussed
in the motivation section, the I&F model fails to find
the global optimal solution even at higher events. This
can be confirmed by solving the S&F model for	n= 0,
which also gives the same suboptimal solution, because
when 	n= 0 (similar to 	t = 1 for the CBMN model),
the tasks are not allowed to take place over multiple
events. For 	n= 0, the S&F model gives better RMIP
values compared to I&F model. For 	n= 1, using six
events the S&F model is able to find the global opti-
mal solution in 14.4 CPU s. The CBMNmodel requires
a value of 	t = 3 to find the global optimal solution.
Compared to the JLF model from Table 2, there is al-
most 50% reduction in the RMIP value, in the num-
ber of constraints, and nonzeros for the S&F model.
The number of binary and continuous variables are also
fewer, apart from the exceptional computational per-
formance of the S&F model. The schedule obtained by
the S&F model is similar to the JLF model as shown in
Fig. 3.

For the third instance (example 1c), for H = 12 h, it
can be observed that the unified model (S&F) at	n= 0,

performs slightly faster compared to the I&F model.
The S&F model requires less number of nodes and
gives better RMIP values compared to the I&F model.
Among the slot-based/global event-based models that
require at least 11 events, only the M&G model is able
to find the global optimal solution in the specified CPU
time. The unit-specific event-based models require only
7 events to find the global optimal solution with ex-
ceptional computational performance. Similar conclu-
sions hold true for the fourth instance (example 1d), for
H = 16 h. The unified model (S&F) at 	n= 0, performs
faster compared to the I&F model. The S&F model re-
quires less number of nodes and gives better RMIP val-
ues compared to the I&F model. The slot-based/global
event-based models require 10 events, while the unit-
specific event-based models require only 8 events to
find the global optimal solution with faster computa-
tional performance. When we consider an additional
event, the S&F model again outperforms all the other
models as seen in Table 3.

For the objective of minimization of makespan the
computational results are given in Table 4. For models
involving big-M constraints a value ofM = 50 h is used,
similar to Shaik et al. [8]. The S&F model gives better
RMIP values compared to the I&F model.

Among the slot-based/global event-based models
that require 10 events, the CBMN model takes a total
CPU time of 106.6 s. As discussed in Shaik et al. [8]
since the CBMN model gives a suboptimal solution at
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Figure 3
Gantt chart for example 1b using the S&Fmodel

Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 4
Model statistics and computational results for example 1 under minimization of makespan

Model Events H CPU Time (s) Nodes RMILP (h) MILP (h) Binary
variables

Continuous
variables

Constraints Nonzeros

Example 1 (D8 =D9 = 200mu)
S&K 9 – 10.98 5378 18.685 19.789 96 556 528 1936

10 – 519.35 142108 18.685 19.340 108 622 597 2188
M&G 9 50 66.55 15674 18.685 19.789 128 693 1598 5869

10 50 5693.53 1066939 18.685 19.340 144 776 1790 6850
CBMN(�t = 1) 9 – 0.71 1809 18.685 19.789 64 193 216 872

(�t = 1) 10 – 50.49 134189 18.685 19.789a 72 215 241 979
(�t = 2) 10 – 56.11 109917 15.654 19.340 136 279 337 1623

I&F 8 50 0.78 1008 12.738 19.764 45 190 367 1211
9 50 74.26 111907 12.477 19.340 53 215 418 1398

S&F(�n= 0) 8 50 1.42 2280 18.685 19.764 45 254 435 1244
(�n= 0) 9 50 98.60 105673 18.685 19.340 53 287 494 1429

a Suboptimal solution

	t = 1, we consider the total time for both 	t = 1 and
	t = 2. Similarly, for the S&F model as well we need
to add the total CPU time while comparing with other
models. The unit-specific event-based models require 9
events to find the global optimal solution. Here, the I&F
model solves faster compared to the unified S&Fmodel.
For problems involving no resource considerations, the

Short-Term Scheduling, Resource Constrained: UnifiedMod-
eling Frameworks, Figure 4
STN for example 2

S&Fmodel was found [9] to perform either equally well
or better than the I&F model.

Example 2 Now, consider an example with resource
considerations and mixed storage policies. The STN for
this example is shown in Fig. 4, and the corresponding
data [5,7,8] is given in Table 5 and 6.

Short-Term Scheduling, Resource Constrained: UnifiedMod-
eling Frameworks, Table 5
State related data for example 2

F1 F2 I1 I2 I3 P1 P2
STmax

s (kg) 1000 1000 200 100 500 1000 1000
ST0s (kg) 400 400 0 0 0 0 0
prices($/kg) 0 0 0 0 0 30 40
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 6
Task related data for example 2a

Bmin Bmax T1 T2 T3 T4 T1 T2 T3 T4
˛ ˇ ˛ ˇ ˛ ˇ ˛ ˇ � iHS ı iHS � iCW ı iCW � iHS ı iHS � iCW ı iCW

R1 40 80 0.5 0.025 0.75 0.0375 6 0.25 4 0.3
R2 25 50 0.5 0.4 0.75 0.06 4 0.25 3 0.3
R3 40 80 0.25 0.0125 0.5 0.025 8 0.4 4 0.5

a Bmin/Bmax in kg, ˛ in h, ˇ in h/kg, � in kg/min, and ı in kg/min per kg of batch

There are two types of reactors available for the pro-
cess (types I and II), with two reactors of type I (R1
and R2) and one reactor of type II (R3) with four re-
actions suitable in them. Reactions T1 and T2 require
a type I reactor, whereas reactions T3 and T4 require
a type II reactor. Additionally, reactions T1 and T3 are
endothermic, where the required heat is provided by
steam (HS) available in limited amounts. Reactions T2
and T4 are exothermic, and the required cooling water
(CW) is also available in limited amounts. Each reactor
allows variable batch sizes, where the minimum batch
size is half the capacity of the reactor. The process-
ing times and the utility requirements include a fixed
time and a variable term that is proportional to the
batch size. The processing times are set so that the
minimum batch size is processed in 60% of the time
needed for the maximum batch size. For the raw mate-
rials and final products, unlimited storage is available,
while for the intermediates, finite storage is available.
Two different cases of this example studied in the liter-
ature [5,7,8] are considered that differ in the resource
availability. In the first case (example 2a), we assume
that the availability of both HS and CW is 40 kg/min,
and in the second case (example 2b), it is 30 kg/min.

Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 7
Model statistics and computational results for example 2 under maximization of profit

Model Events CPU Time (s) Nodes RMILP ($) MILP ($) Binary variables Continuous
variables

Constraints Nonzeros

Example 2a
JLF 6 6.31 2838 11927.3 5904.0 48 273 1254 4483
SF(�n= 1) 6 2.03 2140 10713.8 5904.0 42 169 679 2135

Example 2b
JLF 5 0.31 52 7147.1 5227.8 36 220 984 3198
SF(�n= 1) 5 0.07 49 6240 5227.8 30 136 540 1607

Also, two different objective functions, maximization
of profit and minimization of makespan, are consid-
ered. A comparative study of different continuous-time
models for this example was already provided in Janak
et al. [5,6] (JLF) and Shaik et al. [8], where additional
bounding constraints were added to improve the com-
putational performance of the JLF model. In this study,
in order to investigate the effect of using the three-index
binary and continuous variables, we compare the per-
formance of the unified S&F model with the JLF model
without the addition of any additional bounding con-
straints.

Maximization of Profit. For the objective of maxi-
mization of profit and a time horizon of 8 h, the optimal
solution is $5904.0 in the first case (example 2a) and
$5227.778 in the second case (example 2b). The com-
putational results in terms of the model statistics and
the CPU times are reported in Table 7 for the models of
JLF and S&F.

Minimization of Makespan For the objective of
minimization of makespan, the optimal solution is 8.5 h
in the first case (example 2a) and 9.025 h in the sec-
ond case (example 2b). The computational results in
terms of the model statistics and the CPU times are
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Short-Term Scheduling, Resource Constrained: Unified Modeling Frameworks, Table 8
Model statistics and computational results for example 2 under minimization of makespan

Model Events CPU Time (s) Nodes RMILP (h) MILP (h) Binary variables Continuous
variables

Constraints Nonzeros

Example 2a
JLF 7 10.95 2365 2.44 8.5 60 326 1545 5999
SF(�n=1) 7 6.03 4612 5.08 8.5 54 202 825 2677

Example 2b
JLF 6 1.63 166 3.00 9.025 48 273 1263 4519
SF(�n=0) 6 0.22 103 5.08 9.025 24 151 404 1072

reported in Table 8. For constraints involving big-M
terms, a common value ofM = 10 is used.

For both the objective functions, the unified S&F
model has better RMIP values and faster computational
performance compared to the JLF model. Also there is
a drastic reduction in the problem statistics especially
the number of continuous variables, constraints and
nonzeros in all the instances considered.

Conclusions

When there are resource considerations such as util-
ity requirements, the unit-specific event-based mod-
els need to consider the formulations such as Janak
et al. [5,6], that allow tasks to take place over multiple
events. In this study, it is demonstrated that for short-
term scheduling problem of batch plants involving no
resource considerations as well, we need to allow tasks
to take place over multiple events in order to ensure
achieving the global optimal solution. In such cases, the
model of Ierapetritou and Floudas [4] yields suboptimal
solutions, while the model of Janak et al. [5,6] which
was originally developed for solving problems with re-
source constraints, does not reduce well to the case
of no resources in terms of problem statistics. Hence,
a unified modeling approach is discussed based on the
unit-specific event-based continuous-time formulation
of Shaik and Floudas [9] where they consider three-
index binary and continuous variables. Their model is
applicable to both problems of with and without re-
sources in a unified way. The Shaik and Floudas [9]
model is found to perform either equally well or better
than the I&F model for problems involving no resource
considerations, and is found to perform better than the
JLF model for problems with resource constraints.

Nomenclature

Indices

i; i0 tasks
j; j0 units
n; n0; n00 events
s states
u utilities

Sets

I tasks
I j tasks which can be performed in unit j
Is tasks which process state s and either produce or

consume
Ips tasks which produce state s
Ics tasks which consume state s
Iu tasks which consume utility u
J units
Ji units which are suitable for performing task i
N event points within the time horizon
S states
SR states that are raw materials
SIN states that are intermediates
SP states that are final products
U utilities

Parameters

Bmin
i minimum capacity (batch size) of task i

Bmax
i maximum capacity (batch size) of task i

STo
s initial amount of state s available

STmax
s maximum amount of state s

˛i coefficient of constant term of processing time
of task i
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ˇi coefficient of variable term of processing time of
task i

� iu coefficient of constant term of consumption of
utility u by task i

ıiu coefficient of variable term of consumption of
utility u by task i

�is proportion of state s produced (�i s � 0), con-
sumed (�i s � 0) by task i

H time horizon, h
prices price of state s
Ds demand for state s,
	n limit on the maximum number of events over

which a task is allowed to continue
Umax

u maximum availability of utility u
M large positive number in big-M constraints

Binary Variables

w(i; n; n0) binary variable for assignment of task i that
starts at event n and ends at event n0

Positive Variables

b(i; n; n0) amount of material undertaking task i that
starts at event n and ends at event n0

ST0(s) initial amount of state s 2 SR that is required
from external resources

ST(s; n) excess amount of state s that needs to be
stored at event n

Ts(i; n) time at which task i starts at event n
T f (i; n) time at which task i ends at event n
Ts
ut(u; n) start time at which there is a change in the

consumption of utility u at event n
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Parameters
price(s) = price of state s
�p(s; i); �c(s; i) = proportion of state s produced,
consumed from task i, respectively
r(s) = market requirement for state s at the end of
the time horizon
Vmin(i,j) = minimum capacity of unit j when pro-
cessing task i
Vmax(i,j) = maximum capacity of unit j when pro-
cessing task i
stmax(s) = maximum storage capacity of state s

Variables
wv(i,j,n) = binary variables that assign the beginning
of task i in unit j at event point n
b(i,j,n) = amount of material undertaking task i in
unit j at event point n
d(s,n) = amount of state s being delivered to the
market at event point n
H = time horizon
st(s,n) = amount of state s at event point n
Ts(i,j,n) = starting time of task i in unit j at event
point n
Tf(i,j,n) = finishing time of task i in unit j at event
point n

Introduction

There has been a significant amount of work devoted
to the area of short-term scheduling, which involves
the determination of the order in which tasks use
units and various resources and the detailed timing
of the execution of all tasks so as to achieve the de-
sired performance. The problem data are usually as-
sumed to be deterministic in the studies. However, in
real plants, parameters like raw material availability,
processing times, and market requirements vary with
respect to time and are often subject to unexpected de-
viations. Therefore, the consideration of uncertainty in
the scheduling problem becomes of great importance in
order to preserve plant feasibility and viability during
operations.

Although there are a large number of papers that
address uncertainty in process design, much less at-
tention has been devoted to the issue of uncertainty
in process planning and scheduling, mainly owing to
the increased complexity of the deterministic problem.
Among the work that has appeared in the literature

is that of Shah and Pantelides [18] that addressed the
problem of the design of multipurpose batch plants
considering different schedules for different sets of
production requirements using a scenario-based ap-
proach [6] and an approximate solution strategy. Pis-
tikopoulos and Ierapetritou [14] presented a two-stage
stochastic programming formulation for the problem
of batch plant design and operations under uncer-
tainty. The multiperiod planning and scheduling of
multiproduct plants under demand uncertainty was ad-
dressed by Petkov and Maranas [13]. The stochastic
elements in their proposed model are expressed with
equivalent deterministic forms, resulting in a convex
mixed-integer nonlinear programming (MINLP) prob-
lem. Schmidt and Grossmann [16] considered the op-
timal scheduling of new product testing tasks and re-
formulated the initial nonlinear, nonconvex disjunctive
model as a mixed-integer linear programming (MILP)
problem using different sets of simplifying assumptions
that give rise to different models. The uncertainties in
planning and scheduling problems are generally de-
scribed through probabilistic models. During the last
decade, fuzzy set theory has been applied to scheduling
optimization using heuristic search techniques [8,10].
Recently, Balasubramanian and Grossmann [2] devel-
oped MILP models for flowshop scheduling and new
product development processing scheduling, based on
a fuzzy representation of uncertainty. Daniels and Car-
rillo [4] addressed the problem of ˇ-robust schedul-
ing in single-stage production facilities with uncer-
tain processing times. Vin and Ierapetritou [20] pro-
posed a multiperiod programming model to improve
the schedule performance of batch plants under de-
mand uncertainty. Acevedo and Pistikopoulos [1] ad-
dressed linear process engineering problems under un-
certainty using a branch and bound algorithm, based
on solution of multiparametric linear programs at each
node of the tree, and the evaluation of the uncertain
parameter space for which a node must be consid-
ered.

However, most of the existing approaches can han-
dle only a certain type of uncertain parameters, mostly
uncertainty in product demands, and more impor-
tantly, the additional complexity makes them infeasible
for realistic applications. In this work, a novel frame-
work is proposed for uncertainty analysis of scheduling
problems based on the ideas of sensitivity analysis of the
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corresponding MILP problem which is addressed using
a branch and bound solution method.

Methods

Deterministic Scheduling Formulation

In this work, the mathematical model used for batch
plant scheduling follows the main idea of the contin-
uous time formulation proposed by Ierapetritou and
Floudas [9]. The model involves the following con-
straints:

Minimize H or maximize
X
s

X
n

price(s)d(s; n) ; (1)

subject to
X
i2I j

wv(i; j; n) � 1 ; (2)

st(s; n) Dst(s; n � 1) � d(s; n) ;

C
X
i2I j

�p(s; i)
X
j2J i

b(i; j; n � 1)

C
X
i2I j

�c(s; i)
X
j2J i

b(i; j; n) ; (3)

st(s; n) � stmax(s) ; (4)

Vmin(i; j)wv(i; j; n)
� b(i; j; n) � Vmax(i; j)wv(i; j; n) ; (5)

X
n

d(s; n) � r(s) ; (6)

T f (i; j; n) D Ts(i; j; n)C ˛(i; j)wv(i; j; n)

C ˇ(i; j)b(i; j; n) ;
(7)

Ts(i; j; nC1) � T f (i; j; n)�U(1�wv(i; j; n)) ; (8)

Ts(i; j; n) � T f (i0; j; n) � U(1 � wv(i0; j; n)) ; (9)

Ts(i; j; n) � T f (i0; j0; n)�U(1�wv(i0; j0; n)) ; (10)

Ts(i; j; n C 1) � Ts(i; j; n) ; (11)

T f (i; j; n C 1) � T f (i; j; n) ; (12)

T f (i; j; n) � H ; (13)

Ts(i; j; n) � H ; (14)

where U denotes an upper bound of the makespan, for
the cases where the objective is the minimization of the

makespan. For the cases where maximization of profit
is considered, U D H in constraints (8)–(10). In gen-
eral, the objective function is to minimize the makespan
as shown in (1) or to maximize the total profit. Allo-
cation constraint (2) states that only one of the tasks
can be performed in each unit at an event point n. Con-
straint (3) represents the material balance for each ma-
terial at each event point n being equal to that at event
point n � 1, adjusted by any amounts produced and
consumed between event points n � 1 and n, and deliv-
ered to the market at event point n. The storage and ca-
pacity limitations of the production units are expressed
by constraints (4) and (5). Constraint (6) is written to
satisfy the demands of the final products. Constraints
(7)–(14) represent time limitations due to task dura-
tion and sequence requirements in the same or different
production units.

Although there are a large number of papers
that deal with uncertainty issues concerning pro-
cess design and production planning, as reported in
“Introduction,” the issue of uncertainty is not well stud-
ied for scheduling problems, mainly owing to the high
complexity of the deterministic case.

MILP Sensitivity Analysis

The formulation presented in “Deterministic Schedul-
ing Formulation” corresponds to the MILP problem
where the binary variables (wv(i; j; n)) denote the as-
signment of tasks i to units j at event point n, respec-
tively, throughout the time horizon. Therefore, the ef-
fects of operation parameters on the plant performance
can be investigated through the sensitivity analysis of
the MILP model of the deterministic scheduling prob-
lem.

Although sensitivity analysis theory is well devel-
oped in linear programming, efforts are still being
made in order to handle the integer programming case,
mainly owing to lack of optimality criteria for the in-
teger optimization problems. Schrage and Wolsey [17]
examined the effect of a small perturbation on the right-
hand side or objective function coefficients in an integer
program by collecting dual information at each node of
the branch and bound tree while solving the original
integer program and using a recursive scheme to ob-
tain an upper bound on the objective function. Their re-
sults were extended to nonlinear integer programming
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problems by Skorin-Kapov and Granot [19]. Pertsinidis
et al. [12] developed a sensitivity analysis algorithm for
parametric MILP programs, which also provides the re-
sults of the MILP master problem for the MINLP case,
while an algorithm that provides a sequence of improv-
ing parametric lower and upper bounds is employed for
parametric nonlinear integer programming subprob-
lems. An algebraic geometry algorithm for solving inte-
ger programming problems was presented by Bertsimas
et al. [3] Their method provides a natural generalization
of the Farkas lemma for integer programming and leads
to a method of performing sensitivity analysis.

A method of sensitivity analysis for MILP was pre-
sented by Dawande and Hooker [5], based on the idea
of inference duality. It reveals that any perturbation that
satisfies a certain system of linear inequalities will re-
duce the optimal value no more than a prespecified
amount. The inference-based sensitivity analysis con-
sists of two parts: dual analysis that determines how
much the problem can be perturbed while keeping the
objective function value in a certain range, while pri-
mal analysis gives an upper bound on how much the
objective function value will increase if the problem is
perturbed by a certain amount. The dual solution is
obtained by using inference methods to generate con-
straints at every node that is violated by the branching
cuts. The dual solution can be viewed as a proof of op-
timality and can be utilized to determine under what
parameter perturbations the dual solution still provides
a valid proof. More specifically the main results of the
inference-based sensitivity analysis are summarized be-
low.

For the general mixed-integer problem

Minimize z D cx

subject to Ax � a; 0 � x � h;

x j integer; j D 1; : : : ; k :

(15)

Assuming a perturbation of all problem parameters
such that

Minimize z D (c C	c)x
subject to (AC	A)x � aC	a ; 0 � x � h;

x j integer; j D 1; : : : ; k :

(16)

If there exist sp1 ; : : : ; s
p
n that satisfy the following

set of inequalities, the constraint z � z� �	z remains

valid: for the perturbations 	A and 	a in the param-
eters involved in the left-hand side and the right-hand
side of the constraints

�
p
i

nX
jD1

Ai ju
p
j C

nX
jD1

spj (u
p
j � up

j ) � �
p
i 	ai � rp ;

spj � �
p
i 	Ai j; spj � �q

p
j ; j D 1; : : : ; n ;

rp D �
nX

jD1

qp
j u

p
j C �

pa � zp C	zp ;

(17)

for a perturbation	c of the coefficients of the objective
function

nX
jD1

	c ju
p
j � spj (u

p
j � up

j ) � �rp ;

spj � �	c j; s
p
j � �q

p
j ; j D 1; : : : ;

(18)

where qp
j D �

p
i Ai j � �

p
0 c j ; p corresponds to the leaf

node where the dual variable of the objective function
(�p

0 ) equals 1, whereas u
p
j and up

j denote the lower and
the upper bound of xj at node p, respectively; zp is
the objective value at node p; and 	zp D z� � zp . Leaf
nodes are the nodes at which the branch and bound
procedure terminates based on standard fathoming cri-
teria [7]. Thus, with use of constraints (17) and (18) in
the scheduling problem, the range of parameters where
the objective remains within certain limits can be iden-
tified and used to evaluate alternative schedules at the
branch and bound tree. Moreover, the importance of
different constraints and parameters is obtained and
can be utilized to improve future plant operability.

Robustness Metric

In order to improve the schedule flexibility prior to its
execution, it is important to measure the performance
of a deterministic schedule under changing conditions
due to uncertainty.

Standard deviation (SD) is one of the most com-
monly used metrics to evaluate the robustness of
a schedule. To evaluate the SD, the deterministic model
with a fixed sequence of tasks (wv(i; j; n)) is solved
for different realizations of uncertain parameters that
define the set of scenarios k which results in different
makespans Hk. The SD is then defined as

SDavg D

vuutX
k

(Hk � Havg)2

(ptot � 1)
;Havg D

P
k Hk

ptot
; (19)
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where Havg is the average makespan over all the sce-
narios, and (ptot) denotes the total number of scenar-
ios. A detailed discussion of different robustness met-
rics can be found in Samsatli et al. [15]. Vin and Ier-
apetritou [20] proposed a robustness metric taking into
consideration the infeasible scenarios. In the case of
infeasibility, the problem is solved to meet the maxi-
mum demand possible by incorporating slack variables
in the demand constraints. Then the inventories of all
rawmaterials and intermediates at the end of the sched-
ule are used as the initial conditions in a new problem
with the same schedule to satisfy the unmet demand.
The makespan under infeasibility (Hcorr) is determined
as the sum of those two makespans. Their proposed ro-
bustness metric is defined as

SDcorr D

vuutX
k

(Hact � Havg)2

(ptot � 1) ; (20)

where Hact D Hk , if scenario k is feasible and
Hact D Hcorr, if scenario k is infeasible.

Proposed Uncertainty Analysis Approach

The basic idea of the proposed approach is to utilize
the information obtained from the sensitivity analysis
of the deterministic solution to determine (1) the im-
portance of different parameters and constraints and
(2) the range of parameters where the optimal solution
remains unchanged. The main steps of the proposed
approach are shown in Fig. 1. More specifically, there
are two parts in the proposed analysis. In the first part,
important information about the effect of different pa-
rameters is extracted following the sensitivity analysis
step, whereas in the second part alternative schedules
are determined and evaluated for different uncertainty
ranges.

First, the deterministic scheduling is solved at the
nominal values using a branch and bound solution ap-
proach, and the dual multipliers�p are collected at each
leaf node p. Then the inference-based sensitivity anal-
ysis as described in the previous section is performed
for all the important scheduling parameters, including
demands, prices, processing times and capacities. Note
that only the dual information of the nodes that cor-
respond to nonzero dual variables is required. Using

the results of this analysis, one can answer a number
of very interesting questions regarding the robustness
of the plant to parameter changes.

In particular:
� How does the capacity of the units affect the produc-

tion objective?
� What is the range of product demand that can be

covered and how much would the profit be affected
by such changes?

� What is the effect of a price change on the objective
value?

� What is the significance of the constraints involved
in the model? Are there any redundant sets of con-
straints?
The first question can be answered by imposing the

same perturbation on capacity constraint (5) for the
different units involved in the production of specific
products and determining the change in the objective
function (	z). The unit with the largest effect on the
objective value is also the most critical one for the pro-
duction of this product and thus a change in its capac-
ity will result in the largest production change. Simi-
larly, the rest of the questions can be answered by an-
alyzing perturbations at the appropriate constraints to-
gether with the effects on the objective function. The
results for two examples are given in the next section.

In the second part of the analysis, the sensitiv-
ity information is used to define the range of uncer-
tain parameters where the schedule is optimal and to
identify alternative schedules at different uncertainty
ranges. The set of constraints (17) and (18) are used to
determine the range of uncertain parameters for cer-
tain changes in the objective function. The branch and
bound procedure is then continued on the nodes with
the objective value within the predicted limits to iden-
tify new optimal solutions. The alternative schedules
are evaluated using the robustness metric (SDcorr) as
defined in “Robustness Metric,” the average and the
nominal schedule performance in terms of the objec-
tive function.

Since the entire analysis is based on a single branch
and bound tree among a large number of possible
branch and bound trees that can be used to solve the
MILP, it provides conservative sensitivity ranges. The-
oretically, the exact sensitivity ranges can be obtained
by investigating an exponential number of branch and
bound trees. However, using the above analysis, one can
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Short-Term Scheduling Under Uncertainty: Sensitivity Analysis, Figure 1
Flow chart of proposed approach. B&B branch and bound

extract useful information regarding the approximate
range of the parameter change for a certain objective
change and the robustness of the plant to parameter
changes, and one can also determine the importance of
different parameters as illustrated in the next section.

Short-Term Scheduling Under Uncertainty: Sensitivity Analysis, Figure 2
State-task network representation for the case

Case

The case study [9] considers two different products pro-
duced through five processing stages: heating, reactions
1, 2 and 3, and separation of product 2 from impure E as
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illustrated in the state-task network (STN) representa-
tion in Fig. 2. For the first part of the analysis, the prob-
lem is solved with the objective of maximizing the profit
within the time horizon of 12 h. After the sensitivity
analysis has been performed, the following information
is obtained. It is found that the most critical task of the
production line is reaction 2. By decreasing the process-
ing capacity of reaction 2 in reactor 1 or reactor 2 by
11 units, the profit will be reduced by 5%, whereas very
small change or no change at all is observed in the ob-
jective function with a processing capacity change for
reaction 1 or reaction 3 in both reactors. The objective
value is also not sensitive to the change of other param-
eters, for example, the processing capacity of separation
in the separator can drop by up to 120 units without the
profit decreasing. Another important modeling issue
that can be addressed is the question of constraint re-
dundancy. Here the importance of storage constraints
is investigated and it is found that these constraints are
redundant since they are not active in any of the solu-
tion branch and bound nodes. More interestingly, the
duration constraints are also found to be redundant,
which means that the maximum processing capacities
are already reached with the current processing times,
so the profit cannot be improved even with zero pro-
cessing times assuming a fixed number of event points.
For the second part of the analysis, the demand of prod-
uct 2 is considered to be the uncertain parameter vary-
ing within the range [20; 80] and the objective function
is modified to minimize the makespan. A branch and
bound tree is constructed at nominal point r(0p20) D 50
and the dual information is stored at each node.

Applying the inference duality sensitivity analy-
sis, one obtains the following expression regarding the
range of demand change following a specific objective
change (	H): �0:0297	d � 	H, which means that if
the demand is increased by 	d, the new makespan be-
comes at most Hnom C 0:0297	d. When r(0p20) is in-

Short-Term Scheduling Under Uncertainty: Sensitivity Anal-
ysis, Table 1
Comparison of alternative schedules for the case

Schedule 1 Schedule 2 Schedule 3
Hnom(h) 7.00 7.14 7.40
Havg(h) 8.15 7.24 7.40
SDcorr 2.63 0.29 0.27

creased from 50 to 80, schedule 1 becomes infeasible.
Then, we solve the linear programming problem at each
leaf node with the demand of 80 and check the leaf
nodes with the objective value below 7.89 that is ob-
tained using this inequality in the branch and bound
tree. The new optimal solution is found to be sched-
ule 2 and schedule 3 is one feasible solution, as illus-
trated in Table 2 . The schedules are then evaluated
with respect to the mean and nominal makespan and
the SD within the demand range [20; 80] and the val-

Short-Term Scheduling Under Uncertainty: Sensitivity Anal-
ysis, Table 2
Values of binary variables of optimal schedules

(Task, unit) n0 n1 n2 n3
(Heating, heater) 1 0 0 0
(Reaction 1, reactor 1) 0 0 0 0
(Reaction 1, reactor 2) 1 1 0 0
(Reaction 2, reactor 1) 0 1 0 1

(Reaction 2, reactor 2) 0 0 0 0
(Reaction 3, reactor 1) 0 0 1 0
(Reaction 3, reactor 2) 0 0 1 0
(Separation, still) 0 0 0 1

(schedule 1)

(Task, unit) n0 n1 n2 n3
(Heating, heater) 1 1 0 0
(Reaction 1, reactor 1) 1 0 0 0
(Reaction 1, reactor 2) 1 0 0 0
(Reaction 2, reactor 1) 0 1 0 1
(Reaction 2, reactor 2) 0 1 0 0
(Reaction 3, reactor 1) 0 0 1 0
(Reaction 3, reactor 2) 0 0 1 0
(Separation, still) 0 0 0 1

(schedule 2)

(Task, unit) n0 n1 n2 n3
(Heating, heater) 1 0 0 0
(Reaction 1, reactor 1) 1 0 0 0
(Reaction 1, reactor 2) 1 0 0 0
(Reaction 2, reactor 1) 0 1 0 0
(Reaction 2, reactor 2) 0 1 0 0
(Reaction 3, reactor 1) 0 0 1 0
(Reaction 3, reactor 2) 0 0 1 0
(Separation, still) 0 0 0 1

(schedule 3)
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ues are shown in Table 1. Compared with schedule 2,
schedule 3 has a larger mean makespan but a lower SD,
which means higher robustness; therefore, depending
on the decision-maker’s attitude towards risk and the
expected growth in demand, one can choose schedule 3
over schedule 2, whereas schedule 1 remains a valid al-
ternative if the demand is expected to remain constant.

Note that the proposed uncertainty analysis does
not substantially increase the problem complexity. That
is due to the fact that the required information is al-
ready obtained from the solution of the deterministic
problem.

Conclusions

An integrated framework was developed in the work
reported here to handle uncertainty in short-term
scheduling based on the idea of inference-based sen-
sitivity analysis for the MILP problem and the utiliza-
tion of a branch and bound solution method. The pro-
posed method leads to the determination of the impor-
tance of different parameters and constraints on the ob-
jective function and the generation and evaluation of
a set of alternative schedules given the variability of the
uncertain parameters. The main advantage of the pro-
posedmethod is that no substantial complexity is added
compared with the solution of the deterministic case
since the only additional information required is the
dual information at the leaf nodes of the branch and
bound tree. One illustrative example was presented to
highlight the information extracted by the proposed ap-
proach and the complexity involved.
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Signal processing methodologies based on higher-order
statistics or spectra (HOS) of order greater than two
have become important signal processing tools in a va-
riety of application areas: digital communications, sys-
tem identification and spectral analysis, source sep-
aration and array processing, time delay estimation,
image and speech processing and biomedical applica-
tions among others, [3,4,9]. The increased popularity of
HOS in signal processing applications can be attributed
to many attractive properties they possess: preserva-
tion of nonminimum phase information, ability to de-
tect/identify nonlinear behavior, robustness to Gaus-
sian and other forms of noise, etc. It is well known that
when a signal is Gaussian there is no benefit in con-
sidering the HOS of this signal since all the statistical
information is conveyed by its first and second order
statistics (SOS). However, for nonGaussian signals the
SOS do not provide a complete description and a lot
of important information can be extracted from their
HOS, [8,9,11].

The n-order moment and cumulant sequences of an
n-order stationary random process {y(i)}, i = 1, 2, . . . are
defined as, [9]:

My;n(�1; : : : ; �n�1) D Efy1 � � � yng;

Cy;n(�1; : : : ; �n�1)

D
X

(�1)p�1(p � 1)!E

8<
:
Y
i2I1

yi

9=
; � � � E

8<
:
Y
i2I p

yi

9=
; ;

(1)

where, y1 = y(i), y2 = y(i + �1), . . . , yn = y(i + �n�1), the
summation covers all partitions (I1, . . . , Ip), p = 1, . . . , n,
of the set {1, . . . , n}, �k = 0,˙1,˙2, . . . , and E{�} denotes

statistical expectation. The second, third and fourth or-
der cumulants of zero-mean processes are utilized often
in practice and take the form

Cy;2(�) D My;2(�); (2)

Cy;3(�1; �2) D My;3(�1; �2); (3)

Cy;4(�1; �2; �3) DMy;4(�1; �2; �3)
� My;2(�1)My;2(�2 � �3)

� My;2(�2)My;2(�3 � �1)

� My;2(�3)My;2(�1 � �2): (4)

The � y, 2 = Cy, 2(0) is the variance, the � y, 3 = Cy, 3(0, 0) is
the skewness, and the � y, 4 = Cy, 4(0, 0, 0) is the kurtosis
of {y(i)}. For a complex process the definitions in (1)
may include conjugation in one or more terms in the
products.

The n-order polyspectrum (higher-order spectrum)
of {y(i)} is defined as the (n � 1)-dimensional discrete
Fourier transform of Cy, n(�1, . . . , �n�1), that is

Sy;n(e j!1 ; : : : ; e j!n�1 )

D

1X
	1;:::;	n�1D�1

Cy;n(�1; : : : ; �n�1)
n�1Y
lD1

e� j!l	l ; (5)

|! l|� 
 , l = 1, . . . , n� 1, |
Pn�1

lD1 ! l|� 
 . For n = 2, 3, 4
we obtain the power spectrum, the bispectrum and the
trispectrum, respectively.

Cumulants are utilized as measures of ‘Gaussian-
ity’ and statistical independence because they satisfy the
following two important properties:
1) Given that the set of random variables {y(i),

y(i + �1), . . . , y(i + �n�1)} is divided into any num-
ber of mutually independent subsets, then, Cy, n(�1,
. . . , �n�1) = 0. Therefore, if a random process {y(i)}
is independent identically distributed, then

Cy;n(�1; : : : ; �n�1)

D �y;nı(�1) � � � ı(�n�1);

where ı(�) = 0, � 6D 0, is the delta function. Also,
given that {x(i)}, {z(i)}, i = 1, 2, . . . are two indepen-
dent processes and y(i) = x(i) + z(i), then

Cy;n(�1; : : : ; �n�1)

D Cx;n(�1; : : : ; �n�1)C Cz;n(�1; : : : ; �n�1):
(6)
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2) If the set of random variables {y(i), y(i + �1), . . . ,
y(i + �n�1)} are jointly Gaussian, then Cy, n(�1, . . . ,
�n�1) = 0, for n � 3.

These properties do not hold formoments. For this rea-
son cumulants are often more attractive than moments
in applications of HOS, [7,9].

Often in practice we want to calculate the higher-
order cumulants of the process

y(k) D s(k)C w(k);

where the s(k) may be either deterministic signal or
a random process and the w(k) is a zero-mean station-
ary Gaussian noise process independent from s(k). In
practice, the estimation of HOS is based on time aver-
aging. To overcome problems of nonstationarity of y(k)
in the case where s(k) is a deterministic energy signal, it
is necessary to assume multiple realizations yj(k), j = 1,
. . . , J, k = 1, . . . , K, of sufficient length and estimate the
n-order moment as follows:

bMy;n(�1; : : : ; �n�1)

D G
JX

jD1

KX
kD1

y j(k)y j(k C �1) � � � y j(k C �n�1)
(7)

for �l = 0, ˙1, . . . , ˙L, and G = 1/J, [9,10]. If s(k) is
random and locally stationary or a deterministic power
signal, then (7) applies by segmenting the y(k) into J
possibly overlapping segments (considered as multi-
ple realizations) with G = 1/JK. The sample estimate
bCy;n(�1; : : : ; �n�1) is obtained by substituting moment
estimates in the definitions of cumulants.

To gain insight into the utilization of HOS let us
consider the following examples.

Example 1 Let x(k) =
P

n Cne( j!n kC�n) where, �n are
independent identically distributed random variables
uniformly distributed in the interval [�
 , 
]. This is
a harmonic stationary process. Let y(k) and z(k) be the
responses of a linear and a nonlinear system, respec-
tively, both driven by x(k). Then,

y(k) D
X
n

Ane( j!n kC
n);

z(k) D
X
n

Bn e( j!n kC n)

C
X
m;l

BmBl e[ j(!mC!l )kC mC l ] C
X
m;l ;i

� � � :

It can be shown that [3,9]:

Cy;3(�1; �2) D 0; Cz;3(�1; �2) ¤ 0:

In general, the polyspectra of a system output can be
utilized in various ways in detecting as well as charac-
terizing various types of nonlinearities in the system,
e. g., detecting quadratic and cubic phase coupling in
harmonic processes and identifying nonlinear Volterra
filters driven by Gaussian processes among others, [9].

Example 2 Consider now a linear filtering problem
where the linear time invariant (LTI) system with im-
pulse response {f (k)} is driven by a stationary random
sequence {x(k)}k = 1, 2, . . . . Assuming that the system is
stable, the following expression can be written for the
n-order cumulant of the system output {y(k)}, [2,7]:

Cy;n(�1; : : : ; �n�1) D Cx;n(�1; : : : ; �n�1)




"
1X

kD�1

f (k) f (kC �1) � � � f (kC �n�1)

#
;

(8)

where 
 denotes (n � 1)-dimensional linear convo-
lution. In the special case where {x(k)} is indepen-
dent identically distributed, zero-mean, non–Gaussian,
{f (k)}, k = 0, . . . , q, is finite length and {w(k)} is additive
stationary zero-mean Gaussian noise statistically inde-
pendent from {x(k)}, the following relations hold for
the diagonal cumulants (�i = � for all i):

y(k) D
qX

nD0

f (n) � x(k � n)C w(k);

Cy;2(�) D �x;2 �
qX

kD0

f (k) f (kC �)C Cw;2(�);

Cy;n(�; : : : ; �) D �x;n �
qX

kD0

f (k) f n�1(k C �);

� D �q; : : : ; 0; : : : ; q; n � 3:

The Cy, 2(�) is corrupted by noise. On the other hand,
theCy, n(�, . . . , �), n� 3, are noise free and proportional
to the corresponding order correlation of the chan-
nel coefficients. Note that the second order cumulants
(power spectrum) above do not preserve the true phase
character of f (k) unless the system is minimum phase
(that is, all q zeros of its Z-transform are inside the unit
circle). Thus, from Cy, 2(�) alone only an equivalent
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minimum phase system (within all-pass phase ambigui-
ties) can be recovered. On the other hand, cumulants of
order greater than two (polyspectra) preserve the true
phase character of the system and thus are able to iden-
tify the system correctly up to a sign and possibly a con-
stant linear phase term. This property, is the reason be-
hind the wide utilization of HOS for blind system iden-
tification and deconvolution in seismic signal process-
ing, dispersive communications channels, speech pro-
cessing and other applications, [4,8].

To have a glance of optimization procedures that in-
volve HOS, consider the recovery of the coefficients
f (k), in the linear filtering problem. The nonlinear-
least squares approach proposes the minimization of
the nonlinear function

qX
	D�q

"
bCy;n(�; : : : ; �) � �x;n

qX
kD0

f (k) f (n�1)(k C �)

#2

(9)

with respect to the unknown parameters {� x, n, f (k): k =
0, . . . , q}, [2,6].bCy;n(�; : : : ; �) is the estimated diagonal
cumulant from data samples. In practice the unknown
order qmust be estimated by means of model order se-
lection criteria.

Minimization of (9) is a difficult problem which re-
quires tedious searching programming techniques and
proper initialization to avoid local equilibria. Thus, it
is customary to seek solutions based on linear rela-
tions, [2,9,12]. Usually, a linear relation between the un-
known parameters of the system model and the higher-
order cumulants of the observed process is established.
The solution is obtained by forming and solving an
overdetermined linear system of equations. A variety
of such algorithms have been proposed in the literature
based on various system models.

Alternatively, wemay consider the following decon-
volution scenario, [1,3,4]:

ex(n) D u(n)
y(n) D [u(n)
 f (n)]
x(n);

where u(n) is an appropriate filter so that ex(n) D A �
x(n � D) where D is a constant delay and A a constant
phase term. Since the effect of linear filtering (i. e., con-
volution with f (n)) increases the Gaussianity of a ran-
dom process (central limit theorem), then, inverse fil-
tering (i. e., deconvolution with u(n)) must decrease the

Gaussianity of the process. Based on this idea, deconvo-
lution can rely on maximizing or minimizing an appro-
priate measure of Gaussianity such as the kurtosis, �x̃;4,
ofex(n) with respect to the inverse filter coefficients. Ac-
tually, a variety of algorithms have been derived for de-
convolution based on the constrained maximization of
the objective function (form 6D r,m, r � 2), [1]:

j�x̃;m j
r

j�x̃;r j
m :

To date the utilization of HOS in applications has
been hampered by: i) the high computational complex-
ity and the requirement for long data records in obtain-
ing reliable estimates of HOS, and ii) the hard assump-
tions made regarding the stationarity and ergodicity of
the available data. The emergence of faster digital hard-
ware and the introduction of efficient HOS estimators
will facilitate the wider utilization of HOS, [5,9]. A de-
tailed coverage of signal processing algorithms and ap-
plications with HOS can be found in [9]. A recent ex-
tensive biography of HOS containing over 1700 entries
has been compiled in [11].

See also

� Global Optimization Methods for Harmonic
Retrieval
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A simple recourse problem is a stochastic linear pro-
gram with recourse (cf. � Stochastic linear programs
with recourse and arbitrary multivariate distributions)
for which the recourse action simply involves calculat-
ing linear penalties based on the surplus and shortfalls
of scarce resources. In general all second stage parame-
ters may be random.

The general simple recourse problem may be for-
mulated as follows:

min
˚
cx C E� [Q(x; �)] : Ax D b; x � 0

�
; (1)

where

Q(x; �) D

8̂
<̂
ˆ̂:

inf qC(�)yC C q�(�)y�

s.t. yC � y� D h(�) � T(�)x;
yC; y� � 0:

(2)

Here A 2 Rm×n, b 2 Rm, and c 2 Rn are given matrices.
The uncertain parameters are h: Rr! Rk, q+: Rr! Rk,
q�: Rr ! Rk, and T: Rr ! Rk×n where � is a random

variable defined on the probability space (� , F,�) with
� � Rr the support of the measure �. In the general
case the probability distribution of � is continuous or
has a very large number of realizations, which makes
directly solving the deterministic equivalent very diffi-
cult.

One well-known example of a simple recourse
problem is the newsboy problem. In this problem
a newsboy must decide how many newspapers to order
for sale the next day with only probabilistic informa-
tion about the next day’s demand. Unsold newspapers
will be sold back to the supplier at a reduced rate and
additional demand must be supplied to the customers
but at a higher cost to the newsboy.

Three efficient methods have been developed for
the case where only the right-hand side parameters are
random. These methods are: the primal method (see
� Simple recourse problem: Primal method); the dual
method (see� Simple recourse problem: Dual method);
and a method using the dualplex algorithm [1]. A good
reference for the primal and dual methods for simple
recourse problems is [2].

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems
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The dual method for solving simple recourse problems
(cf.� Simple recourse problem), devised by A. Prékopa
[1], is based on the dual simplex algorithm. As with the
primal method (see� Simple recourse problem: Primal
method), this method only allows for uncertainty in the
right-hand side parameters, and a finite, discrete prob-
ability distribution, while the stochastic dependence or
independence of the random variables is not important.

This simple recourse problemmay be formulated as
follows:

min
˚
cx C E�[Q(x; �)] : Ax D b; x � 0

�
; (1)

where

Q(x; �) D

8̂
<̂
ˆ̂:

inf qCyC C q�y�

s.t. yC � y� D � � Tx;
yC; y� � 0:

(2)

Here A 2 Rm×n, b 2 Rm, c 2 Rn, q+ 2 Rr, q� 2 Rr, q = q+

� q� > 0, and T 2Rr×n are given matrices. � is a random
variable defined on the probability space (� , F,�) with
� � Rr the support of the measure �.

Using linear programming duality, E� [Q(x, �)] may
be rewritten as

rX
iD1

�
qCi (E� [�i] � Ti x)C q

Z Ti x

�1

Fi(z) dz
�
: (3)

The objective function of (1) is then a piecewise-linear,
convex function with breakpoints derived from the ele-
ments of� .

Let � i, 1, . . . , � i;ki be the possible values of � i in in-
creasing order, with pi, 1, . . . , pi;ki the corresponding
probabilities. Introduce � i, 0 < � i, 1 and � i;kiC1 > � i;ki
for i = 1, . . . , r with the property that � i, 0 < Tix <
� i;k1C1 for all x feasible for (1) and put pi, 0 = pi;k1C1 = 0.
The stochastic linear program (1) is reformulated as an
equivalent (deterministic) linear program. The follow-
ing notation is used:

fi j D �qCi C q(pi1�i1 C � � � C pi; j�1�i; j�1);

for j = 1, . . . , ki + 1, i = 1, . . . , r, representing the function
values at the breakpoints.

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min cx C f�
s.t. Ax D b;

Ti x �
kiC1X
jD0

�i j�i j D 0; i D 1; : : : ; r;

kiC1X
jD0

�i j D 1; i D 1; : : : ; r;

x � 0; � � 0:

(4)

This linear program may be efficiently solved using the
dual simplex method. All dual feasible bases have the
following form. For some s, 1 � s � r, there are m +
s basic x variables, r � s of the i in {1, . . . , r} have ba-
sic variable pairs of the form (�i; j i , �i; j iC1) and the re-
maining s of these i have only one basic �i j i variable.

The algorithm corresponds to finding an initial dual
feasible basis then using the dual simplex method. Only
columns corresponding to variables which might en-
ter the basis need to be calculated at each step. This
amounts to all nonbasic x variables and at most two �ij
for each i2 {1, . . . , r} (the two immediately surrounding
the basic �ij variables for each i).
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The primal method for solving simple recourse prob-
lems (cf. also � Simple recourse problem), devised by
R.J-B. Wets [3], is based on the concept of a work-
ing basis introduced by G.B. Dantzig [1]. The primal
method only allows for uncertainty in the right-hand
side parameters, however stochastic dependence or in-
dependence of these parameters is not important to the
method. A good reference for this algorithm is [2].

This simple recourse problemmay be formulated as
follows:

min
˚
cx C E�[Q(x; �)] : Ax D b; x � 0

�
; (1)

where

Q(x; �) D

8̂
<̂
ˆ̂:

inf qCyC C q�y�

s.t. yC � y� D � � Tx;
yC; y� � 0:

(2)

Here A 2 Rm×n, b 2 Rm, c 2 Rn, q+ 2 Rr, q� 2 Rr, q = q+

� q� > 0, and T 2Rr×n are givenmatrices. � is a random
variable defined on the probability space (� , F,�) with
� � Rr the support of the measure �.

The method given here assumes � is a discrete ran-
dom variable with finitely many realizations (i. e., � is
finite). For continuous distributions the methodmay be
efficiently used on successively finer approximating dis-
tributions and error bounds calculated for each approx-
imation.

Using linear programming duality, E�[Q(x, �)] may
be rewritten as

rX
iD1

�
qCi (E� [�i] � Ti x)C q

Z Ti x

�1

Fi(z) dz
�
: (3)

The objective function of (1) is then a piecewise-linear,
convex function with breakpoints derived from the ele-
ments of � .

Let � i, 1, . . . , � i;ki be the possible values of � i in in-
creasing order, with pi, 1, . . . , pi;ki the corresponding
probabilities. Introduce � i, 0 < � i, 1 and � i;kiC1 > � i;ki
for i = 1, . . . , r with the property that � i, 0 < Tix <
� i;k1C1 for all x feasible for (1) and put pi, 0 = pi;k1C1 = 0.
The stochastic linear program (1) is reformulated as an
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equivalent (deterministic) linear program. The follow-
ing notation is used:

hi j D �i; j � �i; j�1;

for j = 1, . . . , ki + 1, i = 1, . . . , r, representing the lengths
of the intervals of the piecewise linear function, and

gi j D �qCi C q(pi0 C � � � C pi; j�1);

for j = 1, . . . , ki + 1, i = 1, . . . , r, representing the gradi-
ents between breakpoints.

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min cx C gv
s.t. Ax D b;

Ti x �
kiC1X
jD1

vi j D �i;0 i D 1; : : : ; r;

v C s D h;
x � 0; 0 � v; s � h:

(4)

This linear program may be solved using the simplex
method only considering bases with the property that
for each i = 1, . . . , r there is `i such that vi1, . . . , vi`i ,
si;`iC1, . . . , si;kiC1 are basic, si1, . . . , si;`i�1, vi;`iC1, . . . ,
vi;kiC1 are nonbasic, and si`i may or may not be basic.
To reduce the amount of computation involved only
so-called key variables need to be recorded as being ba-
sic. These are and basic xj and basic vi` for which si` is
also basic. There are always m+r key variables and the
working basis,W, is given by the first m + r rows of the
columns corresponding to the key variables in the (full)
basis.

The algorithm corresponds to finding an initial
working basis, then using the (upper bounded) simplex
method with only the working basis inverse stored. For
this, all reduced costs may be calculated with little extra
effort beyond that required for a linear program with as
many variables and only m + r constraints. The choice
of the pivot column is constrained by the requirement
of maintaining a basis with the required property. The
calculation of the pivot row and the pivot step are es-
sentially the same as for the upper bounded simplex
method.
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Simplicial decomposition (SD) can be viewed either as
a generalization of the Frank–Wolfe algorithm [6] (cf.
� Frank–Wolfe algorithm) or an extension of Dantzig–
Wolfe decomposition [5] to nonlinear programs. The
term ‘simplicial decomposition’ is due to B. vonHohen-
balken [22], but the essential idea is generally known as

column generation and has been called inner lineariza-
tion/restriction by A.M. Geoffrion [7].

In general, SD addresses the following problem

min
x2S

f (x); (1)

where f (x) is pseudoconvex. The set S is typically
a nonempty and bounded polyhedron, i. e., S = {x 2 Rn:
Ax� b, x� 0}, A is am × nmatrix, and b 2 Rm. With S
being bounded and polyhedral, problem (1) can be re-
stated as

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min f

 nX
iD1

�i Y i

!

s.t.
nX

iD1

�i D 1;

�i � 0; 8i D 1; : : : ; n;

(2)

where n is the number of extreme points of S, each of
which is represented as Yi. In words, problem (2) finds
a convex combination of the extreme points, Yi, that
minimizes f (x). For real-world problems, the number
of extreme points is generally large and it is impractical
to generate all of them a priori. Instead, SD generates
extreme points one at a time as follows.

0 Select x1 2 S and set k = 1.
1 Let Y k = argminy2Sr f (xk)>y.

IF r f (xk)>(Y k � xk) � 0,
THEN stop and xk is an optimal solution.
ELSE, go to Step 2.

2 Let

�k =

8̂
<̂
ˆ̂:

argmin
�

f (�0Zk +
P
i2Ik

�iY i )

s.t. �0 +
P
i2Ik

�i = 1;

�i � 0; 8i 2 Ik [ f0g;

where Ik � f1; : : : ; kg, and Zk = 0 or x j for
some j 2 f1; : : : ; kg.
Set xk+1 = �k

0Zk +
P
i2Ik

�k
i Y

i and k = k + 1.

Return to Step 1.

Simplical decomposition technique
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Since S is polyhedral, the problem in Step 1 is a lin-
ear program, generally called the subproblem. When
solved by the simplex algorithm, its solution, Yk, is
guaranteed to be an extreme point. In the event that xk

satisfies the stopping criterion, the following sequence
of inequalities demonstrates that xk must be globally
optimal:

8x 2 S : f (x) � f (xk)Cr f (xk)>(x � xk)

� f (xk)Cr f (xk)>(Yk � xk) � f (xk) :

The three inequalities follow from the pseudoconvexity
of f (x), the fact that Yk solves the subproblem, and the
stopping criterion, respectively.

The problem in Step 2, or the master problem, is
structurally the same as problem (2) and finds a convex
combination of Zk and extreme points in Ik that min-
imizes f (x). This convex combination produces a new
point, xk + 1, with a better objective value. To justify,
consider the first order Taylor series expansion of f (x),
i. e.,

f (xk C �(Yk � xk))

D f (xk)C �r f (xk)>(Yk � xk)

C �



Yk � xk




 ˛(xk ;�(Yk � xk));

where lim	! 0 ˛(xk; �(Yk� xk)) = 0.When Step 2 is ex-
ecuted, r f (xk)|(Yk� xk) < 0 and the above expansion
implies that there exists a sufficiently small b� 2 (0; 1)
such that f (xkCb�(Yk � xk)) < f (xk). When Zk and Ik

are properly defined (see below), xk Cb�(Yk � xk) lies
in the convex hull of Zk and Yi, for all i 2 Ik. Since �k

solves the master problem, the following must hold:

f (xkC1) D f (�k
0Z

k C
X

i2Ik

�k
i Y

k)

� f (xk Cb�(Yk � xk)) < f (xk):

So, the objective value decreases after each iteration.
Note that Zk is not necessarily an extreme point of S.

However, Zk and the (index) set Ik provide some flexi-
bility and determine the number of iterations to achieve
an optimal solution. For example, if Ik = {k} and Zk =
xk in Step 2, then SD reduces to the Frank–Wolfe algo-
rithm, which converges in the limit to an optimal solu-
tion.

When I0 = ;,

Ik D
n
i : i 2 Ik�1 and �k�1

i > 0
o
[ fkg;

and Zk = 0, the resulting algorithm is essentially the
same as those in [11,22] and [23], and converges af-
ter a finite number of iterations. For this choice of Zk

and Ik, SD drops or discards extreme points with zero
weight, �k�1

i = 0, to reduce the size of the master prob-
lem and, perhaps, to release computational resources
for other uses as well. To obtain finite convergence, note
that the number of possible index sets, Ik, is finite since
there are only a finite number of extreme points for S.
For each Ik generated by the algorithm, there is an asso-
ciated minimum objective value, f (xk + 1), that is always
decreasing for k � 1. This implies that the algorithm
generates a sequence of distinct Ik. Since the number of
possible Ik is finite, the sequence cannot be infinite, i. e.,
the algorithm must terminate finitely.

For the above choice of Zk and Ik, the Carathéodory
theorem (see, e. g., [2]) guarantees that the cardinal-
ity of Ik is at most rank(A) + 1. Thus, allocating com-
putational resources for storing rank(A) + 1 extreme
points is sufficient to ensure finite convergence. How-
ever, rank(A) + 1 is large for large scale problems and
allocating such a large amount of resources may be im-
practical. As an alternative, D.W. Hearn, S. Lawphong-
panich, and J.A. Ventura [10] proposed the following
extreme point dropping scheme to restrict the cardinal-
ity of Ik to at most r, where r � 1.

1 When k = 1; I1 = f1g and Z1 = x1.
2 For k > 1, let ˇ denote the cardinality of the

set fi : i 2 Ik�1 and�k�1
i > 0g.

2a IF ˇ < r, THEN set
Ik = fi : i 2 Ik�1 and �k�1

i > 0g [ fkg
Zk = Zk�1.

2b IF ˇ = r, THEN set
Ik = fi : i2 Ik�1; i¤ i#; and �k�1

i > 0g [fkg
Zk = xk ,
where i# = argminif�

k�1
i : �k�1

i > 0g.

An extreme point dropping scheme

In Step 2, extreme points with zero weight, i. e., �k�1
i

= 0, are dropped from the master problem in itera-
tion k. When the number of remaining (or positively
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weighted) extreme points is less than r, the new extreme
point, Yk, is added to the master problem (see step 2a).
Otherwise, the new extreme point replaces one of re-
maining extreme points with the smallest weight (see
step 2b) to keep the cardinality of Ik at r. The choices
for Zk in steps 2a and 2b ensure that Zk and the ex-
treme points in Ik always form a p-simplex (see [20]),
a fact essential for proving finite convergence. With
the above extreme point dropping scheme, the result-
ing SD, known as the restricted simplicial decomposi-
tion (RSD), converges finitely when problem (1) has
a unique solution, x�, and r � dim(˚) + 1, where ˚ =
{Yi:rf (x�)|(Yi � x�) = 0, i = 1, . . . , n}. (See [9].) When
r < dim(˚) + 1, RSD can be shown to converge in the
limit to x� using standard arguments in nonlinear pro-
gramming (see, e. g., [9] and [15]).

In practice, a more successful application of SD is in
solving large nonlinear multicommodity flow problems
(see, e. g., [1]) of the form:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
x

f

 CX
cD1

x(c)

!

s.t. Ax(c) D b(c); 8c;
x(c) � 0; 8c;

(3)

where A is a node-arc incidence matrix of a network
withm nodes and n arcs, b(c) 2 Rm is a supply/demand
vector for each commodity c, x(c) 2 Rn is a flow vector
for commodity c, and f (x) is a pseudoconvex travel cost
function. In Step 1 of SD, the subproblem for problem
(3) decomposes into C problems (one for each com-
modity c) of the following form:

y�(c) D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

argmin
y

r f

 CX
c0D1

xk(c0)

!>
y

s.t. Ay D b(c);
y � 0:

(4)

Problem (4) is a shortest path problem and can be
solved efficiently with specialized network algorithms
(see, e. g., [1]). J.D. Murchland [18] first discussed SD
as a method for solving problem (3) that is generally
known as the traffic assignment problem in transporta-
tion science. D.G. Cantor andM. Gerla [4] (see also [8])
implemented SD for solving problem (3) to route mes-
sages in computer communication networks. Later, the

results in [9] and [10] renewed the interest in SD by
demonstrating empirically that RSD efficiently solves
large traffic assignment problems. In [10], the master
problem is solved by a method with at least a superlin-
ear convergent rate, e. g., [3] and [17], and r is relatively
small.

When applied to nonlinear single commodity (e. g.,
[10] and [17]) or dynamic network flow problems (e. g.,
[19]), SD may not be as efficient as other methods. For
these problems, the dimension of ˚ tends to be large
and each extreme point in˚ contributes little as part of
the convex combination that forms x�.

In the literature, there are several extensions and
modifications to SD, restricted or otherwise. First, it
is claimed in [11] that SD also applies to problems in
which S is convex, but not necessarily polyhedral. For
example, S = {x 2 Rn: gi(x) � 0, i = 1, . . . , m}, where
gi(x) is convex on Rn. In this case, a straightforward
application of SD (see [11]) would yield a subproblem
with nonlinear constraints, a problem as complex as
the original. Later, Ventura and Hearn [21] proposed
a modification for RSD in which the subproblem is
a linear program instead.

Second, when applied to problem (3), the represen-
tation of the extreme points can effect the convergence
rate of SD. In particular, the extreme point, Yk, can be
represented either as Yk =

PC
cD1 yk(c), an aggregate

form, or (Yk)| = (yk(1)|, . . . , yk(C)|), a disaggregate
form. The latter renders the master problem larger and
more complex as shown below:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f

0
@

CX
cD1

2
4�0(c)zk(c)C

X

i2Ik

�i (c)yk(c)

3
5
1
A

s.t. �0(c)C
X

i2Ik

�i(c) D 1; 8c;

�i (c) � 0; 8c and i 2 Ik [ f0g:

Despite the increased in problem complexity, T. Lars-
son and M. Patriksson [12] demonstrated empirically
that SD with disaggregate extreme points converges
faster on several real-world traffic assignment prob-
lems.

Third, A. Migdalas [16] introduced an extension
to the Frank–Wolfe algorithm called the regularized
Frank–Wolfe algorithm in which the subproblem has
a nonlinear term in the objective function to control the
distance between Yk and xk. For example, one version
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of the regularized subproblem is

Yk D argmin
y2S�
r f (xk)>y C

1
2
(y � xk)>Dk(y � xk)

	
;

where Dk is a positive definite matrix. In [13], Lars-
son, Patriksson, and C. Rydergren solved the above
subproblem approximately by performing several iter-
ations of the Frank–Wolfe algorithm and showed em-
pirically that the regularized subproblem can improve
the convergence of SD.

Finally, C.H. Wu and Ventura [24] and Lawphong-
panich [14] extended SD to solve problems with side
constraints, i. e., S = {x 2 Rn: Ax � b, Dx � d, x � 0},
where A and b are as defined for problem (1),D is a q ×
nmatrix, and d 2 Rq. Here, Amay have a special struc-
ture that can be exploited computationally, and D, rep-
resenting the side constraints, does not.
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Simplicial decomposition (SD) is a class of methods
for solving continuous problems in mathematical pro-
gramming with convex feasible sets. There are two
main characteristics of the methods in this class:
i) an approximation of the original problem is con-

structed and solved, wherein the original feasible set
is replaced by a polyhedral subset thereof, that is, an
inner approximation of it which is spanned by a fi-
nite set of feasible solutions; and

ii) this inner approximation is improved (that is, en-
larged) by generating a vector (or, column) in the
feasible set through the solution of another approx-
imation of the original problem wherein the origi-
nal cost function is approximated (often by a linear
function).

As such, the class of SD methods may be placed within
the framework of column generationmethods. Another
characteristic of an SD method however is that the se-
quence of solutions to the inner approximated prob-
lems tends to a solution to the original problem in such
a way that the cost function (or, some merit function)
strictly monotonically approaches its optimal value.
Therefore, the class of SD methods also falls within the

framework of iterative descent (or, ascent) algorithms
for continuous mathematical programs.

We consider, for the most part, the solution of the
differentiable optimization problem

(
min f (x);
s.t. x 2 X;

(1)

where f : X! R is pseudoconvex on X (that is, for any
x, y 2 X, rf (x)|(y � x) � 0 implies f (x) � f (y)), and
where X := {x 2 Rn: Ax = b; x� 0n} is a nonempty poly-
hedral set.

The derivation of the method rests on two classi-
cal results on the representation of convex sets and of
points in such sets. The first result is the representation
theorem (e. g., [2,18]), which states that:
i) the set of extreme points pi, i 2 P, of the polyhedral

set X is nonempty and finite;
ii) the set of extreme directions di, i 2 D, is empty if

and only if X is bounded, and if X is not bounded,
then it is nonempty and finite; finally, and most im-
portantly,

iii) a vector x 2 Rn belongs to X if and only if it can be
represented as a convex combination of the extreme
points plus a nonnegative linear combination of the
extreme directions, that is, for some vectors � and�,

x D
X
i2P

�i pi C
X
i2D

�i d i ; (2a)

X
i2P

�i D 1; (2b)

�i � 0; i 2 P; (2c)

�i � 0; i 2 D: (2d)

Thus, in principle, the polyhedral set X can be given an
inner representation in terms of extreme points and di-
rections, and the problem (1) can be cast in the vari-
ables �i and �i instead of in x. The advantage of mak-
ing this problem transformation is that the inner repre-
sentation of X is much simpler than its original, outer,
representation in terms of linear equalities and inequal-
ities; disregarding the definitional constraints (2a), the
set described by (2) is the Cartesian product of a sim-
plex and the nonnegative orthant, an optimization over
which often can be made with little more effort than for
an unconstrained problem (e. g., [3,4]). Furthermore,
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the inner representation may also be useful for inter-
preting the result of an optimization, since the extreme
points and directions may have further significance; in
applications to network flows, for example, the repre-
sentation theorem states that a link flow x 2 X, where
the polyhedral set X describes the flow conservation
and nonnegativity constraints for the network flow, can
equivalently be represented by (or, decomposed into)
the sum of flows on routes and in cycles (e. g., [1, Thm.
3.5]). The latter also explains the origin of the term sim-
plicial decomposition: the variable transformation de-
composes a feasible solution into the sum of variables
that (in the bounded case) forms a simplex.

The disadvantage of the transformation is that since
the number of extreme points and directions of a poly-
hedral set grows exponentially with its dimension, the
transformation introduces an impractically large num-
ber of variables. The practical use of simplicial decom-
position then hinges on the second basic result in the
representation of convex sets, Carathéodory’s theorem
(e. g., [26, Thm. 17.1]). This result states that a point x
in the convex hull of any subset X of Rn can be rep-
resented as a convex combination of at most as many
elements of X as its dimension, dimX (which is defined
as the dimension of its affine hull), plus one. (This num-
ber is not larger than n + 1.) Although Carathéodory’s
theorem is not stated in terms of extreme points and
directions, its natural application in the context of sim-
plicial decomposition is that, in the case of a bounded
polyhedral set, for example, any feasible point can be
described as the convex combination of extreme points
of the set, the total number of which need never exceed
the dimension of the polyhedron plus one. (This result
obviously refines the representation theorem.)

The classical form of the simplicial decomposition
method was first described by B. von Hohenbalken [31]
(see however the end of this article for some earlier ref-
erences to similar algorithms) for the problem (1). The
algorithm alternates between the solution of two prob-
lems. Given known subsets bP and bD of P and D, re-
spectively, f is minimized over the inner approximation
of X which is defined when these subsets replace P and
D in (2), in terms of the variables b�i , i 2 bP, and b�i ,
i 2 bD. (We will denote this problem the restricted mas-
ter problem (RMP); it is also sometimes referred to as
the coordination step.) Notice that we use the notation
b� andb� to distinguish the vectors in the RMP from the

(longer) vectors � and � in the complete master prob-
lem which is equivalent to (1) and is defined by the sys-
tem (2). Further denoting by b� the set of vectors (b�;b�)
satisfying the restriction of the system (2b)–(2c) to the
known subsets bP and bD and utilizing (2a) to substitute
x for (b�;b�) (we write x D x(b�;b�)), the RMP may then
be formulated as

(
min f (x(b�;b�));
s.t. (b�;b�) 2 b�: (3)

Alternately, a profitable extreme point or direction of X
is generated through the solution of an approximation
of (1), in which f is replaced by its first order, linear,
approximation, y 7�! f (x) + r f (x)|(y � x), defined at
the solution, x, to the RMP (3), that is, by the problem

(
min r f (x)>y;
s.t y 2 X;

(4)

this approximate problem is a linear programming
problem, which in general is much easier to solve than
the original one. (This is called the column generation
subproblem, and corresponds to the decomposition step
in some descriptions of column generation methods.) If
the solution to this problem lies within the current in-
ner approximation, then the conclusion is that the cur-
rent solution, x, is optimal in (1), since, then, rf (x)|(y
� x) � 0 must hold for all y 2 X. Otherwise, bP or bD
is augmented by a new element, the resulting inner ap-
proximation is improved (that is, enlarged), and the so-
lution to the new RMP has a strictly lower objective
value than the previous one; the latter result follows
since the strict inequality rf (x)|d < 0 holds (that is,
d defines a direction of descent with respect to f at x),
where d denotes either the direction d := y�x towards
the new extreme point y or an extreme direction. The
iteration is then repeated with the solution of a new col-
umn generation subproblem defined at the solution to
the RMP. In the method of [31], Carathéodory’s theo-
rem is utilized in the validation of a column dropping
rule, according to which any extreme point or direction
whose weight in the expression of the solution x to the
RMP is zero is removed; thanks to the finiteness of P

and D and the strictly decreasing values of f , the con-
vergence of the SD algorithm in the number of RMP is
finite.
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In the case of a convex function f , a finite termi-
nation criterion is automatically supplied, on the one
hand by the upper bound on the optimal objective value
of (1) that is defined by the solution to the RMP, and
on the other hand by the lower bound that is supplied
by the solution to the column generation subproblem;
in fact, letting x be an arbitrary feasible solution to (1),
and x� be any optimal solution to (1), we obtain from
the optimality of x� and by the convexity of f that

f (x) � f (x�)

� f (x)Cr f (x)>(x� � x)

� f (x)Cmin
y2X
fr f (x)>(y � x)g;

(5)

note that the problem defined in (5) is precisely the col-
umn generation subproblem (4) defined at x. A finite
termination criterion for the solution of the RMP can
be defined by the analogous lower bound. In this case,
due to the simple form of the constraints defined by
(2b)–(2d), the lower bound is available directly from
the value of the gradient of f with respect to (b�;b�) at
x D x(b�;b�). Indeed, the lower bound is either (analo-
gously to (5)) given by the current objective value plus

min
i2bP

(
@ f (x(b�;b�))

@b�i

)

� rb	 f (x(b�;b�))>b� � rb
 f (x(b�;b�))>b�
or it is minus infinity (if rf (x)|di < 0 holds for some
i 2 bD).

Assume now that the function f is strictly pseudo-
convex (that is, for any x, y 2 X with x 6D y, rf (x)|(y �
x)� 0 implies that f (x) < f (y) holds), so that the optimal
solution x� is unique, and for simplicity we also assume
that X is bounded. For such problems, an improvement
over the original scheme was devised in [10,11]. The ba-
sis for the improvement is the observation that a par-
ticular feasible solution, such as the optimal one, can
be represented as the convex combination of an often
much smaller number of extreme points than dimX +
1, as implied by Carathéodory’s theorem; in fact, the
highest number of extreme points needed to describe
the optimal solution x� is dimF� + 1, where F� is the
optimal face of X, that is, the face of X of the smallest
dimension which contains x�. (In the present context,
this set may be described by

F� D
˚
y 2 X : r f (x�)>(y � x�) D 0

�
;

a set which is spanned by the extreme points of X that
solve the linear approximation (4) to (1) defined at the
optimal solution.) Based on this observation, they de-
vise a modification of the original scheme, in which the
number of extreme points retained is kept below a pos-
itive integer, r; when this number of extreme points
has been reached, any new extreme point generated re-
places the column in bP that received the least weight in
the solution to the RMP. In order to ensure the conver-
gence of the algorithm, the optimal solution x to the
RMP must also be retained as an individual column
(however not counted among the r columns). They
show that the modified algorithm is finitely conver-
gent in the number of RMP, provided that r � dimF�

+ 1. Referred to as restricted simplicial decomposi-
tion (RSD), the scheme is shown below, for the case of
a bounded set X.

PROCEDURE RSD(r)
(Init): x0 2 X; px := x0; bP = ;; t := 0.
(Sub): Solve (4) defined at xt ) pi t ; it 2 P.
(Augment): it 2 bP) xt is optimal.
j bP j= r) replace an element of bP by it .
j bP j< r) bP := bP [ fitg.

(Master): xt+1 minimizes f over the convex
hull of px and pi ; i 2 bP.
(Update): Let px := xt+1; t := t + 1.

Go to the Subproblem.
END

The value of r is crucial to the performance of the
algorithm. If r � dimF� + 1, then since the number
of RMP is finite, the local rate of convergence is gov-
erned by the local convergence rate of the method cho-
sen for the solution of the RMP; thus, a superlinear or
quadratic convergence rate may be attained if a (pro-
jected) Newton method is used ([11]). If r < dimF� + 1,
however, then the algorithm is only asymptotically con-
vergent, and the rate of convergence is the same as that
of the Frank–Wolfe algorithm (or, conditional gradient
method; which is actually obtained as a special case of
RSD when r := 1), that is, the convergence rate is sub-
linear. Since the threshold value for finite convergence
cannot be estimated from the original data and thus is
unknown a priori, the proper value of rmust in general
be based on computational experience.



3582 S Simplicial Decomposition Algorithms

In column generation methods for linear pro-
grams, such asDantzig–Wolfe decomposition ([16]), the
columns are generated through the pricing operation of
the simplex method in linear programming, which uti-
lizes an estimate of the dual optimal solution. Its ex-
tension to nonlinear programming, nonlinear Dantzig–
Wolfe decomposition (e. g., [18]), also utilizes the pric-
ing operation in the construction of the column gener-
ation subproblem, which in both cases is equivalent to
the result of performing a Lagrangian relaxation of the
original problem using the current estimate of the vec-
tor of Lagrange multipliers; while the column genera-
tion subproblem is nonlinear in the latter algorithm, the
RMP are in both cases linear programs. In contrast, the
class of SD algorithms are column generation methods
where the columns are generated through the solution
of the primal, linearized problem (4), and which thus
does not utilize dual information. However, it is estab-
lished in [14] that Dantzig–Wolfe decomposition is in
fact a special case of simplicial decomposition, when the
latter is applied to a primal-dual (saddle point) refor-
mulation of the linear program. Also for linearly con-
strained nonlinear programs of the form (1), simpli-
cial decomposition may be based on the pricing-out of
a subset of the linear constraints. Identifying a subset of
the constraints defining X as complicating, these may
be priced-out (that is, Lagrangian relaxed) in the col-
umn generation subproblem, and instead included in
the master problem, just as in Dantzig–Wolfe decom-
position for linear and nonlinear programming prob-
lems. Such methods have been devised in [20,28]. It
should be noted, however, that just as in the original
(primal) SD method, the column generation subprob-
lems in these methods are based on the linearization of
the original objective function, and are therefore linear
programs, and their RMP are nonlinear; this is precisely
the opposite to the case of nonlinear Dantzig–Wolfe de-
composition.

The RSD algorithm has been successfully applied
to large scale, structured nonlinear optimization prob-
lems, in particular mathematical programming mod-
els of various nonlinear network flow problems, where
the column generation subproblem reduces to effi-
ciently solvable linear network flow problems (e. g.,
[11,15,23]).

Other special structures in the feasible set X may
also be taken into account efficiently in the construc-

tion of an SD method. For example, assume that the
set X is a Cartesian product of polyhedral sets Xk in
smaller dimensions Rnk , with k2K and

P
k2K nk D n.

(In network flow problems, k could denote a commod-
ity of goods to be transported or a pair of origin and
destination in an urban transportation network.) Not-
ing that the linear column generation subproblem de-
composes into |K| independent linear column gener-
ation problems, it is possible to store extreme points
and directions of the individual (smaller-dimensional)
sets Xk rather than extreme points and directions of
X. The RMP of such a disaggregate simplicial decom-
position (DSD) method ([15]) would then have vari-
ables of the form �ik, i 2 Pk, k 2 K, and likewise for
�ik, and |K| convexity constraints (2b) instead of only
one as in the SD method. The total number of extreme
points and directions is much less in the disaggregated
representation (

P
k2KfPk CDkg in the disaggregated

case, and
Q

k2KfPkCDkg in the aggregated case; [24]).
On the other hand, according to Carathéodory’s the-
orem, the total number of columns needed to express
an optimal solution is in this case bounded above byP

k2K(dim F�k C1), which may be amuch higher num-
ber than dimF� + 1. This result notwithstanding, it has
been observed in applications of Dantzig–Wolfe de-
composition to linear multicommodity network flow
problems ([13]) that a disaggregated representation of
the solution (in this case, as commodity route flows in-
stead of as aggregated link flows) speeds up the con-
vergence of the method. The same conclusion has been
drawn from applications to nonlinear multicommod-
ity network flow problems ([15]) of the DSD algo-
rithm.

Experience with the RSD method has shown that it
makes rapid progress initially, quickly reaching a near-
optimal solution, especially when relatively large values
of r are used and when second order methods are used
for the solution of the RMP, but that it slows down close
to an optimal solution. It is also relatively less efficient
for larger values of dimF�.

The explanation for this behavior is to be found in
the construction of the column generation subproblem,
which utilizes first order approximations of f . The col-
umn generation subproblem of RSD is the same as that
of the Frank–Wolfe (FW) method mentioned earlier,
the quality of whose search directions are known to de-
teriorate rapidly. The reason is that as the sequence {xt}
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tends to an optimal solution, the sequence {rf (xt)|dt}
of directional derivatives of the search directions dt :=
yt � xt tends to zero whereas {dt} does not; thus, the
search directions rapidly tend to become orthogonal to
the gradient of f , and the result of the deteriorating de-
scent property is a decreasing step length in the line
search of this algorithm.

We then make the observation that the RSDmethod
is similar to FW, since the same descent direction-
generating subproblem is used, and that the only differ-
ence between FW and RSD lies in the updating phase,
the latter algorithm using a multidimensional search
(when r � 2) rather than a one-dimensional search,
which one may interpret as a devise for reducing the
zig-zagging effect inherent in the FW algorithm. It is
a natural conclusion from this discussion that better ap-
proximations of f could be exploited in the column gen-
eration phase of SD methods, since then the columns
generated would be of better quality, thus leading to
larger improvements in the inner approximations of
the feasible set. (The counterpart in line search meth-
ods for (1) is that improved approximations of f in
a direction-finding subproblem yield better search di-
rections.)

An extension of the RSD algorithm was made by T.
Larsson, M. Patriksson and C. Rydergren [16] based on
this observation. The motivation behind the nonlinear
simplicial decomposition (NSD) method is that by gen-
erating columns based on better approximations of the
objective function, the sensitivity of the method to the
dimension of the optimal face will be reduced, fewer
columns will be needed to describe an optimal solution,
resulting in fewer iterations, and enabling a smaller
value of the parameter r to be chosen.

The NSDmethod is obtained from the RSDmethod
by replacing the linear column generation subproblem
(4) with

min
y2X
fr f (xt)>yC '(y; xt)g; (6)

where ': X × X ! R is a continuous function of the
form '(y, x), convex and continuously differentiable
with respect to y for all x 2 X, and with the property
that ry'(x, x) = 0n for all x 2 X. Among the possible
choices for ' we mention the following, where diag de-
notes the diagonal part of the matrix and where � t > 0:

'(y; xt) Subproblem
0 Frank-Wolfe

1
2 y
>r2 f (xt)y Newton

1
2 y
>[diagr2 f (xt)]y Diag. Newton

1
2� t y

>y Projection

Even though the finite convergence property will
be lost (because nonextremal points will be generated),
one may expect a more rapid convergence of the NSD
method than the RSD method, both in terms of the
number of iterations needed to reach a given solution
accuracy and in terms of the required solution time,
provided however that the nonlinear column genera-
tion subproblems can be efficiently solved, at least ap-
proximately. In numerical experiments performed on
large scale nonlinear network flow problems, such con-
clusions were indeedmade. It was particularly observed
that the NSDmethod is relatively much less sensitive to
the value of dimF� than is RSD, which permits the use
of a much smaller value of r in the NSD method.

Convergence results for SD methods allow for both
the column generation subproblem and the RMP to be
solved inexactly, thus facilitating its practical use. In
[11], convergence is established for the RSD method,
wherein the RMP is solved using one iteration of New-
ton’s method only. Further developments along these
lines are found in [8,14] for a general class of SD meth-
ods and in [25, Chap. 9] for the NSDmethod. The con-
vergence results established in the latter reference not
only validate inexact computations but also quite arbi-
trary rules both for defining and for dropping columns.

SD algorithms have been extended to handle non-
linear constraints as well. In [30], the column gen-
eration subproblem is made linear by approximating
the nonlinear constraint functions by piecewise linear
functions, reminiscent to the Topkis–Veinott scheme
([29]). The NSD method of [16,25] applies to general
convex sets X directly. A combination of sequential
quadratic programming (SQP) and NSD is devised in
[25, Chap. 9]. There, in the column generation sub-
problem one replaces the nonlinear constraints with
linear approximations, and dual information about
these constraints is included in the objective function.
SD methods for nonlinearly constrained problems are
believed to be efficient, if the nonlinearity is mild, as
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concluded from the computational results of [30]; how-
ever, few applications of SD methods to nonlinearly
constrained problems have been reported.

The class of SD methods has furthermore been ex-
tended to the solution of the general variational in-
equality problem (VIP) of finding x� 2 X such that

F(x�)>(x � x�) � 0; 8x 2 X; (7)

where F: X! Rn is a continuous and monotone map-
ping. If the mapping F satisfies F � rf , that is, it is the
gradient of f , then the VIP defines the first order op-
timality conditions for x� in (1), and the SD method
for the VIP becomes that for (1). If this is not the case,
then F replaces rf in the column generation subprob-
lem (4), and the RMP is defined as the restriction of
the variational inequality problem (7) to the currently
known inner approximation of X. Further, in this case
there is no objective function (or, merit function) im-
mediately available for monitoring the convergence of
the SD method. Column dropping rules in SD methods
for the VIPmust however be based on the improvement
of the method in terms of some merit function, without
which the method may cycle. (This is evidenced by the
nonconvergence of the FW method applied to the VIP;
see [9].) S. Lawphongpanich and D.W. Hearn [19] uti-
lize the primal gap function,

 (x) :D max
y2X

F(x)>(x � y);

which is zero at solutions to VIP and positive elsewhere
in X, to guide the dropping of columns. A related merit
function is used in [27]. The NSD and NSD/SQP meth-
ods are extended to VIP in [25, Chap. 9], there using
the merit function

 (x) :D max
y2X
fF(x)>(x � y) � '(y; x)g:

In contrast to the case of the problem (1), the sequence
of solutions to the RMP in SD methods applied to (7)
does not necessarily yield a monotonically decreasing
sequence of values of anymerit function for the VIP un-
less very restrictive assumptions are made on the origi-
nal data, whence the theoretical properties of SD meth-
ods for VIP are less strong; for example, a consequence
of the property just mentioned is that the finite conver-
gence result for the RSD method cannot be transferred
to the VIP. The solution methods that have been con-
sidered for the RMP for the VIP are generalizations of

those used for the RMP of (1); the most popular ones
are projection algorithms, due to a large degree to the
simple form of the constraints of the RMP; see, e. g.,
[22] for numerical investigations of different algorith-
mic approaches to the RMP.

Larsson, Patriksson and A.-B. Strömberg [17] de-
velop an SD scheme for nondifferentiable convex opti-
mization. There, the gradient rf (x) is replaced by the
set of subgradients, the subdifferential, @f (x), defined by

@ f (x) D

(
� f 2 Rn :

f (y) � f (x)C �>f (y � x);
8y 2 Rn

)
:

It is shown that the utilization of an arbitrary sub-
gradient � f 2 @f (x) in place of the gradient in the col-
umn generation subproblem may lead to the termina-
tion of the algorithm at a nonoptimal solution, since
not all subgradients define descent directions. A mod-
ification of the SD scheme is therefore made, wherein
the subgradients evaluated in the course of solving the
RMP are averaged with weights proportional to the step
lengths used in the solution method for RMP; this vec-
tor of averaged (or, ergodic) subgradients is then shown
to yield an improved inner approximation. An alter-
native, and probably computationally much more effi-
cient, means to define a linear column generation sub-
problem with the properties required is through the
generation of (approximately) shortest "-subgradients.

The first simplicial decomposition type methods
evolved from the experience of the poor convergence
of the FW method (e. g., [5,12,21]). The perhaps first
thorough theoretical investigation of SDmethods is due
to C.A. Holloway [12]. Its close relationships to col-
umn generation methods however make it difficult to
trace its earliest history; for example, already the first
urban transportation planning studies in the 1950s ap-
plied heuristics resembling the DSD algorithm (see [24]
for an overview of the history of such methods). A re-
lated class of methods also exist for least-distance and
other problems in quadratic programming (e. g., [7]).

Further surveys on simplicial decomposition meth-
ods, their history and their relationships to column gen-
eration, are found in [15,24,25].

See also

� Decomposition Principle of Linear Programming
� Generalized Benders Decomposition
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�MINLP: Generalized Cross Decomposition
�MINLP: Logic-based Methods
� Simplicial Decomposition
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Successive Quadratic Programming: Decomposition

Methods
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Simplicial path following methods are relatively new in
the area of integer programming (cf. � Integer pro-
gramming). They are based on a triangulation of Eu-
clidean space and a pivoting algorithm which, for a re-
strictive class of problems, terminates with an integral
solution or shows that no such solution exists. The path
constructed consists of a sequence of neighboring sim-
plices, the vertices of which are integral lattice points.

Simplicial methods originated in fixed point theory,
where they are used to approximate fixed points of con-
tinuous mappings [7,18].

In the area of continuous mathematics they have
been applied successfully in disciplines such as game
theory [19], the approximation of roots of systems of
complex polynomials [8,13], economics and economet-
rics [20] and they have provided a useful machinery to
prove a variety of intersection lemmas [10,16].

Returning to discrete problems again, the essentials
of the method consist of the following ingredients:
� triangulations
� labelings
� pivoting
� termination- and noncycling arguments.

The simplicial algorithms developed so far yield
a conclusive answer to the feasibility problem: ‘Does
a given bounded set in Euclidean space contain a lattice
point?’ for a restrictive class of sets, the so called max-

closed sets. In fact, for this class, they provide a poly-
nomial time algorithm (for polyhedral cases) which
generalizes earlier work of A. Pnueli [17], F. Glover
[11], R. Chandrasekaran [1] and R.W. Cottle and A.F.
Veinott [3].

In the sequel we shall pay attention to the no-
tions quoted above. Also, some intrigueing complex-
ity issues which arise when studying unimodular max-
closed form transformations are discussed briefly. Fi-
nally, we discuss the use of simplicial methods outside
this tractable class of max-closed sets, namely to locate
regions of specific interest, and their possible incorpo-
ration into branching algorithms.

Triangulations

A triangulation of Euclidean space is a set of simplices
which union covers the space andmoreover satisfies the
condition that any two simplices from this set intersect
in a member of this set.

For our purposes we need a triangulation which
uses all lattice points as zero-dimensional elements and
triangulates the unit-cube together with all its integral
translates. There are various ways to triangulate space
in such a manner. An extensive study on triangulations
and simplicial methods is [4].

Labelings

The labelings form the most crucial part of the simpli-
cial methods. It is through the labeling device that the
original problem is translated to a format where the ar-
guments of the pivoting algorithms adapt to. There are
two cases to consider, integer labeling and vector label-
ing.

Integer Labeling

This part needs some introductory notations and con-
ventions. Given a 2 Rn the following cones play a cru-
cial role:

P(a) D fx 2 Rn : xi � ai for i D 1; : : : ; ng ;

Pk (a) D fx 2 Rn : x 2 P(a) and xk D akg ;

N(a) D fx 2 Rn : xi � ai for i D 1; : : : ; ng ;

Nk(a) D fx 2 Rn : x 2 N(a) and xk D akg :
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Now suppose a set S � Rn is given. A point a 2 Rn car-
ries label k if (following [15])

S \ Nk(a) D ;:

According to the above, a point may carry more la-
bels (in which case the smallest such is chosen, for ex-
ample) or it may carry no label at all. Drawing some
pictures, one sees that a labeling device as above parti-
tions Euclidean space into n regions, except for points
in S itself and except for some part which is located near
the so called Pareto boundary of S. The latter part might
vanish if S has a specific shape, which shall be precisely
the case for the max-closed sets that will be discussed
later on.

Of course, it is understood in this context that the
set S is accessible to questions whether some point car-
ries label k. In case S is polyhedral, linear programming
answers these questions. If S is convex, one needs con-
vex programming to do so. In all cases of interest we
assume that membership questions related to S are rela-
tively easy as long they are not specified to lattice points
of S, that is, as long as they deal with S as a continuous
set!

In [5,6] it is shown that if S is a simplex (knapsack
problem) one can even avoid the use of linear programs
in establishing labels. An explicit device is available in
that case.

Vector Labeling

Relative to a set S � Rn we can associate to any point
a 2 Rn the vector which starts at a and ends at a point
of S nearest to a. Here S is assumed to be closed, and
preferably convex, in which case this vector is unique.
The reader may notice that now all points carry a la-
bel! This labeling device was introduced in [15] where
it is shown that it can be used to obtain similar re-
sults as provided by integer labeling rules but, more-
over, enables a pivoting algorithm to continue where it
would terminate in the former case due to the lack of
labels!

Pivoting

We shall explain the pivoting structure only in the case
where integer labelings are used. See [15] for the more
complicated process involving vectors. Also, we restrict

Simplicial PivotingAlgorithms for Integer Programming, Fig-
ure 1
Pnueli’s algorithm

ourselves here to full-dimensional pivots, which lead
from a n + 1-dimensional simplex of the triangulation
to a neighboring one. Although varying dimension piv-
oting algorithms [6] are essential in speeding up perfor-
mance, they involve rather technical details and go be-
yond the scope of this overview.

Before going into simplicial pivoting we discuss
Pnueli’s algorithm [17] first. Because of introductory
purposes we will present a strongly modified form of
it.

A set S�Rn is specified, together with a lattice point
u, being an upper bound for S; this means that S�N(u).
A lower bound for S is any lattice point ` for which
N(`) \ S = ;. Clearly, if S is bounded, it has both up-
per and lower bounds in the above cone-like sense. In
the sequel ek denotes the kth unit vector. Now the mod-
ified form of Pnueli’s algorithm (see Fig. 1 for a two-
dimensional example) consists of the following iterative
procedure:

1 let x0 = u
2 if x j has label k let x j+1 = x j � ek .

It is not at all that hard to see that, as long as the
algorithm runs, we have all integral lattice points of S
contained in N(xj). This means that the algorithm ter-
minates in three possible states:
1) The iterate xj is recognized as a lower bound. S is

proven to contain no integral solutions.
2) The iterate xj has no label. If this is because xj 2 S we

have located a solution.
3) The iterate xj has no label and, unfortunately,

xj 62 S.
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Start A simplex of the triangulation is located
with the following property: all labels
from 1; : : : ; n are present as labels of the
n+1 vertices of the simplex involved. Such
a simplex can easily be found near an up-
per bound of S (as is done in Fig. 2). In
the case of an arbitrary starting, varying
dimension algorithm [6] such a simplex
shows up during the execution of the al-
gorithm itself!

Pivot If a simplex carrying all labels is found,
two vertices of this simplex must carry
the same label. These two vertices define
two neighboring simplices of the trian-
gulation: those two full dimensional sim-
plices which intersect the given one in one
of the two facets opposed to the two ver-
tices involved. Now one of those simplices
is supposed to represent the previous state
of the algorithm. The next state is defined
as the other simplex. Thus a new lattice
point is found, its label is calculated, and
when it has one, a new simplex is found
carrying all labels, one of which occurs
twice at a vertex.

As shall become clear later, 3) cannot happen when-
ever S is max-closed. Pnueli’s algorithm in the above
form is extremely simple and it runs (as long as it runs)
in polynomial time if S is polyhedral: it uses at most

n
nX

iD1

(ui � `i)

linear programs to travel from an upper bound u to
a lower bound `. A disadvantage however is that it can-
not start at an arbitrary point, in the neighborhood of
which an integral solution is expected for some rea-
son whatsoever (this remark will turn out to be even
more relevant when we will deal with the unimodular
transformations later). Simplicial algorithms are much
more flexible with respect to starting conditions and
this is precisely the reason why they deserve attention
as a substitute for Pnueli’s algorithm.

We now turn to the pivoting structure (see Fig. 2)
(Comparing Fig. 1 and Fig. 2, one might prefer Pnueli’s
algorithm above the simplicial one; however, note the
latter can start everywhere.)

Simplicial PivotingAlgorithms for Integer Programming, Fig-
ure 2
A simplicial algorithm

The above construction of a path of neighboring
simplices forms the basic idea of each simplicial al-
gorithm. Again we emphasize that in arbitrary start-
ing, variable dimension algorithms the construction is
considerably more complicated. However sophisticated
a simplicial algorithm may be, the ultimate goal is to
create a sequence of almost solutions, thereby carefully
avoiding cycling.

Termination and Noncycling Arguments

An elegant feature of simplicial algorithms is that, if
special care is taken in the construction of the sequence
of simplices, cycling is impossible. Moreover, they are
designed in such a way that they cannot tend to infinity
without passing an upper or lower bound of the set S.
This means that, as long as the algorithm runs, it cre-
ates new candidate solutions on every iteration. Using
these arguments one can prove that
1) The algorithm reaches a recognizable lattice point

(which can be an upper bound or a lower bound,
depending on the starting position and the state of
the algorithm) in which case S is proven not to con-
tain any lattice point. The argument is similar but
slightly more involved than in Case 1 to Pnueli’s al-
gorithm and was first used in [5]:
If v is a lattice point of S the set Pk(v) clearly does
not contain points carrying label k. Therefore the
algorithm cannot pass this set! In order to pass it,
it would have needed all labels there to be present.
As a consequence, the algorithm cannot pass from
P(v) to a lower bound or vice versa, without hitting
v or another solution. Hence it cannot run between
an upper bound and a lower bound without hitting
a solution when there is one.
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2) The algorithm encounters a point carrying no label.
If S is max-closed (see below) this must be a solu-
tion.

Max-Closed Sets

Following [15] a set S is called max-closed if it satisfies

x; y 2 S ) max(x; y) 2 S

where

max(x; y) D (max(x1; y1); : : : ;max(xn ; yn)):

As one may verify, the following generalities are easily
established:
1) Translations map max-closed sets to such sets.
2) Intersections of max-closed sets are max-closed.
3) Inequalities of the form xi � ˛i and xi � ˇi define

max-closed sets.
4) An inequality of the form

c1x1 C � � � C cnxn � c

defines a max-closed set whenever at most one of
the ci is positive. Special features around these kinds
of inequalities in integer programming were already
investigated in [1,11,12,17]. Of special interest are
the inequalities of this type on two variables: They
arise as integer programming reformulations of the
simultaneous Diophantine approximation problem
[14].

5) If f is a monotone increasing function in each of its
variables, the set {(x, z): f (x) � z} is max-closed.

6) Max-closed sets need not be polyhedral, nor need
they be convex. They need not even be connected!

7) A function g is called max-closed whenever it satis-
fies

g(max(x; y)) � max(g(x); g(y)):

Such functions define max-closed sets by the in-
equalities g(x)� � .

8) A bounded max-closed set contains a unique coor-
dinatewise maximum point, that is, a u with S �
N(u).

Based on the above properties it is seen that the fol-
lowing algorithm solves the integer feasibility program
whenever S is defined by inequalities of the type men-
tioned in 4):

1 maxx2S
P

xi .
2 If x solves Step 1 let u = bxc, the lattice point

obtained by rounding the xi downwards.
3 Let S := S \ N(u) and repeat.

The algorithm sketched above can be found inmore
or less comparable form in [1,11,17]. It only uses

nX
iD1

(ui � `i)

linear programs but it is subjected to the recognition
problem: ‘Is a given set S definable by inequalities of the
form mentioned in 4)? Or, more generally, is S max-
closed?’

Our modified form presented earlier requires more
linear programs to run, but it provides a correct an-
swer whenever it has run without halting between an
upper and lower bound, without having checked S first
on max-closedness. In other words: it avoids the recog-
nition problem.

Max-closed sets have an important analogue in the
area of computational logic. There, so called Horn for-
mulas, constituting the basics of data-base-reasoning,
play an important algorithmic role. The reader familiar
with Horn formulas shall certainly recognize property
4) above. Also, Pnueli’s algorithm in the form presented
above recalls the single-lookahead-unit-resolution pro-
cedure. See [2,9,21]. V. Chandru and J.N. Hooker, us-
ing results of Chandrasekaran established this interest-
ing link.

Resuming the results so far: Pnueli’s algorithm, or
a simplicial substitute of it, conclusively answers the
question whether a max-closed set S contains a lattice
point. This is because of the following theorem.

Theorem 1 If S is max-closed, the only points carrying
no label are the points of S itself.

We emphasize that max-closedness is a sufficient con-
dition for the above algorithms to run in a conclu-
sive manner. But for these algorithms to run it is not
a necessary one: they might even occasionally run con-
clusively (that is, never encountering a non labeled
point which is not a solution) whenever S is not max-
closed.
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Unimodular Max-Closed Form Transformations

Bounded linear integer programming should have
turned out to be an easy job in case polyhedral sets
would have been automatically max-closed. Unfortu-
nately, this is not the case. An important result, how-
ever, is that simplices can be brought into max-closed
form through a unimodular transformation [17]. This
transformation can be found in a polynomial number
of arithmetical operations. This is the more intrigueing
since the problem of finding a lattice point in a simplex
(knapsack problem) isNP-complete. The breakdown of
this transformation approach is that after transforming
a simplex into max-closed form the number

nX
iD1

(ui � li)

might grow exponentially with the dimension. For this
reason, an arbitrary starting algorithm certainly is to be
favored over one which has to start at an upper bound,
at least in cases where solutions exist.

Transforming arbitrary polyhedral sets (unimod-
ularly) into max-closed form is not possible. There-
fore, simplicial methods clearly are incomplete methods
when they are applied to arbitrary sets. They return no
answer in case a point is encountered which carries no
label and is not a solution, before they have entered the
upper or lower bound area. As indicated earlier, vec-
tor labeling avoids this situation and simplicial meth-
ods using this kind of labeling keep running until either
a solution is encountered or a specific region of interest
is reached: a so called twinplex [15].

A twinplex consists of a simplex of the triangulated
region which is very specific in the sense that the n +
1 associated distance vectors point in all possible direc-
tions. To be precise, these n + 1 vectors a1, . . . , an+1 sat-
isfy

nC1X
iD1

�i ai D 0

for a nontrivial � � 0. Moreover, these vectors a1, . . . ,
an+1 determine n+1 valid inequalities, each of which is
violated by at least one of the vertices of the simplex in-
volved. Intuitively, a twinplex is located where the set
S is locally the fattest. Based on this intuition it is sug-
gested in [15] to cut S at this place in two or more com-
ponents, thereby creating a branching algorithm where

simplicial methods are incorporated. The various com-
ponents are transformed then in a manner which make
them more likely to be max-closed. Thus a branching
tree is designed where tighter max-closed relaxations of
the problem are solved with increasing depth.

Yet another possibility, when meeting a nonsolu-
tion point a without (integer) label is to go into a re-
cursion: If S \ Nk(a) 6D �, decrease dimension and find
out whether S \ Nk(a) contains a lattice point. If not, a
can be assigned label k after all and the simplicial search
continues again in full dimension. In this approach it is
suggested to select an index k for the recursion which
has a large effect on the non max-closedness of the
problem. For example, if S is polyhedral, one selects
an index k which appears most often with a nonnega-
tive coefficient. Exploiting twinplexes and incorporat-
ing simplicial algorithms in branch and bound search
trees is still an area under investigation. In the satisfia-
bility area, however, branching algorithms which tend
to create Horn-like subproblems with increasing depth
have been studied with success.
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For NP-hard optimization problems, the use of ex-
act algorithms for the evaluation of the optimal so-
lution is computationally intensive requiring an effort
that increases exponentially with the size of the prob-
lem. In practice, exact algorithms are used for solv-
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ing only moderately sized problem instances. This re-
sults in the development of heuristic optimization tech-
niques which provide good quality solutions in a rea-
sonable amount of computational time. One such pop-
ular technique is simulated annealing (SA) which has
been widely applied in both discrete and continuous
optimization problems ([1,4]). SA is a stochastic search
method modeled according to the physical annealing
process which is found in the field of thermodynam-
ics. Annealing refers to the process of a thermal sys-
tem initially melting at high temperature and then cool-
ing slowly by lowering the temperature until it reaches
a stable state (ground state), in which the system has
its lowest energy. S. Kirkpatrick, C.D. Gelatt and M.P.
Vecchi [7] initially proposed an effective connection
between simulated annealing and combinatorial opti-
mization (cf.� Evolutionary algorithms in combinato-
rial optimization), based on the original work in [9].

The main advantage of the SA algorithm is its abil-
ity to escape from local optima by using a mecha-
nism which allows deterioration in the objective func-
tion value (OFV). That is, in the optimization process
SA accepts not only better than previous solutions, but
also worse quality solutions controlled probabilistically
through the temperature parameter T. More particu-
larly, in the first stages of SA where T is relatively high,
the search of the solution space is widely ‘explored’ so
that different solution directions are identified, and of-
ten ‘bad’ solutions are accepted with high probability.
During the course of the algorithm the temperature T
decreases in order to steadily reduce the probability P
of accepting solutions that lead to worse objective func-
tion values. With the allowance of controlled ‘uphill’
movements one can avoid the entrapment to local op-
tima and, eventually, higher quality solutions can be ob-
tained.

There are many factors that have a strong impact on
the performance of the SA algorithm:
� The initial temperature T1. A high value of T1 means

that the probability P of accepting inferior solutions
is also high, leading to a diversified search in the first
iterations of the algorithm. With low values of the
initial temperature the search becomes more local-
ized.

� The thermal equilibrium. This is the condition in
which further improvement in the solution cannot
be expected with high probability.

� The annealing schedule, which determines in what
point of the algorithm and by how much the tem-
perature T is to be reduced.
Now consider a minimization process. Let �E de-

note the change of the OFV between the current state
and the state under consideration that occurs as T de-
creases. This change corresponds to the change in the
energy level in the analogy with physical annealing.
Then the probability P of accepting a worse quality
solution is equal to e��E/(kBT), where kB is the Boltz-
mann constant. Simulated annealing is presented below
in pseudocode:

PROCEDURE simulated annealing()
InputInstance();
Generate randomly an initial solution;
initialize T;
DO T > 0

DO thermal equilibrium not reached!
Generate a neighbor state randomly;
evaluate �E;
update current state
IF�E < 0 with new state;
IF �E � 0 with new state with prob-
ability e��E/(kBT);

OD;
Decrease T using annealing schedule;
OD;
RETURN (solution with the lowest energy)

END simulated annealing:

A pseudocode for simulated annealing procedure

The following example (the quadratic assignment
problem, QAP) illustrates the basic principles of SA in
combinatorial optimization. The QAP is defined as fol-
lows.

Given a set N = {1, . . . , n} and two (n × n) matrices
F = (f ij) and D = (dkl), find a permutation p of the set N
that minimizes the following function:

nX
iD1

nX
jD1

fi jdp(i)p( j):

In the context of location theory one uses the QAP for-
mulation to model the problem of allocating n facilities
to n locations with the objective to minimize the cost
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associated not only with the distance between locations
but also with the flow. F and D correspond to the flow
and distance matrices respectively [11].

Let Ti represent the temperature at stage i of the
procedure and T1 > . . . > Tf represent the anneal-
ing schedule. Then the application of SA to the QAP
([2,12]) can be described with the following steps:
� Start with a feasible solution (permutation). Make

an exchange between two randomly selected per-
mutation elements (2-exchange). Evaluate the con-
sequent change �E.

� While �E < 0 repeat the above step. If �E � 0 then
randomly select a variable x from a uniform distri-
bution U(0, 1). Accept the pair exchange if x <

P(	E) D e
��E
Ti , and repeat the process.

� The system remains at stage i until a fixed number of
pair exchanges (equilibrium) has taken place before
going to the next stage.

� The procedure stops when all the temperatures in
the annealing schedule have been used, i. e. when
i > f .
Simulated annealing has been used to solve a wide

variety of combinatorial optimization problems, such
as graph partitioning and graph coloring ([5,6]), VLSI
design [7], quadratic assignment problems [2], image
processing [3] and many others. In addition, imple-
mentations of SA in parallel environments have re-
cently appeared, with applications in cell placement
problems, traveling salesman problems, quadratic as-
signment problems, and others [10]. General refer-
ences on simulated annealing can be found in [1] and
in [8].
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Proteins are essential molecules for the functioning of
biological systems. They are linear polymers, with the
monomeric units drawn from a set of 20 amino-acids.
The number of amino-acids in a protein ranges from
tens to thousands. In their biologically active state, pro-
teins assume, out of the immense number of possible
configurations, a unique state, the so-called native state.
How the protein chain folds into this native state is the
essence of the protein folding problem. Leaving aside
the actual kinetics of the folding process, of great in-
terest and pragmatic value is even the prediction, by
any means, of the three-dimensional structure from the
knowledge of only the sequence of amino-acids and
the potential of interaction between the atoms in the
amino-acids.

If one adopts as a working hypothesis that the na-
tive state is that which minimizes the protein’s potential
energy, then the above prediction now reduces, given
a potential energy as a function of the positions of the
atoms in the protein, to an optimization problem. This
has been a view which has been advocated by H.A.
Scheraga as the ab initio solution of the protein struc-
ture prediction problem [7].

How can one estimate the potential energy, which
will serve as the objective function in the optimiza-
tion procedure? Commonly used empirical potentials
for proteins [5] usually have the form

U(rN )

D
X
pairs

1
2
kb(b � b0)2 C

X
bond angles

1
2
k
 (� � �0)2

C
X

dihedral angles

k�[1C cos(n� � ı)]

C
X

nonbonded pairs i; j

4�i j
���i j

r

�12
�
��i j

r

�6�

C
X

nonbonded pairs i; j

qi q j

�r
:

The potential energy U(rN) of a protein with N atoms
having a certain configuration rN in the 3N-dimen-
sional configuration space is modeled by harmonic
bond terms with force constant kb and bond length b,
bond angle terms with force constant k
 , dihedral angle
terms with force constant k� , multiplicity n and phase
ı, van der Waals terms of the Lennard–Jones type with
parameters � ij and �ij, and Coulombic terms, with qi the

charges and � the dielectric constant. The exact value of
the parameters will depend on the identity of the par-
ticipating atoms.

Several related physical problems have been shown
to suffer from NP-hardness, i. e., to find their optimal
solution, a search algorithm requires a simulation time
which scales with the size of the system faster than any
polynomial function. Among them are the ground state
determination of atomic clusters [24] or various spin
glass models [4]; demonstrations that the protein fold-
ing problem is NP-hard have also been given [13].

Since the problem is NP-hard, heuristic algorithms
must be sought for its solution. From the variety of ap-
proaches developed (for a review see [20]), we focus
on the method of simulated annealing [9] as applied to
proteins. It has an obvious and physically interpretable
application. Once a cooling schedule is chosen, repre-
sentative configurations of the allowed micro-states are
generated by methods either of the molecular dynam-
ics (MD) or Monte-Carlo (MC) type [6]. For proteins,
simulated annealing is traditionally built on an MD ap-
proach where the dynamics of the system is simulated
by integrating the Newtonian equations of motion and
the temperature is controlled through some form of
coupling to a heat-bath. If the MC approach is used,
after having drawn a new configuration, it is accepted
or rejected according to an updating probability of, for
example, the Metropolis type [12]

p D min
�
1; exp (�ˇ	V)

�
; (1)

where ˇ = 1/kT and � V is the change in potential en-
ergy. This acceptance probability has the desirable fea-
tures that
i) it obeys detailed balance; and
ii) it reduces to a steepest descent minimizer at low

temperature (where only moves which decrease the
potential energy are accepted).

In addition to the standard Metropolis Monte-Carlo
protocol, several other smarter MC algorithms have
been designed, based on atomic moves biased by the
forces acting upon the atoms in the molecule [16,18].

Substantial improvements to the method of sim-
ulated annealing can be obtained by propagating not
just one phase point through configuration space, but
a whole distribution of points. In the method titled
Gaussian density annealing [11], the probability den-



Simulated AnnealingMethods in Protein Folding S 3595

sity is approximated by a single Gaussian distribution
which is a product of the individual distributions for
each atom. This Gaussian distribution is propagated as
the temperature decreases according to the Bloch equa-
tion, and the dependence of the first two moments of
the distribution (i. e., measures of its center position
and of its width) is followed as a function of the inverse
temperature.

With r the d-dimensional vector of Gaussian ran-
dom variables, the multivariate probability density
function in the spherically symmetric case has the form

�(r; ˇ) D (2
�2)
�d
4 e

(r�r0)2

4�2 ;

where the center of the packet is at r0, and the second
moment isM2 = d�2. For many degrees of freedom, the
many body density distribution can be approximated as
a product of single body density distributions, each with
its own center and variance.

The differential equations describing the evolution
explicitly in the inverse temperature, obtained from the
reduced Bloch equation, are found to be

dr0
dˇ
D �

1
d
M2rr0 hUi ; (2)

dM2

dˇ
D �

1
d2

M2
2r

2
r0 hUi ; (3)

where hUi is the potential energy averaged by weight-
ing with the Gaussian probability density. Note that the
center r0 moves in a steepest descent on the effective po-
tential hUiwhile the width of the distribution adjusts to
the curvature of the effective potential.

A variant of the Gaussian density annealing has
been applied by C. Tsoo and C.L. Brooks [23], for the
study of optimization of water clusters. The popular
diffusion equation method of Scheraga and coworkers
[10] exists as a special case of the Gaussian density an-
nealing method when all Gaussian packets are charac-
terized by the same variance.

Of particular interest and promise are two related
methods. The first is the elegant packet annealing
method of D. Shalloway and coworkers [15] of which
the Gaussian density annealing method can be shown
to be a special case. The second is the locally enhanced
sampling (LES) method of R. Elber and coworkers [17].
The LES method has has been applied to complex sys-
tems such as solvated peptides with excellent results. It

has the additional advantage that it is relatively simple
to implement. These and other related methods have
recently been reviewed [20].

The potential smoothing algorithms based on
aGaussian smoothing transform of the potential energy
surface are quite effective for a large number of systems.
For a complicated biomolecular potential energy sur-
face it is possible to carry out the smoothing transfor-
mation approximately by fitting the nonbonded poten-
tial functions to Gaussians or exponentials. However,
there is computational overhead associated with com-
puting these transformed functions. It has recently been
shown that it is possible to derive all the benefits of the
Gaussian smoothing transform while carrying out no
explicit transform of the potential energy function. The
method substitutes a ‘top hat’ (impulse) function for the
Gaussian in the smoothing transform. In one dimen-
sion the result is that the force on the smoothed po-
tential is simply the difference in the potential energy
evaluated at each side of the top hat divided by twice
the top hat’s width – that is, a finite difference formula
for the force. Since the width of the smoothing func-
tion is not always small, this exact force derived for the
smoothed potential can be thought of as a ‘bad deriva-
tive’. Most significantly, it is possible to use this method
to smooth the Boltzmann probability distribution func-
tion. This approach is similar in spirit to the packet an-
nealing algorithm of Shalloway and coworkers, which
involves a Gaussian smoothing of the Boltzmann dis-
tribution [15]. However, the method of bad derivatives
requires no explicit integral transform. Themethod was
applied to isolate low lying energy minima for a small
peptide with excellent results demonstrating the supe-
riority of the method to standard Gaussian smoothing
algorithms [3].

Other recent improvements of the simulated an-
nealing method include the use of the Tsallis probability
distributions [19]. In the Tsallis formalism, a general-
ized statistics is built from the generalized entropy

Sq D k
1 �

P
pqi

q � 1
; (4)

where q is a real number and Sq tends to the informa-
tion entropy

S D �k
X

pi ln pi (5)
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when q ! 1. By means of maximizing the Tsallis en-
tropy with the constraints
X

pi D 1 and
X

pqi �i D const;

where �i is the energy spectrum, the generalized proba-
bility distribution is found to be

pi D
�
1 � (1 � q)ˇ�i

�

Zq
; (6)

where Zq is the generalized partition function. This
distribution goes to the Gibbs–Boltzmann distribution
when q tends to 1. But for q 6D 1, the probability dis-
tributions have power-law tails, and are thus broader
than the Gibbs–Boltzmann distributions. This delocal-
ization of the distribution is the essential feature that al-
lows more ample exploration of the configuration space
and faster cooling schedules.

A typical implementation of a generalized simulated
annealing algorithm has been proposed by I. Andri-
cioaei and J. Straub [2] (for a variety of MD and MC
based sampling algorithms of the Tsallis class, see [21])
and has the following structure:
1) generate trial moves by the method of choice;
2) accept trial moves with probability

p D min

2
41;

�
1 � (1 � q(T))ˇEnew

1 � (1 � q(T))ˇEold

� q(T)
1�q(T)

3
5 (7)

that obeys detailed balance;
3) reduce the temperature and reduce q such that

limT! 0 q(T) = 1 and go to 1).
At constant temperature, the sampling converges

towards the Tsallis equilibrium probability distribution
in (6). As temperature decreases, the parameter q is var-
ied as a monotonically decreasing function of tempera-
ture. The steepest descent behavior is imposed by start-
ing with a convenient value of q at the initial tempera-
ture and by having q tend towards 1 as the temperature
decreases during the annealing schedule. Since q! 1
at low T, the desirable reduction to a steepest descent at
low temperature is preserved.

Interestingly enough, it was shown [1], that when
the maximum entropy formalism is applied to the en-
tropy postulated by Tsallis (4) one is able to recover
the more general Levy probability distributions (cor-
responding to fractal random walk, the dimension of

which is determined by q), which a variational entropic
formalism based on the Boltzmann entropy is unable to
do. At initial values of q(T) > 1, a Markov chain gener-
ated at the initial temperatures would converge towards
a Levy distribution. For example, in the particular case
of q = 2 and a harmonic potential, the Levy distribution
is a Cauchy–Lorentz distribution which is the same dis-
tribution used for trial moves in the fast simulated an-
nealing method of H. Szu and R. Hartley [22].

Of importance is to study how does the simulated
annealing time depend on the features of the potential
energy surface of the proteins. One can derive a sim-
ple scaling relation for the optimal cooling schedule in
a simulated annealing optimization protocol. The rel-
evant energy scales of U(rN) are �U, the difference in
energy between the ground and first excited state min-
ima, and U‡, the highest barrier on the potential sur-
face accessed from the global energy minimum. The fi-
nal temperature reached in a simulated annealing run
must be small enough so that at equilibrium the mole
fraction in the global energy minimum basin is signifi-
cant.

The time that the trajectory must spend at the low-
est temperature to ensure that the equilibrium distri-
bution is sampled is at least �min, the time required to
surmount the largest barrier separating the global en-
ergy minimum from other thermodynamically impor-
tant states, which can be shown to go as

�min �

�
U(

	U

� q
(q�1)

:

In the limit q ! 1 of Gibbs–Boltzmann statistics,
one finds that

�min � e
U�
�U :

The time for classical simulated annealing increases ex-
ponentially as a function of the ratio of the energy scales
U‡/�U. However, for q > 1 the situation is qualitatively
different. As a result of the weak temperature depen-
dence in the barrier crossing times, the time for sim-
ulated annealing increases only weakly as a power law
[21]. Given the large separation in energy scales on the
potential energy surface of proteins, and the large value
of U‡/� U, the generalized simulated annealing is ex-
pected to be well suited for problems of global opti-
mization as one encounters in protein folding.
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The algorithm based on the generalized Tsallis
probability distribution has been recently adopted and
employed for proteins by U.H.E. Hansmann and Y.
Okamoto [8]; see [14] for a review of other generalized
ensembles as applied to the protein folding problem.
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Introduction

In applied work, there is often no a priori unique func-
tional form and parametrization for models of empiri-
cal processes, nor are there generally accepted ones. For
many empirical processes the functional form and the
parameters of the system are not known and must be
estimated from the data and the optimal control de-
rived [10].

The model of a phenomenon must consider suit-
able functional forms for the merit function and for
the constraints, and determine suitable parameters for
these and suitable inputs of the control variables to ob-
tain a specified set of output variables which will render
the merit function a minimum (maximum), possibly
global. Since the estimation problem is usually posed as
an unconstrained optimization problem and determin-
ing the optimal control is an optimization problem, two
optimization problems must be solved.

Except for simple model categories, interactions oc-
cur between the estimation space, where the values of
the variables are determined, and the control space,
where the optimal control is derived [7], so there is
a variational aspect with regard to the optimal con-
trol to be analyzed. To avoid severe suboptimization all
the unknowns must be determined at the same time,
by solving a single more general optimization prob-
lem.

To achieve an efficient control of an empirical pro-
cess, a mathematical programming problem must be
solved simultaneously in the estimation and control
spaces, to determine a sufficiently accurate estimate of
the functional, form and the parameters and the least-
cost solution of the optimal control problem.

Statistical conditions have been studied [19], and
empirical aspects of the approach have been consid-
ered [2,3].

Definitions

To control phenomena of any type [10], including
problems of pathological conditions [3], a set of deci-
sions regarding what are the best actions for their con-
trol, so as to render optimal the merit function, are con-
sidered. Three approaches can be indicated by which
the problem could be specified and solved:
1. Ad hoc methods may be used, such as calibration,

simulation, experience or intuition, which are lim-
ited and may lead to wrong formulations of the
problem.

2. The classic three-stage approach: determine the
model to implement, estimate the parameters of the
form adopted and then solve the quantified opti-
mization problem.

3. Solve the estimation and the optimization problem
simultaneously [19].
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Whatever the approach, it must be ensured that the esti-
mation of the functional forms and the parameters sat-
isfies the following statistical properties to ensure that
the estimates are the best, correct and consistent ones
that can be formulated. Statistical estimation methods
are important, because, when implemented correctly,
with regard to an accurately specified functional form,
they will provide estimates of parameters that have the
following properties [1,15]:
1. The parameter estimates are unbiased:
� As the size of the data set grows larger, the esti-

mated parameters tend to their true values.

2. The parameter estimates are consistent, which then
will satisfy the following conditions:
� The estimated parameters are asymptotically un-

biased.
� The variance of the parameter estimate must tend

to zero as the data set tends to infinity.

3. The parameter estimates are asymptotically efficient:
� The estimated parameters are consistent.
� The estimated parameters have smaller asymp-

totic variance compared with any other consis-
tent estimator.

4. The residuals have minimum variance, which is en-
sured by:
� The variance of the residuals must be a mini-

mum.
� The residuals must be homoscedastic.
� The residuals must not be serially correlated.

5. The residuals are unbiased (have zero mean).

6. The residuals have a noninformative distribution
(usually, a Gaussian distribution).
� If the distribution of the residuals is informa-

tive, the extra information could somehow be
obtained, reducing the variance of the residuals,
their bias, etc. with the result that better estimates
are obtained.

Through a correct implementation of statistical estima-
tion techniques the estimates are as close as possible to
their true values, all the information that is available is
applied and the uncertainty surrounding the estimates
and the data fit is reduced to themaximum extent possi-
ble. Thus, the estimates of the parameters, which satisfy
all these conditions, are the “best” possible in a “techni-
cal sense” [1].

Definition and Properties
of the Traditional Estimation Approach

The estimation and optimization of an empirical model
by the traditional three-stage statistical method [20]
considers:
� A functional form is posited and an error structure

for the residuals is assumed.
� Under these hypotheses a data set is used to deter-

mine the values of the parameters, by solving an un-
constrained optimization problem and then the es-
timates determined are checked to verify that they
satisfy the properties indicated above [13,1]. If this
is so, it is possible to proceed to the next stage, oth-
erwise a new functional form must be specified and
a new unconstrained optimization problem must be
solved.

� An optimization problem is solved in the space of
the control variables, to determine the optimal pol-
icy.
With regard to empirical processes, which require

the estimation of nonlinear models, there may be many
alternative models to represent the behavior of a phe-
nomenon [4]. Therefore the efficacy of the control pol-
icy to be adopted will depend on which of the alter-
native models is chosen and how the parameter values
and the functional form are selected [12]. This leads to
a number of problems in applications:
� For nonlinear and dynamic estimation problems,

the likelihood function to be maximized is usually
not concave, so there are many local maxima, each
leading to a different set of estimation coefficients.
Determining the global maximum of the function
may not be helpful.

� Certain statistical properties must be satisfied to en-
sure a statistically correct estimate. Such conditions
may hold at some local maxima, but not at oth-
ers. There is no assurance that the global maximum,
even if unique, will satisfy these conditions; thus, all
local maxima must be verified.

� Since there may be many alternative models, the
model chosen may not have a different optimal con-
trol policy, or the optimization may not yield the
best policy for the possible parametrization, while
other candidate models could satisfy both criteria.

For estimation problems linear in the parameters, the
whole process is simplified. In general, however, the
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stages of such a procedure are interrelated and so enu-
merative solution techniques over all stationary points
must be adopted, providing serious limitations to this
approach.

The Simultaneous Estimation
and Optimization Approach

It would appear more plausible, to avoid suboptimiza-
tion and to balance the eventual imprecision, to solve
both problems simultaneously, imposing the statistical
conditions that must be satisfied as constraints [19].

Let the data set of a phenomenon consist of suffi-
cient measurements (yn,xn,un) over (n D 1; 2; : : : ;N)
periods, where it is assumed, that yn 2 Rp is a p-dimen-
sional vector to be explained, while xn 2 Rr is an r-di-
mensional vector of explanatory or state variables of
the dynamic process and un is a q-dimensional vector
of control variables and a horizon T is indicated, over
which the merit function must be optimized and the
control variables must be determined. Thus, the whole
period considered is composed of a historical period
{1,2, . . . N} and a future period for which policy must
be determined, given by fN C 1;N C 2; : : : ;T g. Fur-
ther, let wi 2 Rr and vi 2 RP be random variables to be
determined with mean zero and finite variance.

It is desired to determine functional forms
' : RrCq ! Rr and � : RrC1 ! Rp and a set of suit-
able coefficients 
 2 Rm such that

Min J D
TX

iDNC1

c(xi ; ui ; yi ) ; (1)

xiC1 D '(xi ; ui ; yi ;wi : �1) i D 1; 2; : : : ;T ; (2)

yiC1 D �(xi ; ui ; vi : �2) i D 1; 2; : : : ;T : (3)

Equation (1) is the objective function for the model
and (2) and (3) are the state space formulation of the
problem, while a similar representation may be adopted
for the input–output formulation, [14]. To ensure that
all the statistical properties that the given estimates of
the residuals must fulfill are satisfied at every itera-
tion, instead of solving an unconstrained maximum-
likelihood or least-squares problem [13], the required
statistical properties of the estimates are set up as con-
straints, together with the specification of the model of
the phenomenon and this global optimization problem
is solved for all the undetermined variables.

Formulation

A phenomenon can be represented by a model which
will capture all the prescribed input–output relations,
at a preset level of precision. Suppose that it is desired
to determine an optimal control for the system (1)–(3)
over a given period i D;N C 1; : : : ;T � 1 based on
a historical period i D 1; 2; : : : ;N for which a suitable
data set is given.

To achieve this, a set of constraints must be added to
enforce that the parameter values that will be estimated
have the required properties.

The unknowns to be determined are the input and
output variables considered and the parameters of the
functional form specified in the current iteration, indi-
cated as
 D f�1; �2g � Rm . Note thatmmay be much
larger than 2r C qC pC 1, the number of variables
present in each system, since the system is nonlinear.

The mathematical program is formulated with re-
spect to the residual variables, but it is immediate that
for a given functional form the unknown parameters
will be specified and thus the unknowns of the prob-
lem will also be defined and available. Hence, the math-
ematical program is fully specified for each functional
form to be considered, as the residual terms can be
stated so:

wi D x̂iC1 � 'h(x̂i ; ûi ; ŷi : �1) i D 1; 2; : : : ;N ;

h 2 H (4)

vi D ŷiC1 � �k(xi ; ui ; vi : �2) i D 1; 2; : : : ;N ;

k 2 K (5)

where :̂, as usual indicates the historical values of a vari-
able and thus suitable values of �1,�2 must be deter-
mined by the mathematical program, such that all the
constraints expressed in terms of wi ; vi8i are specified
andH ;K are suitable function spaces.

The mathematical programming problem, in the
notation defined above in “Definitions,” to be solved for
each functional form in the given sets, with a suitable
optimization routine, is the following:

Min J D
TX

iDNC1

c(xi ; ui ; yi ) ; (6)

xiC1 D '(xi ; ui ; yi ;wi : �1) ; (7)
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yiC1 D �(xi ; ui ; vi : �2) ; (8)

1
N

NX
iD1

wi D 0 ; (9)

1
N

NX
iD1

vi D 0 ; (10)

1
N

NX
iD1

w2
i � kw ; (11)

1
N

NX
iD1

v2i � kv ; (12)

� �0 �
1
N

NX
iD1

viwi � �0 ; (13)

� �1 �
1
N

NX
iD1

wiwi�1 � �1 ; (14)

� �2 �
1
N

NX
iD1

vivi�1 � �2 ; (15)

� �3 �
1
N

NX
iD1

viwi�1 � �3 ; (16)

� �4 �
1
N

NX
iD1

wivi�1 � �4 ; (17)

: : : : : : : : : : : : : : : : : :

� �2s �
1
N

NX
iD1

vi�swi�s � �2s ; (18)

� �2sC1 �
1
N

NX
iD1

wiwi�s � �2sC1 ; (19)

� �2sC2 �
1
N

NX
iD1

vivi�s � �2sC2 ; (20)

� �2sC3 �
1
N

NX
iD1

viwi�s � �2sC3 ; (21)

� �2sC4 �
1
N

NX
iD1

wivi�s � �2sC4 ; (22)

1
2
gTw� (� T� )�1� T gw �

N
2
� �21�˛ : p�1 ; (23)

1
2
gTv � (� T� )�1� T gv �

N
2
� �21�˛ : p�1 ; (24)

� �2rC1 �
1
N

NX
iD1

w2rC1
i � �2rC1r D 3; 4; : : : ; (25)

1
N

NX
iD1

w2r
i �

2r!
r!2r

�2r
w r D 3; 4; : : : ; (26)

� �2rC1 �
1
N

NX
iD1

v2rC1
i � �2rC1r D 3; 4; : : : ; (27)

1
N

NX
iD1

v2ri �
2r!
r!2r

�2r
v r D 3; 4; : : : ; (28)

xi 2 X; yi 2 Y ; ui 2 U;wi 2 W; vi 2 V : (29)

The abstract model of the dynamical system
Eqs. (1)–(3) given by the system of Eqs. (7) and (8)
is to be optimized with regard to a given merit func-
tion Eq. (6) subject to the means of the residuals that
should be zero Eqs. (19), (10), and the sum of squares
of the residuals should be less than critical values kw,kv
Eqs. (11), (12), which can be decreased by dichotomous
search at every iteration, until the problem does not
yield a feasible solution.

The least values obtained for these parameters,
while retaining a feasible solution to the whole prob-
lem, are equivalent to a minimization of the statistical
estimation error and of a maximization of the maxi-
mum likelihood, under appropriate distributional as-
sumptions concerning the residuals.

Further, all the serial correlations between the resid-
ual must not be significantly different from zero, as en-
forced by constraints Eqs. (13)–(23).

To ensure that these conditions hold throughout
the possible variation of the independent variables,
the residuals must be homoscedastic and thus satisfy
Eqs. (23) and (24).

The homoscedasticity condition on the residuals
is obtained by regressing the original variables of the
problem, indicated by the data matrix � , on the nor-
malized square of the residuals, which are indicated,
respectively, by gw,gv. This leads to a set of nonlinear
equations in the squared residuals to be determined.
The �2 test is applied at a confidence level of (1 � ˛)
with m � 1 degrees of freedom and a significance level
of ˛ [6].

Constraints Eqs. (25)–(28) are sample moments of
the probability distribution function of the residuals
which are made to assume given values in terms of the
variance �2 and its higher powers. These constraints
enforce the residuals to have a noninformative distri-
bution, here a Gaussian.
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This constrained minimization problem Eqs. (6)–
(29) will dominate the solutions obtainable by the tradi-
tional three-phase procedure, since whenever the latter
has a solution, the new procedure will also have a solu-
tion.

Theorem 1 Let the given optimal control problem as
described in Eqs. (1)–(3) have a unique solution and let
all the statistical conditions indicated above hold, so that
the solution of the maximum-likelihood estimate of the
unconstrained problem is well defined. Then, the solu-
tion of optimal control problem Eqs. (1)–(3) will be equal
to the solution of the constrained optimization problem
Eqs. (6)–(29).

Methods and Applications

Nonlinear optimization routines which use line search
methods may cause difficulties, since some of the con-
straints may be highly nonlinear, so trust region meth-
ods may be better.

A specialized technique based on complementarity
theory is used to actually solve this problem.

Consider the following optimization problem
which represents in summary form the problem Eqs.
(6)–(29).

Min Z D f (w) f : Rn ! R ; (30)

g(w) � 0 g : Rn ! Rp ; (31)

h(w) D 0 h : Rn ! Rq : (32)

The proposed algorithm consists in defining
a quadratic approximation to the objective function,
a linear approximation to the constraints and deter-
mining a critical point of the approximation by solving
a linear complementarity problem, as given in [18].

Expanding the functions in a Taylor series, at the
given iteration point wk, one may eliminate the equality
constraints simply by converting them into pC 1 in-
equality constraints. Thus,

h(w) D h(wk)Crh(wk)(w � wk) � 0 ; (33)

�eTq h(w) D �e
T
q (h(w

k)Crh(wk)(w�wk) � 0: (34)

Unconstrained variables must be transformed into
nonnegative variables for the linear complementarity

problem (LCP) algorithm. So let

� D Inffwi j wi 2 fg(w) � 0; h(w) D 0gg (35)

where � is a suitable lower bound to the unrestricted
variables, which will be expressed as

xi D wi � � � 0 : (36)

Should there be no lower bound specifiable for a vari-
able, then as it is well known, the variable can be repre-
sented as the difference of two nonnegative variables.

A set of trust region constraints can be imposed on
the problem as a system of linear inequalities centered
around the iteration point, to limit the change in the
possible solution. Note that such a set of inequalities
has properties quite different from those of the usual
trust region constraint imposed in nonlinear optimiza-
tion [8]:

Dx C d � 0 (37)

where D 2 Rn�n is a suitable matrix which may be
changed at every iteration and d 2 Rn a suitable vector.
These can be included in the inequalities.

The resulting quadratic problem is easily trans-
formed into a linear complementarity problem, which
can be solved by linear programming routines [18].
A new solution point will always exist whenever the
trust region is included in the problem, and will lie ei-
ther inside the trust region or on a trust region con-
straint.

Whenever this point occurs inside the trust region,
it is an approximate stationary point. If the solution
point occurs on a trust region constraint and the solu-
tion is feasible while a reduction in the objective func-
tion has occurred, the solution point is taken as the new
starting point and a new iteration is started. Otherwise,
if the new point is infeasible, the trust region is reduced.
Finally, if there has been an increase in the objective
function, the trust region is enlarged and the iteration
is repeated, with suitable safeguards to provoke a reduc-
tion in the objective function.

If the objective function is bounded for all values of
the variables which satisfy the constraints, then a local
minimum point will be found. Thus, the convergence of
the algorithm can be proved without difficulty by stan-
dard techniques [19].
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Models

The data sets of empirical processes of phenomena may
be of various types, such as dynamic, cross-sectional or
both cross-sectional and dynamic, but the model is suit-
able and accurate for all types of models, replacing the
dynamic model indicated in Eqs. (2) and (3) by an ap-
propriate model of the phenomenon, suitable for the
data available and the purposes of the application.

In Table 1 three well-known examples are indi-
cated and their salient estimation characteristics are
presented. The model for naphthalene arose in an in-
vestigation of the oxidation of naphthalene to phthalic
anhydride [5,11]. The model fitted was a full quadratic
cross-sectional model. As can be seen, the results for the
two estimations are identical and all the statistical con-
ditions are satisfied, so confirming Theorem 1.

The model for the tire composition studies the ef-
fect of three process variables. The data are very scanty,
but the full quadratic model applied indicated that the
model as a whole was significant, although the coef-
ficients of the squared terms and the cross-product
terms under the null hypothesis are not significant.
Heteroscedasticity is found to be significant, by the
appropriate test. Our algorithm indicates that lagged
variables should be included and the estimates of such
a model result have a very low residual.

The model specified for the Constant Elasticity of
Substitution (CES) function in economics is a function
which is nonlinear in the parameters although it can be

Simultaneous Estimation and Optimization of Nonlinear Problems, Table 1
SAS Institute statistical package and Socrates algorithm: performance comparison of statistical conditions for examples non-
linear in the variables

Naphthalene Tire composition CES function
SAS Socrates SAS Socrates SAS nonlinear SAS logs Socrates

No. of observations 80 80 20 20 30 30 30
No. of parameters 10 10 10 10 4 4 10
No. of iterations – 3 – 6 51 Varying 8
Dynamic No No No Yes No No Yes

Mean of residuals 0.0 0.0 0.0 0.0 0.0135 0.006 0.09
Residuals variance 6.05 6.05 5.402 1.6E–07 0.1115 0.06 0.1
Heteroscedasticity NS NS S NS S NS NS
Autocorrelation NS NS NS NS U NS NS
Lack of normality NS NS S NS S NS NS

S: significant, NS not significant at confidence level 0.95 U unverifiable

almost linearized by a logarithm transformation. Log
transformations gave good results for traditional rou-
tines, while no transformations were required with this
algorithm, which is a definite advantage.

Further computational experiments are given in Ta-
ble 2 for some important chemical processes and sim-
ilar results are reported. For example, in the chlorides
experiment it is indicated that more variables are re-
quired by defining suitable cross products and lagged
terms of the original set of variables.

In Table 3 a time series implementation is presented
with a number of variants. The experiment is very well
known and the original data were analyzed [9] and
a polynomial model was fitted. A dynamic model with
an exponential term was subsequently fitted [16,17] and
autocorrelated terms were added to the series, in the
third instance. Traditional techniques provide limited
results, whereas this algorithm solves the problem well.

Cases

While in the previous section the application of vari-
ous models was presented and the results were shown
in all cases to be good, here we shall consider dynamic
models with exogenous and endogenous variables and
examine their performance.

Two general instances will be considered: financial
prediction models and optimal control in drilling for
oil.



3604 S Simultaneous Estimation and Optimization of Nonlinear Problems

Simultaneous Estimation and Optimization of Nonlinear Problems, Table 2
SAS Institute statistical package and Socrates algorithm: performance comparison of statistical conditions for examples non-
linear in the variables

Chemical inversion Isomerization Chlorides
SAS Socrates SAS Socrates SAS nonlinear SAS logs Socrates

No. of observations 38 38 24 24 54 54 54
No. of parameters 2 6 4 4 3 4 10
No. of iterations 4 7 8 4 32 4 8
Dynamic No Yes No No No Yes Yes
Mean of residuals 0.0 0.0 0.09 0.044 0.0 0.0 0.0
Residuals variance 0.19 0.33 3.23 3.26 1.82 0.98 0.86
Heteroscedasticity NS NS NS NS NS NS NS

Autocorrelation S NS NS NS S NS NS
Lack of normality NS NS NS NS NS NS NS

S: significant, NS not significant at confidence level 0.95 U unverifiable

Simultaneous Estimation and Optimization of Nonlinear Problems, Table 3
SAS Institute statistical package and Socrates algorithm: performance comparison of statistical conditions for dynamic sys-
tems

Exponential model Polynomial model Autocorrelated
SAS Socrates SAS Socrates SAS Socrates

No. of observations 110 110 110 110 110 110
No. of parameters 6 10 5 20 5 10
No. of iterations 3 15 2 31 2 15
Mean of residuals 2.3E-3 4.5E-14 -2.2E-3 9.4E-16 2.2E-2 1.2E-14
Residuals variance 0.404 0.335 0.388 0.241 1.98 1.82
Heteroscedasticity S NS S NS S NS
Autocorrelation NS NS U NS NS NS
Lack of normality NS NS S NS NS NS

S: significant, NS not significant at confidence level 0.95 U undeterminable

Financial Prediction

A number of chronological series of quotations on vari-
ous stock exchanges were gathered and it was attempted
tomake predictions one period ahead for the series. The
series considered are:
1. The Standard and Poor 500 common stock index

(SPX).
2. The Dow Jones Euro Stock Index, consisting of 50

stocks expressed in euros (SX5E).
3. The Nikkei 225 stock average (NKY).
4. US Government bonds 10-year index

(USGG10YR).
5. The 10-year fixed US dollar fixed swap rate (USS-

WAP10).

6. German government bonds 10-year index
(GDBR10).

7. Deutsche mark–euro exchange rate (DM-EUR).
8. Gold spot price (GOLDS).
9. Chicago Board Options Exchange: Volatility Index

(VIX).
10. Reuters Jeffries CRB Futures Price Index (CRY).

The results of fitting suitable dynamical models to
this data, available for over 12 years, are given in Ta-
ble 4.

Notice how the estimation system (here there is no
concurrent optimization system) through the specifi-
cation of the constraints which impose the statistical
properties on the estimates results in very precise pre-
dictions one period ahead.
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Simultaneous Estimation and Optimization of Nonlinear Problems, Table 4
Variances and residual variances for the single lagged variable dynamic systems, 647 periods

Name of
financial series

Series Residuals Goodness of fit
Mean value Standard

deviation
Mean value Standard

deviation
Absolute
mean error

�2 value No. of
freedom

SPX 1055.0 270.909 1.1328e-04 0.0836 0.0612 2.8622 580
SX5E 1032.8 3082.0 1.1017e-04 0.4617 0.3057 31.9584 580
NKY 14816.0 3703.1 -0.0137 1.4617 1.0236 62.5824 580
USGG10YR 5.2399 0.9479 -4.7074E-06 2.6441E-04 1.9255E-04 5.58760E-03 580
USSWAP10 5.8226 0.9990 -4.9551E-06 2.7227E-04 2.0133E-04 5.31960E-03 580
GDBR10 4.8036 1.0002 -2.0893E-06 2.3075E-04 1.7287E-04 4.68289E-03 580
DEM-EUR 1.7522 0.2526 -1.1848E-07 5.1837E-05 4.2083E-05 6.33564E-04 580

GOLDS 369.5799 101.1419 -2.4613E-05 0.0237 0.0167 6.53197E-01 580
VIX 19.6402 6.7262 6.3632E-05 0.0093 0.0070 2.00086 580
CRY 245.4010 41.9699 -1.0608E-05 0.0085 0.0068 0.12247 580

Results have also been obtained for predictions two
periods ahead and up to five periods ahead with compa-
rable results. Thus, this algorithm is extremely robust.

Optimal Control in Drilling of Oil

Determining optimal control policies for petroleum
drilling is a very interesting problem, since through the
mudlogging data bases which are compiled for every
well, the underlying empirical process can be studied
in detail.

In Table 5 the actual time series of the drilling pro-
cess is compared with the best predictions obtained
from an endogenous model for each process. The best
model indicated a differing number of endogenous
variables, but for all 16 processes the model with five
lags was the most accurate.

The determination of optimal control policies in
processes for the extraction of oil from underground
sources requires that they be formulated as formal pro-
cedures. In each process during 1 week, the original
mudlogging data set was resampled every 30 elemen-
tary periods, which were of 5 s, so the fundamental pe-
riod considered was 150 s.

The period over which to determine the optimal
controls was chosen to be 192 periods, or 8 h, while
the historical period was relatively long. The results are
shown in Table 6, in which the optimal increment de-
termined on the basis of this algorithm with a closed-
loop policy is compared with what actually happened.

In Table 6 the six instances determining optimal
controls are indicated and each entry is concerned with
the drilling experience of the given well for that week
with regard to the given period. From the active perfo-
ration intervals an initial period was selected randomly
and the optimal control was defined for the next 192
periods (8 h). The average predicted increment over the
actual increment was more than 30%.

Conclusions

Simultaneous estimation and optimization provides
very robust and versatile algorithms for nonlinear es-
timation and optimization of all types of empirical data
sets. Here a more complex unique optimization prob-
lem was used instead of a succession of optimization
problems, the first being unconstrained and the second
being a constrained decision or allocation optimization
problem.

This approach always imposes the satisfaction of
the required statistical properties, so as to ensure that
at every iteration a statistically correct solution is de-
termined for that functional form. By iterating on
the functional forms and on the specification of the
problem, one will always obtain better solutions, until
a lower bound is reached.

The lower bound indicates the pure noise of the em-
pirical process, but as can be seen it is usually much
lower than the noise components determined by tradi-
tional methods.
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Simultaneous Estimation and Optimization of Nonlinear Problems, Table 5
Best endogenous prediction results of five lag models for the drilling processes

Process No. of exo-
genous variables

Residual variances �2 No. of degrees
of freedom

Time (s)

AX01 4 84002408 782709.488774 2660 470.89
AXY02 4 0.11496404E-02 0.002329 3236 982.77
AZC03 8 0.41461787E-01 0.311272 5069 5073.40
BL01D 4 0.10572470E-01 0.012292 3664 1056.66
BE01 6 0.27926209 5.930955 3080 1839.50
CP03 8 0.12768791E-01 0.057533 2744 2069.71
CC09 4 0.76346211E-03 0.000425 3230 575.76
DY02 6 0.30245159E-02 0.014091 3092 1518.98

FT02D 6 0.19508212E-03 0.000238 3848 10601.91
GX01 6 0.63263313E-03 0.001045 3611 8576.97
MAR08 8 0.88143523E-02 0.007543 1909 1278.91
PW01 6 0.58546597E-01 0.132707 2105 658.40
P01 6 0.55842518 1.509173 2105 478.83
RGR68O 6 0.99603892E-03 0.002172 2981 987.23
RGR69O 8 0.27631189E-02 0.005723 2756 1254.82
RED01 6 0.21829931E-02 0.001563 3122 908.94
VF03 4 0.84573218E-03 0.000488 3213 531.59

Simultaneous Estimation and Optimization of Nonlinear
Problems, Table 6
Optimal predicted versus actual increment for six oil wells
over 192 periods (8 h)

Well and week Optimal
increment

Real
increment

Difference (%)

FT02D 9 114.0 73.3 35.70
FT02D 16 116.7 83.8 28.19
FT02D 23 73.7 13.45 81.75
GX01 3 94.8 72.2 23.84
GX01 11 57.9 18.8 67.53
BE01 1 181.4 160.25 11.66

Thus, the simultaneous estimation and optimiza-
tion algorithm for nonlinear and dynamic problems is
an extremely powerful instrument.

See also

� Complementarity Algorithms in Pattern
Recognition

� Generalizations of Interior Point Methods for the
Linear Complementarity Problem

�Mathematical Programming Methods in Supply
Chain Management
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In 1857 the British mathematician J.J. Sylvester, in a one
sentence article [28], posed the problem:

It is required to find the least circle which shall
contain a given set of points in the plane.

From then until the 1960s, the problem attracted the
occasional interest of mathematicians who proposed al-
gorithms [1,5,21], applications [21,29] and related the-
ory [17,26], both for the problem in the plane and for
the minimum sphere problem in higher dimensions.
The references, especially [1,14,26], cover the history in
more detail.

Starting in 1971, the problem attracted greater in-
terest in the context of location theory because find-
ing the center of the circle of minimum radius is
equivalent to locating a central facility for which the
maximum distance to any service point is minimized
[8,9,11,12,16,23]. The problem was also introduced
in the 1970s computer science literature as one of
the closest point problems of computational geometry
[27]. This article provides an optimization formulation,
characterization of the solution, one of the primary al-
gorithms for the problem in the plane and references to
extensions.

Aminimax statement of the minimum sphere prob-
lem in Rn is:

min
x2Rn

max
iD1;:::;m

kx � aik ;

where there arem given points ai 2Rn and k � k denotes
the Euclidean norm. Converting this to a constrained
optimization problem with differentiable functions is
accomplished by squaring the norm term and introduc-
ing a new variable s for the squared radius of the mini-
mum sphere:
8̂
<̂
ˆ̂:

min
(s;x)

s

s.t. kx � aik2 � s; i D 1; : : : ;m;
(s; x) 2 RnC1:

In this form the problem is a convex program for which
the Karush–Kuhn–Tucker conditions [20] are both nec-
essary and sufficient. Applying these conditions shows
that there exist nonnegative multipliers ui, i = 1, . . . , m
such that

mX
iD1

ui ai D x�;

mX
iD1

ui D 1;

ui(s� � kx � aik2) D 0; i D 1; : : : ;m;

ui � 0; i D 1; : : : ;m:
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Thus x�, the center of the minimum sphere with
radius

p
s�, is a convex combination of points on its

boundary since, for points within the sphere, the asso-
ciated ui must be zero. Further, by Carathéodory’s theo-
rem (cf.� Carathéodory theorem), at most n + 1 of the
given points are required for this convex combination.
In the plane, therefore, the minimum circle is defined
by either
� two points of maximum separation, or
� three of the points which form a nonobtuse triangle.
This characterization of the solution is also evident
from geometrical arguments.

Given this characterization, a finite procedure could
be devised in which all circles defined by two or three
points are constructed. In this procedure, three points
would be discarded if they formed an obtuse triangle.
From the circles constructed, the smallest covering cir-
cle would be chosen. However, this total enumerative
approach would not be effective for large values of m –
the number of two and three point combinations grows
rapidly with the number of points. If, for example, m =
100, over 160,000 combinations would be considered.

Below is an outline of a more efficient method due
to J. Elzinga and D.W. Hearn [8]:

0. Choose any two of the given points and go to
Step 1.

1. Let these two points define the diameter of a
circle.
IF this circle covers all points THEN STOP
ELSE find an outside point and go to Step 2
with these three points.

2. Solve the minimum circle problem for these
three points.
IF the minimum circle is defined by two
points THEN go to Step 1.
IF three points define it THEN go to Step 3.

3. IF the circle defined by three points covers all
points THEN STOP
ELSE find an outside point (e.g., the farthest
one) and go to Step 4.

4. Solve the minimum circle problem for these
four points.
IF it is defined by two points THEN go to
Step 1.
IF defined by three points THEN go to Step 3.

Elzinga–Hearn algorithm

This outline omits many details of how the differ-
ent steps are executed and efficiencies such as reduc-
ing the given set of m points to their convex hull. See
[2,8,14] for a discussion of those details and [15] for
a computer code. In computational testing on random
data, the most effective versions compute the solution
of a problem with 100 points in fewer than 10 itera-
tions [14]. Empirically, the computational effort goes
up linearly with the number of points, however, an ex-
ample given in [6] requiresO(m2) time. In theory, there
are methods of lower complexity, e. g., methods based
on construction of Voronoi diagrams [25,27] and the
O(m) method of N. Megiddo [22], but effective imple-
mentations of these methods have not been developed.
E. Welzl [30] gives a random method of expected com-
plexity O(m) and reports on the implementation of an
effective heuristic variation.

The Elzinga–Hearn algorithm can be classified as
a dual procedure [14] – only the final circle covers all
points and is therefore feasible. Primal methods, in par-
ticular, the first algorithm, due to G. Chrystal [5] and,
independently, to B. Peirce [29] also exist, and the most
efficient implementations are competitive with that of
Elzinga and Hearn. In [14] these implementations are
described and a classification scheme is given which
shows the equivalence of a number of other proposed
algorithms.

In the location theory context positive weights indi-
cating relative importance may be associated with the
given service points [11,14]. Then the problem is one
of minimizing the maximum weighted distance and it
loses its covering circle interpretation [14]. The algo-
rithm given above has been extended to this weighted
problem in [13,14].

By a change of variables of the form s = v+x|x, the
above constrained problem becomes

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
(v;x)

v C x>x

s.t. v C 2a>i x � a>i ai � 0;
i D 1; : : : ;m;

(v; x) 2 RnC1;

which is recognized to be a convex quadratic program
[9,19,23]. Thus there are many general purpose algo-
rithms which can solve the minimum sphere problem.
A pivoting method reminiscent of the revised simplex
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method for linear programming, and with storage re-
quirements that depend only on n, is given in [9].

Extensions of the basic problem include covering
a convex polyhedron defined by algebraic inequalities
[10,18] and minimax location on a sphere or hemi-
sphere using great circle distances [7,24]. See also the
O(m logm) method of G. Xue and S. Sun [31].

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems

� Competitive Facility Location
� Facility Location with Externalities
� Facility Location Problems with Spatial Interaction
� Facility Location with Staircase Costs
� Global Optimization in Weber’s Problem with

Attraction and Repulsion
�MINLP: Application in Facility Location-allocation
�Multifacility and Restricted Location Problems
� Network Location: Covering Problems
� Optimizing Facility Location with Rectilinear

Distances
� Production-distribution System Design Problem
� Resource Allocation for Epidemic Control
� Single Facility Location: Multi-objective Euclidean

Distance Location
� Single Facility Location: Multi-objective Rectilinear

Distance Location
� Stochastic Transportation and Location Problems
� Voronoi Diagrams in Facility Location
�Warehouse Location Problem

References

1. Blumenthal LM, Wahlin GE (1941) On the spherical surface
of smallest radius enclosing a bounded subset of n-dimen-
sional Euclidean space. Amer Math Soc Bull 47:771–777

2. Boffey TB, Karkazis J (1983) Speeding up the Elzinga-Hearn
algorithm for finding 1-centres. J Oper Res Soc 34:1119–
1121

3. Chakraborty RK, Chaudhuri PK (1981) A note on geomet-
rical solutions for some minimax location problems. Trans
Sci 15:164–166

4. Charalambous C (1981) An iterative algorithm for the min-
imax multifacility location problem with Euclidean dis-
tance. Naval Res Logist Quart 28:325–337

5. Chrystal G (1885) On the problem to construct the mini-
mum circle enclosing n given points in the plane. Proc Ed-
inburgh Math Soc 3:30–33

6. Drezner Z, Shelah G (1987) On the complexity of the
Elzinga–Hearn algorithm for the 1-center problem. Math
Oper Res 12:255–261

7. Drezner Z, Wesolowsky GO (1983) Minimax and maximin
facility location problems on a sphere. Naval Res Logist
Quart 30:305–312

8. Elzinga J, Hearn DW (1972) Geometrical solutions for some
minimax location problems. Trans Sci 6:379–394

9. Elzinga J, Hearn DW (1972) The minimum covering sphere
problem. Managem Sci 19:96–104

10. Elzinga J, Hearn DW (1974) The minimum sphere covering
a convex polyhedron. Naval Res Logist Quart 21:715–718

11. Francis RL, McGinnis LF Jr, White JA (1992) Facility and lo-
cation: An analytical approach, 2nd edn. Prentice-Hall, En-
glewood Cliffs, NJ

12. Hearn DW (1971) Minimum covering spheres. PhD Thesis
Johns Hopkins Univ.,).

13. Hearn DW, Vijay J (1981) A geometrical solution for the
weighted minimum circle problem. Res. Report ISE Dept.
Univ. Florida 81(2)

14. Hearn DW, Vijay J (1982) Efficient algorithms for the
(weighted) minimumcircle problem. Oper Res 30:777–795

15. Hearn DW, Vijay J (1995) Codes of geometrical algorithms
for the (weighted) minimum circle problem. Europ J Oper
Res 80:236–237

16. Jacobsen SK (1981) An algorithm for the minimax Weber
problem. Europ J Oper Res 6:144–148

17. John F (1948) Extremumproblemswith inequalities as sub-
sidiary conditions. Courant Anniv. Vol. Interscience 187–
204

18. Konno H, Yajima Y, Ban A (1994) Calculating a minimal
sphere containing a polytope defined by a system of lin-
ear inequalities. Comput Optim Appl 3:181–191

19. Kuhn HW (1975) Nonlinear programming: A historical
view. SIAM-AMS Proc 9:1–26

20. Kuhn HW, Tucker AW (1950) Nonlinear programming. In:
Neyman J (ed) Proc. Second Berkeley Symp. Math. Statis-
tics and Probability. Univ. Calif. Press, Berkeley, CA, pp 481–
492

21. Lawson CL (1965) The smallest covering cone or sphere.
SIAM Rev 7:415–417

22. Megiddo N (1983) Linear time algorithms for linear pro-
gramming in R3 and related problems. SIAM J Comput
12:759–776

23. Nair KPK, Chandrasekaran R (1971) Optimal location of
a single service center of certain types. Naval Res Logist
Quart 18:503–510

24. Patel MH (1995) Sphericalminimax locationproblemusing
the Euclidean norm: Formulation and optimization. Com-
put Optim Appl 4:79–90

25. Preparata FP, Shamos. MI (1985) Computational geometry:
An introduction. Springer, Berlin

26. Rademacher H, Toeplitz O (1957) The enjoyment of math-
ematics. Princeton Univ. Press, Princeton. Transl. from: Von
Zahlen and Figuren. Springer, 1933



3610 S Single Facility Location: Multi-objective Euclidean Distance Location

27. ShamosMI, Hoey D (1975) Closest point problems. In: Proc.
16th IEEE Annual Symp., Found. of Comput. Sci., Berkeley,
pp 151–162

28. Sylvester JJ (1857) A question in the geometry of situation.
Quart J Pure Appl Math 1:79

29. Sylvester JJ (1860) On Poncelet’s approximate linear valua-
tion of surd froms. Philosophical Mag (Fourth Ser) 20:203–
222

30. Welzl E (1991) Smallest enclosing disks (balls and ellip-
soids). Lecture Notes Computer Sci, vol 555. Springer,
Berlin, pp 359–370

31. Xue G, Sun S (1995) The spherical one-center problem. In:
Du D-Z and Pardalos PM (eds) Minimax and Applications.
Kluwer, Dordrecht, pp 153–156

Single Facility Location:
Multi-objective EuclideanDistance
Location

MARIANTHI IERAPETRITOU

Department Chemical and Biochemical Engineering,
Rutgers University, Piscataway, USA

MSC2000: 90B85

Article Outline

Keywords
Mathematical Model
Solution Approach
Duality
Discrete Location Problem
Objectives
See also
References

Keywords

Facility location; Optimization

The problem of single facility location can be stated as
follows: Determine the location of a single new facility
with respect to a number of existing facilities that min-
imizes an appropriate defined total cost function which
is chosen to be proportional to distance. Typical exam-
ples are the location of a new:
a) machine in a manufacturing facility;
b) warehouse relative to production;

c) pump in chemical operations;
d) well in an oil field development.
A generalization of this problem involves the multifa-
cility location-allocation problem, [5]. A mathematical
formulation of the single-facility problem is as follows:
m existing facilities are located at known distinct points
P1, . . . , Pm, a new facility is to be located at a point X,
costs of ‘transportation’ nature are incurred and are di-
rectly proportional to an appropriately defined distance
between the new facility and the existing ones. Let d(X,
Pi) represent the distance between points X and Pi and
let wi represent the cost of transportation between the
new facility and existing facility i at Pi. Then the total
‘transportation’ cost between the new facility and the
existing facilities is given by:

f (X) D
mX
iD1

wid(X; Pi );

where terms wi are referred to as ‘weights’. The single
facility location problem is to determine the location of
a new facility, say X�, that minimizes f (X). In many ap-
plications the cost per unit distance is a constant thus
the minimization problem often reduces to a determi-
nation of the location that minimizes distance. The lp
norm is a popular distance measure in facility location
theory. If the coordinates for the new facility are x1, x2,
so that X = (x1, x2), and for the existing facility i the co-
ordinates are ai, bi, so that Pi = (ai, bi), the lp norm is as
follows:

lp D ((x1 � ai)p C (x2 � bi)p)
1
p ; p � 1:

Typically in the literature it is assumed that p = 1 or
2, for which we obtain the rectangular and Euclidean
norms, respectively. Examples of facility location prob-
lems where Euclidean distance applies are the network
location problems as well as the pipeline design prob-
lems. Examples of facility location problems where rec-
tilinear distance applies are machine location problems
where transportation occurs along a set of aisles ar-
ranged in a rectangular pattern as well as the well lo-
cation problem in an oil field where the no flow bound-
aries are located in the midpoint between the extraction
wells, [6].
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Mathematical Model

The Euclidean distance location problem can be stated
mathematically as:

min f (X) D
mX
iD1

wi((x1 � ai)2 C (x2 � bi)2)
1
2 : (1)

It is variously referred to as the Steiner–Weber prob-
lem or the general Fermat problem. The first important
property of the problem is that since wil2(X, ai) is a con-
vex function of X and the sum of convex functions is
a convex function as well, it follows that f (X) is a convex
function. This means that local minima are global op-
tima of problem (1), [8]. With this information we are
assured that the following extremal equations for f (X)
can produce only global optima of problem (1):

@ f (X)
@xk

D

mX
iD1

wi((xk � ai k)
l2(X; ai)

D 0; k D 1; 2: (2)

One difficulty that the above equation has is that the
derivatives are undefined if l2(X, ai) = 0. Therefore, if
the optimal location for the new facility coincides with
that of an existing facility, equation (2) cannot be used
to check optimality. However, each existing facility can
be easily checked for optimality by utilizing the follow-
ing property, [8]: f (X) is minimized at the rth existing
facility location (ar1, ar2), if and only if

CR2
r D

0
@

mX
iD1¤r

wi(ar1 � ai1)
l2(ar ; ai)

1
A

2

C

0
@

mX
iD1;¤r

wi(ar2 � ai2)
l2(ar ; ai)

1
A

2

� wr : (3)

Solution Approach

An iterative procedure has been proposed for the solu-
tion of problem (1) which is known asWeiszfeld proce-
dure. This iterative procedure is based on the following
equation, which can be obtained from (2) so as to get
xk:

xk D

Pm
iD1

wi ai1
l2(X;ai )Pm

iD1
wi

l2(X;ai )
; k D 1; 2: (4)

Note that xk is also involved in the right-hand side of
(4) so that an iterative scheme should be employed to

solve (4). The following form holds at iteration l + 1:

xlC1
k D

Pm
iD1

wi ai1
l2(X;ai )Pm

iD1
wi

l2(Xl ;ai )

; k D 1; 2: (5)

A good initial point comes from the solution of the
squared Euclidean problem, that is the same as the Eu-
clidean location problem except that each distance l2(X,
ai) is squared. The solution to this problem was found
to be the center of gravity location given by:

x0k D
Pm

iD1 wiai1Pm
iD1 wi

; k D 1; 2: (6)

The iterative procedure is guaranteed to converge to the
optimum location. Discussion about the convergence is
given in [7].

Duality

A strict convex approximation function to eliminate the
problem of discontinuities of the derivatives of f (X) is
the following:

min f (X)

D

mX
iD1

wi((x1 � ai)2 C (x2 � bi)2 C �2)(
1
2 ):

(7)

Based on this problem one can derive, [8], the dual limit
as �! 0:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

max
U ;Z

D(U) D �
mX
iD1

(ai1ui C ai2vi )

s.t.
mX
iD1

ui D 0;

mX
iD1

vi D 0;

u2
i C v2i � wi ; i D 1; : : : ;m:

(8)

The inequality constraints can be equivalently
posed as u2i + v2i � w2

i to produce a differentiable prob-
lem that can be solved using standard nonlinear pro-
gramming algorithm. The optimal Lagrange multipliers
of problem (5) solve the original problem (1), [8]. It is
of interest to notice the geometric interpretation of op-
timal facility location. Figure 1 gives the case of four ex-
isting facilities at points A, B, C and D. For the case of
equal weights suppose that the four points can be ar-
ranged in pairs (A, B) and (C, D) so that the straight



3612 S Single Facility Location: Multi-objective Euclidean Distance Location

Single Facility Location: Multi-objective Euclidean Distance
Location, Figure 1
Graphical solution for the Euclidean distance problem

lines AB and CD intersect. The intersection point X�

is the optimum location for the new facility. However,
if a point, for example D, lies within the triangle ABC,
then the optimal location of new facility coincides with
the location D.

Discrete Location Problem

In the discrete location problem, [4], the new facility is
to be located and a single choice must be made from
among a finite number of sites, say n. The mathematical
model for this assignment problem is the following:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min f (x) D
nX

iD1

nX
jD1

ci jxi j

s.t.
nX

iD1

xi j D 1; j D 1; : : : ; n;

nX
jD1

xi j D 1; i D 1; : : : ; n;

xi j D 0 or 1; 8i; j:

(9)

As an example of the use of the assignment model in
a context similar to continuous location problem, sup-
pose that there are p existing facilities and dkj represents
the Euclidean distance between existing facility k and
site j and that wik represents a total cost per unit dis-
tance incurred in transporting items between a new fa-
cility i and existing facility k. Then, for a given assign-
ment, wik

Pn
jD1 dkjxij represents the total cost incurred

transporting items between new facility j and existing
facility k. The total cost of transportation of all items is

then given by:

nX
iD1

pX
kD1

wik

nX
jD1

dk jxi j D
nX

jD1

ci jxi j; (10)

where cij =
Pp

kD1 wikdkj. With the above transforma-
tion the location problem can then be solved as an as-
signment problem, [4].

Objectives

In the previous sections the objective considered for
the location problem was the most commonly used
minimization of cost that can be translated to mini-
mization of distance since the cost has been considered
directly proportional to distance. However, there are
many other objectives used in the literature concern-
ing the location problem. A complete review could be
found in [3]. One can distinguish three different objec-
tive categories:
� the push objectives,
� the pull objectives and
� the balancing objectives.
The pull objectives are based on the assumption that
the facility to be located is desirable and so the distance
from the ‘costumers’ has to be minimized. In this cate-
gory belong the objectives mentioned before as well as
objectives of profit maximization where there is a price
associated with each demand cite. In the push objec-
tives the facility is undesirable as for example a danger-
ous facility due to leak possibility, and so is located to
maximize the distance from the ‘costumer’ cites. The
balancing objectives try to minimize the weighted (bal-
ance) distance between the new facility and the cos-
tumers. If we consider the distribution of all facility-
costumer distances for any given solution, push and
pull objectives optimize some function of the mean i. e.,
the first central moment of this distribution. In con-
trast most balancing objectives target on minimizing
the variability of the distribution of distances i. e., the
second moment. A number of criteria exist to evalu-
ate the selection of the balancing objectives, [9]. Among
them are the scale invariance criterion, according to
which the optimal facility location remains the same ir-
respective of the type of measure applied to the prob-
lem; the principle of transfers, that states that the distri-
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bution will become suboptimal if a facility from above
the average distance is transfered to the facility that
is below the average. Other criteria include analytical
tractability, normalization of measures, appropriateness,
sensitivity and Pareto optimality. For the latter one con-
siders a single facility location problem where the three
points are almost collinear. The distances to the three
points are equal if the points lie on the circumference
of a circle with its center at the facility. However, the
closer the points are to the line the larger the radious of
a circle is. Customers in all three locations will benefit
from getting the facility closer to them until it reaches
the central point. The above case is an example where
the equality objective alone is not meaningful. Based
on the problems associated with balancing objectives
a number of authors, [1], have considered the trade-offs
between equality and efficiency in the objective func-
tion. Concluding the facility location problem is usu-
ally multi-objective in nature. Location under any of
the aforementioned objectives satisfies but a single ob-
jective. Specialized solution approaches can be used to
guide the optimization when more than one objective
is considered, [2].
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The problem of single facility location can be stated as
follows: Determine the location of a single new facil-
ity with respect to a number of existing facilities that
minimizes an appropriate defined total cost function
which is chosen to be proportional to distance. A math-
ematical formulation of the single facility problem is as
follows: m existing facilities are located at known dis-
tinct points P1, . . . , Pm, a new facility is to be located at
a point X, costs of ‘transportation’ nature are incurred
that are directly proportional to an appropriately de-
fined distance between the new facility and the existing
ones. Let d(X, Pi) represent the distance between points
X and Pi and wi represent the cost of transportation be-
tween the new facility and existing facility i at Pi, then
the total ‘transportation’ cost between the new facility
and the existing facilities is given by:

f (X) D
mX
iD1

wid(X; Pi );

where the terms wi are referred to as ‘weights’. The sin-
gle facility location problems is to determine the loca-
tion of a new facility, say X�, that minimizes f (X). In
many applications the cost per unit distance is a con-
stant thus the minimization problem often reduces to
a determination of the location that minimizes distance.
The appropriate determined distance can be a straight
line (i. e. Euclidean distance), [7], or a rectilinear dis-
tance. Examples of facility location problems where Eu-
clidean distance applies are the network location prob-
lems as well as the pipeline design problems. If the co-
ordinates for the new facility are x, y so that X = (x, y)
and the coordinates for the existing facility i are ai, bi so
that Pi = (ai, bi), the rectilinear distance between X and
Pi is defined as:

d(X; Pi ) D jx � ai j C jy � bi j :

Examples of facility location problems where rectilinear
distance applies are machine location problems where
transportation occurs along a set of aisles arranged in
a rectangular pattern as well as the well location prob-
lem in an oil field where the no flow boundaries are
located in the midpoint between the extraction wells.
A distinct difference between the rectilinear and Eu-
clidean distance is illustrated in Fig. 1, which illustrates
that there are several different paths between X and Pi

for which the rectilinear distance is the same. The num-

Single Facility Location: Multi-objective Rectilinear Distance
Location, Figure 1
Different rectilinear paths between X and Pi

ber of such paths is, of course, infinite. This is not the
case with Euclidean distance where the path is unique.

Mathematical Model

The rectilinear distance location problem can be stated
mathematically as:

min f (x; y) D
mX
iD1

wi(jx � ai j C jy � bi j); (1)

which is equivalently stated as:

min
x

mX
iD1

wi(jx � ai j)Cmin
y

mX
iD1

wi(jy � bi j);

where each quantity can be treated as separate opti-
mization problem [4]:

min
x

mX
iD1

wi(jx � ai j);

min
y

mX
iD1

wi(jy � bi j):

Some properties if the optimum solution are:
a) The x-coordinate of the new facility will be the same

as the x-coordinate of some existing facility. Simi-
larly, the y-coordinate of the new facility will coin-
cide with the y-coordinate of some existing facility.
It is not necessary however, that both coordinates be
for the same existing facility.

b) The optimum x-coordinate (y-coordinate) location
for the new facility is amedian location.
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A different way to addressing the same problem is pro-
posed in [10], where the problem is formulated as a lin-
ear programming model. Let us consider the absolute
distance between the new and the existing facility i. This
is given by:

di1 D ai � x if x � ai ;

di2 D x � ai if x � ai ;
di1; di2 � 0; i D 1; : : : ;m:

Using these expressions:

x C di1 � di2 D ai ;
di1 � di2 D 0;

di1; di2 � 0; i D 1; : : : ;m;

and the location problem (1) become a linear program-
ming problem:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
mX
iD1

wi(di1 C di2)

s.t. x C di1 � di2 D ai ;
di1; di2 � 0; i D 1; : : : ;m:

(2)

Note that the condition di1 × di2 = 0, which is not in-
cluded in the above formulation, is always satisfied at
the optimal solution of problem (2). For example, let
the current values of di1, di2 be given by d0i1, d

0
i2, where

d0i1 > d
0
i2 and d

0
i2 6D 0. Then a solution which reduces the

value of the objective function is given by di1 = d0i1�d
0
i2

and di2 = 0. Problem (2) represents a linear program-
ming problem with 2m + 1 variables and m nontrivial
constraints. The dual of problem (2) is:

min
mX
iD1

ai si � smC1

mX
iD1

ai :

By defining a new variable zi = si � sm+1 + maxi[wi], i =
1, . . . ,m, the dual becomes:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
mX
iD1

(zi �max
i
[wi])ai

s.t.
mX
iD1

(zi �max
i
[wi]) � 0;

max
i
[wi] � wi � zi � wi Cmax

i
[wi];

i D 1; : : : ;m:

(3)

Problem (3) has all its constraints but one of the
bounded-variable type and can therefore solved effi-
ciently by linear programming techniques.

See [8], for a proof that the functionWk(xk) =
Pm

iD1
wi(|xk � ajk|), where k = 1, 2 for the two-dimensional
problems, is a convex function and for the following
optimality conditions: at some t�,

t�1X
iD1

wk
i �

nkX
iDt

wk
i < 0; (4)

tX
iD1

wk
i �

nkX
iDtC1

wk
i � 0 (5)

are satisfied. If condition (5) is met as a strict inequality,
then x�k = at�k . If condition (5) is met as an equality,
then x�k 2 [at�k , at�C1k]. Based on the above conditions,
[8] propose an iterative procedure to determine t�.

Uncertainty

Uncertainty may appear in the destinations, which are
also called regional demand, and the weights. Regional
demand is modeled by a continuous spatial distribu-
tion of one or more destinations. The location objective
then corresponds to minimizing the expected value of
the distance of the facility to the random destinations.
The analytical evaluation of the integral type of the ob-
jective is only possible in the simple cases of rectangular
or circular regions that however lead to objectives that
are not easy to optimize, [1]. Let us consider the sin-
gle facility location problem with rectangular distances.
Let each of them existing facilities have random coordi-
nates (Yj1, Yj2), described by bivariate normal probabil-
ity density function f (yj1, yj2). We want to find a facility
location (x�1 , x�2 ) that minimizes the expected sum of
weighted rectangular distances. The total expected cost
is:

EW(X) D EY

0
@

mX
jD1

wjd(X;Yj)

1
A ; (6)

where Yj = (Yj1, Yj2) and Y = (Y11, Y12, . . . , Yn1, Yn2).
It follows that:

EW(X) D
mX
jD1

wjEYd(X;Yj))

D

mX
jD1

wjEYj

ˇ̌
x1 � Yj1

ˇ̌
C

mX
jD1

wjEYj

ˇ̌
x2 � Yj2

ˇ̌
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D

mX
jD1

wjEYj1

ˇ̌
x1 � Yj1

ˇ̌
C

mX
jD1

wjEYj2

ˇ̌
x2 � Yj2

ˇ̌

D EW1(x1)C EW1(x2);

which means that the location problem becomes:

min
X

EW(X) D min
x1

EW1(x1)Cmin
x2

EW1(x2): (7)

Using the density function f we can evaluate each one
of these terms:

EW1(x1) D
mX
jD1

wj

Z 1
�1

ˇ̌
x1 � y j1

ˇ̌
f (y j1) dy j1 (8)

LetYj1 have mean�j1 and standard deviation � j1. Then:

f (y j1) D
1

(2
)� j1
exp

 
�
1
2

�
y j1 � � j1

� j1

�2
!
: (9)

As the derivative of EW1(x1) is easily evaluated as fol-
lows:

EW 01(x1) D
mX
jD1

wj

�
1 � 2Pr

�
z �

x1 � � j1

� j1

��
; (10)

we may use a method such as interval bisection to
find x�1 .

Another approach to overcome the regional de-
mand is to replace each region by a representative
point, a centroid, and solve the resulting classical lo-
cation problem, [2]. Although this approach is relative
simple it raises questions regarding the involved aggre-
gation error due to the arbitrary way of selecting the
used centroids. In case of uncertainty in the weights
the most typical question is to determine all the points
which may be optimal for any choice of weights. As-
suming a distribution to be known for each one of them
H.C.L.W.Williams [11] derived the probability for each
one of the destinations of being optimal. Also the de-
gree of nonoptimality of a given site is an important in-
formation that can be extracted from the uncertainty
analysis. This type of information is important when
considering a possible relocation decision of a facil-
ity, [5].

Constraints

Many practical applications need methods able to han-
dle feasible regions of any shape even disconnected

ones. See [6], for a special method for location problems
with lp-distance within a finite union of convex poly-
gons; this method was subsequently extended in [9] to
general objectives and arbitrary polygonal shaped feasi-
ble regions.

Dynamic Location

Let us assume that a facility is expected to serve over
r periods of time during which may be repeatedly relo-
cated. The problem of dynamic facility location is to find
the single facility location but for each of the r periods.
Let the weights wjk be the present value of the cost per
unit distance between the new facility and existing fa-
cility j in period k, and let ck be the present value of the
cost. The objective is then to find a series of locations Xk

= (x1k, x2k), k = 1, . . . , r, that minimize the present value
of the location plan. The dynamic location problem to
be considered is [8]:

min
rX

kD1

mX
jD1

wjkd(Xk ; aj)C
rX

kD2

ckzk ; (11)

where zk = 1 if Xk 6D Xk�1 is allowed and zk = 0 other-
wise. The variables zk serve as indicators if the facility is
permitted to move from where it was the previous pe-
riod.

Objectives

The problem of facility location is usually a multi-
objective problem since more than one objectives have
to be optimized simultaneously. The models described
above result in the location solution where only the ob-
jective of minimizing a distance function is being con-
sidered. However, a number of alternative objectives
have been considered in the literature that can be classi-
fied in the pull objectives, push objectives and balancing
objectives, [7]. The first category involve the constraints
that minimize the distance to the new facility assuming
that it is a desirable unit whereas, the push objectives
maximize the corresponding distances assuming the lo-
cation of undesirable unit. The balancing objectives try
to weight the distances from the new facility to the ex-
isting ones. An alternative to the objective of minimiz-
ing the distance is the maxmin objective, [8], that has
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the following form:
(
max f (x)
s.t. f (x) D minwj l1(X; aj); j D 1; : : : ;m:

In order to incorporate more than one objective in
the facility location problem, multi-objective optimiza-
tion techniques should be applied, [3]. The basic idea
of these techniques is the systematic generation of the
Pareto optimal solution set that involves the points in
which one objective can be improved only at the ex-
pense of other objectives.

See also
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Introduction

Optimization problems for a finite-dimensional de-
cision variable under infinitely many inequality con-
straints are called semi-infinite (see [8,19] for reviews).
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For smoothing methods one considers them in the
form

SIP : min
x2Rn

f (x) subject to g(x; y) � 0 for all y 2 Y ;

with the objective function f 2 C2(Rn ;R), the con-
straint function g 2 C2(Rn �Rm ;R), and a nonempty
and compact index set Y � Rm . Moreover, Y is as-
sumed to be described by finitely many inequality con-
straints,

Y D fy 2 Rm j v(y) � 0g ;

with v 2 C2(Rm ;Rs) and s 2 N . The feasible set of SIP
is denoted by

M D fx 2 Rnj g(x; y) � 0 for all y 2 Yg :

A basic problem in semi-infinite optimization is to
check whether a point x 2 Rn is feasible, since this in-
volves the verification of infinitely many inequality con-
straints.

The semi-infinite constraint in SIP is equivalent to

G(x) :D min
y2Y

g(x; y) � 0 ;

which means that the feasible set M is the upper level
set of the, in general, nonsmooth function G. Smooth-
ing methods try to replace G by a smooth function, but
to keep important properties of the original problem
under this modification. More explicitly, one wishes
that under weak assumptions a nonempty and compact
feasible set M can be approximated arbitrarily well by
a level set of a single smooth function with certain reg-
ularity properties. Moreover, there should be a corre-
spondence between Karush–Kuhn–Tucker points of the
original and of the smoothed problem, along with their
Morse indices.

Smoothing Approaches Motivated
by Nonlinear Programming

A smoothing procedure for finite optimization prob-
lems is given in [12]. There the main idea is to use the
logarithmic barrier approach to approximate finitely
many inequality constraints gi (x) � 0; i 2 I; jIj <1,
by one smooth and nondegenerate constraintP

i2I ln(gi (x)) � ln(") for " > 0. A similar approach
is taken in [5] to smooth finite maximum functions.

However, obvious generalizations of this approach to
semi-infinite programming are not successful.

In fact, there are two standard arguments which
connect SIP to finite optimization problems. First,
a sufficiently fine discretization of the index set leads
to an arbitrarily accurate outer approximation of M
by finitely many inequality constraints which could, in
a next step, be smoothed by the logarithmic barrier ap-
proach. Unfortunately, the so-called second-order shift
terms of semi-infinite programs are ignored by the dis-
cretized problem, so correspondences of Morse indices
cannot even be established between the original and the
discretized problem, let alone the smoothed discretized
problem.

Second, assuming the so-called reduction ansatz at
some point x̄ 2 M, the feasible set can locally be de-
scribed by finitely many smooth inequality constraints.
The logarithmic barrier approach for this locally re-
duced SIP is used in [10].WhileMorse indices aremod-
eled well in this approach, the assumption of the reduc-
tion ansatz in the whole feasible set is not generic [16].

Another obvious generalization of the approach
from finite programming is to directly use the barrier
term

R
Y ln(g(x; y)) dy for SIP. For infinite quadratic

programming problems a related interior point ap-
proach is presented in [18]. For nonlinear SIP, however,
this logarithmic barrier term is neither self-concordant
nor does it necessarily enforce interior points, as an
example from [10] shows. The main problem is that
in some situations even the singularity of the loga-
rithm is smoothed by the integral, and boundary points
can become feasible for the approximation (note thatR
ln(y) D y ln(y) � y can be continuously extended to

y D 0 with value 0).

Smoothing Approaches for Semi-Infinite Programs

An approximation of the feasible set in semi-infinite
optimization by a quadratic distance function is pre-
sented in [6]. While smoothness of the approximating
problem is shown, it is inherently degenerate, so no re-
sults on Morse indices can be expected from this ap-
proach.

A smoothing method for semi-infinite programs
adhering to all the above criteria is given in [14,15].
There the function G is smoothed by mollification, as
is explained in the remainder of this contribution.
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Definitions

The auxiliary function G is the optimal value function
of the so-called lower level problem:

Q(x) : min
y2Rm

g(x; y) subject to v(y) � 0 :

Points x from the topological boundary @M of M
satisfy G(x) D 0, and the corresponding globally mini-
mal points of Q(x) are denoted by

Y0(x) D fy 2 Y jg(x; y) D 0g :

The set Y0(x) is also called the active index set of x for
SIP.

The Extended Mangasarian–Fromovitz Constraint
Qualification

A nice topological structure of M at its boundary
points can be guaranteed under constraint qualifica-
tions. Since G is directionally differentiable [1], accord-
ing to [21] the natural extension of the well-known and
basic Mangasarian–Fromovitz constraint qualification
[17] at a zero x̄ of G is

fd 2 Rnj G0(x̄; d) > 0g ¤ ; :

With the formula for the directional derivative
from [1], one obtains the following explicit condition
which is well known for semi-infinite programs [9,16].

Definition 1 At x̄ 2 M the extended Mangasarian–
Fromovitz constraint qualification (EMFCQ) is said to
hold if there exists some vector d 2 Rn with

Dx g(x̄; y)d > 0 for all y 2 Y0(x̄) :

Here Dxg denotes the row vector of partial derivatives
of g with respect to x. In [16] it is shown that EMFCQ
holds generically in semi-infinite programming and is,
thus, a weak assumption.

The Reduction Ansatz
and Nondegenerate KKT Points

For theoretical as well as numerical purposes it is of
crucial importance to keep track of the elements of
the active index set Y0(x) for varying x. Recall that
each y 2 Y0(x) is a global minimizer of Q(x). The re-
duction ansatz [7,22] is said to hold at x̄ 2 M if all

global minimizers of Q(x̄) are nondegenerate in the
sense of Jongen et al. [11]. Since nondegenerate mini-
mizers are isolated, and Y is a compact set, the closed
set Y0(x̄) can only contain finitely many points, say,
Y0(x̄) D f ȳ1; : : : ; ȳ pg with p 2 N. By a result from [3]
the local variation of these points with x can be de-
scribed by the implicit function theorem.

In fact, for x locally around x̄ there exist contin-
uously differentiable functions yi(x); 1 � i � p; with
yi (x̄) D ȳ i such that yi (x) is the locally unique local
minimizer ofQ(x) around ȳ i . It turns out that the func-
tions Gi (x) :D g(x; yi (x)) are even C2 in a neighbor-
hood of x̄.

A major consequence of the reduction ansatz is
the so-called reduction lemma: if the reduction ansatz
holds at x̄, then for all x from a neighborhood U of x̄
we have

G(x) D min
1�i�p

Gi (x) :

This means that M can locally be described by finitely
many C2 constraints, that is, SIP is locally equivalent to
the smooth finite optimization problem:

SIPred : min
x2Rn

f (x) subject to Gi (x) � 0;

i D 1; : : : ; p :

Examples show that the reduction ansatz cannot be ex-
pected to hold everywhere in the feasible set of a generic
semi-infinite program [16]. As nondegeneracy in the
sense of Jongen et al. is a local property, one can, how-
ever, define a nondegenerate KKT point of the SIP via
the locally reduced problem SIPred. Let

L(x; �) D f (x)�
pX

iD1

�i Gi (x)

denote the Lagrangian of SIPred with multiplier vector
� 2 Rp .

Definition 2 A point x̄ 2 M is called a nondegener-
ate Karush–Kuhn–Tucker point of SIP if the reduction
ansatz holds at x̄ and if x̄ is a nondegenerate Karush–
Kuhn–Tucker point of SIPred, that is, the following
three conditions hold:
1. The linear independence constraint qualification

holds at x̄, and there exists a (unique) multiplier vec-
tor �̄ � 0 with DxL(x̄; �̄) D 0.
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2. The multipliers satisfy �̄i > 0; i D 1; : : : ; p.
3. The matrix D2

xL(x̄; �̄)jTx̄ Mred , that is, the Hessian of
the Lagrangian, restricted to the tangent space to
Mred at x̄, is nonsingular.
The number of negative eigenvalues of the matrix in

condition 3 is called theMorse index of x̄.

For generic SIP all Karush–Kuhn–Tucker points are
nondegenerate [20,24]. In this sense, nondegeneracy of
KKT points for SIP is a weak assumption.

Mollifiers

With the Euclidean norm jj � jj2 on Rn the standard
mollifier [2] is the C1 function:

�(x) D

8<
:
C exp

�
1

jjxjj22�1

�
; jjxjj2 < 1 ;

0; jjxjj2 � 1 ;

where C > 0 is chosen such that
R

Rn �(x) dx D 1. For
" > 0 put

�"(x) D
1
"n
�
�x
"

�
:

The function �" is alsoC1, it satisfies
R

Rn �"(x) dx D 1,
and its support is the closed ball B(0; ") with
B(0; ") D fx 2 Rnj jjxjj2 < "g.

Definition 3 For " > 0 the "-mollification of a lo-
cally integrable function F : Rn ! R is the convolution
F" D �" 
 F on Rn , that is,

F"(x) D
Z

Rn
�"(x�z)F(z) dz D

Z
B(0;")

�"(z)F(x�z) dz

for all x 2 Rn .

Theorem 1 ([2])
1. For all " > 0, the "-mollification F" is in C1(Rn ;R).
2. If F is continuous on Rn , then F" converges to F uni-

formly on compact sets for "! 0.

Formulation

To formulate the smoothing method, the following
three weak assumptions are made in [14,15].

Assumption 1 The feasible set M of SIP is nonempty
and compact.

Assumption 2 The EMFCQ holds everywhere inM.

Assumption 3 All KKT points of SIP are nondegener-
ate.

The smoothing approach is based on the mollification
of the optimal value function G:

G" D �" 
 G D �" 
min
y2Y

g(�; y) :

In view of Theorem 1, the function G" is C1 for each
" > 0, and G" converges to G uniformly on compact
sets for "! 0.

Intuitively, for sufficiently small " > 0 the set

M" D fx 2 RnjG"(x) � 0g

and the smooth finite optimization problem

SIP" : min
x2Rn

f (x) subject to G"(x) � 0

should be strongly related to M and SIP, respectively.
This statement is made precise in the following theo-
rems.

Theorem 2 ([14]) M" converges to M in the Hausdorff
distance for "! 0.

Theorem 3 ([14]) For all sufficiently small " > 0, EM-
FCQ holds everywhere in the set M".

Theorem 4 ([14]) For all sufficiently small " > 0, the
set M" is homeomorphic with M.

Theorem 5 ([14,15])
1. The set KKT( f ;M) of Karush–Kuhn–Tucker points

of SIP is finite.
2. For each x̄ 2 KKT( f ;M) let U(x̄) be some neigh-

borhood of x̄. Then outside the sets U(x̄); x̄ 2

KKT( f ;M); the problem SIP" has no KKT points for
sufficiently small " > 0.

3. The neighborhoods U(x̄); x̄ 2 KKT( f ;M); from
part 2 can be chosen such that each U(x̄) contains
exactly one KKT point x" of SIP" for sufficiently small
" > 0. Moreover, x" is nondegenerate, and the Morse
index of x̄ in SIP and the Morse index of x" in SIP"

coincide.

Conclusions

As an application of smoothing by mollifiers, Jongen
and Stein [14] showed an important topological prop-
erty of semi-infinite optimization problems. In fact, as-
sume that at any x 2 M one can define ascent and



Smoothing Methods for Semi-Infinite Optimization S 3621

descent directions for f . Then these define ascent and
descent flows for f , respectively. For compact M sup-
pose that all local minima and maxima of f on M are
isolated critical points. Starting in a neighborhood of
a local minimum one follows the ascent flow and might
reach a local maximum. From there one steps down-
wards via the descent flow and might reach a local min-
imum. Perhaps the latter minimum is different from
the former one, and the previous procedure is repeated.
In this way one obtains a kind of “bang-bang” path in
M which connects certain local minima and local max-
ima. The main question that arises is whether one can
reach all local minima via such a bang-bang strategy or,
equivalently, if a certain “min–max digraph” is strongly
connected [12]. Of course, M has to be assumed to be
connected, since only local information is used.

Even for finitely many constraints, in general the
answer to the latter question is negative. A two-
dimensional counterexample was given in [23], and
the general mechanism which generates obstructions is
presented in [4]. On the other hand, a special global
adaptation of the metric, constructed in [12], gives
a positive result. Moreover, Jongen and Stein [13] pre-
sented an automatic adaptation of the metric based on
local information which generically gives a positive re-
sult.

Smoothing by mollifiers allows one to derive a sim-
ilar result for SIP. In fact, for generic Riemannian
metrics and sufficiently small " > 0 the corresponding
min–max digraph of SIP" is strongly connected [14].
In view of Theorem 5 the corresponding KKT points
(especially the local minima and maxima) of SIP" are
arbitrarily close to those of the unperturbed SIP. This
shows that SIP can be approximated arbitrarily well by
a smooth finite SIP" with strongly connected min–max
digraph.
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Smooth optimization problems can be considered in the
form of

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x)
s.t. hj(x) D 0; j D 1; : : : ; n � k;

gi (x) � 0; i D 1; : : : ;m;
x 2 Rn ;

(1)

where k > 0, Rn is the n-dimensional Euclidean space,
f , hj, j = 1, . . . , n � k, gi, i = 1, . . . , m, are at least twice
continuously differentiable real valued functions and
the aim is to find a solution point and/or the optimal
value of the objective function f . Note that the underly-
ing space can be more general than the Euclidean one,

e. g., Hilbert space. A smooth optimization problem (1)
is nonlinear if the objective function f or at least one
constraint function is nonlinear. Problem (1) is noncon-
vex if at least one function from f , gi, i = 1, . . . ,m, is not
convex or at least one function from hj, j = 1, . . . , n � k,
is not affine. An important class of problems (1) is that
of the unconstrained optimization problems, where the
constraints gi and hj, for all i, j are not present or where
every point in the domain of f is feasible, i. e., satisfies
the constraints. If the number of constraints is infinite,
then (1) result in semi-infinite optimization problems,
and if the variables are restricted to a subset of the in-
tegers, then integer optimization problems are obtained.
Since minimization and maximization are mathemati-
cally equivalent, without loss of generality, maximiza-
tion should be replaced with minimization in (1). The
practical applications of nonlinear optimization are in-
credibly vast, and moreover, smooth nonlinear opti-
mization has very good properties with respect to struc-
tural investigations and computational performances.

Problem (1) can be considered a representation of
models providing tools to describe real-life constraints
of different types. For theoretical investigations, other
representations could be helpful. Let h denote the map
from Rn into Rn�k of components hj, j = 1, . . . , n � k;
furthermore, assume that the following regularity con-
dition holds: 0 is a regular value of h, i. e., the Jacobian
matrix Jh(x) 2 L(Rn, Rn�k) of h at x is of full rank (n �
k) for all x 2 M = {x 2 Rn: hj(x) = 0, j = 1, . . . , n � k}.
Under this assumption, the feasible set

A D fx 2 M : gi (x) � 0; i D 1; : : : ;mg (2)

is a subset of the k-dimensional submanifoldM of class
C2 in Rn which can be endowed with a Riemannian
metric (e. g., the one induced by the Euclidean struc-
ture of Rn). Assume, furthermore, that A is connected.
In order to better see the structure of problem (1), we
reformulate it into the following form:

(
min f (x)
s.t. x 2 A � M �M;

(3)

where M is a k-dimensional Riemannian manifold and
M is the n-dimensional differentiable manifold Rn en-
dowed with the Riemannian metric G1(x) = I, x 2 Rn,
which induces the Riemannian metric of M defined as
the restriction of the n × n identity matrix to all the tan-
gent spaces of M. The speciality of problem (1) is that
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the representation of the manifold M is not a curvilin-
ear coordinate system in the sense of differential geom-
etry and the essential condition M � M holds, which
motivates the investigation of the common curvilinear
coordinate representations of M andM from the point
of view of nonlinear optimization.

A local minimizer of problem (1) or (3) is a feasible
point x� 2 A such that f (x�) � f (x) for all x in a feasi-
ble neighborhood of x�. If f (x�) � f (x) for all feasible
x, then x� is called a global optimizer. If x� is a local
optimizer and f (x�) < f (x) for all x 6D x� in a feasible
neighborhood of x�, then x� is called a strict local opti-
mizer. If x� is the only local minimizer in some feasible
neighborhood of x�, it is called an isolated local mini-
mizer.

A fundamental result due to K. Weierstrass is the
fact that a feasible global minimizer of a continuous
function f exists in a nonempty and compact feasible
region A. If f is once continuously differentiable and x�

is a local unconstrained minimizer, then the gradient r
f (x�) = 0. If f is twice continuously differentiable and
x� is a local unconstrained minimizer, then r f (x�) = 0
and the Hessian matrixH f (x�) is positive semidefinite.
If r f (x�) = 0 and H f (x�) is positive definite, then x�

is an isolated (hence, also strict) local minimizer.
In the case of a finite number of equalities, the lo-

cal optimality conditions are deduced by the Lagrange
multiplier rule, [9,10]. This classical rule was indepen-
dently extended to constraints including a finite num-
ber of equalities and inequalities in [2,3,6,7,8]. A trans-
parent description of the smooth local optimality con-
ditions can be found, e. g., in [1,4,5,11]. By improving
these rules [13], global optimality conditions can be ob-
tained which are formulated as follows.

Let x� 2 A be a given point, I(x�) denote the index
set of the active inequality constraints at x�, |I(x�)| the
number of active constraints, and gI(x�): Rn ! RjI(x�)j

the mapping of the active constraints at x�. (An in-
equality constraint is active at x� if equality holds.)

Let us introduce:
� Mx� as the set

8̂
<̂
ˆ̂:
(x; z) 2 RnCjI(x�)j :

hj(x) D 0;
j D 1; : : : ; n � k;
gi (x)C 1

2 z
2
i D 0;

i 2 I(x�)

9>>=
>>;
; (4)

� the set TMx� :
n
(v1; v2) 2 RnCjI(x�)j :

rhj(x)v1 D 0;
j D 1; : : : ; n � k;

r gi (x)v1 C ziv2i D 0;
i 2 I(x�);

(x; z) 2 Mx�

9>>>>>=
>>>>>;
;

(5)

� a regularity condition

r([Jh(x); 0]>; [JgI(x�)(x);Dz]>)

D n � k C jI(x�)j ;

(x; z) 2 Mx� ;

(6)

where Jh and JgI(x�) are the Jacobian matrices of the
mappings h: Rn ! Rn�k and gI(x�): Rn ! RjI(x�)j,
respectively, and Dz = diag(z1, . . . , zI(x�)j) the diago-
nal matrix with the components of the vector z.

Here, problems satisfying (6), i. e., regular problems, are
considered for which the inequality n � k holds. It is
well-known that there cannot exist Lagrange multipli-
ers for a local minimum in an irregular problem. In-
stead of (1) or (3), let us consider the problem

min
(x;z)2Mx�

f (x): (7)

As a point x� 2A is a local optimal solution of prob-
lem (1) if and only if (x�, 0) 2 Mx� is a local optimal
solution of (7), and since the orthogonal projection of
Mx� toRn with respect to the Euclideanmetric contains
A, a point x� 2 A is a global optimal solution of prob-
lem (1) if (x�, 0) 2 Mx� is a global optimal solution of
(7), we deal with this latter problem only.

Let the Lagrangian function associated with f and
Mx� be defined as

L(x; z; �(x); �(x; z))

D f (x) �
n�kX
jD1

� j(x)hj(x)

�
X

i2I(x�)

�i (x; z)
�
gi (x)C

1
2
z2i

�
;

(x; z) 2 Mx� ;

� : Rn ! Rn�k ;

� : RnCjI(x�)j ! RjI(x
�)j;

(8)



3624 S Smooth Nonlinear Nonconvex Optimization

where

�(x)> D r f (x)Jh>(x)
�
Jh(x)Jh(x)>

��1
;

�(x; z)> D r f (x)Jg>I(x�)(x)

�
�
[JgI(x�)(x);Dz][JgI(x�)(x);Dz]>

��1
:

Let the geodesic gradient vector and the geodesic Hes-
sian matrix of the Lagrangian function (8) be defined as

r
g
x L(x; z; �(x); �(x; z))

D r f (x) �
n�kX
jD1

� j(x)rhj(x)

�
X

i2I(x�)

�i (x; z)r gi(x);

(x; z) 2 Mx� ;

r
g
z L(x; z; �(x); �(x; z))

D �
X

i2I(x�)

�i(x; z)zie>i ;

(x; z) 2 Mx� ;

where ei, i = 1, . . . , |I(x�)|, are the unit vectors,

Hg
(x;z)L(x; z; �(x); �(x; z))

D

0
BBBB@

Hf (x)�
n�kP
jD1

� j(x)Hhj(x)

�
P

i2I(x�)
�i (x; z)Hgi (x) 0

0 �D	

1
CCCCA
jTMx�

;

(x; z) 2 Mx� ;

(9)

where the symbol |TMx� denotes the restriction to the
tangent spaces of Mx� and D	 is the diagonal matrix
with components �i(x, z), i = 1, . . . , |I(x�)|, at (x, z).

Now, the global Lagrange multiplier rule is for-
mulated for the case of equality and inequality con-
straints. First, a definition of geodesic convex sets is re-
called where the geodesic is used in the classical mean-
ing. If M is a Riemannian manifold, then a set A � M
is geodesic convex if any two points of A are joined
by a geodesic belonging to A, moreover, a singleton is
geodesic convex. It is emphasized that every Rieman-
nian metric generates a geodesic convexity notion. In
optimization theory related to the Lagrange multiplier
rule, the induced Riemannian metric seems to be the
most important.

Theorem 1 (Global Lagrange multiplier rule) If the
point (x�, 0) 2Mx� is a (strict) local or global minimum
of problem (7), then

r
g
(x;z)L(x

�; 0; �(x�); �(x�; 0)) D 0;

(v1; v2)>H
g
(x;z)L(x

�; 0; �(x�); �(x�; 0))

� (v1; v2) � (>) 0;

(v1; v2) 2 TMx� (x�; 0);

((v1; v2) ¤ 0):

If bA � Mx� is an open geodesic convex set with re-
spect to the induced Riemannian metric and

r
g
(x;z)L(x

�; 0; �(x�); �(x�; 0)) D 0;

(v1; v2)>H
g
(x;z)L(x; z; �(x); �(x; z))

� (v1; v2) � (>) 0;

(v1; v2) 2 TMx� (x; z);

((v1; v2) ¤ 0);

(x; z) 2 Mx� ;

(10)

then the point (x�, 0) is a (strict) global minimum of the
function f onbA. Moreover,

r
g
(x;z)L(x; z; �(x); �(x; z)) D D f (x; z);

(x; z) 2 Mx� ;
(11)

Hg
(x;z)L(x; z; �(x); �(x; z)) D D2 f (x; z);

(x; z) 2 Mx� ;
(12)

where Df and D2f are the first and second covariant
derivatives of the function f with respect to the induced
Riemannian metric of the manifold Mx� , respectively.

Because of the linear independence of the active gradi-
ents, the first order optimality condition is equivalent
to the classical one, and in the case of equality con-
strained problems, the second order optimality con-
ditions coincide with the classical ones at the station-
ary points as well, moreover, a geodesic convex feasible
neighborhood always exists around a stationary point
in a Riemannian manifold, so this latter condition does
not mean a new restriction. If inequality constraints are
present, then from (5) and (9), the classical optimality
conditions and the nonpositivity of the Lagrange mul-
tipliers at the stationary points can be deduced. In this
approach, neither Farkas’ lemma in the necessary part
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nor strict complementarity assumption (�i(x�, 0) > 0,
i 2 I(x�)) in the sufficiency part are used; they are re-
placed by the regularity condition and the smoothness
of the functions.

By the global Lagrange multiplier rule, the neces-
sary and sufficient optimality conditions are given by
the same tensor formulae based on the first and sec-
ond covariant derivatives, only the domains are differ-
ent where the second order formula holds. The sec-
ond order conditions (10) define a class of functions on
geodesic convex sets with respect to the induced Rie-
mannian metric, the geodesic convex functions with re-
spect to the same metric, introduced in optimization
theory in [12]. It is recalled that if M is a Riemannian
manifold andA�M a geodesic convex set, then a func-
tion f : A! R is geodesic (strictly) convex if its restric-
tions to all geodesic arcs belonging to A are (strictly)
convex in the arc length parameter. From the point of
view of geometry, the existence of a constrained mini-
mum is equivalent to the existence of a geodesic convex
function with respect to the induced Riemannian met-
ric. It follows that the Lagrange method can be consid-
ered the transformation of a constrained problem in Rn

into an unconstrained problem on the constraint sub-
manifold with the induced Riemannian metric in Rn.
In the case of a Euclidean space, the geodesic convexity
coincides with the classical one. The application of the
Riemannian geometry highlighted the geometric back-
ground of smooth optimization and provides it with
strong mathematical tools to study structural proper-
ties (e. g., geodesic convexity) and to deepen the theory
of algorithms (e. g., variable metric methods).

See also
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� Continuous Global Optimization: Models,

Algorithms and Software
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Problem Formulation and Basic Facts

Let X be a nonempty convex set in the real n-di-
mensional space Rn , and let G : X ! ˘ (Rn) be a mul-
tivalued mapping. Here and below ˘ (A) denotes the
family of all nonempty subsets of a set A. Then one
can define the multivalued or generalized variational
inequality (GVI) problem, which is to find an element
x� 2 X such that

9g� 2 G(x�); hg�; y � x�i � 0 8y 2 X : (1)

If the cost mapping G is single-valued, GVI (1) reduces
to the following usual variational inequality (VI) prob-
lem: Find an element x� 2 X such that

hG(x�); y � x�i � 0 8y 2 X ; (2)

where G : Rn ! Rn is a given mapping.
VIs are now regarded as very useful and pow-

erful tools for investigation and solution of various
equilibrium-type problems arising in economics, engi-
neering, operations research and mathematical physics.
Many such applied problems involve multivalued map-
pings with rather weak continuity properties. The arti-
cle is devoted to the construction of solution methods

for VIs with multivalued cost mappings. These prob-
lems involve in particular multivalued inclusions, com-
plementarity and fixed-point problems, nonsmooth op-
timization and game problems, and mixed VIs (MVIs).
Problem (1) was originally considered by Browder [5].

It is well known that the multivaluedness creates
certain difficulties for providing convergence of many
iterative methods, which are applied successfully to sin-
gle-valued problems. This fact leads to the necessity of
construction of new solution methods. In this article,
we outline briefly the current situation and describe
some new advances in this field.

First we consider some existence results for GVI (1)
which are based on certain continuity-type properties
of multivalued mappings; see, e. g., [11,16,17].

Definition 1 A multivalued mapping Q : Rn !

˘ (Rn) is said to be a K (Kakutani) mapping on X if it
is upper semicontinuous on X and has nonempty, con-
vex, and compact values.

Proposition 1 Let G : X ! ˘ (Rn) be a K-mapping.
Suppose at least one of the following assumptions holds:
(a) The set X is bounded;
(b) there exists a nonempty bounded subset Y of X such

that for every x 2 XnY there is y 2 Y with

hg; x � yi � 0 8g 2 G(x) :

Then GVI (1) has a solution.

The solution of GVI (1) is closely related to that of the
corresponding dual (or Minty) GVI (DGVI) problem,
which is to find a point x̃ 2 X such that

8x 2 X and 8g 2 G(x) : hg; x � x̃i � 0 : (3)

We denote by X* (respectively, by Xd) the solution
set of problem (1) (respectively, problem (3)). Recall
certain monotonicity-type properties for multivalued
mappings.

Definition 2 Let Q : Rn ! ˘ (Rn) be a multivalued
mapping. The mapping Q is said to be
(a) strongly monotone on X with constant � > 0 if for

each pair of points x; y 2 X and for all q0 2 Q(x),
q00 2 Q(y), we have

hq0 � q00; x � yi � �kx � yk2 ;
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(b) strictly monotone on X if for all distinct x; y 2 X
and for all q0 2 Q(x), q00 2 Q(y), we have

hq0 � q00; x � yi > 0 ;

(c) monotone on X if for each pair of points x; y 2 X
and for all q0 2 Q(x), q00 2 Q(y), we have

hq0 � q00; x � yi � 0 ;

(d) pseudomonotone on X if for each pair of points
x; y 2 X and for all q0 2 Q(x), q00 2 Q(y), we have

hq00; x � yi � 0 implies hq0; x � yi � 0 :

From the definitions we have the following implica-
tions:

(a) H) (b) H) (c) H) (d) :

The reverse assertions are not true in general.
Now we give an extension of the Minty lemma for

the multivalued case.

Proposition 2
(i) The set Xd is convex and closed.
(ii) If G is a K-mapping, then Xd � X�.
(iii) If G is pseudomonotone, then X� � Xd .

We also recall some conditions under which GVI (1)
has a unique solution.

Proposition 3
(i) If G is strictly monotone, then GVI (1) has at most

one solution.
(ii) If G is a strongly monotone K-mapping, then

GVI (1) has a unique solution.

Of course, there exist various modifications and exten-
sions of the above results; see, e. g., [3,16] for more de-
tails.

Projection Methods for GVIs

We observe that the existence and uniqueness results
for multivalued problems are very similar to those for
single-valued VIs, but this is not the case for solution
methods in general. That is, the substantiation of con-
vergence and derivation of rates of convergence for it-
erative methods applied to multivalued problems meet
certain difficulties in comparison with those in the sin-
gle-valued case. This reduces essentially the number of

approaches to the creation of efficient solution meth-
ods. To illustrate this assertion, we first outline the be-
havior of projection-type methods.

Unless otherwise stated, throughout the article we
suppose that

(C1) X is a nonempty, convex and closed subset of
the real n-dimensional space Rn , G : X ! ˘ (Rn) is
a K-mapping.

ProjectionMethod

Let us consider the standard projection method

xkC1 :D 
X[xk ��k gk] ; gk 2 G(xk) ; �k > 0 ; (4)

where 
X(�) denotes the projection mapping onto X.
Usually, during the computation process we can find
at least one element from G(xk) at the current point
xk, but the whole set G(xk) is not determined explic-
itly. The problem is to find a suitable rule for choosing
the step size �k > 0, which provides convergence under
mild assumptions and a good rate of convergence. We
recall that in the single-valued case, where (C1) means
that G is continuous, the above method is rewritten as
follows

xkC1 :D 
X[xk � �kG(xk )] ; �k > 0 ; (5)

and its convergence requires either integrability,
or strengthened monotonicity (co-coercivity, strong
monotonicity) and Lipschitz continuity assumptions.
That is, if G is of the form G D r f , where f is a given
function, the step size �k can be chosen in conformity
with the known exact or inexact (Armijo-type) rules.
Then method (5) generates a sequence whose limit
points are solutions of VI (2) with G D r f ; moreover,
it attains a linear rate of convergence if G is strongly
monotone and Lipschitz continuous. The superlinear
rate of convergence can be obtained within the conju-
gate gradient approach. However, this is not the case if
G is not integrable. In fact, the same method (5) does
not provide convergence even in the nonintegrable
monotone case, for instance, when G(x) D Ax C b
with A being skew-symmetric, regardless of the step-
size choice. Therefore, we have to utilize different step-
size rules and impose certain additional assumptions,
such as co-coercivity.

Definition 3 A mapping Q : Rn ! Rn is said to be
co-coercive with constant � > 0 on X, if for each pair
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of points x; y 2 X, we have

hQ(x) � Q(y); x � yi � �kQ(x) � Q(y)k2 :

In fact, if G is co-coercive and VI (2) is solvable, then
method (5) with the fixed step size �k D � 2 (0; 2�)
generates a sequence fxkg which converges to a solu-
tion of VI (2); see [15]. At the same time, the co-coer-
civity ofG again implies the single-valuedness and even
Lipschitz continuity of G.

Nevertheless, method (4) becomes convergent if we
utilize the divergent series step-size rule

�k D
˛k

kgkk
; ˛k > 0;

1X
kD0

˛k D 1;

1X
kD0

˛2k <1; (6)

and replace monotonicity ofGwith the acute angle con-
dition:

(C20) GVI (1) is solvable, and for every x� 2 X�, it
holds that

8x 2 XnX�; 8g 2 G(x); hg; x � x�i > 0 ; (7)

see [15]. This property has clear geometric sense: the
angle between �G(x) and x� � x has to be acute at
each nonoptimal point x. For instance, (7) holds if G
is strictly monotone.

However, rule (6) leads to very slow convergence
and prevents the method from attaining a linear rate
of convergence. For this reason, we have to apply other
approaches
� to utilize more efficient step-size rules,
� to attain more rapid convergence,
� to weaken sufficient conditions for convergence.

Basic Solution Methods for GVIs

So, we intend to describe some other solution methods
for GVI (1). First of all, in addition to (C1) we will uti-
lize the following weakened condition

(C2) GVI (1) is solvable, and for every x� 2 X�, it
holds that

8x 2 X; 8g 2 G(x); hg; x � x�i � 0 (8)

(cf. (3) and (7)) or the somewhat more restrictive, but
simplified version

(C3) GVI (1) is solvable, and G is monotone.

Clearly, we have the following implications

(C20) H) (C2) and (C3) H) (C2)

but the reverse assertions are not true.
Owing to Proposition 2, we see that (C2) is equiva-

lent to

X� D Xd ¤ ;

for GVI (1) if (C1) is fulfilled. Also note that (8) may
in principle be called the nonobtuse angle condition;
see [26] for more details.

We divide the basic solution methods into the fol-
lowing families:
� Averaging methods;
� Center-type methods;
� Combined relaxation methods;
� Proximal point methods;
� Regularization methods.
In the next sections, we describe properties of these
general approaches to enhance the convergence prop-
erties of methods (4) and (6).

Averaging and Regularization Type Methods

We now consider the methods which utilize modifica-
tions of the initial problems or some other kind of con-
vergence.

Averaging Method

The idea of the averaging method consists in replac-
ing the usual convergence of {xk} with an ergodic con-
vergence. It utilizes the same divergent series step-size
rule (6). In fact, the sequence

zk D
kX

iD0

˛i x i
. kX

iD0

˛i ; (9)

enjoys stronger convergence properties than {xk}. This
idea leads to the so-called averaging method, which is
due to Bruck [8].

Method (AVR). Choose a point x0 2 X and a pos-
itive sequence f˛kg. Set z0 :D x0, ˇ0 :D ˛0. At the kth
iteration, k D 0; 1; : : : ; set

ˇkC1 :D ˇk C ˛kC1; �kC1 D ˛kC1/ˇkC1 ;

xkC1 :D 
X(xk C ˛k gk) ; gk 2 G(xk) ;

zkC1 :D �kC1xkC1 C (1 � �kC1)zk :
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From the description it follows that the sequence fzkg
generated by (AVR) satisfies (9).

Theorem 1 Suppose that (C1) and (C3) hold and that
sequences fxkg and fzkg are constructed by (AVR) and
that the sequence f˛kg satisfies the following conditions:

1X
kD0

˛k D1 ;

1X
kD0

(˛kkgkk)2 <1 :

Then there exist limit points of fzkg and all these points
belong to X*.

The rate of convergence of the averaging method
was investigated by several authors. It was shown by
Nemirovskii [40] that kzk � x�k D O(1/

p
k), where

x� 2 X�.

Regularization Methods

The idea of the earliest and most popular regularization
method consists in replacing the initial GVI (1) with
a sequence of the following auxiliary problems: Find
a point x" 2 X such that

9g" 2 G(x"); hg"C"x"; x� x"i � 0 8x 2 X ; (10)

where " > 0 is a regularization parameter. It was first
proposed by Tikhonov [46] and was adjusted to VIs by
Browder [7]. Suppose that (C1) and (C3) hold. Then
G is monotone, G C "I is strongly monotone and, by
Proposition 3, (10) has a unique solution, which can be
found by one of the versions of the above projection
method within a given accuracy. The basic approxima-
tion property of the exact regularization method is for-
mulated as follows:

Theorem 2 Suppose that (C1) and (C3) are fulfilled
and that the sequence fx"k g is obtained from (10) with
f"kg & 0. Then the following assertions are true:
(i) each auxiliary GVI (10) has a unique solution;
(ii) the sequence fx"k g converges to the solution x�n of (1)

nearest to the origin.

We also can replace (C3) with (C2) and obtain sim-
ilar convergence properties despite the fact that the
cost mapping in (10) is not monotone. We present
a strengthened version of the result from [34].

Theorem 3 Suppose that (C1) and (C2) are fulfilled
and that the sequence fx"k g is obtained from (10) with
f"kg & 0. Then the following assertions are true:

(i) each auxiliary GVI (10) has a solution;
(ii) fx"k g converges to the solution x�n of (1) nearest to

origin.

Moreover, we can obtain convergence results for (RM)
under even weaker conditions which are utilized for
providing existence results for GVIs; see [33]. Namely,
let us consider the following coercivity condition (see
e. g. [3]):

(C200) There exists a number r > 0 such that for
any point x 2 X n Xr there is a point y 2 X, kyk < kxk
such that hg; y � xi � 0;8g 2 G(x), where

Xr D fx 2 X j kxk � rg :

The basic approximation properties of the regular-
ization method are then formulated as follows:

Theorem 4 Suppose conditions (C1) and (C2”) are ful-
filled. Then:
(i) GVI (1) has a solution;
(ii) GVI (10) has a solution for each " > 0;
(iii) Each sequence fx"k g of solutions of GVI (10) has

limit points and if f"kg & 0 all these limit points
are solutions of GVI (1).

The regularization approach allows various modifica-
tions. One of them was proposed by Bakushinskii and
Polyak [2] and is called the iterative regularization
method. The idea of this approach consists in simulta-
neous changes of the regularization parameters and the
step sizes of an approximation method, i. e., it is inter-
mediate between the above averaging and regulariza-
tion methods, and has similar convergence properties.

Proximal Point Method

The idea of the proximal point method, which was sug-
gested by Martinet [39], also consists in replacing the
initial GVI (1) with a sequence of auxiliary problems.
The essential features of the proximal point method
are that the regularization parameter may in principle
be fixed and that the perturbed mapping depends on
the previous iteration point. We first recall the conver-
gence result for the exact version of the proximal point
method applied to monotone problems.

Theorem 5 Suppose that (C1) and (C3) are fulfilled
and that a sequence fxkg is generated in conformity with
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the rules

9gk 2 G(xk); hgk C ��1(xk � xk�1); y � xki � 0

8y 2 Y ; (11)

where � > 0 is a regularization parameter. Then the fol-
lowing assertions are true:
(i) each auxiliary GVI (11) has a unique solution;
(ii) the sequence fxkg converges to a solution of GVI (1).

In fact, since (C1) and (C3) hold, the cost mapping
in (11) is strongly monotone and, by Proposition 3, (11)
has a unique solution. However, we can replace (C3)
with (C2) and obtain similar convergence properties;
see e. g., [1,4,12,28]. We now give such a strengthened
result for the proximal point method.

Theorem 6 Suppose that (C1) and (C2) are fulfilled
and that a sequence fxkg is generated in conformity with
the rules in (11) with � > 0. Then the following asser-
tions are true:
(i) each auxiliary GVI (11) has a solution;
(ii) the sequence fxkg converges to a solution of GVI (1).

Observe that the cost mapping in (11) need not be
strongly monotone but (11) is still solvable. Under the
additional Lipschitz continuity type condition on G we
can choose � large enough for the cost mapping in (11)
to be strongly monotone, thus providing the unique-
ness of a solution as well.

The exact proximal point method attains linear and
even superlinear convergence rates as was shown by
Rockafellar [44]. At the same time, the total rates of
convergence of both the proximal point method and
the regularization method, involving expenses for ap-
proximate solutions of auxiliary problems, need further
investigations.

Direct IterativeMethods for GVIs

We now present iterative methods for solving GVI (1)
without any explicit monotonicity assumptions.

Center-Type Methods

The best known of the center-type methods is the fa-
mous ellipsoid method, which was proposed first by
Yudin and Nemirovskii [47] and by Shor [45] for con-
vex programming and afterwards adjusted for saddle

point problems and VIs [40]. In this method, each it-
erate xk is associated with an ellipsoid Uk centered at xk

and containing at least one solution point. After finding
a half-spaceH+

k containing this solution point, the next
ellipsoid Uk+ 1 is precisely the smallest ellipsoid con-
taining the set Uk

T
HCk . Set

P(z) D

(
G(z) if z 2 X ;
fp 2 Rnjhp; y � zi � 0 8y 2 Xg if z … X :

Method (EM). Choose a point x0 2 Rn , a number
� > 0 such that kx0 � x�k � � for some x� 2 X� and
set A0 :D �2I. At the kth iteration, k D 0; 1; : : : ; choose
pk 2 P(xk ) and set

xkC1 :D xk �
1

nC 1
Akpkp

(pk)TAk pk
;

AkC1 :D
n2

n2 � 1

�
Ak �

2
nC 1

Ak pk(Ak pk )T

(pk )TAk pk

�
;

and k :D k C 1.
If the basic assumptions (C1) and (C2) are fulfilled,

the process is well-defined. Namely, then

Uk D fx 2 Rn j hA�1k (x � xk); x � xki � 1g

and

HCk D fx 2 Rn j hpk ; x � xki � 0g :

The implementation of (EM) is similar to that of vari-
able metric methods. It is well known that the vol-
umes of Uk will also tend to zero at a linear rate, which
depends on the dimensionality of the problem. These
properties yield the convergence of the sequence fxkg

to a solution.
The idea of various proximal-level methods is rather

close to that of the center methods [14,18,36]. In fact,
the methods are based on sequential updating of a poly-
hedral approximation of a nonsmooth merit function
for GVI and computing the prox-center of the corre-
sponding level sets. These methods possess similar con-
vergence properties.

Combined RelaxationMethods

The idea of combined relaxation methods consists in
defining the next iterate xk+ 1 as the projection of the
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current iterate xk onto a hyperplane Hk which sep-
arates strictly xk and the solution set and is com-
puted by an auxiliary procedure. This approach to solve
VIs was proposed first by Konnov [19], where it was
also noticed that the parameters of the hyperplane Hk

can be found with the help of an iteration of any
relaxation method. Afterwards, combined relaxation
methods were developed in several directions. In [20],
a combined relaxation method for GVI of form (1)
was proposed and linear convergence rates were estab-
lished. All these methods ensure convergence to a solu-
tion of GVI under assumption (C2) or (C3). Within the
general combined relaxation framework, different rules
for determining the separating hyperplane and auxil-
iary procedures were presented; see [26] and references
therein.

Combined Relaxation Method for GVIs We now
consider a combined relaxation method for solving
GVI (1) with explicit usage of constraints [20,22]. In ad-
dition to the basic assumptions (C1) and (C2), we sup-
pose that
� X is defined by

X D fx 2 Rn j h(x) � 0g ;

where h : Rn ! R is a convex and subdifferentiable
function;

� the Slater condition is satisfied, i. e., there exists
a point x̄ such that h(x̄) < 0.
Let us define the mapping Q : Rn ! ˘ (Rn) by

Q(x) D

(
G(x) if h(x) � 0 ;
@h(x) if h(x) > 0 :

Definition 4 A mapping P : Rn ! Rn is said to be
a pseudo-projection onto X, if for every y 2 Rn it holds
that

P(y) 2 X and kP(y) � xk � ky � xk 8x 2 X :

We denote byF the class of all pseudo-projection map-
pings onto X. Clearly, 
X 2 F . That is, the pseudo-pro-
jection is weaker but it can be implemented in the case
where h is essentially nonlinear; see [26] for more de-
tails.

Method (CRM). Step 0 (initialization): Choose
a point x0 2 X, bounded positive sequences f"l g and

f�l g, and a sequence of mappings fPkg, where Pk 2 F .
Also, choose numbers � 2 (0; 1), and � 2 (0; 2). Set
k :D 0, l :D 1.
Step 1 (auxiliary procedure):

Step 1.1: Choose q0 from Q(xk), set i :D 0, pi :D qi ,
wk;0 :D xk .
Step 1.2: If kpik � �l , set xkC1 :D xk , k :D k C 1,
l :D l C 1 and go to step 1. (null step)
Step 1.3: Set wk;iC1 :D wk;0 � "l pi /kpik, choose
qiC1 2 Q(wk;iC1). If hqiC1; pii > �kpik2, then set
yk :D wk;iC1, gk :D qiC1, and go to step 2. (descent
step)
Step 1.4: Set piC1 :D Nr convfpi ; qiC1g, i :D i C 1
and go to step 1.2.

Step 2 (Main iteration): Set !k :D hgk; xk � yki,

xkC1 :D Pk[xk � �(!k/kgkk2)gk] ;

k :D k C 1 and go to step 1.
Here NrS denotes the element of S nearest to the

origin. We will call one increase of the index i an inner
step, so that the number of inner steps gives the num-
ber of computations of elements fromQ(�) at the corre-
sponding points.

Theorem 7 Let a sequence fxkg be generated by (CRM)
and let f"lg and f�l g satisfy the following relations:

f"l g & 0; f�l g & 0 : (12)

Then:
(i) The number of inner steps at each iteration is finite.
(ii) It holds that

lim
k!1

xk D x� 2 X� :

Given a starting point x0 and a number ı > 0, we de-
fine the complexity of the method, denoted by N(ı), as
the total number of inner steps t which ensures finding
a point x̄ 2 X such that

kx̄ � x�k/kx0 � x�k � ı :

Therefore, since the computational expense per inner
step can be evaluated for each problem under examina-
tion, this estimate in fact gives the total amount of work.
We thus proceed to obtain an upper bound for N(ı).

Theorem 8 (Konnov [26], Theorem 2.3.3) Suppose G
is monotone and there exists x� 2 X� such that

for every x 2 X and for every g 2 G(x) ;

hg; x � x�i � �kx � x�k ;
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for some � > 0. Let a sequence fxkg be generated by
(CRM) where

"l D �
l"0; �l D �

0; l D 0; 1; : : : ; � 2 (0; 1) :

Then, there exist some constants "̄ > 0 and �̄ > 0 such
that

N(ı) � B1�
�2(ln(B0/ı)/ ln ��1 C 1) ;

where 0 < B0; B1 <1, whenever 0 < "0 � "̄ and
0 < �0 � �̄, B0 and B1 being independent of �.

The assertion of Theorem 8 remains valid without the
additional monotonicity assumption on G if X D Rn .
Thus, (CRM) attains a logarithmic complexity estimate,
which corresponds to a linear rate of convergence with
respect to inner steps. We can give a similar upper
bound for N(ı) in the single-valued case.

Theorem 9 (Konnov [26], Theorem 2.3.4) Suppose
that X D Rn and that G is strongly monotone and Lip-
schitz continuous. Let a sequence fxkg be generated by
(CRM), where

"l D �
l"0; �l D �

l�0; l D 0; 1; : : : ; "0 > 0; �0 > 0;

� 2 (0; 1) :

Then,

N(ı) � B1�
�6(ln(B0/ı)/ ln ��1 C 1) ;

where 0 < B0; B1 <1, B0 and B1 being independent
of �.

Combined RelaxationMethod forMultivalued Inclu-
sions To solve GVI (1), we can also apply (CRM) for
finding stationary points of the mapping P defined as
follows:

P(x) D

8̂
<̂
ˆ̂:

G(x) if h(x) < 0 ;
convfG(x)

S
@h(x)g if h(x) D 0 ;

@h(x) if h(x) > 0 :

(13)

Such a method need not include (pseudo)projections
and is based on the following observations [21,26].

We note P in (13) is a K-mapping. Next, GVI (1) is
equivalent to the multivalued inclusion

0 2 P(x�) : (14)

We denote by S* the solution set of problem (14). In
order to apply (CRM) to this problem we have to show
that its dual problem is solvable. Namely, let us consider
the problem of finding a point x* of Rn such that

8x 2 Rn ; 8p 2 P(u); hp; x � x�i � 0 ;

which can be viewed as the dual problem of (14). We
denote by Sd the solution set of this problem.

Theorem10 (Konnov [26], Theorem2.3.1 andPropo-
sition 2.4.1) It holds that
(i) X� D S�,
(ii) Xd D Sd :

Therefore, we can apply (CRM) by replacing G, X, and
Pk by P, Rn , and I, respectively, to the multivalued in-
clusion (14) under the same blanket assumptions. We
call this modification (CRMIS).

Theorem 11 Let a sequence fxkg be generated by
(CRMIS) and let f"l g and f�l g satisfy (15). Then:
(i) The number of inner steps at each iteration is finite.
(ii) It holds that

lim
k!1

xk D x� 2 S� D X� :

Iterative Methods
for Generalized Complementarity Problems

It is well known that taking into account additional
peculiarities of the problem under examination could
yield more efficient solution methods in comparison
with those in the general case. We intend to describe
several recent results for certain classes of multivalued
VIs.

Let us consider problem (1) where the feasible set
X coincides with the nonnegative orthant Rn

C D fx 2
Rn j xi � 0 8i D 1; : : : ; ng. Then it can be rewritten
in the equivalent generalized complementarity problem
(GCP) format:

x� � 0 ; 9g� 2 G(x�); g� � 0; hg�; x�i D 0 : (15)

Owing to the special form of the constraint sets of these
problems, their existence and uniqueness results of so-
lutions can be based upon rather weak order mono-
tonicity properties instead of the previous norm mono-
tonicity ones [9,10,17]. We recall several order mono-
tonicity properties of single-valued mappings.
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Definition 5 Amapping F : X ! Rn is said to be
(a) a P0-mapping, if for each pair of points x0; x00 2 X

there exists an index i such that x0i ¤ x00i and

(x0i � x00i )(Fi(x
0) � Fi(x00)) � 0 ;

(b) a P-mapping, if for each pair of points x0; x00 2 X
such that x0 ¤ x00 it holds that

max
1�i�n

(x0i � x00i )
�
Fi(x0) � Fi(x00)

�
> 0 ;

(c) a Z-mapping if for each pair of points x0; x00 2 X
such that x0 � x00 it holds that Fk(x0) � Fk(x00) for
each index k with x0k D x00k .

Clearly, each monotone (respectively, strictly mono-
tone) mapping is a P0-mapping (respectively, P-map-
ping).

One of the most useful and fruitful concepts is that
of the Z-mapping (or off-diagonal antitone mapping).
However, the creation of efficient solution methods and
even the generalization of this concept for multivalued
mappings meet considerable difficulties.

Following [29] and [32], we consider some kinds of
multivalued Z-mappings and discuss their properties.
For rather a general class of GCPs of form (15), we sug-
gest an extension of the Jacobi algorithm and obtain its
convergence to a solution, thus presenting an existence
result.

Properties of Multivalued Z-Mappings

We present streamlined extensions of the above con-
cepts for the multivalued case.

Definition 6 Amultivalued mapping G : X ! ˘ (Rn)
is said to be
(a) a P0-mapping, if for each pair of points x0; x00 2 X,

and for each pair of vectors g0 2 G(x0), g00 2 G(x00)
there exists an index i such that x0i ¤ x00i and

(x0i � x00i )(g
0
i � g00i ) � 0 ;

(b) a P-mapping, if for each pair of points x0; x00 2 X
such that x0 ¤ x00 and for each pair of vectors
g0 2 G(x0), g00 2 G(x00) there exists an index i such
that

(x0i � x00i )(g
0
i � g00i ) > 0 ;

(c) a Z-mapping if for each pair of points x0; x00 2 X
such that x0 � x00, x0 ¤ x00 it holds that g0k � g00k
for all g0 2 G(x0), g00 2 G(x00) and for each index
k such that x0k D x00k .

Note that the additional condition x0 ¤ x00 cannot be
dropped in Definition 6c since otherwise the Z-map-
ping becomes single-valued. Hence, the above concept
of the Z-mapping may appear too restrictive.

Definition 7 A mapping G : Rn ! ˘ (Rn) is said to
be
(a) diagonal if G(x) D

nQ
iD1

Gi (xi);

(b) quasi-diagonal if G(x) D
nQ

iD1
Gi (x).

Clearly, (a)H)(b). Moreover, each single-valued map-
ping is quasi-diagonal. Next, observe that each diagonal
single-valued mapping is Z, but this is not the case if it
is multivalued; hence, various compositions of multi-
valued diagonal and Z-mappings may not possess the Z
property as well.

We now present modified order monotonicity con-
cepts of multivalued Z-mappings which enable us to re-
move these difficulties.

Definition 8 A mapping G : X ! ˘ (Rn) is said to
be an upper (a lower) Z-mapping if for each pair
of points x0; x00 2 D such that x0 � x00 and for each
g0 2 G(x0) there exists g00 2 G(x00) (respectively, for
each g00 2 G(x00) there exists g0 2 G(x0)) such that
g0k � g00k for every index k such that x0k D x00k .

Obviously, these concepts extend the similar one from
Definition 6 and the condition x0 ¤ x00 is now unnec-
essary. They are also additive. Moreover, each diagonal
mapping is both an upper and a lower Z-mapping.

Extended Jacobi Algorithm
for Multivalued Mixed Complementarity Problems

Let us consider GCP (15), where G : X ! ˘ (Rn) is of
the form

G(x) D
lX

sD1

F(s) ı H(s)(x) ; (16)

where F(s) : Rn ! ˘ (Rn) is a quasi-diagonal, an up-
per Z- and a K-mapping on some rectangle contain-
ing H(s)(X), H(s) : X ! ˘ (Rn) is a diagonal monotone
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K-mapping for each s D 1; : : : ; l . Let us introduce the
auxiliary set for GCP (15) and (16) as follows:

Q D fx � 0 j 9g 2 G(x); g � 0g :

Given a vector x 2 Rn and a number yi, we set

(x�i ; yi ) D (x1; : : : ; xi�1; yi ; xiC1; : : : ; xn) :

Algorithm (Jacobi). Choose a point x̃ 2 Q and, be-
ginning from the point x0 D x̃, construct a sequence
fxkg in conformity with the following rules.

At the kth iteration, k D 0; 1; : : : , we have a point
xk 2 Q such that xk � x0 and that there exists gk 2Pl

sD1 F
(s)(h(s);k) for some h(s);k 2 H(s)(xk); s D

1; : : : ; l , such that gk � 0.
For each separate index i D 1; : : : ; n, we determine

numbers xkC1
i , p(1)i ; : : : ; p

(l )
i such that

0 � xkC1
i � xk

i ; 9g̃
k
i 2

lX
sD1

F(s)
i (h(s);k�i ; p

(s)
i ); g̃ ki � 0;

xkC1
i g̃ ki D 0 ; (17)

p(s)i 2 H(s)
i (xkC1

i ); p(s)i � h(s);ki for s D 1; : : : ; l ; (18)

with the help of the bisection procedure below. After-
wards, set h(s);kC1 D p(s) for s D 1; : : : ; l and go to the
(k C 1)th iteration.

Procedure (Bisection). It is applied when the in-
dices k and i are fixed and consists of the following se-
quence of steps.
Step 1: If gki D 0 or xk

i D 0, set xkC1
i D xk

i , g̃
k
i D gki ,

p(s)i D h(s);ki for s D 1; : : : ; l and stop. Otherwise go to
step 2.
Step 2: Choose p(s)i 2 H(s)

i (0) for s D 1; : : : ; l and com-
pute an element g̃ ki 2

Pl
sD1 F

(s)
i (h(s);k�i ; p

(s)
i ). If g̃ ki � 0,

then set xkC1
i D 0 and stop. Otherwise set x0i D 0,

x00i D xk
i and ˛

(s)
i D p(s)i , ˇ(s)

i D h(s);ki for s D 1; : : : ; l .
Step 3: Generate a sequence of inscribed segments
[x0i ; x

00
i ] contracting to a point zi by choosing yi D

1
2 (x
0
i C x00i ), computing ˜̌(s)

i 2 H(s)
i (yi) for s D 1; : : : ; l

and g̃i 2
Pl

sD1 F
(s)
i (h(s);k�i ; ˜̌

(s)
i ), and setting x00i D yi ,

ˇ
(s)
i D

˜̌(s)
i for s D 1; : : : ; l if g̃i � 0 and x0i D

yi ; ˛(s)i D
˜̌(s)
i for s D 1; : : : ; l if g̃i < 0.

Step 4: Set xkC1
i D zi and compute numbers p(s)i 2

H(s)
i (zi) for s D 1; : : : ; l such that conditions (17) and

(18) are satisfied.

We present a convergence result for the Jacobi algo-
rithm.

Theorem 12 Suppose that the setQ is nonempty. Then
the Jacobi algorithm with the bisection procedure is well
defined and generates a sequence fxkg converging to
a solution x* of GCP (15) and (16) such that 0 � x� � x̃.

Clearly, the corresponding modification of the Gauss–
Seidel algorithm will possess similar convergence prop-
erties. Note that the above theorem in fact contains also
the existence result.

Corollary 1 If the set Q is nonempty, then GCP (15)
and (16) has a solution.

It was also shown in [32] that the auxiliary set
Q is a meet semisublattice, i. e., for each pair of
points x; y 2 Q it contains their minimal point (meet)
z D minfx; yg with zi D minfxi ; yig for i D 1; : : : ; n;
if (16) is replaced by

G(x) D F ı H(x)C V (x) ;

V : X ! ˘ (Rn) is a quasi-diagonal, an upper Z- and
a K-mapping, H : X ! ˘ (Rn) is a diagonal monotone
K-mapping, and F : Rn ! ˘ (Rn) is a quasi-diagonal,
an upper Z- and a K-mapping on a rectangle contain-
ing H(X). Hence, the setQ has the least element minQ
which is a solution of the GCP.

The above Jacobi algorithm can be extended to
a more general class of problems. In fact, we can con-
sider problem (1) where the feasible set X is defined as
follows:

X D fx 2 Rn j �1 < ai � xi � bi � C1

i D 1; : : : ; ng :

It is called the generalized mixed complementarity prob-
lem (GMCP) and can be also equivalently rewritten as
follows: Find a point x� 2 X such that

9g� 2 G(x�); g�i

8̂
<̂
ˆ̂:

� 0 if x�i D ai ;
D 0 if x�i 2 (ai ; bi ) ;
� 0 if x�i D bi ;

for i D 1; : : : ; n :

(19)
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Then we should define the auxiliary set for the GMCP
as follows

Q D fx 2 X j 9g 2 G(x); xi < bi ) gi � 0

8i D 1; : : : ; ng ;

and all the above results remain true.
We can enhance the assertions of the theorems from

Sects. “Regularization Methods” and “Proximal Point
Method” for the regularization-type methods applied
to GCP (15) or to GMCP (19) with order monotonic-
ity (P0) properties. In fact, if G is P0, then the auxiliary
mappings in (10) and (11) are P and the correspond-
ing auxiliary problems will have a unique solution, thus
strengthening assertions (i) of Theorem 3, (ii) of Theo-
rem 4, and (i) of Theorem 6 [1,30,34].

IterativeMethods for MVIs

Let Q : Rn ! Rn be a continuous single-valued map-
ping and f : Rn ! R be a convex, proper and lower
semicontinuous function. The MVI problem is the
problem of finding a point x� 2 X such that

hQ(x�); x� x�iC f (x)� f (x�) � 0 8x 2 X : (20)

In this section, we denote by X* the solution set of
problem (20). Problem (20) was originally considered
by Lescarret [37] and Browder [6] and was studied by
many authors owing to its various applications. In the
case f � 0, it corresponds to the usual VI (2). If f is
subdifferentiable, MVI (20) becomes equivalent to the
problem of finding x� 2 X such that

9h� 2 @ f (x�); hQ(x�)Ch�; x�x�i � 0 8x 2 X ;

(21)

i. e., to GVI (1) withG D Q C @ f , where @ f denotes the
subdifferential mapping of f . Also, GVI (21) is a partic-
ular case of the problem: Find x� 2 X such that

9h� 2 H(x�); hQ(x�)Ch�; x�x�i � 0 8x 2 X ;

(22)

where H : X ! ˘ (Rn) is a monotone multivalued
mapping. In turn, GVI (22) is a particular case of
GVI (1) with G D Q C H.

In order to construct an efficient solution method
for multivalued GVI (22) (or (21)) we can utilize the so-
called splitting approach as a basis. In fact, if the map-
ping H in GVI (22) (respectively, @ f in GVI (21)) is in-
vertible rather easily, then one can apply the forward–
backward splitting method which is due to Lions and
Mercier [38] and consists in constructing a sequence
fxkg as follows: xkC1 2 X such that

9hkC1 2 H(xkC1); hQ(xk)C ��1(xkC1 � xk)

C hkC1; y � xkC1i � 0 8y 2 X ; (23)

where � > 0, i. e., each iteration is explicit with respect
to Q and implicit with respect to H. Method (23) is
clearly simpler than the general proximal point method
with respect to Q C H, but it requires strengthened
monotonicity (co-coercivity) assumptions on Q for
convergence [13]. The combined averaging and split-
ting method (see [41]) allows for establishing conver-
gence if Q is only monotone, but it also utilizes the di-
vergent series step-size rule.

Descent Methods for MVIs

In order to enhance the step-size rule we can utilize the
descent approach with respect to some artificial merit
(or otherwise, gap) function, which enables one to con-
vert the MVI problem into an optimization problem.

Gap Function Approach forMVIs The simplest reg-
ularized gap function can be defined as follows:

'˛(x) D max
y2X

˚˛(x; y) ;

where

˚˛(x; y) D hG(x); x � yi � 0:5˛kx � yk2

C f (x) � f (y); ˛ > 0 :

The function ˚˛(x; �) is strongly concave; hence,
there exists the unique element y˛(x) 2 X such that
˚˛(x; y˛(x)) D '˛(x). Observe that the computation
of y˛(x) is equivalent to an iteration of the forward–
backward splitting method applied to MVI (20).

From the definition we have that the following
properties are equivalent:
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(a) '˛(x) D 0,
(b) x D y˛(x),
(c) x is a solution of problem (20).
i. e., �˛ is a gap function for MVI (20) and MVI (20) is
equivalent to the optimization problem

min
x2X
! '˛(x) : (24)

Despite the fact that �˛ is nondifferentiable and non-
convex, we can describe descent methods with respect
to �˛ without computation of its derivatives. Such
a descent method with exact linesearch was proposed
by Patriksson [42]. Moreover, it generates a sequence
which converges to a unique solution of MVI (20) if the
mapping Q is strongly monotone. At the same time, in-
exact linesearch procedures are more suitable for im-
plementation. For this reason we describe a descent
method with an inexact Armijo-type linesearch proce-
dure.

Method (DIG). Choose a point x0 2 X and num-
bers ˛ > 0, ˇ 2 (0; 1), and � 2 (0; 1).

At the kth iteration, k D 0; 1; : : : ; we have a point
xk 2 X, compute y˛(xk) and set dk :D y˛(xk) � xk . If
dk D 0, stop. Otherwise, we findm as the smallest non-
negative integer such that

'˛(xk C �mdk ) � '˛(xk) � ˇ�mkdkk2 ;

set �k :D �m , xkC1 :D xk C �kdk and go to the next
iteration.

Theorem 13 If the mapping Q is continuously differ-
entiable and strongly monotone with constant � , and
ˇ < � , (DIG) generates a sequence fxkgwhich converges
to a unique solution of MVI (20).

D-Gap Function Approach for MVIs For the usual
VI (2), Peng [43] introduced the so-called D-gap func-
tion, which allows one to convert it into an un-
constrained optimization problem. Following this ap-
proach, Konnov [23] proposed the D-gap function for
MVI (20) and showed that, unlike the usual gap func-
tions, it becomes differentiable if the mapping Q is so,
regardless of the properties of the function f . Hence, we
can apply the rapidly convergent algorithms in order to
find a solution of the initial MVI.

The D-gap function is defined as follows:

 ˛ˇ (x) D '˛(x) � 'ˇ (x) ;

where 0 < ˛ < ˇ. It follows that MVI (20) is equivalent
to the unconstrained optimization problem

min
x2Rn

!  ˛ˇ (x) :

Next, if Q a continuously differentiable, so is  ˛ˇ and

r ˛ˇ (x) D rQ(x)[yˇ (x) � y˛(x)]

C ˇ(x � yˇ (x)) � ˛(x � y˛(x)) :

If rQ(x) is positive definite on Rn , then MVI (20) is
equivalent to the equation

r ˛ˇ (x) D 0 :

Utilizing the above properties, we can describe a de-
scent method with respect to ˛ˇ without computation
of its derivatives.

Method (DIDG). Choose a point x0 2 Rn and
numbers ˇ > ˛ > 0, � > 0, � 2 (0; 1), � > 0.

At the kth iteration, k D 0; 1; : : : ; we have a point
xk, compute y˛(xk) and yˇ (xk), set

r(xk) :D y˛(xk) � yˇ (xk) ;

s(xk) :D ˛(xk � y˛(xk))� ˇ(xk � yˇ (xk))

and dk :D r(xk)C �s(xk). If dk D 0, stop. Otherwise,
we computem as the smallest nonnegative integer such
that

 ˛ˇ (xk C �mdk )

�  ˛ˇ (xk) � �m�(kr(xk)k C �ks(xk)k)2

set �k :D �m , xkC1 :D xk C �kdk and go to the next
iteration.

If the mapping Q is strongly monotone, (DIDG)
also generates a sequence fxkg which converges to
a unique solution of MVI (20).

In [25], this approach was extended for MVI (20)
with order monotonicity (P) properties. In the case
when the mapping Q is only monotone (or P0), but
not strongly monotone, the above descent methods can
be combined with either regularization or proximal
point methods, such that their auxiliary subproblems
are solved approximately.

Combined RelaxationMethods for MVIs

We describe a combined relaxation method for solving
monotone MVI (20) which utilizes a similar iteration of



Solution Methods for Multivalued Variational Inequalities S 3637

the forward–backward splitting method as an auxiliary
procedure [24,26]. In this subsection we suppose that
X is a nonempty, closed and convex subset of the space
Rn , Q : Rn ! Rn is a continuous monotone mapping
and f : Rn ! R is a convex and subdifferentiable func-
tion. For the sake of clarity, we describe a simplified ver-
sion of the method.

Method (CRS). Step 0 (initialization): Choose
a point x0 2 Rn and a sequence of n � n symmetric
matrices fAkg such that

� 0kpk2 � hAkp; pi � � 00kpk2

8p 2 Rn ; 0 < � 0 � � 00 <1 : (25)

Choose numbers ˛ 2 (0; 1), ˇ 2 (0; 1), and � 2 (0; 2).
Set k :D 0.
Step 1 (auxiliary procedure):

Step 1.1: Determine m as the smallest nonnegative
integer such that

hQ(xk) � Q(zk;m); xk � zk;mi

� (1 � ˛)ˇ�mhAk(zk;m � xk); zk;m � xki ;

where zk,m is a solution of the auxiliary problem:
Find zk;m 2 X such that

hQ(xk)C ˇ�mAk(zk;m � xk); x � zk;mi

C f (x) � f (zk;m) � 0 8x 2 X : (26)

Step 1.2: Set �k :D ˇm , yk :D zk;m . If xk D yk , stop.
Otherwise set

gk :D Q(yk) � Q(xk ) � ��1k Ak(yk � xk) ;

!k :D hgk; xk � yki :

Step 2 (main iteration): Set

xkC1 :D xk � �!k gk/kgkk2 ;

k :D k C 1 and go to step 1.
Obviously, there exist a number of rules for choos-

ing the sequence fAkg satisfying condition (25). The
simplest is Ak � I, which yields the usual forward–
backward splitting iteration.

Theorem 14 Let a sequence fxkg be constructed by
(CRS). If the method terminates at the kth iteration, then
xk 2 X�. Otherwise, if fxkg is infinite, then

lim
k!1

xk D x� 2 X� :

Note that problem (20) has a unique solution if Q is
strongly monotone. Then (CRS) converges at least lin-
early.

Theorem 15 Suppose that Q is strongly monotone. If
(CRS) generates an infinite sequence fxkg, then fxkg

converges to a solution of problem (20) at a linear rate.

This approach admits various extensions and modifi-
cations. For instance, we can adjust the previous com-
bined relaxation method to problem (20) with the func-
tion f having the form

f (x) D max
iD1;:::;m

fi(x) ; (27)

where fi : Rn ! R, i D 1; : : : ;m are continuously dif-
ferentiable convex functions [27]. In this method, the
function f in (26) is replaced by its lower approxima-
tion:

�k(x) D max
iD1;:::;m

n
fi(xk)C h f 0i (x

k); x � xki
o
:

Hence, if the feasible setX is defined by affine functions,
then the auxiliary problem is equivalent to a convex
quadratic programming problem and can be solved ex-
actly by one of the finite algorithms. At the same time,
the modified method possesses the same convergence
properties.

The combined relaxation methods described above
based on the auxiliary splitting iterations can be ap-
plied to nonmonotone multivalued GVIs of form (22)
and to nonmonotone mixed-equilibrium problems;
see [24,31,35] for more details.
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Hemivariational inequalities are generalizations of vari-
ational inequalities. They are used to model mathe-
matically problems from mechanics, engineering and
economics whenever nonconvex energy functionals are
present. Typical applications, e. g. in mechanics are
contact problems of elastic bodies in which nonmono-
tone friction laws or adhesive contact laws are involved
or delamination of adhesively connected plates. The ba-
sic hemivariational inequality is of the following form:

Find u 2 K (K is a convex subset of a Hilbert space X)
such that

a(u; v � u)C
Z
˝

jı(u; v � u)dx

� hF; v � ui ; 8v 2 K ; (1)

where a:X ×X!R is a bilinear form,˝ a subset of RN ,
j°(�;�) the Clarke generalized directional derivative of the
locally Lipschitz function j: RM! R defined in [3] by

jı(�; �) D lim sup
�0!�;
t#0

j(� 0 C t�) � j(� 0)
t

;

h�, �i the duality pairing between X and X� (X� is the
dual space of X) and F 2 X�. If the function j is convex
then the hemivariational inequality (1) is reduced to the
classical variational inequality: Find u 2 K such that

a(u; v � u)C
Z
˝

j(v)dx �
Z
˝

j(u)dx

� hF; v � ui ; 8v 2 K :

The concept of the hemivariational inequality was in-
troduced by P.D. Panagiotopoulos. The mathematical
theory and the applications are studied in [14,15].

Discrete Problem

For the discretization of the hemivariational inequali-
ties it is used the finite element technique [2]. By means
of it the following fully discrete problem is formulated:
Find u 2 K such that

u>A(v � u)C
X
i2I

ci jı(ui ; vi � ui )

� F>(v � u); 8v 2 K ; (2)

where A is the stiffness matrix, F the load vector, ci
the coefficients of the appropriate numerical integra-
tion formula, K a convex subset of the finite element
space Xh � X, h the discretization parameter connected
to the mesh size of the triangulation of Xh and I the
set of the components of u for which the function j has
an effect. The following stability and convergence result
has been proved for the above approximation scheme
[9,10]:

Theorem 1 The problems (2) are solvable for every h.
Further, their solutions converge in subsequences to the
solutions of the continuous problem (1).
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Due to the nonconvex character of the function j the
solutions of the continuous problem (1) and the dis-
crete problems (2) are not in general unique. This also
explains that in the above result the convergence is
guaranteed only for subsequences and it has not been
proved any convergence rate estimate.

Numerical Realization

Because of the nonsmoothness and the nonconvexity of
j the numerical realization of (2) is a challenging prob-
lem. There are different approaches for that (see, e. g.
[15]). The most obvious one is to regularize the nons-
moothness and use methods for smooth problems. The
other possibility is to approximate (2) by a convex, pos-
sibly nonsmooth, problem and apply numerical meth-
ods for the classical variational inequalities. Both ap-
proaches are typically iterative methods: in the former
one the problem is solved with many regularization pa-
rameters and in the latter one the convex approxima-
tion is updated in every iteration step. In order to solve
(2) directly in its original form one can use nonsmooth
nonconvex optimizationmethods.

Next it is explained in detail how the discrete hemi-
variational inequality (2) can be transformed to a non-
smooth optimization problem. The following concepts
from nonsmooth analysis are needed [3]:
� Suppose that f : RM ! R is locally Lipschitz contin-

uous. Then �� is called a substationary point of f on
K if

0 2 @ f (��)C NK(��);

where NK(�) is the normal cone of K at �, defined by

NK(�) D cl

8<
:
[
	�0

�@dK (�)

9=
; ;

dK the distance function ofK, and @f (�) is theClarke
subdifferential, defined by

@ f (�)

D
˚
� 2 RM : f ı(�; �) � �>�; 8� 2 RM� :

� The function f : RM ! R is said to be upper semis-
mooth if for any � 2 RM , � 2 RM and sequences {�i}
� RM and {ti} � (0,1) satisfying �i 2 @f (� + ti�)
and ti # 0, one has

lim sup
i!1

�>i � � lim inf
i!1

f (� C ti�) � f (�)
ti

:

In the sequel it is assumed that the stiffness matrix A is
symmetric. Then the following discrete energy function
can be defined:

f (u) D
1
2
u>Au C

X
i2I

ci j(ui ) � F>u:

And, consequently, the following optimization problem

min
u2K

f (u) (3)

is formulated.
The main question is now what is the relation be-

tween the optimization problem (3) and the inequality
problem (2). Under reasonable assumptions, which are
generally satisfied for real applications, the subdifferen-
tial of f is equal to

@ f (u) D Au C
X
i2I

ci@ j(ui ) � F:

Then from the definition of the subdifferential and the
upper semismoothness it follows the result (see the
proofs in [2,3]):

Theorem 2 Every substationary point of f on K is
a solution of the discrete hemivariational inequality (2).
Moreover, the functional f is upper semismooth.

This result gives the theoretical basis and the moti-
vation for the use of nonsmooth optimization meth-
ods for the numerical solution of hemivariational in-
equalities. In what follows optimization methods are in-
troduced for nonsmooth nonconvex functionals which
are convergent under the condition that the functional
is upper semismooth. Furthermore, some observations
are presented of the numerical tests being performed in
[11,12].

Nonsmooth OptimizationMethods

The methods for solving the nonsmooth optimization
problem (3) can be divided into two main classes: sub-
gradient methods and bundle methods. The basic idea
behind the subgradient methods is to generalize the
smooth methods by replacing the gradient by an arbi-
trary subgradient (see [17]). Due to this simple struc-
ture they are widely used, but suffer from some theoret-
ical and numerical drawbacks.

Bundle methods have their origin in cutting planes
and can be stated, at the moment, the most efficient
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and promising methods in nonsmooth optimization
(see [13]). The aim is to produce a sequence {uk}1kD1
� RN converging to a local minimum of (3) being also
a substationary point of f on K. Suppose that in addi-
tion to the current iteration point uk there exist some
trial points yj 2 RN (from past iterations) and subgra-
dients gj 2 @f (yj) for j 2 Jk, where the index set Jk is
a nonempty subset of {1, . . . , k}.

The idea behind the bundle methods is to approxi-
mate the objective function below by a piecewise linear
function, in other words, f is replaced by so called cut-
ting plane model

bf k(u) D max
j2Jk
f f (y j)C g>j (u � y j)g; (4)

which equivalently can be written in the form

bf k(u) D max
j2Jk
f f (uk)C g>j (u � uk) � ˛k

j g;

with the linearization error

˛k
j D f (uk) � f (y j) � g>j (uk � y j): (5)

If f is convex, thenbf k(u) � f (u) for all u 2 RN and ˛k
j

� 0 for all 2 Jk. In other words, the cutting plane model
bf k is an under estimate for f and the nonnegative lin-
earization error ˛k

j measures how good an approxima-
tion the model is to the original problem. In the non-
convex case these facts are not valid anymore and thus
the linearization error (5) is replaced by so called sub-
gradient locality measure (cf. [5])

ˇk
j D max

nˇ̌
ˇ˛k

j

ˇ̌
ˇ ; � ˇ̌uk � y j

ˇ̌2o
; (6)

where � � 0 (� = 0 if f is convex). Then obviously
minu2Kbf k(u) � f (uk) and ˇk

j � 0 for all j 2 Jk. The
search direction is then calculated by

dk D arg min
ukCd2K

�
bf k(uk C d)C

1
2
d>Mkd

	
: (7)

The role of the stabilizing term 1
2d
>Mkd is to guaran-

tee the existence of the solution dk and keep the ap-
proximation local enough. The n × n matrix Mk is in-
tended to accumulate some second order information
about the curvature of f around uk.

The different bundle methods deviate mostly in the
choice ofMk. Roughly speaking, the following methods
can be distinguish.

� Cutting plane method [4] withMk � 0.
� Conjugate subgradient method [18] withMk� I and
ˇk

j � 0.
� "-steepest descent [7] and generalized cutting plane

method [5] withMk � I.
� Bundle trust region [16] and proximal bundle

method [6] withMk = �kI.
� Variable metric bundle method [1] with Mk as a full

matrix.
Although the more advanced bundle methods try

to accumulate the second order information, they are
based on first order (sub)gradient information and thus
have to considered as first order methods. The ‘real’
second order method, called bundle-Newton method,
was derived in [8]. Instead of piecewise linear cutting
pane model (4) a quadratic model was introduced in
the form

ef k(u) D max
j2Jk

�
f (y j)C g>j (u � y j)

C
1
2
% j(u � y j)>Mj(u � y j)

	
;

whereMj	r
2f (yj). The search direction finding prob-

lem (7) is then replaced by the problem

dk D arg min
ukCd2K

fef k(uk C d)g: (8)

Next the problem of determining the stepsize into
search direction dk is considered. Assume that mL 2 (0,
1/2), mR 2 (mL, 1) and t 2 (0; 1] are some fixed line
search parameters. First search for the largest number
tkL 2 [0, 1] such that tkL � t and

f (uk C tkLdk) � f (uk)C mLtkLvk; (9)

where vk is the predicted amount of descent

vk Dbf k(uk C dk) � f (uk) < 0:

If such a parameter exists take a long serious step

ukC1 D uk C tkLdk and ykC1 D ukC1:

Otherwise, if (9) holds but 0 < tkL < t then take a short
serious step

ukC1 D uk C tkLdk and ykC1 D uk C tkRdk
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and if tkL = 0 take a null step

ukC1 D uk and ykC1 D uk C tkRdk ;

where tkR > tkL is such that

� ˇkC1
kC1 C g>kC1dk � mRvk : (10)

In short serious steps and null steps there exists dis-
continuity in the gradient of f . Then the requirement
(10) ensures that uk and yk+1 lie on the opposite sides
of this discontinuity and the new subgradient gk+1 2
@f (yk+1) will force a remarkable modification of the next
search direction finding problem. The iteration is ter-
minated if |vk| is small enough.

The pseudocode of general bundle method is the
following:

PROCEDURE bundle method()
InputInstance();
Generate an initial solution uk ;
Initialize the bundle Jk and vk ;
Set k = 1;
DO j vk j� "

Generate the search direction dk ;
Find stepsizes tkL and tkR ;
Update uk and Jk ;
Set k = k + 1;
Evaluate f (uk) and gk 2 @ f (uk);

OD;
RETURN (final solution uk)
END bundle method;

Numerical Experience

The numerical tests in [12] indicate the applicability of
bundle methods for hemivariational inequlities. Espe-
cially the second order bundle-Newton method based
on the piecewise quadratic model works very reliable
and efficiently way. This is natural, since the optimiza-
tion problem arising from hemivariational inequalities
has a dominated quadratic part. The most promising
feature of bundle-Newton method discovered was the
independence of the iteration number and function
evaluations from the dimension of the problem even in
the large scale case.
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The standard semidefinite program has the form:

(SDP)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min C � X
s.t. Ai � X D bi ;

i D 1; : : : ;m;
X � 0;

where the given matrices Ai 2 Rn×n and C 2 Rn×n are
symmetric, b 2 Rm, and unknown X 2 Rn×n is also sym-
metric. Furthermore, C � X = tr C|X =

P
jkCjkXjk , and

X < 0means that X is positive semidefinite. In most ap-
plications, Ai = aia>i , ai 2 R

n, is a rank-one matrix and
C is sparse.

The dual of (SDP) can be written as:

(DSDP)

8̂
ˆ̂̂<
ˆ̂̂̂
:

max b>y

s.t.
mX
iD1

yiAi C S D C;

S � 0;

where yi, i = 1, . . . ,m are scalar variables.
This pair of semidefinite programs can be solved in

‘polynomial time’. There are actually several polyno-
mial algorithms. One is the primal-scaling algorithm
([1,13,16,17]), which is the analogue of the primal
potential reduction algorithm for linear program-
ming. This algorithm uses X to generate the next it-
erate direction. Another is the dual-scaling algorithm
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([2,9,16,17]), which is the analogue of the dual-scaling
algorithm for linear programming. The dual-scaling
algorithm uses only S to generate the iterate direction.
The third is the primal-dual scaling algorithm, which
uses both X and S to generate iterate directions, in-
cluding Alizadeh-Haeberly-Overton, Helmberg-Rendl-
Vanderbei-Wolkowicz/Kojima-Shida-Hara/Monteiro,
Nesterov-Todd, Gu, and Toh directions, as well as
directions called the MTW and Half directions (see
[6,15], and references therein). All these algorithm pos-
sess O(

p
n log( 1

�
)) iteration complexity to yield duality

gap accuracy �.
Although they are ‘polynomially’ solvable, semidef-

inite programs with dimension n above 1000 have been
extremely hard to solve in practice, due to the density
of matrices involved in computation. Thus, exploiting
the structure and sparsity characteristic of large scale
semidefinite programs becomes critical to the efficient
computation of their solution.

Many large scale semidefinite programs, such as
the relaxations of combinatorial and quadratic opti-
mization problems, have features which make the dual-
scaling algorithm the most suitable choice:
1) For large scale problems, S tends to be very sparse

and structured since it is the linear combination of
C and the Ais. This sparsity allows considerable sav-
ings in both memory and computation time. On
the other hand, X, the primal matrix, may be much
less sparse and its structure not known beforehand.
Thus, primal or primal-dual algorithms cannot fully
exploit the sparseness and structure of the data.

2) Many problems under consideration require less ac-
curacy than some other applications. Therefore, the
superlinear convergence, exhibited by the primal-
dual algorithm, may not be utilized in our appli-
cations. The dual-scaling linear programming algo-
rithm has been shown to perform equally well when
only a lower precision answer is required.

3) In most combinatorial applications, we need only
a lower bound for the optimal objective value of
(SDP. Solving (DSDP) alone would be sufficient to
provide such a lower bound. Moreover, in most ap-
plications an interior-feasible point is available to
start with. Thus, we may not need to generate and
store X at all.

4) Even if an optimal primal solution is necessary, the
dual-scaling algorithm can generate a sparsely struc-

tured optimal X at the termination of the algorithm.
The dual-scaling algorithm, which is a an extension

of the linear programming algorithm, is to reduce the
Tanabe-Todd-Ye primal-dual potential function

� (X; S) D � ln(X � S) � ln det X � ln det S;

where � � n C
p
n, by a constant at each iteration.

Since

n ln(X � S) � ln det X � ln det � n ln n;

the reduction of the potential leads the duality gap,
X � S, converging 0.

Let

A(X) D

0
B@
A1 � X
:::

Al � X

1
CA and A>(y) D

mX
iD1

yiAi ;

and let z D C�X for some feasible X. Consider the dual
potential function

 (y; z) D � ln(z � b>y) � ln det S:

Note the relation between the two potential functions:

� (X; S) D  (y; z) � ln det X:

The gradient of  with respect to y is:

r (y; z) D �
�

z � b>y
bCA(S�1)

Each step in the dual-scaling algorithm minimizes the
linearized dual potential function subject to an ellip-
soidal constraint that keeps S 
 0 and the quadratic er-
ror term small. More precisely, beginning with a strictly
feasible dual point (yk, Sk) and a zk , each iteration solves
the problem:

(
min r >(yk ; zk)(y � yk)
s.t.



(Sk )�:5 �A>(y � yk)
�
(Sk )�:5



 � ˛; (1)

where ˛ is a constant in (0, 1). Here, all matrix norms
used here will be the Frobenius norm.

Define

em(i; j) D tr(Sk)�1Ai (Sk)�1Aj
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and the positive definite matrix

Mk D

0
B@
em(1; 1) � � � em(1;m)
:::

: : :
:::

em(m; 1) � � � em(m;m)

1
CA : (2)

In particular, if Ai = aia>i is a rank-one matrix, where ai
2 Rn, for i = 1, . . . , n, then

Mk D

0
B@
(a>1 (Sk )�1a1)2 � � � (a>1 (Sk)�1am)2

:::
: : :

:::

(a>m(Sk )�1a1)2 � � � (a>m(Sk)�1am)2

1
CA :

The minimal solution, yk+1, of (1) is given by

ykC1� yk D
˛p

r >(yk ; zk)M�1r (yk ; zk)
d(zk)y

where

d(zk)y D �(Mk)�1r (yk ; zk): (3)

Let

P(zk) D (Sk)�:5A>
�
(Mk)�1r (yk ; zk)

�
(Sk)�:5

D (Sk)�:5A>
�
�d(zk)y

�
(Sk)�:5:

Then

r >(yk; zk) d(zk)y D �



P(zk)





2
;

r >(yk; zk)(ykC1 � yk) D �˛



P(zk)




 ;

and the reduction in the potential function satisfies the
inequality

 (ykC1; zk)� (yk ; zk) � �˛



P(zk)




C ˛2

2(1 � ˛)
:

Focusing on the expression of P(zk), it can be
rewritten as

P(zk) D �
�

zk � b>yk
(Sk):5X(zk)(Sk):5 C I

with

X(zk)

D
zk � b>yk

�
(Sk)�1

�
A>( d(zk)y)C Sk

�
(Sk)�1:

(4)

Note thatA(X(zk)) D b, and X(zk) is a primal feasible
solution if and only if X(zk) � 0. Furthermore, from
themultiplicative structure of (4), X(zk) � 0 if and only
if

A>(d(zk)y)C Sk � 0;

which is a sparse matrix inmany applications. Also note
that

C � X(zk) D Sk � X(zk)C b>yk

D
zk � b>yk

�

�
�
A>(d(zk)y) � (Sk)�1 C n

�
C b>yk ;

which can be efficiently computed.
One can show that, when



P(zk)

 is small, then
(X(zk); yk ; Sk ) is in the neighborhood of the central
path and C � X(zk) < zk . Thus, we can decrease zk

to C � X(zk). Moreover, � (X(zk); Sk) is reduced from
� (Xk, Sk) by a constant.

The theoretical algorithm can be stated as follows.

GivenA(X0) = b; X0 � 0; z̄0 = C � X0; S0 =
C �A>y0 � 0, and k := 0.
do the following:
WHILE z̄k � b>yk � � DO

1 Compute the matrix Mk of (2).
2 Solve (3) for the dual step direction d(z̄k )y .
3 IF z̄k > C�X(z̄k) ANDA>(d(z̄k)y)+Sk � 0,

THEN Xk+1 =X(z̄k) and z̄k+1 =C � Xk+1

ELSE Xk+1 = Xk and z̄k+1 = z̄k
ENDIF

4 Let yk+1 = yk + ˛
kP(z̄ k+1)kd(z̄

k+1)y and Sk+1 =
C �A>(yk+1).

5 Set k := k + 1 and return to Step 1.

Dual algorithm

The algorithm occasionally updates the primal so-
lution X and its objective value, but it does not need X
in computation. We can derive the following potential
reduction theorem:
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Theorem 1

� (XkC1; SkC1) � � (Xk; Sk ) � ı

where ı > 1/20 for a suitable ˛.

This theorem leads to

Corollary 2 Let � � nC
p
n. Then, the algorithm ter-

minates in at most O((� � n) log(X0 � S0/�)) iterations.

To accelerate the convergence of the algorithm, one
may increase the value of � in practice and consider
a bigger stepsize ˛, see [4]. The stopping criterion is of-
ten

zk � b>yk

1C
ˇ̌
b>yk

ˇ̌ � �;

that is, when the relative duality gap is less than pre-
scribed accuracy �.

The dual-scaling algorithm, described above, has
been implemented for solving semidefinite programs,
arisen from maximum-cut and ‘box’-constrained
quadratic optimization, with dimension up to 10000.
The computational results are promising.
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Spatial price equilibrium modeling and computation
are concerned with the prediction of commodity trade
flow patterns between spatially separated supply and
demand markets as well as the market commodity
prices. The distinctive character of spatial price prob-
lems lies in the recognition of transportation costs as-
sociated with shipping the commodities between pro-
ducing and consuming locations or regions. Such mod-
els are perfectly competitive partial equilibriummodels;
perfectly competitive in the sense that it is assumed that
there are many producers and consumers with no indi-
vidual being able to affect the market prices and partial
(as opposed to general) in the sense that only a subset
of the commodities in the economy is assumed to be
modeled.

In particular, in the spatial price equilibrium prob-
lem, one seeks to compute the commodity supply
prices, demand prices, and trade flows satisfying the
equilibrium condition that the demand price is equal
to the supply price plus the cost of transportation,
if there is trade between the pair of supply and de-
mand markets; if the demand price is less than the sup-
ply price plus the transportation cost, then there will
be no trade. Spatial price equilibrium problems arise

in agricultural markets, energy markets, and financial
markets and such models provide the basis for inter-
regional and international trade modeling (see, e. g.,
[14,16,19,20,21,30]).

The first reference in the literature to such prob-
lems was by A. Cournot [2] in 1838, who considered
two spatially separated markets. S. Enke [8], more than
a century later, used an analogy between spatial price
equilibrium and electronic circuits to give the first com-
putational approach, albeit analogue, to such problems,
in the case of linear and separable supply and demand
functions.

P.A. Samuelson [28] subsequently initiated the rig-
orous treatment of such problems by establishing that
the solution to the spatial price equilibrium problem, as
posed by Enke, could be obtained by solving an opti-
mization problem in which the objective function, al-
though artificial, had the interpretation of a net so-
cial pay-off function. The spatial price equilibrium, in
this case, coincided with the Kuhn-Tucker conditions
of the appropriately constructed optimization problem.
Samuelson also related Enke’s specification to a stan-
dard problem in linear programming, the Hitchcock-
Koopmans transportation problem and noted that the
spatial price equilibrium problem was more general
in the sense that the supplies and demands were not
known a priori. Finally, Samuelson also identified the
network structure of such problems.

T. Takayama and G.C. Judge [29,30] further ex-
panded on the work of Samuelson [28] and showed
that the prices and commodity flows satisfying the spa-
tial price equilibrium conditions could be determined
by solving a quadratic programming problem in the
case of linear supply and demand price functions for
which the Jacobians were symmetric and not necessar-
ily diagonal. This theoretical advance enabled not only
the qualitative study of equilibrium patterns, but also
opened up the possibility for the development of effec-
tive computational procedures, based on convex pro-
gramming, as well as, the exploitation of the network
structure (see [5,12,15]).

As noted in Takayama and Judge [30], who devel-
oped a variety of spatial price equilibrium models, dis-
tinct model formulations are needed, in particular, both
quantity and price formulations, depending upon the
availability and format of the data. In a quantity for-
mulation it is assumed that the supply price functions
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and demand price functions are given (and these are
a function, respectively, the quantities produced and
consumed) whereas in a price formulation it is assumed
that the supply and demand functions are given and
these are a function, respectively, of the supply and de-
mand prices. Moreover, Takayama and Judge [30] re-
alized that a pure optimization framework was not suf-
ficient to handle, for example, multicommodity spatial
price equilibrium problems in which the Jacobians of
the supply and demand price functions were no longer
symmetric.

Towards that end, new formulations were proposed
for the spatial price equilibrium problem under more
general settings, including fixed point, complementar-
ity, and variational inequality formulations. J.G. MacK-
innon [18] gave a fixed point formulation which was
then used byH.W.Kuhn andMacKinnon [17] for com-
putational purposes. R. Asmuth, B.C. Eaves, and E.L.
Peterson [1] considered the linear asymmetric spatial
price equilibrium problem formulated as a linear com-
plementarity problem and proposed Lemke’s algorithm
for the computation of the spatial price equilibrium.
J.S. Pang and P.L. Lee [27] developed special-purpose
algorithms based on the complementarity formulation
of the problem. M. Florian and M. Los [10] and S.C.
Dafermos and A. Nagurney [4] addressed the varia-
tional inequality formulations of general spatial price
equilibrium models with the latter authors providing
sensitivity analysis results. The interrelationships be-
tween variational inequality, complementarity, and ex-
tremal formulations of spatial price equilibrium prob-
lems are given in [11].

Dafermos and Nagurney [5] established the equiv-
alence of the spatial price equilibrium problem with
the traffic network equilibrium problem. This identifi-
cation stimulated further research in network equilibria
(cf. [9,21], and the references therein) and in algorithm
development for such problems. Computational test-
ing of different algorithms for spatial price equilibrium
problems can be found in [11] and [20]. Spatial price
equilibrium models have also been used for policy anal-
ysis (see, e. g., [16,23,26], and the references therein).

Since spatial price equilibrium problems can be
large scale in practice parallel computational ap-
proaches have been implemented to solve such prob-
lems (cf. [13,22,23]). Recently, general dynamic spa-
tial price equilibrium models have been developed (cf.

[24,25]), based on the connection between solutions
to variational inequality problems and the stationary
points of projected dynamical systems (cf. [7]), and
solved using parallel computers.

For definiteness, we first present the quantity model
and then the price model and provide the variational
inequality formulations of the governing equilibrium
conditions. We then present a dynamic quantity model.
For additional background, including qualitative and
computational results, see [21] and [25].

The Quantity Model

Consider the spatial price equilibrium problem in
quantity variables with M supply markets and N de-
mand markets involved in the production and con-
sumption of a homogeneous commodity under perfect
competition. Denote a typical supply market by i and
a typical demand market by j. Let si denote the sup-
ply and 
 i the supply price of the commodity at sup-
ply market i. Let dj denote the demand and �j the de-
mand price at demandmarket j. Group the supplies and
supply prices, respectively, into a column vector s 2 RM

and a row vector 
 2 RM . Similarly, group the demands
and demand prices, respectively, into a column vector
d 2 RN and a row vector � 2 RN . Let Qij denote the
nonnegative commodity shipment between the supply
and demand market pair (i, j), and let cij denote the unit
transaction cost associated with trading the commodity
between (i, j). The unit transaction costs are assumed
to include the unit costs of transportation from supply
markets to demand markets, and, depending upon the
application, may also include a tax/tariff, duty, or sub-
sidy incorporated into these costs. Group the commod-
ity shipments into a column vector Q 2 RMN and the
transaction costs into a row vector c 2 RMN . The net-
work structure of the problem is depicted in Fig. 1.

Assume that the supply price at any supply mar-
ket may, in general, depend upon the supply of the
commodity at every supply market, that is, 
 = 
(s),
where 
 is a known smooth function. Similarly, the de-
mand price at any demand market may depend upon,
in general, the demand of the commodity at every de-
mand market, that is, � = �(d), where � is a known
smooth function. The unit transaction cost between
a pair of supply and demand markets may depend upon
the shipments of the commodity between every pair of
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Spatial Price Equilibrium, Figure 1
Network structure of spatial market problem

markets, that is, c = c(Q), where c is a known smooth
function.

The supplies, demands, and shipments of the com-
modity, in turn, must satisfy the following feasibility
conditions, which are also referred to as the conserva-
tion of flow equations:

si D
NX
jD1

Qi j; i D 1; : : : ;M;

dj D

MX
iD1

Qi j; j D 1; : : : ;N;

Qi j � 0; i D 1; : : : ;M; j D 1; : : : ;N:

In other words, the supply at each supply market
is equal to the commodity shipments out of that sup-
ply market to all the demand markets. Similarly, the
demand at each demand market is equal to the com-
modity shipments from all the supply markets into that
demand market.

Definition 1 (spatial price equilibrium) Following
[28] and [30], the supply, demand, and commodity
shipment pattern (s�, Q�, d�) constitutes a spatial price
equilibrium, if it is feasible, and for all pairs of supply
and demand markets (i, j), it satisfies the conditions:


i (s�)C ci j(Q�)

(
D � j(d�); if Q�i j > 0
� � j(d�); if Q�i j D 0:

Hence, if the commodity shipment between a pair of
supply and demand markets is positive at equilibrium,
then the demand price at the demand market must be
equal to the supply price at the originating supply mar-
ket plus the unit transaction cost. If the commodity

shipment is zero in equilibrium, then the supply price
plus the unit transaction cost can exceed the demand
price.

The spatial price equilibrium can be formulated as
a variational inequality problem (cf. [3,10], and [21] for
proofs). Precisely, we have

Theorem 2 (variational inequality formulation)
A commodity supply, shipment, and demand pattern
(s�, Q�, d�) 2 K is a spatial price equilibrium if and
only if it satisfies the following variational inequality
problem:

h
(s�); s � s�i C hc(Q�);Q � Q�i
C h��(d�); d � d�i � 0; 8(s;Q; d) 2 K;

where

K � f(s;Q; d) : feasibility conditions holdg

and h�, �i denotes the inner product.

Example 3 For illustrative purposes, we now present
a small example. Consider the spatial price equilibrium
problem consisting of two supply markets and two de-
mand markets. Assume that the functions are as fol-
lows:


1(s) D 5s1 C s2 C 1;


2(s) D 4s2 C s1 C 2;
c11(Q) D 2Q11 C Q12 C 3;

c12(Q) D Q12 C 5;

c21(Q) D 3Q21 C Q22 C 5;

c22(Q) D 3Q22 C 2Q21 C 9;

�1(d) D �2d1 � d2 C 21;

�2(d) D �5d2 � 3d1 C 29:

It is easy to verify that the spatial price equilibrium
pattern is given by:

s�1 D 2; s�2 D 1;
Q�11 D 1; Q�12 D 1; Q�21 D 1; Q�22 D 0;

d�1 D 2; d�2 D 1:

In one of the simplest models, in which the Jaco-
bians of the supply price functions, [ @
/ @s], the trans-
portation (or transaction) cost functions, [ @c/ @Q], and
minus the demand price functions, �[ @�/ @d] are di-



3650 S Spatial Price Equilibrium

agonal and positive definite, then the spatial price equi-
librium pattern coincides with the Kuhn-Tucker condi-
tions of the strictly convex optimization problem:

min
Q2RMN

C

" MX
iD1

Z PN
jD1 Qi j

0

i (x) dx

�

MX
iD1

NX
jD1

Z Qi j

0
ci j(y) dy �

NX
jD1

Z PM
iD1 Qi j

0
� j(z) dz

3
5 :

The Price Model

We now describe briefly the price model. The notation
is as for the quantity model except now we consider the
situation where the supplies at the supply markets, de-
noted by the row vector smay, in general, depend upon
the column vector of supply prices 
 , that is, s = s(
).
Similarly, assume that the demands at the demandmar-
kets, denoted by the row vector d, may, in general, de-
pend upon the column vector of demand prices �, that
is, d = d(�). The transaction/transportation costs are of
the same form as in the quantity model.

The spatial equilibrium conditions now take the fol-
lowing form: For all pairs of supply and demand mar-
kets (i, j), i = 1, . . . ,M; j = 1, . . . , N:


�i C ci j(Q�)

(
D ��j if Q�i j > 0;
� ��j if Q�i j D 0;

where

si (
�)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

D

NX
jD1

Q�i j if 
�i > 0;

�

NX
jD1

Q�i j if 
�i D 0;

and

dj(��)

8̂
ˆ̂̂<
ˆ̂̂̂
:

D

MX
iD1

Q�i j if ��j > 0;

�

MX
iD1

Q�i j if ��j D 0:

The first equilibrium condition is as in the quantity
model with the exception that the prices are now vari-
ables. The other two conditions allow for the possibil-
ity that if the equilibrium prices are zero, then one may
have excess supply and/or excess demand at the respec-

tive market(s). If the prices are positive, then the mar-
kets will clear.

The variational inequality formulation of the equi-
librium conditions governing the price model is now
given (for a proof, see [21]).

Theorem 4 (variational inequality formulation) The
vector x�� (Q�, 
�, ��)2RMNCMCN

C is an equilibrium
shipment and price vector if and only if it satisfies the
variational inequality:

hF(x�); x � x�i � 0; 8x 2 RMNCMCN
C ;

where F: K! RMN+M+N is the row vector: F(x)� (T(x),
S(x), D(x)), where T: RMNCMCN

C ! RMN, S: RMNCM
C !

RM, and D: RMNCN
C ! RN are defined by:

Ti j D 
i C ci j(Q) � � j;

Si D si (
) �
NX
jD1

Qi j;

Dj D

MX
iD1

Qi j � dj(�):

A Dynamic Model

We now present the projected dynamical system model
of the latter spatial price problem. For additional back-
ground, qualitative properties, as well as computational
results, see [25] and the references therein. In view of
variational inequality governing the price model, we
may write the dynamical system as:
0
@
Q̇

̇

�̇

1
A D ˘

RMNCMCN
C

0
@
0
@
Q



�

1
A ;
0
@
�T(Q; 
; �)
�S(Q; 
)
�D(Q; �)

1
A
1
A ;

where assuming that the feasible set K is a convex poly-
hedron (as is the case here), and given x 2 K and v 2
Rn, we define the projection of the vector v at x (with
respect to K) by

˘K(x; v) D lim
ı!0

PK (x C ıv) � x
ı

;

where PK is defined as:

PK (x) D argmin
z2K
kx � zk ;

and k � k denotes the Euclidean norm.
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More explicitly, if the demand price at a demand
market exceeds the supply price plus the unit transac-
tion cost associated with shipping the commodity be-
tween a pair of supply and demand markets, then the
commodity shipment between this pair of markets will
increase. On the other hand, if the supply price plus unit
transaction cost exceeds the demand price, then the
commodity shipment between the pair of supply and
demand markets will decrease. If the supply at a supply
market exceeds (is exceeded by) the commodity ship-
ments out of the market, then the supply price will de-
crease (increase). In contrast, if the demand at a de-
mand market exceeds (is exceeded by) the commodity
shipments into the market, then the demand price will
increase (decrease).

However, if at the boundary the vector field �F
points ‘out’ of the feasible set, the right-hand side of
the ordinary differential equation becomes the projec-
tion of F onto the boundary. In other words, if the com-
modity shipments, and/or the supply prices, and/or the
demand prices are driven to be negative, then the pro-
jection ensures that the commodity shipments and the
prices will be nonnegative, by setting the values equal
to zero. The solution to the projected dynamical system
then evolves along a ‘section’ of the boundary of the fea-
sible set. At a later time, the solution may re-enter the
interior of the constraint set, or it may enter a lower-
dimensional part of its boundary, with, ultimately, the
spatial price equilibrium conditions being reached at
a stationary point, that is, when ẋ D 0.

See also

� Equilibrium Networks
� Financial Equilibrium
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Oligopolistic Market Equilibrium
� Traffic Network Equilibrium
�Walrasian Price Equilibrium
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Introduction

Cauchy’s steepest descent algorithm [22] is the most
ancient method for multidimensional unconstrained
minimization. Given f , a real smooth function defined
on Rn , the idea is to iterate according to:

xkC1 D xk � ˛kr f (xk) ; (1)

with the expectancy that the sequence {xk} would ap-
proximate a minimizer of f . The greedy choice of the
steplength ˛k is

f (xk � ˛kr f (xk)) D min
˛�0

f (xk � ˛r f (xk)) : (2)

The poor practical behavior of (1)–(2) has been known
for many years. If the level sets of f resemble long val-
leys, the sequence {xk} displays a typical zig-zagging tra-
jectory and the speed of convergence is very slow. In the
simplest case, in which f is a strictly convex quadratic,
the method converges to the solution with a Q-linear
rate of convergence whose factor tends to 1 when the
condition number of the Hessian tends to infinity.

Nevertheless, the structure of the iteration (1) is
very attractive, especially when one deals with large-
scale (many variables) problems. Each iteration only
needs the computation of the gradient r f (xk) and the
number of algebraic operations is linear in terms of n.
As a consequence, a simple paper by Barzilai and Bor-
wein published in 1988 [4] attracted some justified at-
tention. Barzilai and Borwein discovered that, for some
choices of ˛k, Cauchy’s method converges superlinearly
to the solution, if f : R2 ! R is a convex quadratic.
Some members of the optimization community began
to believe that the existence of an efficient method for
large-scale minimization based only on gradient direc-
tions could be possible.

In 1993, Raydan [60] proved the convergence of the
Barzilai–Borwein method for arbitrary strictly convex
quadratics. He showed that the method was far more
efficient than the steepest descent algorithm (1)–(2) al-
though it was not competitive with the Conjugate Gra-
dient method of Hestenes and Stiefel [49] for quadratic
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problems. The possibility of obtaining superlinear con-
vergence for arbitrary n was discarded by Fletcher’s
work [40] (see also [60]) and a bizarre behavior of the
method seemed to discourage the application to general
(not necessarily quadratic) unconstrained minimiza-
tion: the sequence of functional values f (xk) did not
decrease monotonically and, sometimes, monotonicity
was severely violated.

However, starting with the work by Grippo, Lam-
pariello and Lucidi [47], nonmonotone strategies for
functionminimization began to become popular. These
strategies made it possible to define globally convergent
algorithms without monotone decrease requirements.
The philosophy behind nonmonotone strategies is that,
many times, the first choice of a trial point by a min-
imization algorithm hides a lot of wisdom about the
problem structure and that such knowledge can be de-
stroyed by the decrease imposition. For example, if one
applies Newton’s method to a problem in which sev-
eral components of the gradient are linear, these com-
ponents vanish at the first trial point of each iteration,
but the objective function value does not necessarily de-
crease at this trial point.

Therefore, the conditions were given for the imple-
mentation of the Barzilai–Borwein method for general
unconstrained minimization with the help of a non-
monotone strategy. Raydan [61] defined this method
in 1997 using the GLL strategy [47]. He proved global
convergence and exhibited numerical experiments that
showed that, perhaps surprisingly, the method was
more efficient than classical conjugate gradient meth-
ods for minimizing general functions. These nice com-
parative numerical results were possible because, al-
beit the Conjugate Gradient method of Hestenes and
Stiefel continued to be the rule of choice for solving
many convex quadratic problems, its efficiency was
hardly inherited by generalizations forminimizing gen-
eral functions. Therefore, there existed a wide space for
variations of the Barzilai–Borwein idea.

The Spectral Projected Gradient (SPG) method [16,
17,18] was born from the marriage of the Barzila-
Borwein (spectral) nonmonotone ideas with classical
projected gradient strategies [7,46,53]. This method is
applicable to convex constrained problems in which
the projection on the feasible set is easy to com-
pute. Since its appearance, the method has been in-
tensively used in applications [3,6,10,14,15,19,20,24,26,

35,42,50,59,63,64,65,69]. Moreover, it has been the ob-
ject of several spectral-parameter modifications, alter-
native nonmonotone strategies have been suggested,
convergence and stability properties have been eluci-
dated and it has been combined with other algorithms
for different optimization problems.

Method

The Secant Connection

Quasi-Newton secant methods for unconstrained opti-
mization [36,37] obey the recursive formula

xkC1 D xk C ˛kB�1k r f (xk) : (3)

The sequence of matrices {Bk} satisfy the secant equa-
tion

BkC1sk D yk ; (4)

where sk D xkC1 � xk and yk D r f (xkC1) � r f (xk).
By (4), it can be shown that, at the trial point
xk � B�1k r f (xk), the affine approximation of r f (x)
that interpolates the gradient at xk and xk�1 vanishes
for all k � 1.

Now assume that we want a matrix BkC1 with a very
simple structure that satisfies (4). More precisely, we
wish

BkC1 D �kC1I ;

with �kC1 2 R. (4) becomes:

�kC1sk D yk :

In general, this equation cannot be solved. However,
accepting the least-squares solution that minimizes
k� sk � ykk22, we obtain:

�kC1 D
sTk yk
sTk sk

: (5)

This formula defines the most popular Barzilai–
Borwein method [61]. Namely, the method for uncon-
strained minimization is of the form (3), where, at each
iteration,

dk D �
1
�k
r f (xk)

and formula (5) is used to generate the coefficients �k

provided that they are bounded away from zero and
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that they are not very large. In other words, the method
uses safeguards 0 < �min < �max <1 and defines, at
each iteration:

�kC1 D min

(
�max;max

(
�min;

sTk yk
sTk sk

))
:

By the Mean-Value Theorem of Integral Calculus, one
has:

yk D
�Z 1

0
r2 f (xk C tsk)dt

�
sk :

Therefore, formula (5) defines a Rayleigh quotient rel-
ative to the average Hessian matrix (

R 1
0 r

2 f (xk C
tsk)dt)sk . This coefficient is between the minimum and
the maximum eigenvalue of the average Hessian, which
motivates the denomination of Spectral Method [16].

Writing the secant equation as Hyk D sk , which is
also standard in the Quasi-Newton tradition, we arrive
to a different spectral coefficient: yTk yk

sTk yk
. Curiously, both

this dual and the primal coefficient had been used for
many years in practical quasi-Newton methods to de-
fine the initial matrices B0 [58].

The Line Search

The Spectral Projected Gradient method (SPG) aims to
minimize f on a closed and convex set˝ . The method,
as well as its unconstrained counterpart [61] has the
form

xkC1 D xk C ˛kdk : (6)

The search direction dk has been defined in [16] as

dk D P(xk �
1
�k
r f (xk)) � xk ;

where P denotes the Euclidean projection on ˝ . A re-
lated method with approximate projections has been
defined in [18]. The direction dk is a descent di-
rection, which means that, if dk ¤ 0, one has that
f (xk C ˛dk )� f (xk) for ˛ small enough. This means
that, in principle, one could define convergent methods
imposing sufficient decrease at every iteration. How-
ever, this leads to disastrous practical results. For this
reason, the spectral methods employ a nonmonotone
line search that does not impose functional decrease
at every iteration. In [16,17,18] the GLL [47] search is

used. This line search depends on an integer parame-
ter M � 1 and imposes a functional decrease every M
iterations (if M D 1 then GLL line search reduces to
a monotone line search).

The line search is based on a safeguarded quadratic
interpolation and aims to satisfy an Armijo-type cri-
terion with a sufficient decrease parameter � 2 (0; 1).
The safeguarding procedure acts when the minimum
of the one-dimensional quadratic lies outside [�1; �2˛],
and not when it lies outside [�1˛; �2˛] as usually imple-
mented. This means that, when interpolation tends to
reject 90% (for �1 D 0:1) of the original search interval
[0; 1], we judge that its prediction is not reliable and we
prefer the more conservative bisection. The complete
line search procedure is described below.

Algorithm 3.1: Line Search
Compute fmax D maxf f (xk� j)j0 � j � minfk;M �
1gg, xC  xk C dk , ı  hr f (xk)); dki and set ˛  1.
Step 1. Test nonmonotone Armijo-like criterion
If f (xC) � fmax C �˛ı then set ˛k  ˛ and stop.

Step 2. Compute a safeguarded new trial steplength
Compute ˛tmp  �

1
2˛

2ı
ı
( f (xC) � f (xk) � ˛ı).

If ˛tmp � �1 and ˛tmp � �2˛ then set ˛  ˛tmp .
Otherwise, set ˛  ˛

ı
2.

Step 3. Compute xC  xk C ˛dk and go to Step 1.

Remark. In the case of rejection of the first trial point,
the next ones are computed along the same direc-
tion. As a consequence, the projection operation is per-
formed only once per iteration.

General Form and Convergence

The Spectral Projected Gradient method SPG aims to
solve the problem

Minimize f (x) subject to x 2 ˝ ; (7)

where f admits continuous first derivatives and
˝ � Rn is closed and convex.

We say that a point x 2 ˝ is stationary if

r f (x)Td � 0

for all d 2 Rn such that x C d 2 ˝.
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In [18], SPG method has been presented as a mem-
ber of a wider family of “Inexact VariableMetric” meth-
ods for solving (7). Let B be the set of n � n positive
definite matrices such that kBk � L and kB�1k � L.
Therefore, B is a compact set of Rn�n . In the spectral
gradient approach, the matrices will be of the form � I,
with � 2 [�min; �max].

Algorithm 4.1: Inexact Variable Metric Method
Assume � 2 (0; 1], � 2 (0; 1), 0 < �1 < �2 < 1, M � 1
an integer number. Let x0 2 ˝ be an arbitrary initial
point. We denote gk D r f (xk) for all k D 0; 1; 2; : : :
Given xk 2 ˝, Bk 2 B, the steps of the kth iteration of
the algorithm are:

Step 1. Compute the search direction
Consider the subproblem

Minimize Qk(d) subject to xk C d 2 ˝ ; (8)

where

Qk(d) D
1
2
dTBkd C gTk d :

Let d̄k be the minimizer of (8). (This minimizer exists
and is unique by the strict convexity of the subprob-
lem (8), but does not need to be computed.)

Let dk be such that xk C dk 2 ˝ and

Qk(dk) � � Qk(d̄k) :

If dk D 0, stop the execution of the algorithm declaring
that xk is a stationary point.

Step 2. Compute the steplength
Compute fmax D maxf f (xk� j)j0 � j � minfk;M �
1gg, ı  hgk ; dki and set ˛ 1.
If

f (xk C ˛dk ) � fmaxC �˛ı ; (9)

set ˛k D ˛, xkC1 D xk C ˛kdk and finish the iteration.
Otherwise, choose ˛new 2 [�1˛; �2˛], set ˛  ˛new and
repeat test (9).

Remarks. (a) Algorithm 3.1 is a particular case of Step 2
of Algorithm 4.1. (b) In the definition of Algorithm 4.1
the possibility � D 1 corresponds to the case in which
the subproblem (8) is solved exactly.

The main theoretical results [18] are stated below.
Firstly, it is shown that an iteration necessarily finishes
and then it is shown that every limit point of a sequence
generated by the algorithm is stationary.

Theorem 4.1. The algorithm is well defined.

Theorem 4.2. Assume that the level set fx 2 ˝ j

f (x) � f (x0)g is bounded. Then, either the algorithm
stops at some stationary point xk, or every limit point of
the generated sequence is stationary.

Numerical Example

In [17] a family of location problems was introduced.
Given a set of npol disjoint polygons in R2 we wish to
find the point y that minimizes the sum of the distances
to those polygons. Therefore, the problem is

min
z i ;y

npolX
iD1

kzi � yk2

subject to zi 2 Pi ; i D 1; : : : ; npol :

Let us write x D (z11; z12; : : : ; z
npol
1 ; znpol2 ; y1; y2). We

observe that the problem has 2 � (npol C 1) vari-
ables. The number of (linear inequality) constraints isPnpol

iD1 �i , where � i is the number of vertices of the poly-
gon Pi. Each constraint defines a half-plane in R2. Fig-
ure 1 shows the solution of a small five-polygons prob-
lem.

For projecting x onto the feasible set observe that we
only need to project each zi separately onto the corre-
sponding polygon Pi. In the projection subroutine we
consider the half-planes that define the polygon. If zi

belongs to all these half-planes, then zi is the projection
onto Pi. Otherwise, we consider the set of half-planes to
which zi does not belong. We project zi onto these half-
planes and we discard the projected points that do not
belong to Pi. Let Ai be the (finite) set of nondiscarded
half-plane projections and let Vi be the set of vertices
of Pi. Then, the projection of zi onto Pi is the point of
Ai [ Vi that is closest to zi. The projection subroutine
are included in the test driver for SPG method [17].

Varying npol and choosing randomly the localiza-
tion of the polygons and the number of vertices of
each one, several test problems were generated and
solved by the SPG method in [17]. The biggest prob-
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Spectral Projected Gradient Methods, Figure 1
Five-polygons problem

lem had 48,126 polygons, 96,254 variables and 578,648
constraints. Using the origin as initial approximation,
it was solved by the SPG method in 17 iterations, us-
ing 19 function evaluations and 12.97 s of CPU time on
a Sun SparcStation 20 with the following main charac-
teristics: 128Mbytes of RAM, 70MHz, 204.7 mips, 44.4
Mflops. (Codes were in Fortran 77 and the compiler op-
tion adopted was “-O”.)

Further Developments

Developments on spectral gradient and spectral pro-
jected gradient ideas include:
1. Application and implementation of the spectral

methods to particular optimization problems: Lin-
ear inequality constraints were considered in [1].
In [38] the SPG method was used to solve Aug-
mented Lagrangian subproblems. The spectral gra-
dient method solves the subproblems originated by
the application of an exponential penalty method to
linearly constrained optimization in [56].

2. Preconditioning: The necessity of preconditioning
for very ill-conditioned problems has been recog-
nized in several works [5,23,45,54,57].

3. Extensions: The spectral residual direction was de-
fined in [51] to introduce a new method that aims
to solve nonlinear systems of equations using only
the vector of residues. See, also, [48,52,70]. The

SPG method has been extended for solving non-
differentiable convex constrained problems [25].

4. Association with other methods: The SPG method
has been used in the context of active-set meth-
ods for box-constrained optimization in [2,13,12].
Namely, SPG iterations are used in these methods
for abandoning faces whereas Newtonian iterations
are employed inside the faces of the feasible region.
The opposite idea was used in [44], where spectral
directions were used inside the faces and a differ-
ent orthogonal strategy was employed to modify the
set of current active constraints (see also [9]). Spec-
tral ideas were also used in association with conju-
gate gradients in [11]. Combinations of the spectral
gradient method with other descent directions were
suggested in [21,28].

5. Nonmonotone alternative rules: Dai and Fletch-
er [30] observed that, in some cases, even the descent
GLL strategy was very conservative and, so, more
chance should be given to the pure spectral method
(˛k D 1 for all k). However, they showed that, for
quadratic minimization with box constraints, the
pure method is not convergent. Therefore, alterna-
tive tolerant nonmonotone rules were suggested. Dai
and Zhang [31] noted that the behavior of spectral
methods heavily depend on the choice of the param-
eter M of the GLL search and proposed an adaptive
nonmonotone search independent of M. Over and
under relaxations of the spectral step were studied
by Raydan and Svaiter [62].

6. Alternative choices of the spectral parameter: In [43]
it was observed that the convergence theory of the
spectral gradient method for quadratics remains
valid when one uses Rayleigh coefficients originated
in retarded iterations (see also [55]). In [32], for un-
constrained optimization problems, the same step-
size is reused for m consecutive iterations (CBB
method). This cyclic method is locally linearly con-
vergent to a local minimizer with positive definite
Hessian. Numerical evidence indicates that when
m > n/2 >D 3, where n is the problem dimension,
CBB is locally superlinearly convergent. In the spe-
cial case m D 3; n D 2, the convergence rate is, in
general, no better than linear [32].
In [34] the stepsize in the spectral gradient method
was interpreted from the point of view of interpo-
lation and two competitive modified spectral-like
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gradient methods were defined. Yuan [68] defined
a new stepsize for unconstrained optimization that
seems to possess spectral gradient properties pre-
serving monotonicity.

7. Asymptotic behavior analysis: A careful consider-
ation of the asymptotic practical and theoretical
behavior of the Barzilai–Borwein method may be
found in [41]. Dai and Fletcher [29] showed in-
teresting transition properties of the spectral gra-
dient method for quadratic functions as depend-
ing on the number of variables. Dai and Liao [33]
proved the R-linear convergence of the spectral gra-
dient method for general functions and, as a con-
sequence, established that the spectral stepsize is
always accepted by the non-monotone line search
when the iterate is close to the solution. The con-
vergence of the inexact SPG method was established
in [66,67] under different assumptions than the ones
used in [18]. Assuming Lipschitz-continuity of the
objective functions, these authors eliminated the
bounded-level-set assumption of [18].
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Splitting methods were originally proposed as a gener-
alization of the classical SOR method for solving a sys-
tem of linear equations [8,25], and in the late 1970s
they were extended to the linear complementarity prob-
lem (LCP; cf.� Linear complementarity problem) [1,2,
Chap. 5], [10,13,18]. These methods are iterative and
are best suited for problems in which exploitation of
sparsity is important, such as large sparse linear pro-
grams and the discretization of certain elliptic bound-
ary value problems with obstacle.

To describe the splitting methods, we formulate the
LCP (with bound constraints) as the problem of finding
an x = (x1, . . . , xn) 2 Rn solving the following system of
nonlinear equations:

x D max
�
l ;min[u; x � (Mx C q)]

�
; (1)

where M = [mij]i, j = 1, . . . , n 2 Rn×n, q = (q1, . . . , qn) 2 Rn

and the lower bound l = (l1, . . . , ln) and upper bound u
= (u1, . . . , un) are given. (Here max and min are under-
stood to be taken componentwise and we allow li = �
1 or ui =1 for some i. The case of li = 0 and ui =1 for
all i corresponds to the standard LCP.) In the splitting
methods, we express

M D BC C

for some B 2 Rn×n and C 2 Rn×n; then, starting with any
x 2 Rn, we iteratively update x by solving the following
equation for x0:

x0 D max
�
l ;min[u; x0 � (Bx0 C Cx C q)]

�
; (2)

and then replacing x with x0. Thus, at each iteration, we
effectively replace M and q in the original problem by,
respectively, B and Cx + qwhich we then solve to obtain
the new iterate.

A key to the performance of the splitting methods
lies in the choice of the matrix B. We should choose B
to be a good approximation of M so that the methods
have rapid convergence and, at the same time, such that
x0 is easy to compute at each iteration (e. g., B is diago-
nal or upper/lower triangular). The best known choice,
corresponding to the SOR method of C. Hildreth [3,7],
is

B D
1
!
DC L; (3)

where D and L denote, respectively, the diagonal and
the strictly lower-triangular part ofM and ! 2 (0, 2) is
a relaxation parameter (see [2, p. 397], [13]). For this
choice of B and assuming M has positive diagonal en-
tries, the components of x0 can be computed using n-
step backsolve:

x0i D max
�
li ;min

�
ui ; xi �

!

mii

�

0
@X

j<i

mi jx0j C
X
j�i

mi jx j C qi

1
A
3
5
3
5 ;

i D 1; : : : ; n:
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In the case where li =�1 and ui =1 for all i, the above
iteration reduces to the classical SOR method for solv-
ing the system of linear equations Mx + q = 0. More
generally, we can choose B to be block-lower/upper-
triangular, e. g.,

B D

0
BBB@

B11

B21 B22
:::

:::
: : :

Bp1 Bp2 � � � Bpp

1
CCCA

for some 1< p � n, with the diagonal and triangular
blocks possibly coming from M. Then, each block of
components of x0 can be computed recursively by solv-
ing an LCP of dimension equal to the block size. Other
choices of B are discussed in [2, Chap. 5], [13] and
below. Computation with the (block) SOR method on
solving sparse linear programs and LCP with symmet-
ric positive definiteM is investigated in [1,4,14,16].

An original application of the SOR method is to the
solution of convex quadratic programs of the form
(
min 1

2 y
>y

s.t. Ay � b;

where A 2 Rn×m and b 2 Rn are given, with A having
nonzero rows. (Here, | denotes the transpose.) Specif-
ically, by attaching nonnegative Lagrange multipliers
(cf. also � Lagrangian multipliers methods for convex
programming) x = (x1, . . . , xn) to the constraints Ay �
b, we obtain the following dual problem in x:

max
x�0

�
min
y

�
1
2
y>y C x>(Ay � b)

		

D max
x�0

�
�
1
2
x>AA>x � x>b

	

whose optimal solution, related to the optimal solution
of the original problem by y + A|x = 0 [7], solves the
LCP (1) withM = AA|, q = b and li = 0, ui =1 for all i
[7, p. 4]. In this case, M is symmetric positive semidef-
inite with positive diagonal entries and x0 computed in
the SOR method is alternatively given by the formula:

	i D max

"
�xi ;

!

AiA>i

�
Ai yi � bi

�#
;

x0i D xi C	i ;

yiC1 D yi � A>i 	i ; i D 1; : : : ; n;

where y1 = �A|x and Ai denotes the ith row of A. The
above iteration is reminiscent of the Agmon–Motzkin–
Fourier relaxation method for solving the inequalities
Ay � b and, in fact, differs from the latter only in that
the term �xi, rather than zero, appears inside the max.

Convergence of the splitting methods, despite their
relatively long history, was more fully analyzed only in
the last ten years. In particular, if M is symmetric (not
necessarily positive semidefinite) and the function

f (x) D
1
2
x>Mx C q>x (4)

is bounded below on the box l� x� u, then it is known
that x generated by the splitting method (2) converges
to a solution of the LCP at a linear rate (in the root sense
[17]), provided that (B, C) is a regular Q-splitting in the
sense that

B � C is positive definite and for every x there
exists a solution x0 to (2)

[12, Thm. 3.2]. (Earlier results of this kind that further
assumed M is positive semidefinite or nondegenerate
can be found in [2 Chap. 5], [5,11,19,20] and refer-
ences therein.) For the SOR method, corresponding to
B given by (3) with ! 2 (0, 2), it can be verified that (B,
C) is a regular Q-splitting providedM has positive diag-
onal entries. The proof of the above convergence result
uses two key facts about the LCP, namely, that f (x) as-
sumes only a finite number of values on the solution set
and that the distance to the solution set from any point
x near the solution set is in the order of the‘residual’ at
x, defined to be the difference in the two sides of (1). In
addition, the function f (x) can be used in a line-search
strategy to accelerate convergence of the splitting meth-
ods [2, Sec. 5.5].

If M is not symmetric but positive semidefinite, it
is known that x generated by the splitting method (2)
converges to a solution of the LCP at a linear rate (in
the root sense), provided that

B �M is symmetric positive definite

[2, Thm. 5.6.1], [24, Cor. 5.3]. One choice of B that sat-
isfies the above assumption is

B D M C bD � L � L>;

where L denotes the strictly lower-triangular part of M
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andbD is any n× n diagonal matrix such that bD�L�L>
is positive definite. This choice of B is upper-triangular
and hence the corresponding x0 can be computed in
the order of n2 arithmetic operations using n-step back-
solve [22, Sec. 6], [24]. Computationally, the asymme-
try of M makes it difficult to incorporate line-search
strategies since no ‘natural’ merit function analogous
to (4) is known. As a result, on problems where M is
highly asymmetric, such as the LCP formulation of lin-
ear programs, the convergence of the splitting methods
can be slow. Thus, accelerating convergence of the split-
ting methods on asymmetric problems remains a chal-
lenge. In this direction, we point out related methods
based on projection or operator splitting (see [6,21]
and references therein). These methods are applicable
to the case whereM is positive semidefinite (not neces-
sarily symmetric) and the major part of their iterations
also involves solving a matrix-splitting equation of the
form (2), except the solution x0 must undergo addi-
tional transformations to yield the new iterate x. These
methods, which may be viewed as a hybrid form of the
splitting methods, admit some forms of line search and
show good promise in computation.

In summary, building on the early work of Hildreth
and H.B. Keller and others, splitting methods have been
well developed in the last twenty years to solve the
LCP (1) when the matrix M is either symmetric or
positive semidefinite. Computationally, these methods
are best suited when M is symmetric, possibly having
some sparsity structure (e. g.,M = AA| with A sparse),
and the function (4) is used in a line-search strategy
to accelerate convergence. Extensions of these meth-
ods to problems where the box l � x � u is replaced
by a general polyhedral set, including as special cases
the extended linear/quadratic programming problem of
R.T. Rockafellar and R.J-B.Wets and the quadratic pro-
gram formulation of the LCP with row sufficient ma-
trix, have also been studied [2, Sec. 5.5], [6,12,22,23].
Inexact computation of x0 is discussed in [2, Sec. 5.7],
[9,12,15]. Acceleration of the methods in the case where
M is not symmetric remains an open issue. In fact, if
M is not symmetric nor positive semidefinite, conver-
gence of the splitting methods is known only for the
case whereM is anH-matrix with positive diagonal en-
tries and B is likewise, with the comparison matrix of B
having a contractive property [2, p. 418], [18,19]. Thus,
even if M is a P-matrix, it is not known whether the

splitting methods converge for some practical choice
of B.

See also

� Linear Complementarity Problem
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SSC algorithms are a class of local minimization al-
gorithms developed within the framework of supervi-
sor and searcher cooperation (SSC). One of the dis-
tinct characteristics of this class of algorithms is that
they are both efficient and robust, and therefore suitable
for minimization problems with strong noises. Some of
these algorithms have been studied in [5] and [6].

Most of the existing fast minimization algorithms
are not suitable for noisy minimization problems. One
of the main reasons seems that the effectiveness of the
line search procedures, which are usually incorporated
into these algorithms, are rather sensitive to the accu-
racy of function or gradient value evaluations. One may
increase the accuracy of these evaluations by, for exam-
ple, using an averaging process to diminish the effects of
stochastic noises. However this will normally increase
the computational work required.

Most of the existing robust minimization algo-
rithms, such as the stochastic approximation (SA)
method, the N-M simplex method, the genetic algo-
rithms, the Hooke–Jeeves method, do not use the clas-
sical line search, see [7] and [2]. Consequently they
have been widely employed to tackle noisy optimiza-
tion problems. Unfortunately, these algorithms are, in
general, very slow and inefficient even for the noise
free case. The stochastic approximation method, for
example, is very robust. Its global convergence has
been established under various assumptions for the
noise. However, even for deterministic problems with-
out noises, SA has been known to be very slow in com-
parison with efficient gradient algorithms like the con-
jugate gradient (CG) method and the GBB algorithm
(see [8]). This is mainly due to the use of pre-assigned
stepsizes in the search for optimizers.

The SSC framework provides an effective mecha-
nism to address the above issues. The essential idea
adopted in SSC algorithms is to combine the desir-
able characteristics of two algorithms: a supervisor al-
gorithm (SR) and a searcher (or search engine) algo-
rithm (SE). The former is used to ensure global con-
vergence and to enhance robustness, while the latter
is employed to increase the efficiency of the solution
searching work. The SSC framework can be viewed as
a systematic way of exploring possible combinations
of some existing minimization algorithms. The result-
ing algorithms are a class of piecewise or hybrid algo-
rithms.
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Assume that we wish tominimize an objective func-
tion f (x) on Rn. Assume, for given x0, . . . , xl, that we
have an iterative algorithm, called search engine (SE):

xkC1 D xk � sek(xk; : : : ; xk�l ; k; f );

k D l ; l C 1; : : : :

This particular form of sek may depend on k and
the values (or estimates) of {f (xk�i)}liD0, {rf (xk�i)}

l
iD0,

{H(xk�i)}liD0, etc, where H(x) is the Hessian matrix of f
at the point x. Suppose that this algorithm is convergent
to a local minimizer of f provided the starting points are
close enough to the minimizer.

Assume that we also have a supervisor algorithm
(SR): Given x0, . . . , xl

xkC1 D xk � srk(xk ; : : : ; xk�l ; k; f );

k D l ; l C 1; : : : :

In general, an SR is slow but robust, while an SE is
fast but only convergent locally. For the two algorithms
to work together efficiently, a principle is needed to reg-
ulate their relationship. In [5] the following framework
was introduced, based on the idea of cooperation be-
tween the supervisor and the searcher (SSC): the super-
visor acts only if it believes that the performance of the
search engine is not satisfactory while the search engine
does most of the solution searching work.

There are many different ways of designing new al-
gorithms in this framework. In [5] the following sim-
ple implementation has been proposed: Assume f � 0.
Given x0, . . . , xl, define (k = l, l + 1, . . . ) the following
(SSC) algorithm:

xkC1 D

8̂
<̂
ˆ̂:

xk � srk if Tk f (xk � srk )
� f (xk � sek);

xk � sek otherwise;

where {Tk} is a given sequence of nonnegative real
numbers.

Note that as far as minimization is concerned, one
can always assume that f � 0 by adding a positive con-
stant to the original function. Alternatively, one can use
the following SSC algorithm for the general case:

xkC1 D

8̂
ˆ̂̂<
ˆ̂̂̂
:

xk � srk if Tsign( f (xk�srk ))
k

� f (xk � srk)
� f (xk � sek);

xk � sek otherwise:

where {Tk} is a given sequence of nonnegative real
numbers.

Other forms of implementation or extensions have
also been studied in [5,6]. For example, the following
nonmonotone version of SSC algorithm was proposed
in [6] (NOMSCC algorithm): For a fixed positive inte-
germ > 0 and a real number ı > 0, define xk as follows:

xkC1 D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

xk � sek if f (xk � sek) � max
0� j�m(k)

f f (xk� j)g � �k jgk j2

or if f (xk � sek)
� Tk f (xk � srk);

xk � srk otherwise;

where gk = rf (xk),m(k) = min(k,m) and {�k} is a given
sequence of nonnegative real numbers such that �k � ı
(k = 0, 1, . . . ).

It was found that in some cases the nonmonotone
version performs better than the simpler original ver-
sion (see [5]).

In principle, any globally convergent iterative algo-
rithm, e. g. CG, BFGS, etc., could be used as a supervi-
sor. In general, one wishes that supervisors should have
simpler structures to increase robustness. Two classes
of supervisors have been examined in [6].

The first class uses pre-assigned steplengths as in
SA. Let {tk}(k = 0, 1, . . . ) be such that
i) tk > 0;
ii)
P
1
kD0 tk = +1.

Let xk 2 Rn (k = 0, 1, . . . ) and let gk = rf (xk). Let l �
0 and let {dk(xk, . . . , xk�l , f )} be a sequence of Rn vec-
tors so that there exist c, C > 0 such that the following
assumptions hold:

(D) d>k gk � c jgk j2 ; jdk j � C jgk j ; k D 0; 1; : : : :

One of the most frequently used forms of dk in this pa-
per is dk = gk, though there are other possible choices as
well.

The first class of supervisors have the following
form: for given x0, . . . , xl,

xkC1 D xk � tkdk ; k D l ; l C 1; : : : :

When dk = gk, it is the SA algorithm.
The second class of supervisors have the following

form: for given x0, . . . , xl,

xkC1 D xk � tkdk ; k D l ; l C 1; : : : ;
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where {tk}, {dk} are chosen so that there exists an ˛ > 0,
independent of k, such that

f (xk � tkdk ) � f (xk) � �˛
(d>k r f (xk))2

jdk j2
;

and
1X
l

cos2(�k) D C1;

where

cos(�k) D
(gk ; dk)
jgk j jdk j

; k D l ; l C 1; : : : :

For instance, let dk = gk and let {tk be generated us-
ing theWolfe line search procedure. Then the above as-
sumptions hold. Clearly other line search methods can
also be considered in the same way.

Again, in principle, any locally convergent iterative
algorithm could be used as a search engine. Some possi-
ble examples, which have been already investigated, are
as follows:
1) Newton search engine: Given x0,

xkC1 D xk � sek ; k D 0; 1; : : : ;

where sek = H�1k gk, and Hk and gk are the Hessian
matrix and gradient of f at the point xk. If Hk is not
invertible, then the SSC switches to SR.

2) Quasi-Newton search engine: Given x0,

xkC1 D xk � sek ; k D 0; 1; : : : ;

where sek = Bkgk and Bk is given by a quasi-Newton
recursive formula (see [4] and [3] for the details).
It has been found that a straightforward use of this
class of search engines may lead to poor perfor-
mance of the resulting algorithms.

3) BB search engine: Given x0,

xkC1 D xk � sek ; k D 0; 1; : : : ;

where sek = ˛kgk, where ˛0 = 1 and for k � 1

˛k D
jyk j2

y>k sk
;

where

yk D xk � xk�1;

sk D r f (xk) � r f (xk�1):

This steplength ˛k was first proposed in [1], where
the BB algorithm was introduced. This search en-
gine has been studied in detail in [5].
Three SSC algorithms have been studied and

tested in [6]: SSC-SABB, SSC-SANEWTON, and SSC-
SABFGS, which use SA as the supervisor, and, BB, New-
ton’s, and BFGS as the search engines, respectively. For
example the SSC-SABB algorithm is as follows:

Let x 2 Rn be given and ˛0 = 1.
Let Tk � 0, k = 0, 1, . . . , be given, and assume that
f � 0.
Then (the SSC-SABB algorithm):

xk+1 =xk�
�
tk gk if Tk f (xk� tk gk )� f (xk�˛k gk),
˛k gk otherwise,

where, for k � 1,

˛k =
jyk j2

ytk sk
;

with

yk = xk � xk�1 ;

sk = r f (xk) � r f (xk�1) :

These algorithms were found to be efficient and very
robust. For instance, SSC-SABB was able to solve diffi-
cult stochastic optimization problems efficiently, while
for the noise free case, it was comparable with some
fastest gradient algorithms like CG and GBB (see [5]).
In [6], it was also reported that SSC-SANEWTON and
SSC-SABFGS can solve difficult optimization problems,
using rough approximations of the gradient and the
Hessian, while they are very fast when the errors are
small. In these experiments, tk D min(0:01; 1p

k
) and

tk = min(0.01, 1/k) are tested, while connection Tk is
fixed as a constant T>0. For example, one may take T =
3 or T = 5 when there is little noise in an optimization
problem, and one has to let T = 1 if the noise is strong.

In the noise free case the following global conver-
gence result has been established in [6] for SSC algo-
rithms.

Let f be twice continuously differentiable and
bounded below. Assume that r f is Lipschitz with
a global Lipschitz constant. Let {xk} be generated by the
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SSC algorithm. Assume that
Q
1
0 max(Tk , 1)<1. If the

supervisor belongs to the first class, then there is an �
(f ) > 0 such that {

Pk
l tk |r f (xk)|2}is convergent as

k!1 for any sequence {tk} such that there is a N > 0
satisfying that tk� �(f ) after k�N. If the supervisor be-
longs to the second class, then {

Pk
l cos

2(�k) |rf (xk)|2}
is convergent as k!1.

It should be noted that the above convergence is in-
dependent of the search engines used. The result can
be further extended. For instance, SSC-SABB has been
shown to be globally convergent when only finite Tk = 1
and the rest Tk = T > 1. It was also shown that the speed
of SSC-SABB is R-linear.

In general, the SSC algorithms are at least as fast as
their SE provided Tk> T> 1 after k large enough. There-
fore, the global convergence of SSC algorithms is en-
sured by the SR, while their speed is largely decided by
the SE. More details can be found in [6].

The above basic SCC algorithms have been ex-
tended for different applications, like training of feed-
forward neural networks (FNNs). For example, the fol-
lowing extended version of the SSC algorithms, which
forces the search engine to run m iteration before at-
tempting switching, is proposed. Let x0 2 Rn be given.
Let Tk � 0 be given for k = 0, 1, . . . , and let m > 0. As-
sume that f � 0 and that we have xk. Then define

x1kCm D xk � srk ;
x2kCm D ykCm ;

where yk+m is defined by yk = xk,

ykClC1 D ykCl � sekCl ; l D 0; : : : ;m � 1:

Then define

xkC1 D

8̂
<̂
ˆ̂:

x1kCm if Tk f (x1kCm)
� f (x2kCm):

x2kCm otherwise:

The purpose of the above extension is to create
a ‘memory’ effect which may be important for the ef-
ficient performance of some search engines.

It seems that the supervisor-searcher cooperation
framework offers a promising way for combining char-
acteristics of existing algorithms. It seems that the new
algorithms can retain the desirable properties of their

‘parents’. Consequently these algorithms are both effi-
cient and robust. This makes them suitable for both de-
terministic and stochastic minimization problems. This
unique feature is largely due to the fact that the algo-
rithms use neither line search nor pre-assigned step-
sizes all the time. Finally, the additional computational
work required is also very light.

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� Inequality-constrained Nonlinear Optimization
� SSC Minimization Algorithms for Nonsmooth and

Stochastic Optimization
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SSC algorithms are a class of local minimization al-
gorithms developed within the framework of supervi-
sor and searcher cooperation, see � SSC minimiza-
tion algorithms for definitions. Some of the algorithms
are both efficient and robust, and therefore suitable
for minimization problems with strong noise. Further
studies of SSC algorithms can be found in [4,5], and [7].

Nonsmooth optimization problems, where the ob-
jective functions may not be differentiable, are fre-
quently met in many important applications. There ex-
ist some minimization algorithms, which are applicable
to certain types of nonsmooth optimization problems,
such as the subgradient method, the conjugate subgra-
dient method, and the cutting plane method (see, [3,8],
and [9]). However, more research is still much needed
to develop fast minimization algorithms for nonsmooth
optimization problems.

Some of the SSC algorithms have been extended to
nonsmooth optimization problems, see [6]. It is clear
that the SSC framework described in � SSC minimiza-
tion algorithms can be used to design minimization al-
gorithms for nonoptimization problems, though it is
not straightforward to select suitable supervisors and
searchers. In [6], the SSC-SABB (see � SSC minimiza-
tion algorithms) algorithm was extended to nonsmooth
optimization: the supervisor was replaced by the sub-
gradient method, while the BB search engine was still
used. This gives the SSC-SBB algorithm, described be-
low.

Assume that we wish to minimise an objective func-
tion f (x) on Rn. Assume that f � 0 is Lipschitz. Let tk �
0 (k = 0, 1, . . . ) be such that

P
1
0 tk =1 and

P
1
0 t2k <

1. Define @f (x), the general gradient at x, as in [9]:

@ f (x) D conv(Vf (x));

with

Vf (x) D
�
v 2 Rn : v D limxi!x r f (xi);

where r f (xi) exists

	
;

where conv(Vf (x)) represents the close convex hull of
Vf (x). Since every Lipschitz function on Rn is differen-
tiable almost everywhere, the above general gradient is
well-defined. The SSC-SBB algorithm is then defined as
follows: For given x0 and Tk > 0 (k = 0, 1, . . . ), define

xkC1 D

8̂
<̂
ˆ̂:

ykC1 D xk � tk�k if Tk f (ykC1)
� f (zkC1);

zkC1 D xk � ˛k�k otherwise;

where �k 2 Vf (xk), ˛0 = 1, and for k � 1

˛k D
jyk j2

ytk sk
;

where

yk D xk � xk�1; sk D �k � �k�1:

Note that in the above definition, �k is taken from
Vf (xk), instead of @f (xk) as in the subgradient method.
In general, this causes no extra computational work.
For instance, for the most common case where f (x) =
max1� i� J(f i(x)), where f i (i = 1, . . . , J) is smooth, one
can simply use �k = rf j(xk), where j is such that f j(xk)
= max1� i� J(f i(xk)). In fact, it is also possible to simply
require �k 2 @f (xk) with |�k| = 1 in the above definition,
as in the subgradient method. Then the formula of ˛k
has to be modified because of the normalization of �k.

Some global convergence results have been estab-
lished in [6] for the SSC-SBB algorithm. The following
is just an example. Assume that
a) f is continuous and strictly convex;
b) x� is the global minimizer of f such that f (x�) =

minx2Rn f (x) > 0; and
c) there exist constants c,m > 0 such that for all x 2 Rn

c jx � x�j � f (x)� f (x�) � m jx � x�j :

Assume that {ˇk} is a sequence of real numbers. Let x0
be given and let Tk = T > 0 (k = 0, 1, . . . ). Let {xk} be
defined by (k = 1, 2, . . . )

xkC1 D

8̂
<̂
ˆ̂:

ykC1 D xk � tk�k if T f (ykC1)
� f (zkC1);

zkC1 D xk � ˇk�k otherwise;
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where �k 2 @f (xk) with |�k = 1, and tk � 0 such that
P
1
0

tk =1, and
P
1
0 t2k <1. Then limk!1|xk � x�| = 0

if T � c/m. If we further have U = supx, y(f (x) � f (y))
<1, then for any 0 < T < 1 there exists a CT> 0 such
that limk! 0 |xk�x�| = 0, where xk is generated from
the above SSC-SBB algorithm for any shifted objective
function f C = f + C, where C � CT .

The above result basically says that if 0 < T < 1, then
by adding a suitable positive number C to the objec-
tive function f (this does not change the minimizer of
f ), the SSC-SBB algorithm will converge. It does not,
however, give any estimate for the constant C. In [6],
convergence was observed for all C > 0. More general
convergence results have also been established in [6],
where some of the above conditions have been further
relaxed.

Numerical experiments indicated that the SSC-SBB
is quite fast when {xk} are far away from a minimizer. It
then slows down when the approximations are near the
minimizer, if it happens that the objective function is
not differentiable at that point. The main reason seems
that the BB search engine is frequently redundant in the
computation when xk is near a nonsmooth minimizer.
This problem is yet to be solved. Nevertheless, in some
cases, a considerable improvement on the overall speed
over the subgradient method has been observed in [6].

It has been found that some SSC algorithms seem
quite suitable for stochastic optimization:

(
min f (x);
with f (x) D F(x)C �;

where F is the smooth underlying exact mathematical
model, and � is stochastic noise, which may depend
on x. Of course, here we really mean to find a mini-
mizer of F. Among the algorithms, a stochastic version
of SSC-SABB has been much studied and tested, see, [4]
and [7].

Assume that we have some estimators for F(x) and
nabla; F(x). Whenever we refer to f (x) and r f (x), we
mean the estimators of the value or the gradient of F at
the point x. When � = 0, all the estimators are assumed
to be identical to the exact values.

Then the stochastic version of SSC-SABB is as fol-
lows: Let x0 2 Rn be given and ˛0 = 1. For k = 0, 1, . . . ,
let Tk � 0 be given. Define the stochastic SSC-SABB al-

gorithm

xkC1 D

8̂
<̂
ˆ̂:

xk � tk gk if Tk f (xk � tk gk)
� f (xk � ˛k gk);

xk � ˛k gk otherwise;

where gk = rf (xk), and for k � 1,

˛k D
jyk j2

ytk sk
;

with

yk D xk � xk�1; sk D r f (xk) � r f (xk�1):

Actually it has the exactly same form as the determinis-
tic version of SSC-SABB (see� SSCminimization algo-
rithms) but with a different interpretation for f and r
f . More importantly, the parameters have to be selected
differently. For example, it has been found in [4] that
if one takes tk D min(c; 1p

k
) or tk = min(c, 1/k), then

the constant cmay be very much problem dependent to
ensure a fast convergence. It was reported in [4] and [7]
that Tk � 1 was always a safe choice for the stochastic
problems studied there. One may use any estimator for
F orrF in the above algorithm. In [4] and [7], the linear
or quadratic approximation for F, and the second order
central difference estimator for r F have been tested.

Performance of the algorithm was found to be
promising. A considerable improvement over the
stochastic approximation algorithm (SA) was observed
in [4] and [7]. It was found to be able to solve some
hard stochastic optimization problems efficiently. This
improvement seems due to its unique adaptive (switch-
ing) feature in calculating its steplengths – they are nei-
ther pre-assigned nor determined by line search.

However, this unique feature leads to a major dif-
ficulty in establishing convergence for the algorithm
(indeed for this class of algorithms) in the stochastic
case. In the literature, most existing convergence re-
sults for the SA type of algorithms are established on
the assumption that the size of the steplengths tends
to zero. For instance, in the case of the stochastic ap-
proximation algorithm, the steplength at the kth itera-
tion is just tk, which goes to zero as k!1. However
this assumption is certainly not true for the stochas-
tic version of SSC-SABB, since at the kth iteration, the
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steplength is either tk or ˛k. In fact, it was observed that
the steplengths in the stochastic version of SSC-SABB
often jumped, and this actually speeded up the algo-
rithm.

Some convergence results were established for
this algorithm in [2], based on the observation that
the shifted minimization problem: minRn (f + C) has
weaker noise relative to the value of F + C, if C is larger.
One of the convergence results will be very briefly de-
scribed below. For ease of exposition, we will only state
the result for the one-dimensional case.

Assume that {�k}{k� 1}, {�k}{k� g1}, {�k}{k� 1}, and
{�k}{k� 1} are independent random sequences defined
on the probability space (˝ , P, F) with bounded vari-
ances. For n = 1, 2, . . . , define the sub-�-algebra Fn by

Fn

D �(f�kgfk�ng; f�kgfk�ng; f�kgfk�ng; f�kgfk�ng):

Assume that �k � N(0, �(k)) and �k � N(0, �(k))
for �(k)> 0 and �(k) > 0, respectively. Assume that the
function F 2 C2(R) with bounded second derivatives.
Let {tk} be defined as before. Let {ˇk} be a sequence of
positive numbers, and let T > 0. Then for a given start-
ing point X0 = x0, define the random process (k = 1, 2,
. . . )

XkC1 D YkC1

if

T[F(Xk � tk(rF(Xk)C �kC1))C �kC1]

� [F(Xk � ˇk(rF(Xk)C �kC1))C �kC1] ;

and otherwise by

XkC1 D ZkC1;

where
(
YkC1 D Xk � tk(rF(Xk)C �kC1);
ZkC1 D Xk � ˇk(rF(Xk)C �kC1):

Suppose that {�k, Fk} is a sequence of martingale
differences. Then it was shown in [2] that for any given
T < 1, one has that

lim
k!1

F(Xk)

exists almost surely, and

P(lim inf
k!1

dis(Xk;˝) D 0) D 1;

provided C is large enough and

�(k)C �(k) �
[(1 � T)C]2

10 log(k C 1)
;

where

˝ D fx : rF(x) D 0g :

Convergence has also been established when all the
noises are bounded, see [2]. It should be noted that the
above convergence is independent of the selection of
the sequence {ˇk}. However, the speed of the algorithm
will very much depend on the selection. The assump-
tions of the results are in fact quite weak, and can be
met easily, e. g. by averaging two or three samples of �k
and �k, or by taking a larger value of C. For instance, in
[4], C was fixed to be 250 when F � 0.

See also

� Equality-constrained Nonlinear Programming: KKT
Necessary Optimality Conditions

� Inequality-constrained Nonlinear Optimization
� SSC Minimization Algorithms
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Decomposition methods for stochastic linear program-
ming problems often use cutting planes to develop
piecewise linear approximations of the objective func-
tion. This article provides a summary of techniques that
can be used to stabilize these algorithms. By providing
a unified treatment of deterministic as well as stochas-
tic cutting plane algorithms, this article provides a com-
mon ground for both classes of methods.

Introduction

Stochastic programming problems often give rise to
highly structured optimization problems that are solved

using decomposition techniques. Many of these meth-
ods rely on cutting plane algorithms that generate suc-
cessive approximations of the objective function. By
and large, these algorithms generate deterministic ap-
proximations (e. g. [1,14]). More recently, new ran-
domized versions of cutting plane methods have also
been studied ([6] and [10]). The approximations used
by such algorithms (deterministic or stochastic) are
piecewise linear functions, which have the potential
to provide arbitrarily close approximations, especially
near an optimum solution. However, these basic meth-
ods suffer from the following drawback: cutting planes
are derived in each iteration, and proofs of convergence
are often based on retaining all cuts generated during
the course of the algorithm. Since the cuts often re-
sult in dense linear inequalities, the unfettered prolifer-
ation of cuts leads to scarcity of computer memory. On
the other hand, deleting cutting planes indiscriminately
leads to instability in the approximations, and conse-
quently in the solutions as well. This article is devoted
to the discussion of algorithmic methods to curtail the
size of the approximations without a degradation in the
convergence properties of the algorithm.

Cutting plane algorithms for the solution of
stochastic linear programming (SLP) problemsmay use
one of a class of alternative representations of the SLP
objective function. There is a great deal of flexibil-
ity in the manner in which cutting plane algorithms
are designed. For stochastic programming problems,
each iteration may generate anywhere from 1 to S cut-
ting planes, where S is the number of possible out-
comes associated with the random events of interest.
Our discussion of stabilization methods will focus on
two basic tools: incumbent solutions and regulariza-
tion ([12,13] and [7]). These tools are then used within
deterministic as well as stochastic cutting plane algo-
rithms to provide well defined schemes for the dele-
tion of cutting planes that do not compromise the in-
tegrity of the algorithm. For problems with n deci-
sion variables, deterministic algorithms that generate q
cuts (1 � q � S) can be shown to be convergent us-
ing a maximum of n + 2q deterministic cuts. In case
of a stochastic cutting plane algorithm that uses q cuts
per iteration, convergence results can be obtained by
using a maximum of n + 3q cuts. We conclude this
article with an illustration of these stabilization tech-
niques.
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Alternative Methods
for Approximating The Recourse Function

A two-stage stochastic linear program (SLP) may be
stated as

(SLP)

(
min c>x C E[h(x;e!)]
s.t. x 2 X;

wheree! is a random variable and

h(x; !) D

8̂
<̂
ˆ̂:

min g>y
s.t. Wy D r(!) � T(!)x;

y � 0;

and X � Rn is a convex polyhedral set. Note that h is
a value function of a linear program. For the sake of
simplicity in this presentation, we assume that for all x
2 X, h(x;e!) <1 with probability one.

Most deterministic methods for SP work with the
entire sample space of scenarios. For these methods it
is therefore customary to to assume that the random
variablee! is discrete, so that the possible outcomes may
be numbered {!s}SsD1. In such cases, the expectation in
the objective function may be written as

E[h(x;e!)] D
SX

sD1

h(x; !s)ps :

where ps D Pfe! D !sg, the probability of scenario s.
The structure of the SLP problem is well suited for

Benders’ decomposition which, in the SLP literature,
goes under the name of the L-shaped method ([14]).
At each iteration of the L-shaped method one con-
structs a supporting hyperplane of the recourse func-
tion E[h(x;e!)]. This hyperplane is then is added to the
collection of previously generated hyperplanes, and the
method proceeds in this manner until a stopping rule is
satisfied. The sequence of hyperplanes are called ‘cuts’
and they provide a piecewise linear lower bounding en-
velope of E[h(x;e!)]. Some variants of this method de-
velop cutting plane approximations of the value func-
tions {h(x, !s)}SsD1 so that S cuts are generated at a time
(see [2,13]). These types of cutting plane algorithms are
often called multicut methods since each iteration re-
quires the development of as many cuts as there are
scenarios in S. Since these multicut methods use sums
of piecewise linear approximations, rather than one ag-
gregated approximation (as in the L-shaped method),

they provide better lower bounds than the L-shaped
method, although there is no similar guarantee regard-
ing the quality of the upper bounds derived.

Two Basic Tools: Incumbent Solutions
and Regularization

Consider optimization problems of the formmin{f (x):x
2 X}, where f :Rn ! R is convex and X � Rn is a con-
vex set. At each iteration, we assume that a point xk is
given, and we generate a lower bounding linearization
˛k + ˇ>k x, where the cut coefficients ˇk 2 @f (xk) and ˛k
= f (xk)�ˇ>k xk. (Since we are dealing with convex func-
tions, the Clarke subdifferential, [3], will suffice for the
purposes of this exposition.) The collection of all pre-
viously generated cuts define a piecewise linear lower
bounding function, denoted f k(x), and is represented
as

fk(x) D max
t2Jk

˛t C ˇ
>
t x; (1)

where Jk is an index set, ˛t 2 R, ˇt 2 Rn were generated
in iteration t.

For the case of SLP, the cut coefficients are obtained
by recognizing that as long as h(xt , !) is finite, LP dual-
ity implies that

h(x; !) D

(
max [r(!) � T(!)xt]>

s.t. W>
 � g:

Letting 
 t(!) denote an optimal dual solution, a sub-
gradient of h is

�T(!)>
 t(!) 2 @h(xt ; !):

Hence the cut coefficients for the SLP problem are de-
fined as

ˇt D c � E[T(e!)>
 t(e!)];
˛t D E[r(e!)>
 t(e!)]: (2)

A more detailed explanation of this cut is provided in
� Stochastic linear programming: Decomposition and
cutting planes. It is worth noting at this point that one
of the major handicaps associated with deterministic
cutting plane algorithms for SLP arises from the cal-
culations necessary in (2), which involves multidimen-
sional integration. For problems involving a large num-
ber of outcomes, this operation becomes computation-
ally burdensome, and one must then resort to sampling
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based methods such as those discussed in the next sec-
tion.

The iterates obtained by cutting plane methods may
be generated as

xkC1 2 argmin f fk(x) : x 2 Xg : (3)

We will designate these points as ‘candidate’ solutions.
Since f k has the form shown in (1), it can be written as
a linear programming problem. In the language of Ben-
ders’ decomposition ([1]), this problem is called amas-
ter problem (program).

There are several criticisms that may be leveled
against cutting plane methods. For example, in the ear-
liest versions of these methods (including [11]) the in-
dex set Jk was defined as {1, . . . , k}; consequently, the
size of the LP and its data structures would grow in-
definitely. In order to curtail the growth of the LP size,
one may resort to dropping some of the inequalities. As
one might expect, it is important to derive mathemat-
ically justifiable cut dropping rules, for otherwise, the
sequence generated by (3) may not converge to an op-
timal solution. In this article we will summarize stabi-
lization schemes that guarantee convergence, while en-
suring that there is a fixed upper limit on the size of
the master program. Another criticism is that the se-
quence {f (xk)} is not a decreasing sequence. As a result,
it is advisable to monitor decreases in f (xk) and record
points that suggest significant improvements. Such iter-
ates will be designated as ‘incumbent’ solutions, so that
the sequence of incumbent solutions is a subsequence
of the sequence of candidate solutions.

We now proceed to a discussion of regularization,
in which the piecewise linear approximation in (1)
is augmented with a strictly convex casting function
[15] or an auxiliary function [4]. The most commonly
used casting function is a quadratic proximal term (see
[12,13]). In iteration k, let xk denote the incumbent so-
lution. The regularized master program is defined as

xkC1 2 argmin
�
fk(x)C

�

2




x � xk




2
: x 2 X

	
;

where � > 0 is a parameter that may be chosen during
the course of the algorithm. Note that if we define

�k(x; �) D fk(x)C
�

2




x � xk




2

then

@�k(xk ; �) D @ fk(xk):

Hence, if 0 belongs to the set @�k(xk ; �), then 0 2
@ fk(xk). Moreover, if @ fk(xk) � @ f (xk), then 0 2
@�k (xk ; �) implies 0 2 @ f (xk), the first order optimality
condition at xk .

Regularization of Deterministic Cutting Plane
Methods

In the following we shall work with the understand-
ing that X is a convex polyhedral set represented in the
form {x: Ax � b}. For the remainder of the develop-
ment, it will be convenient to rewrite the approxima-
tion in terms of the displacement, d, from the incum-
bent solution, xk . Let x  xk C d. In order to write
the cuts as a function of d, we define f kt D ˛t C ˇ

>
t xk

that is, f kt denotes the value of the cut ˛t + ˇ>t x at the
incumbent point xk . Hence the approximation in terms
of the direction vector dmay be written as

�k(d) D fk(xk C d) D max
t2Jk
f f kt C ˇ

>
t dg: (4)

The primal master problem (direction finding prob-
lem) can now be written as

(PRMk) vk D

8̂
<̂
ˆ̂:

min � C �
2 kdk

2

s.t. � � ˇ>t d � f kt ; 8t 2 Jk ;
xk C d 2 X:

Since this section is devoted to a deterministic algo-
rithm, we work with the assumption that

�k(0) D fk(xk) D f (xk): (5)

We now state a prototypical regularized determin-
istic cutting plane algorithm.

This algorithm has several important properties.
First note from (4) and (5), and the definition of dk (a
solution to PMKk) that

�k(dk) D fk(xk C dk )

� fk(xk) �
�

2




dk




2
D f (xk) �

�

2




dk




2
: (6)

Hence �k � 0, with strict inequality if dk 6D 0. Conse-
quently, the sequence of incumbents defined in Step 2
yields a descending sequence of objective values. Fur-
thermore, the stopping rule is based on the observation
that if �k+1 � �, then � kdk2/2 � �. Thus with an ap-
propriate choice of �, the stopping rule tests whether
the direction dk has a sufficiently small norm.
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0 (Initialize)
0a (Problem parameters) A convex function

f :Rn ! R and a convex polyhedral set X =
fx: Ax � bg are given.
For SLP problems, f (x) = c>x + E[h(x,!̃)].

0b (Algorithm parameters) � > 0, � 2 (0,1) and
� > 0 are given.

0c x1 2 X is given, k  0, J0  ;, x̄0  x1,
�k =1.

1 (Define/Update the piecewise linear approxi-
mation)
k  k + 1. Evaluate ˇk 2 @ f (xk) and
˛k = f (xk) � ˇ>k x

k . (For SLP these quanti-
ties are calculated as in (2).) Jk = ft 2 Jk�1 :
� k�1
t > 0g [ fkg.

2 (Update the incumbent)
IF f (xk) � f (x̄ k�1) � ��k . THEN x̄ k = xk .
ELSE x̄ k = x̄ k�1.

3 (Solve the regularized master)
Let xk+1 = x̄ k + dk , where dk denotes an op-
timal solution to (PRMk). Similarly let � k

t de-
note the optimal Lagrange multipliers associ-
ated with the cuts indexed by t 2 Jk .

4 (Stopping rule)
Let�k+1 = f (x̄ k) � 	k(dk).
IF �k+1 � ", THEN stop ELSE repeat from
Step 1.

A regularized deterministic cutting plane algorithm

In Step 4, �k+1 is defined using the objective func-
tion approximation, �k(dk). Thus, the decision to up-
date the incumbent is based on how well �k+1 predicts
the actual change in the objective value. For higher val-
ues of � an incumbent change is accepted only when
the prediction is accurate, whereas smaller values of �
yield a less stringent criterion.

The analysis of this algorithm relies heavily on
a dual statement of the regularized master (PRMk). In
fact, [12] states the algorithm in terms of the dual to
the master problem specified above. To write the dual,
let Fk denote the vector of scalars f f kt gt2Jk , and simi-
larly, let Bk denote a matrix whose rows are given by the
cut coefficients {ˇ>t }t2Jk . Furthermore, let bk denote the
vector Axk � b. Then the dual to (PRMk) is

(DRMk)

(
max F>k � C b>k � �

1
2�



B>k � C A>�


2

s.t. 1>� D 1; � � 0; � � 0:

One of the important relationships between the primal
and dual optimal solutions for the pair (PRMk) and
(DRMk) is

d D �
1
�
(B>k � C A>�): (7)

Finally, we note that the total number of cutting
planes retained in Step 1 cannot exceed n + 2. To see
this, note that since � > 0, the primal and dual mas-
ter problems are strictly convex programs, and conse-
quently both have unique optimal solutions. Suppose
now that dk and (�k, �k) are the optimal solutions for
the primal-dual pair. Clearly these solutions must sat-
isfy (7) which in combination with the convexity con-
straint in (DRMk), yields n + 1 linear equations involv-
ing the dual variables (� , �). Note that (�k, �k) (the op-
timal dual solution) must be an extreme point of the
resulting polyhedron; for if not, then (�k, �k) can be
written as a convex combination of two other points
with the same dual objective value. The latter, of course,
contradicts the uniqueness of the dual optimum. Hence
(�k, �k) must be an extreme point of the polyhedron
determined by (7) and the dual feasibility restrictions.
Since there are at most n + 1 equations, it follows that
there can be at most n + 1 components of �k which can
be positive. Thus by including the new cut, we conclude
that the cardinality of Jk cannot exceed n + 2.

We should mention that similar benefits can also be
realized in multicut methods. For instance, if we use the
sum of q piecewise linear approximations as in above,
then one needs to carry at most n + q cuts from one it-
eration to the next. By accounting for the q cuts gener-
ated in each iteration of a multicut method, it follows
that the size of the master problem can be restricted
to at most n + 2q. In applying this class of methods
to SLP problems, the regularized decomposition algo-
rithm [13] uses q = S, the total number of outcomes.
Hence the resulting master problem requires n + 2S
cuts.

A Regularized Stochastic Decomposition
Algorithm

In contrast to the previous sections, this one is dedi-
cated to SLP problems. For this class of problems, the
calculation of multidimensional integrals in (2) cre-
ates a computational bottleneck for deterministic al-
gorithms. In order to overcome this bottleneck, the
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Stochastic Decomposition (SD) algorithm combines
sampling within a cutting plane algorithm. In this sec-
tion we discuss a regularized version of stochastic de-
composition (SD).

It is clear that the primary change in going from
the deterministic method of the previous section to the
stochastic method is the inclusion of sampling. Refer-
ring to the algorithmic statement of the previous sec-
tion, we augment the statement of step 1 with the inclu-
sion of a sampled outcome (generated independently of
previous observations). Further differences between SD
and other cutting plane algorithms arise from the man-
ner in which the approximations are generated/updated
(Step 1) as well as the rule for accepting an incumbent
(Step 2). The process for creating the cutting plane co-
efficients is presented in � Stochastic linear program-
ming: Decomposition and cutting planes, we do not re-
produce those details here; instead, we summarize the
changes to step 1 as follows:

1 (Define/Update the piecewise linear approxi-
mation)
k  k + 1. Generate !k , an outcome of !̃.
Evaluate cut coefficients (˛k

k , ˇ
k
k ) for a new cut,

and update coefficients of previously generated
cuts. Denote the updated cuts by (˛k

t , ˇk
t ). Up-

date Jk .

Next we motivate the reason for updating Jk in
a manner that is slightly different that that used in a de-
terministic algorithm. We also argue the need to up-
date the incumbent (in Step 2) with a slightly different,
though analogous rule.

Unlike the regularized deterministic algorithm
which uses at most n + 2 cuts in the master problem,
convergence results for the regularized SD method re-
quires n + 3 cuts in the master program. This is because
of the inherent inaccuracy of the objective function es-
timates used in a sampling algorithm. Recall that Step 2
of the deterministic method uses objective function val-
ues f (xk) and f (xk�1) to decide whether the incumbent
needs to be updated. In a sample based algorithm these
quantities cannot be calculated, and the choice of an in-
cumbent is necessarily based on sampled information.

In order to prove asymptotic results regarding the
sequence of incumbent solutions, one needs to have

asymptotic accuracy of a subgradient and the function
value at an accumulation point of the incumbent se-
quence. One way to accomplish this is to require that
the cut associated with an incumbent becomes asymp-
totically accurate (with probability one). This property
may be attained algorithmically by periodically updat-
ing the cut associated with the incumbent solution. To
clarify the process, suppose that at iteration k, we know
that the most recent iteration at which the incumbent
cut was generated (or updated) was ik < k. Further-
more, let us suppose that we intend to update the in-
cumbent cut every � iterations (1 > � � 1). Then, at
an iteration in which k D ik C � , the incumbent cut is
updated to reflect the impact of outcomes as well as the
dual vertices that may have been generated since iter-
ation ik . These updates then guarantee that the sample
size used for the incumbent cut grows indefinitely as re-
quired by the law of large numbers.

As suggested by the above discussion, the rule for
cut retention ought to maintain a cut associated with
the incumbent solution. At iteration k, let tk denote the
index associated with a cut generated at the incumbent
solution. Then the rule used for cut retention is the fol-
lowing:

Jk D
n
t 2 Jk�1 : � k�1

t > 0
o
[ fk; tkg:

Hence the maximum number of cuts used in the reg-
ularized master for SD is n + 3. With these changes
included in the definition of the approximation f k, we
now provide the rule used for updating incumbents in
Step 2.

2 (Update the incumbent)
IF k = 1, THEN put�k =1,
ELSE�k = fk�1(x̄ k�1) � 	k�1(dk�1).
IF fk(xk) � fk(x̄ k�1) � ��k ,
THEN x̄ k = xk , ELSE x̄ k = x̄ k�1.

Finally, there is one additional issue that arises
whenever one uses sampled information. In some cases,
as in SD, sampling is incorporated within the decom-
position algorithm. In other cases, sampling is under-
taken prior to using the optimization algorithm. Nev-
ertheless, since each case uses sampled data, one should
explore the possibility of error. We refer the reader to
two articles in this area. The first of these ([5]) is based
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on designing stopping rules that work with ‘in-sample’
information, and is tailored for the SD algorithm. An-
other approach, using ‘out-of-sample’ scenarios is pro-
vided in [8].

Conclusions

We conclude this article with two examples taken from
[9]. The illustrative application for these examples deals
with an electricity reserve planning problem that finds
an optimal trade-off between the cost of reserve capac-
ity and the cost of unmet demand [9]. In Fig. 1, we il-
lustrate two trajectories: the solid line is the trajectory
of incumbent solutions and the dotted line is the set
of candidate solutions. In order to isolate the impact
of using an incumbent solution from the impact of the
quadratic term, we used only the LP master in gener-
ating Fig. 1. It is clear that the solid line of incumbent
solutions provides a far more stable trajectory.

Next we discuss the impact of the quadratic term
with reference to the same reserve planning example.
In order to isolate the impact of the quadratic term, we
examine the candidate sequences from two implemen-
tations: one in which the weight on the quadratic term

Stabilization of Cutting Plane Algorithms for Stochastic Linear Programming Problems, Figure 1
Trajectories of candidate � � � and incumbent __ solutions

is very small (� = 10�8) and another in which � = 1.
The candidate solutions from the former implementa-
tion are depicted by dotted lines in Fig. 2, whereas, the
candidates from the latter implementation are shown
by the solid line. Once again, the solid line, represent-
ing the impact of regularization, exhibits a more stable
trajectory than the trajectory associated with the dotted
line.

Before we close the article, we should mention one
acceleration technique that often helps speed-up reg-
ularized algorithms in practice. The idea is to change
the magnitude of � dynamically: � is reduced when the
incumbent changes and



xkC1 � xk


 increases; on the

other hand, � is increased when the incumbent does
not change. This allows the algorithm to take smaller
steps (higher �) when the approximation seems to be
poor, whereas, the steps are allowed to more ‘daring’
(lower �) when progress is rapid.
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Stabilization of Cutting Plane Algorithms for Stochastic Linear Programming Problems, Figure 2
Trajectories of candidate solutions from unregularized � � � and regularized __ algorithms
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Abstract

In this article, we provide an overview on how the max-
imum weighted stable set problem can be solved ex-
actly with Branch & Cut techniques. In addition, we
provide selected references to other exact methods. We
start with a brief introduction of the stable set prob-
lem and a few basic definitions but assuming that the
reader is already familiar with the basic concepts. The
main stress of this article lies in the review of polyhe-
dral results for the stable set polytope in Sect. “Stable
Set Polytope” and the discussion of separation proce-
dures, Sect. “Separation”. An efficient Branch & Cut al-
gorithm needs, in addition to strong separation rou-
tines, also a good branching strategy. This is discussed
in Sect. “Branching”. At the end, some implementation
aspects are considered.

Keywords

Stable set; Independent set; Maximum clique; Vertex
packing; Branch & Cut; Separation; Exact method

Introduction

Let G D (V ; E) be an undirected graph consisting of
a nonempty finite set V , the node set; and a finite
set E, the edge set, of unordered pairs of distinct ele-
ments of V . A stable set of graph G is defined as a set
of nodes S with the property that the nodes of S are
pairwise non adjacent; two nodes are called adjacent
if there is an edge in E connecting them. In the lit-
erature, stable set is also called independent set, ver-
tex packing, co-clique or anticlique. If each node vi of
a graphG is assigned a weight ci, then the graph is called
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weighted. In this case, the maximum weighted stable
set problem looks for a stable set S which maximizes
the sum of the weights corresponding to the nodes in
S,
P

v i2S ci . In the case when G is not weighted, or all
ci D 1, we are interested in a stable set with the maxi-
mum number of nodes, which is called maximum car-
dinality stable set. The size of a maximum cardinality
stable set is called the stability number of graph G and
is denoted by ˛(G). Throughout this article, references
to the maximum stable set problem, or just stable set
problem, consider the weighted case unless otherwise
noted.

Following from its definition, the stable set prob-
lem has many applications in various fields, [15]. Espe-
cially when “conflict(s)” between some objects occur, it
is an indicator that the stable set problem is applicable.
Next to the Traveling Salesman Problem, it is one of
the most important combinatorial optimization prob-
lems. It is well known that it is NP- hard to deter-
mine a maximum stable set in an arbitrary graph, [37].
This holds true for the cardinality case. Furthermore,
it is also hard to approximate the stable set number: It
can be shown that for any fixed " > 0 there is no poly-
nomial time algorithm for approximating the stability
number within a factor of jV j", under the assumption
that P ¤NP, [3,36].

Let us briefly and informally introduce some poly-
hedral terminologies. In our case it is sufficient to de-
fine a polyhedron as the solution set of a system of
linear inequalities. If the solution set is bounded, it
is called a polytope. Graphically speaking, a polytope
in Rn is of full-dimension if it contains an n-dimen-
sional sphere completely; in 2-dimensions it is there-
fore forbidden that the polytope is empty, one point
or a line segment. A linear inequality ˇ>x � b0 is
valid with respect to a polyhedron P, if P is a sub-
set of fx jˇ>x � b0g. We call a set F � P a facet of
P if there is a valid inequality ˇ>x � b0 for P such
that F D fx 2 P jˇ>x D b0g, and the inequality is not
dominated by any other valid inequality. This inequal-
ity is called a facet-defining inequality for P. In the case
when v is a point in the polyhedron P and F D fvg, we
call v a vertex of polyhedron P. Now, let P be a poly-
tope and x* be a given point. The task to decide if
this point lies in P or if not to find a valid inequal-
ity ˇ>x � b0 for P which is violated by x*, is called
the separation problem for polytope P. The convex hull

of points y1; : : : ; yn 2 Rd is the set of points x satisfy-
ing x D

Pn
iD1 �i yi with

Pn
iD1 �i D 1 and �i � 0 8i.

It is denoted by convfy1; : : : ; yng. More details can be
found for instance in [20,42,82].

We introduce now, in addition to the ones
above, several graph theoretic definitions and notations
needed throughout this article. A node v is incident to
an edge e, if e D uv. The two nodes incident to an edge
are its endnodes. A node is isolated if it has no neigh-
bor in the graph, which means that it is not an endnode
of any edge of the graph. The neighborhood of a node
v is the collection of all its neighbor ans is abbreviated
with � (v). If a graph has no isolated nodes, it is called
connected. A graph is said to be complete if it contains
an edge connecting each pair of its nodes. A clique is
the node set of a complete subgraph. If a clique has
three nodes it is also called a triangle. The cardinality of
a graph G is abbreviated by jGj and denotes the num-
ber of nodes in the graph. The complement graph G of
the graph G has the same node set as G and contains an
edge between two nodes, iff no edge is contained in G.
We call a graph G bipartite if its node set V can be par-
titioned into two disjoint sets V1;V2 with V D V1 [ V2

such that neither two nodes of set V1 nor two nodes
of set V2 are neighbors. We call H D (W; F) a sub-
graph of G, and write H � G, whenW � V and F � E
is the set of edges of graph G with both endnodes in
W. Two graphs G D (V ; E) and H D (W; F) are called
isomorphic, if there is a bijection � : V ! W such that
uv 2 E , �(u)�(v) 2 F. A matching is a collection of
pairwise disjoint edges. If in a matching M every node
ofG is incident with exactly one edgeM, then it is a per-
fect matching. More about graph theory can be found
in [33,78].

We do not describe the Branch & Cut algorithm in
general here, as we assume the reader is familiar with
its basic ideas. For more information we refer to [40,
46,61,79].

Before we discuss some aspects of a Branch & Cut
algorithm to solve the maximum stable set problem,
we provide a list of some other exact solution meth-
ods. Clearly, this list does not claim to be complete.
A more detailed list of exact methods can be found
in [15,22]. In this context, we want to point out that
the stable set problem is equivalent to the maximum
clique problem in the complement graph. Hence, each
method solving the maximum clique problem can also
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be used to solve the stable set problem. For polyno-
mial time algorithms for some special classes of graphs,
see [2,6,8,14,17,32,48,54,55,59,63] and Sect. “Stable Set
Polytope”. Algorithms finding all maximum stable sets
in a graph are considered in [19,29,44,49,73]. In the lit-
erature, many variants of Branch & Bound algorithms
have been discussed, [4,12,35,51,60,65,71,76,80]. Other
methods using, for instance, continuous formulations,
column generation or constraint programming can be
found in [5,16,18,21,25,53,64,68,75,77].

Benchmark instances are provided by the second
DIMACS Challenge, [34], from 1992/1993 and by the
BHOS library from 2000, [13]. Note that some of these
stable set instances are still unsolved. A test case gener-
ator was introduced by Hasselberg et al. [45].

Method

Let us now formulate the maximum stable set problem
as a linear program. Therefore, one choice could be to
introduce variables xi for each node vi 2 V , which have
value one, if node vi is in a stable set, say S, and oth-
erwise zero. Such a vector is called an incidence vec-
tor. Obviously, for each edge, only one endnode can
be in a stable set and hence, we get the so called edge-
inequalities

xi C x j � 1 8 i j 2 E: (1)

It is easy to see, that if vector x has a positive integer
domain (ormore precisely, binary domain), each vector
satisfying inequalities (1) induces a stable set and vice
versa. Hence, if c denotes the (positive) weight vector of
the nodes, one gets the following integer program

max
x

c>x

s:t: xi C x j � 1 8 i j 2 E

x 2 f0; 1gjV j ;

(2)

which solves the maximum weighted stable set prob-
lem. We recognize, that this formulation has only jEj
constraints and jV j variables. So the formulation is
quite compact. Unfortunately, the binary constraints
on x make it hard to solve this linear program. We will
discuss some relaxations of this problem in the next sec-
tion which is mainly based on [9,39,42,58,70].

Stable Set Polytope

The stable set polytope of graph G D (V ; E) is defined
as the convex hull of the incidence vectors of all stable
sets in G. It is denoted by

PSTAB(G):Dconvf�S j S � V stable setg;

where �S is the incidence vector of set S. From the
integer program formulation (2) we see that PSTAB(G)
is a polyhedron. As it is bounded by the jV j-dimen-
sional unit cube, it is indeed a polytope. The defini-
tion of a stable set implies that the unit vectors are al-
ways stable sets. Trivially, the zero vector is a stable set,
the empty set, therefore, the stable set polytope is full-
dimensional. This implies that all facets of PSTAB(G)
are inequalities, and hence, we do not have to consider
equalities, [58,67].

Let us now discuss some relaxations of the integer
program formulation (2) which will also give us relax-
ations of the stable set polytope. The obvious idea is to
relax the binary condition on x, and instead make them
continuous which leads to

0 � xi � 1 8vi 2 V : (3)

The integer problem reduces to a linear program which
can be solved in polynomial time. This relaxation leads
to the so called stable set polytope relaxation

PRSTAB(G)
:Dfx 2 Rn j xi C x j � 1; 0 � x � 1 8i j 2 Eg :

(4)

From its construction, we get that PSTAB(G) �

PRSTAB(G). For a complete graph with cardinality � 3,
the x vector with value 1/2 in each component is a ver-
tex of PRSTAB(G), but it cannot be contained in PSTAB(G)
as a maximum cardinality stable set in a complete graph
has cardinality one. This example shows that the relax-
ation above is very weak. Note, the vector whose en-
tries are all 1/2 is always contained in PRSTAB(G) – inde-
pendent of the structure of the graph G. The following
corollary generalizes this observation. It was first indi-
cated by Balinski [11].

Corollary 1 The vertices of PRSTAB(G) are (0; 12 ; 1)-
valued.

We saw that for a complete graph G with cardinality
� 3, PSTAB(G) � PRSTAB(G). The next theorem states
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that this holds except for connected bipartite graphs. In
this case the stable set polytope and the stable set poly-
tope relaxation are equal, that is PSTAB(G) D PRSTAB(G).

Theorem 2 [42] The non-negativity inequalities,
xi � 0 8vi 2 V, together with the edge inequalities (1)
are sufficient to describe PSTAB(G), iff G is bipartite and
has no isolated nodes.

Theorem 2 has the following important implication: It
states that the maximum stable set problem for bipar-
tite graphs can be solved in polynomial time by solv-
ing the stable set problem over (4). As a consequence,
a Branch & Cut algorithm using the stable set polytope
relaxation (4), will terminate for bipartite graphs in the
root node of the branching tree after solving one linear
program. However, we already have indicated that the
stable set polytope relaxation is very week and hence
not a good choice in a Branch & Cut framework for
general graphs. Obviously, it can be checked in linear
time whether a graph is bipartite or not. Exact polyno-
mial time algorithms for bipartite graphs can be found
in [42,47].

As the restriction to bipartite graphs is very tough,
we want to find some ways to strengthen the stable
set polytope relaxation. One idea is to add additional
valid inequalities to PRSTAB(G). Therefore, let us con-
sider the Fig. 1. It shows a graph with the five nodes
v1; v2; : : : ; v5. Such a graph is called odd-cycle. In gen-
eral, whenever a (sub-)graph H has an odd number of
nodes, say n, and there are n adjacent edges in the edge
set such that each node is incident to exactly two nodes,
then we call H an odd cycle. Notice that an odd cycle
can have more than n edges. In this case, any additional
edge is called chord. For the graph of the Fig. 1 , the

Stable Set Problem: Branch & Cut Algorithms, Figure 1
Odd cycle with five nodes

stable set polytope relaxation allows the fractional solu-
tion with all entries of 1/2, as illustrated. This solution
is optimal, and for the cardinality stable set problem,
the objective function value is 5/2, which is greater than
any optimal stable set which has cardinality two. Now,
summing up all edge inequalities corresponding to the
five edges in the graph, one gets

2x1 C 2x2 C 2x3 C 2x4 C 2x5 � 5 :

In this case each node is incident to exactly two edges,
giving the coefficients for the variables, and there are
five edge inequalities, providing the right-hand side.
This inequality can be divided by two and as all vari-
ables are binary, one gets

x1 C x2 C x3 C x4 C x5 �
�
5
2



:

This inequality can be generalized to the so called odd-
cycle inequalities

X

v i2eV
xi �

jCj � 1
2

for each odd cycle C D (eV ;eE) � G :

(5)

From the construction above, it is obvious that the odd-
cycle inequalities are valid for the stable set polytope. If,
in addition, the stable set polytope relaxation satisfies
all odd-cycle inequalities of G, then it is called a cycle-
constraint stable set polytope and is denoted by

PCSTAB(G):D
˚
x 2 RjV j j x satisfies (1), (3) and (5)

�
:

If you consider, again, a complete graph, you see that
there is no constant which relates the optimal solution
over PCSTAB(G) to an optimal stable set. However, the
graphs for which PCSTAB(G) = PSTAB(G) are called t-per-
fect; the “t” stands for “trou” – the French word for
“hole”. Two examples for t-perfect graphs are bipartite
graphs and almost bipartite graphs, where a graph G
is called almost bipartite if there is a node v such that
graphGwithout v is bipartite. The problem of checking
whether a graph is t-perfect or not belongs to co -NP.
The special structure of t-perfect graphs helps to find
a maximum stable set. This is stated by the next corol-
lary.

Corollary 3 The maximum stable set problem in
a t-perfect graph can be solved in polynomial time.
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We will see in Sect. “Separation” that the odd-cycle in-
equalities can be separated in polynomial time. This
proves together with the Equivalence of Optimization
and Separation the Corollary 3. Polynomial time algo-
rithms for the class of t-perfect graphs can be found
in [42,43].

We are mainly interested in facets of PSTAB(G) since
they are not dominated by any valid inequality of
PSTAB(G). The odd-cycle inequalities can only be facet-
defining if their odd cycles are chordless. If there is
a chord, one gets a smaller odd cycle and an even cycle.
The smaller odd-cycle inequality together with the edge
inequalities dominate the odd-cycle inequality which
shows that it cannot be facet-defining. A graph which is
a chordless cycle is called a hole. If an odd cycle induces
an odd hole, the corresponding odd-cycle inequality is
called an odd-hole inequality. Consider the following

Corollary 4 [57] Let G be an odd hole. ThenP
v i2V xi � jV j�12 is facet-defining for PSTAB(G).

A counterpart of the odd-cycle inequalities are the anti-
hole inequalities. They are valid for antiholes, which is
the complement graph of an odd hole with at least five
nodes. From the Fig. 2, we recognize that each stable
set of an antihole with n nodes can contain at most two
nodes as each node is adjacent to exactly n � 2 nodes.
Therefore, the following inequalities hold
X

v i2eV
xi � 2 for each antihole A D (eV ;eE) � G : (6)

Note that an antihole with 5 nodes is isomorphic to an
odd hole with 5 nodes. The separation problem for the
antihole inequalities is not known whether it belongs to
P or not.

Another group of inequalities for the stable set poly-
tope builds the clique inequalities. From the Fig. 3 we

Stable Set Problem: Branch & Cut Algorithms, Figure 2
Odd antihole

Stable Set Problem: Branch & Cut Algorithms, Figure 3
Complete graph with four nodes a clique

get
X
v i2Q

xi � 1 for each clique Q : (7)

In 1979, Padberg showed the following important

Theorem 5 [62] Let G be a graph with node set V and
Q � V. Inequality (7) is valid for PSTAB(G). An inequal-
ity
P

v j2Q x j � 1 is a facet of PSTAB, iff Q is a maximal
clique in G.

Theorem 5 shows that the edge inequalities (1) are
only facet-defining for PSTAB(G), if they build a max-
imal clique. Hence, they are dominated by the clique
inequalities. We will use this observation later in Sect.
“Implementation”. Note that for triangles, the clique in-
equality and the odd-cycle inequality are the same. We
define the so called clique-constraint stable set polytope
as

PQSTAB(G):D
˚
x 2 RjV j j x satisfies (1), (3) and (7)

�
:

A graph G is called perfect if PQSTAB(G) D PSTAB(G).
Originally, in 1961 Berge called a graph perfect if the
coloring number is equal to the clique number. This
definition is equivalent to the polyhedral one given
above. The maximum clique and the stable set problem
are very closely related. Therefore, it is not surprising
that it isNP- hard to separate the clique inequalities
in an arbitrary graph. With this fact, it is quite remark-
able that the following theorem holds.

Theorem 6 [42] The maximum stable set problem for
perfect graphs can be solved in polynomial time.

We do not go into the details of the proof here, but
nevertheless, we give a rough explanation. It is pos-
sible to generalize the clique inequalities to a class of
so called orthonormal representation constraints which
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Stable Set Problem: Branch & Cut Algorithms, Figure 4
Oddwheel

are polynomially separable. The convex set of all vec-
tors satisfying them and the non-negativity inequali-
ties build the so called theta body, [50,81]. In the case
of perfect graphs, this theta body is a polytope which
equals PSTAB(G). This implies Theorem 6. However, it is
evenNP- hard to determine an optimal solution over
PQSTAB(G), in general. More about perfect graphs can
be found, for instance, in [30,31,66].

If we consider the Fig. 4, we recognize an odd
hole with cardinality seven with the additional node v1
which is adjacent to all other nodes. Such a graph is
called wheel and node v1 is its hub. We see that if node
v1 is contained in a stable set, no other node of the wheel
can be contained in it. Hence, we get the following odd-
wheel inequalities
X

v i2eV
xi C jCj�12 xu � jCj�12

for each odd wheel C D (eV ;eE) � G with hub u :
(8)

From its construction, inequality (8) is valid for
PSTAB(G). It defines a facet if G is isomorphic to an odd
wheel. Recognize that the wheel inequality dominates
the odd-hole inequality. Generalizations of the wheel
inequalities can be found in [27].

Another class of inequalities are the web and an-
tiweb inequalities. Let p and q be integers satisfying
p > 2qC 1 and q > 1. A graph G is called a web if
G is isomorphic to the graph consisting of the nodes
fv1; : : : ; vpg with an edge viv j , iff ji � jj � r < q mod-
ulo (n � 2). A web is abbreviated withW(p; q). A graph
is called antiweb, denoted by AW(p; q), iff AW(p; q) is
isomorphic to W(p; q). Examples can be seen in the
Fig. 5 and 6, respectively. The following inequalities

X
v i2W(p;q)

xi � q ; (9)

Stable Set Problem: Branch & Cut Algorithms, Figure 5
(7,3)-web

Stable Set Problem: Branch & Cut Algorithms, Figure 6
(7,3)-antiweb

X
v i2AW(p;q)

xi �
j

p
q

k
(10)

are called web inequalities and antiweb inequalities,
respectively. Both types of inequalities are valid for
PSTAB(G). The web inequalities (9) define facets if p and
q are relatively prime and G D W(p; q) – two natu-
ral numbers are called relatively prime if their great-
est common divisor is 1, or in formula: gcd(p; q) D 1;
while the antiweb inequalities (10) are facet-defining for
PSTAB(AW(p; q)) if there is no k 2 N with p D k � q.
More details can be found, for instance, in [28,74].

Now, consider the following class of inequalities for
a graph G D (V ; E) andW � V

x(W):D
X
v i2W

xi � ˛(G[W]): (11)

They are called rank inequalities. From their construc-
tion, inequalities (11) are valid for PSTAB(G). The edge,
odd-cycle, clique, antihole, web and antiweb inequal-
ities belong to this class. Therefore, these inequalities
are not facet-defining for PSTAB(G) in general. For in-
stance, an odd-wheel with 5 or more nodes does not
lead to a rank inequality. Let us now have a closer look
at the separation of the discussed inequalities.
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Separation

In order to separate the odd-cycle inequalities (5) for
a graph G and a vector x*, one has to find an odd cycle
for which x* violates the corresponding inequality, or
one has to prove that such cycles do not exist. In other
words, we have to find a minimum-weight odd cycle
in a graph, with an appropriate weighting function. If
this cycle satisfies the corresponding inequality (5), it is
proven that all odd-cycle inequalities are satisfied. Oth-
erwise, one has found a maximal violated odd-cycle in-
equality. Therefore, we first recognize

Proposition 7 A minimum-weight odd cycle in
a graph G with edge weights can be computed in
O(jV j � jEj � log(V)).

The idea is to construct an auxiliary bipartite graph H.
This node set ofH consists of two copies of the node set
of the original graph G, and there is an edge between
two nodes of H if the corresponding original nodes in
G are adjacent. The edge weights are copied with the
edges. From the construction of H, a minimum odd-
cycle with respect to the edge weighting in G corre-
sponds to a shortest path in H and vice versa. Hence,
calculation of a shortest path for each node of the orig-
inal graph G to its copy, gives a minimum weight odd
cycle inG. Computing the shortest paths with Dijkstra’s
algorithm yields to the running time of Proposition 7.
Now, define the following edge weighting of graph G
depending on x* as

c(viv j):D
1 � x�i � x�j

2
: (12)

With this weighting, it can be shown that an odd-cycle
inequality in G is violated by vector x*, if and only if

9C D (eV ;eE) � G with C odd cycle and
X

v iv j2eE
c(viv j) <

1
2
:

This yields directly to the following theorem.

Theorem8 The separation problem for the class of odd-
cycle inequalities can be solved in O(jV j � jEj � log(jV j)).

One has to mention that x* has to satisfy all inequal-
ities (3) before the odd-cycle inequalities can be sepa-
rated with the above procedure. Otherwise, the weights

defined in (12) can become negative, and the short-
est path cannot be calculated with Dijkstra’s algorithm
anymore. More details and the description of the algo-
rithms can be found in [27,38,67]. It is interesting to
realize that, in general, there are exponentially many
odd cycles in a graph, but on the contrary, the sepa-
ration of them is polynomial. We want to mention that
Grötschel and Pulleyblank introduced in 1981 another
method to separate the odd-cycle inequalities with the
use of perfect matchings resulting in a running time of
O(jEj4), [41].

Finding a maximum clique is NP- hard, while
computing an arbitrary maximal clique as well as an ar-
bitrary maximal stable set can be done in linear time.
We want to point out that we distinguish between max-
imum and maximal. Maximal means that there is no
better solution containing the particular one; so maxi-
mal can be seen as locally best while maximum is global.
The separation problem for the clique inequalities asks
to find a violated clique inequality in a particular graph
G with a given linear program solution or to state that
all clique inequalities are satisfied. This is equivalent to
finding a maximum clique in G with the linear pro-
gram solution as node-weighting c. Hence, the separa-
tion problem for the clique inequalities is NP- hard.
Computational tests show that the clique inequalities
are very important for polyhedral approaches to the sta-
ble set problem, cf. [69]. As an exact separation cannot
be considered, one idea could be to fix the size of the
cliques to be separated, as then the problem becomes
polynomially solvable. Another observation is that it is
enough to consider maximal cliques. The reason is that
the resulting clique inequality dominates all clique in-
equalities corresponding to contained cliques. Practi-
cally, it is more successful to separate over larger classes
of inequalities containing the clique inequalities. We
discuss that later for the case of rank inequalities. How-
ever, the best computational results, so far, are achieved
with heuristic separation methods.

A separation algorithm for the wheel inequalities is
given by Cheng and Cunningham, [26]. The appeal-
ing idea is to treat each node of the graph as a possible
hub of an odd wheel and define appropriate weights for
all nodes which are adjacent to this hub. Then, on the
new graph, the odd-cycle inequalities can be separated.
Hence, this algorithm results in a total running time
of O(jV j2 � jEj � log(jV j)) or O(jV j4), dependent on the
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shortest path algorithm. For practical Branch & Cut al-
gorithms, this complexity is already too high compared
to the number of violated inequalities one can expect.
Even more sophisticated are the separation routines for
the web and antiweb inequalities. They are discussed by
Cheng and Vries, [28]. Although they can also be sep-
arated in polynomial time, the complexity of the sepa-
ration algorithms are again too large for practical use.
In addition, these type of inequalities usually occur in
graphs with high density, e. g. greater than 0.7, which
makes its separation doubtful for graphs with low den-
sity; where the density of graph G D (V ; E) is defined
as 2�jEj
jV j�(jV j�1) .
Next to the special type of inequalities for the sta-

ble set polytope discussed in the Sect. “Stable Set Poly-
tope”, one can use general classes of inequalities. In
this context, we want to mention two of such a type.
The first are the so called mod-k cuts which belong to
the Chvátal-Gomory cuts with rank one. The appealing
idea of the mod-k cuts is to find a multiplier �, such
that a particular inequality system Ax � b multiplied
with this vector � can be strengthened by dividing it by
a positive integer k. Therefore, let k > 1 be integral, and
suppose that we have given a system of linear inequali-
ties Ax � b with integral coefficients. Let � be a vector
with positive integer entries and appropriate dimension
such that

�>A � 0 (mod k) ;

�>b � k � 1 (mod k) :

From this, one can obtain the mod-k inequalities

1
k
�>Ax �

1
k
(�>b � (k � 1)) :

Examples for the case of k D 2 are the odd-cycle in-
equalities or the wheel inequalities. The separation of
the mod-k inequalities and more details can be found
in [23,67].

The second class of general inequalities that we dis-
cuss here in brief are the so called local cuts. The prin-
cipal idea was introduced by Applegate et al. in 2001
for the Traveling Salesman Problem, [1]. Suppose we
have given the set of allm feasible solutions to the stable
set problem, for instance of a subgraph with n nodes.
The idea is to check if a given (solution) vector lies in
its convex hull or if it lies outside, to compute a facet
which separates this point from the convex hull. This

can be achieved by solving a linear program with m
variables and n constraints. Its optimal objective func-
tion value provides the information if the point lies in-
side the polytope, and the optimal dual variables give
the coefficients of the separation inequality, called lo-
cal cut. Obviously, this method has some weaknesses.
One first has to find a ‘good’ subgraph and then enu-
merate all stable sets. In addition, the linear program
to be solved can be large, as the number of stable sets
in a graph can be exponential. Nevertheless, the result-
ing cuts can be quite strong, especially if all other sep-
aration procedures do not bring new cuts. More details
and computational results can be found in [67].

At the end of this subsection, we introduce the idea
of separating rank inequalities. We do not go into full
detail here but instead focus on the discussion of the
principle ideas of the beautiful results of Mannino and
Sassano, [52]. The appealing idea is to reduce the size
of the graph and to make it denser at the same time. In
general, any node of the graph can be selected and its
two endnodes will be removed from the graph. In addi-
tion, new so called false edges are added to the graph
and some other nodes may also be removed. There-
fore, this procedure is called edge projection. Now, af-
ter a few iterations of this procedure, when the graph
is small enough, one can separate any type of rank
inequality, for instance, the clique inequalities or the
odd-cycle inequalities. If a violated inequality has been
found, it must be projected to be valid for the poly-
tope of the original graph. This process is called anti-
projection. We have to mention that it is possible that
a projected inequality is no longer violated by a solu-
tion vector, even if it was in the projected graph. The
edge-projection and the anti-projection can be done in
linear time which makes this method very fast. Let us
now consider a small example indicated in the Fig. 7.
In Fig. 7a you see a small graph with six nodes. It is an
odd hole with the additional node v4. If we select edge
e D v3v5 to project on, then in this case, nodes v3, v5
and, in addition, v4 are removed from the graph (the
reason therefore is that v4 is the common neighbor of
nodes v3 and v5); as well as all edges incident with any
of these nodes. False edges are added between the set
of nodes which are only neighbors of v3 and not of v5
and the set of nodes which are only neighbors of v5 and
not of v3. Hence, false edge v2v6 is added, and one gets
the triangle shown in Fig. 7b. We recognize that the re-
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Edge protection

sulting graph is smaller and, indeed, more dense. We
realize that the triangle inequality

x1 C x2 C x6 � 1

is valid for PSTAB(G) but not for PSTAB(G). In most
cases, the anti-projection adds the deleted nodes to the
inequality and increases the right hand side by value
one1. In this case we get

x1 C x2 C x3 C x4 C x5 C x6 � 2 ;

which is a valid inequality for PSTAB(G). We recognize
that it is a lifted odd-hole inequality, which is facet-
defining for PSTAB(G); where the extension of a valid
inequality for P to a valid inequality for a higher di-
mensional polytope P � P is called lifting. In general,
it turns out that facet-defining inequalities for the poly-
tope of the projected graph might not be facet-defining
for the polytope of the original graph and vice versa.
The method was successfully developed and imple-
mented by Rossi and Smriglio, [69]. More details and
polyhedral results can be found in [67].

Branching

The branching strategy in a Branch & Cut algorithm in-
fluences the overall performance of the algorithm very
much. In general, it is very difficult to find a good strat-
egy. Various techniques have been explored and none
of them can always outperform the others. But for spe-
cial problems, there are different strategies that help
to reduce the size of the Branch & Bound tree and
speedup the algorithm. We start this section with a mo-
tivation for the need of special techniques and present
the branching idea of Balas and Yu from 1986, [7]. It
still remains the most successful strategy in practice.

One standard branching idea for a problem with
binary variables is to generate two subproblems. One
variable is set to value one in one subproblem and to
value zero in the other one. However, this branching
strategy leads to a very unbalanced Branch & Bound
tree for the maximum stable set problem. This can be
seen by the following argument. Setting a variable to
value one sets all nodes of its neighborhood to value
zero. In contrast, setting a variable to value zero has
no consequence for all other variables of the graph. To
avoid this drawback, one could think to set in each sub-
problem of the tree at least one variable to value one.
Basically, this is the key property of the branching strat-
egy by Balas and Yu.

Let G0 D (V 0; E0) be the subgraph induced by the
set of nodes which are not fixed in a current subprob-
lem. In each subproblem, the goal is to find a maxi-
mum stable set in the particular subgraph given by the
tree, or to prove that ˛(G0) < LB, with the lower bound
LB. Let W � V 0, and assume that we can show that
˛(G[W]) � LB. Clearly, if W D V 0, the subproblem
can be fathomed; otherwise, if ˛(G0) > LB any maxi-
mum stable set must contain at least one node of set
Z:DV 0 nW D fv1; : : : ; vpg. Based on this observation,
Balas and Yu showed that every maximum-cardinality
stable set with greater weight than the lower bound
must be contained in one of the sets

V 0i :Dfvig [ V 0 n (� (vi) [ fviC1; : : : ; vpg)
for i D 1; : : : ; p :

Note, that this strategy is also true for the weighted case
with c ¤ 1. This branching leads to p new subproblems
in one branching step. In each subproblem, node vi is
set to value one, and all nodes of� (vi) [ fviC1; : : : ; vpg
are set to value zero.
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Let us now discuss some properties of this strategy.
The size of W and the ordering of the nodes in Z can
affect the total number of subproblems to be solved. Of
course, the larger W is, the fewer subproblems will be
generated in that state. The size ofW is strongly effected
by the quality of the computed lower bound. Determin-
ingW is quite crucial and can be done for the cardinal-
ity stable set problem, for instance, with a clique cover-
ing, cf. [7,69]. Also other methods such as matchings or
holes [71] have been considered. In addition, the choice
of the branching variable also has a great impact on the
number of subproblems being solved. The size of the
tree can be reduced by branching on nodes with a high
degree, which was empirically shown by Carraghan and
Pardalos [25]. The reason is the previously mentioned
observation that with the branching node its neighbor-
hood is also set. To sort the nodes in each subproblem
in ascending order of degree seems to be computation-
ally expensive as the degree of all nodes has to be cal-
culated in each branching step prior to sorting. How-
ever, Sewell [71] showed experimentally that for sparse
graphs this is still convenient.

Implementation Aspects

In general, when implementing a solver for the stable
set problem, the following two things are crucial. First,
one has to obtain a good lower bound, which means
in the case of maximization, a feasible solution. One
should use one of the many suggested heuristics in lit-
erature. We refer to the article � heuristics for maxi-
mum clique and independent set. Second, it is recom-
mended to have a strong preprocessing. This becomes
even more important when the graphs result from ap-
plications. Many contributions have been made for this
purpose. Among them are, for instance, fixing of nodes,
fixing of cliques and treating connected components
separately, [56,67,72].

For the case of a Branch & Cut algorithm in par-
ticular, one first needs a formulation of the stable
set problem. We discussed some of the relaxations in
Sect. “Stable Set Polytope”. For practical efficiency, it is
not recommended to start with the optimization over
PRSTAB(G). The reasons are that this relaxation is very
weak and contains relatively many constraints. A better
idea is to start with maximal cliques which contain all
edges. Such a covering can be found in linear time. The

resulting relaxation is stronger, as each maximal clique
is facet-defining and dominates all the edge inequali-
ties contained. Recognize that for bipartite graphs the
relaxations is the same for both methods.

If one decides to separate several classes of inequal-
ities within a Branch & Cut framework, one needs an
order in which the separation routines are called. It
is recommended to first call the polynomial separa-
tion routines, then the ones which take higher com-
putational effort. However, practical tests show that
the clique inequalities are very important. Therefore,
a Branch & Cut solver should focus on fast heuristic
separation of the clique inequalities combined with the
very powerful tool of edge-projection. This leads to the
best computational results so far.

Moreover, it is recommended to focus on facet-
defining inequalities. Therefore, each clique should be
lifted to a maximal clique before its inequality is added
to the formulation. Accordingly, each odd-cycle should
be checked not to contain any chords, and if so, the
smaller odd-cycle would be added instead. These trans-
formations can be done in linear time.

More details regarding implementation and Branch
& Cut modules for the stable set problem can be found,
for instance, in [10,24,67,69].

Conclusion

Many contributions have been made to solve the sta-
ble set problem exactly. One of the exact algorithms is
based on the Branch &Cutmethod. However, the stable
set polytope is not yet fully understood, and the known
inequalities are either easy to separate with little impact,
or they can only be separated with a large amount of
computational effort and are very crucial for polyhe-
dral approaches to the stable set problem. Therefore, it
is not a surprise that there are some stable set instances
with less than 1000 nodes which cannot be solved ex-
actly with current methods.

See also

� Heuristics for Maximum Clique and Independent
Set

� Integer Programming
� Integer Programming: Branch and Bound Methods
� Integer Programming: Branch and Cut Algorithms
� Integer Programming: Cutting Plane Algorithms
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� Lovász Number
� Simplicial Pivoting Algorithms for Integer

Programming
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A standard quadratic optimization problem (StQP) con-
sists of finding (global) maximizers of a quadratic form
over the standard simplex � in n-dimensional Eu-
clidean space Rn,

	 D
˚
x 2 Rn : xi � 0 for all i 2 N; e>x D 1

�
;

where N = {1, . . . , n}; a | denotes transposition; and
e = [1, . . . , 1]| 2 Rn. Hence a StQP can be written as

a (global) quadratic optimization problem of the form

max
˚
f (x) D x>Rx : x 2 	

�
; (1)

where R is an arbitrary symmetric n × n matrix.
Quadratic optimization problems like (1) are NP-hard
[2], even regarding the detection of local solutions.
Nevertheless, there are several procedures which try
to exploit favorable data constellations in a systematic
way, and to avoid the worst-case behavior whenever
possible. Examples for this type of algorithms are spec-
ified below.

First we concentrate on the evolutionary approach
to finding local solutions of StQPs. To this end, con-
sider the following dynamical system operating on �:

ẋi(�) D xi(�)[(Rx(�))i � x(�)>Rx(�)];

i 2 N;
(2)

where a dot signifies derivative w.r.t. time � , and a dis-
crete time version

xi (� C 1) D xi(�)
[Rx(�)]i

x(�)>Rx(�)
; i 2 N: (3)

The stationary points under (2) and (3) coincide, and
all local solutions of (1) are among these (see below).
A stationary point x is said to be asymptotically stable,
if every solution to (2) or (3) which starts close enough
to x, will converge to x as � % 1. Now the follow-
ing results hold (for proofs and further characterization
results linking optimization theory, evolutionary game
theory, and qualitative theory of dynamical systems, see
[1] and the references therein):
� the objective f (x(�)) increases strictly along non-

constant trajectories of (2) and (3);
� all trajectories converge to a stationary point;
� all Karush–Kuhn–Tucker points and hence all local

solutions of (1) are stationary points under (2) and
(3);

� if no principal minor of R = R| vanishes, then with
probability one (regarding the choice of x(0), the
starting point), any trajectory of (2) converges to
one of the strict local solutions x of (1), which coin-
cide with the asymptotically stable points under (2)
and (3);

� further, y>Ry < x>Rx for all y 2 � with y ¤ x but
yi = 0 if xi D 0;.
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1 Given a local solution x̄ to (1), remove all alle-
les which are not unfit, i.e. all i 2 S = fi 2 N :
x̄i > 0g;

2 determine a (local) fitness minimizer y in the
reduced problem, i.e. consider problem (1)
with R replaced by

R̄ = [� s � ri j]i; j2NnS ;

where � s = maxi; j2NnS ri j ;
3 with a local solution y of this auxiliary prob-

lem, put

J = f j 2 NnS : yi > 0g

and denote by m the cardinality of J;
4 for all s 2 S and t 2 J, consider the reduced

problem Pt!s , i.e. problem (1) in n � m vari-
ables for the (n � m) 	 (n � m) matrix Rt!s
obtained from R as follows: replace rs i with rt i
and remove all other j 2 J;

5 x̄ is a global solution to the master problem (1)
if and only if for all (s; t) 2 S	 J, the maximum
of Pt!s does not exceed the current best value
x̄>Rx̄;

6 in the negative, i.e. if u>Rt!su > x̄>Rx̄ for
some u 2 4 
 Rn�m , and if j 2 J is chosen
such that for all q 2 J

X
p…J[fsg

(r j p � rq p)up �
1
2
(rq q � r j j)us ;

then a strictly improving feasible point x̃ is ob-
tained as follows:

x̃q =

8̂
<
:̂

ut if q = j;
0 if q 2 J [ fsgnf jg;
uq if q 2 NnJ:

GENF procedure to escape from inefficient local solutions in
StQPs

Although strictly increasing objective values are
guaranteed as trajectories under (2) or (3) are followed,
one could get stuck in an inefficient local solution of (1).
One possibility to escape is the genetic engineering via
negative fitness (GENF) approach [1] described in the
sequel. From the properties above, a strict local solution
ex of(1) must be a global one if all xi > 0. Consequently,

at an inefficient local solution necessarily xi D 0 for
some i. In the usual genetic interpretation of the dy-
namics (2) and (3), this means that some alleles die
out during the natural selection process, and these are
therefore unfit in the environment currently prevailing.
The escape step now artificially re-introduces some al-
leles which would have gone extinct during the natural
selection process, and restarts with a smaller subprob-
lem which will yield an improvement if x is inefficient,
see the table above.

In view of the possible combinatorial explosion in
effort with increasing number of variables, this dimen-
sion reducing strategy seems to be promising: if k is the
size of S, the above result yields a series of km StQPs in
n � m variables rather than in n. We are now ready to
describe the algorithm which stops after finitely many
repetitions, since it yields strict local solutions with
strictly increasing objective values [1].

1 Start with x(0) = [1/n, ...,1/n]> or nearby, iter-
ate (3) until convergence;

2 the limit x̄ = limr!1x(
) is a strict local solu-
tion with probability one; call the GENF pro-
cedure to improve the objective, if possible; de-
note the improving point by x̃;

3 repeat 1), starting with x(0) = x̃

Replicator dynamics algorithm for StQPs

A different approach towards global solutions of
StQPs uses familiar branch and bound schemes. For
ease of exposition, now consider the minimization
StQP

min
˚
x>Qx : x 2 	

�
; (4)

and assume without loss of generality that Q has only
positive entries (otherwise replace Q with Q + �ee|

where � is suitably large). If one applies a usual simpli-
cial partition [2] (cf. also � Simplicial decomposition)
to�, all subproblems are again StQPs. To obtain lower
bounds for these problems, convex minorants for the
objective x|Qx on � may be used, e. g.quadratic forms
x|Fx with F positive semidefinite (or some related ma-
trix bF which ensures that the minorant is convex nec-
essarily over � only), where F is chosen such that the
gap between the objectives is small. This can be accom-
plished by requiring diag F = diagQ and that

Pi, j[qij �
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f ij] is small, while the minorant condition is guaranteed
by the requirement f ij � qij for all i, j2N. Therefore one
arrives at a semidefinite optimization problem (SDP; cf.
� Semidefinite programming: Optimality conditions
and stability) which can be solved by the usual meth-
ods. The resulting matrix F then gives a convex prob-
lem, so that the desired lower bound for(4), {minx|Fx:
x 2 �} can be obtained efficiently, e. g. via local search
techniques or linear complementarity approaches (cf.
also � Interval analysis: Eigenvalue bounds of interval
matrices). For details and results see [3].
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A standard quadratic optimization problem (StQP) con-
sists of finding (global) maximizers of a quadratic form
over the standard simplex in n-dimensional Euclidean
space Rn,

� D
˚
x 2 Rn : xi � 0 for all i 2 N; e>x D 1

�
;

where N = {1, . . . , n}; a | denotes transposition; and e
=
P

i 2 N ei = [1, . . . , 1]| 2 Rn, with {ei: i 2 N} the ver-
tices of �. Hence a StQP can be written as a (global)
quadratic optimization problem of the form

max
˚
x>Rx : x 2 �

�
; (1)

where R is an arbitrary symmetric n × nmatrix.
An important application for StQPs is the search for

a maximum weight clique arising in computer vision,
pattern recognition and robotics (see [2] for a more de-
tailed account): consider an undirected graph G = (N,
E) with n nodes, and a weight vector w = [w1, . . . , wn]|

of positive weights wi associated to the nodes i 2 N.
A clique S is a subset of N which corresponds to a com-
plete subgraph of G (i. e. any pair of different nodes in
S is an edge in E). A clique S is said to be maximal if
there is no larger clique containing S. Every clique S in
G has a weightW(S) =

P
i 2 S wi. The maximum weight

clique problem (MWCP) consists of finding a clique in
the graph which has largest total weight. The classical
(unweighted)maximum clique problem is a special case
with w = e. To reformulate the MWCP as a StQP, one
may exploit an idea of L. Lovász in considering the fol-
lowing class of symmetric n × nmatrices: let

C(E) D
˚
(ci j)i; j2N : ci j D 0 if (i; j) 2 E

�
;

as well as C+(G) = C 2 C(E): C| = {C and cij � cii + cjj if
(i, j) 62 E}, and form the class

C(G;w) D
�
C 2 CC(G) : ci i D

1
2wi

for all i
	
:

Now consider the (minimization) StQP

min
˚
x>Cx : x 2 �

�
(2)
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for some matrix C 2 C (G, w). Given a subset S � N,
define the S-face of� as

�S D fx 2 � : xi D 0 if i … Sg

and its weighted barycenter as xS =
P

i 2 S (wi/W(S))ei 2
�S. Then the following assertions hold [2]:
� A point x 2 � is a local solution to problem (2) if

and only if x = xS, where S is a maximal clique.
� A vector x 2 � is a global solution to problem (2)

if and only if x = xS, where S is a maximum weight
clique.

� Moreover, all local (and hence global) solutions to
(2) are strict.

Note that a different class used in [3] does not share
these properties. The class C(G, w) is isomorphic to the
positive orthant in

�n
2

�
� e dimensions where e is the

cardinality of E. This class is a polyhedral pointed cone
with its apex given by the matrix CG;w with entries

cG;w
i j D

8̂
<̂
ˆ̂:

1
2wi

if i D j;
1

2wi
C 1

2w j
if i ¤ j and (i; j) … E;

0 otherwise:

In the unweighted case w = e, we get CG;e D ( 12 )IC AG

where AG is the adjacency matrix of the complement
graph G, and I the n × n identity matrix. Therefore (2)
can be seen as a regularized generalization of the origi-
nal approach of T.S. Motzkin and E.G. Straus [7].

Another application of StQP is concerned with the
mean/variance portfolio selection problem (see, e. g. [6];
� Portfolio selection and multicriteria analysis) which
can be formalized as follows: suppose there are n se-
curities to invest in, at an amount expressed in relative
shares xi � 0 of an investor’s budget. Thus, the budget
constraint reads e|x = 1, and the set of all feasible port-
folios (investment plans) is given by �. Now, given the
expected return mi of security i during the forthcom-
ing period, and an n × n covariance matrix V across all
securities, the investor faces the multi-objective prob-
lem to maximize the expected return m|x and simul-
taneously minimize the risk x| Vx associated with her
decision x.

One of the most popular approaches to such type
of problems in general applications is that the user pre-
specifies a parameter ˇ which in her eyes balances the
benefit of high return and low risk, i. e. consider the

parametric QP

max
˚
fˇ (x) D m>x � ˇx>Vx : x 2 �

�
:

For fixed ˇ, this is a StQP. Anyhow, the question re-
mains how to choose ˇ. In finance applications, the
notion of market portfolio is used to determine a rea-
sonable value for this parameter. This emerges more or
less from an exogenous artefact, namely by introducing
a completely risk-free asset which is used to scale re-
turn versus risk [5]. An alternative, purely endogenous
derivation of market portfolio could use a result of M.J.
Best and B. Ding [1] who consider the problem

max
ˇ>0

max
x2�

1
ˇ
fˇ (x); (3)

and show how optimal solutions (ˇ�, x�) for (3) emerge
from a single StQP (1) with, e. g. R = 2mm| � V .

A general application of StQPs arises if one applies
branch and bound schemes with simplicial partitions
[4] (cf. also � Simplicial decomposition) to general
quadratic problems of the form

max
�
g(x) D

1
2
x>QxC c>x : x 2 M

	
;

where M = {x 2 Rn: Ax � b} with A an m × n matrix
and Q a symmetric n × nmatrix. A subproblem then is
of the form max{g(x): x 2 P} with P \ M 6D ; and P =
conv{v0, . . . , vn} for some points vi 2 Rn (if all vertices
of M are easy to determine, one could even take them
rather than the vi). With the n × (n + 1) matrix U = [v0,
. . . , vn], the subproblem reduces to the StQP

max
˚
y>Ry : y 2 �

�

where R =U| QU + ec| U +U| ce| is a symmetric (n +
1) × (n + 1) matrix and �� Rn+1. Efficient bounds can
thus be obtained with one of the algorithms for obtain-
ing (local) solutions to a StQP.
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A standard quadratic optimization problem (StQP) con-
sists of finding (global) maximizers of a (possibly indef-
inite) quadratic form over the standard simplex � in
n-dimensional Euclidean space Rn,

	 D
˚
x 2 Rn : xi � 0 for all i 2 N; e>x D 1

�
;

where N = {1, . . . , n}; a> denotes transposition; and e
= [1, . . . , 1]> 2 Rn. Hence a StQP can be written as
a (global) quadratic optimization problem of the form

max
˚
x>Rx : x 2 	

�
; (1)

where R is an arbitrary symmetric n × n matrix. Since
the maximizers of (1) remain the same if R is replaced
with R + �ee> where � is an arbitrary constant, one
may assume without loss of generality that all entries
of R are positive. Furthermore, the question of find-
ing maximizers of a general quadratic function x>Qx
+ 2c>x over � can be homogenized in a similar way by
considering the rank-two update R = Q + ec> + ce> in
(1) which has the same objective values on�.

StQPs arise in procedures which enable an escape
from inefficient local solutions of general quadratic
optimization problems (QPs): consider the general
quadratic maximization problem

max
�
f (x) D

1
2
x>QxC c>x : x 2 M

	
; (2)

where M = {x 2 Rn: Ax � b}x with A an m × n ma-
trix and Q a symmetric n × n matrix. To formulate
a characterization of global optimality of a Karush–
Kuhn–Tucker point x for (2), first add a trivial non-
binding constraint, i. e. the most elementary strict in-
equality 0 < 1, to obtain slacks u as follows: denote by
a>i the ith row of A and put a0 = o. Similarly put b0
= 1 and enrich A D [a0jA>]> D [o; a1; : : : ; am]> as
well as b D [b0jb>]> D [1; b1; : : : ; bm]> Finally, de-
fine u D b � Ax � o Then perform, for any i 2 {0, . . . ,
m}, a rank-one update of A and a rank-two update ofQ,
using the current gradient g D r f (x) D QxC c of the
objective:

Di D ua>i � uiA;

Qi D �aig> � ga>i � uiQ:

This gives a symmetric n × n matrix Qi and a matrix
Di which is effectively m × n since its ith row is zero.
Denoting by J(x) the set of all nonbinding constraints,
the following result is proved in [1]:

Theorem 1 A Karush–Kuhn–Tucker point x of (2) is
a global solution if and only if for all i 2 J(x) D
fi 2 N [ f0g : ui > 0g,

v>Qiv � 0 if Div � o: (3)
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If v> Qiv < 0 for some v with Div � o, then

ex D xC �v (4)

is an improving feasible point for � D ui/(a>i v) (if a
>
i v

= 0, i. e. � = +1, this means that (2) is unbounded).

Determining whether or not (3) is satisfied, amounts
to the question whether or not max{v>(�Qi)v: Div �
o} � 0. Now this homogeneous problem is decompos-
able [2,3] into problems of the form max{x>Rx: x� o},
where the constraint e>x =

P
ixi = 1 can be added with-

out loss of generality, rendering a StQP. In fact, in or-
der to determine an improving feasible direction (4) it
is not necessary to solve the latter problem to optimal-
ity, but rather sufficient to determine a feasible point x
2� with x> Rx > 0.

If the original problem (2) is itself already a StQP,
then all checks of (3) can be reduced to a single one:
if x 2 	 is any feasible point, then x is a global max-
imizer of x>Qx over � if and only if the matrix Q D
(x>Qx)ee> � Q satisfies v>Qv � 0 if v � o, i. e. Q is
copositive.

The close connection between StQPs and copositiv-
ity becomes evident if the usual semidefinite program-
ming (SDP) approach is enlarged to recast a StQP into
a linear optimization problem on a cone K which is
the (pre) dual of the cone K� of all copositive sym-
metric n × n matrices, with respect to the duality hR, Si
= trace(RS) operating on pairs (R, S) of such matrices.
This formulation allows to employ interior point algo-
rithms (cf. also � Sequential quadratic programming:
Interior point methods for distributed optimal control
problems; � Interior point methods for semidefinite
programming), similar to the methods used in SDP.
Both cones K� andK have nonempty interiors, and the
latter can be described as follows [4,6]:

K D conv
˚
xx> : x � o

�
;

the convex hull of all symmetric rank-one matrices,
i. e. dyadic products, generated by nonnegative vectors.
Note that dropping the nonnegativity requirement, we
would arrive at the positive semidefinite case. Now let E
= ee> be the n × nmatrix of all ones. Since the extremal
points of the set L = {X 2K: hE, Xi = 1} are exactly the
dyadic products xx> with x 2�, a maximizer of hR, Xi
over L can be found which is of this form, and hence

the StQP (1) is equivalent to the linear problem

max fhR; Xi : X 2 K; hE; Xi D 1g :

It is easy to see that the dual formulation [5] of this
problem is

min fy 2 R : yE � R 2K�g ;

which is the task to find the smallest y such that yE �
R is copositive. Thus the dual problem is related to the
question of eigenvalue bounds (replace E with the iden-
tity matrix and ‘copositive’ with ‘positive semidefinite’).
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Introduction

Historically, the use of new technologies in agriculture
and related sciences has been relatively behind that in
the industrial sector. Usually, for a technology that is
already part of the mainstream technologies in the in-
dustrial sector, it takes time to be accepted by the com-
munity of researchers in agriculture-related areas. One
of the reasons for the technological gap between the in-
dustrial and agricultural sectors could be related to the
modest amounts of investment made in the field of agri-
culture compared with the impressive amounts and ef-
forts the industrial sector invests in new technologies.
Another reason could be the relatively slow pace of up-
dating the student curriculum with the new technolo-
gies in university departments that prepare the future
specialists in the field of agriculture [19].

The level of complexity of the problems researchers
in agriculture-related areas need to address is con-
stantly increasing. The advent of the Internet forces re-
searchers to move their models and applications in new
programming platforms. As agriculture occurs in time
and space, aside from the technical issues presented by
the particular problem, researchers need to take into
account spatial and temporary considerations related
to the problem. Therefore, researchers in agriculture-
related fields are obliged to address more and more

complex problems and their solution requires a wide
collaboration between specialists of different disciplines
and the integration of different technologies. Thus, the
software systems they need to develop and maintain are
complex and challenging.

In order to successfully overcome the challenges of
developing flexible and complex agricultural systems,
researchers are required tomaster and use modern soft-
ware engineering disciplines. The following is a short
inventory of some of the most advanced software engi-
neering techniques used in developing software systems
in agriculture and related fields.

The UnifiedModeling Language

The Unified Modeling Language (UML) was born as
a support for modeling software using the object-
oriented programming paradigm. Before UML, several
object-oriented modeling languages were used, each
with its own set of notations, and there was some con-
fusion among the object-oriented community about
which language to use [4]. By the mid-1990s, an impor-
tant event had occurred that impacted the development
of object-oriented modeling languages in a very positive
manner. Grady Booch, Ivar Jacobson and James Rum-
baugh joined Rational Rose (http://www-306.ibm.com/
software/rational/) with the goal of creating a standard
modeling language for specifying, visualizing, con-
structing, and documenting all the artifacts of a soft-
ware system [4].

According to Wikipedia, in the field of software
engineering, the UML is a nonproprietary specifica-
tion language for object modeling. UML is a general-
purpose modeling language that includes a standard-
ized graphical notation used to create an abstract
model of a system, referred to as a UML model.
UML is extendable, offering the following mechanisms
for customization: profiles and stereotype (http://en.
wikipedia.org/wiki/Unified_Modeling_Language). The
current version, UML2.0, contains 13 types of diagrams
that can be grouped in three categories such as struc-
ture, behavior, and interaction diagrams; they are used
to express static and dynamic aspects of the system un-
der study. UML is the Object Management Group’s
most-used specification, and the way the world models
not only application structure, behavior, and architec-
ture, but also business process and data structure.

http://www-306.ibm.com/software/rational/
http://www-306.ibm.com/software/rational/
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
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Examples of UMLModels in Agriculture

The use of UML in modeling agricultural systems is
a recent phenomenon. Initially, the use of UML was
to make a general presentation of the application’s
model. Hutchings used a simple class diagram to rep-
resent relationships between classes in a framework
for grazing livestock. Drouet and Pages [7] discussed
the benefits of using the object-oriented paradigm and
UML to express the relationships between growth and
assimilate partitioning from plant organs to the whole
plant. This use of UMLwas limited as the diagrams pre-
sented lacked many details, which make it difficult to
understand the role of classes/objects and their behav-
ior. A good model should represent not only the rela-
tionships between classes, but also their structure and
behavior and the role of each class involved in an asso-
ciation.

Later, a number of authors made UML part of their
modeling approach [21] used UML to analyze several
irrigation-scheduling models and water-balance mod-
els to identify common elements and relationships in
order to propose a general template for creating new
models and maintaining existing ones. Papajorgji and
Pardalos [19] presented a detailed UML and object-
oriented approach to model software for agricultural
systems. Pinet et al. [22] used UML and Object Con-
straint Language (OCL) to model spatial constraints of
an environmental information system monitoring the
spreading of organic matter. Hasenohr and Pinet [12]
used UML and OCL to develop a spatial decision sup-
port system to implement common agricultural pol-
icy. Martin and Vigler [13] used UML to set up a shared
geographic information system for agricultural qual-
ity and environmental management. Miralles [15] used
UML to present geographic information system (GIS)
patterns that express relationships between spatial and
temporal concepts and to automatically generate the
corresponding code. Figure 1 shows the class dia-
gram of the irrigation-scheduling model as presented
in [21].

The OCL

OCL is a notational language, a subset of UML that
allows specifying constraints over entities represent-
ing concepts from the problem domain [17,27]. It in-
tegrates notations close to a spoken language to ex-

press constraints. OCL was first developed by a group
of IBM scientists around 1995 during a business mod-
eling project. It was influenced by Syntropy, which is
an object-oriented modeling language that makes heavy
use of mathematical concepts. OCL is now part of the
UML standard supported by the OMG and it plays
a crucial role in the model-driven architecture (MDA)
approach [24].

Examples of Using OCL in Agriculture

OCL is used to express spatial constraints in an
environmental information system developed by re-
searchers at Cemagref, France, and is described in detail
in [22]. This system monitors the spreading of organic
matter in France.

Spreading on the croplands is an excellent way of
recycling organic matter (manure, sewage sludge, etc.)
but the agricultural practices used require a fastidious
monitoring system. An excessive and ill-planed spread-
ing practice could lead to damage to soils owing to pol-
lution. It is very important to model a set of spatial con-
straints that define precisely where spreading of organic
matter can take place; as an example, organic matter
can never be spread inside certain protected natural ar-
eas. Designing an environmental information system
that controls the spreading of organic matter requires
some spatial constraints be strictly respected. Figure 2
shows the UML model for the spreading problem.

The Allowed_Area class models the area on which
the regulation allows the spreading of organic matter.
The Spread_Area class models the area on which the
spreading has already been carried out by the farm-
ers. In the ideal case, the organic matter is organized
into groups before being spread on the fields; each
group has an ID in order to improve traceability. The
spreading model presented in this example includes
only one of the potential organic matter providers (Pu-
rification_Station).

Constraints can be expressed using OCL. The fol-
lowing constraint says that a spread area should not
overlap with its associated allowed area:
context Spread_Area inv:
not (self.geometry.overlap(self.spread_on.geometry))

The following constraint says that all allowed areas
must be spatially disjoint from built areas:
context Allowed_Area inv:
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State of the Art in Modeling Agricultural Systems, Figure 1
Class diagram representation of the irrigation-scheduling model

State of the Art in Modeling Agricultural Systems, Figure 2
Agricultural spreading model

1. Built_Area.allInstances->forAll
(built_area_instancej

2. built_area_instance.geometry->forAll(buildingj
3. self.geometry.disjoint(building)))
In the above constraint, the use of set-based opera-
tion is needed because the geometry of a built area
can be composed of several simple regions (i. e., several
buildings). A complete expression in natural language

of this constraint is “1. for each built_area_instance
in the Built_Area class and 2. for each building in
the built_area_instance geometry, 3. the geometry of
an Allowed_Area instance (denoted by self) must al-
ways be spatially disjoint from building.” Code can be
automatically generated from OCL constraints [6,22].
This code allows also the evaluation of the quality of
the data stored in the database; i. e., verify if the data
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stored in the database satisfy the constraints defined us-
ing OCL.

The Design Patterns

Well before software engineers started using patterns,
an architect named Christopher Alexander wrote two
books that describe the use of patterns in building ar-
chitecture and urban planning. The first book is ti-
tled A Pattern Language: Towns, Buildings, Construc-
tion [1], published in 1977. The second one is titled The
Timeless Way of Building [2], published in 1979. These
two books not only changed the way structures were
built, but they had a significant impact in another not
closely related field, the field of software engineering.
According to Alexander [1], a pattern describes a prob-
lem which occurs over and over again in our environ-
ment, and then describes the core of the solution to that
problem, in such a way that one can use this solution
a million of times over, without ever doing it the same
way twice. Although Alexander refers to buildings and
towns, his conclusion can be successfully applied in the
process of object-oriented design.

Design patterns are well-thought solutions for
a large number of problems that have been built by ex-
perienced designers to be easily used by novice pro-
grammers. They started being used in the mid-1990s,
when a group of four software engineers [10] wrote
the book titled Design Patterns Elements of Reusable
Object-Oriented Software. The book had a significant
impact on the way software design was carried out.
A design pattern names, abstracts, and identifies the key
aspects of a common design structure that make it use-
ful for creating a reusable object-oriented design [10].
The same way an architect uses prefabricated blocks for
building complex constructions, a programmer will use
patterns to develop complex software. Using patterns
makes the process of designing complex systems eas-
ier.

Design patterns are divided into three categories:
creational, structural, and behavioral patterns. Cre-
ational patterns deal with the process of creating ob-
jects. They describe optimal ways of creating new ob-
jects. Structural patterns describe how to compose
classes or objects. Behavioral patterns describe how to
distribute behavior among classes and how classes in-
teract with each other.

Example 1 of Using Design Patterns in Agriculture

Very often programmers have to solve the same prob-
lem that occurs in different applications regardless of
the problem domain. An example of this type of prob-
lem could be providing an application with the same
type of data using different data sources and the system
has to decide at run time what the particular data source
is. Such a problem can be solved using the strategy pat-
tern.

The intent for the strategy pattern is to define a fam-
ily of algorithms, encapsulate each one, and make them
interchangeable [10]; therefore, algorithms can vary in-
dependently from the clients that use them. This pat-
tern is useful in cases where several strategies are avail-
able for use and the choice of the right strategy is done
at run time. To better understand the context in which
the strategy pattern can be used, let us consider a simple
simulation model as presented in [20]. In a crop sim-
ulation model the weather data can be obtained using
different sources, such as using a text file, reading them
from a database system, or using an on-line system
of weather stations. In a system developed in a tradi-
tional programming language such as FORTRAN, the
ability to choose between several options requires the
use of complex if-then-else or switch statements. All
the options available are hardwired into code. As new
data sources are available, their use will require changes
to the code. Therefore, traditional programming lan-
guages offer rather limited and rigid solutions to this
problem. A well-thought system should not only pro-
vide access to several sources of data, but additionally it
should provide for ways of obtaining them when avail-
able in the future without affecting the existing system.

The object-oriented paradigm and the design pat-
terns solve this problem by offering a flexible and ele-
gant solution. Figure 3 shows classes that are involved
in the strategy pattern as described in [19]. The Simu-
lationController is a client that uses the weather data.
The IWeatherDataProvider is an interface that repre-
sents the common behavior of all classes providing
access to a particular source of weather data. Simu-
lationController has a unidirectional association with
IWeatherDataProvider. The multiplicity of this associ-
ation allows one controller to use one or no weather
data provider. Classes WeatherDataFromFile, Weath-
erDataFromStation, and WeatherDataFromDatabase
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State of the Art in Modeling Agricultural Systems, Figure 3
Class diagram for the strategy pattern

provide behavior for extracting data from a particular
source such as a text file, a network of weather stations,
or a database. These classes implement the same inter-
face, the IWeatherDataProvider; therefore, any one of
them can be used to provide the weather data requested
by SimulationController. Note that the user of the data,
in this case SimulationController, does not have access
to or knowledge of the data providers; therefore, the
data providers can change the data extraction algorithm
without affecting the data user.

Example 2 of Using Design Patterns in Agriculture

While developing a GIS, designers pay particular atten-
tion to the spatial properties of thematic concepts such
as Plot, Spread_Area, etc. In GIS-based systems the spa-
tial concepts that are manipulated the most are Point,
Line, and Polygon. These concepts have their own char-
acteristics and some of them can be combined to cre-
ate other concepts; as an example, a Line can be repre-
sented as a set of Point and a Polygon can be considered
as a set of Point or as a succession of Line. Furthermore,
the nature of the relationship between Point, Line, and
Polygon is static; it never changes over time. The rela-
tionship between these spatial concepts can be repre-
sented by design patterns as described in [10].

Miralles [15] described a GIS design pattern based
model that is a recurrent model for a coordinate sys-
tem: 1D, 2D, and 3D. Figure 4 shows the specific design
pattern for a 2D coordinate system. This GIS model

is structured around two composite patterns. The first
composite pattern depicts the relationship between the
spatial properties Point and Line. A Line is composed
at least of two Linear Component, which can be Point,
Line, or a mixture of Point and Line. The Point has two
properties: an abscissa and an ordinate. The Line has as
property its length. The second composite pattern pro-
vides the possibility of representing a Polygon as Polyg-
onal Component, which can be either Linear Compo-
nent or Polygon or even a combination of the latter.
The polygonal properties are the perimeter and the sur-
face. Like the simplest polygon (triangle) is composed
of three points or three line segments, the cardinality
of the Polygonal Arrangement association should be at
least equal to (3 or more). In this case, the polygonal
arrangement of two polygons cannot be done. In order
to do it, the Two Polygons Arrangement association has
been added.

The GIS design pattern based model describing the
spatial properties currently used for GIS modeling
could be considered as a structural pattern. Considering
the static nature of the relationships among concepts
involved in the pattern, code can be easily generated in
any programming language.

TheMDAApproach

TheMDA is a framework for software development de-
fined by the OMG [25]. At the center of this approach
are models; the software development process is driven
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State of the Art in Modeling Agricultural Systems, Figure 4
Geographical information system design pattern based model for a 2D coordinate system

by constructing models representing the software un-
der development. The MDA approach is often referred
to as a model-centric approach as it focuses on the busi-
ness logic rather than on implementation technicali-
ties of the system in a particular programming environ-
ment. This separation allows both business knowledge
and technology to continue to be developed without ne-
cessitating a complete rework of existing systems [14].

MDA uses UML to construct visual representations
of models. UML is an industry standard for visualiz-
ing, specifying, constructing, and documenting the ar-
tifacts of a software-intensive system [4], and it has a set
of advantages that makes it fit to be the heart of the
MDA approach. First, by its nature, UML allows for de-
veloping models that are platform-independent. These
models depict concepts from the problem domain and
the relationships between them and then represent the
concepts as objects provided with the appropriate data
and behavior. A model specified with UML can be
translated into any implementation environment. The
valuable business and systems knowledge captured in
models can then be leveraged, reused, shared, and im-
plemented in any programming language [5]. A second
advantage is that UML has built-in extension mech-
anisms that allow the creation of specialized, UML-
based languages referred to as UMLprofiles [8]. If mod-
elling agricultural systems requires special modelling
artifacts, then an agricultural UML profile would be
created and plugged into the UML core system.

The MDA approach consists of three levels of mod-
els as shown in Fig. 5. As shown in this figure, a set of
transformations are needed to transform a model from
the current level to the next one.

The approach starts with construction of a con-
ceptual diagram that represents our knowledge of the
problem domain expressed through concepts, abstrac-
tions, and their relationships. Conceptual diagrams are
the result of an activity referred to as conceptual model-
ing. Conceptual modeling can be defined as the process
of organizing our knowledge of an application domain
into hierarchical rankings or ordering of abstractions,
in order to obtain a better understanding of the phe-
nomena under consideration [7]. Conceptual diagrams
have the advantage of presenting concepts and rela-
tionships in an abstract way, independent of any com-
puting platform or programming language that may
be used for their implementation. During this phase,
the focus is on depicting the concepts of the system
and providing them with the right data and behavior.
The fact that the implementation technology may be
Java, a relational database, or .NET is irrelevant at this
point. Therefore, the intellectual capital invested in the
model is not affected by changes in the implementation
technologies. A conceptual model thus is a platform-
independent model (PIM).

Because of the nature of a PIM (no implementa-
tion details are considered at this phase) and because
the model construction is done visually using UML,
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State of the Art in Modeling Agricultural Systems, Figure 5
Transformations are applied to amodel level to obtain the next level. PSM platform-specific model

the participation of domain specialists in the model
construction process is greatly facilitated. The MDA
approach frees domain specialists from the necessity
of knowing a programming language in order to be
an active participant. PIMs are developed in UML,
which is visual and uses plain English that can be eas-
ily understood by programmers and nonprogrammers
alike [21]. A PIM is the only model that developers will
have to create “by hand.” Executable models will be ob-

State of the Art in Modeling Agricultural Systems, Figure 6
Conceptual model for the crop simulation model

tained automatically by applying a set of transforma-
tions to the PIM.

Figure 6 shows a PIM for a simple crop simulation
model. Details on the implementation of this model can
be found at http://mda.ifas.ufl.edu. Concepts from the
simulation domain are depicted in an abstract man-
ner and their relationships are presented. At the cen-
ter of the model is the Simulator object, which has ac-
cess to entity objects Plant, Soil, and Weather. The na-

http://mda.ifas.ufl.edu
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ture of these relationships is a composition, meaning
that it is Simulator’s responsibility to create instances of
these objects and destroy them at the end of the simula-
tion. Simulator is provided with a method named simu-
late(list of parameters) that runs the simulation using as
initial values the list of parameters. Simulator plays the
role of a control class; it sends the right message to the
right object to carry out the simulation [19].

Providing objects of the conceptual diagram with
behavior is one of the most exciting features of the
MDA approach. In the world of the simulation mod-
els, most of the behavior that objects should provide is
expressed in the form of equations. Equations are con-
structed in a declarative way using attributes of objects
participating in the conceptual diagram.

The simulation process is controlled by the behavior
of the object Plant. A state-transition diagram is used
to model the behavior of Plant [4]. This diagram shows
the valid execution order of the services of the class and
the set of possible lifecycles of Plant. Figure 7 shows
the state-transition diagram of Plant. The diagram has

State of the Art in Modeling Agricultural Systems, Figure 7
State chart describing the behavior of Plant

two types of elements: states and transitions. States rep-
resent the different situations through which an ob-
ject of type Plant can pass, depending on the value of
its attributes. Transitions represent executed services,
events, or transactions, which produce state changes
and modify the value of the object’s attributes.

According to the state-transition diagram, Plant
will remain in the state vegetative and will continue to
receive messages calculateRate and integrate as long as
the guard condition number of leaves >maximum num-
ber of leaves is not satisfied. When the guard condition
is satisfied Plant will move to state reproductive. For this
transition, the source state is vegetative and the target
state is reproductive. Plant will remain in the state re-
productive as long as the guard condition cumulative
thermal time > reproductive thermal time is not satis-
fied. When the guard condition is satisfied, Plant will
move to statemature and the simulation will terminate.

MDA-based tools provide ample capabilities to
check the correctness of the conceptual model, the be-
havior of it objects, and the relationships between them.
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An XML file is created that contains a detailed specifi-
cation for the model that can be used by code engines to
generate code in several programming languages. Sev-
eral scenarios can be considered as different parts of
the system can be implemented in different languages.
For example, the user can choose the C# environment
for developing the user interface and a CORBA-EJB,
Java-based environment for the implementation of the
server. Because the conceptual model is detailed and
precise, code generators can find all the information
needed to translate the model into several program-
ming environments. Besides the code representing ob-
jects of the conceptual model, code generators will pro-
vide all the wiring code that links the client and the
server applications.

In the domain of GIS there are several modeling for-
malisms to express the spatial properties of thematic
concepts: Aigle [16], CONGOO [18], GeoFrame [9],
MADS [23], Perceptory [3], POLLEN [11], etc. Some
of these formalisms use a visual language based on pic-
tograms (Perceptory, MADS, Aigle, etc.). The visual
language was introduced to improve the communica-
tion between the GIS designer and users.

Similarly, Miralles [15] has implemented the vi-
sual language of Perceptory in a professional case tool
using the profile mechanism, a mechanism that ex-
tends the UML metamodel. Pictograms are attached
as annotations to the UML notation of Class. For ex-
ample, the polygonal geometry of the thematic con-
cept Spread_Area showed in Fig. 8 can be expressed
by a polygonal pictogram. Figure 8 shows the UML
notation for class Spread_Area using the Percep-
tory language [3]. The polygonal pictogram used in
Spread_Area shows that Spread_Area is kind of Poly-
gon.

The GIS design formalisms are used during the
analysis phase of the GIS development, the phase dur-

State of the Art in Modeling Agricultural Systems, Figure 8
Spread_Area concept annotated with a polygonal pictogram

ing which the model is created “by hand.” So, the
model built is a PIM. Miralles [15] provided two trans-
formations on the PIM to convert a pictogram into
model elements used by code generators. The first one
is a transformation that generates the GIS design pat-
tern based model presented in “The Design Patterns”
(Fig. 4). It automatically creates classes (Point, Line, and
Polygon), the corresponding attributes (X, Y , length,
perimeter, and surface), and also the generalization
and the association links (Linear Arrangement, Polyg-
onal Arrangement, and Two Polygons Arrangement).
This transformation is called GIS design pattern based
model generation. At this step, the thematic concept
Spread_Area and the spatial concept Polygon are totally
disassociated. The second transformation implements
the relationship between these two concepts and is also
a PIM/PIM transformation. This transformation is re-
ferred to as pictogram translation mapping technique.
The goal of this transformation is to automatically es-
tablish an association between Spread_Area and Poly-
gon (Fig. 9) referred to as Spatial Characteristic.

By default, the role of Polygon is set toGeometry and
its cardinality is set to 1. At the other end of the associ-
ation Spatial Characteristic, the class, and its role share
the same name, Spread_Area, and its cardinality is set
to (0 or 1). These default values can be modified later
by the designer if necessary. Once the association has
been created, the pictogram is not used any longer as
the information it conveys becomes redundant.

The two transformations described above, GIS de-
sign pattern based model generation and pictogram
translation mapping technique are examples of appli-
cation of the MDA principles in the domain of GIS.

Conclusion

Developing a successful software project in agriculture
requires the collaboration of researchers from differ-
ent scientific domains with different scientific back-
grounds. Therefore, it is very important for a team of
different backgrounds to have a common communica-
tion language. UML is an excellent tool for analyzing,
designing, and documenting software projects. Mod-
els are developed visually using plain English (or any
other spoken language for that matter) and can be un-
derstood by programmers and nonprogrammers alike.
Thus, collaboration between team members is greatly
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State of the Art in Modeling Agricultural Systems, Figure 9
Association spatial characteristic created by the pictogram translation mapping technique

improved by increasing the number of specialists in-
volved in project development. Furthermore, the ad-
vent of MDA makes the process of design and analysis
more accessible to specialists, as MDA is a specialist-
centric approach. The model is developed visually us-
ing knowledge from the problem domain, thus making
the specialist of the domain the center of the application
development.
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Introduction

This review paper considers the resource constrained
project-scheduling problem (RCPSP) with static na-
ture and renewable resources and aims to provide a re-
cent survey of related work and heuristics employed.
‘Static scheduling’ refers to determining a solution to
a scheduling problem instance with fixed resources and
precedence constraints. ‘Renewable resources’ implies
that resources may be used during the whole schedul-
ing process and planning timespan without degrada-
tion in capacity or work pace. Thus, the resources are
not single-use type. The solutions will basically con-
sist of starting times of a known set of activities. For
an introduction and overview of different formula-
tions of project scheduling problems the reader is re-
ferred to [7,16,17,25]. Ozdamar and Ulusoy [30] pro-
vide an elaborate review of RCPSP with both renewable
and non-renewable resource constraints and time/cost
based objectives.

The RCPSP is known to be NP-hard. Thus only
instances with a very limited number of activities can
currently be solved to optimality. For larger problems,
heuristics are utilized that provide robust, high perfor-
mance, extensible and easy to apply solutions. Some
benchmark results are also available in the literature
and among those, the most recent are the ones sup-
plied by [1,15,23,24]. Bouleimen and Lecocq [6] (along
with [1] and [13]) give the best performing results to
supplied benchmark instances.

The activity-on-node (AON) based flow represen-
tation of the RCPSP is given in the next section. Fol-
lowing the formulation, a brief summary of the recent
approaches proposed is provided.

Formulation

Artigues et al. [2] provide the following AON-flow net-
work based formulation for the static case of RCPSP
with renewable resources:

It is assumed that a project composed of a set of ac-
tivities V D 1; : : : ; n has to be scheduled on a set of re-
newable resources < D 1; : : : ;m. Each resource k 2 <
has a finite capacity Rk . Precedence constraints of activ-
ities within the project are modeled by a set of project
arcs E such that (i; j) 2 E means that activity j has to
start after completion of activity i. Each activity i 2 V
requires a non-negative amount rik of each resource
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k 2 < and has a duration pi . The scheduling problem
lies in characterizing an n-tuple S D fS1; : : : ; Sngwhere
Si is the starting time of the activity i, while minimizing
the total project duration (makespan) denoted byCmax .
This problem, known as the RCPSP may be defined by
the triple (V ; E;<). Its difficulty comes from the re-
source limitation constraints that prevent some activi-
ties requiring the same resources from being scheduled
simultaneously. These constraints can be modeled by
defining each resource k as the union of Rk resource
units, such that a given resource unit cannot be allo-
cated to more than one activity at the same time. In
other words, each resource is assumed to have a capac-
ity of one activity. If a resource has a capacity greater
than one activity, then it is divided into several re-
sources each with a capacity of one. Hence, in any fea-
sible solution, a resource unit allocated to an activity i
has to be directly transferred after the completion of i
to a unique activity j. However, since all the units of the
same resource are equivalent, one only has to know the
number of units directly transferred from one activity
to another. For an elaborate discussion of the model,
the graphical representation, and the mathematical for-
mulation of the problem, refer to [2].

There are two main classifications for the objec-
tive function: time based and cost based. Time based
objectives in the literature comprise instances such as
minimizing makespan, mean lateness, mean comple-
tion time, and weighted tardiness in an environment
where multiple projects are dealt simultaneously. How-
ever, cost based objectives don’t necessarily yield the
same results as time based objective functions. Max-
imizing the net present value of a project, minimiz-
ing total cost of a project considering all costs includ-
ing variable costs due to resource consumption and
other overhead summed with tardiness costs, and fi-
nally maximizing the efficient usage of cash over the
project span are some instances of cost based objec-
tives we can observe in the contemporary literature. Oz-
damar and Ulusoy [30] study these different objective
functions in greater detail.

Brucker et al. [7] introduce a classification scheme
and a common notation for the RCPSP. The need for
such an effort is to remove the widening gap between
the contemporary machine scheduling literature and
the RCPSP literature in terms of notation and classifi-
cation. Indeed, both problems have so many common-

alities that one may be converted to the other with ease
(both are NP-hard in nature). Due to these commonal-
ities, notation and heuristics developed for one can eas-
ily be adapted for the other. Brucker et al. [7] also try
to form a standard structural base to maintain future
research within a coherent literature.

Methods

The surveys by Herroelen et al. [16] and Kolisch and
Padman [25] provide detailed descriptions of the char-
acteristics, representations and classification schemes
for the solution approaches proposed for the RCPSP.
Bouleimen and Lecocq [6] group the suggested solution
methods into three, as follows:
1. priority rules ([4,12,21,22,26]);
2. exact methods ([8,10,11,28]); and
3. metaheuristics such as tabu search ([2,3,31]) ge-

netic algorithms ([1,13,20]), and simulated anneal-
ing method ([5,6]).
Brucker et al. [7] claim that the first heuristic meth-

ods are the priority-rule based scheduling methods. In
these methods, the main idea is extending a partially
generated schedule by stepwise insertions of new ac-
tivities either in sequential or parallel order. At each
step, a set of feasible nodes for insertion is generated
based on starting time constraints, priority constraints,
or other resource constraints. The selection of the next
activity for insertion (from the decision set) is based on
a priority assessment mechanism, usually specific to the
problem type and objectives. Brucker et al. [7] empha-
size the advantage of priority-based heuristics as being
intuitive, easy to implement and fast in computational
effort. However, a shortcoming of these methods is that
they do not excel with respect to the average deviation
from the optimal objective function value. Brucker et
al. [7] also point out that recent effort has shifted to
exact methods, local search [32] and meta-heuristics.
They also provide an overview of computational results
by reporting the size of the problems solved and giving
details about computational specifications.

Among the exact algorithms proposed for the
RCPSP, most promising progress has been attained us-
ing the branch-and-bound mechanism. Herroelen et
al. [16] highlight seven points in the conclusion of
their review on usage of branch-and-bound methods
for solving the RCPSP. They comment that those seven
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points reveal a number of desirable attributes of an ef-
ficient optimal solution procedure for the RCPSP. It is
also added that the seven points constitute the very ba-
sis of computational efficiency of a method they intro-
duce for the RCPSP. Herroelen et al. [16] and Icmeli et
al. [19] list instances of exact applications from the lit-
erature while providing an extensive review of solution
methods used for different versions of RCPSP.

Kolisch and Padman [25] cluster heuristic ap-
proaches for the RCPSP with makespan minimization
objective basically to four different solutions metho-
dologies: (1) priority-rule based scheduling, (2) trun-
cated branch-and-bound, (3) disjunctive arc con-
cepts, and (4) meta-heuristic techniques. However, for
their efficiency, robustness and improvement potential,
heuristic algorithms and meta-heuristic approaches
(rather than exact algorithms) will be addressed.

Meta-heuristic techniques for solving combinato-
rial optimization problems have emerged in recent
years. Kolisch and Padman [25] address that all heuris-
tic approaches encode the solution as a list with length
equal the number of jobs. The generated list can
be mapped into a schedule using priority-based ap-
proaches. For a detailed study in encoding schemes one
may refer to Kolisch and Hartmann [24].

In the procedure of Sampson and Weiss [32] each
element of the generated list is an integer. In their
scheduling mechanism, each element starts at the max-
imum of the completion times of its immediate prede-
cessors plus a specific integer value. This ensures fea-
sibility in the time domain. To prevent excess usage of
renewable resources they also add a penalizing mecha-
nism.

Hartmann [14], Leon and Ramamoorthy [27],
Naphade et al. [29], Lee and Kim [26], Cho and Kim [9],
and Kohlmorgen et al. [20] basically encode the solu-
tion as a list of numbers that assigns each task a priority
value. By using these priority values within a schedule-
generating scheme, one obtains a feasible schedule and
the associated objective function value. This encod-
ing has the potential to be applied to meta-heuristics
such as simulated annealing, tabu search and genetic
algorithms.

Baar et al. [3], Bouleimen and Lecocq [6], Hart-
mann [13], and Pinson et al. [31] use an ‘activity list’
where a schedule is generated by scheduling the activ-
ities in the order prescribed by the list. Baar et al. [3]

use two different neighborhood search mechanisms for
a tabu-search procedure. The first one encodes a solu-
tion as an activity list which is mapped to a schedule
with the serial scheduling scheme. The neighborhood
is defined as all activity lists which can be reached by
shifting a resource-critical job to a new position. The
second neighborhood builds up on the exact solution
procedure of Brucker et al. [8]. Essentially, activity pairs
are either forced or let to be processed in parallel via
the so called ‘parallelity relations’. For a fixed paral-
lelity relation a schedule is obtained by forward recur-
sion. Bouleimen and Lecocq [6] use simulated anneal-
ing together with a shift operator. Hartmann [13] uses
a genetic algorithm with two-point crossover. Pinson
et al. [31] propose a tabu-search with pair wise inter-
change and shift within a neighborhood.

An alternative objective function for the RCPSP
is to maximize the net present value of the project.
Kolisch and Padman [25] provide a classification of
heuristics developed for the RCPSP. They group heuris-
tics into three categories: (1) optimization guided,
(2) parameter based, and (3) meta-heuristic ap-
proaches.

Icmeli and Erenguc [18] apply a tabu-search pro-
cedure to a starting feasible solution generated using
a simple, single-pass algorithm. They improve the ini-
tial solution over several iterations by moving each ac-
tivity one time unit early or late from its current com-
pletion time without violating the earliest and latest
completion time constraints for the activity. They also
test the usage of long time memory concept in their
algorithm. The computational results are found to be
both efficient and close to optimal.

Zhu and Padman [33,34] introduce a notion of re-
placing single pass complex optimization-based heuris-
tics with a blend of multiple but simple heuristics. They
report superior performance of their method to other
works employing unique but more complex heuris-
tics. In their initial work [33], they utilize a multi-
agent based approach with six simple rules used in
random order to exploit changing conditions of the
project environment. In their latter work [34], they use
distributed computation concepts through the use of
an Asynchronous Team (A-team) approach. This ap-
proach facilitates cooperation of multiple heuristic al-
gorithms so that together they produce better results
than if they were acting alone.
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Kolisch and Hartmann [24] provide an updated
and extended version of their previous [23] review
on solution methods for project scheduling problems.
They review existing solution methods under prior-
ity based rules, classical metaheuristics, non-standard
metaheuristics, and other heuristics. They test different
algorithms they picked from the literature on problem
sets generated and report average deviation from criti-
cal path lower bound.

Conclusion

In this study, the reader is provided with a brief in-
troduction to the RCPSP and supplied with most re-
cent improvements in solution mechanisms based on
heuristics. With the potential of providing high quality
solutions within reasonable time frames, heuristics and
meta-heuristics seem to be one step ahead of the exact
algorithms. Thus, this work aims to focus its inquiry
domain within the meta-heuristics field. While trying
to keep the content brief, the reader is provided with
guides to elaborate and most cited references.
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Stochastic programming is the science that offers solu-
tions for problems in connection with stochastic sys-
tems, where the resulting numerical problem to be
solved is a mathematical programming problem.When
formulating a stochastic programming problem, in
most cases we start from a deterministic mathematical
programming problem that we call base problem or un-
derlying deterministic problem. Then, observing that
some of the parameters in it are random, we formulate
another decision problem, the stochastic programming
problem, by taking into account the probability distri-
bution of the random variables involved.

Any stochastic programming problem formulation
depends on a decision-observation scheme that tells us
in what order decisions and observations follow each
other. If this scheme is: decision making on the system
design or control variables (usually contained in the de-
cision vector x), observation of the random variables
influencing the system performance, then the model is
called static. If there is at least one observation of ran-
dom variables followed by a decision making, then the
model is called dynamic. From another point of view,
a stochastic programming problem (static or dynamic)
may contain reliability provision or allows for the vio-
lation of the constraints with some penalty that is in-
cluded into the objective function. The reliability pro-
vision typically manifests itself in the use of probabilis-
tic constraint(s), where we prescribe that the random
constraint(s) should hold (when the random variables
realize and can be observed) with prescribed probabil-
ity (probabilities). The first type of stochastic program-
ming model is called probabilistic constrained model
while the second type is called recourse model. The two
model construction principles can be used simultane-
ously in a hybrid model. The use of probabilistic con-
straints is an old statistical decision principle. For ex-
ample, A. Wald used it in the sequential analysis con-
text [6]. Its combined use with mathematical program-
ming, however, appeared first in [1]. The general form
of a static probabilistic constrained model has the form:
(
min h(x)
s.t. h0(x) � 0; : : : ; hm(x) � 0;
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where h, h1, . . . , hm are some functions of x 2 Rn,

h0(x) D P
�
g1(x; �) � 0; : : : ; gr(x; �) � 0

�
� p;

� 2 Rq is a random vector, g1, . . . , gr are functions in
Rn+q and p is a prescribed probability. In practice, p is
chosen near 1, e. g., p = 0.9, 0.95, 0.99.

In the simplest case gi(x, �) = Tix � yi, i = 1, . . . , r,
where Ti is the ith row of an r × n matrix T and h, h1,
. . . , hm are linear functions. This model can be written
as
8̂
<̂
ˆ̂:

min c>x
s.t. Ax � b; x � 0;

P(Tx � �) � p:

The probabilistic constraints in the above models are
joint constraints. Sometimes instead of P(Tx � �) �
p, the individual probabilistic constraints P(Tix � � i)
� pi, i = 1, . . . , r, are used. This was the case in the
originating paper [1]. Joint probabilistic constraint was
first used by L.B. Miller and H. Wagner [2]. They as-
sumed, however, that in P(Tx � �) the components
of the random vector � are stochastically independent.
General probabilistic constrained stochastic program-
ming models have been formulated in [3,4].

A related model construction contains maximiza-
tion of a probability subject to some constraints. Pro-
gramming under probabilistic constraint and maxi-
mizing a probability under constraints have many ap-
plications in many engineering (power systems, wa-
ter resources, telecommunication, engineering struc-
tures, etc.) and economic (insurance, finance, economic
planning, etc.) problems. For the mathematical theory,
solution techniques and applications of these models,
see [5].
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Given the constraints gi(x, �)� 0, i = 1, . . . , r, where � is
a random vector, one way to create part of a stochastic
programming problem, based on them, is to introduce
the constraints involving conditional expectations:

gi (t) D Efgi (x; �)jgi (x; �) < 0g � di ;
i D 1; : : : ; r ;

where di, i = 1, . . . , r, are some bounds chosen by our-
selves. In the simplest and from the practical point of
view most important case gi(x, �) = Tix � yi, where Ti

is the ith row of a matrix. In this case the above con-
straints take the form:

gi (Tix) D Ef�i � Tixj�i � Tix > 0g � di ; i D 1; : : : ; r:

The practical meaning of these constraints is that vio-
lations of the stochastic constraints Tix � � i, i = 1, . . . ,
r, are allowed but the average magnitude of violation,

given that violation occurs, is bounded from above, in
each constraint. If, e. g., Tix � � i means in a diet prob-
lem that the meal composition should satisfy the de-
mand for the ith nutrient in a population (where the
randomness of the nutrient demand is due to the in-
homogeneous nature of the population), then E{� i �
Tix|� i � Tix > 0} is the average unsatisfied demand for
nutrient i, among those whose demands are not satis-
fied. Constraints of this type have been introduced first
in [2]; see also [3]. The conditional expectation con-
straint is closely related to the expected residual lifetime
in reliability theory or total remaining life in insurance,
these being defined as g(t) = E{� � t|� � t > 0}, in con-
nection with the random lifetime �. It is well-known
(see, e. g., [3]) that if � has continuous distribution with
logconcave probability distribution function, then g(t)
is a decreasing function. Using this fact, we can con-
vert the conditional expectation constraints into linear
ones, provided that � i has continuous distribution with
logconcave probability distribution function, and gi(x,
y) = Tix � yi, for every i = 1, . . . , r. The equivalent con-
straints are:

Tix � g�1i (di ); i D 1; : : : ; r:

A closely related stochastic programming constraint
formulation, based on the stochastic constraints Tix �
� i � 0, i = 1, . . . , r, provides us with the following:

Ef�i � Tixj�i � Tix > 0gP(�i � Tix > 0) � di ;

i D 1; : : : ; r :

These are equivalent to

li (Ti ; x) D
Z 1
TIx

(1 � Fi (z)) dz � di ;

i D 1; : : : ; r ;

where Fi(z) is the distribution function of the random
variable � i, i = 1, . . . , r. The new constraints are called
integrated probabilistic constraints and have been in-
troduced in [1]. In the above-mentioned diet problem
these constraints mean that the average unsatisfied de-
mand is taken in the whole population and is limited
form above, in each nutrient.

The advantage of the integrated probabilistic con-
straints is that the functions li, i = 1, . . . , r, are decreas-
ing, regardless of the type of probability distributions
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involved, and the constraints are equivalent to

Tix � l�1i (di); i D 1; : : : ; r:
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Statistical classification is used when it is of interest to
partition a set of subjects or observations into groups or
categories, based on observed attributes that are associ-
ated with each of the subjects. For example, a lending
institution may wish to partition a set of loan applicants
into one of the two categories of probable payers and
defaulters, based on observed characteristics for the ap-
plicants. The characteristics might include: size of the
loan requested, total available income, total amount of
credit available to the applicant at other sources, num-
ber of years with current employer, and others.

To give a formal definition to the problem, there are
n subjects to be partitioned into k categories, based on
m different observed characteristics. The proper cate-
gory of classification is assumed to be known for each
of these subjects, and Xij denotes the measured value



3712 S Statistical Classification: Optimization Approaches

of characteristic j for subject i. A classification function
is to be obtained for each category of classification to
represent the strength of association of any subject with
that category. Let Fa(Xi�) denote the classification func-
tion for a given category a with 1� a� k, for any given
subject, say for subject i. We assume a linear form for
Fa(Xi�) and

Fa(Xi �) D ca0 C
mX
jD1

caj Xi j:

The n known observations are used as a training set to
obtain coefficients for the classification functions that
accurately model the relationship between the strength
of association of the classification functions and the
actual group membership for the given observations.
These functions are then used in the future to classify
subjects for which the proper category is not known,
and for which a prediction of category membership is
being sought. In particular, a future observation, with
associated measured values for Xijs, will be predicted
to be a member of category a when Fa(Xi�) > Fb(Xi�),
for all 1 � b � k with b 6D a. R.A. Fisher [1] and
C.A.B. Smith [3] developed classical statistical tech-
niques to approach this problem, with standard as-
sumptions about the distributions of the Xijs.

More recently, optimization approaches have been
used to develop techniques to obtain coefficients for
the classification functions that directly maximize the
number of correct classifications in the training set.
A. Stam [4] presents an exhaustive survey of most of
the early work in this area. Most of these approaches
are based on mathematical programming techniques.
These approaches are of interest since they will maxi-
mize the number of correct classifications in the train-
ing set, which standard statistical approaches will not
necessar- ily do. In addition, the mathematical pro-
gramming techniques are very useful when standard
statistical assumptions about the distributions of Xijs
are not valid.

W.V. Gehrlein [2] presents elementary mathemati-
cal programming formulations of the generalized clas-
sification problem to obtain classification functions that
directly maximize the number of correct classifications
in the training set. The primary variables in these for-
mulations are the given cat coefficients that should be
used in the classification functions.

Each of the observations in the training set will have
a binary (0–1) variable, Ii, associated with it, such that
observation i will be correctly categorized when Ii = 0
and observation i will be incorrectly categorized when
Ii = 1. The objective function is given by

Minimize
nX

iD1

Ii :

There are k � 1 constraints that are associated with
the categorization of each observation. Observation i is
known to be a member of some category, say a. Then
for each b with 1� b� k and b 6D a there is a constraint
of the form

ca0 C
mX
jD1

caj Xi j � cb0 �
mX
jD1

cbj Xi j CMIi � e;

in whichM is a very large number and e is a very small
number. The values of M and e remain the same in all
constraints. By the nature of M and e, this constraint
will be met trivially if Ii = 1, and we must have Fa(Xi�) >
Fb(Xi�) if Ii = 0.

It is also possible to develop a classification pro-
cedure that has only one classification function. The
category of group membership is then determined by
where the value of the computed classification func-
tion value falls on the number line. That is, the number
line is partitioned into k segments, with each of the seg-
ments corresponding to an associated group member-
ship. The line segments are established for each group,
say a, with an upper limit ULa and a lower limit LLa.
As above, a binary variable, Ii, is associated with each
observation such that observation i is correctly catego-
rized when Ii = 0 and observation i will be incorrectly
categorized when Ii = 1. The objective function remains
the same as above. With this formulation there are only
two constraints that are associated with the categoriza-
tion of each observation. Observation i is known to be
a member of some category, say a, and the associated
constraints are of the form

ca0 C
mX
jD1

caj Xi j �MIi � ULa;

ca0 C
mX
jD1

caj Xi j CMIi � LLa:

As above,M is a very large number, and e will be a very
small number. These constraints will be met trivially if
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Ii = 1, and we must have LL a � Fa(Xi�) � ULa when-
ever Ii = 0. Additional constraints are needed to ensure
a logical consistency of the line segment partition. For
each a with 1� a � k, we need a constraint of the form

ULa � LLa � e:

To be certain that there is no overlap of the line seg-
ments, each combination of groups, say a and b, has
two binary variables Iab and Iba defined for them, with
associated constraints of the form

LLa �ULbCMIab � e;

LLb �ULaCMIba � e;
IabC Iba D 1:

Extensions of these elementary formulations of opti-
mization techniques go in several different directions.
A particularly useful variation deals with the notion
of minimizing the total cost of misclassification, when
there are different costs or penalties that are associ-
ated with the different ways in which a subject could
be incorrectly classified. Multiple stage classification
schemes are also considered, in which a subject is ini-
tially either placed in a category with existing informa-
tion, or no classification is made. If a classification is
not made in the first stage, then additional information
is used to make a classification in a second stage. In ad-
dition, specialized heuristic techniques have been de-
veloped to obtain solutions to these mathematical pro-
gramming formulations in an efficient manner, when
the number of possible categories of classification is re-
stricted. Much of the current work on these extensions
is given in [5].
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Introduction

This article considers the application of the notion of
statistical convergence in turnpike theory. The first re-
sults have been obtained recently [14,15,19]. We briefly
discuss the importance of this conjunction, present
some results obtained and, finally, we formulate a chal-
lenging problem for future investigations.

We will consider discrete dynamical systems. Tra-
jectories of these systems are some sequences of real
numbers. Turnpike property, in a simple case, states
that there is a certain stationary point that attracts all
optimal trajectories not depending on the initial state.
In other words, all optimal trajectories converge to this
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stationary point. We can say that any optimal trajec-
tory spends “almost” all time in some "-neighborhood
of that point. The term “almost” in this case means that
only a finite number of elements of optimal trajectory
may remain outside the "-neighborhood of that point
(" is any small number).

It turns out that, for some practical problems this
property does not hold. The relaxation of the term “al-
most” might be helpful to extend the class of problems
that the turnpike property holds. One such a relaxation
is the use of statistical convergence instead of an or-
dinary convergence. In this case, an infinite number
of elements of optimal trajectory may remain outside
the "-neighborhood of a stationary point; however, the
number of these elements in comparison with the num-
ber of elements in the "-neighborhood is so small that
we can say the optimal trajectory “almost” remains in
this neighborhood.

This article adopts the notion of statistical conver-
gence to describe the turnpike property.

Turnpike Theory

Turnpike theory studies asymptotical behavior (often
stability) of optimal trajectories of dynamical systems.
It has many applications in economics and engineering.
We refer to [8,16,18,25] for more detailed information
about this theory and its various applications.

The first result in this area was obtained by J. von
Neumann, in 1945. However, the main meaning of this
result that led to turnpike property was discovered by
Paul A. Samuelson, in 1948–1949, who also introduced
this terminology. A clearer description of this property
was provided by Dorfman et al. [3] in the chapter “Ef-
ficient Programs of Capital Accumulation” of Linear
Programming and Economic Analysis. The following is
the famous quote from [3], p. 331, that describes the
meaning of the turnpike property:

“Thus in this unexpected way, we have found a real
normative significance for steady growth – not steady
growth in general, but maximal von Neumann growth.
It is, in a sense, the single most effective way for the sys-
tem to grow, so that if we are planning long-run growth,
no matter where we start and where we desire to end up
it will pay in the intermediate stages to get into a growth
phase of this kind. It is exactly like a turnpike paralleled
by a network of minor roads. There is a fastest route

between any two points; and if the origin and destina-
tion are close together and far from the turnpike, the best
route may not touch the turnpike. But if origin and des-
tination are far enough apart, it will always pay to get
on to the turnpike and cover distance at the best rate of
travel, even if this means adding a little mileage at either
end. The best intermediate capital configuration is one
which will grow most rapidly, even if it is not the desired
one, it is temporarily optimal”.

After this book, theorems about the asymptotic be-
havior of optimal (or efficient) trajectories of dynamical
systems are called “turnpike theorems.” Asymptotic be-
havior of optimal trajectories may be described in dif-
ferent ways.

In this article, we consider trajectories that are se-
quences of numbers from Rm . The turnpike property
in this case can be formulated as a convergence of opti-
mal trajectories to some stationary point. We reformu-
late this property using statistical convergence instead
of an ordinary convergence.

Statistical Cluster Points
and Statistical Convergence

The idea of statistical convergence was introduced by
Steinhaus [23] and also independently by Fast [4] and
Buck [1] for sequences of real and complex numbers.
Later, this notion was developed by Salat [22], Mad-
dox [7], Connor [2], Fridy [5,6] and others.

Fridy [6] introduced the notion of a statistical limit
point and a statistical cluster point and gave some prop-
erties of a set of statistical limit and cluster points. In
particular, it was shown that the set of statistical cluster
points of a bounded sequence is not empty; moreover,
if this set consists of one point, then the sequence is sta-
tistically convergent to this point. Because of this prop-
erty, the notion of statistical cluster points, and, conse-
quently, the statistical convergence, became a suitable
tool that could be used in turnpike theory.

First we present some notations. We denote by jAj
the cardinality of a subset A � f1; 2; : : : g. Consider
a sequence (xk), where xk 2 Rm ; k D 1; 2; : : :

Definition 1 The sequence (xk) is said to be statisti-
cally convergent to x� 2 Rm if for every " > 0

lim sup
n!1

1
n
jfk � n : jjxk � x�jj � "gj D 0 :
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We use the notation st � limk!1xk D x� in this case.

Definition 2 � 2 Rm is said to be a cluster point of
sequence (xk) if for every " > 0

lim sup
n!1

1
n
jfk � n : jjxk � �jj < "gj > 0 :

Given a sequence x D (xk), we denote by � x the set of
all statistical cluster points. If this set consists of one
point, then the sequence is statistically convergent to
that point [6].

The set of ordinary limit points is defined as

Lx Df� 2 Rm : there exists a subsequence
xkn ! � as kn !1g :

It is clear that if x is a bounded sequence, then Lx is
a nonempty compact set and for every " > 0 there exists
a number N" < C1 such that

�(Lx ; xk) < " for every k � N" :

Here �(A; �) D miny2A jjy � �jj is the distance from �

to the closed set A.
It turns out that the set � x possesses a similar prop-

erty. The following is a very useful and important result
proved in [6] for the case m D 1. It is not difficult to
generalize it for m > 1.

Lemma 1. Assume that x D (xk) is a bounded se-
quence. Then:
1. There exists a sequence y D (yk) such that
� �x D Lx ,
� limn!1

1
n jfk � n : xk ¤ ykgj D 0.

2. The set of statistical cluster points � x is not empty
and compact.

3. limn!1
1
n jfk � n : �(�x ; xk) < "gj D 0 for all

" > 0.

Let ˛ D (˛k) be a sequence of bounded real numbers
and �˛ be the set of statistical cluster points on this se-
quence. From Lemma 1. we know that the set �˛ has
a minimal element. We denote by C � lim infk!1 ˛k
the minimal element in �˛ .

This notation is similar to the notion of
lim infk!1 ˛k being equal to a minimal number of
the set of ordinary limit points L˛ .

Let g : Rm ! R be a continuous function and
x D (xk), xk 2 Rm , be a given bounded sequence. Then

the sequence of real numbers � D (g(xk)) is bounded.
We define the following functional

J(x) D C � lim inf
k!1

g(xk)
:
D min�� (1)

as a minimal number of �� . We have the follow-
ing useful representation: given any bounded sequence
x D (xk)

C � lim inf
k!1

g(xk) D min
�2�x

g(�) : (2)

Below we consider two problems where the turn-
pike theorems are formulated in terms of statistical con-
vergence. For details see [14,15,19].

Problem 1

Consider the problem

xkC1 2 a(xk)C xk; k D 1; 2; : : : ; (3)

J(x) D C � lim inf
k!1

g(xk)! max : (4)

We assume that set-valued mapping a : Rm !

˘c(Rm) is continuous in the Hausdorff metric and
g : Rm ! R is a continuous function. Here ˘c(Rm)
stands for the set of all compact subsets of Rm .

A sequence x D (xk) satisfying (3) will be called
a trajectory of this system. From Lemma 1. we know
that the functional (4) is well defined for bounded tra-
jectories.

Definition 3 � 2 Rm is called a stationary point if
0 2 a(�).

Note that if � is a stationary point, then the sequence
(xk), where xk D � for all k D 1; 2; : : :, is a stationary
trajectory to system (3). Throughout this article, we de-
note the set of stationary points byM:

M D fx : 0 2 a(x)g :

The set M may be empty or unbounded. If it is not
empty, then it is a closed set as mapping a is contin-
uous. Denote

J� D sup
�2M

g(�) :

Definition 4 Trajectory x D (xk) is called optimal if
J(x) � J(x̃) holds for all trajectories x̃ starting from the
same initial state: x̃0 D x0.
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We use the notation a(A) D [x2Aa(x). The following
is the main condition imposed on mapping a.

Condition A: Given any set A � Rm

if 0 2 co a(A) then 0 2 a(co A) : (5)

If mapping a has a convex graph then this condition
holds. The main results are presented in the following
two theorems.

Theorem 1 Assume that Condition A holds and g is
concave. Then for every bounded trajectory x D (xk) to
system (1) the inequality J(x(�)) � J� is satisfied.

Now assume that the setM is convex and bounded, and
function g is strictly concave. Then there is a unique
point �� such that g(��) D J�.

Condition B: The set a(��) is a strictly convex
body; that is,

R
a(��) ¤ ;, and for every two points

�1; �2 2 @a(��) and for all � 2 (0; 1) the following holds

��1 C (1 � �)�2 2
Z

a(��) :

Here @(�) and
R
(�) stand for the boundary and the

interior of a set, respectively.

Theorem 2 Assume that M is convex and bounded,
function g is strictly concave and Conditions A and
B hold. If a bounded trajectory x D (xk) such that
J(x) D J�, then �x D f�

�g; that is, trajectory x is sta-
tistically convergent to �� : st � limk!1 xk D ��.

If J(x) D J� then from the first theorem it follows that
trajectory x D (xk) is optimal. The second theorem
provides the turnpike property: all optimal trajectories
satisfying J(x) D J� statistically converge to ��.

The proof of these theorems based on techniques
developed for continuous systems in [9,10,11,12].
These studies did not use an assumption similar to
Condition B. The following example shows that Condi-
tion B is necessary when dealing with discrete systems.

Example 1. Let mapping a and function g be defined
on the box given by f(x1; x2) : jxi j � 1; i D 1; 2g as fol-
lows

a(x1; x2) D f(y1; y2) : y1 D x2(x2 � 1);

y2 D [�2x2; 1 � 2x2]g ;

g D �x21 � (1 � x2)2 :

We have

M D f(x1; x2) : jx1j � 1; x2 D 0g ;

J� D max
�2M

g(�) D g(0; 0) D �1 ; �� D (0; 0) :

It is not difficult to see that all the conditions of The-
orem 2 hold except Condition B. Consider the se-
quence x D (xk) where xk D (0; 0) for k D 1; 3; 5; : : :,
and xk D (0; 1) for k D 2; 4; 6; : : : It is a trajectory to
(3) because (0; 1) 2 a(0; 0) and (0;�1) 2 a(0; 1).More-
over, the set �x D f(0; 0); (0; 1)g consists of two points.
We have

J(x) D min
�2�x
D �1 D J� ;

however xk is not statistically convergent to
�� : st-limk!1xk ¤ ��.

Problem 2

Consider the problem

xkC1 D f (xk; uk); x1 D �0; uk 2 U ; (6)

J(x) D C � lim inf
k!1

g(xk)! max : (7)

Here �0 is a fixed initial point, function f (x; u) :
Rm �Rr ! Rm is continuous, U � Rr is a compact
set and g : Rm ! R is a continuous function.

The pair (u; x) is called a process if the sequences
x D (xk) and u D (uk) satisfy (6) for all k D 1; 2; : : :;
x D (xk) is called a trajectory and u D (uk) is called
a control.

We assume that there is a bounded closed set
C � Rm such that xk 2 C for all trajectories; that is, we
assume that trajectories are uniformly bounded.

Definition 5 � 2 Rm is called a stationary point if
there exists u 2 U such that f (�; u) D �.

We denote the set of stationary points by M. It is clear
thatM is a closed set.

We formulate the main conditions as follows:
Condition 1. Function g has a unique maximizer on

setM denoted by �� : max�2M g(�) D g(��).
Condition 2. There exists a process (u�; x�) such

that x�k ! �� as k!1.
Denote B D f� 2 C : g(�) � g(��)g.
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Condition 3.There exists a vector p 2 Rm such that
p f (x; u) < p x for all x 2 B, x ¤ �� and u 2 U .

The turnpike property is formulated in the follow-
ing theorem.

Theorem 3 Let Conditions 1–3 hold and (u, x) be an
optimal process in problem (6) and (7). Then
1. �x D f�

�g; that is, st � limk!1 xk D ��.
2. If u� 2 U is a unique point in U such that

f (��; u�) D ��, then we also have st�limk!1 uk D

u�.

In this theorem, turnpike property is established not
only for optimal trajectories but also for optimal con-
trols. In both cases this property is satisfied in terms of
statistical convergence.

A Challenging Problem

The functional in the above problems is defined by sta-
tistical cluster points (see (4)). The following functional
would be of great interest in terms of turnpike theory
and statistical convergence

J(x) D lim
n!1

1
n

nX
kD1

g(xk)! max : (8)

In the literature on turnpike theory many functional
have been considered, including terminal function-
als, integral (summation) functionals with and without
discount factors [3,8,9,10,11,12,13,16,18,20,21,24,25].
They usually are defined by utility functions (g in our
case).

The functional (8) also has a useful meaning: it aims
to maximize the limit of average utilities. However, this
functional is not considered in the literature; the reason
is very simple – for functional (8) the turnpike property
in terms of (ordinary) convergence is in order not true!

We explain how this may happen in the following
example.

Example 2. Consider the system xkC1 2 a(xk),
k D 1; 2; : : :, where xk 2 (�1;C1). We only require
that sets a(0) and a(1) contain at least points 0 and
1: f0; 1g 2 a(0); f0; 1g 2 a(1). Function g is defined as
g(x) D �x2.

It is clear that a stationary trajectory ��k D 0; k D 1;
2; : : :, is an optimal trajectory and J� D 0. For any other
trajectory x̃ D (x̃k) we have J(x̃) � J�.

Consider a sequence x D (xk), where xk D 1 for all
k D i2; i D 1; 2; : : :, and xk D 0 otherwise. We know
that

lim
k!1

xk does not exist; however, st� lim
k!1

xk D 0 :

It is easy to see that this sequence is a trajectory to the
system. Moreover, it is not difficult to show that

1
n

nX
kD1

g(xk)! 0 as n!1 :

Therefore, x is an optimal trajectory and it does not
converge to 0; meanwhile, the statistical convergence to
0 is valid.

This example shows that the turnpike property for
functional (8) should use something different from or-
dinary convergence. We believe that the statistical con-
vergence will be suitable for this aim.

To prove the turnpike property, in terms of statisti-
cal convergence, for a wide range of systems with func-
tional (8) would be a challenging problem.

See also

� Turnpike Theory: Stability of Optimal Trajectories
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Introduction

The careful observation of protein data banks [6]
has been one of the motivations for modelling the
biomolecular structure. The present development of
this subject led to the conviction that the placement of
some atoms in the structure of a protein is the same as
that of Steiner points of a minimal Steiner Tree [3,4].
The experimental internal radius of a DNA molecule
and a molecular aggregate like the tobacco mosaic virus
as well as the pitch of the helices in a helical model of
the placement of their atoms have also been in good
agreement with this Steiner modelling. It seems that
there is a deep correlation between the potential en-
ergy of the molecular configuration and the length of
the Steiner Tree. The search for the minima of the en-
ergy could then be conducted by solving the associated
Steiner problem. Even molecular clusters can be stud-
ied with this approach by starting from an existing cor-
relation of their potential energies with the length of
a generic Fermat problem. It can be thought that Na-
ture is following mathematical principles of local en-
ergy minimization in order to build the present form of
these structures and to keep them looking for stability
through unstable stages of molecular evolution [5].

The Steiner Ratio of aMetric Manifold

We consider a finite set of points A in a metric man-
ifold M. Let us consider the subsets of A such that
each pair of points on them could be connected by an
edge of minimal length of a subset. These edges are
geodesic arcs of the manifold M. A tree is a collection
of points and their connecting edges. A tree that con-
nects all the points of a subset is a spanning tree (SP)
of this subset. Among all the possible STs s of a set A
with length lSP(s;A), there is at least one whose over-
all length is minimum. This will be the minimal SP of
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set A, MST(A). Its length will be given by

lMST(A) D min
(s�trees)

lSP(s;A) : (1)

If we allow for the introduction of additional points
of the manifold M on each set A, we get SPs of smaller
overall length. A Steiner tree (ST) is obtained with the
additional requirement of three tangent lines to only
three geodesic edgesmeeting at an angle of 120° on each
additional (Steiner) point. Among all these Steiner trees
t of a set A with length lST(t;A), there is one whose
overall length is minimum. This is called the Steiner
minimal tree of set A, SMT(A). Its length is

lSMT(A) D min
(t�trees)

lST(t;A) : (2)

The minimum spanning tree MST(A) is the worst
approximation to the Steiner minimal tree, SMT(A), or
the “worst cut” for each set A � M. A common mea-
sure of this approximation is the Steiner ratio of the set
A � M

�(A) D
lSMT(A)

lMST(A)
: (3)

The Steiner ratio �n of the manifold M is then de-
fined as the infimum of all values �(A) for all sets A, or

�n D inf
A�M

�(A) : (4)

We henceforth adopt the three-dimensional Eu-
clidean space as the metric manifoldM.

Evenly Spaced Consecutive Points –
Spanning and Steiner Trees

For each set A of points inR3 we suppose a continuous
and differentiable curve to pass by all these points. If the
points along the curve are evenly spaced in terms of the
Euclidean metric, we have for their position vectors

kEr jC2 � Er jC1k D kEr jC1 � Er jk; (5)

where k � k represents the Euclidean norm.
A convenient representation of these vectors will

be

Er j D (r(!) cos( j!); r(!) sin( j!); jh(!)) ;

0 � j � n � 1 : (6)

The functions r(!) and h(!) are continuous and twice
differentiable.

The position vectors Er j above have an interesting
property: four of them are enough to generate all the
others, or

Er jC4 D �Er jC3 C �Er jC2 C �Er jC1 C �Er j ;

0 � j � n � 1 ; (7)

where �, �, �, � are functions to be found.
This is a well-posed problemwith a unique solution.

We write the corresponding relations for the coordi-
nates of the vectors in Eq. (7) as

( jC 4)h

D �( jC 3)hC �( jC 2)hC �( jC 1)hC � jh ;

0 � j � n � 1 (8)

and with an Argand representation in the x1 � x2

plane,

rz jC4 D � rz jC3 C � rz jC2 C � rz jC1 C � rz j ;

0 � j � n � 1 ; (9)

where

z j D (z) j D ei j! : (10)

From Eq. (9) we have

z4 � �z3 � �z2 � �z � � D 0 : (11)

We write Eq. (8) for two points j and jC l , and we get

�C � C � C � D 1 : (12)

From Eqs. (12) and (8) we can write

�C 2� C 3� C 4� D 0 : (13)

The two last equations are enough for the existence of
a double z D 1 root of Eq. (11), or

(z � 1)2(z2 C (2 � �)zC 3 � 2� � �) D 0 : (14)

For complex roots of unit modulus jzj D 1 according
to Eq. (10), we have

�2 C 4�C 4� � 8 < 0 (15)

� D 2(1C cos!) ; 0 � � � 4 : (16)
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Equations (15) and (16) lead us to write

2�C � D 2 : (17)

From Eqs. (11), (12), (13) and (17) we get

� D 2 � 2� ; � D � ; � D �1 : (18)

We can then write

Er jC4 D � Er jC3 C 2(1��)Er jC2 C� Er jC1 � � Er j : (19)

This relation will give us the motivation of thinking
about tetrahedra as the fundamental pieces of this mod-
elling. There are nT D (n � 3) tetrahedra for n points.

The values

! D !R D 
 ˙ arccos
�
2
3

�
(20)

correspond to vertices of two sequences of regu-
lar tetrahedra joined together at common faces. In
the literature, it is known usually by the name
“3-sausage” [2]. Actually, these two values correspond
to the same structure. It is itself chiral for n � 6, since
for n D 3; 4; 5 (0, 1, 2 tetrahedra) there is a two-fold
(n D 3) or a three-fold (n D 4; 5) axis of symmetry.
The structures correspond to ! and �!, with ! ¤ !R

being sequences of non-regular tetrahedra and they are
chiral themselves and chiral to each other for all n � 3.

After this digression, we go back to the problem
of constructing SPs for the set of n vertices of Eq. (5).
A first candidate is the sequence itself. Its total length is
given by

lSP D (n � 1)[h2 C r2(AC 1)]1/2 ; (21)

where

A D 1 � 2 cos! : (22)

There is a necessary restriction on this spanning tree if
we require that the STs to be formed below be full STs
(n � 2 Steiner points). The smallest angle between con-
secutive edges with the points Er j of Eq. (6) as vertices
should be less than 120ı. We write

�
1
2
< cos � D �1C

r2(AC 1)2

2[h2 C r2(AC 1)]
; (23)

or

h2 < r2A(AC 1) : (24)

This is the first restriction imposed on the position vec-
tors Er j . Actually, r(!) is an arbitrary function for the
present modelling, as will be seen in the forthcoming
development.

A generalization of the last formula can be obtained
by introducing subsequences of evenly spaced but non-
consecutive points [4]. These subsequences are given
by

(Pj)m; lP jmax
: Er j; Er jCm ; Er jC2m ; : : : ;

Er jClPm ; : : : ; Er jClP jmaxm ; (25)

where (m � 1) is the number of skipped points neces-
sary to form this sequence. The indices of the subse-
quences above should be restricted by

jC lPm � n � 1 : (26)

We can write

lP jmax D

�
n � j � 1

m

�
: (27)

The square brackets [x] stand for the greatest integer
value � x.

There are m subsequences Pj, 0 � j � m � 1, and
each subsequence has (lP jmax C 1) points. We now de-
fine a new sequence by the union set of the sequences
above or

Pm D

m�1[
jD0

(Pj)m; lP jmax
: (28)

As a check of the consistency of this scheme we can
see that each sequence Pm has n points, like the original
sequence, Eq. (6). From Eq. (27) and a mathematical
identity we have

m�1X
jD0

�
lP jmax C 1

�
D mC

m�1X
jD0

�
n � j � 1

m

�

D mC n � m D n : (29)

By completeness, the scheme should also include
the original sequence of consecutive points, given by
Eq. (6). It is effectively given by P1 D (P0)1; n�1.

Each sequence Pm (Eq. 28) has an associated SP.We
shall proceed now to the calculation of its length. We
stress that the union of subsequences of the definition
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of Pm is accomplished by joining two subsequences by
an edge of consecutive points as far as the calculation of
length is concerned.

The scheme is valid for a generic set of points on
a given curve. We should write a generic Ansatz for the
coordinates of the subsequences instead of Eq. (6). We
have

Er jClPm D (r(!) cos( jC lPm); r(!) sin( jC lPm);

� ( jC lPm)h(!)) : (30)

With the prescriptions above, the length of the SP for
a sequence Pm is

l (m)
SP D [m2h2 C r2(Am C 1)]1/2

m�1X
jD0

�
n � j � 1

m

�

C (m � 1)[h2 C r2(A1 C 1)]1/2 ; (31)

where

A1 D A and Am D 1 � 2 cos(m!) : (32)

After using the mathematical identity in the last equal-
ity of Eq. (29), we get

l (m)
SP D (n � m)[m2h2 C r2(Am C 1)]1/2

C (m � 1)[h2 C r2(A1 C 1)]1/2 : (33)

There is an analogous restriction to Eq. (24) on the
angles between edges of subsequences. It is written as

m2h2 < r2Am(Am C 1) ; 8m : (34)

The length of the MST will be given by

lSP D min
(m)

n
l (m)
SP

o
: (35)

The min(m)f : : : g process above should be un-
derstood in the sense of formation of a piecewise
function by the functions corresponding to values
m D 1; 2; 3; : : :

We can apply the same scheme to Steiner points and
their connecting edges. The original sequence is

ESk D (R(!) cos k!; R(!) sin k!; kH(!)) ;

1 � k � n � 2 ; (36)

where R(!) and H(!) are also continuous and twice
differentiable functions.

We now form the subsequences

(Sk)m; lSkmax :

ESk ; ESkCm ; ESkC2m; : : : ; ESkClS m ; : : : ;
ESkClS jmaxm ;

(37)

where (m � 1) is the number of skipped points.
The restriction on the indices is

k C lSm � n � 2 ; (38)

and we have

lSkmax D

�
n � k � 2

m

�
: (39)

We also have m subsequences Sk, 1 � k � m, each
of which has (lSkmax C 1) points. We define a new se-
quence of Steiner points by the union set of the se-
quences Sk, 1 � k � m:

Sm D

m[
kD1

(Sk)m; lSkmax : (40)

These new sequences have (n � 2) points each. This can
be checked by using Eq. (38), or

mX
kD1

�
lSkmax C 1

�
D mC

mX
kD1

�
n � k � 2

m

�

D mC n � m � 2 D n � 2 :

(41)

The scheme includes trivially the original sequence of
Eq. (36). It is given by S1 D (S1)1; n�1.

The coordinates of these subsequences should be
written generically as

ESkClS m D (Rm(!) cos(k C lSm); Rm(!)

� sin(k C lSm); (k C lSm)Hm(!)) ; (42)

where Rm(!) and Hm(!) are continuous and twice dif-
ferentiable functions.

Steiner Trees

The ST for each subsequence will be organized as
follows: first the points ESkClS m of the subsequence
(Sk)m; lSkmax for a given m will be connected consecu-
tively to each other. The first of these points, ESkCm , will
be connected to the first two points, Er j and Er jCm , of the
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subsequence (Pj)m; lP jmax
. The last point, SkClSkmaxm , will

be connected to the last two points, Er jC(l p jmax�1)m and

Er jCl p jmaxm . All the intermediary points ESkClSm will be
connected to the intermediary points r jCl pm , for j D k.
This means that we assume a path topology [2] for each
subsequence.

The requirement of edges meeting at an angle of
120° on each Steiner point leads to the following rela-
tions:

Hm D h ; m2H2
m D R2

mAm(AmC 1) ; 8m : (43)

From Eqs. (34) and (43) we have trivially,

Rm < r : (44)

From Eq. (44) the length of the ST corresponding to
the sequences Pm and Sm and a path topology will be
given by

l (m)
ST D (r � Rm)

 
mC

mX
kD1

�
n � k � 2

m

�!

C
�
m2H2

m C R2
m(Am C 1)

�1/2 mX
kD1

�
n � k � 2

m

�

C 2
�
m2H2

m C (r � Rm)2 C rRm(Am C 1)
�1/2

:

(45)

From Eqs. (43) and the mathematical identity used in
Eq. (41) we write

l (m)
ST D n(r � Rm)C (n � m � 2)Rm(Am C 1)

C 2
�
(r � Rm)2 C Rm(rC RmAm)(Am C 1)

�1/2
:

(46)

Actually, we have used Eq. (43) for the two ends of
the tree. Their contribution to the length is the last term
in Eq. (46). In order to satisfy the condition of meet-
ing edges at 120° there, we need to take a special limit
Rm ! r. It is worthwhile for future modelling applica-
tions to notice that this procedure leads to the same re-
sult as the limit for l (m)

ST for large numbers n of atoms.
This is easy to see from Eq. (46).

l (m)
ST (n� 1 or Rm ! r„ ƒ‚ …

at ends

) D nrC[(n�m)Am�m]Rm :

(47)

The Steiner Ratio Function

We follow the prescription of Eq. (3) for writing an ex-
pression for the Steiner ratio function. It will be given
by

� D
min(m)

˚
nC (Am(Am C 1))�1/2

min(m) f(n � m)[Am C 1C m2(F(!))2]1/2
� � �

� � �
[(n � m)Am � m]mF(!)g

C(m � 1)[A1 C 1C (F(!))2]1/2g
(48)

where F(!) � h(!)
r(!) is a function restricted by

F(!) < min
(m)

�
1
m
[Am(Am C 1)]1/2

	
: (49)

The application to protein modelling could be done
by classifying the minimum energy values (minima
of �) of protein structures on protein data banks [6] af-
ter choosing a convenient function F(!).

For application to the Steiner ratio problem of dis-
crete mathematics, we can see that for very large set of
points (n� 1), the ratio function Eq. (48) can be writ-
ten

�(n� 1) D
min(m)

�
1C mF(!)

�
Am

AmC1

�1/2	

min(m)

n�
Am C 1C m2 (F(!))2

�1/2o :

(50)

Let the function F(!) be chosen such that the
min(m) process in the numerator of Eq. (49) is dom-
inated by the term corresponding to a fixed value of
m D m̄. The problem of Eq. (49) will then be solved by

�(!; F; m̄) D Max(m)

8̂
<
:̂

1C m̄F(!)
�

Am̄
Am̄C1

�1/2

[Am C 1C m2(F(!))2]1/2

9>=
>;
:

(51)

For m̄ D 1 the function of Eq. (50) has the global mini-
mum

!1 D 
 � arccos
2
3
; F(!1) D

p
30
9

(52)

and

�(!1; F(!1); m̄ D 1) D
1
10

(3
p
3C
p
7)

D 0:78419037337 :
(53)
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This is the value that was conjectured in the litera-
ture [2] as the best upper bound of the Steiner ratio for
three-dimensional Euclidean space.

We also report that the value m D m̄ D 1 can be se-
lected by a linear function F(!) D ˛!, which means
right circular helices for the geometrical locus of the
points Er j and ESk of our modelling. Furthermore, the
function � obtained by taking also m D m̄ D 1 in the
denominator is a convex envelope in this case.

Concluding Remarks

The successful application of the scheme introduced in
the foregoing pages reinforce the idea of studying their
consequences as well as classifying biomolecular struc-
tures in terms of associated Steiner trees. It is a geomet-
rical approach to the fundamental problem of energy
minimization of these structures, and it can shed some
light on the problem of biomolecular formation and
evolution. Some additional knowledge of protein struc-
ture [1,7] should be introduced into our analysis, like
amide planes and their twisting angles and a residual
Fermat problem already solved by Nature for the place-
ment of ˛-carbon atoms. The only information we used
was the placement of carbon and nitrogen atoms as
Steiner points. We hope that the scheme developed here
can be extended to create a useful definition of molecu-
lar chirality and a well-posed optimization problem.
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the Gilbert–Pollak conjecture on the Euclidean Steiner
ratio, the existence of better approximation, and the
existence of polynomial time approximation schemes
(PTAS), have been solved with influence in the gen-
eral theory of designs and analysis of approximation
algorithms for combinatorial optimization, and also,
many new important applications in VLSI designs, op-
tical networks, wireless communications, etc. have been
discovered and studied extensively. Those applications
usually require some modifications on classical Steiner
tree problems and hence require new techniques for
solving them. Therefore, studying various variations of
Steiner trees became an exciting activity recently. In this
article, we will review important developments in the
1990s and discuss some open problems which may mo-
tivate important developments in this century.

On the Proof of Gilbert–Pollak’s Conjecture

Given a set of points in a metric space, the problem is
finding a shortest network interconnecting the points
in the set. Such a shortest network is called a Steiner
minimum tree on the point set. The Steiner tree prob-
lem can be seen as a generalization of Fermat’s problem.
Around 1700, P. Fermat proposed a problem of finding
a point to minimize the total distance from this point to
three given points in the Euclidean plane; its solution is
exactly the Steiner minimum tree on the three points.
The general form of Steiner minimum tree problem
was proposed by C.F. Gauss [26]. However, R. Courant
and H. Robbins [27] referred to it as the Steiner prob-
lem. The popularity of their book was responsible for
bringing the Steiner tree problem to people’s attention.
Two important papers in the 1960s further laid a solid
groundwork for additional study. Z.A. Melzak [75] first
gave a finite algorithm for the Euclidean Steiner trees.
E.N. Gilbert and H.O. Pollak [52] produced an excel-
lent survey of the problem, raised many new topics in-
cluding Steiner ratio problem, and extended the prob-
lem to other metric space. Since then, more than three
hundred research papers have been written contribut-
ing to the Steiner tree problem. For an excellent survey,
see [55].

An important development on the Steiner tree
problem that took place in the beginning of the 1990s
is the proof of Gilbert–Pollak’s conjecture on the Eu-
clidean Steiner ratio [32,33]. This new development is

based on the discovery of a new approach with a new
minimax theorem.

A minimum spanning tree on a set of points is the
shortest network interconnecting the points in the set
with all edges between the points. While the Steiner tree
problem is intractable, the minimum spanning tree can
be computed pretty fast. The Steiner ratio in a met-
ric space is the largest lower bound for the ratio be-
tween lengths of a minimum Steiner tree and a min-
imum spanning tree for the same set of points in the
metric space, which is a measure of performance for the
minimum spanning tree as a polynomial time approxi-
mation of the minimum Steiner tree. Determin- ing the
Steiner ratio in each metric space is a traditional prob-
lem on Steiner trees. In 1976, F.K. Hwang [54] deter-
mined that the Steiner ratio in a rectilinear plane is 2/3.
However, it took 22 years to complete the story of deter-
mining the Steiner ratio in the Euclidean plane. In 1968,
Gilbert and Pollak conjectured that the Steiner ratio
in the Euclidean plane is

p
3/2. Through efforts made

by several authors [14,24,31,31,36,48,53,80,86,87], and
[23], the conjecture was finally proved by D.-Z. Du and
Hwang [32,33] in 1990. The significance of their proof
stems also from the potential applications of the new
approach included in the proof.

In their approach, the central part is a new minimax
theorem about minimizing the maximum value of sev-
eral concave functions over a simplex as follows.

Theorem1 (Du–Hwangminimax theorem) Let f (x) =
maxi 2 I gi(x), where I is a finite set and gi(x) is a contin-
uous, concave function in a polytope X. Then the min-
imum value of f (x) over the polytope X is achieved at
some critical point, namely, a point satisfying the follow-
ing property:
*) There exists an extreme subset Y of X such that x 2 Y

and the index set M(x) ( = {i: f (x) = gi(x)}) is maximal
over Y.

The Steiner ratio problem is first transferred to such
a minimax problem (gi(x) = (the length of a Steiner
tree)�(the Steiner ratio)�(the length of a spanning tree
with graph structure i), where x is a vector whose com-
ponents are edge-lengths of the Steiner tree) and the
minimax theorem reduces the minimax problem to the
problem of finding the minimax value of the concave
functions at critical points. Then each critical point is
transferred back to an input set of points with special
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geometric structure; it is a subset of a lattice formed by
equilateral triangles. This special structure enables us to
verify the conjecture corresponding to the nonnegative-
ness of minimax value of the concave functions.

Clearly, in order to use the minimax approach, for
each problem three questions will be addressed:
1) How do we transfer the problem to such a minimax

problem meeting the condition that the functions
are concave?

2) How do we determine the critical geometric struc-
ture?

3) How do we verify the function value on the critical
structure?

Developing techniques for answering these three ques-
tions will enable us to solve more open problems. Let us
explain it by some examples in the following.

Chung–Gilbert’s Conjecture

Steiner trees in Euclidean spaces have an application in
constructing phylogenetic trees [17]. It was also con-
jectured by Gilbert and Pollak [52] that in any Eu-
clidean space the Steiner ratio is achieved by the ver-
tex set of a regular simplex. F.R.K. Chung and Gilbert
[22] constructed a sequence of Steiner trees on regu-
lar simplices. The lengths of constructed Steiner trees
goes decreasingly to

p
3/(4 �

p
2). Although the con-

structed trees are not known to be Steiner minimum
trees, Chung and Gilbert conjectured that

p
3/(4 �

p
2)

is the best lower bound for Steiner ratios in Euclidean
spaces. Clearly, if

p
3/(4 �

p
2) is the limiting Steiner

ratio in d-dimensional Euclidean space as d goes to in-
finity, then Chung–Gilbert’s conjecture is a corollary of
Gilbert and Pollak’s general conjecture. However, this
general conjecture of Gilbert and Pollak has been dis-
proved by J.M. Smith [92] for dimension from three to
nine and by Du and Smith for dimension larger than
two. Now, interesting questions which arise in this situ-
ation are about Chung and Gilbert’s conjecture. Could
Chung–Gilbert’s conjecture also be false? If the conjec-
ture is not false, can we prove it by the minimax ap-
proach?

First, we claim that Chung–Gilbert’s conjecture
could be true. In fact, we could get rid of Gilbert–Pol-
lak’s general conjecture, and use another way to reach
the conclusion that the limiting Steiner ratio for regular
simplex is the best lower bound for Steiner ratios in Eu-

clidean spaces. To support our viewpoint, let us analyze
a possible proof of such a conclusion as follows.

Consider n points in (n� 1)-dimensional Euclidean
space. Then all of n(n � 1)/2 distances between the
n points are independent. Suppose that we could do
a similar transformation and the minimax theorem
could apply to these n points to obtain a similar result in
the proof of Gilbert–Pollak’s conjecture for Euclidean
plane, i. e. a point set with critical geometric structure
has the property that the union of all minimum span-
ning trees contains as many equilateral triangles as pos-
sible. Then such a critical structure must be a regular
simplex.

The above observation tells us two facts:
a) Chung–Gilbert’s conjecture can follow from the fol-

lowing two conjectures.

Conjecture 2 The Steiner ratio for n points in a Eu-
clidean space is not smaller than the Steiner ratio for
the vertex set of (n � 1)-dimensional regular simplex.

Conjecture 3 (Smith’s conjecture [92])
p
3/(4 �

p
2) is

the limiting Steiner ratio for simplex.

b) It may be possible to prove Conjecture 2 by the min-
imax approach if we could find the right transfor-
mation.

One may wonder why we need to find a right trans-
formation. What happens to the transformation used
in the proof of Gilbert–Pollak’s conjecture in the Eu-
clidean plane? Here, we remark that such a transfor-
mation does not work for Conjecture 2. In fact, in the
Euclidean plane, with a fixed graph structure, all edge-
lengths of a full Steiner tree can determine the set of
original points and furthermore the length of a span-
ning tree for a fixed graph structure is a convex func-
tion of the edges-lengths of the Steiner tree. However,
in Euclidean spaces of dimension more than two, edge-
lengths of a full Steiner tree are not enough to deter-
mine the set of original points. Moreover, adding other
parameters may destroy the convexity of the length of
a spanning tree as a function of the parameters.

Smith [92] showed by an exhaustive computation
that for d = 3, . . . , 7, the Steiner trees constructed by
Chung and Gilbert are actually minimum Steiner trees,
but, for d = 8, their Steiner tree is not minimum. He
also conjectured that the trees of Chung and Gilbert are
minimum if d is of the form d = 3� 2p. Conjecture 3 is
a corollary of this more specific conjecture.
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From the above, we see that proving Chung–Gil-
bert’s conjecture requires a further development of the
minimax approach.

Graham–Hwang’s Conjecture

A Steiner tree with rectilinear distance is called a rec-
tilinear Steiner tree. While rectilinear Steiner trees in
plane have many applications on CAT and VLSI, rec-
tilinear Steiner trees in high-dimensional space can be
found in biology [17,47] and optimal traffic multicas-
ting for some communication networks [13,18]. Al-
though the Steiner ratio in rectilinear plane was deter-
mined by Hwang [54] in an earlier stage of the study of
Steiner trees, there is still (as of 2000) no progress on the
Steiner ratio in rectilinear spaces by now. The Steiner
ratio in a d-dimensional rectilinear space was conjec-
tured to be d/(2d�1) by Graham and Hwang [53].
The difficulty for extending Hwang’s approach to prov-
ing Graham–Hwang’s conjecture is due to the lack of
knowledge on the full rectilinear Steiner trees in high-
dimensional spaces. (A full Steiner tree has a property
that all original points are leaves.) In fact, for a full rec-
tilinear Steiner tree in plane, all Steiner points lie on
a path. However, it is not known whether a similar re-
sult holds for full rectilinear Steiner trees in a space of
dimension more than two.

Graham–Hwang’s conjecture can be easily trans-
ferred to a minimax problem required by our minimax
approach. For example, choose lengths of all straight
segments of a Steiner tree. When the connection pat-
tern of the Steiner tree is fixed, the set of original
points can be determined by such segments-lengths,
the length of the Steiner tree is a linear function and
the length of a spanning tree is a convex function of
such segment-lengths, so that gi is a concave function
of such segment-lengths. However, for this transforma-
tion, it is hard to determine the critical structure. To
explain the difficulty, we notice that in general the crit-
ical points could exist in both the boundary and inte-
rior of the polytope. (See the minimax theorem.) In the
proof of Gilbert–Pollak’s conjecture in plane, a crucial
fact is that only interior critical points need to be con-
sidered in a contradiction argument. The critical struc-
ture of interior critical points are relatively easy to be
determined. However, for the current transformation
on Graham–Hwang’s conjecture, we have to consider

some critical points on the boundary. It requires a new
technique, either determine critical structure for such
critical points or eliminate them from our considera-
tion.

One possible idea is to combine the minimax ap-
proach and Hwang’s method. In fact, by the minimax
approach, we may get a useful condition on the set of
original points. With such a condition, the point set can
have only certain type of full Steiner trees. This may
reduce the difficulty of extending Hwang’s method to
high dimension.

The significance of developing techniques for de-
termining critical structure corresponding to critical
points on the boundary is not only for solving Graham–
Hwang’s conjecture, but also for solving some other
problems. For example, it can be immediately applied
to some packing problems. One of the typical pack-
ing problems is to find the maximum number of ob-
jects which can be put in a certain container. When the
objects are discs or spheres, the problem can be trans-
ferred to a minimax problem that meets our require-
ment. To determine such a number exactly, we have
also to deal with critical points on the boundary of the
polytope.

The Steiner Ratio in Banach Spaces

Examining the proof of Gilbert–Pollak’s conjecture in
the Euclidean plane, we observe that the proof has noth-
ing concerning the property of Euclidean norm except
the last part, verification of the conjecture on point sets
of critical structure. This means that using the minimax
approach to determine the Steiner ratio in Minkowski
plane (2-dimensional Banach space), we would have no
problem in finding a transformation and determining
critical structures. We would meet only a problem on
verification for point sets with critical structure.

Steiner minimum trees in Minkowski planes have
been studied by [1,25,30,34,70,91]. In these papers,
some fundamental properties of Steiner minimum trees
in Minkowski planes have been established. Two nice
conjectures about the Steiner ratio inMinkowski planes
were proposed respectively by [25,30] and [30] as fol-
lows:

Conjecture 4 In anyMinkowski plane, the Steiner ratio
is between 2/3 and

p
3/2.
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Conjecture 5 The Steiner ratio in a Minkowski plane
equals that in its dual plane.

With new techniques in the critical structures, B. Gao,
Du and Graham [49] proved the first half of Conjec-
ture 4 that in any Minkowski plane, the Steiner ratio
is at least 2/3, and P.-J. Wan, Du and Graham [97]
showed that Conjecture 5 is true for three, four, and five
points. With a different approach, Du and others [30]
also proved that in any Minkowski plane, the Steiner
ratio is at most 0.8766.

The Chung–Gilbert conjecture and Conjecture 5
can be extended to high-dimensional Banach spaces as
follows.

Conjecture 6 In any infinite-dimensional Banach
space, the Steiner ratio is between 1/2 and

p
3/

(2 �
p
2).

Conjecture 7 The Steiner ratio in any Banach space
equals that in its dual space.

Significant results on these two conjectures could be
produced by further developments of minimax ap-
proach from a successful application in two-dimen-
sional problems to high-dimension.

On Better Approximations

Starting from a minimum spanning tree, improve it by
adding Steiner points. This is a natural idea to obtain
an approximation solution for the Steiner minimum
tree. Every approximation solution obtained in this way
would have a performance ratio at most the inverse of
the Steiner ratio. The problem is how much better than
the inverse of the Steiner ratio one can make.

From the 1980s onwards numerous heuristics
[6,13,19,44,61,63,64,65,67,94,100] for Steiner mini-
mum trees have been proposed for points in various
metric spaces. Their superiority over minimum span-
ning trees were often claimed by computation experi-
ments. But no theoretical proof of superiority was ever
given. It was a long-standing problem whether there
exists a polynomial time approximation with a perfor-
mance ratio better than the inverse of the Steiner ratio
or not. For simplicity, a polynomial time approxima-
tion with performance ratio smaller than the inverse of
the Steiner ratio will be called a better approximation.
The first significant work on better approximations was

made by M.W. Bern [10]. He proved that for the rec-
tilinear metric and Poisson distributed regular points,
a greedy approximation obtained by a very simple im-
provement over a minimum spanning tree has a shorter
average length. Later, Hwang and Y.C. Yao [56] ex-
tended this result to the usual case when the number
of regular points is fixed.

In 1991, A.Z. Zelikovsky [102] made the first break-
through to the problem by giving a better heuristic for
the Steiner minimum trees in graph. This is the second
important development on Steiner trees in 1990s. To
explain his idea and review further development from
his work, let us start from comparing his work with
a previous work with a similar idea.

Chang’s Idea

Chang [18,19] proposed the following approximation
algorithm for Steiner minimum trees in the Euclidean
plane: Start from a minimum spanning tree and at each
iteration choose a Steiner point such that using this
Steiner point to connect three vertices in the current
tree could replace two edges in the minimum spanning
tree and this replacement achieves the maximum saving
among such possible replacements.

Smith, D.T. Lee and J.S. Liebman [90] also use the
idea of the greedy improvement. But, they start with
Delaunay triangulation instead of a minimum span-
ning tree. Since every minimum spanning tree is con-
tained in Delaunay triangulation, the performance ratio
of their approximation algorithm can also be bounded
by the inverse of the Steiner ratio. The advantage
of Smith–Lee–Liebman algorithm is on the running
time. While Chang’s algorithm runs in O(n3) time,
Smith–Leeh–Liebman algorithm runs only in O(n log
n) time.

A. Kahng and G. Robin [60] proposed an approxi-
mation algorithm for Steiner minimum trees in the rec-
tilinear plane by using the same idea as that of Chang.
For these three algorithms, it can be proved that for
any particular set of points, the ratio of lengths of the
approximation solution and the Steiner minimum tree
is smaller than the inverse of the Steiner ratio. Some
experimental results also show that the approximation
solution obtained by these algorithms are very good.
However, no proof has been found to show any one of
them being a better approximation.
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Zelikovsky’s Idea

Zelikovsky’s idea[102] is based on the decomposition of
a Steiner tree (namely, a tree, not necessarily minimum,
interconnecting original points): An original point in
a Steiner tree can be either a leaf or a junction. In the
latter case, the Steiner tree can be decomposed at this
point. In this way, every Steiner tree can be decomposed
into edge-disjoint union of several Steiner trees for sub-
sets of original points; each of them has no junction be-
ing an original point. A Steiner tree with no original
point being a junction is called a full Steiner tree. The
full Steiner trees in the decomposition are called full
components. The size of a full component is the num-
ber of original points in the component.

Clearly, for any k� 3, a k-size Steiner minimum tree
usually has shorter length compared with a minimum
spanning tree. It is natural to think about using a min-
imum k-size Steiner tree to approximate the Steiner
minimum tree. However, this does not work because
computing a k-size Steiner minimum tree is still an in-
tractable problem. Zelikovsky’s idea is to approximate
the Steiner minimum tree by a 3-size Steiner tree gen-
erated by a polynomial time greedy algorithm. The key
fact is that the length of such a heuristic is smaller than
the arithmetic mean of lengths of a minimum spanning
tree and a 3-size Steiner minimum tree; that is, the per-
formance ratio of his approximation satisfies

PR �
��12 C �

�1
3

2
;

where �k is the k-Steiner ratio. Thus, if the 3-Steiner ra-
tio �3 is bigger than the Steiner ratio �2, then this greedy
algorithm is a better approximation for the Steiner min-
imum tree. Zelikovsky was able to prove that 3-Steiner
ratio in graphs is at least 3/5 which is bigger than 1/2,
the Steiner ratio in graphs [61]. So, he solved the bet-
ter approximation problem in graphs. Zelikovsky’s idea
has been extensively studied in the literature.

Du, Zhang, and Q. Feng [40] generalized Ze-
likovsky’s idea to the k-size Steiner tree. They showed
that a generalized Zelikovsky’s algorithm has perfor-
mance ratio

PR �
(k � 2)��12 C �

�1
k

k � 1
:

P. Berman and V. Ramaiyer [9] employed a differ-
ent idea to generalize Zelikovsky’s result. They obtained
an algorithm with the performance ratio satisfying

PR � ��12 �

kX
iD3

��1i�1 � �
�1
i

i � 1
:

They also showed that in the rectilinear plane, the 3-
Steiner ratio is at least 72/94 which is bigger than 2/3
[54], the Steiner ratio in rectilinear plane. So, they
solved the better heuristic problem in rectilinear plane.

Du, Zhang, and Feng [40] proved a lower bound
for the k-Steiner ratio in any metric space. This lower
bound goes to one as k goes to infinity. So, in any met-
ric space with the Steiner ratio less than one, there ex-
ists a k-Steiner ratio bigger than the Steiner ratio. Thus,
they proved that the better heuristic exists in any metric
space satisfying the following conditions:
1) the Steiner ratio is smaller than one;
2) the Steiner minimum tree on any fixed number of

points can be computed in polynomial time.
These metric spaces include Euclidean plane and Eu-
clidean spaces.

Zelikovsky [104] used a different potential function
in his greedy approximation and obtained an approxi-
mation with performance ratio satisfying

PR � ��1k (1 � ln �2):

Although Zelikovsky’s idea starts from a point dif-
ferent from Chang’s one, the two approximations are
actually similar. To see this, let us describe Zelikovsky’s
algorithm as follows: Start from a minimum spanning
tree and at each iteration choose a Steiner point such
that using this Steiner point to connect three regular
points could replace two edges in the minimum span-
ning tree and this replacement achieves the maximum
saving among such possible replacements.

Clearly, they both start from a minimum spanning
tree and improve it step by step by using a greedy prin-
cipal to choose a Steiner point to connect a triple of ver-
tices. The difference is only that this triple in Chang’s al-
gorithm may contain some Steiner points while it con-
tains only regular points in Zelikovsky’s algorithm. This
difference makes Chang’s approximation difficult to be
analyzed. Which one will give a better approximation
solution? This is an interesting problem.
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The k-Steiner Ratio �k
While the determination of the k-Steiner ratio plays an
important role in estimation of the performance ratio of
several recent better approximations, A. Borchers and
Du [15] completely determined the k-Steiner ratio in
graphs that for k = 2r + h� 2,

�k D
r2r C h

(r C 1)2r C h

and Borchers, Du, Gao, and Wan [16] completely de-
termined the k-Steiner ratio in the rectilinear plane that
�2 = 2/3, �3 = 4/5, and for k � 4, �k = (2k � 1)/(2k).
However, the k-Steiner ratio in the Euclidean plane for
k � 3 is still (as of 2000) an open problem. Du, Zhang,
and Feng [40] conjectured that the 3-Steiner ratio in the
Euclidean plane is

(1C
p
3)
p
2

1C
p
2C
p
3
:

They also analyzed that the k-Steiner ratio in the Eu-
clidean plane might be determined in a similar way to
the proof of Gilbert–Pollak conjecture. The difficulty
appears only in the description of ‘critical structure’.

Variable Metric Method

Berman and Ramaiyer [9] introduced an interesting ap-
proach to generalize Zelikovsky’s greedy approxima-
tion. Let us call the Steiner minimum tree for a sub-
set of k regular points as a k-tree. Their approach con-
sists of two steps. The first step processes all i-trees, 3
� i � k, sequentially in the following way: For each i-
tree T with positive saving in the current graph, put
T in a stack and if two leaves x and y of T are con-
nected by a path p in a minimum spanning tree without
passing any other leaf of T, then put an edge between
x and y with weight equal to the length of the longest
edge in p minus the saving of T. In the second step, it
repeatedly pops i-trees from the stack remodifying the
original minimum spanning tree for all regular points
and keeping only i-trees with the current positive sav-
ing. Adding weighted edges to a point set would change
the metric on the points set. Let E be an arbitrary set of
weighted edges such that adding them to the input met-
ric space makes all i-trees for 3� i� k have nonpositive
saving in the resulting metric spaceME. Denote by tk(P)
a supremum of the length of a minimum spanning tree

for the point set P in metric space ME over all such E.
Then Berman–Ramaiyer’s algorithm produces a k-size
Steiner tree with total length at most

t2(P) �
kX

iD3

ti�1(P) � ti(P)
i � 1

D
t2(P)
2
C

k�1X
iD3

ti (P)
(i � 1)i

C
tk(P)
k � 1

:

The bound for the performance ratio of Berman–
Ramaiyer’s approximation above is obtained from this
bound and the fact that tk(P) � ��1k SMT(P) where
SMT(P) is the length of the Steiner minimum tree for
point set P.

Based on the above observation, we may have the
following questions. Could we find another way to vary
metric for a better bound? Could we forget the greedy
idea and design a better approximation with only a vari-
able metric idea? Answering these questions requires
deeper understanding the of variable metric method.
We attempt to obtain new algorithms from this study.

M. Karpinski and Zelikovsky [62] proposed a pre-
processing procedure to improve existing better ap-
proximations. First, they use this procedure to choose
some Steiner points and then run a better approxima-
tion algorithm on the union of the set of regular points
and the set of chosen Steiner points. This preprocessing
improves the performance ratio for every known better
approximation that we mentioned previously.

The preprocessing procedure is similar to the al-
gorithm of Berman and Ramaiyer. But, it uses a ‘re-
lated gain’ instead of the saving as the greedy function.
One of our current ideas is to modify Chang’s algo-
rithm in the following way: At each iteration, if a Steiner
point is introduced, then computes its related gain, and
later consider only triples of regular points and Steiner
points with positive related gain. Would this approxi-
mation perform better? We attempt to get the answer.

Although many better approximations have been
found in recent years, none of them has performance
ratio smaller than the inverse of 3-Steiner ratio. The in-
verse of the 3-Steiner ratio seems to be the limit for the
performance ratio of polynomial time approximations
for Steiner minimum trees to be able to reach.

S. Arora and others [5] conjectured that their back-
track greedy technique gives a polynomial time approx-
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imation scheme to 3-size Steiner minimum trees. If
their conjecture is true, then their algorithms also give
approximations for Steiner minimum trees with perfor-
mance ratio approach to the inverse of the 3-Steiner ra-
tio. This probably is the best possible performance ratio.
Thus, the conjecture of Arora and others is an attractive
problem to our further research.

A more accurate analysis [62,101,104] for the per-
formance ratios of Berman–Ramaiyer’s algorithm and
Karpinski–Zelikovsky’s preprocessing requires bounds
for tk and a similar number tk. The techniques in
[15,16] for determining the k-Steiner ratio seems very
promising for establishing tight upper bounds for tk
and tk.

The knowledge for the lower bound of the per-
formance ratio is an open problem (as of 2000). One
knows only that for Steiner minimum trees in graphs,
if NP 6D P, then a lower bound larger than one exists,
because the problem in this case is MAX SNP-com-
plete [12].

On PTAS

T. Jiang and others [58,59] brought a quite different
idea from previous ones to Steiner minimum trees.
They decompose the set of regular points based on
the lengths of edges in a minimum spanning tree. By
an interesting analysis, they proved that if the ratio of
lengths between the longest edge and the shortest edge
in a minimum spanning tree is bounded by a constant,
then there is a polynomial time approximation scheme
(PTAS) for Steiner minimum trees in the rectilinear
plane and in the Euclidean plane. This idea can also
be used in other geometric optimization problems, in
particular, some variations of Steiner tree problems de-
scribed in the next section.

In 1995, Arora and J.S.B. Mitchell independently
discovered powerful techniques to establish polyno-
mial time approximation schemes for geometric opti-
mization problems, including Euclidean and rectilin-
ear Steiner tree problems. Their results constitute the
third important development on Steiner trees in 1990s.
The significance of their results is not only on Steiner
trees, but also on the design and analysis of approxima-
tion algorithms in combinatorial optimization. Let us
review these two remarkable techniques in the follow-
ing.

Arora’s PTAS

It is quite interesting to note that Arora [4] appeared
only one week before Mitchell [76]. Any way, they
use very different techniques to reach the same goal.
Therefore, both are very interesting. Arora’s technique
is based on recursive partition. In Jiang and others
[58,59], although partition can be moved parallelly, the
size of each cell is fixed. It cannot be varied accord-
ing to local information about distribution of terminals.
Therefore, only in case that terminals are distributed al-
most evenly, could the partition work well. This is why
such a condition that the ratio of lengths between the
longest edge and the shortest edge in a minimum span-
ning tree is bounded by a constant is required.

However, in Arora’s recursive partition, each big
cell is partitioned into small cells independently from
other big cells. How to cut only depends on the situa-
tion inside of itself. This advantage enables him to dis-
card the condition in Jiang and others [58,59].

Mitchell’s PTAS

Mitchell’s technique was initiated from studying a min-
imum length rectangular partition problem. Given
a rectilinear region R surrounded by a rectilinear poly-
gon and some rectilinear holes, a rectangular partition
of R is a set of segments in R, which divide R into small
rectangles each of which does not contain any hole in
its interior. The problem is to find such a rectangular
partition with the minimum total length. This problem
is NP-hard.

Du and others [38] introduced a concept of guillo-
tine subdivision. A guillotine subdivision is a sequence
of cuts performed recursively such that each cut par-
titions a piece into at least two. Du and others [38]
showed that the minimum length guillotine rectan-
gular partition can be computed in polynomial time.
However, they were only able to show that this guillo-
tine subdivision is an approximation of the minimum
length rectangular partition problem with performance
ratio two in a special case that the region R is sur-
rounded by a rectangle with some points as holes in it.
Mitchell [77] showed that this is actually true in gen-
eral. He also successfully utilized this technique to ob-
tain constant approximations for other geometric opti-
mization problems. With the same technique, C. Mata
[74] obtained a constant-factor approximation algo-
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rithm for red-blue separation problem improving pre-
vious result O(logn).

Inspired by this success, Mitchell [76] extended
guillotine subdivision to m-guillotine subdivision,
a rectangular polygonal subdivision such that there ex-
ists a cut whose intersection with the subdivision edges
consists of a small number (O(m)) of connected com-
ponents and the subdivisions on either side of the
cut are also m-guillotine. With a minor change of the
proof of [77], Mitchell established a PTAS for min-
imum length rectangular partition problem. Mitchell
[78,79] further extended this m-guillotine subdivision
technique to other geometric optimization problems,
including Euclidean and rectilinear Steiner tree prob-
lems, and obtained PTAS for them.

Variations of Steiner Trees

Successful researches on classical Steiner tree problems
encourage extensive study on variations of Steiner trees
with various application backgrounds. Currently, they
form a quite active research direction in Steiner trees.

In VLSI design, one considers several sets of ter-
minals and finds a minimum total length packing of
Steiner trees for these sets under the following situation
[82]: The edges of the Steiner trees are required to lie
in channels between cells. Each channel has a capacity
which tells at most how many edges can run through
it.

A complicated computer network usually consists
of several nets of different speeds. The following prob-
lem was proposed based on such a back- ground: Con-
sider an undirected network with multiple edge weights
(c1(e), . . . , ck(e)) (c1(e)> � � � > ck(e)). Given a subset N of
vertices and a partition {N1, . . . , Nk} of N with |N1| �
2, find a subnetwork interconnecting N with minimum
total weight such that the length of any edge e on a path
between a pair of vertices in Nj is at least cj(e) [43,57].

To construct roads of minimum total length to in-
terconnect n highways under the constraint that the
roads can intersect each highway only at one point in
a designated interval which is a line-segment, a gener-
alization of Euclidean Steiner trees has been proposed
and studied. Du, Hwang, and Xue [35] presented a set
of optimality conditions for the problem and showed
how to construct a solution to meet this set of optimal-
ity conditions.

Constructing phylogenetic trees is an important
topic in computer biology. One of formulations is as
follows: For a fixed alphabet A, let d denote the Ham-
ming distance on An, i. e. d((a1, . . . , an), (b1, . . . , bn))
equals the number of indices i such that ai 6D bi. Given
a set P of points in the metric space (An, d), find
a Steiner minimum tree for P. This problem is known
to be NP-hard. (See [47].)

When a new customer is out of original telephone
network, the company has to build a new line to con-
nect the customer into the network. This situation
brings us an on-line Steiner tree problem as follow: As-
sume that a sequence of points in a metric space are
given step by step. In the ith step, only locations of the
first ni points in the sequence are known. The problem
is to construct a shorter network at each step based on
the network constructed in previous steps. The study of
on-line problems was initiated by [89] and [73]. A cri-
terion for the performance of an on-line algorithm is
to compare the solution generated by the on-line algo-
rithm with the solution of corresponding off-line prob-
lem. In the Euclidean plane, it has been known that
the worst-case ratio of lengths between on-line solution
and off-line solution is between O(n logn / log log n)
and O(n logn) [2,96,99].

Listing all variations and reviewing each of them
would take tremendous time and space. It should not be
the purpose of this short article. Therefore, we next re-
view a few for which some significant results have been
recently obtained.

Steiner Arborescence

Given a weighted directed graph G, a vertex r, and
a subset P of n vertices, a Steiner arborescence is a di-
rected tree with root r such that for each x 2 P there ex-
ists a path from r to x. The shortest Steiner arborescence
is also called a minimum Steiner arborescence. Com-
puting minimum Steiner arborescence is an NP-hard
problem. Also, one knows that if NP 6D P, then the best
possible performance ratio of polynomial time approx-
imation for this problem is O(log n). This means that
although, like the minimum spanning tree, the mini-
mum arborescence as a shortest arborescence tree with-
out Steiner points can be computed in polynomial time,
the Steiner ratio (the maximum lower bound for the ra-
tio of lengths between the minimum Steiner arbores-
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cence and the minimum arborescence for the same set
of given points) in directed graphs is zero. Z. Dai and
others [20,28] applied Arora’s techniques to this prob-
lem and obtained the best known result that for any
" > 0 there exists a polynomial time approximation
with performance ratio O(n"). An open problem (as of
2000) remains for closing the gap between the lower
bound and the upper bound for the performance ra-
tio.

A version of this problem in the rectilinear plane
has a great interest in VLSI designs and an interest-
ing story in the literature. Given a set P of n points
in the first quadrant of the rectilinear plane, a rectilin-
ear Steiner arborescence tree is a directed tree rooted
at the origin, consisting of all paths from the root to
points in P with horizontal edges oriented in left-to-
right direction and vertical edges oriented in bottom-
up direction. What is the complexity of computing
the minimum rectilinear arborescence? First, it was
claimed that a polynomial time algorithm was found.
However, S.K. Rao, P. Sadayappan, Hwang, and P.W.
Shor [84] found a serious flow in this algorithm. Al-
though they could not show the NP-completeness of
the problem, they pointed out the difficulties of com-
puting the minimum rectilinear arborescence in poly-
nomial time. They also showed that while the ratio of
lengths between a minimum arbores- cence tree and
a minimum Steiner tree for the same set of points tends
to infinity, there is a polynomial time approximation
with performance two. Recently (2000), W. Shi and C.
Su [88] showed that computing the minimum rectilin-
ear arborescence is NP-hard. B. Lu and L. Ruan [72]
showed, by employing Arora’s techniques, that there is
a polynomial time approximation scheme for the prob-
lem.

Edge-length and Number of Steiner Points

In wavelength-division multiplexing (WDM) optical
network design [68,83], suppose we need to connect
n sites located at p1, . . . , pn with WDM optical net-
work. Due to the limit in transmission power, signals
can only travel a limited distance (say R) for guaranteed
correct transmission. If some of the intersite distances
are greater than R, we need to provide some amplifiers
or receivers/transmitters at some locations in order to
break it into shorter pieces. This situation requires us

to consider the problem of minimizing the maximum
edge-length and the number of Steiner points in design
of WDM optical network. To do so, two variations of
Steiner trees have been studied.

The first is tominimize the number of Steiner points
under upper bound for edge-length. That is, given a set
of n terminals X = {p1, . . . , pn} in the Euclidean plane
R2, and a positive constant R, the problem is to com-
pute a tree T spanning a superset of X such that each
edge in the tree has a length no more than R and
with the minimum number C(T) of points other than
those in X, called Steiner points. This problem is called
Steiner tree problem with minimum number of Steiner
points, denoted by STP-MSP for short. G.-L. Lin and
G.H. Xue [69] showed that the STP-MSP problem is
NP-hard. They also showed that the approximation
obtained from the minimum spanning tree by simply
breaking each edge into small pieces within the upper
bound (called steinerized spanning tree) has a worst-
case performance ratio at most five. D. Chen and oth-
ers [21] showed that this approximation has a perfor-
mance ratio exactly four. They also presented a new
polynomial time approximation with a performance ra-
tio at most three and a polynomial time approximation
scheme under certain conditions. Lu and others [71]
studied the STP-MSP in rectilinear plane. They showed
that in the rectilinear plane, the steinerized spanning
tree has performance ratio exactly three and there ex-
ists a polynomial time approximation two.

The second is to minimize the maximum edge-
length under an upper bound on the number of Steiner
points. That is, given a set P = {p1, . . . , pn} of n termi-
nals and an positive integer k, we want to find a Steiner
tree with at most k Steiner points such that the length
of the longest edges in the tree is minimized. This is one
of the bottleneck Steiner tree problems. Wang and Du
[98] showed that:

a) if NP 6D P, then the performance ratio of any poly-
nomial time approximation for the problem in the
Euclidean plane is at least

p
2;

b) if NP 6D P, then the performance ratio of any poly-
nomial time approximation for the problem in the
rectilinear plane is at least two;

c) there exists a polynomial time approximation with
performance ratio two for the problem in both rec-
tilinear and Euclidean planes.
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Multiphase

Given an edge-weighed complete graph with vertex set
X (|X| = n) and subsets X1, . . . , Xm of vertices, the prob-
lem is to find aminimumweighed subgraphG such that
for every i = 1, . . . ,m, G contains a spanning tree for Xi.
This problem is called subset interconnection designs or
multiphase spanning network problem [29,37]. Du and
others [41] showed that ifNP 6D P, then the best perfor-
mance ratio of polynomial time approximation for this
problem is lnn + O(1).

Given an edge-weighed graph B with vertex set X
and subsets X1, Y1, . . . , Xm, Ym of X with Xi \ Yi = ;,
the problem is to find a minimum weighed subgraph G
such that for every i = 1, . . . ,m, G contains a Steiner tree
for Xi without using vertices not in Yi. This problem is
calledmultiphase Steiner network problem. Both multi-
phase spanning network and Steiner network problems
arose in communication network design [81] and vac-
uum system design [37]. For the former one, when the
solution is a forest, the system (X1, . . . , Xm) is called
subtree hypergraph. Such a system has various applica-
tions in computer database schemes [7] and statistics.
It is also related to chordal graphs [42,45]. R.E. Tarjan
and M. Yannakakis [95] gave aO(m+n)-time algorithm
to tell whether a set system is a subtree hypergraph or
not.

Comparing the phylogenetic tree problem with
multiphase Steiner network problem, we would find
some similarities between them if we look at each co-
ordinate like a phase. For multiphase Steiner tree prob-
lem, if the solution is a tree, then we have either a good
heuristic or a polynomial time computable exact solu-
tion [37]. This suggests that studying the relationship
between the two problems will hopefully find a new
construction of phylogenetic trees.

L. Ruan and others [85] found that multiweight
Steine tree problem can be transformed to multiphase
Steiner tree problem. This initiates new line to study
both problems.

See also

� Auction Algorithms
� Bottleneck Steiner Tree Problems
� Communication Network Assignment Problem
� Directed Tree Networks
� Dynamic Traffic Networks

� Equilibrium Networks
� Evacuation Networks
� Generalized Networks
�Maximum Flow Problem
�Minimum Cost Flow Problem
� Network Design Problems
� Network Location: Covering Problems
� Nonconvex Network Flow Problems
� Piecewise Linear Network Flow Problems
� Shortest Path Tree Algorithms
� Stochastic Network Problems: Massively Parallel

Solution
� Survivable Networks
� Traffic Network Equilibrium
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A stochastic bilevel program (SBP) is a generalization
of an ordinary bilevel program (BP; cf. � Bilevel pro-
gramming: Introduction, history and overview), which
allows the uncertainty in the values of the problem pa-
rameters to be expressed by a probability distribution
on some or all of the variables of the model. The intro-
duction of these random variables in the BP modifies
some of its properties, both its mathematical properties,
as well as the resolution time needed to find a satisfac-
tory solution.

Nevertheless, a stochastic BP is essentially a bilevel
program, and it is therefore important to summarize
the essential features of this class of models before mov-
ing on to the effects of incorporating uncertainty.

Principal Features of Bilevel Programs

Bilevel programs are optimization problems with two
objectives, one at each level, which interact through the
sharing of some of the problem variables. BP can be
perhaps most easily understood through comparison
with the leader-follower (or Stackelberg) paradigm in
game theory. In this context, the leader is represented
through the upper level optimization problem. In par-
ticular, the leader seeks to optimize a function of two
vectors, one which he explicitly controls, x, and another
vector which describes the reactions of the followers to
his actions. These reactions are described by y. Since the
reactions of the followers have an impact on the objec-
tive of the leader, the leader’s optimization problem is
to solve min f (x, y), subject to x 2 X , y 2 Y. Note that
the leader may be subject to constraints on his action,
given by X . In addition, in some cases, there is more
than one possible reaction y from the followers in re-
sponse to a given x; if this happens, the leader may take
different strategies for accepting a single y when he de-
cides on the optimal x, or y will be restricted to a set, Y.

Just as the leader seeks to minimize a function, f (x,
y), the followers’ behavior is also described by an opti-
mization process, t(x, y). In this case, the followers ac-
cept the leader’s decision, x, as a parameter, and seek
to optimize their objective over y, subject to some con-
straints, described by the set Z(x), which may also de-
pend on the parameter x. That is, the lower level, fol-
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lowers’ problem is given by min t(x, y), y 2 Z(x), which
is clearly a parametric program with x as a parameter.

In summary, then, BP is expressed by a pair of opti-
mization programs, coupled through the passing of an
upper-level variable as a parameter to the lower level
problem. One can express quite generally the vector y as
a possibly nonunique solution to the lower-level prob-
lem, whose (parametric) solution set is given by S(x):
8̂
<
:̂
min
x2X
y2Y

f (x; y)

s.t. y 2 S(x);

where S(x) D
˚
y : y 2 argminz2Z(x) t(x; z)

�
.

The definition of BP in terms of a generic, lower-
level parametric solution set S(x) allows us to introduce
a further generality into the model: in many interest-
ing applications, the lower-level, or followers’ behav-
ior, cannot be expressed as an optimization problem,
but can be described by an equilibrium process, which is
given mathematically by a variational inequality prob-
lem (VIP). That is, S(x) D fy 2 Z(x) : T(x; y)>(y �
by) � 0; by 2 Z(x)g. These bilevel programs are often
referred to as mathematical programs with equilibrium
constraints, (MPEC). In fact, MPEC can be considered
as a more general form of BP, since any optimization
problem can be expressed as a VIP, but the converse is
true only when T(x, �) = ryt(x, �).

Bilevel programs have a number of mathematical
and computational particularities with respect to stan-
dard one-level optimization programs. The most strik-
ing characteristic of BP is that the upper-level function
is not differentiable, even in the case where the lower-
level response vector, y, is unique as a function of x, that
is y = S(x). Indeed, y is an implicit function in terms of
x. A further observation of BP shows that, for each eval-
uation of f (x, y), it is necessary to solve the lower-level
problem, just to obtain an iterate for y. The computa-
tional complexity of BP is thus increased dramatically,
since each iteration in the resolution of f requires the
resolution of t.

Examples of Bilevel Programs

While the leader-follower paradigm is useful for il-
lustrating the hierarchical nature of the two levels in
a bilevel program, it does not provide a sufficient scope
of the range of problems included in the class of bilevel

programs. Indeed, bilevel programs describe problems
in many areas of engineering and management, as well
as problems in game theory. Following are a few exam-
ples of bilevel programs, which will furthermore help
illustrate how uncertainty can be explicitly taken into
account. (See also [10].)

Example 1 (Optimal pricing problem) In a number
of application areas, especially the transportation and
telecommunications sectors, a central operator seeks to
maximize profit, given that the market that he is tar-
geting is competitive, and furthermore that his poten-
tial clients can refuse to participate should the price be
set too high, or service quality too low. These problems
have an inherent bilevel form. Determining the optimal
tolls to set on a highway, or the price of a long-distance
phone service are problems of this type.

The upper-level describes the manager’s problem: it
may consist in determining the prices so as to achieve
profit maximization, or the problem of determining the
level of service to offer on the infrastructure which op-
timizes a given performance criterion, perhaps taking
into account the cost of offering such a service level. The
policy instrument, x, is then the price to be set by the
manager for use of the infrastructure, and/or the service
level of the infrastructure (capacity, travel time, or ac-
cess time improvements, etc.). The feasible setX gener-
ally contains bounds on the possible values of x. When
the manager seeks to determine the optimal level of ca-
pacity improvements to an existing infrastructure, the
resulting bilevel problem is known as the network de-
sign problem.

The lower-level problem describes the users’ re-
sponses to the prices and/or service levels set by the
manager. The users’ response is given by the level of
use on each link of the infrastructure, y. In general, one
assumes that the users’ behavior follows an equilibrium
principle, given by an cost operator (or utility function),
T(x, y). The cost operator gives the cost of using the in-
frastructure as a function of the price vector x and the
amount of use y. The interpretation of (Nash) equilib-
rium is the following: A usage pattern y is in equilib-
rium (stable) if no single user can reduce his own cost
(or increase his utility) by modifying his current usage
pattern. The lower-level feasible set, Z(x) will then in-
clude demand satisfaction constraints (where the total
demand level may be a function of the price or service
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level, x) and may include capacity constraints on the in-
frastructure.

The deterministic bilevel pricing model is then
given by:

8<
:
max
x2X

f (x; y);

s.t. y 2 S(x);
(1)

where S(x) :D fy 2 Z(x) : T(x; y)>(y �by) � 0;by 2
Z(x)g.

Permitting the incorporation of random variables
into the optimal infrastructure pricing model can be
quite useful for increasing the realism of the model. In
particular, the demand for the use of the infrastructure
can be estimated through historical data or surveys, but
generally with some random error. In this case, demand
can be expressed as a random variable, and then Z(x)
:= Z(x, !), where ! belongs to a probability space (˝ ,
A, P). Similarly, the maximum usage level of the in-
frastructure, that is, the link capacities included in Z(x),
can depend on a number of factors which cannot be de-
scribed precisely, but whose effect is to modify upper
usage limits according to a known probabilistic law. In
addition, the user’s cost function on the infrastructure,
T(x, y) := T(x, y, !) can vary according to a known dis-
tribution.

Example 2 (Stackelberg–Nash equilibrium) The game
theoretic model of a Stackelberg–Nash (or Stackel-
berg–Nash–Cournot) equilibrium permits representing
a number of important market phenomena. The model
assumes a market in which N firms produce a single
good, each competing for maximum market share. In
addition, there is a single firm (or government) that also
produces the good, but is capable of reacting to the N
other firms’ production when determining how to set
its own production level.

This paradigm is successfully applied, for exam-
ple, to utility markets, in which both private and pub-
lic firms compete to sell the same utility; power gen-
eration is one such example. The upper-level opti-
mization problem, maxxf (x, y) represents the leader’s
profit function, and x the leader’s production level. The
lower-level represents the Nash equilibrium problem
among the N firms, known as the followers, with y :=
y(x) being the followers’ production levels, given the
leader’s production decision. Each follower then solves
maxyi ti(x, y); and the equilibrium of the noncoopera-

tive Nash game can therefore be expressed as a VIP, as
in the example above.

The incorporation of uncertainty in the Stackel-
berg–Nash model would then take the form of a ran-
domly varying demand from the market, and possibly
uncertainty in the profit functions themselves.

Example 3 (Structural optimization) Among the large
number of potential applications of bilevel optimiza-
tion in engineering, one which has been the subject of
much research attention is that of finding the design of
a mechanical structure which has the best performance
under the influence of external forces: structural opti-
mization.

As is the case in the examples above, structural opti-
mization problems also have an inherent bilevel form.
The upper level objective function f (x, y) measures
some characteristic of the structure, such as its con-
struction cost, weight, or stiffness, with y represent-
ing the performance measure. This objective function
is optimized by selecting design parameters, x, which
express the shape of the structure, and the choice and
amount ofmaterial to be used in the design. In addition,
the structure may be subject to behavioral constraints
within the upper-level problem, such as bounds on the
displacements, stresses and contact forces. These con-
straints define the feasible region Y. Budget limits on
the amount of available material, if present, would be
included in a set X .

The lower-level problem describes the behavior of
the structure given the choices of the design variables,
possible contact conditions with foundations or bound-
aries, (the set Z), and the external forces acting on it,
F. For elastic structures, the behavior is given by the
equilibrium law of minimal potential energy, ˘ (x, y),
which determines the values of the (lower-level) state
variables, that is, the displacements, stresses and con-
tact forces, y. The matrix K(x) represents the stiffness
of the material, and is symmetric and positive semidef-
inite.

The deterministic structural optimization problem
thus described then is:

8̂
<
:̂
min
x2X
y2Y

f (x; y);

s.t. y 2 argminz2Z˘ (x; z);
(2)

where˘ (x, y) := (1/2)y>K(x)y � F>y.
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The introduction of uncertainty into the structural
optimization model can be of great use in permitting
the modeler to take into account variations in external
forces (due for example to wind and other weather con-
ditions, varying traffic on a bridge, etc.) and variations
in the material properties. In the first case, the variation
in external forces can be described by setting F = F(!),
where ! 2˝ . Note that a failure to take this variability
into account may lead to structures with unwanted vi-
bration under certain weather conditions, as the topol-
ogy optimization will assign bars only where needed to
sustain the described forces; hence random forces left
out of the optimization will not be accounted for by
the resulting structure. Note further that the structure
that will result from this stochastic bilevel optimization
will be one that responds best ‘on average’ to the range
of possible forces. In certain cases, where any failure
is unacceptable (e. g., when designing bridges), it may
be preferable to use a worst-case approach, which will
result in more costly designs that minimize however
the risk of failure (rather than minimizing cost or some
other characteristic of the structure).

Uncertainty in other problem parameters can be
accommodated in a similar manner. Taking into ac-
count the variability in material properties, one would
set K(x) = K(x, !).

Properties of the Stochastic Bilevel Program

The presence of random variables in the bilevel pro-
gram means that one can no longer calculate exactly
the vectors x and y, since their values depend on pa-
rameters which vary randomly. Instead, one can calcu-
late the values of x and y that optimize f on average; the
objective is then to minimize the expected value of f (x,
y, !). The stochastic bilevel program is defined below,
with the more general lower-level VIP:

SBP

8̂
<̂
ˆ̂:

min E!
�
f (x; y; !)

�

s.t. x 2 X;
y(!) 2 S(x; !); ! 2 ˝;

where S(x; !) :D
˚
y 2 Z(x; !) : T(x; y; !)>(y �by)

� 0;by 2 Z(x; !)� denotes the set of solutions to the
lower-level variational inequality defined by the param-
eterized mapping T(x, �, !) and feasible set Z(x, !)
(presumed convex). The random variable ! is defined
on a probability space (˝ , A, P).

In its general form, the objective function of the
stochastic bilevel program can be a multiple integral
when ! is a vector of continuous random variables.
That is, E[f (x, y, !)] :=

R
˝ f (x, y, !)dF(!). However,

this integral is in most cases very difficult to evalu-
ate. For that reason, as is the case in the majority of
stochastic programs at this time, a discretization of the
random distributions is used: one lets L represent the
discrete set of random observations obtained from ˝ ,
numbered ` = 1, . . . , |L|, and �` the probability of each
scenario ` 2 L, with

P
`2L �` D 1. This allows one to

express the expected value in the objective function as
a sum: E[ f (x; y`)] :D

P
`2L �` f (x; y`). The resulting

problem is referred to as SBP-L.
In what follows, it is assumed that the set of random

observations has been expressed as a discrete set. (For
information on the additional assumptions needed in
the case of a continuous distribution, see [1,12,16]).

Consider the following assumptions:
i) X is nonempty and closed.
ii) The lower-level constraint set is of the form Z`(x)

:= {y: g i
`
(x, y) � 0, i = 1, . . . , k}, ` 2 L, where each

function g i
`
is continuous and convex in y for each

x 2 X . Further, either g i
`
(x, �) = g i

`
(�), i = 1, . . . , k, `

2 L, that is, Z`(x) = Z`, or for each x 2 X , ` 2 L,
there is a y such that g i

`
(x, y) < 0, i = 1, . . . , k.

iii) There exists an (x, y`) 2 P` := {(x, y) 2 gr S`: x 2
X} with f (x, y`) <1 for all ` 2 L, where gr S` :=
{(x, y): y 2 S`} is the graph of S`.

iv) (Inf-compactness) f is lower semicontinuous,
proper, and has bounded level sets on [`2LP`.

Perhaps the first property of interest is that of the exis-
tence of a solution.

Theorem 4 (Existence of optimal solutions to SBP-
L) Let the assumption ii) hold, and the mapping T`
be continuous. Then, the graph of S`, gr S`, is closed for
each ` 2 L. Hence, under the additional assumptions i),
iii), and iv), there exists at least one optimal solution to
SBP-L.

Proof If gr S` is closed for each ` 2 L, then the as-
sumptions imply the inf-compactness of the extended
function f C ıbZ, where bZ :D [`2LZ`. From this, the
existence of a solution follows from Weierstrass’ theo-
rem. But by condition ii), either Z`(x) = Z`, in which
case the closedness of gr S` follows from the continuity
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of T`, or the Slater condition holds, in which case the
closedness of Z` follows from [7, Lemma 1].

The conditions required in the preceding existence re-
sult are weaker than those of some previously consid-
ered requirements on bilevel model formulations, and
as such, may be particularly interesting for a number
of important applications. One such example can be
found in (stochastic or deterministic) structural opti-
mization problems; in this case, for example, it can be
shown, that there exists an optimal solution even in the
presence of zero design bounds. (See [2] for further de-
tails.)

A second property of interest is whether or not
the problem is a convex optimization problem. In most
cases, neither deterministic not stochastic bilevel prob-
lems will be convex. However, there is a special form of
the stochastic bilevel program which may possess the
desired convexity property.

Consider the following special case of SBP, in which
the upper-level objective function f depends on the
lower-level solution only in the sense of its optimal
value. The deterministic form of this problem has been
analyzed in great detail in [15], and is defined as follows:

SBPOV

8̂
<̂
ˆ̂:

min E!
�
f (x; p(x; !))

�
;

s.t. x 2 X;
p(x; !) :D inf

y2Z(x;!)
t(x; y; !):

The discretized formulation, SBPOV-L, of this special
case is analogous to that of the general bilevel program.

Theorem 5 (Convexity of SBPOV-L) In addition to
the assumptions i)–iv), assume, for each ` 2 L, that t`
is convex and continuous, and g i

`
, i = 1, . . . , k, are con-

vex. Then, each function p` :D infy2Z`(x) t`(x; y) is con-
vex on X . Further, assume that X is convex, and that
the function f is convex and increasing in its second ar-
gument. Then, the implicit upper-level objective func-
tion x 7!

P
`2L �` f (x; p`(x)) is convex on X , so that

SBPOV-L is a convex problem.

Proof One needs only to establish the convexity of p`
on X for every ` 2 L, but this result follows from the
assumptions and [5, Thm. 5].

Note that two-stage stochastic programs are in fact
equivalent to the problem SBPOV: two-stage stochastic

linear programs (2S-SLP) are obtained as a particular
form of this problem, that is, the right-hand side pertur-
bation model, as discussed by [15, p. 189], in which the
upper-level variable is located only on the right-hand
side of the lower-level constraints. Consequently, the
convexity of the two-stage stochastic programs can be
obtained directly from the preceding result on SBPOV.
(These and other such relations are explored in [12].)

A third property of interest for the resolution of the
model concerns the differentiability of the upper-level
objective function.

Let us first present some additional (and stronger)
assumptions, that, among other things, will guarantee
the uniqueness of the lower-level solution, y` for each x
2X and each ` 2 L.
a) f is continuously differentiable.
b) The lower-level constraint set is of the formZ`(x) :=

{y: g i
`
(x, y)� 0, i = 1, . . . , k}, where each function g i

`

is twice continuously differentiable and convex in y
for each x 2X , ` 2L. Furthermore, for each x 2X ,
` 2 L, Z`(x) 6D ;, and Z`(x) � B`, for some open
and bounded set B`.

c) Let I`(x, y) := {i = 1, . . . , k: g i
`
(x, y) = 0}. Then, for

each x 2 X , ` 2 L, and y 2 S`(x), the partial gradi-
ents ry g i`(x, y), i 2 I`(x, y), are linearly indepen-
dent.

d) T` is continuously differentiable and strongly
monotone in y` for each x 2X , ` 2 L.

Theorem 6 (Directional differentiability of SBP-L)
Suppose that SBP-L has a solution and let the assump-
tions a)–d) be satisfied. Then, the implicit function x 7!P
`2L �` f (x; y`(x)) of SBP-L) is locally Lipschitz con-

tinuous and directionally differentiable on X .

Proof By [13, Thm. 2.1], the assumptions imply that
the implicit mapping x 7�! S`(x) is locally Lipschitz
continuous, for each ` 2 L. Then, the result follows di-
rectly from [14].

Algorithms for Stochastic Bilevel Programs

The last essential ingredient needed in order to study
and apply stochastic bilevel programs to real problems
is an efficient algorithm for solving the model. As men-
tioned earlier, the deterministic bilevel problem is al-
ready quite difficult and time-consuming to solve; the
introduction of a discrete random distribution on some
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or all of its parameters causes an even greater increase
in the problem size. For this reason, the development
of efficient methods is primordial, as are the use of
decomposition and parallel strategies, whenever possi-
ble.

Next, one method for generating subgradients of f
is presented (based on [11]). Note that the algorithm
utilizes the local Lipschitz continuity and directional
differentiability of the implicit function f , and thus
requires the additional assumptions presented above.
Then, a penalty method making use of a merit func-
tion reformulation of the VIP is discussed, followed by
a perturbation method which uses the Karush–Kuhn–
Tucker conditions (KKT) of the VIP.

For a given x 2 X and ` 2 L, let y` be the (unique)
solution to the lower-level problem, and let I(x, `) := {i
= 1, . . . ,m: g i

`
(x, y) = 0}. One then introduces the subsets

I+(x, `) and I0(x, `) of I(x, `) for the active constraints
whose (unique) multipliers satisfy �i > 0 and �i = 0, re-
spectively. In the event that I0(x, `) is nonempty (that
is, strict complementarity does not hold at y`) one can
further introduce a subset J(x, `) of I(x, `) for which
the requirement is that I(x, `) � J(x, `) � I+(x, `)
holds. Let gI and dI denote the subvector of g and sub-
vector of d where only rows i 2 I are included.

Applying the analysis of [11], a subgradient of f can
be calculated as follows.

First, for each ` 2 L, solve the following linear sys-
tem of equations:

�
ry L`(x; y`; �`) �ry gJ(x;`)(x; y`)>

ry gJ(x;`)(x; y`) 0m�jJ(x;`)j

�

�

�
dy`

d	J(x;`)

�
D

�
�ry f (x; y`)

0m

�

in order to obtain dy` , where L`(x, y`, �`) := T`(x, y`)
+ ryg(x, y`)>�`, and y` := y`(x).

Then, a subgradient of f at x is given by the formula
� f (x) :D

P
`2L �`[rx f (x; y`)Crx L`(x; y`; �`)>dy`�

rx gJ(x;`)(x; y`)>d	J(x;`) ].
The subgradient can be used in an algorithm for the

heuristic solution of the problem or embedded within
a more sophisticated algorithm. The following subgra-
dient projection algorithm utilizes the fact that f is dif-
ferentiable almost everywhere and in particular when
the y`, ` 2 L, are strictly complementary:

Given x 2 X
An initial step in the direction of an arbitrary ele-
ment �� f (x) 2 �@ f (x) is taken,
followed by a Euclidian projection onto X :
a backtracking line search in this steplength is made
so that
either the resulting feasible solution has a sufficiently
lower objective value,
or a predetermined steplength is applied, whichever
is greater.

Subgradient projection method

Note that, at points of nondifferentiability, the tra-
ditional projection method may break down because
the negative of the subgradient may then not be a de-
scent direction; in order to obtain a well-defined itera-
tion at such points, one therefore utilizes a steplength
which is the maximum of the one supplied by the back-
tracking line search and the result of a predetermined
steplength formula used in traditional subgradient opti-
mization techniques.

See [11] for the deterministic analog of the above
analysis for calculating subgradients in a bundle method
for the solution of a deterministic bilevel problem. This
can be viewed as a more advanced technique than the
above which ensures convergence to a stationary point.

Consider the following parallel resolution strategy
for this model. In some cases, one may identify a clus-
ter of scenarios with similar values. Then, by allocat-
ing these to the same processor, one may solve the cor-
responding lower-level problems utilizing efficient re-
optimization procedures given that any of them have
been solved to optimality, since the optimal solution to
any one of them is feasible and near-optimal to all the
others. Further, for scenarios with slightly differing sets,
J(x, `), consider sorting the scenarios in each set so that
|J(x, `)| is increasing. Then one may solve the preced-
ing linear systems in sequence, expanding the matrix
with the necessary rows and columns and utilizing the
solution to the former system as a starting point in the
search for the next. The fact that the choice of J(x, `) is
arbitrary in the range of active constraints may be used
to minimize the number of scenarios with distinct val-
ues of J(x, `).

By reformulating the variational inequality in the
lower level through the use of a merit (or gap) func-
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tion and introducing a penalty parameter, it is possible
to devise a different method for solving the stochastic
bilevel program. The merit function is defined as fol-
lows: Assume that for each scenario, ` 2 L, one can
find a continuous function  ` that satisfies the follow-
ing criteria:

 ` � 0

for every x 2X and all y, and

 ` D 0 , y 2 S`(x):

Then, the method is based on including the new func-
tion  ` in the objective with a penalty parameter forc-
ing it to zero, that is, for �` > 0, one solves
8̂
<
:̂
min

X
`2L

�`[ f (x; y`)C �` `(x; y`)];

s.t. x 2 X:

Note that the objective function remains separable with
respect to the scenarios and can thus be decomposed
and solved in parallel. For more details on this method
and possible merit functions see [4,6,8,9].

A still different approach for solving MPEC or
bilevel programs involves rewriting the solution set
mapping of the lower-level variational inequality in
terms of its KKT conditions. Letting �` be the (unique,
under the assumptions above) vector of multipliers for
the lower-level constraint setZ`(x), the KKT conditions
are, for every ` 2 L:

T`(x; y) � ry g`(x; y)�` D 0;

g`(x; y) � 0; �` � 0; �>` g`(x; y) D 0:

Then, the stochastic bilevel program is written as before
with the constraints above replacing the constraints y`
2 S`(x).

The resulting program is an equivalent one-level re-
formulation of SBP, but is intractable due to the pres-
ence of the complementarity constraints. In [3] the
above model was reformulated by expressing the lower-
level constraints as g`(x, y)� 0, ` 2L, and then writing
the complementarity constraints as

g`(x; y) � z` D 0; �2min(z`; �`) D 0;

for every ` 2 L, where z` is a vector of the same di-
mension as �`, and the min operator is applied to the
vectors componentwise.

The resulting problem is tractable but nonsmooth,
due to the min operator. The authors in [3] then refor-
mulated the nonsmooth optimization problem by using
a perturbative approximation to the min operation. This
results in a sequence of smooth optimization problems
converging to the nonsmooth problem as the perturba-
tion parameters, �`, tend to zero.

Since the equations above are all separable with re-
spect to the scenarios ` 2 L, the same decomposition
approaches can be applied to this method.

It should be noted that decomposition across sce-
narios may still prove insufficient for permitting the
resolution of realistic stochastic bilevel programs. The
use of random sampling, such as has been used in
stochastic quasigradient methods and stochastic decom-
position, as well as the development of approximation
strategies, are lines of research that should be pursued
in the future.
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Every well-designed global optimization algorithm is
usually equipped with three main components:
1) a sampling (or global) phase, whose aim is to inves-

tigate as thoroughly as possible the feasible region;
2) a local phase, designed to approximate good local

optima;
3) a stopping rule, through which the algorithm is ter-

minated either with a certificate of optimality (or an
estimate of the error incurred) or with some kind of
probabilistic measure of the error itself.

Many deterministic algorithm for global optimization
problems are equipped with stopping criteria which
enable to prove global optimality or to give a pre-
cise error bound. Unfortunately, from one side those
algorithms are applicable only to strongly structured
problems, like, e. g., the optimization of Lipschitz-
continuous functions (with known Lipschitz constant),
the minimization of concave functions (cf. � Concave
programming), or of functions which are explicitly rep-
resentable as the difference of two convex functions (cf.
�D.C. programming); thus those stopping rules, based
upon duality results and lower-bounding techniques,
as well as the algorithms designed for those problems,
cannot be applied to problems which do not possess
that specific structure. On the other side, even for those
strongly structured problems, it has been frequently ob-
served that, in practice, it is quite likely that an algo-
rithm will find the global optimum relatively quickly,
but the vast majority of computational time is devoted
to the proof of optimality. So, in some situations, it
might be advisable to relax the requirement of certifi-
cated optimality, and to stop an algorithm as soon as
there is sufficient evidence that the optimum has been
found.

Stopping criteria based upon this idea are usually
built after a stochastic model and are inspired from
classical stopping rules developed within the field of
statistical decision theory. Most, if not all, of the re-
search in statistical stopping rules is based on the as-
sumption that the algorithm used is either the pure ran-
dom search or pure Monte-Carlomethod, ormultistart.
The former is the most basic global optimization algo-
rithm which consists only in generating a uniform ran-
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dom sample in the feasible region and keeping track of
the best observed function value (the record). The lat-
ter, multistart, differs from pure random sampling as
it prescribes to apply a local optimization routine from
each sampled point (thus it implements an effective, al-
though computationally inefficient, local phase). Exten-
sion of the stopping rules built for these algorithms to
different methods, like e. g. other two-phase methods
(cf. also � Stochastic global optimization: Two-phase
methods) known as multilevel single-linkage, or simple
linkage, has to be considered just as an heuristic.

It is possible to distinguish three main types of
stopping rules, which mainly differ upon the criteria
for stopping and the sophistication of the underlying
stochastic model:
1) global exploration: stop as soon as there is sufficient

evidence that all of the feasible region has been sam-
pled;

2) enumeration of local optima: stop as soon as there
is sufficient evidence that all local optima have been
observed;

3) enumeration of good local optima: stop as soon as
there is sufficient evidence that no local optimum
better than the best so far will be observed.

It can be easily understood that the last criterion is the
best one, but its practical realization poses very difficult
modelization problems. In what follows, a brief account
of the main models and methods for each of the three
models will be given.

Let S � Rd (d 2 N) be the feasible region for the
global optimization problem

f � D min
x2S

f (x): (1)

It is assumed that the Lebesgue measure �(S) of S is
finite and strictly positive. From elementary probabil-
ity, it is easy to derive that, after N uniform points have
been sampled, the probability that at least a point in
the sample falls within a prescribed subset of S whose
Lebesgue measure is � is given by

1 �
�
1 �

�

�(S)

�N

; (2)

thus, given a prefixed probability level p 2 (0, 1), if sam-
pling is terminated as soon as

N �
log(1 � p)

log
�
1 � �


(S)

� (3)

then every region of volume greater than � will contain
a sample point with probability at least p. Letting

L� :D fx 2 S : f (x) � f � C �g (4)

be the �-level set of f , it is in principle possible, although
extremely difficult in practice, once an error level � has
been chosen, to let � = �(L�). The main disadvantage
of this very simple stopping rule is that it usually pre-
scribes to stop very late, when every region of volume
�, and not just L� , has been observed. In principle, this
method might be applied with success to multistart: this
algorithm can be seen as a pure random search method
applied to the composition of the objective function f
and the mapping of S into itself which arises associ-
ating to each feasible point x 2 S the point which is
obtained starting a local optimization routine from x.
This way, being the resulting composite function piece-
wise constant, a (usually much) larger value of � can
be safely used. Unfortunately no practical method is
known which enables to approximate the correct value
of �. Some attempts have been reported in the literature
(see e. g. [6]), but the rules proposed, although quite
simple, seem to be very inefficient in providing a quick
and reliable stopping time.

The second class of methods for stopping, designed
for the complete enumeration of local optima through
multistart, originates from ideas introduced in[9]. If the
starting points in multistart are stochastically indepen-
dent, then, letting the local optima be arbitrarily num-
bered as 1, . . . , T, the probability of hitting n1 times the
first, n2 times the second, and so on, is given by

n!
n1! � � � nT !

�
n1
1 � � � �

nT
T : (5)

Parameters � j in (5) represent the share of the jth lo-
cal optimum, that is, the relative volume of its region
of attraction, or, equivalently, the probability that a lo-
cal search started from a point in the sample leads to
the jth local minimum. In practice, neither T, nor the
shares are known. A Bayesian decision-theoretic frame-
work is used, in which a prior probability distribu-
tion is given on the unknown parameters of the proba-
bilistic model; after each observation is made, through
a Bayesian updating, an a posteriori distribution is quite
easily computed. Based upon this model, several rules
can be obtained for stopping, depending upon differ-
ent cost structures. Following a standard procedure in
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Bayesian sequential decision theory, a loss function is
defined which gives a measure of the trade-off between
stopping and continuing sampling; then, sequentially,
at each iteration the posterior expected loss is com-
puted and the alternatives of stopping and continuing
are compared. For example, one might define a loss
by specifying a price to be paid either for stopping be-
fore all local optima have been found or for continuing
after the global optimum has been observed. Alterna-
tively, one can define a cost for each local search and
a gain (a negative loss) incurred if a new local optimum
is discovered. Stopping rules derived from this frame-
work have the advantage of being very simple to imple-
ment; unfortunately, the model and the resulting stop-
ping rules just depend on the number of different lo-
cal optima discovered; the value of the objective func-
tion at the local optima never plays a role, so that these
criteria tend to be quite conservative and highly sensi-
ble to the total number of local optima, irrespective of
their value. Well known and widely used results in this
framework can be found in [3]; an ingenious trick is
presented in [8]which consists in ordering the observed
function values at local optima; a term which takes into
account the desire to stop if no optima better than the
best so far is observed is thus included in the loss. Here
again function values do not explicitly enter neither the
model nor the stopping rules, but the relative rank of
each local optimum is considered. The resulting rules,
although more complex than those in [3], display a sig-
nificantly better behavior.

In all of the above methods for stopping, a prior dis-
tribution has to be given on the total number of local
optima and the shares; while it is quite natural to as-
sume a Dirichlet distribution for the shares, the ques-
tion of choosing a sensible prior for T is still to be an-
swered; a seemingly interesting choice, consisting of an
improper prior, giving constant weight to all positive
integers, was proven to give incorrect results in [8].

The last generation of stopping rules for multistart
derive from even more complex models. The idea of ex-
plicitly including function values in the model raises ex-
tremely difficult theoretical problems. In fact it is very
hard to identify a sensible stochastic models for the
observed function values at randomly chosen points
or, even worse, at local optima obtained by starting
a local optimization routine from a random starting
point. Again, the best one can hope, is to define a prior

model and adapt the resulting probability distribution
by means of Bayes’ theorem. An attempt in this direc-
tion can be found in [1] and [2]; there it is assumed that
function values at local optima obtained from multi-
start follow a probability distribution which is largely
unknown. Thus this probability distribution is mod-
eled as one out of an infinite class of possible prob-
ability distributions: the prior knowledge is made ex-
plicit in the definition of a prior probability distribu-
tion over a class of distribution functions. From the
literature on Bayesian nonparametric inference the so
called simple homogeneous process [5] was selected, due
to its representativeness (its realizations are dense in the
space of continuous distributions) and to its computa-
tional manageability. Accordingly, stopping rules were
derived which prescribe to stop as soon as

f �nZ

�1

( f �n � y) dbFn(y) � c; (6)

where f ?n is the record value observed after the first n
samples (more precisely, after the first n local searches),
bFn is the expected posterior distribution, computed
through the prior process and the n observations of lo-
cal optima, c is a threshold. The left-hand side in (3) is
the expected improvement after the the next observa-
tion with respect to the current record. The effective-
ness of the resulting stopping rules has been tested and
very good computational results have been reported;
unfortunately the rules are quite cumbersome to im-
plement and require the setting of several parameters
in the definition of the prior.

An alternative approach is described in [4], where
the problem of specifying a prior distribution on the
set of probability distributions is simplified assuming
that function values are discretized; this way the un-
derlying probabilistic model becomes a parametric one,
although with a possibly huge number of parameters,
namely the global minimum and global maximum val-
ues of f , and the probability of observing any of the dis-
cretized values between them. Although the resulting
rules are attractively simple, the idea of discretizing the
range is far frombeing a satisfactory one, as a discretiza-
tion which is too large might lead to incorrect decisions
on the global optimum, while a narrow one enlarges the
dimension of the parameter space. Again the problem
of specifying a prior on the parameters, in particular of
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the global minimum and maximum, is a difficult one;
moreover the sensitivity of the rules to function val-
ues is questionable: the authors proof that, using a loss
function which is the difference between a cost associ-
ated to sampling and the ratio between the possible im-
provement over the record value and the range of values
for f , the optimal stopping rule depends only on the it-
eration number; thus no information on the observed
function values is used, thus easily leading to incorrect
decisions.

Unfortunately the main difficulty in stopping
a stochastic global optimization algorithm is not any
of the above mentioned ones, like e. g., the difficulty
of choosing parameters, the insensibility of some rules
to function values or the cumbersome implementa-
tion. The real weakness of all the above mentioned ap-
proaches is the fact that all of them are based upon
the analysis of stochastically independent samples in
the feasible region. While this assumption is natural for
pure random search and for multistart, it becomes false
as soon as more refined methods are used, notably two-
phase methods. Thus all of these rules become simply
heuristic stopping criteria. What is worse is that they
do not provide a reliable estimate of the error incurred
after stopping; the user is thus left with a heuristic rule
with no guarantee. It is not a surprise that most stochas-
tic global optimization users just let their algorithm run
until some time limit is exhausted. Unfortunately de-
riving stopping rules for more clever algorithms is an
extremely hard task; some attempts have been reported
in [7] when dealing with Bayesian global optimization
methods (cf.� Bayesian global optimization), but even
if good stopping rules can be derived in that framework,
the results are again only heuristic, as they are based
upon models of the objective function which are usu-
ally not justifiable.

In conclusion, while stopping is a crucial compo-
nent in stochastic global optimization and late stopping
is generally the main cause of inefficiency, research in
this field seems to have stopped in the last years; there
is still a need for good criteria for general algorithms,
capable of producing a reliable estimate of the error.
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Two-phase methods are global optimization algorithms
which consist of sampling (global phase) coupled with
refinement or approximation of local optima (local
phase). Although this definition is extremely general,
as to encompass virtually all known methods of global
optimization, the term ‘two-phase’ is generally used in
connection with methods based upon random sam-
pling and local optimization started from selected
points in the sample.

To fix the notation, let the problem under consider-
ation be that of finding

f � D min
x2S

f (x); (1)

where S� Rd is a d-dimensional set (usually closed, of-
ten compact) and f : S ! R is a continuous objective
function. On f no other special assumption is generally
made except that a local search algorithm is available,
which is capable of producing a local optimum once
started from a feasible point. Thus, depending on the
local optimization routine employed, f might, for ex-
ample, be required to be continuously differentiable.

Two-phase methods are best suited for global op-
timization problems with no special structure, while
different, often deterministic, methods are preferred
when dealing with strongly structured global optimiza-
tion problems like, e. g., concave minimization (cf.
also � Concave programming), d.c. problems (cf. also
�D.C. programming), Lipschitz continuous problems;
for a general reference on these particular classes of
structured global optimization problems, besides this
volume, the reader might wish to consult [3].

Two-phase methods display sufficiently good be-
havior when the following conditions are met:
� sampling in the feasible set is not too difficult (fre-

quently S is assumed to be a hyper-rectangle);
� the dimension d is not too high: until a few years ago

d = 10 seemed already to be a high dimension; more

recent developments pushed this limit to more than
60;

� the Lebesgue measure of the region of attraction of
the global optima is not too small. The ‘region of at-
traction’ of a local (and, hence, also the global) opti-
mum is defined as the maximal subset A � S char-
acterized by the fact that a local search started from
any point in A leads to that local optimum;

� the computational cost of evaluating f at a feasible
point is substantially lower than that of performing
a local search, and it is not extremely expensive by
itself.

For low-dimensional problems, when the last condition
is not met and function observation is a computation-
ally demanding task it is preferable to switch to meth-
ods based upon approximate models of the objective
function, the most well-known representative of which
is the class of Bayesian algorithms (cf. also � Bayesian
global optimization).

What has come to be known as the class of two-
phase methods consists of the following very general
optimization scheme:

PROCEDURE two-phase()
let k := 1;
WHILE (StoppingRule() == FALSE) do:

choose Nk > 0;
(Begin Phase I):
sample a set Sk of Nk points from S;
let Sk :=

Sk
h=1 Sh

(Begin Phase II):
choose S� � Sk ;
FOR EACH x 2 S� DO

start a local search from x;
END FOR;
let k := k + 1;

ENDWHILE;
END two-phase;

In practice Phase I, or global phase, aims at explor-
ing as thoroughly as possible the feasible region, while
in Phase II, or local phase, the approximation of good
local optima is carried out. It can be easily seen that
most methods for global optimization can be seen as
special instances of the above scheme.

Phase I usually consists of uniform random sam-
pling, even if some attempts have been made to use
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quasirandom sequences which have, among others, the
advantage of producing smaller gaps between sampled
points.

As the main computational burden is assumed to
be connected with local searches, it is natural that the
main distinction between different two-phase methods
lies in the decision regarding the choice of S?, the set
of starting points for local optimization. The following
are some of the most well-known strategies for defining
such a set:
� pure random search: S? = ;, that is, no local searches

are performed. This method is a basic, although very
inefficient, global optimization strategy. It is also
known as the pure Monte-Carlo method;

� best start: S? � Sk is equal to the set of new ‘record
points’, i. e. to the set of points at which, during the
current iteration, a function value strictly lower than
the best so far has been observed;

� multistart: S? = Sk. This method prescribes that a lo-
cal search is started from every sampled point;

� clustering: S? is defined as the set of record points
in suitable subsets of the sample built according to
a clustering procedure. The idea of clustering for
global optimization dates back to two papers in the
1970s, [2] and [10], where the idea of concentrat-
ing the sample in order to approximate the regions
of attraction of low-level local optima was intro-
duced. Concentration of the sample is achieved ei-
ther by discarding a fixed fraction of the points
with highest function value, or by performing a sin-
gle, or just a few, descent steps from points in
the sample. These procedures transform the sam-
ple into a nonuniform one: clustering techniques
are then employed to identify subsets of the sample
with a higher-than-average concentration of points.
This idea is further exploited in density clustering
methods (see [9] and [7]) where clusters are grown
around suitable ‘seed points’ by progressively en-
larging an ellipsoidal set until the relative density
of points of the transformed sample which fall in-
side the ellipsoid becomes smaller than a thresh-
old;

� multilevel single-linkage (in short: MLSL). In this
method the user specifies a constant sample size Nk

= N and two positive reals � and �. Then S? is de-
fined as follows: a point x 2 Sk (the whole sample)
is included in S? if no point y 6D x in the sample Sk

exists such that:

f (y) � f (x) and kx � yk � rN;k;� :

It is moreover required that points in S? are ‘suf-
ficiently far’ from the boundary, that is, given the
threshold � > 0, it is required that

dist(x; @S) � �; 8 x 2 S�;

and that neither a local search had been already ap-
plied to x, nor x is too near to a previously discov-
ered local optimum.
Here dist is the Euclidean distance and @S denotes
the boundary of S; the variable threshold rN , k, � is
defined as:


�1/2
�
�

�
1C

d
2

�
�(S)�

log kN
kN

�1/d

: (2)

In (2), � is the gamma function, � represents the
Lebesgue measure, � is a positive constant. The
basic idea of this method, which was analyzed in
[8], is that, instead of building clusters with pre-
scribed shape (e. g., ellipsoidal), points are clus-
tered by means of a distance criterion. In particu-
lar a point is clustered to another in the sample if
this latter is near enough and has a better function
value. Local searches are started only from unclus-
tered points. This way, ideally linking points which
are clustered together, a forest is built and local
searches are started only from the root of each tree; it
is hoped that each tree in the forest connects points
within the region of attraction of a single local opti-
mum. As the threshold in (2) decreases to 0, a sin-
gle tree will eventually be broken into two or more
connected components, and it may happen that lo-
cal searches are started also from points which, in
previous iterations, were not considered to be good
candidates.

� simple linkage (in short: SL). Here Nk = 1 and ei-
ther S? = ; or S? = Sk (a single point). In particular
a local search will be started from the most recently
sampled point x if and only if no point y 6D x in the
sample Sk exists such that:

f (y) � f (x)C � and kx � yk � rk;� ;

where rk, � is defined as


�1/2
�
� (1C d/2)�(S)�

log k
k

�1/d

: (3)
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Symbols used in (3) have the same meaning as be-
fore; � is a small positive constant. This method was
introduced in [5] and theoretically compared with
MLSL in [4]. The main differences with MLSL are
in the choice of sampling a single point at each it-
eration and of letting the possibility of starting a lo-
cal search only from the last single sampled point,
instead of having the necessity, at each iteration, of
reconsidering the whole sample again;

� Topographical search. S? is defined as the set of local
record points in the sample: given an integer m �
1 a point is a local record if its functional value is
lower than that of itsm nearest neighbors. A variant
of this idea was presented in [11].

In all these methods, provided that sampling produces
a dense set of points in S, convergence of the best ob-
served function value to the global optimum is achieved
with probability 1. It was proven in [1] that produc-
ing a dense set of observations is, in a certain sense,
also necessary. Moreover, if a prefixed accuracy � > 0
is given and if it is assumed that the level set

L� D fx 2 S : f (x) � f � C �g

has a positive Lebesgue measure, then all of the above
algorithms will almost surely place an observation in
L� in a finite number of iterations. What distinguishes
poorly performing methods like Pure Random Search
from MLSL or Simple Linkage is the fact that, through
local searches, these methods attempt to place observa-
tions in L� as soon as a point is sampled in the (hope-
fully much larger) region of attraction of the global op-
timum.

Multistart succeeds in reaching this goal, starting
a local search from every sampled point. This has the
negative effect of wasting a huge quantity of computa-
tional power both during local searches leading to local
(nonglobal) optima, and in discovering each local op-
timum more than once. Both MLSL and Simple Link-
age try to reach a compromise between Pure Random
Search and Multistart by starting a few local searches
only from a selected set of promising points. The main
theoretical properties ofMLSL and SL are the following:
� the probability of starting a local search at iteration

k decreases to 0 provided that � > 2 in MLSL and �
> 0 in SL;

� the total expected number of local searches started,
even if the algorithm is run forever without stop-

ping, is finite, provided that � > 4 in MLSL and �
> 2d/d in SL (these results hold when S is the d-di-
mensional hypercube).

These two properties are crucial in evaluating the ef-
ficiency of MLSL and SL: they state that the total ef-
fort devoted to local searches is kept at a low level.
The different conditions imposed on � in the last prop-
erty come from an important difference in the assump-
tions of MLSL and SL: while the former forbids local
searches to be started from sampled points which are
within a prefixed distance from the boundary, the latter
allows local searches to be started from any point in S,
including the boundary. As the dimension d increases,
given, as prescribed in MLSL, � > 0, the probability
of sampling a point whose distance from the bound-
ary is less than � increases. This fact might help to ex-
plain the fact that MLSL was successfully applied only
to quite low-dimensional global optimization prob-
lems. On the other hand SL was applied with success
to high-dimensional global optimization problems like,
e. g., the minimization of Lennard–Jones potential en-
ergy function, a classical test for global optimization de-
rived from computational chemistry, characterized by
the presence of a number of local optima which in-
creases exponentially with the dimension of the prob-
lem.

Recent developments in two-phase methods aim
at:
� analyzing their finite time behavior (all of the prop-

erties mentioned above were asymptotic ones), pos-
sibly leading to different definitions of the thresh-
olds used for deciding whether to start or not local
searches;

� improving the sampling phase, in order to avoid the
possibility that a local search is started from a point
just because no other point was sampled in a suitable
neighborhood.

This last point can be tackled by building the sample in
such a way that large gaps between sampled points are
avoided; as an example, quasirandom sequences might
be employed (for a general reference see [6]). It should
be observed however that the substitution of pseudo-
random points with quasirandom ones needs a thor-
ough redefinition of the criteria used for starting lo-
cal searches. As an alternative, the idea itself of using
a threshold might be abandoned, leading to methods
similar to Topographical Search.
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As a concluding remark, it should be observed that
all the effort in these methods is devoted to placing,
at relatively low computational cost, observations in
a small neighborhood of the global optimum. This ef-
fort is wasted if the algorithm is not equipped with
a good stopping rule (cf. also � Stochastic global op-
timization: Stopping rules). Unfortunately, no stopping
rule is sensible for such poorly structured problems; the
only possibility up to now has been that of using heuris-
tic stopping criteria, some of which particularly com-
plex, derived from simplified stochastic models. Regret-
tably, research in the field of stopping rules for two
phase methods seems to have stalled in the last few
years, probably as a consequence of the low confidence
users put into statistical stopping rules which never can
give a guarantee, or even an estimate, about the error in
approximating the global optimum.
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As in many other branches of mathematical optimiza-
tion, stochastic programming theory and algorithms
have to be rethought completely when including integer
requirements. Among stochastic integer programs so
far the linear two-stage model is best understood, both
structurally and algorithmically. It is the problem

min
n
cx C Q(x; �) : Bx D b; x 2 Zn

C � Rn0
C

o
;

where

Q(x; �) D
Z

Rs

˚(z � Ax)�( d(z;A))
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and

˚(t) D min
�
qyC q0y0 :

WyCW 0y0 D t;
y0 2 Rs0

C; y 2 Zs
C

	
:

Structural properties of the above model are mainly de-
termined by the interaction of the second-stage value
function ˚ and the integrating probability measure �.
Due to the integer requirement on y the value func-
tion˚ is no longer convex, as would have been the case
with the integer-free counterpart model. Studies of the
mixed integer value function ˚ date back to the 1970s
[5]. Under mild assumptions including in particular the
rationality ofW andW 0 it holds that ˚(t) 2 R for all t,
and the function˚ is lower semicontinuous. Moreover,
the following properties of ˚ (established in [3,5]) are
useful prerequisites for the analysis of the above model:
1) There exists a countable partition [1iD1 Ti of the

domain of ˚ such that the restrictions of ˚ to Ti

are piecewise linear and Lipschitz continuous with
a uniform constant L > 0 not depending on i.

2) Each of the sets Ti has a representation Ti = {ti +K} \
[N

jD1 {tij + K}, where K denotes the polyhedral cone
W 0(Rs0

C), ti, tij are suitable points from the argument
space, and N does not depend on i.

3) There exist positive constants ˇ, � such that |˚(t1)
� ˚(t2)| � ˇ k t1 � t2 k +� for arbitrary t1, t2.

Although discontinuous, the function ˚ hence is not
‘too bad’: discontinuities only occur in subsets of hy-
perplanes, in its continuity regions the function is even
Lipschitzian with uniform modulus, and the overall
growth of the function is bounded by an affine expres-
sion.

The combination of these properties with tools from
probability theory leads to statements on the joint con-
tinuity ofQ as a function both of the decision variable x
and the integrating probability measure�. The latter, of
course, needs a proper convergence notion in the space
of probability measures. Hereweak convergence of prob-
ability measures [4] has turned out to be sufficiently
broad to cover relevant applications and sufficiently
strict to allow substantial conclusions. Continuity of Q
both in x and � has direct consequences for the stabil-
ity of the stochastic integer program when perturbing
the underlying probability measure �. Such perturba-
tions are motivated by two reasons: In practical model-
ing the probability distribution of the random param-
eters is always subjective. The modeler hence wants to

be sure that slight modifications of the distribution do
not lead to drastic changes in the solution. Secondly,
the integral defining Q is multivariate with a dimension
governed by the dimension of the underlying random
vector which usually is quite big. Numerical integration
hence fails if� is nondiscrete. Approximating � by dis-
crete measures then turns integrals into sums which are
numerically feasible. Of course, this has to be accom-
panied by the safeguard that ‘close’ approximations of
model data (the measure �) end up in ‘close’ approxi-
mations of the model output (the optimal value and the
solution set).

Under mild technical assumptions that basically en-
sure ˚ and Q to be well defined real-valued func-
tions the following results on continuity, stability and
rates of convergence for stochastic integer programs are
known.

Fatou’s lemma and the lower semicontinuity of ˚
imply lower semicontinuity of Q(�, �) [11,13]. Via
Lebesgue’s dominated convergence theorem this ex-
tends to continuity of Q(�, �) at a given x provided the
exceptional set E(x) of all (z, A) such that ˚ is discon-
tinuous at z � Ax has �-measure zero [11,13]. Since
discontinuities of ˚ are located in a set of Lebesgue
measure zero (cf. property 2) above) the condition on
E(x) is fulfilled if � has a density. This also covers the
first continuity result in the field obtained by L. Stougie
[15]. Adding boundedness and monotonicity assump-
tions on densities of one-dimensional marginal distri-
butions of linear transforms of � leads to Lipschitz con-
tinuity of Q(�, �) [12,13]. Here the above properties 1)
and 3) of ˚ are essential for the proof.

A particular problem class is given by two-stage
stochastic programs with simple integer recourse. Here,
the functionQ is much better understood since it enjoys
separability properties and essential parts of the anal-
ysis can be done in dimension one. Results comprise
sufficient conditions for differentiability of Q(�, �), an
algorithm for constructing the convex hull of the epi-
graph ofQ(�,�) and convexification procedures forQ(�,
�) based on proper modifications of � [6,7,8,16].

Continuity of Q as a function jointly in x and � can
be obtained by adding elements from the theory of weak
convergence of probability measures [4]. Using Rubin’s
theorem on weak convergence of image measures in-
duced by discontinuous transformations [4] it is pos-
sible to show that Q(�, �) is continuous at (x, �) if the
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above mentioned exceptional set E(x) has �-measure
zero [13]. In [1] the authors study upper and lower
semicontinuity of integral functionals with discontin-
uous integrands of which Q(�, �) is a special case. The
role of the discontinuity set E(x) is then taken by prop-
erly defined exceptional sets of missing upper and lower
semicontinuity. Semicontinuity of the integral func-
tional then essentially follows if the corresponding ex-
ceptional set has �-measure zero.

When heading for rates of quantitative continuity
of Q as a function of �, e. g., Lipschitz or Hölder con-
tinuity, it is essential to select a metric on the space of
probability measures (probability metric, [9]) that, on
the one hand, fits to the discontinuous integrand and,
on the other hand, metrizes weak convergence of prob-
ability measures under mild assumptions. In [14] a spe-
cific variational distance meeting these requirements is
proposed and a Hölder continuity result for Q(x, �) is
established. The polyhedral cone K arising in the above
property 2) of ˚ enters the definition of the variational
distance as a crucial ingredient.

By standard arguments from the stability analysis
of optimization problems with parameters in general
topological or metric spaces [2,10] the above continu-
ity statements for Q can be turned into stability results
for the optimal value and the set of optimal solutions
of the underlying stochastic integer program. In par-
ticular, results of this type were obtained for (Hölder)
continuity of the optimal value and for upper semicon-
tinuity of the solution set mapping [1,11,13,14].
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A stochastic linear program with recourse is a program
of the form
(
min cx C Q(x)
s.t. x 2 X

where Q(x) = E�Q(x, �), Q(x, �) = miny(�) 2 Y(�) qy(�)
and E� denotes the mathematical expectation with re-
spect to �. X and Y(�) are usually polyhedral convex
sets. In recourse programs, some decisions (x), called
first-stage decisions, must be taken before knowing the
particular values taken by the random variables (�)
while some other decisions (y(�)), called second-stage
decisions or recourse actions, can be taken after the re-
alizations of the random variables are known. In this
representation, Q(x, �) is the second-stage value func-
tion for a given � and Q(x) the expected value-function
or expected recourse.

A stochastic integer program with recourse (SIP) is
a stochastic program, where some of the decisions are
restricted to be integer, either in the first-or in the
second-stage problem. It is an extension of integer pro-
gramming or combinatorial optimization, where some
of the problem data are random variables. Any appli-
cation of combinatorial optimization can thus be ex-
tended to a stochastic integer program. Typical appli-
cations are in the energy sector [16], resource acquisi-
tion [1], location problems [10], stochastic scheduling
[2], stochastic knapsack for yield management [15].We
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concentrate here on the recourse formulation of SIP al-
though some models incorporate instead probabilistic
constraints.

SIPs are notoriously difficult unless the only in-
tegrality requirements are restricted in the first-stage.
Indeed, the expected recourse function is known to
be nonconvex, discontinuous (with some exceptions
when the random variables are absolutely continuous
[10,13]. Similarly, the set of first-stage decisions that
yield second-stage feasible solutions is in general non-
convex. It follows that the available methods and prop-
erties are scarce for this problem. Research has thus
concentrated on some specific problems.

One major situation where some properties are
available is the simple integer recourse problem, defined
as follows:

Q(x; �) D min
8<
:q
C � yC C q� � y� :

yC � h � Tx;
�y� � h � Tx; yC;
y� � 0 and integer

9=
; ;

where � is formed by the stochastic components of q+,
q�, h and T. Here, any difference in h� Tx with respect
to zero must be compensated by an integer quantity y+

or y�. This compensation is calculated componentwise.
The expected value of a simple integer recourse prob-
lem can be computed either exactly or by an approx-
imation whose error bound can be controlled. More-
over, a componentwise convexity property can be de-
rived between points that are at an integer distance so
that an exact algorithm can be obtained, in particular in
the case where the first-stage variables are integer [11].
Also, in several cases, the convex hull of the expected
recourse can be obtained [6].

Another line of approach is to use the hierarchy
between aggregate level decisions, which are typically
those restricted to be integer, and detailed level deci-
sions, which are very often continuous. Hierarchy has
been used either through Benders decomposition [9] or
within the framework of asymptotic analysis [8].

Bender’s decomposition has also been applied to the
case when the first-stage variables are binary variables
[7]. Those methods sometimes use the terminology ‘in-
teger L-shaped’ to stress the similarity with what is done
in linear (continuous) stochastic programs. Applica-
tions have mainly be in the routing area as many ex-

amples exist where the expected second-stage recourse
functions is computable. Of particular importance, is
the possibility to develop lower bounding functionals
that are also valid at fractional solutions (see � Frac-
tional combinatorial optimization).

A description of Bender’s decomposition for SIP in
a more general framework is available in [5]. An inter-
esting alternative is to combine dual decomposition and
Lagrangian relaxation [4].

Clearly, this field is only in its infancy (as of 1999)
so that we may expect many more results in the coming
years. A bibliography is available in [14] and a general
presentation in [3].
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Stochastic linear programs are typically characterized
as extremely large scale linear programs. In general,
they cannot be solved without the use of specialized
methods that are designed to exploit their special struc-
ture. In this chapter, we describe a commonly used de-
composition technique due to J.F. Benders, and discuss
the manner in which it is used to solve stochastic linear
programs. We also discuss the manner in which statis-
tical techniques can be used in combination with Ben-
ders’ decomposition. This combination forms the ba-
sis of the stochastic decomposition algorithm, which is
a powerful mechanism for solving large scale stochastic
linear programs.

Introduction

In deterministic activity analysis, planning consists of
choosing activity levels which satisfy resource con-
straints while maximizing total profit (or minimizing
total cost). Note that all the information necessary for
decision making is assumed to be available at the time
of planning. Under uncertainty, not all the information
is available, and parameters such as resources are of-
ten modeled by random variables. However, in the ab-
sence of appropriatemodeling and algorithmic tools for
planning under uncertainty, practitioners have often
resorted to using deterministic methodology by replac-
ing the random variables by their expected values. In
general, this is inappropriate. In circumstances where
all the information is not known with certainty, it is ad-
visable to plan only those activities that cannot be post-
poned to a future date, while some others may be post-
poned until better information becomes available. Since
information is revealed sequentially over time, decision
making under uncertainty naturally becomes a multi-
stage process. The earliest LP models for planning un-
der uncertainty may be credited to G.B. Dantzig [3] and
E.M.L. Beale [1], and are often referred to as two-stage
stochastic programs with recourse.

A two-stage stochastic linear programwith recourse
may be stated as

(SLP)

8̂
<̂
ˆ̂:

min cx C E[h(x;e!)]
s.t. Ax D b;

x � 0;

wheree! is a random variable defined on the probability
space (˝ , A, P), and for each ! 2˝ ,

h(x; !) D

8̂
<̂
ˆ̂:

min g! y
s.t. W! y D r! � T!x

y � 0:

(1)

Note that the randomness in data elements appears in
the second stage, whereas data in the first stage is as-
sumed to be known with certainty.

Two-stage stochastic linear programs arise in a vari-
ety of settings. They commonly appear in situations in
which the first-stage decision, x, corresponds to a long
term, or ‘planning’, decision that must be made imme-
diately (i. e., prior to any realization of e!). Following
the implementation of this decision, one is faced with
a collection of short term, or ‘operational’, decisions,
which vary with the outcome of e!. Thus, for example,
in a manufacturing environment one might make deci-
sions regarding the acquisition of productive capacity.
These, of course, are long term decisions made prior to
knowing the precise nature of the demand profile. Ac-
tual production decisions are made after information
regarding demand has been revealed. As such, these de-
cisions are short term. Naturally, the objective function
will attempt to strike a balance between the two types of
costs.

Note that the explicit representation of E[h(x;e!)]
requires the solution of (1) for each possible outcome
of e!. Thus, problems such as SLP are typically quite
large – too large to solve directly as linear programs.
It follows that the efficient solution of SLP requires the
development of specialized solution procedures that ex-
ploit the structure of the problem. In order to bring the
problem to a computationally viable size, decomposi-
tion schemes are used. As problem size increases, these
schemes are often used in conjunction with statistically
motivated methods. Thus, in this article, we will ex-
plore the development of cutting plane methods based
on a Benders’ decomposition of SLP, and will discuss
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the development of deterministic cutting planes, as well
as their statistically motivated counterparts.

Decomposition of SLP

For brevity in exposition, we assume throughout that
h(x;e!) < 1 with probability one. This is equivalent
to assuming that for all x satisfying Ax = b, x � 0, (1)
is almost surely feasible. In the stochastic programming
literature, this property is known as ‘relatively complete
recourse’. As stated in (1), the function h(x, !) is easily
verified as a convex function of x (see [9]). It follows
that the recourse function,

E[h(x;e!)] D
Z

˝

h(x; !) P(d!)

is also a convex function of x. As such, it lends itself to
solution via Kelley’s cutting plane algorithm [7]. Define

f (x) D cx C E[h(x;e!)]
X D fx : Ax D b; x � 0g :

Assuming X is bounded, Kelley’s algorithm may be
stated as:

0 x1 2 X is given, f 0(x) = �1, k 0.
1 k k + 1.

Find (˛k ; ˇk) such that 8x 2 X:
f (xk) = ˛k + (c + ˇk)xk ;

f (x) � ˛k + (c + ˇk )x :
2 fk(x) = maxf fk�1(x); ˛k + (c + ˇk)xg.
3 Solve minx2X fk(x) to obtain xk+1.

Repeat from Step 1.

Kelley’s cutting plane algorithm

While it is not difficult to include a stopping rule in
Kelley’s method, we have not done so in the above state-
ment because we wish to draw parallels between deter-
ministic and stochastic cutting plane methods. We note
that stopping rules for stochastic methods are beyond
the scope of this article.

The manner in which (˛k, ˇk) are specified in Step
1 of the algorithm is critical to ensuring that an opti-
mal solution to min{f (x): x 2 X} is eventually identified
through Step 3 of the algorithm. Coefficients of the sup-
porting hyperplane required in Step 2 may be obtained

from a dual solution of (1). That is, assuming that (1)
has a finite optimum, we have

h(x; !) D

(
max 
(r! � T!x)
s.t. 
W! � g! :

(2)

Thus, if x 2 X is given and if we let 
! 2

argmax f
(r! � T!x) : 
W! � g!g then

h(x; !) � 
!(r! � T!x); 8x 2 X;

with equality ensured if x D x. Note that 
! actually
depends on both x and !. Thus, given xk and !, let


 k
! 2 argmax

n

(r! � T!xk) : 
W! � g!

o

and note that we may obtain the subgradient coeffi-
cients in Step 2 of Kelley’s method using

˛k D

Z

˝


 k
!r! P(d!);

ˇk D �

Z

˝


 k
!T! P(d!);

or equivalently

˛k D E[
 ke!re!]; ˇk D �E[
 ke!Te! ]: (3)

Note that this algorithm can be interpreted as a de-
composition method for block angular linear programs.
Hence it is sometimes referred to as Benders’ decompo-
sition [2]. In the stochastic programming literature, this
is also known as the L-shaped method [8].

In order to appreciate the computational challenges
inherent to the solution of SLP, it is important to recog-
nize the magnitude of the requirements associated with
(3). Specifically, note that the subgradient coefficients
specified in (3) require the implicit solution of the linear
program in (1)-(2) for every possible realization of the
random variablee!. If there are only a few possible real-
izations, this poses no computational burden. However,
in most cases this exact evaluation easily exceeds com-
putational capabilities. For example, if there are only 10
independent random variables with 3 outcomes each,
then there are a total of 310 or 59,049 possible outcomes.
This figure represents the number of linear programs
that would have to be solved in each iteration of Kel-
ley’s method. To solve problems of realistic sizes, it is
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necessary to resort to approximations of the subgradi-
ent coefficients. Given their representation as expected
values in (3), it is natural to resort to statistically based
approximation schemes.

Statistical Representation
of Cutting Plane Coefficients

The most simplistic use of sampled data within the cut-
ting plane coefficients is quite straightforward and eas-
ily implemented. Unfortunately, it is prone to substan-
tial error, and should not, in general be used except with
caution. We present it here only as an introduction to
a more stable methodology.

We begin by noting that one may obtain statisti-
cal estimates of the cutting plane coefficients by using
randomly sampled observations of e! and computing
the appropriate sample means. That is, suppose that
{!t}ntD1 is a collection of independent and identically
distributed observations ofe! and 
 k

t 2 arg max{
(rt �
Tt xk: 
Wt � gt}, where (rt , Tt , gt,Wt) = (r! t , T! t , g! t ,
W! t ). Then the sample means

b̨k D
1
n

nX
tD1


 k
t r

t ; b̌k D
�1
n

nX
tD1


 k
t T

t

can be used as estimates of the cutting plane coeffi-
cients. Application of Kelley’s method using these es-
timated cut coefficients is equivalent to solving

8̂
ˆ̂̂<
ˆ̂̂̂
:

min cx C
1
n

nX
tD1

h(x; ! t)

s.t. Ax D b;
x � 0:

(4)

If we let xn denote an optimal solution to (4), then it is
clear that xn need not be an optimal solution to SLP.
Moreover, it is also clear that xn will depend on the
sample used – different sets of observations will lead to
different solutions.

The drawback to simply solving (4) in place of SLP
lies in the inability to judge the quality of the solutions
produced. That is, if x� denotes an optimal solution
to SLP, one would naturally be interested in assessing
f (xn) � f (x�). This turns out to be a fairly difficult
undertaking, and can be computationally intensive (see

[5]). In addition, we note that cutting plane algorithms
commonly generate cuts in early iterations which sup-
port the objective function ‘peripherally’ (i. e., in re-
gions that are far removed from the optimal solution).
With that observation, we note that it is possible to ease
the computational effort required by using less accurate
cuts in the early iterations. The stochastic decomposition
algorithm [4] was designed to circumvent these draw-
backs.

Stochastic Decomposition

Recognizing that cutting planes derived early in the it-
erative process will tend to have little bearing on the op-
timal solution, stochastic decomposition (SD) iterates
with a variable sample size. As iterations progress, the
sample size used increases. That is, in the kth iteration,
k observations are used. This requires the generation of
one new observation ofe! in each iteration. In addition,
SD creates computational efficiencies by using approx-
imation of the subproblem (2).

In the kth iteration, the SD algorithm approximates
one support of the following function:

1
k

kX
tD1

h(x; ! t):

Note that cuts generated in earlier iterations were based
on fewer observations of e!. In order to ensure that all
cuts are asymptotically valid (i. e., underestimate the ac-
tual objective function, as required in Step 2 of Kelley’s
method), the SD algorithm updates previous cuts by in-
cluding a lower bounding constant. For example, sup-
pose that h(x;e!) � 0 (with probability 1). Then

1
k

kX
tD1

h(x; ! t)

D
k � 1
k

(
1

k � 1

k�1X
tD1

h(x; ! t)

)
C

1
k
h(x; !k)

�
k � 1
k

(
1

k � 1

k�1X
tD1

h(x; ! t)

)
:

(5)

Now, suppose that in the first k � 1 iterations we have
accumulated a collection of cutting plane coefficients,
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{(˛k�1
t , ˇk�1

t )}k�1tD1 , such that

1
k � 1

k�1X
tD1

h(x; ! t) � ˛k�1
t C ˇk�1

t x;

8x 2 X; t D 1; : : : ; k � 1:

Combining the above inequality with (5), we have

1
k

kX
tD1

h(x; ! t) �
k � 1
k
f˛k�1

t C ˇk�1
t xg;

8x 2 X; t D 1; : : : ; k � 1:

This leads to a simple mechanism for updating pre-
viously derived cutting plane coefficients which pre-
serves the required lower bounding nature as iterations
progress (and hence, as the sample size increases). That
is, we simply require

˛k
t  

k � 1
k

˛k�1
t ; ˇk

t  
k � 1
k

ˇk�1
t ;

t D 1; : : : ; k � 1 :

Of course, if the lower bound is given as ` 6D 0, then we
use

˛k
t  

k � 1
k

˛k�1
t C

1
k
`;

and the update of ˇk
t is not altered.

To illustrate the subproblem approximation, sup-
pose that ge! and We! are constant so that g! = g and
W! =W for all ! 2˝ . In this case, the set of dual fea-
sible solutions in (2) is the same for all ! 2˝ , so that

h(x; !) D max f
(r! � T!x) : 
W � gg :

Noting that we may restrict our attention to extreme
point solutions, let V denote the set of extreme points
of {
 : 
W � g}. Then

h(x; !) D max f
(r! � T!x) : 
 2 Vg :

SD iteratively constructs a subset of V based upon ob-
served dual solutions. Thus, if Vk � V is the subset as it
appears in the kth iteration, then SD estimates the cut-
ting plane coefficients using


 k
t 2 argmax

n

(rt � Ttxk) : 
 2 Vk

o
:

Unlike the simplistic sample-based method previously
described, specific guarantees of optimality can be ob-
tained through stochastic decomposition. The exposi-
tory details associated with safeguards can be somewhat
lengthy, and thus, [4] and [6] for a detailed explanation.

Conclusions

The representation of uncertainty in linear program-
mingmodels easily leads to problems of extremely large
magnitude. As such, the ability to decompose stochas-
tic linear programs is critical to the development of vi-
able solution procedures. Indeed, Benders’ decompo-
sition, and the cutting planes derived from it, lie at
the heart of a wide variety of stochastic linear pro-
gramming solution methods. Moreover, as the num-
ber of possible outcomes associated with the random
variables increases, it is necessary to incorporate addi-
tional techniques. One of the most promising avenues
of exploration to date involves the incorporation of ran-
dom sampling methods within a decomposition proce-
dure. This provides amechanism for combining proven
methods for obtaining computational efficiencies. That
is, the benefits of using decomposition techniques for
large scale linear programs have been well established,
as have the benefits of using statistical summaries of
sampled data in the estimation of expected values. In
the solution of large scale stochastic linear programs,
their combination proves to be quite powerful.
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Stochastic linear programs (SLPs) can be seen as a gen-
eralization of linear programming problems where at
least some coefficients in the objective function and/or
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the constraints are random. The motivation for such
a formulation is that in many practical applications, the
problem data are not known with certainty, for instance
because they represent information about the future.

As an example, consider a problem statement from
the area of production planning. Today (at a first stage),
a decision maker has to decide upon an input plan x
which yields goods Tx by means of some technologi-
cal process in order to meet the uncertain demand h
in the future (a second stage). Since it is likely that the
number of produced goods fails to meet the demand,
a recourse action y is required that allows to compen-
sate the discrepancy ‘h � Tx’ as soon as the demand is
known. Such a correction induces additional cost q0y in
the second stage. The objective is to find a decision x
that minimizes the direct cost c0x of the first stage plus
the expected cost Q(x) induced by x for compensations.
Formally, this can be written as

8̂
<̂
ˆ̂:

min c0x CQ(x)
s.t. Ax D b

x � 0

(1)

where Q(x) =
R
$ Q(x, �) dF(�) is the expectation of the

recourse function

Q(x; �) D min
y

˚
q0y : Wy D h(�) � T(�)x

�
: (2)

The second-stage cost (2) depends on x and the real-
ization of some K-dimensional random vector � with
values in the compact convex set � � RK and distribu-
tion function F. Note that Q(x, �):� ! R is convex for
all x satisfying the constraints in (1).While the recourse
action y may be different for each �, the first-stage de-
cision x is independent of which event actually occurs.
This property is known as nonanticipativity. The mean-
ing is that the current decision is only based on what is
known today.

Throughout this article, it is assumed that the cost
coefficients q as well as the recourse matrixW are fixed
since the penalization for compensating the discrep-
ancy h(�) � T(�)x is likely to be of a deterministic na-
ture. The case of a nonrandom W is known as fixed re-
course. In particular,W = (�I, I) with I being the iden-
tical matrix is called simple recourse, meaning that each
deviation of h(�) � T(�)x from zero is penalized by its
absolute value. However, in a more general formulation

both q and W may also depend on the realization of �
(see [1,12] for a more thorough discussion). Further-
more, it is assumed that the demand h and the technol-
ogy matrix T are linear-affine in �, i. e.

h(�) D h0 C h1�1 C � � � C hK�K ;

T(�) D T0 C T1�1 C � � � C TK�K :

If the distribution of � is discrete, the stochastic linear
program with recourse given by (1) and (2) can be writ-
ten as a large deterministic problem where the expecta-
tions are written as a finite sum, and all constraints are
duplicated for each realization of �. The resulting deter-
ministic equivalent problem may be solved by straight-
forward application of standard linear programming
methods (provided that the discrete set of possible out-
comes for � is of relatively low cardinality). However, it
exhibits a typical block structure that can be exploited
by special decomposition algorithms (see also [1,12] or
[13]).

Otherwise, if the distribution of � is continuous, one
can use approximation techniques ([2,10,11]) where the
original random vector � is replaced by another one
b� . Typically,b� is discrete, and the problem reduces to
a discretely distributed stochastic program. These tech-
niques take advantage of the convexity of the recourse
function, yielding upper and lower bounds for the ex-
pected recourse cost. This allows to quantify the accu-
racy of the approximation and, if not sufficient, to im-
prove it by constructing a better approximation toQ(x).

The Jensen Lower Bound

In order to outline the basic concepts (see e. g. [12]), as-
sume that � is one-dimensional and denote the expec-
tation by � :D E� D

R
$
� dF(�). Recall that '(�) :D

Q(bx; �) is convex in � for any fixedbx. Therefore, it can
be bounded from below by a linear function  (�) that
supports ' at some point b�, i. e. (assuming that ' is
(sub)differentiable inb�)
 (�) D '(b�)C ' 0(b�)(� �b�):

Due to linearity, the expected value of this lower bound
is given by

E (�) D '(b�)C ' 0(b�)(E� �b�) D  (�):
Obviously, the best lower bound is given byb� D � since
no linear function supporting ' has a value larger than
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Stochastic Linear Programswith Recourse andArbitraryMul-
tivariate Distributions, Figure 1

'(�) in �. This is stated by Jensen’s inequality '(E�) �
E'(�) for convex functions of random variables. Ap-
plied to the situation where '(�) is convex over the do-
main of �, one obtains a lower bound to the recourse
function from

'(�) �
Z

$

'(�) dF(�): (3)

Note that (3) also holds for multidimensional � 2 � �
RK , K � 1, regardless of any correlation between the
components of �.

For one-dimensional random variables, the lower
bounding function  (�) is illustrated in Fig. 1, together
with an upper bound which can be derived as follows.

The Edmundson–Madansky Upper Bound
(Independent Case)

For simplicity, the one-dimensional case is considered
first. Let the support of � be given by the interval � =
[a0, a1]�R. The idea of the Edmundson–Madansky up-
per bound is to introduce a discrete random variableb�
with the same expectation, i. e. Eb� D � , attaining the
values a0 and a1 with probabilities

pa0 :D P(b� D a0) D
a1 � �
a1 � a0

;

pa1 :D P(b� D a1) D
� � a0
a1 � a0

D (�1)
a0 � �
a1 � a0

:

Obviously, the linear function � (�) through the points
(a0, '(a0)) and (a1, '(a1)) is above '(�) for all � 2 �
due to convexity. This implies

'(�) �
a1 � �
a1 � a0

� '(a0)C
� � a0
a1 � a0

� '(a1)

for all � 2� , and integrating this inequality yields
Z

$

'(�) dF(�)

�
a1 � �
a1 � a0

� '(a0)C
� � a0
a1 � a0

� '(a1)

D pa0 � '(a0)C pa1 � '(a1) D E'(b�)

as an upper bound for the expectation E'(�). The EM-
bound on intervals can be extended easily to multivari-
ate distributions, where� = [a10, a11] × � � � ×[aK0, aK1]
� RK is the rectangular support of �, if either Q(x, �) is
separable in the components of � or the elements of �
are stochastically independent. In the former case, the
bound may be applied to each component separately.
Here, the more general latter case is of interest.

Denote the vertices of � by a� , � = (�1, . . . , �K), � i
2 {0, 1}, such that a�i = ai�i . Analogously to the above,
b� is a discrete random vector with independent compo-
nents and Eb� i D � i , attaining values a� with probability

p(a�) :D P
�b� D a�

�

D

QK
iD1(�1)

�i (ai� i � � i )QK
iD1(ai1 � ai0)

; (4)

where � i D 1 � �i , and the EM-inequality contains the
product of all combinations of each interval bound, i. e.
Z

$

'(�) dF(�) �
X
�

p(a�) � '(a�) D E'(b�):

The Edmundson–Madansky Upper Bound
(Dependent Case)

If the components of � are dependent, the EM-bound is
more difficult to evaluate (unfortunately, the notation
is also somewhat cumbersome). For B := {�: � � {1,
. . . , K} and ı�(�) :D

Q
i2�(�1)

� i ,� 2B,

m� :D
Z

$

 Y
i2�

�i

!
dF(�)

are the crossmoments of � for any � 2 B, and �� :D
m� �

Q
i2� � i . Using these definitions and � D

f1; : : : ;Kg n�, it has been shown in [6], that the prob-
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abilities of the discrete outcomes a� are determined by

p(a�) D
KY
iD1

(ai1 � ai0)�1

�

2
4

KY
iD1

(�1)�i (ai� i � � i)

C
X
�2B

0
@ı�(�)

Y

i2�

ai� i

1
A ı�(�)��

3
5

Obviously, �� = 0 if the components of � are indepen-
dent which is equivalent to the bound in (4). The calcu-
lation of the EM-bound requires to evaluate 2K points
and, in the dependent case, the same number of cross-
moments. Therefore, for higher dimensions not only
the computational effort but also the number of discrete
outcomes increases exponentially, yielding a determin-
istic equivalent problem that might be too large to be
solved.

Bounds on Simplices

Instead of rectangles, one can use a regular simplex �
� � containing the support of �. In this case, Jensen’s
inequality where � is replaced by � in (3) can be ap-
plied immediately to obtain a lower bound. To derive
an upper bound, the affine independent vertices v0, . . . ,
vK of � are considered as discrete outcomes. Since this
are only K + 1 points, the complexity is no longer expo-
nential in the dimension of �. Note that for any � 2 �,
the system of linear equations

p0(�)C � � � C pK (�) D 1;

v0p0(�)C � � � C vK pK (�) D �

or briefly

Vp(�) D
�
1
�

�
with V D

�
1 � � � 1
v0 � � � vK

�

has the unique solution

p(�) D V�1
�
1
�

�
:

Analogously to the above, a discrete random variableb�
is constructed attaining values v0, . . . , vK with proba-
bilities p0, . . . , pK so that the expectation of the discrete

distribution is equivalent to those of the original one,
i. e. Eb� D p0v0C� � �C pnvn D � . This yields the follow-
ing version of the Edmundson–Madansky inequality:

Z

�

'(�) dF(�) �
KX
iD0

pi'(vi);

where the vector of probabilities is given by

p D
Z

�

V�1
�
1
�

�
dF(�) D V�1

�
1
�

�

Note that this equation holds for both the independent
and the dependent case.

Improving Bounds

The advantageous feature of approximation techniques
is that the accuracy can be quantified by the difference
between the Jensen and the Edmundson–Madansky
bound. If not sufficient, the approximation can be im-
proved by dividing the rectangular support � (or the
simplex �, respectively) into convex disjunct subsets
like in Fig. 2.

A finite collection of such subsets is called a parti-
tion. Dividing an element of an existing partition yields
a ‘refined’ partition, and the associated bound is at least
as good as the former one (monotonicity of bounds). If
the subsets become arbitrary small, the approximated
recourse function converges to the original one. How-
ever, for computational reasons the partition cannot
become arbitrarily small. Also, dividing � (or �, re-
spectively) without strategy may increase the computa-
tional effort dramatically. Hence, sophisticated refine-
ment strategies are required that analyze the accuracy

Stochastic Linear Programswith Recourse andArbitraryMul-
tivariate Distributions, Figure 2
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of the bounds for each subset and determine those that
should be further divided. This yields a sequential ap-
proximation to the original problem.

Generalizations and Alternative Methods

When deriving the upper and lower bounds, only ran-
domness in the right-hand side was taken into account
so far. If the latter are deterministic (i. e. h(�) := h0)
but the coefficients q(�) in the objective are uncertain,
one can apply the same procedure to the dual prob-
lem. Since this is a maximization problem with con-
cave recourse function, the Jensen inequality provides
an upper while the Edmundson–Madansky inequality
yields a lower bound. For uncertainty in both the objec-
tive and the right-hand side of constraints, extensions
of the approximation scheme described above are re-
quired (see e. g. [7]). It has to be mentioned that there
are other concepts apart from the bounds derived here
which are also applicable for noncompact support of
the random data [4] or derive sharper lower bounds by
exploiting second moment information [3].

Alternatively, one may approximate the original
problem by sampling from continuous distributions to
obtain a deterministic equivalent, or one may use Ben-
ders decomposition together with variance reduction
techniques to handle a large number of scenarios [9].
Other sophisticated approaches like stochastic quasi-
gradient methods [5] or stochastic decomposition [8]
combine sampling with techniques known from convex
optimization, for example subgradient or cutting plane
procedures.
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Stochastic programming provides a framework for se-
quential decision making, or planning, under uncer-
tainty. Uncertainty naturally arises when the future
consequences of present decisions are unknown, and is
typically represented by a set of scenarios covering pos-
sible future events. A stochastic program (SP) seeks to
find a decision which is, in some sense, optimal with re-
spect to the scenario set. Depending upon the number
of scenarios, and upon the size of the underlying (de-
terministic) model, an SP may become very large and
computationally challenging to solve. Hence, there is an
ongoing effort to device efficient algorithms tailored to
the special structures of SPs, and to exploit novel, par-
allel computer architectures in their solution.

This article focuses on two- and multistage SPs with
generalized network structure. The two-stage SP is the
simplest program which captures the dynamic decision
process, while the network structure arises naturally in
many applications, such as financial decision making
(e. g., [11]). This problem structure was studied already
in [24] and [25].We first describe algorithms for the so-
lution of network problems with strictly convex objec-
tive functions. These algorithms are then adapted to the
specially structured stochastic network problems, and
are also extended to general, convex (such as linear) ob-
jective functions.

Problem Formulation

A stochastic program models a situation where a deci-
sion maker must make a decision here and now (time
0), facing future uncertainty (the first stage). At later
time points, �n, further corrective decision ares made.
These decisions are made dependently on prior deci-
sions and on the actual realizations of uncertain events
between times 0 and �n, but in the face of further un-
certainty of events after �n. The two-stage SP consists of
the initial and one corrective decision and is naturally
generalized to themultistage SP with an arbitrary num-
ber of decisions.

The two-stage SP where uncertainty is represented
by a finite scenario set S = {1, . . . , N} with probabilities
ps > 0, can be formulated mathematically in the deter-
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ministic, equivalent form, [26]:
8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min f (x)C
X
s2S

ps gs(ys)

s.t. Ax D b;
Csx C Bs ys D ds ; 8s 2 S;
0 � x � ux ; 8s 2 S;
0 � ys � vx ; 8s 2 S:

The first- and second-stage variables are denoted x
and ys, respectively. Any (scenario-independent) con-
straints on the first-stage decision are represented by
the Ax = b constraint. The second-stage decisions ys de-
pend upon both the scenario (hence the superscript s)
and on the first-stage decisions x through the matrix Cs.
All decision variable may be subject to simple bounds.
The objective functions f and gs are assumed to be con-
vex, and continuously differentiable.

The L-shaped decomposition algorithm [21], based
on Benders decomposition, applies directly to SP and
is well-suited for course-grained, parallel solution, [17].
We consider here the equivalent split-variable formula-
tion, obtained by replicating the first-stage variables x
into copies xs for each scenario, then adding nonantici-
pativity constraints (NA constraints)

x1 D xs ; 8s 2 f2; : : : ;Ng (1)

to force the replicated variables to have the same value:

[RNLP]

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
X
s2S

ps( f (xs)C gs(ys))

s.t Axs D b; 8s 2 S;
Csxs C Bs ys D ds ; 8s 2 S;
0 � xs � u; 8s 2 S;
0 � ys � vs ; 8s 2 S;
x1 D xs ; 8s 2 f2; : : : ; Sg:

The advantage of this formulation is that the problem
decomposes intoN independent subproblems when the
NA constraints are ignored. This fact is exploited algo-
rithmically in the progressive hedging ([10,20]) and the
diagonal quadratic approximation ([1,9]) algorithms,
as well as in the row-action algorithms discussed above.

Row-Action Algorithm

Row-Action Algorithm The row-action algorithm (RA
algorithm) [4] is a primal-dual algorithm for solving the

general nonlinear optimization problem

[NLP]

8̂
<̂
ˆ̂:

min F(z)
s.t. Hz D r;

0 � z � u;

where the objective function F(z) is strictly convex and
continuously differentiable, z 2 Rn and H 2 Rm×n.

A solution to [NLP] consists of real vectors, z 2 Rn,

 2Rm and � 2 Rn, which satisfy the standard optimal-
ity conditions:
� primal feasibility: Hz = r and 0� z � u;
� dual feasibility: rF(z) = �H>
 � �;
� complementary slackness: for j = 1, . . . , n,

� j > 0 H) z j D 0;

� j < 0 H) z j D uj:

Starting from an initial primal-dual point (z, 
 , �)
that satisfies complementary slackness, the row-action
algorithm iteratively operates on a single constraint (or
row) at a time, simultaneously updating the primal vari-
ables occurring in the constraint, and the constraint’s
dual price. This update causes the constraint to be satis-
fied (primal feasibility) while maintaining complemen-
tary slackness. The algorithm terminates when primal
feasibility is satisfied for all constraints, within some
tolerance. The order in which the constraints are op-
erated on is not formally important as long as no con-
straint is ignored indefinitely, although the ordering
may influence the rate of convergence.

The algorithmic step can be viewed as a projection
of the current primal iterate upon the hyperplane de-
fined by a nonsatisfied constraint, with a simultaneous
update of the constraint’s dual price so that the three
optimality conditions stated above are satisfied for that
constraint. Indeed, let hi denote the ith row ofH, so that
h>i z = ri is the ith constraint fromHz = r. Then the up-
date is defined as the solution z�+1 2 Rn, ˇ 2 R to the
system

rF(z�C1) D rF(z�)C ˇ � hi ; (2)

h>i z
�C1 D ri (3)

where � is the iteration counter, z� is the current pri-
mal point and the Bregman parameter ˇ is the change
in the constraint’s dual price,
 i. Undermild conditions
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(strict convexity and zone consistency of F, see [4]), this
system can be shown to have a uniquely determined so-
lution that lies in the domain of F. The projection upon
a simple bounds constraint is similar: For instance, if zj
> uj, the system

rF(z�C1) D rF(z�)C ˇ; z�C1
j D uj

defines the next iterate. The algorithm is summarized
below, where ei denotes the ith unit vector.

Initialization
Set 	 = 0. Initialize (z0; �0; �0) such that5F(z0) =
�H>�0 � �0.
Projection on equality constraint:
To project on the ith equality constraint,
h>i z = ri , solve the equations

5F(z�+1) = 5F(z�) + ˇ � hi ;

h>i z
�+1 = ri

for z�+1 2 Rn and ˇ 2 R.
Update the dual price: ��+1 = �� � ˇ � ei .
Projection on bounds:
To project on the jth simple bound constraint, 0 �
z j � uj :

If z�j < 0, let ˇ and z�+1j solve:

5F(z�+1) = 5F(z�) + ˇ � e j ;

z�+1j = 0 :

If z�j > uj , let ˇ and z�+1j solve:

5F(z�+1) = 5F(z�) + ˇ � e j ;

z�+1j = uj :

If 0 < z�j < uj , let ˇ and z�+1j solve:

5F(z�+1) = 5F(z�) + ˇ � e j ;
ˇ = ��j :

Let ��+1 = �� � ˇ � e j.
Termination: IF convergence: STOP.
ELSE Set 	  	 + 1 and continue.

Row-action algorithm for [NLP]

We note that the initialization step is usually trivial,
by setting �0 = �rF(z0) � H>
0 for any z0 in the do-
main of F and any 
0. The convergence test is based on
a measure of violation of primal feasibility.

The RA algorithm has found application in a variety
of areas, such as matrix estimation, image reconstruc-
tion and multicommodity network flow problems. For
an extensive textbook treatment of these and related
topics, and for further references, see [6].

Specialization to Quadratic GeneralizedNetwork
Problems

We now specialize the RA algorithm to the case where
[NLP] is a network problem with a quadratic objective
function,

F(z) D
1
2
z>Wz C q>z:

Let the network structure be defined by a graph G = (V ,
E) with a set V of nodes (or vertices), and a set E� V ×
V of arcs (or edges). Let ıCi = {j 2 V : (i, j) 2 E} be the
set of nodes having an arc coming from i, and ı�j = {i 2
V : (i, j) 2 E} be the set of nodes having an arc going to
j, respectively. The decision variables are then the flows
zij from node i to node j, for (i, j) 2 E. We allow the
network to be generalized with arc multipliers mij > 0:

[QNP]

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X

(i; j)2E

1
2
wi jz2i j C qi jzi j

s.t.
X

j2ıCj

zi j �
X
k2ı�j

mki zki D ri ;

8i 2 N;
0 � zi j � ui j; 8(i; j) 2 E:

The elements ofW are here denoted by wij and ri is the
supply at node i (demands are represented as negative
supplies).

The algorithmic steps of the RA algorithm can now
be stated for [QNP]. For the flow conservation con-
straint for node i,

X

j2ıCj

zi j �
X
i2ı�j

mki zki D ri ;

(2)–(3) leads to the updating formula for zij:
(
z�C1
i j D z�i j C

ˇ
wi j

for j 2 ıCi ;

z�C1
ki D z�ki �

ˇi �mki
wki

for k 2 ı�i ;
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where

ˇ D
ri �

�P
j2ıCi

z�i j �
P

k2ı�i
mki z�ki

�

P
j2ıCi

1
wi j
C
P

k2ı�i
m2

ki
wki

: (4)

The dual variable for node i is updated by subtracting ˇ
from its current value, 
�C1

i = 
�i � ˇ.
Similarly, the simple bound constraints lead to the

updates:
� if z�i j < 0: Let z�C1

i j = 0 and ˇ = � wijz�i j ;
� if z�i j > uj: Let z�C1

i j = uij and ˇ = wij(uij � z�i j);

� if 0 < z�i j < uj: Let z�C1
i j = zi ji j + �

�
i j/wij and ˇ = ���i j .

In each case update ��C1
i j = ��i j � ˇ.

The stochastic quadratic network problem, is now
obtained by adding NA constraints (1) to [QNP]:

[SQNP]
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
s2S

X
(i; j)2E

ps
�
1
2
wi j(zsi j)

2 C qi jzsi j

�

s.t.
X

j2ıCj

zsi j �
X
i2ı�j

mki zki D ri ;

8i 2 N;
z1i j D zsi j; 8s 2 f2; : : : ;Ng;
8(i; j) 2 F;

0 � zsi j � us
i j; 8(i; j) 2 E:

As in [RNLP] the superscripts s denote scenario-
dependent quantities. The NA constraints apply to the
subset F of (replicated) first-stage variables. A special-
ization of (2)–(3) upon one such constraint changes the
two components of the current iterate z1;�i j and zs;�i j to
the common value

z1;�C1
i j D zs;�C1

i j D
p1z1;�i j C pszz;�i j

p1 C ps

which is their probability-weighted average. However,
it was shown in [13] that the values of first-stage vari-
able (i, j) across all scenarios can be updated in a single
step — equivalent to an infinite number of projections
upon the NA-constraints for zi, j — to their probability-
weighted average:

zs;�C1
i j D

X
s2S

ps zs;�i j ; 8s 2 S: (5)

This observation leads to considerably faster agreement
among scenarios.

Proximal Minimization withD-functions

The row-action algorithm only applies to problems
with a strictly convex objective function. Consider the
linear program

[LP]

(
min c>z
s.t. z 2 X;

where the feasible region is denoted by

X D fz 2 Rn : Hz D r and 0 � z � ug :

The proximal minimization with D-functions algorithm
(PMD) solves linear programs by perturbing the objec-
tive into a strictly convex form, then solving the result-
ing subproblem using RA. The process is repeated with
updated perturbations until the solution to the original
LP is approached. PMD was proposed in [5], where its
convergence was established.

Let S 6D ; be an open convex set. Let f :�� Rn!R
be an auxiliary function. We assume that S � �, where
S is the closure of S, and that f is strictly convex and
continuous on S and continuously differentiable on S.
The set S is called the zone of f . The D-function corre-
sponding to f is defined as

Df (x; y) D f (x)� f (y) � r f (y)T(x � y): (6)

For some suitable choice of the auxiliary function f
and a positive nondecreasing sequence {� k}1kD0 with lim
infk!1 � k = � < 1, the proximal minimization al-
gorithm with D-functions proceeds from an arbitrary
starting point, z0 2 S, with the following iteration (the
PMD algorithm):

zkC1  arg min
z2X\S

F(z)C
1
� k D f (z; zk ): (7)

PMD was used in [14] and [15] to solve linear and
stochastic network problems using two auxiliary func-
tions: the quadratic function,

fQ (x) D
1
2
x>x; (8)

with zone Rn and D-function

DfQ (x; y) D
1
2
(x � y)>(x � y);

and the negative of Shannon’s entropy function

fE(x) D
nX

jD1

x j � log x j (9)
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with the positive orthant S = {x 2 Rn: xj > 0} as zone and
with D-function

DfE (x; y) D
nX

jD1

x j

�
log

x j

y j
� 1

�
C

nX
jD1

y j:

With the quadratic auxiliary function f Q, PMD special-
izes to the familiar quadratic proximal point algorithm
(QPP algorithm) of [18,19]:

zkC1  argmin
z2X

FQ (z)
:
D eTzC

1
2� k




z � zk




2
:

QPP hence consists of solving a series of quadratic pro-
grams (using, e. g., RA) while iteratively updating the
proximal point zk.

QPP and the corresponding algorithm obtained
from PMD by using f E, the entropic proximal point
algorithm EPP, [7], were implemented and compared
with exact algorithms for deterministic network prob-
lems in [15]. It was found that while neither algo-
rithm was comparable to specialized, exact network al-
gorithms (based on simplex or relaxation) for small
or medium-sized problems, the PMD algorithms were
able to solve extremely large problems, with up to 16
million variables, which could not be solved using the
exact algorithms.

Parallelism in the Row-Action Algorithm

The RA algorithm lends itself naturally to parallel ex-
ecution on a computer with a large number of inter-
connected processors. In the context of stochastic net-
work problems the potential for parallelism manifests
itself at several levels. The key to parallelizing an algo-
rithm is to identify parts of the algorithm which can be
executed simultaneously without interfering with each
other. Hence, two calculations can be executed simulta-
neously (by different processors) if they do not depend
upon each other’s results, that is, there are no data de-
pendencies between them.

Simple Bounds

The projection on simple bounds constraints is the sim-
plest example of natural parallelism: Each projection
changes the value of (at most) one primal and one dual
variable. All the n bounds projections of a problem hav-

ing n variables can be executed in parallel without data
dependencies.

Disjoint Constraints

By disjoint constraints we mean constraints that do not
have primary variables in common. Projections (2)-(3)
upon a set of such constraints can be performed simul-
taneously since the data involved in each projection do
not depend upon the other projections. For network
problems, equality constraints correspond to nodes and
are disjoint for sets of nonadjacent nodes, i. e., nodes
that have no arcs in common. The identification of such
sets is a graph-coloring problem [28], where nodes with
the same ‘color’ can all be updated simultaneously.

Stochastic Problems

For a stochastic network it is evident that nodes belong-
ing to different scenario subproblems are independent.
This is true even for first-stage nodes within our frame-
work of variable-splitting as in RNLP (and is our pri-
mary reason for using splitting). The NA projections
(5) can in turn be executed in parallel for each (set of
replicated) first-stage variable, zsi j, (i, j) 2 F.

Jacobi Algorithms

The kinds of parallelism mentioned so far all define al-
gorithms which are equivalent to the strictly sequen-
tial RA algorithm, i. e., Gauss–Seidel algorithms. In con-
trast, Jacobi algorithms allow simultaneous operations
on constraints even if they are not disjoint. This in-
creases the potential for parallelism because projections
on all the primal constraints can be calculated in par-
allel. However, projections on nondisjoint constraints
will generally lead to conflicting updates of the (pri-
mal) variables common to the constraints. The con-
flict can be resolved by solving first for the projections
for all constraints simultaneously, but retaining only
the dual solutions and discarding the primal variables.
Then, common values of the primal variables are cal-
culated from the duals using dual feasibility. The con-
vergence of this algorithm, using suitable underrelax-
ation, is established in [2]. Jacobi algorithms generally
allow more parallelism than Gauss-Seidel algorithms
but have poorer convergence properties because they
operate on partially outdated data.
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Massively Parallel Implementations

The RA algorithm was implemented on the mas-
sively parallel Connection Machine CM-2, [8], which
is a single-instruction, multiple-data (SIMD) computer
having up to 65536 processors implemented as 4096
physical chips organized as a 12-dimensional hyper-
cube. Each processor has 32Kbytes local memory, and
there is a floating-point unit for each cluster of 32
processors. The processors, which operate at 7MHz,
can each simulate a number of virtual processors, VPs,
which allows the programmer to address the machine
as if it had a number of processors required by a spe-
cific parallel algorithm.

Stochastic network problems were mapped upon
the machine following the scheme of [27] for each sce-
nario network problem. This mapping was found in
[12] to be the most efficient data structure. A linearly-
organized cluster of VPs were assigned to each node i,
consisting of |ıCi | + |ı�i | + 1 VPs which calculate, in
parallel, dual feasible flows on the node’s incident arcs
(satisfying arc bounds), and cooperate efficiently in cal-
culating the resulting node surplus/deficit, and ˇ in (4),
leading to an updated dual node price. Clusters of pro-
cessors associated with adjacent nodes then exchange
dual prices through a global send operation. This oper-
ation is the only operation that does not use the efficient
hypercube communication pattern.

Each scenario subproblem is represented the same
way but in such a way that processors associated with
corresponding variables in different scenarios have di-
rect communication links. This allows for efficient cal-
culation of the NA projections (5) across scenarios. The
algorithm hence alternates between flow conservation
and bounds constraints projections within each sce-
nario network — in parallel across nodes and scenar-
ios — and enforcement of nonanticipativity constraints
across scenarios. Experimentation with the balancing
between these two constraint types are reported in [13]
and [16]; generally 25-100 network iterations between
nonanticipativity projections worked well. [16] also re-
ports on a choice of penalty parameter values, � k, in (7).

Extension to Multistage SPs

Although two-stage stochastic programs go a long way
toward properly incorporating uncertainty, they suffer
from the problem of ‘anticipativity’: At the time of the

second-stage decision, all uncertainties, even those be-
yond the second stage, are known to the program, per-
mitting in effect a super-optimal decision. Addressing
the realistic requirement that there should bemore than
two stages, so that decisions at any (but the last) stage
are still made under further uncertainty, leads tomulti-
stage SPs, MSP.

A T-stage stochastic programming problem can be
formulated as follows [3]:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x1

c1x1

CE�2

�
min
x2

c2x2

CE�3j�2

�
min
x3

c3x3C � � �

CE�3j�2;:::;�T�1 min
xT

cT xT
��

s.t. A1x1 D b1;
B2x1 C A2x2 D b2;
B3x2 C A3x3 D b3;
: : :

BTxT�1 C ATxT D bT ;
0 � xt � ut for t D 1; : : : ; T;

where

�t D (At ; Bt ; bt ; ct); t D 2; : : : ; T;

are random variables, i. e., Ft-measurable functions � t :
At! RMt on some probability spaces (˝ t, Ft , Pt).

The decision variables xt 2 Rnt , for t = 2, . . . , T,
are stochastic variables measurable on the �-field gen-
erated by � t . The notation E� denotes mathematical ex-
pectation with respect to �, and E�i j� j similarly denotes
conditional expectation. The sequential nature of the
decision process is apparent from this formulation: At
stage t, xt is decided to minimize the expected cost of
the subsequent stages, conditional upon events realized
up to that stage.
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A scenario tree can be used to represent the way in
which the stochastic variables � t evolve: The root of the
tree corresponds to the immediately observable, deter-
ministic data, A1, B1, b1 and c1. The nodes of the tree
at level t � 2 corresponds to possible realizations of � t .
In this tree, a scenario corresponds to a complete path
from the root to a leaf. Similarly to the two-stage case,
variables belonging to stages prior to the last are repli-
cated for each scenario, and appropriate NA constraints
used to enforce the proper correspondence among sce-
narios:

The nodes here represent sets of decision variables
belonging to various stages (top to bottom) and scenar-
ios (left to right). The double lines represent NA con-
straints; cf. the scenario tree above. This problem repre-
sentation maps naturally upon a rectangular communi-
cation pattern, as on the CM-2, and was solved, [16], as
in the two-stage case, by iterating alternatingly on sce-
nario networks and NA constraints.

Computational Experiments

The algorithms covered in this article were subjected
to extensive numerical experimentation on the major
types of stochastic network problems:

Nonlinear Two-stage Problems

The row-action algorithm was implemented on the
CM-2 and used to solve large scale, quadratic prob-
lems in [13]. They report that the algorithm scales very
effectively in problem size and number of processors:
For instance, doubling both results in virtually the same
solution time. The largest problem solved had 8, 192
scenarios and a deterministic, nonlinear equivalent of
868,367 constraints and 2,747,017 variables, and was
solved to a tight primal tolerance in about 11 minutes
using 32K processors, and achieving a computational
rate of 276MFLOPS. The algorithm’s performance is
sensitive to the range of multipliers occurring in the

generalized networks, and deteriorates as this range in-
creases.

Problems of this size could not be solved using any
other available algorithm. The RA algorithm was, how-
ever, competitive with standard algorithms on smaller
problems.

Linear Two-Stage Problems

The PMD algorithm in conjunction with the row-
action algorithm was used in [14] on two-stage prob-
lems with linear objectives. They conclude that the rel-
ative advantage of this algorithm compared to standard
codes (Minos 5.3 simplex and OSL interior point) is in
the solution of large and very large problems. Solving
the largest problems, with 2, 048 scenarios (determinis-
tic equivalent of 217,103 constraints and 618,529 vari-
ables), took more than 3 hours of 32K CM-2 process-
ing time, but a problem of this size could not be solved
using the simplex or interior point algorithms. It also
appears that the PMD/RA solution times scale nearly
linearly in problem size, whereas the comparison codes
had close to quadratic time complexity. It is apparent
that the solution of linear, as opposed to strictly convex,
problems takes substantially longer due to the overhead
of the nested PMD/RA algorithms.

Multistage Problems

Finally, linear multistage problems with up to 9 stages
were solved in [16]. Results mirror those stated above,
namely effective scalability and the ability to make
progress on very large scale problems, even with the
complex nonanticipativity structure of a 9-stage prob-
lem. OSL is generally superior to the PMD/RA imple-
mentation for small to medium-sized problems, but
cannot solve the large instances.

For further material on the parallel and massively
parallel solution of large scale stochastic programs, see
also [22] and [23].

See also

� Approximation of Extremum Problems with
Probability Functionals

� Approximation of Multivariate Probability Integrals
� Asynchronous Distributed Optimization

Algorithms
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� Auction Algorithms
� Automatic Differentiation: Parallel Computation
� Communication Network Assignment Problem
� Directed Tree Networks
� Discretely Distributed Stochastic Programs: Descent

Directions and Efficient Points
� Dynamic Traffic Networks
� Equilibrium Networks
� Evacuation Networks
� Extremum Problems with Probability Functions:

Kernel Type Solution Methods
� Generalized Networks
� General Moment Optimization Problems
� Heuristic Search
� Interval Analysis: Parallel Methods for Global

Optimization
� Load Balancing for Parallel Optimization

Techniques
� Logconcave Measures, Logconvexity
� Logconcavity of Discrete Distributions
� L-shaped Method for Two-stage Stochastic

Programs with Recourse
�Maximum Flow Problem
�Minimum Cost Flow Problem
�Multistage Stochastic Programming: Barycentric

Approximation
� Network Design Problems
� Network Location: Covering Problems
� Nonconvex Network Flow Problems
� Parallel Computing: Complexity Classes
� Parallel Computing: Models
� Parallel Heuristic Search
� Piecewise Linear Network Flow Problems
� Preprocessing in Stochastic Programming
� Probabilistic Constrained Linear Programming:

Duality Theory
� Probabilistic Constrained Problems: Convexity

Theory
� Shortest Path Tree Algorithms
� Simple Recourse Problem: Dual Method
� Simple Recourse Problem: Primal Method
� Stabilization of Cutting Plane Algorithms for

Stochastic Linear Programming Problems
� Static Stochastic Programming Models
� Static Stochastic Programming Models: Conditional

Expectations
� Steiner Tree Problems

� Stochastic Integer Programming: Continuity,
Stability, Rates of Convergence

� Stochastic Integer Programs
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Stochastic Linear Programs with Recourse and

Arbitrary Multivariate Distributions
� Stochastic Programming: Minimax Approach
� Stochastic Programming Models: Random Objective
� Stochastic Programming: Nonanticipativity and

Lagrange Multipliers
� Stochastic Programming with Simple Integer

Recourse
� Stochastic Programs with Recourse: Upper Bounds
� Stochastic Quasigradient Methods in Minimax

Problems
� Stochastic Vehicle Routing Problems
� Survivable Networks
� Traffic Network Equilibrium
� Two-stage Stochastic Programming: Quasigradient

Method
� Two-stage Stochastic Programs with Recourse
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Introduction

A significant number of optimal stopping problems of
practical interest may only be solved through numerical
schemes. As many of them have surfaced in the area
of mathematical finance, illustrations drawn from that
field will be used to describe some of these numerical
approaches. Specifically, we consider problems in the
expected-value maximization form

sup
�2T

E[ f (X� ; �)] ; (1)

where T is a set of stopping times, f a measurable
function and fXtgt2I � X a Markov process, where I
is a time index set that can be either discrete or contin-
uous (see AitSahlia [1] for additional details).

Under technical conditions for its existence, a solu-
tion for (1) consists of
� the value function

V (x; t) D sup�2Tt
E[ f (X� ; �)jXt D x], where Tt is

the set of stopping times subsequent to t in T
� the optimal stopping time
��t D argmax�2Tt

E[ f (X� ; �)].
In this context, with E denoting the state space of X,
the set E � I is partitioned into a closed set S and its
complement C labeled, respectively, stopping and con-
tinuation regions. Then

��t D inffs � t : Xs 2 Sg : (2)

Discrete-TimeModels

When T D f0; 1; : : : ;Ng for some given N <1, the
most straightforward numerical device is the back-
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wards recursive dynamic algorithm

V (x;N) D f (x;N) ; (3)

V (x; n)

D maxfE[V(XnC1; n C 1)jXn D x]; f (x; n)g;
0 � n � N � 1 : (4)

An issue with the above might be implementing the
proper numerical scheme to estimate E[V(XnC1; n C
1)jXn D x], especially in light of the so-called curse
of dimensionality that makes this algorithm inefficient
in high dimensions. There are potentially two reme-
dies to this problem: one, for finiteT , based on Monte-
Carlo simulation, and another, for infinite T , based on
large-scale linear programming (LP). For the former,
an efficient and popular algorithm is that of Longstaff
and Schwartz [10], which is now viewed within the
wider context of approximate dynamic programming
(see also [3,11]). The basic idea of this algorithm is to
use Monte Carlo simulation and least-squares regres-
sion to estimate E[V (XnC1; nC 1)jXn D x].

For infinite T , the value function is time-homoge-
neous when X and f are. In this case the value function
solves

V (x) D sup
�2Tt

E[ f (X� )jXt D x] (5)

for all t 2 f0; 1; : : : g and may be obtained through
a LP algorithm thanks to its Snell envelope character-
ization [1]. Assuming a transition matrix P for X and
a finite state space, which might be genuine or the re-
sult of a truncation, the resulting LP is

Minimize
X
x

V(x)

subject to

V(x) �
X
y

P(x; y)V (y) ;

V(x) � f (x) ;

V(x) � 0 :

See Çinlar [4] and Dynkin and Yushkevich [5] for
proofs and further details.

Continuous-Time Models

When both X and its time index I are continuous, there
are a number of numerical schemes to generate solu-
tions for (1). Overall, they approximate either the un-
derlying diffusion process X by a discrete version or the
value function and its derivatives in its characterizing
expression (e. g., integral representation, partial differ-
ential equation.)
� Weak-convergence approximation approach: The

most general scheme concerning this approach is to
approximate the infinitesimal operator L of X in the
free-boundary problem that characterizes the solu-
tion of (1). For example, a finite-differences approx-
imation of derivatives in the free-boundary problem

LV D 0 in C ;
V D f on E � fTg ;
@V
@x
D
@ f
@x

on @S

leads to the formulation of an optimal stopping
problem for a Markov chain (see Kushner and
Dupuis [8]).
If the process X is explicitly expressed in terms of
Brownian motion, then random-walk approxima-
tions can directly be used on the latter. This is a fairly
well understood procedure for which rates of con-
vergence have been developed (see Lamberton [9]).

� Integral equation approach: In this scheme, one
makes use of the Doob–Meyer decomposition
formula for submartingales (see Karatzas and
Shreve [7]) to express the value function V in terms
of the boundary, which itself solves a related in-
tegral equation. For example, consider a case in
American option pricing , with horizon T, payoff
function f (x; t) D e�r t max(K � x; 0), and Xt D

X0 expf(r��2/2)tC�Wtg, where K > 0, r > 0, and
� > 0 are given and fWtgt is a standard Brownian
motion started at 0. Then the value function V can
be decomposed as

V (x; t) D U(x; t)

C

Z T

t
[rK˚(�d(X; B(t); � � t))]d� ; (6)

where ˚ is the cumulative standard normal dis-
tribution function, d(x; y; �) D (ln(x/y) C (r C
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�2/2)�)/�
p
� � �

p
� , and U(x; t) D Ke(T�t)

˚(�d(x;K; T � t)). This formula requires the
knowledge of the boundary B D @S, where S is the
stopping region that identifies the optimal stopping
time (2), and which is obtained as the solution of the
integral equation

(K � B(t))

D U(B(t); t)

C

Z T

t
[rK˚(�d(B(t); B(t); � � t)]d� : (7)

Efficient and accurate spline approximations of B
can be found in AitSahlia and Lai [2].

� Linear complementarity approach: An alternative
that does not require the explicit determination of
the optimal stopping boundary relies on the varia-
tional inequality formulation

minfV ;V � f g D 0; on E � [0; T) ;

V D f ; on E � fTg :

Finite-difference approximations then lead to a lin-
ear complementarity problem (see Huang and
Pang [6] and Wilmott et al. [12]).
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Introduction

A typical stochastic optimal stopping problem of prac-
tical interest consists of the following optimization:

sup E[ f (X� ; �)] s:t: � 2 T ; (1)

where fXtg � X is a stochastic process known as the
state process, E its associated expectation operator, f
a function measurable with respect to the probability
law induced by X, and T a set of stopping times to
be defined shortly. In many applications f (X� ; �) is in-
terpreted as the gain resulting from stopping at time �
when the state value is X� .

A financial example that has been the subject of
great interest in mathematical finance/financial en-
gineering is one with f (x; t) D e�r t max(K � x; 0),
where K > 0 is given, and X is the geometric Brown-
ian process

Xt D X0 expf(r � �2/2)t C �Btg ;

where r and � are given positive constants and fBtg is
a standard Brownian motion started at 0. In finance
f (Xt; t) represents the discounted payoff that results
from the exercise at time t of a put stock option by its
holder who is allowed to sell this stock at share price K
when it is traded at price Xt . The option holder’s prob-
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lem is to find the best time to exercise this option, thus
maximizing its payoff, a problem that is mathematically
expressed as (1). As will be made precise soon, this op-
timal exercise time (or more generally stopping time)
must be determined only on the basis of pastz observa-
tions. It should be mentioned here that fBtg can also be
considered the state process, instead of X.

Note that the payoff function f as expressed in (1)
does include payoffs that are path-dependent through
the usual introduction of additional variables to render
a problem Markovian. For example, still in the finan-
cial realm, one may consider the payoffs e�r t(Mt � Xt)
or e�r t max(K � At ; 0) that depend on the maximum
process Mt D maxs�t Xs or the average process At D

(1/t)
R t
0 Xs ds.

Stochastic optimal stopping theory, or optimal stop-
ping as it is customarily known, is a specialized type
of the (stochastic) dynamic programming approach de-
vised by Bellman [1] in the 1950s. However, actual
optimal stopping problems originated in Wald’s work
on sequential statistical inference (Wald [4]), where
the problem is to determine sequentially the sample
size that will decide between two statistical hypothe-
ses. Ever since these early days, this field has experi-
enced several developments in both theory and appli-
cations as described for example in the book of Peskir
and Shiryaev [3].

Optimal stopping problems are generally ap-
proached from a probabilistic perspective throughmar-
tingales and Markov processes. When the underlying
process X in (1) is a diffusion, they also lead to free-
boundary problems for partial differential equations.
Optimal stopping problems are rarely solved in closed-
form and numerical methods abound, a topic addressed
in a companion entry in this Encyclopedia.

Definitions

This section sets up basic definitions that lead to the
notion of stopping time. Asmentioned before, the deci-
sion to stop at time tmust be based only on information
available up to t. In this respect the concept of informa-
tion set in the form of filter is first formally presented,
followed by that of stopping time.
� Discrete-time filtration

Given a probability space (˝;F ; P), a discrete-time
filtration is a collection (Fn)n�0 where each Fn is

a �-algebra of subsets of ˝ such that F0 � F1 �

� � �F . Fn represents the information available up
to time n. It generally consists of at least the set of
events that have been determined by the realized
values of Xt up to time n. The latter is called the nat-
ural filtration of X and is often augmented to form
(Fn)n�0.

� Continuous-time filtration
Here the definition is essentially identical to the pre-
vious modulo a technical condition. Given a prob-
ability space (˝;F ; P), a continuous-time filtration
is a collection (Ft)t�0 where each Ft is a �-algebra
of subsets of ˝ such that Fs � Ft � F for s� t.
As in the discrete-time case, Ft also represents in-
formation up to time t. Additionally, it is assumed
that each Ft contains all P-null sets in F and that
(Ft)t�0 is right-continuous; i. e., Ft D

T
t�s Fs for

all t � 0.
� Stopping time

Let I D f0; 1; 2; : : :g and I D [0;1] when X is, re-
spectively, a discrete-time process and a continuous-
time process. A random variable � :˝ ! I is a stop-
ping time if Pf� <1g D 1 and f� � tg 2 Ft for all
t � 0. Often the set I is bounded and therefore the
former condition is obviously true. The latter con-
dition expresses the fact that the decision to stop
at time t must be based solely on information up
to time t. In this case � is adapted to the filtration
(Ft)t�0.

Solution Methods

There are generally two approaches to solving (1):
one based on probabilistic tools and another on par-
tial differential equations (PDE) techniques. However,
both start by using the dynamic programming princi-
ple of optimality to derive the so-called Bellman equa-
tion. When the interval I is of the form [0; T] or
f1; 2; : : : ;Ng define Tt to be, respectively, the set of
stopping times in [t; T] and ft; tC 1; : : : ;Ng. When I
is infinite, Tt is defined as the set of stopping times in
I that are � t. Then solving (1) is tantamount to deter-
mining
� the value function V (x; t) D sup�2Tt

E[ f (X� ; �)j
X0 D x], and

� the optimal stopping time ��t D argmax�2Tt
E f (X� ;

�).
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A sufficient condition guaranteeing the finiteness of the
expectation in (1) is

E(sup
t2I
j f (Xt; t)j) <1 ;

which can in fact be relaxed a number of ways.
(I) The Probabilistic Approach: Martingales

When I D f0; 1; : : : ;Ng, then by the optimality
principle of dynamic programming we can write
the recursion

V(x;N) D f (x;N) (2)

V(x; n) D maxfE[V(XnC1; nC 1)jXn D x] ;

f (x; n)g ; 0 � n � N � 1 : (3)

The solution for the system (2)–(3) induces a se-
quence of random variables Sn D V (Xn; n) that
satisfies the following properties:
(i) Sn D maxfE[SnC1jFn]; f (Xn; n)g;
(ii) (Sn)k�n�N is the smallest super-martingale

that dominates the gain process Gn D

f (Xn; n)k�n�N (i. e.; Sn � Gn P-a.s.);
(iii) the stopping time ��n D inffn � k � N :

Sn D Gng is optimal for 0 � n � N ;
(iv) the stopped sequence (Sk^��n )n�k�N is

a martingale.
We recall here that a discrete-time process (Mn)n
is a martingale with respect to a filtration (Fn)n
(martingale for short) if EjMnj <1 for n � 0
and E(MnC1jFn) D Mn , P-a.s., for n � 0. Cor-
respondingly, (Mn)n is a super-martingale if
E(MnC1jFn) � Mn , P-a.s., n � 0. The process
(Sn)k�n�N is called the Snell envelope and the
above characterization is particularly useful to ob-
tain the value function V through linear pro-
gramming when the state space is finite (see Çin-
lar p. 212 in [2]).
The generalization of the above result to the case
where I is countably infinite requires that the
sequence Sn D V(Xn ; n) be characterized differ-
ently through the concept of essential supremum
below, which generalizes in some sense that of de-
terministic supremum.
Essential Supremum. Let I be an arbitrary set
and (Zn)n2I be a collection of random vari-
ables defined on the same probability space. Then

there exists a countable subset J � I such that
Z� D supn2J Zn satisfies
(a) Zn � Z� P-a.s. for each n 2 I;
(b) for any other random variable Z̃ such that

Zn � Z̃ P-a.s. for each n 2 I, we have Z� � Z̃
P-a.s.

The random variable Z* is labeled essential supre-
mum and is denoted by esssupn2I Zn .
As a consequence, we can now rewrite the above
Snell envelope when I D f1; 2; : : : ;Ng as

Sn D esssup�2Tn
E[ f (X� ; �)jFn] ; n 2 I ; (4)

where Tn is the set of stopping times in fn; n C
1; : : : ;Ng. When I is countable infinite then Sn
is correspondingly defined with Tn as the set of
stopping times in fn; n C 1; : : :g. Similarly, Sn sat-
isfies both conditions (a) and (b) and the optimal-
ity property (i) above for all n � 0.
For the continuous-time case, where I is an inter-
val, the value function for problem (1) is the Snell
envelope of the gain process ( f (Xt; t))t defined as

St D esssup�2Tt
E[ f (X� ; �)jFt] ; t 2 I ; (5)

where Tt is the set of stopping times in [t; T] for
a finite horizon problem or [t;1) otherwise. The
Bellman equation in its discrete form (3) is now
replaced by

V(x; t) � maxfE[V(Xs; s)jXt D x]; f (Xt; t)g;

for s � t:

Formulation (1) has cast the problem of optimal
stopping in a Markovian framework. This is in
fact the most common situation in practice and
the set-up is not too restrictive as it mirrors well
the generic martingale situation fully described in
Peskir and Shiryaev [3].

(II) The Probabilistic Approach: Markov Property
and Stopping Boundary
When X is a Markov process (in discrete- or
continuous-time) with state space E the optimal
stopping time is defined as

�� D infft 2 I : Xt 2 Sg ;
where S is a closed subset in I � E. S and its com-
plement C in I � E are such that

V(x; t) > f (x; t) on C ;
V(x; t) D f (x; t) on S :
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C and S are respectively called the continua-
tion and stopping regions. The intersection B of
their closures is called the stopping boundary. It
is time-dependent when I is bounded and time-
homogeneous when I is unbounded. When I is
countably finite and E is discrete, then B can be
obtained through the backward recursion (2)–(3).

(III) The PDE Approach
When the state process X is a diffusion the bound-
ary B and the value function V can be obtained by
solving a free-boundary problem. Alternatively,
when only the value function is of interest then it
can be obtained as the solution of a variational in-
equality. If we let L the infinitesimal operator as-
sociated with X, then assuming regularity and dif-
ferentiability where necessary, the free-boundary
problem when I D [0;1) is stated as

LV D 0 in C ;
@V
@x
D
@ f
@x

on B :
(6)

The latter condition is called smooth-fit. It is in
a sense the condition that characterizes the op-
timality of a solution V of the PDE (6). When
I D [0; T] the free-boundary problem becomes:

LV D 0 in C ;
V D f on E � fTg ;
@V
@x
D
@ f
@x

on B :

(7)

One way to avoid reference to the free boundary
B is through the use of variational equality. For
example, the latter problem with finite horizon T
can be re-expressed as

minfV ;V � f g D 0 ; on E � [0; T)

V D f ; on E � fTg:
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In many applications of stochastic programming there
is some uncertainty about the probability distribution P
of the random parameters. The incomplete knowledge of
the probability distribution can be described by assum-
ing that P belongs to a specified class P of probability
distributions. This in turn suggests to use the minimax
decision rule.

The first results were concerned with stochastic lin-
ear programs with recourse; they can be treated within
the following more general framework

(
min F(x; P) :D EP f (x;!)
on the set X � Rn ;

(1)

with X a given set of decisions, P a probability distri-
bution on (˝ , ˙), ˝ � Rm and P known to belong to
a class P. The random outcome of a decision x 2 X is
quantified by a function f defined onX ×˝ , EP denotes
the expectation under P.

These results were formulated in terms of the two-
person zero-sum game

(X;P; F(x; P)): (2)

M. Iosifescu and R. Theodorescu [11] suggested to use
an optimal mixed strategy of the first player in the game
(2). J. Žáčková [18] introduced the notion of minimax
solution as an optimal pure strategy of the first player
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in the game (2). Under quite general assumptions on P

and F, a minimax solution exists and

inf
x2X

max
P2P

F(x; P) D max
P2P

inf
x2X

F(x; P): (3)

The minimax decision rule can be applied also in cases
when the minimax theorem for the game (2) does not
hold true. It means to solve the problem

8<
:
min max

P2P
F(x; P)

on the set X � Rn
(4)

hence, to apply the best possible decision obtained for
the most adverse considered circumstances. This pro-
vides a tool for the worst-case analysis for program
(1) and allows for constructing bounds for the optimal
value of (1) valid for all P 2 P.

Applicability of the results depends on the assumed
form of the class Pwhich describes the level of the avail-
able information about the probability distribution of
the random parameters and also on the properties of
the random objective function f (x; !). Let us list some
of the most frequent choices of P:
� P consists of probability distributions carried by ˝
� Rm which fulfill certain moment conditions, e. g.,

P D
˚
P : EP g j(!) D y j; j D 1; : : : ; J

�
(5)

with prescribed values yj, 8j, [4,6,8,17,18].
� P contains probability distributions on (˝ ,˙) with

fixed marginals [15].
� Additional qualitative information, such as uni-

modality of P, is taken into account [6,8].
� P consists of probability distributions P with known

finite support, i. e., to specify P means to fix the
probabilities of the considered atoms (scenarios)
taking into account a prior knowledge about their
partial ordering, etc.; see e. g. [2].

� P is a neighborhood of a hypothetical probability
distribution P0 [4].

� In principle, P can be also a parametric family of
probability distributions with an incomplete knowl-
edge of parameter values.

For convex, compact P, the expectation F(x; P) = EPf (x;
!) attains its maximal (and minimal) value at extremal
points of P; the extremal probability distributions can
be characterized independently of the form of the ran-
dom objective f , however, the worst-case probability

distribution, say, P� 2 P independent of f (and thus
independent of the decisions x) appears only excep-
tionally. If this is possible the objective function in (4)
maxP2P F(x; P) D F(x; P�) is just an objective func-
tion of a standard stochastic programwhich is relatively
easy to solve due to a relatively simple structure of P�.
There are also instances when one can succeed to get
the explicit form of maxP2P F(x; P) [6,12]. They relate
to classes of one-dimensional probability distributions
and to special functions f .

The general methodology for solution of the inner
optimization problem maxP2P F(x; P) for a fixed de-
cision x has been elaborated in detail for the classes
of probability distributions defined by moment condi-
tions (5), both in the form of equations and inequalities:
The extremal probability distributions have finite sup-
ports, cf. [14,17], and the solution of the inner problem

max
P

Z

˝

f (x; z) dP (6)

subject to
8̂
ˆ̂̂<
ˆ̂̂̂
:

Z

˝

dP D 1;

Z

˝

g j(z) dP D y j ; j D 1; : : : ; J;
(7)

reduces to solution of a generalized linear program (cf.
[3,4,7,9,17]), provided that ˝ is compact and f (x; �), gj,
8j, are continuous on˝ . The procedure provides both
the atoms of the sought worst-case probability distribu-
tion and their probabilities. In some cases, it is expedi-
ent to analyze the dual program to (6), (7), which reads

min
u

JX
jD1

uj y j C u0 (8)

subject to

u0 C
JX

jD1

uj g j(z) � f (x; z); 8z 2 ˝: (9)

For details and various applications consult [3,4,5,6,7,
8,9,13,17].

As an example, let f (x; �) be a convex function
on a bounded convex polyhedron ˝ � Rm, say, ˝ =
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conv{!(1), . . . , !(K)} and

P D
˚
P : EP! j D y j; j D 1; : : : ;m

�
(10)

with y a given interior point of ˝ . The constraints of
(9),

u0 C
mX
jD1

ujz j � f (x; z);

hold true for all z 2 ˝ if and only if they are fulfilled
for the extremal points !(1), . . . , !(K). Duality proper-
ties imply that only suitable subsets of the set of ex-
tremal points of ˝ need to be considered in construc-
tion the finite supports of the worst-case distributions.
The generalized linear program (6), (7) reduces to the
linear program

max
p

KX
kD1

pk f (x;!(k)) (11)

subject to
8̂
ˆ̂̂<
ˆ̂̂̂
:

KX
kD1

pk!(k)
j D y j; j D 1; : : : ;m;

KX
kD1

pk D 1; pk � 0 8k:
(12)

Convexity of f with respect to ! is essential for the
above result. Generalization to piecewise convex func-
tions f (x, �) (cf. [5]) is possible; on the other hand, the
worst-case probability distribution from the class (10)
for f concave in ! is the degenerated distribution con-
centrated at the prescribed expected value EP!. This de-
generated distribution provides the best (i. e., the min-
imal possible) expectation for convex functions f (x, �)
under P belonging to the class P; compare with the
Jensen inequality.

If the set of feasible solutions of (12) is a single-
ton, the worst-case distribution P� does not depend on
f and we obtain bounds for the optimal values of the
stochastic programs (12) under an arbitrary probabil-
ity distribution P from the class (10) and an arbitrary
function f which is convex in !:

min
x2X

f (x; EP!) � min
x2X

EP f (x; !)

� min
x2X

EP� f (x; !); 8P 2 P;
(13)

provided that the minima exist. Such bounds are nu-
merically tractable, are tight and provide an informa-
tion about sensitivity of the optimal value of stochastic
program (1) on the choice of a probability distribution
P belonging to the considered class P. The well-known
instance is the class of probability distributions carried
by a closed interval [a, b] on the real line with a pre-
scribed value y 2 (a, b) of the expectation EP!. The
worst-case distribution is carried by the endpoints of
the given interval [a, b] and the only solution of the sys-
tem

p1aC p2b D y; p1 C p2 D 1; p1; p2 � 0

is p1 = (b� y)/(b� a) and p2 = 1� p1. The result agrees
with the well-known Edmundson-Madansky inequality
and the minimax approach guarantees that this bound
is tight within the considered class of probability distri-
butions and for convex functions f (x, �).

There is a host of papers devoted to designing vari-
ous bounds for the objective function F(x,P) of stochas-
tic programs (1) under various assumptions about the
class P and the function f (x, �); for a review of the re-
lated results see [3,4,6,13,17] and the references therein.
These bounds proved to be useful also in designing al-
gorithms and this is at present the main field of success-
ful applications of the minimax approach.

On the other hand, to get minimax decisions is
rather demanding, as it requires the solution of the
full minimax problem (4). Except for the simple special
cases, such as a unique feasible discrete distribution that
fulfills (7) or the optimal value of the objective function
(8) obtained in an explicit form, one has to rely on spe-
cial numerical procedures such as the stochastic quasi-
gradient methods designed for this purpose in [9,10].
The numerical difficulties are behind the fact that, in
spite of a sound motivation, real life applications of the
minimax approach have been rare and have consisted
of the simple special cases e. g., [1,2,6,8,15,16].
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We consider an objective function h(x, �), to be maxi-
mized in a mathematical programming problem, where
� is a random vector. There are two prominent pro-
posals to incorporate it into a stochastic program-
ming model formulation. The first one is due to H.M.
Markowitz [2,3] and it advocates for the maximization,
with respect to x and subject to the given constraints, of
the function

˛ E
�
h(x; �)

�
� ˇ

q
Var

�
h(x; �)

�
;

where ˛ > 0 and ˇ > 0 are constants. We may choose ˛

= 1. Let �(x) = E[h(x, �)], �(x) D
q
Var

�
h(x; �)

�
. An

optimal solution x0 can be characterized by the follow-
ing two statements:
a) there is no feasible x such that �(x) = �(x0), �(x)<
�(x0);

b) there is no feasible x such that �(x) = �(x0), �(x) >
�(x0).

We say that the pair (�(x0), �(x0)) is an efficient point
among all pairs (�(x), �(x)).

An important special case is the random objective
function h(x, �) = �>x and it comes up in portfolio
composition problems, where the components of � are
the random returns of the assets. If we introduce the
notations � = E(�), C = E[(� � �)(� � �)>], then the
objective function of the stochastic programming prob-
lem takes the form:

�>x� ˇ
p
x>Cx:

Sometimes x>Cx is replaced for
p
x>Cx, in order to

obtain a convex quadratic programming problem.
Sometimes �>x is fixed (or a lower bound is pre-

scribed for it) and x>Cx is minimized, or x>Cx is fixed
(or an upper bound is prescribed for it) and �>x is
maximized.

The second principle to handle h(x, �) is due to S.
Kataoka [1]. In this case we formulate the problem
8̂
<̂
ˆ̂:

max d
s.t. P (h(x; �) � d) � p;

x 2 D;

where p is a prescribed probability and D is the set of
feasible solutions in the original problem. In the special
case h(x, �) = �>x, and under the assumption that � has
a normal distribution, the above problem can be shown
to be equivalent to
8<
:
max

n
�>xC ˚�1(1 � p)

p
x>Cx

o

s.t. x 2 D;

where ˚ is the univariate standard normal probability
distribution function.

See also

� Approximation of Extremum Problems with
Probability Functionals

� Approximation of Multivariate Probability Integrals
� Discretely Distributed Stochastic Programs: Descent

Directions and Efficient Points
� Extremum Problems with Probability Functions:

Kernel Type Solution Methods



Stochastic Programming: Nonanticipativity and Lagrange Multipliers S 3783

� General Moment Optimization Problems
� Logconcave Measures, Logconvexity
� Logconcavity of Discrete Distributions
� L-shaped Method for Two-stage Stochastic

Programs with Recourse
�Multistage Stochastic Programming: Barycentric

Approximation
� Preprocessing in Stochastic Programming
� Probabilistic Constrained Linear Programming:

Duality Theory
� Probabilistic Constrained Problems: Convexity

Theory
� Simple Recourse Problem: Dual Method
� Simple Recourse Problem: Primal Method
� Stabilization of Cutting Plane Algorithms for

Stochastic Linear Programming Problems
� Static Stochastic Programming Models
� Static Stochastic Programming Models: Conditional

Expectations
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Stochastic Linear Programs with Recourse and

Arbitrary Multivariate Distributions
� Stochastic Network Problems: Massively Parallel

Solution
� Stochastic Programming: Minimax Approach
� Stochastic Programming: Nonanticipativity and

Lagrange Multipliers
� Stochastic Programming with Simple Integer

Recourse
� Stochastic Programs with Recourse: Upper Bounds
� Stochastic Quasigradient Methods in Minimax

Problems
� Stochastic Vehicle Routing Problems
� Two-stage Stochastic Programming: Quasigradient

Method
� Two-stage Stochastic Programs with Recourse

References

1. Kataoka S (1963) A stochastic programming model. Econo-
metrica 31:181–196

2. Markowitz H (1952) Portfolio selection. J Finance 7:77–91
3. Markowitz H (1996) Portfolio selection: Efficient diversifica-

tion of investment. Wiley, New York

Stochastic Programming:
Nonanticipativity
and LagrangeMultipliers
IGOR EVSTIGNEEV1, SJUR DIDRIK FLÅM2

1 Acad. Sci. Russia, Moscow, Russia
2 University Bergen, Bergen, Norway

MSC2000: 90C15

Article Outline

Keywords
The Basic Model
Results
Lagrange Multipliers for Phase Constraints
Lagrange Multipliers for Nonanticipativity Constraints
Synthesis
See also
References

Keywords

Stochastic programming; Lagrange multipliers;
Nonanticipativity; Fritz John conditions;
Yosida-Hewitt decomposition

Decision making under uncertainty can often be for-
malized as a stochastic program, constrained not merely
in material terms (by bounded resources, capacities,
technological possibilities etc.), but also by limited in-
formation (nonanticipativity). The former type of con-
straints, accounting for material bounds, is usually de-
scribed by inequalities required to hold almost surely.
The latter type, reflecting informational restrictions,
often assumes the form of linear equations involving
conditional expectation operators. Each sort of con-
straint generates its own Lagrange multipliers. These
Lagrange multipliers have various applications. In par-
ticular, they play key roles in algorithms for solv-
ing stochastic programs employing decomposition (cf.
also � Stochastic linear programming: Decomposition
and cutting planes) or constraint relaxation techniques
[12,13,17,19]. Besides their computational role, these
auxiliary variables also figure prominently in optimality
conditions, duality theory and stability analysis (cf. also
� Stochastic integer programming: Continuity, stabil-
ity, rates of convergence). Present randomness, they
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take on specific features [1,3,4,9,11,15,16,18], which are
reviewed in this article.

The Basic Model

Stochastic programs often assume the following form.
Minimize a functional f (x) = f (x(�)) over some given
set in a linear space L containing finite sequences x(�) =
(x1(�), . . . , xT(�)) of random vectors xt(!) 2 Rnt . These
vectors represent constrained choices (made sequen-
tially, one at each stage or time t = 1, . . . , T <1) un-
der imperfect knowledge about the state ! 2 ˝ of the
world. Although ! is not known a priori, its proba-
bility distribution, P, is given exogenously and defined
on some sigma-field FT+1 in ˝ . The knowledge of !
increases over time. Specifically, there is an expanding
family F1 � � � � � FT+1 of sigma-fields which describes
the information flow. At time t one may ascertain for
any event in Ft (and such events only) whether it has
happened or not. In particular, a finite Ft partitions ˝
into minimal events (atoms, information sets, decision
nodes) on each of which xt must be constant. The inclu-
sion Ft � Ft+1, t � T, reflecting progressive acquisition
of knowledge, says that the partition becomes finer as
time evolves.

At time t the decision-maker implements the part xt
of his overall decision x = (x1, . . . , xT). That part is sup-
posed to be an Ft-measurable strategy (policy, behav-
ioral rule) xt : ˝ ! Rnt . This means that only available
information is used any stage; decisions are based on
realized rather than future events. If so, the process x =
(x1, . . . , xT) is called nonanticipative with respect to the
filtration F = (Ft)TtD1, and we write x 2 F for brevity.
For example, let �1, . . . , �T be a stochastic process, de-
fined on˝ , and let Ft be generated by �1, . . . , � t . Then
x 2 F means that xt depends on �1, . . . , � t only.

Besides the informational limitation x 2F, there are
other restrictions x 2 G \ X ‘material’ in nature, which
are defined as follows: x 2 L belongs to the set G (and
is said to satisfy the phase constraints) if and only if

gt(!; x(!)) :D gt(!; x1(!); : : : ; xt(!)) 2 �Kt(!) (1)

almost surely (a.s.); x 2 L belongs to X if and only if

xt(!) 2 Xt(!) a.s. (2)

for all t. Here, gt: ˝ × Rn1C���Cnt ! Rmt is Ft × B-
measurable, and Kt(!) � Rmt , Xt(!) � Rnt are Ft-
measurable random sets (see, e. g., [2] and [1]); B

stands for the Borel �-algebra. Both Xt(!) and Kt(!)
are nonempty and closed; Kt(!) is a convex cone. De-
fine the relation �t, ! on Rmt by a �t,! b, b � a 2
Kt(!). Then (1) can be written in the form

gt(!; x(!)) �t;! 0 a.s.: (3)

The basic optimization problem is stated as follows.

(P)

(
Find inf f (x)
s.t. x 2 F \ G \X:

Problem (P) is supposed to be feasible (i. e., F \ G \ X

6D ;) with finite optimal value.
Important examples of objective functionals include

integral functionals of the form

f (x) :D EF(!; x(!)) D
Z

F(!; x(!))P(d!); (4)

where F is some FT+1 × B-measurable integrand for
which f (x), x 2 X, is well-defined and finite.

In the general setting, the objective f is a real-valued
functional on the set X � L, where L is the given lin-
ear space of FT+1-measurable vector functions x(!) =
(x1(!), . . . , xT(!)). As L, one often takes Lp(FT+1, P;
Rn), n :=

P
nt , with p 2 [1, +1]. This space consists of

(equivalence classes of) FT+1-measurable functions x:
˝! Rn with finite norm k x kp := [

R
|x(!)|pP(d!)]1/p

if p 2 [1, +1), and k x k1 := ess sup |x(!)|, where |�| is
any fixed norm on a finite-dimensional vector space.

It will be convenient to assume that all the �-
algebras Ft , are completed by all subsets of null-sets in
˝ . In many applications, this assumption does not lead
to a significant loss in generality.

Results

For the most part, it will not be supposed that problem
(P) has optimal solutions. For completeness, however,
an existence result is provided.

Theorem 1 (Existence of optimal solutions.) Suppose
that, for each !, the set

A(!)

:D

8<
:a D (a1; : : : ; aT ) :

at 2 Xt(!);
gt(!; a) 2 �Kt(!);

8t

9=
;
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is closed, convex and bounded in the norm |�| by some
number ˇ(!) � 0, where Eˇ < 1. Assume L contains
a x 2 F such that x(!) 2 A(!) a.s. Also, suppose f is
convex and lower semicontinuous with respect to L1 con-
vergence. Then problem (P) admits an optimal solution.

Proof The feasible set F \ G \ X is convex, closed in
L1 and uniformly integrable, hence weakly sequentially
compact, while f is weakly lower semicontinuous [6].

Some notation must now be fixed. If Y is a topological
vector space, we write y� 2 Y� when y� is a continuous
linear mapping of Y into R. The value of y� 2 Y� at y 2
Y is denoted by y�y. If K� Y is a convex cone, its dual
cone is defined as K+ := {y� 2 Y� :y�y � 0, 8y 2K}.

The following general fact will serve as the basis for
further presentation.

Proposition 2 (A Fritz John rule) Consider an opti-
mization problem:

(P1)

8̂
ˆ̂̂<
ˆ̂̂̂
:

Find inf f (x)
s.t. x 2 X;

g(x) 2 �K;
h(x) D 0;

having finite optimal value inf(P1) for the given func-
tions f : X! R, g:X! Y and h: X! Z. Here X is a set,
K � Y is a convex cone, and Y, Z are Hausdorff linear
topological spaces. Suppose the convex hull conv C of the
set

C :D

8̂
<̂
ˆ̂:

(r; y; z)
2 R � Y � Z :

f (x) � inf (P1)C r;
g(x) 2 �K C y;

h(x) D z
for some x 2 X

9>>=
>>;

has nonempty interior and (0, 0, 0) at its boundary. Then
there exists a nonzero continuous linear functional (r�,
y�, z�) 2 R+ × K+ × Z� such that

r� inf (P1)

D inf fr� f (x)C y�g(x)C z�h(x) : x 2 Xg :
(5)

If Y, Z are both finite-dimensional, it suffices for (5) that
(0, 0, 0) lies at the boundary of conv C.

Proof The convex hull of C has a closed supporting
hyperplane through its boundary point (0, 0, 0). Hence
there is a nonzero (r�, y�, z�) 2 R� × Y� × Z� such that

r�r + y�y + z�z � 0 for all (r, y, z) 2 C. It is straightfor-
ward to see that r� � 0, and that y� must belong to the
dual cone K+. Thus r�[f (x) � inf(P1)]+y�g(x)+z�h(x)
� 0 for all x 2X, implying inf{r�f (x) + y�g(x) + z�h(x):
x 2 X} � r� inf(P1). The reverse inequality holds triv-
ially.

The above result can be employed, in particular, if
a) C is convex, and
b) the interior intC of the set C is not empty.
Observe that (0, 0, 0) is always on the boundary of C.
Condition a) is fulfilled if, for any xi 2 X, yi 2 g(xi) +
K, zi = h(xi), i = 1, 2, and � 2 [0, 1], there exists x 2
X such that f (x) � �f (x1) + (1 � �)f (x2), g(x) 2 �K +
�y1+ (1 � �)y2, and h(x) = �z1+(1 � �)z2. In turn, this
property holds if X is a convex set in some linear space,
f is a convex functional onX, h:X!Z is affine, and the
mapping g: X! Y is convex with respect to the cone
K, i. e., �g(x1)+(1 � �)g(x2)�g(�x1+(1 � �)x2) 2K for
all x1, x2 2 X and � 2 [0, 1].

In this article, Proposition 2 is applied to versions
of problem (P1) in which one of the constraints g(x) 2
�K or h(x) = 0 is not present. Observe that intC 6D ; in
any of the following cases:
i) h is absent, and f is bounded above on a set X1 � X

with int[g(X1) + K] 6D ; (this is so if intK 6D ;);
ii) g is absent and f is bounded above on some X2 � X

for which int h(X2) 6D ;.
In the applications below, the functional f and the setX
will be those involved in the basic model (see the pre-
vious section). Furthermore, fix some q 2 [1, +1] and
set

Y :D
TY

tD1

Lq(Ft; P;Rmt );

g(x) :D
�
gt(�; x)

�
;

K :D fy 2 Y : yt(!) 2 Kt(!) a.s. 8tg :

(6)

Suppose k g(x) kq < 1 for all x 2 X. Also, following
[16], define

h(x) :D x � (E1x1; : : : ; ETxT); (7)

and Z := h(L), assuming that h (when this operator
comes into action) is well-defined on L � X. Here Et
stands for the conditional expectation given Ft. Ob-
serve that x 2 F if and only if h(x) = 0.

In the subsequent analysis, the following hypothesis
regarding problem (P) will be used:
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FJ) There exists a nonzero (r�, y�, z�) 2 R+ × K+ × Z�

such that the Fritz John condition (5) holds with
inf(P) finite.

It is understood that if some constraint g(x) 2 �K or
h(x) = 0 is absent in (P), or automatically satisfied, then
the corresponding part of (y�, z�) should be omitted.

Conditions which guarantee applicability of Propo-
sition 2, and hence the truth of FJ), are presented above.
Hypothesis FJ) is especially well motivated for con-
vex problems. Absent convexity, FJ) frequently obtains
when X is a neighborhood of some local optimum.

LagrangeMultipliers for Phase Constraints

Throughout this subsection, it is assumed that L � F.
The information constraint is thus satisfied automati-
cally, and problem (P) reduces to finding inf f over G \
X. Associate the Lagrangian

L(x; �) :D f (x)C �g(x); x 2 X; � 2KC;

to constraint (3).

Theorem 3 (Lagrange multipliers for the phase con-
straints.) Assume FJ) and the following strict feasibil-
ity condition: For any y = (yt)TtD1 2 Y, belonging to some
neighborhood of 0, one can find x 2 X satisfying

gt(!; x(!)) �t;! yt(!) a.s.; 8t:

Then there exists � = (�t)TtD1 2K+ such that

inf (P) D inf
X

L(�; �): (8)

Proof The strict feasibility condition ensures that the
number r� involved in FJ) is strictly positive. Divide (5)
by r� and set � := y�/r�.

It is often important to obtain an integral representa-
tion of �,

�y D E�(!)y(!); y 2 Y; (9)

with an appropriate function �(!). This is immediate
if q 2 [1, +1) because then Lq(Ft , P;Rmt )� = Lq�(Ft ,
P;Rmt ), where q� := q/(q � 1), 1� = +1. However, not
every functional in the dual of L1 is of the form (9)
(those which admit representation (9) with �(�)2 L1 are
called absolutely continuous). Therefore the case q = +
1 requires special consideration. The analysis of that
case is based on the following continuity property of f :

� For any pair x;ex 2 X and any sequence of FT-
measurable indicators �k ˝ ! {0, 1} satisfying E�k

! 0, we have

f (�kex C (1 � �k)x)! f (x); (10)

provided �kex C (1 � �k)x 2 X .
Clearly (10) holds when f is of the form (4) (with finite
values).

One speaks of complete recourse if:
CR) for any x 2 X and 1 � t � T, there exists ext 2

Ft \Xt such that

gt(!; x1(!); : : : ; xt�1(!);ext(!)) �t;! 0 a.s. (11)

and (x1; : : : ; (1 � 1S )xt C 1Sext ; : : : ; xT ) 2 X for
each S 2 Ft .

Here 1S(!) = 1 if ! 2 S and 0 otherwise; the notation
ext 2 Ft \Xt means thatext is Ft-measurable and satis-
fies (2).

Theorem 4 (Absolutely continuous Lagrange mul-
tipliers for essentially bounded phase constraints.)
Consider the problem

(
min f
s.t. x 2 G \X:

Assume FJ), CR), strict feasibility, and the continuity
property (10). Then, there exists � = (�t)TtD1 2 K+ with
�t 2 L1(Ft , P;Rmt ) satisfying (8).

Proof By virtue of the Yosida-Hewitt theorem [20], any
� 2 L1� admits a unique decomposition � = �a + �s

into an absolutely continuous component �a 2 L1 and
a singular component �s. The last notion means that
there exist measurable sets S1, S2, . . . such that P(Sk)!
0 and �s(�) = �s(�k�), 8k, where �k := 1Sk .

Consider � = (�t) 2 K+ satisfying (8) and decom-
pose �t into �a

t +�st . We claim that, in (8), one may re-
place � by �a = (�a

t ), i. e., set all �st = 0. Indeed, by way
of induction, suppose �s� = 0 for all � > t:

f (x)C
X
��t

�� g� (x)C
X
��tC1

�a� g� (x)

� inf (P) (12)
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for any x 2 X, where 1 < t < T. (If t = T, the last sum
is zero.) Then the analogous inequality also holds for
t � 1. To prove this, select a sequence S1, S2, . . . of Ft-
measurable sets such that P(Sk)! 0 and �st(�) = �st(�k�),
8k, where �k is the indicator of Sk. Fix any x 2 X. Con-
sider the functionext 2 Ft\Xt described in CR). Let xk

2X be obtained from x by substituting �kextC(1��k)xt
in place of xt (in coordinate t only). Then

f (xk)C
X
��t�1

�� g� (xk)C
X
��t

�a� g� (x
k)

� f (xk)C
X
��t�1

�� g� (xk)C �st gt(x
k)

C
X
��t

�a� g� (x
k) � inf (P);

because �stgt(xk) = �st(�kgt(xk)) � 0. To obtain (12) for
t � 1, it suffices to pass to the limit, employing the con-
tinuity property (10).

Finally, observe that �a = (�a
t ) 2 K+, since, for any

yt �t, ! 0, we have 0 � �t[(1 � �k)yt] = �a
t [(1 � �k)yt]

! �a
t yt � 0.

Methods using similar arguments were first pro-
posed by A.Ya. Dubovitskii and A.A. Milyutin [5] in
(deterministic) optimal control theory. Applications
to stochastic extremal problems were developed in
[8,9,10,14,15,16], and [1], where various versions and
extensions of Theorem 4 can be found. Another ap-
proach, relying on a direct analysis of perturbation
functions in L1 and yielding Lagrange multipliers rep-
resentable as functions in L1, was suggested by E.B.
Dynkin [7].

LagrangeMultipliers
for Nonanticipativity Constraints

In this subsection, let L := Lp(FT+1, P;Rn) for some p 2
[1, +1] and Z := {z 2 L: (E1z1, . . . , ETzT) = 0} = h(L),
where h is given by (7).

The next goal is to relax the constraint x 2 F (,
h(x) = 0). Constraints of this type were first examined
systematically by R.T. Rockafellar and R.J-B. Wets [16].
To separate different issues, suppose here that all the
phase constraints of type (3) are absent, or already re-
laxed, as described above. Then (P) reduces to minimiz-
ing f over F \ X. To deal with the constraint h(x) = 0,

consider a different Lagrangian

�(x; 
) :D f (x)C 
h(x);

x 2 X; 
 2 Z� : (13)

Theorem 5 (Lagrange multipliers for the nonantici-
pativity constraints.) Consider the problem of mini-
mizing f over F \ X. Assume FJ). If X has nonempty
interior, then there is a linear functional 
 2 Z� such
that

inf (P) D inf
X
�(�; 
): (14)

Proof Evidently the linear mapping h: L! Z defined
in (7) is surjective. Both spaces L, Z are Banach. Since
the setU := intX 6D ; is open, the open mapping theo-
rem implies that h(U) is open. Furthermore, 0 2 h(U)
(see Remark 6), and so 0 2 int h(X). As a result, r� must
be strictly positive. Divide 5 by r� and set 
 := z�/r�.

Remark 6 Note that if intX 6D ; and p <1, then Xt(!)
=Rnt a.s., and soX =L. Furthermore, if intX 6D ;, then,
for any p, F \ int X 6D ;, which implies 0 2 h(int X).

Remark 7 By the Hahn-Banach theorem, the func-
tional constructed in Theorem 5 can be extended to
a continuous functional 
 2 L�.

Again, it is of importance to obtain an integral rep-
resentation of 
 . Like before, when p 2 [1, +1), this
representation is immediate, since L� = Lp� with p� =
p/(p � 1), 1� = +1. Suppose p = +1.

Theorem 8 (Absolutely continuous multipliers for
the nonanticipativity constraints: the L1 case.) Con-
sider the problem
(
min f
over F \X:

Assume FJ) together with the continuity condition (10).
Suppose that X is convex and int X 6D ;. Then there
exists an absolutely continuous functional on L =
L1(FT+1, P;Rn) satisfying (14).

Proof Let 
 be the functional described in Theorem
5 and Remark 7. By the Yosida-Hewitt theorem, each
coordinate 
 t of 
 decomposes into the sum 
 a

t + 
 s
t ,

where 
 a
t 2 L1 and 
 s

t is singular. Let S1, S2, . . .2 FT+1,
P(Sk)! 0 and 
 s

t(�) = 
 s
t(�k�), 8k, where �k = 1Sk . We



3788 S Stochastic Programming: Nonanticipativity and Lagrange Multipliers

may assume, additionally, that k (1 � �k)Et�k k1! 0
[9]. Consider any x 2 X. Construct xk from x by sub-
stituting �kEtxt+(1��k)xt in place of xt in coordinate t
only. Then xk 2 X by virtue of the convexity and Ft-
measurability of Xt(!) (see [1, App. II]; Xt(!) is con-
vex a.s. since X is convex). Finally, f (xk) ! f (x) and

 t(xkt � Etxkt )! 
 a

t (xt � Etxt), because 
 s
t(xkt � Etxkt )

= 
 s
t[Etxt(�k � Et�k)], where Et|�k � Et�k| � 2Et(1 �

�k)Et�k! 0 in k � k1. This shows that �(x, 
a) � inf
(P) for all x 2 X.

Remark 9 If 
 = (
 t) admits an integral representa-
tion, then the Lagrangian (13) can be written

�(x; 
) D f (x)C E
TX

tD1

Et
�

t(xt � Et xt)

�

D f (x)C E
TX

tD1

�
(
t � Et
t)xt

�
:

This allows one to interpret 
 t� Et
 t as a ‘shadow
price’ of information [3,4,9,16].

Synthesis

Combination of the results presented above allows one
to examine both the phase and the nonanticipativity
constraints simultaneously. The next theorem provides
a criterion of optimality in terms of pointwise mini-
mization of a Lagrangian associated with the two con-
straints. Consider problem (P) with L = Lp(FT+1, P;Rn)
and f defined by (4). Suppose that the following hy-
potheses hold:
C) For each !, the set X(!) := X1(!) × � � � × XT(!)

and the function F(!, a), a 2 X(!), are convex; the
mapping g(!, a), a 2 X(!), is convex with respect
to the cone K1(!) × � � � × KT(!).

G) The functional f (x) is bounded above on some set
X1 � X \ F with int[g(X1) + K] 6D ;; furthermore,
0 2 int[g(X \ F) + K].

H) For any integral linear functional � 2 K+, f (x) +
�g(x) is bounded above on some X2 � X with int
h(X2) 6D ;, and we have int X 6D ;.

The sets of interior points involved in G), int h(X2), and
intX are defined in terms of the spacesY,Z = h(L), and
L, respectively (for the definition of Y and K see (6)).
Additionally, if q =1, assume CR).

Theorem 10 (Pointwise optimality.) Let x 2 X \ F

\ G. Then x is a solution to (P) if and only if there exist
functionals �2K+ and
 2 Lp � of integral form (9) such
that a.s.

x(!) 2 argmin
�

F(!; a)C �(!)g(!; a)
C
P

t
�

t(!) � Et
t(!)

�
at

: at 2 Xt(!)
	 (15)

and � (!)g(!, x(!)) = 0.

Proof Let x be a solution to (P). It is sufficient to con-
struct functionals � 2K+ and 
 2 Lp � of integral form
such that

E(!; x) � E
�

F(!; x0)C �(!)g(!; x0)
C
P

t [
t � Et
t] x0t

	

for all x0 2 X. Then a suitable measurable selection ar-
gument (see, e. g., [1, App. I]) yields (15)). To construct
�, use Theorems 3 and 4. Then, to prove the existence
of 
 , apply Theorems 5 and 8 to a modified optimiza-
tion problemwith the objective functional f (x) + � g(x).
(The truth of FJ) follows from i) and ii).) The ‘if’ state-
ment is straightforward.

Stochastic programming, as presented above, can easily
accommodate integral constraints of the form

R
'(!,

x(!))P(d!)2M, where ':˝ ×Rn!Rd is an integrand
satisfying appropriate conditions andM is a cone in Rd.

Of course this article is only a brief glance at the
large and rapidly developing field of study. Many rele-
vant aspects have not been discussed. Perhaps the most
important of such aspects is the tight connection be-
tween the theory of stochastic Lagrange multipliers and
the theory of stochastic economic models. The for-
mer provides technical tools for the latter. The latter
serves as a source of problems and often as a ‘proving
ground’ for new developments regarding stochastic La-
grange multipliers. For an introduction into this sub-
ject, see [1].

See also

� Approximation of Extremum Problems with
Probability Functionals
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� Approximation of Multivariate Probability
Integrals

� Discretely Distributed Stochastic Programs: Descent
Directions and Efficient Points

� Extremum Problems with Probability Functions:
Kernel Type Solution Methods

� General Moment Optimization Problems
� Logconcave Measures, Logconvexity
� Logconcavity of Discrete Distributions
� L-shaped Method for Two-stage Stochastic

Programs with Recourse
�Multistage Stochastic Programming: Barycentric

Approximation
� Preprocessing in Stochastic Programming
� Probabilistic Constrained Linear Programming:

Duality Theory
� Probabilistic Constrained Problems: Convexity

Theory
� Simple Recourse Problem: Dual Method
� Simple Recourse Problem: Primal Method
� Stabilization of Cutting Plane Algorithms for

Stochastic Linear Programming Problems
� Static Stochastic Programming Models
� Static Stochastic Programming Models: Conditional

Expectations
� Stochastic Integer Programming: Continuity,

Stability, Rates of Convergence
� Stochastic Integer Programs
� Stochastic Linear Programming: Decomposition

and Cutting Planes
� Stochastic Linear Programs with Recourse and

Arbitrary Multivariate Distributions
� Stochastic Network Problems: Massively Parallel

Solution
� Stochastic Programming: Minimax Approach
� Stochastic Programming Models: Random
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� Stochastic Programming with Simple Integer
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� Stochastic Programs with Recourse: Upper

Bounds
� Stochastic Quasigradient Methods in Minimax

Problems
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� Two-stage Stochastic Programming: Quasigradient

Method
� Two-stage Stochastic Programs with Recourse
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Uncertainty is pervasive in many decision making
problems on which it often plays a key role. Uncertainty
in the input data of mathematical programs is gener-
ally modeled by postulating a probability distribution
(usually discrete) for the unknown parameters which
is then incorporated in an appropriate optimization
model. Based on this approach, stochastic programs
(SP) provide a constructive and prescriptive frame-
work for incorporating, ex-ante, uncertainty in decision
making models. Stochastic programming has evolved
into an effective framework for modeling sequential de-
cision problems under uncertainty in diverse applica-
tions: e. g., investment management, production and
logistics, capacity and operational planning for electric
power generation, management of natural resources,
network design, etc.

Attention is focused here on two-stage stochastic
linear programs with recourse which address the fol-
lowing situation: Certain decisions must be made at
present in the face of uncertainty. At a later time uncer-
tainty is resolved by observing a joint realization (out-
come) of the values of all uncertain parameters. At that
time, further corrective (recourse) actions can be taken
in response to the outcome that materializes. Each pos-
tulated realization of the uncertain parameters consti-
tutes a particular scenario. The objective is to minimize

the expected value of a total cost functional, which in-
cludes the direct cost of the initial decisions and the ex-
pected cost of the recourse actions.

Problem Formulation

Two-stage SP with recourse distinguish between two sets
of decision variables:
� x0 2Rn0 denotes the first-stage decisions. These deci-

sions are made before the values of the random vari-
ables are observed, but they should anticipate the
consequent cost of recourse actions.

� ys 2 Rn1 denotes the second-stage decisions under
a particular scenario s. These are the adaptive de-
cisions, representing recourse actions that are taken
after the random variables have been observed. They
depend on the first-stage decisions and on the real-
ization of the random variables.

Uncertainty is represented by a discrete set of scenarios
S = {1, . . . , S} with associated probabilities ps > 0,

PS
sD1

ps = 1. The two stage SP with recourse can then be stated
in the following deterministic equivalent program, [13]:

min
x02R

n0
C
; ys2R

n1
C

c>x0 C
SX

sD1

psq>s ys ; (1)

such that

A0x0 D b; (2)

Tsx0 CWs ys D hs ; 8s 2 S: (3)

Any deterministic constraints on the first-stage deci-
sions are depicted by equation (2) the coefficients of
which (i. e., the m0 × n0 matrix A0 and the vector b 2
Rm0 ) are scenario invariant. Each scenario s 2 S is asso-
ciated with a corresponding instance of the input data,
that is, the m1 × n0 technology matrix Ts, the m1 × n1
recourse matrix Ws, and the vectors qs 2 Rn1 and hs 2
Rm1 .

In this compact representation of the deterministic
equivalent program, the constraints matrix has a dual
block-angular structure:

0
BBB@

A0

T1 W1
:::

: : :

TS WS

1
CCCA : (4)
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The above formulation has n = n0+S�n1 variables andm
=m0 + S�m1 constraints. Hence, the inclusion of a large
number of scenarios, so as to account for many pos-
sible contingencies, inevitably leads to very large opti-
mization programs. Substantial research effort has been
directed toward the development of effective solution
methods that exploit the special block-structures of SP
and capitalize on the capabilities of high-performance
computing systems, including parallel multiprocessors.

Reformulations are sometimes applied to yield
structures that are more suitable for some parallel algo-
rithms. These reformulations employ variable-splitting
to replicate the first-stage solutions into distinct vec-
tors xs 2 Rn1 for each scenario s 2 S. Explicit nonan-
ticipativity constraints are then added to the program
in order to ensure that the values of these distinct
vectors are scenario-invariant. Nonanticipativity con-
straints can be of a staircase form:

xs � xs�1 D 0; s D 2; : : : ; S: (5)

Similarly, the distinct vectors xs may be equated with
an auxiliary vector x0, yielding a primal block-angular
structure:

xs � x0 D 0; s D 1; : : : ; S: (6)

Recent reviews of alternative parallel algorithms for
solving stochastic programs can be found in [2,12].

Interior Point Algorithm

Interior point algorithms directly address the deter-
ministic equivalent program (1)–(3). Let us focus on
the primal-dual, path following interior point method
(e. g., [11]) which solves simultaneously the following
pair of dual programs:

(P) min
x�0

c>x s.t. Ax D b;

(D) max
z�0

b>y s.t. A>y C z D c:

The m × n constraint matrix A is assumed to have full
row rank. The method applies a logarithmic barrier to
enforce the nonnegativity constraints. Each iteration
involves a Newton step for the system of linear equa-
tions that represents first-order conditions for a criti-
cal point of the associated Lagrangian functions for the

barrier forms of (P) and (D). The algorithm is given be-
low.

X and Z are the n × n positive definite diagonal ma-
trices X = diag(x1, . . . , xn), Z = diag(z1, . . . , zn). The
steplengths ˛P , ˛D are computed so as to keep the pri-
mal variables (x) and the dual slack iterates (z) positive:

˛P
:
D ı �min

˛ j>0

˚
˛ j : x j C ˛ j	x j � 0

�
; (7)

˛D
:
D ı �min

˛ j>0

˚
˛ j : z j C ˛ j	z j � 0

�
; (8)

where ı 2 (0, 1). A typical value of ı, used in practice
is 0.9995. An updating formula for setting the barrier
parameter �� that works well in practice is:

�� D
c>x� � b>y�

n2
:

Initialization
Set 	=0. Start with an interior point (x� 2Rn

+, z� 2
Rn
+, y� 2 Rm), and �� > 0.

Iterative step
Solve for the dual step �y:

(A
A>)�y =  ; (9)

where 
 = XZ�1,  = � + A
(� � X�1�), � =
b � Ax,
� = c � A>y � z, � = �1 � XZ1, and 1 is a con-
formable vector of ones.
Compute the primal step�x, and the slack variable
step�z, from

�x = �
(� � X�1¿ � A>�y) ; (10)

�z = �X�1(¿ � Z�x) : (11)

Update:

x�+1 = x� + ˛P�x ; (12)

y�+1 = y� + ˛D�y ; (13)

z�+1 = z� + ˛D�z ; (14)

where ˛P ; ˛D 2 (0; 1) are steplengths. reduce ��
to ��+1, and increment the iteration counter 	  
	 + 1.

Primal-dual path following algorithm
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Hence, the barrier parameter is kept large when far
from the optimum (as measured by a large duality gap
in the numerator) and the search direction points away
from the boundary of the feasible region, so as to allow
large steps. The barrier parameter is reduced as the op-
timum is approached so that the iterates may approach
the boundary of the feasible region. Practically the same
computations are applied – with fairly minor exten-
sions – to solve separable, convex quadratic programs
(see, e. g., [5,11]).

The major effort involves the solution of the n × n
symmetric, positive definite system of linear equations
(A
A>)�y =  . This system is commonly encoun-
tered in interior point methods. So, the parallel matrix
factorization procedures discussed here are directly ap-
plicable in other interior point algorithms as well. In-
terior point methods for stochastic programs are re-
viewed in [10].

The constraints matrix A of a two-stage SP has
the dual block-angular structure (4). In the discus-
sion above, the vector x encompasses all primal deci-
sion variables, that is, the first-stage decisions x0, as
well as the recourse decisions ys for all scenarios. Also,
the scenario probabilities ps are incorporated by scal-
ing the objective coefficients. Despite the sparsity of
the constraints matrix A, the product matrix A
A>

can be very dense due to the presence of the cou-
pling columns associated with the first-stage variables
(see (4)). Hence, the direct application of interior point
methods to stochastic programs is not particularly ef-
fective.

A first approach to overcoming this problem fo-
cuses on staircase formulations (cf. (5)). This signif-
icantly reduces fill-in and produces banded product
matrices which can be factorized efficiently [8]. Schur
complements have also been tested as a means for over-
coming the problem with the dense columns of the
first-stage variables [3,8]. These procedures can im-
prove substantially the performance of interior point
algorithms on SP. However, they can not be effec-
tively parallelized. Moreover, the Schur complement
approach suffers from numerical instabilities, particu-
larly in problems with many dense columns [3].

An alternative, is to directly parallelize the matrix
operations in interior point methods. Such procedures
typically treat the optimization programs as fully dense
and can not exploit the sparse block structure of SP.

Consequently, they are effective only for moderate-size
problems [6,9].

A third approach is to specialize a matrix factoriza-
tion procedure so as to capitalize on the structure of SP.
The method is based on a generalization of the Sher-
man–Morrison–Woodbury formula. It was proposed
for stochastic programs by J.R. Birge and L. Qi [4], and
was further extended by Birge and D.F. Holmes [3],
who also reported numerical experiments. Implemen-
tations of this factorization procedure on hypercubes
and other parallel computers are reported in [7,14].

Parallel Matrix Factorization

Partition the vectors �y and  in (9) into subvectors
[�y>0 , . . . , �y>S ]

> and [ >0 , . . . ,  >S ]
>, respectively,

with �yl,  l 2 Rml , for l = 0, . . . , S. Here �y0 repre-
sents the dual step corresponding to the first-stage con-
straints, and �yl represents the dual step correspond-
ing to the second-stage constraints for the lth scenario.
Hence, ml = m1, for l = 1, . . . , S; also denote nl = n1
for l = 1, . . . , S. The matrix factorization procedure that
solves for the dual step� y in (9) is based on the follow-
ing lemma; for a proof of the lemma, see [4].

Lemma 1 LetM :
DA
 A>, where
 is diagonal, and R

:
D diagl = 0, . . . , S(Rl), where R0 = I is anRm0 ×Rm0 identity
matrix, Rl = Wl
lW>l 2 R

ml�ml , l = 1, . . . , S, and
l 2

Rnl�nl is the (diagonal) submatrix of
 corresponding to
the lth block. Also, let

G1
:
D 
�20 C A>0 A0 C

SX
lD1

T>l R�1l Tl ;

G :
D

�
G1 A>0
�A0 0

�

U :
D

0
BBB@

A0 I
T1 0
:::

:::

TS 0

1
CCCA ; V :

D

0
BBB@

A0 �I
T1 0
:::

:::

TS 0

1
CCCA :

(9)

If A0 andWl, l = 1, . . . , S, have full row rank then M and
G2

:
D� A0 G�11 A>0 are invertible, and

M�1 D R�1 � R�1UG�1V>R�1: (10)

Equation (10) indicates that the solution of the linear
systemM�y = (A
A>)�y =  can be expressed as�y
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= p � r, where p solves Rp =  , and r is obtained from
the system

Gq D V>p; Rr D Uq: (11)

The vector p can be computed componentwise by solv-
ing Rlpl =  l, for l = 0, . . . , S. The block structure of G is
exploited in solving for q. One can write:

Gq D
�

G1 A>0
�A0 0

��
q1

q2

�
D

�bp1
bp2
�
;

where
�bp1
bp2
�
:
D V>p D

 
A>0 p0 C

PS
lD1 T

>
l pl

�p0

!
: (12)

Hence,

q2 D �G�12 (bp2 C A0G�11 bp1); (13)

q1 D G�11 (bp1 � A>0 q
2): (14)

Once q is known, r can be computed componentwise
from (11).

The required operations rely extensively on matrix
subblock computations that can be performed indepen-
dently of one another. A parallel procedure for comput-
ing the dual step�y is summarized in the following box
(denote by Ai� the ith row of A, and by A�j the jth col-
umn of A).

Interprocessor data communication is necessary at
only three points. After forming the terms T>l R�1l Tl in
Steps 2a–2b the processors communicate to form the
matrix G1 and the vectors bp1 and bp2, in Step 2b. The
results can be accumulated at a single master proces-
sor which executes serially the computations involving
the dense matrices G1 and G2 in Steps 2c–2e. The com-
puted vector q is then broadcasted to all other proces-
sors. Steps 3 and 4 require only the distributed data Rl,
Tl, and pl on the lth processor and can be carried out
with full parallelism. A final communication step accu-
mulates the partial vectors � yl at the master processor
to form � y. This vector can then be made available to
all processors for use in the subsequent calculation of
the directions � x and� z; these computations involve
only matrix-vector products and vector additions that
can be parallelized in a rather straightforward manner
[14]. This algorithm is suitable for implementation on

Begin with the following data distribution.
Processor l holds Wl , Tl , 
l , and  l ,
l = 1; : : : ; S. A designated master processor
also holds A0, R0,
0, and  0.

1 (Parallel solution of Rp =  .)
The master processor sets R0p0 = Ip0 = 0.
Processors l = 1; : : : ; S, form Rl = Wl
lW>l
and solve Rl pl =  l for pl .

2 (Solution of Gq = V>p.)
2a Processors l = 1; : : : ; S, solve Rl (ul )i = (Tl )�i

for (ul )i , i = 1; : : : ; n0, thus computing the
columns of the matrix ul = [(ul )1; : : : ;
(ul )n0] = R�1l Tl .

2b Processors l = 1; : : : ; S, multiply vl = T>l ul

to form vl = T>l R�1l Tl and also compute &l =
T>l pl . Communicate vl 2 Rn0�n0 and &l 2 Rn0

to form G1 (cf. (15)) and p̂1 (cf. (18)) on the
master processor.
The master processor sets p̂2 = �p0.

2c The master processor solves G1u = p̂1 for u
and sets v = p̂2 + A0u (cf. (19)).

2d The master processor forms G2 by solving
(G1)wi = (A>0 )�i for wi , i = 1; : : : ; m0, and
sets G2 = �A0[w1; : : : ; wm0 ].

2e The master processor solves G2q2 = �v for q2
(cf. (19)), and solves G1q1 = p̂1�A>0 q2 for q1
(cf. (20)).
Communicate to distribute q1 2 Rn0 to all pro-
cessors.

3 (Parallel solution of Rr = Uq .)
The master processor sets r0 = A0q1 + q2.
Processors l = 1; : : : ; S, solve Rl rl = Tl q1
for rl .

4 (Form�y in parallel.)
The master processor sets �y0 = p0 � r0. Pro-
cessors l = 1; : : : ; S, set�yl = pl � rl .
Communicate to gather the vector �y on the
master processor.

Parallel matrix factorization for dual step calculation

distributed memory, as well as on shared memory mul-
tiprocessors.

An alternative parallel implementation is to dis-
tribute the matrices G1 and G2 to all processors, and let
the processors proceed locally (and redundantly) with
all calculations involving these matrices. The master
processor approach uses an all-to-one communication
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step to accumulate the dense matrices at the master, fol-
lowed by a one-to-all communication step to distribute
the results to the processors. The alternative approach
combines these two communication steps into a single
all-to-all communication step that distributes the dense
matrices to all processors which compute locally (and
redundantly) their own copies of the vector q. Both of
these alternatives are very efficient on present day dis-
tributed memory machines with high-bandwidth inter-
connections.

Yet another alternative is to distribute the dense ma-
trices across processors, and use parallel dense linear al-
gebra techniques for all calculations that involve these
matrices. This approach is more suitable for shared-
memory, tightly coupled multiprocessors, and when
the dense matrices G1 and G2 are large.

A.J. Berger et al. [1] proposed another matrix factor-
ization procedure that exploits the block-structure form
of stochastic programs in interior point algorithms. The
method, termed tree dissection, operates on the split-
variable formulation and is applicable to multistage
stochastic programs with recourse and convex, block-
separable objective functions. A serial implementation
of the method demonstrated very competitive compu-
tational performance on large scale problems in com-
parison to direct applications of interior point algo-
rithms.

Computational Experience

Interior point algorithms can be applied to solve SP
with linear or separable, convex objective functions.
Separability is important to maintain sparsity in the
projection matrices. Nonseparable problems can yield
full projection matrices, thus dramatically increasing
the computational complexity. In such cases, it is possi-
ble to treat a problem as fully dense and directly paral-
lelize the matrix operations involved in interior point
methods without regard to problem structure [6,9].
However, such an approach is effective only for moder-
ate size problems due to its substantial computational
and storage requirements.

Interior point algorithms have proved very ro-
bust on two-stage SP with linear, or separable, convex
quadratic objectives. The required number of iterations
is neither particularly influenced in going from linear
to separable quadratic SP, nor is it significantly affected

by the size of the problem or by the conditioning of
the objective function. Hence, the algorithms can solve
to a high accuracy very large SP in a moderate num-
ber of iterations. However, they may exhibit numeri-
cal difficulties if the constraint matrix does not have full
row rank. Even if the entire constraint matrix has full
row rank, the parallel factorization procedure may suf-
fer from numerical instabilities if the recourse matrices
Ws do not have full row rank as well. Thus, care must
be exercised in implementations to test and account for
situations in which the recourse matrices are rank defi-
cient.

The parallel matrix factorization procedure pre-
sented in this article has been subjected to extensive nu-
merical experimentation on hypercubes and other par-
allel computing systems [7,14], exhibiting a high level of
scalability on large scale problems. In the implementa-
tions, each parallel task factorized the part of the projec-
tion matrix corresponding to a scenario. Moreover, the
matrix operations involved in the factorization proce-
dure, and throughout the interior point algorithm, can
be executed efficiently on vector processors, or be fur-
ther parallelized on massively parallel multiprocessors.
Particularly, the operations on the small dense matrices
that constitute the coordination step of the algorithm
can be vectorized or parallelized to effectively eliminate
any serial bottleneck.
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The simple integer recoursemodel with fixed technology
matrix is defined as

inf
x

˚
cx C Q̄(x) : Ax D b ; x 2 Rn1

C

�
;

where the expected value function Q̄ is

Q̄(x) D E� v(� � Tx) ;

and v is the value function of the second-stage problem

v(s) D inf
yC;y�

fqCyC C q�y� :

yC � s ; y� � �s; yC; y� 2 Zm2
C g

for s 2 Rm2 . Here c;A; b; qC; q� and T are vec-
tors/matrices of the appropriate size, qC; q� � 0,
qC C q� > 0, and � is a random vector in Rm2 .

As suggested by the name, this model has the same
structure as the well-known continuous simple re-
coursemodel, in which the second-stage decision vari-
ables y D (yC; y�) are non-negative reals. These mod-
els are indeed the most simple recourse models, both
analytically and conceptually. In both models the re-
course actions (that is, the compensations for observed
deviations from the constraints Tx D �) are straight-
forward. For example, let Tx represent production to
meet uncertain demand �. Then in the continuous
model the recourse actions may represent buying or
selling any shortage or surplus, whereas in the integer
recourse model buying and selling is only possible in
batches of a certain size. In both models the objective
function reflects the direct costs cx and the expected re-
course costs Q̄(x).

Using separability which is due to the simple re-
course structure, Q̄ is completely characterized by the
one-dimensional generic function Q, given by

Q(z) D qCE�d� � zeC C q�E�b� � zc� ; z 2 R ;

with qC; q� 2 RC, qC C q� > 0, � a random variable,
and dseC D maxf0; dseg, bsc� D maxf0;�bscg, s 2 R.
Below we present results for the one-dimensional func-
tion Q; the extension to the n1-dimensional case is
straightforward.

In [11] structural properties of the function Q are
presented. A closed-form expression for Q is given,

Q(z) D qC
1X
kD0

Prf� > zC kg

C q�
1X
kD0

Prf� < z � kg ; z 2 R ;

and conditions for (Lipschitz) continuity and (one-sid-
ed) differentiability are derived. (Corresponding results
for the model in which also the technology matrix T is
random are given in [4].) The function Q is continu-
ous if and only if � follows a continuous distribution.
If � is a discrete random variable with realizations � j ,
j D 1; : : : ; r, thenQ is lower semicontinuous with dis-
continuity points [ jf�

j C Zg. Moreover, even if Q is
continuous, it is non-convex in general. This has led to
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the study of conditions on the distribution of � such
that the function Q is convex, and to the construction
of convex approximations of Q.

Since Q is continuous (and finite) precisely if � is
continuously distributed (with finite mean value), it fol-
lows that Q can only be convex if � has a probability
density function, say f . In [9] it is shown that, under
some mild technical conditions, Q is convex if and only
if f (s) D G(s C 1) � G(s), s 2 R, where G is an arbi-
trary cumulative distribution function with finite mean
value. For example, if G corresponds to the degenerate
distribution in 1 then f is a probability density function
of the uniform distribution on [0; 1]. Formulated in
terms of random variables, we have that Q is convex if
and only if there exists a random variable � with finite
mean value, such that for all s 2 R the conditional dis-
tribution of � given � D s is uniform on [s � 1; s]. From
this we see that the uniform distribution with unit sup-
port plays a central role here.

In [7] it is shown that any reasonable convex
approximation of the function Q can be represented as
a one-dimensional expected value function of a con-
tinuous simple recourse model, with a random right-
hand side parameter whose distribution is known. Con-
sequently, given a convex approximation of Q, the
integer recourse model can be solved (at least ap-
proximately) by well-known algorithms for continuous
simple recourse models (see e. g. [1,3,12,13,19]).

For the case that � follows a finite discrete distribu-
tion, a strongly polynomial algorithm to construct the
convex hull of the function Q is given in [8]. In [6] it
is shown that if the matrix T has full row rank, then
the resulting one-dimensional functions can be used as
building blocks for the convex hull of the n1-dimen-
sional expected value function Q̄. If this condition is not
satisfied, a convex lower bound for Q̄ is obtained.

If � is a continuous random variable, convex ap-
proximations of Q can be obtained by perturbing its
distribution. In [9] a class of such approximations, de-
fined by their probability density functions f˛(s) D
F(bsc˛ C 1) � F(bsc˛) ; s 2 R, is analyzed. Here F
is the cumulative distribution function of �, ˛ 2 [0; 1)
is a shift parameter, and b�c˛ denotes round down with
respect to the set f˛ C Zg (the case ˛ D 0 corresponds
to the usual integer round down). For each ˛ 2 [0; 1),
the function Q˛(z) D qCEd�˛ � zeCC q�Eb�˛ � zc�,
z 2 R, with the random variable �˛ distributed accord-

ing to f˛, is a piecewise linear convex approximation of
Q. It is shown that

kQ˛ � Qk1 � (qC C q�)
j�j f
4

;

where j�j f is the total variation of f . By taking con-
vex combinations this uniform error bound can be im-
proved by a factor two at most, which is obtained by
using f˛ˇ D ( f˛ C fˇ )/2 with j˛ � ˇj D 1/2 as the ap-
proximating distribution. For many distributions the
total variation of f decreases as the variance of the dis-
tribution increases. In these cases the approximation
becomes better accordingly.

The continuous simple recourse representations of
the approximations presented above have discretely
distributed right-hand side parameters, and can there-
fore be solved efficiently. Algorithms to compute these
distributions (and standard solution methods) are im-
plemented in the model management system SLP-
IOR [2].

Most results referred to above can be found in [17].
For an overview of the field of stochastic (mixed-)in-
teger programming beyond the simple recourse case,
we refer to [5,10,14,15,16]. An extensive bibliography
of stochastic programming in general can be found
in [18], which also contains a separate listing of stochas-
tic integer programming literature.
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A two-stage stochastic linear program with recourse
(SLPR) with random right-hand sides and objective
costs is normally written as follows:
8<
:
min
x�0

cx C Q(x)

s.t. Ax D b

where

Q(x) D
Z

˝

Q(x; !)g(!) d!;

and

Q(x; !) D min
y�0
fq(�)y : Wy D h(�) � T(�)xg :

Here, g(!) is the density function for the joint random
vector e! :D (e�;e�) whose support is the set ˝ and W
is an (m × n) matrix. This way of formulating a two-
stage stochastic program is motivated partly by solu-
tion procedures, and partly by the time structure of the
problem. For this article, the former is more important.
The interpretation of the problem is that first (now) we
make a decision x, then we observe a value of the joint
vectore!, and finally wemake a recourse decision y based
on our earlier decision x and the observed value ofe!.

In a direct approach for solution of the above prob-
lem, such as Benders decomposition [1] (or equivalently
the L-shaped decomposition [12]), a master problem is
created to determine a first stage solution x (say x0),
along with a subproblem to determine the second stage
value function Q(x0) by integrating:
Z

˝

Q(x0; !)g(!) d! �
Z

˝

f (!)g(!) d!:

http://mally.eco.rug.nl/spbib.html
http://mally.eco.rug.nl/spbib.html
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For most functions f and densities g this is impossi-
ble to do exactly. Numerical integration when the di-
mension of the random vector e! is beyond 5 or 6 is
computationally intractable. Hence, one has to resort
to bounds or approximations. Normally, the integral is
replaced by a lower bounding expression, either by re-
placing f (!) by some simpler L(!), g(!) by some sim-
pler l(!), or both. Benders decomposition may then be
applied to this simplified problem to arrive at an opti-
mal lower bounding solution x0. To check if this solu-
tion is good enough as an optimal solution to the given
problem, an upper bound U to Q(x0) must be found.
Such upper bounds are usually determined by either re-
lying on the solution of a certain moment problem that
would essentially yield a discretization of the support˝
or using a functional approximationU(!) that serves as
an upper bounding function to f (!). The latter case is
discussed in this article. In this case, the resulting ap-
proximations may require either univariate integration
on marginal domains, or simple discretizations of the
support to allow efficient computation.

Upper bounds of interest here can be categorized
depending on whether SLPR has randomness only in
the right-hand sides, or it has randomness in both the
objective costs and right-hand sides. In the former case,
the function Q is convex in the random vector, while
in the latter case, it is convex-concave in the random
vectors.

We first consider the convex case, by restricting �
to be a degenerate random vector, and thus, using the
notation that � �! and q� q(�). An easy upper bound
in this case is available due to H.P. Edmundson and A.
Madansky.

The Edmundson–Madansky Upper Bound

The Edmundson–Madansky upper bound (EM-bound)
is based on articles by Edmundson [7] and Madansky
[9]. This bound can be interpreted in terms of a mo-
ment problem with first moment condition, as well as
in terms of an upper bounding function U(�) on f (�).
We consider the latter construction, as illustrated in
Fig. 1.

The upper boundU(�) can be written asU(�) = r� +
s, with r = (f (b) � f (a))/(b � a) and s = b/(b � a)f (a) �
a/(b � a)f (b). Upon integration, one obtains the upper

Stochastic Programs with Recourse: Upper Bounds, Figure 1
The basis for the EM-bound

bound as

bZ

a

U(�)g(�) d� D f (a)
b � Ee�
b � a

C f (b)
Ee� � a
b � a

:

In other words, by integrating U(�) instead of f (�) one
obtains an upper bound which amounts to just evaluat-
ing the function f at the extreme values of the support
[a, b], using the weights

p D
b � Ee�
b � a

and 1 � p D
Ee� � a
b � a

:

If the random vector � has K independent random
components, the above reduction will leave us with a to-
tal of 2K points to evaluate. Hence, with more than
about 10 random variables or so, this approximation
scheme becomes computationally unattractive. Hence,
there is a need for an upper bound whose complexity is
not exponential in the number of random variables.

The Piecewise Linear Upper Bound

The piecewise linear upper bound (PL-bound) is based
on the articles independently developed by S.W. Wal-
lace [13] and J.R. Birge and R.J-B. Wets [4], later com-
bined in [3]. Assume now that f (�) is given by

f (�) D min
y
fqy : Wy D bC H�; 0 � y � cg ;

that is, T(�) � T, H is a deterministic matrix with n1
columns, the n1 random variables are independent, and
there is no randomness in the upper limits, c. For sim-
plicity, assume that the support of � is [0, B], with B
= (B1, . . . , Bn1 ). More complex situations can also be
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treated. The goal is to find an upper bounding function

U(�) D f (0)C
n1X
iD1

di�i :

This function U(�) is useful in that for most g(�) it is
simple to integrate. We first solve

f (0) D min
y
fqy : Wy D b; 0 � y � cg D qy0:

This is the base case, and we define ˛1 = �y0, and ˇ1

= c � y0. Define a counter r and let r := 1. Now, solve
(letting Hr be column r of the matrix H)

min
y
fqy : Wy D HrBr ; ˛

r � y � ˇrg

D qyr D drBr :

Then, update the bounds to obtain

˛rC1
i D ˛r

i �minfyri ; 0g;

ˇrC1
i D ˇr

i �maxfyri ; 0g:

Now, increment r by one and repeat until all n1 ran-
dom variables have been treated. The PL-bound, as out-
lined here, requires the solution of n1 + 1 linear pro-
grams, in contrast to the EM-bound which needed 2n1
linear programs in the same setting. Many other ver-
sions of this bound exist, see, for example, [8, Sect. 3.4.4;
6.5.1].

Note that the EM-bound and the PL-bound are not
comparable, in the sense that either one can be better
than the other. The PL-bound bound may be infinite
even if the true expected value is finite, whereas the EM-
bound is finite if and only if the true value is finite. If the
function f (�) turns out to be linear in �, both bounds
are exact.

Restrictions

Upper bounds can be found by adding restrictions to
the solution set of a problem. The PL-bound above is
an example of that. In that case the restriction amounts
to reserving certain parts of the upper limits for certain
random variables. Another type of thinking about re-

strictions can be found in [10]. He points out that
bZ

a

f (�)g(�) d�

D

bZ

a

min
y�0
fqy : Wy D b C h(�)g g(�) d�

� min
y�0

bZ

a

fqy : Wy D bC h(�)g g(�) d�:

The logic of this bound is that if we allow only one y for
all values ofe�, rather than a function of �, we restrict the
problem, and hence obtain an upper bound. The useful-
ness of this bound depends on our ability to evaluate the
final expression. In [11] this expression is used in con-
nection with another very useful observation, to arrive
a restricted-recourse bound. Let

z�1 D min
y�0
fqy : Wy � �g ;

and define 
� to be an optimal dual solution to this
problem. With 
 0 � 
�, we get that z�1 = z�2 where

z�2 D min
y�0
fqyC 
 0(� �Wy)Cg:

Combining the two results we get that the following
yields an upper bound:

min
y�0

8<
:qyC 


0

bZ

a

(� �Wy)Cg(�) d�

9=
; :

Solving this problem amounts to solving a stochastic
program with simple recourse, and is not particularly
hard. The quality of the bound depends to a large extent
on the ability to find tight dual solutions. Note that this
bound does not require convexity, namely, the matrix
W is allowed to have random elements, and that it can
be used for much more general situations than here.

As D.P. Morton and R.K. Wood noted, the re-
stricted recourse bounds provide improvements over
the penalty-based aggregation bounds developed in [2]
and [6]. Restrictions are also used to bound amultistage
problem in [14].

Upper Bounds for a Convex-Concave Case

When the right-hand side and objective cost vectors
(of the second stage problem) are dependent random
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vectors, upper bounds are developed in [5]. The first
essential idea is to enclose the joint support ˝ within
a known (K + L)-dimensional simplex b̋ , where K and
L are, respectively, the number of � and � random vari-
ables. Such a simplex can generally be determined quite
easily, however, the quality of the bound can be affected
by a particular choice. Let the chosen simplex b̋ have
the extreme points given by wi � (ui, vi) for i = 1, . . . , K
+ L + 1.

The second important idea is to develop an upper
bounding functionU(x,!) toQ(x,!) by using the con-
vexity property of Q in � vector, given a fixed first stage
decision x. Towards this, let b̋� be the conditional do-
main of b̋ for any fixed � value. Under the convexity,
the following inequality holds:

Q(x; !) � U(x; !)

:D
KCLC1X
iD1

pi (!)Q(x; ui ; �); for ! 2 b̋�;

where the nonnegative multipliers pi(!) satisfy the con-
vexity constraints for any ! 2 b̋ :

KCLC1X
iD1

wi pi (!) D !;
KCLC1X
iD1

pi (!) D 1:

Taking expectations under the conditioning argument
with respect to the ‘true’ density g(!) yields Q(x) �
EU(x, !). However, EU(x, !) in itself is not easy to
evaluate. Hence, a simple inequality is utilized to upper
bound the latter expectation. Notice that

EU(x; !) D
KCLC1X
iD1

Z

˝

G(!; x; i)g(!) d!;

where

G(!; x; i)

D min
y i�0

˚
pi (!)q(�)yi : Wy D h(ui) � T(ui )x

�
;

in which each minimization involves only random ob-
jective coefficients. Then, apply Jensen’s inequality on
the inner minimization to obtain the upper bound as

Q(x)

�

KCLC1X
iD1

bpi min
y i�0

˚
q(b�i )yi : Wy D h(ui) � T(ui )x

�
;

provided the certainty equivalentsbpi andb�i satisfy the
condition:

bpi q(b�i ) :D
Z

˝

[pi(!)q(�)]g(!) d!:

N.C.P. Edirisinghe [5] shows that the latter equivalent
representation can be uniquely determined when the
objective cost vector q(�) is linear affine in �. To com-
pute these certainty equivalents, consider the (nonsin-
gular) vertex matrix V of the simplex b̋ , whose ith col-
umn is given by

(wi
1; : : : ;w

i
KCL; 1)

0:

The inverse matrix of V is denoted by V�1 whose ith
row is V�1i . Then, it can be shown that

bpi
D V�1i (E[�1]; : : : ; E[�K]; E[�1]; : : : ; E[�L]; 1)0 :

Moreover,b�i is evaluated for each coordinate l( = 1, . . . ,
L) byb�il D ril /bpi , where ril is the ith element of the (K +
L + 1)-column vector,

V�1 (E[�1�l ]; : : : ; E[�K�l ]; E[�1�l ]; : : : ; E[�L�l ])0 :

Consequently, the upper bound requires all first mo-
ments and second order moments including the vari-
ance information of �. The upper bound computations

Stochastic Programs with Recourse: Upper Bounds, Figure 2
Convex-concave upper bound in two dimensions



Stochastic Programs with Recourse: Upper Bounds S 3801

require solving only K + L + 1 linear programs. There-
fore, the complexity of the bound does not grow ex-
ponentially with the number of random variables. This
bound is illustrated in Fig. 2.

It can be verified through counterexamples that
this upper bound is not associated with the solution
of a moment problem having the concerned moment
conditions. In contrast, generally, upper bounds in the
convex-concave case are associated with solutions to
moment problems. Also, when applied to the case of K
= 1 and L = 0 – when only the right-hand side is ran-
dom –, this upper bound reduces to the previously dis-
cussed Edmundson–Madansky upper bound.
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Introduction

Traditional deterministic optimization methods are
used for well defined objective and constraint functions,
i. e., when it is possible to calculate exactly F0(x) to be
minimized (or maximized) and to verify constraints

Fi(x) � 0 ; i D 1 : m (1)

for each decision vector x D (x1; : : : ; xn) 2 X, where
the set X has a “simple” structure (for example, defined
by linear constraints). Usually it is also assumed that
gradients or subgradients (for nonsmooth functions)
Fix of the functions Fi ; i D 0; 1; : : : ;m are easily cal-
culated. Stochastic Quasigradient (SQG) methods have
been developed for solving general optimization prob-
lems without exact calculation of Fi, Fix . They incorpo-
rate basic ideas of standard optimization methods, ran-
dom search procedures, stochastic approximation and
statistical estimation. There are at least three main ap-
plications areas for SQG methods:
� Deterministic problems for which the calculation

of descent directions is difficult (large-scale, nons-

mooth, distributed, and nonstationary optimization
models).

� Multiextremal problems where it is important to by-
pass locally optimal solutions.

� Problems involving uncertainties or/and difficulties
in the evaluation of functions and their subgradi-
ents (stochastic, spatial, and dynamic optimization
problems with multidimensional integrals, simula-
tion and other analytically intractable models).
Thus, SQGmethods are used in situations where the

structure of the problem does not permit the applica-
tion of one the many tools of deterministic optimiza-
tion. They only require modest computer resources per
iteration and reach with reasonable speed the vicinity
of optimal solutions, with an accuracy that is sufficient
for many applications. Further details on SQGmethods
can be found in references.

The main idea of the SQG methods as proposed
in [1,2,3] (see also [5,6,7,8,9]) is to use statistical (bi-
ased and unbiased) estimates of objective and con-
straints functions and/or their gradients (subgradi-
ents). In other words, a sequence of approximate solu-
tions x0; x1; : : : is constructed by using random vari-
ables �i (k), and random vectors � i (k); i D 0; : : : ;m
such that the conditional mathematical expectation for
a given “history” Bk (say, (x0; : : : ; xk))

E[�i (k)jBk] D Fi (xk)C ai (k) ; (2)

E[� i (k)jBk] D Fix(xk)C bi(k) ; (3)

where ai(k) , bi(k) are “errors” (bias) of the estimates
�i (k) , � i (k). For the exact convergence of the sequence
fxkg to optimal solutions ai(k) , bi(k) must tend (in
some sense) to 0 when k!1. Vectors � i (k) are called
stochastic quasigradients. If bi(k) � 0, then they are
also called stochastic gradients for continuously dif-
ferentiable Fi(x) and stochastic subgradients (gener-
alized gradients) for nonsmooth Fi(x). In what fol-
lows notations F(x); �(k), �(k) are also used instead of
F0(x); �0(k); �0(k).

Consider the simplest SQG method. Assume that
there are no constraints (1), X is a closed bounded
(compact) convex set such that the orthogonal pro-
jection ˘X(y) of a point y on X is easily calcu-
lated:˘X(y) D Argminfky � xk2 : x 2 Xg, for exam-
ple, ˘a�x�b(y) D max

�
a;min fy; bg

�
. The SQG pro-
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jection method is defined iteratively as following

xkC1 D ˘X

h
xk � �k�(k)

i
; k D 0; 1; : : : ; (4)

where �k is a positive stepsize, x0 is an arbitrary initial
approximation (guess).

Calculation of SQG

Let us consider some important typical examples of
SQG.

Example 1. Monte Carlo Optimization Various prac-
tical problems are so complicated that only a Monte
Carlo simulation model is available [2,4,6] to indicate
how the system might react to any given choice of the
decision variable x. We always can view a given simula-
tion run of such a model as the observation of an “envi-
ronment” ! from a sample space ˝ . To simplify mat-
ters, let us assume that only a single quantity f (x; !)
summarizes the output of the simulation ! for given x.
The problem is then to minimize the expected perfor-
mance (cost, risk, profit, a “distance” from given goals
or a reference point, etc.):

F(x) D E f (x; !): (5)

This is a typical stochastic optimization problem.
Exact values of F(x) are unknown explicitly. Available
information at each current solution xk and simulation
run ! is �(k) D f (xk; !) satisfying (2) for a(k) � 0.
The vector �(k) can be calculated as in the standard
stochastic approximation procedures: At each step k
for given xk simulate random outcomes f (xk; !k0),
f (xk C�k e j; !k; j), j D 1; : : : ; n, where�k e jis a posi-
tive increment in the direction ejof jth coordinate axis;
calculate

�(k) D
nX

jD1

��1k

�
h
f (xk C�k e j; !k; j) � f (xk; !k;0)

i
e j : (6)

Simulations !k;0; � � � ; !k;n are not necessarily in-
dependent: one possibility is to use only one sim-
ulation !k at each step k : !k;0 D : : : D !k;n D !k .
The variance of such a single run estimate of SQG
converges to 0 as k!1, whereas for indepen-
dent simulations it goes to 1. Since E

�
�(k)jxk� D

Pn
jD1�

�1
k

�
F(xk C�k e j) � F(xk)

�
e j , then for con-

tinuously differentiable F(�):

E
h
�(k)jxk

i
D Fx(xk)C C(k)�k; (7)

where kC(k)k < const <1 for all xk from a bounded
set X.

Example 2. Optimization by random search Suppose
that F(x) can be evaluated exactly but this is time con-
suming, say, because F(x) is defined on solutions of
differential equations or on solutions of other opti-
mization problems. A purely random trial-and-error
method (with xkC1 2 X drawn at random until that
F(xkC1) < F(xk); and so on) may be time consuming
since the probability to “hit” at random even a sub-
space as large as nonnegative orthant of n-dimensional
Euclidean space is 2�n . The traditional finite difference
approximation

Fx(xk) 	
nX

jD1

��1k

h
F(xk C�k e j) � F(xk)

i
e j (8)

requires n C 1 evaluations of F(�) and this also may be
time-consuming. The SQG

�(k) D 3/2��1k
h
F(xk C�k&

k) � F(xk)
i
� k; (9)

where & k has independent uniformly distributed on
[�1; 1] components, requires only two evaluations of
F(x) at points xk and xk C�k&

k independently of the
dimensionality n. It is easy to see that vector (9) satisfies
(7) for continuously differentiable F(x).

Example 3. Finite difference approximations of subgra-
dients The finite difference approximations (6), (8),
(9) can not be used for nondifferentiable functions,
e. g., for stochastic two-stage and minimax problems.
SQG methods allow to develop simple finite-difference
subgradient approximations for general (determinis-
tic and stochastic) nonsmooth optimization problems.
The slight randomization of (6), (8), (9) by substitut-
ing, roughly speaking, the current point xk by a ran-
dom point xk D xk C �k , where the random vector �k

has a density and


�k

! 0 with probability 1, ensures

their convergence even for locally Lipschitz and discon-
tinuous functions [2,4,5], pp. 151, 320, [6,7].

Assume that F(x) is a locally integrable (possibly
discontinuous) function and the vector �k has suffi-
ciently smooth density concentrated in a bounded set.
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Then

�(k) D 3/2��1k
h
F(xk C�k&

k) � F(xk)
i
� k; (10)

�(k) D 3/2��1kh
f (xk C�k&

k ; !k1) � f (xk ; !k;0)
i
� k (11)

are SQG of F(k; x) D EF(x C � k ) or so-called stochas-
tic mollifier quasigradient (SMQG) of F(x), which con-
verges (in some sense) to F(x) and for which Fx (k; x)
converges [4,6] to the set of subgradients Fx(x). We
have

E
h
�(k)jxk

i
D Fx(k; xk)C C(k)�k; (12)

where kC(k)k < const <1 for all xk from a bounded
set. The analysis of convergence of xk involves gen-
eral ideas of nonstationary optimization (see Example
5). The important advantage of this approach is that
F(k; x) smoothes out rapid oscillations of F(x) and re-
flects general trend of F(x). In this sense F(k; x) pro-
vides a “bird’s eye” point of view on the “landscape”
F(x) enabling

˚
xk� to bypass inessential local solutions.

“Large” enough �k force the procedure to concentrate
on essential (global) solutions.

Example 4. Global optimization The simplest way to
introduce the “inertia” in the gradient type procedure
to bypass some local solutions is to perturb the gra-
dient Fx (xk) by a random vector �k , i. e. to consider
�(k) D Fx(xk)C �k , E�k D 0. A special choice of �k

corresponds to the simulated annealing. Another ap-
proach is to cut off local solutions by sequential convex
approximations [6].

Example 5. Nonstationary optimization Many applied
problems, [2,5], pp. 152–156, [6], such as in Exam-
ple 3, can be formulated as optimization problems
with objective function F0(k; x) and constraints func-
tions Fi(k; x) changing at each step k D 0; ::. In this
case a SQG - method on step k performs one step
of the minimization of F0(k; x) using estimates of
Fix(k; x), i D 0; : : : ;m. An important case arises when
Fi(k; x)! Fi (x) in some sense. Then it is possible to
prove that F0(k; xk)! min F0(x). In the general case, it
is possible to specify wide variety of situations for whichˇ̌
F0(k; xk) �min F0(x; k)

ˇ̌
! 0, k!1.

Convergence Properties

SQG methods generate random sequences of approxi-
mate solutions fxk(!)g and values

˚
F(xk(!))

�
indexed

by ! from an appropriately defined probability space.
Most important, from practical point of view, is the
convergence of xk(!) (or F(xk)) to the set of local
(in general) solutions X� (set F� D F�(X�) ) for al-
most all ! (with probability 1). The convergence with
probability 1 of the sequence fF(xk)g to the set F* was
proved for rather general nonsmooth (generalized dif-
ferentiable, locally Lipschitz and even semicontinuous)
functions covering a wide range of applications. The
limit points of fxk(!)g for each ! form a connected
set from X*. The convergence xk(!)! X� with prob-
ability 1 takes place under “convexity” assumptions.
The global convergence in general cases requires spe-
cial stochastic mechanisms [2,6]. In all cases the con-
vergence requires special choice of the stepsize �k . Due
to the complexity of the problems, �k can not be cho-
sen in a way, that guarantees the monotonic decrease of
F(x) : F(xkC1) < F(xk); k D 0; 1; ::. A relatively flexi-
ble requirement that often guarantees the convergence
of the sequence fF(xk)g with probability 1 is that with
probability 1

�k � 0;
1X
kD0

�k D 1 ;

1X
kD0

E
�
�k kb(k)k C �2k k�(k)k

2� <1:
(13)

For example, consider (6) with dependent obser-
vations !k;0 D !k;1 D � � � D !k and f (x; !) <
const < 1. In this case we can always assume in
practice that k�(k)k � const < 1. Then condition
(13) leads to the requirement �k � 0;

P1
kD0 �k D

1;
P1

kD0 E(�k�k C �
2
k ) < 1 , which is satisfied for

�k D C
ı
(kC1); �k D D

ı
(kC1) with constants C,D.

In practiceC,D are usually adjusted [2,6] at each step by
taking into account the history Bk , for example by us-
ing values F(k) D (k C 1)�1

Pk
sD0 f (xs ; !s). Different

adaptive SQG methods with adaptive adjustment of �k
as a function of Bk have been studied in [5], pp. 373–
385, 316–322, [11]. One idea is to choose �k , more or
less so as minimize E

�
F(xk � ��(k))jxk�. It leads to

adaptive modifications of �k that are proportional to
the product < �(k C 1); �(k) >. The important issues
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of determining the moment of termination (stopping
time) and the confidence intervals for approximate so-
lutions have also been studied [5], pp. 353–373.

SQG methods require appropriate techniques to
prove their convergence. These techniques ([2,5],
pp. 155–156), [7,9] can be viewed as stochastic Lya-
punov method for the stability analysis of nonsmooth
dynamic systems. The main idea is to show that˚
xk(!)

�
for each ! leaves any neighborhood of points

which do not belong to X* with decreasing values of
some (in general nonsmooth) Lyapunov function.

Nonsmooth Problems

The common sense arguments in using SQG methods
for nonsmooth problems may be misleading (see ap-
plications of SQG methods). An exception, in a sense,
is the class of problems with so-called generalized dif-
ferentiable (GD) functions [4,7]. The class of GD func-
tions is closed with respect to min and max operators
and superpositions. The following important formula
holds for the set @ f of subgradients

@maxf f1(x); f2(x)g D co
˚
@ fi(x) D max

�
f1; f2

��

(14)

and subgradients of a composite function � ( f1; : : : ; fr)
are calculated by intuitively obvious chain rules. The
class of GD functions is also closed with respect to the
expectation operator:

@F(x) D E@ f (x; !); F(x) D E f (x; !); (15)

where f (�; !) is a GD function.
Formulas (14), (15) provide a useful tool for calcu-

lating subgradients. Unfortunately, for general classes
of nonsmooth functions their direct use becomes te-
dious and in some cases (14), (15) invalid. The most
promising approach seems to use SMQG similar to
(10), (11).

AveragingOperations

The methods (4) and many other SQG methods have
the same basic structure as their deterministic coun-
terparts. The following stochastic linearization method
possesses an essential new feature. Consider again
the minimization of F(x); x 2 X. Assume that F(x) is
a continuously differentiable function, and that X is

a convex compact. The method is defined iteratively by

xkC1 D xk C �k(bxk � xk); 0 < �k < 1 ; (16)

b�(k C 1) Db�(k)C ık(�(k C 1) �b�(k)) ;
bxk 2 argmin

n
hb�(k); xi : x 2 X

o
;

(17)

where x0 is an arbitrary initial approximation from X.
The well-known deterministic counterpart has

ık � 0, �(k) � Fx(xk). Simple examples show that
without the averaging operation (17), i. e., ık � 0,
method (16) does not converge. For convergence, it is
required in addition to (13) that

ık � 0; �k
ı
ık ! 0;

1X
kD0

Eı2k <1: (18)

Method (16) is generally used when X is defined
by linear constraints. In this case a linear subprob-
lem is solved at each step k. In contrast, the projection
method (4), requires the solution of quadratic subprob-
lem. Note that in both cases only small perturbations
occur at each step in the objective functions of subprob-
lems. Therefore, only small adjustments of the preced-
ing solutions are needed. This method can be modified
for nondifferentiable functions and constraints (1). In
particular, it is possible to use SMQG as in (10), (11)
(stochastic finite-difference approximations) for locally
Lipschitz functions.

The use of averaging operations similar to (17) is
often crucial for the convergence of SQG methods as
well as their efficiency and robustness.

This operation is also applied to directions �(k)
in (4), i. e. instead of �(k) the vectorb�(k) is used such
that for k D 0; 1; : : :

b�(k C 1) Db�(k)C ık
h
�(k C 1) �b�(k)

i
;

b�(0) D �(0) :

It introduces inertia or “heavy ball” properties for
procedure (4) in addition to its inherent global features
due to involving stochastic mechanisms. It may also
reduce the variance of the SQG. The averaging of ap-
proximate solutions xk may also improve the asymp-
totic properties [10].
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General Constraints

Constraints (1) for which the functions Fi(x) are not
known explicitly can be treated by using penalty func-
tions, the averaging operation, and the � Lagrange
multipliers. Consider the minimization of F0(x); x 2 X,
subject to constraints (1). Instead we can minimize
a penalty function, for example

� (x; c) D F0(x)C c
mX
iD1

max f0; Fi(x)g (19)

on X, where c is a large number. If exact values
Fi(x) are not available, then max f0; Fi(x)g is un-
known. Note that if Fi is GD functions, then � (�; c)
is also GD function with subgradient �x D F0x C
c
Pm

iD1 max f0; Fig Fix , where F0x , Fix are subgradients
of F0 , Fi.

Assume there are available the statistical estimates
�0(k) , � i (k) satisfying (3). Consider the SQG procedure
with embedded averaging operation (21)

xkC1 D ˘X

h
xk � �k

�
�0(k)

C c
mX
iD1

maxf0;bFi (x)g� i(k)
�i

(20)

bFi (k C 1) DbFi (k)C ık
h
�i (k) �bFi (k)

i
;

i D 1 : m: (21)

The convergence of this method with probability 1
requires conditions similar to those in (13), (18). The
following procedure converges also under conditions
similar to (13), (18):

xkC1 D ˘X

h
xk � �k˛

k
i
; (22)

˛k D

(
�0(k); if maxbFi(k) DbFik (k) � 0;
� ik (k); if bFik (k) > 0 :

Assume that Fi(x); i D 0; 1; : : : ;m are convex
functions and X is a convex compact. The SQG La-
grange multiplier method is characterized by the rela-
tions

xkC1 D ˘X

h
xk ��k

�
�0(k)C

mX
iD1

�i (k)� i(k)
�i
; (23)

�i(kC1) D min
�
max f0; �i(k)C ık�i (k)g ;C

�
; (24)

where �i (k), � i (k) are estimates of Fi(xk), Fix(xk) as
in (2), (3); Fix are subgradients of Fi(x); C is a large
enough number; �k , ık are stepsizes.

The procedure (23) can be interpreted in the context
of nonstationary optimization: xkC1 is the result of the
one-step of the procedure (4) applied to the nonstation-
ary function � (k; x) D F0(x)C

Pm
iD1 �i (k)Fi(x) with

SQG �0(k)C
Pm

iD1 �i (k)� i(k). It was proved [9] that
mins�k F0(xs) converges to min F0(x) (in the feasible
set) with probability 1, provided that F0(x) is strictly
convex, �k D ık , and (13) is satisfied with k�(k)k2 sub-
stituted by

Pm
iD0



� i (k)

2. The convergence for the
convex functions F0(x) – not necessary strictly con-
vex – was established under additional assumptions
on ık similar to (18). The convergence of the se-
quences

Pk
sD0 �s x

sıPk
sD0 �s ,

Pk
sD0 �s�(s)

ıPk
sD0 �s ,

�(s) D (�1(s); : : : ; �m(s)), to the saddle points of the
Lagrange function does not require the strict con-
vexity of F0(x) and different stepsizes �k , ık (see
stochastic quasigradient methods in minimax prob-
lems).
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Let us consider some optimization problems that re-
quire SQG methods:

minfF0(x)jFi(x) � 0; i D 1 : m; x 2 Xg : (1)

Maximization via Ordering Rules

Realistic decision problems involve multiple objectives
and inherent uncertainty. Generally, it is not possible
to optimize several objectives simultaneously; for in-
stance, minimizing cost while maximizing reliability at

the same time. Therefore, it is necessary to strike a bal-
ance between various objectives and if we can specify
some (utility) function U(x) that combines all objec-
tives into a scale index of preferability, then the problem
of decision making can be cast in the format of the stan-
dard optimization problem of maximizing U(x). Un-
fortunately, finding such a function may be a very diffi-
cult task. It is often much easier to arrive at a preference
ordering, [4], p. 176, among feasible decisions (based
on some rules or direct judgements by decision mak-
ers). Therefore, let us assume that instead of U(x) there
is a given consistent “mechanism” (ordering <) that
can verify whether a vector x is preferred to y (x 
 y),
and yields outcomes that are equivalent to those of the
unknown continuous functionU(x) > U(y). Let us de-
fine F(x) D �U(x) and

�(k) D
�
�&(k) if xk C�k&(k) 
 xk ;

&(k) if xk C�k&(k) 4 xk ;

where �k ! 0 and &(k) , k D 0; 1; : : : are inde-
pendent samples of the random vector & uniformly
distributed over the unit sphere. Then, E[�(k)jxk] D
�˛Ux (xk)/



Ux (xk)


 for continuously differentiable

U(x), where ˛ is a positive number, i. e., the vector
�(k) estimates the direction of gradient Fx(xk) and can
be used in SQG methods (also Stochastic quasigradient
methods) to maximize F(x) without knowing this func-
tion.

Expected Utility Maximization

In practice, a given decision x often results in different
outcomes g(x; !) D (g1(x; !); g2(x; !); : : : ; gr(x; !))
affected by uncertainty ! (“environment”, parameters).
Using either objective or subjective probability it is pos-
sible to treat ! as a stochastic variable that is charac-
terized by the priori probability measure P(�): The ex-
pected utility is an evaluation

U(x) D Eu(g1(x; !); g2(x; !); : : : ; gr (x; !))

D

Z
u(g(x; !))P(d(!)) ; (2)

which is linear with respect to P; i. e., if ! is a mixture
of !0 and !00 with probability ˛ and 1 � ˛, 0 < ˛ < 1,
then

U(x) D ˛Eu(g(x; !0)C (1 � ˛)Eu(g(x; !00)) : (3)
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The maximization of (2) is a special case of the general
stochastic optimization (STO) problem, which does
not necessarily satisfy (3). The expected utility the-
ory neglects the major difficulties involved in the max-
imization of U(x): exact evaluation of U(x) as the
integral (2), analytically or numerically, is only pos-
sible in exceptional cases. Consequently, applications
suffer from highly restrictive assumptions, for exam-
ple that ! has a discrete probability distribution with
a small number N of possible states ! D 1; : : : ;N .
SQG methods avoid the calculation of integrals (2).
Take F(x) D �Eu(g(x; !)). Assume that functions
u(z1; : : : ; zr), zi D gi (x; !) are known explicitly and
gradients uz(�), gix (�) are calculated exactly for given
z; x; !. Then, the SQG of F(x) is

�(k) D (�1(k); : : : ; �n(k)); � j(k)

D �

rX
iD1

uzi (g1(x
k; !); : : : ; gr (xk; !))

gix j(x
k ; !) : (4)

Example 1. Portfolio Selection Problems

The advantage of using (4) is evident even in a sim-
ple single-period model. Assume that at the beginning
of the period (week, month, year, etc.) an investor al-
locates funds among different investment alternatives
with random rates of returns. He may, for example, be
in charge of investing the foreign currency reserve of
a central bank, decide on projects financing, or man-
age a mutual fund. Let j D 1; : : : ; n denotes assets
(or classes of investment) with random rates of re-
turn ! j ; xj is a share of asset j to be included in the
portfolio; c j is the current price; W is the initial fund.
The net portfolio future value is now g(x; !) D W �Pn

jD1 c jx j C
Pn

jD1 ! j x j, where x D (x1; : : : ; xn) satis-
fies feasibility constraints. The expected utility U(x) D
Eu(WC

Pn
jD1(! j� c j)x j) D

R
: : :
R
u(g(x; !))P(d!);

where u(z) is assumed to be a monotonically increasing
function of z. If each! j is characterized by a finite num-
ber M of states, the expectation U(x) is reduced to the
sum of N D Mn terms. The number Mn is astronomi-
cally large even for M D 10, n D 10, i. e. although ! is
characterized by a finite number N of states, the exact
evaluation ofU(x) is still a tedious task. The vector �(k)
in (4) has components � j(k) D �u0(W C

Pn
jD1(!

k
j �

c j)xk
j )(!

k
j � c j), where !k ; k D 0; 1; : : : are indepen-

dent samples of ! from a probability distribution.

Stochastic Optimization Problems

It is often impossible to summarize the outcomes
g(x; !) of a decision x into a single index of prefer-
ability (2). Such cases lead to the following general STO
problem: Given a probability space that gives a descrip-
tion of the possible environments ! 2 ˝ with asso-
ciated probability measure P, a stochastic optimization
(STO) problem is to find x 2 X � Rn such that con-
straints

Fi(x) D E[ fi(x; !)]

D

Z
fi(x; !)P(x; d!) � 0; i D 1 : m ; (5)

are satisfied and an objective function

F0(x) D E f0(x; !)] D
Z

f0(x; !)P(x; d!) (6)

is minimized. Functions fi(x; !) and Fi(x), i D
0; 1; : : : ;m, are called correspondingly sample and
expectation functions. In some problems functions
fi(x; !) depend, [4], pp. 17, 173, not only on the out-
comes g(x; !) but also on their expectations Eg(x; !):

fi(x; !) D �i (x; Eg(x; !); !) : (7)

In this case, the calculation of fi(x; !) requires the
calculation of the expectation Eg(x; !), i. e. functions
fi(x; !) themselves are not known explicitly.

Functions fi(x; !) and even Fi(x) in (5) are often
discontinuous. For example, if we set fi(x; !) D 1 � ri
when an outcome gi (x; !) � 0, and fi(x; !) D �ri
otherwise, then for the given i constraint (5) corre-
sponds to the safety or chance constraint

Fi(x) D Pr[gi (x; !) � 0] � ri � 0 ; (8)

where 0 � ri � 1 is a safety level (risk factor). For a dis-
crete distribution of !, function Fi (x) in (8) is a discon-
tinuous function.

A rather general approach, besides SQG methods,
consists of approximating the distribution P in (5),
(6) by a discrete distribution pN D (p1; : : : ; pN ),
i. g., by an empirical distribution ps D 1/s, s D
1; : : : ;N . As a result, the integrals in (5), (6) are re-
placed by sums, i. e., functions Fi(x) are approximated
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by FN
i (x) D

PN
sD1 ps fi(x; !s), and resulting problem

could be solved, if possible, by standard deterministic
methods. This approach can be used only when P does
not depend on x,N is a small number (as in Example 1),
and fi(�; !) are analytically tractable functions. Besides,
the deterministic approximations FN

i (x) may destroy
the smoothness, the continuity and even the convex-
ity [3] of functions Fi(x). The convergence of min FN

0
to min F(x), N ! 1, is established in practically all
important cases. Despite this, the number of discon-
tinuities and local optimal solutions of approximating
problems as we can see from (8) and further examples,
may tend to1 without having connections with solu-
tions of the original problem. The SQG methods have
advantages in such cases. They deal directly with func-
tions Fi (x) allowing to utilize a remarkable specific of
many STO problems: despite nonsmooth, discontinu-
ous and even nonconvex functions fi(�; !), and hence
FN
i (x), functions Fi (x) are often continuous and con-

vex.
If P in (5) does not depend on x and subgradients

fi x(�; !) are calculated exactly, then, under certain reg-
ularity assumptions that ensure the interchangeability
of differentiation and integration operations, fi x(xk ; !)
is a SQG of Fi(x) at x D xk . In case P(x; d!) D
p(x; !)d! and p(x; !), fi(x; !) are calculated exactly,
a SQG of Fi (x) is computed as

� i (k) D fi x(xk ; !)C fi(xk; !)
px (xk; !k)
p(xk ; !k )

: (9)

If P(x; d!) is not known but the functionR
fi(x; !)P(y; d!) is continuously differentiable with

respect to y at y D x, then the following SQG has the
bias



bi (k)

 � const�k for all xk from a bounded set:

� i (k) D fi x(xk; !k;0)

C

nX
jD1

��1k [ fi(xk ; !k; j)

� fi(xk; !k;0)]e j ; (10)

where !k; j, j D 1; : : : ; n, are independent observations
of ! from P(xk C�k e j; d!), and !k;0 from P(xk ; d!).

For general nonsmooth Fi(x) the SQG are calcu-
lated by using random points xk instead of xk as in (11),

(12) in Stochastic quasigradient methods:

� i (k) D
nX

jD1

��1k [ fi(xk; !k; j)� f (xk ; !k;0)]e j ; (11)

� i (k) D 3/2��1k [ fi(xk C�k&
k ; !k;1)

� f (xk ; !k;0)]& k ; (12)

where & k has independent uniformly distributed com-
ponents on [�1; 1]:

The choice (11) with xk D xk corresponds to
the standard Stochastic Approximation originating
from the classical papers of Robbins–Monro and
Kiefer–Wolfowitz (see, for example, [10,11]). It was
proposed for unconstrained minimization F(x) DR
f (x; !)P(x; d!), where F(x) is a twice continuously

differentiable convex function.
Vectors (10)–(12) have (for fixed xk ; xk) un-

bounded variance Var�(k) D O(��2k )!1, k !1,
assuming Var fi(x; !) < const. If P does not depend
on x, then for dependent !k;0 D � � � D !k (single run
SQG) they have Var�(k) D O(�k)! 0, k!1.

An averaging operation similar to (17) in� stochas-
tic quasigradient methods, is used to confront the
complexity of the sample function (7). Assume that
�i (x; y; !) is calculated exactly for a given (x; y; !) and
consider the sequence

bg(k C 1) Dbg(k)C ık(g(xk; !k) � g(xk));

k D 0; 1; : : : ;

where xk is the current approximate solution, and !k ,
k D 0; 1; : : : , are independent samples of !. Then,
under general requirements on ık , with probability 1

bg(k)� E[g(xk ; !k)jxk]



 ! 1, k ! 1. There-
fore, � (xk;bg(k); !k) can be used as an estimate of
fi(xk; !k ) and � i (k) can be calculated by chain rules
such as

� i (k) D �i x(xk ;bg(k); !k)

C

rX
lD1

�i g l (x
k;bg(k); !k)gl x (xk ; !k) (13)

for GD functions, or by using finite-difference approx-
imations of �i x , �i g l , gl x as in (11), (12). Single-run
SQG of type (11), (12) for dependent !k;0 D � � � D !k

provide surprisingly more accurate estimates [2].
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“Hit-or-Miss” Decision Problems

This problem [3] illustrates typical difficulties in dealing
with optimization of continuously differentiable expec-
tation functions F(x) when sample functions f (x; !)
are nonsmooth. Assume that at some point in the evo-
lution of a system (ecosystem, nuclear power plant, eco-
nomic system), a catastrophe at a random time ! could
occur if the decision maker does not intervene and con-
trol ongoing processes at a time moment x 2 [0; T].
The profit in the absence of a catastrophe, x < !, is
proportional to � D min(x; !), but ! � x leads to
high losses b. Suppose that ! is distributed on the in-
terval [0; T] with a probability density function �(!)
and the sample performance function

f (x; !) D
�
�ax if 0 � x < !
b � a! if ! � x � T :

The function f (x; !) is discontinuous with respect to
both variables. The expected performance function has
the form

F(x) D E f (x; !)

D E[ f (x; !)Ix<!]C E[ f (x; !)Ix�!] ; (14)

where IA D IA(!) is the indicator function of the event
A: IA(!) D 1 if ! 2 A and IA(!) D 0, otherwise. The
gradient of f (�; !) exits everywhere except for x D !.
Define

fx(x; !) D
�
�a; 0 � x < !
0; ! � x � T :

Obviously, the expectation E fx(x; !) exists, but the
“interchangeability” formula is not valid: Fx (x) ¤
E fx(x; !). Indeed the direct differentiation of both
sides in (14) yields Fx(x) D ( f (x; x)� f (x; xC0))�(x)C
E fx(x; !) where f (x; xC0) D limx!xC0 f (x; y). There-
fore the discontinuity of f (x; !) results in a new addi-
tional to fx(x; !) term

�(k) D
�
f (xk; xk) � f (xk; xk

C0)
�
�(x)C fx(x; !):

(15)

It is clear that the approximations FN(x) of function
(14) have increasing number of discontinuities and lo-
cal optimal solutions.

Pollution Control

A feature common tomost of themodels applied for the
design of pollution control polices is the use of transfer
coefficients ai j linking the amount of pollution xi emit-
ted by source i to the resulting pollution concentrations
yj at location j as y j D

Pn
iD1 ai jxi , j D 1; : : : ;m.

The coefficients ai j are often computed by means of
Gaussian type diffusion equations. These equations are
solved over all possible meteorological conditions, and
the outputs are then weighted by the frequencies of the
meteorological inputs over a given time interval, yield-
ing average ai j. The deterministic models determine
cost-effective emission strategies subject to achieving
exogenously specified environmental goals, such as am-
bient standards qj at receptors: y j � q j. The natural im-
provement of deterministic models is the inclusion of
constraints that account for the random nature of the
coefficients ai j in order to reduce the occurrence of ex-
treme events:

Fi(x) D
nX

iD1

x jai jC�i Emax

(
0;

nX
iD1

x j(aji � aji )

)

� q j � 0; i D 1 : m; a ji D Eaji ;

where �i is a risk coefficient which enforces the con-
straints to reduce the chance for actual deposition to
exceed the average value. The function Fi (x) does not
satisfy the linearity requirements (3) and, in general, is
not continuously differentiable (although it is a convex
function). It’s a SQG

� i (k) D a ji C �i

(
0;
Pn

iD1 x
k
j a

k
i j <

Pn
iD1 x

k
j a ji

aki j � a ji ; otherwise,

where aki j , k D 0; 1; : : : are independent observations
of ai j .

Queuing Networks

A typical situation with implicitly given nonsmooth
sample functions f (x; !) occurs in the optimization of
queuing networks [3]. A network consists of nodes (de-
vices) which “serve” flows of “messages”. At any mo-
ment the device i D 1; 2; : : : serves only one message,
which is then transferred to another node in accordance
with a certain routing procedure defining a destination
node for jth message served at the ith device. If the de-
vice is busy, then the message is waiting in the queue
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and is served according to the rule: first come – first
served. Let �i j(x; !) be (random) service time of mes-
sage j at i depending on some control parameter x and
uncontrolled (random) parameter!; ˛i j(x; !) – the ar-
rival time of message j to node i; ˇi j(x; !) – the time
when i starts to serve j; �i j(x; !) – the time when i
finishes servicing j. The logic of a node operation is
described by the following recurrent relations: �i j D
ˇi j C �i j , ˇi j D max

˚
�i( j�1); ai j

�
, j D 1; 2; : : : . From

this follows that various important indicators (wait-
ing times, queue length node loads and etc.) of net-
work performance can be expressed through functions
�i j(x; !) by max and min operations, i. e. they are GD
functions assuming �i j(�; !) are such functions. The
calculation of SQG can be based on (15) in “Stochastic
quasigradient methods”.

Stochastic Dynamic Systems

Stochastic dynamic systems are usually defined by im-
plicitly given sample performance functions fi(x; !).
The decision vector x represents a sequence of deci-
sions (control actions) x(t) over a given time horizon
t D 0; : : : ; T: x D (x(0); : : : ; x(T � 1)). In addi-
tion to x, there may also be a group of state variables
z D (z(0); : : : ; z(T)) that record the state of the sys-
tem. The variables x; z are connected through a system
of equations:

z(t C 1) D g(t; z(t); x(t); !) ;

t D 0; : : : ; T � 1; z(0) D z0 : (16)

Objective and constraints functions are defined as
expectations of some sample performance functions
hi(z; x; !), i D 0; 1; : : : ;m.

Due to (16), variables z are implicit functions of
(x; !), i. e. z D z(x; !). Therefore, hi are also im-
plicit functions of (x; !): fi(x; !) D hi(z(x; !); x; !),
i D 0; 1; : : : ;m, and the resulting stochastic dynamic
optimization problem can be viewed as a stochastic op-
timization problem of the type (5)–(6) with implicitly
given sample performance functions fi(x; !). A way to
solve this problem is to use the SQG (11), (12). In par-
ticular (12) requires the calculation of only two “trajec-
tories” z(t), t D 0; 1; : : : ; T at each step of SQG pro-
cedures. If functions g(�; !), hi(�; !) have well-defined
analytical structure and the probability measure P does

not depend on x, then subgradients fi x(xk ; !) are cal-
culated (for fixed !) using analytical formulas from
nonsmooth analysis [1][pp. 17, 175 in 4].

Optimization of Discrete Event Dynamic Systems

The well-defined analytical structure of functions
g(�; !), hi(�; !), in (16) is typical for applications in
mechanics and physics. Important problems in oper-
ation research, economics, ecology, finance, reliability
theory, communicational networks [3,4,8,9] deal with
cases where these functions and the probability mea-
sure are composed of so many components involving
logical variables (as in queuing systems) that no explicit
“smooth” analytical expression can be derived. Discrete
events may change the state of the discrete event dy-
namic system in a discontinuous fashion, implying that
the functions g(�; !), hi (�; !) are nonsmooth. This of-
ten rules out the interchangeability of differentiation
and integration operations, as in the “hit-or-miss” de-
cision problems. Nonetheless, it is possible to develop
various techniques for calculating stochastic quasigra-
dients [2,3,8]. Let us consider a typical situation.

Example 2. Managing Catastrophic Risks

Increasing likelihood of extreme catastrophic events
which may affect large territories and communities
dominates the discussion of global change processes.
The analysis of robust catastrophic risk management
decisions [6] requires new approaches based on explicit
analysis of endogenous risk processes involving var-
ious agents such as governments, insurers, and indi-
viduals. Risk processes describing the ruin of an agent
or depletion of resources have similar structure. Con-
sider a typical simple example. At time t D 0; 1; : : :
risk reserve of an insurer is characterized as R(x; t) D
M(t) C xt � S(t), t D 0; 1; : : : , where M(t) is the
“normal” part of the reserve, associated with ordinary
(noncatastrophic claims); a catastrophic scenario oc-
curs at time t with probability p; S(t) D

PNt
lD1 Dtl is

the accumulated catastrophic claim from catastrophes
at random time moments t1, t2, : : : ; xt is the accumu-
lated premium (inflow) from catastrophic risk. In more
general risk processes inflows xt and outflows S(t) at t
are described by some random functions I(x; t),O(x; t)
dependent on a vector x of feasible decisions [6]. The
long term stability can be characterized by the prob-
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ability of ruin q(x) D Pr[R(x; t) � 0 for some t]
or q(x) D EIR(x;�)�0, where IR�0 D 1 if R � 0,
IR�0 D 0 otherwise, and � is the first moment t when
R(x; t) � 0. Assume d(x) is the welfare generated by
x. The calculation of d(x) requires to consider all rel-
evant agents [6]. The problem is to find x � 0 max-
imizing a trade-off between profit d(x) and the risk
F(x) D d(x) C �E[IR(x;�)�0], where � is a risk coef-
ficient. The function f (x; !) D d(x) C � IR(x;�)�0 is
an implicit function of x and !, and it is also a discon-
tinuous function. Assume that the probability Vt(y) D
Pr[M(t) � y] is an explicitly known function. By tak-
ing the conditional expectation for given Dt1 ;Dt2 ; : : : ,
the function F(x) can be written as

F(x) D d(x)C �E
1X
tD1

pNt (1 � p)t�Nt

� Vt

 NtX
lD1

Dtl � xt

!
: (17)

A SQG of F(x) in (17) can be calculated [6] by us-
ing auxiliary random variables. At step k sample ran-
dom variable &k 2 f1; 2; : : : g distributed according
to arbitrary �(t),

P1
tD1 �(t) D 1; �(t) > 0, sample

Dtl ; l D 1; : : : ;N&k and take �(k) D d0(xk)�� pN�k (1�
p)1�N�k V 0

�k

�PN�k
lD1 Dtl � xk�k

�
&k/�(&k), where d0;V 0t

are the derivatives of d(�);Vt(�). It is easy to see that
E[�(k)jxk] D Fx(xk). More general situations are dis-
cussed in [5].

Neural Nets

These models emerge in image processing, classifi-
cation and behavioral sciences. From a formal point
of view the training of a neural net is equivalent
to the minimization of the error function F(x) DPN

iD1 H(i; x), where each function H(i; x) corresponds
to one training object. At each step k D 0; 1; : : : ,
it is possible to experiment only with one object. As-
sume at the step k action i D i(k) is chosen with
probability �(i) > 0 among N alternatives. The most
frequently used algorithm is so-called back propaga-
tion, where the current vector xk of parameters x is
adjusted [7] in the direction opposite to the gradient
�(k) D 1/�(i(k))Hx(i(k); xk). It is easy to see that
E[�(k)jxk] D Fx(xk).

Automaton Learning Problem

Let j D f1; : : : ; ng be the automaton action set and
ˇ( j) be the random response to action j. The dis-
tribution of ˇ( j) depends j but it is unknown. The
automaton attempts to improve its behavior (current
action) based on the random responses to a particu-
lar action chosen. In other words, the goal is to find
an action with the largest expected outcome Eˇ( j).
This problem can be formulated as a rather simple
stochastic optimization problem: maximize F(x) DPn

jD1 Eˇ( j)x j , s.t.
Pn

jD1 x j D 1, x j � 0. Let xk D

(xk
1 ; : : : ; xk

n) is the current approximate solution to this
problem. Choose an action i D i(k) with the probabil-
ity xk

i , observe response ˇ
k (i(k)) and calculate �(k) D

(0; : : : ; 0; ˇk(i(k))/xk
ik ; 0; : : : ; 0). Then E[�(k)jxk] D

Fx (xk).
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Introduction

Stochastic quasigradient (SQG) methods are applicable
to both deterministic and stochastic minimax (SMM)
problems. SMMproblems, which are similar to the two-
stage stochastic programing, have nested nonsmooth
sample (random) objective functions. Some examples
of SMM applications are discussed in ‘Stochastic quasi-
gradient methods: Applications’. An important class
of SMM problems takes on the form [4,9], pp. 165–
168, [14]: minimize the expectation function

F(x) D Emax
y2Y

g(x; y; !); x 2 X ; (1)

where f (x; !) D maxy2Y g(x; y; !) is the sample (ran-
dom) objective function, X � Rn , Y � Rr and
! is an element of a probability space (˝;A; P), i. e.
! 2 ˝ , and A is the set of events (subsets of ˝)
measurable with respect to the probability measure P.
If ˝ contains only one point, then the minimization
of (1) corresponds to the standard deterministic min-
imax problem. Besides deterministic constraints of the

type x 2 X, problem (1) may have general constraints
of the STO problems given in terms of expectation
functions, some of which may have the same struc-
ture as the expectation function F(x) in (1). The set Y
may also depend on (x,!) as in the two-stage stochas-
tic programing. Functions f (x,!) in (1) often have
more general nested structure as in catastrophic risk
management [7]. First of all, let us note that the sam-
ple function f (�; !) is an implicitly given nonsmooth
function even for linear g(�; y; !). Therefore, all gen-
eral purpose SQG methods developed for general non-
smooth problems (such as stochastic finite-difference
approximations) are applicable to problem (1). Spe-
cific SQG methods utilize the structure of the sam-
ple function f (x,!) by using the following idea. Let
y(x,!) be a solution of the inner maximization problem
in (1), i. e. f (x; !) D g(x; y(x; !); !). Often it is pos-
sible to show that g(�; y; !) is an analyticaly tractable
generalized differentiable (GD) function and, hence,
f (�; !) D maxy2Y g(�; y; !) is also a generalized differ-
entiable function and its subgradient

fx(�; !) D gx (�; y(x; !); !) (2)

is an SQG of F(x). For example, if g(�; y; !) is a con-
vex function, then f (�; !) is also a convex function
and (2) defines its subgradient. Let us note that al-
though the two-stage model has similar objective func-
tion f (x; !) D miny2Y g(x; y; !), but in this case the
convexity of f (�; !) requires much stronger assump-
tions: g(x, y,!) has to be a convex function in both vari-
ables (x, y). As it is discussed further, these two classes
of models are oriented on rather different decision situ-
ations under uncertainty. The vector f x(x,!) or its ap-
proximation can be used in various SQG methods. For
example, if f (�; !) is a GD function, then the SQG pro-
jection method is defined as

xkC1 D 
X

h
xk � �k fx(xk ; !k)

i
;

k D 0; 1; : : : ;
(3)

where xk D xk C "k and "0; "1; : : : are indepen-
dent random vectors with densities,



"k

 > 0, "k ! 0
for k ! 1 with probability 1, and !0; !1; : : : are
independent samples of !. The vector fx(xk ; !k) is
a stochastic mollifier quasigradient of F(x) at x D xk .
If �k � 0;

P1
kD0 �k D 1 with probability 1,
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P1
kD0 E�

2
k < 1, and X is a convex compact, then˚

F(xk)
�
converges with probability 1 and the cluster

points of random sequences
˚
xk� belong with prob-

ability 1 to a connected set of local solutions [8,11].
The convergence of (3) for "k � 0 takes place for so-
called [4,9], p. 151, [15] weakly convex functions F(x),
i. e., functions such that F(y)�F(x) � (Fx(x); y� x)C
r(x; y), where r(x; y)/ kx � yk ! 0, x ! z, y ! z.
For convex f (�; !), the sequence

˚
xk� converges with

probability 1 to the set of optimal solutions for "k � 0.
If the probability distribution of ! is concentrated at
one point, then (1) reduces to the standard determin-
istic minimax problem and (3) is a SQG procedure for
this problem.

Example 1. Production planning under uncertainty. As
long as there is uncertainty about future demand,
prices, input-output coefficients, available resources,
etc., the choice of a production level x � x � 0 for
foreseeable demand ! is a “hit-or-miss” type decision
problem. The cost f (x,!) associated with overestima-
tion and underestimation of ! is, in the simplest case,
a random piesewise linear function

f (x; !) D max f˛(x � !); ˇ(! � x)g ;

where ˛ is the unit surplus cost and ˇ is the unit short-
age cost. The problem is to find the level x that is “op-
timal”, in a sense, for all foreseeable demands ! rather
than a function x ! x(!) specifying the optimal pro-
duction level should be in every possible “scenario” !.
The expected cost criterion leads to the minimization

F(x) D Emax f˛(x � !); ˇ(! � x)g (4)

subject to x � x � 0 for a given upper bound x.
This stochastic minimax problem is also reformulated
as a two-stage stochastic programming model known
as the newsboy problem.

Function F(x) in (4) is convex, therefore method (3)
with "k � 0 is reduced to the following

xkC1 D minfmaxf0; xk � �k�(k)g; xg;

k D 0; 1; : : : ; (5)

where �(k) D ˛, if the current level of production
xk exceeds the observed demand !k(xk � !k) and

�(k) D �ˇ otherwise. The method (5) can be viewed
as an adaptive procedure which is able to learn the op-
timal production level through sequential adjustments
of its current levels x0, x1, . . . to observable demands
!0,!1, . . . . Let us note that the optimal solution of (4)
and more general SMM problems [6] defines quan-
tile type characteristics of solutions, e. g., CVaR risk
measures [16] (see also “Two-stage stochastic program-
ming: Stochastic Quasigradient methods”). For exam-
ple, if the distribution of ! has a density, ˛ > 0, ˇ > 0,
then the optimal solution xminimizing (4) is the quan-
tile defined as Pr[! � x] D ˇ/(˛ C ˇ). Therefore, the
process (5) is a constraint sequential estimation proce-
dure as in [9]. Problem (4) illustrates the essential dif-
ference between so-called scenario analysis aiming at
the straightforward calculation of x(!) and the STO op-
timization approach: instead of producing trivial opti-
mal “bang-bang” solutions x(!) D ! for each scenario
! (a Pareto optimal solution w.r.t. potential !), an STO
model as (4) produces one solution that is optimal (“ro-
bust”) against all possible !.

Example 2. Stochastic facility location model. This
model [6,9], pp. 413–435, generalizes Example 1 and il-
lustrates the possible implicit character of underlying
probability distributions. Assume that customers liv-
ing in a district i choose their destination j at random
with probability Pij related to the cost of travel between
(i, j) and (or) other factors. Let "ij be a random num-
ber of customers traveling from i to j and � j is the total
number of customers attracted by j : � j D

Pm
iD1 "i j,

j D 1 : n;
Pn

jD1 "i j D ai , i D 1 : m. The actual num-
ber � j of customers attracted by j may not be equal
xj. The random cost connected with overestimating or
underestimating of the demand � j in district j may be
a convex function ˛ j(x j � � j) for x j � � j or ˇ j(� j � x j)
for x j < � j . The problem is to determine the size xj that
minimizes the expected cost

F(x) D
nX

jD1

Emax
˚
˛ j(x j � � j); ˇ j(� j � x j)

�
;

where x j � x � 0. The SQG procedure for solving this
problem is similar to (5). It is remarkable that appli-
cations of SQG methods to spatial minimax allocation
problems [12] do not destroy their convexity in contrast
to discrete approximation schemes.
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DecisionMaking Under Extreme Events

The standard theory of extreme events studies the be-
haviors of the maxima, max(�1; : : : ; �n), for an iid se-
quence �1; : : : ; �n , n � 2. The objective function (1)
is, in general, defined by the maxima of mutually de-
pendent random variables g(x, y,!), y 2 Y , which also
depends on decision variables x. Problem (1) can be
viewed as a model for decision making under extreme
events, when two types of uncertain variables y,! af-
fect the result g(x, y,!) of decision x. The uncertainty
with respect to y is evaluated from the extreme random
scenario, whereas ! is considered as a random variable.
Therefore (1) is a hybrid between a purely deterministic
minimax approach that takes the form of minimizing
F(x) D max fg(x; y; !)jy 2 Y ; ! 2 ˝g and the purely
probabilistic Bayesian approach of minimizing the ex-
pectation function F(x) D Eg(x; y; !) for some joint
probability distribution of (y,!). Such SQG procedures
as (3) can be viewed as an adaptive search of robust de-
cisions by learning from environmental responses (sim-
ulations) !0; !1; : : :.

Assymetric Information

The following interpretation leads to various impor-
tant generalizations of the SMM problem (1). Consider
two agents and the objective function g(x, y,!). Agent 1
chooses his action x 2 X without knowing the choice
y 2 Y of agent 2 and the state of nature (environ-
ment !. Agent 2 chooses his action y after agent 1 and
is fully informed about x,!. F(x) in (1) is the guaran-
teed expected result of agent 1 for action x. If agent 2
does not know the state ! before choosing his action y,
the problem for agent 1 is to minimize

F(x) D max
y2Y

Eg(x; y; !) : (6)

The function F(x) in (6) is nonlinear in probability
measure P, i. e. it differes from the expected utility. The
calculation of F at any point requires the solution of
a STO subproblem, i. e. it is a nested STOproblem, that
often can be solved by using SQGmethods with the av-
eraging operation.

Example 3. Exact penalty function. See also � stochas-
tic quasigradient methods for a discussion of the
method. For solving a particular case of problem (6):

the minimization of the exact penalty function

F(x) D E f0(x; !)C C
mX
iD1

max f0; E fi(x; !)g

for general STO problems.

Convex–Concave Expectation

Assume that the function '(x; y) D Eg(x; y; !) is con-
vex in x and concave in y, and X;Y are compact convex
sets. Let

xkC1 D 
X [xk � �k gx (xk ; yk ; !k)] ;

ykC1 D 
X [yk C �k gy(xk; yk ; !k )] ;
(7)

where gx,gy are subgradients of g(x,y,!) with respect
to x,y correspondingly. This is an SQG projection
method for the search of saddle points of '(x, y) in
X � Y . It is a stochastic version of the Arrow–Hurwicz
method. The convergence of sequences fxkg; fykg to
a saddle point requires rather strong assumptions on
'(x, y), such as strict convex–concavity. It is possi-
ble to show that for linear functions '(�; y), '(x; �)
the sequences fxkg; fykg do not converge under any
choice of the step-size multiplier �k, besides some
exceptional cases. The convergence of the sequencesPk

sD0 �s x
sıPk

sD0 �s ,
Pk

sD0 �s y
sıPk

sD0 �s , k ! 1,
with probability 1 to a saddle point of '(x,y) takes place
under standard assumptions on �k ensuring the con-
vergence of SQG projection method for convex prob-
lem [14,17]. Another possibility is to modify (7) by us-
ing general ideas of the proximal method or its varia-
tions [3,13].

Example 4. Finite set Y. Consider problem (6)
with a finite set Y , i. e. assume that F(x) D

max1�i�r Egi(x; !). This problem is equivalent to the
minimization of F(x) D maxy2Y E

Pr
iD1 yi gi (x; !),

with convex–concave expectation, Y D fyi � 0;Pr
iD1 yi D 1g.

Further refinements of stochastic minimax problems
are possible. A hybrid of the models (1), (6) is the min-
imization

F(x) D max
y2Y

Emax
z2Z

g(x; y; z; !) : (8)

If g(x; y; z; !) is convex in x and concave in y,
and X,Y are convex compacts, then the procedure (7)
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is also applicable for solving (8) with gx (xk ; yk ; !k);
g y(xk ; yk ; !k) replaced by gx (xk ; yk ; zk ; !k); g y(xk ;

yk ; zk ; !k ), where zk is a solution of the deter-
ministic subproblem g(xk ; yk ; zk ; !k) D maxz2Z
g(xk ; yk ; z; !k ).

Stochastic Nash Equilibrium

A stochastic equilibrium of an N person game on
X D X1 � X2 � : : : � XN can be defined by using
pay-off functions �i(x) D E i (x; !), x 2 X. Let us
denote (x1; : : : ; xi�1; yi ; xiC1; : : : ; xn) by (yi jx). The
point x� D (x�1 ; : : : ; x�N) 2 X is refered to as the Nash
equilibrium if �i (x�) D min f�i(yi jx�)j(yi jx�) 2 Xg.
Let us introduce KyFan function L(x; y) DPN

iD1
�
�i(x) � �i(yi jx)

�
, y D (y1; : : : ; yN ), x D (x1;

: : : ; xN ). A point x� 2 X is a normalized equilibrium
if maxy2X L(x�; y) D 0. Since maxy2X L(x; y) � 0, the
search of a stochastic normalized equilibrium reduces
to an SMM problem: minimize

F(x) D max
y2X

L(x; y); x 2 X :

The important additional information that minx2X

F(x) D 0 can be effectively utilized in the search of
global solutions by SQG methods. Assume now that
L(x, y) is a convex–concave function for x 2 X, y 2 X.
Then, the procedure (7) takes the form

xkC1
i D 
X

h
xk
i � �k i x i (x

k; !k )
i
;

i D 1 : N; k D 0; 1; : : : ; (9)

where  ixi is a subgradient of ' i(x,!) with respect to
x. The convergence conditions are similar to those of
method (7). This method is an adaptive adjustment
procedure for learning a Nash equilibrium [10,17].

Example 5. Stochastic Cournot oligopoly. The classi-
cal oligopoly model of Cournot [1,10] remains a key
model within modern theories of industrial organiza-
tion. Generalizing it to comprise the different goods
and uncertainty, the model takes on the following form.
Firm i produces the commodity bundle xi 2 Rn , thus
incurring convex random production cost ci(xi,!) and
gaining random market revenues (p(

Pn
jD1 x j; !); xi),

where p(Q,!) is the price at which total demand Q
equals the aggregate supply

Pn
jD1 x j . Suppose that

p(Q; !) D a � A(!)Q, where a 2 Rn and A(!) is

a n � n positive semidefinite matrix (almost for all
!). Then for �i(x; !) D ci (xi ; !) � (a; xi) CPn

jD1(A(!)x j; xi) the function L(x,y) is convex–
concave.

Stochastic Optimization
with UnknownDistributions

The probability measure P of the standard STO prob-
lem is assumed to be well defined on subsets A of ˝
in the sense that it is possible to generate samples
!0; !1; : : : of random variables ! from P. In practice
the probability [2] measure P may not be known ex-
actly: there is only information on some of its char-
acteristics, in particular bounds for the mean value or
other moments. Such information can often be written
in terms of constraints

Qs(x; P) D
Z
˝

qk(x; !)P(d!) � 0 ; s D 1 : K; (10)
Z
˝

P(d!) D 1 ; (11)

where qk(x,!) are known functions (which often do
not depend on x), for example, as in constraints on
joint moments cr1 ;:::;r l � E!r1

1 : : : !
r l
l � Cr1 ;:::;r l with

known constants c, C. If the unknown probability mea-
sure is evaluated from the worst case perspective within
constraints (10), (11), then the STO problem is formal-
ized as a SMM problem: find a vector x that minimizes

F(x) D max
P2P

Z
f (x; !)P(d!) ; (12)

where P is the family of probability measures de-
fined by (10), (11). The solution of “inner” subprob-
lem in (12) definesan implicit probability measure
P�(x, d!). The important fact is that P�(x,�) is concen-
trated at not more than KC 1 points [4,5], and this fact
can be utilized effectively in the design of solution pro-
cedures. Another important approach is to use the fol-
lowing duality relations [5]

F(x) D max
u�0;!2˝

"
f (x; !)C

KX
sD1

usqs(x; !)

#
(13)

for the inner maximization problem in (12).
Other important cases arise with further speci-

fication of uncertainties associated with measure P.
Assume that random parameters can be separated
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into two groups (! ,�) with a joint distribution
function H(!,�) of the form dH(!; �) D h(!; �)
P(d!)�(d�), where P(d!) is not known exactly and
satisfies (10), (11). If P is taken from the worst case, then
the problem is formulated as the minimization of

F(x) D E
�
max
P2P

Ex;y f (x; !; �)
�

D

Z �
max
P2P

Z
f (x; !; �)h(!; �)P(d!)

�
d�(�) :

(14)

By using duality relations similar to (13), this can be
reformulated as the minimization of type (1) function

F(x) D
Z

max
u�0;!2˝

�
f (x; !; �)h(!; �)

C

KX
sD1

usqs(x; !; �)]d�(�) :
(15)

Example 6. Incomplete information on cost functions.
Consider (12) for cost function F(x) D (Ec; x); x 2 X,
where c is a random vector, c D c(!; �), and the func-
tions qk in (10) do not depend on x. Then problem (15)
is formulated as the minimization

F(x) D
Z

max
u�0;!2˝

h
(c(!; �); x)h(!; �)

C

KX
sD1

usqs(!)
i
�(d�) :

Here F(x) is a convex function. A SQG is defined by
formula (2).

The complexity of SMMproblems discussed here is due
to nested structure of their objective functions. Many
of them involve deterministic optimization subprob-
lems under the sign of mathematical expectations. In
applications, these subproblems often have a special
structure, for example, the feasible set may be reduced
to a finite number of alternatives (as in Example 4).
In the case of infinite feasible sets they can be adap-
tively approximated by random finite sets with con-
stant number of elements at each step k D 0; 1; : : : of
SQG procedures, as it was proposed in [5]. For prac-
tical applications it is important to realize that mod-
els (1), (6), (8), (12), (14) are formulated, in fact, under
different assumptions on the worst case scenario. For

example, in (12), the evaluation of uncertainty is taken
from the worst case expected outcomes, whereas (1)
deals with the worst case random scenarios.

See also

�Minimax Theorems
� Nondifferentiable Optimization: Minimax Problems
� Stochastic Quasigradient Methods
� Stochastic Quasigradient Methods: Applications
� Two-Stage Stochastic Programming: Quasigradient

Method
� Two-Stage Stochastic Programs with Recourse
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Introduction

The field of stochastic scheduling is motivated by prob-
lems of priority assignment arising in a variety of sys-
tems where jobs with random features (e. g., arrival or
processing times) vie over time for access to shared
service resources. Two prominent application areas
are the dynamic scheduling of flexible manufacturing
and computer-communication systems. Think, e. g., of
a manufacturing workstation whose capacity is shared
by multiple part types. Or consider a packet-switched
communication network’s channel whose bandwidth is
shared by multiple traffic classes. Another rich set of
applications is furnished by problems concerning the
dynamic scheduling of multiple projects, whose states
evolve randomly over time (e. g., research and develop-
ment projects, or clinical trials).

The performance of such systems, as evaluated by
a criterion such as the average time that jobs stay in
the system (flowtime), can be significantly affected by
the scheduling policy adopted to prioritize over time the
access of jobs to resources. This motivates the inter-
est of finding scheduling policies that optimize perfor-
mance objectives of concern (e. g., minimizing the av-
erage flowtime). Yet, the high degree of discretional-
ity allowed in the design of such policies gives rise to
a combinatorial explosion rendering intractable an ex-
haustive search to determine an optimal policy. Instead,
a goal of practical interest is to design relatively sim-
ple scheduling policies that achieve an optimal or nearly
optimal performance.

The theory of stochastic scheduling addresses such
a goal in the idealized setting of stochastic system mod-
els. Real-world random features such as job interar-
rival or processing times are thus modeled by specify-
ing their probability distributions. Model assumptions
vary across several dimensions, including the class of
scheduling policies considered to be admissible, job in-
terarrival and processing-time distributions, type and
arrangement of service resources, and performance ob-
jective to be optimized. Typically, admissible policies
are required to be nonanticipative, meaning that they
cannot make use of future information, such as the un-
known total duration of a job whose processing has not
yet finished.

Regarding solution methods and techniques, it
seems fair to say that no unified and practical approach
is yet available to design and analyze optimal or near-
optimal policies across the entire range of stochas-
tic scheduling models. Although many such models
can be cast in the framework of dynamic program-
ming, straightforward application of this technique typ-
ically results in intractable formulations (curse of di-
mensionality). Classical results in the area were ob-
tained through insightful ad hoc ideas, often based on
interchange arguments (cf. [41]), whose extension to
seemingly close model variations is hard or elusive. Yet
the last two decades have witnessed major advances in
promising research fronts, such as the use of Brown-
ian or of fluid approximations, the use of mathemat-
ical programming formulations, and the development
of priority-index policies.

Stochastic scheduling problems can be classified
into three broad types, which have evolved with sub-
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stantial autonomy: problems concerning the schedul-
ing of a batch of stochastic jobs, multi-armed bandit
problems, and problems concerning the scheduling of
queueing systems.

The historical development of each such area has
followed a similar three-stage pattern. In the first, ear-
lier stage, researchers elucidated the optimal policies
in relatively simple models. Such policies were often
found to be based on priority indices: an index is com-
puted for each job type or project, as a function of
its state; then, at each decision epoch jobs or projects
with larger index values are awarded higher priority
for access to service. In the second stage, research ef-
forts focused on identifying optimal policies in more
complex models, often at the expense of introducing
rather restrictive conditions on model parameters, such
as symmetry assumptions. In the third, current stage,
the main focus has shifted to develop computation-
ally tractable methods capable of addressing large-scale
models, which yield guidelines for designing good dy-
namic scheduling policies.

Models

Scheduling a Batch of Stochastic Jobs

In models of this class, a set of m machines is avail-
able to process a batch of n jobs with random pro-
cessing times having known distributions, in order to
optimize a given performance objective. The simplest
such problem is to sequence a set of n stochastic jobs
on a single machine (m D 1) to minimize the ex-
pected weighted flowtime. Job processing times are in-
dependent random variables, having a general distribu-
tion Gi (�) with mean pi for job i. Admissible schedul-
ing policies are required to be nonanticipative and non-
preemptive (processing of a job, once started, must pro-
ceed uninterruptedly to completion). Let wi � 0 de-
note the cost rate incurred per unit time in the system
(waiting or being processed) for job i, and let C̃i denote
its random completion time. Let ˘ denote the class of
all admissible policies, and let E� [�] denote expectation
under policy 
 2 ˘ . The problem can be formulated
as

min
�2˘

E�
2
4

nX
jD1

wjC̃ j

3
5 : (1)

In the special case where job durations are determin-
istic, Smith first showed in [60] that it is optimal to se-
quence jobs in nonincreasing order of the priority index
wi/pi . Such a rule is also optimal in the general stochas-
tic case (1), as shown in [57]. References [36,37] identify
conditions under which such an index rule is optimal
when there are multiple identical parallel machines and
processing times are exponentially distributed.

The model extension where policies are allowed to
be preemptive (processing of a job may be interrupted
at any time, to be later resumed) was solved by Sev-
cik in [58]. The optimal policy is again characterized
by a priority index for each job, which in this case is
a function of the cumulative processing time received
so far.

Optimal index policies have also been identified for
scheduling a batch of jobs on identical parallel ma-
chines, yet only under rather stringent conditions. The
main performance objectives investigated in such a set-
ting are: (i) minimize the total expected flowtime,

min
�2˘

E�

2
4

nX
jD1

C̃ j

3
5 ; (2)

and (ii) minimize the expectedmakespan (time to finish
the last job),

min
�2˘

E�
�
max
1� j�n

C̃ j

�
: (3)

The index rule that assigns higher priority to jobs
with shorter expected processing time (SEPT) has been
shown to be optimal for (2) under the following as-
sumptions: when job processing time distributions are
exponential [15,29,72]; when jobs have the same gen-
eral processing time distribution (having possibly re-
ceived different amounts of processing prior to start)
with a nondecreasing hazard rate function [65]; and,
more generally, when job processing time distributions
are stochastically ordered [67].

As for the expected makespan objective (3), the in-
dex rule that assigns higher priority to jobs with longer
expected processing times (LEPT) has been shown to
be optimal in the following cases: under exponential
processing time distributions [15,72]; and when jobs
have a common processing time distribution (with pos-
sibly different amounts of processing prior to start) with
a nonincreasing hazard rate function [65].
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Other models incorporate more complex features.
Thus, the optimality of the preemptive version of
Smith’s index rule is extended in [53] to models with
stochastic release dates or due dates. Also, in models
with uniform parallel machines, which differ in speed
rates, researchers have characterized optimal policies
exhibiting a threshold structure: see [1,55] for the prob-
lem of expected flowtime minimization, and [18] for
the problem of expected makespan minimization. An
optimal policy for the problem of scheduling a batch of
stochastic jobs in a flow shop (with m machines in se-
ries) is identified in [75].

The optimality of the simple policies identified in
the work reviewed above typically does not extend
to models that violate the required assumptions [19].
Finding an optimal policy in such cases appears to be
a computationally intractable goal (see [50] for a study
on the complexity of decision-making problems under
uncertainty, such as stochastic scheduling). This fact
has motivated the analysis of suboptimal heuristic in-
dex policies.

For example, it has been shown in [71] that, under
mild assumptions, the suboptimality gap for Smith’s
rule, when used as a heuristic for stochastic scheduling
on parallel machines, is bounded above by a quantity
that is independent of the number of jobs. Therefore,
as the latter grows to infinity the rule’s relative subopti-
mality gap vanishes, yielding a form of asymptotic op-
timality. An earlier asymptotic optimality result in the
same vein for a model of parallel machines stochastic
scheduling with in-tree precedence constraints was ob-
tained in [51].

A recent line of work uses optimal solutions to
linear programming relaxations to design and analyze
scheduling rules with performance guarantees for hard
stochastic scheduling problems [40].

Multi-Armed Bandits

Models in this class are concerned with optimally al-
locating effort over time to a collection of projects,
which change state in a random fashion depending on
whether they are engaged or not. A classic example is
the multi-armed bandit problem which, in its discrete-
time version, can be described as follows: there is a col-
lection of K projects labeled by k D 1; : : : ;K, exactly
one of which must be engaged at each discrete time

period t D 0; 1; : : :. Project k can be in a finite num-
ber of states ik 2 Nk , where Nk is the project’s state
space. If at period t project k occupies state ik and is
engaged, an active reward R1

k(ik) is earned, geometri-
cally discounted by factor 0 < ˇ < 1; then, the project
state changes in a Markovian fashion to jk with active
transition probability p1k(ik; jk) for jk 2 Nk . Projects
not engaged do not earn rewards (i. e., passive rewards
are R0

k(ik) � 0) and remain frozen. The problem is
to find a nonanticipative scheduling policy for selecting
the project to be engaged at each period, so as to maxi-
mize the total expected discounted reward earned over
an infinite horizon. Denoting by˘ the class of such ad-
missible policies, and denoting by Xk(t) and by ak(t)
the state and the action (ak(t) D 1: active; ak(t) D 0:
passive) for project k at period t, the problem can be
formulated as

max
�2˘

E�
"
1X
tD0

ˇ t
KX

kD1

Rak (t)
k

�
Xk(t)

�#
:

Such a classic problem, whose name refers to a slot
machine with multiple arms, one of which must be
pulled at each time, has its origins in problems of se-
quential design of experiments [56,62]. After being long
considered intractable, the problem was solved in a cel-
ebrated result by Gittins and Jones [28]. The optimal
policy is given by an index rule: an index �k(ik) is de-
fined for each project k as a function of its state ik ; then,
at each time a project with currently largest index is en-
gaged, breaking ties arbitrarily. The Gittins index gen-
eralizes that introduced in [7] for Bayesian Bernoulli
bandits, which in turn was based on the index intro-
duced in [13] for finite-horizon Bayesian bandits.

The optimality of such an index rule, for the orig-
inal model and extensions, has a rich history of proofs
yielding complementary insights. Such proofs are based
on different techniques, including interchange argu-
ments [26,28,64,70], dynamic programming [73], in-
tuitive arguments [66], induction arguments [63], and
conservation laws/linear programming [8]. See [27] for
a comprehensive reference. For efficient methods to
compute the Gittins index, see [17,35,46].

The important model extension where projects
not engaged continue to evolve, typically with differ-
ent transition probabilities, was introduced by Whittle
in [74]. Its greatly improved modeling power comes,
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however, at the cost of tractability [52]. In the setting
of a time-average version of such amulti-armed restless
bandit problem, he deployed a Lagrangian approach to
obtain a heuristic index rule that reduces to Gittins’ in
the classic model. His conjecture regarding the asymp-
totic optimality of such an index rule as both the num-
ber of projects and the required number of projects to
be engaged grow to infinity in a constant ratio was es-
tablished, under appropriate conditions, in [68]. Yet his
proposed index for restless bandits only exists for a re-
stricted class of bandits, termed indexable, which raises
the issue of finding sufficient conditions for indexabil-
ity.

The results in [74] were based on introduction of
a tractable problem relaxation, which also yields useful
bounds on the optimal value. Improved bounds based
on a hierarchy of linear programming relaxations were
introduced in [11].

A framework for the analysis and computation of
restless bandit indices, leading to the unifying con-
cept of marginal productivity index, has been re-
cently developed and deployed in several applications
in [42,43,44,45]. See [47] for an accessible review of
such a line of research.

The incorporation of penalties (costs or delays)
for switching projects also yields an important yet in-
tractable model extension of classic bandits [34], as it
is no longer solved by index policies [5]. Yet, [3] intro-
duced an intuitive index that partially characterizes op-
timal policies. An efficient algorithm to compute such
an index, based on the natural formulation of classic
bandits with switching costs as restless bandits with-
out them, along with extensive computational experi-
ence showing that the resulting index policy is nearly
optimal, is reported in [49].

Scheduling Queueing Systems

Models in this class concern the design of optimal poli-
cies for dynamic allocation of jobs to servers, where jobs
arrive over time according to given stochastic processes
The main class of models in this setting is that ofmulti-
class queueing networks (MQNs), widely applied as ver-
satile models of computer-communication and manu-
facturing systems.

The simplest types of MQNs involve scheduling
a number of job classes in a single server. Similarly as

in the two problem categories discussed above, simple
priority-index rules have been shown to be optimal for
a variety of such models. Consider the case of a multi-
class M/G/1 queue, where K job classes vie for the at-
tention of a single server: Jobs of class k D 1; : : : ;K
arrive at the system as a Poisson process with rate �k ,
and their service times are drawn independently from
a common distribution Gk(�) with mean 1/�k . Class j
jobs incur linear holding costs at rate ck � 0 per unit
time that a job resides in the system (waiting or in ser-
vice). The goal is to find a nonanticipative and nonpre-
emptive scheduling policy prescribing which job class
to serve at each decision epoch, in order to minimize
the long-run average holding cost rate per unit time.
Let ˘ denote the class of all such admissible policies,
and let E� [Lk] denote the expected number of class k
jobs in the system under policy 
 2 ˘ . The problem
can be stated as

min
�2˘

KX
kD1

ckE� [Lk] :

Its solution is given by the classic c�-rule [21], which
is the same as the Smith index rule discussed above:
award highest service priority at each time to a job with
largest index ck�k . The c�-rule is also optimal among
preemptive policies when service times are exponential.

The optimality of an index policy for the model
extension that incorporates Markovian job feedback
(when a class k job completes service it changes class to
lwith probability pkl , and leaves the system with proba-
bility 1 �

PK
lD1 pkl ) was established by Klimov in [38].

The optimal priority index is efficiently computed by
the K-step Klimov algorithm. The result was extended
to the discounted criterion in [61].

An account of these results based on the achievable
region method, which seeks to characterize the region
of achievable performance vectors (e. g., mean queue
lengths for each class) by means of linear programming
constraints that formulate conservation laws, has been
given in [8,20,25,59] (in increasing levels of generality).
The performance of Klimov’s index rule, when used as
a heuristic in the model extension that includes iden-
tical parallel servers, has been analyzed using such an
approach in [31]: a relaxed linear programming for-
mulation of the performance region is shown to yield
closed-form suboptimality bounds, which imply the
rule’s asymptotic optimality in heavy-traffic.
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More general MQN models involve features such
as changeover times for changing service from one job
class to another [39], or multiple processing stations,
which provide service to corresponding nonoverlap-
ping subsets of job classes. Due to the intractability of
such models, researchers have aimed to design rela-
tively simple heuristic policies which achieve a perfor-
mance close to optimal. The accomplishment of such
a goal has been hindered by formidable technical chal-
lenges, including the stability problem for multiclass
queueing networks with multiple stations [14,24]: in
general it is not known what conditions on model pa-
rameters ensure that a given policy is stable (the time-
average number of jobs in the system is finite). As
a result, computer simulation remains the most widely
used tool in applications of these models. Theoreti-
cal approaches currently under active development in-
clude the development of heuristic scheduling poli-
cies based on: diffusion approximations of the original
system under heavy-traffic conditions [6,32,33,54,69];
fluid approximations [4,16,23];mathematical program-
ming formulations [9,10,12,22,30,31]; and restless ban-
dit indexation [2,43,44,45,47,48].
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The basic transportation problem (a minimal cost net-
work flow problem in a bipartite graph) is a very well-
known problem, which can be efficiently solved with
existing methods. It is also an important problem in
practice; transporting goods from a set of supply points
(factories) to a set of demand points (customers) so as
to minimize transportation costs is a situation that of-
ten faces planners.

However, in practice the demand of the customers
is often not known exactly. In many cases it is best seen
as a stochastic amount, with a certain probability func-
tion and a certain expected value. Models of this sit-
uation also exist in the literature, and quite efficient
solution methods have been developed, see for exam-
ple [1,10] and [9]. The problem is called the stochastic
transportation problem, (STP), and is a transportation
problem with the demand constraints replaced by non-
linear convex costs.

Considering the other end of the transportation
problem, there are facility location models, which deal
with the question of whether or not a certain supply
point should be utilized. In such problems, a supply
point (facility) is available only if a certain fixed cost is
paid. Such models, with linear costs for transportation,
are also well known andseveral efficient solution meth-
ods exist, see for example [3,6,17], and [21]. (Other
variants of location problems are treated in � Facil-
ity location with staircase costs and � Facility location
problems with spatial interaction.)

Obviously both these aspects can be interesting to
consider simultaneously, i. e. planning the location of
supply facilities and transportation of goods to the
customers, while considering the demand as stochas-
tic.This is what we call the stochastic transportation and
location problem. This problem has received little at-
tention until now. Only a few suggestions for solution
methods can be found in the literature, [2,11,12,14].
The latter two papers actually consider a further gen-
eralization with generalconcave costs at the supply
points, together with the convex costs at thedemand
points.
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The Problem

Let m supply points (facilities) and n demand points
(customers) be given. The variables are xij, the amount
shipped from supply point i to demand point j, zi,
the amount shipped out of supply point i, and yj, the
amount shipped into demand point j. The maximal ca-
pacity at supply point i is Si, and the cost of produc-
tion is gi(zi), where gi(0) = 0, and gi(zi) is assumed to
be lower semicontinuous, nondecreasing and concave
due to economies of scale. Assuming stochastic at de-
mand point j, dj, we get a penalty cost & j(yj, dj), such
that the expected penalty f j(yj) = E[ & j(yj, dj)] is a con-
vex function, see [1].

Let us assume a probability density function, � j(dj),
which gives an expected demand as E[dj] =

R
1
0 v � j(v)

dv, and a continuous distribution function as Fj(dj) =R d j
0 � j(v)dv. There are unit holding costs, ˛j > 0, and

unit shortage costs, � j > 0, which gives a total cost as

f j(y j) D � j

1Z

y j

(v � y j)� j(v)dv

C ˛ j

y jZ

0

(y j � v)� j(v)dv

D � j(E[dj] � y j)C (� j C ˛ j)

y jZ

0

Fj(v)dv ;

which can be shown to be a convex function.
The costs for transportation are linear, with unit

cost cij from supply point i to demand point j. The prob-
lem to minimize the total costs is:

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

v� D min
mX
iD1

nX
jD1

ci jxi j

C

mX
iD1

gi (zi)C
nX

jD1

f j(y j)

s.t.
mX
iD1

xi j D y j; j D 1; : : : ; n;

nX
jD1

xi j D zi ; i D 1; : : : ;m;

0 � zi � Si ; i D 1; : : : ;m;
xi j � 0; 8i; j:

The objective function is a sum of three terms: a lin-
ear transportation cost, a convex shortage penalty and
a concave production cost. It isneither convex nor con-
cave, but a d.c. function, i. e. a function that can be rep-
resented as a difference of two convex functions, [13].
Minimizing such a function under linear constraints is
a nonconvex global optimization problem, which may
have multiple local minima.

We can add the following redundant constraints,

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
jD1

y j � STOT;

y j � 0; 8 j;
xi j � Si ; 8i;

where STOT =
Pm

iD1 Si, to ensure that the feasibleset is
bounded.

The problem (P) is quite general, and here we
are mainly interested in the stochastic transportation-
location problem, (STLP), which is the special case of
(P) that occurs if gi consists of a fixed charge (and pos-
sibly a linear cost). This problem can also be formulated
as

(STLP)
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ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

v� D min
mX
iD1

nX
jD1

ci jxi j

C

mX
iD1

riıi C
nX
jD1

f j(y j)

s.t.
mX
iD1

xi j D y j ;

j D 1; : : : ; n;
nX

jD1

xi j � Siıi ;

i D 1; : : : ;m;
ıi 2 f0; 1g;

i D 1; : : : ;m;
y j � 0; 8 j;
xi j � 0; 8i; j;

where ri is the fixed cost for starting production at sup-
ply point i, and ıi is equal to 1 if something is produced
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at supply point i and 0 if not. This problem has been
solved by a heuristic approach in [14] and by general-
ized Benders decomposition, [5], in [2].

A much simpler special case of (P) occurs if gi(zi)
is linear (and thus can be included in the transporta-
tion costs), namely the stochastic transportation prob-
lem, see [15]:

(STP)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
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ˆ̂̂̂
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:̂

v� D min
mX
iD1

nX
jD1

ci jxi j

C

nX
jD1

f j(y j)

s.t.
mX
iD1

xi j D y j;

j D 1; : : : ; n;
nX

jD1

xi j � Si ;

i D 1; : : : ;m;
xi j � 0; 8i; j;
y j � 0; 8 j:

The objective function of (STEP) is convex, so the prob-
lem can be solved efficiently by methods for convex
problems.

Solution Method

We will here describe the method proposed in [12],
which solves both (P) and (STLP). It exploits the facts
that the constraints are of transportation type and the
objective function is separable. Furthermore, of the mn
+m +n variables, onlym variables, z, appear in noncon-
vex functions. Therefore one can reduce the problem
to a much smaller d.c. optimization problem in only z.
This reduced problem can be solved by a branch and
bound procedure in which branching is performed by
partitioning the space into rectangles, while bounding
is based on linearization of the concave functions g(z)
=
Pm

iD1 gi(zi).
One can show, [12], that(P) is equivalent to

(P�) min f'(z)C g(z) : z 2 ˝g

in the sense that the two problems have equal optimal
values and if (x�, y�, z�) solves (P), then z� solves (P�),
and conversely if z� solves (P�), then (x�, y�, z�) solves
(P), where (x�, y�) is an optimal solution of (Q(z)),
where

(Q(z))
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f j(y j)

s.t.
mX
iD1

xi j D y j;

j D 1; : : : ; n;
nX

jD1

xi j D zi ;

i D 1; : : : ;m;
y j � 0;

j D 1; : : : ; n;
xi j � 0; 8i; j

for a given z in the rectangle ˝ = {z: 0 � z � S := (S1,
. . . , Sm) }. One can show that '(z) is a convex function.

(P�) is still a d.c. optimization problem, but much
smaller than (P). Below we present a branch and bound
solution method for (P�), based on the following.
� Rectangular subdivision of the feasible domain˝ .
� Linearization of the concave costs, yielding a sub-

problem similar to (STP).
LetM = [p, q] be a rectangle contained in˝ . Any point
w 2 M, together with an index i 2 {1, . . . , m }, deter-
mines a subdivision of M into two subrectangles {z: pi
� zi � wi, pt � zt � qt (8t 6D i)} and {z: wi � zi � qi, pt
� zt � qt (8t 6D i) }. This subdivision is called a subdi-
vision via (w, i).

For any rectangle M = [p, q] contained in the feasi-
ble domain ˝ , let LM, i(�) be the affine function which
agrees with gi(�) at the endpoints of the segment [pi, qi],
i. e.

LM;i(zi ) D gi (pi )

�

�
pi

qi � pi

� �
gi (qi) � gi(pi )

�

C zi
�
gi(qi) � gi (pi )

qi � pi

�
:
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Define the convex problem

(CP(M))

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

ˇ(M) D min
mX
iD1

nX
jD1

ci jxi j

C

nX
jD1

f j(y j)

C

mX
iD1

LM;i (zi)

s.t.
mX
iD1

xi j D y j;

j D 1; : : : ; n;
nX

jD1

xi j D zi ;

i D 1; : : : ;m;
y j � 0; 8 j;
xi j � 0; 8i; j;
z 2 M:

Clearly ˇ (M)�min { '(z) + g(z): z 2M}, and if an op-
timal solution (x(M); y(M); z(M)) of (CP(M)) satisfies
LM(z(M)) D g(z(M)) then ˇ (M) = min { '(z) + g(z):
z 2M }.

Since the convex problem (CP(M)) is an STP with
additional constraints z 2 M, i. e. p � z � q, the lower
bounding subproblem for each rectangle can be solved
by slightly modified versions of algorithms for (STP),
see [9].

Mk, the subrectangle in which the approximation is
to be improved, is chosen to be the subrectangle with
smallest lower bound.

Mk 2 arg min
M2W 0k

ˇ(M);

where Wk
0 denotes the current partition. This implies

ˇ(Mk) �min { '(z) + g(z): z 2˝ }, and if zk D z(Mk)
satisfies LMk (z

k) D g(zk) then equality holds, i. e. zk

solves (P�). Otherwise, gi (zki ) � LMk i(z
k
i ) > 0 for

at least one i and we subdivide M via (zk; ik), where
ik is the index i that achieves the maximal difference
gi (zki ) � LMk ;i (z

k
i ) between the actual cost and the lin-

ear approximation. This subdivision rule ensures that
eventually this maximal difference will tend to zero, and
the lower bound ˇ(Mk) will tend to the exact minimum
of the objective function onMk.

The method is given in algorithmic form:

Initialization
Choose " and a subrectangleM1 of˝ which is
known to contain an optional solution of (P�).
Let z1 be the best feasible point available, and
v̄ = '(z1) + g(z1). SetW1 = P1 = fM1g, k = 1.
Iteration k = 1; 2; : : :

i For each M 2 Pk solve (CP(M)), yield-
ing ˇ(M) and (x̄(M; ȳ(M); z̄(M)). Update v̄
and zk .

ii Delete allM2Wk such that ˇ(M)� 
̄ �", and
letW 0k be the remaining members ofWk .
IF W 0k = ; THEN terminate: zk is a global "-
optimal solution of (P�). ELSE choose Mk 2

arg minfˇ(M) : M 2 W 0kg.
iii Let z̄k = z̄(Mk). Select ik 2 arg maxi fgi(z̄

k
i )�

LMk; i (z̄k)g.
IF gik (z̄kik ) � LMk;ik

(z̄k) = 0
THEN terminate: z̄k is a global optional solu-
tion.
ELSE divide Mk via (z̄k ; ik). Let Pk+1 be the
partition of Mk and Wk+1 = (W 0k n fMkg) [
Pk+1:
Set k! k + 1 and go back to i).

In [12] convergence of this algorithm is proved. If
gi(t) is discontinuous at t = 0, then the problem does
not change if gi(t) is replaced by a continuous function
egi (t) that is linear for 0 � t � � i and equal to gi(t) for t
� � i, where � i is a certain positive number (for details,
see [12]).

Let us now discuss the case when gi(t) are concave
piecewise linear nondecreasing functions. First we can,
as mentioned above, assume that they are continuous
at t = 0, hence continuous at every point. Furthermore,
in Step iii) of the Algorithm, instead of dividing Mk;ik
via zkik we can divide it via the breakpoint uk;ik of g ik (t)
nearest to zkik that satisfies

gik (uk;ik ) � LMk ;ik (uk;ik ) � gik (z
k
ik ) � LMk ;ik (z

k
ik ) :

Since the number of breakpoints of each function gi(t)
is finite, the algorithm must terminate after finitely
many steps. In this case the method has similarities to
the method proposed in [19].

If gi(t) is of fixed charge type, e. g. gi(0) = 0 and gi(t)
= ri + �i t > 0 for t > 0, it can be replaced by a continuous
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concave piecewise linear nondecreasing function with
one breakpoint ui arbitrarily near to 0. The subdivision
of the interval [0, Si] via ui then amounts to branching
over the boolean variable ıi, with [0, ui] corresponding
to ıi = 0, and [ui, Si] corresponding to ıi = 1.

How to Solve the Subproblem

There are several possibilities for solving the subprob-
lem, (CP(M)), which is a problem of the type (STP).
It can be solved by the Frank–Wolfe method (cf. also
� Frank–Wolfe algorithm, [4]), in [1] and [16], by cross
decomposition, [20], in [10], by separable program-
ming in [7], by the forest iteration method in [18] and
by mean value cross decomposition, [9], and combina-
tions of separable programming, Lagrangian relaxation
with subgradient optimization and mean value cross
decomposition in [9].

In computational tests in [9] separable program-
ming combined with mean value cross decomposition,
here denoted by SM, is found to be the quickest method,
followed by a modified version of the Frank–Wolfe
method, [16], here denoted by FW.

In [12] two branch and bound methods, BB-SM
where the subproblem is solved by the SMmethod, and
BB-FW, where the subproblem is solved by the FW
method, are compared. BB-FW is found to be rather
stable, while BB-SM is less so. Reasons for this can be
the scaling and rounding required in the primal sub-
problem in SM, if the linear minimal cost network flow
code used requires integer costs and capacities. If af-
ter branching the interval [pi, qi] is small, the round-
ing may have large effects on the dual solution (used as
input to subsequent subproblems).

Computational Results

In [12] a number of randomly generated problems with
up to 100 origins and 500 destinations have been solved.
The probability density functions used are exponential
distribution functions, which yields

f j(y j) D ˛ j

�
y j �

1
� j

�
C

�
� j C ˛ j

� j

�
exp(�� j y j):

The concave cost functions are chosen to be of the form

gi (zi) D

(
bizaii if zi > 0;
0 if zi D 0:

Stochastic Transportation and Location Problems, Figure 1

The relations between the convex costs and the con-
cave costs are decided by a weight, cg , on the concave
part, which seems to affect the difficulty of the prob-
lem very much. For small values of cg the concave part
of the cost is dominated by the convex part, and the
problems are easy. (For cg = 0, we get the (STP).) For
large values of cg , the concave part dominates, and these
problems are also easy (solvable in fractions of a sec-
ond). However, somewhere between these extremes, we
find a sharp increase in difficulty. These effects are illus-
trated for two groups of problems in Fig. 1.

A general conclusion of the computational tests is
that the branch and bound trees are fairly limited in
size, in spite of the risk for unnecessary branching due
to the asymptotic convergence of the methods used for
the subproblem. This is indicates that the bounding
subproblems are strong enough.

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems

� Competitive Facility Location
� Facility Location with Externalities
� Facility Location Problems with Spatial Interaction
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The deterministic vehicle routing problem (VRP) is de-
fined on a graph G = (V , E), where V = {v1, . . . , vn} is
a vertex set and E = {(vi, vj):vi, vj 2 V , i < j} is an edge
set. Vertex v1 represents a depot at which are based m
identical vehicles of capacity D. The other vertices are
customers requiring a visit, which may consist of either
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collection or delivery of goods or of providing some ser-
vice like in the repair industry. The VRP consists of de-
signing a set of m least cost routes starting and ending
at the depot, such that each customer is visited exactly
once. In practice, additional constraints need to be sat-
isfied. Two important examples are the following:
� capacity constraints: with each customer vi is associ-

ated a demand di. Then the total demand of a vehicle
route may not exceed D.

� time constraints: with each customer vi is associated
a service time si. Also, with each edge (vi, vj) is as-
sociated a travel time tij. Then, the total duration of
each route, including service and travel times, may
not exceed a given bound B.

Several other constraints can be encountered in practi-
cal applications. For a recent survey and a bibliography
on the deterministic VRP, see [5] and [10].

In many situations, some components of the prob-
lem are random. Then, the problem becomes a stochas-
tic vehicle routing problem (SVRP). At the moment
(1999), three main cases have been considered:
1) stochastic customers: customer vi is present with

probability pi and absent with probability 1 � pi.
2) stochastic demands: the demand di of customer vi is

a random variable.
3) stochastic times: the service time si of customer vi

and the travel time tij of edge (vi, vj) are random vari-
ables.

This randomness may apply to only some customers
or edges. When some data are random, it is no longer
possible to require that all constraints be satisfied for
all realizations of the random variables. As is classical
in stochastic programming (see also [3]), two main ap-
proaches are considered.

In chance constraint programming (CCP), the deci-
sion maker requires that the constraints must be sat-
isfied with a given probability, typically 90% or 95%.
This line of research for the SVRP was initiated in [18].
While in general, the approach in CCP is to obtain
a (usually nonlinear) deterministic equivalent of the
probabilistic constraint, it turns out that, for the SVRP,
linear constraints can be found to eliminate routes that
violate the probabilistic constraints. Those constraints
are stronger for the SVRP with stochastic demands (as
they apply to sets of customers) and, in general, weaker
in the case of stochastic travel times (as they only ap-
ply to the routes traveled). These constraints are usually

embedded within a branch and cut (cf. also � Integer
programming: Branch and cut algorithms) procedure,
in exactly the same way as this is done for the subtour
elimination constraints in the deterministic VRP [13].

In stochastic program with recourse (SPR), the set
of decisions is divided into two groups, the de- cisions
made before the realizations of the random variables
are known are called first-stage decisions, those made
after the realizations are known are called second-stage
(or recourse, or corrective) actions. In the SVRP, the
first-stage decision typically consists of planning the
various routes. In the second stage, the routes are fol-
lowed as planned, with simple rules for possible cor-
rective actions. When customers are present with some
probability, the recourse action consists of skipping ab-
sent customers (this problem is then known as the prob-
abilistic traveling salesman problem , or PTSP). For the
case where demands are random, while following the
planned route to make the collections, the vehicle may
be unable to load some customer’s demand as the vehi-
cle becomes full. The recourse action may then consist
of a return trip to the depot to unload, such that the
vehicle may be able to resume its trip. Similarly in the
SVRP with stochastic travel times, the recourse action
may simply consist of paying some charge (or penalty)
when the effective travel time exceeds B. Such situations
do not occur in a deterministic setting where demands
(or travel times) are supposed to take precisely the value
forecasted for planning the route. The aim of an SPR
is to find a solution of least expected total length (for
the PTSP) or least expected total cost (for SVRP with
stochastic demands or times). The framework of plan-
ning the routes in the first-stage and having a simplified
recourse policy in the second-stage is known as a priori
optimization.

Solution methodologies include the asymptotic
analysis of a priori optimization [2,9], heuristics such
as the modified savings algorithm [4], metaheuristics
such as the tabu search [7] and exact algorithms [12].
Based on the integer L-shaped method [11], exact algo-
rithms assume the capability of computing the expected
recourse (or penalty) function and the availability of
a lower bound on this function. Efficiency is greatly
improved when lower bounding functionals can be de-
rived that also apply at fractional solutions. Such is the
case for the PTSP [14] and for the SVRP with stochastic
demands [8].
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More elaborate versions of SPR can easily be mod-
eled. They typically include more diversified recourse
policies or even multistage recourse policies. They are
in general muchmore difficult to solve. Example of suc-
cessful solutions are available in dynamic vehicle allo-
cation [16], dynamic routing [17] and re-optimization
strategies [1]. A survey is available in [6].
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Structural optimization is a discipline dealing with opti-
mal design of load-carrying structures. Some examples
of such problems are to find an optimal shape of a sus-
pension arm in a car, to find an optimal material distri-
bution in the wall of a centrifugal separator, to find op-
timal thicknesses of composite material layers in wing
panels of an aircraft, or to find optimal cross sectional
dimensions of the different beams in a new Eiffel tower!

Structural optimization problems are often mod-
eled as nonlinear programming problems of the form

minimize f0(x)

subject to fi(x) � bi ; i D 1; : : : ;m;

x 2 X :

(1)

Here, x D (x1; : : : ; xn)T is the vector of design
variables, like cross sectional dimensions of bars and
beams, thicknesses of membranes and plates, variables
describing the shape of the structure, etc. The objective

function f 0(x) is typically the structural weight, while
the inequalities fi(x) � bi model constraints on dis-
placements, stresses, moments of inertia, eigenfrequen-
cies, etc. Finally, X is a given rectangular subset of Rn ,
defining simple lower and upper bounds on the vari-
ables.

The functions f i(x) are not explicit. Instead, they are
typically of the form

fi(x) D hi(x; u(x)) ; (2)

where hi (x, u) are explicit functions while the “state
vector” (u) depends implicitly on the design variable
vector x through some system of state equations. Often,
u is the nodal displacement vector in a finite element
model and the state equations are of the form

Ku D p ; (3)

where K D K(x) is the stiffness matrix of the structure
(in the finite element model), while p D p(x) is a vector
describing the loads on the structure. This means that
each time the constraint functions should be evaluated
at some point x, the state equations must be generated
and solved, typically by some finite element package.
The function evaluations could therefore become very
time consuming.

An encouraging fact, however, is that for many
problems of this type it is possible to calculate gradients
of the constraint functions in an efficient way. Since
the possibility of calculating gradients is a key point for
solving structural optimization problems, we now de-
scribe in some detail a so called adjoint method for such
calculations, assuming that the considered problem is
on the above form.

First, the chain rule gives

@ fi
@x j
D
@hi

@x j
C qTi

@u
@x j

; (4)

where the components of the row vector qTi are the par-
tial derivatives of hi with respect to the components of
u, calculated at the current point (x,u).

Next, with qi from above, let the vectors vi be ob-
tained from the systems

Kvi D qi ; i D 1; : : : ;m : (5)

When the system (3) was recently solved for obtaining
the displacement vector u corresponding to the current
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x, the matrix K was generated and factorized, typically
by a banded Cholesky method. This calculated factor-
ization should naturally be used again when solving (5).

By differentiating both sides of (3), one obtains

K
@u
@x j
C
@K
@x j

u D
@p
@x j

; (6)

from which it follows, after multiplying by vTi , that

qTi
@u
@x j
D vTi

@p
@x j
� vTi

@K
@x j

u : (7)

Together with (4), this implies that

@ fi
@x j
D
@hi

@x j
C vTi

@p
@x j
� vTi

@K
@x j

u ; (8)

where all the terms on the right hand side are fairly
straightforward to calculate.

In most applications, the considered structure
should be able to carry several different loads. This
means that instead of a single load vector p in (3), there
are several given load vectors p1; : : : ; pL , and corre-
sponding displacement vectors u1; : : : ; uL . After obvi-
ous modifications of the notations, the above descrip-
tion of gradient calculations remains valid.

The major computational work when calculating
function values and gradients thus consists in solving
the systems (3) and (5) for a possibly large number of
given right hand side vectors. However, the stiffness
matrix K(x) only has to be factorized once for the cur-
rent x.

Because function evaluations are very expensive,
and because gradients can be calculated almost at the
same time as function values, the following iterative ap-
proximation approach has become well established for
solving a large class of structural optimization problems
on the above form.

Step 0. Choose a starting point x(1) 2 X and set the
iteration index k D 1.

Step 1. Given x(k), calculate f i(x(k)) and gradients
r fi(x(k)) for i D 0; 1; : : : ;m.

Step 2. Generate an approximating subproblem of the
form

minimize g(k)0 (x)

subject to g(k)i (x) � bi ; i D 1; : : : ;m;

x 2 X(k) ;

(9)

where g(k)i (x) are explicit functions which approxi-
mate the implicit functions f i(x), whileX(k) is a rect-
angular subset of X containing x(k).

Step 3. Solve this explicit subproblem with some suit-
able method and let the optimal solution be the next
iteration point x(kC1). Then set k D kC1 and go to
Step 1 again.

The process is terminated when some reasonable
convergence criteria have been fulfilled, or (in practice)
when the marginal improvements from the latest itera-
tions have become so small that the user does not find it
worthwhile to continue. As mentioned above, each sin-
gle iteration may take a considerable time.

A crucial step in this approach is to make a clever
choice of approximating functions g(k)i (x). The main
information available for doing that are the calculated
function values and gradients, at the current iteration
point x(k) as well as at previous points. In addition, some
relevant properties of the considered problem may be
known. As an example, it is known that the normal
stress in a truss element decreases approximately as 1/x j

if the cross section area xj of the element increases,
and a related type of behavior holds also for the nodal
displacements. This kind of general information could
be most valuable when the approximating functions
should be chosen. Finally, it is important that the sub-
problem (9) does not become too hard to solve numer-
ically. For this reason, and to avoid nonglobal local op-
tima of the subproblem, it is to prefer that the chosen
approximating functions g(k)i (x) are convex. It should
be noted, though, that the original functions f i(x) may
very well be nonconvex. This implies that the optimal-
ity conditions used for terminating the process do not,
in general, guarantee a global optimum of the original
problem.

The approach above, Step 0 – Step 3, will now be
exemplified by a specific method, further discussed in
e. g., [2], which is well suited for problems of the fol-
lowing type: The design variables xj are assumed to be
transverse sizes of structural elements, such as cross
section areas of truss elements or thicknesses of mem-
brane elements. This makes the stiffness matrix K(x)
linear in x. It is further assumed that there are strictly
positive lower bounds defined for these variables, which
implies that K(x) is always positive definite. The ob-
jective function is assumed to be the structural weight,
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which is linear in x. Finally, the constraint functions are
assumed to model given limitations on stresses and dis-
placements at different given points in the structure, for
different given load vectors.

For this type of problems, the constraint functions
f i satisfy the relation fi(˛x) D (1/˛) fi(x) for ev-
ery vector x with strictly positive components and ev-
ery scalar ˛ > 0. This makes it reasonable to approx-
imate each constraint functions by a linearization in
the inverse design variables 1/x j . The approximating
functions g(k)i (x) are thus chosen as follows, for i D
1; : : : ;m,

g(k)i (x) D fi(x(k))C
nX
jD1

ai j

 
1
x j
�

1

x(k)j

!
; (10)

where

ai j D
@ fi

@(1/x j)
D �x2j

@ fi
@x j

; (11)

calculated at x D x(k).
There is no need to approximate the objective func-

tion, since it is already linear in x. Thus,

g(k)0 (x) D f0(x) D
nX
jD1

c jx j : (12)

Therefore, the subproblem (9) becomes as follows,
where a temporary change of variables to y j D 1/x j

has been made,

minimize
nX

jD1

c j
y j

subject to
nX

jD1

ai j y j � bi ; i D 1; : : : ;m

y 2 Y (k) :

(13)

This is a tractable problem with a separable and
strictly convex objective functions, linear inequality
constraints and simple bounds on the variables. One of
several possible ways of solving this subproblem is to
form the corresponding dual problem, which is of the
form

maximize '(�)

subject to �i � 0; i D 1; : : : ;m
(14)

where '(�) is a concave, continuously differentiable,
explicit function. By solving this dual problem by some
suitable method, like a modified Newton method, one
also obtain the optimal solution of the primal subprob-
lem (13).

If somewhat more elaborate approximating func-
tions g(k)i (x) are used, the above approach of solving
a sequence of separable convex subproblems can in
fact be made globally convergent, so that the sequence
of generated iteration points x(k) always converges to-
wards the set of KKT points of the original problem (1),
see [3].

An expanding subfield of structural optimization is
so called topology optimization, where a central ingre-
dient is the interest for the holes in the structure. In
addition to the optimal outer shape of the structure,
one now also search for the optimal number, location
and shape of these holes. The corresponding optimiza-
tion models typically involve a large number of binary
variables which indicate presence (x j D 1) or absence
(x j D 0) of material in various points of the consid-
ered structure. For an excellent survey on topology op-
timization, see [1].
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The term structural optimization is commonly used
for the optimization of engineering structures, such as
building, automobile, or airplane structures for im-
proved strength or stiffness properties and reduced
weight or cost. Before computer based optimization
became widely used, structural components, such as
beams and plates were optimized by using the calculus
of variations [5].

The computerized analysis of structures, via mod-
els that discretize the structure into a large number of
pieces, known as finite elements, has become prevalent
in the 1960s. Numerical optimization based on finite el-
ement models started in the early 1960s by L. Schmit
and his students [6]. The early years were character-
ized by applications for civil engineering truss struc-
tures, with the design variables being cross-sectional ar-
eas of the elements. Later these variables were general-
ized to cross-sectional dimensions of beams and thick-
nesses of plates. This class of design variables, so called
sizing variables, has the distinction that the optimiza-
tion can be carried out with only superficial changes in
the finite element model.

More recently, structural optimization research has
focused on changing the shape (geometry) and topology
of the structural configuration. Geometrical changes re-
quire redefinition of the finite element mesh. Topologi-
cal changes, which consist of adding or removing parts
as well as creating holes, pose even more difficult chal-
lenges in converting the structural design into a man-
ageable optimization problem [1,2].

A major driving force in the development of struc-
tural optimization methodology has been the need to
accommodate very large number of design variables
(hundreds or thousands), while a single structural anal-
ysis (evaluation of objective function and constraints)
requires the solution of thousands to hundred of thou-
sands of algebraic equations derived from the finite ele-
ment method. This computational challenge has been
addressed by several devices, many quite unique to
structural optimization.
� For optimization problems subject only to stress

limit constraints, an intuitive optimality criterion

has been employed, that stipulates that each part of
the structure is stressed to its limit, imposed by ma-
terial properties or by buckling, under at least one
loading condition. This optimality condition is ac-
companied by techniques that removematerial from
regions that are under stressed and add material to
regions that are overstressed, without the need to
calculate derivatives. This approach is often termed
fully stressed design.

� In many problems the number of active constraints,
aside from lower limits on the design variables, can
be made much smaller than the number of design
variables. Various dual optimization formulations
then becomemore effective than direct formulations
[1].

� The most popular approach for solving structural
optimization problems of high dimension is sequen-
tial approximate optimization, a generalization of
sequential linear programming. In this approach
the objective function and constraints are replaced
by approximations using first derivatives, which are
linear in either the design variables or their recipro-
cals. Convex approximations are particularly popu-
lar [3].

� Efficient calculation of derivatives of structural re-
sponse with respect to design variables is a ma-
jor field of active research. Methods that differen-
tiate the continuum equations and then discretize
compete with methods which differentiate the dis-
cretized finite element equations. Adjoint derivative
methods are usually superior when the number of
differentiated response quantities is less than the
number of the design variables.

� For topology optimization problems, where the
number of design variables is extremely large, global
compliance is often used as a single measure of
structural performance. This allows the develop-
ment of efficient specialized algorithms, or at least
extremely cheap calculation of derivatives.

� In the structural design problem, the overall design
is usually carried out first, using a coarse analysis
and optimization models to determine the overall
material distribution, and possibly shape and topol-
ogy. This is followed by, detail design of different
parts of the structure, for example, individual spars
and panels in aircraft structures. In principle, there
ought to be feedback from the second stage to the
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first, but the iterations implied by such feedback
are often impractical for cost and time reasons. Un-
fortunately, there is still no completely satisfactory
method to such two-stage design in a rigorous and
computationally efficient way.
While most structural optimization problems are

formulated as continuous problems, there is also sub-
stantial interest in discrete design variables, and these
fall in two categories: those that appear as continuous in
the analysis but are available for actual implementation
in limited sets; and those that appear as discrete in the
analysis. An example of the first category are civil engi-
neering applications of beam cross-sectional shapes and
dimensions, which are readily available only in stan-
dardized sets, and using other shapes increases the cost
substantially. An example of the second category is are
choices of material and topology. The increasing usage
of fiber reinforced laminated composite materials also
introduces variables of both categories, creating dis-
crete and combinatorial problems. This is due to the fact
that thicknesses have to be integer multiples of the ba-
sic ply thickness, and fiber angles are usually limited to
a small discrete set by the availability of test data. Ge-
netic algorithms have been popular for such applica-
tions [4].
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Frequently, optimal control of engineering processes is
difficult to achieve, or the resulting structure of the op-
timal control policy may not be in an appropriate form
for application. This leads us to make certain approxi-
mations to the formulation of the problem, to simplify
the model describing the process, or to impose some
structure on the nature of the control policy. Therefore,
instead of solving the original optimal control problem,
the optimal control policy is established to a closely re-
lated problem. The solution to the related problem is
said to be suboptimal control policy of the original prob-
lem.
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Time Suboptimal Control

To illustrate the suboptimal control in one important
area, let us consider the time optimal control problem,
where the system is described by the differential equa-
tion

dx
dt
D f(x;u); with x(0) given; (1)

where x is an n-dimensional state vector and u is an
r-dimensional control vector bounded by

˛ j � uj(t) � ˇ j; j D 1; : : : ; r: (2)

The time optimal control problem is to determine
the control u in the time interval 0 � t < tf , so that the
origin x(tf ) = 0, is reached in minimum time tf . The
origin is reached when



xi(t f )


 < �i ; i D 1; : : : ; n; (3)

where �i is some specified tolerance, such as accuracy of
measurement of the state variables.

For the case of scalar control (r = 1), and n = 2,
this time optimal control problem is easily solved by es-
tablishing the switching curves in the phase plane and
then to follow the particular trajectory starting from the
given initial condition to the switching curve and then
following the switching curve to the origin. This is il-
lustrated in [8, pp. 146–150].

Of interest is to solve the time optimal control prob-
lem for higher-dimensional problems. For the general
case the problem is very difficult, even with iterative
dynamic programming (IDP) [3,4]. The special case of
time optimal control of a linear system with n = 6 and
r = 2 was solved in [9] by using linear programming
on the discretized form of the system to seek the min-
imum number of time steps to provide a feasible solu-
tion. The computational aspects and results of using lin-
ear programming on a 6-plate gas absorber are given in
[8, pp. 212–223] and [1]. The optimal control policy in-
volves switching the two control variables from bound
to bound several times. Therefore, wemay be interested
in allowing the final time to be increased somewhat if
we get a ‘more stable’ control policy, and one that would
not be very sensitive to modeling errors.

In order to stabilize the control policy for the
discrete-time version of the problem and still drive the
system to the origin, R. Koepcke and L. Lapidus [7],

suggested the construction of a positive definite
quadratic function of state

V (k) D x>(k)Qx(k) (4)

and to choose the control policy to minimize the for-
ward difference

	V(k) D V (k C 1) � V (k): (5)

If any of the calculated control variables are beyond the
boundary specified by (2), then the boundary values are
used. Such clipping technique is widely used in optimal
control to handle control constraints. If�V(k) is nega-
tive, then we have the added benefit of having asymp-
totic stability stability, and V(k) is called a Lyapunov
function.

There is a certain amount of freedom in choosing
an appropriate positive definite matrix Q. Although Q
may be chosen to be the identity matrix, such a choice is
not the best. For a six-plate gas absorber model, Lapidus
and R. Luus [8, pp. 363–369] suggested the use of the
diagonal matrix

Q D diag[1; 7:39; 230; 230; 7:39; 1]; (6)

rather than an identity matrix. The elements in Q were
chosen to put more weight on the inner stages to coun-
terbalance the logarithmic damping produced by each
stage. Thus, 7.39 = e2, and 230 = (ee)2 where e is the
base for the natural logarithm. The criterion that |xi(tf )|
� 0.001, i = 1, . . . , 6 was satisfied with tf = 9.0 min-
utes, which is reasonably close to the value tf = 6.0
minutes obtained by linear programming for the orig-
inal problem [1,9]. To improve the result obtained by
suboptimal procedure, different values for Q were ex-
amined [2,5]. Instead of using Rosenbrock’s hillclimb-
ing procedure [24], Luus [12] found that the use of di-
rect search [16] gave surprisingly good results. The re-
sults were surprising, since tf = 4.8minutes that was ob-
tained, was better than the previously accepted value of
6.0. This apparent paradox, where the suboptimal con-
trol yielded better results than the optimal control was
resolved in [23], where the high sensitivity of tf on the
final state specification is shown. With optimal control
we were driving the system to the mathematical origin,
rather than the practical origin where all variables had
to be less than 0.001 in value. When this relaxed condi-
tion was incorporated into the linear programming al-
gorithm, a minimum time of tf = 4.5 minutes resulted.
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Therefore, the suboptimal control here served as a
good means to check the results obtained in solving the
original problem, and provided a nice means of reinter-
preting the original optimal control problem. The use
of the quadratic function V = x| (k)Qx(k) in general
optimal control problems to simplify the formulation
and to provide good suboptimal results have been re-
ported [6,11,25,27].

Another approach to time suboptimal control is to
simply carry out search on the elements of the feedback
gain matrix [10], or choose the gain matrix elements so
that the eigenvalues of the linearized system are shifted
as far left as possible in the imaginary versus real graph
[18]. With direct search optimization this search can be
readily accomplished. These two approaches were com-
bined into a two-step procedure in [20], to enable the
desired state to be approached very rapidly, and yet in a
stable manner.

Use of Suboptimal Control in Complex Systems

When the given system is very complex, or of very high
dimension, very good results can be obtained by reduc-
ing the dimensionality or complexity of the system be-
fore attempting to determine the optimal control pol-
icy. This is similar to the idea in nonlinear analysis
where averaging technique may be used to average out
the noncontributing terms and yet provide accurate sta-
bility information [17]. The optimal control policy ob-
tained for the simplified system is then the suboptimal
control for the original system. To get good results, one
usually tries to get the best simplified or reduced model.
Optimization has been used to obtain excellent models
even when the original system has been of very high di-
mension [13,33,32].

Another useful approach is to use orthogonal collo-
cation to change a partial differential equation into a
set of ordinary differential equations [21,29,31] or by
using coordinate transformation [30]. K.T. Wong and
Luus [28] showed that a very good simplified model for
a staged system, such as a gas absorber, that is mod-
eled as a large number of differential equations, can be
established by first converting the ordinary differential
equations into a partial differential equation and then
to use orthogonal collocation to yield a small number
of ordinary differential equations that depict the behav-
ior of the system quite accurately.

Suboptimal Control in Other Situations

Suppose that the optimal control policy requires the use
of all the state variables in the control law, but it is im-
practical to measure all the variables. To handle that sit-
uation we can establish a control law which uses only
the variables that can be measured. We have in essence
an incomplete state feedback, and it is important to ex-
amine what is lost by not measuring all the state vari-
ables. This is an important area, and good progress has
been made [26].

In time-delay systems, if the time delay is small, then,
as was shown in [21], Taylor series approximation may
be used to convert the time-delay system into a set of or-
dinary differential equations. The establishment of op-
timal control for the latter is much easier, but results in
suboptimal control for the original system. The degree
of suboptimality for realistic values for the delay terms
was found to be quite small [21]. Such an approach was
also used in [19,15], to obtain suboptimal control policy
for a time-delay system. This suboptimal control pol-
icy was then used as the initial control policy in using
iterative dynamic programming with piecewise linear
control.

Another area where suboptimal control has been
used is in the choice of the final time tf . When tf is
relatively small, the choice of tf is very important, be-
cause the optimal control policy is quite sensitive to tf
[14]. If, however, tf is relatively large, the system is lin-
ear and the performance index is quadratic, the choice
of tf =1 simplifies the solution of the optimal control
problem, since the resulting Riccati equation then is an
algebraic equation and not a differential equation that
has to be integrated backward.

Suboptimal control therefore serves a very useful
role in the optimal control field.
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Successive quadratic programming (or SQP) methods
are a class of methods for finding a local optimum
to nonlinearly constrained optimization (or nonlinear
programming) problems. Introduced by R.B. Wilson
[19] in the early 1960s, followed by variants by W.
Murray [13] and M.C. Biggs [2], and then popular-
ized and refined by S.P. Han [10] and M.J.D. Powell
[16], SQP methods are based on the recursive use of
quadratic programming to calculate iterative improve-
ments to the estimates of the constrained optimum and
corresponding Lagrange and Kuhn–Tucker multipliers.
This use of recursive quadratic programming can be
thought of as a means of balancing the tasks of satisfy-
ing the nonlinear constraints and optimizing the objec-
tive function. That is, starting estimates of the unknown
variables and iterates do not have to satisfy the nonlin-
ear constraints at each iteration, as they do in many

other methods for nonlinearly constrained optimiza-
tion. Rather the nonlinear constraints are satisfied as
the iterates approach the optimum. Consequently, this
together with the use of analytical and/or quasi-Newton
estimates of the (Hessian) matrix of second derivatives
of the Lagrangian function which account for nonlinear
constraint curvature, are often cited as the two primary
reasons why SQP methods are more reliable and more
efficient (usually requiring fewer function and gradient
evaluations) than other nonlinear programming tech-
niques in solving nonlinearly constrained optimization
problems. Successive quadratic programming methods
have, in more recent years, been extended to large scale
and nonconvex, nonlinearly constrained optimization
[11,14] and applied successfully in various mathemati-
cal, scientific, and engineering disciplines ([1,11,17]).

The fundamental building blocks of any SQP
method generally include:
� methods for calculating or estimating the Hessian

matrix of the Lagrangian function,
� procedures for solving the successive quadratic pro-

grams, and
� stabilization techniques for forcing convergence

from ‘poor’ starting points.

Some Nonlinear Programming Basics

Successive quadratic programming and other local con-
strained optimization techniques seek to find a local so-
lution to the following nonlinear programming (NLP)
problem:
(
min f (x)
s.t. c(x) � 0;

where x is a vector of length n which represents an es-
timate of the local minimum, f (x) is a twice contin-
uously differentiable objective function and c(x), the
vector of equality and/or inequality constraints, is also
twice continuously differentiable and nonlinear. This
constrained optimization problem is commonly recast
in terms of the Lagrangian function, L(x), defined by

L(x) D f (x)C �>c(x)C �>c(x);

where � and � are vectors of Lagrange and Kuhn–
Tucker multipliers associated with the equality and in-
equality constraints respectively. The conditions that
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define local solutions to the original nonlinearly con-
strained optimization problem are called Kuhn–Tucker
(or Karush–Kuhn–Tucker) conditions and are rep-
resented by stationarity of the Lagrangian function.
The Kuhn–Tucker conditions for the nonlinearly con-
strained optimization problem shown above are

gL(x) D g(x)C �>JE (x)C �> JI(x) D 0 ;

c(x) D 0; �>c(x) D 0; � � 0 ;

where g(x) is the gradient of the objective function,
JE(x) is the Jacobian matrix (or matrix of first partial
derivatives) of the equality constraints, JI(x) is the Jaco-
bian matrix of the inequality constraints, gL(x) is the
gradient of the Lagrangian function and the comple-
mentarity conditions, �>c(x) = 0, for the inequality
constraints are interpreted as follows: if ci(x) = 0, then
�i > 0 or if ci(x) < 0, then �i = 0 for each inequality
separately. Successive quadratic programming meth-
ods can be thought of as an application of Newton or
quasi-Newton methods to the NLP Kuhn–Tucker con-
ditions, with one important difference. Direct applica-
tion of Newton or quasi-Newton methods to the Kuhn–
Tucker conditions for the nonlinear program requires
a priori knowledge of the set of active constraints (i. e.,
the equalities plus the inequalities that hold as equali-
ties) and this is further complicated by the fact that the
active set can change from iteration to iteration. What
Wilson [19] recognized was that the active set (and
therefore the Lagrange and Kuhn–Tucker multipliers)
and the Newton correction in the x variables at any iter-
ation could be determined simultaneously by solving an
appropriately-posed quadratic programming subprob-
lem. This iterative quadratic programming subprob-
lem, which is based on a quadratic approximation to the
Lagrangian function subject to linearized constraints, is
given by
(
min g(xk)>	xk C 1

2	x>k Bk	xk
s.t. c(xk)C J(xk)	xk � 0

where � xk is the change in the unknown variables,
Bk is some approximation to the true Hessian matrix
of the Lagrangian function, H(x) = Hf (x) +

P
�iHci(x)

+
P
�iHci(x), and where Hf (x) and Hci(x) refer to the

true Hessian matrices of the objective function and ith
constraint respectively and J is the Jacobia matrix of
the constraints. Solving this quadratic programming

subproblem produces precisely the same change in the
unknown variables and estimates of the Lagrange and
Kuhn–Tucker multipliers as does Newton’s (or a quasi-
Newton) method applied to the Kuhn–Tucker con-
ditions for the original nonlinear program provided
the active set is known. Therefore, the use of succes-
sive quadratic programming has the distinct advan-
tage of not requiring a priori knowledge of the active
set! However, perhaps the single biggest disadvantage
of SQP methods is that linearization of the constraints
(or the use of trust regions) can sometimes make these
quadratic programming subproblems infeasible (i. e.,
result in a feasible region for the linearized constraints
that is empty).

The Fundamental Building Blocks
of Successive Quadratic Programming

Computational tools for the implementation of succes-
sive quadratic programming methods require means
of estimating the Hessian matrix of the Lagrangian
function (i. e., by analytical, finite difference, or quasi-
Newton second derivatives or a mixture thereof), meth-
ods for solving the recursive quadratic programming
subproblems (i. e., active set or interior point methods),
and stabilization techniques (i. e., line searching or trust
region methods) for forcing convergence from ‘poor’
starting points.

Estimating the HessianMatrix
of the Lagrangian Function

Wilson [19] originally suggested the use of analytical
second derivatives of the objective function and the
constraints for approximating the Hessian matrix of
the Lagrangian function. However, in the 1960s and
1970s, quasi-Newton methods for approximating sec-
ond derivatives were introduced and became popular.
This led to superlinear convergence results for a num-
ber of quasi-Newton updates including the Davidon–
Fletcher–Powell (DFP) and Powell-symmetric–Broyden
(PSB) updates [10], and eventually the use of a mod-
ified Broyden–Fletcher–Goldfarb–Shanno (BFGS) up-
date [16] for calculating a new approximation to the
Hessian matrix of the Lagrangian function given by

BkC1 D Bk C
[�k�>k ]
(�>k sk)

�
[Bksk s>k Bk]
(s>k Bksk)

;
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where the new approximation to the Hessian matrix,
Bk+ 1, is computed from the old approximation, Bk, the
change in the unknown or x variables, sk = � xk, and
the vector �k = �yk � (1 � �) Bksk, where yk = gL(xk+1)
� gL(xk) and � depends on the relative size of �>k sk and
s>k Bksk. In particular, � = 1 unless s>k sk � 0.2 s>k Bksk,
in which case � = 0.8s>k Bksk/(s>k Bksk � �>k sk) was sug-
gested in [16].

Presently, both analytical and quasi-Newton, as well
as finite difference, second derivatives of the objec-
tive function and the nonlinear constraints are used
for estimating H(x). However, all methods for estimat-
ing second derivatives have advantages and disadvan-
tages. Quasi-Newton updates are computationally in-
expensive and can be suitably modified to maintain the
positive definiteness of H(x), which makes the recur-
sive quadratic programs convex (bowl-shaped). This,
in turns, guarantees that each recursive quadratic pro-
gram has a unique solution and that descent in a suit-
ably chosen stabilization procedure like line search-
ing can be maintained in order to force convergence.
However, the use of quasi-Newton methods provides
only two-step R-superlinear convergence under rea-
sonable conditions and the particular use of the mod-
ified BFGS update forces the Hessian matrix of the
Lagrangian function to be positive definite in the full
space of the variables, which is unnatural. Usually the
true Hessian matrix is indefinite and only positive def-
inite on the tangent subspace (i. e., a hyperplane) de-
fined by the linearized constraints, even at a local con-
strained minimum. Moreover, SQP methods that use
quasi-Newton derivatives generally require more func-
tion and gradient evaluations than SQP methods based
on analytical second derivatives. The use of analytical
(or finite difference) second derivative to approximate
the Hessian matrix of the Lagrangian function provide
faster quadratic convergence, but only at a price. That
is, SQP methods that use analytical or finite difference
second derivatives usually converge in fewer function
and gradient evaluations than SQP methods that use
quasi-Newton approximations to H(x), but, in doing
so, they sacrifice the guaranteed convexity of the re-
cursive quadratic programs. This, in turn, can intro-
duce multiple Kuhn–Tucker points into the quadratic
programming subproblems, and result in the loss of
descent properties associated with suitably chosen line
search functions. Some application-based SQP meth-

ods [11] have used judicious mixtures of analytical and
quasi-Newton second derivative information and these
methods have the same properties as SQP methods
based analytical or finite difference second derivatives,
only the rate of convergence is still theoretically two-
step R-superlinear.

More recent SQP methods for solving large scale
problems are either based on sparsity-preserving esti-
mates of H(x), so-called full space methods, or range
and null space decomposition (RND), which elimi-
nate x variables by substitution using the equality con-
straints and require approximations of the projection
of H(x) onto the linear (tangent) subspace (i. e., the
hyperplane) defined by the linearized constraints. Full
space methods ([11,14]), as their name implies, re-
sult in quadratic programming subproblems in the full
space of the x variables and often use analytical, fi-
nite difference, quasi-Newton or a mixture of second
derivatives. RNDmethods, on the other hand, result in
smaller quadratic programming subproblems because
they eliminate x variables using the equality constraints.
However, RND methods [15] must use quasi-Newton
updates to build approximations to the projection of
H(x) on the tangent subspace, which tend to track cur-
vature less effectively than analytical second derivative
approximations.

Methods for Solving
the Recursive Quadratic Programs

Given Bk, an approximation toH(x), the quadratic pro-
gram can be assembled and the corresponding Kuhn–
Tucker conditions for the quadratic programming sub-
problem,

Bk	xk C J>E �k C J>I �k D �g(xk)

and

[J>E J
>
I ]
>	xk D �c(xk);

where JE is the Jacobian matrix of the equality con-
straints and JI is the Jacobian matrix for the active in-
equality constraints, can be solved for �xk, �k and �k.
Methods for solving quadratic programming problems
can be divided into two broad categories, active set
methods and interior point methods.
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Active Set Methods

Active set methods iteratively determine the inequal-
ities that hold as equalities to solve the associated
quadratic program Kuhn–Tucker conditions for �xk,
�k and �k. This is typically accomplished by repeat-
edly applying a set of rules for adding and deleting con-
straints from the estimate of the active set (i. e., an ac-
tive set strategy) until a valid Kuhn–Tucker point (or
solution) is determined. Moreover, the Kuhn–Tucker
conditions for the quadratic program constitute a set
of symmetric linear equations, can be solved using
a variety of symmetric matrix factorization methods
including Cholesky factorization, and the matrix fac-
tors can be modified (or updated) to accommodate
changes in the active set without the need for com-
plete refactorization at each quadratic programming it-
eration. Complete refactorization is only required at
each SQP iterationWhen the quadratic program is con-
vex, descent in the quadratic program can be main-
tained, the associated linear Kuhn–Tucker conditions
have a positive definite projection of the Hessian ma-
trix of the Lagrangian function onto the subspace de-
fined by any active set of constraints, are reasonably
easy to solve, and some guarantee of convergence to
a unique quadratic programming solution (i. e., Kuhn–
Tucker point) can be given. When the quadratic pro-
gram is indefinite (i. e., due to nonconvexities), special
factorization methods must be used to handle the po-
tential indefiniteness of the projected Hessian matrix
of the Lagrangian function, new rules for adding and
deleting constraints to and from the active set are re-
quired, and no guarantees of convergence can usually
be made [12] [3]. Also active set methods can suffer
from a potential combinatorial explosion in computa-
tional overhead under certain circumstances, particu-
larly on large quadratic programming problems.

Interior Point Methods

Recently, interior point methods have been suggested
for quadratic programming [8,9,20] because they have
the potential to solve problems with many variables.
However limited experience in solving quadratic pro-
gramming problems is currently available, and even
less is available for large scale problems. Interior point
methods for quadratic programming are primal-dual
path following algorithms that employ a logarithmic

barrier function, are based on Newton’s method and
permit the use of iterative methods to solve the asso-
ciated Kuhn–Tucker conditions for the quadratic pro-
gram. However, convexity in the quadratic program
is generally required. Typical iterative linear equation-
solving techniques used to solve the associated Kuhn–
Tucker conditions include preconditioned conjugate
gradient, generalized minimum residuals, and other so-
called Krylov (or expanding) subspace methods and
preconditioning techniques often are based on some
partial LU factorization of the Hessian matrix. These
linear equation-solving methods are particularly ad-
vantageous in solving large scale problems because they
avoid fill-in in the coefficient matrix (i. e., turning zero
elements into nonzero elements through the elimina-
tion process) and thus, in principle, reduce both storage
and overall computational workload.

Global Convergence and Stabilization Techniques

Often times, the starting point chosen for initiating
SQP computations is not within the theoretical region
of convergence for a given local solution. Thus it has
become standard practice in the use of SQP methods,
as well as in nonlinear programming in general, to use
some type of technique for forcing convergence from
these so-called ‘poor’ starting points. The most com-
mon stabilization techniques used in SQP methods are
based on either line searching or the use of trust re-
gions.

Line Searching

The underlying concept of using line search functions
in successive quadratic programming is to generate
a monotonically decreasing sequence of line search (or
merit) function values that maintain a compromise be-
tween satisfying the constraints andminimizing the ob-
jective function and guarantee convergence to a station-
ary point of the Lagrangian function. Many line search-
ing techniques in SQP methods are based on the ap-
plication of Armijo’s rule to exact l1 penalty functions
and augmented Lagrangian merit functions. For exam-
ple, Powell [16] uses the nondifferentiable line search
function

�(x; �; �)

D f (x)C
Xˇ̌

� j
ˇ̌ ˇ̌
c j(x)

ˇ̌
C
Xˇ̌

� j
ˇ̌ ˇ̌
c j(x)

ˇ̌
;
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which was suggested in [10] and chooses the line search
parameter, ˛, as the first number in the sequence (1,
0.1, 0.001, . . . ) for which �(xk + ˛�xk, �, �) < �(xk, �,
�) and where �xk, � and � are solution of the current
quadratic programming subproblem. Local superlinear
convergence occurs when ˛ = 1 is chosen in the neigh-
borhood of the solution. A further modification of this
exact penalty function that chooses |�j| = max[|�j|, (|�0j|
+ |�j|)/], where �0j is the Lagrange multiplier for the jth
constraint on the previous iteration, has been suggested
in [16] in order to avoid placing too much emphasis
on satisfying the constraints in the line search func-
tion. While this modification frequently gives good nu-
merical performance, convergence guarantees can not
be given because upper bounds on the multipliers are
required but not known in advance. Cycling has been
observed in SQP methods using nondifferentiable line
search functions [5] and this, in turn, has led to the de-
velopment of such things as the watchdog technique
[6], which allows the line search function values to in-
crease on some iterations.

A monotonic decreasing sequence of line search
function values can also be maintained through a prop-
erty known as descent (i. e., that g>LS�xk < 0, where
gLS is the gradient of the line search function). This re-
quires that the line search function be differentiable and
has led to the use of the differentiable augmented La-
grangian type line search functions [17] given by

�(x; �; �; r)

D f (x) � [�>c(x) � rc(x)>c(x)]� P(x; �; r);

where r is a penalty parameter that is adjusted itera-
tively, where P(x, �, r) =

P
pi(x, �, r) and where pi(x,

�i, r) = [�ici(x) � rci(x)2] if the ith inequality is active
and pi(x, �i, r) = �2

i /r if it is inactive.

Trust RegionMethods

Trust region methods for nonlinearly equality con-
strained optimization [4,18] are another way of forcing
convergence from ‘poor’ starting points. More recent
work can be found in [7]. These techniques add a single
trust region bound to the set of linearized equality con-
straints and solve the modified quadratic programming
subproblem defined by
(
min g(xk)>	xk C 1

2	x>k Bk	xk
s.t. c(xk)C J(xk)	xk D 0; k	xkk � 	k;

where �k is a trust region radius that is adjusted from
information gathered from one iteration to the next.
The primary advantages of trust region methods are
that they are relatively straightforward to implement
and permit the Hessian matrix of the Lagrangian func-
tion to be indefinite. While often successful, trust re-
gion methods have the particular disadvantage of caus-
ing infeasible linearized constraints. That is, when the
trust region is too small, it may not be possible to sat-
isfy the linearized constraints within the trust region.
Other trust region methods for constrained optimiza-
tion that define the trust region in terms of a set of
bounds on each variable have been suggested [11] and
thus applicable to problems involving inequality con-
straints. However, these also can lead to infeasible lin-
earized constraint sets.

A Generic SQP Algorithm

A typical, generic successive quadratic programming
algorithm is shown below.
1) Initialize x and B0; define a convergence tolerance, �

> 0, and set k = 0.
2) Evaluate f (xk), g(xk), c(xk) and J(xk).
3) If k [gL(xk), c(xk)]> k2 < �, c(xk)� 0 and�� 0, then

stop; else go to step 4.
4) Construct the quadratic program

(
min g(xk)>	xk C 1

2	x>k Bk	xk
s.t. c(xk)C J(xk)>	xk � 0

and solve it for�xk, �, and �.
5) Determine xk + 1 from by either line searching, trust

regions or some other means.
6) Calculate a new approximation to the Hessian ma-

trix, Bk + 1, from analytical, finite difference, quasi-
Newton or mixed second derivatives.

7) Set k = k + 1 and go to step 2.

Some Brief Comments
on Numerical Performance

The usual measures of numerical performance in non-
linear programming, as well as other areas of numer-
ical mathematics, are algorithmic reliability and effi-
ciency. Reliability refers to the ability of an algorithm to
find a local optimum from starting points that are ‘far
away’ from the solution. That is, the issue of reliabil-
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ity is equivalent to the question: will the SQP method
converge to a local constrained optimum if the start-
ing point is ‘far away’ from this solution, for whatever
reasons? Clearly the answer to this question is strongly
related to the use of stabilization techniques and is the
primary motivation for the interest in the global con-
vergence characteristic of SQP methods. Efficiency, on
the other hand, is usually measured in terms of func-
tion and gradient evaluations (or iterations) and is re-
lated to the local convergence properties of SQP meth-
ods. When the SQP algorithm gets close to the solution,
rapid convergence to the optimum that requires fewer
function and gradient evaluations is desired. Many nu-
merical studies by the principle authors of SQP meth-
ods, as well as others in the mathematical sciences [17],
and various branches of engineering [1,11], have clearly
demonstrated that successive quadratic programming
methods are among the most reliable and efficient algo-
rithms presently available for solving nonlinearly con-
strained optimization problems.

However, there are many subtle and interrelated is-
sues (e. g., sparsity, nonconvexity, constraint infeasibil-
ity, as well as problem-specific issues like model incon-
sistencies and limitations) that have bearing on numer-
ical performance and therefore considerable care must
be exercised during both implementation and problem-
solving. Often trades between advantages and disad-
vantages must be accepted solely out of necessity.

See also

� Feasible Sequential Quadratic Programming
� Optimization with Equilibrium Constraints:

A Piecewise SQP Approach
� Sequential Quadratic Programming: Interior Point

Methods for Distributed Optimal Control
Problems

� Successive Quadratic Programming: Applications in
Distillation Systems

� Successive Quadratic Programming: Applications in
the Process Industry

� Successive Quadratic Programming: Decomposition
Methods

� Successive Quadratic Programming: Full Space
Methods

� Successive Quadratic Programming: Solution by
Active Sets and Interior Point Methods
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The separation of the chemical components of a mix-
ture into a variety of useful product streams is a com-
mon task in the chemical and petroleum industries and
distillation represents the most common method for
this task. Some distillation products may be sold while
others may be sent to different parts of the same chem-
ical plant for further processing. Distillation takes place
in a distillation column (or large tower) that usually has
a number of stages (or trays) on which vapor flowing up
the column is brought into contact with liquid flowing
down the column. It is this contact between liquid and
vapor that affects the separation. Unfortunately distilla-
tion is often very energy intensive and thus very costly.
As a result, optimal operation of a distillation or se-
quence of distillation columns is desirable.

In a mathematical programming framework, the
optimal design of a distillation column is a mixed in-
teger nonlinear program (MINLP) because it involves
both discrete variables (i. e., the number of stages in
the column, the feed tray location, etc.) and continuous
variables (i. e., flow rates, compositions, temperatures,
pressures, etc. on all trays). Once the design or discrete
variables are fixed, the optimal operation of a given col-
umn configuration becomes a nonlinear programming
(NLP) problem since then it only involves continuous
variables. These NLP problems tend to be highly non-
linear and nonconvex due to the nature of the equations
of conservation of energy and phase equilibrium.

In recent years, there has been some work on the ap-
plication of full space [7,8,9] and decomposition meth-
ods [2,11] of successive quadratic programming (SQP)
to distillation. In particular, A. Kumar and A. Lucia [6]
proposed a full space SQP method based on thermo-
dynamically consistent quasi-Newton formulae that ex-
ploit the homogeneity of the second derivatives of the
energy balance and phase equilibrium equations. These
thermodynamically consistent quasi-Newton updates
were used to build appropriate parts of the Hessian ma-
trix of the Lagrangian function and shown to result in
better numerical performance than traditional secant
updates on a number of distillation examples. Lucia and
J. Xu [8] developed an indefinite quadratic program-
ming method based on Bunch and Parlett factoriza-
tion [3] of the entire coefficient matrix of the Kuhn–
Tucker conditions, an active set strategy, and the use of
trust regions to address the strong constraint noncon-
vexities inherent in distillation optimization problems.
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Results from this work showed that permitting indefi-
niteness often provides a better local quadratic model
for the Lagrangian function and that the resulting algo-
rithms were capable of easily solving distillation exam-
ples with which [7] had difficulty. In [9] a refined active
set strategy, constrained pivoting and numerical matrix
factor updating for indefinite quadratic programming
were proposed and good numerical performance was
obtained for a family of SQPmethods on a set of 15 dis-
tillations, some of which were extractive and azeotropic
distillations.

In contrast, L.T. Biegler and C. Schmid [2,11] have
applied range and null space decomposition (RND)
SQP methods to distillation optimization problems.
They ‘tailor’ an RND method for use with an existing
simulation model through the use of an interface in or-
der to illustrate that decomposition SQP methods can
be easily applied to process models like distillation. In
particular, [2] reports good numerical performance for
a set of four distillation examples involving ideal binary
and ternary mixtures, along with a discussion of issues
such as the need for preprocessing and quadratic pro-
gramming constraint infeasibility. See [2] for a discus-
sion of the need for and ways in which range space cur-
vature can be obtained.

The issues that are important in the application of
SQP methods to distillation systems include:
� formulation;
� the mathematical model;
� Hessian matrix approximations, sparsity and other

exploitable properties;
� initialization procedures for the unknown variables

and multipliers; and
� algorithmic and other implementation issues.

SQP Formulation

Distillation optimization problems usually contain be-
tween 100 and 500 unknown variables, roughly the
same number of equality constraints and twice that
number of inequality constraints. Thus the number of
degrees of freedom is often small compared to the num-
ber of unknowns. As a result, both full space and de-
composition SQP methods can be used and the ques-
tion of which approach is better still remains open. Re-
gardless of the approach, a general mathematical rep-
resentation of the distillation optimization problem is

given by
(
min f (x)
s.t. c(x) � 0;

where x is a vector of unknown variables of length n
which represents an estimate of the local minimum,
f (x) is a twice continuously differentiable objective
function and c(x), the vector of equality and/or inequal-
ity constraints, is also twice continuously differentiable
and nonlinear. This constrained optimization problem
is commonly recast in terms of the Lagrangian function,
L(x), defined by

L(x) D f (x)C �>c(x)C �>c(x);

where � and � are vectors of Lagrange and Kuhn–
Tucker multipliers associated with the equality and
inequality constraints respectively. The Kuhn–Tucker
conditions are solved iteratively using a recursive
quadratic programming formulation to define the
change in the unknown variables and multipliers. This
iterative quadratic programming subproblem, which is
based on a quadratic approximation to the Lagrangian
function subject to linearized constraints, is given by
(
min g(xk)>	xk C 1

2 x
>
k Bk	xk

s.t c(xk)C J(xk)	xk � 0;

where �xk is the change in the unknown variables,
g(xk) is the gradient of the objective function, J(xk)
is the Jacobian matrix of the constraint functions, Bk

is some approximation to the true Hessian matrix of
the Lagrangian function, H(x) = Hf (x) +

P
�iHci(x) +P

�iHci(x), where Hf (x) and Hci(x) refer to the true
Hessian matrices of the objective function and ith con-
straint respectively. When full space SQP methods are
used, this recursive quadratic programming problem
is solved directly. When range and null space decom-
position (RND) methods are used, the equality con-
straints are used to ‘eliminate’ variables and a ‘reduced’
quadratic programming problem, given by
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min (Z>k g(xk)
�Z>k Bk [Yk[JEYk]�1c(xk)])>	zk
C 1

2 z
>
k (Z

>
k BkZk)	zk

s.t. xL C Yk[JEYk ]�1[c(xk)] � Zk	zk
� xU C Yk [JEYk ]�1[c(xk)]
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is solved. Here Y and Z represent bases for the range
and null space of the Jacobian matrix respectively,
�xk = Y�yk + Z�zk, where �zk and �yk = �
[JEYk]�1[c(xk)] are the change in the unknown vari-
ables in the null space and range respectively, JE is the
Jacobian matrix of the equality constraints, (Z>k BkZk)
is the symmetric projection of the Hessian matrix of
the Lagrangian function onto the linearized constraints,
and xL and xU are lower and upper bounds on the x
variables.

Mathematical Model

The objective function in distillation optimization can
be linear or nonlinear while the equality constraints
are usually a mixture of highly nonlinear and linear al-
gebraic equations. The inequality constraints, on the
other hand, are simple bounds on variables but other
nonlinear inequalities can occur.

Objective Function

The objective function for a typical distillation opti-
mization is usually some function that represents a bal-
ance between the energy-related (or other operating)
costs of the column and the profit obtained from the
sale (or credits) of products. One example, taken from
[7], might be

min f D c1(�QC C QR) � (vClk C lRhk)

where QC and QR are the condenser and reboiler heat
duties (or energy demands) respectively and vCl k and l

R
hk

are the component flow rates of the overhead and bot-
toms products. Here the subscripts lk and hk denote
the light key component (or low boiling component)
and heavy key component (or high boiling component)
respectively, the superscripts C and R denote the con-
denser (or top stage) and reboiler (or bottom stage) of
the column and c1 is a scaling factor that helps balance
the scale between the energy costs and product flow
variables. Usually the energy demands consist of cool-
ing water requirements for the condenser and the steam
demands for the reboiler. Moreover, the negative sign
in the condenser duty in the above objective function
merely accounts for the thermodynamic convention as-
sociated with heat transfer and does not represent sub-
traction of the condenser duty because the value of QC

is always negative. Other objective functional forms ex-
ist as well.

Equality Constraints

The equality constraints in distillation optimization
consist of the conservation of mass and energy as well
as the phase equilibrium equations, the latter of which
relates the composition of the vapor to that of the liq-
uid leaving each stage. The equations for the jth equi-
librium stage are the component mass balances

fi j C li; j�1 � li j � vi j C vi; jC1 D 0;

i D 1; : : : ; nc ;

the phase equilibrium relationships

Ki j
li jP
lk j
�

vi jP
vk j
D 0; i D 1; : : : ; nc :

and the conservation of energy
�X

fi j
�
Hf j C

�X
li; j�1

�
Hj�1

�
�X

li j
�
Hj �

�X
vi j
�
hj

C
�X

vi; jC1

�
hjC1 C Qj D 0:

In these equations, lij and vij are the flow rates of com-
ponent i in the liquid and vapor respectively on the jth
stage, Kij is the equilibrium ratio (or K-value) for the
ith component on the jth stage, Hj and hj are the corre-
sponding liquid and vapor enthalpies, f ij is the ith com-
ponent feed flow rate to the jth stage, Qj is the heat duty
to the jth stage and nc is the number of components.
Moreover, the equilibrium ratios, Kij, and enthalpies,
Hj and hj, are strongly nonlinear functions of the com-
ponent flow rates, temperature, Tj, and pressure, pj on
the jth stage. Finally, for a column with ns equilibrium
stages, there are ns(2nc + 1) equality constraints and
ns(2nc + 2) unknown variables (i. e., the lijs, vijs, Tjs and
Qjs). Usually, the pressure on each stage is fixed in some
manner so pressure is not an unknown variable. Thus
there are ns degrees of freedom. However, it is usual,
but not strictly necessary, that adiabatic operation (i. e.,
no heat withdrawn or added) for all trays except the top
and bottom tray is assumed. This gives the additional
equality constraints

Qj D 0; j D 2; : : : ; ns � 1;
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and results in just two degrees of freedom for the
simplest and most common column configuration.
Columns with heat withdrawal or addition would nec-
essarily have more degrees of freedom.

Inequality Constraints

The inequality constraints in distillation optimization
problems are usually comprised of simple bounds on
variables and product flows. In particular, for the jth
equilibrium stage there are nonnegativity bounds on
the component flow rates

li j; vi j � 0; i D 1; : : : ; nc ;

upper and lower bounds on the temperature

Tmin � Tj � Tmax

in order to keep the calculations of Kij,Hj and hj physi-
cally meaningful, and in some cases explicit bounds on
product component flow rates

li;nsvi1 �
X

fi j; i D 1; : : : ; nc ;

to ensure that the mass balance around the column is
satisfied.

LagrangianHessianMatrix Approximations

The Hessian matrix of the Lagrangian function re-
quires that second derivatives of the objective function
and nonlinear constraints be approximated and this
can be done in any number of ways. When full space
SQPmethods are used to solve distillation optimization
problems, analytical second derivative, finite difference
second derivatives, quasi-Newton approximations or
a mixture of analytical and quasi-Newton derivatives
of the objective function and constraints (hybrid meth-
ods) can be used. In contrast, when decomposition SQP
methods are used [1], the modified Broyden–Fletcher–
Goldfarb–Shanno (BFGS) update (see [10]) is usually
used to approximate the projection of the Lagrangian
Hessian matrix, Z>k BkZk, to avoid explicit representa-
tion of Bk and the computation of a matrix triple prod-
uct.

In full space SQP methods, all techniques for esti-
mating the Hessian matrix of the Lagrangian function
can be put in the form

Bk D C(xk)C Ak

where C(xk) is called the computed part of the Hessian
matrix and is calculated from analytical derivatives and
Ak, the approximated part, can be computed either an-
alytically, from finite differences or from an appropri-
ate quasi-Newton formula [6]. Note that the objective
function and the phase equilibrium and energy balance
constraints can have both computed and approximated
parts, and in particular, the second derivatives of the
phase equilibrium and energy balance constraints have
a natural division into thermodynamically ideal and
nonideal ideal and nonideal (or excess) parts. The ideal
parts are readily available in analytical form and consti-
tute much of C(xk) while the nonideal parts depend on
‘models’ for the activity coefficient and/or fugacity co-
efficient and excess enthalpy and are usually contained
in Ak. Furthermore, because of the stagewise structure
of distillation columns, both the computed and approx-
imated parts are sparse and tend to be comprised of
many small dense blocks. Thus quasi-Newton formulas
such as the Powell-symmetric-Broyden (PSB) update
can be used to build the second derivative approxima-
tions of each block [6,7]. Also, certain parts of the equi-
librium ratios, Kij, and enthalpies, Hj and hj, are homo-
geneous functions of the unknown variables (i. e., the
component molar flow rates) and this gives rise to other
matrix constraints that can be exploited when building
quasi-Newton approximations to the blocks of A. That
is, the equilibrium ratio is commonly defined by

Ki j D
�i j f 0i j
�i j p j

;

where � ij is the liquid activity coefficient, f 0i j is the pure
component fugacity and � ij is the vapor fugacity coeffi-
cient for the ith component on the jth stage. The liquid
and vapor molar enthalpies, on the other hand, usually
have the form

Hj D HID
j C HE

j ;

hj D hIDj C hEj ;

where the superscripts ID and E denote the ideal and
excess (or nonideal) parts respectively. The functions
ln � ij and HE

j are homogeneous functions of the liq-
uid component molar flow rates on stage j while ln
� ij and hEj are homogeneous functions of the vapor
component molar flow rates from the jth stage. Be-
cause these thermodynamic properties are homoge-
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neous functions, they give rise to the matrix conditions

[r2 ln �i j]l j D � ln �i j and [r2HE
j ]l j D 0;

for the liquid phase on the jth stage and

[r2 ln�i j]v j D � ln� j; [r2hEj ]v j D 0;

for the vapor phase on stage j. In [6] it is suggested that
these thermodynamic constraints be used, in conjunc-
tion with traditional secant conditions, to build better
approximations of the appropriate blocks of Ak and use
one iterated projection [4] from the space of secant ma-
trices to the space of thermodynamically constrained
matrices to approximate the second derivatives of the
activity coefficients, fugacity coefficients and excess en-
thalpies. In [9] a variety of techniques was used for ap-
proximating the blocks of Ak, including a partial New-
ton strategy in which each block of Ak is zero at each
SQP iteration, a secant only hybrid (SOH) method in
which each block of Ak is approximated by the PSB for-
mula and only associated secant information for that
block, a thermodynamically constrained hybrid (TCH)
method in which both secant and thermodynamic con-
straints are used in conjunction with iterated projec-
tions for each block of Ak, and Newton’s (or Wilson’s
[12]) method, in which analytical or finite difference
second derivatives of each block of Ak are used.

Biegler et al. [2,11] use the modified BFGS formula
exclusively to approximate the projection of the La-
grangian Hessian matrix on the tangent subspace de-
fined by the linearized constraints in RND SQP meth-
ods. Curvature information in the range space is gener-
ally neglected; however [2] suggests the use of and tech-
niques for obtaining range space curvature.

Initialization of the UnknownVariables
andMultipliers

The initialization of the unknown variables and La-
grange and Kuhn–Tucker multipliers is an extremely
important aspect of the successful implementation and
application of SQP methods to distillation optimiza-
tion, regardless of whether full space or decomposition
SQP methods are used, and can represent the differ-
ence between success and failure in problem solving.
‘Good’ initial values of the unknowns and multipliers
often prevent infeasible quadratic programming sub-
problems. In many cases, a base design or simulation

is available, in which the equality constraints are solved
for a given set of specifications for the column (i. e., ad-
ditional (usually two) equality constraints that exhaust
the number of degrees of freedom). See [9]. This base
case simulation provides both feasible and qualitatively
correct initial estimates of the unknown variables and,
while feasibility is not strictly necessary, it does usually
significantly improve the numerical performance of full
space SQP methods on distillation optimization prob-
lems. This is because much of the strong nonlinearity
in distillation optimization is contained in the equality
constraints (i. e., phase equilibrium and energy balance
equations) and feasible starting points usually result in
iterates that track the constraint surface more closely
than infeasible starting points. Both full space and de-
composition SQP methods benefit from feasible start-
ing points. The base case simulation also identifies any
active inequalities at the feasible starting point.

Decomposition methods for distillation optimiza-
tion can also make use of simulations to initialize the
unknown variables. However, [11] uses an initializa-
tion procedure from the simulation program to give an
infeasible but linearly consistent starting point for dis-
tillation optimization problems solved by the ‘tailored’
RND SQP method.

Good initial estimates of the Lagrange and Kuhn–
Tucker multipliers are also important to the application
of SQP methods to distillation optimization. In [6] all
initial Kuhn–Tucker multipliers are set to zero (unless
the base case simulation suggests otherwise) and the La-
grange multipliers are initialized by solving the equa-
tions

JE J>E � D �JE g(xk);

where again JE is the part of the Jacobian matrix cor-
responding to the equality (or active) constraints. Be-
cause the number of equality constraints can be large
and because the sparsity of JEJ>E need not be anything
like the sparsity of JE, In [6] it is suggested that the
above equation be solved for a small ‘model’ column
consisting of a condenser (top stage), reboiler (bottom
stage), all feed stages and one stage between the con-
denser, reboiler and each feed tray and then the result-
ing multiplier values be distributed by equation-type
and section throughout the actual larger column. Thus
for a ‘conventional’ column with one feed stage, there
is one rectifying stage (between the feed and the con-
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denser) and one stripping tray (between the feed and
the reboiler) and five total stages. Lagrange multipli-
ers for this ‘model’ column are calculated and then dis-
tributed by equation-type within different sections in
the column. That is, the Lagrange multipliers for the
mass balance, energy balance and phase equilibrium
equations for the condenser, reboiler and all feed stages
are assigned their values calculated for the model col-
umn while the Lagrange multipliers for the mass bal-
ance, energy balance and phase equilibrium equations
in the rectifying section are all assigned the same re-
spective values calculated for the single rectifying tray
in the model column. The same exact distribution pro-
cedure is used for all stages in the stripping section of
the column.

Initial estimates of the the Lagrange multiplier in
decomposition SQP methods are not strictly required
since the initial projected Hessian matrix, Z>k BkZk,
does not strictly require these values to be known.
Moreover, the Lagrange multipliers, as well as any ac-
tive Kuhn–Tucker multipliers, can be easily calculated
from the relationship

Y>k J>E �k D �Y>k g(xk)

once the unknown variables have been initialized.

Algorithmic and Other Implementation Issues

The sparsity of the constraint Jacobian matrix, charac-
teristics of the resulting quadratic programming sub-
problems and the use of stabilization techniques such
as line searching are also important in assembling the
correct set of computer tools for the application of SQP
methods to distillation optimization problems.

The Jacobian matrix for the equality constraints in
distillation optimization usually has a block tridiago-
nal structure, unless there are pumparounds. The in-
equality constraints, on the other hand, result in a di-
agonal structure for their part of the constraint Jaco-
bian matrix. As a result, both full space and decompo-
sition SQP methods must exploit the sparsity of the Ja-
cobian matrix in distillation problems to keep storage
(i. e., fill-in) and computational effort (arithmetic op-
erations) tractible. Exploiting the sparsity of the con-
straint Jacobian matrix is necessary in full space SQP
method in order to effectively store the linear operators
used in solving the large recursive quadratic program-

ming subproblems that occur. That is, sparsity must be
exploited in the matrix factorizations in active set meth-
ods or the natural operators in interior point meth-
ods for solving large quadratic programming problems.
In contrast, the use of sparse matrix techniques sig-
nificantly reduces both storage of the Jacobian matrix
and the storage and computational effort required to
form the (factors of the) matrices Y (i. e., the basis for
the range), [JEYk]�1, and Yk[JEYk]�1 in decomposition
SQP methods. D. Goldfarb [5] provides a good set of
general guidelines for many of the issues related to the
sparsity of both the constraint Jacobian and Hessian
matrices in recursive quadratic programming.

In decomposition SQP methods, the projection of
the Lagrangian Hessian matrix is almost always approx-
imated by the modified BFGS formula [10] and thus
the ‘reduced’ quadratic programming subproblems are
positive definite and have a unique solution at each SQP
iteration. This is a significant advantage in some re-
spects but the BFGS formula can give slower conver-
gence than desired at the SQP level of the computa-
tions in distillation optimization because it often has
difficulty tracking the strong curvature of the noncon-
vex constraint surface. In full space SQP methods, the
projected Hessian Lagrangian matrix can be either pos-
itive definite or indefinite depending on the way in
which it is approximated. If Levenberg–Marquardt or
modified Schur complements are used in conjunction
with sparse factorizations like Cholesky factorization,
positive definiteness can be maintained and convex
quadratic programs result. On the other hand, when
a hybrid approach is used, the blocks of Ak usually have
no sign definiteness in distillation optimization because
the phase equilibrium and energy balance equations are
nonconvex and strongly nonlinear. Thus the resulting
(projection of the) Hessian matrix of the Lagrangian
function can be indefinite and indefinite quadratic pro-
grams result, which can be difficult to solve.

Stabilization techniques such as line searching [2]
and trust region methods [8,9] have been used in distil-
lation optimization. Biegler [2] suggests the use of line
searching techniques such as the Armijo rule (see [10])
but gives few details on associated numerical perfor-
mance. Lucia et al. [9] recommend the use of ‘asymmet-
ric’ trust region methods in distillation optimization to
improve numerical performance and also alleviate dif-
ficulties associated with infeasible quadratic programs.
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Comments on the Numerical Performance
of SQPMethods on Distillation Problems

There are a limited number of papers in the literature
on the optimization of distillation systems using SQP
methods. Lucia and Kumar [6] minimized the operat-
ing costs of a methanol recovery column with 10 equi-
librium stage and two components using SQP meth-
ods in which the Lagrangian Hessian matrix was ap-
proximated by a partial Newton method, SOH and
TCH methods and all analytical second derivative (i. e.,
Wilson’s method). They report failure for all meth-
ods except the thermodynamically constrained hybrid
method on this relatively small problem involving 50
unknown variables. They [7] subsequently applied the
same SQP methods, with the exception of the partial
Newton method, to a set of five distillation examples
ranging in size from 35 to 176 unknown variables and
report good numerical performance for the thermo-
dynamically constrained hybrid method. In particular,
they discuss the advantages of using feasible starting
points for the unknown variables and ‘good’ qualita-
tive estimates of the Lagrange multipliers. In [8] the
need for feasible starting points is reiterated and also
contains a discussion of the occurrence of line search-
ing difficulties and uphill search directions in the ex-
amples studied in [7]. See [9] for the numerical perfor-
mance of the partial Newton, SOH, TCH, Wilson and
range and null space decomposition (RND) SQPmeth-
ods on a set of 15 examples, some of which contain
strongly nonideal (and therefore nonlinear) extractive
and azeotropic distillations. In this study, most meth-
ods performed quite well with a slight advantage go-
ing to Wilson’s method over the TCH method. The
RND method performed worst of all on this set of ex-
amples, followed by partial Newton and then the SOH
and TCH methods in terms of reliability and efficiency.
See [9] also for the failure of line searching techniques
such as Armijo’s rule and an augmented Lagrangian
line search function as well as the occurrence of in-
feasible linearized constraint sets and the usefulness of
‘asymmetric’ trust regions in forcing convergence when
difficulties arise. See, on the other hand, [11] for numer-
ical results for two binary distillations and two ternary
distillations, ranging in size from 60 to 252 unknown
variables. Few numerical details are presented with re-
gard to the physical properties models used, although

the mixtures studied can be considered ideal, and some
discussion of infeasible quadratic programs from ‘poor’
starting points is given.
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This article discusses the use of successive quadratic
programming (SQP) in industry, together with tech-
niques for mathematical optimization and process
modeling to improve economic performance of plants
in process industries. First, different types of flowsheet-
ing optimization problems based on SQP methods and
process models are introduced briefly. Then a number
of process optimization formulations and strategies are

discussed, along with how the SQP algorithm needs to
be developed and extended to take advantage of large
scale systems. In particular, the development of reduced
Hessian SQP (rSQP) is presented along with different
variants. Finally, literature on industrial and academi-
cal applications of SQP and rSQP is given.

Introduction

Complex engineering models can be formulated as
large systems of differential and algebraic equations,
constructed by linking smaller submodels. These com-
plex engineering models can constitute a larger system
which leads to flowsheet optimization. This optimiza-
tion problem can be posed as considering a general
problem with different models and connections shown
in Fig. 1 schematically.

The mathematical representation of the flowsheet
optimization and simulation problem shown symbol-
ically in Fig. 1 can be written as

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
X
i

f (wMi ; yMi ; uMi)

s.t. M1(wM1; yM1; uM1) D 0
:::

Mn(WMn; yMn; uMn) D 0
C(wMi ; yMi ; uMi) D 0
for i D 1; : : : ; #units

w 2 W; y 2 Y ; u 2 U;

(1)

where Mi are the chemical process models that can be
solved with specialized solution strategies. Also, wMi are
the internal variables inside of each model Mi; yMi are
the input stream variables, and uMi are the decision
variables. Here C(w, y, u) = 0 includes the additional
constraints that arise from coupling of models and the
sets W, Y and U represent lower and upper bounds on
their respective variables.

In these optimization problems, the overall equa-
tion system usually results in very large systems of al-
gebraic equations and variables (typically, 104 � 106)
with relatively few degrees of freedom (typically, < 100).
The solution and optimization of these models are fre-
quently effected by calculation procedures that exploit
their equation structure. Because it requires fewer it-
erations and because of its flexibility in interfacing to
process models, successive quadratic programming has
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Successive Quadratic Programming: Applications in the Process Industry, Figure 1
General representation of flowsheet optimization problem

arguably become the most popular method for solving
these nonlinearly constrained optimization problems.

The objective of this article is to characterize usage
of SQP in different techniques for process flowsheeting
optimization problem and to give an overview on in-
dustrial applications of these techniques. We also point
out some remaining difficulties which still prevent ap-
plication of simultaneous optimization for very large
systems. In Section 2 we present the SQP algorithm and
discuss how this is interfaced to process models. Sec-
tion 3 discusses some large scale extensions to SQP and
focuses on the rSQP technique. Here, the flowsheeting
modes, modular and equation oriented (EO), are de-
scribed in Section 4 in order to provide more detail on
process optimization problems. This is followed in Sec-
tion 5 with some industrial examples for both off-line
and on-line optimization. Conclusions and directions
for future research are then given in Section 6.

Successive Quadratic Programming

In this section we examine the underlying ideas of
the SQP method and the theory that establishes it as
a framework fromwhich effective algorithms can be de-
rived. In addition, an excellent review of the develop-
ment of the SQP algorithm can be found in [9]. For pro-
cess optimization we describe the most popular mani-
festations of the method, discuss the theoretical proper-
ties, and comment on their practical implementations.
The nonlinear programming problem to be solved can
be formulated as

(NLP)

8̂
<̂
ˆ̂:

min f (x)
s.t c(x) D 0

xl � x � xu

where the objective function f : Rn ! R, equality con-
straints c: Rn ! Rm and any nonlinear inequality con-

straints can be expressed through simple bounds and
additional equality constraints by adding slack vari-
ables. Here the great strength of the SQP method is
its ability to solve problems with nonlinear constraints.
For this reason, it is assumed that (NLP) contains at
least one nonlinear constraint function.

The basic idea of SQP is to model (NLP) at a given
point, say xk, by a quadratic programming subproblem,
and then to use the solution to this subproblem to con-
struct a better approximation xk+ 1. This process is it-
erated to create a sequence of approximations that, it is
hoped, will converge to a solution x�. The key to under-
standing the performance and theory of SQP is the fact
that, with an appropriate choice of quadratic subprob-
lem, the method can be viewed as the natural extension
of Newton and quasi-Newton methods [16] to the con-
strained optimization setting. Thus one would expect
SQP methods to share the characteristics of Newton-
like methods, namely, rapid convergence when iterates
are close to the solution, but it is possible to have erratic
behavior that needs to be carefully controlled when iter-
ates are far from a solution. While this correspondence
is valid, in general, the presence of constraints makes
both the analysis and implementation of SQP methods
significantly more complex.

Two additional properties of the SQP methods
should be pointed out. First, SQP is not a feasible-point
method; that is, neither the initial point nor any of the
subsequent iterates need to be feasible (a feasible point
satisfies all of the constraints of (NLP)). This is a major
advantage since finding a feasible point for nonlinear
constraints may be nearly as hard as solving (NLP) it-
self. SQP methods can be easily modified so that lin-
ear constraints, including simple bounds, are always
satisfied. Second, the success of the SQP methods de-
pends on the existence of rapid and accurate algorithms
for solving quadratic programs. Fortunately, there are
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good procedures for solving quadratic programs. In-
deed, when there are only equality constraints, the so-
lution to a quadratic program reduces to the solution of
a linear system of equations. When there are inequality
constraints a sequence of these systems is to be solved,
in principle.

A successful SQP algorithm also needs adaptive
safeguards that deal with general problems. The algo-
rithmic details to overcome such difficulties, as well as
more mundane questions – how to choose parameters,
how to recognize convergence, and how to carry out the
numerical linear algebra – are lumped under the term
‘implementation’. Some description of SQP implemen-
tations for SQP is provided in [6].

The basic algorithm for the SQP method can be
summarized as follows:

For each iteration k:
1 Evaluate the objective and functions, f (xk)

and c(xk) and their gradients
2 Solve a quadratic programming (QP) problem

to determine a search direction, dk for the vari-
ables, xk . If a termination criterion is satisfied
(i.e., xk is a KKT point), STOP.

3 Find a steplength that leads to a sufficient im-
provement toward the solution of (NLP).This
is done either by a trust region or a line search
algorithm. In the case of a line search, set
xk+1 = xk + ˛kdk , where ˛k is a steplength pa-
rameter.
For the trust region method, we constrain
dk 2 4, where 4 is adjusted and xk+1 = xk +
dk .

Basic algorithm for the SQPmethod

To consider two components of this algorithm, the
QP subproblem for problem(NLP) method can be for-
mulated as follows

8̂
<̂
ˆ̂:

min
d2Rn

g(xk)>d C 1
2d
>W(xk)d

s.t. c(xk)C A(xk)>d D 0
xL � xk C d � xu

(2)

where g denotes the gradient of f , W(x) denotesthe
Hessian of the Lagrangian function, L(x, �) = f (x) +
�>c(x) and A denotes the n × m matrix of constraint

gradients,

A(xk) D [rc1(xk); : : : ;rcm(xk)]:

To establish global convergence for constrained opti-
mization algorithms, i. e., convergence to KKT points
from poor starting points, a way of measuring progress
towards a solution is needed. For SQP this is done by
constructing a merit function, a reduction in which im-
plies that an acceptable step has been taken. For deter-
mination of the steplength, either with a trust region
or line search method, a merit function is used to bal-
ance the two goals of decreasing the objective function
and satisfying the constraints of the nonlinear program
(NLP). Choices for the merit function include the non-
differentiable `1 merit function

'
(x) D f (x)C � kc(x)k1 (3)

from [24], and the augmented Lagrangian function

'
(x) D f (x)C �(x)>c(x)C �
kc(x)k2

2
(4)

from [18].
Using these components, S.P. Han [24] proved that

if a line search stepsize, ˛k, is chosen by decreas-
ing an exact penalty function along the QP computed
search direction dk, and the QPs are convex, solv-
able and bounded below, then the SQP algorithm con-
verges to a KKT point from any starting point, im-
plying global convergence. However, employing this
line search function often led to very small stepsizes,
and consequently, slow convergence rates in the neigh-
borhood of the solution. M.J.D. Powell [34] modified
this procedure to introduce a less stringent line search
function. However, this function was neither globally
convergent, nor locally superlinear. Several researchers
have considered the line search strategies for SQP. K.
Schittkowski [37,38] and H. Yamashita [48] proposed
an augmented Lagrangian merit function for the line
search.

R.H. Byrd and J. Nocedal [11] give an analysis of
the two merit functions and their convergence proper-
ties for a reduced Hessian algorithm. The augmented
Lagrange function has been used widely but its perfor-
mance is sensitive to the multiplier estimates and the
penalty parameter, �. On the other hand, the `1 merit
function can suffer from the Maratos effect (slow con-
vergence) near the solution, although a nonmonotonic
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line search such as watchdog technique [13] can be used
to avoid this effect. This merit function also has the
advantage of not requiring estimates of multiplier val-
ues at each iteration, even though the penalty param-
eter is usually based on Lagrange multiplier estimates.
For this reason, in [8] a simpler measure is considered
that does not require Lagrange multiplier estimates, but
still maintains descent properties for '
(x) as discussed
later.

Finally, Byrd and Nocedal [11] summarize and ex-
tend local convergence properties of SQP. In particular,
if full steps are taken in the neighborhood of the solu-
tion, a variety of superlinear convergence rates can be
classified and these depend on how W(x) is calculated
or approximated.

Efficient SQP algorithms in the large scale case de-
pend on carefully addressing many factors. Problems
are considered large if, to solve them efficiently, either
their structure must be exploited or the storage andma-
nipulation of the matrices involved must be handled in
a special manner. The most obvious structure, and the
most commonly considered, is the sparsity of the matri-
ces. Typically in large scale problems most constraints
depend only on a few of the variables and the objective
function is ‘partially separable’, i. e., it is made of a sum
of functions each of which depends only on a few of the
variables. In such cases matrices are sparse.

The formulation of the problem in terms of SQP
and QP usage is the same as shown in (2). But the solu-
tion strategy and passing of information about the Hes-
sian make a significant difference. For the SQP method
described above, the Hessian matrix is usually supplied
in a dense form, since it is frequently approximated
by a quasi-Newton updating formula. The search di-
rection is determined by using the dense Hessian ap-
proximation. When the problem becomes very large,
passingthis information and solving the QP can become
prohibitively expensive.

For large scale process optimization problems, we
can distinguish twosignificant kinds of SQP algorithms,
full space and reduced space methods. The first ap-
proach applies sparse, full space QP solvers, where nat-
ural problem structure can be exploited [28] based on
analytic first and second derivative matrices. For large
process models, however, second derivatives may be
difficult to obtain and there are generally few decision
variables (i. e., degrees of freedom) despite the large

model size. As a result, we therefore consider a reduced
space SQP (rSQP) decomposition strategy, as described
in the next section.

Reduced Hessian SQPMethods

The reduced Hessian methods approximate only the
portion of theHessian relevant to a subspace of the vari-
ables. The advantages of these methodsare that quasi-
Newton positive definite updates can be used and that
the dimension of the problem is reduced to n�m (pos-
sibly a significant reduction). Several versions of a re-
duced Hessian type of algorithm have been proposed;
they differ in the ways the multiplier vectors are cho-
sen and the way the reduced Hessian approximation is
updated.

In rSQP, the quadratic programming (QP) sub-
problem is reduced to solving a smaller QP in the space
of the independent variables by introducing a nonsin-
gular matrix of order n, which consists of two basis ma-
trices and is written as [Yk Zk], where Yk 2 Rn ×m, Zk

2 Rn × (n�m) and it is assumed that A>k Zk = 0. Thus the
Zk matrix becomes a basis for the tangent space of the
constraintsand the solution can be expressed as

dk D Yk pY C ZkpZ (5)

for vectors pY 2Rm and pZ 2Rn�m. From (5) the linear
constraint defined in (2) becomes

ck C A>k Yk pY D 0: (6)

If Ak is assumed to have full column rank then the non-
singularity of [Yk Zk] implies that the matrix A>k Yk is
nonsingular, so that pY can be determined by (7) as:

pY D �[A>k Yk]�1ck : (7)

Loosely speaking, the pY step serves to improve the so-
lution of the equality constraints, while pZ acts in the
null space of these constraints and serves to minimize
the objective function.

There are a number of ways to form the basis vectors
Y and Z. One of the cheapest ways, that is well-suited to
large scale decomposition, is to partition the variables,
x, into m basic or dependent variables (which are re-
ordered to be the last m variables) and n � m decision
variables. This induces the partition

A(x)> D [N(x) C(x)]; (8)
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where m × m basis matrix C(x) is assumed to be non-
singular. Z(x) and Y(x) are now defined to be

Z(x)> D [Ij � N>C�1>]; Y> D [0jI]: (9)

This choice is particularly popular [18,32] and advan-
tageous when A(x) is large and sparse, because a sparse
LU decomposition of C(x) can often be computed effi-
ciently.

If the variables are partitioned into independent (zI)
and dependent (zD) variables, then the corresponding
search direction can be defined as follows:

d> D [d>I d>D ]; (10)

dI D pz ; (11)

dD D py � C�1NdI; (12)

where py corresponds to a Newton step for the m de-
pendent variables and m equality constraints and pz is
computed by solving a much smaller QP subproblem
than the original problem, as given below. The QP sub-
problem can then be expressed exclusively in terms of
the variable pZ .

8̂
<̂
ˆ̂:

min (Z>k gk C wk)>pZ C 1
2 p
>
Z Bk pZ

s.t. xL � xk � Yk pY � Zk pZ
� xU � xk � Yk pY

(13)

where the reduced matrices Z>WZ and vector
Z>WYpY are given (or approximated) by Bk and wk,
respectively. This decomposition reduces the Hessian
matrix from order n to order n � m but we are still left
with n � m simple bounds on the variables pZ and m
bounds from the dependent variables, which are pro-
jected into the space of the independent variables. De-
tails of the reducedHessian SQP can be found in [11,27]
and in [8,39].

Multiplier-Free Reduced Hessian SQP

In the conventional rSQP method (see, e. g., [11]), La-
grange multipliers are calculated by

� D �(Y>A)�1Y>(gk C �k); (14)

where �k are the bound multipliers. In process op-
timization models where the model equations, vari-

ables and the constraint gradient matrices are not ac-
cessible directly, we can develop a nonlinear program-
ming method that requires neither second derivative nor
calculates Lagrange multiplier estimates for the model
equations. In [7] this condition is taken into account,
the ‘multiplier free’ reduced Hessian algorithm is de-
rived and is presented formally for problem (NLP). In
this approach, f and c are assumed to be smooth func-
tions with n,m� n�m and the first derivatives of the
f and c are available. The SQPmethod for solving equa-
tions (7)–(13) generates, at iterate xk, a search direction
dk by solving the QP subproblem with an exact penalty
linesearch method. Generally the condition �k > ||�k||
is used to ensure a descent property [11]. Instead, the
multiplier-free approach can be used by noting that

�>ck D (gk C �k)>Yk pY : (15)

So to ensure a descent property, one only needs to
choose:

�k >

ˇ̌
(gk C �k)>Yk pY

ˇ̌

kckk
: (16)

Finally, current SQP methods incorporate either trust
region or line search strategies to promote global con-
vergence behavior. The line search is more efficient in
determining proper steplengths while the trust region
is essential to avoid poor search directions. Because of
the trade-offs in using either method, D. Ternet and
L.T. Biegler [42] incorporated a combined line search
and trust region approach. Details for the application
of trust region and line search methods can be seen
from [42].

Solving the QP Subproblem

At the heart of the SQP optimization algorithm is the
formulation and solution of the quadratic program
(QP1). This step strongly influences theaccuracy and ef-
ficiency of the algorithm. Aside from the effort required
to evaluate the function values and gradients, this step
is usually the most computationally intensive step in the
SQP or rSQP algorithm.

QP algorithms based on active set strategies can be
classified into primal and dual approaches. In the pri-
mal space approach, a feasible point is determined first
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and succeeding directions are then taken to reduce the
quadratic objective function. This approach requires
a positive definite projected Hessian. An early primal
code was VE02AD, developed by R. Fletcher [18] and
incorporated in the Harwell subroutine library in 1972
[25]. A popular and very reliable primal QP code, QP-
SOL, was developed by P.E. Gill and W. Murray [21],
who also extended this strategy in the codes LSSOL
(1988) and QPOPT (1996).

A very efficient dual space QP strategy was devel-
oped by D. Goldfarb and A. Idnani [22]. Here, we re-
quire a positive Hessian matrix, but no initial feasible
point is required, instead a dual feasible point is first
calculated. This can save considerable effort in the SQP
or rSQP algorithms. This approach was incorporated
into two QP codes, the Harwell code-VE17AD by Pow-
ell and QPKWIK [39]. In addition, QPKWIK allows for
direct updating of the inverse Cholesky factor of the re-
duced Hessian matrix. This and other features within-
QPKWIK allow the reduced Hessian method to per-
form better than both QPSOL and VE17AD, as n� m
becomes larger.

ModelingModes for Process Flowsheets

Using the process models described in (1) and in Fig. 1,
thereare three problem types, simulation, design and op-
timization problems, frequently considered by process
engineers. In the simulation problem, the variables as-
sociated with the feed streams and the design variables
(u in the constraints in (1)) of the units are specified.
The unknowns are the remaining variables (y and w in
the constraints in (1)). In this procedure, it is implic-
itly assumed thatthe number of variables to be deter-
mined is equal to the number of equations, so that the
system is solved; any adjustment of remaining decision
variables can be left to an outer optimization loop. In
addition, design problems require the specification of
additional constraints (such as production rates, prod-
uct yields and purities) in the flowsheet and freeing up
additional decision variables (u) to satisfy these con-
straints.

In the optimization problem for process flowsheets,
variables associated with the feed streams and design
variables may be left unspecified and a cost function is
added to the model in (1). The unspecified variables (u)
are determined so as to minimize the cost function. In

this case, both equality and inequality constraints may
be present and their number may be different from the
number ofthe unspecified parameters. At the simplest
(and least efficient) level, the optimization approach is
an iterative procedure consisting of the following steps:
a) Fix (n � m) degrees of freedom (independent vari-

ables, u)
b) Solve the m equations for the m remaining vari-

ables(w and y). This is the flowsheet simulation
problem.

c) Evaluate the objective function (1), and adjust the
n� m variables to minimize this and satisfy the
bounds in (1).

d) Repeat from step a).
Since the variables are determined by the solution of
the equations in step b), the equations themselves are
satisfied exactly within the convergence tolerance of
the solution procedure. We may regard the equations
as serving to eliminate m variables from the optimiza-
tion problem. This approach treats the process model
as a ‘black box’ and requires the repeated solution of the
simulation problem. However, this approach can fail if
decision variables are chosen at intermediate points, for
which there is no solution to the simulation model.

The advantage to SQP is that it can be interfaced
more flexibly than with the black-box strategy and it
allows a simultaneous optimization and simulation ca-
pability. This can be seen by considering two different
modes, the modular and equation oriented approaches,
for model formulation and solution. These are illus-
trated in Fig. 2 and described next.

Modular (Closed Form) Approach

With this approach, the modeling equations are
grouped according the individual units in the process
and specialized solution strategies are applied to each
unit. Calculation then proceeds sequentially from one
unit to the next. With modular approach, there are
many widely tested models and procedures. Solution
procedures are unit specific and locally robust. Initial-
ization is also straightforward. However, this model-
ing mode requires tearing of the recycle streams. Here
one iterates on tear variables that are sufficient to per-
mit the remaining variables to be calculated. Since the
flowsheet consists of modular modules, recycle conver-
gence is usually performed by slow convergence tech-
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Successive Quadratic Programming: Applications in the Process Industry, Figure 2
Modeling modes and process optimization

niques. Moreover, the calculation of derivatives from
individual process models involves perturbing and re-
simulating the entire flowsheet with respect to the de-
cision variables. This process is both time-consuming
and subject to errors due to probable internal conver-
gence failures during model solution stage.

The modular approach is the most common simu-
lation technique employed in industrial environments
for off-line design and analysis. For example in three
common process simulation codes (ASPEN, PRO/II
and HYSYS) the optimization problem, is solved by
first calculating the process models before evaluating
the constraints and objective function. This black-box
technique is referred to as feasible path (FP) approach
and represents a two-tiered strategy to optimization.
The optimization problem is solved in an outer loop,
while the simulation equations are converged in an in-
ner loop. Note that recycle equations need to be solved
every time the objective function is evaluated.

On the other hand, these tear stream equations
and variables can also be added as constraints in the
optimization problem, and this leads to a more effi-
cient NLP strategy than with the black-box approach.
Termed the infeasible path approach, this strategy per-
forms convergence of the recycle loops simultaneously
with optimization of the flowsheet. This capability has
been added to a number of process simulators (see Ta-
ble 2) and the optimizer enjoys some success in indus-

try for the optimization of novel process and equipment
designs. A detailed derivation of this approach along
with description of several flowsheeting case studies is
given in [6].

Equation Oriented (Open Form) Approach

With the equation oriented approach, the process
model equations are considered as a single large set of
equations to be solved with a large scale nonlinear al-
gorithm. For process optimization, B.A. Murtagh [31]
offered the viewpoint where the optimization is em-
bedded within the solution procedure. Here the nonlin-
ear equations describing the entire system become a set
of nonlinear equality constraints, giving rise to a large
nonlinear programming problem with a mixed set of
large sparse linear and nonlinear constraints. To distin-
guish it from the modular or closed form approach it
is named as the simultaneous or open form approach.
This approach involves the simultaneous linearization
of all the equations and iteration on all the variables,
using the Newton–Raphson method or some variation
thereof. In this case, we must be able to solve efficiently
very large systems of sparse linear equations. In solv-
ing such systems the use of sparse matrix techniques is
a necessity.

The EO approach, when used with multiple mod-
els, does not exploit individual model structure and the
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entire burden for solution is on a general purpose New-
ton solver. Initialization might be difficult, but very ef-
ficient methods exist for the partitioning and tearing
large sets of algebraic equations. Also, objective func-
tion and constraint derivatives are usually available an-
alytically from the large system. Therefore, the advan-
tage of the equation oriented approach is that it avoids
multiple levels of iteration, one for solving the systems
describing equations and one for optimization. On the
other hand, the describing equations are not necessar-
ily satisfied exactly until convergence is approached (al-
though it is possible to allow for instances where this
causes difficulty).

Several EO programs were developed, including
ASCEND (Carnegie MellonUniv.), QUASILIN (Cam-
bridge Univ.), FLOWSIM (Univ. Connecticut), and
SPEEDUP (Imperial College). Given recent advances
in software engineering and object oriented struc-
tures, equation oriented process simulation pack-
ages havealso been made commercially available (e. g.
RTOPT, SPEEDUP, NOVA, gProms). However, be-
cause equation-based process models are harder to set
up and initialize, these packages are generally more dif-
ficult to use than modular simulators.

With these two simulation modes, we see a num-
ber of trade-offs. The modular mode deals with large
detailed models and convergence of the optimization
problem occurs at multiple levels and can be time-
consuming. However, initialization and problem for-
mulation is generally easy and intuitive to the process
engineer and the solution strategies are robust. Conse-
quently, this approach is used as a general purpose op-
timization strategy for off-line design and analysis for
large scale chemical processes.

On the other hand, the equation oriented strategy
provides a truly simultaneous strategy to process opti-
mization and can be much more efficient. Nevertheless,
initialization and process modeling are somewhat spe-
cialized to the process application, and general-purpose
detailed models may often be simplified. As a result, EO
approaches are more common for on-line optimiza-
tion, including refineries, olefin plants and power sta-
tions.

In the next section, we provide a brief history on the
application ofSQP to these problem types. We then de-
scribe a number of examples for bothon-line and off-
line process optimization.

Application of SQPOptimization
in Industrial Problems

The first appearance of SQP can be traced back to [45]
and [4], butnumerical difficulties hampered widespread
application. In particular, this was due to conceptual
weaknesses, such as lack of global convergence, non-
convex QPs and unreliable QP solvers. As a result
there was little initial development of SQP until the
late seventies. Nevertheless, in 1968, J.D. Simon de-
veloped a general purpose nonlinear optimizer within
Exxon, based upon the successive solution of quadratic
programming (QP) problems approximating the given
problem. The program called ECO (Exxon Computer-
ized Optimizer) was put into production status in 1969
and made available to Exxon’s worldwide affiliates. In
1970, the code was revised to handle a gas field opti-
mization problemwhich required over 300 variables for
the Exxon Production Research Company. The code
proved to be so successful that a special version has
linked to a reservoir simulation system and marketed
outside of Exxon. In 1972, a revised Exxon production
version was released to incorporate additional features
and be more user friendly. However, this software was
not pursued during the 1980s due to lack of economic
justification [40].

On the other hand, by 1977, the application of
quasi-Newton methods and analysis of exact penalty
functions led to the efficient SQP algorithms by Han
and Powell. From this starting point, the next decade
saw algorithmic developments by A. Conn, Fletcher,
Gill, Murray, Nocedal and many others, which led to
advanced features including convergence properties for
a variety of merit functions, applications of trust region
and line search globalizations for constrained optimiza-
tion, and efficient factorization and decomposition for
large scale problems.

Applications of SQP in process engineering begin
in 1980 and include contributions from A. Westerberg
and coworkers, R.W.H. Sargent, Biegler, A. Lucia, S.
Macchietto, M.A. Stadtherr, W. Morton, B. Kalitvent-
zeff and others. New algorithms have been developed,
existing ones have been refined, some good software
has been developed, and there has been some computa-
tional experience and practical applications. All of these
academic efforts have paved the way for effective large
scale, on-line optimization strategies, discussed next.



Successive Quadratic Programming: Applications in the Process Industry S 3861

On-line Process Optimization

On-line (or real-time) optimization requires the solu-
tion of nonlinear programs that describe the steady
state operation of a chemical process. This problem
can be solved every few hours and operating condi-
tions (e. g., setpoints to the control system) can be
updated in the process to improve operation based
on a profit function. Current industrial applications
of model-based real time optimization (RTO) address
complex chemical plants. T.E.Marlin and A.N. Hrymak
[29] list the following features of plant which favor the
application of RTO:
1) adjustable optimization variables exist after higher

priority safety, quality and production rate objec-
tives have been achieved;

2) profit changes significantly as values of the opti-
mization variables are changed;

3) disturbances occur frequently enough for real-time
adjustments to be required;

4) determining the proper values for the optimization
variables is too complex to be achieved by selecting
from several standard operating procedures.

Systems for on-line optimization have been developed
and used since about 1980, but success or failure in in-
dustrial applications has largely gone unnoticed until
the 1990s. After that, a few publications appeared in the
literature (e. g. [3]; [2]). Still, much of the mathemati-
cal programming technology has not been documented
outside of industrial corporations. Therefore, it is im-
possible to fully survey and discuss all the industrial ap-
plications here. Rather, we highlight a few major areas
in which progress is being made, and point out a few
references for further detail.

In particular, applications grew in scope and size
as computing power to support such activities became
available. From 1990 onwards, there has been a signif-
icant growth in the application of on-line optimization
systems in the process industries. The following appli-
cations milestones show the growth of SQP-based ap-
plications for real-time optimization [2]:
� 1980s: in house developments at DSM, ICI, Shell (�

20000 equations);
� 1986: Shell ‘Opera’ package ethylene plants;
� 1988: First DMO application: SUNOCO Hydroc-

racker;
� 1991: Lyondell Integrated refinery;

� 1994: Mobil and Mitsubishi Chemical applications
(over 200000 equations);

� 1996: Aspen/DMC/Setpoint mergers.
Note that with the 1996 merger, 80–90% of real-

time optimization applications are implementations by
Aspen Technology, Inc. A recent and comprehensive
review of the issues related to real-time optimization
(RTO) may be found in [29]. The components of the
current research to RTO of large scale continuous pro-
cesses based on steady state models are reviewed in
[33]. In that article, the issues involved in the design
of RTO systems are discussed, particularly with respect
to structural decisions, e. g., the choice of measure-
ments to be used to monitor plant performance and
update the optimization model, and the level of model
complexity to be used in the RTO system. From pub-
lished studies, summarized in Table 1, a successful RTO
application delivers about 3% of the value added by

Successive Quadratic Programming: Applications in the Pro-
cess Industry, Table 1
Some industrial case studies with SQP optimization

REAL-TIME OPTIMIZATION
Company Application Results
Shell Oil (1986) Ethylene Plant $ 4.0M/yr
Wilton (1988) Power Station 2–6%
Amoco (1990) Gas Plant $ 4.0M/yr
British Petroleum Refinery $ 2.5M/yr
Chevron USA (1990) Ethylene Plant 5–10%
Star Enterprise
(1990)

Crude Unit $ 3.0M/yr

Shell Oil Refinery 9% in gasoline
production

Texaco (1990) Refinery $ 4.0M/yr
Lyondell (1991) Ethylene Plant 9 month payout
OMV Deutschland
(1991)

Ethylene Plant 1–3%

Conkwright (1994) Petroleum Crude
Distillation

$ 1–2M/yr

ICI Industrial Steam &
power

$ 1.5M/yr

DMC Ethylene plant Payback in less
than one year

Sunoco (1995) Hydrocracker $ 1M/yr
Divekar & Lepore
(1991, [17])

Ethylbenzene /
styrene

$ 1–2.6M/yr
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the plant in economic benefits ([15]; [20,35,43]; [26]).
However, it should benoted that published applications
cover a small spectrum of the full range of manufactur-
ing plants employed in the process industries, i. e., large
scale continuous plants in the petroleum and petro-
chemical sectors [33].

As seen in Table 1, many successful industrial ap-
plications of RTO have been reported. For instance,
impressive optimizations were implemented at the
SUNOCO Sarnia Canada refinery, which was recog-
nized by a 1995 Computerworld Smithsonian Award
for innovative information technology in manufactur-
ing. The following examples with economic benefits
suggest the wide range of processes on which RTO has
been successful.

Off-Line Process Optimization

Optimization for process design is a difficult and com-
plicated task. Here, most discussion of process opti-
mization in the literature focuses on the problem: given
certain operating objectives such as throughput, utilities
availabilities, product specifications, what are the best
sizes of equipment and operating conditions to mini-
mize an appropriate combination of capital and oper-
ating costs?

To aid in the design task, detailed, comprehensive
simulation platforms have been developed (see [6], for
a review.) Moreover, over the past two decades there
has been an almost complete shift from in-house devel-
opment and maintenance of simulation packages, e. g.,
within an operating petrochemical company, to vendor
supplied software. Table 2 presents a short summary
of current process simulation tools with SQP optimiza-
tion. All but the last three are in-house packages; the
last three entries are vendor software which command
most of the usage for design and optimization.

Unlike real-time optimization, these off-line process
simulation programs are now part of every process engi-
neer’s toolkit and have also been widely integrated into
the chemical engineering academic curriculum. More-
over, while RTO models remain specialized applica-
tions with only a small group of model developers, pro-
cess simulation tools are available on every engineer’s
desk, at least in large operating companies, and are used
for most day-to-day modeling tasks. These include de-
sign of new processes, retrofits of existing ones, de-

Successive Quadratic Programming: Applications in the Pro-
cess Industry, Table 2
SQP optimization for process design

OFF-LINE PROC OPTIMIZATION
Company Application Remarks

Linde Optisim SQP with EO mode
Bayer VTPLAN rSQP with EO mode
Bayer SimulationManager rSQP with EO mode
ASPEN SPEEDUP rSQP with EO mode
ICI Flowpack SQP with Modular mode
BP Genesys SQP with Modular mode
Mobil QUIKBAL SQP with Modular moed
SimSci PRO/II SQP with Modular mode
Hyprotech HYSYS SQP with Modular mode
ASPEN ASPEN Plus SQP with Modular mode

bottlenecking the process operations and analysis for
operability and control.

While both RTO and off-line process simulation
represent steady stateprocess models, off-line models
tend to be much more detailed and rigorous.This is due
to the fact that these models need to serve much more
general applications and also because there are no on-
line data with which to adjustparameters. As a result,
these models are much more difficult to solve andaro-
bust modular mode is preferred, particularly if detailed
sizing and costing programs are involved.

Broadly speaking, modular process simulation tools
can be classified into four levels:
1) At the lowest level, basic physical properties and

thermodynamic relationships (e. g., phase equilib-
rium, energy balance terms, transport relationships)
have been incorporated. These contain the vast ma-
jority of process equations and these are solved with
specialized solution algorithms.

2) At the next level, are the basic building blocks for the
process units, including distillation, heat exchange,
reaction and material transfer. These blocks con-
sist of mass and energy balances as well as constitu-
tive equations, solved with specialized procedures;
they also rely heavily on underlying physical prop-
erty equations.

3) This level deals with the convergence of the over-
all flowsheet. Here process units are sequenced, tear
streams are chosen, their values are updated and re-
cycle loops are converged. It is at this level that flow-
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sheet optimization is introduced since the SQP algo-
rithm extends the overall convergence function by
incorporating tear equations as equality constraints
in the optimization problem. Often this problem
is fairly small (fewer than 100 variables and con-
straints) and a dense SQP algorithmwithout decom-
position is usually satisfactory. Here the dominant
computational cost for the optimization lies in the
evaluation of the objective and constraint functions
(and gradients) from the process model.

4) The process simulator is capped with a graphical
user interface that communicates with the process
engineer in setting up and solving the simulation
and optimization problem.

For off-line process optimization, the list of successful
applications is too numerous to mention, as it is cur-
rently a routine task, distributed across all sectors of
the chemical industry. A number of case studies for
flowsheet optimization have been summarized in [6].
Moreover, the user guides for ASPEN+, PRO/II and
HYSYSprovide ample documentation and examples on
the use of their SQP-based optimization tools.

Conclusions And Future Work

This article provides a brief review of nonlinear pro-
gramming strategies and applications in chemical pro-
cess optimization. In many industrial applications, the
NLP algorithm of choice is successive quadratic pro-
gramming (SQP) and a description of the algorithm,
and its variations, is provided. In particular, we develop
the basic SQP algorithm and then concentrate on large
scale extensions. For process optimization, we take ad-
vantage of two model characteristics: these problems
have few decision variables (� 100) despite their large
model size and, despite advances in software develop-
ment, second derivatives are often hard to evaluate. As
a result, reduced space decompositions for SQP (rSQP)
have been developed for a number of industrial appli-
cations.

Process models that are formulated for optimiza-
tion can be classified as modular and equation oriented
modes. In the first mode, function values are expen-
sive as most of the process equations are solved in-
ternally with specialized solution procedures. As a re-
sult, the optimization problem seen by SQP is relatively
small and can be solved without decomposition. In the

equation oriented mode, the process equations are in-
tegrated into the optimization problem and the burden
of the solution is passed on to the NLP solver. Here,
decomposition strategies such as rSQP are essential for
efficient process optimization.

Finally, we classify process applications as off-line,
devoted to design and analysis studies and on-line, de-
voted to monitoring and optimization of an operat-
ing process in real time. Currently, off-line optimiza-
tion tasks are often performed withmodular simulation
tools that incorporate SQP strategies without decom-
position. In contrast, on-line process optimization is
performed almost entirely with equation oriented mod-
els and require the implementation of decomposition
strategies like rSQP. A number of applications in both
categories are cited in this article.

Future work related to NLP applications in pro-
cess optimization deals with further development of the
SQP algorithm, extension of large scale decomposition
strategies and larger, more sophisticated problem for-
mulations for process application.

Fundamental development of SQP algorithms deals
with improving the local and global convergence prop-
erties of the algorithm. These properties have been
strengthened through the analysis of trust region strate-
gies as well as additional safeguards in dealing with rank
deficiency and inequality constraints. Related to this are
the application of interior point (IP) strategies that im-
prove the efficiency and reliability of large scale, highly
constrained NLPs. These IP (or barrier) methods can
be applied at the level of the QP subproblem (see [47];
[44]) or the barrier terms can be applied directly to the
NLP problem [10]. Since the computational effort of
barrier methods (either at the QP or the NLP level) does
not increase greatly with an increase in the number of
inequality constraints, this approach seems to be essen-
tial to deal with ever increasing problem sizes.

Moreover, decomposition strategies for large scale
NLP can be considered in two categories. For full space
SQP, decomposition occurs at the QP and the linear
algebra level, and effective strategies have been devel-
oped to factorize indefinite, sparse systems. These also
require first and second derivatives from the process
model. Future developments in process modeling sys-
tems need to provide these capabilities. Also, further
conceptual development is needed to deal with large,
full space QPs with indefinite Hessian matrices.
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For reduced space methods, the multiplier free ap-
proach can be applied to a tailoring of process mod-
els, where existing modular models (if solved with
Newton-based procedures) can be solved simultane-
ously with the NLP, using rSQP. With this approach,
the best of the modular and equation oriented modes
can be achieved; reliable, detailed models with spe-
cialized initializations and solvers can be optimized
quickly and simultaneously. This approach has been
demonstrated in a number of process applications in
[12,39,41] and [1].

Finally, with the development of improved NLP
solvers and decomposition strategies there are a num-
ber of process applications that extend beyond process
optimization, both for on-line and off-line optimiza-
tion. For on-line optimization, the current challenges
lies in combining the control and RTO layers in a chem-
ical process. The resulting formulation is a differential-
algebraic optimization problem, which can be posed as
a large scale NLP with many decision variables. These
problems require novel decomposition approaches that
are beyond the scope of this article (see e. g., [5]). Re-
lated to control and optimization are the problems of
state estimation and parameter estimation. These tasks
are essential to identify the optimization model and
have the same structure as the differential-algebraic op-
timization problem.

For off-line optimization, a number of capabilities
are required that extend beyond process optimization.
Once an optimal flowsheet has been found, a number of
questions still need to be answered, before the solution
can be implemented. These issues can be summarized
by the following items:
� Sensitivity of optimal flowsheets: How does the opti-

mum flowsheet change with changes in input con-
ditions and model uncertainty? ([46])

� Design under uncertainty: What is the optimal pro-
cess that can accommodate a range of uncertainties?
([23])

� Operability and flexibility analysis of flowsheets Op-
erability and flexibility analysis of flowsheets: Over
what range of uncertainty does an existing process
function? ([19])

� Integration of dynamic considerations and controlla-
bility: How well can the designed or existing process
reject disturbances and move from one desired set-
point to another? ([33])

As a result of these open questions, process optimiza-
tion still appears to be an active and fertile area for fu-
ture research.
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Decomposition methods of successive quadratic pro-
gramming (SQP) are methods that reduce the size of
the recursive quadratic programming (QP) subprob-
lems by using the equality constraints to ‘eliminate’
variables. Decomposition methods are particularly use-
ful when the number of degrees of freedom, n � meq,

is small, where n is the number of unknown vari-
ables andmeq is the number of equality constraints, be-
cause this results in small and tractible quadratic pro-
gramming subproblems in which there is little need
to be concerned with sparsity, fill-in and other issues
in large scale quadratic and successive quadratic pro-
gramming. Thus quasi-Newton updates like the mod-
ified Broyden–Fletcher–Goldfarb–Shanno (BFGS) for-
mula can be used to maintain hereditary positive def-
inite approximations to the projection of the Hessian
matrix of the Lagrangian function on the linearized
constraint surface (tangent plane) and the solutions to
the recursive quadratic programs are unique. However,
when decomposition methods are used, it is often nec-
essary to use quasi-Newton approximations to the La-
grangian Hessian matrix and thus the asymptotic rate
of convergence is at best two-step Q-superlinear as op-
posed to quadratic if analytical or finite difference sec-
ond derivatives are used. Moreover, some curvature (or
second derivative) information is ultimately lost as the
linearized constraint surface orientation changes be-
cause second derivative information is only being gath-
ered or approximated on the tangent subspace, while it
is neglected in directions orthogonal to the tangent sub-
space. Additional techniques for recovering this ‘lost’
curvature information and for preserving sparsity in the
Jacobian matrix of the constraints have also been pro-
posed.

All decomposition methods are based on a choice
of basis for the vector space defined by the x variables
in the optimization problem and are best suited for
nonlinear programming problems with equality con-
straints and simple bounds on variables. More general
nonlinear inequalities are usually handled by convert-
ing these inequalities to equalities using slack variables.
Some early decomposition methods [1,6] in engineer-
ing used canonical bases while more recent range and
null space decomposition (RND) methods [7], choose
basis vectors that align with the range and null space of
the Jacobian matrix of the constraints. Range and null
space decomposition methods were introduced by W.
Murray and M.H. Wright in the late 1970s (see [4]).
The null space, Z, of the Jacobian matrix, JE, is a vec-
tor space that satisfies the condition JEwk = 0 for any
nonzero vector wk =

P
˛jzj, where {zj} are the basis vec-

tors for the null space and where the dimension of the
null space is equal to the number of distinct vectors zj.
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The null space of the Jacobian matrix of the constraints
is the tangent subspace of the constraints. The range
space, Y , of the Jacobian matrix, on the other hand, is
the space orthogonal to Z such that the direct sum Y +
Z = Rn, where n denotes the number of x variables. This
is where the name range and null space decomposition
(RND) comes from and this particular choice of basis
also leads to some simplified algebra. RNDmethods are
the decomposition methods currently in use.

The issues that are central to decomposition meth-
ods of successive quadratic programming include:
� the choice of basis for the linearized constraint sur-

face;
� decoupling, simplifying assumptions and other re-

lated concerns;
� methods for approximating the projection of the La-

grangian Hessian matrix;
� the methods used in factoring the Jacobian and La-

grangian Hessian matrices.

Nonlinear Programming

Successive quadratic programming methods address
the problem of finding a local solution to the following
nonlinear programming (NLP) problem:
(
min f (x)
s.t. c(x) < 0;

where x is a vector of length n which represents an esti-
mate of the local minimum, f (x) is a twice continuously
differentiable objective function and c(x), the vector of
equality and/or inequality constraints, is also twice con-
tinuously differentiable and nonlinear. The associated
Lagrangian function for this nonlinear programming
problem is

L(x) D f (x)C �>c(x)C �>c(x);

where � and � are vectors of Lagrange and Kuhn–
Tucker multipliers associated with the equality and in-
equality constraints, respectively. The corresponding
gradient of the Lagrangian function, gL(x), is defined by

gL(x) D g(x)C �>gc(x)C �>gc(x);

where g(x) is the gradient of the objective function,
gc(x) is the gradient (or vector of first partial deriva-
tives) of the constraint functions.

Decomposition of the Quadratic Program

All successive quadratic programming methods solve
nonlinear programs by recursively solving quadratic
programming subproblems based on a quadratic ap-
proximation of the Lagrangian function and decom-
position methods are no different. Consider then the
recursive quadratic program on the kth SQP iteration
given by
8̂
<̂
ˆ̂:

min g(xk)>	xk C 1
2	x>k Bk	xk

s.t. c(xk)C JE	xk D 0;
and xL � 	xk � xU ;

where g(xk) is the gradient of the nonlinear program-
ming objective function, f (x), evaluated at xk, c(xk) is
the set of equality constraints, JE is the (meq × n) Ja-
cobian (or first partial derivative) matrix for the equal-
ity constraints, Bk is an (n × n) approximation to the
Hessian (or second partial derivative) matrix of the La-
grangian function, xL and xU are the lower and up-
per bounds on the variables respectively and �xk, �k,
and �k represent the desired solution or change in the
unknown variables, Lagrange and Kuhn–Tucker multi-
pliers respectively. Remember, general inequalities are
converted into equalities using slack variables so they
are present as part of the set of equalities in this formu-
lation. Only the bounds on variables remain as inequal-
ities.

Decomposition methods are based on the idea of
splitting (or decomposing) the unknown variables, x,
into two groups, meq dependent variables, say y, and n
�meq independent variables, z. Once this framework is
established the change in the unknown variables, �xk,
can be represented by the matrix equation

	xk D Yk	yk C Zk	zk ;

where the matrices Yk and Zk are n × meq and n × (n
� meq), respectively. Substitution of this expression for
�xk into the quadratic program gives
8̂
ˆ̂̂<
ˆ̂̂̂
:

min g(xk)>[Yk	yk C Zk	zk]
C 1

2 [Yk	yk C Zk	zk]>Bk[Yk	yk C Zk	zk]
s.t. c(xk)C JE[Yk	yk C Zk	zk] D 0

xL � Yk	yk C Zk	zk � xU :

The reformulated equality constraints can be rear-
ranged to give �yk = �[JEYk]�1[c(xk) + JEZk�zk],
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which in turn can be substituted into the quadratic ap-
proximation of the Lagrangian function to give a ‘re-
duced’ objective function expression and a ‘reduced’
quadratic program in the n � meq variables �zk only.
That is, substitution of this last expression for�yk gives
the ‘reduced’ quadratic program defined by

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min g(xk)>[Yk (�[JEYk ]�1[c(xk)C JEZk	zk])
CZk	zk]
C 1

2 [Yk(�[JEYk ]�1[c(xk)C JEZk	zk])
CZk	zk]>

�Bk [Yk(�[JEYk ]�1[c(xk)C JE Zk	zk])
CZk	zk]

s.t. xL C Yk([JEYk]�1[c(xk)C JEZk	zk])
� Zk	zk
� xU C Yk ([JEYk ]�1[c(xk)C JEZk	zk]):

Note that the bounds on �yk effect the bounds on �zk
through the Yk[JEYk]�1[c(xk)] term.

Quadratic Programming Kuhn–Tucker Conditions
for DecompositionMethods

For decomposition methods, the Kuhn–Tucker condi-
tions for the original quadratic program are given by
the generalized stationary conditions for the ‘reduced’
quadratic program

[Ck C Zk]>g(xk)C (Ck C Zk)>Bkak
C[C>k BkCk C 2C>k BkZk C Z>k BkZk]	zk
CJ>I �k D 0;

JI	zk D 0;

�k � 0;

where the vector ak = � Yk[JEYk]�1c(xk) and the (n ×
(n � meq))-matrix Ck = � Yk[JEYk]�1 JEZk, JI is the Ja-
cobian matrix for the active bounds on �zk and �k are
the Kuhn–Tucker multipliers associated with those ac-
tive bounds.

There are also the equations defining the change in
the dependent variables

	yk D �[JEYk ]�1[c(xk)C JE Zk	zk]

and the conditions defining the Lagrange multipliers
for the equality constraints

Y>k Bk[Yk	yk C Zk	zk]C Y>k J>E �k

D �Y>k g(xk) :

This last condition comes from the Kuhn–Tucker con-
ditions for the quadratic program formulated in terms
of both�yk and �zk.

Choice of Basis

Choices for the matrices Yk and Zk give different de-
composition methods, some of which are more conve-
nient algebraically than others. For example, the choice
of basis in the decomposition method in [1] corre-
sponds to Yk = (I � J�1y Jz) and Zk = (0 I), where the
Jacobian matrix of the equality constraints, JE, is parti-
tioned into (Jy Jz) such that the (meq × meq)-submatrix
Jy is invertible or nonsingular and the order of the ma-
trix partitions are such that they are consistent with
matrix-vector and matrix-matrix multiplication. For
range and null space decomposition (RND)methods [7],
the choice of basis is given by Yk = (I � J�1y Jx) and Zk

= (JxJ�1y ) such that JEZk = [0]. The condition JEZk =
[0] means that the matrix product JEZk gives the zero
matrix and therefore each column of the matrix Zk is
carried to the zero vector by the Jacobian matrix.

Use of the null space condition JEZk = [0] simpli-
fies the reduced quadratic program Kuhn–Tucker con-
ditions to

Z>k g(xk) � Z>k Bk[Yk[JEYk ]�1c(xk)]

CZ>k BkZk	zk C [Z>k ;�Z
>
k ]�k D 0;

Zk	zk � xU � Yk [JEYk]�1[c(xk)] � 0;

�Zk	zk C xL C Yk [JEYk ]�1[c(xk)] � 0;

since the (n × (n � meq))-matrix Ck = � Yk[JEYk]�1

JEZk = [0],

	yk C [JEYk ]�1[c(xk)] D 0

and

Y>k Bk[Yk	yk C Zk	zk]C Y>k J>E �k

D �Y>k g(xk) :
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Decoupling the Stationary Conditions

The last four equations defining �zk, �yk, �k and �k

are coupled because of the last condition and require
projected second derivative information from both the
range space (Y>k BkYk) and the cross product of the
range and null spaces (Y>k BkZk). To remove the need
for this information and thereby decouple the station-
ary conditions, simplifying assumptions are necessary.
In particular, it is assumed that because � zk and � yk
are zero at any constrained local minimum, � yk = 0
and� zk = 0 can be used at all iterations, which reduces
the last equation to

Y>k JET�k D �Y>k g(xk):

This decouples the variables zk and �k from � yk and
�k. However, it should be pointed out that this sim-
plification results in a loss of curvature information
in the range space of the Jacobian matrix and slightly
slower asymptotic rates of convergence. That is, second
derivatives information associated with Y>k BkYk and
Y>k BkZk, which is not constant for general nonlinear
constraints, is lost and the resulting rate of convergence
is two-step Q-superlinear.

There are also other concerns related to the bounds
on the change in the dependent variables, � yk,
that require attention. The relationship � yk = �
[JEYk]�1[c(xk)] that defines the change in the depen-
dent variables as a function of the change in the in-
dependent variables also directly effects the bounds on
the independent variables in the reduced quadratic pro-
gram, which are given by

xL C Yk [JEYk]�1[c(xk)] � Zk	zk
� xU C Yk [JEYk ]�1[c(xk)] :

Some care must be exercised to avoid conflicting
bounds and infeasible reduced quadratic programs.

Methods for Approximating
the Projected Lagrangian HessianMatrix

With the above simplifications, the only second deriva-
tive information required in the Kuhn–Tucker condi-
tions for the reduced quadratic program is the ((n �
meq) × (n � meq))-matrix Z>k BkZk, which is the pro-
jection of the full Lagrangian Hessian matrix onto the
tangent subspace defined by the linearized constraints.

Moreover, because the matrix Z>k BkZk must be posi-
tive definite at any constrained local minimum and can
be much smaller in dimension than Bk in many appli-
cations, Z>k BkZk is often approximated using the BFGS
formula or some other suitable quasi-Newton update
that preserves hereditary positive definiteness [7]. The
primary advantage in doing this is that the change in
the independent variables and associated Kuhn–Tucker
multipliers for any bounds can be determined by solv-
ing a smaller, convex quadratic program. This results
in computational savings as well guaranteeing an iter-
atively unique � zk. However, remember the trade-off
for this is loss of curvature in the range space and two-
step Q-superlinear convergence, which is a bit slower
than Q-superlinear or quadratic convergence.

Using analytical or finite difference second deriva-
tives in full space methods is straightforward; using an-
alytical or finite difference second derivatives in decom-
position methods is not. With quasi-Newton approxi-
mations, the projection Z>k BkZk can be easily formed
and stored as a small dense ((n � meq) × (n � meq))-
matrix. Moreover, there is no need to explicitly calcu-
late or store Bk. On the other hand, to use analytical
or finite difference second derivatives in decomposition
methods the matrix triple product Z>k BkZk must be ex-
plicitly formed and therefore the entire Hessian matrix
of the Lagrangian function, Bk, must be evaluated and
stored. Clearly this is counter to the overall purpose of
decomposition.

Factoring the Jacobian
and Projected LagrangianHessianMatrices

The iterative computation of the range and null space
of the Jacobian matrix is normally accomplished by QR
factorization. That is, the Jacobian matrix of the con-
straints is factored iteratively according to the rule

JE(xk) DQ(xk)
�
R>(xk) 0

�>

D
�
Yk Zk

� �
R>k 0

�>
;

where Q(xk), which is the product of Householder
transformation matrices, is an orthonormal matrix and
partitioned into Yk and Zk and where R(xk) is an upper
triangular (meq × meq)-matrix. In general, the matri-
ces Q(xk) and R>(xk) will be dense matrices and there-
fore not well suited for large problems in which JE(xk)
is sparse. Other factorizations such as LQ factorization



3870 S Successive Quadratic Programming: Decomposition Methods

can be used and it is also possible to update the sparse
factors of the Jacobian matrix to reduce storage require-
ments [5].

When Z>k BkZk is approximated using the BFGS
or some equivalent hereditary positive definite quasi-
Newton update, it can be factored reliably and effi-
ciently using LDL> factorization, where L and D are
lower triangular and diagonal factors, respectively. In
fact, techniques exist for updating the quasi-Newton
lower and diagonal factors directly to avoid the expense
of factorization altogether [5].

An SQPAlgorithm for Decomposition Methods

A generic successive quadratic programming algorithm
using decomposition methods is shown below:
1) Initialize x, �, � and (Z>k BkZk); define a conver-

gence tolerance, � > 0, and set k = 0.
2) Evaluate f (xk), g(xk), c(xk) and JE(xk).
3) If k (gL(xk) c(xk))> k2 < �, c(xk) = 0 and �k � 0,

then stop. Otherwise, go to step 4.
4) Factor JE(xk) by QR (or some other equivalent) fac-

torization so that JE(xk) = (Yk Zk) (R>k 0)>.
5) Define the dependent variables, yk, and indepen-

dent variables, zk.
6) Determine the change in the dependent variables

from� yk + [JEYk]�1[c(xk)] = 0 and set yk+1 = yk +
� yk.

7) Solve the equation Y>k J
>
E �k = � Y>k g(xk) for the

Lagrange multipliers �k.
8) Construct the reduced quadratic program

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min (Z>k g(xk)
�Z>k Bk [Yk[JEYk ]�1c(xk)])>	zk
C 1

2	z>k (Z
>
k BkZk)	zk

s.t. xL C Yk[JEYk ]�1[c(xk)]
� Zk	zk
� xU C Yk [JEYk ]�1[c(xk)]

and solve it for� zk and �k. Set zk+1 = zk +� zk.
9) Determine xk+1 = (yk+1, zk+1) from by either line

searching, trust regions or some other means.
10) Calculate a new approximation to the projected

Hessian matrix, Z>kC1 Bk+1Zk+1, using the BFGS
formula or some equivalent hereditary positive
definite quasi-Newton update.

11) Set k = k + 1 and go to step 2.

Some Comments on Numerical Performance
of Decomposition Methods

Decomposition methods have been applied to a variety
of small and large scale nonlinearly constrained opti-
mization problems in both the mathematical sciences
[7] and engineering [1,2,3]. Most agree that decompo-
sition methods are best suited for applications in which
the number of degrees of freedom or number of in-
dependent variables (i. e., n � meq) is small compared
to the total number of variables, a situation that oc-
curs inmany practical applications. Good numerical re-
sults have been reported for mathematical benchmark
problem [7] and small and large chemical process engi-
neering problems [2]. In particular, J. Nocedal andM.L.
Overton [7] report that RND methods compare favor-
ably with the full space SQP method of M.J.D. Powell
[8] on a set of small mathematical benchmark prob-
lems involving up to eight variables and four equality
constraints. L.T. Biegler [2] and H.S. Chen and M.A.
Stadtherr [3] show that decomposition methods work
well on a variety of chemical process problems includ-
ing multicomponent, multistage distillation optimiza-
tion problems involving up to 1000 variables.
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Full space SQP methods are successive quadratic pro-
gramming methods that build approximations to the
Hessian matrix of the Lagrangian function and solve
the resulting quadratic programming subproblems in
the full space of the unknown variables. The original
SQP methods of R.B. Wilson [25], S.P. Han [12] and
M.J.D. Powell [21] are formulated in terms of all of the
x variables and are therefore full space methods. Usu-
ally, however, ‘full space methods’ refers to those SQP
methods that operate in the full space of the x variables
when the number of variables, say n, is large and, as
a result, are simultaneously concerned with the spar-
sity (the relative number of zero and nonzero elements)
of the matrix of second partial derivatives of the La-
grangian function and the Jacobian matrix of the con-
straint functions, as well as techniques for factoring, up-
dating and solving the Kuhn–Tucker conditions for the
recursive quadratic programs and other related issues.
A sparse matrix is one in which the number of nonzero
elements is a small fraction of the total, and performing
arithmetic operations with only these nonzero elements
reduces the overall computational workload. Clearly,
the SQPmethods of Han and Powell were not intended
for problems in which the number of x variables is
large. Full space SQP methods can be further catego-
rized as ‘convex’ or ‘nonconvex’ and this characteriza-
tion has bearing on the techniques used to estimate the
Hessian matrix of the Lagrangian function, its result-
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ing curvature, the nature of the recursive quadratic pro-
grams (i. e., whether they are positive definite or indefi-
nite), and the methods needed to factor and solve the
Kuhn–Tucker conditions for the quadratic program-
ming subproblems. In particular, nonconvexity (or in-
definiteness) requires special factorization techniques
and more complex active set methods, can give rise
to indefinite quadratic programs and multiple Kuhn–
Tucker points (or solutions) to the recursive quadratic
programming problems, and can result in a loss of de-
scent in the parent nonlinear programming problem
causing line searching and other difficulties. Virtually
all of these difficulties disappear when convexity can be
guaranteed.

Thus the issues that are important when the number
of x variables is large are:
� estimating the Hessian matrix of the Lagrangian

function,
� various aspects of solving the Kuhn–Tucker condi-

tions for the quadratic program,
� solution (Kuhn–Tucker point) multiplicity in the

quadratic program,
� loss of descent in the parent nonlinear program, and
� initializing the unknown variables.

Nonlinearly ConstrainedOptimization

The general nonlinear programming (NLP) problem is
given by

(
min f (x)
s.t. c(x) � 0;

where x is a vector of length n which represents an es-
timate of the local minimum, f (x) is a twice contin-
uously differentiable objective function and c(x), the
vector of equality and/or inequality constraints, is also
twice continuously differentiable and nonlinear. Suc-
cessive quadratic programming methods are based on
a quadratic approximation of the Lagrangian function,
L(x), defined by

L(x) D f (x)C �>c(x)C �>c(x);

where � and � are vectors of Lagrange and Kuhn–
Tucker multipliers associated with the equality and in-
equality constraints respectively, and attempt to solve

the NLP by recursively solving a quadratic program-
ming subproblem

(
min g(xk)>	xk C 1

2	x>k Bk	xk
s.t. c(xk)C J(xk)	xk � 0;

where � xk is the change in the unknown variables,
Bk is some approximation to the true Hessian matrix
of the Lagrangian function, H(x) = Hf (x) +

P
�iHci(x)

+
P
�iHci(x), and where Hf (x) and Hci(x) refer to the

true Hessian matrices of the objective function and ith
constraint respectively and J is the Jacobian matrix of
the constraints.

Kuhn–Tucker Conditions
for the Quadratic Program

The Kuhn–Tucker conditions that define stationarity in
the recursive quadratic program are given by

Bk	xk C J>E �k C J>I �k D �g(xk) ;

[J>E J
>
I ]
>	xk D �c(xk) ;

�k � 0 ;

where g(xk) is the gradient of the nonlinear program-
ming objective function, f (x), evaluated at xk, c(xk) is
the set of active constraints (i. e., equalities plus inequal-
ities that hold as equalities), JE and JI are the Jacobian
(or first partial derivative) matrices for the equality and
active inequality constraints respectively, Bk is an ap-
proximation to the Hessian (or second partial deriva-
tive) matrix of the Lagrangian function, and � xk, �k
and �k represent the desired solution or change in the
unknown variables, Lagrange and Kuhn–Tucker multi-
pliers respectively. Remember, the number of inequali-
ties in the active set can change from one quadratic pro-
gramming iteration to the next as well as from one SQP
iteration to the next. In many larger applications, the
matrices Bk, JE and JI have relatively few nonzero ele-
ments (or are sparse) with a sparsity pattern that is often
naturally banded with wide bandwidth. Efforts to ac-
count for this sparsity to reduce both storage and com-
putation give rise to many auxiliary issues that must be
resolved in order to produce reliable and efficient full
space SQP methods.
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Estimating the HessianMatrix
of the Lagrangian Function

When the number of variables is small, rank-two,
quasi-Newton updating formulas like the Broyden–
Fletcher–Goldfard–Shanno (BFGS) and Davidon–Flet-
cher Powell (DFP) updates that preserve the desired
property of positive definiteness can be used to approx-
imate the Hessian matrix of the Lagrangian function
because sparsity is of no concern. On the other hand,
when n is large, these and other ‘full’ updates can not be
used because they result in Hessian matrix approxima-
tions that have essentially all nonzero elements, increas-
ing both storage requirements and associated compu-
tational effort. Moreover, while both the sparsity of the
constraint Jacobian matrix and the Hessian matrix of
the Lagrangian function must be considered in devel-
oping full space SQP methods for large scale problems,
it is the characteristics of the second derivatives of the
Lagrangian function that most strongly effects the na-
ture of the resulting recursive quadratic programs and
the techniques that must be used to solve them.

In order to account for the sparsity of the Hes-
sian matrix of the Lagrangian function, second par-
tial derivatives of the objective function and nonlin-
ear constraints are usually estimated using analytical or
finite difference derivatives, sparse quasi-Newton up-
dates like the sparse Powell-symmetric Broyden (PSB)
update [23], or a mixture of analytical and quasi-
Newton derivatives [13,15]. In fact, all techniques for
estimating the Hessian matrix of the Lagrangian func-
tion can be put within a common framework [5] by rep-
resenting the matrix Bk in the form

Bk D C(xk)C Ak ;

where C(xk) is called the computed part of the Hes-
sian matrix, and is calculated from analytical deriva-
tives, and Ak, the approximated part, can be computed
either analytically, from finite differences or from an
appropriate quasi-Newton formula. This division of the
Hessian matrix of the Lagrangian function is both natu-
ral and convenient in many applications and allows the
approximation of the Lagrangian Hessian matrix to be
tailored for any given situation. When n is small and
C(xk) = 0 and Ak is updated by the ‘full’ DFP or full
modified BFGS updates, the resulting SQP methods are
those of Han and Powell. Wilson’s method, which can

be used for either small or large scale problems, results
when C(xk) and Ak = A(xk) are calculated from ana-
lytical and/or finite difference second derivatives. On
the other hand, C(xk) = 0 and Ak can be updated by
the sparse PSB update [23] to give a full space SQP
(quasi-Newton) method that accounts for sparsity. Fi-
nally, hybrid SQPmethods [15], which have their foun-
dation in nonlinear least squares [5], result when C(xk)
is computed from analytical second derivatives and Ak

is calculated using some quasi-Newton update. For ex-
ample, A. Kumar and A. Lucia [13] suggest a number
of hybrid full space SQP methods that calculate C(xk)
from analytical second derivatives and build approxi-
mations to each of the many small dense blocks of Ak

by the full PSB update and iterated projections [6] using
both traditional secant and auxiliary (thermodynamic)
matrix constraint information. Like Wilson’s method,
these hybrid methods for approximating the Hessian
matrix of the Lagrangian function can be used for both
small and large scale problems.

Convexity

For small problems, the use of the modified BFGS up-
date to approximate Bk gives hereditary positive defi-
nite approximations to the Hessian matrix of the La-
grangian matrix and is preferred because this guaran-
tees that the projection of the Lagrangian Hessian ma-
trix is positive definite on the tangent subspace de-
fined by the linearized constraints. As a result, the re-
cursive quadratic programs are convex (bowl-shaped)
and have unique solutions, and these unique solutions
usually provide descent in the nonlinear programming
line search function. In contrast, when analytical and/or
other quasi-Newton updates are used to build itera-
tive approximations of the Hessian matrix of the La-
grangian function, regardless of whether the problem
size is small or large, it is often difficult to guaran-
tee hereditary positive definiteness unless the problem
has certain intrinsic convexity properties or the Hes-
sian matrix is ‘corrected’ to force positive definiteness.
The most common type of correction for forcing posi-
tive definiteness is one in which a scalar multiple of the
identity matrix, I, is added to the current approxima-
tion to the Hessian matrix of the Lagrangian function.
That is, if Bk (or its projection) is determined to be in-
definite (by monitoring the appropriate factors), then it
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is corrected by the Levenberg–Marquardt rule

Bk D Bk C � I;

where � is a scalar determined from the diagonal factor
of Bk. Other modifications or corrections to ensure that
Bk is positive definite using Schur complements have
also been suggested in [10] and applied in [1]. How-
ever, it has been shown that forcing positive definite-
ness can often lead to convergence to undesired (trivial)
solutions [19].

Nonconvexity

In many cases, the true Hessian matrix of the La-
grangian function is positive definite on the tangent
subspace defined by the constraints at a local con-
strained minimum but indefinite in the full space of
the variables. To build a ‘better’ approximation to the
Hessian matrix of the Lagrangian function, it is possi-
ble to allow Bk to be indefinite. However, this can also
cause the projection of the Hessian matrix onto the tan-
gent subspace of the linearized constraints to be indef-
inite. Consequently, the resulting recursive quadratic
programs can be indefinite and require special tech-
niques [2,16] or global optimization methods to be
solved reliably. Moreover, loss of descent in the nonlin-
ear program can still occur even though these indefinite
quadratic programs are solved successfully.

Thus in many large scale applications, where spar-
sity must be exploited and some combination of an-
alytical, finite difference and/or quasi-Newton second
derivatives must be used, considerable attention must
be paid to the resulting convexity or nonconvexity im-
plied by the approximations of the Hessian matrix of
the Lagrangian function because this will have signif-
icant ramifications, both in the methods used to solve
the recursive quadratic programs and in the use of sta-
bilization techniques to farce convergence from ‘poor’
(or remote) starting points.

Solving the Kuhn–Tucker Conditions
for Quadratic Programming Subproblems

Full space SQP methods give rise to recursive quadratic
programs in the full space of the x variables. When n is
small and sparsity is of little concern, active set strate-
gies are usually used to solve these small but full recur-

sive quadratic programs. Moreover, when the approx-
imation to the Hessian matrix of the Lagrangian func-
tion is hereditary positive definite, the quadratic pro-
gram is convex, the rules for constraint addition and
deletion are simple, both feasibility and descent in the
quadratic program can be maintained under mild re-
strictions, and convergence to the unique solution of
the quadratic program can be guaranteed [8]. This is
why full quasi-Newton updates like the modified BFGS
formula are preferred for small problems. Even when
n is large, there is still strong incentive to ‘correct’ the
Hessian matrix approximations for positive definite-
ness so that the recursive quadratic program is convex,
although techniques for both large scale convex and in-
definite quadratic programming and both active set (di-
rect) and interior paint (iterative) methods for solving
the recursive quadratic programs exist.

Active Set Methods

Current active set strategies are exchange-type methods
[8] and are usually based on some factorization of the
coefficient matrix of the Kuhn–Tucker conditions for
the quadratic program depending on the properties of
Bk. This means that inequalities are brought in and out
of the active set (or exchanged) as part of the procedure
for solving the given recursive quadratic program. This
is accomplished using a combination of ‘line search-
ing’ in the direction given by the current estimate of
the quadratic program solution and by monitoring the
signs of the Kuhn–Tucker multipliers for the inequali-
ties. When the Hessian matrix of the Lagrangian func-
tion is positive definite, an LDL> or Cholesky factoriza-
tion of Bk (or its projection) is often used and the factors
are ‘updated’ both symbolically and numerically as the
active set within a given recursive quadratic program
changes. Updating avoids complete refactorization at
each quadratic program iteration and diagonal pivot-
ing can be used to maintain numerical stability. This is
true for both small and large problems.Moreover, at the
beginning of any given recursive quadratic program,
an initial feasible solution to the quadratic program is
often generated using linear programming. While this
may be desirable, in some sense, feasible starting points
for the quadratic program are not strictly required. In
fact, the usual strategy of initializing the active set for
the current recursive quadratic program to be the final
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active set on the previous SQP iteration often generates
an infeasible starting point for the quadratic program,
particularly when the SQP iterates are far from the op-
timal solution.

When the Hessian matrix of the Lagrangian func-
tion is permitted to be indefinite on the tangent sub-
space defined by the linearized constraints, LDL> or
Cholesky factorization is no longer necessarily stable
and therefore can not be used. To correctly handle pro-
jected indefiniteness in solving the Kuhn–Tucker con-
ditions for a given choice of active set, symmetric in-
definite factorization [3] has been suggested [2] and
modified for sparsity [14,16]. A number of pivoting
strategies also exist, including threshold [14] and con-
strained pivoting [18], to both reduce fill-in and en-
sure numerical stability. Within the active set strategy,
projected indefiniteness often causes ‘incorrect’ con-
straint addition and deletion, places restrictions on the
order in which inequalities can be added to and/or
deleted from the active set (even among members of
the true final active set), can cause redundant active
sets, and gives rise to multiple Kuhn–Tucker points.
Thus more complicated logic is required within the ac-
tive set strategy when projected indefiniteness is per-
mitted. In particular, projected indefiniteness must be
monitored from one quadratic programming iteration
to the next and used as a guide for constraint addition
and deletion, line searching must be permitted in both
the positive and negative direction, and an inequality
must not necessarily be deleted from the active set be-
cause its associated Kuhn–Tucker multiplier is nega-
tive. See [19].

Interior Point Methods

Interior point methods for solving the recursive
quadratic programs have been suggested [9,11,26] and
differ from active set methods in that they usually use it-
erative methods with some type of preconditioning (or
scaling of the elements of the Jacobian and Hessian ma-
trices) to solve the Kuhn–Tucker conditions for amodi-
fied quadratic program. In the context of quadratic pro-
gramming, interior point methods are usually primal-
dual (sometimes called predictor-corrector) path fol-
lowing algorithms that use logarithmic barrier func-
tions. The use of a logarithmic barrier function changes
the linear Kuhn–Tucker conditions for the quadratic

program into a set of parameterized nonlinear Kuhn–
Tucker conditions. These nonlinear stationary condi-
tions are usually solved using some type of (truncated)
Newton method, whose linear subproblems are often
solved by iterative linear equation-solving techniques.
Approximate linear solutions are often used in the be-
ginning and the accuracy ‘tightened’ as the solution to
the nonlinear equations is approached. Convexity in
the quadratic program is also generally required and
preconditioning of the linear equations is needed for
numerical stability. Typical iterative linear equation-
solving techniques used to determine the (truncated)
Newton corrections include preconditioned conjugate
gradient, generalized minimum residuals, and other so-
called Krylov (or expanding) subspace methods, while
common preconditioning techniques often are based
on some partial LU factorization of the coefficient ma-
trix. The use of iterative linear equation-solving meth-
ods is particularly advantageous in solving large scale
problems because fill-in (i. e., turning zero elements
into nonzero elements) is avoided in the coefficient ma-
trix, thereby reduce both storage and overall computa-
tional workload.

Multiple QP Kuhn–Tucker Points
and Related Issues

When the projection of the Lagrangian Hessian ma-
trix is hereditary positive definite on the tangent sub-
space defined by the linearized constraints, the re-
cursive quadratic programs have unique solutions (or
Kuhn–Tucker points). Perhaps the single biggest dif-
ficulty associated with projected indefiniteness of the
Hessian matrix of the Lagrangian function in full space
SQP methods is the potential for multiple solutions
to the recursive (indefinite) quadratic programs. There
can be local and global minima of the quadratic pro-
gramming objective function on the linearized con-
straint surface, as well as a saddle point solutions, each
corresponding to a different set of active constraints.
Moreover, the particular solution that is found is very
often a function of the way in which the quadratic pro-
gramming calculations are initiated (or the initial active
set chosen for the quadratic program).

However, more importantly, many of these multi-
ple solutions (even the global solution) to a quadratic
program may not be descent directions for a vari-
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ety of common line search functions used in nonlin-
early constrained optimization, including an l1 exact
penalty function and an augmented Lagrangian func-
tion. Thus finding the global solution to a given recur-
sive quadratic program using global optimization tech-
niques is unjustified [17].

Loss of Descent
in the Nonlinear Program

Given a valid Kuhn–Tucker point from an indefinite re-
cursive quadratic program, loss of descent (or an uphill
search direction) in the nonlinear program can still oc-
cur. However, this is a problem that has received rel-
atively little attention in the literature because many
full space SQPmethods modify the Lagrangian Hessian
matrix so that it is positive definite on the tangent sub-
space defined by the linearized constraints, thereby pro-
viding descent.

Descent in any nonlinear programming algorithm
means that gLS(xk)> � xk < 0, where gLS(xk) is the gra-
dient of some suitably chosen merit function that bal-
ances satisfying the constraints withminimizing the ob-
jective function. Loss of descent means that gLS(xk)> �
xk � 0. When line searching is used as the stabilization
technique, it is essential that the change in the unknown
variables provided by the quadratic programming sub-
problem be a descent direction of the chosen line search
merit function at each SQP iteration. Failure to provide
a descent direction in the context of line searching of-
ten leads to termination of the SQP algorithm due to
the failure to find a ‘better’ point with regard to the line
search function. Thus, it seems appropriate to modify
the Hessian matrix of the Lagrangian function for (pro-
jected) positive definiteness to avoid subsequent failure
in the line searching phase of a full space SQP method,
as is done in [1,20].

In contrast, when trust region methods are used for
stabilization [4,16,22,24] [7], descent at each SQP itera-
tion is not strictly required but is desirable. Thus, many
trust region methods for full space SQP methods still
use positive definite Hessian matrix approximations, as
well as a merit function on the trust region [22], to help
ensure descent even though uniform boundedness is all
that is required. Other trust region methods [17] use
a linear programming subproblem to recapture descent
at any given SQP iteration. For example, Lucia and J. Xu

[17] solve the linear programming problem given by

(
min g(xk)>	xk
s.t. J	xk � c(xk);

where the Jacobian matrix, J, is comprised of the first
partial derivatives for all active constraints from the
quadratic programming subproblem. While this ap-
proach does sacrifice curvature information, it does
have the distinct advantages of having a unique solu-
tion and providing information on how to adjust the
trust region to obtain descent.

Initializing the Unknown Variables

Many studies of full space SQP methods give little at-
tention to the way in which initial values for the un-
known variables and Lagrange and Kuhn–Tucker mul-
tipliers are initialized. In fact, remote or ‘poor’ initial
values for the unknown variables are often chosen in
mathematical studies involving ‘small’ problems in or-
der to test the global convergence properties of the
SQP algorithm. While this provides very useful infor-
mation, in large scale application-based optimization
problems, the choice of starting point is an impor-
tant issue with a slightly different perspective that often
represents the difference between success and failure.
Qualitatively correct physical information is frequently
just as important as, or even more important than, the
numerical values used for the unknown variables. In
many physically-based optimization applications, the
mathematical model (i. e., the constraints and the ob-
jective function) can wander into regions in which the
model is not properly defined when initial values are
chosen arbitrarily and lead to difficulties such as infea-
sibility, singularity, and other related problems. In ad-
dition, many physically-based nonlinear programming
problems can exhibit multiple optima. However, some
of these solutions are clearly undesirable in the sense
that they do not represent the desired operational state
of the model. Some solutions may represent local op-
tima or saddle point solutions when a global optimum
is the desired solution. To improve the chances of cal-
culating desired optima, ‘better’ initial values are often
used and/or coupled with the use of global optimization
techniques.
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Despite the fact that SQP methods are ‘infeasible
path’ algorithms since they do not usually satisfy the
nonlinear constraints at each iteration, it is often help-
ful to at least initiate the computations using a set of ini-
tial values that satisfies the constraint set and, if possi-
ble, represents something ‘close’ to the desired optimal
solution. In many applications, this is often possible by
solving a ‘simulation’ problem, in which the degrees af
freedom in the optimization problem are exhausted by
defining a set of ‘specifications’ (i. e., by adding simple
equality constraints that fix values of certain variables)
to give a set of n constraint equations in n unknown
variables. The solution to this set of nonlinear algebraic
equations often provides useful and physically mean-
ingful initial values for the unknown variables. The ini-
tial values for the Lagrange and Kuhn–Tucker multi-
pliers are also important in a problem-solving setting
because their values effect the Hessian matrix of the
Lagrangian function, the quadratic programming solu-
tion, and the line search function (if one is used). Ini-
tial values for the Lagrange and Kuhn–Tucker multipli-
ers are often determined by computing a least squares
solution to the Kuhn–Tucker conditions for the non-
linear programming using the initial values of the un-
known variables and some knowledge or assumption
of the initial active set of constraints. That is, initial La-
grange and Kuhn–Tucker multipliers can be obtained
by solving the set of equations given by

J J>� D �J g(xk);

where J is the Jacobian matrix of the active constraints
and � represents the associated Lagrange and Kuhn–
Tucker multipliers. Special techniques are also often
employed to reduce the size and storage associated with
this system of nonlinear equations [16].

Related Numerical Studies

There have been relatively few numerical studies of
full space SQP methods specifically directed at large
scale problems. Application areas have included math-
ematical [19], chemical process optimization [16,18]
and aerospace problems [1] to name a few. The num-
ber of unknown variables in these studies has ranged
from 5 to 60 in the mathematical studies, from 100
to 500 unknown variables in the chemical process op-

timization problems and to as many as 13,000 un-
knowns in the aerospace examples. A variety of tech-
niques for estimating the Hessian matrix, including an-
alytical, finite difference, quasi-Newton and a mixture
of second derivatives, have been used. In some stud-
ies positive definiteness of the Lagrangian Hessian ma-
trix has been enforced [1,20], while in others indefinite-
ness of the projected Hessian matrix has been permitted
[16,17,18,19].
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Quadratic programming (QP) subproblems arise in
both full space and decomposition methods of succes-
sive quadratic programming (SQP) where the solution
to the QP is used to define the step in the unknown
variables for the nonlinear programming (NLP) phase
of the calculations. Thus reliable and efficient methods
for solving quadratic programs are needed. Early meth-
ods for quadratic programming were based on a lin-
ear programming (LP) approach [1,3,17] but current
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methods are either active set strategies [5] and [2,13] or
interior point methods [7,11,17]. An active set is a set
of equality and/or inequality constraints that hold as
equalities and active set methods [5] for quadratic pro-
gramming are based on a strategy for moving inequal-
ity constraints in and out of the active set during the
solution of the quadratic program until a valid Kuhn–
Tucker point (solution) is found. Sometimes feasible
starting points are used to initiate the QP calculations
but this is not strictly necessary and often impractical
in the context of SQP methods. Inequalities are added
to the active set based on constraint violations in the
current Kuhn–Tucker direction using a ‘line searching’
procedure while inequalities are deleted from the ac-
tive set based on the signs of Kuhn–Tucker multipli-
ers. Constraint addition, deletion and/or exchange usu-
ally occurs one at a time. Furthermore, many active set
methods require convexity (or a positive definite pro-
jection of the matrix of the quadratic objective func-
tion); however QP methods for indefinite quadratic
programs [2,13] and large scale problems [13,14] also
exist. For large scale problems, sparsity of the coeffi-
cient (Jacobian) matrix of the constraints and second-
derivative matrix need to be exploited. In contrast, in-
terior point methods convert a convex quadratic pro-
gram into a set of nonlinear equations using logarith-
mic barrier functions, and solve the resulting nonlinear
system of equations using Newton’s method and iter-
ative linear equation-solving techniques. The use of it-
erative methods to solve the linearized equations usu-
ally requires preconditioning but incurs no fill-in, mak-
ing it possible to solve very large problems. Convexity
is also a strict requirement for current interior point
methods.

Issues that are important in solving quadratic pro-
grams by either active set methods or interior point
methods include
� the rules for constraint addition, deletion and ex-

change, cycling, infeasibility, redundancy;
� the use of matrix factorizations, updating techniques

and sparsity considerations;
� convexity and nonconvexity.

The Quadratic Program

Recursive quadratic programming problems arise from
the application of SQP methods to the following non-

linear programming problem
(
min f (x)
s.t. c(x) � 0;

where x is a vector of length n which represents an esti-
mate of the local minimum, f (x) is a twice continuously
differentiable objective function and c(x), the vector of
equality and/or inequality constraints, is also twice con-
tinuously differentiable and nonlinear. A Lagrangian
formulation

L(x) D f (x)C �>c(x)C �>c(x);

where L(x) is the Lagrangian function and � and �
are vectors of Lagrange and Kuhn–Tucker multipli-
ers associated with the equality and inequality con-
straints, respectively, gives rise to the following succes-
sive quadratic program:
(
min g(xk)>	xk C 1

2	x>k Bk	xk
s.t. c(xk)C J	xk � 0;

where � xk is the change in the unknown variables,
g(x) is the gradient of the objective function, J is the
first partial derivative (or Jacobian) matrix of the con-
straint functions, and Bk is some approximation to the
true Hessian matrix of the Lagrangian function, H(x) =
Hf (x) +

P
�iHci(x) +

P
�iHci(x), and where Hf (x) and

Hci(x) refer to the true Hessian matrices of the objective
function and ith constraint respectively. It is this recur-
sive quadratic program that is solved by active set or
interior point methods, whose solution is complicated
by the fact that any inequalities that hold as equalities
must be determined as part of the solution procedure.

Linear Kuhn–Tucker Conditions
for the Quadratic Program

The solution of a quadratic program is defined by the
stationary (or linear Kuhn–Tucker) conditions for the
Lagrangian function of the quadratic program given by

Bk	xk C J>E �k C J>I �k D �g(xk)

and

[J>E J
>
I ]
>	xk D �c(xk)

with �k > 0, where JE is the Jacobian matrix of the
equality constraints, JI is the Jacobian matrix for the
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active inequality constraints, and where the unknown
variables in this set of linear equations are� xk, �k, and
�k. For convex quadratic programs, the projection of
the Hessian matrix onto the constraint surface is posi-
tive definite and the solution to the quadratic program-
ming problem is unique. On the other hand, for non-
convex (or indefinite) quadratic programs multiple so-
lutions can exist. Therefore, reliable active set or in-
terior point methods for solving quadratic programs
must find the global solution to convex QP’s and at
least a local solution to indefinite quadratic program-
ming problems.

Active Set Methods

Equality constraints are always members of the active
set on all QP iterations. If the active inequality con-
straints at the solution were known, the linear Kuhn–
Tucker for the quadratic program would only have to
be solved once (per SQP iteration). However, the ac-
tive inequalities and therefore JI are not known until
the solution is found and this is what makes solving
quadratic programs something more than just solving
linear systems of equations. The linear Kuhn–Tucker
conditions for the quadratic program must be repeat-
edly solved with a different number of equations and
different number of variables, both of which reflect the
number of active inequalities.

Initialization

Many active set methods for quadratic programming
use a feasible starting point to initiate the calculations,
which is usually determined by solving a phase I linear
programming problem [5,6]. The reasons for this are
that:
i) constraint feasibility can then be maintained

throughout the iteration procedure;
ii) iterative comparisons of the quadratic program-

ming objective function are meaningful since all it-
erates are feasible and

iii) descent from one iteration to the next can be en-
forced.

However, the use of a feasible starting point is not
strictly necessary for convex quadratic programs and is
actually impractical in SQPmethods. In fact, it is a com-
mon practice in SQP methods to choose the active set
for each QP subproblem to be the final active set from

the previous SQP iteration and this usually gives an in-
feasible starting point, particularly during early nonlin-
ear programming iterations. However, the use of the ac-
tive set from the previous SQP iteration has been found
to work well and therefore the calculation of a feasible
starting point at each SQP iteration is an unnecessary
computational expense. Direct comparison of feasible
and infeasible QP starting points in SQP calculations
has also shown this to be true [13].

Addition and Deletion of Inequality Constraints

The heart of any active set method for quadratic pro-
gramming is the rules for adding, deleting or exchang-
ing inequalities and in most active set strategies one ‘it-
eration’ consists of either the addition or deletion of
a single inequality or the exchange of one inequality for
another [5,6]. However, strategies for adding and delet-
ing multiple inequalities have also been suggested.

Constraint addition, deletion and exchange usu-
ally occur in the following way. Given some active
set, say {Aj}, which is simply a collection of inequal-
ity constraint indices, and a solution to the associated
quadratic programming Kuhn–Tucker conditions for
that active set,� xk, �k and �k, a search in the direction
� xk is performed to determine if any of the inequal-
ities not in the current active set are violated. This is
easily accomplished by comparing the elements of the
product JI � xk to the elements of the vector � ci(xk)
for each inequality not in the current active set. If e>i
JI � xk > � c(xk) for i 62 {Aj}, then that inequality con-
straint is violated and temporarily flagged as one that
must be considered for addition to the active set. Oth-
erwise, it is not violated. Once all inequalities not in
the active set have been tested, the most violated in-
equality (or the one in which the ratio is the smallest)
is selected as the inequality constraint to add to the cur-
rent active set. Constraint deletion, on the other hand,
is more straightforward. The Kuhn–Tucker multipliers
for all inequalities in the current active set are checked
and the one with the multiplier that is most negative
is identified as the inequality that should be removed
from the active set. For iterations in which both addi-
tion and deletion are indicated, an exchange is usually
made in which the inequality to be added replaces the
one to be deleted from the current active set. These rules
define the next active set {Aj+1}. See [5] for a more de-
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tailed description of the standard rules for constraint
addition, deletion and exchange.

For nonconvex or indefinite quadratic program-
ming problems, A. Lucia et al. [13] have shown that
standard rules can determine incorrect active sets when
the projection of the matrix Bk onto the linear con-
straint surface is indefinite. In particular, nonconvex-
ity together with the standard rules can lead to the ad-
dition of inequalities not in the final active set and/or
the deletion of inequalities that truly belong to the fi-
nal active set. This often leads to cycling, in which the
same estimate of the active set occurs periodically af-
ter one or more active set changes, and subsequently
to failure of the active set strategy and therefore the
SQP method. This is further complicated by the fact
that there can be multiple Kuhn–Tucker points to in-
definite quadratic programs, each of which corresponds
to a different active set. Thus the rules for constraint ad-
dition, deletion and exchange for indefinite or noncon-
vex quadratic programming problems are more com-
plicated and often include:
i) monitoring the projected Hessian matrix and using

projected indefiniteness to guide the addition of in-
equalities into the active set;

ii) permitting line searching for negative values of the
line search parameter when the current QP Kuhn–
Tucker point is in a direction of nondescent; and

iii) deleting an inequality only if the projected Hessian
matrix is positive definite or the degrees of freedom
are exhausted [13].

Infeasible and Redundant Constraint Sets

Many active set strategies also contain safeguards for
infeasible constraint sets and constraint redundancy to
avoid singularity in iterative estimates of the active set.
An infeasible constraint set is one in which the collec-
tion of points satisfying the constraints is empty; thus
there is no solution to the quadratic program. It is
in this regard that the use of phase I linear program-
ming techniques for generating feasible initial values
for the quadratic program offer advantages since they
readily identify constraint infeasibilities; however other
techniques for identifying constraint infeasibilities have
been proposed [13]. SQP calculations in which infea-
sible constraint sets have been encountered are usu-
ally continued by using some ‘least error’ solution for

the step in the unknown variables. Otherwise, the cal-
culations are simply terminated [15]. Redundant con-
straints, on the other hand, give rise to singularity in the
constraint Jacobian matrix for the active set and tech-
niques for ‘trapping’ and removing linearly dependent
constraints are available.

Matrix Factorizations and Updating

The linear Kuhn–Tucker conditions for the quadratic
program are usually solved using matrix factorizations.
When the quadratic program is small in size and is
guaranteed to be convex, QR, LQ or TU factorization
can be used to factor the Jacobian matrix of the con-
straints and Cholesky factorization is used to factor ei-
ther the Hessian matrix, Bk, or its projection onto the
constraint surface, Z> BkZ [9]. Note, however, that Bk

does not have to be positive definite in order for Z>

BkZ to be positive definite, but that some care must be
exercised since Cholesky factorization requires positive
definiteness. For large scale quadratic programs, usually
both the constraint Jacobian matrix and the Hessian
matrix are sparse (i. e., contain relatively few nonzero
elements). To exploit sparsity, QR factorization can not
be used to factor the constraint Jacobian matrix since
Q formed from Householder transformations is usu-
ally a full matrix and Z can destroy any sparsity in Bk.
In this case, TU factorization is used for the Jacobian
matrix and Cholesky factorization is used for the pro-
jected Hessian matrix when it is positive definite [10].
For indefinite quadratic programs, Bunch and Parlett
factorization is usually used in place of Cholesky fac-
torization of the Hessian matrix or its projection [2]
to maintain numerical stability. Lucia, J. Xu and K.M.
Layn [13] use Bunch and Parlett factorization for the
entire coefficient matrix of the Kuhn–Tucker condi-
tions by exploiting the sparsity of the constraint Ja-
cobian and Hessian matrices. See [10] for guidelines
for choosing factorization techniques in quadratic pro-
gramming.

In order for the procedure of repeatedly solving the
linear Kuhn–Tucker conditions to be efficient, com-
plete refactorization of the associated matrices must be
avoided. When constraint addition, deletion and ex-
change is limited to the change of one or at most two
inequalities from one active set to the next, techniques
that modify the necessary factors using relatively few
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arithmetic operations are available. R. Fletcher [5] gives
recursion relations for modifying the fundamental lin-
ear operators in quadratic programming. Other explicit
and implicit formulas for modifying Cholesky, Bunch
and Parlett factors [12] exist, as well as updating tech-
niques based on Schur complement [8].

Interior Point Methods

Most interior point methods are primal-dual (some-
times called predictor-corrector) path following algo-
rithms that use logarithmic barrier functions to change
the linear Kuhn–Tucker conditions for the quadratic
program into a set of parameterized nonlinear Kuhn–
Tucker conditions [7,11,18]. The resulting nonlinear
equations are solved using some type of (truncated)
Newton method, whose linear subproblems are, in
turn, solved by iterative linear equation-solving tech-
niques. That is, approximate linear solutions are of-
ten used in the beginning and the accuracy ‘tight-
ened’ as the solution to the nonlinear equations is ap-
proached. Convexity in the quadratic program is also
generally required and preconditioning of the linear
equations is needed for numerical stability. Iterative
linear equation-solving techniques used to determine
the (truncated) Newton corrections include precondi-
tioned conjugate gradient, generalized minimum resid-
uals, and other so-called Krylov (or expanding) sub-
space methods, while preconditioning is often based on
some incomplete (or partial) LU factorization of the co-
efficient matrix. The use of iterative linear equation-
solving methods is particularly advantageous in solv-
ing large scale quadratic programming problems be-
cause fill-in (i. e., turning zero elements into nonzero
elements) is avoided in the coefficient matrix, thereby
reducing both storage and overall computational work-
load.

Interior Point Formulation

Interior point methods use logarithmic barrier func-
tions to convert a quadratic program of the form

8̂
<̂
ˆ̂:

min g(xk)>	xk C 1
2	x>k Bk	xk

s.t c(xk)C J	xk D 0
	xk � 0

into the nonlinear program
8̂
<̂
ˆ̂:

min g(xk)>	xk

C
1
2
	x>k Bk	xk � P

X
log(	xi)k

s.t. c(xk)C J	xk D 0;

where (� xi)k denotes the ith element of the vector
�x on the kth iteration and P is a positive penalty
parameter that tends to zero as the solution to the
quadratic program is approached. Note that the in-
equality bounds on the variables appear as part of the
objective function and that the purpose of the logarith-
mic functions is to add a penalty to the objective func-
tion as the variables � xi approach their bounds. Since
the logarithm of a small number is negative, the term
� P log(� xi)x for any variable near its bound is pos-
itive. This increases the value of the objective function
and thus places a ‘barrier’ in the way of the iterates in
order to prevent them from hitting the boundaries and
keep them in the ‘interior’ of the feasible region. Also,
general inequalities can be converted to equality con-
straints using slack variables. Because the logarithmic
barrier functions are nonlinear, the resulting Kuhn–
Tucker conditions

Bk	xk C J>�k � P
X 1

(	xi)k
D �g(xk)

and

J	xk D �c(xk)

are also nonlinear because of the terms 1/(� xi)k. These
equations are then converted into an equivalent formu-
lation using dual variables, zk, defined by P

P
1/(� xi)k,

and the resulting system of nonlinear equations

Bk	xk C g(xk)C J>�k � zk D 0;

J	xk C c(xk) D 0

and

zk � P
X 1

(	xi)k
D 0;

which provide a primal-dual central path, are solved us-
ing some form of Newton’s method.

Solution of the Interior Point
Optimality Conditions

This last set of nonlinear equations, which define opti-
mality for an interior point formulation of a quadratic
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program, must be solved iteratively and usually New-
ton’s method is used for this task (i. e., these condi-
tions for the interior point formulation are linearized
and corrections to the variables � xk, � �k and � zk
are calculated). In practice, these equations are usually
solved in a predictor-corrector fashion in which predic-
tor steps account for scaling and feasibility and correc-
tor steps perform centering to keep the iterates interior
to the feasible region. Within these predictor and cor-
rector iterations, line searching (i. e., a fraction of the
Newton step) is also used to maintain feasibility and
the rules for choosing the appropriate stepsizes are such
that direct prediction Newton steps are taken in the
limit.

The nonlinear optimality conditions for an interior
point formulation can be solved accurately at each it-
eration. However, to improve the efficiency of interior
point methods, truncated Newton methods [4] have
been suggested for approximately solving these con-
ditions. That is, optimality conditions are only solved
to a ‘loose’ tolerance during early iterations in order
to produce acceptable corrections in the variables and
this tolerance is tightened as the solution to the inte-
rior point optimality conditions is approached. The pri-
mary justification for this approach is that there is no
apparent need to solve the nonlinear optimality condi-
tions accurately when the iterates are far from the solu-
tion.

To further improve efficiency, the linearized equa-
tions that come from the application of Newton’s
method to the optimality conditions for interior
point methods are often solved using iterative lin-
ear equation-solving techniques such as preconditioned
conjugate gradients or other Krylov subspace methods
such as the Generalized Minimum RESiduals (GMRES)
techniques of [16]. These iterative methods usually use
a small number of basis vectors, to conserve storage,
and are ‘restarted’ each time the number of iterations
exceeds the number of basis vectors being stored. In ad-
dition, preconditioning is usually required for numer-
ical stability. Preconditioning techniques are intended
to improve the condition number (i. e., the ratio of the
absolute value of the largest and smallest eigenvalue)
of the coefficient matrix and typically some form of in-
complete LU factorization is used for this purpose. The
primary advantage of using iterative methods to solve
the linearized equations is that they incur no fill-in and

thus keep storage requirements at an acceptable level,
even for very large problems.

Penalty Parameter Updating

The penalty parameter, P, must tend to zero as the solu-
tion to the quadratic program is approached to achieve
rapid convergence and for this usually some ‘updating’
procedure is used. That is, given some initial penalty
parameter, say P0, iterative values of the penalty param-
eter are calculated using some formula that drives P to
zero quickly. To accomplish this, generic updating for-
mulas of the form

PkC1 D ˇPk

are usually used, where ˇ is a function of the stepsizes
determined during the corrector phase of the solution
to the optimality conditions.

Numerical Studies

Limited numerical results for quadratic programming
can be found in the papers that introduce various as-
pects of active set methods [2,5] and [13]. Few general
numerical results for quadratic programming in SQP
methods exist and those again usually deal with specific
concerns such as infeasibility, factorizations, matrix up-
dating, etc. There are even fewer numerical results re-
garding the use of interior point methods, although in-
terest in the latter is beginning to grow, and although
much has been written regarding the comparison of ac-
tive set and interior point methods no definitive study
has been published.
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Introduction

During the last two decades, many new strategies in lo-
gistics management have emerged. By introduction of
these strategies, not only concepts of logistics engineer-
ing have been broadened but also new concepts such
as “logistics integration” have been introduced. As the
new concepts were introduced, many companies began
to realize that in optimizing their logistics costs it is
not sufficient to focus only on the organization itself.
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It is rather compulsory to include other companies that
have direct or indirect relationships with the organiza-
tion. The challenge for logistics managers has become
the integration of all operations across all facets of the
business to improve the overall performance. The con-
cept has become to be known as supply chain manage-
ment (SCM).

As companies began managing their supply chain,
they realized that they were in need of tools that will
measure the combined performance of the supply chain
instead of their organization alone. These much-needed
tools can be referred to as “supply chain performance
measurement systems” [6]. When traditional perfor-
mance measurement systems are reviewed, it is seen
that performance metrics are usually based on account-
ing systems which are not sufficient to measure overall
supply chain performance. In order to overcome this
insufficiency, several performance measurement sys-
tems have been developed during the last decade.

Applications

Kaplan and Norton [17] developed the concept of the
balanced scorecard (BSC) that complements financial
measures of past performance with measures of the
drivers of future performance. According to Kaplan
and Norton [17], financial and nonfinancial measures
must be parts of an information system that is available
to employees at all levels in an organization. Based on
this approach, the BSC provides executives with a com-
prehensive framework that matches a company’s vision
and strategy with a set of performance measures which
are organized into four different perspectives: finan-
cial perspective, customer perspective, internal business
process perspective, and learning and growth perspec-
tive.

The supply chain operation reference (SCOR) [9]
model links process elements, metrics, best practices,
and the features associated with the execution of a sup-
ply chain in a unique format and provides a balanced
approach tomeasure overall supply chain performance.
The SCOR model is hierarchical with specific bound-
aries in regard to scope and gives definitions of ev-
ery performance measure included in the model. In
version 5.0 of the model, the performance measures
are also intended to be hierarchical. Under the SCOR
model, performance measures are classified into five

groups, which are reliability, responsiveness, flexibility,
cost, and assets.

Beamon [2] categorized performance measures into
two groups, qualitative and quantitative measures, and
uses these performance measures for supply chain de-
sign and analysis. Qualitative performance measures
are those for which there is no single direct numeri-
cal measurement. Quantitative performance measures
are the measures that may be directly described numer-
ically. Beamon [2] also categorized quantitative mea-
sures as objectives based on cost and objectives based
on customer responsiveness. Fill rate, product lateness,
customer response time, and lead time are examples
of measures based on customer responsiveness, while
cost, sales, profit, inventory investment, and return on
investment are defined as measures based on cost.

According to Gunasekaran et al. [14], companies
often lack the insight for the development of effective
measures and metrics to achieve fully integrated sup-
ply chains. The lack of insight is not only the result of
an unbalanced approach between financial and nonfi-
nancial performance measures, but is also because of an
insufficient distinction among metrics at strategic, tac-
tical, and operational levels. The authors also present
a framework for measuring the performance of a sup-
ply chain after discussing some of the most appropri-
ate performance metrics and measures. The metrics
discussed in this framework are classified into strate-
gic, tactical, and operational levels of management. The
metrics are also distinguished as financial and nonfi-
nancial so that a suitable costing method based on ac-
tivity analysis can be applied.

Beamon and Chen [4] categorized performance
measures into three groups: resource, output, and flex-
ibility. The resource performance measures determine
the level of resources in the system that are used to
meet the objectives. The output performance measures
show the effectiveness of the supply chain. The flexi-
bility measures describe the range of possible operating
conditions that are profitably achievable in the supply
chain. Beamon and Chen [4] defined performancemea-
sures for each category and also ran simulations con-
cerning the performance behavior of conjoined supply
chains. In their paper, a conjoined supply chain is de-
fined as a combination of divergent and arborescent
structures. The simulation results show that the system
stock-out risk, the probability distribution of the de-
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mand, and the transportation time are the most impor-
tant metrics in determining the effectiveness of a supply
chain.

Basu [1] made a comparison of performance mea-
sures when performance criteria shift from the en-
terprise itself to the integrated supply chain. Accord-
ing to the author, the collaborative culture of the in-
tegrated supply chain has triggered the emergence of
new measures, especially in five areas: external focus,
power to customer, value-based competition, network
performance, and intellectual capital. The author also
recommends a six-step cycle to implement a perfor-
mance management system and sustain the benefits of
a performance management system with the new mea-
sures.

Beamon [3] evaluated and identified the limitations
of supply chain performance measures such as cost,
activity time, responsiveness, and flexibility. She also
evaluated the use of single performance measures. Ac-
cording to Beamon [3], the single supply chain per-
formance measures are attractive because of their sim-
plicity. In addition, the author claims that current
supply chain performance measurement systems are
inadequate since they rely on the use of cost as a pri-
mary measure; they are not inclusive; they are often
inconsistent with the strategic goals of the organiza-
tion; and they do not consider the effects of uncertainty.
On the basis of these insufficiencies, the author pro-
posed a framework for measuring supply chain per-
formance that relates supply chain performance mea-
sures to strategic goals. In addition, Beamon [3] gave
a list of supply chain performance measures and their
respective definition. The author also presented a quan-
titative approach to flexibility measurement and stated
that flexibility measures are different from cost, activity
time, and responsiveness measures.

Ramdas and Spekman [21] measured supply chain
performance using a set of variables that capture the
impact of SCM on both system-wide revenues and
costs. Their evaluation was based on responses to a sur-
vey of 22 extended supply chains across five indus-
try groups, which included life sciences, oil and gas,
consumer products, agricultural and food processing
utilities, and manufacturing (high-tech electronic and
automotive). The authors defined six variables that re-
flect different approaches to measure the supply chain
performance. These variables are inventory, time, or-

der fulfillment, quality, customer focus, and customer
satisfaction. Ramdas and Spekman [21] also compared
functional and innovative respondents and concluded
that functional product supply chains and innovative
product supply chains differ significantly in thinking
and practices.

Stewart [24] claims that the integration of a sup-
ply chain requires philosophical, operational, and sys-
tems changes. The author also claims that the objective
of an integrated supply chain structure is minimizing
non-value-adding activities and their associated struc-
ture. The author suggests that during the integration of
a supply chain, four categories of operational change
must be considered. These categories are structure,
policy, systems, and organization. Systems should en-
able performancemeasurement. In addition, the author
pointed out that the business performancemetricsmust
support a balanced view, and that a “balanced metric”
framework is necessary to measure supply chain perfor-
mance. Stewart [24] also provided PRTM’s Third An-
nual Supply Chain Performance Benchmarking Study
results. The data collected for the benchmarking study
cover four areas: delivery performance, flexibility and
responsiveness, logistics cost, and asset management.
The author identified “keys” to unlock the supply chain
excellence.

Stainer [23] included productivity in the context of
logistics operations and showed how productivity can
be measured in this context. The author states that pro-
ductivity can be seen as management of resource uti-
lization and then proposes a framework for logistics
productivity analysis that consists of five distinct di-
mensions of service performance: tangibles, reliability,
responsiveness, assurance, and empathy. In addition,
Stainer [23] states that the dimensions must be incor-
porated in the strategic thinking.

Bowersox and Closs [5] discussed logistics perfor-
mance measures. The authors offer a framework for
measuring integrated supply chain performance and
benchmarking across an organization. They propose
three objectives for developing and implementing per-
formance measurement systems: monitoring measures,
controlling measures, and directing measures. In addi-
tion, they defined activity-based measures and process
measures. While activity-based measures focus on an
individual task or process, process measures focus on
the overall process throughout the supply chain. Bow-
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ersox and Closs [5] defined three levels of performance
measurement: internal performance measurement, ex-
ternal performance measurement, and comprehensive
supply chain measurement. Each of these measurement
systems is classified into subcategories, and the logis-
tics performance measures are placed into these sub-
categories.

Miller [19] presented a hierarchical framework for
capturing and linking all key performance measures. In
this framework, the author differentiates measures both
by their individual level in the hierarchy and by their
focus. There are three hierarchical levels: strategic, tac-
tical, and operational. Within these hierarchical levels,
performance measures are differentiated into two cat-
egories: internal and external measures. While internal
measures focus on efficiency and productivity, external
measures focus on the effectiveness of an activity. On
the basis of the framework developed, at the strategic
level, a few key performance metrics will be measured
to assess a company’s overall performance; at the tacti-
cal level, the performance of each function will be mon-
itored; and at the operational level, the performance of
each subfunction will be monitored.

Handfield and Nichols [15] discussed the key ele-
ments in establishing a successful supply chain reengi-
neering effort and an effective performance measure-
ment. They defined the properties of an effective sup-
ply chain performance measurement system and gave
an example framework of the BSC approach for a sup-
ply chain performance measurement system.

Lapide [18] identified that companies generally fall
into the following developmental stages:
1. Functional excellence – a stage in which a company

needs to develop excellence within each of its operat-
ing units, such as manufacturing, customer service,
and logistics departments.

2. Enterprise-wide integration – a stage in which
a company needs to develop excellence in its cross-
functional processes rather than within its individ-
ual functional departments.

3. Extended enterprise integration – a stage in which
a company needs to develop excellence in interenter-
prise processes.

Another important aspect of performance measure-
ment is setting the correct performance targets, which
should always be jointly set in the context of strategic
objectives. Lapide [18] identified four methods that can

be used to set performance targets: historical data based
targets, external benchmark, internal benchmark, and
theoretical target setting.

Hausman [16] gave information about the effects
of the Internet on the supply chain. The author claims
that new performance metrics should capture costs
and benefits of the Internet. Hausman [16] claims that
a supply chain needs to perform on three key dimen-
sions: service, assets, and speed. In addition, the au-
thor emphasizes that supply chain performance metrics
must be aligned with the business strategy.

Rolstadås [22] states that although many different
performance definitions exist in the literature, these
definitions can be defined by three dimensions:
1. Effectiveness: to what extent are customers’ needs

met.
2. Efficiency: how economically are the resources of the

company utilized.
3. Changeability: to what extent is the company pre-

pared for future changes.
Chan et al. [8] identified some in-depth problems of
performance measurement systems in the supply chain
context in their literature review. These problems are
(1) the lack of a balanced approach in integrating finan-
cial and nonfinancial measures, (2) the lack of system
thinking, in which a supply chain must be viewed as
one whole entity and the measurement system should
span the entire supply chain, and (3) loss of a supply
chain context. Thus, the authors conclude that the ex-
isting performance measurement systems lead to local
optimization. To overcome local optimization, Chan
et al. [8] propose a supply chain performance measure-
ment system with the assistance of the “analytic hier-
archy process” (AHP) method. The proposed system is
supposed to assess the performance of all the nodes in-
volved along the supply chain on the basis of the core
process in the simplified supply chain model. The au-
thors propose an eight-step method that identifies and
decomposes the processes involved and measures the
performance. Chan et al. [7] extended the previously
proposed supply chain performance measurement sys-
tem by using the fuzzy set theory.

Research papers related to supply chain perfor-
mance measurement have also appeared inmany books
for different supply chain environments, such as Ge-
unes et al. [11,13], Geunes and Pardalos [12], and
Pardalos and Tsitsiringos [20].
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Similar to previous researchers, Capar [6] also pro-
poses a supply chain performance measurement frame-
work. In addition to customer satisfaction and financial
perspectives, the author presented a new perspective.
The new perspective, referred to as the supply chain col-
laboration perspective, considers new trends in SCM.
Capar [6] also presented performance measures for the
supply chain collaboration perspective. The metrics are
classified as strategic, tactical, and operational in or-
der to determine the corresponding management level
that deals with the metrics. Furthermore, the author
discussed an appropriate supply chain performance
measurement system for a large Turkish automotive
company that manufactures passenger cars, light com-
mercial vehicles, and related components.

Conclusions

According to a multiyear study of supply chain excel-
lence at Michigan State University, performance mea-
surement is one of the top four drivers of supply chain
excellence [10]. This study also brings out the impor-
tance of neglected supply chain performance measure-
ment during the supply chain transformation efforts.
The research study reached the conclusion that success-
ful supply chain transformation efforts via effective sup-
ply chain performance measurement are increasing.

Easton et al. [10] also mentioned that sufficient per-
formance measurement systems should possess the fol-
lowing properties:
1. Measures should be directly tied to operational ef-

fectiveness and efficiency.
2. Measures should relate important strategic objec-

tives and nonfinancial performance.
3. Measures should provide a forward-looking per-

spective.
As the authors state, efficiency is the most weighted

dimension of the majority of measurement systems,
and it is intuitive for companies to focus on efficiency.
However, companies should not neglect the measure-
ment of the integrated supply chain performance.
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As the modern telecommunications need networks that
support fast and reliable data transmissions, the op-
tic fiber networks (SONET: Synchronous Optic Net-
works) are widely used and replace the old copper based
networks. According to the characteristics of the optic
fiber networks, designing networks so that it can sur-
vive from any failure of the networks which comes from
a node failure or a link failure is an important issue that
we have to consider [1].

Malfunctions of the networks result from node or
link failures and these failures come from natural dis-
asters such as earthquakes or incidents such as cutting
by ground digging or fire. Since much of modern busi-
ness depends on the telecommunication networks, the
networks should be safe even if there is a damage in
some place of the networks. The survivable network is
a network that can perform its function properly even
if there are node or link failures on the network. Prac-
tically, the node means a telecommunication center,
a switching point, or a city and the link denotes a ca-
ble between pair of nodes.

For an undirected graphG = (V , E), whereV is a set
of vertices (nodes) and E is a set of edges (links) in the
graph, the survivability of the networks is defined as the
number of node-disjoint paths, rij, for pairs of nodes i,
j. In other words, from i to j or from j to i in the graph,
the communication path is safe until rij-1 nodes of the
network are malfunctioning.

Also, edge-disjoint paths can be defined similarly.
If two edge-disjoint paths are found between i and
j, the two paths do not share some edges in these
paths, but they may use the same node in the paths.
Hence, the node-disjoint constraint is stricter than the
edge-disjoint constraint. Note that if there are rij node-
disjoint paths between i and j, we can always find rij
edge-disjoint paths between them. But, the reverse is
not true.

In Fig. 1, for example, three paths, a � b � h, a � c
� e � f � h, and a � d � e � g � h between a and h,
are edge-disjoint and a � b � h and a � d � e � g � h
are node-disjoint paths. That means at least three edge
failures or two node failures are needed for interrupting
telecommunications service between a and h.

In general, the number of node(edge)-disjoint paths
for some specific nodes, a and b, can be found easily us-
ing max–flow algorithms. If flow capacities of all edges
are infinite and those of all nodes on the network is
1, maximum flow obtained by a max–flow algorithm
is equal to the number of node-disjoint paths between
a and b. If flow capacities of all edges are 1 and flow
capacities of all nodes are infinite, the maximum flow
should be the number of edge-disjoint paths between a
and b on the network.

Now, we consider only the node-disjoint con-
straints since the edge-disjoint constraints are included
in the node-disjoint constraints. The node(edge)-dis-

Survivable Networks, Figure 1
Survivable networks
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joint constraints may be called connectivity constraints.
If rij = n � 1, 8i, j 2 V , where n is the number of
nodes in the graph, the survivable network is a complete
graph and there are n � 1 node disjoint paths includ-
ing a direct connection between a and b. However, it is
not a good idea to establish such an expensive network.
Since implementing a network that has more links than
an optimal network that has the necessary number of
links to provide desirable survivability is not cost effec-
tive, we have to consider the trade-off between the cost
and network redundancy in designing a network topol-
ogy.

For a given G = (V , E), cost matrix c(i, j), i, j = 1, . . . ,
n, and the requirements of the number of node-disjoint
paths between each pair of nodes i, j 2V , rij, the Surviv-
able network design problem (SNDP) is to find themini-
mum cost edge set such that it guarantees that the num-
bers of node-disjoint paths between pairs of nodes are
all greater than or equal to rij, for all i, j = 1, . . . , n. If rij =
2, for all i, j = 1, . . . , n, then a ring topology is a solution
of the network. Since all pairs of nodes in a ring should
have two node-disjoint paths, the network is safe with
any one node failure. For designing such a ring struc-
ture, Net Solver was developed by L.M. Gardner, I.H.
Sudborough, and I.G. Tollis [2].

Many studies have been done for these problems
and they can be categorized into two classes:
� algorithms that obtain the optimum solution
� heuristic algorithms that get a near optimum solu-

tion
For the former, various integer programming (IP) and
linear programming (LP) techniques are used and for
the latter, local search methods are studied.

M. Grötschel and C.L. Monma [4] formulated the
problems as integer program and studied integer poly-
hedra of k-edge(node) connected network design prob-
lems. Also, Grötschel, Monma, and M. Stoer [5] pre-
sented computational results obtained by solving the
SNDP using a cutting planemethod of the IP. They con-
sidered the SNDP with low connectivity constraints,
i. e., rij = 0, 1, 2, for all i, j. M.X. Goemans and D.J. Bert-
simas [3] established the parsimonious property of the
problems formulated in the LP relaxation.

K. Steiglitz, P. Weiner, and D.J. Kleitman [9] pro-
posed a local search method for the general SNDP.
Monma and D.F. Shallcross [6] used several heuristic
techniques for obtaining initial solutions and for im-

proving the solutions of two-connected survivability
constraints problems. T.S. Wu explained the network
survivability in detail in [10] andmany features of hard-
ware aspects are included in the book.

SNDPwith Traffic Capacity

In the practical situation, we also have to consider
telecommunication traffic on the network in addition to
the network topology. In order to guarantee the steady
service when some node or link failures occur on the
network, we have to decide the cable capacity in a link.
For some specific pair of large cities, the traffic may
be higher than that of some pair of small cities. Con-
sider the following situation: a link that has large ca-
pacity between two large cities A and B is broken down
and a secondary path that the survivable network pro-
vides is used. But the secondary path uses a link that
has not an enough capacity for the traffic between A
and B. If such a case happens, the service between A
and B should be interrupted and the network is not safe
any more. Hence, the capacity of a link should be deter-
mined in designing the network as well as the surviv-
ability.

For this kind of problems, many approaches have
been proposed. J. Yamada [11] proposes an algorithm
to design efficient spare path networks. It is a heuristic
and to achieve near-optimization. J. Shi and J. Fonseka
[8] studied a class of traffic-based survivability mea-
sures and survivability analysis of telecommunications
networks. I. Ouveysi and A.Wirth [7] used a maximum
spanning tree with traffic requirements and could pro-
vide a survivable network that can operate with at most
two link failures.

A Heuristic for SNDP

Now, we are going to explain a heuristic method [9]
(called Alg1) for the general SNDP in detail.

Alg1 is composed of 2 parts:
1) stage of obtaining initial feasible solutions
2) stage of local improvements of the initial solutions
Since the SNDP has many local minima, by performing
a local search starting from several initial solutions and
obtaining many local minima, Alg1 may get a near op-
timal solution of the SNDP. The local search method is
trying to find a direction to minimize an objective func-
tion. If such a point is found and it is feasible, it moves
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to the new point and continues the same procedure un-
til no further improvements can be made. Since the
SNDP has multiple local minima, the procedure may
stop at a local minimum and further improvements are
impossible. If then, it finds a local minimum and the
whole procedure starts again with another initial feasi-
ble solution. Since it searches local area, it is called the
local search. In order to increase the possibility of find-
ing the global minimum, it has to search whole area of
the feasible region and it needs many initial solutions.
However, it is not cost-effective to investigate the whole
feasible region and the trade-off between computation
time and quality of solutions. The following is the detail
procedure of Alg1.

DO k = 1 (number of local minima to be found)
find an initial feasible solution
WHILE local improvements are possible

DO X-change (local improvement)
move to the new feasible solution

ENDWHILE
keep the local minimum

END DO
RETURN the lowest cost solution among the local
minima

Program Alg1

For obtaining an initial solution, Alg1 defines a re-
quirement array p, pi = maxj rij, j = 1, . . . , n, and we
select at least pi edges connected to a node i for con-
structing an initial solution. It uses the property that
the degree of node i must be at least the maximum of
node requirements between i and all other nodes in or-
der to guarantee that there are rij node-disjoint paths
between nodes i and j. By randomizing the sequence of
the node numbers, Alg1 may get many distinct initial
solutions. These initial solutions may satisfy the node
connectivity constraints or not. The node connectiv-
ity constraints can be tested by using a max–flow algo-
rithm and if there is a max-flow f � rij between nodes
i and j, the initial solution that satisfies the node con-
nectivity constraints becomes an initial feasible solution
and is used for the next stage, local improvements.

The local improvements are mainly composed of
a series of X-changes (see Fig. 2).

Survivable Networks, Figure 2
X-change

In Fig. 2, the lines between two nodes mean the
edges are selected for cabling. If c(a, b) + c(c, d) > c(a,
d) + c(b, c), the X-change can be done and the total
cost can be decreased. However, it is necessary to test
the network after an X-change still keeps its feasibility
of the node-connectivity constraints since two links are
deleted and it can affect the number of node-disjoint
paths for some pair of nodes. If we have to test node-
connectivity constraints for all pairs of nodes i, j = 1,
. . . , n, it must take O(n2) steps and be time consum-
ing. But, according to [9, Thm. 2], only some of O(n2)
pairs could be tested after an X-change for ensuring the
node-connectivity constraints.

For the SNDP with connectivity constraints rij = 1,
2 for all i, j 2 V , Monma and Shallcross [6] proposed
a specific method for obtaining initial solutions and lo-
cal improvements. For the SNDP with node connectiv-
ity rij > 2 for some pair of nodes i, j, a special method for
initial solutions and local improvements has not been
studied until now.

As much of the modern life depends on telecommu-
nications, the importance of the survivable networks is
increasing rapidly. Also the structure of the SNDP will
be complex in order to model the complicated require-
ments of telecommunications in the real world. Hence,
new classes of SNDPwill be introduced and they should
deserver to be challenged by many researchers.

See also

� Auction Algorithms
� Communication Network Assignment Problem
� Directed Tree Networks
� Dynamic Traffic Networks
� Equilibrium Networks
� Evacuation Networks
� Generalized Networks
�Maximum Flow Problem
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�Minimum Cost Flow Problem
� Network Design Problems
� Network Location: Covering Problems
� Nonconvex Network Flow Problems
� Piecewise Linear Network Flow Problems
� Shortest Path Tree Algorithms
� Steiner Tree Problems
� Stochastic Network Problems: Massively Parallel

Solution
� Traffic Network Equilibrium
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Let A be an n × n symmetric matrix and b be a column
vector of length n. Then the system of linear equations

Ax D b;

where x is a column vector of length n, is a symmetric
system of linear equations. To demonstrate what a sym-
metric matrix is, consider the following two matrices,

0
@
1 2 3
2 �1 �4
3 �4 1

1
A

0
@
1 2 3
7 �1 �4
5 �3 1

1
A :

The matrix on the left is symmetric because an element
in row i and column j is equivalent to the element in
row j and column i. The matrix on the right does not
have this property and is therefore not symmetric. Al-
though the Chinese investigated linear systems of equa-
tions around 250 BC, the modern study of systems of
linear equations was begun in the late 17th century by
G.W. Leibniz. The solution techniques of this time were
developed through the use of determinants, and the
idea of a matrix was not introduced until 1850 by J.J.
Sylvester. In 1855, the English mathematician A. Caley
published the first article concerned with the algebra of
matrices and it was Caley that defined what it meant for
a matrix to be symmetric.

Symmetric systems of linear equations often arise
when dealing with optimization problems. For exam-
ple, many common optimization algorithms, such as
gradient descent, quasi-Newton methods, and Newton’s
method, use a solution to a symmetric linear system to
decide a direction in which to search for the next iterate.
Consider the unconstrained optimization problem

min
x2Rn

f (x);
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where f is a twice continuously differentiable function
from Rn to R. For any x 2 Rn, the search direction,� x,
which solves

S	x D �r f (x);

leads to gradient descent if S is the identity matrix,
Newton’s method if S is the Hessian of f at x, and quasi-
Newton methods if S is an approximation of the Hes-
sian of f . In all of these cases S is symmetric, and one
can see that common optimization routines require the
solution to a symmetric system of linear equations. An-
other optimization problem requiring the solution to
a symmetric system of linear equations is the uncon-
strained, full rank, least squares problem. This problem
is

min
x2Rn
kBx � bk2 ;

where B is an (m × n)-matrix,m � n, and the rank of B
is n. The unique solution to this problem is the solution
to the symmetric system

B>Bx D B>b:

Symmetric matrices have several desirable eigen-
value and eigenvector properties. One of these proper-
ties is that the 2-norm of a symmetric matrix is the spec-
tral radius. In other words, if �max is the largest eigen-
value of the symmetric matrix A, then

kAk2 D �max:

Two of the most important eigenvalue properties,
shown by Ch. Hermite in 1855, are that symmetric ma-
trices have real eigenvalues and are unitarily similar to
a diagonal matrix, whose main diagonal contains the
eigenvalues of the matrix. This last result relies on the
fact that the eigenspaces of an n by n symmetric matrix,
A, contains an orthonormal bases for Rn. Using such
a basis as the columns of a matrix, say Q, we have the
similarity relation,

A D QDQ>:

If this factorization of A is known, then the system Ax
= bmay be easily solved by first solving

Dy D Q>b;

and then setting x = Qy. Although this diagonal factor-
ization is in general expensive, it is useful when deal-
ing with quasi-Newton methods. These methods often
update the current approximation of the Hessian by
adding a rank one matrix, so that, in the following iter-
ation, the new matrix produces a ‘better’ search direc-
tion. Hence, if S is the symmetric approximation to the
Hessian of f for the current iteration, the next iteration
uses S + vv>, where v is defined by the algorithm. The
result needed to analyze and implement these quasi-
Newton methods is due to Ch. Loewner. The theorem
is known as the interlocking eigenvalue theorem, and it
shows the relationship between the eigenvalues of the
symmetric matrices S and S + vv>. It states that if the
eigenvalues of S are

�1 � � � � � �n ;

and the eigenvalues of S + vv> are

�1 � � � � � �n ;

then

�1 � �1 � �2 � �2 � � � � � �n � �n :

Essentially this demonstrates that if a symmetric matrix
is formed as the sum of two symmetric matrices, one
of which is rank one, then the eigenvalue structure re-
mains somewhat intact. This leads to preconditioning
and scaling routines that make quasi-Newton methods
robust. Furthermore, subsequent results show how to
efficiently obtain the diagonal factorization for S + vv>

from the factorization of S. This means that solving the
symmetric system of equations for the next iteration is
relatively cheap when the diagonal factorization of S is
known.

Many methods, other than the diagonal factoriza-
tion used above, have been suggested to solve symmet-
ric systems of linear equations. When the A matrix is
positive definite, the factorization of choice is usually
the Cholesky factorization. However, when the matrix
is indefinite, other schemes must be used. In 1846 C.G.
Jacobi showed how to use rotations to solve a symmetric
system of linear equations. This method is receiving re-
cent attention because it is inherently parallel. Another
method, presented by J. Aasen in 1971, is to permute
the rows and columns of A and then decompose this
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matrix into a tridiagonal matrix instead of a diagonal
matrix. The exact factorization is

PAP> D LTL>;

where P is a permutation matrix, L is a lower triangular
matrix, and T is a tridiagonal matrix. Now, to solve Ax
= b one solves the following sequence of problems: Lz =
Pb, Tw = z, L>y = w, and then sets x = Py.

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� Cholesky Factorization
� Gauss, Carl Friedrich
� Interval Linear Systems
� Large Scale Trust Region Problems
� Large Scale Unconstrained Optimization

� Linear Programming
� Orthogonal Triangularization
� Overdetermined Systems of Linear Equations
� QR Factorization
� Solving Large Scale and Sparse Semidefinite

Programs
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In a general format a theorem of the alternative (TA)
claims that, between two given propositions, say S
and S�, one and only one is true. In mathematics S
and S� are, in general, systems of equalities or in-
equalities. A TA for linear algebraic systems was es-
tablished as early as 1873 by P. Gordan [11]; then
there was the celebrated Farkas lemma in 1902 [7] (cf.
also � Farkas lemma; � Farkas lemma: Generaliza-
tions); indeed, such a lemma does not appear as a TA,
but an obvious reformulation shows it as a TA. Some
further important TA were established in 1915 by E.
Stiemke [22], in 1936 by T.S. Motzkin [19], in 1951 by
M.L. Slater [21], in 1956 by A.W. Tucker and in 1956
by R.J. Duffin (see [17]). Subsequently, due mainly to
the development of the optimization theory, there has

been a blooming of TAs; they have been extended to not
necessarily algebraic systems, to systems in an infinite-
dimensional space, to systems in a complex space, and
even to systems for point-to-set maps. TA (sometimes
called transposition theorems) have been conceived as
tools for proving some theorems of linear algebra (this
is the reason why the Farkas TA is known as a lemma)
or to prove the existence and uniqueness of solutions of
differential and integral equations [24].

It is interesting to note that, a few years later, in
a completely different field of mathematics, some ideas
mature which lead to state so-called separation theo-
rems (ST). Indeed, here too, the first important result
does not look like an ST: on the basis of some ideas of
E. Helly in 1912 [14], S. Banach in 1925 [2] andH.Hahn
in 1927 [12], independently of each other, establish the
celebrated Hahn–Banach linear extension theorem; by
means of an obvious reformulation it shows itself to be
a ST. Here too the purpose is to have lemmas for prov-
ing other theorems – in functional analysis and geome-
try.

Over several years TA and ST have been carried on
as disjoint theories. Recently, thanks to the great devel-
opment of optimization and to the increasing use of
TA and ST in the theory of optimization, it has been
recognized that TA and ST are different ‘languages’ for
expressing thesame ‘structural’ property (this does not
imply that one of them should be deleted; on the con-
trary, different languages let us achieve more proper-
ties) and, overall, that they are not only tools for prov-
ing theorems; indeed, they have been raised to the basis
for the theory of constrained extrema.

After a short review of some TA, their application
to prove fundamental theorems of optimization will be
shown. Then, we will briefly describe the recent ap-
proach to the theory of constrained extrema which is
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based on TA and ST. Matrices and vectors will be real-
valued.

Farkas Lemma

LetA be amatrix of the orderm × n, a be a row n-vector,
and x a column n-vector. Ax � 0 implies ax � 0 if and
only if there exists a nonnegative row m-vector z such
that zA = a.

This lemma receives a useful vector interpretation.
The rows of A can be seen as vectors of Rn; call C the
(convex) cone generated by them, and set C� := {x 2
Rn : Ax � 0}. Since the elements of C are the only vec-
tors which have a nonnegative scalar product with each
vector of C�, then amust belong to C.

Farkas lemma can be equivalently formulated as
TA:

Theorem 1 Let us adopt the same notation of Farkas
lemma, and let z be a row m-vector. Between the systems
(in the unknowns x and z):

S1 : Ax � 0; ax < 0

and

S�1 : zA D a; z � 0

one and only one has solutions.

System S�1 introduces a new variable and a new space –
i. e., that where z runs – which can be called dual space
of that where x runs, as we will see later.

From Therorem 1 we immediately deduce another
TA.

Theorem 2 Let A and B be matrices respectively of the
orders m × n and p × n, u a row m-vector, and v a row
p-vector. Between the systems (in the unknowns x and
(u, v)):

S2 : Ax � 0; Bx < 0

and

S�2 :

(
uAC vB D 0;
u � 0; v � 0; v ¤ 0

one and only one has solutions.

The possibility of both S2 and S�2 leads to that of in-
equality (uA + vB) x < 0 which contradicts the equa-
tion in S�2 . Let e be the column p-vector whose en-
tries equal 1; because of Therorem 1 the impossibility

of S2(which is equivalent to that of system Ax� 0, Bx +
et � 0, t > 0 with t 2 R such a system is easily identified
to be of type S1) implies the possibility of system (we
set z = (u, v)) � uA � Bv = 0, � ev = � 1, u � 0, v � 0,
which shows the possibility of S�2 .

A vector interpretation quite analogous to the one
above can be given for Therorem 2. At A = 0 Therorem
2 becomes the TA stated by Gordan. Now, let us show,
by means of classic instances, how TA have been ex-
ploited for proving fundamental theorems on con-
strained extrema. To this end, consider the following
minimization problem with bilateral constraints:

P1 :

(
min f (x);
s.t. g(x) D 0;

where the function f :Rn ! R and the column vector
function g:Rn!Rm are differentiable at least at x 2 Rn .
Letr f(x) denote the row n-vector gradient of f at x and
r g(x) the m × n Jacobian matrix of g at x.

It is well known (see [17,20]) that, under suitable
assumptions (e. g., r g(x) has maximum rank and r
g(x) is continuous around x, if x is a (local) minimum
point for P1, then the directional derivative of f is non-
negative along each direction d of the linear manifold
r g(x)d D 0) d = 0 (beside, of course, along each feasi-
ble direction; s is a column n-vector) which is tangent,
at (x), to the (nonlinear) manifold g(x) = 0. This means
that r g(x)d = 0 implies r f (x)d � 0, or

�
r g(x)
�r g(x)

�
d � 0 implies r f (x)d � 0:

By setting A D
�
r g(x)
�r g(x)

�
and a D r f (x), Farkas’

lemma can be applied and its thesis means now the exis-
tence of a nonnegative row (2m) -vector, say y = (y0, y00)
with y0, y00 2 Rm

+ , such that (y0 � y00) r g(x) D r f (x),
or

r f (x) D �r g(x);

where � :D y0 � y00. Hence, by means of a TA, we have
achieved the existence of a vector �) (whose elements
are known as Lagrange multipliers), such that the pair
(x; �) is a stationary point of the Lagrangian function
L(x; �) := f(x) � � g(x).
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Now, consider the following minimization problem
with unilateral constraints:

P2 :

(
min f (x);
s.t. g(x) � 0

where f and g are as in P1.
In 1948 F. John, under the assumption that f and g

be differentiable at least at x, proved the following nec-
essary condition (see [17,20]): if x is a (local) minimum
point for P2, then there exist � 2 RC and � 2 Rm

C with
�; �) ¤ 0, such that (�; �) is a solution of the system
(in the unknowns � 2 R and the row vector � 2 Rm):

FJ : �r f (x) � �r g(x) D 0; �g(x) D 0:

To show this condition, let us set (> as superscript de-
notes transposition) g(x)> = (g1(x), . . . , gm(x)), � = (�1,
. . . , �m) and introduce the sets

I :D f1; : : : ;mg;

I0 D I0(x) :D fi 2 I : gi(x) D 0g :

If the thesis is false, then the (linear homogeneous) sys-
tem

8̂
ˆ̂<
ˆ̂̂:

�r f (x) �
X
i2I0

�ir gi (x) D 0;

� � 0; �i � 0; i 2 I0;
(�; �i ; I 2 I0) ¤ 0

(1)

has no solution (in fact, if (1) had a solution, say (��,
��i , i 2 I0), then, by setting � �i = 0, i 2 I\I0, and � � =
(��1 , . . . , � �m), the pair (��, � �) should be a solution of
FJ). With the positions

A D 0; B D
�

r f (x)
�r gi (x); i 2 I0

�
;

v = (� , � i, i 2 I0), (1) is identified with S�2 . Hence, from
Therorem 2 we deduce that S2 has solutions, or that
there exists a column n-vector y, such that

r f (x)y < 0; r gi (x)y > 0; i 2 Iı:

These inequalities would mean that y is a feasible direc-
tion along which the directional derivative of f at x is
negative; this fact, according to a well known Lineariza-
tion Lemma [1,17], contradicts the assumption that x
be a minimum point.

The above Lagrange and John necessary optimality
conditions show how a TA has been classically used,
and hence the reason why they have been conceived.
However, TA (and ST) possess a much greater potential
than that exploited for proving theorems. To explain,
even if in short, this aspect let us consider again P2 and
assume now that f be convex and g concave, but not
necessarily differentiable, so that P2 is a convex prob-
lem (minimization of a convex function over a convex
domain). Let us set '(x; x) :D f (x)� f (x) := by the very
definition of minimum it is trivial to claim that a feasi-
ble x 2 Rn is a minimum point for P2 if and only if the
system (in the unknown x):

S3 : '(x; x) > 0; g(x) � 0; x 2 Rn;

is impossible, or

S03 : H \K(x) D ;;

where H:= {(u, v) 2 R × Rm : u > 0, v� 0} andK(x) :D
f(u; v) 2 R � Rm : u D '(x; x); v D g(x); x 2 Rng D

F(x;Rn), with F(x; x) :D ('(x; x); g(x)).It is easy to see
that S03 holds if and only if

S003 : H \ (K(x) � closH ) D ;;

where the difference is in vector sense and clos denotes
closure. K(x), which is called the image of P2, is such
that K(x) � closH )is convex [9] as well as H. In the
image space (u, v), consider the family of hyperplanes
H defined by the equation

`(u; v; �; �) :D �uC �v D 0

with

� � 0; � � 0; (�; �) ¤ 0;

where the scalar � and the rowm-vector � are parame-
ters which describe the family. Denote by H0 the closed
halfspace defined by the nonpositive level set of `, and
by H+ the open halfspace defined by the positive level
set of `. We should like to be able to claim that ‘S003
(and thus S03) holds if and only if there exists a hy-
perplane H such thatK(x) � closH � H0 (and thus
K(x) � H0. While the necessity is an obvious conse-
quence of the convexity of H and K(x) � closH , the
sufficiency unfortunately does not hold. In fact, if � = 0,
then the above inclusion does not exclude that elements
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ofK(x) � closH (and thus ofK(x), which belongs to
H0, may belong to H(more precisely to H \ frt H; frt
denotes frontier) or thatH \ F(x; X(�)) ¤ ;, where

X(�) :D

8<
:x 2 Rn :

'(x; x) > 0;
g(x) � 0;
�g(x) D 0

9=
; :

This can be expressed saying that the above inclusion
assures separation, but not disjunctive separation, be-
tween H andK(x)� closH (and thusK(x)). Instead,
if � = 1 (if � > 0, due to the homogeneity of l, � can be
reduced to be 1), then the above inclusion implies dis-
junctive separation so that the sufficiency holds. There-
fore, in general the sufficiency does not hold. This draw-
back can be overcome in two ways. In the former (a pri-
ori) we restrict the class of functions ', g in order to
guarantee the existence of a separating hyperplane hav-
ing �> 0; this is done by making suitable assumptions,
which are called constraint qualifications (see [17]) if
they implicate only g (e. g., Slater’s condition which re-
quires the existence of abx 2 Rn such that g(bx) > 0),
and are called regularity conditions if they implicate
both ' and g (see [9,17,18]). In the latter (a posteriori)
we must check thatH \ F(x; X(�)) D ;.

In the preceding claim we have considered the in-
clusion in H0, since it is a closed halfspace. When '
and g are affine and � = 0, if we replace H0 with the
negative level set of H, say H�, then the sufficient part
of the above claim becomes selfevident since H� \ H

= ;. The necessity holds since S30 and the ‘parallelism’
between K(x) and u-axis (the case when � = 0) imply
K(x) � H�.

We have obtained the following theorem; in the se-
quel we will understand the dependence of clos and K

(and hence of F) on x: to stress the fact that Theorem
3 holds independently of x; namely, it holds whatever
the concave function '(x; �) may be and not only when
'(x; x) D f (x)� f (x). In fact, in going from S3 to S�3 or
S�3 0 or S�3 00, x does not play any substantial role: a change
of x produces merely a translation of K in the direction
of the u-axis and does not affect the conclusion.

Theorem 3 Let ' : Rn ! R and g : Rn ! Rm.
i) Assume that ' and g be affine. S3 is impossible if and

only if there exist � 2 R and � 2 Rm, such that

S�3 :

(
�'(x)C �g(x) � 0; 8x 2 Rn;

� � 0; � � 0; (�; �) ¤ 0;

where the first inequality must be verified in strict
sense if � = 0.

ii) Assume that ' and g are concave, and that there ex-
istsbx 2 Rn such that g(bx) > 0. S3 is impossible if
there exists � 2 Rm, such that

S�03 : '(x)C �g(x) � 0; 8x 2 Rn ; � � 0:

iii) S3 is impossible if and only if there exist � 2 R and �
2 Rm, such that

S�003 :

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�'(x)C �g(x) � 0 8x 2 Rn ;

with � � 0;
� � 0;
(�; �) ¤ 0;

and X(�) D ;
when � D 0:

Before touching on the consequences for P2 of the
above approach, let us show how Theorem 3 can be
used as a source for deriving TA; this will be done by
deducing some classic linear TA from Theorem 3 even
if, historically, these have been established directly.

With the notation of Theorem 1, set '(x) = � ax
and g(x) = Ax, so that S1 becomes a particular case of
S3. Theorem 3i) can be applied. At � = 0 S�3 becomes �
� 0, � Ax < 0, 8x 2 Rn, and is obviously impossible; at
� = 1 S�3 becomes � � 0, � ax + � Ax � 0, 8x 2 Rn,
and holds if and only if � � 0, � a + � A = 0, which is
equivalent to S�1 . Theorem 1 follows from Theorem 3.

With the notation of Theorem 2 and its proof, S2
turns out to be equivalent to system t > 0, A x � 0, Bx
+ et � 0, which is easily identified as a particular case of
S3 where x is replaced by (x, t), '(x) by t, g(x) by
�
�A 0
�B �e

��
x
t

�
:

Theorem 3i) can be applied. Thus, by setting � = (u, v)
at � = 0, S�3 is obviously impossible; at � = 1 it becomes:

u � 0; v � 0; t � (uAC vB)x � vet � 0;

8x 2 Rn ; 8t 2 R;

and holds if and only if u � 0, v � 0, ve = 1, uA + vB
= 0, which is equivalent to S�2 . Theorem 2 follows from
Theorem 3.



Theorems of the Alternative and Optimization T 3899

Theorem 4 (Stiemke’s theorem) Let A be an m × n
matrix. Between the systems (in the unknowns x and u):

S4 : Ax � 0; Ax ¤ 0;

and

S�4 : uA D 0; u > 0;

one and only one has solutions.

By observing that S�4 is equivalent to
�

A>

�A>

�
u> � 0,

�u> < 0, S�4 can be seen as a special case of S2. Then the
application of Theorem 2 leads quickly to the thesis.

Theorem 5 (Motzkin’s theorem) Let A, B, C be matri-
ces of the orders m × n, p × n, q × n, respectively. Between
the systems (in the unknowns x and (u, v, y)):

S5 : Ax > 0; Bx � 0; Cx D 0

and

S�5 :

8̂
<̂
ˆ̂:

uAC vB C yC D 0;
u � 0; u ¤ 0;
v � 0

one and only one has solutions.
It is immediate to see that S5 is impossible if and

only if the same happens to the system (in the unknown�
x
t

�
2 Rn � R; e is a column m-vector whose entries

equal 1): t > 0, Ax � et, Bx � 0, Cx = 0, which is easily
identified as a particular case of S3 where x is replaced by�
x
t

�
, '(x) by t, g(x) by

0
BB@

A �e
B 0
C 0
�C 0

1
CCA
�
x
t

�
:

Theorem 3i) can be applied. Thus, by setting � = (u, v,
y0, y 00), at � = 0 S�3 is obviously impossible; at � = 1 it
becomes:

u � 0; v � 0; y0 � 0; y00 � 0;

t C [uAC vBC (y0 � y00)C]x � uet � 0;

8x 2 Rn ; 8t 2 R;

and holds if and only if u � 0, v � 0, uA + vB + yC =
0, ue = 1, which is equivalent to S�5 . Theorem 5 follows
from Theorem 3.

Theorem 6 (Slater’s theorem) Let A, B, C, D be matri-
ces of the orders m × n, p × n, q × n, r × n, respectively.
Between the systems (in the unknowns x and (u, v, y, z)):

S6 :

(
Ax > 0; Bx � 0; Bx ¤ 0;
Cx � 0; Dx D 0;

S�6 :

8̂
ˆ̂̂<
ˆ̂̂̂
:

uAC vB C yC C zD D 0
and either
u � 0; u ¤ 0; v � 0; y � 0

or u � 0; v > 0; y � 0;

one and only one has solutions.
It is easy to see that S6 is equivalent to the system (in

the unknown
�
x
t

�
):

S06 :

8̂
<̂
ˆ̂:

t > 0; Ax � em t;
Bx � 0; epBx � t;
Cx � 0; Dx D 0 (t 2 R);

where em and ep are respectively a column m-vector and
a row p-vector both with entries equal to 1. S60 is quickly
identified as a particular case of S3 where x is replaced by�
x
t

�
, '(x) by t, g(x) by

0
BBBBBBB@

A �em
B 0
epB �1
C 0
D 0
�D 0

1
CCCCCCCA

�
x
t

�
:

Theorem 3i) can be applied. Thus, by setting � = (u, v0,
v0, y, z0, z00), at � = 0 S�3 is obviously impossible; at � = 1
S�3 becomes:

u � 0; v0 � 0; v0 � 0;

y � 0; z0 � 0; z00 � 0;

t C [uAC (v0 C v0ep)BC yC C (z0 � z00)D]x

� (uem C v0)t � 0;

8x 2 Rn ; 8t 2 R
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and holds if and only if (v := v0 + v0 ep, z := z0 � z00)

u � 0; v � 0; v0 � 0; y � 0;

uAC vBC yC C zD D 0; uem C v0 D 1:

This system is equivalent to S�6 since v0 = 0) u 6D 0 and
v0 > 0) v > 0. Theorem 6 follows from Theorem 3.

Theorem 7 (Tucker’s theorem) Let A, B, C be matrices
of the orders m × n, p × n, q × n, respectively. Between
the systems (in the unknowns x and (u, v, y)):

S7 : Ax � 0; Ax ¤ 0; Bx � 0; Cx D 0

and

S�7 : uAC vBC yC D 0; u > 0; v � 0

one and only one has solutions.
It is immediate to see that S7 is possible if and only

if the same happens to the system (e is a row m-vector
whose entries equal 1): eAx > 0, Ax � 0, Bx � 0, Cx = 0,
which is easily identified as a particular case of S3 where
'(x) = eAx and

g(x) D

0
BB@

A
B
C
�C

1
CCA x:

Theorem 3i) can be applied. Thus, by setting � = (u0, v,
y0, y00), at � = 0 S�3 is obviously impossible; at � = 1 it
becomes:

eAx C [u0AC vBC (y0 � y00)C]x � 0;
u0 � 0; v � 0; y0 � 0; y00 � 0;

8x 2 Rn ;

and holds if and only if (y := y0� y00)

u0 � 0; v � 0; (e C u0)AC vBC yC D 0;

which is equivalent to S�7 since u := e + u0 > 0. Theorem
7 follows from Theorem 3.

At B = 0 and C = 0 Theorem 7 collapses to Theorem
4.

Theorem 8 (Duffin’s theorem) Let A be an m × n
matrix, b a column m-vector, a a row n-vector, and ˛
a scalar. The system (in the unknown x):

S8 : ax > ˛; Ax � b

is impossible if and only if at least one of the systems (in
the unknown �):

S�8 : �A D a; �b � ˛; � � 0

and

S�08 : �A D 0; �b < 0; � � 0;

is possible.
S8 is easily identified as a particular case of S3 where

'(x) = ax � ˛, and g(x) = b � Ax. Theorem 3i) can be
applied. Thus, at � = 0 S�3 becomes � � 0, � b � � Ax <
0, 8x 2 Rn, and is equivalent to S�8 0 at � = 1 S�3 becomes
� � 0, ax � ˛ + �(b � Ax)� 0, 8x 2 Rn, and is equiva-
lent to S�8 . Theorem 8 follows from Theorem 3.

In quite similar ways other TA can be obtained from
Theorem 3.

Theorem 3 can be stated directly, i. e. without intro-
ducing the image space (u, v) and separation, as classi-
cally done in [6]. It is satisfactory if a TA aims to play
the role of lemma for some theorems. Instead, the above
outlined way raises TA to the basis for developing most
of the topics of the Theory of Optimization, and for ob-
taining TA under weaker assumptions than those of The-
orem 3. A few comments will now be added on these two
aspects.

When the assumptions of Theorem 3ii) are not ful-
filled, then of course S3 and S�3 0 are not necessarily in al-
ternative. However, by taking into account the geomet-
ric meaning of S�3 0, it is easy to note that the feasibil-
ity of S�3 0 is a sufficient condition (without any assump-
tion on ' and g) for S3 to be impossible and then (when
'(x) D f (x) � f (x)) for x to be a minimum point of
P2. These facts lead us to a generalization of Theorem 3.
Indeed, it is immediate to see that any condition, which
assures the convexity of K�clos H (like the concavity of
' and g), assures the existence of a separating hyperplane
between H and K. It has been proved [23] that K� clos
H is convex if and only if the (1+m)-vector function F(x)
:= � '(x) � g(x) is convex like (F is a convex-like func-
tion if and only if 8x0, x00; 2 Rn and 8˛ 2 [0, 1] there
exists z 2 Rn such that F(z) � (1 � ˛) F(x0)+ ˛ F(x00)).
Therefore, we have:

Theorem 9 Let the (1+ m)-vector function F be convex-
like, and suppose that there exists bx 2 Rn such that
g(bx) > 0. Then, between S3 and S�3 0 one and only one
has solutions.
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If ' and g are concave (in particular affine), then F is
convex-like; thus Theorem 3ii) is a special case of The-
orem 9.

Now, let us briefly show how S�3 0 originates most of
the topics of the theory of optimization. Since the fea-
sibility of S�3 0 implies that x is a minimum point for P2,
and since S�3 0 is equivalent to (now continue to we use
the position '(x) D f (x) � f (x))

(	) : inf
	�0

sup
x2Rn

[ f (x) � f (x)C �g(x)] � 0;

we are led to consider the problem

P�2 : sup
	�0

inf
x2Rn

L(x;�);

where L(x;�) := f(x)� � g(x) is called Lagrangian func-
tion, and the elements of a vector �, which fulfills the
above inequality and thus S�3 0, are called Lagrangian
multipliers and therefore receive the interesting inter-
pretation as elements of the gradient of the hyperplane
which separates the image K of P2 from H to within
an obvious transformation, the Lagrangian function is
strictly related to such a hyperplane. P�2 is known as
dual problem of P2 which, in its turn, receives the name
of primal problem. The space of the (linear) separation
functionals ` is called dual space; being here in a finite-
dimensional space, it is isomorphic to the space Rm

where � runs; this is the reason why the elements of
vector � are often identified as dual variables. Without
any assumption it is possible to prove the following in-
equality [9]:

PD : sup
	�0

inf
x2Rn

L(x;�) � inf
x2Rn

sup
	�0

L(x;�)

D inf
x2R

f (x);

where the equality holds if R := { x 2 Rn : g(x)� 0} 6D ;.
The difference between the second and the first term of
the above inequality is called duality gap and is always
nonnegative. Under the assumptions of Theorem 9 it is
possible to prove [9,23] that the duality gap between P2

and P�2 is zero; this result recovers the well-known du-
ality theorem for linear programming (see [4,17]) when
f and g are affine. P�2 has shown itself to be very useful
to improve algorithms for solving P2; a classic instance
is offered by the so-called Hitchcock linear transporta-
tion problem (see [4]), where the use of dual variables
(i. e., �) drastically reduces the computational steps of

simplex algorithm; another classic instance is offered
by the dual decomposition methods for solving the so-
called mixed integer linear programs (see [4]), which
heavily exploit the dual problem under the assump-
tion that the duality gap be zero. Theory and solving
algorithms are not the only fields of application of du-
ality. Indeed, a solution of the dual problem contains
always an important piece of information, often even
more important than that of the primal problem. This
fact is proved by classic instances. When P2 is the for-
mat for finding the maximum flow in a network, then
the dual variables give the potentials at nodes and arcs
(see [4]) which are crucial information for the design
and management of the network. When P2 is the for-
mat for finding the optimal production in an industry,
then the dual variables represent the so-called shadow
prices which lead to deep information on how the re-
sources are exploited in the production process (see
[4]). Many other applications might be mentioned. In
all cases the introduction of the dual problem leads to
a deep mathematical analysis which would have been
inconceivable if the primal problem only had been in-
troduced.

Now, let us go back to (�). From this condition it
is possible to derive the classic necessary and sufficient
condition for x to be a minimum point of P2 which is
expressed in terms of generalized multipliers [17,20].
Condition (�)has stimulated the development of sev-
eral other theories, like minimax theory and game the-
ory [5], saddle point theory [9], penalization theory [9].

When K � clos H is not convex, S�3 0 may not hold
even if S30 does. In such a case, the above separation
scheme suggests the introduction of a nonlinear func-
tional to replace `(u, v; �); in other words, we can try
to show S30 by means of nonlinear separation if the lin-
ear one fails (see � Image space approach to optimiza-
tion). The nonlinear separation has led to generalize all
the above results [9], and has allowed us to extend TA
to more general situations, like systems of point-to-set
maps [8,10], or to systems in a complex space, or to
systems in an infinite-dimensional space where the first
contribution is due to J. Farkas [7].

See also

� Farkas Lemma
� Linear Optimization: Theorems of the Alternative
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Given a list of cities, the classical traveling sales-
man problem is aimed at finding the least cost tour
through the cities. The time-dependent traveling sales-
man problem is a generalization of the traveling sales-
man problem where the cost of travel between cities is
also dependent on the order in which they are traversed.
We now provide a more formal description of the two
problems. Consider a set of cities N = {1, . . . , n} and
a mapping,D:N ×N! R, that associates with each or-
dered city-pair a cost incurred when a travel/transition
is undertaken starting from the first city and ending
at the second city. The data may be pictorially visual-
ized on a complete directed graph of n nodes, where
the nodes represent the cities and the arcs are labeled
with the transition costs of the incident node pair. The
cost function may be extended from single transitions
to paths by summing the cost of travel over the arcs
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comprising the path. As there is a unique arc join-
ing any two nodes, a path in the graph may be identi-
fied with a sequence of nodes. Let us then restrict our
attention to simple circuits that pass through all the
nodes. These are the Hamiltonian cycles of the directed
graph. Cyclic permutations of the node set produce
these Hamiltonian cycles and there are, therefore, (n �
1)! possible candidates. The classical traveling salesman
problem (TSP) is aimed at finding the cyclic permu-
tation/Hamiltonian cycle of cities with the minimum
travel cost.

Given a Hamiltonian cycle P, associate with every
arc its ordinality in P. A variant of the TSP spawns out
if the contribution of a transition on the arc towards the
cost of P is not only dependent on the ordered node-
pair incident to the arc but also on the ordinality of the
arc in P. The ordinality of the arc shall be referred to as
the time-period of the associated transition following
the intuition that the cost of travel between cities varies
with time and assuming that it takes one time unit to
travel between any two cities. In other words, the cost
of transition is specified as a mapping C: N × N × T!

R where N is the set of possible ordinal values for an
arc in any Hamiltonian cycle P. Note that | T | = | N

| since we restrict attention to Hamiltonian cycles. The
time-dependent traveling salesman problem (TDTSP) is
aimed at finding the minimum cost Hamiltonian cycle
under the cost structure defined above. It should be ap-
parent that TSP is a special case of TDTSP.

Computational experience indicates that the
TDTSP is a significantly more difficult problem in com-
parison to the TSP. However, the flexibility obtained by
using the more elaborate cost structure allows one to
model additional interesting applications.

Applications of the TDTSP have been proposed in:
sequence dependent scheduling with time-dependent
set-up costs [10], scheduling with precedence con-
straints [3] and timetabling [2].

Studies on the TDTSP have been made by J.C. Pi-
card andM.Queyranne [10]. Exact solution approaches
for a special case of the TDTSP, namely the delivery
man problem, have been reported by A. Lucena [7].
Time-dependent vehicle routing problems have been
studied by C. Malandraki and M.S. Daskin [9]. Vari-
ous formulations for the TDTSP have been compared
by L. Gouveia and S. Voß [4]. Benders’ partitioning
scheme has been used to derive an exact algorithm for

the TDTSP [15]. Heuristics to accelerate convergence
of such an algorithm are discussed in [14].

In this article, we present existing formulations and
solution methodologies for the TDTSP. First, we review
various formulations of the TDTSP and a comparison
of these formulations in regards to the tightness of their
relaxations. We then present a technique of construct-
ing tight relaxations by employing convex and concave
envelopes of product terms. On the algorithmic side,
we outline a modification of the Benders decomposi-
tion algorithm for the TDTSP. Then, using multistage
network optimization we present an acceleration tech-
nique for the above algorithm. Finally, a variable depth
search heuristic is briefly outlined.

Formulations of TDTSP

The TDTSP is a special case of the quadratic assign-
ment problem (QAP). The formulation for the QAP
may hence be employed to model the TDTSP as fol-
lows:

(
min y>Qy
s.t. y 2 APn ;

where APn is the assignment polytope for n assign-
ments,

Q D

0
BBBBB@

0 Q1 2 � � � Q1 n�1 Q1 n

0 0 � � � Q2 n�1 Q2 n
:::

:::
: : :

:::
:::

0 0 � � � 0 Qn�1 n

0 0 � � � 0 0

1
CCCCCA
;

where Qik 2 Rn × n and assumes the form

0
BBBBBBBBBB@

0 cik 1 0 0 0 � � � cik n

cki 1 0 cik 2 0 0 � � � 0
0 cki 2 0 cik 3 0 � � � 0
:::

: : :
: : :

: : :
: : :

: : :
:::

0 � � � 0 cki n�3 0 cki n�2 0
0 � � � 0 0 cki n�2 0 cki n�1

cki n � � � 0 0 0 cki n�1 0

1
CCCCCCCCCCA

in terms of the mapping C : N × N × T! R.
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In order to derive linearized versions of the above
formulation, we define two sets of binary variables:

Yit D

(
1 city i visited in period t;
0 otherwise;

Xi jt D

8̂
<̂
ˆ̂:

1 transition from city i
to city j in period t;

0 otherwise:

The above formulation then takes the following form:

(Q)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
i

X
j

X
t

Ci jtYi t�1Yit ;

s.t.
X
t

Yi t D 1; i 2N ;

X
i

Yi t D 1 t 2 T

Yit 2 f0; 1g; i 2N ; t 2 T :

Linearized formulations are derived by introducing the
transition variables X. Most linearized models assume
that the tour begins and ends in city 1. This condition
does not pose any additional restriction since a dummy
city may be added with zero transition costs to and from
other cities and then be treated as the starting city.

In [5], a linearized reformulation of the TDTSP was
derived by using the X variables:

min
X
i

X
j

X
t

Ci jt Xi jt

such that:
X
t

Yi t D 1; i 2N ; (1)

X
i

Yi t D 1; t 2 T ; (2)

Yit C Yj t�1 � 2Xi jt � 0; i; j 2N ; t 2 T ; (3)

X
i

X
j

X
t

Xi jt D n; j 2N ; (4)

Yit 2 f0; 1g; i 2N ; t 2 T ; (5)

Xi jt 2 f0; 1g; i; j 2N ; t 2 T : (6)

The constraints (1) and (2) are the assignment con-
straints. Constraints (3) state that no transition from
city i to city j can take place in time-period t if city i

was not visited in time-period t � 1 and city j was not
visited in time-period t. Note that this constraint could
be tightened by replacing it by the equivalent two con-
straints Xijt � Yit and Xijt � Yjpt . Constraint (4) just
states that there are n transitions in any feasible solu-
tion.

The linear formulation presented by Picard and
Queyranne [10] is described below:

min
X
i

X
j

X
t

Ci jt Xi jt

such that:
X
j

X1 j1 D 1; (7)

X
i

Xi jt D
X
i

Xi j tC1; i 2N ; t 2 T nf1g; (8)

X
i

X
t

Xi jt D 1; j 2N ; (9)

Xi jt 2 f0; 1g; i; j 2N ; t 2 T : (10)

Constraint (7) fixes the starting city as 1. Constraints
(8) require an entry to be followed by exit from any city
in the following time-period. Constraints (9) allow only
one entry to a city.

Another model for the TDTSP has been proposed
by K. Fox, B. Gavish and S. Graves [3] based on the as-
sumption that the tour begins and ends in city 1:

min
X
i

X
j

X
t

Ci jt Xi jt

such that:
X
j

X
t

Xi jt D 1; i 2N ; (11)

X
t

X
j

Xi jt D 1; j 2N ; (12)

X
i

X
j

Xi jt D 1; t 2 T ; (13)

X
j

nX
tD2

tXi jt �
X
j

n�1X
tD1

tXi jt D 1; i 2N nf1g;

(14)

Xi jt 2 f0; 1g; i; j 2N ; t 2 T : (15)

Constraints (11), (12) and (13) are assignment relation-
ships which, respectively, state that a city is left, entered
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and visited exactly once. Constraints (14) are subtour
elimination constraints that force leaving the city (ex-
cept the starting one) in the time-period following the
entering time-period.

We present below a linear formulation of the
TDTSP proposed in N.V. Sahinidis and I.E. Grossmann
[11] and R.J. Vander Wiel and Sahinidis [14]:

(P)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
X
i

X
j

X
t

Ci jt Xi jt ;

s.t.
X
t

Yi t D 1; i 2N ;

X
i

Yi t D 1; t 2 T ;
X
i

Xi jt D Yjt ; j 2N ; t 2 T ;
X
j

Xi jt D Yi t�1; i 2N ; t 2 T ;

Yit 2 f0; 1g; i 2N ; t 2 T ;
Xi jt � 0:

This last formulation does not require the X variables
to take integral values as the constraints enforce the in-
tegrality of X when the Y variables take integral val-
ues.

The strengths of the various formulations are com-
pared in [4]. It turns out that formulation P has the
tightest linear relaxation amongst all formulations. The
formulation in [10] achieves the same objective func-
tion value. However, its feasible region is larger. The
formulations in [3] and [5] are dominated by formu-
lation (P).

Envelopes and Tight Formulations

We provide some insight into the tight relaxations
for the TDTSP. By introducing the X variables in the
TDTSP formulation (Q), we obtain the following math-
ematical program:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
X
i

X
j

X
t

Ci jt Xi jt

s.t.
X
t

Yi t D 1; i 2N ;

X
i

Yi t D 1; t 2 T ;

Xi jt D Yi t�1Yit ;

Yit 2 f0; 1g; i 2N ; t 2 T :

(16)

Note that, in the above formulation, there are no in-
tegrality restrictions on the X variables. These are au-
tomatically enforced by the bilinear constraints (16) in
the formulation. However, these constraints are non-
convex and therefore the mathematical program given
above is a nonconvex nonlinear program. A convex
relaxation may be developed by replacing the bilinear
constraints by convex constraints that properly contain
all the feasible points to the above program. In particu-
lar, if constraints (16) are replaced by linear constraints
then the linear programming relaxations of TDTSP are
obtained.

We present a general methodology for construct-
ing tight linear relaxations of 0–1 programs contain-
ing product terms of 0–1 variables. Product terms of 0–
1 variables have linear concave and convex envelopes
over the unit hypercube as shown in [13]. Therefore,
we may introduce new variables for the product terms
and restrict them to lie in the convex set formed by
the concave and convex envelope of the corresponding
product term. Note that the product terms take integral
values at the extreme points. However, as the convex
and concave envelopes are exact at the extreme points
of the unit hypercube, the integrality restrictions on the
newly introduced variables become redundant andmay
be dropped. This technique may be used in conjunction
with the reformulation-linearization technique (RLT)
introduced by H.D. Sherali and W.P. Adams [12].

In the case of the TDTSP, the product terms are bi-
linear. The convex envelope is, therefore, given by:

Xi jt � maxfYi t�1 C Yit � 1; 0g:

The concave envelope is given by:

Xi jt � minfYi t�1;Yitg:

It was shown in [13] that the above constraints are im-
plied in the formulation (P) described above. Further-
more, this formulation may be derived by using the
scheme described in this section.

Network Interpretation of TDTSP

We now provide a network interpretation of the
TDTSP. If the Y variables in the linear relaxation of (P)
are fixed, the formulation (P) reduces to a network flow
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model. Formally, the problem is:

(S)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
X
i

X
j

X
t

Ci jt Xi jt

s.t.
X
i

Xi jt D Yjt ; j 2N ; t 2 T ;
X
j

Xi jt D Yi t�1; i 2N ; t 2 T ;

Xi jt � 0:

It follows from the problem definition that the above
problem decomposes by time-periods. In each time pe-
riod, (S) takes the form of a transportation problem.
Hence, a series of transportation problems may be used
to solve the above problem. An alternate way of visu-
alizing this structure is by juxtaposing the transporta-
tion problems to form a 2n-partite graph. An illustra-
tion of the graph appears as Fig. 1. The destination node
representing city i in time-period t � 1 is connected
to the source node representing city i in time period t
by an arc with capacity interval [Yi t � 1, Yi t � 1]. In the
new framework, the problem reduces to a feasible cir-
culation problem. For more on network flow problems,
see [1].

Fixing the Y variables amounts to identifying
a Hamiltonian cycle of the 2n-partite graph. Hence, the
TDTSP reduces to the problem of identifying the min-
imum cost Hamiltonian cycle on this graph. Note that
it is possible to combine the ith destination node in pe-
riod t � 1 and ith source node in period t to produce an
n-partite graph.

Decomposition Algorithm for TDTSP

Based on the network interpretation of the problem de-
scribed above, it is possible to arrive at a decomposi-
tion algorithm to solve the dual of the linear relaxation
of (P).

This algorithm employs ideas of Benders decompo-
sition. The master problem is defined in the space of
the Y variables. Once the Y variables are fixed, the sub-
problem is a set of n transportation problems. They are
solved and one of their dual optimal solutions is picked
to construct a cut for the master problem. This proce-
dure is iterated producing a series of master problems
that are increasingly tighter approximations of the pro-
jection of (P) on the space of the Y variables. When the
upper bound from the subproblem and lower bound

from the master problem converge, the solution to (P)
is obtained. For a detailed description of the algorithm,
see [15] and [13].

Note that the cutting plane introduced into the Ben-
ders master problem depends on the optimal dual solu-
tion selected from the subproblem to construct it. T.L.
Magnanti and R.T. Wong [8] proved that Pareto opti-
mal solutions to a Benders problemmay be constructed
by solving a second-stage optimization problem on the
set of optimal dual solutions from the subproblem. It
was shown in [13] that, whenever the subproblem is
a network-flow problem, the Pareto optimal problem
can be recast as a network-flow problem. Using this
idea, the linear programming relaxation may be solved
by introducing Pareto optimal cuts at each iteration.
Computational experience shows that this methodol-
ogy gives faster convergence characteristics for the Ben-
ders algorithm.

Once we have a solution methodology for the dual
of the linear relaxation, we can incorporate it in the
branch and bound framework to derive an exact algo-
rithm for the TDTSP. Note that the dual of the linear
relaxation does not need to be solved to optimality to
produce a valid lower bound to construct the enumera-
tion tree.

Heuristics for TDTSP

Heuristics for the TDTSP are natural extensions of
heuristics for the TSP. Probably one of the most suc-
cessful heuristics for the TSP is the R-opt heuristic de-
veloped by S. Lin and B.W. Kernighan [6] and ex-
tended for the TDTSP by Vander Wiel and Sahinidis
[14].

We describe the variable R-opt heuristic as applied
to the TDTSP. This is an improvement heuristic and
assumes an initial tour has been constructed already.
� Step 1 selects a transition (l, k) for removal.
� Step 2 identifies an arc (k, i) to replace arc (l, k).
� The selection is done in a way that maximizes a cer-

tain estimate of cost improvement which takes into
account the time-dependence of the transition costs.

� The path between j and k is then reversed and arc (l,
j) is added to complete the tour.

� Step 5 iterates trying to accomplish a similar reduc-
tion with (j, i) as the starting arc instead of (l, k).

For details, see [14].
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Time-Dependent Traveling Salesman Problem, Figure 1
The 2n-partite TDTSP graph

Conclusion

TDTSP is a computationally difficult problem. Since the
linear programming relaxations of the formulations for
this problem are large, it is important to identify struc-
tured constraints and solve the problems efficiently us-
ing some decomposition based ideas. We presented one
such algorithm that exploits the network substructure
of the TDTSP formulation. Furthermore, valid inequal-
ities for the TDTSP polytope may help improve its for-
mulation and allow us to develop more efficient solu-
tion techniques. However, as of today, the TDTSP con-
tinues to be an intractable problem for large instances.
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Introduction

Topological derivatives of shape functionals are intro-
duced in [35] for elliptic boundary value problems. The
construction is based on the technique [15,24] of sin-
gular perturbations of geometrical domains, and the
mathematical framework for topological differentiabil-
ity in the general case can be found in [27] within the
method of compound asymptotic expansions. There
are numerous applications of topological derivatives to
the resolution of shape optimization and inverse prob-
lems. The asymptotic analysis of boundary value prob-
lems in singularly perturbed geometrical domains is
performed in the monographs [15,24,26], and, e. g., in
the papers [17,28,29,30]. The derivation of topological
derivatives for integral functionals is presented, e. g., in
the papers [11,19,20,21,22,23,27,34,35,36,37,38,40,41],
and in the Ph.D. dissertations [18,31].

In this chapter we perform an asymptotic analy-
sis for boundary value problems in elasticity in two
and three spatial dimensions. The results are borrowed
from papers of the authors, [35,38,40,41]; see also [27],
where the complete proofs of the presented results can
be found.

Numerical methods of optimization with topo-
logical derivatives are considered in, e. g., the pa-
pers [1,2,3,4,6,7,9,10,13,14,16,18,34].

Definitions

The topological derivative for a shape functional is de-
fined in the following way.

Assume that ˝ � RN , N D 2; 3, is an open set and
that there is given a shape functional

J : ˝ n K ! R

for any compact subset K � ˝. We denote by
B�(x); x 2 ˝, the open ball of radius � > 0 around x,
and !�(x) D B�(x). The domain with a void will be de-
noted ˝(�; x) D ˝ n !�(x). Assume that there exists
the following limit:

T (x) D lim
�#0

J(˝(�; x))� J(˝)
j!�(x)j

;

which can be defined in an equivalent way by

T̃ (x) D lim
�#0

J(˝(�; x))� J(˝)
�N

:
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The function T (x); x 2 ˝ , is called the topological
derivative of J(˝) and provides the information on
the infinitesimal variation of the shape functional J if
a small hole is created at x 2 ˝ . We shall show in the
sequel that the method is constructive, i. e., the topo-
logical derivative can be evaluated for shape functionals
depending on solutions of elasticity equations defined
in˝ .

The partial differential equation for u� D u˝(�;x)

is called the state equation for the shape optimization
problems under consideration. We show that for a class
of shape functionals it is sufficient to solve in the un-
perturbed domain ˝ the state equation as well as the
appropriate adjoint state equation in order to evalu-
ate the topological derivative T (x); x 2 ˝ . This means
that the derivative can be used in shape optimization for
broad classes of shape functionals and partial differen-
tial equations. Some examples of where the derivative is
explicitly given for model problems are provided.

Our results can be described in the form of the fol-
lowing expansion:

J(˝(�; x)) D J(˝)C j!�(x)jT (x)C o(�N) :

In the very special case of the energy functional, the
so-called compliance functional in linear elasticity, the
topological derivative is in fact considered in [8]. The
derivative is used, for the first time, in numerical meth-
ods of optimal design for the specific choice of shape
functional [8]. In order to differentiate the energy func-
tional with respect to the variations of the boundary
of the domain of integration, knowledge of the shape
derivative of the state equation with respect to the
boundary variations is not required. Therefore, the re-
sults obtained for the particular case of the energy func-
tional cannot be directly generalized to the case of an
arbitrary shape functional.

In the sequel we shall drop x from the notation, as-
suming that the cavity surrounds x D O 2 ˝.

Formulation

Three-Dimensional Anisotropic Elastic Body
with a Small Cavity

Let us consider the elasticity problem written in the
matrix/column form

Lu D D(�rx )>A~D(rx)u D 0 in ˝(�) ; (1)

N˝u D D(n)>A~D(rx)u D g˝ on @˝ ; (2)

N !u D D(n)>A~D(rx )u D 0 on @!� ; (3)

where A is a symmetric positive definite matrix of size
6 � 6, consisting of the elastic material moduli (the
Hooke’s matrix) ˛ D 1/

p
2 and D(rx) is a 6 � 3matrix

of the first-order differential operators (�i D @/@xi ):

D(�)> D

2
4
�1 0 0 0 ˛�3 ˛�2
0 �2 0 ˛�3 0 ˛�1
0 0 �3 ˛�2 ˛�1 0

3
5 (4)

u is the displacement column, and n D (n1; n2; n3)>

is the unit outward normal vector on @˝(�), i. e.,
unit column. In this notation the strain and stress
columns are given respectively by �(u) D D(rx)u and
�(u) D A~D(rx)u, which gives

�(u) D
�
�11; �22; �33;

p
2�23;
p
2�31;
p
2�12

�>
;

�(u) D
�
�11; �22; �33;

p
2�23;

p
2�31;

p
2�12

�>
:

The load g˝ is supposed to be self-equilibrated in
order to assure the existence of a solution to the elastic-
ity problem,

Z
@˝

d(x)>g˝(x)dsx D 0 2 R6; (5)

where

d(x) D

2
4
1 0 0 0 �˛x3 ˛x2
0 1 0 ˛x3 0 �˛x1
0 0 1 �˛x2 ˛x1 0

3
5 (6)

represents rigid body motion.
The general theory presented in the article can be

applied to a broad class of shape functionals; however,
to fix the ideas we deal only with one representative ex-
ample.

Let us consider the functional

J 1
�(u) D

Z
˝(�)

�(u; x)>B(x)�(u; x)dx : (7)

Functional (7) looks like the elastic energy functional

E(u;˝(�)) D
1
2

Z
˝(�)

�(u; x)>A�(u; x)dx

D
1
2

Z
˝(�)

�(u; x)>A�1�(u; x)dx (8)
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but can contain a certain symmetric 6 � 6-matrix func-
tion B. In the case of a constant, diagonal matrix B func-
tional (7) is related to the square of the L2(˝)-norm
of the stress tensor or of its components. On the other
hand, if A(x)�1B(x)A(x)�1 becomes a constant diago-
nal matrix with our choice of B, then in (7) the similar
strain norms are obtained. For problem (1)–(3) the ex-
plicit dependence of the integrand on the displacement
vector u(�,x)makes no sense, since such a displacement
field is defined up to rigid motions.

From condition (5) it follows that both problems,
problem (1)–(3) in the body ˝(�) with the cavity !�
and the first limit problem in the entire body˝ ,

D(�rx)>AD(rx)v D 0 in ˝ ;

D(n)>AD(rx)v D g˝ in @˝ ;
(9)

admit the solutions u(�; x) 2 C2;˛(˝(�))3 and
v 2 C2;˛(˝)3, respectively, under the loading g˝ 2
C1;˛(@˝)3. Freedom in selection of such solutions up
to the rigid motions has no influence on functional (7)
and therefore can be neglected (we recall only that using
additional conditions we can pass to uniquely solvable
problems).

Before presenting the result for functional (7),
we recall some facts. First of all, the adjoint state
W 2 C2;˛(˝)3 has the form

D(�rx)>AD(rx)W D

� 2D(rx)>BAD(rx)v in ˝ ;

D(n)AD(rx)W D

2D(n)AD(rx)>BAD(rx)v on @˝ :

(10)

Furthermore, we define the special functions z j solving
the exterior elasticity problem

D(�r�)>AD(r�)z j D 0 in G D R3 n !1 ; (11)

D(n(�))>AD(r�)z j D g j on @!1 (12)

with the special right-hand sides

g j(�) D �D(n(�))>Ae j ; (13)

where j D 1; : : : ; 6 and e j D
�
ı j;1; : : : ; ı j;6

�> is an el-
ement of the canonical basis inR6.

The final formula has the following form.

Theorem 1 The following formula holds true:

J 1
�(u) D J 1

0 (v)C �
3
n
�0(v)>ABA�0(v)j!1j

C (ABAD(r�)z�0(v);D(r�)z�0(v))R3n!1

C (�0(W) � 2BA�0(v))>m!�0(v)
o

C O(�3Cı) ;
(14)

where �0(v) D D(r�)v(O) and �0(W) D D(r�)W(O)
are strain columns evaluated at the point x D O for the
solutions of problems (9) and (10);m! is the polarization
matrix of size 6 � 6 for the cavity ! in the elastic space
with Hooke’s matrix A, and z D (z1; : : : ; z6) is the row
of energy components of the special solutions to homoge-
neous exterior elasticity problem (11)–(12).

In the particular case of B(x) D 1
2A
�1, functional (7)

coincides with the elastic energy (8). In addition, we
have W D v; thus �0(W) � 2BA�0(v) D 0 and the last
term in parentheses in (14) vanishes, and by (16) the
sum of the first two terms equals 1

2�
0(v)>m!�0(v).

Thus, we have the relation

E(u;˝(�)) D E(u;˝)C
1
2
�3�0(v)>m!�0(v)

C O(�3Cı) : (15)

The 6 � 6 polarization matrix may be computed explic-
itly using the result given below.

Theorem 2 The following integral representation holds
true:

m!
jk D

�
AD(r�)z j;D(r�)zk

�
G
C Ajk j!1j : (16)

We consider only the operator L(rx ) with the constant
coefficients; however, the main results of the article re-
main the same for the operators with variable coeffi-
cients.

Contact Problem for Plane Elasticity

We consider the two-dimensional elasticity problem in
plane stress formulation. Unlike in (1)–(3) on a part � 0

of @˝, we assume clamped condition u D 0, on part� g

the loadN˝u D f�i jn jgiD1;2 D g, and on part � c the
condition of frictionless contact

un � 0; �n � 0 ;

�nun D 0; �� D �:n � �nn D 0 :
(17)
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Here un D ui ni , �n D ni�i jn j , �:n D f�i jn jgiD1;2. We
define also the ring C(R; �) D !R n !� with R > � and
such that !R � ˝.

In contrast to the previous section, it is now impos-
sible to compute topological derivatives of shape func-
tionals by means of adjoint variables without additional
assumption of strict complementarity for unknown so-
lutions. Therefore, we shall derive a method for com-
puting the perturbation caused by !� in the solution
itself.

The bilinear form corresponding to the elastic en-
ergy may be written as

a(�; u; v) D
1
2

Z
˝(�)

�>(u)�(v) dx (18)

for u; v 2 H1(˝)2, and the linear form responsible for
the work of external forces is

L(u) D
Z
�g

u>g ds : (19)

We will use also the Steklov–Poincaré operatorA� de-
fined in the following way. Consider the boundary value
problem

Lw D 0 in C(R; �) ;

N !w D 0 on @!� ;

w D v on @!R :

(20)

Then we set

A�(v) D �n(w) on @!R : (21)

ThusA� is a mapping

A� : H1/2(@!R)2 7! H�1/2(@!R)2 : (22)

In the latter part of the article it will be demonstrated
constructively that

A� DA0 C �
2BC O(�4) (23)

in the linear operator norm corresponding to (22). Us-
ing this notation we have

a(�; u; u) D
1
2

Z
˝(R)

�>(u)�(u) dx

C
1
2

Z
C(R;�)

�>(u)�(u) dx (24)

as well as

1
2

Z
C(R;�)

�>(u)�(u) dx D
1
2
hA�u; ui@!R

D
1
2
hA0u; ui@!R C

1
2
�2hBu; ui@!R CR(u; u) ;

(25)

whereR(u; u) is of the order O(�4) on bounded sets in
H1/2(@!R)2.

With B we associate the bilinear form

b(u; v) D
1
2
hBu; ui@!R (26)

and observe that

a(0; u; u) D
1
2
hA0u; ui@!R (27)

corresponds to the internal elastic energy in the entire
domain. Denote also by u0 the solution to the contact
problem in the domain without a hole. We have thus
the approximation of the energy form

a(�; u; u) D a(0; u; u)C �2b(u; u) : (28)

Let also

H1
�0
(˝) D fv 2 H1(˝)2jv D 0 on �0g

and K be the convex cone

K D fv 2 H1
�0
(˝)jvn � 0 on �cg :

Then the following variational inequality solves our
contact problem in˝(�):

u 2 K : a(�; u; u � v) � L(v � u) 8v 2 K : (29)

Taking into account approximation (28) and using ab-
stract results on the differentiability of metric pro-
jection onto the polyhedric convex sets in Dirichlet
space [33] we have the following result.

Theorem 3 For � sufficiently small we have on ˝R the
following expansion of the solution u with respect to the
parameter � at 0C:

u D u0 C �2qC o(�2) in H1(˝R)2 ; (30)

where the topological derivative q of the solution u to the
contact problem is given by the unique solution of the
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following variational inequality:

q 2 SK(u) : a(0; q; v�q)Cb(u; v�q) � 0 8v 2 SK(u);
(31)

where

SK(u) D
n
v 2 (H1

�0
(˝)2jvn � 0 on �(u) ;

a(0; u; v) D 0
o
: (32)

The coincidence set

�(u) D fx 2 �c jun(x) D 0g

is well defined [33,42], for any function u 2 H1(˝)2,
and u0 2 K is the solution of variational inequality (29)
for � D 0.

The perturbation q gives an approximation of u outside
!R. In the ring C(R,�) one can, as we shall see, compute
the solution separately.

Solution of the Elasticity System in the Ring

Let us consider the plane elasticity problem in the ring
C(R,�). We use polar coordinates (r,�) with er pointing
outward and e
 perpendicularly in the counterclock-
wise direction. Assume that the displacement on the
outer boundary is given, while the inner boundary is
free. We want to compare the solution to such a prob-
lem to one defined in the full circle, with the same dis-
placement data. To this end we shall construct the ex-
act representation of both solutions, using the complex
variable method of [25]. It was shown there that

�rr � i�r
 D 2<�0 � e2i
 (z̄�00 C  0) ;

�rr C i�

 D 4<�0 ;

2�(ur C iu
 ) D e�i
 (�� � z�̄0 �  ̄) ;

(33)

where ' and  are given by complex series

� D A log(z)C
kDC1X
kD�1

akzk ;

 D ��Ā log(z)C
kDC1X
kD�1

bkzk :

(34)

Here � is the Lame constant, � is the Poisson ratio,
� D 3 � 4� in the plain strain case, and � D (3��)/(1C
�) for plane stress.

The displacement data are given in the form of
Fourier series

2�(ur C iu
 ) D
kDC1X
kD�1

Akeik
 : (35)

The traction-free condition on some circle means
�rr D �r
 D 0. From (33) and (34) we get for displace-
ments the formula

2�(ur C iu
 ) D 2�A~r log(r)
1
z
� Ā

1
r
z

C

pDC1X
pD�1

h
�rapC1 � (1 � p)ā1�pr�2pC1

� b̄�(pC1)r�2p�1
i
zp : (36)

Similarly we obtain a representation of tractions on
some circle

�rr � i�r
 D 2A
1
z
C (� C 1)

1
r2
Āz

C

pDC1X
pD�1

(1 � p)
h
(1C p)apC1 C ā1�pr�2p

C
1
r2
bp�1

i
zp : (37)

Denote d0 D �a0 � b̄0. For the full circle we must
eliminate singularities, i. e., b�k D a�k D A D 0 for
k D 1; 2; : : : and then, using (36), obtain

d00 D A�1 C
2
�
Ā1 ;

<a01 D
1

(� � 1)R
<A0 ;

=a01 D
1

(� C 1)R
=A0 ;

a0k D
1
�Rk Ak�1; k > 1 ;

b0k D �
1
Rk [(k C 2)

1
�
AkC1 C Ā�(kC1)]; k > 1 :

(38)

In further analysis we consider the ring and take for
the sake of simplicity R D 1 as well as � < 0:5. This is
only rescaling and does not diminish generality. Then
from (36) for r D R D 1 and (37) for r D �, we get
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A D 0 and

d0 D A�1 C
2R4

�R4 C �4
Ā1 ;

a2 D
R2

�R4 C �4
A1 ;

<a1 D
R

(� � 1)R2 C 2�2
<A0 ;

=a1 D
1

� C 1
=A0 ;

b�1 D �2�2<a1 D �
2�2R

(� � 1)R2 C 2�2
<A0 ;

b�2 D ��4 ā2 D �
�4R2

�R4 C �4
Ā1 :

Observe that

d0 � d00 D ��
4 2
�(�R4 C �4)

Ā1 ;

a1 � a01 D ��
2 2
(� � 1)R((� � 1)R2 C 2�2)

<A0 ;

a2 � a02 D ��
4 1
�R2(�R4 C �4)

A1 :

(39)

Again using (36) and (37) we obtain for k � 2
�
a�(k�1)
b�(kC1)

�
D Tk(�) �

�
ākC1

b̄k�1

�
(40)

where

Tk(�) D
�
�(k C 1)�2k ; ��2(k�1)

�k2�2(kC1) ; �(k � 1)�2k

�

and the system which may be rewritten as

Sk(�) �
�
akC1

bk�1

�
D

�
Ak

Ā�k

�
(41)

with entries

Sk (�)11 D �RkC1 � (k2 � 1)R1�k�2k

C k2R�(kC1)�2(kC1) ;

Sk (�)12 D �(k � 1)(R1�k�2(k�1) � R�(kC1)�2k) ;

Sk (�)21 D �(k C 1)(RkC1 C �R1�k�2k) ;

Sk (�)22 D �Rk�1 � �R1�k�2(k�1) :

(42)

In fact formulas (40) and (42) are correct also for
k D 0; 1 and � > 0. Together with initial values d0,a1,

a2,b�1,b�2 they allow us to compute all ak,bk for any
�1 < k < C1.

The matrix Sk(�) is a perturbation of Sk(0), which
would produce the solution for the full circle, namely,
a0kC1; b

0
k�1. Observe that Tk(0) D 0. Direct computa-

tions lead to estimates

ja3 � a03j � �
�
jA2j�

4 C jA�2j�2
�

(43)

and for k D 4; 5; : : :

jak � a0k j � �
�
jAk�1j�

3(k�1)/2 C jA1�k j�
3(k�2)/2

�
;

(44)

where the exponent k/2 has been used to counteract the
growth of k2 in terms like k2�k/2. Similarly,

jb1 � b01j � �
�
jA2j�

4 C jA�2j�2
�
; (45)

and for k D 2; 3; : : :

jbk � b0kj � �
�
jAkC1j�

3(kC1)/2 C jA�(kC1)j�
3k/2
�
:

(46)

From relation (40) we get another estimate

ja�k j � ��2k
�
jAkC1j C jA�(kC1)j

�
; k D 1; 2; : : :

(47)

and

jb�k j � ��2(k�1) (jAk�1j C jA1�k j) ; k D 3; 4; : : : :

(48)

Here� is a constant independent of � and Ai. Observe
that the corrections proportional to �2 are present only
in a1, a3, b�1, a�1. The rest is at least of the order O(�3)
(in fact O(�4)).

Explicit Expansion of Elastic Energy The elastic en-
ergy contained in the ring has the form

2E(�; R) D
Z
C(�;R)

�(u�) : �(u�) dx

D

Z
@!R

u��(u�):n ds : (49)

Since u� D u on @!R ,

2E(�; R) D
Z
@!R

u�(u�):n ds : (50)
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Now �(u�) is in fact of the form �(u�) D ��(u), be-
cause u� D u on @!R , which means that u� D u�(u).
If we split �� into

��(u) D �0 C �2�1(u)C O(�4) ; (51)

then

E(�; R) D E(0; R)C�2
Z
@!R

u�1(u):n dsCO(�4): (52)

Thus the problem of defining the operator B reduces to
finding �1(u).

From (33) and (34) we know that ��(u) is a linear
function of infinite vectors a; b, while �0(u) is the same
function of a0; b0. Here a0; b0 are computed for !R,
while a; b correspond to C(�,R). To obtain �1(u) it is
enough to express a; b as

a D a0 C �2a1 C O(�4) ;

b D b0 C �2b1 C O(�4) ;
(53)

because then

�1(u) D �1(a1; b1; u) :

Let us observe as well that
Z
@!R

u�1(u):n ds D R
Z 2�

0
(�1

rrur C �
1
r
u
 ) d�

D R
Z 2�

0
<[(�1

rr � i�1
r
 )(ur C iu
 )] d� : (54)

The analysis of formulae (38) for a0; b0 and their coun-
terparts a; b leads to the conclusion that the only
nonzero terms in a1; b1 will be a13; a11; a1�1; b1�1; b11.

Taking into account that A D 0 in (34) for our
problem,

� D �0 C �2�1 C O(�4) ;
 D  0 C �2 1 C O(�4) ;

(55)

where

�1 D a1�1
1
z
C a11zC a13z

3;  1 D b1�1
1
z
Cb11z : (56)

Using all the results collected so far gives the final ex-
pression for B:

Z
@!R

u�1(u):n ds D
1
R2

h2(� � 2)
(� � 1)2

(<A0)2

� (� C 1)jA�2j2 �
9(� C 1)
�2

jA2j
2

�
6(� C 1)

�
<(A2A�2)

i
: (57)

Taking into account the formulae for Fourier coeffi-
cients

A0 D
�




Z 2�

0
(u1 C iu2)e�i
 d� ;

A2 D
�




Z 2�

0
(u1 C iu2)e�3i
 d� ;

A�2 D
�




Z 2�

0
(u1 C iu2)eCi
 d� ;

(58)

we conclude that B is indeed the well-defined bilinear
form which contains squares of integrals of u over @!r .
In addition, from (56) follows the theorem below.

Theorem 4 If u 2 H1/2(@!R)2, which is equivalent to

kDC1X
kD�1

p
1C k2jAkj

2 � �0 ; (59)

then the rest R(u; u) in formula (25) is uniformly
bounded by some constant depending only on�0.

The derivation sketched above allows one also to ob-
tain a higher-order expansion of the Steklov–Poincaré
operator.

Cases

Plane Isotropic Elasticity System

Let us consider the isotropic elasticity equations in the
plane

Lu0 D f in ˝ ;

u0 D g on �1 ;

N˝u0 D h on �2 ;

and the same system for u in the domain with the cir-
cular hole !� centered at x0 2 ˝, with the additional
condition

N !u D 0 on @!� :

Observe the presence of the volume forces denoted by
f . Isotropicity means here that the matrix of material
coefficients has a particular form

A D

2
4
�C 2� ; � ; 0
� ; �C 2� ; 0
0 ; 0 ; 2�

3
5 :
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We introduce the yield functional

J� (�) D
Z
˝(�)

�(u�)>S�(u�)dx ; (60)

where S is an isotropic matrix. Again, isotropicity
means that Smay be expressed as follows:

S D [si j] D

2
4
l C 2m l 0

l l C 2m 0
0 0 2m

3
5 ;

where l,m are any real constants. Their values depend
on the particular yield criterion (e. g., maximal shear
stress or Huber). The following assumption assures that
the problem is well defined.

(A) The domain ˝ has a piecewise smooth bound-
ary, but pure cracks are admissible, even having differ-
ent types of boundary conditions prescribed on both
edges (i. e., tractions and displacements). Then g,hmust
be compatible with u 2 H1(˝)2.

The interior regularity of u in ˝ is determined
by the regularity of the right-hand side f of the elas-
ticity system. For such a problem the formulae given
in Sect. “Three-Dimensional Anisotropic Elastic Body
with a Small Cavity” may be computed exactly, even
in the more general case of the presence of volume
forces [35].

In this case the adjoint state v 2 H1
�1
(˝) satisfies

for all test functions � 2 H1
�1
(˝) the following integral

identity:

�

Z
(D(rx)v)>A~D(rx)� dx D 2

Z
�(u)>S�(�)dx :

(61)

Denote � D l(1C 4� �E C 4� �E )C 2m(1C 2� �E ). Now
we may formulate the following result:

Theorem 5 Assume that the distributed force is suffi-
ciently regular, f 2 C1(˝)2, and (A) then the topological
derivative of the functional J� is given by

T (x0) D �
h
�(a2u C 2b2u)C 2 f>v

C
1
E
(auav C 2bubv cos 2ı)

i
xDx0

: (62)

Here

� D l
�
1C 4�

�

E
C 4�

�

E

�
C 2m

�
1C 4�

�

E

�
:

Some of the terms in (62) require explanation. In the
reference frame tied to the principal stress directions
for the displacement fields u,w,v, they are given by the
expressions:

au D �11(u)C �22(u); bu D �11(u)� �22(u) ;

av D �11(v)C �22(v); bv D �11(v) � �22(v) :

Finally, the angle ı denotes the angle between principal
stress directions for displacement fields u and v in (62)
and E, � stands for Young’s modulus and Poisson con-
stant. By principal stress directions we mean, as usually,
the coordinate system in which the stress tensor is diag-
onal.

Three-Dimensional Isotropic Elasticity Systems

Now we consider the same system as in Sect. “Plane
Isotropic Elasticity System”, only in R3. The isotropic
matrix of material (Lame) coefficients is now

A D

2
66666664

�C 2� � � 0 0 0
� �C 2� � 0 0 0
� � �C 2� 0 0 0
0 0 0 2� 0 0
0 0 0 0 2� 0
0 0 0 0 0 2�

3
77777775
:

The yield functional is similar,

J� (�) D
Z
˝(�)

[�(u�)>S�(u�)]dx ; (63)

where S is an isotropic matrix. Isotropicity means here
again that Smay be expressed as follows:

S D

2
66666664

l C 2m l l 0 0 0
l l C 2m l 0 0 0
l l l C 2m 0 0 0
0 0 0 2m 0 0
0 0 0 0 2m 0
0 0 0 0 0 2m

3
77777775
;

where l,m are real constants. Some yield criteria fit into
this framework, but not maximal shear stress. The fol-
lowing assumption assures that J� is well defined for
solutions of the elasticity system.

(A) The domain ˝ has a piecewise smooth bound-
ary, which may have reentrant corners with ˛ < 2

created by the intersection of two planes. In addition,
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g,hmust be compatible with u 2 H1(˝)3. With respect
to f we assume that it is a continuous vector field and
f 2 H1(˝)3.

The interior regularity of the displacement field u
in ˝ is determined by the regularity of the right-hand
side f of the elasticity system. To be precise: Let ı > 0 be
given and˝ı D ˝ n (� C Bı (0)). Then u 2 H3(˝ı)3,
see [26].

The adjoint state equation for shape functional J�
takes on exactly the same form as in (61)

Now we may formulate the following result, giving
the constructive method for computing the topological
derivative:

Theorem 6 Assume that the distributed force is suffi-
ciently regular, f 2 C1(˝ ;R3), and (A) is satisfied, then

T J� (x0) D �
1
4


[K(S; �(u); �(u))C 4
 f Tv

C K(A�1; �(u); �(v))]xDx0 ; (64)

where v 2 H1
�1
(˝) is the adjoint state satisfying the in-

tegral identities (61).

Function K is defined as an integral over the unit sphere
@B1(0) D fx 2 R3jkxk D 1g of the following functions:

K(S; �(u(x0)); �(u(x0)))

D

Z
@B1(0)

�1(u(x0); x)T � S � �1(u(x0); x)dS

K(A�1; �(u(x0)); �(v(x0)))

D

Z
@B1(0)

�1(u(x0); x)T � A�1 � �1(v(x0); x)dS :

The symbol �1(u(x0); x) denotes the explicit solution
to the exterior elasticity problem, constructed from the
so-called Leon solutions [12] in the way specified below.
It satisfies the following boundary conditions in the in-
finite exterior domain R3 n B1(0):
� No tractions are applied on the surface @B1(0) of the

ball;
� The stresses �1(u(x0); x) tend to the constant value
�(u(x0)) as kxk ! 1.

In this notation �1(u(x0); x) is a function of space
variables depending on the functional parameter u(x0),
while �(u(x0)) is a value of the stress tensor computed
at the point x0 for the displacement field u. The de-
pendence between �1(u(x0); x) and �(u(x0)) results

from the boundary condition at infinity listed above.
The method for obtaining such solutions (and the dis-
placement field u1), based on [12], is given in [36].

The main difficulty is related to the computa-
tion of the values of the functions denoted above
as K(S; �(u(x0)); �(u(x0))) and K(A�1; �(u(x0));
�(w(x0))), which cannot be obtained in the closed
form, in contrast with the two-dimensional case. This
is due to the fact that the principal stress directions for
u and v may be rotated with respect to each other, and
this rotation is not specified by a single parameter ı.

Therefore we must approximate these functions us-
ing numerical quadrature formulae. It is possible, be-
cause we may calculate the values of integrands defin-
ing K at any point on the sphere. This makes the com-
putations more involved but does not increase the nu-
merical complexity in comparison to evaluating single
closed form expression in the case of two dimensions.
The detailed procedure is given in [36].

Conclusions

We list some applications of topological deriva-
tives in numerical methods of resolution for shape-
optimization and inverse problems.

A numerical coupling of two methods, boundary
variations by a level set method and topological deriva-
tives, in shape and topology optimization of structures
is proposed in [1,4,7,9,10,13]. On the one hand, the
level set method, based on the classical shape deriva-
tive, is known to easily handle boundary propagation
with topological changes. However, in practice it does
not allow for the nucleation of new holes (at least in two
spatial dimensions). On the other hand, the topological
derivative method is precisely designed for introduc-
ing new holes in the optimization process. Therefore,
the coupling of these two methods yields an efficient al-
gorithm that can escape from local minima in a given
topological class of shapes. Both methods rely on a no-
tion of gradient computed through an adjoint analysis
and have a low CPU cost since they capture a shape on
a fixed Eulerian mesh. The main advantage of our cou-
pled algorithm is to make the resulting optimal design
largely independent of the initial guess.

The paper [2] is devoted to minimum stress design
in structural optimization. The efficient numerical al-
gorithm for shape and topology optimization is based
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on the level set method coupled with the topological
derivative. Several numerical examples in two and three
spatial dimensions are discussed.

The Brazilian group has been working on topolog-
ical derivatives since early 2000. Novotny in his Ph.D.
dissertation proposes a method to calculate the topo-
logical derivative based on classical shape sensitivity
analysis [31].

The topological derivatives for partial differential
equations on graphs are introduced in [19].

Topological sensitivity analysis can be performed
in the framework of the piecewise constant Mum-
ford–Shah functional. Topological and shape deriva-
tives can be combined to derive a fast algorithm for im-
age segmentation, without any initialization required.
The general Mumford–Shah functional is also investi-
gated, see, e. g., [14], see also [5].
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Complementarity theory is dedicated to the study of
complementarity problems. The concept of comple-
mentarity is fundamental to the study of many opti-
mization problems and to the analysis and computa-
tion of equilibria in the physical and economical sense.
It is well known that the complementarity theory has
also many and remarkable applications in Engineer-
ing, Elasticity, Mechanics, Game Theory etc. The solu-
tion set of a complementarity problem can be empty
or nonempty, stable or unstable. When the solution
set is nonempty, the problem is, how can we compute
a solution. The classical existence results for comple-
mentarity problems were proved using the Hartman –
Stampacchia theorem, Karamardian ’s theorem, some
fixed point theorems and for the linear complementar-
ity problem using algebraic tools. A class of powerful
methods used recently in complementarity theory is the
class of topological methods. By topological methods we
can prove existence theorems, we can study the stability
of the solution set or we can study some particular topo-
logical properties of the solution set. In what follows,
we shall present some known topological methods.

Preliminaries

Denote by (Rn, h �, �i) the n-dimensional Euclidean
space, by (H, h �, � i) a Hilbert space and by (E, k � k)
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a real Banach space. If (E, k � k) is a Banach space, de-
note by E� the topological dual of E and by hE, E�i a du-
ality defined by a canonical bilinear form h �, � i defined
on E × E�. We say that K � E is a pointed closed convex
cone if and only ifK is a closed subset and the following
properties are satisfied:
1) K + K� K;
2) �K� K for all � 2 R+;
3) K \ (�K) = {0 }.
Whenever a pointed closed convex cone K � E is de-
fined, we have an ordering on E defined by x � y if and
only if y � x 2 K. By definition the dual of K is

K D fy 2 E� : hx; yi � 0 for all x 2 Kg :

Note that K� is also a closed convex cone. We say that
the ordered Banach space (E, k � k, K) is a vector lattice
if and only if for every pair (x, y) of elements of E, the
supremum x ^ y and the infimum x _ y both exist in E.
If (H, h �, � i, K) is an ordered Hilbert space, we say that
the inner-product h �, �i is K-local if whenever x ^ y = 0
(x, y 2 K), we have hx, y i = 0. If (H, h �, �i) is a Hilbert
space andK�H is a closed convex cone, we denote the
projection onto K by PK. The projection PK is defined
for every x 2 H by k x � PK(x) k = miny 2 K k x � y k.

If E = Rn and h �, �i is the Euclidean inner-product,
the cone Rn

C is closed, pointed, self-adjoint (i. e., (Rn
C)
�

= Rn
C) and the inner-product h �, �i is Rn

C-local. The or-
dered space (Rn, h �, �i, Rn

C) is a vector lattice. Let h E,
E� i be a duality of Banach spaces and let K � E be
a pointed closed convex cone. Given the mappings f :
E! E� and g: E! E, consider the following implicit
complementarity problem:

ICP( f ; g;K)

8̂
<̂
ˆ̂:

find x0 2 E
s.t g(x0) 2 K; f (x0) 2 K�; and

hg(x0); f (x0)i D 0:

If g(x) = x for all x 2 E, we obtain the nonlinear comple-
mentarity problem:

NCP( f ;K)

8̂
<̂
ˆ̂:

find x0 2 K
s.t f (x0) 2 K� and

hx0; f (x0)i D 0:

If E is a vector lattice with respect to the ordering de-
fined by K and f 1, . . . , f n are mappings from E into E

we consider the general order complementarity problem:
GOCP({f i }niD1, K)
(
find x0 2 K
s.t ^( f1(x0); : : : ; fn(x0)) D 0:

Topological Degree
and Complementarity Problems

A powerful topological method used in complementar-
ity theory is based on the concept of topological degree
of a continuous mapping. A standard reference for de-
gree theory is [23]. Corresponding to a bounded open
set ˝ � Rn, a continuous function f : ˝ ! Rn , and
an n-vector y 62 f (@˝), we associate an integer num-
ber denoted by deg(f , ˝ , y). We say that deg(f , ˝ , y)
is the degree of f at y relative to ˝ . Always for our ap-
plications we take y = 0. The topological degreehas the
following properties:
1) (Existence property). If deg(f , ˝ , 0) 6D 0, then the

equation f (x) = 0 has a solution in˝ .
2) (Nearness property). If deg(f , ˝ , 0) is defined and

g 2 C(˝;Rn) is such that supx 2˝ k f (x) �g(x) k
< dist(0, f (@˝)), then deg(g, ˝ , 0) is defined and
deg(g,˝ , 0) = deg(f ,˝ , 0).

3) (Homotopy invariance property). If H : [0; 1] �
˝ ! Rn is continuous and 0 6D H(t, @˝) for all
t 2 [0, 1], then deg(H(0, �), ˝ , 0) = deg(H(1, �), ˝ ,
0).

4) (Excision property). Suppose that deg(f ,˝ , 0) is de-
fined and D is a compact subset of˝ such that there
are no solutions of f (x) = 0 in D. Then deg(f , ˝ , 0)
= deg(f ,˝ \ D, 0).

5) (Domain decomposition property). If deg(f ,˝ , 0) is
defined and˝ is a disjoint union of finite number of
open sets˝ l, then

deg( f ;˝; 0) D
X
i

deg( f ;˝i ; 0)

6) (Index at a zero). Let x� be an isolated solution of
the equation f (x) = 0. Then deg(f ,˝ , 0) is the same
for any bounded open set ˝ containing x� with the
property that˝ contains no other solution of f (x) =
0. In this case we call deg(f ,˝ , 0) the index of f at x�,
i. e., index(f , x�) = deg(f ,˝ , 0). If f is differentiable
at x� with a nonsingular Jacobian matrix f 0(x�), then
index(f , x�) = sgn det f 0(x�).
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The topological degree defined above is the Brouwer
degree, which can be extended to infinite-dimensional
case by the concept of Leray–Schauder degree. It is ev-
ident that, when the problem NCP(f , K) is equivalent
to an equation of the form ˚(x) = 0, and deg(˚ , ˝ ,
0) is well defined, we can obtain existence theorems
for the problem NCP(f , K). This is the situation when
the problem NCP(f , K) is defined on a Hilbert space
(H h �, � i) ordered by a closed pointed convex cone
K � H. It is known [13,15,25,26] that in this case, the
problem NCP(f , K) is equivalent to the solvability of
the equation

˚1(x) D x � PK(x � f (x)) D 0: (1)

In [7,25,26] several results were proved using (1) and
the topological degree in the Euclidean space. Suppose
that the ordered Hilbert space (H, h �, � i, K) is a vector
lattice, K is self-adjoint (i. e., K = K�) and the inner-
product h �, � i is K-local. In this case the problem
NCP(f , K) is equivalent to the equation:

˚2(x) D x ^ f (x) D 0: (2)

This is the case when (H, h �, � i, K) is the Euclidean
space Rn, h �, � i, Rn

C). The topological degree of the
mapping ˚2 can be used.

Generally, the problem GOCP({f i }niD1, K) can be
studied using the topological degree and the equation

˚3(x) D ^( f1(x); : : : ; fn(x)) D 0: (3)

Using (2) and (3) and the topological degree many re-
sults were proved in [6,7,8,25,26].

The particular case of affine functions (i. e., the case
of linear complementarity problems) has been consid-
ered in many papers as for example: [4,6,7,8,11,12,24,
27,28,29]. The topological degree can be also used to
study, the cardinality of solution set [7,21,22], to study
the stability of solutions [7,10], or to study the connect-
edness of solution set [9,18]. Finally, we note the paper
[5] where the topological degree is applied to the study
of a particular complementarity problem which is im-
portant in Elasticity Theory.

Exceptional Families of Elements
and Complementarity Problems

Let (Rn, h �, � i) be the Euclidean space, K � E a closed
pointed convex cone and f : Rn! Rn a function.

Definition 1 We say that the family of elements
{xr}r > 0 � K is an exceptional family of elements for f
with respect to K if and only if for every real number
r > 0 there exists a real number �r > 0 such that the vec-
tor ur = f (xr) + �rxr satisfies the following conditions:
1) ur 2 K�;
2) hur , xr i = 0;
3) k xr k! +1 as r! +1.

This was introduced in [1] and [19] and it is a new vari-
ant of a similar notion introduced initially in [15]. By
the topological degree we can prove the following alter-
native.

Theorem 2 For any continuous function f : Rn ! Rn

there exists either a solution for the problem NCP(f , K),
or an exceptional family of elements for f with respect
to K.

Proof The proof is in [1,15] or [19].

Corollary 3 If a continuous function f : Rn ! Rn is
without exceptional families of elements with respect
to K, then the problem NCP(f , K) is solvable.

In the papers [1,15,16,17] and [19] are proved sev-
eral existence theorems based on Corollary of Theorem
1 for explicit and implicit complementarity problems.
We note that Theorem 1 can be extended to infinite-
dimensional Hilbert spaces, replacing the function f by
a compact field.

Homotopy Continuation Method

Let (Rn, h �, � i) be the Euclidean space ordered by Rn
C,

and f : Rn ! Rn a continuous function. The homo-
topy continuation method is the following. Let D(x) =
diag(x) be the diagonal (n × n)-matrix with the coordi-
nates of x 2 Rn. Define the mapping ˚ : R2n ! Rn

C ×
Rn by ˚(z) = (D(x)y, y-f (x)) for every z = (x, y) � 0.
The problem NCP(f , Rn

C) is equivalent to the system of
equations:

˚(z) D 0 and z D (x; y) � 0: (4)

Consider the family of systems of equations

˚(z) D tc and z D (x; y) � 0: (5)

where c = (a, b) 2 (Rn
C\ 0) × Rn and t 2 R+. Let C = { tc

:t > 0 }. Under certain assumptions ˚�1(C) exists and
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forms a trajectory, a one-dimensional curve, {z(t):t > 0}.
Furthermore, z(t) leads to a solution of the system (4)
as t tends to 0. By the homotopy continuation method
we can study the existence of the trajectory˚�1(C) and
we can develop numerical methods for tracing this tra-
jectory. About the results obtained by this method, the
reader is referred to the paper [20] and to its references.

Zero-EpiMappings
and Complementarity Problems

The concept of zero-epi mapping was introduced in [3]
and it is more simple and more refined as the topologi-
cal degree [3,13]. By this notion we can obtain the solv-
ability of a nonlinear equation in a Banach space, even
when the topological degree is zero. Let (E, k � k) and
(F, k � k) be Banach spaces and˝ � E a bounded open
subset.

Definition 4 We say that a continuous mapping
f : ˝ ! F is zero-epi (shortly 0-epi) if and only if :
1) 0 62 f (@˝) (i. e., f is 0-admissible);
2) for any continuous compact mapping h : ˝ ! F

such that h(x) = 0 for every x 2 @˝ , the equation
f (x) = h(x) has a solution in˝ .

If f : ˝ ! F is p-admissible (for p 2 F), i. e., p 62 f (@˝)
and the mapping f � p, defined by (f � p)(x) = f (x) � p
is 0-epi, we say that f is p-epi.

Properties

i) Existence property. If f : ˝ ! F is p-epi, then the
equation f (x) = p has a solution in˝ .

ii) Normalization property. The inclusion i : ˝ ! E
is p-epi if and only if p 2˝ .

iii) Localization property. If f : ˝ ! F is 0-epi,˝1 �

˝ is an open set and f�1(0)�˝1, then the restric-
tion of f to˝1, i. e., f j˝1

: ˝1 ! F is 0-epi.
iv) Homotopy property. Let f : ˝ ! F be 0-epi and let

h : ˝ � [0; 1] ! F be a continuous and compact
mapping such that h(x, 0) = 0 for any x 2 ˝ . If f (x)
+ h(x, t) 6D 0 for all x 2 @˝ and for any t 2 [0, 1],
then the mapping f (�)C h(�; 1): ˝ ! F is 0-epi.

v) Boundary dependence property. If f : ˝ ! F is
0-epi and g : ˝ ! F is a continuous compact
mapping such that g(x) = 0 for all x 2 ˝ , then
f C g : ˝ ! F is 0-epi.

Remark 5 If f : ˝ ! E is a p-admissible compact
vector field and the Leray–Schauder degree deg(f , ˝ ,
p) 6D 0, then f is p-epi. The converse is not true.

In [13, Chap. 3] several existence theorems are proved
for the (implicit and explicit) nonlinear complemen-
tarity problem applying the concept of 0-epi map-
ping. The connectedness of solution set of a nonlinear
complementarity problem depending of multiparame-
ters can be studied also applying the concept of 0-epi
mapping [13]. The next result extends to the infinite-
dimensional case and to the case when the topological
degree is zero, the main result proved in [26].

Theorem 6 Let (H, h �, � i) be a Hilbert space, K � H
a closed pointed convex cone and f , g: H!H completely
continuous mappings. Suppose given a completely con-
tinuous mapping � : H ! H and ˝ � H a bounded
open set such that:
1) the mapping � : ˝ ! H defined by � (x) = g(x)
�PK[g(x) � �(x)] for all x 2 ˝ is 0-epi;

2) for every � > 0 and x 2 @˝ \ g�1(K) we have f (x) +
� �(x) 62 (K � g(x))�.

Then the problem ICP(f , g, K) has a solution x� 2 ˝ .

Proof A proof of this result is in [13].

Conclusions

The application of topological methods to the study
of complementarity problems represents probably, the
most recent activity in complementarity theory. An-
other argument to support this idea is the topological
index on cones used recently in the paper [14].

See also
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Introduction, Critical Points, Nondegeneracy

In this article we describe the basic idea of Morse the-
ory in finite-dimensional smooth optimization. This is
concerned with critical points (in particular, Karush–
Kuhn–Tucker points) and relations between them. An
extension to certain nonsmooth problems is indicated.
Then, we turn to gradient flows and focus on the fun-
damental problem: how to get from one local minimum
to (all) other ones.

In this paper we consider optimization problems of
the type (P):

(P)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f on the feasible set M;

where M D

8̂
ˆ̂̂<
ˆ̂̂̂
:
x 2 Rn :

hi (x) D 0;
i 2 I;
g j(x) � 0;
j 2 J

9>>>>=
>>>>;

and where f , hi, gj: Rn! R are C2-functions, |I|! < n,
|J| <1.

For simplicity we assume that M is compact and
that the linear independence constraint qualification
(LICQ) is satisfied at all points of M. The LICQ is
said to hold at x 2 M if the vectors Dhi(x), i 2 I,
Dgj(x), j 2 J0(x) are linearly independent. Here, Dh
stands for the row vector of partial derivatives of h and
J0(x) D

˚
j 2 J : g j(x) D 0

�
.

In virtue of LICQ we can take the constraint func-
tions hi, i 2 I, gj, j 2 J0(x), as new coordinates in

a neighborhood of x. In these coordinates, the set M
locally takes the form Hp ×Rq, where p D jJ0(x)j, q D
n�jIj�p, andHp D fy 2 Rp : yi � 0; i D 1; : : : ; pg

A point x 2 M is called a critical point for f |M if
there exist real numbers overl ine�i , � j , such that

D f D
X
i2I

�iDhi C
X
j2J0(x)

� jDg jjx :

A critical point is called a Karush–Kuhn–Tucker point
(shortly, KKT point) if � j � 0, j 2 J0(x). Moreover,
a critical point is said to be nondegenerate if the follow-
ing two conditions hold:
ND1) (linear) � j ¤ 0, j 2 J0(x).
ND2) (quadratic) D2L(x)jTxM is nonsingular.
The matrix D2L stands for the Hessian of the Lagrange
function L,

L(x) :D f (x) �
X
i2I

�i hi(x) �
X
j2J0(x)

� j g j(x);

and TxM denotes the tangent space at x,

TxM D f� 2 Rn : Dhi(x)� D 0; i 2 I;

Dgj(x)� D 0; j 2 J0(x)g:

Condition ND2) means that the matrix V>D2L(x)VV
is nonsingular, where V is some matrix whose columns
form a basis for the tangent space TxM.

In a neighborhood of a nondegenerate critical point
x there exist new C1-coordinates, such that M locally
takes the form Hp × Rq and f |M becomes (equivariant
Morse lemma; see [11]):

f � f (x)C
X
i

�yi C
X
j

y j C
X
k

�y2k C
X
l

y2l

where the coordinates yi and yj in the first two sums are
nonnegative. The number of negative/positive linear
terms corresponds to the number of negative/positive
multipliers �r , r 2 J0(x), whereas the number of neg-
ative/positive squares is equal to the number of nega-
tive/positive eigenvalues of V>D2L(x)V). The number
of negative linear (quadratic) terms is called the linear
index LI (quadratic index QI). In particular, a nonde-
generate critical point is a KKT point (local minimum)
if and only if LI = 0 (LI = QI = 0). Basic references for
this article are [11,12,15].
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Relations Between KKT Points: Morse Relations

From now on we assume that all critical points of f |M
are nondegenerate with pairwise different f -values. For
details we refer to [11,16]. In order to study relations
between critical points, we consider lower level setsMa

= {x 2 M : f (x) � a} for increasing values of a. If the
intermediate set Mb

a := {x 2M: a � f (x) � b} does not
contain a KKT point, then the set Mb can be continu-
ously deformed into the lower level set Ma. The cru-
cial point is the following: a point x 2 M M is not
a KKT point if and only if there exists a feasible direc-
tion of linear descent for f at x: The desired deforma-
tion can now be accomplished via such descent direc-
tions.

Next, suppose that the intermediate setMb
a contains

exactly one KKT point x. Moreover, let a < f (x) < b
and QI = k. Then, the lower level set Mb has the ho-
motopy type of Ma [ Dk. Here, the notation Ma [ Dk

means that a k-dimensional ball Dk is attached (glued)
to the setMa along its boundary @Dk.

In particular, if k = 0 (local minimum!), then Ma [

D0 is just the disjoint union of Ma and a point (hence,
a new component is created). Next, the 1-dimensional
ball D1 is an interval, and its boundary @D1 consists of
two points. There are two possibilities. Either the two
boundary points are glued onto two different compo-
nents of Ma (hence, the number of connected compo-
nents decreases by one), or both boundary points are
mapped onto the same component of Ma (now, the
number of 2-dimensional ‘holes’ is increased by one).
Speaking in terms of holes, we have the following gen-
eral alternative when passing a value of a KKT point
with QI = k:
� either the number of k-dim holes of Ma goes down

by one; or
� the number of (k +1)-dim holes of Ma goes up by

one.
To be precise: by a k-dim hole of a topological space X
we mean a generator of Hk� 1(X), the (k � 1) singu-
lar homology space of X over the real number field; in
particular,H0(X) counts the number of path-connected
components of X.

The number of k-dim holes is invariant under con-
tinuous deformations. Hence, that number can only
change when passing a functional level corresponding
to a KKT point.

Let rk (the kth Betti number) denote the number of
the (k +1)-dim holes of the feasible set M. Moreover,
let c�k (cCk ) be the number of KKT points with QI = k
at which level the number of k-dim holes of Ma goes
down (the number of (k + 1)-dim holes goes up) for in-
creasing values of a. If we reach the global maximum
value of f |M, thenMa =M, and we should have created
precisely rk holes of dimension (k + 1), k = 0, 1, 2, � � � .
Consequently, if (in between) more than rk holes of di-
mension (k + 1) are created, then some of these holes
should be closed before reaching the global maximum
value of f |M . Together with the aforementioned alterna-
tive, this results into the following topological balance
equations (Morse relations):

cCi � c�iC1 D ri ; i D 0; 1; : : : ; (1)

where cC0 = c0 and 0 = cs := cCs + c�s for s > n � |I | (the
dimension ofM).

If M is connected, then r0 = 1 and the first relation
in (1) becomes c0 � c�D1

1 .
It guarantees the existence of at least (c0 � 1) KKT

points with QI = 1. (mountain pass theorem). For this
reason we call the KKT points with QI = 1 of (�) type
decomposition points. In fact, when lowering the func-
tional level of a decomposition point, the correspond-
ing component of the lower level set splits up into two
components, thereby separating the local minima con-
tained in them.

We can get rid of the (+) and (�) signs in (1) by
adding all equations in (1) with alternating signs. This
leads to the equation (s = n � |I|):

c0 � c1 C c2 � � � � C (�1)s cs
D r0 � r1 C r2 � � � � C (�1)s rs (2)

Remark 1 In the deformation part (along feasible di-
rections of linear descent) we can weaken the LICQ as-
sumption. For example, the Mangasarian–Fromowitz
constraint qualification suffices (see [7]). Also, nons-
mooth aspects can be taken into account (see [4,9,13]).
Since only KKT points play a role in theMorse relations
(1), the nondegenerate KKT points can be replaced by
strongly stable stationary points (in the sense of Ko-
jima); see[7].

Remark 2 In case that M is a polytope P, relation (2)
reflects the famous Euler ’s formula. In fact, using the
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logarithmic barrier function, a function f can be con-
structed such that each k-dim face of the polytope P has
exactly one KKT point for f |P with QI = k. For this par-
ticular function f , the number ck in (2) equals the num-
ber of k-dim faces of P. Since a polytope can be contin-
uously deformed into a point, we have r0 = 1, and ri =
0, i� 1. Altogether, formula (2) then becomes the Euler
’s formula for polytopes (see [8]).

Remark 3 The ideas of deformation and cell attach-
ment can be generalized to functions of maximum type
(cf. [2]) and minimum type (cf. [3]). Both cases are spe-
cial continuous selections of functions. In fact, let � =
CS(f 1, . . . , f s), where f 1, . . . , f s:Rn!R areC2-functions
and CS means ‘continuous selection’. Note that � is
nonsmooth in general. In [13] the concept of nonde-
generate critical point for � is introduced. It is shown
that, locally around such a point z, there exist new con-
tinuous coordinates such that � takes the form:

� � �

 
z)C CS(x1; : : : ; xr ;�

rX
iD1

xi

!

�

rCkX
jDrC1

x2j C
nX

lDrCkC1

x2l : (3)

It is easily seen that

max

 
x1; : : : ; xr ;�

rX
iD1

xi

!
�

rX
iD1

x2i

and

min

 
x1; : : : ; xr ;�

rX
iD1

xi

!
� �

rX
iD1

x2i :

Now, consider the lower level set of� when passing the
value � (z). Then, in case that � is of max (resp. min)
type, a k-cell (resp. (k + r)-cell) will be attached to the
lower level set.

If � is not of max (or min) type, the situation becomes
more complicated; with respect to the ‘linear part’ it is
to be expected that more cells have to be attached simul-
taneously. The negative squares in (3) will raise the di-
mension of the latter cells. A precise study is presented
in [1].

Projected Gradients

A symmetric positive definite (n, n)-matrix R defines
a scalar product h � iR, where hx, y iR := x>Ry. The gra-

dient gradRf (x) of f with respect to R is defined to be
the vector solving the system hv, gradRf (x)iR = Df (x)v,
v 2 Rn. It follows that gradRf (x) = R�1 D>f (x).

For x 2 M let

CxM :D
�
� 2 Rn : Dhi(x)� D 0; i 2 I;

Dgj(x)� � 0; j 2 J0(x)

	

denote the tangent cone of M at x. The projected pos-
itive gradient (C)gradR;M f (x) at x 2 M is defined to
be the unique solution vector of the following ‘primal’
optimization problem:

(
min



� � gradR f (x)



R ;

s.t. � 2 CxM;

where kykR D
p
hy; yiR :

We point out that (C) gradR;M f (x) is equal to the
vector obtained by inserting the solution (�;�) of the
‘dual’ problem:

8̂
<
:̂
min





 gradR
�
f C

X
i2I

�i hi C
X
j2J0(x)

� j g j
�
(x)





R

s.t. � � 0:

In case that J0(x) D ;, we have the formula

(C) gradR;M f (x)

D (A� AH(H>AH)�1H>A)D> f (x);

where the columns of H are formed by the vectors
D>hi(x), i 2 I, and A = R�1.

The projected negative gradient (�) gradR,M f is de-
fined to be the projected positive gradient correspond-
ing to the function (� f ).

We note that (�) gradR;M f (x) D 0 if and only if x
is a KKT point for f |M . Moreover,

(C) gradR;M f (x) D �(�) gradR;M f (x)

if J0(x) D ;.
A Ck-Riemannian metric (or variable metric)R:x

! R(x) is a Ck-mapping from Rn into the space of
symmetric positive definite (n, n)-matrices. It induces
(pointwise) a projected positive (negative) gradient
field of f onM.
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Global Gradient Flows: Equality Con-straints Only

Here we assume that there are no inequality constraints,
i. e. J = ;.

Let all functions f , hi, i 2 I, be smooth, i. e. of
class C1 and let R be a smooth Riemannian metric.
Now, M is a smooth manifold without boundary and
the concepts of critical point and KKT point coincide.
We assume, in addition, that all critical points of f |M
are nondegenerate having pairwise different f -values.
Consider the vector field (+) gradR,M f on M. It de-
fines a smooth flow [12] � : R × M ! M, where �
(t, x) is the point which is reached from x when inte-
grating the vector field during the time t. Let x 2 M
be a critical point. Then, the stable manifold Ws

x :D
fx 2 M : limt!1� (t; x) D xg and the unstable man-
ifold Wu

x :D fx 2 M : limt!�1 � (t; x) D xg are well
defined. From the fundamental work of S. Smale [17]
we know that for generic Riemannian metrics (resp. for
generic f ) all stable and unstable manifolds correspond-
ing to critical points intersect transversally.

Now we focus on the fundamental question: how to
get from one local minimum to (all) other ones. To this
aim we introduce two bipartite graphs:
� The 0–1–0 graph. The set of nodes is partitioned into

the set of local minima of f |M and the set of critical
points of f |M with QI = 1. There exists an edge be-
tween x (local minimum) and y (critical point with
QI = 1) if and only if Wu

x \ Ws
y ¤ ; (i. e. if there

exists a trajectory of (+) gradR,M f which connects
the local minimum x and the critical point y).

� The min-max graph. The set of nodes is partitioned
into the set of local minima and the set of local max-
ima of f |M . There exists an edge between x (local
minimum) and y (local maximum) iffWu

x \W
s
y ¤ ;

(i. e. if there exists a trajectory of (+) gradR,M f con-
necting the local minimum x and the local maxi-
mum y).

Theorem 4 ([10,11]) Let M be connected. Then both
the 0–1–0 graph and the min-max graph are generically
connected.

The connectedness of the 0–1–0 graph follows from the
fact that the subgraph of local minima and decomposi-
tion points is already (generically) connected. This also
induces the connectedness of the min-max graph. In
fact, let the decomposition point x connect the differ-
ent local minima y1 and y2. The unstable manifoldWu

x

(generically) intersects Ws
z for some local maximum z.

But then, Ws
z \Wu

yi
¤ ;, i D 1; 2.

We emphasize that the connectedness of the afore-
mentioned graphs lies at the heart of the problem of
global optimization.

Global Gradient Flows: The General Case

The appearance of inequality constraints makes things
much more difficult and, up to now, the theory on
global flows is far from complete. Now we are dealing
with two types of differential equations onM:

ẋ D (C) gradR;M f (x) (the ascent flow) (4)

ẋ D (�) gradR;M f (x) (the descent flow) (5)

Both equations (4), (5), may have discontinuities in
the right-hand side along the boundary @M. A solution
of (4), (5) is a function x(�) which is absolutely con-
tinuous on compact time intervals and which satisfies
(4), (5) almost everywhere. Uniqueness for the associ-
ated initial value problems can only be guaranteed for
positive time intervals (for details see [5,6]). Hence, we
will integrate (4), (5) only in positive time, and then, the
functional value will increase (decrease). We note that
KKT points on @ M may be reached (via the descent
flow) in finite time and that integral curves can be tan-
gent to the boundary @M. Moreover, an integral curve
may move along the boundary @M, thereby changing
the active constraints.

Now, let us focus on the concept of a min-max
graph.We assume again that all critical points of f |M are
nondegenerated. Let x1; : : : ; xp and y1; : : : ; yq be the
local minima and the local maxima of f |M respectively.
Choose small neighborhoods (germs) Ux1 ; : : : ;Uyq , of
x1; : : : ; yq inM. These neighborhoods will be kept fixed
in the sequel. The min-max digraph is defined to be the
following directed bipartite graph:
� The min-max digraph. The set of nodes is parti-

tioned into the set of local minima fx1; : : : ; xpg and
the set of local maxima fy1; : : : ; yqg. There exists an
arc from xi to y j (from y j to xi ) if the ascent flow
(descent flow) connects some point from Ux i (Uy j )
with a point from Uy j

(Ux i ).
Note: In case of equality constraints only, an arc
from xi to y j always generates an arc from y j to xi

(just by reversing the integration time).
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Now, let M be connected. In contrast to the theorem
on min-max graphs, the min-max digraph need not be
strongly connected (i. e. connected as a directed graph)
in presence of inequality constraints. Moreover, the dis-
connectedness may be stable (with respect to small C1

�perturbations of Df or R).
The simplest example of this phenomenon can be

constructed on the 2-dimensional discM [18]; the func-
tion f |M should have five critical points: two local min-
ima, two local maxima (all of them on the boundary
@M) and one saddlepoint (in the interior of M). More-
over, the separatrices of the saddlepoint should inter-
sect @M in points outside the chosen neighborhhoods
of the local minima (maxima).

Although this result seems to be disappointing at
first glance, a different Riemannian metric may be con-
structed such that the associated min-max digraph be-
comes strongly connected.

In fact, consider the example above. By means of
adapting the Riemannian metric, one might move the
four points of intersection of the saddle-separatrices
with the boundary @M towards the set of local min-
ima/maxima. But then, the associated min-max digraph
becomes strongly connected.

We end up with the following theorem [14].
Theorem 5 For connected M (and given f ) there exists
a smooth Riemannian metric R such that the resulting
min-max digraph is strongly connected.
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The term “topology optimization” is usually used for
a certain type of problem appearing in structural opti-
mization (� structural optimization; � structural op-
timization: history) where the choice of design vari-
ables allows for a prediction of a general distribution
of material in space. Alternatively, this type of prob-
lem is called generalized shape design problems or lay-
out design problems. The concepts of the area are not,
however, restricted to problems in structural mechan-
ics, and much of the basic understanding of the varia-
tional nature of these problems in a continuum setting
derives from studies of conduction problems (heat or
electric current). Also, much current research is related
to the application of the techniques in multiphysics set-
tings [4,5].

Inherently topology design problems are large-scale
(infinite) discrete optimization problems. Most work in
the field has been concerned with formulations where
the prediction of topology can be performed in the
framework of differentiable optimization. Initial studies
were performed in the early twentieth century for prob-
lems where layout is described in terms of densities of
fields of stringers at the plastic limit, with variational
calculus being the setting of the mathematical analy-
sis [9]. Works involving the tools of mathematical pro-
gramming techniques were initiated in the 1960s, based
on similar mechanical models for truss structures, lead-
ing to linear programming problems, and with the fun-
damental solutions being the basis for obtaining con-

siderable insight into the mechanical nature of optimal
topologies [8].

In the last two decades (as of 2007), work in the
area of shape design in a variational setting has led
to a revival of topology design and it is now one of
the most active areas of design optimization. As it is
broadly recognized that structural layout has an im-
mense influence on structural performance, the tech-
nology is now quite standard in industrial contexts, typ-
ically based on the standard use of finite-element soft-
ware. In discrete form the problems treated are similar
in structure to other structural optimization problems,
i. e., with objective and constraint functions given in
terms of the design variables and correlated state vari-
ables, which in turn are given implicitly as solutions to
variational problems depending on the design variables
(that is, the problem is a mathematical programming
problem with equilibrium constraints, and in a contin-
uum mechanics formulation it is a so-called partial dif-
ferential equation constrained optimization problem).
In topology design the number of design variables is
large, usually leading to simplifications made in terms
of the number of constraints and in the complications
involved in the variational problem defining the state.
In mathematical programming terms, sequential con-
vex approximations and dual methods play an impor-
tant role [10], while for problems of special structure
(see later), interior point methods for semidefinite pro-
gramming problems and methods of nonsmooth op-
timization have led to efficient computational proce-
dures [3].

In its general continuum setting the mathematical
analysis of topology design problems is based on the
tools of variational analysis, as seen in problems of op-
timal control of partial differential equations. Methods
of variational convergence (G-convergence, � -conver-
gence, etc.) and relaxation are central to the area, and as
relaxed controls can be understood in terms of compos-
ite materials a close interaction between the area and
the field of theoretical material science has been fruitful
and of mutual benefit [2,7].

Seen from a mathematical programming perspec-
tive, themost thoroughly studied topology design prob-
lem is the so-called truss topology problem. Here the
optimization of the geometry and topology of trusses
can conveniently be formulated in terms of the well-
known ground structure method. In this approach the
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layout of the truss structure is found by allowing a cer-
tain set of connections between a fixed set of nodal
points as potential structural or vanishing members
(bars in tension or compression only). Allowing for
continuously varying cross-sectional bar areas, includ-
ing the possibility of zero bar areas, gives a continu-
ous optimization problem which permits the predic-
tion of topology; that is, the prediction of which bars
should be part of an optimal structure. A similar prob-
lem structure can be achieved in some finite-element
versions of continuum problems, such as variable thick-
ness membrane problems and problems involving the
prediction of topology as well asmaterial. If we consider
the simplest possible optimal design problem, namely,
the minimization of compliance (maximization of stiff-
ness) for a given total mass of the structure, the topol-
ogy optimization problem has a linear objective func-
tion in the vector of nodal displacements u and a bilin-
ear constraint equation determining the displacements
as functions of the design variables ti, resulting in the
following problem statement:

min
t2R;u2R

f Tu

subject to
mX
iD1

ti K iu D f

t � 0
mX
iD1

ti � V ;

(1)

where K i is the positive semidefinite element stiffness
matrix of the ith element, and the vector f denotes
the given external loads. It is for this problem possible,
through duality principles, to derive a number of equiv-
alent problem statements, for example, in semidefinite
programming form. With these formulations at hand it
is thus possible to devise algorithms which can handle
large-scale problems, and it is possible to devise algo-
rithms for finding global optima [1].

A survey of the area can be found in [6]; this refer-
ence also includes an extensive bibliography.
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The traffic network equilibrium problem, sometimes
also referred to as the traffic assignment problem, ad-
dresses the problem of users of a congested transporta-
tion network seeking to determine their minimal cost
travel paths from their origins to their respective des-
tinations. It is a classical network equilibrium problem
and was studied by A.C. Pigou [29], who considered
a two-node, two-link (or path) transportation network,
and was further developed by F.H. Knight [21]. The
congestion on a link is modeled by having the travel
cost as perceived by the user be a nonlinear function;
in many applications the cost is convex or monotone.

The main objective in the study of traffic network
equilibria is the determination of traffic patterns char-
acterized by the property that, once, established, no user
or potential user may decrease his travel cost or disu-
tility by changing his travel arrangements. The traf-
fic network equilibrium conditions were stated by J.G.
Wardrop [33] through two principles:

First principle: The journey times of all routes actu-
ally used are equal, and less than those which would be
experienced by a single vehicle on any unused route.

Second principle: The average journey time is mini-
mal.

In the standard traffic equilibrium problem, the
travel cost on a link depends solely upon the flow on
that link whereas the travel demand associated with an
O/D pair may be either fixed, that is given, or elastic,
that is, it depends upon the travel cost associated with
the particular origin/destination (O/D) pair. M.J. Beck-
mann, C.B. McGuire, and C.B. Winsten [2] in their
seminal work showed that the equilibrium conditions
in the case of separable (and increasing) functions co-
incided with the optimality conditions of an appropri-
ately constructed convex optimization problem. Such
a reformulation also holds in the nonseparable case
provided that the Jacobian of the functions is symmet-
ric. The reformulation of the equilibrium conditions in
the symmetric case as a convex optimization problem
was also done in the case of the spatial price equilib-
rium problem by P.A. Samuelson [30].

S.C. Dafermos and F.T. Sparrow [14] coined the
terms user-optimized and system-optimized transporta-
tion networks to distinguish between two distinct sit-
uations. In the user-optimized problem users act uni-
laterally, in their own self-interest, in selecting their
routes, and the equilibrium pattern satisfies Wardrop’s
first principle, whereas is the system-optimized prob-
lem users select routes according to what is optimal
from a societal point of view, in that the total costs in
the system are minimized. In the latter problem, the
marginal total costs rather than the average user costs
are equilibrated. She also introduced equilibration al-
gorithms based on the path formulation of the problem
which exploited the network structure of the problem
(see also [23]). Another algorithm that is widely used in
practice for the symmetric TNE problem is the Frank–
Wolfe algorithm (cf.� Frank–Wolfe algorithm) [19].

Such a symmetry assumption was limiting, how-
ever, from both modeling and application standpoints.
The discovery of Dafermos [6] that the traffic equilib-
rium conditions as formulated by M.J. Smith [31] de-
fined a variational inequality problem allowed for such
modeling extensions as: asymmetric link travel costs,
link interactions, and multiple modes of transportation
and classes of users. It also stimulated the development
of rigorous algorithms for the computation of solutions
to such problems as well as the qualitative study of equi-
librium patterns in terms of the existence and unique-
ness of solutions in addition to sensitivity analysis and
stability issues.

Algorithms that have been applied to solve gen-
eral traffic network equilibrium problems include pro-
jection and relaxation methods (cf. [1,3,4,6,7,8,9,17,22,
25,27]) and simplicial decomposition (cf. [16], and the
references therein). Projection and relaxation methods
resolve the variational inequality problem into a se-
ries of convex optimization problems, with projec-
tion methods yielding quadratic programming prob-
lems and relaxation methods, typically, nonlinear pro-
gramming problems. Hence, the overall effectiveness of
a variational inequality-based method for the computa-
tion of traffic network equilibria will depend upon the
algorithm used at each iteration.

Sensitivity analysis for traffic networks was con-
ducted by M.A. Hall [20] and R. Steinberg and W.
Zangwill [32] and in a variational inequality frame-
work by Dafermos and A. Nagurney [10,11,12]. Some
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of the work was, in part, an attempt to explain traffic
network paradoxes such as the Braess paradox [5] (see
also [15,18,24]) in which the addition of a link results in
all users of the transportation network being worse off.

For background and additional material, including
theoretical results, algorithms, and computational ex-
amples, see [16,25,26], and [28].

A variety of traffic network equilibrium models are
now presented along with the variational inequality for-
mulations of the governing equilibrium conditions.

Traffic Network Equilibrium
with Travel Disutility Functions

The first model described here is due to Dafermos [7].
In this model, the travel demands are not known and
fixed but are variables. The spatial price equilibrium
problem (cf. [13]) is equivalent to this problem.

We consider a network [N, L] consisting of nodes
[N] and directed links [L]. Let a denote a link of the
network connecting a pair of nodes, and let p denote
a path (assumed to be acyclic) consisting of a sequence
of links connecting an O/D pair w. Pw denotes the set
of paths connecting the O/D pair w with nPw paths. We
letW denote the set of O/D pairs and P the set of paths
in the network. We assume that there are J O/D pairs,
nA links, and np paths.

Let xp represent the flow on path p and let f a denote
the load on link a. The following conservation of flow
equation must hold for each link a:

fa D
X
p

xpıap;

where ıap = 1, if link a is contained in path p, and 0
otherwise. Hence, the load on a link a is equal to the
sum of all the path flows on paths that contain the link
a.

Moreover, if we let dw denote the demand associ-
ated with an O/D pair w, then we must have that for
each O/D pair w:

dw D
X
p2Pw

xp;

where xp � 0, for all p, that is, the sum of all the path
flows on paths connecting the O/D pairwmust be equal
to the demand dw. We refer to this expression as the
demand feasibility condition. Let x denote the column
vector of path flows with dimension nP.

Let ca denote the user cost associated with traversing
link a, and letCp the user cost associated with traversing
path p. Then

Cp D
X
a

caıap:

In other words, the cost of a path is equal to the sum of
the costs on the links comprising that path. We group
the link costs into the row vector cwith nA components,
and the path costs into the row vector Cwith nP compo-
nents. We also assume that we are given a travel disu-
tility function �w for each O/D pair w. We group the
travel disutilities into the column vector � with J com-
ponents.

We assume that, in general, the cost associated with
a link may depend upon the entire link load pattern,
that is, ca = ca(f ) and that the travel disutility associ-
ated with an O/D pair may depend upon the entire de-
mand pattern, that is, �w = �w(d), where f is the nA-
dimensional column vector of link loads and d is the
J-dimensional column vector of travel demands.

Definition 1 (traffic network equilibrium; [2,7]) A
vector x� 2RnP

C , which induces a vector d�, through the
demand feasibility condition, is a traffic network equi-
librium if for each path p 2 Pw and every O/D pair w:

Cp(x�)

(
D �w(d�) if x�p > 0
� �w (d�) if x�p D 0:

In equilibrium, only those paths connecting an O/D
pair that have minimal user costs are used, and their
costs are equal to the travel disutility associated with
traveling between the O/D pair.

The equilibrium conditions have been formulated
as a variational inequality problem by Dafermos [7]. In
particular, we have:

Theorem 2 (cf. [7]) (x�, d�) 2 K1 is a traffic net-
work equilibrium pattern, that is, satisfies the equilib-
rium conditions if and only if it satisfies the variational
inequality problem:

path flow formulation

hC(x�); x � x�i � h�(d�); d � d�i � 0;

8(x; d) 2 K1;
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Traffic Network Equilibrium, Figure 1
A traffic network equilibrium example

where K1 � {(x, d) : x � 0; and the demand feasibility
condition holds}, or, equivalently, (f �, d�) 2 K2 satisfies
the variational inequality problem:

link flow formulation

hc( f �); f � f �i � h�(d�); d � d�i � 0;

8( f ; d) 2 K2;

where K2 � {(f , d): x � 0; and the conservation of flow
and demand feasibility conditions hold} and h�, �i de-
notes the inner product.

Example 3 For illustrative purposes, we now present
an example, which is illustrated in Fig. 1. Assume that
there are 4 nodes and 5 links in the network as depicted
in the figure and a single O/D pair w = (1, 4). Define the
paths connecting the O/D pair a: p1 = (a, d), p2 = (b, e),
and p3 = (a, c, e).

Assume that the link travel cost functions are given
by:

ca( f ) D 5 fa C 5 fc C 5;

cb( f ) D 10 fb C fa C 5;

cc( f ) D 10 fc C 5 fb C 10;
cd ( f ) D 7 fd C 2 fe C 1;

ce( f ) D 10 fe C fc C 21;

and the travel disutility function is given by:

�w (d) D �3dw C 181:

The equilibrium path flow pattern is: x�p1 = 10, x�p2 =
5, x�p3 = 0, with induced link loads: f �a = 10, f �b = 5, f �c =
0, f �d = 10, f �e = 5, and the equilibrium travel demand:
d�w = 15.

The incurred travel costs are: Cp1 = Cp2 = 136, Cp3 =
161, and the incurred travel disutility �w = 136.

In the special case (cf. [2]), where the user link
cost functions are separable, that is, ca = ca(f a), and
the travel disutility functions are also separable, that is,
�w = �w(dw), then the traffic network equilibrium pat-
tern can be obtained as the solution to the optimization
problem:

min
( f ;d)2K2

X
a

faZ

0

ca(x) dx �
X
w

dwZ

0

�w (y) dy:

Elastic Demand Traffic Network Problems
with Known Travel Demand Functions

We now consider elastic demand traffic network prob-
lems in which the travel demand functions rather than
the travel disutility functions are assumed to be given.
The model is due to Dafermos and Nagurney [12] We
retain the notation of the preceding model except for
the following changes. We assume now that the de-
mand dw, associated with traveling between O/D pair
w, is now a function, in general, of the travel disutilities
associated with traveling between all the O/D pairs, that
is, dw = dw(�).We assume now that the vector d is a row
vector and the vector � is a column vector.

Note that the expression relating the link loads to
the path flows is still valid, as is the nonnegativity as-
sumption on the path flows. In addition, the link cost
and path cost functions are as defined previously.

The traffic network equilibrium conditions are now
the following (cf. [2] and [12]):

Definition 4 (traffic network equilibrium) A path
flow pattern x� and a travel disutility pattern �� is
a traffic network equilibrium pattern if, for every O/D
pair w and each path p 2 Pw, the following equalities
and inequalities hold:

Cp(x�)

(
D ��w if x�p > 0
� ��w if x�p D 0;

and

dw (��)

8̂
<̂
ˆ̂:

D
X
p2Pw

x�p if ��w > 0

�
X
p2Pw

x�p if ��w D 0:
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The first system of equalities and inequalities above is
analogous to the traffic network equilibrium conditions
for the preceding model where now the equilibrium
travel disutilities �� are to be determined, rather than
the equilibrium travel demand d�.

The second set of equalities and inequalities, in turn,
has the following interpretation: if the travel disutil-
ity (or price) associated with traveling between an O/D
pair w is positive, then the ‘market’ clears for that O/D
pair, that is, the sum of the path flows on paths con-
necting that O/D pair are equal to the demand associ-
ated with that O/D pair; if the travel disutility (or price)
is zero, then the sum of the path flows can exceed the
demand.

Here we can immediately write down the govern-
ing variational inequality formulation in path flow and
travel disutility variables (see, also, e. g., [12,25]).

Theorem 5 (variational inequality formulation) (x�,
��) 2 RnPCJ

C is a traffic network equilibrium if and only
if it satisfies the variational inequality problem:

X
w

X
p2Pw

[Cp(x�) � ��w] � [xp � x�p ]

�
X
w

[dw (��) �
X
p2Pw

x�p ] � [�w � ��w] � 0;

8(x; �) 2 RnPCJ
C ;

or, in vector form:

˝
(C(x�) �eB>��)>; x � x�

˛

�
˝
(d(��) �eBx�)>; � � ��˛ � 0;

8(x; �) 2 RnPCJ
C ;

whereeB is the (J × nP)-dimensional matrix with element
(w, p) = 1, if p 2 Pw, and 0 otherwise.

Fixed Demand Traffic Network Problems

We now present the path flow and link load variational
inequality formulations of the traffic network equilib-
rium conditions in the case of fixed travel demands, in-
troduced in [31] and [6].

We retain the notation of the preceding two mod-
els. However, in contrast, it is assumed now that there is
a fixed and known travel demand associated with trav-
eling between each O/D pair in the network. Let dw de-
note the traffic demand between O/D pair w, which is

assumed to be known and fixed. The demand must sat-
isfy, for each w 2W,

dw D
X
p2Pw

xp;

where xp � 0, 8p, that is, the sum of the path flows be-
tween an O/D pair w must be equal to the demand dw;
such a path flow pattern is termed feasible.

Following [33] and [2], the traffic network equilib-
rium conditions are given as follows.

Definition 6 (fixed demand traffic network equilib-
rium) A path flow pattern x�, which satisfies the de-
mand, is a traffic network equilibrium, if, for every O/D
pair w and each path p 2 Pw, the following equalities
and inequalities hold:

Cp(x�)

(
D �w if x�p > 0
� �w if x�p D 0;

where �w is the travel disutility incurred in equilibrium.

Again, as in the elastic demand models, in equilibrium,
only those paths connecting an O/D pair that have min-
imal user travel costs are used, and those paths that are
not used have costs that are higher than or equal to
these minimal travel costs. However, here the demands
and travel disutilities are no longer functions.

The equilibrium conditions have been formulated
as a variational inequality problem by Smith [31] and
Dafermos [6]. In particular, we present two formula-
tions, in path flows and link loads, respectively.

Theorem 7 (variational inequality formulation in
path flows) x� 2 K3 is a traffic network equilibrium in
path flows if and only if it solves the following variational
inequality problem:

hC(x�); x � x�i � 0; 8x 2 K3;

where K3 � {x 2 RnP
C : the path flow pattern is feasible}.

Theorem 8 (variational inequality formulation in link
loads) f � 2 K4 is a traffic network equilibrium in link
loads if and only if it satisfies the following variational
inequality problem:

hc( f �); f � f �i � 0; 8 f 2 K4;

where K4 � {f : 9x � 0, the path flow pattern is feasible
and induces a link load pattern}.
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In the case where the Jacobian of the link travel cost
functions is symmetric, i. e.,

@ca( f )
@ fb

D
@cb ( f )
@ fa

;

for all links a, b 2 L, then by Green’s lemma the vector
c(f ) is the gradient of the line vector

R f
0 c(x) dx. More-

over, if the Jacobian is positive semidefinite, then the
traffic equilibrium pattern (f �) coincides with the solu-
tion of the convex optimization problem:

min
f2K4

fZ

0

c(x) dx:

In particular, when the link travel cost functions ca
are separable, that is, ca = ca(f a) for all links a, then one
obtains the objective function:

min
f2K4

X
a

faZ

0

ca(x) dx;

which is the classical and standard traffic network equi-
librium problem with fixed travel demands (cf. [2]).
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Introduction

The Traveling Salesman Problem (TSP) is perhaps the
most studied discrete optimization problem. Its popu-
larity is due to the facts that TSP is easy to formulate,
difficult to solve, and has a large number of applica-
tions. It appears that K. Menger [31] was the first re-
searcher to consider the Traveling Salesman Problem
(TSP). He observed that the problem can be solved by
examining all permutations one by one. Realizing that
the complete enumeration of all permutations was not
possible for graphs with a large number of vertices, he
looked at the most natural nearest neighbor strategy and
pointed out that this heuristic, in general, does not pro-
duce the shortest route. (In fact, the nearest neighbor
heuristic will generate the worst possible route for some
problem instances of each size [17].) For interesting
overviews of TSP history, see [20,40].

Basic Definitions and Notation

In applications, both the symmetric and asymmetric
versions of the TSP are important. In the Symmetric
TSP (STSP), given a complete (undirected) graph Kn

with weights on the edges, our aim is to find a Hamilto-
nian cycle in Kn of minimum weight (the weight a cycle
is the sum of the weights of its edges). In the Asym-
metric TSP (ATSP), given a complete directed graph
K�n with weights on the arcs, find a Hamiltonian cy-
cle in K�n of minimum weight. The Euclidean TSP is
a special case of STSP in which the vertices are points
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in the Euclidean plane and the weight on each edge is
the Euclidean distance between its endpoints. A Hamil-
tonian cycle in Kn or K�n is often called a tour. Notice
that ATSP has (n � 1)! tours, but STSP has (n � 1)! / 2
tours (changing the direction of the tour in STSP does
not change the tour). By TSP we refer to both STSP and
ATSP simultaneously.

Throughout this entry, the set [n] D f1; 2; : : : ; ng
denotes the vertices of Kn or K�n or any other n-vertex
graph under consideration. The weight of an edge (arc)
i j is denoted by wi j or w(i; j). We also call wi j the dis-
tance from i to j and the length of i j. A cycle factor is
a collection of vertex-disjoint cycles in K�n covering all
vertices of K�n .

Computational Complexity

The Hamiltonian cycle problem on an n-vertex graph
G can be transformed into STSP by converting G to an
edge-weighted Kn as follows: assign weight 0 to each
edge of G; and assign weight 1 to each edge in the com-
plement of G. A similar transformation can be used for
digraphs and ATSP. This implies that TSP is NP-hard,
even if the triangle inequality holds. By replacing the
weights 0 by 1 and the weights 1 by 1C nr in this trans-
formation, we obtain the following result:

Proposition 1 For an arbitrary constant r, unless P D
NP, there is no polynomial time algorithm that always
produces a tour of total weight at most r times the opti-
mal.

It was proved in [12,38] that even Euclidean TSP is
NP-hard. Despite this result, there was a feeling among
some researchers that the Euclidean TSP is somewhat
simpler than the general STSP. More precisely, Propo-
sition 1 does not hold for the Euclidean TSP. This
was confirmed by Arora [1] in 1996, see Theorem 2.
Mitchell [33] independently made a similar discovery
a few months later (see [2]).

Theorem 2 For every � > 0, there is a polynomial time
algorithm A� that, for any instance of the Euclidean
TSP, finds a tour at most 1 C � times longer than the
optimal one.

As of this writing, the fastest algorithm A� has time
complexity O(n log n C n/poly(�)) [42]. These A� al-
gorithms have been implemented, but, in their cur-

rent form, they are not competitive with best TSP
heuristics [2].

Arora’s result can be generalized to d-dimensional
Euclidean space for any constant d. However, the next
theorem limits the scope of this generalization.

Theorem 3 [45] There exists a constant r > 1 such
that, for the Euclidean TSP in O(log n)-dimensional Eu-
clidean space, the problem of finding a tour that is at
most r times longer than the optimal tour is NP-hard.

Wefinish this subsection with a result from [16] that in-
dicates another limitation for ‘approximation’ ATSP al-
gorithms. The domination number of an ATSP heuris-
ticH is the maximum d(n) such that for each instance
of ATSP on n vertices, H produces a tour T which is
not worse than at least d(n) tours including T itself.

Theorem 4 Unless P D NP, there is no polynomial
time ATSP heuristic of domination number at least (n�
1)! � bn � n˛c! for any constant ˛ < 1.

Formulations

Perhaps, the simplest combinatorial formulation of
ATSP is as follows: given an n � n-matrix W D [wi j]
find a permutation 
 of [n] that minimizes the sum

w�(n);�(1) C
n�1X
iD1

w�(i); �(iC1):

For STSP, we require thatW is symmetric.
The earliest (and very useful) integer programming

formulation of ATSP is due to Dantzig, Fulkerson and
Johnson [10]. Define n2 � n zero-one variables xi j by
xi j D 1, if the tour traverses arc i j and xi j D 0; other-
wise. Then ATSP can be expressed as:

min z D
nX

iD1

nX
jD1

wi jxi j

such that
nX

iD1

xi j D 1; j 2 [n]

nX
jD1

xi j D 1; i 2 [n]

X
i2S

X
j2S

xi j � jSj � 1 for all jSj < n

xi j D 0 or 1; i ¤ j 2 [n]:
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The first set of constraints ensures that a tour must
come into vertex j exactly once, and the second set of
constraints indicates that a tour must leave every ver-
tex i exactly once. These two sets of constraints en-
sure that there are two arcs adjacent to each vertex, one
in and one out. However, this does not prevent non-
Hamiltonian cycles. Instead of having one tour, the so-
lution can consist of two of more vertex-disjoint cycles
(called sub-tours), i. e., be a cycle factor with t � 2 cy-
cles. The third set of constraints, called sub-tour elim-
ination constraints, requires that no proper subset of
vertices, S, can have a total of jSj arcs.

For STSP, we can get the following similar formula-
tion:

min z D
X

1�i< j�n

wi jxi j (1)

such that
nX

iD1

xi j D 2; j 2 [n] (2)

X
i2S

X
j 62S

xi j � 2 for all 3 � jSj � n/2 (3)

0 � xi j � 1; i ¤ j 2 [n] (4)

xi j is integral for all i ¤ j 2 [n]: (5)

While the Dantzig–Fulkerson–Johnson formulation of
ATSP has an exponential number of sub-tour elimi-
nation constraints and, thus, of all constraints, there
are other integer programming ATSP formulations that
contain only a polynomial number of constraints. One
such example is the formulation of Miller, Tucker and
Zemlin [32]. In this formulation, we use (n � 1)(n � 2)
additional constraints and n � 1 additional variables.
The following constraints replace the sub-tour elimi-
nation constraints in the Dantzig–Fulkerson–Johnson
formulation:

(n�1)xi jCui�uj � (n�2) for all i ¤ j D 2; 3; : : : ; n;

where ui ; i D 2; 3; : : : ; n are unrestricted real variables.
If a solution is not a tour, it contains a cycle C without
vertex 1. By adding the inequalities above correspond-
ing to all arcs ij of C, we arrive at a contradiction.

Notice that the Dantzig–Fulkerson–Johnson for-
mulation of ATSP is stronger than the Miller–Tucker–
Zemlin formulation in the following sense: the opti-
mal value of the linear relaxation of the former is larger

than that of the latter [37]. As for the STSP, there are
two other formulations that are as strong as the the
Dantzig–Fulkerson–Johnson formulation for STSP, but
only the latter have been used in computational prac-
tice. For more information on various formulations of
TSP, see [40].

Applications

It appears that the most natural and well-studied appli-
cation area of the TSP is machine scheduling. A simple
scheduling application can be described as follows. Sup-
pose there are n jobs 1; 2; : : : ; n to be processed sequen-
tially on a machine. Let wi j be the set up cost required
for processing job j immediately after job i. When all
the jobs are processed, the machine is reset to its initial
state at a cost of wj1, where j is the last job processed.
The aim of the Sequencing Problem is to find an order
in which the jobs are to be processed so as to minimize
the total setup cost. Observe that finding a permutation

 of [n] that minimizes w�(n)�(1) C

Pn�1
iD1 w�(i)�(iC1)

solves the problem. Thus, the Sequencing Problem is
equivalent to ATSP.

Now consider a more interesting application intro-
duced and studied by Gutin et al. [15]. The Seismic Ves-
sel Problem (SVP) is defined by a set of line segments
(survey lines) on the plane, all of which need to be tra-
versed exactly once. Some lines can be traversed in ei-
ther direction, other have directional constraints im-
posed on them. The objective is to minimize the travel
time between lines by choosing an optimal ordering of
lines (and specifying in which direction each line has to
be traversed). The function that defines the travel time
between lines can be of arbitrary complexity and in gen-
eral is defined as a matrix of ‘line change’ weights for all
combinations of pairs of lines and traversing directions.

More formally, SVP can be stated as follows: We are
given a weighted complete digraph K�n , whose vertices
are partitioned into pairs P (representing survey lines).
Each pair fu; vg 2 P is assigned a set Fuv such that
; ¤ Fuv � fuv; vug: If Fuv D fuvg, then we must
traverse the survey line corresponding to uv from u to
v, and if Fuv D fuv; vug, either traversing direction is
possible. Let F D fuv : fu; vg 2 P; uv 2 Fuvg. Ev-
ery arc in F is assigned weight zero (as we must tra-
verse all survey lines and we assume that the time of
traversal of a survey line in both directions is the same).
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We are required to find a minimum weight Hamilton
cycle in K�n that traverses one arc from Fuv for every
pair fu; vg 2 P:

The Stacker Crane Problem (SCP) studied in [18,21]
is a special case of SVP. In SCP, Fuv consists of one arc
for every pair fu; vg 2 P: To see that SCP is equivalent
to ATSP it suffices to contract all arcs of F.

Consider SVP. In order to enforce the requirement
that a Hamilton cycle has to traverse one arc in Fuv
for each pair fu; vg 2 P, we apply a transformation
which results in a weighted complete undirected graph.
Solving STSP on the transformed graph provides a so-
lution to the original problem. The transformation re-
places each pair fu; vg 2 P with a graph. We con-
sider only the more interesting case when the line fu; vg
is undirected (that is, jFuvj D 2). In this case, the
two vertices are replaced with the so-called diamond
graph D8 with V (D8) D fN;W; E; S; a; b; c; dg and
E(D8) D fNa; aW;Nb; bE;Wc; cS; Ed; dS; bcg: The
diamond graph can be traversed in two possible ways,
N� S andW �E (see Chapter 19 in [39]). These corre-
spond to traversing the original pair of vertices, fu; vg
via arcs uv and vu, respectively. To make the weight of
the tour consistent with the original graph:
� We set the weight of edges incident to W to be the

same as the weight of the corresponding original
arcs entering vertex v;

� The weight of edges incident to E are taken to be the
same as weight of arcs leaving u;

� The weight of edges incident toN are taken to be the
same as weight of arcs entering u;

� The weight of edges incident to S are taken to be the
same as weight of arcs leaving v;

� Since arcs uv and vu have zero weight, all edges in-
side the diamond graph have their weight set to 0.

� The vertices a; b; c; d are not adjacent to any vertices
outside their copy of D8:

For more TSP applications, see, e. g., [40].

Methods

The methods to solve TSP can be divided into two large
classes: exact algorithms that solve the problem or its
special cases to optimality and the algorithms that nor-
mally provide non-optimal tours. The members of the
second class are called TSP heuristics or TSP approx-
imation algorithms (the latter is often used if there is

some kind of approximation guarantee). Exact algo-
rithms are used when we want to obtain an optimal
tour. This may not be possible as exact algorithms may
well require several hours or days of running time even
for instances of moderate size (for example, the au-
thors of [11] found out that no state-of-the art exact
algorithm could solve some ATSP instances with 316
vertices within the limit of 104 sec.). When running
time is limited or the data of the instance is not exact,
one can use TSP heuristics. For discussion of TSP soft-
ware implementing both exact algorithms and heuris-
tics, see [30] and the site http://www.or.deis.unibo.it/
research.html.

Exact Algorithms

The brute-force method of explicitly examining all pos-
sible TSP tours is impractical even for moderately sized
problem instances because there are (n � 1)! / 2 differ-
ent tours in Kn and (n � 1)! different tours in K�n . The
well-known dynamic programming algorithm of Hell
and Karp [19] reduces the running time to O(n22n)
only, but this time complexity is still far too large to
solve even TSP instances of moderate size. On the other
hand, branch-and-bound, branch-and-cut and other
branching algorithms are proved to be quite efficient
in practice; branch-and-bound algorithms will be dis-
cussed in this subsection.

While every STSP instance can be considered as
an ATSP instance and, thus, solved using ATSP algo-
rithms, normally STSP-specialized algorithms are used
for STSP instances as such algorithms are often more
efficient that their ATSP counterparts (partially because
they exploit a more special structure of STSP and par-
tially because STSP algorithms have received signifi-
cantly more attention than their ATSP counterparts).
Moreover, in many cases ATSP instances are trans-
formed into STSP instances and subsequently solved
using STSP algorithms. (This situation may change in
the future when advanced ATSP solvers will have been
developed.)

In this subsection, we will consider two ATSP-to-
STSP transformations and basic ideas behind STSP
branch-and-bound algorithms. We will not consider
special polynomial-time solvable cases of TSP; instead
we refer the reader to [5,26] which are excellent surveys
on the topic.

http://www.or.deis.unibo.it/research.html
http://www.or.deis.unibo.it/research.html
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The following are well-knownATSP-to-STSP trans-
formations:

The 2-node transformation: Replace every vertex i of
K�n by a pair i�; iC of vertices to form K2n . The
weights of edges of K2n are defined as follows: all
weights are equal toC1 apart from w(i�; iC) D 0
and w(iC; j�) D w(i; j) C M for all i ¤ j 2 [n],
where w(i; j) is the weight of arc i j in K�n and M
is a sufficiently large constant. The transformation
value nM has to be subtracted from the STSP opti-
mal weight to obtain the ATSP optimal weight. The
transformation was introduced by Jonker and Vol-
genant [24].

The 3-node transformation: Replace every vertex i of
K�n by a triple i�; i0; iC of vertices to form K3n . The
weights of edges of K3n are defined as follows: all
weights are equal to C1 apart from w(i�; i0) D
w(i0; iC) D 0 and w(iC; j�) D w(i; j) for all i ¤
j 2 [n], where w(i; j) is the weight of arc i j in K�n .
The transformation was introduced by Karp [28].

Each transformation has its pros and cons, see [11,21].
Now we consider basic ideas behind TSP branch-

and-bound and branch-and-cut algorithms using the
Dantzig–Fulkerson–Johnson formulation of STSP. The
formulation allows us to treat STSP as an integer pro-
gramming problem. If we drop (5), we will get a lin-
ear programming problem whose solution will give us
a lower bound to STSP. The linear program is called
the linear relaxation of STSP. A branch-and-bound al-
gorithm for STSP could be as follows.

Step 1 A list L of problems to solve is initialized by in-
cluding into it the linear program discussed above.
This problem is called the root problem.

Step 2 If L D ;, then the best known feasible solu-
tion (tour) is optimal. Otherwise, choose a problem
P and delete it from the list.

Step 3 (a) Solve the linear relaxation of P. If the solu-
tion is integral, return to Step 2 after eventually up-
dating the best known integral solution and the best
known solution value.
(b) If the value of the objective function exceeds that
of the best known feasible solution, return to Step 2.
(c) Otherwise, using some linear inequality, parti-
tion the current problem into two new problems

which are added to L. The union of the feasible (in-
tegral) solutions to each of these two problems con-
tains all the feasible solutions of the problem that
has been partitioned. This is commonly done by
choosing a variable with a current fractional value
xi j and imposing xi j � 1 in one problem and
xi j � 0 in the other. Return to Step 2.

Due to computer memory limitations, the branch-and-
bound algorithm is appropriate for an STSP formula-
tion with a polynomial number of constraints, but this
is not the case for the Dantzig–Fulkerson–Johnson for-
mulation of STSP. Thus, we need to use a method that
allows to store only a small number of constraints at any
given moment of time. One such method is row gener-
ation. Using row generation, we replace Step 1 of the
above algorithm by the following: we initially solve the
problem consisting of (1), (2) and (4) obtaining a so-
lution x. Now we try to find a set S � [n] such thatP

i2S
P

j 62S x i j < 2. To do that we can use an efficient
algorithm for computing a minimum cut in a weighted
undirected graph applied to Kn with weight function
x : E(Kn) ! R (see, e. g., [7,25]). If a desired set S is
found, we add the constraint to the current linear pro-
gram and solve it to find a new vector x, and continue as
above. If no desired set S has been found, the problem
is solved.

Similarly, one can solve other problems from the
list L. In practice, we need to apply a minimum cut algo-
rithm very few times, see, e. g., [36]. The solution found
in Step 1 usually provides a good lower bound called the
Held–Karp bound in the literature.

STSP computational practice indicates that while
branch-and-bound algorithms are fairly efficient in
solving STSP, branch-and-cut algorithms are normally
much more efficient. For an excellent overview of STSP
branch-and-cut algorithms, see [36].

TSP Heuristics TSP heuristics can be roughly par-
titioned into two classes: construction heuristics, and
improvement heuristics. Both classes and their per-
formances in computational experiments are discussed
below. More comprehensive overviews of TSP heuris-
tics can be found in [14,21] and [22]. Notice that [21]
and [22] discuss families of instances on which many
TSP heuristics have been tested. Many new heuristics
are now tested using these families. This allows one to
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compare new heuristics with many known ones with-
out too much effort.

We finalize the Heuristic subsection by a brief dis-
cussion of approximation analysis of TSP heuristics.

Construction Heuristics Construction heuristics build
a tour from scratch and stop when one is produced.
The simplest and most obvious construction heuristic
is nearest neighbor (NN): the tour starts at any vertex x
of the complete directed or undirected graph; we repeat
the following loop until all vertices have been included
in the tour: add to the tour a vertex (among vertices not
yet in the tour) closest to the vertex last added to the
tour. The greedy algorithm is based on the observation
that a vertex-disjoint collection of paths in K�n (Kn) can
be extended to a tour in K�n (Kn). In the ATSP greedy al-
gorithm, we order all arcs a1; a2; : : : ; an(n�1) such that
w(ai) � w(aiC1) for each i D 1; 2; : : : ; n(n � 1) � 1,
set C :D ; and, in the ith iteration, we check whether
the arcs of C and ai form a vertex-disjoint collection of
paths or a tour, and if it is so, we add ai to C:

Computational experiments in [21] indicate that,
in fact, on most real-world-like problem instances of
ATSP, NN performs better than the greedy algorithm;
the greedy algorithm fails completely on one family
of instances, where the average greedy-tour is more
than 2000% above the optimum. Computational exper-
iments for STSP in [22] show that both the greedy al-
gorithm and NN perform relatively well on Euclidean
instances and perform poorly for general STSP. The
greedy algorithm appears to perform better than NN
for STSP.

Vertex insertion (VI) is another type of TSP con-
struction heuristic. For ATSP, the insertion algorithm
begins with a cycle of length 2, and in each iteration,
inserts a new vertex into the cycle. For STSP, the al-
gorithm beings with a cycle of length 3. We describe
only the ATSP vertex insertion, but the STSP algorithm
is similar. Let C be a cycle in K�n , and let v be a ver-
tex not on C. For any arc ab on cycle C, the insertion
of vertex v at arc ab is the operation of replacing arc
ab with the arcs av and vb. The resulting cycle is de-
noted C(a; v; b). Observe that the difference between
the wights of C(a; v; b) and C equalsw(a; v)Cw(v; b)�
w(a; b). The VI algorithm always inserts a vertex v at
arc ab of C for which w(a; v)C w(v; b) � w(a; b) min-
imum.

Random vertex insertion (RVI), nearest vertex inser-
tion (NVI), and farthest vertex insertion (FVI), which
are defined below, are three different versions of algo-
rithm VI. Each one of them is determined by how it
chooses vertex v to be inserted into the current cycle C.
Given a vertex v and a cycleC in K�n , d(v;C) denotes the
distance from v to C, that is, d(v;C) D minfw(v; x) :
x 2 V(C)g. The algorithm RVI chooses vertex v ran-
domly. The algorithm NVI chooses vertex v so that its
distance to cycle C is a minimum. That is, d(v;C) D
minfd(u;C) : u 62 V(C)g. The algorithm FVI chooses
vertex v so that its distance to cycle C is a maximum.
That is, d(v;C) D maxfd(u;C) : u 62 V (C)g.

The vertex insertion heuristics described above per-
form quite well for Euclidean TSP (see [22]). Com-
putational experiments with RVI for ATSP in [13]
show that RVI is good only for instances close to
Euclidean.

The following heuristic was initially suggested, in
a different form, for the Vehicle Routing Problem by
Clark and Write [9]. In the savings heuristic, we choose
one vertex, say, n and compute new weights w0(i; j) D
w(i; j)� w(i; n)�w(n; j) for all i ¤ j 2 [n� 1]: Then
the greedy algorithm is applied for the new weights in
Kn�n (K�n �n) until all vertices (but n) are included in
a path. Then n is added to the path to form a tour. The
savings heuristic showed very good results for STSP
in the computational experiments discussed in [22], in
which the heuristic clearly outperformed the greedy al-
gorithm, NN, RVI, NVI, FVI and a large number other
heuristics. (The saving heuristic has not been tested for
ATSP in [21].)

The only heuristic, some versions of which could
successfully compete with the savings heuristic in the
experiments in [22], was the well-known Christofides
heuristic [8]. The Christofides heuristic is designed only
for STSP and proceeds as follows: First we find a min-
imum weight spanning tree T in Kn : Let X be the ver-
tices of odd degree inT. It is well-known that jXj is even
and, thus, the subgraphG of Kn induced by X has a per-
fect matching. We compute a minimum weight perfect
matching M in G. The edges of T and M for an Euler
graphH as all vertex degrees are even. We find an Euler
trail R of H and ‘short-cut’ it, i. e., delete all repetitions
of the same vertex in R: As a result, we obtain a tour.
The way of short-cutting is very important for getting
good quality tours [22].
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According to [21] the best ATSP construction
heuristics are based on finding a minimum weight cy-
cle factor (a vertex-disjoint collection of cycles covering
all vertices of K�n ) and merging the cycles (the process
often called patching in the literature) to obtain a tour.
The operation of patching of two cycles C and Z deletes
an arc in each of the cycles and adds an arc from C to Z
and an arc from Z to C such that we obtain a cycle con-
taining all vertices of C and Z. Often patching of cycles
C D i1 i2 : : : is i1 and Z D j1 j2 : : : jt j1 is done optimally,
i. e., we delete arcs ip ipC1 and jq jqC1 such that the cycle

i1 i2 : : : ip jqC1 jqC2 : : : jt j1 : : : jq ipC1 ipC2 : : : is i1

is of minimum possible weight.
The following simple yet very successful patching

heuristic was introduced by Karp and Steele [29]. In the
Karp–Steele heuristic, we always choose a pair of cy-
cles (in the current cycle factor) with maximum num-
ber of vertices and patch them optimally. The Karp–
Steele heuristic performs not so good when the min-
imum weight cycle factor has many cycles with just
two vertices. In such cases, another patching heuris-
tic, contract-or-patch (COP) gives better results [21].
COP partitions the cycles of the cycle factor into short
and long cycles (a short cycle has at most t vertices for
some fixed t). COP deletes the heaviest arc from each
short cycle and contracts each such path using the op-
eration of path-contraction defined shortly. COP finds
a minimum cost cycle factor in the new complete di-
graph and continues as above until the current cycle
factor has no short cycles. In the last case, COP ap-
plies the Karp–Steele heuristic, computes a tour and
‘extends’ it to a tour in K�n in the obvious way. For
a directed path P D x1x2 : : : xp in K�n , the opera-
tion of path-contraction (see [3] for the case of general
weighted digraphs) consists of replacing all vertices of P
in K�n with a single new vertex v and assigning weights
in the new digraph K�n�pC1 as follows: the weight be-
tween vertices not including v is the same as in K�n , the
weight w(v; u) in K�n�pC1 equals w(xp; u) in K�n and the
weightw(u; v) in K�n�pC1 equalsw(u; x1) in K�n for each
u 2 V (K�n )nV (P): The contract-or-patch heuristic was
introduced by Glover et al. [13].

ImprovementHeuristics Improvement heuristics start
from a tour normally obtained using a construction
heuristic and iteratively improve it by changing some

parts of it at each iteration. Improvement heuristics are
typically much faster than the exact algorithms, yet of-
ten produce solutions very close to the optimal one.

It appears that currently the best improvement
heuristics are based on local search, on genetic algo-
rithm approach, or on a mixture of the two, which is of-
ten calledmemetic algorithms. The most developed TSP
improvement algorithms are local search algorithms
that use edge exchange, in which a tour is improved by
replacing k its edges with k edges not in the solution.
For STSP, the 2-opt algorithm starts from an initial tour
T and tries to improve T by replacing two of its non-
adjacent edges with two other edges to form another
tour. Once an improvement is obtained, it becomes the
new T. The procedure is repeated as long as an im-
provement is possible (or a time limit is exceeded). For
k � 3, the k-opt algorithm is the same as 2-opt except
that k edges are replaced at each iteration.

The best local search algorithms use a variable k-
opt search called the Lin–Kernighan local search, where
at each iteration the actual value of k varies depend-
ing on which value of k gives the best improvement,
for details see, e. g., [43]. Although the Lin–Kernighan
local search can be applied only to STSP, ATSP can
be transformed into STSP (see above). However, there
is an approach, the ejection chain methods, which in-
clude the Lin–Kernighan search, that are applicable to
ATSP. Recently, Rego et al. [44] developed a new ejec-
tion chain method, the doubly-rooted Stem-and-Cycle
method that can be directly applied to ATSP. Compu-
tational experiments in [44] clearly demonstrated high
efficiency of the new method. One interesting aspect of
the method indicated in [44] is the fact that the method
allows one to construct tours, in polynomial time, that
are better than an exponential number of other tours.

The main problem with any kind of local search
is that no further improvement is possible once we
have found a local optimum. To get around this prob-
lem, one can restart the local search from another tour
and repeat this many times. In the end, the best of all
found tours gives us a solution. In practice, two ways
to obtain restarting tours have been used. In the first
(called iterated local search), a restarting tour is pro-
duced by a construction heuristic as before. In the sec-
ond (chained local search), a kind of perturbation is
applied to the current or previous local optimum to ob-
tain a restarting tour. It seems Baum [6] was the first
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to introduce chained local search; this method proved
to be significantly better than the iterated local search
for large instances of STSP (see, e. g., Johnson and Mc-
Geoch [22]).

Genetic algorithms operate with a large number of
tours at any given time. They produce the initial pop-
ulation of tours and consecutively several other pop-
ulations such that the best tour in the previous pop-
ulation is not worse than the best tour in the current
population. Genetic operators that change tours include
mutations (a mutation makes small changes to a sin-
gle tour) and crossovers. A crossover selects two tours
and produces a new tour from them. It appears that the
currently most efficient crossovers are variations of the
edge assembly crossover (EAX) introduced by Nagata
and Kobayashi [35]. In EAX, we identify a setA of edges
from the first tour and a set B of edges from the second
tour such that A [ B forms a collection of alternating
cycles (i. e., cycles in which edges alternate between the
first and second tours) and replace all edges from A by
the edges of B resulting in a cycle factor. Then an op-
eration of patching is applied to the cycle factor. Re-
cently, Nagata [34] reported on very impressive results
for large instances of STSP achieved by a genetic algo-
rithm using a new version of EAX and no local search.

Worst Case Analysis of Heuristics While computa-
tional experiments are important in the evaluation of
heuristics, they cannot cover all possible families of in-
stances of TSP and, in particular, they normally do
not cover the most difficult instances. Moreover, cer-
tain applications may produce families of instances that
are much harder than those normally used in com-
putational experiments. For example, such instances
can arise when the Generalized TSP is transformed
into TSP. Thus, theoretical analysis of the worst pos-
sible cases is also important in evaluating and compar-
ing TSP heuristics. One way to analyze worst cases of
heuristics is Domination Analysis, see its entry in this
book.

We provide only a brief overview of the second
approach to the worst case analysis of heuristics, Ap-
proximation Analysis. For the STSP with triangle in-
equality (i. e., wi j C wjk � wik for all vertices i; j; k),
the best known approximation is 3/2 provided by the
Christofides algorithm discussed earlier. The perfor-
mance guarantee 3/2 means that a tour produced by

the heuristic has weight which is at most 50% larger
than that of an optimal tour. For the Euclidean TSP,
we can obtain much better approximation as we saw
earlier. For ATSP with triangle inequality, no algorithm
with constant approximation guarantee is known. The
best approximation ratio so far was obtained by Ka-
plan et al. [27]: 0:841 � log n. Recently, Blaeser et al. [4]
obtained a constant approximation guarantee when
a strengthen triangle inequality holds: for some � 2
[1/2; 1) we have � � (wi j C wjk) � wik for all vertices
i; j; k. The authors of [4] proved that their algorithm
always produces a tour at most (1 C �) / (2 � � � �3)
times longer than an optimal one.

We saw above that, if no triangle inequality is im-
posed, there is no polynomial-time TSP algorithm with
constant approximation guarantee (unless P=NP). We
can overcome the inapproximability, by using another
measure of performance guarantee. One such measure
was defined by Zemel [46] who provided some mathe-
matical arguments to show that his measure is better, in
some sense, than the traditional performance (approxi-
mation) ratio. LetA be a heuristic for TSP and I a prob-
lem instance. Then wmin(I), wmax(I), wA(I) denote the
weights, respectively, of an optimal tour, a heaviest
tour, and a tour produced by A for instance I. The
Zemel measure ofA, denoted �z(A), is the supremum
of (wA(I)�wmin(I))/(wmax(I)�wmin(I)), taken over all
TSP instances I for which wmax(I) ¤ wmin(I). The fol-
lowing theorem was proved by Hassin and Khuller [18].

Theorem 5 There is a polynomial-time heuristic A
for ATSP with �z(A) � 1 / 2, and one for STSP with
�z (A) � 1 / 3.

See also

� Domination Analysis in Combinatorial
Optimization

� Evolutionary Algorithms in Combinatorial
Optimization

� Heuristic and Metaheuristic Algorithms for the
Traveling Salesman Problem
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In a sequence of path-breaking papers A.W. Tucker
and A.J. Goldman systematically investigated the re-
lation between the theory of linear programming (cf.
� Linear programming) on the one hand, and theo-
rems of the alternative (cf.� Linear optimization: Theo-
rems of the alternative) on the other hand [3,4,5,12]. In
these papers they develop a comprehensive theory, cov-
ering many old and new results, often with new proofs.
Thus they sharpen and consolidate the classical theo-
rems of the alternative of J. Farkas [2], P. Gordan [6],
E. Stiemke [11] and T.S. Motzkin [8] and the duality
theory for linear optimization as first developed by G.B.
Dantzig and J. von Neumann and O.Morgenstern. New
is the emphasis they put on the property of complemen-
tary slackness. They derive the above results from prop-
erties of homogeneous systems of linear equality and in-
equality relations.

In its most general form such a so-called dual system
consists of two systems, as follows:

8̂
ˆ̂̂<
ˆ̂̂̂
:

u unrestricted
v � 0
A>uC C>v � 0
B>uC D>v D 0

8̂
ˆ̂̂<
ˆ̂̂̂
:

�Ax � By D 0
�Cx � Dy � 0
x � 0
y unrestricted

(1)

The matrices and vectors in (1) are such that all expres-
sions are well-defined, in particular the matrices A and
C have the same number of columns and similarly for
the matrices B and D. In the left system the variables
are the entries in the vectors y and v, and in the right
system these are the entries in the vectors x and z. Note
that the lines in (1) define a natural one-to-one corre-
spondence between the variables in one system and the
inequalities in the other system. Also, if a relation is of
equality type then the corresponding variable is unre-
stricted (or free) and if it is of inequality type then the
corresponding variable is nonnegative.

One easily verifies that any solution of (1) will satisfy

u>(�Ax � By) D 0; (2)

v>(�Cx � Dy) � 0; (3)
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x>(A>u C C>v) � 0; (4)

y>(B>uC D>v) D 0: (5)

Adding (2) and (4), and also (3) and (5), one gets

�u>ByC v>Cx � 0; u>By � v>Cx � 0:

So u>By = v>Cx. Combining this with (2) and (5), one
obtains

�u>Ax D u>By D v>Cx D �v>Dy:

This implies that (3) and (4) hold with equality:

v>(�Cx � Dy) D 0; (6)

x>(A>u C C>v) D 0: (7)

These relations are called the complementary slackness
relations. They imply that if one of the nonnegative
variables is positive then the corresponding inequality
in the system necessarily holds with equality.

Note that it is not excluded that a nonnegative vari-
able is zero and the corresponding inequality in the sys-
tem holds with equality. In general this may certainly
occur. For example, the trivial solution x = y = u = v = 0
has this behavior. The main result in [12, Thm. 4], how-
ever, states that there exists a solution of (1) with the
property that a nonnegative variable is positive if and
only if the corresponding inequality in the system holds
with equality. Such a solution is called strictly comple-
mentary and can be characterized by the fact that it sat-
isfies the strictly complementary conditions:

v � Cx � Dy > 0; (8)

x C A>uC C>v > 0: (9)

In [12] Tucker proves this result in a number of steps.
Only the first step is nontrivial; the other steps consist
of rather elementary algebraic arguments.

In the first step, he considers the simple dual system

A>u � 0; Ax D 0; x � 0: (10)

Adapting arguments of D. Gale, in an unpublished
proof of the fundamental theorem of H.Weyl [14] – that
the convex hull of finitely many halflines is the inter-
section of finitely many halfspaces – he shows the exis-
tence of a solution of (10) such that the first coordinate

of the vector x + A>u is positive. This result is basic
for the rest of Tucker’s paper [12]. As Tucker shows, it
already implies Farkas’ lemma and, as he remarks, it re-
curs in geometric form in [4] as the theorem stating that
‘a polyhedral cone is the polar of its polar’ and in [3]
as the separation theorem for a polyhedral convex cone
and an individual vector. Tucker’s proof exploits only
algebraic arguments and uses induction to the number
of columns ofA. It may be noted that he could also have
used Farkas’ lemma (cf. � Farkas lemma). Because if
there does not exist a solution with x1> 0, then writing
x1 = e>1 x, where e1 denotes the first unit vector, the sys-
tem Ax = 0, x � 0, �e>1 x < 0 does not have a solution;
then Farkas’ lemma states that the system A>z � � e1
has a solution. Hence, with u =�z, one has a solution of
(10) such that the first coordinate of x +A>u is positive.

Of course, there is nothing special with the first co-
ordinate of x + A>u. For each of the other coordinates
one can also obtain solutions x and u such that this
particular coordinate of x + A>u is positive. By adding
these solutions one gets a solution of (10) all of whose
coordinates are positive, i. e., such that

x C A>u > 0: (11)

Thus the main result has now been proved for the spe-
cial case of system (10). At this stage Tucker shows that
the Stiemke and Gordan transposition theorems easily
follow. Indeed, if there is no u such that A>u 6D 0 then
there must exist an x > 0, with Ax = 0, which is Stiemke’s
theorem; and if there is no nonzero x � 0 such that Ax
= 0 then there must exist a u such that A>u > 0, which
is Gordan’s theorem.

When applying the above result with the matrix A
replaced by (A B C � C) it immediately follows that the
system

A>u � 0; B>u � 0; C>u D 0; (12)

Ax C By C Cz D 0; x � 0; y � 0 (13)

has a solution such that

x C A>u > 0; v C B>u > 0:

Hence, if every solution u of (12) satisfies A> u = 0 then
(13) must have a solution with x > 0. By the comple-
mentary slackness property, each solution will satisfy
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x>A>u = 0. Therefore, either the system

A>u � 0; A>u ¤ 0; B>u � 0; C>u D 0

has a solution or the system

Ax C By C Cz D 0; x > 0; y � 0

has a solution, but not both. This result is known as
Tucker’s transposition theorem [7]. On the other hand,
and in a similar way, it follows that either the system

A>u � 0; B>u > 0; C>u D 0

or the system

Ax C By C Cz D 0; x � 0; y � 0; y ¤ 0

has a solution, but not both. This isMotzkin’s transposi-
tion theorem. When C is vacuous, these results are also
known as ‘theorems of the alternative’ for the pair A, B
of matrices [1].

When replacing the matrix A in (10) by (I K) one
obtains that the system

K>u � 0; �Kx � 0; u � 0; x � 0 (14)

has a solution such that

u � Kx > 0; x C K>u > 0:

Tucker notes that by applying this result to the pay-off
matrix of a ‘fair’ zero-sum two-person game, one may
easily derive a well-known theorem of von Neumann
and Morgenstern [9]. One easily sees that the following
alternatives hold:

K>u ¤ 0 or x > 0;

K>u > 0 or x ¤ 0;

u > 0 or � Kx ¤ 0;

(15)

u ¤ 0 or � Kx > 0: (16)

The above alternatives are mutually exclusive because
u>Kx = 0 for all solutions of (14); (15) and (16) are
dual forms of the theorem of the alternative for matri-
ces in [9]. It also follows that if the system �Kx � 0, x
� 0 has no nonzero solution then the system K>u > 0,
u > 0 has a solution; this result is due to J. Ville [13].

The existence of a strictly complementary solution
of the most general dual system, as given by (1), now

straightforwardly follows by replacing the matrix K in
(14) by the matrix
0
@
�A �B B
A B �B
C D �D

1
A :

This yields the existence of nonnegative vectors u1, u2,
v, (x, y1, and y2 such that

�A>u1 C A>u2 C C>v � 0;

�B>u1 C B>u2 C D>v � 0;

B>u1 � B>u2 � D>v � 0;

x � A>u1 C A>u2 C C>v > 0;

and

A>x C B> y1 � B>y2 � 0;

�A>x � B>y1 C B>y2 � 0;

�C>x � D>y1 C D>y2 � 0;

v � C>x � D>y1 C D>y2 > 0:

Take u = u2 � u1 and y = y1 � y2. Then

A>uC C>v � 0;

B>u C D>v D 0;

x C A>u C C>v > 0;

and

A>x C B> y � 0;

�A>x � B>y D 0;

v � C>x � D>y > 0;

showing that u, v, x and y solve the dual system (1), and
also satisfy the strictly complementarity conditions (8)
and (9).

An interesting and important special case of the
dual system (14) occurs when the matrix K is skew-
symmetric. Then the conditions on x and u are the same
and the system becomes a selfdual system. Taking z = x
+ u and replacing K by K> it then follows that there
exists a vector z such that

Kz � 0; z � 0; z C Kz > 0: (17)

In fact, the result for this special case is strong
enough to recover the more general result for the sys-
tem (14): if K is an arbitrary matrix then one simply
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applies (17) to the skew-symmetric matrix
�

0 �K
K> 0

�
:

The existence of a strictly complementary solution
to a selfdual system is used in [5] ‘as an omnibus means
of proving the basic duality and existence theorems of
linear programming’; a new proof is given [10], where
this result is used for the same purpose. The derivation
of the duality theorem goes as follows.

For a given matrix A and column vectors b and c
of appropriate size consider the pair of dual linear pro-
grams

(P)

8̂
<̂
ˆ̂:

min c>x
s.t. Ax � b

x � 0

(D)

8̂
<̂
ˆ̂:

max b>y
s.t. A>y � c

y � 0:

If x is feasible for (P) and y for (D) then

c>x � y>Ax � b>y:

This is known as the weak duality result for linear op-
timization. The strong duality result states that if one of
the two problems (P) and (D) has an optimal solution,
then so has the other and the optimal values coincide.

Define the skew-symmetric matrix K by

K :D

0
@

0 A �b
�A> 0 c
b> �c> 0

1
A :

Applying (17) to K one obtains nonnegative vectors y
and x and a nonnegative scalar t such that

Ax � tb � 0; (18)

� A>yC tc � 0; (19)

b>y � c>x � 0; (20)

yC Ax � tb > 0; (21)

x � A>yC tc > 0; (22)

t C b>y � c>x > 0: (23)

Recall that these relations imply the complementarity
relations, which are given by

y>(Ax � tb) D 0; (24)

x>(�A>yC tc) D 0; (25)

t(b>y � c>x) D 0: (26)

Note that (24) and (25) are equivalent to

y>Ax D t b>y D t c>x (27)

and these relation imply (26).
The relations (18)–(23) are homogeneous in t, x and

y. Hence, a solution with t > 0 exists if and only if a so-
lution with t = 1 exists. Thus two cases have to be dis-
tinguished: either t = 0 or t = 1.

If t = 0 then one has

Ax � 0; A>y � 0; b>y � c>x > 0:

Thus one has either b>y > 0 or c>x < 0 or both. First
consider the case b>y > 0. Then (P) cannot have a fea-
sible solution x, for this would yield the contradiction

0 � x>(A>y) D (Ax)>y � b>y > 0:

Moreover, if (D) has a feasible solution y0, then A>y �
0 implies that y0 + ˛y is feasible for (D) for any nonneg-
ative ˛. From

b>y0 C ˛y D b>y0 C ˛b>y;

it follows that the dual objective value can attain ar-
bitrarily large valus, since b>y > 0. The dual problem
(D) is unbounded in this case. Thus, if b>y > 0, then
(P) is infeasible and (D) can be either infeasible or un-
bounded.

If c>x < 0, similar arguments can be used to show
that (D) is infeasible and (P) can be either infeasible or
unbounded.

If t = 1 then x is feasible for (P) and y for (D),
whereas c>x = b>y, proving that x is an optimal solu-
tion for (P) and y is an optimal solution for (D). Hence,
the duality theorem for linear optimization has been
proved.
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The above approach to the duality theory for linear
optimization yields a little more than the classical ap-
proach, namely; if (P) and (D) are feasible, then there
exist strictly complementary optimal solutions x and y
(5, [Coroll. 2A]). This is due to (21) and (22) which give
(for t = 1):

yC (Ax � b) > 0;

x C (c � A>y) > 0:

See also

� Farkas Lemma
� Linear Optimization: Theorems of the Alternative
� Linear Programming
�Motzkin Transposition Theorem
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Introduction

This article considers the problem of asymptotical sta-
bility of optimal trajectories of dynamical systems de-
scribed by differential inclusions. In the literature, the
results obtained in this area are called “turnpike theo-
rems.”

Turnpike theory has many applications in eco-
nomics and engineering. We refer to [9,17,18,25] for
more detailed information about this theory and its var-
ious applications.
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The first result in this area was obtained by J. von
Neumann, in 1945. However, the main meaning of this
result that led to turnpike property was discovered by
Paul A. Samuelson, in 1948–1949, who also introduced
this terminology. These results were obtained for opti-
mal trajectories of models of economic dynamics deter-
mined by convex processes (the von Neumann model).
A clearer description of this property was provided by
Dorfman et al. [1] in the Chap. “Efficient Programs
of Capital Accumulation” of Linear Programming and
Economic Analysis. The following is the famous quote
from [1], p. 331, that describes the meaning of the turn-
pike property:

“Thus in this unexpected way, we have found a real
normative significance for steady growth – not steady
growth in general, but maximal von Neumann growth.
It is, in a sense, the single most effective way for the sys-
tem to grow, so that if we are planning long-run growth,
no matter where we start and where we desire to end up
it will pay in the intermediate stages to get into a growth
phase of this kind. It is exactly like a turnpike paralleled
by a network of minor roads. There is a fastest route
between any two points; and if the origin and destina-
tion are close together and far from the turnpike, the best
route may not touch the turnpike. But if origin and des-
tination are far enough apart, it will always pay to get
on to the turnpike and cover distance at the best rate of
travel, even if this means adding a little mileage at either
end. The best intermediate capital configuration is one
which will grow most rapidly, even if it is not the desired
one, it is temporarily optimal”.

In a simple case, when the trajectories of the sys-
tem under consideration are uniformly bounded, the
following formulation could be considered as a turn-
pike property.

Let fxT(t)g be a set of optimal trajectories defined
on the intervals [0; T], T > 0, and x� be a fixed point.
In the applications, x� is usually an optimal stationary
point.

Turnpike property: For any " > 0 there is a finite
number K" > 0 such that for all T > 0 the following in-
equality holds:

measft 2 [0; T] : jjxT(t) � x�jj � "g � K" :

The meaning of this statement is as follows: the
time that optimal trajectories spend outside the "-
neighborhood of x� is bounded by some finite number

K" that does not depend on T and optimal trajectories.
If the system is considered on the interval [0;1),

the turnpike property can be formulated as a conver-
gence of all optimal trajectories to x�.

Historically, the turnpike theory was first studied
for optimal control problems in discrete time. The gen-
eral formulation of these problems can be presented as

Maximize J(fxtgTtD1) ; subject to xtC1 2 a(xt) ;

t D 1; : : : ; T :
(1)

Set-valued mapping a : ˝ ! ˘c(Rn) is usually as-
sumed to be continuous in the Hausdorff metric. Here
˝ � Rn (in a particular case ˝ D Rn) and ˘c(Rn)
stands for the set of all compact subsets of Rn : The
graph of the mapping a is defined by

graph a D f(x; y) : x 2 ˝; y 2 a(x)g :

The objective function - functional J(fxtgTtD1) can be
defined in different forms. It is usually defined by some
utility function u(xt; xt�1). In some cases it is assumed
that u(xt; xt�1) D u(xt); that is, utility function u does
not depend on xt�1.

Terminal and integral type functionals with and
without discount factors are most commonly used in
the literature.

Many approaches have been developed to study the
turnpike property for different classes of problems (1).
Good surveys of these approaches developed by the
1970s can be found in [9,17]. The main achievement
of these approaches can be summarized as follows. The
turnpike property is valid under the following convex-
ity assumptions:

graph a is convex, and the function u
is strictly concave :

(2)

We say that problem (1) is convex if condition (2)
holds. Many problems arising in economics are con-
vex problems. Thus, the methods developed for discrete
systems in the form of (1) can be successfully applied to
such piratical problems.

The study of turnpike property for continuous sys-
tems started in the 1970s. It turned out that themethods
developed for discrete systems were not applicable for
continuous systems; thus, new methods were required.
In order to prove the turnpike property for continuous
systems, together with the convexity assumptions (2),
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very restrictive additional assumptions were used. Since
then, to prove turnpike property assuming only con-
vexity conditions (2) became a very difficult and chal-
lenging problem. This article gives a brief survey of the
results obtained in this area.

Definitions

Let x0 2 ˝ be a given initial point. We will consider the
following optimal control problem

Maximize J(x(�)); subject to ẋ 2 a(x) : (3)

We assume that set-valued mapping a : ˝ ! ˘c (Rn)
has compact images and is continuous in the Hausdorff
metric. Here˝ � Rn or˝ D Rn .

Definition 1 An absolutely continuous function x(�)
is called a trajectory defined on the interval [0; T], if for
almost all t 2 [0; T] the inclusion ẋ(t) 2 a(x(t)) holds.

Definition 2 x 2 Rn is called a stationary point if
0 2 a(x).

Stationary points play an important role in the study of
asymptotical behavior of optimal trajectories. Through-
out this article, we denote the set of stationary points
byM:

M D fx 2 ˝ : 0 2 a(x)g :

If mapping a(x) is continuous, thenM is a compact set.
We note that this set may be empty.

We will consider different classes of functionals
J(x(�)). The following are the most commonly used
functionals considered in the literature:

lim inf
t!1

u(x(t)); lim inf
t!1

u(x(t); ẋ(t)) ; (4)

Z T

0
u(x) dt;

Z T

0
u(x; ẋ) dt ; (5)

Z 1
0

e�r t u(x) dt;
Z 1
0

e�r t u(x; ẋ) dt : (6)

In (4), lim inft!1 u(x(t); ẋ(t)) is taken over the points
t where ẋ(t) exists.

Several approaches have been developed to study
turnpike property for continuous systems. These ap-
proaches use the Hamiltonian of problem (3) and the
necessary conditions of optimality in various versions.

We specially mention the approaches developed by
Rockafellar [20,21] and Scheinkman [22,23]. They con-
sidered a convex problem with integral functionals
(with and without a discount factor). The additional as-
sumptions (together with convexity) that were used in
these approaches involve the derivatives of the Hamil-
tonian. That is why these assumptions are very difficult
to check in practical problems.

Among the other approaches developed for prob-
lem (3), we mention the results of Gusev and
Yakubovich [4,5], Panasyuk and Panasyuk [18] and
Zelikina [26]. They considered some special classes of
optimal control problems defined by differential equa-
tions and the turnpike property was established under
some restrictive assumptions. The approaches devel-
oped in [4,5,26] were based on Pontryagin’s maxi-
mum principle. The results obtained by Panasyuk and
Panasyuk [18] found some interesting applications in
engineering where the corresponding restrictive as-
sumptions hold.

Summarizing these results, we observe that the tech-
niques developed for continuous systems in the form
of (3) have not been successful in the establishment of
turnpike property for convex problems. The additional
assumptions were too restrictive in terms of application
to a wide range of practical problems.

However, it was the common opinion that this flaw
was due to the drawbacks of the techniques developed.
As mentioned above, these techniques were based on
the necessary conditions of optimality. We think that
the use of necessary conditions (for example, Pontrya-
gin’s maximum principle) generates serious difficulties
in the proof of turnpike property. New techniques were
required that could allow us to avoid the use of neces-
sary conditions.

We note that there are many studies in the literature
that aimed to study the behavior of optimal trajecto-
ries for different systems. We refer to [25] for more in-
formation and references. For example, Zaslavski [25]
obtained important results for variational problems re-
garding the turnpike behavior of optimal trajectories.

In the following we present some results obtained
in [10,11,12,13,15]. These studies introduced new tech-
niques for problem (3) that did not use necessary con-
ditions. In this way, we succeeded in establishing the
turnpike property not only for convex problems but
also for some classes of nonconvex problems.
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Turnpike Theorems for Terminal Functionals

Functional (4) was first introduced by Lyapunov [8], in
1983, for discrete systems. It can be considered as an
analog of the terminal functional reformulated for the
interval (0, 1). It turned out that this functional was
very convenient in terms of turnpike property.

The turnpike property for this functional was estab-
lished in [10,11] even for nonconvex problems in con-
tinuous time. These results were obtained on the ba-
sis of new techniques that had been developed. They
applied to some nonconvex practical optimal control
problems. Some applications of these techniques to dis-
crete time systems can be found in [14,16,19].

We consider the system ẋ 2 a(x) on the interval
[0;1).

Definition 3 Trajectory x(t) is called optimal if
J(x(�)) � J(x̃(�)) holds for all trajectories x̃(t) starting
from the same initial state: x̃(0) D x(0).

Definition 4 The set

M D fx 2 Rn : 0 2 co a(x)g

is called the set of generalized stationary points.

Here “co” stands for the convex hull. Clearly M �M.
We will also use the notation

a(A) D [x2Aa(x) :

Functional lim inft!1u(x(t))

In this section we consider the problem

ẋ 2 a(x); J(x(�)) D lim inf
t!1

u(x(t))! max (7)

The main condition that will be imposed on mapping a
is the following:

Condition A: Given any set A � Rn

i f 0 2 co a(A) then 0 2 co a(x)
f or some x 2 A : (8)

If mapping a has convex images a(x) for all x, then (8)
can be reformulated as

i f 0 2 co a(A) then 0 2 a(coA) : (9)

We denote by A the class of continuous set-valued
mappings a satisfying Condition A. The following

lemma shows that A contains the class of mappings
having a convex graph.

Lemma 1 If graph a is convex then Condition A holds.

Denote J� D maxx2M u(x). Let x� 2M be a point for
which u(x�) D J�. If set M is convex and u(x) is strictly
concave, then point x� is unique.

The main results are combined in the following the-
orems.

Theorem 1 Assume that a 2 A and function u(x) is
concave. Then the inequality J(x(�)) � J� holds for all
trajectories x(t).

Theorem 2 Assume that a 2 A; function u(x) is strictly
concave and M is convex and compact. If trajectory x(t)
is such that J(x(�)) D J�, then limt!1 x(t) D x�.

If J(x(�)) D J�, then from the first theorem it follows
that trajectory x(t) is optimal. The second theorem pro-
vides the turnpike property: all optimal trajectories sat-
isfying J(x(�)) D J� converge to x�.

It is important to note that, in this way, the turn-
pike property is established for a special class A of non-
convex set-valued mappings a. This class contains map-
pings a having convex graphs. Therefore, for convex
problem (7) the turnpike property is true without any
additional assumptions.

Functional lim inft!1u(x(t);ẋ (t))

Now we consider the problem

ẋ 2 a(x); J1(x(�)) D lim inf
t!1

u(x(t); ẋ(t))! max

(10)

The main condition in this case is the following:
Condition B: Given any set Q � graph a

i f coQ \ (Rn � 0) ¤ ;

then coQ \ (M � 0) ¤ ; : (11)

We denote by B the class of continuous set-valued
mappings a satisfying Condition B.We have the follow-
ing properties:

Lemma 2 If graph a is convex, then Condition B holds.
If Condition A holds then Condition B holds too.

Denote the set of continuous set-valued mapping with
a convex graph by C. From this lemma we have the
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relation

C � B � A :

Denote J�1 D maxx2M u(x; 0), where M is defined in
Definition 4.

Let x� 2M be a point for which u(x�; 0) D J�1 . If
set M is convex and compact and u(x,y) is strictly con-
cave, then point x� is unique.

Similar to Theorems 1 and 2 we have the following
results.

Theorem 3 Assume that a 2 B and function u(x,y) is
concave. Then the inequality J1(x(�)) � J�1 holds for all
trajectories x(t).

Theorem 4 Assume that a 2 B; function u(x,y)
is strictly concave and M is convex and compact.
If trajectory x(t) is such that J1(x(�)) D J�1 then
limt!1 x(t) D x�.

Therefore, for problem (10), the turnpike property is
established for a special class B of nonconvex set-valued
mappings a. This class contains mappings a having
convex graphs.

Now we present some interesting examples related
to Theorems 1–4 and classes A and B.

Example 1 Let A be an n � n matrix, B be an n � r
matrix and V � Rr be a closed set (not necessarily con-
vex). Then, the mapping defined by

a(x) D fAx C Bv : v 2 Vg

belongs to class B (and, consequently, to A).

Example 2 Let x D (x1; x2) 2 R2 and a(x) D

f�(x1; x2); (x1; 0)g. It is not difficult to show that
a 2 B.

The following example shows that, in Theorem 4, the
convergence ẋ(t)! 0 may not be true while x(t) !
x�.

Example 3 Let x 2 Ru(x; y) D
p
x C

p
yC 1; and

a(x) D [�1; 1] if x 2 [0; 1]; a(x) D 1 if x > 1. We
have M D [0; 1] and J�1 D 2: Consider trajectory x(t)
defined as follows: on each interval [m;m C 1], m D
1; 2; � � � , we set x(t) D t�m if t 2 [m;mC1/(2m)], and
x(t) D �t/(2m � 1) C (mC 1)/(2m � 1) if t 2 [m C
1/(2m);mC1]. It is not difficult to show that J1(x(�)) D
2 D J�1 (i. e., turnpike property is true). However, ẋ(t)
does not converge to 0.

Turnpike Theorems for Integral Functionals

In this section we consider problem (3) with integral
functionals. For the sake of simplicity, we will only con-
sider the following problem:

ẋ 2 a(x); x(0) D x0;

JT (x(�)) D
Z T

0
u(x) dt ! max

(12)

We denote by XT the set of trajectories defined on the
interval [0,T]. Let

J�T D sup
x(�)2XT

JT (x(�)) :

Definition 5 Trajectory x(�) is called optimal if
JT (x(�)) D J�T and is called �-optimal (� > 0) if

JT (x(�)) � J�T � � :

Definition 6 x� 2 M is called an optimal stationary
point if

u(x�) D u� 4D max
x2M

u(x) :

Here M is the set of all stationary points. We assume
setM is not empty.

The turnpike theorem is proved under two main
conditions: Conditions M and H given below. The first
condition concerns the existence of “good” trajectories
starting from the initial state x0. The second is the main
condition that provides the turnpike property.

ConditionM:There exists b < C1 such that for ev-
ery T > 0 there is a trajectory x(�) 2 XT satisfying the
inequality

JT (x(�)) � u�T � b :

Set

B D fx 2 ˝ : u(x) � u�g :

We fix p 2 Rn ; p ¤ 0; and define a support function

c(x) D max
y2a(x)

py :

Here the notation py means the scalar product of the
vectors p and y. By jcj we will denote the absolute value
of c. We also define the function

'(x; y) D
u(x) � u�

jc(x)j
C

u(y) � u�

c(y)
:
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Condition H: There exists a vector p 2 Rn such that
H1 c(x) < 0 for all x 2 B; x ¤ x�;
H2 there exists point x̃ 2 ˝ such that px̃ D px� and
c(x̃) > 0;
H3 for all points x; y, for which px D py; c(x) < 0;
c(y) > 0, the inequality '(x; y) < 0 holds. Moreover,
if

xk ! x�; yk ! y0 ¤ x�;

pxk D pyk ; c(xk) < 0; c(yk) > 0 ;

then lim sup
k!1

'(xk; yk) < 0 :

Now we formulate the main result.

Theorem 5 Assume that Conditions M and H are satis-
fied and the optimal stationary point x� is unique. Then:
1) There exists C < C1 such that

TZ

0

[u(x(t))� u�] dt � C

for all T > 0 and all trajectories x(�) 2 XT.
2) For every " > 0 there exists K";� < C1 such that

measft 2 [0; T] : jjx(t)� x�jj � "g � K";�

for all T > 0 and all �-optimal trajectories x(�) 2 XT.
3) If x(�) is an optimal trajectory and x(t1) D x(t2) D
x�; then x(t) D x� for all t 2 [t1; t2].

This theorem has twomajor advantages compared with
the results obtained by others, including [20,21,22,23]:
1. Theorem 5 does not use the Hamiltonian. It uses

conditions that directly imposed on mapping a and
function u:Thus, these conditions can be verified for
a given particular problem.

2. The main condition in Theorem 5 is H3. It can be
considered as a relation between mapping a and
function u which provides the turnpike property.

We will see below that Conditions H1 and H3 hold if
the graph of the mapping a is a convex set (in Rn � Rn)
and the function u is strictly concave. On the other
hand Condition H may hold for mappings a having
nonconvex graphs and for functions u that are not
strictly concave. Therefore, Theorem 5 establishes turn-
pike property for nonconvex problems.

Convex Problems

Now we consider problem (12) assuming that graph a
of the mapping a is a convex set and the function
u : ˝ ! R is strictly concave. Let

J�T D sup
x(�)2XT

JT (x(�)) :

In this section, we present a result showing that Theo-
rem 5 is valid for a convex problem without assuming
Condition H. In particular, this means that the turn-
pike property is true for convex problem (12) without
any restrictive additional assumptions.

We have the following result.

Lemma 3 Assume that graph a is a compact set, func-
tion u is strictly concave and

0 2 int a(x̃) for some x̃ 2 M : (13)

Then Conditions H1 andH3 hold.

We note that Condition H2may not be satisfied even if
condition (13) holds. This can be seen from the follow-
ing example.

Example 4 Let ˝ D [�1; 1] � R1and a(x) D [�1;
�(x)];

where

�(x) D �
4
10

�
x C

1
2

�2

C
1
10
; x 2 [�1;C1] :

Consider the function u(x) D 1 � (x � 1)2:
For this problem function u is strictly concave,

the graph of the mapping a is a convex set. We have
M D [�1; 0]; u� D maxx2M u(x) D 0 and x� D 0:

It is not difficult to observe that for the point
x̃ D �1/2 condition (13) holds.

Consider ConditionH. We haveB D [0; 1]:Condi-
tion H1 is satisfied for the points p 2 R1; p > 0:

Nowwe check ConditionH2. Take any p 2 R1; p ¤
0: If px̄ D px�, then x̄ D x� D 0 and

c(x̄) D max
y2a(x̄)

py D max
y2[�1;0]

y D 0 :

Therefore, Condition H2 is not satisfied for any
p 2 R1; p ¤ 0: The main result of this section is the fol-
lowing
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Theorem 6 Assume that function u is strictly concave
and Conditions M and (13) hold. Then an optimal sta-
tionary point x� exists, is unique and all assertions of
Theorem 5 are true.

Condition (13) is important. Example 5 presented
shows that if this condition does not hold, then The-
orem 6 may be not true.

Example 5 Let˝ D [�1; 1] � R1;

a(x) D

(
f�x4 C v : v 2 [x4 � 1; 0]g if 0 � x � 1 ;

fv : v 2 [�1; 0]g if � 1 � x � 0 ;

and u(x) D 1 � (x � 1)2: v is the control.
It is clear that function u is strictly concave, the

graph of the mapping a is a convex set. We have
M D [�1; 0]; u� D maxx2M u(x) D 0 and x� D 0:

It is not difficult to observe that condition (13) is
not satisfied. We will show that Theorem 6 is not true
in this case.

We take an initial point x0 D 1 and consider a tra-
jectory corresponding to the control v(t) D 0: This tra-
jectory can be calculated as a solution to the following
differential equation:

ẋ D �x4; x(0) D 1:

We have x(t) D (3tC 1)�
1
3 : Clearly 0 � x(t) � 1 and

x(t)! 0 as t!1: Therefore, x(t) is a trajectory. We
have

TZ

0

(u(x(t))� u�)dt D
TZ

0

[1 � (x(t)� 1)2]dt

�

TZ

0

x(t)dt D
TZ

0

(3tC 1)�
1
3 dt ! C1 ;

as T !1: Therefore, the first assertion of Theorem 6
is not true.

Other Results

Some generalizations of the results presented above,
involving functionals in (5) and (6), can be found
in [11,12,13,15]. Moreover the case when the optimal
stationary point is not unique is also considered.

See also

� Statistical Convergence and Turnpike Theory
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Anticipation, Learning, and Adaptation

Two-stage stochastic programming models incorporate
three major mechanisms facilitating our response (or
survival) to uncertainty and changing conditions: an-
ticipation, learning, and adaptation. Uncertainty and
potential abrupt changes are pervasive characteristics
of most on-going socio-economic and environmental
changes. In order to manage such processes we must
develop robust strategies incorporating all these mech-
anisms: the long term anticipative (forward looking,
ex-ante) actions (policy setting, allocation of resources,
engineering design, pre-disaster planning, etc.); learn-
ing (by-doing, researches, observations); and the short-
term adaptive adjustments (defensive driving, market-
ing, inventory, control, post-disaster adaptation, etc.).
The standard expected utility theory considers these
mechanisms independently suggesting either anticipa-
tive (risk averse) or adaptive (risk prone) decisions.
This decision paradigm often directs real policy debate,
e. g., on CO2 stabilization strategies, emphasizing either
immediate actions or wait-and-see adaptation after full
information become available.

The following simple example illustrates that ac-
cording to the two-stage modeling approach, in gen-
eral, only a part of the risk is managed by anticipative
decisions whereas the other part is managed by con-
nected with them properly designed adaptive decisions.
It shows that strong interdependencies among ex-ante
and ex-post decisions induce endogenous risk aversion
even in linear models. The example illustrates also po-
tential advantages of SQG methods.

Safety Constraints and CVaR Risk Measures

A stylized climate stabilization (two-stage stochastic
programming) problem [8] can be formulated as fol-
lows: let x denotes an amount of emission reduction
and let a random variable ˇ denotes an uncertain criti-
cal level of required emission reduction. Ex-ante emis-
sion reductions x � 0 with costs cxmay underestimate
ˇ. A linear total adaptation cost is dy, where y is an
ex-post adaptation. Let us assume that ex-post adap-
tive capacity is unlimited (in general, it must be de-
veloped ex-ante), and c < d. The two-stage model is
formulated as the minimization of expected total cost
cx C dEy subject to the constraint x C y � ˇ. This
problem is equivalent to the minimization of function
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F(x) D cx C Eminfdyjx C y � ˇg or F(x) D
cxCdEmaxf0; ˇ�xg, which is a simpleminimax prob-
lem. Optimality conditions for these types of problems
show [4,5], pp 107, 416, that the optimal ex-ante so-
lution is the critical quantile x� D ˇp satisfying the
safety constraint Pr[x � ˇ] � p for p D 1 � c/d
assuming the distribution of ˇ has a density. This is
a remarkable result: highly non-linear and even often
discontinuous safety (or chance) constraint is derived
(justified) from an explicit introduction of ex-post sec-
ond stage decisions y. In other words, although the two
stage model is linear in variables x, y, the strong risk
aversion is induced among ex-ante decisions character-
ized by the critical quantile ˇp. Only the slice ˇp of the
risk is managed ex-ante, whereas the rest y� D ˇ � ˇp

is adapted ex-post. It is easy to see that the optimal
value F(x�) D dEˇI(ˇ > x�), where I(�) is the indi-
cator function. This is the expected shortfall or Condi-
tional Value-at-Risk (CVaR) risk measure [9].

In more realistic models, ˇ is defined as a rather
complex process dependent on scenarios of future
global energy system, land use changes, demographic
dynamics, etc. In these cases it is practically impossi-
ble to derive the distribution of ˇ analytically. Instead,
only random scenarios of ˇ, ˇ0; ˇ1; ˇ2; : : :, can be gen-
erated providing sufficient information for SQG meth-
ods. F(x) is a convex and nonsmooth function, its SQG
is � D �(x; ˇ) D c � d for ˇ < x; and � D c otherwise.
Therefore, the SQG projection method for k D 0; 1; : : :
is defined as the following

x(k C 1) D max
n
0; xk � �k�(xk ; ˇk )

o
: (1)

GeneralModel

The model incorporates two types of independent de-
cisions. The ex-ante (risk averse, anticipative) decision
x 2 Rn of the first-stage is made on the basis of a pri-
ory information about random uncertain variables !.
The second-stage ex-post (risk prone, adaptive) decision
y 2 Rr is chosen after making an additional observa-
tion on !. For known !, decisions x,y are evaluated by
some functions gi (x; y; !); i D 0; 1; : : : ;m, which de-
fine the constraints

gi (x; y; !) � 0; i D 1 : m (2)

and the objective function g0(x,y,!). The ex-ante deci-
sion x which is chosen before the observation of ! can-

not properly anticipate ! and, hence, satisfy (2) exactly.
The ex-post decision y creates the possibility to ful-
fill (2) after revealing information on !: It minimizes
g0(x,y,!) for given x,! subject to (2) and some addi-
tional constraints y 2 Y such as y � 0. Let us denote
the feasible set of this standard deterministic problem
as Y(x,!) and an optimal solution as y(x,!). In var-
ious important applications y(x,!) is easily calculated
and its existence can be easily ensured by introducing
some auxiliary variables. The function g0(x,y,!) reflects
a trade-off between choosing some options x now "and
postponing other options y after" full information on !
becomes available. The general two-stage problem is to
find x 2 X � Rn minimizing

F(x) D E f (x; !) ; (3)

where f (x; !) D g0(x; y(x; !); !). Besides determin-
istic constraints of type x 2 X, there may also be gen-
eral constraints of STO problems formulated in terms
of some other random functions fl (x; !); l D 1; 2; : : :.

The random objective function f (x,!) in (3) is
a rather general implicitly defined nonsmooth func-
tion even for linear in (x,y) functions gi (x; y; !); i D
0; 1; : : : ;m. Hence F(x), in general, is also a nonsmooth
function and general purpose SQG methods designed
for nonsmooth optimization problems are applicable for
minimizing (3). In fact, as the following sections show,
there are fundamental obstacles in using other solu-
tion techniques even for problems with linear func-
tions. Now consider specific SQG methods which ex-
ploit the structure of the function (3).

Convex Case

Assume that gi (x; y; !); i D 0 : m are convex in (x,y)
functions and that a solution �(x,!) dual to the solution
y(x,!) is given. Let (gix,giy) be a subgradient of the func-
tion gi (�; !) in variables (x,y) at a point (xk ; yk); k D
0; 1; : : :. A stochastic subgradient of the function (3)
takes the form [2,5], pp 16, 171,

�(k) D g0x(xk ; yk ; !k)

C

mX
iD1

�i(xk ; !k)gix(xk ; yk ; !k) ; (4)

where yk D y(xk; !k); !0; : : : ; !k are independent
samples of !. This vector can now be used in various
SQG methods.
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Example 1 Linear functions Assume that x 2 X,
Y D Rm

C, and g0 D (c; x) C (d; y), gi D (ai ; x)
C (Wi ; y) � bi , where d, b, ai, Wi are random vectors,
i. e. ! D

˚
d; b; ai ;Wi ; i D 1 : m

�
. Let us introduce

matrices A D (a1; : : : ; am), W D (W1; : : : ;Wm). By
using SQG projection methods with �(k) defined as (4),
we obtain the following procedure. Let x0 be an arbi-
trary initial approximate solution and !0; : : : ; !k are
independent observations of!,!k D (dk ; bk ;Ak ;Wk),
where dk,bk,Ak,Wk are observations of random vectors
d,b and matrices A,W. Solve the linear problem (for
given xk ; !k ): minf(dk ; y) : Wk y � bk � Akxk ; y �
0g; calculate the dual variables �(xk,!k), �(k) D c C
�(xk; !k )Ak , and new

xkC1 D 
X

h
xk � �k�(k)

i
; (5)

where k D 0; 1; : : :. This method was first proposed
in [1,2] (see also references in [5], pp 169–171, [7],
pp 213–215). It is important to note that the SQG
method (5) can be regarded as a stochastic decom-
position procedure for extremely large scale problems
which often can not be solved by conventional deter-
ministic techniques [6].

Stochastic Decomposition Techniques

Assume that ! D (d; b;A;W) has only a finite num-
ber of possible states (scenarios) ! D (ds ; bs ;As ;Ws);
s D 1 : N , with probabilities ps ;

PN
sD1 ps D 1. Then the

problem with linear functions and X D Rn
C is equiv-

alent to the following deterministic large scale linear
problem: minimize

(c; x)C p1(d1; y(1))C : : :C pN (dN ; y(N)) ; (6)

A1x CW1y(1) � b1;

� �� �

ANx C : : :WN y(N) � bN ;

x � 0; y(1) � 0; : : : ; y(N) � 0 :

The number N may be very large: if only the vec-
tor b D (b1; : : : ; bm) is random and each compo-
nent b1; : : : ; bm has two independent outcomes, then
N D 2m . Hence deterministic problem (6) can not be
solved by the standard optimization techniques even
with small number of constraints m D 100 and general
random matrix A. The SQG procedure (5) is applicable

also to other deterministic problems with an arbitrary
block-diagonal structure of type (6), since any objective
function (˛; x)C (ˇ1; y(1))C : : :C (ˇN ; y(N)) can be
rewritten in the form of expectation (6) with c D ˛,
ds D ˇs /ps , ps > 0,

PN
sD1 ps D 1.

Example 2 Managing agricultural risks This exam-
ple illustrates the nonsmooth character of the objec-
tive function (3), which prohibits the use of the stan-
dard stochastic approximation procedures. The main
issue is to evaluate the need for an irrigation system.
If the river water level is characterized by its average
value, the decision to use irrigation is trivial and de-
pends, in particular, on whether the profit per hectare
of irrigated area d1 is greater than the profit d3 from
a hectare without irrigation. The stochastic variation
of the river water level creates essential difficulties. In
situations of low water levels the land prepared in ad-
vance can only be partially supplemented with addi-
tional water, resulting in a profit d2 per hectare on
the remainder of the land. Besides this, the situation
may also be affected by variations in water prices: it
is easy to imagine a scenario for which in a dry sea-
son the use of irrigation water may become unprofitable
although irrigation is profitable under average condi-
tions. Now suppose that Q is the level of available wa-
ter; q is the amount of water required for irrigation of
a hectare. Denote by x; x � a; the area which must be
prepared in advance for irrigation, where a is the to-
tal irrigable acreage. There may be two types of risks:
in situations when Q < xq there is the risk to forego
the profit per hectare of land that irrigates. In the case
when Q > xq there is the risk to forego the profit per
hectare of land not prepared in advance for irrigation.
These risks depend on the choice of ex-post decisions
y D (y1; y2; y3), where y1 is the use of irrigated land, y2
is the use of land that was prepared for irrigated culti-
vation but cannot be irrigated, y3 is the use of land that
was not prepared for irrigation. Let ! D (Q; d1; d2; d3),
and c be the cost per hectare of irrigated land. Ex-ante
and ex-post decisions x; y1; y2; y3 are connected by the
equations y1 C y2 � x, 0 � x � a, y1 C y2 C y3 � a,
Q/q � y1, y1 � 0; y2 � 0; y3 � 0. The decision vec-
tor y(x; !) maximizes the profit d1 y1 C d2 y2 C d3 y3
subject to these constraints. The sample objective func-
tion can be defined as f (x; !) D �r(x; !), where r(�) is
the revenue function r(x; !) D �cx C d1 y1(x; !) C
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d2 y2(x; !) C d3 y3(x; !). This function has complex
nonsmooth character because yi (x; !); i D 1; 2; 3 are
discontinuous functions. Thus if, by a chance, Q > xq
and d1 � d2, then y1(x; !) D x, y2(x; !) D 0,
y3(x; !) D a � x. But if Q > xq and d1 < d2, then
y1(x; !) D 0, y2(x; !) D x, y3(x; !) D a � x. In the
case Q � xq, d1 � d2 the values are y1(x; !) D Q/q,
y2(x; !) D x�Q/q, y3(x; !) D a�x. The SQGmethod
is defined by (5).

Dynamic Two-Stage Problem

It must be emphasized that the “stages” of the two-stage
problem do not necessarily refer to two time units [2,5],
pp 16–20, [7]. The x,y vectors may represent sequences
of actions x(t),y(t) over a given time horizon x D
(x(0); x(1); : : :); y D (y(0); y(1); : : :), and in addition
to the x,y decision variables, there may also be a group
of variables z D (z(0); z(1); : : :) that record the state of
the system at t D 0; 1; : : :. The variables x,y,z,! are of-
ten connected through a system of equations: z(tC1) D
z(t)C h(t; z(t); x(t); y(t); !); t D 0; : : : ; T �1. The es-
sential new feature of such a dynamic two-stage stochas-
tic programming problem is that the variables z are im-
plicit functions of x,y,! besides the already rather com-
plex implicit structure of y(x,!). This often rules out the
use of deterministic optimization techniques.

Example 3 Optimal investments Consider a typical
problem of optimal investments under uncertainty. Let
xi(t) be the new capacity made available for electric-
ity producing technology i at time t and zi(t) be the
total capacity of i at time t. Obviously zi (t) D zi (t
� 1) C xi(t) � xi(t � Li ), where Li is the life-time of
i. If dj(t) is different possible demand modes (scenar-
ios) j, at time t D 0; 1; : : : ; T; yij(t) is capacity of i (ef-
fectively) used at time t in mode j, then

P
j yi j(t) �

zi (t) and
P

i yi j(t) D dj . Let ci(t) be the unit invest-
ment cost for i at time t and qij(t) be the unite pro-
duction cost. The future cost and total demand can be
considered truly random, i. e., elements forming ! are
dj(t), qij (t). The resulting random objective function is
the sum of investment and production costs: f (x; !) DP

i;t ci(t)zi(t) C min
P

i; j;t qi j(t)yi j(t). Nonnegative
variables zi(t) are uniquely defined by variables x(t),
i. e. f (x,!) is an implicit function of x. The general
scheme for calculation SQG is the following. Assume
for simplicity xi(t � Li ) D 0, t D 0; : : : ; Lj � 1.

Suppose that at step k we have arrived at an approx-
imate ex-ante decision variables xk

i (t), t D 0; : : : ; T.
Next, simulate !k composed of dk

j (t); qi j
k (t); calcu-

late zki (t) and ex-post variables yki j(t). Let �
k
i (t) be the

dual variables for constraints
P

j yi j(t) � zki (t). Here
we suppose that these demand constraints can always
be fulfilled by introducing a fictitious unlimited energy
source with high operating cost. A SQG of f (x,!) at
x D xk is defined by using adjoint variables uk

i (t) (com-
monly used in the control theory) to dynamic equations
for zi(t), [2], pp 173–175. In our case they obey sim-
ple equations: uk

i (T) D �ci (T); u
k
i (t) D uk

i (t C 1)
� ci (t) C �k

i (t) for t D T � 1; : : : ; 1; 0. The SQG �k

consists of components � ki (t) D uk
i (t C Li ) � uk

i (t)
for t D 0; 1; : : : ; T � Li and � ki (t) D �u

k
i (t) for

t D T � Li C 1; : : : ; T.

Decision Processes with Rolling Horizon

In the dynamic two-stage problem, the learning (ob-
servation) of ! D (!(0); : : : ; !(t); : : :) takes place
only in one step before making ex-post decision y D
(y(0); : : : ; y(t); : : :). In reality the learning and the de-
cision making processes may be of a sequential char-
acter. At step t D 0; 1; : : : some uncertainties !(t) are
revealed followed by ex-post decisions y(t,x,!), that are
chosen to adapt to new information. The whole deci-
sion process proceeds in alternating steps: decision -
learning - decision - . . . . The dependence of y(t,x,!)
on x is highly nonlinear, i. e. these functions do not
posses, in general, the separability properties necessary
to permit the use of the conventional recursive equa-
tions of dynamic programming. There are even more
serious obstacles to the use of such recursive equa-
tions: a tremendous increase of the dimensionality and
the computation of mathematical expectations. The dy-
namic two-stage model provides a powerful approach
to dynamic decision making problems under uncer-
tainty. At time t D 0 an optimal long term ex-ante
strategy x[0; T�1] is computed by using a priori infor-
mation about uncertainty within the interval [0; T� 1].
The decision x(0) from x[0; T � 1] is chosen to be im-
plemented at t D 0 and the new a priori information is
designed for interval [1; T] conditioned on the learned
!(0); a new ex-ante strategy x[1; T] is computed and
the decision x(1) from x[1; T] is chosen for the imple-
mentation at t D 1, and so on. This approach to de-
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cision making with rolling horizon avoids the computa-
tion of decisions at time t as a function of all previous
to t decisions, what enormously reduces the compu-
tational burden of the recursive dynamic programming
equations and multy-stage stochastic programs. The de-
cision path (strategy) x[t; TCt�1] for each t D 0; 1; : : :
can be viewed as a robust strategic plan over a time
horizon of duration T (weeks, months, years). At each
t D 0; 1; : : : this plan is revised to incorporate adap-
tively new information and new time horizon.

The duration Tmust be properly defined in order to
justify strategies that may turn into benefits over long
and uncertain time horizons. For example, how can we
justify investments, say, in a flood defense system to
cope with foreseen extreme 100-, 250-, 500-, and 1000-
year floods. In such cases, T can be a random vari-
able, so-called stopping time, associated with the oc-
currence of a catastrophic event. SQGmethods allow to
design adaptive Monte Carlo optimization procedures
(learning-by-simulations) combining fast generators of
catastrophes with adaptive adjustments of robust risk
management decisions [3].
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Many real world decision problems are faced with
some uncertainty. Typical examples are produc-
tion/inventory problems with uncertain future de-
mands or energy models with uncertain future fuel
prices. Models that take uncertainty into account are
known as stochastic models to differentiate them from
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deterministic models which assume all data to be
known with certainty. Stochastic programming is pre-
cisely the field of mathematical programming where
some of the data are random variables.

In two-stage stochastic programs, some decisions, x,
called first-stage decisions, must be taken before know-
ing the particular values taken by the random variables
� while some other decisions, y(�), called second-stage
decisions or corrective actions, can be taken after the re-
alizations of the random variables are known. In this
representation, first- and second-stage are differenti-
ated as the periods of time before and after the random
data are known.

A two-stage stochastic linear program or stochastic
linear program with recourse is a mathematical program
of the form(

min c:x C Q(x)
s.t. x 2 X;

where Q(x) = E�Q(x, �), Q(x, �) = miny(�)2 Y(�) q.y(�),
and E� denotes the mathematical expectation with re-
spect to the random vector �. X and Y(�) are usually
polyhedral convex sets. In this representation, Q(x, �)
is the second-stage value function for a given � and
Q(x) the expected value-function or expected recourse.
It measures the impact in the second-stage and in ex-
pected terms, of a first-stage decision.

Many different situations can be represented by
a recourse program. Two extreme situations for the
random variables are the following. First, the random
vector may represent a limited number of well studied
scenarios. These are obtained as the best judgment ex-
perts can form about the future. In its simplest version,
this may correspond to an optimistic scenario, a pes-
simistic scenario and a mean scenario. The stochas-
tic solution will hedge against these scenarios, to find
a solution that performs well under three scenarios, al-
though only one will realize. On the other extreme, the
random vector may represent uncertainties that recur
frequently on a short-term basis. Then, the expecta-
tion somehow represents a mean over possible values
of which many occur so that the expectation will match
closely e. g. the mean yearly revenue/cost.

Much of the difficulty of solving a two-stage pro-
gram depends on the properties of the expected re-
course function and on the so-called second-stage fea-
sibility set, denoted by K2, which represents the set of

first-stage decisions yielding feasible decisions in the
second stage. In the case where random vectors are de-
scribed by discrete distributions, Q(x) is a piecewise lin-
ear convex function of x and K2 is convex and polyhe-
dral in x, so that classical decomposition techniquesmay
apply (see � L-shaped method for two-stage stochastic
programs with recourse). When the random variables
are not discrete, some technicalities may occur which
result in difficulties over feasibility sets [5]. Those situa-
tions are fortunately infrequent. In the case ofW being
fixed and under weak assumptions, Q(x) is convex. It
is also differentiable if � has an absolutely continuous
cumulative distribution, so that techniques from non-
linear programming can be applied. Note that contin-
uous random variables may be approximated by dis-
crete ones. For this process, known as discretization, see
� Semi-infinite programming: Discretization methods.

Even when decision makers realize the existence of
uncertainty, in practice, they may choose to solve a de-
terministic model. The reason for such a choice is that
stochastic models are seen as more difficult to solve.
Now, as perfect forecasting does not exist, real data are
very often different from the data used in the models.
This results in poor decisions being taken. It is thus
very often advisable to develop smaller size models that
include some stochastic elements, instead of very large
detailed deterministic ones that neglect the presence of
uncertainty.

Measures have been developed to quantify the im-
portance of solving a stochastic program instead of
a deterministic one. The expected value of perfect infor-
mation (EVPI) measures the maximum amount a deci-
sion maker would be ready to pay in return for com-
plete information about the future. This concept has
been developed in the context of decision analysis. It
compares the expected objective when all decisions can
be taken after the random vector is observed (the so-
called wait-and-see solutions) and the two-stage situ-
ation. The value of stochastic solution (VSS) measures
how much would be lost by not solving the recourse
problem, but, instead, by solving some substitute deter-
ministic model. Those concepts are studied in [1]. Un-
fortunately, they can only be calculated a posteriori, so
that is it usually not possible to evaluate beforehand the
benefit of solving a stochastic program.

A classical alternative to two-stage or recourse pro-
grams is to require that the constraints should be sat-
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isfied with some level of probability. This is known as
chance-constraint or probabilistic programming. See [4]
for an extensive treatment.

Finally, one can observe that other fields also in-
clude uncertainty into their models. Examples are de-
cision analysis, Markov decision processes or stochas-
tic optimal control. To illustrate the difference, we may
say that, typically, a two-stage stochastic program is an
extension of a linear mathematical program. It involves
many decision variables and constraints, discrete time
periods, linear expectation functionals for the objec-
tive and known distributions for the random variables.
For a general presentation of stochastic programming,
see [2] or [3].
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Unconstrained optimization methods seek a minimiz-
ing point of a nonlinear function f : Rn! R, where f is
smooth. The classical techniques named for I. Newton
and A.-L. Cauchy view this fundamental problem from
complementary perspectives, model-based and metric-
based, respectively. They provide a coherent framework
that relates the basic algorithms of the subject to one an-
other and reveals hitherto unexplored avenues for fur-
ther algorithmic development.

Notation

Lowercase boldface letters denote vectors, e. g., x, and
uppercase boldface letters denote matrices, e. g., M.
A matrix that is necessarily positive definite and sym-
metric has a + superscript attached, e. g., D+. Calli-
graphic letters, e. g., H, denote certain distinguished
matrix variables.

Model-Based Perspective

Model-based methods approximate f at a current it-
erate xk by a local approximating model or direction-
finding problem (DfP), which is used to obtain an im-
proving point.

Newton’s Method

In Newton’s method the DfP is as follows:
(
min g>k (x� xk)C 1

2 (x� xk)>Hk(x� xk)
s.t. kx � xkkDC � ık;

(1)

where gk denotes the gradient vector of f at xk, and
Hk denotes its (possibly indefinite) Hessian matrix, i. e.,
the n × n matrix of second partial derivatives @2f / @xi
@xj at xk. The points x that satisfy the quadratic con-
straint form the trust region. The quantity k � kDC de-
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notes a vector norm defined by a positive definite, sym-
metric matrix D+ that determines the scaling of vari-
ables, i. e., k z kDC = (z> D+ z)1/2 for any vector z. Com-
mon choices include the Euclidean normD+ = I (where
I denotes the n × n identity matrix) and the norm de-
fined by a fixed diagonal scaling matrix (independent of
k). The quantity ık is an adaptively-updated parameter
that defines the size of the trust region.

It can be shown that a point x� is the global solution
of (1) if and only if there is a scalar �k � 0 (Lagrange
multiplier) such that

(Hk C �kDC)(x� � xk) D �gk ;

�k(kx� � xkkDC � ık) D 0;
(2)

with (Hk + �k D+) positive semidefinite.
For convenience of discussion, assume that the con-

straint holds as an equality at x� and the matrix (Hk +
�k D+) is positive definite. (An ‘easy’ case occurs when
x� is in the interior of the trust region so the DfP is
essentially unconstrained with �k = 0; the other infre-
quent and so-called ‘hard case’ arises when the matrix is
only positive semidefinite, and it requires a deeper anal-
ysis and refinement of the algorithmic techniques. For
details, see [12].) Then the optimal multiplier is the so-
lution of the following one-dimensional nonlinear equa-
tion in the variable �� 0, which is derived directly from
(2), namely,

kw(�)kDC D ık ; w(�) D �(Hk C �DC)�1gk :

Also, the vector x� � xk is a direction of descent at the
point xk. A variety of strategies can be devised for defin-
ing the new current iterate xk + 1. A pure trust region
strategy (TR strategy) evaluates the function at x�. If it
is not suitably improving then the current iterate is not
updated, ık is reduced, and the procedure repeated. If
x� is improving then xk + 1 = x�, and ık is updated (usu-
ally by comparing function reduction predicted by the
model against actual reduction). Alternatively, the fore-
going strategy can be augmented by a line search along
the direction of descent dk = x� � xk to find an improv-
ing point, and again ık is revised (TR/LS strategy). See
also [16] for strategies that explicitly use the dual of (1).

Quasi-Newton Method

When Hk is unavailable or too expensive to compute,
it can be approximated by an n × n symmetric matrix,

say,Mk, which is used in the foregoing model-based ap-
proach (1) in place of Hk. This approximation is then
revised as follows. Suppose the next iterate is xk + 1 and
the corresponding gradient vector is gk + 1, and define sk
= xk + 1 � xk and yk = gk + 1 � gk. A standard mean value
theorem for vector-valued functions states that

2
4

1Z

0

H(xk C �sk) d�

3
5 sk D yk ; (3)

i. e., the averaged Hessian matrix over the current step
transforms the vector sk into yk. In revisingMk to incor-
porate new information, it is natural to require that the
updated matrix Mk + 1, has the same property, i. e., that
it satisfies the so-called quasi-Newton relation or secant
relation:

MkC1sk D yk: (4)

The symmetric rank-one update (SR1 update) makes the
simplest possible modification toMk, adding to it a ma-
trix � uu>, where � is a real number and u is an n-
vector. The unique matrix Mk + 1 of this form that also
satisfies (4) is as follows:

MkC1 D Mk C
(yk �Mksk)(yk �Mksk)>

(yk �Mksk)>sk
: (5)

This update can be safeguarded when the denominator
in the last expression is close to zero. A local approx-
imating model analogous to (1) can be defined using
the Hessian approximation in place of Hk. The result-
ing model-based method is called the symmetric rank-
one quasi-Newton method (SR1 quasi-Newton method).
For additional detail, see [3].

Limited-Memory Approach

When storage is at a premium and it is not possible
to store an n × n matrix, a limited-memory symmetric
rank-one approach (L-SR1 approach) uses the current
step and a remembered set of prior steps (usually much
fewer than n in number), along with their associated
gradient changes, to form a compact representation of
the approximated Hessian. We will denote this approx-
imation by L-Mk. Details can be found in [2]. An alter-
native approach, called a limited-memory affine reduced
Hessian or successive affine reduction (SAR) technique,
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develops Hessian information in an affine subspace de-
fined by the current gradient vector, the current step
and a set of zero, one or more previous steps. Curva-
ture estimates can be obtained in a Newton or a quasi-
Newton sense. The associated methods are identified
by the acronyms L-RH-N and L-RH-SR1 and the cor-
responding Hessian approximations by L-RH-Hk and
L-RH-Mk. The underlying updates can be patterned af-
ter analogous techniques described in [14] and [8], but
they have not been fully explored, to date (1999).

Modified Cauchy Approach

Finally, when Hessian approximations in (1) are re-
stricted to (possibly indefinite) diagonal matrices Dk,
whose elements are obtained by finite differences or up-
dating techniques, one obtains a simple method that
has also not been fully explored to date (1999). We at-
tach the namemodified Cauchy method to it for reasons
that will become apparent in the next Section.

Summary

Each of the foregoing model-based methods utilize
a DfP at the current iterate xk of the form:

(
min g>k (x� xk)C 1

2 (x� xk)>Hk(x� xk)
s.t. kx � xkkDC � ık;

(6)

where Hk is one of the following: the Hessian matrix
Hk; an SR1 approximation Mk to the Hessian; a com-
pact representation L-Mk, L-RH-Hk or L-RH-Mk; a di-
agonal matrix Dk. (The other quantities in (6) were de-
fined earlier.) This DfP is used in a TR or TR/LS strategy
to obtain an improving point.

Metric-Based Perspective

Metric-based methods explicitly or implicitly perform
a transformation of variables (or reconditioning) and
employ a steepest descent search vector in the trans-
formed space. Use of the negative gradient (steepest de-
scent) direction to obtain an improving point was orig-
inally proposed by Cauchy.

Consider a change of variables, ex D Rx, where R
is any n × n nonsingular matrix. Then g, the gradient
vector at the point x, transforms toeg D R�>g, which
is easily verified by the chain rule. (Henceforth, we at-
tach the symbol ‘tilde’ to transformed quantities, and

whenever it is necessary to explicitly identify the ma-
trix used to define the transformation, we writeex[R] or
eg[R].) The steepest descent direction at the current it-
erateexk in the transformed space is � R�> gk, and the
corresponding direction in the original space is � [R>

R]�1 gk.

Cauchy Method

If R is taken to be a nonsingular diagonal matrix DCk ,
corresponding to a rescaling of the variables that is ei-
ther fixed or is varied at each iteration, this defines
a Cauchy method. A line search along the search direc-
tion � (DCk )

�2 gk yields an improving point, and the
procedure is then repeated.

Variable Metric Method

Consider next the case when the matrix defining the
transformation of variables is an n × n matrix Rk that
can be changed at each iteration. Suppose a line search
procedure along the corresponding direction � [R>k
Rk]�1 gk yields a step to an improving point xk+ 1 and
again define sk = xk+1 � xk and yk = gk+1 � gk. How
should we revise the reconditioner Rk to Rk+ 1 in or-
der to reflect new information? Ideally, the transformed
function, say ef , should have concentric contour lines,
i. e., in the metric defined by an ‘ideal reconditioner’
Rk + 1, the next iterate, obtained by a unit step from the
transformed pointexkC1 along the steepest descent di-
rection, should be independent of whereexkC1 lies along
esk . Such a reconditioner will not normally exist when f
is nonquadratic, but it should at least have the afore-
mentioned property at the two points exk and exkC1.
Thus, it is reasonable to require that Rk + 1 be chosen
to satisfy

exk[RkC1] �egk[RkC1]

DexkC1[RkC1] �egkC1[RkC1]: (7)

This equation can be re-expressed in the original vari-
ables as follows:

RkC1sk D R�>kC1yk: (8)

For a matrix Rk + 1 satisfying (8) to exist, it is necessary
and sufficient that y>k sk > 0, which can always be as-
sured by a line search procedure. Since R>kC1 Rk+ 1 sk
= yk, we see that (8) is equivalent to the quasi-Newton
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relation (4) when we impose the added restriction that
the Hessian approximation is positive definite.

Consider the question of how to revise Rk. The so-
called BFGS update (named after the first letter of the
surname of its four co-discoverers) makes the simplest
possible augmentation of Rk by adding to it a matrix
uv> of rank one. The updated matrix Rk + 1 is required
to satisfy (8) and is chosen as close as possible to Rk,
as measured by the Frobenius or spectral norm of the
difference (Rk + 1 � Rk). This update can be shown to be
as follows:

RkC1 D Rk C
Rksk
kRkskk

 
yk

(y>k sk)1/2
�

R>k Rksk
kRkskk

!>
;

(9)

where k � k denotes the Euclidean vector norm. The de-
scent search direction is defined as before by

dkC1 D �[R>kC1RkC1]�1gkC1;

and a line search along it will yield an improving point.
The foregoing BFGS algorithm is an outgrowth of sem-
inal variable-metric ideas pioneered by W.C. Davidon
[4] and clarified by R. Fletcher and M.J.D. Powell [6].
For other original references, see, for example, the bib-
liographies in [1] or [5].

Let MCkC1 = R>kC1 Rk + 1 and WCkC1 = [MCkC1]
�1.

These quantities can be updated directly as follows:

MCkC1 D MCk �
MCk sks

>
k M
C
k

s>k M
C
k sk

C
yky>k
y>k sk

(10)

WCkC1 D EkWCk E
>
k C

sks>k
y>k sk

; (11)

where

Ek D I �
sky>k
y>k sk

:

Limited-Memory Approach

When storage is at a premium, a version of the BFGS
algorithm (L-BFGS) preserves steps and corresponding
changes in gradients over a limited number of prior it-
erations, and defines the matrix MCk or WCk implicitly
in terms of these vectors instead of explicitly by form-
ing a square matrix. Consider the simplest case where
a single step and gradient change are preserved (one-

step memory). The update is then defined implicitly by
(11) withWCk = � k I, where � k is a scaling constant of-
ten taken to be y>k sk/y

>
k yk. Thus the search direction is

defined by

dkC1 D �

"
Ek(�kI)E>k C

sks>k
y>k sk

#
gkC1:

Under the assumption of exact line searches, i. e., g>kC1
sk = 0 it follows immediately that the search direction is
parallel to the following vector:

� gkC1 C
y>k gkC1

y>k sk
sk: (12)

This is the search direction used in the conjugate gradi-
ent method, pioneered byM.R.Hestenes and E.L. Stiefel
[9] and later suitably adapted to nonlinear optimization
by Fletcher and C. Reeves [7]. We say that L-BFGS is
a CG-related algorithm.

More generally, a set of prior steps and gradient
changes can be preserved and the update defined re-
cursively (see [11]). Key implementation issues are ad-
dressed in [8]. An alternative compact representation
for L-BFGS is given in [2]. Henceforth, let us denote
the Hessian and inverse Hessian approximations in L-
BFGS by L-MCk and L-WCk , respectively.

A limited-memory reduced-Hessian or successive
affine reduction version of the BFGS algorithm devel-
ops curvature approximations in an affine subspace de-
fined by the current gradient vector and a set of prior
steps. We will denote this algorithm by L-RH-BFGS and
its Hessian approximation by L-RH-M+

k . It too can be
shown to be CG-related. For details, see [8,14] and ref-
erences given therein.

Modified Newton Method

IfHk is available and possibly indefinite, it can be mod-
ified to a positive definite matrix, HCk , in a variety of
ways (see [1]). This modified matrix can be factored as
HCk = R>k Rk with Rk nonsingular, for example, by us-
ing a Cholesky factorization or an eigendecomposition.
The factor Rk then defines a metric-based algorithm as
above called a modified Newton method (MN).

A limited-memory modified Newton algorithm
analogous to L-RH-BFGS can also be formulated. For
details, see [14]. Denote this CG-related algorithm by L-
RH-MN and its Hessian approximation by L-RH-HCk .
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Summary

The steepest descent direction in each of the foregoing
methods is the direction dk that minimizes g>k d over all
vectors d of constant length ık in an appropriate metric.
(Typically ık = 1.) Let d = x � xk. Then this DfP can
equivalently be stated as follows:

(
min g>k (x� xk)
s.t. kx � xkkMCk � ık;

(13)

where MCk is given by one of the following: I; (DCk )
2;

MCk ; L-M
C
k ; L-RH-HCk ; L-RH-MCk ;H

C
k . The quantity ık

determines the length of the initial step along the search
direction, and a line search (LS) strategy yields an im-
proving point.

Let us denote the inverse of MCk by WCk . It is some-
times computationally more efficient to maintain the
latter matrix, for example, within a limited-memory
BFGS algorithm.

Newton–Cauchy Framework

A simple and elegant picture emerges from the devel-
opment in the two Sections above, which is summa-
rized by Fig. 1 (see also [15]). It is often convenient
to straddle this ‘two-lane highway’, so to speak, and to
formulate algorithms based on a ‘middle-of-the-road’
approach. We now describe the traditional synthesis
based on positive definite, unconstrained models and
a new synthesis, called the NC method, based on MCk -
metric trust regions.

Positive Definite Quadratic Models

At the current iterate xk, use an unconstrained DfP of
the following form:

min g>k (x� xk)C
1
2
(x � xk)>HCk (x� xk); (14)

whereHCk is one of the following: I; (DCk )
2;MCk ; L-M

C
k ;

L-RH-HCk ; L-RH-MCk ; H
C
k . Note that the DfP uses the

options available in (13), and indeed is a Lagrangian re-
laxation of the latter. Often these options for HCk are
derived directly in model-based terms. The search di-
rection obtained from (14) is dk = � [HCk ]

�1 gk and
a line search along it yields an improving iterate. A good
discussion of this line of development can be found
in [1].

Unconstrained Nonlinear Optimization: Newton–Cauchy
Framework, Figure 1
Newton–Cauchy framework. Legend: � – CG-related; # – not
fully explored

NCMethod

Substantial order can be brought to computational un-
constrained nonlinear minimization by recognizing the
existence of a single underlying method, henceforth
called the Newton–Cauchy or NC method, which is
based on a model of the form (6), but with its trust
region now employing a metric corresponding to (13).
This DfP takes the form

(
min g>k (x� xk)C 1

2 (x� xk)>Hk(x� xk)
s.t. kx � xkkMCk � ık;

(15)

where the matrix Hk is one of the following: the zero
matrix 0;Hk;Mk; L-Mk; L-RH-Hk; L-RH-Mk; Dk. Note
that the objective is permitted to be linear. The matrix
MCk is one of the following: I; (DCk )

2; MCk ; L-M
C
k ; L-

RH-HCk ; L-RH-MCk ;H
C
k . Despite numerical drawbacks,

it is sometimes computationally more convenient to
maintain WCk ; also note Hk = MCk gives a model equiv-
alent to Hk = 0.

The underlying theory for trust region subproblems
of the form (15) and techniques for computing the as-
sociated multiplier �k can be derived, for example, from
[13] or [16], and the next iterate is obtained by a TR/LS
strategy as discussed in the first Section; in particular,
a line search can ensure that y>k sk > 0, which is needed
whenever a variable metric is updated. Note also when
the objective function is linear that (15) reduces to (13),
and the TR/LS strategy reduces to a line-search strategy.

The NC method can be formulated into a large
variety of individual NC algorithms. These include all
the standard ones in current use, along with many
new and potentially useful algorithms, each a par-
ticular algorithmic expression of the same underly-
ing method. A sample of a few algorithms from
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Unconstrained Nonlinear Optimization: Newton–Cauchy
Framework, Figure 2
Examples of NC algorithms

amongst the many possibilities (combinations of Hk

and MCk ) is given in Fig. 2. The last column identifies
each algorithm, and the symbol 
 indicates that it is
new.

We see that even in this relatively mature field there
are still ample opportunities for new algorithmic con-
tributions, and for associated convergence and rate of
convergence analysis, numerical experimentation and
the development of quality software.
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The training (or supervised learning) problem for
a neural network [5,13] of given topology can be for-
mulated as the problem of determining the network pa-
rameters by minimizing some measure of the error be-
tween the desired output and the actual output, in cor-
respondence to a given set of input data. More specifi-
cally, consider a static network and suppose that a set of
desired input/output patterns (training set) is given:

T D
˚
(� j; t j) : j D 1; : : : ;M

�
;

where it is assumed that � j 2 Rp and tj 2 R.
Denoting by w 2 Rn the vector of network param-

eters and by y(w; �) 2 R the output of the network in
response to an input �, the training problem can be for-
mulated, for instance, as the (nonlinear) least squares
problem (cf. also � Least squares problems):

min
w

E(w) :D
MX
jD1

�
y(w; � j) � t j

�2
:

As an example, consider a simple two-layer feed-
forward network with one input � 2 R and one output
y 2 R, having a ‘hidden layer’ constituted by two neural
units with a sigmoidal input-output function (‘activa-
tion function’) defined by:

�(s) D
1

1C e�s
;

and an output layer consisting of one linear unit.
Let u1, u2 be the weights on the input connections,

let �1, �2 be the ‘thresholds’ associated to the hidden
units and let v1, v2 be the weights on the output con-
nections. Then the input/output map realized by the
network is given by

y D v1�(u1� j � �1)C v2�(u2� j � �2):

Therefore, given a set {(� j, tj)} of training pairs, the
training problem may consist in determining the pa-
rameter vector

w D (u1; u2; �1; �2; v1; v2)

that minimizes the error function:

MX
jD1

(v1�(u1� j � �1)C v2�(u2� j � �2) � t j)2:

Problems of this form constitute challenging uncon-
strained optimization problems, which typically exhibit
almost all the difficulties that may be encountered in the
minimization of a nonlinear function, and in particular:
� multiple local minima;
� steep sided valleys;
� extensive flat regions;
� singularities in the Hessian matrix.
Moreover, the number n of unknown parameters can
be large in many practical applications and the number
M of error terms can be huge, since it corresponds to
the number of training examples used in the learning
process.

It is also important to realize that the minimization
of the error function E itself is not the ultimate goal of
network training. In fact, the quality of learning would
rather depend on the network’s ability of making good
predictions for new inputs (not considered in the train-
ing data), that is, on the ‘generalization capability’ of the
network, [5,13]. Thus, a considerable amount of exper-
imentation may be required in order to choose prop-
erly the model complexity in relation to the available
data and to evaluate the results of the training phase.
In practice, this implies that very often the minimiza-
tion process has to be repeated, in correspondence to
different architectures, different training sets, different
stopping rules, and possibly also in correspondence to
different error functions. Then, although learning can-
not be simply reduced to an optimization problem, the
availability of efficient optimization algorithms can be
crucial for a successful learning.

Deterministic iterative methods that attempt to find
a minimizer of E can be categorized into:
� batch methods, which use at each step information

on the global error function E;
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� on-line methods, which use information on a single
error term

Ej(w) D
�
y(w; � j) � t j

�2

at time.
Batch methods can be used only for off-line learning,
that is when the whole training set is available before
that learning is started, whereas on-line methods can
be employed both for off-line learning and for on-line
learning, that is when the training set is formed during
real time operations of the network.

In the neural network literature the best known
training method is the so-called backpropagation
method (BP) [22], which owes its name essentially to
the technique used for computing the derivatives of E
in a multilayer network, a technique based on an effi-
cient use of the chain rule, which can be identified with
the reverse mode technique of automatic differentiation
[23] (cf. also�Automatic differentiation: Introduction,
history and rounding error estimation). The BPmethod
has been implemented both in batch mode (‘batch BP’
or ‘off-line BP’) and in an on-line mode (‘on-line BP’ or
‘stochastic BP’ or ‘pattern mode training’).

In the batch version, the BP method can be viewed
as an heuristic implementation of the gradient method
(or steepest descent method) and it can be described by
the iteration:

wkC1 D wk � ˛rE(wk); (1)

where rE is the gradient of E and the stepsize ˛> 0 is
termed the ‘learning rate’. Global convergence and rate
of convergence analyses of iteration (1) with a constant
stepsize can be found, for instance, in [2]. In particular,
it is known that a convergent implementation would re-
quire the stepsize to satisfy the bound

0 < ˛ <
2
L
;

under the assumption that rE is Lipschitz-continuous
on Rn with constant L. As the value of L is unknown,
it may be difficult to find an appropriate value for ˛.
This may suggest the use of an inexact line search tech-
nique for computing the stepsize along the search di-

rection. With a suitable implementation, the increase
in the computational cost per iteration due to the line
searches would be compensated by a definite improve-
ment in the overall efficiency and reliability.

Modifications of the BP method and heuristic rules
for choosing and updating ˛ have been also extensively
studied in the neural network literature [7,25].

An improved version of the basic BP method is the
so-called momentum updating rule [22], which consists
in the iteration:

wkC1 D wk � ˛rE(wk )C ˇ(wk � wk�1); (2)

where ˇ> 0 is a suitable parameter. In the optimiza-
tion literature, this method is known as the heavy ball
method [20], because of a physical analogy with the mo-
tion of a body in a potential field, subject to an energy
loss caused by friction. Under appropriate assumptions,
it can be shown [21] that the convergence rate of this
method is superior to that of the gradient method, but
there is again the difficulty of choosing suitable values
for the parameters ˛ and ˇ.

On the other hand, when batch training is adopted,
many well-known unconstrained minimization meth-
ods are available for computing stationary points of E,
such as
� conjugate gradient methods (CGM; cf. � Conju-

gate-gradient methods);
� quasi-Newton methods;
� Newton-type methods.
Moreover, as the training problem is a nonlinear least
squares problem, also the use of some modified form
of the Gauss–Newton method is suitable, at least when
small residues are expected.

It can be observed that an iteration of the CGM can
be placed equivalently into the form

wkC1 D wk � ˛krE(wk)C
˛kˇk

˛k�1 (w
k � wk�1);

where ˛k is the stepsize (to be computed through a line
search) and ˇk is the parameter appearing in the par-
ticular CGM formula we may adopt. This would corre-
spond to a momentum updating rule where the choice
of the parameters ˛k and ˇk can be made on a sound
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theoretical basis. In fact, the use of the CGMhas been
suggested since the early papers on neural networks and
good results have been obtained [6], for instance, by
employing the Polak–Ribière CGM, which corresponds
to the choice:

ˇk D
rE(wk)>(rE(wk) � rE(wk�1))

rE(wk�1)



2 :

Various applications and adaptations of the CGM can
be found in the recent neural network literature [18,25].
For large scale training problems a viable alternative
can be also the use of some reduced memory quasi-
Newton method [19]. In particular, training algorithms
employing a memoryless BFGS method (also known as
Shanno conjugate gradient method [24]) have been con-
sidered [1]. This method can be defined through the it-
eration

wkC1 D wk C ˛kdk ;

where the stepsize ˛k is computed through an (inaccu-
rate) line search and the search direction dk is obtained
by taking initially d0 = � r E(w0) and then computing
for k > 0 the vectors

s D wk � wk�1;

y D rE(wk) � rE(wk�1)

and letting

dk D �rE(wk)C ak yk C bksk ;

where:

ak D
(sk)>rE(wk)

(sk)>yk
;

bk D �ak
�
1C

(yk)>yk

(sk)>yk

�
C

(yk)>rE(wk)
(sk)>yk

:

It can be shown that the search directions are descent
directions, provided that

(sk)>yk > 0;

which can be enforced through an appropriate line
search.

Several experiments have been also made by using
Newton-type methods employing second order deriva-
tives of E. In particular, truncated Newton methods ap-
pear to be valuable for large-dimensional training prob-
lems [8], but the use of second order methods may be
not so convenient in case of singularities in the Hessian
matrix of E at the solutions, since the superlinear con-
vergence rate usually associated to Newton-type meth-
ods may be lost. However, singularities are most likely
to occur when the number of free parameters is too
large in relation to the available data, a situation which
would suggest the need of ‘pruning’ the network.

On the whole, whenever batch learning is viable,
it can be safely said that unconstrained minimization
methods are of some order of magnitude faster with
respect early heuristic training methods and the CGM
method appears to be the technique of election. Special
cautions are required in the choice of the starting point
w0, which, in principle, should be such that the level set

L D
˚
w : E(w) � E(w0)

�

is bounded. A useful device may be that of minimizing
a modified objective function of the form

eE(w) D E(w)C " kwk2

where " is a small parameter. This ensures that all level
sets are compact and may prevent the algorithms from
reaching flat regions corresponding to very large values
ofw. The addition of the term " kw k2 may also have an
important motivation in the context of learning theory
since it corresponds, in essence, to regularizing the er-
ror function by introducing a ‘complexity penalty’ that
‘encourages the excess weights to assume values closer
to zero, and thereby improve generalization’ [13].

Moreover, in association with a local method, some
form of multistart method may be required for search-
ing a global minimizer or, alternatively, the use of a de-
terministic technique of global optimization can be
attempted. Training algorithms employing homotopic
methods and tunneling methods are described in [25].

However, batch methods are not suitable in on-
line learning problems, since the objective function is
not known when training is started, and hence on-line
methods have to be adopted.



3972 U Unconstrained Optimization in Neural Network Training

In the on-line version, the BP method can be de-
scribed as a sequence of cycles (‘epochs’), each consist-
ing ofM iterations that update the vector w by employ-
ing the negative gradient of a single error term Ej at time
(possibly in a random order). This can be described by
means of the following simplified scheme.

1. Choose w0 and set k = 0;
2. Set y0 = wk and choose ˛;
3. For j = 1; : : : ; M:

set y j = y j�1 � ˛rEj(y j�1)
4. Set wk+1 = yM ;
5. Set k = k + 1 and return to 2.

On-line backpropagation

It is also possible to introduce a ‘momentum term’
by replacing, for j > 1, the update considered at Step 3
of the preceding scheme with an update of the form:

y j D y j�1 � ˛rEj(y j�1)C ˇ(y j�1 � y j�2);

or else by introducing a memory of the preceding step
also when passing to a new epoch.

For on-line BP, the problem of selecting an ap-
propriate value for ˛ becomes more critical, since the
method may not converge with a fixed stepsize. In spite
of this, various heuristic versions of on-line BP have
been employed with satisfactory results in many neural
network applications and the interesting fact is that on-
line BP employing simple heuristics is often superior
to more sophisticated batch unconstrained optimiza-
tion methods even for off-line learning, at least when
the number of training pairs is very large and the train-
ing set is highly redundant [28]. In fact, in this case, it
could be wasteful to spend much time in computing ex-
actly the gradient of E when far from the solution. In
addition, it would seem that an on-line procedure in-
troduces some sort of randomness that may help es-
caping from local minimizers. In fact, on-line BP can
be viewed as a stochastic process that introduces a ran-
dom error on the gradient, which may prevent the algo-
rithm from being trapped at irrelevant local minimiz-
ers.

Neural network applications have stimulated a con-
siderable interest in the field of unconstrained opti-
mization towards the convergence analysis of on-line

methods (often termed incremental gradient methods)
and the development of new algorithms. From a deter-
ministic point of view, incremental gradient methods
can be viewed as algorithms for minimizing a sum of
M differentiable functions, in which the computation
of derivatives is split into a set of M (or more) consec-
utive steps. An early contribution to the study of this
problem (with a different motivation) has been given in
[14], where the case of a convex objective function is
studied. More recently, convergence results have been
obtained by giving rules for the stepsizes, which, under
suitable assumptions, may ensure convergence towards
stationary points. In particular, stepsize rules for non-
convex problems have been established in [9,29], by us-
ing stochastic approximation ideas and in [15,16], by
employing deterministic approaches.

A thorough analysis of incremental gradient meth-
ods and a description of an incremental version of
the Gauss–Newton method, which leads to a discrete
version of the extended Kalman filter, can be found
in [4].

In particular, in the case of on-line BP, under the
assumption that the gradientsrEj are Lipschitz contin-
uous and that the sequence {wk} generated by on-line
BP is bounded (or else that k rEj k grows at most lin-
early with k rE k) it can be shown that every limit point
of {wk} is a stationary point of E, provided that the step-
sizes ˛k are such that

1X
kD0

˛k D 1 and
1X
kD0

(˛k)2 <1:

As an example, the choice

˛k D
c
k
;

for some c > 0, which is considered in the stochas-
tic approximation literature, would satisfy these con-
ditions. Similar convergence results have been also es-
tablished in connection with the momentum updating
rule [16].

In any case, we have that the stepsize must be
driven, in principle, to zero for ensuring convergence
of on-line methods, and this could be highly inefficient
in comparison with a batch gradient method. Some at-
tempts have been made in order to overcome this dif-
ficulty. A possible compromise is the use of hybrid on-
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line-batch BP techniques, called bold-driver methods in
the neural network literature, where on-line BP is used
with a fixed stepsize for one (or more epochs), but the
stepsize is revised periodically by evaluating the behav-
ior of the global error function E [27]. Globally conver-
gent algorithms based on this idea have been also con-
sidered in [10] and [26]. These techniques may improve
the performance of on-line BP in case of off-line learn-
ing with a moderately large and redundant training set,
but still has the disadvantage that the whole objective
function has to be evaluated, which is expensive when
M is very large and is unsuitable in case of ‘truly’ on-
line learning. A different approach can be that of reduc-
ing the degree of incrementalism as the method pro-
gresses and to gradually switch from the incremental
gradient method, which can be quite effective at early
stages of the process, to the steepest descent method,
which has a much better ultimate convergence rate [3].
Still another approach can be that of constructing mul-
tiple copies of the network, each trained (possibly in
a batch mode) with different data blocks (added as they
become available), and then penalizing the disagree-
ment between the various solutions in a way that ul-
timate convergence can be achieved [11,12]. However,
an extensive computational testing of these approaches
is not available and research on incremental gradient
methods is still an active field, so that further progresses
may be expected.

Suggested general references on the application of
optimization methods to neural network training are
[4,5,13,25], and [17].
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Introduction

Variable neighborhood search (VNS) is a metaheuris-
tic, or framework for building heuristics, aimed at solv-
ing combinatorial and global optimization problems.
Its basic idea is systematic change of a neighborhood
combined with a local search. Since its inception, VNS
has undergone many developments and been applied in

numerous fields. We review here the basic rules of VNS
and of its main extensions. Moreover, some of the most
successful applications are briefly summarized. Point-
ers to many other ones are given in the reference list.

A deterministic optimization problem may be for-
mulated as

minf f (x)jx 2 X; X � Sg; (1)

where S; X; x and f denote respectively the solution
space and feasible set, a feasible solution and a real-
valued objective function, respectively. If S is a finite but
large set, a combinatorial optimization problem is de-
fined. If S D Rn , we talk about continuous optimization.
A solution x� 2 S is optimal if

f (x�) � f (x); 8x 2 S;

an exact algorithm for problem (1), if one exists, finds
an optimal solution x�, together with the proof of its
optimality, or shows that there is no feasible solution,
i. e., S D ;. Moreover, in practice, the time to do so
should be finite (and not too large); if one deals with
a continuous function one must admit a degree of tol-
erance i. e., stop when a feasible solution x� has been
found such that

f (x�) < f (x)C "; 8x 2 S or
f (x�) � f (x)

f (x�)
< "; 8x 2 S

for some small positive ".
Many practical instances of problems of the

form (1), arising in operations research and other fields,
are too large for an exact solution to be found in rea-
sonable time. It is well known from complexity the-
ory [46,85] that thousands of problems are nondeter-
ministic polynomial-time hard (NP-hard), that no al-
gorithm with a number of steps polynomial in the size
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of the instances is known for solving any of them and
that finding one would entail obtaining one for each
and all of them. Moreover, in some cases where a prob-
lem admits a polynomial algorithm, the power of this
polynomial may be so large that realistic size instances
cannot be solved in reasonable time in the worst case,
and sometimes also in the average case or most of the
time.

So one is often forced to resort to heuristics, which
yield quickly an approximate solution, or sometimes an
optimal solution but without proof of its optimality.
Some of these heuristics have a worst-case guarantee,
i. e., the solution xh obtained satisfies

f (xh) � f (x)
f (xh)

� "; 8x 2 X (2)

for some ", which is, however, rarely small. Moreover,
this " is usually much larger than the error observed in
practice and may therefore be a bad guide in selecting
a heuristic. In addition to avoiding excessive computing
time, heuristics address another problem: local optima.
A local optimum xL of (1) is such that

f (xL) � f (x); 8x 2 N(xL) \ X ; (3)

where N(xL) denotes a neighborhood of xL (ways to
define such a neighborhood will be discussed later). If
there are many local minima, the range of values they
span may be large. Moreover, the globally optimum
value f (x�) may differ substantially from the average
value of a local minimum, or even from the best such
value among many, obtained by some simple heuristic
such as multistart (a phenomenon called the Tcheby-
cheff catastrophe in [7]). There are, however, many
ways to get out of local optima and, more precisely, the
valleys which contain them (or set of solutions from
which the descent method under consideration leads to
them).

Metaheuristics are general frameworks to build
heuristics for combinatorial and global optimization
problems. For discussion of the best known of them
the reader is referred to surveys [17,49,91]. Some of the
many successful applications of metaheuristics are also
mentioned there.

Variable neighborhood search (VNS) [55,56,
59,78] is a metaheuristic which exploits systematically
the idea of neighborhood change, both in descent to

local minima and in escape from the valleys which
contain them. VNS relies heavily upon the following
observations:

Fact 1 A local minimum with respect to one neighbor-
hood structure is not necessarily so for another;

Fact 2 A global minimum is a local minimum with re-
spect to all possible neighborhood structures;

Fact 3 For many problems local minima with respect
to one or several neighborhoods are relatively
close to each other.

This last observation, which is empirical, implies that
a local optimum often provides some information
about the global one. This may, for instance, be sev-
eral variables with the same value in both. However,
it is usually not known which ones are such. An orga-
nized study of the neighborhood of this local optimum
is therefore in order, until a better one is found.

Unlike many other metaheuristics, the basic
schemes of VNS and its extensions are simple and
require few, and sometimes no parameters. Therefore
in addition to providing very good solutions, often in
simpler ways than other methods, VNS gives insight
into the reasons for such a performance, which in turn
can lead to more efficient and sophisticated implemen-
tations.

Background

VNS embeds a local search heuristic for solving com-
binatorial and global optimization problems. There are
predecessors of this idea. It allows change of the neigh-
borhood structures within this search. In this section
we give a brief introduction to the variable metric al-
gorithm for solving continuous convex problems and
local search heuristics for solving combinatorial and
global optimization problems.

Variable Metric Method

The variable metric method for solving unconstrained
continuous optimization problem (1) was suggested by
Davidon [27] and Fletcher and Powell [43]. The idea is
to change the metric (and thus the neighborhood) in
each iteration such that the search direction (steepest
descent with respect to the current metric) adapts bet-
ter to the local shape of the function. In the first itera-
tion a Euclidean unit ball in n-dimensional space is used
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and the steepest descent (antigradient) direction found;
in the next iterations, ellipsoidal balls are used and the
steepest descent direction with respect to a new metric
is obtained after a linear transformation. The purpose
of such changes is to build up, iteratively, a good ap-
proximation to the inverse of the Hessian matrix A�1

of f , that is, to construct a sequence of matrices Hi with
the property,

lim
t 1

Hi D A�1 :

In the convex quadratic programming case the limit is
achieved after n iterations instead of1. In that way the
so-called Newton search direction is obtained. The ad-
vantages are (1) it is not necessary to find the inverse of
the Hessian (which requires O(n3) operations) in each
iteration; (2) the second -order information is not de-
manded.

Assume that the function f (x) is approximated by
its Taylor series

f (x) D
1
2
xTA x � bTx (4)

with positive-definite matrix A (A > 0). Applying the
first-order condition r f (x) D Ax � b D 0, we have
Axopt D b, where xopt is a minimum point. At the cur-
rent point we have A xi D r f (xi)C b:Wewill not rig-
orously derive here the Davidon–Fletcher–Powell algo-
rithm for taking Hi to HiC1. Let us just mention that
subtracting these two equations and multiplying (from
the left) by the inverse matrix A�1, we have

xopt � xi D �A�1r f (xi):

Subtracting the latest equation at xiC1 from the same
equation at xi gives

xiC1 � xi D �A�1(r f (xiC1) � r f (xi)) : (5)

Having made the step from xi to xiC1, wemight reason-
ably want to require that the new approximation HiC1

satisfies (5) as if it were actually A�1, that is,

xiC1 � xi D �HiC1(r f (xiC1) � r f (xi)) : (6)

We might also assume that the updating formula for
matrix Hi should be of the form HiC1 D Hi C U ,
where U is a correction. It is possible to get different

Function VarMetric(x);
let x 2 Rn be an initial solution1

H  I; g  �r f (x)2

for i = 1 to n do3

˛�  argmin˛ f (x + ˛ � Hg)4

x  x + ˛� � Hg; g  �r f (x)5

H  H + U6

end

Variable Neighborhood SearchMethods, Algorithm 1
Variable metric algorithm

FunctionBestImprovement(x)
repeat1

x0  x2

x  argminy2N(x) f (y)3

until ( f (x) � f (x0)) ;

Variable Neighborhood SearchMethods, Algorithm 2
Best improvement (steepest descent) heuristic

updating formulas for U and thus for HiC1, keeping
HiC1 positive-definite (HiC1 > 0). In fact, there exists
a whole family of updates, the Broyden family. From
practical experience the Broyden–Fletcher–Goldfarb–
Shanno method seem to be most popular (see [48] for
details). Pseudo-code is given in Algorithm 1.

From the above one can conclude that even in solv-
ing a convex program a change of metric, and thus
change of the neighborhoods induced by that metric,
may produce more efficient algorithms. Thus, using
the idea of neighborhood change for solving NP-hard
problems could well lead to even greater benefits.

Local Search

A local search heuristic consists in choosing an initial
solution x, finding a direction of descent from x, within
a neighborhood N(x), and moving to the minimum of
f (x) within N(x) along that direction; if there is no di-
rection of descent, the heuristic stops, and otherwise it
is iterated. Usually the steepest descent direction, also
referred to as best improvement, is used. This set of rules
is summarized in Algorithm 2, where we assume that an
initial solution x is given. The output consists of a local
minimum, also denoted with x, and its value.

Observe that a neighborhood structure N(x) is de-
fined for all x 2 X; in discrete optimization problems it
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Function FirstImprovement(x)
repeat1

x0  x; i  02

repeat3

i  i + 14

x  argminf f (x); f (xi)g, xi 2 N(x)5

until ( f (x) < f (xi) or i = jN(x)j) ;
until ( f (x) � f (x0)) ;

Variable Neighborhood SearchMethods, Algorithm 3
First improvement heuristic

usually consists of all vectors obtained from x by some
simple modification, e. g., complementing one or two
components of a 0–1 vector. Then, at each step, the
neighborhood N(x) of x is explored completely. As this
may be time-consuming, an alternative is to use the first
descent heuristic. Vectors xi 2 N(x) are then enumer-
ated systematically and a move is made as soon as a de-
scent direction is found. This is summarized in Algo-
rithm 3.

Basic Schemes

Let us denote withNk , (k D 1; : : : ; kmax), a finite set of
preselected neighborhood structures, and with Nk(x)
the set of solutions in the kth neighborhood of x. We
will also use notation N 0k ; k D 1; : : : ; k0max, when de-
scribing local descent. NeighborhoodsNk orN 0k may
be induced from one or more metric (or quasi-metric)
functions introduced into a solution space S. An opti-
mal solution xopt (or global minimum) is a feasible solu-
tion where a minimum of (1) is reached. We call x0 2 X
a local minimum of (1) with respect toNk , if there is no
solution x 2Nk(x0) � X such that f (x) < f (x0).

In order to solve (1) by using several neighbor-
hoods, facts 1–3 can be used in three different ways:
(i) deterministic; (ii) stochastic; (iii) both deterministic
and stochastic. We first give in Algorithm 4 steps of the
neighborhood change function that will be used later.

The function NeighborhoodChange() com-
pares the new value f (x0) with the incumbent value
f (x) obtained in the neighborhood k (line 1). If an im-
provement is obtained, k is returned to its initial value
and the new incumbent updated (line 2). Otherwise, the
next neighborhood is considered (line 3).

Function NeighborhoodChange (x; x0; k)
if f (x0) < f (x) then1

x  x0; k 1 /* Make a move */2

else
k k + 1 /* Next neighborhood */3

end

Variable Neighborhood Search Methods, Algorithm 4
Neighborhood change or move or not function

Function VND (x; k0max )
repeat1

k 12

repeat3

x0  argminy2N 0k (x) f (x)4
/* Find the best neighbor in Nk(x) */
NeighborhoodChange (x; x0; k)5

/* Change neighborhood */
until k = k0max ;

until no improvement is obtained ;

Variable Neighborhood Search Methods, Algorithm 5
Steps of the basic variable neighborhood descent (VND)

Variable Neighborhood Descent

The variable neighborhood descent (VND) method is
obtained if the change of neighborhoods is performed
in a deterministic way. Its steps are presented in Algo-
rithm 5. In the descriptions of all algorithms that follow
we assume that an initial solution x is given.

Most local search heuristics use in their descents
a single or sometimes two neighborhoods (k0max � 2).
Note that the final solution should be a local minimum
with respect to all k0max neighborhoods, and thus the
chances of reaching a global one are larger when us-
ing VND than with a single neighborhood structure.
Beside this sequential order of neighborhood struc-
tures in VND above, one can develop a nested strat-
egy. Assume, e. g., that k0max D 3; then a possible nested
strategy is: perform VND from Fig. 8 for the first two
neighborhoods, in each point x0 that belongs to the
third (x0 2N3(x)). Such an approach is applied, e. g.,
in [14,57].

Reduced VNS

The reduced VNS (RVNS) method is obtained if ran-
dom points are selected from Nk(x) and no descent
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Function RVNS (x; kmax ; tmax)
repeat1

k  12

repeat3

x0  Shake(x; k)4

NeighborhoodChange (x; x0; k)5

until k = kmax ;
t  CpuTime()6

until t > tmax ;

Variable Neighborhood Search Methods, Algorithm 6
Steps of the reduced variable neighborhood search (RVNS)

is made. Rather, the values of these new points are
compared with that of the incumbent and updating
takes place in the case of improvement. We assume that
a stopping condition has been chosen, among various
possibilities, e. g., themaximumCPU time allowed tmax,
or the maximum number of iterations between two im-
provements. To simplify the description of the algo-
rithms we always use tmax below. Therefore, RVNS uses
two parameters: tmax and kmax. Its steps are presented
in Algorithm 6. With the function Shake represented
in line 4, we generate a point x0 at random from the kth
neighborhood of x, i. e., x0 2Nk (x).

RVNS is useful for very large instances for which
local search is costly. It is observed that the best value
for the parameter kmax is often 2. In addition, the maxi-
mum number of iterations between two improvements
is usually used as a stopping condition. RVNS is akin to
aMonte Carlo method, but is more systematic (see [80],
where results obtained by RVNS were 30% better than
those of the Monte Carlo method in solving a contin-
uous min–max problem). When applied to the p-me-
dian problem, RVNS gave equally good solutions as the
fast interchange heuristic of [104] in 20–40 times less
time [60].

Basic VNS

The basic VNS method [78] combines deterministic
and stochastic changes of neighborhood. Its steps are
given in Algorithm 7.

Often successive neighborhoodsNk will be nested.
Observe that point x0 is generated at random in step 4
in order to avoid cycling, which might occur if any de-
terministic rule was applied. In step 5 the first improve-
ment local search (Algorithm 3) is usually adopted;

Function VNS (x; kmax ; tmax)
repeat1

k 12

repeat3

x0  Shake(x; k)4

/* Shaking */
x00  FirstImprovement(x0)5

/* Local search */
NeighborhoodChange(x; x00; k)6

/* Change neighborhood */
until k = kmax ;
t  CpuTime()7

until t > tmax ;

Variable Neighborhood SearchMethods, Algorithm 7
Steps of the basic variable neighborhood search (VNS)

however, it can be replaced with best improvement (Al-
gorithm 2).

General VNS

Note that the local search step 5 may be also re-
placed by VND (Algorithm 4). Using this general VNS
(VNS/VND) approach led to the most successful appli-
cations reported [3,14,18,20,21,22,23,57,61,94,96]. The
steps of the general VNS are given in Algorithm 8.

Skewed VNS

The skewed VNS (SVNS) method [53] addresses the
problem of exploring valleys far from the incumbent
solution. Indeed, once the best solution in a large region
has been found it is necessary to go quite far to obtain
an improved one. Solutions drawn at random in far-
away neighborhoods may differ substantially from the
incumbent and VNS can then degenerate, to some ex-
tent, into the multistart heuristic (in which descents are
made iteratively from solutions generated at random,
and which is known not to be very efficient). So some
compensation for distance from the incumbent must be
made and a scheme called SVNS is proposed for that
purpose. Its steps are presented in Algorithms 9 and 10,
where the KeepBest(x; x0) function simply keeps the
better between x and x0: if f (x0) < f (x) then x  x0.

SVNS makes use of a function �(x; x00) to measure
the distance between the incumbent solution x and the
local optimum found x00. The distance used to define
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Variable Neighborhood SearchMethods, Figure 1
General VNS (GVNS)

Function GVNS (x; k0max ; kmax ; tmax)
repeat1

k 12

repeat3

x0  Shake(x; k)4

x00  VND(x0; k0max)5

NeighborhoodChange(x; x00; k)6

until k = kmax ;
t  CpuTime()7

until t > tmax ;

Variable Neighborhood SearchMethods, Algorithm 8
Steps of the GVNS

Function NeighborhoodChangeS(x; x00; k; ˛)
if f (x00) � ˛�(x; x00) < f (x) then1

x  x00; k 12

else
k k + 13

end

Variable Neighborhood SearchMethods, Algorithm 9
Steps of neighborhood change for the skewed VNS (SVNS)

Function SVNS (x; kmax ; tmax ; ˛)
repeat1

k 1; xbest  x2

repeat3

x0  Shake(x; k)4

x00  FirstImprovement(x0)5

KeepBest (xbest ; x)6

NeighborhoodChangeS(x; x00; k; ˛)7

until k = kmax ;
x  xbest8

t  CpuTime()9

until t > tmax ;

Variable Neighborhood Search Methods, Algorithm 10
Steps of the SVNS

the Nk , as in the above examples, could be used also
for this purpose. The parameter ˛ must be chosen in
order to accept exploring valleys far from x when f (x00)
is larger than f (x) but not too much larger (otherwise
one will always leave x). A good value is to be found ex-
perimentally in each case. Moreover, in order to avoid
frequent moves from x to a close solution, one may take
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a large value for ˛ when �(x; x00) is small. More so-
phisticated choices for a function of ˛�(x; x00) could be
made through some learning process.

Some Extensions of Basic VNS

Several easy ways to extend the basic VNS are now dis-
cussed. The basic VNS is a descent, first improvement
method with randomization. Without much additional
effort it could be transformed into a descent–ascent
method: in the NeighborhoodChange() function
set also x  x00 with some probability even if the solu-
tion is worse than the incumbent (or the best solution
found so far). It could also be changed into a best im-
provement method: make a move to the best neighbor-
hood k� among all kmax of them. Its steps are given in
Algorithm 11.

Another variant of the basic VNS could be to find
a solution x0 in step 4 as the best among b (a parame-
ter) randomly generated solutions from the kth neigh-
borhood. There are two possible variants of this exten-
sion: (i) perform only one local search from the best
point among b; (ii) perform all b local searches and then
choose the best. We now give an algorithm of a second
type suggested by Fleiszar and Hindi [41]. There, the
value of parameter b is set to k. In that way no new pa-
rameter is introduced (see Algorithm 12).

It is also possible to introduce kmin and kstep, two pa-
rameters that control the change of the neighborhood
process: in the previous algorithms instead of k  1 set
k kmin and instead of k k C 1 set k k C kstep.
Steps of jump VNS are given in Algorithms 13 and 14.

Variable Neighborhood Decomposition Search

While the basic VNS is clearly useful for approximate
solution of many combinatorial and global optimiza-
tion problems, it remains difficult or takes a long time
to solve very large instances. Often the size of the prob-
lems considered is limited in practice by the tools avail-
able to solve them more than by the needs of poten-
tial users of these tools. Hence, improvements appear to
be highly desirable. Moreover, when heuristics are ap-
plied to really large instances their strengths and weak-
nesses become clearly apparent. Three improvements
of the basic VNS for solving large instances are now
considered.

Function BI-VNS (x; kmax ; tmax)
repeat1

k 1 xbest  x2

repeat3

x0  Shake(x; k)4

x00  FirstImprovement(x0)5

KeepBest(xbest; x00)6

k k + 17

until k = kmax ;
x  xbest8

t  CpuTime()9

until t > tmax ;

Variable Neighborhood SearchMethods, Algorithm 11
Steps of the basic best improvement VNS (BI-VNS)

Function FH-VNS (x; kmax ; tmax)
repeat1

k 12

repeat3

for ` = 1 to k do4

x0  Shake(x; k)5

x00  FirstImprovement(x0)6

KeepBest(x; x00)7

end
NeighborhoodChange(x; x00; k)8

until k = kmax ;
t  CpuTime()9

until t > tmax ;

Variable Neighborhood SearchMethods, Algorithm 12
Steps of the Fleszar–Hindi extension of the basic VNS (FH-
VNS)

The variable neighborhood decomposition search
(VNDS) method [60] extends the basic VNS into a two-
level VNS scheme based upon decomposition of the
problem. Its steps are presented in Algorithm 15, where
td is an additional parameter and represents the run-
ning time given for solving decomposed (smaller-sized)
problems by VNS.

For ease of presentation, but without loss of general-
ity, we assumed that the solution x represents the set of
some elements. In step 4 we denote with y a set of k so-
lution attributes present in x0 but not in x (y D x0 n x).
In step 5 we find the local optimum y0 in the space of
y; then we denote with x00 the corresponding solution
in the whole space S (x00 D (x0 n y) [ y0). We noticed
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Function J-VNS (x; kmin ; kste p; kmax ; tmax)
repeat1

k  kmin2

repeat3

x0  Shake(x; k)4

x00  FirstImprovement(x0)5

NeighborhoodChangeJ(x; x00; k; kmin ; kste p)6

until k = kmax ;
t  CpuTime()7

until t > tmax ;

Variable Neighborhood SearchMethods, Algorithm 13
Steps of the jump VNS (J-VNS)

Function NeighborhoodChangeJ (x; x0; k; kmin ; kste p)
if f (x0) < f (x) then1

x  x0; k kmin2

else
k k + kste p3

end

Variable Neighborhood SearchMethods, Algorithm 14
Neighborhood change or move or not function

Function VNDS (x; kmax ; tmax ; td )
repeat1

k 22

repeat3

x0  Shake (x; k); y x0 n x4

y0  VNS(y; k; td); x00 = (x0 n y) [ y05

x000  FirstImprovement(x00)6

NeighborhoodChange(x; x000; k)7

until k = kmax ;
until t > tmax ;

Variable Neighborhood SearchMethods, Algorithm 15
Steps of variable neighborhood decomposition search
(VNDS)

that exploiting some boundary effects in a new solution
can significantly improve the solution quality. That is
why, in step 6, we find the local optimum x000 in the
whole space S using x00 as an initial solution. If this is
time-consuming, then at least a few local search itera-
tions should be performed.

VNDS can be viewed as embedding the classi-
cal successive approximation scheme (which has been
used in combinatorial optimization at least since the
1960s [50]) in the VNS framework.

Parallel VNS

Parallel VNS methods are another extension. Several
ways for parallelizing VNS have recently been pro-
posed [26,71] in solving the p-median problem. In [71]
three of them were tested: (i) parallelize local search;
(ii) augment the number of solutions drawn from the
current neighborhood and do local search in paral-
lel from each of them and (iii) do the same as for
method 2 but update the information on the best so-
lution found. The second version gave the best results.
It was shown in [26] that assigning different neighbor-
hoods to each processor and interrupting their work as
soon as an improved solution is found gives very good
results: the best known solutions have been found on
several large instances taken from TSP-LIB [92]. Three
parallel VNS strategies are also suggested for solving the
traveling purchaser problem in [83].

Primal–Dual VNS

For most modern heuristics the difference in value be-
tween the optimal solution and the one obtained is
completely unknown. Guaranteed performance of the
primal heuristic may be determined if a lower bound on
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Function PD-VNS (x; k0max ; kmax ; tmax)
BVNS (x; k0max ; kmax ; tmax)1

/* Solve primal by VNS */
DualFeasible(x; y)2

/* Find (infeasible) dual such that fP = fD */
DualVNS(y)3

/* Use VNS do decrease infeasibility */
DualExact(y)4

/* Find exact (relaxed) dual */
BandB(x; y)5

/* Apply branch-and-bound method */

Variable Neighborhood Search Methods, Algorithm 16
Steps of the basic primal–dual VNS (PD-VNS)

the objective function value is known. To that end the
standard approach is to relax the integrality condition
on the primal variables, based on a mathematical pro-
gramming formulation of the problem. However, when
the dimension of the problem is large, even the relaxed
problemmay be impossible to solve exactly by standard
commercial solvers. Therefore, it looks to be a good
idea to solve dual relaxed problems heuristically as well.
In that way we get guaranteed bounds on the primal
heuristics performance. The next problem arises if we
want to get exact solution within a branch-and-bound
framework since having the approximate value of the
relaxed dual does not allow us to branch in an easy
way, e. g., exploiting complementary slackness condi-
tions. Thus, the exact value of the dual is necessary.

In primal–dual VNS [52] we propose one possible
general way to get both the guaranteed bounds and the
exact solution. Its steps are given in Algorithm 16.

In the first stage a heuristic procedure based onVNS
is used to obtain a near-optimal solution. In [52] we
showed that VNS with decomposition is a very power-
ful technique for large-scale simple plant location prob-
lems (SUPPL) up to 15,000 facilities × 15,000 users. In
the second phase, our approach is designed to find an
exact solution of the relaxed dual problem. For solv-
ing SPLP, this is accomplished in three stages: (i) find
an initial dual solution (generally infeasible) using the
primal heuristic solution and complementary slackness
conditions; (ii) improve the solution by applying VNS
on the unconstrained nonlinear form of the dual; (iii) fi-
nally, solve the dual exactly using a customized “sliding
simplex” algorithm that applies “windows” on the dual

variables to reduce substantially the size of the problem.
In all problems tested, including instances much larger
than previously reported in the literature, our proce-
dure was able to find the exact dual solution in rea-
sonable computing time. In the third and final phase
armed with tight upper and lower bounds, obtained, re-
spectively, from the heuristic primal solution in phase 1
and the exact dual solution in phase 2, we apply a stan-
dard branch-and-bound algorithm to find an optimal
solution of the original problem. The lower bounds
are updated with the dual sliding simplex method and
the upper bounds whenever new integer solutions are
obtained at the nodes of the branching tree. In this
way we were able to solve exactly problem instances
with up to 7; 000 � 7; 000 for uniform fixed costs and
15,000 × 15,000 otherwise.

Variable Neighborhood Formulation Space Search

Traditional ways to tackle an optimization problem
consider a given formulation and search in some way
through its feasible set S. The fact that the same prob-
lem may often be formulated in different ways allows
us to extend search paradigms to include jumps from
one formulation to another. Each formulation should
lend itself to some traditional search method, its “lo-
cal search” that works totally within this formulation,
and yields a final solution when started from some ini-
tial solution. Any solution found in one formulation
should easily be translatable to its equivalent formula-
tion in any other formulation. Wemay then move from
one formulation to another using the solution resulting
from the former’s local search as the initial solution for
the latter’s local search. Such a strategy will of course
only be useful ff local searches in different formulations
behave differently.

This idea was recently investigated in [81] using
an approach that systematically changes formulations
for solving circle packing problems (CPP). It is shown
there that a stationary point of a nonlinear program-
ming formulation of CPP in Cartesian coordinates is
not necessarily also a stationary point in a polar coor-
dinate system. The method reformulation descent that
alternates between these two formulations until the fi-
nal solution is stationary with respect to both is sug-
gested. The results obtained were comparable with the
best known values, but they were achieved some 150
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Function FormulationChange(x; x0; �; �0; `)
if f (�0; x0) < f (�; x) then1

�  �0; x  x0; ` `min2

else
` ` + `ste p3

end

Variable Neighborhood SearchMethods, Algorithm 17
Formulation change function

Function VNFSS(x; �; `max)
repeat1

` 12

/* Initialize formulation inF */
while ` � `max do3

ShakeFormulation(x;x0;�;�0;`) /* Take4

(�0;x0)2 (N`(�);N (x)) at random*/
FormulationChange(x;x0;�;�0;`)5

/* Change formulation */
end

until some stopping condition is met ;

Variable Neighborhood SearchMethods, Algorithm 18
Reduced variable neighborhood formulation space search
(VNFSS)

times faster than by an alternative single formulation
approach. In that same paper the idea suggested above
of formulation space search was also introduced, using
more than two formulations. Some research in that di-
rection has been reported in [64,75,84]. One algorithm
that uses the variable neighborhood idea in search-
ing through the formulation space is given in Algo-
rithms 17 and 18.

In Fig. 2 we consider the CPP case with n D 50.
The set consists of all mixed formulations, in which
some circle centers are given in Cartesian coordinates,
while the others are given in polar coordinates. The
distance between two formulations is then the number
of centers whose coordinates are expressed in differ-
ent systems in each formulation. Our formulation space
search starts with the reformulation descent solution
i. e., with rcurr D 0:121858. The values of kmin and kstep
are set to 3 and the value of kmax is set to n D 50.We did
not get an improvement with kcurr D 3; 6 and 9. The
next improvement was obtained for kcurr D 12. This
means that a “mixed” formulation with 12 polar and
38 Cartesian coordinates is used. Then we turn again
to the formulation with three randomly chosen circle

centers, which was unsuccessful, but obtained a better
solution with six, etc. After 11 improvements we ended
up with a solution with radius rmax D 0:125798.

Applications

Applications of VNS or of hybrids of VNS and other
metaheuristics are diverse and numerous. We next re-
view some of them. Considering first industrial applica-
tions, the oil industry provided many problems. These
include scheduling of walkover rigs for Petrobras [2],
the design of an offshore pipeline network [13] and
the pooling problem [5]. Other design problems in-
clude cable layout [24], synchronous digital hierarchy/
wavelength-division multiplexing networks [73], sur-
face acoustic wave filters [100], topological design of
a yottabit-per-second lattice network [29], the ring star
problem [31], distribution networks [67] and supply
chain planning [68]. Location problems have also at-
tracted much attention. Among discrete models the p-
median has been the most studied [15,26,44,54,71,76]
together with its variants [32,37]; the p-center prob-
lems [77] and the maximum capture problem [10] have
also been examined. Among continuous models the
multisource Weber problem is addressed in [14]. Use
of VNS to solve the quadratic assignment problem is
discussed in [33,34,106].

VNS proved to be a very efficient tool in clus-
ter analysis. In particular, the J-means heuristic com-
bined with VNS appears to be the state of the art for
heuristic solution of minimum sum-of-square cluster-
ing [8,9,57]. Combined with stabilized column gener-
ation [36] it leads to the presently most efficient exact
algorithm for that problem [35].

Other combinatorial optimization problems on
graphs to which VNS has been applied include the
degree-constrained spanning tree problem [16,94,102],
the clique problem [62], the max-cut problem [38],
the median cycle problem [86] and vertex color-
ing [6,64]. Some further discrete combinatorial opti-
mization problems, unrelated to graphs, to which VNS
has been applied are the linear ordering problem [45],
bin packing [42] and the multidimensional knapsack
problem [89].

Heuristics may help to find a feasible solution or an
improved and possibly optimal solution to large and
difficult mixed-integer programs. The local branching
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Variable Neighborhood Search Methods, Figure 2
Reduced formulation space search for the circle packing problem and n D 50

method of Fischetti and Lodi [39] does that, in the spirit
of VNS. For further developments see [40,61].

Timetabling and related manpower organization
problems can be well solved with VNS. They include
the team-orienteering problem [4], the examination
proximity problem [25], the design of balanced MBA
student teams [30] and apportioning the European Par-
liament [103].

Various vehicle-routing problems were solved by
VNS or hybrids [12,63,66,87,88,93,97,105]. This led to
interesting developments such as the reactive VNS of
Braysy [12]. Use of VNS to solve machine scheduling
problems was studied in many papers [11,27,28,41,51,
70,82,90,98].

Miscellaneous other problems solved with VNS in-
clude study of the dynamics of handwriting [19], the
capacitated lot-sizing problem with setup times [65],
the location-routing problem with nonlinear costs [72]
and continuous time-constrained optimization prob-
lems [101].

In all these applications VNS is used as an optimiza-
tion tool. It can also lead to results in “discovery sci-
ence,” i. e., help in the development of theories. This has
been done for graph theory in a long series of papers re-

porting on development and applications of the system
AutoGraphiX [20,21]. See also [22,23] for applications
to chemistry and [1] for a survey with many further ref-
erences. This system addresses the following problems:
� Find a graph satisfying given constraints;
� Find optimal or near-optimal graphs for an invari-

ant subject to constraints;
� Refute a conjecture;
� Suggest a conjecture (or sharpen one);
� Suggest a proof.
This is done by applying VNS to find extremal graphs
using a VND with many neighborhoods defined by
modifications of the graphs such as removal or addi-
tion of an edge, rotation of an edge, and so forth. Once
a set of extremal graphs, parametrized by their order,
has been found their properties are explored with var-
ious data-mining techniques and lead to conjectures,
refutations and simple proofs or ideas of proof.

Note finally that a series of papers onVNS presented
at the 18th EUROMini-Conference on Variable Neigh-
borhood Search, Tenerife, November 2005, will appear
soon in special issues of the European Journal of Oper-
ational Research, IMA Journal of Management Mathe-
matics and Journal of Heuristics.
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Equilibrium in a fundamental concept in the study of
competitive problems arising in such fields as opera-
tions research and management science, engineering,
and economics, regional science, and finance. Method-
ologies that have been applied to the study of equilib-
rium problems include: systems of equations, optimiza-
tion theory, complementarity theory, as well as fixed
point theory. Variational inequality theory, in particu-
lar, has become a powerful technique for equilibrium
analysis and computation.

Variational inequalities were introduced by P. Hart-
man and G. Stampacchia [3], principally, for the
study of partial differential equation problems drawn
from mechanics. That research focused on infinite-
dimensional variational inequalities. An exposition of
infinite-dimensional variational inequalities and refer-
ences can be found in [4].

M.J. Smith [9] provided a formulation of the traffic
network equilibrium problem which was then shown
by S.C. Dafermos [2] to satisfy a finite-dimensional
variational inequality problem. This connection al-
lowed for the construction of more realistic mod-
els as well as rigorous computational techniques for
equilibrium problems including: traffic network equi-
librium problems, spatial price equilibrium problems,
oligopolistic market equilibrium problems, as well as
economic and financial equilibrium problems (cf. [5,6],
and the references therein).

Many mathematical problems can be formulated as
variational inequality problems and, hence, this for-
mulation is particularly convenient since it allows for
a unified treatment of equilibrium and optimization
problems.

Definition 1 (variational inequality problem) The
finite-dimensional variational inequality problem,
VI(F, K), is to determine a vector x� 2 K � Rn, such
that

˝
F(x�)>; x � x�

˛
� 0; 8x 2 K;

where F is a given continuous function from K to Rn, K
is a given closed convex set, and h �, � i denotes the inner
product in Rn.

We now discuss some basic problem types and their re-
lationships to the variational inequality problem. We
also provide examples. Proofs of the theoretical results
may be found in [4,5]. For algorithms for the computa-
tion of variational inequalities, see also [1,5,7,8].

We begin with systems of equations, which have
been used to formulate certain equilibrium problems.
We then discuss optimization problems, both uncon-
strained and constrained, as well as complementarity
problems. We conclude with a fixed point problem and
its relationship with the variational inequality problem.
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ProblemClasses

We here briefly review certain problem classes, which
appear frequently in equilibrium modeling, and iden-
tify their relationships to the variational inequality
problem.

Systems of Equations

Systems of equations are common in equilibrium anal-
ysis, expressing, for example, that the demand is equal
to the supply of various commodities at the equilibrium
price levels. Let K = Rn and let F: Rn ! Rn be a given
function. A vector x� 2 Rn is said to solve a system of
equations if

F(x�) D 0:

The relationship to a variational inequality problem is
stated in the following

Proposition 2 Let K = Rn and let F : Rn ! Rn be
a given vector function. Then x� 2 Rn solves the varia-
tional inequality problem VI(F, K) if and only if x� solves
the system of equations

F(x�) D 0:

Example 3 (Market equilibrium with equalities only)
As an illustration, we now present an example of a sys-
tem of equations. Consider m consumers, with a typ-
ical consumer denoted by j, and n commodities, with
a typical commodity denoted by i. We let p denote the
n-dimensional column vector of the commodity prices
with components: { p1, . . . , pn }.

Assume that the demand for a commodity i, di, may,
in general, depend upon the prices of all the commodi-
ties, that is,

di (p) D
mX
jD1

d j
i (p);

where dj
i (p) denotes the demand for commodity i by

consumer j at the price vector p.
Similarly, the supply of a commodity i, si, may, in

general, depend upon the prices of all the commodities,
that is,

si (p) D
mX
jD1

s ji (p);

where s ji (p) denotes the supply of commodity i of con-
sumer j at the price vector p.

We group the aggregate demands for the commodi-
ties into the n-dimensional column vector d with com-
ponents: { d1, . . . , dn } and the aggregate supplies of the
commodities into the n-dimensional column vector s
with components: { s1, . . . , sn }.

Themarket equilibrium conditions that require that
the supply of each commodity must be equal to the de-
mand for each commodity at the equilibrium price vec-
tor p�, are equivalent to the following system of equa-
tions:

s(p�) � d(p�) D 0:

Clearly, this expression into the standard nonlinear
equation form, if we define the vectors x � p and F(x)
� s(p) � d(p).

Note, however, that the problem class of nonlinear
equations is not sufficiently general to guarantee, for ex-
ample, that x� � 0, which may be desirable in this ex-
ample in which the vector x refers to prices.

Optimization Problems

Optimization problems, on the other hand, consider
explicitly an objective function to be minimized (or
maximized), subject to constraints that may consist of
both equalities and inequalities. Let f be a continuously
differentiable function where f : K ! : R. Mathemati-
cally, the statement of an optimization problem is:
(
min f (x)
s.t. x 2 K:

The relationship between an optimization problem and
a variational inequality problem is now highlighted.

Proposition 4 Let x� be a solution to the optimization
problem:
(
min f (x)
s.t. x 2 K;

where f is continuously differentiable and K is closed and
convex. Then x� is a solution of the variational inequal-
ity problem:
˝
r f (x�)>; x � x�

˛
� 0; 8x 2 K:
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Furthermore, we have the following:

Proposition 5 If f (x) is a convex function and x� is
a solution to VI(r f , K), then x� is a solution to the
above optimization problem.

If the feasible set K = Rn, then the unconstrained opti-
mization problem is also a variational inequality prob-
lem.

On the other hand, in the case where a certain sym-
metry condition holds, the variational inequality prob-
lem can be reformulated as an optimization problem. In
other words, in the case that the variational inequality
formulation of the equilibrium conditions underlying
a specific problem is characterized by a function with
a symmetric Jacobian, then the solution of the equilib-
rium conditions and the solution of a particular opti-
mization problem are one and the same. We first intro-
duce the following definition and then fix this relation-
ship in a theorem.

Definition 6 An n × n matrix M(x), whose elements
mij(x); i = 1, . . . , n; j = 1, . . . , n, are functions defined on
the set S� Rn, is said to be positive semidefinite on S if

v>M(x)v � 0; 8v 2 Rn ; x 2 S:

It is said to be positive definite on S if

v>M(x)v > 0; 8v ¤ 0; v 2 Rn ; x 2 S:

It is said to be strongly positive definite on S if

v>M(x)v � ˛ kvk2 ;

for some ˛ > 0, 8v 2 Rn, x 2 S.

Note that if �(x) is the smallest eigenvalue, which is
necessarily real, of the symmetric part of M(x), that is,
[M(x) +M(x)>]/2, then it follows that:
i) M(x) is positive semidefinite on S if and only if �(x)
� 0, for all x 2 S;

ii) M(x) is positive definite on S if and only if �(x) > 0,
for all x 2 S;

iii) M(x) is strongly positive definite on S if and only if
�(x)� ˛> 0, for all x 2 S.

Theorem 7 Assume that F(x) is continuously differen-
tiable on K and that the Jacobian matrix

rF(x) D

0
BB@

@F1
@x1

� � � @F1
@xn

:::
:::

@Fn
@x1

� � � @Fn
@xn

1
CCA

is symmetric and positive semidefinite. Then there is
a real-valued convex function f : K! R1 satisfying

r f (x) D F(x)

with x� the solution of VI(F, K) also being the solution
of the mathematical programming problem:

(
min f (x)
s.t. x 2 K:

Hence, although the variational inequality problem en-
compasses the optimization problem, a variational in-
equality problem can be reformulated as a convex opti-
mization problem, only when the symmetry condition
and the positive semidefiniteness condition hold.

Therefore, the variational inequality is the more
general problem in that it can also handle a function
F(x) with an asymmetric Jacobian. Historically, many
equilibrium problems were reformulated as optimiza-
tion problems, under precisely such a symmetry as-
sumption. The assumption, however, in terms of appli-
cations was restrictive and precluded the more realis-
tic modeling of multiple commodities, multiple modes
and/or classes in competition. Moreover, the objective
function that resulted was sometimes artificial, without
a clear economic interpretation, and simply a mathe-
matical device.

Complementarity Problems

The variational inequality problem also contains the
complementarity problem as a special case. Comple-
mentarity problems are defined on the nonnegative or-
thant.

Let Rn
C denote the nonnegative orthant in Rn, and

let F:Rn!Rn. The nonlinear complementarity problem
over Rn

C is a system of equations and inequalities stated
as:
(
Find x� � 0
s.t. F(x�) � 0 and

˝
F(x�)>; x�

˛
D 0:

Whenever the mapping F is affine, that is, whenever
F(x) = Mx + b, where M is an n × n matrix and b an
n × 1 vector, the problem is then known as the linear
complementarity problem.
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The relationship between the complementarity
problem and the variational inequality problem is as
follows.

Proposition 8 VI (F, Rn
C) and the complementarity

problem have precisely the same solutions, if any.

Example 9 (Market equilibrium with equalities and in-
equalities) We now present a nonlinear complemen-
tarity formulation of market equilibrium. We assume
that the pricesmust now be nonnegative in equilibrium.
Hence, we consider the following situation, in which
the demand functions are given as previously as are the
supply functions, but now, instead of the market equi-
librium conditions, which are represented of a system
of equations, we have the following equilibrium condi-
tions: For each commodity i; i = 1, . . . , n:

si (p�) � di (p�)

(
D 0 if p�i > 0;
� 0 if p�i D 0:

Note that these equilibrium conditions state that if the
price of a commodity is positive in equilibrium then the
supply of that commodity must be equal to the demand
for that commodity. On the other hand, if the price of
a commodity at equilibrium is zero, then there may be
an excess supply of that commodity at equilibrium, that
is, si(p�) � di(p�) > 0, or the market clears. Further-
more, this system of equalities and inequalities guaran-
tees that the prices of the instruments do not take on
negative values, which may occur in the system of equa-
tions expressing the market clearing conditions.

We now give the nonlinear complementarity for-
mulation of this problem:
8̂
<̂
ˆ̂:

Determine p� 2 Rn
C

satisfying s(p�) � d(p�) � 0˝
(s(p�) � d(p�))>; p�

˛
D 0:

Moreover, since a nonlinear complementarity problem
is a special case of a variational inequality problem, we
may rewrite the nonlinear complementarity formula-
tion of the market equilibrium problem above as a vari-
ational inequality problem:
8̂
<̂
ˆ̂:

Determine p� 2 Rn
C;

s.t.
˝
(s(p�) � d(p�))>; p � p�

˛
� 0;

8p 2 Rn
C:

Note, first, that in the special case of demand functions
and supply functions which are separable, the Jacobians
of these functions are symmetric since they are diagonal
and given, respectively, by

rs(p) D

0
BB@

@s1
@p1

0 � � � 0
:::

: : :
: : :

:::

0 0 � � � @sn
@pn

1
CCA ;

rd(p) D

0
BB@

@d1
@p1

0 � � � 0
:::

: : :
: : :

:::

0 0 � � � @dn
@pn

1
CCA :

Indeed, in this special case model, the supply of a com-
modity depends only upon the price of that commodity
and, similarly, the demand for a commodity depends
only upon the price of that commodity.

Hence, in this special case, the price vector p� that
satisfies the equilibrium conditions can be obtained by
solving the following optimization problem:
8̂
ˆ̂<
ˆ̂̂:

min
nX

iD1

piZ

0

si (x) dx �
nX

iD1

piZ

0

di (y) dy

s.t. pi � 0; i D 1; : : : ; n:

Note that one also obtains an optimization reformula-
tion of the equilibrium conditions, provided that the
following symmetry condition holds: @si/ @pk = @sk/ @pi
and @di/ @pk = @dk/ @pi for all commodities i, k. In other
words, the price of a commodity k affects the supply of
a commodity i in the same way that the price of a com-
modity i affects the price of a commodity k. A similar
situation must hold for the demands for the commodi-
ties.

However, such conditions are limiting from the ap-
plication standpoint and, hence, the appeal of varia-
tional inequality problem that enables the formulation
and, ultimately, the computation of equilibria where
such restrictive symmetry assumptions on the under-
lying functions need no longer hold. Indeed, such sym-
metry assumptions were not imposed in the variational
inequality problem.

Example 10 (Market equilibrium with equalities and in-
equalities and policy interventions) We now provide
a generalization of the preceding market equilibrium
model to allow for price policy interventions in the
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form of price floors and ceilings. In particular, we let pCi
denote the imposed price ceiling on the price of com-
modity i, and we let pFi denote the imposed price floor
on the price of commodity i. Then we have the follow-
ing equilibrium conditions: For each commodity i; i =
1, . . . , n:

si (p�) � di (p�)

8̂
<̂
ˆ̂:

� 0 if p�i D pCi
D 0 if pFi < p�i < pCi
� 0 if p�i D pFi :

Note that these equilibrium conditions state that if the
price of a commodity in equilibrium lies between the
imposed price floor and ceiling, then the supply of that
commodity must be equal to the demand for that com-
modity. On the other hand, if the price of a commodity
at equilibrium is at the imposed floor, then there may
be an excess supply of that commodity at equilibrium,
that is, si(p�) � di(p�) > 0, or the market clears. In con-
trast, if the price of a commodity in equilibrium is at the
imposed ceiling, then there may be an excess demand of
the commodity in equilibrium.

We now provide a variational inequality formulation of
the governing equilibrium conditions:

Determine p� 2 K, such that

˝
(s(p�) � d(p�))>; p � p�

˛
� 0; 8p 2 K;

where the feasible set K � { p |pF � p � pC }, where pF

and pC denote, respectively, the n-dimensional column
vectors of imposed price floors and ceilings.

Fixed Point Problems

We now turn to a discussion of fixed point problems in
conjunction with variational inequality problems. We
also provide the geometric interpretation of the varia-
tional inequality problem and its relationship to a fixed
point problem.

We first define a projection. For a graphical depic-
tion, see Fig. 1 .

Definition 11 (a projection) Let K be a closed convex
set in Rn. Then for each x 2 Rn, there is a unique point
y 2 K, such that

kx � yk � kx � zk ; 8z 2 K;

Variational Inequalities, Figure 1
The projection y of x on the set K

Variational Inequalities, Figure 2
Geometric depiction of the variational inequality problem
and its fixed point equivalence (with � = 1)

and y is known as the orthogonal projection of x on the
set K with respect to the Euclidean norm, that is,

y D PK(x) D argmin
z2K
kx � zk :

In other words, the closest point to x lying in the set K
is given by y.

We now present a property of the projection opera-
tor that is useful both in the qualitative analysis of equi-
libria and in their computation. Let K again be a closed
convex set. Then the projection operator PK is nonex-
pansive, that is,


PKx � PKx0



 � 

x � x0


 ; 8x; x0 2 Rn :

The relationship between a variational inequality and
a fixed point problem can now be stated (see Fig. 2).

Theorem 12 Assume that K is closed and convex. Then
x� 2K is a solution of the variational inequality problem
VI(F, K) if and only if x� is a fixed point of the map: PK(I
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� � F): K! K, for � > 0, that is,

x� D PK(x� � �F(x�)):
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Let V be a Hilbert space with the norm k � k and V 0 its
dual space with the duality pairing denoted by h �, �i. Let
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a: V × V! R1 be a bilinear form satisfying:

(H )

8̂
ˆ̂̂<
ˆ̂̂̂
:

boundedness: 9M D const > 0 :
ja(u; v)j � M kuk kvk ; 8u; v 2 V ;

V -ellipticity: 9˛ D const > 0 :
a(v; v) � ˛ kvk2 ; 8v 2 V :

Finally, let K be a nonempty, closed and convex subset
of V and f 2 V 0 be given.

By an abstract variational inequality of elliptic type
we mean a triple { K, a, f } and the element u 2 K satis-
fying

(P)a(u; v � u) � h f ; v � ui; 8v 2 K;

its solution. It is known (see [7]) that if a satisfies (H),
then (P) has a unique solution for any f 2 V 0. If more-
over a is symmetric in V , i. e. a(u, v) = a(v, u) for any
u, v 2 V , then (P) is equivalent to the following mini-
mization problem:

(P0) Find u 2 K : J(u) � J(v); 8v 2 K;

where J(v) = 1/2a(v, v) � h f, v i is the quadratic func-
tional.

In order to define the approximation of (P), we in-
troduce a family { Vh } of finite-dimensional subspaces
Vh � V , dim Vh = n(h), where h > 0 is a discretization
parameter and n(h)! +1 when h! 0 +. Let Kh �

Vh be a nonempty, closed and convex set, not necessar-
ily a subset of K.

By the approximation of (P) we call the problem
(Ph) Find uh 2 Kh:

a(uh; vh � uh) � h f ; vh � uhi ; 8vh 2 Kh;

or, in the case when a is symmetric:

(P h
0) Find uh 2 Kh: J(uh) � J(vh), 8vh 2 Kh.

Such approach is known as the Ritz–Galerkin
method for the approximation of (P).

Let Vh = { �1, . . . , �n(h) } be a basis of Vh and denote
by I the isomorphism between Vh and Rn(h): I(Vh) =
Rn(h) defined in the standard way. Then Kh can be iden-
tified with a nonempty, closed and convex subset K �

Rn(h), whereK = I(Kh) and problem (Ph) can be written
in the following algebraic form:

( EP) Find Ex 2 K: (AEx; Ey� Ex) � ( EF; Ey� Ex), 8Ey 2K,

where A = (aij)n(h)i; jD1 is the matrix with the elements aij
= a(� j, � i), EF D (Fi)n(h)iD1 2 Rn(h) with Fi = h f , � i i, i
= 1, . . . , n(h), and (�, �) stands for the scalar product in
Rn(h). In addition, if a is symmetric in V , then (Ph

0) is
equivalent to the constrained minimization problem:

( EP0) Find Ex 2K: J(Ex) � J(Ey), 8Ey 2 K,

where

J(Ey) D 1
2
(AEy; Ey) � ( EF; Ey):

A natural question arises, namely how to estimate the
error between u and uh. It holds:

Theorem1 Let u and uh be the solution to (P) and (Ph),
respectively, and let (H) be satisfied. Then

˛ ku � uhk
2 � a(u � uh ; u � uh)

� h f ; u � vhi C h f ; uh � vi
C a(uh � u; vh � u)C a(u; v � uh)

C a(u; vh � u);

8v 2 K; 8vh 2 Kh :

(1)

For the proof, see [3,5].

Remark 2 If Kh � K for any h > 0, then choosing v =
uh in (1) we obtain:

˛ ku � uhk
2 � a(u � uh; u � uh)

� h f ; u � vhi C a(uh � u; vh � u)C a(u; vh � u);

8vh 2 Kh: (2)

In order to guarantee that k uh � u k! 0, h! 0 +, the
following properties of the system {Kh } are needed:

8v 2 K 9fvhg; vh 2 Kh : vh ! v; h! 0C; (3)

if fvhg; vh 2 Kh; is such that

vh * v (weakly) in V ; then v 2 K: (4)

Then one has:

Theorem 3 Let (H) and (3), (4) be satisfied. Then the
Ritz–Galerkin method is convergent, i. e.

ku � uhk ! 0; h! 0C :

The proof easily follows from (1) and (2).



3996 V Variational Inequalities: F. E. Approach

Remark 4 If Kh � K for any h > 0, then the condition
(4) is automatically satisfied.

In practice, the sets Vh and Kh are constructed by using
finite element methods. To illustrate such a construction
we consider the following model example.

Example 5 Let { K, a, f } be the variational inequality
with

K D
˚
v 2 H1

0(˝) : v � � a.e. in˝
�
;

a(u; v) D
Z

˝

gradu � grad v dx;

h f ; vi D
Z

˝

f v dx;

where � 2 C(˝) is a given function, � � 0 on @˝ , f
2 L2(˝) and H1

0(˝) is the standard Sobolev space of
functions vanishing on the boundary @˝ .

Since a is bounded and elliptic in H1
0(˝) and K is

a nonempty, closed convex subset of H1
0(˝), {K, a, f }

has a unique solution u 2 K:
Z

˝

grad u � grad(v � u) dx �
Z

˝

f (v � u) dx;

8v 2 K:

(5)

Let us suppose that˝ is a plane polygonal domain. Let {
T h } be a regular family of triangulations of˝ (see [2]).
With any T h we associate the space of piecewise linear
functions Vh �H1

0(˝):

Vh D

�
vh 2 C(˝) : vhjT 2 P1(T); 8T 2 Th;

vh D 0 on @˝

	

and its closed convex subset Kh:

Kh D fvh 2 Vh : vh(Ai ) � �(Ai ); 8Ai 2Nhg ;

whereNh is the set of all interior nodes ofT h. Note that
Kh 6� K, in general.

The approximation of (5) is defined by

Find uh 2 Kh :Z

˝

graduh � grad(vh � uh) dx

�

Z

˝

f (vh � uh) dx; 8vh 2 Kh: (6)

Since a is symmetric, uh can be equivalently character-
ized by

uh 2 Kh : J(uh) � J(vh); 8vh 2 Kh; (7)

where

J(vh) D
1
2

Z

˝

jgrad vhj2 dx �
Z

˝

f vh dx:

The algebraic form of (7) reads as follows:

Find Ex 2K : J(Ex) � J(Ey); 8Ey 2K; (8)

where

K DfEy D (y1; : : : ; yn(h)) 2 Rn(h) :

yi � �(Ai); i D 1; : : : ; n(h)g;

n(h) D cardNh ;

J(Ey) D 1
2
(AEy; Ey) � ( EF; Ey);

with

A D (ai j)n(h)i; jD1;

ai j D
Z

˝

grad�i � grad� j dx;

EF D (Fi)n(h)iD1 ; Fi D
Z

˝

f �i dx

and { � i }n(h)iD1 being the basis of Vh. Using Theorems 1
and 3 one can prove the following convergence result:

Theorem 6 It holds:
i) if � 2 H2(˝) and u 2 H2(˝) \ K then

ku � uhkH1(˝) � ch;

where c > 0 does not depend on h;
ii) if � 2 C(˝), then

ku � uhkH1(˝) ! 0; h! 0C;

without any regularity assumption on u.

To release the constraint v 2 K, the duality approach
may be used. Such a formulation involving besides the
primal variable also Lagrange multipliers is the basis for
the so-called mixed finite element methods.

Let Y be another Hilbert space and � � Y be
a closed, convex cone containing the zero element of
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Y , g 2 Y 0 be an element of the dual space to Y . The du-
ality pairing between Y 0 and Y is denoted by [ �, �]. Let
us suppose that the convex set K is characterized by:

K D fv 2 V : b(v; �) � [g; �]; 8� 2 �g ;

where b: V × Y! R1 is a continuous bilinear form.
We shall define the new problem by:
(M) Find (u, �) 2 V ×� such that

a(u; v)C b(v; �) D h f ; vi ; 8v 2 V ;
b(u; �� �) � [g; �� �]; 8� 2 �;

where a: V × V! R1 is the bilinear form satisfying
(H).

Problem (M) will be called the mixed variational for-
mulation to (P). In order to guarantee the existence and
the uniqueness of its solution we suppose that (see [1]):

9ˇ > 0 : sup
v2V ;
v¤0

b(v; �)
kvk

� ˇ k�kY ; 8� 2 Y : (9)

Remark 7 If a is symmetric on V , then (M) is equiva-
lent to the following saddle-point formulation (see [5]):

(M0) Find (u, �) 2 V ×� such that

L(u; �) � L(u; �) � L(v; �);
8(v; �) 2 V ��;

where L(v, �)� J(v) � b(v, �) + [g, �].

Let { Vh }, {YH } be two families of finite-dimensional
subspaces of V and Y , respectively. Let �H � YH be
a closed, convex cone, containing the zero element of
Y .

By the approximation of (M) we call the problem
(MH

h ) Find (uh, �H) 2 Vh ×�H such that:

a(uh; vh)C b(vh; �H) D h f ; vhi ;
8vh 2 Vh ;

b(uh; �H � �H) � [g; �H � �H];

8�H 2 �H :

One can formulate conditions under which the se-
quence {(uh, �H)} of solutions to (MH

h ) tends to the so-
lution (u, �) of (M) (see [3,4]). Such a mixed formula-
tion is useful since:
j) there are no constraints imposed on the primal vari-

able u;

jj) it makes possible to approximate not only the pri-
mal but also the dual variable �.

Example 8 Let us consider the variational inequality
{K, a, f }, where:

K D
˚
v 2 H1(˝) : v � 0 on @˝

�
;

a(u; v) D
Z

˝

(gradu � grad v C uv) dx;

h f ; vi D
Z

˝

f v dx; f 2 L2(˝):

Then the convex setK can be equivalently characterized
as follows:

K D fv 2 H1(˝) : [v; �] � 0;

8� 2 H�1/2(@˝); � � 0g;

where H� 1/2(@˝) is the dual space to

H1/2(@˝) D f� : @˝ ! R1 : 9v 2 H1(˝) :

v D � on @˝g:

The symbol [ �, � ] stands for the corresponding dual-
ity and the ordering ‘�’ is defined in a usual way: � �
0 if and only if [v, �] � 0 for any v 2 K. Denote by
� the convex cone of all nonnegative functionals over
H1/2(@˝). The mixed formulation of { K, a, f } is given
by:

8̂
ˆ̂̂<
ˆ̂̂̂
:

Find (u; �) 2 H1(˝) ��
s.t. a(u; v)C [v; �] D h f ; vi ;

8v 2 H1(˝);
[u; �� �] � 0; 8� 2 �:

(10)

The approximation of (10) will be defined by a finite
element method.

To this end we suppose that ˝ � R2 is a polygo-
nal domain. Let { T h }, h! 0 +, be a regular family of
triangulations of˝ and let

Vh D
˚
vh 2 C(˝) : vh jT 2 P1(T); 8T 2 Th

�

be the space of piecewise linear functions over T h. Fur-
ther, let { T H } be a regular family of partitions of @˝
into segments I, the length of which does not exceed the
number H > 0. We define

�H D f�H 2 L2(@˝) : �H jI 2 P0(I);

8I 2 TH; �H � 0 on @˝g;
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i. e. �H is the set of all nonnegative piecewise constant
functions over T H . The approximation of (10) is de-
fined as follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Find (uh; �H) 2 Vh ��H

s.t. a(uh; vh) D (vh; �H)0;@˝ D h f ; vhi ;
8vh 2 Vh ;

(uh; �H � �H)0;@˝ � 0;
8�H 2 �H;

(11)

where (u, �)0, @˝ �
R
@˝u �ds. The relation between

(10) and (11) is studied in [4].

Since a is symmetric, problem (11) is equivalent to the
saddle-point formulation:
8̂
<̂
ˆ̂:

Find (uh; �H) 2 Vh ��H

s.t. L(uh; �H) � L(uh; �H) � L(vh; �H)
8(vh; �H) 2 Vh ��H;

(12)

where

L(vh ; �H) D
1
2

Z

˝

�
jgrad vhj2 C v2h

�
dx

�

Z

@˝

vh�H ds �
Z

˝

f vh dx:

The approximation of elliptic variational inequalities
describing problems in mechanics of solids (contact
problems, problems involving friction, different models
of plasticity) can be found in [4,5,6]. The approxima-
tion of time dependent variational inequalities is stud-
ied in [3].
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Variational inequality theory is a powerful tool in the
qualitative analysis of equilibria. Here we provide a geo-
metric interpretation of the variational inequality prob-
lem and conditions for existence and uniqueness of
solutions. For proofs of the theoretical results stated
herein, see [1,2]. For stability and sensitivity analysis of
variational inequalities, including applications, see [2],
and the references therein.

In particular, here we consider the finite-
dimensional variational inequality problem VI(F, K):
Determine x� 2 K, such that
˝
F(x�)>; x � x�

˛
� 0; 8x 2 K;

where K � Rn is a closed convex set and F is the vector
function: F: K ! Rn, where h �, � i denotes the inner
product in Rn.

From the definition one can deduce that the neces-
sary and sufficient condition for x� to be a solution to
VI(F, K) is that

�F(x�) 2 C(x�);

Variational Inequalities: Geometric Interpretation, Existence
and Uniqueness, Figure 1
Geometric interpretation of VI(F, K)

where C(x) denotes the normal cone of K at x, defined
by

C(x) �
˚
y 2 Rn :

˝
y>; x0 � x

˛
� 0; 8x0 2 K

�
:

A geometric depiction of the variational inequality
problem is given in Fig. 1.

Existence of a solution to a variational inequality
problem follows from continuity of the function F en-
tering the variational inequality, provided that the fea-
sible set K is compact. Indeed, we have the following:

Theorem 1 If K is a compact convex set and F(x) is
continuous on K, then the variational inequality prob-
lem admits at least one solution x�.

In the case of an unbounded feasible set K, this theo-
rem is no longer applicable; the existence of a solution
to a variational inequality problem can, nevertheless, be
established under the subsequent condition.

Let BR(0) denote a closed ball with radius R centered
at 0 and let KR =K \ BR(0).KR is then bounded. By VIR
is denoted then the variational inequality problem:

Determine x�R 2 KR, such that
˝
F(x�R)

>; y � x�R
˛
� 0; 8y 2 KR :

We now state

Theorem 2 VI (F, K) admits a solution if and only if
there exists an R > 0 and a solution of VIR, x�R, such that
k x�R k < R.

Although k x�R k < Rmay be difficult to check, one may
be able to identify an appropriate R based on the partic-
ular application.
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Existence of a solution to a variational inequality
problem may also be established under the coercivity
condition, as in the subsequent corollary.

Corollary 3 Suppose that F(x) satisfies the coercivity
condition:

˝
(F(x)� F(x0))>; x � x0

˛

kx � x0k
! 1

as kxk !1 for x 2 K and for some x0 2 K. Then VI(F,
K) always has a solution.

Corollary 4 Suppose that x� is a solution of VI(F, K)
and x� 2 K0, the interior of K. Then F(x�) = 0.

Qualitative properties of existence and uniqueness be-
come easily obtainable under certain monotonicity
conditions. First we outline the definitions and then
present the results.

Definition 5 (monotonicity) F(x) ismonotone on K if
˝
(F(x1) � F(x2))>; x1 � x2

˛
� 0;

8x1; x2 2 K:

Definition 6 (strict monotonicity) F(x) is strictly
monotone on K if

˝
(F(x1) � F(x2))>; x1 � x2

˛
> 0;

8x1; x2 2 K; x1 ¤ x2:

Definition 7 (strong monotonicity) F(x) is strongly
monotone if for some ˛ > 0

˝
(F(x1) � F(x2))>; x1 � x2

˛
� ˛



x1 � x2


2 ;

8x1; x2 2 K:

Definition 8 (Lipschitz continuity) F(x) is Lipschitz
continuous if there exists an L > 0, such that



F(x1) � F(x2)


 � L



x1 � x2


 ;

8x1; x2 2 K:

Similarly, one may define local monotonicity (strict
monotonicity, strong monotonicity) if one restricts the
points: x1, x2 in the neighborhood of a certain point x.
Let B(x) denote a ball in Rn centered at x.

Definition 9 (local monotonicity) F(x) is locally
monotone at x if

˝
(F(x1) � F(x2))>; x1 � x2

˛
� 0;

8x1; y1 2 K \ B(x):

Definition 10 (local strict monotonicity) F(x) is lo-
cally strictly monotone at x if

˝
(F(x1) � F(x2))>; x1 � x2

˛
> 0;

8x1; x2 2 K \ B(x); x1 ¤ x2:

Definition 11 (local strong monotonicity) F(x) is lo-
cally strongly monotone at x if for some ˛ > 0

˝
(F(x1) � F(x2))>; x1 � x2

˛
� ˛



x1 � x2


2 ;

8x1; x2 2 K \ B(x):

A uniqueness result is presented in the subsequent the-
orem.

Theorem 12 Suppose that F(x) is strictly monotone on
K. Then the solution is unique, if one exists.

Similarly, one can show that if F is locally strictly mono-
tone on K, then VI(F, K) has at most one local solution.

Monotonicity is closely related to positive definite-
ness.

Theorem 13 Suppose that F(x) is continuously differ-
entiable on K and the Jacobian matrix

rF(x) D

0
BB@

@F1
@x1

� � � @F1
@xn

:::
:::

@Fn
@x1

� � � @Fn
@xn

1
CCA ;

which need not be symmetric, is positive semidefinite
(positive definite). Then F(x) is monotone (strictly mono-
tone).

Proposition 14 Assume that F(x) is continuously dif-
ferentiable on K and that r F(x) is strongly positive def-
inite. Then F(x) is strongly monotone.

One obtains a stronger result in the special case where
F(x) is linear.

Corollary 15 Suppose that F(x) = Mx + b, where M
is an n × n matrix and b is a constant vector in Rn.
The function F is monotone if and only if M is positive
semidefinite. F is strongly monotone if and only if M is
positive definite.

Proposition 16 Assume that F: K!Rn is continuously
differentiable at x. Then F(x) is locally strictly (strongly)
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monotone at x ifrF(x) is positive definite (strongly pos-
itive definite), that is,

v>F(x)v > 0; 8v 2 Rn ; v ¤ 0;

v>rF(x)v � ˛ kvk2 ;
for some ˛ > 0; 8v 2 Rn :

The following theorem provides a condition under
which both existence and uniqueness of the solution to
the variational inequality problem are guaranteed. Here
no assumption on the compactness of the feasible set K
is made.

Theorem 17 Assume that F(x) is strongly monotone.
Then there exists precisely one solution x� to VI(F, K).

Hence, in the case of an unbounded feasible set K,
strong monotonicity of the function F guarantees both
existence and uniqueness. If K is compact, then exis-
tence is guaranteed if F is continuous, and only the
strict monotonicity condition needs to hold for unique-
ness to be guaranteed.

Assume now that F(x) is both strongly monotone
and Lipschitz continuous. Then the projection PK [x �
� F(x)] is a contraction with respect to x, that is, we
have the following:

Theorem 18 Fix 0 < � � ˛ /L2 where ˛ and L are the
constants appearing, respectively, in the strong mono-
tonicity and the Lipschitz continuity condition defini-
tions. Then

kPK (x � �F(x)) � PK(y � �F(y))k � ˇ kx � yk

for all x, y 2 K, where

(1 � �˛)1/2 � ˇ < 1:

An immediate consequence of the theorem and the Ba-
nach fixed point theorem is:

Corollary 19 The operator PK(x� � F(x)) has a unique
fixed point x�.
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A plethora of equilibrium problems, including net-
work equilibrium problems, can be uniformly formu-
lated and studied as finite-dimensional variational in-
equality problems (cf. [11] and the references therein).
Indeed, it was precisely the traffic network equilib-
rium problem, as stated by M. Smith [15], and identi-
fied by S.C. Dafermos [3] to be a variational inequal-
ity problem, that gave birth to the ensuing research ac-
tivity in variational inequality theory and applications
in transportation science, regional science, operations
research/management science, and, more recently, in
economics.

Usually, using this methodology, one first formu-
lates the governing equilibrium conditions as a varia-
tional inequality problem. Qualitative properties of ex-
istence and uniqueness of solutions to a variational in-
equality problem can then be studied using the stan-
dard theory (cf. [9]) or by exploiting problem structure
(cf. [11]). Finally, a variety of algorithms for the compu-
tation of solutions to finite-dimensional variational in-
equality problems are now available (see, e. g., [1,4,11],
and the references therein).

Finite-dimensional variational inequality theory by
itself, however, provides no framework for the study

of the dynamics of competitive systems. Rather, it cap-
tures the system at its equilibrium state and, hence, the
focus of this tool is static in nature.

Recently, P. Dupuis and A. Nagurney [6] proved
that, given a variational inequality problem, there is
a naturally associated dynamical system, the stationary
points of which correspond precisely to the solutions of
the variational inequality problem. This association was
first noted by Dupuis and H. Ishii [5]. This dynamical
system, first referred to as a projected dynamical system
by D. Zhang and Nagurney [16], is nonclassical in that
its right-hand side, which is a projection operator, is
discontinuous. The discontinuities arise because of the
constraints underlying the variational inequality prob-
lem modeling the application in question. Hence, clas-
sical dynamical systems theory (cf. [2,7,8,10,13]) is no
longer applicable.

Nevertheless, as demonstrated rigorously in [6],
a projected dynamical system may be studied through
the use of the Skorokhod problem [14], a tool originally
introduced for the study of stochastic differential equa-
tions with a reflecting boundary condition. Existence
and uniqueness of a solution path, which is essential for
the dynamical system to provide a reasonable model,
were also established therein.

Here we present some recent results in the develop-
ment of a new tool for the study of equilibrium prob-
lems in a dynamic setting, which has been termed pro-
jected dynamical systems theory (cf. [16]). One of the
notable features of this tool, whose rigorous theoreti-
cal foundations were laid in [6], is its relationship to
the variational inequality problem. Projected dynami-
cal systems theory, however, goes further than finite-
dimensional variational inequality theory in that it ex-
tends the static study of equilibrium states by introduc-
ing an additional time dimension in order to allow for
the analysis of disequilibrium behavior that precedes
the equilibrium.

In particular, we associate with a given variational
inequality problem, a nonclassical dynamical system,
called a projected dynamical system. The projected
dynamical system is interesting both as a dynamical
model for the system whose equilibrium behavior is de-
scribed by the variational inequality, and, also, because
its set of stationary points coincides with the set of solu-
tions to a variational inequality problem. In this frame-
work, the feasibility constraints in the variational in-
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equality problem correspond to discontinuities in the
right-hand side of the differential equation, which is
a projection operator. Consequently, the projected dy-
namical system is not amenable to analysis via the clas-
sical theory of dynamical systems.

We first recall the variational inequality problem.
We then present the definition of a projected dynam-
ical system, which evolves within a constraint set K. Its
stationary points are identified with the solutions to the
corresponding variational inequality problem with the
same constraint set. We then state in a theorem the fun-
damental properties of such a projected dynamical sys-
tem in regards to the existence and uniqueness of solu-
tion paths to the governing ordinary differential equa-
tion. We subsequently provide an interpretation of the
ordinary differential equation that defines the projected
dynamical system, along with a description of how the
solutions may be expected to behave.

For additional qualitative results, in particular, sta-
bility analysis results, see [16]. For a discussion of the
general iterative scheme and proof of convergence, see
[6]. For applications to dynamic spatial price equilib-
rium problems, oligopolistic market equilibrium prob-
lems, and traffic network equilibrium problems, see
[12], and the references therein.

The Variational Inequality Problem
and a Projected Dynamical System.

We now present the definition of a variational inequal-
ity problem (VI) and that of a projected dynamical sys-
tem (PDS).

Definition 1 (variational inequality problem) For
a closed convex set K � Rn and vector function F: K
! Rn, the variational inequality problem, VI(F, K), is
to determine a vector x� 2 K, such that
˝
F(x�)>; x � x�

˛
� 0; 8x 2 K;

where h�, �i denotes the inner product in Rn.

As is well-known, the variational inequality has been
used to formulate a plethora of equilibrium problems
ranging from traffic network equilibrium problems to
spatial oligopolistic market equilibrium problems (cf.
[11] and the references therein).

Finite-dimensional variational inequality theory,
however, provides no framework for studying the un-
derlying dynamics of systems, since it considers only

equilibrium solutions in its formulation. Hence, in
a sense, it provides a static representation of a system
at its ‘steady state’. One would, therefore, like a theoret-
ical framework that permits one to study a system not
only at its equilibrium point, but also in a dynamical
setting.

The definition of a projected dynamical system
(PDS) is given with respect to a closed convex set K,
which is usually the constraint set underlying a partic-
ular application, such as, for example, network equilib-
rium problems, and a vector field F whose domain con-
tains K. As noted in [6], it is expected that such pro-
jected dynamical systems will provide mathematically
convenient approximations to more ‘realistic’ dynami-
cal models that might be used to describe nonstatic be-
havior. The relationship between a projected dynamical
system and its associated variational inequality problem
with the same constraint set is then highlighted. For
completeness, we also recall the fundamental proper-
ties of existence and uniqueness of the solution to the
ordinary differential equation (ODE) that defines such
a projected dynamical system.

Let K � Rn be closed and convex. Denote the
boundary and interior of K, respectively, by @K and K0.
Given x 2 @K, define the set of inward normals to K at
x by

N(x)

D
˚
� : k�k D 1; and

˝
�>; x � y

˛
� 0; 8y 2 K

�
:

We define N(x) to be {� : k � k = 1} for x in the interior
of K.

When K is a convex polyhedron (for example, when
K consists of linear constraints), K takes the form
\Z

iD1Ki, where each Ki is a closed half-space with in-
ward normal Ni. Let PK be the norm projection. Then
PK projects onto K ‘along N’, in that if y 2 K, then P(y)
= y, and if y 62 K, then P(y) 2 @K, and P(y) � y = ˛� for
some ˛ > 0 and � 2 N(P(y)).

Definition 2 Given x 2 K and v 2 Rn, define the pro-
jection of the vector v at x (with respect to K) by

˘K(x; v) D lim
ı!0

(PK(x C ıv) � x)
ı

:

The class of ordinary differential equations that are of
interest here take the following form:

ẋ D ˘K(x;�F(x));
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where K is a closed convex set, corresponding to the
constraint set in a particular application, and F(x) is
a vector field defined on K.

Note that a classical dynamical system, in contrast,
is of the form

ẋ D �F(x):

We have the following results (cf. [6]):
i) If x 2 K0, then

˘K(x;�F(x)) D �F(x):

ii) If x 2 @K, then

˘K(x;�F(x)) D �F(x)C ˇ(x)N�(x);

where

N�(x) D arg max
N2N(x)

˝
(�F(x))>;�N

˛
;

and

ˇ(x) D maxf0;
˝
(�F(x))>;�N�(x)

˛
g:

Note that since the right-hand side of the ordinary dif-
ferential equation is associated with a projection opera-
tor, it is discontinuous on the boundary ofK. Therefore,
one needs to explicitly state what one means by a solu-
tion to an ODE with a discontinuous right-hand side.

Definition 3 We say that the function x: [0,1)! K
is a solution to the equation ẋ D ˘K(x;�F(x)) if x(�) is
absolutely continuous and ẋ(t) D ˘K(x(t);�F(x(t))),
� F(x(t))), save on a set of Lebesgue measure zero.

In order to distinguish between the pertinent ODEs
from the classical ODEs with continuous right-hand
sides, we refer to the above as ODE(F, K).

Definition 4 (initial value problem) For any x0 2K as
an initial value, we associate with ODE(F, K) an initial
value problem, IVP(F, K, x0), defined as:

ẋ D ˘K(x;�F(x)); x(0) D x0:

Note that if there is a solution �x0 (t) to the initial value
problem IVP(F,K, x0), with �x0 (0) = x0 2K, then �x0 (t)
always stays in the constraint set K for t � 0.

We now present the definition of a projected dy-
namical system, governed by such an ODE(F, K),
which, correspondingly, will be denoted by PDS(F, K).

Variational Inequalities: Projected Dynamical System, Fig-
ure 1
A trajectory of a projected dynamical system that evolves
both on the interior and on the boundary of the constraint
set K

Definition 5 (projected dynamical system) Define the
projected dynamical system PDS(F, K) as the map ˚ : K
× R! K where

˚(x; t) D �x (t)

solves IVP(F, K, x), that is,

�̇x(t) D ˘K(�x(t);�F(�x(t)));
�x (0) D x:

The behavior of the dynamical system is now described.
One may refer to Fig. 1 for an illustration of this behav-
ior. If x(t) 2 K0, then the evolution of the solution is
directly given in terms of F: ẋ D �F(x). However, if
the vector field � F drives x to @K (that is, for some t
one has x(t) 2 @K and � F(x(t)) points ‘out’ of K) the
right-hand side of the ODEbecomes the projection of�
F onto @K. The solution to the ODE then evolves along
a ‘section’ of @K, e. g., @Ki for some i. At a later time
the solution may re-enter K0, or it may enter a lower-
dimensional part of @K, e. g., @Ki \ @Kj. Depending on
the particular vector field F, it may then evolve within
the set @Ki \ @Kj, re-enter @Ki, enter @Kj, etc.

We now define a stationary or an equilibrium point.

Definition 6 (stationary point or equilibrium point)
The vector x� 2K is a stationary point or an equilibrium
point of the projected dynamical system PDS(F, K) if

0 D ˘K(x�;�F(x�)):

In other words, we say that x� is a stationary point or
an equilibrium point if, once the projected dynamical
system is at x�, it will remain at x� for all future times.
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From the definition it is apparent that x� is an equi-
librium point of the projected dynamical system PDS(F,
K) if the vector field F vanishes at x�. The contrary,
however, is only true when x� is an interior point of the
constraint set K. Indeed, when x� lies on the boundary
of K, we may have F(x�) 6D 0.

Note that for classical dynamical systems, the nec-
essary and sufficient condition for an equilibrium point
is that the vector field vanish at that point, that is, that
0 = �F(x�).

The following theorem states a basic connection be-
tween the static world of finite-dimensional variational
inequality problems and the dynamic world of pro-
jected dynamical systems.

Theorem 7 [6] Assume that K is a convex polyhedron.
Then the equilibrium points of the PDS(F, K) coincide
with the solutions of VI(F, K). Hence, for x� 2 K and
satisfying

0 D ˘K(x�;�F(x�))

also satisfies
˝
F(x�)>; x � x�

˛
� 0; 8x 2 K:

This theorem establishes the equivalence between the
set of equilibria of a projected dynamical system and
the set of solutions of a variational inequality problem.
Moreover, it provides a natural underlying dynamics
(out of equilibrium) of such systems.

Before stating the fundamental theorem about pro-
jected dynamical systems, we introduce the following
assumption needed for the theorem.

Assumption 8 (linear growth condition) There exists
a B < 1 such that the vector field �F: Rn ! Rn sat-
isfies the linear growth condition: k F(x) k � B(1 + k x
k) for x 2 K, and also

˝
(�F(x)C F(y))>; x � y

˛
� B kx � yk2 ;

8x; y 2 K:

Theorem 9 (existence, uniqueness, and continuous
dependence) Assume that the linear growth condition
holds. Then
i) For any x0 2 K, there exists a unique solution x0(t) to

the initial value problem.

ii) If xk ! x0 as k!1, then xk(t) converges to x0(t)
uniformly on every compact set of [0,1).

The second statement of this theorem is sometimes
called the continuous dependence of the solution path
to ODE(F, K) on the initial value. By virtue of the the-
orem, PDS(F, K) is well-defined and inhabits K when-
ever the assumption holds.

Lipschitz continuity is a condition that plays an im-
portant role in the study of variational inequality prob-
lems. It also is a critical concept in the classical study of
dynamical systems.

Definition 10 (Lipschitz continuity) F: K! Rn is lo-
cally Lipschitz continuous if for every x 2 K there are
a neighborhood �(x) and a positive number L(x) > 0
such that



F(x0) � F(x00)


 � L(x)



x0 � x00


 ;

8x0; x00 2 �(x):

When this condition holds uniformly on K for some
constant L > 0, that is,



F(x0) � F(x00)


 � L



x0 � x00


 ;

8x0; x00 2 K;

then F is said to be Lipschitz continuous on K.

Lipschitz continuity implies the Assumption and is,
therefore, a sufficient condition for the fundamental
properties of projected dynamical systems stated in the
theorem.

Example 11 (Tatonnement or adjustment process)
Consider the market equilibrium model in which there
are n commodities. We denote the price of commod-
ity i by pi, and group the prices into the n-dimensional
column vector p. The supply of commodity i is denoted
by si(p), and the demand for commodity i is denoted by
di(p). We are interested in determining the equilibrium
pattern that satisfies the following

market equilibrium conditions: For each commodity
i; i = 1, . . . , n:

si (p�) � di (p�)

(
D 0 if p�i > 0;
� 0 if p�i D 0:

For this problem we propose the following adjustment
or tatonnement process: For each commodity i; i = 1,
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. . . , n:

ṗi D

(
di (p) � si (p) if pi > 0
maxf0; di(p) � si (p)g if pi D 0:

In other words, a price of an instrument will increase
if the demand for that instrument exceeds the supply
of that instrument; the price will decrease if the de-
mand for that instrument is less than the supply for
that instrument. However, if the price of an instrument
is equal to zero, and the supply of that instrument ex-
ceeds the demand, then the price will not change since
one cannot have negative prices according to equilib-
rium conditions.

In vector form, we may express the above as

ṗ D ˘K (p; d(p) � s(p));

where K = Rn
C, s(p) is the n-dimensional column vec-

tor of supply functions, and d(p) is the n-dimensional
column vector of demand functions. Note that this ad-
justment process can be put into the standard form of
a PDS, if we define the column vectors: x� p and F(x)
� s(p) � d(p).

On the other hand, if we do not constrain the in-
strument prices to be nonnegative, then K = Rn, and
the above tatonnement process would take the form:

ṗ D d(p) � s(p):

This would then be an example of a classical dynamical
system.

In the context of the example, we have then that,
according to the theorem, the stationary point of prices,
p�, that is, those prices that satisfy

0 D ˘K(p�; d(p�) � s(p�))

also satisfy the variational inequality problem

˝
(s(p�) � d(p�))>; p � p�

˛
� 0;

8p 2 K:

Hence, there is a natural underlying dynamics for
the prices, and the equilibrium point satisfies the vari-
ational inequality problem; equivalently, is a stationary
point of the projected dynamical system.
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The theory of variational principles is a branch of math-
ematical sciences with a wide range of applications in
industry, physical, social, regional and engineering sci-
ences. Researches in this theory have shown important
and novel connections with all areas of pure and ap-
plied sciences. The general theory of the calculus of
variations started soon after the introduction of dif-
ferential and integral calculus by I. Newton and G.W.
Leibniz, although some individual optimization prob-
lems had been investigated before that, the determina-
tion of the paths of light by P. Fermat. To be more spe-
cific, the brothers Jakob Bernoulli and Johann Bernoulli
(1697) were the first, who considered the variational
problems in mathematical terms. It is worth mention-
ing that the first phase of the development of the cal-
culus of variations was characterized by a combination
of philosophical concepts, mathematical methods and
physical problems. L. Euler (eighteenth century) cre-
ated a new branch of mathematics known as the cal-
culus of variations. Motivated by geometrical consider-
ations, he deduced its first principle which is now re-
ferred to as Euler’s differential equation for the deter-
mination of maximizing or minimizing arcs. By vari-
ational principles, we mean: maximum and minimum
problems arising in game theory, approximation the-
ory, mechanics, geometrical optics, general relativity
theory, economics, transportation, differential geome-
try and related areas. In fact, the history of variational
principles comprises the following distinct stages:
1) The basic search for solutions of variational prob-

lems, led through the work of Euler, J.L. Lagrange,
A.M. Legendre, C.G. Jacobi, K. Weierstrass and
many others, to develop along the lines of differen-
tial and integral equations as well as functional anal-
ysis.

2) The Hamiltonian–Jacobi theory represents a gen-
eral framework for the mathematical description of



4008 V Variational Principles

the propagation of actions in nature and the opti-
mal modeling of control processes in daily life. Us-
ing the ideas and techniques of Hamiltonian–Jacobi
theory in mechanics, E. Cartan introduced differen-
tial geometry and his exterior calculus in the cal-
culus of variations. Many basic equations of math-
ematical physics result from variational problems.
It is known that the gauge fields theories are a con-
tinuation of Einstein’s concept of describing physi-
cal effects mathematically in terms of differential ge-
ometry. These theories play a fundamental role in
the modern theory of elementary particles and are
right tool of building up a unified theory of elemen-
tary particles, which includes all kind of known in-
teractions. For example, the Weinberg–Salam the-
ory unifies weak and electromagnetic interactions.
It is also known that the variational formulation of
field theories allows for a degree of unification ab-
sent their versions in terms of differential equations.
Variational principles play an important part in the
existence and stability of soliton, which occur in al-
most every branch of physics.

3) Optimization that came into being because of equi-
librium problems arising in economics and trans-
portation from the 1950s onwards, for example,
linear optimization, Kuhn–Tucker theory, Bellman
dynamic optimization, Ekeland’s principle and its
variant forms.

4) Variational and quasivariational inequalities the-
ory with their applications to mathematical physics,
pure and applied sciences, which was introduced in
1964. Theory of variational inequalities provides us
with a simple, natural, efficient and unified frame-
work to study a wide class of unrelated problems.
This theory combines the theory of extremal prob-
lems and monotone operators under a unified view-
point. Note that every monotone operator is not
a potential operator.

A last problem of great interest is the so-called inverse
problem of the calculus of variations. A detailed expo-
sition of the single integral problem shows the cru-
cial role of the concept of variational selfadjoints. Self-
adjointness of the linear differential operators is well
known to be the key property in the inverse problems
of the calculus of variations. However, E. Tonti [23]
have emphasized the role played by the inner product
with regard to the selfadjointness. Variational princi-

ples for nonsymmetric nonpotential operators have not
been widely used either by mathematicians or in ap-
plications. One of the basic reasons for this is appar-
ently the complexity of a constructive approach to the
necessary symmetrizing operators. After Hilbert’s pa-
per, [7,24], the variational methods for investigating
boundary value problems for partial differential equa-
tions, were developed and received theoretical justifi-
cation. It is known that, if, for a linear nonsymmetric
and nonpositive operator T, there exists an inverse op-
erator T � 1 on a Hilbert space H, then there exist an
infinite number of auxiliary operators g such that T is
g-symmetric and g-positive. For the theoretical founda-
tion of the formulation and investigation for variational
principles for both linear and nonlinear equations, see
[7,23], where it is shown that the construction of a vari-
ational principle is closely related with the choice of the
classes of functionals and the space.

The direct methods for solving primal variational
problems provide only upper bounds, whereas the so-
lution of the dual (complementary) problem will give
lower bounds. The idea of transforming the original
variational problem of a minimization of a functional
into a corresponding problem of maximization and of
obtaining a posteriori estimate of approximate solution
goes back to C. Zaremba, E. Trefftz and K. Friedrich, see
[7,24] which incidently forms the basis of three direc-
tions of obtaining dual variational principles: geomet-
ric, operator and functional. In recent years (as of 2000)
with the help of operator theory, interesting and im-
portant results have been obtained in the applications
of dual variational principles. The important signifi-
cance of dual variational principles of obtaining them
by means of Fenchel–Rockafellar inequality has been
emphasized in [8], where among the basic drawbacks
of other techniques have been pointed out. It has been
shown in [8] that dual techniques have more favorable
properties than the primal ones for nonlinear and non-
smooth systems.

It is perhaps part of the fascination of the subject
that so many branches of pure and applied sciences are
involved. The task of becoming conversant with a wide
spectrum of knowledge is indeed a real challenge. The
framework chosen should be seen as a model setting for
more general results. In this article, we will consider the
variational-like inequalities to describe some results in
the setting of Hilbert space and list some very interest-
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ing and open (as of 1999) problems for the future re-
search.

Variational-Like Inequalities

Let H be a real Hilbert space whose inner product and
norm are denoted by h�i and k � k respectively. Let K be
a nonempty subset of H and �: K × K!H be a single-
valued operator. Let F: K ! H be a function. We now
recall the following concepts and results, see, for exam-
ple, [13,14,15].

Definition 1 Let u 2 K. Then, the set K is said to be
invex at u with respect to �, if, for each v 2 K, and t 2
[0, 1], u + t�(v, u) 2 K. K is said to be invex with respect
to �, if K is invex at each u 2 K.

From now onward, the set K is an invex set, unless oth-
erwise specified.

Definition 2 The function F: K ! H is said to be
pre-invex with respect to �, if, for all u, v 2 K and t 2
[0, 1],

F(uC t�(v; u)) � (1 � t)F(u)C tF(v):

Definition 3 For all u, v 2 K, the differentiable func-
tion F: K ! H is said to be an invex function with re-
spect to � if

F(v) � F(u) �
˝
F 0(u); �(v; u)

˛
;

where F0(u) is the differential of F at u.

Remark 4 It is known that every differentiable pre-
invex function is an invex function, but the converse
is not true. However, if �(v, u) = v � u, then both pre-
invex and invex functions are convex functions and the
invex set is a convex set. If F is a differentiable pre-
invex function and ' is a pre-invex function, then it is
known [13,15] that the minimum u of the functional
I[v], where

I[v] D F(v)C '(v) for all v 2 K; (1)

on the invex set K in H can be characterized by the
variational-like inequality

˝
F 0(u); �(v; u)

˛
C '(v) � '(u) � 0

for all v 2 K:
(2)

It is well known that in many important applications,
variational-like inequalities (2) occur, which do not
arise as a result of extremum problems. This motivates
the interest of studying problem like (2) on its own, that
is, without assuming a priori that this comes out as an
Euler inequality of an extremum problem.

For a given nonlinear operator T: H! H, we consider
the problem of finding u 2 H such that

hTu; �(v; u)i C '(v) � '(u) � 0

for all v 2 H:
(3)

Clearly problem (2) is a special case of problem (3).
First of all, we discuss some special important cases: In
particular, if � (v, u) = v� u, then problem (3) is equiv-
alent to finding u 2 H such that

hTu; v � ui C '(v) � '(u) � 0

for all v 2 H;
(4)

which is known as the mixed variational inequal-
ity. Note that the function ': H ! R [ {+
1} is a proper, convex and lower semicontinu-
ous, whose subdifferential @'(u) is a maximal mono-
tone operator. For applications of problem (4),
see [3,4,5,6,9,10,12,13,14,15,17,18] and the references
therein. Problem (4) can be written in the equivalent
form as: Find u 2 H such that

0 2 Tu C @'(u); (5)

which is equivalent to finding u 2 H such that

u D J'[u � �Tu]; (6)

where J' = (I + � @')�1 is the resolvent operator associ-
ated with the maximal monotone operator @', a subd-
ifferential of the proper, convex and lower semicontin-
uous function '; and � > 0 is a constant. Problem (5) is
also known as the variational inclusion; see [16] and the
references therein for more details.

If '� is the conjugate function of ', then its subdif-
ferential @'� is also a maximal monotone operator and
J'� = (I + @'�)�1 is the resolvent operator associated
with @'�. From the definitions of the resolvent opera-
tors, we have, for all u, v 2 H,

u D J'(uC v), v 2 @'(u)

, '�(v)C '(u) D hv; ui
, u 2 @'�(v), v D J'(uC v):
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From this result, we have

z D J'(z)C J'� (z) for all z 2 H;

a beautiful and useful relationship between the resol-
vent operators. It has been shown [14] that the problem
(4) is equivalent to finding z 2 H such that

�TJ'z C J'�z D 0: (7)

Equations (7) are called the resolvent equations. Such
an equivalent interplay has played an important part in
suggesting various iterative methods for solving mixed
variational inequalities. If ' is an indicator function of
a closed convex set K inH, then J' � PK , the projection
of H onto K; as a consequence, resolvent equations are
equivalent to the Wiener–Hopf equations, introduced
and studied in [21] and [20] in connection with classi-
cal variational inequalities. See [14,17,18] for the physi-
cal formulation and numerical methods of the Wiener–
Hopf equations.

Remark 5 Above, we have tried to emphasize the
role played by the concepts of the invexity theory in
variational-like inequalities. Unfortunately, all the ex-
istence theory for variational-like inequalities has been
developed in the setting of the standard convexity up
to now. It is right time to study the variational-like in-
equalities in context of invex functions and invex sets.
We would like to point out that the projection and re-
solvent equations techniques cannot be extended and
modified to study the existence results and to suggest
iterative methods for variational-like inequalities due
to the presence of the function � and the nonlinear
pre-invex function '. See [13,15] for the auxiliary prin-
ciple technique to suggest a general iterative method
and a merit function for solving variational-like
inequalities.

Open Problems

In this section, we list a number of open problems
which can play an important role in the development
of variational-like inequalities.
1) Is the subdifferential of a preinvex function a maxi-

mal monotone operator?
2) Does there exist a resolvent(projection) operator

associated with the subdifferential of a proper,

pre-invex (invex) and lower semicontinuous func-
tion?

3) There are a number of merit (gap) functions for
variational inequalities and complementarity prob-
lems. Is it possible to construct similar merit (gap)
functions for variational-like inequalities? M.A.
Noor [15] has constructed amerit (gap) function for
variational-like inequalities under some conditions.

4) Study the sensitivity analysis for variational-like in-
equalities.

5) Can one apply the Ky Fan inequality or any other
minimax theory to study the existence of a solution
of variational-like inequalities in the context of in-
vexity theory?

6) In recent years (as of 2000), Ekeland’s principle has
played a significant part in various branches of pure
and applied sciences, see, for example, [2,6,12] and
the references therein. Is it possible to find a simi-
lar variational principle for pre-invex (invex) func-
tions?
In this article, we have given only a brief introduc-

tion of variational-like inequalities. This theory does
not appear to have developed to an extent that it pro-
vides a complete framework for studying various prob-
lems. This field has been continuing and will continue
to foster new, innovative and novel applications. The
interested reader is advised to explore this fascinating
field further and discover interesting and significant
applications.

It is not practical to quote sufficient up-to-date ref-
erences. We shall therefore constrain to various refer-
ences with which the authors have recently (as of 1999)
been associated. Perhaps some of these point to future
possibilities.
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Vector optimization is the discipline which studies the
approaches for selecting optimal decisions from a given
admissible (feasible) set in presence of two (bicriteria)
or more (multicriteria) conflicting objectives. The in-
creasing interest, in the last decades, towards this disci-
pline is mainly due to the fact that, in optimization pro-
cesses, it seems more realistic to accept the presence of
more than one objective. This, in fact, happens in eco-
nomic systems (maximization of the profit and mini-
mization of the risk in portfolio selection problems), in
engineering systems an in physical systems (see, for ex-
ample, [23]) and so on.

From the pioneering works of V. Pareto and M.-E.-
L. Walras at the end of the nineteenth century, where
the authors introduce a (vector) equilibrium concept
for economical systems, vector optimization gained
mathematical recognition with the Kuhn–Tucker def-
inition of vector maximum given in 1951. Such a defi-
nition, as we will see later, clarifies that the mathemat-
ical foundations of this discipline must be found in the
fundamental works of G. Cantor and F. Hausdorff con-
cerning orderings and ordered set in vector spaces. The
birth of the discipline in the economic context provides
the justification of the presence of many typical terms
like utility functions, decision process, preferring order,
equilibrium model.

The first mathematical step consists in introducing
a preference in a set, which will be called decision set
D. This, mathematically speaking, can be translated in
considering a binary relation R (i. e. a subset of D × D)
on D. For economists, a preference is a partial order R,
i. e. a binary relation satisfying the following two prop-
erties
a) (x, x) 2 R, 8x 2 D (reflexivity);
b) (x, y) 2 R, (y, z) 2 R) (x, z) 2 R (transitivity).

In order to have compatibility between the partial
order R and the structure of vector space of D it is

common to assume that the following two axioms
hold:

c) 8˛ � 0: (x, y) 2 R) (˛x, ˛y) 2 R;
d) [(x, y) 2 R, (z, w) 2 R]) (x + z, y + w) 2 R.

A fundamental property, when it holds, is the anti-
symmetry of R:

e) (x, y) 2 R, (y, x) 2 R) x = y.
The following theorem shows the strict relationship be-
tween partial order and cones, and it gives the reason of
the common term ‘the ordering cone is. . . ’.

Theorem 1
a) If R is a partial order then

C D fx 2 D : (x; 0) 2 Rg

is a convex cone; if, in addition, R is antisymmetric,
then C is pointed.

b) If C is a convex cone, then

R D f(x; y) 2 D � D : x � y 2 Cg

is a partial order on D; if, in addition, C is pointed,
then R is antisymmetric.

For the sake of simplicity from now on we shall suppose
that D � Rn and we shall consider, in this context, the
most often used and best known ordering cone in Rn,
which is called the Paretian cone, that is C = Rn

C\{0} =
{x 2 Rn: xi � 0, i = 1, . . . , n}\{0}. Naturally many other
types of convex cones have been considered in literature
in different situations but our treatment can be easily
generalized to those cases.

The following definition is crucial in this frame-
work.

Definition 2 y is a minimum of the set A with respect
to the cone C, and we will write y 2minCA, if and only
if the system

y � x 2 C; x 2 A;

is impossible.

From the above definition, the natural consequence is
contained in the following:

Definition 3 Given f : Rm! Rn and a subset D� Rm,
a pointbx 2 D is called a Pareto (or efficient) solution of

(P)

8<
:
min
C

f (x)

x 2 D
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if and only if f (bx) is a minimum of f (D) with respect to
the cone C.

These minimum points are called Pareto (or efficient)
points. If we replace C with intC we have the classi-
cal relaxed definition of weak Pareto (or weak efficient)
points. The notion of efficiency has been restricted to
proper efficiency in order to avoid some undesirable
situations.

Unfortunately, there are several different definitions
of proper efficiency [4,6,11] and this makes more diffi-
cult the development of the analysis with respect to this
aspect.

After having given the definition of minimum point
many relevant questions come:
1) Under what conditions can we ensure the existence

of a solution of problem (P)?
2) What conditions can be established for a mini-

mum point (necessary or sufficient optimality con-
ditions)?

3) How can we determine the minimum (when it ex-
ists)?

For giving the fundamental ideas for answering the
above questions we can restrict ourselves to the most
classical case in which

D D fx 2 Rm : g(x) � 0; h(x) D 0g ;

where g: Rm! Rs and Rm! Rk.
A first classical theorem for the existence of themin-

imum needs the following definition.

Definition 4 f is called Rn
C-upper semicontinuous at

x0 2 D if and only if for every neighborhood V of f (x0),
there exists a neighborhood I of x0 such that f (x) 2 V �
Rn
C, 8x 2 I \ D.

Now we are able to state the following:

Theorem 5 Let us suppose that D is compact and� f is
Rn
+-upper semicontinuous in D. Then the set of optimal

solution of (P) is nonempty.

This theorem is a generalization to vector optimization
of the well known Weierstrass theorem. Many gener-
alizations of it can be found in the literature (see, for
example, [18]).

Necessary optimality conditions of Lagrangian type
can be established under classical assumptions of con-
tinuous differentiability of f , g and h. The following the-
orem holds.

Theorem 6 Suppose that (P) satisfies the classical
Kuhn–Tucker constraints qualification (or some gener-
alization of it) atbx 2 D [2,21]. Then, a necessary condi-
tion forbx to be a weak Pareto solution of (P) is that there
exist

b� 2 Rn ; b� 2 Rs ; b� 2 Rk

such that

(b�;b�;b� ) ¤ (0; 0; 0)

and

(A)

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

˝b�;r f (bx)˛C
Db�;r g(bx)

E

C
˝b�;rh(bx)˛ D 0;Db�; g(bx)
E
D 0;

b� � 0; b� � 0:

Addition of convexity to the assumption of the Theo-
rems leads us to sufficient optimality conditions:

Theorem 7 If all f i and gj are convex and all hk are
affine, then condition (A) in Theorem 6 is sufficient for
bx 2 D to be a weak Pareto solution to (P).

Theorems 6 and 7 are classical results and they are the
starting point in the field of optimality conditions. De-
velopments of such theorems can be found in literature
(see, for example, [16,18,21]). We can observe that the
generalizations go in several different directions:
a) to remove the assumptions of differentiability;
b) to weaken the constraint qualifications assump-

tions;
c) to strengthen the optimality conditions for other

types of optimal solutions.
Another research field is the characterization of effi-
cient points. Most well known results regarding the
characterization of efficient points are via scalarization
by means of vectors of weights belonging to the po-
lar cone of the ordering cone. This leads to find an
‘equivalent’ scalar optimization problem in the follow-
ing sense:

Theorem 8 Suppose that all f i are convex. Then bx is
a weak Pareto solution if and only if there exists � 2 Rn

C,
� 6D 0 such that bx is a minimum point of the function
h�, f i on the set D.
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Let us observe that, in Theorem 8, the assumption of
convexity of all f i is not required in the proof of suffi-
ciency but only in the proof of the necessity.

When the objective functions and the constraints
are defined by linear or affine functions we have the so-
called multi-objective linear programming. In this case
the set of efficient points is connected and it is possi-
ble to derive an algorithm, which is a generalization of
the simplex method, in order to locate the entire set of
efficient points.

Finally, we recall that it is possible to develop a dual-
ity theory for vector optimization like in the scalar case.

In fact, it is well known from scalar optimization
that, under suitable assumptions, a minimization prob-
lem can be associated to a maximization problem such
that both problems have the same optimal solutions.
This scheme is called, in literature, duality and it pro-
vides useful tools in order to have a deeper knowledge
of the given problem and, moreover, it provides im-
portant informations in order to develop algorithms
for solving the given problem. A similar general duality
principle holds for vector optimization problems and it
can be specialized to linear vector problems.

See also

� Image Space Approach to Optimization
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The vector variational inequality is a mathematics
model which is designed to account for equilibrium
situations where the multicriteria consideration is im-
portant. The concept of a vector variational inequal-
ity was introduced in [5]. In recent years, the vector
variational inequality problem has received extensive
attentions and found many applications in vector op-
timization and vector network equilibrium problems.
The theory of vector variational inequalities has been
summarized in the edited book [7] and one chapter of
the monograph [1].

Let X and Y be Hausdorff topological vector spaces.
By L(X, Y), we denote the set of all linear continuous
functions from X into Y . For l 2 L(X;Y), the value of
linear function l at x is denoted by hl ; xi. Let C � Y
be a nonempty, pointed, closed and convex cone with
intC ¤ ;. For convenience, we will denote C n f0g and
intC by Co and Ĉ respectively. Then (Y ,C) is an ordered
Hausdorff topological vector space with a partial order-
ing defined by, for y1; y2 2 Y ,

y1 �C y2() y2 � y1 2 C :

Moreover, we also define

y1 6�Co y2() y2 � y1 … Co ;

y1 6�Ĉ y2() y2 � y1 … Ĉ :

These orderings can also be applied to sets where the
ordering is understood as element-wise.

Let T : K ! L(X;Y) and K � X be a nonempty
closed and convex subset.

A weak vector variational inequality (WVVI) is
a problem of finding x� 2 K such that

hT(x�); x�x�i 6�Ĉ 0; 8x 2 K: (WVVI)

A vector variational inequality (VVI) is a problem of
finding x� 2 K such that

hT(x�); x�x�i 6�Co 0; 8x 2 K: (VVI)

It is clear that “6�Ĉ” is a closed ordering, that is,
xk 6�Ĉ 0 and xk ! x imply x 6�Ĉ 0, but “6�Co” is not. As
such, the set of solutions for (WVVI) is closed and that

for (VVI) is not. When Y D R and X D Rn , (WVVI)
and (VVI) reduce to the variational inequality, see [8].

Consider a vector optimization problem:

min
C

x2K

f (x); (VOP)K

where f : X ! Y is a vector-valued function. The point
x� 2 K is said to be a weakly minimal solution of f on
K if and only if f (K) 6�Ĉ f (x�) and a minimal solution
of f on K if and only if f (K) 6�Co f (x�):

Let X D Rn ;Y D R` and C D R`C. Let f (x) :D
( f1(x); � � � ; f`(x))>. A point x� 2 K is said to be a Ge-
offrion properly minimal solution of (VOP)K if and
only if there exists a scalar M > 0 such that, for each
i,

fi(x�) � fi(x)
f j(x) � f j(x�)

� M ;

for some j such that f j(x) > f j(x�) whenever x 2 K
and fi(x) < fi(x�). Every Geoffrion properly minimal
solution is a minimal solution.

f : X ! Y is C-convex on K if and only if, for any
x1; x2 2 K; � 2 [0; 1],

f (�x1 C (1 � �)x2) �C � f (x1)C (1 � �) f (x2) :

The following proposition summarizes relation-
ships between (WVVI)/ (VVI) and the vector optimiza-
tion problem (VOP)K . See [2,13].

Proposition 1 Assume that f is Gâteaux differentiable
with Gâteaux derivative D f . Let T D D f . We have
(i) If x is a weakly minimal solution of (VOP)K, then x

solves (WVVI).
(ii) If f is C-convex and x solves (WVVI), then x is

a weakly minimal solution of (VOP)K.
(iii) If f is C-convex and x solves (VVI), then x is a min-

imal solution of (VOP)K.
(iv) If � f is C-convex and x* is a minimal solution of

(VOP)K, then x solves (VVI).
(v) Let T(x) D r f (x) :D (r f1(x); � � � ;r f`(x))> be

the Jacobian (an `� n matrix) of the vector-valued
function f at x. If f is C D R`C-convex and x� is
a Geoffrion properly minimal solution for (VOP)K,
then x* solves (VVI).

Without the C-convexity of � f , (iv) may not be true.
Let X D R, Y D R2 and C D R2

C. Consider the prob-
lem minC f (x), subject to x 2 [�1; 0] where f (x) D
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(x; x2 C 1)>. It is clear that every x 2 [�1; 0] is a mini-
mal solution of the problem. But x D 0 is not a solution
of (VVI). The set of solutions for (WVVI) and (VVI) is
[�1,0] and [�1,0) respectively.

A Minty vector variational inequality (Minty VVI,
in short) is a problem of finding x� 2 K such that

hT(x); x � x�i 6�Co 0; 8x 2 K : (1)

The following result shows that a minimal solu-
tion of (VOP)K can be completely characterized by the
Minty VVI when C D R`C.

Theorem 1 [6] Let X D Rn , Y D R` and C D R`C.
Let T(x) D r f (x). Let f be Rn

C-convex and v-hemicon-
tinuous on K. Then, x� is a minimal solution of (VOP)K
if and only if it is a solution of the Minty VVI.

The following generalized linearization lemma and
Knaster, Kuratowski and Mazurkiewicz Theorem
(KKM Theorem, in short) have played a key role in the
establishment of the existence of a solution for (WVVI).

Lemma 1 (Generalized Linearization Lemma) Let
the mapping T : X ! L(X;Y) be monotone and v-
hemicontinuous. Then the following two problems are
equivalent:
1. x 2 K, hT(x); y � xi 6�Ĉ 0; 8y 2 K;
2. x 2 K, hT(y); y � xi 6�Ĉ 0; 8y 2 K.

Lemma 2 (KKMTheorem) Let K be a subset of a topo-
logical vector space V. For each x 2 K, let a closed and
convex set F(x) in V be given such that F(x) is compact
for at least one x 2 K. If the convex hull of every fi-
nite subset fx1; x2; � � � ; xkg of K is contained in the cor-
responding union [n

iD1F(xi), then \x2KF(x) ¤ ;:

Assume that K is compact. We set

F1(y) D fx 2 K : hT(x); y � xi 6�Ĉ 0g; y 2 K ;
F2(y) D fx 2 K : hT(y); y � xi 6�Ĉ 0g; y 2 K :

It can be shown that the convex hull of every finite
subset fx1; x2; � � � ; xkg of K is contained in the corre-
sponding union [n

iD1F1(xi). Since F1(y) � F2(y) for all
y 2 K, this is also true for F2. By Lemma 1, we have

\y2KF1(y) D \y2KF2(y) :

We observe that for each y 2 K, F2(y) is a (weakly)
compact subset in K.

By Lemma 2, we have

\y2KF1(y) D \y2KF2(y) ¤ ; :

Hence, there exists an x� 2 K such that

hT(x�); x � x�i 6�Ĉ 0 ; 8x 2 K :

Assume that K is unbounded and T : K ! L(X;Y)
is weakly coercive on K, that is, there exist x0 2 K and
c 2 intC� such that

hc ı T(x) � c ı T(x0); x � x0i/jjx � x0jj ! C1;

whenever x 2 K and jjxjj ! C1. In a similar way, we
can show that \y2KF1(y) ¤ ;.

As such we have the following result, where the
weak topology of X and the norm topology of Y are
used.

Theorem 2 [2] Assume that X is a reflexive Banach
space and K � X is convex. Assume that (Y,C) is an
ordered Banach space with Ĉ ¤ ¿ and intC� ¤ ¿. Let
the mapping T : K ! L(X;Y) be monotone, v-hemi-
continuous and let, for any y 2 K, T(y) be completely
continuous on X. If
1. K is compact, or
2. K is closed, T is weakly coercive on K,
then the weak vector variational inequality (WVVI) is
solvable.

KKM Theorem cannot be applied to the establishment
of the existence of (VVI) as the sets F1(x) and F2(x)
where 6�Ĉ is replaced by 6�Co are not closed anymore.

Only very recently, an existence of a solution for
(VVI) has been obtained by using the Browder fixed
point theorem.

Theorem 3 [4] Assume that X is a reflexive Banach
space and K � X is convex. Assume that (Y,C) is an
ordered Banach space with Ĉ ¤ ¿ and intC� ¤ ¿. Let
the mapping T : K ! L(X;Y). If
1. K is compact, and for each y 2 K, the set fx 2 K :
hT(x); y � xi �Co 0g is open in K, or

2. K is closed, T is continuous, and weakly coercive on
K,

then the vector variational inequality (VVI) is solvable.

The study of a vector variational inequality has also
been pursued by introducing another model with a sim-
ilar form and using the tool of conjugate function of
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a vector-valued function. Here such a model is called
a primitive of a VVI. We remark that this model was
called a dual VVI in [12] and an inverse VVI in [1] re-
spectively.

Let T : X �! L(X;Y) be a function, and h : X !
Y is a function. The (VVIh) problem consists in finding
x� 2 X, such that

hT(x�); x � x�i 6�Co h(x
�) � h(x); 8x 2 X :

Assume that T is one-to-one (injective). Define T0 :
L(X;Y)! X as follows:

T0(l) :D �T�1(�l); 8l 2 Domain(T0) D �Range(T):

If T is linear, then T0 D T�1.
The primitive of (VVIh) problem is defined as: find-

ing l� 2 Domain(T0), such that

hl � l�; T0(l�)i 6�Co h
�
�(l
�) � h��(l);
8l 2 L(X;Y) ; (IVVIh)

where h��(l) :D MaxCfhl ; xi � h(x) : x 2 Xg is the
vector conjugate function of h.

Let h : X ! Y and x� 2 X. We define the subgra-
dient of h at x* by

@�h(x�) D fl 2 L(X;Y) : h(x) � h(x�)

6�Co hl ; x � x�i; 8x 2 Xg :

Theorem4 [12] Let X be a Hausdorff topological vector
space and (Y,C) be an ordered Hausdorff topological vec-
tor space. The function T is one-to-one and h : X ! Y
is continuous. Assume that h��(l) ¤ ¿;8l 2 L(X;Y).
(i) If x* is a solution of (VVIh), then l� D �T(x�) is

a solution of (IVVIh) and the following relation is sat-
isfied:

hl�; x�i 2 h(x�)C h��(l
�) :

(ii) If l* is a solution of (IVVIh), C is connected, i. e., C[
(�C) D Y, and @�h(x�) ¤ ¿, where x� D �T0(l�),
then x* is a solution of (VVIh).

Consider the (VOP) with X D K D Rn ;Y D R`, f
being differentiable. Let h : Rn � R` be a set-valued
function and x� 2 X. We define the weak subgradient
of h at x* by

@wh(x�) D fl 2 Rn �R` : h(x) � h(x�)

6�Ĉ hl ; x � x�i; 8x 2 Xg :

Let � : Rn �R` �! R` be a perturbation function
satisfying

�(x; 0) D h(x); 8x 2 Rn ;

and

W(u) D �MaxĈf��(x; u) : x 2 Rng :

Now we construct the dual problem (for short,
DVOP) of (VOP) as follows

min
C
���<(0; � ); subject to � 2 Rn�` :

Proposition 2 Assume that W has a weak subgradient
at u D 0 and C is connected. If x* is a solution of (VOP),
then there exists �0 2 Rn�` such that l� D �r f (x�)
is a solution of the primitive of a vector variational in-
equality and � 0 is a solution of (DVOP) and satisfy the
inclusion

(l�>; �0) 2 @w�(x�; 0) :

The concept of a gap function is well-known both in
the context of convex optimization and variational in-
equalities. Theminimization of gap functions is a viable
approach for solving variational inequalities.

A set-valued function �w : K � Y is said to
be a gap function of (WVVI) if and only if (i) 0 2
�w (x�) if and only if x* solves (WVVI); and (ii) 0 6�Ĉ
�w (x);8x 2 K: A set-valued function � : K � Y
is said to be a gap function of (VVI) if and only if
(i) 0 2 �(x�) if and only if x* solves (VVI); and
(ii) 0 6�Cnf0g �(x), x 2 K.

Proposition 3 Let C be a pointed and convex cone in Y.
We have
(i) The set-valued function �w (x) :D MaxĈhT(x);

x � Ki is a gap function for (WVVI).
(ii) The set-valued function �(x) :D MaxChT(x);

x � Ki is a gap function for (VVI).

The above gap functions are of set-valued nature. Spe-
cial single-valued gap functions can be constructed
in terms of nonlinear scalarization functions. Given
a fixed e 2 Ĉ and a 2 Y , the nonlinear scalarization
function is defined by:

�ea(y) D minft 2 R : y 2 aC te � Cg; y 2 Y :
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Proposition 4 Let e 2 Ĉ. Then x� 2 K solves
(WVVI) if and only if the non-positive function g(x) D
miny2K �e0(hT(x); y � xi) has a zero at x*.

In the special case where Y D R`, C D R`C and
T(x) D [T1(x); � � � ; T`(x)]>, the nonlinear scalariza-
tion function may be expressed in the following equiv-
alent form:

�ea(y) D max
1�i�`

yi � ai
ei

:

Thus g(x) D miny2K max1�i�`fhTi(x); y � xig; x 2
K: The value of each g(x) amounts to solving a linear
minimax optimization problem.

Next we construct a gap function for a set-valued
WVVI.

Let Y D R`, C D R`C and K � X a compact sub-
set. Assume that T : K � L(X;R`) is a set-valued
mapping with a compact set T(x) for each x.

Consider the set-valued WVVI with the set-valued
mapping T [9], which consists in finding x� 2 K; and
t̄ 2 T(x�) such that

ht̄; x � x�i 6�Ĉ 0; 8x 2 K : (2)

Let x; y 2 K and t 2 T(x). Denote

ht; yi D ((ht; yi)1; � � � ; (ht; yi)`) ;

i. e., (ht; yi)i is the i-th component of ht; yi,
i D 1; � � � ; `. We define two mappings �1 : K
� L(X;R`)! R and � : K ! R as follows

�1(x; t) D min
y2K

max
1�i�`

(ht; y � xi)i (3)

and

�(x) D maxf�1(x; t)jt 2 T(x)g : (4)

Since K is compact, �1(x,t) is well-defined. If X is
a Hausdorff topological vector space, then g1(x,t) is
a lower semi-continuous function in x. Since T(x) is
a compact set, �(x) is well-defined.

Theorem 5 �(x) defined by (4) is a gap function of the
set-valued WVVI.

By Theorem 5, the solution of set-valued WVVI is
equivalent to finding a global solution x* to the follow-

ing generalized semi-infinite programming problem

max
x;s

s

s:t: �1(x; t) � s; 8t 2 T(x) ;

�1(x; t1) D s; 9t1 2 T(x) ;
x 2 K :

The concept of vector complementarity problems
was introduced in [2,11]. If K D D is a convex cone
of X, then, by letting x D 0 and x D 2x� in (WVVI)
respectively, we have

0 6�Ĉ hT(x
�); x�i 6�Ĉ 0 ; (5)

and by letting x D yC x� with y 2 D, we have

hT(x�); yi 6�Ĉ 0 ; 8y 2 D : (6)

(5) and (6) together are called a weak vector comple-
mentarity problem (WVCP). Let the weak C-dual cone
DwC

C of D be defined by

DwC
C D fg 2 L(X;Y) : hg; xi 6�Ĉ 0 ; 8x 2 Dg :

Then (WVCP) can be rewritten as a problem of finding
x� 2 D, such that

hT(x�); x�i 6�Ĉ 0 ; T(x�) 2 DwC
C :

Thus a solution of (WVVI) is one for (WVCP), but
the fact that the inverse implication is in general not
true can be shown by some simple example. Neverthe-
less, the inverse implication can be guaranteed by the
usual positiveness property on T. Indeed, let the strong
C-dual cone DsC

C of D be defined by

DsC
C D fg 2 L(X;Y) : hg; xi �C 0 ; 8x 2 Dg :

The positive vector complementarity problem
(PVCP) is defined to be a problem of finding an x� 2 D
such that

hT(x�); x�i 6�Ĉ 0 ; T(x�) 2 DsC
C :

It is obvious that DwC
C and DsC

C are nonempty, since
the null linear function in L(X,Y) belongs to DwC

C and
DsC

C . It is easy to prove that DsC
C � DwC

C if C is pointed.
When Y D R, the weak and strong C-dual cones of D
reduce to the dual coneD* ofD. The weak and strongC-
dual cones of D can be shown to be algebraically closed
and the strong C-dual cone of D is convex.
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Thus, it is clear that if C is pointed, then a solution
of (PVCP) is one for (VCP). Moreover, by noting the
ordering implication of 0 �C a 6�Ĉ b H) b 6�Ĉ 0,
a solution of (PVCP) is one for (WVVI).
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Vehicle routing consists in determining optimal collec-
tion or delivery routes for a fleet of vehicles on a trans-
portation network [7,11,14,15]. The customers to be
serviced may be associated with vertices (node routing)
or arcs (arc routing) of the network. Problems are de-
terministic or stochastic depending on the certainty or
uncertainty associated with the data. They are static or
dynamic depending on the time of availability of the
data. When all information is known in advance, a so-
lution can be constructed beforehand and the problem
is said to be static. Conversely, when new information
(e. g., new customer requests) is continuously revealed
over time, the problem is said to be dynamic.

In the following, we examine both node and arc
routing problems.

Node Routing

These NP-hard problems are found in transportation
activities where the service occurs at the nodes (cus-
tomer sites) of the transportation network. Along the
logistics chain, they are associated with movement of
raw material from suppliers to plants, movement of
finished products from plants to warehouses or de-
pots, and delivery of products to final customers. In
the service sector, they are found in dial-a-ride systems
(e. g., transportation-on-demand for people with spe-
cific needs), school bus routing, courier services, etc.
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The various classes of node routing problems are now
presented.

Static Deterministic Problems

This is the most widely studied class of problems in the
vehicle routing literature. It may be formally described
as follows. Let G = (V , A) be a graph where V = { 1, . . . ,
n } is the set of vertices, vertex 1 is the depot and A is
the set of arcs. A nonnegative cost cij is associated with
every arc (i, j), i 6D j. This cost may be interpreted as
a travel distance or travel time, depending on the con-
text. Also, a fleet of m vehicles is based at the depot
with m being either fixed or variable. The vehicle rout-
ing problem (VRP) then consists in determining a set of
least-cost vehicle routes such that:
� each vertex, apart from vertex 1, is visited exactly

once by exactly one vehicle;
� all vehicle routes start and end at vertex 1;
� side constraints may have to be satisfied.
When no side constraints are found, an m-traveling
salesman problem (m-TSP) is obtained, with the clas-
sical TSP corresponding to the special case m = 1 [17].
When side constraints are present, there may be one or
more of the followings:
� capacity constraints (capacitated vehicle routing

problem, CVRP): a nonnegative demand or load qi
is associated with each vertex i (apart from vertex 1)
and the total load on a route cannot exceed vehicle
capacity Q;

� distance or travel time constraints (distance-
constrained vehicle routing problem, DVRP): the
length or travel time of a route must not exceed
a prespecified bound;

� time windows (vehicle routing problem with time
windows, VRPTW): each vertex i must be visited
within a time interval [ai, bi]; the upper bound bi
may be soft or hard, and a waiting time is typically
allowed if the vehicle arrives before ai;

� precedence constraints: a partial ordering may be
imposed on the sequence of vertices to be ser-
viced. For example, a subset of vertices may have
to be visited before another subset, as in the vehi-
cle routing problem with backhauls (VRPB). There
may also be a precedence relationship between pairs
of vertices, as in the subscriber dial-a-ride prob-
lem (for transportation-on-demand services), where

each transportation request includes both a pick-up
and a delivery point and the pick-up must precede
the delivery.

Time-constrained vehicle routing and scheduling prob-
lems have been widely studied in the literature (see [4],
for a comprehensive survey). Pick-up and delivery prob-
lems are studied in [20]. Other, more complex, variants
are also reported in the literature. Without being ex-
haustive, we mention the following [7]:
� multiple depot problems where vehicles may start

(end) their route from (to) different depots;
� mixed fleet problems where vehicles have different

characteristics (e. g., different capacities);
� location-routing problems where strategic decisions

about the location of different facilities (e. g., depots,
warehouses) must be taken concurrently with the
determination of the delivery routes;

� period routing where daily routes are determined
over an horizon that spans a few days (e. g., a 5-day
week) and where each customer must receive deliv-
eries at a designated frequency;

� inventory routing where each customer has an in-
ventory of a product and a distributor should deter-
mine delivery routes so that no customer runs out of
the product.

Static Stochastic Problems

Stochastic vehicle routing problems typically involve
a stochastic demand or stochastic customers [16].
These problems also belong to the class of static prob-
lems since all information is known in advance, even if
this information is a probability distribution. Further-
more, recourse actions are predefined in case of fail-
ure (e. g., when the vehicle capacity is exceeded or when
a customer does not show). Hence, a solution that mini-
mizes some expected measure, like expected total travel
distance, can be constructed beforehand.

Dynamic Problems

Dynamic problems emerge when information about
the problem is continuously revealed over time [18].
Usually, such problems occur when new customer re-
quests must be dispatched in ‘real-time’ into the current
routes. These problems are found in many different ap-
plication domains, like delivery of petroleum products
and industrial gases, truckload and less-than-truckload
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trucking, dial-a-ride systems, courier services, emer-
gency services, etc. [10] Dynamic problems exhibit dis-
tinctive features with regard to their static counterpart.
For one thing, the time issue is crucial as the system
must react promptly to new occurring events. A discus-
sion on this topic may be found in [19].

Methodologies

Exact methods for solving vehicle routing problems in-
clude [14,21]:
� direct tree search methods (e. g., branch and bound);
� dynamic programming;
� integer linear programming (e. g., set partitioning

and column generation).
Approximate methodsmay be classified as [2]:

� constructive methods;
– cluster-first, route-second: clusters or groups of cus-

tomers are first identified; then, these customers are
sequenced within each route;

– route-first, cluster-second: a large route that in-
cludes all customers is first constructed; then, it is
partitioned into a number of smaller feasible routes;

– savings/insertion methods;
� improvement methods based on exchange proce-

dures;
� mixed methods which include both a constructive

and an improvement phase. The latter includemeta-
heuristics like tabu search, simulated annealing, ge-
netic algorithms, GRASP, ant systems and hybrids
[8,9,12].

Parallel implementations of the above methods, in par-
ticular metaheuristics, are also reported in the litera-
ture [3]. Exploitation of multiple processors in parallel
is vital in the case of dynamic vehicle routing problems
where fast response times are required.

Arc Routing

As opposed to node routing, the key service activity in
arc routing problems is to cover arcs of a transporta-
tion network [1,5,6]. These problems are found in real-
world applications like street maintenance, garbage
collection, snow plowing, meter reading, etc. In the
following, we examine the various subclasses of prob-
lems.

Chinese Postman Problem

The Chinese postman problem (CPP) is the canonical
problem in arc routing [13]. It is defined as follows. Let
G = (V , E[ A) be a graph whereV = {1, . . . , n} is the set
of vertices, E is a set of undirected edges and A is a set
of directed arcs. A nonnegative cost cij is associated with
every edge or arc (i, j), i 6D j. The CPP then consists of
determining a least cost traversal of all edges and arcs
of G. Several special cases should be mentioned:
� the undirected CPP, when A = ;;
� the directed CPP, when E = ;;
� the mixed CPP, when A 6D ; and E 6D ;;
� the windy CPP, when A = ; but the cost of travel on

each edge is not the same in both directions;
� the hierarchical CPP, when A[ E is partitioned into

several classes and a precedence relationship is de-
fined among the classes. If a particular class Ci pre-
cedes another class Cj, then all edges in Ci must be
visited before Cj.

Rural Postman Problem

In the rural postman problem (RPP), only a subset of
E [ A is required to be serviced, although other edges
or arcs may be in the solution. As for the CPP, different
variants may be considered, depending if the underly-
ing graph is directed, undirected or mixed.

Capacitated Arc Routing Problem

In the capacitated arc routing problem (CARP), a non-
negative quantity qij is associated with each arc or edge
(i, j). A fleet of m vehicles, each of capacity Q, must
visit all edges or arcs of the graph subject to the capacity
constraint.

Methodologies

Polynomial algorithms have been developed for the
undirected and directed variants of CPP. The other
variants are NP-hard, although polynomially solvable
cases have been identified. For the undirected CPP,
the problem solving methods are based on the follow-
ing observation: a cycle that contains each edge exactly
once in a graph can be found if and only if all vertices
have even degree (such a graph is said to be Eulerian
or unicursal). Thus, the basic problem is to find a least
cost way of adding edges to the graph to make it uni-
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cursal. This is done by calculating the shortest paths
between odd-degree vertices and to use these costs to
determine a least-cost matching of the odd-degree ver-
tices. The same augmentation problem appears in the
directed CPP, in terms of balancing the in-degree and
out-degree of each vertex. This is solved through a min-
imum cost network flow problem. Similar approaches
are reported for the RPP although, in this case, approx-
imate solutions are produced.

Many heuristic methods have been proposed for
the CARP. These methods are often derived from
their VRP counterparts: insertion methods, con-
structive methods, improvement methods and mixed
methods [6].

Exact algorithms based on branch and bound tech-
niques are also reported in the literature for solving
some NP-hard variants [1,5,6].

See also

� General Routing Problem
� Stochastic Vehicle Routing Problems
� Vehicle Scheduling
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Introduction

Since it was first formulated in 1959 by Dantzig and
Ramser [5], the vehicle routing problem (VRP) has
attracted much attention from operations research
academia. The VRP is similar to the traveling salesman
problem (TSP). In the TSP, the goal is to find the short-
est trip for a salesman who has to visit all customers
(nodes) exactly once, starting at an initial node and re-
turning to the same initial node. The VRP is the name
given to the class of problems which includes the TSP
and adds usage of multiple vehicles, each with a uni-
form limited capacity.

The VRP designates a wide range of set-ups to the
original problem of the TSP rather than addressing
a specific problem. Several versions of the problemmay
be defined, depending on a number of factors, con-
straints, and objectives addressed in the context of the
problem. It is fairly important to clarify the borders and
content of the problem prior to developing an analyti-
cal approach towards a solution. The main attributes
within the configuration of most VRPs published are
listed as follows:
� Number of vehicles: The upper limit on number of

vehicles available for routing.
� Vehicles’ homogeneity/heterogeneity: The condition

on the vehicles’ capacity, whether it is uniform for
all vehicles or not.

� Time windows: The imposed time constraint for ser-
vicing a customer.

� Backhauls: Besides feeding a customer with its de-
mand, the customer loads the truck with some load
to be carried back to the depot.

� Splitting/unsplitting of load: The load to be delivered
or picked up at any node may be divided into any
number of groups in the splitting case and this is
strictly forbidden in the unsplitting case. Splitting
puts forward multiple trips to any node rather than
a single one during the routing process.

� Single depot/multiple depots: The distribution or col-
lection process is constructed considering a single

depot or multiple ones; even distribution and col-
lection centers may be different.

� Static/dynamic service needs: The demand values are
either known in whole or unknown to some level
prior to establishing a route for the service vehicle.

� Precedence/coupling constraints: If a node’s demand
must be satisfied with anything picked up at a node
other than the depot, then a coupling constraint
is used to handle this. The latter node has prece-
dence in service over the prior node (precedence
constraint).
The VRP with deliveries and pickup (VRPDP) is

a subset of the general VRP such that rather than pro-
viding either a delivery or a pickup service, the nodes
provide both services, sometimes even simultaneously.
Salhi and Nagy [15] gave a clear identification of three
types of problem that may be addressed under the VR-
PDP subset depending on the the service provided as
follows:
1. VRP with backhauls (VRPB): The nodes are iden-

tified either as linehaul (the nodes with deliveries
originating from the depot) or backhaul (nodes with
items to be picked up and destined for the main de-
pot) nodes. The linehaul nodes are served prior to
the backhaul nodes. The logic behind this is given
by Chen and Wu [4] as the design of old trucks only
allowed rear-load functions.

2. VRP with mixed load (VRPM): Upon introduction
of a side-loading function on trucks, rearrangement
of loads on board became easier; thus, the need for
serving linehaul customers to free some space was
no longer necessary. The result was the introduc-
tion of service routes with backhaul nodes at any
sequence before the last linehaul node. Establishing
routes composed of a mixed sequence of linehaul
and backhaul nodes constitutes the VRPM.

3. VRP with simultaneous delivery and pickup
(VRPSDP): The VRPM setting caused inconve-
nience when some nodes requested both a pickup
and a delivery service. Those nodes had to be visited
twice, which added to the tour length, resulting in
inferior total routing results. The VRPSDP setting
lets each node have a delivery and pickup service
during the same stop. The delivery operation pre-
cedes the pickup. The VRPM is a special case of
VRPSDP such that either the delivery or the pickup
quantity at each node is defined as zero.
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The VRPSDP model differs from the m-dial-a-ride
problem with nonunit capacity in the sense that the
traffic of goods between nodes other than the depot is
strictly avoided. In the latter type of problem, m routes
are created using multiunit capacity vehicles to accom-
modate transportation of items from and to nodes ex-
isting on a route.

Montane andGalvao [10] introduces a fourth differ-
ent type of VRPDP. The problem, which is referred to
as the express delivery problem, constructs separate de-
livery routes and pickup routes to serve customers with
both pickup and delivery requirements. These delivery
routes, which are traversed initially, do not necessar-
ily cover the same nodes while vehicles move along the
pickup routes. Thus, each node is visited twice, possi-
bly by two different vehicles, to satisfy the two types of
service.

In this review, only the VRPSDP configuration is
discussed. The problem comprises many customers or
“nodes” to be served by a fleet of vehicles of homo-
geneous type and limited capacity. The vehicles de-
liver items to customers from the depot and pickup
loads are collected to be delivered back to the depot
at the end of the trip. The unit sizes of the picked-
up and delivered items are identical and they con-
sume the same amount of capacity on each truck. How-
ever, the amounts picked up and delivered at each
location may not necessarily be the same. Delivery
and pickup locations are unique and feeding a cus-
tomer with anything picked up at a node other than
the main depot is strictly avoided. The objective is
to minimize the total distance covered by the fleet
during service. Some instances of this type of prob-
lem may be observed in distribution networks of bot-
tled spring water in recollectable containers, industrial
gas distribution/collection in refillable tanks, liquefied
petroleum gas distribution in commercial containers
from wholesalers to retailers, and crew transporta-
tion between mainland and offshore oil rigs using
helicopters.

Formulation

The graph-theoretical definition of the VRPSDP is as
follows.

Instance: A graph G D (V ; E) with edge weights
we for all e 2 E and vertex weights dv and pv for all

v 2 V , a distinguished node, i. e., depot d, and a pa-
rameter k denoting the upper limit on the number of
vehicles available, and a parameter C denoting uniform
capacity of each of the trucks.

Objective: Find a partition of the nodes in Vnfdg
to V1, : : : ,Vk and a subset of edges Tk � E form-
ing k tours each containing node d and each node
of Vi exactly once, so that

P
e2Tk we is minimized

without violating
P

j2Vh dj � C,
P

j2Vh p j � C for
h 2 f1; : : : ; kg and p�v t C d�v t C pv � C for v 2 V ,
t 2 f1; : : : ; kg, where pvt� denotes all the load picked
up at some partition Vt prior to some definite node
v 2 Vt ; and dvt� denotes all the load to be deliv-
ered at some partition Vt after some definite node
v 2 Vt .

Applications

Very little attention has been paid to the VRPSDP.
This problem was first introduced in the literature by
Min [9]. In his work,Min studied book distribution and
recollection activities between a central library and 22
remote libraries in a county in Ohio. Each and every
day, a central depot is responsible for supplying remote
libraries with ordered books and recollecting previously
delivered books from them in return. There are two
trucks, which are assigned for this distribution and rec-
ollection activity, with limited capacity. The article also
provides a symmetric cost matrix in terms of distances
between the library locations. Min [9] gives the solution
for his problem as 94. He uses a method of clustering
the nodes into two groups, then solving a relaxation of
the problem using branch and bound. After determin-
ing the constraint violations, he penalizes moves lead-
ing to such violations and solves the relaxed form of the
problem iteratively until no violations of the constraints
are observed.

Halse [8] studied this special case VRPSDP as well
as many others in the VRP literature. In his work, cases
with a single depot and multiple vehicles and num-
ber of nodes varying between 22 and 150 are stud-
ied. Halse [8] utilized a Lagrangian relaxation and
a column-generating approach. A cluster-first-route-
second type heuristic is developed in which nodes are
first distributed to vehicles and then the problem is
solved using a 3-opt approach.
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Angelelli andMansini [1] studied the VRPSDP with
time window constraints. They implemented a branch-
and-price approach based on a set-covering formula-
tion for the master problem. A relaxation of the ele-
mentary shortest path problem with time windows and
capacity constraints was used as the pricing problem.
Branch-and-bound was applied to obtain integer solu-
tions. Angelelli and Mansini [1] provided further pro-
found guidance about exact algorithms based on col-
umn generation and branch-and-price algorithms.

Gendreau et al. [7] studied the VRPSDP for a single
vehicle case. They derived 26 problem instances based
on some formerly published instances and they tested
the performance of their two newly developed heuris-
tics with those previously introduced heuristics in the
VRP literature. In their problem instances, the number
of nodes varied between six and 261, including the de-
pot. The first algorithm presented by the authors con-
structs a sequence and serves nodes with positive de-
mands (they describe positive demand as the case when
the pickup quantity is greater than the delivery quan-
tity) until the truck capacity is violated. In other words,
when the truck is handling the next customer with posi-
tive demand, if the residual capacity is not enough they
stop serving the customer and begin serving the next
available customer with negative demand. When there
is enough room available to serve the next customer,
the truck returns to the node where the former capac-
ity violation occurred, and the next node with a positive
demand is served.

The main difficulty associated with Lagrangian re-
laxation is due to the cardinality of the relaxed con-
straints, which does not allow for the explicit inclusion
of all of them in the objective function. To overcome
this difficulty Toth and Vigo [17] proposed including
only a limited set of the relaxed constraints initially and
iteratively added other constraints which are violated
by the current solution of the Lagrangian problem. Be-
sides this mechanism, to avoid complexity of the ob-
jective function, they also proposed purging the relaxed
constraints from the Lagrangian relaxation in case they
become slack by the current solution. This process is re-
peated until no violated constraints are detected (hence,
feasibility is obtained) or a prefixed number of subgra-
dient iterations have been executed.

Dethloff [6] also studied the VRPSDP problem. In
his study, Dethloff utilized dynamic programming to

calculate net savings attainable by imbedding the fu-
ture steps and the course of actions to follow during
those steps. The aim is to keep higher residual capac-
ities on the vehicles to provide higher freedom for fu-
ture servings of nodes while dealing with a current
node. Higher residual capacities can be achieved by
serving customers with a small (large) delivery amount
and a large (small) pickup amount late (early) in the
route. Each of those residuals is more advantageous if
it is valid for a long part of the route. Additionally, the
residual values are prospectively more advantageous if
a higher cumulative demand for delivery and pickup
of the yet unvisited customers for future insertions ex-
ists. In his work, Dethloff developed 40 VRPSDP in-
stances to test his algorithm. He also reported an im-
provement on the solution given by Min [9]. Then,
he compared the results of his algorithm with those of
Salhi and Nagy [15], based on their problem instances
and problem structure. In the problems given in [15],
nodes are separated into disjoint delivery or pickup
nodes with 0 distance vector in between and they are
provided with either a delivery or a pickup service, but
not both at the same time. Thus, a node may be vis-
ited more than once when the coupling of nodes in
the solution is collapsed into single ones. Besides, the
problem puts a limit on the maximum route length and
introduces multiple depots rather than a single depot
case.

The mathematical formulation of the VRPSDP is
omitted. The interested reader is referred to [6]. A re-
laxation of the VRPSDP may be obtained by separat-
ing pickup and delivery processes such that at any node
either pickup or a delivery occurs. This relaxation has
been commented on to be at least as hard as an NP-
hard problem [12]. Thus, the VRPSDP is also NP-hard
in the strong sense.

The algorithm presented by Montane and Gal-
vao [10] for the VRPSDP starts with two well-known
heuristics: tour partitioning and sweep. The primal
problem is divided into TSP with simultaneous deliver
and pickup subproblems and those are solved using
cycle, minimum spanning tree, and cheapest insertion
heuristics. Node exchange operators are used to over-
come route infeasibilities and improve solution qual-
ity. With use of the proposed methods, eight heuristics
were generated and tested on 27 problems. The num-
ber of nodes in the problems ranged between 32 and 80.
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Minimum, maximum, and average solution values were
provided rather than the best results for each problem
instance.

Vural [18] proposed a genetic algorithm for the so-
lution of the VRPSDP described elaborately above. In
that work, some previously published genetic struc-
tures and mechanisms were used to build a good per-
forming mechanism. The Dethloff [6] instances were
tested and the results were found to be relatively bet-
ter. The genetic mechanism introduced uses the “ran-
dom keys method” of Bean [2] in order to establish
the initial population of the chromosomes and uses
a modified version of a cross-over mechanism intro-
duced by Topcuoglu and Sevilmis [16]. With these two
mechanisms, computational efficiency and reduction
of complexity is sought. Further route improvement is
performed using a local search mechanism based on
Or-opt [14].

Nagy and Salhi [13] revisited their previous research
and extended as well as updated it. They studied the
VRPSDP together with the VRPDP, again considering
both single and multiple depot instances. They pro-
vided a list of VRPDP articles with their main features.
They improved their previous [13] constructive heuris-
tics by adding more node operators, leading to better
solution refinement. They introduced three new heuris-
tic methods and compared their performance with that
of three other methods in addition to their best per-
forming method of a previous study.

Chen and Wu [4] provided a recent study on the
VRPSDP. They developed two algorithms; one is an
insertion-based heuristic, which also provides the ini-
tial solution for the second algorithm; the second al-
gorithm is a hybrid metaheuristic which works like the
“simulated annealing”method, but eliminates the prob-
abilistic moves with a deterministic rule. The algorithm
also employs a “tabu” mechanism to avoid recurrence
of previous local optima and finally refines the solu-
tions for any improvement using a node swap and ex-
change operators. The algorithm runs as long as an im-
provement is realized within a specific number of trials.
The algorithm was run on 14 Nagy and Salhi [13] in-
stances without an upper limit on route length. They
claim better results over Salhi and Nagy’s [15] results
but they provided no comparison either with improved
results [13] or with those provided byDethloff [6]. They
further generated some problem instances by modify-

ing Solomon instances using the method of Salhi and
Nagy [15].

The study presented by Montane and Galvao [11]
was inspired by transportation between mainland
Brazil and open-sea oil platforms using helicopters.
Since the distance a helicopter may fly between two
spots is restricted by factors such as fuel needs, the orig-
inal VRPSDP comes with an additional constraint on
the maximum length of move between nodes. Swap-
ping people between platforms is avoided, which makes
this problem a fine VRPSDP instance from a real-life
situation. Montane and Galvao [11] used modified ver-
sions of sweep and tour partitioning heuristics. The
tours are filled with nodes or closed depending on the
net change of the total load and maximum distance
constraint. For this phase, four different selection rules
are devised. The initial solutions constitute an input to
the tabu search mechanism. The tabu search stops ei-
ther when no more feasible movement exists or when
an upper limit on a number of iterations is met. The
procedure creates new initial solutions and the tabu
phase follows until this cycle is run for a fixed num-
ber of times. The authors tested their problem on 87 in-
stances, provided by Dethloff [6], Salhi and Nagy [15],
and Min [9], and 18 newly modified Solomon and ex-
tended Solomon instances from the literature.

Bianchessi and Righini [3] applied local search
and tabu search algorithms on selfcreated random in-
stances for VRPM. They further applied their algo-
rithms on Dethloff [6] instances and compared their
average values with those of Dethloff, reporting an im-
provement. However, they did not compare their re-
sults with those provided by previous researchers for
the same instances. They first constructed initial solu-
tions using four different node selection rules, based
on tolerance to capacity violations and overall tour fea-
sibility. They further applied local search by node ex-
changes on different neighborhoods they defined. Al-
though they applied a variable neighborhood search
technique, they did not use it for VRPSDP solution gen-
eration.
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The vehicle scheduling problem (VSP) is concerned
with the combination of a number of (passenger) trips,
which are given by a timetable, to (vehicle) blocks.
These blocks are sequences of trips operated by one
vehicle after leaving the (origin or) home depot with
a pull-out trip until its return to the same depot with
an pull-in trip. For public transit companies the solu-
tion of the VSP is of great importance for the efficiency
in planning processes. This is valid for both vehicle op-
erations as well as for manpower planning. From the
maximal number of blocks (which usually arises during
the morning peak hours) one obtains a lower bound on
the vehicles required, consequently, this bound strongly
influences the fleet size a company has tomaintain. Fur-
thermore, the number of vehicles and the total duration
of all blocks also determine considerably the manpower
requirements.

The basic problem is to assign each trip of a given
timetable to exactly one block in accordance with the
in-company policies and various operational restrictions,
while a minimization problem has to be solved with
a given objective function [1,9]. For real-world prob-
lems, the restrictions which have to be considered are
usually varying for each company, and they also lead in
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many cases to a great complexity in the problem struc-
ture. That is, these optimization problems tend to be
NP-hard optimization problems (cf.� Complexity the-
ory;� Complexity classes in optimization).

A range of basic characteristics can be determined,
which mainly specify the (company-dependent) prob-
lem structures of a VSP [5,6,18].
� Number of depots. Single-depot vehicle scheduling

problems (SDVSP) and multi-depot vehicle schedul-
ing problems (MDVSP) have to be differentiated.
However, a MDVSP arises only if there are intersec-
tions between the service areas assigned to the de-
pots. Otherwise, a certain number of independent
SDVSP has to be solved. Making use of a cluster first-
schedule second strategy a MDVSP can also be parti-
tioned into a number of SDVSP.

� Assignment of vehicles to a depot. Each vehicle is
usually assigned to a specific depot. Therefore, af-
ter finishing a block the vehicle has to return to its
origin. However, in some cases exceptions may be
allowed by interchanges between different depots.

� Number of trips. The number of (passenger) trips
is fixed by a given timetable. In some cases alter-
ations (trip shortening, trip shifting, trip cancella-
tion) are possible or necessary to attain a reduction
in the necessary number of vehicles or to adhere to
capacity constraints.

� Assignment of lines/trips to depots. In multi-depot
cases, the lines and/or (single) trips have to be as-
signed to the depots, preferably in accordance to the
spatial structure. If no overlaps occur, a number of
SDVSP is generated, otherwise a MDVSP has to be
solved.

� Multiple types of vehicles and type-dependent as-
signment of lines/trips. Various restrictions (e. g.,
demand structure, differentiation on service, techni-
cal conditions) may necessitate type-dependent as-
signments of lines/trips.

� Type-independent and type-dependent capacity
constraints. At the depots certain restrictions usu-
ally arise resulting from the number of stationed
vehicles. However, based on the planning results,
in some cases interchanges between different types
may be allowed.

� Technical restrictions. For those means of transport,
which are operating in a guided or tracked mode
(trolley bus, tram, light rail, etc.), additional techni-

cal restrictions have to be considered. These specific
restrictions mainly result from the reduced room for
passing.

� Manpower capacity restrictions. Besides quantita-
tive manpower restrictions, the qualification of the
drivers also has to be taken into consideration. Of
special interest are the varying knowledge levels re-
garding line networks, which often occurs in greater
public transit areas. In addition, in many cases the
drivers are not instructed on each type of vehicle.

� In-company restrictions. Here the different layovers
(which are defined as a minimum time between the
end of a trip i and the beginning of the following
trip j carried out by the same vehicle) are consid-
ered. The duration of a layover results from the at-
tributes describing the types of trips, which have to
be linked. Furthermore, other specific in-company
targets can be included, as e. g., interlining (within
one block there should not be trips of only one line)
or a given range for the length of a block.

This short overview clearly shows the difficulties to de-
scribe a real-world situation in a formal model, which
may be taken as a necessary basis to employ quantitative
methods on these scheduling problems. The availability
of efficient algorithms usually depends on the formu-
lation of a model with explicitly or implicitly included
constraints. However, in some cases a simplification of
the description can be considered which leads to sig-
nificant impacts on the complexity of the formal model
[9,16].

Besides the in-company framework, the operational
restrictions have to be considered, which describe the
basis for the admissibility to link two trips i and jwithin
a block. To determine whether a link is admissible, the
following conditions based on the fundamentals of the
(standard) VSP have to be met:

si C di C �i C	i ( j) C ıi j C	 j(i) � s j ; (1)

s j � (si C di ) � Tmax; (2)

with � i as a buffer time to cover possible delays, ıij as
the running time of a possibly required deadhead trip,
�i j or� j i as a (trip dependent) layover, and Tmax as the
(given) maximum idle time between the end of a trip i
(expressed as the starting time si of a trip i plus its du-
ration di) and the departure of the following trip j.
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In the modeling process for all admissible links,
an (individual) weight has to be defined, based on the
quantifiable idle time as well as the various nonquantifi-
able in-company restrictions. From the planning staff’s
point of view, the valuation of idle times in many cases
leads to a conflicting situation. To attain efficient vehi-
cle schedules the idle time usually should beminimized,
but considering the duty scheduling process, longer idle
times may be favorable for the determination of the
necessary breaks in a duty. Therefore, it has to be de-
cided whether the vehicle scheduling process should be
regarded first of all as an independent step in the plan-
ning process, which is followed by a (separate) duty
scheduling process [16], or as an integrated process of
simultaneous vehicle and duty scheduling [25,48].

Based on these formal restrictions and on different
in-company targets, usually two basic objectives can be
formulated:
� minimization of the number of operating vehicles;
� minimization of the nonproductive idle times (e. g.,

layovers or running time of deadhead trips).
These two objectives are only complementary in a small
number of specific cases [40]. Usually, a determination
of a lexicographic order of these objectives is neces-
sary. As the needed fleet size has most important in-
fluence on operational cost, as mentioned above, the
main objective consequently has to be the minimiza-
tion of the number of vehicles, which is necessary
to operate a given timetable, especially during peak
hours.

Based on these various and complex in-company
structures, different models of the VSP have been for-
mulated and appropriate solution procedures are devel-
oped [15,21,22,46,49,50]. The most important of these
models is described in the following. The objective for
these problems is, if another formulation is not explic-
itly given, to minimize the number of vehicles needed
to operate a given timetable or to minimize the overall
operational cost.
� Single-depot vehicle scheduling problem (SDVSP). In

the SDVSP, all trips are operated by vehicles sta-
tioned at a single depot. The first solution proce-
dures for these problems are based on assignment
models [38,41] and transportation models [28,29].
Later, network flow formulations [9,34,35], match-
ing formulations [2,3] and quasi-assignment formu-
lations [42,43] are used.

� Vehicle scheduling problems with a fixed number of
vehicles (p-VSP). The p-VSP appears in three differ-
ent cases [18]. First, it exists in a two-phase solu-
tion process of a SDVSP, where based on the opti-
mal number of vehicles, the overall operational cost
has to be minimized. In the second case, there are
more vehicles available than the calculated optimal
number. Therefore, an additional target that all ve-
hicles have to be used, has to be considered. The
third case deals with the problem that the avail-
able fleet is not large enough to operate a given
timetable, so that a certain number of trips can-
not be performed. In the first two cases, the p-
VSP can be solved based on a transportation model,
a network flow model, a quasi-assignment model,
and a matching model, whereas the third case can
only be handled making use of a quasi-assignment
model.

� Multi-depot vehicle scheduling problem (MDVSP).
In the MDVSP the trips have to be operated by ve-
hicles stationed at a certain number of depots with
given vehicle and manpower capacities. Each used
vehicle has to start and end at its home depot. Based
on defined depot groups, which represent virtual de-
pots showing a unique allocation of lines and/or
trips, different solution approaches are developed.
The earliest efficient version, a two-stage sched-
ule first-cluster second solution procedure, which
used an assignment model, is described in [16,38].
However, most of the known approaches proceed
from a multicommodity flow formulation [34]. To
solve the MDVSP based on this formulation, var-
ious optimization strategies are employed, while
especially branch and bound [8,24,37,45], set par-
titioning [4,23,33,34,45], and Lagrange relaxation
[3,30,32,34,36], methods have to be mentioned.

� Vehicle scheduling with trip shifting (TSVSP). As op-
posed to classical optimization approaches, in the
TSVSP input data is modified within the solution
process. The main advantage of such strategy lies
in an extension of the degree of freedom for the
combinatorial process, which leads to better results,
especially with respect to the minimization of the
number of vehicles during peak hour. Various ap-
proaches are described in [7,11,12,14,17,20,31,47].

� Vehicle scheduling problems with multiple types
of vehicles (MTVSP). The MTVSP considers that
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a varying demand on the lines and/or on (single)
trips do not necessarily require a unique type of ve-
hicle. Therefore, if a fleet with different vehicle ca-
pacities is available, the VSP may be extended. In
this case the objective is to determine a schedule
that minimizes the operational cost while the assign-
ment of vehicles to trips is not fixed but part of the
optimization process. Solution procedures to solve
a MTVSP are given in [10,13].

� Integrated vehicle and duty scheduling problems
(VDSP). In the VDSP, two steps of the planning pro-
cess, the vehicle scheduling and the duty schedul-
ing, become integrated and solved simultaneously.
These problems, which arise mainly in extra-urban
transit planning, result in solutions where each
block usually corresponds to exactly one duty. So-
lution methods for this problem are described in
[2,25,27,39,44,48]. Similar to the VDSP are vehicle
scheduling problems with time constraints (TCVSP)
[26]. In this case, a time constraint may arise from
technical restrictions (fuel capacity, etc.) or legal
and in-company restrictions such as the maximum
length of a duty period.

The described picture shows the basics of the VSP and
some specific characteristics, especially with respect to
the various in-company dependent problem structures.
Beginning several decades ago with very simple solu-
tion procedures, which were a result of restrictions in
computer technology and in availability of algorithms,
better and better results in vehicle scheduling are be-
ing attained. Until now, the procedure proposed in
[16,19,38] leads to the best results for real-world prob-
lems with a great number of trips. However, based on
network flow formulations in connection with branch
and bound, set partitioning, and Lagrange relaxation
methods, some improvements seem to be possible [34].
Furthermore, further research activities are focused on
the TSVSP and also on the VDSP.

See also

� Airline Optimization
� General Routing Problem
� Integer Programming
� Job-shop Scheduling Problem
�MINLP: Design and Scheduling of Batch Processes
� Stochastic Scheduling

� Stochastic Vehicle Routing Problems
� Vehicle Routing
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Polytopes and Volume

A convex polytope P in dimension d can be described
in two ways: First, it is the convex hull of a finite set of
points {v1, . . . , vn } � Rd. Second, it is the bounded in-
tersection of a finite number of half spaces, i. e. given
as {x: Ax � b} for a matrix A 2 Rm × d and a vec-
tor b 2 Rm. In the first case, the polytope is given
by its V-representation, in the second case by its H-
representation.

Only full dimensional polytopes, i. e. polytopes
which are not contained in any hyperplane of Rd, are
of interest in the context of volume computation. If P
is such a polytope, then its volume Vol (P) = Vold (P,
as usual defined by the d-dimensional Lebesgue mea-
sure, is not zero. A minimal V-representation of P is
unique and given by the vertices of P. Also a mini-
mal H-representation is unique (up to multiplication
of rows of A and the corresponding entries of b by pos-
itive scalars), and the sets P \ {x: ai x = b}, where ai is
the ith row of A in such a minimal representation, de-
fine the facets of P.

There are numerous applications of polytope vol-
ume computation, ranging from estimating the size of
the solution space of a linear program to counting the
number of roots of a system of complex polynomial
equations. To date, most practical applications concern
low dimensions. This is partially due to the fact that
the complexity of volume computation algorithms in-
creases exponentially when the dimension grows, par-
tially to limited experience with these algorithms.

This contribution is concerned with exact algo-
rithms for computing polytope volumes which have
been implemented successfully. Randomized approx-
imation algorithms as described in [7] are omitted
from the discussion because so far they have not been
programmed.

Complexity Results

Simple examples show that the minimal V-representa-
tion of a polytope can have exponential size with re-
spect to its minimal H-representation, and vice versa.
Hypercubes, for instance, have 2d facets and 2d vertices
in dimension d, and the converse holds for their duals,
the cross polytopes (see below for more about polytope
duality). Hence it is not surprising that the complexity
of volume computation depends on the polytope rep-
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resentation. The complexity results of this section are
valid for polytopes represented over Z orQ and are for-
mulated with respect to the bit length of the input. De-
tailed proofs can be found in [6].

For some classes of polytopes there are polynomial
time algorithms computing their volumes. An impor-
tant such class is formed by the polytopes in fixed di-
mension, given either inH- orV-representation, which
reflects that geometric 2- or 3-dimensional problems
can be solved efficiently in practice.

Moreover, there are polynomial algorithms for
polytopes P satisfying the following condition: P is
given in H-representation, and there is a constant
ı such that each facet of P contains at most ı ver-
tices (the near-simplicial case). Or, P is given in H-
representation, and there is a constant ı such that each
vertex of P is contained in at most ı facets (the near-
simple case). In particular, the case ı = d covers sim-
plicial H- and simple V-polytopes. However, this result
seems to be of little practical value. For instance, simple
polytopes are usually given by their H-representation,
and their V-representation already tends to be expo-
nential. Examples for this phenomenon are provided
by hypercubes or polytopes constructed from randomly
chosen halfspaces.

All known algorithms are exponential in d respec-
tively ı. This is inevitable forH-polytopes, since the bi-
nary size of the volume of a polytope may be exponen-
tial in its H-representation. Some of the triangulation
methods described below (boundary triangulation, for
instance) show that the volume of a polytope has poly-
nomial size with respect to the V-representation. How-
ever, even in this case volume computation is not an
easy task. Indeed, the problem is #P-hard for polytopes
in either H- or V-representation (see [4]).

The complexity of the volume computation prob-
lem is unknown when both representations are given.
This problem might even be solvable in polynomial
time with one of the known algorithms.

Basic Approaches andDuality

All deterministic volume computation methods de-
compose a given polytope into polytopes whose vol-
umes are easier to compute. Especially apt for volume
computation purposes are simplices, i. e. d-dimensional
polytopes with d+ 1 vertices. Their volume is given by
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a determinant, precisely,

Vol(conv(fv0; : : : ; vdg))

D
jdet(v1 � v0; : : : ; vd � v0)j

d!
:

Depending on the decomposition into simplices, two
basic classes of algorithms can be distinguished.

Triangulations

A triangulation of a polytope P is a finite collection
{�i: i = 1, . . . , s} of simplices such that P = [s

iD1 �i

and the intersection of any two simplices is their com-
mon face. (This is the usual definition of a triangula-
tion; in fact, for volume computation purposes it would
be enough to demand that no two simplices share an
interior point.) Then clearly

Vol(P) D
sX

iD1

Vol(	i):

For example, if P is simplicial, i. e., all its facets are d�
1-dimensional simplices, then linking these facets to
a fixed interior point as illustrated in Fig. 1 yields a tri-
angulation of the whole polytope, called boundary tri-
angulation. Other algorithms are presented below.

Signed Decompositions

The restriction that no two simplices may share an in-
terior point is in fact not necessary. If it is violated, then
some parts of the polytope are covered more than once,
which must be corrected by subtracting their respective
volumes. A signed decomposition of P is thus a finite col-
lection {(�i, � i): i = 1, . . . , s} of simplices �i and signs
� i 2 { ˙ 1} with the following property: If a point of P
does not lie on the boundary of any simplex, then the
number of positive simplices containing it exceeds the
number of negative simplices containing it by 1. A point
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mances, Figure 2

outside P is contained in as many positive as negative
simplices. It follows that

Vol(P) D
sX

iD1

�i Vol(	i):

An example for a signed decomposition is given by the
algorithm of J. Lawrence [9], see Fig. 2. Let P be simple,
and introduce an additional hyperplane e not parallel
to any edge of the polytope. The signed decomposition
consists of one simplex for each vertex, which is formed
by e and the hyperplanes incident with this vertex. How
the sign is determined will be described below. In Fig. 2,
the signed decomposition is {(ade, +), (abe, �), (cde,
�), (bce, +)}. In fact, triangulations are special cases of
signed decompositions with all signs being +1. Due to
duality results a distinction between these two classes is
reasonable nevertheless.

Duality

Assume that the origin lies in the interior of P, which
may be obtained by a translation into any interior point.
Then the polar dual of P is defined to be P° = {x 2Rd: y>

x � 1for all vertices y of P}. Hence the vertices of P are
in bijection with the facets of P°, and the converse also
holds. This means that the V-representation of P cor-
responds to the H-representation of P° (with the right-
hand side b normalized to the all one vector), and vice
versa. For instance, the polytopes of Fig. 1 and Fig. 2 are
dual to each other.

Polarity reverses inclusion, so that the duals of sim-
ple polytopes are simplicial and vice versa, and the com-
binatorial structure of P° depends only on the combi-
natorial structure of P. The exact geometry of P° and its

volume, however, depend on the location of the origin
in P. A result due to P. Filliman [5] shows that to each
triangulation of P corresponds a signed decomposition
of P°, if the origin is located conveniently. Precisely, let
T be a triangulation of P such that the origin does not lie
on any hyperplane spanned by the vertices of the trian-
gulation. Then the following procedure yields a signed
decomposition of P°: For a simplex� 2 T let its separa-
tion number s be the number of its facets separating it
from the origin. Let �° be the simplex bounded by the
hyperplanes corresponding by polarity to the vertices of
�, and let its sign be � = (� 1)s.

In this sense, Lawrence’s decomposition of P° in
Fig. 2 is induced by the boundary triangulation of P in
Fig. 1.

Suppose now that the complexity of a decomposi-
tion is measured by the number of simplices it gener-
ates (which is a simplified model since it does not take
the sizes of the occurring numbers into account). Let
P be a class of polytopes containing the origin in their
interiors, and let P° be composed of the duals of the el-
ements in P. Then for each triangulation algorithm on
P (working with the V-, H- or both representations),
there is a signed decomposition algorithm on P° (work-
ing with the H-, V- or both representations) with the
same complexity. This explains why most of the com-
plexity results above are symmetric with respect to du-
ality, and that asymmetry may only occur when the bi-
nary lengths of the numbers involved are taken into
account.

Algorithms

In this section, some volume computation algorithms
are presented in more detail. While the following list is
not exhaustive, all of the described methods have been
implemented and tested on different examples (see [2]).

Delaunay Triangulation

The classical Delaunay triangulation is obtained by lift-
ing the polytope vertices onto the surface of a d+ 1-
dimensional convex body. Precisely, let f :Rd ! R be
a strictly convex function. (Traditionally, f (x) =

Pd
iD1

x2i .) Lift each vertex v to (v, f (v)). Then the lifted vertices
will usually be in general position, i. e., their convex hull
will be simplicial. Interpreting these simplicial facets in
terms of the original vertices yields a triangulation. If
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the lifted points are not in general position – which is
frequent for the traditional lifting function on 0– 1-
polytopes – then perturbation or the choice of a dif-
ferent lift resolves the problem. The algorithm needs
the V-representation. Its time and space complexity
and numerical behavior depend on the convex hull al-
gorithm used for computing the facets of the lifted
polytope.

Boundary Triangulation

The algorithm for simplicial polytopes has been de-
scribed above. If P is not simplicial itself, then per-
turbation of its vertices leads to a simplicial polytope,
whose facets can be determined by any convex hull
algorithm. Identifying the perturbed vertices with the
original ones leads to a triangulation of P. Again, only
the V-representation is needed, and the behavior of the
algorithm is determined by the underlying method for
computing the convex hull.

Triangulation by Cohen and Hickey

An obvious improvement of any boundary triangula-
tion is obtained by using a vertex instead of an interior
point, thus dropping all simplices of the boundary tri-
angulation containing this vertex. If in Fig. 1, for in-
stance, e were translated into a, then only the two sim-
plices abc and acd would be left over. Together with
a very efficient scheme of handling nonsimpliciality,
this observation is the basis of the triangulation algo-
rithm described by J. Cohen and T. Hickey [3]. Suppose
that e1, . . . , em are the facets of P, given by the sets of
vertices they contain. (This requirement is equivalent to
the knowledge of both the V- and the H-representation
of P.) Fix a vertex v(P). Then the set {conv(v(P), ei v(P)
62 ei } is a decomposition of P into pyramids with bases
ei and apex v. If the polytope is simplicial, then the
pyramids are in fact simplices. Otherwise their bases
are triangulated recursively, and the resulting d� 1-
dimensional simplices, together with the fixed vertex
v(P), form a triangulation of P. More precisely, let b
be such a base, again represented by a set of vertices.
Fix a vertex v(b) 2 b. As above, {conv(v(b), e):v(b) 62
e}, where e varies over the facets of b, i. e. the b � 1-
dimensional faces of P contained in b, forms a decom-
position of b into pyramids. The recursion continues
with the e’s until a simplicial face is reached, which is

the case at the latest in dimension 1. While the e’s are
not known a priori for b 6D P, they are exactly the b �
1-dimensional sets within {b \ ei: v(b) 62 ei }. Instead
of testing the dimensions of these sets, which turns out
to be too costly in practice, one can just continue the
algorithm with all of them. If the dimension of b \ ei
is lower than needed, then this recursion branch will
end prematurely with an empty face and not contribute
a simplex to the triangulation.

Since Cohen and Hickey’s triangulation scheme is
purely combinatorial – it uses only incidence informa-
tion and not the vertex coordinates to obtain a triangu-
lation – it raises no numerical problems. Storing faces
as sets of their vertices facilitates the detection of sim-
plicial faces, as a face in (supposed) dimension d0 is sim-
plicial if and only if it has d0+ 1 vertices. Similarly, faces
with supposed dimension d0 and less than d0+ 1 ver-
tices can be dropped, as their dimension is in fact lower
than d0.

Lawrence’s Signed Decomposition

Assume first that P is simple. To apply the scheme pre-
sented in the section about signed decompositions, it
must be known how to compute the volume of the sim-
plex associated with a vertex v of P. Lawrence [9] de-
rives the following formula. Let the additional hyper-
plane be {x: c> x = 0}, where x 7�! c> x is nonconstant
on any edge of P. Denote by Av the d × d-matrix cor-
responding to the facets containing v. (This matrix can
be derived if both the H- and the V-representation of P
are known.) Then Av is invertible, � v = (A>v )�1c is well
defined up to permutations of its entries, and none of
its entries is zero. Finally,

Vol(P) D
X
v

(c>v)d

d! jdetAv j
Qd

iD1 �
v
i

:

If P is not simple, then a vertex v is contained in more
than d facets, and Av is not square any more. In this
case one perturbs the H-representation lexicographi-
cally and runs a vertex enumeration algorithm. This re-
sults in possibly several new simple vertices for each
vertex of the original polytope. Each new vertex cor-
responds to a lexicographically feasible cobasis Av of
the original vertex and contributes a term to the sum
above. The same procedure must be applied if only the
H-representation of P is known.
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An unresolved problem is the choice of the addi-
tional hyperplane, i. e. of c. For rational polytopes it
is possible to choose c of size polynomial in the H-
representation, so that each term of the sum has poly-
nomial size. However, the nontrivial denominators of-
ten result in prohibitively large numbers after a few
terms are summed up. On the other hand, using float-
ing point arithmetic often leads to severe numerical
instabilities when the denominator is close to zero in
some vertices, so that numbers of drastically different
magnitudes are summed up.

Lasserre’s Signed Decomposition

Like Cohen and Hickey’s triangulation, the algorithm
of J.B. Lasserre [8] is based on a decomposition of
the polytope into pyramids and proceeds by recursion.
However, it uses only the H-representation. Let ai be
the ith row of A, bi the ith entry of b and ei = {x 2 P:ai
x = bi}. Suppose that if ei is parallel to ej for some i 6D
j, then bi and bj have different signs. (This is no restric-
tion, since otherwise one of them is redundant, but it
has to be tested in an implementation.) Then

Vol(P) D
1
d

mX
iD1

bi
kaik

Vold�1(ei);

where |bi|/||ai|| is the distance of the origin from ei.
A negative sign occurs for negative bi, i. e., when the hy-
perplane corresponding to ei separates the origin from
the polytope. This formula does not yet allow a recur-
sive implementation, since the d� 1-dimensional vol-
umes of facets embedded into d-dimensional space are
needed. Thus ei is projected onto a suitable subspace of
d� 1 coordinates. Let aij 6D 0. Substituting xj = (bi �

P
k

6D j aikxi)/aij in the system of linear inequalities Ax � b
yields a new system A(i)x(i) � b(i) with m� 1 inequali-
ties in d� 1 variables, which describes the projection of
ei onto the coordinate subspace {x: xj = 0}. Taking the
distorting effect of this projection into account, the fol-
lowing formula, which can be implemented recursively,
is derived:

Vold (P)

D
1
d

mX
iD1

bi
ai j

Vold�1
�n

x(i) : A(i)x(i) � b(i)
o�
:

In the same way as Cohen and Hickey’s triangula-
tion improves on boundary triangulation, the compu-
tational effort for Lasserre’s algorithm can be reduced
by translating each intermediate polytope into one of
its vertices. In fact, the algorithm then implicitly con-
structs Cohen and Hickey’s triangulation, with the de-
terminant computation spread over the recursion tree.
Since finding a vertex is a rather costly linear program-
ming step, one instead translates into a (possibly infea-
sible) basis solution, which preserves the character of
a signed decomposition.

Noticing that the same face may be considered at
several places in the recursion tree, the efficiency of the
algorithm can be increased by storing the volume of
a face when it is computed for the first time, and retriev-
ing the volume when a face reappears. Some care must
be taken, however, when a face is projected onto differ-
ent coordinate subspaces; then a determinant compu-
tation is required. For details, see [2].

Unlike in Cohen and Hickey’s triangulation algo-
rithm, there is no cheap way of testing whether an in-
termediate face is empty or of a too low dimension.

Hybrid Orthonormalization Technique

In [2] an algorithm is described which combines the ad-
vantages of Cohen and Hickey’s and Lasserre’s meth-
ods. On one hand, it exploits the information of both
the H- and the V-representation, on the other hand, it
stores and retrieves intermediate results.

Consider again the dissection into pyramids

fconv(v(P); ei ) : v(P) … eig

of Cohen and Hickey’s triangulation algorithm, where
as before the ei’s are given as the sets of their vertices.
The volume formula for pyramids yields

Vold (P) D
X

v(P)…e i

1
d
dist(v(P); aff(ei)) Vold�1(ei);

where dist(v(P), aff(ei)) denotes the distance of the
pyramid apex to the affine subspace corresponding to
the pyramid base. Suppose that Vold� 1 (ei) and on or-
thonormal basis of the linear subspace associated with
ei are known. Then the required distance as well as an
orthonormal basis of the linear subspace correspond-
ing to the pyramid with basis ei can be computed easily.
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Since the volume and an orthonormal basis of a one-
dimensional polytope are trivial to determine, a recur-
sive approach analogous to Cohen and Hickey’s algo-
rithm can be adopted.

So far, there is no advantage over the triangula-
tion scheme. (In fact, the overhead of basis computa-
tion makes this algorithm slower in practice.) How-
ever, the strategy of storing and reusing intermediate
results, which has been successfully employed to accel-
erate Lasserre’s algorithm, is applicable now. Volumes
and orthonormal bases of already visited faces can be
stored and retrieved as soon as the face is reconsidered.
As the bases require an enormous amount of storage
space, it is reasonable to store only the face volumes and
to recompute orthonormal bases from scratch when
necessary.

The algorithm requires both the H- and the V-
representation. Unlike all other methods presented
above, it can only be implemented using floating point
arithmetic and not rational arithmetic because or-
thonormalization involves square roots. Care must be
taken to choose a numerically stable orthonormaliza-
tion technique, e. g. using Householder transforma-
tions.

Choosing an Algorithm

Experience with volume computation in higher dimen-
sions is very limited; to date, only one study has been
published [2]. Hence, while the following recommen-
dations reflect the state of the art, they may soon be
affected by algorithmic progress or new experimental
results.

Low Dimension

In accordance with the theoretical complexity results,
volume computation is a simple task in practice if one
restricts oneself to low dimensions (up to about 5). An
algorithm should be chosen which works with the rep-
resentation in which the polytopes are given.

Near-Simple and Near-Simplicial Polytopes

It can be observed that in practice triangulation meth-
ods behave particularly well on near-simplicial V-
polytopes, and that signed decomposition methods be-

have particularly well on near-simple H-polytopes.
This is in accordance with the general duality result
above, but at first sight surprising when compared to
the complexity result stating that these problems are
polynomial when the polytopes are given by their con-
verse representations. However, the polynomial com-
plexity is obtained by solving a large number of lin-
ear programs, which is apparently not competitive for
problems of a tractable size.

Lawrence’s method, which generates a signed de-
composition with especially few simplices for near-
simple H-polytopes, suffers from numerical instabili-
ties as outlined above, so that Lasserre’s algorithm is
preferable in general.

Double Representation

If both representations are known, then the hybrid or-
thonormalization technique proves to be the most effi-
cient algorithm in practice. Although it is closer in spirit
to a triangulation method, it is usually faster even than
signed decomposition algorithms on near-simple poly-
topes since it efficiently exploits the additional struc-
tural information from the V-representation.

Representation Conversion

The cases left over as difficult are those of polytopes
given by the ‘wrong’ representation. An experimental
finding is that V-polytopes with a large ratio n/m of
vertices to facets and H-polytopes with a small ratio
n/m pose problems. Unfortunately, most algorithms for
converting between the representations face an ‘easy’
and a ‘hard’ direction, and exactly the hard direction
is needed here. It has been observed, however, that on
suitable classes of polytopes both directions have essen-
tially the same complexity; the result is obtained using
the easy transformation as an oracle for the hard one
[1]. This technique will probably allow to efficiently ap-
ply the hybrid orthonormalization technique to those
polytopes whose volumes are particularly hard to com-
pute today.

See also

� Quadratic Programming Over an Ellipsoid
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Young man, in mathematics you don’t under-
stand things, you just get used to them.

John von Neumann

A very intelligent mathematician and scientist, John
von Neumann (1903–1957) worked in the area of set
theory, game theory, economic behavior, operator alge-
bra, quantummechanics, computer science, neural net-
work, and the theory of automata. He was also one of
the first five professors at the Institute for Advanced
Studies (IAS), whose purpose was ‘the pursuit of ad-
vanced learning and exploration in fields of pure sci-
ence and high scholarship’ [5].

Von Neumann was born in Budapest on December
28, 1903. He was a mathematical prodigy with extraor-
dinarily fast thinking and an effectively ‘photographic
memory’. In 1921 he was sent to study at the Lutheran
Gymnasium (Agostai Hitvallasu Evangelikus Fogim-
nazium), one of three well-respected high schools in
Budapest [1]. During the eight years of Von Neumann’s
high school career, his father arranged a professional
mathematician to tutor him at home so that his remark-
able mathematical talent would be advanced.

At the age of 18, von Neumann had his first mathe-
matical paper published, with M. Fekete, his tutor. This
paper showed how to solve a problem on the location of
zeroes of certain minimal polynomials. He was awarded
‘excellence in mathematics and scientific reasoning’ in
a nationwide high school competition [4].

In 1921, von Neumann enrolled in both the Univ.
of Budapest and the Univ. of Berlin to study mathe-
matics. In 1925, he was awarded the Bachelor degree
in chemical engineering from the Eidgenossische Tech-
nische Hochschule (ETH) or Swiss Federal Institute of
Technology. A year later, he was awarded the Ph.D. in
mathematics at the Univ. of Budapest.

During the 1920s, while von Neumann was in Eu-
rope, he focused hisworks in twomain areas: ‘set theory
and logical foundations of mathematics’, and ‘Hilbert
space theory, operator theory, and the mathematical
foundations of quantum mechanics’ [7]. On top of that
he successfully gained a reputation for his work on set
theory and quantum mechanics especially the theory of
measurement [1].

In 1930, von Neumann was invited to work at
Princeton Univ. which was recognized as a global cen-
ter for mathematicians during the early 1930s [3]. A few
years later, he was appointed to teach at the IAS. Like
other mathematicians at that time, von Neumann was
fascinated by Hilbert research. One of his important
works in Hilbert space was the theory of rings of op-
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erators (W
-algebras or von Neumann algebras) which
are algebras of bounded operators in a separable Hilbert
space [8]. He applied ‘modern algebra to algebras of op-
erators in a Hilbert space’. Later on, working with F.J.
Murray, von Neumann examined the continuous ge-
ometry associated with the ring of operators [2,9,10].

Von Neumann was also interested in the theory
of games [12]. His great achievement in this area was
the book [14], written with the Austrian economist O.
Morgenstern. The book contains the mathematics of
game theory and its application to a variety of economic
problems.

During World War II, the need for advanced com-
puting technology increased within various military
research programs. Several scientists, physicists, and
mathematicians, who worked in those programs, faced
problems that could not be solved analytically. As a re-
sult some experiments or numerical methods were used
to determine solutions to these difficult. Like other
mathematicians, von Neumann also participated in
those research programs as a consultant. He got in-
volved in aerodynamics, high explosives, atomic bomb,
electronics, the development of high-speed calculat-
ing machines, etc. Von Neumann wanted a powerful
calculating system that could solve nonlinear partial
differential equations of more than one independent
variable.

At the Univ. of Pennsylvania’s Moore School of
Electrical Engineering, the ENIAC (Electronic Nu-
merical Integrator and Computer), a programmable
electronic calculator, was completely designed. The
ENIAC, regarded as the first modern computer, was
able to work ‘at electronic speed’. As soon as von
Neumann heard about this machine, he rushed to
see the ENIAC despite of its full completion. Dur-
ing the time he visited the Moore School, he dis-
cussed with the staff about the design of the EDVAC
(Electronic Discrete Variable Arithmetic Computer),
a stored-program computer; so he decided to partici-
pate in developing this machine. While working on ED-
VAC project, von Neumann was writing [6] in 1945 to
describe the stored-program computer, particularly in
its logical control [1,2]. His report was successfully ap-
proved throughout the United States and Britain.

After the war, von Neumann directed his attention
to the Electronic Computer Project because he expected
an increase on computer need in scientific research.

One of his concerns on computing systems was their
speed. In [13], he and his co-author defined factors that
affected overall speed [1,2].With A. Burks and H. Gold-
stine, von Neumann also wrote a report, ‘Preliminary
Discussion of the Logical Design of an Electronic Com-
puting Instrument’, on logical design known as von
Neumann architecture [1,2].

As the power of computer increased, the use of nu-
merical analysis was stimulated after a declining state
during the 1930s. Although the computer gave math-
ematical scientists an opportunity to study larger and
more complex systems of linear equations, partial dif-
ferential equations, etc., existing iterative methods were
ineffective to solve problems using computer. For this
reason, von Neumann began examining more efficient
and more reliable algorithms for the computer [11].
The methods of Monte-Carlo and the duality theorem
in linear programming are the two most distinguished
results that he contributed in computer-oriented nu-
merical analysis.

The computer has been a necessary tool for the
achievement of many scientific and engineering re-
search as von Neumann’s predicted. He used com-
puter to solve problems in fluid dynamics, meteorol-
ogy, atomic and nuclear physics, partial differential
equations, numerical analysis, linear programming, etc.
[11,12]. Von Neumann interest in computer seemed to
be never lessened. The theory of natural and artificial
automata [11] is also one of his computing research ac-
complishment during the last years of his life. It exam-
ines general solutions to the problems of organization,
structure, language, information, and control [1,2].

Von Neumann’s problem-solving ability and wide-
ranging interests enabled him to produce a large num-
ber of contributions to various fields. Moreover his
fast thinking and effective memory allowed him to re-
duce the complexity of many problems. He had never
stopped thinking about mathematics. Thus it is not sur-
prising that von Neumann quickly became an intellec-
tual in both pure and applied mathematics.

See also

� Duality Theory: Biduality in Nonconvex
Optimization

� Duality Theory: Monoduality in Convex
Optimization
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Facility Location Problems

Let T be a convexpolygon in the plane R2, and S = {P1,
. . . , Pn} be a set of n points in T. Let us denote by d(P,Q)
the Euclidean distance between P and Q. The following
are typical location problems.

Problem 1 Find a point P = P� that attains

max
P2T

min
Pi2S

d(P; Pi ): (1)

Problem 2 Find a point P = P� � that attains

min
P2R2

max
Pi2S

d(P; Pi ): (2)

Problem 1 is called the largest empty-circle problem.
This is because the solution P� of Problem 1 gives the
center of the largest circle that does not contain any
point of S in the interior while the center is in T; the
value of (1) is the radius of the largest empty circle.
Problem 2, on the other hand, is called the smallest
enclosing-circle problem, because the solution P� � of
Problem 2, gives the center of the smallest circle con-
taining all the points in S; the value in (2) is the radius
of the smallest enclosing circle.

These problems can be considered as facility loca-
tion problems in the following sense (cf. also � Multi-
facility and restricted location problems). Suppose that
T represents the shape of a city, and that P1, . . . , Pn rep-
resent the locations of hospitals in the city. We assume
that citizens go to the nearest hospitals when they need
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medical care. Then, Problem 1 is to find the inhabitant
who is the farthest from the nearest hospital. Hence, if
the city has a budget to build another hospital, the solu-
tion P� of Problem 1 gives the optimal location to build
it in the sense that the least convenient person is bene-
fited the most by the new hospital.

Next suppose that the city government wants to
build a blood-supply center that keeps all the types of
blood and delivers them to the hospitals when needed.
Then, the solution P� � of Problem 2 gives the optimal
location to build it in the sense that the longest distance
to a hospital is minimized.

Voronoi Diagrams

For a given set S = {P1, . . . , Pn} of n points, we define
region R(S; Pi) by

R(S; Pi ) D
�
P 2 R2 : d(P; Pi ) < d(P; Pj )

for any j ¤ i

	
: (3)

R(S;Pi) consists of points P such that, among S, Pi is
the nearest point from P. R(S; Pi) is called the Voronoi
region of Pi.

The planeR2 is partitioned into the Voronoi regions
R(S; P1), . . . , R(S; Pn) and their boundaries. This parti-
tion is called the Voronoi diagram for S. Elements of S
are called the generators of the Voronoi diagram. Fig-
ure 1 shows an example of a Voronoi diagram, where
small dots represent elements of S and solid lines repre-
sent the Voronoi diagram.

Voronoi Diagrams in Facility Location, Figure 1
Voronoi diagram and empty circles

A line, a half line or a line segment shared by the
boundaries of two Voronoi regions is called a Voronoi
edge, and a point shared by the boundaries of three or
more Voronoi regions is called a Voronoi point.

The following properties are the direct conse-
quences of the definition [1,7].

Lemma 3 A Voronoi edge is on the perpendicular bisec-
tor of the associated two generators.

Lemma 4 AVoronoi point is the center of the circle that
passes through the associated three or more generators,
and there is no generator in the interior of this circle.

An example of such a circle is shown by circle c1 in
Fig. 1.

The Voronoi diagram can be constructed by many
efficient algorithms. Among them, the divide-and-
conquer algorithm [10] and the plane-sweep algorithm
[3] require O(n logn) time, and this time complexity
is worst-case optimal. The incremental algorithm re-
quires O(n) time on the average for a wide class of dis-
tributions of the generators [6]. Numerically robust al-
gorithms are also obtained [7,11].

Now let us return to Problem 1. Suppose that we
start with a circle with radius 0 centered at an arbitrary
point in T, and try to make the circle as large as possi-
ble by changing the radius and the center continuously
provided that the center is in T and the circle contains
no element of S in the interior. The situations in which
we cannot make the circle larger can be classified into
three types.

The first type is that the circle hits three points in S,
as circle c1 in Fig. 1. The second type is that the circle
hits two points and the center is on the boundary of T,
as circle c2 in Fig. 1. The third type is that the circle hits
one point and the center is at the corner of T, as circle
c3 in Fig. 1.

Thus, the solution P� of Problem 1 is either:
i) a Voronoi point;
ii) a point of intersection between a Voronoi edge and

the boundary of T; or
iii) a vertex of the polygon T.
Hence, we can solve Problem 1 by first constructing the
Voronoi diagram and next checking all the candidate
points. Since the number of Voronoi points and that of
Voronoi edges are of O(n), Problem 1 can be solved in
O(n log n) time if the number of vertices of the polygon
T is of O(n).
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Farthest-Point Voronoi Diagram

Reversing the inequality in (3), we define another re-
gion Rf(S; Pi) by

Rf(S; Pi ) D
�
P 2 R2 : d(P; Pi ) > d(P; Pj)

for any j ¤ i

	
: (4)

Rf(S; Pi) consists of points P such that, among S, Pi is
the farthest point from P. The plane is partitioned into
Rf(S; P1), . . . , Rf(S; Pn) and their boundaries. This par-
tition is called the farthest-point Voronoi diagram for S.
The farthest-point Voronoi diagram for the same set of
points as in Fig. 1 isshown in Fig. 2.

The next property is a direct consequence of the def-
inition [7].

Lemma 5 A Voronoi point of the farthest-point
Voronoi diagram is the center of the circle that passes
through the associated three generators, and this circle
contains all the elements of S.

An example of such a circle is shown by circle c1 in
Fig. 2.

Suppose that we choose an arbitrary circle contain-
ing S, and shrink it smaller by changing both the ra-
dius and the center continuously without violating the
condition that the circle contains all the elements of S.
The locally minimal circle thus obtained can be classi-
fied into two types. One type is a circle hitting three or

Voronoi Diagrams in Facility Location, Figure 2
Farthest-point Voronoi diagram and the candidates of the
smallest enclosing circle

more points in S, as is shown by the circle c1 in Fig. 2,
and the other is a circle hitting two points that form
a diameter of the circle.

Therefore, the solution P� � of Problem 2 is either:
i) a Voronoi point of the farthest-point Voronoi dia-

gram for S; or
ii) the midpoint of two vertices on the boundary of the

convex hull of S, where the convex hull of S is de-
fined as the smallest convex region containing S.

Both the convex hull and the farthest-point Voronoi di-
agrams can be constructed in O(n logn)time [2], and
consequently Problem 2 can be solved in O(n logn)
time.

Variations in the Distance

We have considered the facility location in the frame-
work of the Euclidean distance. Sometimes, however,
other distances are more realistic. For many variants of
the distance, the above discussion can be applied with
slight changes.

Let (xi, yi) be the coordinates of Pi, and (x, y) the
coordinates of P. Typical variants of the distance are the
following:
� L1-distance (also called theManhattan distance)

d(P; Pi ) D jx � xi j C jy � yi j ; (5)

� L1-distance

d(P; Pi ) D maxfjx � xi j ; jy � yi jg; (6)

� Lp-distance

d(P; Pi ) D fjx � xi jp C jy � yi jpg1/p ; (7)

� elliptic distance

d(P; Pi ) D a(x � xi)2 C 2b(x � xi)(y � yi )

C c(y � yi )2;

where a > 0; ac � b2 > 0:

(8)

The L1-distance is a good approximation of the actual
cost to move along the avenues in the North–South di-
rection and along the streets in the East–West direction,
just as we do in Manhattan in New York City or in the
central area of Kyoto City. In this distance, the ‘circle’
is a square whose sides are slanted in the 45° direction
with respect to the x and y axes.
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Voronoi Diagrams in Facility Location, Figure 3
Elliptic-distance Voronoi diagram and the largest empty el-
lipse

The L1-distance can be observed in a mechanical
x-y plotter. In the x-y plotter, a pen is moved by two
step motors, one for the x direction and the other for
the y direction; these two motors are controlled inde-
pendently when the pen is moved in the pen-up mode.
Hence, the time required to move the pen from one
position to another is proportional to the L1-distance.
A similar distance can also be found in the parts-supply
system on the ceiling of a production factory.

The Lp-distance represents a general distance, in-
cluding the Euclidean distance for p = 2, the Manhattan
distance for p = 1 and the L1-distance as the limit for p
!1.

For each of these distances, Problems 1 and 2 are
defined. Also the Voronoi diagram and the farthest-
point Voronoi diagram can be defined similarly [1,7],
and hence can be used to solve Problems 1 and 2.

It might be difficult to find an example of the el-
liptic distance in the actual world, but this distance is
also useful for some location problems. An example is
shown in Fig. 3. Suppose that, as shown in (a), we are
given a map, and we want to insert the name of a place
in this map in such a way that the name should be as
large as possible while it should not intersect the exist-
ing symbols or lines. To solve this problem, we first find
an ellipse enclosing the name text as shown in (a), next
construct the Voronoi diagramwith respect to the ellip-
tic distance as shown in (b), and finally solve the largest
empty-ellipse problem using this Voronoi diagram.

Note that the elliptic-distance Voronoi diagram can
be constructed easily. Actually, we first transform the

plane by the affine transformation that maps the given
ellipse to a circle, next construct the Euclidean-distance
Voronoi diagram, and finally inversely transform it to
the original plane.

Multiple-Facility Location

So far we have considered the optimal location of a sin-
gle new facility. Another type of the location problem is
to find a given number, say n, of points that altogether
attain a certain optimality. This type of the problem
arises when two or more facilities can be constructed
simultaneously.

A typical problem in this type is the following.

Problem 6 For a given convex region T and given
number n, find the locations of n points P1 = P�1 , . . . ,
Pn = P�n that attain

min
P1;:::;Pn2T

max
P2T

min
i2f1;:::;ng

d(P; Pi ): (9)

This problem may arise in the situation that the city
T has no hospital, and the city government wants to
construct n hospitals (simultaneously or one by one) in
such a way that, when all the n hospitals are built, the
maximum distance from an inhabitant to the nearest
hospital is minimized.

A more general situation is that the city already has
k hospitals and the government wants to construct n
more hospitals. Thus, we get the next problem.

Problem 7 For given convex regions T, number n, and
k points Pn+1, . . . , Pn+k 2T, find the locations of n points
P1 = P�1 , . . . , Pn = P�n that attain

min
P1;:::;Pn2T

max
P2T

min
i2f1;:::;nCkg

d(P; Pi ): (10)

Still another situation is the following.
Let � (P) denote the population density at P in the

city T, and let d(P, Pi) be the cost for an inhabitant at P
to go to the hospital at Pi. Assume that all the citizens
need medical care in equal probability, and the govern-
ment wants to build n hospitals in such a way that the
total cost for the citizens to go to the hospitals is mini-
mized. Thus we get the next problem.

Problem 8 For given T, �, n, find the locations of n
points P1 = P�1 , . . . , Pn = P�n that attain

min
P1;:::;Pn2T

Z

T

�(P) min
i2f1;:::;ng

d(P; Pi ) dT: (11)
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Note that Expressions (9), (10), (11) have the same
form:

min
P1;:::;Pn2T

F(P1; : : : ; Pn): (12)

However the objective function

F(P1; : : : ; Pn)

is nonconvex, and the three problems are in general dif-
ficult to solve strictly. However, we can find an approxi-
mate solution using Voronoi diagrams in the following
way.

As we have seen, F(P1, . . . , Pn) in Problems 6 and
7 can be obtained by solving the largest empty-circle
problem and hence the Voronoi diagram associated
with the distance d can be used. Moreover, (11) is
rewritten to

min
P1;:::;Pn2T

nX
iD1

Z

R(S ;Pi )\T

�(P)d(P; Pi ) dT; (13)

where R(S;Pi) denotes the Voronoi region of Pi in the
associated Voronoi diagram. Hence, the objective func-
tion F(P1, . . . , Pn) in Problem 8 can also be computed
via the Voronoi diagram.

Thus, we have the following iterative strategy to
solve Problems 6, 7 and 8 approximately. First, we
choose P1, . . . , Pn in T arbitrarily. Next we construct
the Voronoi diagram for {P1, . . . , Pn} with respect to
the given distance d, and compute the value of F(P1, . . . ,
Pn) together with @F/ @xi, @F/ @yi (i = 1, . . . , n). Then,
we move P1, . . . , Pn in the direction that decreases the
objective function. We repeat this until F(P1, . . . , Pn)
converges.

The detailed descriptions of the strategies and their
experimental evaluations for individual types of the
problems can be found in [4,8,12]. For the fast auto-
matic differentiation method to get @F/ @xi and @F/ @yi,
refer to [5].

Concluding Remarks

We have seen typical problems in facility location for
which the concept of the Voronoi diagram and its gen-
eralization are useful. There are many other variants in
facility location problems. For the details, also refer to
other surveys [7,9].
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The Walrasian price or pure exchange equilibrium
problem is a general as opposed to partial equilibrium
problem in that all commodities in the economy are
treated. In addition, it is an example of perfect com-
petition in that it is assumed that producers take the
prices as given and can not individually influence the
prices. This problem has been extensively studied in
the economics literature dating to L. Walras [20]; see
also [2,4,10,19].

In the pure exchange model the consumer side of
the economy is modeled by the excess demand func-
tions and it is assumed that production is absent and

consumers exchange commodities that they initially
own. Production can be introduced into this basic
framework in a variety of ways by including, for ex-
ample, an activity analysis model to describe the pro-
ductive techniques in the economy (cf. [14,15]). The
excess demand functions are aggregated demand func-
tions over the individual consumers in the economy.
They represent the difference between the market de-
mands for the commodities and the supply of the com-
modities (based on the initial endowments of the con-
sumers).

Computation of economic equilibria has been, typ-
ically, based either on classical algorithms for solv-
ing nonlinear systems of equations (see, e. g., [6]), or,
on simplicial approximation methods pioneered by H.
Scarf [15] (see also the contributions of M.J. Todd
[17,18], J.B. Shoven [16], J. Whalley [21], G. van der
Laan and A.J.J. Talman [7]). The former techniques are
applicable only when the equilibrium lies in the inte-
rior of the feasible set, while the latter techniques are
general-purpose algorithms, and are capable of han-
dling inequality constraints, such as the requirement
that the prices of the commodities be nonnegative. Nev-
ertheless, in their present state of development, they
may be unable to handle large scale problems (cf. [11]).

General economic equilibrium problems have been
formulated as nonlinear complementarity problems
(see, e. g., [8]) and a Newton-type method based on
this formulation has been used by many researchers for
the computation of equilibria (see, e. g., [5,9,13]). Al-
though this approach has been proven to be more ef-
fective than fixed point methods, its convergence has
not been proven theoretically (see, e. g., [11]).

K.C. Border [1] provides a variational inequality
formulation ofWalrasian price equilibrium. Qualitative
results using a variational inequality framework can be
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found in [3]. Algorithms, as well as numerical exam-
ples, as well as the relationship of the Walrasian price
equilibrium problem to a network equilibrium problem
can be found in [23].

Here we present the pure exchange (or pure trade)
economic equilibrium model and gives its variational
inequality formulation. Some fundamental theoretical
results are then presented. For proofs and additional
background and results, see [3,12,22], and [23].

Consider a pure exchange economy with l com-
modities, and with column price vector p taking val-
ues in Rl

C and with components p1, . . . , pl. Denote the
induced aggregate excess demand function z(p), which
is a row vector with components z1(p), . . . , zl(p). As-
sume that z(p) is generally defined on a subcone C of
Rl
C which contains the interior Rl

CC of Rl
C, that is, R++

� C� Rl
C. Hence, the possibility that the aggregate ex-

cess demand function may become unbounded when
the price of a certain commodity vanishes is allowed.
Assume that z(p) satisfies Walras’ law, that is, hz(p), ph
= 0 on C and that z(p) is homogeneous of degree zero in
p on C, that is, z(˛p) = z(p) for all p 2 C, ˛ > 0. Because
of homogeneity, one may normalize the prices so that
they take values in the simplex:

Sl D

(
p : p 2 Rl

C;

lX
iD1

pi D 1

)
;

and, therefore, one may restrict the aggregate excess de-
mand function to the intersection D on Sl with C. Let

SlC D
n
p : p > 0; p 2 Sl

o
;

and note that SlC � D� Sl.
As is standard in general economic equilibrium the-

ory, assume that:
i) the function z(p): D) Rl is continuous;
ii) the function z(p) satisfies Walras’ law:

hz(p); pi D 0; 8p 2 D:

The definition of aWalrasian equilibrium is now stated.

Theorem 1 (Walrasian price equilibrium) A price
vector p� 2 Rl

C is a Walrasian equilibrium price vector
if

z(p�) � 0:

The following theorem establishes that Walrasian price
vectors can be characterized as solutions of a variational
inequality.

Theorem 2 (variational inequality formulation) A
price vector p� 2 D is a Walrasian equilibrium if and
only if its satisfies the variational inequality

hz(p�); p � p�i � 0; 8p 2 Sl :

The interpretation in the above variational inequality
model geometrically is that z(p�) is ‘orthogonal’ to the
set Sl and points away from the set Sl. In particular, the
result is the following:

Proposition 3 A price vector p� is a Walrasian equilib-
rium, or, equivalently, a solution of the above variational
inequality, if and only if, it is a fixed point of the projec-
tion map

G(p) D PSl (pC �z(p));

where � > 0 and PS l indicates the projection map onto
the compact convex set Sl.

Note that if the aggregate excess demand function z(p)
is defined and is continuous on all of Sl, that is, D = Sl,
then the existence of at least oneWalrasian equilibrium
price vector in Sl follows immediately from the stan-
dard theory of variational inequalities.

However, since D is not necessarily compact, one
may still be able to deduce that z(p) exhibits the needed
behavior near the boundary of Sl, in particular, that at
least some of the components of z(p) become in a sense
‘large’ as p approaches points on the boundary of Sl that
are not contained in D. Several existence proofs of this
type can be found in [1]. We now provide the result
proven in [3]:

Theorem 4 Assume that the aggregate excess demand
function z(p) satisfies the following assumption: If Sl \ D
is nonempty, then with any sequence {pn} in SlC which
converges to a point of Sl \ D there is associated a point
p 2 SlC, generally dependent on {pn}, such that the se-
quence z(pn) � p contains infinitely many positive terms.

Then there exists a Walrasian equilibrium price vec-
tor p� 2 D.

A special class of aggregate excess demand functions is
now considered, for which the following result holds
true:
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Theorem 5 Assume that �z(p) is continuous and
monotone on D. Then p�; 2 D is a Walrasian equilib-
rium price vector if and only if

hz(p); p � p
i � 0; 8p 2 D;

or, equivalently, if and only if,

hz(p); p
i � 0; 8p 2 D:

An immediate consequence of the above is the follow-
ing:

Corollary 6 Assume that �z(p) is continuous and
monotone on D and D is compact. Then the set of Wal-
rasian equilibrium price vectors is a convex subset of D.

The uniqueness issue is now investigated; specifically,
if one strengthens the monotonicity assumption some-
what, one obtains the following result.

Theorem 7 Assume that �z(p) is strictly monotone on
D, that is,

˝
z(p1) � z(p2); p1 � p2

˛
< 0;

8p1; p2 2 D; p1 ¤ p2:

Then there exists at most a single Walrasian price equi-
librium vector p�.

We now present a general iterative scheme for the com-
putation of Walrasian price equilibria is described. The
scheme is based on the general iterative scheme of S.C.
Dafermos (cf. [12], and the references therein).

In the study of algorithms and their convergence,
the standard assumption in the economics literature (cf.
[15]) is that the aggregate excess demand function z(p)
is well-defined and continuous on all of Sl. Here this
assumption is also made. The scheme is as follows.

The Iterative Scheme

Construct a smooth function g(p, q): Sl × Sl) Rl with
the following properties:
i) g(p, p) = �z(p), 8p 2 Sl;
ii) for every p, q 2 Sl, the (l × l)-matrix rp g(p, q) is

positive definite.
Any smooth function g(p, q) with the above properties
generates the following algorithm:

0 Initialization:
Start with some p0 2 Sl . Set k := 1.

1 Construction and computation:
Compute pk by solving the variational in-
equality

hg(pk ; pk�1)>; p � pki � 0; 8p 2 Sl :

2 Convergence verification:
IF j pk � pk�1 j� �, with � > 0, a prespecified
tolerance,
THEN STOP;
ELSE, set k := k + 1, and go to Step 1.

For simplicity, we denote the above variational in-
equality by VIk(g, Sl). Since rp g(p, q) is positive def-
inite, VIk(g, Sl) admits a unique solution pk. Thus, we
obtain a well-defined sequence {pk}. It is easy to verify
that if the sequence {pk} is convergent, say pk! p�, as
k!1, then p� is an equilibrium price vector, that is,
it is a solution of the variational inequality. In fact, on
account of the continuity of g(p, q), VIk(g, Sl) yields

h�z(p�); p � p�i D
˝
g(p�; p�)>; p � p�

˛

D lim
k!1

D
g(pk ; pk�1)>; p � pk

E
� 0;

8p 2 Sl ;

so that p� is a solution of the original variational in-
equality.

Conditions for convergence may be found in [12]
and [23].

We now show that the general iterative scheme in-
duces a projection method and a relaxation method. In
the context of the pure exchange model both the pro-
jection method and the relaxation method resolve the
variational inequality problem into simpler subprob-
lems, which can then be solved using equilibration al-
gorithms (cf. [23]).

The Projection Method

The projection method corresponds to the choice:

g(p; q) D �z(q)C
1
�
G(p � q);

where � is a positive scalar and G is a fixed, symmetric
positive definite matrix. In this case properties i) and ii)
are satisfied. In fact,



4050 W Warehouse Location Problem

i) g(p; q) D �z(p)C 1
�
G(p � p) D �z(p)

ii) rp g(p, q) = ��1G, is positive definite and symmet-
ric.

The RelaxationMethod

The relaxation method corresponds to the choice:

gi (p; q) D �zi (q1; : : : ; qi�1; pi ; qiC1; : : : ; ql );

8i D 1; 2; : : : ; l :

In this case properties i) and ii) are also satisfied. In fact,
i) g(p, p) = � z(p),
ii)

rp g(p; q) D

0
BB@
� @z1
@p1

� � � 0
:::

: : :
:::

0 � � � � @z l
@pl

1
CCA

is a diagonal matrix.
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Within the broad interface between computer science
and operational research (OR) a major application area
is locational decisions. Roughly speaking, one can claim
that the location of any physical object whatsoever, par-
tially or totally created by some living organism, rep-
resents the solution to a location problem. Even if we
restrict ‘living organism’ to encompass human beings
only and even if we assume some kind of ‘intellectual
process’ behind the choice of a solution, the entire field
of location problems is still overwhelming and its story
dates back as far as the story of mankind itself. Fur-
ther limitations are necessary in order to find a suit-
able framework for the pesentation of the subject, and
the next subset of location problems emerges naturally
if the rather vague phrase ‘intellectual process’ is re-
placed by some systematical approach based on what
has become commonly accepted as OR-methodology.
This brings models in the focal point as a convenient
tool for locational analyses.

A substantial proportion of any developed country’s
gross national product (GNP) is spent simply on ‘mov-
ing things around’. The location of the facilities (such
as town halls, hospitals, factories, depots, retailers, su-
permarkets, or components in electrical circuits, etc.)
in relation to the customers or other facilities is there-
fore of crucial importance to the success of both private
or public enterprises or to the outcome of the nowadays
computer-monitored military operations.

Several schemes have been proposed for classify-
ing the wealth of models developed for locational de-

cisions. To account for all the factors separating such
models from one another is far beyond the scope of
the present article. For our purpose, however, we need
to emphasize the distinction between continuous and
discrete models. Continuous models typically presume
that the facilities to be located can be placed anywhere,
that is, within the context of a continuous space, for ex-
ample, in a plane. Discrete models, on the other hand,
deal with situations where the set of potential sites for
the facilities to be placed is finite and often represented
by the vertices of a network.

Single-commodity models as opposed to multicom-
modity models deal with the location of one or more
facilities each providing the same kind of service to the
customers allocated to it. For such models, the weight of
a customer represents the amount demanded (per time
unit) for the kind of commodity supplied by the facili-
ties. It may well occur that all customers can be viewed
as having the same demand. If the so-called single as-
signment property applies, which means that each cus-
tomer is supplied by a single facility only, we can then
transform the original data of the problem such that
all customers have unity demand, or weight equal to 1.
Problems where the weight associated with each cus-
tomer equals 1 are characterized as unweighted as op-
posed to weighted.

As its name indicates, single-facility problems in-
volves the placement of a single facility only as op-
posed to multifacility models. Likewise, single-criterion
models consider a single criterion only when the qual-
ity of feasible solutions is assessed. In contrast to
multicriteria decision making, it is here meaningful
to talk of an objective function which is to be opti-
mized.

How should a feasible solution comprising both lo-
cation and allocation be assessed? Among the most fre-
quently encountered constituents of an objective func-
tion are: the overall cost structure and the distance mea-
sure employed.

To exemplify some of the notions introduced above,
we can consider the location of a regional wine depot
which is to supply a chain of n supermarkets located in
n towns. Disregarding the fact that wine bottles indeed
may contain highly different fluids, we shall assume that
the yearly demands can be expressed in terms of the to-
tal number of wine cases. The problem thereby reduces
to a single-commodity problem.
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It is rather unlikely that the regional depot to be
located can be placed ‘anywhere’. A discrete model is
thus more appropriate in this case; let us say that the set
of potential location sites is a subset of the vertices in
the road network connecting the n cities. Now, will the
trucks visit only a single supermarket at a time or a se-
quence of supermarkets before it returns to the depot?
For simplicity, let us disregard the routing aspect (how
to combine location with the design of routes visiting
two or more customers in some order) and accordingly
assume that the objective function to be minimized can
be expressed as the product sum

X
(annual demand)

� (shortest path distance between

supermarket and depot);

where the summation is taken over the n supermarkets.
This model representing a very simplified picture

of the‘real world’ is known in the literature as the 1-
median problem in a network or 1-MP for short.

Admittedly, the inclusion of other factors would
contribute a lot to the model’s realism. Examples of
such factors are: seasonal variations around Christmas
and other peak events, the number and capacities of
the trucks used, the distance measure employed (road
lengths or travel time?), the fixed costs which may vary
from one potential location site to another, et cetera.
Nevertheless, it is a well-documented fact that fairly
simple models often are able to capture the essential
parts of a realistic problem whereas the additional con-
tributions to cost savings or profit achieved via more
complex models, viewed against the time and cost in-
vested in their development, need not give ‘value for
money’.

A multifacility location problem arises, as men-
tioned above, when two or more facilities are to be
located simultaneously, each interacting with the cus-
tomers or existing facilities or with each other. Suppose
for example that the chain of supermarkets may wish
to expand its activities by entering a new region. How
many new supermarkets should be opened and where
should they be located? Should they all necessarily pro-
vide the same kind of service to their customers, say, in
terms of assortment? Considering the competitive en-
vironment we here are dealing with, what will the ex-
pected market share become? Should the supermarkets

be opened in different time periods and, if yes, in which
order?

The last question addressed does also relate to the
distinction between static and dynamic models, where
the latter explicitly include time and thus can be viewed
as examples of multiperiod planning. The usual aim of
such dynamic models would be to investigate how best
to incorporate additional new facilities in an existing
structure, to rearrange an existing layout, or to plan
a completely new system.

The facilities to be located are normally regarded as
‘friendly’ in the sense that ‘closeness’ is viewed as an at-
tractive property. For example, real estate dealers praise
easy access to shopping centers, schools, public trans-
portation, and recreational areas when a house is an-
nounced for sale. Locational decisions, however, do also
encompass the counterpart: the location of so-called
‘obnoxious’ facilities like nuclear power plants, shoot-
ing ranges, and polluting factories which are needed for
the society although they produce an undesirable effect
or represent a threat to their surroundings. Here, one
frequently used criterion is the maximum distance be-
tween a facility and the closest customer. It should in
this context be noted that even a friendly facility may
well become obnoxious unless ‘closeness’ is taken with
a grain of salt. Thus, optimal closeness to a noisy ele-
mentary school is rather ‘reachable within a few min-
utes’ walk’ than ‘next door’, a feature known as the
NIMBY syndrome (not in my back yard).

The investigation of models with such truly antago-
nistic criteria capturing both the friendly and the ob-
noxious aspect of a locational decision problem have
attracted several researchers, notably in the 1990’s, and
the field is still gaining further momentum. ‘Semiob-
noxious’ is among the new adjectives created. Whereas
a nuclear power plant indeed is being considered as
obnoxious by the vast majority of people, a typical
semiobnoxious facility could be an airport, disliked by
its neighbors for its environmental pollution and appre-
ciated by its users for its reachability.

Three Prototype Location Problems

When is a discrete model more appropriate than a con-
tinuous one? Both options are frequently available to
practitioners and the following issues are often crucial
when a choice is to be made:



Warehouse Location Problem W 4053

a) Is the transportation network so well developed in
the region being considered and so free from barri-
ers that a continuous formulation is reasonable?

b) Is there a relatively small set of identifiable facility
sites so that a discrete formulation should be advo-
cated?

c) Are the optimal solutions to a continuous model
readily transferable to a set of possible locations
without resulting in serious errors in the measure(s)
of performance used to evaluate solutions?

d) Do either of the two model types offer computa-
tional advantages?

Although the answers to such questions may be am-
biguous, and although the analyst will often have con-
siderable flexibility in her/his choice, experience from
practice indicates that these answers most often lead to
the choice of a discrete model. The major reasons are
that in most cases decision-makers consider a discrete
representation to be a more realistic and a more accu-
rate portrayal of the problem at hand, and that contin-
uous models appear to be relatively difficult to solve.

Among the myriads of models considered in dis-
crete location theory, only three of these: the p-median
problem p-MP, the p-center problem (p-CP), and the
simple plant location problem (SPLP) — at times re-
ferred to as prototype location problems — have played
a particularly dominant role. Despite the seeming sim-
plicity of their underlying assumptions, these models
have provided important, quantitative bases for the in-
vestigation of numerous practical locational decision
problems. They have been used both as optimization
models in their own right or have been employed as
subroutines in more integrated models. Finally, due to
the large number of extensions available, each of these
three prototype problems can be viewed as the foremost
member of a family of location problems.

We now present p-MP, p-CP, and SPLP in their
most general forms and provide concise, symbolic for-
mulations of each of these within a common frame-
work.

Let
� m be the finite number of customers, indexed by i 2

I = {1, . . . ,m};
� n be the finite number of sites for potential facilities,

indexed by j 2 J = {1, . . . , n};
� p be the number of facilities to be opened or estab-

lished, 1 � p� n.

Whereas the locations of the p facilities to be estab-
lished is to be decided upon, the locations of them cus-
tomers are assumed known and invariant. These cus-
tomers have prespecified demands for a common good
which in principle can be provided by any potential fa-
cility.

For each of the mn facility-customer pairs, define
� cij as the total variable cost of serving all of customer

i’s demands from facility j.
The ‘cost’ cij may include measures of the distance from
customer i to facility j as well as of the time or cost of
serving customer i from facility j. For example, the cij
may be interpreted as cij = wi(hj+tij) where
� wi is the number of units demanded by customer i;
� hj is the per unit cost of operating facility j (includ-

ing variable production and administrative costs,
etc.), and

� tij is the transportation cost of shipping one unit to
customer j from facility i.

Cost tij may also be interpreted as tij = dij where
� dij is the physical distance (or its time or monetary

equivalent) of a shortest path from customer i to fa-
cility j

Then, for hj = 0, cij reduces to cij = widij. Thus, cij cap-
tures the various notions of distance, time, and variable
costs referred to so far.

With cij so defined, we can without loss of generality
assume all customers to have unity demand. Further-
more, for each of the three problems, no capacity con-
straints are imposed on the number of costumers that
each potential facility can serve. Finally, also without
loss of generality, all data are assumed nonnegative.

As will be explained shortly, we can conveniently
express the locational decisions to be made in terms
of Q:
� Q � J is a subset of potential facilities to be opened

and from which all customers are to be served. The
cardinality of Q is denoted by |Q|.

Conceptually, an approach to identify an optimal solu-
tion to each of the three problems can be said to involve
two phases,
1) determination of a location pattern in terms of Q

specifying the location of the facilities, and
2) an allocation phase in which each customer is as-

signed to exactly one open facility and hence is as-
sumed to receive all of its demand from that facility
such that a certain objective function is minimized.
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Computationally, however, these two phases cannot in
general be separated from one another but may, de-
pending on how a specific algorithm is designed, be
carried out simultaneously. The conceptual decomposi-
tion into two phases is here suggested solely to facilitate
comprehension of the ensuing compact formulations.

p-MP

Data instance: m, n, p, C = {cij}.
Open p facilities and assign each customer to ex-

actly one of them such that the total variable cost is
minimized. For Q given, an assignment minimizing to-
tal variable cost can be determined ‘by inspection’: cus-
tomer i is assigned to an established facility correspond-
ing to the smallest cij (up to ties), that is, to facility k
where cik = minj 2 Q cij. Upon assigning all customers in
this manner, the resulting total variable cost becomesP

i 2 I{minj 2 Qcij}. Hence, p–MP reads:

p�MP : min
Q
J; jQjDp

(X
i2I

min
j2Q

ci j

)

The p-center problem p-CP differs significantly from p-
MP in several respects, primarily with respect to the
criterion used for assessing the quality of a feasible
solution. Whereas 1-MP as exemplified above by the
wine depot location problem and the more general p-
MP are minisum problems, p-CP has a minimax ob-
jective: open p facilities and assign each customer to
exactly one of them such that the maximum distance
(unweighted case) or the maximum weighted distance
from any open facility to any of the customers assigned
to it is a minimum.

p-CP is often a suitable model for analyzing loca-
tional decision problems for emergency services such
as police, fire, and ambulance services. A common cri-
terion for the effectiveness of such service coverage is
that any demand point may be reached from the facility
nearest it within a given weighted distance, time or cost.

p-CP

Data instance: m, n, p, C = {cij}.
Open p facilities and assign each customer to ex-

actly one of them such that the maximum variable cost
of serving any customer is a minimum. Suppose Q is
known. We can then do no better than assigning the ith

customer to that open facility from which the cost cij is
a minimum, that is, to facility k where cik = minj 2 Q cij
and where ties are resolved arbitrarily. Upon assigning
all customers in this manner, the resulting maximum
cost becomes maxi 2 I{minj 2 Q cij}. Hence, the following
formulation obtains:

p�CP : min
Q
J;jQjDp

max
i2I

�
min
j2Q

ci j
	
:

Like p-MP, also the third prototype location problem,
the simple plant location problem (SPLP) is a minisum
problem. Two features, however, separate p-MP from
SPLP:
a) the inclusion of fixed costs associated with each po-

tential facility, and
b) the number of facilities to be established which no

longer is prespecified but results from an optimal
solution.

For the jth potential facility define
� f j as the fixed cost of establishing facility j
‘Fixed’ means that f j is to be paid only if facility j ac-
tually is established and f j is then independent of the
number of customers (� 1) served by that facility.

SPLP

Data instance: m, n, C = {cij}, f = (f j).
Open a subsetQ� J of facilities and assign each cus-

tomer to exactly one of them such that the sum of the
fixed and the variable costs is minimized, that is,

SPLP: min
Q
J

8<
:
X
j2Q

f j C
X
i2I

min
j2Q

ci j

9=
; :

We note in passing, that while most well-defined prob-
lems bear unambiguous names, SPLP has been dealt
with in the literature under a wide variety of different
titles, usually composed of an adjective (simple, unca-
pacitated, optimal) and a noun (plant, warehouse, facil-
ity, site) followed by location problem. It is furthermore
somewhat confusing that ‘simple’ in this context is syn-
onymous with ‘uncapacitated’ since also p-MP and p-
CP assume that the facilities to be located have unlim-
ited capacities.

This ultra-short sketch of the ‘nature of locational
decisions’ does hardly reveal even the tip of the ice-
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berg though hopefully enough to leave an impression
of an area of great practical importance not to forget
the wealth of theoretical challenges and open questions
that still remain.

The literature is already huge and rapidly growing.
Among pertinent ‘broad-coverage’ references are the
three textbooks [1,3,4]. Also, [2] deserves to be men-
tioned. The idea is here to consider decisions as regards
location and design of production facilities as being in-
terrelated, that is, the optimal plant design (input mix
and output level) depends on the location of the plant,
and the optimal location of the plant depends on its de-
sign.

See also

� Combinatorial Optimization Algorithms in
Resource Allocation Problems

� Competitive Facility Location
� Facility Location with Externalities
� Facility Location Problems with Spatial Interaction
� Facility Location with Staircase Costs
� Global Optimization in Weber’s Problem with

Attraction and Repulsion
�MINLP: Application in Facility Location-allocation
�Multifacility and Restricted Location Problems
� Network Location: Covering Problems
� Optimizing Facility Location with Rectilinear

Distances
� Production-distribution System Design Problem
� Resource Allocation for Epidemic Control
� Single Facility Location: Circle Covering Problem
� Single Facility Location: Multi-objective Euclidean

Distance Location
� Single Facility Location: Multi-objective Rectilinear

Distance Location
� Stochastic Transportation and Location Problems
� Voronoi Diagrams in Facility Location
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Introduction

In recent decades an increased interest in protecting
the environment from everything that could lead to its
degradation and destruction has been observed. Pollu-
tion (discharge of materials or energy and discharge of
microorganisms that are pathogenic for people and an-
imals) of the groundwater and underwater is one of
the most important problems facing ordinary people
and authorities around the world.Many ecological con-
sequences result from groundwater pollution. For ex-
ample, the physicochemical characteristics of water are
changed, leading to severe economic consequences for
people, e. g., an increase in the cost of water processing
for its reuse.

The most important problems surrounding pollu-
tion concern water (lakes, rivers, and oceans), which
suffers the strongest exploitation and use. One of these
uses is as receivers of the outflows of combined sewer
networks [10,26,55]. The construction of treatment
plants, to enable sewage treatment before disposal in
a body of water, protects the quality of the water that
receives the outflows of the sewage networks. However,
urban combined sewer networks do not have separate
collectors for domestic and industrial sewage and rain-
water drainage. Therefore, during rainfall, networks
and/or treatment plants may be overloaded, and over-
flows may take place upstream of overloaded stretches,
causing the pollution of receiving waters. Placing re-
tention reservoirs at appropriate locations along the
network (by constructing special basins (offline stor-
age) or by installing throttle gates at the end of long
sewer stretches (in-line storage)) is a cost-efficient way



4056 W Wastewater System, Optimization of

Wastewater System, Optimization of, Figure 1
Schematic representation of a small sewer network

to avoid overflows during moderate rainfall events and
to reduce them in stronger rainfall as the water is
stored in the reservoirs during the rainfall and is di-
rected toward the treatment plant after the rain has
stopped.

Optimal operation of the combined sewer network
(which contains retention reservoirs) (Fig. 1) implies
that for each rain event the whole retention capac-
ity of all reservoirs will be used before overflows take
place somewhere in the network. This, however, can-
not be guaranteed by fixed gate settings, such as fixed
weirs or manually adjustable gates for the filling and
emptying of these storage spaces. Especially if the rain-
fall is distributed unevenly over an urban area, there
may be reservoirs that are not totally filled, while over-
flows already occur elsewhere in the network. In these
cases, a further considerable reduction of overflows can
be obtained by real-time operation of the reservoirs,
e. g., by use of controllable gates. The decision on how
to move the gates during a certain rain event may be
made by a human operator or by some automatic con-
trol strategy to be applied in real time. An efficient
control strategy can reduce substantially the overflows
from a sewer network. In addition, it may lead to sub-
stantial cost savings as the number and storage capac-
ities of the reservoirs required to keep overflows below
a certain (usually legislatively defined [22,60]) limit de-
pends upon the efficiency of the applied control strat-
egy.

Optimization of Wastewater Systems

The development of a control system for combined
sewer networks has as a goal the protection of the
quality of waters that receive the outflows of the net-
works. Thus, the main task of the control system is
the minimization of overflows for any rainfall event.
The development of optimization techniques for the
planning, design, and management of complex water
resource systems has been the subject of many inves-
tigations [40] around the world. The choice of opti-
mization method to be used depends on the character-
istics of the reservoir system being considered, on the
availability of data, and on the specific control objec-
tives and constraints. Many researchers in the field have
considered methods such as linear programming, dy-
namic programming, nonlinear programming, linear-
quadratic control, genetic algorithms, and combina-
tions of these methods. Nonlinear optimal control is
the most efficient approach due to direct considera-
tion of inflow predictions, process nonlinearities, and
constraints. On the other hand, nonlinear optimal con-
trol implies development and implementation of so-
phisticated codes for the real-time numerical solution
of the optimal control problem. Multivariable regula-
tors, if designed properly, may approximate the effi-
ciency of nonlinear optimal control, based on much
simpler calculation instructions. The approaches that
are based on dynamic programming are difficult to ap-
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ply to large-scale networks due to the “curse of dimen-
sionality,” while approaches based on linear program-
ming do not include the nonlinearities of the process.
Expert systems, fuzzy control, and further heuristic ap-
proaches have also been applied with remarkable re-
sults.

Linear programming is a very powerful and easy-
to-use form of optimization and is most efficient for
problems that can be expressed in linear terms. For
sewer network control, linear programming is used
in [4] for the development of a control algorithm for
automatic control of detention storage in a large-scale
combined sewer system and in [42] for the real-time
control of urban drainage systems where the nonlin-
ear programming problem is replaced by a succession
of linear programming problems. In [1] the optimiza-
tion of the discharge hydrograph of a pumping sta-
tion located at the downstream end of a storm drainage
channel located in the southeastern portion of Mexico
City is considered and the initial nonlinear optimiza-
tion problem is reduced to a series of linear program-
ming problems whose solution determines the desired
optimal discharge hydrograph. In [8] a new approach
to the optimal design of wastewater treatment systems
is presented. An algorithm that can be divided into two
parts is proposed for finding global optimal solutions to
the problem. The first part comprises a new linear pro-
gram formulation that is used to generate good starting
points for the solution of the general nonlinear program
(second part).

Dynamic programming has been used extensively
in the optimization of water resource systems, as the
nonlinear and stochastic features, which characterize
a large number of water resource systems, can be trans-
lated into a dynamic programming formulation. How-
ever, when dynamic programming is applied to multi-
ple reservoir systems, the usefulness of the technique is
limited, as the computer memory requirement is quite
large. In such cases, dynamic programming can only be
applied if the complex problems with the large num-
ber of variables are decomposed into a series of sub-
problems, which are solved recursively. In the context
of sewer network control, dynamic programming has
been used for optimizing the design of drainage sys-
tems [51], for designing the least expensive network of
sewers that will drain water from a number of discrete
sources [56], for designing the lowest-cost drainage net-

works which include storage elements [17], and for
control of the combined sewer network of the city and
county of San Francisco [24].

Nonlinear programming offers a more general
mathematical formulation than linear and dynamic
programming and can effectively handle nonlinear ob-
jective functions and nonlinear constraints. In [16]
an algorithm that combines elements of discrete dy-
namic programming (i. e., discrete state space, back-
ward stagewise optimization) with elements of con-
strained optimization (i. e., nonlinear programming
with equality constraints) is used for the optimal con-
trol of a multireservoir system. In [3], optimal control
theory is used for real-time automated control of com-
bined sewers, in [41,45,46,47] nonlinear programming
is applied for the flow control of Québec Urban Com-
munity sewer network, in [20] a model-predictive con-
trol strategy that uses a mixed linear/quadratic objec-
tive function is applied in the Seattle metropolitan area
to minimize combined sewer overflows, while a solu-
tion algorithm developed for the sewer network con-
trol problem applying the discrete maximum principle
is used in [27,28,29,31,32,33,35,38].

Linear-quadratic control theory has been exten-
sively applied in many fields, and a number of in-
vestigators have incorporated various aspects of lin-
ear-quadratic theory in their solutions to reservoir
operations problems. In [59] a multivariable feedback
controller is used for the control of combined storm-
sewer systems, while in [27,28,29,30,31,34,36,37,38]
a linear multivariable feedback regulator designed us-
ing the linear-quadratic methodology is used for the
sewer network control problem.

Genetic algorithms have been proposed as a means
of global optimization for a variety of engineering de-
sign problems. They mimic the natural genetic pro-
cesses of evolution, deliberately keeping a range of
good solutions to avoid being drawn into false lo-
cal optima. Genetic algorithms are robust methods for
searching the optimum solution to complex problems.
In [57] they are applied to a four-reservoir, determin-
istic finite-horizon problem. To achieve water qual-
ity goals and wastewater treatment cost optimization
in the Youngsan River, where water quality has de-
creased due to heavy pollutant loads fromKwangju City
and surrounding areas, a water quality management
model [11] has been developed through the integration
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of a genetic algorithm and a mathematical water quality
model with remarkable results.

Conventional rule-based control and fuzzy logic
for real-time flow control of sewer systems have also
been used with success. Conventional rule-based con-
trol systems are based on a large number of rules,
while control systems based on fuzzy logic combine the
simple rules of an expert system with a flexible spec-
ification of output parameters. In [23] a comparison
of conventional rule-based flow control systems with
a control system based on fuzzy logic is conducted for
a combined sewer system, while in [18] a study was
carried out for a part of the sewer system of the city
of Flensburg using fuzzy logic for the real-time con-
trol of the sewer system. An interactive fuzzy approach
has worked suitably [25] in water quality management
when applied to developing a water quality manage-
ment plan in the Tou-Chen River Basin in northern
Taiwan for solving a multiobjective optimization prob-
lem involving vague and imprecise information related
to data, model formulation, and the decision maker’s
preferences.

The real-time control (RTC) of wastewater systems
has been a topic of research and application for many
years, and the benefits of applying RTC strategies to
various wastewater systems are presented in many re-
search papers. In [9] a global optimal control prototype
for the Barcelona urban drainage system is presented.
[7] presents the results of the application of RTC strate-
gies to the Roma-Cecchignola combined sewer system.
In [58] the RTC is applied to sewer systems in Ger-
many, while in [19] the analysis of the performance
improvement of a new automatic central control pro-
cedure applied to the sewer system of Rotterdam is
presented. The results of a study [48] showed that the
Trebic sewer system is suitable for combined runoff
control. The optimized control of a Moscow sewer sub-
network enabled significant improvements in the sewer
network operation as shown in [14]. A global opti-
mal control system was implemented on the Québec
Urban Community’s Westerly sewer network [45] to
manage flows and water levels in real time and man-
aged to decrease combined sewer overflow (CSO) vol-
umes at four overflow sites by more than 85% for seven
rainfall events recorded during the summer of 1999.
In [44] fault-tolerant-model predictive-control strate-
gies of sewer networks are investigated and applied to

a portion of the Barcelona sewage network under re-
alistic rain and fault scenarios, while in [43] hybrid
model predictive control (HMPC) for sewer networks
is introduced and applied to the same sewer network.
In [15] the CORAL offline, a new tool for sewerage net-
work modeling, simulation, and optimal strategy com-
putation, is demonstrated for a test catchment of the
Barcelona sewer network for the purpose of perform-
ing a global optimal control.

It should be noted that in the recent past the three
parts of the urban wastewater system (sewer system,
wastewater treatment plant (WWTP), and receiving
water) have been considered as separate units in water
quality management, and the aims of optimum perfor-
mance were considered individually as well. The con-
ventional RTC of sewer systems mainly aims at min-
imization of overflow volumes and loads, while treat-
ment plant operation traditionally is mainly concerned
with maintaining effluent standards. However, recent
years have seen increased attention being paid to the
integrated analysis of sewer networks, wastewater treat-
ment plants and receiving waters, andmany researchers
have focused their work on integrated modeling and
integrated control. Integrated control is characterized
by two aspects [6]:
� Integration of objectives: control objectives within

one subsystem may be based on criteria measured
in other subsystems.

� Integration of information: control decisions taken
in one subsystem may be based on information
about the state of other subsystems.
One of the most important improvements in the

field of integrated modeling and integrated control
is due to Schütze and Butler’s work [5,6,52,53,54,61].
However, other researchers have also studied the inte-
grated modeling and integrated control of wastewater
systems [2,12,13,21,39,49,50].
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The concept of Young programming is based on the
Young inequality. Wide range applications in mechan-
ics [9], statistics and decision theory [4,7] and infor-
mation theory [3] give some beautiful interpretations
of the Young inequality. In section 1 we shortly recall
the inequality in a form that is convenient to use in
the rest of the paper. In section 2 some basic facts of
linear programming are restated in a form that is easy

to generalize to Young programming. In section 3 the
Young programming is introduced and the duality is
discussed. In section 4 a parametric form Young pro-
gramming is shown to be an analytical approximation
of the corresponding linear programming problem. Fi-
nally in section 5 a row-action method for the solution
of Young programming problems is presented. The al-
gorithm interpreted in terms of the dual problem leads
to an alternative method, we call it dir-action method.

The Young Inequality

The Young inequality was first published by W.H.
Young in 1912. A generalized form of the inequality
can be found in [5]. We recall the inequality in a form
that is convenient to use in the rest of the paper. Let
': R! R be a continuous, strictly decreasing function,
and consider the curve �' = {(x, '(x)): x 2 R}. The fol-
lowing definition offers a way to describe how much
an arbitrary point (u, v) of the plane is ‘away’ from the
curve~�' .

Definition 1 Let (u, v) 2 R2 and denote  = '�1, then

S'(u; v) D (u �  (v))v �
uZ

 (v)

'(t) dt

0
B@D (v � '(u))u �

vZ

'(u)

 (t) dt

1
CA :

is called the inaccuracy of (u, v) with respect to �' .

Geometrically S'(u, v) is the area of the shaded region
in Fig. 1. The Young inequality states that

S'(u; v) � 0 for every (u; v) 2 R2
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and equality holds if and only if v = '(u). The geometric
interpretation or a straightforward computation proves
the statement. The inaccuracy can be termed in R2n as
follows.

Definition 2 Let (u, v) 2 R2n, u = (u1, . . . , un), v = (v1,
. . . , vn), then

S'(u; v) :D
nX

jD1

S'(uj; v j)

is called the inaccuracy of (u, v) 2 R2n, i. e. the inaccu-
racy is computed coordinatewisely.

Interesting examples of functions of the form S'(u,
v) are displayed by certain discrepancy or divergence
functions. Let f : R! R be a strictly concave and differ-
entiable function. Then a class of divergence functions
can be generated by the following mapping Df : R × R
! R,

Df (ujjv) D f (v)C f 0(v)(u � v) � f (u);

u; v 2 R:

Df can serve as a ‘measure of distance’ between u and
v 2 R with respect to f , although strictly speaking Df is
not a distance function for it is not symmetric and the
triangle inequality does not hold. Nevertheless the fam-
ily of functions of the form Df (f being not necessarily
of a sum form) was introduced by L.M. Bregman [1].

Obviously

Df (ujjv) D f (v)C f 0(v)(u � v) � f (u)

D f 0(v)(u � v)C
vZ

u

f 0(t) dt;

u; v 2 R:

Let f : R!R be defined by f 0 = '. It is easy to verify that

S'(u; '(v)) D Df (ujjv) for all u; v 2 R;

or alternatively

S'(u; v) D Df (ujj (v)) for all u; v 2 R:

Some special cases, divergence functions known in the
literature, are obtained by choosing
� '(t) = �lnt � 1, then S'(u, '(v)) = u ln(u/v) � u

+ v known as I-divergence, introduced by S. Kull-
back~[10];

� '(t) = 1/t, then S'(u, '(v)) = ln(v/u) � (u/v)� 1,
known as Itakura–Saito divergence [6];

� '(t) = t˛� 1, ˛ < 1, ˛ 6D 0, then S'(u, '(v)) = (v˛ �
u˛ + ˛v˛� 1(u � v))/˛ known as Csiszar’s ˛-diver-
gence~[4].

Linear Programming

Since the Young programming will be introduced as
an analytical approximation of linear programming, it
is convenient to recall some basic facts of linear pro-
gramming. Let A be an m × n matrix and denote a(1),
. . . , a(m) 2 Rn the rows of A. Denote ` and `? the
rowspace of matrix A, and the solution space of Ax =
0, respectively. Let bx;bz 2 Rn be arbitrary but fixed
vectors. Let us define the affine subspaces bz ˚ L D
fz 2 Rn : z DbzC w for some w 2 Lg andbx ˚ L? D˚
x 2 Rn : x DbxC w for some w 2 L?

�
. Then clearly

x 2bx˚ L?, Ax D Abx;

and

z 2bz˚ L, z DbzC yA

for some y 2 Rm.
Denote xj, zj the jth coordinate of x, z, respectively,

and consider the following feasibility problem, which is
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in fact the linear programming problem in an equilib-
rium form.

Problem 3 Letbx;bz 2 Rn be arbitrary but fixed vectors.
Find a feasible solution (if any) to the set of constraints

x 2bx˚ L?; z 2bz˚ L; (1)

x � 0; z � 0; (2)

x jz j D 0; j D 1; : : : ; n: (3)

The next lemma states some elementary but crucial ob-
servations about Problem 3.

Lemma 4 Letbx;bz 2 Rn be arbitrary but fixed vectors.
i) If x and z satisfy (1), then xbzCbxz D xzCbxbz.
ii) If x and z satisfy (2)–(2), then xbzCbxz �bxbz.
iii) If x and z satisfy (1)–(3), then xbzCbxz Dbxbz.
Proof Elementary computation proves that i), ii) and
iii) are obvious.

Let P D
˚
x : x 2bx˚ L?; x � 0

�
, and D D

fz : z 2bz˚ L; z � 0g. The following problem
presents three equivalent settings of the linear pro-
gramming problem.

Problem 5 Letbx;bz 2 Rn be arbitrary but fixed vectors.
i) (Equilibrium form) Find a feasible solution to (1)–

(3).
ii) (Optimization form) Find a feasible solution to

(1)–(2) such that
Pn

jD1 xjzj is minimal.
iii) (Primal-dual form) Find solutions to both prob-

lems:

primal
min

nPn
jD1 x jbz j : x 2 P

o
;

dual
min

nPn
jD1bx jz j : z 2 D

o
:

The next theorem restates the well-known duality the-
orem of linear programming in three equivalent forms
corresponding to problem settings in Problem 5.

Theorem 6 (Duality theorem) Letbx;bz 2 Rn be arbi-
trary but fixed vectors.
i) If (1)–(2) is feasible, then (1)–(3) is feasible.
ii) If (1)–(2) is feasible, then there are x� 2 P, z� 2 D

such that
Pn

jD1 x
�
j z
�
j = 0.

iii) IfP 6D ; andD 6D ;, then there are optimal solutions
x� 2 P and z� 2 D to both the primal and the dual
problems, respectively; furthermore x�z� = 0.

The standard way in the literature is to prove Theorem
6iii) directly, then i) and ii) are easy corollaries. Finally
let us point out that if we drop the assumption that
curve � is defined to be the graph of a function ' in
Definition 1, then the term xjzj can be interpreted as
the inaccuracy of (xj, zj) with respect to � = {(x, z): x
� 0, z � 0, xz = 0}. In the next section an equilibrium
function, ':R+!R+ will be introduced as an analytical
approximation of � .

Young Programming

Let ': R+ ! R+ be a continuous, strictly decreasing
function with limx! 0+ '(x) = 1, limx!1 '(x) = 0.
Let �' = {(x, '(x)): x 2 R+} and denote  = '�1. Ac-
cording to Definition 1, the inaccuracy of (x, z) 2 R2,
x> 0, z> 0 with respect to �' is

S'(x; z) D (x �  (z))z �
xZ

 (z)

'(t) dt:

The basic properties of S'(x, z) are summarized in the
following lemma.

Lemma 7 Let ': R+ ! R+ be a continuous, strictly
decreasing function with limx! 0+ '(x) =1, limx!1

'(x) = 0. Let  = '�1. Then
i) S'(x, z) is strictly convex function in x > 0 and z >

0, respectively.
ii) S'(x, z) � 0 for every x > 0, z > 0, and S'(x, z) = 0

if and only if x =  (z).
iii) @/(@x)S'(x; z) D z � '(x) for every x > 0, z > 0.
iv) @/(@z)S'(x; z) D x �  (z) for every x > 0, z > 0.
v) limx!0C @/(@x)S'(x; z) D �1 for every z > 0.
vi) limz!0C @/(@z)S'(x; z) D �1 for every x > 0.
vii) limx!1 @/(@x)S'(x; z) D z for every z > 0.
viii) limz!1 @/(@x)S'(x; z) D x for every x > 0.
ix) limx!1 S'(x, z) =1 for every z > 0.
x) limz!1 S'(x, z) =1 for every x > 0.
xi) S'(x, z) = S (z, x) for every x > 0 and z > 0.

Proof Elementary computation proves each property.

The inaccuracy of (x, z) 2 R2n, x > 0, z > 0 with respect
to �' , as introduced in Definition 2, is computed coor-
dinatewisely, i. e. for every x = (x1, . . . , xn), xj > 0, j = 1,
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. . . , n, and z = (z1, . . . , zn), zj > 0, j = 1, . . . , n,

S'(x; z) :D
nX

jD1

S' (x j; z j):

In the rest of this section the Young programming is
presented by a complete analogy to linear program-
ming as is discussed in section 2. Let us consider the
following feasibility problem, which is in fact the Young
programming problem in an equilibrium form.

Problem 8 Let bx > 0,bz > 0 be arbitrary but fixed
vectors. Find a feasible solution to the set of constraints
below.

x 2bx˚ L?; z 2bz˚ L; (4)

x > 0; z > 0; (5)

x j D  (z j); j D 1; : : : ; n: (6)

The next lemma states some elementary but crucial ob-
servations about Problem 6.

Lemma 9 Letbx > 0,bz > 0 be arbitrary but fixed vec-
tors.
i) If x and z satisfy (4)–(5), then S' (x;bz)C S'(bx; z) D

S'(x; z)C S'(bx;bz).
ii) If x and z satisfy (4)–(5), then S'(x;bz)C S'(bx; z) �

S'(bx;bz).
iii) If x and z satisfy (4)–(6), then S' (x;bz)C S'(bx; z) D

S'(bx;bz).
Proof Elementary computation proves that i), ii) and
iii) are obvious.

Let PC D
˚
x : x 2bx˚ L?; x � 0

�
, and DC D

fz : z 2bz˚ L; z � 0g. The following problem
presents three equivalent settings of the Young pro-
gramming problem.

Problem 10 Letbx > 0,bz > 0 be arbitrary but fixed
vectors.
i) (Equilibrium form) Find a feasible solution to (4)–

(6).
ii) (Optimization form) Find a feasible solution to

(4)–(5) such that
Pn

jD1S'(xj, zj) is minimal.

iii) (Primal-dual form) Find solutions to both prob-
lems below:

primal
min

nPn
jD1 S'(x j;bz j) : x 2 PC

o
;

dual
min

nPn
jD1 S'(bx j; z j) : z 2 DC

o
:

The primal and dual Young programming problems as
defined in Problem 10 are symmetrical in the sense that
dual of the dual is the primal. For a proof of this state-
ment, see [8]. The next theorem presents three equiv-
alent forms of the duality theorem corresponding to
problem settings in Problem 10.

Theorem 11 (Duality theorem) Letbx > 0,bz > 0 be
arbitrary but fixed vectors.
i) The system (4)–(6) is feasible.
ii) There are unique x� 2 P+ and z� 2 D+ such thatPn

jD1 S'(x
�
j , z�j ) = 0.

iii) There exist x� 2 P+ and z� 2 D+ unique optimal so-
lutions to the primal and the dual problems, respec-
tively. Furthermore x�j =  (z�j ), j = 1, . . . , n.

Instead of referring to proofs of more general state-
ments (duality theorems of convex programming, see
e. g. [11]) we prefer to give a short proof of Theorem
11iii).

Proof The proof can be formulated on both the pri-
mal and the dual sides. To emphasize the symmetry we
show the proof in both cases.

Proof on the dual side. Because of Lemma 7i), 7vi)
and 7x) the dual objective function attains its unique
minimum in D+. Denote z� the minimum and let x�j
:=  (z�j ) > 0, j = 1, . . . , n. Suppose that a(i)x� ¤ a(i)bx
for some i. Let z(�) := z� + � a(i). Clearly z(�) 2D+ for
small enough � , and

d
d�

S(bx; z(�))
ˇ̌
ˇ̌

D0
D a(i)bx� a(i)x� ¤ 0

what is in contradiction with the assumption that z� is
dual optimal solution. Therefore x� is primal optimal
solution.

Proof on the primal side. Because of Lemma 7i, 7v)
and 7ix the primal objective function attains its unique
minimum in P+. Denote x� the minimum and let z�j
:= '(x�j ) > 0, j = 1, . . . , n. Suppose that z� �bz ¤ yA
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i. e. z� �bz … L(a(1); : : : ; a(n)). Then there exists anex 2
L?(a(1); : : : ; a(n)) such thatex(z� �bz) ¤ 0. Let x(�) :D
x� C �ex. Clearly x(�) 2 P+ for small enough � , and

d
d�

S(x(�);bz)
ˇ̌
ˇ̌

D0
Dex(bz � z�) ¤ 0

what is in contradiction with the assumption that x� is
primal optimal solution. Therefore z� is dual optimal
solution. This completes the proof of iii).

To show that i), ii), iii) are equivalent statements it
is enough to note that S'(x, z)� 0 for every x > 0, z > 0
and S'(x, z) = 0 if and only if xj =  (zj), j = 1, . . . , n.

The next corollary points out that the optimal solutions
of the primal and dual problems do not depend on the
choice of parameter vectorsbx 2 bx ˚ L?;bx > 0 and
bz 2bz˚ L,bz > 0.

Corollary 12 Letbx,bz be given. There exist unique x� 2
bx˚ L?, z� 2bz˚ L such that x�j =  (z

�
j ), j = 1, . . . , n,

and

S'(x�; z)C S'(x; z�) D S'(x; z);

8x 2bx˚ L?; 8z 2bz˚ L:

Proof Obvious from Theorem 11.

Another important implication of the duality theorem
is noted in the following corollary.

Corollary 13 Let bx, bz be given and denote x� D
argmin

˚
S'(x;bz) : x 2bx˚ L?; x > 0

�
and z� D

argmin
˚
S'(bx; z) : z 2bz˚ L; z > 0

�
. Suppose that L0

� L and denote z0� D argmin
˚
S'(bx; z) : z 2 bz ˚ L0;

z > 0
�
. Then

x� D argmin
˚
S' (x; z0�) : x 2bx˚ L?; x > 0

�
:

Proof Since z0� 2bz˚L0 �bz˚L, the statement follows
from Corollary 12.

Observations of Corollary 12 and Corollary 13 give rise
to the row-action method proposed in section 5.

Approximation of the LP Problems

In this section we introduce a parameter � > 0 in the
Young programming problem, and prove that the se-
quence of optimal solutions of parametric Young pro-
gramming problems converges to an optimal solution
of the corresponding linear programming problem.

Definition 14 Let � > 0, ': R+ ! R+ continuous,
strictly decreasing function with limx! 0+ '(x) = 1,
limx!1 '(x) = 0. Define '�(x) := � '(x).

Denote  � = '�1� . Clearly  �(x) =  (x/�), where  =
'�1. Let us consider the following parametric version
of the Young programming primal-dual pair.

Problem 15 Letbx > 0,bz > 0 be arbitrary but fixed
vectors. Find a solution to both problems below

primal
x 2bx˚ L?

x > 0
min

Pn
jD1 S'� (x j;bz j)
dual

z 2bz˚ L
z > 0

min
Pn

jD1 S'� (bx j; z j):

For every given � > 0, denote x�(�), z�(�) the optimal
solutions to Problem 15. The next theorem points out
that the sets of optimal solutions {x�(�): � < �0}, {z�(�):
� < �0} are bounded for a small enough �0 > 0.

Theorem 16 Let � < �0 D min jbz j/('(bx j)). Then there
exists a K 2 R+ such that x�j (�) < K and z�j (�) < K for j
= 1, . . . , n.

Proof The optimality of x�(�) and z�(�) implies that

nX
jD1

S'� (x
�
j (�);bz j)C

nX
jD1

S'� (bx j; z�j (�))

D

nX
jD1

S'� (bx j;bz j):

Let � < �0 D min jbz j/('(bx j)). It is clear from
the geometric interpretation of S'(x, z) in Fig. 1 that
S'� (bx j;bz j) < bx jbz j for every � < �0 and j = 1, . . . , n.
Since S'� (bx j; z�j (�)) � 0, j = 1, . . . , n, we have that

nX
jD1

S'� (x
�
j (�);bz j) <

nX
jD1

bx jbz j

for every � < �0, which implies the boundedness of
x�j (�), j = 1, . . . , n, for limx!1 S'� (x j;bz j) D 1. The
proof to show the boundedness of z�j (�), j = 1, . . . , n,
follows the same line of thoughts
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Corollary 17 Let x�(�), z�(�) be optimal solutions of
Problem 10. Then

lim
�!0

x�j (�)z
�
j (�) D 0; j D 1; : : : ; n:

Proof If lim�! 0 z�j (�) = 0, then due to the bounded-
ness of x�j (�) the corollary follows. If z

�
j (�) � a > 0 for

all � < �0, then lim�! 0 x�j (�) = lim�! 0 '(z�j (�)/�) = 0
and the corollary follows

Putting together the observations of this section we get
that lim�! 0 x�(�) = x� and that lim�! 0 z�(�) = z� are
optimal solutions of the linear programming primal-
dual pair corresponding to Problem 15, i. e.

primal
x 2bx˚ L?

x > 0
min

Pn
jD1 x jbz j

dual
z 2bz˚ L
z > 0

min
Pn

jD1bx jz j:

Algorithms

Row-action algorithms as defined in [2] are ones that
use only the previous iterate in each iterative step, and
access is required to only one row of the system of equa-
tions of the constraint set. A row-action method was
first suggested in the pioneering work of Bregman [1].
The following algorithm is a row-action method for the
solution of the Young programming problem as stated
in Problem 10iii).

Initialize:
z0 =bz
i := k (modm).

Step k:
xk = argminfS'(x; zk�1) : a(i)x = a(i)bxg,
zkj = '(x

k
j ); j = 1; : : : ; n.

Algorithm 1: row-actionmethod

It may be interesting to point out that in terms of
the dual, Step k reads as follows

Step k:
zk = zk�1 + #ka(i)
#k = argminfS'(bx; zk�1 + #a(i)) : # 2 Rg.

That is, in dual terms, Step k is a one-dimensional
minimization problem along the row vector a(i), i = k
(mod m) at each step. The convergence of this algo-
rithm was shown by I. Csiszar [4] if any of the following
two assumptions holds:

[A1] the set
˚
x : a(i)x D a(i)bx; x � 0

�
is bounded for

at least one i, 1� i�m;
[A2]

R a
0 '(t)dt = infin;, for some a > 0.

Typically A1) holds for problems involving discrete
random variables, where the sum of the components is
one. A2) holds for example for '(x) = x˛� 1, 0 < ˛ < 1.
Note that, due to Lemma 7ix), the dual objective func-
tion can be rewritten as S (z;bx), where  = '�1. Then
the duality theorem (Theorem 11) enables us to add the
remark that convergence is also ensured if

[A2’]
R a
0  (t) dt =1, for some a > 0.

For example, A2’) holds for '(x) = x˛� 1, ˛ < 0.
The convergence of Algorithm 1 without any fur-

ther assumption, although is likely to be true, remains
an open question according to the best knowledge of
the authors. Finally we present a small numerical ex-
ample to display the steps of Algorithm 1.

Example 18 Let us consider the following Young pro-
gramming problem.

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
4X

jD1

S'(x j;bz j)

s.t. Ax D Abx
x > 0

where

A D
�
�8 �2 5 8
7 �18 �22 13

�
;

bx> D �6 10 3 1
�
;

bz> D � 18 1
12

1
5

1
3

�

and ' (t) = 1/t. The steps that Algorithm 1 takes on this
example are arranged in the table below (iterations were
stopped when |x(k)j � x(kC1)

j | < 10�8, j = 1, 2, 3, 4).
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Step x1 x2 x3 x4
4P
j=1

S'(x j;bz j)
0 6:000 10:000 3:000 1:000 0:596108
1 9:093 8:585 5:747 2:023 0:137325
2 9:655 10:002 5:426 3:139 0:038966
3 8:815 10:386 4:679 2:861 0:018048
4 8:898 10:597 4:632 3:028 0:016183
5 8:827 10:630 4:568 3:004 0:016004
6 8:834 10:648 4:564 3:018 0:016003
7 8:828 10:650 4:559 3:016 0:016003
8 8:828 10:651 4:564 3:017 0:016003
9 8:828 10:652 4:558 3:017 0:016003

So, the optimal solution is (x�)| = (8.828 10.652
4.558 3.017). If we solve the dual problem, then z(k)j =
1/x(k)j , j = 1, 2, 3, 4, for every k = 1, . . . , 9, so the optimal
solution for the dual problem is (z�)| = (0.113 0.094
0.219 0.331).

See also

� Linear Programming
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Preface to the Index Volume

This volume comprises the index to volumes 1–6 of the ENCYCLOPEDIA OF OPTIMIZATION. It contains two
indices: a Subject Index, and a Name Index. In these indices, part of the information in the articles has been
‘inverted’.

To understand the contents of these indices, recall that each article in the first six volumes has the following
global structure:
� title (in bold)
� text of the article; important notions are printed in italics, references to other articles are printed in bold, and

the first mention of a scientist includes his/her initials
� bibliography
� author(s)
� AMS 2000 classification code
� list of keywords and phrases

Name Index. The Name Index has an entry for each scientist explicitly mentioned in the text of an article. The
entry lists the titles of the articles in which that Person is mentioned. The Name Index is alphabetically sorted
according to the scientist’s last name.

Subject Index. The Subject Index contains entries of four types, using different fonts:
� article titles (in bold)
� phrases marked in the articles as being important (in italics, as in the articles)
� keywords and phrases as listed underneath each article (in a plain font)
� rotations of the three entries above (in a sans-serif font)

Article Titles. For each article title we first list the AMS 2000 subject classification code, then the titles of articles
that refer to the article (i. e., those that mention the article), and, last, the titles of articles to which the article refers
(i. e., those mentioned and printed in a bold font in the text of the article).

Important Phrases. For each such phrase we give the list of article titles in which the phrase (or a standard form of
it) appears, and all the AMS classification codes associated to these articles. These codes are thus taken from the
articles.

Keywords and Phrases. For each such entry we give the list of article titles having exactly this word or phrase in the
Keywords and phrases section, and all the AMS classification codes associated with these articles.

Rotations. The rotation set of a phrase is formed by phrases obtained by successively moving the first part of the
initial phrase to the end. If the phrase thus obtained does not start with an uninformative word (like ‘the’, ‘its’,
‘to’), the phrase belongs to the rotation set of the initial phrase.

Rotation entries list the last part and refer to the actual index entry. They allow you to locate an exact phrase
when you only know a word occurring somewhere in it.
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An example to clarify this follows:
Suppose the initial phrase is ‘Adaptive simulated annealing and its application to protein folding’. Then its rota-
tions are

1) simulated annealing and its application to protein folding see: Adaptive –
2) annealing and its application to protein folding see: Adaptive simulated –
3) and its application to protein folding see: Adaptive simulated annealing –
4) its application to protein folding see: Adaptive simulated annealing and –
5) application to protein folding see: Adaptive simulated annealing and its –
6) to protein folding see: Adaptive simulated annealing and its application –
7) protein folding see: Adaptive simulated annealing and its application to –
8) folding see: Adaptive simulated annealing and its application to protein –

Now, 3), 4), 6) clearly are not very helpful as regards the index, and only 1), 2), 5), 7), 8) remain and form the
rotation set. So, by looking in the Subject Index for entries starting with any of the words ‘simulated’, ‘annealing’,
‘application’, ‘protein’, ‘folding’, you will find the phrase ‘Adaptive simulated annealing and its application to
protein folding’ as well as others!

Order of Entries. Both indices are in alphabetical order, with numerals and mathematics symbols first. Sub-/
superscript and small uninformative words (such as “in”, “of ”, “the”) are ignored. Punctuation signs and the
symbols ‘-’ and ‘–’ count as space.

Please note that greek letters are sorted as if spelled out, e. g., � as ‘zeta’.
When two phrases are exactly the same but are in different fonts, the order is: bold, italics, plain, sans-serif (or:

article titles, important notions, keywords and phrases, rotations).

It is hoped that both indices will lead you quickly to the wealth of information provided in the six volumes of the
ENCYCLOPEDIA OF OPTIMIZATION.

July 2008
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0–1–0 graph
[58E05, 90C30]
(see: Topology of global optimization)

0–1 knapsack see: fractional—
0-1 linear programming approach for DNA transcription

element identification see:Mixed—
0–1mixed integer problems

[90C09, 90C10, 90C11]
(see: Disjunctive programming)

0-1 programming problem see: fractional—; hyperbolic—;
single-ratio fractional (hyperbolic)—

0–1 programs see:mixed integer —
0-diagonal operator see: block-—; off- —
1 knapsack see: fractional 0–—
1 linear programming approach for DNA transcription

element identification see:Mixed 0- —
1-median problem in a network

[90B80, 90B85]
(see:Warehouse location problem)

1 mixed integer problems see: 0–—
1-MP

[90B80, 90B85]
(see:Warehouse location problem)

1 programming problem see: fractional 0- —; hyperbolic 0- —;
single-ratio fractional (hyperbolic) 0- —

1 programs see:mixed integer 0–—
1D-diffusion fluxes see: estimation of —
2 see: SSS-—
2-dimensional grid

[65K05, 65Y05]
(see: Parallel computing: models)

2-dimensional torus
[65K05, 65Y05]
(see: Parallel computing: models)

2-matching problem
[90C05, 90C10, 90C11, 90C27, 90C35, 90C57]
(see: Assignment and matching; Integer programming)

2-opt
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

2-opt neighborhood
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

2-partition
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

2-SAT see:MAX-—
2-separated

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

2-step superlinear
[65K05, 65K10, 90C06, 90C30, 90C34, 90Cxx]
(see: Discontinuous optimization; Feasible sequential
quadratic programming)

2-valued function see: Boolean—
2-valued logic algebra see: Boolean—
2-valued normal forms see: PI-algebras and—
2B-consistency

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

3-colorability
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

3-DIMENSIONALMATCHING
[90C60]
(see: Complexity classes in optimization)

3-dimensional matching problem
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

3-partition
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

#3 problem see: Gomez—
3-SAT

[68Q25, 90C60]
(see: Complexity classes in optimization; NP-complete
problems and proof methodology)

3-satisfiability
[68Q25, 90C60]
(see: Complexity classes in optimization; NP-complete
problems and proof methodology)

3B-consistency
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

3D-transportation problem
[90C35]
(see:Multi-index transportation problems)
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3PM process
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

4-element group see: Klein—
6000 see: EasyModeler/ —
= N P see: P—
@+-critical point

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

@�-critical point
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

@+-function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

@�-function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)
1-stationary point

[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)
1-stationary point see: Hadamard—
2-subdifferential

[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

A

a priori
[90C25, 94A17]
(see: Bilevel programming: applications in engineering;
Entropy optimization: shannon measure of entropy and its
properties)

a priori method
[65K05, 90B50, 90C05, 90C29, 91B06]
(see:Multi-objective optimization and decision support
systems)

a priori optimization
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

A-weighted Euclidean norm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

A* search algorithm
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

Abadie CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Abaffi–Broyden–Spedicato algorithms for linear equations and
linear least squares
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Abaffian
[65K05, 65K10]
(see: ABS algorithms for optimization)

Abaffian matrices
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Abaffians
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

abnormal extremal
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

abnormal extremals see: High-order maximum principle for—
abnormal points

[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

abnormal points see: High-order necessary conditions for
optimality for —

abnormal processes
[41A10, 46N10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals;High-order necessary conditions for optimality
for abnormal points)

abnormal weak extremal
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

ABS algorithms for linear equations and linear least squares
(65K05, 65K10)
(referred to in: ABS algorithms for optimization; Cholesky
factorization;Gauss–Newton method: Least squares,
relation to Newton’s method; Generalized total least
squares; Interval linear systems; Large scale trust region
problems; Large scale unconstrained optimization; Least
squares orthogonal polynomials; Least squares problems;
Nonlinear least squares: Newton-type methods; Nonlinear
least squares problems;Nonlinear least squares: trust
regionmethods;Orthogonal triangularization;
Overdetermined systems of linear equations;QR
factorization; Solving large scale and sparse semidefinite
programs; Symmetric systems of linear equations)
(refers to: ABS algorithms for optimization; Cholesky
factorization;Gauss–Newton method: Least squares,
relation to Newton’s method; Generalized total least
squares; Interval linear systems; Large scale trust region
problems; Large scale unconstrained optimization; Least
squares orthogonal polynomials; Least squares problems;
Linear programming;Nonlinear least squares: Newton-type
methods; Nonlinear least squares problems;Nonlinear least
squares: trust region methods;Orthogonal
triangularization;Overdetermined systems of linear
equations;QR factorization; Solving large scale and sparse
semidefinite programs; Symmetric systems of linear
equations)

ABS algorithms for optimization
(65K05, 65K10)
(referred to in: ABS algorithms for linear equations and
linear least squares; Gauss–Newton method: Least squares,
relation to Newton’s method; Generalized total least
squares; Least squares orthogonal polynomials; Least
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squares problems;Nonlinear least squares: Newton-type
methods;Nonlinear least squares problems;Nonlinear least
squares: trust regionmethods)
(refers to: ABS algorithms for linear equations and linear
least squares; Gauss–Newton method: Least squares,
relation to Newton’s method; Generalized total least
squares; Least squares orthogonal polynomials; Least
squares problems;Nonlinear least squares: Newton-type
methods;Nonlinear least squares problems;Nonlinear least
squares: trust regionmethods)

ABS class see: basic —; scaled—; unsealed—
ABS class of algorithms see: scaled—
ABS methods

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization)

absolute deviation see: least —;maximum—;mean—
absolute estimation

[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

absolute limit
[01A99]
(see: Gauss, Carl Friedrich)

absolute qualification rule
[90C35]
(see: Feedback set problems)

absolutely continuous functional
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

abstract constraint
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

abstract constraints
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

abstract convex analysis
[90C26]
(see: Global optimization: envelope representation)

abstract convex function
[90C26]
(see: Global optimization: envelope representation)

abstract convexity
[90C26]
(see: Global optimization: envelope representation)

abstract convexity
[90C26]
(see: Global optimization: envelope representation)

abstract group see: realization of an—
abstract hemivariational inequality

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

abstract variational inequality of elliptic type
[65M60]
(see: Variational inequalities: F. E. approach)

AC3
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

acceleration devices and related techniques
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

acceleration function see: the mid-point—
acceleration steps

[90C30]
(see: Cyclic coordinate method)

accelleration of algorithms
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

acceptance measure
(see: Bayesian networks)

acceptance/rejection
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C10, 90C26,
90C27, 90C30]
(see:Multidimensional knapsack problems; Stochastic
global optimization: two-phase methods)

accepted by a Turing machine see: language—
accepting see: threshold —
accepting algorithms see: threshold—
accepting computation of a Turing machine

[90C60]
(see: Complexity classes in optimization)

accepting state of a Turing machine
[90C60]
(see: Complexity classes in optimization)

access machine see: parallel random—
accessibility form of CEP see: restricted —
accessible form of CEP see: universally—
accessible state

[93-XX]
(see: Dynamic programming: optimal control applications)

accessory minimum problem
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

ACCPM
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

accumulate
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

accumulation of the Jacobian
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

accuracy
[93-XX]
(see: Dynamic programming: optimal control applications)

achievable region method
[90B36]
(see: Stochastic scheduling)

achievement
[90C29]
(see:Multiple objective programming support)

achievement function
[90C11, 90C29]
(see:Multi-objective mixed integer programming;Multiple
objective programming support)

achievement scalarizing program
[90C11, 90C29]
(see:Multi-objective mixed integer programming)
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acid see: amino—
acquisitions see:Multicriteria methods for mergers and—
across a fault see: jump—
across an s—t-cut see: flow—
action see: Clarke dual—; corrective—; recourse—; total —
action algorithm see: row- —
action method see: row-—
actions see: recourse—
activation function

[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

active
[05C85, 46N10, 47N10, 49M37, 65K10, 90C10, 90C26, 90C30,
90C46, 90C60]
(see: Complexity of degeneracy;Directed tree networks;
Global optimization: tight convex underestimators; Integer
programming duality; Railroad locomotive scheduling)

active see: p-order—
active constraint

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

active constraints
[90C26, 90C30, 90C39]
(see: Bilevel optimization: feasibility test and flexibility
index; Kuhn–Tucker optimality conditions; Second order
optimality conditions for nonlinear optimization)

active constraints
[90C26, 90C60]
(see: Bilevel optimization: feasibility test and flexibility
index; Complexity of degeneracy)

active constraints see: strongly—
active function

[49K35, 49M27, 65K10, 90C25]
(see: Convex max-functions)

active index
[65K05, 90C26, 90C33, 90C34]
(see: Adaptive convexification in semi-infinite
optimization)

active index set
[49J52, 49K35, 49M27, 49Q10, 57R12, 65K10, 74G60, 74H99,
74K99, 74Pxx, 90C25, 90C31, 90C34, 90C46, 90C90]
(see: Convex max-functions; Generalized semi-infinite
programming: optimality conditions;Quasidifferentiable
optimization: stability of dynamic systems; Semi-infinite
programming: second order optimality conditions;
Smoothing methods for semi-infinite optimization)

active index set see: essentially —
active inequality constraints

[90C26]
(see: Smooth nonlinear nonconvex optimization)

active points see: set of "-most—
active ridge

[90Cxx]
(see: Discontinuous optimization)

active set
[65K05, 65K10, 90C20, 90C30]
(see: ABS algorithms for optimization;Quadratic
programming with bound constraints; Rosen’s method,
global convergence, and Powell’s conjecture)

active set algorithm
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

active set method
[90Cxx]
(see: Discontinuous optimization)

active set methods
[49M37, 65K05, 90C25, 90C30, 90C60]
(see: Complexity of degeneracy; Inequality-constrained
nonlinear optimization; Successive quadratic
programming: full space methods)

active set methods
[90C25, 90C30, 90C60, 90Cxx]
(see: Complexity of degeneracy;Discontinuous
optimization; Successive quadratic programming;
Successive quadratic programming: full space methods;
Successive quadratic programming: solution by active sets
and interior point methods)

active set quadratic programming methods
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

active set strategies
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

active set strategy
[90C25, 90C30]
(see: Successive quadratic programming: solution by active
sets and interior point methods)

active set strategy see: Goldfarb–Idnani—
active sets and interior point methods see: Successive

quadratic programming: solution by—
active site

[92B05]
(see: Genetic algorithms for protein structure prediction)

active site
[92B05]
(see: Genetic algorithms for protein structure prediction)

activities see:matrix of—
activity see: direction, preserving an—
activity coefficient

[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

actual
[65H20]
(see:Multi-scale global optimization using
terrain/funnelingmethods)

acute angle condition
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

acyclic oriented matroid
[90C09, 90C10]
(see: Oriented matroids)

acyclic oriented matroid see: totally —
acyclic subdigraph problem

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

acyclic tournament see: spanning—
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AD
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

AD see: error estimates for—; forward mode of—; point—;
reverse mode of —

AD algorithm see: forward mode of an—; reverse mode of
an—

AD-enabled parallelism
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

ad hoc networks see: Optimization in—
AD intermediate form

[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

AD of parallel programs
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

AD tools see: parallel —
AD01

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

Adams–Johnson linearization
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

adaptation
(see: Bayesian networks)

adaptation see: subinterval —
adaptive aggregation method

[49L20, 90C39]
(see: Dynamic programming: discounted problems)

adaptive algorithm
[60J65, 68Q25]
(see: Adaptive global search)

adaptive algorithm
[60J65, 68Q25]
(see: Adaptive global search)

adaptive computational method
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

adaptive computational method
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

Adaptive convexification in semi-infinite optimization
(90C34, 90C33, 90C26, 65K05)
(refers to: ˛BB algorithm; Bilevel optimization: feasibility
test and flexibility index; Convex discrete optimization;
Generalized semi-infinite programming: optimality
conditions)

adaptive) decision see: ex-post (risk prone—
Adaptive global search

(60J65, 68Q25)
(referred to in: Adaptive simulated annealing and its
application to protein folding;Global optimization based
on statistical models)
(refers to: Adaptive simulated annealing and its application
to protein folding;Global optimization based on statistical
models)

adaptive homotopy
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

adaptive homotopy
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

adaptive memory
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

adaptive methods
[49M37, 65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25,
90C26]
(see: Information-based complexity and information-based
optimization; Nonlinear least squares: Newton-type
methods)

adaptive methods
[49M37, 60J65, 68Q25]
(see: Adaptive global search;Nonlinear least squares:
Newton-type methods)

adaptive partitioning
[65K05, 90C26, 90C30]
(see: Bounding derivative ranges;Direct global
optimization algorithm)

adaptive random search method
[65K05, 90C30]
(see: Random search methods)

adaptive search
[65K05, 90C26, 90C30, 90C90]
(see: Global optimization: hit and run methods; Random
search methods)

adaptive search
[90C08, 90C11, 90C26, 90C27, 90C90]
(see: Biquadratic assignment problem;Global optimization:
hit and run methods)

adaptive search see: greedy randomized—; hesitant —;
pure—

adaptive search procedure see: greedy randomized—
adaptive search procedures see: Greedy randomized—
adaptive simulated annealing

[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

adaptive simulated annealing
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

Adaptive simulated annealing and its application to protein
folding
(92C05)
(referred to in: Adaptive global search; Bayesian global
optimization; Genetic algorithms;Genetic algorithms for
protein structure prediction;Global optimization based on
statistical models;Global optimization in Lennard–Jones
andmorse clusters;Graph coloring;Molecular structure
determination: convex global underestimation;
Monte-Carlo simulated annealing in protein folding;
Multipleminima problem in protein folding:˛BB global
optimization approach; Phase problem in X-ray
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crystallography: Shake and bake approach;Random search
methods; Simulated annealing; Simulated annealing
methods in protein folding; Stochastic global optimization:
stopping rules; Stochastic global optimization: two-phase
methods)
(refers to: Adaptive global search; Bayesian global
optimization; Genetic algorithms;Genetic algorithms for
protein structure prediction;Global optimization based on
statistical models;Global optimization in Lennard–Jones
and morse clusters; Global optimization in protein folding;
Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multiple minima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Protein folding: generalized-ensemble
algorithms; Random search methods; Simulated annealing;
Simulated annealing methods in protein folding; Stochastic
global optimization: stopping rules; Stochastic global
optimization: two-phase methods)

adaptive subdivision rule
[90C26]
(see: D.C. programming)

addition with order see: first order theory of real —
additional reverse convex constraint see: linear program with

an—
additive tree

[62H30, 90C27]
(see: Assignment methods in clustering)

additive utility functions
[90C26, 91B28]
(see: Portfolio selection and multicriteria analysis)

additive utility functions
[90C26, 90C29, 91B28]
(see: Decision support systems with multiple criteria;
Portfolio selection and multicriteria analysis)

adic assignments problems see: N-—
aDIFOR

[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: point and interval taylor
operators)

adjacency graph
[90B80]
(see: Facilities layout problems)

adjacency graph
[90B80]
(see: Facilities layout problems)

adjacency matrix
[05C15, 05C17, 05C35, 05C60, 05C69, 37B25, 90C20, 90C22,
90C27, 90C35, 90C59, 91A22]
(see: Lovász number; Replicator dynamics in combinatorial
optimization)

adjacent
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Graph coloring; Lovász number)

adjacent channel constrained frequency assignment
[05-XX]
(see: Frequency assignment problem)

adjacent vertices in a graph
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

adjacent violators algorithm see: pool—
adjoint

[65K05, 65L99, 90C30, 93-XX]
(see: Automatic differentiation: calculation of Newton steps;
Optimization strategies for dynamic systems)

adjoint-based gradient
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

adjoint derivative method
[90C26, 90C90]
(see: Structural optimization: history)

adjoint equation see: extended—
adjoint linear map

[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

adjoint methods
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

adjoint problem
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

adjoint program
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

adjoint recursion
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

adjoint variables
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

adjoints
[65H99, 65K99]
(see: Automatic differentiation: point and interval)

adjoints see: second order—
adjustment

[90B80, 90C10]
(see: Facility location problems with spatial interaction)

adjustment see:multiplier—; simultaneous—
adjustment process

[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

adjustment process see: trip-route choice—
admissible arc

[90C35]
(see:Maximum flow problem)

admissible cluster
[62H30, 90C39]
(see: Dynamic programming in clustering)

admissible displacement see: kinematically—
admissible domain

[49J20, 49J52]
(see: Shape optimization)
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admissible pair of a monomial ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

admissible pair of trajectory and control functions see:
asymptotically—

admissible pair of trajectory-function and control-function
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

admissible pivot
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

admissible policy
[49L20, 90C39]
(see: Dynamic programming: discounted problems)

admissible solution
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

admissible solution
[90C15, 90C29]
(see: Approximation of extremum problems with
probability functionals;Discretely distributed stochastic
programs: descent directions and efficient points)

admissible space see: kinetically—
admissible trajectory-control pair

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

ADOL-C
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

ADOL-F
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: point and interval taylor
operators)

advance
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

advanced basis
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

advanced search heuristics
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

advanced warmstart
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

adversary
[05C85]
(see: Directed tree networks)

aEL
[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

affine
[65K05, 90C30]
(see:Minimax: directional differentiability)

affine equilibrium constraints see:mathematical program
with—

affine function
[32B15, 51E15, 51N20, 90C26, 90C39]
(see: Affine sets and functions; Second order optimality
conditions for nonlinear optimization)

affine functions see: product of—; program of minimizing
a product of two—

affine-reduced-Hessian
[90C30]
(see: Conjugate-gradientmethods)

affine reduced Hessian see: limited-memory—
affine-reduced-Hessian algorithm

[90C30]
(see: Conjugate-gradientmethods)

affine reduction see: successive—
affine reduction BFGS algorithm see: successive—
affine scaling algorithm

[90C05]
(see: Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm)

affine scaling SQPIP methods
[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

affine set
[32B15, 51E15, 51N20]
(see: Affine sets and functions)

Affine sets and functions
(51E15, 32B15, 51N20)
(referred to in: Linear programming; Linear space)
(refers to: Convex max-functions; Linear programming;
Linear space)

after-arrival see: duty-—
afterset

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

afterset representation of relations see: foreset and—
against all see: one—
against one see: one—
agent see: principal —
agents see:mass separating—
aggregate excess demand function

[91B50]
(see:Walrasian price equilibrium)

aggregate excess demand function
[91B50]
(see:Walrasian price equilibrium)

aggregation
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

Aggregation
(see: Optimal planning of offshore oilfield infrastructure)

aggregation see: feature-based—; scenario—
aggregation function

[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

aggregation heuristic
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

aggregation method see: adaptive—
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aggregation schemes
[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

Agmon–Motzkin–Fourier relaxation method
[90C25, 90C33, 90C55]
(see: Splittingmethod for linear complementarity
problems)

agricultural risks
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

agricultural risks
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

agricultural systems see: State of the art in modeling—
agriculture

[90C29, 90C30, 90C90]
(see: Decision support systems with multiple criteria;
MINLP: applications in blending and pooling problems)

ahead rules see: look-—
AHP

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

AHP
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

aHT
[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

aid see:multicriteria decision—
AIDA*

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

aided techniques see: computer —
AIF

[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

air pollution
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

air pollution
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

air traffic control see: ground delay problem in—
air traffic control and ground delay programs

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

aircraft routing
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

aircraft routing
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

airline crew scheduling
[90C35]
(see:Multicommodity flow problems)

airline fleet assignment
[90C35]
(see:Multicommodity flow problems)

airline maintenance routing problem
[90C35]
(see:Multicommodity flow problems)

Airline optimization
(90B06, 90C06, 90C08, 90C35, 90C90)
(referred to in: Integer programming;Vehicle scheduling)
(refers to: Integer programming;Vehicle scheduling)

airplane hopping problem
[90C35]
(see:Minimum cost flow problem)

Aitken double sweep method
[90C30]
(see: Cyclic coordinate method)

Aitken double sweep method
[90C30]
(see: Cyclic coordinate method)

Aizenberg–Rabinovich system
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic
algebras)

Akaike information criterion
[62F10, 94A17]
(see: Entropy optimization: parameter estimation)

Alanine) see: Poly(L- —
algebra see: Boolean—; Boolean 2-valued logic—;

computer —; Fundamental theorem of—; Lie—; linear —;
many-valued logic—;MV-—; Orlik–Solomon—; Pi- —;
Pinkava—; Pinkava logical —; relational interval —; V—;
von Neumann—;W�- —; Zhegalkin —

algebra connective see: logic—
algebra framework see: linear —
algebra package see: computer —
algebraic equations

[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

algebraic equations
[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

algebraic equations see: differential and—; linear —
algebraic expressions

(see: Planning in the process industry)
algebraic methods see: Integer programming: —
algebraic modeling language

[90C10, 90C30]
(see:Modeling languages in optimization: a new
paradigm)

algebraic modeling languages
(see: Planning in the process industry)

algebraic QAP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

algebraic quadratic assignment problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)
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algebraic statistics
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

algebraically decreasing tail see: RSM-distributionwith—
algebras see: application of PI- —; complexity theory of PI- —;

families of Pi- —; Finite complete systems of many-valued
logic—; functional completeness of PI- —; functionally
complete normal forms of Pi-—;many-valued families of
the Pinkava logic—; PI-logic—; taxonomy of Pi-logic—;
use of PI- —

algebras and 2-valued normal forms see: PI- —
algebras of many-valued logics see: taxonomy of the PI- —
algorithm

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see: Decomposition principle of linear programming;
Modeling difficult optimization problems)

algorithm see: A* search—; active set—; adaptive—;
affine-reduced-Hessian—; affine scaling—; alpha-beta—;
˛BB—; ˛BB global optimization—; approximation—;
asynchronous—; asynchronous parallel CA—; auction—;
augmenting path—; Balas —; Bialas–Karwan Kth-best —;
binary search—; branch and bound—; branch and
contract—; branching—; Buchberger —; bundle—;
cCOMB—; CG-related—; CGU—; clustering—;
combinatorial—; complexity of an—; conical—; conjugate
residual—; consistent labeling—; Conti–Traverso—;
continuous-time equivalent of the dynamic
programming—; convergent —; Convex-simplex—;
copolyblock—; Corley–Moon—; Craig—; Craig conjugate
gradient type—; cross decomposition—; cutting plane—;
cycle-canceling—; cycling—; Dai–Yuan—;
Daniel–Gragg–Kaufmann–Stewart reorthogonalized
Gram–Schmidt—; descent —; descent in a nonlinear
programming—; deterministic global optimization—;
dimension-by-dimension—; Dinkelbach—; Direct global
optimization—; discrete polyblock—; distributed game
tree search—; division—; dual exterior point—;
dual-scaling—; dual-scalings—; dual simplex—; dynamic
programming—; efficient—; efficient polynomially
bounded polynomial time—; EGOP—; ellipsoid—;
Elzinga–Hearn—; EM—; entropic proximal point—;
equilibration—; Esau–Williams—; evolutionary—;
exact—; exact penalty function based—;
expectation-maximization—; exponential —; exponential
time—; Extended cutting plane—; extra-gradient —;
Feed—; Fletcher–Reeves —; Ford–Fulkerson—; forward
mode of an AD—; Frank–Wolfe—; Gauss–Seidel—;
general —; general structure mixed integer ˛BB—;
generalized bisection—; generalized game tree search—;
generalized primal-relaxed dual —; generic augmenting
path—; generic preflow-push—; generic vertex
insertion—; globally convergent —; globally convergent
probability-one homotopy—; GMIN-˛BB—;
Goldfarb–Wang—; Gomory cutting plane—; gOP—;
gradient-free—; gradient-free minimization—; gradient
projection—; graph collapsing auction—; greedy—;
grouping genetic —; Gsat—; heavy ball —;
Hestenes–Stiefel —; heuristic—; hide-and-seek—; high
failure of the alpha-beta—; hit and run—;
homogeneous—; Hopcroft–Tarjan planarity-testing—;

Huang—; Hungarian—; hybrid—; implicit Choleski —;
Implicit LU—; Implicit LX —; implicit QR—; incremental —;
incremental-iterative solution—; incremental negamax—;
infeasible-start interior-point—; Ingber —; interior
point—; interval Newton—; Jacobi—; Jünger–Mutzel
branch and cut—; K-iterated tour partitioning—;
Karmarkar —; Kruskal —; Lanczos—; learning—;
Lemke’s —; Levenberg–Marquardt —; lexicographic
search—; limited-memory—; limited-memory
reduced-Hessian BFGS—; linear —; Linear programming:
karmarkar projective—; low failure of the alpha-beta —;
machine-learning—;mandatory work first —;Martin—;
max–flow—;minimax—;minimum lower set—;MINLP:
branch and bound global optimization—;MINLP: outer
approximation—;modified Huang—;modified Kruskal —;
modified Prim—;modified standard auction—;
Monte-Carlo simulation—;multilevel —; naive auction—;
NC—; nDOMB—; nearest insertion optimal partitioning—;
Nelder–Mead—; network simplex—; nondeterministic
polynomial—; nondeterministic polynomial time—;
nonsmooth SSC-SABB—; on-line—; one clause at a time—;
operator splitting—; optimal—; optimal state space
search—; outer approximation—; P-—; parallel —; parallel
minimax tree —; parallel routing—; parallel savings—;
parallel-tangents —; Parametric linear programming: cost
simplex—; parametric objective simplex—; parametric
right-hand side simplex—; PARTAN—; partial proximal
point—; path following—; perceptron—; pivot—;
pivoting—; Piyavskii–Shubert —; Pnueli —;
Polyak–Polak–Ribiére—; polyblock—; polynomial —;
polynomial time—; polynomial time deterministic—; pool
adjacent violators—; potential reduction—; potential
smoothing—; predictor-corrector—; preflow-push—;
primal-dual—; primal-dual potential reduction—;
primal-dual scaling—; primal potential reduction—;
primal-scaling—; primal simplex—; principal pivot—;
principal variation splitting—; probabilistic analysis of
an—; projected gradient —; projective —; proximal
point—; pseudopolynomial —; pseudopolynomial time—;
QPP—; quadratic proximal point—; RA—; randomized—;
recursive—; recursive least squares—; recursive state
space search—; reduced gradient —; regularized
Frank–Wolfe—; regularized stochastic decomposition—;
relative positioning—; relaxation—; relaxation labeling—;
reverse mode of an AD—; reverse polyblock—; revised
polyblock—; revised reverse polyblock (copolyblock)—;
row-action—; Schaible—; sequential CA—; Sequential
cutting plane—; sequential deterministic—; sequential
minimax game tree —; shadow-vertex—; shake and
bake—; simplex—; simplex type—; simulated annealing
and genetic —; SMIN-˛BB—; Smith–Walford-one—;
special structure mixed integer ˛BB—; SQP type —;
SSC-SABB—; sSC-SBB—; state space search—; steepest
descent—; stochastic decomposition—; strongly
polynomial—; strongly polynomial time—; subgradient
projection—; successive affine reduction BFGS—;
successive shortest path—; supervisor —; sweep—;
synchronized distributed state space search —;
synchronized parallel CA—; synchronous implementation
of the auction—; TCF of an—; three phase—;
three-term-recurrence —; time complexity function of
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an—; totally asynchronous implementation of the
auction—; tree-splitting—; truncated Buchberger —;
unified—; UTASTAR—; variable-storage—; variant of the
simplex—; virtual source—;weakly polynomial time—;
Zangwill —

algorithm analysis see: nondegeneracy assumption for —
algorithm for axial MITPs see: greedy —
algorithm of complexity O(nc)

[90C60]
(see: Computational complexity theory)

algorithm (definition) see: optimization—
algorithm design

[05-04, 65K05, 65Y05, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization; Parallel computing: models)

algorithm design see:model for parallel —
algorithm for entropy optimization see: path following—
algorithm greedy-expanding

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

algorithm partition-flipping
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

algorithm partition-matching-I
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

algorithm polynomial of degree c
[90C60]
(see: Computational complexity theory)

algorithm pre-matching
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

algorithm and robust stopping criteria see: Dykstra’s —
algorithm running in O(nc) time

[90C60]
(see: Computational complexity theory)

algorithm-SCG
(see: Railroad crew scheduling)

algorithm for solving CAP on trees see: exact—
algorithm solving a problem instance in time m

[90C60]
(see: Computational complexity theory)

algorithm for weighted graph planarization see: branch and
bound—

algorithmic approximation
[90C31]
(see: Sensitivity and stability in NLP: approximation)

algorithmic complexity
[90C60]
(see: Kolmogorov complexity)

Algorithmic complexity
[90C60]
(see: Kolmogorov complexity)

algorithmic definition
[65H99, 65K99]
(see: Automatic differentiation: point and interval)

algorithmic development
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

algorithmic differentiation
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

algorithmic entropy
[90C60]
(see: Kolmogorov complexity)

Algorithmic entropy
[90C60]
(see: Kolmogorov complexity)

Algorithmic improvements using a heuristic parameter, reject
index for interval optimization
(65K05, 90C30)
(refers to: Interval analysis: unconstrained and constrained
optimization; Interval Newton methods)

algorithmic information
[90C60]
(see: Kolmogorov complexity)

Algorithmic information
[90C60]
(see: Kolmogorov complexity)

algorithmic knowledge
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

algorithmic language
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

algorithmic language
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

algorithmic randomness
[90C60]
(see: Kolmogorov complexity)

Algorithmic randomness
[90C60]
(see: Kolmogorov complexity)

algorithms
[05C69, 05C85, 49J35, 49K35, 49M37, 52B11, 52B45, 52B55,
62C20, 62G07, 62G30, 65K05, 65K10, 68Q25, 68W01, 90C26,
90C27, 90C30, 90C35, 90C59, 90C60, 91A05, 91A12, 91A40,
91B28]
(see: ˛BB algorithm; Combinatorial optimization games;
Competitive ratio for portfolio management; Graph
coloring;Heuristics for maximum clique and independent
set; Inequality-constrained nonlinear optimization;
Isotonic regression problems;Minimax game tree
searching;Volume computation for polytopes: strategies
and performances)

algorithms see: accelleration of —; approximation—;
Asynchronous distributed optimization—; asynchronous
iterative—; auction—; average case complexity of—;
branch and bound—; bundle—; CA—; complexity theory
of—; Cost approximation—; decomposition—;
decomposition CA—; discrete-time—; efficient—;
evolutionary—; exact—; fixed parameter tractable —;
generic shortest path —; genetic —; geometric —; graph
collapsing in auction—; graph reduction in auction—;
greedy—; heuristic—; heuristic–metaheuristic —; hit and
run—; inexact proximal point—; Integer programming:
branch and cut—; Integer programming: cutting plane—;
interior point—; local greedy—; local search —;
memetic —; nonlinear CG-related—; numerical —;
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optimal—; optimization—; pair assignment —; parallel —;
polynomial time—; potential reduction—; primal and dual
simplex—; Probabilistic analysis of simplex—; Protein
folding: generalized-ensemble —; proximal—; random
search—; randomized—; reducibility of—; robust—;
scaled ABS class of—; search—; Shortest path tree —;
simplicial—; Simplicial decomposition—; single
assignment—; SLP—; smoothing—; solution—; SSC
minimization—; Stable set problem: branch & cut—;
Standard quadratic optimization problems:—; supervisor
and searcher cooperationminimization—; threshold
accepting—; training—; unconstrained optimization—;
varying dimension pivoting—; virtual source concept in
auction—

algorithms in combinatorial optimization see: Evolutionary—
algorithms and complexity see: Regression by special

functions:—
algorithms for entropy optimization

[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

algorithms for entropy optimization see: interior point—
algorithms for financial planning problems see: Global

optimization—
algorithms for GAP see: approximation—
Algorithms for genomic analysis

(90C27, 90C35, 90C11, 65K05, 90-08, 90-00)
algorithms for hypodifferentiable functions see:

Quasidifferentiable optimization: —
algorithms for integer programming see: Simplicial pivoting—
algorithms for isotonic regression problems

[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

algorithms for linear equations and linear least squares see:
Abaffi–Broyden–Spedicato—; ABS—

algorithms for linear programming generating two paths see:
Pivoting—

algorithms for nonconvex minimization problems see:
decomposition—

algorithms for nonsmooth and stochastic optimization see:
SSCminimization—

algorithms for optimization see: ABS—
algorithms in pattern recognition see: Complementarity —
algorithms for protein structure prediction see: Genetic —
algorithms for QD functions see: Quasidifferentiable

optimization:—
algorithms in resource allocation problems see: Combinatorial

optimization—
algorithms and software see: Continuous global optimization:

models—
algorithms for the solution of multistage mean-variance

optimization problems see: Decomposition—
algorithms for stochastic bilevel programs

[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

algorithms for stochastic linear programming problems see:
Stabilization of cutting plane—

algorithms for the traveling salesman problem see: Heuristic
andmetaheuristic —

algorithms for unconstrainedminimization
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

algorithms for unconstrained optimization see: New hybrid
conjugate gradient —; Performance profiles of
conjugate-gradient —

algorithms for the vehicle routing problem see:
Metaheuristic —

aligned ellipsoid see: coordinate-—
alignment see: communication-free—;multiple sequence—;

trace of an—
alignment constraint

[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

alignment-distribution graph
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

alignment graph see: extended—
Alignment problem

(05-02, 05-04, 15A04, 15A06, 68U99)
(referred to in: Integer programming)
(refers to: Integer programming)

alignment problem
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

alignment problem
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

alignment problem see: communication-free—; constant
degree parallelism—; solution of the—

alignment via mixed-integer linear optimization see: Global
pairwise protein sequence—

all see: find one, find—; one against —
all-atom

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

all azeotropes see: Nonlinear systems of equations: application
to the enclosure of —

all edge-directions of P see: covers —
all instances see: all-to-—; one-to- —
all-optical networks

[05C85]
(see: Directed tree networks)

all-to-all instances
[05C85]
(see: Directed tree networks)

allele
(see: Broadcast scheduling problem)

allocation see: facility location-—;marginal —;median
location-—;MINLP: application in facility location-—;
multifacility location-—; resource—; task —

allocation for epidemic control see: Resource—
allocation of gas

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

allocationmodel see: location-—
allocation phase

[90B80, 90B85]
(see:Warehouse location problem)
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allocation problem see: discrete resource—; location-—;
p-median location-—; resource—

allocation problems see: Combinatorial optimization
algorithms in resource—

allocation scheme see: randomized—
allocation subproblem

[90C26]
(see:MINLP: application in facility location-allocation)

allowed neighbor in tabu search
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

almost complementary solutions
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

almost empty spaces see: analyzing—
almost at equilibrium of an assignment and a set of prices

[90C30, 90C35]
(see: Auction algorithms)

along-rays functions on topological vector spaces see:
Increasing and convex-—

alpha-beta algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

alpha-beta algorithm see: high failure of the—; low failure of
the—

˛-concave function
[90C15]
(see: Logconcave measures, logconvexity)

˛-concave function
[90C15]
(see: Logconcave measures, logconvexity)

˛-concave measure
[90C15]
(see: Logconcave measures, logconvexity)

˛-cut of a fuzzy relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

˛-divergence see: Csiszar —
alpha-helical proteins see: Predictive method for interhelical

contacts in—
˛-helix

[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

˛-helix
[92C40]
(see:Monte-Carlo simulated annealing in protein folding)

˛BB
[49M37, 65K10, 90C26, 90C30, 92C40]
(see: ˛BB algorithm;Multiple minima problem in protein
folding:˛BB global optimization approach)

˛BB see: GMIN- —;MINLP: global optimization with—;
SMIN-—

˛BB algorithm
(49M37, 65K10, 90C26, 90C30)
(referred to in: Adaptive convexification in semi-infinite
optimization; Bisection global optimization methods;
Continuous global optimization: applications;Continuous

global optimization: models, algorithms and software;
Convex envelopes in optimization problems;Differential
equations and global optimization;Direct global
optimization algorithm; Eigenvalue enclosures for ordinary
differential equations; Generalized primal-relaxed dual
approach;Global optimization based on statistical models;
Global optimization in batch design under uncertainty;
Global optimization in binary star astronomy; Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations; Global optimization in phase and chemical
reaction equilibrium;Global optimization using space
filling;Hemivariational inequalities: eigenvalue problems;
Interval analysis: eigenvalue bounds of interval matrices;
Interval global optimization;MINLP: branch and bound
global optimization algorithm;MINLP: global
optimization with ˛BB;Quadratic knapsack; Reverse
convex optimization; Semidefinite programming and
determinant maximization; Smooth nonlinear nonconvex
optimization; Standard quadratic optimization problems:
theory; Topology of global optimization)
(refers to: Bisection global optimization methods;
Continuous global optimization: applications;Continuous
global optimization: models, algorithms and software;
Convex envelopes in optimization problems;D.C.
programming;Differential equations and global
optimization;Direct global optimization algorithm;
Eigenvalue enclosures for ordinary differential equations;
Generalized primal-relaxed dual approach;Global
optimization based on statistical models;Global
optimization in batch design under uncertainty;Global
optimization in binary star astronomy;Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations; Global optimization in phase and chemical
reaction equilibrium;Global optimization using space
filling;Hemivariational inequalities: eigenvalue problems;
Interval analysis: eigenvalue bounds of interval matrices;
Interval global optimization;MINLP: branch and bound
global optimization algorithm;MINLP: global
optimization with ˛BB; Reformulation-linearization
technique for global optimization; Reverse convex
optimization; Semidefinite programming and determinant
maximization; Smooth nonlinear nonconvex optimization;
Topology of global optimization)

˛BB algorithm
[49M37, 65K05, 65K10, 90C11, 90C26, 90C30]
(see: ˛BB algorithm;MINLP: global optimization with
˛BB)

˛BB algorithm see: general structure mixed integer —;
GMIN-—; SMIN-—; special structure mixed integer —

˛BB approach see: Global optimization: g- —; Global
optimization: p-—

˛BB global optimization algorithm
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

˛BB global optimization approach see:Multiple minima
problem in protein folding:—

alphabet see: finite—
alphabet of a Turing machine see: input—
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alternance see: Chebyshev —
alternating procedure

[90C26]
(see:MINLP: application in facility location-allocation)

alternating Turing machine
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

alternation see: Chebyshev —
alternative see: Linear optimization: theorems of the—;

maximal—; set of decision—; theorem of the—
alternative linear system

[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

alternative and optimization see: Theorems of the—
Alternative set theory

(03E70, 03H05, 91B16)
(referred to in: Boolean and fuzzy relations;Checklist
paradigm semantics for fuzzy logics; Finite complete
systems of many-valued logic algebras; Inference of
monotone boolean functions; Optimization in boolean
classification problems;Optimization in classifying text
documents)
(refers to: Boolean and fuzzy relations;Checklist paradigm
semantics for fuzzy logics; Finite complete systems of
many-valued logic algebras; Inference of monotone boolean
functions;Optimization in boolean classification problems;
Optimization in classifying text documents)

alternative set theory see: axioms of—
alternative systems

[15A39, 90C05]
(see:Motzkin transposition theorem)

alternative theorem
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

alternative theorem
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

alternative theorem see: basic—
alternatives see: finite set of the—; set of—; theorem of the—
alternatives to CG

[90C30]
(see: Conjugate-gradientmethods)

amino acid
[92B05]
(see: Genetic algorithms for protein structure prediction)

amino acid
[92B05, 92C05]
(see: Adaptive simulated annealing and its application to
protein folding;Genetic algorithms for protein structure
prediction)

analog of the dynamic programming equation see:
continuous-time—

analyses see: post-optimality—
analysing declarative program structure

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

analysis see: abstract convex—; Algorithms for genomic—;
applications of sensitivity—; approximation—;
asymptotic—; automated Fortran program for nonlocal
sensitivity—; average case—; cluster —; Combinatorial
matrix—; competitive—; convex—; data envelopment —;

decision—; dependence—; design—; discrete convex—;
discriminant—; domination—; equilibrium—; exploratory
statistical —; Financial applications of multicriteria—;
functional—; infinitesimal perturbation —; interval —;
investment —; linear Programming and Economic—;
marginal—;matrix —;mean-variance portfolio—;
model-based experimental —;monotonic—;
multicriteria—; nondegeneracy assumption for
algorithm—; nonlocal sensitivity—; nonsmooth—;
nonstandard—; numerical —; perturbation —; Portfolio
selection and multicriteria—; post-optimality—;
post-optimality sensitivity—; preference disaggregation—;
probabilistic—; range- —; regression —; relational —;
robust stability —; robustness —; scenario —; sensitivity—;
set-valued—; Shape reconstructionmethods for
nonconvex feasibility—; shape sensitivity—; Short-term
scheduling under uncertainty: sensitivity—; stability —;
target —; time series —; value—;worst-case—

analysis of an algorithm see: probabilistic—
analysis: application to chemical engineering design problems

see: Interval —
analysis with automatic differentiation see: Nonlocal

sensitivity—
analysis and balanced interval arithmetic see: Global

optimization: interval —
analysis of cable structures see: structural —
analysis in combinatorial optimization see: Domination—
analysis of complementarity problems see: Sensitivity—
analysis: differential equations see: Interval —
analysis: eigenvalue bounds of interval matrices see: Interval —
analysis of flowsheets see: flexibility—; operability —
analysis: Fréchet subdifferentials see: Nonsmooth—
analysis: intermediate terms see: Interval —
analysis and management of environmental systems see:

Global optimization in the—
analysis methodologies see: semantic —
analysis: nondifferentiable problems see: Interval —
analysis and optimization see: nonsmooth—
analysis for optimization of dynamical systems see: Interval —
analysis of optimization problems see: stability —
analysis: parallel methods for global optimization see:

Interval —
analysis with respect to changes in cost coefficients see:

sensitivity—
analysis with respect to right-hand side changes see:

sensitivity—
analysis of simplex algorithms see: Probabilistic—
analysis Step

[90B15]
(see: Evacuation networks)

analysis: subdivision directions in interval branch and bound
methods see: Interval —

analysis system see: stability of a structural —
analysis: systems of nonlinear equations see: Interval —
analysis: unconstrained and constrained optimization see:

Interval —
analysis of variance see: one-way—
analysis of variational inequality problems see: Sensitivity—
analysis: verifying feasibility see: Interval —
analysis: weak stationarity see: Nonsmooth—
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analytic center
[46N10, 49M20, 90-00, 90-08, 90C25, 90C47]
(see: Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods)

analytic center cutting plane method
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

analytic hierarchy process
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

analytic hierarchy process
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

analytical approximation of linear programming
[90C05, 90C25]
(see: Young programming)

analytical approximation of a linear programming problem
[90C05, 90C25]
(see: Young programming)

analytical differentiation
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

analytical tractability
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

analyzing almost empty spaces
(see: Selection of maximally informative genes)

anchor
(see: Semidefinite programming and the sensor network
localization problem, SNLP)

anchor see: non- —
AND-ing

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

angle see: bond—; dihedral —
angle condition see: acute —; nonobtuse —; uniform—
angle method see: cutting—; Global optimization: cutting—
angle optimization see: beam—
angle selection see: beam—
angle selection and wedge orientation optimization see:

beam—
angles see: direction—
angular form see: block—
angular structure see: block-—; dual block-—
annealed replication heuristic

[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

annealing
[60J65, 68Q25, 90C27, 90C90]
(see: Adaptive global search; Simulated annealing)

annealing see: adaptive simulated—; Gaussian density—;
Packet—; re- —; simulated—; simulating—; stochastic
simulated—

annealing and genetic algorithm see: simulated—
annealing and its application to protein folding see: Adaptive

simulated—
annealing methods in protein folding see: Simulated—

annealing in protein folding see:Monte-Carlo simulated—
annealing schedule

[90C27, 90C90]
(see: Laplace method and applications to optimization
problems; Simulated annealing)

annealing temperature see: initial—
annexation see: polyhedral —
another) see: pseudomonotone bifunction (with respect to—
Ansatz see: reduction—
ant colony

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

ant system
[68T20, 68T99, 90C08, 90C11, 90C27, 90C57, 90C59]
(see:Metaheuristics;Quadratic assignment problem)

ant system see:MAX-MIN—
ante (risk averse, anticipative) decision see: ex- —
anti-cycling procedure

[90C60]
(see: Complexity of degeneracy)

anti-Monge inequalities
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

anti-Monge matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

anti-Robinson
[62H30, 90C27]
(see: Assignment methods in clustering)

anti-Robinson matrix
[62H30, 90C39]
(see: Dynamic programming in clustering)

anticipative see: non- —
anticipative) decision see: ex-ante (risk averse—
anticycling

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules)

anticycling rules
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

anticycling rules see: Least-index—
antisymmetric partial order

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

antisymmetric relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

antisymmetric relation see: strictly —
antitone Boolean function

[90C09]
(see: Inference of monotone boolean functions)

antitone monotone Boolean function
[90C09]
(see: Inference of monotone boolean functions)

antitone operator
[90C33]
(see: Order complementarity)
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APF
[90C15]
(see: Approximation of extremum problems with
probability functionals)

appearance of control function see: linear —
application to chemical engineering design problems see:

Interval analysis: —
application to the enclosure of all azeotropes see: Nonlinear

systems of equations: —
application in facility location-allocation see:MINLP:—
application to phase equilibrium problems see: Global

optimization:—
application of PI-algebras

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

application process
[68T20, 68T99, 90C27, 90C59]
(see: Capacitatedminimum spanning trees;Metaheuristics)

application to protein folding see: Adaptive simulated
annealing and its —

applications
[49M37, 65K10, 90-01, 90B30, 90B50, 90C26, 90C27, 90C30,
91B06, 91B32, 91B52, 91B60, 91B74]
(see: ˛BB algorithm; Bilevel programming in management;
Financial applications of multicriteria analysis;Operations
research and financial markets)

applications see: Bilevel programming: —; Continuous global
optimization:—; Dynamic programming: optimal
control —; economic—; engineering—; Invexity and its —;
medical—;minimizationMethods for Non-Differentiable
Functions and—;Multi-quadratic integer programming:
models and—;multistage—; noneconomic—;
Pseudomonotonemaps: properties and—;
Quasidifferentiable optimization: —; Robust linear
programming with right-hand-side uncertainty, duality
and—; scientific—; Standard quadratic optimization
problems:—; Stochastic quasigradient methods: —

applications in blending and pooling problems see:MINLP:—
applications in distillation systems see: Successive quadratic

programming:—
applications in engineering see: Bilevel programming: —
applications in environmental systems modeling and

management
[90C05]
(see: Global optimization in the analysis andmanagement
of environmental systems)

applications in finance see: Semi-infinite programming and—
applications in the interaction of design and control see:

MINLP:—
applications in mechanics

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

applications in mechanics see: Hemivariational inequalities: —
applications of multicriteria analysis see: Financial —
applications to optimization problems see: Laplace method

and—
applications of parametric programming

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

applications in the process industry see: Successive quadratic
programming: —

applications of sensitivity analysis
[90C31]
(see: Sensitivity and stability in NLP: approximation)

applications in the supply chain management see: Bilinear
programming: —

applications to thermoelasticity see: Quasidifferentiable
optimization:—

applications to variational inequalities and equilibrium
problems see: Generalized monotonicity:—

approach see: Archimedian—; auction—; augmented
Lagrangian decomposition—; axiomatic—; Bayesian—;
Bayesian heuristic —; Benders decomposition—; Bilevel
programming: implicit function—; closed form—;
continuously differentiable exact penalty function—;
cutting plane—; direct—; equation oriented—; Everett
generalized Lagrange multiplier—; feasibility—;
feasible—; feasible path—; Generalized primal-relaxed
dual—; Global optimization: g-˛BB—; Global optimization:
p-˛BB—; gradient based—; GRASP—; implicit function—;
index—; infeasible path —; Kuhn–Tucker —;
lexicographic—; limited-memory—; limited-memory
symmetric rank-one—;material derivative—;
Mixed-integer nonlinear optimization: A disjunctive cutting
plane—;modified Cauchy—;modular—;Multiple minima
problem in protein folding:˛BB global optimization—; one
clause at a time—; open form—; Optimization with
equilibrium constraints: A piecewise SQP—; outranking
relations—; parabolic curve—; parametric —; path
following—; penalty —; Petrov–Galerkin—; Phase
problem in X-ray crystallography: Shake and bake—;
preference disaggregation —; primal-relaxed dual—;
proximal point—; semidefinite programming—;
simultaneous—; stochastic—; Stochastic programming:
minimax—; subgraph—; Tikhonov’s regularization—;
trust region—; value function—; Variational inequalities: F.
E. —; worst-case—

approach: basic features, examples from financial decision
making see: Preference disaggregation —

approach to bilevel programming see: implicit function—
approach to clustering see: Nonsmooth optimization—
approach for DNA transcription element identification see:

Mixed 0-1 linear programming—
approach to fractional optimization see: parametric —
approach: global optimum search with enhanced positioning

see: Gene clustering: A novel decomposition-based
clustering—

approach to image reconstruction from projection data see:
feasibility—; optimization—

approach to optimality see: parametric—
approach to optimization see: Image space—
approach to optimization in water resources see: stochastic—
approach to solving CAP on trees see: heuristic—
approaches see: cutting plane—; equation based —;

heuristic—; logic-based—; Optimal solvent design—;
Statistical classification: optimization—

appropriateness
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)
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approximate
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

approximate continuous
[90C10, 90C11, 90C27, 90C33]
(see: Continuous reformulations of discrete-continuous
optimization problems)

approximate gradient see: �- —
approximate inference see: interval-valued—
approximate inverse

[65H10, 65J15]
(see: Contraction-mapping)

approximate Jacobian
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

approximate methods for solving vehicle routing problems
[90B06]
(see: Vehicle routing)

approximate Newton method
[90C30]
(see: Generalized total least squares)

approximate optimization see: sequential —
approximate reasoning

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

approximate reasoning
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

approximate reasoning see: interval logic system of—;
point-based logic system of—

approximate solutions of nonlinear systems of equations see:
error bound for—

approximately see: exactly or —
approximating cone see: high-order —; tangent high-order —
approximating cone of decrease see: high-order —
approximating cones see: feasible high-order —; tangent

high-order —
approximating curve see: feasible high-order —;

high-order —; tangent high-order —
approximating the recourse function

[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

approximating vector see: feasible high-order —; high-order
tangent —

approximating vector of decrease see: high-order —
approximating vectors see: high-order —
approximation

[49J20, 49J52, 65H20, 65M60]
(see:Multi-scale global optimization using
terrain/funnelingmethods; Shape optimization;
Variational inequalities: F. E. approach)

approximation
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D10, 65D30,
65K05, 65K10, 90C15, 90C25, 90C26, 90C34, 90C35]
(see: ABS algorithms for optimization; Approximation of
multivariate probability integrals;Graph coloring;
Multistage stochastic programming: barycentric
approximation;Overdetermined systems of linear
equations; Semi-infinite programming: numerical methods;

Stochastic linear programs with recourse and arbitrary
multivariate distributions)

approximation see: algorithmic—; barycentric —; best —;
better —; Chebyshev best —; cost—; discrete—;
ellipsoidal—; finite-difference—; finite element —;
Generalized outer —; hybrid branch and bound and
outer —; inner —; linear —; linear outer —; logic of—;
Logic-based outer —;maximal best —;mean field—;
minimal best —;mixed finite element —;multipoint—;
Multistage stochastic programming: barycentric —;
outer —; Padé—; Padé-type—; perturbative —;
point-based—; polyblock—; polynomial of best —;
proximal—; quadratic outer —; second order—; Sensitivity
and stability in NLP: —; stochastic—; successive—;
truncated Taylor—

approximation algorithm
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

approximation algorithm see:MINLP: outer —; outer —
approximation algorithms

[05C05, 05C85, 68Q25, 90B06, 90B35, 90B80, 90C06, 90C10,
90C27, 90C39, 90C57, 90C59, 90C60, 90C90]
(see: Bottleneck steiner tree problems;Directed tree
networks; Traveling salesman problem)

approximation algorithms
[03B05, 05C05, 05C85, 68P10, 68Q25, 68R05, 68T15, 68T20,
90B80, 90C09, 90C27, 90C35, 90C60, 90C90, 94C10]
(see: Bottleneck steiner tree problems; Complexity theory:
quadratic programming;Maximum satisfiability problem;
Multi-index transportation problems; Simulated annealing;
Steiner tree problems)

approximation algorithms see: Cost—
approximation algorithms for GAP

[90-00]
(see: Generalized assignment problem)

approximation Analysis
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

approximation by bounded or continuous functions see:
Lipschitzian operators in best —

approximation with equality relaxation see: outer —
approximation with equality relaxation and augmented

penalty see: outer —
Approximation of extremum problems with probability

functionals
(90C15)
(referred to in: Approximation of multivariate probability
integrals;Discretely distributed stochastic programs:
descent directions and efficient points; Extremum problems
with probability functions: kernel type solution methods;
General moment optimization problems; Logconcave
measures, logconvexity; Logconcavity of discrete
distributions; L-shaped method for two-stage stochastic
programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
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programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of multivariate probability
integrals;Discretely distributed stochastic programs:
descent directions and efficient points; Extremum problems
with probability functions: kernel type solution methods;
General moment optimization problems; Logconcave
measures, logconvexity; Logconcavity of discrete
distributions; L-shaped method for two-stage stochastic
programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

approximation of a function see: first order —
approximation of linear programming see: analytical —
approximation of a linear programming problem see:

analytical —
approximationmeasure see: contraction/—
approximationmethod see: Logic-based outer- —; outer —;

polyblock—; Vogel —
approximationmethods see: Gaussian—; Semi-infinite

programming:—
Approximation of multivariate probability integrals

(65C05, 65D30, 65Cxx, 65C30, 65C40, 65C50, 65C60, 90C15)
(referred to in: Approximation of extremum problems with
probability functionals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type

solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

approximation of nonsmooth mappings
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

approximation operator see: best—
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approximation in ordered normed linear spaces see: Best —
approximation to the problem

[41A30, 47A99, 65K10, 93-XX]
(see: Boundary condition iteration BCI; Lipschitzian
operators in best approximation by bounded or continuous
functions)

approximation problem see: simultaneous Diophantine—
approximation ratio

[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems;Directed tree
networks)

approximation scheme see: fully polynomial time—;
polynomial time—

approximation of space filling curves
[90C26]
(see: Global optimization using space filling)

approximation techniques
[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

approximation in the uniform norm
[90C34]
(see: Semi-infinite programming: approximationmethods)

approximation of variational inequalities
[65M60]
(see: Variational inequalities: F. E. approach)

approximations see: nonsmooth local —
approximations of nonsmooth mappings

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

Approximations to robust conic optimization problems
approximations to subdifferentials see: Continuous—
approximator

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

aquifers
[90C30, 90C35]
(see: Optimization in water resources)

arbitrage pricing theory
[91B50]
(see: Financial equilibrium)

arbitrary
[90C60]
(see: Complexity classes in optimization)

arbitrary multivariate distributions see: Stochastic linear
programs with recourse and—

arborescence see:minimum Steiner —; Steiner —
arborescence problem see: capacitated minimum spanning—
arborescence system see:multi-echelon—
arborescence tree see: rectilinear Steiner —
arboricity

[90C35]
(see: Fractional zero-one programming;Optimization in
leveled graphs)

arc see: admissible—; arrival-ground connection—;
backward—; central —; conjunction—; disjunction—;
dual—; endpoint of an—; entering—; forward—;
ground-departure connection—; inadmissible—;
incoming—;multiplier associated with an—; network —;
outgoing—; primal—; root—; train—

arc capacity
[90C35]
(see:Maximum flow problem)

arc coloring
[05C85]
(see: Directed tree networks)

arc consistency
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

arc construction procedure see: best —
arc cost see: piecewise linear —
arc cost function see: sawtooth—; staircase—
(arc) deletion problem see: vertex —
arc in a directed network see: directed—; endpoint of an—
arc flow bounds

[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

arc flows see: capacity constraint on—
arc formulation see: node-—
arc formulation of the problem see: node-—
arc incidencematrix see: node-—
arc legend

(see: Railroad crew scheduling)
arc length vector

[90C31, 90C39]
(see:Multiple objective dynamic programming)

arc in a network see: capacity of an—; cost of an—;
directed—

arc oriented branch and bound method
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

arc oriented construction procedure
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

arc routing
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

arc routing
[90B06]
(see: Vehicle routing)

arc routing problem see: capacitated—
arc separation procedure

[90B10]
(see: Piecewise linear network flow problems)

(arc) set problem see: feedback—;minimum feedback—;
minimum feedback vertex—;minimumweight
feedback—; subset feedback vertex —; subset minimum
feedback vertex —

Archimedes and the foundations of industrial engineering
(01A20)

archimedian
(see: Planning in the process industry)

Archimedian approach
(see: Planning in the process industry)

architecture see: selection of —; von Neumann—
archive

[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

arcs see: bold—; critical—; deadhead—; demand—;
ground—; natural stream—; rest —; sequence of—;
train-train connection—
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are under control see: rounding errors —
area computer network see: local-—
areas see: software package for specific mathematical —
argon atoms

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

argument see: noncompensatory—; ordinal —
argument function see: four-—; three- —
argument principle

[01A50, 01A55, 01A60]
(see: Fundamental theorem of algebra)

argument principle
[01A50, 01A55, 01A60]
(see: Fundamental theorem of algebra)

arithmetic see: balanced interval —; balanced random
interval —; differentiation—; Global optimization: interval
analysis and balanced interval —; inclusion principle of
machine interval —; inner interval —; Interval —;
Kaucher—;machine interval —; random interval —;
slope—

arithmetic degree of a monomial ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

arithmetic operation see: interval —
arithmetic operations on fuzzy numbers

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

arity of a constraint
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

arm see: flexible—; Optimal control of a flexible—
armed restless bandit problem see:multi-—
Armijo-like criterion see: test nonmonotone—
Armijo rule

[90C30]
(see: Convex-simplex algorithm; Cost approximation
algorithms)

Armijo steplength rule
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

Arora PTAS
[90C27]
(see: Steiner tree problems)

ARR
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

arr-station
(see: Railroad locomotive scheduling)

arr-time
(see: Railroad locomotive scheduling)

arrangement
[05B35, 20F36, 20F55, 26A24, 52C35, 57N65, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations;Hyperplane arrangements in
optimization)

arrangement see: face of an—; hyperplane—; linear —;
polygonal—; simple—; two Polygons—

arrangement of hyperplane
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

arrangement of hyperplanes see: Boolean—; braid—;
cohomology of an—; complement of an—; divisor of
an—; free—; reflection—; singularity of an—

arrangement problem see: linear —
arrangements see: Hyperplane—
arrangements in optimization see: Hyperplane—
Arrhenius constants

[90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method)

arrival see: duty-after- —
arrival-ground connection arc

(see: Railroad locomotive scheduling)
arrival-ground node

(see: Railroad locomotive scheduling)
arrival node

(see: Railroad locomotive scheduling)
arrival-station

(see: Railroad crew scheduling)
Arrow–Hurwicz gradient method

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

art in modeling agricultural systems see: State of the—
artificial centering hit and run

[90C26, 90C90]
(see: Global optimization: hit and run methods)

artificial intelligence
[65G20, 65G30, 65G40, 65K05, 68T20, 90-08, 90C05, 90C06,
90C10, 90C11, 90C20, 90C26, 90C30, 90C90]
(see: Disease diagnosis: optimization-based methods;
Forecasting; Interval constraints)

artificial intelligence
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 90C26,
90C30, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Forecasting)

ary relation see: n- —
AS

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

as conic convex program see: semidefinite program—
ASA

[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

ascendant direction
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

ascendant direction see: feasible—
ascent see: dual—; rate of steepest —; rule of steepest —
ascent direction see: Dini steepest —; Hadamard steepest —;

steepest —
ascent flow

[58E05, 90C30]
(see: Topology of global optimization)

asking strategy see: binary search-Hansel chains question-—;
question-—; sequential Hansel chains question-—
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ASOG equation
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

aspatial oligopoly problem
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

aspatial and spatial markets
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

aspiration criteria
[68M20, 90B06, 90B35, 90B80, 90C59]
(see: Flow shop scheduling problem;Heuristic and
metaheuristic algorithms for the traveling salesman
problem; Location routing problem)

aspiration level
[05C69, 05C85, 68W01, 90C29, 90C59]
(see:Heuristics for maximum clique and independent set;
Multiple objective programming support)

aspiration search
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

aspiration search see: parallel —
asplund

[49K27, 58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials;
Nonsmooth analysis: weak stationarity)

assembly crossover (EAX) see: edge—
assessment see: comparative efficiency—; fuzzy truth —
asset see: risk-free—
asset Liability Management

[65K99, 90C29]
(see: Asset liability management decision support system)

Asset liability management decision support system
(90C29, 65K99)

asset pricingmodel see: capital —
asset selling problem

[49L20, 90C39]
(see: Dynamic programming: discounted problems)

assignment
[90C29]
(see: Decision support systems with multiple criteria;Mixed
integer programming/constraint programming hybrid
methods)

assignment
[90C10, 90C35]
(see: Bi-objective assignment problem)

assignment see: adjacent channel constrained frequency—;
airline fleet—; co-channel constrained frequency—;
discrete location and—; dynamic traffic—; feasible—;
fleet—; free—; optimal—; order of a T-coloring
frequency—; partial —; quadratic—; single —; span of
a T-coloring frequency—; traffic—; variable—

assignment algorithms see: pair—; single—
assignment constraints see: semi-—
Assignment and matching

(90C35, 90C27, 90C10, 90C05)
(referred to in: Assignment methods in clustering;
Bi-objective assignment problem; Communication network
assignment problem; Frequency assignment problem;
Linear ordering problem;Maximum partitionmatching;

Multidimensional assignment problem;Quadratic
assignment problem)
(refers to: Assignment methods in clustering; Bi-objective
assignment problem; Communication network assignment
problem; Frequency assignment problem;Maximum
partitionmatching;Quadratic assignment problem)

assignment method
[62H30, 90C27]
(see: Assignment methods in clustering)

Assignment methods in clustering
(62H30, 90C27)
(referred to in: Assignment and matching; Bi-objective
assignment problem; Communication network assignment
problem; Frequency assignment problem; Linear ordering
problem;Maximum partitionmatching;Quadratic
assignment problem)
(refers to: Assignment and matching; Bi-objective
assignment problem; Communication network assignment
problem; Frequency assignment problem;Maximum
partitionmatching;Quadratic assignment problem)

assignment model
[68M20, 90B06, 90B10, 90B35, 90B80, 90B85, 90C10, 90C27]
(see: Single facility location: multi-objective euclidean
distance location;Vehicle scheduling)

assignment model see: the multi-resource weighted —;
quasi- —

assignment models see: locomotive—
assignment problem

[68Q25, 68R10, 68W40, 90B85, 90C05, 90C06, 90C08, 90C10,
90C11, 90C27, 90C30, 90C35, 90C59, 90C60]
(see: Assignment and matching;Auction algorithms;
Bi-objective assignment problem; Complexity of
degeneracy;Domination analysis in combinatorial
optimization; Integer programming: cutting plane
algorithms; Single facility location: multi-objective
euclidean distance location)

assignment problem
[68Q25, 90B80, 90C05, 90C27, 90C30, 90C35]
(see: Auction algorithms; Communication network
assignment problem)

assignment problem see: algebraic quadratic—; Asymptotic
properties of randommultidimensional—; Bi-objective—;
Biquadratic—; bottleneck quadratic—; Communication
network —; fleet —; Frequency —; general quadratic—;
generalized —; Koopmans–Beckmann quadratic—;
Multidimensional—;multilevel generalized —;
multiperiod—; optimal—; order preserving—;
quadratic—; Quadratic semi- —; radio link frequency—;
traffic—

assignment problems see:multi-index—; nonlinear —;
three-index—

assignment property see: single—
assignment ranking

[90C60]
(see: Complexity of degeneracy)

assignment and a set of prices see: almost at equilibrium of
an—; equilibrium of an—

assignment of wavelengths
[05C85]
(see: Directed tree networks)

assignments problems see: N-adic—
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associated with an arc see:multiplier—
associated with� see: canonical function—
Association see: atlas of the International Zeolite—
association graph

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

association graph see: tree —; weighted tree —
association problem see: data- —
associative connective

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

associativity of products of relations see: pseudo-—
assumption see: backlog—; human rationality—; lost sales —;

nondegeneracy —; separability —
assumption for algorithm analysis see: nondegeneracy —
assumption stability

[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

assumptions see: regularity —; under weak—
AST

[03E70, 03H05, 91B16]
(see: Alternative set theory)

astrodynamics
[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

Astrodynamics
[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

astronomical problem
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

astronomy
[49M37, 65K10, 90C26, 90C30, 90C90]
(see: ˛BB algorithm;Global optimization in binary star
astronomy)

astronomy see: Global optimization in binary star —
asymmetric Traveling Salesman Problem (ATSP)

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

asymmetric TSP
[90C59]
(see:Heuristic and metaheuristic algorithms for the
traveling salesman problem)

asymmetric TSP (ATSP)
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

asymmetrical information
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

asymptotic analysis
[90C10, 90C15]
(see: Stochastic integer programs)

asymptotic analysis
[90Cxx]
(see: Discontinuous optimization)

asymptotic behavior
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

asymptotic behavior
[62C10, 65K05, 68Q25, 90B80, 90C05, 90C10, 90C15, 90C26,
90C27]
(see: Bayesian global optimization; Communication
network assignment problem)

asymptotic behavior of CAP on trees
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

asymptotic case of integral evaluation
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

asymptotic convergence
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

asymptotic convergence rates
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

asymptotic CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Asymptotic properties of randommultidimensional
assignment problem
(90C27, 34E05)

asymptotic results for RSM-distributions
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

asymptotic stability
[90C30]
(see: Suboptimal control)

asymptotical stability at an equilibrium
[90B15]
(see: Dynamic traffic networks)

asymptotical stability of a system
[90B15]
(see: Dynamic traffic networks)

asymptotical system stability
[90B15]
(see: Dynamic traffic networks)

asymptotically admissible pair of trajectory and control functions
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

asymptotically stable
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

asymptotically stable stationary point
[90C20]
(see: Standard quadratic optimization problems:
algorithms)

asynchronous algorithm
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

asynchronous computation
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms;
Cost approximation algorithms)

asynchronous computation
[90C30]
(see: Cost approximation algorithms)
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asynchronous computation see: partially —
asynchronous convergence theorem

[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

Asynchronous distributed optimization algorithms
(90C30, 90C30, 90C52, 90C53, 90C55)
(referred to in: Automatic differentiation: parallel
computation;Heuristic search; Load balancing for parallel
optimization techniques; Parallel computing: complexity
classes; Parallel computing: models; Parallel heuristic
search; Stochastic network problems: massively parallel
solution)
(refers to: Automatic differentiation: parallel computation;
Heuristic search; Interval analysis: parallel methods for
global optimization; Load balancing for parallel
optimization techniques; Parallel computing: complexity
classes; Parallel computing: models; Parallel heuristic
search; Stochastic network problems: massively parallel
solution)

asynchronous implementation of the auction algorithm see:
totally —

asynchronous iterative algorithms
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

asynchronous iterative method see: partially—
asynchronous operation see: partially —; totally —
asynchronous parallel CA algorithm

[90C30]
(see: Cost approximation algorithms)

asynchronous round robin balancing scheme
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

Atkinson–Brakhage preconditioner
[65H10, 65J15]
(see: Contraction-mapping)

atlas of the International Zeolite Association
[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

atom see: all- —
ATOMFT

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

atoms see: argon—
(ATSP) see: asymmetric Traveling Salesman Problem—;

asymmetric TSP—
attentive convergence see: f- —
attraction see: basins of—; region of —
attraction and repulsion see: Global optimization in Weber’s

problem with—;Weber problem with—
attractor see: local—
attractors see: singular local —
attractors for gradient-related descent iterations see: Local—
attribute utility theory see:multi- —
attributed tree

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

auction
[90C30, 90C35]
(see: Auction algorithms)

auction algorithm
[90C30, 90C35]
(see: Auction algorithms)

auction algorithm see: graph collapsing—;modified
standard—; naive—; synchronous implementation of
the—; totally asynchronous implementation of the—

Auction algorithms
(90C30, 90C35)
(referred to in: Communication network assignment
problem;Dynamic traffic networks; Equilibrium networks;
Generalized networks;Maximum flow problem;Minimum
cost flow problem;Multicommodity flow problems;
Network design problems;Network location: covering
problems;Nonconvex network flow problems; Piecewise
linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)
(refers to: Communication network assignment problem;
Directed tree networks;Dynamic traffic networks;
Equilibrium networks; Evacuation networks;Generalized
networks;Maximum flow problem;Minimum cost flow
problem;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Piecewise linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)

auction algorithms
[90B10, 90C27, 90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms;
Shortest path tree algorithms)

auction algorithms see: graph collapsing in—; graph
reduction in—; virtual source concept in—

auction approach
[90B10, 90C27]
(see: Shortest path tree algorithms)

auction technique
[90B10, 90C27]
(see: Shortest path tree algorithms)

auction technique
[90B10, 90C27]
(see: Shortest path tree algorithms)

auditing decisions see:Multicriteria decision support
methodologies for—

augmentation see: planar —
augmentation oracle

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

augmentation oracle see: oriented—
augmented Lagrange functions

[90C30]
(see: Nonlinear least squares problems)

augmented Lagrangian
[90C25, 90C30, 90C33]
(see: Implicit lagrangian; Lagrangianmultipliers methods
for convex programming)

augmented Lagrangian decomposition approach
[90C30, 90C35]
(see: Optimization in water resources)
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augmented Lagrangian function
[90C30]
(see: Image space approach to optimization)

augmented Lagrangian methods see: Practical —
augmented Lagrangians

[90C25, 90C30]
(see: Lagrangianmultipliers methods for convex
programming)

augmented network
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

augmented penalty see: outer approximation with equality
relaxation and—

augmented performance index
[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

augmenting flows
[90C35]
(see:Minimum cost flow problem)

augmenting path algorithm
[90C35]
(see:Maximum flow problem)

augmenting path algorithm
[90C35]
(see:Maximum flow problem)

augmenting path algorithm see: generic —
augmenting vector

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

automata see: theory of—
automated design optimization process

[90C90]
(see: Design optimization in computational fluid dynamics)

automated Fortran program for nonlocal sensitivity analysis
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

automated hypothesis formation
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

automatic classification of documents
[90C09, 90C10]
(see: Optimization in classifying text documents)

automatic differentiation
[26A24, 34-XX, 49-04, 49-XX, 65-XX, 65D25, 65G20, 65G30,
65G40, 65H20, 65K05, 65K99, 65L99, 65Y05, 68-XX, 68N20,
68W30, 85-08, 90-XX, 90C26, 90C30]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: calculation of Newton steps;
Automatic differentiation: geometry of satellites and
tracking stations;Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: root problem and branch problem;
Bounding derivative ranges; Complexity of gradients,
Jacobians, and Hessians; Interval analysis: differential
equations; Interval analysis: intermediate terms; Interval
global optimization; Nonlocal sensitivity analysis with
automatic differentiation)

automatic differentiation
[26A24, 34-XX, 49-04, 49-XX, 65-XX, 65D25, 65K05, 65K99,
65Y05, 68-XX, 68N20, 68W30, 85-08, 90-XX, 90C26, 90C30]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: calculation of Newton steps;
Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: parallel
computation;Automatic differentiation: point and interval
taylor operators;Automatic differentiation: root problem
and branch problem; Bounding derivative ranges;
Complexity of gradients, Jacobians, and Hessians; Nonlocal
sensitivity analysis with automatic differentiation)

automatic differentiation see: backward mode in—; forward
mode of —; interval —; Nonlocal sensitivity analysis
with—; reverse mode—; vector forward—

Automatic differentiation: calculation of the Hessian
(90C30, 65K05)
(referred to in: Automatic differentiation: calculation of
Newton steps; Automatic differentiation: geometry of
satellites and tracking stations; Automatic differentiation:
introduction, history and rounding error estimation;
Automatic differentiation: parallel computation;
Automatic differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem;Nonlocal sensitivity analysis with automatic
differentiation)
(refers to: Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation;Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem;Nonlocal sensitivity analysis with automatic
differentiation)

Automatic differentiation: calculation of Newton steps
(90C30, 65K05)
(referred to in: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: geometry of satellites
and tracking stations;Automatic differentiation:
introduction, history and rounding error estimation;
Automatic differentiation: parallel computation;
Automatic differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem;Dynamic programming and Newton’s method in
unconstrained optimal control; Interval Newton methods;
Nondifferentiable optimization: Newton method;
Nonlinear least squares: Newton-type methods; Nonlocal
sensitivity analysis with automatic differentiation;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)
(refers to: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: geometry of satellites
and tracking stations;Automatic differentiation:
introduction, history and rounding error estimation;
Automatic differentiation: parallel computation;
Automatic differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
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Automatic differentiation: root problem and branch
problem;Dynamic programming and Newton’s method in
unconstrained optimal control; Interval Newton methods;
Nondifferentiable optimization: Newton method; Nonlocal
sensitivity analysis with automatic differentiation;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)

Automatic differentiation: geometry of satellites and tracking
stations
(26A24, 65K99, 85-08)
(referred to in: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: introduction, history and
rounding error estimation;Automatic differentiation:
parallel computation;Automatic differentiation: point and
interval;Automatic differentiation: point and interval
taylor operators;Automatic differentiation: root problem
and branch problem;Nonlocal sensitivity analysis with
automatic differentiation)
(refers to: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: introduction, history and
rounding error estimation;Automatic differentiation:
parallel computation;Automatic differentiation: point and
interval;Automatic differentiation: point and interval
taylor operators;Automatic differentiation: root problem
and branch problem;Nonlocal sensitivity analysis with
automatic differentiation)

Automatic differentiation: introduction, history and
rounding error estimation
(65D25, 26A24)
(referred to in: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: parallel
computation;Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators;Automatic differentiation: root problem and
branch problem; Interval analysis: intermediate terms;
Interval analysis: subdivision directions in interval branch
and boundmethods; Nonlocal sensitivity analysis with
automatic differentiation;Unconstrained optimization in
neural network training)
(refers to: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: parallel
computation;Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators;Automatic differentiation: root problem and
branch problem;Nonlocal sensitivity analysis with
automatic differentiation)

Automatic differentiation: parallel computation
(65Y05, 68N20, 49-04)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation;Automatic
differentiation: point and interval;Automatic

differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem;Heuristic search; Load balancing for parallel
optimization techniques;Nonlocal sensitivity analysis with
automatic differentiation; Parallel computing: complexity
classes; Parallel computing: models; Parallel heuristic
search; Stochastic network problems: massively parallel
solution)
(refers to: Asynchronous distributed optimization
algorithms;Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem;Heuristic search; Interval analysis: parallel
methods for global optimization; Load balancing for
parallel optimization techniques;Nonlocal sensitivity
analysis with automatic differentiation; Parallel computing:
complexity classes; Parallel computing: models; Parallel
heuristic search; Stochastic network problems: massively
parallel solution)

Automatic differentiation: point and interval
(65H99, 65K99)
(referred to in: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem; Bounding derivative ranges;Global optimization:
application to phase equilibrium problems; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: systems of
nonlinear equations; Interval analysis: unconstrained and
constrained optimization; Interval analysis: verifying
feasibility; Interval constraints; Interval fixed point theory;
Interval global optimization; Interval linear systems;
Interval Newton methods; Nonlocal sensitivity analysis
with automatic differentiation)
(refers to: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem; Bounding derivative ranges;Global optimization:
application to phase equilibrium problems; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
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nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods; Nonlocal sensitivity analysis with
automatic differentiation)

Automatic differentiation: point and interval taylor operators
(65K05, 90C30)
(referred to in: Automatic differentiation: calculation of the
Hessian;Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations;Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: root problem and branch problem;
Bounding derivative ranges;Global optimization:
application to phase equilibrium problems; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: systems of
nonlinear equations; Interval analysis: unconstrained and
constrained optimization; Interval analysis: verifying
feasibility; Interval constraints; Interval fixed point theory;
Interval global optimization; Interval linear systems;
Interval Newton methods;Nonlocal sensitivity analysis
with automatic differentiation)
(refers to: Automatic differentiation: calculation of the
Hessian;Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations;Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: root problem and branch problem;
Bounding derivative ranges;Global optimization:
application to phase equilibrium problems; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods; Nonlocal sensitivity analysis with
automatic differentiation)

Automatic differentiation: root problem and branch problem
(65K05)
(referred to in: Automatic differentiation: calculation of the
Hessian;Automatic differentiation: calculation of Newton

steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation;Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Nonlocal sensitivity analysis with automatic
differentiation)
(refers to: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations; Automatic differentiation: introduction,
history and rounding error estimation;Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Nonlocal sensitivity analysis with automatic
differentiation)

automatic document classification
[90C09, 90C10]
(see: Optimization in classifying text documents)

automatic graph drawing
[90C35]
(see: Optimization in leveled graphs)

automatic parallelization
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

automatic result verification
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval fixed point theory; Interval Newton methods)

automation
[93D09]
(see: Robust control)

autonomy
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

auxiliary function
[65K05, 68W10, 90B15, 90C06, 90C30]
(see: Direct global optimization algorithm; Stochastic
network problems: massively parallel solution)

auxiliary problem principle
[90C30]
(see: Cost approximation algorithms)

auxiliary problem principle
[90C30]
(see: Cost approximation algorithms)

auxiliary variable
[93-XX]
(see: Dynamic programming: optimal control applications)

availability see: upper bound on gas lift—
average

[65H20]
(see:Multi-scale global optimization using
terrain/funnelingmethods)

average see: on—
average behavior

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)
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average case analysis
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

average case behavior
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

average case complexity
[60J65, 68Q25]
(see: Adaptive global search)

average case complexity
[60J65, 68Q25]
(see: Adaptive global search)

average case complexity of algorithms
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

average case setting
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

average cost per stage
[49L99]
(see: Dynamic programming: average cost per stage
problems)

average cost per stage problem
[49L20, 90C39, 90C40]
(see: Dynamic programming: infinite horizon problems,
overview)

average cost per stage problems
[49L99]
(see: Dynamic programming: average cost per stage
problems)

average cost per stage problems see: Dynamic
programming: —

average model see:moving—
average nonredundancy rate

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

average number of pivot steps
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

average redundancy rate
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

average rmsds by energy
[92C05, 92C40]
(see: Protein loop structure predictionmethods)

averaged Navier–Stokes code see: Reynolds-—
averaging

[55R15, 55R35, 65K05, 90C11]
(see: Deterministic and probabilistic optimization models
for data classification)

averaging method
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

averaging operation
[90C15]
(see: Stochastic quasigradientmethods: applications)

averaging operation
[90C15]

(see: Stochastic quasigradient methods in minimax
problems)

averse, anticipative) decision see: ex-ante (risk —
avoidance

[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

A.W. see: Tucker —
away direction

[90C30]
(see: Frank–Wolfe algorithm)

away terminals
(see: Railroad crew scheduling)

axes of coordinates
[01A99]
(see: Leibniz, gottfried wilhelm)

axial MITPs see: greedy algorithm for—; hub heuristics for—
axial multi-index transportation problem

[90C35]
(see:Multi-index transportation problems)

axiom see: choice—; existence of classes—; extensionality —;
induction—; prolongation—; regularity—; two
cardinalities—

axiom of extensionality
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

axiom of prolongation
[03E70, 03H05, 91B16]
(see: Alternative set theory)

axiom systems for oriented matroids
[90C09, 90C10]
(see: Oriented matroids)

axiomatic approach
[90C30]
(see: Global optimization based on statistical models)

axiomatic derivation of cross-entropy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

axiomatic derivation of entropy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

axiomatic derivation of the principle of maximum entropy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

axiomatic derivation of the principle of minimum cross-entropy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

axioms see: existence of sets —; painting—
axioms of alternative set theory

[03E70, 03H05, 91B16]
(see: Alternative set theory)

azeotrope
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

azeotrope
[90C30]
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(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

azeotropes see: heterogeneous —; Nonlinear systems of
equations: application to the enclosure of all —; reactive—

azuma’s inequality
[05C85]
(see: Directed tree networks)

B
B see: gas lift wells of type —; level —;model—; naturally

flowing wells of type—
B-derivative

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

b-matching
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

b-matching problem
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

b-matching problem see: perfect—
B-subdifferential

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

B well see: type—
B wells see: type—
BA

[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

back-off
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

back propagation
[90C15]
(see: Stochastic quasigradientmethods: applications)

backboard wiring problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

backhauls
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

backhauls see: vehicle routing problem with—
backlog assumption

[49L20]
(see: Dynamic programming: inventory control)

backpropagation method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

backsolving see: Gaussian elimination with—
backtrack

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

backtrack phases
[90C35]
(see: Graph coloring)

backtracking
[90C10, 90C29, 90C30]
(see:Multi-objective integer linear programming;
Nonlinear least squares problems)

backtracking see: depth-first search with—
backward arc

[90C35]
(see:Maximum flow problem)

backward compatibility
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

backward mode in automatic differentiation
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

bad derivatives see:method of—
Baire measure

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

bake algorithm see: shake and—
bake approach see: Phase problem in X-ray crystallography:

Shake and—
balance see: power—
balance constraints see:mass—
balance equation

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

balance equations see:mass and energy —; node flow—
balance equations for material flows

(see: Planning in the process industry)
balance sheet

[91B50]
(see: Financial equilibrium)

balanced interval arithmetic
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

balanced interval arithmetic see: Global optimization: interval
analysis and—

balanced node
[90C35]
(see:Minimum cost flow problem)

balanced random interval arithmetic
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

balances see:mass—;mass, energy and momentum—
balancing see: dynamic load—; load—; static load—
balancing objectives

[90B85]
(see: Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location)

balancing for parallel optimization techniques see: Load—
balancing problem see: turbine—
balancing scheme see: asynchronous round robin—;

near-neighbor load—
balancing technique see: dynamic load—
Balas algorithm

[90C10, 90C29]
(see:Multi-objective integer linear programming)
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ball algorithm see: heavy —
ball-constrained linear problem

[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

ball constraint
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

ball method see: heavy —
ball quotient

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Banach linear extension theorem see: Hahn–—
Banach space see:monotone operator on a—
Banach spaces see: Steiner ratio in—
Banach theorem see: Hahn–—;Mazur–Orlicz version of the

Hahn–—
banded matrix

[65Fxx]
(see: Least squares problems)

bandit problem see:multi-armed restless —
Bandler–Kohout compatibility theorem

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

bandwidth
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

bandwidth see: lower—; optical —; row—; upper—
bandwidth of interdisciplinary coupling

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

bandwidth packing problem
[90C35]
(see:Multicommodity flow problems)

bandwidth problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

bank see: first—
bar of a truss see: elastic—
BARON

[90C11]
(see:MINLP: branch and bound methods)

barrier
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

barrier function
[90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming)

barrier function
[90C25, 90C30]
(see: Successive quadratic programming: solution by active
sets and interior point methods)

barrier function see: logarithmic—
barrier location problems

[90B85]
(see:Multifacility and restricted location problems)

barrier location problems
[90B85]
(see:Multifacility and restricted location problems)

barrier method see: interior point logarithmic—
barrier methods

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

barrier-penalty function see: logarithmic-quadratic—
barrier policy

[90B05, 90B06]
(see: Global supply chain models)

barycenter see: weighted —
barycenters see: generalized —
barycentric approximation

[90C15]
(see:Multistage stochastic programming: barycentric
approximation)

barycentric approximation see:Multistage stochastic
programming: —

barycentric scenario trees
[90C15]
(see:Multistage stochastic programming: barycentric
approximation)

barycentric weights
[90C15]
(see:Multistage stochastic programming: barycentric
approximation)

base polytope see:matroid—
based see: index-—;method- —;metric- —;model- —
based aggregation see: feature- —
based algorithm see: exact penalty function—
based approach see: gradient—
based approaches see: equation—; logic-—
based approximation see: point-—
based branch and bound see: lP/NLP—; QP/NLP—
based clustering approach: global optimum search with

enhanced positioning see: Gene clustering: A novel
decomposition-—

based complexity see: information-—
based complexity and information-based optimization see:

Information-—
based control for drug delivery systems see:Model—
based controllers via parametric programming see: Design of

robust model- —
based experimental analysis see:model- —
based framework see: graph—
based frameworkfor radiation therapy see: Optimization—
based gradient see: adjoint- —; sensitivity- —
based heuristics see: continuous—
based implementation see: PVM-—
based implementations see:MPI-—
based logic system of approximate reasoning see: point-—
based lower bounds see: eigenvalue—
based method see: KKT- —; penalty- —; reduction—
based methods see: descent- —; Disease diagnosis:

optimization-—;MINLP: logic-—
based model see: gIS design pattern —; information-—
based NP methods see: knowledge- —
based optimization see: information-—; Information-based

complexity and information-—; simulation-—
based outer approximation see: Logic-—
based perspective see:metric- —;model- —
based procedures see: gradient—
based on semidefinite relaxations see: bounds—
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based on single-crystal X-ray diffraction data see: Optimization
techniques for phase retrieval —

based on statistical models see: Global optimization—
based system see: rule-—
based theorem prover see: resolution—
based visualization see: Optimization-—
based yield see:˝- —
bases see: neighboring—
bases of a matroid see: set of—
bases of an oriented matroid

[90C09, 90C10]
(see: Oriented matroids)

bases for polynomial equations see: Gröbner—
basic ABS class

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization)

basic alternative theorem
[90C26]
(see: Invexity and its applications)

basic alternative theorem
[90C26]
(see: Invexity and its applications)

basic column
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

basic component
[90C30]
(see: Convex-simplex algorithm)

basic component
[90C30]
(see: Convex-simplex algorithm)

basic constraint qualification
[46A20, 49K27, 49K40, 52A01, 90C30, 90C31]
(see: Composite nonsmooth optimization; First order
constraint qualifications)

basic feasible solution
[90C05, 90C35, 90C60]
(see: Complexity of degeneracy;Generalized networks;
Linear programming; Linear programming: Klee–Minty
examples)

basic feasible solution
[90C60]
(see: Complexity of degeneracy)

basic features, examples from financial decisionmaking see:
Preference disaggregation approach: —

basic GRASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

basic matrix
[90C05, 90C33]
(see: Linear programming: Klee–Minty examples; Pivoting
algorithms for linear programming generating two paths)

basic operations in a program
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

basic outline of filled function methods
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

basic QC
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

basic rules of branch and bound
[90C10, 90C29]
(see:Multi-objective integer linear programming)

basic sensitivity theorem
[90C31]
(see: Bounds and solution vector estimates for parametric
NLPS)

basic software routines see: package of—
basic solution

[05B35, 65K05, 90C05, 90C20, 90C33, 90C35]
(see: Criss-cross pivoting rules;Generalized networks;
Linear programming; Linear programming: Klee–Minty
examples; Pivoting algorithms for linear programming
generating two paths)

basic solution
[90C05]
(see: Linear programming)

basic solution see: degenerate —
basic solutions

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules; Lexicographic pivoting
rules)

basic variables
[49M37, 90C05, 90C11]
(see: Linear programming;Mixed integer nonlinear
programming)

basic VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

BASICS see: Lagrangian duality: —
basin see: g- —; local—
basins of attraction

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

basis
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

basis
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

basis see: advanced—; complementary—; dual
degenerate —; extremal —; graver —; Gröbner—;
Hilbert —; optimal —; primal degenerate —; primal
feasible—; reduced Gröbner—; tangle —; universal
Gröbner—; working—

basis forest
[90C35]
(see: Generalized networks)

basis method see: extremal —
basis orientation of an oriented matroid

[90C09, 90C10]
(see: Oriented matroids)

basis tableau see: lexico-positive—
Bassett–Maybee–Quirk theorem

[90C09, 90C10]
(see: Combinatorial matrix analysis)

batch design under uncertainty see: Global optimization in—
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batch learning
(see: Bayesian networks)

batch mode
(see: Planning in the process industry)

batch plant see:multiproduct—
batch plant design

[90C05, 90C26]
(see: Continuous global optimization: applications;Global
optimization in batch design under uncertainty)

batch process
[90C26]
(see: Global optimization in batch design under
uncertainty)

batch process
[90C26]
(see:MINLP: design and scheduling of batch processes)

batch processes see:Medium-term scheduling of—;MINLP:
design and scheduling of —; Reactive scheduling of—

batch processes with resources see: Short-term scheduling
of—

batch production systems
(see: Planning in the process industry)

batch reactor see: fed-—
batch scheduling

[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Bauer formula
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

Bayes see: naïve—; simple—
Bayes optimal rule

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

Bayesian approach
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Bayesian approach
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Bayesian decision-theoretic framework
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

Bayesian global optimization
(90C26, 90C10, 90C15, 65K05, 62C10)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian networks; Genetic
algorithms for protein structure prediction;Global
optimization based on statistical models;Monte-Carlo
simulated annealing in protein folding; Packet annealing;
Random search methods; Simulated annealing; Simulated
annealing methods in protein folding; Stochastic global
optimization: stopping rules; Stochastic global
optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding;Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Monte-Carlo simulated annealing in protein folding;
Packet annealing; Random search methods; Simulated
annealing; Simulated annealing methods in protein folding;

Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods)

Bayesian heuristic approach
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Bayesian inference
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

Bayesian methods
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

Bayesian networks
(refers to: Bayesian global optimization; Evolutionary
algorithms in combinatorial optimization; Neural networks
for combinatorial optimization)

Bayesian networks see: chain rule for—; dynamical —
Bayesian parameter estimation

[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

Bayesian stopping rule
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Bayesian stopping rule
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

bB procedure
[90C26]
(see: D.C. programming)

BB search engine
[90C15, 90C30, 90C99]
(see: SSC minimization algorithms)

BCI
[93-XX]
(see: Boundary condition iteration BCI)

BCI see: Boundary condition iteration—
BDMST

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

be stable without pivoting see: guaranteed to —
beacon

(see: Semidefinite programming and the sensor network
localization problem, SNLP)

beam angle optimization
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

beam angle selection
[90C11, 90C59]
(see: Nested partitions optimization)

beam angle selection and wedge orientation optimization
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

beam cross-sectional shapes
[90C26, 90C90]
(see: Structural optimization: history)

beam’s-eye-view
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)
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beam segmentation problem
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

Beam selection in radiotherapy treatment design
(refers to: Credit rating and optimization methods;
Evolutionary algorithms in combinatorial optimization;
Optimization based frameworkfor radiation therapy)

beam weight optimization
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

beams
[90C26, 90C90]
(see: Structural optimization: history)

Beckmann QAP see: Koopmans–—
Beckmann quadratic assignment problem see: Koopmans–—
before-departure see: duty- —
behavior see: asymptotic —; average —; average case—;

day-to-day dynamic travel —; exponential —;
noncooperative—; random—

behavior of CAP on trees see: asymptotic —
behavior of a generally nonhomogeneous and nonisotropic

body see: linear thermoelastic —
beliefs see: homogeneous—
Bellman’s equation

[49L20, 49L99, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: discounted problems;
Dynamic programming: infinite horizon problems,
overview;Dynamic programming: stochastic shortest path
problems;Dynamic programming: undiscounted problems;
Neuro-dynamic programming)

Bellman equation see: derivation of the Hamilton–Jacobi–—;
Hamilton–Jacobi–—; solution of the Hamilton–Jacobi–—;
sufficiency theorem for the Hamilton–Jacobi–—

Bellman–Ford method
[90B10, 90C27]
(see: Shortest path tree algorithms)

ben-Tal SOCQ
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

Benders decomposition
[90-02, 90C10, 90C15, 90C27, 90C90]
(see: Chemical process planning; L-shaped method for
two-stage stochastic programs with recourse;Operations
researchmodels for supply chain management and design;
Stochastic integer programs; Stochastic linear programs
with recourse and arbitrarymultivariate distributions;
Stochastic programs with recourse: upper bounds;
Time-dependent traveling salesman problem)

Benders decomposition
[90C26, 90C27]
(see: Bilevel optimization: feasibility test and flexibility
index; Time-dependent traveling salesman problem)

Benders decomposition see: generalized —; nested —
Benders decomposition approach

[90C30, 90C35]
(see: Optimization in water resources)

Benders method see: generalized —
best algorithm see: Bialas–Karwan Kth- —
best approximation

[41A30, 47A99, 65K10]

(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

best approximation see: Chebyshev —;maximal—;
minimal—; polynomial of—

best approximation by bounded or continuous functions see:
Lipschitzian operators in—

best approximation operator
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

Best approximation in ordered normed linear spaces
(90C46, 46B40, 41A50, 41A65)

best arc construction procedure
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

best bound
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

best bound rule
[90C11]
(see:MINLP: branch and boundmethods)

best-compromise solution
[90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control)

best estimate
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

best estimate using pseudocosts
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

best estimate using pseudoshadow prices
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

best-first
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

best-first tree search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

Best-First Tree Search see: Parallel —
best fit

[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

best fitting to data
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

best improvement
[68Q25, 68R10, 68W40, 9008, 90C26, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization;
Variable neighborhood search methods)

Best improvement
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

best node construction procedure
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)
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best projection
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

best response mapping
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

best start
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

best value
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

beta algorithm see: alpha-—; high failure of the alpha-—; low
failure of the alpha- —

ˇ -sheet
[92C40]
(see:Monte-Carlo simulated annealing in protein folding)

better approximation
[90C27]
(see: Steiner tree problems)

between nonlinear complementarity problem and fixed point
problem see: Equivalence—

between primal and dual solutions see: exploiting the
interplay—

BF see: level —;model —
BFGS see: L- —; L-RH-—
BFGS algorithm see: limited-memory reduced-Hessian—;

successive affine reduction—
BFGS-CG relationship

[90C30]
(see: Conjugate-gradientmethods)

BFGS method
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

BFGS method see: limited-memory—;memoryless —
BFGS quasi-Newton update

[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

BFGS update
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

BFGS update
[90C30]
(see: Broyden family of methods and the BFGS update)

BFGS update see: Broyden family of methods and the—
BFM

[90C30]
(see: Broyden family of methods and the BFGS update)

BFR see: level —;model —
BFS

[90C60]
(see: Complexity of degeneracy)

BFS see: degenerate —; nearly degenerate —;
nondegenerate —

bi-knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

Bi-objective assignment problem
(90C35, 90C10)
(referred to in: Assignment and matching;Assignment
methods in clustering; Communication network
assignment problem;Decision support systems with
multiple criteria; Estimating data for multicriteria decision
making problems: optimization techniques; Financial
applications of multicriteria analysis; Frequency
assignment problem; Fuzzy multi-objective linear
programming; Linear ordering problem;Maximum
partitionmatching;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling;Quadratic assignment
problem)
(refers to: Assignment and matching;Assignment methods
in clustering;Communication network assignment
problem;Decision support systems with multiple criteria;
Estimating data for multicriteria decisionmaking
problems: optimization techniques; Financial applications
of multicriteria analysis; Frequency assignment problem;
Fuzzy multi-objective linear programming;Maximum
partitionmatching;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling;Quadratic assignment
problem)

bI-VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

Bialas–Karwan Kth-best algorithm
[90C30, 90C90]
(see: Bilevel programming: global optimization)

bias function
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

bibliography of stochastic programming
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)
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bidding increment
[90C30, 90C35]
(see: Auction algorithms)

bidding system see: preferential —
bidimensional knapsack problem

[90C10, 90C27]
(see:Multidimensional knapsack problems)

bidual problem
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

biduality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

biduality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

biduality in nonconvex optimization see: Duality theory: —
biduality theorem

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

bifunction see:monotone—; pseudomonotone—;
quasimonotone—

bifunction (with respect to another) see: pseudomonotone—
big-M

[90C09, 90C10, 90C11]
(see:MINLP: logic-basedmethods)

bigraph
[90C09, 90C10]
(see: Combinatorial matrix analysis)

bigraph see: signed—
bilateral boundary value problem

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

Bilevel fractional programming
(90C32, 90C26)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;
Fractional combinatorial optimization; Fractional
programming;Multilevel methods for optimal design;
Multilevel optimization in mechanics;Quadratic fractional
programming: Dinkelbach method; Stochastic bilevel
programs)

Bilevel linear programming
(49-01, 49K10, 49M37, 90-01, 91B52, 90C05, 90C27)
(referred to in: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: global optimization; Bilevel programming:
implicit function approach; Bilevel programming:
introduction, history and overview; Bilevel programming in
management; Bilevel programming: optimality conditions

and duality;Multilevel methods for optimal design;
Multilevel optimization in mechanics; Stochastic bilevel
programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming:
applications in engineering; Bilevel programming: implicit
function approach; Bilevel programming: introduction,
history and overview; Bilevel programming inmanagement;
Bilevel programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics; Stochastic bilevel programs)

bilevel linear programming
[49-01, 49K10, 49K45, 49M37, 49N10, 90-01, 90C05, 90C20,
90C27, 91B52]
(see: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs)

Bilevel linear programming: complexity, equivalence to
minmax, concave programs
(49-01, 49K45, 49N10, 90-01, 91B52, 90C20, 90C27)
(referred to in: Bilevel linear programming; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: global optimization; Bilevel programming:
implicit function approach; Bilevel programming:
introduction, history and overview; Bilevel programming in
management; Bilevel programming: optimality conditions
and duality; Concave programming;Minimax: directional
differentiability;Minimax theorems;Minimum concave
transportation problems;Multilevel methods for optimal
design;Multilevel optimization in mechanics;
Nondifferentiable optimization: minimax problems;
Stochastic bilevel programs; Stochastic programming:
minimax approach)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming:
applications in engineering; Bilevel programming: implicit
function approach; Bilevel programming: introduction,
history and overview; Bilevel programming in
management; Bilevel programming: optimality conditions
and duality; Concave programming;Minimax: directional
differentiability;Minimax theorems;Minimum concave
transportation problems;Multilevel methods for optimal
design;Multilevel optimization in mechanics;
Nondifferentiable optimization: minimax problems;
Stochastic bilevel programs; Stochastic programming:
minimax approach; Stochastic quasigradientmethods in
minimax problems)

bilevel optimization
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

bilevel optimization
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index;Mixed integer nonlinear bilevel programming:
deterministic global optimization)
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Bilevel Optimization see:Mixed Integer —
Bilevel optimization: feasibility test and flexibility index

(90C26)
(referred to in: Adaptive convexification in semi-infinite
optimization; Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel programming; Bilevel programming:
applications; Bilevel programming: global optimization;
Bilevel programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality; Generalized semi-infinite
programming: optimality conditions;Minimax: directional
differentiability;Minimax theorems;Multilevel methods
for optimal design;Multilevel optimization in mechanics;
Nondifferentiable optimization: minimax problems;
Stochastic bilevel programs; Stochastic programming:
minimax approach)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;Minimax: directional
differentiability;Minimax theorems;Multilevel methods
for optimal design;Multilevel optimization in mechanics;
Nondifferentiable optimization: minimax problems;
Stochastic bilevel programs; Stochastic programming:
minimax approach; Stochastic quasigradientmethods in
minimax problems)

bilevel program
[49-01, 49K10, 49M37, 90-01, 90B30, 90B50, 90C05, 90C25,
90C26, 90C27, 90C29, 90C30, 90C31, 91A10, 91B32, 91B52,
91B74]
(see: Bilevel linear programming; Bilevel programming;
Bilevel programming in management; Bilevel
programming: optimality conditions and duality)

bilevel program see: stochastic—
Bilevel programming

(49M37, 90C26, 91A10)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming: applications; Bilevel
programming: global optimization; Bilevel programming:
implicit function approach; Bilevel programming:
introduction, history and overview; Bilevel programming in
management; Bilevel programming: optimality conditions
and duality;Multilevel methods for optimal design;
Multilevel optimization in mechanics; Stochastic bilevel
programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming: applications; Bilevel programming:
applications in engineering; Bilevel programming: implicit
function approach; Bilevel programming: introduction,

history and overview; Bilevel programming inmanagement;
Bilevel programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics; Stochastic bilevel programs)

bilevel programming
[90C26, 90C30, 90C31]
(see: Bilevel programming: introduction, history and
overview)

bilevel programming
[90-01, 90B30, 90B50, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C90, 91B32, 91B52, 91B74]
(see: Bilevel programming: global optimization; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;MINLP: reactive
distillation column synthesis;Mixed integer nonlinear
bilevel programming: deterministic global optimization;
Optimization with equilibrium constraints: A piecewise
SQP approach)

bilevel programming see: complexity of —; duality for—;
enumeration in—; implicit function approach to—

Bilevel programming: applications
(91B99, 90C90, 91A65)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: global optimization; Bilevel programming:
implicit function approach; Bilevel programming:
introduction, history and overview; Bilevel programming in
management; Bilevel programming: optimality conditions
and duality;Multilevel methods for optimal design;
Multilevel optimization in mechanics; Stochastic bilevel
programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications in
engineering; Bilevel programming: implicit function
approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics; Stochastic bilevel programs)

Bilevel programming: applications in engineering
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;Design
optimization in computational fluid dynamics; Interval
analysis: application to chemical engineering design
problems;Multidisciplinary design optimization;
Multilevel methods for optimal design;Multilevel
optimization in mechanics;Optimal design of composite



Subject Index 4105

structures;Optimal design in nonlinear optics; Stochastic
bilevel programs; Structural optimization: history)

bilevel programming: deterministic global optimization see:
Mixed integer nonlinear —

Bilevel programming framework for enterprise-wide process
networks under uncertainty

Bilevel programming: global optimization
(90C90, 90C30)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics; Stochastic bilevel programs)

Bilevel programming: implicit function approach
(90C26, 90C31, 91A65)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: introduction, history
and overview; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics; Stochastic bilevel programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;Multilevel methods for
optimal design;Multilevel optimization in mechanics;
Stochastic bilevel programs)

Bilevel programming: introduction, history and overview
(90C26, 90C30, 90C31)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
approach; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics;Nondifferentiable
optimization: parametric programming;Optimization with
equilibrium constraints: A piecewise SQP approach;
Stochastic bilevel programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel

programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;Multilevel methods for
optimal design;Multilevel optimization in mechanics;
Stochastic bilevel programs)

Bilevel programming in management
(90-01, 91B52, 91B74, 91B32, 90B30, 90B50)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: implicit
function approach; Bilevel programming: introduction,
history and overview; Bilevel programming: optimality
conditions and duality;Multilevel methods for optimal
design;Multilevel optimization in mechanics; Stochastic
bilevel programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics; Stochastic bilevel programs)

Bilevel programming: optimality conditions and duality
(90C25, 90C29, 90C30, 90C31)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management;Multilevel
methods for optimal design;Multilevel optimization in
mechanics; Stochastic bilevel programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming in management;Multilevel methods for
optimal design;Multilevel optimization in mechanics;
Nondifferentiable optimization: parametric programming;
Stochastic bilevel programs)

bilevel programming problem
[90C25, 90C26, 90C29, 90C30, 90C31, 91A65]
(see: Bilevel programming: implicit function approach;
Bilevel programming: optimality conditions and duality)

bilevel programming problem
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)



4106 Subject Index

bilevel programming problem see: generalized —; linear—
bilevel programming problems

[90C30, 90C90]
(see: Bilevel programming: global optimization)

bilevel programming problems see: solution of—
bilevel programs

[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

bilevel programs see: algorithms for stochastic—;
Stochastic—

bilinear
[90C26]
(see:MINLP: design and scheduling of batch processes)

bilinear
[90C11, 90C90]
(see:MINLP: trim-loss problem)

bilinear form see: K-local—
bilinear forms

[49-XX, 65M60, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Variational inequalities: F. E. approach)

bilinear function
[90C26]
(see: Convex envelopes in optimization problems)

bilinear matrix inequality
[93D09]
(see: Robust control)

Bilinear programming
bilinear programming

[49M37, 90C09, 90C10, 90C11, 90C25, 90C26, 91A10]
(see: Bilevel programming; Concave programming;
Disjunctive programming;MINLP: branch and bound
methods)

bilinear programming
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

bilinear programming see: difficulties in—; optimality in—;
stable—

Bilinear programming: applications in the supply chain
management

bilinear programming problem
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

bilinear symmetric continuous form see: coercive—
bilinear terms

[90C26, 90C90]
(see: Global optimization of heat exchanger networks)

bimatrix games
[90C11, 90C33]
(see: LCP: Pardalos–Rosenmixed integer formulation)

bimatrix games
[90C11, 90C33]
(see: LCP: Pardalos–Rosenmixed integer formulation;
Linear complementarity problem)

bin packing problem
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

binary
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

binary constraint satisfaction problem
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

binary CSPs
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

binary encoding
[92B05]
(see: Genetic algorithms)

binary encoding
[92B05]
(see: Genetic algorithms)

binary heap
[90B10, 90C27]
(see: Shortest path tree algorithms)

binary length
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

binary linear programming
[90C30]
(see: Lagrangian duality: BASICS)

binary matroid
[90C09, 90C10]
(see:Matroids)

binary noninterference constraints
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

binary operations on relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

binary programming see: positive semi-definite quadratic—
binary relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

binary search
[90C09]
(see: Inference of monotone boolean functions)

binary search algorithm
[90C09]
(see: Inference of monotone boolean functions)

binary search-Hansel chains question-asking strategy
[90C09]
(see: Inference of monotone boolean functions)

binary search-Hansel chains question-asking strategy
[90C09]
(see: Inference of monotone boolean functions)

binary search method
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

binary star
[90C26, 90C90]
(see: Global optimization in binary star astronomy)
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binary star see: spectroscopic visual —; visual —
binary star astronomy see: Global optimization in—
binary surrogates

[90C09, 90C10]
(see: Optimization in classifying text documents)

binary tree
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

binary trees
[05C85]
(see: Directed tree networks)

binary variables
[90C11]
(see:MINLP: branch and boundmethods)

binary vectors see: ordering on—
binomial see: degree of a—
binomial distribution

[90C15]
(see: Logconcavity of discrete distributions)

binomial moments
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

biochemical processes
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

biological constraints see: incorporation of—
biology see: computational—
biomolecular structures see: Steiner ratio of—
biorthogonal polynomial

[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

bipartite
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

bipartite chordal graph
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

bipartite graph
[05C85, 90C09, 90C10]
(see: Combinatorial matrix analysis;Directed tree
networks)

bipartite graph see: convex—
bipartite matching

[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

bipartite matching problem see:weighted —
bipartite network

[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

bipartite subgraph see:maximum—
bipartite tournament

[90C35]
(see: Feedback set problems)

bipartitioning problem see: graph—
bipartization see: graph—
bipartization problem see: graph—;minimumweighted

graph—

BiQAP
[90C08, 90C11, 90C27]
(see: Biquadratic assignment problem)

Biquadratic assignment problem
(90C27, 90C11, 90C08)
(refers to: Feedback set problems;Generalized assignment
problem;Graph coloring;Graph planarization;Greedy
randomized adaptive search procedures; Integer
programming: branch and bound methods;Quadratic
assignment problem)

biquadratic assignment problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Biquadratic assignment problem;Quadratic
assignment problem)

birkhoff’s theorem
[90C09, 90C10]
(see: Combinatorial matrix analysis)

bisection
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

bisection
[65K05, 90C30]
(see: Bisection global optimization methods)

bisection see:max-—;multidimensional—
bisection algorithm see: generalized —
Bisection global optimization methods

(90C30, 65K05)
(referred to in: ˛BB algorithm;Global optimization: interval
analysis and balanced interval arithmetic)
(refers to: ˛BB algorithm)

bisection method
[65K05, 90C20, 90C25, 90C30]
(see: Bisection global optimization methods;Quadratic
programming over an ellipsoid)

bisection method
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

Bisection Problem see:minimum—
bisection search

[90C30]
(see: Convex-simplex algorithm)

bisection search
[90C30]
(see: Frank–Wolfe algorithm)

bisectored
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

bisectored unit disk graphs
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

bisubmodular system
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

bisymmetric matrix
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

bisymmetric positive semidefinite matrix
[65K05, 90C20, 90C33]
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(see: Principal pivoting methods for linear complementarity
problems)

BK-product of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

bK-products
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

BK-products
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

BL-logic
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

black-box
[65K99]
(see: Global optimization of planar multilayered dielectric
structures;Maximum cut problem, MAX-CUT)

black-box global optimization
[65K05]
(see: Direct global optimization algorithm)

black-box optimization
[90C05]
(see: Global optimization in the analysis and management
of environmental systems)

black-box optimization
[65K05]
(see: Direct global optimization algorithm)

black-box strategy
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

black oil model
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

Black–Scholes model
[91B50]
(see: Financial equilibrium)

blackball number
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

Bland see: rule of—
Bland least index pivoting rule

[90C05]
(see: Linear programming: Klee–Minty examples)

Bland rule
[90C05]
(see: Linear programming: Klee–Minty examples)

Bland technique
[90C60]
(see: Complexity of degeneracy)

blended panel
[90C26, 90C29]
(see: Optimal design of composite structures)

blending
[90C30, 90C90]

(see:MINLP: applications in blending and pooling
problems)

blending see: nonlinear—
blending and distribution scheduling: an MILP model see:

Gasoline—
blending index

[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

blending and pooling problems see:MINLP: applications in—
blending problems see: pooling and—
bliss

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

block
[90B35]
(see: Job-shop scheduling problem)

block see: solution—; vehicle—
block-0-diagonal operator

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

block angular form
[65Fxx]
(see: Least squares problems)

block-angular structure
[90C06]
(see: Decomposition principle of linear programming)

block-angular structure see: dual—
block-clique graph

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

block of a partition
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

block pivot
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

block plan
[90B80]
(see: Facilities layout problems)

block theorem
[90B35]
(see: Job-shop scheduling problem)

block truncated Newton software package
[90C10, 90C26, 90C30]
(see: Optimization software)

blocks for the process units see: building—
blocks of variables see: eliminating—
blossom

[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

blossom inequalities
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

BLPP
[90C30, 90C90]
(see: Bilevel programming: global optimization)

BLPP see: complexity of the linear —



Subject Index 4109

BMI
[93D09]
(see: Robust control)

BNR-Prolog
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

board matrix see: chess- —
body see: linear thermoelastic behavior of a generally

nonhomogeneous and nonisotropic—
body-tail problem see: head- —
bold arcs

[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

bold connective
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

bold-driver method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

bold strategy
[49L20, 90C40]
(see: Dynamic programming: undiscounted problems)

boldface
[90B15]
(see: Evacuation networks)

Boltzmann constant
[90C27, 90C90]
(see: Simulated annealing)

boltzmann density
(see: Laplace method and applications to optimization
problems)

Boltzmann distribution
[65K05, 90C30]
(see: Random search methods)

bond angle
[92B05]
(see: Genetic algorithms for protein structure prediction)

bond angle
[92B05]
(see: Genetic algorithms for protein structure prediction)

bond distance
[92B05]
(see: Genetic algorithms for protein structure prediction)

bond distance
[92B05]
(see: Genetic algorithms for protein structure prediction)

bonds with constant maturities see: estimating the spot rate
for—

Bonferroni bounds see: Boole–—
Boole–Bonferroni bounds

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Boole–Bonferroni bounds
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Boolean 2-valued function
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Boolean 2-valued logic algebra
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Boolean algebra
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Boolean arrangement of hyperplanes
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Boolean circuit see: depth of a—
Boolean classification problem

[90C09, 90C10]
(see: Optimization in boolean classification problems)

Boolean classification problem
[90C09, 90C10]
(see: Optimization in boolean classification problems)

boolean classification problems see: Optimization in—
Boolean connective

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

Boolean formula see: satisfiable—
Boolean formula in conjunctive normal form

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

Boolean formulas see: satisfiability of—
Boolean function

[90C09]
(see: Inference of monotone boolean functions)

Boolean function
[90C09]
(see: Inference of monotone boolean functions)

Boolean function see: antitone—; antitone monotone—;
isotone—; isotone monotone—;monotone—;
nondecreasing monotone—; nonincreasing monotone—

Boolean function inference see:monotone—
Boolean function inference problem

[90C09]
(see: Inference of monotone boolean functions)

Boolean function inference problem
[90C09]
(see: Inference of monotone boolean functions)

boolean functions see: Inference of monotone—; interactive
learning of—

Boolean and fuzzy relations
(03E72, 03B52, 47S40, 68T27, 68T35, 68Uxx, 91B06, 90Bxx,
91Axx, 92C60)
(referred to in: Alternative set theory; Checklist paradigm
semantics for fuzzy logics; Finite complete systems of
many-valued logic algebras; Inference of monotone boolean
functions;Optimization in boolean classification problems;
Optimization in classifying text documents)
(refers to: Alternative set theory; Checklist paradigm
semantics for fuzzy logics; Finite complete systems of
many-valued logic algebras; Inference of monotone boolean
functions;Optimization in boolean classification problems;
Optimization in classifying text documents)

Boolean satisfiability
[90C60]
(see: Complexity theory)
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Boolean variables
(see: Logic-based outer approximation)

bootstrapping
[90C35]
(see: Feedback set problems)

border node
[90B10, 90C27]
(see: Shortest path tree algorithms)

border nodes set
[90B10, 90C27]
(see: Shortest path tree algorithms)

bordering method
[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

bore model see: well —
Borel set

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

BOT types of logical connectives see: TOP and—
both water environment see:minimizing the degradation in

quality of—
both-way compatibility

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

bottleneck machine
[90B35]
(see: Job-shop scheduling problem)

bottleneck measure
[62H30, 90C27]
(see: Assignment methods in clustering)

bottleneck quadratic assignment problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

bottleneck Steiner ratio
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

Bottleneck steiner tree problems
(05C05, 05C85, 68Q25, 90B80)
(referred to in: Capacitatedminimum spanning trees;
Minimax game tree searching; Shortest path tree
algorithms; Steiner tree problems)
(refers to: Capacitatedminimum spanning trees;Directed
tree networks;Minimax game tree searching; Shortest path
tree algorithms; Steiner tree problems)

bottleneck Steiner trees
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

bottleneck Steiner trees
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

bottlenecks in NLP solvers
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

Bouligand cone
[65K05, 90C30, 90Cxx]
(see: Nondifferentiable optimization: minimax problems;
Quasidifferentiable optimization: optimality conditions)

Bouligand cone
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

bouligand tangent
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

Bouligand tangent cone
[90C29]
(see: Generalized concavity in multi-objective optimization)

bound see: basic rules of branch and—; best —; Branch
and—; branch-and-—; Edmundson–Madansky upper —;
error —; Gilmore–Lawler lower—; global error —;
guaranteed —; guaranteed lower—; Hunter–Worsley
upper —; Jensen lower—; Lehmann–Goerisch—; lower—;
lP/NLP based branch and—; optimal componentwise—;
parametric lower—; parametric upper —; piecewise linear
upper —; polynomial upper—; QP/NLP based branch
and—; Rayleigh–Ritz —; reformulation/spatial branch
and—; restricted-recourse—; stochastic branch and—;
upper —; valid lower—; valid upper —

bound algorithm see: branch and—
bound algorithm for weighted graph planarization see: branch

and—
bound algorithms see: branch and—
bound for approximate solutions of nonlinear systems of

equations see: error —
bound consistency

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

bound constrained quadratic problem
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

bound constraints
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: unconstrained and constrained
optimization)

bound constraints see: flow—; Quadratic programming
with—

bound dichotomy see: generalized-upper- —
bound enumerative techniques see: branch and—
bound-factors

[90C26]
(see: Reformulation-linearization technique for global
optimization)

bound function see: lower—
bound on gas lift availability see: upper —
bound global optimization algorithm see:MINLP: branch

and—
bound-improvement see: dual—; primal—
bound method see: arc oriented branch and—; branch and—;

node oriented branch and—
bound methods see: branch and—; Integer programming:

branch and—; Interval analysis: subdivision directions in
interval branch and—;MINLP: branch and—

bound to optimality see: guaranteed —
bound and outer approximation see: hybrid branch and—
bound principle see: branch and—
bound rule see: best —
bound scheme see: branch and—
bound for a set see: lower—; upper—
bound for solutions of nonlinear systems of equations see:

rigorous—
bound strategy see: branch and—
bound techniques see: branch and—
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bound test see: lower—; upper- —
bound for unconstrained optimization see: branch and—
boundary see: lower—; upper —
Boundary condition iteration BCI

(93-XX)
(referred to in: Control vector iteration CVI)
(refers to: Control vector iteration CVI)

boundary condition iteration method
[93-XX]
(see: Boundary condition iteration BCI)

boundary conditions
[03H10, 49J27, 49K05, 49K10, 49K15, 49K20, 90C34]
(see: Duality in optimal control with first order differential
equations; Semi-infinite programming and control
problems)

boundary conditions see: elastostatics with nonlinear —;
quasidifferential elastic—; quasidifferential thermal —;
variational formulation of quasidifferential thermal —

boundary dependence property
[90C33]
(see: Topological methods in complementarity theory)

boundary effects
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

boundary flux estimation in distributed systems
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

boundary of a function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

boundary laws and variational equalities see: single-valued—
boundary point see: lower—; upper —
boundary triangulation

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

boundary value conditions
[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

boundary value problem see: bilateral —; ODE two-point—;
two-point—; unilateral —

boundary variation technique
[49J20, 49J52]
(see: Shape optimization)

bounded
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

bounded
[90C30]
(see: Frank–Wolfe algorithm)

bounded or continuous functions see: Lipschitzian operators
in best approximation by—

bounded cost per stage see: discounted problem with—
bounded degree minimum spanning tree problem

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

bounded integer variable see:multiple branches for—
bounded level set

[90C05, 90C25, 90C30, 90C34]

(see: Semi-infinite programming, semidefinite
programming and perfect duality)

bounded polynomial time algorithm see: efficient
polynomially—

bounded ratio disk graphs
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

bounded rationality
[90-01, 90B30, 90B50, 91B32, 91B52, 91B74]
(see: Bilevel programming in management)

bounded Turing machine see: exponentially space- —;
exponentially time-—; polynomially space-—;
polynomially time- —

bounding see: lower—; upper —
Bounding derivative ranges

(90C30, 90C26)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators;Global optimization: application to phase
equilibrium problems; Interval analysis: application to
chemical engineering design problems; Interval analysis:
differential equations; Interval analysis: eigenvalue bounds
of interval matrices; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators;Global optimization: application to phase
equilibrium problems; Interval analysis: application to
chemical engineering design problems; Interval analysis:
differential equations; Interval analysis: eigenvalue bounds
of interval matrices; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: parallel methods for global optimization; Interval
analysis: subdivision directions in interval branch and
boundmethods; Interval analysis: systems of nonlinear
equations; Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods)

bounding the expectation
[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

bounding Hessian see: lower—
bounding step

[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

bounding structure see: generalized upper —
bounds

[62C20, 90B80, 90C15, 90C31]
(see: Facilities layout problems; Sensitivity and stability in
NLP: approximation; Stochastic programming: minimax
approach)
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bounds see: arc flow—; Boole–Bonferroni —; computable
optimal value—; constructive lower—; eigenvalue based
lower—; Gilmore–Lawler type lower—;
Hunter–Worsley —; Lagrangian —; lower—; lower
weight —;Maximum constraint satisfaction: relaxations and
upper—;maximum flow problemwith nonnegative
lower—; parametric —; parametric upper and lower—;
Stochastic programs with recourse: upper—; upper —;
variance reduction lower—

bounds based on semidefinite relaxations
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

bounds constraints
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

bounds constraints see: generalized upper—; lower and
upper—

bounds on the distance of a feasible point to a solution point
[90C31]
(see: Sensitivity and stability in NLP: approximation)

bounds to eigenvalues see: upper and lower—
bounds of interval matrices see: Interval analysis: eigenvalue—
bounds for linear equations

[90C31]
(see: Sensitivity and stability in NLP: approximation)

bounds for multivariate probability integrals see: lower—;
upper—

bounds for NLP see: solution-point—
bounds on simplices

[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

Bounds and solution vector estimates for parametric NLPS
(90C31)
(referred to in:Multiparametric linear programming;
Multiparametric mixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Parametric
optimization: embeddings, path following and singularities;
Selfdual parametric method for linear programs)
(refers to:Multiparametric linear programming;
Multiparametric mixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Parametric
optimization: embeddings, path following and singularities;
Selfdual parametric method for linear programs)

bounds subject to moment conditions see: optimal integral —
box

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

box see: black-—; feasible—; indeterminate —; process- —;
reduced—

box(2)-consistency
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

box consistency
[65G20, 65G30, 65G40, 65K05, 68T20, 90C30]
(see: Interval constraints; Interval global optimization)

box constraints
[90C60]
(see: Complexity theory: quadratic programming)

box constraints
[90C60]
(see: Complexity theory: quadratic programming)

box global optimization see: black-—
box optimization see: black-—
box strategy see: black-—
boxes see: canonical —; leading—
BP

[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

BPP
[90C30, 90C90]
(see: Bilevel programming: global optimization)

BQAP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

brachytherapy
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

bracket
[65K05, 90C30]
(see: Bisection global optimization methods)

bracket see:multidimensional—
bracketing

[90C30]
(see: Nonlinear least squares problems)

Braess paradox
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

Braess paradox
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

braid arrangement of hyperplanes
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

braid group
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Brakhage preconditioner see: Atkinson–—
branch

[90C11]
(see:MINLP: branch and bound methods)

branch see: cut-and-—
branch & cut algorithms see: Stable set problem:—
branch-and-bound

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

branch-and-price
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

branch-and-price
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

branch and bound
[49M37, 65G30, 65G40, 65K05, 65K10, 68M20, 68Q25,
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68Q99, 90B06, 90B10, 90B35, 90B50, 90B80, 90C05, 90C10,
90C11, 90C25, 90C26, 90C27, 90C29, 90C30, 90C35, 90C57,
90C90, 92C40]
(see: Branch and price: Integer programming with column
generation;Chemical process planning; Communication
network assignment problem; Concave programming;
Global optimization in batch design under uncertainty;
Global optimization of heat exchanger networks; Global
optimization: interval analysis and balanced interval
arithmetic;Graph coloring; Integer programming:
lagrangian relaxation; Inventory management in supply
chains; Lagrangian duality: BASICS;MINLP: branch and
boundmethods;Mixed integer nonlinear programming;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization; Interactivemethods for
preference value functions;Multipleminima problem in
protein folding:˛BB global optimization approach;
Nonlinear systems of equations: application to the
enclosure of all azeotropes; Set covering, packing and
partitioning problems; Time-dependent traveling salesman
problem;Vehicle scheduling)

Branch and bound
[49M20, 49M37, 65K05, 65K10, 90B80, 90C05, 90C06, 90C08,
90C10, 90C11, 90C20, 90C26, 90C30, 90C31]
(see: ˛BB algorithm; Facilities layout problems;
Generalized outer approximation; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: lagrangian
relaxation; Linear ordering problem;MINLP: branch and
boundmethods;MINLP: global optimization with ˛BB;
Mixed integer nonlinear programming;Multiparametric
mixed integer linear programming; Standard quadratic
optimization problems: applications; Stochastic
transportation and location problems)

branch and bound see: basic rules of—; lP/NLP based —;
QP/NLP based—; reformulation/spatial —; stochastic—

branch and bound algorithm
[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

branch and bound algorithm for weighted graph planarization
[90C10, 90C27, 94C15]
(see: Graph planarization)

branch and bound algorithms
[65G20, 65G30, 65G40, 65H20, 65K99, 90B35]
(see: Interval Newton methods; Job-shop scheduling
problem)

branch and bound algorithms
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

branch and bound enumerative techniques
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

branch and bound global optimization algorithm see:
MINLP:—

branch and bound method
[90B10]
(see: Piecewise linear network flow problems)

branch and bound method see: arc oriented—; node
oriented—

branch and bound methods
[90C30, 90C90]
(see: Bilevel programming: global optimization)

branch and bound methods see: Integer programming: —;
Interval analysis: subdivision directions in interval —;
MINLP:—

branch and bound and outer approximation see: hybrid—
branch and bound principle

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

branch and bound scheme
[90C26]
(see: Convex envelopes in optimization problems)

branch and bound strategy
[49-01, 49K10, 49M37, 90-01, 90C05, 90C27, 91B52]
(see: Bilevel linear programming)

branch and bound techniques
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

branch and bound for unconstrained optimization
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: unconstrained and constrained
optimization)

branch and contract algorithm
[90C26, 90C90]
(see: Global optimization of heat exchanger networks)

branch and cut
[90C10, 90C11, 90C26, 90C27, 90C35, 90C57]
(see: Cutting plane methods for global optimization;
MINLP: branch and bound methods;Multicommodity flow
problems;Optimization in leveled graphs; Set covering,
packing and partitioning problems)

branch and cut algorithm see: Jünger–Mutzel —
branch and cut algorithms see: Integer programming: —
branch and cut procedure

[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

branch decomposition
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

branch decompositions see: Branchwidth and—
branch of a feasible set

[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

branch and Infer
(see:Mixed integer programming/constraint programming
hybridmethods)

branch and price
[90C35]
(see:Multicommodity flow problems)

branch and price and cut
[90C35]
(see:Multicommodity flow problems)

Branch and price: Integer programming with column
generation
(68Q99)
(referred to in: Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
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branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multi-objectivemixed integer
programming;Multiparametricmixed integer linear
programming;Nonoriented multicommodity flow
problems; Parametric mixed integer nonlinear
optimization; Set covering, packing and partitioning
problems; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)
(refers to: Decomposition techniques for MILP: lagrangian
relaxation; Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation;Mixed integer classification problems;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)

branch problem
[65K05]
(see: Automatic differentiation: root problem and branch
problem)

branch problem
[65K05]
(see: Automatic differentiation: root problem and branch
problem)

branch problem see: Automatic differentiation: root problem
and—

branch and prune
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

branch and reduce
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

branches for bounded integer variable see:multiple—
branching

[49M37, 65K10, 90C05, 90C06, 90C08, 90C10, 90C11, 90C26,
90C27, 90C30, 90C57, 90C59]
(see: ˛BB algorithm; Integer programming: branch and
bound methods;Quadratic assignment problem)

branching see: strong—
branching algorithm

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

branching step
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

branchpoint of a graph
[90C35]
(see: Feedback set problems)

branchwidth
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

Branchwidth and branch decompositions
(90C27, 68R10)

breadth-first
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

breaking rule see: tie—
breakpoint

[90C11, 90C31]
(see: Parametric mixed integer nonlinear optimization)

breast cancer diagnosis
[90C09, 90C10]
(see: Optimization in boolean classification problems)

breast tumors
[90C09, 90C10]
(see: Optimization in boolean classification problems)

Bregman parameter
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

bridges
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

bridging model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

brief review see: Generalized variational inequalities: A—
(Brier) scoring rule see: quadratic—
Broadcast scheduling problem

(refers to: Frequency assignment problem;Genetic
algorithms;Graph coloring;Greedy randomized adaptive
search procedures;Multi-objective integer linear
programming;Optimization problems in unit-disk graphs;
Simulated annealing)

Broeckx linearization see: Kaufman–—
brother waits see: younger —
Brouwer degree

[90C33]
(see: Topological methods in complementarity theory)

brouwer fixed point theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 65G20, 65G30,
65G40, 65H20, 91A05]
(see: Interval fixed point theory;Minimax theorems)

Brownian motion
[60G35, 65K05]
(see: Differential equations and global optimization)

Brownian motion see: N-dimensional—
Broyden class see: quasi-Newton method of—
Broyden family

[49M37, 90C30]
(see: Nonlinear least squares: Newton-type methods;
Rosen’s method, global convergence, and Powell’s
conjecture)
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Broyden family of methods
[90C30]
(see: Broyden family of methods and the BFGS update)

Broyden family of methods and the BFGS update
(90C30)
(referred to in: Conjugate-gradientmethods; Large scale
unconstrained optimization; Numerical methods for unary
optimization;Unconstrained nonlinear optimization:
Newton–Cauchy framework; Unconstrained optimization
in neural network training)
(refers to: Conjugate-gradientmethods; Large scale
unconstrained optimization; Numerical methods for unary
optimization;Unconstrained nonlinear optimization:
Newton–Cauchy framework; Unconstrained optimization
in neural network training)

Broyden–Fletcher–Goldfarb–Shanno method
[90C30]
(see: Successive quadratic programming)

Broyden–Fletcher–Goldfarb–Shanno quasi-Newton update
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

Broyden–Fletcher–Goldfarb–Shanno update
[90C30]
(see: Broyden family of methods and the BFGS update)

Broyden method see: Powell-symmetric–—
Broyden methods

[90C30]
(see: Broyden family of methods and the BFGS update)

Broyden–Spedicato algorithms for linear equations and linear
least squares see: Abaffi–—

Broyden theorem
[15A39, 90C05]
(see: Farkas lemma)

brute-force
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

BSM
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

BSP
[65K05, 65Y05]
(see: Parallel computing: models)

BSP
[65K05, 65Y05]
(see: Parallel computing: models)

bSP model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

BSP model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

BSTP
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

Buchberger algorithm
[12D10, 12Y05, 13Cxx, 13P10, 13Pxx, 14Qxx, 90Cxx]
(see: Gröbner bases for polynomial equations; Integer
programming: algebraic methods)

Buchberger algorithm see: truncated —

bucket
[90B10, 90C27]
(see: Shortest path tree algorithms)

budget constraint
[78M50, 90B50, 91B28]
(see: Global optimization algorithms for financial planning
problems)

budget of uncertainty
(see: Price of robustness for linear optimization problems)

building see:model —
building blocks for the process units

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

bulk synchronous parallel
[65K05, 65Y05]
(see: Parallel computing: models)

bulk synchronous parallel computer
[65K05, 65Y05]
(see: Parallel computing: models)

bulk synchronous parallel model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

bulk synchronous parallel model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

bullwhip effect
[90-02]
(see: Operations research models for supply chain
management and design)

Bunch and Parlett factorization
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

bundle algorithm
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

bundle algorithms
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

bundle method see: proximal—; proximal point—; variable
metric—

bundle methods
[46N10, 49J40, 49J52, 65K05, 90-00, 90C15, 90C26, 90C30,
90C33, 90C47]
(see: Nondifferentiable optimization; Solving
hemivariational inequalities by nonsmooth optimization
methods; Stochastic bilevel programs)

bundle methods
[49J40, 49J52, 65K05, 90C30]
(see: Nondifferentiable optimization: relaxationmethods;
Solving hemivariational inequalities by nonsmooth
optimization methods)

bundle-Newton method
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

bundle trust region
[49J40, 49J52, 65K05, 90C30]
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(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

Burke local dualization see: Ioffe–—
Burke–Poliquin reduction

[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

Burmeister function see: Fischer–—
business failure risk

[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

busting see: consist- —
butterfly

[90C35]
(see: Feedback set problems)

butterfly see: toroidal —

C
C see: ADOL- —; algorithm polynomial of degree —
C-differentiable function

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

C-differential
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

(CJ
m)-efficient point
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

(CJ
m)-efficient solution
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

C1,1 optimization problem
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

Ck-Riemannian metric
[58E05, 90C30]
(see: Topology of global optimization)

C-subdifferential
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

CA algorithm see: asynchronous parallel —; sequential —;
synchronized parallel —

CA algorithms
[90C30]
(see: Cost approximation algorithms)

CA algorithms see: decomposition—
cable see: slack—
cable structures see: structural analysis of—
cables

[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

calculation of the Hessian see: Automatic differentiation: —
calculation of Newton steps see: Automatic differentiation: —
calculus see: infinitesimal—; quasidifferential—
calculus of quasidifferentials

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

calculus of quasidifferentials see: Quasidifferentiable
optimization: —

calculus of variations
[01A99]
(see: Carathéodory, Constantine; Lagrange, Joseph-Louis)

calculus of variations
[01A99, 03H10, 49J27, 90C34]
(see: Carathéodory, Constantine; Lagrange, Joseph-Louis;
Semi-infinite programming and control problems)

calculus of variations see: inverse problem of the—;
Nonconvex-nonsmooth—

calibration see:model —
called

[90C15]
(see: Two-stage stochastic programs with recourse)

calm problem
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

calmness
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

calmness condition
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

calmness condition see: partial —
campaign

(see: Planning in the process industry)
campaign see:mixed-product—; single-product—
campaigns see: long—
canceling algorithm see: cycle-—
cancer chemotherapy

[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

cancer diagnosis see: breast —
candidate list

[68T20, 68T99, 90B10, 90C27, 90C59]
(see:Metaheuristics; Shortest path tree algorithms)

Candidate List see: restricted —
canonical boxes

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

canonical dual transformation
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

canonical dual transformation method
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

canonical form
[49-XX, 90-XX, 90C26, 93-XX]
(see: D.C. programming;Duality theory: biduality in
nonconvex optimization)

canonical function associated with�
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

canonical function space
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

canonical function space see: extended—
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canonical monotonic optimization problem
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

canonical normal form
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

canonical transformation
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

Cantor set theory
[03E70, 03H05, 91B16]
(see: Alternative set theory)

CAP
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

CAP on trees
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

CAP on trees see: asymptotic behavior of —; exact algorithm
for solving—; heuristic approach to solving—

capacitated arc routing problem
[90B06]
(see: Vehicle routing)

capacitated lot-sizing problem
[90C90]
(see: Chemical process planning)

capacitated minimum spanning arborescence problem
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

capacitated minimum spanning tree problem
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

capacitated minimum spanning tree problem
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

Capacitatedminimum spanning trees
(90C27, 68T99)
(referred to in: Bottleneck steiner tree problems; Shortest
path tree algorithms)
(refers to: Bottleneck steiner tree problems;Directed tree
networks;Minimax game tree searching; Shortest path tree
algorithms)

capacitated network see: directed—
capacitated transportation problem

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

capacitated vehicle routing problem
[90B06]
(see: Vehicle routing)

capacity see: arc —; nodes with water storage—; problem
with nonunit —; residual—; shannon zero-error —

capacity of an arc in a network
[90C35]
(see:Minimum cost flow problem)

capacity constraint
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

capacity constraint on arc flows
[90B10]
(see: Piecewise linear network flow problems)

capacity constraints
[90B80, 90B85, 90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems;Warehouse
location problem)

capacity constraints see:maximumoil, gas and water —; single
fixed cost with—; single fixed cost with no—

capacity of a cut
[90C35]
(see:Maximum flow problem)

capital asset pricing model
[91B50]
(see: Financial equilibrium)

capital investment see: venture —
capital market line

[91B28]
(see: Portfolio selection: markowitz mean-variance model)

Carathéodory
[01A99]
(see: Carathéodory, Constantine)

Carathéodory, Constantine
(01A99)
(referred to in: Carathéodory theorem;History of
optimization)
(refers to: Carathéodory theorem;History of optimization)

Carathéodory principle
[01A99]
(see: Carathéodory, Constantine)

Carathéodory theorem
(90C05)
(referred to in: Carathéodory, Constantine;History of
optimization; Krein–Milman theorem; Linear
programming; Single facility location: circle covering
problem)
(refers to: Carathéodory, Constantine; Krein–Milman
theorem; Linear programming)

Carathéodory theorem
[90B85, 90C06, 90C25, 90C27, 90C30, 90C35]
(see: Simplicial decomposition; Simplicial decomposition
algorithms; Single facility location: circle covering problem)

Carathéodory theorem
[90C06, 90C25, 90C30, 90C35]
(see: Simplicial decomposition; Simplicial decomposition
algorithms)

cardinalities axiom see: two—
cardinality of a graph

[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

cardinality matching problem see:maximum—
cardinality of a node

[90C35]
(see: Generalized networks)

cargo routing problems
(see:Maritime inventory routing problems)

Carl Friedrich see: Gauss—
Carlo see:Monte- —; pure Monte- —
Carlo configuration see:Monte- —
Carlo method see:metropolis Monte—;Monte- —; pure

Monte- —
Carlo simulated annealing in protein folding see:Monte- —
Carlo simulation see:monte- —
Carlo simulation algorithm see:Monte- —
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Carlo simulation procedure see:Monte- —
Carlo simulations for stochastic optimization see:Monte- —
CARP

[90B06]
(see: Vehicle routing)

carrying see: label —
Cartesian coordinates

[92B05]
(see: Genetic algorithms for protein structure prediction)

Cartesian coordinates
[92B05]
(see: Genetic algorithms for protein structure prediction)

Cartesian product
[90C30]
(see: Cost approximation algorithms)

Cartesian product set
[90C30]
(see: Cost approximation algorithms)

cascade see: temperature —
case see: convex-concave—; perfectly consistent—
case analysis see: average—;worst- —
case approach see: worst- —
case behavior see: average—
case complexity see: average—; worst- —
case complexity of algorithms see: average—
case of integral evaluation see: asymptotic—
case optimality see:worst- —
case performance guarantee see: worst- —
case setting see: average—
case of the trust region problem see: general —; hard—;

Newton step—
case of a two-person game see: cooperative—
cash flow see:maximize operating—
catalysis: optimizationmethods see: Shape selective zeolite

separation and—
catchment management

[90C30, 90C35]
(see: Optimization in water resources)

Cauchy approach see:modified—
Cauchy formula

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

Cauchy framework see: Newton–—; Unconstrained nonlinear
optimization: Newton– —

Cauchy inequality
[15A39, 90C05]
(see:Motzkin transposition theorem)

Cauchy method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

Cauchy method see:modified—
Cauchy point

[90C06]
(see: Large scale unconstrained optimization)

Cayley transform
[15A39, 90C05]
(see: Farkas lemma)

CCM
[90C30]
(see: Cyclic coordinate method)

cCOMB algorithm
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

CD see: lS- —
c.d. function

[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

CDPAP
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

cell
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

cell of a function
[90Cxx]
(see: Discontinuous optimization)

cell of a polyhedral subdivision
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

cell sectorization
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

cell of a Turing machine see: tape—
center see: analytic —; uncapacitated—
center cutting plane method see: analytic —
center of gravity

[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

center of gravity location
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

center of gravity method
[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

center of an interval linear system
[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

center node
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

center path
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

center problem see: p- —
center problem on a network see: p- —
centering see: design—
centering direction

[90C05]
(see: Linear programming: interior point methods)

centering hit and run see: artificial—
central arc

[68T99, 90C27]
(see: Capacitated minimum spanning trees)
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central component
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

central path
[37A35, 49-XX, 90-XX, 90C05, 90C25, 90C30, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Linear programming: interior point methods; Potential
reductionmethods for linear programming; Solving large
scale and sparse semidefinite programs)

central path
[90C25, 90C30]
(see: Successive quadratic programming: solution by active
sets and interior point methods)

central trajectory
[90C05]
(see: Linear programming: interior point methods)

centroid of a simplex
[90C30]
(see: Sequential simplex method)

CEP
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

CEP see: RAF of—; restricted accessibility form of—; UAF
of—; universally accessible form of —

cerevisiae see: saccharomyces—
certainty see:mathematical and computational—
certificate

[15A39, 90C05, 90C60]
(see: Complexity theory; Linear optimization: theorems of
the alternative;Motzkin transposition theorem)

certificate
[15A39, 90C05]
(see: Farkas lemma; Linear optimization: theorems of the
alternative;Motzkin transposition theorem)

CFAP
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

CFD
[90C90]
(see: Design optimization in computational fluid dynamics)

CFD see: design optimization in—
CG see: alternatives to—
CG family see: two-parameter —
CGmethod see: linear—; nonlinear —
CG-related algorithm

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

CG-related algorithms see: nonlinear —
CG relationship see: BFGS- —
CG-standard

[90C30]
(see: Conjugate-gradientmethods)

CG-standard for minimizing q
[90C30]
(see: Conjugate-gradientmethods)

CGM
[90C90]
(see: Design optimization in computational fluid dynamics)

CGM
[65K05, 65Y05]
(see: Parallel computing: models)

cGS
[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

CGU algorithm
[65K05, 90C26]
(see:Molecular structure determination: convex global
underestimation)

chain see: ejection—; finite-state Markov—; global supply—;
Hansel —;markov—; operational decisions in a supply—;
stationary-state Markov—; strategic design of a supply—;
supply—; two-stranded—

chain design see: supply—
chain justification

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

chain justification see: left- —; right- —
chain management see: Bilinear programming: applications in

the supply—;Mathematical programming methods in
supply—; operational supply—; strategic supply—;
supply—

chain management and design see: Operations research
models for supply—

chain methods see: ejection—
chain models see: Global supply—
chain networks

[05C85]
(see: Directed tree networks)

chain optimization see: supply—
chain performance measurement see: Supply—
chain rule

[90C30]
(see: Generalized total least squares)

chain rule for Bayesian networks
(see: Bayesian networks)

chain rules
[90C15]
(see: Stochastic quasigradientmethods: applications)

chain sampling see:Markov—
chain simulationmodels see: supply—
chained local search

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

chains see: Inventory management in supply—;Markov—
chains question-asking strategy see: binary search-Hansel —;

sequential Hansel —
Chaitin complexity see: Solomonoff–Kolmogorov–—
Chaitin in Omega

[90C60]
(see: Kolmogorov complexity)

challenge see: grand—
challenges in MINLP

[49M37, 90C11]
(see:Mixed integer nonlinear programming)

challenges for OR
[90C27]
(see: Operations research and financial markets)
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chamber
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Chan method
[65Fxx]
(see: Least squares problems)

chance constraint programming
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

chance constraint programming
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

changes see: sensitivity analysis with respect to right-hand
side—; up to first order —

changes in cost coefficients see: sensitivity analysis with
respect to—

channel constrained frequency assignment see: adjacent—;
co-—

chaotic iterative scheme
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

Characteristic see: spatial —
characteristic equation

[93D09]
(see: Robust control)

characteristic function
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

characteristic polynomial
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

characteristic vector
[05C60, 05C69, 05C85, 37B25, 68W01, 90C10, 90C20, 90C25,
90C27, 90C35, 90C59, 91A22]
(see:Heuristics for maximum clique and independent set;
L-convex functions and M-convex functions; Replicator
dynamics in combinatorial optimization)

characteristic vector see: weighted —
characteristics see:method of—
characterization of see: Convexifiable functions—
characterization of ED, J

[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

characterizing momments
[94A17]
(see: Jaynes’ maximum entropy principle)

characterstic polynomial
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

charactertstic vector
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

charge see: fixed—; linear fixed—
charge function see: fixed—
charge network flow problem see: fixed—
charge networks see: fixed—
charge problem see: fixed—
charge transportation problem see: fixed—
chart scores see: REL—

Chebyshev alternance
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

Chebyshev alternation
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

Chebyshev best approximation
[49K35, 49M27, 65K10, 90C25]
(see: Convex max-functions)

Chebyshev iterative method
[90C05, 90C25]
(see:Metropolis, Nicholas Constantine)

Chebyshev polynomial
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

Chebyshev problem
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

Chebyshev set
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

checklist see: valuation of a—
checklist confirmation

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

checklist denial
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

checklist modus ponens
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

checklist modus tollens
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

checklist paradigm
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

checklist paradigm
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Checklist paradigm semantics for fuzzy logics
(03B52, 03B50, 03C80, 62F30, 62Gxx, 68T27)
(referred to in: Alternative set theory; Boolean and fuzzy
relations; Finite complete systems of many-valued logic
algebras; Inference of monotone boolean functions;
Optimization in boolean classification problems;
Optimization in classifying text documents)
(refers to: Alternative set theory; Boolean and fuzzy
relations; Finite complete systems of many-valued logic
algebras; Inference of monotone boolean functions;
Optimization in boolean classification problems;
Optimization in classifying text documents)

checklist template
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

checkpointing
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

chemical engineering design problems see: Interval analysis:
application to—
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chemical equilibrium see:multiphase—; Optimality criteria for
multiphase—

chemical equilibrium problem
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

chemical potential
[49K99, 65K05, 80A10, 90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes;Optimality criteria for
multiphase chemical equilibrium)

Chemical process planning
(90C90)
(referred to in: Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
boundmethods;MINLP: design and scheduling of batch
processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-based methods;
MINLP: outer approximation algorithm;MINLP: reactive
distillation column synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks;Mixed integer nonlinear programming)
(refers to: Extended cutting plane algorithm;Generalized
benders decomposition;Generalized outer approximation;
MINLP: application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: mass and heat
exchanger networks;Mixed integer nonlinear
programming)

chemical reaction equilibrium see: Global optimization in
phase and—

chemotherapy see: cancer —
Chen–Harker–Kanzow–Smale function

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

chess-board matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Chevron method
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

chi-square statistic see: Pearson—
child of a vertex

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

Chinese postman problem
[90B20]
(see: General routing problem)

Chinese postman problem see: directed—
chirotope

[90C09, 90C10]
(see: Oriented matroids)

choice see: greedy—; rational —; rule of random—
choice adjustment process see: trip-route—
choice axiom

[03E70, 03H05, 91B16]
(see: Alternative set theory)

choice of the entering variable
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

choice knapsack see:multiple—
choice knapsack problem see: linear multiple-—;

multidimensional multiple-—;multiple-—
choice of the leaving variable

[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

choice property see: greedy- —
choices see: linguistic—
Choleski algorithm see: implicit—
Cholesky factorization

(15-XX, 65-XX, 90-XX)
(referred to in: ABS algorithms for linear equations and
linear least squares; Interval linear systems; Large scale
trust region problems; Large scale unconstrained
optimization;Orthogonal triangularization;
Overdetermined systems of linear equations;QR
factorization; Solving large scale and sparse semidefinite
programs; Symmetric systems of linear equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Large scale trust region problems; Large scale
unconstrained optimization; Least squares problems;
Linear programming;Orthogonal triangularization;
Overdetermined systems of linear equations;QR
factorization; Solving large scale and sparse semidefinite
programs; Symmetric systems of linear equations)

cholesky factorization
[15-XX, 65-XX, 65Fxx, 65K05, 90-XX, 90Cxx]
(see: Cholesky factorization; Least squares problems;
Symmetric systems of linear equations)

Cholesky triangle
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

chordal
[90C35]
(see: Feedback set problems)

chordal graph
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

chordal graph see: bipartite—
chromatic number

[05-XX, 05C15, 05C17, 05C35, 05C62, 05C69, 05C85, 90C22,
90C27, 90C35, 90C59]
(see: Frequency assignment problem; Lovász number;
Optimization problems in unit-disk graphs)
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chromosome
[92B05]
(see: Genetic algorithms)

chromosome
[92B05]
(see: Genetic algorithms)

Chung–Gilbert conjecture
[90C27]
(see: Steiner tree problems)

Chvátal function
[90C10, 90C46]
(see: Integer programming duality)

Chvátal–Gomory cut
[90C05, 90C06, 90C08, 90C10, 90C11, 90C46]
(see: Integer programming: branch and cut algorithms;
Integer programming duality)

Chvátal–Gomory cutting plane
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

Chvátal rank
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

CI
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

CID
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

circle see: largest empty —; least —;minimum—; smallest
enclosing—

circle covering problem see: Single facility location: —
circle problem see: largest empty —; smallest enclosing-—
circle product of relations

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

circles in a square see: equal—
circuit

[13Cxx, 13Pxx, 14Qxx, 90C09, 90C10, 90Cxx]
(see: Integer programming: algebraic methods;Oriented
matroids)

circuit see: combinatorial switching—; depth of a Boolean—;
HAMILTON—; Hamiltonian—; sign of a—

circuit design
[90C10, 90C27, 94C15]
(see: Graph planarization)

circuit of a digraph
[90C09, 90C10]
(see: Combinatorial matrix analysis)

circuit orientation
[90C09, 90C10]
(see: Oriented matroids)

circuit problem see: Hamiltonian—
circuits

[90C09, 90C10, 90C35]
(see:Matroids;Optimization in leveled graphs)

circuits see: signed—

circulant matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

circular path
[62H30, 90C39]
(see: Dynamic programming in clustering)

circular unidimensional scale
[62H30, 90C27]
(see: Assignment methods in clustering)

Clarke see: generalized subdifferential of F.H. —
Clarke derivative

[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

Clarke derivative see: directional—
clarke derivatives see: Quasidifferentiable optimization: Dini

derivatives—
Clarke directional differential

[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

Clarke dual action
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

Clarke duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

Clarke duality theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

clarke generalized derivative
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX, 90C26]
(see: Generalized monotone multivalued maps; Nonconvex
energy functions: hemivariational inequalities)

Clarke generalized directional derivative
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

Clarke generalized gradient
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

Clarke generalized gradient
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

Clarke generalized Jacobian
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

Clarke generalized subdifferential
[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

Clarke–Rockafellar generalized derivative
[90C26]
(see: Generalized monotone multivalued maps)

Clarke subdifferential
[49J40, 49J52, 65K05, 90C30]
(see: Nonconvex-nonsmooth calculus of variations; Solving
hemivariational inequalities by nonsmooth optimization
methods)
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class
[03E70, 03H05, 91B16]
(see: Alternative set theory)

class see: basic ABS —; closed—; color—; connected —;
countable—; finite—; infinite—; quasi-Newton method of
Broyden—; scaled ABS—; source—; universal —; unsealed
ABS—

class of algorithms see: scaled ABS—
class data classification via mixed-integer optimization see:

Multi-—
class distance see: inter- —; intra-—
class invariant under principal pivoting see:matrix—
class of a matrix see: qualitative—
class P see: complexity—
class software package see:multiple-—; single-—
class of states see: recurrent —; transient —
classes see: complexity—; equivalent—;matrix—; Parallel

computing: complexity—; phase—; �- —; Sd-—;
separable—; set-definable—; � - —

classes axiom see: existence of —
classes in optimization see: Complexity—
classes of problems see: equivalence—
classical cutting plane method see: Kelley’s —
classical Gram–Schmidt orthogonalization

[65Fxx]
(see: Least squares problems)

classical inference
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

classical linear regression model
[90C26, 90C30]
(see: Forecasting)

classical logic see: evaluation in—
classical LU factorization

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

classical Lyusternik theorem
[41A10, 46N10, 47N10, 49K15, 49K27]
(see:High-ordermaximum principle for abnormal
extremals;High-order necessary conditions for optimality
for abnormal points)

classical oligopoly problem
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

classical thermoelastic model
[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

classical traveling salesman problem
[90C27]
(see: Time-dependent traveling salesman problem)

classification
[03B52, 03E72, 47S40, 62H30, 68T27, 68T35, 68Uxx, 90Bxx,
90C27, 90C29, 90C39, 91Axx, 91B06, 92C60]
(see: Assignment methods in clustering; Boolean and fuzzy
relations;Dynamic programming in clustering;
Multicriteria sorting methods)

classification
[62H30, 90C39]
(see: Dynamic programming in clustering)

classification see: automatic document—; computational
issues in—; Deterministic and probabilistic optimization
models for data —; document—; Linear programming
models for—; optimization in document—; statistical —;
statistical pattern —; supervised—; text—;
unsupervised—

classification of documents see: automatic —
classification error see:minimizing the overall —
classification of fractional programs

[90C32]
(see: Fractional programming)

classification function
[62H30, 90C11]
(see: Statistical classification: optimization approaches)

classification of hard problems
[90C60]
(see: Computational complexity theory)

classification of large collections of documents
[90C09, 90C10]
(see: Optimization in classifying text documents)

classification of many-valued logics
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

classification matrix
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

classification: optimization approaches see: Statistical —
classification problem

[90C09]
(see: Inference of monotone boolean functions)

classification problem
[90C09]
(see: Inference of monotone boolean functions)

classification problem see: Boolean—; g-group—
classification problem (discriminant problem) see: g-group—
classification problems see:Mixed integer —; Optimization in

boolean—
classification and regression trees

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

classification of text documents
[90C09, 90C10]
(see: Optimization in classifying text documents)

classification via mixed-integer optimization see:Multi-class
data—

classifying declarative programs
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

classifying text documents see: Optimization in—
clause

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

clause see: logical—
clause at a time see: one—
clause at a time algorithm see: one—
clause at a time approach see: one—
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clauses see:minimal number of DNF—;minimum number
of—

clearly defined end
(see: Planning in the process industry)

clipping technique
[90C30]
(see: Suboptimal control)

clique
[03B50, 05C15, 05C17, 05C35, 05C60, 05C62, 05C69, 05C85,
37B25, 65Fxx, 68Q25, 68R10, 68T15, 68T30, 68W40, 90C10,
90C20, 90C22, 90C27, 90C35, 90C59, 91A22]
(see: Domination analysis in combinatorial optimization;
Finite complete systems of many-valued logic algebras;
Least squares problems; Lovász number;Maximum
constraint satisfaction: relaxations and upper bounds;
Multidimensional assignment problem;Optimization in
leveled graphs;Optimization problems in unit-disk graphs;
Replicator dynamics in combinatorial optimization;
Standard quadratic optimization problems: applications)

clique
[05C60, 05C69, 05C85, 37B25, 68W01, 90C20, 90C27, 90C35,
90C59, 91A22]
(see:Heuristics for maximum clique and independent set;
Replicator dynamics in combinatorial optimization)

clique see:maximal—;maximum—;maximumweight —
clique-cut

(see: Contact map overlap maximization problem, CMO)
clique graph see: block-—
clique and independent set see: Heuristics for maximum—
clique number

[05C15, 05C17, 05C35, 05C60, 05C62, 05C69, 05C85, 37B25,
68W01, 90C20, 90C22, 90C27, 90C35, 90C59, 91A22]
(see:Heuristics for maximum clique and independent set;
Lovász number;Optimization problems in unit-disk
graphs;Replicator dynamics in combinatorial
optimization)

clique number see: weighted —
clique partition number

[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

clique partitioning see:minimum—
clique Problem

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

clique problem see:max-—;maximum—;maximum
weight —

closed see:minor—
closed class

[03E70, 03H05, 91B16]
(see: Alternative set theory)

closed convex cone see: pointed—
closed form approach

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

closed form transformation see: unimodular max-—
closed form transformations see: unimodular max-—
closed function see:max-—
closed list

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

closed-loop control
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

closed of a matroid
[90C09, 90C10]
(see:Matroids)

closed point-to-set mapping
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

closed selfadjoint operator
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

closed set see:max-—
closed sets see:max-—
closure

[03E70, 03H05, 91B16]
(see: Alternative set theory)

closure operator for a matroid
[90C09, 90C10]
(see:Matroids)

closure of a relation see: equivalence—; local equivalence—;
local pre-order —; local tolerance—; pre-order —;
property- —; reflexive—; tolerance—

closures
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

CLP
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

CLP(BNR)
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

cluster
[90C35]
(see:Multi-index transportation problems)

cluster see: admissible—; star —
cluster analysis

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 65K05,
68U20, 70-08, 82B21, 82B31, 82B41, 82B80, 90-00, 90-08,
90C11, 90C27, 90C35, 92C40, 92E10]
(see: Algorithms for genomic analysis; Global optimization
in protein folding)

cluster compactness
[62H30, 90C27]
(see: Assignment methods in clustering)

cluster first-schedule second strategy
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

cluster-heads
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

cluster isolation
[62H30, 90C27]
(see: Assignment methods in clustering)

cluster second see: schedule first- —
cluster statistic see: generalized single—
clustering

[62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26,
90C27, 90C30, 90C39, 90C90]



Subject Index 4125

(see: Assignment methods in clustering;Dynamic
programming in clustering;Optimization in medical
imaging; Stochastic global optimization: two-phase
methods)

clustering
[62H30, 90C27, 90C39]
(see: Assignment methods in clustering;Dynamic
programming in clustering)

clustering see: Assignment methods in—; density—; Dynamic
programming in—; fuzzy—; hard—;minimal variance—;
Nonsmooth optimization approach to—; order constrained
hierarchical—

clustering algorithm
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

clustering approach: global optimum search with enhanced
positioning see: Gene clustering: A novel
decomposition-based—

clustering: A novel decomposition-based clustering approach:
global optimum search with enhanced positioning see:
Gene—

clustering problem
[90C08, 90C11, 90C27]
(see: Quadratic semi-assignment problem)

clusters see: Determining the optimal number of—; Global
optimization in Lennard–Jones and morse—; PC—

clusters size threshold see: determination of —
CMDT

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

CMO see: Contact map overlap maximization problem—
CMST

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

CMST see: equal demand—; nonunit weight—; unit weight—
CNF

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

CNF
[90C09, 90C10]
(see: Inference of monotone boolean functions;
Optimization in boolean classification problems;
Optimization in classifying text documents)

CNF see: k-—; SAT-k- —
CNF problem see: SAT-—
CNSO

[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

CNSO see: extended real-valued—;multi-objective—;
real-valued—

CNSO problems see: second order Lagrangian theory of —
CO

[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

co-channel constrained frequency assignment
[05-XX]
(see: Frequency assignment problem)

co-coercive operator
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

co-generation plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

co-generation plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

co-index see: linear—; quadratic—
co-optimal path

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

co-optimal vertex
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

coalition see: concordant—; discordant—
coarse grained multicomputer

[65K05, 65Y05]
(see: Parallel computing: models)

coarse grained multicomputer
[65K05, 65Y05]
(see: Parallel computing: models)

coarse grid
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

coarse valuation structure
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

coarseness
[68Q20]
(see: Optimal triangulations)

cobipartite neighborhood edge elimination ordering
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

coboundary of a function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

cocircuits see: signed—
cocomparability graph

[05C15, 05C62, 05C69, 05C85, 90C27, 90C35, 90C59]
(see: Feedback set problems;Optimization problems in
unit-disk graphs)

code see: Gray—; RANS—; Reynolds-averaged
Navier–Stokes —

code list
[65G20, 65G30, 65G40, 65H20, 65H99, 65K05, 65K99, 90C26,
90C30]
(see: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges; Interval analysis:
intermediate terms)

code list
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

code PCSP see: computer —
code transformation

[65H99, 65K99]
(see: Automatic differentiation: point and interval)

code transformation see: source—
coderivative see: limiting—
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codifferentiability
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: codifferentiable functions)

codifferentiable
[49J52, 65K99]
(see: Quasidifferentiable optimization: algorithms for
hypodifferentiable functions)

codifferentiable see: continuously—; twice—; twice
continuously—

codifferentiable function
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

codifferentiable function
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

codifferentiable function see: continuously—; Dini —;
Hadamard—; twice—; twice continuously—

codifferentiable functions see: Quasidifferentiable
optimization:—

codifferential
[26B25, 26E25, 49J52, 65K99, 65Kxx, 70-08, 90C25, 90C30,
90C99, 90Cxx]
(see: Nondifferentiable optimization: Newton method;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization:
codifferentiable functions)

codifferential see: second order—
codifferential descent see:method of —
coefficient see: activity—; contraction—; expansion—;

fugacity—; reflection—
coefficient generation see: one-at-a-time—
coefficient matrix see: ill-conditioned—
coefficient pivoting rule see: Dantzig largest —
coefficient reduction

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

coefficient rule see: largest—
coefficients see: estimation of kinetic—; flexible MOLP with

fuzzy—; generalized linear programming with variable—;
MOLP with fuzzy—;multi-objective linear programming
with fuzzy—; real —; sensitivity analysis with respect to
changes in cost—; statistical representation of cutting
plane—; Taylor —

coercive
[90C25, 90C26]
(see: Decomposition in global optimization)

coercive bilinear symmetric continuous form
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

coercive hemivariational inequality problem
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

coercive operator see: co-—

coercivity condition
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

coercivity condition
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

cognitive construct
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

cognitive element
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

cognitive science
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

Cohen triangulation see: Hickey–—
cohomology see: local system—
cohomology of an arrangement of hyperplanes

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

coin graphs
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

coincidence theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

cold spot
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

cold spots
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

coli see: escherichia—
collaborative

[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

collaborative optimization
[49M37, 65F10, 65F50, 65H10, 65K05, 65K10, 90C30, 93A13]
(see:Multidisciplinary design optimization;Multilevel
methods for optimal design)

collapse see: probabilistic—
collapsing auction algorithm see: graph—
collapsing in auction algorithms see: graph—
collecting traveling salesman problem see: prize—
collection

[90C10, 90C26, 90C30]
(see: Optimization software)

collection of margins see: hierarchical —
collection of a partition see: left- —; right- —
collection of subsets see: transversal of a—
collections of documents see: classification of large—
collectivety compact

[65H10, 65J15]
(see: Contraction-mapping)

collision see: direct—; hidden—
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collocation
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

collocation
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

collocation see: orthogonal —
collocation conditions

[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

(colloquial) see: optimization: definition—
colony see: ant —
coloop

[90C09, 90C10]
(see:Matroids;Orientedmatroids)

color see: double—; single—
color class

[05C15, 05C62, 05C69, 05C85, 90C27, 90C35, 90C59]
(see: Graph coloring;Optimization problems in unit-disk
graphs)

color-forced
[05C85]
(see: Directed tree networks)

colorability see: 3- —
colorable see: k- —
coloring

[90C35]
(see: Graph coloring)

coloring
[90C35]
(see: Graph coloring)

coloring see: arc —; conflict-free—; constrained edge—;
edge—; frequency exhaustive sequential —; graph—;
greedy—; hypergraph q- —; list —; proper —; requirement
exhaustive sequential —; t- —; total —; uniform
sequential —; weighted —

coloring extension
[05C85]
(see: Directed tree networks)

coloring frequency assignment see: order of a T- —; span of
a T- —

coloring heuristic see: sequential greedy—
coloring problem see: edge—; graph—;m-—; path —;

total —;weighted graph—
column see: basic—; critical—; nonbasic—
column dropping

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

column dropping rule
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

column generation
[68Q99, 90C06, 90C10, 90C11, 90C25, 90C27, 90C30, 90C35,
90C57]
(see: Branch and price: Integer programming with column
generation; Frank–Wolfe algorithm; Integer programming;
Multicommodity flow problems; Simplicial decomposition;
Simplicial decomposition algorithms)

Column generation
[68Q99, 90B90, 90C06, 90C10, 90C11, 90C25, 90C30, 90C35,
90C57, 90C59, 90C90]

(see: Branch and price: Integer programming with column
generation;Cutting-stock problem; Frank–Wolfe
algorithm;Modeling difficult optimization problems;
Multicommodity flow problems; Simplicial decomposition;
Simplicial decomposition algorithms)

column generation see: Branch and price: Integer
programming with—

column generation formulation
[90C35]
(see:Multicommodity flow problems)

column generation methods
[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

column generation subproblem
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

column incidence graph
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

column-pivoting see: QR factorization with—
column sufficient

[90C33]
(see: Linear complementarity problem)

column sufficient matrix
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

column synthesis see:MINLP: reactive distillation—
combination of the extreme points see: convex—
combinations see: convex—
combinatorial

[90C60]
(see: Computational complexity theory)

combinatorial algorithm
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

combinatorial fractional programming
[90C32]
(see: Fractional programming)

Combinatorial matrix analysis
(90C10, 90C09)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games; Evolutionary algorithms in combinatorial
optimization; Fractional combinatorial optimization;
Multi-objective combinatorial optimization; Replicator
dynamics in combinatorial optimization)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games; Evolutionary algorithms in combinatorial
optimization; Fractional combinatorial optimization;
Multi-objective combinatorial optimization; Neural
networks for combinatorial optimization; Replicator
dynamics in combinatorial optimization)

combinatorial matrix analysis
[90C09, 90C10]
(see: Combinatorial matrix analysis)

combinatorial optimization
[01A99, 05A, 05C60, 05C69, 15A, 37B25, 51M, 52A, 52B, 52C,
60J15, 60J60, 60J70, 60K35, 62H, 62H30, 65C05, 65C10,
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65C20, 65H20, 65K05, 68Q, 68R, 68U, 68U20, 68W, 70-08,
82B21, 82B31, 82B41, 82B80, 90-01, 9008, 90B, 90B40, 90C,
90C10, 90C11, 90C20, 90C26, 90C27, 90C29, 90C35, 90C39,
90C57, 90C59, 90C60, 91A12, 91A22, 92C40, 92E10, 94C15]
(see: Combinatorial optimization games; Convex discrete
optimization;Dynamic programming in clustering; Global
optimization in protein folding; Greedy randomized
adaptive search procedures;History of optimization;
Integer programming;Multi-objective combinatorial
optimization; Replicator dynamics in combinatorial
optimization; Variable neighborhood search methods)

combinatorial optimization
[05-04, 62H30, 65H20, 65K05, 68M20, 68T99, 90-01, 90B06,
90B10, 90B35, 90B40, 90B80, 90C08, 90C09, 90C10, 90C11,
90C15, 90C20, 90C27, 90C29, 90C30, 90C35, 90C39, 90C57,
90C59, 90C60, 91A12, 94C15]
(see: Assignment methods in clustering; Bi-objective
assignment problem; Capacitatedminimum spanning
trees; Combinatorial optimization games; Computational
complexity theory;Dynamic programming in clustering;
Evolutionary algorithms in combinatorial optimization;
Feedback set problems;Greedy randomized adaptive search
procedures; Integer programming; Linear ordering
problem;Matroids;Multidimensional knapsack problems;
Multi-objective combinatorial optimization; Neural
networks for combinatorial optimization;Oriented
matroids;Quadratic assignment problem; Set covering,
packing and partitioning problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic integer
programs;Vehicle scheduling)

combinatorial optimization see: convex—; Domination
analysis in—; Evolutionary algorithms in—; Fractional—;
large-scale—; linear fractional—;multi-objective—;
Neural networks for—; Replicator dynamics in—;
stochastic—; uniform fractional—

Combinatorial optimization algorithms in resource allocation
problems
(90C09, 90C10)
(referred to in: Combinatorial matrix analysis; Facilities
layout problems; Facility location with externalities;
Facility location problems with spatial interaction; Facility
location with staircase costs; Fractional combinatorial
optimization; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Multi-objective combinatorial
optimization; Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Replicator dynamics in combinatorial
optimization; Resource allocation for epidemic control;
Simple recourse problem; Single facility location: circle
covering problem; Single facility location: multi-objective
euclidean distance location; Single facility location:
multi-objective rectilinear distance location; Stochastic
transportation and location problems;Voronoi diagrams in
facility location;Warehouse location problem)
(refers to: Combinatorial matrix analysis; Combinatorial
optimization games; Competitive facility location;
Evolutionary algorithms in combinatorial optimization;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with

staircase costs; Fractional combinatorial optimization;
Global optimization in Weber’s problemwith attraction
and repulsion;MINLP: application in facility
location-allocation;Multifacility and restricted location
problems;Multi-objective combinatorial optimization;
Network location: covering problems;Neural networks for
combinatorial optimization;Optimizing facility location
with euclidean and rectilinear distances;
Production-distribution system design problem; Replicator
dynamics in combinatorial optimization; Resource
allocation for epidemic control; Simple recourse problem;
Single facility location: circle covering problem; Single
facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

combinatorial optimization game
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

Combinatorial optimization games
(91A12, 90C27, 90C60)
(referred to in: Combinatorial matrix analysis;
Combinatorial optimization algorithms in resource
allocation problems; Evolutionary algorithms in
combinatorial optimization; Fractional combinatorial
optimization;Multi-objective combinatorial optimization;
Replicator dynamics in combinatorial optimization)
(refers to: Combinatorial matrix analysis; Evolutionary
algorithms in combinatorial optimization; Fractional
combinatorial optimization;Multi-objective combinatorial
optimization; Neural networks for combinatorial
optimization; Replicator dynamics in combinatorial
optimization)

combinatorial optimization problem
[90C27, 90C30, 90C60]
(see: Computational complexity theory;Neural networks
for combinatorial optimization)

combinatorial optimization problem see: fractional—; integral
linear fractional—

combinatorial optimization problems
[90C11, 90C59]
(see: Nested partitions optimization)

combinatorial problem
[90C26, 90C90]
(see: Structural optimization: history)

combinatorial properties
[68Q20]
(see: Optimal triangulations)

combinatorial switching circuit
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Combinatorial test problems and problem generators
(90B99, 05A99)
(referred to in:Maximum cut problem, MAX-CUT)

combinatorics
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

combinatorics see: polyhedral —
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combine
[46N10, 47N10, 49M37, 65K10, 90C26, 90C30]
(see: Global optimization: tight convex underestimators)

combined method of feasible directions
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

combined relative measure
[49M37]
(see: Nonlinear least squares: Newton-type methods)

combined relaxation methods
[47J20, 49J40, 65K10, 90C33]
(see: Solutionmethods for multivalued variational
inequalities)

commodity
[90C35]
(see:Multicommodity flow problems)

commodity flows see:Multi-—
commodity model in OR see: single- —
commodity network flow problem see: nonlinear single—
commodity single-criterion uncapacitated static multifacility

see: discrete single- —
common dependency set

[90C05, 90C20]
(see: Redundancy in nonlinear programs)

commonmutated sequence see:minimumweight —
common random numbers

[62F12, 65C05, 65K05, 90C15, 90C27, 90C31]
(see: Discrete stochastic optimization;Monte-Carlo
simulations for stochastic optimization)

communication
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

communication see: open—; rendez-vous—
communication costs

[65K05, 65Y05]
(see: Parallel computing: models)

communication equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

communication-free alignment
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

communication-free alignment problem
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

communication network
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

Communication network assignment problem
(90B80, 90C05, 90C27, 68Q25)
(referred to in: Assignment andmatching; Assignment
methods in clustering;Auction algorithms; Bi-objective
assignment problem;Dynamic traffic networks;
Equilibrium networks; Frequency assignment problem;
Generalized networks; Linear ordering problem;Maximum
flow problem;Maximum partitionmatching;Minimum
cost flow problem;Multicommodity flow problems;
Network design problems;Network location: covering
problems;Nonconvex network flow problems; Piecewise
linear network flow problems;Quadratic assignment
problem; Shortest path tree algorithms; Steiner tree

problems; Stochastic network problems: massively parallel
solution; Survivable networks; Traffic network equilibrium)
(refers to: Assignment andmatching; Assignment methods
in clustering;Auction algorithms; Bi-objective assignment
problem;Directed tree networks;Dynamic traffic networks;
Equilibrium networks; Evacuation networks; Frequency
assignment problem;Generalized networks;Maximum flow
problem;Maximum partitionmatching;Minimum cost
flow problem;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Piecewise linear network flow problems;Quadratic
assignment problem; Shortest path tree algorithms; Steiner
tree problems; Stochastic network problems: massively
parallel solution; Survivable networks; Traffic network
equilibrium)

communication network assignment problem
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

communication protocol
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

commutator K
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

compact
[49L20, 49M29, 65K10, 90C06, 90C40]
(see: Dynamic programming: undiscounted problems; Local
attractors for gradient-related descent iterations)

compact see: collectivety—
compact epi-Lipschitzness

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

compact graph
[49J20, 49J52]
(see: Shape optimization)

compact operator
[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

compact representation
[90C30, 90C35]
(see: Optimization in water resources;Unconstrained
nonlinear optimization: Newton–Cauchy framework)

compact representations
[90C39]
(see: Neuro-dynamic programming)

compactness
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

compactness see: cluster —; partial sequential normal —;
sequential normal—; weak—

company policies see: in- —
comparative efficiency assessment

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

comparison see: paired—; sequence—; technological —
comparison of efficiency and nondomination

[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

comparison oracle
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
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90B, 90C]
(see: Convex discrete optimization)

comparison of parametric solutions
[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)

comparisons see:missing—; pairwise—
compatibility see: backward—; both-way—; forward—
compatibility condition

[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

compatibility conditions
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

compatibility equations see: strain-displacement—
compatibility theorem see: Bandler–Kohout—
competition see: imperfect—; perfect —
competition facility locationmodel see: spatial —
competitive see: perfectly —
competitive analysis

[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

competitive environment
[90B80, 90B85]
(see:Warehouse location problem)

competitive equilibriummodel see: perfectly —
Competitive facility location

(90B60, 90B80, 90B85)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

competitive ratio
[05C85, 68Q25, 91B28]
(see: Competitive ratio for portfolio management;Directed
tree networks)

competitive ratio
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

Competitive ratio for portfolio management
(91B28, 68Q25)
(referred to in: Financial applications of multicriteria
analysis; Financial optimization; Portfolio selection and
multicriteria analysis; Robust optimization; Semi-infinite
programming and applications in finance)
(refers to: Financial applications of multicriteria analysis;
Financial optimization; Portfolio selection and
multicriteria analysis; Robust optimization; Semi-infinite
programming and applications in finance)

complement
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

complement
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

complement see: relative —; Schur—
complement of an arrangement of hyperplanes

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

complement graph
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

complementarity
[90C10, 90C11, 90C27, 90C30, 90C33]
(see: Continuous reformulations of discrete-continuous
optimization problems;Optimization with equilibrium
constraints: A piecewise SQP approach; Topological
methods in complementarity theory)

complementarity
[49-01, 49-XX, 49K10, 49M37, 90-01, 90-XX, 90C05, 90C27,
90C30, 90C33, 91B52, 93-XX]
(see: Bilevel linear programming;Duality for semidefinite
programming;Duality theory: monoduality in convex
optimization; Topological methods in complementarity
theory)

complementarity see: generalized —; linear —; nonlinear —;
Order—; strict—

Complementarity algorithms in pattern recognition
(referred to in: Generalizations of interior point methods for
the linear complementarity problem; Simultaneous
estimation and optimization of nonlinear problems)
(refers to: Generalizations of interior point methods for the
linear complementarity problem; Generalized eigenvalue
proximal support vector machine problem)

complementarity condition
[49M37, 65K05, 90C30]
(see: Image space approach to optimization;
Inequality-constrained nonlinear optimization)

complementarity condition
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

complementarity problem
[90C33]
(see: Generalized nonlinear complementarity problem;
Linear complementarity problem)

complementarity problem
[65K10, 65M60, 90C30, 90C31, 90C33]
(see: Implicit lagrangian;Nonsmooth and smoothing
methods for nonlinear complementarity problems and
variational inequalities; Sensitivity analysis of
complementarity problems;Variational inequalities)

complementarity problem see: discrete dynamic—;
dynamic—; extended linear—; general order —;
Generalizations of interior point methods for the linear —;
generalizations of the nonlinear—; generalized —;
generalized linear order —; generalized mixed—;
Generalized nonlinear —; generalized order—; horizontal
linear —; implicit—; implicit general order —;
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infinite-dimensional generalized order—; linear—; linear
order —;mixed linear —; nonlinear —; nonlinear order —;
order—; parametric linear —; parametric nonlinear—;
vertical linear —

complementarity problem and fixed point problem see:
Equivalence between nonlinear —

complementarity problems see: linear —; nonlinear—;
parametric —; Principal pivoting methods for linear—;
Sensitivity analysis of—; Splitting method for linear —

complementarity problems and variational inequalities see:
Nonsmooth and smoothingmethods for nonlinear —

complementarity slackness
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

complementarity slackness see: strict —
complementarity slackness condition see: strict—
complementarity theory see: Topological methods in—
complementary basis

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules; Principal pivoting
methods for linear complementarity problems)

complementary conditions see: strictly —
complementary gap function

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

complementary gap function see: pure—
complementary graph

[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

complementary ions
(see: Peptide identification via mixed-integer optimization)

complementary operator
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

complementary pair of variables
[90C33]
(see: Lemke method)

complementary pivot methods
[90C30, 90C90]
(see: Bilevel programming: global optimization)

complementary pivot theory
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

complementary problem see: Integer linear —; linear —;
nonlinear—

complementary region
[90C11, 90C59]
(see: Nested partitions optimization)

complementary relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

complementary slackness
[15A39, 68W10, 90B15, 90C05, 90C06, 90C10, 90C30, 90C31,
90C33, 90C34, 90C46, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation; Integer programming duality; Integer
programming: lagrangian relaxation; Linear
complementarity problem; Semi-infinite programming:
methods for linear problems; Sensitivity and stability in

NLP: continuity and differential stability; Stochastic
network problems: massively parallel solution; Tucker
homogeneous systems of linear relations)

complementary slackness see: �- —; strict—
complementary slackness conditions

[90B10, 90C27]
(see: Shortest path tree algorithms)

complementary slackness relations
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

complementary solution see: strictly—
complementary solutions see: almost—
complete

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

complete see: NP-—
complete completeness see: strong NP- —
complete digraph

[90C10, 90C11, 90C20]
(see: Linear ordering problem)

complete game
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

complete graph
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

complete language see: F- —
complete many-valued logic normal form

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

complete master problem
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

complete normal forms of Pi-algebras see: functionally—
complete orientation

[90B35]
(see: Job-shop scheduling problem)

complete orthogonal factorization
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: Orthogonal triangularization)

complete orthogonal factorization
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: Orthogonal triangularization;QR factorization)

complete problem see: NP-—
complete problems and proof methodology see: NP-—
complete recourse

[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming; Stochastic
programming: nonanticipativity and lagrange multipliers)

complete recourse see: relatively—
complete reduction

[65K05, 90C30]
(see: Bisection global optimization methods)

complete reductions see: ordinary NP- —
complete set of connectives

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

complete systems of many-valued logic algebras see: Finite—
completely continuous operator

[46N10, 49J40, 90C26]
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(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

completely positive
[90C22, 90C25]
(see: Copositive programming)

completely positive and contractionmatrices see: completion
to—

completely positive matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

completely positive matrix see: partial —
completely regular set

[90C33]
(see: Order complementarity)

completeness see: F- —; functional—; NP-—; ordinary NP-—;
strong NP- —; strong NP-complete—

completeness of PI-algebras see: functional—
completeness proofs see: NP-—
completion see: rank matrix—
completion to completely positive and contraction matrices

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

completion of matrices
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

completion of a partial matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

completion problem see: distance matrix—; Euclidean
distancematrix —;matrix—;maximum rank —;minimum
rank—; positive (semi) definite—; positive semidefinite
matrix—

completion problems see:Matrix —
completion time

[90B36]
(see: Stochastic scheduling)

complex interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

complex interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

complexities see: predictability of —
complexity

[65K05, 68Q25, 90C08, 90C11, 90C27, 90C30, 90C57, 90C59,
90C60]
(see: Automatic differentiation: point and interval taylor
operators;NP-complete problems and proof methodology;
Quadratic assignment problem)

complexity
[90B35, 90C20, 90C25, 90C27, 90C30, 90C60, 90C90, 91A12]
(see: Chemical process planning;Combinatorial
optimization games; Complexity classes in optimization;
Complexity theory; Complexity theory: quadratic
programming; Job-shop scheduling problem; Kolmogorov
complexity; Kuhn–Tucker optimality conditions;Quadratic
programming over an ellipsoid)

complexity see: Algorithmic—; average case—;
computational—; conditional Kolmogorov—;

Descriptional—; descriptive—; exponential —; graver —;
information-based—; Kolmogorov—; PLS-—;
polynomial —; Regression by special functions: algorithms
and—; Solomonoff–Kolmogorov–Chaitin—;worst-case—

complexity of an algorithm
[90C60]
(see: Computational complexity theory)

complexity of algorithms see: average case—
complexity of bilevel programming

[90C30, 90C90]
(see: Bilevel programming: global optimization)

complexity class P
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

complexity classes
[03D15, 68Q05, 68Q15, 90C60]
(see: Complexity classes in optimization; Parallel
computing: complexity classes)

complexity classes
[03D15, 68Q05, 68Q15, 90C60]
(see: Complexity classes in optimization; Parallel
computing: complexity classes)

complexity classes see: Parallel computing: —
Complexity classes in optimization

(90C60)
(referred to in: Complexity of degeneracy;Complexity of
gradients, Jacobians, and Hessians; Complexity theory;
Complexity theory: quadratic programming;
Computational complexity theory; Facilities layout
problems; Fractional combinatorial optimization; Global
optimization in multiplicative programming;
Information-based complexity and information-based
optimization; Interval Newton methods; Job-shop
scheduling problem;Kolmogorov complexity;Mixed
integer nonlinear programming;Multifacility and
restricted location problems;Multiplicative programming;
NP-complete problems and proof methodology; Parallel
computing: complexity classes;Vehicle scheduling)
(refers to: Complexity of degeneracy;Complexity of
gradients, Jacobians, and Hessians; Complexity theory;
Complexity theory: quadratic programming;
Computational complexity theory; Fractional
combinatorial optimization; Information-based complexity
and information-based optimization; Kolmogorov
complexity;Mixed integer nonlinear programming;
NP-complete problems and proof methodology; Parallel
computing: complexity classes)

Complexity of degeneracy
(90C60)
(referred to in: Complexity classes in optimization;
Complexity of gradients, Jacobians, and Hessians;
Complexity theory; Complexity theory: quadratic
programming; Computational complexity theory;
Fractional combinatorial optimization; Information-based
complexity and information-based optimization;
Kolmogorov complexity;Mixed integer nonlinear
programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes)
(refers to: Complexity classes in optimization; Complexity of
gradients, Jacobians, and Hessians; Complexity theory;
Complexity theory: quadratic programming;
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Computational complexity theory; Fractional
combinatorial optimization; Information-based complexity
and information-based optimization; Kolmogorov
complexity;Mixed integer nonlinear programming;
NP-complete problems and proof methodology; Parallel
computing: complexity classes)

complexity of a deterministic Turing machine see: space—;
time—

complexity, equivalence to minmax, concave programs see:
Bilevel linear programming: —

complexity and equivalent forms see: Quadratic integer
programming:—

complexity function see: time—
complexity function of an algorithm see: time—
Complexity of gradients, Jacobians, and Hessians

(65D25, 68W30)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity theory; Complexity
theory: quadratic programming; Computational
complexity theory; Fractional combinatorial optimization;
Information-based complexity and information-based
optimization; Kolmogorov complexity;Mixed integer
nonlinear programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity theory; Complexity theory:
quadratic programming; Computational complexity
theory; Fractional combinatorial optimization;
Information-based complexity and information-based
optimization; Kolmogorov complexity;Mixed integer
nonlinear programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes)

complexity and information-based optimization see:
Information-based—

Complexity and large-scale least squares problems
(93E24, 34-xx, 34Bxx, 34Lxx)

complexity of the linear BLPP
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

complexity of models
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

complexity of a nondeterministic Turing machine see:
space—; time—

complexityO(nc) see: algorithm of—
complexity of optimization problems see: computational—
Complexity theory

(90C60)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory: quadratic
programming;Computational complexity theory; Facilities
layout problems; Fractional combinatorial optimization;
Global optimization in multiplicative programming;
Information-based complexity and information-based
optimization; Job-shop scheduling problem; Kolmogorov
complexity;Mixed integer nonlinear programming;
Multifacility and restricted location problems;
NP-complete problems and proof methodology; Parallel

computing: complexity classes;Quadratic assignment
problem;Quadratic knapsack; Vehicle scheduling)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory: quadratic programming;
Computational complexity theory; Fractional
combinatorial optimization; Information-based complexity
and information-based optimization; Kolmogorov
complexity;Mixed integer nonlinear programming;
NP-complete problems and proof methodology; Parallel
computing: complexity classes; Shortest path tree
algorithms)

complexity theory
[90C60]
(see: Complexity theory; Computational complexity theory)

complexity theory
[90C60]
(see: Computational complexity theory)

complexity theory see: Computational —
complexity theory of algorithms

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

complexity theory of PI-algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Complexity theory: quadratic programming
(90C60)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory;
Computational complexity theory; Fractional
combinatorial optimization; Information-based complexity
and information-based optimization; Kolmogorov
complexity; Linear ordering problem;Mixed integer
nonlinear programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes;
Quadratic assignment problem;Quadratic fractional
programming: Dinkelbachmethod;Quadratic knapsack;
Quadratic programming with bound constraints;Quadratic
programming over an ellipsoid; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Computational complexity
theory; Fractional combinatorial optimization;
Information-based complexity and information-based
optimization; Kolmogorov complexity;Mixed integer
nonlinear programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes;
Quadratic assignment problem;Quadratic fractional
programming: Dinkelbachmethod;Quadratic knapsack;
Quadratic programming with bound constraints;Quadratic
programming over an ellipsoid; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)

complexity of Turing machines
[90C60]
(see: Complexity classes in optimization)
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compliance
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

complicating variables
[90C26]
(see: Generalized primal-relaxed dual approach)

component
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

component see: basic —; central —; control —; feasible—;
infeasible—; linear—; nonbasic—; noncentral —;
polygonal —; singular —

component species
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

components see: full —
components of a digraph see: strongly connected—
components of a matrix see: irreducible—
componentwise bound see: optimal—
Composite Convexifiable Function see: integral Mean-Value

for—
composite materials see: laminated—
Composite nonsmooth optimization

(46A20, 90C30, 52A01)
(referred to in: Nonconvex-nonsmooth calculus of
variations;Nonsmooth and smoothing methods for
nonlinear complementarity problems and variational
inequalities; Solving hemivariational inequalities by
nonsmooth optimization methods)
(refers to: Nonconvex-nonsmooth calculus of variations;
Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Solving hemivariational inequalities by nonsmooth
optimization methods; Vector optimization)

composite programming see: convex—
composite structures see: design of—; Optimal design of —
composition

[90C09, 90C10]
(see: Oriented matroids)

composition difference see:minimum—
composition interval diagram

[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

composition of relations see: round—; square—
composition theorem

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

compositional models
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

compositions see: equality of phase —; relational—
compression

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

compromise programming
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

compromise solution see: best- —
computability see: partial —
computable function see: polynomial time—
computable optimal value bounds

[90C31]
(see: Sensitivity and stability in NLP: approximation)

computable solution
[90C31]
(see: Sensitivity and stability in NLP: approximation)

computation
[33C45, 65F20, 65F22, 65K10, 90C10, 90C30]
(see: Least squares orthogonal polynomials;Modeling
languages in optimization: a new paradigm)

Computation
[90C60]
(see: Kolmogorov complexity)

computation see: asynchronous—; Automatic differentiation:
parallel —; conjugate gradient parameter —; direction—;
fixed point—;model of—; parallel —; partially
asynchronous—

computation and data mapping
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

computation in mechanics see: parallel —
computation for polytopes: strategies and performances see:

Volume—
computation thesis see: parallel —
computation of a Turing machine see: accepting—; length of

a partial —; nonaccepting—; partial —
computational biology

[90C35]
(see: Optimization in leveled graphs)

computational certainty see:mathematical and—
computational complexity

[41A30, 62J02, 90C08, 90C11, 90C26, 90C27, 90C57, 90C59,
90C60, 91A12]
(see: Combinatorial optimization games; Computational
complexity theory;Quadratic assignment problem;
Regression by special functions: algorithms and
complexity)

computational complexity
[03B50, 49-01, 49K45, 49N10, 68Q25, 68T15, 68T30, 90-01,
90B80, 90C05, 90C20, 90C27, 90C60, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs;Communication network
assignment problem; Computational complexity theory;
Finite complete systems of many-valued logic algebras;
NP-complete problems and proof methodology)

computational complexity of optimization problems
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

Computational complexity theory
(90C60)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory; Complexity
theory: quadratic programming; Fractional combinatorial
optimization; Information-based complexity and
information-based optimization; Kolmogorov complexity;
Mixed integer nonlinear programming;Multiplicative
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programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes;
Quadratic assignment problem;Quadratic knapsack)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Complexity theory: quadratic
programming; Fractional combinatorial optimization;
Information-based complexity and information-based
optimization; Kolmogorov complexity;Mixed integer
nonlinear programming; Parallel computing: complexity
classes)

computational differentiation
[26A24, 34-XX, 49-XX, 65-XX, 65D25, 68-XX, 68W30,
90-XX]
(see: Automatic differentiation: introduction, history and
rounding error estimation; Complexity of gradients,
Jacobians, and Hessians; Nonlocal sensitivity analysis with
automatic differentiation)

computational efficiency
[90C31]
(see: Sensitivity and stability in NLP: approximation)

computational equivalence
[90C34]
(see: Semi-infinite programming: approximationmethods)

computational equivalent
[90C34]
(see: Semi-infinite programming: approximationmethods)

computational fluid dynamics
[90C90]
(see: Design optimization in computational fluid dynamics)

computational fluid dynamics
[90C90]
(see: Design optimization in computational fluid dynamics)

computational fluid dynamics see: Design optimization in—
computational graph

[26A24, 65D25, 65K05, 68W30, 90C26, 90C30]
(see: Automatic differentiation: introduction, history and
rounding error estimation; Automatic differentiation:
point and interval taylor operators; Bounding derivative
ranges; Complexity of gradients, Jacobians, and Hessians)

computational issues in classification
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

computational linguistics
[90C09, 90C10]
(see: Optimization in classifying text documents)

computational mechanics
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

computational method see: adaptive—
computational methods

[65H99, 65K99]
(see: Automatic differentiation: point and interval)

computational model
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

computational nonredundancy
[90C30]
(see: Cost approximation algorithms)

computational performance
[90C26]
(see: Smooth nonlinear nonconvex optimization)

computational performance see: optimization of —
computational plasticity

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

computational process
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

computational solution see: practically feasible—
computational step

[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

computationally equivalent semi-infinite programs
[90C34]
(see: Semi-infinite programming: approximationmethods)

computations see: interval —; parallel —; uniform—
compute see: easy-to- —
compute a safeguarded new trial steplength

[49M07, 49M10, 65K, 90C06, 90C20]
(see: Spectral projected gradient methods)

compute the search direction
[49M07, 49M10, 65K, 90C06, 90C20]
(see: Spectral projected gradient methods)

compute the steplength
[49M07, 49M10, 65K, 90C06, 90C20]
(see: Spectral projected gradient methods)

computer see: bulk synchronous parallel —; distributed
memory parallel —; parallel —

computer aided techniques
[90C26, 90C30]
(see: Forecasting)

computer algebra
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

computer algebra
[13Cxx, 13Pxx, 14Qxx, 65D25, 68W30, 90Cxx]
(see: Complexity of gradients, Jacobians, and Hessians;
Integer programming: algebraic methods)

computer algebra package
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

computer code PCSP
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

computer implementation example see: optimization—
Computer implementation of optimization

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

computer network see: local-area—
computerized tomography

[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

computing
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)
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computing see: distributed—; high performance—;
interval —;massively parallel —;models for parallel —;
parallel —

computing: complexity classes see: Parallel —
computing: models see: Parallel —
computing processes in interactive methods

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

computing system see: high performance—
concave case see: convex-—
concave fractional program

[90C32]
(see: Fractional programming)

concave function
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

concave function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

concave function see: ˛- —; U-—
concave functions see: product of—
concave increasing

[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

concave measure see: ˛- —
concave minimization

[90B10, 90C25]
(see: Concave programming; Piecewise linear network flow
problems)

concave probability measure see: � - —
Concave programming

(90C25)
(referred to in: Bilevel linear programming: complexity,
equivalence to minmax, concave programs;Global
optimization in multiplicative programming;Minimum
concave transportation problems;Multiplicative
programming;Quadratic assignment problem; Reverse
convex optimization; Stochastic global optimization:
stopping rules; Stochastic global optimization: two-phase
methods)
(refers to: Bilevel linear programming: complexity,
equivalence to minmax, concave programs;Minimum
concave transportation problems)

concave programming
[90C25, 90C90]
(see: Chemical process planning;Concave programming)

concave programming
[49-01, 49K45, 49N10, 90-01, 90C20, 90C25, 90C27, 90C90,
91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs; Chemical process planning;
Concave programming)

concave programming see: quadratic—
concave programs see: Bilevel linear programming:

complexity, equivalence to minmax—
concave quadratic programming

[90C60]
(see: Complexity theory: quadratic programming)

concave regression see: convex and—
concave transportation problem see:minimum—

concave transportation problems see:Minimum—
concavity see: property of—; vector generalized —
concavity cut

[90C26]
(see: Cutting plane methods for global optimization)

concavity cut
[90C26]
(see: Cutting plane methods for global optimization)

concavity in multi-objective optimization see: Generalized—
concentration theorem see: Jaynes entropy—
concept in auction algorithms see: virtual source—
conceptual design stage

[90C90]
(see: Design optimization in computational fluid dynamics)

conceptual diagram
(see: State of the art in modeling agricultural systems)

conceptual modeling
(see: State of the art in modeling agricultural systems)

conciseness
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

conclusion
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

concordance
[90-XX]
(see: Outranking methods)

concordance condition
[90-XX]
(see: Outranking methods)

concordance-discordance
[90-XX]
(see: Outranking methods)

concordance level
[90-XX]
(see: Outranking methods)

concordant coalition
[90-XX]
(see: Outranking methods)

concurrent subspace
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

concurrent subspace optimization
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

condensation see: posynomial —
condensing operator

[90C33]
(see: Order complementarity)

CoNDEXPTIME
[90C60]
(see: Complexity classes in optimization)

condition see: acute angle —; calmness—; coercivity—;
compatibility—; complementarity —; concordance—;
conjugacy—; diagonal dominance—; first order
necessary —; Fritz John type—; general second order
sufficient—; general strong second order sufficient—;
high-order local minimum—; Karush–Kuhn–Tucker type—;
Kirchhoff-—; Kuhn–Tucker optimality—; linear growth—;
linear nondegeneracy —;maximum—; necessary
optimality—; nondegeneracy —; nondiscordance—;
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nonobtuse angle —; nontriviality—; orthogonal —; partial
calmness—; quadratic nondegeneracy —; regularity—;
saddle-point sufficient—; sandwich—; second order
necessary—; second order optimality—; second order
sufficient—; separation—; Signorini —; Slater’s —; strict
complementarity slackness—; strict feasibility—; strong
second order sufficient—; sufficient—; sufficient
optimality—; superlinear convergence—; uniform
angle—; unilateral growth—

condition iteration BCI see: Boundary—
condition iteration method see: boundary—
condition for LDSU see: nonarbitrage—
condition measures

[90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming)

condition number
[15-XX, 49M37, 65-XX, 90-XX, 90C31]
(see: Cholesky factorization; Nonlinear least squares:
Newton-type methods; Sensitivity and stability in NLP:
approximation)

condition number see: normwise relative—
condition number of a matrix

[65Fxx]
(see: Least squares problems)

condition for penalty methods see: regularity —
condition without using (sub)gradients parametric

representations see: necessary optimality—
conditional see: logic—
conditional expectation constraint

[90C15]
(see: Static stochastic programmingmodels: conditional
expectations)

conditional expectations see: Static stochastic programming
models:—

conditional gradient method
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

conditional Kolmogorov complexity
[90C60]
(see: Kolmogorov complexity)

conditional lower derivative see: Dini —; Hadamard—
conditional proximity data see: row—
conditional upper derivative see: Dini —; Hadamard—
conditionally differentiable function see: Dini —; Hadamard—
conditionally directionally differentiable function see: Dini —;

Hadamard—
conditioned coefficientmatrix see: ill-—
conditionedmatrix see: ill- —;well- —
conditioned problem see: ill-—; well- —
conditions see: boundary—; boundary value—;

collocation—; compatibility—; complementary
slackness—; continuity—; cut—; economic system—;
elastostatics with nonlinear boundary—;
Equality-constrained nonlinear programming: KKT
necessary optimality—; first order KKT—; first order
necessary—; first order necessary optimality—; first order
and second order optimality—; Fritz John—; Fritz John
generalized—; fritz John necessary optimality—;
generalized Karush–Kuhn–Tucker —; generalized necessary
optimality—; Generalized semi-infinite programming:
optimality—; Goldstein—; Hebden—;

Karush–Kuhn–Tucker —; Karush–Kuhn–Tucker
optimality—; KKT—; KKT necessary optimality—; KKT
optimality—; KKT stationarity —; KT—; Kuhn–Tucker —;
Kuhn–Tucker necessary optimality—; Kuhn–Tucker
optimality—; Lagrangian —;market equilibrium—;
matching of derivative—;moment—; necessary—;
necessary optimality—; necessary and sufficient—;
necessary and sufficient optimality—; nonstoichiometric
form of KT —; optimal integral bounds subject to
moment—; optimality—; Penrose—; point—; Post—;
Quasidifferentiable optimization: optimality—;
quasidifferential elastic boundary—; quasidifferential
thermal boundary—; regularity—; Saddle point theory and
optimality—; second order necessary —; second order
necessary and sufficient optimality—; second order
sufficient—; Semi-infinite programming: second order
optimality—; stoichiometric form of KT—; strictly
complementary—; sufficient—; sufficient decrease—;
sufficient optimality—; uniform Hölder—; validity—;
variational formulation of quasidifferential thermal
boundary—

conditions for a constrained optimum
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

conditions and duality see: Bilevel programming: optimality—
conditions moment problem see: infinite many—
conditions on multipliers see: orthogonality —
conditions for nonlinear optimization see: Second order

optimality—
conditions for optimality see: high-order necessary —
conditions for optimality for abnormal points see: High-order

necessary—
conditions for quadratic programming sub-problems see:

Kuhn–Tucker —
conditions and stability see: Semidefinite programming:

optimality—
conditions for an unconstrained optimum

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Condorcet paradox
[90-XX]
(see: Outranking methods)

conduction see: Fourier law of heat—; heat —
cone see: Bouligand—; Bouligand tangent —; contingent —;

convex—; critical—; dual—; fréchet normal —;
Galerkin—; high-order approximating—; inner
linearization—; isotone projection—; limiting normal—;
minimal—; normal—; order—; outer linearization—;
Paretian—; pointed closed convex—; pointed convex—;
polar—; second order—; secondary—; tangent —;
tangent high-order approximating—; z-critical—

cone-convex map
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

cone of critical directions
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)

cone of decrease see: high-order approximating—
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cone of feasible directions
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

cone property see: uniform—
cones see: convex—; feasible high-order approximating—;

high-order feasible—; homogenous—; ordering—;
tangent high-order approximating—

cones of decrease see: high-order —
confidence interval

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

configuration
[92B05]
(see: Genetic algorithms for protein structure prediction)

configuration
[92B05]
(see: Genetic algorithms for protein structure prediction)

configuration see:Monte-Carlo—; point—; search—;
unyielding—; vector —

configuration space see: local properties of the—
confirmans see:modus—
confirmation

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

confirmation see: checklist—
conflict-free coloring

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

conflict graph
[05C85, 65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis;Directed tree
networks)

conflicting populations see: Volterra model of—
conformation

[92B05]
(see: Genetic algorithms for protein structure prediction)

conformation
[92B05]
(see: Genetic algorithms for protein structure prediction)

conformation see:molecular—; native —
conformational search

[65K10, 92C40]
(see:Multiple minima problem in protein folding:˛BB
global optimization approach)

conformations see: discarding far-from-native—
conformity see: uniformity—
confusion matrix

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

congested network
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

conic convex program see: semidefinite program as—
conic convex programs

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

conic duality theorem
[90C22, 90C25]
(see: Copositive programming)

conic extension
[90C30]
(see: Image space approach to optimization)

conic optimization problems see: Approximations to robust—
conic program

[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

conical algorithm
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

conjecture see: Chung–Gilbert —; Gilbert–Pollak—;
Graham–Hwang—; Jerrum—; powell’s—; Rosen’s
method, global convergence, and Powell’s—; Smith—

conjugacy condition
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

conjugate see: Legendre —
conjugate direction subclass

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

conjugate function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

conjugate functions
[46A20, 49J40, 52A01, 62H30, 65C30, 65C40, 65C50, 65C60,
65Cxx, 90C05, 90C30]
(see: Farkas lemma: generalizations;Variational principles)

conjugate functions see: Fenchel —
conjugate gradient

[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

conjugate gradient algorithms for unconstrained optimization
see: New hybrid—; Performance profiles of—

conjugate gradient method
[49M37, 90C30]
(see: Nonlinear least squares: trust region methods;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)

conjugate gradient method see: Shanno—
Conjugate-gradient methods

(90C30)
(referred to in: Broyden family of methods and the BFGS
update;Discontinuous optimization; Large scale trust
region problems; Large scale unconstrained optimization;
Local attractors for gradient-related descent iterations;
Nonlinear least squares: Newton-type methods; Nonlinear
least squares: trust regionmethods; Unconstrained
optimization in neural network training)
(refers to: Broyden family of methods and the BFGS update;
Large scale trust region problems; Large scale
unconstrained optimization; Local attractors for
gradient-related descent iterations;Nonlinear least squares:
Newton-type methods; Nonlinear least squares: trust region
methods; Unconstrained nonlinear optimization:
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Newton–Cauchy framework; Unconstrained optimization
in neural network training)

conjugate gradient methods
[90C90]
(see: Design optimization in computational fluid dynamics)

conjugate gradient parameter computation
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

conjugate gradient type algorithm see: Craig—
conjugate gradients

[90C30]
(see: Conjugate-gradientmethods)

conjugate pair
[90C90]
(see: Design optimization in computational fluid dynamics)

conjugate residual algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

conjugate subgradient method
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

conjugation see: level sets —
conjunction arc

[90B35]
(see: Job-shop scheduling problem)

conjunctive normal form
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T15, 68T27, 68T30,
90C09, 90C10, 90C11]
(see: Checklist paradigm semantics for fuzzy logics;
Disjunctive programming; Finite complete systems of
many-valued logic algebras; Inference of monotone boolean
functions;Optimization in boolean classification problems;
Optimization in classifying text documents)

conjunctive normal form
[90C09, 90C10]
(see: Inference of monotone boolean functions;
Optimization in boolean classification problems;
Optimization in classifying text documents)

conjunctive normal form see: Boolean formula in—
conjunctive use of water resource systems

[90C30, 90C35]
(see: Optimization in water resources)

connected
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

connected class
[03E70, 03H05, 91B16]
(see: Alternative set theory)

connected components of a digraph see: strongly—
connected cycle see: k-dimensional cube—
connected digraph see: strongly —
connected dominating set

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

connected edge list see: extended doubly—
connected graph

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

connected matroid see: infinitely—
connected network see: strongly —
connected set

[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

connectedness
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 90C29, 91A05]
(see:Minimax theorems;Multi-objective optimization:
pareto optimal solutions, properties)

connectedness
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 90C29, 91A05]
(see: Generalized concavity in multi-objective optimization;
Minimax theorems)

connectedness of the efficient points sets
[90C29]
(see: Generalized concavity in multi-objective optimization)

connecting path see: elementary —
connection see: train-to-train—
connection arc see: arrival-ground—; ground-departure —
connection arcs see: train-train—
connection of flow lines

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

connection of wells
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

connective see: associative—; bold—; Boolean—; logic
algebra—; Łukasiewicz—;mid—

connectives see: complete set of—; emergence of logic—;
logic—; semantics of MVL—; TOP and BOT types of
logical—

connectivity see:matroid—; network—
connectivity graph

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

connectivity of a matroid
[90C09, 90C10]
(see:Matroids)

conorm see: t- —
conormal

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

conorms see: t- —
CoNP

[90C60]
(see: Complexity classes in optimization)

conquer see: divide-and-—
consecutive one constraint

[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

conservation constraint see: flow—
conservation of flow

[91B06, 91B60]
(see: Oligopolistic market equilibrium)

conservation of flow equation
[90C30]
(see: Equilibrium networks)

conservation of flow equations
[90B10, 91B28, 91B50]
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(see: Piecewise linear network flow problems; Spatial price
equilibrium)

conservation law see: flow—
conservation laws

[90B36]
(see: Stochastic scheduling)

considerations see: uncertainty —
considerations and controllability see: integration of

dynamic—
consist-busting

(see: Railroad locomotive scheduling)
consist flow formulation

(see: Railroad locomotive scheduling)
consistency see: 2B- —; 3B- —; arc —; bound—; box—;

box(2)- —; hull —; kB- —; local—; total —; zone—
consistency constraints

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

consistency index
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

consistency property see: Jacobian—
consistency ratio

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

consistent see: locally—
consistent case see: perfectly —
consistent judgment matrix

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

consistent labeling
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules)

consistent labeling algorithm
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

consistent least squares problem
[65Fxx]
(see: Least squares problems)

consistent matrix
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

consistent rounding
[90C35]
(see:Maximum flow problem)

consistent variable
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

conspiracy number
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

constant
[68Q20]
(see: Optimal triangulations)

constant see: Boltzmann—; Lipschitz—
constant control see: piecewise—

constant degree parallelism alignment problem
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

constant maturities see: estimating the spot rate for bonds
with—

constant permutation QAP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

constant perturbations see: piecewise-—
constant rebalanced portfolio

[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

Constantine see: Carathéodory —;Metropolis, Nicholas—
constants

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

constants see: Arrhenius—
constrained edge coloring

[05C85]
(see: Directed tree networks)

constrained frequency assignment see: adjacent channel —;
co-channel—

constrained global optimization
[90C26]
(see: Global optimization using space filling)

constrained global optimum
[90C26]
(see: Global optimization using space filling)

constrained hierarchical clustering see: order—
constrained labeling see: distance—
constrained linear problem see: ball- —
constrained linear programming see: probabilistic—
constrained linear programming: duality theory see:

Probabilistic—
constrained logic programming

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

constrained minimax problem
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

constrained minimax problems
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

constrained minimization
[90C26]
(see: Invexity and its applications)

constrained minimization problem
[65M60, 90C26]
(see: Invexity and its applications;Variational inequalities:
F. E. approach)

constrained minimum spanning tree problem see: resource- —
constrained nonlinear optimization see: Inequality- —
constrained nonlinear programming: KKT necessary optimality

conditions see: Equality-—
constrained nonlinear programming problem see: equality- —
constrained optimization

[65G20, 65G30, 65G40, 65H20, 65K05, 68Q05, 68Q10, 68Q25,
90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization; Interval analysis: unconstrained and
constrained optimization)
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constrained optimization
[49M37, 65G20, 65G30, 65G40, 65H20, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility)

constrained optimization see: equality- —; general —; Interval
analysis: unconstrained and—; nonlinearly—

constrained optimization problem see: global—
constrained optimization problems see: linearly—
constrained optimum see: conditions for a—
constrained partitioning see: order—
constrained path problem see: impossible pairs —
constrained problems: convexity theory see: Probabilistic—
constrained project scheduling see: Static resource—
constrained quadratic problem see: bound—
constrained stochastic programming see: probabilistic—
constrained subgraph problem see: degree- —
constrained: unified modeling frameworks see: Short-term

scheduling, resource—
constrained vehicle routing problem see: distance- —
constraint see: abstract —; active—; alignment—; arity of

a—; ball —; budget —; capacity—; conditional
expectation—; consecutive one—; convex quadratic—;
ellipsoid—; ellipsoidal—; flow conservation—; hidden—;
implicit equality—; implied—; integral —; integral
quadratic—; integrated probabilistic—; irredundant—;
joint probabilistic—; knapsack —; linear —; linear program
with an additional reverse convex—; locality—;
marginal—; necessary —; nonlinear —; nonredundant—;
probabilistic—; programming under probabilistic—;
pseudoquadratic—; redundant —; relatively redundant —;
resource—; Slater —; state —; state inequality—;
surrogate—; tongue-and-groove—;weakly necessary—;
weight of a—

constraint on arc flows see: capacity—
constraint-by-constraint method see: lexicographic variant of

the—
constraint-factor

[90C26]
(see: Reformulation-linearization technique for global
optimization)

constraint graph
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

constraint logic programming
[65G20, 65G30, 65G40, 68T20, 90C10, 90C30]
(see: Interval constraints;Modeling languages in
optimization: a new paradigm)

constraint logic programming see:modeling language and—
constraint method see: �- —; lexicographic variant of the

constraint-by-—
constraint on a multiplicative function

[90C26]
(see: Global optimization in multiplicative programming)

constraint narrowing operator
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

constraint programming
[65G20, 65G30, 65G40, 68T20, 68T99, 90C27, 90C59]
(see: Interval constraints;Metaheuristics)

constraint programming
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

constraint programming see: chance—
constraint programming hybrid methods see:Mixed integer

programming/—
constraint propagation

[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

constraint qualification
[49K27, 49K40, 49M37, 65K05, 65K10, 90C05, 90C25, 90C26,
90C29, 90C30, 90C31, 90C39, 93A13]
(see: Bilevel programming: optimality conditions and
duality; Equality-constrained nonlinear programming:
KKT necessary optimality conditions; First order
constraint qualifications; Kuhn–Tucker optimality
conditions; Lagrangian duality: BASICS;Multilevel
methods for optimal design; Second order optimality
conditions for nonlinear optimization; Theorems of the
alternative and optimization)

constraint qualification
[49K27, 49K40, 90C26, 90C30, 90C31, 90C39]
(see: Duality for semidefinite programming; First order
constraint qualifications; Kuhn–Tucker optimality
conditions; Lagrangian duality: BASICS; Second order
constraint qualifications; Second order optimality
conditions for nonlinear optimization; Sensitivity and
stability in NLP: continuity and differential stability)

constraint qualification see: basic —; first order —; generalized
Slater —; linear independence—; linear independency—;
Mangasarian–Fromovitz —; second order—; Slater —

constraint qualification (LICQ) see: linear independence—
constraint qualifications

[90C30, 90C31]
(see: Image space approach to optimization; Sensitivity and
stability in NLP: continuity and differential stability)

constraint qualifications see: First order —; input—; Second
order—

constraint region see: relaxed—
constraint satisfaction

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

constraint satisfaction see:maximum—
constraint satisfaction problem

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

Constraint Satisfaction Problem see: binary—;max-r- —;
maximum—; numerical —

constraint satisfaction problems
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

constraint satisfaction problems see: continuous—
constraint satisfaction: relaxations and upper bounds see:

Maximum—
constraint satisfaction techniques

[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)
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constraint satisfaction techniques
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

constraint set
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

constraint set see: reduction of a—
constraint solving

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

constraint violating point see: index of a—
constraints

[65G20, 65G30, 65G40, 68T20, 90C05, 90C10, 90C20, 90C26,
90C30]
(see: Global optimization using space filling; Interval
constraints;Modeling languages in optimization: a new
paradigm;Redundancy in nonlinear programs; Smooth
nonlinear nonconvex optimization)

constraints
[65K05, 90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see: Direct global optimization algorithm;Modeling
difficult optimization problems)

constraints see: abstract —; active—; active inequality —;
binary noninterference—; bound—; bounds—; box—;
capacity—; consistency—; control —; coupling—;
disjoint—; equality—; feasibility of equality —; feasibility
of inequality—; flow—; flow bound—; fuzzy—; general
linear —; generalized upper bounds—; inactive—;
incorporation of biological—; individual probabilistic—;
inequality—; infeasibility of inequality—;
intercommodity—; Interval —; Lagrange multipliers for
nonanticipativity—; Lagrange multipliers for phase—;
linearization of—; lower and upper bounds—;mass
balance—;mathematical program with affine
equilibrium—;mathematical program with equilibrium—;
maximum function with dependent —;maximum oil, gas
and water capacity—;multistage linking—; nested —;
network—; nonanticipativity—; noninterference—;
notation for—; odd-set—; optimization under network —;
phase—; positive semidefiniteness—;
precedence/coupling—; projection—; Quadratic
programming with bound—; regular —;
semi-assignment—; set-valued—; side—; simplicial—;
single fixed cost with capacity—; single fixed cost with no
capacity—; slack—; state —; strongly active—;
structural —; sub-tour elimination—; submodular—;
subtour elimination—; tight —; time window—; tree —;
upper and lower well oil rate —; vehicle scheduling
problems with time—; violation of—; weighted-sums
programs with—

constraints: A piecewise SQP approach see: Optimization with
equilibrium—

constraints in standard form
[90C60]
(see: Complexity of degeneracy)

constraints on variables
[49J52, 90C30]
(see: Nondifferentiable optimization: relaxationmethods)

construct see: cognitive—
construction see: greedy —; network design and schedule—;

random—

construction of descent directions
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

construction of a dual problem
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

construction heuristic
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

construction heuristics
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

construction methods
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

construction phase
(see:Maximum cut problem, MAX-CUT)

construction phase in GRASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

construction procedure see: arc oriented —; best arc —; best
node—;mixed—;mixed VAM—; node oriented—

construction procedures
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

construction procedures
[90B80]
(see: Facilities layout problems)

constructions see: linearly elastic mechanical—
constructive lower bounds

[90B35]
(see: Job-shop scheduling problem)

constructive methods for solving vehicle routing problems
[90B06]
(see: Vehicle routing)

constructive nonlinear dynamics see: Robust design of
dynamic systems by—

consumption see: expected power—
consumption of utilities

(see: Planning in the process industry)
contact see: Signorini-Coulomb unilateral frictional—
contact map

(see: Contact map overlap maximization problem, CMO)
contact map overlap

(see: Contact map overlap maximization problem, CMO)
Contact map overlap maximization problem, CMO
contact point

[90Cxx]
(see: Discontinuous optimization)

contact problem with friction see: coupled unilateral —
contacts in alpha-helical proteins see: Predictive method for

interhelical —
containment graph model

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

contaminated information
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
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(see: Information-based complexity and information-based
optimization)

context descriptors
[90C09, 90C10]
(see: Optimization in classifying text documents)

context descriptors
[90C09, 90C10]
(see: Optimization in classifying text documents)

Conti–Traverso algorithm
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

contingency table
[03B50, 03B52, 03C80, 62F30, 62Gxx, 62H30, 68T27, 90C27]
(see: Assignment methods in clustering;Checklist paradigm
semantics for fuzzy logics)

contingent
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

contingent cone
[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

contingent epiderivative
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

continuation
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

continuation
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

continuation see: homotopy—
continuation method

[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

continuation method
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

continuationmethod see: homotopy—
continuity see: Hölder—; joint —; Lipschitz —; rates of

quantitative—
continuity conditions

[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

continuity and differential stability see: Sensitivity and stability
in NLP: —

continuity property of the objective function value
[90C31]
(see: Bounds and solution vector estimates for parametric
NLPS)

continuity, stability, rates of convergence see: Stochastic
integer programming: —

continuous
[58E05, 90C30]
(see: Planning in the process industry; Topology of global
optimization)

continuous see: approximate—; exact—; Lipschitz —

Continuous approximations to subdifferentials
(65K05, 90C56)

continuous based heuristics
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

continuous constraint satisfaction problems
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

continuous dependence
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

continuous and discrete free variables see: Generalized
geometric programming: mixed—

continuous and discrete time models
[90C26]
(see:MINLP: design and scheduling of batch processes)

continuous form see: coercive bilinear symmetric —
continuous function see: Lipschitz —; locally Lipschitz —;

radially—; U-—
continuous functional see: absolutely—
continuous functions see: Lipschitzian operators in best

approximation by bounded or—
continuous global optimization

[90C05]
(see: Continuous global optimization: models, algorithms
and software; Global optimization in the analysis and
management of environmental systems)

continuous global optimization see:mixed discrete- —
Continuous global optimization: applications

(90C05)
(referred to in: ˛BB algorithm; Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization;Direct global
optimization algorithm; Forecasting;Global optimization
in the analysis and management of environmental systems;
Global optimization based on statistical models; Global
optimization in binary star astronomy; Global
optimization methods for systems of nonlinear equations;
Global optimization using space filling; Interval global
optimization;Mixed integer nonlinear programming;
Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
models, algorithms and software;Differential equations
and global optimization;Direct global optimization
algorithm; Forecasting;Global optimization in the analysis
andmanagement of environmental systems; Global
optimization based on statistical models; Global
optimization in binary star astronomy; Global
optimization methods for systems of nonlinear equations;
Global optimization using space filling; Interval global
optimization;Mixed integer nonlinear programming;
Topology of global optimization)

continuous global optimization model
[90C05]
(see: Continuous global optimization: models, algorithms
and software)

Continuous global optimization: models, algorithms and
software
(90C05)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications;Differential equations and
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global optimization;Direct global optimization algorithm;
Global optimization in the analysis andmanagement of
environmental systems; Global optimization based on
statistical models;Global optimization in batch design
under uncertainty;Global optimization in binary star
astronomy; Global optimization in generalized geometric
programming;Global optimization: interval analysis and
balanced interval arithmetic;Global optimization methods
for systems of nonlinear equations; Global optimization in
phase and chemical reaction equilibrium;Global
optimization using space filling; Interval global
optimization; Large scale unconstrained optimization;
Maximum cut problem, MAX-CUT;MINLP: branch and
bound global optimization algorithm;MINLP: global
optimization with ˛BB;Modeling languages in
optimization: a new paradigm;Optimization-based
visualization;Optimization software; Smooth nonlinear
nonconvex optimization; Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Convex envelopes in optimization problems;
Differential equations and global optimization;Direct
global optimization algorithm;Global optimization in the
analysis andmanagement of environmental systems; Global
optimization based on statistical models; Global
optimization in batch design under uncertainty;Global
optimization in binary star astronomy; Global
optimization in generalized geometric programming;
Global optimization of heat exchanger networks; Global
optimization methods for systems of nonlinear equations;
Global optimization in phase and chemical reaction
equilibrium;Global optimization using space filling;
Interval global optimization; Large scale unconstrained
optimization;MINLP: branch and bound global
optimization algorithm;MINLP: heat exchanger network
synthesis;MINLP: mass and heat exchanger networks;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks;Modeling languages in
optimization: a new paradigm;Optimization software;
Smooth nonlinear nonconvex optimization; Topology of
global optimization)

continuous location
[90B80, 90B85, 90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities)

continuous model in OR
[90B80, 90B85]
(see:Warehouse location problem)

continuous multiple criteria problem
[90C29]
(see:Multiple objective programming support)

continuous operator see: completely—
continuous optimization

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

continuous optimization problems see: Continuous
reformulations of discrete- —

continuous piecewise linear function see: decomposition of
a—

continuous processes see: Short-term scheduling of —

continuous programming
[90C26]
(see: Invexity and its applications)

continuous programming
[90C26]
(see: Invexity and its applications)

Continuous reformulations of discrete-continuous
optimization problems
(90C11, 90C10, 90C33, 90C27)
(refers to:Disjunctive programming;Mixed integer
programming/constraint programming hybridmethods;
Order complementarity)

continuous relaxation
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

Continuous review inventory models: (Q, R) policy
(49-02, 90-02)

continuous review model
[90B50]
(see: Inventory management in supply chains)

continuous review model
[90B50]
(see: Inventory management in supply chains)

continuous selection
[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

continuous selection of functions
[58E05, 90C30]
(see: Topology of global optimization)

continuous selection operator
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

continuous-time analog of the dynamic programming equation
[34H05, 49L20, 90C39]
(see: Dynamic programming: continuous-time optimal
control)

continuous-time equivalent of the dynamic programming
algorithm
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

continuous-time formulation
[90C26]
(see:MINLP: design and scheduling of batch processes)

continuous Time Model
(see: Integrated planning and scheduling)

continuous-time optimal control
[34H05, 49L20, 90C39]
(see: Dynamic programming: continuous-time optimal
control;Hamilton–Jacobi–Bellman equation)

continuous-time optimal control see: Dynamic
programming: —

continuous-time Riccati equation
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

continuously codifferentiable
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)
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continuously codifferentiable see: twice—
continuously codifferentiable function

[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

continuously codifferentiable function see: twice—
continuously differentiable exact penalty function approach

[90C30]
(see: Large scale trust region problems)

continuously differentiable function see: piecewise—
continuum

[03E70, 03H05, 91B16]
(see: Alternative set theory)

continuum
[03E70, 03H05, 91B16]
(see: Alternative set theory)

continuum see: true —
contract see: energy purchase —
contract algorithm see: branch and—
contract-or-patch (COP)

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

contracting matroid elements
[90C09, 90C10]
(see:Matroids)

contracting measure
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

contraction
[65H10, 65J15, 90C30]
(see: Contraction-mapping; Sequential simplex method)

contraction see: k-set- —;matroid—; path —; strict-set- —;
weighter sup-norm—

contraction/approximation measure
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

contraction coefficient
[90C30]
(see: Sequential simplex method)

Contraction-mapping
(65H10, 65J15)
(referred to in: Global optimization methods for systems of
nonlinear equations; Gröbner bases for polynomial
equations; Interval analysis: systems of nonlinear
equations;Nonlinear least squares: Newton-type methods;
Nonlinear systems of equations: application to the
enclosure of all azeotropes)
(refers to: Global optimization methods for systems of
nonlinear equations; Interval analysis: systems of nonlinear
equations;Nonlinear least squares: Newton-type methods;
Nonlinear systems of equations: application to the
enclosure of all azeotropes)

contraction mapping
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

contraction mapping
[65H10, 65J15]
(see: Contraction-mapping)

contraction mappings
[49L20, 90C30, 90C39, 90C40, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms;
Dynamic programming: infinite horizon problems,
overview)

contractionmatrices see: completion to completely positive
and—

contraction matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

contractionmatrix see: partial —
contraction of a matroid

[90C09, 90C10]
(see:Matroids)

contraction in matroids
[90C09, 90C10]
(see: Oriented matroids)

contractionmethod see: edge—
contraction operation

[90C35]
(see: Feedback set problems)

contraction operation
[90C30]
(see: Sequential simplex method)

contractive operator
[49L20, 90C39]
(see: Dynamic programming: discounted problems)

contradual transformation
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

contrapositivization
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

control
[49Jxx, 49K20, 49M99, 90C55, 91Axx]
(see: Emergency evacuation, optimization modeling;
Infinite horizon control and dynamic games; Sequential
quadratic programming: interior point methods for
distributed optimal control problems)

control
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

control see: closed-loop—; continuous-time optimal—;
Discrete-Time Optimal—; Dynamic programming:
continuous-time optimal —; Dynamic programming:
inventory—; Dynamic programming and Newton’s method
in unconstrained optimal—; epidemic—; feedback—;
ground delay problem in air traffic—; interaction of design
and—; interaction of design, synthesis and—; inventory—;
MINLP: applications in the interaction of design and—;
model predictive—;mu synthesis —;Multi-objective
optimization: interaction of design and—; open-loop—;
optimal—; parametric optimal—; piecewise constant —;
piecewise linear —; pollution—; process —; relaxed—;
Resource allocation for epidemic —; Robust—; rounding
errors are under —; Suboptimal—; systems theory and—;
temperature —; time optimal—; unconstrained optimal—

control applications see: Dynamic programming: optimal—
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control component
[90C90, 91B28]
(see: Robust optimization)

control constraints
[90C90, 91B28]
(see: Robust optimization)

control for drug delivery systems see:Model based—
control and dynamic games see: Infinite horizon—
control engineering

[93D09]
(see: Robust control)

control with first order differential equations see: Duality in
optimal—

control of a flexible arm see: Optimal—
control function

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

control-function see: admissible pair of trajectory-function
and—; linear appearance of—

control functions see: asymptotically admissible pair of
trajectory and—

control and ground delay programs see: air traffic—
control model see: logistics—
control pair see: admissible trajectory- —
control parameterization

[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

control parametrization
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

control policy see: optimal —
control problem see: finite-dimensional—; inventory —;

mixed integer optimal—; optimal—; relaxed—;
singular—; time optimal—

Control problems
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

control problems see: discretized optimal—; distributed
optimal—; Semi-infinite programming and—; Sequential
quadratic programming: interior point methods for
distributed optimal —

control restrictions
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

control: schur stability of polytopes of polynomials see:
Robust—

control state of a Turing machine
[90C60]
(see: Complexity classes in optimization)

control synthesis see: robust—
control theory

[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

control theory
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

control theory see: robust —

control variables
[90C90, 91B28]
(see: Robust optimization)

control variates
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

control vector
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

control vector iteration
[93-XX]
(see: Boundary condition iteration BCI)

Control vector iteration CVI
(93-XX)
(referred to in: Boundary condition iteration BCI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Optimal control of a flexible arm; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)
(refers to: Boundary condition iteration BCI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Optimal control of a flexible arm;
Optimization strategies for dynamic systems; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)

controllability
[49M37, 90C11, 93-XX]
(see:MINLP: applications in the interaction of design and
control;Optimal control of a flexible arm)

controllability see: integration of dynamic considerations
and—;minimumnorm—

controllability measure
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

controlled recharge facilities
[90C30, 90C35]
(see: Optimization in water resources)



Subject Index 4147

controlled selection
[90C35]
(see:Multi-index transportation problems)

controller see: feasible gradient —; nonfeasible gradient —
controllers via parametric programming see: Design of robust

model-based—
controls see: suboptimal trajectories and—; unbounded—
controls and non standard methods see: unbounded—
convention see: extensionality —
conventional

[90C35]
(see:Multicommodity flow problems)

convergence
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

convergence see: P—; asymptotic —; discrete—; discrete
Mosco—; discrete Painlevé–Kuratowski —; f-attentive —;
finite �- —; global —; linear—; polynomial time—;
premature —; Q-quadratic—; Q-superlinear —;
quadratic—; rate of—; Stochastic integer programming:
continuity, stability, rates of—; superlinear —;weak—;
weak discrete—

convergence condition see: superlinear —
convergence of GRASP see: global —
convergence of the overall flowsheet

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

convergence, and Powell’s conjecture see: Rosen’s method,
global—

convergence of PPA
[90C30]
(see: Relaxation in projectionmethods)

convergence of probability measures see: weak—
convergence problem for the Rosen method see: global —
convergence rate

[90C06, 93-XX]
(see: Boundary condition iteration BCI; Large scale
unconstrained optimization)

convergence rate
[90C30]
(see: Frank–Wolfe algorithm)

convergence rate see: geometric —; local—; r-linear—
convergence rates see: asymptotic —
convergence tests see: feasibility—; value—
convergence theorem

[60G35, 65K05]
(see: Differential equations and global optimization)

convergence theorem see: asynchronous—; local
quadratic—;monotone—

convergence and turnpike theory see: Statistical —
convergent

[90C25, 90C26]
(see: Decomposition in global optimization)

convergent see: globally —
convergent algorithm

[90C26]
(see: Cutting plane methods for global optimization)

convergent algorithm see: globally—
convergent homotopies see: probability-one globally —
convergent homotopy methods see: Globally—

convergent probability-one homotopy algorithm see:
globally—

convergent rate see: superlinear —
converges

[90C15]
(see: Approximation of extremum problems with
probability functionals)

converse relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

converting see: paper—
convex

[41A30, 47A99, 49K05, 49K10, 49K15, 49K20, 49M37, 65K10,
90C10, 90C11, 90C25, 90C26, 90C27, 90C30, 90C31, 90C33,
90C35]
(see: ˛BB algorithm; Continuous reformulations of
discrete-continuous optimization problems;Duality in
optimal control with first order differential equations;
Generalized monotone single valued maps; Global
optimization: functional forms; L-convex functions and
M-convex functions; Lipschitzian operators in best
approximation by bounded or continuous functions;
Robust global optimization; Successive quadratic
programming: solution by active sets and interior point
methods)

convex
[90C05, 90C11, 90C15, 90C25, 90C30]
(see: Krein–Milman theorem; Stochastic programming with
simple integer recourse; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)

convex see: �- —; invariant—;m-—; strongly —
convex-along-rays functions on topological vector spaces see:

Increasing and—
convex analysis

[26B25, 26E25, 46A22, 49J35, 49J40, 49J52, 49Q10, 49S05,
54D05, 54H25, 55M20, 65K99, 70-08, 70-XX, 74G99, 74H99,
74K99, 74Pxx, 80-XX, 90C25, 90C33, 90C99, 91A05]
(see:Hemivariational inequalities: applications in
mechanics;Minimax theorems; Nonconvex energy
functions: hemivariational inequalities;Quasidifferentiable
optimization;Quasidifferentiable optimization: algorithms
for hypodifferentiable functions;Quasidifferentiable
optimization: codifferentiable functions)

convex analysis
[32B15, 51E15, 51N20]
(see: Affine sets and functions)

convex analysis see: abstract —; discrete—
convex bipartite graph

[90C35]
(see: Feedback set problems)

convex combination of the extreme points
[90C30]
(see: Simplicial decomposition)

convex combinations
[49M07, 49M10, 65K05, 68Q99, 90C06]
(see: Branch and price: Integer programming with column
generation; Performance profiles of conjugate-gradient
algorithms for unconstrained optimization)
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convex combinations
[90C30]
(see: Simplicial decomposition)

convex combinatorial optimization
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

convex composite programming
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

convex-concave case
[90C15]
(see: Stochastic programs with recourse: upper bounds)

convex and concave regression
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

convex cone
[90C30]
(see: Duality for semidefinite programming)

convex cone see: pointed—; pointed closed—
convex cones

[90C22, 90C25]
(see: Copositive programming)

convex constraint see: linear program with an additional
reverse —

convex decreasing
[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

Convex discrete optimization
(05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C)
(referred to in: Adaptive convexification in semi-infinite
optimization)

Convex envelopes in optimization problems
(90C26)
(referred to in: ˛BB algorithm; Continuous global
optimization: models, algorithms and software; Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations; Lipschitzian operators in best approximation by
bounded or continuous functions;MINLP: global
optimization with ˛BB)
(refers to: ˛BB algorithm;Global optimization in
generalized geometric programming;MINLP: global
optimization with ˛BB)

convex feasibility problem
[47H05, 65J15, 90C25, 90C30, 90C55]
(see: Fejér monotonicity in convex optimization; Relaxation
in projectionmethods)

convex function
[49J52, 90C26, 90C30, 90C31, 90C39]
(see: Nondifferentiable optimization: subgradient
optimization methods; Second order optimality conditions
for nonlinear optimization; Sensitivity and stability in NLP:
approximation)

convex function
[49J52, 65K05, 90C30, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Frank–Wolfe algorithm;Nondifferentiable optimization:

relaxationmethods; Nondifferentiable optimization:
subgradient optimization methods)

convex function see: abstract —; difference—; geodesic —;
H-—; K- —; L- —;M-—; program of minimizing
a generalized —; strictly—; uniformly—

convex functions see: difference of —; Fenchel-type duality for
M- and L- —; h- —; L-convex functions and M-—; product
of—

convex functions and M-convex functions see: L- —
convex global underestimation

[65K05, 90C26]
(see:Molecular structure determination: convex global
underestimation)

convex global underestimation see:Molecular structure
determination: —

convex global underestimator
[65K05, 90C26]
(see:Molecular structure determination: convex global
underestimation)

convex hull
[05A, 05C60, 05C69, 15A, 37B25, 41A30, 47A99, 51M, 52A,
52B, 52C, 62H, 65K10, 68Q, 68R, 68U, 68W, 90B, 90B80,
90B85, 90C, 90C05, 90C06, 90C08, 90C09, 90C10, 90C11,
90C20, 90C27, 90C35, 90C59, 91A22]
(see: Convex discrete optimization;Disjunctive
programming; Integer programming: cutting plane
algorithms; Lipschitzian operators in best approximation
by bounded or continuous functions; Replicator dynamics
in combinatorial optimization; Single facility location:
circle covering problem;Voronoi diagrams in facility
location)

convex hull
[90B80, 90C05, 90C09, 90C10, 90C11, 90C15, 90C27, 90C30]
(see: Carathéodory theorem;Disjunctive programming;
Frank–Wolfe algorithm; Krein–Milman theorem;
Simplicial decomposition; Stochastic programming with
simple integer recourse;Voronoi diagrams in facility
location)

convex hull see: lower—
Convex hull disjunctions

(see: Logic-based outer approximation)
convex hull problem

[52B12, 68Q25]
(see: Fourier–Motzkin eliminationmethod)

convex inequalities
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

convex inequality see: reverse —
convex inequality systems

[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

convex integer programming
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

convex integer transportation problem
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)



Subject Index 4149

convex intersection problem
[90C30]
(see: Relaxation in projectionmethods)

convex-like
[90C26]
(see: Invexity and its applications)

convex-like
[90C26]
(see: Invexity and its applications)

convex-like function
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

convex-like function pair
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

convex-like systems
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

convex map see: cone- —
convex max-function

[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

Convex max-functions
(49K35, 49M27, 65K10, 90C25)
(referred to in: Affine sets and functions; Lagrangian
multipliersmethods for convex programming)
(refers to: Lagrangianmultipliers methods for convex
programming; Successive quadratic programming)

convex MINLP
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

convex minorant see: greatest —
convex model

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

convex moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

convex moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

convex moment problem see: solution of the—
convex multiplicative function see: program of minimizing a—
convex multiplicative functions see: sum of —
convex multiplicative program

[90C26]
(see: Global optimization in multiplicative programming)

convex NDO
[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)

convex and nonconvex programming problems
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

convex objective function see: separable—
convex optimization

[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

convex optimization
[15A15, 49-XX, 49K35, 49M27, 65K10, 90-XX, 90C25, 90C30,
90C55, 90C90, 93-XX]
(see: Convex max-functions;Duality theory: monoduality in
convex optimization; Lagrangianmultipliers methods for
convex programming; Semidefinite programming and
determinant maximization)

convex optimization see: Duality theory: monoduality in—;
Fejér monotonicity in—;multi-objective—;
nondifferentiable—; Reverse —

convex optimization problem
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

convex parametric programming
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

convex piecewise linearization in facility location problems with
staircase costs
[90B80, 90C11]
(see: Facility location with staircase costs)

convex polyhedral set
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

convex polytope
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

convex polytope
[52B11, 52B45, 52B55, 90B85]
(see:Multifacility and restricted location problems;Volume
computation for polytopes: strategies and performances)

convex problem
[90C25, 90C30, 90C31]
(see: Lagrangianmultipliersmethods for convex
programming; Sensitivity and stability in NLP: continuity
and differential stability)

convex problem see: jointly—
convex problems

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

convex problems see: partly —
convex program see: nondifferentiable—; partly —;

semidefinite program as conic—
convex programming

[90C05, 90C06, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming;
Saddle point theory and optimality conditions)

convex programming
[47H05, 65J15, 90C05, 90C25, 90C30, 90C55]
(see: Duality for semidefinite programming; Fejér
monotonicity in convex optimization; Young
programming)

convex programming see: differentiable—; fundamental
property in—; Lagrangian multipliers methods for —;
reverse —

convex programming problem
[60G35, 65K05, 90C26, 90C39]
(see: Differential equations and global optimization; Second
order optimality conditions for nonlinear optimization)
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convex programs see: conic—; partly —; reverse —
convex quadratic constraint

[90C60]
(see: Complexity theory: quadratic programming)

convex quadratic function
[90C60]
(see: Complexity theory: quadratic programming)

convex quadratic knapsack problem
[90C60]
(see: Complexity theory: quadratic programming)

convex quadratic optimization
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

convex quadratic program
[90B85, 90C27]
(see: Single facility location: circle covering problem)

convex quadratic programming
[90C30]
(see: Lagrangian duality: BASICS)

convex regression problem
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

convex relaxation problem
[65H10, 90C26, 90C30]
(see: Global optimization methods for systems of nonlinear
equations)

convex relaxations
[90C26, 90C90]
(see: Global optimization of heat exchanger networks)

convex semidefinite programming problem
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

convex set
[49J52, 90C30]
(see: Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods)

convex set see: geodesic —; L- —;M-—; reverse —
convex sets see: differences of—
Convex-simplex algorithm

(90C30)
(referred to in: Equivalence between nonlinear
complementarity problem and fixed point problem;
Generalized nonlinear complementarity problem; Integer
linear complementary problem; LCP: Pardalos–Rosen
mixed integer formulation; Lemke method; Linear
complementarity problem; Linear programming;Order
complementarity; Parametric linear programming: cost
simplex algorithm; Principal pivoting methods for linear
complementarity problems; Sequential simplex method;
Topological methods in complementarity theory)
(refers to: Lemke method; Linear complementarity problem;
Linear programming; Parametric linear programming: cost
simplex algorithm; Sequential simplex method)

convex-simplex algorithm
[90C30]
(see: Convex-simplex algorithm)

convex-simplex algorithm
[90C30]
(see: Convex-simplex algorithm)

convex SIP
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

convex SQP
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

convex subdifferential
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

convex transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

convex transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

convex underestimator
[90C11, 90C26]
(see: Convex envelopes in optimization problems;MINLP:
branch and boundmethods)

convex underestimator
[90C26]
(see: Convex envelopes in optimization problems)

convex underestimators see: Global optimization: tight —
convex variational inequality for an elastostatic problem

involving QD-superpotentials
[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

convexifiable
[25A15, 34A05, 90C25, 90C26, 90C30, 90C31]
(see: Convexifiable functions, characterization of; Invexity
and its applications)

convexifiable
[90C26]
(see: Invexity and its applications)

Convexifiable Function see: integral Mean-Value for
Composite—

Convexifiable functions, characterization of
(90C25, 90C26, 90C30, 90C31, 25A15, 34A05)

convexifiable program see: sequentially —
convexification

[25A15, 34A05, 90C25, 90C26, 90C30, 90C31]
(see: Convexifiable functions, characterization of)

convexification
[90C27]
(see: Time-dependent traveling salesman problem)

convexification parameter
[65K05, 90C26, 90C33, 90C34]
(see: Adaptive convexification in semi-infinite
optimization)

convexification/relaxation strategy
[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

convexification in semi-infinite optimization see: Adaptive—
Convexification Technique see: reformulation-Linearization/—
convexification techniques see: reformulation-linearization/—
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convexifier
[25A15, 34A05, 90C25, 90C26, 90C30, 90C31]
(see: Convexifiable functions, characterization of)

convexity
[90C26, 90C30, 90C33]
(see: Generalized monotone single valued maps; Implicit
lagrangian)

convexity
[28-XX, 49-XX, 49M37, 60-XX, 65K10, 90C26, 90C30]
(see: ˛BB algorithm; Frank–Wolfe algorithm;General
moment optimization problems)

convexity see: abstract —; discrete midpoint—;
generalized—; geodesic —; K-—; L- —;M-—

convexity cut
[90C26]
(see: Cutting plane methods for global optimization)

convexity property of the objective function value
[90C31]
(see: Bounds and solution vector estimates for parametric
NLPS)

convexity property of the solution space
[90C31]
(see: Bounds and solution vector estimates for parametric
NLPS)

convexity theory see: Probabilistic constrained problems:—
convexized filled function see: globally—
Cook–Levin theorem

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

cook’s theorem
[03B50, 68T15, 68T30, 90C60]
(see: Computational complexity theory; Finite complete
systems of many-valued logic algebras)

cooling schedule
[65K05, 90C30]
(see: Random search methods)

cooperation see: region of—
cooperationminimization algorithms see: supervisor and

searcher—
cooperative case of a two-person game

[90C30, 90C90]
(see: Bilevel programming: global optimization)

cooperative equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Cooperative equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

cooperative game
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

cooperative game
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

cooperative solution
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

coordinate
[01A99]
(see: Leibniz, gottfried wilhelm)

coordinate-aligned ellipsoid
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

coordinate descent method
[90C30]
(see: Cost approximation algorithms)

coordinate direction
[90C26, 90C90]
(see: Global optimization: hit and run methods)

coordinate method see: Cyclic—
coordinate search see: cyclic—
coordinate system see: curvilinear—;moving—
coordinate transformation

[90C30]
(see: Suboptimal control)

coordinates
[01A99]
(see: Leibniz, gottfried wilhelm)

coordinates see: axes of —; Cartesian —; internal —; kth order
form of—

coordinatewise increasing function
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

coordinatewise increasing utility function
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

coordination see: decomposition/—
coordinationmethod see: goal —;model —
coordination step

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

(COP) see: contract-or-patch—
copolyblock algorithm

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

(copolyblock) algorithm see: revised reverse polyblock—
copositive

[05C15, 05C17, 05C35, 05C69, 65K05, 90C20, 90C22, 90C25,
90C35]
(see: Copositive programming; Lovász number;Quadratic
programming with bound constraints)

copositive matrix
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems; Standard quadratic optimization problems:
theory)

copositive matrix see: strictly —
Copositive optimization

(90C20, 90C22, 90C26)
Copositive programming

(90C25, 90C22)
(referred to in: Lovász number)

copositive programming
[90C22, 90C25]
(see: Copositive programming)

copositivity
[90C20]
(see: Standard quadratic optimization problems:
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algorithms; Standard quadratic optimization problems:
theory)

copulas
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

core see:multi- —
Corley–Moon algorithm

[90C31, 90C39]
(see:Multiple objective dynamic programming)

corner rule see: North–West —
corner solution

[90C05]
(see: Extension of the fundamental theorem of linear
programming)

cornered
[90C05]
(see: Extension of the fundamental theorem of linear
programming)

corrected seminormal equation
[65Fxx]
(see: Least squares problems)

correcting methods see: label —
corrective

[90C10, 90C15]
(see: Stochastic vehicle routing problems)

corrective action
[90C15]
(see: Two-stage stochastic programs with recourse)

corrector
[90C05]
(see: Linear programming: interior point methods)

corrector see: predictor- —
corrector algorithm see: predictor- —
corridor method

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

cost
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

cost see: decomposable—; differential —; Hamiltonian
path—; linear platform—;mean-weight —;minimizing
network—; path —; piecewise linear arc —; production
realizing with minimal social —; reduced—; setup—;
staircase—; transportation —; unbounded—; variable—

cost approximation
[90C39]
(see: Neuro-dynamic programming)

Cost approximation algorithms
(90C30)
(referred to in: Dynamic traffic networks)
(refers to: Dynamic traffic networks; Frank–Wolfe
algorithm)

cost of an arc in a network
[90C35]
(see:Minimum cost flow problem)

cost with capacity constraints see: single fixed—
cost coefficients see: sensitivity analysis with respect to

changes in—
cost of a directed cycle

[90C35]
(see:Minimum cost flow problem)

cost fixing see: reduced—
cost flow problem see:minimum—
cost function

[90B10, 90C26, 90C30, 90C35, 93-XX]
(see: Direct search Luus—Jaakola optimization procedure;
Nonconvex network flow problems)

cost function see: regular —; regular link—; sawtooth arc —;
staircase—; staircase arc —; total —

cost functional
[49J20, 49J52]
(see: Shape optimization)

cost functions in integer programming
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

cost index
[62H30, 90C39]
(see: Dynamic programming in clustering)

cost infinite horizon problem see: total —
cost network flow see:minimum—
cost network flow problem see:minimum—; piecewise linear

minimum—
cost with no capacity constraints see: single fixed—
cost per stage see: average—; discounted problem with

bounded—
cost per stage problem see: average—
cost per stage problems see: average—; Dynamic

programming: average—
cost row

[90C05]
(see: Linear programming: Klee–Minty examples)

cost scaling
[90C30, 90C35]
(see: Auction algorithms)

cost simplex algorithm see: Parametric linear programming: —
cost structure

[90B80, 90B85]
(see:Warehouse location problem)

cost terms
(see: Planning in the process industry)

cost/time see:minimization of—
cost-to-go

[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

cost-to-time ratio
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

cost-to-time ratio cycle see:minimum—
cost vector see: differential —; generic —
cost vectors see: equivalent—
COSTADE

[90C26, 90C29]
(see: Optimal design of composite structures)

costs see: communication—; convex piecewise linearization in
facility location problems with staircase—; detention—;
Facility location with staircase—; heuristics of facility
location problems with staircase—; linearization in facility
location problems with staircase—; reduction to finite—;
solution of facility location problems with staircase—

Coulomb unilateral frictional contact see: Signorini- —



Subject Index 4153

countability
[03E70, 03H05, 91B16]
(see: Alternative set theory)

countable class
[03E70, 03H05, 91B16]
(see: Alternative set theory)

countable set D
[49L99]
(see: Dynamic programming: average cost per stage
problems)

counterpart see: robust—
counterpart method see: stochastic—
coupled fixed point

[90C33]
(see: Order complementarity)

coupled HMM
(see: Bayesian networks)

coupled unilateral contact problem with friction
[49J40, 49Q10, 70-08, 74K99, 74Pxx]
(see: Quasivariational inequalities)

coupling see: bandwidth of interdisciplinary—;
model/optimizer—

coupling constraints
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

coupling constraints see: precedence/ —
Courant penalty function

[90C30]
(see: Image space approach to optimization)

Cournot equilibrium see: Stackelberg–Nash– —
Cournot–Nash equilibrium see: spatial —
Cournot–Nash oligopolistic equilibrium

[65K10, 90C31]
(see: Sensitivity analysis of variational inequality problems)

Cournot–Nash oligopolistic equilibrium model
[90C31, 90C33]
(see: Sensitivity analysis of complementarity problems)

covariance matrix estimation
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

covector
[90C09, 90C10]
(see: Oriented matroids)

cover
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

COVER see:minimumweighted vertex —; node—;
universal —; VERTEX—

cover the extremal set
(see: Planning in the process industry)

Cover Problem see:minimum Vertex —
coverage location problem see:maximum—
covering, packing and partitioning problems see: Set —
covering problem

[90C35]
(see: Feedback set problems)

covering problem see: node—; set —; Single facility location:
circle—

covering problem on a network
[90B10, 90B80, 90C35]
(see: Network location: covering problems)

covering problems see: Network location:—
covering relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

covering subset
[90C09, 90C10]
(see:Matroids)

covers all edge-directions of P
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

CP see: p-—
CPP

[90B20]
(see: General routing problem)

CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

CQ see: Abadie—; asymptotic —; First order —; Gollan—;
Kuhn–Tucker —; linear independence—;
Mangasarian–Fromovitz —; Robinson—; second order—;
Strong Slater —;Weak Slater —

CR
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

Craig algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Craig conjugate gradient type algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Crane Problem (SCP) see: stacker —
CRCW PRAM

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

credence see: degrees of—
Credit rating and optimization methods

(91B28 90C90 90C05 90C20 90C30)
(referred to in: Beam selection in radiotherapy treatment
design)

crew deadheading
(see: Railroad crew scheduling)

crew district see: double-ended—; single-ended—
crew districts

(see: Railroad crew scheduling)
crew pairing

(see: Railroad crew scheduling)
crew pools

(see: Railroad crew scheduling)
CREW PRAM

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

crew rostering
(see: Railroad crew scheduling)
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crew scheduling
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

crew scheduling
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization; Railroad crew scheduling)

crew scheduling see: airline—; Railroad—
crew-scheduling problem

[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

crew types
(see: Railroad crew scheduling)

crisp relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

crisp relations see: special properties of—
criss-cross

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

criss-cross method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

criss-cross method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

criss-crossmethod see: least-index—; Terlaky—; Ziont—
Criss-cross pivoting rules

(90C05, 90C33, 90C20, 05B35, 65K05)
(referred to in: Least-index anticycling rules; Lexicographic
pivoting rules; Linear programming; Linear programming:
Klee–Minty examples; Pivoting algorithms for linear
programming generating two paths; Principal pivoting
methods for linear complementarity problems;
Probabilistic analysis of simplex algorithms; Simplicial
pivoting algorithms for integer programming)
(refers to: Least-index anticycling rules; Lexicographic
pivoting rules; Linear complementarity problem; Linear
programming; Pivoting algorithms for linear programming
generating two paths; Principal pivoting methods for linear
complementarity problems; Probabilistic analysis of
simplex algorithms; Simplicial pivoting algorithms for
integer programming)

criteria
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

criteria see: aspiration—; Decision support systems with
multiple—; Dykstra’s algorithm and robust stopping—

criteria decisionmaking see:multiple—
criteria design problem see:multiple—
criteria evaluation see:multiple—
criteria for multiphase chemical equilibrium see: Optimality—
criteria problem see: continuous multiple—; discrete

multiple—
criteria problems see:multi-—
criterion see: Akaike information—; dominance—; fuzzy—;

infeasibility—; integrality —; k-means—; least squares—;
measurable—;Metropolis—;minimumunfeasibility—;
objective—; optimality—; ordinal —; probabilistic—;
reaction tangent-plane—; scale invariance—; sector

stability —; stopping—; tangent-plane —; termination—;
test nonmonotone Armijo-like—

criterion problem in OR see: single- —
criterion space

[90C29]
(see:Multiple objective programming support)

criterion uncapacitated static multifacility see: discrete
single-commodity single- —

critical
[90C05, 90C11, 90C25, 90C30, 90C31, 90C34]
(see: Parametric mixed integer nonlinear optimization;
Semi-infinite programming: discretizationmethods)

critical arcs
(see: Emergency evacuation, optimization modeling)

critical column
[90C05, 90C06]
(see: Selfdual parametric method for linear programs)

critical cone
[90C22, 90C25, 90C30, 90C31, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach; Semidefinite programming:
optimality conditions and stability)

critical cone see: z-—
critical direction

[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

critical direction see: high-order —; high-regular —
critical directions see: cone of—
critical interval

[90C11, 90C31]
(see: Parametric mixed integer nonlinear optimization)

critical path
[90B35]
(see: Job-shop scheduling problem)

critical point
[49-XX, 49J52, 58E05, 90-XX, 90C30, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Hemivariational inequalities: eigenvalue problems;
Topology of global optimization)

critical point see: @+- —; generalized —; nondegenerate —
critical point of an energy functional see: generalized —
critical point set see: generalized —
critical point theory

[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

critical points
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

critical points see: nondegenerate —
critical region

[90C05, 90C31]
(see:Multiparametric linear programming; Parametric
linear programming: cost simplex algorithm)

critical region
[90C05, 90C31]
(see:Multiparametric linear programming; Parametric
linear programming: cost simplex algorithm)

critical regions
[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)
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critical regions see: neighboring—
critical row

[90C05, 90C06]
(see: Selfdual parametric method for linear programs)

critical value
[90C05, 90C06]
(see: Selfdual parametric method for linear programs)

cross see: criss- —
cross decomposition

[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

cross decomposition see: generalized —;mean value—;
MINLP: generalized —

cross decomposition algorithm
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

cross-entropy
[62F10, 90C25, 94A17]
(see: Entropy optimization: parameter estimation; Entropy
optimization: shannon measure of entropy and its
properties)

cross-entropy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

cross-entropy see: axiomatic derivation of—; axiomatic
derivation of the principle of minimum—;
Kullback–Leibler —; Kullback–Leibler measure of—;
principle of minimum—

cross-entropy principle see:minimum—
cross method see: criss-—; least-index criss- —; Terlaky

criss-—; Ziont criss-—
cross pivoting rules see: Criss- —
cross polytope

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

cross-sectional shapes see: beam—
cross-validation

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

crossing see: edge—; non- —
crossing minimization

[90C35]
(see: Optimization in leveled graphs)

crossingminimization see: k-level —; leveled—
crossing number

[90C10, 90C27, 94C15]
(see: Graph planarization)

crossover
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90, 92B05]
(see: Broadcast scheduling problem;Genetic algorithms;
Traveling salesman problem)

crossover
[92B05]
(see: Genetic algorithms)

crossover (EAX) see: edge assembly—

CRPM
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

crystal structures see: prediction of—
crystal X-ray diffraction data see: Optimization techniques for

phase retrieval based on single-—
crystallography: Shake and bake approach see: Phase problem

in X-ray —
CSA

[90C30]
(see: Convex-simplex algorithm)

CSC
[90B10, 90C27]
(see: Shortest path tree algorithms)

csd
[03B52, 03E72, 47S40, 62G07, 62G30, 65K05, 68T27, 68T35,
68Uxx, 90Bxx, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Isotonic regression
problems)

Csiszar ˛-divergence
[90C05, 90C25]
(see: Young programming)

CSP
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

CSP see:mAX-—;max-r- —
CSPs see: binary—
CST

[03E70, 03H05, 91B16]
(see: Alternative set theory)

cube connected cycle see: k-dimensional—
cuboctahedron

[90C35]
(see: Optimization in leveled graphs)

cumulative
(see:Mixed integer programming/constraint programming
hybridmethods)

cumulative sum diagram
[41A30, 62G07, 62G30, 62J02, 65K05, 90C26]
(see: Isotonic regression problems; Regression by special
functions: algorithms and complexity)

cures of dimensionality
[90C05]
(see: Continuous global optimization: models, algorithms
and software)

curse of dimensionality
[65K05, 65T40, 68Q05, 68Q10, 68Q25, 90B36, 90C05, 90C25,
90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval;
Information-based complexity and information-based
optimization; Stochastic optimal stopping: numerical
methods; Stochastic scheduling)

curse of dimensionality
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26, 90C34]
(see: Information-based complexity and information-based
optimization; Semi-infinite programming: methods for
linear problems)

curvature
[90C22, 90C25, 90C31]
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(see: Semidefinite programming: optimality conditions and
stability)

curvature see: direction of negative —; negative —
curve see: feasible high-order approximating—; high-order

approximating—; interest rate yield—; load—;
mobilization—; parabolic—; Peano—; space filling—;
switching—; tangent high-order approximating—

curve approach see: parabolic—
curve fitting

[90C26, 90C30]
(see: Forecasting)

curve fitting see: subjective—
curve fitting and extrapolation see: subjective—
curves see: approximation of space filling—
curvilinear coordinate system

[90C26]
(see: Smooth nonlinear nonconvex optimization)

curvilinear line search
[90C06]
(see: Large scale unconstrained optimization)

customer
[90B80, 90B85]
(see:Warehouse location problem)

customer see: weight of a—
cut

[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

cut see: branch and—; branch and price and—; capacity of
a—; Chvátal–Gomory—; clique-—; concavity—;
convexity—; feasibility—; flow across an s—t-—;
global—; integer —; intersection—; knapsack—;
lift-and-project—; lifting—; local —;max-—;
maximum—;Maximum cut problem, MAX-—;maximum
mean—;maximummean-weight —;minimal—;
minimum—;mixed integer rounding—; nonlinear —;
odd-hole-—; optimality—; s—t- —; valid—

cut algorithm see: Jünger–Mutzel branch and—
cut algorithms see: Integer programming: branch and—;

Stable set problem: branch —
cut-and-branch

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

cut conditions
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

cut of a fuzzy relation see: ˛- —
cut generation

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems; Planning in
the process industry)

cut-improvement see: dual—; primal—
Cut (MC) see:max—
cut principle see: disjunctive—
cut problem see:minimum—
cut problem, MAX-CUT see:Maximum—
cut procedure see: branch and—
cut theorem see:max-flowmin-—
cuts see: feasibility—; Fenchel —; lift-and-project—;

nondominated—; parallel —; pool of—; quotient—;
reduction—; value—

cutting angle method
[90C26]
(see: Global optimization: envelope representation)

cutting angle method
[90C26]
(see: Global optimization: envelope representation)

cutting angle method see: Global optimization: —
cutting pattern

[90B90, 90C59]
(see: Cutting-stock problem)

cutting patterns
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

cutting plane see: Chvátal–Gomory—; extended—;
generalized —; strong—; trade-off —

cutting plane algorithm
[49M37, 90C08, 90C11, 90C27, 90C29, 90C57, 90C59, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Quadratic assignment problem)

cutting plane algorithm
[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems; Stochastic linear
programming: decomposition and cutting planes)

cutting plane algorithm see: Extended—; Gomory—;
Sequential —

cutting plane algorithms see: Integer programming: —
cutting plane algorithms for stochastic linear programming

problems see: Stabilization of—
cutting plane approach

[90C25]
(see: Concave programming)

cutting plane approach see:Mixed-integer nonlinear
optimization: A disjunctive—

cutting plane approaches
[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

cutting plane coefficients see: statistical representation of —
cutting plane method

[46N10, 49J40, 49J52, 65K05, 90-00, 90C05, 90C10, 90C11,
90C25, 90C27, 90C30, 90C34, 90C47, 90C57]
(see: Integer programming;Nondifferentiable optimization;
Semi-infinite programming: discretizationmethods;
Solving hemivariational inequalities by nonsmooth
optimization methods)

cutting plane method
[90C26]
(see: Cutting plane methods for global optimization)

cutting plane method see: analytic center —; extended—;
generalized —; Kelley—; Kelley’s classical—

cutting plane methods
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

cutting plane methods see: Nondifferentiable optimization: —;
regularization of deterministic —

Cutting plane methods for global optimization
(90C26)

cutting plane model
[49J40, 49J52, 65K05, 90C30]
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(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

cutting planes
[03B05, 49M37, 68P10, 68Q25, 68R05, 68T15, 68T20, 90-XX,
90C05, 90C06, 90C08, 90C09, 90C10, 90C11, 90C27, 94C10]
(see: Integer programming: cutting plane algorithms;
Maximum satisfiability problem;Mixed integer nonlinear
programming; Survivable networks)

cutting planes
[49M20, 90-08, 90C05, 90C06, 90C08, 90C09, 90C10, 90C11,
90C25]
(see: Disjunctive programming; Integer programming:
branch and cut algorithms; Integer programming: cutting
plane algorithms;Nondifferentiable optimization: cutting
plane methods)

cutting planes see: polyhedral —; Stochastic linear
programming: decomposition and—

cutting stock
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

Cutting-stock problem
(90B90, 90C59)
(refers to: Integer programming)

cutting-stock problem
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68Q99, 68R, 68U,
68W, 90B, 90B50, 90C, 90C10, 90C11, 90C27, 90C57]
(see: Branch and price: Integer programming with column
generation;Convex discrete optimization;Optimization
and decision support systems; Set covering, packing and
partitioning problems)

cutting-stock problem
[90B50, 90B90, 90C59]
(see: Cutting-stock problem;Optimization and decision
support systems)

cutworthiness
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

cutworthy property
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

CVI see: Control vector iteration—
CVRP

[90B06]
(see: Vehicle routing)

cycle
[90C35]
(see:Minimum cost flow problem)

cycle see: cost of a directed—; fundamental —; k-dimensional
cube connected —;maximum profit-to-time ratio—;
minimum cost-to-time ratio —;minimummean—;
mixed—

cycle-canceling algorithm
[90C35]
(see:Minimum cost flow problem)

cycle-canceling algorithm
[90C35]
(see:Minimum cost flow problem)

cycle of a digraph see: directed—

cycle factor
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

cycle in a graph
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

cycle problem see: Hamiltonian—; hitting—
cycle time

[90C26]
(see: Global optimization in batch design under
uncertainty)

cycles see: negative —
Cyclic coordinate method

(90C30)
(referred to in: Powell method; Rosenbrockmethod;
Sequential simplex method)
(refers to: Powell method; Rosenbrockmethod; Sequential
simplex method)

cyclic coordinate search
[90C30]
(see: Cyclic coordinate method)

cyclic rule
[90C30]
(see: Cost approximation algorithms)

cyclic shift function
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

cyclically reducible graph
[90C35]
(see: Feedback set problems)

cycling
[90C05, 90C10, 90C60]
(see: Complexity of degeneracy; Simplicial pivoting
algorithms for integer programming)

cycling
[05B35, 65K05, 90C05, 90C20, 90C33, 90C60]
(see: Complexity of degeneracy;Criss-cross pivoting rules)

cycling see: nondegenerate —
cycling algorithm

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

cycling procedure see: anti- —
cZP

[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

D

D see: countable set —
DDV see: feasible for—
d-dimensional hypercube

[65K05, 65Y05]
(see: Parallel computing: models)

d-dimensional torus
[65K05, 65Y05]
(see: Parallel computing: models)
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D’Esopo–Pape method
[90B10, 90C27]
(see: Shortest path tree algorithms)

D-function
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

D-functions see: proximal minimization with—
D-optimal design

[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

DACE
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

DACE
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

DAE
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

Dai–Yuan algorithm
[90C30]
(see: Conjugate-gradientmethods)

damped Gauss–Newton method
[49M37]
(see: Nonlinear least squares: Newton-type methods)

damped Newton method
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

damped NM
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

Daniel–Gragg–Kaufmann–Stewart reorthogonalized
Gram–Schmidt algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Dantzig largest coefficient pivoting rule
[90C05]
(see: Linear programming: Klee–Minty examples)

Dantzig rule
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

Dantzig–Wolfe decomposition
[49M20, 90-08, 90C06, 90C25, 90C35]
(see: Nondifferentiable optimization: cutting plane
methods; Simplicial decomposition algorithms)

Dantzig–Wolfe decomposition
[90C06, 90C25, 90C30, 90C35]
(see: Frank–Wolfe algorithm; Simplicial decomposition;
Simplicial decomposition algorithms)

Dantzig–Wolfe decomposition see: nonlinear —
data

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

data see: best fitting to—; evaluation of empirical—;
feasibility approach to image reconstruction from
projection—; image reconstruction from projection—;
length of input—; optimization approach to image

reconstruction from projection—; Optimization techniques
for phase retrieval based on single-crystal X-ray
diffraction—; row conditional proximity—; size of input—;
training—

data-association problem
[90C35]
(see:Multi-index transportation problems)

data classification see: Deterministic and probabilistic
optimizationmodels for —

data classification via mixed-integer optimization see:
Multi-class—

data elicitation
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

data elicitation
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

Data envelopment analysis
(90B50, 90B30, 91B82, 90C05)
(refers to:Optimization and decision support systems)

data envelopment analysis
[90B30, 90B50, 90C05, 90C25, 90C29, 90C30, 90C31, 91B82]
(see: Bilevel programming: optimality conditions and
duality;Data envelopment analysis)

data envelopment analysis
[90C27]
(see: Operations research and financial markets)

data fitting
[90C30]
(see: Generalized total least squares)

data mapping see: computation and—
Data mining
data Mining

(see:Mathematical programming for data mining)
data mining see:Mathematical programming for —
data for multicriteria decisionmaking problems: optimization

techniques see: Estimating—
data parallelism

[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

data perturbation
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

data sets see: least squares problems with massive—
Davidon–Fletcher–Powell method

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Davidon–Fletcher–Powell update
[90C30]
(see: Broyden family of methods and the BFGS update)

day dynamic travel behavior see: day-to-—
day-to-day dynamic travel behavior

[90B15]
(see: Dynamic traffic networks)

day-to-day dynamic travel behavior
[90B15]
(see: Dynamic traffic networks)
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D.C. decomposition
[90C30]
(see: Large scale trust region problems)

d.c. function
[65H10, 90B80, 90C11, 90C26, 90C30, 90C31]
(see: Global optimization methods for systems of nonlinear
equations; Robust global optimization; Stochastic
transportation and location problems)

d.c. function
[46A20, 52A01, 65Kxx, 90C30, 90Cxx]
(see: Farkas lemma: generalizations;Quasidifferentiable
optimization: algorithms for QD functions)

dc functions
[90C26]
(see: D.C. programming)

d.c. optimization
[90C25, 90C26, 90C31]
(see: Concave programming; Robust global optimization)

D.C. programming
(90C26)
(referred to in: ˛BB algorithm;Global optimization
methods for systems of nonlinear equations; Large scale
trust region problems;Quadratic knapsack;Quadratic
programming with bound constraints; Reverse convex
optimization; Standard quadratic optimization problems:
theory; Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)

d.c. programming
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization;
Duality theory: monoduality in convex optimization)

d.c. programming
[49-XX, 90-XX, 90C30, 93-XX]
(see: Duality theory: biduality in nonconvex optimization;
Large scale trust region problems)

d.c. programming problem
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

d.c. set
[90C26]
(see: Global optimization in multiplicative programming)

DCA
[90C30]
(see: Large scale trust region problems)

De La Garza method
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

De novo protein design using flexible templates
(92D20, 46N10, 90C10)

De novo protein designUsing rigid templates
DEA

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

DEA
[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

dead or dog-lawed
(see: Railroad crew scheduling)

dead point
[90Cxx]
(see: Discontinuous optimization)

dead-point iterate
[90Cxx]
(see: Discontinuous optimization)

deadhead arcs
(see: Railroad crew scheduling)

deadheading
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization; Railroad locomotive scheduling)

deadheading see: crew—
decision see: ex-ante (risk averse, anticipative) —; ex-post (risk

prone, adaptive) —; expectation and—; first-stage—;
funding—; fuzzy—; investment —; recourse—;
second-stage—

decision aid see:multicriteria—
decision alternative see: set of—
decision analysis

[90C15]
(see: Two-stage stochastic programs with recourse)

decision maker
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

decision making
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

decisionmaking see: financial—; group—; hierarchical—;
multicriteria—;multiple criteria—; Preference
disaggregation approach: basic features, examples from
financial—

decisionmaking problems: optimization techniques see:
Estimating data for multicriteria—

decision making with rolling horizon
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

decision making with rolling horizon
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

decision making under extreme events
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

decision making under extreme events
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

decision making under uncertainty
[90C26]
(see:MINLP: application in facility location-allocation)

decisionmodels see: nonlinear —
decision problem

[90C60]
(see: Complexity theory; Computational complexity theory)

decision problem
[90C60]
(see: Complexity theory; Computational complexity theory)
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decision problem see: locational—; polynomially
transformable—

decision problems see: “hit-or-miss”—
decision process see:Markov—
decision rule

[90C15]
(see: Approximation of extremum problems with
probability functionals)

decision rule see:minimax—
decision set

[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties;Vector optimization)

decision support
[65K05, 90B50, 90C05, 90C29, 91B06, 91B60]
(see: Financial applications of multicriteria analysis;
Multi-objective optimization and decision support systems;
Railroad crew scheduling)

decision support methodologies for auditing decisions see:
Multicriteria—

decision support system
[65K05, 90B50, 90B80, 90C05, 90C29, 91B06]
(see: Facilities layout problems;Multi-objective
optimization and decision support systems)

decision support system
[90B80, 90C29, 91A99]
(see: Decision support systems with multiple criteria;
Facilities layout problems; Preference disaggregation)

decision support system see: Asset liabilitymanagement —;
intelligent multicriteria—;multicriteria—;multicriteria
group—

decision support systems
[90C29]
(see: Decision support systems with multiple criteria)

decision support systems see: intelligent multicriteria—;
Multi-objective optimization and—; Optimization and—

Decision support systems with multiple criteria
(90C29)
(referred to in: Bi-objective assignment problem; Estimating
data for multicriteria decisionmaking problems:
optimization techniques; Financial applications of
multicriteria analysis; Fuzzy multi-objective linear
programming;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)
(refers to: Bi-objective assignment problem; Estimating data
for multicriteria decision making problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria

sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)

decision-theoretic framework see: Bayesian—
decision theory

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

decision tree
[90C09, 90C10]
(see: Optimization in boolean classification problems)

decision variable see: flow—
decision variables

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming; Plant layout problems and optimization)

decision variables x
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

decisions see: diversified investment —; first-stage—;
inventory and transportation —;Multicriteria decision
support methodologies for auditing—; second-stage—

decisions in dynamic optimization see: discrete—
decisions in a supply chain see: operational —
declarative knowledge

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

declarative language
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

declarative language
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

declarative languages
(see: Planning in the process industry)

declarative program see: pretty-printing a—
declarative program structure see: analysing—
declarative programs see: classifying—; symbolically

transforming—
declarative representation

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

declared interval function see: pre- —
decomposable cost

[90C35]
(see:Multi-index transportation problems)

decompose
[90C25, 90C26]
(see: Decomposition in global optimization)
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decomposition
[15-XX, 49M29, 65-XX, 68Q99, 90-XX, 90C11, 90C15, 90C26,
90C33, 90C35]
(see: Branch and price: Integer programming with column
generation;Cholesky factorization; Generalized benders
decomposition;Multicommodity flow problems; Stochastic
bilevel programs)

Decomposition
[49M27, 49M29, 49M37, 68Q99, 90C06, 90C11, 90C20,
90C30, 90C35, 90C90]
(see: Branch and price: Integer programming with column
generation;Decomposition principle of linear
programming;Decomposition techniques for MILP:
lagrangian relaxation;Generalized benders decomposition;
MINLP: generalized cross decomposition;Mixed integer
nonlinear programming;Multicommodity flow problems;
Railroad crew scheduling; Successive quadratic
programming: decomposition methods)

decomposition see: Benders —; branch—; cross—;
Dantzig–Wolfe—; D.C. —; disaggregate simplicial—;
dual—; generalized Benders —; generalized cross—; heat
exchanger network synthesis without—; Jordan–Hahn—;
L-shaped—; Lagrangian —; Lasserre signed—; Lawrence
signed—; LU- —;mean value cross—;MINLP: generalized
cross—; nested Benders —; nonlinear Dantzig–Wolfe—;
operator —; path—; price-directive—; problem—; QR—;
range and null space—; regularized Frank–Wolfe—;
resource-directive—; restricted simplicial—; signed—;
simplicial—; stochastic—; tree —;well-separated pair—;
Yosida-Hewitt—

decomposition algorithm see: cross —; regularized
stochastic—; stochastic —

decomposition algorithms
[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

decomposition algorithms
[90B10, 90C05, 90C06, 90C11, 90C31, 90C35]
(see: Nonoriented multicommodity flow problems;
Parametric mixed integer nonlinear optimization)

decomposition algorithms see: Simplicial—
decomposition algorithms for nonconvex minimization problems

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

Decomposition algorithms for the solution of multistage
mean-variance optimization problems
(90C15, 90C90)

decomposition approach see: augmented Lagrangian —;
Benders —

decomposition-based clustering approach: global optimum
search with enhanced positioning see: Gene clustering:
A novel—

decomposition CA algorithms
[90C30]
(see: Cost approximation algorithms)

decomposition of a continuous piecewise linear function
[90Cxx]
(see: Discontinuous optimization)

decomposition/coordination
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

decomposition and cutting planes see: Stochastic linear
programming: —

decomposition of a function see: second order—
Decomposition in global optimization

(90C26, 90C25)
decomposition heuristic

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

decompositionmethod see: feasible—; nonfeasible—
decomposition methods

[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

decompositionmethods see: Successive quadratic
programming: —

decomposition of a monomial ideal see: standard pair —
decomposition point

[58E05, 90C30]
(see: Topology of global optimization)

decomposition points
[58E05, 90C30]
(see: Topology of global optimization)

Decomposition principle of linear programming
(90C06)
(referred to in: Generalized benders decomposition;MINLP:
generalized cross decomposition;MINLP: logic-based
methods; Simplicial decomposition; Simplicial
decomposition algorithms; Stochastic linear programming:
decomposition and cutting planes; Successive quadratic
programming: decompositionmethods)
(refers to: Generalized benders decomposition;MINLP:
generalized cross decomposition;MINLP: logic-based
methods; Simplicial decomposition; Simplicial
decomposition algorithms; Stochastic linear programming:
decomposition and cutting planes; Successive quadratic
programming: decompositionmethods)

decomposition of SLP
[90C06, 90C15]
(see: Stochastic linear programming: decomposition and
cutting planes)

decomposition solution see: truncated singular value—
decomposition step

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

decomposition techniques
[49K35, 49M27, 49Q10, 65K10, 74K99, 74Pxx, 90C15, 90C25,
90C90, 91A65]
(see: Convex max-functions;Multilevel optimization in
mechanics;Multistage stochastic programming: barycentric
approximation; Two-stage stochastic programs with
recourse)

decomposition techniques
[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

Decomposition techniques for MILP: lagrangian relaxation
(90C90, 90C30)
(referred to in: Branch and price: Integer programming with
column generation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
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branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; Lagrange,
Joseph-Louis; Lagrangianmultipliersmethods for convex
programming; LCP: Pardalos–Rosenmixed integer
formulation;MINLP: trim-loss problem;Multi-objective
integer linear programming;Multi-objective mixed integer
programming;Multi-objective optimization: lagrange
duality;Multiparametricmixed integer linear
programming; Parametric mixed integer nonlinear
optimization; Set covering, packing and partitioning
problems; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)
(refers to: Branch and price: Integer programming with
column generation; Integer linear complementary problem;
Integer programming; Integer programming: algebraic
methods; Integer programming: branch and bound
methods; Integer programming: branch and cut algorithms;
Integer programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; Lagrange, Joseph-Louis; Lagrangianmultipliers
methods for convex programming; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multi-objective optimization: lagrange duality;
Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

decompositions see: Branchwidth and branch—
decrease

[65K05, 90C30]
(see: Random search methods)

decrease see: high-order approximating cone of—; high-order
approximating vector of —; high-order cones of—;
high-order set of —

decrease conditions see: sufficient—
decreasing

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

decreasing see: convex—; nonlinear—
decreasing tail see: RSM-distributionwith algebraically—
Dedekind number

[90C09]
(see: Inference of monotone boolean functions)

deepening see: iterative—
default strategies

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems; Planning in
the process industry)

deficit of a network node
[90C35]
(see:Minimum cost flow problem)

definable classes see: set- —

defined end see: clearly —
defined start-ups see: well- —
definite see: positive—
definite completion problem see: positive (semi)—
definite matrices see: positive—
definite matrix see: partial —; positive—; strongly positive—
definite quadratic binary programming see: positive semi-—
definite quadratic function see: positive—
definite quadratic models see: positive—
definiteness see: positive—
definition see: algorithmic—; optimization algorithm—
definition (colloquial) see: optimization: —
deflected gradient methods

[90C30]
(see: Cost approximation algorithms)

deformable model
[90C90]
(see: Optimization in medical imaging)

deformable templates
[90C90]
(see: Optimization in medical imaging)

deformation process
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

degeneracy
[90C60]
(see: Complexity of degeneracy)

degeneracy
[90C60]
(see: Complexity of degeneracy)

degeneracy see: Complexity of —; near —; resolving—
degenerate

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

degenerate see: dual—; primal—
degenerate basic solution

[90C05]
(see: Linear programming)

degenerate basis see: dual —; primal—
degenerate BFS

[90C60]
(see: Complexity of degeneracy)

degenerate BFS see: nearly —
degenerate pivot operation

[90C35]
(see:Minimum cost flow problem)

degenerate problem
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

degenerate system
[90C60]
(see: Complexity of degeneracy)

degradation in quality of both water environment see:
minimizing the—

degree see: Brouwer—; graph—; Leray–Schauder —;
maximum—;motionless—; topological —

degree of a binomial
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

degree c see: algorithm polynomial of—
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degree-constrained subgraph problem
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

degree deletion heuristic see: increasing-—
degree of flexibility see: fixed—; optimal —
degree of inclusion

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

degree of linearity
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

degree minimum spanning tree problem see: bounded—
degree of a monomial ideal see: arithmetic —
degree ordering see:minimum—
degree parallelism alignment problem see: constant—
degree theory

[90C33]
(see: Topological methods in complementarity theory)

degree zero see: homogeneous of—
degrees of credence

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

delaunay triangulation
[52B11, 52B45, 52B55, 68Q20]
(see: Optimal triangulations;Volume computation for
polytopes: strategies and performances)

delay problem in air traffic control see: ground—
delay programs see: air traffic control and ground—
delay system see: time-—
delay systems see: time-—
deleting matroid elements

[90C09, 90C10]
(see:Matroids)

deletion
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

deletion heuristic see: increasing-degree—; incremental —
deletion in matroids

[90C09, 90C10]
(see: Oriented matroids)

deletion problem see: vertex (arc)—
deliveries see: Vehicle routing problem with simultaneous

pickups and—
delivers see: pick-up and—
delivery see: express shipment —
delivery problem see: express —
delivery systems see:Model based control for drug—
Delphi method

[90C26, 90C30]
(see: Forecasting)

delta function
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

demand see: elastic travel —; fixed travel —; net —;
regional—; unity—; water —;water resources planning
under uncertainty on hydrological exogenous inflow and—

demand arcs
(see: Railroad crew scheduling)

demand CMST see: equal —
demand function see: aggregate excess —

demand functions see: elastic demand traffic network
problems with travel —

demand node
[90C30, 90C35]
(see:Minimum cost flow problem;Optimization in water
resources)

demand traffic network equilibrium see: fixed—
demand traffic network problems see: fixed—
demand traffic network problems with travel demand

functions see: elastic—
denial

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

denial see: checklist—
density

[90C05, 90C25, 90C30, 90C34]
(see: Fractional zero-one programming; Semi-infinite
programming: discretizationmethods)

density see: boltzmann—; steady-state distribution—;
transition probability—

density annealing see: Gaussian—
density clustering

[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

density function see: logconcave probability—
dep-station

(see: Railroad locomotive scheduling)
dep-time

(see: Railroad locomotive scheduling)
departure see: duty-before- —
departure connection arc see: ground- —
departure-ground

(see: Railroad locomotive scheduling)
departure node

(see: Railroad crew scheduling;Railroad locomotive
scheduling)

departure-station
(see: Railroad crew scheduling)

dependence see: continuous—; linear —; noisy functional—
dependence analysis

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

dependence property see: boundary—
dependency see: interval —
dependency set see: common—
dependent see: positively linearly —
dependent constraints see:maximum function with—
dependent hyperplanes

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

dependent property see: norm-—
dependent protein force field via linear optimization see:

Distance—
dependent set

[90C09, 90C10]
(see:Matroids)

dependent set see:minimal—
dependent traveling salesman problem see: Time-—
dependent variables

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)
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depot
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

depot see:multiple—; virtual —
depot group

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

depot/multiple depots see: single—
depot vehicle scheduling problem see:Multi-—; Single- —
depot vehicle scheduling problems see:multi-—; Single- —
depots see: single depot/multiple—
depth see: evaluation—
depth of a Boolean circuit

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

depth-first
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

depth-first search
[05C85, 90C10, 90C29, 90C35]
(see: Directed tree networks; Generalized networks;
Multi-objective integer linear programming)

depth-first search with backtracking
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

depth-first tree search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

Depth-First Tree Search see: Parallel —
derangements

[34E05, 90C27]
(see: Asymptotic properties of randommultidimensional
assignment problem)

derivation of cross-entropy see: axiomatic—
derivation of entropy see: axiomatic—
derivation of the Hamilton–Jacobi–Bellman equation

[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

derivation of the principle of maximum entropy see:
axiomatic—

derivation of the principle of minimum cross-entropy see:
axiomatic—

derivative
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

derivative see: B- —; Clarke—; clarke generalized —; Clarke
generalized directional—; Clarke–Rockafellar
generalized —; Dini —; Dini conditional lower—; Dini
conditional upper —; Dini lower—; Dini lower
directional—; Dini upper —; Dini upper directional—;
directional—; directional Clarke—; generalized
directional—; generalized second order directional—;
Hadamard—; Hadamard conditional lower—; Hadamard
conditional upper —; Hadamard lower directional—;
Hadamard upper directional—; kth directional—;
parameter —; upper—

derivative approach see:material —
derivative conditions see:matching of—

derivative-free descent method
[90C30, 90C33]
(see: Implicit lagrangian)

Derivative-freemethods for non-smooth optimization
(65K05, 90C56)
(referred to in:Maximum cut problem, MAX-CUT)

derivative of a function
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

derivative of an integral
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

derivative method see: adjoint—
derivative of a probability function

[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

derivative of a probability function
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

derivative ranges see: Bounding—
derivative in shape optimization see: Topological—
derivatives

[93-XX]
(see: Dynamic programming: optimal control applications)

derivatives
[60J05, 90C15, 90C27]
(see: Derivatives of markov processes and their simulation;
Derivatives of probability measures;Discrete stochastic
optimization)

derivatives see: Dini directional—; directional—;
distributional—; elementary partial —; evaluation of
objective functions and/or—; Hadamard directional—;
handcoded—; high-order directional—; higher-order —;
higher-order directional—; lower and upper directional—;
matrix of second partial —;method of bad—; pricing—;
process —; Quasidifferentiable optimization: Dini
derivatives, clarke—; sensitivity—; simulation of—

derivatives, clarke derivatives see: Quasidifferentiable
optimization: Dini —

Derivatives of markov processes and their simulation
(90C15, 60J05)
(referred to in:Derivatives of probability and integral
functions: general theory and examples;Derivatives of
probability measures;Discrete stochastic optimization)
(refers to:Derivatives of probability and integral functions:
general theory and examples;Derivatives of probability
measures;Discrete stochastic optimization;Optimization
in operation of electric and energy power systems;
Stochastic quasigradientmethods)

derivatives in optimization see: Dini and Hadamard—
Derivatives of probability and integral functions: general

theory and examples
(90C15)
(referred to in:Derivatives of markov processes and their
simulation;Derivatives of probability measures;Discrete
stochastic optimization)
(refers to:Derivatives of markov processes and their
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simulation;Derivatives of probability measures;Discrete
stochastic optimization;Optimization in operation of
electric and energy power systems)

Derivatives of probability measures
(90C15)
(referred to in: Derivatives of markov processes and their
simulation;Derivatives of probability and integral
functions: general theory and examples;Discrete stochastic
optimization)
(refers to: Derivatives of markov processes and their
simulation;Derivatives of probability and integral
functions: general theory and examples;Discrete stochastic
optimization;Optimization in operation of electric and
energy power systems; Stochastic quasigradientmethods)

derivatives of structural response
[90C26, 90C90]
(see: Structural optimization: history)

descending index
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

descent
[90C30]
(see: Nonlinear least squares problems)

descent see: direction of—; dual—; "-steepest —; first—;
gradient—; gradient-related —; hypodifferential —; loss
of—;method of codifferential—;method of
hypodifferential —;method of steepest —; Newtonian —;
rate of steepest —; reformulation—; steepest —; variable
neighborhood—

descent algorithm
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

descent algorithm see: steepest —
descent-based methods

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

descent direction
[90C06, 90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation; Large scale unconstrained optimization;
Sequential simplex method)

descent direction
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

descent direction see: Dini steepest —; Hadamard steepest —;
quasi-Newtonian—; steepest —

descent directions see: construction of—
descent directions and efficient points see: Discretely

distributed stochastic programs: —
descent flow

[58E05, 90C30]
(see: Topology of global optimization)

descent flow
[58E05, 90C30]
(see: Topology of global optimization)

descent iterations see: Local attractors for gradient-related —
descent method

[49M37]
(see: Nonlinear least squares: trust regionmethods)

descent method
[90C30]
(see: Nonlinear least squares problems)

descent method see: coordinate—; derivative-free—;
steepest —

descent in a nonlinear program see: loss of—
descent in a nonlinear programming algorithm

[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

descent properties
[90C30]
(see: Cost approximation algorithms)

descent ray
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

descent step
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

descent vector
[49M29, 65K10, 90C05, 90C06, 90C25, 90C30, 90C34]
(see: Local attractors for gradient-related descent iterations;
Semi-infinite programming, semidefinite programming
and perfect duality)

descent vector
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

descent vector see: steepest —
description see: problem—
descriptionmethod see: double—
descriptional complexity

[90C60]
(see: Kolmogorov complexity)

Descriptional complexity
[90C60]
(see: Kolmogorov complexity)

descriptive complexity
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

descriptive perspective
[90C29]
(see: Preference modeling)

descriptors see: context—
design

[90C90]
(see: Design optimization in computational fluid dynamics)

design
[90C26]
(see:MINLP: design and scheduling of batch processes)

design see: algorithm—; batch plant—; Beam selection in
radiotherapy treatment —; circuit—; D-optimal—;
distribution system—; experiment —; experimental —;
fully stressed—; global optimal—; logical—;model for
parallel algorithm—;molecular—;multidisciplinary—;
Multilevel methods for optimal —;multiload shape—;
multiload truss —; network —; Operations research models
for supply chain management and—; optimal—; optimal
experimental —; optimal shape—; point—; process —;
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robust obstacle-free shape—; robust obstacle-free truss —;
sequential experimental —; shape—; structural —; supply
chain—; truss —

design analysis
[90C90]
(see: Design optimization in computational fluid dynamics)

design approaches see: Optimal solvent—
design centering

[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

design of composite structures
[90C26, 90C29]
(see: Optimal design of composite structures)

design of composite structures
[90C26, 90C29]
(see: Optimal design of composite structures)

design of composite structures see: Optimal —
design and control see: interaction of—;MINLP: applications

in the interaction of—;Multi-objective optimization:
interaction of—

design of dynamic systems by constructive nonlinear
dynamics see: Robust—

design models see: strategic —
design in nonlinear optics see: Optimal—
design of operators

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

design of optimal shapes
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

design optimization see:Multidisciplinary—
design optimization in CFD

[90C90]
(see: Design optimization in computational fluid dynamics)

Design optimization in computational fluid dynamics
(90C90)
(referred to in: Interval analysis: application to chemical
engineering design problems;Multidisciplinary design
optimization;Multilevel methods for optimal design;
Optimal design of composite structures;Optimal design in
nonlinear optics; Structural optimization: history)
(refers to: Bilevel programming: applications in engineering;
Interval analysis: application to chemical engineering
design problems;Multidisciplinary design optimization;
Multilevel methods for optimal design;Optimal design of
composite structures;Optimal design in nonlinear optics;
Structural optimization: history)

design optimization process see: automated —
design pattern based model see: gIS —
design problem

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

design problem see:multiple criteria—; network —;
Production-distribution system—; survivable network—

design problems
[90C29]
(see:Multiple objective programming support)

design problems see: Interval analysis: application to chemical
engineering—; Network —; optimal—

Design of robust model-based controllers via parametric
programming

design and schedule construction see: network —
design and scheduling of batch processes see:MINLP:—
design space

[90C90]
(see: Design optimization in computational fluid dynamics)

design stage see: conceptual—; detailed—; preliminary—
design superstructure

[90C90]
(see:MINLP: heat exchanger network synthesis)

design of a supply chain see: strategic —
design, synthesis and control see: interaction of—
design under uncertainty

[49M37, 90C11, 90C30, 90C90]
(see:Mixed integer nonlinear programming; Successive
quadratic programming: applications in the process
industry)

design under uncertainty see: Global optimization in batch—;
process synthesis and—

design using flexible templates see: De novo protein —
design variables

[90C90, 91B28]
(see: Robust optimization)

design variables see: discrete—
designs see: subset interconnection—
designUsing rigid templates see: De novo protein—
destructive method

[90B35]
(see: Job-shop scheduling problem)

det problem see:max-—
detailed design stage

[90C90]
(see: Design optimization in computational fluid dynamics)

detecting redundancy see: deterministic method for—;
probabilistic method for—

detection see: low-level feature—
detection via semidefinite programming see:Maximum

likelihood—
detention costs

(see: Railroad crew scheduling)
determinant expansion of a matrix see: standard—
determinant maximization see: Semidefinite programming

and—
determination see:molecular structure —; orbits—
determination of clusters size threshold

[92C05, 92C40]
(see: Protein loop structure predictionmethods)

determination: convex global underestimation see:Molecular
structure—

determination of rmsd threshold
[92C05, 92C40]
(see: Protein loop structure predictionmethods)

determined graph see: rank—
determined system of nonlinear equations see: well- —
determined variable see: strongly—
Determining the optimal number of clusters

(90C26, 91C20, 68T20, 68W10, 90C11, 92-08, 92C05, 92D10)
deterministic

[90C60]
(see: Complexity classes in optimization)
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deterministic
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

deterministic algorithm see: polynomial time—; sequential —
deterministic cutting plane methods see: regularization of—
deterministic equivalent model

[90C30, 90C35]
(see: Optimization in water resources)

deterministic equivalent problem
[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

deterministic global optimization see: LP strategy for
interval-Newton method in—;Mixed integer nonlinear
bilevel programming: —

deterministic global optimization algorithm
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

deterministic method for detecting redundancy
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

deterministic neural network
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

deterministic optimization
[65K05]
(see: Direct global optimization algorithm)

Deterministic and probabilistic optimization models for data
classification
(65K05, 55R15, 55R35, 90C11)
(referred to in: Linear programmingmodels for
classification;Mixed integer classification problems)

deterministic problem see: static —; underlying—
deterministic shortest path problem

[49L20, 90C39, 90C40]
(see: Dynamic programming: infinite horizon problems,
overview)

deterministic Turing machine
[90C60]
(see: Complexity theory)

deterministic Turing machine see: space complexity of a—;
time complexity of a—

development see: algorithmic—;model —
development and evaluation see: software—
deviation see: external —; internal —; least absolute—;

maximum absolute—;mean absolute—
device see: local search—
devices and related techniques see: acceleration—
DEXPTIME

[90C60]
(see: Complexity classes in optimization)

DFBB
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

DFP method
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

DFP update
[90C30]
(see: Broyden family of methods and the BFGS update)

DFP update
[90C30]
(see: Broyden family of methods and the BFGS update)

diagnosing and tracing infeasibilities
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems; Planning in
the process industry)

diagnosis see: breast cancer —;medical—
diagnosis: optimization-basedmethods see: Disease—
diagnostic rotation

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

diagnostic rotations
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

diagonal
[47J20, 49J40, 65K10, 90C33]
(see: Interval analysis for optimization of dynamical
systems; Solutionmethods for multivalued variational
inequalities)

diagonal see: negative main—; quasi- —
diagonal dominance condition

[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

diagonal matrix
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

diagonal model
[91B50]
(see: Financial equilibrium)

diagonal operator see: block-0-—; off-0-—
diagonal pivot

[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

diagonal shift matrix
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm;QBB global optimization method)

diagonal underestimation matrix
[49M37, 65K10, 90C26, 90C30]
(see: QBB global optimization method)

diagram see: composition interval —; conceptual—;
cumulative sum—; farthest-point Voronoi—; Hasse—;
temperature interval —; Voronoi —

diagrams see: Voronoi—
diagrams in facility location see: Voronoi—
DIAL see: S-—
dial-a-ride

[90B06]
(see: Vehicle routing)

dial-a-ride see:m-—
diameter

[90C35]
(see:Multi-index transportation problems)
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dichotomy see: generalized-upper-bound—; GUB—;
variable—

dicycle
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

dielectric structures see: Global optimization of planar
multilayered—

Dienes implication see: Kleene–—
difference see:minimum composition—; temporal —
difference approximation see: finite-—
difference convex function

[26B25, 26E25, 49J40, 49J52, 49M05, 49S05, 74G99, 74H99,
74Pxx, 90C99]
(see: Quasidifferentiable optimization;Quasidifferentiable
optimization: variational formulations)

difference of convex functions
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

difference equation
[93-XX]
(see: Dynamic programming: optimal control applications)

difference estimate
[90C15]
(see: Derivatives of probability measures)

difference of max-type functions
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

difference methods see: finite—
difference of monotonic functions

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

difference quotients
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

difference of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

difference sublinear
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

difference sublinear function
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

differences see: divided—; finite—
differences of convex sets

[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

differencing
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

different
(see: Planning in the process industry)

differentiability see: direct—; inverse —;Minimax:
directional—

differentiable
[65K05, 90C15, 90C30, 90Cxx]
(see: Derivatives of probability measures;Dini and

Hadamard derivatives in optimization; Image space
approach to optimization)

differentiable see: Dini —; dini directionally—;
directionally—; Hadamard—; hadamard directionally—;
process —; strictly —

differentiable convex programming
[90C30]
(see: Lagrangian duality: BASICS)

differentiable exact penalty function approach see:
continuously—

differentiable family of measures see: weakly L1 (v)- —
differentiable function

[26B25, 26E25, 49J52, 90C99]
(see: Quasidifferentiable optimization)

differentiable function
[90C30]
(see: Frank–Wolfe algorithm)

differentiable function see: C-—; Dini —; Dini conditionally—;
Dini conditionally directionally—; Dini directionally—; Dini
uniformly—; Dini uniformly directionally—;
directionally—; Fréchet —; Hadamard—; Hadamard
conditionally—; Hadamard conditionally directionally—;
Hadamard directionally—; piecewise—; piecewise
continuously—; piecewise twice- —

Differentiable Functions and Applications see:minimization
Methods for Non- —

differentiable (GD) function see: generalized—
differentiable MINLPs see: twice-—
differentiable NLPs see: Twice-—
differentiable part of a function see: twice-—
differential

[01A99]
(see: Leibniz, gottfried wilhelm)

differential see: C- —; Clarke directional—; generalized
directional—; limiting—; one-sided—; Rockafellar
directional—

differential and algebraic equations
[49M37, 65L99, 90C11, 93-XX]
(see:MINLP: applications in the interaction of design and
control;Optimization strategies for dynamic systems)

differential cost
[49L99]
(see: Dynamic programming: average cost per stage
problems)

differential cost vector
[49L99]
(see: Dynamic programming: average cost per stage
problems)

differential dynamic programming
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

differential equation
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

differential equation
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

differential equation see: Knizhnik–Zamolodchikov—;
stochastic—
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differential equations
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

differential equations see: Duality in optimal control with first
order —; Eigenvalue enclosures for ordinary—; First order
partial —; Interval analysis: —; ordinary—; partial —

Differential equations and global optimization
(60G35, 65K05)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications; Continuous global
optimization: models, algorithms and software;Direct
global optimization algorithm;Global optimization based
on statistical models;Global optimization in binary star
astronomy;Global optimization methods for systems of
nonlinear equations; Global optimization using space
filling; Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software;Direct global optimization
algorithm;Global optimization based on statistical models;
Global optimization in binary star astronomy; Global
optimization methods for systems of nonlinear equations;
Global optimization using space filling; Simulated
annealingmethods in protein folding; Topology of global
optimization)

differential stability see: Sensitivity and stability in NLP:
continuity and—

differentiation
[01A99]
(see: Leibniz, gottfried wilhelm)

differentiation
[01A99, 65H99, 65K99]
(see: Automatic differentiation: point and interval; Leibniz,
gottfried wilhelm)

differentiation see: algorithmic—; analytical —; automatic—;
backward mode in automatic—; computational—; forward
mode of automatic—; goal-oriented—; internal
numerical —; interval automatic —; Nonlocal sensitivity
analysis with automatic—; numerical —; reverse —; reverse
mode automatic —; symbolic—; vector forward
automatic—

differentiation arithmetic
[90C26, 90C30]
(see: Bounding derivative ranges)

differentiation: calculation of the Hessian see: Automatic—
differentiation: calculation of Newton steps see: Automatic—
differentiation: geometry of satellites and tracking stations see:

Automatic—
differentiation: introduction, history and rounding error

estimation see: Automatic —
differentiation: parallel computation see: Automatic—
differentiation: point and interval see: Automatic—
differentiation: point and interval taylor operators see:

Automatic—
differentiation: root problem and branch problem see:

Automatic—
difficult optimization problems see:Modeling—
difficulties in bilinear programming

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

diffraction data see: Optimization techniques for phase
retrieval based on single-crystal X-ray—

diffusion equation
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

diffusion equation see: nonlinear—
diffusion equation method

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

diffusion flux models see: estimation of—
diffusion fluxes see: estimation of 1D- —
diffusion process

[78M50, 90B50, 91B28]
(see: Global optimization algorithms for financial planning
problems; Laplace method and applications to optimization
problems)

digraph
[03B52, 03E72, 05C05, 05C40, 47S40, 68R10, 68T27, 68T35,
68Uxx, 90Bxx, 90C09, 90C10, 90C35, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Combinatorial matrix
analysis;Network design problems)

digraph see: circuit of a—; complete—; directed cycle of a—;
min-max—; set of edges of a—; signed—; strongly
connected—; strongly connected components of a—;
vertex of a—

digraph representation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

dihedral angle
[92B05]
(see: Genetic algorithms for protein structure prediction)

dihedral angle
[92B05]
(see: Genetic algorithms for protein structure prediction)

dijoin
[90C35]
(see: Feedback set problems)

dilatation
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

dilation see: space—
dimension

[90C30]
(see: Simplicial decomposition)

dimension algorithm see: dimension-by-—
dimension-by-dimension algorithm

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

dimension pivoting algorithms see: varying—
dimensional Brownian motion see: N-—
dimensional control problem see: finite-—
dimensional cube connected cycle see: k- —
dimensional generalized order complementarity problem see:

infinite-—
dimensional grid see: 2-—
dimensional hypercube see: d-—
dimensional integration see: high-—
dimensional knapsack problem see:m-—
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dimensional linear program see: finite-—
dimensional linear programming see: infinite-—
dimensional marginal probability distribution function see:

one- —; two- —
DIMENSIONAL MATCHING see: 3- —
dimensional matching problem see: 3- —
dimensional models for entropy optimization for image

reconstruction see: finite- —
dimensional nonlinear equation see: one- —
dimensional optimization see: infinite-—
dimensional subspace see: finite-—
dimensional symmetric interval matrix

[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

dimensional torus see: 2- —; d- —
dimensional transportation problem see: three- —
dimensional variational inequality problem see: finite-—
dimensional vectors see: lexicographical ordering for n-—
dimensionality see: cures of—; curse of—
Dini codifferentiable function

[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

Dini conditional lower derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini conditional upper derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini conditionally differentiable function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini conditionally directionally differentiable function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini derivative
[26E25, 49J52, 52A27, 65K05, 90C99, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Quasidifferentiable optimization: Dini derivatives, clarke
derivatives;Quasidifferentiable optimization: optimality
conditions)

Dini derivative
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

Dini derivatives, clarke derivatives see: Quasidifferentiable
optimization:—

Dini differentiable
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini differentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Dini directional derivatives
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini directional derivatives
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

dini directionally differentiable
[65K05, 90C30, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Minimax: directional differentiability)

Dini directionally differentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Dini and Hadamard derivatives in optimization
(90Cxx, 65K05)
(referred to in: Global optimization: envelope
representation;Nondifferentiable optimization;
Nondifferentiable optimization: cutting plane methods;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: Newton method;
Nondifferentiable optimization: parametric programming;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods;Quasidifferentiable optimization: optimality
conditions)
(refers to: Global optimization: envelope representation;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods; Nondifferentiable
optimization: subgradient optimization methods)

Dini lower derivative
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

Dini lower directional derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini quasidifferentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Dini quasidifferential
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Dini steepest ascent direction
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini steepest descent direction
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini sup-stationary point
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini uniformly differentiable function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dini uniformly directionally differentiable function
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

Dini upper derivative
[26E25, 49J52, 52A27, 90C99]
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(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

Dini upper directional derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Dinkelbach algorithm
[90C32]
(see: Quadratic fractional programming: Dinkelbach
method)

Dinkelbach method
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

Dinkelbach method
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization;Quadratic
fractional programming: Dinkelbachmethod)

Dinkelbach method see: Quadratic fractional programming: —
Diophantine approximation problem see: simultaneous—
Diophantine equations

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

dipole moment
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

direct approach
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

direct collision
(see: Broadcast scheduling problem)

direct differentiability
[90C15]
(see: Derivatives of probability measures)

Direct global optimization algorithm
(65K05)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications; Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization; Global optimization
based on statistical models; Global optimization in binary
star astronomy; Global optimization methods for systems
of nonlinear equations; Global optimization using space
filling; Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software;Differential equations and global
optimization;Global optimization based on statistical
models;Global optimization in binary star astronomy;
Global optimization methods for systems of nonlinear
equations;Global optimization using space filling;
Topology of global optimization)

direct iteration
[65H10, 65J15]
(see: Contraction-mapping)

direct search
[90C30]
(see: Suboptimal control)

Direct search Luus—Jaakola optimization procedure
(93-XX)
(referred to in: Interval analysis: unconstrained and

constrained optimization)
(refers to: Interval analysis: unconstrained and constrained
optimization)

direct search optimization
[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

direct-sequential
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

directed arc in a directed network
[90C35]
(see:Maximum flow problem)

directed arc in a network
[90C35]
(see:Minimum cost flow problem)

directed capacitated network
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

directed Chinese postman problem
[90C35]
(see:Minimum cost flow problem)

directed cycle see: cost of a—
directed cycle of a digraph

[90C09, 90C10]
(see: Combinatorial matrix analysis)

directed divergence
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

directed graph
[90C09, 90C10]
(see: Combinatorial matrix analysis;Oriented matroids)

directed network
[90C35]
(see:Maximum flow problem;Minimum cost flow problem)

directed network see: directed arc in a—; endpoint of an arc in
a—; node in a—

directed path
[90C35]
(see:Maximum flow problem;Minimum cost flow problem)

directed tree
[05C85]
(see: Directed tree networks)

Directed tree networks
(05C85)
(referred to in: Auction algorithms; Bottleneck steiner tree
problems; Capacitatedminimum spanning trees;
Communication network assignment problem;Dynamic
traffic networks; Equilibrium networks; Generalized
networks;Maximum flow problem;Minimax game tree
searching;Minimum cost flow problem;Multicommodity
flow problems;Network design problems;Network
location: covering problems;Nonconvex network flow
problems; Piecewise linear network flow problems; Shortest
path tree algorithms; Steiner tree problems; Stochastic
network problems: massively parallel solution; Survivable
networks; Traffic network equilibrium)

directed walk
[90C35]
(see:Minimum cost flow problem)
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direction
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

direction see: ascendant —; away—; centering—; compute
the search—; coordinate—; critical —; descent —; Dini
steepest ascent—; Dini steepest descent—; feasible—;
feasible ascendant —; Hadamard steepest ascent—;
Hadamard steepest descent —; high-order critical —;
high-regular critical —; hyperspherical —; improving
feasible—; jump—; quasi-Newtonian descent —;
search—; soaring—; steepest ascent—; steepest
descent—

direction angles
[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

direction computation
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

direction of descent
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

direction finding problem
[90C30]
(see: Frank–Wolfe algorithm)

direction finding problem
[90C30]
(see: Frank–Wolfe algorithm)

direction finding problem see: regularized —
direction hit and run see: hyperspheres —
directionmethod see: reference—
directionmethod for nonlinear programming see: feasible—
directionmethods see: feasible—
direction of negative curvature

[90C06]
(see: Large scale unconstrained optimization)

direction, preserving an activity
[90Cxx]
(see: Discontinuous optimization)

direction subclass see: conjugate —
direction vector see: reference—
directional Clarke derivative

[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

directional derivative
[26B25, 26E25, 46N10, 49J52, 90-00, 90C26, 90C30, 90C31,
90C47, 90C99]
(see: Global optimization: envelope representation;
Lagrangian duality: BASICS;Nondifferentiable
optimization;Quasidifferentiable optimization; Sensitivity
and stability in NLP: continuity and differential stability)

directional derivative
[65K05, 90C30, 90Cxx]
(see:Minimax: directional differentiability;
Quasidifferentiable optimization: optimality conditions)

directional derivative see: Clarke generalized —; Dini lower—;
Dini upper—; generalized —; generalized second order—;
Hadamard lower—; Hadamard upper —; kth—

directional derivatives
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

directional derivatives see: Dini —; Hadamard—;
high-order —; higher-order —; lower and upper —

directional differentiability see:Minimax:—
directional differential see: Clarke—; generalized —;

Rockafellar—
directional SOCQ

[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

directionally differentiable
[90C30, 90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions; Image space approach to optimization)

directionally differentiable see: dini —; hadamard—
directionally differentiable function

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

directionally differentiable function see: Dini —; Dini
conditionally—; Dini uniformly—; Hadamard—;
Hadamard conditionally—

directions see: combined method of feasible—; cone of
critical—; cone of feasible—; construction of descent—;
methods of feasible—; orthogonal search—; steep—

directions and efficient points see: Discretely distributed
stochastic programs: descent —

directions in interval branch and bound methods see: Interval
analysis: subdivision—

directions of P see: covers all edge- —
directive decomposition see: price- —; resource- —
directly left-reachable

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

directly right-reachable
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

Dirichlet distribution
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Dirichlet problem see: nonsmooth—
disaggregate simplicial decomposition

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

disaggregated representation
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

disaggregated representation
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

Disaggregation
(see: Optimal planning of offshore oilfield infrastructure)

disaggregation see: preference—
disaggregation analysis see: preference—
disaggregation approach see: preference—
disaggregation approach: basic features, examples from

financial decisionmaking see: Preference—
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disaggregation method
[90C29, 91A99]
(see: Preference disaggregation)

disaggregation in multi-objective optimization
[90C29, 91A99]
(see: Preference disaggregation)

disaggregation paradigm
[90C29, 91A99]
(see: Preference disaggregation)

disaggregation of preferences
[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

disaggregation system see: interactive —
disaggregation under uncertainty

[90C29, 91A99]
(see: Preference disaggregation)

disallowed node
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

discarding far-from-native conformations
[92C05, 92C40]
(see: Protein loop structure predictionmethods)

disconnected matroid
[90C09, 90C10]
(see:Matroids)

discontinuous function
[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

Discontinuous optimization
(90Cxx)
(referred to in: Nondifferentiable optimization)
(refers to: Conjugate-gradientmethods; Gauss–Newton
method: Least squares, relation to Newton’s method;
Nondifferentiable optimization)

discontinuous optimization
[90Cxx]
(see: Discontinuous optimization)

Discontinuous optimization
[90Cxx]
(see: Discontinuous optimization)

discordance
[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

discordance
[90-XX]
(see: Outranking methods)

discordance see: concordance-—
discordant coalition

[90-XX]
(see: Outranking methods)

discount factor
[49L20, 49L99, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: discounted problems;
Dynamic programming: infinite horizon problems,
overview;Dynamic programming: undiscounted problems)

discounted infinite horizon problem
[49L20]
(see: Dynamic programming: inventory control)

discounted problem
[49L20, 49L99, 90C40]

(see: Dynamic programming: average cost per stage
problems;Dynamic programming: stochastic shortest path
problems)

discounted problem
[49L20, 90C39, 90C40]
(see: Dynamic programming: discounted problems;
Dynamic programming: undiscounted problems)

discounted problem with bounded cost per stage
[49L20, 90C39, 90C40]
(see: Dynamic programming: infinite horizon problems,
overview)

discounted problems see: Dynamic programming:—
Discovery see: logic of Scientific—
discrepancy search see: limited—
discrete approximation

[90C15]
(see: Approximation of extremum problems with
probability functionals)

discrete approximation
[90C15]
(see: Approximation of extremum problems with
probability functionals)

discrete-continuous global optimization see:mixed—
discrete-continuous optimization problems see: Continuous

reformulations of—
discrete convergence

[90C15]
(see: Approximation of extremum problems with
probability functionals)

discrete convergence see: weak—
discrete convex analysis

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

discrete convex analysis
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

discrete decisions in dynamic optimization
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

discrete design variables
[90C26, 90C90]
(see: Structural optimization: history)

discrete distributions see: Logconcavity of—
discrete dynamic complementarity problem

[90C33]
(see: Order complementarity)

discrete dynamical systems
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

discrete "-global local maximizers see: set of—
discrete event dynamic system

[90C15]
(see: Stochastic quasigradientmethods: applications)

discrete filled function
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

discrete free variables see: Generalized geometric
programming: mixed continuous and—
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discrete function
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

discrete functions
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

discrete global maximizer
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

discrete left local maximizer
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

discrete location and assignment
[68M20, 90B06, 90B10, 90B35, 90B80, 90B85, 90C10, 90C27,
90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities;Vehicle scheduling)

discrete location problem
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

discrete logconcave distributions
[90C15]
(see: Logconcavity of discrete distributions)

discrete measure
[90C15]
(see: Approximation of extremum problems with
probability functionals)

discrete midpoint convexity
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

discrete model in OR
[90B80, 90B85]
(see:Warehouse location problem)

discrete monotonic optimization problems
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

discrete Mosco convergence
[90C15]
(see: Approximation of extremum problems with
probability functionals)

discrete multiple criteria problem
[90C29]
(see:Multiple objective programming support)

discrete neighborhood
[65K05, 90C05, 90C25, 90C26, 90C30, 90C34, 90C59]
(see: Global optimization: filled function methods;
Semi-infinite programming: discretizationmethods)

discrete optimization
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

discrete optimization
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

discrete optimization see: Convex—
discrete optimization oracle see: linear—
discrete Painlevé–Kuratowski convergence

[90C15]
(see: Approximation of extremum problems with
probability functionals)

discrete polyblock algorithm
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

discrete probability distribution see: logconcave—;
logconcave univariate—

discrete resource allocation problem
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

discrete separation theorem see: Frank—
discrete single-commodity single-criterion uncapacitated static

multifacility
[90B80, 90B85]
(see:Warehouse location problem)

Discrete stochastic optimization
(90C15, 90C27)
(referred to in:Derivatives of markov processes and their
simulation;Derivatives of probability and integral
functions: general theory and examples;Derivatives of
probability measures)
(refers to:Derivatives of markov processes and their
simulation;Derivatives of probability and integral
functions: general theory and examples;Derivatives of
probability measures; Integer programming: branch and
bound methods;Optimization in operation of electric and
energy power systems; Simulated annealing; Stochastic
integer programming: continuity, stability, rates of
convergence)

discrete-time algorithms
[90B15]
(see: Dynamic traffic networks)

discrete-time algorithms
[90B15]
(see: Dynamic traffic networks)

discrete-time formulations
[90C26]
(see:MINLP: design and scheduling of batch processes)

discrete Time Model
(see: Integrated planning and scheduling)

discrete-time models
(see: Planning in the process industry)

discrete time models see: continuous and—
Discrete-Time Optimal Control

[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

discrete-time systems
[39A11, 93C55, 93D09]
(see: Robust control: schur stability of polytopes of
polynomials)

discrete truncated Newton method
[90C06]
(see: Large scale unconstrained optimization)

discrete variables
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

discretely distributed stochastic programs
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)
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Discretely distributed stochastic programs: descent directions
and efficient points
(90C15, 90C29)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Extremum problems with probability
functions: kernel type solutionmethods; General moment
optimization problems; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Multistage stochastic programming: barycentric
approximation; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Extremum problems with probability
functions: kernel type solutionmethods; General moment
optimization problems; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Multistage stochastic programming: barycentric
approximation; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic

programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

discretization
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

discretization
[90B85]
(see:Multifacility and restricted location problems)

discretization see: full —; partial —; uniform time—
discretization method

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

discretizationmethods see: Semi-infinite programming: —
discretization of optimization problems

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

discretization procedure see: stochastic —
discretized hemivariational inequalities for nonlinear material

laws
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

discretized optimal control problems
[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

discretized SIP problem
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

discretized SIP problem see: nonlinear —
discriminant

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

discriminant analysis
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

discriminant functions
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

(discriminant problem) see: g-group classification problem—
discrimination

[90C29]
(see:Multicriteria sorting methods)

discrimination see: hierarchical —;multigroup hierarchical —
Disease diagnosis: optimization-based methods

(90C05, 90C06, 90C10, 90C11, 90C20, 90C30, 90C90, 90-08,
65K05)

disjoint
(see: Bilinear programming)

disjoint see: link-diverse/ —
disjoint constraints

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

disjoint path see: edge- —; node- —
disjunction

[90C09, 90C10, 90C11]
(see: Disjunctive programming)



4176 Subject Index

disjunction arc
[90B35]
(see: Job-shop scheduling problem)

Disjunctions
(see: Logic-based outer approximation)

disjunctions see: Convex hull —
disjunctive cut principle

[90C09, 90C10, 90C11]
(see: Disjunctive programming)

disjunctive cutting plane approach see:Mixed-integer
nonlinear optimization: A—

disjunctive inequality
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

disjunctive normal form
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T15, 68T27, 68T30,
90C09, 90C10]
(see: Checklist paradigm semantics for fuzzy logics; Finite
complete systems of many-valued logic algebras; Inference
of monotone boolean functions; Optimization in boolean
classification problems;Optimization in classifying text
documents)

disjunctive normal form
[90C09, 90C10]
(see: Inference of monotone boolean functions;
Optimization in boolean classification problems;
Optimization in classifying text documents)

disjunctive OA master problem
[90C09, 90C10, 90C11]
(see:MINLP: logic-based methods)

disjunctive program see: facial—
Disjunctive programming

(90C09, 90C10, 90C11)
(referred to in: Continuous reformulations of
discrete-continuous optimization problems;MINLP:
branch and bound global optimization algorithm;MINLP:
branch and bound methods;MINLP: global optimization
with ˛BB;MINLP: logic-basedmethods)
(refers to:MINLP: branch and bound global optimization
algorithm;MINLP: branch and bound methods;MINLP:
global optimization with ˛BB;MINLP: logic-based
methods; Reformulation-linearization technique for global
optimization)

disjunctive programming
[90C10, 90C11, 90C27, 90C30, 90C33, 90C57]
(see: Integer programming; Logic-based outer
approximation;Optimization with equilibrium constraints:
A piecewise SQP approach)

disjunctive programming
[90C09, 90C10, 90C11, 90C27, 90C30, 90C33, 90C57]
(see: Disjunctive programming; Integer programming;
MINLP: logic-basedmethods;Optimization with
equilibrium constraints: A piecewise SQP approach; Set
covering, packing and partitioning problems)

disjunctive programming see: Generalized—
disk graphs

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

disk graphs see: bisectored unit —; bounded ratio—;
double—; Optimization problems in unit- —; unit- —

disk) representation see: geometric (or —

dispatch problem
[90B50]
(see: Optimization and decision support systems)

dispatcher see: load—
dispatching see: load—
displacement see: kinematically admissible—
displacement compatibility equations see: strain- —
displacements see:method of simultaneous—;method of

successive—; virtual —
dissection see: nested —; tree —
dissimilarities

[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

dissimilarity measure
[62H30, 90C27]
(see: Assignment methods in clustering)

distance see: bond—; elliptic—; euclidean—; inter-class—;
intra-class—; Lp-—;Manhattan —;maximizing
minimum—;maximumweighted —;method of
optimal—; nonbonded—; rectilinear—; relative—

distance constrained labeling
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

distance-constrained vehicle routing problem
[90B06]
(see: Vehicle routing)

Distance dependent protein force field via linear optimization
distance of a feasible point to a solution point see: bounds on

the—
distance function see: least squares—
distance functions

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

distance geometry problem
[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

distance geometry problem see:Molecular—
distance in a graph

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

distance label
[90B10, 90C27, 90C35]
(see:Maximum flow problem; Shortest path tree
algorithms)

distance location see: Single facility location: multi-objective
euclidean—; Single facility location: multi-objective
rectilinear —

distance location problem see: Euclidean—; iterative solution
of the Euclidean—; rectilinear —; squared Euclidean—

distance matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

distance matrix see: Euclidean—; partial —
distance matrix completion problem

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

distance matrix completion problem see: Euclidean—
distance measure

[90B80, 90B85]
(see:Warehouse location problem)
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distance scaling method
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

distances see: euclidean—;Manhattan —;minkowski —;
Optimizing facility location with euclidean and
rectilinear—; positiveness of—

distillation
[90C30, 90C90]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes; Successive quadratic
programming: applications in distillation systems)

distillation
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

distillation see: reactive—
distillation column synthesis see:MINLP: reactive—
distillation superstructure

[90C90]
(see:MINLP: reactive distillation column synthesis)

distillation systems see: Successive quadratic programming:
applications in—

distinguishable
[62H30, 68T10, 90C11]
(see:Mixed integer classification problems)

distinguished point
[90C26]
(see: Cutting plane methods for global optimization)

distinguished solution
[90C05]
(see: Linear programming: Klee–Minty examples)

distinguished tableau
[90C05]
(see: Linear programming: Klee–Minty examples)

distinguished variable
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

distributed computing
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

distributed computing
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

distributed game tree search algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

distributed memory parallel computer
[65K05, 65Y05]
(see: Parallel computing: models)

distributed memory parallel machines
[65K05, 65Y05]
(see: Parallel computing: models)

distributed optimal control problems
[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

distributed optimal control problems see: Sequential quadratic
programming: interior point methods for —

distributed optimization algorithms see: Asynchronous—

distributed state space search algorithm see: synchronized—
distributed stochastic programs see: discretely—
distributed stochastic programs: descent directions and

efficient points see: Discretely—
distributed systems see: boundary flux estimation in—
distribution see: binomial —; Boltzmann—; Dirichlet —;

Gaussian—; geometric —; hypergeometric —; incomplete
knowledge of a probability—; law of normal—; Levy
probability—; logconcave discrete probability —;
logconcave univariate discrete probability—;multivariate
gamma—;multivariate normal —; Poisson—; posterior —;
prior—; probability—; quasiconcave probability—;
trinomial—; Tsallis probability—; uncertainty embedded in
a probability—; uniform—

distribution with algebraically decreasing tail see: RSM-—
distribution density see: steady-state —
distribution of efforts see: optimal—
distribution function

[60G35, 65K05]
(see: Differential equations and global optimization)

distribution function see:multivariate probability—;
one-dimensional marginal probability —; two-dimensional
marginal probability —

distribution functions see: gradient of multivariate—;
marginal—

distribution graph see: alignment- —
distribution law see: Gauss—
distribution problems

[90C35]
(see:Minimum cost flow problem)

distribution scheduling: an MILP model see: Gasoline blending
and—

distribution system design
[90-02]
(see: Operations research models for supply chain
management and design)

distribution system design problem see: Production-—
distribution systems

[90-02]
(see: Operations research models for supply chain
management and design)

distribution systems planning
[90C35]
(see:Multicommodity flow problems)

distributional derivatives
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation;
Derivatives of probabilitymeasures)

distributions see: asymptotic results for RSM-—; discrete
logconcave—; Logconcavity of discrete—; Stochastic
linear programs with recourse and arbitrary multivariate—

distributive lattice
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

distributive lattice see: free —
district see: double-ended crew—; single-ended crew—
districting problem see: political —
districts see: crew—
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distrust region method
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

disutility functions see: traffic network equilibriumwith
travel —

dive-and-fix
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

divergence see: Csiszar ˛- —; directed—; Itakura–Saito—;
Kullback–Leibler —

divergent series rule
[49J52, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods)

divergent series step-size rule
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

divergent series steplength rule
[90C30]
(see: Cost approximation algorithms)

diverging trails
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

diverse/disjoint see: link-—
diversification

[68M20, 90B06, 90B35, 90B80, 90C59]
(see: Flow shop scheduling problem;Heuristic and
metaheuristic algorithms for the traveling salesman
problem; Location routing problem)

diversified investment decisions
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

divide-and-conquer
[90C09, 90C10, 90C26]
(see: Combinatorial optimization algorithms in resource
allocation problems;MINLP: branch and bound global
optimization algorithm)

divided differences
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

divided differences
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

division algorithm
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

divisionmultiplexing see: wavelength- —
divisor

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

divisor
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

divisor of an arrangement of hyperplanes
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

divorcing
(see: Bayesian networks)

d.m. function
[65Kxx, 90C26, 90C31, 90Cxx]

(see: Quasidifferentiable optimization: algorithms for QD
functions; Robust global optimization)

dM functions
[90C26]
(see: D.C. programming)

dM optimization
[90C26, 90C31]
(see: D.C. programming; Robust global optimization)

DNA mapping
[90C35]
(see: Optimization in leveled graphs)

dNA sequencing
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

DNA transcription element identification see:Mixed 0-1 linear
programming approach for —

DNF
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

DNF
[90C09, 90C10]
(see: Inference of monotone boolean functions;
Optimization in boolean classification problems;
Optimization in classifying text documents)

DNF see: TAUT- —
DNF clauses see:minimal number of—
document

[90C09, 90C10]
(see: Optimization in classifying text documents)

document classification
[90C09, 90C10]
(see: Optimization in classifying text documents)

document classification see: automatic —; optimization in—
document surrogate

[90C09, 90C10]
(see: Optimization in classifying text documents)

document surrogate
[90C09, 90C10]
(see: Optimization in classifying text documents)

documentation
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

documents see: automatic classification of—; classification of
large collections of—; classification of text —; Optimization
in classifying text —

dog-lawed see: dead or—
dogleg method

[65C20, 65G20, 65G30, 65G40, 65H20, 90C06, 90C90]
(see: Interval analysis: application to chemical engineering
design problems; Large scale unconstrained optimization)

dogleg path
[49M37, 90C30]
(see: Nonlinear least squares problems;Nonlinear least
squares: trust region methods)

dogleg path
[49M37]
(see: Nonlinear least squares: trust region methods)

dogleg path see:multiple—
domain

[49J40; 49J53; 47H05; 47H04; 26B25]
(see: Pseudomonotone maps: properties and applications)
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domain see: admissible—; feasible—; natural —
domain of a function

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

domain of a function see: effective—
domainmethod see: fictitious—
domain of search

[90C26]
(see: Global optimization using space filling)

domains see: global optimization over unbounded—
dominance

[62H30, 90C27]
(see: Assignment methods in clustering)

dominance condition see: diagonal—
dominance criterion

[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)

dominance relation
[90-XX]
(see: Outranking methods)

dominated see: not—
dominated family of measures

[90C15]
(see: Derivatives of probability measures)

dominated point
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

dominating set
[03B50, 05C15, 05C62, 05C69, 05C85, 68T15, 68T30, 90C27,
90C59]
(see: Finite complete systems of many-valued logic algebras;
Optimization problems in unit-disk graphs)

dominating set see: connected—; finite—; independent —
domination Analysis

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

Domination analysis in combinatorial optimization
(90C27, 90C59, 68Q25, 68W40, 68R10)
(referred to in: Traveling salesman problem)
(refers to: Traveling salesman problem)

domination number
[05C15, 05C62, 05C69, 05C85, 68Q25, 68R10, 68W40, 90B06,
90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59, 90C60,
90C90]
(see: Domination analysis in combinatorial optimization;
Optimization problems in unit-disk graphs; Traveling
salesman problem)

domination property
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

domination ratio
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

door point see: trap- —
Doppler effect

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

dose (eud) see: equivalent uniform—

double color
[05C85]
(see: Directed tree networks)

double description method
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

double disk graphs
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

double-ended
(see: Railroad crew scheduling)

double-ended crew district
(see: Railroad crew scheduling)

double-max duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

double-min duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

double pivot
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

double star
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

double sweep method see: Aitken—
double-well function

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

doublet
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

doublet
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

doublet see: sparse —
doubly connected edge list see: extended—
doubly nonnegative matrix

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

doubly stochastic matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

Douglas—Rachford method
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

down penalty
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

downhill simplex method
[90C30]
(see: Sequential simplex method)

DP
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

drawing see: automatic graph—; graph—
Driebeck–Tomlin penalty

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

drifting see: population—
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driven see:message- —
driver method see: bold-—
dropped negatively

[90Cxx]
(see: Discontinuous optimization)

dropped positively
[90Cxx]
(see: Discontinuous optimization)

dropping see: column—
dropping rule see: column—
drought out events

[90C30, 90C35]
(see: Optimization in water resources)

drug delivery systems see:Model based control for—
DS

[90C26]
(see: Global optimization using space filling)

DSD
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

DSL function
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

DSL system
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

DSPACE
[90C60]
(see: Complexity classes in optimization)

DSS see:multicriteria—
DTIME

[90C60]
(see: Complexity classes in optimization)

Du–Hwang minimax theorem
[90C27]
(see: Steiner tree problems)

dual
[90B85, 90C27]
(see: Single facility location: circle covering problem)

dual see: extended Lagrange–Slater —; formal perfect —;
functional—; Lagrangian —;Mond–Weir—; primal- —;
SSS� - —; strong—; superadditive—; surrogate —;
Wolfe—

dual action see: Clarke—
dual algorithm see: generalized primal-relaxed—; primal- —
dual approach see: Generalized primal-relaxed—;

primal-relaxed—
dual arc

[90B35]
(see: Job-shop scheduling problem)

dual ascent
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

dual ascent
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

dual block-angular structure
[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse; Stochastic programming: parallel
factorization of structured matrices)

dual bound-improvement
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

dual cone
[90C15, 90C22, 90C25]
(see: Copositive programming; Stochastic programming:
nonanticipativity and lagrangemultipliers)

dual cut-improvement
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

dual decomposition
[90C10, 90C15]
(see: Stochastic integer programs)

dual degenerate
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

dual degenerate basis
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

dual descent
[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

dual in entropy optimization see: unconstrained—
dual Euler–Lagrange equation

[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

dual exterior point algorithm
[90C05]
(see: Linear programming: Klee–Minty examples)

dual feasibility
[68W10, 90B15, 90C05, 90C06, 90C30, 90C31]
(see: Parametric linear programming: cost simplex
algorithm; Stochastic network problems: massively parallel
solution)

dual feasible set
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

dual framework see: primal- —
dual information

[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

dual integral system see: totally —
dual interior-point methods see: primal- —
dual linear program

[90C30]
(see: Lagrangian duality: BASICS)

dual linear programs
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

dual matroid
[90C09, 90C10]
(see:Matroids;Oriented matroids)

dual method see: Simple recourse problem: —
dual method for the simple recourse problem

[90C06, 90C08, 90C15]
(see: Simple recourse problem)

dual methods see: primal- —
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dual optimization problem
[90C30]
(see: Lagrangian duality: BASICS)

dual optimization problem
[90C30]
(see: Lagrangian duality: BASICS)

dual optimization problem see: Lagrangian —
dual (or Minty) GVI

[47J20, 49J40, 65K10, 90C33]
(see: Solutionmethods for multivalued variational
inequalities)

dual pair
[90B35]
(see: Job-shop scheduling problem)

dual potential function
[37A35, 90C05, 90C25, 90C30]
(see: Potential reductionmethods for linear programming;
Solving large scale and sparse semidefinite programs)

dual potential function see: primal-—
dual potential reduction algorithm see: primal- —
dual price

[68Q99]
(see: Branch and price: Integer programming with column
generation)

dual price increase
[90B10, 90C27]
(see: Shortest path tree algorithms)

dual problem
[15A39, 49-XX, 49K05, 49K10, 49K15, 49K20, 49L99, 90-XX,
90C05, 90C29, 90C30, 93-XX]
(see: Duality in optimal control with first order differential
equations;Duality theory: monoduality in convex
optimization;Dynamic programming: average cost per
stage problems; Image space approach to optimization;
Motzkin transposition theorem;Multi-objective
optimization: lagrange duality; Theorems of the alternative
and optimization)

dual problem
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

dual problem see: construction of a—; generalized —;
Lagrangian —; nonconvex—

dual problems see: primal and—
dual procedures

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

dual program
[90C06]
(see: Saddle point theory and optimality conditions)

dual programming problem
[90C06]
(see: Saddle point theory and optimality conditions)

dual properness
[90C25, 90C26]
(see: Decomposition in global optimization)

dual ray
[15A39, 90C05]
(see:Motzkin transposition theorem)

dual scaling
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

dual-scaling algorithm
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

dual scaling algorithm see: primal-—
dual-scalings algorithm

[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

dual SD problem
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

dual semi-infinite program
[90C05, 90C34, 91B28]
(see: Semi-infinite programming and applications in
finance; Semi-infinite programming: methods for linear
problems)

dual semi-infinite program
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

dual semidefinite program
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

dual side see: proof on the—
dual simplex

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

dual simplex algorithm
[90C35]
(see: Generalized networks)

dual simplex algorithms see: primal and—
dual simplex method see: lexicographic—
dual slacks

[49-XX, 90-XX, 90C05, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Homogeneous selfdual methods for linear programming)

dual solution see: primal- —
dual solutions see: exploiting the interplay between primal

and—
dual space

[90C05, 90C30]
(see: Theorems of the alternative and optimization)

dual space
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

dual SQPIP methods see: primal- —
dual system

[15A39, 90C05, 90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem; Tucker homogeneous
systems of linear relations)

dual systems see: homogeneous—
dual techniques

[90B80, 90C11]
(see: Facility location with staircase costs)

dual transformation
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

dual transformation see: canonical —
dual transformation method see: canonical —



4182 Subject Index

dual variable
[90C30]
(see: Image space approach to optimization)

dual variables
[90C05, 90C10, 90C30, 90C35, 90C46]
(see: Generalized networks; Integer programming duality;
Lagrangian duality: BASICS; Theorems of the alternative
and optimization)

dual variational inequality problem
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

dual vector
[90C30]
(see: Lagrangian duality: BASICS)

duality
[49-XX, 90-XX, 90B85, 90C30, 90C33, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Equivalence between nonlinear complementarity problem
and fixed point problem; Large scale trust region problems;
Single facility location: multi-objective euclidean distance
location)

duality
[15A39, 49-XX, 49K27, 49K40, 49M29, 90-XX, 90C05, 90C10,
90C11, 90C15, 90C22, 90C25, 90C29, 90C30, 90C31, 90C46,
93-XX]
(see: Bilevel programming: optimality conditions and
duality;Duality theory: biduality in nonconvex
optimization;Duality theory: monoduality in convex
optimization;Duality theory: triduality in global
optimization; First order constraint qualifications;
Generalized benders decomposition; Integer programming
duality; Linear optimization: theorems of the alternative;
Motzkin transposition theorem; Probabilistic constrained
linear programming: duality theory; Second order
constraint qualifications; Semidefinite programming:
optimality conditions and stability)

duality see: Bilevel programming: optimality conditions
and—; Clarke—; double-max—; double-min—;
Fenchel —; Fenchel–Moreau —; Fenchel–Rockafellar —;
inference—; Integer programming—; Klötzler —;
Lagrangian —; Legendre —; linear programming—; LP—;
Minkowski—;Multi-objective optimization: lagrange—;
perfect—; polar —; saddle Lagrange —; SDP—;
Semi-infinite programming, semidefinite programming and
perfect—; strong—; strong and weak—; superadditive—;
superLagrangian —; surrogate —; weak—

duality and applications see: Robust linear programming with
right-hand-side uncertainty —

duality: BASICS see: Lagrangian —
duality for bilevel programming

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

duality equality
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

duality equality
[90C34, 91B28]

(see: Semi-infinite programming and applications in
finance)

duality from the view of linear semi-infinite programming see:
perfect—

duality gap
[49-XX, 90-XX, 90C05, 90C10, 90C22, 90C25, 90C30, 90C31,
90C34, 90C51, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Duality theory: triduality in global optimization; Image
space approach to optimization; Integer programming:
lagrangian relaxation; Interior point methods for
semidefinite programming; Lagrangian duality: BASICS;
Semidefinite programming: optimality conditions and
stability; Semi-infinite programming, semidefinite
programming and perfect duality; Theorems of the
alternative and optimization)

duality gap
[90C30]
(see: Lagrangian duality: BASICS)

duality gap see: relative —
Duality gaps in nonconvex optimization

(90B50, 78M50)
duality inequality

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

duality of the linear SIP problem
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

duality for M- and L-convex functions see: Fenchel-type—
duality of matroids

[90C09, 90C10]
(see: Oriented matroids)

duality and maximum principle
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

Duality in optimal control with first order differential
equations
(49K05, 49K10, 49K15, 49K20)
(referred to in: Control vector iteration CVI;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Optimal
control of a flexible arm; Robust control; Robust control:
schur stability of polytopes of polynomials; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control)
(refers to: Control vector iteration CVI;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
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optimization: interaction of design and control;Optimal
control of a flexible arm; Robust control; Robust control:
schur stability of polytopes of polynomials; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control)

duality pair see: Fenchel —; Legendre —
duality relation see: weak—
duality relations see: legendre —
duality result see: strong—; weak—
Duality for semidefinite programming

(90C30)
(referred to in: Semidefinite programming and determinant
maximization; Semidefinite programming: optimality
conditions and stability; Semidefinite programming and
structural optimization; Semi-infinite programming,
semidefinite programming and perfect duality; Solving
large scale and sparse semidefinite programs)
(refers to: Interior point methods for semidefinite
programming; Semidefinite programming and determinant
maximization; Semidefinite programming: optimality
conditions and stability; Semidefinite programming and
structural optimization; Semi-infinite programming,
semidefinite programming and perfect duality; Solving
large scale and sparse semidefinite programs)

duality theorem
[01A99, 90C05, 90C15, 90C99]
(see: Probabilistic constrained linear programming: duality
theory;Von Neumann, John)

duality theorem
[01A99, 90C99]
(see: Von Neumann, John)

duality theorem see: Clarke—; conic—; saddle—; strong—;
superLagrangian —; weak—

duality theorem for linear optimization
[15A39, 90C05]
(see:Motzkin transposition theorem)

duality theory
[49M29, 90C11]
(see: Generalized benders decomposition)

Duality theory
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

duality theory see: Fenchel–Rockafellar —; Probabilistic
constrained linear programming: —

Duality theory: biduality in nonconvex optimization
(49-XX, 90-XX, 93-XX)
(referred to in: Duality theory: monoduality in convex
optimization;Duality theory: triduality in global
optimization;Von Neumann, John)
(refers to: Duality theory: monoduality in convex
optimization;Duality theory: triduality in global
optimization;History of optimization; Von Neumann,
John)

duality theory for entropy optimization
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

Duality theory: monoduality in convex optimization
(49-XX, 90-XX, 93-XX)

(referred to in: Duality theory: biduality in nonconvex
optimization;Duality theory: triduality in global
optimization; Von Neumann, John)
(refers to: Duality theory: biduality in nonconvex
optimization;Duality theory: triduality in global
optimization;History of optimization)

Duality theory: triduality in global optimization
(49-XX, 90-XX, 93-XX)
(referred to in: Duality theory: biduality in nonconvex
optimization;Duality theory: monoduality in convex
optimization; Von Neumann, John)
(refers to: Duality theory: biduality in nonconvex
optimization;Duality theory: monoduality in convex
optimization;History of optimization; Von Neumann,
John)

dualization
[46A20, 52A01, 90C10, 90C30, 90C46]
(see: Composite nonsmooth optimization; Integer
programming duality)

dualization see: Ioffe–Burke local —
Dubovitskii—Milyutin theorem

[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

Duffin theorem
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

dummy nodes see: PSA with—
duopoly

[91B06, 91B60]
(see: Oligopolistic market equilibrium)

duty-after-arrival
(see: Railroad crew scheduling)

duty-before-departure
(see: Railroad crew scheduling)

duty-period
(see: Railroad crew scheduling)

duty scheduling problems see: Integrated vehicle and—
duty scheduling process

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

duty time see: on- —
DVRP

[90B06]
(see: Vehicle routing)

Dykstra’s algorithm and robust stopping criteria
(90C25, 65K05, 65G505)

dynamic
[90B06]
(see: Vehicle routing)

dynamic complementarity problem
[90C33]
(see: Order complementarity)

dynamic complementarity problem see: discrete—
dynamic considerations and controllability see: integration

of—
dynamic facility location

[90B85]
(see: Single facility location: multi-objective rectilinear
distance location)

dynamic games see: Infinite horizon control and—
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dynamic load balancing
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

dynamic load balancing technique
[90C10, 90C26, 90C30]
(see: Optimization software)

dynamic location problem
[90C35]
(see:Multi-index transportation problems)

dynamic model
[90B80, 90B85]
(see:Warehouse location problem)

dynamic network flow problem see: nonlinear —
dynamic network flow problems

[90C30]
(see: Simplicial decomposition)

dynamic optimization
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

Dynamic optimization
[49Jxx, 65L99, 91Axx, 93-XX]
(see: Infinite horizon control and dynamic games;
Optimization strategies for dynamic systems)

dynamic optimization see: discrete decisions in—;mixed
integer —

dynamic optimization problem see: stochastic —
dynamic programming

[34H05, 49Jxx, 49L20, 49L99, 62H30, 65L99, 68Q20, 90C10,
90C11, 90C20, 90C39, 90C40, 91Axx, 93-XX]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming: optimal control applications;
Hamilton–Jacobi–Bellman equation; Infinite horizon
control and dynamic games; Linear ordering problem;
Neuro-dynamic programming;Optimal triangulations;
Optimization strategies for dynamic systems)

dynamic programming
[34H05, 49L20, 49L99, 49M29, 62H30, 65K10, 90C06, 90C27,
90C31, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: stochastic
shortest path problems;Dynamic programming:
undiscounted problems;Hamilton–Jacobi–Bellman
equation;Multiple objective dynamic programming;
Neuro-dynamic programming;Operations research and
financial markets)

dynamic programming see: differential —; iterative —;
Multiple objective—; Neuro- —; stochastic—

dynamic programming algorithm
[49L20, 90C39, 90C40]

(see: Dynamic programming: discounted problems;
Dynamic programming: inventory control;Dynamic
programming: stochastic shortest path problems)

dynamic programming algorithm see: continuous-time
equivalent of the—

Dynamic programming: average cost per stage problems
(49L99)
(referred to in:Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neuro-dynamic
programming)
(refers to:Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neuro-dynamic
programming)

Dynamic programming in clustering
(90C39, 62H30)
(referred to in:Dynamic programming: average cost per
stage problems;Dynamic programming: continuous-time
optimal control;Dynamic programming: discounted
problems;Dynamic programming: infinite horizon
problems, overview;Dynamic programming: inventory
control;Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;Dynamic programming:
undiscounted problems;Hamilton–Jacobi–Bellman
equation;Multiple objective dynamic programming;
Neuro-dynamic programming;Optimization-based
visualization)
(refers to:Dynamic programming: average cost per stage
problems;Dynamic programming: continuous-time
optimal control;Dynamic programming: discounted
problems;Dynamic programming: infinite horizon
problems, overview;Dynamic programming: inventory
control;Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;Dynamic programming:
undiscounted problems;Hamilton–Jacobi–Bellman
equation;Multiple objective dynamic programming;
Neuro-dynamic programming)

Dynamic programming: continuous-time optimal control
(49L20, 34H05, 90C39)
(referred to in: Control vector iteration CVI;Duality in
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optimal control with first order differential equations;
Dynamic programming: average cost per stage problems;
Dynamic programming in clustering;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;High-order
maximum principle for abnormal extremals; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Multiple
objective dynamic programming;Neuro-dynamic
programming;Optimal control of a flexible arm;
Optimization strategies for dynamic systems; Pontryagin
maximum principle;Robust control; Robust control: schur
stability of polytopes of polynomials; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: average cost per stage problems;Dynamic
programming in clustering;Dynamic programming:
discounted problems;Dynamic programming: infinite
horizon problems, overview;Dynamic programming:
inventory control;Dynamic programming and Newton’s
method in unconstrained optimal control;Dynamic
programming: optimal control applications;Dynamic
programming: stochastic shortest path problems;Dynamic
programming: undiscounted problems;
Hamilton–Jacobi–Bellman equation;High-ordermaximum
principle for abnormal extremals; Infinite horizon control
and dynamic games;MINLP: applications in the interaction
of design and control;Multi-objective optimization:
interaction of design and control;Multiple objective
dynamic programming;Neuro-dynamic programming;
Optimal control of a flexible arm;Optimization strategies
for dynamic systems; Pontryagin maximum principle;
Robust control; Robust control: schur stability of polytopes
of polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)

Dynamic programming: discounted problems
(49L20, 90C39)
(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: infinite horizon problems,
overview;Dynamic programming: inventory control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;Dynamic programming:
undiscounted problems;Hamilton–Jacobi–Bellman
equation;Multiple objective dynamic programming;
Neuro-dynamic programming)

(refers to: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neuro-dynamic
programming)

dynamic programming equation see: continuous-time analog
of the—

dynamic programming equations see: recursive—
Dynamic programming: infinite horizon problems, overview

(49L20, 90C39, 90C40)
(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: inventory control;Dynamic programming
and Newton’s method in unconstrained optimal control;
Dynamic programming: optimal control applications;
Dynamic programming: stochastic shortest path problems;
Dynamic programming: undiscounted problems;
Hamilton–Jacobi–Bellman equation;Multiple objective
dynamic programming;Neuro-dynamic programming;
Optimization strategies for dynamic systems)
(refers to: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: inventory control;Dynamic programming
and Newton’s method in unconstrained optimal control;
Dynamic programming: optimal control applications;
Dynamic programming: stochastic shortest path problems;
Dynamic programming: undiscounted problems;
Hamilton–Jacobi–Bellman equation;Multiple objective
dynamic programming;Neuro-dynamic programming;
Optimization strategies for dynamic systems)

Dynamic programming: inventory control
(49L20)
(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;Dynamic
programming: undiscounted problems;
Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neuro-dynamic
programming)
(refers to: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
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Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;Dynamic programming:
undiscounted problems;Hamilton–Jacobi–Bellman
equation;Multiple objective dynamic programming;
Neuro-dynamic programming)

Dynamic programming and Newton’s method in
unconstrained optimal control
(49M29, 65K10, 90C06)
(referred to in: Automatic differentiation: calculation of
Newton steps; Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: average cost per stage problems;
Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming: optimal control applications;Dynamic
programming: stochastic shortest path problems;Dynamic
programming: undiscounted problems;
Hamilton–Jacobi–Bellman equation; Infinite horizon
control and dynamic games; Interval Newton methods;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Multiple objective dynamic programming;
Neuro-dynamic programming;Nondifferentiable
optimization: Newton method; Nonlinear least squares:
Newton-type methods;Optimal control of a flexible arm;
Optimization strategies for dynamic systems; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control;Unconstrained nonlinear
optimization: Newton–Cauchy framework)
(refers to: Automatic differentiation: calculation of Newton
steps; Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: average cost per stage problems;Dynamic
programming in clustering;Dynamic programming:
continuous-time optimal control;Dynamic programming:
discounted problems;Dynamic programming: infinite
horizon problems, overview;Dynamic programming:
inventory control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games; Interval Newton
methods;MINLP: applications in the interaction of design
and control;Multi-objective optimization: interaction of
design and control;Multiple objective dynamic
programming;Neuro-dynamic programming;
Nondifferentiable optimization: Newton method;Optimal
control of a flexible arm;Optimization strategies for
dynamic systems; Robust control; Robust control: schur
stability of polytopes of polynomials; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control;

Unconstrained nonlinear optimization: Newton–Cauchy
framework)

Dynamic programming: optimal control applications
(93-XX)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: average cost per stage problems;
Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: stochastic
shortest path problems;Dynamic programming:
undiscounted problems;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Multiple objective dynamic programming;
Neuro-dynamic programming;Optimal control of a flexible
arm;Optimization strategies for dynamic systems; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: average cost per stage problems;Dynamic
programming in clustering;Dynamic programming:
continuous-time optimal control;Dynamic programming:
discounted problems;Dynamic programming: infinite
horizon problems, overview;Dynamic programming:
inventory control;Dynamic programming and Newton’s
method in unconstrained optimal control;Dynamic
programming: stochastic shortest path problems;Dynamic
programming: undiscounted problems;
Hamilton–Jacobi–Bellman equation; Infinite horizon
control and dynamic games;MINLP: applications in the
interaction of design and control;Multi-objective
optimization: interaction of design and control;Multiple
objective dynamic programming;Neuro-dynamic
programming;Optimal control of a flexible arm;
Optimization strategies for dynamic systems; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)

dynamic programming paradigm see: general —
dynamic programming recursion

[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

dynamic programming recursions
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

Dynamic programming: stochastic shortest path problems
(49L20, 90C40)
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(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neuro-dynamic
programming;Optimization strategies for dynamic
systems)
(refers to: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neuro-dynamic
programming;Optimization strategies for dynamic
systems)

Dynamic programming: undiscounted problems
(49L20, 90C40)
(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Hamilton–Jacobi–Bellman equation;
Multiple objective dynamic programming;Neuro-dynamic
programming)
(refers to: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Hamilton–Jacobi–Bellman equation;
Multiple objective dynamic programming;Neuro-dynamic
programming)

dynamic service needs see: static/ —
dynamic simulation

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

dynamic system see: discrete event —
dynamic systems see: Optimization strategies for—;

Quasidifferentiable optimization: stability of —;
stochastic—

dynamic systems by constructive nonlinear dynamics see:
Robust design of—

dynamic traffic assignment
[90C35]
(see:Multicommodity flow problems)

dynamic traffic network model
[90B15]
(see: Dynamic traffic networks)

Dynamic traffic networks
(90B15)
(referred to in: Auction algorithms; Communication
network assignment problem; Cost approximation
algorithms; Equilibrium networks; Generalized networks;
Maximum flow problem;Minimum cost flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Shortest path tree algorithms; Steiner tree problems;
Stochastic network problems: massively parallel solution;
Survivable networks; Traffic network equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem; Cost approximation algorithms;
Directed tree networks; Equilibrium networks; Evacuation
networks; Generalized networks;Maximum flow problem;
Minimum cost flow problem;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Shortest path tree algorithms; Steiner tree problems;
Stochastic network problems: massively parallel solution;
Survivable networks; Traffic network equilibrium)

dynamic travel behavior see: day-to-day—
dynamic two-stage stochastic programming problem

[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

dynamic two-stage stochastic programming problem
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

dynamic vehicle routing problem
[90B06]
(see: Vehicle routing)

dynamical Bayesian networks
(see: Bayesian networks)

dynamical system
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization;
Standard quadratic optimization problems: algorithms)

dynamical system
[05C60, 05C69, 37B25, 90C20, 90C27, 90C34, 90C35, 90C59,
91A22, 91B28]
(see: Replicator dynamics in combinatorial optimization;
Semi-infinite programming and applications in finance)

dynamical system see: projected—; Variational inequalities:
projected—; variational inequality problem and
a projected—

dynamical systems see: discrete—; estimating uncertainty
in—; Interval analysis for optimization of —; projected —

dynamics see: computational fluid—; Design optimization in
computational fluid—;molecular—; process —;
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replicator—; Robust design of dynamic systems by
constructive nonlinear —

dynamics in combinatorial optimization see: Replicator —

E
ED, J see: characterization of —
E. approach see: Variational inequalities: F. —
EACO

[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

earliness see:minimization of order —
easy-to-compute

(see: Global optimization: functional forms)
EasyModeler/6000

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

(EAX) see: edge assembly crossover—
echelon arborescence system see:multi- —
echelon form

[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

echelon stock
[90B50]
(see: Inventory management in supply chains)

econometric methods
[90C26, 90C30]
(see: Forecasting)

econometric models
[90C26, 90C30]
(see: Forecasting)

econometrics
[90C26, 90C30]
(see: Forecasting)

Economic Analysis see: linear Programming and—
economic applications

[90C05]
(see: Continuous global optimization: applications)

economic equilibrium
[90C90, 91A65, 91B99]
(see: Bilevel programming: applications)

economic equilibrium see: general —
economic equilibriummodel see: pure exchange—; pure

trade—
economic growth see: Ramsey rule of—
Economic lot-sizing problem

(90C11, 90C39, 90C90, 90B10, 90B05, 55M05)
economic order quantity

[90B50]
(see: Inventory management in supply chains)

economic system conditions
[91B50]
(see: Financial equilibrium)

economics
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

economics see:mathematical —

economies of scale
[90C25]
(see: Concave programming)

economy see: pure exchange—
economy of scale

[90C26, 90C30]
(see: Reverse convex optimization)

economy of scale
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

edge see: light—; pale—; required—; shortest —; Voronoi—
edge assembly crossover (EAX)

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

edge coloring
[05C85, 90C35]
(see: Directed tree networks; Graph coloring)

edge coloring see: constrained—
edge coloring problem

[90C35]
(see: Graph coloring)

edge contraction method
(see:Maximum cut problem, MAX-CUT)

edge crossing
[90C10, 90C27, 94C15]
(see: Graph planarization)

edge-directions of P see: covers all —
edge-disjoint path

[90-XX]
(see: Survivable networks)

edge-disjoint path
[90-XX]
(see: Survivable networks)

edge elimination ordering see: cobipartite neighborhood—
edge exchange

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

edge filter see: Sobel —
edge flips see: good—
edge of a graph

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

edge insertion paradigm
[68Q20]
(see: Optimal triangulations)

edge list see: extended doubly connected—
edge realization

[90C35]
(see: Optimization in leveled graphs)

edge set
[90C35]
(see: Graph coloring)

edge simplex method see: steepest —
edges

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

edges see: unavoidable—
edges of a digraph see: set of —
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EDM
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

Edmundson–Madansky upper bound
[90C15]
(see: Stochastic programs with recourse: upper bounds)

effect see: bullwhip—; Doppler —;Maratos—; wrapping—
effective domain of a function

[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

effective set of a function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

effects see: boundary—; solvation—
effects in microclusters see: size—
efficiency

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

efficiency
[90C29]
(see: Generalized concavity in multi-objective optimization)

efficiency see: computational—; local —; local strict —; local
weak—; proper—; strict —;weak—

efficiency assessment see: comparative—
efficiency and nondomination see: comparison of—
efficient

[90B30, 90B50, 90C05, 90C10, 90C11, 90C29, 91B82]
(see: Data envelopment analysis;Generalized concavity in
multi-objective optimization;Multi-objective integer linear
programming;Multi-objective mixed integer
programming;Multi-objective optimization; Interactive
methods for preference value functions;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support)

efficient see: extreme- —; input- —; nonextreme—;
output- —;weakly—

efficient algorithm
[03D15, 68Q05, 68Q15, 90C60]
(see: Computational complexity theory; Parallel computing:
complexity classes)

efficient algorithm
[90C60]
(see: Computational complexity theory)

efficient algorithms
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

efficient frontier
[91B50]
(see: Financial equilibrium)

efficient point
[90C15]
(see: Stochastic programmingmodels: random objective)

efficient point
[90C15, 90C29, 90C30]
(see: Discretely distributed stochastic programs: descent
directions and efficient points;Multi-objective
optimization: lagrange duality; Stochastic programming
models: random objective)

efficient point see: (CJm)- —; local —; local strictly —; local
weakly—; strictly —; weakly—

efficient point set
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

efficient points see: Discretely distributed stochastic programs:
descent directions and—

efficient points sets see: connectedness of the—
efficient polynomially bounded polynomial time algorithm

[90C60]
(see: Computational complexity theory)

efficient portfolios see: frontier of—
efficient set

[90C31, 90C39]
(see:Multiple objective dynamic programming)

efficient solution
[65K05, 90B50, 90C05, 90C29, 90C30, 90C90, 91B06]
(see: Bilevel programming: global optimization;
Multi-objective optimization and decision support systems;
Multiple objective programming support)

efficient solution
[65K05, 90B50, 90C05, 90C15, 90C29, 91B06]
(see: Discretely distributed stochastic programs: descent
directions and efficient points;Multi-objective
optimization and decision support systems;Multi-objective
optimization: pareto optimal solutions, properties)

efficient solution see: (CJm)- —; nonsupported—; Pareto—;
properly—; supported—; weakly—

efficient solutions
[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

efficient solutions see: nonsupported —; set of potential —;
supported—

effort see: principle of least —
efforts see: optimal distribution of—
EGOP algorithm

[90C26]
(see: Generalized primal-relaxed dual approach)

eigenvalue
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

eigenvalue
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

eigenvalue based lower bounds
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

eigenvalue bounds of interval matrices see: Interval analysis:—
Eigenvalue enclosures for ordinary differential equations

(49R50, 65L15, 65L60, 65G20, 65G30, 65G40)
(referred to in: ˛BB algorithm;Hemivariational
inequalities: eigenvalue problems; Interval analysis:
eigenvalue bounds of interval matrices; Semidefinite
programming and determinant maximization)
(refers to: ˛BB algorithm;Hemivariational inequalities:
eigenvalue problems; Interval analysis: eigenvalue bounds
of interval matrices; Semidefinite programming and
determinant maximization)

eigenvalue formulation see: inverse interpolation
parametric —
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eigenvalue of an interval matrix see: extreme—; interval of
variation of an—

eigenvalue problem
[49J52, 90C30]
(see:Hemivariational inequalities: eigenvalue problems;
Large scale trust region problems)

eigenvalue problem see: nonsmooth—
eigenvalue problems see: Hemivariational inequalities: —
eigenvalue proximal support vector machine see:

generalized —
eigenvalue proximal support vector machine problem see:

Generalized—
eigenvalue reformulation see: parametric —
eigenvalue theorem see: interlocking—
eigenvalues see: upper and lower bounds to—
eigenvector

[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

eigenvector
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

ejection chain
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

ejection chain methods
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

Ekeland point see: local —
ekeland variational principle

[58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: weak stationarity)

elastic bar of a truss
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

elastic boundary conditions see: quasidifferential—
elastic demand traffic network problems with travel demand

functions
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

elastic mechanical constructions see: linearly—
elastic stability

[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

elastic systems see: linearly —
elastic travel demand

[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

elasticity see: price—
elastostatic problem involving QD-superpotentials

[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

elastostatic problem involving QD-superpotentials see: convex
variational inequality for an—; variational equality for an —

elastostatics
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]

(see:Hemivariational inequalities: applications in
mechanics)

elastostatics with nonlinear boundary conditions
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

ELECTRE
[90-XX]
(see: Outranking methods)

ELECTRE I see: generalization of —
electric and energy power systems see: Optimization in

operation of—
electric field

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

electric power system
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C30, 90C35,
94C15]
(see: Greedy randomized adaptive search procedures;
Optimization in operation of electric and energy power
systems)

electric power system
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

electrostatic interactions
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

element see: cognitive—; finite—; left-paired—;
left-unpaired—;mixed finite—; right-paired—;
right-unpaired—

element approximation see: finite—;mixed finite—
element group see: Klein 4-—
element in a Hilbert space see: symmetric —
element identification see:Mixed 0-1 linear programming

approach for DNA transcription—
element method see: finite—
elemental subset

[62H30, 90C39]
(see: Dynamic programming in clustering)

elementary connecting path
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

elementary functions
[26A48, 26A51, 52A07]
(see: Increasing and convex-along-rays functions on
topological vector spaces)

elementary functions see: set of —
elementary orthogonal transformations

[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

elementary partial derivatives
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

elementary transformations
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: Orthogonal triangularization)
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elements see: contracting matroid—; deleting matroid—
elevator problem

[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

elicitation see: data—
eligible nonbasic variable

[90C05]
(see: Linear programming: Klee–Minty examples)

eliminating blocks of variables
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

elimination
[13Cxx, 13Pxx, 14Qxx, 65K05, 90C30, 90Cxx]
(see: Bisection global optimization methods; Integer
programming: algebraic methods)

elimination
[65K05, 90C30]
(see: Bisection global optimization methods)

elimination see: Fourier–Motzkin—; Gaussian—
elimination with backsolving see: Gaussian—
elimination constraints see: sub-tour—; subtour—
elimination graph

[65Fxx]
(see: Least squares problems)

eliminationmethod see: Fourier–Motzkin—
elimination ordering see: cobipartite neighborhood edge—
elitism

[92B05]
(see: Genetic algorithms)

elitism
[92B05]
(see: Genetic algorithms)

ellipsoid see: coordinate-aligned—;maximum-volume—;
minimum-volume—; Quadratic programming over an—

ellipsoid algorithm
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C06, 90C08, 90C10,
90C11, 90C20, 90C25, 90C26, 90C60]
(see: Information-based complexity and information-based
optimization; Integer programming: cutting plane
algorithms; Linear programming: karmarkar projective
algorithm;Quadratic knapsack)

ellipsoid constraint
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

Ellipsoidmethod
(90C05)
(refers to: Linear programming; Linear programming:
interior point methods; Linear programming: karmarkar
projective algorithm; Linear programming: Klee–Minty
examples;Volume computation for polytopes: strategies
and performances)

ellipsoid method
[90C60]
(see: Complexity theory; Complexity theory: quadratic
programming)

ellipsoid method
[90C60]
(see: Complexity theory: quadratic programming)

ellipsoid Property
[90C05]
(see: Ellipsoidmethod)

ellipsoidal approximation
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

ellipsoidal approximation
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

ellipsoidal constraint
[90C25, 90C30, 90C60]
(see: Complexity theory: quadratic programming; Solving
large scale and sparse semidefinite programs)

elliptic distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

elliptic distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

elliptic type see: abstract variational inequality of—
Elzinga–Hearn algorithm

[90B85, 90C27]
(see: Single facility location: circle covering problem)

EM algorithm
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

embedded family of preferences
[90C29]
(see: Preference modeling)

embedded in a probability distribution see: uncertainty—
embedding

[65K05, 65K10, 90C20, 90C25, 90C26, 90C27, 90C29, 90C30,
90C31, 90C33, 90C34, 90C57, 91C15]
(see: Optimization-based visualization; Parametric
optimization: embeddings, path following and
singularities)

embedding
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

embeddings, path following and singularities see: Parametric
optimization:—

emergence of logic connectives
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Emergency evacuation, optimization modeling
emergency facility location

[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

empirical data see: evaluation of—
empirical measure

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

empirical method
[90C90]
(see: Design optimization in computational fluid dynamics)

empirical potential
[90C90]
(see: Simulated annealing methods in protein folding)
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empirical potential
[92B05]
(see: Genetic algorithms for protein structure prediction)

empirical potentials
[92B05]
(see: Genetic algorithms for protein structure prediction)

empty circle see: largest —
empty circle problem see: largest —
empty neighborhood graphs

[68Q20]
(see: Optimal triangulations)

empty spaces see: analyzing almost—
empty tree

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

enabled parallelism see: AD-—
enclosing circle see: smallest—
enclosing-circle problem see: smallest —
enclosure see: interval —
enclosure of all azeotropes see: Nonlinear systems of

equations: application to the—
enclosures for ordinary differential equations see:

Eigenvalue—
encoding see: binary—
encyclopedia of Optimization

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

end see: clearly defined—
ended see: double-—; single-—
ended crew district see: double-—; single-—
endpoint of an arc

[90C35]
(see:Minimum cost flow problem)

endpoint of an arc in a directed network
[90C35]
(see:Maximum flow problem)

endpoint of a graph
[90C35]
(see: Feedback set problems)

energy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

energy
[90C90, 91A65, 91B99]
(see: Bilevel programming: applications)

energy see: average rmsds by—; external —; free—;
internal —;minimumpotential —;molar Gibbs free—;
smoothing of the potential —; total Gibbs free —

energy balance equations see:mass and—
energy function

[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX, 90C90]
(see: Nonconvex energy functions: hemivariational
inequalities;Optimization in medical imaging)

energy function see: Lennard-Jones potential —;
nonconvex—; Optimization techniques for minimizing
the—; potential —

energy functional see: generalized critical point of an—
energy functions: hemivariational inequalities see:

Nonconvex—

energy minimization
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 65K10,
68U20, 70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding;Multiple minima
problem in protein folding:˛BB global optimization
approach)

energy minimum see: global—
energy model

[90B50]
(see: Optimization and decision support systems)

energy modeling
[90B50]
(see: Optimization and decision support systems)

energy and momentum balances see:mass—
energy power systems see: Optimization in operation of

electric and—
energy purchase contract

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

energy purchase contract
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

engine see: BB search—; Newton search—; quasi-Newton
search—; search—

engine routing and industrial in-plant railroads
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

engineering see: Archimedes and the foundations of
industrial —; Bilevel programming: applications in—;
control —

engineering applications
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 90C05,
91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Continuous global
optimization: applications)

engineering design problems see: Interval analysis: application
to chemical —

engineering optimization
[65K05]
(see: Direct global optimization algorithm)

engineering structures
[90C26, 90C90]
(see: Structural optimization: history)

engineering via negative fitness see: genetic —
engines see: scheduling of switching—
enhance

(see:Maximum cut problem, MAX-CUT)
enhanced heuristic

[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

enhanced positioning see: Gene clustering: A novel
decomposition-based clustering approach: global optimum
search with—

Enkephalin see:Met- —
enlargement

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

enlargement of a feasible region
[90C26]
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(see: Bilevel optimization: feasibility test and flexibility
index)

ensemble algorithms see: Protein folding: generalized- —
ensembles see: Generalized—
entering arc

[90C35]
(see:Minimum cost flow problem)

entering variable
[90C05]
(see: Linear programming: Klee–Minty examples)

entering variable see: choice of the—
enterprise-wide process networks under uncertainty see:

Bilevel programming framework for —
entities see:multipurpose storage—
entropic proximal point algorithm

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

entropy
[90C25, 94A08, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties; Jaynes’ maximum entropy principle;
Maximum entropy principle: image reconstruction)

entropy
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties; Jaynes’ maximum entropy principle)

entropy see: Algorithmic—; axiomatic derivation of—;
axiomatic derivation of cross-—; axiomatic derivation of
the principle of maximum—; axiomatic derivation of the
principle of minimum cross-—; cross-—; "- —; Jaynes
maximum—; Kolmogorov "- —; Kullback–Leibler cross-—;
Kullback–Leibler measure of cross-—;maximum—;
principle of maximum—; principle of minimum cross-—;
relative—; Shannon—

entropy concentration theorem see: Jaynes —
entropy and game theory see:Maximum—
entropy and its properties see: Entropy optimization: shannon

measure of—
entropy optimization

[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

entropy optimization
[90C25, 90C51, 94A08, 94A17]
(see: Entropy optimization: interior point methods;
Maximum entropy principle: image reconstruction)

entropy optimization see: algorithms for—; duality theory
for—; interior point algorithms for—; path following
algorithm for—; unconstrained dual in—

Entropy optimization for image reconstruction
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

entropy optimization for image reconstruction see:
finite-dimensionalmodels for—; vector-space models
for—

Entropy optimization: interior point methods
(94A17, 90C51, 90C25)
(referred to in: Entropy optimization: parameter estimation;
Entropy optimization: shannon measure of entropy and its
properties;Homogeneous selfdual methods for linear
programming; Jaynes’ maximum entropy principle; Linear

programming: interior point methods; Linear
programming: karmarkar projective algorithm;Maximum
entropy principle: image reconstruction; Potential
reductionmethods for linear programming; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Successive quadratic
programming: solution by active sets and interior point
methods)
(refers to: Entropy optimization: parameter estimation;
Entropy optimization: shannon measure of entropy and its
properties;Homogeneous selfdual methods for linear
programming; Interior point methods for semidefinite
programming; Jaynes’ maximum entropy principle; Linear
programming: interior point methods; Linear
programming: karmarkar projective algorithm;Maximum
entropy principle: image reconstruction; Potential
reductionmethods for linear programming; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Successive quadratic
programming: solution by active sets and interior point
methods)

Entropy optimization: parameter estimation
(94A17, 62F10)
(referred to in: Entropy optimization: interior point
methods; Entropy optimization: shannon measure of
entropy and its properties; Jaynes’ maximum entropy
principle;Maximum entropy principle: image
reconstruction)
(refers to: Entropy optimization: interior point methods;
Entropy optimization: shannon measure of entropy and its
properties; Jaynes’ maximum entropy principle;Maximum
entropy principle: image reconstruction)

Entropy optimization: shannon measure of entropy and its
properties
(94A17, 90C25)
(referred to in: Entropy optimization: interior point
methods; Entropy optimization: parameter estimation;
Jaynes’ maximum entropy principle;Maximum entropy
principle: image reconstruction;Optimization in medical
imaging)
(refers to: Entropy optimization: interior point methods;
Entropy optimization: parameter estimation; Jaynes’
maximum entropy principle;Maximum entropy principle:
image reconstruction;Optimization in medical imaging)

entropy principle see: Jaynes’ maximum—;maximum—;
minimum cross-—

entropy principle: image reconstruction see:Maximum—
entry-uniqueness problem

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

enumerating extreme point solutions
[90C60]
(see: Complexity of degeneracy)

enumeration
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming; Set covering, packing and
partitioning problems)

enumeration see: extreme point—; implicit—; randomized—
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enumeration in bilevel programming
[90C30, 90C90]
(see: Bilevel programming: global optimization)

enumeration methods see: limited—
enumeration techniques

[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

enumerative solution
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

enumerative techniques see: branch and bound—
envelope

[90C26]
(see: Global optimization: envelope representation)

envelope see: lower—; upper —
envelope representation

[90C26]
(see: Global optimization: envelope representation)

envelope representation see: Global optimization: —
envelopes see: theory of—
envelopes in optimization problems see: Convex—
envelopment analysis see: data—
envelops see: theory of —
environment see: competitive—;minimizing the degradation

in quality of both water —; problem solving—;
system-optimizing—; user-optimizing—

environmental systems see: Global optimization in the analysis
and management of —

environmental systems modeling and management see:
applications in—

environmental targets
[90C30, 90C35]
(see: Optimization in water resources)

EO
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

EOQ
[90B50]
(see: Inventory management in supply chains)

EOQ
[90B50]
(see: Inventory management in supply chains)

eor operator
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

EPA
[90C30]
(see: Large scale trust region problems)

epi-Lipschitzness see: compact—
epi mapping see: zero- —
epiconsistency

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

epiconvergence
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

epiconvergent sequence
[90C30]
(see: Cost approximation algorithms)

epidemic control
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

epidemic control see: Resource allocation for —
epidemic model

[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

epidemiology
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

epiderivative see: contingent —
epigraph

[49K27, 58C20, 58E30, 65K05, 90C10, 90C29, 90C30, 90C48]
(see: Bisection global optimization methods; Integer
programming: lagrangian relaxation;Nonsmooth analysis:
Fréchet subdifferentials; Set-valued optimization)

epigraph
[65K05, 90C30]
(see: Bisection global optimization methods)

epigraphs
[46A20, 52A01, 62F12, 65C05, 65K05, 90C15, 90C30, 90C31]
(see: Farkas lemma: generalizations;Monte-Carlo
simulations for stochastic optimization)

epistemological interpretation
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

�-complementary slackness
[90C30, 90C35]
(see: Auction algorithms)

�-constraint method
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

�-convergence see: finite—
"-entropy

[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

"-entropy
[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

"-entropy see: Kolmogorov—
"-global local maximizers see: set of discrete—
"-global points see: set of —
�-minimizer

[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

"-most active points see: set of —
"-reserved solution

[90C26]
(see: Global optimization using space filling)

"-reserved solution
[90C26]
(see: Global optimization using space filling)

�-scaling
[90C30, 90C35]
(see: Auction algorithms)

"-stationary point
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

"-steepest descent
[49J40, 49J52, 65K05, 90C30]
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(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

�-subdifferential
[46A20, 52A01, 65Kxx, 90C30, 90Cxx]
(see: Farkas lemma: generalizations;Quasidifferentiable
optimization: algorithms for QD functions)

�-subdifferential set
[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)

�-subgradient method
[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)

EQNLP
[49M37, 65K05, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions)

equal circles in a square
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

equal demand CMST
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

equalities see: single-valued boundary laws and variational—
equality see: duality—
Equality-constrained nonlinear programming: KKT necessary

optimality conditions
(49M37, 65K05, 90C30)
(referred to in: First order constraint qualifications;Globally
convergent homotopy methods; Inequality-constrained
nonlinear optimization; Kuhn–Tucker optimality
conditions; Lagrangian duality: BASICS; Redundancy in
nonlinear programs; Relaxation in projectionmethods;
Rosen’s method, global convergence, and Powell’s
conjecture; Saddle point theory and optimality conditions;
Second order constraint qualifications; Second order
optimality conditions for nonlinear optimization; SSC
minimization algorithms; SSCminimization algorithms for
nonsmooth and stochastic optimization)
(refers to: First order constraint qualifications;
Inequality-constrained nonlinear optimization;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS;Relaxation in projectionmethods; Rosen’s
method, global convergence, and Powell’s conjecture;
Saddle point theory and optimality conditions; Second
order constraint qualifications; Second order optimality
conditions for nonlinear optimization; SSCminimization
algorithms; SSC minimization algorithms for nonsmooth
and stochastic optimization)

equality-constrained nonlinear programming problem
[49M37, 65K05, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions)

equality-constrained optimization
[49M37, 65K05, 90C26, 90C30, 90C39]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions; Second order optimality
conditions for nonlinear optimization)

equality-constrained optimization
[49M37, 65K05, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions)

equality constraint see: implicit—
equality constraints

[41A10, 46N10, 47N10, 49K27, 93-XX]
(see: Direct search Luus—Jaakola optimization procedure;
High-order necessary conditions for optimality for
abnormal points)

equality constraints see: feasibility of—
equality for an elastostatic problem involving

QD-superpotentials see: variational—
equality of phase compositions

[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

equality relation see: linear—
equality relaxation see: outer approximation with—
equality relaxation and augmented penalty see: outer

approximation with—
equalization see: quality—
equation see: ASOG—; balance—; Bellman’s —;

characteristic—; conservation of flow—; continuous-time
analog of the dynamic programming—; continuous-time
Riccati—; corrected seminormal—; derivation of the
Hamilton–Jacobi–Bellman—; difference—; differential —;
diffusion—; dual Euler–Lagrange —; equilibrium—;
Euler—; Euler–Lagrange —; extended adjoint—;
generalized —; geometrical —; governing—;
Hamilton–Jacobi—; Hamilton–Jacobi–Bellman—;
Hammerstein—; HJB—; Knizhnik–Zamolodchikov
differential —; Kremser —; Lagrange —; Langevin —;
linear—; linear interval —; nonlinear diffusion—;
normal—; NRTL—; one-dimensional nonlinear —;
Poisson—; reaction—; regular solution of the Wilson—;
replicator—; Riccati—; Schroedinger—; secant—;
Smoluchowski–Kramers—; solution of the
Hamilton–Jacobi–Bellman—; stochastic differential —;
storage—; sufficiency theorem for the
Hamilton–Jacobi–Bellman—; UNIFAC—; UNIQUAC—;
Wilson—

equation-based
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

equation based approaches
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

equation method see: diffusion—
equation models see: simultaneous—
equation oriented approach

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

equation-solving see: iterative linear —
equation of state

[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

equations see: algebraic —; bounds for linear —; conservation
of flow—; differential —; differential and algebraic —;
Diophantine—; Duality in optimal control with first order
differential —; Eigenvalue enclosures for ordinary
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differential —; error bound for approximate solutions of
nonlinear systems of—; Euler —; existence of solutions of
nonlinear systems of—; extremal —; First order partial
differential —; generalized state —; Global optimization
methods for systems of nonlinear —; Gröbner bases for
polynomial—; ideal and nonideal phase equilibrium—;
integral —; Interval analysis: differential —; Interval analysis:
systems of nonlinear—;
Kantorovich–Karush–Kuhn–Tucker —; KT—;
Kuhn–Tucker —; Lagrange —; linear—; linear algebraic —;
linear systems of—;mass and energy balance—; node flow
balance—; nonlinear —; nonlinear system of —; nonlinear
systems of —; nonsmooth—; normal—; ordinary
differential —; overdetermined system of nonlinear —;
Overdetermined systems of linear —; partial differential —;
phase equilibrium—; polynomial —; polynomial system
of—; recursive dynamic programming—; replicator—;
resolvent—; rigorous bound for solutions of nonlinear
systems of —; rotation in the solution of—; selection—;
sensitivity—; solvability of—; state —; strain-displacement
compatibility—; stress equilibrium—; Symmetric systems
of linear —; system of—; systems of nonlinear —; test for
the existence of solutions of—; underdetermined system of
nonlinear —; uniqueness of solutions of nonlinear systems
of—; well-determined system of nonlinear—;
Wiener–Hopf —

equations: application to the enclosure of all azeotropes see:
Nonlinear systems of —

equations and global optimization see: Differential —
equations and linear least squares see:

Abaffi–Broyden–Spedicato algorithms for linear —; ABS
algorithms for linear —

equations for material flows see: balance—
equiangularity

[68Q20]
(see: Optimal triangulations)

equilibration
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

equilibration algorithm
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

equilibria see: reaction—
equilibrium

[49-XX, 49Jxx, 90-XX, 90B80, 90B85, 90C15, 90C26, 90C33,
90Cxx, 91Axx, 91Bxx, 93-XX]
(see: Duality theory: triduality in global optimization;
Facility location with externalities; Infinite horizon control
and dynamic games; Stochastic bilevel programs)

equilibrium
[49M37, 90C26, 91A10]
(see: Bilevel programming)

equilibrium see: asymptotical stability at an—;
communication—; Cooperative —; Cournot–Nash
oligopolistic—; economic—; feedback Nash—;
Financial —; fixed demand traffic network —; general —;
general economic—; Global optimization in phase and
chemical reaction—;memory strategy —;memory strategy
Nash—;migration—;multimodal traffic network —;
multiphase chemical—; Nash—; network —;
Noncooperative—; Oligopolisticmarket —; open-loop

Nash—; Optimality criteria for multiphase chemical —;
Overtaking—; partial —; phase—; pure exchange—;
spatial Cournot–Nash—; spatial price—; stability at an—;
Stackelberg–Nash —; Stackelberg–Nash–Cournot —;
symmetric network—; thermal —; traffic network —;
Walrasian price—

equilibrium analysis
[90-01, 90B30, 90B50, 91B32, 91B52, 91B74]
(see: Bilevel programming in management)

equilibrium of an assignment and a set of prices
[90C30, 90C35]
(see: Auction algorithms)

equilibrium of an assignment and a set of prices see: almost
at—

equilibrium conditions see:market —
equilibrium constraints see:mathematical program with—;

mathematical program with affine—
equilibrium constraints: A piecewise SQP approach see:

Optimization with—
equilibrium equation

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

equilibrium equations see: ideal and nonideal phase—;
phase—; stress —

equilibriummodel see: Cournot–Nash oligopolistic—;
migration network—;multi-sector multi-instrument
financial—;multimodal traffic network —; partial —;
perfectly competitive—; pure exchange economic—; pure
trade economic—

Equilibrium networks
(90C30)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Financial equilibrium;Generalized monotonicity:
applications to variational inequalities and equilibrium
problems;Generalized networks;Maximum flow problem;
Minimum cost flow problem;Multicommodity flow
problems;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Oligopolistic market equilibrium; Piecewise linear network
flow problems; Shortest path tree algorithms; Spatial price
equilibrium; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium;Walrasian price equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Evacuation networks; Financial
equilibrium;Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Generalized networks;Maximum flow problem;Minimum
cost flow problem;Network design problems;Network
location: covering problems;Nonconvex network flow
problems;Oligopolistic market equilibrium; Piecewise
linear network flow problems; Shortest path tree
algorithms; Spatial price equilibrium; Steiner tree
problems; Stochastic network problems: massively parallel
solution; Survivable networks; Traffic network equilibrium;
Walrasian price equilibrium)

equilibrium point
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)
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equilibrium point
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

equilibrium problem see: chemical—; network structure of the
spatial price—; phase—; spatial price—; standard traffic—

equilibrium problems
[65K10, 90C31, 90C33]
(see: Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems)

equilibrium problems
[46N10, 49J40, 90C26, 90C33]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems; Linear
complementarity problem)

equilibrium problems see: Generalized monotonicity:
applications to variational inequalities and—; Global
optimization: application to phase —

equilibrium process
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

equilibrium search see: Global—
equilibrium solutions

[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

equilibrium solutions see: verifying—
equilibrium stress

[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

equilibriumwith travel disutility functions see: traffic
network—

equivalence
[90C29]
(see: Preference modeling)

equivalence see: computational—; logical —; problem—
Equivalence between nonlinear complementarity problem

and fixed point problem
(90C33)
(referred to in: Generalized nonlinear complementarity
problem; Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Linear
complementarity problem;Order complementarity;
Principal pivoting methods for linear complementarity
problems; Topological methods in complementarity
theory)
(refers to: Convex-simplex algorithm;Generalized nonlinear
complementarity problem; Integer linear complementary
problem; LCP: Pardalos–Rosenmixed integer formulation;
Lemke method; Linear complementarity problem; Linear
programming;Order complementarity; Parametric linear
programming: cost simplex algorithm; Principal pivoting
methods for linear complementarity problems; Sequential
simplex method; Topological methods in complementarity
theory)

equivalence classes of problems
[90C60]
(see: Computational complexity theory)

equivalence closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

equivalence closure of a relation see: local —
equivalence to minmax, concave programs see: Bilevel linear

programming: complexity—
equivalence relation

[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

equivalence relation see: local—
equivalence of SIPs

[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

equivalence theorem
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

equivalences
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

equivalences
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

equivalent
[05C15, 05C62, 05C69, 05C85, 13Cxx, 13Pxx, 14Qxx, 90C27,
90C59, 90Cxx]
(see: Integer programming: algebraic methods;
Optimization problems in unit-disk graphs)

equivalent see: computational—
equivalent classes

[03E70, 03H05, 91B16]
(see: Alternative set theory)

equivalent cost vectors
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

equivalent of the dynamic programming algorithm see:
continuous-time—

equivalent forms see: Quadratic integer programming:
complexity and—

equivalent model see: deterministic —
equivalent primal SD problem

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

equivalent problem see: deterministic—
equivalent semi-infinite programs see: computationally—
equivalent uniform dose (eud)

[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

equivariant Morse lemma
[58E05, 90C30]
(see: Topology of global optimization)

EREW PRAM
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

error see: estimation—; feasibility—; linearization—;
minimizing the overall classification—; round-off—; sum of
squared—

error bound
[90C30, 90C33]
(see: Implicit lagrangian)

error bound see: global —
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error bound for approximate solutions of nonlinear systems of
equations
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

error capacity see: shannon zero- —
error estimates for AD

[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

error estimation see: Automatic differentiation: introduction,
history and rounding—

error minimization
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

errors are under control see: rounding—
errors-in-variables model

[65Fxx]
(see: Least squares problems)

Esau–Williams algorithm
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

escape step
[90C20]
(see: Standard quadratic optimization problems:
algorithms)

escape step
[90C20]
(see: Standard quadratic optimization problems:
algorithms)

escherichia coli
[90C08]
(see:Mixed 0-1 linear programming approach for DNA
transcription element identification)

essential
[90C26, 90C31]
(see: Robust global optimization)

essential optimal solution
[90C26, 90C31]
(see: Robust global optimization)

essential polyhedron
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

essential supremum
(see: Stochastic optimal stopping: problem formulations)

essentially active index set
[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

established node
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

establishing solution quality
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

estimate
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

estimate see: best —; difference—;Matula—;maximum
likelihood—; probabilistic—; pseudocost—

estimate of the spot rate see: � - —
estimate using pseudocosts see: best—
estimate using pseudoshadow prices see: best —
estimates see: kernel —; parameter —
estimates for AD see: error —
estimates for parametric NLPS see: Bounds and solution

vector —
Estimating data for multicriteria decision making problems:

optimization techniques
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Financial
applications of multicriteria analysis; Fuzzy multi-objective
linear programming;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Financial
applications of multicriteria analysis; Fuzzy multi-objective
linear programming;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)

estimating the spot rate for bonds with constant maturities
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

estimating uncertainty in dynamical systems
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

estimation
[90C31]
(see: Sensitivity and stability in NLP: approximation)

estimation see: absolute—; Automatic differentiation:
introduction, history and rounding error —; Bayesian
parameter —; covariancematrix—; Entropy optimization:
parameter —; gradient —;maximum likelihood—;
parameter —; � -programmed problem of spot rate—
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estimation of 1D-diffusion fluxes
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

estimation of diffusion flux models
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

estimation in distributed systems see: boundary flux—
estimation error

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

estimation of kinetic coefficients
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

estimation in lumped systems see: reaction flux—
estimation of model parameters

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

estimation and optimization of nonlinear problems see:
Simultaneous—

estimation problem see: `1 —; sinusoidal parameter —
estimation procedure see: sequential —
estimation of reaction rates and stoichiometry

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

estimation risk
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

estimation of subdifferentials
[26E25, 49J52, 52A27, 90C99]
(see: Quasidifferentiable optimization: Dini derivatives,
clarke derivatives)

estimation of utility functions
[90C29]
(see:Multicriteria sorting methods)

estimator see: Huber M-—; robust—
estimators see: James–Stein —; Stein —
�-convex

[90C26]
(see: Invexity and its applications)

�-convex
[90C26]
(see: Invexity and its applications)

�-pseudoconvex
[90C26]
(see: Invexity and its applications)

euclidean distance
[90B85]
(see: Bayesian networks; Single facility location:
multi-objective rectilinear distance location)

euclidean distance location see: Single facility location:
multi-objective—

Euclidean distance location problem
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

Euclidean distance location problem see: iterative solution of
the—; squared—

Euclidean distance matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

Euclidean distance matrix completion problem
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

Euclidean distance matrix completion problem
(see: Semidefinite programming and the sensor network
localization problem, SNLP)

euclidean distances
[62H30, 90C39]
(see: Dynamic programming in clustering)

Euclidean norm see: A-weighted—
euclidean and rectilinear distances see: Optimizing facility

locationwith—
Euclidean representation

[62H30, 90C39]
(see: Dynamic programming in clustering)

Euclidean representation see: unidimensional—
Euclidean space see: triangulation of—
Euclidean Steiner ratio

[90C27]
(see: Steiner tree problems)

euclidean TSP
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

(eud) see: equivalent uniform dose—
Euler equation

[90C30]
(see: Image space approach to optimization)

Euler equation
[90C30]
(see: Image space approach to optimization)

Euler equations
[90C90]
(see: Design optimization in computational fluid dynamics)

Euler formula
[58E05, 90C30]
(see: Topology of global optimization)

Euler–Lagrange equation
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

Euler–Lagrange equation see: dual—
Euler method

[90B15]
(see: Dynamic traffic networks)

Eulerian graph
[90B06]
(see: Vehicle routing)
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european Journal of Operational Research
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

Evacuation networks
(90B15)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks;Maximum
flow problem;Minimum cost flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Shortest path tree algorithms; Steiner tree problems;
Stochastic network problems: massively parallel solution;
Survivable networks; Traffic network equilibrium)

evacuation, optimizationmodeling see: Emergency —
evaluation

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

evaluation see: asymptotic case of integral —;multiple
criteria—; performance—; policy—; software
development and—

evaluation in classical logic
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

evaluation depth
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

evaluation of empirical data
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

evaluation in multiple-valued logic
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

evaluation of objective functions and/or derivatives
[90C10, 90C26, 90C30]
(see: Optimization software)

evaluation problem
[90C29]
(see:Multiple objective programming support)

evaluator see: position—
even sequence

[05C85]
(see: Directed tree networks)

event dynamic system see: discrete—
events see: decisionmaking under extreme—; drought out—
eventually exact

[90C25, 90C26]
(see: Decomposition in global optimization)

Everett generalized Lagrangemultiplier approach
[90C10, 90C27]
(see:Multidimensional knapsack problems)

evidence see: expected weight of—; likelihood—
evolution

[92B05]
(see: Genetic algorithms;Genetic algorithms for protein
structure prediction)

evolution strategy
[92B05]
(see: Genetic algorithms)

evolution strategy
[92B05]
(see: Genetic algorithms)

evolutionary algorithm
[90C26]
(see:MINLP: design and scheduling of batch processes)

evolutionary algorithm
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

evolutionary algorithms
[05-04, 68T20, 68T99, 90C27, 90C59]
(see: Evolutionary algorithms in combinatorial
optimization;Metaheuristics)

Evolutionary algorithms in combinatorial optimization
(90C27, 05-04)
(referred to in: Bayesian networks; Beam selection in
radiotherapy treatment design; Combinatorial matrix
analysis; Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games; Fractional combinatorial optimization;
Multi-objective combinatorial optimization;
Optimization-based visualization; Replicator dynamics in
combinatorial optimization; Simulated annealing;
Traveling salesman problem)
(refers to: Combinatorial matrix analysis; Combinatorial
optimization games; Fractional combinatorial
optimization; Genetic algorithms;Multi-objective
combinatorial optimization; Neural networks for
combinatorial optimization; Replicator dynamics in
combinatorial optimization)

evolutionary game theory
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

evolutionary game theory
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

evolutionary methods
(see: Bayesian networks)

evolutionary network
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

evolutionary strategies
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

Evtushenko method
[65K05, 65K10]
(see: ABS algorithms for optimization)

EW
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

ex-ante (risk averse, anticipative) decision
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

ex-ante (risk averse, anticipative) decision
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

ex-post (risk prone, adaptive) decision
[90C15]
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(see: Two-stage stochastic programming: quasigradient
method)

ex-post (risk prone, adaptive) decision
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

exact see: eventually —
exact algorithm

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

exact algorithm for solving CAP on trees
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

exact algorithms
[68Q25, 68R10, 68W40, 90B06, 90B35, 90C06, 90C10, 90C27,
90C39, 90C57, 90C59, 90C60, 90C90]
(see: Domination analysis in combinatorial optimization;
Heuristic and metaheuristic algorithms for the traveling
salesman problem; Traveling salesman problem)

exact algorithms
[68Q25, 90B80, 90C05, 90C06, 90C08, 90C10, 90C11, 90C27,
94C15]
(see: Communication network assignment problem;Graph
planarization; Integer programming: branch and bound
methods; Integer programming: branch and cut algorithms;
Integer programming: cutting plane algorithms)

exact continuous
[90C10, 90C11, 90C27, 90C33]
(see: Continuous reformulations of discrete-continuous
optimization problems)

exact L1-penalty function
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

exact methods
[90B06]
(see: Vehicle routing)

exact methods for solving vehicle routing problems
[90B06]
(see: Vehicle routing)

exact penalty
[49K35, 49M27, 65K10, 90C25]
(see: Convex max-functions)

exact penalty function
[65L99, 90C15, 90C25, 90C29, 90C30, 90C31, 93-XX]
(see: Bilevel programming: optimality conditions and
duality;Optimization strategies for dynamic systems;
Stochastic quasigradient methods in minimax problems)

exact penalty function
[90C15, 90C30, 90Cxx]
(see: Large scale trust region problems;Quasidifferentiable
optimization: exact penalty methods; Stochastic
quasigradientmethods in minimax problems)

exact penalty function see: l1 —
exact penalty function approach see: continuously

differentiable—
exact penalty function based algorithm

[90C30]
(see: Large scale trust region problems)

Exact penalty method
[90Cxx]
(see: Discontinuous optimization)

exact penalty methods see: Quasidifferentiable
optimization:—

exact penalty parameter
[90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods)

exact procedure
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

exact sampling
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

exact solution methods
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

exactly
(see: LP strategy for interval-Newtonmethod in
deterministic global optimization)

exactly or approximately
[90B10]
(see: Piecewise linear network flow problems)

example
[90C06, 90C10, 90C11, 90C27, 90C30, 90C57, 90C90, 94C15]
(see: Graph planarization;Modeling difficult optimization
problems)

example see: optimization computer implementation—
example of a trim-loss problem see: numerical —
examples see: Derivatives of probability and integral functions:

general theory and—; Klee–Minty —; Linear programming:
Klee–Minty —; unclassifiable—

examples from financial decisionmaking see: Preference
disaggregation approach: basic features —

examples of quasidifferentiable functions
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

exceptional family
[90C33]
(see: Topological methods in complementarity theory)

excess demand function see: aggregate —
excess function

[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

excess of a network node
[90C35]
(see:Minimum cost flow problem)

excess part
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

excess width
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

exchange see: edge—;mass and heat —;modelingmass—;
pure—

exchange economic equilibriummodel see: pure—
exchange economy see: pure—
exchange equilibrium see: pure—
exchange heuristic see:min-—
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exchange matches see:mass—
exchange move

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

exchange neighborhood
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

exchange neighborhood see: k- —; pair- —
exchange network see: heat andmass—
exchange networks see: Flexible mass—
exchange pivot

[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

exchange procedures see: local —
exchange property

[90C09, 90C10]
(see:Matroids)

exchanger see: heat —;mass—
exchanger network see:mass—;mass and heat —
exchanger network superstructure see: heat —
exchanger network synthesis see: heat —;MINLP: heat —;

Mixed integer linear programming: heat —
exchanger network synthesis without decomposition see:

heat —
exchanger networks see: Global optimization of heat —;

heat —;MINLP: mass and heat —;Mixed integer linear
programming: mass and heat —

exclusion region
[68Q20]
(see: Optimal triangulations)

exclusive OR
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

exclusively
[90C10, 90C11, 90C27, 90C33]
(see: Continuous reformulations of discrete-continuous
optimization problems)

execution of a Turing machine
[90C60]
(see: Complexity theory)

exhaustion principle
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

exhaustive
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

exhaustive sequential coloring see: frequency—;
requirement—

existence
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

existence of classes axiom
[03E70, 03H05, 91B16]
(see: Alternative set theory)

existence property
[90C33]
(see: Topological methods in complementarity theory)

existence-proving properties of interval Newton methods
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

existence of sets axioms
[03E70, 03H05, 91B16]
(see: Alternative set theory)

existence of solutions of equations see: test for the—
existence of solutions of nonlinear systems of equations

[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

existence and uniqueness see: Variational inequalities:
geometric interpretation —

exogenous inflow see: hydrological —
exogenous inflow and demand see: water resources planning

under uncertainty on hydrological—
expanded transshipment model

[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

expanding see: algorithm greedy- —
expanding grid see:menace of the—
expansion

[90C30]
(see: Sequential simplex method)

expansion see: first order Taylor series —
expansion coefficient

[90C30]
(see: Sequential simplex method)

expansion of a matrix see: standard determinant —
expansion operations

[90C30]
(see: Sequential simplex method)

expectation see: bounding the—
expectation constraint see: conditional—
expectation and decision

[90C26, 90C30]
(see: Forecasting)

expectation functions see: sample and—
expectation of an indicator function

[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

expectation-maximization
(see: Bayesian networks)

expectation maximization
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

expectation-maximization algorithm
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

expectation-maximization interval
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

expectations see: Static stochastic programming models:
conditional—

expected number of pivot steps
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

expected number of shadow-vertices
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)
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expected power consumption
[68M12, 90B18, 90C11, 90C30]
(see: Optimization in ad hoc networks)

expected recourse
[90C15]
(see: Two-stage stochastic programs with recourse)

expected recourse function
[90C10, 90C15]
(see: Stochastic integer programs)

expected Savings
[90B15]
(see: Evacuation networks)

expected value function
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

expected value of perfect information
[90C15]
(see: Two-stage stochastic programs with recourse)

expected weight of evidence
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

experiment
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

experiment design
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

experiment design
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

experimental analysis see:model-based—
experimental design

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

experimental design see: optimal—; sequential —
expert system

[90C26, 90C30]
(see: Forecasting)

expert systems
[90C26, 90C30]
(see: Forecasting)

exploiting the interplay between primal and dual solutions
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

exploration of minimax trees see: parallelizing the—
exploratory statistical analysis

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

exponential
[34E05, 90C27]
(see: Asymptotic properties of randommultidimensional
assignment problem)

exponential algorithm
[90C60]
(see: Computational complexity theory)

exponential algorithm
[90C60]
(see: Computational complexity theory)

exponential behavior
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

exponential complexity
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

exponential function
[90C60]
(see: Complexity classes in optimization)

exponential function see: parabolic- —
exponential scale

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

exponential smoothing
[90C26, 90C30]
(see: Forecasting)

exponential smoothing
[90C26, 90C30]
(see: Forecasting)

exponential time algorithm
[90C60]
(see: Computational complexity theory)

exponential transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

exponentially space-bounded Turing machine
[90C60]
(see: Complexity classes in optimization)

exponentially time-bounded Turing machine
[90C60]
(see: Complexity classes in optimization)

export model
[90C35]
(see:Multicommodity flow problems)

exposure time see: radiation—
express delivery problem

[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

express shipment delivery
[90C35]
(see:Multicommodity flow problems)

expression parsing
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

expressions see: algebraic —
EXSPACE

[90C60]
(see: Complexity classes in optimization)

extended adjoint equation
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)
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extended alignment graph
[90C35]
(see: Optimization in leveled graphs)

extended canonical function space
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

extended cutting plane
[49M37, 90C11]
(see:MINLP: outer approximation algorithm;Mixed
integer nonlinear programming)

Extended cutting plane algorithm
(90C11, 90C26)
(referred to in: Chemical process planning;Generalized
benders decomposition;Generalized outer approximation;
MINLP: application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks;Mixed integer
nonlinear programming;Quadratic assignment problem)

extended cutting plane method
[90C11]
(see:MINLP: outer approximation algorithm)

extended doubly connected edge list
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

extended Extremal Principle
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

extended group relaxations
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

extended Lagrange–Slater dual
[90C05, 90C25, 90C30, 90C34]
(see: Duality for semidefinite programming; Semi-infinite
programming, semidefinite programming and perfect
duality)

extended linear complementarity problem
[90C33]
(see: Linear complementarity problem)

extended linear programming problems
[90C25, 90C33, 90C55]
(see: Splittingmethod for linear complementarity
problems)

extended matrix
[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

extended quadratic programming problem
[90C25, 90C33, 90C55]
(see: Splittingmethod for linear complementarity
problems)

extended real-valued CNSO
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

extended set of Lagrange multipliers
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

extended support problems method
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

extension see: coloring—; conic—; interval —; Lovász—;
mean value—; natural interval —; path—; uniform—;
united—

Extension of the fundamental theorem of linear programming
(90C05)

extension set
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

extension theorem see: Hahn–Banach linear —
extensionality see: axiom of —
extensionality axiom

[03E70, 03H05, 91B16]
(see: Alternative set theory)

extensionality convention
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

extensive form
[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

exterior point algorithm see: dual —
exterior point method

[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

exterior point method
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

exteriority
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

external deviation
[62H30, 68T10, 90C05]
(see: Linear programmingmodels for classification)

external energy
[90C90]
(see: Optimization in medical imaging)

externalities
[90B80, 90B85, 90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities)

externalities see: Facility location with—
extra-gradient algorithm

[90C30]
(see: Cost approximation algorithms)

extra-urban transit planning
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

extraction see: feature —
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extrapolation
[90C26, 90C30]
(see: Forecasting)

extrapolation
[90C26, 90C30]
(see: Forecasting)

extrapolation see: subjective curve fitting and—
extrapolation methods

[90C26, 90C30]
(see: Forecasting)

extraTime
(see:Medium-term scheduling of batch processes)

extremal
[41A10, 47N10, 49K15, 49K27]
(see:High-ordermaximum principle for abnormal
extremals)

extremal see: abnormal —; abnormal weak —; locally—;
normal—; weak—

extremal basis
[49K35, 49M27, 65K10, 90C25]
(see: Convex max-functions)

extremal basis method
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

extremal basis method
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

extremal equations
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

extremal global optimization see:multi- —
extremal Principle

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

Extremal Principle see: extended—
extremal ray

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

extremal set see: cover the—
extremality see:multi- —
extremals see: High-order maximum principle for abnormal —
extreme-efficient

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

extreme eigenvalue of an interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

extreme events see: decisionmaking under—
extreme face

[90C09, 90C10, 90C11]
(see: Disjunctive programming)

extreme feasible solution
[90C60]
(see: Complexity of degeneracy)

extreme point
[90C05, 90C30]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm;
Krein–Milman theorem; Simplicial decomposition)

extreme point enumeration
[90C60]
(see: Complexity of degeneracy)

extreme point mathematical program
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

extreme point ranking
[90C60]
(see: Complexity of degeneracy)

extreme point solution
[90C60]
(see: Complexity of degeneracy)

extreme point solutions see: enumerating—
extreme points see: convex combination of the—; ranking—
extremum principles

[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

extremum problems with probability functionals see:
Approximation of—

Extremum problems with probability functions: kernel type
solution methods
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;General
moment optimization problems; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Multistage stochastic programming: barycentric
approximation; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;General
moment optimization problems; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Multistage stochastic programming: barycentric
approximation; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
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theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

eye-view see: beam’s-—

F

F see: ADOL-—
f-attentive convergence

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

F-complete language
[90C60]
(see: Complexity classes in optimization)

F-completeness
[90C60]
(see: Complexity classes in optimization)

F. E. approach see: Variational inequalities:—
F-hard language

[90C60]
(see: Complexity classes in optimization)

F-hardness
[90C60]
(see: Complexity classes in optimization)

face
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

face see: extreme—; k- —; optimal—; points on the same—;
S-—

face of an arrangement
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

face of a polyhedral subdivision
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

faces see: incident—
facet

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

facet
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

facets
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

facial disjunctive program
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

facial disjunctive program
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

facial program
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

facilities see: controlled recharge—; groundwater
pumping—; residents of special —; surface water
pumping—

facilities layout
[90B80]
(see: Facilities layout problems)

Facilities layout problems
(90B80)
(referred to in:Quadratic assignment problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Complexity classes in optimization; Complexity theory;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Genetic algorithms;Global optimization in
Weber’s problemwith attraction and repulsion; Integer
programming: branch and boundmethods; Integer
programming: lagrangian relaxation;MINLP: application
in facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Quadratic assignment problem; Resource allocation for
epidemic control; Simulated annealing methods in protein
folding; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

facility layout
[90C10, 90C27, 94C15]
(see: Graph planarization)

facility location
[90-02, 90B05, 90B06, 90B80, 90B85, 90C11, 90Cxx, 91Axx,
91Bxx]
(see: Facility location with externalities;Global supply chain
models;Operations researchmodels for supply chain
management and design; Stochastic transportation and
location problems;Warehouse location problem)

facility location
[05C05, 05C85, 68Q25, 90B80, 90B85, 90C08, 90C11, 90C26,
90C27, 90C57, 90C59, 90C90]
(see: Bottleneck steiner tree problems; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;Quadratic assignment
problem; Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
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rectilinear distance location; Voronoi diagrams in facility
location)

facility location see: Competitive—; dynamic—;
emergency —;multi-objective—;multiple-—; single—;
Voronoi diagrams in—

facility location-allocation
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

facility location-allocation
[90C26]
(see:MINLP: application in facility location-allocation)

facility location-allocation see:MINLP: application in—
facility location: circle covering problem see: Single—
facility location with euclidean and rectilinear distances see:

Optimizing—
Facility location with externalities

(90B80, 90B85, 91Bxx, 90Cxx, 91Axx)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location problems with spatial interaction; Facility
location with staircase costs; Global optimization in
Weber’s problemwith attraction and repulsion;MINLP:
application in facility location-allocation;Multifacility and
restricted location problems;Network location: covering
problems;Optimizing facility location with euclidean and
rectilinear distances; Single facility location: circle covering
problem; Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location; Stochastic transportation and
location problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location problems with spatial interaction; Facility
location with staircase costs; Global optimization in
Weber’s problemwith attraction and repulsion;MINLP:
application in facility location-allocation;Multifacility and
restricted location problems;Network location: covering
problems;Optimizing facility location with euclidean and
rectilinear distances; Production-distribution system
design problem; Resource allocation for epidemic control;
Single facility location: circle covering problem; Single
facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

facility location model
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

facility locationmodel see: spatial competition—;
Stochastic—

facility location: multi-objective euclidean distance location
see: Single—

facility location: multi-objective rectilinear distance location
see: Single—

facility location problem
[90B80, 90C10, 90C11, 90C27, 90C57]
(see: Facility location with staircase costs; Integer
programming)

facility location problem see: uncapacitated—

facility location problems
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

Facility location problems with spatial interaction
(90B80, 90C10)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;Voronoi
diagrams in facility location;Warehouse location problem)

facility location problems with staircase costs see: convex
piecewise linearization in—; heuristics of —; linearization
in—; solution of—

Facility location with staircase costs
(90B80, 90C11)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction;Global optimization in
Weber’s problemwith attraction and repulsion;MINLP:
application in facility location-allocation;Multifacility and
restricted location problems;Network location: covering
problems;Optimizing facility location with euclidean and
rectilinear distances; Single facility location: circle covering
problem; Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location; Stochastic transportation and
location problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction;Global optimization in
Weber’s problemwith attraction and repulsion;MINLP:
application in facility location-allocation;Multifacility and
restricted location problems;Network location: covering
problems;Optimizing facility location with euclidean and
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rectilinear distances; Production-distribution system
design problem; Resource allocation for epidemic control;
Single facility location: circle covering problem; Single
facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

facility location with staircase costs
[90B80, 90C11]
(see: Facility location with staircase costs)

facility planning and scheduling
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

facility problem in OR see: single- —
factor see: constraint- —; cycle—; discount—; fading—;

human rationality—; Q-—; search overhead —
factor programming see: variable—
factorial HMM

(see: Bayesian networks)
factorization see: Bunch and Parlett —; Cholesky—; classical

LU—; complete orthogonal —;matrix —;modifying
matrix—; orthogonal —; parallel matrix —; qR—; rank
revealing—; rank revealing QR—; rank revealing URV—;
structured matrix —

factorization with column-pivoting see: QR—
factorization of structured matrices see: Stochastic

programming: parallel —
factorization using Householder transformations see: QR—
factorized quasi-Newton methods

[49M37]
(see: Nonlinear least squares: Newton-type methods)

factors see: bound-—; normalized structure—
fading factor

(see: Bayesian networks)
failure of the alpha-beta algorithm see: high—; low—
failure risk see: business —
fair objective function

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

falsification
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

families of Pi-algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

families of the Pinkava logic algebras see:many-valued—
family see: Broyden—; exceptional —; finite nested —;

laminar—; two-parameter CG—
family of measures see: dominated—; weakly L1

(v)-differentiable—
family of methods see: Broyden—
family of methods and the BFGS update see: Broyden—
family of preferences see: embedded—
family of probability measures see: regular —
family of sets see: pseudoconnected—
family of triangulations see: regular —
fan see: Gröbner—; secondary—

FAP
[05-XX]
(see: Frequency assignment problem)

far-from-native conformations see: discarding—
Farkas lemma

(15A39, 90C05)
(referred to in: Farkas lemma: generalizations;
Fourier–Motzkin elimination method; Fractional
programming;Global optimization: envelope
representation;Gröbner bases for polynomial equations;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS; Least-index anticycling rules; Linear optimization:
theorems of the alternative; Linear programming;Motzkin
transposition theorem; Theorems of the alternative and
optimization; Tucker homogeneous systems of linear
relations)
(refers to: Farkas lemma: generalizations; Linear
optimization: theorems of the alternative; Linear
programming;Motzkin transposition theorem; Theorems
of the alternative and optimization; Tucker homogeneous
systems of linear relations)

Farkas lemma
[05B35, 15A39, 90C05, 90C20, 90C30, 90C33]
(see: Kuhn–Tucker optimality conditions; Least-index
anticycling rules; Linear optimization: theorems of the
alternative;Motzkin transposition theorem; Theorems of
the alternative and optimization)

Farkas lemma: generalizations
(46A20, 90C30, 52A01)
(referred to in: Farkas lemma; Fourier–Motzkin elimination
method; Fractional programming;Global optimization:
envelope representation;Gröbner bases for polynomial
equations; Lagrangian duality: BASICS; Least-index
anticycling rules; Theorems of the alternative and
optimization)
(refers to: Farkas lemma)

farthest-point Voronoi diagram
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

farthest-point Voronoi diagram
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

farthest vertex insertion (FVI)
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

fast Givens transformation
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

fast interchange
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

fathom
[90C11]
(see:MINLP: branch and bound methods)

fathoming a node
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

fathoming step
[90C10, 90C26]
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(see:MINLP: branch and bound global optimization
algorithm)

fatness
[68Q20]
(see: Optimal triangulations)

fault see: jump across a—; negative —; positive—
fault ridge

[90Cxx]
(see: Discontinuous optimization)

faults see: set of—
fc and max-regret heuristics see:max-regret- —
FCO

[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

FCOP
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

FCTP
[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

FDL
[90C09]
(see: Inference of monotone boolean functions)

FDS
[90B85]
(see:Multifacility and restricted location problems)

feasibility
[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

feasibility see: dual—; interdisciplinary—; Interval analysis:
verifying—; primal—

feasibility analysis see: Shape reconstructionmethods for
nonconvex—

feasibility approach
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

feasibility approach to image reconstruction from projection data
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

feasibility condition see: strict —
feasibility convergence tests

[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

feasibility cut
[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

feasibility cuts
[49M27, 90C11, 90C15, 90C30]
(see: L-shaped method for two-stage stochastic programs
with recourse;MINLP: generalized cross decomposition)

feasibility of equality constraints
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: verifying feasibility)

feasibility error
[90C90, 91B28]
(see: Robust optimization)

feasibility of inequality constraints
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: verifying feasibility)

feasibility problem
[05B35, 46A20, 52A01, 90C05, 90C20, 90C30, 90C33]

(see: Farkas lemma: generalizations; Least-index anticycling
rules)

feasibility problem see: convex—; nonlinear —; zero-one
integer —

feasibility set see: second-stage—
feasibility test

[65G20, 65G30, 65G40, 65K05, 90C26, 90C30]
(see: Bilevel optimization: feasibility test and flexibility
index; Interval global optimization)

feasibility test and flexibility index see: Bilevel optimization: —
feasible

[49M30, 49M37, 65K05, 90C26, 90C30, 90C31]
(see: Practical augmented Lagrangianmethods; Robust
global optimization; Smooth nonlinear nonconvex
optimization)

feasible approach
[93-XX]
(see: Dynamic programming: optimal control applications)

feasible ascendant direction
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

feasible assignment
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

feasible basis see: primal —
feasible box

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

feasible component
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

feasible computational solution see: practically—
feasible cones see: high-order—
feasible for DDV

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

feasible decomposition method
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

feasible direction
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming;
Kuhn–Tucker optimality conditions; Rosen’s method,
global convergence, and Powell’s conjecture)

feasible direction
[90C30]
(see: Frank–Wolfe algorithm)

feasible direction see: improving—
feasible direction method for nonlinear programming

[90C30]
(see: Frank–Wolfe algorithm)

feasible direction methods
[90C29, 90C30]
(see: Convex-simplex algorithm;Multi-objective
optimization; Interactivemethods for preference value
functions)

feasible direction methods
[65K05, 65K10, 90C30]
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(see: ABS algorithms for optimization; Convex-simplex
algorithm; Frank–Wolfe algorithm)

feasible directions see: combinedmethod of —; cone of—;
methods of—

feasible domain
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

feasible flow
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

feasible flow problem
[90C35]
(see:Maximum flow problem)

feasible flow vector
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

feasible gradient controller
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

feasible high-order approximating cones
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

feasible high-order approximating curve
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

feasible high-order approximating vector
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

feasible iterates
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

feasible iterates
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

feasible move
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

feasible node
[90C10, 90C29]
(see:Multi-objective integer linear programming)

feasible path approach
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

feasible path flow pattern
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

feasible point
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30,
90C31]
(see: Rosen’s method, global convergence, and Powell’s
conjecture; Sensitivity and stability in NLP: approximation;
Stochastic global optimization: two-phase methods)

feasible point
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

feasible point see: regular —
feasible point to a solution point see: bounds on the distance

of a—
feasible points see: set of —
feasible problem

[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

feasible region
[65G30, 65G40, 65K05, 68W10, 90B15, 90C05, 90C06, 90C20,
90C29, 90C30, 90C31, 90C57, 90C90]
(see: Bilevel programming: global optimization; Global
optimization: interval analysis and balanced interval
arithmetic;Multiple objective programming support;
Redundancy in nonlinear programs; Rosen’s method,
global convergence, and Powell’s conjecture; Sensitivity and
stability in NLP: continuity and differential stability;
Stochastic network problems: massively parallel solution)

feasible region see: enlargement of a—;minimal
representation of a—; prime representation of a—;
relaxation of a—

feasible region reduction
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

Feasible sequential quadratic programming
(65K05, 65K10, 90C06, 90C30, 90C34)
(referred to in:Optimization with equilibrium constraints:
A piecewise SQP approach; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Successive quadratic
programming; Successive quadratic programming:
applications in distillation systems; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)
(refers to:Optimization with equilibrium constraints:
A piecewise SQP approach; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Successive quadratic
programming; Successive quadratic programming:
applications in distillation systems; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

feasible sequential quadratic programming
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

feasible set
[37A35, 49M37, 65K05, 65K10, 9008, 90C05, 90C26, 90C27,
90C29, 90C30, 90C59, 93A13]
(see:Multilevel methods for optimal design;Multiple
objective programming support; Potential reduction
methods for linear programming; Smooth nonlinear
nonconvex optimization;Variable neighborhood search
methods)

feasible set see: branch of a—; dual—; high-order —;
p-order—; primal —; strictly —
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feasible solution
[9008, 90C05, 90C25, 90C26, 90C27, 90C30, 90C31, 90C33,
90C59]
(see: Lagrangianmultipliers methods for convex
programming; Pivoting algorithms for linear programming
generating two paths; Robust global optimization; Variable
neighborhood search methods)

feasible solution see: basic—; extreme—
feasible solutions see: set of—
feasible spanning tree structure

[90C35]
(see:Minimum cost flow problem)

feasible underestimators
[90C11, 90C26]
(see: Extended cutting plane algorithm)

feature-based aggregation
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

feature detection see: low-level—
feature extraction

[90C39]
(see: Neuro-dynamic programming)

feature segmentation
[90C90]
(see: Optimization in medical imaging)

feature selection
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

feature space
[90C90]
(see: Optimization in medical imaging)

feature vector
[90C39]
(see: Neuro-dynamic programming)

features see: special model—
features, examples from financial decisionmaking see:

Preference disaggregation approach: basic—
fed-batch reactor

[93-XX]
(see: Dynamic programming: optimal control applications)

Feed
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

Feed algorithm
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

feed-forward network see: two-layer —
feed-forward neural network

[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

feedback
[93D09]
(see: Robust control)

feedback see: incomplete state —; off-line—; on-line—
feedback arc set problem

[90C35]
(see: Feedback set problems)

feedback arc set problem see:minimum—;minimum
weight—

feedback control
[93-XX]
(see: Dynamic programming: optimal control applications)

feedback Nash equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

feedback set problem
[90C35]
(see: Feedback set problems)

feedback set problem
[90C35]
(see: Feedback set problems)

Feedback set problems
(90C35)
(referred to in: Biquadratic assignment problem;Graph
coloring;Graph planarization;Greedy randomized
adaptive search procedures; Linear ordering problem;
Quadratic assignment problem;Quadratic
semi-assignment problem)
(refers to: Generalized assignment problem;Graph coloring;
Graph planarization;Greedy randomized adaptive search
procedures;Quadratic assignment problem;Quadratic
semi-assignment problem)

feedback Stackelberg solution
(see: Bilevel programming framework for enterprise-wide
process networks under uncertainty)

feedback vertex (arc) set problem see:minimum—; subset —;
subset minimum—

feedback vertex set
[90C35]
(see: Feedback set problems)

feedback vertex set see:minimum—
feedback vertex set problem

[90C35]
(see: Feedback set problems)

feedback vertex set problem see:minimumweighted —;
unweighted —

Fejér monotone sequence
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

Fejér monotonicity
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

Fejér monotonicity in convex optimization
(47H05, 90C25, 90C55, 65J15, 90C25)
(referred to in: Generalized monotone multivalued maps;
Generalized monotone single valued maps; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems)
(refers to: Generalized monotone multivalued maps;
Generalized monotone single valued maps; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems)

Fejérian see: S- —
fekete points problem

[65K05, 90C26, 90C30]
(see:Monotonic optimization)
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Fenchel conjugate functions
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

Fenchel cuts
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

Fenchel duality
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

Fenchel duality pair
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

Fenchel–Legendre transformation see: integral —
Fenchel–Moreau duality

[90C26]
(see: Global optimization: envelope representation)

Fenchel–Moreau subdifferential
[90C26]
(see: Generalized monotone multivalued maps)

Fenchel–Rockafellar duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Duality theory: triduality in global optimization)

Fenchel–Rockafellar duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Fenchel–Rockafellar duality theory
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Fenchel transformation
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization;
Duality theory: monoduality in convex optimization)

Fenchel-type duality for M- and L-convex functions
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

Fenchel–Young inequality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Fermat problem
[90C27]
(see: Steiner tree problems)

Fermat problem see: general —
F.H. Clarke see: generalized subdifferential of—
fH-VNS

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

fiber see: Gröbner—
Fibonnaci section search

[90C30]
(see: Nonlinear least squares problems)

fictitious domain method
[49J20, 49J52]
(see: Shape optimization)

fictitious uncertainty
[93D09]
(see: Robust control)

field see: electric —; sigma- —; splitting—
field approximation see:mean—

field via linear optimization see: Distance dependent protein
force—

fields see: force—; offshore oil —
Figure Legends

(see:Mixed integer nonlinear bilevel programming:
deterministic global optimization)

figures
[03E70, 03H05, 91B16]
(see: Alternative set theory)

fill-in see: intermediate —
fill-in of a graph see:minimum—
filled function

[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

filled function see: discrete—; globally convexized—;
locally—

filled function methods
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

filled functionmethods see: basic outline of—; Global
optimization: —

filling see: Global optimization using space—
filling curve see: space—
filling curves see: approximation of space—
FILO

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

filter see: kalman—; Sobel edge—; Volterra—
filters see: wedge—
filtration see: stochastic process nonanticipative with respect

to a—
final state of a Turing machine

[90C60]
(see: Complexity classes in optimization)

finance
[90C26, 90C27, 91B06, 91B28, 91B60]
(see: Financial applications of multicriteria analysis;
Operations research and financial markets; Portfolio
selection: markowitz mean-variance model; Portfolio
selection and multicriteria analysis)

finance see:mathematical —; Semi-infinite programming and
applications in—

Financial applications of multicriteria analysis
(91B06, 91B60)
(referred to in: Bi-objective assignment problem;
Competitive ratio for portfolio management;Decision
support systems with multiple criteria; Estimating data for
multicriteria decision making problems: optimization
techniques; Financial optimization; Fuzzy multi-objective
linear programming;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
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approach: basic features, examples from financial decision
making; Preference modeling; Robust optimization;
Semi-infinite programming and applications in finance)
(refers to: Bi-objective assignment problem; Competitive
ratio for portfolio management;Decision support systems
with multiple criteria; Estimating data for multicriteria
decisionmaking problems: optimization techniques;
Financial optimization; Fuzzy multi-objective linear
programming;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling; Robust optimization;
Semi-infinite programming and applications in finance)

financial decision making
[90C29]
(see: Preference disaggregation approach: basic features,
examples from financial decisionmaking)

financial decision making
[90C29]
(see: Preference disaggregation approach: basic features,
examples from financial decisionmaking)

financial decisionmaking see: Preference disaggregation
approach: basic features, examples from—

Financial equilibrium
(91B50)
(referred to in: Equilibrium networks; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems;Oligopolistic market equilibrium;
Spatial price equilibrium; Traffic network equilibrium;
Walrasian price equilibrium)
(refers to: Equilibrium networks; Generalized monotonicity:
applications to variational inequalities and equilibrium
problems;Oligopolistic market equilibrium; Spatial price
equilibrium; Traffic network equilibrium;Walrasian price
equilibrium)

financial equilibrium
[91B50]
(see: Financial equilibrium)

financial equilibriummodel see:multi-sector
multi-instrument—

financial leverage hypothesis
[90C05, 90C90, 91B28]
(see:Multicriteriamethods for mergers and acquisitions)

financial markets see: Operations research and—
Financial optimization

(91B28)
(referred to in: Competitive ratio for portfolio management;
Financial applications of multicriteria analysis; Portfolio
selection andmulticriteria analysis; Robust optimization;
Semi-infinite programming and applications in finance)
(refers to: Competitive ratio for portfolio management;

Financial applications of multicriteria analysis; Portfolio
selection and multicriteria analysis; Robust optimization;
Semi-infinite programming and applications in finance)

financial planning
[91B28]
(see: Financial optimization)

financial planning problems see: Global optimization
algorithms for —

find all see: find one—
find one, find all

(see: Planning in the process industry)
finding a minimum

[49J52, 90C30]
(see: Nondifferentiable optimization: relaxationmethods)

finding problem see: direction—; regularized direction—
finding procedure see:model —
finding shortest paths see: problem of—
fine structures see:maxdiag—;mindiag—
fine valuation structure

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

finer grid
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

finite
[46N10, 47N10, 49M37, 57R12, 65K10, 90C26, 90C30, 90C31,
90C34]
(see: Global optimization: tight convex underestimators; LP
strategy for interval-Newtonmethod in deterministic global
optimization; Parametric global optimization: sensitivity;
Smoothing methods for semi-infinite optimization)

finite alphabet
[90C60]
(see: Complexity classes in optimization)

finite class
[03E70, 03H05, 91B16]
(see: Alternative set theory)

Finite complete systems of many-valued logic algebras
(03B50, 68T15, 68T30)
(referred to in: Alternative set theory; Boolean and fuzzy
relations;Checklist paradigm semantics for fuzzy logics;
Inference of monotone boolean functions; Optimization in
boolean classification problems;Optimization in classifying
text documents)
(refers to: Alternative set theory; Boolean and fuzzy
relations;Checklist paradigm semantics for fuzzy logics;
Inference of monotone boolean functions; Optimization in
boolean classification problems;Optimization in classifying
text documents)

finite costs see: reduction to—
finite-difference approximation

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

finite difference methods
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

finite differences
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)
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finite-dimensional control problem
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

finite-dimensional linear program
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

finite-dimensional models for entropy optimization for image
reconstruction
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

finite-dimensional subspace
[65M60]
(see: Variational inequalities: F. E. approach)

finite-dimensional variational inequality problem
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

finite dominating set
[90B85]
(see:Multifacility and restricted location problems)

finite dominating set
[90B85]
(see:Multifacility and restricted location problems)

finite element
[49M37, 65K05, 90C26, 90C30, 90C90]
(see: Structural optimization; Structural optimization:
history)

finite element
[49M37, 65K05, 90C30]
(see: Structural optimization)

finite element see:mixed—
finite element approximation

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

finite element approximation see:mixed—
finite element method

[49J40, 49J52, 49M05, 49Q10, 49S05, 65M60, 70-08, 74G99,
74H99, 74K99, 74Pxx, 90C33, 90C90, 91A65, 94A08, 94A17]
(see:Hemivariational inequalities: applications in
mechanics;Maximum entropy principle: image
reconstruction;Multilevel optimization in mechanics;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities;Variational inequalities: F. E.
approach)

finite �-convergence
[49M29, 90C11]
(see: Generalized benders decomposition)

finite generation method see: Lagrangian —
finite horizon

(see: Bayesian networks)
finite jump system

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

finite minimax problem
[49K35, 49M27, 65K10, 90C25]
(see: Convex max-functions)

finite moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

finite natural numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

finite nested family
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

finite optimality
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

finite optimization problem see: one-parametric —
finite rational numbers

[03E70, 03H05, 91B16]
(see: Alternative set theory)

finite sequence see: generalized —
finite set see: hierarchy in a—
finite set of the alternatives

[90-XX]
(see: Outranking methods)

finite-state Markov chain
[49L20, 90C39]
(see: Dynamic programming: discounted problems)

Finsler theorem
[93D09]
(see: Robust control)

firmly nonexpansive operator
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

first see: best- —; breadth- —; depth- —
first algorithm see:mandatory work—
first bank

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

first-cluster second see: schedule—
first descent

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

first-In-First-Out
(see: Railroad crew scheduling)

first-in last-out rule
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

first level problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

first order approximation of a function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

first order changes see: up to—
first order constraint qualification

[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

First order constraint qualifications
(90C30, 49K27, 90C31, 49K40)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS;Nondifferentiable optimization: parametric
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programming;Rosen’s method, global convergence, and
Powell’s conjecture; Saddle point theory and optimality
conditions; Second order constraint qualifications; Second
order optimality conditions for nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS;Rosen’s method, global convergence, and Powell’s
conjecture; Saddle point theory and optimality conditions;
Second order constraint qualifications; Second order
optimality conditions for nonlinear optimization)

first order constraint qualifications
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

First order CQ
[49K27, 49K40, 90C26, 90C30, 90C31, 90C39]
(see: First order constraint qualifications; Second order
optimality conditions for nonlinear optimization)

first order differential equations see: Duality in optimal control
with—

first order KKT conditions
[90C31]
(see: Bounds and solution vector estimates for parametric
NLPS)

first order necessary condition
[49M29, 65K10, 90C06, 90C26, 90C39]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control; Second order optimality
conditions for nonlinear optimization)

first order necessary conditions
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

first order necessary optimality conditions
[49M37, 65K05, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions)

first order optimality
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

First order partial differential equations
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

first order and second order optimality conditions
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

first order tangent set
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

first order Taylor series expansion
[90C30]
(see: Simplicial decomposition)

first order Taylor series expansion
[90C30]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm;
Simplicial decomposition)

first order theory of real addition with order
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

First-Out see: first-In-—
first principle see:Wardrop—
first-schedule second strategy see: cluster —
first search see: depth- —
first search with backtracking see: depth- —
first slope lemma

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

first-stage decision
[90C15]
(see: Two-stage stochastic programs with recourse)

first-stage decisions
[90B10, 90B15, 90C10, 90C15, 90C35]
(see: Preprocessing in stochastic programming; Stochastic
integer programs; Stochastic programming: parallel
factorization of structured matrices; Stochastic vehicle
routing problems)

first tree search see: best- —; depth- —; Parallel Best- —;
Parallel Depth- —

Fischer–Burmeister function
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

fit see: best—
fitness

[92B05]
(see: Broadcast scheduling problem;Genetic algorithms)

fitness
[92B05]
(see: Genetic algorithms)

fitness see: genetic engineering via negative —
fitness function

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

fittest see: survival of the —
fitting see: curve—; data—; subjective curve—
fitting to data see: best —
fitting and extrapolation see: subjective curve—
fix see: dive-and-—; near-integer- —; relax-and-—
fixed charge

[90C25]
(see: Concave programming)

fixed charge
[90B10, 90B80, 90C11]
(see: Piecewise linear network flow problems; Stochastic
transportation and location problems)

fixed charge see: linear—
fixed charge function

[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

fixed charge network flow problem
[90B10]
(see: Piecewise linear network flow problems)

fixed charge networks
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)
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fixed charge problem
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

fixed charge transportation problem
[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

fixed charge transportation problem
[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

fixed cost with capacity constraints see: single—
fixed cost with no capacity constraints see: single—
fixed degree of flexibility

[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

fixed demand traffic network equilibrium
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

fixed demand traffic network problems
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

fixed number of vehicles see: Vehicle scheduling problems
with a—

fixed parameter tractability
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

fixed parameter tractable algorithms
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

fixed point
[49L20, 49M29, 65H10, 65J15, 65K10, 90C06, 90C30, 90C39,
90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms;
Contraction-mapping;Dynamic programming: discounted
problems; Local attractors for gradient-related descent
iterations)

fixed point see: coupled—
fixed point computation

[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

fixed point iteration
[65G20, 65G30, 65G40, 65H20]
(see: Interval fixed point theory)

fixed point problem
[47H05, 65J15, 90C25, 90C33, 90C55]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem; Fejér monotonicity in
convex optimization)

fixed point problem
[65K10, 65M60, 90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem;Variational inequalities)

fixed point problem see: Equivalence between nonlinear
complementarity problem and—

fixed point theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

fixed point theorem see: brouwer—;Miranda—; Schauder—;
Tychonoff —

fixed point theory
[90C05, 90C10, 90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem; Simplicial pivoting
algorithms for integer programming)

fixed point theory see: Interval —
fixed recourse

[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

fixed tabs search
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

fixed travel demand
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

fixedTime
(see:Medium-term scheduling of batch processes)

fixing see: reduced cost—
FL

[15A39, 90B80, 90C05]
(see: Facilities layout problems; Farkas lemma)

flat fuzzy number see: L-R—
fleet see:mixed—
fleet assignment

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

fleet assignment see: airline—
fleet assignment problem

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

Fletcher–Goldfarb–Shanno method see: Broyden–—
Fletcher–Goldfarb–Shanno quasi-Newton update see:

Broyden–—
Fletcher–Goldfarb–Shanno update see: Broyden–—
Fletcher–Powell method see: Davidon–—
Fletcher–Powell update see: Davidon–—
Fletcher–Reeves algorithm

[90C30]
(see: Conjugate-gradient methods)

Fletcher–Reeves formula
[90C06]
(see: Large scale unconstrained optimization)

Fletcher–Reeves method
[90C06]
(see: Large scale unconstrained optimization)

flexibility
[90C26]
(see: Global optimization in batch design under
uncertainty)

flexibility
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

flexibility see: fixed degree of—; optimal degree of —;
stochastic—

flexibility analysis of flowsheets
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)
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flexibility index
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

flexibility index see: Bilevel optimization: feasibility test and—
flexible arm

[93-XX]
(see: Optimal control of a flexible arm)

flexible arm see: Optimal control of a—
Flexible mass exchange networks

[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

flexible MOLP with fuzzy coefficients
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

flexible programming
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

flexible templates see: De novo protein design using—
flight schedule

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

flipping see: algorithm partition-—; partition—
flipping model

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

flips see: good edge—
floating point intervals

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

floating point operation
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

floor function
[65K05]
(see: Direct global optimization algorithm)

flop
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

flow
[90C35]
(see:Maximum flow problem)

flow see: ascent—; conservation of—; descent—; feasible—;
generalized—;material —;maximize operating cash—;
maximum—;minimum cost network —;
multicommodity—; relaxed multicommodity—; value of
a—; value of a network —

flow across an s—t-cut
[90C35]
(see:Maximum flow problem)

flow algorithm see:max–—
flow balance equations see: node—
flow bound constraints

[90C35]
(see:Maximum flow problem;Minimum cost flow problem)

flow bounds see: arc—
flow conservation constraint

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

flow conservation law
(see: Peptide identification via mixed-integer optimization)

flow constraints
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

flow decision variable
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

flow equation see: conservation of —
flow equations see: conservation of —
flow formulation see: consist—; link—; path—
flow lines see: connection of—
flowmin-cut theorem see:max-—
flowmodel see: network —
flowmodels see: undirected multicommodity network —
flow pattern see: feasible path —
flow problem

[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

flow problem see: feasible—; fixed charge network —; linear
network—;maximal—;Maximum—;minimum cost—;
minimum cost network —;multicommodity network —;
network—; node-path formulation of the
multicommodity—; nonconvex network —; nonlinear
dynamic network—; nonlinear network —; nonlinear single
commodity network —; package—; piecewise linear
minimum cost network —; uncapacitated network —

flow problem with nonnegative lower bounds see:
maximum—

flow problems see: dynamic network —; large nonlinear
multicommodity—;maximum—;Multicommodity—;
Nonconvex network—; nonlinear multicommodity—;
nonlinear network—; Nonoriented multicommodity—;
Piecewise linear network—

flow-shop
[05-04, 90B36, 90C26, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization;MINLP: design and scheduling of batch
processes; Stochastic scheduling)

flow-shop problem
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Flow shop scheduling problem
(68M20, 90B35)

flow solver
[90C90]
(see: Design optimization in computational fluid dynamics)

flow vector see: feasible—
flowing wells of type a see: naturally —
flowing wells of type b see: naturally —
flowlines see: set of —
flowmax

[90B35, 93A30]
(see: Gasoline blending and distribution scheduling: an
MILPmodel)

flowmin
[90B35, 93A30]
(see: Gasoline blending and distribution scheduling: an
MILPmodel)

flowrate see: well oil —
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flows see: augmenting—; balance equations for material —;
capacity constraint on arc —; global gradient —;
logistics—;Multi-commodity—;multicommodity
network—; network —; variational inequality formulation
in path —

flows with gains
[90C35]
(see: Generalized networks)

flows in networks
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C26, 90C27,
90C30, 90C35]
(see:Minimum concave transportation problems;
Nonconvex network flow problems;Vehicle scheduling)

flowsheet see: convergence of the overall —; process —
flowsheet optimization

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

flowsheets see: flexibility analysis of—; operability analysis
of—; sensitivity of optimal—

flowtime
[90B36]
(see: Stochastic scheduling)

FLP
[90B80]
(see: Facilities layout problems)

fluctuations see: thermal —
fluence map optimization

[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

fluid dynamics see: computational—; Design optimization in
computational—

flux estimation in distributed systems see: boundary—
flux estimation in lumped systems see: reaction—
flux models see: estimation of diffusion—
fluxes see: estimation of 1D-diffusion—
FMOLP

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

fold integer programming see: n-—
fold matrix see: n- —
folding see: Adaptive simulated annealing and its application

to protein—; Global optimization in protein —;
Monte-Carlo simulated annealing in protein—; protein—;
Simulated annealing methods in protein —

folding: ˛BB global optimization approach see:Multiple
minima problem in protein —

folding: generalized-ensemble algorithms see: Protein—
folding problem see: protein—
folks theorem

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

follower problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

following
[90B60, 90B80, 90B85]
(see: Competitive facility location)

following see: path—
following algorithm see: path —

following algorithm for entropy optimization see: path —
following approach see: path—
followingmethods see: path —
following and singularities see: Parametric optimization:

embeddings, path —
forbidden or tabu

[68M20, 90B06, 90B35, 90B80, 90C59]
(see: Flow shop scheduling problem;Heuristic and
metaheuristic algorithms for the traveling salesman
problem; Location routing problem;Metaheuristic
algorithms for the vehicle routing problem)

force see: brute- —
force field via linear optimization see: Distance dependent

protein—
force fields

[65K10, 92C40]
(see:Multiple minima problem in protein folding:˛BB
global optimization approach)

forced see: color-—
Ford–Fulkerson algorithm

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

Ford method see: Bellman–—
forecast see: judgemental —
Forecasting

(90C30, 90C26)
(referred to in: Continuous global optimization:
applications)
(refers to: Continuous global optimization: applications;
Genetic algorithms)

forecasting methods see: qualitative—; quantitative —
forecasting model

[90C26, 90C30]
(see: Forecasting)

foreset
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

foreset and afterset representation of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

forest see: basis —
forest management

[90C35]
(see:Multicommodity flow problems)

form see: AD intermediate—; block angular —; Boolean
formula in conjunctive normal—; canonical—; canonical
normal—; coercive bilinear symmetric continuous—;
complete many-valued logic normal —; conjunctive
normal—; constraints in standard—; disjunctive normal—;
echelon—; extensive—; game in normal —; K-local
bilinear—; Lagrange —; Lagrangian —; linear optimization
problem in standard—; logarithmic—; logarithmic p- —;
many-valued normal—;matrix in standard—;Mayer—;
normal—; PI-normal—; rational p- —; standard—;
standard greedy—; Taylor —

form approach see: closed—; open—
form of CEP see: restricted accessibility—; universally

accessible—
form of coordinates see: kth order—
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form of KT conditions see: nonstoichiometric—;
stoichiometric—

form of a polynomial see: normal —
form test see: Taylor —
form transformation see: unimodular max-closed—
form transformations see: unimodular max-closed—
formal orthogonal polynomials see: least squares—
formal perfect dual

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

formation see: automated hypothesis —
formation values see: set of —
formats see: independent of solver —
forms see: bilinear —; Global optimization: functional—;

minimization of Pinkava normal —; PI-algebras and
2-valued normal—; Quadratic integer programming:
complexity and equivalent—; tricanonical —

forms of Pi-algebras see: functionally complete normal —
formula see: Bauer—; Cauchy—; Euler —; Fletcher–Reeves —;

integral over surface—; integral over volume—;marginal
value—;Moré updating—; Polak–Ribiére—; satisfiable
Boolean—; selfdual rank one—; set- —;
Sherman–Morrison—; Sherman-Morrison rank-one
update—; Sherman–Morrison–Woodbury—

formula in conjunctive normal form see: Boolean—
formulas see: Horn—; satisfiability of Boolean—
formulation see: column generation —; consist flow—;

continuous-time—; inverse interpolation parametric
eigenvalue—; LCP: Pardalos–Rosenmixed integer —; least
squares—; link flow—;mathematical —;mixed
variational—;multilevel problem—; node-arc—; path —;
path flow—; price—; problem—; quantity—;
saddle-point—; Scarf —; separable —; variational
inequality—

formulation in link loads see: variational inequality—
formulation of the multicommodity flow problem see:

node-path—
formulation in path flows see: variational inequality—
formulation of the problem see: node-arc—
formulation of quasidifferential laws see: variational—
formulation of quasidifferential thermal boundary conditions

see: variational—
formulation and solution of inverse problems

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

formulation of SP see: split-variable—
formulation space search

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

formulation of subdifferential laws see: variational—
formulations see: discrete-time—; Quasidifferentiable

optimization: variational—; Stochastic optimal stopping:
problem—; variational inequality —

Forrest–Goldfarb method
[65K05, 65K10]
(see: ABS algorithms for optimization)

Fortran see: high performance—; Vienna—

Fortran program for nonlocal sensitivity analysis see:
automated—

FORTRAN subroutines
[90C35]
(see: Feedback set problems)

forward arc
[90C35]
(see:Maximum flow problem)

forward automatic differentiation see: vector —
forward compatibility

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

forward mode
[65D25, 65H99, 65K99, 68W30]
(see: Automatic differentiation: point and interval;
Complexity of gradients, Jacobians, and Hessians)

forward mode of AD
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

forward mode of an AD algorithm
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

forward mode of automatic differentiation
[26A24, 65G20, 65G30, 65G40, 65H20, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations; Interval analysis: intermediate terms)

forward network see: two-layer feed- —
forward neural network see: feed- —
forward path

[90B10, 90C27]
(see: Shortest path tree algorithms)

forward phases
[90C35]
(see: Graph coloring)

forward substitution
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

foundations of industrial engineering see: Archimedes and
the—

four-argument function
[62H30, 90C27]
(see: Assignment methods in clustering)

Fourier see:mechanical principle of —
Fourier law of heat conduction

[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

Fourier–Motzkin elimination
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

Fourier–Motzkin eliminationmethod
(52B12, 68Q25)
(refers to: Farkas lemma; Farkas lemma: generalizations;
Linear programming)

Fourier–Motzkin method
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

Fourier relaxation method see: Agmon–Motzkin– —
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FP
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

fractal interface
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

fractal set
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

fractional 0–1 knapsack
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

fractional 0-1 programming problem
(see: Fractional zero-one programming)

Fractional combinatorial optimization
(90-08, 90C27, 90C32, 68Q25, 68R05)
(referred to in: Combinatorial matrix analysis;
Combinatorial optimization algorithms in resource
allocation problems; Combinatorial optimization games;
Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Complexity theory: quadratic
programming; Computational complexity theory;
Evolutionary algorithms in combinatorial optimization;
Fractional programming; Information-based complexity
and information-based optimization; Kolmogorov
complexity;Mixed integer nonlinear programming;
Multi-objective combinatorial optimization; NP-complete
problems and proof methodology; Parallel computing:
complexity classes;Quadratic fractional programming:
Dinkelbachmethod; Replicator dynamics in combinatorial
optimization; Stochastic integer programs)
(refers to: Bilevel fractional programming; Combinatorial
matrix analysis; Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games; Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Complexity theory: quadratic
programming; Computational complexity theory;
Evolutionary algorithms in combinatorial optimization;
Fractional programming; Information-based complexity
and information-based optimization; Kolmogorov
complexity;Mixed integer nonlinear programming;
Multi-objective combinatorial optimization; Neural
networks for combinatorial optimization; NP-complete
problems and proof methodology; Parallel computing:
complexity classes;Quadratic fractional programming:
Dinkelbachmethod; Replicator dynamics in combinatorial
optimization)

fractional combinatorial optimization see: linear —; uniform—
fractional combinatorial optimization problem

[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

fractional combinatorial optimization problem see: integral
linear —

fractional (hyperbolic) 0-1 programming problem see:
single-ratio—

fractional linear programming
[90C11]
(see:MINLP: branch and bound methods)

fractional optimization
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

fractional optimization
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

fractional optimization see: parametric approach to—
fractional program

[90C32]
(see: Fractional programming)

fractional program see: concave—; generalized—; linear —;
max-min—;min-max—;multi-objective—; quadratic—;
single-ratio—; sum-of-ratios—

Fractional programming
(90C32)
(referred to in: Fractional combinatorial optimization;
Quadratic fractional programming: Dinkelbach method)
(refers to: Bilevel fractional programming; Farkas lemma;
Farkas lemma: generalizations; Fractional combinatorial
optimization;Quadratic fractional programming:
Dinkelbach method)

fractional programming
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

fractional programming
[90C27, 90C32]
(see: Fractional programming;Operations research and
financial markets;Quadratic fractional programming:
Dinkelbach method)

fractional programming see: Bilevel —; combinatorial—;
integer —; linear- —;multi-objective—

fractional programming: Dinkelbach method see: Quadratic—
fractional programming problem

[90C32]
(see: Quadratic fractional programming: Dinkelbach
method)

fractional programming problems see:Multi-objective—
fractional programs see: classification of—
fractional routing pattern model

[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

fractional terms see: linear—
fractional updating

(see: Bayesian networks)
Fractional zero-one programming
frame

[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

framework see: Bayesian decision-theoretic—; graph
based—; linear algebra—;multiperiod optimization
modeling—; Newton–Cauchy—; nonstandard—;
primal-dual—; proximal—; Unconstrained nonlinear
optimization: Newton–Cauchy—

framework for enterprise-wide process networks under
uncertainty see: Bilevel programming—

frameworkfor radiation therapy see: Optimization based—
frameworks see: Short-term scheduling, resource constrained:

unified modeling—
Frank discrete separation theorem

[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)
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Frank–Wolfe
[90C06, 90C25, 90C30, 90C35]
(see: Cost approximation algorithms; Frank–Wolfe
algorithm; Simplicial decomposition algorithms)

Frank–Wolfe algorithm
(90C30)
(referred to in: Cost approximation algorithms; Simplicial
decomposition; Stochastic transportation and location
problems; Traffic network equilibrium)
(refers to: Rosen’s method, global convergence, and Powell’s
conjecture)

Frank–Wolfe algorithm
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

Frank–Wolfe algorithm
[90C30]
(see: Cost approximation algorithms; Simplicial
decomposition)

Frank–Wolfe algorithm see: regularized—
Frank–Wolfe decomposition see: regularized —
Fréchet

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

Fréchet differentiable function
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

fréchet normal cone
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

Fréchet subdifferential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

Fréchet subdifferential see: limiting—; singular —
Fréchet subdifferentials

[49K27, 58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials;
Nonsmooth analysis: weak stationarity)

Fréchet subdifferentials see: limiting—; Nonsmooth
analysis: —

Fréchet superdifferential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

free see: univariate gradient —
free algorithm see: gradient- —
free alignment see: communication-—
free alignment problem see: communication-—
free arrangement of hyperplanes

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

free asset see: risk-—
free assignment

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

free coloring see: conflict-—
free descent method see: derivative- —
free distributive lattice

[90C09]
(see: Inference of monotone boolean functions)

free distributive lattice
[90C09]
(see: Inference of monotone boolean functions)

free energy
[92B05]
(see: Genetic algorithms for protein structure prediction)

free energy
[92B05]
(see: Genetic algorithms for protein structure prediction)

free energy see:molar Gibbs—; total Gibbs—
free Givens transformation see: square-root-—
free lunch see: no—
free methods for non-smooth optimization see: Derivative-—
free minimization see: gradient- —
free minimization algorithm see: gradient- —
free reduced Hessian SQP see:multiplier- —
free shape design see: robust obstacle- —
free truss design see: robust obstacle-—
free variables see: Generalized geometric programming: mixed

continuous and discrete—
freight operation

[90C35]
(see:Multicommodity flow problems)

frequency assignment see: adjacent channel constrained—;
co-channel constrained—; order of a T-coloring—; span of
a T-coloring—

Frequency assignment problem
(05-XX)
(referred to in: Assignment and matching;Assignment
methods in clustering; Bi-objective assignment problem;
Broadcast scheduling problem; Communication network
assignment problem;Graph coloring; Linear ordering
problem;Maximum constraint satisfaction: relaxations and
upper bounds;Maximum partitionmatching;Quadratic
assignment problem)
(refers to: Assignment andmatching; Assignment methods
in clustering; Bi-objective assignment problem;
Communication network assignment problem;Graph
coloring;Maximum constraint satisfaction: relaxations and
upper bounds;Maximum partitionmatching;Quadratic
assignment problem)

frequency assignment problem see: radio link—
frequency exhaustive sequential coloring

[05-XX]
(see: Frequency assignment problem)

frequentist
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

friction see: coupled unilateral contact problem with—
frictional contact see: Signorini-Coulomb unilateral —
Friedrich see: Gauss, Carl —
Frieze–Yadegar linearization

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Fritz John conditions
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: verifying feasibility)

Fritz John conditions
[90C15]
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(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

Fritz John generalized conditions
[90C29]
(see: Generalized concavity in multi-objective optimization)

fritz John necessary optimality conditions
[49M37, 65K05, 90C29, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions;Generalized concavity in
multi-objective optimization)

Fritz John rule
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

Fritz John system
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: verifying feasibility)

Fritz John type condition
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

Frobenius theorem see: Perron–—
Fromovitz constraint qualification see:Mangasarian–—
Fromovitz CQ see:Mangasarian–—
frontier see: efficient—
frontier of efficient portfolios

[91B50]
(see: Financial equilibrium)

FSP
[90C35]
(see: Feedback set problems)

FSQP
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

fuel mixture problem
(see: Planning in the process industry)

fugacity coefficient
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

Fulkerson algorithm see: Ford–—
full components

[90C27]
(see: Steiner tree problems)

full discretization
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

full master problem
[90C06]
(see: Decomposition principle of linear programming)

full master program
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

full recourse
[90C30, 90C35]
(see: Optimization in water resources)

full recourse
[90C30, 90C35]
(see: Optimization in water resources)

full row rank
[90C05, 90C33]

(see: Pivoting algorithms for linear programming
generating two paths)

full space methods
[90C30, 90C90]
(see: Successive quadratic programming; Successive
quadratic programming: applications in distillation
systems)

full space methods see: Successive quadratic programming: —
full space SQP

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

full space SQP method
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

full space successive quadratic programming
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

full space of x variables
[90C30]
(see: Successive quadratic programming)

full space of x variables
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

full Steiner tree
[90C27]
(see: Steiner tree problems)

full-step Gauss–Newton method
[49M37]
(see: Nonlinear least squares: Newton-type methods)

full-step Gauss–Newton method
[49M37]
(see: Nonlinear least squares: Newton-type methods)

fully indecomposable matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

fully nonlinear problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

fully polynomial time approximation scheme
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

fully stressed design
[90C26, 90C90]
(see: Structural optimization: history)

function
[01A99]
(see: Global optimization: functional forms; Leibniz,
gottfried wilhelm)

function see: @+- —; abstract convex—; achievement —;
activation—; active—; admissible pair of
trajectory-function and control- —; affine—; aggregate
excess demand—; aggregation —; ˛-concave—; antitone
Boolean—; antitone monotone Boolean—; approximating
the recourse—; augmented Lagrangian —; auxiliary—;
barrier —; bias—; bilinear —; Boolean—; Boolean
2-valued—; boundary of a—; C-differentiable—; c.d.—;
cell of a—; characteristic—;
Chen–Harker–Kanzow–Smale —; Chvátal —;
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classification—; coboundary of a—; codifferentiable—;
complementary gap—; concave—; conjugate —;
constraint on a multiplicative—; continuously
codifferentiable—; control —; convex—; convex-like—;
convex max-—; convex quadratic—; coordinatewise
increasing—; coordinatewise increasing utility—; cost—;
Courant penalty —; cyclic shift —; D-—; d.c. —;
decomposition of a continuous piecewise linear —;
delta—; derivative of a—; derivative of a probability —;
difference convex—; difference sublinear —;
differentiable—; Dini codifferentiable—; Dini conditionally
differentiable—; Dini conditionally directionally
differentiable—; Dini differentiable—; Dini directionally
differentiable—; Dini quasidifferentiable—; Dini uniformly
differentiable—; Dini uniformly directionally
differentiable—; directionally differentiable—;
discontinuous—; discrete—; discrete filled—;
distribution—; d.m.—; domain of a—; double-well —;
DSL—; dual potential —; effective domain of a—; effective
set of a—; energy —; exact L1-penalty—; exact
penalty—; excess —; expectation of an indicator—;
expected recourse—; expected value—; exponential —;
fair objective—; filled—; first order approximation of a—;
Fischer–Burmeister —; fitness —; fixed charge—; floor—;
four-argument—; Fréchet differentiable—; gap—;
generalized differentiable (GD)—; geodesic convex—;
Gibbs—; globally convexized filled—; good inclusion—;
gradient of a probability —; gradient-related set—;
greedy—; H-convex—; Hadamard codifferentiable—;
Hadamard conditionally differentiable—; Hadamard
conditionally directionally differentiable—; Hadamard
differentiable—; Hadamard directionally differentiable—;
Hadamard quasidifferentiable—; Hamiltonian—; Hessian
matrix of a Lagrangian —; hyperdifferentiable —;
hypodifferentiable—; implicit utility —; inclusion—;
increasing—; indicator—; infimum of a Lagrangian —; int
U-quasiconcave—; integral Mean-Value for Composite
Convexifiable—; invex—; IPH—; isotone Boolean—;
isotone inclusion—; isotone monotone Boolean—;
isotonic—; K-convex—; Karmarkar potential —; kernel —;
Kojima—; Kreisselmeier–Steinhauser —; KyFan—;
L-convex—; l1 exact penalty—; `1 penalty —; Lagrange —;
Lagrangian —; least squares distance—; Lennard-Jones
potential energy —; lexicographicallyminimax objective—;
LFS—; likelihood—; linear appearance of control —; linear
supporting—; Lipschitz—; Lipschitz continuous—; list
squaremerit —; locally filled—; locally Lipschitz—; locally
Lipschitz continuous—; locallymonotone—; locally strictly
monotone—; locally strongly monotone—; logarithmic
barrier —; logarithmic-quadratic barrier-penalty —;
logconcave—; logconcave probability density —;
logconvex—; lower bound—; lower semicontinuous—;
Luc U-quasiconcave—; Lyapunov—;M-convex—;
marginal—;max-—;max-closed—;max-type—;maximin
objective—;maximum—;maximum-type—;maxmin—;
mean value—;membership —;merit —; the mid-point
acceleration—;min-type—;minimal—;minimax
objective—;minimum—;mixed integer value—;
Moebius—;monotone—;monotone Boolean—;
monotonic—;multicriteria objective—;multifacilityWeber
objective—;multifacilityWeber–Rawls objective —;

multivariate probability distribution—; nonconvex—;
nonconvex energy —; nondecreasing—; nondecreasing
monotone Boolean—; nondifferentiable—; nonincreasing
monotone Boolean—; nonsmooth—; objective—;
one-dimensional marginal probability distribution—;
optimal value—; Optimization techniques for minimizing
the energy —; order of an inclusion—;
parabolic-exponential—; partially separable—; Peano—;
penalty —; perturbation —; piecewise continuously
differentiable—; piecewise differentiable—; piecewise
linear—; piecewise linear quadratic—; piecewise
twice-differentiable—; polynomial time computable—;
positive definite quadratic—; positively homogeneous—;
potential —; potential energy —; pre-declared interval —;
pre-invex—; preference value—; primal-dual potential —;
primal gap—; primal potential —; probability —; program
of minimizing a convex multiplicative—; program of
minimizing a generalized convex—; projected Hessian
matrix of a Lagrangian —; pseudoconvex—; pure
complementary gap—; quadratic—; quantile—;
quasiconcave—; quasiconvex—; quasidifferentiable—;
Rn+-upper semicontinuous —; radially continuous—;
random objective—; recourse—; regular cost—; regular
link cost—; regularized gap—; rounding—; saddle—;
sawtooth arc cost—; scalarizing—; scale—; score—;
scoring—; second order decomposition of a—;
semicoercive—; semismooth—; semistrictly
quasiconvex—; separable convex objective—; separable
objective—; set-valued objective —; Shannon—;
Sheffer —; sign—; single smooth—; social utility—;
stable—; staircase arc cost—; staircase cost—;
standard—; step—; strictly convex—; strictly
monotone—; strictly pseudoconvex—; strictly
quasiconvex—; strongly monotone—; strongly
semismooth—; subconjugate —; subcritical—;
subdifferentiable—; subdual—; sublinear —;
submodular—; supconjugate —; superadditive—;
supercritical—; superdifferentiable—; superlinear —;
supermodular—; support—; support set of a—;
Tanabe–Todd–Ye potential —; three-argument —; time
complexity—; total cost—; trajectory —; twice
codifferentiable—; twice continuously codifferentiable—;
twice-differentiable part of a—; two-dimensional marginal
probability distribution—; U-concave—; U-continuous—;
U-pseudoconcave—; U-quasiconcave—; U-weakly
pseudoconcave—; umbrella—; uniform P-—; uniformly
convex—; upper semicontinuous—; upper
semismooth—; utility—; value—; zone of a—

function of an algorithm see: time complexity—
function approach see: Bilevel programming: implicit—;

continuously differentiable exact penalty —; implicit—;
value—

function approach to bilevel programming see: implicit—
function associated with� see: canonical —
function based algorithm see: exact penalty —
function and control-function see: admissible pair of

trajectory- —
function with dependent constraints see:maximum—
function inference see:monotone Boolean—
function inference problem see: Boolean—
functionmartingale see: score—
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function of a matroid see: weight —
functionmethod see: score—
functionmethods see: basic outline of filled—; filled—; Global

optimization: filled—
functionminimax inequality see: two- —
function optimization see:marginal —
function pair see: convex-like—
function parametrization see: objective—
function space

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

function space see: canonical —; extended canonical —
function system see: iterative—
function theorem see: implicit—
function value see: continuity property of the objective—;

convexity property of the objective—
functional see: absolutely continuous—; cost—; generalized

critical point of an energy —; Lagrange—; recession—;
substationarity point of a—; truth- —

functional analysis
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

functional analysis
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

functional completeness
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

functional completeness
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

functional completeness of PI-algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

functional dependence see: noisy—
functional dual

[90C10, 90C46]
(see: Integer programming duality)

functional forms see: Global optimization: —
functional paradigm

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

functional relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

functionally complete normal forms of Pi-algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

functionals see: Approximation of extremum problems with
probability—; probability —

functions see: additive utility —; Affine sets and—;
asymptotically admissible pair of trajectory and control —;
augmented Lagrange —; conjugate —; continuous
selection of —; Convex max-—; dc—; difference of
convex—; difference of max-type—; difference of
monotonic—; discrete—; discriminant—; distance—;
dM—; elastic demand traffic network problems with travel
demand—; elementary —; estimation of utility—;
examples of quasidifferentiable—; Fenchel conjugate —;

Fenchel-type duality for M- and L-convex—; gradient of
multivariate distribution—; h-convex—; homotopic—;
Inference of monotone boolean—; interactive learning of
Boolean—; isotone—; L-convex functions and
M-convex—; Lagrange-type —; linear—; Lipschitzian
operators in best approximation by bounded or
continuous—;marginal—;marginal distribution—;
minimizing—;Multi-objective optimization; Interactive
methods for preference value—;multimodal—; natural
level —; nondifferentiable objective—; nonsmooth—;
notation for objective —; objective—; optimal value—;
penalty —; probability—; product of affine—; product of
concave—; product of convex—; production—; program
of minimizing a product of two affine—; proximal
minimizationwith D- —; quasidifferentiable—;
Quasidifferentiable optimization: algorithms for
hypodifferentiable—; Quasidifferentiable optimization:
algorithms for QD—; Quasidifferentiable optimization:
codifferentiable—; quasidifferential —; sample and
expectation—; scheduling—; separation—; set of
elementary —; smoothing—; sum of convex
multiplicative—; superpositions of —; theory of
generalized —; traffic network equilibriumwith travel
disutility—

functions: algorithms and complexity see: Regression by
special —

functions and/or derivatives see: evaluation of objective—
Functions and Applications see:minimizationMethods for

Non-Differentiable—
functions, characterization of see: Convexifiable—
functions: general theory and examples see: Derivatives of

probability and integral —
functions: hemivariational inequalities see: Nonconvex

energy —
functions in integer programming see: cost—
functions: kernel type solutionmethods see: Extremum

problems with probability—
functions and M-convex functions see: L-convex—
functions on topological vector spaces see: Increasing and

convex-along-rays—; Increasing and positively
homogeneous—

fundamental cycle
[90C35]
(see:Minimum cost flow problem)

fundamental group
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

fundamental indiscernibility
[03E70, 03H05, 91B16]
(see: Alternative set theory)

fundamental property in convex programming
[90C06]
(see: Saddle point theory and optimality conditions)

fundamental theorem see:Weyl —
Fundamental theorem of algebra

(01A55, 01A50, 01A60)
(referred to in: Gröbner bases for polynomial equations)
(refers to: Gröbner bases for polynomial equations)

fundamental theorem of algebra
[01A99]
(see: Gauss, Carl Friedrich)
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fundamental theorem of algebra
[01A99]
(see: Gauss, Carl Friedrich)

fundamental theorem of linear programming see: Extension of
the—

fundamental theorem of natural selection
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

funding decision
[90C27]
(see: Operations research and financial markets)

funnel
[65H20]
(see:Multi-scale global optimization using
terrain/funnelingmethods)

funneling methods see:Multi-scale global optimization using
terrain/ —

fuzzification
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

fuzziness
[90C09, 90C10]
(see: Optimization in boolean classification problems)

fuzziness see: unnormalized—
fuzzy

[94A17]
(see: Jaynes’ maximum entropy principle)

fuzzy clustering
[65K05, 90C26, 90C56, 90C90]
(see: Derivative-freemethods for non-smooth optimization;
Nonsmooth optimization approach to clustering)

fuzzy coefficients see: flexible MOLP with—;MOLP with—;
multi-objective linear programming with—

fuzzy constraints
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

fuzzy criterion
[90C29, 91A99]
(see: Preference disaggregation)

fuzzy decision
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

fuzzy goals
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

fuzzy interval inference
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

fuzzy interval pairs
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

fuzzy logic
[90C26, 90C30]
(see: Forecasting)

fuzzy logic
[90C26, 90C30]
(see: Forecasting)

fuzzy logics see: Checklist paradigm semantics for —
Fuzzy multi-objective linear programming

(90C70, 90C29)
(referred to in: Bi-objective assignment problem;Decision

support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)

fuzzy number
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

fuzzy number see: L-R—; L-R flat —
fuzzy numbers

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

fuzzy numbers see: arithmetic operations on—
fuzzy outranking relation

[90-XX]
(see: Outranking methods)

fuzzy power set
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

fuzzy product see: harsh—
fuzzy programming

[90C90]
(see: Chemical process planning)

fuzzy relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

fuzzy relation see: ˛-cut of a—
fuzzy relational product

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)
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fuzzy relations
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

fuzzy relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

fuzzy relations see: Boolean and—; special properties of—
fuzzy set

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

fuzzy set-inclusion operator
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

fuzzy sets
[03B50, 03B52, 03C80, 03E72, 47S40, 62F30, 62Gxx, 68T27,
68T35, 68Uxx, 90Bxx, 90C29, 90C70, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Checklist paradigm
semantics for fuzzy logics; Fuzzy multi-objective linear
programming)

fuzzy sets
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27, 90C29, 90C70]
(see: Checklist paradigm semantics for fuzzy logics; Fuzzy
multi-objective linear programming)

fuzzy sum rule
[58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: weak stationarity)

fuzzy triangle product
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

fuzzy truth assessment
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

(FVI) see: farthest vertex insertion—

G

g-˛BB approach see: Global optimization: —
g-basin

[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

g-group classification problem
[62H30, 68T10, 90C11]
(see:Mixed integer classification problems)

g-group classification problem (discriminant problem)
[62H30, 68T10, 90C05]
(see: Linear programmingmodels for classification)

GA
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

gabriel graph
[68Q20]
(see: Optimal triangulations)

gadget
[05C85]
(see: Directed tree networks)

gain see: small —

gain legitimacy
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Gaines implication see: Goguen–—
gains see: flows with—
Gale–Hoffman inequalities

[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

Galerkin approach see: Petrov–—
Galerkin cone

[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem)

Galerkin iteration see: Petrov–—
Galerkin method see: Ritz–—
Galerkin spectral method

[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

gambling see: optimal—
game see: combinatorial optimization—; complete—;

cooperative—; cooperative case of a two-person—;
minimax—; noncooperative—; nonzero-sum infinite
horizon—; optimality in a—; packing—; polymatrix—;
Stackelberg—; two-person—; two-person zero-sum—;
two-player zero-sum perfect-information—; von
Stackelberg—

game in normal form
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

game with side payments
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

game of strategy
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

game theory
[01A99, 90C27, 90C60, 90C99, 91A12]
(see: Combinatorial optimization games; Von Neumann,
John)

game theory
[49M37, 62C20, 90B80, 90B85, 90C15, 90C26, 90C30, 90C31,
90Cxx, 91A10, 91Axx, 91B06, 91B60, 91Bxx]
(see: Bilevel programming; Bilevel programming:
introduction, history and overview; Facility location with
externalities;Oligopolistic market equilibrium; Stochastic
programming: minimax approach)

game theory see: evolutionary—;Maximum entropy and—;
Stackelberg—

game tree
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

game tree algorithm see: sequential minimax—
game tree search algorithm see: distributed—; generalized —
game tree searching see:Minimax—
games

[01A99]
(see:History of optimization)

games
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)
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games see: bimatrix—; Combinatorial optimization—; Infinite
horizon control and dynamic —; noncooperative—; theory
of—; von Stackelberg—

�-concave probability measure
[90C15]
(see: Logconcave measures, logconvexity)

gamma distribution see:multivariate—
GAP

[68Q99]
(see: Branch and price: Integer programming with column
generation)

gap see: approximation algorithms for —; duality—;
integrality —; relative duality —

gap function
[90C15, 90C26, 90C30, 90C33]
(see: Lagrangian duality: BASICS; Stochastic bilevel
programs)

gap function see: complementary—; primal—; pure
complementary—; regularized—

gap theorem
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

gaps in nonconvex optimization see: Duality—
Garza method see: De La —
gas see: allocation of—
gas lift availability see: upper bound on—
gas lift wells of type a

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

gas lift wells of type b
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

gas and water capacity constraints see:maximum oil —
Gasoline blending and distribution scheduling: an MILP

model
(90B35, 93A30)

gâteaux subdifferential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

gates see: logic—
gauge

[90B85]
(see:Multifacility and restricted location problems)

gauge
[90B85]
(see:Multifacility and restricted location problems)

Gauss, Carl Friedrich
(01A99)
(referred to in: Gauss–Newton method: Least squares,
relation to Newton’s method; Least squares problems;
Linear programming; Symmetric systems of linear
equations)
(refers to: Gauss–Newton method: Least squares, relation to
Newton’s method; Least squares problems; Linear
programming; Symmetric systems of linear equations)

Gauss distribution law
[01A99]
(see: Gauss, Carl Friedrich)

Gauss–Markoff theorem
[65Fxx]
(see: Least squares problems)

Gauss–Newton method
[49M37]
(see: Nonlinear least squares: trust regionmethods)

Gauss–Newton method
[90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method; Generalized total least squares)

Gauss–Newton method see: damped—; full-step—
Gauss–Newton method: Least squares, relation to Newton’s

method
(90C30, 90C30, 90C52, 90C53, 90C55)
(referred to in: ABS algorithms for linear equations and
linear least squares; ABS algorithms for optimization;
Discontinuous optimization; Gauss, Carl Friedrich;
Generalized total least squares; Least squares orthogonal
polynomials; Least squares problems;Nonlinear least
squares: Newton-type methods; Nonlinear least squares
problems;Nonlinear least squares: trust regionmethods)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization; Gauss, Carl
Friedrich;Generalized total least squares; Least squares
orthogonal polynomials; Least squares problems;Nonlinear
least squares: Newton-type methods;Nonlinear least
squares problems;Nonlinear least squares: trust region
methods)

Gauss problem
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

Gauss quadrature rule see: generalized —
Gauss–Seidel

[90C30]
(see: Cost approximation algorithms)

Gauss–Seidel algorithm
[90C30]
(see: Cost approximation algorithms)

Gauss–Seidel iteration
[49L20, 90C39]
(see: Dynamic programming: discounted problems)

Gauss–Seidel method
[90C33]
(see: Linear complementarity problem)

Gauss–Seidel value iteration
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

Gauss–Southwell method
[90C30]
(see: Cyclic coordinate method)

Gauss–Southwell method
[90C30]
(see: Cyclic coordinate method)

gaussian
(see: Optimal sensor scheduling)

Gaussian see: linear-quadratic—
Gaussian approximation methods

[01A99]
(see: Gauss, Carl Friedrich)

Gaussian density annealing
[90C90]
(see: Simulated annealing methods in protein folding)
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Gaussian distribution
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

Gaussian elimination
[01A99, 65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization; Gauss, Carl
Friedrich)

Gaussian elimination
[01A99]
(see: Gauss, Carl Friedrich)

Gaussian elimination with backsolving
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

Gaussian measure
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

Gaussian quadrature
[33C45, 65F20, 65F22, 65K10, 90C26]
(see: Global optimization in batch design under
uncertainty; Least squares orthogonal polynomials)

Gaussianity
[90C26, 90C90]
(see: Signal processing with higher order statistics)

Gauvin theorem
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

GBD
[49M29, 90C11]
(see: Generalized benders decomposition)

GBD see: variants of—
GC

[90C35]
(see: Graph coloring)

GCM
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

(GD) function see: generalized differentiable—
gDP

[90C10, 90C11, 90C27, 90C33]
(see: Continuous reformulations of discrete-continuous
optimization problems)

Gene clustering: A novel decomposition-based clustering
approach: global optimum search with enhanced
positioning
(91C20, 90C11, 90C26)

general Algorithm
[90B15]
(see: Evacuation networks)

general case of the trust region problem
[49M37]
(see: Nonlinear least squares: trust regionmethods)

general constrained optimization
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

general dynamic programming paradigm
[62H30, 90C39]
(see: Dynamic programming in clustering)

general economic equilibrium
[91B50]
(see:Walrasian price equilibrium)

general equilibrium
[91B50]
(see:Walrasian price equilibrium)

general Fermat problem
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

general gradient
[90C15, 90C30, 90C99]
(see: SSC minimization algorithms for nonsmooth and
stochastic optimization)

general linear constraints
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

General moment optimization problems
(28-XX, 49-XX, 60-XX)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; Logconcave measures, logconvexity;
Logconcavity of discrete distributions; L-shaped method for
two-stage stochastic programs with recourse;Multistage
stochastic programming: barycentric approximation;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; Logconcave measures, logconvexity;
Logconcavity of discrete distributions; L-shaped method for
two-stage stochastic programs with recourse;Multistage
stochastic programming: barycentric approximation;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
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Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

general order complementarity problem
[90C33]
(see: Topological methods in complementarity theory)

general order complementarity problem see: implicit—
general position

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

general position of hyperplanes
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

general purpose
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

general-purpose software library
[90C10, 90C26, 90C30]
(see: Optimization software)

general QAP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

general quadratic assignment problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

General routing problem
(90B20)
(referred to in: Stochastic vehicle routing problems;Vehicle
routing;Vehicle scheduling)
(refers to: Stochastic vehicle routing problems;Vehicle
routing;Vehicle scheduling)

general routing problem
[90B20]
(see: General routing problem)

general second order sufficient condition
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

general strong second order sufficient condition
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

general structure mixed integer ˛BB algorithm
[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

general theory and examples see: Derivatives of probability
and integral functions: —

general univariate linear model
[65Fxx]
(see: Least squares problems)

generalization of ELECTRE I
[90-XX]
(see: Outranking methods)

generalization of Lyusternik theorem see: high-order —
generalizations see: Farkas lemma:—
Generalizations of interior point methods for the linear

complementarity problem
(90C33, 90C51, 65K10)
(referred to in: Complementarity algorithms in pattern
recognition;Mathematical programmingmethods in
supply chain management; Simultaneous estimation and
optimization of nonlinear problems)
(refers to: Complementarity algorithms in pattern
recognition;Mathematical programmingmethods in
supply chain management; Simultaneous estimation and
optimization of nonlinear problems)

generalizations of the nonlinear complementarity problem
[90C33]
(see: Generalized nonlinear complementarity problem)

generalized
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)

Generalized assignment problem
(90-00)
(referred to in: Biquadratic assignment problem; Feedback
set problems;Graph coloring;Graph planarization;Greedy
randomized adaptive search procedures; Linear ordering
problem;Multi-index transportation problems;Quadratic
assignment problem;Quadratic semi-assignment problem)

generalized assignment problem
[68Q99, 90-00]
(see: Branch and price: Integer programming with column
generation;Generalized assignment problem)

generalized assignment problem see:multilevel —
generalized barycenters

[90C15]
(see:Multistage stochastic programming: barycentric
approximation)

Generalized benders decomposition
(49M29, 90C11)
(referred to in: Chemical process planning;Decomposition
principle of linear programming;Generalized outer
approximation;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
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column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming;Nondifferentiable
optimization; Preprocessing in stochastic programming;
Simplicial decomposition; Simplicial decomposition
algorithms; Stochastic linear programming: decomposition
and cutting planes; Successive quadratic programming:
decompositionmethods)
(refers to: Chemical process planning;Decomposition
principle of linear programming; Extended cutting plane
algorithm;Generalized outer approximation;MINLP:
application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: mass and heat
exchanger networks;Mixed integer nonlinear
programming; Simplicial decomposition; Simplicial
decomposition algorithms; Stochastic linear programming:
decomposition and cutting planes; Successive quadratic
programming: decompositionmethods)

generalized Benders decomposition
[49M37, 65K05, 90C10, 90C11, 90C26, 90C29, 90C90]
(see: Bilevel optimization: feasibility test and flexibility
index;MINLP: applications in the interaction of design and
control;MINLP: branch and bound global optimization
algorithm;MINLP: branch and bound methods;MINLP:
global optimization with ˛BB;MINLP: outer
approximation algorithm;Mixed integer nonlinear
programming;Multi-objective optimization: interaction of
design and control)

generalized Benders decomposition
[90C09, 90C10, 90C11]
(see:MINLP: logic-based methods;MINLP: outer
approximation algorithm)

generalized Benders method
[90C09, 90C10, 90C11]
(see:MINLP: logic-based methods)

generalized bilevel programming problem
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

generalized bisection algorithm
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

generalized complementarity
[90C33]
(see: Generalized nonlinear complementarity problem)

generalized complementarity problem
[47J20, 49J40, 65K10, 90C33]
(see: Generalized nonlinear complementarity problem;
Solutionmethods for multivalued variational inequalities)

generalized concavity see: vector —

Generalized concavity in multi-objective optimization
(90C29)
(referred to in: Invexity and its applications; L-convex
functions and M-convex functions)
(refers to: Invexity and its applications; Isotonic regression
problems)

generalized conditions see: Fritz John—
generalized convex function see: program of minimizing a—
generalized convexity

[90C26]
(see: Generalized monotone multivalued maps; Generalized
monotone single valued maps)

generalized critical point
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

generalized critical point
[49J40]
(see: Nonconvex-nonsmooth calculus of variations)

generalized critical point of an energy functional
[49J40]
(see: Nonconvex-nonsmooth calculus of variations)

generalized critical point set
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

generalized cross decomposition
[49M27, 49M37, 90C11, 90C30]
(see:MINLP: generalized cross decomposition;Mixed
integer nonlinear programming)

generalized cross decomposition see:MINLP: —
generalized cutting plane

[90C26]
(see: Global optimization: envelope representation)

generalized cutting plane method
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

generalized derivative see: clarke—; Clarke–Rockafellar—
generalized differentiable (GD) function

[90C15]
(see: Stochastic quasigradient methods in minimax
problems)

generalized directional derivative
[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

generalized directional derivative see: Clarke—
generalized directional differential

[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

Generalized Disjunctive Programming
(see: Logic-based outer approximation)

Generalized disjunctive programming
[90C09, 90C10, 90C11]
(see: Generalized disjunctive programming;MINLP:
logic-basedmethods;Optimal planning of offshore oilfield
infrastructure)

generalized dual problem
[90C30]
(see: Image space approach to optimization)

generalized eigenvalue proximal support vector machine
[68Q32, 68T10]
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(see: Generalized eigenvalue proximal support vector machine
problem)

Generalized eigenvalue proximal support vector machine
problem
[68Q32, 68T10]
(see: Generalized eigenvalue proximal support vector machine
problem)

generalized-ensemble algorithms see: Protein folding:—
Generalized ensembles

[92-08, 92C05, 92C40]
(see: Protein folding: generalized-ensemble algorithms)

generalized equation
[65K10, 90C31, 90C33]
(see: Linear complementarity problem; Sensitivity analysis
of complementarity problems; Sensitivity analysis of
variational inequality problems)

generalized finite sequence
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

generalized flow
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

generalized fractional program
[90C32]
(see: Fractional programming)

generalized functions see: theory of—
generalized game tree search algorithm

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

generalized Gauss quadrature rule
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

generalized geometric programming
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

generalized geometric programming
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

generalized geometric programming see: Global optimization
in—

Generalized geometric programming: mixed continuous and
discrete free variables
[49M37, 90C11, 90C30]
(see: Generalized geometric programming: mixed continuous
and discrete free variables)

generalized gradient
[26E25, 46N10, 49J40, 49J52, 49Q10, 52A27, 65G20, 65G30,
65G40, 65K05, 70-XX, 74K99, 74Pxx, 80-XX, 90-00, 90C30,
90C47, 90C99]
(see:Hemivariational inequalities: eigenvalue problems;
Interval global optimization; Nonconvex energy functions:
hemivariational inequalities;Nondifferentiable
optimization;Quasidifferentiable optimization: Dini
derivatives, clarke derivatives)

generalized gradient see: Clarke—

generalized inverses
[49M37]
(see: Nonlinear least squares: Newton-type methods)

generalized invex
[90C26]
(see: Invexity and its applications)

generalized invex
[90C26]
(see: Invexity and its applications)

generalized Jacobian see: Clarke—
generalized Karush–Kuhn–Tucker conditions

[65K10, 90C31]
(see: Sensitivity analysis of variational inequality problems)

generalized Lagrange multiplier approach see: Everett —
generalized least squares problem

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

generalized linear order complementarity problem
[90C33]
(see: Order complementarity)

generalized linear programming with variable coefficients
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

generalized minimizing sequence
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

generalized mixed complementarity problem
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

Generalized monotone multivalued maps
(90C26)
(referred to in: Fejér monotonicity in convex optimization;
Generalized monotone single valued maps; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems; Pseudomonotone maps: properties
and applications; Set-valued optimization)
(refers to: Fejér monotonicity in convex optimization;
Generalized monotone single valued maps; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems; Set-valued optimization)

generalized monotone operator
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

Generalized monotone single valued maps
(90C26)
(referred to in: Fejér monotonicity in convex optimization;
Generalized monotone multivalued maps; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems; Pseudomonotone maps: properties
and applications; Set-valued optimization)
(refers to: Fejér monotonicity in convex optimization;
Generalized monotone multivalued maps; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems; Set-valued optimization)

generalized monotonicity
[90C26]
(see: Generalized monotone single valued maps)
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generalized monotonicity
[46N10, 49J40, 90C26]
(see: Generalized monotone multivalued maps; Generalized
monotone single valued maps; Generalized monotonicity:
applications to variational inequalities and equilibrium
problems)

Generalized monotonicity: applications to variational
inequalities and equilibrium problems
(90C26, 49J40, 46N10)
(referred to in: Equilibrium networks; Fejér monotonicity in
convex optimization; Financial equilibrium;Generalized
monotone multivalued maps; Generalized monotone single
valued maps;Hemivariational inequalities: applications in
mechanics;Hemivariational inequalities: eigenvalue
problems;Nonconvex energy functions: hemivariational
inequalities;Nonconvex-nonsmooth calculus of variations;
Oligopolistic market equilibrium;Optimization with
equilibrium constraints: A piecewise SQP approach;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Spatial price equilibrium; Traffic network
equilibrium;Variational inequalities;Variational
inequalities: F. E. approach;Variational inequalities:
geometric interpretation, existence and uniqueness;
Variational inequalities: projected dynamical system;
Walrasian price equilibrium)
(refers to: Equilibrium networks; Fejér monotonicity in
convex optimization; Financial equilibrium;Generalized
monotone multivalued maps; Generalized monotone single
valued maps;Hemivariational inequalities: applications in
mechanics;Hemivariational inequalities: eigenvalue
problems;Hemivariational inequalities: static problems;
Nonconvex energy functions: hemivariational inequalities;
Oligopolistic market equilibrium;Quasidifferentiable
optimization;Quasidifferentiable optimization: algorithms
for hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational

formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Spatial price equilibrium; Traffic network
equilibrium;Variational inequalities;Variational
inequalities: F. E. approach;Variational inequalities:
geometric interpretation, existence and uniqueness;
Variational inequalities: projected dynamical system;
Variational principles;Walrasian price equilibrium)

generalized morphism
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

generalized morphism
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

generalized morphisms
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

generalized morphisms of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

generalized necessary optimality conditions
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

generalized network
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

generalized network optimization system
[90C10, 90C26, 90C30]
(see: Optimization software)

generalized network problem
[90C35]
(see: Generalized networks)

generalized network problems see: quadratic—
Generalized networks

(90C35)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks;Maximum flow problem;Minimum
cost flow problem;Multicommodity flow problems;
Network design problems;Network location: covering
problems;Nonconvex network flow problems; Piecewise
linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks;Maximum flow problem;Minimum cost flow
problem;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Piecewise linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)
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generalized networks
[90C35]
(see: Generalized networks)

generalized networks
[90C30, 90C35]
(see: Convex-simplex algorithm;Generalized networks)

Generalized nonlinear complementarity problem
(90C33)
(referred to in: Equivalence between nonlinear
complementarity problem and fixed point problem;Global
optimization methods for systems of nonlinear equations;
Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Linear
complementarity problem;Order complementarity;
Principal pivoting methods for linear complementarity
problems; Topological methods in complementarity
theory)
(refers to: Convex-simplex algorithm; Equivalence between
nonlinear complementarity problem and fixed point
problem; Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Lemke method;
Linear complementarity problem; Linear programming;
Order complementarity; Parametric linear programming:
cost simplex algorithm; Principal pivoting methods for
linear complementarity problems; Sequential simplex
method; Topological methods in complementarity theory)

generalized nonlinear least squares
[90C30]
(see: Generalized total least squares)

generalized nonlinear least squares problem
[90C30]
(see: Nonlinear least squares problems)

generalized order complementarity problem
[90C33]
(see: Order complementarity)

generalized order complementarity problem see:
infinite-dimensional—

Generalized outer approximation
(90C11, 90C30, 49M20)
(referred to in: Chemical process planning;Generalized
benders decomposition;Global optimization in
multiplicative programming;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
MINLP: application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;

MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: mass and heat
exchanger networks;Mixed integer nonlinear
programming)

generalized outer approximation
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

generalized primal-relaxed dual algorithm
[90C26]
(see: Generalized primal-relaxed dual approach)

Generalized primal-relaxed dual approach
(90C26)
(referred to in: ˛BB algorithm;Global optimization in phase
and chemical reaction equilibrium)
(refers to: ˛BB algorithm;Global optimization in phase and
chemical reaction equilibrium)

generalized quantifier
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

generalized quantifier
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

generalized second order directional derivative
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

generalized semi-infinite problem
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

Generalized semi-infinite programming: optimality conditions
[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

generalized single cluster statistic
[62H30, 90C27]
(see: Assignment methods in clustering)

generalized Slater constraint qualification
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

generalized state equations
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

generalized subdifferential
[26B25, 26E25, 49J52, 90C99]
(see: Quasidifferentiable optimization)

generalized subdifferential see: Clarke—
generalized subdifferential of F.H. Clarke

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

Generalized total least squares
(90C30)
(referred to in: ABS algorithms for linear equations and
linear least squares; ABS algorithms for optimization;
Gauss–Newton method: Least squares, relation to Newton’s
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method; Least squares orthogonal polynomials; Least
squares problems;Nonlinear least squares: Newton-type
methods; Nonlinear least squares problems;Nonlinear least
squares: trust regionmethods)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization;
Gauss–Newton method: Least squares, relation to Newton’s
method; Least squares orthogonal polynomials; Least
squares problems;Nonlinear least squares: Newton-type
methods; Nonlinear least squares problems;Nonlinear least
squares: trust regionmethods)

generalized total least squares
[90C30]
(see: Generalized total least squares)

generalized TSP
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

generalized-upper-bound dichotomy
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

generalized upper bounding structure
[90C30]
(see: Convex-simplex algorithm)

generalized upper bounds constraints
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

Generalized variational inequalities: A brief review
[49J53, 90C30]
(see: Generalized variational inequalities: A brief review)

generalized variational inequality
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

generalized Weber problem
[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

generally nonhomogeneous and nonisotropic body see: linear
thermoelastic behavior of a—

generated see: randomly—
generating polynomial

[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

generating two paths see: Pivoting algorithms for linear
programming—

generation
[92B05]
(see: Genetic algorithms; State of the art in modeling
agricultural systems)

generation
[92B05]
(see: Genetic algorithms)

generation see: Branch and price: Integer programming with
column—; Column—; cut—; hydro-—; one-at-a-time
coefficient—; row—; scenario —

generation formulation see: column—
generation method see: Lagrangian finite—
generation methods see: column—
generation modeling languages see: second—
generation plant see: co-—
generation subproblem see: column—

generations
(see: Broadcast scheduling problem)

generator see: hit and run—; Li–Pardalos—; Palubeckis—;
supremal —

generators
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

generators see: Combinatorial test problems and problem—
generic

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

generic augmenting path algorithm
[90C35]
(see:Maximum flow problem)

generic cost vector
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

generic pivoting rule
[90C05]
(see: Linear programming: Klee–Minty examples)

generic preflow-push algorithm
[90C35]
(see:Maximum flow problem)

generic property
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

generic shortest path algorithms
[90B10, 90C27]
(see: Shortest path tree algorithms)

generic singularities
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

generic transitions
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

generic vertex insertion algorithm
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

genericity
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

GENEROUS
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

genes see: Selection of maximally informative—
genetic algorithm see: grouping—; simulated annealing

and—
Genetic algorithms

(92B05)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Broadcast scheduling
problem; Evolutionary algorithms in combinatorial
optimization; Facilities layout problems; Forecasting;
Genetic algorithms for protein structure prediction;Global
optimization in Lennard–Jones andmorse clusters;Graph
coloring; Integer programming: branch and bound
methods; Job-shop scheduling problem;Molecular
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structure determination: convex global underestimation;
Monte-Carlo simulated annealing in protein folding;
Multidisciplinary design optimization;Multiple minima
problem in protein folding:˛BB global optimization
approach;Optimization in medical imaging; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Set covering, packing and partitioning
problems; Simulated annealing methods in protein folding)
(refers to: Adaptive simulated annealing and its application
to protein folding;Genetic algorithms for protein structure
prediction;Global optimization in Lennard–Jones and
morse clusters; Global optimization in protein folding;
Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Protein folding: generalized-ensemble
algorithms; Simulated annealing; Simulated annealing
methods in protein folding)

genetic algorithms
[62C10, 65K05, 90B06, 90B35, 90C06, 90C08, 90C10, 90C11,
90C15, 90C26, 90C27, 90C39, 90C57, 90C59, 90C60, 90C90,
92B05]
(see: Bayesian global optimization;Design optimization in
computational fluid dynamics;Genetic algorithms;
Maximum constraint satisfaction: relaxations and upper
bounds;Quadratic assignment problem; Traveling
salesman problem)

genetic algorithms
[90B80, 90C26, 90C30, 92B05]
(see: Facilities layout problems; Forecasting;Genetic
algorithms)

Genetic algorithms for protein structure prediction
(92B05)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization;Genetic algorithms;Global optimization
based on statistical models;Monte-Carlo simulated
annealing in protein folding; Packet annealing; Random
search methods; Simulated annealing methods in protein
folding; Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization; Genetic
algorithms;Global optimization based on statistical
models;Monte-Carlo simulated annealing in protein
folding; Packet annealing; Random search methods;
Simulated annealing methods in protein folding; Stochastic
global optimization: stopping rules; Stochastic global
optimization: two-phase methods)

genetic engineering via negative fitness
[90C20]
(see: Standard quadratic optimization problems:
algorithms)

genetic operators
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

GENF
[90C20]

(see: Standard quadratic optimization problems:
algorithms)

genomic analysis see: Algorithms for —
geodesic convex function

[90C26]
(see: Smooth nonlinear nonconvex optimization)

geodesic convex set
[90C26]
(see: Smooth nonlinear nonconvex optimization)

geodesic convexity
[90C26]
(see: Smooth nonlinear nonconvex optimization)

geodesic convexity
[90C26]
(see: Smooth nonlinear nonconvex optimization)

geodesic gradient vector
[90C26]
(see: Smooth nonlinear nonconvex optimization)

geodesic Hessian matrix
[90C26]
(see: Smooth nonlinear nonconvex optimization)

Geoffrion theorem
[90C10, 90C29]
(see:Multi-objective integer linear programming)

geometric
[68Q20]
(see: Optimal triangulations)

geometric algorithms
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

geometric convergence rate
[49J52, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods)

geometric distribution
[90C15]
(see: Logconcavity of discrete distributions)

geometric interpretation
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

geometric interpretation, existence and uniqueness see:
Variational inequalities: —

geometric mean method
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

geometric mean method see: revised—
geometric moment theory

[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

geometric (or disk) representation
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

geometric programming
[01A99]
(see:History of optimization)

Geometric programming
[90C28, 90C30]
(see: Geometric programming)
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geometric programming see: generalized —; Global
optimization in generalized —

geometric programming: mixed continuous and discrete free
variables see: Generalized—

geometric semilattice
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

geometric semilattice
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

geometric series rule
[49J52, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods)

geometrical equation
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

geometrical operator
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

geometrical problem
[90C30]
(see: Lagrangian duality: BASICS)

geometrically
[90C30]
(see: Frank–Wolfe algorithm)

geometrically linear problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

geometrically nonlinear problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

geometry
(see: State of the art in modeling agricultural systems)

geometry see: stochastic—; vector —
geometry problem see: distance—;Molecular distance—
geometry of satellites and tracking stations see: Automatic

differentiation:—
Gershgorin theorem

[49M37, 65K10, 90C09, 90C10, 90C26, 90C30]
(see: ˛BB algorithm; Combinatorial matrix analysis)

GGA
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

GGP
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

Gibbs free energy see:molar —; total —
Gibbs function

[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

Gibbs sampler see: hiddenMarkov model and—
GIDEON

[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

Gilbert conjecture see: Chung–—

Gilbert–Pollak conjecture
[90C27]
(see: Steiner tree problems)

Gilmore–Lawler lower bound
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Gilmore–Lawler type lower bounds
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

gIS design pattern based model
(see: State of the art in modeling agricultural systems)

given marginals see: table with—
Given transformation

[49M37]
(see: Nonlinear least squares: Newton-type methods)

Givens rotation
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

Givens transformation see: fast —; square-root-free—
glass model see: Ising—; Potts —
global

[65H20, 80A10, 80A22, 90C26, 90C31, 90C34, 90C90, 92-08,
92C05, 92C40]
(see: Generalized primal-relaxed dual approach;Global
optimization: application to phase equilibrium problems;
Interval analysis for optimization of dynamical systems;
Parametric global optimization: sensitivity; Protein
folding: generalized-ensemble algorithms)

global constrained optimization problem
[60G35, 65G20, 65G30, 65G40, 65K05, 90C30]
(see: Differential equations and global optimization;
Interval global optimization)

global convergence
[49J52, 49M37, 90C06, 90C30]
(see: Large scale unconstrained optimization;
Nondifferentiable optimization: Newton method;
Nonlinear least squares: Newton-type methods; Rosen’s
method, global convergence, and Powell’s conjecture)

global convergence
[49M37, 90C30]
(see: Nonlinear least squares: Newton-type methods;
Rosen’s method, global convergence, and Powell’s
conjecture)

global convergence of GRASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

global convergence, and Powell’s conjecture see: Rosen’s
method—

global convergence problem for the Rosen method
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

global cut
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

global energy minimum
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

Global equilibrium search
(see: Global equilibrium search)
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global error bound
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

global gradient flows
[58E05, 90C30]
(see: Topology of global optimization)

global independence
(see: Bayesian networks)

global infimum
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

global Lagrange multiplier rule
[90C26]
(see: Smooth nonlinear nonconvex optimization)

global local maximizers see: set of discrete "- —
global maximization problem

[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

global maximizer
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

global maximizer see: discrete—
global maximum point

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

global minimization
[03H10, 49J27, 65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25,
90C26, 90C34]
(see: Information-based complexity and information-based
optimization; Semi-infinite programming and control
problems)

global minimization
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

global minimizer
[46A20, 52A01, 65G20, 65G30, 65G40, 65K05, 90C30, 90Cxx]
(see: Composite nonsmooth optimization;Dini and
Hadamard derivatives in optimization; Interval global
optimization)

global minimizers
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

global minimum
[03H10, 49J27, 65G20, 65G30, 65G40, 65K05, 90C26, 90C30,
90C34, 90C39, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic; Interval global optimization; Second
order optimality conditions for nonlinear optimization;
Semi-infinite programming and control problems)

global minimum
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

global minimum KKT point
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

global minimum of an NNFP
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

global minimum point
[65K05, 90C30, 90Cxx]
(see: Dini and Hadamard derivatives in optimization; Image
space approach to optimization)

global minimum solution
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

global MINLP
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

global nonlinear optimization
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

global optimal design
[90C26, 90C90]
(see: Global optimization of heat exchanger networks)

global optimal solution
[65H10, 90C26, 90C30]
(see: Global optimization methods for systems of nonlinear
equations)

global optimality
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

global optimization
[01A99, 26E25, 46A20, 49-XX, 49J52, 52A01, 52A27, 60J15,
60J60, 60J65, 60J70, 60K35, 65C05, 65C10, 65C20, 65C30,
65C40, 65C50, 65C60, 65Cxx, 65G20, 65G30, 65G40, 65K05,
65T40, 68Q25, 68U20, 70-08, 82B21, 82B31, 82B41, 82B80,
90-XX, 90B50, 90C05, 90C10, 90C20, 90C26, 90C29, 90C30,
90C90, 90C99, 91B06, 92C40, 92E10, 93-XX]
(see: Adaptive global search;Duality theory: triduality in
global optimization; Farkas lemma: generalizations;Global
optimization methods for harmonic retrieval; Global
optimization in protein folding;History of optimization;
Interval analysis: systems of nonlinear equations;MINLP:
branch and bound global optimization algorithm;
Multi-objective optimization and decision support systems;
Quadratic programming with bound constraints;
Quasidifferentiable optimization: Dini derivatives, clarke
derivatives;Reverse convex optimization; Selection of
maximally informative genes; Stochastic global
optimization: stopping rules; Stochastic global
optimization: two-phase methods)

Global optimization
[46A20, 49K99, 49M29, 49M37, 52A01, 58E05, 60G35, 62C10,
65C30, 65C40, 65C50, 65C60, 65Cxx, 65G20, 65G30, 65G40,
65H10, 65H20, 65K05, 65K10, 65K99, 65T40, 80A10, 80A22,
90B06, 90B10, 90C05, 90C10, 90C11, 90C15, 90C20, 90C26,
90C27, 90C29, 90C30, 90C32, 90C35, 90C90, 90C99, 92C40]
(see: ˛BB algorithm; Bayesian global optimization; Bilevel
programming: global optimization; Continuous global
optimization: applications;Differential equations and
global optimization;Direct global optimization algorithm;
Farkas lemma: generalizations;Generalized benders
decomposition;Generalized primal-relaxed dual approach;
Global optimization: application to phase equilibrium
problems;Global optimization based on statistical models;
Global optimization: envelope representation;Global
optimization in generalized geometric programming;
Global optimization of heat exchanger networks; Global
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optimization: hit and run methods; Global optimization in
Lennard–Jones and morse clusters;Global optimization
methods for harmonic retrieval;Global optimization
methods for systems of nonlinear equations; Global
optimization in multiplicative programming;Global
optimization in phase and chemical reaction equilibrium;
Global optimization inWeber’s problemwith attraction
and repulsion; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: unconstrained and constrained optimization;
Interval analysis: verifying feasibility; Interval fixed point
theory; Interval global optimization; Interval Newton
methods;Minimum concave transportation problems;
MINLP: branch and bound global optimization algorithm;
MINLP: global optimization with ˛BB;Mixed integer
nonlinear bilevel programming: deterministic global
optimization;Mixed integer nonlinear programming;
Multipleminima problem in protein folding:˛BB global
optimization approach;Neural networks for combinatorial
optimization; Nonconvex network flow problems;Optimal
design of composite structures;Optimality criteria for
multiphase chemical equilibrium; Phase problem in X-ray
crystallography: Shake and bake approach; Piecewise linear
network flow problems;Quadratic fractional
programming: Dinkelbachmethod;Quadratic
programming with bound constraints; Random search
methods; Reverse convex optimization; SSCminimization
algorithms for nonsmooth and stochastic optimization;
Standard quadratic optimization problems: algorithms;
Standard quadratic optimization problems: theory;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods; Topology of
global optimization)

global optimization see: Bayesian—; Bilevel programming: —;
black-box—; constrained—; continuous—; Cutting plane
methods for—; Decomposition in—; Differential equations
and—; Duality theory: triduality in—; Interval —; Interval
analysis: parallel methods for—; LP strategy for
interval-Newton method in deterministic —;mixed
discrete-continuous—;Mixed integer nonlinear bilevel
programming: deterministic—;multi-extremal—;
Reformulation-linearization technique for—; Robust—;
stochastic—; Topology of —; unconstrained—

global optimization algorithm see: ˛BB—; deterministic —;
Direct—;MINLP: branch and bound—

Global optimization algorithms for financial planning problems
[78M50, 90B50, 91B28]
(see: Global optimization algorithms for financial planning
problems)

global optimization with ˛BB see:MINLP:—
Global optimization in the analysis and management of

environmental systems
(90C05)
(referred to in: Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software; Interval global optimization;
Mixed integer nonlinear programming;Optimization in
water resources)
(refers to: Continuous global optimization: applications;
Continuous global optimization: models, algorithms and

software; Interval global optimization;Mixed integer
nonlinear programming;Optimization in water resources)

Global optimization: application to phase equilibrium
problems
(80A10, 80A22, 90C90, 65H20)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global optimization
in phase and chemical reaction equilibrium; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: systems of
nonlinear equations; Interval analysis: unconstrained and
constrained optimization; Interval analysis: verifying
feasibility; Interval constraints; Interval fixed point theory;
Interval global optimization; Interval linear systems;
Interval Newton methods;Optimality criteria for
multiphase chemical equilibrium)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global optimization
in phase and chemical reaction equilibrium; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods;Optimality criteria for multiphase
chemical equilibrium)

global optimization: applications see: Continuous—
global optimization approach see:Multiple minima problem in

protein folding: ˛BB—
Global optimization based on statistical models

(90C30)
(referred to in: Adaptive global search;Adaptive simulated
annealing and its application to protein folding;˛BB
algorithm; Bayesian global optimization; Continuous
global optimization: applications;Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization;Direct global
optimization algorithm;Genetic algorithms for protein
structure prediction;Global optimization in binary star
astronomy; Global optimization methods for systems of
nonlinear equations;Global optimization using space
filling;Monte-Carlo simulated annealing in protein folding;
Packet annealing; Random search methods; Simulated
annealing; Simulated annealing methods in protein folding;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods; Topology of
global optimization)
(refers to: Adaptive global search;Adaptive simulated
annealing and its application to protein folding;˛BB



Subject Index 4239

algorithm; Bayesian global optimization; Continuous
global optimization: applications;Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization;Direct global
optimization algorithm;Genetic algorithms for protein
structure prediction;Global optimization in binary star
astronomy;Global optimization methods for systems of
nonlinear equations; Global optimization using space
filling; Integer programming: branch and boundmethods;
Monte-Carlo simulated annealing in protein folding;
Packet annealing;Random search methods; Simulated
annealing; Simulated annealingmethods in protein folding;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods; Topology of
global optimization)

Global optimization in batch design under uncertainty
(90C26)
(referred to in: ˛BB algorithm; Continuous global
optimization: models, algorithms and software; Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations;Global optimization in phase and chemical
reaction equilibrium; Interval global optimization;MINLP:
branch and bound global optimization algorithm;MINLP:
global optimization with ˛BB; Smooth nonlinear
nonconvex optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
models, algorithms and software; Global optimization in
generalized geometric programming;Global optimization
methods for systems of nonlinear equations;Global
optimization in phase and chemical reaction equilibrium;
Interval global optimization;MINLP: branch and bound
global optimization algorithm;MINLP: global optimization
with ˛BB; Smooth nonlinear nonconvex optimization)

Global optimization in binary star astronomy
(90C26, 90C90)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications; Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization;Direct global
optimization algorithm;Global optimization based on
statistical models; Global optimization methods for systems
of nonlinear equations; Global optimization using space
filling; Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software;Differential equations and global
optimization;Direct global optimization algorithm;Global
optimization based on statistical models; Global
optimization methods for systems of nonlinear equations;
Global optimization using space filling; Topology of global
optimization)

Global optimization: cutting angle method
(90C26, 65K05, 90C56, 65K10)

Global optimization: envelope representation
(90C26)
(referred to in: Dini and Hadamard derivatives in
optimization;Nondifferentiable optimization;
Nondifferentiable optimization: cutting plane methods;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: Newton method;

Nondifferentiable optimization: parametric programming;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods)
(refers to: Dini and Hadamard derivatives in optimization;
Farkas lemma; Farkas lemma: generalizations;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods; Nondifferentiable
optimization: subgradient optimization methods)

Global optimization: filled function methods
(90C26, 90C30, 90C59, 65K05)

Global optimization: functional forms
Global optimization: g-˛BB approach

(49M37, 65K10, 90C26, 90C30, 46N10, 47N10)
Global optimization in generalized geometric programming

(90C26, 90C90)
(referred to in: ˛BB algorithm; Continuous global
optimization: models, algorithms and software; Convex
envelopes in optimization problems;Global optimization
in batch design under uncertainty;Global optimization
methods for systems of nonlinear equations; Global
optimization in phase and chemical reaction equilibrium;
Interval global optimization;MINLP: branch and bound
global optimization algorithm;MINLP: global optimization
with ˛BB; Smooth nonlinear nonconvex optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
models, algorithms and software; Convex envelopes in
optimization problems;Global optimization in batch
design under uncertainty;Global optimization methods for
systems of nonlinear equations;Global optimization in
phase and chemical reaction equilibrium; Interval global
optimization;MINLP: branch and bound global
optimization algorithm;MINLP: global optimization with
˛BB; Smooth nonlinear nonconvex optimization)

Global optimization of heat exchanger networks
(90C26, 90C90)
(referred to in: Continuous global optimization: models,
algorithms and software; Global optimization methods for
systems of nonlinear equations;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: mass and heat exchanger networks;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks)
(refers to:MINLP: global optimization with ˛BB;MINLP:
heat exchanger network synthesis;MINLP: mass and heat
exchanger networks;Mixed integer linear programming:
heat exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks)

Global optimization: hit and run methods
(90C26, 90C90)
(referred to in: Optimal design of composite structures;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods)
(refers to: Random search methods; Simulated annealing;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods)
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Global optimization: interval analysis and balanced interval
arithmetic
(65K05, 90C30, 90C57, 65G30, 65G40)
(refers to: Bisection global optimization methods;
Continuous global optimization: models, algorithms and
software; Interval analysis: parallel methods for global
optimization; Interval analysis: subdivision directions in
interval branch and bound methods; Interval analysis:
unconstrained and constrained optimization; Interval
global optimization; Interval linear systems)

Global optimization in Lennard–Jones and morse
clusters
(90C26, 90C90)
(referred to in: Adaptive simulated annealing and its
application to protein folding;Genetic algorithms;Graph
coloring;Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multiple minima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Simulated annealing methods in
protein folding)
(refers to: Adaptive simulated annealing and its application
to protein folding;Genetic algorithms; Global optimization
in protein folding;Molecular structure determination:
convex global underestimation;Monte-Carlo simulated
annealing in protein folding;Multiple minima problem in
protein folding:˛BB global optimization approach; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Protein folding: generalized-ensemble
algorithms; Simulated annealing; Simulated annealing
methods in protein folding)

Global optimization in location problems
(90C26, 65D18, 90B85)

global optimizationmethod see: QBB—
global optimizationmethods see: Bisection—
Global optimization methods for harmonic retrieval

(90C26, 65T40, 90C30, 90C90)
(referred to in: Signal processing with higher order statistics)
(refers to: Signal processing with higher order statistics)

Global optimization methods for systems of nonlinear
equations
(65H10, 90C26, 90C30)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications;Continuous global
optimization: models, algorithms and software;
Contraction-mapping;Differential equations and global
optimization;Direct global optimization algorithm;Global
optimization based on statistical models; Global
optimization in batch design under uncertainty;Global
optimization in binary star astronomy; Global
optimization in generalized geometric programming;
Global optimization in phase and chemical reaction
equilibrium;Global optimization using space filling;
Gröbner bases for polynomial equations; Interval analysis:
systems of nonlinear equations; Interval global
optimization;MINLP: branch and bound global
optimization algorithm;MINLP: global optimization with
˛BB; Nonlinear least squares: Newton-type methods;
Nonlinear systems of equations: application to the
enclosure of all azeotropes; Smooth nonlinear nonconvex

optimization; Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software; Contraction-mapping;Convex
envelopes in optimization problems;D.C. programming;
Differential equations and global optimization;Direct
global optimization algorithm;Generalized nonlinear
complementarity problem;Global optimization based on
statistical models; Global optimization in batch design
under uncertainty;Global optimization in binary star
astronomy; Global optimization in generalized geometric
programming;Global optimization of heat exchanger
networks; Global optimization in phase and chemical
reaction equilibrium;Global optimization using space
filling; Interval analysis: systems of nonlinear equations;
Interval global optimization;MINLP: branch and bound
global optimization algorithm;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: mass and heat exchanger networks;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks; Nonlinear least squares:
Newton-type methods; Nonlinear systems of equations:
application to the enclosure of all azeotropes; Smooth
nonlinear nonconvex optimization; Topology of global
optimization; Variational inequalities)

global optimizationmodel see: continuous—
global optimization: models, algorithms and software see:

Continuous—
Global optimization in multiplicative programming

(90C26)
(referred to in: Linear programming;Multiparametric linear
programming;Multiplicative programming; Parametric
linear programming: cost simplex algorithm)
(refers to: Complexity classes in optimization; Complexity
theory; Concave programming;Generalized outer
approximation; Integer programming: branch and bound
methods; Linear programming;Multiparametric linear
programming;Multiplicative programming; Parametric
linear programming: cost simplex algorithm)

Global optimization: p-˛BB approach
(49M37, 65K10, 90C26, 90C30, 46N10, 47N10)

Global optimization in phase and chemical reaction
equilibrium
(90C26, 90C90)
(referred to in: ˛BB algorithm; Continuous global
optimization: models, algorithms and software;
Generalized primal-relaxed dual approach;Global
optimization: application to phase equilibrium problems;
Global optimization in batch design under uncertainty;
Global optimization in generalized geometric
programming;Global optimization methods for systems of
nonlinear equations; Interval global optimization;MINLP:
branch and bound global optimization algorithm;MINLP:
global optimization with ˛BB;Optimality criteria for
multiphase chemical equilibrium; Smooth nonlinear
nonconvex optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
models, algorithms and software; Generalized
primal-relaxed dual approach;Global optimization:
application to phase equilibrium problems;Global
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optimization in batch design under uncertainty;Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations; Interval global optimization;MINLP: branch
and bound global optimization algorithm;MINLP: global
optimization with ˛BB;Optimality criteria for multiphase
chemical equilibrium; Smooth nonlinear nonconvex
optimization)

Global optimization of planar multilayered dielectric
structures
(65K99)

global optimization problem
[49K99, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65H10, 65K05,
80A10, 90C26, 90C27, 90C30]
(see: Global optimization methods for systems of nonlinear
equations;Neural networks for combinatorial
optimization;Optimality criteria for multiphase chemical
equilibrium;Random search methods; Stochastic global
optimization: two-phase methods)

Global optimization in protein folding
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

global optimization: sensitivity see: Parametric —
global optimization: stopping rules see: Stochastic—
Global optimization: tight convex underestimators

[46N10, 47N10, 49M37, 65K10, 90C26, 90C30]
(see: Global optimization: tight convex underestimators)

global optimization: two-phase methods see: Stochastic—
global optimization over unbounded domains

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

Global optimization using space filling
(90C26)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications; Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization;Direct global
optimization algorithm;Global optimization based on
statistical models; Global optimization in binary star
astronomy;Global optimization methods for systems of
nonlinear equations; Topology of global optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software;Differential equations and global
optimization;Direct global optimization algorithm;Global
optimization based on statistical models; Global
optimization in binary star astronomy; Global
optimization methods for systems of nonlinear equations;
Topology of global optimization)

global optimization using terrain/funneling methods see:
Multi-scale—

Global optimization in Weber’s problemwith attraction and
repulsion
(90C26, 90C90)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs;MINLP: application in facility
location-allocation;Multifacility and restricted location

problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs;MINLP: application in facility
location-allocation;Multifacility and restricted location
problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;Voronoi
diagrams in facility location;Warehouse location problem)

global optimizer
[90C26]
(see: Smooth nonlinear nonconvex optimization)

global optimum
[65F10, 65F50, 65G20, 65G30, 65G40, 65H10, 65H20, 65K10,
93-XX]
(see: Direct search Luus—Jaakola optimization procedure;
Dynamic programming: optimal control applications;
Globally convergent homotopy methods; Interval analysis:
unconstrained and constrained optimization)

global optimum see: constrained—
global optimum search

[49M29, 90C11]
(see: Generalized benders decomposition)

global optimum search with enhanced positioning see: Gene
clustering: A novel decomposition-based clustering
approach: —

Global pairwise protein sequence alignment via mixed-integer
linear optimization
[90C10, 92-08]
(see: Global pairwise protein sequence alignment via
mixed-integer linear optimization)

global phase
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

global points see: set of "- —
global round robin request

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

global search
[65K05, 90C26, 90C30, 90C59, 90C90]
(see: Global optimization in binary star astronomy; Global
optimization: filled function methods)

global search see: Adaptive—
global solution

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)
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global structual stability of SIP(f,h,g)
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

global structural stability
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

global supply chain
[90B05, 90B06]
(see: Global supply chain models)

Global supply chain models
(90B05, 90B06)
(referred to in: Inventory management in supply chains;
Nonconvex network flow problems;Operations research
models for supply chain management and design; Piecewise
linear network flow problems)
(refers to: Inventory management in supply chains;
Nonconvex network flow problems;Operations research
models for supply chain management and design; Piecewise
linear network flow problems)

Global terrain methods
(see: Global terrain methods)

global unconstrained optimization problem
[60G35, 65G20, 65G30, 65G40, 65K05, 90C30]
(see: Differential equations and global optimization;
Interval global optimization)

global underestimation see: convex—;Molecular structure
determination: convex—

global underestimator
[90C11, 90C26]
(see: Extended cutting plane algorithm)

global underestimator see: convex—
globally convergent

[49M37, 65F10, 65F50, 65H10, 65K05, 65K10, 90C30]
(see: Globally convergent homotopy methods; Nonlinear
least squares: trust regionmethods; Structural
optimization)

globally convergent
[49M37, 65F10, 65F50, 65H10, 65K05, 65K10, 90C30]
(see: Globally convergent homotopy methods; Structural
optimization)

globally convergent algorithm
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

globally convergent homotopies see: probability-one—
Globally convergent homotopy methods

(65F10, 65F50, 65H10, 65K10)
(referred to in: Parametric optimization: embeddings, path
following and singularities; Topology of global
optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; Parametric
optimization: embeddings, path following and
singularities; Topology of global optimization)

globally convergent probability-one homotopy algorithm
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

globally convexized filled function
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

globally optimal
[90C30]
(see: Frank–Wolfe algorithm; Simplicial decomposition)

globally optimal parameter
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

GlobSol
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

GMIN
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

GMIN-˛BB
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

GMIN-˛BB algorithm
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

GMMVM
[90C26]
(see: Generalized monotone multivalued maps)

GMRES
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

GMSVM
[90C26]
(see: Generalized monotone single valued maps)

GMVIPEP
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

GN
[90C35]
(see: Generalized networks)

go see: cost-to-—
GO for SNE

[65H10, 90C26, 90C30]
(see: Global optimization methods for systems of nonlinear
equations)

GO4BSA
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

goal coordination method
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

goal-oriented differentiation
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

goal programming
[90C27, 90C29]
(see: Decision support systems with multiple criteria;
Multicriteria sorting methods;Multi-objective
combinatorial optimization)

goal programming
[90C27, 90C29]
(see:Multicriteria sorting methods;Operations research
and financial markets)
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Goal Programming see: Lexicographic—
goals

(see: Planning in the process industry)
goals see: fuzzy—
Goerisch bound see: Lehmann–—
Goerisch method

[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Goguen–Gaines implication
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

golden section method
[90C30]
(see: Convex-simplex algorithm)

golden section method
[90C30]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm)

golden section search
[90C30]
(see: Nonlinear least squares problems)

Goldfarb–Idnani active set strategy
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Goldfarb–Idnani method
[65K05, 65K10]
(see: ABS algorithms for optimization)

Goldfarbmethod see: Forrest– —
Goldfarb–Shannomethod see: Broyden–Fletcher– —
Goldfarb–Shanno quasi-Newton update see:

Broyden–Fletcher– —
Goldfarb–Shanno update see: Broyden–Fletcher– —
Goldfarb–Wang algorithm

[90C30]
(see: Numerical methods for unary optimization)

Goldfarb–Wang algorithm
[90C30]
(see: Numerical methods for unary optimization)

Goldstein conditions
[49M37, 90C30]
(see: Nonlinear least squares: Newton-type methods;
Nonlinear least squares problems)

Gollan CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Gomez #3 problem
[65K05]
(see: Direct global optimization algorithm)

Gomory cut see: Chvátal–—
Gomory cutting plane see: Chvátal–—
Gomory cutting plane algorithm

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

Gomory relaxations
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

good edge flips
[68Q20]
(see: Optimal triangulations)

good inclusion function
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

good subset
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

Goodman–Kruskal �b statistic
[62H30, 90C27]
(see: Assignment methods in clustering)

gOP algorithm
[90C26, 90C30, 90C90]
(see: Bilevel programming: global optimization;
Generalized primal-relaxed dual approach)

GOP algorithm
[90C26]
(see: Generalized primal-relaxed dual approach)

gOR
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling;
Optimal planning of offshore oilfield infrastructure)

Gordan transposition theorem
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

gOS
[68T20, 68W10, 90C11, 90C26, 91C20, 92-08, 92C05, 92D10]
(see: Determining the optimal number of clusters)

GOSF
[90C26]
(see: Global optimization using space filling)

gottfried wilhelm see: Leibniz—
Gottfried Wilhelm Leibniz

[01A99]
(see: Leibniz, gottfried wilhelm)

governing equation
[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

government regulation
[90-01, 90B30, 90B50, 91B32, 91B52, 91B74]
(see: Bilevel programming in management)

GPASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

GPP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

GPRD
[90C26]
(see: Generalized primal-relaxed dual approach)

gradient
[49M29, 58E05, 65H99, 65K05, 65K10, 65K99, 90C06, 90C25,
90C30, 90C31]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: point and interval; Local
attractors for gradient-related descent iterations; Sensitivity
and stability in NLP; Solving large scale and sparse
semidefinite programs; Topology of global optimization)

gradient
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)
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gradient see: adjoint-based—; Clarke generalized —;
conjugate—; general —; generalized —; �-approximate—;
projected negative —; projected positive—; reduced—;
restricted—; sensitivity-based—

gradient algorithm see: extra- —; projected —; reduced—
gradient algorithms for unconstrained optimization see: New

hybrid conjugate—; Performance profiles of conjugate- —
gradient based approach

[90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method)

gradient based procedures
[90C30]
(see: Powell method)

gradient controller see: feasible—; nonfeasible—
gradient descent

[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

gradient estimation
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

gradient flows see: global—
gradient free see: univariate—
gradient-free algorithm

[90C30]
(see: Cyclic coordinate method)

gradient-free minimization
[90C30]
(see: Powell method; Rosenbrockmethod; Sequential
simplex method)

gradient-free minimization algorithm
[90C30]
(see: Powell method; Rosenbrockmethod)

gradient index
[62H30, 90C39]
(see: Dynamic programming in clustering)

gradient of an integral
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

gradient method see: Arrow–Hurwicz—; conditional—;
conjugate—; incremental —; Shanno conjugate —;Wolfe
reduced—

gradient methods
[90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method)

gradient methods see: Conjugate- —; deflected—; Spectral
projected—

gradient of multivariate distribution functions
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

gradient parameter computation see: conjugate—
gradient of a probability function

[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

gradient of a probability function
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

gradient projection
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

gradient projection
[90C30]
(see: Cost approximation algorithms)

gradient projection algorithm
[90C30]
(see: Cost approximation algorithms)

gradient projection method see: Rosen—
gradient-related descent

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

gradient-related descent iterations see: Local attractors for—
gradient-related set function

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

gradient type algorithm see: Craig conjugate —
gradient vector

[37A35, 49M29, 65K10, 90C05, 90C06, 90C26, 90C39]
(see: Local attractors for gradient-related descent iterations;
Potential reductionmethods for linear programming;
Second order optimality conditions for nonlinear
optimization)

gradient vector see: geodesic —
gradients see: conjugate —
gradients, Jacobians, and Hessians see: Complexity of—
Gragg–Kaufmann–Stewart reorthogonalized Gram–Schmidt

algorithm see: Daniel–—
Graham–Hwang conjecture

[90C27]
(see: Steiner tree problems)

graham-Scan
[46N10, 47N10, 49M37, 65K10, 90C26, 90C30]
(see: Global optimization: tight convex underestimators)

grained multicomputer see: coarse—
GRAM

[65K05, 65Y05]
(see: Parallel computing: models)

Gram–Schmidt algorithm see:
Daniel–Gragg–Kaufmann–Stewart reorthogonalized—

Gram–Schmidt orthogonalization
[65Fxx]
(see: Least squares problems)

Gram–Schmidt orthogonalization
[90C30]
(see: Rosenbrockmethod)

Gram–Schmidt orthogonalization see: classical—;modified—
Gram–Schmidt type iteration

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

grand challenge
[90C10, 90C26, 90C30]
(see: Optimization software)

graph
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)
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graph
[05C60, 05C69, 37B25, 90B80, 90C10, 90C20, 90C27, 90C35,
90C59, 91A22, 94C15]
(see: Facilities layout problems;Graph coloring;Graph
planarization;Replicator dynamics in combinatorial
optimization)

graph see: 0–1–0—; adjacency—; adjacent vertices in a—;
alignment-distribution—; association—; bipartite—;
bipartite chordal—; block-clique—; branchpoint of a—;
cardinality of a—; chordal—; cocomparability—; column
incidence—; compact—; complement—;
complementary—; complete—; computational—;
conflict—; connected —; connectivity—; constraint—;
convex bipartite—; cycle in a—; cyclically reducible—;
directed—; distance in a—; edge of a—; elimination—;
endpoint of a—; Eulerian—; extended alignment—;
gabriel —; homeomorph of a—; interval —; k-leveled—;
kernel of a—; length of a path in a—; level in a leveled—;
level planar —; leveled—; linkpoint of a—;maximum
weighted planar —;min-max—;minimum fill-in of a—;
mixed—; order of a—; overlap—; path in a—;
permutation—; planar —; proper k-leveled—; rank
determined—; series-parallel —; size of a—;
Smith–Walford one-reducible—; trapezoid—; tree
association—; unicursal—; vertex of a—; weighted —;
weighted tree association—

graph based framework
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

graph bipartitioning problem
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

graph bipartization
[90C35]
(see: Feedback set problems)

graph bipartization problem
[90C35]
(see: Feedback set problems)

graph bipartization problem see:minimumweighted —
graph collapsing auction algorithm

[90B10, 90C27]
(see: Shortest path tree algorithms)

graph collapsing in auction algorithms
[90B10, 90C27]
(see: Shortest path tree algorithms)

Graph coloring
(90C35)
(referred to in: Biquadratic assignment problem; Broadcast
scheduling problem; Feedback set problems; Frequency
assignment problem;Graph planarization;Greedy
randomized adaptive search procedures;Heuristics for
maximum clique and independent set; Integer
programming; Linear ordering problem;Maximum
constraint satisfaction: relaxations and upper bounds;
Multi-objectivemixed integer programming;Quadratic
assignment problem;Quadratic semi-assignment problem;
Replicator dynamics in combinatorial optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming;
Time-dependent traveling salesman problem)
(refers to: Adaptive simulated annealing and its application

to protein folding; Branch and price: Integer programming
with column generation;Decomposition techniques for
MILP: lagrangian relaxation; Feedback set problems;
Frequency assignment problem;Generalized assignment
problem;Genetic algorithms;Global optimization in
Lennard–Jones and morse clusters; Global optimization in
protein folding; Graph planarization;Greedy randomized
adaptive search procedures;Heuristics for maximum clique
and independent set; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Maximum constraint
satisfaction: relaxations and upper bounds;Mixed integer
classification problems;Molecular structure determination:
convex global underestimation;Monte-Carlo simulated
annealing in protein folding;Multi-objective integer linear
programming;Multi-objectivemixed integer
programming;Multiparametricmixed integer linear
programming;Multipleminima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Parametric mixed integer nonlinear
optimization; Phase problem in X-ray crystallography:
Shake and bake approach; Protein folding:
generalized-ensemble algorithms;Quadratic assignment
problem;Quadratic semi-assignment problem; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Simulated
annealing methods in protein folding; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)

graph coloring
[05-XX]
(see: Frequency assignment problem)

graph coloring problem
[05-04, 05-XX, 90C27, 90C35]
(see: Evolutionary algorithms in combinatorial
optimization; Frequency assignment problem;Graph
coloring)

graph coloring problem see: weighted —
graph degree

[90C35]
(see: Feedback set problems)

graph drawing
[90C10, 90C27, 94C15]
(see: Graph planarization)

graph drawing see: automatic—
graph isomorphism

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

graph isomorphism problem
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

graph of a matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)
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graph model see: containment —; intersection—;
proximity—

graph optimization
[90C09, 90C10, 90C11, 90C20]
(see: Linear ordering problem;Matroids;Oriented
matroids)

graph packing problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Graph partitioning
(90C27, 05-04)
(referred to in: Bayesian networks; Beam selection in
radiotherapy treatment design; Combinatorial matrix
analysis; Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games; Fractional combinatorial optimization;
Multi-objective combinatorial optimization;
Optimization-based visualization; Replicator dynamics in
combinatorial optimization; Simulated annealing;
Traveling salesman problem)
(refers to: Combinatorial matrix analysis; Combinatorial
optimization games; Fractional combinatorial
optimization; Genetic algorithms;Multi-objective
combinatorial optimization;Neural networks for
combinatorial optimization; Replicator dynamics in
combinatorial optimization)

graph partitioning problem
[05C60, 05C69, 37B25, 90C08, 90C11, 90C20, 90C27, 90C35,
90C57, 90C59, 91A22]
(see: Quadratic assignment problem; Replicator dynamics
in combinatorial optimization)

graph partitioning problem see: k-way—
Graph planarization

(94C15, 90C10, 90C27)
(referred to in: Biquadratic assignment problem; Feedback
set problems;Graph coloring;Greedy randomized adaptive
search procedures; Linear ordering problem;Optimization
in leveled graphs;Quadratic assignment problem;
Quadratic semi-assignment problem)
(refers to: Feedback set problems;Generalized assignment
problem;Graph coloring;Greedy randomized adaptive
search procedures;Optimization in leveled graphs;
Quadratic assignment problem;Quadratic
semi-assignment problem)

graph planarization
[90C10, 90C27, 94C15]
(see: Graph planarization)

graph planarization see: branch and bound algorithm for
weighted —

graph problem
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

graph Realization Problem
[05C50, 15A48, 15A57, 51K05, 52C25, 68Q25, 68U05, 90C22,
90C25, 90C35]
(see: Graph realization via semidefinite programming;Matrix
completion problems)

Graph realization problem
(see: Semidefinite programming and the sensor network
localization problem, SNLP)

Graph realization via semidefinite programming
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

graph reduction in auction algorithms
[90B10, 90C27]
(see: Shortest path tree algorithms)

graph search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

graph search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

graph theorem see: strong perfect—
graph theory

[05-XX]
(see: Frequency assignment problem)

graph theory
[90B80, 90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching; Facilities layout problems)

graphic matroid
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C, 90C09, 90C10]
(see: Convex discrete optimization;Matroids)

graphical traveling salesman problem
[90B20]
(see: General routing problem)

graphical traveling salesman problem see: Steiner —
graphical user interface

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

graphs see: bisectored unit disk—; bounded ratio disk—;
coin—; disk—; double disk—; empty neighborhood—;
grid—; isomorphic—; leveled—;matrix patterns and—;
Optimization in leveled—; Optimization problems in
unit-disk—; searching state space—; unit-Disk—

GRASP
[03B05, 65H20, 65K05, 68P10, 68Q25, 68R05, 68T15, 68T20,
90-01, 90B40, 90C09, 90C10, 90C27, 90C35, 94C10, 94C15]
(see: Greedy randomized adaptive search procedures;
Maximum satisfiability problem)

GRASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Feedback set problems;Greedy randomized adaptive
search procedures)

GRASP see: basic —; construction phase in—; global
convergence of—; local search phase in—; long-term
memory in—; parallel —; reactive—

GRASP approach
[90C09, 90C10]
(see: Optimization in boolean classification problems)

GRASP in hybrid metaheuristics
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

GRASP in industry
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

GRASP in operations research
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)
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graver basis
[05A, 13Cxx, 13Pxx, 14Qxx, 15A, 51M, 52A, 52B, 52C, 62H,
68Q, 68R, 68U, 68W, 90B, 90C, 90Cxx]
(see: Convex discrete optimization; Integer programming:
algebraic methods)

graver complexity
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

gravity see: center of —
gravity location see: center of —
gravity method see: center of—
Gray code

[92B05]
(see: Genetic algorithms)

Gray code
[92B05]
(see: Genetic algorithms)

greater see: lexicographically—
greatest convex minorant

[41A30, 47A99, 62G07, 62G30, 62J02, 65K05, 65K10, 90C26]
(see: Isotonic regression problems; Lipschitzian operators
in best approximation by bounded or continuous functions;
Regression by special functions: algorithms and
complexity)

greatest improvement see: rule of—
greatest K-minorant

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

greatest quasiconvex minorant
[41A30, 47A99, 62J02, 65K10, 90C26]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions; Regression by special
functions: algorithms and complexity)

greedy algorithm
[68Q25, 68R10, 68W40, 90B06, 90B35, 90C06, 90C09, 90C10,
90C27, 90C35, 90C39, 90C57, 90C59, 90C60, 90C90, 94C15]
(see: Combinatorial optimization algorithms in resource
allocation problems;Domination analysis in combinatorial
optimization;Graph planarization;Multi-index
transportation problems; Traveling salesman problem)

greedy algorithm
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05, 90C35]
(see:Maximum partitionmatching;Multi-index
transportation problems)

greedy algorithm see: the —
greedy algorithm for axial MITPs

[90C35]
(see:Multi-index transportation problems)

greedy algorithms
[05C85]
(see: Directed tree networks)

greedy algorithms see: local —
greedy choice

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

greedy-choice property
[90C09, 90C10]
(see:Matroids)

greedy coloring
[05-XX]
(see: Frequency assignment problem)

greedy coloring heuristic see: sequential —
greedy construction

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

greedy-expanding see: algorithm—
greedy form see: standard—
greedy function

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

greedy heuristics
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

greedy heuristics see: sequential —
greedy method

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

greedy randomized adaptive search
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

greedy randomized adaptive search procedure
[90C35]
(see: Feedback set problems)

Greedy randomized adaptive search procedures
(90-01, 90B40, 90C10, 90C35, 90C27, 94C15, 65H20, 65K05)
(referred to in: Biquadratic assignment problem; Broadcast
scheduling problem; Feedback set problems;Graph
coloring;Graph planarization;Heuristics for maximum
clique and independent set; Linear ordering problem;
Maximum cut problem, MAX-CUT;Maximum
satisfiability problem;Quadratic assignment problem;
Quadratic semi-assignment problem; Replicator dynamics
in combinatorial optimization)
(refers to: Feedback set problems;Generalized assignment
problem;Graph coloring;Graph planarization;Heuristics
for maximum clique and independent set;Maximum
satisfiability problem;Quadratic assignment problem;
Quadratic semi-assignment problem)

greedy swap
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

greedy swaps see:monotone sequence of—
greedy technique

[90C09, 90C10]
(see:Matroids)

greedy technique
[90C09, 90C10, 90C11, 90C20]
(see: Linear ordering problem;Matroids;Oriented
matroids)

greedy triangulation
[68Q20]
(see: Optimal triangulations)

grid
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

grid
[65K05, 65Y05]
(see: Parallel computing: models)
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grid see: 2-dimensional—; coarse—; finer—;menace of the
expanding—

grid graphs
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

grid point
[93-XX]
(see: Dynamic programming: optimal control applications)

grid search
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

grid technique see: uniform—
grids see: repertory —
Gröbner bases for polynomial equations

(12D10, 12Y05, 13P10)
(referred to in: Fundamental theorem of algebra)
(refers to: Contraction-mapping; Farkas lemma; Farkas
lemma: generalizations; Fundamental theorem of algebra;
Global optimization methods for systems of nonlinear
equations; Interval analysis: systems of nonlinear
equations;Nonlinear least squares: Newton-type methods;
Nonlinear systems of equations: application to the
enclosure of all azeotropes)

Gröbner basis
[12D10, 12Y05, 13Cxx, 13P10, 13Pxx, 14Qxx, 90Cxx]
(see: Gröbner bases for polynomial equations; Integer
programming: algebraic methods)

Gröbner basis
[12D10, 12Y05, 13Cxx, 13P10, 13Pxx, 14Qxx, 90Cxx]
(see: Gröbner bases for polynomial equations; Integer
programming: algebraic methods)

Gröbner basis see: reduced—; universal —
Gröbner fan

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

Gröbner fiber
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

groove constraint see: tongue-and- —
ground see: departure- —
ground arcs

(see: Railroad locomotive scheduling)
ground connection arc see: arrival- —
ground delay problem in air traffic control

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

ground delay programs see: air traffic control and—
ground-departure connection arc

(see: Railroad locomotive scheduling)
ground node see: arrival- —
ground set

[90C09, 90C10]
(see:Matroids)

ground state
[90C27, 90C90]
(see: Simulated annealing)

groundwater see: rational use of—
groundwater pumping facilities

[90C30, 90C35]
(see: Optimization in water resources)

groundwater resources see: surface and—

groundwater systems see: surface and—
group see: braid—; depot—; fundamental —; higher

homotopy—; Klein 4-element —; quantum—; realization
of an abstract —; symmetric S2 × 2 × 2 —

group classification problem see: g- —
group classification problem (discriminant problem) see: g- —
group decision making

[90B50]
(see: Optimization and decision support systems)

group decision making
[90B50]
(see: Optimization and decision support systems)

group decision support system see:multicriteria—
group relaxation

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

group relaxation
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

group relaxation in integer programming
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

group relaxations see: extended—
group of transformation see: Piaget—
grouping genetic algorithm

[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

groupoid see: nonassociative—; noncommutative—
groups see: PCR—
growing technique see: sphere —
growth see: Ramsey rule of economic—; second order—
growth condition see: linear—; unilateral —
growth scheme

[90C26, 90C90]
(see: Global optimization in Lennard–Jones andmorse
clusters)

GRP
[90B20]
(see: General routing problem)

GRR
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

GRR-M
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

Gsat algorithm
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

GSC
[90B05, 90B06]
(see: Global supply chain models)

GSEARCH
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

GSIP
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)
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guarantee
(see: Interval analysis for optimization of dynamical
systems)

guarantee see: performance—;worst-case performance—
guaranteed to be stable without pivoting

[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

guaranteed bound
[90C26, 90C30]
(see: Bounding derivative ranges)

guaranteed bound to optimality
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

guaranteed lower bound
[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

guardian
[90C05]
(see: Ellipsoidmethod)

GUB dichotomy
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

GUHA
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

guided learning
[90C09, 90C10]
(see: Optimization in boolean classification problems)

guiding process
[68T20, 68T99, 90C27, 90C59]
(see: Capacitatedminimum spanning trees;Metaheuristics)

guillotine subdivision
[90C27]
(see: Steiner tree problems)

gVI
[47J20, 49J40, 65K10, 90C33]
(see: Solutionmethods for multivalued variational
inequalities)

GVI see: dual (or Minty) —
gVNS

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

H

H-convex function
[90C26]
(see: Global optimization: envelope representation)

h-convex functions
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

H-matrix
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

H-representation
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

H-subdifferential
[90C26]
(see: Global optimization: envelope representation)

H-subgradient
[90C26]
(see: Global optimization: envelope representation)

Hadamard
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard1-stationary point
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard codifferentiable function
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

Hadamard conditional lower derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard conditional upper derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard conditionally differentiable function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard conditionally directionally differentiable function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Quasidifferentiable optimization: optimality conditions)

Hadamard derivatives in optimization see: Dini and—
Hadamard differentiable

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard differentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Hadamard directional derivatives
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

hadamard directionally differentiable
[65K05, 90C30, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Minimax: directional differentiability)

Hadamard directionally differentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Hadamard lower directional derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard quasidifferentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

Hadamard quasidifferential
[90Cxx]
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(see: Quasidifferentiable optimization: optimality
conditions)

Hadamard steepest ascent direction
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard steepest descent direction
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard sup-stationary point
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hadamard upper directional derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Hahn–Banach linear extension theorem
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

Hahn–Banach theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 90C15, 91A05]
(see:Minimax theorems; Stochastic programming:
nonanticipativity and lagrangemultipliers)

Hahn–Banach theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

Hahn–Banach theorem see:Mazur–Orlicz version of the—
Hahn decomposition see: Jordan–—
HAMILTON CIRCUIT

[90C60]
(see: Complexity classes in optimization)

Hamilton–Jacobi–Bellman equation
(49L20, 34H05, 90C39)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: average cost per stage problems;
Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;High-ordermaximum principle for abnormal
extremals; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Multiple objective dynamic programming;
Neuro-dynamic programming;Optimal control of a flexible
arm;Optimization strategies for dynamic systems;
Pontryagin maximum principle;Robust control; Robust
control: schur stability of polytopes of polynomials;
Semi-infinite programming and control problems;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Suboptimal
control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: average cost per stage problems;Dynamic
programming in clustering;Dynamic programming:
continuous-time optimal control;Dynamic programming:

discounted problems;Dynamic programming: infinite
horizon problems, overview;Dynamic programming:
inventory control;Dynamic programming and Newton’s
method in unconstrained optimal control;Dynamic
programming: optimal control applications;Dynamic
programming: stochastic shortest path problems;Dynamic
programming: undiscounted problems;High-order
maximum principle for abnormal extremals; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Multiple
objective dynamic programming;Neuro-dynamic
programming;Optimal control of a flexible arm;
Optimization strategies for dynamic systems; Pontryagin
maximum principle;Robust control; Robust control: schur
stability of polytopes of polynomials; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control)

Hamilton–Jacobi–Bellman equation
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

Hamilton–Jacobi–Bellman equation
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

Hamilton–Jacobi–Bellman equation see: derivation of the—;
solution of the—; sufficiency theorem for the—

Hamilton–Jacobi equation
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

Hamilton–Jacobi inequality
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

Hamiltonian
[49-XX, 49K05, 49K10, 49K15, 49K20, 65L99, 90-XX, 93-XX]
(see: Boundary condition iteration BCI;Duality in optimal
control with first order differential equations;Duality
theory: biduality in nonconvex optimization;Optimization
strategies for dynamic systems)

Hamiltonian circuit
[90C60]
(see: Computational complexity theory)

Hamiltonian circuit problem
[90C60]
(see: Computational complexity theory)

Hamiltonian cycle problem
[90C60]
(see: Complexity theory)

Hamiltonian function
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

Hamiltonian path cost
[90C35]
(see:Multi-index transportation problems)

Hamiltonian system
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)
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Hamiltonian system
[49-XX, 49J15, 49K15, 90-XX, 93-XX, 93C10]
(see: Duality theory: biduality in nonconvex optimization;
Pontryagin maximum principle)

Hammerstein equation
[65H10, 65J15]
(see: Contraction-mapping)

Hamming-reactive tabu search
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

hand side changes see: sensitivity analysis with respect to
right- —

hand side perturbation model see: right- —
hand side perturbation problem see: right- —
hand side problem see: right- —
hand side simplex algorithm see: parametric right- —
hand-side uncertainty, duality and applications see: Robust

linear programming with right- —
handbook on Semidefinite Programming

[90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming)

handcoded derivatives
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

handcoding
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

Hansel chain
[90C09]
(see: Inference of monotone boolean functions)

Hansel chain
[90C09]
(see: Inference of monotone boolean functions)

Hansel chains question-asking strategy see: binary search- —;
sequential —

Hansel theorem
[90C09]
(see: Inference of monotone boolean functions)

Hansel theorem
[90C09]
(see: Inference of monotone boolean functions)

hard see: NP-—; strongly NP-—
hard case of the trust region problem

[49M37]
(see: Nonlinear least squares: trust regionmethods)

hard clustering
[65K05, 90C26, 90C56, 90C90]
(see: Derivative-freemethods for non-smooth optimization;
Nonsmooth optimization approach to clustering)

hard language see: F- —
hard problem see: NP-—
hard problems see: classification of—
hardness see: F- —
Hardy–Littlewood–Pólya theorem

[90C09, 90C10]
(see: Combinatorial matrix analysis)

Harker–Kanzow–Smale function see: Chen–—
harmonic retrieval

[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

harmonic retrieval
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

harmonic retrieval see: Global optimizationmethods for—
harsh fuzzy product

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

Hasse diagram
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

HCP
[90C60]
(see: Computational complexity theory)

hDY
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

hDYz
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

head-body-tail problem
[90B35]
(see: Job-shop scheduling problem)

head(l)
(see: Railroad crew scheduling)

head of operation
[90B35]
(see: Job-shop scheduling problem)

heads see: cluster- —; tape—
HEAP see: binary—; S- —
Hearn algorithm see: Elzinga–—
heat conduction

[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

heat conduction see: Fourier law of—
heat exchange see:mass and—
heat exchanger

[90C90]
(see:MINLP: heat exchanger network synthesis)

heat exchanger network see:mass and—
heat exchanger network superstructure

[90C90]
(see:MINLP: heat exchanger network synthesis)

heat exchanger network synthesis
[90C90]
(see:Mixed integer linear programming: heat exchanger
network synthesis)

heat exchanger network synthesis see:MINLP: —;Mixed
integer linear programming: —

heat exchanger network synthesis without decomposition
[90C90]
(see:MINLP: heat exchanger network synthesis)

heat exchanger networks
[90C26, 90C90]
(see: Global optimization of heat exchanger networks)
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heat exchanger networks see: Global optimization of —;
MINLP: mass and—;Mixed integer linear programming:
mass and—

heat and mass exchange network
[90C90]
(see:MINLP: reactive distillation column synthesis)

heat transfer module see:mass/—
heater

[90B35, 90C11, 90C30]
(see: Robust optimization: mixed-integer linear programs)

heavy ball algorithm
[90C30]
(see: Conjugate-gradientmethods)

heavy ball method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

Hebden conditions
[49M37]
(see: Nonlinear least squares: trust regionmethods)

hedging
[90C90, 91B28]
(see: Robust optimization)

helical proteins see: Predictive method for interhelical contacts
in alpha- —

helix see: ˛- —
hemicontinuous operator

[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

hemicontinuous operator see: upper—
hemivariational inequalities

[26B25, 26E25, 35R70, 47S40, 49J35, 49J40, 49J52, 49M05,
49Q10, 49S05, 65K05, 65K99, 70-08, 70-XX, 74A55, 74B99,
74D99, 74G99, 74H99, 74K99, 74M10, 74M15, 74Pxx, 80-XX,
90C26, 90C30, 90C33, 90C90, 90C99, 91A65]
(see:Hemivariational inequalities: applications in
mechanics;Hemivariational inequalities: eigenvalue
problems;Multilevel optimization in mechanics;
Nonconvex energy functions: hemivariational inequalities;
Quasidifferentiable optimization;Quasidifferentiable
optimization: applications;Quasidifferentiable
optimization: applications to thermoelasticity;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Solving hemivariational
inequalities by nonsmooth optimization methods)

hemivariational inequalities
[49J40, 49J52, 49S05, 65K05, 74G99, 74H99, 74Pxx, 90C30,
90C33]
(see:Hemivariational inequalities: applications in
mechanics;Hemivariational inequalities: eigenvalue
problems; Solving hemivariational inequalities by
nonsmooth optimization methods)

hemivariational inequalities see:multivalued nonmonotone
laws and—; Nonconvex energy functions: —

Hemivariational inequalities: applications in mechanics
(49S05, 74G99, 74H99, 74Pxx, 49J52, 90C33)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;

Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Hemivariational inequalities: eigenvalue problems
(49J52)
(referred to in: ˛BB algorithm; Eigenvalue enclosures for
ordinary differential equations;Generalized monotonicity:
applications to variational inequalities and equilibrium
problems;Hemivariational inequalities: applications in
mechanics; Interval analysis: eigenvalue bounds of interval
matrices;Nonconvex energy functions: hemivariational
inequalities;Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
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functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Semidefinite
programming and determinant maximization; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: ˛BB algorithm; Eigenvalue enclosures for
ordinary differential equations; Generalized monotonicity:
applications to variational inequalities and equilibrium
problems;Hemivariational inequalities: applications in
mechanics;Hemivariational inequalities: static problems;
Interval analysis: eigenvalue bounds of interval matrices;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Semidefinite
programming and determinant maximization; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)

hemivariational inequalities for nonlinear material laws see:
discretized—

hemivariational inequalities by nonsmooth optimization
methods see: Solving—

Hemivariational inequalities: static problems
(49J40, 47J20, 49J40, 35A15)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;

Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

hemivariational inequality see: abstract —; semicoercive—;
variational-—

hemivariational inequality problem see: coercive—
HEN synthesis

[90C90]
(see:MINLP: heat exchanger network synthesis;Mixed
integer linear programming: heat exchanger network
synthesis)

HEN synthesis using MINLP
[90C90]
(see:MINLP: heat exchanger network synthesis)

hereditary property
[49M37]
(see: Nonlinear least squares: Newton-type methods)

Hermitian interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

Hermitian interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

Hermitian matrix see: partial —
hesitant adaptive search

[65K05, 90C30]
(see: Random search methods)

Hessian
[49-04, 65H99, 65K05, 65K99, 65Y05, 68N20, 90C30, 90C31]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: calculation of Newton steps;
Automatic differentiation: parallel computation;
Automatic differentiation: point and interval; Sensitivity
and stability in NLP)

Hessian
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

Hessian see: affine-reduced-—; Automatic differentiation:
calculation of the—; limited-memory affine reduced—;
lower bounding—; quasi- —; reduced—

Hessian algorithm see: affine-reduced-—
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Hessian BFGS algorithm see: limited-memory reduced-—
Hessian of a Lagrangian see: reduced—
Hessian matrices

[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

Hessian matrix
[90C25, 90C30, 90C90]
(see: Design optimization in computational fluid dynamics;
Successive quadratic programming: full space methods)

Hessian matrix
[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

Hessian matrix see: geodesic—; interval —; n—; projected
Lagrangian —

Hessian matrix of the Lagrangian function
[90C25, 90C30, 90C90]
(see: Successive quadratic programming; Successive
quadratic programming: applications in distillation
systems; Successive quadratic programming: full space
methods)

Hessian matrix of a Lagrangian function
[90C30, 90C90]
(see: Successive quadratic programming; Successive
quadratic programming: applications in distillation
systems)

Hessian matrix of a Lagrangian function see: projected —
Hessian SQP see:multiplier-free reduced—
Hessian SQPmethod see: reduced—
Hessian test

[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

Hessians see: Complexity of gradients, Jacobians, and—
Hestenes–Stiefel algorithm

[90C30]
(see: Conjugate-gradientmethods)

heterogeneity see: subset—; vehicles’ homogeneity/ —
heterogeneous

[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

heterogeneous azeotropes
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

heterogeneous relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

heterogeneous relations see: special properties of—
heteroscedastic model

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

heterotonic operator
[90C33]
(see: Order complementarity)

Heun method
[90B15]
(see: Dynamic traffic networks)

heuristic
[68T20, 68T99, 90B06, 90B35, 90C06, 90C10, 90C27, 90C39,
90C57, 90C59, 90C60, 90C90]
(see:Metaheuristics; Traveling salesman problem)

heuristic see: aggregation —; annealed replication—;
construction—; decomposition—; enhanced —;
increasing-degree deletion—; incremental deletion—;
maximal matching—;min-exchange—;multiple-hub—;
R-opt—; rounding—; savings—; search—; semigreedy—;
sequential greedy coloring—; single hub—; Toyoda
primal—;Whitney savings—

heuristic algorithm
[90-XX]
(see: Survivable networks)

heuristic algorithms
[68Q20, 90C90]
(see: Optimal triangulations; Simulated annealing methods
in protein folding)

heuristic approach see: Bayesian—
heuristic approach to solving CAP on trees

[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

heuristic approaches
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

heuristic measure
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

heuristic–metaheuristic algorithms
[90C59]
(see:Heuristic and metaheuristic algorithms for the
traveling salesman problem)

Heuristic and metaheuristic algorithms for the traveling
salesman problem
(90C59)
(referred to in: Traveling salesman problem)

heuristic methods
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

heuristic optimization method
[62H30, 90C39]
(see: Dynamic programming in clustering)

heuristic parameter, reject index for interval optimization see:
Algorithmic improvements using a—

heuristic procedure
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

Heuristic search
(68T20, 90B40, 90C47)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation; Load balancing for parallel optimization
techniques;Maximum cut problem, MAX-CUT; Parallel
computing: complexity classes; Parallel computing: models;
Parallel heuristic search;Quadratic assignment problem;
Stochastic network problems: massively parallel solution)
(refers to: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation; Load balancing for parallel optimization
techniques; Parallel computing: complexity classes; Parallel
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computing: models; Parallel heuristic search; Stochastic
network problems: massively parallel solution)

heuristic search see: Parallel—
heuristics

[9008, 90B06, 90B35, 90C06, 90C10, 90C11, 90C26, 90C27,
90C30, 90C39, 90C57, 90C59, 90C60, 90C90]
(see: Chemical process planning;Global optimization based
on statistical models; Integer programming; Set covering,
packing and partitioning problems; Traveling salesman
problem;Variable neighborhood search methods)

heuristics
[05-04, 05C60, 05C69, 05C85, 37B25, 62C10, 65K05, 68W01,
90B35, 90B80, 90C10, 90C11, 90C15, 90C20, 90C26, 90C27,
90C30, 90C35, 90C59, 91A22, 94C15]
(see: Bayesian global optimization; Evolutionary algorithms
in combinatorial optimization; Facilities layout problems;
Facility location with staircase costs; Frank–Wolfe
algorithm;Graph planarization;Heuristics for maximum
clique and independent set; Job-shop scheduling problem;
Replicator dynamics in combinatorial optimization)

heuristics see: advanced search—; construction—;
continuous based —; greedy —; history-sensitive—;
improvement—; journal of—; k-interchange—; local
search—;max-regret-fc and max-regret —; primal—;
randomized—; sequential —; sequential greedy—

heuristics for axial MITPs see: hub—
heuristics of facility location problems with staircase costs

[90B80, 90C11]
(see: Facility location with staircase costs)

Heuristics for maximum clique and independent set
(90C59, 05C69, 05C85, 68W01)
(referred to in: Graph coloring;Greedy randomized adaptive
search procedures;Replicator dynamics in combinatorial
optimization; Stable set problem: branch & cut algorithms)
(refers to: Graph coloring;Greedy randomized adaptive
search procedures;Replicator dynamics in combinatorial
optimization)

Hewitt decomposition see: Yosida-—
Hewitt theorem see: Yosida–—
Hickey–Cohen triangulation

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

hidden collision
(see: Broadcast scheduling problem)

hidden constraint
[90C30]
(see: Duality for semidefinite programming)

hidden Markov model and Gibbs sampler
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

hidden Markov models
(see: Bayesian networks)

hide-and-seek algorithm
[90C26, 90C90]
(see: Global optimization: hit and run methods)

hierarchical
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

hierarchical clustering see: order constrained—

hierarchical collection of margins
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

hierarchical decision making
[90C30, 90C90]
(see: Bilevel programming: global optimization)

hierarchical discrimination
[90C29]
(see:Multicriteria sorting methods)

hierarchical discrimination see:multigroup—
hierarchical optimization

[49-01, 49K10, 49K45, 49M37, 49N10, 90-01, 90B30, 90B50,
90C05, 90C15, 90C20, 90C26, 90C27, 90C30, 90C31, 90C33,
91B32, 91B52, 91B74]
(see: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Stochastic
bilevel programs)

hierarchical programming problem
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

hierarchy
[90C10, 90C15]
(see: Stochastic integer programs)

hierarchy see: k-level —; lift-and-project—; partition—
hierarchy in a finite set

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

hierarchy process see: analytic —
high see: sufficiently—
high-dimensional integration

[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

high-dimensional integration
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

high failure of the alpha-beta algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

high-level software
[90C10, 90C26, 90C30]
(see: Optimization software)

high-order approximating cone
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order approximating cone see: tangent —
high-order approximating cone of decrease

[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order approximating cones see: feasible—; tangent —
high-order approximating curve

[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)
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high-order approximating curve see: feasible—; tangent —
high-order approximating vector see: feasible—
high-order approximating vector of decrease

[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order approximating vectors
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order cones of decrease
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order critical direction
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

high-order directional derivatives
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order feasible cones
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order feasible set
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order generalization of Lyusternik theorem
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order local maximum principle
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

high-order local maximum principle for Lagrangian problems
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

high-order local minimum condition
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

High-order maximum principle for abnormal extremals
(49K15, 49K27, 41A10, 47N10)
(referred to in: Dynamic programming: continuous-time
optimal control;Hamilton–Jacobi–Bellman equation;
Pontryagin maximum principle)
(refers to: Dynamic programming: continuous-time optimal
control;Hamilton–Jacobi–Bellman equation;High-order
necessary conditions for optimality for abnormal points;
Pontryagin maximum principle)

high-order necessary conditions for optimality
[41A10, 46N10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals;High-order necessary conditions for optimality
for abnormal points)

High-order necessary conditions for optimality for abnormal
points
(49K27, 46N10, 41A10, 47N10)
(referred to in:High-order maximum principle for
abnormal extremals; Kuhn–Tucker optimality conditions)
(refers to: Kuhn–Tucker optimality conditions)

high-order set of decrease
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order tangent approximating vector
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order tangent sets
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

high-order tangent sets
[41A10, 46N10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals;High-order necessary conditions for optimality
for abnormal points)

high performance computing
[90C10, 90C26, 90C30]
(see: Optimization software)

high performance computing
[90C10, 90C26, 90C30]
(see: Optimization software)

high performance computing system
[65K05, 65Y05]
(see: Parallel computing: models)

high performance Fortran
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

high point problem
[49-01, 49K10, 49M37, 90-01, 90C05, 90C27, 91B52]
(see: Bilevel linear programming)

high-regular critical direction
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

higher homotopy group
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

higher-order derivatives
[65K05, 90C30]
(see:Minimax: directional differentiability)

higher-order directional derivatives
[65K05, 90C30]
(see:Minimax: directional differentiability)

higher-order spectrum
[90C26, 90C90]
(see: Signal processing with higher order statistics)

higher-order statistics
[90C26, 90C90]
(see: Signal processing with higher order statistics)

higher-order statistics
[90C26, 90C90]
(see: Signal processing with higher order statistics)

higher order statistics see: Signal processing with—
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Hilbert basis
[90C10, 90C46]
(see: Integer programming duality)

Hilbert scheme
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

Hilbert space
[01A99, 90C99]
(see: Von Neumann, John)

Hilbert space see: symmetric element in a—
Hilbert tenth problem

[90C60]
(see: Complexity classes in optimization)

Hilbert’s thirteenth problem
(01A60, 03B30, 54C70, 68Q17)
(refers to:History of optimization)

hillclimbing procedure see: Rosenbrock—
Hipparcos

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

Hirabayashi see: problem regular in the sense of Kojima–—
history

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

history
[01A99]
(see:History of optimization)

history see: Structural optimization:—
History of optimization

(01A99)
(referred to in: Carathéodory, Constantine;Duality theory:
biduality in nonconvex optimization;Duality theory:
monoduality in convex optimization;Duality theory:
triduality in global optimization;Hilbert’s thirteenth
problem; Inequality-constrained nonlinear optimization;
Kantorovich, Leonid Vitalyevich; Leibniz, gottfried
wilhelm; Linear programming;Operations research;Von
Neumann, John)
(refers to: Carathéodory, Constantine; Carathéodory
theorem; Inequality-constrained nonlinear optimization;
Kantorovich, Leonid Vitalyevich; Leibniz, gottfried
wilhelm; Linear programming;Operations research;Von
Neumann, John)

history and overview see: Bilevel programming:
introduction—

history of parametric programming
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

history and rounding error estimation see: Automatic
differentiation: introduction—

history of a search
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

history-sensitive heuristics
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

history-sensitive heuristics
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

“hit-or-miss” decision problems
[90C15]
(see: Stochastic quasigradientmethods: applications)

hit and run
[65K05, 90C30]
(see: Random search methods)

hit and run see: artificial centering—; hyperspheres
direction—; improving—

hit and run algorithm
[90C26, 90C90]
(see: Global optimization: hit and run methods)

hit and run algorithms
[90C26, 90C90]
(see: Global optimization: hit and run methods)

hit and run generator
[90C26, 90C90]
(see: Global optimization: hit and run methods)

hit and run methods
[90C26, 90C29, 90C90]
(see: Global optimization: hit and run methods;Optimal
design of composite structures)

hit and run methods see: Global optimization: —
hitting cycle problem

[90C35]
(see: Feedback set problems)

HJB equation
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

HMM see: coupled—; factorial —
hoc networks see: Optimization in ad—
Hoffman inequalities see: Gale–—
Hölder conditions see: uniform—
Hölder continuity

[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

hole-cut see: odd-—
home terminals

(see: Railroad crew scheduling)
homeomorph of a graph

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

homogeneity/heterogeneity see: vehicles’ —
homogeneous

[90C05, 90C30]
(see:Homogeneous selfdual methods for linear
programming;Nonlinear systems of equations: application
to the enclosure of all azeotropes)

homogeneous see: increasing and positively—; plus—;
positively—

homogeneous algorithm
[90C05]
(see:Homogeneous selfdual methods for linear
programming)

homogeneous beliefs
[91B28]
(see: Portfolio selection: markowitz mean-variance model)
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homogeneous of degree zero
[91B50]
(see:Walrasian price equilibrium)

homogeneous dual systems
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

homogeneous function see: positively—
homogeneous functions on topological vector spaces see:

Increasing and positively—
homogeneous process see: simple—
homogeneous relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

homogeneous relations see: special properties of —
Homogeneous selfdual methods for linear programming

(90C05)
(referred to in: Entropy optimization: interior point
methods; Linear programming: interior point methods;
Linear programming: karmarkar projective algorithm;
Potential reductionmethods for linear programming;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Successive
quadratic programming: solution by active sets and interior
point methods)
(refers to: Entropy optimization: interior point methods;
Interior point methods for semidefinite programming;
Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm; Potential
reductionmethods for linear programming; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Successive quadratic
programming: solution by active sets and interior point
methods)

homogeneous and selfdual model
[90C05]
(see:Homogeneous selfdual methods for linear
programming)

homogeneous systems
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

homogeneous systems of linear relations see: Tucker —
homogenous

(see: Approximations to robust conic optimization
problems)

homogenous cones
(see: Approximations to robust conic optimization
problems)

homomorphism
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

homomorphism see: strong—; very strong—;weak—
homomorphisms

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

homoscedastic model
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

homotopic functions
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

homotopic maps
[01A50, 01A55, 01A60]
(see: Fundamental theorem of algebra)

homotopic method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

homotopies see: optimization—; probability-one globally
convergent —

homotopy
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

homotopy
[01A50, 01A55, 01A60, 65F10, 65F50, 65H10, 65K10]
(see: Fundamental theorem of algebra;Globally convergent
homotopy methods)

homotopy see: adaptive —; probability-one—
homotopy algorithm see: globally convergent

probability-one—
homotopy continuation

[65C20, 65G20, 65G30, 65G40, 65H20, 90C30, 90C90]
(see: Interval analysis: application to chemical engineering
design problems;Nonlinear systems of equations:
application to the enclosure of all azeotropes)

homotopy continuation method
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

homotopy group see: higher—
homotopy method

[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

homotopy method
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

homotopy methods
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

homotopy methods see: Globally convergent —; software
for—

homotopy Newton method
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

homotopy property
[90C33]
(see: Topological methods in complementarity theory)

homotopy type
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

homotopy type
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)
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HOMPACK90
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

Hook law
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

hop neighboring stations see: one- —
hop neighbors see: two-—
Hopcroft–Tarjan planarity-testing algorithm

[90C10, 90C27, 94C15]
(see: Graph planarization)

Hopf equations see:Wiener– —
hopping problem see: airplane—
horizon see: decisionmaking with rolling—; finite—;

infinite—; infinite time—; planning—
horizon control and dynamic games see: Infinite—
horizon game see: nonzero-sum infinite—
horizon problem see: discounted infinite—; total cost

infinite—
horizon problems see: infinite—
horizon problems, overview see: Dynamic programming:

infinite—
horizontal linear complementarity problem

[90C33]
(see: Linear complementarity problem)

Horn formulas
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

Horn formulas
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

HOS
[90C26, 90C90]
(see: Signal processing with higher order statistics)

hot spot
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

hot spots
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

Householder transformation
[15A23, 49M37, 65F05, 65F20, 65F22, 65F25]
(see: Nonlinear least squares: Newton-type methods;QR
factorization)

Householder transformations see: QR factorization using—
HPF

[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

hPS
(see: Short-term scheduling of batch processes with
resources)

Huang algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization)

Huang algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Huang algorithm see:modified—
Huang method

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

hub
[90C35]
(see:Multi-index transportation problems)

hub heuristic see:multiple-—; single —
hub heuristics for axial MITPs

[90C35]
(see:Multi-index transportation problems)

Huber M-estimator
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

hull see: convex—; lower convex—; normal —; reverse
normal—

hull consistency
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

hull disjunctions see: Convex—
hull problem see: convex—
Hull relaxation

(see: Optimal planning of offshore oilfield infrastructure)
human rationality assumption

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

human rationality factor
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

Hungarian algorithm
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

Hungarian method
[90C10, 90C35]
(see: Bi-objective assignment problem)

Hunter–Worsley bounds
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Hunter–Worsley upper bound
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Hurwicz gradient method see: Arrow–—
huS

[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

HVI
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

Hwang conjecture see: Graham–—
Hwang minimax theorem see: Du–—
hybrid algorithm

[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

hybrid algorithm
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)
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hybrid branch and bound and outer approximation
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

hybrid conjugate gradient algorithms for unconstrained
optimization see: New—

hybrid metaheuristic
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

hybrid metaheuristics see: GRASP in—
hybrid methods

[49M37]
(see: Nonlinear least squares: Newton-type methods)

hybrid methods see:Mixed integer programming/constraint
programming—

hybrid model
[90C15]
(see: Static stochastic programmingmodels)

hybrid NP methods
[90C11, 90C59]
(see: Nested partitions optimization)

hybrid orthonormalization
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

hydro-generation
[90C35]
(see:Multicommodity flow problems)

hydro plants
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

hydro-reservoir
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

hydrological exogenous inflow
[90C30, 90C35]
(see: Optimization in water resources)

hydrological exogenous inflow and demand see: water
resources planning under uncertainty on—

hydropower nodes see: on-the-river —
hyperbolic 0-1 programming problem

(see: Fractional zero-one programming)
(hyperbolic) 0-1 programming problem see: single-ratio

fractional—
hyperbolic programming

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

hypercube
[65K05, 65Y05]
(see: Parallel computing: models)

hypercube
[65K05, 65Y05]
(see: Parallel computing: models)

hypercube see: d-dimensional—
hyperdifferentiable

[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

hyperdifferentiable function
[49J52, 65K99, 70-08, 90C25]

(see: Quasidifferentiable optimization: codifferentiable
functions)

hyperdifferential
[49J52, 65K99, 65Kxx, 70-08, 90C25, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: codifferentiable
functions)

hyperdifferential see: second order—
hypergeometric distribution

[90C15]
(see: Logconcavity of discrete distributions)

hypergeometric integral
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

hypergeometric integral
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

hyperglycemia
(see:Model based control for drug delivery systems)

hypergraph see: subtree —
hypergraph q-coloring

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

hyperplane see: arrangement of—; separating—; support —;
tangent —

hyperplane arrangement
[90C09, 90C10]
(see: Oriented matroids)

hyperplane arrangement
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements;Hyperplane arrangements
in optimization)

Hyperplane arrangements
(52C35, 05B35, 57N65, 20F36, 20F55)
(referred to in:Hyperplane arrangements in optimization)
(refers to:Hyperplane arrangements in optimization)

Hyperplane arrangements in optimization
(05B35, 20F36, 20F55, 52C35, 57N65)
(referred to in:Hyperplane arrangements)
(refers to:Hyperplane arrangements)

hyperplanes see: Boolean arrangement of —; braid
arrangement of—; cohomology of an arrangement of—;
complement of an arrangement of —; dependent —;
divisor of an arrangement of—; free arrangement of—;
general position of—; reflection arrangement of —;
singularity of an arrangement of—

hyperspheres direction hit and run
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

hyperspherical direction
[90C26, 90C90]
(see: Global optimization: hit and run methods)

hypervoxels
[90C90]
(see: Optimization in medical imaging)

hypodifferentiability
[65K05, 90C30]
(see:Minimax: directional differentiability)
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hypodifferentiability
[65K05, 90C30]
(see:Minimax: directional differentiability)

hypodifferentiable
[49J52, 65K99, 65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions)

hypodifferentiable function
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

hypodifferentiable functions see: Quasidifferentiable
optimization: algorithms for—

hypodifferentiable optimization
[49J52, 65K99]
(see: Quasidifferentiable optimization: algorithms for
hypodifferentiable functions)

hypodifferential
[49J52, 65K05, 65K99, 65Kxx, 70-08, 90C25, 90C30, 90Cxx]
(see: Nondifferentiable optimization: minimax problems;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: codifferentiable
functions)

hypodifferential
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

hypodifferential see: kth order—; second—; second order—
hypodifferential descent

[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

hypodifferential descent see:method of—
hypoglycemia

(see:Model based control for drug delivery systems)
hypothesis see: financial leverage—; inefficient

management —
hypothesis formation see: automated—
hysteresis

[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

hZaw
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

hZw
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

I

I see: algorithm partition-matching-—; generalization of
ELECTRE—

I requirement see: Type—
IA

[90C26]
(see: Cutting plane methods for global optimization)

IBC
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

IDA�
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

ideal see: admissible pair of a monomial —; arithmetic degree
of a monomial —; initial —; lattice—; localization of an—;
monomial—; polynomial —; standard pair decomposition
of a monomial —; standard pair of a monomial —;
Stanley–Reisner —; toric—

ideal and nonideal phase equilibrium equations
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

ideal part
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

identical machines
[68Q99]
(see: Branch and price: Integer programming with column
generation)

identification
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

identification see:Mixed 0-1 linear programming approach for
DNA transcription element —;model—; parameter —

Identificationmethods for reaction kinetics and transport
(34A55, 35R30, 62G05, 62G08, 62P30, 62P10, 62J02, 62K05,
76R50, 80A23, 80A30, 80A20)

identification problem see: parameter —
identification via mixed-integer optimization see: Peptide—
identities see: primitive partition—
identity transformation

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

idle time
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Idnani active set strategy see: Goldfarb–—
Idnani method see: Goldfarb–—
IDP

[90C30]
(see: Suboptimal control)

IDP
[93-XX]
(see: Dynamic programming: optimal control applications)

IEQNO
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

if-when scenarios see: what- —
IFS

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

IHDG
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)



4262 Subject Index

II rule see: polyak—
IIP

[90C05]
(see: Linear programming: interior point methods)

IL
[90C30, 90C33]
(see: Implicit lagrangian)

ill-conditioned coefficient matrix
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

ill-conditioned matrix
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

ill-conditioned problem
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

ill-posed
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

ill-posed problem
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

ill-posed problems
[90C30]
(see: Cost approximation algorithms)

ill-posed variational problem
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

Ill-posed variational problems
(65K05, 65M30, 65M32, 49M30, 49J40)
(referred to in: Sensitivity and stability in NLP)
(refers to: Sensitivity and stability in NLP)

IM see:multistage—; single-stage—
IM in SC

[90B50]
(see: Inventory management in supply chains)

iMA Journal of ManagementMathematics
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

image
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

image problem
[90C30]
(see: Image space approach to optimization)

image processing see: optimization in medical —
image reconstruction

[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

image reconstruction see: Entropy optimization for —;
finite-dimensional models for entropy optimization for —;
Maximum entropy principle: —; vector-space models for
entropy optimization for—

image reconstruction from projection data
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

image reconstruction from projection data see: feasibility
approach to—; optimization approach to—

image space
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

image space
[90C05, 90C30]
(see: Image space approach to optimization; Theorems of
the alternative and optimization)

Image space approach to optimization
(90C30)
(referred to in: Theorems of the alternative and
optimization; Vector optimization)
(refers to: Theorems of the alternative and optimization;
Vector optimization)

images
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

imaging see:medical —; Optimization in medical —
imbalance

[90C35]
(see:Minimum cost flow problem)

immediate selection
[90B35]
(see: Job-shop scheduling problem)

imperative programming paradigm
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

imperfect competition
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

imperfect competition
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

implementation see: programmed—; PVM-based—
implementation of the auction algorithm see: synchronous—;

totally asynchronous—
implementation example see: optimization computer —
implementation of optimization see: Computer —
implementations see:MPI-based—
implication

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

implication see: Goguen–Gaines—; Kleene–Dienes —;
Łukasiewicz—;many-valued logic—; Reichenbach—

implication operator
[03B50, 03B52, 03C80, 03E72, 47S40, 62F30, 62Gxx, 68T15,
68T27, 68T30, 68T35, 68Uxx, 90Bxx, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Checklist paradigm
semantics for fuzzy logics; Finite complete systems of
many-valued logic algebras)

implications see: logical —
implicit Choleski algorithm

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

implicit complementarity problem
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem; Topological methods in
complementarity theory)
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implicit enumeration
[90C35]
(see: Graph coloring)

implicit equality constraint
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

implicit function approach
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

implicit function approach see: Bilevel programming: —
implicit function approach to bilevel programming

[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

implicit function theorem
[90C30, 90C31]
(see: Bounds and solution vector estimates for parametric
NLPS; Generalized total least squares)

implicit general order complementarity problem
[90C33]
(see: Order complementarity)

Implicit lagrangian
(90C33, 90C30)
(referred to in: Kuhn–Tucker optimality conditions)
(refers to: Kuhn–Tucker optimality conditions; Lagrangian
duality: BASICS;Variational inequalities)

implicit Lagrangian see: restricted —; unconstrained—
implicit LU algorithm

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization)

Implicit LU algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

implicit LX algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization)

Implicit LX algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

implicit QR algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

implicit restarted Lanczos method
[90C30]
(see: Large scale trust region problems)

implicit utility function
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

implicit variational inequalities and quasivariational inequalities
[49J40, 49Q10, 70-08, 74K99, 74Pxx]
(see: Quasivariational inequalities)

implicit variational problems
[49J40, 49Q10, 70-08, 74K99, 74Pxx]
(see: Quasivariational inequalities)

implied constraint
[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

implied inequality
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

import model
[90C35]
(see:Multicommodity flow problems)

importance sampling
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

impossible pairs constrained path problem
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

imprecise information
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

improper
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

improper vertex
[90C26]
(see: Cutting plane methods for global optimization)

improved piecewise linearization
[90B80, 90C11]
(see: Facility location with staircase costs)

improved procedure
[90B80]
(see: Facilities layout problems)

improvement see: best—; dual bound- —; dual cut-—;
local—; primal bound-—; primal cut-—; rule of greatest —

improvement heuristics
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

improvement of KKT points see: successive—
improvement methods

[90B06, 90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem;Vehicle routing)

improvements using a heuristic parameter, reject index for
interval optimization see: Algorithmic—

improving
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

improving feasible direction
[90C30]
(see: Convex-simplex algorithm)

improving feasible direction
[90C30]
(see: Convex-simplex algorithm)

improving hit and run
[65K05, 90C26, 90C29, 90C30, 90C90]
(see: Global optimization: hit and run methods;Optimal
design of composite structures; Random search methods)

improving hit and run
[90C26, 90C29, 90C90]
(see: Global optimization: hit and run methods;Optimal
design of composite structures)

impulse perturbations see: Vasicek model with—
imputation

[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)
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IMSL subroutine library
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

imvex
[90C26]
(see: Invexity and its applications)

in-company policies
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

(in logic) see: literal —
inaccuracy

[90C05, 90C25]
(see: Young programming)

inaccuracy in observations
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

inactive
[90C60]
(see: Complexity of degeneracy)

inactive constraints
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

inactive constraints
[90C60]
(see: Complexity of degeneracy)

inadmissible arc
[90C35]
(see:Maximum flow problem)

incidence
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

incidence graph see: column—
incidence matrix

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

incidencematrix see: node-arc—
incidence in a network

[90C35]
(see:Minimum cost flow problem)

incidence vector
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

incident
[90C35]
(see: Graph coloring)

incident faces
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

inclusion see: degree of—; variational—
inclusion function

[65G20, 65G30, 65G40, 65K05, 65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval;
Interval global optimization)

inclusion function see: good—; isotone—; order of an—
Inclusion Method

[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

inclusion operator see: fuzzy set- —

inclusion principle
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

inclusion principle of machine interval arithmetic
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

inclusion of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

incoming arc
[90C35]
(see:Minimum cost flow problem)

incomparability
[90C29]
(see: Preference modeling)

incomplete information
[68Q25, 90C09, 90C10, 91B28]
(see: Competitive ratio for portfolio management;
Optimization in boolean classification problems)

incomplete information
[62C20, 90C15]
(see: Stochastic programming: minimax approach)

incomplete judgments
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

incomplete knowledge of a probability distribution
[62C20, 90C15]
(see: Stochastic programming: minimax approach)

incomplete methods
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

incomplete solution
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

incomplete state feedback
[90C30]
(see: Suboptimal control)

incorporation of biological constraints
(see: Selection of maximally informative genes)

increase see: dual price—
increasing

[65K05, 90B10, 90C26, 90C30]
(see:Monotonic optimization; Piecewise linear network
flow problems)

increasing see: concave—; linear —
Increasing and convex-along-rays functions on topological

vector spaces
(26A48, 52A07, 26A51)

increasing-degree deletion heuristic
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

increasing function
[90C26]
(see: Cutting plane methods for global optimization)

increasing function see: coordinatewise—
increasing and positively homogeneous

[26A48, 26A51, 52A07]
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(see: Increasing and convex-along-rays functions on
topological vector spaces)

Increasing and positively homogeneous functions on
topological vector spaces
(26A48, 52A07, 26A51)

increasing utility function see: coordinatewise—
increment see: bidding—
incremental algorithm

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

incremental deletion heuristic
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

incremental gradient method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

incremental-iterative solution algorithm
[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

incremental negamax algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

incremental strategy for model structure refinement
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

incumbent objective value
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

incumbent solution
[90C06, 90C15, 90C25]
(see: Concave programming; Stabilization of cutting plane
algorithms for stochastic linear programming problems)

incumbent value
[90C10, 90C29]
(see:Multi-objective integer linear programming)

indecomposable matrix see: fully—
indefinite

[90C60]
(see: Complexity theory: quadratic programming)

indefinite integral
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

indefinite quadratic problems
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

indefinite quadratic programming
[90C11, 90C25]
(see: Concave programming;MINLP: branch and bound
methods)

indefinite quadratic programs
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

independence
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

independence see: global —; linear —; local—
independence constraint qualification see: linear —
independence constraint qualification (LICQ) see: linear —
independence CQ see: linear —
independence number

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

independence system
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

independency constraint qualification see: linear —
independent

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

independent see: linearly —;model—; positively linearly —
independent dominating set

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

independent set
[05C15, 05C17, 05C35, 05C62, 05C69, 05C85, 68Q25, 68R10,
68W01, 68W40, 90C09, 90C10, 90C22, 90C27, 90C35, 90C59]
(see: Domination analysis in combinatorial optimization;
Graph coloring;Heuristics for maximum clique and
independent set; Lovász number;Matroids;Optimization
problems in unit-disk graphs)

independent set
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

Independent Set see: Heuristics for maximum clique and—;
maximal—;maximum—;maximumweighted —

Independent Set Problem see:maximum—
independent sets

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

independent sets see:maximumweight—
independent of solver formats

(see: Planning in the process industry)
independent subset

[90C09, 90C10]
(see:Matroids)

independent system
[90C09, 90C10]
(see:Matroids)

independent variables
[65D25, 65G20, 65G30, 65G40, 65H20, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians;
Interval analysis: intermediate terms)

indeterminate box
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

index see: active—; augmented performance—; Bilevel
optimization: feasibility test and flexibility—; blending—;
consistency—; cost—; descending—; flexibility—;
gradient—; least- —; linear—; linear co-—;merit —;
morse—; performance—; quadratic—; quadratic co-—

index anticycling rules see: Least- —
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index approach
[90C26]
(see: Global optimization using space filling)

index approach
[90C26]
(see: Global optimization using space filling)

index assignment problems see:multi- —; three- —
index-based

(see: Planning in the process industry)
index of a constraint violating point

[90C26]
(see: Global optimization using space filling)

index criss-crossmethod see: least- —
index for interval optimization see: Algorithmic improvements

using a heuristic parameter, reject —
index market model see: Sharpe single—
index pivotingmethod see: least- —
index pivoting rule see: Bland least —
index refinement see:Murty least- —
index rule see: smallest—
index set

[90C34]
(see: Semi-infinite programming: approximationmethods)

index set see: active—; essentially active—; SIP —; species —
index transportation problem see: axial multi- —; integer

multi- —; k- —;multi- —; planar multi- —; symmetric
multi- —; three- —

index transportation problems see:Multi- —
index tree

[34E05, 90C27]
(see: Asymptotic properties of randommultidimensional
assignment problem)

indexing terms
[90C09, 90C10]
(see: Optimization in classifying text documents)

indexing terms
[90C09, 90C10]
(see: Optimization in classifying text documents)

indexing vocabulary
[90C09, 90C10]
(see: Optimization in classifying text documents)

indexing vocabulary
[90C09, 90C10]
(see: Optimization in classifying text documents)

indexing vocabulary see: optimal—
iNDF

[65K10, 90C33, 90C51]
(see: Generalizations of interior point methods for the
linear complementarity problem)

indicator
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

indicator function
[49J40, 49J52, 49Q10, 49S05, 62F12, 65C05, 65K05, 70-08,
70-XX, 74G99, 74H99, 74K99, 74Pxx, 80-XX, 90C15, 90C31,
90C33]
(see:Hemivariational inequalities: applications in
mechanics;Monte-Carlo simulations for stochastic
optimization; Nonconvex energy functions:

hemivariational inequalities;Quasivariational inequalities;
Stochastic quasigradientmethods: applications)

indicator function see: expectation of an—
indices

(see: Planning in the process industry; Short-term
scheduling under uncertainty: sensitivity analysis)

indices see:morse—
indifference

[90C29]
(see: Preference modeling)

indifference threshold
[90-XX]
(see: Outranking methods)

indirect methods
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

indiscernibility
[03E70, 03H05, 91B16]
(see: Alternative set theory)

indiscernibility see: fundamental —; relation of—
individual

[92B05]
(see: Genetic algorithms)

individual
[92B05]
(see: Genetic algorithms)

individual probabilistic constraints
[90C15]
(see: Static stochastic programmingmodels)

individual rationality
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

individual software routine
[90C10, 90C26, 90C30]
(see: Optimization software)

individuals
(see: Broadcast scheduling problem)

induced region
[49M37, 90C26, 91A10]
(see: Bilevel programming)

induced subgraph
[05C50, 05C60, 05C69, 15A48, 15A57, 37B25, 90C20, 90C25,
90C27, 90C35, 90C59, 91A22]
(see:Matrix completion problems; Replicator dynamics in
combinatorial optimization)

induced by a vertex subset see: subgraph—
inducible region

[49-01, 49K10, 49M37, 90-01, 90C05, 90C27, 90C30, 90C90,
91B52]
(see: Bilevel linear programming; Bilevel programming:
global optimization)

induction axiom
[03E70, 03H05, 91B16]
(see: Alternative set theory)

inductive inference
[90C26, 90C30]
(see: Forecasting)

inductive inference
[90C26, 90C30]
(see: Forecasting)
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inductive inference problem
[90C09, 90C10]
(see: Optimization in boolean classification problems)

inductive inference problem
[90C09, 90C10]
(see: Optimization in boolean classification problems)

inductive structure of an irreducible matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

industrial engineering see: Archimedes and the foundations
of—

industrial in-plant railroads see: engine routing and—
industrial problems see: SQP optimization in—
industry see: GRASP in—; petrochemical —; Planning in the

process—; refining—; Successive quadratic programming:
applications in the process —

inefficient
[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

inefficient management hypothesis
[90C05, 90C90, 91B28]
(see:Multicriteriamethods for mergers and acquisitions)

inequalities see: anti-Monge—; approximation of
variational—; blossom—; convex—; Gale–Hoffman—;
hemivariational—; implicit variational inequalities and
quasivariational—; linear —;Monge—;multivalued
monotone laws and variational—;multivalued
nonmonotone laws and hemivariational—; Nonconvex
energy functions: hemivariational—; Nonsmooth and
smoothingmethods for nonlinear complementarity
problems and variational—; parametric variational—; QD
laws and systems of variational—; Quasivariational—;
saddle-point—; scalar variational—; Solutionmethods for
multivalued variational—; system of—; system of
variational—; valid—; variational—; variational-like—;
vector variational—

inequalities: applications in mechanics see: Hemivariational—
inequalities: A brief review see: Generalized variational—
inequalities: eigenvalue problems see: Hemivariational—
inequalities and equilibrium problems see: Generalized

monotonicity: applications to variational—
inequalities: F. E. approach see: Variational—
inequalities: geometric interpretation, existence and

uniqueness see: Variational —
inequalities for nonlinear material laws see: discretized

hemivariational—
inequalities by nonsmooth optimizationmethods see: Solving

hemivariational—
inequalities: projected dynamical system see: Variational—
inequalities and quasivariational inequalities see: implicit

variational—
inequalities: static problems see: Hemivariational—
inequality see: abstract hemivariational—; azuma’s —; bilinear

matrix—; Cauchy—; disjunctive—; duality—;
Fenchel–Young—; generalized variational—;
Hamilton–Jacobi—; implied—; jensen’s —; linear
matrix—;mixed variational—; nondominated valid—;
quasivariational—; reverse convex—; semicoercive
hemivariational—; strengthen triangle —; subgradient—;
triangle—; two-functionminimax—; variational—;
variational-hemivariational—; vector —; Young—

Inequality-constrained nonlinear optimization
(49M37, 65K05, 90C30)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications;History of optimization;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS;Redundancy in nonlinear programs;Relaxation in
projectionmethods; Rosen’s method, global convergence,
and Powell’s conjecture; Saddle point theory and optimality
conditions; Second order constraint qualifications; Second
order optimality conditions for nonlinear optimization;
SSCminimization algorithms; SSCminimization
algorithms for nonsmooth and stochastic optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; First order
constraint qualifications;History of optimization;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS;Redundancy in nonlinear programs;Relaxation in
projectionmethods; Rosen’s method, global convergence,
and Powell’s conjecture; Saddle point theory and optimality
conditions; Second order constraint qualifications; Second
order optimality conditions for nonlinear optimization;
SSCminimization algorithms; SSCminimization
algorithms for nonsmooth and stochastic optimization)

inequality constraint see: state —
inequality constraints

[41A10, 46N10, 47N10, 49K27, 65K05]
(see: Direct global optimization algorithm;High-order
necessary conditions for optimality for abnormal points)

inequality constraints see: active—; feasibility of—;
infeasibility of —

inequality for an elastostatic problem involving
QD-superpotentials see: convex variational—

inequality of elliptic type see: abstract variational—
inequality formulation see: variational—
inequality formulation in link loads see: variational—
inequality formulation in path flows see: variational—
inequality formulations see: variational—
inequality or nonsmooth mechanics

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

inequality problem see: coercive hemivariational—; dual
variational—; finite-dimensional variational—; parametric
variational—; variational—; vector variational—

inequality problem and a projected dynamical system see:
variational—

inequality problems
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

inequality problems see: Sensitivity analysis of variational—;
variational—

inequality relation see: linear —
inequality systems

[15A39, 46A20, 52A01, 90C05, 90C30]
(see: Farkas lemma; Farkas lemma: generalizations; Linear
optimization: theorems of the alternative;Motzkin
transposition theorem; Tucker homogeneous systems of
linear relations)

inequality systems see: convex—
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inertia of a matrix
[49M37]
(see: Nonlinear least squares: trust regionmethods)

inexact line search
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

inexact line search line
[90C30]
(see: Frank–Wolfe algorithm)

inexact line search technique
[90C30]
(see: Convex-simplex algorithm)

inexact Newton method
[90C30]
(see: Numerical methods for unary optimization)

inexact Newton method
[90C30]
(see: Numerical methods for unary optimization)

inexact Newton methods
[90C06]
(see: Large scale unconstrained optimization)

inexact proximal point algorithms
[90C30]
(see: Cost approximation algorithms)

inf-stationary
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

inf-stationary point
[65K05, 90C30, 90Cxx]
(see: Nondifferentiable optimization: minimax problems;
Quasidifferentiable optimization: optimality conditions)

inf-stationary point
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

inf-stationary points
[49J52, 65K99]
(see: Quasidifferentiable optimization: algorithms for
hypodifferentiable functions)

infeasibilities see: diagnosing and tracing—; sum of integer —
infeasibility criterion

[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)

infeasibility of inequality constraints
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: verifying feasibility)

infeasibility proof
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

infeasibility test
[49M37, 65G20, 65G30, 65G40, 65K05, 90C11, 90C30]
(see: Interval global optimization;Mixed integer nonlinear
programming)

infeasible
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

infeasible component
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

infeasible integer variable see:most/least —
infeasible interior point

[90C05]
(see: Linear programming: interior point methods)

infeasible node
[90C10, 90C29]
(see:Multi-objective integer linear programming)

infeasible path approach
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

infeasible problem
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

infeasible program
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

infeasible solution
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

infeasible-start interior-point algorithm
[90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming)

infeasible system
[15A39, 90C05]
(see:Motzkin transposition theorem)

Infer see: branch and—
inference see: Bayesian—; classical—; fuzzy interval —;

inductive—; interval-valued approximate—;monotone
Boolean function—; order restricted statistical —; premis of
an—; visual —

inference duality
[90C10, 90C46]
(see: Integer programming duality)

Inference of monotone boolean functions
(90C09)
(referred to in: Alternative set theory; Boolean and fuzzy
relations; Checklist paradigm semantics for fuzzy logics;
Finite complete systems of many-valued logic algebras;
Optimization in boolean classification problems;
Optimization in classifying text documents)
(refers to: Alternative set theory; Boolean and fuzzy
relations; Checklist paradigm semantics for fuzzy logics;
Finite complete systems of many-valued logic algebras;
Optimization in boolean classification problems;
Optimization in classifying text documents)

inference problem see: Boolean function—; inductive—
infimum

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

infimum see: global—; local —
infimum of a Lagrangian function

[90C30]
(see: Lagrangian duality: BASICS)

infinite see: semi-—
infinite class

[03E70, 03H05, 91B16]
(see: Alternative set theory)



Subject Index 4269

infinite-dimensional generalized order complementarity problem
[90C33]
(see: Generalized nonlinear complementarity problem)

infinite-dimensional linear programming
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

infinite-dimensional optimization
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

infinite horizon
(see: Bayesian networks)

Infinite horizon control and dynamic games
(91Axx, 49Jxx)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation;MINLP: applications in the interaction of design
and control;Multi-objective optimization: interaction of
design and control;Optimal control of a flexible arm;
Optimization strategies for dynamic systems; Robust
control;Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation;MINLP:
applications in the interaction of design and control;
Multi-objective optimization: interaction of design and
control;Optimal control of a flexible arm;Optimization
strategies for dynamic systems; Robust control; Robust
control: schur stability of polytopes of polynomials;
Semi-infinite programming and control problems;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Suboptimal
control)

infinite horizon game see: nonzero-sum—
infinite horizon problem see: discounted—; total cost—
infinite horizon problems

[49L20, 90C39, 90C40]
(see: Dynamic programming: infinite horizon problems,
overview;Dynamic programming: inventory control;
Dynamic programming: undiscounted problems)

infinite horizon problems
[49L20, 49L99, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: discounted problems;
Dynamic programming: infinite horizon problems,
overview;Dynamic programming: stochastic shortest path
problems;Dynamic programming: undiscounted
problems)

infinite horizon problems, overview see: Dynamic
programming:—

infinite linear programming see: semi-—

infinite many conditions moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

infinite moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

infinite optimization see: Adaptive convexification in semi-—;
one-parametric semi-—; semi-—; Smoothingmethods for
semi-—

infinite optimization problem see: semi- —
infinite optimization problems see: semi- —
infinite problem see: generalized semi-—
infinite program see: dual semi-—; primal (linear) semi-—;

semi-—
infinite programming see: linear semi- —; perfect duality from

the view of linear semi- —; reduced problem in semi-—;
semi-—

infinite programming and applications in finance see: Semi- —
infinite programming: approximationmethods see: Semi- —
infinite programming and control problems see: Semi-—
infinite programming: discretizationmethods see: Semi-—
infinite programming: methods for linear problems see:

Semi-—
infinite programming: numerical methods see: Semi-—
infinite programming: optimality conditions see: Generalized

semi-—
infinite programming: second order optimality conditions see:

Semi-—
infinite programming, semidefinite programming and perfect

duality see: Semi-—
infinite programs see: computationally equivalent semi- —;

nonlinear semi-—; semi- —
infinite time horizon

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

infinitely connected matroid
[90C09, 90C10]
(see:Matroids)

infinitely near rational numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

infinitely small negative real numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

infinitely small positive real numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

infinitely small real numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

infinitesimal
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

infinitesimal calculus
[01A99]
(see: Leibniz, gottfried wilhelm)

infinitesimal calculus
[01A99]
(see: Leibniz, gottfried wilhelm)
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infinitesimal perturbation analysis
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

infinity
[03E70, 03H05, 91B16]
(see: Alternative set theory)

infinity
[03E70, 03H05, 91B16]
(see: Alternative set theory)

inflow see: hydrological exogenous —
inflow and demand see: water resources planning under

uncertainty on hydrological exogenous—
information

[01A60, 03B30, 54C70, 65K05, 68Q05, 68Q10, 68Q17, 68Q25,
90C05, 90C25, 90C26, 94A17]
(see:Hilbert’s thirteenth problem; Information-based
complexity and information-based optimization; Jaynes’
maximum entropy principle)

information
[01A60, 03B30, 54C70, 68Q17, 90C60]
(see:Hilbert’s thirteenth problem; Kolmogorov complexity)

information see: Algorithmic—; asymmetrical —;
contaminated—; dual —; expected value of perfect —;
imprecise—; incomplete—;missing—;mutual —;
partial —; priced—; radius of—; uncertain—; unknown—

information-based complexity
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

information-based complexity
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26, 90C60]
(see: Complexity theory; Information-based complexity and
information-based optimization)

Information-based complexity and information-based
optimization
(65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory; Complexity
theory: quadratic programming;Computational
complexity theory; Fractional combinatorial optimization;
Kolmogorov complexity;Mixed integer nonlinear
programming;NP-complete problems and proof
methodology; Parallel computing: complexity classes)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Complexity theory: quadratic
programming; Computational complexity theory;
Fractional combinatorial optimization; Kolmogorov
complexity;Mixed integer nonlinear programming;
NP-complete problems and proof methodology; Parallel
computing: complexity classes)

information-based model
[90C60]
(see: Complexity theory)

information-based optimization
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

information-based optimization
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]

(see: Information-based complexity and information-based
optimization)

information-based optimization see: Information-based
complexity and—

information criterion see: Akaike—
information game see: two-player zero-sum perfect- —
information structure

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

informative genes see: Selection of maximally—
informed see: weakly—
infrastructure see: Optimal planning of offshore oilfield—
ing see: AND-—; OR-—
Ingber algorithm

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

inhibit procedure
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

inhibitor
(see: Bayesian networks)

initial annealing temperature
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

initial ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

initial simplex
[90C30]
(see: Sequential simplex method)

initial solution
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

initial system
[65K05, 90C30]
(see: Bisection global optimization methods)

initial tableau
[90C05]
(see: Linear programming: Klee–Minty examples)

initial temperature
[90C27, 90C90]
(see: Simulated annealing)

initial term of a polynomial
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

initial value problem
[65G20, 65G30, 65G40, 65K10, 65L99, 90C90]
(see: Interval analysis: differential equations;Variational
inequalities: projected dynamical system)

initial value problem
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

initialization
[49L20, 90C05, 90C33, 90C39, 90C40, 92C05, 92C40]
(see: Dynamic programming: infinite horizon problems,
overview; Pivoting algorithms for linear programming
generating two paths; Protein loop structure prediction
methods)

initializing unknown variables
[90C25, 90C30]
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(see: Successive quadratic programming: full space
methods)

initiated see: receiver- —; sender- —
initiated mapping technique see: receiver —; sender—
inner approximation

[90C06, 90C25, 90C26, 90C35]
(see: Concave programming; Cutting plane methods for
global optimization; Simplicial decomposition algorithms)

inner approximation
[90C06, 90C25, 90C26, 90C35]
(see: Cutting plane methods for global optimization;
Simplicial decomposition algorithms)

inner interval arithmetic
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

inner linearization
[90C30]
(see: Simplicial decomposition)

inner linearization cone
[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

inner linearization/restriction
[90C30]
(see: Simplicial decomposition)

inner point
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

inner problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

inner product see: K-local —
inner regular measure

[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

input see: interva—;maximization of output/ —
input alphabet of a Turing machine

[90C60]
(see: Complexity classes in optimization)

input constraint qualifications
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

input data see: length of —; size of —
input-efficient

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

input layer
(see: Bayesian networks)

input neurons
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

input optimization
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality;Nondifferentiable optimization: parametric
programming)

input-output matrices see: updating—

input-output tables see: triangulation problem for—
input of a Turing machine see: size of the—
inscribed sphere method see: largest—
insertion

[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

insertion algorithm see: generic vertex —
insertion (FVI) see: farthest vertex —
insertion (NVI) see: nearest vertex —
insertion optimal partitioning algorithm see: nearest —
insertion paradigm see: edge—
insertion (RVI) see: random vertex —
insertion step

[90C59]
(see:Heuristic andmetaheuristic algorithms for the
traveling salesman problem)

insertion supernode
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

insertion of vertex v at
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

insertion (VI) see: vertex —
insight

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

instability in parametric programming
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

instance
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

instance see: problem—; size of a problem—
instance in time m see: algorithm solving a problem—
instances see: all-to-all—; one-to-all —
instrument financial equilibriummodel see:multi-sector

multi- —
insufficient reason see: laplace’s principle of—
insufficient reasoning see: Laplace principle of—
int U-quasiconcave function

[90C29]
(see: Generalized concavity in multi-objective optimization)

integer
[65K05, 90C10, 90C11, 90C26, 90C46]
(see: Direct global optimization algorithm; Integer
programming duality;MINLP: global optimization with
˛BB)

integer
[90C10, 90C29]
(see:Multi-objective integer linear programming)

integer see:mixed—
integer 0–1 programs see:mixed—
integer ˛BB algorithm see: general structure mixed—; special

structure mixed—
Integer Bilevel Optimization see:Mixed—
integer classification problems see:Mixed—



4272 Subject Index

integer cut
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

integer dynamic optimization see:mixed—
integer feasibility problem see: zero-one—
integer-fix see: near- —
integer formulation see: LCP: Pardalos–Rosen mixed—
integer fractional programming

[90C32]
(see: Fractional programming)

integer infeasibilities see: sum of—
integer L-shaped method

[90C10, 90C15]
(see: Stochastic vehicle routing problems)

integer labeling
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

integer LCP
[90C25, 90C33]
(see: Integer linear complementary problem)

Integer linear complementary problem
(90C25, 90C33)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Equivalence between nonlinear
complementarity problem and fixed point problem;
Generalized nonlinear complementarity problem;Graph
coloring; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
bound methods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation; Linear
complementarity problem;MINLP: trim-loss problem;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametric mixed integer linear programming;Order
complementarity; Parametric mixed integer nonlinear
optimization; Principal pivoting methods for linear
complementarity problems; Set covering, packing and
partitioning problems; Simplicial pivoting algorithms for
integer programming; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Time-dependent traveling salesman
problem; Topological methods in complementarity theory)
(refers to: Branch and price: Integer programming with
column generation; Convex-simplex algorithm;
Decomposition techniques for MILP: lagrangian relaxation;
Equivalence between nonlinear complementarity problem
and fixed point problem;Generalized nonlinear
complementarity problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation; Lemke method; Linear
complementarity problem; Linear programming;Mixed
integer classification problems;Multi-objective integer
linear programming;Multi-objectivemixed integer

programming;Multiparametric mixed integer linear
programming;Order complementarity; Parametric linear
programming: cost simplex algorithm; Parametric mixed
integer nonlinear optimization; Principal pivoting methods
for linear complementarity problems; Sequential simplex
method; Set covering, packing and partitioning problems;
Simplicial pivoting algorithms for integer programming;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem; Topological
methods in complementarity theory)

integer linear complementary problem
[90C25, 90C33]
(see: Integer linear complementary problem)

integer linear optimization see: Global pairwise protein
sequence alignment via mixed-—

integer linear program
[90C35]
(see: Optimization in leveled graphs)

integer linear program see: single parametric mixed—
integer linear programming

[90C10, 90C29]
(see:Multi-objective integer linear programming)

integer linear programming see:mixed—;Multi-objective—;
Multiparametric mixed—

integer linear programming: heat exchanger network
synthesis see:Mixed—

integer linear programming: mass and heat exchanger
networks see:Mixed—

integer linear programs see: Robust optimization: mixed-—
Integer linear programs for routing and protection problems

in optical networks
(68M10, 90B18, 90B25, 46N10)

integer MITPs
[90C35]
(see:Multi-index transportation problems)

integer multi-index transportation problem
[90C35]
(see:Multi-index transportation problems)

integer nonconvex problem see:mixed—
integer nonlinear bilevel programming: deterministic global

optimization see:Mixed—
integer nonlinear optimization see:mixed—; Parametric

mixed—
integer nonlinear optimization: A disjunctive cutting plane

approach see:Mixed-—
integer nonlinear program see:mixed—
integer nonlinear programming see:mixed—
integer nonlinear programming problem see:mixed—
integer optimal control problem see:mixed—
Integer Optimization see:Mixed—;Multi-class data

classification via mixed-—; Peptide identification via
mixed-—

integer optimization problem
[90C26]
(see: Smooth nonlinear nonconvex optimization)

integer optimization problem see:mixed—
integer optimization in well scheduling see:Mixed—
integer problem see: linear zero-one—;mixed—
integer problems see: 0–1 mixed—; linear mixed—
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integer program
[05-XX, 90C10, 90C11, 90C27, 90C30, 90C57]
(see: Frequency assignment problem; Integer programming;
Lagrangian duality: BASICS)

integer program
[90C05, 90C06, 90C08, 90C10, 90C11, 90C30, 90C57, 90C90]
(see: Integer programming: branch and bound methods;
Integer programming: branch and cut algorithms; Integer
programming: cutting plane algorithms;Modeling difficult
optimization problems)

integer program see:mixed—; zero-one—
integer program with recourse see: stochastic —
Integer programming

(90C10, 90C11, 90C27, 90C57)
(referred to in: Airline optimization; Alignment problem;
Branch and price: Integer programming with column
generation;Cutting-stock problem;Decomposition
techniques for MILP: lagrangian relaxation;Graph
coloring; Integer linear complementary problem; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; Large scale trust
region problems; LCP: Pardalos–Rosenmixed integer
formulation;Maximum cut problem, MAX-CUT;
Maximum satisfiability problem;MINLP: trim-loss
problem;Mixed integer classification problems;
Multidimensional knapsack problems;Multi-objective
integer linear programming;Multi-objective mixed integer
programming;Multiparametric mixed integer linear
programming;Optimization-based visualization;
Optimization in leveled graphs; Parametric mixed integer
nonlinear optimization;Quadratic knapsack; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stable set problem:
branch & cut algorithms; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Time-dependent traveling salesman
problem;Vehicle scheduling)
(refers to: Airline optimization; Alignment problem; Branch
and price: Integer programming with column generation;
Decomposition techniques for MILP: lagrangian relaxation;
Graph coloring; Integer linear complementary problem;
Integer programming: algebraic methods; Integer
programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation;Maximum satisfiability problem;Mixed
integer classification problems;Multidimensional knapsack
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Optimization in leveled graphs; Parametric mixed integer
nonlinear optimization;Quadratic knapsack; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stochastic integer
programming: continuity, stability, rates of convergence;

Stochastic integer programs; Time-dependent traveling
salesman problem;Vehicle scheduling)

integer programming
[01A99, 05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68Q20,
68Q99, 68R, 68U, 68W, 90-XX, 90B, 90B50, 90C]
(see: Branch and price: Integer programming with column
generation;Convex discrete optimization;History of
optimization;Optimal triangulations;Optimization and
decision support systems; Survivable networks)

integer programming
[13Cxx, 13Pxx, 14Qxx, 68Q99, 90B50, 90B80, 90C05, 90C10,
90C11, 90C27, 90C30, 90C35, 90C46, 90C57, 90Cxx]
(see: Assignment and matching; Branch and price: Integer
programming with column generation; Facilities layout
problems; Facility location problems with spatial
interaction; Integer programming; Integer programming:
algebraic methods; Integer programming duality; Integer
programming: lagrangian relaxation;Optimization and
decision support systems;Optimization in leveled graphs;
Set covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming)

integer programming see: convex—; cost functions in—;
group relaxation in—;mixed—;Multi-objective mixed—;
multi-objective (multicriteria) mixed—; n-fold—; Simplicial
pivoting algorithms for —; stochastic —; stochastic
(mixed-—; test sets in—; zero-one—

Integer programming: algebraic methods
(13Cxx, 13Pxx, 14Qxx, 90Cxx)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation;MINLP: trim-loss problem;Multi-objective
integer linear programming;Multi-objective mixed integer
programming;Multiparametricmixed integer linear
programming; Parametric mixed integer nonlinear
optimization; Set covering, packing and partitioning
problems; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Integer linear complementary
problem; Integer programming; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
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integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

Integer programming: branch and boundmethods
(90C10, 90C05, 90C08, 90C11, 90C06)
(referred to in: Biquadratic assignment problem; Branch and
price: Integer programming with column generation;
Decomposition techniques for MILP: lagrangian relaxation;
Discrete stochastic optimization; Facilities layout problems;
Global optimization based on statistical models; Global
optimization in multiplicative programming;Graph
coloring; Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; Job-shop scheduling problem; LCP:
Pardalos–Rosenmixed integer formulation;Maximum
satisfiability problem;MINLP: trim-loss problem;
Multidimensional assignment problem;Multidimensional
knapsack problems;Multi-objective integer linear
programming;Multi-objectivemixed integer
programming;Multiparametricmixed integer linear
programming;Optimization-based visualization;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stable set
problem: branch & cut algorithms; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Genetic algorithms; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and cut algorithms; Integer programming: cutting
plane algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation; Linear programming: interior
point methods;Mixed integer classification problems;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

Integer programming: branch and cut algorithms
(90C10, 90C11, 90C05, 90C08, 90C06)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: cutting
plane algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;MINLP: trim-loss problem;

Multi-objective integer linear programming;
Multi-objective mixed integer programming;
Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization;
Quadratic assignment problem; Set covering, packing and
partitioning problems; Simplicial pivoting algorithms for
integer programming; Stable set problem: branch & cut
algorithms; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Stochastic vehicle routing problems; Time-dependent
traveling salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
bound methods; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objective mixed integer programming;
Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

Integer programming with column generation see: Branch and
price: —

integer programming: complexity and equivalent forms see:
Quadratic—

integer programming/constraint programming hybrid
methods see:Mixed—

integer programming: continuity, stability, rates of
convergence see: Stochastic—

Integer programming: cutting plane algorithms
(90C10, 90C05, 90C08, 90C11, 90C06, 90C08)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and boundmethods; Integer programming: branch
and cut algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; Job-shop scheduling
problem; LCP: Pardalos–Rosenmixed integer formulation;
MINLP: trim-loss problem;Multi-objective integer linear
programming;Multi-objective mixed integer
programming;Multiparametric mixed integer linear
programming; Parametric mixed integer nonlinear
optimization;Quadratic assignment problem; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stable set problem:
branch & cut algorithms; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Time-dependent traveling salesman
problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
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lagrangian relaxation; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
NP-complete problems and proof methodology; Parametric
mixed integer nonlinear optimization; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)

Integer programming duality
(90C10, 90C46)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multi-objective mixed integer
programming;Multiparametric mixed integer linear
programming; Parametric mixed integer nonlinear
optimization; Set covering, packing and partitioning
problems; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)
(refers to: Decomposition techniques for MILP: lagrangian
relaxation; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
Simplicial pivoting algorithms for integer programming;
Time-dependent traveling salesman problem)

Integer programming: lagrangian relaxation
(90C10, 90C30)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Facilities layout problems;Graph
coloring; Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming duality; Lagrange, Joseph-Louis; Lagrangian
multipliersmethods for convex programming; LCP:
Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multi-objective mixed integer
programming;Multi-objective optimization: lagrange

duality;Multiparametricmixed integer linear
programming;Nondifferentiable optimization;
Nondifferentiable optimization: subgradient optimization
methods; Parametric mixed integer nonlinear
optimization;Quadratic assignment problem; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Lagrange,
Joseph-Louis; Lagrangianmultipliersmethods for convex
programming; LCP: Pardalos–Rosenmixed integer
formulation;Mixed integer classification problems;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multi-objective optimization: lagrange duality;
Multiparametricmixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

integer programming: models and applications see:
Multi-quadratic—

integer programming problem
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods;
Integer programming: cutting plane algorithms)

integer programming problem see: large scale nonlinear
mixed—;mixed nonlinear —

integer programming problems
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

integer programs see:mixed—; Stochastic—
integer quadratic programming see:mixed-—
integer recourse see: simple—; Stochastic programming with

simple—; two-stage stochastic programs with simple—
integer rounding

[90C05, 90C06, 90C08, 90C10, 90C11, 90C27, 90C57]
(see: Integer programming; Integer programming: cutting
plane algorithms)

integer rounding cut see:mixed—
integer Solution

[90C11]
(see:MINLP: branch and boundmethods)

integer transportation problem see: convex—
integer value function see:mixed—
integer variable see:most/least infeasible—;multiple

branches for bounded—
integer variables

[90C11]
(see:MINLP: branch and boundmethods)
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integral
[01A99]
(see: Leibniz, gottfried wilhelm)

integral see: derivative of an—; gradient of an—;
hypergeometric —; indefinite—;multivariate
probability—

integral bounds subject to moment conditions see: optimal—
integral constraint

[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

integral equations
[65H10, 65J15]
(see: Contraction-mapping)

integral evaluation see: asymptotic case of—
integral Fenchel–Legendre transformation

[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

integral functions: general theory and examples see:
Derivatives of probability and—

integral linear fractional combinatorial optimization problem
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

integral Mean-Value for Composite Convexifiable Function
[25A15, 34A05, 90C25, 90C26, 90C30, 90C31]
(see: Convexifiable functions, characterization of)

integral quadratic constraint
[93D09]
(see: Robust control)

integral relationships
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

integral over surface formula
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

integral system see: totally dual —
integral vector see: primitive—; support of an—
integral over a volume

[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

integral over volume formula
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

integrality criterion
[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)

integrality gap
[90C35]
(see: Feedback set problems)

integrality property
[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

integrality theorem
[90C35]
(see:Maximum flow problem)

integrals see: Approximation of multivariate probability—;
lower bounds for multivariate probability —; probability —;
upper bounds for multivariate probability—

integrate
(see: State of the art in modeling agricultural systems)

Integrated planning and scheduling
integrated probabilistic constraint

[90C15]
(see: Static stochastic programmingmodels: conditional
expectations)

integrated probabilistic constraint
[90C15]
(see: Static stochastic programmingmodels: conditional
expectations)

Integrated vehicle and duty scheduling problems
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

integration
[01A99]
(see: Leibniz, gottfried wilhelm)

integration
[01A99]
(see: Leibniz, gottfried wilhelm)

integration see: high-dimensional—; problem—
integration of dynamic considerations and controllability

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

integration of surveys
[90C35]
(see:Multi-index transportation problems)

intelligence see: artificial—
intelligent multicriteria decision support system

[90C29]
(see: Decision support systems with multiple criteria)

intelligent multicriteria decision support systems
[90C29]
(see: Decision support systems with multiple criteria)

intelligent search
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

intensification
[68M20, 90B06, 90B35, 90B80, 90C59]
(see: Flow shop scheduling problem;Heuristic and
metaheuristic algorithms for the traveling salesman
problem; Location routing problem)

intensification phase
(see:Maximum cut problem, MAX-CUT)

inter-class distance
[55R15, 55R35, 65K05, 90C11]
(see: Deterministic and probabilistic optimization models
for data classification)

interaction see: Facility location problems with spatial —; level
of—; spatial —; visual —

interaction of design and control
[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)

interaction of design and control
[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)
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interaction of design and control see:MINLP: applications in
the—;Multi-objective optimization: —

interaction of design, synthesis and control
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

interaction model see: spatial- —
interactions see: electrostatic —
interactive

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

interactive disaggregation system
[90C29, 91A99]
(see: Preference disaggregation)

interactive learning of Boolean functions
[90C09]
(see: Inference of monotone boolean functions)

interactive learning of Boolean functions
[90C09]
(see: Inference of monotone boolean functions)

interactive method
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties)

interactive method
[90C11, 90C29]
(see:Multi-objective mixed integer programming;
Multi-objective optimization; Interactivemethods for
preference value functions)

interactive method see: visual —
interactive methods

[65K05, 90B50, 90C05, 90C27, 90C29, 90C70, 91B06]
(see: Fuzzy multi-objective linear programming;
Multi-objective combinatorial optimization;
Multi-objective optimization and decision support systems)

interactive methods see: computing processes in—
Interactive methods for preference value functions see:

Multi-objective optimization; —
interactive procedures

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

interactive sampling procedure
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

interactive versus noninteractive methods
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

interchange see: fast —
interchange heuristics see: k-—
intercommodity constraints

[90C35]
(see: Feedback set problems)

interconnection designs see: subset —
interdisciplinary coupling see: bandwidth of—
interdisciplinary feasibility

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

interest rate see: riskless—; spot—
interest rate yield curve

[90C34, 91B28]

(see: Semi-infinite programming and applications in
finance)

interest rates see: term structure of—
interface see: fractal —; graphical user —
interhelical contacts in alpha-helical proteins see: Predictive

method for—
interior see: nonempty —
interior point

[49M29, 65K10, 65L99, 90C06, 90C33, 93-XX]
(see: Linear complementarity problem; Local attractors for
gradient-related descent iterations;Optimization strategies
for dynamic systems)

interior point
[90C20]
(see: Standard quadratic optimization problems:
algorithms; Standard quadratic optimization problems:
theory)

interior point see: infeasible—
interior point algorithm

[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

interior-point algorithm see: infeasible-start —
interior point algorithms

[90C15, 90C20, 90C25]
(see: Quadratic programming over an ellipsoid; Stochastic
programming: parallel factorization of structuredmatrices)

interior point algorithms
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

interior point algorithms for entropy optimization
[90C25, 90C51, 94A17]
(see: Entropy optimization: interior point methods)

interior point logarithmic barrier method
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

interior point method
[90C05, 90C09, 90C10]
(see: Linear programming: karmarkar projective algorithm;
Optimization in boolean classification problems)

interior point methods
[15A15, 49J52, 65K05, 65K10, 65L99, 90C05, 90C06, 90C08,
90C10, 90C11, 90C20, 90C25, 90C30, 90C34, 90C51, 90C55,
90C60, 90C90, 93-XX, 94A17]
(see: Complexity theory: quadratic programming; Entropy
optimization: interior point methods; Feasible sequential
quadratic programming; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms;Nondifferentiable optimization: Newton
method;Optimization strategies for dynamic systems;
Quadratic programming with bound constraints;
Semidefinite programming and determinant maximization;
Successive quadratic programming: solution by active sets
and interior point methods)

interior point methods
[15A15, 49K20, 49M99, 65K05, 65K10, 90C05, 90C15, 90C25,
90C27, 90C30, 90C51, 90C55, 90C60, 90C90, 94A17]
(see: ABS algorithms for optimization; Complexity theory:
quadratic programming; Entropy optimization: interior
point methods;Homogeneous selfdual methods for linear
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programming; Linear programming: karmarkar projective
algorithm; Semidefinite programming and determinant
maximization; Semidefinite programming and structural
optimization; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Stochastic programming: parallel factorization of
structured matrices; Successive quadratic programming;
Successive quadratic programming: full space methods;
Successive quadratic programming: solution by active sets
and interior point methods)

interior-point methods see: Entropy optimization: —; Linear
programming: —; polynomial time—; primal-dual—;
Successive quadratic programming: solution by active sets
and—

interior point methods for distributed optimal control
problems see: Sequential quadratic programming: —

interior point methods for the linear complementarity
problem see: Generalizations of —

Interior point methods for semidefinite programming
(90C51, 90C22, 90C25, 90C05, 90C30)
(referred to in: Duality for semidefinite programming;
Entropy optimization: interior point methods;
Homogeneous selfdual methods for linear programming;
Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm;Matrix
completion problems; Potential reductionmethods for
linear programming; Semidefinite programming and
determinant maximization; Semidefinite programming:
optimality conditions and stability; Semidefinite
programming and structural optimization; Semi-infinite
programming, semidefinite programming and perfect
duality; Sequential quadratic programming: interior point
methods for distributed optimal control problems; Solving
large scale and sparse semidefinite programs; Standard
quadratic optimization problems: theory; Successive
quadratic programming: solution by active sets and interior
point methods)

interior of a relation see: symmetric —
interior of a set

[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

interior solution
[90C25, 90C51, 94A17]
(see: Entropy optimization: interior point methods)

interiors
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

interlining
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

interlocking eigenvalue theorem
[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

intermediate fill-in
[65Fxx]
(see: Least squares problems)

intermediate form see: AD—
intermediate scale network

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

intermediate storage see: unlimited—
intermediate term

[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

intermediate terms see: Interval analysis: —
intermediate variables

[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

internal coordinates
[92B05]
(see: Genetic algorithms for protein structure prediction)

internal coordinates
[92B05]
(see: Genetic algorithms for protein structure prediction)

internal deviation
[62H30, 68T10, 90C05]
(see: Linear programmingmodels for classification)

internal energy
[90C90]
(see: Optimization in medical imaging)

internal numerical differentiation
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

International Zeolite Association see: atlas of the—
Internet

[90C09, 90C10]
(see: Optimization in classifying text documents)

interplay between primal and dual solutions see: exploiting
the—

interpolation see: Nyström—
interpolation parametric eigenvalue formulation see:

inverse—
interpolation problem

[93-XX]
(see: Dynamic programming: optimal control applications)

interpolatory operator
[90C34]
(see: Semi-infinite programming: approximationmethods)

interpolatory operator see: nonnegative —
interpretation

[65H99, 65K99]
(see: Automatic differentiation: point and interval)

interpretation see: epistemological—; geometric —;
objective—; subjective—

interpretation, existence and uniqueness see: Variational
inequalities: geometric —

intersatured vertices
[90C35]
(see: Feedback set problems)

intersection
[03B52, 03E72, 47S40, 65G20, 65G30, 65G40, 68T27, 68T35,
68Uxx, 90Bxx, 90C26, 90C30, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Bounding derivative
ranges; Interval analysis: systems of nonlinear equations)

intersection see: transversal —
intersection cut

[90C11]
(see:MINLP: branch and bound methods)
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intersection cut
[90C26]
(see: Cutting plane methods for global optimization)

intersection graph model
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

intersection problem see: convex—
interva input

[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

interval see: Automatic differentiation: point and—;
confidence—; critical—; expectation-maximization—;
machine—

interval algebra see: relational—
interval analysis

[49M37, 65G20, 65G30, 65G40, 65H20, 65K99, 90C11]
(see: Interval Newton methods;Mixed integer nonlinear
programming)

interval analysis
[65C20, 65G20, 65G30, 65G40, 65H20, 65L99, 80A10, 80A22,
90C90]
(see: Global optimization: application to phase equilibrium
problems; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations)

Interval analysis: application to chemical engineering design
problems
(65C20, 65G20, 65G30, 65G40, 90C90, 65H20)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Design
optimization in computational fluid dynamics;Global
optimization: application to phase equilibrium problems;
Interval analysis: differential equations; Interval analysis:
eigenvalue bounds of interval matrices; Interval analysis:
intermediate terms; Interval analysis: nondifferentiable
problems; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods;Multidisciplinary design optimization;
Multilevel methods for optimal design;Optimal design of
composite structures;Optimal design in nonlinear optics;
Structural optimization: history)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bilevel programming: applications in
engineering; Bounding derivative ranges;Design
optimization in computational fluid dynamics;Global
optimization: application to phase equilibrium problems;
Interval analysis: differential equations; Interval analysis:
eigenvalue bounds of interval matrices; Interval analysis:
intermediate terms; Interval analysis: nondifferentiable
problems; Interval analysis: parallel methods for global
optimization; Interval analysis: subdivision directions in
interval branch and bound methods; Interval analysis:
systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval

linear systems; Interval Newton methods;Multidisciplinary
design optimization;Multilevel methods for optimal
design;Optimal design of composite structures;Optimal
design in nonlinear optics; Structural optimization: history)

interval analysis and balanced interval arithmetic see: Global
optimization:—

Interval analysis: differential equations
(65G20, 65G30, 65G40, 65L99)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: eigenvalue bounds of
interval matrices; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: eigenvalue bounds of
interval matrices; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: parallel methods for global optimization; Interval
analysis: subdivision directions in interval branch and
boundmethods; Interval analysis: systems of nonlinear
equations; Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods)

Interval analysis: eigenvalue bounds of interval matrices
(65G20, 65G30, 65G40, 65L99)
(referred to in: ˛BB algorithm;Automatic differentiation:
point and interval;Automatic differentiation: point and
interval taylor operators; Bounding derivative ranges;
Eigenvalue enclosures for ordinary differential equations;
Global optimization: application to phase equilibrium
problems;Hemivariational inequalities: eigenvalue
problems; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations; Interval analysis: intermediate terms; Interval
analysis: nondifferentiable problems; Interval analysis:
systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods; Semidefinite
programming and determinant maximization; Standard
quadratic optimization problems: algorithms)
(refers to: ˛BB algorithm;Automatic differentiation: point
and interval;Automatic differentiation: point and interval
taylor operators; Bounding derivative ranges; Eigenvalue
enclosures for ordinary differential equations; Global
optimization: application to phase equilibrium problems;
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Hemivariational inequalities: eigenvalue problems; Interval
analysis: application to chemical engineering design
problems; Interval analysis: differential equations; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods; Semidefinite programming and
determinant maximization)

Interval analysis: intermediate terms
(65G20, 65G30, 65G40, 65H20)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: nondifferentiable problems; Interval
analysis: parallel methods for global optimization; Interval
analysis: systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods)
(refers to: Automatic differentiation: introduction, history
and rounding error estimation; Automatic differentiation:
point and interval;Automatic differentiation: point and
interval taylor operators; Bounding derivative ranges;
Global optimization: application to phase equilibrium
problems; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations; Interval analysis: eigenvalue bounds of interval
matrices; Interval analysis: nondifferentiable problems;
Interval analysis: parallelmethods for global optimization;
Interval analysis: subdivision directions in interval branch
and boundmethods; Interval analysis: systems of nonlinear
equations; Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods)

Interval analysis: nondifferentiable problems
(65G20, 65G30, 65G40, 65H20)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval

linear systems; Interval Newton methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
parallel methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems; Interval
Newton methods)

Interval analysis for optimization of dynamical systems
Interval analysis: parallel methods for global optimization

(65K05, 65Y05, 65Y10, 65Y20, 68W10)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation; Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Global optimization: interval analysis and balanced interval
arithmetic; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations; Interval analysis: eigenvalue bounds of interval
matrices; Interval analysis: intermediate terms; Interval
analysis: nondifferentiable problems; Interval analysis:
systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods; Load balancing
for parallel optimization techniques; Parallel computing:
complexity classes; Parallel computing: models; Stochastic
network problems: massively parallel solution)
(refers to: Interval analysis: intermediate terms; Interval
analysis: subdivision directions in interval branch and
bound methods; Interval analysis: systems of nonlinear
equations; Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval global optimization; Interval Newton methods)

Interval analysis: subdivision directions in interval branch
and boundmethods
(65K05, 90C30)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Global optimization: interval analysis and balanced interval
arithmetic; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations; Interval analysis: eigenvalue bounds of interval
matrices; Interval analysis: intermediate terms; Interval
analysis: nondifferentiable problems; Interval analysis:
parallel methods for global optimization; Interval analysis:
systems of nonlinear equations; Interval analysis:
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unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods)
(refers to: Automatic differentiation: introduction, history
and rounding error estimation; Interval analysis:
unconstrained and constrained optimization; Interval
Newton methods;MINLP: branch and bound global
optimization algorithm)

Interval analysis: systems of nonlinear equations
(65G20, 65G30, 65G40)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;
Contraction-mapping;Global optimization: application to
phase equilibrium problems;Global optimization methods
for systems of nonlinear equations;Gröbner bases for
polynomial equations; Interval analysis: application to
chemical engineering design problems; Interval analysis:
differential equations; Interval analysis: eigenvalue bounds
of interval matrices; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: parallel methods for global optimization; Interval
analysis: unconstrained and constrained optimization;
Interval analysis: verifying feasibility; Interval constraints;
Interval fixed point theory; Interval global optimization;
Interval linear systems; Interval Newton methods;
Nonlinear least squares: Newton-type methods;Nonlinear
systems of equations: application to the enclosure of all
azeotropes)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;
Contraction-mapping;Global optimization: application to
phase equilibrium problems;Global optimization methods
for systems of nonlinear equations; Interval analysis:
application to chemical engineering design problems;
Interval analysis: differential equations; Interval analysis:
eigenvalue bounds of interval matrices; Interval analysis:
intermediate terms; Interval analysis: nondifferentiable
problems; Interval analysis: parallel methods for global
optimization; Interval analysis: subdivision directions in
interval branch and bound methods; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods; Nonlinear least
squares: Newton-type methods; Nonlinear systems of
equations: application to the enclosure of all azeotropes)

Interval analysis: unconstrained and constrained
optimization
(65G20, 65G30, 65G40, 65H20)
(referred to in: Algorithmic improvements using a heuristic
parameter, reject index for interval optimization;
Automatic differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Bounding derivative ranges;Direct search Luus—Jaakola
optimization procedure;Global optimization: application
to phase equilibrium problems;Global optimization:
interval analysis and balanced interval arithmetic; Interval
analysis: application to chemical engineering design

problems; Interval analysis: differential equations; Interval
analysis: eigenvalue bounds of interval matrices; Interval
analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: verifying feasibility; Interval constraints;
Interval fixed point theory; Interval global optimization;
Interval linear systems; Interval Newton methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Direct search
Luus—Jaakola optimization procedure;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: verifying feasibility; Interval constraints;
Interval fixed point theory; Interval global optimization;
Interval linear systems; Interval Newton methods)

Interval analysis: verifying feasibility
(65G20, 65G30, 65G40, 65H20)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis: systems
of nonlinear equations; Interval analysis: unconstrained
and constrained optimization; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
linear systems; Interval Newton methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval constraints; Interval fixed point
theory; Interval global optimization; Interval linear
systems; Interval Newton methods)

interval arithmetic
[49M37, 65G20, 65G30, 65G40, 65H99, 65K05, 65K10, 65K99,
65T40, 68T20, 90C26, 90C30, 90C57, 90C90]
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(see: ˛BB algorithm;Automatic differentiation: point and
interval; Bounding derivative ranges;Global optimization:
interval analysis and balanced interval arithmetic;Global
optimization methods for harmonic retrieval; Interval
constraints)

Interval arithmetic
[15A99, 49M37, 65G20, 65G30, 65G40, 65K05, 65K10, 90C26,
90C30]
(see: ˛BB algorithm;Automatic differentiation: point and
interval taylor operators; Bounding derivative ranges;
Interval linear systems)

interval arithmetic see: balanced—; balanced random—;
Global optimization: interval analysis and balanced—;
inclusion principle of machine—; inner —;machine—;
random—

interval arithmetic operation
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

interval automatic differentiation
[65H99, 65K99]
(see: Automatic differentiation: point and interval)

interval branch and bound methods see: Interval analysis:
subdivision directions in—

interval computations
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval fixed point theory;
Interval Newton methods)

interval computing
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Interval constraints
(68T20, 65G20, 65G30, 65G40)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: systems of
nonlinear equations; Interval analysis: unconstrained and
constrained optimization; Interval analysis: verifying
feasibility; Interval fixed point theory; Interval global
optimization; Interval linear systems; Interval Newton
methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;

Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval fixed point theory; Interval global optimization;
Interval linear systems; Interval Newton methods)

interval dependency
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

interval dependency
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

interval diagram see: composition—; temperature —
interval enclosure

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

interval equation see: linear —
interval extension

[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems; LP strategy for interval-Newtonmethod in
deterministic global optimization)

interval extension see: natural —
Interval fixed point theory

(65G20, 65G30, 65G40, 65H20)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: systems of
nonlinear equations; Interval analysis: unconstrained and
constrained optimization; Interval analysis: verifying
feasibility; Interval constraints; Interval global
optimization; Interval linear systems; Interval Newton
methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval global optimization; Interval
linear systems; Interval Newton methods)

interval function see: pre-declared—
Interval global optimization

(65K05, 90C30, 65G20, 65G30, 65G40)
(referred to in: ˛BB algorithm;Automatic differentiation:
point and interval;Automatic differentiation: point and
interval taylor operators; Bounding derivative ranges;
Continuous global optimization: applications;Continuous
global optimization: models, algorithms and software;
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Global optimization in the analysis and management of
environmental systems; Global optimization: application to
phase equilibrium problems;Global optimization in batch
design under uncertainty;Global optimization in
generalized geometric programming;Global optimization:
interval analysis and balanced interval arithmetic;Global
optimization methods for systems of nonlinear equations;
Global optimization in phase and chemical reaction
equilibrium; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations; Interval analysis: eigenvalue bounds of interval
matrices; Interval analysis: intermediate terms; Interval
analysis: nondifferentiable problems; Interval analysis:
parallelmethods for global optimization; Interval analysis:
systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval linear systems; Interval Newton
methods;MINLP: branch and bound global optimization
algorithm;MINLP: global optimization with ˛BB;Mixed
integer nonlinear programming; Smooth nonlinear
nonconvex optimization)
(refers to: ˛BB algorithm;Automatic differentiation: point
and interval;Automatic differentiation: point and interval
taylor operators; Bounding derivative ranges; Continuous
global optimization: applications;Continuous global
optimization: models, algorithms and software; Global
optimization in the analysis and management of
environmental systems; Global optimization: application to
phase equilibrium problems;Global optimization in batch
design under uncertainty;Global optimization in
generalized geometric programming;Global optimization
methods for systems of nonlinear equations;Global
optimization in phase and chemical reaction equilibrium;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
linear systems; Interval Newton methods;MINLP: branch
and bound global optimization algorithm;MINLP: global
optimization with ˛BB;Mixed integer nonlinear
programming; Smooth nonlinear nonconvex optimization)

interval graph
[05C85, 90C35]
(see: Directed tree networks; Feedback set problems)

interval Hessian matrix
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

interval inference see: fuzzy—
interval linear system

[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

interval linear system see: center of an—

Interval linear systems
(15A99, 65G20, 65G30, 65G40, 90C26)
(referred to in: ABS algorithms for linear equations and
linear least squares; Automatic differentiation: point and
interval;Automatic differentiation: point and interval
taylor operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Global optimization: interval analysis and balanced interval
arithmetic; Interval analysis: application to chemical
engineering design problems; Interval analysis: differential
equations; Interval analysis: eigenvalue bounds of interval
matrices; Interval analysis: intermediate terms; Interval
analysis: nondifferentiable problems; Interval analysis:
systems of nonlinear equations; Interval analysis:
unconstrained and constrained optimization; Interval
analysis: verifying feasibility; Interval constraints; Interval
fixed point theory; Interval global optimization; Interval
Newton methods; Large scale trust region problems; Large
scale unconstrained optimization;Orthogonal
triangularization;Overdetermined systems of linear
equations;QR factorization; Solving large scale and sparse
semidefinite programs; Symmetric systems of linear
equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges; Cholesky
factorization;Global optimization: application to phase
equilibrium problems; Interval analysis: application to
chemical engineering design problems; Interval analysis:
differential equations; Interval analysis: eigenvalue bounds
of interval matrices; Interval analysis: intermediate terms;
Interval analysis: nondifferentiable problems; Interval
analysis: parallel methods for global optimization; Interval
analysis: subdivision directions in interval branch and
boundmethods; Interval analysis: systems of nonlinear
equations; Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval Newton methods; Large scale
trust region problems; Large scale unconstrained
optimization; Linear programming;Nonlinear least
squares: trust regionmethods;Orthogonal
triangularization;Overdetermined systems of linear
equations;QR factorization; Solving large scale and sparse
semidefinite programs; Symmetric systems of linear
equations)

interval logic
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

interval logic system of approximate reasoning
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

interval matrices see: Interval analysis: eigenvalue bounds of—
interval matrix see: complex—; dimensional symmetric —;

extreme eigenvalue of an—; Hermitian—; interval of
variation of an eigenvalue of an—; real —; real
symmetric—; vertex matrix of an—

interval methods
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)
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interval methods
[65G20, 65G30, 65G40, 65K05, 65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval;
Interval global optimization; Random search methods)

interval Newton
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

interval Newton
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

interval Newton algorithm
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

interval Newton iteration
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

interval Newton method
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval analysis: systems of nonlinear equations;
Interval Newton methods)

interval Newton method see: Krawczyk variation of the—;
multivariate—; univariate—

interval-Newton method in deterministic global optimization
see: LP strategy for —

Interval Newton methods
(65G20, 65G30, 65G40, 65H20, 65K99)
(referred to in: Algorithmic improvements using a heuristic
parameter, reject index for interval optimization;
Automatic differentiation: calculation of Newton steps;
Automatic differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Bounding derivative ranges;Dynamic programming and
Newton’s method in unconstrained optimal control;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems;
Nondifferentiable optimization: Newton method;
Nonlinear least squares: Newton-type methods;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)
(refers to: Automatic differentiation: calculation of Newton
steps;Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges; Complexity classes
in optimization;Dynamic programming and Newton’s
method in unconstrained optimal control;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering

design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval constraints; Interval fixed point theory; Interval
global optimization; Interval linear systems;
Nondifferentiable optimization: Newton method;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)

interval Newton methods
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: unconstrained and constrained
optimization)

interval Newton methods see: existence-proving properties
of—

interval Newton operator
[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

interval Newton operator
[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

interval Newton operator see: univariate—
interval operator

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

interval optimization see: Algorithmic improvements using
a heuristic parameter, reject index for —

interval order
[90C29]
(see: Preference modeling)

interval package see: variable precision—
interval pairs see: fuzzy—
Interval propagation

(68T20, 65G20, 65G30, 65G40)
(referred to in: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: systems of
nonlinear equations; Interval analysis: unconstrained and
constrained optimization; Interval analysis: verifying
feasibility; Interval fixed point theory; Interval global
optimization; Interval linear systems; Interval Newton
methods)
(refers to: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges;Global
optimization: application to phase equilibrium problems;
Interval analysis: application to chemical engineering
design problems; Interval analysis: differential equations;
Interval analysis: eigenvalue bounds of interval matrices;
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Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems; Interval analysis: parallel
methods for global optimization; Interval analysis:
subdivision directions in interval branch and bound
methods; Interval analysis: systems of nonlinear equations;
Interval analysis: unconstrained and constrained
optimization; Interval analysis: verifying feasibility;
Interval fixed point theory; Interval global optimization;
Interval linear systems; Interval Newton methods)

interval propagation
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

interval slopes
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: nondifferentiable problems)

interval Taylor operator
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

interval taylor operators see: Automatic differentiation: point
and—

interval-valued approximate inference
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

interval of variation of an eigenvalue of an interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

intervals see: floating point—; overlap of—
INTLIB

[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

INTOPT_90
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

intra-class distance
[55R15, 55R35, 65K05, 90C11]
(see: Deterministic and probabilistic optimization models
for data classification)

intractible problem
[90C60]
(see: Complexity theory)

introduction, history and overview see: Bilevel
programming:—

introduction, history and rounding error estimation see:
Automatic differentiation: —

iNV
(see: Integrated planning and scheduling)

invariance criterion see: scale—
invariancemodel see: sign-—
invariant see: scale-—; shift- —
invariant convex

[90C26]
(see: Invexity and its applications)

invariant set
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

invariant under principal pivoting see:matrix class—

invariants
[05C85]
(see: Directed tree networks)

invariants see: structure—
inventory control

[49L20]
(see: Dynamic programming: inventory control)

inventory control see: Dynamic programming: —
inventory control problem

[49L20]
(see: Dynamic programming: inventory control)

inventory management
[90B50]
(see: Inventory management in supply chains)

inventory management see:multistage—
inventory management models see:multistage—; single

stage—
Inventory management in supply chains

(90B50)
(referred to in: Global supply chain models; Nonconvex
network flow problems;Operations research models for
supply chain management and design; Piecewise linear
network flow problems)
(refers to: Global supply chain models; Nonconvex network
flow problems;Operations research models for supply
chain management and design; Piecewise linear network
flow problems)

inventory models: (QR) policy see: Continuous review—
Inventory Ordering see: zero- —
inventory placement

[90-02]
(see: Operations research models for supply chain
management and design)

inventory routing
[65H20, 65K05, 90-01, 90B06, 90B40, 90C10, 90C27, 90C35,
94C15]
(see: Greedy randomized adaptive search procedures;
Vehicle routing)

inventory routing problems see:Maritime—
inventory ship routing problem

(see:Maritime inventory routing problems)
inventory systems

[90-02]
(see: Operations research models for supply chain
management and design)

inventory and transportation decisions
[90-02]
(see: Operations research models for supply chain
management and design)

inverse
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

inverse see: approximate—;Moore–Penrose pseudo- —;
pseudo-—

inverse differentiability
[90C15]
(see: Derivatives of probability measures)

inverse interpolation parametric eigenvalue formulation
[90C30]
(see: Large scale trust region problems)
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inverse problem of the calculus of variations
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

inverse problems see: formulation and solution of—
inverse product of relations see: self- —
inverse quasi-Newton updating

[49M37]
(see: Nonlinear least squares: Newton-type methods)

inverse relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

inverses see: generalized —
inverted transformation

[90C11, 90C90]
(see:MINLP: trim-loss problem)

investment see:maximization of return on—; venture
capital —

investment analysis
[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

investment decision
[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

investment decisions see: diversified—
investments see: optimal—
invex

[90C26]
(see: Invexity and its applications)

invex see: generalized —; pseudo- —; quasi-—; V- —
invex function

[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

invex function
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

invex function see: pre- —
invex set

[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

invex set see: pre- —
Invexity and its applications

(90C26)
(referred to in: Generalized concavity in multi-objective
optimization; L-convex functions andM-convex functions)
(refers to: Generalized concavity in multi-objective
optimization; Isotonic regression problems; L-convex
functions and M-convex functions)

invexity at a point
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

invexity with respect to a set
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

invexity with respect to a set see: pre- —
iNVO

(see: Integrated planning and scheduling)
involutory operator

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

involving QD-superpotentials see: convex variational
inequality for an elastostatic problem—; elastostatic
problem—; variational equality for an elastostatic
problem—

Ioffe–Burke local dualization
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

ions see: complementary—
IP

[68Q99]
(see: Branch and price: Integer programming with column
generation)

IPE
[90C30]
(see: Large scale trust region problems)

IPH function
[90C26]
(see: Global optimization: envelope representation)

iPMN
[65K10, 90C33, 90C51]
(see: Generalizations of interior point methods for the
linear complementarity problem)

IPP
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

IQC
[93D09]
(see: Robust control)

IQML method
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

irreducible components of a matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

irreducible matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

irreducible matrix see: inductive structure of an—
irredundant constraint

[90C05, 90C20]
(see: Redundancy in nonlinear programs)

irregular operations
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

irregular operations problem
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

Ising glass model
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

isodose
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

isolated local minimizer
[90C26, 90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability; Smooth nonlinear nonconvex
optimization)

isolated stationary point
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)
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isolation see: cluster—
isomorphic graphs

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

isomorphism see: graph—;maximal similarity subtree —;
maximal subtree —;maximum similarity subtree —;
maximum subtree —; subtree —

isomorphism problem see: graph—
isotone Boolean function

[90C09]
(see: Inference of monotone boolean functions)

isotone functions
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

isotone inclusion function
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

isotone mapping see:˚ - —
isotone monotone Boolean function

[90C09]
(see: Inference of monotone boolean functions)

isotone operator
[90C33]
(see: Order complementarity)

isotone optimization
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

isotone projection
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem)

isotone projection cone
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem)

isotonic function
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

isotonic medium regression
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

isotonic regression
[41A30, 62G07, 62G30, 62J02, 65K05, 90C26]
(see: Isotonic regression problems; Regression by special
functions: algorithms and complexity)

isotonic regression see: simple order—
isotonic regression problem

[41A30, 62G07, 62G30, 62J02, 65K05, 90C26]
(see: Isotonic regression problems; Regression by special
functions: algorithms and complexity)

Isotonic regression problems
(62G07, 62G30, 65K05)
(referred to in: Generalized concavity in multi-objective
optimization; Invexity and its applications; L-convex
functions and M-convex functions; Regression by special
functions: algorithms and complexity)

(refers to: Regression by special functions: algorithms and
complexity)

isotonic regression problems see: algorithms for—
isotonicity property

[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

issues in classification see: computational—
Itakura–Saito divergence

[90C05, 90C25]
(see: Young programming)

iterate see: dead-point—
iterated local search

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

iterated tour partitioning algorithm see: K- —
iterates see: feasible—
iteration

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

iteration see: control vector —; direct—; fixed point—;
Gauss–Seidel—; Gauss–Seidel value—; Gram–Schmidt
type—; interval Newton—; Jacobi—; Petrov–Galerkin—;
policy—; relative value—; Richardson—; value—

iteration BCI see: Boundary condition—
iteration CVI see: Control vector —
iteration method see: boundary condition—
iterations see: Local attractors for gradient-related descent —
iterative algorithms see: asynchronous—
iterative deepening

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

iterative dynamic programming
[65L99, 90C30, 93-XX]
(see: Boundary condition iteration BCI;Direct search
Luus—Jaakola optimization procedure;Dynamic
programming: optimal control applications;Optimization
strategies for dynamic systems; Suboptimal control)

iterative function system
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

iterative linear equation-solving
[90C25, 90C30]
(see: Successive quadratic programming: solution by active
sets and interior point methods)

iterative method
[90C33]
(see: Linear complementarity problem)

iterative method
[65H10, 65J15]
(see: Contraction-mapping)

iterative method see: Chebyshev —; partially asynchronous—
iterative model refinement

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

iterative quadratic maximum likelihood method
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)
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iterative regularization see: Tikhonov—
iterative regularization method

[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

iterative scheme
[91B50]
(see:Walrasian price equilibrium)

iterative scheme see: chaotic—
iterative solution algorithm see: incremental- —
iterative solution of the Euclidean distance location problem

[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

IV see: Prolog—
IVP

[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

J

J-normal primal problem
[90C29, 90C30]
(see:Multi-objective optimization: lagrange duality)

J-stable primal problem
[90C29, 90C30]
(see:Multi-objective optimization: lagrange duality)

j-VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

Jacobi
[49L20, 90C39]
(see: Dynamic programming: discounted problems)

Jacobi
[90C30]
(see: Cost approximation algorithms)

Jacobi algorithm
[68W10, 90B15, 90C06, 90C30]
(see: Cost approximation algorithms; Stochastic network
problems: massively parallel solution)

Jacobi–Bellman equation see: derivation of the Hamilton–—;
Hamilton–—; solution of the Hamilton–—; sufficiency
theorem for the Hamilton–—

Jacobi equation see: Hamilton–—
Jacobi inequality see: Hamilton–—
Jacobi iteration

[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

Jacobi method
[90C33]
(see: Linear complementarity problem)

Jacobian see: accumulation of the—; approximate—; Clarke
generalized —; preaccumulation of the—

Jacobian consistency property
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

Jacobian matrix
[65K05, 90C30]

(see: Automatic differentiation: calculation of Newton
steps)

Jacobian matrix
[65K05, 90C25, 90C30]
(see: Automatic differentiation: calculation of Newton steps;
Successive quadratic programming: full space methods;
Successive quadratic programming: solution by active sets
and interior point methods)

Jacobians, and Hessians see: Complexity of gradients —
James–Stein estimators

[91B28]
(see: Portfolio selection: markowitz mean-variance model)

James sup theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

Jaynes
[94A17]
(see: Jaynes’ maximum entropy principle)

Jaynes entropy concentration theorem
[94A17]
(see: Jaynes’ maximum entropy principle)

Jaynes maximum entropy
[62F10, 94A17]
(see: Entropy optimization: parameter estimation)

Jaynes’ maximum entropy principle
(94A17)
(referred to in: Entropy optimization: interior point
methods; Entropy optimization: parameter estimation;
Entropy optimization: shannon measure of entropy and its
properties;Maximum entropy principle: image
reconstruction)
(refers to: Entropy optimization: interior point methods;
Entropy optimization: parameter estimation; Entropy
optimization: shannon measure of entropy and its
properties;Maximum entropy principle: image
reconstruction)

jensen’s inequality
[90C15]
(see:Multistage stochastic programming: barycentric
approximation; Stochastic linear programs with recourse
and arbitrarymultivariate distributions)

Jensen lower bound
[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

Jerrum conjecture
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

JJT-regular problem
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

job-shop
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

job-shop
[90B35]
(see: Job-shop scheduling problem)
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job-shop problem
[62C10, 65K05, 90B35, 90C10, 90C15, 90C26]
(see: Bayesian global optimization; Job-shop scheduling
problem)

Job-shop scheduling problem
(90B35)
(referred to in:MINLP: design and scheduling of batch
processes;Vehicle scheduling)
(refers to: Complexity classes in optimization; Complexity
theory;Genetic algorithms; Integer programming: branch
and bound methods; Integer programming: cutting plane
algorithms; Linear programming;MINLP: design and
scheduling of batch processes; Simulated annealing;
Stochastic scheduling;Vehicle scheduling)

John see: Von Neumann—
John conditions see: Fritz —
John generalized conditions see: Fritz —
John necessary optimality conditions see: fritz—
John rule see: Fritz —
John system see: Fritz —
John type condition see: Fritz —
Johnson linearization see: Adams–—
join

[90C35]
(see:Multi-index transportation problems)

join procedure
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

joined sets
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

joining see: neighbor—
joint continuity

[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

joint probabilistic constraint
[90C15]
(see: Static stochastic programmingmodels)

jointly convex problem
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

Jones see: Lennard- —
Jones microcluster see: Lennard–—
Jones and morse clusters see: Global optimization in

Lennard–—
Jones potential energy function see: Lennard- —
Jongen–Jonker–Twilt see: problem regular in the sense of —
Jonker–Twilt see: problem regular in the sense of Jongen–—
Jordan–Hahn decomposition

[90C15]
(see: Derivatives of probability measures)

Joseph-Louis see: Lagrange —
journal of Heuristics

[68T20, 68T99, 9008, 90C26, 90C27, 90C59]
(see:Metaheuristics;Variable neighborhood search
methods)

Journal of Management Mathematics see: iMA—
Journal of Operational Research see: european—

judgemental forecast
[90C26, 90C30]
(see: Forecasting)

judgment see: pairwise—
judgment matrix see: consistent—
judgments see: incomplete—
jump across a fault

[90Cxx]
(see: Discontinuous optimization)

jump direction
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

jump system see: finite—
jumps of optimal solutions

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

junction nodes see: physical —
Jünger–Mutzel branch and cut algorithm

[90C10, 90C27, 94C15]
(see: Graph planarization)

justice see: rule of—
justification see: chain—; left-chain—; right-chain—

K

K see: commutator —;multivariable stability margin—
k-CNF

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

k-CNF see: SAT-—
k-colorable

[05C15, 05C62, 05C69, 05C85, 90C27, 90C35, 90C59]
(see: Graph coloring;Optimization problems in unit-disk
graphs)

K-convex function
[49L20]
(see: Dynamic programming: inventory control)

K-convexity
[49L20]
(see: Dynamic programming: inventory control)

k-dimensional cube connected cycle
[90C35]
(see: Feedback set problems)

k-exchange neighborhood
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

k-face
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

k-index transportation problem
[90C35]
(see:Multi-index transportation problems)

k-interchange heuristics
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

K-iterated tour partitioning algorithm
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)
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K-L type neighborhood structure for the QAP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

k-level crossing minimization
[90C35]
(see: Optimization in leveled graphs)

k-level hierarchy
[90C35]
(see: Optimization in leveled graphs)

k-level planarization problem
[90C35]
(see: Optimization in leveled graphs)

k-leveled graph
[90C35]
(see: Optimization in leveled graphs)

k-leveled graph see: proper—
K-local bilinear form

[90C33]
(see: Order complementarity)

K-local inner product
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem)

K-majorant see: smallest —
k-means criterion

[62H30, 90C39]
(see: Dynamic programming in clustering)

K-minorant see: greatest —
k-neighbor

[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

k-neighborhood
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

k-Opt
[68Q25, 68R10, 68W40, 90B06, 90B35, 90C06, 90C10, 90C27,
90C39, 90C57, 90C59, 90C60, 90C90]
(see: Domination analysis in combinatorial optimization;
Traveling salesman problem)

k-optimality
[68Q20]
(see: Optimal triangulations)

k-relations
[05C85]
(see: Directed tree networks)

k-restrictive
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

k-restrictive multilayer
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

k-separation
[90C09, 90C10]
(see:Matroids)

k-set-contraction
[90C33]
(see: Order complementarity)

k-Steiner ratio
[90C27]
(see: Steiner tree problems)

k-tree
[90C27]
(see: Steiner tree problems)

k-way graph partitioning problem
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

k-way polytope
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

k-way table
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

k-way transportation polytope
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

Kackmartz method
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

kalman filter
(see: Bayesian networks)

Kalmanson matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Kantorovich
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

Kantorovich–Karush–Kuhn–Tucker equations
[65K05, 65K10]
(see: ABS algorithms for optimization)

Kantorovich, Leonid Vitalyevich
(01A99)
(referred to in:History of optimization; Linear
programming)
(refers to:History of optimization; Linear programming)

Kantorovich scheme
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

Kanzow–Smale function see: Chen–Harker– —
Karmarkar algorithm

[90C05]
(see: Linear programming: karmarkar projective algorithm)

Karmarkar method
[65K05, 65K10]
(see: ABS algorithms for optimization)

Karmarkar potential function
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

karmarkar projective algorithm see: Linear programming: —
Karush–Kuhn–Tucker conditions

[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

Karush–Kuhn–Tucker conditions
[90C30]
(see: Convex-simplex algorithm)

Karush–Kuhn–Tucker conditions see: generalized —
Karush–Kuhn–Tucker equations see: Kantorovich–—
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Karush–Kuhn–Tucker optimality conditions
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

Karush–Kuhn–Tucker point
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

Karush–Kuhn–Tucker point
[58E05, 90C26, 90C30]
(see: Bilevel optimization: feasibility test and flexibility
index; Topology of global optimization)

Karush–Kuhn–Tucker type condition
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

Karwan Kth-best algorithm see: Bialas–—
Kataoka principle

[90C15]
(see: Stochastic programmingmodels: random objective)

Kaucher arithmetic
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

Kaufman–Broeckx linearization
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Kaufmann–Stewart reorthogonalized Gram–Schmidt
algorithm see: Daniel–Gragg–—

kB-consistency
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

Keifer–Wolfowitz method
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

Kelley’s classical cutting plane method
[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)

Kelley cutting plane method
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

Kelley method
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

kernel
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

kernel see:Markov—
kernel estimates

[90C15]
(see: Extremum problems with probability functions: kernel
type solution methods)

kernel function
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

kernel of a graph
[90-XX]
(see: Outranking methods)

kernel transformation
[55R15, 55R35, 65K05, 90C11]

(see: Deterministic and probabilistic optimization models
for data classification)

kernel type solutionmethods see: Extremum problems with
probability functions: —

Kernighan neighborhood see: Lin– —
key variables

[49M25, 90-08, 90C05, 90C06, 90C08, 90C15]
(see: Simple recourse problem: primal method)

keys method see: random—
keywords

[90C09, 90C10]
(see: Optimization in classifying text documents)

keywords
[90C09, 90C10]
(see: Optimization in classifying text documents)

KH-regular problem
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

Kharitonov theorem
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

Kimura maximum principle
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

kinematically admissible displacement
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

kinetic coefficients see: estimation of—
kinetically admissible space

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

kinetics and transport see: Identificationmethods for
reaction—

Kirchhoff-condition
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

KKT
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

KKT-based method
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

KKT conditions
[49M37, 65K05, 90C26, 90C30, 90C39]
(see: Bilevel optimization: feasibility test and flexibility
index; Equality-constrained nonlinear programming: KKT
necessary optimality conditions; Second order optimality
conditions for nonlinear optimization)

KKT conditions
[90C26, 90C30, 90C33, 90C39]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach; Second order optimality
conditions for nonlinear optimization)

KKT conditions see: first order —
kKT necessary optimality conditions

[49M37, 65K05, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions)
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KKT necessary optimality conditions
[49M37, 65K05, 90C30]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions)

KKT necessary optimality conditions see: Equality-constrained
nonlinear programming:—

KKT optimality conditions
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

kKT point
[90C60]
(see: Complexity theory: quadratic programming)

KKT point see: global minimum—
KKT points

[58E05, 90C30]
(see: Topology of global optimization)

KKT points see: successive improvement of—
KKT stationarity conditions

[65K05, 90C20]
(see: Quadratic programming with bound constraints)

Klee–Minty examples
[90C05]
(see: Linear programming: Klee–Minty examples)

Klee–Minty examples
[90C05]
(see: Linear programming: Klee–Minty examples)

Klee–Minty examples see: Linear programming: —
Kleene–Dienes implication

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Klein 4-element group
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Klötzler duality
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

knapsack see: fractional 0–1 —;multiconstraint—;
multidimensional—;multiple choice—; Quadratic—

knapsack constraint
[68Q99, 90C10, 90C27]
(see: Branch and price: Integer programming with column
generation;Multidimensional knapsack problems)

knapsack constraint
[90C20, 90C60]
(see: Quadratic knapsack)

knapsack cut
[90C11]
(see:MINLP: branch and bound methods)

knapsack problem
[05-04, 62C10, 65K05, 68Q99, 90C05, 90C10, 90C11, 90C15,
90C26, 90C27, 90C29, 90C30, 90C57, 90C90]
(see: Bayesian global optimization; Branch and price:
Integer programming with column generation; Chemical
process planning; Evolutionary algorithms in
combinatorial optimization; Integer programming;
Kuhn–Tucker optimality conditions;Multi-objective
combinatorial optimization; Simplicial pivoting algorithms
for integer programming)

knapsack problem
[90B90, 90C05, 90C10, 90C59, 90C60]

(see: Complexity theory: quadratic programming;
Cutting-stock problem; Simplicial pivoting algorithms for
integer programming)

knapsack problem see: bi- —; bidimensional—; convex
quadratic—; linear multiple-choice—;m-dimensional—;
multi- —;multiconstraint—;multidimensional—;
multidimensional multiple-choice—;multidimensional
zero-one—;multiple—;multiple-choice—; zero-one—

knapsack problems
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

knapsack problems see:Multidimensional—
Knaster–Kuratowski–Mazurkiewicz lemma

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

Knizhnik–Zamolodchikov differential equation
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

knowledge
(see: Planning in the process industry)

knowledge see: algorithmic—; declarative—; state of—
knowledge-based NP methods

[90C11, 90C59]
(see: Nested partitions optimization)

knowledge of a probability distribution see: incomplete—
Kohout compatibility theorem see: Bandler– —
Kojima function

[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

Kojima–Hirabayashi see: problem regular in the sense of —
Kojima–Shindo method

[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

Kolmogorov–Chaitin complexity see: Solomonoff–—
Kolmogorov complexity

(90C60)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory; Complexity
theory: quadratic programming; Computational
complexity theory; Fractional combinatorial optimization;
Information-based complexity and information-based
optimization;Mixed integer nonlinear programming;
NP-complete problems and proof methodology; Parallel
computing: complexity classes)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Complexity theory: quadratic
programming; Computational complexity theory;
Fractional combinatorial optimization; Information-based
complexity and information-based optimization;Mixed
integer nonlinear programming; Parallel computing:
complexity classes)

Kolmogorov complexity
[90C60]
(see: Kolmogorov complexity)

Kolmogorov complexity see: conditional—
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Kolmogorov "-entropy
[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

Koopmans–Beckmann QAP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Koopmans–Beckmann quadratic assignment problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

KP
[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

Kramers equation see: Smoluchowski–—
Krawczyk method

[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval fixed point theory; Interval Newton methods)

Krawczyk variation of the interval Newton method
[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

Krein–Milman theorem
(90C05)
(referred to in: Carathéodory theorem; Linear
programming)
(refers to: Carathéodory theorem; Linear programming)

Kreisselmeier–Steinhauser function
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

Kremser equation
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

Kruskal algorithm
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Kruskal algorithm see:modified—
Kruskal �b statistic see: Goodman–—
Krylov space type methods

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

KSM
[90C15]
(see: Extremum problems with probability functions: kernel
type solution methods)

KT conditions
[90C30]
(see: Kuhn–Tucker optimality conditions)

KT conditions see: nonstoichiometric form of —;
stoichiometric form of—

KT equations
[65K05, 65K10]
(see: ABS algorithms for optimization)

KT point
[90C30]
(see: Nonlinear least squares problems)

KT point
[90C30]
(see: Kuhn–Tucker optimality conditions)

Kth-best algorithm see: Bialas–Karwan—
kth directional derivative

[65K05, 90C30]
(see:Minimax: directional differentiability)

kth order form of coordinates
[65K05, 90C30]
(see:Minimax: directional differentiability)

kth order hypodifferential
[65K05, 90C30]
(see:Minimax: directional differentiability)

Kuhn–Tucker approach
[49-01, 49K10, 49M37, 90-01, 90C05, 90C27, 91B52]
(see: Bilevel linear programming)

Kuhn–Tucker conditions
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

Kuhn–Tucker conditions
[90C20, 90C30]
(see: Successive quadratic programming; Successive
quadratic programming: decomposition methods)

Kuhn–Tucker conditions see: generalized Karush–—;
Karush–—

Kuhn–Tucker conditions for quadratic programming
sub-problems
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

Kuhn–Tucker CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Kuhn–Tucker equations
[65K05, 65K10]
(see: ABS algorithms for optimization)

Kuhn–Tucker equations see: Kantorovich–Karush–—
Kuhn–Tucker necessary optimality conditions

[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

Kuhn–Tucker optimality condition
[90C30]
(see: Nonlinear least squares problems)

Kuhn–Tucker optimality condition
[90C30]
(see: Nonlinear least squares problems)

Kuhn–Tucker optimality conditions
(90C30)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications;High-order necessary
conditions for optimality for abnormal points; Implicit
lagrangian; Inequality-constrained nonlinear optimization;
Lagrangian duality: BASICS; Rosen’s method, global
convergence, and Powell’s conjecture; Saddle point theory
and optimality conditions; Second order constraint
qualifications; Second order optimality conditions for
nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; Farkas lemma; First
order constraint qualifications;High-order necessary
conditions for optimality for abnormal points; Implicit
lagrangian; Inequality-constrained nonlinear optimization;
Lagrangian duality: BASICS; Rosen’s method, global
convergence, and Powell’s conjecture; Saddle point theory
and optimality conditions; Second order constraint
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qualifications; Second order optimality conditions for
nonlinear optimization)

Kuhn–Tucker optimality conditions see: Karush–—
Kuhn–Tucker point

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Kuhn–Tucker point see: Karush–—
Kuhn–Tucker points see:multiple—;multiple QP—
Kuhn–Tucker type condition see: Karush–—
Kullback–Leibler cross-entropy

[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

Kullback–Leibler divergence
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

Kullback–Leibler measure of cross-entropy
[62F10, 94A17]
(see: Entropy optimization: parameter estimation)

Kuratowski convergence see: discrete Painlevé–—
Kuratowski–Mazurkiewicz lemma see: Knaster– —
kurtosis

[90C26, 90C90]
(see: Signal processing with higher order statistics)

KyFan function
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

L
(l) see: tie-up-time—
L-BFGS

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

L-convex function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L2-convex function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L\-convex function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L-convex functions see: Fenchel-type duality for M- and—
L-convex functions and M-convex functions

(90C27, 90C25, 90C10, 90C35)
(referred to in: Invexity and its applications)
(refers to: Generalized concavity in multi-objective
optimization; Invexity and its applications; Isotonic
regression problems)

L-convex set
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L\-convex set
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L-convexity
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L1-distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

L1-distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

L1-distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

L1-distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

Lp-distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

Lp-distance
[90B80, 90B85, 90C27]
(see: Single facility location: multi-objective rectilinear
distance location;Voronoi diagrams in facility location)

`1 estimation problem
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

l1 exact penalty function
[90Cxx]
(see: Discontinuous optimization)

L-matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

L1-norm
[62H30, 90C39]
(see: Dynamic programming in clustering)

L2-norm
[62H30, 90C39]
(see: Dynamic programming in clustering)

L1-norm
[62H30, 90C39]
(see: Dynamic programming in clustering)

`1 penalty function
[90C30]
(see: Nonlinear least squares problems)

L1-penalty function see: exact—
L-R flat fuzzy number

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

L-R fuzzy number
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

L-RH-BFGS
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

L-separation theorem
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

L-shaped decomposition
[68W10, 90B15, 90C06, 90C15, 90C30]
(see: Stochastic network problems: massively parallel
solution; Stochastic programs with recourse: upper bounds)



Subject Index 4295

l-shaped method
[90C06, 90C15, 90C90]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems; L-shaped
method for two-stage stochastic programs with recourse;
Stochastic linear programming: decomposition and cutting
planes)

L-shaped method see: integer —
L-shaped method for two-stage stochastic programs with

recourse
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions;Multistage stochastic programming:
barycentric approximation; Preprocessing in stochastic
programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programming:
quasigradientmethod; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions;Multistage stochastic programming:
barycentric approximation; Preprocessing in stochastic
programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;

Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

L type neighborhood structure for the QAP see: K-—
Lfree of unused partitions see: set —
Lreac of used partitions see: set—
L1 (v)-differentiable family of measures see: weakly—
La Garza method see: De—
label see: distance—
label carrying

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

label correcting methods
[90B10, 90C27]
(see: Shortest path tree algorithms)

label setting methods
[90B10, 90C27]
(see: Shortest path tree algorithms)

labeling
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

labeling see: consistent—; distance constrained—; integer —;
vector —

labeling algorithm see: consistent—; relaxation—
labeling procedure

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

labeling processes see: relaxation—
labelings

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

lack of smoothness
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

Lagrange duality see:Multi-objective optimization: —;
saddle—

Lagrange equation
[90C30]
(see: Image space approach to optimization)

Lagrange equation see: dual Euler–—; Euler–—
Lagrange equations

[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Lagrange form
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

Lagrange function
[49K27, 49K40, 90C30, 90C31, 90C34, 90C90]
(see:MINLP: applications in blending and pooling
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problems; Second order constraint qualifications;
Semi-infinite programming: second order optimality
conditions)

Lagrange function
[90C05, 90C30]
(see: Image space approach to optimization; Theorems of
the alternative and optimization)

Lagrange functional
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

Lagrange functions see: augmented —
Lagrange, Joseph-Louis

(01A99)
(referred to in: Decomposition techniques for MILP:
lagrangian relaxation; Integer programming: lagrangian
relaxation; Lagrangianmultipliers methods for convex
programming;Multi-objective optimization: lagrange
duality)
(refers to: Decomposition techniques for MILP: lagrangian
relaxation; Integer programming: lagrangian relaxation;
Lagrangianmultipliers methods for convex programming;
Multi-objective optimization: lagrange duality)

Lagrange multiplier
[90C29, 90C30, 90C33]
(see: Implicit lagrangian;Multi-objective optimization;
Interactivemethods for preference value functions)

Lagrange multiplier approach see: Everett generalized —
Lagrange multiplier rule

[49K27, 90C26, 90C29, 90C48]
(see: Set-valued optimization; Smooth nonlinear nonconvex
optimization)

Lagrange multiplier rule
[90C26]
(see: Smooth nonlinear nonconvex optimization)

Lagrange multiplier rule see: global —
Lagrange multiplier sets

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

Lagrange multiplier vector
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

Lagrange multipliers
[01A99, 49M37, 65G20, 65G30, 65G40, 65H20, 65K05, 65K10,
90B85, 90C05, 90C10, 90C22, 90C25, 90C30, 90C31, 93A13]
(see: Equality-constrained nonlinear programming: KKT
necessary optimality conditions; Image space approach to
optimization; Integer programming: lagrangian relaxation;
Interval analysis: verifying feasibility; Lagrange,
Joseph-Louis; Lagrangianmultipliersmethods for convex
programming;Multilevel methods for optimal design;
Semidefinite programming: optimality conditions and
stability; Sensitivity and stability in NLP: approximation;
Sensitivity and stability in NLP: continuity and differential
stability; Single facility location: multi-objective euclidean
distance location; Theorems of the alternative and
optimization)

Lagrange multipliers
[01A99, 90C05, 90C10, 90C15, 90C22, 90C25, 90C30, 90C31]

(see: Image space approach to optimization; Integer
programming: lagrangian relaxation; Lagrange,
Joseph-Louis; Semidefinite programming: optimality
conditions and stability; Stochastic programming:
nonanticipativity and lagrangemultipliers; Theorems of
the alternative and optimization)

Lagrange multipliers see: extended set of—; Stochastic
programming: nonanticipativity and—

Lagrange multipliers for nonanticipativity constraints
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

Lagrange multipliers for phase constraints
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

Lagrange relaxation
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Lagrange–Slater dual see: extended—
Lagrange-type functions

(90C30, 90C26, 90C46)
Lagrange-type functions

[90C26, 90C30, 90C46]
(see: Lagrange-type functions)

Lagrangian
[05C60, 05C69, 05C85, 37B25, 46A20, 49M37, 52A01, 65K05,
68W01, 90C15, 90C20, 90C22, 90C25, 90C27, 90C30, 90C31,
90C34, 90C35, 90C59, 91A22]
(see: Composite nonsmooth optimization;Duality for
semidefinite programming;Heuristics for maximum clique
and independent set; Inequality-constrained nonlinear
optimization; Replicator dynamics in combinatorial
optimization; Semidefinite programming: optimality
conditions and stability; Semi-infinite programming:
second order optimality conditions; Sensitivity and stability
in NLP: continuity and differential stability; Stochastic
programming: nonanticipativity and lagrangemultipliers)

Lagrangian see: augmented —; Implicit—;modified—;
MPEC—; quadratic—; reduced Hessian of a—; restricted
implicit—; saddle—; sub—; unconstrained implicit—;
vector valued—

Lagrangian bounds
[90C25, 90C26]
(see: Decomposition in global optimization)

Lagrangian conditions
[90C26]
(see: Invexity and its applications)

Lagrangian conditions
[90C26]
(see: Invexity and its applications)

Lagrangian decomposition
[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

Lagrangian decomposition
[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

Lagrangian decomposition approach see: augmented —
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Lagrangian dual
[90C10, 90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation; Integer programming: lagrangian relaxation)

Lagrangian dual
[90C10, 90C30]
(see: Integer programming: lagrangian relaxation)

Lagrangian dual optimization problem
[90C30]
(see: Lagrangian duality: BASICS)

Lagrangian dual problem
[90C10, 90C30, 90C46]
(see: Integer programming duality; Lagrangian duality:
BASICS)

Lagrangian duality
[90C10, 90C46]
(see: Integer programming duality)

Lagrangian duality
[90C30]
(see: Duality for semidefinite programming)

Lagrangian duality: BASICS
(90C30)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications; Implicit lagrangian;
Inequality-constrained nonlinear optimization;
Kuhn–Tucker optimality conditions; Rosen’s method,
global convergence, and Powell’s conjecture; Saddle point
theory and optimality conditions; Second order constraint
qualifications; Second order optimality conditions for
nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; Farkas lemma;
Farkas lemma: generalizations; First order constraint
qualifications; Inequality-constrained nonlinear
optimization; Kuhn–Tucker optimality conditions; Rosen’s
method, global convergence, and Powell’s conjecture;
Saddle point theory and optimality conditions; Second
order constraint qualifications; Second order optimality
conditions for nonlinear optimization)

Lagrangian finite generation method
[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

Lagrangian form
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Lagrangian function
[90C05, 90C20, 90C25, 90C26, 90C30, 90C39, 90C90]
(see: Image space approach to optimization; Lagrangian
duality: BASICS; Second order optimality conditions for
nonlinear optimization; Smooth nonlinear nonconvex
optimization; Successive quadratic programming;
Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods; Theorems of the
alternative and optimization)

Lagrangian function
[90C20, 90C30, 90C90]
(see: Successive quadratic programming; Successive

quadratic programming: applications in distillation
systems; Successive quadratic programming:
decompositionmethods)

Lagrangian function see: augmented —; Hessian matrix of
a—; infimum of a—; projected Hessian matrix of a—

Lagrangian Hessian matrix see: projected—
Lagrangian methods see: Practical augmented —
Lagrangian multipliers

[90C05, 90C30]
(see: Theorems of the alternative and optimization)

Lagrangian multipliers
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

Lagrangianmultipliersmethods for convex programming
(90C25, 90C30)
(referred to in: Convex max-functions;Decomposition
techniques for MILP: lagrangian relaxation; Integer
programming: lagrangian relaxation; Lagrange,
Joseph-Louis;Multi-objective optimization: lagrange
duality; Splittingmethod for linear complementarity
problems)
(refers to: Convex max-functions;Decomposition
techniques for MILP: lagrangian relaxation; Integer
programming: lagrangian relaxation; Lagrange,
Joseph-Louis;Multi-objective optimization: lagrange
duality)

Lagrangian problems see: high-order local maximumprinciple
for—

Lagrangian relaxation
[49J52, 68Q99, 90C10, 90C11, 90C15, 90C27, 90C30, 90C35,
90C46, 90C57, 90C90]
(see: Branch and price: Integer programming with column
generation;Decomposition techniques for MILP:
lagrangian relaxation; Integer programming; Integer
programming duality; Integer programming: lagrangian
relaxation;Multicommodity flow problems;Multi-index
transportation problems;Nondifferentiable optimization:
relaxationmethods; Stochastic integer programs)

Lagrangian relaxation
[49J52, 90B80, 90C10, 90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation; Facilities layout problems; Integer
programming: lagrangian relaxation;Nondifferentiable
optimization: relaxationmethods)

lagrangian relaxation see: Decomposition techniques for
MILP: —; Integer programming: —

Lagrangian relaxation with subgradient optimization
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

Lagrangian theory
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

Lagrangian theory of CNSO problems see: second order—
Lagrangians see: augmented —
� see: canonical function associated with—
laminar family

[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)
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laminated composite materials
[90C26, 90C90]
(see: Structural optimization: history)

Lanczos algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Lanczos method see: implicit restarted —
Landau notation

[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

Langevin equation
[65K05, 90C30]
(see: Random search methods)

language
[90C60]
(see: Complexity classes in optimization)

language see: algebraic modeling—; algorithmic—;
declarative—; F-complete—; F-hard—;modeling—

language accepted by a Turing machine
[90C60]
(see: Complexity classes in optimization)

language and constraint logic programming see:modeling—
language recognition problem

[90C60]
(see: Complexity classes in optimization; Complexity
theory)

language recognition problems
[90C60]
(see: Complexity classes in optimization)

languages see: algebraic modeling—; declarative—; second
generation modeling—

languages in optimization: a new paradigm see:Modeling—
LAPACK

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Laplace method and applications to optimization problems
laplace’s principle of insufficient reason

[94A17]
(see: Jaynes’ maximum entropy principle)

Laplace principle of insufficient reasoning
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

large see: sufficiently—
large collections of documents see: classification of —
large nonlinear multicommodity flow problems

[90C30]
(see: Simplicial decomposition)

large region network
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

large residual
[90C30]
(see: Nonlinear least squares problems)

large residual problem
[90C30]
(see: Generalized total least squares)

large-scale combinatorial optimization
(see: Selection of maximally informative genes)

large-scale least squares problems see: Complexity and—
large scale linear systems

[90C30]
(see: Conjugate-gradient methods)

large-scale neighborhoods
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

large scale nonlinear mixed integer programming problem
[90B05, 90B06]
(see: Global supply chain models)

large scale optimization
[01A99]
(see:History of optimization)

large scale problem
[90C06]
(see: Large scale unconstrained optimization)

large scale problem
[90C06]
(see: Large scale unconstrained optimization)

large scale and sparse semidefinite programs see: Solving—
large scale trust region

[90C30]
(see: Large scale trust region problems)

large scale trust region problem
[90C30]
(see: Large scale trust region problems)

Large scale trust region problems
(90C30)
(referred to in: ABS algorithms for linear equations and
linear least squares; Cholesky factorization;
Conjugate-gradientmethods; Interval linear systems; Large
scale unconstrained optimization; Local attractors for
gradient-related descent iterations;Nonlinear least squares:
Newton-type methods; Nonlinear least squares: trust region
methods;Orthogonal triangularization;Overdetermined
systems of linear equations;QR factorization; Solving large
scale and sparse semidefinite programs; Symmetric systems
of linear equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Cholesky factorization; Conjugate-gradient
methods;D.C. programming; Integer programming;
Interval linear systems; Large scale unconstrained
optimization; Linear programming; Lipschitzian operators
in best approximation by bounded or continuous functions;
Local attractors for gradient-related descent iterations;
Nonlinear least squares: Newton-type methods; Nonlinear
least squares: trust regionmethods;Orthogonal
triangularization;Overdetermined systems of linear
equations;QR factorization; Solving large scale and sparse
semidefinite programs; Symmetric systems of linear
equations)

Large scale unconstrained optimization
(90C06)
(referred to in: ABS algorithms for linear equations and
linear least squares; Broyden family of methods and the
BFGS update; Cholesky factorization; Conjugate-gradient
methods; Continuous global optimization: models,
algorithms and software; Interval linear systems; Large
scale trust region problems;Modeling languages in
optimization: a new paradigm;Optimization software;
Orthogonal triangularization;Overdetermined systems of
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linear equations;QR factorization; Solving large scale and
sparse semidefinite programs; Symmetric systems of linear
equations;Unconstrained nonlinear optimization:
Newton–Cauchy framework; Unconstrained optimization
in neural network training)
(refers to: ABS algorithms for linear equations and linear
least squares; Broyden family of methods and the BFGS
update; Cholesky factorization; Conjugate-gradient
methods; Continuous global optimization: models,
algorithms and software; Interval linear systems; Large scale
trust region problems; Linear programming;Modeling
languages in optimization: a new paradigm;Nonlinear least
squares: trust regionmethods;Optimization software;
Orthogonal triangularization;Overdetermined systems of
linear equations;QR factorization; Solving large scale and
sparse semidefinite programs; Symmetric systems of linear
equations;Unconstrained nonlinear optimization:
Newton–Cauchy framework; Unconstrained optimization
in neural network training)

largest coefficient pivoting rule see: Dantzig —
largest coefficient rule

[90C05]
(see: Linear programming: Klee–Minty examples)

largest empty circle
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

largest empty circle problem
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

largest inscribed sphere method
[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

largest possible
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

Lasserre signed decomposition
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

last node
[90C35]
(see: Generalized networks)

last-out rule see: first-in—
lattice

[03B50, 03B52, 03C80, 13Cxx, 13Pxx, 14Qxx, 62F30, 62Gxx,
68T27, 90Cxx]
(see: Checklist paradigm semantics for fuzzy logics; Integer
programming: algebraic methods)

lattice see: distributive—; free distributive—; vector —
lattice ideal

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

lattice program
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

lattice program
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

lattice-type many-valued logic system
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

law see: flow conservation—; Gauss distribution—; Hook—;
Raoult—;Walras—

law of heat conduction see: Fourier —
law of normal distribution

[01A99]
(see: Gauss, Carl Friedrich)

lawed see: dead or dog-—
Lawler linearization

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Lawler lower bound see: Gilmore–—
Lawler type lower bounds see: Gilmore–—
Lawrence signed decomposition

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

laws see: conservation—; discretized hemivariational
inequalities for nonlinear material —; variational
formulation of quasidifferential—; variational formulation
of subdifferential —

laws and hemivariational inequalities see:multivalued
nonmonotone—

laws and systems of variational inequalities see: QD—
laws and variational equalities see: single-valued boundary—
laws and variational inequalities see:multivaluedmonotone—
layer see: input —
layer feed-forward network see: two- —
layer supergraph see: three- —
layout see: facilities—; facility—
layout manager

[90B80]
(see: Facilities layout problems)

layout manager
[90B80]
(see: Facilities layout problems)

layout problem see: terminal —
layout problems see: Facilities—
layout problems and optimization see: Plant—
layover

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

LBDOP
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

lCP
[65K10, 90C11, 90C33, 90C51]
(see: Generalizations of interior point methods for the
linear complementarity problem; LCP: Pardalos–Rosen
mixed integer formulation)

LCP
[05B35, 65K05, 90C05, 90C20, 90C25, 90C33, 90C55]
(see: Integer linear complementary problem; Lexicographic
pivoting rules; Principal pivoting methods for linear
complementarity problems; Splitting method for linear
complementarity problems)

LCP see: integer —; PCP-—; process the—
LCP: Pardalos–Rosenmixed integer formulation

(90C33, 90C11)
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(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Equivalence between nonlinear
complementarity problem and fixed point problem;
Generalized nonlinear complementarity problem;Graph
coloring; Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming: lagrangian relaxation; Linear
complementarity problem;MINLP: trim-loss problem;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametric mixed integer linear programming;Order
complementarity; Parametric mixed integer nonlinear
optimization; Principal pivoting methods for linear
complementarity problems; Set covering, packing and
partitioning problems; Simplicial pivoting algorithms for
integer programming; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Time-dependent traveling salesman
problem; Topological methods in complementarity theory)
(refers to: Branch and price: Integer programming with
column generation; Convex-simplex algorithm;
Decomposition techniques for MILP: lagrangian relaxation;
Equivalence between nonlinear complementarity problem
and fixed point problem;Generalized nonlinear
complementarity problem; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
bound methods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; Lemke method;
Linear complementarity problem; Linear programming;
Mixed integer classification problems;Multi-objective
integer linear programming;Multi-objective mixed integer
programming;Multiparametricmixed integer linear
programming;Order complementarity; Parametric linear
programming: cost simplex algorithm; Parametric mixed
integer nonlinear optimization; Principal pivoting methods
for linear complementarity problems; Sequential simplex
method; Set covering, packing and partitioning problems;
Simplicial pivoting algorithms for integer programming;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem; Topological
methods in complementarity theory)

lDL
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

lDM
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

LDSU see: nonarbitrage condition for—
leader problem

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

leading boxes
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

lean stream
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

learning see: batch—; guided—;machine—; off-line—;
on-line—; Q-—; reinforcement—; supervised—

learning algorithm
[90C09, 90C10]
(see: Optimization in boolean classification problems)

learning algorithm
[90C09, 90C10]
(see: Optimization in boolean classification problems)

learning algorithm see:machine-—
learning of Boolean functions see: interactive—
least absolute deviation

[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

least circle
[90B85, 90C27]
(see: Single facility location: circle covering problem)

least effort see: principle of—
least-index

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

Least-index anticycling rules
(90C05, 90C33, 90C20, 05B35)
(referred to in: Criss-cross pivoting rules; Lexicographic
pivoting rules; Linear programming; Linear programming:
Klee–Minty examples; Pivoting algorithms for linear
programming generating two paths; Principal pivoting
methods for linear complementarity problems;
Probabilistic analysis of simplex algorithms; Simplicial
pivoting algorithms for integer programming)
(refers to: Criss-cross pivoting rules; Farkas lemma; Farkas
lemma: generalizations; Lexicographic pivoting rules;
Linear complementarity problem; Linear programming;
Oriented matroids; Pivoting algorithms for linear
programming generating two paths; Principal pivoting
methods for linear complementarity problems;
Probabilistic analysis of simplex algorithms)

least-index anticycling rules
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

least-index criss-cross method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Principal pivoting methods
for linear complementarity problems)

least-index pivoting method
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

least index pivoting rule see: Bland—
least-index refinement see:Murty—
least infeasible integer variable see:most/ —
least squares

[33C45, 65F20, 65F22, 65K10, 65T40, 90C26, 90C29, 90C30,
90C90]
(see: Estimating data for multicriteria decision making
problems: optimization techniques;Global optimization
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methods for harmonic retrieval; Least squares orthogonal
polynomials)

least squares
[33C45, 65F20, 65F22, 65Fxx, 65K10, 90C30, 90C52, 90C53,
90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method; Least squares orthogonal polynomials;
Least squares problems)

least squares see: Abaffi–Broyden–Spedicato algorithms for
linear equations and linear —; ABS algorithms for linear
equations and linear —; generalized nonlinear —;
Generalized total —; linear —;method of—; nonlinear —;
weighted—

least squares algorithm see: recursive—
least squares criterion

[62H30, 90C39]
(see: Dynamic programming in clustering)

least squares distance function
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

least squares formal orthogonal polynomials
[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

least squares formulation
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

least squares: Newton-type methods see: Nonlinear —
Least squares orthogonal polynomials

(33C45, 65K10, 65F20, 65F22)
(referred to in: ABS algorithms for linear equations and
linear least squares;ABS algorithms for optimization;
Gauss–Newton method: Least squares, relation to Newton’s
method;Generalized total least squares; Least squares
problems;Nonlinear least squares: Newton-type methods;
Nonlinear least squares problems;Nonlinear least squares:
trust region methods)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization;
Gauss–Newton method: Least squares, relation to Newton’s
method;Generalized total least squares; Least squares
problems;Nonlinear least squares: Newton-type methods;
Nonlinear least squares problems;Nonlinear least squares:
trust region methods)

least squares problem
[15-XX, 49K35, 49M27, 62G07, 62G30, 65-XX, 65D10, 65K05,
65K10, 90-XX, 90C25, 90Cxx]
(see: Cholesky factorization; Convexmax-functions;
Isotonic regression problems;Overdetermined systems of
linear equations; Symmetric systems of linear equations)

least squares problem
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

least squares problem see: consistent—; generalized —;
generalized nonlinear —; perturbed —; sparse—; total —;
unconstrained nonlinear —; weighted —

Least squares problems
(65Fxx)
(referred to in: ABS algorithms for linear equations and

linear least squares; ABS algorithms for optimization;
Cholesky factorization; Gauss, Carl Friedrich;
Gauss–Newton method: Least squares, relation to Newton’s
method; Generalized total least squares; Least squares
orthogonal polynomials;Nonlinear least squares:
Newton-type methods;Nonlinear least squares problems;
Nonlinear least squares: trust regionmethods;
Unconstrained optimization in neural network training)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization; Gauss, Carl
Friedrich;Gauss–Newton method: Least squares, relation
to Newton’s method;Generalized total least squares; Least
squares orthogonal polynomials;Nonlinear least squares:
Newton-type methods;Nonlinear least squares problems;
Nonlinear least squares: trust regionmethods)

least squares problems see: Complexity and large-scale—;
Nonlinear —

least squares problems with massive data sets
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

Least squares, relation to Newton’s method see:
Gauss–Newton method: —

least squares solutions
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

least squares: trust region methods see: Nonlinear —
leaving variable

[90C05]
(see: Linear programming: Klee–Minty examples)

leaving variable see: choice of the—
left-chain justification

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

left-collection of a partition
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

left local maximizer see: discrete—
left-paired element

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

left-paired set
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

left-pairs
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

left-reachable
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

left-reachable see: directly —
left saddle point

[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

left-unpaired element
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

legal neighbor
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

legend see: arc —; node—
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Legendre conjugate
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

Legendre duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Legendre duality pair
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

legendre duality relations
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization;
Duality theory: monoduality in convex optimization)

Legendre transformation
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

Legendre transformation see: integral Fenchel– —
Legends see: Figure—
legitimacy see: gain—
Lehmann–Goerisch bound

[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Lehmann–Maehly method
[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Lehmann–Maehly method
[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Leibler cross-entropy see: Kullback–—
Leibler divergence see: Kullback–—
Leibler measure of cross-entropy see: Kullback–—
Leibniz see: Gottfried Wilhelm—
Leibniz, gottfried wilhelm

(01A99)
(referred to in:History of optimization)
(refers to:History of optimization)

Lemke’s algorithm
[05B35, 52A22, 60D05, 65K05, 68Q25, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Probabilistic analysis of
simplex algorithms)

Lemke method
(90C33)
(referred to in: Convex-simplex algorithm; Equivalence
between nonlinear complementarity problem and fixed
point problem;Generalized nonlinear complementarity
problem; Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Linear
complementarity problem; Linear programming;Order
complementarity; Parametric linear programming: cost
simplex algorithm; Principal pivoting methods for linear
complementarity problems; Sequential simplex method;
Topological methods in complementarity theory)
(refers to: Convex-simplex algorithm; Linear
complementarity problem; Linear programming;
Parametric linear programming: cost simplex algorithm;
Sequential simplex method)

Lemke method
[90C33]
(see: Linear complementarity problem)

lemma see: equivariant Morse—; Farkas —; first slope—;
Knaster–Kuratowski–Mazurkiewicz —; second slope—;
third slope—

lemma: generalizations see: Farkas —
lemmas see: slope—
length see: binary—;maximin path —;maximum path—;

minimax path—;minimumpath—; path—; Shortest
program—; unary—; variable stage- —

length of input data
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

length of a partial computation of a Turing machine
[90C60]
(see: Complexity classes in optimization)

length of a path in a graph
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

length of a subgraph
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

length vector see: arc—
Lennard-Jones

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

Lennard–Jones microcluster
[90C26, 90C90]
(see: Global optimization in Lennard–Jones andmorse
clusters)

Lennard–Jones and morse clusters see: Global optimization
in—

Lennard-Jones potential energy function
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see:Monotonic optimization; Stochastic global
optimization: two-phase methods)

Leonid Vitalyevich see: Kantorovich—
Leray–Schauder degree

[90C33]
(see: Topological methods in complementarity theory)

less-than-truckload
[90C35]
(see:Multicommodity flow problems)

lessPreferred
(see: Railroad locomotive scheduling)

level see: aspiration—; concordance—; lower-—
level B

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

level BF
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

level BFR
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
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(see: Identificationmethods for reaction kinetics and
transport)

level crossingminimization see: k-—
level feature detection see: low-—
level functions see: natural —
level hierarchy see: k- —
level of interaction

[90B85]
(see:Multifacility and restricted location problems)

level in a leveled graph
[90C35]
(see: Optimization in leveled graphs)

level Optimization see: Two-—
level planar graph

[90C35]
(see: Optimization in leveled graphs)

level planarization
[90C35]
(see: Optimization in leveled graphs)

level planarization problem
[90C35]
(see: Optimization in leveled graphs)

level planarization problem see: k- —
level problem see: first—; lower-—; second—; upper —
level set

[62G07, 62G30, 65K05, 90C05, 90C25, 90C26, 90C30, 90C34]
(see: Isotonic regression problems;Monotonic
optimization; Random search methods; Semi-infinite
programming: discretizationmethods)

level set see: bounded—
level sets conjugation

[90C26]
(see: Global optimization: envelope representation)

level software see: high- —; low-—;medium-—
level of a vertex in a rooted tree

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

leveled crossing minimization
[90C35]
(see: Optimization in leveled graphs)

leveled graph
[90C35]
(see: Optimization in leveled graphs)

leveled graph see: k- —; level in a—; proper k- —
leveled graphs

[90C35]
(see: Optimization in leveled graphs)

leveled graphs see: Optimization in—
Levenberg–Marquardt

[90C30]
(see: Cost approximation algorithms)

Levenberg–Marquardt
[90C30]
(see: Cost approximation algorithms)

Levenberg–Marquardt algorithm
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

Levenberg–Marquardt method
[49M37]
(see: Nonlinear least squares: trust regionmethods)

Levenberg–Marquardt rule
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

leverage hypothesis see: financial—
Levin theorem see: Cook–—
Levitin–Polyak method

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Levitin–Polyak minimizing sequence
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

Levitin–Polyak well-posed problem
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

Levy probability distribution
[90C90]
(see: Simulated annealing methods in protein folding)

lexico-positive basis tableau
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexico-positive vector
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic
(see: Planning in the process industry)

lexicographic approach
(see: Planning in the process industry)

lexicographic dual simplex method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

Lexicographic Goal Programming
(see: Planning in the process industry)

lexicographic ordering
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic ordering
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic ordering and perturbation
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic pivot selection
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

lexicographic pivoting rule
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

Lexicographic pivoting rules
(90C05, 90C20, 90C33, 05B35, 65K05)
(referred to in: Criss-cross pivoting rules; Least-index
anticycling rules; Linear programming; Linear
programming: Klee–Minty examples; Pivoting algorithms
for linear programming generating two paths; Principal
pivoting methods for linear complementarity problems;
Probabilistic analysis of simplex algorithms; Simplicial
pivoting algorithms for integer programming)
(refers to: Criss-cross pivoting rules; Least-index anticycling
rules; Linear complementarity problem; Linear
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programming;Orientedmatroids; Pivoting algorithms for
linear programming generating two paths; Principal
pivoting methods for linear complementarity problems;
Probabilistic analysis of simplex algorithms)

lexicographic primal simplex method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic search algorithm
[90C10, 90C11, 90C20]
(see: Linear ordering problem)

lexicographic simplex
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic simplex method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographic variant of the constraint-by-constraint method
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

lexicographical order
[12D10, 12Y05, 13P10]
(see: Gröbner bases for polynomial equations)

lexicographical ordering for n-dimensional vectors
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

lexicographically greater
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

lexicographically minimax objective function
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

lexicographically positive vector
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

lexicographically smaller
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

LexPr
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

LFS function
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

Li–Pardalos generator
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Liability Management see: asset—
liability management decision support system see: Asset —
library see: general-purpose software—; IMSL subroutine—;

NAG—; NAG parallel —; rotamer—
LICQ

[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

(LICQ) see: linear independence constraint qualification—

Lie algebra
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

lift-and-project
[90C05, 90C06, 90C08, 90C10, 90C11, 90C26, 90C27, 90C57]
(see: Integer programming; Integer programming: branch
and cut algorithms; Reformulation-linearization technique
for global optimization)

lift-and-project
[90C09, 90C10, 90C11, 90C27, 90C57]
(see: Disjunctive programming; Integer programming; Set
covering, packing and partitioning problems)

lift-and-project cut
[90C11]
(see:MINLP: branch and bound methods)

lift-and-project cuts
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

lift-and-project hierarchy
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

lift availability see: upper bound on gas —
lift wells of type a see: gas —
lift wells of type b see: gas—
lifting

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

lifting cut
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

lifting procedure
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

light edge
[68Q20]
(see: Optimal triangulations)

light travel
(see: Railroad locomotive scheduling)

like see: convex-—
like criterion see: test nonmonotone Armijo-—
like function see: convex-—
like function pair see: convex-—
like inequalities see: variational- —
like method see: proximal- —
likelihood see:maximum—
likelihood detection via semidefinite programming see:

Maximum—
likelihood estimate see:maximum—
likelihood estimation see:maximum—
likelihood evidence

(see: Bayesian networks)
likelihood function

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

likelihoodmethod see: iterative quadratic maximum—
likelihood principle see:maximum—
likelihood ratio method

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

limit see: absolute—
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limited discrepancy search
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

limited enumeration methods
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

limited-memory
[90C30]
(see: Conjugate-gradientmethods)

limited-memory affine reduced Hessian
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

limited-memory algorithm
[90C30]
(see: Conjugate-gradientmethods)

limited-memory approach
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

limited-memory BFGS method
[90C06]
(see: Large scale unconstrained optimization)

limited-memory reduced-Hessian BFGS algorithm
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

limited-memory symmetric rank-one approach
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

limiting coderivative
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

limiting differential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

limiting Fréchet subdifferential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

limiting (Fréchet) subdifferentials
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

limiting normal cone
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

limiting subdifferential see: singular —
limiting superdifferential

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

limiting value
[01A99]
(see: Gauss, Carl Friedrich)

Lin–Kernighan neighborhood
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

LindAcR
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

line see: capital market —; inexact line search—; security
market—

line algorithm see: on-—
line feedback see: off-—; on- —
line learning see: off- —; on- —
line method see: on- —
line process optimization see: off-—; on- —
line search

[90C25, 90C30, 90C33]
(see: Conjugate-gradientmethods; Implicit lagrangian;
Nonlinear least squares problems; Successive quadratic
programming: full space methods)

line search
[90C30]
(see: Nonlinear least squares problems)

line search see: curvilinear—; inexact—; nonmonotone—
line search line see: inexact—
line search methods

[90C30]
(see: Cyclic coordinate method; Powell method; Rosenbrock
method)

line search problem
[90C30]
(see: Convex-simplex algorithm)

line search problem
[90C30]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm)

line search technique
[49M37]
(see: Nonlinear least squares: Newton-type methods)

line search technique see: inexact—
line searches

[49M37, 90C30]
(see: Nonlinear least squares: trust regionmethods;
Rosenbrockmethod)

line searching
[90C30]
(see: Successive quadratic programming)

lineality space
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

linear
[34A55, 34E05, 35R30, 49M20, 62G05, 62G08, 62J02, 62K05,
62P10, 62P30, 76R50, 80A20, 80A23, 80A30, 90C11, 90C27,
90C30]
(see: Asymptotic properties of randommultidimensional
assignment problem;Generalized outer approximation;
Global optimization: functional forms; Identification
methods for reaction kinetics and transport;Optimal
sensor scheduling)

linear see: non- —
linear algebra

[14R10, 15A03, 32B15, 51E15, 51N20]
(see: Affine sets and functions; Linear space)

linear algebra framework
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

linear algebraic equations
[34-XX, 49-XX, 65-XX, 65K05, 65K10, 68-XX, 90-XX]
(see: ABS algorithms for linear equations and linear least
squares;Nonlocal sensitivity analysis with automatic
differentiation)
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linear algorithm
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

linear appearance of control function
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

linear approximation
[90C31]
(see: Bounds and solution vector estimates for parametric
NLPS)

linear arc cost see: piecewise—
linear Arrangement

(see: State of the art in modeling agricultural systems)
linear arrangement problem

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

linear bilevel programming problem
[90C30, 90C90]
(see: Bilevel programming: global optimization)

linear BLPP see: complexity of the—
linear CG method

[90C30]
(see: Conjugate-gradientmethods)

linear CG method
[90C30]
(see: Conjugate-gradientmethods)

linear co-index
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

linear complementarity
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

linear complementarity
[90C33]
(see: Lemke method)

Linear complementarity problem
(90C33)
(referred to in: Convex-simplex algorithm; Criss-cross
pivoting rules; Equivalence between nonlinear
complementarity problem and fixed point problem;
Generalized nonlinear complementarity problem; Integer
linear complementary problem; LCP: Pardalos–Rosen
mixed integer formulation; Least-index anticycling rules;
Lemke method; Lexicographic pivoting rules; Linear
programming; Linear programming: interior point
methods;Optimization with equilibrium constraints:
A piecewise SQP approach;Order complementarity;
Parametric linear programming: cost simplex algorithm;
Principal pivoting methods for linear complementarity
problems; Probabilistic analysis of simplex algorithms;
Quadratic programming with bound constraints;
Sequential simplex method; Splittingmethod for linear
complementarity problems; Topological methods in
complementarity theory)
(refers to: Convex-simplex algorithm; Equivalence between
nonlinear complementarity problem and fixed point
problem;Generalized nonlinear complementarity problem;
Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Lemke
method; Linear programming;Order complementarity;
Parametric linear programming: cost simplex algorithm;

Principal pivoting methods for linear complementarity
problems; Sequential simplex method; Splitting method for
linear complementarity problems; Topological methods in
complementarity theory)

linear complementarity problem
[65K10, 65M60, 90C11, 90C30, 90C33]
(see: Kuhn–Tucker optimality conditions; LCP:
Pardalos–Rosenmixed integer formulation; Lemke
method; Variational inequalities)

linear complementarity problem
[90C11, 90C33]
(see: LCP: Pardalos–Rosenmixed integer formulation)

linear complementarity problem see: extended—;
Generalizations of interior point methods for the—;
horizontal —;mixed—; parametric —; vertical —

linear complementarity problems
[90C31, 90C33]
(see: Sensitivity analysis of complementarity problems)

linear complementarity problems see: Principal pivoting
methods for —; Splitting method for —

linear complementary problem
[90C25, 90C33]
(see: Integer linear complementary problem)

linear complementary problem see: Integer —
linear Component

(see: State of the art in modeling agricultural systems)
linear constraint

[90C90]
(see: Design optimization in computational fluid dynamics)

linear constraints see: general —
linear control see: piecewise—
linear convergence

[65K05, 90C30]
(see: Bisection global optimization methods)

linear convergence rate see: r- —
linear dependence

[90C09, 90C10]
(see:Matroids;Oriented matroids)

linear discrete optimization oracle
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

linear equality relation
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

linear equation
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

linear equation-solving see: iterative—
linear equations

[65H10, 65J15, 65K05, 65K10]
(see: ABS algorithms for optimization;
Contraction-mapping)

linear equations see: bounds for —; Overdetermined systems
of—; Symmetric systems of—

linear equations and linear least squares see:
Abaffi–Broyden–Spedicato algorithms for —; ABS
algorithms for—

linear extension theorem see: Hahn–Banach—
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linear fixed charge
[90C25]
(see: Concave programming)

linear fractional combinatorial optimization
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

linear fractional combinatorial optimization problem see:
integral —

linear fractional program
[90C32]
(see: Fractional programming)

linear-fractional programming
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

linear fractional terms
[90C26, 90C90]
(see: Global optimization of heat exchanger networks)

linear function see: decomposition of a continuous
piecewise—; piecewise—

linear functions
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

linear growth condition
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

linear, increasing
[90B15]
(see: Evacuation networks)

linear independence
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

linear independence constraint qualification
[49K20, 49M99, 65K05, 65K10, 90C20, 90C25, 90C26, 90C29,
90C30, 90C31, 90C33, 90C34, 90C55]
(see: Parametric global optimization: sensitivity; Parametric
optimization: embeddings, path following and
singularities; Sequential quadratic programming: interior
point methods for distributed optimal control problems)

linear independence constraint qualification (LICQ)
[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

linear independence CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

linear independency constraint qualification
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)

linear index
[58E05, 90C30]
(see: Topology of global optimization)

linear inequalities
[15A39, 90C05]
(see:Motzkin transposition theorem)

linear inequalities
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

linear inequality relation
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

linear interval equation
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

linear least squares
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

linear least squares see: Abaffi–Broyden–Spedicato algorithms
for linear equations and—; ABS algorithms for linear
equations and—

linear map see: adjoint—
linear matrix inequality

[15A15, 90C25, 90C55, 90C90, 93D09]
(see: Robust control; Semidefinite programming and
determinant maximization)

linear matrix inequality
[15A15, 90C25, 90C55, 90C90, 93D09]
(see: Robust control; Semidefinite programming and
determinant maximization)

linear matroid
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

linear minimum cost network flow problem see: piecewise—
linear mixed integer problems

[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

linear model
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

linear model see: general univariate—
linear multiple-choice knapsack problem

[90C10, 90C27]
(see:Multidimensional knapsack problems)

linear multiplicative program
[90C26]
(see: Global optimization in multiplicative programming)

linear network flow problem
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

linear network flow problems see: Piecewise—
linear nondegeneracy condition

[58E05, 90C30]
(see: Topology of global optimization)

linear optimization
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

linear optimization
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

linear optimization see: Distance dependent protein force field
via—; duality theorem for—; Global pairwise protein
sequence alignment via mixed-integer—

linear optimization problem
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative;
Motzkin transposition theorem)
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linear optimization problem in standard form
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

linear optimization problems see: Price of robustness for—;
stochastic—

Linear optimization: theorems of the alternative
(15A39, 90C05)
(referred to in: Farkas lemma; Linear programming;
Motzkin transposition theorem; Theorems of the
alternative and optimization; Tucker homogeneous systems
of linear relations)
(refers to: Farkas lemma; Linear programming;Motzkin
transposition theorem; Theorems of the alternative and
optimization; Tucker homogeneous systems of linear
relations)

linear order complementarity problem
[90C33]
(see: Order complementarity)

linear order complementarity problem see: generalized —
linear ordering

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

Linear ordering problem
(90C10, 90C11, 90C20)
(referred to in: Quadratic assignment problem)
(refers to: Assignment and matching;Assignment methods
in clustering; Bi-objective assignment problem;
Communication network assignment problem; Complexity
theory: quadratic programming; Feedback set problems;
Frequency assignment problem;Generalized assignment
problem;Graph coloring;Graph planarization;Greedy
randomized adaptive search procedures;Maximum
partitionmatching;Quadratic assignment problem;
Quadratic fractional programming: Dinkelbach method;
Quadratic knapsack;Quadratic programming with bound
constraints;Quadratic programming over an ellipsoid;
Quadratic semi-assignment problem; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)

linear ordering problem
[90C35]
(see: Optimization in leveled graphs)

linear outer approximation
[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

linear path
[62H30, 90C39]
(see: Dynamic programming in clustering)

linear platform cost
[90C26]
(see:MINLP: application in facility location-allocation)

linear potential
[90C90]
(see: Design optimization in computational fluid dynamics)

linear problem see: ball-constrained—; geometrically —;
physically—

linear problems see: Semi-infinite programming: methods
for—

linear program
[68Q25, 90C05, 90C20, 90C30, 91B28]

(see: Competitive ratio for portfolio management;
Redundancy in nonlinear programs; Simplicial
decomposition)

linear program
[90C30]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm;
Simplicial decomposition)

linear program see: dual —; finite-dimensional—; integer —;
single parametric mixed integer —; two-stage stochastic—

linear program with an additional reverse convex constraint
[90C26, 90C30]
(see: Reverse convex optimization)

linear program with recourse see: stochastic —
Linear programming

(90C05)
(referred to in: ABS algorithms for linear equations and
linear least squares;Affine sets and functions; Carathéodory
theorem; Cholesky factorization; Convex-simplex
algorithm; Criss-cross pivoting rules; Ellipsoid method;
Equivalence between nonlinear complementarity problem
and fixed point problem; Farkas lemma; Fourier–Motzkin
eliminationmethod; Gauss, Carl Friedrich;Generalized
nonlinear complementarity problem;Global optimization
in multiplicative programming;History of optimization;
Integer linear complementary problem; Interval linear
systems; Job-shop scheduling problem; Kantorovich,
Leonid Vitalyevich; Krein–Milman theorem; Large scale
trust region problems; Large scale unconstrained
optimization; LCP: Pardalos–Rosenmixed integer
formulation; Least-index anticycling rules; Lemke method;
Lexicographic pivoting rules; Linear complementarity
problem; Linear optimization: theorems of the alternative;
Linear programming: Klee–Minty examples; Linear
programmingmodels for classification; Linear space;
Motzkin transposition theorem;Multiparametric linear
programming;Multiplicative programming;Optimization
in medical imaging;Order complementarity;Orthogonal
triangularization;Overdetermined systems of linear
equations; Parametric linear programming: cost simplex
algorithm; Pivoting algorithms for linear programming
generating two paths; Principal pivoting methods for linear
complementarity problems; Probabilistic analysis of
simplex algorithms;QR factorization; Sequential simplex
method; Simplicial pivoting algorithms for integer
programming; Solving large scale and sparse semidefinite
programs; Symmetric systems of linear equations;
Topological methods in complementarity theory; Tucker
homogeneous systems of linear relations; Young
programming)
(refers to: Affine sets and functions; Carathéodory theorem;
Convex-simplex algorithm; Criss-cross pivoting rules;
Farkas lemma; Gauss, Carl Friedrich;Global optimization
in multiplicative programming;History of optimization;
Kantorovich, Leonid Vitalyevich;Krein–Milman theorem;
Least-index anticycling rules; Lemke method; Lexicographic
pivoting rules; Linear complementarity problem; Linear
optimization: theorems of the alternative; Linear space;
Motzkin transposition theorem;Multiparametric linear
programming;Multiplicative programming; Parametric
linear programming: cost simplex algorithm; Pivoting
algorithms for linear programming generating two paths;
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Principal pivoting methods for linear complementarity
problems; Probabilistic analysis of simplex algorithms;
Sequential simplex method; Simplicial pivoting algorithms
for integer programming; Tucker homogeneous systems of
linear relations)

linear programming
[01A99, 37A35, 65K05, 68Q05, 68Q10, 68Q20, 68Q25, 68Q99,
90-XX, 90B50, 90C05, 90C06, 90C10, 90C11, 90C15, 90C22,
90C25, 90C26, 90C29, 90C30, 90C57, 90C60, 90C90]
(see: Branch and price: Integer programming with column
generation;Complexity theory; Complexity theory:
quadratic programming; Copositive programming;
Information-based complexity and information-based
optimization; Kantorovich, Leonid Vitalyevich; Lagrangian
duality: BASICS;Modeling difficult optimization problems;
Optimal triangulations;Optimization and decision support
systems; Potential reductionmethods for linear
programming; Preference disaggregation approach: basic
features, examples from financial decisionmaking;
Probabilistic constrained linear programming: duality
theory; Suboptimal control; Survivable networks)

linear programming
[01A99, 37A35, 49-XX, 52A22, 52B12, 60D05, 65K05, 65K10,
68Q05, 68Q10, 68Q25, 90-XX, 90B30, 90B50, 90B85, 90C05,
90C06, 90C10, 90C11, 90C15, 90C20, 90C25, 90C26, 90C27,
90C29, 90C30, 90C31, 90C35, 91A99, 91B28, 91B82, 93-XX]
(see: ABS algorithms for optimization; Auction algorithms;
Data envelopment analysis;Duality theory: monoduality in
convex optimization; Fourier–Motzkin elimination
method;Homogeneous selfdual methods for linear
programming; Information-based complexity and
information-based optimization; Kantorovich, Leonid
Vitalyevich; Linear ordering problem; Linear
programming; Linear programming: karmarkar projective
algorithm; Linear programming: Klee–Minty examples;
Multifacility and restricted location problems;
Multi-objective integer linear programming;Operations
research and financial markets;Optimization and decision
support systems; Portfolio selection: markowitz
mean-variance model; Potential reductionmethods for
linear programming; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Probabilistic analysis of simplex
algorithms; Probabilistic constrained linear programming:
duality theory; Selfdual parametric method for linear
programs; Sensitivity and stability in NLP)

linear programming see: analytical approximation of—;
Bilevel —; binary—; Decomposition principle of —;
Extension of the fundamental theorem of—; fractional—;
Fuzzy multi-objective—; Homogeneous selfdual methods
for—; infinite-dimensional—; integer —;mixed integer —;
multi-objective—;Multi-objective integer —;
Multiparametric—;Multiparametric mixed integer —;
multiple objective—; parametric —; Piecewise—; Potential
reductionmethods for —; probabilistic constrained—;
semi-infinite—; stochastic—

linear programming approach for DNA transcription element
identification see:Mixed 0-1—

linear programming: complexity, equivalence to minmax,
concave programs see: Bilevel —

linear programming: cost simplex algorithm see: Parametric —

linear programming: decomposition and cutting planes see:
Stochastic—

linear programming duality
[90C10, 90C46]
(see: Integer programming duality)

linear programming: duality theory see: Probabilistic
constrained—

linear Programming and Economic Analysis
[35B40, 37C70, 40A05, 49J24]
(see: Statistical convergence and turnpike theory; Turnpike
theory: stability of optimal trajectories)

linear programming with fuzzy coefficients see:
multi-objective—

linear programming generating two paths see: Pivoting
algorithms for —

linear programming: heat exchanger network synthesis see:
Mixed integer —

Linear programming: interior point methods
(90C05)
(referred to in: Ellipsoidmethod; Entropy optimization:
interior point methods;Homogeneous selfdual methods for
linear programming; Integer programming: branch and
boundmethods; Linear programming: karmarkar
projective algorithm; Potential reductionmethods for
linear programming; Principal pivoting methods for linear
complementarity problems;Quadratic assignment
problem;Quadratic programming with bound constraints;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Successive
quadratic programming: solution by active sets and interior
point methods)
(refers to: Entropy optimization: interior point methods;
Homogeneous selfdual methods for linear programming;
Interior point methods for semidefinite programming;
Linear complementarity problem; Linear programming:
karmarkar projective algorithm; Potential reduction
methods for linear programming; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Successive quadratic
programming: solution by active sets and interior point
methods)

Linear programming: karmarkar projective algorithm
(90C05)
(referred to in: Ellipsoidmethod; Entropy optimization:
interior point methods;Homogeneous selfdual methods for
linear programming; Linear programming: interior point
methods; Nondifferentiable optimization: cutting plane
methods; Potential reductionmethods for linear
programming; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming: solution by active sets
and interior point methods)
(refers to: Entropy optimization: interior point methods;
Homogeneous selfdual methods for linear programming;
Interior point methods for semidefinite programming;
Linear programming: interior point methods; Potential
reductionmethods for linear programming; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Successive quadratic
programming: solution by active sets and interior point
methods)
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Linear programming: Klee–Minty examples
(90C05)
(referred to in: Ellipsoidmethod)
(refers to: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules; Linear programming)

linear programming: mass and heat exchanger networks see:
Mixed integer —

Linear programmingmodels for classification
(62H30, 68T10, 90C05)
(referred to in:Mixed integer classification problems;
Optimization in boolean classification problems;
Optimization in classifying text documents; Statistical
classification: optimization approaches)
(refers to: Deterministic and probabilistic optimization
models for data classification; Linear programming;Mixed
integer classification problems; Statistical classification:
optimization approaches)

linear programming problem
[49L20, 52B12, 60G35, 65K05, 68Q25, 90C39, 90C90]
(see: Design optimization in computational fluid dynamics;
Differential equations and global optimization;Dynamic
programming: discounted problems; Fourier–Motzkin
eliminationmethod)

linear programming problem see: analytical approximation of
a—

linear programming problems see: extended—; Stabilization
of cutting plane algorithms for stochastic—

linear programming program
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

linear programming relaxation
[90C05, 90C06, 90C08, 90C10, 90C11, 90C27, 90C57]
(see: Integer programming: branch and boundmethods;
Integer programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Set covering,
packing and partitioning problems)

linear programming relaxations
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

linear programming with right-hand-side uncertainty, duality
and applications see: Robust—

linear programming under uncertainty see:multi-objective—
linear programming with variable coefficients see:

generalized —
linear programs see: dual —; Robust optimization:

mixed-integer—; Selfdual parametric method for —
linear programs with recourse and arbitrary multivariate

distributions see: Stochastic—
linear programs for routing and protection problems in optical

networks see: Integer —
linear quadratic function see: piecewise—
linear-quadratic Gaussian

[93D09]
(see: Robust control)

linear-quadratic problem
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

linear regression model see: classical—

linear relations
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

linear relations see: Tucker homogeneous systems of—
linear relaxation

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

linear scales
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

(linear) semi-infinite program see: primal—
linear semi-infinite programming

[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

linear semi-infinite programming see: perfect duality from the
view of—

linear semidefinite program
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

linear semidefinite programming problem
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

linear SIP
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

linear SIP problem see: duality of the—
linear SIP problems

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

Linear space
(15A03, 14R10, 51N20)
(referred to in: Affine sets and functions; Linear
programming)
(refers to: Affine sets and functions; Linear programming)

linear space
[14R10, 15A03, 51N20]
(see: Linear space)

linear spaces see: Best approximation in ordered normed—
linear speedup

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

linear support
[90C30]
(see: Lagrangian duality: BASICS)

linear supporting function
[90C30]
(see: Lagrangian duality: BASICS)

linear system see: alternative —; center of an interval —;
interval —; sign-solvable—

linear systems see: Interval —; large scale—
linear systems of equations

[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

linear thermoelastic behavior of a generally nonhomogeneous and
nonisotropic body
[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
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(see: Quasidifferentiable optimization: applications to
thermoelasticity)

linear topological space
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

linear transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

linear two-stage model
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

linear unidimensional scale
[62H30, 90C27]
(see: Assignment methods in clustering)

linear upper bound see: piecewise—
linear zero-one integer problem

[90C25, 90C33]
(see: Integer linear complementary problem)

linearity see: degree of—
linearization

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

linearization see: Adams–Johnson—; Frieze–Yadegar —;
improved piecewise—; inner —; Kaufman–Broeckx—;
Lawler —; partial —

linearization cone see: inner —; outer —
linearization of constraints

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

Linearization/Convexification Technique see:
reformulation-—

linearization/convexification techniques see: reformulation-—
linearization error

[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

linearization in facility location problems with staircase costs
[90B80, 90C11]
(see: Facility location with staircase costs)

linearization in facility location problems with staircase costs
see: convex piecewise—

linearization methods
[90C30]
(see: Cost approximation algorithms)

linearization methods
[90C30]
(see: Cost approximation algorithms)

linearization of programs
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

linearization/restriction see: inner —
linearization technique see: reformulation-—
linearization technique for global optimization see:

Reformulation-—
linearized reformulation

[65K05, 90C20]
(see: Quadratic programming with bound constraints)

linearly constrained optimization problems
[90C30]

(see: Rosen’s method, global convergence, and Powell’s
conjecture)

linearly dependent see: positively—
linearly elastic mechanical constructions

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

linearly elastic systems
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

linearly independent
[90C30]
(see: Convex-simplex algorithm)

linearly independent see: positively—
linearly monotonic over see: strongly—
lines see: connection of flow—;method of —
linguistic choices

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

linguistics see: computational—
link cost function see: regular —
link-diverse/disjoint

[46N10, 68M10, 90B18, 90B25]
(see: Integer linear programs for routing and protection
problems in optical networks)

link flow formulation
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

link frequency assignment problem see: radio—
link loads see: variational inequality formulation in—
linkage see:multilevel single-—; simple—
linking constraints see:multistage—
linkpoint of a graph

[90C35]
(see: Feedback set problems)

links see: temporal —
LINPACK

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

Liouville theorem
[01A50, 01A55, 01A60]
(see: Fundamental theorem of algebra)

Lipschitz
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

Lipschitz see: locally—
Lipschitz constant

[65K05, 90C30]
(see: Bisection global optimization methods)

Lipschitz continuity
[65K10, 65M60, 90C11, 90C15, 90C31, 90C90]
(see: Stochastic integer programming: continuity, stability,
rates of convergence;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system)

Lipschitz continuity
[65K05, 65K10, 65M60, 90C30]
(see: Bisection global optimization methods; Variational
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inequalities: geometric interpretation, existence and
uniqueness)

Lipschitz continuous
[49J20, 49J52, 65K05, 65K10, 65M60, 90C30, 90C31, 90C52,
90C53, 90C55]
(see: Asynchronous distributed optimization algorithms;
Bisection global optimization methods; Sensitivity and
stability in NLP: approximation; Shape optimization;
Variational inequalities: geometric interpretation,
existence and uniqueness)

Lipschitz continuous function
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

Lipschitz continuous function see: locally—
Lipschitz function

[90C26]
(see: Generalized monotone multivalued maps; Global
optimization using space filling)

Lipschitz function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

Lipschitz function see: locally—
Lipschitz optimization

[65G20, 65G30, 65G40, 65H20, 65K05, 90C26, 90C30]
(see: Interval analysis: unconstrained and constrained
optimization;Monotonic optimization)

Lipschitz optimization
[90C26]
(see: Global optimization using space filling)

Lipschitz programming
[90C26]
(see: Global optimization: envelope representation)

Lipschitz programming
[90C26]
(see: Global optimization: envelope representation)

Lipschitz stability
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

Lipschitz stable solution
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

Lipschitzian operators in best approximation by bounded or
continuous functions
(65K10, 41A30, 47A99)
(referred to in: Large scale trust region problems)
(refers to: Convex envelopes in optimization problems)

lipschitzian selection operator
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

Lipschitzian selection operator see: optimal—
Lipschitzness see: compact epi- —
liquid phases

[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

list see: candidate—; closed—; code—; extended doubly
connected edge—; open—; prediction—; restricted
Candidate—; running—; tabu —

list coloring
[05-XX]
(see: Frequency assignment problem)

list size
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

list square merit function
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

literal
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

literal (in logic)
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Littlewood–Pólya theorem see: Hardy–—
LJ optimization procedure

[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

LMI
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

LMM
[90C25, 90C30]
(see: Lagrangianmultipliers methods for convex
programming)

lMT-skeleton
[68Q20]
(see: Optimal triangulations)

load
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

load see: splitting/unsplitting of—
load balancing

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

load balancing see: dynamic—; static —
Load balancing for parallel optimization techniques

(68W10, 90C27)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation;Heuristic search; Parallel computing:
complexity classes; Parallel computing: models; Parallel
heuristic search; Stochastic network problems: massively
parallel solution)
(refers to: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation;Heuristic search; Interval analysis: parallel
methods for global optimization; Parallel computing:
complexity classes; Parallel computing: models; Parallel
heuristic search; Stochastic network problems: massively
parallel solution)

load balancing scheme see: near-neighbor—
load balancing technique see: dynamic —
load curve

[90C10, 90C30, 90C35]
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(see: Optimization in operation of electric and energy
power systems)

load curve
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

load dispatcher
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

load dispatcher
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

load dispatching
[90B50]
(see: Optimization and decision support systems)

load dispatching
[90B50]
(see: Optimization and decision support systems)

loadbalance
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

loads see: set of—; variational inequality formulation in link—
local

[65H20]
(see:Multi-scale global optimization using
terrain/funnelingmethods)

local approximations see: nonsmooth—
local-area computer network

[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

local attractor
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

local attractors see: singular —
Local attractors for gradient-related descent iterations

(49M29, 65K10, 90C06)
(referred to in: Conjugate-gradientmethods; Large scale
trust region problems;Nonlinear least squares:
Newton-type methods; Nonlinear least squares: trust region
methods)
(refers to: Conjugate-gradientmethods; Large scale trust
region problems;Nonlinear least squares: Newton-type
methods;Nonlinear least squares: trust region methods)

local basin
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

local bilinear form see: K- —
local consistency

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

local convergence rate
[49M37]
(see: Nonlinear least squares: Newton-type methods)

local convergence rate
[49M37]
(see: Nonlinear least squares: Newton-type methods)

local cut
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

local dualization see: Ioffe–Burke—
local efficiency

[90C29]
(see: Generalized concavity in multi-objective optimization)

local efficient point
[90C29]
(see: Generalized concavity in multi-objective optimization)

local Ekeland point
[58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: weak stationarity)

local equivalence closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

local equivalence relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

local exchange procedures
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

local greedy algorithms
[05C85]
(see: Directed tree networks)

local improvement
[68Q20]
(see: Optimal triangulations)

local independence
(see: Bayesian networks)

local infimum
[90Cxx]
(see: Discontinuous optimization)

local inner product see: K- —
local maximizer

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

local maximizer see: discrete left —; strict —
local maximizers see: set of discrete "-global—
local maximum

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

local maximum point
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

local maximumpoint see: strict —
local maximum principle

[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

local maximum principle
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

local maximumprinciple see: high-order —
local maximumprinciple for Lagrangian problems see:

high-order —
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local minima
[92B05]
(see: Genetic algorithms)

local minimization
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

local minimization
[90C60]
(see: Complexity theory: quadratic programming)

local minimizer
[65K05, 90C26, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Smooth nonlinear nonconvex optimization)

local minimizer see: isolated—; nonsingular —; regular —;
strict —; strong—

local minimizer problem
[90C60]
(see: Complexity theory: quadratic programming)

local minimizers
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

local minimum
[9008, 90C08, 90C11, 90C26, 90C27, 90C39, 90C57, 90C59]
(see: Quadratic assignment problem; Second order
optimality conditions for nonlinear optimization; Variable
neighborhood search methods)

local minimum
[90C26, 90C39, 92B05]
(see: Genetic algorithms; Second order optimality
conditions for nonlinear optimization)

local minimum see: strict —; strong—
local minimum condition see: high-order —
local minimum point

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

local minimumpoint see: strict —
local MINLP

[49M37, 90C11]
(see:Mixed integer nonlinear programming)

local monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

local optima
[62H30, 90C27]
(see: Assignment methods in clustering)

local optimization
[90C30, 90C60, 90C90]
(see: Complexity theory;MINLP: applications in blending
and pooling problems)

local optimizer see: strict—
local optimum

[03B05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 68P10,
68Q25, 68R05, 68T15, 68T20, 90C09, 90C26, 90C27, 90C30,
94C10]
(see:Maximum satisfiability problem; Stochastic global
optimization: two-phase methods)

local order relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,

91B06, 92C60]
(see: Boolean and fuzzy relations)

local phase
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

local pre-order closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

local properties of the configuration space
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

local quadratic convergence theorem
[90C30]
(see: Numerical methods for unary optimization)

local-ratio principle
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

local relational properties
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

local search
[65K05, 9008, 90B35, 90C10, 90C26, 90C27, 90C30, 90C59,
94C15]
(see: Global optimization: filled function methods; Graph
planarization; Job-shop scheduling problem;Maximum
constraint satisfaction: relaxations and upper bounds;
Variable neighborhood search methods)

local search
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90-XX, 90C09,
90C27, 90C35, 94C10]
(see: Feedback set problems;Maximum satisfiability
problem; Survivable networks)

local search see: chained—; iterated —; nonoblivious—;
stochastic—

local search algorithms
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

local search device
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

local search heuristics
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

local search method
[90-XX]
(see: Survivable networks)

local search phase in GRASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

local search problems see: polynomial time—
local solution

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

local solutions
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)
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local strict efficiency
[90C29]
(see: Generalized concavity in multi-objective optimization)

local strict monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

local strictly efficient point
[90C29]
(see: Generalized concavity in multi-objective optimization)

local strong monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

local system cohomology
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

local tolerance closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

local tolerance relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

local underestimator
[90C11, 90C26]
(see: Extended cutting plane algorithm)

local weak efficiency
[90C29]
(see: Generalized concavity in multi-objective optimization)

local weakly efficient point
[90C29]
(see: Generalized concavity in multi-objective optimization)

locality constraint
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

locality measure see: subgradient —
localization

[65K05, 90C30]
(see: Random search methods)

localization of an ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

localization problem see: Sensor network —
localization problem, SNLP see: Semidefinite programming

and the sensor network —
localization property

[90C33]
(see: Topological methods in complementarity theory)

localization search
[65K05, 90C30]
(see: Random search methods)

localization search see: pure —
localization set

[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

locally
[68T20, 68T99, 90C27, 90C31, 90C34, 90C59]

(see:Metaheuristics; Parametric global optimization:
sensitivity)

locally consistent
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

locally extremal
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

locally filled function
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

locally Lipschitz
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

locally Lipschitz continuous function
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

locally Lipschitz function
[49J52, 65G20, 65G30, 65G40, 65K05, 90C30]
(see:Hemivariational inequalities: eigenvalue problems;
Interval global optimization)

locally minimal
[68Q20]
(see: Optimal triangulations)

locally monotone function
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

locally optimal
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

locally optimal parameter
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

locally optimal solution
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

locally reduced problem
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

locally reflexive relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

locally strictly monotone function
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

locally strongly monotone function
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

locally strongly monotonic at
[90C05]
(see: Extension of the fundamental theorem of linear
programming)

location
[49M07, 49M10, 65K, 90B80, 90C06, 90C20]
(see: Facilities layout problems; Spectral projected gradient
methods)
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location
[90B80, 90C10, 90C11]
(see: Facilities layout problems; Facility location problems
with spatial interaction; Stochastic transportation and
location problems)

location see: center of gravity —; Competitive facility—;
continuous—; dynamic facility—; emergency facility—;
facility—;median—;multi-objective facility—;
multifacilities—;multifacility—;multiple-facility—; single
facility—; Single facility location: multi-objective euclidean
distance—; Single facility location: multi-objective
rectilinear distance—; Voronoi diagrams in facility—

location-allocation see: facility—;median—;MINLP:
application in facility—;multifacility—

location-allocation model
[90C26]
(see:MINLP: application in facility location-allocation)

location-allocation problem
[90C26]
(see:MINLP: application in facility location-allocation)

location-allocation problem see: p-median—
location and assignment see: discrete—
location: circle covering problem see: Single facility—
location: covering problems see: Network —
location with euclidean and rectilinear distances see:

Optimizing facility—
location with externalities see: Facility—
locationmodel see: facility—; plant—; spatial competition

facility—; Stochastic facility—
location: multi-objective euclidean distance location see:

Single facility—
location: multi-objective rectilinear distance location see:

Single facility—
location pattern

[90B80, 90B85]
(see:Warehouse location problem)

location problem
[90B80, 90B85]
(see:Warehouse location problem)

location problem see: discrete—; dynamic—; Euclidean
distance—; facility—; iterative solution of the Euclidean
distance—;maximum coverage—; objective for a—;
prototype—; rectilinear distance—; restricted—; simple
plant—; squared Euclidean distance—; stochastic
transportation and—; uncapacitated facility—;
uncapacitated plant—; warehouse—

location problems see: barrier —; facility—; Global
optimization in—;Multifacility and restricted—; Stochastic
transportation and—

location problems with spatial interaction see: Facility —
location problems with staircase costs see: convex piecewise

linearization in facility—; heuristics of facility—;
linearization in facility—; solution of facility—

location-routing
[90-02, 90B06]
(see: Operations research models for supply chain
management and design;Vehicle routing)

location-routing models
[90-02]
(see: Operations research models for supply chain
management and design)

Location routing problem
(90B06, 90B80)

location on a sphere see:minimax—
location with staircase costs see: Facility —
location theory

[90B85]
(see:Multifacility and restricted location problems)

locational decision problem
[90B80, 90B85]
(see:Warehouse location problem)

locomotive assignment models
(see: Railroad locomotive scheduling)

Locomotive scheduling
(see: Railroad locomotive scheduling)

locomotive scheduling see: Railroad—
locomotive schedulingmodels see: single—
locomotive type see: single—
locomotive type models see:multiple—
Loeb measure

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

logarithmic barrier function
[90C05]
(see: Linear programming: interior point methods)

logarithmic barrier method see: interior point—
logarithmic form

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

logarithmic p-form
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

logarithmic-quadratic barrier-penalty function
[90C31]
(see: Sensitivity and stability in NLP: approximation)

logarithmic scoring rule
(see: Bayesian networks)

logarithmic and square-root transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

logarithmic volume
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

logconcave discrete probability distribution
[90C15]
(see: Logconcavity of discrete distributions)

logconcave distributions see: discrete—
logconcave function

[90C15]
(see: Logconcave measures, logconvexity)

logconcave function
[90C15]
(see: Logconcave measures, logconvexity; Probabilistic
constrained problems: convexity theory)

logconcave measure
[90C15]
(see: Logconcave measures, logconvexity)

Logconcave measures, logconvexity
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
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programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcavity of discrete distributions; L-shaped method for
two-stage stochastic programs with recourse; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programs with recourse: upper bounds;
Stochastic vehicle routing problems; Two-stage stochastic
programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcavity of discrete distributions; L-shaped method for
two-stage stochastic programs with recourse;Multistage
stochastic programming: barycentric approximation;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

logconcave probability density function
[90C15]
(see: Probabilistic constrained problems: convexity theory)

logconcave probability measure
[90C15]
(see: Logconcave measures, logconvexity)

logconcave univariate discrete probability distribution
[90C15]
(see: Logconcavity of discrete distributions)

Logconcavity of discrete distributions
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; L-shaped method for
two-stage stochastic programs with recourse; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programs with recourse: upper bounds;
Stochastic vehicle routing problems; Two-stage stochastic
programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; L-shaped method for
two-stage stochastic programs with recourse;Multistage
stochastic programming: barycentric approximation;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
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programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

logconvex function
[90C15]
(see: Logconcave measures, logconvexity)

logconvex function
[90C15]
(see: Logconcave measures, logconvexity)

logconvex measure
[90C15]
(see: Logconcave measures, logconvexity)

logconvex probability measure
[90C15]
(see: Logconcave measures, logconvexity)

logconvexity see: Logconcave measures—
logic see: BL- —; evaluation in classical—; evaluation in

multiple-valued—; fuzzy—; interval —; literal (in—
logic algebra see: Boolean 2-valued—;many-valued—
logic algebra connective

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

logic algebras see: Finite complete systems of many-valued—;
many-valued families of the Pinkava—; PI- —; taxonomy of
Pi-—

logic of approximation
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

logic-based approaches
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

logic-basedmethods see:MINLP: —
Logic-based outer approximation
Logic-based outer-approximation method

(see: Optimal planning of offshore oilfield infrastructure)
logic conditional

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

logic connectives
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

logic connectives see: emergence of —
logic gates

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

logic implication see:many-valued—
logic normal form see: complete many-valued—
logic programming

[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

logic programming see: constrained—; constraint—;
modeling language and constraint—; paradigm of—

logic of Scientific Discovery
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

logic system see: lattice-type many-valued—
logic system of approximate reasoning see: interval —;

point-based—
logical algebra see: Pinkava—
logical clause

[90C09, 90C10]
(see: Optimization in classifying text documents)

logical connectives see: TOP and BOT types of—
logical design

[01A99, 90C99]
(see: Von Neumann, John)

logical equivalence
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

logical implications
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

logics see: Checklist paradigm semantics for fuzzy—;
classification of many-valued—;many-valued—;
taxonomy of the PI-algebras of many-valued—

logistics
[90B05, 90B06]
(see: Global supply chain models)

logistics
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

logistics control model
[90-02]
(see: Operations research models for supply chain
management and design)

logistics flows
[90-02]
(see: Operations research models for supply chain
management and design)

logistics management
[90-02]
(see: Operations research models for supply chain
management and design)

LogP model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

logspace Turing machine
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

long campaigns
(see: Planning in the process industry)

long range planning
[90C90]
(see: Chemical process planning)

long serious step
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

long-term memory in GRASP
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

look-ahead rules
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

lookahead-unit-resolution see: single-—
lookup table representation

[90C39]
(see: Neuro-dynamic programming)

loop
[90C09, 90C10]
(see:Matroids)

loop control see: closed-—; open- —
loop Nash equilibrium see: open- —
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loop structure predictionmethods see: Protein—
loops see: nested —
LOP

[90C10, 90C11, 90C20]
(see: Linear ordering problem)

loss see: trim—
loss of descent

[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

loss of descent in a nonlinear program
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

loss problem see:MINLP: trim-—; numerical example of
a trim- —; trim-—

losses see:minimization of—
lost sales assumption

[49L20]
(see: Dynamic programming: inventory control)

lot sizing
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

lot-sizing problem see: capacitated—; Economic—
Louis see: Lagrange, Joseph- —
Lovász extension

[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

Lovász number
(05C69, 05C15, 05C17, 05C35, 90C35, 90C22)
(referred to in: Stable set problem: branch & cut algorithms)
(refers to: Copositive programming)

lovász number
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

low failure of the alpha-beta algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

low-level feature detection
[90C90]
(see: Optimization in medical imaging)

low-level software
[90C10, 90C26, 90C30]
(see: Optimization software)

low-rank nonconvexity
[90C26, 90C31]
(see: Global optimization in multiplicative programming;
Multiplicative programming)

low-rank nonconvexity
[90C26, 90C31]
(see: Global optimization in multiplicative programming;
Multiplicative programming)

lower bandwidth
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

lower bound
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

lower bound see: Gilmore–Lawler —; guaranteed —;
Jensen—; parametric —; valid—

lower bound function
[90C15, 90C27]
(see: Discrete stochastic optimization)

lower bound for a set
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

lower bound test
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

lower boundary
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

lower boundary point
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

lower bounding
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

lower bounding Hessian
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

lower bounds
[05C85, 90B35]
(see: Directed tree networks; Job-shop scheduling problem)

lower bounds see: constructive—; eigenvalue based —;
Gilmore–Lawler type—;maximum flow problem with
nonnegative —; parametric upper and—; variance
reduction—

lower bounds to eigenvalues see: upper and—
lower bounds for multivariate probability integrals

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

lower convex hull
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

lower derivative see: Dini —; Dini conditional—; Hadamard
conditional—

lower directional derivative see: Dini —; Hadamard—
lower envelope

[90C30]
(see: Lagrangian duality: BASICS)

lower-level
[49M30, 49M37, 65K05, 90C30]
(see: Practical augmented Lagrangianmethods)

lower-level problem
[57R12, 90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions; Parametric global optimization: sensitivity;
Smoothing methods for semi-infinite optimization)

lower problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

lower semicontinuous
[46A22, 49J20, 49J35, 49J40, 49J52, 54D05, 54H25, 55M20,
91A05]
(see:Minimax theorems; Shape optimization)
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lower semicontinuous
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

lower semicontinuous function
[03H10, 49J27, 90C26, 90C34]
(see: Convex envelopes in optimization problems;
Semi-infinite programming and control problems)

lower set
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

lower set algorithm see:minimum—
lower sets see:minimum—
lower and upper bounds constraints

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

lower and upper directional derivatives
[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

lower weight bounds
[68Q20]
(see: Optimal triangulations)

lower well oil rate constraints see: upper and—
Löwner partial order

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

LP
[90C05]
(see: Linear programming)

LP
[05B35, 65K05, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C33, 90C57, 90C90]
(see: Lexicographic pivoting rules;Modeling difficult
optimization problems)

LP duality
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

lP/NLP based branch and bound
[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

lP relaxation
[68Q99, 90B80, 90C05, 90C06, 90C08, 90C10, 90C11]
(see: Branch and price: Integer programming with column
generation; Facility location problems with spatial
interaction; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms)

LP strategy for interval-Newtonmethod in deterministic
global optimization

lPS
(see: Short-term scheduling of batch processes with
resources)

lS-CD
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

LS problem
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

LSO
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

LSP
[65Fxx]
(see: Least squares problems)

LSTR
[90C30]
(see: Large scale trust region problems)

LSUO
[90C06]
(see: Large scale unconstrained optimization)

LU algorithm see: Implicit—
LU-decomposition

[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

LU factorization see: classical—
Luc U-quasiconcave function

[90C29]
(see: Generalized concavity in multi-objective optimization)

Łukasiewicz connective
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

Łukasiewicz implication
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

lumped systems see: reaction flux estimation in—
lunch see: no free—
Luus—Jaakola optimization procedure see: Direct search—
LX algorithm see: Implicit—
Lyapunov function

[90C30]
(see: Suboptimal control)

Lyusternik theorem
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

Lyusternik theorem see: classical—; high-order generalization
of—

M

m see: algorithm solving a problem instance in time—;
big- —; GRR- —; skew-symmetric matrix—

m-coloring problem
[90C08, 90C11, 90C27]
(see: Quadratic semi-assignment problem)

m-convex
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

M-convex function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

M2-convex function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)
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M\-convex function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

M-convex functions see: L-convex functions and—
M-convex set

[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

M\-convex set
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

M-convexity
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

m-dial-a-ride
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

m-dimensional knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

M-estimator see: Huber—
M- and L-convex functions see: Fenchel-type duality for—
M-Pareto optimal solution

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

M-separation theorem
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

m-TSP
[90B06]
(see: Vehicle routing)

machine see: accepting computation of a Turing—; accepting
state of a Turing—; alternating Turing—; bottleneck —;
control state of a Turing—; deterministic Turing—;
execution of a Turing—; exponentially space-bounded
Turing—; exponentially time-bounded Turing—; final state
of a Turing—; generalized eigenvalue proximal support
vector —; input alphabet of a Turing—; language accepted
by a Turing—; length of a partial computation of
a Turing—; logspace Turing—;move of a Turing—;
nonaccepting computation of a Turing—; nondeterministic
Turing—; parallel random access —; partial computation of
a Turing—; polynomially space-bounded Turing—;
polynomially time-bounded Turing—; running time of
a Turing—; size of the input of a Turing—; space
complexity of a deterministic Turing—; space complexity of
a nondeterministic Turing—; start state of a Turing—; state
of a Turing—; tape cell of a Turing—; tape of a Turing—;
time complexity of a deterministic Turing—; time
complexity of a nondeterministic Turing—; transition rules
of a Turing—; Turing—

machine interval
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

machine interval arithmetic
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

machine interval arithmetic see: inclusion principle of—
machine learning

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,

90C90]
(see: Disease diagnosis: optimization-based methods)

machine-learning algorithm
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

machine model see: Turing—
machine problem see: Generalized eigenvalue proximal

support vector —
machine repetition

[90B35]
(see: Job-shop scheduling problem)

machine size
[65K05, 65Y05]
(see: Parallel computing: models)

machine solving a problem see: Turing—
machines see: complexity of Turing—; distributed memory

parallel —; identical —; nonidentical —; parallel —; shared
memory parallel —; support vector —

macro scale network
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

macrostate
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

Madansky upper bound see: Edmundson–—
Maehly method see: Lehmann–—
MAESTRO

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

magic numbers
[90C26, 90C90]
(see: Global optimization in Lennard–Jones and morse
clusters)

magnitude see: order of—
main diagonal see: negative —
maintenance

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

maintenance routing problem see: airline—
majorant see: smallest K- —
majority

[90-XX]
(see: Outranking methods)

majority theorem
[90C26, 90C90]
(see: Global optimization inWeber’s problemwith
attraction and repulsion)

majorization
[90C09, 90C10]
(see: Combinatorial matrix analysis)

maker see: decision—
makespan

[68Q25, 90B36, 90C60]
(see: NP-complete problems and proof methodology;
Stochastic scheduling)

makespan see:minimization of—
making see: decision—; financial decision—; group

decision—; hierarchical decision—;multicriteria
decision—;multiple criteria decision—; Preference
disaggregation approach: basic features, examples from
financial decision—
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making problems: optimization techniques see: Estimating
data for multicriteria decision—

making with rolling horizon see: decision—
making under extreme events see: decision—
making under uncertainty see: decision—
mammography screening

[90C09, 90C10]
(see: Optimization in boolean classification problems)

management
[90C26, 90C30, 90C31]
(see: Bilevel programming: introduction, history and
overview)

management
[90-01, 90B30, 90B50, 91B32, 91B52, 91B74]
(see: Bilevel programming in management)

management see: applications in environmental systems
modeling and—; asset Liability —; Bilevel programming
in—; Bilinear programming: applications in the supply
chain—; catchment—; Competitive ratio for portfolio—;
forest —; inventory —; logistics—;Mathematical
programming methods in supply chain—;multistage
inventory—; operational supply chain—; portfolio—;
revenue—; strategic supply chain—; supply chain—

management decision support system see: Asset liability—
management and design see: Operations research models for

supply chain—
management of environmental systems see: Global

optimization in the analysis and—
management hypothesis see: inefficient—
Management Mathematics see: iMA Journal of—
management models see:multistage inventory —; single

stage inventory—
management in supply chains see: Inventory —
manager see: layout—
mandatory work first algorithm

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

Mangasarian–Fromovitz constraint qualification
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

Mangasarian–Fromovitz constraint qualification
[90C26, 90C31, 90C34, 90C39]
(see: Parametric global optimization: sensitivity; Second
order optimality conditions for nonlinear optimization)

Mangasarian–Fromovitz CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Manhattan distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

Manhattan distance
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

Manhattan distances
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

manifold
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

manifold see: Riemannian—

manipulation see: symbolic—
Mann–Whitney statistic

[62H30, 90C27]
(see: Assignment methods in clustering)

many conditionsmoment problem see: infinite—
many-valued families of the Pinkava logic algebras

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

many-valued logic algebra
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

many-valued logic algebras see: Finite complete systems of —
many-valued logic implication

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

many-valued logic normal form see: complete—
many-valued logic system see: lattice-type—
many-valued logics

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

many-valued logics
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T15, 68T27, 68T30]
(see: Checklist paradigm semantics for fuzzy logics; Finite
complete systems of many-valued logic algebras)

many-valued logics see: classification of—; taxonomy of the
PI-algebras of—

many-valued normal form
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

MAP
[90C08, 90C10, 90C11, 90C27, 90C57, 90C59]
(see:Multidimensional assignment problem;Quadratic
assignment problem)

map see: adjoint linear —; cone-convex—; contact—;
maximal monotone—;monotone—; normal—; Peano—;
proximal—; proximity—; quasimonotone—; semistrictly
quasimonotone—; standard part —; strictly monotone—;
strictly pseudomonotone—; strictly quasimonotone—

map optimization see: fluence—
map overlap see: contact—
map overlap maximization problem, CMO see: Contact —
mapping see: best response—; closed point-to-set—;

computation and data—; Contraction-—; DNA—; nearest
point—; optimal solution—;˚ -isotone—; point-to-set—;
pseudomonotone—; semismooth—; strongly
semismooth—; zero-epi —

mapping technique see: pictogram translation—; receiver
initiated—; sender initiated—

mappings see: approximation of nonsmooth—;
approximations of nonsmooth—; contraction—;method
of—; point-to-set—

maps see: Generalized monotone multivalued—; Generalized
monotone single valued—; homotopic—

maps: properties and applications see: Pseudomonotone—
Maratos effect

[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

margin see:multivariable stability —; Stability—
margin K see:multivariable stability—
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marginal allocation
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

marginal analysis
[90C60]
(see: Complexity of degeneracy)

marginal constraint
[90C35]
(see:Multi-index transportation problems)

marginal distribution functions
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

marginal function
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

marginal function optimization
[49J35, 65K99, 74A55, 74M10, 74M15, 90C26]
(see: Quasidifferentiable optimization: applications)

marginal functions
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

marginal probability distribution function see:
one-dimensional—; two-dimensional—

marginal value
[90C60]
(see: Complexity of degeneracy)

marginal value see: positive—
marginal value formula

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

marginal values see: negative —; positive—
marginals see: table with given—
margins see: hierarchical collection of—
Margolin method see: Schruben–—
Maritime inventory routing problems
market equilibrium see: Oligopolistic—
market equilibrium conditions

[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

market equilibrium conditions
[65K10, 65M60]
(see: Variational inequalities)

market line see: capital —; security—
market model see: Sharpe single index—
market portfolio

[91B50]
(see: Financial equilibrium)

market portfolio
[91B50]
(see: Financial equilibrium)

markets see: aspatial and spatial —; Operations research and
financial—; spatial —

Markoff theorem see: Gauss–—
markov chain

(see: Bayesian networks)
Markov chain see: finite-state—; stationary-state —
Markov chain sampling

[65K05, 90C30]
(see: Random search methods)

Markov chains
[90C27]
(see: Operations research and financial markets)

Markov decision process
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

Markov kernel
[28-XX, 49-XX, 60-XX, 90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points;General moment
optimization problems)

Markov kernel
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

Markov model and Gibbs sampler see: hidden—
Markov models see: hidden—
Markov process

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

Markov process
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

markov processes and their simulation see: Derivatives of—
Markov strategy

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Markov transformation
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

markowitz mean-variance model see: Portfolio selection: —
Marquardt see: Levenberg– —
Marquardt algorithm see: Levenberg– —
Marquardt method see: Levenberg– —
Marquardt rule see: Levenberg– —
marriage problem

[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

marriage problem
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

marriage problem see: stable —
Martin algorithm

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

martingale see: score function—
mass

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

mass
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

mass balance constraints
[90C35]
(see:Maximum flow problem;Minimum cost flow problem)

mass balances
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)
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mass and energy balance equations
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

mass, energy and momentum balances
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

mass exchange see:modeling—
mass exchange matches

[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks;Mixed
integer linear programming: mass and heat exchanger
networks)

mass exchange network see: heat and—
mass exchange networks see: Flexible—
mass exchanger

[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

mass exchanger network
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

mass and heat exchange
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks;Mixed
integer linear programming: mass and heat exchanger
networks)

mass and heat exchanger network
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

mass and heat exchanger networks see:MINLP: —;Mixed
integer linear programming: —

mass/heat transfer module
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

mass separating agents
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

massive data sets see: least squares problems with—
massively parallel computing

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

massively parallel solution see: Stochastic network
problems:—

master problem
[49M29, 90C06, 90C10, 90C11, 90C15, 90C30, 90C35, 90C57,
90C90]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems;
Generalized benders decomposition;Modeling difficult
optimization problems;Multicommodity flow problems;
Simplicial decomposition; Stabilization of cutting plane
algorithms for stochastic linear programming problems)

master problem
[90C30]
(see: Simplicial decomposition)

master problem see: complete—; disjunctive OA—; full —;
MILP—;MIQP—; primal—; relaxed—; relaxed primal—;
restricted—

master program
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

master program see: full —; reduced—
master-slave scheme

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

master subproblem
[90C11, 90C31]
(see: Parametric mixed integer nonlinear optimization)

match-network problem
[90C90]
(see:MINLP: heat exchanger network synthesis)

matches see:mass exchange—
matching

[05C85, 90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching;Directed tree networks;
Maximum flow problem)

matching see: 3-DIMENSIONAL—; algorithm pre- —;
Assignment and—; b- —; bipartite—;maximum—;
Maximumpartition—;maximum pre- —; partition—;
perfect—; pre- —

matching of derivative conditions
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

matching heuristic see:maximal—
matching-I see: algorithm partition-—
matching model

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

matching problem
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

matching problem see: 2- —; 3-dimensional—; b- —;
maximum cardinality—;maximum partition—;maximum
pre- —; perfect—; perfect b- —; weighted —; weighted
bipartite—

Matching (ROM) see: recursive Opt —
Matching Subgraph Problem see:minMax—
matchings see: perfect —
material derivative approach

[49J20, 49J52]
(see: Shape optimization)

material flow
[90-02]
(see: Operations research models for supply chain
management and design)

material flows see: balance equations for—
material laws see: discretized hemivariational inequalities for

nonlinear —
materials see: laminated composite—
mathematical areas see: software package for specific—
mathematical and computational certainty

(see: LP strategy for interval-Newtonmethod in
deterministic global optimization)

mathematical economics
[90B80, 90B85, 90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities)

mathematical finance
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
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(see: Information-based complexity and information-based
optimization)

mathematical finance
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

mathematical formulation
[90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control)

mathematical model
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30, 90C06, 90C10, 90C11, 90C30,
90C57, 90C90]
(see: Identificationmethods for reaction kinetics and
transport;Modeling difficult optimization problems)

mathematical modeling
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

mathematical models
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

mathematical program see: extreme point—
mathematical program with affine equilibrium constraints

[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

mathematical program with equilibrium constraints
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

mathematical program with equilibrium constraints
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

mathematical Programming
[90C05, 90C06, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming;
Saddle point theory and optimality conditions)

mathematical programming
[26B25, 26E25, 49J52, 62H30, 90B80, 90B85, 90C11, 90C27,
90C99, 90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities;Operations
research and financial markets;Quasidifferentiable
optimization; Statistical classification: optimization
approaches)

mathematical programming see:multi-objective—
Mathematical programming for data mining
Mathematical programmingmethods in supply chain

management
(referred to in: Generalizations of interior point methods for
the linear complementarity problem; Simultaneous
estimation and optimization of nonlinear problems)
(refers to: Generalizations of interior point methods for the
linear complementarity problem; Simultaneous estimation
and optimization of nonlinear problems)

mathematical programming problem see: nonlinear —
mathematical rigor see: with—
mathematical software

[90C10, 90C26, 90C30]
(see: Optimization software)

mathematical software
[90C10, 90C26, 90C30]
(see: Optimization software)

Mathematics see: iMA Journal of Management —
matric matroid

[90C09, 90C10]
(see:Matroids)

matrices
[90C33]
(see: Linear complementarity problem)

matrices see: Abaffian—; completion of—; completion to
completely positive and contraction—; Hessian—; Interval
analysis: eigenvalue bounds of interval —; positive
definite—; positive semidefinite—; q- —; Stochastic
programming: parallel factorization of structured —;
updating input-output—

matrix
[90C09, 90C10, 90C25, 90C33, 90C55]
(see: Combinatorial matrix analysis; Splittingmethod for
linear complementarity problems)

matrix
[90C30]
(see: Frank–Wolfe algorithm)

matrix see: adjacency—; anti-Monge—; anti-Robinson—;
banded—; basic—; bisymmetric—; bisymmetric positive
semidefinite—; chess-board—; circulant—;
classification—; column sufficient—; completely
positive—; completion of a partial —; complex interval —;
condition number of a—; confusion—; consistent—;
consistent judgment —; contraction—; copositive—;
diagonal—; diagonal shift —; diagonal underestimation—;
dimensional symmetric interval —; distance—; doubly
nonnegative —; doubly stochastic—; Euclidean
distance—; extended—; extreme eigenvalue of an
interval —; fully indecomposable—; geodesic Hessian—;
graph of a—; H-—; Hermitian interval —; Hessian—;
ill-conditioned—; ill-conditioned coefficient—;
incidence—; inductive structure of an irreducible—; inertia
of a—; interval Hessian—; interval of variation of an
eigenvalue of an interval —; irreducible—; irreducible
components of a—; Jacobian—; Kalmanson—; L- —;
Monge—;monotone—; n-fold—; n Hessian—; node-arc
incidence—; nonbasic —; nonsingular —; oblique
projection—; orthogonal —; p- —; partial —; partial
completely positive—; partial contraction—; partial
definite—; partial distance—; partial Hermitian—; partial
semidefinite—; pattern of a—; permanent of a—;
permutation—; polar—; polynomial —; positive
definite—; positive semidefinite—; positive semidefinite
symmetric—; product—; projected Lagrangian Hessian—;
projection—; Q-—; qualitative class of a—; rank-one—;
real interval —; real symmetric interval —; realization of
a—; regular —; rotation—; row sufficient—; S�- —;
seed—; sign—; sign-nonsingular—; sign pattern of a—;
singular—; skew-symmetric —; sparse—; standard
determinant expansion of a—; stiffness —; stochastic —;
strictly copositive—; strongly nonsingular—; strongly
positive definite—; strongly regular —; structured —;
sufficient—; sum—; symmetric —; Toeplitz —; totally
unimodular—; transition—; transition probability —;
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tridiagonal—; unimodular—; vertex matrix of an
interval —;well-conditioned—

matrix of activities
[90Cxx]
(see: Discontinuous optimization)

matrix analysis
[90C09, 90C10]
(see: Combinatorial matrix analysis)

matrix analysis
[90C09, 90C10]
(see: Combinatorial matrix analysis)

matrix analysis see: Combinatorial —
matrix class invariant under principal pivoting

[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

matrix classes
[90C33]
(see: Linear complementarity problem)

matrix classes
[90C33]
(see: Linear complementarity problem)

matrix completion see: rank—
matrix completion problem

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

matrix completion problem see: distance—; Euclidean
distance—; positive semidefinite—

Matrix completion problems
(05C50, 15A48, 15A57, 90C25)
(referred to in: Semidefinite programming and determinant
maximization)
(refers to: Interior point methods for semidefinite
programming; Semidefinite programming and determinant
maximization)

matrix estimation see: covariance—
matrix factorization

[90C15]
(see: Stochastic programming: parallel factorization of
structured matrices)

matrix factorization see:modifying—; parallel —;
structured—

matrix inequality see: bilinear—; linear —
matrix of an interval matrix see: vertex—
matrix of a Lagrangian function see: Hessian—; projected

Hessian—
matrix M see: skew-symmetric —
matrix notation see: relational—
matrix notation for relational operations

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

matrix patterns and graphs
[90C09, 90C10]
(see: Combinatorial matrix analysis)

matrix representation of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

matrix rounding problem
[90C35]
(see:Maximum flow problem)

matrix of second partial derivatives
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

matrix splitting methods in quadratic programming
[90C30]
(see: Cost approximation algorithms)

matrix in standard form
[65Fxx]
(see: Least squares problems)

matroid
[90C09, 90C10]
(see:Matroids)

matroid
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

matroid see: acyclic oriented—; bases of an oriented—; basis
orientation of an oriented —; binary—; closed of a—;
closure operator for a—; connectivity of a—; contraction of
a—; disconnected—; dual—; graphic —; infinitely
connected—; linear —;matric —;minor of a—;
orientable—; orthogonal —; partition—; rank of a—;
regular —; representable —; restriction of a—; set of bases
of a—; ternary —; totally acyclic oriented—; transversal —;
underlying—; uniform—; vector of an oriented—;
vectorial —; weight function of a—; weighted—

matroid base polytope
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

matroid connectivity
[90C09, 90C10]
(see:Matroids)

matroid contraction
[90C09, 90C10]
(see:Matroids)

matroid elements see: contracting—; deleting—
matroid minor

[90C09, 90C10]
(see: Oriented matroids)

matroid representation
[90C09, 90C10]
(see:Matroids)

matroid restriction
[90C09, 90C10]
(see:Matroids)

matroid theory
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Matroids
(90C09, 90C10)
(referred to in:Oriented matroids)
(refers to:Oriented matroids)

matroids see: axiom systems for oriented —; contraction in—;
deletion in—; duality of—; oriented—
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Matula estimate
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

mature
(see: State of the art in modeling agricultural systems)

maturities see: estimating the spot rate for bonds with
constant—

maturity see: term to—; yield to—
MAX-2-SAT

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

max-bisection
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

max-clique problem
[90C60]
(see: Complexity theory)

max-closed form transformation see: unimodular—
max-closed form transformations see: unimodular—
max-closed function

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

max-closed set
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

max-closed sets
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

mAX-CSP
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

max-cut
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

MAX-CUT see:Maximum cut problem—
max Cut (MC)

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

max-det problem
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

max digraph see:min-—
max duality see: double-—
max–flow algorithm

[90-XX]
(see: Survivable networks)

max-flow min-cut theorem
[05C05, 05C40, 68R10, 90C35]
(see:Maximum flow problem;Network design problems)

max-flow min-cut theorem
[90C35]
(see:Maximum flow problem)

max fractional program see:min-—
max-function

[46A20, 52A01, 65K05, 90C30]

(see: Composite nonsmooth optimization;Minimax:
directional differentiability)

max-function
[49K35, 49M27, 65K05, 65K10, 90C25, 90C30]
(see: Convex max-functions;Minimax: directional
differentiability)

max-function see: convex—
max-functions see: Convex—
max graph see:min-—
MAX-MIN ant system

[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

max-min fractional program
[90C32]
(see: Fractional programming)

max-min-max optimization problem
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

max optimization problem see:max-min-—
max-r-Constraint Satisfaction Problem

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

max-r-CSP
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

max-regret-fc and max-regret heuristics
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

max-regret heuristics see:max-regret-fc and—
MAX-SAT

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C10,
90C27, 94C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds;Maximum satisfiability problem)

MAX-SAT problem see: weighted —
max Steiner tree see:min- —
max TSP

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

max-type function
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

max-type functions see: difference of—
maxdiag fine structures

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

MaxEnt
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

maxima
[01A99]
(see: Leibniz, gottfried wilhelm)

maximal
[05C15, 05C17, 05C35, 05C62, 05C69, 05C85, 90C22, 90C27,
90C35, 90C59]
(see: Lovász number;Optimization problems in unit-disk
graphs)
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maximal alternative
[90-XX]
(see: Outranking methods)

maximal best approximation
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

maximal clique
[05C69, 05C85, 68W01, 90C20, 90C59]
(see:Heuristics for maximum clique and independent set;
Standard quadratic optimization problems: applications)

maximal flow problem
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

maximal independent set
[90C09, 90C10]
(see:Matroids)

maximal matching heuristic
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

maximal monotone map
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

maximal planar subgraph
[90C10, 90C27, 94C15]
(see: Graph planarization)

maximal similarity subtree isomorphism
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

maximal subtree isomorphism
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

maximally informative genes see: Selection of—
maximin objective function

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

maximin path length
[62H30, 90C39]
(see: Dynamic programming in clustering)

maximization
[90C60]
(see: Computational complexity theory)

maximization see: expectation- —; Semidefinite programming
and determinant —

maximization algorithm see: expectation- —
maximization interval see: expectation- —
maximizationmethod see: vector —
maximization of output/input

[90C32]
(see: Fractional programming)

maximization problem see: global—
maximization problem, CMO see: Contact map overlap—
maximization of productivity

[90C32]
(see: Fractional programming)

maximization of return on investment
[90C32]
(see: Fractional programming)

maximization of return/risk
[90C32]
(see: Fractional programming)

maximization of sales
(see: Short-term scheduling of batch processes with
resources)

Maximization of the Smallest of Several Ratios
[90C32]
(see: Fractional programming)

maximize net present value
(see: Planning in the process industry)

maximize operating cash flow
(see: Planning in the process industry)

maximizer
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

maximizer
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

maximizer see: discrete global —; discrete left local—;
global —; local —; strict local —

maximizers see: set of discrete "-global local —
maximizing minimum distance

[90C29]
(see:Multicriteria sorting methods)

maximizing a sum of ratios
[90C32]
(see: Fractional programming)

maximum
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

maximum see: local —
maximum absolute deviation

[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

maximum bipartite subgraph
[90C10, 90C27, 94C15]
(see: Graph planarization)

maximum cardinality matching problem
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

maximum clique
[05-04, 05C60, 05C69, 05C85, 37B25, 68Q25, 68W01, 90C10,
90C20, 90C27, 90C35, 90C59, 90C60, 91A22]
(see: Evolutionary algorithms in combinatorial
optimization;Heuristics for maximum clique and
independent set;Maximum constraint satisfaction:
relaxations and upper bounds;NP-complete problems and
proof methodology;Quadratic knapsack; Replicator
dynamics in combinatorial optimization)

maximum clique and independent set see: Heuristics for—
maximum clique problem

[05C15, 05C60, 05C62, 05C69, 05C85, 37B25, 60G35, 65K05,
68Q25, 68R10, 68W40, 90C08, 90C11, 90C20, 90C27, 90C35,
90C57, 90C59, 91A22]
(see: Differential equations and global optimization;
Domination analysis in combinatorial optimization;
Optimization problems in unit-disk graphs;Quadratic
assignment problem; Replicator dynamics in combinatorial
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optimization; Standard quadratic optimization problems:
applications)

maximum condition
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

maximum constraint satisfaction
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

maximum constraint satisfaction problem
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

Maximum constraint satisfaction: relaxations and upper
bounds
(90C10)
(referred to in: Frequency assignment problem;Graph
coloring)
(refers to: Frequency assignment problem;Graph coloring)

maximum coverage location problem
[90B10, 90B80, 90C35]
(see: Network location: covering problems)

maximum coverage location problem
[90B10, 90B80, 90C35]
(see: Network location: covering problems)

maximum cut
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

Maximum cut problem, MAX-CUT
(refers to: Combinatorial test problems and problem
generators;Continuous global optimization: models,
algorithms and software;Derivative-freemethods for
non-smooth optimization; Greedy randomized adaptive
search procedures;Heuristic search; Integer programming;
NP-complete problems and proof methodology;Quadratic
integer programming: complexity and equivalent forms;
Random search methods; Semidefinite programming:
optimality conditions and stability; Semidefinite
programming and the sensor network localization problem,
SNLP; Solving large scale and sparse semidefinite programs;
Variable neighborhood search methods)

maximum degree
[90C35]
(see: Graph coloring)

maximum entropy
[62F10, 94A17]
(see: Entropy optimization: parameter estimation)

maximum entropy see: axiomatic derivation of the principle
of—; Jaynes—; principle of—

Maximum entropy and game theory
maximum entropy principle

[90C25, 94A08, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties; Jaynes’ maximum entropy principle;
Maximum entropy principle: image reconstruction)

maximum entropy principle
[90C25, 94A08, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties;Maximum entropy principle: image
reconstruction)

maximum entropy principle see: Jaynes’ —
Maximum entropy principle: image reconstruction

(94A17, 94A08)
(referred to in: Entropy optimization: interior point
methods; Entropy optimization: parameter estimation;
Entropy optimization: shannon measure of entropy and its
properties; Jaynes’ maximum entropy principle;
Optimization in medical imaging)
(refers to: Entropy optimization: interior point methods;
Entropy optimization: parameter estimation; Entropy
optimization: shannon measure of entropy and its
properties; Jaynes’ maximum entropy principle;
Optimization in medical imaging)

maximum flow
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

Maximum flow problem
(90C35)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks;Minimum
cost flow problem;Multicommodity flow problems;
Network design problems;Network location: covering
problems;Nonconvex network flow problems;Nonoriented
multicommodity flow problems; Piecewise linear network
flow problems; Shortest path tree algorithms; Steiner tree
problems; Stochastic network problems: massively parallel
solution; Survivable networks; Traffic network equilibrium)

(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks; Generalized networks;Minimum cost flow
problem;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Nonoriented multicommodity flow problems; Piecewise
linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)

maximum flow problem
[90C35]
(see:Maximum flow problem)

maximum flow problem
[90C35]
(see:Maximum flow problem)

maximum flow problem with nonnegative lower bounds
[90C35]
(see:Maximum flow problem)

maximum flow problems
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

maximum function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

maximum function with dependent constraints
[65K05, 90C30]
(see:Minimax: directional differentiability)

maximum Independent Set
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)
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maximum Independent Set Problem
[68Q25, 68R10, 68W40, 90C20, 90C27, 90C59, 90C60]
(see: Domination analysis in combinatorial optimization;
Quadratic knapsack)

maximum likelihood
[62F10, 65T40, 90C26, 90C30, 90C90, 94A17]
(see: Entropy optimization: parameter estimation; Global
optimization methods for harmonic retrieval)

Maximum likelihood detection via semidefinite programming
(65Y20, 68W25, 90C27, 90C22, 49N15)

maximum likelihood estimate
[15A15, 34-xx, 34Bxx, 34Lxx, 90C25, 90C55, 90C90, 93E24]
(see: Complexity and large-scale least squares problems;
Semidefinite programming and determinant
maximization)

maximum likelihood estimation
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

maximum likelihoodmethod see: iterative quadratic—
maximum likelihood principle

[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

maximum matching
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

maximummean cut
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

maximummean-weight cut
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

maximum norm see: weighted —
maximum number of well switches

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

maximum oil, gas and water capacity constraints
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

Maximum partitionmatching
(05A18, 05D15, 68M07, 68M10, 68Q25, 68R05)
(referred to in: Assignment and matching;Assignment
methods in clustering; Bi-objective assignment problem;
Communication network assignment problem; Frequency
assignment problem; Linear ordering problem;Quadratic
assignment problem)
(refers to: Assignment and matching;Assignment methods
in clustering; Bi-objective assignment problem;
Communication network assignment problem; Frequency
assignment problem;Quadratic assignment problem)

maximum partition matching problem
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

maximum path length
[62H30, 90C39]
(see: Dynamic programming in clustering)

maximum planar subgraph
[90C10, 90C27, 94C15]
(see: Graph planarization)

maximum point see: global—; local —; strict local —

maximum a posteriori principle
(see: Bayesian networks)

maximum pre-matching
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

maximum pre-matching problem
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

maximum principle
[49J15, 49K15, 93C10]
(see: Pontryagin maximum principle)

maximum principle see: duality and—; high-order local —;
Kimura—; local —; pontryagin’s —

maximum principle for abnormal extremals see: High-order —
maximum principle for Lagrangian problems see: high-order

local —
maximum profit-to-time ratio cycle

[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

maximum rank completion problem
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

maximum satisfiability
[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

maximum satisfiability
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

Maximum satisfiability problem
(03B05, 68Q25, 90C09, 90C27, 68P10, 68R05, 68T15, 68T20,
94C10)
(referred to in: Greedy randomized adaptive search
procedures; Integer programming)
(refers to: Greedy randomized adaptive search procedures;
Integer programming; Integer programming: branch and
bound methods; Simulated annealing methods in protein
folding)

maximum similarity subtree isomorphism
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

maximum subtree isomorphism
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

maximum-type function
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

maximum Variance Unfolding
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

maximum-volume ellipsoid
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

maximum weight clique
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

maximum weight clique
[90C20]
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(see: Standard quadratic optimization problems:
applications)

maximum weight clique problem
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization;
Standard quadratic optimization problems: applications)

maximum weight independent sets
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

maximum weight trace
[90C35]
(see: Optimization in leveled graphs)

maximum weighted distance
[90B85, 90C27]
(see: Single facility location: circle covering problem)

maximum weighted independent set
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

maximum weighted planar graph
[90C10, 90C27, 94C15]
(see: Graph planarization)

maxmin function
[65K05, 90C30]
(see:Minimax: directional differentiability)

maxmin function
[65K05, 90C30]
(see:Minimax: directional differentiability)

maxmin objective
[90B85]
(see: Single facility location: multi-objective rectilinear
distance location)

Maybee–Quirk theorem see: Bassett– —
Mayer form

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

Mazur–Orlicz theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

Mazur–Orlicz version of the Hahn–Banach theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

Mazurkiewicz lemma see: Knaster–Kuratowski– —
(MC) see:max Cut—
McCormick SOCQ

[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

MCD
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

MCDM
[90C29]
(see: Decision support systems with multiple criteria)

MCDM
[90-XX, 90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques;Outranking methods)

mCl
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

MCP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

MCTP
[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

MDO
[90C90]
(see: Design optimization in computational fluid dynamics)

MDO paradigm
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

MDVSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Mead algorithm see: Nelder– —
mean absolute deviation

[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

mean cut see:maximum—
mean cycle see:minimum—
mean field approximation

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

mean method see: geometric —; overall —; revised
geometric —

mean product
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

mean value
[90C26, 90C30]
(see: Bounding derivative ranges)

Mean-Value for Composite Convexifiable Function see:
integral —

mean value cross decomposition
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

mean value extension
[65G20, 65G30, 65G40, 65H20]
(see: Interval fixed point theory)

mean value function
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

mean value function
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

mean value problem
[90C90, 91B28]
(see: Robust optimization)

mean value theorem
[65G20, 65G30, 65G40, 65H20, 65K05, 65K99, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Interval Newton methods)

mean-variance
[90C27]
(see: Operations research and financial markets)
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mean-variance model see: Portfolio selection: markowitz—
mean-variance optimization problems see: Decomposition

algorithms for the solution of multistage—
mean-variance portfolio analysis

[91B50]
(see: Financial equilibrium)

mean-weight cost
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

mean-weight cut see:maximum—
meaningful words

[90C09, 90C10]
(see: Optimization in classifying text documents)

means criterion see: k- —
measurable criterion

[90C29, 91A99]
(see: Preference disaggregation)

measure see: acceptance—; ˛-concave—; Baire—;
bottleneck —; combined relative —; contracting—;
contraction/approximation—; controllability—;
discrete—; dissimilarity—; distance—; empirical —;
� -concave probability —; Gaussian—; heuristic—; inner
regular —; Loeb—; logconcave—; logconcave
probability—; logconvex—; logconvex probability —;
quasiconcave—; quasiconcave probability —; Radon—;
similarity—; subgradient locality—;Wiener—;Wiener
probability—; zemel —

measure of cross-entropy see: Kullback–Leibler —
measure of entropy and its properties see: Entropy

optimization: shannon—
measure of noncompactness

[90C33]
(see: Order complementarity)

measure space
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

measure space see: probability—
measure spaces

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

measure theory
[01A99]
(see: Carathéodory, Constantine)

measure theory
[01A99, 03H10, 49J27, 90C34]
(see: Carathéodory, Constantine; Semi-infinite
programming and control problems)

measure of uncertainty
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

measurement
[90C29]
(see: Preference modeling)

measurement see: Supply chain performance—
measurement techniques

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

measures see: condition—; Derivatives of probability —;
dominated family of —; normalization of —; Radon—;
regular family of probability—; weak convergence of
probability—; weakly L1 (v)-differentiable family of—

measures, logconvexity see: Logconcave—
mechanical constructions see: linearly elastic—
mechanical models

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

mechanical principle of Fourier
[15A39, 90C05]
(see: Farkas lemma)

mechanics see: applications in—; computational—;
Hemivariational inequalities: applications in—; inequality
or nonsmooth—;molecular—;Multilevel optimization
in—; nonsmooth—; parallel computation in—; smooth
potentials and stability in—; unilateral —

mechanizing
[01A99]
(see:History of optimization)

median location
[90B85]
(see: Single facility location: multi-objective rectilinear
distance location)

median location-allocation
[90C26]
(see:MINLP: application in facility location-allocation)

median location-allocation problem see: p- —
median problem see: p- —
median problem in a network see: 1- —
medical applications

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

medical diagnosis
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 90C09,
90C10, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations;Optimization in boolean
classification problems)

medical diagnosis
[90C09, 90C10]
(see: Optimization in boolean classification problems)

medical image processing see: optimization in—
medical imaging

[90C90]
(see: Optimization in medical imaging)

medical imaging see: Optimization in—
medicine

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

medium-level software
[90C10, 90C26, 90C30]
(see: Optimization software)

medium regression see: isotonic—; quasiconvex—
Medium-term scheduling of batch processes
meet

[90C35]
(see:Multi-index transportation problems)

meet semisublattice
[47J20, 49J40, 65K10, 90C33]
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(see: Solutionmethods for multivalued variational
inequalities)

Megiddo’s parametric search
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

Megiddo parametric search
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

membership function
[90C90]
(see: Chemical process planning)

membership oracle
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

memetic algorithms
[68T20, 68T99, 90B06, 90B35, 90C06, 90C10, 90C27, 90C39,
90C57, 90C59, 90C60, 90C90]
(see:Metaheuristics; Traveling salesman problem)

memory see: adaptive—; limited-—; short-term—
memory affine reduced Hessian see: limited-—
memory algorithm see: limited-—
memory approach see: limited-—
memory BFGS method see: limited-—
memory in GRASP see: long-term—
memory model see: queueing shared- —
memory parallel computer see: distributed—
memory parallel machines see: distributed—; shared—
memory reduced-Hessian BFGS algorithm see: limited-—
memory strategy equilibrium

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

memory strategy Nash equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

memory symmetric rank-one approach see: limited-—
memoryless BFGS method

[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

MEN
(93A30, 93B50)
(referred to in: Continuous global optimization: models,
algorithms and software; Global optimization of heat
exchanger networks; Global optimization methods for
systems of nonlinear equations;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;Mixed integer linear programming: mass and
heat exchanger networks)
(refers to: Global optimization of heat exchanger networks;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks)

MEN
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

MEN superstructure
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

MEN synthesis method see: sequential —
MEN synthesis model see:multiperiod MINLP—
menace of the expanding grid

[93-XX]
(see: Dynamic programming: optimal control
applications)

mergers and acquisitions see:Multicriteria methods for—
merit function

[49M37, 65K05, 65K10, 90C06, 90C15, 90C25, 90C26, 90C30,
90C33, 90C34, 90C35]
(see: Feasible sequential quadratic programming; Implicit
lagrangian; Inequality-constrained nonlinear optimization;
Nonlinear least squares problems; Simplicial
decomposition algorithms; Stochastic bilevel programs)

merit function
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05,
90C06, 90C25, 90C30, 90C33, 90C35]
(see: Cost approximation algorithms; Implicit lagrangian;
Simplicial decomposition algorithms;Variational
principles)

merit function see: list square—
merit index

[62H30, 90C39]
(see: Dynamic programming in clustering)

mesh
[90C35]
(see: Feedback set problems)

mesh see: toroidal —
mesh networks

[05C85]
(see: Directed tree networks)

message-driven
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

Met-Enkephalin
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

Met-Enkephalin
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

meta-UTA
[90C29, 91A99]
(see: Preference disaggregation)

metaheuristic
[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

metaheuristic see: hybrid—
metaheuristic algorithms see: heuristic–—
metaheuristic algorithms for the traveling salesman problem

see: Heuristic and—
Metaheuristic algorithms for the vehicle routing problem

(90B06, 90C59)
Metaheuristics

(68T20, 90C59, 90C27, 68T99)
metaheuristics

[90B06]
(see: Vehicle routing)
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metaheuristics
[65H20, 65K05, 90-01, 90B06, 90B40, 90C10, 90C27, 90C35,
94C15]
(see: Greedy randomized adaptive search procedures;
Vehicle routing)

metaheuristics see: GRASP in hybrid—
metaminimax theorem

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

metamodel
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic
optimization)

method see: a priori —; achievable region—; active set—;
adaptive aggregation —; adaptive computational—;
adaptive random search —; adjoint derivative—;
Agmon–Motzkin–Fourier relaxation—; Aitken double
sweep—; analytic center cutting plane—; approximate
Newton—; arc oriented branch and bound—;
Arrow–Hurwicz gradient —; assignment—; averaging—;
backpropagation—; Bellman–Ford—; BFGS—; binary
search—; bisection—; bold-driver—; bordering—;
boundary condition iteration—; branch and bound—;
Broyden–Fletcher–Goldfarb–Shanno—; bundle-Newton—;
canonical dual transformation—; Cauchy—; center of
gravity—; Chan—; Chebyshev iterative —; Chevron—;
conditional gradient —; conjugate gradient —; conjugate
subgradient—; continuation—; coordinate descent —;
corridor—; criss-cross—; cutting angle —; cutting
plane—; Cyclic coordinate—; D’Esopo–Pape—; damped
Gauss–Newton—; damped Newton—;
Davidon–Fletcher–Powell —; De La Garza—; Delphi —;
derivative-free descent—; descent—; destructive—;
DFP—; diffusion equation—; Dinkelbach—;
disaggregation —; discrete truncated Newton—;
discretization—; distance scaling—; distrust region—;
dogleg—; double description—; Douglas—Rachford—;
downhill simplex—; edge contraction—; ellipsoid—;
empirical—; �-constraint—; �-subgradient —; Euler—;
Evtushenko—; Exact penalty —; extended cutting plane—;
extended support problems—; exterior point—; extremal
basis—; feasible decomposition—; fictitious domain—;
finite element —; Fletcher–Reeves —; Forrest–Goldfarb—;
Fourier–Motzkin—; Fourier–Motzkin elimination—; full
space SQP—; full-step Gauss–Newton—; Galerkin
spectral —; Gauss–Newton—; Gauss–Newton method:
Least squares, relation to Newton’s —; Gauss–Seidel—;
Gauss–Southwell —; generalized Benders —; generalized
cutting plane—; geometric mean—; global convergence
problem for the Rosen—; Global optimization: cutting
angle—; goal coordination—; Goerisch—; golden
section—; Goldfarb–Idnani—; greedy—; heavy ball —;
Heun—; heuristic optimization—; homotopic—;
homotopy—; homotopy continuation—; homotopy
Newton—; Huang—; Hungarian—; implicit restarted
Lanczos—; Inclusion—; incremental gradient—; inexact
Newton—; integer L-shaped—; interactive—; interior
point—; interior point logarithmic barrier —; interval
Newton—; IQML—; iterative—; iterative quadratic
maximum likelihood—; iterative regularization—;
Jacobi—; Kackmartz—; Karmarkar —; Keifer–Wolfowitz—;

Kelley—; Kelley’s classical cutting plane—; Kelley cutting
plane—; KKT-based—; Kojima–Shindo—; Krawczyk—;
Krawczyk variation of the interval Newton—; l-shaped—;
Lagrangian finite generation —; largest inscribed sphere —;
least-index criss-cross—; least-index pivoting—;
Lehmann–Maehly —; Lemke—; Levenberg–Marquardt —;
Levitin–Polyak—; lexicographic dual simplex—;
lexicographic primal simplex—; lexicographic simplex—;
lexicographic variant of the constraint-by-constraint—;
likelihood ratio —; limited-memory BFGS—; linear CG—;
local search—; Logic-based outer-approximation—;
memoryless BFGS—;metric-based—;metropolis Monte
Carlo—;model-based—;model coordination—;modified
Cauchy—;modified Newton—;Monte-Carlo —;MOSA—;
multicriteria sorting—;multifrontal—;multiplier—;
multivariate interval Newton—; NC—;
Newsam–Ramsdell —; Newton’s —; Newton–Raphson—;
Newton-type —; node oriented branch and bound—;
noising—; nonadaptive—; Nondifferentiable optimization:
Newton—; nonfeasible decomposition—;
noninteractive—; nonlinear CG—; nonparametric
statistical —; nonsmooth Newton—; OA—; on-line—;
outer approximation—; overall mean—; overdetermined
Yule–Walker —; parameterization —; partial-update
Newton—; partially asynchronous iterative—; partitioned
quasi-Newton—; partitioning—; penalty-based —;
piecewise sequential quadratic programming—; Piela—;
pilot—; pivot—; Polak–Ribiére—; polyblock
approximation—; Powell—;
Powell-symmetric–Broyden—; power—; primal—;
principal pivoting—; projection—; proximal bundle—;
proximal-like—; proximal point—; proximal point
bundle—; pure Monte-Carlo—; pure NP—; QBB global
optimization—; QR—; Quadratic fractional programming:
Dinkelbach—; quasi-Newton—; random keys —; random
search—; Rayleigh–Ritz —; reduced Hessian SQP—;
reduction based —; reference direction—; regression —;
regret —; relaxation—; response surface—; revised
geometric mean—; Ritz–Galerkin—; Robbins–Monro—;
Rodríguez—; rollout—; Rosen—; Rosen gradient
projection—; Rosenbrock—; row-action—; Rudolph—;
satisficing—; Schruben–Margolin—; score function—;
separated Newton—; sequential —; sequential MEN
synthesis —; Sequential simplex—; Shanno conjugate
gradient —; shaped—; Simple recourse problem: dual —;
Simple recourse problem: primal—; simplex—; single
underlying—; smoothing Newton—; Solanki —; SOR—;
splitting—; splitting Newton—; square-root—; SR1
quasi-Newton—; steepest descent —; steepest edge
simplex—; stochastic counterpart —; stochastic search—;
Stoica—; support problems solution—; supports
problems—; symmetric rank-one quasi-Newton—;
tensor —; Terlaky criss-cross—; topological —; truncated
Newton—; trust region—; tunneling—; two-phase —;
Two-stage stochastic programming: quasigradient—;
univariate interval Newton—; UTA—; variable metric—;
variable metric bundle—; vector maximization—; visual
interactive—; Vogel approximation—; volumetric—;
Wolfe reduced gradient —; Ziont criss-cross—

method and applications to optimization problems see:
Laplace—
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method of bad derivatives
[90C90]
(see: Simulated annealing methods in protein folding)

method-based
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

method of Broyden class see: quasi-Newton—
method of characteristics

[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

method of codifferential descent
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

method of codifferential descent
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

method for detecting redundancy see: deterministic—;
probabilistic—

method in deterministic global optimization see: LP strategy
for interval-Newton—

method of feasible directions see: combined—
method, global convergence, and Powell’s conjecture see:

Rosen’s—
method of hypodifferential descent

[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

method of hypodifferential descent
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

method for interhelical contacts in alpha-helical proteins see:
Predictive—

method of least squares
[01A99]
(see: Gauss, Carl Friedrich)

method of least squares
[01A99]
(see: Gauss, Carl Friedrich)

method: Least squares, relation to Newton’s method see:
Gauss–Newton—

method for linear complementarity problems see: Splitting—
method for linear programs see: Selfdual parametric —
method of lines

[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

method of mappings
[49J20, 49J52]
(see: Shape optimization)

method for nonlinear programming see: feasible direction—
method of optimal distance

[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

method of optimal ratio
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

method for the simple recourse problem see: dual—; primal—
method of simultaneous displacements

[90C30]
(see: Cost approximation algorithms)

method of steepest descent
[65K05, 90C30, 90C90]
(see: Design optimization in computational fluid dynamics;
Nondifferentiable optimization: minimax problems)

method of successive displacements
[90C30]
(see: Cost approximation algorithms)

method for two-stage stochastic programs with recourse see:
L-shaped—

method in unconstrained optimal control see: Dynamic
programming and Newton’s —

methodologies see: semantic analysis—; solution—
methodologies for auditing decisions see:Multicriteria

decision support —
methodology see: NP-complete problems and proof—;

OR-—; tabu search—; trust region—
methods see: ABS—; active set —; active set quadratic

programming—; adaptive—; adjoint—; affine scaling
SQPIP—; barrier —; basic outline of filled function—;
Bayesian—; Bisection global optimization—; branch and
bound—; Broyden—; Broyden family of—; bundle—;
column generation —; combined relaxation—;
complementary pivot—; computational—; computing
processes in interactive —; Conjugate-gradient —;
construction—; Credit rating and optimization—; cutting
plane—; decomposition—; deflected gradient—;
descent-based—; Disease diagnosis:
optimization-based—; econometric —; ejection chain—;
Entropy optimization: interior point—; evolutionary—;
exact—; exact solution—; existence-proving properties of
interval Newton—; extrapolation—; Extremum problems
with probability functions: kernel type solution—;
factorized quasi-Newton—; feasible direction—; filled
function—; finite difference—; full space—; Gaussian
approximation—; Global optimization: filled function—;
Global optimization: hit and run—; Global terrain—;
Globally convergent homotopy—; gradient —; heuristic—;
hit and run—; homotopy—; hybrid—; hybrid NP—;
improvement—; incomplete—; indirect—; inexact
Newton—; Integer programming: algebraic —; Integer
programming: branch and bound—; interactive—;
interactive versus noninteractive—; interior point—;
interval —; Interval analysis: subdivision directions in
interval branch and bound—; interval Newton—;
knowledge-based NP—; Krylov space type—; label
correcting—; label setting—; limited enumeration—; line
search—; Linear programming: interior point—;
linearization—;MINLP: branch and bound—;MINLP:
logic-based—;mixed—;Mixed integer
programming/constraint programming hybrid—;
Multi-scale global optimization using terrain/funneling—;
Multicriteria sorting—;multicut—;multilevel —;
multiplier—; Nondifferentiable optimization: cutting
plane—; Nondifferentiable optimization: relaxation—;
Nondifferentiable optimization: subgradient
optimization—; Nonlinear least squares: Newton-type —;
Nonlinear least squares: trust region—; nonsmooth—;
numerical —; Outranking—; parallel —; parametric —;
path following—; perturbation —; polyhedral —;
polynomial time interior point—; posterior —; Practical
augmented Lagrangian —; primal-dual—; primal-dual
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interior-point—; primal-dual SQPIP—; Protein loop
structure prediction—; proximal point—; quadrature —;
qualitative forecasting—; quantitative forecasting—;
quasi-Newton—; Quasidifferentiable optimization: exact
penalty —; Random search—; regularity condition for
penalty —; regularization of deterministic cutting plane—;
Relaxation in projection—; Semi-infinite programming:
approximation—; Semi-infinite programming:
discretization—; Semi-infinite programming: numerical —;
sequential quadratic programming—; Shape selective
zeolite separation and catalysis: optimization—;
smoothing—; software for homotopy—; solution—;
Solving hemivariational inequalities by nonsmooth
optimization—; Spectral projected gradient —; sQG—;
sQG projection—; stochastic —; Stochastic global
optimization: two-phase —; Stochastic optimal stopping:
numerical —; stochastic quasigradient—; stochastic
Quasigradient (SQG)—; Subgradient —; Successive
quadratic programming: decomposition—; Successive
quadratic programming: full space—; Successive quadratic
programming: solution by active sets and interior point—;
topological—; trust region—; unbounded controls and
non standard—; variable metric —; Variable neighborhood
search—; variational—

methods: applications see: Stochastic quasigradient—
methods and the BFGS update see: Broyden family of—
methods in clustering see: Assignment —
methods in complementarity theory see: Topological —
methods for convex programming see: Lagrangian

multipliers—
methods for distributed optimal control problems see:

Sequential quadratic programming: interior point—
methods of feasible directions

[90C31]
(see: Sensitivity and stability in NLP: approximation)

methods for global optimization see: Cutting plane—; Interval
analysis: parallel —

methods for harmonic retrieval see: Global optimization—
methods for the linear complementarity problem see:

Generalizations of interior point—
methods for linear complementarity problems see: Principal

pivoting—
methods for linear problems see: Semi-infinite

programming: —
methods for linear programming see: Homogeneous

selfdual—; Potential reduction—
methods for mergers and acquisitions see:Multicriteria—
methods inminimax problems see: Stochastic quasigradient—
methods for multivalued variational inequalities see:

Solution—
Methods for Non-Differentiable Functions and Applications

see:minimization—
methods for non-smooth optimization see: Derivative-free—
methods for nonconvex feasibility analysis see: Shape

reconstruction—
methods for nonlinear complementarity problems and

variational inequalities see: Nonsmooth and smoothing—
methods for optimal design see:Multilevel —
methods for preference value functions see:Multi-objective

optimization; Interactive —
methods in protein folding see: Simulated annealing—

methods in quadratic programming see:matrix splitting—
methods for reaction kinetics and transport see:

Identification—
methods for semi-infinite optimization see: Smoothing—
methods for semidefinite programming see: Interior point—
methods for solving vehicle routing problems see:

approximate—; constructive—; exact—
methods in supply chain management see:Mathematical

programming—
methods for systems of nonlinear equations see: Global

optimization—
methods for unary optimization see: Numerical —
metric

[90B50]
(see: Inventory management in supply chains)

metric see: Ck-Riemannian—; probability—; Riemannian—;
Shahshahani —; variable—; w-weighted Tchebycheff —

metric-based
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

metric-based method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

metric-based perspective
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

metric bundle method see: variable—
metric method see: variable—
metric methods see: variable—
metric projection

[41A30, 47A99, 49J52, 65K10, 90C30]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions; Nondifferentiable
optimization: Newton method)

metric regularity
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

metric regularity*
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

metric space
[90C35]
(see:Multi-index transportation problems)

metrically regular
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Metropolis
[90C05, 90C25]
(see:Metropolis, Nicholas Constantine)

Metropolis criterion
[65K05, 90C30]
(see: Random search methods)

metropolis Monte Carlo method
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

Metropolis, Nicholas Constantine
(90C05, 90C25)
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Metropolis process
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

MHD
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

MHEN
(93A30, 93B50)
(referred to in: Continuous global optimization: models,
algorithms and software; Global optimization of heat
exchanger networks; Global optimization methods for
systems of nonlinear equations;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;Mixed integer linear programming: mass and
heat exchanger networks)
(refers to: Global optimization of heat exchanger networks;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks)

MHEN
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

micro scale network
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

microcluster see: Lennard–Jones —;Morse—
microclusters see: size effects in—
microstate

[90B80, 90C10]
(see: Facility location problems with spatial interaction)

mid connective
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

the mid-point acceleration function
[25A15, 34A05, 90C25, 90C26, 90C30, 90C31]
(see: Convexifiable functions, characterization of)

mid-point acceleration function see: the —
middle set

[68R10, 90C27]
(see: Branchwidth and branch decompositions)

midpoint convexity see: discrete—
midpoint test

[65G20, 65G30, 65G40, 65H20, 65K05, 65Y05, 65Y10, 65Y20,
68W10, 90C30]
(see: Interval analysis: parallel methods for global
optimization; Interval analysis: unconstrained and
constrained optimization; Interval global optimization)

midpoint tests
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

migration see:multiclass—
migration equilibrium

[90C30]
(see: Equilibrium networks)

migration equilibrium
[90C30]
(see: Equilibrium networks)

migration network equilibrium model
[90C30]
(see: Equilibrium networks)

Milman theorem see: Krein– —
MILP

(see: Logic-based outer approximation)
MILP

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90, 93A30, 93B50]
(see:Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks;Modeling difficult
optimization problems;Optimal planning of offshore
oilfield infrastructure)

MILP: lagrangian relaxation see: Decomposition techniques
for—

MILP master problem
[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

MILP model see: Gasoline blending and distribution
scheduling: an—

MIN ant system see:MAX-—
min-cut theorem see:max-flow—
min duality see: double-—
min-exchange heuristic

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

min fractional program see:max-—
min-max digraph

[58E05, 90C30]
(see: Topology of global optimization)

min-max digraph
[58E05, 90C30]
(see: Topology of global optimization)

min-max fractional program
[90C32]
(see: Fractional programming)

min-max graph
[58E05, 90C30]
(see: Topology of global optimization)

min-max graph
[58E05, 90C30]
(see: Topology of global optimization)

min-max optimization problem see:max-—
min-max Steiner tree

[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

min-type function
[90C26]
(see: Global optimization: envelope representation)

min-type function
[90C26]
(see: Global optimization: envelope representation)

mindiag fine structures
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

minima
[01A99]
(see: Leibniz, gottfried wilhelm)

minima see: local —;multiple—
minima problem in protein folding:˛BB global optimization

approach see:Multiple—
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minimal
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

minimal see: locally—
minimal best approximation

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

minimal cone
[90C30]
(see: Duality for semidefinite programming)

minimal cut
[90C09, 90C10]
(see: Oriented matroids)

minimal dependent set
[90C09, 90C10]
(see:Matroids)

minimal function
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

minimal function
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

minimal number of DNF clauses
[90C09, 90C10]
(see: Optimization in boolean classification problems)

minimal principle
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

minimal principle
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

minimal representation
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

minimal representation of a feasible region
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

minimal runs
(see: Planning in the process industry)

minimal social cost see: production realizing with—
minimal tree see: Steiner —
minimal tree problem see: Steiner —
minimal value

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

minimal variance clustering
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

minimax
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

minimax
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

minimax algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

minimax approach see: Stochastic programming: —
minimax decision rule

[62C20, 90C15]
(see: Stochastic programming: minimax approach)

minimax decision rule
[62C20, 90C15]
(see: Stochastic programming: minimax approach)

Minimax: directional differentiability
(90C30, 65K05)
(referred to in: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index;Minimax
theorems; Nondifferentiable optimization: minimax
problems; Stochastic programming: minimax approach)
(refers to: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index;Minimax
theorems; Nondifferentiable optimization: minimax
problems; Stochastic programming: minimax approach;
Stochastic quasigradientmethods in minimax problems)

minimax game
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

minimax game tree algorithm see: sequential —
Minimax game tree searching

(49J35, 49K35, 62C20, 91A05, 91A40)
(referred to in: Bottleneck steiner tree problems; Capacitated
minimum spanning trees; Shortest path tree algorithms)
(refers to: Bottleneck steiner tree problems;Directed tree
networks; Shortest path tree algorithms)

minimax inequality see: two-function—
minimax location on a sphere

[90B85, 90C27]
(see: Single facility location: circle covering problem)

minimax objective
[90B80, 90B85]
(see:Warehouse location problem)

minimax objective function
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

minimax objective function see: lexicographically—
minimax observation problem

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

minimax observation problem under uncertainty with
perturbations
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

minimax path length
[62H30, 90C39]
(see: Dynamic programming in clustering)

minimax point see: saddle-—
minimax principles

[49J52]
(see:Hemivariational inequalities: eigenvalue problems)
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minimax problem
[49K35, 49M27, 65K05, 65K10, 90C25, 90C30]
(see: Convex max-functions; Nondifferentiable
optimization: minimax problems)

minimax problem
[49K35, 49M27, 65K05, 65K10, 90C25, 90C30]
(see: Convex max-functions;Minimax: directional
differentiability;Nondifferentiable optimization: minimax
problems)

minimax problem see: constrained—; finite—
minimax problems see: constrained—; Nondifferentiable

optimization:—; Stochastic quasigradient methods in—
minimax solution

[62C20, 90C15]
(see: Stochastic programming: minimax approach)

minimax theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 90C27, 91A05]
(see:Minimax theorems; Steiner tree problems)

minimax theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

minimax theorem see: Du–Hwang—;mixed—; saddle-—
Minimax theorems

(46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05)
(referred to in: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index;Minimax:
directional differentiability;Nondifferentiable
optimization: minimax problems; Stochastic programming:
minimax approach; Stochastic quasigradient methods in
minimax problems)
(refers to: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index;Minimax:
directional differentiability;Nondifferentiable
optimization: minimax problems; Stochastic programming:
minimax approach; Stochastic quasigradient methods in
minimax problems)

minimax theory
[65K05, 90C30]
(see:Minimax: directional differentiability)

minimax tree
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

minimax tree algorithm see: parallel —
minimax trees see: parallelizing the exploration of —
minimax value

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

minimization
[90C60]
(see: Computational complexity theory)

minimization see: algorithms for unconstrained—;
concave—; constrained—; crossing—; energy —; error —;
global—; gradient-free —; k-level crossing—; leveled
crossing—; local—; nonconvex—; proximal—;
unconstrained—; vector —

minimization algorithm see: gradient-free —
minimization algorithms see: SSC—; supervisor and searcher

cooperation—

minimization algorithms for nonsmooth and stochastic
optimization see: SSC—

minimization of cost/time
[90C32]
(see: Fractional programming)

minimization with D-functions see: proximal—
minimization of losses

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

minimization of makespan
(see: Short-term scheduling of batch processes with
resources)

minimization Methods for Non-Differentiable Functions and
Applications
[01A70, 90-03]
(see: Shor, Naum Zuselevich)

minimization of order earliness
(see: Short-term scheduling of batch processes with
resources)

minimization of Pinkava normal forms
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

minimization problem
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

minimization problem see: constrained—
minimization problems see: decomposition algorithms for

nonconvex—
minimization of regret

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

minimizer
[49K27, 90C05, 90C25, 90C29, 90C30, 90C31, 90C48]
(see: Nondifferentiable optimization: parametric
programming; Set-valued optimization)

minimizer
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

minimizer see: �- —; global—; isolated local —; local—;
near- —; nonsingular local —; regular local —; strict
local—; strong local—; weak—

minimizer problem see: local —
minimizers see: global —; local —
minimizing a convex multiplicative function see: program of—
minimizing the degradation in quality of both water environment

[90C30, 90C35]
(see: Optimization in water resources)

minimizing the energy function see: Optimization techniques
for—

minimizing functions
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

minimizing a generalized convex function see: program of—
minimizing misclassifications

[90C29]
(see:Multicriteria sorting methods)

minimizing network cost
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)
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minimizing the overall classification error
[90C29]
(see:Multicriteria sorting methods)

minimizing a product of two affine functions see: program
of—

minimizing q see: CG-standard for—
minimizing sequence

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

minimizing sequence see: generalized —; Levitin–Polyak—
minimum

[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

minimum see: finding a—; global—; global energy —;
local—; principle of —; relative—; strict local —; strict
relative—; strong local —; strong relative —

minimum Bisection Problem
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

minimum circle
[90B85, 90C27]
(see: Single facility location: circle covering problem)

minimum clique partitioning
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

minimum composition difference
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks;Mixed
integer linear programming: mass and heat exchanger
networks)

minimum concave transportation problem
[90B06, 90B10, 90C26, 90C35]
(see:Minimum concave transportation problems)

Minimum concave transportation problems
(90C26, 90C35, 90B06, 90B10)
(referred to in: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Concave
programming;Motzkin transposition theorem; Stochastic
transportation and location problems)
(refers to: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Concave
programming;Motzkin transposition theorem;
Multi-index transportation problems; Stochastic
transportation and location problems)

minimum condition see: high-order local —
Minimum cost flow problem

(90C35)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks;Maximum
flow problem;Multicommodity flow problems;Network
design problems;Network location: covering problems;
Nonconvex network flow problems;Nonoriented
multicommodity flow problems; Piecewise linear network
flow problems; Shortest path tree algorithms; Steiner tree
problems; Stochastic network problems: massively parallel
solution; Survivable networks; Traffic network equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation

networks; Generalized networks;Maximum flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonconvex network
flow problems;Nonoriented multicommodity flow
problems; Piecewise linear network flow problems; Shortest
path tree algorithms; Steiner tree problems; Stochastic
network problems: massively parallel solution; Survivable
networks; Traffic network equilibrium)

minimum cost flow problem
[05C05, 05C40, 68R10, 90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions;
Minimum cost flow problem;Network design problems)

minimum cost flow problem
[90C35]
(see:Minimum cost flow problem)

minimum cost network flow
[90B10]
(see: Piecewise linear network flow problems)

minimum cost network flow problem
[90C35]
(see: Generalized networks)

minimum cost network flow problem see: piecewise linear —
minimum cost-to-time ratio cycle

[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

minimum cross-entropy see: axiomatic derivation of the
principle of—; principle of —

minimum cross-entropy principle
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

minimum cross-entropy principle
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

minimum cut
[90C35]
(see:Maximum flow problem)

minimum cut problem
[90C35]
(see:Maximum flow problem)

minimum cut problem
[90C35]
(see:Maximum flow problem)

minimum degree ordering
[65Fxx]
(see: Least squares problems)

minimum distance see:maximizing—
minimum feedback arc set problem

[90C35]
(see: Feedback set problems)

minimum feedback vertex (arc) set problem
[90C35]
(see: Feedback set problems)

minimum feedback vertex (arc) set problem see: subset —
minimum feedback vertex set

[90C35]
(see: Feedback set problems)

minimum fill-in of a graph
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)
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minimum function
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

minimum KKT point see: global —
minimum lower set algorithm

[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

minimum lower sets
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

minimummean cycle
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

minimumMultiprocessor Scheduling Problem
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

minimum of an NNFP see: global—
minimum norm controllability

[93-XX]
(see: Optimal control of a flexible arm)

minimum norm solution
[90C11, 90C25, 90C33]
(see: Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation)

minimum norm solution
[90C11, 90C33]
(see: LCP: Pardalos–Rosenmixed integer formulation)

minimum number of clauses
[90C09, 90C10]
(see: Optimization in boolean classification problems)

minimum number of Steiner points see: Steiner tree problem
with—

minimum Partition Problem (MP)
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

minimum path length
[62H30, 90C39]
(see: Dynamic programming in clustering)

minimum phase
[90C26, 90C90]
(see: Signal processing with higher order statistics)

minimum point see: global —; local—; strict local —
minimum potential energy

[90C26, 90C90]
(see: Global optimization in Lennard–Jones and morse
clusters)

minimum principle see: Pontryagin—
minimum problem see: accessory—
minimum rank completion problem

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

minimum ratio spanning-tree
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

minimum ratio test
[90C05]
(see: Linear programming: Klee–Minty examples)

minimum set
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

minimum solution see: global—

minimum spanning arborescence problem see: capacitated—
minimum spanning tree

[05C05, 05C40, 68R10, 90C27, 90C35]
(see: Network design problems; Steiner tree problems)

minimum spanning tree problem
[05C05, 05C40, 68R10, 68T99, 90C09, 90C10, 90C27, 90C35]
(see: Capacitatedminimum spanning trees;Matroids;
Network design problems)

minimum spanning tree problem see: bounded degree —;
capacitated—; resource-constrained—

minimum spanning trees
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

minimum spanning trees see: Capacitated—
minimum sphere

[90B85, 90C27]
(see: Single facility location: circle covering problem)

minimum sphere problem
[90B85, 90C27]
(see: Single facility location: circle covering problem)

minimum Steiner arborescence
[90C27]
(see: Steiner tree problems)

minimum tree see: Steiner —
minimum unfeasibility criterion

[90C10, 90C29]
(see:Multi-objective integer linear programming)

minimum-units problem
[90C90]
(see:Mixed integer linear programming: heat exchanger
network synthesis)

minimum value see: positive—
minimum Vertex Cover Problem

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

minimum-volume ellipsoid
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

minimum weight common mutated sequence
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

minimum weight feedback arc set problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

minimum weight Steiner triangulation
[68Q20]
(see: Optimal triangulations)

minimum weight triangulation
[68Q20]
(see: Optimal triangulations)

minimum weighted feedback vertex set problem
[90C35]
(see: Feedback set problems)

minimum weighted graph bipartization problem
[90C35]
(see: Feedback set problems)

minimum weighted vertex cover
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

mining see: Data—;Mathematical programming for data—
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minisum
[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

minisum problems
[90B80, 90B85]
(see:Warehouse location problem)

minkowski distances
[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

Minkowski duality
[90C26]
(see: Global optimization: envelope representation)

Minkowski plane
[90C27]
(see: Steiner tree problems)

Minkowski sum
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

MINLP
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

MINLP
[90C06, 90C10, 90C11, 90C26, 90C30, 90C57, 90C90, 93A30,
93B50]
(see:MINLP: application in facility location-allocation;
MINLP: branch and bound methods;MINLP: heat
exchanger network synthesis;MINLP: mass and heat
exchanger networks;MINLP: reactive distillation column
synthesis;Modeling difficult optimization problems;
Optimal planning of offshore oilfield infrastructure)

MINLP see: challenges in—; convex—; global—; HEN
synthesis using—; local —; nonconvex—

MINLP: application in facility location-allocation
(90C26)
(referred to in: Chemical process planning; Combinatorial
optimization algorithms in resource allocation problems;
Facilities layout problems; Facility location with
externalities; Facility location problems with spatial
interaction; Facility location with staircase costs;
Generalized benders decomposition; Generalized outer
approximation;Global optimization inWeber’s problem
with attraction and repulsion;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: design and scheduling of batch
processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: outer approximation algorithm;MINLP: reactive
distillation column synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks;Mixed integer nonlinear programming;
Multifacility and restricted location problems;Network
location: covering problems;Optimizing facility location
with euclidean and rectilinear distances; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;Voronoi

diagrams in facility location;Warehouse location problem)
(refers to: Chemical process planning;Combinatorial
optimization algorithms in resource allocation problems;
Competitive facility location; Extended cutting plane
algorithm; Facility location with externalities; Facility
location problems with spatial interaction; Facility location
with staircase costs; Generalized benders decomposition;
Generalized outer approximation;Global optimization in
Weber’s problemwith attraction and repulsion;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and boundmethods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: mass and heat
exchanger networks;Mixed integer nonlinear
programming;Multifacility and restricted location
problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;Voronoi
diagrams in facility location;Warehouse location problem)

MINLP: applications in blending and pooling problems
(90C90, 90C30)
(referred to in: Chemical process planning;Generalized
benders decomposition;Generalized outer approximation;
MINLP: application in facility location-allocation;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and boundmethods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks;Mixed integer
nonlinear programming)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: design and scheduling of batch
processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: outer approximation algorithm;MINLP: reactive
distillation column synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming)
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MINLP: applications in the interaction of design and control
(90C11, 49M37)
(referred to in: Chemical process planning; Control vector
iteration CVI;Duality in optimal control with first order
differential equations;Dynamic programming:
continuous-time optimal control;Dynamic programming
and Newton’s method in unconstrained optimal control;
Dynamic programming: optimal control applications;
Generalized benders decomposition;Generalized outer
approximation;Hamilton–Jacobi–Bellman equation;
Infinite horizon control and dynamic games;MINLP:
application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
branch and bound global optimization algorithm;MINLP:
branch and bound methods;MINLP: design and scheduling
of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
mass and heat exchanger networks;Mixed integer
nonlinear programming;Multi-objective optimization:
interaction of design and control;Optimal control of a
flexible arm; Robust control; Robust control: schur stability
of polytopes of polynomials; Semi-infinite programming
and control problems; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Suboptimal control)
(refers to: Chemical process planning; Control vector
iteration CVI;Duality in optimal control with first order
differential equations;Dynamic programming:
continuous-time optimal control;Dynamic programming
and Newton’s method in unconstrained optimal control;
Dynamic programming: optimal control applications;
Extended cutting plane algorithm;Generalized benders
decomposition;Generalized outer approximation;
Hamilton–Jacobi–Bellman equation; Infinite horizon
control and dynamic games;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: mass
and heat exchanger networks;Mixed integer nonlinear
programming;Multi-objective optimization: interaction of
design and control;Optimal control of a flexible arm;
Robust control; Robust control: schur stability of polytopes
of polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)

MINLP: branch and bound global optimization algorithm
(90C10, 90C26)
(referred to in: ˛BB algorithm; Chemical process planning;
Continuous global optimization: models, algorithms and

software;Disjunctive programming;Generalized benders
decomposition;Generalized outer approximation;Global
optimization in batch design under uncertainty;Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations;Global optimization in phase and chemical
reaction equilibrium; Interval analysis: subdivision
directions in interval branch and boundmethods; Interval
global optimization;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound methods;
MINLP: design and scheduling of batch processes;MINLP:
generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming; Smooth nonlinear
nonconvex optimization)
(refers to: ˛BB algorithm; Chemical process planning;
Continuous global optimization: models, algorithms and
software;Disjunctive programming; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;Global optimization in
batch design under uncertainty;Global optimization in
generalized geometric programming;Global optimization
methods for systems of nonlinear equations; Global
optimization in phase and chemical reaction equilibrium;
Interval global optimization;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound methods;
MINLP: design and scheduling of batch processes;MINLP:
generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: mass
and heat exchanger networks;Mixed integer nonlinear
programming; Reformulation-linearization technique for
global optimization; Smooth nonlinear nonconvex
optimization)

MINLP: branch and bound methods
(90C11)
(referred to in: Chemical process planning;Disjunctive
programming;Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer linear programming:
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mass and heat exchanger networks;Mixed integer
nonlinear programming)
(refers to: Chemical process planning;Disjunctive
programming; Extended cutting plane algorithm;
Generalized benders decomposition; Generalized outer
approximation;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: design and scheduling of
batch processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: outer approximation algorithm;MINLP: reactive
distillation column synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming;
Reformulation-linearization technique for global
optimization)

MINLP: design and scheduling of batch processes
(90C26)
(referred to in: Chemical process planning;Generalized
benders decomposition;Generalized outer approximation;
Job-shop scheduling problem;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: outer approximation algorithm;MINLP: reactive
distillation column synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks;Mixed integer nonlinear programming;Vehicle
scheduling)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation; Job-shop scheduling
problem;MINLP: application in facility location-allocation;
MINLP: applications in blending and pooling problems;
MINLP: applications in the interaction of design and
control;MINLP: branch and bound global optimization
algorithm;MINLP: branch and bound methods;MINLP:
generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-based methods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: mass
and heat exchanger networks;Mixed integer nonlinear
programming; Stochastic scheduling;Vehicle scheduling)

MINLP: generalized cross decomposition
(90C11, 90C30, 49M27)
(referred to in: Chemical process planning;Decomposition
principle of linear programming;Generalized benders
decomposition;Generalized outer approximation;MINLP:
application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;

MINLP: branch and boundmethods;MINLP: design and
scheduling of batch processes;MINLP: global optimization
with ˛BB;MINLP: heat exchanger network synthesis;
MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming; Simplicial decomposition;
Simplicial decomposition algorithms; Stochastic linear
programming: decomposition and cutting planes;
Successive quadratic programming: decomposition
methods)
(refers to: Chemical process planning;Decomposition
principle of linear programming; Extended cutting plane
algorithm;Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: design and scheduling of batch
processes;MINLP: global optimization with ˛BB;MINLP:
heat exchanger network synthesis;MINLP: logic-based
methods;MINLP: outer approximation algorithm;MINLP:
reactive distillation column synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming; Simplicial decomposition;
Simplicial decomposition algorithms; Stochastic linear
programming: decomposition and cutting planes;
Successive quadratic programming: decomposition
methods)

MINLP: global optimization with ˛BB
(65K05, 90C11, 90C26)
(referred to in: ˛BB algorithm; Chemical process planning;
Convex envelopes in optimization problems;Disjunctive
programming;Generalized benders decomposition;
Generalized outer approximation;Global optimization in
batch design under uncertainty;Global optimization in
generalized geometric programming;Global optimization
of heat exchanger networks; Global optimization methods
for systems of nonlinear equations; Global optimization in
phase and chemical reaction equilibrium; Interval global
optimization;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: mass and heat exchanger networks;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming; Smooth nonlinear
nonconvex optimization)
(refers to: ˛BB algorithm; Chemical process planning;
Continuous global optimization: models, algorithms and
software; Convex envelopes in optimization problems;
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Disjunctive programming; Extended cutting plane
algorithm;Generalized benders decomposition;
Generalized outer approximation;Global optimization in
batch design under uncertainty;Global optimization in
generalized geometric programming;Global optimization
of heat exchanger networks;Global optimization methods
for systems of nonlinear equations;Global optimization in
phase and chemical reaction equilibrium; Interval global
optimization;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: heat
exchanger network synthesis;MINLP: logic-based methods;
MINLP: mass and heat exchanger networks;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming;
Reformulation-linearization technique for global
optimization; Smooth nonlinear nonconvex
optimization)

MINLP: heat exchanger network synthesis
(90C90)
(referred to in: Chemical process planning; Continuous
global optimization: models, algorithms and software;
Generalized benders decomposition;Generalized outer
approximation;Global optimization of heat exchanger
networks;Global optimization methods for systems of
nonlinear equations;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: logic-basedmethods;
MINLP: mass and heat exchanger networks;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;Global optimization of
heat exchanger networks;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: logic-basedmethods;
MINLP: mass and heat exchanger networks;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear

programming: mass and heat exchanger networks;Mixed
integer nonlinear programming)

MINLP: logic-based methods
(90C10, 90C09, 90C11)
(referred to in: Chemical process planning;Decomposition
principle of linear programming;Disjunctive
programming;Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
boundmethods;MINLP: design and scheduling of batch
processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: heat exchanger network
synthesis;Mixed integer linear programming: mass and
heat exchanger networks;Mixed integer nonlinear
programming; Simplicial decomposition; Simplicial
decomposition algorithms; Stochastic linear programming:
decomposition and cutting planes; Successive quadratic
programming: decompositionmethods)
(refers to: Chemical process planning;Decomposition
principle of linear programming;Disjunctive
programming; Extended cutting plane algorithm;
Generalized benders decomposition;Generalized outer
approximation;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: outer approximation algorithm;MINLP:
reactive distillation column synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming;
Reformulation-linearization technique for global
optimization; Simplicial decomposition; Simplicial
decomposition algorithms; Stochastic linear programming:
decomposition and cutting planes; Successive quadratic
programming: decompositionmethods)

MINLP: mass and heat exchanger networks
(93A30, 93B50)
(referred to in: Continuous global optimization: models,
algorithms and software; Global optimization of heat
exchanger networks; Global optimization methods for
systems of nonlinear equations;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;Mixed integer linear programming: mass and
heat exchanger networks)
(refers to: Global optimization of heat exchanger networks;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks)

MINLP MEN synthesis model see:multiperiod—
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MINLP: outer approximation algorithm
(90C11)
(referred to in: Chemical process planning;Generalized
benders decomposition;Generalized outer approximation;
MINLP: application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: reactive distillation column
synthesis;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: design and scheduling of batch
processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: reactive distillation column synthesis;Mixed
integer linear programming: mass and heat exchanger
networks;Mixed integer nonlinear
programming)

MINLP: reactive distillation column synthesis
(90C90)
(referred to in: Chemical process planning;Generalized
benders decomposition;Generalized outer approximation;
MINLP: application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;Mixed integer linear programming: heat
exchanger network synthesis;Mixed integer linear
programming: mass and heat exchanger networks;Mixed
integer nonlinear programming)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;MINLP: application in
facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: design and scheduling of batch
processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-basedmethods;
MINLP: outer approximation algorithm;Mixed integer

linear programming: mass and heat exchanger networks;
Mixed integer nonlinear programming)

MINLP: trim-loss problem
(90C11, 90C90)
(referred to in:Mixed integer nonlinear programming)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
bound methods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objective mixed integer programming;
Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

mINLPs
[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

MINLPs see: twice-differentiable—
minmax, concave programs see: Bilevel linear programming:

complexity, equivalence to—
minMax Matching Subgraph Problem

[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

minmax multicenter
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

minmax problem
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

minmax problem
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

minor see:matroid—
minor closed

[68R10, 90C27]
(see: Branchwidth and branch decompositions)

minor of a matroid
[90C09, 90C10]
(see:Matroids)

minorant see: greatest convex—; greatest K- —; greatest
quasiconvex—

minority
[90-XX]
(see: Outranking methods)

MINOS
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

mintasks
(see:Medium-term scheduling of batch processes)
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Minty examples see: Klee–—; Linear programming: Klee– —
Minty) GVI see: dual (or —
MinxEnt

[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

MIP
[65K05, 90C09, 90C10, 90C11, 90C20]
(see: Disjunctive programming;Multi-quadratic integer
programming: models and applications)

mipstart
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

MIQP
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

MIQP master problem
[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

Miranda fixed point theorem
[65G20, 65G30, 65G40, 65H20]
(see: Interval fixed point theory)

mIS
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

misclassifications see:minimizing—
miss” decision problems see: “hit-or- —
missing comparisons

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

missing information
[90C09, 90C10]
(see: Optimization in boolean classification problems)

missing information
[90C09, 90C10]
(see: Optimization in boolean classification problems)

Mitchell PTAS
[90C27]
(see: Steiner tree problems)

mitigator
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

MITP
[90C35]
(see:Multi-index transportation problems)

MITPs see: greedy algorithm for axial—; hub heuristics for
axial—; integer —

Mixed 0-1 linear programming approach for DNA
transcription element identification
(90C08)

mixed complementarity problem see: generalized —
mixed construction procedure

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

mixed continuous and discrete free variables see: Generalized
geometric programming: —

mixed cycle
[90C35]
(see: Optimization in leveled graphs)

mixed discrete-continuous global optimization
[90C26, 90C29]
(see: Optimal design of composite structures)

mixed discrete-continuous global optimization
[90C26, 90C29, 90C90]
(see: Global optimization: hit and run methods;Optimal
design of composite structures)

mixed finite element
[65M60]
(see: Variational inequalities: F. E. approach)

mixed finite element approximation
[65M60]
(see: Variational inequalities: F. E. approach)

mixed fleet
[90B06]
(see: Vehicle routing)

mixed graph
[90B35]
(see: Job-shop scheduling problem)

mixed integer
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

mixed integer 0–1 programs
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

mixed integer ˛BB algorithm see: general structure —; special
structure—

Mixed Integer Bilevel Optimization
(see:Mixed integer nonlinear bilevel programming:
deterministic global optimization)

Mixed integer classification problems
(62H30,68T10,90C11)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation; Linear
programmingmodels for classification;MINLP: trim-loss
problem;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Optimization in boolean classification problems;
Optimization in classifying text documents; Parametric
mixed integer nonlinear optimization; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Statistical
classification: optimization approaches; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)
(refers to: Deterministic and probabilistic optimization
models for data classification; Integer programming; Linear
programmingmodels for classification;Optimization in
boolean classification problems; Statistical classification:
optimization approaches)
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mixed integer dynamic optimization
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

mixed integer formulation see: LCP: Pardalos–Rosen—
mixed-integer linear optimization see: Global pairwise protein

sequence alignment via—
mixed integer linear program see: single parametric —
mixed integer/linear programming

[90C06, 90C10, 90C11, 90C30, 90C46, 90C57, 90C90]
(see: Integer programming duality;Modeling difficult
optimization problems)

mixed integer linear programming
[90C90]
(see: Chemical process planning)

mixed integer linear programming see:Multiparametric—
Mixed integer linear programming: heat exchanger network

synthesis
(90C90)
(referred to in: Continuous global optimization: models,
algorithms and software; Global optimization of heat
exchanger networks; Global optimization methods for
systems of nonlinear equations;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: mass and heat exchanger networks;
Mixed integer linear programming: mass and heat
exchanger networks)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;Global optimization of
heat exchanger networks;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-based methods;MINLP: outer
approximation algorithm;MINLP: reactive distillation
column synthesis;Mixed integer linear programming: mass
and heat exchanger networks;Mixed integer nonlinear
programming)

Mixed integer linear programming: mass and heat exchanger
networks
(93A30, 93B50)
(referred to in: Chemical process planning; Continuous
global optimization: models, algorithms and software;
Generalized benders decomposition; Generalized outer
approximation;Global optimization of heat exchanger
networks; Global optimization methods for systems of
nonlinear equations;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-based methods;MINLP: mass and
heat exchanger networks;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;

Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer nonlinear programming)
(refers to: Chemical process planning; Extended cutting
plane algorithm;Generalized benders decomposition;
Generalized outer approximation;Global optimization of
heat exchanger networks;MINLP: application in facility
location-allocation;MINLP: applications in blending and
pooling problems;MINLP: applications in the interaction
of design and control;MINLP: branch and bound global
optimization algorithm;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
MINLP: generalized cross decomposition;MINLP: global
optimization with ˛BB;MINLP: heat exchanger network
synthesis;MINLP: logic-based methods;MINLP: mass and
heat exchanger networks;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
Mixed integer linear programming: heat exchanger
network synthesis;Mixed integer nonlinear programming)

mixed-integer linear programs see: Robust optimization:—
mixed integer nonconvex problem

[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

Mixed integer nonlinear bilevel programming: deterministic
global optimization

mixed integer nonlinear optimization
[49M29, 49M37, 90C11, 90C26]
(see: Generalized benders decomposition;Global
optimization in batch design under uncertainty;Mixed
integer nonlinear programming)

mixed integer nonlinear optimization
[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)

mixed integer nonlinear optimization see: Parametric—
Mixed-integer nonlinear optimization: A disjunctive cutting

plane approach
(49M37, 90C11)

mixed integer nonlinear program
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

Mixed integer nonlinear programming
(90C11, 49M37)
(referred to in: Chemical process planning;Complexity
classes in optimization; Complexity of degeneracy;
Complexity of gradients, Jacobians, and Hessians;
Complexity theory; Complexity theory: quadratic
programming; Computational complexity theory;
Continuous global optimization: applications; Fractional
combinatorial optimization; Generalized benders
decomposition;Generalized outer approximation;Global
optimization in the analysis and management of
environmental systems; Information-based complexity and
information-based optimization; Interval global
optimization; Kolmogorov complexity;MINLP: application
in facility location-allocation;MINLP: applications in
blending and pooling problems;MINLP: applications in the
interaction of design and control;MINLP: branch and
bound global optimization algorithm;MINLP: branch and
bound methods;MINLP: design and scheduling of batch
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processes;MINLP: generalized cross decomposition;
MINLP: global optimization with ˛BB;MINLP: heat
exchanger network synthesis;MINLP: logic-based methods;
MINLP: outer approximation algorithm;MINLP: reactive
distillation column synthesis;Mixed integer linear
programming: heat exchanger network synthesis;Mixed
integer linear programming: mass and heat exchanger
networks;NP-complete problems and proof methodology;
Parallel computing: complexity classes)
(refers to: Chemical process planning; Complexity classes in
optimization; Complexity of degeneracy;Complexity of
gradients, Jacobians, and Hessians; Complexity theory;
Complexity theory: quadratic programming;
Computational complexity theory; Continuous global
optimization: applications; Extended cutting plane
algorithm; Fractional combinatorial optimization;
Generalized benders decomposition;Generalized outer
approximation;Global optimization in the analysis and
management of environmental systems; Information-based
complexity and information-based optimization; Interval
global optimization; Kolmogorov complexity;MINLP:
application in facility location-allocation;MINLP:
applications in blending and pooling problems;MINLP:
applications in the interaction of design and control;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: design and
scheduling of batch processes;MINLP: generalized cross
decomposition;MINLP: global optimization with ˛BB;
MINLP: heat exchanger network synthesis;MINLP:
logic-basedmethods;MINLP: outer approximation
algorithm;MINLP: reactive distillation column synthesis;
MINLP: trim-loss problem;Mixed integer linear
programming: mass and heat exchanger networks; Parallel
computing: complexity classes)

mixed integer nonlinear programming
[49M20, 49M37, 90C06, 90C10, 90C11, 90C26, 90C29, 90C30,
90C57, 90C90]
(see: Generalized outer approximation;MINLP: branch and
bound global optimization algorithm;Mixed integer
nonlinear programming;Modeling difficult optimization
problems;Multi-objective optimization: interaction of
design and control)

mixed integer nonlinear programming
[49M20, 90C10, 90C11, 90C26, 90C30]
(see: Generalized outer approximation;MINLP: branch and
bound global optimization algorithm;MINLP: outer
approximation algorithm)

mixed integer nonlinear programming problem
[90C11, 90C90]
(see:MINLP: branch and boundmethods;Mixed integer
linear programming: heat exchanger network synthesis)

mixed integer optimal control problem
[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)

Mixed Integer Optimization
(see:Mixed integer nonlinear bilevel programming:
deterministic global optimization)

mixed-integer optimization see:Multi-class data classification
via—; Peptide identification via—

mixed integer optimization problem
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

Mixed integer optimization in well scheduling
(76T30, 90C11, 90C90)

mixed integer problem
[90C11, 90C33]
(see: LCP: Pardalos–Rosenmixed integer formulation)

mixed integer problem
[90C11, 90C33]
(see: LCP: Pardalos–Rosenmixed integer formulation)

mixed integer problems see: 0–1—; linear —
mixed integer program

[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

Mixed-integer programming
[90B50, 90C29]
(see: Logic-based outer approximation;Multicriteria sorting
methods;Optimization and decision support systems)

mixed integer programming
[90B50, 90B80, 90C09, 90C10, 90C11, 90C33]
(see: Facility location with staircase costs; LCP:
Pardalos–Rosenmixed integer formulation;MINLP:
branch and bound methods;MINLP: logic-basedmethods;
Mixed integer nonlinear bilevel programming:
deterministic global optimization;Optimal planning of
offshore oilfield infrastructure;Optimization and decision
support systems; Railroad crew scheduling;Railroad
locomotive scheduling)

mixed integer programming see:Multi-objective—;
multi-objective (multicriteria)—; stochastic —

Mixed integer programming/constraint programming hybrid
methods
(referred to in: Continuous reformulations of
discrete-continuous optimization problems)

mixed integer programming problem see: large scale
nonlinear —

mixed integer programs
[90C11, 90C59]
(see: Nested partitions optimization)

mixed-integer quadratic programming
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

mixed integer rounding cut
[90C11]
(see:MINLP: branch and boundmethods)

mixed integer value function
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

mixed linear complementarity problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

mixed methods
[90B06]
(see: Vehicle routing)

mixed minimax theorem
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)
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mixed nonlinear integer programming problem
[65K05, 90C26, 90C30, 90C59]
(see: Global optimization: filled function methods)

mixed-product campaign
[90C26]
(see:MINLP: design and scheduling of batch processes)

mixed Time Representation
(see: Integrated planning and scheduling)

mixed VAM construction procedure
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

mixed variational formulation
[65M60]
(see: Variational inequalities: F. E. approach)

mixed variational inequality
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

mixture problem see: fuel —
MLP

[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

MLS
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

MMP
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

mobilization curve
(see: Emergency evacuation, optimization modeling)

MOCO
[90C10, 90C35]
(see: Bi-objective assignment problem)

mode
[65K05, 65Y05]
(see: Parallel computing: models)

mode see: batch—; forward—; reverse —
mode of AD see: forward—; reverse —
mode of an AD algorithm see: forward—; reverse —
mode of automatic differentiation see: backward—;

forward—; reverse —
model

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

model see: assignment—; black oil —; Black–Scholes—;
bridging—; BSP—; bulk synchronous parallel —; capital
asset pricing—; classical linear regression —; classical
thermoelastic —; computational—; containment graph—;
continuous global optimization—; continuous review—;
continuous Time—; convex—; Cournot–Nash oligopolistic
equilibrium—; cutting plane—; deformable—;
deterministic equivalent—; diagonal—; discrete Time—;
dynamic—; dynamic traffic network—; energy —;
epidemic—; errors-in-variables—; expanded
transshipment —; export —; facility location—; flipping—;
forecasting—; fractional routing pattern —; Gasoline
blending and distribution scheduling: an MILP—; general
univariate linear—; gIS design pattern based—;
heteroscedastic —; homogeneous and selfdual—;
homoscedastic—; hybrid—; import—;
information-based—; intersection graph—; Ising glass —;

linear —; linear two-stage—; location-allocation—;
logistics control —; LogP—;matching—;mathematical —;
migration network equilibrium—;moving average—; the
multi-resource weighted assignment —;multi-sector
multi-instrument financial equilibrium—;multimodal
traffic network equilibrium—;multiperiod—;multiperiod
MINLP MEN synthesis —; network flow—; newsboy—;
oligopoly—; parametric programming—; partial
equilibrium—; perfectly competitive equilibrium—;
periodic review—; plant location—; Portfolio selection:
markowitz mean-variance—; Potts glass —; price—;
proximity graph—; pure exchange economic
equilibrium—; pure trade economic equilibrium—;
QSM—; quantity—; quasi-assignment—; queueing
shared-memory—; Ramsey—; real number—; recourse—;
reduced—; relational —; right-hand side perturbation—;
rotation-symmetry—; Sharpe single index market —;
sign-invariance—; single path routing pattern —;
single-period—; spatial competition facility location—;
spatial-interaction—; spatial oligopoly—; static —;
stochastic—; Stochastic facility location—;
superstructure —; transshipment —; trust region—; Turing
machine—; vector space—; well bore—;Wiener—

model B
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

model-based
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

Model based control for drug delivery systems
(refers to:Nondifferentiable optimization: parametric
programming)

model-based controllers via parametric programming see:
Design of robust—

model-based experimental analysis
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

model-based method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

model-based perspective
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

model BF
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

model BFR
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)
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model building
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

model calibration
[90C05]
(see: Global optimization in the analysis andmanagement
of environmental systems)

model of computation
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

model of conflicting populations see: Volterra —
model coordination method

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

model development
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

model features see: special —
model finding procedure

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

model and Gibbs sampler see: hiddenMarkov—
model identification

[62F10, 94A17]
(see: Entropy optimization: parameter estimation)

model with impulse perturbations see: Vasicek—
model independent

[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

model nodes see: plant/ —; retailer/ —
model/optimizer coupling

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

model in OR
[90B80, 90B85]
(see:Warehouse location problem)

model in OR see: continuous—; discrete—;
multicommodity—; single-commodity—

model for parallel algorithm design
[65K05, 65Y05]
(see: Parallel computing: models)

model parameters see: estimation of —
model predictive control

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

model refinement see: iterative —
model reformulation

[90C09, 90C10, 90C11]
(see: Disjunctive programming)

model robust
[90C90, 91B28]
(see: Robust optimization)

model structure refinement see: incremental strategy
for—

model structures
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

model types
[90C05]
(see: Continuous global optimization: models, algorithms
and software)

model validation
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

model world
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

modeling
[90C06, 90C10, 90C11, 90C27, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems;Operations
research and financial markets)

modeling see: conceptual—; Emergency evacuation,
optimization—; energy —;mathematical —;
nonsmooth—; preference—; problem—; uncertainty—

modeling agricultural systems see: State of the art in—
Modeling difficult optimization problems

(90C06, 90C10, 90C11, 90C30, 90C57, 90C90)
modeling framework see:multiperiod optimization—
modeling frameworks see: Short-term scheduling, resource

constrained: unified—
modeling language

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

modeling language
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

modeling language see: algebraic—
modeling language and constraint logic programming

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

modeling languages see: algebraic—; second generation —
Modeling languages in optimization: a new paradigm

(90C10, 90C30)
(referred to in: Continuous global optimization: models,
algorithms and software; Large scale unconstrained
optimization;Optimization software)
(refers to: Continuous global optimization: models,
algorithms and software; Large scale unconstrained
optimization;Optimization software)

modeling and management see: applications in environmental
systems—

modeling mass exchange
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

modeling production
(see: Planning in the process industry)

modello
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

modellus
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)
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models see: complexity of—; compositional—; continuous
and discrete time—; discrete-time—; econometric—;
estimation of diffusion flux—; Global optimization based
on statistical —; Global supply chain—; hidden Markov—;
location-routing—; locomotive assignment—;
mathematical —;mechanical —;multiple locomotive
type—;multipopulation replicator —;multistage inventory
management —; nonlinear decision—; Parallel
computing: —; parametric programming—; positive
definite quadratic—; purpose of —; recourse—;
representation of —; restricted recourse—; simulation—;
simultaneous equation—; single locomotive scheduling—;
single stage inventory management —; single versus
Multiperiod—; Static stochastic programming—;
statistical —; strategic design—; supply chain
simulation—; thermodynamic —; time-stamped—;
transportation—; two-stage stochastic programming—;
undirected multicommodity network flow—

models, algorithms and software see: Continuous global
optimization:—

models and applications see:Multi-quadratic integer
programming: —

models for classification see: Linear programming—
models: conditional expectations see: Static stochastic

programming—
models for data classification see: Deterministic and

probabilistic optimization—
models for entropy optimization for image reconstruction see:

finite-dimensional—; vector-space—
models for parallel computing

[65K05, 65Y05]
(see: Parallel computing: models)

models: (QR) policy see: Continuous review inventory —
models: random objective see: Stochastic programming—
models for supply chain management and design see:

Operations research—
modified

(see: Emergency evacuation, optimization modeling)
modified Cauchy approach

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

modified Cauchy method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

modified Gram–Schmidt orthogonalization
[65Fxx]
(see: Least squares problems)

modified Huang algorithm
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares;ABS algorithms for optimization)

modified Kruskal algorithm
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

modified Lagrangian
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

modified Newton method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

modified Prim algorithm
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

modified square-root transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

modified standard auction algorithm
[90B10, 90C27]
(see: Shortest path tree algorithms)

modifying matrix factorization
[65Fxx]
(see: Least squares problems)

MODP
[90C31, 90C39]
(see:Multiple objective dynamic programming)

MODP see: principle of Pareto optimality of—
modular

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

modular
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

modular approach
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

module see:mass/heat transfer —
modus confirmans

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

modus negans
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

modus ponens
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

modus ponens see: checklist—
modus tollens

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

modus tollens see: checklist —
Moebius function

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

MOILP
[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

molar Gibbs free energy
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

molecular conformation
[65D18, 90B85, 90C26]
(see: Global optimization in location problems)
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molecular design
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

Molecular distance geometry problem
(46N60)

molecular dynamics
[90C90]
(see: Simulated annealing methods in protein folding)

molecular mechanics
[65K10, 92C40]
(see:Multipleminima problem in protein folding:˛BB
global optimization approach)

molecular optimization
[90C90]
(see: Simulated annealing methods in protein folding)

molecular structure determination
[65K05, 90C26]
(see:Molecular structure determination: convex global
underestimation)

Molecular structure determination: convex global
underestimation
(65K05, 90C26)
(referred to in: Adaptive simulated annealing and its
application to protein folding;Genetic algorithms;Global
optimization in Lennard–Jones and morse clusters;Graph
coloring;Monte-Carlo simulated annealing in protein
folding;Multipleminima problem in protein folding:˛BB
global optimization approach; Packet annealing; Phase
problem in X-ray crystallography: Shake and bake
approach; Simulated annealingmethods in protein folding)
(refers to: Adaptive simulated annealing and its application
to protein folding;Genetic algorithms;Global optimization
in Lennard–Jones and morse clusters; Global optimization
in protein folding;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Protein folding: generalized-ensemble
algorithms; Simulated annealing; Simulated annealing
methods in protein folding)

MOLFP
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

mollifier see: standard—
mollifier quasigradient see: stochastic—
MOLP with fuzzy coefficients

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

MOLP with fuzzy coefficients see: flexible—
moment see: dipole—
moment conditions

[62C20, 90C15]
(see: Stochastic programming: minimax approach)

moment conditions see: optimal integral bounds subject to—
moment optimization problems see: General —
moment problem see: convex—; finite—; infinite—; infinite

many conditions—; solution of the convex—; standard—
moment theory

[93-XX]
(see: Optimal control of a flexible arm)

moment theory see: geometric —

moments see: binomial —
momentum balances see:mass, energy and—
momentum updating rule

[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

MOMILP
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

MOMIP
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

momments see: characterizing—
monads

[03E70, 03H05, 91B16]
(see: Alternative set theory)

Mond–Weir dual
[90C26]
(see: Invexity and its applications)

Mond–Weir dual
[90C26]
(see: Invexity and its applications)

Monge inequalities
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Monge inequalities see: anti- —
Monge matrix

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Monge matrix see: anti- —
Monge property

[90C35]
(see:Multi-index transportation problems)

Monge property
[90C35]
(see:Multi-index transportation problems)

monitored
(see: Emergency evacuation, optimization modeling)

monoduality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

monoduality in convex optimization see: Duality theory: —
monomial

[12D10, 12Y05, 13P10]
(see: Gröbner bases for polynomial equations)

monomial ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

monomial ideal see: admissible pair of a—; arithmetic degree
of a—; standard pair of a—; standard pair decomposition
of a—

monomials see: posynomial —; standard—
monopoly

[91B06, 91B60]
(see: Oligopolistic market equilibrium)

monotone
[46N10, 47J20, 49J40, 49L20, 65K10, 90C26, 90C33, 90C40]
(see: Dynamic programming: stochastic shortest path
problems;Generalized monotone multivalued maps;
Generalized monotone single valued maps; Generalized
monotonicity: applications to variational inequalities and
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equilibrium problems; Solutionmethods for multivalued
variational inequalities)

monotone see: strictly —; strongly—
monotone bifunction

[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

monotone Boolean function
[90C09]
(see: Inference of monotone boolean functions)

monotone Boolean function
[90C09]
(see: Inference of monotone boolean functions)

monotone Boolean function see: antitone—; isotone—;
nondecreasing—; nonincreasing—

monotone Boolean function inference
[90C09]
(see: Inference of monotone boolean functions)

monotone boolean functions see: Inference of—
monotone convergence theorem

[49L20, 90C40]
(see: Dynamic programming: undiscounted problems)

monotone function
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

monotone function see: locally—; locally strictly —; locally
strongly—; strictly —; strongly —

monotone laws and variational inequalities see:multivalued—
monotone map

[90C26]
(see: Generalized monotone single valued maps)

monotone map see:maximal—; strictly—
monotone matrix

[90C33]
(see: Linear complementarity problem)

monotone multivaluedmaps see: Generalized—
monotone operator

[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

monotone operator see: generalized —; strictly —
monotone operator on a Banach space

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

monotone sequence see: Fejér —
monotone sequence of greedy swaps

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

monotone single valued maps see: Generalized—
monotonic

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

monotonic analysis
[26A48, 26A51, 52A07]
(see: Increasing and convex-along-rays functions on
topological vector spaces)

monotonic at see: locally strongly —
monotonic function

[41A30, 62J02, 90C26]

(see: Regression by special functions: algorithms and
complexity)

monotonic functions see: difference of—
Monotonic optimization

(90C26, 65K05, 90C30)
monotonic optimization

[65K05, 90C26, 90C30, 90C31]
(see: Cutting plane methods for global optimization;D.C.
programming;Monotonic optimization; Robust global
optimization)

monotonic optimization
[90C26]
(see: Cutting plane methods for global optimization)

monotonic optimization problem see: canonical —
monotonic optimization problems see: discrete—
monotonic over see: strongly linearly —
monotonicity

[65K10, 65M60, 90C09, 90C10, 90C26, 90C30]
(see: Bounding derivative ranges; Inference of monotone
boolean functions;Optimization in boolean classification
problems;Variational inequalities: geometric
interpretation, existence and uniqueness)

monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

monotonicity see: Fejér —; generalized —; local —; local
strict —; local strong—; partial —; strict —; strong—

monotonicity: applications to variational inequalities and
equilibrium problems see: Generalized—

monotonicity in convex optimization see: Fejér —
monotonicity and nonconvexity test

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

monotonicity test
[49M37, 65G20, 65G30, 65G40, 65H20, 65K05, 65Y05, 65Y10,
65Y20, 68W10, 90C11, 90C30]
(see: Interval analysis: parallel methods for global
optimization; Interval analysis: unconstrained and
constrained optimization; Interval global optimization;
Mixed integer nonlinear programming)

monotonous see: partially—
Monro method see: Robbins–—
Monte-Carlo

[65K10, 92C40]
(see:Multiple minima problem in protein folding:˛BB
global optimization approach)

Monte-Carlo see: pure—
Monte-Carlo configuration

[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

Monte-Carlo method
[90C05, 90C25, 90C90]
(see:Metropolis, Nicholas Constantine; Simulated
annealing methods in protein folding)

Monte-Carlo method
[62F12, 65C05, 65K05, 90C05, 90C15, 90C25, 90C31]
(see:Metropolis, Nicholas Constantine;Monte-Carlo
simulations for stochastic optimization)

Monte Carlo method see:metropolis —; pure —
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Monte-Carlo sampling and variance reduction
[90C27]
(see: Operations research and financial markets)

Monte-Carlo simulated annealing in protein folding
(92C40)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization;Genetic algorithms;Genetic algorithms for
protein structure prediction;Global optimization based on
statistical models; Global optimization in Lennard–Jones
andmorse clusters;Graph coloring;Molecular structure
determination: convex global underestimation;
Monte-Carlo simulations for stochastic optimization;
Multipleminima problem in protein folding:˛BB global
optimization approach; Packet annealing; Phase problem in
X-ray crystallography: Shake and bake approach;Random
search methods; Simulated annealing; Simulated annealing
methods in protein folding; Stochastic global optimization:
stopping rules; Stochastic global optimization: two-phase
methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization; Genetic
algorithms;Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Global optimization in Lennard–Jones andmorse clusters;
Global optimization in protein folding;Molecular structure
determination: convex global underestimation;
Monte-Carlo simulations for stochastic optimization;
Multipleminima problem in protein folding:˛BB global
optimization approach; Packet annealing; Phase problem in
X-ray crystallography: Shake and bake approach; Protein
folding: generalized-ensemble algorithms; Random search
methods; Simulated annealing; Simulated annealing
methods in protein folding; Stochastic global optimization:
stopping rules; Stochastic global optimization: two-phase
methods)

monte-Carlo simulation
[49L20, 49L99, 62F12, 65C05, 65K05, 90C15, 90C31, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: stochastic shortest path
problems;Monte-Carlo simulations for stochastic
optimization)

Monte-Carlo simulation algorithm
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Monte-Carlo simulation procedure
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Monte-Carlo simulations for stochastic optimization
(90C15, 65C05, 65K05, 90C31, 62F12)
(referred to in:Monte-Carlo simulated annealing in protein
folding)
(refers to:Monte-Carlo simulated annealing in protein
folding)

mood of play
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Moon algorithm see: Corley–—
Moore–Penrose pseudo-inverse

[65K05, 65K10]

(see: ABS algorithms for linear equations and linear least
squares)

Moré updating formula
[90C30]
(see: Generalized total least squares)

Moreau duality see: Fenchel– —
Moreau–Rockafellar subdifferential

[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Moreau subdifferential see: Fenchel– —
Moreau theorem

[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem)

morphism see: generalized —
morphisms see: generalized —
morphisms of relations see: generalized —
Morrison formula see: Sherman–—
Morrison rank-one update formula see: Sherman- —
Morrison–Woodbury formula see: Sherman–—
morse clusters see: Global optimization in Lennard–Jones

and—
morse index

[57R12, 90C31, 90C34]
(see: Smoothing methods for semi-infinite optimization)

morse indices
[57R12, 90C31, 90C34]
(see: Smoothing methods for semi-infinite optimization)

Morse lemma see: equivariant—
Morse microcluster

[90C26, 90C90]
(see: Global optimization in Lennard–Jones and morse
clusters)

Morse relations
[58E05, 90C30]
(see: Topology of global optimization)

Morse relations
[58E05, 90C30]
(see: Topology of global optimization)

Morse theory
[58E05, 90C30]
(see: Topology of global optimization)

MOSA method
[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

Mosco convergence see: discrete—
most active points see: set of "- —
most/least infeasible integer variable

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

most preferred solution
[90C29]
(see:Multiple objective programming support)

most promising region
[90C11, 90C59]
(see: Nested partitions optimization)

mostPreferred
(see: Railroad locomotive scheduling)

motion
[03E70, 03H05, 91B16]
(see: Alternative set theory)
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motion
[03E70, 03H05, 91B16]
(see: Alternative set theory)

motion see: Brownian—; N-dimensional Brownian—
motion of a point

[03E70, 03H05, 91B16]
(see: Alternative set theory)

motion of a set
[03E70, 03H05, 91B16]
(see: Alternative set theory)

motionless degree
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

motivation
[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

Motzkin elimination see: Fourier–—
Motzkin eliminationmethod see: Fourier–—
Motzkin–Fourier relaxation method see: Agmon–—
Motzkin method see: Fourier– —
Motzkin theorem

[90C05, 90C30]
(see: Theorems of the alternative and optimization)

Motzkin transposition theorem
(15A39, 90C05)
(referred to in: Farkas lemma; Linear optimization:
theorems of the alternative; Linear programming;
Minimum concave transportation problems; Stochastic
transportation and location problems; Tucker
homogeneous systems of linear relations)
(refers to: Farkas lemma; Linear optimization: theorems of
the alternative; Linear programming;Minimum concave
transportation problems;Multi-index transportation
problems; Stochastic transportation and location problems;
Tucker homogeneous systems of linear relations)

Motzkin transposition theorem
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

mountain pass theorem
[49J52, 58E05, 90C30]
(see:Hemivariational inequalities: eigenvalue problems;
Topology of global optimization)

move
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

move see: exchange—; feasible—; shift—
move in a search

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

move of a Turing machine
[90C60]
(see: Complexity theory)

moving average model
[90C26, 90C30]
(see: Forecasting)

moving average model
[90C26, 90C30]
(see: Forecasting)

moving coordinate system
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

(MP) see: 1- —;minimum Partition Problem—; p- —
MPC

[90C26]
(see:MINLP: design and scheduling of batch processes)

mPCC
[65K05, 90C26, 90C33, 90C34]
(see: Adaptive convexification in semi-infinite
optimization)

MPEC
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

MPEC
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

MPEC Lagrangian
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

MPEC multipliers
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

MPI
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

MPI-based implementations
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

MPM
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

MPS
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

MS scheme
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

MSIM
[90B50]
(see: Inventory management in supply chains)

MSP
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

MSP see: STP-—
MST

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

MTT
[15A39, 90C05]
(see:Motzkin transposition theorem)

MTVSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

mu synthesis control
[93D09]
(see: Robust control)
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multi-armed restless bandit problem
[90B36]
(see: Stochastic scheduling)

multi-attribute utility theory
[90C29, 91B06, 91B60]
(see: Decision support systems with multiple criteria;
Financial applications of multicriteria analysis; Preference
disaggregation approach: basic features, examples from
financial decisionmaking)

Multi-class data classification via mixed-integer optimization
Multi-commodity flows

(see: Railroad crew scheduling;Railroad locomotive
scheduling)

multi-core
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

multi-criteria problems
(see: Planning in the process industry)

Multi-depot vehicle scheduling problem
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

multi-depot vehicle scheduling problems
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

multi-echelon arborescence system
[90B50]
(see: Inventory management in supply chains)

multi-extremal global optimization
[90C25]
(see: Concave programming)

multi-extremal global optimization
[90C25]
(see: Concave programming)

multi-extremality
[90C05]
(see: Continuous global optimization: applications;Global
optimization in the analysis and management of
environmental systems)

multi-index assignment problems
[90C08, 90C11, 90C27, 90C35, 90C57, 90C59]
(see:Multi-index transportation problems;Quadratic
assignment problem)

multi-index transportation problem
[90C35]
(see:Multi-index transportation problems)

multi-index transportation problem see: axial —; integer —;
planar —; symmetric —

Multi-index transportation problems
(90C35)
(referred to in:Minimum concave transportation problems;
Motzkin transposition theorem;Multidimensional
assignment problem; Stochastic transportation and
location problems)
(refers to: Generalized assignment problem; Stochastic
transportation and location problems)

multi-instrument financial equilibriummodel see:
multi-sector—

multi-knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multi-objective
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

multi-objective CNSO
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

Multi-objective combinatorial optimization
(90C29, 90C27)
(referred to in: Bi-objective assignment problem;
Combinatorial matrix analysis; Combinatorial
optimization algorithms in resource allocation problems;
Combinatorial optimization games; Decision support
systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Evolutionary algorithms in combinatorial
optimization; Financial applications of multicriteria
analysis; Fractional combinatorial optimization; Fuzzy
multi-objective linear programming;Multicriteria sorting
methods;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling; Replicator dynamics in
combinatorial optimization)
(refers to: Bi-objective assignment problem; Combinatorial
matrix analysis; Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games;Decision support systems with multiple criteria;
Estimating data for multicriteria decisionmaking
problems: optimization techniques; Evolutionary
algorithms in combinatorial optimization; Financial
applications of multicriteria analysis; Fractional
combinatorial optimization; Fuzzy multi-objective linear
programming;Multicriteria sorting methods;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Neural networks
for combinatorial optimization;Outranking methods;
Portfolio selection and multicriteria analysis; Preference
disaggregation; Preference disaggregation approach: basic
features, examples from financial decisionmaking;
Preference modeling;Replicator dynamics in combinatorial
optimization)

multi-objective combinatorial optimization
[90C10, 90C35]
(see: Bi-objective assignment problem)
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multi-objective convex optimization
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

multi-objective euclidean distance location see: Single facility
location:—

multi-objective facility location
[90B85]
(see: Single facility location: multi-objective rectilinear
distance location)

multi-objective fractional program
[90C32]
(see: Fractional programming)

multi-objective fractional programming
[90C32]
(see: Fractional programming)

Multi-objective fractional programming problems
(90C29)

Multi-objective integer linear programming
(90C29, 90C10)
(referred to in: Bi-objective assignment problem; Branch
and price: Integer programming with column generation;
Broadcast scheduling problem;Decision support systems
with multiple criteria;Decomposition techniques for MILP:
lagrangian relaxation; Estimating data for multicriteria
decisionmaking problems: optimization techniques;
Financial applications of multicriteria analysis; Fuzzy
multi-objective linear programming;Graph coloring;
Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;MINLP: trim-loss problem;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objective mixed integer
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiparametricmixed integer linear
programming;Multiple objective programming support;
Outranking methods; Parametric mixed integer nonlinear
optimization; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling; Set covering, packing and
partitioning problems; Simplicial pivoting algorithms for
integer programming; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Time-dependent traveling salesman
problem)
(refers to: Bi-objective assignment problem; Branch and
price: Integer programming with column generation;
Decision support systems with multiple criteria;
Decomposition techniques for MILP: lagrangian relaxation;
Estimating data for multicriteria decisionmaking
problems: optimization techniques; Financial applications
of multicriteria analysis; Fuzzy multi-objective linear

programming; Integer linear complementary problem;
Integer programming; Integer programming: algebraic
methods; Integer programming: branch and bound
methods; Integer programming: branch and cut algorithms;
Integer programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation;Mixed integer classification problems;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objectivemixed integer
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiparametric mixed integer linear
programming;Multiple objective programming support;
Outranking methods; Parametric mixed integer nonlinear
optimization; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling; Set covering, packing and
partitioning problems; Simplicial pivoting algorithms for
integer programming; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Time-dependent traveling salesman
problem)

multi-objective linear programming
[90C10, 90C26, 90C29, 91B28]
(see:Multi-objective integer linear programming; Portfolio
selection and multicriteria analysis;Vector optimization)

multi-objective linear programming
[90C26, 91B28]
(see: Portfolio selection and multicriteria analysis)

multi-objective linear programming see: Fuzzy—
multi-objective linear programming with fuzzy coefficients

[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

multi-objective linear programming under uncertainty
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

multi-objective mathematical programming
[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

multi-objective mathematical programming
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

Multi-objective mixed integer programming
(90C29, 90C11)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and boundmethods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multiparametric mixed integer linear
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programming; Parametric mixed integer nonlinear
optimization; Set covering, packing and partitioning
problems; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multiparametricmixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

multi-objective mixed integer programming
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

multi-objective (multicriteria) mixed integer programming
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

multi-objective optimization
[49M37, 65K05, 65K10, 90B50, 90B85, 90C11, 90C29, 90C30,
93A13]
(see:MINLP: applications in the interaction of design and
control;Multilevel methods for optimal design;
Multi-objective optimization; Interactivemethods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties;Optimization and
decision support systems; Selection of maximally
informative genes; Single facility location: multi-objective
rectilinear distance location)

multi-objective optimization
[90B50, 90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control;Multi-objective optimization; Interactive
methods for preference value functions;Multi-objective
optimization: pareto optimal solutions, properties;
Optimization and decision support systems)

multi-objective optimization see: disaggregation in—;
Generalized concavity in—

Multi-objective optimization and decision support systems
(90B50, 90C29, 65K05, 90C05, 91B06)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods

for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)

Multi-objective optimization: interaction of design and
control
(90C29, 90C11, 90C90)
(referred to in: Bi-objective assignment problem; Control
vector iteration CVI;Decision support systems with
multiple criteria;Duality in optimal control with first order
differential equations;Dynamic programming:
continuous-time optimal control;Dynamic programming
and Newton’s method in unconstrained optimal control;
Dynamic programming: optimal control applications;
Estimating data for multicriteria decisionmaking
problems: optimization techniques; Financial applications
of multicriteria analysis; Fuzzy multi-objective linear
programming;Hamilton–Jacobi–Bellman equation;
Infinite horizon control and dynamic games;MINLP:
applications in the interaction of design and control;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization; Interactive
methods for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Optimal control
of a flexible arm;Outranking methods; Portfolio selection
andmulticriteria analysis; Preference disaggregation;
Preference disaggregation approach: basic features,
examples from financial decisionmaking; Preference
modeling; Robust control; Robust control: schur stability of
polytopes of polynomials; Semi-infinite programming and
control problems; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Suboptimal control)
(refers to: Bi-objective assignment problem; Control vector
iteration CVI;Decision support systems with multiple
criteria;Duality in optimal control with first order
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differential equations;Dynamic programming:
continuous-time optimal control;Dynamic programming
and Newton’s method in unconstrained optimal control;
Dynamic programming: optimal control applications;
Estimating data for multicriteria decisionmaking
problems: optimization techniques; Financial applications
of multicriteria analysis; Fuzzy multi-objective linear
programming;Hamilton–Jacobi–Bellman equation;
Infinite horizon control and dynamic games;MINLP:
applications in the interaction of design and control;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization; Interactive
methods for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Optimal control
of a flexible arm;Outranking methods; Portfolio selection
and multicriteria analysis; Preference disaggregation;
Preference disaggregation approach: basic features,
examples from financial decisionmaking; Preference
modeling; Robust control; Robust control: schur stability of
polytopes of polynomials; Semi-infinite programming and
control problems; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Suboptimal control)

multi-objective optimization in the interaction of design and
control
[90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control)

Multi-objective optimization; Interactivemethods for
preference value functions
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization: lagrange duality;

Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)

Multi-objective optimization: lagrange duality
(90C29, 90C30)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria;Decomposition
techniques for MILP: lagrangian relaxation; Estimating
data for multicriteria decisionmaking problems:
optimization techniques; Financial applications of
multicriteria analysis; Fuzzy multi-objective linear
programming; Integer programming: lagrangian
relaxation; Lagrange, Joseph-Louis; Lagrangianmultipliers
methods for convex programming;Multicriteria sorting
methods;Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria;Decomposition
techniques for MILP: lagrangian relaxation; Estimating
data for multicriteria decisionmaking problems:
optimization techniques; Financial applications of
multicriteria analysis; Fuzzy multi-objective linear
programming; Integer programming: lagrangian
relaxation; Lagrange, Joseph-Louis; Lagrangianmultipliers
methods for convex programming;Multicriteria sorting
methods;Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making; Preference modeling)

Multi-objective optimization: pareto optimal solutions,
properties
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decision making problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
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Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multiple objective
programming support;Outranking methods; Portfolio
selection andmulticriteria analysis; Preference
disaggregation; Preference disaggregation approach: basic
features, examples from financial decisionmaking;
Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multiple objective
programming support;Outranking methods; Portfolio
selection andmulticriteria analysis; Preference
disaggregation; Preference disaggregation approach: basic
features, examples from financial decisionmaking;
Preference modeling)

multi-objective programming
[90C29]
(see: Preference disaggregation approach: basic features,
examples from financial decisionmaking)

multi-objective programming
[90C10, 90C27, 90C29, 90C35]
(see: Bi-objective assignment problem;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming)

multi-objective rectilinear distance location see: Single facility
location:—

Multi-quadratic integer programming: models and
applications
(65K05, 90C11, 90C20)

the multi-resource weighted assignment model
[90-00]
(see: Generalized assignment problem)

multi-resource weighted assignment model see: the —
Multi-scale global optimization using terrain/funneling

methods
(65H20)

multi-sector multi-instrument financial equilibrium model
[91B50]
(see: Financial equilibrium)

multicenter see:minmax—
multiclass migration

[90C30]
(see: Equilibrium networks)

multiclass migration
[90C30]
(see: Equilibrium networks)

multiclass queueing networks
[90B36]
(see: Stochastic scheduling)

multicoloring
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

multicommodity flow
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

multicommodity flow
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

multicommodity flow see: relaxed—
multicommodity flow problem see: node-path formulation of

the—
Multicommodity flow problems

(90C35)
(referred to in:Minimum cost flow problem;Nonconvex
network flow problems;Nonoriented multicommodity flow
problems)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks; Generalized networks;Maximum flow problem;
Minimum cost flow problem;Network design problems;
Network location: covering problems;Nonconvex network
flow problems;Nonoriented multicommodity flow
problems; Piecewise linear network flow problems; Shortest
path tree algorithms; Steiner tree problems; Stochastic
network problems: massively parallel solution; Survivable
networks; Traffic network equilibrium)

multicommodity flow problems see: large nonlinear —;
nonlinear —; Nonoriented —

multicommodity model in OR
[90B80, 90B85]
(see:Warehouse location problem)

multicommodity network
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

multicommodity network flowmodels see: undirected—
multicommodity network flow problem

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

multicommodity network flows
[90C35]
(see:Multicommodity flow problems)

multicomputer see: coarse grained—
multiconstraint knapsack

[90C10, 90C27]
(see:Multidimensional knapsack problems)

multiconstraint knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multicriteria analysis
[90C29, 91A99, 91B06, 91B60]
(see: Financial applications of multicriteria analysis;
Preference disaggregation)

multicriteria analysis
[90C11, 90C29, 91A99, 91B06, 91B60]
(see: Decision support systems with multiple criteria;
Financial applications of multicriteria analysis;
Multicriteria sorting methods;Multi-objective mixed
integer programming; Preference disaggregation;
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Preference disaggregation approach: basic features,
examples from financial decisionmaking)

multicriteria analysis see: Financial applications of —; Portfolio
selection and—

multicriteria decision aid
[90C29, 91B06, 91B60]
(see: Decision support systems with multiple criteria;
Financial applications of multicriteria analysis;
Multicriteria sorting methods; Preference disaggregation
approach: basic features, examples from financial decision
making)

multicriteria decision making
[90B80, 90B85]
(see:Warehouse location problem)

multicriteria decision making
[90C29, 90C70]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques; Fuzzy multi-objective
linear programming)

multicriteria decisionmaking problems: optimization
techniques see: Estimating data for—

Multicriteria decision support methodologies for auditing
decisions
(90C90, 90C11, 91B28)

multicriteria decision support system
[90C29]
(see: Decision support systems with multiple criteria)

multicriteria decision support system see: intelligent—
multicriteria decision support systems see: intelligent —
multicriteria DSS

[90C29]
(see: Decision support systems with multiple criteria)

multicriteria group decision support system
[90C29]
(see: Decision support systems with multiple criteria)

multicriteria group decision support system
[90C29]
(see: Decision support systems with multiple criteria)

Multicriteriamethods for mergers and acquisitions
(91B28, 90C05, 90C90)

(multicriteria) mixed integer programming see:
multi-objective—

multicriteria objective function
[90B80]
(see: Facilities layout problems)

multicriteria sorting method
[90C29]
(see:Multicriteria sorting methods)

Multicriteria sorting methods
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;

Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decision making problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)

multicut methods
[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

Multidimensional assignment problem
(90C10, 90C27)
(refers to: Assignment and matching; Integer programming:
branch and boundmethods;Multi-index transportation
problems)

multidimensional assignment problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

multidimensional assignment problem see: Asymptotic
properties of random—

multidimensional bisection
[65K05, 90C30]
(see: Bisection global optimization methods)

multidimensional bisection
[65K05, 90C30]
(see: Bisection global optimization methods)

multidimensional bracket
[65K05, 90C30]
(see: Bisection global optimization methods)

multidimensional knapsack
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multidimensional knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

Multidimensional knapsack problems
(90C27, 90C10)
(referred to in: Integer programming;Quadratic knapsack)
(refers to: Integer programming; Integer programming:
branch and boundmethods;Quadratic knapsack)

multidimensional multiple-choice knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)
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multidimensional scaling
[62H30, 90C39]
(see: Dynamic programming in clustering)

multidimensional scaling problem
[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

multidimensional transportation problem
[90C35]
(see:Multi-index transportation problems)

multidimensional zero-one knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multidisciplinary design
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

Multidisciplinary design optimization
(65F10, 65F50, 65H10, 65K10)
(referred to in: Design optimization in computational fluid
dynamics; Interval analysis: application to chemical
engineering design problems;Multilevel methods for
optimal design;Optimal design of composite structures;
Optimal design in nonlinear optics; Structural
optimization: history)
(refers to: Bilevel programming: applications in engineering;
Design optimization in computational fluid dynamics;
Genetic algorithms; Interval analysis: application to
chemical engineering design problems;Multilevel methods
for optimal design;Optimal design of composite structures;
Optimal design in nonlinear optics; Structural
optimization: history)

multidisciplinary design optimization
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

multidisciplinary optimization
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

multifacilities location
[90B80]
(see: Facilities layout problems)

multifacility see: discrete single-commodity single-criterion
uncapacitated static —

multifacility location
[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

multifacility location-allocation
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

multifacility problem in OR
[90B80, 90B85]
(see:Warehouse location problem)

Multifacility and restricted location problems
(90B85)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs;Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Network location: covering
problems;Optimizing facility location with euclidean and

rectilinear distances; Single facility location: circle covering
problem; Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location; Stochastic transportation and
location problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Complexity classes in optimization; Complexity theory;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Network location: covering
problems;Optimizing facility location with euclidean and
rectilinear distances; Production-distribution system
design problem; Resource allocation for epidemic control;
Single facility location: circle covering problem; Single
facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

multifacility Weber objective function
[90B85]
(see:Multifacility and restricted location problems)

multifacility Weber problem
[90B85]
(see:Multifacility and restricted location problems)

multifacility Weber–Rawls objective function
[90B85]
(see:Multifacility and restricted location problems)

multifrontal method
[65Fxx]
(see: Least squares problems)

multigraph
[05-XX]
(see: Frequency assignment problem)

multigroup hierarchical discrimination
[90C29]
(see:Multicriteria sorting methods)

multilayer see: k-restrictive—
multilayered dielectric structures see: Global optimization of

planar —
multilevel algorithm

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

multilevel generalized assignment problem
[90-00]
(see: Generalized assignment problem)

multilevel methods
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

Multilevel methods for optimal design
(49M37, 65K05, 65K10, 90C30, 93A13)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
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approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;Design
optimization in computational fluid dynamics; Interval
analysis: application to chemical engineering design
problems;Multidisciplinary design optimization;
Multilevel optimization in mechanics;Optimal design of
composite structures;Optimal design in nonlinear optics;
Stochastic bilevel programs; Structural optimization:
history)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;Design optimization in
computational fluid dynamics; Interval analysis:
application to chemical engineering design problems;
Multidisciplinary design optimization;Multilevel
optimization in mechanics;Optimal design of composite
structures;Optimal design in nonlinear optics; Stochastic
bilevel programs; Structural optimization: history)

multilevel optimization
[49J35, 65K99, 74A55, 74M10, 74M15, 90C26]
(see: Quasidifferentiable optimization: applications)

multilevel optimization
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

Multilevel optimization in mechanics
(49Q10, 74K99, 74Pxx, 90C90, 91A65)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Bilevel
programming: optimality conditions and duality;
Multilevel methods for optimal design;Quasivariational
inequalities; Stochastic bilevel programs)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;Multilevel methods for
optimal design; Stochastic bilevel programs)

multilevel problem formulation
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

multilevel programming
[90C26, 90C30, 90C31]

(see: Bilevel programming: introduction, history and
overview)

multilevel programming problem
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

multilevel single-linkage
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)

multiload shape design
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

multiload truss design
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

multimodal functions
[90C30]
(see: Global optimization based on statistical models)

multimodal networks
[90C30]
(see: Equilibrium networks)

multimodal traffic network equilibrium
[90C30]
(see: Equilibrium networks)

multimodal traffic network equilibrium model
[90C30]
(see: Equilibrium networks)

Multiparametric linear programming
(90C31, 90C05)
(referred to in: Bounds and solution vector estimates for
parametric NLPS; Global optimization in multiplicative
programming; Linear programming;Multiparametric
mixed integer linear programming;Multiplicative
programming;Nondifferentiable optimization: parametric
programming; Parametric global optimization: sensitivity;
Parametric linear programming: cost simplex algorithm;
Parametric mixed integer nonlinear optimization;
Parametric optimization: embeddings, path following and
singularities; Selfdual parametric method for linear
programs)
(refers to: Bounds and solution vector estimates for
parametric NLPS; Global optimization in multiplicative
programming; Linear programming;Multiparametric
mixed integer linear programming;Multiplicative
programming;Nondifferentiable optimization: parametric
programming; Parametric global optimization: sensitivity;
Parametric linear programming: cost simplex algorithm;
Parametric mixed integer nonlinear optimization;
Parametric optimization: embeddings, path following and
singularities; Selfdual parametric method for linear
programs)

Multiparametric mixed integer linear programming
(90C31, 90C11)
(referred to in: Bounds and solution vector estimates for
parametric NLPS;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and boundmethods; Integer programming: branch
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and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multi-objective mixed integer
programming;Multiparametric linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Parametric
optimization: embeddings, path following and
singularities; Selfdual parametric method for linear
programs; Set covering, packing and partitioning problems;
Simplicial pivoting algorithms for integer programming;
Time-dependent traveling salesman problem)
(refers to: Bounds and solution vector estimates for
parametric NLPS; Branch and price: Integer programming
with column generation;Decomposition techniques for
MILP: lagrangian relaxation; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametric linear programming;Nondifferentiable
optimization: parametric programming; Parametric global
optimization: sensitivity; Parametric linear programming:
cost simplex algorithm; Parametric mixed integer nonlinear
optimization; Parametric optimization: embeddings, path
following and singularities; Selfdual parametric method for
linear programs; Set covering, packing and partitioning
problems; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)

multiperiod assignment problem
[90C35]
(see:Multi-index transportation problems)

multiperiod MINLPMEN synthesis model
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks)

multiperiod model
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

Multiperiod Models see: single versus—
multiperiod optimization

[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems;Optimal planning of offshore oilfield
infrastructure)

multiperiod optimization modeling framework
[90C30, 90C35]
(see: Optimization in water resources)

multiperiod planning
[90B80, 90B85]
(see:Warehouse location problem)

multiperiod stochastic program
[90B05, 90B06]
(see: Global supply chain models)

multiperiod stochastic program
[90B05, 90B06]
(see: Global supply chain models)

multiphase chemical equilibrium
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

multiphase chemical equilibrium see: Optimality criteria for—
multiphase spanning network

[90C27]
(see: Steiner tree problems)

multiphase Steiner network
[90C27]
(see: Steiner tree problems)

multiphase Steiner problems
[90C27]
(see: Steiner tree problems)

multiple
(see: Railroad locomotive scheduling)

multiple branches for bounded integer variable
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

multiple choice knapsack
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multiple-choice knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multiple-choice knapsack problem see: linear —;
multidimensional—

multiple-class software package
[90C10, 90C26, 90C30]
(see: Optimization software)

multiple criteria see: Decision support systems with—
multiple criteria decision making

[65K05, 90-XX, 90B50, 90C05, 90C26, 90C29, 91B06, 91B28,
91B60]
(see: Financial applications of multicriteria analysis;
Multi-objective optimization and decision support systems;
Multi-objective optimization; Interactive methods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties;Multiple objective
programming support;Outranking methods; Portfolio
selection and multicriteria analysis)

multiple criteria decision making
[65K05, 90B50, 90C05, 90C29, 91B06]
(see:Multi-objective optimization and decision support
systems;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support)

multiple criteria design problem
[90C29]
(see:Multiple objective programming support)

multiple criteria evaluation
[90C29]
(see:Multiple objective programming support)

multiple criteria problem see: continuous—; discrete—
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multiple depot
[90B06]
(see: Vehicle routing)

multiple depots see: single depot/ —
multiple dogleg path

[49M37]
(see: Nonlinear least squares: trust regionmethods)

multiple-facility location
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

multiple-hub heuristic
[90C35]
(see:Multi-index transportation problems)

multiple knapsack problem
[90C10, 90C27]
(see:Multidimensional knapsack problems)

multiple Kuhn–Tucker points
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

multiple locomotive type models
(see: Railroad locomotive scheduling)

multiple minima
[65K10, 92C40]
(see:Multiple minima problem in protein folding:˛BB
global optimization approach)

multiple minima
[65K10, 92C40]
(see:Multiple minima problem in protein folding:˛BB
global optimization approach)

Multiple minima problem in protein folding:˛BB global
optimization approach
(92C40, 65K10)
(referred to in: Adaptive simulated annealing and its
application to protein folding;Genetic algorithms;Global
optimization in Lennard–Jones andmorse clusters;Graph
coloring;Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding; Packet annealing; Phase problem in X-ray
crystallography: Shake and bake approach; Simulated
annealing methods in protein folding)
(refers to: Adaptive simulated annealing and its application
to protein folding;Genetic algorithms;Global optimization
in Lennard–Jones and morse clusters; Global optimization
in protein folding;Molecular structure determination:
convex global underestimation;Monte-Carlo simulated
annealing in protein folding; Packet annealing; Phase
problem in X-ray crystallography: Shake and bake
approach; Protein folding: generalized-ensemble
algorithms; Simulated annealing; Simulated annealing
methods in protein folding)

Multiple objective dynamic programming
(90C39, 90C31)
(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control

applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;
Neuro-dynamic programming)
(refers to:Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;
Neuro-dynamic programming)

multiple objective linear programming
[65K05, 90B50, 90C05, 90C29, 91B06]
(see:Multi-objective optimization and decision support
systems;Multiple objective programming support)

multiple objective programming
[90C29]
(see:Multiple objective programming support)

multiple objective programming
[90C29, 90C31, 90C39]
(see:Multiple objective dynamic programming;Multiple
objective programming support)

Multiple objective programming support
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decision making problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decision making problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Outranking methods; Portfolio selection and multicriteria
analysis; Preference disaggregation; Preference
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disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling)

multiple objective programming support
[90C29]
(see:Multiple objective programming support)

multiple objective programming support
[90C29]
(see:Multiple objective programming support)

multiple objectives
[49-01, 49K10, 49M37, 90-01, 90C05, 90C27, 91B52]
(see: Bilevel linear programming)

multiple QP Kuhn–Tucker points
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

multiple runs
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

multiple sequence alignment
[90C35]
(see: Optimization in leveled graphs)

multiple sequence alignment
[90C35]
(see: Optimization in leveled graphs)

multiple shooting
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

multiple types of vehicles see: Vehicle scheduling problems
with—

multiple-valued logic see: evaluation in—
multiplexing see: wavelength-division—
multiplicative function see: constraint on a—; program of

minimizing a convex—
multiplicative functions see: sum of convex—
multiplicative program see: convex—; linear —
Multiplicative programming

(90C26, 90C31)
(referred to in: Global optimization in multiplicative
programming; Linear programming;Multiparametric
linear programming; Parametric linear programming: cost
simplex algorithm)
(refers to: Complexity classes in optimization;
Computational complexity theory; Concave programming;
Global optimization in multiplicative programming; Linear
programming;Multiparametric linear programming;
Parametric linear programming: cost simplex algorithm)

multiplicative programming
[65K05, 90C25, 90C26, 90C30]
(see: Concave programming;Monotonic optimization)

multiplicative programming see: Global optimization in—
multiplicity of a prime

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

multiplier see: Lagrange —
multiplier adjustment

[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

multiplier approach see: Everett generalized Lagrange —

multiplier associated with an arc
[90C35]
(see: Generalized networks)

multiplier-free reduced Hessian SQP
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

multiplier method
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

multiplier methods
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

multiplier rule see: global Lagrange —; Lagrange —
multiplier sets see: Lagrange —
multiplier vector see: Lagrange —
multipliers see: extended set of Lagrange —; Lagrange —;

Lagrangian —;MPEC—; orthogonality conditions on—;
Stochastic programming: nonanticipativity and lagrange—

multipliers methods for convex programming see:
Lagrangian —

multipliers for nonanticipativity constraints see: Lagrange—
multipliers for phase constraints see: Lagrange —
multipoint approximation

[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

multipopulation replicator models
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

Multiprocessor Scheduling Problem see:minimum—
multiproduct

[49L20]
(see: Dynamic programming: inventory control)

multiproduct
[90C26]
(see: Global optimization in batch design under
uncertainty)

multiproduct batch plant
[90C26]
(see:MINLP: design and scheduling of batch processes)

multiproduct plant
[90C26]
(see: Global optimization in batch design under
uncertainty)

multipurpose
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

multipurpose
[90C26]
(see: Global optimization in batch design under
uncertainty)

multipurpose plant
[90C26]
(see: Global optimization in batch design under
uncertainty)

multipurpose storage entities
(see: Planning in the process industry)
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multiratio programs
[90C32]
(see: Fractional programming)

multistage
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

multistage applications
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

multistage IM
[90B50]
(see: Inventory management in supply chains)

multistage inventory management
[90B50]
(see: Inventory management in supply chains)

multistage inventory management
[90B50]
(see: Inventory management in supply chains)

multistage inventory management models
[90B50]
(see: Inventory management in supply chains)

multistage linking constraints
[90C30, 90C35]
(see: Optimization in water resources)

multistage mean-variance optimization problems see:
Decomposition algorithms for the solution of —

multistage optimization
[90C27]
(see: Time-dependent traveling salesman problem)

multistage problems
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

multistage stochastic program
[90C15]
(see:Multistage stochastic programming: barycentric
approximation)

multistage stochastic programming
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

Multistage stochastic programming: barycentric
approximation
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse; Preprocessing in
stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer

programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programming:
quasigradientmethod; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
L-shaped method for two-stage stochastic programs with
recourse; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Two-stage
stochastic programming: quasigradient method; Two-stage
stochastic programs with recourse)

multistart
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)

multistart process
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

multitarget tracking
[90C35]
(see:Multi-index transportation problems)

multivaluedmaps see: Generalized monotone—
multivalued monotone laws and variational inequalities

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

multivalued nonmonotone laws and hemivariational inequalities
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)
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multivalued variational inequalities see: Solutionmethods
for—

multivariable stability margin
[93D09]
(see: Robust control)

multivariable stability margin K
[93D09]
(see: Robust control)

multivariate distribution functions see: gradient of—
multivariate distributions see: Stochastic linear programs with

recourse and arbitrary —
multivariate gamma distribution

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

multivariate interval Newton method
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

multivariate normal distribution
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

multivariate normal distribution
[90C15]
(see: Probabilistic constrained problems: convexity theory)

multivariate probability distribution function
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

multivariate probability integral
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

multivariate probability integrals see: Approximation of—;
lower bounds for—; upper bounds for —

multiWeber problem
[90B85]
(see:Multifacility and restricted location problems)

multiWeber problem
[90B85]
(see:Multifacility and restricted location problems)

multiWeber–Rawls problem
[90B85]
(see:Multifacility and restricted location problems)

multy-stage stochastic programs
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

multy-stage stochastic programs
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

Murty least-index refinement
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

mutated sequence see:minimumweight common—
mutation

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90, 92B05]
(see: Genetic algorithms; Traveling salesman problem)

mutation
[92B05]
(see: Genetic algorithms)

mutual information
[62F10, 94A17]
(see: Entropy optimization: parameter estimation)

Mutzel branch and cut algorithm see: Jünger– —
MV-algebra

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

mVC
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

mVI problem
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

MVL connectives see: semantics of—
MWCP

[90C20]
(see: Standard quadratic optimization problems:
applications)

MWFAS
[90C35]
(see: Feedback set problems)

MWFVS
[90C35]
(see: Feedback set problems)

mWW
[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

myopic
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

N

N-adic assignments problems
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

n-ary relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

n-ary relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

N-dimensional Brownian motion
[60G35, 65K05]
(see: Differential equations and global optimization)

n-dimensional vectors see: lexicographical ordering for—
n-fold integer programming

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

n-fold matrix
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)
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n Hessian matrix
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

n noninteracting
[92-08, 92C05, 92C40]
(see: Protein folding: generalized-ensemble algorithms)

N-normal primal problem
[90C29, 90C30]
(see:Multi-objective optimization: lagrange duality)

N P see: N P=co—; P =—
N P=co N P

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

n-queens problem
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

n-valued PI-systems see: subfamilies of—
NAG library

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

NAG parallel library
[90C10, 90C26, 90C30]
(see: Optimization software)

naive auction algorithm
[90C30, 90C35]
(see: Auction algorithms)

naïve Bayes
(see: Bayesian networks)

narrowing operator see: constraint—
Nasa

[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

Nasa program
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

Nasa program
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

Nash–Cournot equilibrium see: Stackelberg–—
Nash equilibrium

[46A22, 49J35, 49J40, 49Jxx, 54D05, 54H25, 55M20, 90C15,
91A05, 91Axx, 91B06, 91B60]
(see: Infinite horizon control and dynamic games;Minimax
theorems;Oligopolistic market equilibrium; Stochastic
quasigradientmethods in minimax problems)

Nash equilibrium
[90C15, 91B06, 91B60]
(see: Oligopolistic market equilibrium; Stochastic
quasigradientmethods in minimax problems)

Nash equilibrium see: feedback—;memory strategy —;
open-loop—; spatial Cournot– —; Stackelberg–—

Nash oligopolistic equilibrium see: Cournot– —
Nash oligopolistic equilibriummodel see: Cournot–—
native conformation

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,

70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

native conformations see: discarding far-from-—
natural

[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

natural domain
[65K05, 90C30]
(see: Bisection global optimization methods)

natural interval extension
[65G20, 65G30, 65G40, 65K05, 90C26, 90C30]
(see: Bounding derivative ranges; Interval global
optimization)

natural level functions
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

natural numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

natural numbers see: finite—
natural residual

[90C30, 90C33]
(see: Implicit lagrangian)

natural selection see: fundamental theorem of—
natural stream arcs

[90C30, 90C35]
(see: Optimization in water resources)

natural vector see: support of a—
naturally flowing wells of type a

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

naturally flowing wells of type b
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

Naum Zuselevich see: Shor—
Navier–Stokes code see: Reynolds-averaged—
NC

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

NC algorithm
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

NC method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

NC method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

NC3
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

NDEXPTIME
[90C60]
(see: Complexity classes in optimization)

NDO
[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)
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NDO see: convex—
nDOMB algorithm

[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

NDP
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

NDSPACE
[90C60]
(see: Complexity classes in optimization)

NDTIME
[90C60]
(see: Complexity classes in optimization)

near degeneracy
[90C60]
(see: Complexity of degeneracy)

near-integer-fix
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

near-minimizer
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

near-neighbor load balancing scheme
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

near rational numbers see: infinitely—
near-simpliciality

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

near-simplicity
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

nearest insertion optimal partitioning algorithm
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

nearest-neighbor
[65K05, 90-08, 90B06, 90B35, 90C05, 90C06, 90C10, 90C11,
90C20, 90C27, 90C30, 90C39, 90C57, 90C59, 90C60, 90C90]
(see: Disease diagnosis: optimization-based methods;
Traveling salesman problem)

nearest neighbor (NN)
[68Q25, 68R10, 68W40, 90B06, 90B35, 90C06, 90C10, 90C27,
90C39, 90C57, 90C59, 90C60, 90C90]
(see: Domination analysis in combinatorial optimization;
Traveling salesman problem)

nearest neighbor (RNN) see: repeated —
nearest point mapping

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

nearest vertex insertion (NVI)
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

nearly degenerate BFS
[90C60]
(see: Complexity of degeneracy)

necessary
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

necessary condition see: first order —; second order—
necessary conditions

[03H10, 49J27, 90C31, 90C34]
(see: Semi-infinite programming and control problems;
Semi-infinite programming: second order optimality
conditions)

necessary conditions
[90C30]
(see: Image space approach to optimization)

necessary conditions see: first order —; second order—
necessary conditions for optimality see: high-order —
necessary conditions for optimality for abnormal points see:

High-order —
necessary constraint

[90C05, 90C20]
(see: Redundancy in nonlinear programs)

necessary constraint see: weakly—
necessary optimality condition

[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

necessary optimality condition without using (sub)gradients
parametric representations
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

necessary optimality conditions
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

necessary optimality conditions
[90C26, 90C31, 90C39, 91A65]
(see: Bilevel programming: implicit function approach;
Second order optimality conditions for nonlinear
optimization)

necessary optimality conditions see: Equality-constrained
nonlinear programming: KKT —; first order —; fritz John—;
generalized —; KKT—; Kuhn–Tucker —

necessary and sufficient conditions
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

necessary and sufficient conditions
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

necessary and sufficient optimality conditions
[49K05, 49K10, 49K15, 49K20, 65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Duality in optimal control with first order differential
equations)

necessary and sufficient optimality conditions see: second
order—

needs see: static/dynamic service—
negamax algorithm see: incremental —
negans see:modus—
negated relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
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91B06, 92C60]
(see: Boolean and fuzzy relations)

negation
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

negation transformation
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

negative
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

negative curvature
[49M37]
(see: Nonlinear least squares: trust regionmethods)

negative curvature
[49M37]
(see: Nonlinear least squares: trust regionmethods)

negative curvature see: direction of—
negative cycles

[90C35]
(see:Minimum cost flow problem)

negative fault
[90Cxx]
(see: Discontinuous optimization)

negative fitness see: genetic engineering via—
negative gradient see: projected —
negative main diagonal

[90C09, 90C10]
(see: Combinatorial matrix analysis)

negative marginal values
[90C60]
(see: Complexity of degeneracy)

negative marginal values
[90C60]
(see: Complexity of degeneracy)

negative real numbers see: infinitely small —
negative-zero pattern see: positive-—
negatively see: dropped—
neighbor see: k- —; legal —; nearest- —
neighbor joining

[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

neighbor load balancing scheme see: near- —
neighbor (NN) see: nearest —
neighbor (RNN) see: repeated nearest —
neighbor in tabu search see: allowed—; prohibited—
neighborhood

[05C15, 05C17, 05C35, 05C69, 65K05, 68T20, 68T99, 90C22,
90C26, 90C27, 90C30, 90C35, 90C59]
(see: Global optimization: filled function methods; Lovász
number;Metaheuristics)

neighborhood see: 2-opt—; discrete—; exchange—; k- —;
k-exchange—; Lin–Kernighan—; pair-exchange—

neighborhood descent see: variable—
neighborhood edge elimination ordering see: cobipartite—
neighborhood graphs see: empty —
neighborhood of a permutation

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

neighborhood search methods see: Variable—

neighborhood of a solution
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

neighborhood structure
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

neighborhood structure for the QAP see: K-L type—
neighborhoods see: large-scale—
neighboring bases

[90C05, 90C31]
(see: Parametric linear programming: cost simplex
algorithm)

neighboring critical regions
[90C05, 90C31]
(see: Parametric linear programming: cost simplex
algorithm)

neighboring stations see: one-hop—
neighbors

[90C05, 90C31]
(see:Multiparametric linear programming)

neighbors see: two-hop—
neighbors of the origin

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

Nelder–Mead algorithm
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

nested
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

nested Benders decomposition
[90C15, 90C90]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems)

nested constraints
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

nested dissection
[65Fxx]
(see: Least squares problems)

nested family see: finite—
nested loops

[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

nested loops
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

nested partitions
[90C11, 90C59]
(see: Nested partitions optimization)

Nested partitions optimization
(90C59, 90C11)

nested STO problem
[90C15]
(see: Stochastic quasigradient methods in minimax
problems)

net demand
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

net present value see:maximize—
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net supply
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

network
[05C05, 05C40, 68R10, 90C35]
(see: Generalized networks; Network design problems)

network
[05C05, 05C40, 68R10, 68W10, 90B06, 90B10, 90B15, 90C05,
90C06, 90C30, 90C35]
(see: Frank–Wolfe algorithm;Maximum flow problem;
Minimum cost flow problem;Network design problems;
Nonoriented multicommodity flow problems; Stochastic
network problems: massively parallel solution; Vehicle
routing)

network see: 1-median problem in a—; augmented —;
bipartite—; capacity of an arc in a—; communication—;
congested—; cost of an arc in a—; covering problem on
a—; deterministic neural —; directed—; directed arc in
a—; directed arc in a directed—; directed capacitated—;
endpoint of an arc in a directed—; evolutionary—;
feed-forward neural —; generalized —; heat and mass
exchange—; incidence in a—; intermediate scale—; large
region—; local-area computer —;macro scale—;mass
exchanger—;mass and heat exchanger—;micro scale—;
multicommodity—;multiphase spanning—;multiphase
Steiner —; node in a—; node in a directed—; p-center
problem on a—; recurrent neural —; regional —;
residual—; routing of traffic in transmission—;
Space-time—; star —; state-task- —; stochastic neural —;
strongly connected—; survivable—; system-optimized
transportation—; time replicated—; training a—;
transformed—; two-layer feed-forward—; user-optimized
transportation—; weekly space-time—

network arc
[90C35]
(see: Generalized networks)

network assignment problem see: Communication—
network connectivity

[90C35]
(see:Maximum flow problem)

network constraints
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

network constraints see: optimization under—
network cost see:minimizing—
network design

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

network design
[90-XX, 90B10, 90C26, 90C30, 90C35, 90C90, 91A65, 91B99]
(see: Bilevel programming: applications;Nonconvex
network flow problems; Survivable networks)

network design problem
[90-01, 90B30, 90B50, 90C15, 90C26, 90C33, 91B32, 91B52,
91B74]
(see: Bilevel programming in management; Stochastic
bilevel programs)

network design problem see: survivable—
Network design problems

(05C05, 05C40, 68R10, 90C35)

(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks;Maximum
flow problem;Minimum cost flow problem;
Multicommodity flow problems;Network location:
covering problems;Nonconvex network flow problems;
Piecewise linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks; Generalized networks;Maximum flow problem;
Minimum cost flow problem;Network location: covering
problems;Nonconvex network flow problems; Piecewise
linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)

network design and schedule construction
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

network design and schedule construction
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

network equilibrium
[90B06, 90B20, 90C30, 91B50]
(see: Equilibrium networks; Traffic network equilibrium)

network equilibrium see: fixed demand traffic—;multimodal
traffic—; symmetric —; traffic—

network equilibriummodel see:migration—;multimodal
traffic—

network equilibriumwith travel disutility functions see:
traffic—

network flow see:minimum cost—; value of a—
network flow model

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

network flowmodels see: undirected multicommodity—
network flow problem

[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

network flow problem see: fixed charge—; linear—;minimum
cost—;multicommodity—; nonconvex—; nonlinear —;
nonlinear dynamic—; nonlinear single commodity—;
piecewise linear minimum cost—; uncapacitated—

network flow problems see: dynamic—; Nonconvex—;
nonlinear —; Piecewise linear —

network flows
[01A99]
(see:History of optimization)

network flows
[05C05, 05C40, 68R10, 90C35]
(see: Generalized networks; Network design problems;
Railroad crew scheduling;Railroad locomotive scheduling)

network flows see:multicommodity—
network localization problem see: Sensor—
network localization problem, SNLP see: Semidefinite

programming and the sensor—
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Network location: covering problems
(90C35, 90B10, 90B80)
(referred to in: Auction algorithms; Combinatorial
optimization algorithms in resource allocation problems;
Communication network assignment problem;Dynamic
traffic networks; Equilibrium networks; Facilities layout
problems; Facility location with externalities; Facility
location problems with spatial interaction; Facility location
with staircase costs; Generalized networks;Global
optimization inWeber’s problemwith attraction and
repulsion;Maximum flow problem;Minimum cost flow
problem;MINLP: application in facility location-allocation;
Multicommodity flow problems;Multifacility and
restricted location problems;Network design problems;
Nonconvex network flow problems;Nonoriented
multicommodity flow problems;Optimizing facility
location with euclidean and rectilinear distances; Piecewise
linear network flow problems; Shortest path tree
algorithms; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Steiner tree problems; Stochastic network
problems: massively parallel solution; Stochastic
transportation and location problems; Survivable networks;
Traffic network equilibrium;Voronoi diagrams in facility
location;Warehouse location problem)
(refers to: Auction algorithms; Combinatorial optimization
algorithms in resource allocation problems;
Communication network assignment problem;
Competitive facility location;Directed tree networks;
Dynamic traffic networks; Equilibrium networks;
Evacuation networks; Facility location with externalities;
Facility location problems with spatial interaction; Facility
location with staircase costs; Generalized networks; Global
optimization inWeber’s problemwith attraction and
repulsion;Maximum flow problem;Minimum cost flow
problem;MINLP: application in facility location-allocation;
Multifacility and restricted location problems;Network
design problems;Nonconvex network flow problems;
Optimizing facility location with euclidean and rectilinear
distances; Piecewise linear network flow problems;
Production-distribution system design problem; Resource
allocation for epidemic control; Shortest path tree
algorithms; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Steiner tree problems; Stochastic network
problems: massively parallel solution; Stochastic
transportation and location problems; Survivable networks;
Traffic network equilibrium;Voronoi diagrams in facility
location;Warehouse location problem)

network model see: dynamic traffic—

network node
[90C35]
(see: Generalized networks)

network node see: deficit of a—; excess of a—

network optimization
[90C30, 90C35]
(see: Auction algorithms)

network optimization
[90B10, 90C27]
(see: Shortest path tree algorithms)

network optimization system see: generalized —
network problem see: generalized —;match-—; pure—;

stochastic—
network problems see: fixed demand traffic—; quadratic

generalized —
network problems: massively parallel solution see:

Stochastic—
network problems with travel demand functions see: elastic

demand traffic—
network programming

[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

network programming
[91B28]
(see: Financial optimization)

network simplex algorithm
[90C35]
(see:Minimum cost flow problem)

network simplex algorithm
[90C35]
(see:Minimum cost flow problem)

network structure of the spatial price equilibrium problem
[91B28, 91B50]
(see: Spatial price equilibrium)

network superstructure see: heat exchanger —
network synthesis

[90C05]
(see: Continuous global optimization: applications)

network synthesis
[90C90]
(see:MINLP: heat exchanger network synthesis)

network synthesis see: heat exchanger—;MINLP: heat
exchanger —;Mixed integer linear programming: heat
exchanger —

network synthesis without decomposition see: heat
exchanger —

network topology
[65K05, 65Y05]
(see: Parallel computing: models)

network training see: Unconstrained optimization in neural —
networks see: all-optical—; Bayesian—; chain—; chain rule

for Bayesian —; Directed tree —; Dynamic traffic—;
dynamical Bayesian—; Equilibrium—; Evacuation—; fixed
charge—; Flexible mass exchange—; flows in—;
generalized —; Global optimization of heat exchanger—;
heat exchanger —; Integer linear programs for routing and
protection problems in optical —;mesh—;MINLP: mass
and heat exchanger —;Mixed integer linear programming:
mass and heat exchanger —;multiclass queueing—;
multimodal—; neural —; Optimization in ad hoc—;
queuing—; regeneration —; ring—; Survivable—;
topology of transportation —

networks for combinatorial optimization see: Neural —
networks under uncertainty see: Bilevel programming

framework for enterprise-wide process—
Neumann algebra see: von—
Neumann architecture see: von—
Neumann, John see: Von—
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neural network see: deterministic—; feed-forward—;
recurrent—; stochastic—

neural network training see: Unconstrained optimization in—
neural networks

[65K05, 68T20, 68T99, 90-08, 90C05, 90C06, 90C09, 90C10,
90C11, 90C20, 90C27, 90C30, 90C59, 90C90]
(see: Disease diagnosis: optimization-based methods;
Metaheuristics;Optimization in boolean classification
problems)

neural networks
[65K05, 68T05, 90C26, 90C27, 90C30, 90C39, 90C52, 90C53,
90C55]
(see: Forecasting;Neural networks for combinatorial
optimization;Neuro-dynamic programming;
Unconstrained optimization in neural network training)

Neural networks for combinatorial optimization
(90C27, 90C30)
(referred to in: Bayesian networks; Combinatorial matrix
analysis; Combinatorial optimization algorithms in
resource allocation problems; Combinatorial optimization
games; Evolutionary algorithms in combinatorial
optimization; Fractional combinatorial optimization;
Multi-objective combinatorial optimization;
Neuro-dynamic programming; Replicator dynamics in
combinatorial optimization; Set covering, packing and
partitioning problems;Unconstrained optimization in
neural network training)
(refers to: Neuro-dynamic programming; Replicator
dynamics in combinatorial optimization; Unconstrained
optimization in neural network training)

Neuro-dynamic programming
(90C39)
(referred to in: Dynamic programming: average cost per
stage problems;Dynamic programming in clustering;
Dynamic programming: continuous-time optimal control;
Dynamic programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neural networks for
combinatorial optimization; Replicator dynamics in
combinatorial optimization; Unconstrained optimization
in neural network training)
(refers to: Dynamic programming: average cost per stage
problems;Dynamic programming in clustering;Dynamic
programming: continuous-time optimal control;Dynamic
programming: discounted problems;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming: inventory control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Dynamic programming: stochastic shortest
path problems;Dynamic programming: undiscounted
problems;Hamilton–Jacobi–Bellman equation;Multiple
objective dynamic programming;Neural networks for
combinatorial optimization; Replicator dynamics in

combinatorial optimization; Unconstrained optimization
in neural network training)

neurons
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

neurons see: input —; output —
New hybrid conjugate gradient algorithms for unconstrained

optimization
(49M07, 49M10, 90C06, 65K)

new paradigm see:Modeling languages in optimization: a —
new trial steplength see: compute a safeguarded—
the New York Times

[90C05]
(see: Ellipsoid method)

New York Times see: the—
Newsam–Ramsdell method

[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

newsboy model
[90B50]
(see: Inventory management in supply chains)

newsboy problem
[90C06, 90C08, 90C15]
(see: Simple recourse problem; Stochastic quasigradient
methods in minimax problems)

newsboy problem
[90B50, 90C06, 90C08, 90C15]
(see: Inventory management in supply chains; Simple
recourse problem; Stochastic quasigradientmethods in
minimax problems)

Newton see: interval —; quasi- —; truncated —
Newton algorithm see: interval —
Newton–Cauchy framework

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

Newton–Cauchy framework
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

Newton–Cauchy framework see: Unconstrained nonlinear
optimization:—

Newton iteration see: interval —
Newton’s method

[49J52, 49M37, 65K05, 68Q25, 68R05, 90-08, 90C05, 90C20,
90C22, 90C25, 90C27, 90C30, 90C32, 90C51, 90Cxx]
(see: Cost approximation algorithms; Fractional
combinatorial optimization; Interior point methods for
semidefinite programming;Nondifferentiable
optimization: Newton method; Nonlinear least squares:
Newton-type methods;Quadratic programming over an
ellipsoid; Symmetric systems of linear equations;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)

Newton method
[49J52, 49M29, 49M37, 65K10, 68Q25, 68R05, 90-08, 90C06,
90C20, 90C25, 90C27, 90C30, 90C32]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control; Fractional combinatorial
optimization; Nondifferentiable optimization: Newton



4376 Subject Index

method; Nonlinear least squares: Newton-type methods;
Quadratic programming over an ellipsoid)

Newton’s method see: approximate—; bundle-—;
damped—; damped Gauss–—; discrete truncated—;
full-step Gauss–—; Gauss–—; Gauss–Newton method:
Least squares, relation to—; homotopy—; inexact—;
interval —; Krawczyk variation of the interval —;
modified—;multivariate interval —; Nondifferentiable
optimization:—; nonsmooth—; partial-update—;
partitioned quasi-—; quasi- —; separated —;
smoothing—; splitting—; SR1 quasi- —; symmetric
rank-one quasi- —; truncated —; univariate interval —

Newton method of Broyden class see: quasi- —
Newton method in deterministic global optimization see: LP

strategy for interval- —
Newton method: Least squares, relation to Newton’s method

see: Gauss–—
Newton’s method in unconstrained optimal control see:

Dynamic programming and—
Newton methods see: existence-proving properties of

interval —; factorized quasi-—; inexact—; interval —;
quasi-—

Newton operator see: interval —; univariate interval —
Newton procedure

[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

Newton–Raphson method
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

Newton relation see: quasi- —
Newton search engine

[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

Newton search engine see: quasi- —
Newton software package see: block truncated —
Newton step

[37A35, 65K05, 90C05, 90C30]
(see: Automatic differentiation: calculation of Newton steps;
Potential reductionmethods for linear programming)

Newton step
[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

Newton step case of the trust region problem
[49M37]
(see: Nonlinear least squares: trust regionmethods)

Newton steps see: Automatic differentiation: calculation of —
Newton test

[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

Newton-type method
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

Newton-type methods see: Nonlinear least squares: —
Newton update see: BFGS quasi-—;

Broyden–Fletcher–Goldfarb–Shanno quasi- —; quasi- —
Newton updates see: quasi-—
Newton updating see: inverse quasi- —

Newtonian descent
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

Newtonian descent
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

Newtonian descent direction see: quasi-—
next shortest path procedure

[90C35]
(see:Multicommodity flow problems)

Nicholas Constantine see:Metropolis—
NIMBY syndrome

[90B80, 90B85]
(see:Warehouse location problem)

NLP
[65L99, 90C06, 90C10, 90C11, 90C30, 90C57, 90C90, 93-XX]
(see:Modeling difficult optimization problems;
Optimization strategies for dynamic systems)

NLP see: Sensitivity and stability in—; solution-point bounds
for—

NLP: approximation see: Sensitivity and stability in—
NLP based branch and bound see: lP/—; QP/—
NLP: continuity and differential stability see: Sensitivity and

stability in—
NLP solvers see: bottlenecks in—
NLP subproblem

[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

NLP techniques
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

NLPs see: Bounds and solution vector estimates for
parametric —; Twice-differentiable—

NLS
[90C30]
(see: Nonlinear least squares problems)

NM
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

NM see: damped—; smoothing—
NN

[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

(NN) see: nearest neighbor—
NNFP

[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

NNFP see: global minimumof an—
no capacity constraints see: single fixed cost with—
no free lunch

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

no pivoting required
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

Nobel Prize
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

node see: arrival —; arrival-ground—; balanced—; border—;
cardinality of a—; center —; deficit of a network —;
demand—; departure —; disallowed—; established —;
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excess of a network—; fathoming a—; feasible—;
infeasible—; last —; network —; root—; sink—; source—;
supply—; transshipment —; tree —

node-arc formulation
[90C35]
(see:Multicommodity flow problems)

node-arc formulation of the problem
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

node-arc incidence matrix
[90C35]
(see: Generalized networks)

node-arc incidence matrix
[90C30]
(see: Simplicial decomposition)

node construction procedure see: best —
node cover

[90C35]
(see:Maximum flow problem)

node covering problem
[90C20, 90C60]
(see: Quadratic knapsack)

node in a directed network
[90C35]
(see:Maximum flow problem)

node-disjoint path
[90-XX]
(see: Survivable networks)

node-disjoint path
[90-XX]
(see: Survivable networks)

node flow balance equations
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

node legend
(see: Railroad crew scheduling)

node in a network
[90C35]
(see:Minimum cost flow problem)

node oriented branch and bound method
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

node oriented construction procedure
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

node-path formulation of the multicommodity flow problem
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

node potentials
[90C35]
(see:Minimum cost flow problem)

node reconstruction see: parent —
node routing

[90B06]
(see: Vehicle routing)

node routing
[90B06]
(see: Vehicle routing)

node tightening
(see: Fractional zero-one programming)

node of a truss
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

nodes see: on-the-river hydropower—; physical junction—;
plant—; plant/model —; PSA with dummy—; retailer —;
retailer/model —; return —; Steiner —

nodes set see: border—; tree —
nodes with water storage capacity

[90C30, 90C35]
(see: Optimization in water resources)

noises see: optimization with—
noising method

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

noisy-AND
(see: Bayesian networks)

noisy functional dependence
(see: Bayesian networks)

noisy-OR
(see: Bayesian networks)

nomography
[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

non-anchor
(see: Semidefinite programming and the sensor network
localization problem, SNLP)

non-anticipative
[90C15, 90C90]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems)

non-crossing
(see: Contact map overlap maximization problem, CMO)

Non-Differentiable Functions and Applications see:
minimizationMethods for —

non-linear
(see: Global optimization: functional forms)

non-smooth optimization see: Derivative-free methods for—
non standard methods see: unbounded controls and—
nonaccepting computation of a Turing machine

[90C60]
(see: Complexity classes in optimization)

nonadaptive method
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

nonanticipative principle
[90C30, 90C35]
(see: Optimization in water resources)

nonanticipative with respect to a filtration see: stochastic
process —

nonanticipative water resources policies
[90C30, 90C35]
(see: Optimization in water resources)

nonanticipativity
[90C15, 91B28]
(see: Financial optimization;Multistage stochastic
programming: barycentric approximation; Stochastic
linear programs with recourse and arbitrarymultivariate
distributions; Stochastic programming: nonanticipativity
and lagrange multipliers)
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nonanticipativity
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

nonanticipativity constraints
[68W10, 90B15, 90C06, 90C15, 90C30, 90C35]
(see: Optimization in water resources; Stochastic network
problems: massively parallel solution; Stochastic
programming: parallel factorization of structuredmatrices)

nonanticipativity constraints see: Lagrange multipliers for—
nonanticipativity and lagrange multipliers see: Stochastic

programming: —
nonanticipativity water resources policies

[90C30, 90C35]
(see: Optimization in water resources)

nonarbitrage condition for LDSU
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

nonassociative groupoid
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

nonassociative products
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

nonassociative products
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

nonassociativity
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

nonbasic
[90C05]
(see: Linear programming: Klee–Minty examples)

nonbasic column
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

nonbasic component
[90C30]
(see: Convex-simplex algorithm)

nonbasic component
[90C30]
(see: Convex-simplex algorithm)

nonbasic matrix
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

nonbasic variable see: eligible—
nonbasic variables

[49M37, 90C11]
(see:Mixed integer nonlinear programming)

nonbonded distance
[92B05]
(see: Genetic algorithms for protein structure prediction)

nonbonded distance
[92B05]
(see: Genetic algorithms for protein structure prediction)

noncentral component
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

noncommutative groupoid
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

noncompactness see:measure of—
noncompensatory argument

[90-XX]
(see: Outranking methods)

nonconvex
[35B40, 37C70, 49J24, 90C10, 90C11, 90C25, 90C27, 90C30,
90C33]
(see: Continuous reformulations of discrete-continuous
optimization problems; Successive quadratic
programming: solution by active sets and interior point
methods; Turnpike theory: stability of optimal trajectories)

nonconvex
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

nonconvex dual problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

nonconvex energy function
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

Nonconvex energy functions: hemivariational inequalities
(49J40, 70-XX, 80-XX, 49J52, 49Q10, 74K99, 74Pxx)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
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Hemivariational inequalities: static problems;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)

nonconvex feasibility analysis see: Shape reconstruction
methods for—

nonconvex function
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

nonconvex minimization
[90C26]
(see: Convex envelopes in optimization problems)

nonconvex minimization
[90C26, 90C31]
(see: Global optimization in multiplicative programming;
Multiplicative programming)

nonconvex minimization problems see: decomposition
algorithms for —

nonconvex MINLP
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

nonconvex network flow problem
[90B10, 90C26, 90C30, 90C35]
(see: Nonconvex network flow problems)

Nonconvex network flow problems
(90C26, 90C30, 90C35, 90B10)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks; Global
supply chain models; Inventory management in supply
chains;Maximum flow problem;Minimum cost flow
problem;Multicommodity flow problems;Network design
problems;Network location: covering problems;
Nonoriented multicommodity flow problems;Operations
researchmodels for supply chain management and design;
Piecewise linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)
(refers to: Auction algorithms;Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation

networks; Generalized networks; Global supply chain
models; Inventory management in supply chains;
Maximum flow problem;Minimum cost flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonoriented
multicommodity flow problems;Operations research
models for supply chain management and design; Piecewise
linear network flow problems; Shortest path tree
algorithms; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Traffic network equilibrium)

Nonconvex-nonsmooth calculus of variations
(49J40)
(referred to in: Composite nonsmooth optimization;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Composite nonsmooth optimization; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems;Hemivariational inequalities:
applications in mechanics;Hemivariational inequalities:
eigenvalue problems;Hemivariational inequalities: static
problems;Nonconvex energy functions: hemivariational
inequalities;Nonsmooth and smoothing methods for
nonlinear complementarity problems and variational
inequalities;Quasidifferentiable optimization;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
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systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

nonconvex optimization
[93D09]
(see: Robust control)

nonconvex optimization
[26B25, 26E25, 49-XX, 49J40, 49J52, 49M37, 65K05, 65K99,
70-08, 90-XX, 90C25, 90C26, 90C30, 90C99, 91A10, 93-XX]
(see: Bilevel programming; Convex envelopes in
optimization problems;Duality theory: biduality in
nonconvex optimization;Quasidifferentiable optimization;
Quasidifferentiable optimization: codifferentiable
functions; Smooth nonlinear nonconvex optimization;
Solving hemivariational inequalities by nonsmooth
optimization methods)

nonconvex optimization see: Duality gaps in—; Duality theory:
biduality in—; nonsmooth—; Smooth nonlinear —

nonconvex optimization problem
[90C26]
(see: Global optimization in batch design under
uncertainty; Smooth nonlinear nonconvex optimization)

nonconvex primal problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

nonconvex problem see:mixed integer —
nonconvex program see: nondifferentiable—
nonconvex programming

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

nonconvex programming
[90B06, 90B10, 90C26, 90C30, 90C35]
(see:Minimum concave transportation problems;
Nonconvex network flow problems; Reverse convex
optimization)

nonconvex programming problem
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

nonconvex programming problems see: convex and—
nonconvex programs

[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

nonconvex programs
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

nonconvex quadratic programming
[90C60]
(see: Complexity theory; Complexity theory: quadratic
programming)

nonconvex set
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

nonconvex SQP
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

nonconvex superpotential
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

nonconvexity
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

nonconvexity
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

nonconvexity see: low-rank—
nonconvexity test

[49M37, 90C11]
(see:Mixed integer nonlinear programming)

nonconvexity test see:monotonicity and—
noncooperative behavior

[91B06, 91B60]
(see: Oligopolistic market equilibrium)

noncooperative behavior
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

noncooperative equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Noncooperative equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

noncooperative game
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

noncooperative games
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

noncooperative solution
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

noncycling
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

nondecreasing function
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

nondecreasing monotone Boolean function
[90C09]
(see: Inference of monotone boolean functions)

nondegeneracy
[90C60]
(see: Complexity of degeneracy)

nondegeneracy
[90C22, 90C25, 90C31, 90C60]
(see: Complexity of degeneracy; Semidefinite programming:
optimality conditions and stability)

nondegeneracy assumption
[90C33]
(see: Lemke method)
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nondegeneracy assumption for algorithm analysis
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

nondegeneracy condition
[90C33]
(see: Linear complementarity problem)

nondegeneracy condition see: linear —; quadratic—
nondegenerate

[41A10, 46N10, 47N10, 49K27, 57R12, 65K05, 90C20, 90C31,
90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions;High-order necessary conditions for optimality
for abnormal points;Quadratic programming with bound
constraints; Smoothing methods for semi-infinite
optimization)

nondegenerate
[90C05]
(see: Linear programming)

nondegenerate BFS
[90C60]
(see: Complexity of degeneracy)

nondegenerate critical point
[49J52, 49Q10, 58E05, 65K05, 65K10, 74G60, 74H99, 74K99,
74Pxx, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31, 90C33,
90C34, 90C90]
(see: Parametric optimization: embeddings, path following
and singularities;Quasidifferentiable optimization:
stability of dynamic systems; Topology of global
optimization)

nondegenerate critical points
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

nondegenerate cycling
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

nondegenerate pivot operation
[90C35]
(see:Minimum cost flow problem)

nondegenerate point
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

nondegenerate problems
[05B35, 65K05, 90C05, 90C20, 90C30, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules; Rosen’s method, global
convergence, and Powell’s conjecture)

nondegenerate solution
[90C60]
(see: Complexity of degeneracy)

nondegenerate systems
[90C60]
(see: Complexity of degeneracy)

nondeterministic
[90C60]
(see: Complexity classes in optimization)

nondeterministic polynomial algorithm
[90C60]
(see: Computational complexity theory)

nondeterministic polynomial algorithm
[90C60]
(see: Computational complexity theory)

nondeterministic polynomial time algorithm
[90C60]
(see: Computational complexity theory)

nondeterministic Turing machine
[90C60]
(see: Complexity theory)

nondeterministic Turing machine see: space complexity of
a—; time complexity of a—

nondifferentiability
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

nondifferentiability
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: nondifferentiable problems)

nondifferentiable convex optimization
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

nondifferentiable convex program
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

nondifferentiable function
[93-XX]
(see: Dynamic programming: optimal control applications)

nondifferentiable nonconvex program
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

nondifferentiable objective functions
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

nondifferentiable objective functions
[90C30]
(see: Sequential simplex method)

Nondifferentiable optimization
(90-00, 90C47, 46N10)
(referred to in: Dini and Hadamard derivatives in
optimization;Discontinuous optimization; Global
optimization: envelope representation;Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods; Nondifferentiable
optimization: subgradient optimization methods)
(refers to: Dini and Hadamard derivatives in optimization;
Discontinuous optimization; Generalized benders
decomposition;Global optimization: envelope
representation; Integer programming: lagrangian
relaxation;Nondifferentiable optimization: cutting plane
methods; Nondifferentiable optimization: minimax
problems;Nondifferentiable optimization: Newton
method; Nondifferentiable optimization: parametric
programming;Nondifferentiable optimization: relaxation
methods; Nondifferentiable optimization: subgradient
optimization methods;Quasidifferentiable optimization:
exact penalty methods)

nondifferentiable optimization
[46N10, 49M20, 65K05, 90-00, 90-08, 90C25, 90C26, 90C30,
90C31, 90C47, 90Cxx]
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(see: Bilevel programming: introduction, history and
overview; Cyclic coordinatemethod;Dini and Hadamard
derivatives in optimization;Discontinuous optimization;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems)

Nondifferentiable optimization: cutting plane methods
(49M20, 90C25, 90-08)
(referred to in: Dini and Hadamard derivatives in
optimization; Global optimization: envelope
representation;Nondifferentiable optimization;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: Newton method;
Nondifferentiable optimization: parametric programming;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods)
(refers to: Dini and Hadamard derivatives in optimization;
Global optimization: envelope representation; Linear
programming: karmarkar projective algorithm;
Nondifferentiable optimization; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods;Nondifferentiable
optimization: subgradient optimization methods)

Nondifferentiable optimization: minimax problems
(90C30, 65K05)
(referred to in: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index;Dini and
Hadamard derivatives in optimization; Global
optimization: envelope representation;Minimax:
directional differentiability;Minimax theorems;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods;Nondifferentiable
optimization: subgradient optimization methods;
Stochastic programming: minimax approach; Stochastic
quasigradientmethods in minimax problems)
(refers to: Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index;Dini and
Hadamard derivatives in optimization; Global
optimization: envelope representation;Minimax:
directional differentiability;Minimax theorems;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods;Nondifferentiable
optimization: subgradient optimization methods;
Stochastic programming: minimax approach; Stochastic
quasigradientmethods in minimax problems)

Nondifferentiable optimization: Newton method
(49J52, 90C30)
(referred to in: Automatic differentiation: calculation of
Newton steps;Dini and Hadamard derivatives in
optimization;Dynamic programming and Newton’s

method in unconstrained optimal control;Global
optimization: envelope representation; Interval Newton
methods; Nondifferentiable optimization;
Nondifferentiable optimization: cutting plane methods;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: parametric programming;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods; Nonlinear least squares: Newton-type methods;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)
(refers to: Automatic differentiation: calculation of Newton
steps;Dini and Hadamard derivatives in optimization;
Dynamic programming and Newton’s method in
unconstrained optimal control;Global optimization:
envelope representation; Interval Newton methods;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: relaxationmethods; Nondifferentiable
optimization: subgradient optimization methods;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)

Nondifferentiable optimization: parametric programming
(90C05, 90C25, 90C29, 90C30, 90C31)
(referred to in: Bilevel programming: optimality conditions
and duality; Bounds and solution vector estimates for
parametric NLPS;Dini and Hadamard derivatives in
optimization; Global optimization: envelope
representation;Model based control for drug delivery
systems;Multiparametric linear programming;
Multiparametric mixed integer linear programming;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: relaxationmethods; Nondifferentiable
optimization: subgradient optimization methods;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Parametric
optimization: embeddings, path following and singularities;
Selfdual parametric method for linear programs)
(refers to: Bilevel programming: introduction, history and
overview; Bounds and solution vector estimates for
parametric NLPS;Dini and Hadamard derivatives in
optimization; First order constraint qualifications;Global
optimization: envelope representation;Multiparametric
linear programming;Multiparametricmixed integer linear
programming;Nondifferentiable optimization;
Nondifferentiable optimization: cutting plane methods;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: Newton method;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods; Parametric global optimization: sensitivity;
Parametric linear programming: cost simplex algorithm;
Parametric mixed integer nonlinear optimization;
Parametric optimization: embeddings, path following and
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singularities; Second order constraint qualifications;
Selfdual parametric method for linear programs)

Nondifferentiable optimization: relaxationmethods
(49J52, 90C30)
(referred to in: Dini and Hadamard derivatives in
optimization;Global optimization: envelope
representation;Nondifferentiable optimization;
Nondifferentiable optimization: cutting plane methods;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: Newton method;
Nondifferentiable optimization: parametric programming;
Nondifferentiable optimization: subgradient optimization
methods)
(refers to: Dini and Hadamard derivatives in optimization;
Global optimization: envelope representation;
Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods; Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: Newton method; Nondifferentiable
optimization: parametric programming;Nondifferentiable
optimization: subgradient optimization methods)

Nondifferentiable optimization: subgradient optimization
methods
(49J52, 90C30)
(referred to in: Dini and Hadamard derivatives in
optimization;Global optimization: envelope
representation;Nondifferentiable optimization;
Nondifferentiable optimization: cutting plane methods;
Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: Newton method;
Nondifferentiable optimization: parametric programming;
Nondifferentiable optimization: relaxationmethods;
Quadratic assignment problem)
(refers to: Dini and Hadamard derivatives in optimization;
Global optimization: envelope representation; Integer
programming: lagrangian relaxation;Nondifferentiable
optimization;Nondifferentiable optimization: cutting
plane methods; Nondifferentiable optimization: minimax
problems;Nondifferentiable optimization: Newton
method;Nondifferentiable optimization: parametric
programming;Nondifferentiable optimization: relaxation
methods)

nondifferentiable problems see: Interval analysis: —
nondifferential optimization

[01A99]
(see:History of optimization)

nondiscordance condition
[90-XX]
(see: Outranking methods)

nondominance
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

nondominated
[90C11, 90C29]
(see:Multi-objective mixed integer programming;
Multi-objective optimization; Interactivemethods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties;Multiple objective
programming support)

nondominated cuts
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

nondominated path
[90C31, 90C39]
(see:Multiple objective dynamic programming)

nondominated solution
[90C29]
(see:Multiple objective programming support)

nondominated solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

nondominated solution see: unsupported—; weakly—
nondominated solution set

[90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control)

nondominated valid inequality
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

nondomination see: comparison of efficiency and—
noneconomic applications

[90C32]
(see: Fractional programming)

nonempty
[90C30]
(see: Frank–Wolfe algorithm)

nonempty interior
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

nonexpansive
[65K10, 65M60]
(see: Variational inequalities)

nonexpansive operator
[65K10, 65M60]
(see: Variational inequalities)

nonexpansive operator see: firmly—
nonextreme efficient

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

nonfeasible decomposition method
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

nonfeasible gradient controller
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

nonGaussian signal processing
[90C26, 90C90]
(see: Signal processing with higher order statistics)

nonhomogeneous and nonisotropic body see: linear
thermoelastic behavior of a generally —

nonideal part
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

nonideal phase equilibrium equations see: ideal and—
nonidentical machines

[68Q99]
(see: Branch and price: Integer programming with column
generation)
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nonincreasing monotone Boolean function
[90C09]
(see: Inference of monotone boolean functions)

noninferior
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

noninferior solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

noninferior solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

noninferior solution see: weakly —
noninferior solution set

[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)

noninteracting see: n—
noninteractive method

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

noninteractive methods see: interactive versus—
noninterference constraints

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

noninterference constraints see: binary—
nonisotropic body see: linear thermoelastic behavior of a

generally nonhomogeneous and—
nonlinear

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

nonlinear
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

nonlinear assignment problems
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

nonlinear bilevel programming: deterministic global
optimization see:Mixed integer —

nonlinear blending
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

nonlinear boundary conditions see: elastostatics with—
nonlinear CG method

[90C30]
(see: Conjugate-gradientmethods)

nonlinear CG method
[90C30]
(see: Conjugate-gradientmethods)

nonlinear CG-related algorithms
[90C30]
(see: Conjugate-gradientmethods)

nonlinear CG-related algorithms
[90C30]
(see: Conjugate-gradientmethods)

nonlinear complementarity
[49M37, 90C26, 91A10]
(see: Bilevel programming)

nonlinear complementarity problem
[65F10, 65F50, 65H10, 65K10, 65M60, 90C30, 90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem;Generalized nonlinear
complementarity problem;Globally convergent homotopy
methods; Implicit lagrangian; Linear complementarity
problem;Nonsmooth and smoothing methods for
nonlinear complementarity problems and variational
inequalities; Topological methods in complementarity
theory;Variational inequalities)

nonlinear complementarity problem
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem;Generalized nonlinear
complementarity problem)

nonlinear complementarity problem see: generalizations of
the—; Generalized —; parametric —

nonlinear complementarity problem and fixed point problem
see: Equivalence between—

nonlinear complementarity problems
[90C31, 90C33]
(see: Sensitivity analysis of complementarity problems)

nonlinear complementarity problems and variational
inequalities see: Nonsmooth and smoothing methods for—

nonlinear complementary problem
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

nonlinear complementary problem
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

nonlinear constraint
[90C90]
(see: Design optimization in computational fluid dynamics)

nonlinear cut
[90C26]
(see: Cutting plane methods for global optimization)

nonlinear cut
[90C26]
(see: Cutting plane methods for global optimization)

nonlinear Dantzig–Wolfe decomposition
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

nonlinear decision models
[90C05]
(see: Continuous global optimization: applications;
Continuous global optimization: models, algorithms and
software; Global optimization in the analysis and
management of environmental systems)

nonlinear, decreasing
[90B15]
(see: Evacuation networks)

nonlinear diffusion equation
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

nonlinear discretized SIP problem
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)
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nonlinear dynamic network flow problem
[90C30]
(see: Simplicial decomposition)

nonlinear dynamics see: Robust design of dynamic systems by
constructive—

nonlinear equation see: one-dimensional—
nonlinear equations

[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

nonlinear equations
[65F10, 65F50, 65G20, 65G30, 65G40, 65H10, 65J15, 65K10]
(see: Contraction-mapping;Globally convergent homotopy
methods; Interval analysis: systems of nonlinear equations)

nonlinear equations see: Global optimizationmethods for
systems of—; Interval analysis: systems of—;
overdetermined system of—; systems of —;
underdetermined system of—; well-determined system
of—

nonlinear feasibility problem
[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

nonlinear integer programming problem see:mixed—
nonlinear least squares

[49M37, 90C30]
(see: Generalized total least squares; Nonlinear least
squares: trust regionmethods)

nonlinear least squares
[90C30]
(see: Nonlinear least squares problems)

nonlinear least squares see: generalized —
Nonlinear least squares: Newton-type methods

(49M37)
(referred to in: ABS algorithms for linear equations and
linear least squares;ABS algorithms for optimization;
Conjugate-gradientmethods; Contraction-mapping;
Gauss–Newton method: Least squares, relation to Newton’s
method;Generalized total least squares;Global
optimization methods for systems of nonlinear equations;
Gröbner bases for polynomial equations; Interval analysis:
systems of nonlinear equations; Large scale trust region
problems; Least squares orthogonal polynomials; Least
squares problems; Local attractors for gradient-related
descent iterations;Nonlinear least squares problems;
Nonlinear least squares: trust regionmethods; Nonlinear
systems of equations: application to the enclosure of all
azeotropes;Optimization-based visualization)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization;Automatic
differentiation: calculation of Newton steps;
Conjugate-gradientmethods; Contraction-mapping;
Dynamic programming and Newton’s method in
unconstrained optimal control;Gauss–Newton method:
Least squares, relation to Newton’s method;Generalized
total least squares;Global optimization methods for
systems of nonlinear equations; Interval analysis: systems
of nonlinear equations; Interval Newton methods; Large
scale trust region problems; Least squares orthogonal
polynomials; Least squares problems; Local attractors for
gradient-related descent iterations;Nondifferentiable
optimization: Newton method; Nonlinear least squares
problems;Nonlinear least squares: trust regionmethods;

Nonlinear systems of equations: application to the
enclosure of all azeotropes;Unconstrained nonlinear
optimization: Newton–Cauchy framework)

nonlinear least squares problem see: generalized —;
unconstrained—

Nonlinear least squares problems
(90C30)
(referred to in: ABS algorithms for linear equations and
linear least squares; ABS algorithms for optimization;
Gauss–Newton method: Least squares, relation to Newton’s
method; Generalized total least squares; Least squares
orthogonal polynomials; Least squares problems;Nonlinear
least squares: Newton-type methods;Nonlinear least
squares: trust regionmethods)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization;
Gauss–Newton method: Least squares, relation to Newton’s
method; Generalized total least squares; Least squares
orthogonal polynomials; Least squares problems;Nonlinear
least squares: Newton-type methods;Nonlinear least
squares: trust regionmethods)

Nonlinear least squares: trust regionmethods
(49M37)
(referred to in: ABS algorithms for linear equations and
linear least squares; ABS algorithms for optimization;
Conjugate-gradientmethods; Gauss–Newton method: Least
squares, relation to Newton’s method; Generalized total
least squares; Interval linear systems; Large scale trust
region problems; Large scale unconstrained optimization;
Least squares orthogonal polynomials; Least squares
problems; Local attractors for gradient-related descent
iterations;Nonlinear least squares: Newton-type methods;
Nonlinear least squares problems;Overdetermined systems
of linear equations)
(refers to: ABS algorithms for linear equations and linear
least squares; ABS algorithms for optimization;
Conjugate-gradientmethods; Gauss–Newton method: Least
squares, relation to Newton’s method; Generalized total
least squares; Large scale trust region problems; Least
squares orthogonal polynomials; Least squares problems;
Local attractors for gradient-related descent iterations;
Nonlinear least squares: Newton-type methods; Nonlinear
least squares problems)

nonlinear material laws see: discretized hemivariational
inequalities for—

nonlinear mathematical programming problem
[49J20, 49J52]
(see: Shape optimization)

nonlinear mixed integer programming problem see: large
scale—

nonlinear multicommodity flow problems
[90C30]
(see: Simplicial decomposition)

nonlinear multicommodity flow problems see: large—
nonlinear network flow problem

[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

nonlinear network flow problems
[90C30]
(see: Convex-simplex algorithm)

nonlinear nonconvex optimization see: Smooth—
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nonlinear optics
[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

nonlinear optics
[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

nonlinear optics see: Optimal design in—
nonlinear optimization

[90B50, 90C26]
(see: Optimization and decision support systems; Smooth
nonlinear nonconvex optimization)

nonlinear optimization
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26, 91B28]
(see: Financial optimization; Information-based complexity
and information-based optimization)

nonlinear optimization see: global —;
Inequality-constrained—;mixed integer —; parametric —;
Parametric mixed integer —; Second order optimality
conditions for —; smooth—

nonlinear optimization: A disjunctive cutting plane approach
see:Mixed-integer—

nonlinear optimization: Newton–Cauchy framework see:
Unconstrained—

nonlinear optimization problem
[49K99, 65K05, 80A10, 90C26, 90C90]
(see: Design optimization in computational fluid dynamics;
Optimality criteria for multiphase chemical equilibrium;
Smooth nonlinear nonconvex optimization)

nonlinear optimization problem
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

nonlinear optimization problems
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

nonlinear order complementarity problem
[90C33]
(see: Order complementarity)

nonlinear parametric optimization
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

nonlinear potential
[90C90]
(see: Design optimization in computational fluid
dynamics)

nonlinear problem see: fully—; geometrically —; physically—
nonlinear problems see: Simultaneous estimation and

optimization of—
nonlinear program

[90C05, 90C20, 90C26, 90C30]
(see: Global optimization in batch design under
uncertainty;Redundancy in nonlinear programs; Simplicial
decomposition)

nonlinear program
[90C30]
(see: Simplicial decomposition)

nonlinear program see: loss of descent in a—;mixed
integer —; relaxed—

nonlinear programming
[90C06, 90C10, 90C11, 90C22, 90C25, 90C30, 90C31, 90C57,
90C90]
(see:Modeling difficult optimization problems;
Semidefinite programming: optimality conditions and
stability; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

nonlinear programming
[65K05, 65K10, 90B50, 90C06, 90C27, 90C30, 90C31, 90C34,
91B28]
(see: Convex-simplex algorithm; Feasible sequential
quadratic programming; Frank–Wolfe algorithm;Neural
networks for combinatorial optimization;Operations
research and financial markets;Optimization and decision
support systems; Portfolio selection: markowitz
mean-variance model; Rosen’s method, global convergence,
and Powell’s conjecture; Sensitivity and stability in NLP;
Sensitivity and stability in NLP: continuity and differential
stability; Simplicial decomposition)

nonlinear programming see: feasible directionmethod for —;
mixed integer —; sensitivity in—

nonlinear programming algorithm see: descent in a—
nonlinear programming: KKT necessary optimality conditions

see: Equality-constrained—
nonlinear programming problem

[49K20, 49M99, 90C26, 90C55, 90C90]
(see: Bilevel optimization: feasibility test and flexibility
index;Design optimization in computational fluid
dynamics; Sequential quadratic programming: interior
point methods for distributed optimal control problems)

nonlinear programming problem see: equality-constrained—;
mixed integer —

nonlinear programs see: Redundancy in—
nonlinear semi-infinite programs

[90C34]
(see: Semi-infinite programming: approximationmethods)

nonlinear semi-infinite programs
[90C34]
(see: Semi-infinite programming: approximationmethods)

nonlinear signal processing
[90C26, 90C90]
(see: Signal processing with higher order statistics)

nonlinear simplicial
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

nonlinear single commodity network flow problem
[90C30]
(see: Simplicial decomposition)

nonlinear SIP
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

nonlinear system of equations
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

nonlinear system of equations
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)
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nonlinear systems of equations
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

nonlinear systems of equations
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

nonlinear systems of equations see: error bound for
approximate solutions of —; existence of solutions of—;
rigorous bound for solutions of—; uniqueness of solutions
of—

Nonlinear systems of equations: application to the enclosure
of all azeotropes
(90C30)
(referred to in: Contraction-mapping;Global optimization
methods for systems of nonlinear equations;Gröbner bases
for polynomial equations; Interval analysis: systems of
nonlinear equations; Nonlinear least squares: Newton-type
methods)
(refers to: Contraction-mapping;Global optimization
methods for systems of nonlinear equations; Interval
analysis: systems of nonlinear equations;Nonlinear least
squares: Newton-type methods)

nonlinearly constrained optimization
[90C25, 90C30]
(see: Successive quadratic programming: full space
methods)

nonlocal sensitivity analysis
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

nonlocal sensitivity analysis
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

nonlocal sensitivity analysis see: automated Fortran program
for—

Nonlocal sensitivity analysis with automatic differentiation
(34-XX, 49-XX, 65-XX, 68-XX, 90-XX)
(referred to in: Automatic differentiation: calculation of the
Hessian;Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations;Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;
Automatic differentiation: root problem and branch
problem; Parametric global optimization: sensitivity;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)
(refers to: Automatic differentiation: calculation of the
Hessian;Automatic differentiation: calculation of Newton
steps;Automatic differentiation: geometry of satellites and
tracking stations;Automatic differentiation: introduction,
history and rounding error estimation; Automatic
differentiation: parallel computation; Automatic
differentiation: point and interval;Automatic
differentiation: point and interval taylor operators;

Automatic differentiation: root problem and branch
problem; Parametric global optimization: sensitivity;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)

nonminimum phase
[90C26, 90C90]
(see: Signal processing with higher order statistics)

nonmonotone Armijo-like criterion see: test —
nonmonotone laws and hemivariational inequalities see:

multivalued—
nonmonotone line search

[90C06]
(see: Large scale unconstrained optimization)

nonnegative interpolatory operator
[90C34]
(see: Semi-infinite programming: approximationmethods)

nonnegative lower bounds see:maximum flow problem
with—

nonnegative matrix see: doubly—
nonoblivious local search

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

nonobtuse angle condition
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

Nonoriented multicommodity flow problems
(90B10, 90C05, 90C06, 90C35)
(referred to in:Maximum flow problem;Minimum cost flow
problem;Multicommodity flow problems;Nonconvex
network flow problems; Piecewise linear network flow
problems)
(refers to: Branch and price: Integer programming with
column generation;Maximum flow problem;Minimum
cost flow problem;Multicommodity flow problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems)

nonparametric
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

nonparametric statistical method
[62H30, 90C27]
(see: Assignment methods in clustering)

nonparticipant
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

nonpreemptive
[90B36]
(see: Stochastic scheduling)

nonredundancy see: computational—
nonredundancy rate see: average—
nonredundant constraint

[90C05, 90C20]
(see: Redundancy in nonlinear programs)
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nonregular operator
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

nonsaturating push
[90C35]
(see:Maximum flow problem)

nonseparable optimization problem
[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

nonseparable problem
[93-XX]
(see: Dynamic programming: optimal control applications)

nonsingular
[90C30]
(see: Convex-simplex algorithm)

nonsingular local minimizer
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

nonsingular matrix
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

nonsingular matrix see: sign- —; strongly—
nonsmooth

[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

nonsmooth analysis
[26B25, 26E25, 49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx,
80-XX, 90C15, 90C26, 90C99]
(see: Global optimization: envelope representation;
Nonconvex energy functions: hemivariational inequalities;
Quasidifferentiable optimization; Stochastic quasigradient
methods: applications)

nonsmooth analysis
[26B25, 26E25, 46A20, 49J52, 52A01, 52A27, 65K05, 65K99,
90C30, 90C90, 90C99, 90Cxx]
(see: Composite nonsmooth optimization;Dini and
Hadamard derivatives in optimization;Quasidifferentiable
optimization;Quasidifferentiable optimization: calculus of
quasidifferentials;Quasidifferentiable optimization: Dini
derivatives, clarke derivatives)

Nonsmooth analysis: Fréchet subdifferentials
(49K27, 90C48, 58C20, 58E30)
(referred to in: Nonsmooth analysis: weak stationarity)
(refers to: Nonsmooth analysis: weak stationarity)

nonsmooth analysis and optimization
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

Nonsmooth analysis: weak stationarity
(90C46, 90C48, 58C20, 58E30)
(referred to in:Nonsmooth analysis: Fréchet subdifferentials;
Smoothing methods for semi-infinite optimization)
(refers to: Nonsmooth analysis: Fréchet subdifferentials)

nonsmooth calculus of variations see: Nonconvex-—
nonsmooth Dirichlet problem

[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

nonsmooth eigenvalue problem
[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

nonsmooth equations
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

nonsmooth function
[26B25, 26E25, 49J52, 90C99]
(see: Quasidifferentiable optimization)

nonsmooth functions
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

nonsmooth local approximations
[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

nonsmooth mappings see: approximation of —;
approximations of—

nonsmooth mechanics
[49J35, 49J40, 49J52, 49Q10, 49S05, 65K99, 70-XX, 74A55,
74G99, 74H99, 74K99, 74M10, 74M15, 74Pxx, 80-XX, 90C26,
90C33]
(see:Hemivariational inequalities: applications in
mechanics;Nonconvex energy functions: hemivariational
inequalities;Quasidifferentiable optimization:
applications)

nonsmooth mechanics
[49J40, 49J52, 49M05, 49Q10, 49S05, 70-08, 74G60, 74G99,
74H99, 74K99, 74Pxx, 90C33, 90C90]
(see:Hemivariational inequalities: applications in
mechanics;Quasidifferentiable optimization: stability of
dynamic systems;Quasidifferentiable optimization:
variational formulations;Quasivariational inequalities)

nonsmooth mechanics see: inequality or —
nonsmooth methods

[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

nonsmooth modeling
[49J35, 65K99, 74A55, 74M10, 74M15, 90C26]
(see: Quasidifferentiable optimization: applications)

nonsmooth modeling
[49J35, 49J52, 65K99, 74A55, 74M10, 74M15, 90C26, 90C90]
(see: Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: calculus of
quasidifferentials)

nonsmooth Newton method
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

nonsmooth nonconvex optimization
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

nonsmooth optimization
[49J20, 49J52, 90C15, 90C26, 90C33]
(see: Shape optimization; Stochastic bilevel programs)

nonsmooth optimization
[26B25, 26E25, 46A20, 46N10, 49J35, 49J40, 49J52, 49M05,
49M20, 49S05, 52A01, 65G20, 65G30, 65G40, 65K05, 65K99,
70-08, 74A55, 74G99, 74H99, 74M10, 74M15, 74Pxx, 90-00,
90-08, 90C15, 90C25, 90C26, 90C30, 90C47, 90C90, 90C99]
(see: Composite nonsmooth optimization;Direct global
optimization algorithm; Farkas lemma: generalizations;
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Interval global optimization; Nondifferentiable
optimization;Nondifferentiable optimization: cutting
plane methods;Quasidifferentiable optimization;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: applications;Quasidifferentiable
optimization: calculus of quasidifferentials;
Quasidifferentiable optimization: codifferentiable
functions;Quasidifferentiable optimization: variational
formulations; Random search methods; Solving
hemivariational inequalities by nonsmooth optimization
methods; SSC minimization algorithms for nonsmooth and
stochastic optimization)

nonsmooth optimization see: Composite—
Nonsmooth optimization approach to clustering

(90C26, 90C56, 90C90)
nonsmooth optimizationmethods see: Solving

hemivariational inequalities by —
nonsmooth optimization problems

[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

nonsmooth optimization problems
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

nonsmooth reformulation see: smoothing-—
Nonsmooth and smoothing methods for nonlinear

complementarity problems and variational inequalities
(90C33, 90C30)
(referred to in: Composite nonsmooth optimization;
Nonconvex-nonsmooth calculus of variations; Smoothing
methods for semi-infinite optimization; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational principles)
(refers to: Composite nonsmooth optimization;
Nonconvex-nonsmooth calculus of variations; Solving
hemivariational inequalities by nonsmooth optimization
methods)

nonsmooth SSC-SABB algorithm
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms for nonsmooth and
stochastic optimization)

nonsmooth and stochastic optimization see: SSC minimization
algorithms for —

nonsmooth superpotential
[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

nonstandard analysis
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

nonstandard analysis
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

nonstandard framework
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

nonstochastic uncertainty
[90C34, 91B28]

(see: Semi-infinite programming and applications in
finance)

nonstoichiometric form of KT conditions
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

nonsupported efficient solution
[90C10, 90C29]
(see:Multi-objective integer linear programming)

nonsupported efficient solutions
[90C10, 90C35]
(see: Bi-objective assignment problem)

nontriviality condition
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

nonuniform
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

nonunit capacity see: problem with—
nonunit weight CMST

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

nonzero pattern see: zero- —
nonzero residual problem

[90C30]
(see: Nonlinear least squares problems)

nonzero-sum infinite horizon game
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

norm see: A-weighted Euclidean—; approximation in the
uniform—; L1- —; normalized—; t- —;weighted
maximum—; weighter sup—

norm contraction see: weighter sup- —
norm controllability see:minimum—
norm-dependent property

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

norm solution see:minimum—
normal

[65K05, 90C26, 90C30, 90C31]
(see:Minimax: directional differentiability;Robust global
optimization)

normal compactness see: partial sequential —; sequential —
normal cone

[05A, 15A, 49J40, 49J52, 49Q10, 51M, 52A, 52B, 52C, 62H,
65K05, 65K10, 65M60, 68Q, 68R, 68U, 68W, 70-XX, 74K99,
74Pxx, 80-XX, 90B, 90C, 90C30, 90C31, 90C33, 90Cxx]
(see: Convex discrete optimization; Nonconvex energy
functions: hemivariational inequalities;Quasidifferentiable
optimization: exact penalty methods; Sensitivity analysis of
complementarity problems; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities: geometric interpretation,
existence and uniqueness)

normal cone see: fréchet —; limiting—
normal distribution see: law of —;multivariate—
normal equation

[65Fxx, 90C30]
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(see: Generalized total least squares; Least squares
problems)

normal equations
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

normal extremal
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

normal form
[12D10, 12Y05, 13P10]
(see: Gröbner bases for polynomial equations)

normal form
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

normal form see: Boolean formula in conjunctive—;
canonical—; complete many-valued logic—;
conjunctive—; disjunctive—; game in—;many-valued—;
PI- —

normal form of a polynomial
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

normal forms see:minimization of Pinkava—; PI-algebras and
2-valued—

normal forms of Pi-algebras see: functionally complete—
normal hull

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

normal hull see: reverse —
normal map

[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem)

normal primal problem see: J- —; N-—
normal set see: reverse —
normalization

[62H30, 68T10, 90C05]
(see: Linear programmingmodels for classification)

normalization of measures
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

normalization property
[90C33]
(see: Topological methods in complementarity theory)

normalized norm
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

normalized stress
[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

normalized structure factors
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

normalized structure factors
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

normalized volume
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

normative perspective
[90C29]
(see: Preference modeling)

normed linear spaces see: Best approximation in ordered—
norms see: t- —
normwise relative condition number

[65Fxx]
(see: Least squares problems)

North–West corner rule
[90C35]
(see:Multi-index transportation problems)

not dominated
[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

notation see: Landau—; relational matrix—
notation for constraints

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

notation for objective functions
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

notation for relational operations see:matrix —
novel decomposition-based clustering approach: global

optimum search with enhanced positioning see: Gene
clustering: A—

novo protein design using flexible templates see: De—
novo protein designUsing rigid templates see: De—
NP

[90C60]
(see: Complexity classes in optimization)

nP-complete
[49M37, 68Q25, 90C11, 90C60]
(see: Complexity theory;Mixed integer nonlinear
programming;NP-complete problems and proof
methodology)

NP-complete
[90C60]
(see: Complexity of degeneracy;Complexity theory;
Complexity theory: quadratic programming)

NP-complete completeness see: strong—
nP-complete problem

[68Q25, 90C60]
(see: Complexity theory; Computational complexity theory;
NP-complete problems and proof methodology)

NP-complete problem
[68Q25, 90C60]
(see: Complexity of degeneracy;Computational complexity
theory;NP-complete problems and proof methodology)

NP-complete problems and proof methodology
(90C60, 68Q25)
(referred to in: Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory; Complexity
theory: quadratic programming; Fractional combinatorial
optimization; Information-based complexity and
information-based optimization; Integer programming:
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cutting plane algorithms;Maximum cut problem,
MAX-CUT)
(refers to: Complexity classes in optimization; Complexity of
degeneracy;Complexity of gradients, Jacobians, and
Hessians; Complexity theory; Complexity theory: quadratic
programming;Computational complexity theory;
Fractional combinatorial optimization; Information-based
complexity and information-based optimization;
Kolmogorov complexity;Mixed integer nonlinear
programming; Parallel computing: complexity classes)

NP-complete reductions see: ordinary—
NP-completeness

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

NP-completeness see: ordinary—; strong—
NP-completeness proofs

[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

NP-hard
[49M37, 68T99, 9008, 90C05, 90C06, 90C08, 90C10, 90C11,
90C26, 90C27, 90C59, 90C60, 93D09]
(see: Capacitatedminimum spanning trees; Complexity
theory; Integer programming: branch and bound methods;
Mixed integer nonlinear programming; Price of robustness
for linear optimization problems; Robust control;Variable
neighborhood search methods)

NP-hard
[90B80, 90B85, 90C60]
(see: Complexity theory; Complexity theory: quadratic
programming; Facilities layout problems;Multifacility and
restricted location problems)

NP-hard see: strongly—
nP-hard problem

[68Q25, 90C60]
(see: Computational complexity theory;NP-complete
problems and proof methodology)

NP-hard problem
[68Q25, 90C60]
(see: Computational complexity theory;NP-complete
problems and proof methodology)

NP method see: pure —
NP methods see: hybrid—; knowledge-based—
NPC

[90C60]
(see: Computational complexity theory)

NPH
[90C60]
(see: Computational complexity theory)

NRTL equation
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

nSD
[65K10, 90C06, 90C25, 90C33, 90C35, 90C51]
(see: Generalizations of interior point methods for the
linear complementarity problem; Simplicial decomposition
algorithms)

NSM
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

�-approximate gradient
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

nulispace see: numerical —
null space

[49-XX, 90-XX, 90C20, 90C30, 90Cxx, 93-XX]
(see: Discontinuous optimization;Duality theory: biduality
in nonconvex optimization; Successive quadratic
programming: decompositionmethods)

null space
[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

null space decomposition see: range and—
null step

[47J20, 49J40, 49J52, 65K05, 65K10, 90C30, 90C33]
(see: Solution methods for multivalued variational
inequalities; Solving hemivariational inequalities by
nonsmooth optimization methods)

number see: blackball —; chromatic—; clique—; clique
partition—; condition—; conspiracy—; crossing—;
Dedekind—; domination—; fuzzy—; independence—;
L-R flat fuzzy—; L-R fuzzy—; Lovász—; normwise relative
condition—; separation—; stability —; tangle —;
weighted clique—; weighted stability —

number of clauses see:minimum—
number of clusters see: Determining the optimal —
number of DNF clauses see:minimal—
number of a matrix see: condition—
number model see: real —
number of operations

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

number of pivot steps see: average—; expected —
number of shadow-vertices see: expected —; variance of

the—
number of Steiner points see: Steiner tree problem with

minimum—
number of vehicles

[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

number of vehicles see: Vehicle scheduling problems with
a fixed—

number of well switches see:maximum—
numbers see: arithmetic operations on fuzzy—; common

random—; finite natural —; finite rational—; fuzzy—;
infinitely near rational —; infinitely small negative real —;
infinitely small positive real —; infinitely small real —;
magic—; natural —; rational—; real —

Numerica
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

numerical algorithms
[49J40, 49Q10, 70-08, 74K99, 74Pxx]
(see: Quasivariational inequalities)

numerical algorithms
[90C25, 90C26, 90C34]
(see: Semi-infinite programming: numerical methods)
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numerical analysis
[01A99, 90C99]
(see: Von Neumann, John)

numerical constraint satisfaction problem
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

numerical differentiation
[26A24, 65D25, 68W30]
(see: Automatic differentiation: introduction, history and
rounding error estimation; Complexity of gradients,
Jacobians, and Hessians)

numerical differentiation see: internal —
numerical example of a trim-loss problem

[90C11, 90C90]
(see:MINLP: trim-loss problem)

numerical methods
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

numerical methods
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

numerical methods see: Semi-infinite programming: —;
Stochastic optimal stopping: —

Numerical methods for unary optimization
(90C30)
(referred to in: Broyden family of methods and the BFGS
update;Unconstrained nonlinear optimization:
Newton–Cauchy framework; Unconstrained optimization
in neural network training)
(refers to: Broyden family of methods and the BFGS update;
Unconstrained nonlinear optimization: Newton–Cauchy
framework; Unconstrained optimization in neural network
training)

numerical nulispace
[65Fxx]
(see: Least squares problems)

numerical rank
[15A23, 65F05, 65F20, 65F22, 65F25, 65Fxx]
(see: Least squares problems;Orthogonal triangularization)

numerical results
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

numerical simulation
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

(NVI) see: nearest vertex insertion—
Nyström interpolation

[65H10, 65J15]
(see: Contraction-mapping)

O

O(nc) see: algorithm of complexity—
O(nc) time see: algorithm running in—
OAmaster problem see: disjunctive—

OA method
[90C26]
(see: Cutting plane methods for global optimization)

object
(see: State of the art in modeling agricultural systems)

objective
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

objective see:maxmin—;minimax—;multi-—; Stochastic
programming models: random—

objective assignment problem see: Bi- —
objective CNSO see:multi- —
objective combinatorial optimization see:multi- —
objective convex optimization see:multi- —
objective criterion

[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

objective dynamic programming see:Multiple—
objective euclidean distance location see: Single facility

location: multi- —
objective facility location see:multi- —
objective fractional program see:multi- —
objective fractional programming see:multi-—
objective fractional programming problems see:Multi- —
objective function

[65G30, 65G40, 65K05, 68Q25, 9008, 90B10, 90B80, 90B85,
90C05, 90C20, 90C26, 90C27, 90C30, 90C35, 90C57, 90C59,
90C90, 91B28]
(see: Competitive ratio for portfolio management; Global
optimization: interval analysis and balanced interval
arithmetic;Global optimization using space filling;MINLP:
heat exchanger network synthesis; Nonconvex network flow
problems; Redundancy in nonlinear programs; Rosen’s
method, global convergence, and Powell’s conjecture;
Variable neighborhood search methods;Warehouse
location problem)

objective function
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

objective function see: fair—; lexicographicallyminimax—;
maximin—;minimax—;multicriteria—;multifacility
Weber —;multifacilityWeber–Rawls —; random—;
separable —; separable convex—; set-valued—

objective function parametrization
[90C05, 90C31]
(see: Parametric linear programming: cost simplex
algorithm)

objective function value see: continuity property of the—;
convexity property of the—

objective functions
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties;Multiple objective
programming support)

objective functions see: nondifferentiable—; notation for—
objective functions and/or derivatives see: evaluation of—
objective integer linear programming see:Multi- —
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objective interpretation
[94A17]
(see: Jaynes’ maximum entropy principle)

objective linear programming see: Fuzzy multi- —;multi-—;
multiple—

objective linear programming with fuzzy coefficients see:
multi-—

objective linear programming under uncertainty see:multi- —
objective for a location problem

[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

objective mathematical programming see:multi- —
objective mixed integer programming see:Multi- —
objective (multicriteria) mixed integer programming see:

multi-—
objective optimization see: disaggregation in multi- —;

Generalized concavity in multi- —;multi- —
objective optimization and decision support systems see:

Multi-—
objective optimization: interaction of design and control see:

Multi-—
objective optimization; Interactive methods for preference

value functions see:Multi- —
objective optimization: lagrange duality see:Multi- —
objective optimization: pareto optimal solutions, properties

see:Multi-—
objective programming see:multi- —;multiple—
objective programming support see:Multiple—
objective rectilinear distance location see: Single facility

location: multi- —
objective simplex algorithm see: parametric —
objective value see: incumbent—
objectives see: balancing—;multiple—; pull —; push—
objects

[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

oblique projection matrix
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

observation problem see:minimax—
observation problem under uncertainty with perturbations

see:minimax—
observational quantifiers

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

observations see: inaccuracy in—
obstacle

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

obstacle-free shape design see: robust—
obstacle-free truss design see: robust—
obstruction set

[68R10, 90C27]
(see: Branchwidth and branch decompositions)

OCAT
[90C09, 90C10]
(see: Optimization in boolean classification problems;
Optimization in classifying text documents)

Occam razor
[90C60]
(see: Kolmogorov complexity)

odd-hole-cut
(see: Contact map overlap maximization problem, CMO)

odd sequence
[05C85]
(see: Directed tree networks)

odd-set constraints
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

ODE two-point boundary value problem
[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

Odyssée
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

off see: back- —; tailing- —; trade- —
off-0-diagonal operator

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

off cutting plane see: trade- —
off error see: round- —
off-line feedback

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

off-line learning
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

off-line process optimization
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

off question see: trade- —
offs see: trade- —
offshore oil fields

[90C26]
(see:MINLP: application in facility location-allocation)

offshore oilfield infrastructure see: Optimal planning of —
offspring see: perfect —
oil fields see: offshore—
oil flowrate see: well —
oil, gas and water capacity constraints see:maximum—
oil model see: black—
oil rate constraints see: upper and lower well —
oilfield infrastructure see: Optimal planning of offshore—
oligopolistic equilibrium see: Cournot–Nash—
oligopolistic equilibriummodel see: Cournot–Nash—
Oligopolistic market equilibrium

(91B06, 91B60)
(referred to in: Equilibrium networks; Financial
equilibrium;Generalizedmonotonicity: applications to
variational inequalities and equilibrium problems; Spatial
price equilibrium; Traffic network equilibrium;Walrasian
price equilibrium)
(refers to: Equilibrium networks; Financial equilibrium;
Generalized monotonicity: applications to variational
inequalities and equilibrium problems; Spatial price
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equilibrium; Traffic network equilibrium;Walrasian price
equilibrium)

oligopoly
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

oligopoly model
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

oligopoly model
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

oligopoly model see: spatial —
oligopoly problem see: aspatial —; classical—
OLSO

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

OME
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

Omega see: Chaitin in—
˝-based yield

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

on average
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

on-duty time
(see: Railroad crew scheduling)

on-line algorithm
[05C85]
(see: Directed tree networks)

on-line feedback
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

on-line learning
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

on-line method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

on-line process optimization
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

on-the-river hydropower nodes
[90C30, 90C35]
(see: Optimization in water resources)

one see: one against —
one against all

(see:Mathematical programming for data mining)
one against one

(see:Mathematical programming for data mining)
one algorithm see: Smith–Walford-—
one approach see: limited-memory symmetric rank- —

one-at-a-time coefficient generation
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

one clause at a time
[90C09, 90C10]
(see: Optimization in boolean classification problems)

one clause at a time algorithm
[90C09, 90C10]
(see: Optimization in classifying text documents)

one clause at a time approach
[90C09, 90C10]
(see: Optimization in boolean classification problems)

one constraint see: consecutive—
one-dimensional marginal probability distribution function

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

one-dimensional nonlinear equation
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

one, find all see: find—
one-for-one ordering policy

[90B50]
(see: Inventory management in supply chains)

one formula see: selfdual rank —
one globally convergent homotopies see: probability- —
one homotopy see: probability- —
one homotopy algorithm see: globally convergent

probability- —
one-hop neighboring stations

(see: Broadcast scheduling problem)
one integer feasibility problem see: zero- —
one integer problem see: linear zero- —
one integer program see: zero- —
one integer programming see: zero- —
one knapsack problem see:multidimensional zero- —; zero- —
one matrix see: rank- —
one optimization see: zero- —
one ordering policy see: one-for- —
one-parametric finite optimization problem

[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

one-parametric semi-infinite optimization
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

one problem see: quadratic zero- —
one programming see: Fractional zero- —; pure zero- —
one programming problem see: zero- —
one quasi-Newtonmethod see: symmetric rank- —
one-reducible graph see: Smith–Walford—
one-sided differential

[26B25, 26E25, 49J52, 90C99]
(see: Quasidifferentiable optimization)

one-to-all instances
[05C85]
(see: Directed tree networks)

one-tree
[90C35]
(see: Generalized networks)

one update see: symmetric rank- —



Subject Index 4395

one update formula see: Sherman-Morrison rank- —
one-way analysis of variance

[62H30, 90C27]
(see: Assignment methods in clustering)

onto relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

open communication
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

open form approach
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

open list
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

open-loop control
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

open-loop Nash equilibrium
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

open shop problem
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

operability
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

operability analysis of flowsheets
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

operating cash flow see:maximize—
operation see: averaging—; contraction—; degenerate

pivot—; floating point—; freight—; head of —; interval
arithmetic—; nondegenerate pivot—; partially
asynchronous—; pivot—; tail of —; totally
asynchronous—

operation of electric and energy power systems see:
Optimization in—

operation planning
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

operation planning
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

operational decisions in a supply chain
[90-02]
(see: Operations researchmodels for supply chain
management and design)

Operational Research see: european Journal of —
operational restrictions

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

operational status of the wells
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

operational supply chain management
[90-02]
(see: Operations research models for supply chain
management and design)

operations see: expansion—; irregular —;matrix notation for
relational—; number of —; process —; reduction—;
reflection—

operations on fuzzy numbers see: arithmetic—
operations problem see: irregular —
operations in a program see: basic—
operations on relations see: binary—; unary—
Operations research

(90C27)
(referred to in:History of optimization)
(refers to:History of optimization)

operations research
[90C31]
(see: Sensitivity and stability in NLP)

operations research
[90C27]
(see: Operations research)

operations research see: GRASP in—
Operations research and financial markets

(90C27)
Operations research models for supply chain management

and design
(90-02)
(referred to in: Global supply chain models; Inventory
management in supply chains; Nonconvex network flow
problems; Piecewise linear network flow problems)
(refers to: Global supply chain models; Inventory
management in supply chains; Nonconvex network flow
problems; Piecewise linear network flow problems)

operator see: antitone—; best approximation—;
block-0-diagonal—; closed selfadjoint—; co-coercive—;
compact—; complementary—; completely continuous—;
condensing—; constraint narrowing—; continuous
selection—; contractive—; eor —; firmly nonexpansive—;
fuzzy set-inclusion—; generalized monotone—;
geometrical —; hemicontinuous—; heterotonic —;
implication—; interpolatory —; interval —; interval
Newton—; interval Taylor —; involutory—; isotone—;
lipschitzian selection—;monotone—; nonexpansive—;
nonnegative interpolatory—; nonregular —;
off-0-diagonal—; optimal Lipschitzian selection—;
orthogonal projection—; overloaded—; p-regular —;
Point Taylor —; properly quasimonotone—;
pseudomonotone—; quasimonotone—; resolvent —;
selection—; semistrictly quasimonotone—; strictly
monotone—; strictly pseudomonotone—; strictly
quasimonotone—; univariate interval Newton—; upper
hemicontinuous—

operator on a Banach space see:monotone—
operator decomposition

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

operator for a matroid see: closure—
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operator overloading
[65H99, 65K05, 65K99, 90C30]
(see: Automatic differentiation: point and interval;
Automatic differentiation: point and interval taylor
operators)

operator splitting
[90C30]
(see: Cost approximation algorithms)

operator splitting
[90C30]
(see: Cost approximation algorithms)

operator splitting algorithm
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

operator topology see: strong—
operators see: Automatic differentiation: point and interval

taylor —; design of—; genetic —
operators in best approximation by bounded or continuous

functions see: Lipschitzian—
OPFAD

[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

opposite of a signed set
[90C09, 90C10]
(see: Oriented matroids)

OPRAD
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

Opt see: 2- —; k- —
opt heuristic see: R-—
Opt Matching (ROM) see: recursive—
opt neighborhood see: 2- —
optical bandwidth

[05C85]
(see: Directed tree networks)

optical networks see: all- —; Integer linear programs for
routing and protection problems in—

optics see: nonlinear—; Optimal design in nonlinear —
optima see: local—
optimal

[05B35, 65K05, 68R10, 9008, 90C05, 90C20, 90C26, 90C27,
90C33, 90C59]
(see: Branchwidth and branch decompositions; Criss-cross
pivoting rules;Variable neighborhood search methods)

optimal see: globally —; locally—; Pareto—
optimal algorithm

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

optimal algorithms
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

optimal assignment
[90C09, 90C10]
(see: Combinatorial matrix analysis)

optimal assignment problem
[90C09, 90C10]
(see: Combinatorial matrix analysis)

optimal basis
[90C05, 90C06, 90C08, 90C10, 90C11, 90C33]
(see: Integer programming: branch and boundmethods;

Pivoting algorithms for linear programming generating
two paths)

optimal componentwise bound
[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

optimal control
[03H10, 49J15, 49J27, 49K15, 90C26, 90C34, 93-XX, 93C10]
(see: Boundary condition iteration BCI; Invexity and its
applications; Pontryagin maximum principle; Semi-infinite
programming and control problems)

optimal control
[49-XX, 49J15, 49K15, 60Jxx, 65Lxx, 90C26, 91B32, 92D30,
93-XX, 93C10]
(see: Invexity and its applications;Optimal control of a
flexible arm; Pontryagin maximum principle;Resource
allocation for epidemic control)

optimal control see: continuous-time—; Discrete-Time—;
Dynamic programming: continuous-time—; Dynamic
programming and Newton’s method in unconstrained—;
parametric —; time—; unconstrained—

optimal control applications see: Dynamic programming: —
optimal control with first order differential equations see:

Duality in—
Optimal control of a flexible arm

(93-XX)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control; Robust control; Robust control: schur stability
of polytopes of polynomials; Semi-infinite programming
and control problems; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Suboptimal control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Suboptimal control)

optimal control policy
[90C30]
(see: Suboptimal control)

optimal control problem
[93-XX]
(see: Boundary condition iteration BCI)

optimal control problem
[49K20, 49M99, 90C55]
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(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

optimal control problem see:mixed integer —; time—
optimal control problems see: discretized—; distributed—;

Sequential quadratic programming: interior point methods
for distributed—

optimal degree of flexibility
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

optimal design
[34A55, 78A60, 90C26, 90C30, 90C31]
(see: Bilevel programming: introduction, history and
overview;Optimal design in nonlinear optics)

optimal design
[34A55, 78A60, 90C25, 90C27, 90C30, 90C90]
(see: Optimal design in nonlinear optics; Semidefinite
programming and structural optimization)

optimal design see: D-—; global—;Multilevel methods for —
Optimal design of composite structures

(90C29, 90C26)
(referred to in: Design optimization in computational fluid
dynamics; Interval analysis: application to chemical
engineering design problems;Multidisciplinary design
optimization;Multilevel methods for optimal design;
Optimal design in nonlinear optics; Structural
optimization: history)
(refers to: Bilevel programming: applications in engineering;
Design optimization in computational fluid dynamics;
Global optimization: hit and runmethods; Interval
analysis: application to chemical engineering design
problems;Multidisciplinary design optimization;
Multilevel methods for optimal design;Optimal design in
nonlinear optics; Random search methods; Structural
optimization: history)

Optimal design in nonlinear optics
(34A55, 90C30, 78A60)
(referred to in: Design optimization in computational fluid
dynamics; Interval analysis: application to chemical
engineering design problems;Multidisciplinary design
optimization;Multilevel methods for optimal design;
Optimal design of composite structures; Structural
optimization: history)
(refers to: Bilevel programming: applications in engineering;
Design optimization in computational fluid dynamics;
Interval analysis: application to chemical engineering
design problems;Multidisciplinary design optimization;
Multilevel methods for optimal design;Optimal design of
composite structures; Structural optimization: history)

optimal design problems
[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

optimal distance see:method of —
optimal distribution of efforts

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

optimal experimental design
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

optimal face
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

optimal face
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

optimal flowsheets see: sensitivity of —
optimal gambling

[49L20, 90C40]
(see: Dynamic programming: undiscounted problems)

optimal indexing vocabulary
[90C09, 90C10]
(see: Optimization in classifying text documents)

optimal integral bounds subject to moment conditions
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

optimal investments
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

Optimal investments
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

optimal Lipschitzian selection operator
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

optimal number of clusters see: Determining the—
optimal parameter

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

optimal parameter
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

optimal parameter see: globally—; locally—
optimal partitioning algorithm see: nearest insertion—
optimal path

[49M37]
(see: Nonlinear least squares: trust regionmethods)

optimal path
[49M37]
(see: Nonlinear least squares: trust regionmethods)

optimal path see: co-—
Optimal planning of offshore oilfield infrastructure
optimal policies

[90B50]
(see: Inventory management in supply chains)

optimal policies see: (s,S)—
optimal ratio see:method of —
optimal relaxation

[90C30]
(see: Relaxation in projectionmethods)

optimal rule see: Bayes —
Optimal sensor scheduling



4398 Subject Index

optimal shape design
[49J20, 49J52]
(see: Shape optimization)

optimal shapes see: design of —
optimal solution

[9008, 90C06, 90C10, 90C11, 90C25, 90C26, 90C27, 90C30,
90C31, 90C57, 90C59, 90C90]
(see: Lagrangianmultipliersmethods for convex
programming;Modeling difficult optimization problems;
Robust global optimization; Variable neighborhood search
methods)

optimal solution see: essential —; global —; locally—;
M-Pareto—; Pareto—; quasi-—; strongly stable—; weakly
Pareto—

optimal solution mapping
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

optimal solution of a program
[90C06]
(see: Saddle point theory and optimality conditions)

optimal solution set see: Pareto—
optimal solutions see: jumps of —; Pareto—
optimal solutions, properties see:Multi-objective optimization:

pareto—
Optimal solvent design approaches

(65K99)
optimal spanning tree structure

[90C35]
(see:Minimum cost flow problem)

optimal state space search algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

optimal steady state
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

optimal stopping
[49L20, 90C40]
(see: Dynamic programming: undiscounted problems)

optimal stopping
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

optimal stopping: numerical methods see: Stochastic—
optimal stopping: problem formulations see: Stochastic—
optimal subset

[90C09, 90C10]
(see:Matroids)

optimal substructure property
[90C09, 90C10]
(see:Matroids)

optimal trajectories see: Turnpike theory: stability of —
optimal trajectory

[49J15, 49K15, 93C10]
(see: Pontryagin maximum principle)

Optimal triangulations
(68Q20)

optimal triangulations
[68Q20]
(see: Optimal triangulations)

optimal value bounds see: computable—

optimal value function
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Image space approach to optimization;
Nondifferentiable optimization: parametric programming;
Sensitivity and stability in NLP: continuity and differential
stability)

optimal value functions
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

optimal vertex see: co-—
optimal vocabulary

[90C09, 90C10]
(see: Optimization in classifying text documents)

optimality see: finite—; first order —; global —; guaranteed
bound to—; high-order necessary conditions for—; k-—;
overtaking—; parametric approach to—; Pareto—;
principle of—; test of—; weak principle of—; weakly
overtaking—;worst-case—

optimality for abnormal points see: High-order necessary
conditions for —

optimality analyses see: post- —
optimality analysis see: post- —
optimality in bilinear programming

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

optimality condition see: Kuhn–Tucker —; necessary —;
second order—; sufficient—

optimality conditionwithout using (sub)gradients parametric
representations see: necessary—

optimality conditions
[90C06, 90C26, 90C31, 90C39]
(see: Bilevel optimization: feasibility test and flexibility
index; Saddle point theory and optimality conditions;
Second order optimality conditions for nonlinear
optimization; Sensitivity and stability in NLP: continuity
and differential stability)

optimality conditions
[46A20, 49J15, 49K15, 49K27, 49K40, 49M37, 52A01, 65K05,
90C20, 90C25, 90C26, 90C29, 90C30, 90C31, 90C34, 91B28,
93C10]
(see: Bilevel programming: optimality conditions and
duality; Composite nonsmooth optimization; First order
constraint qualifications;Generalized concavity in
multi-objective optimization; Inequality-constrained
nonlinear optimization; Kuhn–Tucker optimality
conditions; Pontryagin maximum principle;Quadratic
programming with bound constraints; Second order
constraint qualifications; Semi-infinite programming and
applications in finance; Sensitivity and stability in NLP;
Sensitivity and stability in NLP: continuity and differential
stability; Smooth nonlinear nonconvex optimization)

optimality conditions see: Equality-constrained nonlinear
programming: KKT necessary —; first order necessary —;
first order and second order—; fritz John necessary—;
generalized necessary —; Generalized semi-infinite
programming: —; Karush–Kuhn–Tucker —; KKT—; KKT
necessary —; Kuhn–Tucker —; Kuhn–Tucker necessary—;
necessary —; necessary and sufficient—;
Quasidifferentiable optimization: —; Saddle point theory
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and—; second order necessary and sufficient—;
Semi-infinite programming: second order—; sufficient—

optimality conditions and duality see: Bilevel programming: —
optimality conditions for nonlinear optimization see: Second

order—
optimality conditions and stability see: Semidefinite

programming:—
Optimality criteria for multiphase chemical equilibrium

(49K99, 65K05, 80A10)
(referred to in: Global optimization: application to phase
equilibrium problems;Global optimization in phase and
chemical reaction equilibrium)
(refers to: Global optimization: application to phase
equilibrium problems;Global optimization in phase and
chemical reaction equilibrium)

optimality criterion
[90C26, 90C90]
(see: Structural optimization: history)

optimality cut
[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

optimality in a game
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

optimality of MODP see: principle of Pareto—
optimality in parametric programming

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

optimality principal see: proximate—
optimality principle see: proximate—
optimality sensitivity analysis see: post-—
optimally

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

optimally scaled subclass
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

optimization
[65L99, 90C06, 90C10, 90C11, 90C30, 90C57, 90C90, 93-XX]
(see:Modeling difficult optimization problems;
Optimization strategies for dynamic systems; Simulated
annealingmethods in protein folding)

optimization
[01A99, 05-XX, 15A99, 49K99, 62G07, 62G30, 65D10, 65G20,
65G30, 65G40, 65K05, 65K10, 68Q25, 68Q99, 68W10, 80A10,
90B15, 90B80, 90B85, 90C05, 90C06, 90C08, 90C10, 90C11,
90C15, 90C26, 90C27, 90C30, 90C31, 90C33, 90C35, 90C39,
90C52, 90C53, 90C55, 90C90, 90Cxx, 91B28, 92B05, 92C05,
94A17]
(see: ABS algorithms for optimization; Adaptive simulated
annealing and its application to protein folding;
Assignment and matching; Asynchronous distributed
optimization algorithms;Auction algorithms; Biquadratic
assignment problem; Branch and price: Integer
programming with column generation; Communication
network assignment problem;Decomposition principle of
linear programming;Design optimization in

computational fluid dynamics; Frequency assignment
problem;Genetic algorithms;Genetic algorithms for
protein structure prediction;Graph coloring;History of
optimization;Homogeneous selfdual methods for linear
programming; Implicit lagrangian; Interval linear systems;
Invexity and its applications; Isotonic regression problems;
Jaynes’ maximum entropy principle;Multiplicative
programming;Neuro-dynamic programming;Nonsmooth
and smoothing methods for nonlinear complementarity
problems and variational inequalities;Optimality criteria
for multiphase chemical equilibrium;Optimization in
medical imaging;Optimization software;Overdetermined
systems of linear equations; Probabilistic constrained linear
programming: duality theory;Quadratic semi-assignment
problem; Robust optimization; Saddle point theory and
optimality conditions; Simulated annealing; Single facility
location: multi-objective euclidean distance location; Single
facility location: multi-objective rectilinear distance
location; Stochastic network problems: massively parallel
solution; Symmetric systems of linear equations; Two-stage
stochastic programs with recourse)

optimization see: a priori —; ABS algorithms for—; Adaptive
convexification in semi-infinite—; Airline—; Algorithmic
improvements using a heuristic parameter, reject index for
interval —; algorithms for entropy—; Bayesian global—;
beam angle —; beam angle selection and wedge
orientation—; beam weight—; bilevel —; Bilevel
programming: global—; black-box—; black-box global —;
branch and bound for unconstrained—; collaborative—;
combinatorial—; Complexity classes in—; Composite
nonsmooth—; Computer implementation of—; concurrent
subspace—; constrained—; constrained global—;
continuous—; continuous global —; convex—; convex
combinatorial—; Convex discrete—; convex quadratic—;
Copositive—; Cutting plane methods for global —; d.c. —;
Decomposition in global —; Derivative-free methods for
non-smooth—; deterministic—; Differential equations and
global—; Dini and Hadamard derivatives in—; direct
search—; disaggregation in multi-objective—;
Discontinuous—; discrete—; discrete decisions in
dynamic—; Discrete stochastic—; Distance dependent
protein force field via linear—; dM—; Domination analysis
in combinatorial —; Duality gaps in nonconvex—; duality
theorem for linear —; Duality theory: biduality in
nonconvex—; duality theory for entropy—; Duality theory:
monoduality in convex—; Duality theory: triduality in
global—; Dynamic—; encyclopedia of —; engineering —;
entropy—; equality-constrained—; Evolutionary
algorithms in combinatorial—; Fejér monotonicity in
convex—; Financial —; flowsheet—; fluence map—;
fractional—; Fractional combinatorial—; general
constrained—; Generalized concavity in multi-objective—;
global—; global nonlinear—; Global pairwise protein
sequence alignment via mixed-integer linear —; graph—;
hierarchical—; History of—; Hyperplane arrangements
in—; hypodifferentiable—; Image space approach to—;
Inequality-constrained nonlinear —;
infinite-dimensional—; information-based—;
Information-based complexity and information-based—;
input—; interior point algorithms for entropy—; Interval
analysis: parallel methods for global —; Interval analysis:



4400 Subject Index

unconstrained and constrained—; Interval global —;
isotone—; Lagrangian relaxation with subgradient—; large
scale—; large-scale combinatorial—; Large scale
unconstrained—; linear —; linear fractional
combinatorial—; Lipschitz —; local —; LP strategy for
interval-Newton method in deterministic global—;
marginal function—;mixed discrete-continuous global —;
Mixed Integer —;Mixed Integer Bilevel —;mixed integer
dynamic—;mixed integer nonlinear —;Mixed integer
nonlinear bilevel programming: deterministic global —;
molecular—;monotonic—;Monte-Carlo simulations for
stochastic—;Multi-class data classification via
mixed-integer—;multi-extremal global—;
multi-objective—;multi-objective combinatorial—;
multi-objective convex—;multidisciplinary—;
Multidisciplinary design—;multilevel —;multiperiod—;
multistage—; Nested partitions—; network —; Neural
networks for combinatorial—; New hybrid conjugate
gradient algorithms for unconstrained—; nonconvex—;
nondifferentiable—; nondifferentiable convex—;
nondifferential —; nonlinear —; nonlinear parametric —;
nonlinearly constrained—; nonsmooth—; nonsmooth
analysis and—; nonsmooth nonconvex—; Numerical
methods for unary —; off-line process—; on-line
process —; one-parametric semi-infinite—; ordinal —;
parallel —; parametric —; parametric approach to
fractional—; Parametric mixed integer nonlinear —;
parametric nonlinear —; path following algorithm for
entropy—; Peptide identification via mixed-integer—;
Performance profiles of conjugate-gradient algorithms for
unconstrained—; Plant layout problems and—;
portfolio—; process —; Quasidifferentiable—;
Reformulation-linearization technique for global —;
Replicator dynamics in combinatorial—; Reverse
convex—; Robust—; Robust global—; sample-path—;
Second order optimality conditions for nonlinear —;
semi-infinite—; Semidefinite programming and
structural —; separable —; sequential approximate—;
Set-valued—; Shape—; simulation-based—; sizing—;
smooth nonlinear—; Smooth nonlinear nonconvex—;
Smoothing methods for semi-infinite—; SSC minimization
algorithms for nonsmooth and stochastic—; stochastic—;
stochastic combinatorial—; stochastic global —;
stochasticglobal—; structural —; structural shape—;
structural topology—; subgradient —; supply chain—;
system-—; tailored—; Theorems of the alternative and—;
Topological derivative in shape—; topology—; Topology
of global —; Two-level —; type of —; unary —;
unbounded—; unconstrained—; unconstrained dual in
entropy—; unconstrained global —; uniform fractional
combinatorial—; unstructured—; user- —; vector —;
Wastewater system—; zero-one—

Optimization in ad hoc networks
(68M12, 90B18, 90C11, 90C30)

optimization algorithm see: ˛BB global —; deterministic
global—; Direct global —;MINLP: branch and bound
global—

optimization algorithm (definition)
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

optimization algorithms
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

optimization algorithms see: Asynchronous distributed—;
unconstrained—

optimization algorithms for financial planning problems see:
Global—

optimization: algorithms for hypodifferentiable functions see:
Quasidifferentiable—

optimization: algorithms for QD functions see:
Quasidifferentiable—

optimization algorithms in resource allocation problems see:
Combinatorial —

optimization with ˛BB see:MINLP: global —
optimization in the analysis and management of

environmental systems see: Global—
optimization: application to phase equilibrium problems see:

Global—
optimization: applications see: Continuous global —;

Quasidifferentiable—
optimization: applications to thermoelasticity see:

Quasidifferentiable—
optimization approach see:Multiple minima problem in

protein folding: ˛BB global—
optimization approach to clustering see: Nonsmooth—
optimization approach to image reconstruction from projection

data
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

optimization approaches see: Statistical classification:—
Optimization based frameworkfor radiation therapy

(68W01, 90-00, 90C90, 92-08, 92C50)
(referred to in: Beam selection in radiotherapy treatment
design)

optimization-basedmethods see: Disease diagnosis:—
optimization based on statistical models see: Global—
Optimization-based visualization

(91C15, 65K05, 90C30, 90C27, 90C57)
(refers to: Continuous global optimization: models,
algorithms and software;Dynamic programming in
clustering; Evolutionary algorithms in combinatorial
optimization; Integer programming; Integer programming:
branch and boundmethods; Nonlinear least squares:
Newton-type methods; Simulated annealing)

optimization in batch design under uncertainty see: Global—
optimization in binary star astronomy see: Global—
Optimization in boolean classification problems

(90C09, 90C10)
(referred to in: Alternative set theory; Boolean and fuzzy
relations; Checklist paradigm semantics for fuzzy logics;
Finite complete systems of many-valued logic algebras;
Inference of monotone boolean functions;Mixed integer
classification problems;Optimization in classifying text
documents; Statistical classification: optimization
approaches)
(refers to: Alternative set theory; Boolean and fuzzy
relations; Checklist paradigm semantics for fuzzy logics;
Finite complete systems of many-valued logic algebras;
Inference of monotone boolean functions; Linear
programmingmodels for classification;Mixed integer
classification problems;Optimization in classifying text
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documents; Statistical classification: optimization
approaches)

optimization: calculus of quasidifferentials see:
Quasidifferentiable—

optimization in CFD see: design—
Optimization in classifying text documents

(90C09, 90C10)
(referred to in: Alternative set theory; Boolean and fuzzy
relations;Checklist paradigm semantics for fuzzy logics;
Finite complete systems of many-valued logic algebras;
Inference of monotone boolean functions;Optimization in
boolean classification problems; Statistical classification:
optimization approaches)
(refers to: Alternative set theory; Boolean and fuzzy
relations;Checklist paradigm semantics for fuzzy logics;
Finite complete systems of many-valued logic algebras;
Inference of monotone boolean functions; Linear
programmingmodels for classification;Mixed integer
classification problems;Optimization in boolean
classification problems; Statistical classification:
optimization approaches)

optimization: codifferentiable functions see:
Quasidifferentiable—

optimization in computational fluid dynamics see: Design—
optimization of computational performance

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

optimization computer implementation example
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

optimization: cutting angle method see: Global—
optimization: cutting plane methods see: Nondifferentiable—
Optimization and decision support systems

(90B50)
(referred to in: Data envelopment analysis)

optimization and decision support systems see:
Multi-objective—

optimization: definition (colloquial)
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

optimization: Dini derivatives, clarke derivatives see:
Quasidifferentiable—

optimization: A disjunctive cutting plane approach see:
Mixed-integer nonlinear —

optimization in document classification
[90C09, 90C10]
(see: Optimization in classifying text documents)

optimization of dynamical systems see: Interval analysis for—
optimization: embeddings, path following and singularities

see: Parametric—
optimization: envelope representation see: Global—
Optimization with equilibrium constraints: A piecewise SQP

approach
(90C30, 90C33)
(referred to in: Feasible sequential quadratic programming;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Successive
quadratic programming; Successive quadratic
programming: applications in distillation systems;

Successive quadratic programming: applications in the
process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)
(refers to: Bilevel programming: introduction, history and
overview; Feasible sequential quadratic programming;
Generalized monotonicity: applications to variational
inequalities and equilibrium problems; Linear
complementarity problem; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Successive quadratic
programming; Successive quadratic programming:
applications in distillation systems; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods; Variational
inequalities)

optimization: exact penalty methods see:
Quasidifferentiable—

optimization: feasibility test and flexibility index see: Bilevel —
optimization: filled functionmethods see: Global—
optimization: functional forms see: Global—
optimization: g-˛BB approach see: Global—
optimization game see: combinatorial—
optimization games see: Combinatorial —
optimization in generalized geometric programming see:

Global—
optimization of heat exchanger networks see: Global—
optimization: history see: Structural —
optimization: hit and run methods see: Global—
optimization homotopies

[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

optimization for image reconstruction see: Entropy—;
finite-dimensional models for entropy—; vector-space
models for entropy—

optimization in industrial problems see: SQP—
optimization: interaction of design and control see:

Multi-objective—
optimization; Interactive methods for preference value

functions see:Multi-objective—
optimization: interior point methods see: Entropy—
optimization: interval analysis and balanced interval

arithmetic see: Global—
optimization: lagrange duality see:Multi-objective—
optimization in Lennard–Jones and morse clusters see:

Global—
Optimization in leveled graphs

(90C35)
(referred to in: Graph planarization; Integer programming)
(refers to: Graph planarization; Integer programming)

optimization in location problems see: Global—
optimization in mechanics see:Multilevel —
optimization in medical image processing

[90C90]
(see: Optimization in medical imaging)
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Optimization in medical imaging
(90C90)
(referred to in: Entropy optimization: shannon measure of
entropy and its properties;Maximum entropy principle:
image reconstruction)
(refers to: Entropy optimization: shannon measure of
entropy and its properties;Genetic algorithms; Linear
programming;Maximum entropy principle: image
reconstruction; Simulated annealing)

optimizationmethod see: heuristic—; QBB global—
optimizationmethods see: Bisection global —; Credit rating

and—; Nondifferentiable optimization: subgradient —;
Shape selective zeolite separation and catalysis: —; Solving
hemivariational inequalities by nonsmooth—

optimizationmethods for harmonic retrieval see: Global—
optimizationmethods for systems of nonlinear equations see:

Global—
optimization: minimax problems see: Nondifferentiable—
optimization: mixed-integer linear programs see: Robust—
optimizationmodel see: continuous global—
optimizationmodeling see: Emergency evacuation—
optimizationmodeling framework see:multiperiod—
optimization: models, algorithms and software see:

Continuous global —
optimizationmodels for data classification see: Deterministic

and probabilistic—
optimization in multiplicative programming see: Global—
optimization in neural network training see: Unconstrained—
optimization: a new paradigm see:Modeling languages in—
optimization: Newton–Cauchy framework see: Unconstrained

nonlinear —
optimization: Newton method see: Nondifferentiable—
optimization with noises

[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

optimization of nonlinear problems see: Simultaneous
estimation and—

Optimization in operation of electric and energy power
systems
(90C35, 90C30, 90C10)
(referred to in: Derivatives of markov processes and their
simulation;Derivatives of probability and integral
functions: general theory and examples;Derivatives of
probabilitymeasures;Discrete stochastic optimization)

optimization: optimality conditions see: Quasidifferentiable—
optimization oracle see: linear discrete—
optimization: p-˛BB approach see: Global—
optimization paradigm

[90C10, 90C26, 90C30]
(see: Optimization software)

optimization: parameter estimation see: Entropy—
optimization: parametric programming see:

Nondifferentiable—
optimization: pareto optimal solutions, properties see:

Multi-objective—
optimization in phase and chemical reaction equilibrium see:

Global—
optimization of planar multilayered dielectric structures see:

Global—

optimization problem
[65K10, 65M60, 90C26, 90C31]
(see: Robust global optimization; Variational inequalities)

optimization problem
[65K10, 65M60]
(see: Variational inequalities)

optimization problem see: C1,1 —; canonical monotonic—;
combinatorial—; convex—; dual—; fractional
combinatorial—; global —; global constrained—; global
unconstrained—; integer —; integral linear fractional
combinatorial—; Lagrangian dual—; linear —;
max-min-max—;mixed integer —; nonconvex—;
nonlinear —; nonseparable —; one-parametric finite—;
parametric —; primal—; semi-infinite—; separable—;
set-valued—; standard quadratic—; stochastic dynamic—;
unary—; unconstrained—

optimization problem in standard form see: linear —
optimization problems

[68Q25, 68R10, 68W40, 90C26, 90C27, 90C30, 90C59, 90C90]

(see: Domination analysis in combinatorial optimization;
Planning in the process industry; Smooth nonlinear
nonconvex optimization; Successive quadratic
programming: applications in the process industry)

optimization problems see: Approximations to robust conic—;
combinatorial—; computational complexity of—;
Continuous reformulations of discrete-continuous—;
Convex envelopes in—; Decomposition algorithms for the
solution of multistage mean-variance—; discrete
monotonic—; discretization of—; General moment—;
Laplace method and applications to—; linearly
constrained—;Modeling difficult—; nonlinear —;
nonsmooth—; Price of robustness for linear —;
semi-infinite—; stability analysis of —; stochastic linear —

optimization problems: algorithms see: Standard quadratic—
optimization problems: applications see: Standard

quadratic—
optimization problems: theory see: Standard quadratic—
Optimization problems in unit-disk graphs

(05C85, 05C69, 05C15, 05C62, 90C27, 90C59)
(referred to in: Broadcast scheduling problem)

optimization procedure see: Direct search Luus—Jaakola—;
LJ—

optimization process see: automated design—
optimization in protein folding see: Global—
optimization: relaxation methods see: Nondifferentiable—
optimization: sensitivity see: Parametric global —
optimization: shannon measure of entropy and its properties

see: Entropy—
optimization-simulation

(see: Emergency evacuation, optimization modeling)
Optimization software

(90C30, 90C26, 90C10)
(referred to in: Continuous global optimization: models,
algorithms and software; Large scale unconstrained
optimization;Modeling languages in optimization: a new
paradigm)
(refers to: Continuous global optimization: models,
algorithms and software; Large scale unconstrained
optimization;Modeling languages in optimization: a new
paradigm)
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optimization: stability of dynamic systems see:
Quasidifferentiable—

optimization: stopping rules see: Stochastic global —
Optimization strategies for dynamic systems

(93-XX, 65L99)
(referred to in: Control vector iteration CVI;Dynamic
programming: continuous-time optimal control;Dynamic
programming: infinite horizon problems, overview;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;
Hamilton–Jacobi–Bellman equation; Infinite horizon
control and dynamic games;Quasidifferentiable
optimization: stability of dynamic systems; Suboptimal
control)
(refers to: Dynamic programming: continuous-time optimal
control;Dynamic programming: infinite horizon problems,
overview;Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Dynamic programming:
stochastic shortest path problems;
Hamilton–Jacobi–Bellman equation; Infinite horizon
control and dynamic games;Quasidifferentiable
optimization: stability of dynamic systems)

optimization: subgradient optimizationmethods see:
Nondifferentiable—

optimization system
[90C10, 90C26, 90C30]
(see: Optimization software)

optimization system see: generalized network—
optimization techniques see: Estimating data for multicriteria

decisionmaking problems: —; Load balancing for
parallel —

Optimization techniques for minimizing the energy function
[90C90]
(see: Optimization in medical imaging)

Optimization techniques for phase retrieval based on
single-crystal X-ray diffraction data

optimization: theorems of the alternative see: Linear —
optimization: tight convex underestimators see: Global—
optimization over a trajectory

[93-XX]
(see: Dynamic programming: optimal control applications)

optimization: two-phase methods see: Stochastic global —
optimization over unbounded domains see: global —
optimization under network constraints

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

optimization using space filling see: Global—
optimization using terrain/funneling methods see:Multi-scale

global—
optimization: variational formulations see:

Quasidifferentiable—
optimization in a vector space

[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

Optimization in water resources
(90C30, 90C35)
(referred to in: Global optimization in the analysis and
management of environmental systems)

(refers to: Global optimization in the analysis and
management of environmental systems)

optimization in water resources see: stochastic approach to—
optimization in Weber’s problemwith attraction and repulsion

see: Global—
optimization in well scheduling see:Mixed integer —
optimized transportation network see: system-—; user- —
optimizer

[90C90]
(see: Design optimization in computational fluid dynamics)

optimizer see: global —; strict local —
optimizer coupling see:model/ —
optimizing environment see: system- —; user- —
Optimizing facility location with euclidean and rectilinear

distances
(90B80, 90B85)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Single facility location: circle covering problem; Single
facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Production-distribution system design problem; Resource
allocation for epidemic control; Single facility location:
circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;Voronoi
diagrams in facility location;Warehouse location problem)

optimum see: conditions for a constrained—; conditions for
an unconstrained—; constrained global —; global —;
local—; Pareto—; unconstrained—

optimum search see: global—
optimum search with enhanced positioning see: Gene

clustering: A novel decomposition-based clustering
approach: global —

optimum solution
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

option
[91B50]
(see: Financial equilibrium)
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option
[91B50]
(see: Financial equilibrium)

(or disk) representation see: geometric —
OR-ing

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

OR-methodology
[90B80, 90B85]
(see:Warehouse location problem)

(or Minty) GVI see: dual—
oracle

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems; Inference of monotone boolean
functions;Maximum constraint satisfaction: relaxations
and upper bounds)

oracle see: augmentation—; comparison—; linear discrete
optimization—;membership—; oriented augmentation —

orbit
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

orbit see: satellite—
orbital period

[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

orbits determination
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

order see: antisymmetric partial —; first order theory of real
addition with—; interval —; lexicographical—; Löwner
partial —; partial —; pre- —; pseudo- —; quasi-—;
semi-—; weak—

order active see: p- —
order adjoints see: second—
order approximating cone see: high- —; tangent high- —
order approximating cone of decrease see: high-—
order approximating cones see: feasible high- —; tangent

high- —
order approximating curve see: feasible high- —; high- —;

tangent high- —
order approximating vector see: feasible high- —
order approximating vector of decrease see: high- —
order approximating vectors see: high- —
order approximation see: second—
order approximation of a function see: first —
order changes see: up to first—
order closure of a relation see: local pre- —; pre- —
order codifferential see: second—
Order complementarity

(90C33)
(referred to in: Continuous reformulations of
discrete-continuous optimization problems; Equivalence
between nonlinear complementarity problem and fixed
point problem;Generalized nonlinear complementarity
problem; Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Linear
complementarity problem; Principal pivoting methods for
linear complementarity problems; Topological methods in

complementarity theory)
(refers to: Convex-simplex algorithm; Equivalence between
nonlinear complementarity problem and fixed point
problem;Generalized nonlinear complementarity problem;
Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Lemke
method; Linear complementarity problem; Linear
programming; Parametric linear programming: cost
simplex algorithm; Principal pivoting methods for linear
complementarity problems; Sequential simplex method;
Topological methods in complementarity theory)

order complementarity
[90C33]
(see: Order complementarity)

order complementarity problem
[90C33]
(see: Order complementarity)

order complementarity problem see: general —;
generalized —; generalized linear —; implicit general —;
infinite-dimensional generalized —; linear —; nonlinear —

order cone
[90C26]
(see: Invexity and its applications)

order cone see: second—
order cones of decrease see: high- —
order constrained hierarchical clustering

[62H30, 90C39]
(see: Dynamic programming in clustering)

order constrained partitioning
[62H30, 90C39]
(see: Dynamic programming in clustering)

order constraint qualification see: first—; second—
order constraint qualifications see: First —; Second—
order CQ see: First —; second—
order critical direction see: high- —
order decomposition of a function see: second—
order derivatives see: higher- —
order differential equations see: Duality in optimal control with

first—
order directional derivative see: generalized second—
order directional derivatives see: high- —; higher- —
order earliness see:minimization of—
order feasible cones see: high- —
order feasible set see: high- —; p- —
order form of coordinates see: kth —
order generalization of Lyusternik theorem see: high- —
order of a graph

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

order growth see: second—
order hyperdifferential see: second—
order hypodifferential see: kth—; second—
order of an inclusion function

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

order isotonic regression see: simple—
order KKT conditions see: first —
order Lagrangian theory of CNSO problems see: second—
order local maximum principle see: high- —
order local maximum principle for Lagrangian problems see:

high- —
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order local minimum condition see: high- —
order of magnitude

[90C60]
(see: Computational complexity theory)

order maximum principle for abnormal extremals see: High- —
order necessary condition see: first —; second—
order necessary conditions see: first —; second—
order necessary conditions for optimality see: high- —
order necessary conditions for optimality for abnormal points

see: High-—
order necessary optimality conditions see: first—
order necessary and sufficient optimality conditions see:

second—
order optimality see: first —
order optimality condition see: second—
order optimality conditions see: first order and second—;

Semi-infinite programming: second—
order optimality conditions for nonlinear optimization see:

Second—
order partial differential equations see: First —
order preserving assignment problem

[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

order procedures see: second—
order quantity see: economic—
order regular set see: second—
order relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

order relation see: local—; partial —; pre- —
order restricted statistical inference

[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

order restriction
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

order and second order optimality conditions see: first —
order set of decrease see: high- —
order spectrum see: higher- —
order statistics see: higher- —; Signal processing with

higher—
order sufficiency see: second—; strong second—
order sufficient condition see: general second—; general

strong second—; second—; strong second—
order sufficient conditions see: second—
order of a T-coloring frequency assignment

[05-XX]
(see: Frequency assignment problem)

order tangent approximating vector see: high-—
order tangent set see: first —; second—
order tangent sets see: high- —
order Taylor series expansion see: first—
order theory of real addition with order see: first —
ordered normed linear spaces see: Best approximation in—
ordered partition

[62H30, 90C27, 90C39]
(see: Assignment methods in clustering;Dynamic
programming in clustering)

ordered partitioning
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

ordered set
[90C29]
(see: Preference modeling)

ordered spaces see: semi- —
ordered vector spaces

[90C33]
(see: Order complementarity)

Ordering see: cobipartite neighborhood edge elimination—;
lexicographic—; linear —;minimum degree—;
zero-Inventory —

ordering on binary vectors
[90C09]
(see: Inference of monotone boolean functions)

ordering cones
[90C29]
(see: Vector optimization)

ordering for n-dimensional vectors see: lexicographical—
ordering and perturbation see: lexicographic—
ordering policy see: one-for-one—
ordering problem see: Linear —
orders see: partial —
ordinal argument

[90-XX]
(see: Outranking methods)

ordinal criterion
[90C29, 91A99]
(see: Preference disaggregation)

ordinal optimization
[90C15, 90C27]
(see: Discrete stochastic optimization)

ordinal regression
[90C26, 91B28]
(see: Portfolio selection and multicriteria analysis)

ordinary
[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

ordinary differential equations
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

ordinary differential equations
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

ordinary differential equations see: Eigenvalue enclosures
for—

ordinary NP-complete reductions
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

ordinary NP-completeness
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

ordinary NP-completeness
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

organization see: self- —
orientable matroid

[90C09, 90C10]
(see: Oriented matroids)
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orientation
[90B35]
(see: Job-shop scheduling problem)

orientation see: circuit—; complete—
orientation optimization see: beam angle selection and

wedge—
orientation of an oriented matroid see: basis —
oriented approach see: equation—
oriented augmentation oracle

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

oriented branch and boundmethod see: arc—; node—
oriented construction procedure see: arc—; node—
oriented differentiation see: goal- —
oriented matroid see: acyclic—; bases of an—; basis

orientation of an—; totally acyclic—; vector of an—
Oriented matroids

(90C09, 90C10)
(referred to in: Least-index anticycling rules; Lexicographic
pivoting rules;Matroids)
(refers to:Matroids)

oriented matroids
[05B35, 65K05, 90C05, 90C09, 90C10, 90C20, 90C33]
(see: Criss-cross pivoting rules;Oriented matroids)

oriented matroids
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules)

oriented matroids see: axiom systems for —
origin see: neighbors of the—
origin tracing

(see: Planning in the process industry)
Orlicz theorem see:Mazur–—
Orlicz version of the Hahn–Banach theorem see:Mazur– —
Orlik–Solomon algebra

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Orlik–Solomon algebra
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

orthogonal collocation
[90C30]
(see: Suboptimal control)

orthogonal condition
[90C30]
(see: Image space approach to optimization)

orthogonal factorization
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

orthogonal factorization
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

orthogonal factorization see: complete—
orthogonal matrix

[90C09, 90C10]
(see: Combinatorial matrix analysis)

orthogonal matrix
[15A39, 90C05]
(see: Farkas lemma)

orthogonal matroid
[90C09, 90C10]
(see: Oriented matroids)

orthogonal polynomials
[33C45, 65F20, 65F22, 65K10, 90C30]
(see: Generalized total least squares; Least squares
orthogonal polynomials)

orthogonal polynomials
[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

orthogonal polynomials see: Least squares—; least squares
formal—

orthogonal projection
[65K10, 65M60]
(see: Variational inequalities)

orthogonal projection operator
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

orthogonal search directions
[90C30]
(see: Rosenbrockmethod)

orthogonal signed sets
[90C09, 90C10]
(see: Oriented matroids)

orthogonal transform
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

orthogonal transformations see: elementary —
Orthogonal triangularization

(65F25, 15A23, 65F05, 65F20, 65F22)
(referred to in: ABS algorithms for linear equations and
linear least squares; Cholesky factorization; Interval linear
systems; Large scale trust region problems; Large scale
unconstrained optimization;Overdetermined systems of
linear equations;QR factorization; Solving large scale and
sparse semidefinite programs; Symmetric systems of linear
equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Cholesky factorization; Interval linear
systems; Large scale trust region problems; Large scale
unconstrained optimization; Linear programming;
Overdetermined systems of linear equations;QR
factorization; Solving large scale and sparse semidefinite
programs; Symmetric systems of linear equations)

orthogonality conditions on multipliers
[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

orthogonalization see: classical Gram–Schmidt—;
Gram–Schmidt—;modified Gram–Schmidt—

orthogonalization scheme see: sequential row—
orthogonally scaled subclass

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

orthonormal representation
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

orthonormalization see: hybrid—
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OS
[90C10, 90C26, 90C30]
(see: Optimization software)

OSLE
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

Out see: first-In-First- —; pricing-—
out events see: drought—
out rule see: first-in last- —
out trip see: pull- —
outcome

[90C26]
(see: Global optimization using space filling)

outcome set
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

outcome space
[65K05, 90B50, 90C05, 90C29, 91B06]
(see:Multi-objective optimization and decision support
systems)

outer approximation
[49M37, 90C05, 90C11, 90C25, 90C26, 90C29, 90C30, 90C34,
90C90]
(see: Bilevel optimization: feasibility test and flexibility
index; Concave programming;MINLP: branch and bound
methods;MINLP: design and scheduling of batch processes;
Mixed integer nonlinear programming;Multi-objective
optimization: interaction of design and control;
Semi-infinite programming: discretizationmethods)

outer approximation
[49M20, 49M37, 90C11, 90C26, 90C30]
(see: Cutting plane methods for global optimization;
Generalized outer approximation;Mixed integer nonlinear
programming)

outer approximation see: Generalized—; hybrid branch and
bound and—; linear —; Logic-based—; quadratic—

outer approximation algorithm
[90C10, 90C11, 90C26]
(see:MINLP: branch and bound global optimization
algorithm;MINLP: outer approximation algorithm)

outer approximation algorithm see:MINLP: —
outer approximation with equality relaxation

[65K05, 90C11, 90C26, 90C29, 90C90]
(see:MINLP: global optimization with˛BB;Multi-objective
optimization: interaction of design and control)

outer approximation with equality relaxation and augmented
penalty
[90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control)

outer approximation method
[90C26]
(see: Cutting plane methods for global optimization)

outer approximation method
[90C09, 90C10, 90C11]
(see:MINLP: logic-basedmethods;MINLP: outer
approximation algorithm)

outer-approximationmethod see: Logic-based—
outer linearization cone

[90C31, 90C34, 90C46]

(see: Generalized semi-infinite programming: optimality
conditions)

outer problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

outgoing arc
[90C35]
(see:Minimum cost flow problem)

outline of filled functionmethods see: basic—
output-efficient

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

output/input see:maximization of—
output matrices see: updating input-—
output neurons

[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

output-polynomial
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

output-polynomial time
[52B12, 68Q25]
(see: Fourier–Motzkin elimination method)

output tables see: triangulation problem for input- —
outranking

[90-XX]
(see: Outranking methods)

Outranking methods
(90-XX)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support; Portfolio
selection and multicriteria analysis; Preference
disaggregation; Preference disaggregation approach: basic
features, examples from financial decisionmaking;
Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
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Multiple objective programming support; Portfolio
selection and multicriteria analysis; Preference
disaggregation; Preference disaggregation approach: basic
features, examples from financial decisionmaking;
Preference modeling)

outranking methods
[90-XX]
(see: Outranking methods)

outranking relation
[90-XX, 90C29]
(see: Outranking methods; Preference disaggregation
approach: basic features, examples from financial decision
making)

outranking relation
[90C26, 90C29, 91B28]
(see:Multicriteria sorting methods; Portfolio selection and
multicriteria analysis)

outranking relation see: fuzzy —
outranking relations

[90C29, 91B06, 91B60]
(see: Financial applications of multicriteria analysis;
Multicriteria sorting methods)

outranking relations approach
[90C29]
(see: Decision support systems with multiple criteria)

outward rounding
[65G20, 65G30, 65G40, 65H20]
(see: Interval fixed point theory)

over see: strongly linearly monotonic—
over an ellipsoid see: Quadratic programming—
over surface formula see: integral —
over a trajectory see: optimization—
over unbounded domains see: global optimization—
over a volume see: integral —
over volume formula see: integral —
overall classification error see:minimizing the—
overall flowsheet see: convergence of the—
overall mean method

[91B28]
(see: Portfolio selection: markowitz mean-variance model)

overdetermined system of nonlinear equations
[90C30]
(see: Nonlinear least squares problems)

Overdetermined systems of linear equations
(65K05, 65D10)
(referred to in: ABS algorithms for linear equations and
linear least squares; Cholesky factorization; Interval linear
systems; Large scale trust region problems; Large scale
unconstrained optimization;Orthogonal triangularization;
QR factorization; Solving large scale and sparse
semidefinite programs; Symmetric systems of linear
equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Cholesky factorization; Interval linear
systems; Large scale trust region problems; Large scale
unconstrained optimization; Linear programming;
Nonlinear least squares: trust regionmethods;Orthogonal
triangularization;QR factorization; Solving large scale and
sparse semidefinite programs; Symmetric systems of linear
equations)

overdetermined Yule–Walker method
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

overhead
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

overhead factor see: search—
overlap see: contact map—
overlap graph

[90C10, 90C27, 94C15]
(see: Graph planarization)

overlap of intervals
[90C10, 90C27, 94C15]
(see: Graph planarization)

overlap maximization problem, CMO see: Contact map—
overloaded operator

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

overloaded operator
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

overloading see: operator —
overprojeclion

[90C30]
(see: Relaxation in projectionmethods)

overrelaxation see: successive—
Overtaking equilibrium

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

overtaking optimality
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

overtaking optimality see: weakly —
overview see: Bilevel programming: introduction, history

and—; Dynamic programming: infinite horizon
problems—

P
P

[90C60]
(see: Complexity classes in optimization)

P see: complexity class—; covers all edge-directions of —; N
P=co N—; P = N—

P�
[90C35]
(see:Multicommodity flow problems)

P = N P
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs)

P-algorithm
[60J65, 68Q25]
(see: Adaptive global search)

p-˛BB approach see: Global optimization: —
p-center problem

[90B80, 90B85]
(see:Warehouse location problem)
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p-center problem
[90B10, 90B80, 90B85, 90C35]
(see: Network location: covering problems;Warehouse
location problem)

p-center problem on a network
[90B10, 90B80, 90C35]
(see: Network location: covering problems)

P convergence
[90C15]
(see: Approximation of extremum problems with
probability functionals)

p-CP
[90B80, 90B85]
(see:Warehouse location problem)

p-form see: logarithmic—; rational—
P-function see: uniform—
p-matrix

[05B35, 65K05, 90C05, 90C20, 90C25, 90C30, 90C33, 90C55]
(see: Criss-cross pivoting rules; Implicit lagrangian;
Least-index anticycling rules; Principal pivoting methods
for linear complementarity problems; Splitting method for
linear complementarity problems)

P0-matrix
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

P�-matrix
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

p-median location-allocation problem
[90C26]
(see:MINLP: application in facility location-allocation)

p-median problem
[90B80, 90B85]
(see:Warehouse location problem)

p-median problem
[9008, 90B80, 90B85, 90C26, 90C27, 90C59, 90Cxx, 91Axx,
91Bxx]
(see: Facility location with externalities;Variable
neighborhood search methods;Warehouse location
problem)

p-MP
[90B80, 90B85]
(see:Warehouse location problem)

p-order active
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

p-order feasible set
[41A10, 47N10, 49K15, 49K27]
(see:High-ordermaximum principle for abnormal
extremals)

p-partition
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

p-regular
[41A10, 47N10, 49K15, 49K27]
(see:High-ordermaximum principle for abnormal
extremals)

p-regular operator
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

p-simplex
[90C30]
(see: Simplicial decomposition)

p-simplex
[90C30]
(see: Simplicial decomposition)

p-VSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

P=co N P see: N—
PA

[90C26]
(see: Cutting plane methods for global optimization)

PA of SA
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

package see: block truncated Newton software—; computer
algebra—;multiple-class software—; single-class
software—; variable precision interval —

package of basic software routines
[90C10, 90C26, 90C30]
(see: Optimization software)

package flow problem
[90C35]
(see:Multicommodity flow problems)

package for specific mathematical areas see: software—
Packet annealing

(92B05)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization; Genetic algorithms;Genetic algorithms for
protein structure prediction;Global optimization based on
statistical models;Global optimization in Lennard–Jones
andmorse clusters;Graph coloring;Molecular structure
determination: convex global underestimation;
Monte-Carlo simulated annealing in protein folding;
Multipleminima problem in protein folding:˛BB global
optimization approach; Phase problem in X-ray
crystallography: Shake and bake approach;Random search
methods; Simulated annealing; Simulated annealing
methods in protein folding; Stochastic global optimization:
stopping rules; Stochastic global optimization: two-phase
methods)
(refers to: Bayesian global optimization; Genetic algorithms;
Genetic algorithms for protein structure prediction;Global
optimization based on statistical models; Global
optimization in Lennard–Jones and morse clusters; Global
optimization in protein folding;Molecular structure
determination: convex global underestimation;
Monte-Carlo simulated annealing in protein folding;
Multipleminima problem in protein folding:˛BB global
optimization approach; Phase problem in X-ray
crystallography: Shake and bake approach; Protein folding:
generalized-ensemble algorithms; Random search methods;
Simulated annealing; Simulated annealing methods in
protein folding; Stochastic global optimization: stopping
rules; Stochastic global optimization: two-phase methods)
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packing
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

packing see: vertex —
packing game

[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

packing and partitioning problems see: Set covering—
packing problem

[90C35]
(see: Feedback set problems)

packing problem see: bandwidth—; bin—; graph—; set—
Padé approximation

[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

Padé-type approximation
[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

Padé-type approximation
[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

pADRE2
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian;
Automatic differentiation: point and interval taylor
operators)

Painlevé–Kuratowski convergence see: discrete—
painting axioms

[90C09, 90C10]
(see: Oriented matroids)

pair
(see: Contact map overlap maximization problem, CMO)

pair see: admissible trajectory-control —; conjugate —;
convex-like function—; dual —; Fenchel duality—;
Legendre duality—; primal—; quasimonotone—

pair assignment algorithms
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

pair decomposition see: well-separated —
pair decomposition of a monomial ideal see: standard —
pair-exchange neighborhood

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

pair of a monomial ideal see: admissible—; standard —
pair of trajectory and control functions see: asymptotically

admissible—
pair of trajectory-function and control-function see:

admissible—
pair of variables see: complementary—
paired comparison

[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

paired element see: left- —; right- —
paired set see: left- —; right- —
pairing see: crew—
pairs see: fuzzy interval —; left- —; right- —
pairs constrained path problem see: impossible—
pairwise comparisons

[90-XX, 90C29]

(see: Estimating data for multicriteria decision making
problems: optimization techniques;Outranking methods)

pairwise comparisons
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

pairwise judgment
[90C29]
(see: Estimating data for multicriteria decision making
problems: optimization techniques)

pairwise protein sequence alignment via mixed-integer linear
optimization see: Global—

pale edge
[90C10, 90C27, 94C15]
(see: Graph planarization)

Palubeckis generator
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

panel see: blended—
Pape method see: D’Esopo–—
paper converting

[90C11, 90C90]
(see:MINLP: trim-loss problem)

parabolic curve
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

parabolic curve approach
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

parabolic-exponential function
[90C30]
(see: Image space approach to optimization)

paradigm see: checklist —; disaggregation —; edge
insertion—; functional—; general dynamic
programming—; imperative programming—;MDO—;
Modeling languages in optimization: a new—;
optimization—

paradigm of logic programming
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

paradigm semantics for fuzzy logics see: Checklist —
paradox see: Braess —; Condorcet—
parallax

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

parallel
[68T20, 68T99, 90C27, 90C59]
(see: Contact map overlap maximization problem, CMO;
Metaheuristics)

parallel see: bulk synchronous—
parallel AD tools

[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

parallel algorithm
[65K05, 65Y05]
(see: Parallel computing: models)

parallel algorithm
[65K05, 65Y05, 68W10, 90C27]
(see: Load balancing for parallel optimization techniques;
Parallel computing: models)

parallel algorithm design see:model for —
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parallel algorithms
[65G20, 65G30, 65G40, 65K05, 68T20, 68T99, 90C27, 90C30,
90C59]
(see: Interval global optimization;Metaheuristics)

parallel aspiration search
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

Parallel Best-First Tree Search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

parallel CA algorithm see: asynchronous—; synchronized—
parallel computation

[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

parallel computation see: Automatic differentiation: —
parallel computation in mechanics

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

parallel computation thesis
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

parallel computations
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

parallel computer
[65K05, 65Y05, 90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms;
Parallel computing: models)

parallel computer see: bulk synchronous—; distributed
memory—

parallel computing
[65K05, 65Y05]
(see: Parallel computing: models)

parallel computing
[49-04, 65Y05, 68N20, 90C15]
(see: Automatic differentiation: parallel computation;
Stochastic programming: parallel factorization of
structuredmatrices)

parallel computing see:massively—;models for—
Parallel computing: complexity classes

(68Q05, 68Q15, 03D15)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation; Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory; Complexity
theory: quadratic programming; Computational
complexity theory; Fractional combinatorial optimization;
Heuristic search; Information-based complexity and
information-based optimization; Kolmogorov complexity;
Load balancing for parallel optimization techniques;Mixed
integer nonlinear programming;NP-complete problems
and proof methodology; Parallel computing: models;
Parallel heuristic search; Stochastic network problems:
massively parallel solution)
(refers to: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation; Complexity classes in optimization;
Complexity of degeneracy;Complexity of gradients,
Jacobians, and Hessians; Complexity theory; Complexity

theory: quadratic programming;Computational
complexity theory; Fractional combinatorial optimization;
Heuristic search; Information-based complexity and
information-based optimization; Interval analysis: parallel
methods for global optimization; Kolmogorov complexity;
Load balancing for parallel optimization techniques;Mixed
integer nonlinear programming; Parallel computing:
models; Parallel heuristic search; Stochastic network
problems: massively parallel solution)

Parallel computing: models
(65K05, 65Y05)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation;Heuristic search; Load balancing for parallel
optimization techniques; Parallel computing: complexity
classes; Parallel heuristic search; Stochastic network
problems: massively parallel solution)
(refers to: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation;Heuristic search; Interval analysis: parallel
methods for global optimization; Load balancing for
parallel optimization techniques; Parallel computing:
complexity classes; Parallel heuristic search; Stochastic
network problems: massively parallel solution)

parallel cuts
[90C05]
(see: Ellipsoid method)

Parallel Depth-First Tree Search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

parallel factorization of structured matrices see: Stochastic
programming: —

parallel graph see: series- —
parallel GRASP

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

Parallel heuristic search
(68W10, 68W15, 68R05, 68T20)
(referred to in: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation;Heuristic search; Load balancing for parallel
optimization techniques; Parallel computing: complexity
classes; Parallel computing: models; Stochastic network
problems: massively parallel solution)
(refers to: Asynchronous distributed optimization
algorithms;Automatic differentiation: parallel
computation;Heuristic search; Load balancing for parallel
optimization techniques; Parallel computing: complexity
classes; Parallel computing: models; Stochastic network
problems: massively parallel solution)

parallel library see: NAG—
parallel machines

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

parallel machines see: distributed memory—; shared
memory—

parallel matrix factorization
[90C15]
(see: Stochastic programming: parallel factorization of
structuredmatrices)
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parallel methods
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

parallel methods for global optimization see: Interval
analysis: —

parallel minimax tree algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

parallel model see: bulk synchronous—
parallel optimization

[90C10, 90C26, 90C30]
(see: Optimization software)

parallel optimization techniques see: Load balancing for —
parallel programming

[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

parallel programs see: AD of—
parallel random access machine

[65K05, 65Y05]
(see: Parallel computing: models)

parallel random access machine
[65K05, 65Y05]
(see: Parallel computing: models)

parallel routing algorithm
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

parallel savings algorithm
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

parallel solution see: Stochastic network problems:
massively—

parallel tangents
[90C30]
(see: Frank–Wolfe algorithm)

parallel-tangents algorithm
[90C30]
(see: Conjugate-gradientmethods)

Parallel VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

parallelism see: AD-enabled—; data—; time—
parallelism alignment problem see: constant degree—
parallelization

[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

parallelization see: automatic —
parallelizing the exploration of minimax trees

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

parameter
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

parameter see: Bregman —; convexification—; exact
penalty —; globally optimal—; locally optimal —;
optimal—; penalty —; prohibition—; temperature —;
tuning—

parameter CG family see: two-—
parameter computation see: conjugate gradient—

parameter derivative
[90C31]
(see: Sensitivity and stability in NLP: approximation)

parameter estimates
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

parameter estimation
[90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method;Generalized total least squares)

parameter estimation
[62F10, 65D10, 65K05, 94A17]
(see: Entropy optimization: parameter estimation;
Overdetermined systems of linear equations)

parameter estimation see: Bayesian —; Entropy
optimization: —

parameter estimation problem see: sinusoidal —
parameter identification

[34A55, 78A60, 90C30]
(see: Optimal design in nonlinear optics)

parameter identification
[34A55, 78A60, 90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming;Optimal design in nonlinear optics)

parameter identification problem
[49K20, 49M99, 90C05, 90C25, 90C29, 90C30, 90C31, 90C55]
(see: Nondifferentiable optimization: parametric
programming; Sequential quadratic programming: interior
point methods for distributed optimal control problems)

parameter, reject index for interval optimization see:
Algorithmic improvements using a heuristic —

parameter T see: prohibition—
parameter tractability see: fixed—
parameter tractable algorithms see: fixed—
parameterization see: control —
parameterization method

[90C11, 90C90]
(see:MINLP: trim-loss problem)

parameters
(see: Planning in the process industry; Short-term
scheduling under uncertainty: sensitivity analysis)

parameters see: estimation of model—; problem—;
sensitivity—

parametric
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

parametric approach
(see: Fractional zero-one programming)

parametric approach to fractional optimization
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

parametric approach to optimality
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

parametric bounds
[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)
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parametric complementarity problems
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

parametric eigenvalue formulation see: inverse
interpolation—

parametric eigenvalue reformulation
[90C30]
(see: Large scale trust region problems)

parametric finite optimization problem see: one- —
Parametric global optimization: sensitivity

(90C31, 90C34, 90C34)
(referred to in: Bounds and solution vector estimates for
parametric NLPS;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Nonlocal sensitivity analysis with automatic differentiation;
Parametric linear programming: cost simplex algorithm;
Parametric mixed integer nonlinear optimization;
Parametric optimization: embeddings, path following and
singularities; Selfdual parametric method for linear
programs; Sensitivity analysis of complementarity
problems; Sensitivity analysis of variational inequality
problems; Sensitivity and stability in NLP; Sensitivity and
stability in NLP: approximation; Sensitivity and stability in
NLP: continuity and differential stability)
(refers to: Bounds and solution vector estimates for
parametric NLPS;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Nonlocal sensitivity analysis with automatic differentiation;
Parametric linear programming: cost simplex algorithm;
Parametric mixed integer nonlinear optimization;
Parametric optimization: embeddings, path following and
singularities; Selfdual parametric method for linear
programs; Sensitivity analysis of complementarity
problems; Sensitivity analysis of variational inequality
problems; Sensitivity and stability in NLP; Sensitivity and
stability in NLP: approximation; Sensitivity and stability in
NLP: continuity and differential stability)

parametric linear complementarity problem
[90C31, 90C33]
(see: Sensitivity analysis of complementarity problems)

parametric linear programming
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming; Parametric linear programming: cost
simplex algorithm)

parametric linear programming
[90C05, 90C31]
(see: Parametric linear programming: cost simplex
algorithm)

Parametric linear programming: cost simplex algorithm
(90C05, 90C31)
(referred to in: Bounds and solution vector estimates for
parametric NLPS; Convex-simplex algorithm; Equivalence
between nonlinear complementarity problem and fixed
point problem;Generalized nonlinear complementarity
problem;Global optimization in multiplicative
programming; Integer linear complementary problem;
LCP: Pardalos–Rosenmixed integer formulation; Lemke

method; Linear complementarity problem; Linear
programming;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Multiplicative programming;Nondifferentiable
optimization: parametric programming;Order
complementarity; Parametric global optimization:
sensitivity; Parametric mixed integer nonlinear
optimization; Parametric optimization: embeddings, path
following and singularities; Principal pivoting methods for
linear complementarity problems; Selfdual parametric
method for linear programs; Sequential simplex method;
Topological methods in complementarity theory)
(refers to: Bounds and solution vector estimates for
parametric NLPS; Convex-simplex algorithm;Global
optimization in multiplicative programming; Lemke
method; Linear complementarity problem; Linear
programming;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Multiplicative programming;Nondifferentiable
optimization: parametric programming; Parametric global
optimization: sensitivity; Parametric mixed integer
nonlinear optimization; Parametric optimization:
embeddings, path following and singularities; Selfdual
parametric method for linear programs; Sequential simplex
method)

parametric lower bound
[90C11, 90C31]
(see:Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization)

parametric method for linear programs see: Selfdual—
parametric methods

[90C26]
(see: Global optimization in multiplicative programming)

parametric mixed integer linear program see: single—
Parametric mixed integer nonlinear optimization

(90C31, 90C11)
(referred to in: Bounds and solution vector estimates for
parametric NLPS;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multi-objectivemixed integer
programming;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
optimization: embeddings, path following and
singularities; Selfdual parametric method for linear
programs; Set covering, packing and partitioning problems;
Simplicial pivoting algorithms for integer programming;
Time-dependent traveling salesman problem)
(refers to: Bounds and solution vector estimates for
parametric NLPS; Branch and price: Integer programming
with column generation;Decomposition techniques for
MILP: lagrangian relaxation; Integer linear complementary
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problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
bound methods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametric linear programming;Multiparametric
mixed integer linear programming;Nondifferentiable
optimization: parametric programming; Parametric global
optimization: sensitivity; Parametric linear programming:
cost simplex algorithm; Parametric optimization:
embeddings, path following and singularities; Selfdual
parametric method for linear programs; Set covering,
packing and partitioning problems; Simplicial pivoting
algorithms for integer programming; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)

parametric NLPS see: Bounds and solution vector estimates
for—

parametric nonlinear complementarity problem
[90C31, 90C33]
(see: Sensitivity analysis of complementarity problems)

parametric nonlinear optimization
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

parametric objective simplex algorithm
[90C26]
(see: Global optimization in multiplicative programming)

parametric optimal control
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

parametric optimization
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Design of robust model-based controllers via
parametric programming; Parametric optimization:
embeddings, path following and singularities)

parametric optimization
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

parametric optimization see: nonlinear —
Parametric optimization: embeddings, path following and

singularities
(90C20, 90C25, 90C26, 90C29, 90C30, 90C31, 90C33, 90C34,
65K05, 65K10)
(referred to in: Bounds and solution vector estimates for
parametric NLPS; Generalized semi-infinite programming:
optimality conditions;Globally convergent homotopy
methods;Multiparametric linear programming;
Multiparametric mixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric

linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Selfdual parametric
method for linear programs; Topology of global
optimization)
(refers to: Bounds and solution vector estimates for
parametric NLPS; Globally convergent homotopy methods;
Multiparametric linear programming;Multiparametric
mixed integer linear programming;Nondifferentiable
optimization: parametric programming; Parametric global
optimization: sensitivity; Parametric linear programming:
cost simplex algorithm; Parametric mixed integer
nonlinear optimization; Selfdual parametric method for
linear programs; Topology of global optimization)

parametric optimization problem
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)

parametric problem
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

parametric programming
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality;Nondifferentiable optimization: parametric
programming)

parametric programming
[90C25, 90C29, 90C30, 90C31, 90C34]
(see: Bilevel programming: optimality conditions and
duality; Parametric global optimization: sensitivity)

parametric programming see: applications of—; convex—;
Design of robust model-based controllers via —; history
of—; instability in—; Nondifferentiable optimization: —;
optimality in—; stability on—; stable—; structural stability
in—; topological stability in—

parametric programming model
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

parametric programming model
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

parametric programming models
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

parametric programs see: robust—
parametric representation

[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

parametric representations see: necessary optimality condition
without using (sub)gradients —

parametric right-hand side simplex algorithm
[90C26]
(see: Global optimization in multiplicative programming)

parametric rule
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

parametric search see:Megiddo—
parametric semi-infinite optimization see: one- —
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parametric solutions see: comparison of—
parametric upper bound

[90C11, 90C31]
(see:Multiparametric mixed integer linear programming;
Parametric mixed integer nonlinear optimization)

parametric upper and lower bounds
[90C11, 90C31]
(see: Bounds and solution vector estimates for parametric
NLPS; Parametric mixed integer nonlinear optimization)

parametric variational inequalities
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

parametric variational inequality problem
[65K10, 90C31]
(see: Sensitivity analysis of variational inequality problems)

parametrization see: control —; objective function—
parametrized Sard theorem

[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

Pardalos generator see: Li–—
Pardalos–Rosenmixed integer formulation see: LCP: —
parent node reconstruction

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

parent of a vertex
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

parergon
[01A20]
(see: Archimedes and the foundations of industrial
engineering)

Paretian cone
[90C29]
(see: Generalized concavity in multi-objective optimization;
Vector optimization)

Pareto efficient solution
[90C29]
(see: Vector optimization)

Pareto optimal
[49L20, 90C29, 90C39]
(see: Dynamic programming: discounted problems;
Multi-objective optimization; Interactivemethods for
preference value functions;Multi-objective optimization:
pareto optimal solutions, properties; Planning in the
process industry)

Pareto optimal
(see: Planning in the process industry)

Pareto optimal solution
[90B85, 90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points; Single facility location:
multi-objective rectilinear distance location)

Pareto optimal solution
[90C11, 90C15, 90C29, 90C90]
(see: Discretely distributed stochastic programs: descent
directions and efficient points;Multi-objective
optimization: interaction of design and control;
Multi-objective optimization: pareto optimal solutions,
properties)

Pareto optimal solution see:M-—;weakly —

Pareto optimal solution set
[90C11, 90C29, 90C90]
(see:Multi-objective optimization: interaction of design
and control)

Pareto optimal solutions
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

pareto optimal solutions, properties see:Multi-objective
optimization:—

Pareto optimality
[90B85, 90C27]
(see: Single facility location: multi-objective euclidean
distance location; Time-dependent traveling salesman
problem)

Pareto optimality
[90C29]
(see: Vector optimization)

Pareto optimality of MODP see: principle of—
Pareto optimum

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

Pareto point
[90C29]
(see: Generalized concavity in multi-objective optimization)

Pareto race
[90C29]
(see:Multiple objective programming support)

Pareto solution
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Parlett factorization see: Bunch and—
Parrott theorem

[93D09]
(see: Robust control)

parsing see: expression—
part see: excess —; ideal —; nonideal —; seed —
part of a function see: twice-differentiable—
part map see: standard—
PARTAN

[90C30]
(see: Frank–Wolfe algorithm)

PARTAN algorithm
[90C30]
(see: Conjugate-gradientmethods)

partial assignment
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

partial calmness condition
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

partial completely positive matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial computability
[90C26]
(see: Global optimization using space filling)

partial computability
[90C26]
(see: Global optimization using space filling)



4416 Subject Index

partial computation of a Turing machine
[90C60]
(see: Complexity classes in optimization)

partial computation of a Turing machine see: length of a—
partial contraction matrix

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial definite matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial derivatives see: elementary —;matrix of second—
partial differential equations

[03H10, 49J27, 49K20, 49M99, 90C34, 90C55]
(see: Semi-infinite programming and control problems;
Sequential quadratic programming: interior point methods
for distributed optimal control problems)

partial differential equations see: First order —
partial discretization

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

partial distance matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial equilibrium
[91B50]
(see:Walrasian price equilibrium)

partial equilibrium
[91B28, 91B50]
(see: Spatial price equilibrium)

partial equilibrium model
[91B28, 91B50]
(see: Spatial price equilibrium)

partial Hermitian matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial information
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

partial linearization
[90C30]
(see: Cost approximation algorithms)

partial matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial matrix see: completion of a—
partial monotonicity

[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

partial monotonicity
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

partial order
[41A30, 47A99, 62G07, 62G30, 65K05, 65K10, 90C29]
(see: Isotonic regression problems; Lipschitzian operators

in best approximation by bounded or continuous functions;
Vector optimization)

partial order see: antisymmetric —; Löwner—
partial order relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

partial orders
[90C29]
(see: Preference modeling)

partial proximal point algorithm
[90C30]
(see: Cost approximation algorithms)

partial semidefinite matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

partial sequential normal compactness
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

partial-update Newton method
[90C30]
(see: Numerical methods for unary optimization)

partial-update Newton method
[90C30]
(see: Numerical methods for unary optimization)

partial updating
[90C05]
(see: Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm)

partially
(see:Mixed integer programming/constraint programming
hybrid methods)

partially asynchronous computation
[90C30]
(see: Cost approximation algorithms)

partially asynchronous iterative method
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

partially asynchronous operation
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

partially monotonous
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

partially separable function
[90C06]
(see: Large scale unconstrained optimization)

participant
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

participants see: subset of—
partition

[68Q25, 90C09, 90C10, 90C15, 90C60]
(see:Matroids;NP-complete problems and proof
methodology; Stochastic linear programs with recourse and
arbitrarymultivariate distributions)

partition see: 2- —; 3- —; block of a—; left-collection of a—;
ordered—; p- —; rectangular —; right-collection of a—;
simplicial—
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partition flipping
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

partition-flipping see: algorithm—
partition hierarchy

[62H30, 90C27, 90C39]
(see: Assignment methods in clustering;Dynamic
programming in clustering)

partition identities see: primitive—
partition matching

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

partition matching see:Maximum—
partition-matching-I see: algorithm—
partition matching problem see:maximum—
partition matroid

[90C09, 90C10]
(see:Matroids)

partition number see: clique—
partition problem see: rectangular —
Partition Problem (MP) see:minimum—
partition on a set

[03B52, 03E72, 41A30, 47S40, 62J02, 68T27, 68T35, 68Uxx,
90Bxx, 90C26, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations;Regression by special
functions: algorithms and complexity)

partitioned quasi-Newton method
[90C06]
(see: Large scale unconstrained optimization)

partitioning
[65K05]
(see: Direct global optimization algorithm)

partitioning see: adaptive—; Graph—;minimum clique—;
order constrained—; ordered—; set—

partitioning algorithm see: K-iterated tour—; nearest insertion
optimal—

partitioning method
[90C35]
(see:Multicommodity flow problems)

partitioning problem see: graph—; k-way graph—; set—
partitioning problems see: Set covering, packing and—
partitions

[62H30, 90C39]
(see: Dynamic programming in clustering)

partitions see: nested —; set Lfree of unused—; set Lreac of
used—; set Rfree of unused—; set Rreac of used—

partitions optimization see: Nested —
partly convex problems

[90C25, 90C26]
(see: Decomposition in global optimization)

partly convex program
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

partly convex programs
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

pass theorem see:mountain—

passenger trip
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

patch (COP) see: contract-or- —
patching

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

path
[90C35]
(see:Minimum cost flow problem)

path see: center —; central —; circular—; co-optimal—;
critical—; directed—; dogleg—; edge-disjoint—;
elementary connecting—; forward—; linear —;multiple
dogleg—; node-disjoint—; nondominated—; optimal—;
principal variation—; shortest —; stochastic shortest —;
unique—

path algorithm see: augmenting—; generic augmenting—;
successive shortest —

path algorithms see: generic shortest —
path approach see: feasible—; infeasible—
path coloring problem

[05C85]
(see: Directed tree networks)

path contraction
[90B06, 90B10, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57,
90C59, 90C60, 90C90]
(see: Shortest path tree algorithms; Traveling salesman
problem)

path cost
[90C35]
(see:Multi-index transportation problems)

path cost see: Hamiltonian—
path decomposition

[68R10, 90C27]
(see: Branchwidth and branch decompositions)

path extension
[90B10, 90C27]
(see: Shortest path tree algorithms)

path flow formulation
[90B06, 90B15, 90B20, 91B50]
(see: Dynamic traffic networks; Traffic network
equilibrium)

path flow pattern see: feasible—
path flows see: variational inequality formulation in—
path following

[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

path following
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

path following algorithm
[90C05]
(see: Linear programming: interior point methods)

path following algorithm for entropy optimization
[90C25, 90C51, 94A17]
(see: Entropy optimization: interior point methods)
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path following approach
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

path following methods
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

path following and singularities see: Parametric optimization:
embeddings—

path formulation
[90C35]
(see:Multicommodity flow problems)

path formulation of the multicommodity flow problem see:
node-—

path in a graph
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

path in a graph see: length of a—
path length

[62H30, 90C27]
(see: Assignment methods in clustering)

path length see:maximin—;maximum—;minimax—;
minimum—

path optimization see: sample- —
path problem see: deterministic shortest —; impossible pairs

constrained—; shortest —; stochastic shortest —
path problems see: Dynamic programming: stochastic

shortest —; stochastic shortest —
path procedure see: next shortest —
path-protection

[46N10, 68M10, 90B18, 90B25]
(see: Integer linear programs for routing and protection
problems in optical networks)

path relinking
[65H20, 65K05, 68T20, 68T99, 90-01, 90B40, 90C10, 90C11,
90C20, 90C27, 90C35, 90C59, 94C15]
(see: Greedy randomized adaptive search procedures; Linear
ordering problem;Metaheuristics)

path routing pattern model see: single—
path-string

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

path tree algorithms see: Shortest —
path tree problem see: single source shortest —
path tree problems see: shortest —
paths see: Pivoting algorithms for linear programming

generating two—; problem of finding shortest —
pathwidth

[68R10, 90C27]
(see: Branchwidth and branch decompositions)

pattern see: cutting—; feasible path flow—; location—;
positive-negative-zero—; strategy —; zero-nonzero —

pattern based model see: gIS design—
pattern classification see: statistical —
pattern of a matrix

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

pattern of a matrix see: sign—
pattern model see: fractional routing—; single path routing—

pattern recognition
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

pattern recognition see: Complementarity algorithms in—;
statistical —

pattern search
[90C30]
(see: Rosenbrockmethod)

pattern search
[90C30]
(see: Cyclic coordinate method; Powell method; Rosenbrock
method)

pattern searches
[90C30]
(see: Cyclic coordinate method)

patterns see: cutting—; word—
patterns and graphs see:matrix—
PAV

[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

payments see: game with side—
payoff space see: resource-—
PC clusters

[65K05, 65Y05]
(see: Parallel computing: models)

PCP-LCP
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

PCR groups
[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

PCSP see: computer code—
pd

[05C50, 15A48, 15A57, 90C25, 90C26, 90C39]
(see:Matrix completion problems; Second order optimality
conditions for nonlinear optimization)

pD-VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

PDS
[90C10, 90C26, 90C30]
(see: Optimization software)

Peano curve
[90C26]
(see: Global optimization using space filling)

Peano curve
[90C26]
(see: Global optimization using space filling)

Peano function
[90C30]
(see: Image space approach to optimization)

Peano map
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Pearson chi-square statistic
[62H30, 90C27]
(see: Assignment methods in clustering)
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penalties
[90C26]
(see: Global optimization using space filling)

penalty
[90C11, 90C26]
(see: Global optimization in batch design under
uncertainty;MINLP: branch and bound methods)

penalty see: down—; Driebeck–Tomlin—; exact—; outer
approximationwith equality relaxation and augmented —;
up—

penalty approach
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

penalty-based method
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

penalty function
[05C69, 05C85, 65K05, 68W01, 90C59, 90C90, 91B28, 93-XX]
(see: Direct global optimization algorithm;Dynamic
programming: optimal control applications;Heuristics for
maximum clique and independent set; Robust
optimization)

penalty function see: Courant—; exact—; exact L1- —; `1 —;
l1 exact—; logarithmic-quadratic barrier- —

penalty function approach see: continuously differentiable
exact—

penalty function based algorithm see: exact—
penalty functions

[93-XX]
(see: Direct search Luus—Jaakola optimization procedure)

penalty method see: Exact—
penalty methods see: Quasidifferentiable optimization:

exact—; regularity condition for —
penalty parameter

[90Cxx]
(see: Discontinuous optimization)

penalty parameter see: exact—
penalty technique

[65K05, 90C20]
(see: Quadratic programming with bound constraints)

Penrose conditions
[65Fxx]
(see: Least squares problems)

Penrose pseudo-inverse see:Moore–—
PEP

[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

Peptide identification via mixed-integer optimization
per stage see: average cost—; discounted problem with

bounded cost—
per stage problem see: average cost—
per stage problems see: average cost—; Dynamic

programming: average cost—
perceptron algorithm

[62H30, 68T10, 90C05]
(see: Linear programmingmodels for classification)

perfect
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

perfect see: subgame—

perfect b-matching problem
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

perfect competition
[91B50]
(see: Financial equilibrium;Walrasian price equilibrium)

perfect competition
[91B50]
(see: Financial equilibrium;Walrasian price equilibrium)

perfect dual see: formal—
perfect duality

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

perfect duality see: Semi-infinite programming, semidefinite
programming and—

perfect duality from the view of linear semi-infinite programming
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

perfect graph theorem see: strong—
perfect information see: expected value of—
perfect-information game see: two-player zero-sum—
perfect matching

[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

perfect matching problem
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

perfect matchings
[05C85]
(see: Directed tree networks)

perfect offspring
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

perfectly competitive
[91B28, 91B50]
(see: Spatial price equilibrium)

perfectly competitive equilibrium model
[91B28, 91B50]
(see: Spatial price equilibrium)

perfectly consistent case
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

performance see: computational—; optimization of
computational—

performance computing see: high—
performance computing system see: high—
performance evaluation

[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

performance Fortran see: high—
performance guarantee

[05C85, 90C35]
(see: Directed tree networks; Graph coloring)

performance guarantee see: worst-case—
performance index

[93-XX]
(see: Direct search Luus—Jaakola optimization procedure;
Dynamic programming: optimal control applications)
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performance index see: augmented —
performance measurement see: Supply chain—
Performance profiles of conjugate-gradient algorithms for

unconstrained optimization
(49M07, 49M10, 90C06, 65K05)

performances see: Volume computation for polytopes:
strategies and—

perimeter
(see: State of the art in modeling agricultural systems)

period see: duty- —; orbital —
period model see: single- —
period routing

[90B06]
(see: Vehicle routing)

periodic review model
[90B50]
(see: Inventory management in supply chains)

periodic review model
[90B50]
(see: Inventory management in supply chains)

permanent of a matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

permanent residents
(see: Emergency evacuation, optimization modeling)

permutation see: neighborhood of a—
permutation graph

[90C35]
(see: Feedback set problems)

permutation matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

permutation QAP see: constant—
permutations

[05C85]
(see: Directed tree networks)

Perron–Frobenius theorem
[90C09, 90C10]
(see: Combinatorial matrix analysis)

person game see: cooperative case of a two- —; two-—
person zero-sum game see: two- —
perspective see: descriptive—;metric-based—;

model-based—; normative—; prescriptive—
perturbation see: data—; lexicographic ordering and—
perturbation analysis

[90C15]
(see: Derivatives of probability measures)

perturbation analysis see: infinitesimal—
perturbation function

[90C30]
(see: Image space approach to optimization)

perturbation methods
[90C30]
(see: Cost approximation algorithms)

perturbation model see: right-hand side—
perturbation problem see: right-hand side—
perturbation technique

[05B35, 65K05, 90C05, 90C20, 90C33, 90C60]
(see: Complexity of degeneracy; Lexicographic pivoting
rules)

perturbations
[90C05, 90C25, 90C30, 90C34, 91B28]
(see: Semi-infinite programming and applications in
finance; Semi-infinite programming, semidefinite
programming and perfect duality)

perturbations see:minimax observation problem under
uncertainty with—; piecewise-constant—; Vasicek model
with impulse—

perturbative approximation
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

perturbed least squares problem
[65Fxx]
(see: Least squares problems)

perturbed system
[90C60]
(see: Complexity of degeneracy)

petrochemical industry
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

Petrov–Galerkin approach
[65K05, 65K10]
(see: ABS algorithms for optimization)

Petrov–Galerkin iteration
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

phase see: allocation—; construction—; global —;
intensification—; local —;minimum—; nonminimum—;
two- —

phase algorithm see: three —
phase and chemical reaction equilibrium see: Global

optimization in—
phase classes

[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

phase compositions see: equality of—
phase constraints

[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

phase constraints see: Lagrange multipliers for—
phase equilibrium

[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

phase equilibrium
[65H20, 80A10, 80A22, 90C26, 90C90]
(see: Global optimization: application to phase equilibrium
problems;Global optimization in phase and chemical
reaction equilibrium)

phase equilibrium equations
[90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems)

phase equilibrium equations see: ideal and nonideal—
phase equilibrium problem

[49K99, 65K05, 80A10]
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(see: Optimality criteria for multiphase chemical
equilibrium)

phase equilibrium problems see: Global optimization:
application to—

phase in GRASP see: construction—; local search—
phase method see: two-—
phase methods see: Stochastic global optimization: two- —
phase problem

[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

phase problem
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

Phase problem in X-ray crystallography: Shake and bake
approach
(90C26)
(referred to in: Adaptive simulated annealing and its
application to protein folding;Genetic algorithms;Global
optimization in Lennard–Jones and morse clusters;Graph
coloring;Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Simulated annealingmethods in protein
folding)
(refers to: Adaptive simulated annealing and its application
to protein folding;Genetic algorithms;Global optimization
in Lennard–Jones and morse clusters; Global optimization
in protein folding;Molecular structure determination:
convex global underestimation;Monte-Carlo simulated
annealing in protein folding;Multipleminima problem in
protein folding:˛BB global optimization approach; Packet
annealing; Protein folding: generalized-ensemble
algorithms; Simulated annealing; Simulated annealing
methods in protein folding)

phase procedure see: two-—
phase retrieval based on single-crystal X-ray diffraction data

see: Optimization techniques for—
phase space

[49J15, 49K15, 93C10]
(see: Pontryagin maximum principle)

phase split
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

phase stability
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

phase stability
[65H20, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems)

phase stability problem
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

phases
[90C10]

(see:Maximum constraint satisfaction: relaxations and
upper bounds)

phases see: backtrack—; forward—; liquid—; vapor—
˚-isotone mapping

[90C33]
(see: Order complementarity)

physical junction nodes
[90C30, 90C35]
(see: Optimization in water resources)

physically linear problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

physically nonlinear problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

Pi-algebra
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Pi-algebras see: application of —; complexity theory of —;
families of—; functional completeness of —; functionally
complete normal forms of —; use of—

PI-algebras and 2-valued normal forms
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

PI-algebras of many-valued logics see: taxonomy of the—
�-classes

[03E70, 03H05, 91B16]
(see: Alternative set theory)

PI-logic algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

PI-logic algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Pi-logic algebras see: taxonomy of —
PI-normal form

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

PI-systems see: subfamilies of n-valued—
Piaget group of transformation

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

pick-up and delivers
[90B06]
(see: Vehicle routing)

pickups and deliveries see: Vehicle routing problem with
simultaneous—

pictogram translation mapping technique
(see: State of the art in modeling agricultural systems)

pieces
[46N10, 47N10, 49M37, 65K10, 90C26, 90C30]
(see: Global optimization: tight convex underestimators)

piecewise
[46N10, 47N10, 49M37, 65K10, 90C26, 90C30]
(see: Global optimization: tight convex underestimators)

piecewise constant control
[93-XX]
(see: Dynamic programming: optimal control applications)

piecewise-constant perturbations
[90C34, 91B28]
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(see: Semi-infinite programming and applications in
finance)

piecewise continuously differentiable function
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

piecewise continuously differentiable function
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

piecewise differentiable function
[90Cxx]
(see: Discontinuous optimization)

piecewise linear arc cost
[90B10]
(see: Piecewise linear network flow problems)

piecewise linear control
[93-XX]
(see: Dynamic programming: optimal control applications)

piecewise linear function
[65M60, 90C26]
(see:MINLP: application in facility location-allocation;
Variational inequalities: F. E. approach)

piecewise linear function see: decomposition of
a continuous—

piecewise linear minimum cost network flow problem
[90B10]
(see: Piecewise linear network flow problems)

Piecewise linear network flow problems
(90B10)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks;Global
supply chain models; Inventory management in supply
chains;Maximum flow problem;Minimum cost flow
problem;Multicommodity flow problems;Network design
problems;Network location: covering problems;
Nonconvex network flow problems;Nonoriented
multicommodity flow problems;Operations research
models for supply chain management and design; Shortest
path tree algorithms; Steiner tree problems; Stochastic
network problems: massively parallel solution; Survivable
networks; Traffic network equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks; Generalized networks; Global supply chain
models; Inventory management in supply chains;
Maximum flow problem;Minimum cost flow problem;
Network design problems;Network location: covering
problems;Nonconvex network flow problems;Nonoriented
multicommodity flow problems;Operations research
models for supply chain management and design; Shortest
path tree algorithms; Steiner tree problems; Stochastic
network problems: massively parallel solution; Survivable
networks; Traffic network equilibrium)

Piecewise linear programming
[90Cxx]
(see: Discontinuous optimization)

piecewise linear quadratic function
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

piecewise linear upper bound
[90C15]
(see: Stochastic programs with recourse: upper bounds)

piecewise linearization see: improved—
piecewise linearization in facility location problems with

staircase costs see: convex—
piecewise sequential quadratic programming method

[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

piecewise sequential quadratic programming method
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

piecewise SQP approach see: Optimization with equilibrium
constraints: A —

piecewise twice-differentiable function
[90Cxx]
(see: Discontinuous optimization)

Piela method
[90C26, 90C90]
(see: Global optimization in Lennard–Jones andmorse
clusters)

pilot method
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

pinch point
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

Pinkava algebra
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Pinkava logic algebras see:many-valued families of the—
Pinkava logical algebra

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Pinkava normal forms see:minimization of—
pinned

[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

pitchfork
(see: Global terrain methods)

pivot
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

pivot see: admissible—; block—; diagonal —; double—;
exchange—; simple principal —

pivot algorithm
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules)

pivot algorithm see: principal —
pivot method

[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

pivot methods see: complementary —
pivot operation

[90C05, 90C33, 90C35]
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(see:Minimum cost flow problem; Pivoting algorithms for
linear programming generating two paths)

pivot operation see: degenerate —; nondegenerate —
pivot rules

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

pivot rules
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules; Principal pivoting
methods for linear complementarity problems)

pivot selection see: lexicographic—
pivot steps see: average number of—; expected number of—
pivot theory see: complementary—
pivotal transform see: principal —
pivotal transformation see: principal —
pivoting

[90C05, 90C10]
(see: Linear programming; Simplicial pivoting algorithms
for integer programming)

pivoting
[90C05, 90C33]
(see: Lemke method; Linear programming)

pivoting see: guaranteed to be stable without—;matrix class
invariant under principal —; principal —; QR factorization
with column-—

pivoting algorithm
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

pivoting algorithms see: varying dimension—
pivoting algorithms for integer programming see: Simplicial—
Pivoting algorithms for linear programming generating two

paths
(90C05, 90C33)
(referred to in: Criss-cross pivoting rules; Least-index
anticycling rules; Lexicographic pivoting rules; Linear
programming; Principal pivoting methods for linear
complementarity problems; Probabilistic analysis of
simplex algorithms; Simplicial pivoting algorithms for
integer programming)
(refers to: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules; Linear programming;
Principal pivoting methods for linear complementarity
problems; Probabilistic analysis of simplex algorithms;
Simplicial pivoting algorithms for integer programming)

pivoting method see: least-index—; principal —
pivoting methods for linear complementarity problems see:

Principal—
pivoting property

[90C09, 90C10]
(see: Oriented matroids)

pivoting required see: no—
pivoting rule see: Bland least index—; Dantzig largest

coefficient—; generic —; lexicographic—
pivoting rules

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules; Linear programming:
Klee–Minty examples)

Pivoting rules
[90C05]
(see: Linear programming: Klee–Minty examples)

pivoting rules see: Criss-cross—; Lexicographic—
pixels

[90C90]
(see: Optimization in medical imaging)

Piyavskii–Shubert algorithm
[65K05, 90C30]
(see: Bisection global optimization methods)

placement see: inventory—
plan see: block—
planar

[90C10, 90C27]
(see:Multidimensional assignment problem)

planar augmentation
[90C10, 90C27, 94C15]
(see: Graph planarization)

planar graph
[68R10, 90C10, 90C27, 94C15]
(see: Branchwidth and branch decompositions;Graph
planarization)

planar graph
[90C10, 90C27, 94C15]
(see: Graph planarization)

planar graph see: level —;maximumweighted —
planar multi-index transportation problem

[90C35]
(see:Multi-index transportation problems)

planar multilayered dielectric structures see: Global
optimization of—

planar subgraph
[90B80]
(see: Facilities layout problems)

planar subgraph see:maximal—;maximum—
planarity testing

[90C10, 90C27, 94C15]
(see: Graph planarization)

planarity-testing algorithm see: Hopcroft–Tarjan—
planarization

[90C10, 90C27, 90C35, 94C15]
(see: Graph planarization;Optimization in leveled graphs)

planarization see: branch and bound algorithm for weighted
graph—; Graph—; level —

planarization problem see: k-level —; level —
plane see: Chvátal–Gomory cutting—; extended cutting—;

generalized cutting—;Minkowski—; strong cutting—;
trade-off cutting—

plane algorithm see: cutting—; Extended cutting—; Gomory
cutting—; Sequential cutting—

plane algorithms see: Integer programming: cutting—
plane algorithms for stochastic linear programming problems

see: Stabilization of cutting—
plane approach see: cutting—;Mixed-integer nonlinear

optimization: A disjunctive cutting—
plane approaches see: cutting—
plane coefficients see: statistical representation of cutting—
plane criterion see: reaction tangent- —; tangent- —
plane method see: analytic center cutting—; cutting—;

extended cutting—; generalized cutting—; Kelley’s
classical cutting—; Kelley cutting—
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plane methods see: cutting—; Nondifferentiable optimization:
cutting—; regularization of deterministic cutting—

plane methods for global optimization see: Cutting—
plane model see: cutting—
planes see: cutting—; polyhedral cutting—; Stochastic linear

programming: decomposition and cutting—
planning

[90C26, 90C30, 90C31]
(see: Bilevel programming: introduction, history and
overview)

planning see: Chemical process—; distribution systems —;
extra-urban transit —; financial—; long range—;
multiperiod—; operation—; production—;
requirements —; Resource—; scheduling (staff —;
street —; water resource—

planning horizon
[90C26]
(see:MINLP: design and scheduling of batch processes)

planning of offshore oilfield infrastructure see: Optimal—
planning problem see: process —
planning problems see: Global optimization algorithms for

financial—
Planning in the process industry
planning and scheduling see: facility—; Integrated —
planning under uncertainty see: Production—
planning under uncertainty on hydrological exogenous inflow

and demand see: water resources—
plant

(see: State of the art in modeling agricultural systems)
plant see: co-generation—;multiproduct—;multiproduct

batch—;multipurpose—; run-of-river—; storage—;
thermal —

plant design see: batch—
Plant layout problems and optimization
plant location model

[90-02]
(see: Operations research models for supply chain
management and design)

plant location problem see: simple—; uncapacitated—
plant/model nodes

[90C35]
(see:Minimum cost flow problem)

plant nodes
[90C35]
(see:Minimum cost flow problem)

plant railroads see: engine routing and industrial in- —
plants see: hydro—; run-of-river—; storage—; tracing the

states of—
plasticity see: computational—
plates

[90C26, 90C90]
(see: Structural optimization: history)

platform cost see: linear —
plausible rules

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

play see:mood of —
player

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

player zero-sum perfect-information game see: two- —

pLCP
[65K10, 90C33, 90C51]
(see: Generalizations of interior point methods for the
linear complementarity problem)

PLE
[90C09, 90C10]
(see: Optimization in classifying text documents)

PLE
[90C09, 90C10]
(see: Optimization in classifying text documents)

PLNFP
[90B10]
(see: Piecewise linear network flow problems)

PLS-complexity
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

PLS problems
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

plus homogeneous
[41A50, 41A65, 46B40, 90C46]
(see: Best approximation in ordered normed linear spaces)

PM
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

PMD
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

Pnueli algorithm
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

Poincaré polynomial
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

Poincaré polynomial
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

point see: @+-critical—;1-stationary—; asymptotically stable
stationary—; bounds on the distance of a feasible point to
a solution—; (CJm)-efficient—; Cauchy—; contact—;
coupled fixed—; critical—; dead—; decomposition—;
Dini sup-stationary—; distinguished—; dominated—;
efficient—; "-stationary—; equilibrium—; extreme—;
feasible—; fixed—; generalized critical—; global
maximum—; global minimum—; global minimumKKT—;
grid—; Hadamard1-stationary—; Hadamard
sup-stationary—; index of a constraint violating—;
inf-stationary—; infeasible interior —; inner —; interior—;
invexity at a—; isolated stationary—;
Karush–Kuhn–Tucker —; kKT—; KT—; Kuhn–Tucker —; left
saddle—; local efficient—; local Ekeland—; local
maximum—; local minimum—; local strictly efficient—;
local weakly efficient—; lower boundary—;motion of a—;
nondegenerate —; nondegenerate critical —; Pareto—;
pinch—; proximal—; quadratic turning—; query—;
reference—; regular —; regular feasible—; regular
stationary—; right saddle—; saddle—; saddle-minimax—;
stationary—; Steiner —; strict local maximum—; strict local
minimum—; strictly efficient—; strong stability of
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a stationary —; subcritical—; substationary—;
sup-stationary—; supercritical —; supermaximum—;
superminimax—; trap-door—; trial —; turning—; upper
boundary—; Voronoi —;weakly efficient—

point acceleration function see: the mid-—
point AD

[65H99, 65K99]
(see: Automatic differentiation: point and interval)

point algorithm see: dual exterior —; entropic proximal—;
infeasible-start interior- —; interior —; partial proximal—;
proximal—; quadratic proximal—

point algorithms see: inexact proximal—; interior—
point algorithms for entropy optimization see: interior —
point approach see: proximal—
point-based approximation

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

point-based logic system of approximate reasoning
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

point boundary value problem see: ODE two- —; two- —
point bounds for NLP see: solution-—
point bundle method see: proximal—
point computation see: fixed—
point conditions

[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

point configuration
[90C09, 90C10]
(see: Oriented matroids)

point design
[90C26, 90C29]
(see: Optimal design of composite structures)

point of an energy functional see: generalized critical—
point enumeration see: extreme—
point formulation see: saddle- —
point of a functional see: substationarity—
point inequalities see: saddle-—
point and interval see: Automatic differentiation: —
point and interval taylor operators see: Automatic

differentiation:—
point intervals see: floating—
point iterate see: dead-—
point iteration see: fixed—
point logarithmic barrier method see: interior —
point mapping see: nearest —
point mathematical program see: extreme—
point method see: exterior —; interior —; proximal—
point methods see: Entropy optimization: interior —;

interior—; Linear programming: interior —; polynomial
time interior—; primal-dual interior- —; proximal—;
Successive quadratic programming: solution by active sets
and interior —

point methods for distributed optimal control problems see:
Sequential quadratic programming: interior —

point methods for the linear complementarity problem see:
Generalizations of interior —

point methods for semidefinite programming see: Interior —
point operation see: floating—

point problem see: Equivalence between nonlinear
complementarity problem and fixed—; fixed—; high—;
saddle-—

point ranking see: extreme—
point with respect to a set see: substationarity —
point set see: efficient—; generalized critical —
point solution see: extreme—
point to a solution point see: bounds on the distance of

a feasible—
point solutions see: enumerating extreme—
point sufficient condition see: saddle-—
Point Taylor Operator

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

point theorem see: brouwer fixed—; fixed—;Miranda
fixed—; right saddle-—; Schauder fixed—;
supercritical—; Tychonoff fixed—

point theory see: critical—; fixed—; Interval fixed—
point theory and optimality conditions see: Saddle—
point-to-set mapping

[65K10, 90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality; Rosen’s method, global convergence, and Powell’s
conjecture; Sensitivity analysis of variational inequality
problems)

point-to-set mapping
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

point-to-set mapping see: closed—
point-to-set mappings

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

point Voronoi diagram see: farthest- —
pointed closed convex cone

[90C33]
(see: Topological methods in complementarity theory)

pointed convex cone
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem;Order complementarity)

points see: abnormal —; convex combination of the
extreme—; critical —; decomposition—; Discretely
distributed stochastic programs: descent directions and
efficient—; High-order necessary conditions for optimality
for abnormal —; inf-stationary—; KKT—;multiple
Kuhn–Tucker —;multiple QP Kuhn–Tucker —;
nondegenerate critical—; ranking extreme—; saddle—;
set of "-global—; set of "-most active—; set of feasible—;
stationary—; Steiner —; Steiner tree problem with
minimumnumber of Steiner —; successive improvement of
KKT—

points problem see: fekete —
points on the same face

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

points sets see: connectedness of the efficient—
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Poisson distribution
[90C15]
(see: Logconcavity of discrete distributions)

Poisson equation
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

Polak–Ribiére algorithm see: Polyak–—
Polak–Ribiére formula

[90C06]
(see: Large scale unconstrained optimization)

Polak–Ribiére method
[90C06]
(see: Large scale unconstrained optimization)

polar
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

polar cone
[41A10, 46N10, 47N10, 49K27, 90C30]
(see: Duality for semidefinite programming;High-order
necessary conditions for optimality for abnormal points)

polar duality
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

polar matrix
[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

polar polyhedron
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

policies see: in-company—; nonanticipative water
resources—; nonanticipativity water resources—;
optimal—; (s,S) optimal—

policy
[49Jxx, 49L20, 90B50, 91Axx]
(see: Dynamic programming: inventory control; Infinite
horizon control and dynamic games; Inventory
management in supply chains)

policy see: admissible—; barrier —; Continuous review
inventory models: (QR) —; one-for-one ordering—; optimal
control —; proper—; (Q,R)—; (s,S)—; scheduling—;
stationary—; unichain—

policy evaluation
[49L20, 90C39, 90C40]
(see: Dynamic programming: infinite horizon problems,
overview)

policy iteration
[49L20, 49L99, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: discounted problems;
Dynamic programming: infinite horizon problems,
overview;Dynamic programming: stochastic shortest path
problems)

Poliquin reduction see: Burke–—
political districting problem

[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

Pollak conjecture see: Gilbert–—
polling scheme see: random—
pollution see: air —

pollution control
[90C15]
(see: Stochastic quasigradient methods: applications)

Poly(L-Alanine)
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

Poly(L-Alanine)
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

Pólya theorem see: Hardy–Littlewood–—
polyak II rule

[49J52, 90C30]
(see: Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods)

Polyak method see: Levitin–—
Polyak minimizing sequence see: Levitin–—
Polyak–Polak–Ribiére algorithm

[90C30]
(see: Conjugate-gradient methods)

Polyak well-posed problem see: Levitin–—
polyblock

[90C26]
(see: Cutting plane methods for global optimization)

polyblock see: reduced—; reverse —
polyblock algorithm

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

polyblock algorithm see: discrete—; reverse —; revised—
polyblock approximation

[90C26]
(see: Cutting plane methods for global optimization)

polyblock approximation
[90C26]
(see: Cutting plane methods for global optimization)

polyblock approximation method
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

polyblock (copolyblock) algorithm see: revised reverse —
polyblocks

[65K05, 90C26, 90C30]
(see:Monotonic optimization)

polygon
(see: State of the art in modeling agricultural systems)

polygonal Arrangement
(see: State of the art in modeling agricultural systems)

polygonal Component
(see: State of the art in modeling agricultural systems)

Polygons Arrangement see: two—
polyhedra see: segments of—
polyhedral annexation

[90C25, 90C26]
(see: Concave programming; Cutting plane methods for
global optimization)

polyhedral annexation
[90C09, 90C10, 90C11, 90C26]
(see: Cutting plane methods for global optimization;
Disjunctive programming)
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polyhedral combinatorics
[90C05, 90C06, 90C08, 90C10, 90C11, 90C27, 90C35, 90C57]
(see: Integer programming; Integer programming: cutting
plane algorithms;Optimization in leveled graphs)

polyhedral cutting planes
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

polyhedral methods
[05-XX]
(see: Frequency assignment problem)

polyhedral methods
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming; Set covering, packing and
partitioning problems)

polyhedral set
[90C30]
(see: Simplicial decomposition)

polyhedral set
[90C30]
(see: Simplicial decomposition)

polyhedral set see: convex—
polyhedral subdivision

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

polyhedral subdivision see: cell of a—; face of a—
polyhedral theory

[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

polyhedron
[90C30]
(see: Convex-simplex algorithm; Simplicial decomposition)

polyhedron
[90C30]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm;
Simplicial decomposition)

polyhedron see: essential —; polar —; regular —; segment of
a—; simple—; state —; submodular—

polylogarithmic time
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

polymatrix game
[90C25, 90C33]
(see: Integer linear complementary problem)

polynomial
[05C15, 05C62, 05C69, 05C85, 34E05, 90C27, 90C59]
(see: Asymptotic properties of randommultidimensional
assignment problem;Optimization problems in unit-disk
graphs)

polynomial see: biorthogonal—; characteristic—;
characterstic—; Chebyshev —; generating —; initial term
of a—; normal form of a—; output- —; Poincaré—

polynomial algorithm
[68Q25, 90C60]
(see: Computational complexity theory;NP-complete
problems and proof methodology)

polynomial algorithm
[90C60]
(see: Computational complexity theory)

polynomial algorithm see: nondeterministic —; strongly—

polynomial of best approximation
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

polynomial complexity
[03B50, 41A30, 62J02, 68T15, 68T30, 90C26]
(see: Finite complete systems of many-valued logic algebras;
Regression by special functions: algorithms and
complexity)

polynomial of degree c see: algorithm—
polynomial equations

[12D10, 12Y05, 13P10]
(see: Gröbner bases for polynomial equations)

polynomial equations see: Gröbner bases for—
polynomial ideal

[12D10, 12Y05, 13P10]
(see: Gröbner bases for polynomial equations)

polynomial matrix
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

polynomial programming
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

polynomial programs
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

polynomial reducibility
[90C60]
(see: Complexity classes in optimization)

polynomial solution see: strongly—
polynomial solvability

[90C35]
(see: Feedback set problems)

polynomial system of equations
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

polynomial time
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68Q25, 68R, 68U,
68W, 90B, 90C, 90C35, 90C60, 91B28]
(see: Competitive ratio for portfolio management;
Complexity theory; Computational complexity theory;
Convex discrete optimization; Graph coloring)

polynomial time
[90C60]
(see: Complexity theory; Complexity theory: quadratic
programming)

polynomial time see: output- —; strongly—; super- —
polynomial time algorithm

[49-01, 49K45, 49N10, 90-01, 90C05, 90C06, 90C08, 90C10,
90C11, 90C20, 90C27, 90C35, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs; Integer programming:
branch and bound methods; Linear programming:
karmarkar projective algorithm;Maximum flow problem;
Minimum cost flow problem)

polynomial time algorithm
[05B35, 20F36, 20F55, 52C35, 57N65, 90C05]
(see:Hyperplane arrangements in optimization; Linear
programming: karmarkar projective algorithm)

polynomial time algorithm see: efficient polynomially
bounded—; nondeterministic —; strongly —; weakly—
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polynomial time algorithms
[90C05]
(see: Linear programming: interior point methods)

polynomial time approximation scheme
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59, 90C60]
(see: Complexity classes in optimization;Optimization
problems in unit-disk graphs)

polynomial time approximation scheme see: fully—
polynomial time computable function

[90C60]
(see: Complexity classes in optimization)

polynomial time convergence
[90C25, 90C51, 94A17]
(see: Entropy optimization: interior point methods)

polynomial time convergence
[90C25, 90C51, 94A17]
(see: Entropy optimization: interior point methods)

polynomial time deterministic algorithm
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

polynomial time interior point methods
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

polynomial time local search problems
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

polynomial time problem see: strongly —
polynomial time reduction

[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

polynomial time reduction
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

polynomial time solution
[90C60]
(see: Complexity theory: quadratic programming)

polynomial transformation
[90C60]
(see: Computational complexity theory)

polynomial Turing reducibility
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

polynomial upper bound
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

polynomially bounded polynomial time algorithm see:
efficient—

polynomially space-bounded Turing machine
[90C60]
(see: Complexity classes in optimization)

polynomially time-bounded Turing machine
[90C60]
(see: Complexity classes in optimization)

polynomially transformable decision problem
[90C60]
(see: Complexity theory)

polynomials see: least squares formal orthogonal —; Least
squares orthogonal —; orthogonal —; polytope—; Robust
control: schur stability of polytopes of—

polyspectrum
[90C26, 90C90]
(see: Signal processing with higher order statistics)

polytope
[65K05, 65K10]
(see: ABS algorithms for optimization)

polytope
[90C05]
(see: Carathéodory theorem)

polytope see: convex—; cross—; k-way—; k-way
transportation —;matroid base—; secondary—; state —;
trace—

polytope polynomials
[39A11, 93C55, 93D09]
(see: Robust control: schur stability of polytopes of
polynomials)

polytopes of polynomials see: Robust control: schur stability
of—

polytopes: strategies and performances see: Volume
computation for —

ponens see: checklist modus—;modus—
Pontryagin maximum principle

(49J15, 49K15, 93C10)
(referred to in:Dynamic programming: continuous-time
optimal control;Hamilton–Jacobi–Bellman equation;
High-order maximum principle for abnormal extremals)
(refers to:Dynamic programming: continuous-time optimal
control;Hamilton–Jacobi–Bellman equation;High-order
maximum principle for abnormal extremals)

pontryagin’s maximum principle
[41A10, 47N10, 49K15, 49K27, 65L99, 93-XX]
(see: Boundary condition iteration BCI;Dynamic
programming: optimal control applications;High-order
maximum principle for abnormal extremals;Optimization
strategies for dynamic systems)

Pontryagin maximum principle
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

Pontryagin minimum principle
[34H05, 49L20, 90C39]
(see: Dynamic programming: continuous-time optimal
control)

pool adjacent violators algorithm
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

pool of cuts
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

pool template
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

pooling
[90C05]
(see: Continuous global optimization: applications;
Planning in the process industry)

pooling
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)
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pooling and blending problems
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

pooling problems see:MINLP: applications in blending and—
pools see: crew—
POP

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

population
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90, 92B05]
(see: Broadcast scheduling problem;Design optimization in
computational fluid dynamics;Genetic algorithms;
Traveling salesman problem)

population
[92B05]
(see: Genetic algorithms)

population drifting
[90C11, 90C90, 91B28]
(see:Multicriteria decision support methodologies for
auditing decisions)

population size
[92B05]
(see: Genetic algorithms)

population size
[92B05]
(see: Genetic algorithms)

populations see: Volterra model of conflicting—
portfolio see: constant rebalanced—;market—; universal —
portfolio analysis see:mean-variance—
portfolio management

[68Q25, 90C26, 91B06, 91B28, 91B60]
(see: Competitive ratio for portfolio management; Financial
applications of multicriteria analysis; Portfolio selection
andmulticriteria analysis)

portfolio management
[68Q25, 90C26, 91B28]
(see: Competitive ratio for portfolio management; Portfolio
selection andmulticriteria analysis)

portfolio management see: Competitive ratio for—
portfolio optimization

[91B50]
(see: Financial equilibrium)

portfolio selection
[90C20, 90C29]
(see: Decision support systems with multiple criteria;
Standard quadratic optimization problems: applications)

portfolio selection
[90C20]
(see: Standard quadratic optimization problems:
applications)

Portfolio selection: markowitz mean-variance model
(91B28)

Portfolio selection and multicriteria analysis
(91B28, 90C26)
(referred to in: Bi-objective assignment problem;
Competitive ratio for portfolio management;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;

Financial optimization; Fuzzy multi-objective linear
programming;Multicriteria sorting methods;
Multi-objective combinatorial optimization;
Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Preference disaggregation; Preference
disaggregation approach: basic features, examples from
financial decisionmaking; Preference modeling; Robust
optimization; Semi-infinite programming and applications
in finance; Standard quadratic optimization problems:
applications)
(refers to: Bi-objective assignment problem; Competitive
ratio for portfolio management;Decision support systems
with multiple criteria; Estimating data for multicriteria
decisionmaking problems: optimization techniques;
Financial applications of multicriteria analysis; Financial
optimization; Fuzzy multi-objective linear programming;
Multicriteria sorting methods;Multi-objective
combinatorial optimization;Multi-objective integer linear
programming;Multi-objective optimization and decision
support systems;Multi-objective optimization: interaction
of design and control;Multi-objective optimization;
Interactivemethods for preference value functions;
Multi-objective optimization: lagrange duality;
Multi-objective optimization: pareto optimal solutions,
properties;Multiple objective programming support;
Outranking methods; Preference disaggregation;
Preference disaggregation approach: basic features,
examples from financial decisionmaking; Preference
modeling; Robust optimization; Semi-infinite
programming and applications in finance)

portfolio selection problem
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

portfolio theory
[90C27]
(see: Operations research and financial markets)

portfolio theory
[90C27]
(see: Operations research and financial markets)

portfolios see: frontier of efficient—
posed see: ill- —;well- —
posed problem see: ill- —; Levitin–Polyak well- —; well- —
posed problems see: ill-—
posed variational problem see: ill- —
posed variational problems see: Ill- —
posedness see: well- —
position see: general —
position evaluator

[90C39]
(see: Neuro-dynamic programming)

position of hyperplanes see: general —
position vector

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)



4430 Subject Index

positioning see: Gene clustering: A novel
decomposition-based clustering approach: global optimum
search with enhanced—

positioning algorithm see: relative—
positive

[58E05, 90C30]
(see: Topology of global optimization)

positive see: completely—
positive basis tableau see: lexico-—
positive and contractionmatrices see: completion to

completely—
positive definite

[05C50, 15-XX, 15A48, 15A57, 65-XX, 90-XX, 90C05, 90C22,
90C25, 90C30, 90C33, 90C51]
(see: Cholesky factorization; Interior point methods for
semidefinite programming; Linear complementarity
problem;Matrix completion problems)

positive definite matrices
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

positive definite matrix
[65K10, 65M60]
(see: Variational inequalities)

positive definite matrix
[90C30]
(see: Frank–Wolfe algorithm; Simplicial decomposition)

positive definite matrix see: strongly—
positive definite quadratic function

[90C30]
(see: Suboptimal control)

positive definite quadratic models
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

positive definiteness
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

positive fault
[90Cxx]
(see: Discontinuous optimization)

positive gradient see: projected —
positive marginal value

[90C60]
(see: Complexity of degeneracy)

positive marginal values
[90C60]
(see: Complexity of degeneracy)

positive matrix see: completely—; partial completely—
positive minimum value

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

positive-negative-zero pattern
[90C09, 90C10]
(see: Combinatorial matrix analysis)

positive real numbers see: infinitely small —
positive (semi) definite completion problem

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

positive semi-definite quadratic binary programming
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

positive semidefinite
[05C15, 05C17, 05C35, 05C50, 05C69, 15A48, 15A57, 90C05,
90C20, 90C22, 90C25, 90C30, 90C33, 90C35, 90C51, 90C60]
(see: Copositive programming; Interior point methods for
semidefinite programming; Linear complementarity
problem; Lovász number;Matrix completion problems;
Quadratic knapsack)

positive semidefinite matrices
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

positive semidefinite matrix
[65K10, 65M60]
(see: Variational inequalities)

positive semidefinite matrix see: bisymmetric—
positive semidefinite matrix completion problem

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

positive semidefinite symmetric matrix
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

positive semidefiniteness constraints
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

positive vector see: lexico-—; lexicographically—
positively see: dropped—
positively homogeneous

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

positively homogeneous see: increasing and—
positively homogeneous function

[90C26]
(see: Global optimization: envelope representation)

positively homogeneous functions on topological vector
spaces see: Increasing and—

positively linearly dependent
[49M30, 49M37, 65K05, 90C30]
(see: Practical augmented Lagrangianmethods)

positively linearly independent
[49M30, 49M37, 65K05, 90C30]
(see: Practical augmented Lagrangianmethods)

positiveness of distances
[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

positivity
[93D09]
(see: Robust control)

possible see: largest —
Post conditions

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

post-optimality analyses
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)
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post-optimality analysis
[90C31]
(see: Sensitivity and stability in NLP: approximation)

post-optimality sensitivity analysis
[90C31]
(see: Sensitivity and stability in NLP)

post (risk prone, adaptive) decision see: ex-—
Post system

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

posterior distribution
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

posterior methods
[65K05, 90B50, 90C05, 90C29, 91B06]
(see:Multi-objective optimization and decision support
systems)

posteriori principle see:maximum a—
postman problem see: Chinese —; directed Chinese—;

rural —
posynomial condensation

[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

posynomial monomials
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

posynomial terms
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

posynomials
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

potential
[49J40, 49J52, 49Q10, 60J15, 60J60, 60J70, 60K35, 65C05,
65C10, 65C20, 68U20, 70-08, 70-XX, 74K99, 74Pxx, 80-XX,
82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding; Nonconvex
energy functions: hemivariational inequalities)

potential see: chemical —; empirical—; linear —; nonlinear —
potential efficient solutions see: set of—
potential energy see:minimum—; smoothing of the—
potential energy function

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

potential energy function see: Lennard-Jones —
potential function

[37A35, 49M20, 90-08, 90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming;
Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm;
Nondifferentiable optimization: cutting plane methods;
Potential reductionmethods for linear programming)

potential function
[37A35, 90C05, 90C25, 90C30]
(see: Linear programming: karmarkar projective algorithm;

Potential reductionmethods for linear programming;
Solving large scale and sparse semidefinite programs)

potential function see: dual —; Karmarkar —; primal—;
primal-dual—; Tanabe–Todd–Ye—

potential reduction
[05-XX, 90C60]
(see: Complexity of degeneracy; Frequency assignment
problem)

potential reduction
[37A35, 90C05, 90C25, 90C30]
(see: Potential reductionmethods for linear programming;
Solving large scale and sparse semidefinite programs)

potential reduction algorithm
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

potential reduction algorithm see: primal—; primal-dual—
potential reduction algorithms

[90C05]
(see: Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm)

Potential reductionmethods for linear programming
(90C05, 37A35)
(referred to in: Entropy optimization: interior point
methods;Homogeneous selfdual methods for linear
programming; Linear programming: interior point
methods; Linear programming: karmarkar projective
algorithm; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming: solution by active sets
and interior point methods)
(refers to: Entropy optimization: interior point methods;
Homogeneous selfdual methods for linear programming;
Interior point methods for semidefinite programming;
Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Successive quadratic
programming: solution by active sets and interior point
methods)

potential smoothing algorithm
[90C90]
(see: Simulated annealing methods in protein folding)

potentials see: empirical —; node—
potentials and stability in mechanics see: smooth—
Potts glass model

[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

powell’s conjecture
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Powell’s conjecture see: Rosen’s method, global convergence,
and—

Powell method
(90C30)
(referred to in: Cyclic coordinate method; Rosenbrock
method; Sequential simplex method)
(refers to: Cyclic coordinatemethod; Rosenbrockmethod;
Sequential simplex method)
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Powell method
[90C30]
(see: Powell method)

Powell method see: Davidon–Fletcher– —
Powell-symmetric–Broyden method

[90C30]
(see: Successive quadratic programming)

Powell update see: Davidon–Fletcher–—
power balance

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

power consumption see: expected—
power method

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

power set see: fuzzy—
power system see: electric —
power systems see: Optimization in operation of electric and

energy —
PP

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

PPA see: convergence of —
PPM

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

practical
(see: Global optimization: functional forms)

Practical augmented Lagrangianmethods
(90C30, 49M30, 49M37, 65K05)

practically feasible computational solution
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

PRAM
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

PRAM
[03D15, 65K05, 65Y05, 68Q05, 68Q15]
(see: Parallel computing: complexity classes; Parallel
computing: models)

PRAM see: CRCW—; CREW—; EREW—
pre-declared interval function

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

pre-invex function
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

pre-invex function
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

pre-invex set
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

pre-invexity with respect to a set
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

pre-matching
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

pre-matching see: algorithm—;maximum—
pre-matching problem see:maximum—
pre-order

[90C35]
(see: Generalized networks)

pre-order
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

pre-order closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

pre-order closure of a relation see: local —
pre-order relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

preaccumulation of the Jacobian
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

precedence/coupling constraints
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

precision interval package see: variable—
preconditioner

[65H10, 65J15]
(see: Contraction-mapping)

preconditioner see: Atkinson–Brakhage —
preconditioning

[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

preconditioning step
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

predecessor
[90C35]
(see: Generalized networks)

predefined probabilities see: randomly with—
predictability of complexities

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

prediction see: Genetic algorithms for protein structure —;
tertiary structure—

prediction of crystal structures
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

prediction list
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

prediction methods see: Protein loop structure—
predictive control see:model —
Predictive method for interhelical contacts in alpha-helical

proteins
(90C11)
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predictor-corrector
(see: Global terrain methods)

predictor-corrector algorithm
[90C05]
(see: Linear programming: interior point methods)

preemptive
[90B36]
(see: Planning in the process industry; Stochastic
scheduling)

preference
[90C29]
(see: Preference modeling;Vector optimization)

preference
[90C29]
(see: Preference modeling)

Preference disaggregation
(90C29, 91A99)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation approach: basic features,
examples from financial decisionmaking; Preference
modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactivemethods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection and multicriteria analysis;
Preference disaggregation approach: basic features,
examples from financial decisionmaking; Preference
modeling)

preference disaggregation
[90C29]
(see:Multicriteria sorting methods)

preference disaggregation
[90C29, 91A99]
(see:Multicriteria sorting methods; Preference
disaggregation; Preference disaggregation approach: basic
features, examples from financial decisionmaking)

preference disaggregation analysis
[90C29]
(see: Decision support systems with multiple criteria;
Preference disaggregation approach: basic features,
examples from financial decisionmaking)

preference disaggregation approach
[90C29]
(see: Decision support systems with multiple criteria)

Preference disaggregation approach: basic features, examples
from financial decisionmaking
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference modeling)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference modeling)

Preference modeling
(90C29)
(referred to in: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
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approach: basic features, examples from financial decision
making)
(refers to: Bi-objective assignment problem;Decision
support systems with multiple criteria; Estimating data for
multicriteria decisionmaking problems: optimization
techniques; Financial applications of multicriteria analysis;
Fuzzy multi-objective linear programming;Multicriteria
sorting methods;Multi-objective combinatorial
optimization;Multi-objective integer linear programming;
Multi-objective optimization and decision support systems;
Multi-objective optimization: interaction of design and
control;Multi-objective optimization; Interactive methods
for preference value functions;Multi-objective
optimization: lagrange duality;Multi-objective
optimization: pareto optimal solutions, properties;
Multiple objective programming support;Outranking
methods; Portfolio selection andmulticriteria analysis;
Preference disaggregation; Preference disaggregation
approach: basic features, examples from financial decision
making)

preference modeling
[90-XX]
(see: Outranking methods)

preference relation
[03E70, 03H05, 91B16]
(see: Alternative set theory)

preference threshold
[90-XX]
(see: Outranking methods)

preference value function
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

preference value function
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

preference value functions see:Multi-objective optimization;
Interactive methods for—

preferences
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

preferences see: disaggregation of—; embedded family of —
preferential bidding system

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

preferred solution see:most—
preflow

[90C35]
(see:Maximum flow problem)

preflow-push algorithm
[90C35]
(see:Maximum flow problem)

preflow-push algorithm
[90C35]
(see:Maximum flow problem)

preflow-push algorithm see: generic —
preliminary design stage

[90C90]
(see: Design optimization in computational fluid dynamics)

premature convergence
[92B05]
(see: Genetic algorithms)

premature convergence
[92B05]
(see: Genetic algorithms)

premis of an inference
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

preparation
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

preprocessing
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

preprocessing
[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

preprocessing see: symbolic—
preprocessing and reformulation

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

Preprocessing in stochastic programming
(90C15, 90C35, 90B10, 90B15)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; Generalized benders decomposition;
General moment optimization problems; Logconcave
measures, logconvexity; Logconcavity of discrete
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distributions; L-shaped method for two-stage stochastic
programs with recourse;Multistage stochastic
programming: barycentric approximation; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

prescriptive perspective
[90C29]
(see: Preference modeling)

present value see:maximize net —
preserving an activity see: direction—
preserving assignment problem see: order—
presolving techniques

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems; Planning in
the process industry)

prespecification see: weak—
pressure see: Reid vapor—
pretty-printing a declarative program

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

price see: branch and—; branch-and- —; dual—;
pseudoshadow—; shadow—

price and cut see: branch and—
price-directive decomposition

[90C35]
(see:Multicommodity flow problems)

price elasticity
[90C26]
(see:MINLP: application in facility location-allocation)

price equilibrium see: spatial —;Walrasian—
price equilibrium problem see: network structure of the

spatial —; spatial —
price formulation

[91B28, 91B50]
(see: Spatial price equilibrium)

price increase see: dual—
price: Integer programming with column generation see:

Branch and—
price model

[91B28, 91B50]
(see: Spatial price equilibrium)

price model
[91B28, 91B50]
(see: Spatial price equilibrium)

Price of robustness for linear optimization problems
price taker

[91B50]
(see: Financial equilibrium)

priced information
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

prices see: almost at equilibrium of an assignment and a set
of—; best estimate using pseudoshadow—; equilibrium of
an assignment and a set of—; shadow—

pricing
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

pricing derivatives
[90C27]
(see: Operations research and financial markets)

pricing model see: capital asset —
pricing-out

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

pricing-out
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

pricing problem
[68Q99]
(see: Branch and price: Integer programming with column
generation)

pricing theory see: arbitrage—
Prim algorithm see:modified—
primal

[90C22, 90C25]
(see: Copositive programming)

primal arc
[90B35]
(see: Job-shop scheduling problem)

primal bound-improvement
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

primal cut-improvement
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

primal degenerate
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

primal degenerate basis
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Lexicographic pivoting rules)

primal-dual
[37A35, 49M27, 90C05, 90C11, 90C25, 90C30]
(see:MINLP: generalized cross decomposition; Potential
reductionmethods for linear programming; Solving large
scale and sparse semidefinite programs)

primal-dual algorithm
[90C05]
(see: Linear programming: interior point methods)

primal-dual algorithm
[90C25, 90C30, 90C51, 94A17]



4436 Subject Index

(see: Entropy optimization: interior point methods;
Successive quadratic programming: solution by active sets
and interior point methods)

primal-dual framework
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

primal-dual interior-point methods
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

primal-dual methods
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

primal-dual methods
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

primal-dual potential function
[37A35, 90C05, 90C25, 90C30, 90C51, 94A17]
(see: Entropy optimization: interior point methods;
Potential reductionmethods for linear programming;
Solving large scale and sparse semidefinite programs)

primal-dual potential reduction algorithm
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

primal and dual problems
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

primal-dual scaling algorithm
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

primal and dual simplex algorithms
[90C05, 90C06]
(see: Selfdual parametric method for linear programs)

primal-dual solution
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

primal and dual solutions see: exploiting the interplay
between—

primal-dual SQPIP methods
[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

primal feasibility
[68W10, 90B15, 90C05, 90C06, 90C30, 90C31]
(see:Multiparametric linear programming; Parametric
linear programming: cost simplex algorithm; Stochastic
network problems: massively parallel solution)

primal feasible basis
[90C05, 90C31]
(see:Multiparametric linear programming)

primal feasible set
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

primal gap function
[90C06, 90C25, 90C30, 90C35]
(see: Cost approximation algorithms; Simplicial
decomposition algorithms)

primal heuristic see: Toyoda—

primal heuristics
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

primal linear semi-infinite program
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

primal (linear) semi-infinite program
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

primal master problem
[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

primal master problem see: relaxed—
primal method

[90C06, 90C08, 90C15]
(see: Simple recourse problem)

primal method see: Simple recourse problem: —
primal method for the simple recourse problem

[90-08, 90C05, 90C06, 90C08, 90C15]
(see: Simple recourse problem: dual method)

primal optimization problem
[90C30]
(see: Lagrangian duality: BASICS)

primal optimization problem
[90C30]
(see: Lagrangian duality: BASICS)

primal pair
[90B35]
(see: Job-shop scheduling problem)

primal potential function
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

primal potential reduction algorithm
[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

primal problem
[15A39, 49-XX, 49L99, 49M29, 90-XX, 90C05, 90C11, 90C22,
90C25, 90C29, 90C30, 90C31, 93-XX]
(see: Duality theory: monoduality in convex optimization;
Dynamic programming: average cost per stage problems;
Generalized benders decomposition; Lagrangian duality:
BASICS;Motzkin transposition theorem;Multi-objective
optimization: lagrange duality; Semidefinite programming:
optimality conditions and stability; Theorems of the
alternative and optimization)

primal problem see: J-normal—; J-stable—; N-normal —;
nonconvex—

primal programming problem
[90C06]
(see: Saddle point theory and optimality conditions)

primal ray
[15A39, 90C05]
(see:Motzkin transposition theorem)

primal-relaxed dual algorithm see: generalized —
primal-relaxed dual approach

[90C26]
(see: Generalized primal-relaxed dual approach)

primal-relaxed dual approach see: Generalized—
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primal-scaling algorithm
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

primal SD problem
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

primal SD problem see: equivalent—
primal simplex algorithm

[90C35]
(see: Generalized networks)

primal simplex method see: lexicographic—
primal solution

[90B80, 90C11]
(see: Facility location with staircase costs)

primal subproblem
[90C11, 90C31]
(see: Parametric mixed integer nonlinear optimization)

primary structure
[92B05]
(see: Genetic algorithms for protein structure prediction)

primary structure
[92B05]
(see: Genetic algorithms for protein structure prediction)

prime see:multiplicity of a—
prime representation of a feasible region

[90C05, 90C20]
(see: Redundancy in nonlinear programs)

primitive integral vector
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

primitive partition identities
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

principal see: proximate optimality—
principal agent

[90C90, 91A65, 91B99]
(see: Bilevel programming: applications)

principal pivot see: simple—
principal pivot algorithm

[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

principal pivotal transform
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

principal pivotal transformation
[90C33]
(see: Linear complementarity problem)

principal pivoting
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

principal pivoting
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

principal pivoting see:matrix class invariant under—
principal pivoting method

[90C33]
(see: Linear complementarity problem)

Principal pivoting methods for linear complementarity
problems
(90C33, 90C20, 65K05)
(referred to in: Criss-cross pivoting rules; Equivalence
between nonlinear complementarity problem and fixed
point problem;Generalized nonlinear complementarity
problem; Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Least-index
anticycling rules; Lexicographic pivoting rules; Linear
complementarity problem; Linear programming;Order
complementarity; Pivoting algorithms for linear
programming generating two paths; Probabilistic analysis
of simplex algorithms; Simplicial pivoting algorithms for
integer programming; Topological methods in
complementarity theory)
(refers to: Convex-simplex algorithm; Criss-cross pivoting
rules; Equivalence between nonlinear complementarity
problem and fixed point problem;Generalized nonlinear
complementarity problem; Integer linear complementary
problem; LCP: Pardalos–Rosenmixed integer formulation;
Least-index anticycling rules; Lemke method; Lexicographic
pivoting rules; Linear complementarity problem; Linear
programming; Linear programming: interior point
methods;Order complementarity; Parametric linear
programming: cost simplex algorithm; Pivoting algorithms
for linear programming generating two paths; Probabilistic
analysis of simplex algorithms; Sequential simplex method;
Topological methods in complementarity theory)

principal submatrix
[65K05, 90C20, 90C33]
(see: Linear complementarity problem; Principal pivoting
methods for linear complementarity problems)

principal variation path
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

principal variation splitting algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

principle see: argument —; auxiliary problem—; branch and
bound—; Carathéodory —; disjunctive cut—; duality and
maximum—; ekeland variational—; exhaustion—;
extended Extremal—; extremal —; high-order local
maximum—; inclusion—; Jaynes’ maximum entropy—;
Kataoka—; Kimura maximum—; local maximum—;
local-ratio—;maximum—;maximum entropy—;
maximum likelihood—;maximum a posteriori —;
minimal—;minimum cross-entropy—; nonanticipative—;
pontryagin’s maximum—; Pontryagin minimum—;
proximate optimality—; subdifferential Variational —;
Wardrop first —;Wardrop second—

principle for abnormal extremals see: High-order maximum—
principle of Fourier see:mechanical —
principle: image reconstruction see:Maximum entropy—
principle of insufficient reason see: laplace’s—
principle of insufficient reasoning see: Laplace—
principle for Lagrangian problems see: high-order local

maximum—
principle of least effort

[90C09, 90C10]
(see: Optimization in classifying text documents)
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principle of least effort
[90C09, 90C10]
(see: Optimization in classifying text documents)

principle of linear programming see: Decomposition—
principle of machine interval arithmetic see: inclusion—
principle of maximum entropy

[90C25, 94A08, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties;Maximum entropy principle: image
reconstruction)

principle of maximum entropy
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

principle of maximum entropy see: axiomatic derivation of
the—

principle of minimum
[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

principle of minimum cross-entropy
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

principle of minimum cross-entropy see: axiomatic derivation
of the—

principle of optimality
[93-XX]
(see: Dynamic programming: optimal control applications)

principle of optimality see: weak—
principle of Pareto optimality of MODP

[90C31, 90C39]
(see:Multiple objective dynamic programming)

principle of transfers
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

principle of virtual work
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

principles see: extremum—;minimax—; variational—
printing a declarative program see: pretty- —
prior distribution

[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

prior probability
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

priori see: a—
priori method see: a—
priori optimization see: a—
priorities

(see: Planning in the process industry)
priorities see: relative —
priorities selection

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

Prize see: Nobel —
prize collecting traveling salesman problem

[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

probabilistic analysis
[90C90]
(see: Chemical process planning)

probabilistic analysis
[90C90]
(see: Chemical process planning)

probabilistic analysis of an algorithm
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

Probabilistic analysis of simplex algorithms
(90C05, 68Q25, 60D05, 52A22)
(referred to in: Criss-cross pivoting rules; Least-index
anticycling rules; Lexicographic pivoting rules; Linear
programming; Pivoting algorithms for linear programming
generating two paths; Principal pivoting methods for linear
complementarity problems; Simplicial pivoting algorithms
for integer programming)
(refers to: Criss-cross pivoting rules; Least-index anticycling
rules; Lexicographic pivoting rules; Linear
complementarity problem; Linear programming; Pivoting
algorithms for linear programming generating two paths;
Principal pivoting methods for linear complementarity
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems)

probabilistic collapse
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

probabilistic constrained linear programming
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

probabilistic constrained linear programming
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

Probabilistic constrained linear programming: duality theory
(90C05, 90C15)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
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random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

Probabilistic constrained problems: convexity theory
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Simple recourse problem:
dual method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:

massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Simple recourse problem:
dual method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

probabilistic constrained stochastic programming
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

probabilistic constraint
[90C15]
(see: Probabilistic constrained problems: convexity theory;
Static stochastic programmingmodels)

probabilistic constraint see: integrated —; joint—;
programming under—

probabilistic constraints see: individual—
probabilistic criterion

[90C29, 91A99]
(see: Preference disaggregation)

probabilistic estimate
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

probabilistic method for detecting redundancy
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

probabilistic optimizationmodels for data classification see:
Deterministic and—
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probabilistic programming
[90C15]
(see: Two-stage stochastic programs with recourse)

probabilistic programming
[90C15]
(see: Two-stage stochastic programs with recourse)

probabilistic traveling salesman
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

probabilistic uncertainty
[94A17]
(see: Jaynes’ maximum entropy principle)

probabilities see: randomly with predefined—
probability

[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

probability see: prior—; randomly with the same—
probability density see: transition—
probability density function see: logconcave—
probability distribution

[68Q25, 90C26, 91B28]
(see: Competitive ratio for portfolio management;
Emergency evacuation, optimization modeling; Global
optimization in batch design under uncertainty)

probability distribution see: incomplete knowledge of a—;
Levy —; logconcave discrete—; logconcave univariate
discrete—; quasiconcave—; Tsallis—; uncertainty
embedded in a—

probability distribution function see:multivariate—;
one-dimensional marginal —; two-dimensional marginal —

probability function
[90C15]
(see: Approximation of extremum problems with
probability functionals;Derivatives of probability and
integral functions: general theory and examples)

probability function
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples; Extremum problems with
probability functions: kernel type solution methods)

probability function see: derivative of a—; gradient of a—
probability functionals

[90C15]
(see: Approximation of extremum problems with
probability functionals)

probability functionals see: Approximation of extremum
problems with—

probability functions
[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

probability functions: kernel type solutionmethods see:
Extremum problems with—

probability integral see:multivariate—
probability and integral functions: general theory and

examples see: Derivatives of—
probability integrals

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

probability integrals see: Approximation of multivariate—;
lower bounds for multivariate—; upper bounds for
multivariate—

probability matrix see: transition—
probability measure see: � -concave—; logconcave—;

logconvex—; quasiconcave—;Wiener—
probability measure space

[60G35, 65K05]
(see: Differential equations and global optimization)

probability measures see: Derivatives of —; regular family
of—; weak convergence of—

probability metric
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

probability-one globally convergent homotopies
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

probability-one homotopy
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

probability-one homotopy algorithm see: globally
convergent —

probing
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

problem
[47J20, 49J40, 65K10, 90C33, 90C60]
(see: Computational complexity theory; Solution methods
for multivalued variational inequalities)

problem see: 2-matching—; 3-dimensional matching—;
3D-transportation—; accessory minimum—; acyclic
subdigraph—; adjoint—; airline maintenance routing—;
airplane hopping—; algebraic quadratic assignment—;
Alignment —; analytical approximation of a linear
programming—; approximation to the—; aspatial
oligopoly—; asset selling—; assignment —;
astronomical —; Asymptotic properties of random
multidimensional assignment —; Automatic differentiation:
root problem and branch—; average cost per stage—; axial
multi-index transportation —; b-matching—; backboard
wiring—; ball-constrained linear —; bandwidth—;
bandwidth packing—; beam segmentation —;
bi-knapsack—; Bi-objective assignment—; bidimensional
knapsack—; bidual—; bilateral boundary value—; bilevel
programming—; bilinear programming—; bin packing—;
binary constraint satisfaction—; Biquadratic assignment —;
Boolean classification—; Boolean function inference—;
bottleneck quadratic assignment—; bound constrained
quadratic—; bounded degree minimum spanning tree —;
branch—; Broadcast scheduling—; C1,1 optimization—;
calm—; canonical monotonic optimization—; capacitated
arc routing—; capacitated lot-sizing—; capacitated
minimum spanning arborescence—; capacitated minimum
spanning tree —; capacitated transportation —;
capacitated vehicle routing—; Chebyshev —; chemical
equilibrium—; Chinese postman—; classical oligopoly—;
classical traveling salesman—; classification—; clique—;
clustering—; coercive hemivariational inequality—;
combinatorial—; combinatorial optimization—;
communication-free alignment —; Communication
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network assignment —; complementarity—; complete
master —; consistent least squares—; constant degree
parallelism alignment —; constrainedminimax—;
constrainedminimization—; constraint satisfaction—;
construction of a dual—; continuous multiple criteria —;
convex—; convex feasibility—; convex hull —; convex
integer transportation—; convex intersection—; convex
moment—; convex optimization—; convex
programming—; convex quadratic knapsack—; convex
regression—; convex relaxation—; convex semidefinite
programming—; covering—; crew-scheduling—;
cutting-stock—; data-association—; d.c. programming—;
decision—; degenerate —; degree-constrained
subgraph—; design—; deterministic equivalent—;
deterministic shortest path—; directed Chinese
postman—; direction finding—; discounted—; discounted
infinite horizon—; discrete dynamic complementarity—;
discrete location—; discrete multiple criteria —; discrete
resource allocation—; discretized SIP—; disjunctive OA
master —; dispatch—; distance-constrained vehicle
routing—; distance geometry —; distance matrix
completion—; dual —; dual method for the simple
recourse—; dual optimization—; dual programming—;
dual SD—; dual variational inequality—; duality of the
linear SIP—; dynamic complementarity —; dynamic
location—; dynamic two-stage stochastic programming—;
dynamic vehicle routing—; Economic lot-sizing—; edge
coloring—; eigenvalue—; elevator —;
entry-uniqueness—; equality-constrained nonlinear
programming—; Equivalence between nonlinear
complementarity problem and fixed point—; equivalent
primal SD—; Euclidean distance location—; Euclidean
distancematrix completion—; evaluation—; express
delivery—; extended linear complementarity—; extended
quadratic programming—; facility location—;
feasibility—; feasible—; feasible flow—; feedback arc
set—; feedback set—; feedback vertex set—; fekete
points—; Fermat —; finite-dimensional control —; finite-
dimensional variational inequality —; finite minimax—;
finite moment—; first level —; fixed charge—; fixed charge
network flow—; fixed charge transportation —; fixed
point—; fleet assignment —; flow—; flow-shop—; Flow
shop scheduling—; follower—; fractional 0-1
programming—; fractional combinatorial optimization—;
fractional programming—; Frequency assignment —; fuel
mixture—; full master —; fully nonlinear —; g-group
classification—; g-group classification problem
(discriminant—; Gauss—; general case of the trust
region—; general Fermat —; general order
complementarity—; general quadratic assignment —;
General routing—; Generalizations of interior point
methods for the linear complementarity—; generalizations
of the nonlinear complementarity —; generalized
assignment—; generalized bilevel programming—;
generalized complementarity —; generalized dual —;
Generalized eigenvalue proximal support vector
machine—; generalized least squares—; generalized linear
order complementarity—; generalized mixed
complementarity—; generalized network —; Generalized
nonlinear complementarity —; generalized nonlinear least
squares—; generalized order complementarity—;

generalized semi-infinite—; generalized Weber—;
geometrical —; geometrically linear —; geometrically
nonlinear —; global constrained optimization—; global
maximization—; global optimization—; global
unconstrained optimization—; Gomez #3—; graph—;
graph bipartitioning—; graph bipartization—; graph
coloring—; graph isomorphism—; graph packing—;
graph partitioning—; graph Realization—; graphical
traveling salesman—; Hamiltonian circuit—; Hamiltonian
cycle—; hard case of the trust region—; head-body-tail —;
Heuristic and metaheuristic algorithms for the traveling
salesman—; hierarchical programming—; high point—;
Hilbert tenth —; Hilbert’s thirteenth —; hitting cycle—;
horizontal linear complementarity—; hyperbolic 0-1
programming—; ill-conditioned—; ill-posed—; ill-posed
variational—; image—; implicit complementarity —;
implicit general order complementarity—; impossible pairs
constrained path —; inductive inference—; infeasible—;
infinite-dimensional generalized order complementarity—;
infinite many conditions moment—; infinite moment—;
initial value—; inner —; Integer linear complementary —;
integer multi-index transportation —; integer
optimization—; integer programming—; integral linear
fractional combinatorial optimization—; interpolation—;
intractible—; inventory control —; inventory ship
routing—; irregular operations—; isotonic regression—;
iterative solution of the Euclidean distance location—;
J-normal primal—; J-stable primal—; JJT-regular —;
job-shop—; Job-shop scheduling—; jointly convex—;
k-index transportation —; k-level planarization—; k-way
graph partitioning—; KH-regular —; knapsack—;
Koopmans–Beckmann quadratic assignment —; `1
estimation—; Lagrangian dual —; Lagrangian dual
optimization—; language recognition—; large residual—;
large scale—; large scale nonlinear mixed integer
programming—; large scale trust region—; largest empty
circle—; leader—; least squares—; level planarization—;
Levitin–Polyak well-posed—; line search—; linear
arrangement —; linear bilevel programming—; linear
complementarity—; linear complementary —; linear
multiple-choice knapsack—; linear network flow—; linear
optimization—; linear order complementarity —; Linear
ordering—; linear programming—; linear-quadratic—;
linear semidefinite programming—; linear zero-one
integer —; local minimizer—; locally reduced—;
location—; location-allocation—; Location routing—;
locational decision—; lower—; lower-level —; LS—;
m-coloring—;m-dimensional knapsack—;marriage—;
master —;match-network—;matching—;matrix
completion—;matrix rounding—;max-clique—;
max-det—;max-min-max optimization—;
max-r-Constraint Satisfaction—;maximal flow—;
maximum cardinality matching—;maximum clique—;
maximum constraint satisfaction—;maximum coverage
location—;Maximum flow—;maximum Independent
Set—;maximumpartition matching—;maximum
pre-matching—;maximum rank completion—;Maximum
satisfiability—;maximumweight clique—;mean value—;
Metaheuristic algorithms for the vehicle routing—;MILP
master —;minimax—;minimax observation—;
minimization—;minimumBisection—;minimum concave
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transportation—;minimum cost flow—;minimum cost
network flow—;minimum cut—;minimum feedback arc
set—;minimum feedback vertex (arc) set —;minimum
Multiprocessor Scheduling—;minimum rank
completion—;minimum spanning tree —;minimum
sphere —;minimum-units—;minimum Vertex Cover—;
minimumweight feedback arc set—;minimumweighted
feedback vertex set —;minimumweighted graph
bipartization—;MINLP: trim-loss—;minmax—;minMax
Matching Subgraph—;MIQPmaster —;mixed integer —;
mixed integer nonconvex—;mixed integer nonlinear
programming—;mixed integer optimal control —;mixed
integer optimization—;mixed linear complementarity—;
mixed nonlinear integer programming—;Molecular
distance geometry —;multi-armed restless bandit —;
Multi-depot vehicle scheduling—;multi-index
transportation—;multi-knapsack—;multicommodity
network flow—;multiconstraint knapsack—;
Multidimensional assignment—;multidimensional
knapsack—;multidimensionalmultiple-choice
knapsack—;multidimensional scaling—;multidimensional
transportation—;multidimensional zero-one knapsack—;
multifacilityWeber—;multilevel generalized
assignment—;multilevel programming—;multiperiod
assignment—;multiple-choice knapsack—;multiple
criteria design—;multiple knapsack —;multiWeber—;
multiWeber–Rawls—;mVI—; N-normal primal —;
n-queens—; nested STO—; network design—; network
flow—; network structure of the spatial price
equilibrium—; newsboy—; Newton step case of the trust
region—; node-arc formulation of the—; node
covering—; node-path formulation of the multicommodity
flow—; nonconvex dual—; nonconvex network flow—;
nonconvex optimization—; nonconvex primal—;
nonconvex programming—; nonlinear
complementarity—; nonlinear complementary—;
nonlinear discretized SIP—; nonlinear dynamic network
flow—; nonlinear feasibility—; nonlinear mathematical
programming—; nonlinear network flow—; nonlinear
optimization—; nonlinear order complementarity —;
nonlinear programming—; nonlinear single commodity
network flow—; nonseparable —; nonseparable
optimization—; nonsmooth Dirichlet —; nonsmooth
eigenvalue—; nonzero residual —; NP-complete—;
NP-hard—; numerical constraint satisfaction—; numerical
example of a trim-loss—; objective for a location—; ODE
two-point boundary value—; one-parametric finite
optimization—; open shop—; optimal assignment —;
optimal control —; optimization—; order
complementarity—; order preserving assignment—;
outer —; p-center —; p-median—; p-median
location-allocation—; package flow—; packing—;
parameter identification—; parametric —; parametric
linear complementarity—; parametric nonlinear
complementarity—; parametric optimization—;
parametric variational inequality—; path coloring—;
perfect b-matching—; perfect matching—; perturbed least
squares—; phase—; phase equilibrium—; phase
stability—; physically linear —; physically nonlinear —;
piecewise linear minimum cost network flow—; planar
multi-index transportation —; political districting—;

polynomially transformable decision—; portfolio
selection—; positive (semi) definite completion—; positive
semidefinite matrix completion—; pricing—; primal—;
primal master —; primal method for the simple recourse—;
primal optimization—; primal programming—; primal
SD—; prize collecting traveling salesman—; process
planning—; Production-distribution system design—;
programming—; protein folding—; prototype location—;
pure network —; quadratic assignment—; quadratic
programming—; Quadratic semi-assignment—; quadratic
zero-one—; quasidifferentiable programming—; radio link
frequency assignment —; real-world—; realisable—;
recognition—; recourse—; rectangular partition—;
rectilinear distance location—; regularized direction
finding—; regularizing state —; relaxed—; relaxed
control —; relaxed master —; relaxed primal master —;
resource allocation—; resource-constrained minimum
spanning tree —; restricted location—; restricted
master —; �-regular —; right-hand side—; right-hand side
perturbation —; road traveling salesman—; robust
programming—; root—; rural postman—;
saddle-point—; sample—; SAT-CNF—; satellite —;
satisfiability—; scheduling—; second level —; selection—;
selfdual—; semi-infinite optimization—; semidefinite
programming—; Sensor network localization—;
separable —; separable optimization—; separation—;
sequencing—; set covering—; set packing—; set
partitioning—; set-valued optimization—; shortest
path —; simple plant location—; Simple recourse—;
simultaneous Diophantine approximation—; Single-depot
vehicle scheduling—; Single facility location: circle
covering—; single-ratio fractional (hyperbolic) 0-1
programming—; single source shortest path tree —;
singular control —; sinusoidal parameter estimation—;
skorokhod—; smallest enclosing-circle—; solution of a—;
solution of the alignment —; solution of the convex
moment—; sorting—; sparse least squares—; spatial price
equilibrium—; squared Euclidean distance location—;
stability —; stable —; stable marriage—; standard
moment—; standard quadratic optimization—; standard
SD—; standard traffic equilibrium—; state —; static
deterministic—; Steiner —; Steiner graphical traveling
salesman—; Steiner minimal tree —; Steiner–Weber —;
stiff —; stochastic dynamic optimization—; stochastic
network —; stochastic programming—; stochastic shortest
path —; stochastic transportation—; stochastic
transportation and location—; stochastic vehicle
routing—; strongly polynomial time—; subset feedback
vertex (arc) set —; subset minimum feedback vertex (arc)
set —; subset-sum—; survivable network design—;
Sylvester —; symmetric multi-index transportation —;
synthesis —; terminal layout—; three-dimensional
transportation —; three-index transportation—;
Time-dependent traveling salesman—; time optimal
control —; total coloring—; total cost infinite horizon—;
total least squares—; traffic assignment—; tramp
steamer —; transportation—; transshipment —; Traveling
purchaser —; traveling salesman—; traveling
salesperson—; trim-loss—; trust region—; turbine
balancing—; Turing machine solving a—; two-point
boundary value—; unary optimization—; uncapacitated
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facility location—; uncapacitated network flow—;
uncapacitated plant location—; unconstrained—;
unconstrained nonlinear least squares—; unconstrained
optimization—; underlying deterministic—;
undiscounted—; unilateral boundary value—; unweighted
feedback vertex set —; upper —; upper level —; variational
inequality—; vector variational inequality—; vehicle
routing—; vehicle scheduling—; vertex (arc) deletion—;
vertical linear complementarity—; warehouse location—;
Weber—;Weber–Rawls —; weighted bipartite
matching—;weighted graph coloring—; weighted least
squares—; weighted matching—; weighted MAX-SAT—;
well-conditioned—;well-posed—; zero-one integer
feasibility—; zero-one knapsack—; zero-one
programming—; zero residual—

problem in air traffic control see: ground delay—
Problem (ATSP) see: asymmetric Traveling Salesman—
problem with attraction and repulsion see: Global optimization

in Weber’s —;Weber —
problem with backhauls see: vehicle routing—
problem with bounded cost per stage see: discounted—
problem: branch & cut algorithms see: Stable set —
problem and branch problem see: Automatic differentiation:

root—
problem of the calculus of variations see: inverse—
problem, CMO see: Contact map overlap maximization—
problem decomposition

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

problem description
[90C30, 90C35]
(see: Optimization in water resources)

problem (discriminant problem) see: g-group classification—
problem: dual method see: Simple recourse—
problem equivalence

[90C60]
(see: Computational complexity theory)

problem of finding shortest paths
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

problem and fixed point problem see: Equivalence between
nonlinear complementarity —

problem formulation
[68M12, 90B18, 90C11, 90C30]
(see: Optimization in ad hoc networks)

problem formulation see:multilevel —
problem formulations see: Stochastic optimal stopping: —
problem with friction see: coupled unilateral contact—
problem generators see: Combinatorial test problems and—
problem for input-output tables see: triangulation—
problem instance

[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

problem instance see: size of a—
problem instance in time m see: algorithm solving a—
problem integration

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

problem involving QD-superpotentials see: convex variational
inequality for an elastostatic —; elastostatic —; variational
equality for an elastostatic —

problem, MAX-CUT see:Maximum cut—
problem with minimum number of Steiner points see: Steiner

tree —
problem modeling

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

Problem (MP) see:minimum Partition—
problem on a network see: 1-median—; covering—;

p-center —
problem with nonnegative lower bounds see:maximum

flow—
problem with nonunit capacity

[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

problem in OR see:multifacility—; single-criterion—;
single-facility—; unweighted —;weighted —

problem parameters
[90C60]
(see: Computational complexity theory)

problem: primal method see: Simple recourse—
problem principle see: auxiliary—
problem and a projected dynamical system see: variational

inequality—
problem in protein folding: ˛BB global optimization approach

see:Multiple minima—
problem regular in the sense of Jongen–Jonker–Twilt

[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

problem regular in the sense of Kojima–Hirabayashi
[65K05, 65K10, 90C20, 90C25, 90C26, 90C29, 90C30, 90C31,
90C33, 90C34]
(see: Parametric optimization: embeddings, path following
and singularities)

problem representation
[90C30]
(see: Cost approximation algorithms)

problem result
[90C60]
(see: Complexity theory)

problem for the Rosen method see: global convergence—
Problem (SCP) see: stacker Crane—
problem in semi-infinite programming see: reduced—
problem with simultaneous pickups and deliveries see: Vehicle

routing—
problem, SNLP see: Semidefinite programming and the sensor

network localization—
problem solution

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

problem solving see: restriction to the solution set in—
problem solving environment

[90C10, 90C26, 90C30]
(see: Optimization software)

problem of spot rate estimation see: � -programmed—
problem in SQP see: quadratic programming—
problem in standard form see: linear optimization—
Problem (SVP) see: seismic Vessel —



4444 Subject Index

problem synthesis
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

problem with time windows see: vehicle routing—
problem under uncertainty with perturbations see:minimax

observation—
problem variables see: separable—
problem in X-ray crystallography: Shake and bake approach

see: Phase—
problems see: 0–1 mixed integer —; algorithms for isotonic

regression—; approximate methods for solving vehicle
routing—; Approximations to robust conic optimization—;
average cost per stage—; barrier location—; bilevel
programming—; Bottleneck steiner tree —; cargo
routing—; classification of hard—; combinatorial
optimization—; Combinatorial optimization algorithms in
resource allocation—; Complexity and large-scale least
squares—; computational complexity of optimization—;
constrainedminimax—; constraint satisfaction—;
constructive methods for solving vehicle routing—;
continuous constraint satisfaction—; Continuous
reformulations of discrete-continuous optimization—;
Control —; convex—; Convex envelopes in
optimization—; convex and nonconvex programming—;
decomposition algorithms for nonconvex minimization—;
Decomposition algorithms for the solution of multistage
mean-variance optimization—; design—; discrete
monotonic optimization—; discretization of
optimization—; discretized optimal control —; distributed
optimal control —; distribution—; dynamic network
flow—; Dynamic programming: average cost per stage—;
Dynamic programming: discounted—; Dynamic
programming: stochastic shortest path—; Dynamic
programming: undiscounted—; equilibrium—;
equivalence classes of—; exact methods for solving vehicle
routing—; extended linear programming—; Facilities
layout—; facility location—; Feedback set —; fixed
demand traffic network —; formulation and solution of
inverse—; General moment optimization—; Generalized
monotonicity: applications to variational inequalities and
equilibrium—; Global optimization algorithms for financial
planning—; Global optimization: application to phase
equilibrium—; Global optimization in location—;
Hemivariational inequalities: eigenvalue—; Hemivariational
inequalities: static —; high-order local maximum principle
for Lagrangian —; “hit-or-miss” decision—; ill-posed—;
Ill-posed variational—; implicit variational—; indefinite
quadratic—; inequality —; infinite horizon—; integer
programming—; Integrated vehicle and duty
scheduling—; Interval analysis: application to chemical
engineering design—; Interval analysis:
nondifferentiable—; Isotonic regression—; knapsack—;
Kuhn–Tucker conditions for quadratic programming
sub-—; language recognition—; Laplace method and
applications to optimization—; large nonlinear
multicommodity flow—; Large scale trust region—; Least
squares—; linear complementarity—; linear mixed
integer —; linear SIP —; linearly constrained
optimization—;Maritime inventory routing—;Matrix
completion—;maximum flow—;Minimum concave
transportation—;minisum—;MINLP: applications in

blending and pooling—;Mixed integer classification—;
Modeling difficult optimization—;multi-criteria—;
multi-depot vehicle scheduling—;multi-index
assignment —;Multi-index transportation—;
Multi-objective fractional programming—;
Multicommodity flow—;Multidimensional knapsack—;
Multifacility and restricted location—;multiphase
Steiner —;multistage—; N-adic assignments —; Network
design—; Network location: covering—; Nonconvex
network flow—; nondegenerate —; Nondifferentiable
optimization: minimax—; nonlinear assignment—;
nonlinear complementarity—; Nonlinear least squares—;
nonlinear multicommodity flow—; nonlinear network
flow—; nonlinear optimization—; Nonoriented
multicommodity flow—; nonsmooth optimization—;
optimal design—; optimization—; Optimization in
boolean classification—; parametric complementarity—;
partly convex—; Piecewise linear network flow—; PLS—;
polynomial time local search—; pooling and blending—;
Price of robustness for linear optimization—; primal and
dual—; Principal pivoting methods for linear
complementarity—; quadratic generalized network—;
quasidifferentiable—; reducibility of—; reducible—;
second order Lagrangian theory of CNSO—; semi-infinite
optimization—; Semi-infinite programming and control —;
Semi-infinite programming: methods for linear —;
Sensitivity analysis of complementarity —; Sensitivity
analysis of variational inequality—; Sequential quadratic
programming: interior point methods for distributed
optimal control —; Set covering, packing and
partitioning—; shortest path tree —; simulation—;
Simultaneous estimation and optimization of nonlinear —;
Single-depot vehicle scheduling—; solution of bilevel
programming—; sorting—; Splitting method for linear
complementarity—; SQP optimization in industrial—;
stability analysis of optimization—; Stabilization of cutting
plane algorithms for stochastic linear programming—;
Stackelberg—; Steiner tree —; stochastic—; stochastic
linear optimization—; Stochastic quasigradient methods in
minimax—; stochastic shortest path —; Stochastic
transportation and location—; Stochastic vehicle
routing—; substationarity—; three-index assignment —;
toy—; transformation of—; traveling salesman—;
variational—; variational inequality—

problems: algorithms see: Standard quadratic optimization—
problems: applications see: Standard quadratic

optimization—
problems: convexity theory see: Probabilistic constrained—
problems with a fixed number of vehicles see: Vehicle

scheduling—
problems with massive data sets see: least squares—
problems: massively parallel solution see: Stochastic

network —
problems method see: extended support —; supports —
problems with multiple types of vehicles see: Vehicle

scheduling—
problems in optical networks see: Integer linear programs for

routing and protection—
problems and optimization see: Plant layout—
problems: optimization techniques see: Estimating data for

multicriteria decisionmaking—
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problems, overview see: Dynamic programming: infinite
horizon—

problems with probability functionals see: Approximation of
extremum—

problems with probability functions: kernel type solution
methods see: Extremum—

problems and problem generators see: Combinatorial test —
problems and proof methodology see: NP-complete—
problems solutionmethod see: support—
problems with spatial interaction see: Facility location—
problems with staircase costs see: convex piecewise

linearization in facility location—; heuristics of facility
location—; linearization in facility location—; solution of
facility location—

problems: theory see: Standard quadratic optimization—
problems with time constraints see: vehicle scheduling—
problems with travel demand functions see: elastic demand

traffic network —
problems in unit-disk graphs see: Optimization—
problems and variational inequalities see: Nonsmooth and

smoothingmethods for nonlinear complementarity—
procedure see: alternating—; anti-cycling—; arc oriented

construction—; arc separation—; bB—; best arc
construction—; best node construction—; branch and
cut—; Direct search Luus—Jaakola optimization—;
exact—; greedy randomized adaptive search—;
heuristic—; improved—; inhibit—; interactive
sampling—; join—; labeling—; lifting—; LJ
optimization—;mixed construction—;mixed VAM
construction—;model finding—;Monte-Carlo
simulation—; Newton—; next shortest path —; node
oriented construction—; rANDOMIZED ROUNDING—;
recursive—; Rosenbrock hillclimbing—; roulette wheel —;
S-—; sequential estimation—; stochastic discretization—;
two-phase—;Weiszfeld—; Zionts–Wallenius—

procedures see: construction—; dual—; gradient based —;
Greedy randomized adaptive search —; interactive —; local
exchange—; savings—; second order—; solution—;
statistical —

process see: 3PM—; adjustment —; analytic hierarchy—;
application—; automated design optimization—;
batch—; computational—; deformation—; diffusion—;
duty scheduling—; equilibrium—; guiding—;Markov—;
Markov decision—;Metropolis —;multistart —; simple
homogeneous—; stochastic—; tatonnement —; trip-route
choice adjustment —;Wiener—

process-Box
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

process control
[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)

process derivatives
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation;
Derivatives of probabilitymeasures)

process design
[49M37, 65C20, 65G20, 65G30, 65G40, 65H20, 90C11, 90C29,

90C90]
(see: Interval analysis: application to chemical engineering
design problems;MINLP: applications in the interaction of
design and control;Mixed integer nonlinear programming;
Multi-objective optimization: interaction of design and
control)

process design
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

process differentiable
[90C15]
(see: Derivatives of probability measures)

process dynamics
[49M37, 90C11]
(see:MINLP: applications in the interaction of design and
control)

process flowsheet
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

process industry see: Planning in the—; Successive quadratic
programming: applications in the—

process the LCP
[90C33]
(see: Lemke method)

process networks under uncertainty see: Bilevel programming
framework for enterprise-wide—

process nonanticipative with respect to a filtration see:
stochastic—

process operations
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

process optimization
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

process optimization
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

process optimization see: off-line—; on-line—
process planning see: Chemical —
process planning problem

[90C90]
(see: Chemical process planning)

process representation
[90C15]
(see: Derivatives of probability measures)

process simulation
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

process simulation
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

process simulation programs
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)
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process synthesis
[49M37, 65C20, 65G20, 65G30, 65G40, 65H20, 90C11, 90C29,
90C90]
(see: Interval analysis: application to chemical engineering
design problems;Mixed integer nonlinear programming;
Multi-objective optimization: interaction of design and
control)

process synthesis
[65C20, 65G20, 65G30, 65G40, 65H20, 90C90]
(see: Interval analysis: application to chemical engineering
design problems)

process synthesis and design under uncertainty
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

process units see: building blocks for the—
processes see: abnormal —; biochemical—;Medium-term

scheduling of batch—;MINLP: design and scheduling of
batch—; Reactive scheduling of batch—; regenerative —;
relaxation labeling—; Short-term scheduling of
continuous—; synthesis of separation —

processes in interactive methods see: computing—
processes with resources see: Short-term scheduling of

batch—
processes and their simulation see: Derivatives of markov—
processing see: nonGaussian signal —; nonlinear signal —;

optimization in medical image—
processing with higher order statistics see: Signal —
processor see: virtual —
product see: Cartesian—; fuzzy relational—; fuzzy triangle —;

harsh fuzzy—; K-local inner —;mean—; strong—
product of affine functions

[90C26, 90C31]
(see:Multiplicative programming)

product campaign see:mixed-—; single- —
product of concave functions

[90C26, 90C31]
(see:Multiplicative programming)

product of convex functions
[90C26, 90C31]
(see:Multiplicative programming)

product matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

product of relations see: BK- —; circle—; self-inverse—;
square—

product set see: Cartesian —
product of two affine functions see: program of minimizing

a—
production see:modeling—
Production-distribution system design problem

(90B06)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;

Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)

production functions
[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

production planning
[90-01, 90B30, 90B50, 91B32, 91B52, 91B74]
(see: Bilevel programming in management)

Production planning under uncertainty
[90C15]
(see: Stochastic quasigradient methods in minimax
problems)

production realizing with minimal social cost
[90C33]
(see: Order complementarity)

production set
[90B30, 90B50, 90C05, 91B82]
(see: Data envelopment analysis)

production systems see: batch—
productivity see:maximization of—
products see: BK- —; nonassociative—
products of relations see: pseudo-associativity of —
profiles of conjugate-gradient algorithms for unconstrained

optimization see: Performance—
profit

[90C26]
(see: Global optimization in batch design under
uncertainty)

profit-to-time ratio cycle see:maximum—
program see: achievement scalarizing—; adjoint—; basic

operations in a—; bilevel —; concave fractional—;
conic—; convex multiplicative—; convex quadratic—;
dual—; dual linear —; dual semi-infinite—; dual
semidefinite—; extreme point mathematical —; facial —;
facial disjunctive—; finite-dimensional linear —;
fractional—; full master —; generalized fractional—;
infeasible—; integer —; integer linear —; lattice—;
linear —; linear fractional—; linear multiplicative—; linear
programming—; linear semidefinite—; loss of descent in
a nonlinear —;master —;max-min fractional—;min-max
fractional—;mixed integer —;mixed integer nonlinear —;
multi-objective fractional—;multiperiod stochastic —;
multistage stochastic —; Nasa —; nondifferentiable
convex—; nondifferentiable nonconvex—; nonlinear —;
optimal solution of a—; partly convex—; pretty-printing
a declarative—; primal (linear) semi-infinite—;
quadratic—; quadratic fractional—; reduced master —;
reduced quadratic—; relaxed nonlinear —; semi-infinite—;
semidefinite—; semidefinite program as conic convex—;
sequentially convexifiable—; simplex—; single parametric
mixed integer linear —; single-ratio fractional—;
stochastic—; stochastic bilevel —; sum-of-ratios
fractional—; Tchebycheff —; two-stage stochastic linear—;
unbounded—; weighted-sums—; zero-one integer —

program with an additional reverse convex constraint see:
linear —

program with affine equilibrium constraints see:
mathematical —
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program as conic convex program see: semidefinite—
program with equilibrium constraints see:mathematical —
program length see: Shortest —
program of minimizing a convex multiplicative function

[90C26, 90C31]
(see:Multiplicative programming)

program of minimizing a generalized convex function
[90C26]
(see: Global optimization in multiplicative programming)

program of minimizing a product of two affine functions
[90C26, 90C31]
(see:Multiplicative programming)

program for nonlocal sensitivity analysis see: automated
Fortran—

program with recourse see: stochastic—; stochastic
integer —; stochastic linear—; two-stage stochastic—

program structure see: analysing declarative—
programmed implementation

[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

programmed problem of spot rate estimation see: � - —
programming see: analytical approximation of linear—;

applications of parametric —; bibliography of stochastic —;
Bilevel —; Bilevel fractional—; Bilevel linear—; bilinear—;
binary linear—; chance constraint—; combinatorial
fractional—; complexity of bilevel —; Complexity theory:
quadratic—; compromise—; concave—; concave
quadratic—; constrained logic—; constraint—; constraint
logic—; continuous—; convex—; convex composite—;
convex integer —; convex parametric —; convex
quadratic—; Copositive—; cost functions in integer —;
D.C. —; Decomposition principle of linear —; Design of
robust model-based controllers via parametric —;
differentiable convex—; differential dynamic—; difficulties
in bilinear —; Disjunctive—; duality for bilevel —; Duality
for semidefinite—; dynamic—; enumeration in bilevel —;
Extension of the fundamental theorem of linear —; feasible
directionmethod for nonlinear —; Feasible sequential
quadratic—; flexible—; Fractional—; fractional linear—;
Fractional zero-one—; full space successive quadratic—;
fundamental property in convex—; fuzzy—; Fuzzy
multi-objective linear—; Generalized disjunctive—;
generalized geometric —; Geometric —; Global
optimization in generalized geometric —; Global
optimization in multiplicative—; goal —; Graph realization
via semidefinite—; group relaxation in integer —;
handbook on Semidefinite—; history of parametric —;
Homogeneous selfdual methods for linear —;
hyperbolic—; implicit function approach to bilevel —;
indefinite quadratic—; infinite-dimensional linear —;
instability in parametric —; integer —; integer fractional—;
integer linear—; Interior point methods for semidefinite—;
iterative dynamic—; Lagrangian multipliers methods for
convex—; Lexicographic Goal—; linear —;
linear-fractional—; linear semi-infinite—; Lipschitz —;
logic—;mathematical —;matrix splitting methods in
quadratic—;Maximum likelihood detection via
semidefinite—;mixed integer —;mixed integer linear —;
mixed integer nonlinear —;mixed-integer quadratic—;
modeling language and constraint logic—;
multi-objective—;multi-objective fractional—;

Multi-objective integer linear —;multi-objective linear —;
multi-objective mathematical —;Multi-objective mixed
integer —;multi-objective (multicriteria) mixed integer —;
multilevel —;Multiparametric linear—;Multiparametric
mixed integer linear —;multiple objective—;Multiple
objective dynamic—;multiple objective linear —;
multiplicative—;multistage stochastic—; n-fold
integer —; network—; Neuro-dynamic—; nonconvex—;
nonconvex quadratic—; Nondifferentiable optimization:
parametric —; nonlinear —; optimality in bilinear—;
optimality in parametric —; paradigm of logic—;
parallel —; parametric —; parametric linear—; perfect
duality from the view of linear semi-infinite—; Piecewise
linear—; polynomial —; positive semi-definite quadratic
binary—; Potential reduction methods for linear —;
Preprocessing in stochastic—; probabilistic—; probabilistic
constrained linear —; probabilistic constrained
stochastic—; pure zero-one—; quadratic—; quadratic
concave—; reduced problem in semi-infinite—; reverse
convex—; semi-infinite—; semi-infinite linear —;
semidefinite—; sensitivity in nonlinear —; sequential
quadratic—; signomial —; Simplicial pivoting algorithms
for integer —; stability on parametric —; stable bilinear—;
stable parametric —; stochastic—; stochastic dynamic—;
stochastic integer —; stochastic linear —; stochastic
(mixed-)integer—; structural stability in parametric —;
successive quadratic—; test sets in integer —; topological
stability in parametric —; two-stage stochastic—; variable
factor—; Young—; zero-one integer —

programming: algebraic methods see: Integer —
programming algorithm see: continuous-time equivalent of

the dynamic—; descent in a nonlinear—; dynamic—
programming: applications see: Bilevel —
programming: applications in distillation systems see:

Successive quadratic—
programming: applications in engineering see: Bilevel —
programming and applications in finance see: Semi-infinite—
programming: applications in the process industry see:

Successive quadratic—
programming: applications in the supply chain management

see: Bilinear—
programming approach see: semidefinite—
programming approach for DNA transcription element

identification see:Mixed 0-1 linear —
programming: approximationmethods see: Semi-infinite—
programming: average cost per stage problems see:

Dynamic—
programming: barycentric approximation see:Multistage

stochastic—
programming with bound constraints see: Quadratic—
programming: branch and bound methods see: Integer —
programming: branch and cut algorithms see: Integer —
programming in clustering see: Dynamic—
programming with column generation see: Branch and price:

Integer —
programming: complexity, equivalence to minmax, concave

programs see: Bilevel linear—
programming: complexity and equivalent forms see: Quadratic

integer —
programming/constraint programming hybrid methods see:

Mixed integer —
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programming: continuity, stability, rates of convergence see:
Stochastic integer —

programming: continuous-time optimal control see:
Dynamic—

programming and control problems see: Semi-infinite—
programming: cost simplex algorithm see: Parametric linear —
programming: cutting plane algorithms see: Integer —
programming for data mining see:Mathematical —
programming: decomposition and cutting planes see:

Stochastic linear —
programming: decompositionmethods see: Successive

quadratic—
programming and determinant maximization see:

Semidefinite—
programming: deterministic global optimization see:Mixed

integer nonlinear bilevel —
programming: Dinkelbach method see: Quadratic fractional—
programming: discounted problems see: Dynamic —
programming: discretizationmethods see: Semi-infinite—
programming duality see: Integer —; linear —
programming: duality theory see: Probabilistic constrained

linear —
Programming and Economic Analysis see: linear —
programming over an ellipsoid see: Quadratic—
programming equation see: continuous-time analog of the

dynamic—
programming equations see: recursive dynamic—
programming framework for enterprise-wide process

networks under uncertainty see: Bilevel —
programming: full space methods see: Successive quadratic—
programming with fuzzy coefficients see:multi-objective

linear —
programming generating two paths see: Pivoting algorithms

for linear —
programming: global optimization see: Bilevel —
programming: heat exchanger network synthesis see:Mixed

integer linear —
programming hybrid methods see:Mixed integer

programming/constraint—
programming: implicit function approach see: Bilevel —
programming: infinite horizon problems, overview see:

Dynamic—
programming: interior point methods see: Linear —
programming: interior point methods for distributed optimal

control problems see: Sequential quadratic—
programming: introduction, history and overview see:

Bilevel —
programming: inventory control see: Dynamic—
programming: karmarkar projective algorithm see: Linear —
programming: KKT necessary optimality conditions see:

Equality-constrained nonlinear —
programming: Klee–Minty examples see: Linear —
programming: lagrangian relaxation see: Integer —
programming in management see: Bilevel —
programming: mass and heat exchanger networks see:Mixed

integer linear —
programming method see: piecewise sequential quadratic—
programming methods see: active set quadratic—; sequential

quadratic—
programming: methods for linear problems see:

Semi-infinite—

programming methods in supply chain management see:
Mathematical —

programming: minimax approach see: Stochastic—
programming: mixed continuous and discrete free variables

see: Generalized geometric —
programming model see: parametric —
programming models see: parametric —; Static stochastic —;

two-stage stochastic—
programming: models and applications see:Multi-quadratic

integer —
programming models for classification see: Linear —
programming models: conditional expectations see: Static

stochastic—
programming models: random objective see: Stochastic—
programming and Newton’s method in unconstrained

optimal control see: Dynamic—
programming: nonanticipativity and lagrange multipliers see:

Stochastic—
programming: numerical methods see: Semi-infinite—
programming: optimal control applications see: Dynamic—
programming: optimality conditions see: Generalized

semi-infinite—
programming: optimality conditions and duality see: Bilevel —
programming: optimality conditions and stability see:

Semidefinite—
programming paradigm see: general dynamic—;

imperative—
programming: parallel factorization of structured matrices see:

Stochastic—
programming and perfect duality see: Semi-infinite

programming, semidefinite—
programming problem

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

programming problem see: analytical approximation of
a linear —; bilevel —; bilinear—; convex—; convex
semidefinite—; d.c. —; dual —; dynamic two-stage
stochastic—; equality-constrained nonlinear —; extended
quadratic—; fractional—; fractional 0-1—; generalized
bilevel —; hierarchical —; hyperbolic 0-1—; integer —;
large scale nonlinear mixed integer —; linear —; linear
bilevel —; linear semidefinite—;mixed integer
nonlinear —;mixed nonlinear integer —;multilevel —;
nonconvex—; nonlinear —; nonlinear mathematical —;
primal—; quadratic—; quasidifferentiable—; robust—;
semidefinite—; single-ratio fractional (hyperbolic) 0-1—;
stochastic—; zero-one—

programming problem in SQP see: quadratic—
programming problems see: bilevel —; convex and

nonconvex—; extended linear —; integer —;
Multi-objective fractional—; solution of bilevel —;
Stabilization of cutting plane algorithms for stochastic
linear —

programming program see: linear —
programming: quasigradient method see: Two-stage

stochastic—
programming recursion see: dynamic—
programming recursions see: dynamic—
programming relaxation see: linear —
programming relaxations see: linear —
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programming with right-hand-side uncertainty, duality and
applications see: Robust linear —

programming: second order optimality conditions see:
Semi-infinite—

programming, semidefinite programming and perfect duality
see: Semi-infinite—

programming and the sensor network localization problem,
SNLP see: Semidefinite—

programming with simple integer recourse see: Stochastic—
programming: solution by active sets and interior point

methods see: Successive quadratic—
programming: stochastic shortest path problems see:

Dynamic—
programming and structural optimization see: Semidefinite—
programming sub-problems see: Kuhn–Tucker conditions for

quadratic—
programming subproblem see: quadratic—; reduced

quadratic—
programming support see:Multiple objective—
programming under probabilistic constraint

[90C15]
(see: Static stochastic programmingmodels)

programming under uncertainty see:multi-objective linear —
programming: undiscounted problems see: Dynamic—
programming with variable coefficients see: generalized

linear—
programs see: AD of parallel —; air traffic control and ground

delay—; algorithms for stochastic bilevel —; bilevel —;
Bilevel linear programming: complexity, equivalence to
minmax, concave—; classification of fractional—;
classifying declarative—; computationally equivalent
semi-infinite—; conic convex—; discretely distributed
stochastic—; dual linear—; indefinite quadratic—;
linearization of—;mixed integer —;mixed integer 0–1—;
multiratio—;multy-stage stochastic—; nonconvex—;
nonlinear semi-infinite—; partly convex—; polynomial —;
process simulation—; Redundancy in nonlinear —; reverse
convex—; Robust optimization: mixed-integer linear —;
robust parametric —; Selfdual parametric method for
linear—; semi-infinite—; single-ratio—; Solving large scale
and sparse semidefinite—; Stochastic bilevel —; Stochastic
integer —; symbolically transforming declarative—

programs with constraints see: weighted-sums—
programs: descent directions and efficient points see:

Discretely distributed stochastic —
programs with recourse see: L-shaped method for two-stage

stochastic—; two-stage stochastic—
programs with recourse and arbitrary multivariate

distributions see: Stochastic linear—
programs with recourse: upper bounds see: Stochastic—
programs for routing and protection problems in optical

networks see: Integer linear —
programs with simple integer recourse see: two-stage

stochastic—
prohibited neighbor in tabu search

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

prohibition parameter
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

prohibition parameter T
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

project see: lift-and-—
project cut see: lift-and-—
project cuts see: lift-and-—
project hierarchy see: lift-and-—
project scheduling see: Static resource constrained—
projected dynamical system

[65K10, 90B15, 90C90]
(see: Dynamic traffic networks; Variational inequalities:
projected dynamical system)

projected dynamical system
[65K10, 90B15, 90C90]
(see: Dynamic traffic networks; Variational inequalities:
projected dynamical system)

projected dynamical system see: Variational inequalities:—;
variational inequality problem and a—

projected dynamical systems
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

projected gradient algorithm
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

projected gradient methods see: Spectral —
projected Hessian matrix of a Lagrangian function

[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

projected Lagrangian Hessian matrix
[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

projected negative gradient
[58E05, 90C30]
(see: Topology of global optimization)

projected negative gradient
[58E05, 90C30]
(see: Topology of global optimization)

projected positive gradient
[58E05, 90C30]
(see: Topology of global optimization)

projected positive gradient
[58E05, 90C30]
(see: Topology of global optimization)

projection
[49J52, 49M29, 65K10, 65M60, 90C11, 90C30]
(see: Generalized benders decomposition;Nondifferentiable
optimization: relaxationmethods; Variational inequalities)

projection
[52B12, 65K10, 65M60, 68Q25]
(see: Fourier–Motzkin elimination method; Variational
inequalities)

projection see: best —; gradient —; isotone—;metric —;
orthogonal —; subgradient —

projection algorithm see: gradient—; subgradient —
projection cone see: isotone—
projection constraints

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)
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projection data see: feasibility approach to image
reconstruction from—; image reconstruction from—;
optimization approach to image reconstruction from—

projection matrix
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

projection matrix see: oblique—
projection method

[47J20, 49J40, 65K10, 90C33, 91B50]
(see: Solution methods for multivalued variational
inequalities;Walrasian price equilibrium)

projection method
[90C30, 91B50]
(see: Relaxation in projectionmethods;Walrasian price
equilibrium)

projection method see: Rosen gradient —
projection methods see: Relaxation in—; sQG—
projection operator see: orthogonal —
projection-restriction strategy

[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

projective
[49M07, 49M10, 65K05, 90C06]
(see: Performance profiles of conjugate-gradient algorithms
for unconstrained optimization)

projective algorithm
[90C05]
(see: Linear programming: interior point methods)

projective algorithm see: Linear programming: karmarkar —
projective transformation

[90C05]
(see: Linear programming: karmarkar projective algorithm)

projective transformation
[90C05]
(see: Linear programming: karmarkar projective algorithm)

Prolog
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

Prolog see: BNR- —
Prolog IV

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

prolongation see: axiom of—
prolongation axiom

[03E70, 03H05, 91B16]
(see: Alternative set theory)

promising region see:most—
prone, adaptive) decision see: ex-post (risk —
proof see: infeasibility—
proof on the dual side

[90C05, 90C25]
(see: Young programming)

proof methodology see: NP-complete problems and—
proof system see: propositional—
proofs see: NP-completeness —
propagation

[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

propagation see: back—; constraint—; Interval —

proper
[51K05, 52C25, 65K05, 68Q25, 68U05, 90C22, 90C26, 90C30,
90C35]
(see: Graph realization via semidefinite programming;
Monotonic optimization)

proper see: strictly —
proper coloring

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

proper efficiency
[90C29]
(see: Vector optimization)

proper k-leveled graph
[90C35]
(see: Optimization in leveled graphs)

proper policy
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

proper reduction
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

properly efficient solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

properly efficient solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

properly quasimonotone operator
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

properness see: dual —
properties see: combinatorial—; descent —; Entropy

optimization: shannon measure of entropy and its —; local
relational—;Multi-objective optimization: pareto optimal
solutions—; regularity—; testing relational—;
thermodynamic —

properties and applications see: Pseudomonotonemaps: —
properties of the configuration space see: local —
properties of crisp relations see: special —
properties of fuzzy relations see: special —
properties of heterogeneous relations see: special —
properties of homogeneous relations see: special —
properties of interval Newton methods see:

existence-proving—
properties of randommultidimensional assignment problem

see: Asymptotic —
properties of relations see: special —; universal —
property see: boundary dependence—; cutworthy —;

domination—; ellipsoid—; exchange—; existence—;
generic —; greedy-choice—; hereditary —; homotopy—;
integrality —; isotonicity—; Jacobian consistency—;
localization—;Monge—; norm-dependent —;
normalization—; optimal substructure—; pivoting—;
scalarization—; single assignment —; uniform cone—
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property-closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

property of concavity
[94A17]
(see: Jaynes’ maximum entropy principle)

property in convex programming see: fundamental —
property of the objective function value see: continuity—;

convexity—
property of the solution space see: convexity—
proposal vector

[90C15, 90C90]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems)

proposition
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

propositional proof system
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

protection see: path- —
protection problems in optical networks see: Integer linear

programs for routing and—
protein

[90C90]
(see: Simulated annealing methods in protein folding)

protein design using flexible templates see: De novo—
protein designUsing rigid templates see: De novo—
protein folding

[65K10, 90C90, 92C40]
(see:Multipleminima problem in protein folding:˛BB
global optimization approach; Simulated annealing
methods in protein folding)

protein folding
[65K05, 65K10, 90C26, 90C90, 92C05, 92C40]
(see: Adaptive simulated annealing and its application to
protein folding;Molecular structure determination: convex
global underestimation;Monte-Carlo simulated annealing
in protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach; Simulated
annealingmethods in protein folding)

protein folding see: Adaptive simulated annealing and its
application to—; Global optimization in—;Monte-Carlo
simulated annealing in—; Simulated annealing methods
in—

protein folding: ˛BB global optimization approach see:
Multiple minima problem in—

Protein folding: generalized-ensemble algorithms
(92C05, 92C40, 92-08)
(referred to in: Adaptive simulated annealing and its
application to protein folding;Genetic algorithms;Global
optimization in Lennard–Jones and morse clusters;Graph
coloring;Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach; Packet
annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Simulated annealing methods in
protein folding)

protein folding problem
[65K05, 90C26]
(see:Molecular structure determination: convex global
underestimation)

protein force field via linear optimization see: Distance
dependent —

Protein loop structure predictionmethods
(92C05, 92C40)

protein sequence alignment via mixed-integer linear
optimization see: Global pairwise—

protein structure
[92B05]
(see: Genetic algorithms for protein structure prediction)

protein structure prediction see: Genetic algorithms for—
proteins see: Predictive method for interhelical contacts in

alpha-helical—
protocol see: communication—
protoconvex

[90C26]
(see: Invexity and its applications)

protoconvex
[90C26]
(see: Invexity and its applications)

prototype location problem
[90B80, 90B85]
(see:Warehouse location problem)

prototype location problem
[90B80, 90B85]
(see:Warehouse location problem)

prover see: resolution based theorem—
proving properties of interval Newton methods see:

existence- —
proximal algorithms

[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

proximal approximation
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

proximal bundle method
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

proximal framework
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

proximal-like method
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

proximal map
[90C25, 90C30]
(see: Lagrangianmultipliersmethods for convex
programming)

proximal minimization
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

proximal minimization with D-functions
[68W10, 90B15, 90C06, 90C30]
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(see: Stochastic network problems: massively parallel
solution)

proximal point
[90C30]
(see: Cost approximation algorithms)

proximal point algorithm
[47H05, 65J15, 90C25, 90C30, 90C55]
(see: Cost approximation algorithms; Fejér monotonicity in
convex optimization; Lagrangianmultipliers methods for
convex programming)

proximal point algorithm see: entropic—; partial —;
quadratic—

proximal point algorithms see: inexact—
proximal point approach

[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

proximal point bundle method
[49J52, 90C30]
(see: Nondifferentiable optimization: relaxationmethods)

proximal point method
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

proximal point methods
[90C30]
(see: Cost approximation algorithms)

proximal point methods
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

proximal set
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

proximal support vector machine see: generalized
eigenvalue—

proximal support vector machine problem see: Generalized
eigenvalue—

proximate optimality principal
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

proximate optimality principle
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

proximinal
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

proximity see: skew-symmetric —; symmetric —
proximity data see: row conditional—
proximity graph model

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

proximity map
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

pRP
[49M07, 49M10, 65K, 90C06]
(see: New hybrid conjugate gradient algorithms for
unconstrained optimization)

prune see: branch and—

pruning
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

PSA
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

PSA with dummy nodes
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

pSD
[05C50, 15A48, 15A57, 65K10, 90C25, 90C26, 90C33, 90C39,
90C51]
(see: Generalizations of interior point methods for the
linear complementarity problem;Matrix completion
problems; Second order optimality conditions for
nonlinear optimization)

pseudo-associativity of products of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

pseudo-inverse
[65Fxx]
(see: Least squares problems)

pseudo-inverse see:Moore–Penrose—
pseudo-invex

[90C26]
(see: Invexity and its applications)

pseudo-invex
[90C26]
(see: Invexity and its applications)

pseudo-order
[90C29]
(see: Preference modeling)

pseudo-triangulations
[68Q20]
(see: Optimal triangulations)

pseudoconcave function see: U-—; U-weakly—
pseudoconnected family of sets

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

pseudoconnectedness
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

pseudoconvex
[90C26, 90C30]
(see: Generalized monotone multivalued maps; Generalized
monotone single valued maps; Invexity and its applications;
Simplicial decomposition)

pseudoconvex
[90C26, 90C30]
(see: Frank–Wolfe algorithm; Invexity and its applications)

pseudoconvex see: �- —; strictly —
pseudoconvex function

[90C06, 90C25, 90C30, 90C35]
(see: Convex-simplex algorithm; Simplicial decomposition
algorithms)

pseudoconvex function
[90C06, 90C25, 90C30, 90C35]
(see: Convex-simplex algorithm; Simplicial decomposition
algorithms)

pseudoconvex function see: strictly—
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pseudoconvexity
[90C30]
(see: Simplicial decomposition)

pseudocost
[90C11]
(see:MINLP: branch and boundmethods)

pseudocost estimate
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and bound methods)

pseudocosts
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

pseudocosts see: best estimate using—
pseudoflow

[90C35]
(see:Minimum cost flow problem)

pseudomonotone
[47J20, 49J40, 65K10, 90C26, 90C33]
(see: Generalized monotone multivalued maps; Solution
methods for multivalued variational inequalities)

pseudomonotone bifunction
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

pseudomonotone bifunction (with respect to another)
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

pseudomonotone map see: strictly —
pseudomonotone mapping

[90C26]
(see: Generalized monotone single valued maps)

pseudomonotone mapping
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

Pseudomonotone maps: properties and applications
(49J40; 49J53; 47H05; 47H04; 26B25)
(refers to: Generalized monotone multivalued maps;
Generalizedmonotone single valued maps)

pseudomonotone operator
[35A15, 46N10, 47J20, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems;Hemivariational
inequalities: static problems)

pseudomonotone operator see: strictly —
pseudopolynomial algorithm

[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

pseudopolynomial time algorithm
[49-01, 49K45, 49N10, 90-01, 90C20, 90C27, 90C35, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs;Maximum flow problem;
Minimum cost flow problem)

pseudoquadratic constraint
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

pseudorandom
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

pseudoshadow price
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

pseudoshadow prices see: best estimate using—
pseudosphere

[90C09, 90C10]
(see: Oriented matroids)

pSM
(see: State of the art in modeling agricultural systems)

PSPACE
[03D15, 68Q05, 68Q15, 90C60]
(see: Complexity classes in optimization; Parallel
computing: complexity classes)

PSQP
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

psychology
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

PTAS
[90C60]
(see: Complexity classes in optimization)

PTAS see: Arora—;Mitchell —
PTSP

[90C10, 90C15]
(see: Stochastic vehicle routing problems)

pull-in trip
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

pull objectives
[90B85]
(see: Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location)

pull-out trip
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

pumping facilities see: groundwater —; surface water —
purchase contract see: energy —
purchaser problem see: Traveling—
pure adaptive search

[65K05, 90C26, 90C30, 90C90]
(see: Global optimization: hit and run methods; Random
search methods)

pure adaptive search
[90C26, 90C90]
(see: Global optimization: hit and run methods)

pure complementary gap function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

pure exchange
[91B50]
(see:Walrasian price equilibrium)

pure exchange economic equilibrium model
[91B50]
(see:Walrasian price equilibrium)

pure exchange economy
[90C27, 90C60, 91A12, 91B50]
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(see: Combinatorial optimization games;Walrasian price
equilibrium)

pure exchange equilibrium
[91B50]
(see:Walrasian price equilibrium)

pure localization search
[65K05, 90C30]
(see: Random search methods)

pure Monte-Carlo
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

pure Monte-Carlo method
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

pure network problem
[90C35]
(see: Generalized networks)

pure NP method
[90C11, 90C59]
(see: Nested partitions optimization)

pure random search
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30,
90C90]
(see: Global optimization: hit and run methods; Random
search methods; Stochastic global optimization: stopping
rules; Stochastic global optimization: two-phase methods)

pure random search
[90C26, 90C90]
(see: Global optimization: hit and run methods)

pure strategy
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

pure trade
[91B50]
(see:Walrasian price equilibrium)

pure trade economic equilibrium model
[91B50]
(see:Walrasian price equilibrium)

pure trust region strategy
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

pure zero-one programming
[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

purpose see: general —
purpose of models

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

purpose software library see: general- —
push

[90C35]
(see:Maximum flow problem)

push see: nonsaturating—; saturating—
push algorithm see: generic preflow-—; preflow- —
push objectives

[90B85]
(see: Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location)

PVM
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

PVM-based implementation
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

PVSPLIT
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

Q

q see: CG-standard for minimizing—
q-coloring see: hypergraph —
Q-factor

[90C39]
(see: Neuro-dynamic programming)

Q-learning
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

q-matrices
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

Q-matrix
[90C33]
(see: Linear complementarity problem)

Q-quadratic convergence
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

(Q,R) policy
[90B50]
(see: Inventory management in supply chains)

Q-splitting see: regular —
Q-superlinear

[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

Q-superlinear convergence
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

qAP
[68Q25, 68R10, 68W40, 90C27, 90C59, 90C90]
(see: Domination analysis in combinatorial optimization;
Simulated annealing)

QAP see: algebraic —; constant permutation—; general —;
K-L type neighborhood structure for the—;
Koopmans–Beckmann—

QBB global optimization method
(49M37, 65K10, 90C26, 90C30)

QC see: basic—
QD functions see: Quasidifferentiable optimization: algorithms

for—
QD laws and systems of variational inequalities

[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

QD-superpotentials see: convex variational inequality for an
elastostatic problem involving—; elastostatic problem
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involving—; variational equality for an elastostatic problem
involving—

QP
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

QP
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

QP Kuhn–Tucker points see:multiple—
QP/NLP based branch and bound

[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

QPP algorithm
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

QPwBC
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

QR algorithm see: implicit—
QR decomposition

[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

QR factorization
(65F25, 15A23, 65F05, 65F20, 65F22)
(referred to in: ABS algorithms for linear equations and
linear least squares; Cholesky factorization; Interval linear
systems; Large scale trust region problems; Large scale
unconstrained optimization;Orthogonal triangularization;
Overdetermined systems of linear equations; Solving large
scale and sparse semidefinite programs; Symmetric systems
of linear equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Cholesky factorization; Interval linear
systems; Large scale trust region problems; Large scale
unconstrained optimization; Linear programming;
Orthogonal triangularization;Overdetermined systems of
linear equations; Solving large scale and sparse semidefinite
programs; Symmetric systems of linear equations)

qR factorization
[15A23, 65F05, 65F20, 65F22, 65F25, 65Fxx, 90C30]
(see: Generalized total least squares; Least squares
problems;QR factorization)

QR factorization
[15A23, 65F05, 65F20, 65F22, 65F25, 90C20, 90C30]
(see: Orthogonal triangularization; Successive quadratic
programming: decomposition methods)

QR factorization see: rank revealing—
QR factorization with column-pivoting

[15A23, 65F05, 65F20, 65F22, 65F25]
(see: Orthogonal triangularization)

QR factorization using Householder transformations
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

QR method
[65K05, 65K10]
(see: ABS algorithms for optimization)

(QR) policy see: Continuous review inventory models: —
QSAP

[90C08, 90C11, 90C27]
(see: Quadratic semi-assignment problem)

QSM model
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

quadratic
[49M20, 90C06, 90C10, 90C11, 90C27, 90C30, 90C57, 90C90]
(see: Generalized outer approximation;Modeling difficult
optimization problems; Simulated annealing)

quadratic assignment
[05-XX, 62H30, 90C27]
(see: Assignment methods in clustering; Frequency
assignment problem)

quadratic assignment
[62H30, 90C27]
(see: Assignment methods in clustering)

Quadratic assignment problem
(90C08, 90C11, 90C27, 90C57, 90C59)
(referred to in: Assignment and matching;Assignment
methods in clustering; Bi-objective assignment problem;
Biquadratic assignment problem; Communication network
assignment problem; Complexity theory: quadratic
programming; Facilities layout problems; Feedback set
problems; Frequency assignment problem;Graph coloring;
Graph planarization;Greedy randomized adaptive search
procedures; Linear ordering problem;Maximum partition
matching;Quadratic fractional programming: Dinkelbach
method;Quadratic knapsack;Quadratic programming with
bound constraints;Quadratic programming over an
ellipsoid;Quadratic semi-assignment problem; Standard
quadratic optimization problems: algorithms; Standard
quadratic optimization problems: applications; Standard
quadratic optimization problems: theory)
(refers to: Assignment andmatching; Assignment methods
in clustering; Bi-objective assignment problem;
Communication network assignment problem; Complexity
theory; Complexity theory: quadratic programming;
Computational complexity theory; Concave programming;
Extended cutting plane algorithm; Facilities layout
problems; Feedback set problems; Frequency assignment
problem;Generalized assignment problem;Graph coloring;
Graph planarization;Greedy randomized adaptive search
procedures;Heuristic search; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
Linear ordering problem; Linear programming: interior
point methods;Maximum partitionmatching;
Nondifferentiable optimization: subgradient optimization
methods;Quadratic fractional programming: Dinkelbach
method;Quadratic knapsack;Quadratic programming with
bound constraints;Quadratic programming over an
ellipsoid;Quadratic semi-assignment problem; Standard
quadratic optimization problems: algorithms; Standard
quadratic optimization problems: applications; Standard
quadratic optimization problems: theory)

quadratic assignment problem
[05-04, 68Q25, 68R10, 68W40, 90B80, 90C05, 90C06, 90C08,
90C10, 90C11, 90C20, 90C27, 90C59]
(see: Communication network assignment problem;
Domination analysis in combinatorial optimization;
Evolutionary algorithms in combinatorial optimization;
Integer programming: branch and cut algorithms; Linear
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ordering problem; Time-dependent traveling salesman
problem)

quadratic assignment problem
[90B80, 90C08, 90C11, 90C27, 90C57, 90C59]
(see: Facilities layout problems;Quadratic assignment
problem)

quadratic assignment problem see: algebraic —;
bottleneck —; general —; Koopmans–Beckmann—

quadratic barrier-penalty function see: logarithmic-—
quadratic binary programming see: positive semi-definite—
quadratic (Brier) scoring rule

(see: Bayesian networks)
quadratic co-index

[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

quadratic concave programming
[49M37, 90C26, 91A10]
(see: Bilevel programming)

quadratic constraint see: convex—; integral —
quadratic convergence

[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

quadratic convergence see: Q-—
quadratic convergence theorem see: local —
quadratic fractional program

[90C32]
(see: Fractional programming)

Quadratic fractional programming: Dinkelbachmethod
(90C32)
(referred to in: Complexity theory: quadratic programming;
Fractional combinatorial optimization; Fractional
programming; Linear ordering problem;Quadratic
assignment problem;Quadratic knapsack;Quadratic
programming with bound constraints;Quadratic
programming over an ellipsoid; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)
(refers to: Bilevel fractional programming; Complexity
theory: quadratic programming; Fractional combinatorial
optimization; Fractional programming;Quadratic
assignment problem;Quadratic knapsack;Quadratic
programming with bound constraints;Quadratic
programming over an ellipsoid; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)

quadratic function
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

quadratic function see: convex—; piecewise linear —; positive
definite—

quadratic Gaussian see: linear- —
quadratic generalized network problems

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

quadratic index
[49J52, 49Q10, 58E05, 74G60, 74H99, 74K99, 74Pxx, 90C30,
90C90]

(see: Quasidifferentiable optimization: stability of dynamic
systems; Topology of global optimization)

Quadratic integer programming: complexity and equivalent
forms
(65K05, 90C11, 90C20)
(referred to in:Maximum cut problem, MAX-CUT)

quadratic integer programming: models and applications see:
Multi- —

Quadratic knapsack
(90C20, 90C60)
(referred to in: Complexity theory: quadratic programming;
Integer programming; Linear ordering problem;
Multidimensional knapsack problems;Quadratic
assignment problem;Quadratic fractional programming:
Dinkelbach method;Quadratic programming with bound
constraints;Quadratic programming over an ellipsoid;
Reverse convex optimization; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)
(refers to: ˛BB algorithm; Complexity theory; Complexity
theory: quadratic programming; Computational
complexity theory;D.C. programming; Integer
programming;Multidimensional knapsack problems;
Quadratic assignment problem;Quadratic fractional
programming: Dinkelbach method;Quadratic
programming with bound constraints;Quadratic
programming over an ellipsoid;Reverse convex
optimization; Standard quadratic optimization problems:
algorithms; Standard quadratic optimization problems:
applications; Standard quadratic optimization problems:
theory)

quadratic knapsack problem see: convex—
quadratic Lagrangian

[90C25, 90C30]
(see: Lagrangianmultipliers methods for convex
programming)

quadratic maximum likelihoodmethod see: iterative —
quadratic models see: positive definite—
quadratic nondegeneracy condition

[58E05, 90C30]
(see: Topology of global optimization)

quadratic optimization see: convex—
quadratic optimization problem see: standard —
quadratic optimization problems: algorithms see: Standard—
quadratic optimization problems: applications see:

Standard—
quadratic optimization problems: theory see: Standard—
quadratic outer approximation

[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

quadratic problem see: bound constrained—; linear- —
quadratic problems see: indefinite—
quadratic program

[65F10, 65F50, 65H10, 65K10, 90C31]
(see: Globally convergent homotopy methods; Sensitivity
and stability in NLP: approximation)

quadratic program see: convex—; reduced—
quadratic programming

[05C60, 05C69, 37B25, 65K05, 65L99, 90C20, 90C25, 90C27,
90C30, 90C35, 90C59, 90C60, 91A22, 93-XX]



Subject Index 4457

(see: Complexity theory: quadratic programming;
Optimization strategies for dynamic systems; Quadratic
programming with bound constraints;Quadratic
programming over an ellipsoid;Replicator dynamics in
combinatorial optimization; Successive quadratic
programming: solution by active sets and interior point
methods)

quadratic programming
[05C60, 05C69, 37B25, 65K05, 90C20, 90C25, 90C27, 90C30,
90C31, 90C33, 90C35, 90C59, 90C60, 91A22, 91B28]
(see: Complexity theory: quadratic programming;
Frank–Wolfe algorithm; Linear complementarity problem;
Operations research and financial markets; Portfolio
selection: markowitz mean-variance model;Quadratic
knapsack;Quadratic programming with bound constraints;
Quadratic programming over an ellipsoid;Replicator
dynamics in combinatorial optimization; Sensitivity and
stability in NLP: approximation; Successive quadratic
programming: solution by active sets and interior point
methods)

quadratic programming see: Complexity theory: —;
concave—; convex—; Feasible sequential —; full space
successive—; indefinite—;matrix splitting methods in—;
mixed-integer—; nonconvex—; sequential —;
successive—

quadratic programming: applications in distillation systems
see: Successive—

quadratic programming: applications in the process industry
see: Successive—

Quadratic programming with bound constraints
(90C20, 65K05)
(referred to in: Complexity theory: quadratic programming;
Linear ordering problem;Quadratic assignment problem;
Quadratic fractional programming: Dinkelbach method;
Quadratic knapsack;Quadratic programming over an
ellipsoid;Reverse convex optimization; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications; Standard quadratic
optimization problems: theory)
(refers to: Complexity theory: quadratic programming;D.C.
programming; Linear complementarity problem; Linear
programming: interior point methods;Quadratic
assignment problem;Quadratic fractional programming:
Dinkelbachmethod;Quadratic knapsack;Quadratic
programming over an ellipsoid;Reverse convex
optimization; Standard quadratic optimization problems:
algorithms; Standard quadratic optimization problems:
applications; Standard quadratic optimization problems:
theory)

quadratic programming: decompositionmethods see:
Successive—

Quadratic programming over an ellipsoid
(90C20, 90C25)
(referred to in: Complexity theory: quadratic programming;
Linear ordering problem;Quadratic assignment problem;
Quadratic fractional programming: Dinkelbach method;
Quadratic knapsack;Quadratic programming with bound
constraints; Standard quadratic optimization problems:
algorithms; Standard quadratic optimization problems:
applications; Standard quadratic optimization problems:

theory;Volume computation for polytopes: strategies and
performances)
(refers to: Complexity theory: quadratic programming;
Quadratic assignment problem;Quadratic fractional
programming: Dinkelbachmethod;Quadratic knapsack;
Quadratic programming with bound constraints; Standard
quadratic optimization problems: algorithms; Standard
quadratic optimization problems: applications; Standard
quadratic optimization problems: theory;Volume
computation for polytopes: strategies and performances)

quadratic programming: full space methods see: Successive—
quadratic programming: interior point methods for

distributed optimal control problems see: Sequential —
quadratic programming method see: piecewise sequential —
quadratic programming methods see: active set —;

sequential —
quadratic programming problem

[90C30, 90C90]
(see: Design optimization in computational fluid dynamics;
Successive quadratic programming: applications in
distillation systems)

quadratic programming problem see: extended—
quadratic programming problem in SQP

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

quadratic programming: solution by active sets and interior
point methods see: Successive—

quadratic programming sub-problems see: Kuhn–Tucker
conditions for —

quadratic programming subproblem
[90C30, 90C90]
(see: Successive quadratic programming; Successive
quadratic programming: applications in distillation
systems)

quadratic programming subproblem see: reduced—
quadratic programs see: indefinite—
quadratic proximal point algorithm

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

Quadratic semi-assignment problem
(90C27, 90C11, 90C08)
(referred to in: Feedback set problems;Graph coloring;
Graph planarization;Greedy randomized adaptive search
procedures; Linear ordering problem;Quadratic
assignment problem)
(refers to: Feedback set problems;Generalized assignment
problem;Graph coloring;Graph planarization;Greedy
randomized adaptive search procedures;Quadratic
assignment problem)

quadratic semi-assignment problem
[90C08, 90C11, 90C27]
(see: Quadratic semi-assignment problem)

quadratic turning point
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

quadratic zero-one problem
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

quadrature see: Gaussian—
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quadrature methods
[33C45, 65F20, 65F22, 65K10]
(see: Least squares orthogonal polynomials)

quadrature rule see: generalized Gauss—
qualification see: basic constraint—; constraint—; first order

constraint—; generalized Slater constraint—; linear
independence constraint—; linear independency
constraint—;Mangasarian–Fromovitz constraint—;
second order constraint—; Slater constraint—

qualification (LICQ) see: linear independence constraint—
qualification rule see: absolute —
qualifications see: constraint—; First order constraint—; input

constraint—; Second order constraint—
qualitative class of a matrix

[90C09, 90C10]
(see: Combinatorial matrix analysis)

qualitative forecasting methods
[90C26, 90C30]
(see: Forecasting)

quality see: establishing solution—
quality of both water environment see:minimizing the

degradation in—
quality equalization

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

quantifier see: generalized —
quantifiers see: observational —
quantile function

[90C15]
(see: Approximation of extremum problems with
probability functionals)

quantitative continuity see: rates of—
quantitative forecasting methods

[90C26, 90C30]
(see: Forecasting)

quantity see: economic order—; relaxation—
quantity formulation

[91B28, 91B50]
(see: Spatial price equilibrium)

quantity model
[91B28, 91B50]
(see: Spatial price equilibrium)

quantity model
[91B28, 91B50]
(see: Spatial price equilibrium)

quantum group
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

quasi-assignment model
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

quasi-diagonal
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

quasi-Hessian
[90C90]
(see: Design optimization in computational fluid dynamics)

quasi-invex
[90C26]
(see: Invexity and its applications)

quasi-invex
[90C26]
(see: Invexity and its applications)

quasi-Newton
[90C30]
(see: Cost approximation algorithms)

quasi-Newton method
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

quasi-Newton method see: partitioned—; SR1—; symmetric
rank-one—

quasi-Newton method of Broyden class
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

quasi-Newton methods
[49M37, 65K05, 90C30, 90Cxx]
(see: Broyden family of methods and the BFGS update; Cost
approximation algorithms;Nonlinear least squares:
Newton-type methods; Symmetric systems of linear
equations; Unconstrained nonlinear optimization:
Newton–Cauchy framework)

quasi-Newton methods
[49M37, 65K05, 65K10, 90C30]
(see: ABS algorithms for optimization; Broyden family of
methods and the BFGS update;Nonlinear least squares:
Newton-type methods)

quasi-Newton methods see: factorized—
quasi-Newton relation

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

quasi-Newton search engine
[90C15, 90C30, 90C99]
(see: SSC minimization algorithms)

quasi-Newton update
[15A15, 90C25, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization)

quasi-Newton update see: BFGS—;
Broyden–Fletcher–Goldfarb–Shanno—

quasi-Newton updates
[49M37]
(see: Nonlinear least squares: Newton-type methods)

quasi-Newton updating see: inverse —
quasi-Newtonian descent direction

[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

quasi-optimal solution
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

quasi-order
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

quasiconcave
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 90C15, 90C29,
91A05]
(see: Generalized concavity in multi-objective optimization;
Logconcave measures, logconvexity;Minimax theorems)



Subject Index 4459

quasiconcave function
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

quasiconcave function
[90C15]
(see: Logconcave measures, logconvexity)

quasiconcave function see: int U- —; Luc U- —; U-—
quasiconcave measure

[90C15]
(see: Logconcave measures, logconvexity)

quasiconcave probability distribution
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

quasiconcave probability measure
[90C15]
(see: Logconcave measures, logconvexity)

quasiconvex
[41A30, 46A22, 47A99, 49J35, 49J40, 54D05, 54H25, 55M20,
65K10, 90C26, 91A05]
(see: Generalized monotone single valued maps; Invexity
and its applications; Lipschitzian operators in best
approximation by bounded or continuous functions;
Minimax theorems)

quasiconvex
[90C26]
(see: Invexity and its applications)

quasiconvex function
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

quasiconvex function
[90C26]
(see: Generalized monotone multivalued maps; Generalized
monotone single valued maps)

quasiconvex function see: semistrictly—; strictly—
quasiconvex medium regression

[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

quasiconvexminorant see: greatest —
quasiconvex and umbrella regression

[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

quasidifferentiability
[26B25, 26E25, 49J35, 49J40, 49J52, 49M05, 49Q10, 49S05,
52A27, 65K99, 70-08, 74A55, 74G60, 74G99, 74H99, 74K99,
74M10, 74M15, 74Pxx, 90C25, 90C26, 90C90, 90C99]
(see: Quasidifferentiable optimization;Quasidifferentiable
optimization: applications;Quasidifferentiable
optimization: calculus of quasidifferentials;
Quasidifferentiable optimization: codifferentiable
functions;Quasidifferentiable optimization: Dini
derivatives, clarke derivatives;Quasidifferentiable
optimization: stability of dynamic systems;
Quasidifferentiable optimization: variational formulations)

quasidifferentiable
[26B25, 26E25, 49J35, 49J52, 65K99, 65Kxx, 70-08, 74A55,
74M10, 74M15, 90C25, 90C26, 90C90, 90C99, 90Cxx]

(see: Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: calculus of
quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions)

quasidifferentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

quasidifferentiable function
[65K05, 65Kxx, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Quasidifferentiable optimization: algorithms for QD
functions)

quasidifferentiable function see: Dini —;
Hadamard—

quasidifferentiable functions
[65K05, 90C30]
(see:Minimax: directional differentiability)

quasidifferentiable functions see: examples of—
Quasidifferentiable optimization

(49J52, 26B25, 90C99, 26E25)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
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Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: algorithms for
hypodifferentiable functions
(49J52, 65K99)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable

optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: algorithms for QD
functions
(90Cxx, 65Kxx)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
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formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: applications
(74A55, 74M10, 74M15, 65K99, 90C26, 49J35)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational

inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: applications to
thermoelasticity
(74B99, 74D99, 74G99, 74H99, 47S40, 35R70)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: calculus of
quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: calculus of
quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: calculus of
quasidifferentials
(49J52, 65K99, 90C90)
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(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: codifferentiable functions
(65K99, 70-08, 49J52, 90C25)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;

Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
Dini derivatives, clarke derivatives;Quasidifferentiable
optimization: exact penalty methods;Quasidifferentiable
optimization: optimality conditions;Quasidifferentiable
optimization: stability of dynamic systems;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
Dini derivatives, clarke derivatives;Quasidifferentiable
optimization: exact penalty methods;Quasidifferentiable
optimization: optimality conditions;Quasidifferentiable
optimization: stability of dynamic systems;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: Dini derivatives, clarke
derivatives
(49J52, 26E25, 52A27, 90C99)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
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thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: exact penalty methods;Quasidifferentiable
optimization: optimality conditions;Quasidifferentiable
optimization: stability of dynamic systems;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: exact penalty methods;Quasidifferentiable
optimization: optimality conditions;Quasidifferentiable
optimization: stability of dynamic systems;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: exact penalty methods
(90Cxx)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Nondifferentiable optimization;Quasidifferentiable
optimization;Quasidifferentiable optimization: algorithms
for hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: optimality conditions;

Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: optimality conditions
(90Cxx)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
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F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Dini and Hadamard derivatives in optimization;
Generalized monotonicity: applications to variational
inequalities and equilibrium problems;Hemivariational
inequalities: applications in mechanics;Hemivariational
inequalities: eigenvalue problems;Hemivariational
inequalities: static problems;Nonconvex energy functions:
hemivariational inequalities;Nonconvex-nonsmooth
calculus of variations;Quasidifferentiable optimization;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: stability of dynamic systems
(74G60, 74H99, 49J52, 49Q10, 74K99, 74Pxx, 90C90)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Optimization strategies for dynamic systems;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Optimization strategies for dynamic systems;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities; Sensitivity analysis of
variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

Quasidifferentiable optimization: variational formulations
(74G99, 74H99, 74Pxx, 49J40, 49M05, 49S05)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasivariational inequalities; Sensitivity analysis
of variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
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energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasivariational inequalities; Sensitivity analysis
of variational inequality problems; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
inequalities: projected dynamical system; Variational
principles)

quasidifferentiable problems
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

quasidifferentiable programming problem
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

quasidifferentiable set
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

quasidifferentiable superpotential
[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

quasidifferential
[26B25, 26E25, 49J52, 52A27, 90C99, 90Cxx]
(see: Quasidifferentiable optimization;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: optimality conditions)

quasidifferential
[90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods;Quasidifferentiable optimization: optimality
conditions)

quasidifferential see: Dini —; Hadamard—
quasidifferential calculus

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

quasidifferential elastic boundary conditions
[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

quasidifferential functions
[90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods)

quasidifferential laws see: variational formulation of—

quasidifferential thermal boundary conditions
[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

quasidifferential thermal boundary conditions see: variational
formulation of —

quasidifferentials see: calculus of —; Quasidifferentiable
optimization: calculus of—

quasigradient see: stochastic—; stochastic mollifier—
quasigradient method see: Two-stage stochastic

programming: —
quasigradient methods see: stochastic—
quasigradient methods: applications see: Stochastic—
quasigradient methods inminimax problems see: Stochastic—
Quasigradient (SQG) methods see: stochastic—
quasigradients see: stochastic—
quasimonotone

[90C26]
(see: Generalized monotone multivalued maps)

quasimonotone bifunction
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

quasimonotone map
[90C26]
(see: Generalized monotone single valued maps)

quasimonotone map
[90C26]
(see: Generalized monotone single valued maps)

quasimonotonemap see: semistrictly —; strictly —
quasimonotone operator

[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

quasimonotone operator
[90C26]
(see: Generalized monotone multivalued maps)

quasimonotone operator see: properly—; semistrictly—;
strictly—

quasimonotone pair
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

quasirandom
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

Quasivariational inequalities
(49J40, 70-08, 49Q10, 74K99, 74Pxx)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
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codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations; Sensitivity analysis of variational inequality
problems; Solving hemivariational inequalities by
nonsmooth optimization methods; Variational inequalities;
Variational inequalities: F. E. approach;Variational
inequalities: geometric interpretation, existence and
uniqueness;Variational inequalities: projected dynamical
system; Variational principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Multilevel
optimization in mechanics;Nonconvex energy functions:
hemivariational inequalities;Nonconvex-nonsmooth
calculus of variations;Quasidifferentiable optimization;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations; Sensitivity analysis of variational inequality
problems; Solving hemivariational inequalities by
nonsmooth optimization methods; Variational inequalities;
Variational inequalities: F. E. approach;Variational
inequalities: geometric interpretation, existence and
uniqueness;Variational inequalities: projected dynamical
system; Variational principles)

quasivariational inequalities see: implicit variational
inequalities and—

quasivariational inequality
[49Q10, 60G35, 65K05, 74K99, 74Pxx, 90C90, 91A65]
(see: Differential equations and global optimization;
Multilevel optimization in mechanics)

queens problem see: n-—
quench see: simulated—
query point

[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)

question
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

question see: trade-off —
question-asking strategy

[90C09]
(see: Inference of monotone boolean functions)

question-asking strategy see: binary search-Hansel chains—;
sequential Hansel chains—

queueing networks see:multiclass—
queueing shared-memory model

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

queuing networks
[90C15]
(see: Stochastic quasigradient methods: applications)

Quirk theorem see: Bassett–Maybee– —
quotient see: ball —; Rayleigh—; Temple—
quotient cuts

[90C35]
(see: Feedback set problems)

quotients see: difference—

R

r-Constraint Satisfaction Problem see:max- —
r-CSP see:max- —
R flat fuzzy number see: L- —
R fuzzy number see: L- —
r-linear convergence rate

[49J52, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods)

R-opt heuristic
[90C27]
(see: Time-dependent traveling salesman problem)

Rfree of unused partitions see: set —
Rn
+-upper semicontinuous function
[90C29]
(see: Vector optimization)

Rreac of used partitions see: set —
RA algorithm

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

Rabinovich system see: Aizenberg– —
race see: Pareto —
radially continuous function

[90C26]
(see: Generalized monotone multivalued maps)

radiation exposure time
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

radiation therapy
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

radiation therapy see: Optimization based frameworkfor—
radio link frequency assignment problem

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

radiotherapy treatment design see: Beam selection in—
radius

[05A, 05C15, 05C62, 05C69, 05C85, 15A, 51M, 52A, 52B, 52C,
62H, 68Q, 68R, 68U, 68W, 90B, 90C, 90C27, 90C59]
(see: Convex discrete optimization;Optimization problems
in unit-disk graphs)

radius see: spectral —
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radius of information
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

radius of stability
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

Radon measure
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

Radon measures
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

RAF of CEP
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

Railroad
(see: Railroad crew scheduling;Railroad locomotive
scheduling)

Railroad crew scheduling
Railroad locomotive scheduling
railroads see: engine routing and industrial in-plant—
RAM

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

Ramsdell method see: Newsam–—
Ramsey model

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Ramsey rule of economic growth
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

Rand statistic
[62H30, 90C27]
(see: Assignment methods in clustering)

random access machine see: parallel —
random behavior

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

random choice see: rule of —
random construction

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

random interval arithmetic
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

random interval arithmetic see: balanced—
random keys method

[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

randommultidimensional assignment problem see:
Asymptotic properties of—

random numbers see: common—
random objective see: Stochastic programming models: —
random objective function

[90C15]
(see: Stochastic programmingmodels: random objective)

random polling scheme
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

random sampling
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

random sampling
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)

random sampling see: uniform—
random search see: pure—
random search algorithms

[90C26, 90C29]
(see: Optimal design of composite structures)

random search algorithms
[90C26, 90C29, 90C90]
(see: Global optimization: hit and run methods;Optimal
design of composite structures)

random search method
[65K05, 90C30]
(see: Random search methods)

random search method see: adaptive—
Random search methods

(65K05, 90C30)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization; Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Global optimization: hit and run methods;Maximum cut
problem, MAX-CUT;Monte-Carlo simulated annealing in
protein folding;Optimal design of composite structures;
Packet annealing; Simulated annealing; Simulated
annealing methods in protein folding; Stochastic global
optimization: stopping rules; Stochastic global
optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization;Genetic
algorithms for protein structure prediction;Global
optimization based on statistical models;Monte-Carlo
simulated annealing in protein folding; Packet annealing;
Simulated annealing; Simulated annealing methods in
protein folding; Stochastic global optimization: stopping
rules; Stochastic global optimization: two-phase methods)

random vertex insertion (RVI)
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

random walk search
[92B05]
(see: Genetic algorithms)

random walk search
[92B05]
(see: Genetic algorithms)

randomization
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C10,
90C27, 94C10, 94C15]
(see: Graph planarization;Maximum satisfiability problem)

randomized adaptive search see: greedy—
randomized adaptive search procedure see: greedy—
randomized adaptive search procedures see: Greedy—
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randomized algorithm
[60J65, 68Q25]
(see: Adaptive global search)

randomized algorithms
[05C85, 52A22, 60D05, 68Q25, 90C05]
(see: Directed tree networks; Probabilistic analysis of
simplex algorithms)

randomized algorithms
[60J65, 68Q25]
(see: Adaptive global search)

randomized allocation scheme
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

randomized enumeration
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

randomized heuristics
[05C69, 05C85, 68W01, 90C09, 90C10, 90C59]
(see:Heuristics for maximum clique and independent set;
Optimization in boolean classification problems)

randomized heuristics
[90C09, 90C10]
(see: Optimization in boolean classification problems)

randomized rounding
[05C85]
(see: Directed tree networks)

rANDOMIZED ROUNDING PROCEDURE
[49N15, 65Y20, 68W25, 90C22, 90C27]
(see:Maximum likelihood detection via semidefinite
programming)

randomized setting
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

randomly generated
[92C40]
(see:Monte-Carlo simulated annealing in protein folding)

randomly with predefined probabilities
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

randomly with the same probability
[65G30, 65G40, 65K05, 90C30, 90C57]
(see: Global optimization: interval analysis and balanced
interval arithmetic)

Randomness
[90C60]
(see: Kolmogorov complexity)

randomness see: Algorithmic—
range-analysis

[90C31]
(see: Sensitivity and stability in NLP: approximation)

range and null space decomposition
[90C20, 90C30, 90C90]
(see: Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
decompositionmethods)

range and null space decomposition
[90C30, 90C90]
(see: Successive quadratic programming; Successive

quadratic programming: applications in distillation
systems)

range planning see: long—
range space

[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

range space
[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

ranges see: Bounding derivative—
rank

[90C30]
(see: Simplicial decomposition)

rank see: Chvátal —; full row—; numerical —
rank completion problem see:maximum—;minimum—
rank determined graph

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

rank matrix completion
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

rank of a matroid
[90C09, 90C10]
(see:Matroids)

rank nonconvexity see: low-—
rank-one approach see: limited-memory symmetric —
rank one formula see: selfdual—
rank-one matrix

[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

rank-one quasi-Newtonmethod see: symmetric—
rank-one update see: symmetric —
rank-one update formula see: Sherman-Morrison—
rank revealing factorization

[15A23, 65F05, 65F20, 65F22, 65F25]
(see: Orthogonal triangularization)

rank revealing factorization
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: Orthogonal triangularization)

rank revealing QR factorization
[65Fxx]
(see: Least squares problems)

rank revealing URV factorization
[65Fxx]
(see: Least squares problems)

rank-two updates
[90C30]
(see: Broyden family of methods and the BFGS update)

ranking see: assignment —; extreme point—
ranking extreme points

[90C60]
(see: Complexity of degeneracy)

RANS code
[90C90]
(see: Design optimization in computational fluid dynamics)

Raoult law
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)
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Raphson method see: Newton– —
RASP

[90C60]
(see: Complexity classes in optimization)

rate see: average nonredundancy—; average redundancy—;
convergence—; geometric convergence—; local
convergence—; r-linear convergence—; riskless
interest —; spot interest —; superlinear convergent —;
� -estimate of the spot —

rate for bonds with constant maturities see: estimating the
spot—

rate constraints see: upper and lower well oil —
rate of convergence

[90C30, 90C33]
(see: Implicit lagrangian)

rate estimation see: � -programmed problem of spot—
rate of steepest ascent

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

rate of steepest descent
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

rate yield curve see: interest —
rateCT

(see:Medium-term scheduling of batch processes)
rates see: asymptotic convergence—; term structure of

interest —
rates of convergence see: Stochastic integer programming:

continuity, stability—
rates of quantitative continuity

[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

rates and stoichiometry see: estimation of reaction—
rating and optimization methods see: Credit —
ratio see: approximation—; bottleneck Steiner —;

competitive—; consistency—; cost-to-time—;
domination—; Euclidean Steiner —; k-Steiner —;method
of optimal—; Sharpe—; Steiner —

ratio in Banach spaces see: Steiner —
ratio of biomolecular structures see: Steiner —
ratio cycle see:maximum profit-to-time—;minimum

cost-to-time—
ratio disk graphs see: bounded—
ratio fractional (hyperbolic) 0-1 programming problem see:

single-—
ratio fractional program see: single-—
ratio method see: likelihood—
ratio for portfolio management see: Competitive—
ratio principle see: local-—
ratio programs see: single- —
ratio spanning-tree see:minimum—
ratio test see:minimum—
rational choice

[90C30]
(see: Global optimization based on statistical models)

rational numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

rational numbers see: finite—; infinitely near —
rational p-form

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

rational reaction set
[49-01, 49K10, 49M37, 90-01, 90C05, 90C27, 90C30, 90C90,
91B52]
(see: Bilevel linear programming; Bilevel programming:
global optimization)

rational use of groundwater
[90C30, 90C35]
(see: Optimization in water resources)

rationality see: bounded—; individual—
rationality assumption see: human—
rationality factor see: human—
Ratios see:Maximization of the Smallest of Several —;

maximizing a sum of—
ratios fractional program see: sum-of-—
Rawls objective function see:multifacilityWeber–—
Rawls problem see:multiWeber–—;Weber– —
ray see: descent —; dual—; extremal —; primal—;

termination on a secondary—
ray crystallography: Shake and bake approach see: Phase

problem in X- —
ray diffraction data see: Optimization techniques for phase

retrieval based on single-crystal X- —
Rayleigh quotient

[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Rayleigh–Ritz bound
[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Rayleigh–Ritz method
[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

Rayleigh–Ritz method
[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

rays functions on topological vector spaces see: Increasing and
convex-along-—

razor see: Occam—
RCL

[90C35]
(see: Feedback set problems)

RD
[90C90]
(see:MINLP: reactive distillation column synthesis)

re-annealing
[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

reachable see: directly left- —; directly right- —; left- —;
right- —

reaction equation
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)
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reaction equilibria
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

reaction equilibrium see: Global optimization in phase and
chemical —

reaction flux estimation in lumped systems
[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

reaction kinetics and transport see: Identificationmethods
for—

reaction rates and stoichiometry see: estimation of—
reaction set see: rational—
reaction tangent-plane criterion

[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

reaction tangent-plane criterion
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

reactive azeotropes
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

reactive distillation
[90C90]
(see:MINLP: reactive distillation column synthesis)

reactive distillation
[90C90]
(see:MINLP: reactive distillation column synthesis)

reactive distillation column synthesis see:MINLP: —
reactive GRASP

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Feedback set problems;Greedy randomized adaptive
search procedures)

Reactive scheduling of batch processes
reactive tabu search

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

reactive tabu search see: Hamming-—
reactive TS

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

reactor see: fed-batch—
real addition with order see: first order theory of —
real coefficients

[01A50, 01A55, 01A60]
(see: Fundamental theorem of algebra)

real interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

real interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

real number model
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26, 90C60]
(see: Complexity theory; Information-based complexity and
information-based optimization)

real number model
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26, 90C60]
(see: Complexity theory; Information-based complexity and
information-based optimization)

real numbers
[03E70, 03H05, 91B16]
(see: Alternative set theory)

real numbers see: infinitely small —; infinitely small
negative —; infinitely small positive—

real symmetric interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

real symmetric interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

real-valued CNSO
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

real-valued CNSO see: extended—
real vectors space

[90C09, 90C10]
(see: Oriented matroids)

real world
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

real-world problem
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

realisable problem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

realization
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

realization see: edge—
realization of an abstract group

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

realization of a matrix
[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

Realization Problem see: graph—
realization via semidefinite programming see: Graph—
realizing with minimal social cost see: production—
reason see: laplace’s principle of insufficient—
reasoning see: approximate—; interval logic system of

approximate—; Laplace principle of insufficient—;
point-based logic system of approximate—

rebalanced portfolio see: constant—
receiver-initiated

[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)
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receiver initiated mapping technique
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

recession functional
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

recession functional
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

recharge facilities see: controlled—
recognition see: Complementarity algorithms in pattern —;

pattern —; statistical pattern —
recognition problem

[90C05, 90C10, 90C60]
(see: Computational complexity theory; Simplicial pivoting
algorithms for integer programming)

recognition problem
[90C60]
(see: Computational complexity theory)

recognition problem see: language—
recognition problems see: language—
reconditioner

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

reconstruction
[92C05, 92C40]
(see: Protein loop structure predictionmethods)

reconstruction see: Entropy optimization for image—;
finite-dimensionalmodels for entropy optimization for
image—; image—;Maximum entropy principle: image—;
parent node—; vector-space models for entropy
optimization for image—

reconstruction from projection data see: feasibility approach to
image—; image—; optimization approach to image—

reconstruction methods for nonconvex feasibility analysis see:
Shape—

recourse
[90C15]
(see: Stochastic programming: parallel factorization of
structuredmatrices)

recourse
[49M25, 90-08, 90C05, 90C06, 90C08, 90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse; Simple recourse problem; Simple recourse
problem: dual method; Simple recourse problem: primal
method)

recourse see: complete—; expected—; fixed—; full—;
L-shaped method for two-stage stochastic programs
with—; relatively complete—; simple—; simple integer—;
stochastic integer program with—; stochastic linear
program with—; stochastic program with—; Stochastic
programming with simple integer —; two-stage stochastic
program with—; two-stage stochastic programs with—;
two-stage stochastic programs with simple integer —

recourse action
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

recourse actions
[90C10, 90C15]
(see: Stochastic integer programs)

recourse and arbitrary multivariate distributions see: Stochastic
linear programs with—

recourse bound see: restricted- —
recourse decision

[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming; Stochastic
programs with recourse: upper bounds)

recourse function
[90C15]
(see: Stochastic linear programs with recourse and arbitrary
multivariate distributions)

recourse function see: approximating the—; expected —
recourse model

[90C15]
(see: Static stochastic programmingmodels)

recourse models
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

recourse models see: restricted—
recourse problem

[90B10, 90B15, 90C15, 90C35]
(see: Preprocessing in stochastic programming)

recourse problem see: dual method for the simple—; primal
method for the simple—; Simple—

recourse problem: dual method see: Simple—
recourse problem: primal method see: Simple—
recourse: upper bounds see: Stochastic programs with—
rectangular partition

[90C27]
(see: Steiner tree problems)

rectangular partition problem
[90C27]
(see: Steiner tree problems)

rectilinear distance
[90B85]
(see: Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location)

rectilinear distance location see: Single facility location:
multi-objective—

rectilinear distance location problem
[90B85]
(see: Single facility location: multi-objective rectilinear
distance location)

rectilinear distances see: Optimizing facility location with
euclidean and—

rectilinear Steiner arborescence tree
[90C27]
(see: Steiner tree problems)

rectilinear Steiner tree
[90C27]
(see: Steiner tree problems)

recurrence see: three-term- —
recurrence algorithm see: three-term- —
recurrence relation

[90C30]
(see: Generalized total least squares)

recurrent class of states
[49L99]
(see: Dynamic programming: average cost per stage
problems)
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recurrent neural network
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

recursion
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

recursion
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Least-index anticycling
rules)

recursion see: adjoint—; dynamic programming—
recursions see: dynamic programming—
recursive algorithm

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

recursive dynamic programming equations
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

recursive dynamic programming equations
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

recursive least squares algorithm
[65Fxx]
(see: Least squares problems)

recursive Opt Matching (ROM)
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

recursive procedure
[62H30, 90C39]
(see: Dynamic programming in clustering)

recursive state space search algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

reduce see: branch and—
reduced

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

reduced box
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reduced cost
[68Q99, 90C35]
(see: Branch and price: Integer programming with column
generation;Generalized networks)

reduced cost fixing
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods;
Integer programming: cutting plane algorithms)

reduced gradient
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

reduced gradient algorithm
[90C30]
(see: Convex-simplex algorithm)

reduced gradient algorithm
[90C30]
(see: Convex-simplex algorithm)

reduced gradient method see:Wolfe—

reduced Gröbner basis
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

reduced Hessian
[90Cxx]
(see: Discontinuous optimization)

reduced-Hessian see: affine-—; limited-memory affine—
reduced-Hessian algorithm see: affine-—
reduced-Hessian BFGS algorithm see: limited-memory—
reduced Hessian of a Lagrangian

[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

reduced Hessian SQP see:multiplier-free—
reduced Hessian SQP method

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

reduced master program
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

reduced model
[90C30]
(see: Suboptimal control)

reduced polyblock
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reduced problem see: locally—
reduced problem in semi-infinite programming

[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)

reduced quadratic program
[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

reduced quadratic programming subproblem
[90C20, 90C30]
(see: Successive quadratic programming: decomposition
methods)

reduced RLT system
[90C26]
(see: Reformulation-linearization technique for global
optimization)

reduced space SQP
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

Reduced VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

reducibility
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

reducibility
[68Q25, 90C60]
(see: Computational complexity theory;NP-complete
problems and proof methodology)

reducibility see: polynomial —; polynomial Turing—
reducibility of algorithms

[90C60]
(see: Computational complexity theory)
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reducibility of problems
[90C60]
(see: Computational complexity theory)

reducible
[90C60]
(see: Computational complexity theory)

reducible graph see: cyclically—; Smith–Walford one- —
reducible problems

[90C60]
(see: Computational complexity theory)

reduction
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

reduction
[65K05, 90C30]
(see: Bisection global optimization methods)

reduction see: Burke–Poliquin—; coefficient—; complete—;
feasible region—;Monte-Carlo sampling and variance—;
polynomial time—; potential —; proper—; region—;
simplex—; spherical —; successive affine—; variance—;
weighting space—

reduction algorithm see: potential —; primal-dual potential —;
primal potential —

reduction algorithms see: potential —
reduction Ansatz

[57R12, 90C25, 90C29, 90C30, 90C31, 90C34, 90C46]
(see: Bilevel programming: optimality conditions and
duality; Generalized semi-infinite programming: optimality
conditions; Parametric global optimization: sensitivity;
Smoothing methods for semi-infinite optimization)

reduction Ansatz
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

reduction in auction algorithms see: graph—
reduction based method

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

reduction BFGS algorithm see: successive affine—
reduction of a constraint set

[90C05, 90C20]
(see: Redundancy in nonlinear programs)

reduction cuts
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reduction to finite costs
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

reduction lower bounds see: variance—
reductionmethods for linear programming see: Potential —
reduction operations

[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

reduction technique see: variance—
reductions

[05C85]
(see: Directed tree networks)

reductions see: ordinary NP-complete—
redundancy

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

redundancy
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

redundancy see: deterministic method for detecting—;
probabilistic method for detecting—

Redundancy in nonlinear programs
(90C05, 90C20)
(referred to in: Inequality-constrained nonlinear
optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization)

redundancy rate see: average—
redundancy test

[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)

redundant constraint
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

redundant constraint see: relatively—
redundant restriction

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

Reeves algorithm see: Fletcher– —
Reeves formula see: Fletcher– —
Reeves method see: Fletcher– —
reference direction method

[90C29]
(see:Multiple objective programming support)

reference direction vector
[90C29]
(see:Multiple objective programming support)

reference point
[90C29]
(see:Multiple objective programming support)

refinement
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

refinement see: incremental strategy for model structure—;
iterative model —;Murty least-index—

refining industry
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

reflection
[90C30]
(see: Sequential simplex method)

reflection arrangement of hyperplanes
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

reflection coefficient
[90C30]
(see: Sequential simplex method)

reflection operations
[90C30]
(see: Sequential simplex method)

reflexive closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)
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reflexive relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

reflexive relation see: locally—
reflexivity

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

reformulation
[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

reformulation see: linearized—;model—; parametric
eigenvalue—; preprocessing and—;
smoothing-nonsmooth—

reformulation descent
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

reformulation-Linearization/Convexification Technique
[90C26]
(see: Reformulation-linearization technique for global
optimization)

reformulation-linearization/convexification techniques
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

reformulation-linearization technique
[90C09, 90C10, 90C11, 90C26, 90C27]
(see: Disjunctive programming;
Reformulation-linearization technique for global
optimization; Time-dependent traveling salesman
problem)

reformulation-linearization technique
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

Reformulation-Linearization-Technique see: the —
Reformulation-linearization technique for global

optimization
(90C26)
(referred to in: ˛BB algorithm;Disjunctive programming;
MINLP: branch and bound global optimization algorithm;
MINLP: branch and bound methods;MINLP: global
optimization with ˛BB;MINLP: logic-basedmethods)

reformulation/spatial branch and bound
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

reformulation techniques
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

reformulations of discrete-continuous optimization problems
see: Continuous—

regeneration networks
[93A30, 93B50]
(see:MINLP: mass and heat exchanger networks;Mixed
integer linear programming: mass and heat exchanger
networks)

regenerative processes
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

regenerative set
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

regenerative stopping times
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

regime see: stationary—; transient —
region see: bundle trust —; complementary—; critical—;

enlargement of a feasible—; exclusion—; feasible—;
induced—; inducible—; large scale trust —;minimal
representation of a feasible—;most promising—; prime
representation of a feasible—; relaxation of a feasible—;
relaxed constraint—; safe starting—; trust —; Voronoi—

region approach see: trust —
region of attraction

[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)

region of cooperation
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

region method see: achievable—; distrust —; trust —
region methodology see: trust —
region methods see: Nonlinear least squares: trust —; trust —
region model see: trust —
region network see: large —
region problem see: general case of the trust—; hard case of

the trust —; large scale trust —; Newton step case of the
trust —; trust —

region problems see: Large scale trust —
region reduction

[93-XX]
(see: Dynamic programming: optimal control applications)

region reduction see: feasible—
region strategy see: pure trust —
region technique see: trust —
regional demand

[90B85]
(see: Single facility location: multi-objective rectilinear
distance location)

regional network
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

regions see: critical—; neighboring critical —; trust —
regions of stability

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

regression
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

regression see: convex and concave—; isotonic—; isotonic
medium—; ordinal —; quasiconvex medium—;
quasiconvex and umbrella —; simple order isotonic—

regression analysis
[90C26, 90C30]
(see: Forecasting)



Subject Index 4475

regression analysis
[90C26, 90C30]
(see: Forecasting)

regression method
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

regression model see: classical linear —
regression problem see: convex—; isotonic—
regression problems see: algorithms for isotonic—; Isotonic—
Regression by special functions: algorithms and complexity

(90C26, 41A30, 62J02)
(referred to in: Isotonic regression problems)
(refers to: Isotonic regression problems)

regression trees see: classification and—
regret see:minimization of—
regret-fc and max-regret heuristics see:max-—
regret heuristics see:max-regret-fc and max-—
regret method

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

regular
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

regular see:metrically —; p- —
regular constraints

[90C30]
(see: Kuhn–Tucker optimality conditions)

regular cost function
[90B15]
(see: Dynamic traffic networks)

regular critical direction see: high- —
regular family of probability measures

[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

regular family of triangulations
[65M60]
(see: Variational inequalities: F. E. approach)

regular feasible point
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

regular link cost function
[90B15]
(see: Dynamic traffic networks)

regular local minimizer
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

regular matrix
[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

regular matrix see: strongly—
regular matroid

[90C09, 90C10]
(see:Matroids)

regular measure see: inner —
regular operator see: p- —
regular point

[90C26, 90C39]

(see: Second order optimality conditions for nonlinear
optimization)

regular polyhedron
[90C60]
(see: Complexity of degeneracy)

regular polyhedron
[90C60]
(see: Complexity of degeneracy)

regular problem see: JJT- —; KH-—; �- —
regular Q-splitting

[90C25, 90C33, 90C55]
(see: Splittingmethod for linear complementarity
problems)

regular in the sense of Jongen–Jonker–Twilt see: problem—
regular in the sense of Kojima–Hirabayashi see: problem—
regular set

[90C33]
(see: Order complementarity)

regular set see: completely—; second order—
regular simplex

[90C30]
(see: Sequential simplex method)

regular solution
[65K10, 90C31, 90C33]
(see: Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems)

regular solution of the Wilson equation
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

regular stationary point
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

regular subdivision
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

regular triangulation
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

regular triangulations
[68Q20]
(see: Optimal triangulations)

regular value
[90C26]
(see: Smooth nonlinear nonconvex optimization)

regularity
[49M30, 49M37, 65G20, 65G30, 65G40, 65H20, 65K05,
65K10, 90C30, 93A13]
(see: Interval fixed point theory;Multilevel methods for
optimal design; Practical augmented Lagrangianmethods)

regularity
[49K27, 49K40, 90C30, 90C31, 90Cxx]
(see: First order constraint qualifications;
Quasidifferentiable optimization: exact penalty methods)

regularity see:metric—; �- —
regularity assumptions

[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)
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regularity axiom
[03E70, 03H05, 91B16]
(see: Alternative set theory)

regularity condition
[90C05, 90C26, 90C30, 90C39, 90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods; Rosen’s method, global convergence, and Powell’s
conjecture; Second order optimality conditions for
nonlinear optimization; Smooth nonlinear nonconvex
optimization; Theorems of the alternative and
optimization)

regularity condition
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

regularity condition for penalty methods
[90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods)

regularity conditions
[49K27, 49K40, 90C05, 90C15, 90C26, 90C30, 90C31]
(see: First order constraint qualifications;Global
optimization using space filling; Image space approach to
optimization; Probabilistic constrained linear
programming: duality theory)

regularity properties
[57R12, 90C31, 90C34]
(see: Smoothing methods for semi-infinite optimization)

regularity* see:metric —
regularization

[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

regularization see: Tikhonov—; Tikhonov iterative—
regularization approach see: Tikhonov’s—
regularization of deterministic cutting plane methods

[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

regularization method see: iterative —
regularized direction finding problem

[90C30]
(see: Frank–Wolfe algorithm)

regularized Frank–Wolfe algorithm
[90C30]
(see: Simplicial decomposition)

regularized Frank–Wolfe algorithm
[90C30]
(see: Simplicial decomposition)

regularized Frank–Wolfe decomposition
[90C30]
(see: Frank–Wolfe algorithm)

regularized gap function
[90C30, 90C33]
(see: Implicit lagrangian)

regularized stochastic decomposition algorithm
[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

regularized subproblem
[90C30]
(see: Simplicial decomposition)

regularizing state problem
[49J20, 49J52]
(see: Shape optimization)

regulation see: government —
Reichenbach implication

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Reid vapor pressure
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

reinforcement learning
[49L99, 90C39]
(see: Dynamic programming: average cost per stage
problems;Neuro-dynamic programming)

reinforcement learning
[90C39]
(see: Neuro-dynamic programming)

Reisner ideal see: Stanley– —
reject index for interval optimization see: Algorithmic

improvements using a heuristic parameter —
rejection see: acceptance/—
REL chart scores

[90B80]
(see: Facilities layout problems)

REL chart scores
[90B80]
(see: Facilities layout problems)

relabel
[90C35]
(see:Maximum flow problem)

related algorithm see: CG-—
related algorithms see: nonlinear CG-—
related descent see: gradient- —
related descent iterations see: Local attractors for gradient- —
related set function see: gradient- —
related techniques see: acceleration devices and—
relation see: ˛-cut of a fuzzy—; antisymmetric —; binary—;

complementary—; converse—; covering—; crisp—;
dominance—; equivalence—; equivalence closure of a—;
functional—; fuzzy—; fuzzy outranking—;
heterogeneous —; homogeneous—; inverse—; linear
equality —; linear inequality—; local equivalence—; local
equivalence closure of a—; local order —; local pre-order
closure of a—; local tolerance—; local tolerance closure of
a—; locally reflexive—;matrix representation of a—;
n-ary—; negated —; onto—; order—; outranking—;
partial order —; pre-order —; pre-order closure of a—;
preference—; property-closure of a—; quasi-Newton—;
recurrence—; reflexive—; reflexive closure of a—;
secant—; separating—; state —; strictly antisymmetric —;
symmetric —; symmetric interior of a—; tolerance closure
of a—; trace of —; transitive—; transposed —;
univalent—; valued—; weak duality —

relation of indiscernibility
[03E70, 03H05, 91B16]
(see: Alternative set theory)
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relation to Newton’s method see: Gauss–Newton method:
Least squares—

relational analysis
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

relational compositions
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

relational interval algebra
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

relational matrix notation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

relational model
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

relational operations see:matrix notation for—
relational product see: fuzzy—
relational properties see: local —; testing—
relations see: binary operations on—; BK-product of —;

Boolean and fuzzy—; circle product of —; complementary
slackness—; difference of —; foreset and afterset
representation of—; fuzzy—; generalized morphisms of—;
inclusion of—; k-—; legendre duality —; linear —;
Morse—; outranking—; pseudo-associativity of products
of—; round composition of —; self-inverse product of—;
special properties of —; special properties of crisp—;
special properties of fuzzy—; special properties of
heterogeneous —; special properties of homogeneous —;
square composition of—; square product of—; subproduct
of—; superproduct of—; Tucker homogeneous systems of
linear—; unary operations on—; universal properties of—

relations approach see: outranking—
relationship see: BFGS-CG—
relationships see: integral —
relative

[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

relative complement
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

relative condition number see: normwise—
relative distance

[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

relative duality gap
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

relative entropy
[15A15, 90C25, 90C55, 90C90, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties; Semidefinite programming and
determinant maximization)

relative measure see: combined—

relative minimum
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

relative minimum see: strict —; strong—
relative positioning algorithm

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

relative priorities
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

relative value iteration
[49L99]
(see: Dynamic programming: average cost per stage
problems)

relatively complete recourse
[90B10, 90B15, 90C15, 90C35, 90C90, 91B28]
(see: Preprocessing in stochastic programming; Robust
optimization)

relatively redundant constraint
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

relax-and-fix
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

relaxation
[49M29, 90C05, 90C06, 90C08, 90C10, 90C11, 90C30]
(see: Generalized benders decomposition; Integer
programming: branch and bound methods; Integer
programming: lagrangian relaxation;Maximum constraint
satisfaction: relaxations and upper bounds)

relaxation
[90C10, 90C30]
(see:Maximum constraint satisfaction: relaxations and
upper bounds; Relaxation in projectionmethods)

relaxation see: continuous—; Decomposition techniques for
MILP: lagrangian—; group—; Hull —; Integer
programming: lagrangian—; Lagrange —; Lagrangian —;
linear—; linear programming—; lP—; optimal—; outer
approximation with equality—; surrogate —

relaxation algorithm
[90C30]
(see: Cost approximation algorithms)

relaxation and augmented penalty see: outer approximation
with equality—

relaxation of a feasible region
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

relaxation in integer programming see: group—
relaxation labeling algorithm

[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

relaxation labeling processes
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

relaxation method
[91B50]
(see:Walrasian price equilibrium)
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relaxation method
[49J52, 90C30, 91B50]
(see: Nondifferentiable optimization: relaxationmethods;
Walrasian price equilibrium)

relaxation method see: Agmon–Motzkin–Fourier —
relaxation methods see: combined—; Nondifferentiable

optimization:—
relaxation problem see: convex—
Relaxation in projectionmethods

(90C30)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization)

relaxation quantity
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

relaxation rule
[49J52, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods)

relaxation step
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Cost approximation algorithms; Interval global
optimization)

relaxation strategy see: convexification/—
relaxation with subgradient optimization see: Lagrangian —
Relaxation technique

(see: Railroad crew scheduling)
relaxations see: bounds based on semidefinite—; convex—;

extended group—; Gomory—; linear programming—;
tight —

relaxations and upper bounds see:Maximum constraint
satisfaction:—

relaxed
[90B36]
(see: Stochastic scheduling)

relaxed constraint region
[90C30, 90C90]
(see: Bilevel programming: global optimization)

relaxed control
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

relaxed control problem
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

relaxed dual algorithm see: generalized primal- —
relaxed dual approach see: Generalized primal- —; primal- —
relaxed master problem

[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

relaxed multicommodity flow
[90C35]
(see: Feedback set problems)

relaxed nonlinear program
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

relaxed primal master problem
[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

relaxed Problem
(see: Railroad crew scheduling)

reliability
[90C10, 90C30, 93-XX]
(see: Dynamic programming: optimal control applications;
Modeling languages in optimization: a new paradigm)

relinking see: path —
rendez-vous communication

[65K05, 65Y05]
(see: Parallel computing: models)

reorthogonalized Gram–Schmidt algorithm see:
Daniel–Gragg–Kaufmann–Stewart —

repeated nearest neighbor (RNN)
[68Q25, 68R10, 68W40, 90C27, 90C59]
(see: Domination analysis in combinatorial optimization)

repertory grids
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

repetition
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

repetition see:machine—
repetitive see: strictly —
replacement

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

replicated network see: time—
replication heuristic see: annealed—
replicator dynamics

[90C20]
(see: Standard quadratic optimization problems:
algorithms)

Replicator dynamics in combinatorial optimization
(90C27, 90C20, 90C35, 90C59, 91A22, 37B25, 05C69, 05C60)
(referred to in: Combinatorial matrix analysis;
Combinatorial optimization algorithms in resource
allocation problems; Combinatorial optimization games;
Evolutionary algorithms in combinatorial optimization;
Fractional combinatorial optimization;Heuristics for
maximum clique and independent set;Multi-objective
combinatorial optimization; Neural networks for
combinatorial optimization; Neuro-dynamic
programming;Unconstrained optimization in neural
network training)
(refers to: Combinatorial matrix analysis; Combinatorial
optimization algorithms in resource allocation problems;
Combinatorial optimization games; Evolutionary
algorithms in combinatorial optimization; Fractional
combinatorial optimization; Graph coloring;Greedy
randomized adaptive search procedures;Heuristics for
maximum clique and independent set;Multi-objective
combinatorial optimization; Neural networks for
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combinatorial optimization; Neuro-dynamic
programming;Unconstrained optimization in neural
network training)

replicator equation
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

replicator equations
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

replicator models see:multipopulation—
repositioned

(see: Railroad locomotive scheduling)
representable

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

representable matroid
[90C09, 90C10]
(see:Matroids)

representation
[52B11, 52B45, 52B55, 90C05, 90C20]
(see: Redundancy in nonlinear programs;Volume
computation for polytopes: strategies and performances)

representation
[90C05]
(see: Carathéodory theorem)

representation see: compact—; declarative—; digraph—;
disaggregated —; envelope—; Euclidean—; geometric (or
disk)—; Global optimization: envelope—; H- —; lookup
table—;matroid—;minimal—;mixed Time—;
orthonormal—; parametric —; problem—; process —;
splitting variable—; unidimensional Euclidean—; V- —

representation of cutting plane coefficients see: statistical —
representation of a feasible region see:minimal—; prime—
representation of models

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

representation of a relation see:matrix—
representation of relations see: foreset and afterset —
representation theorem

[90C06, 90C25, 90C35]
(see: Decomposition principle of linear programming;
Simplicial decomposition algorithms)

representation theorem
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

representation theorem see: topological —
representations see: compact—; necessary optimality

conditionwithout using (sub)gradients parametric —
representative set

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

reproductive
(see: State of the art in modeling agricultural systems)

repulsion see: Global optimization in Weber’s problem with
attraction and—;Weber problem with attraction and—

request see: global round robin—
required see: no pivoting—

required edge
[90B20]
(see: General routing problem)

required vertex
[90B20]
(see: General routing problem)

requirement see: Type I—
requirement exhaustive sequential coloring

[05-XX]
(see: Frequency assignment problem)

requirements planning
[90-02]
(see: Operations research models for supply chain
management and design)

research see: european Journal of Operational —; GRASP in
operations—; Operations—

research and financial markets see: Operations—
research models for supply chain management and design see:

Operations—
reserved solution see: "- —
reservoir see: hydro- —
residents see: permanent —
residents of special facilities

(see: Emergency evacuation, optimization modeling)
residual

[90C30]
(see: Conjugate-gradientmethods)

residual see: large —; natural —; small —
residual algorithm see: conjugate —
residual capacity

[90C35]
(see:Minimum cost flow problem)

residual network
[90C35]
(see:Maximum flow problem;Minimum cost flow problem)

residual problem see: large —; nonzero—; zero—
residual vector

[65D10, 65K05]
(see: Overdetermined systems of linear equations)

residuals
[90C30]
(see: Nonlinear least squares problems)

residuals
[90C30]
(see: Nonlinear least squares problems)

residuation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

residues see: selected—
resolution see: single-lookahead-unit-—
resolution based theorem prover

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

resolvent equations
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

resolvent equations
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)
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resolvent operator
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

resolving degeneracy
[90C60]
(see: Complexity of degeneracy)

resolving degeneracy
[90C60]
(see: Complexity of degeneracy)

resource allocation
[49-XX, 60Jxx, 65Lxx, 90B80, 90B85, 90Cxx, 91Axx, 91B32,
91Bxx, 92D30, 93-XX]
(see: Facility location with externalities;Resource allocation
for epidemic control)

resource allocation
[49-XX, 60Jxx, 65Lxx, 90C09, 90C10, 91B32, 92D30, 93-XX]
(see: Combinatorial optimization algorithms in resource
allocation problems; Resource allocation for epidemic
control)

Resource allocation for epidemic control
(49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems)

resource allocation problem
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

resource allocation problem see: discrete—
resource allocation problems see: Combinatorial optimization

algorithms in—
resource-constrained minimum spanning tree problem

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

resource constrained project scheduling see: Static—
resource constrained: unifiedmodeling frameworks see:

Short-term scheduling—
resource constraint

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

resource-directive decomposition
[90C35]
(see:Multicommodity flow problems)

resource-payoff space
[90C30]
(see: Lagrangian duality: BASICS)

Resource planning
(see: Railroad locomotive scheduling)

resource planning see: water —
resource systems see: conjunctive use of water —
resource weighted assignment model see: the multi- —
resources see: Optimization in water —; Short-term scheduling

of batch processes with—; stochastic approach to
optimization in water —; surface and groundwater —

resources planning under uncertainty on hydrological
exogenous inflow and demand see: water —

resources policies see: nonanticipative water —;
nonanticipativity water —

respect to another) see: pseudomonotone bifunction (with—
respect to changes in cost coefficients see: sensitivity analysis

with—
respect to a filtration see: stochastic process nonanticipative

with—
respect to right-hand side changes see: sensitivity analysis

with—
respect to a set see: invexity with—; pre-invexity with—;

substationarity point with—
response see: derivatives of structural —
response mapping see: best —
response surface

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

response surface
[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

response surface method
[90C90]
(see: Design optimization in computational fluid dynamics)

rest arcs
(see: Railroad crew scheduling)

restart
[90C06]
(see: Large scale unconstrained optimization)

restarted Lanczos method see: implicit—
restless bandit problem see:multi-armed—
restrict

[90C15]
(see: Stochastic programs with recourse: upper bounds)

restricted accessibility form of CEP
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

restricted Candidate List
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Broadcast scheduling problem; Feedback set problems;
Greedy randomized adaptive search procedures)

restricted gradient
[90Cxx]
(see: Discontinuous optimization)

restricted implicit Lagrangian
[90C30, 90C33]
(see: Implicit lagrangian)

restricted location problem
[90B85]
(see:Multifacility and restricted location problems)
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restricted location problem
[90B85]
(see:Multifacility and restricted location problems)

restricted location problems see:Multifacility and—
restricted master problem

[90C06, 90C10, 90C11, 90C25, 90C30, 90C35, 90C57, 90C90]
(see: Decomposition principle of linear programming;
Modeling difficult optimization problems;
Multicommodity flow problems; Simplicial decomposition
algorithms)

restricted master problem
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

restricted-recourse bound
[90C15]
(see: Stochastic programs with recourse: upper bounds)

restricted recourse models
[90C90, 91B28]
(see: Robust optimization)

restricted simplicial decomposition
[90C30]
(see: Simplicial decomposition)

restricted simplicial decomposition
[90C30]
(see: Simplicial decomposition)

restricted statistical inference see: order—
restriction

[90C30]
(see: Simplicial decomposition)

restriction see: inner linearization/—;matroid—; order—;
redundant—; taboo—

restriction of a matroid
[90C09, 90C10]
(see:Matroids)

restriction to the solution set in problem solving
[90C15]
(see: Stochastic programs with recourse: upper bounds)

restriction strategy see: projection- —
restrictions

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

restrictions see: control —; operational—
restrictive see: k- —
restrictive multilayer see: k-—
result see: problem—; strong duality—; weak duality—
result verification see: automatic—
resultant

[01A99]
(see: Leibniz, gottfried wilhelm)

results see: numerical —
results for RSM-distributions see: asymptotic—
retailer/model nodes

[90C35]
(see:Minimum cost flow problem)

retailer nodes
[90C35]
(see:Minimum cost flow problem)

retrieval see: Global optimizationmethods for harmonic—;
harmonic—

retrieval based on single-crystal X-ray diffraction data see:
Optimization techniques for phase —

return on investment see:maximization of —
return nodes

[90C30, 90C35]
(see: Optimization in water resources)

return and risk
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

return/risk see:maximization of —
revealing factorization see: rank—
revealing QR factorization see: rank—
revealing URV factorization see: rank—
revenue management

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

revenue management
[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

reverse convex constraint see: linear program with an
additional—

reverse convex inequality
[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

Reverse convex optimization
(90C26, 90C30)
(referred to in: ˛BB algorithm;Quadratic knapsack;
Quadratic programming with bound constraints; Standard
quadratic optimization problems: theory)
(refers to: ˛BB algorithm; Concave programming;D.C.
programming;Quadratic knapsack;Quadratic
programming with bound constraints; Standard quadratic
optimization problems: theory)

reverse convex programming
[90C05, 90C26, 90C30]
(see: Continuous global optimization: models, algorithms
and software; Reverse convex optimization)

reverse convex programming
[90C26, 90C30]
(see: Reverse convex optimization)

reverse convex programs
[90C26, 90C30]
(see: Reverse convex optimization)

reverse convex set
[90C26, 90C30]
(see: Reverse convex optimization)

reverse differentiation
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

reverse mode
[65H99, 65K99]
(see: Automatic differentiation: point and interval)

reverse mode of AD
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

reverse mode of an AD algorithm
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

reverse mode automatic differentiation
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)



4482 Subject Index

reverse normal hull
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reverse normal set
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reverse polyblock
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reverse polyblock algorithm
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

reverse polyblock (copolyblock) algorithm see: revised—
review see: Generalized variational inequalities: A brief —
review inventory models: (QR) policy see: Continuous—
review model see: continuous—; periodic—
revised geometric mean method

[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

revised polyblock algorithm
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

revised reverse polyblock (copolyblock) algorithm
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

Reynolds-averaged Navier–Stokes code
[90C90]
(see: Design optimization in computational fluid dynamics)

RGM
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

RH-BFGS see: L- —
�-regular problem

[90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods)

�-regularity
[90Cxx]
(see: Quasidifferentiable optimization: exact penalty
methods)

Ribiére algorithm see: Polyak–Polak–—
Ribiére formula see: Polak–—
Ribiére method see: Polak–—
Riccati equation

[90C30]
(see: Suboptimal control)

Riccati equation see: continuous-time—
rich stream

[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

Richardson iteration
[65H10, 65J15]
(see: Contraction-mapping)

ride see: dial-a-—;m-dial-a-—
ridge

[90Cxx]
(see: Discontinuous optimization)

ridge see: active—; fault—

Riemannian manifold
[90C26]
(see: Smooth nonlinear nonconvex optimization)

Riemannian metric
[90C26]
(see: Smooth nonlinear nonconvex optimization)

Riemannian metric see: Ck- —
Riesz theorem

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

right-chain justification
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

right-collection of a partition
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

right-hand side changes see: sensitivity analysis with respect
to—

right-hand side perturbation model
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

right-hand side perturbation problem
[90C31]
(see: Sensitivity and stability in NLP: continuity and
differential stability)

right-hand side problem
[90C31]
(see: Sensitivity and stability in NLP: approximation)

right-hand side simplex algorithm see: parametric —
right-hand-side uncertainty, duality and applications see:

Robust linear programming with—
right-paired element

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

right-paired set
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

right-pairs
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

right-reachable
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

right-reachable see: directly —
right saddle point

[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

right saddle-point theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

right-unpaired element
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

rigid templates see: De novo protein designUsing—
rigor see: with mathematical —
rigorous bound for solutions of nonlinear systems of equations

[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

rigorously
[65G20, 65G30, 65G40, 65H20]
(see: Interval fixed point theory)
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ring networks
[05C85]
(see: Directed tree networks)

ring topology
[90-XX]
(see: Survivable networks)

risk see: business failure—; estimation—;maximization of
return/ —; return and—

(risk averse, anticipative) decision see: ex-ante —
risk-free asset

[91B50]
(see: Financial equilibrium)

risk-free asset
[91B50]
(see: Financial equilibrium)

(risk prone, adaptive) decision see: ex-post—
riskless interest rate

[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

risks see: agricultural —
Ritz bound see: Rayleigh–—
Ritz–Galerkin method

[65M60]
(see: Variational inequalities: F. E. approach)

Ritz–Galerkin method
[65M60]
(see: Variational inequalities: F. E. approach)

Ritz method see: Rayleigh–—
river hydropower nodes see: on-the- —
river plant see: run-of- —
river plants see: run-of- —
RLT system see: reduced—
RMP

[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

rmsd threshold see: determination of—
rmsds by energy see: average—
(RNN) see: repeated nearest neighbor—
road traveling salesman problem

[90B20]
(see: General routing problem)

Robbins–Monro method
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

robin balancing scheme see: asynchronous round—
robin request see: global round—
Robinson see: anti- —
Robinson CQ

[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

Robinsonmatrix see: anti- —
robust

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

robust see:model—; solution—
robust algorithms

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

robust conic optimization problems see: Approximations to—
Robust control

(93D09)

(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Optimal control of a flexible arm; Robust
control: schur stability of polytopes of polynomials;
Semi-infinite programming and control problems;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Suboptimal
control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Optimal
control of a flexible arm; Robust control: schur stability of
polytopes of polynomials; Semi-infinite programming and
control problems; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Suboptimal control)

Robust control: schur stability of polytopes of polynomials
(93D09, 93C55, 39A11)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Optimal control of a flexible arm; Robust
control; Semi-infinite programming and control problems;
Sequential quadratic programming: interior point methods
for distributed optimal control problems; Suboptimal
control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Optimal
control of a flexible arm; Robust control; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control)

robust control synthesis
[93D09]
(see: Robust control)
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robust control theory
[93D09]
(see: Robust control)

robust counterpart
(see: Approximations to robust conic optimization
problems;Design of robust model-based controllers via
parametric programming; Price of robustness for linear
optimization problems)

Robust design of dynamic systems by constructive nonlinear
dynamics
(37N40, 90C30, 90C34)

robust estimator
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

Robust global optimization
(90C26, 90C31)

Robust linear programming with right-hand-side uncertainty,
duality and applications

robust model-based controllers via parametric programming
see: Design of—

robust obstacle-free shape design
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

robust obstacle-free truss design
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

Robust optimization
(90C90, 91B28)
(referred to in: Competitive ratio for portfolio management;
Financial applications of multicriteria analysis; Financial
optimization; Portfolio selection andmulticriteria analysis;
Semi-infinite programming and applications in finance)
(refers to: Competitive ratio for portfolio management;
Financial applications of multicriteria analysis; Financial
optimization; Portfolio selection andmulticriteria analysis;
Semi-infinite programming and applications in finance)

Robust optimization
[90C90, 91B28]
(see: Robust optimization)

Robust optimization: mixed-integer linear programs
(90C11, 90C30, 90B35)

robust parametric programs
[90C90, 91B28]
(see: Robust optimization)

robust programming problem
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

robust stability
[39A11, 93C55, 93D09]
(see: Robust control: schur stability of polytopes of
polynomials)

robust stability analysis
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

robust stability analysis
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

robust stopping criteria see: Dykstra’s algorithm and—
robustness

[90C25, 90C27, 90C90, 93D09]
(see: Robust control; Semidefinite programming and
structural optimization)

robustness
[90C15, 90C29, 90C30, 90C99]
(see: Discretely distributed stochastic programs: descent
directions and efficient points; SSC minimization
algorithms; SSCminimization algorithms for nonsmooth
and stochastic optimization)

robustness analysis
[90C29, 90C70, 93D09]
(see: Fuzzy multi-objective linear programming; Robust
control)

robustness for linear optimization problems see: Price of—
Rockafellar directional differential

[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

Rockafellar duality see: Fenchel– —
Rockafellar duality theory see: Fenchel–—
Rockafellar generalized derivative see: Clarke–—
Rockafellar subdifferential see:Moreau–—
Rodríguez method

[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

rolling horizon see: decisionmaking with—
rollout method

[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

(ROM) see: recursive Opt Matching—
root arc

[90C35]
(see: Generalized networks)

root-free Givens transformation see: square- —
root method see: square-—
root node

[34E05, 90C27]
(see: Asymptotic properties of randommultidimensional
assignment problem)

root problem
[65K05, 90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57,
90C59, 90C60, 90C90]
(see: Automatic differentiation: root problem and branch
problem; Traveling salesman problem)

root problem
[65K05]
(see: Automatic differentiation: root problem and branch
problem)

root problem and branch problem see: Automatic
differentiation: —

root transformation see: logarithmic and square-—;modified
square- —; square- —

root of a tree
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

rooted tree
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Generalized networks; Replicator dynamics in
combinatorial optimization)
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rooted tree see: level of a vertex in a—
Rosen gradient projection method

[65K05, 65K10]
(see: ABS algorithms for optimization)

Rosen gradient projection method
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Rosen method
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Rosen method see: global convergence problem for the—
Rosen’s method, global convergence, and Powell’s conjecture

(90C30)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications; Frank–Wolfe algorithm;
Inequality-constrained nonlinear optimization;
Kuhn–Tucker optimality conditions; Lagrangian duality:
BASICS; Saddle point theory and optimality conditions;
Second order constraint qualifications; Second order
optimality conditions for nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; First order
constraint qualifications; Inequality-constrained nonlinear
optimization; Kuhn–Tucker optimality conditions;
Lagrangian duality: BASICS; Saddle point theory and
optimality conditions; Second order constraint
qualifications; Second order optimality conditions for
nonlinear optimization; Successive quadratic
programming: full space methods)

Rosen mixed integer formulation see: LCP: Pardalos–—
Rosenbloom theorem

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

Rosenbrock hillclimbing procedure
[90C30]
(see: Suboptimal control)

Rosenbrockmethod
(90C30)
(referred to in: Cyclic coordinatemethod; Powell method;
Sequential simplex method)
(refers to: Cyclic coordinatemethod; Powell method;
Sequential simplex method)

Rosenbrock method
[90C30]
(see: Rosenbrockmethod)

rostering see: crew—
rotamer

[92B05]
(see: Genetic algorithms for protein structure prediction)

rotamer
[92B05]
(see: Genetic algorithms for protein structure prediction)

rotamer library
[92B05]
(see: Genetic algorithms for protein structure prediction)

rotamer library
[92B05]
(see: Genetic algorithms for protein structure prediction)

rotation see: diagnostic—; Givens—
rotation matrix

[46N10, 47N10, 49M37, 65K10, 90C26, 90C30]
(see: Global optimization: tight convex underestimators)

rotation in the solution of equations
[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

rotation-symmetry model
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

rotations see: diagnostic—
roughness

[68Q20]
(see: Optimal triangulations)

roulette wheel procedure
[92B05]
(see: Genetic algorithms)

roulette wheel procedure
[92B05]
(see: Genetic algorithms)

round composition of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

round-off error
[90C60]
(see: Complexity of degeneracy)

round robin balancing scheme see: asynchronous—
round robin request see: global —
rounding see: consistent—; integer —; outward—;

randomized—
rounding cut see:mixed integer —
rounding error estimation see: Automatic differentiation:

introduction, history and—
rounding errors are under control

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

rounding function
[90C10, 90C46]
(see: Integer programming duality)

rounding heuristic
[90C35]
(see:Multi-index transportation problems)

rounding problem see:matrix—
ROUNDING PROCEDURE see: rANDOMIZED—
route choice adjustment process see: trip- —
routine see: individual software—; separation—
routines see: package of basic software—
routing

[90B80, 90B85, 90C35]
(see:Multicommodity flow problems;Warehouse location
problem)

routing
[90B20]
(see: General routing problem)

routing see: aircraft —; arc —; inventory—; location-—;
node—; period—; vehicle—; VLSI —

routing algorithm see: parallel —
routing and industrial in-plant railroads see: engine—
routing models see: location-—
routing pattern model see: fractional—; single path—
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routing problem see: airline maintenance—; capacitated
arc—; capacitated vehicle—; distance-constrained
vehicle—; dynamic vehicle—; General —; inventory
ship—; Location—;Metaheuristic algorithms for the
vehicle—; stochastic vehicle—; vehicle—

routing problem with backhauls see: vehicle—
routing problem with simultaneous pickups and deliveries see:

Vehicle—
routing problem with time windows see: vehicle—
routing problems see: approximate methods for solving

vehicle—; cargo—; constructive methods for solving
vehicle—; exact methods for solving vehicle—;Maritime
inventory—; Stochastic vehicle—

routing and protection problems in optical networks see:
Integer linear programs for —

routing of traffic in transmission network
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

row see: cost—; critical —
row-action algorithm

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

row-action method
[90C05, 90C25]
(see: Young programming)

row-action method
[90C05, 90C25]
(see: Young programming)

row bandwidth
[65Fxx]
(see: Least squares problems)

row conditional proximity data
[62H30, 90C27]
(see: Assignment methods in clustering)

row generation
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

row orthogonalization scheme see: sequential —
row rank see: full —
row sufficient

[90C33]
(see: Linear complementarity problem)

row sufficient matrix
[65K05, 90C20, 90C25, 90C33, 90C55]
(see: Principal pivoting methods for linear complementarity
problems; Splittingmethod for linear complementarity
problems)

RP
[90C30]
(see: Lagrangian duality: BASICS)

RPP
[90B20]
(see: General routing problem)

rRO
[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

RSD
[90C30]
(see: Simplicial decomposition)

RSM-distribution with algebraically decreasing tail
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

RSM-distributions see: asymptotic results for —
rSQP

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

rSQP
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

RTPC
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

Rudolph method
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

rule see: absolute qualification—; adaptive subdivision—;
Armijo—; Armijo steplength —; Bayes optimal—; Bayesian
stopping—; best bound—; Bland—; Bland least index
pivoting—; chain—; column dropping—; cyclic—;
Dantzig —; Dantzig largest coefficient pivoting—;
decision—; divergent series —; divergent series
step-size—; divergent series steplength —; first-in
last-out—; Fritz John—; fuzzy sum—; generalized Gauss
quadrature—; generic pivoting—; geometric series —;
global Lagrange multiplier—; Lagrange multiplier—;
largest coefficient—; Levenberg–Marquardt —;
lexicographic pivoting—; logarithmic scoring—;minimax
decision—;momentum updating—; North–West
corner —; parametric —; polyak II —; quadratic (Brier)
scoring—; relaxation—; smallest index—; splitting—;
stopping—; sum—; tie breaking—

rule-based system
[90C09, 90C10]
(see: Optimization in boolean classification problems)

rule for Bayesian networks see: chain—
rule of Bland

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

rule of economic growth see: Ramsey—
rule of greatest improvement

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

rule of justice
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

rule of random choice
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

rule of steepest ascent
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

rule of thumb
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)
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rules see: anticycling—; chain—; Criss-cross pivoting—;
Least-index anticycling—; Lexicographic pivoting—;
look-ahead—; pivot—; pivoting—; plausible—;
Stochastic global optimization: stopping—

rules of branch and bound see: basic—
rules of a Turing machine see: transition—
run see: artificial centering hit and—; hit and—; hyperspheres

direction hit and—; improving hit and—
run algorithm see: hit and—
run algorithms see: hit and—
run generator see: hit and—
run methods see: Global optimization: hit and—; hit and—
run-of-river plant

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

run-of-river plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

run-of-river plants
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

run SQG see: single—
running list

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

running in O(nc) time see: algorithm—
running time of a Turing machine

[90C60]
(see: Complexity theory)

runs see:minimal—;multiple—
rural postman problem

[90B20]
(see: General routing problem)

(RVI) see: random vertex insertion—
rVNS

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

RVP
[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

S

S2 × 2 × 2 group see: symmetric —
S-DIAL

[90B10, 90C27]
(see: Shortest path tree algorithms)

S-face
[90C20]
(see: Standard quadratic optimization problems:
applications)

S-Fejérian
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

S-HEAP
[90B10, 90C27]
(see: Shortest path tree algorithms)

S)policy see: (s —
S-procedure

[93D09]
(see: Robust control)

(s,S) optimal policies
[49L20]
(see: Dynamic programming: inventory control)

(s,S) policy
[49L20]
(see: Dynamic programming: inventory control)

(s, S)policy
[90B50]
(see: Inventory management in supply chains)

s-stress
[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

s—t-cut
[90C35]
(see:Maximum flow problem)

s—t-cut see: flow across an—
S�-matrix

[90C09, 90C10]
(see: Combinatorial matrix analysis)

SA
(90C90, 90C27)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization; Broadcast scheduling problem;Discrete
stochastic optimization; Genetic algorithms;Global
optimization based on statistical models; Global
optimization: hit and run methods; Global optimization in
Lennard–Jones and morse clusters; Job-shop scheduling
problem;Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach;
Optimization-based visualization;Optimization in medical
imaging; Packet annealing; Phase problem in X-ray
crystallography: Shake and bake approach;Random search
methods; Simulated annealing methods in protein folding;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization;
Evolutionary algorithms in combinatorial optimization;
Global optimization based on statistical models;
Monte-Carlo simulated annealing in protein folding;
Packet annealing; Random search methods; Simulated
annealing methods in protein folding; Stochastic global
optimization: stopping rules; Stochastic global
optimization: two-phase methods)

SA
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

SA see: PA of—
SABB algorithm see: nonsmooth SSC-—; SSC-—
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saccharomyces cerevisiae
[92B05]
(see: Genetic algorithms)

saddle duality theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

saddle function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

saddle Lagrange duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization;
Duality theory: monoduality in convex optimization)

saddle Lagrangian
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

saddle-minimax point
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

saddle-minimax theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

saddle point
[49K35, 49M27, 65K10, 90C05, 90C06, 90C15, 90C25]
(see: Convex max-functions; Probabilistic constrained
linear programming: duality theory; Saddle point theory
and optimality conditions)

saddle point
[90C06]
(see: Saddle point theory and optimality conditions)

saddle point see: left —; right —
saddle-point formulation

[65M60]
(see: Variational inequalities: F. E. approach)

saddle-point inequalities
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

saddle-point problem
[49K35, 49M27, 65K10, 90C25]
(see: Convex max-functions)

saddle-point sufficient condition
[90C30]
(see: Image space approach to optimization)

saddle-point theorem see: right —
Saddle point theory and optimality conditions

(90C06)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications; Inequality-constrained
nonlinear optimization; Kuhn–Tucker optimality
conditions; Lagrangian duality: BASICS; Rosen’s method,
global convergence, and Powell’s conjecture; Second order
constraint qualifications; Second order optimality
conditions for nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; First order
constraint qualifications; Inequality-constrained nonlinear
optimization; Kuhn–Tucker optimality conditions;
Lagrangian duality: BASICS; Rosen’s method, global
convergence, and Powell’s conjecture; Second order

constraint qualifications; Second order optimality
conditions for nonlinear optimization)

saddle points
[90C15]
(see: Stochastic quasigradient methods in minimax
problems)

saddle value
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

safe starting region
[65G20, 65G30, 65G40]
(see: Interval analysis: systems of nonlinear equations)

safeguarded new trial steplength see: compute a—
Saito divergence see: Itakura– —
sales see:maximization of—
sales assumption see: lost —
salesman see: probabilistic traveling—
salesman problem see: classical traveling—; graphical

traveling—; Heuristic and metaheuristic algorithms for the
traveling—; prize collecting traveling—; road traveling—;
Steiner graphical traveling—; Time-dependent
traveling—; traveling—

Salesman Problem (ATSP) see: asymmetric Traveling—
salesman problems see: traveling—
salesperson problem see: traveling—
same face see: points on the—
same probability see: randomly with the—
sample see: validation—
sample and expectation functions

[90C15]
(see: Stochastic quasigradient methods: applications)

sample-path optimization
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

sample problem
[90C26, 90C29]
(see: Optimal design of composite structures)

sampler see: hidden Markov model and Gibbs—
samples see: training—
sampling

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

sampling see: exact—; importance—;Markov chain—;
random—; uniform random—

sampling procedure see: interactive—
sampling and variance reduction see:Monte-Carlo —
sandwich condition

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

sandwich theorem
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

SAR
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

Sard theorem see: parametrized —
SAT

[05-04, 68Q25, 90C27, 90C60]
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(see: Evolutionary algorithms in combinatorial
optimization;NP-complete problems and proof
methodology)

SAT
[90C09, 90C10]
(see: Optimization in boolean classification problems)

SAT see: 3- —;MAX-—;MAX-2- —
SAT-CNF problem

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

SAT-k-CNF
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

SAT problem see: weighted MAX-—
satellite orbit

[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

satellite problem
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

satellite systems
[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

satellites and tracking stations see: Automatic differentiation:
geometry of—

satisfaction see: constraint—;maximum constraint—
Satisfaction Problem see: binary constraint—; constraint—;

max-r-Constraint—;maximum constraint—; numerical
constraint—

satisfaction problems see: constraint—; continuous
constraint—

satisfaction: relaxations and upper bounds see:Maximum
constraint—

satisfaction set
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

satisfaction techniques see: constraint—
satisfiability

[68Q25, 90C05, 90C10, 90C60]
(see:Maximum constraint satisfaction: relaxations and
upper bounds;NP-complete problems and proof
methodology; Simplicial pivoting algorithms for integer
programming)

satisfiability
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

satisfiability see: 3- —; Boolean—;maximum—
satisfiability of Boolean formulas

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

satisfiability problem
[03B50, 68T15, 68T30, 90C60]
(see: Complexity theory; Finite complete systems of
many-valued logic algebras)

satisfiability problem
[90C09, 90C10]
(see: Optimization in boolean classification problems)

satisfiability problem see:Maximum—

satisfiable Boolean formula
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

satisficing method
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

saturating push
[90C35]
(see:Maximum flow problem)

Savings see: expected —
savings algorithm see: parallel —
savings heuristic

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

savings heuristic see:Whitney—
savings procedures

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

Savitch theorem
[90C60]
(see: Complexity classes in optimization)

sawtooth arc cost function
[90B10]
(see: Piecewise linear network flow problems)

SBB algorithm see: sSC- —
SBP

[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

SC
[90B05, 90B06]
(see: Global supply chain models)

SC see: IM in—
scalar variational inequalities

[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

scalarization
[90C29]
(see: Vector optimization)

scalarization
[90C29]
(see: Vector optimization)

scalarization property
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

scalarizing function
[90C29]
(see:Multiple objective programming support)

scalarizing function
[90C29]
(see:Multiple objective programming support)

scalarizing program see: achievement—
scalars

[14R10, 15A03, 51N20]
(see: Linear space)

scale
[90C29]
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(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

scale
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

scale see: circular unidimensional—; economies of —;
economy of —; exponential —; linear unidimensional—;
unidimensional—

scale combinatorial optimization see: large- —
scale function

[90C26]
(see: Invexity and its applications)

scale function
[90C26]
(see: Invexity and its applications)

scale global optimization using terrain/funneling methods see:
Multi- —

scale invariance criterion
[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

scale-invariant
(see: Global optimization: functional forms)

scale least squares problems see: Complexity and large- —
scale linear systems see: large —
scale neighborhoods see: large- —
scale network see: intermediate —;macro—;micro—
scale nonlinear mixed integer programming problem see:

large—
scale optimization see: large—
scale problem see: large—
scale and sparse semidefinite programs see: Solving large—
scale trust region see: large—
scale trust region problem see: large—
scale trust region problems see: Large—
scale unconstrained optimization see: Large—
scaled ABS class

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

scaled ABS class of algorithms
[65K05, 65K10]
(see: ABS algorithms for optimization)

scaled subclass see: optimally—; orthogonally—
scales see: linear—; unidimensional—
scaling see: cost—; dual—; �- —;multidimensional—;

unidimensional—
scaling algorithm see: affine—; dual- —; primal- —;

primal-dual—
scaling method see: distance—
scaling problem see:multidimensional—
scaling SQPIPmethods see: affine—
scalings algorithm see: dual- —
scan

[90C35]
(see:Multi-index transportation problems)

Scan see: graham-—
Scarf formulation

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

Scarf formulation
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

scatter search
[05-04, 68T20, 68T99, 90C10, 90C11, 90C20, 90C27, 90C59]
(see: Evolutionary algorithms in combinatorial
optimization; Linear ordering problem;Metaheuristics)

scenario
[90C15, 90C26, 90C90, 91B28]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems;
Financial optimization; Global optimization in batch
design under uncertainty; Stochastic programming: parallel
factorization of structured matrices; Two-stage stochastic
programs with recourse)

scenario aggregation
[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

scenario analysis
[90C15, 90C29, 90C30, 90C35]
(see: Discretely distributed stochastic programs: descent
directions and efficient points;Optimization in water
resources; Stochastic quasigradientmethods in minimax
problems)

scenario analysis
[90C15, 90C29, 90C30, 90C35]
(see: Discretely distributed stochastic programs: descent
directions and efficient points;Optimization in water
resources; Stochastic quasigradientmethods in minimax
problems)

scenario generation
[91B28]
(see: Financial optimization)

scenario set
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

scenario tree
[90C15, 90C30, 90C35, 90C90]
(see: Decomposition algorithms for the solution of
multistage mean-variance optimization problems;
Multistage stochastic programming: barycentric
approximation;Optimization in water resources)

scenario trees see: barycentric —
scenarios see: what-if-when—
SCG see: algorithm-—
Schaible algorithm

[90C32]
(see: Quadratic fractional programming: Dinkelbach
method)

Schauder degree see: Leray– —
Schauder fixed point theorem

[65G20, 65G30, 65G40, 65H20]
(see: Interval fixed point theory)

schedule see: annealing—; cooling—; flight—
schedule construction see: network design and—
schedule first-cluster second

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

schedule second strategy see: cluster first- —
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scheduling
[90C26]
(see: Global optimization in batch design under
uncertainty)

scheduling
[90B35, 90C11, 90C26, 90C90]
(see: Job-shop scheduling problem;MINLP: design and
scheduling of batch processes;MINLP: trim-loss problem)

scheduling see: airline crew—; batch—; crew—; facility
planning and—; Integrated planning and—;
Locomotive—;Mixed integer optimization in well —;
Optimal sensor—; Railroad crew—; Railroad
locomotive—; Static resource constrained project—;
Stochastic—; Vehicle—

scheduling of batch processes see:Medium-term—;MINLP:
design and—; Reactive—

scheduling of batch processes with resources see:
Short-term—

scheduling of continuous processes see: Short-term—
scheduling functions

[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

scheduling: an MILP model see: Gasoline blending and
distribution—

schedulingmodels see: single locomotive—
scheduling policy

[90B36, 90C26]
(see:MINLP: design and scheduling of batch processes;
Stochastic scheduling)

scheduling problem
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

scheduling problem see: Broadcast—; crew- —; Flow shop—;
Job-shop—;minimumMultiprocessor—;Multi-depot
vehicle—; Single-depot vehicle—; vehicle—

scheduling problems see: Integrated vehicle and duty—;
multi-depot vehicle—; Single-depot vehicle—

scheduling problems with a fixed number of vehicles see:
Vehicle—

scheduling problems with multiple types of vehicles see:
Vehicle—

scheduling problems with time constraints see: vehicle—
scheduling process see: duty —
scheduling, resource constrained: unified modeling

frameworks see: Short-term—
scheduling (staff planning)

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

scheduling of switching engines
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

scheduling theory
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

scheduling with trip shifting see: Vehicle—
scheduling under uncertainty: sensitivity analysis see:

Short-term—
schema

[92B05]
(see: Genetic algorithms)

schema
[92B05]
(see: Genetic algorithms)

Schema theorem
[92B05]
(see: Genetic algorithms)

Schema theorem
[92B05]
(see: Genetic algorithms)

Scheme
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

scheme see: asynchronous round robin balancing—; branch
and bound—; chaotic iterative—; fully polynomial time
approximation—; growth—; Hilbert —; iterative —;
Kantorovich—;master-slave—;MS—; near-neighbor load
balancing—; polynomial time approximation—; random
polling—; randomized allocation—; sequential row
orthogonalization—

schemes see: aggregation —
Schmidt algorithm see: Daniel–Gragg–Kaufmann–Stewart

reorthogonalized Gram–—
Schmidt orthogonalization see: classical Gram–—; Gram–—;

modified Gram–—
Schmidt type iteration see: Gram–—
Scholes model see: Black–—
Schroedinger equation

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

Schruben–Margolin method
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

Schur complement
[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

Schur stability
[39A11, 93C55, 93D09]
(see: Robust control: schur stability of polytopes of
polynomials)

schur stability of polytopes of polynomials see: Robust
control: —

science see: cognitive—
scientific applications

[03B50, 03B52, 03E72, 47S40, 68T15, 68T27, 68T30, 68T35,
68Uxx, 90Bxx, 90C05, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Continuous global
optimization: applications; Finite complete systems of
many-valued logic algebras)

Scientific Discovery see: logic of—
sCM

[68T20, 68T99, 90-02, 90C27, 90C59]
(see:Metaheuristics;Operations research models for supply
chain management and design)

score
[90C39]
(see: Neuro-dynamic programming)

score function
[60J05, 90C15]
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(see: Derivatives of markov processes and their simulation;
Derivatives of probability measures)

score function martingale
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

score function method
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

scores see: REL chart —
scoring function

[62H30, 68T10, 90C05, 90C11, 90C39]
(see: Linear programmingmodels for classification;Mixed
integer classification problems;Neuro-dynamic
programming)

scoring rule see: logarithmic—; quadratic (Brier) —
SCOUT

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

SCP
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

(SCP) see: stacker Crane Problem—
screening see:mammography—
SD

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

Sd-classes
[03E70, 03H05, 91B16]
(see: Alternative set theory)

SD problem see: dual—; equivalent primal—; primal—;
standard—

SDP
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

SDP duality
[90C30]
(see: Duality for semidefinite programming)

SDSSS
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

SDVSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

SE
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

search
[65G20, 65G30, 65G40, 68T20]
(see: Interval constraints)

search see: adaptive—; Adaptive global —; allowed neighbor
in tabu—; aspiration—; best-first tree —; binary—;
bisection—; chained local —; conformational—;
curvilinear line—; cyclic coordinate—; depth-first —;
depth-first tree —; direct—; domain of—; Fibonnaci
section—; fixed tabs—; formulation space—; global —;
Global equilibrium—; global optimum—; golden
section—; graph—; greedy randomized adaptive—;
grid—; Hamming-reactive tabu—; hesitant adaptive—;
Heuristic—; history of a—; inexact line—; intelligent—;

iterated local—; limited discrepancy—; line—; local—;
localization—;Megiddo parametric —;move in a—;
nonmonotone line—; nonoblivious local—; parallel
aspiration—; Parallel Best-First Tree —; Parallel Depth-First
Tree —; Parallel heuristic —; pattern —; prohibited
neighbor in tabu—; pure adaptive—; pure localization—;
pure random—; randomwalk—; reactive tabu—;
scatter —; stochastic local—; systematic —; tabu—;
topological —; tree —

search algorithm see: A*—; binary —; distributed game
tree —; generalized game tree —; lexicographic—; optimal
state space—; recursive state space—; state space—;
synchronized distributed state space—

search algorithms
[90C30]
(see: Frank–Wolfe algorithm)

search algorithms see: local —; random—
search with backtracking see: depth-first —
search configuration

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

search device see: local —
search direction

[90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming)

search direction see: compute the—
search directions see: orthogonal —
search engine

[90C15, 90C30, 90C99]
(see: SSC minimization algorithms)

search engine see: BB—; Newton—; quasi-Newton—
search with enhanced positioning see: Gene clustering:

A novel decomposition-based clustering approach: global
optimum—

search-Hansel chains question-asking strategy see: binary—
search heuristic

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

search heuristics see: advanced—; local —
search line see: inexact line—
search Luus—Jaakola optimization procedure see: Direct—
search method see: adaptive random—; binary—; local —;

random—; stochastic—
search methodology see: tabu—
search methods see: line—; Random—; Variable

neighborhood—
search optimization see: direct—
search overhead factor

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

search phase in GRASP see: local—
search problem see: line—
search problems see: polynomial time local —
search procedure see: greedy randomized adaptive—
search procedures see: Greedy randomized adaptive—
search technique see: inexact line—; line—
search trajectory

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)



Subject Index 4493

searcher cooperationminimization algorithms see: supervisor
and—

searches see: line—; pattern —
searching

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

searching see: line—;Minimax game tree —
searching state space graphs

[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

secant equation
[49M07, 49M10, 65K, 90C06, 90C20]
(see: Spectral projected gradientmethods)

secant relation
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

secant updating
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

second see: schedule first-cluster—
second generation modeling languages

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

second hypodifferential
[65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems)

second level problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

second order adjoints
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

second order approximation
[90C30]
(see: Convex-simplex algorithm)

second order codifferential
[49J52, 65K99, 65Kxx, 70-08, 90C25, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization:
codifferentiable functions)

second order cone
[90C05]
(see: Linear programming: interior point methods)

second order constraint qualification
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

Second order constraint qualifications
(90C30, 49K27, 90C31, 49K40)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications; Generalized semi-infinite
programming: optimality conditions; Inequality-constrained
nonlinear optimization; Kuhn–Tucker optimality
conditions; Lagrangian duality: BASICS;Nondifferentiable
optimization: parametric programming; Rosen’s method,
global convergence, and Powell’s conjecture; Saddle point
theory and optimality conditions; Second order optimality
conditions for nonlinear optimization)
(refers to: Equality-constrained nonlinear programming:

KKT necessary optimality conditions; First order
constraint qualifications; Inequality-constrained nonlinear
optimization; Kuhn–Tucker optimality conditions;
Lagrangian duality: BASICS; Rosen’s method, global
convergence, and Powell’s conjecture; Saddle point theory
and optimality conditions; Second order optimality
conditions for nonlinear optimization)

second order CQ
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

second order decomposition of a function
[90Cxx]
(see: Discontinuous optimization)

second order directional derivative see: generalized —
second order growth

[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

second order hyperdifferential
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

second order hypodifferential
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

second order Lagrangian theory of CNSO problems
[46A20, 52A01, 90C30]
(see: Composite nonsmooth optimization)

second order necessary condition
[49M29, 65K10, 90C06, 90C31]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control; Sensitivity and stability in
NLP: approximation)

second order necessary conditions
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

second order necessary and sufficient optimality conditions
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)

second order optimality condition
[49M37, 65K05, 90C30]
(see: Inequality-constrained nonlinear optimization)

second order optimality conditions see: first order and—;
Semi-infinite programming: —

Second order optimality conditions for nonlinear
optimization
(90C39, 90C26)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions; First
order constraint qualifications; Inequality-constrained
nonlinear optimization; Kuhn–Tucker optimality
conditions; Lagrangian duality: BASICS; Rosen’s method,
global convergence, and Powell’s conjecture; Saddle point
theory and optimality conditions; Second order constraint
qualifications)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions; First order
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constraint qualifications; Inequality-constrained nonlinear
optimization; Kuhn–Tucker optimality conditions;
Lagrangian duality: BASICS; Rosen’s method, global
convergence, and Powell’s conjecture; Saddle point theory
and optimality conditions; Second order constraint
qualifications)

second order procedures
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

second order regular set
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

second order sufficiency
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

second order sufficiency see: strong—
second order sufficient condition

[90C30, 90C31, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach; Sensitivity and stability in NLP:
continuity and differential stability)

second order sufficient condition see: general —; general
strong—; strong—

second order sufficient conditions
[90C26, 90C31, 90C39]
(see: Second order optimality conditions for nonlinear
optimization; Sensitivity and stability in NLP)

second order tangent set
[49K27, 49K40, 90C30, 90C31]
(see: Second order constraint qualifications)

second partial derivatives see:matrix of—
second principle see:Wardrop—
second slope lemma

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

second-stage
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

second-stage decision
[90C15]
(see: Two-stage stochastic programs with recourse)

second-stage decisions
[90C10, 90C15]
(see: Stochastic integer programs; Stochastic programming:
parallel factorization of structured matrices)

second-stage feasibility set
[90C15]
(see: Two-stage stochastic programs with recourse)

second strategy see: cluster first-schedule—
secondary cone

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

secondary fan
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

secondary polytope
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

secondary ray see: termination on a—

secondary structure
[92B05]
(see: Genetic algorithms for protein structure prediction)

secondary structure
[92B05]
(see: Genetic algorithms for protein structure prediction)

section method see: golden—
section search see: Fibonnaci —; golden—
sectional shapes see: beam cross-—
sectioning

[90C30]
(see: Nonlinear least squares problems)

sector multi-instrument financial equilibriummodel see:
multi- —

sector stability criterion
[93D09]
(see: Robust control)

sectorization see: cell —
security market line

[91B28]
(see: Portfolio selection: markowitz mean-variance model)

see see: wait-and-—
seed matrix

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

seed part
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

seed structure
[90C26, 90C90]
(see: Global optimization in Lennard–Jones andmorse
clusters)

seek algorithm see: hide-and-—
segment of a polyhedron

[90C60]
(see: Complexity of degeneracy)

segmentation
[90C90]
(see: Optimization in medical imaging)

segmentation see: feature—; spatial —
segmentation problem see: beam—
segments of polyhedra

[90C60]
(see: Complexity of degeneracy)

Seidel see: Gauss–—
Seidel algorithm see: Gauss–—
Seidel iteration see: Gauss–—
Seidel method see: Gauss–—
Seidel value iteration see: Gauss–—
seismic Vessel Problem (SVP)

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

selected residues
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

selection
[41A30, 47A99, 65K10, 92B05]
(see: Genetic algorithms; Lipschitzian operators in best
approximation by bounded or continuous functions)
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selection
[92B05]
(see: Genetic algorithms)

selection see: beam angle —; continuous—; controlled—;
feature—; fundamental theorem of natural —;
immediate—; lexicographic pivot—; portfolio—;
priorities—; subinterval —; subset —

selection of architecture
[90C39]
(see: Neuro-dynamic programming)

selection equations
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

selection of functions see: continuous—
selection: markowitz mean-variance model see: Portfolio—
Selection of maximally informative genes
selection and multicriteria analysis see: Portfolio—
selection operator

[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

selection operator see: continuous—; lipschitzian—; optimal
Lipschitzian—

selection problem
[90C29]
(see:Multiple objective programming support)

selection problem see: portfolio—
selection in radiotherapy treatment design see: Beam—
selection step

[90C59]
(see:Heuristic and metaheuristic algorithms for the
traveling salesman problem)

selection and wedge orientation optimization see: beam
angle—

selective zeolite separation and catalysis: optimization
methods see: Shape—

self-inverse product of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

self-organization
[68M20, 90B35]
(see: Flow shop scheduling problem)

selfadjoint operator see: closed—
selfdual

[90C05]
(see:Homogeneous selfdual methods for linear
programming)

selfdual methods for linear programming see:
Homogeneous—

selfdual model see: homogeneous and—
Selfdual parametric method for linear programs

(90C05, 90C06)
(referred to in: Bounds and solution vector estimates for
parametric NLPS;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Parametric
optimization: embeddings, path following and

singularities)
(refers to: Bounds and solution vector estimates for
parametric NLPS;Multiparametric linear programming;
Multiparametricmixed integer linear programming;
Nondifferentiable optimization: parametric programming;
Parametric global optimization: sensitivity; Parametric
linear programming: cost simplex algorithm; Parametric
mixed integer nonlinear optimization; Parametric
optimization: embeddings, path following and
singularities)

selfdual problem
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

selfdual rank one formula
[49M37]
(see: Nonlinear least squares: Newton-type methods)

selfdual system
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

selling see: short —
selling problem see: asset—
semantic analysis methodologies

[90C09, 90C10]
(see: Optimization in classifying text documents)

semantics
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

semantics for fuzzy logics see: Checklist paradigm—
semantics of MVL connectives

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

semi-assignment constraints
[90-00]
(see: Generalized assignment problem)

semi-assignment problem see: Quadratic—
(semi) definite completion problem see: positive—
semi-definite quadratic binary programming see: positive—
semi-infinite

[03H10, 49J27, 57R12, 90C31, 90C34]
(see: Semi-infinite programming and control problems;
Smoothing methods for semi-infinite optimization)

semi-infinite linear programming
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

semi-infinite optimization
[65K05, 65K10, 90C06, 90C30, 90C34]
(see: Feasible sequential quadratic programming)

semi-infinite optimization
[90C25, 90C26, 90C31, 90C34]
(see: Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions)

semi-infinite optimization see: Adaptive convexification in—;
one-parametric —; Smoothing methods for —

semi-infinite optimization problem
[90C26]
(see: Smooth nonlinear nonconvex optimization)

semi-infinite optimization problems
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions)
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semi-infinite problem see: generalized —
semi-infinite program

[90C34]
(see: Semi-infinite programming: approximationmethods)

semi-infinite program see: dual—; primal (linear) —
semi-infinite programming

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

semi-infinite programming
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods;
Semi-infinite programming, semidefinite programming
and perfect duality)

semi-infinite programming see: linear —; perfect duality from
the view of linear—; reduced problem in—

Semi-infinite programming and applications in finance
(90C34, 91B28)
(referred to in: Competitive ratio for portfolio management;
Financial applications of multicriteria analysis; Financial
optimization; Portfolio selection andmulticriteria analysis;
Robust optimization)
(refers to: Competitive ratio for portfolio management;
Financial applications of multicriteria analysis; Financial
optimization; Portfolio selection andmulticriteria analysis;
Robust optimization; Semi-infinite programming:
approximationmethods; Semi-infinite programming and
control problems; Semi-infinite programming:
discretizationmethods; Semi-infinite programming:
methods for linear problems; Semi-infinite programming:
numerical methods; Semi-infinite programming: second
order optimality conditions; Semi-infinite programming,
semidefinite programming and perfect duality)

Semi-infinite programming: approximationmethods
(90C34)
(referred to in: Semi-infinite programming and applications
in finance; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality)
(refers to: Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality)

Semi-infinite programming and control problems
(49J27, 90C34, 03H10)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Optimal control of a flexible arm; Robust

control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and applications
in finance; Semi-infinite programming: approximation
methods; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality; Sequential quadratic
programming: interior point methods for distributed
optimal control problems; Suboptimal control)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Optimal
control of a flexible arm; Robust control; Robust control:
schur stability of polytopes of polynomials; Semi-infinite
programming: approximationmethods; Semi-infinite
programming: discretizationmethods; Semi-infinite
programming: methods for linear problems; Semi-infinite
programming: numerical methods; Semi-infinite
programming: second order optimality conditions;
Semi-infinite programming, semidefinite programming
and perfect duality; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Suboptimal control)

Semi-infinite programming: discretizationmethods
(90C34, 90C05, 90C25, 90C30)
(referred to in: Semi-infinite programming and applications
in finance; Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality; Two-stage stochastic
programs with recourse)
(refers to: Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality)

Semi-infinite programming: methods for linear problems
(90C34, 90C05)
(referred to in: Semi-infinite programming and applications
in finance; Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality)
(refers to: Semi-infinite programming: approximation
methods; Semi-infinite programming and control
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problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Semi-infinite programming, semidefinite
programming and perfect duality)

Semi-infinite programming: numerical methods
(90C34, 90C26, 90C25, 90C34)
(referred to in: Semi-infinite programming and applications
in finance; Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: second order
optimality conditions; Semi-infinite programming,
semidefinite programming and perfect duality)
(refers to: Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: second order
optimality conditions; Semi-infinite programming,
semidefinite programming and perfect duality)

semi-infinite programming: optimality conditions see:
Generalized—

Semi-infinite programming: second order optimality
conditions
(90C31, 90C34)
(referred to in: Semi-infinite programming and applications
in finance; Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming, semidefinite programming
and perfect duality)
(refers to: Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming, semidefinite programming
and perfect duality)

Semi-infinite programming, semidefinite programming and
perfect duality
(90C05, 90C25, 90C30, 90C34)
(referred to in: Duality for semidefinite programming;
Semidefinite programming and determinant maximization;
Semidefinite programming: optimality conditions and
stability; Semidefinite programming and structural
optimization; Semi-infinite programming and applications
in finance; Semi-infinite programming: approximation
methods; Semi-infinite programming and control
problems; Semi-infinite programming: discretization
methods; Semi-infinite programming: methods for linear
problems; Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Smoothing methods for semi-infinite
optimization; Solving large scale and sparse semidefinite
programs)
(refers to: Duality for semidefinite programming; Interior
point methods for semidefinite programming; Semidefinite

programming and determinant maximization; Semidefinite
programming: optimality conditions and stability;
Semidefinite programming and structural optimization;
Semi-infinite programming: approximationmethods;
Semi-infinite programming and control problems;
Semi-infinite programming: discretizationmethods;
Semi-infinite programming: methods for linear problems;
Semi-infinite programming: numerical methods;
Semi-infinite programming: second order optimality
conditions; Solving large scale and sparse semidefinite
programs)

semi-infinite programs
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

semi-infinite programs see: computationally equivalent—;
nonlinear —

semi-order
[90C29]
(see: Preference modeling)

semi-ordered spaces
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

semicoercive function
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

semicoercive hemivariational inequality
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

semicoercive hemivariational inequality
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

semicontinuity
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

semicontinuous see: lower—
semicontinuous function see: lower—; Rn+-upper —; upper —
semidefinite

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

semidefinite see: positive—
semidefinite matrices see: positive—
semidefinite matrix see: bisymmetric positive—; partial —;

positive—
semidefinite matrix completion problem see: positive—
semidefinite program

[90C25, 90C27, 90C30, 90C90]
(see: Duality for semidefinite programming; Semidefinite
programming and structural optimization; Solving large
scale and sparse semidefinite programs)

semidefinite program see: dual—; linear —
semidefinite program as conic convex program

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

semidefinite programming
[46A20, 52A01, 90C05, 90C22, 90C25, 90C30, 90C51, 93D09]
(see: Copositive programming; Farkas lemma:
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generalizations; Interior point methods for semidefinite
programming; Robust control)

semidefinite programming
[15A15, 46A20, 52A01, 90C22, 90C25, 90C27, 90C30, 90C31,
90C55, 90C90, 93D09]
(see: Duality for semidefinite programming; Farkas lemma:
generalizations; Large scale trust region problems; Robust
control; Semidefinite programming and determinant
maximization; Semidefinite programming: optimality
conditions and stability; Semidefinite programming and
structural optimization; Solving large scale and sparse
semidefinite programs)

semidefinite programming see: Duality for —; Graph
realization via—; handbook on—; Interior point methods
for—;Maximum likelihood detection via—

semidefinite programming approach
[90C30]
(see: Large scale trust region problems)

Semidefinite programming and determinant maximization
(90C25, 90C55, 90C25, 90C90, 15A15)
(referred to in: ˛BB algorithm;Duality for semidefinite
programming; Eigenvalue enclosures for ordinary
differential equations;Hemivariational inequalities:
eigenvalue problems; Interval analysis: eigenvalue bounds
of interval matrices;Matrix completion problems;
Semidefinite programming: optimality conditions and
stability; Semidefinite programming and the sensor
network localization problem, SNLP; Semidefinite
programming and structural optimization; Semi-infinite
programming, semidefinite programming and perfect
duality; Solving large scale and sparse semidefinite
programs)
(refers to: ˛BB algorithm;Duality for semidefinite
programming; Eigenvalue enclosures for ordinary
differential equations;Hemivariational inequalities:
eigenvalue problems; Interior point methods for
semidefinite programming; Interval analysis: eigenvalue
bounds of interval matrices;Matrix completion problems;
Semidefinite programming: optimality conditions and
stability; Semidefinite programming and structural
optimization; Semi-infinite programming, semidefinite
programming and perfect duality; Solving large scale and
sparse semidefinite programs)

Semidefinite programming: optimality conditions and
stability
(90C22, 90C25, 90C31)
(referred to in: Duality for semidefinite programming;
Maximum cut problem, MAX-CUT; Semidefinite
programming and determinant maximization; Semidefinite
programming and the sensor network localization problem,
SNLP; Semidefinite programming and structural
optimization; Semi-infinite programming, semidefinite
programming and perfect duality; Solving large scale and
sparse semidefinite programs; Standard quadratic
optimization problems: algorithms)
(refers to: Duality for semidefinite programming; Interior
point methods for semidefinite programming; Semidefinite
programming and determinant maximization; Semidefinite
programming and structural optimization; Semi-infinite
programming, semidefinite programming and perfect

duality; Solving large scale and sparse semidefinite
programs)

semidefinite programming and perfect duality see:
Semi-infinite programming—

semidefinite programming problem
[15A15, 90C22, 90C25, 90C31, 90C55, 90C90]
(see: Semidefinite programming and determinant
maximization; Semidefinite programming: optimality
conditions and stability)

semidefinite programming problem see: convex—; linear —
Semidefinite programming and the sensor network

localization problem, SNLP
(referred to in:Maximum cut problem, MAX-CUT)
(refers to: Graph realization via semidefinite programming;
Semidefinite programming and determinant maximization;
Semidefinite programming: optimality conditions and
stability; Semidefinite programming and structural
optimization; Solving large scale and sparse semidefinite
programs)

Semidefinite programming and structural optimization
(90C25, 90C27, 90C90)
(referred to in:Duality for semidefinite programming;
Semidefinite programming and determinant maximization;
Semidefinite programming: optimality conditions and
stability; Semidefinite programming and the sensor
network localization problem, SNLP; Semi-infinite
programming, semidefinite programming and perfect
duality; Solving large scale and sparse semidefinite
programs; Topology of global optimization; Topology
optimization)
(refers to:Duality for semidefinite programming; Interior
point methods for semidefinite programming; Semidefinite
programming and determinant maximization; Semidefinite
programming: optimality conditions and stability;
Semi-infinite programming, semidefinite programming
and perfect duality; Solving large scale and sparse
semidefinite programs; Structural optimization; Structural
optimization: history; Topology of global optimization;
Topology optimization)

semidefinite programs see: Solving large scale and sparse —
semidefinite relaxations see: bounds based on—
semidefinite symmetric matrix see: positive—
semidefiniteness constraints see: positive—
semigreedy heuristic

[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

semilattice see: geometric —
semilinear set

[52B12, 68Q25]
(see: Fourier–Motzkin eliminationmethod)

semilinear set
[52B12, 68Q25]
(see: Fourier–Motzkin eliminationmethod)

seminormal equation see: corrected—
semipermeability

[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

semisets
[03E70, 03H05, 91B16]
(see: Alternative set theory)
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semisets
[03E70, 03H05, 91B16]
(see: Alternative set theory)

semismooth function
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

semismooth function see: strongly —; upper—
semismooth mapping

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

semismooth mapping
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

semismoothmapping see: strongly—
semismoothness

[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

semismoothness see: strong—
semistrictly quasiconvex function

[90C26]
(see: Generalized monotone single valued maps)

semistrictly quasimonotone map
[90C26]
(see: Generalized monotone single valued maps)

semistrictly quasimonotone operator
[90C26]
(see: Generalized monotone multivalued maps)

semisublattice see:meet —
sender-initiated

[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

sender initiated mapping technique
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

sense of Jongen–Jonker–Twilt see: problem regular in the—
sense of Kojima–Hirabayashi see: problem regular in the—
sensitive heuristics see: history- —
sensitivity

[90B85, 90C30, 93-XX]
(see: Boundary condition iteration BCI;Dynamic
programming: optimal control applications; Single facility
location: multi-objective euclidean distance location;
Suboptimal control)

sensitivity
[65L99, 90C05, 90C25, 90C29, 90C30, 90C31, 93-XX]
(see: Nondifferentiable optimization: parametric
programming;Optimization strategies for dynamic
systems)

sensitivity see: Parametric global optimization: —;
variational—

sensitivity analysis
[13Cxx, 13Pxx, 14Qxx, 90C05, 90C10, 90C25, 90C29, 90C30,
90C31, 90C46, 90Cxx]
(see: Integer programming: algebraic methods; Integer
programming duality;Nondifferentiable optimization:
parametric programming; Sensitivity and stability in
NLP)

sensitivity analysis
[13Cxx, 13Pxx, 14Qxx, 65K10, 90C22, 90C25, 90C31, 90C33,
90Cxx]
(see: Bounds and solution vector estimates for parametric
NLPS; Integer programming: algebraic methods;
Semidefinite programming: optimality conditions and
stability; Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)

sensitivity analysis see: applications of —; automated Fortran
program for nonlocal —; nonlocal —; post-optimality—;
shape—; Short-term scheduling under uncertainty: —

sensitivity analysis with automatic differentiation see:
Nonlocal —

Sensitivity analysis of complementarity problems
(90C31, 90C33)
(referred to in: Nonlocal sensitivity analysis with automatic
differentiation; Parametric global optimization: sensitivity;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)
(refers to: Nonlocal sensitivity analysis with automatic
differentiation; Parametric global optimization: sensitivity;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)

sensitivity analysis with respect to changes in cost coefficients
[90C05, 90C31]
(see: Parametric linear programming: cost simplex
algorithm)

sensitivity analysis with respect to right-hand side changes
[90C05, 90C31]
(see:Multiparametric linear programming)

Sensitivity analysis of variational inequality problems
(90C31, 65K10)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;Nonlocal
sensitivity analysis with automatic differentiation;
Parametric global optimization: sensitivity;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
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analysis of complementarity problems; Sensitivity and
stability in NLP; Sensitivity and stability in NLP:
approximation; Sensitivity and stability in NLP: continuity
and differential stability; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;Nonlocal
sensitivity analysis with automatic differentiation;
Parametric global optimization: sensitivity;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of complementarity problems; Sensitivity and
stability in NLP; Sensitivity and stability in NLP:
approximation; Sensitivity and stability in NLP: continuity
and differential stability; Solving hemivariational
inequalities by nonsmooth optimization methods;
Variational inequalities;Variational inequalities: F. E.
approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system; Variational
principles)

sensitivity-based gradient
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

sensitivity derivatives
[90C26, 90C90]
(see: Structural optimization: history)

sensitivity equations
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

sensitivity in nonlinear programming
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

sensitivity of optimal flowsheets
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

sensitivity parameters
[49K99, 65K05, 80A10]

(see: Optimality criteria for multiphase chemical
equilibrium)

Sensitivity and stability in NLP
(90C31)
(referred to in: Ill-posed variational problems;Nonlocal
sensitivity analysis with automatic differentiation;
Parametric global optimization: sensitivity; Sensitivity
analysis of complementarity problems; Sensitivity analysis
of variational inequality problems; Sensitivity and stability
in NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)
(refers to: Ill-posed variational problems;Nonlocal
sensitivity analysis with automatic differentiation;
Parametric global optimization: sensitivity; Sensitivity
analysis of complementarity problems; Sensitivity analysis
of variational inequality problems; Sensitivity and stability
in NLP: approximation; Sensitivity and stability in NLP:
continuity and differential stability)

Sensitivity and stability in NLP: approximation
(90C31)
(referred to in:Nonlocal sensitivity analysis with automatic
differentiation; Parametric global optimization: sensitivity;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: continuity and differential stability)
(refers to:Nonlocal sensitivity analysis with automatic
differentiation; Parametric global optimization: sensitivity;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: continuity and differential stability)

Sensitivity and stability in NLP: continuity and differential
stability
(90C31)
(referred to in:Nonlocal sensitivity analysis with automatic
differentiation; Parametric global optimization: sensitivity;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation)
(refers to:Nonlocal sensitivity analysis with automatic
differentiation; Parametric global optimization: sensitivity;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP; Sensitivity and stability in
NLP: approximation)

sensitivity theorem see: basic—
Sensor network localization problem

(see: Semidefinite programming and the sensor network
localization problem, SNLP)

sensor network localization problem, SNLP see: Semidefinite
programming and the—

sensor scheduling see: Optimal—
separability assumption

[49M29, 90C11]
(see: Generalized benders decomposition)

separable classes
[03E70, 03H05, 91B16]
(see: Alternative set theory)
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separable convex objective function
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

separable formulation
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

separable function see: partially—
separable objective function

[90C25]
(see: Concave programming)

separable optimization
[90C30]
(see: Generalized total least squares)

separable optimization problem
[90C30]
(see: Generalized total least squares)

separable problem
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

separable problem variables
[90C30]
(see: Nonlinear least squares problems)

separated see: 2- —
separated Newton method

[90C30]
(see: Generalized total least squares)

separated Newton method
[90C30]
(see: Generalized total least squares)

separated pair decomposition see: well- —
separating agents see:mass—
separating hyperplane

[62H30, 68T10, 90C05]
(see: Linear programmingmodels for classification)

separating relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

separation
[49K27, 58C20, 58E30, 62H30, 68R10, 90B35, 90C11, 90C27,
90C30, 90C48]
(see: Assignment methods in clustering; Branchwidth and
branch decompositions; Nonsmooth analysis: Fréchet
subdifferentials;Robust optimization: mixed-integer linear
programs)

separation
[90C30, 93A30, 93B50]
(see: Image space approach to optimization;MINLP: mass
and heat exchanger networks;Mixed integer linear
programming: mass and heat exchanger networks)

separation see: k- —; topological—
separation and catalysis: optimizationmethods see: Shape

selective zeolite—
separation condition

[41A10, 47N10, 49K15, 49K27]
(see:High-ordermaximum principle for abnormal
extremals)

separation functions
[90C30]
(see: Image space approach to optimization)

separation number
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

separation problem
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

separation procedure see: arc—
separation processes see: synthesis of—
separation routine

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

separation theorem see: Frank discrete—; L- —;M-—
separation theorems

[90C05, 90C30]
(see: Theorems of the alternative and optimization)

sequence
[62H30, 90C39]
(see: Dynamic programming in clustering)

sequence see: epiconvergent —; even—; Fejér monotone—;
generalized finite—; generalized minimizing—;
Levitin–Polyak minimizing—;minimizing—;minimum
weight commonmutated —; odd—

sequence alignment see:multiple—
sequence alignment via mixed-integer linear optimization see:

Global pairwise protein—
sequence of arcs

[90C35]
(see:Minimum cost flow problem)

sequence comparison
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

sequence of greedy swaps see:monotone—
sequencing

[62H30, 90C39]
(see: Dynamic programming in clustering;Mixed integer
programming/constraint programming hybridmethods)

sequencing see: dNA—
sequencing problem

[05-04, 90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57,
90C59, 90C60, 90C90]
(see: Evolutionary algorithms in combinatorial
optimization; Traveling salesman problem)

sequential
[68T20, 68T99, 9008, 90C26, 90C27, 90C59]
(see:Metaheuristics;Variable neighborhood search
methods)

sequential see: direct- —
sequential approximate optimization

[90C26, 90C90]
(see: Structural optimization: history)

sequential approximate optimization
[90C26, 90C90]
(see: Structural optimization: history)

sequential CA algorithm
[90C30]
(see: Cost approximation algorithms)

sequential coloring see: frequency exhaustive—; requirement
exhaustive—; uniform—

Sequential cutting plane algorithm
(90C11, 90C26)
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sequential deterministic algorithm
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

sequential estimation procedure
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

sequential estimation procedure
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

sequential experimental design
[90C15, 90C27]
(see: Discrete stochastic optimization)

sequential greedy coloring heuristic
[90C35]
(see: Graph coloring)

sequential greedy heuristics
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

sequential Hansel chains question-asking strategy
[90C09]
(see: Inference of monotone boolean functions)

sequential Hansel chains question-asking strategy
[90C09]
(see: Inference of monotone boolean functions)

sequential heuristics
[05-XX]
(see: Frequency assignment problem)

sequential MEN synthesis method
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

sequential method
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

sequential minimax game tree algorithm
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

sequential normal compactness
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

sequential normal compactness see: partial —
sequential quadratic programming

[65K05, 65K10, 90C05, 90C06, 90C25, 90C30, 90C34]
(see: Cost approximation algorithms; Feasible sequential
quadratic programming; Semi-infinite programming:
discretizationmethods)

sequential quadratic programming
[49K20, 49M99, 65K05, 65K10, 90C06, 90C30, 90C34, 90C55]
(see: Cost approximation algorithms; Feasible sequential
quadratic programming; Sequential quadratic
programming: interior point methods for distributed
optimal control problems)

sequential quadratic programming see: Feasible —
Sequential quadratic programming: interior point methods

for distributed optimal control problems
(49M99, 49K20, 90C55)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;

Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications; Entropy optimization:
interior point methods; Feasible sequential quadratic
programming;Hamilton–Jacobi–Bellman equation;
Homogeneous selfdual methods for linear programming;
Infinite horizon control and dynamic games; Linear
programming: interior point methods; Linear
programming: karmarkar projective algorithm;MINLP:
applications in the interaction of design and control;
Multi-objective optimization: interaction of design and
control;Optimal control of a flexible arm;Optimization
with equilibrium constraints: A piecewise SQP approach;
Potential reductionmethods for linear programming;
Probabilistic analysis of simplex algorithms; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Standard quadratic optimization problems:
theory; Suboptimal control; Successive quadratic
programming; Successive quadratic programming:
applications in distillation systems; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications; Entropy optimization: interior point
methods; Feasible sequential quadratic programming;
Hamilton–Jacobi–Bellman equation;Homogeneous
selfdual methods for linear programming; Infinite horizon
control and dynamic games; Interior point methods for
semidefinite programming; Linear programming: interior
point methods; Linear programming: karmarkar projective
algorithm;MINLP: applications in the interaction of design
and control;Multi-objective optimization: interaction of
design and control;Optimal control of a flexible arm;
Optimization with equilibrium constraints: A piecewise
SQP approach; Potential reductionmethods for linear
programming; Robust control; Robust control: schur
stability of polytopes of polynomials; Semi-infinite
programming and control problems; Suboptimal control;
Successive quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: applications in the
process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)

sequential quadratic programming method see: piecewise—
sequential quadratic programming methods

[90C90]
(see: Design optimization in computational fluid dynamics)

sequential row orthogonalization scheme
[65Fxx]
(see: Least squares problems)
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Sequential simplex method
(90C30)
(referred to in: Convex-simplex algorithm; Cyclic coordinate
method; Equivalence between nonlinear complementarity
problem and fixed point problem;Generalized nonlinear
complementarity problem; Integer linear complementary
problem; LCP: Pardalos–Rosenmixed integer formulation;
Lemke method; Linear complementarity problem; Linear
programming;Order complementarity; Parametric linear
programming: cost simplex algorithm; Powell method;
Principal pivoting methods for linear complementarity
problems;Rosenbrockmethod; Topological methods in
complementarity theory)
(refers to: Convex-simplex algorithm; Cyclic coordinate
method; Lemke method; Linear complementarity problem;
Linear programming; Parametric linear programming: cost
simplex algorithm; Powell method; Rosenbrockmethod)

sequential simplex method
[90C30]
(see: Sequential simplex method)

sequential synthesis
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

sequentially convexifiable program
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

seriation
[62H30, 90C39]
(see: Dynamic programming in clustering)

seriation
[62H30, 90C39]
(see: Dynamic programming in clustering)

series see: Taylor —; time—
series analysis see: time—
series expansion see: first order Taylor —
series-parallel graph

[05C50, 15A48, 15A57, 90C25]
(see:Matrix completion problems)

series rule see: divergent —; geometric —
series step-size rule see: divergent—
series steplength rule see: divergent —
serious step see: long—; short —
service needs see: static/dynamic —
set see: active—; active index—; affine—; border nodes—;

Borel —; bounded level —; branch of a feasible—;
Cartesian product—; Chebyshev —; common
dependency—; completely regular —; connected—;
connected dominating—; constraint—; convex—; convex
polyhedral —; cover the extremal —; d.c.—; decision—;
dependent —; dominating—; dual feasible—; edge—;
efficient—; efficient point—; �-subdifferential —;
essentially active index—; extension—; feasible—;
feedback vertex —; finite dominating—; first order
tangent —; fractal —; fuzzy—; fuzzy power—; generalized
critical point—; geodesic convex—; ground—; Heuristics
for maximum clique and independent —; hierarchy in
a finite—; high-order feasible—; independent —;
independent dominating—; index—; interior of a—;
invariant—; invex—; invexity with respect to a—;
L-convex—; left-paired—; level —; localization—;

lower—; lower bound for a—;M-convex—;
max-closed—;maximal independent —;maximum
Independent —;maximumweighted independent —;
middle—;minimal dependent —;minimum—;minimum
feedback vertex—;motion of a—; nonconvex—;
nondominated solution—; noninferior solution—;
obstruction—; opposite of a signed—; ordered—;
outcome—; p-order feasible—; Pareto optimal solution—;
partition on a—; polyhedral —; pre-invex—; pre-invexity
with respect to a—; primal feasible—; production—;
proximal—; quasidifferentiable—; rational reaction—;
reduction of a constraint—; regenerative —; regular —;
representative —; reverse convex—; reverse normal—;
right-paired—; satisfaction—; scenario—; second order
regular —; second order tangent —; second-stage
feasibility—; semilinear —; signed—; singular —; SIP
index—; slope—; solution—; species index—; stability of
a solution—; stable —; star-shaped—; strictly feasible—;
subdifferential—; substationarity point with respect to a—;
support—; test —; training—; tree nodes—;
uncertainty—; upper —; upper bound for a—; vertex—

set algorithm see: active—;minimum lower—
set of alternatives

[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

set of the alternatives see: finite—
set of bases of a matroid

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

set of connectives see: complete—
set constraints see: odd-—
set-contraction see: k- —; strict- —
Set covering, packing and partitioning problems

(90C10, 90C11, 90C27, 90C57)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;MINLP:
trim-loss problem;Multi-objective integer linear
programming;Multi-objectivemixed integer
programming;Multiparametricmixed integer linear
programming; Parametric mixed integer nonlinear
optimization; Simplicial pivoting algorithms for integer
programming; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Genetic algorithms;Graph coloring;
Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
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programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation;Mixed integer classification problems;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametric mixed integer linear programming;
Neural networks for combinatorial optimization;
Parametric mixed integer nonlinear optimization;
Simplicial pivoting algorithms for integer programming;
Simulated annealing methods in protein folding; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Time-dependent
traveling salesman problem)

set covering problem
[90C05, 90C10, 90C11, 90C20, 90C27, 90C57]
(see: Integer programming; Redundancy in nonlinear
programs; Set covering, packing and partitioning problems)

set D see: countable—
set of decision alternative

[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

set of decrease see: high-order —
set-definable classes

[03E70, 03H05, 91B16]
(see: Alternative set theory)

set of discrete "-global local maximizers
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

set of edges of a digraph
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

set of elementary functions
[90C26]
(see: Global optimization: envelope representation)

set of "-global points
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

set of "-most active points
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

set of faults
[90Cxx]
(see: Discontinuous optimization)

set of feasible points
[90C05, 90C25, 90C30, 90C33, 90C34]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach; Semi-infinite programming:
discretizationmethods)

set of feasible solutions
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

set of flowlines
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

set of formation values
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

set-formula
[03E70, 03H05, 91B16]
(see: Alternative set theory)

set of a function see: effective—; gradient-related —;
support—

set-inclusion operator see: fuzzy—
set Lfree of unused partitions

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

set Lreac of used partitions
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

set of Lagrange multipliers see: extended—
set of loads

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

set mapping see: closed point-to- —; point-to- —
set mappings see: point-to- —
set method see: active—
set methods see: active—
set packing problem

[90C10, 90C11, 90C27, 90C57]
(see: Set covering, packing and partitioning problems)

set partitioning
[68M20, 90B06, 90B10, 90B35, 90B80, 90C06, 90C08, 90C10,
90C27, 90C35, 90C90]
(see: Airline optimization; Vehicle scheduling)

set partitioning problem
[05-04, 90C10, 90C11, 90C27, 90C57]
(see: Evolutionary algorithms in combinatorial
optimization; Integer programming; Set covering, packing
and partitioning problems)

set of potential efficient solutions
[90C27, 90C29]
(see:Multi-objective combinatorial optimization)

set of prices see: almost at equilibrium of an assignment and
a—; equilibrium of an assignment and a—

Set Problem see: feedback—; feedback arc—; feedback
vertex —;maximum Independent —;minimum feedback
arc —;minimum feedback vertex (arc)—;minimumweight
feedback arc —;minimumweighted feedback vertex—;
subset feedback vertex (arc) —; subset minimum feedback
vertex (arc)—; unweighted feedback vertex —

set problem: branch & cut algorithms see: Stable—
set in problem solving see: restriction to the solution—
set problems see: Feedback —
set quadratic programming methods see: active—
set Rfree of unused partitions

[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

set Rreac of used partitions
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

set strategies see: active—
set strategy see: active—; Goldfarb–Idnani active—
set theory see: Alternative —; axioms of alternative—;

Cantor—
set unification

[65K05, 90C26, 90C33, 90C34]
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(see: Adaptive convexification in semi-infinite
optimization)

set V see: vertex —
set-valued analysis

[49K27, 90C29, 90C48]
(see: Set-valued optimization)

set-valued analysis
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

set-valued constraints
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

set-valued objective function
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

Set-valued optimization
(90C48, 90C29, 49K27)
(referred to in: Generalized monotone multivalued maps;
Generalizedmonotone single valued maps)
(refers to: Generalized monotone multivalued maps;
Generalizedmonotone single valued maps)

set-valued optimization
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

set-valued optimization problem
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

set of wells
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

sets
[03E70, 03H05, 91B16]
(see: Alternative set theory)

sets
[03E70, 03H05, 91B16]
(see: Alternative set theory)

sets see: connectedness of the efficient points —; differences
of convex—; fuzzy—; high-order tangent —;
independent —; joined—; Lagrange multiplier—; least
squares problems with massive data—;max-closed—;
maximumweight independent —;minimum lower—;
orthogonal signed—; pseudoconnected family of —;
test —

sets axioms see: existence of—
sets conjugation see: level —
sets and functions see: Affine—
sets in integer programming see: test —
sets and interior point methods see: Successive quadratic

programming: solution by active—
setting see: average case—; randomized—
setting methods see: label —
settle-value

[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

setup cost
[90C25]
(see: Concave programming)

Several Ratios see:Maximization of the Smallest of—

shadow price
[90C60]
(see: Complexity of degeneracy)

shadow prices
[90C05, 90C06, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming; Saddle point theory and optimality
conditions; Sensitivity and stability in NLP: continuity and
differential stability)

shadow of shadows
[01A99]
(see: Gauss, Carl Friedrich)

shadow-vertex
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

shadow-vertex algorithm
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

shadow-vertices see: expected number of—; variance of the
number of—

shadows see: shadow of —
Shahshahani metric

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

shake and bake algorithm
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

shake and bake algorithm
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

Shake and bake approach see: Phase problem in X-ray
crystallography: —

Shanno conjugate gradient method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

Shanno method see: Broyden–Fletcher–Goldfarb–—
Shanno quasi-Newton update see:

Broyden–Fletcher–Goldfarb–—
Shanno update see: Broyden–Fletcher–Goldfarb–—
Shannon

[94A17]
(see: Jaynes’ maximum entropy principle)

Shannon entropy
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

Shannon function
[90C09]
(see: Inference of monotone boolean functions)

Shannon function
[90C09]
(see: Inference of monotone boolean functions)

shannon measure of entropy and its properties see: Entropy
optimization:—

shannon zero-error capacity
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)
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shape
[90C26, 90C90]
(see: Structural optimization: history)

shape design
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

shape design see:multiload—; optimal—; robust
obstacle-free—

Shape optimization
(49J20, 49J52)
(refers to: Structural optimization; Structural optimization:
history; Topological derivative in shape optimization)

shape optimization
[49J20, 49J52]
(see: Shape optimization)

shape optimization
[49J20, 49J52]
(see: Shape optimization)

shape optimization see: structural —; Topological derivative
in—

Shape reconstructionmethods for nonconvex feasibility
analysis
(90-08, 90C26, 90C31)

Shape selective zeolite separation and catalysis: optimization
methods
(74A40, 90C26)

shape sensitivity analysis
[49J20, 49J52]
(see: Shape optimization)

shape sensitivity analysis
[49J20, 49J52]
(see: Shape optimization)

shaped decomposition see: L- —
shaped method

[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

shaped method see: integer L- —; l- —
shaped method for two-stage stochastic programs with

recourse see: L- —
shaped set see: star- —
shapes see: beam cross-sectional—; design of optimal—
share

[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

shared-memory model see: queueing—
shared memory parallel machines

[65K05, 65Y05]
(see: Parallel computing: models)

Sharpe ratio
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

Sharpe single index market model
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

sheet see: balance—; ˇ - —
Sheffer function

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Sherman–Morrison formula
[49M37]
(see: Nonlinear least squares: Newton-type methods)

Sherman-Morrison rank-one update formula
[90C30]
(see: Numerical methods for unary optimization)

Sherman–Morrison–Woodbury formula
[90C15]
(see: Stochastic programming: parallel factorization of
structured matrices)

shift function see: cyclic—
shift-invariant

(see: Global optimization: functional forms)
shift matrix see: diagonal —
shift move

[68T99, 90C27]
(see: Capacitated minimum spanning trees)

shift terms
[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

shifting see: Vehicle scheduling with trip—
Shindo method see: Kojima–—
ship routing problem see: inventory —
shipment delivery see: express —
shock

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

shock
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

shooting see:multiple—
shop see: flow-—; job-—
shop problem see: flow-—; job-—; open—
shop scheduling problem see: Flow—; Job- —
Shor, Naum Zuselevich

(01A70, 90-03)
short selling

[91B28]
(see: Portfolio selection: markowitz mean-variance model)

short selling
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

short serious step
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

short-term memory
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

Short-term scheduling of batch processes with resources
Short-term scheduling of continuous processes

(90B35, 65K05, 90C90, 90C11)
Short-term scheduling, resource constrained: unified

modeling frameworks
(90B35, 65K05, 90C90, 90C11)

Short-term scheduling under uncertainty: sensitivity analysis
shortest edge

[68Q20]
(see: Optimal triangulations)



Subject Index 4507

shortest path
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

shortest path
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

shortest path see: stochastic—
shortest path algorithm see: successive—
shortest path algorithms see: generic —
shortest path problem

[49L20, 90C30, 90C40, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms;
Dynamic programming: stochastic shortest path problems;
Simplicial decomposition)

shortest path problem
[90B10, 90C27, 90C30]
(see: Shortest path tree algorithms; Simplicial
decomposition)

shortest path problem see: deterministic —; stochastic—
shortest path problems see: Dynamic programming:

stochastic—; stochastic —
shortest path procedure see: next—
Shortest path tree algorithms

(90C27, 90B10)
(referred to in: Auction algorithms; Bottleneck steiner tree
problems;Capacitated minimum spanning trees;
Communication network assignment problem; Complexity
theory;Dynamic traffic networks; Equilibrium networks;
Generalized networks;Maximum flow problem;Minimax
game tree searching;Minimum cost flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Steiner tree problems; Stochastic network problems:
massively parallel solution; Survivable networks; Traffic
network equilibrium)
(refers to: Auction algorithms; Bottleneck steiner tree
problems;Capacitated minimum spanning trees;
Communication network assignment problem;Directed
tree networks;Dynamic traffic networks; Equilibrium
networks; Evacuation networks; Generalized networks;
Maximum flow problem;Minimax game tree searching;
Minimum cost flow problem;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Steiner tree problems; Stochastic network problems:
massively parallel solution; Survivable networks; Traffic
network equilibrium)

shortest path tree problem see: single source—
shortest path tree problems

[90B10, 90C27]
(see: Shortest path tree algorithms)

shortest paths see: problem of finding—
shortest program length

[90C60]
(see: Kolmogorov complexity)

Shortest program length
[90C60]
(see: Kolmogorov complexity)

Shubert algorithm see: Piyavskii–—
shutdown

(see: Reactive scheduling of batch processes)
sibles

[90C30, 90C35]
(see: Optimization in water resources)

side see: proof on the dual—
side changes see: sensitivity analysis with respect to

right-hand—
side constraints

[90B06, 90C06, 90C08, 90C35, 90C90]
(see: Airline optimization)

side constraints
[90C30]
(see: Simplicial decomposition)

side payments see: game with—
side perturbation model see: right-hand—
side perturbation problem see: right-hand—
side problem see: right-hand—
side simplex algorithm see: parametric right-hand—
side uncertainty, duality and applications see: Robust linear

programming with right-hand- —
sided differential see: one-—
Sierpinski theorem

[03E70, 03H05, 91B16]
(see: Alternative set theory)

�-classes
[03E70, 03H05, 91B16]
(see: Alternative set theory)

sigma-field
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

sign of a circuit
[90C09, 90C10]
(see: Combinatorial matrix analysis)

sign function
[65D10, 65K05]
(see: Overdetermined systems of linear equations)

sign-invariance model
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

sign matrix
[15A39, 52A22, 60D05, 68Q25, 90C05]
(see: Farkas lemma; Probabilistic analysis of simplex
algorithms)

sign-nonsingularmatrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

sign pattern of a matrix
[90C09, 90C10]
(see: Combinatorial matrix analysis)

sign-solvable linear system
[90C09, 90C10]
(see: Combinatorial matrix analysis)

sign vector
[90C09, 90C10]
(see: Oriented matroids)

signal processing see: nonGaussian—; nonlinear—
Signal processing with higher order statistics

(90C26, 90C90)
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(referred to in: Global optimization methods for harmonic
retrieval)
(refers to: Global optimization methods for harmonic
retrieval)

signature
[90C09, 90C10]
(see: Oriented matroids)

signed bigraph
[90C09, 90C10]
(see: Combinatorial matrix analysis)

signed circuits
[90C09, 90C10]
(see: Oriented matroids)

signed cocircuits
[90C09, 90C10]
(see: Oriented matroids)

signed decomposition
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

signed decomposition see: Lasserre —; Lawrence—
signed digraph

[90C09, 90C10]
(see: Combinatorial matrix analysis)

signed set
[90C09, 90C10]
(see: Oriented matroids)

signed set see: opposite of a—
signed sets see: orthogonal —
signed subset

[90C09, 90C10]
(see: Oriented matroids)

signomial programming
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

signomials
[90C26, 90C90]
(see: Global optimization in generalized geometric
programming)

Signorini condition
[49J40, 49Q10, 70-08, 74K99, 74Pxx]
(see: Quasivariational inequalities)

Signorini-Coulomb unilateral frictional contact
[49J40, 49Q10, 70-08, 74K99, 74Pxx]
(see: Quasivariational inequalities)

SIM
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

similarity measure
[62H30, 90C27]
(see: Assignment methods in clustering)

similarity subtree isomorphism see:maximal—;maximum—
similarity of surrogates

[90C09, 90C10]
(see: Optimization in classifying text documents)

simple arrangement
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

simple Bayes
(see: Bayesian networks)

simple homogeneous process
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules)

simple integer recourse
[90C10, 90C15]
(see: Stochastic integer programs)

simple integer recourse
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

simple integer recourse see: Stochastic programming with—;
two-stage stochastic programs with—

simple linkage
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: stopping rules;
Stochastic global optimization: two-phase methods)

simple order isotonic regression
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

simple plant location problem
[90B80, 90B85]
(see:Warehouse location problem)

simple plant location problem
[90B80, 90B85]
(see:Warehouse location problem)

simple polyhedron
[90C60]
(see: Complexity of degeneracy)

simple polyhedron
[90C60]
(see: Complexity of degeneracy)

simple principal pivot
[65K05, 90C20, 90C33]
(see: Principal pivoting methods for linear complementarity
problems)

simple recourse
[90C15, 90C30, 90C35]
(see: Optimization in water resources; Stochastic linear
programs with recourse and arbitrarymultivariate
distributions)

simple recourse
[90C11, 90C15]
(see: Stochastic programming with simple integer
recourse)

Simple recourse problem
(90C06, 90C08, 90C15)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Simple recourse problem:
dual method; Simple recourse problem: primal method)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Simple recourse problem:
dual method; Simple recourse problem: primal method;
Stochastic linear programs with recourse and arbitrary
multivariate distributions)

simple recourse problem see: dual method for the—; primal
method for the—

Simple recourse problem: dual method
(90-08, 90C05, 90C06, 90C08, 90C15)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
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Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem;
Simple recourse problem: primal method; Stabilization of
cutting plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programming:
quasigradientmethod; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem;
Simple recourse problem: primal method; Stabilization of
cutting plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

Simple recourse problem: primal method
(90-08, 90C05, 90C06, 90C08, 90C15, 49M25)
(referred to in: Approximation of extremum problems with

probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem;
Simple recourse problem: dual method; Stabilization of
cutting plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programming:
quasigradientmethod; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem;
Simple recourse problem: dual method; Stabilization of
cutting plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)
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simplex
[52B11, 52B45, 52B55, 65K05, 90C06, 90C25, 90C26, 90C30,
90C31, 90C35, 90C90]
(see: Bisection global optimization methods;Global
optimization in binary star astronomy; Sensitivity and
stability in NLP: approximation; Sequential simplex
method; Simplicial decomposition algorithms;Volume
computation for polytopes: strategies and performances)

simplex
[65K05, 90C06, 90C25, 90C30, 90C35]
(see: Bisection global optimization methods; Simplicial
decomposition algorithms)

simplex see: centroid of a—; dual—; initial —;
lexicographic—; p- —; regular —; standard—

simplex algorithm
[03H10, 49J27, 90C05, 90C34]
(see: Linear programming: Klee–Minty examples;
Semi-infinite programming and control problems)

simplex algorithm
[90C05, 90C06, 90C10, 90C11, 90C30, 90C33, 90C57, 90C90]
(see: Convex-simplex algorithm; Frank–Wolfe algorithm;
Linear programming: Klee–Minty examples;Modeling
difficult optimization problems; Pivoting algorithms for
linear programming generating two paths; Simplicial
decomposition)

simplex algorithm see: Convex- —; dual —; network —;
Parametric linear programming: cost—; parametric
objective—; parametric right-hand side—; primal—;
variant of the—

simplex algorithms see: primal and dual —; Probabilistic
analysis of —

simplex method
[05B35, 65K05, 65K10, 68Q99, 90C05, 90C06, 90C20, 90C25,
90C33, 90C35]
(see: ABS algorithms for optimization; Branch and price:
Integer programming with column generation; Least-index
anticycling rules; Lexicographic pivoting rules; Linear
programming: karmarkar projective algorithm; Simplicial
decomposition algorithms)

simplex method
[90C05]
(see: Linear programming)

simplex method see: downhill—; lexicographic—;
lexicographic dual —; lexicographic primal—;
Sequential —; steepest edge—

simplex program
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

simplex reduction
[65K05, 90C30]
(see: Bisection global optimization methods)

simplex tableau see: terminal —
simplex type algorithm

[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

simplexes see: system of —
simplices

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

simplices see: bounds on—
simplicial see: nonlinear —
simplicial algorithms

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

simplicial constraints
[90C60]
(see: Complexity theory: quadratic programming)

simplicial constraints
[90C60]
(see: Complexity theory: quadratic programming)

Simplicial decomposition
(90C30)
(referred to in:Decomposition principle of linear
programming;Generalized benders decomposition;
MINLP: generalized cross decomposition;MINLP:
logic-basedmethods; Simplicial decomposition algorithms;
Standard quadratic optimization problems: algorithms;
Standard quadratic optimization problems: applications;
Stochastic linear programming: decomposition and cutting
planes; Successive quadratic programming: decomposition
methods)
(refers to:Decomposition principle of linear programming;
Frank–Wolfe algorithm;Generalized benders
decomposition;MINLP: generalized cross decomposition;
MINLP: logic-basedmethods; Simplicial decomposition
algorithms; Stochastic linear programming: decomposition
and cutting planes; Successive quadratic programming:
decompositionmethods)

simplicial decomposition
[90C06, 90C25, 90C30, 90C35]
(see: Frank–Wolfe algorithm; Simplicial decomposition;
Simplicial decomposition algorithms)

simplicial decomposition
[90C30]
(see: Frank–Wolfe algorithm; Simplicial decomposition)

simplicial decomposition see: disaggregate —; restricted—
Simplicial decomposition algorithms

(90C06, 90C25, 90C35)
(referred to in:Decomposition principle of linear
programming;Generalized benders decomposition;
MINLP: generalized cross decomposition;MINLP:
logic-basedmethods; Simplicial decomposition; Stochastic
linear programming: decomposition and cutting planes;
Successive quadratic programming: decomposition
methods)
(refers to:Decomposition principle of linear programming;
Generalized benders decomposition;MINLP: generalized
cross decomposition;MINLP: logic-basedmethods;
Simplicial decomposition; Stochastic linear programming:
decomposition and cutting planes; Successive quadratic
programming: decompositionmethods)

simplicial partition
[90C20]
(see: Standard quadratic optimization problems:
applications)

Simplicial pivoting algorithms for integer programming
(90C10, 90C05)
(referred to in: Branch and price: Integer programming with
column generation; Criss-cross pivoting rules;
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Decomposition techniques for MILP: lagrangian relaxation;
Graph coloring; Integer linear complementary problem;
Integer programming; Integer programming: algebraic
methods; Integer programming: branch and bound
methods; Integer programming: branch and cut algorithms;
Integer programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation; Linear programming;MINLP: trim-loss
problem;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Parametric mixed integer nonlinear optimization; Pivoting
algorithms for linear programming generating two paths;
Set covering, packing and partitioning problems; Stable set
problem: branch & cut algorithms; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Time-dependent traveling
salesman problem)
(refers to: Branch and price: Integer programming with
column generation;Criss-cross pivoting rules;
Decomposition techniques for MILP: lagrangian relaxation;
Graph coloring; Integer linear complementary problem;
Integer programming; Integer programming: algebraic
methods; Integer programming: branch and bound
methods; Integer programming: branch and cut algorithms;
Integer programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation; Least-index anticycling rules; Lexicographic
pivoting rules; Linear programming;Mixed integer
classification problems;Multi-objective integer linear
programming;Multi-objective mixed integer
programming;Multiparametric mixed integer linear
programming; Parametric mixed integer nonlinear
optimization; Pivoting algorithms for linear programming
generating two paths; Principal pivoting methods for linear
complementarity problems; Probabilistic analysis of
simplex algorithms; Set covering, packing and partitioning
problems; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Time-dependent traveling salesman problem)

simpliciality
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

simpliciality see: near- —
simplicity

[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

simplicity see: near- —
Simulated annealing

(90C90, 90C27)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization; Broadcast scheduling problem;Discrete
stochastic optimization; Genetic algorithms;Global
optimization based on statistical models; Global
optimization: hit and run methods; Global optimization in
Lennard–Jones and morse clusters; Job-shop scheduling

problem;Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach;
Optimization-based visualization;Optimization in medical
imaging; Packet annealing; Phase problem in X-ray
crystallography: Shake and bake approach;Random search
methods; Simulated annealing methods in protein folding;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization;
Evolutionary algorithms in combinatorial optimization;
Global optimization based on statistical models;
Monte-Carlo simulated annealing in protein folding;
Packet annealing; Random search methods; Simulated
annealing methods in protein folding; Stochastic global
optimization: stopping rules; Stochastic global
optimization: two-phase methods)

simulated annealing
[00-02, 01-02, 03-02, 05-04, 62C10, 65K05, 68Q25, 68T20,
68T99, 90B80, 90C05, 90C10, 90C15, 90C25, 90C26, 90C27,
90C30, 90C59, 90C90]
(see: Bayesian global optimization; Bayesian networks;
Capacitatedminimum spanning trees; Communication
network assignment problem;Design optimization in
computational fluid dynamics; Evolutionary algorithms in
combinatorial optimization; Global optimization in binary
star astronomy; Global optimization: hit and run methods;
Maximum constraint satisfaction: relaxations and upper
bounds;Metaheuristics;Metropolis, Nicholas Constantine;
MINLP: design and scheduling of batch processes; Random
search methods; Simulated annealing methods in protein
folding;Vehicle routing problemwith simultaneous
pickups and deliveries)

simulated annealing
[90B80, 90C05, 90C25, 90C26, 90C29, 90C90, 92C40]
(see: Facilities layout problems;Global optimization: hit
and run methods;Metropolis, Nicholas Constantine;
Monte-Carlo simulated annealing in protein folding;
Optimal design of composite structures)

simulated annealing see: adaptive—; stochastic—
simulated annealing and genetic algorithm

[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

simulated annealing and its application to protein folding see:
Adaptive—

Simulated annealing methods in protein folding
(90C90)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization;Differential equations and global
optimization; Facilities layout problems;Genetic
algorithms;Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Global optimization in Lennard–Jones and morse clusters;
Graph coloring;Maximum satisfiability problem;
Molecular structure determination: convex global
underestimation;Monte-Carlo simulated annealing in
protein folding;Multipleminima problem in protein
folding:˛BB global optimization approach; Packet



4512 Subject Index

annealing; Phase problem in X-ray crystallography: Shake
and bake approach; Random search methods; Set covering,
packing and partitioning problems; Simulated annealing;
Stochastic global optimization: stopping rules; Stochastic
global optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization;Genetic
algorithms;Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Global optimization in Lennard–Jones and morse clusters;
Global optimization in protein folding;Molecular structure
determination: convex global underestimation;
Monte-Carlo simulated annealing in protein folding;
Multipleminima problem in protein folding:˛BB global
optimization approach; Packet annealing; Phase problem in
X-ray crystallography: Shake and bake approach; Protein
folding: generalized-ensemble algorithms; Random search
methods; Simulated annealing; Stochastic global
optimization: stopping rules; Stochastic global
optimization: two-phase methods)

simulated annealing in protein folding see:Monte-Carlo—
simulated quench

[92C05]
(see: Adaptive simulated annealing and its application to
protein folding)

simulating annealing
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

simulation
[90C39]
(see: Emergency evacuation, optimization modeling;
Neuro-dynamic programming)

simulation
[90C27, 90C39]
(see: Neuro-dynamic programming;Operations research
and financial markets)

simulation see: Derivatives of markov processes and their —;
dynamic—;monte-Carlo—; numerical —;
optimization-—; process —

simulation algorithm see:Monte-Carlo—
simulation-based optimization

[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

simulation-based optimization
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

simulation of derivatives
[90C15]
(see: Derivatives of probability measures)

simulation models
[90-02]
(see: Operations research models for supply chain
management and design)

simulationmodels see: supply chain—
simulation problems

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

simulation procedure see:Monte-Carlo—
simulation programs see: process —

simulations for stochastic optimization see:Monte-Carlo—
simulator

(see: State of the art in modeling agricultural systems)
simultaneous

[34A55, 35R30, 62G05, 62G08, 62J02, 62K05, 62P10, 62P30,
76R50, 80A20, 80A23, 80A30]
(see: Identificationmethods for reaction kinetics and
transport)

simultaneous adjustment
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

simultaneous approach
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

simultaneous Diophantine approximation problem
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

simultaneous displacements see:method of—
simultaneous equation models

[90C26, 90C30]
(see: Forecasting)

Simultaneous estimation and optimization of nonlinear
problems
(93E20, 93E12, 49J15, 62J02, 62M10, 62M20, 91B28)
(referred to in: Generalizations of interior point methods for
the linear complementarity problem;Mathematical
programmingmethods in supply chain management)
(refers to: Complementarity algorithms in pattern
recognition;Generalizations of interior point methods for
the linear complementarity problem;Mathematical
programmingmethods in supply chain management)

simultaneous pickups and deliveries see: Vehicle routing
problem with—

simultaneous synthesis
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

single
(see: Peptide identification via mixed-integer optimization)

single assignment
[26A24, 65D25]
(see: Automatic differentiation: introduction, history and
rounding error estimation)

single assignment algorithms
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

single assignment property
[90B80, 90B85]
(see:Warehouse location problem)

single-class software package
[90C10, 90C26, 90C30]
(see: Optimization software)

single cluster statistic see: generalized —
single color

[05C85]
(see: Directed tree networks)

single-commodity model in OR
[90B80, 90B85]
(see:Warehouse location problem)
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single commodity network flow problem see: nonlinear —
single-commodity single-criterion uncapacitated static

multifacility see: discrete—
single-criterion problem in OR

[90B80, 90B85]
(see:Warehouse location problem)

single-criterion uncapacitated static multifacility see: discrete
single-commodity—

single-crystal X-ray diffraction data see: Optimization
techniques for phase retrieval based on—

single depot/multiple depots
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

Single-depot vehicle scheduling problem
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Single-depot vehicle scheduling problems
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

single-ended
(see: Railroad crew scheduling)

single-ended crew district
(see: Railroad crew scheduling)

single facility location
[90B85]
(see: Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location)

Single facility location: circle covering problem
(90B85, 90C27)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs;Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location; Stochastic transportation and
location problems;Voronoi diagrams in facility location;
Warehouse location problem)
(refers to: Carathéodory theorem; Combinatorial
optimization algorithms in resource allocation problems;
Competitive facility location; Facility location with
externalities; Facility location problems with spatial
interaction; Facility location with staircase costs;Global
optimization inWeber’s problemwith attraction and
repulsion;MINLP: application in facility
location-allocation;Multifacility and restricted location
problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: multi-objective euclidean distance location; Single
facility location: multi-objective rectilinear distance
location; Stochastic transportation and location problems;

Voronoi diagrams in facility location;Warehouse location
problem)

Single facility location: multi-objective euclidean distance
location
(90B85)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective rectilinear distance
location; Stochastic transportation and location problems;
Voronoi diagrams in facility location;Warehouse location
problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective rectilinear distance location; Stochastic
transportation and location problems;Voronoi diagrams in
facility location;Warehouse location problem)

Single facility location: multi-objective rectilinear distance
location
(90B85)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Stochastic transportation and location problems;
Voronoi diagrams in facility location;Warehouse location
problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
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Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Stochastic
transportation and location problems;Voronoi diagrams in
facility location;Warehouse location problem)

single-facility problem in OR
[90B80, 90B85]
(see:Warehouse location problem)

single fixed cost with capacity constraints
[90C26]
(see:MINLP: application in facility location-allocation)

single fixed cost with no capacity constraints
[90C26]
(see:MINLP: application in facility location-allocation)

single hub heuristic
[90C35]
(see:Multi-index transportation problems)

single index market model see: Sharpe—
single-linkage see:multilevel —
single locomotive scheduling models

(see: Railroad locomotive scheduling)
single locomotive type

(see: Railroad locomotive scheduling)
single-lookahead-unit-resolution

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

single parametric mixed integer linear program
[90C11, 90C31]
(see:Multiparametric mixed integer linear programming)

single path routing pattern model
[68Q25, 90B80, 90C05, 90C27]
(see: Communication network assignment problem)

single-period model
[91B28]
(see: Financial optimization)

single-product campaign
[90C26]
(see: Global optimization in batch design under uncertainty;
MINLP: design and scheduling of batch processes)

single-ratio fractional (hyperbolic) 0-1 programming problem
(see: Fractional zero-one programming)

single-ratio fractional program
[90C32]
(see: Fractional programming)

single-ratio programs
[90C32]
(see: Fractional programming)

single run SQG
[90C15]
(see: Stochastic quasigradientmethods: applications)

single smooth function
[57R12, 90C31, 90C34]
(see: Smoothing methods for semi-infinite optimization)

single source shortest path tree problem
[90B10, 90C27]
(see: Shortest path tree algorithms)

single-stage IM
[90B50]
(see: Inventory management in supply chains)

single stage inventory management models
[90B50]
(see: Inventory management in supply chains)

single underlying method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

single-valued boundary laws and variational equalities
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

single valued maps see: Generalized monotone—
single versus Multiperiod Models

[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

singleton
[90C35]
(see: Feedback set problems)

singular component
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

singular control problem
[93-XX]
(see: Dynamic programming: optimal control applications)

singular Fréchet subdifferential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

singular limiting subdifferential
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

singular local attractors
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

singular matrix
[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

singular set
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

singular value see: structured—
singular value decomposition solution see: truncated —
singularities

[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

singularities see: generic —; Parametric optimization:
embeddings, path following and—

singularity
[05B35, 20F36, 20F55, 52C35, 57N65, 90C31, 90C34]
(see:Hyperplane arrangements; Parametric global
optimization: sensitivity)

singularity of an arrangement of hyperplanes
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

sink
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

sink node
[90C35]
(see:Maximum flow problem)
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sinusoidal parameter estimation problem
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

sIP
[57R12, 65K05, 90C26, 90C31, 90C33, 90C34]
(see: Adaptive convexification in semi-infinite optimization;
Parametric global optimization: sensitivity; Smoothing
methods for semi-infinite optimization)

SIP see: convex—; linear —; nonlinear —; structural stability
of—

SIP(f,h,g) see: global structual stability of—
SIP index set

[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

SIP problem see: discretized—; duality of the linear —;
nonlinear discretized—

SIP problems see: linear —
SIPs see: equivalence of—
site see: active—
size see: list—;machine—; population—; step—
size effects in microclusters

[90C26, 90C90]
(see: Global optimization in Lennard–Jones and morse
clusters)

size of a graph
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

size of input data
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

size of the input of a Turing machine
[90C60]
(see: Complexity theory)

size of a problem instance
[90C60]
(see: Computational complexity theory)

size rule see: divergent series step- —
size threshold see: determination of clusters —
sizing see: lot—
sizing optimization

[49J20, 49J52]
(see: Shape optimization)

sizing problem see: capacitated lot- —; Economic lot- —
sizing variables

[90C26, 90C90]
(see: Structural optimization: history)

skeleton
[68Q20]
(see: Optimal triangulations)

skeleton see: lMT-—
skew-symmetric matrix

[15A39, 90C05]
(see: Farkas lemma; Linear optimization: theorems of the
alternative)

skew-symmetric matrix
[15A39, 90C05]
(see: Farkas lemma)

skew-symmetric matrix M
[65K05, 90C20, 90C33]

(see: Principal pivoting methods for linear complementarity
problems)

skew-symmetric proximity
[62H30, 90C27]
(see: Assignment methods in clustering)

Skewed VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

skewness
[90C26, 90C90]
(see: Signal processing with higher order statistics)

skorokhod problem
[60G35, 65K05, 65K10, 90C90]
(see: Differential equations and global optimization;
Variational inequalities: projected dynamical system)

Skorokhod problem
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

slack cable
[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

slack constraints
[90C60]
(see: Complexity of degeneracy)

slack constraints
[90C60]
(see: Complexity of degeneracy)

slackness see: complementarity—; complementary—;
�-complementary—; strict complementarity —; strict
complementary—

slackness condition see: strict complementarity —
slackness conditions see: complementary —
slackness relations see: complementary—
slacks see: dual —
Slater’s condition

[90C05, 90C15, 90C25, 90C26, 90C29, 90C30, 90C31, 90C34,
91A65, 91B28]
(see: Bilevel programming: implicit function approach;
Duality for semidefinite programming;Kuhn–Tucker
optimality conditions;Nondifferentiable optimization:
parametric programming; Probabilistic constrained linear
programming: duality theory; Semi-infinite programming
and applications in finance; Semi-infinite programming,
semidefinite programming and perfect duality)

Slater constraint
[90C26]
(see: Invexity and its applications)

Slater constraint qualification
[90C25, 90C29, 90C30, 90C33]
(see: Lagrangianmultipliersmethods for convex
programming;Multi-objective optimization: lagrange
duality;Optimization with equilibrium constraints:
A piecewise SQP approach)

Slater constraint qualification see: generalized—
Slater CQ see: Strong—;Weak—
Slater dual see: extended Lagrange– —
Slater theorem

[90C05, 90C30]
(see: Theorems of the alternative and optimization)

slave scheme see:master- —
slice see: time—
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slope
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

slope arithmetic
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

slope lemma see: first—; second—; third—
slope lemmas

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

slope set
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

slopes see: interval —
SLP

[90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse)

SLP see: decomposition of —
SLP algorithms

[90C30, 90C90]
(see:MINLP: applications in blending and pooling
problems)

Smale function see: Chen–Harker–Kanzow– —
small see: sufficiently—
small gain

[93D09]
(see: Robust control)

small negative real numbers see: infinitely—
small positive real numbers see: infinitely—
small real numbers see: infinitely—
small residual

[90C30]
(see: Nonlinear least squares problems)

smaller see: lexicographically—
smallest enclosing circle

[90B80, 90C27]
(see: Voronoi diagrams in facility location)

smallest enclosing-circle problem
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

smallest index rule
[90C05]
(see: Linear programming: Klee–Minty examples)

smallest K-majorant
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

Smallest of Several Ratios see:Maximization of the—
SMIN

[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

SMIN-˛BB
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

SMIN-˛BB algorithm
[90C26]
(see: Bilevel optimization: feasibility test and flexibility
index)

Smith conjecture
[90C27]
(see: Steiner tree problems)

Smith–Walford-one algorithm
[90C35]
(see: Feedback set problems)

Smith–Walford one-reducible graph
[90C35]
(see: Feedback set problems)

Smoluchowski–Kramers equation
[60G35, 65K05]
(see: Differential equations and global optimization)

smooth function see: single—
Smooth nonlinear nonconvex optimization

(90C26)
(referred to in: ˛BB algorithm; Continuous global
optimization: models, algorithms and software; Global
optimization in batch design under uncertainty;Global
optimization in generalized geometric programming;
Global optimization methods for systems of nonlinear
equations; Global optimization in phase and chemical
reaction equilibrium; Interval global optimization;MINLP:
branch and bound global optimization algorithm;MINLP:
global optimization with ˛BB)
(refers to: ˛BB algorithm; Continuous global optimization:
models, algorithms and software; Global optimization in
batch design under uncertainty;Global optimization in
generalized geometric programming;Global optimization
methods for systems of nonlinear equations; Global
optimization in phase and chemical reaction equilibrium;
Interval global optimization;MINLP: branch and bound
global optimization algorithm;MINLP: global
optimization with ˛BB)

smooth nonlinear optimization
[90C26]
(see: Smooth nonlinear nonconvex optimization)

smooth optimization see: Derivative-free methods for non- —
smooth potentials and stability in mechanics

[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

smoothing
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

smoothing see: exponential —
smoothing algorithm see: potential —
smoothing algorithms

[90Cxx]
(see: Discontinuous optimization)

smoothing functions
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

smoothing methods
[90C26, 90C30, 90C33]
(see: Forecasting;Nonsmooth and smoothing methods for
nonlinear complementarity problems and variational
inequalities)

smoothing methods
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)
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smoothing methods for nonlinear complementarity problems
and variational inequalities see: Nonsmooth and—

Smoothing methods for semi-infinite optimization
(90C34, 90C31, 57R12)
(refers to: Generalized semi-infinite programming: optimality
conditions;Nonsmooth analysis: weak stationarity;
Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Semi-infinite programming, semidefinite programming
and perfect duality)

smoothing Newton method
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

smoothing NM
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

smoothing-nonsmooth reformulation
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

smoothing of the potential energy
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

smoothness see: lack of—
snakes

[90C90]
(see: Optimization in medical imaging)

SNDP
[90-XX]
(see: Survivable networks)

SNE see: GO for—
SNLP see: Semidefinite programming and the sensor network

localization problem—
SO

[49J20, 49J52]
(see: Shape optimization)

soaring direction
[90Cxx]
(see: Discontinuous optimization)

Sobel edge filter
[90C90]
(see: Optimization in medical imaging)

Sobolev space
[49J52]
(see:Hemivariational inequalities: eigenvalue problems)

social cost see: production realizing with minimal—
social utility function

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

SOCQ see: ben-Tal —; directional—;McCormick—
software see: Continuous global optimization: models,

algorithms and—; high-level —; low-level—;
mathematical —;medium-level—; Optimization—

software development and evaluation
[90C05]
(see: Continuous global optimization: models, algorithms
and software)

software for homotopy methods
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

software library see: general-purpose—
software package see: block truncated Newton—;

multiple-class—; single-class—
software package for specific mathematical areas

[90C10, 90C26, 90C30]
(see: Optimization software)

software routine see: individual—
software routines see: package of basic—
soil

(see: State of the art in modeling agricultural systems)
Solanki method

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

Solomon algebra see: Orlik–—
solomonoff-Kolmogorov-Chaitin complexity

[90C60]
(see: Kolmogorov complexity)

Solomonoff–Kolmogorov–Chaitin complexity
[90C60]
(see: Kolmogorov complexity)

solution
[90C10, 90C29]
(see:Maximum constraint satisfaction: relaxations and
upper bounds;Multi-objective optimization: pareto
optimal solutions, properties)

solution see: admissible—; basic—; basic feasible—;
best-compromise—; (CJm)-efficient—; computable—;
cooperative—; corner —; degenerate basic—;
distinguished—; efficient—; enumerative —;
"-reserved —; essential optimal —; extreme feasible—;
extreme point—; feasible—; feedback Stackelberg—;
global—; global minimum—; global optimal—;
incomplete—; incumbent—; infeasible—; initial—;
integer —; interior—; Lipschitz stable—; local —; locally
optimal—;M-Pareto optimal—;minimax—;minimum
norm—;most preferred —; neighborhood of a—;
noncooperative—; nondegenerate —; nondominated—;
noninferior—; nonsupported efficient—; optimal—;
optimum—; Pareto—; Pareto efficient—; Pareto
optimal—; polynomial time—; practically feasible
computational—; primal —; primal-dual—; problem—;
properly efficient—; quasi-optimal—; regular —; spanning
tree —; stable —; Stochastic network problems: massively
parallel —; strictly complementary—; strongly
polynomial—; strongly stable—; strongly stable
optimal—; supported efficient—; truncated singular value
decomposition—; unbounded—; unsupported
nondominated—; value of stochastic—; weakly
efficient—;weakly nondominated—; weakly
noninferior—;weakly Pareto optimal—

solution by active sets and interior point methods see:
Successive quadratic programming: —

solution algorithm see: incremental-iterative—
solution algorithms

[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

solution of the alignment problem
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)
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solution of bilevel programming problems
[90C30, 90C90]
(see: Bilevel programming: global optimization)

solution block
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

solution of the convex moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

solution of equations see: rotation in the—
solution of the Euclidean distance location problem see:

iterative—
solution of facility location problems with staircase costs

[90B80, 90C11]
(see: Facility location with staircase costs)

solution of the Hamilton–Jacobi–Bellman equation
[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

solution of inverse problems see: formulation and—
solutionmapping see: optimal —
solutionmethod see: support problems—
solution methodologies

[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

solution methods
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

solutionmethods see: exact—; Extremum problems with
probability functions: kernel type—

Solution methods for multivalued variational inequalities
(47J20, 49J40, 90C33, 65K10)

solution of multistage mean-variance optimization problems
see: Decomposition algorithms for the—

solution point see: bounds on the distance of a feasible point
to a—

solution-point bounds for NLP
[90C31]
(see: Sensitivity and stability in NLP: approximation)

solution of a problem
[90C60]
(see: Computational complexity theory)

solution procedures
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

solution of a program see: optimal—
solution quality see: establishing—
solution robust

[90C90, 91B28]
(see: Robust optimization)

solution set
[15A99, 65G20, 65G30, 65G40, 90C26, 90C31, 90C33]
(see: Interval linear systems; Sensitivity and stability in
NLP: continuity and differential stability; Topological
methods in complementarity theory)

solution set see: nondominated—; noninferior—; Pareto
optimal—; stability of a—

solution set in problem solving see: restriction to the—

solution space
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

solution space see: convexity property of the—
solution strategies

[90C05]
(see: Continuous global optimization: models, algorithms
and software)

solution of the system
[49M37]
(see: Nonlinear least squares: trust region methods)

solution of a system
[49M37]
(see: Nonlinear least squares: trust region methods)

solution vector estimates for parametric NLPS see: Bounds
and—

solution of the Wilson equation see: regular —
solutions see: almost complementary—; basic—; comparison

of parametric —; efficient—; enumerating extreme
point—; equilibrium—; exploiting the interplay between
primal and dual—; jumps of optimal —; least squares—;
local—; nonsupported efficient—; Pareto optimal—; set of
feasible—; set of potential efficient—; supported
efficient—; verifying equilibrium—

solutions of equations see: test for the existence of—
solutions of nonlinear systems of equations see: error bound

for approximate—; existence of—; rigorous bound for —;
uniqueness of—

solutions, properties see:Multi-objective optimization: pareto
optimal—

solvability see: polynomial —
solvability of equations

[01A99]
(see: Lagrange, Joseph-Louis)

solvability theorem
[90C26]
(see: Global optimization: envelope representation)

solvable linear system see: sign- —
solvation effects

[65K10, 92C40]
(see:Multiple minima problem in protein folding:˛BB
global optimization approach)

solvent design approaches see: Optimal—
solver

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

solver
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

solver see: flow—
solver formats see: independent of—
solvers

(see: Planning in the process industry)
solvers see: bottlenecks in NLP —
solving see: constraint—; iterative linear equation-—;

restriction to the solution set in problem—
solving CAP on trees see: exact algorithm for—; heuristic

approach to—
solving environment see: problem—
Solving hemivariational inequalities by nonsmooth

optimization methods
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(49J40, 49J52, 90C30, 65K05)
(referred to in: Composite nonsmooth optimization;
Generalizedmonotonicity: applications to variational
inequalities and equilibrium problems;Hemivariational
inequalities: applications in mechanics;Hemivariational
inequalities: eigenvalue problems;Nonconvex energy
functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;Nonsmooth
and smoothing methods for nonlinear complementarity
problems and variational inequalities;Quasidifferentiable
optimization;Quasidifferentiable optimization: algorithms
for hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems;Variational
inequalities;Variational inequalities: F. E. approach;
Variational inequalities: geometric interpretation,
existence and uniqueness;Variational inequalities:
projected dynamical system; Variational principles)
(refers to: Composite nonsmooth optimization; Generalized
monotonicity: applications to variational inequalities and
equilibrium problems;Hemivariational inequalities:
applications in mechanics;Hemivariational inequalities:
eigenvalue problems;Hemivariational inequalities: static
problems;Nonconvex energy functions: hemivariational
inequalities;Nonconvex-nonsmooth calculus of variations;
Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems;Variational
inequalities;Variational inequalities: F. E. approach;
Variational inequalities: geometric interpretation,
existence and uniqueness;Variational inequalities:
projected dynamical system; Variational principles)

Solving large scale and sparse semidefinite programs
(90C25, 90C30)
(referred to in: ABS algorithms for linear equations and
linear least squares; Cholesky factorization;Duality for

semidefinite programming; Interval linear systems; Large
scale trust region problems; Large scale unconstrained
optimization;Maximum cut problem, MAX-CUT;
Orthogonal triangularization;Overdetermined systems of
linear equations;QR factorization; Semidefinite
programming and determinant maximization; Semidefinite
programming: optimality conditions and stability;
Semidefinite programming and the sensor network
localization problem, SNLP; Semidefinite programming
and structural optimization; Semi-infinite programming,
semidefinite programming and perfect duality; Symmetric
systems of linear equations)
(refers to: ABS algorithms for linear equations and linear
least squares; Cholesky factorization;Duality for
semidefinite programming; Interior point methods for
semidefinite programming; Interval linear systems; Large
scale trust region problems; Large scale unconstrained
optimization; Linear programming;Orthogonal
triangularization;Overdetermined systems of linear
equations;QR factorization; Semidefinite programming
and determinant maximization; Semidefinite
programming: optimality conditions and stability;
Semidefinite programming and structural optimization;
Semi-infinite programming, semidefinite programming
and perfect duality; Symmetric systems of linear equations)

solving a problem see: Turing machine—
solving a problem instance in time m see: algorithm—
solving vehicle routing problems see: approximate methods

for—; constructive methods for —; exact methods for—
SONC

[90C31]
(see: Sensitivity and stability in NLP: approximation)

SOR method
[90C25, 90C33, 90C55]
(see: Splittingmethod for linear complementarity
problems)

sorting
[90C29]
(see:Multicriteria sorting methods)

sorting
[90C29]
(see:Multicriteria sorting methods)

sorting method see:multicriteria—
sorting methods see:Multicriteria—
sorting problem

[90C29]
(see: Preference disaggregation approach: basic features,
examples from financial decisionmaking)

sorting problems
[90C26, 90C29, 91B28]
(see: Portfolio selection and multicriteria analysis;
Preference disaggregation approach: basic features,
examples from financial decisionmaking)

sOS
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

source
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

source see: virtual —
source algorithm see: virtual —
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source class
[90C05, 90C34]
(see: Semi-infinite programming: methods for linear
problems)

source code transformation
[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

source concept in auction algorithms see: virtual —
source node

[90C35]
(see:Maximum flow problem)

source shortest path tree problem see: single—
sources

[65D18, 90B85, 90C26]
(see: Global optimization in location problems)

Southwell method see: Gauss–—
SP see: split-variable formulation of—
space see: canonical function—; convexity property of the

solution—; criterion—; design—; dual —; extended
canonical function—; feature —; function—; Hilbert —;
image—; kinetically admissible—; lineality —; Linear —;
linear topological—; local properties of the
configuration—;measure —;metric —;monotone
operator on a Banach—; null —; optimization in
a vector —; outcome—; phase—; probability measure —;
range—; real vectors —; resource-payoff —; Sobolev—;
solution—; symmetric element in a Hilbert —; triangulation
of Euclidean—; trustworthy —; variable—; vector —

space approach to optimization see: Image—
space-bounded Turing machine see: exponentially —;

polynomially—
space complexity of a deterministic Turing machine

[90C60]
(see: Complexity classes in optimization)

space complexity of a nondeterministic Turing machine
[90C60]
(see: Complexity classes in optimization)

space decomposition see: range and null —
space dilation

[49J52, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods)

space filling see: Global optimization using—
space filling curve

[90C26]
(see: Global optimization using space filling)

space filling curve
[90C26]
(see: Global optimization using space filling)

space filling curves see: approximation of—
space graphs see: searching state —
space methods see: full —; Successive quadratic

programming: full—
space model see: vector —
space models for entropy optimization for image

reconstruction see: vector- —
space reduction see: weighting—
space search see: formulation—
space search algorithm see: optimal state —; recursive

state —; state —; synchronized distributed state —

space SQP see: full —; reduced—
space SQPmethod see: full—
space successive quadratic programming see: full —
Space-time network

(see: Railroad crew scheduling; Railroad locomotive
scheduling)

space-time network see: weekly —
space type methods see: Krylov—
space of x variables see: full —
spaces see: analyzing almost empty —; Best approximation in

ordered normed linear —; Increasing and
convex-along-rays functions on topological vector —;
Increasing and positively homogeneous functions on
topological vector —;measure —; ordered vector —;
semi-ordered—; Steiner ratio in Banach—;
subdifferentiability—

span of a T-coloring frequency assignment
[05-XX]
(see: Frequency assignment problem)

spanning acyclic tournament
[90C10, 90C11, 90C20]
(see: Linear ordering problem)

spanning arborescence problem see: capacitated minimum—
spanning network see:multiphase—
spanning tree

[90-XX]
(see: Survivable networks)

spanning tree
[68T99, 90C27]
(see: Capacitated minimum spanning trees)

spanning-tree see:minimum—;minimum ratio—
spanning tree problem see: bounded degree minimum—;

capacitated minimum—;minimum—;
resource-constrainedminimum—

spanning tree solution
[90C35]
(see:Minimum cost flow problem)

spanning tree structure
[90C35]
(see:Minimum cost flow problem)

spanning tree structure see: feasible—; optimal—
spanning trees see: Capacitated minimum—;minimum—
sparse doublet

[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

sparse least squares problem
[65Fxx]
(see: Least squares problems)

sparse matrix
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs;
Successive quadratic programming: full space methods)

sparse matrix
[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

sparse semidefinite programs see: Solving large scale and—
sparse triplet

[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

sparsity
[49-04, 65K05, 65Y05, 68N20, 90C30]
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(see: Automatic differentiation: calculation of Newton steps;
Automatic differentiation: parallel computation)

sparsity
[65K05, 90C25, 90C30]
(see: Automatic differentiation: calculation of Newton steps;
Successive quadratic programming: full space methods;
Successive quadratic programming: solution by active sets
and interior point methods)

spatial branch and bound see: reformulation/—
spatial Characteristic

(see: State of the art in modeling agricultural systems)
spatial competition facility location model

[65K10, 90C31]
(see: Sensitivity analysis of variational inequality problems)

spatial Cournot–Nash equilibrium
[91B06, 91B60]
(see: Oligopolistic market equilibrium)

spatial interaction
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

spatial interaction
[90B80, 90C10]
(see: Facility location problems with spatial interaction)

spatial interaction see: Facility location problems with—
spatial-interaction model

[90C26]
(see:MINLP: application in facility location-allocation)

spatial markets
[91B28, 91B50]
(see: Spatial price equilibrium)

spatial markets see: aspatial and—
spatial oligopoly model

[91B06, 91B60]
(see: Oligopolistic market equilibrium)

Spatial price equilibrium
(91B50, 91B28)
(referred to in: Equilibrium networks; Financial
equilibrium;Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Oligopolistic market equilibrium; Traffic network
equilibrium;Walrasian price equilibrium)
(refers to: Equilibrium networks; Financial equilibrium;
Generalizedmonotonicity: applications to variational
inequalities and equilibrium problems;Oligopolistic
market equilibrium; Traffic network equilibrium;
Walrasian price equilibrium)

spatial price equilibrium
[65K10, 90C31, 90C35, 91B28, 91B50]
(see:Multicommodity flow problems; Sensitivity analysis of
variational inequality problems; Spatial price equilibrium)

spatial price equilibrium
[90C30]
(see: Equilibrium networks)

spatial price equilibrium problem
[91B28, 91B50]
(see: Spatial price equilibrium)

spatial price equilibrium problem
[90C30]
(see: Equilibrium networks)

spatial price equilibrium problem see: network structure of
the—

spatial segmentation
[90C90]
(see: Optimization in medical imaging)

SPE
[90C35]
(see:Multicommodity flow problems)

special facilities see: residents of—
special functions: algorithms and complexity see: Regression

by—
special model features

(see: Planning in the process industry)
special properties of crisp relations

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

special properties of fuzzy relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

special properties of heterogeneous relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

special properties of homogeneous relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

special properties of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

special structure mixed integer ˛BB algorithm
[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

species
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

species see: component—
species index set

[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

specific see: unit- —
specific mathematical areas see: software package for —
spectral method see: Galerkin—
Spectral projected gradient methods

(49M07, 49M10, 65K, 90C06, 90C20)
spectral radius

[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

spectroscopic visual binary star
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

spectrum see: higher-order —
Spedicato algorithms for linear equations and linear least

squares see: Abaffi–Broyden–—
speedup see: linear —
sphere see:minimax location on a—;minimum—
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sphere growing technique
[90C35]
(see: Feedback set problems)

sphere method see: largest inscribed—
sphere problem see:minimum—
spherical reduction

[65K05, 90C30]
(see: Bisection global optimization methods)

split see: phase—
split-variable formulation of SP

[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

splitting
[90C30]
(see: Cost approximation algorithms)

splitting see: operator —; regular Q-—
splitting algorithm see: operator —; principal variation—;

tree- —
splitting field

[01A50, 01A55, 01A60]
(see: Fundamental theorem of algebra)

splitting method
[90C25, 90C33, 90C55]
(see: Splittingmethod for linear complementarity
problems)

Splitting method for linear complementarity problems
(90C25, 90C55, 90C25, 90C33)
(referred to in: Linear complementarity problem)
(refers to: Lagrangianmultipliers methods for convex
programming; Linear complementarity problem)

splitting methods in quadratic programming see:matrix —
splitting Newton method

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

splitting rule
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

splitting/unsplitting of load
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

splitting variable representation
[90C30, 90C35]
(see: Optimization in water resources)

splitting variables
[90C30, 90C35]
(see: Optimization in water resources)

SPLP
[90B80, 90B85]
(see:Warehouse location problem)

spot see: cold—; hot—
spot interest rate

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

spot rate see: � -estimate of the—
spot rate for bonds with constant maturities see: estimating

the—
spot rate estimation see: � -programmed problem of—

spots see: cold—; hot—
SPP

[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

SPR
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

spread
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

SPT
[90B10, 90C27]
(see: Shortest path tree algorithms)

SQG
[90C15]
(see: Derivatives of probability measures)

SQG see: single run—
sQG methods

[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

SQG methods
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

(SQG) methods see: stochastic Quasigradient—
sQG projection methods

[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

SQG projection methods
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

sQP
[90C30, 90C90, 93-XX]
(see: Dynamic programming: optimal control applications;
Successive quadratic programming: applications in the
process industry)

SQP
[65L99, 90C30, 90C90, 93-XX]
(see: Optimization strategies for dynamic systems;
Successive quadratic programming: applications in the
process industry)

SQP see: convex—; full space—;multiplier-free reduced
Hessian—; nonconvex—; quadratic programming
problem in—; reduced space—

SQP approach see: Optimization with equilibrium constraints:
A piecewise—

SQPmethod see: full space—; reduced Hessian—
SQP optimization in industrial problems

[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

SQP type algorithm
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

SQPIP
[49K20, 49M99, 90C55]
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(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

SQPIPmethods see: affine scaling—; primal-dual—
square see: equal circles in a—
square composition of relations

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

square merit function see: list —
square product of relations

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

square-root-free Givens transformation
[15A23, 65F05, 65F20, 65F22, 65F25]
(see: QR factorization)

square-root method
[65Fxx]
(see: Least squares problems)

square-root transformation
[90C11, 90C90]
(see:MINLP: trim-loss problem)

square-root transformation see: logarithmic and—;
modified—

square statistic see: Pearson chi- —
squared error see: sum of—
squared Euclidean distance location problem

[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

squares see: Abaffi–Broyden–Spedicato algorithms for linear
equations and linear least —; ABS algorithms for linear
equations and linear least —; generalized nonlinear least—;
Generalized total least —; least —; linear least —;method
of least —; nonlinear least —; sum of —;weighted least —

squares algorithm see: recursive least —
squares criterion see: least —
squares distance function see: least —
squares formal orthogonal polynomials see: least —
squares formulation see: least —
squares: Newton-type methods see: Nonlinear least —
squares orthogonal polynomials see: Least —
squares problem see: consistent least —; generalized least —;

generalized nonlinear least —; least —; perturbed least —;
sparse least —; total least —; unconstrained nonlinear
least —;weighted least —

squares problems see: Complexity and large-scale least —;
Least—; Nonlinear least —

squares problems with massive data sets see: least —
squares, relation to Newton’s method see: Gauss–Newton

method: Least —
squares solutions see: least —
squares: trust region methods see: Nonlinear least —
SR

[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

SR1 quasi-Newton method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

SR1 update
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

SSC
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

SSCminimization algorithms
(90C30, 90C15, 90C99)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization; SSC
minimization algorithms for nonsmooth and stochastic
optimization)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization; SSC
minimization algorithms for nonsmooth and stochastic
optimization)

SSCminimization algorithms for nonsmooth and stochastic
optimization
(90C30, 90C15, 90C99)
(referred to in: Equality-constrained nonlinear
programming: KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization; SSC
minimization algorithms)
(refers to: Equality-constrained nonlinear programming:
KKT necessary optimality conditions;
Inequality-constrained nonlinear optimization; SSC
minimization algorithms)

SSC-SABB algorithm
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms for nonsmooth and
stochastic optimization)

SSC-SABB algorithm see: nonsmooth—
sSC-SBB algorithm

[90C15, 90C30, 90C99]
(see: SSCminimization algorithms for nonsmooth and
stochastic optimization)

SSM
[90C30]
(see: Sequential simplex method)

SSS-2
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

SSS�
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

SSS� -dual
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

stability
[05C15, 05C17, 05C35, 05C69, 90C05, 90C11, 90C15, 90C22,
90C25, 90C29, 90C30, 90C31, 90C35]
(see: Lovász number; Nondifferentiable optimization:
parametric programming; Stochastic integer programming:
continuity, stability, rates of convergence; Suboptimal
control)

stability
[49K27, 49K40, 90C05, 90C22, 90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
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duality; First order constraint qualifications;
Nondifferentiable optimization: parametric programming;
Second order constraint qualifications; Semidefinite
programming: optimality conditions and stability)

stability see: assumption—; asymptotic —; asymptotical
system—; elastic —; global structural —; Lipschitz —;
phase—; radius of —; regions of —; robust —; Schur—;
Semidefinite programming: optimality conditions and—;
Sensitivity and stability in NLP: continuity and
differential —; structural —; system—; topological —

stability analysis
[90B15, 90C15, 90C31, 90C33]
(see: Approximation of extremum problems with
probability functionals;Dynamic traffic networks;
Sensitivity analysis of complementarity problems)

stability analysis
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

stability analysis see: robust —
stability analysis of optimization problems

[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

stability criterion see: sector —
stability of dynamic systems see: Quasidifferentiable

optimization:—
stability at an equilibrium

[90B15]
(see: Dynamic traffic networks)

stability at an equilibrium see: asymptotical —
Stability margin

[93D09]
(see: Robust control)

stability margin see:multivariable—
stability margin K see:multivariable—
stability in mechanics see: smooth potentials and—
stability in NLP see: Sensitivity and—
stability in NLP: approximation see: Sensitivity and—
stability in NLP: continuity and differential stability see:

Sensitivity and—
stability number

[05C15, 05C62, 05C69, 05C85, 68W01, 90C27, 90C59]
(see:Heuristics for maximum clique and independent set;
Optimization problems in unit-disk graphs)

stability number see: weighted —
stability of optimal trajectories see: Turnpike theory: —
stability on parametric programming

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

stability in parametric programming see: structural —;
topological—

stability of polytopes of polynomials see: Robust control:
schur—

stability problem
[90B36]
(see: Stochastic scheduling)

stability problem see: phase—
stability, rates of convergence see: Stochastic integer

programming: continuity—

stability of SIP see: structural —
stability of SIP(f,h,g) see: global structual—
stability of a solution set

[90C33]
(see: Topological methods in complementarity theory)

stability of a stationary point see: strong—
stability of a structural analysis system

[49J52, 49Q10, 74G60, 74H99, 74K99, 74Pxx, 90C90]
(see: Quasidifferentiable optimization: stability of dynamic
systems)

stability of a system
[90B15]
(see: Dynamic traffic networks)

stability of a system see: asymptotical —
stabilization

[90C06, 90C15]
(see: Stabilization of cutting plane algorithms for stochastic
linear programming problems)

Stabilization of cutting plane algorithms for stochastic linear
programming problems
(90C15, 90C06)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method; Static
stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
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problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method; Static
stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradient method; Two-stage stochastic
programs with recourse)

stable
[90B36]
(see: Stochastic scheduling)

stable see: asymptotically —
stable bilinear programming

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

stable function
[90C06]
(see: Saddle point theory and optimality conditions)

stable marriage problem
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

stable optimal solution see: strongly—
stable parametric programming

[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

stable primal problem see: J- —
stable problem

[90C26]
(see: Cutting plane methods for global optimization)

stable set
[05C15, 05C62, 05C69, 05C85, 68W01, 90C27, 90C35, 90C59]
(see: Graph coloring;Heuristics for maximum clique and
independent set;Optimization problems in unit-disk
graphs)

Stable set problem: branch & cut algorithms
(90C27, 90C35)
(refers to:Heuristics for maximum clique and independent
set; Integer programming; Integer programming: branch
and bound methods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane
algorithms; Lovász number; Simplicial pivoting algorithms
for integer programming)

stable solution
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

stable solution see: Lipschitz —; strongly—
stable stationary point see: asymptotically—

stable without pivoting see: guaranteed to be—
Stackelberg game

[49-01, 49K10, 49K45, 49M37, 49N10, 90-01, 90C05, 90C20,
90C26, 90C27, 90C31, 91A65, 91B52]
(see: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel programming: implicit function
approach)

Stackelberg game
[49-01, 49K10, 49K45, 49M37, 49N10, 90-01, 90B30, 90B50,
90C05, 90C15, 90C20, 90C26, 90C27, 90C30, 90C31, 90C33,
90C90, 91A65, 91B32, 91B52, 91B74]
(see: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel programming: global optimization;
Bilevel programming: implicit function approach; Bilevel
programming in management; Stochastic bilevel programs)

Stackelberg game see: von—
Stackelberg game theory

[90C30, 90C90]
(see: Bilevel programming: global optimization)

Stackelberg games see: von—
Stackelberg–Nash–Cournot equilibrium

[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

Stackelberg–Nash equilibrium
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

Stackelberg problems
[90C26, 90C30, 90C31]
(see: Bilevel programming: introduction, history and
overview)

Stackelberg solution see: feedback—
stacker Crane Problem (SCP)

[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

(staff planning) see: scheduling—
stage see: average cost per —; conceptual design—; detailed

design—; discounted problem with bounded cost per —;
preliminary design—; second-—

stage decision see: first- —; second-—
stage decisions see: first- —; second-—
stage feasibility set see: second-—
stage IM see: single- —
stage inventory management models see: single—
stage-length see: variable—
stage model see: linear two- —
stage problem see: average cost per —
stage problems see: average cost per —; Dynamic

programming: average cost per —
stage stochastic linear program see: two-—
stage stochastic program with recourse see: two-—
stage stochastic programming see: two-—
stage stochastic programming models see: two- —
stage stochastic programming problem see: dynamic two- —
stage stochastic programming: quasigradient method see:

Two-—
stage stochastic programs see:multy-—
stage stochastic programs with recourse see: L-shaped

method for two- —; two-—
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stage stochastic programs with simple integer recourse see:
two-—

staircase arc cost function
[90B10]
(see: Piecewise linear network flow problems)

staircase cost
[90B80, 90C11]
(see: Facility location with staircase costs)

staircase cost function
[90B80, 90C11]
(see: Facility location with staircase costs)

staircase costs see: convex piecewise linearization in facility
location problems with—; Facility location with—;
heuristics of facility location problems with—; linearization
in facility location problems with—; solution of facility
location problems with—

stalling
[90C60]
(see: Complexity of degeneracy)

stalling
[90C60]
(see: Complexity of degeneracy)

stamped models see: time- —
standard

[90C31, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions)

standard see: CG-—
standard auction algorithm see:modified—
standard determinant expansion of a matrix

[90C09, 90C10]
(see: Combinatorial matrix analysis)

standard form
[65K05, 65K10]
(see: ABS algorithms for optimization)

standard form see: constraints in—; linear optimization
problem in—;matrix in—

standard function
[90C26, 90C30]
(see: Bounding derivative ranges)

standard greedy form
[90B10, 90B80, 90C35]
(see: Network location: covering problems)

standard methods see: unbounded controls and non—
standard for minimizing q see: CG-—
standard mollifier

[57R12, 90C31, 90C34]
(see: Smoothing methods for semi-infinite optimization)

standard moment problem
[28-XX, 49-XX, 60-XX]
(see: General moment optimization problems)

standard monomials
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

standard pair decomposition of a monomial ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

standard pair of a monomial ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

standard part map
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

standard quadratic optimization problem
[90C20]
(see: Standard quadratic optimization problems:
algorithms; Standard quadratic optimization problems:
applications; Standard quadratic optimization problems:
theory)

Standard quadratic optimization problems: algorithms
(90C20)
(referred to in: Complexity theory: quadratic programming;
Linear ordering problem;Quadratic assignment problem;
Quadratic fractional programming: Dinkelbach method;
Quadratic knapsack;Quadratic programming with bound
constraints;Quadratic programming over an ellipsoid;
Standard quadratic optimization problems: applications;
Standard quadratic optimization problems: theory)
(refers to: Complexity theory: quadratic programming;
Interval analysis: eigenvalue bounds of interval matrices;
Quadratic assignment problem;Quadratic fractional
programming: Dinkelbach method;Quadratic knapsack;
Quadratic programming with bound constraints;Quadratic
programming over an ellipsoid; Semidefinite
programming: optimality conditions and stability;
Simplicial decomposition; Standard quadratic optimization
problems: applications; Standard quadratic optimization
problems: theory)

Standard quadratic optimization problems: applications
(90C20)
(referred to in: Complexity theory: quadratic programming;
Linear ordering problem;Quadratic assignment problem;
Quadratic fractional programming: Dinkelbach method;
Quadratic knapsack;Quadratic programming with bound
constraints;Quadratic programming over an ellipsoid;
Standard quadratic optimization problems: algorithms;
Standard quadratic optimization problems: theory)
(refers to: Complexity theory: quadratic programming;
Portfolio selection and multicriteria analysis;Quadratic
assignment problem;Quadratic fractional programming:
Dinkelbach method;Quadratic knapsack;Quadratic
programming with bound constraints;Quadratic
programming over an ellipsoid; Simplicial decomposition;
Standard quadratic optimization problems: algorithms;
Standard quadratic optimization problems: theory)

Standard quadratic optimization problems: theory
(90C20)
(referred to in: Complexity theory: quadratic programming;
Linear ordering problem;Quadratic assignment problem;
Quadratic fractional programming: Dinkelbach method;
Quadratic knapsack;Quadratic programming with bound
constraints;Quadratic programming over an ellipsoid;
Reverse convex optimization; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications)
(refers to: ˛BB algorithm; Complexity theory: quadratic
programming;D.C. programming; Interior point methods
for semidefinite programming;Quadratic assignment
problem;Quadratic fractional programming: Dinkelbach
method;Quadratic knapsack;Quadratic programming with
bound constraints;Quadratic programming over an
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ellipsoid;Reverse convex optimization; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Standard quadratic
optimization problems: algorithms; Standard quadratic
optimization problems: applications)

standard SD problem
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

standard simplex
[65K05, 90C20, 90C30]
(see: Bisection global optimization methods; Standard
quadratic optimization problems: algorithms; Standard
quadratic optimization problems: applications; Standard
quadratic optimization problems: theory)

standard state
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

standard traffic equilibrium problem
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

Stanley–Reisner ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

star
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

star
[90C26, 90C90]
(see: Global optimization in binary star astronomy)

star see: binary—; double—; spectroscopic visual binary—;
visual binary —

star astronomy see: Global optimization in binary—
star cluster

[62H30, 90C27]
(see: Assignment methods in clustering)

star network
[05A18, 05D15, 68M07, 68M10, 68Q25, 68R05]
(see:Maximum partitionmatching)

star-shaped set
[90C29]
(see: Generalized concavity in multi-objective optimization)

start see: best—
start interior-point algorithm see: infeasible-—
start state of a Turing machine

[90C60]
(see: Complexity classes in optimization)

start temperature
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

start-ups see: well-defined—
starting region see: safe—
state

[49K20, 49M99, 90C55]
(see: Sequential quadratic programming: interior point
methods for distributed optimal control problems)

state see: accessible—; equation of—; ground—; optimal
steady—; standard—

State of the art in modeling agricultural systems

state constraint
[93-XX]
(see: Dynamic programming: optimal control applications)

state constraints
[49K05, 49K10, 49K15, 49K20, 93-XX]
(see: Direct search Luus—Jaakola optimization procedure;
Duality in optimal control with first order differential
equations)

state distribution density see: steady- —
state equations

[49K05, 49K10, 49K15, 49K20, 49M99, 90C55]
(see: Duality in optimal control with first order differential
equations; Sequential quadratic programming: interior
point methods for distributed optimal control problems)

state equations see: generalized —
state feedback see: incomplete—
state inequality constraint

[93-XX]
(see: Dynamic programming: optimal control applications)

state of knowledge
[94A17]
(see: Jaynes’ maximum entropy principle)

state Markov chain see: finite-—; stationary- —
state polyhedron

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

state polytope
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

state problem
[49J20, 49J52]
(see: Shape optimization)

state problem see: regularizing—
state relation

[49J20, 49J52]
(see: Shape optimization)

state space graphs see: searching—
state space search algorithm

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

state space search algorithm see: optimal—; recursive—;
synchronized distributed—

state of a system
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

state-task-network
[90C26]
(see:MINLP: design and scheduling of batch processes)

state of a Turing machine
[90C60]
(see: Complexity theory)

state of a Turing machine see: accepting—; control —;
final —; start —

state vector
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

states see: recurrent class of—; transient class of —
states of plants see: tracing the—
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static
[90B06]
(see: Vehicle routing)

static deterministic problem
[90B06]
(see: Vehicle routing)

static/dynamic service needs
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

static load balancing
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

static model
[90B80, 90B85]
(see:Warehouse location problem)

static multifacility see: discrete single-commodity
single-criterion uncapacitated—

static problems see: Hemivariational inequalities:—
Static resource constrained project scheduling
Static stochastic programmingmodels

(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic

programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

Static stochastic programmingmodels: conditional
expectations
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Stochastic linear programming:
decomposition and cutting planes; Stochastic linear
programs with recourse and arbitrarymultivariate
distributions; Stochastic network problems: massively
parallel solution; Stochastic programming: minimax
approach; Stochastic programmingmodels: random
objective; Stochastic programming: nonanticipativity and
lagrangemultipliers; Stochastic programs with recourse:
upper bounds; Stochastic vehicle routing problems;
Two-stage stochastic programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
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discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Stochastic integer programming:
continuity, stability, rates of convergence; Stochastic
integer programs; Stochastic linear programming:
decomposition and cutting planes; Stochastic linear
programs with recourse and arbitrarymultivariate
distributions; Stochastic network problems: massively
parallel solution; Stochastic programming: minimax
approach; Stochastic programmingmodels: random
objective; Stochastic programming: nonanticipativity and
lagrangemultipliers; Stochastic programming with simple
integer recourse; Stochastic programs with recourse: upper
bounds; Stochastic quasigradientmethods in minimax
problems; Stochastic vehicle routing problems; Two-stage
stochastic programming: quasigradientmethod; Two-stage
stochastic programs with recourse)

static TS
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

station see: arr- —; arrival-—; dep- —; departure- —
stationarity

[49K27, 58C20, 58E30, 65K05, 90C26, 90C33, 90C34, 90C48]
(see: Adaptive convexification in semi-infinite optimization;
Nonsmooth analysis: Fréchet subdifferentials)

stationarity see: Nonsmooth analysis: weak —;weak—
stationarity conditions see: KKT—
stationary

[05C60, 05C69, 37B25, 49L20, 49L99, 49M07, 49M10, 65K,
90C05, 90C06, 90C20, 90C22, 90C25, 90C27, 90C30, 90C31,
90C33, 90C34, 90C35, 90C40, 90C59, 91A22]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: undiscounted problems;
Optimization with equilibrium constraints: A piecewise
SQP approach;Replicator dynamics in combinatorial
optimization; Semidefinite programming: optimality
conditions and stability; Semi-infinite programming:
discretizationmethods; Spectral projected gradient
methods)

stationary see: inf- —
stationary point

[49M29, 58C20, 58E30, 65K05, 65K10, 90C06, 90C26, 90C31,
90C34, 90C39, 90C46, 90C48, 90C90, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Dynamic programming and Newton’s method in
unconstrained optimal control; Local attractors for
gradient-related descent iterations;Nonsmooth analysis:
weak stationarity; Parametric global optimization:
sensitivity; Second order optimality conditions for
nonlinear optimization; Variational inequalities: projected
dynamical system)

stationary point
[65K10, 90C26, 90C39, 90C90]
(see: Second order optimality conditions for nonlinear

optimization; Variational inequalities: projected dynamical
system)

stationary point see:1- —; asymptotically stable —; Dini
sup-—; "- —; Hadamard1- —; Hadamard sup- —; inf- —;
isolated—; regular —; strong stability of a—; sup- —

stationary points
[90C20]
(see: Standard quadratic optimization problems:
algorithms)

stationary points see: inf- —
stationary policy

[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems;Dynamic programming: undiscounted
problems)

stationary regime
[60J05, 90C15]
(see: Derivatives of markov processes and their
simulation)

stationary-stateMarkov chain
[49L99]
(see: Dynamic programming: average cost per stage
problems)

stations see: Automatic differentiation: geometry of satellites
and tracking—; one-hop neighboring—; tracking—

statistic see: generalized single cluster —; Goodman–Kruskal
�b —;Mann–Whitney—; Pearson chi-square—; Rand—

statistical analysis see: exploratory—
statistical classification

[62H30, 90C11]
(see: Statistical classification: optimization approaches)

statistical classification
[62H30, 90C11]
(see: Statistical classification: optimization approaches)

Statistical classification: optimization approaches
(62H30, 90C11)
(referred to in: Linear programmingmodels for
classification;Mixed integer classification problems;
Optimization in boolean classification problems;
Optimization in classifying text documents)
(refers to: Linear programmingmodels for classification;
Mixed integer classification problems;Optimization in
boolean classification problems;Optimization in classifying
text documents)

Statistical convergence and turnpike theory
(40A05, 49J24)
(referred to in: Turnpike theory: stability of optimal
trajectories)
(refers to: Turnpike theory: stability of optimal trajectories)

statistical inference see: order restricted—
statistical method see: nonparametric —
statistical models

[90C30]
(see: Global optimization based on statistical models)

statistical models see: Global optimization based on—
statistical pattern classification

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based
methods)
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statistical pattern recognition
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

statistical procedures
[90C26, 90C30]
(see: Forecasting)

statistical representation of cutting plane coefficients
[90C06, 90C15]
(see: Stochastic linear programming: decomposition and
cutting planes)

statistics
[90C26, 90C30]
(see: Forecasting)

statistics
[90C26, 90C30]
(see: Forecasting)

statistics see: algebraic —; higher-order —; Signal processing
with higher order —

status of the wells see: operational —
steady state see: optimal—
steady-state distribution density

[60G35, 65K05]
(see: Differential equations and global optimization)

steamer problem see: tramp—
steep directions

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

steepest ascent see: rate of —; rule of—
steepest ascent direction

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

steepest ascent direction
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

steepest ascent direction see: Dini —; Hadamard—
steepest descent

[46N10, 68T20, 68T99, 90-00, 90C27, 90C47, 90C59]
(see:Metaheuristics;Nondifferentiable optimization)

steepest descent see: "- —;method of —; rate of—
steepest descent algorithm

[60G35, 62F12, 65C05, 65K05, 90C15, 90C31]
(see: Differential equations and global optimization;
Monte-Carlo simulations for stochastic optimization)

steepest-descent direction
[90C05, 90C22, 90C25, 90C30, 90C51, 90Cxx]
(see: Interior point methods for semidefinite programming;
Quasidifferentiable optimization: optimality conditions;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)

steepest descent direction
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

steepest descent direction see: Dini —; Hadamard—
steepest descent method

[49M29, 65K10, 90C06, 90C30]
(see: Cost approximation algorithms; Large scale
unconstrained optimization; Local attractors for
gradient-related descent iterations)

steepest descent vector
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

steepest edge simplex method
[90C05]
(see: Linear programming: Klee–Minty examples)

Stein estimators
[91B28]
(see: Portfolio selection: markowitz mean-variance model)

Stein estimators see: James–—
Steiner arborescence

[90C27]
(see: Steiner tree problems)

Steiner arborescence see:minimum—
Steiner arborescence tree see: rectilinear—
Steiner graphical traveling salesman problem

[90B20]
(see: General routing problem)

Steiner minimal tree
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

Steiner minimal tree
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

Steiner minimal tree problem
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

Steiner minimum tree
[90C27]
(see: Steiner tree problems)

Steiner network see:multiphase—
Steiner nodes

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

Steiner point
[90C27]
(see: Steiner tree problems)

Steiner points
[05C05, 05C40, 68Q20, 68R10, 90C27, 90C35]
(see: Network design problems;Optimal triangulations;
Steiner tree problems)

Steiner points see: Steiner tree problemwith minimum
number of —

Steiner problem
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

Steiner problems see:multiphase—
Steiner ratio

[05C05, 05C40, 05C85, 68Q25, 68R10, 90B80, 90C35]
(see: Bottleneck steiner tree problems;Network design
problems)

Steiner ratio
[90C27]
(see: Steiner tree problems)

Steiner ratio see: bottleneck—; Euclidean—; k-—
Steiner ratio in Banach spaces

[90C27]
(see: Steiner tree problems)

Steiner ratio of biomolecular structures
(90C27)
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Steiner tree
[05-04, 05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Evolutionary algorithms in combinatorial
optimization;Optimization problems in unit-disk graphs)

Steiner tree
[90C27]
(see: Steiner tree problems)

Steiner tree see: full—;min-max—; rectilinear —
Steiner tree problem with minimum number of Steiner points

[90C27]
(see: Steiner tree problems)

Steiner tree problems
(90C27)
(referred to in: Auction algorithms; Bottleneck steiner tree
problems;Communication network assignment problem;
Dynamic traffic networks; Equilibrium networks;
Generalized networks;Maximum flow problem;Minimum
cost flow problem;Multicommodity flow problems;
Network design problems;Network location: covering
problems;Nonconvex network flow problems; Piecewise
linear network flow problems; Shortest path tree
algorithms; Stochastic network problems: massively parallel
solution; Survivable networks; Traffic network equilibrium)

(refers to: Auction algorithms; Bottleneck steiner tree
problems;Communication network assignment problem;
Directed tree networks;Dynamic traffic networks;
Equilibrium networks; Evacuation networks; Generalized
networks;Maximum flow problem;Minimum cost flow
problem;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Piecewise linear network flow problems; Shortest path tree
algorithms; Stochastic network problems: massively parallel
solution; Survivable networks; Traffic network equilibrium)

steiner tree problems see: Bottleneck —
Steiner trees see: bottleneck—; variations of —
Steiner triangulation see:minimumweight —
Steiner–Weber problem

[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

Steinhauser function see: Kreisselmeier–—
step see: analysis—; bounding—; branching—;

computational—; coordination—; decomposition—;
descent—; escape—; fathoming—; insertion—; long
serious—; Newton—; null —; preconditioning—;
relaxation—; selection—; short serious—; time- —; trial —

step case of the trust region problem see: Newton—
step function

[90C26]
(see:MINLP: application in facility location-allocation)

step Gauss–Newton method see: full-—
step size

[90C05, 90C22, 90C25, 90C30, 90C51]
(see: Interior point methods for semidefinite programming)

step-size rule see: divergent series —
step superlinear see: 2- —
steplength

[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

steplength see: compute the—; compute a safeguarded new
trial —

steplength rule see: Armijo—; divergent series —
steps see: acceleration—; Automatic differentiation:

calculation of Newton—; average number of pivot—;
expected number of pivot—

stepsize
[90C30]
(see: Frank–Wolfe algorithm)

Stewart reorthogonalized Gram–Schmidt algorithm see:
Daniel–Gragg–Kaufmann–—

sTF
[90B35, 90C11, 90C30]
(see: Robust optimization: mixed-integer linear programs)

Stiefel algorithm see: Hestenes– —
Stiemke theorem

[90C05, 90C30]
(see: Theorems of the alternative and optimization)

Stiemke transposition theorem
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

stiff problem
[65Fxx]
(see: Least squares problems)

stiffness matrix
[49M37, 65K05, 90C30]
(see: Structural optimization)

stiffness matrix
[49M37, 65K05, 90C30]
(see: Structural optimization)

sTO
[90B35, 90C11, 90C30]
(see: Robust optimization: mixed-integer linear programs)

STO problem see: nested —
stochastic approach

[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

stochastic approach to optimization in water resources
[90C30, 90C35]
(see: Optimization in water resources)

stochastic approximation
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

stochastic approximation
[90C15]
(see: Extremum problems with probability functions: kernel
type solution methods)

stochastic bilevel program
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

Stochastic bilevel programs
(90C15, 90C26, 90C33)
(referred to in: Bilevel linear programming; Bilevel linear
programming: complexity, equivalence to minmax, concave
programs; Bilevel optimization: feasibility test and
flexibility index; Bilevel programming; Bilevel
programming: applications; Bilevel programming: global
optimization; Bilevel programming: implicit function
approach; Bilevel programming: introduction, history and
overview; Bilevel programming in management; Bilevel
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programming: optimality conditions and duality;
Multilevel methods for optimal design;Multilevel
optimization in mechanics)
(refers to: Bilevel fractional programming; Bilevel linear
programming; Bilevel linear programming: complexity,
equivalence to minmax, concave programs; Bilevel
optimization: feasibility test and flexibility index; Bilevel
programming; Bilevel programming: applications; Bilevel
programming: applications in engineering; Bilevel
programming: implicit function approach; Bilevel
programming: introduction, history and overview; Bilevel
programming in management; Bilevel programming:
optimality conditions and duality;Multilevel methods for
optimal design;Multilevel optimization in mechanics)

stochastic bilevel programs see: algorithms for—
stochastic branch and bound

[90C15, 90C27]
(see: Discrete stochastic optimization)

stochastic combinatorial optimization
[90C15, 90C27]
(see: Discrete stochastic optimization)

stochastic counterpart method
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

stochastic decomposition
[62F12, 65C05, 65K05, 90C15, 90C26, 90C31, 90C33]
(see:Monte-Carlo simulations for stochastic optimization;
Stochastic bilevel programs; Two-stage stochastic
programming: quasigradientmethod)

stochastic decomposition
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

stochastic decomposition algorithm
[90C06, 90C15]
(see: Stochastic linear programming: decomposition and
cutting planes)

stochastic decomposition algorithm see: regularized—
stochastic differential equation

[60G35, 65K05]
(see: Differential equations and global optimization)

stochastic discretization procedure
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming: discretizationmethods)

stochastic dynamic optimization problem
[90C15]
(see: Stochastic quasigradientmethods: applications)

stochastic dynamic programming
[90B05, 90B06]
(see: Global supply chain models)

stochastic dynamic programming
[90B05, 90B06]
(see: Global supply chain models)

stochastic dynamic systems
[90C15]
(see: Stochastic quasigradientmethods: applications)

Stochastic facility location model
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

stochastic flexibility
[90C90]
(see: Chemical process planning)

stochastic geometry
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

stochastic geometry
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

stochastic global optimization
[92B05]
(see: Genetic algorithms)

Stochastic global optimization: stopping rules
(65K05, 90C26, 90C30, 65Cxx, 65C30, 65C40, 65C50, 65C60)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization; Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Global optimization: hit and run methods;Monte-Carlo
simulated annealing in protein folding; Packet annealing;
Random search methods; Simulated annealing; Simulated
annealing methods in protein folding; Stochastic global
optimization: two-phase methods)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization; Concave
programming;D.C. programming;Genetic algorithms for
protein structure prediction;Global optimization based on
statistical models; Global optimization: hit and run
methods;Monte-Carlo simulated annealing in protein
folding; Packet annealing; Random search methods;
Simulated annealing; Simulated annealing methods in
protein folding; Stochastic global optimization: two-phase
methods)

Stochastic global optimization: two-phase methods
(65K05, 90C26, 90C30, 65Cxx, 65C30, 65C40, 65C50, 65C60)
(referred to in: Adaptive simulated annealing and its
application to protein folding; Bayesian global
optimization; Genetic algorithms for protein structure
prediction;Global optimization based on statistical models;
Global optimization: hit and run methods;Monte-Carlo
simulated annealing in protein folding; Packet annealing;
Random search methods; Simulated annealing; Simulated
annealing methods in protein folding; Stochastic global
optimization: stopping rules)
(refers to: Adaptive simulated annealing and its application
to protein folding; Bayesian global optimization; Concave
programming;D.C. programming;Genetic algorithms for
protein structure prediction;Global optimization based on
statistical models; Global optimization: hit and run
methods;Monte-Carlo simulated annealing in protein
folding; Packet annealing; Random search methods;
Simulated annealing; Simulated annealing methods in
protein folding; Stochastic global optimization: stopping
rules)

stochastic integer program with recourse
[90C10, 90C15]
(see: Stochastic integer programs)

stochastic integer programming
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)
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Stochastic integer programming: continuity, stability, rates of
convergence
(90C15, 90C11, 90C31)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Branch and price: Integer
programming with column generation;Decomposition
techniques for MILP: lagrangian relaxation;Discretely
distributed stochastic programs: descent directions and
efficient points;Discrete stochastic optimization;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Graph coloring; Integer linear complementary problem;
Integer programming; Integer programming: algebraic
methods; Integer programming: branch and bound
methods; Integer programming: branch and cut algorithms;
Integer programming: cutting plane algorithms; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;MINLP: trim-loss problem;Multi-objective
integer linear programming;Multi-objective mixed integer
programming;Multiparametric mixed integer linear
programming;Multistage stochastic programming:
barycentric approximation; Parametric mixed integer
nonlinear optimization; Preprocessing in stochastic
programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Set covering, packing and
partitioning problems; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Simplicial pivoting algorithms for integer programming;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programs; Stochastic linear programming: decomposition
and cutting planes; Stochastic linear programs with
recourse and arbitrarymultivariate distributions;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programs with recourse: upper bounds;
Stochastic vehicle routing problems; Time-dependent
traveling salesman problem; Two-stage stochastic programs
with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Branch and price: Integer
programming with column generation;Decomposition
techniques for MILP: lagrangian relaxation;Discretely
distributed stochastic programs: descent directions and
efficient points; Extremum problems with probability
functions: kernel type solutionmethods; General moment
optimization problems; Integer linear complementary
problem; Integer programming; Integer programming:
algebraic methods; Integer programming: branch and
boundmethods; Integer programming: branch and cut
algorithms; Integer programming: cutting plane

algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Mixed integer classification problems;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;Multistage
stochastic programming: barycentric approximation;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory; Set
covering, packing and partitioning problems; Simple
recourse problem: dual method; Simple recourse problem:
primal method; Simplicial pivoting algorithms for integer
programming; Stabilization of cutting plane algorithms for
stochastic linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programs; Stochastic linear programming: decomposition
and cutting planes; Stochastic linear programs with
recourse and arbitrarymultivariate distributions;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programming with simple integer recourse;
Stochastic programs with recourse: upper bounds;
Stochastic quasigradientmethods in minimax problems;
Stochastic vehicle routing problems; Time-dependent
traveling salesman problem; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

Stochastic integer programs
(90C15, 90C10)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Branch and price: Integer
programming with column generation;Decomposition
techniques for MILP: lagrangian relaxation;Discretely
distributed stochastic programs: descent directions and
efficient points; Extremum problems with probability
functions: kernel type solution methods;General moment
optimization problems;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming: lagrangian relaxation;
LCP: Pardalos–Rosenmixed integer formulation;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;MINLP: trim-loss
problem;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Multistage stochastic programming: barycentric
approximation; Parametric mixed integer nonlinear
optimization; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
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theory; Set covering, packing and partitioning problems;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Simplicial pivoting algorithms
for integer programming; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic linear programming:
decomposition and cutting planes; Stochastic linear
programs with recourse and arbitrarymultivariate
distributions; Stochastic network problems: massively
parallel solution; Stochastic programming: minimax
approach; Stochastic programmingmodels: random
objective; Stochastic programming: nonanticipativity and
lagrangemultipliers; Stochastic programs with recourse:
upper bounds; Stochastic vehicle routing problems;
Time-dependent traveling salesman problem; Two-stage
stochastic programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Branch and price: Integer
programming with column generation;Decomposition
techniques for MILP: lagrangian relaxation;Discretely
distributed stochastic programs: descent directions and
efficient points; Extremum problems with probability
functions: kernel type solution methods; Fractional
combinatorial optimization;General moment optimization
problems; Integer linear complementary problem; Integer
programming; Integer programming: algebraic methods;
Integer programming: branch and bound methods; Integer
programming: branch and cut algorithms; Integer
programming: cutting plane algorithms; Integer
programming duality; Integer programming: lagrangian
relaxation; LCP: Pardalos–Rosenmixed integer
formulation; Logconcave measures, logconvexity;
Logconcavity of discrete distributions; L-shapedmethod for
two-stage stochastic programs with recourse;Mixed integer
classification problems;Multi-objective integer linear
programming;Multi-objectivemixed integer
programming;Multistage stochastic programming:
barycentric approximation; Preprocessing in stochastic
programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Set covering, packing and
partitioning problems; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Simplicial pivoting algorithms for integer programming;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic linear programming: decomposition and cutting
planes; Stochastic linear programs with recourse and
arbitrarymultivariate distributions; Stochastic network
problems: massively parallel solution; Stochastic
programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programming with simple integer recourse;

Stochastic programs with recourse: upper bounds;
Stochastic quasigradientmethods in minimax problems;
Stochastic vehicle routing problems; Time-dependent
traveling salesman problem; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

stochastic linear optimization problems
[90C15, 90C27]
(see: Discrete stochastic optimization)

stochastic linear program see: two-stage—
stochastic linear program with recourse

[90C10, 90C15]
(see: L-shaped method for two-stage stochastic programs
with recourse; Stochastic integer programs; Stochastic
linear programs with recourse and arbitrarymultivariate
distributions; Two-stage stochastic programs with
recourse)

stochastic linear programming
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

Stochastic linear programming: decomposition and cutting
planes
(90C15, 90C06)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Decomposition principle of linear
programming;Discretely distributed stochastic programs:
descent directions and efficient points; Extremum problems
with probability functions: kernel type solution methods;
Generalized benders decomposition;General moment
optimization problems; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;MINLP: generalized cross decomposition;
MINLP: logic-basedmethods;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Simplicial decomposition; Simplicial decomposition
algorithms; Stabilization of cutting plane algorithms for
stochastic linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear programs
with recourse and arbitrarymultivariate distributions;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrangemultipliers;
Stochastic programs with recourse: upper bounds;
Stochastic vehicle routing problems; Successive quadratic
programming: decompositionmethods; Two-stage
stochastic programming: quasigradient method; Two-stage
stochastic programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Decomposition principle of linear
programming;Discretely distributed stochastic programs:
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descent directions and efficient points; Extremum problems
with probability functions: kernel type solution methods;
Generalized benders decomposition;General moment
optimization problems; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;MINLP: generalized cross decomposition;
MINLP: logic-based methods;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Simplicial decomposition; Simplicial decomposition
algorithms; Stabilization of cutting plane algorithms for
stochastic linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear programs
with recourse and arbitrarymultivariate distributions;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programming with simple integer recourse;
Stochastic programs with recourse: upper bounds;
Stochastic quasigradient methods in minimax problems;
Stochastic vehicle routing problems; Successive quadratic
programming: decomposition methods; Two-stage
stochastic programming: quasigradientmethod; Two-stage
stochastic programs with recourse)

stochastic linear programming problems see: Stabilization of
cutting plane algorithms for—

Stochastic linear programs with recourse and arbitrary
multivariate distributions
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic

programming: nonanticipativity and lagrange multipliers;
Stochastic programs with recourse: upper bounds;
Stochastic vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
L-shaped method for two-stage stochastic programs with
recourse;Multistage stochastic programming: barycentric
approximation; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programming with simple integer recourse;
Stochastic programs with recourse: upper bounds;
Stochastic quasigradientmethods in minimax problems;
Two-stage stochastic programming: quasigradient method;
Two-stage stochastic programs with recourse)

stochastic local search
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

stochastic matrix
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

stochastic matrix see: doubly—
stochastic methods

[90C26, 90C90]
(see: Global optimization: hit and run methods)

stochastic (mixed-)integer programming
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

stochastic model
[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

stochastic mollifier quasigradient
[90C15]
(see: Stochastic quasigradientmethods in minimax
problems)

stochastic network problem
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

Stochastic network problems: massively parallel solution
(90B15, 68W10, 90C06, 90C30)
(referred to in: Approximation of extremum problems with
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probability functionals; Approximation of multivariate
probability integrals;Asynchronous distributed
optimization algorithms;Auction algorithms;Automatic
differentiation: parallel computation; Communication
network assignment problem;Discretely distributed
stochastic programs: descent directions and efficient points;
Dynamic traffic networks; Equilibrium networks;
Extremum problems with probability functions: kernel type
solution methods; Generalized networks; General moment
optimization problems;Heuristic search; Load balancing
for parallel optimization techniques; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Maximum flow problem;Minimum cost flow
problem;Multicommodity flow problems;Multistage
stochastic programming: barycentric approximation;
Network design problems;Network location: covering
problems;Nonconvex network flow problems; Parallel
computing: complexity classes; Parallel computing: models;
Parallel heuristic search; Piecewise linear network flow
problems; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Shortest path tree algorithms; Simple recourse
problem: dual method; Simple recourse problem: primal
method; Stabilization of cutting plane algorithms for
stochastic linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Steiner tree problems;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Survivable networks; Traffic network
equilibrium; Two-stage stochastic programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Asynchronous distributed
optimization algorithms;Auction algorithms;Automatic
differentiation: parallel computation; Communication
network assignment problem;Directed tree networks;
Discretely distributed stochastic programs: descent
directions and efficient points;Dynamic traffic networks;
Equilibrium networks; Evacuation networks; Extremum
problems with probability functions: kernel type solution
methods; Generalized networks;General moment
optimization problems;Heuristic search; Interval analysis:
parallel methods for global optimization; Load balancing
for parallel optimization techniques; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse;Maximum flow problem;Minimum cost flow
problem;Multistage stochastic programming: barycentric
approximation;Network design problems;Network
location: covering problems;Nonconvex network flow
problems; Parallel computing: complexity classes; Parallel

computing: models; Parallel heuristic search; Piecewise
linear network flow problems; Preprocessing in stochastic
programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Shortest path tree algorithms;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Steiner
tree problems; Stochastic integer programming: continuity,
stability, rates of convergence; Stochastic integer programs;
Stochastic linear programming: decomposition and cutting
planes; Stochastic linear programs with recourse and
arbitrarymultivariate distributions; Stochastic
programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrangemultipliers;
Stochastic programming with simple integer recourse;
Stochastic programs with recourse: upper bounds;
Stochastic quasigradientmethods in minimax problems;
Stochastic vehicle routing problems; Survivable networks;
Traffic network equilibrium; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

stochastic neural network
[90C27, 90C30]
(see: Neural networks for combinatorial optimization)

Stochastic optimal stopping: numerical methods
Stochastic optimal stopping: problem formulations
stochastic optimization

[90C15]
(see: Derivatives of probability and integral functions:
general theory and examples)

stochastic optimization
[60J05, 90C15, 90C27, 90C29, 90C30, 90C99]
(see: Derivatives of markov processes and their simulation;
Derivatives of probability measures;Discretely distributed
stochastic programs: descent directions and efficient points;
Discrete stochastic optimization; SSCminimization
algorithms for nonsmooth and stochastic optimization)

stochastic optimization see: Discrete—;Monte-Carlo
simulations for—; SSCminimization algorithms for
nonsmooth and—

stochastic problems
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

stochastic process
[60G35, 65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Differential equations and global optimization;
Unconstrained optimization in neural network training)

stochastic process nonanticipative with respect to a filtration
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

stochastic program
[68W10, 90B15, 90C06, 90C15, 90C30]
(see: Stochastic network problems: massively parallel
solution; Stochastic programming: nonanticipativity and
lagrangemultipliers)
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stochastic program
[90C15, 90C29]
(see: Discretely distributed stochastic programs: descent
directions and efficient points)

stochastic program see:multiperiod—;multistage—
stochastic program with recourse

[90C10, 90C15]
(see: Stochastic vehicle routing problems)

stochastic program with recourse see: two-stage—
stochastic programming

[01A99, 62F12, 65C05, 65K05, 90C15, 90C31]
(see: Approximation of extremum problems with
probability functionals;History of optimization;
Monte-Carlo simulations for stochastic optimization;
Stochastic programming: parallel factorization of
structuredmatrices; Two-stage stochastic programs with
recourse)

stochastic programming
[49M25, 62C20, 62F12, 65C05, 65K05, 68W10, 90-08, 90B10,
90B15, 90C05, 90C06, 90C08, 90C10, 90C15, 90C26, 90C27,
90C30, 90C31, 90C33, 90C35, 90C90, 91B28]
(see: Chemical process planning; Financial optimization;
L-shaped method for two-stage stochastic programs with
recourse;Monte-Carlo simulations for stochastic
optimization;Multistage stochastic programming:
barycentric approximation;Operations research and
financial markets; Preprocessing in stochastic
programming; Simple recourse problem; Simple recourse
problem: dual method; Simple recourse problem: primal
method; Stabilization of cutting plane algorithms for
stochastic linear programming problems; Stochastic bilevel
programs; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming: parallel factorization of structured matrices;
Stochastic programs with recourse: upper bounds;
Stochastic vehicle routing problems; Two-stage stochastic
programs with recourse)

stochastic programming see: bibliography of —;
multistage—; Preprocessing in—; probabilistic
constrained—; two-stage—

stochastic programming: barycentric approximation see:
Multistage—

Stochastic programming: minimax approach
(90C15, 62C20)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Bilevel linear programming:
complexity, equivalence to minmax, concave programs;
Bilevel optimization: feasibility test and flexibility index;
Discretely distributed stochastic programs: descent
directions and efficient points; Extremum problems with
probability functions: kernel type solution methods;
General moment optimization problems; Logconcave
measures, logconvexity; Logconcavity of discrete
distributions; L-shaped method for two-stage stochastic

programs with recourse;Minimax: directional
differentiability;Minimax theorems;Multistage stochastic
programming: barycentric approximation;
Nondifferentiable optimization: minimax problems;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming
models: random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Bilevel linear programming:
complexity, equivalence to minmax, concave programs;
Bilevel optimization: feasibility test and flexibility index;
Discretely distributed stochastic programs: descent
directions and efficient points; Extremum problems with
probability functions: kernel type solution methods;
General moment optimization problems; Logconcave
measures, logconvexity; Logconcavity of discrete
distributions; L-shaped method for two-stage stochastic
programs with recourse;Minimax: directional
differentiability;Minimax theorems;Multistage stochastic
programming: barycentric approximation;
Nondifferentiable optimization: minimax problems;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming
models: random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

stochastic programming models see: Static —; two-stage—
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stochastic programming models: conditional expectations see:
Static—

Stochastic programmingmodels: random objective
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programs with
recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic

quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

Stochastic programming: nonanticipativity and lagrange
multipliers
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programs with recourse:
upper bounds; Stochastic quasigradientmethods;
Stochastic vehicle routing problems; Two-stage stochastic
programs with recourse)
(refers to: Approximation of extremum problems with
probability functionals;Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
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random objective; Stochastic programming with simple
integer recourse; Stochastic programs with recourse: upper
bounds; Stochastic quasigradientmethods in minimax
problems; Stochastic vehicle routing problems; Two-stage
stochastic programming: quasigradientmethod; Two-stage
stochastic programs with recourse)

Stochastic programming: parallel factorization of structured
matrices
(90C15)

stochastic programming problem
[90C15]
(see: Static stochastic programmingmodels)

stochastic programming problem see: dynamic two-stage—
stochastic programming: quasigradient method see:

Two-stage—
Stochastic programming with simple integer recourse

(90C15, 90C11)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
vehicle routing problems; Two-stage stochastic programs
with recourse)

stochastic programs see: discretely distributed—;
multy-stage—

stochastic programs: descent directions and efficient points
see: Discretely distributed—

stochastic programs with recourse see: L-shaped method for
two-stage—; two-stage—

Stochastic programs with recourse: upper bounds
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of

discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
vehicle routing problems; Two-stage stochastic programs
with recourse)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod; Two-stage stochastic
programs with recourse)

stochastic programs with simple integer recourse see:
two-stage—

stochastic quasigradient
[62F12, 65C05, 65K05, 90C15, 90C31]
(see:Monte-Carlo simulations for stochastic optimization)

Stochastic quasigradientmethods
(90C15)
(referred to in: Derivatives of markov processes and their
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simulation;Derivatives of probabilitymeasures; Stochastic
quasigradientmethods: applications; Stochastic
quasigradientmethods in minimax problems; Two-stage
stochastic programming: quasigradientmethod)
(refers to: Stochastic programming: nonanticipativity and
lagrangemultipliers)

stochastic quasigradient methods
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs; Stochastic quasigradient
methods: applications)

Stochastic quasigradientmethods: applications
(90C15)
(referred to in: Stochastic quasigradientmethods in
minimax problems; Two-stage stochastic programming:
quasigradientmethod)
(refers to: Stochastic quasigradientmethods)

Stochastic quasigradientmethods in minimax problems
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals; Bilevel linear programming:
complexity, equivalence to minmax, concave programs;
Bilevel optimization: feasibility test and flexibility index;
Discretely distributed stochastic programs: descent
directions and efficient points; Extremum problems with
probability functions: kernel type solution methods;
General moment optimization problems; Logconcave
measures, logconvexity; Logconcavity of discrete
distributions; L-shaped method for two-stage stochastic
programs with recourse;Minimax: directional
differentiability;Minimax theorems;Multistage stochastic
programming: barycentric approximation;
Nondifferentiable optimization: minimax problems;
Preprocessing in stochastic programming; Probabilistic
constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrangemultipliers; Stochastic
programs with recourse: upper bounds; Stochastic vehicle
routing problems; Two-stage stochastic programming:
quasigradientmethod; Two-stage stochastic programs with
recourse)
(refers to:Minimax theorems;Nondifferentiable
optimization: minimax problems; Stochastic quasigradient
methods; Stochastic quasigradientmethods: applications;
Two-stage stochastic programming: quasigradient method;
Two-stage stochastic programs with recourse)

stochastic Quasigradient (SQG) methods
[90C15]
(see: Stochastic quasigradient methods)

stochastic quasigradients
[90C15]
(see: Stochastic quasigradient methods)

Stochastic scheduling
(90B36)
(referred to in: Job-shop scheduling problem;MINLP: design
and scheduling of batch processes;Vehicle scheduling)

stochastic search method
[90C27, 90C90]
(see: Simulated annealing)

stochastic shortest path
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

stochastic shortest path problem
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

stochastic shortest path problems
[49L20, 49L99, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: infinite horizon
problems, overview)

stochastic shortest path problems see: Dynamic
programming: —

stochastic simulated annealing
[90C15, 90C27]
(see: Discrete stochastic optimization)

stochastic solution see: value of —
stochastic transportation and location problem

[90B80, 90C11]
(see: Stochastic transportation and location problems)

Stochastic transportation and location problems
(90B80, 90C11)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;Minimum concave
transportation problems;MINLP: application in facility
location-allocation;Motzkin transposition theorem;
Multifacility and restricted location problems;Multi-index
transportation problems;Network location: covering
problems;Optimizing facility location with euclidean and
rectilinear distances; Single facility location: circle covering
problem; Single facility location: multi-objective euclidean
distance location; Single facility location: multi-objective
rectilinear distance location;Voronoi diagrams in facility
location;Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Frank–Wolfe algorithm;Global
optimization inWeber’s problem with attraction and
repulsion;Minimum concave transportation problems;
MINLP: application in facility location-allocation;Motzkin
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transposition theorem;Multifacility and restricted location
problems;Multi-index transportation problems;Network
location: covering problems;Optimizing facility location
with euclidean and rectilinear distances;
Production-distribution system design problem; Resource
allocation for epidemic control; Single facility location:
circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Voronoi diagrams in facility location;Warehouse location
problem)

stochastic transportation problem
[90B80, 90C11]
(see: Stochastic transportation and location problems)

stochastic travel times
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

stochastic vehicle routing problem
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

Stochastic vehicle routing problems
(90C15, 90C10)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
General routing problem; Logconcave measures,
logconvexity; Logconcavity of discrete distributions;
L-shaped method for two-stage stochastic programs with
recourse; Preprocessing in stochastic programming;
Probabilistic constrained linear programming: duality
theory; Probabilistic constrained problems: convexity
theory; Simple recourse problem: dual method; Simple
recourse problem: primal method; Stabilization of cutting
plane algorithms for stochastic linear programming
problems; Static stochastic programmingmodels; Static
stochastic programmingmodels: conditional expectations;
Stochastic integer programming: continuity, stability, rates
of convergence; Stochastic integer programs; Stochastic
linear programming: decomposition and cutting planes;
Stochastic network problems: massively parallel solution;
Stochastic programming: minimax approach; Stochastic
programmingmodels: random objective; Stochastic
programming: nonanticipativity and lagrange multipliers;
Stochastic programs with recourse: upper bounds;
Two-stage stochastic programs with recourse;Vehicle
routing;Vehicle scheduling)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
General routing problem; Integer programming: branch
and cut algorithms; Logconcave measures, logconvexity;
Logconcavity of discrete distributions; L-shaped method for
two-stage stochastic programs with recourse;Multistage
stochastic programming: barycentric approximation;
Preprocessing in stochastic programming; Probabilistic

constrained linear programming: duality theory;
Probabilistic constrained problems: convexity theory;
Simple recourse problem: dual method; Simple recourse
problem: primal method; Stabilization of cutting plane
algorithms for stochastic linear programming problems;
Static stochastic programmingmodels; Static stochastic
programmingmodels: conditional expectations; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Two-stage
stochastic programming: quasigradientmethod; Two-stage
stochastic programs with recourse;Vehicle routing;Vehicle
scheduling)

stochasticglobal optimization
[92B05]
(see: Genetic algorithms)

stochasticity
[90C30, 90C35]
(see: Optimization in water resources)

stock see: cutting—; echelon—
stock problem see: cutting- —
Stoica method

[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

stoichiometric form of KT conditions
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

stoichiometry see: estimation of reaction rates and—
Stokes code see: Reynolds-averaged Navier– —
stopping see: optimal—
stopping criteria see: Dykstra’s algorithm and robust—
stopping criterion

[90C30]
(see: Frank–Wolfe algorithm)

stopping: numerical methods see: Stochastic optimal—
stopping: problem formulations see: Stochastic optimal—
stopping rule

[90C05, 90C20]
(see: Redundancy in nonlinear programs)

stopping rule see: Bayesian—
stopping rules see: Stochastic global optimization: —
stopping times see: regenerative —
storage see: unlimited intermediate —; variable- —
storage algorithm see: variable-—
storage capacity see: nodes with water —
storage entities see:multipurpose—
storage equation

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)
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storage plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

storage plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

storage plants
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

STP
[90B80, 90C11]
(see: Stochastic transportation and location problems)

STP-MSP
[90C27]
(see: Steiner tree problems)

StQP
[90C20]
(see: Standard quadratic optimization problems:
applications)

strain-displacement compatibility equations
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

strain tensor
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

stranded chain see: two- —
strategic design models

[90-02]
(see: Operations research models for supply chain
management and design)

strategic design of a supply chain
[90-02]
(see: Operations research models for supply chain
management and design)

strategic supply chain management
[90-02]
(see: Operations research models for supply chain
management and design)

strategies
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

strategies see: active set —; default—; evolutionary—;
solution—

strategies for dynamic systems see: Optimization—
strategies and performances see: Volume computation for

polytopes: —
strategy

[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

strategy see: active set—; binary search-Hansel chains
question-asking—; black-box—; bold—; branch and
bound—; cluster first-schedule second—;
convexification/relaxation—; evolution—; game of —;
Goldfarb–Idnani active set —;Markov—;
projection-restriction—; pure—; pure trust region—;

question-asking—; sequential Hansel chains
question-asking—; TR—

strategy equilibrium see:memory—
strategy for interval-Newton method in deterministic global

optimization see: LP—
strategy for model structure refinement see: incremental —
strategy Nash equilibrium see:memory—
strategy pattern

(see: State of the art in modeling agricultural systems)
stream see: lean—; rich—
stream arcs see: natural —
street planning

[90C35]
(see:Multicommodity flow problems)

strengthen triangle inequality
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

stress
[65K05, 90C27, 90C30, 90C57, 91C15]
(see: Optimization-based visualization)

stress see: equilibrium—; normalized—; s- —
stress equilibrium equations

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

stressed design see: fully—
strict

[58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: weak stationarity)

strict complementarity
[49M37, 65K05, 90C22, 90C25, 90C30, 90C31]
(see: Inequality-constrained nonlinear optimization;
Semidefinite programming: optimality conditions and
stability)

strict complementarity
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

strict complementarity slackness
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

strict complementarity slackness condition
[65K10, 90C31]
(see: Sensitivity analysis of variational inequality problems)

strict complementary slackness
[90C31, 90C34]
(see: Semi-infinite programming: second order optimality
conditions; Sensitivity and stability in NLP: continuity and
differential stability)

strict efficiency
[90C29]
(see: Generalized concavity in multi-objective optimization)

strict efficiency see: local—
strict feasibility condition

[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

strict local maximizer
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)
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strict local maximum point
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

strict local minimizer
[49M29, 65K05, 65K10, 90C06, 90C31, 90Cxx]
(see: Dini and Hadamard derivatives in optimization; Local
attractors for gradient-related descent iterations; Sensitivity
and stability in NLP: continuity and differential stability)

strict local minimum
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

strict local minimum point
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

strict local optimizer
[90C26]
(see: Smooth nonlinear nonconvex optimization)

strict monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

strict monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

strict monotonicity see: local—
strict relative minimum

[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

strict-set-contraction
[90C33]
(see: Order complementarity)

strict TS
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

strictly antisymmetric relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

strictly complementary conditions
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

strictly complementary solution
[15A39, 90C05]
(see:Homogeneous selfdual methods for linear
programming; Tucker homogeneous systems of linear
relations)

strictly convex function
[90C26]
(see: Generalized monotone single valued maps)

strictly copositive matrix
[65K05, 90C20]
(see: Quadratic programming with bound constraints)

strictly differentiable
[49K27, 58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials;
Nonsmooth analysis: weak stationarity)

strictly efficient point
[90C29]
(see: Generalized concavity in multi-objective optimization)

strictly efficient point see: local—
strictly feasible set

[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

strictly monotone
[47J20, 49J40, 65K10, 90C33]
(see: Solution methods for multivalued variational
inequalities)

strictly monotone function
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

strictly monotone function see: locally—
strictly monotone map

[90C26]
(see: Generalized monotone single valued maps)

strictly monotone operator
[90C26]
(see: Generalized monotone multivalued maps)

strictly proper
(see: Bayesian networks)

strictly pseudoconvex
[90C26]
(see: Generalized monotone multivalued maps; Generalized
monotone single valued maps)

strictly pseudoconvex function
[90C06, 90C25, 90C35]
(see: Simplicial decomposition algorithms)

strictly pseudomonotone map
[90C26]
(see: Generalized monotone single valued maps)

strictly pseudomonotone operator
[90C26]
(see: Generalized monotone multivalued maps)

strictly quasiconvex function
[90C26]
(see: Generalized monotone single valued maps)

strictly quasimonotone map
[90C26]
(see: Generalized monotone single valued maps)

strictly quasimonotone operator
[90C26]
(see: Generalized monotone multivalued maps)

strictly repetitive
(see: Bayesian networks)

string see: path- —
strong branching

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

strong cutting plane
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

strong dual
[90C10, 90C46]
(see: Integer programming duality)

strong duality
[90C06, 90C30]
(see: Duality for semidefinite programming; Lagrangian
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duality: BASICS; Saddle point theory and optimality
conditions)

strong duality result
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

strong duality theorem
[05B35, 49-XX, 65K05, 90-XX, 90C05, 90C20, 90C33, 93-XX]
(see: Criss-cross pivoting rules;Duality theory: monoduality
in convex optimization)

strong homomorphism
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

strong homomorphism see: very—
strong local minimizer

[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

strong local minimum
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

strong monotonicity
[65K10, 65M60, 91B06, 91B60]
(see: Oligopolistic market equilibrium;Variational
inequalities: geometric interpretation, existence and
uniqueness)

strong monotonicity
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

strong monotonicity see: local —
strong NP-complete completeness

[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

strong NP-completeness
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

strong NP-completeness
[68Q25, 90C60]
(see: NP-complete problems and proof methodology)

strong operator topology
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

strong perfect graph theorem
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

strong product
[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

strong relative minimum
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

strong second order sufficiency
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

strong second order sufficient condition
[90C31]

(see: Sensitivity and stability in NLP: continuity and
differential stability)

strong second order sufficient condition see: general —
strong semismoothness

[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

Strong Slater CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

strong stability of a stationary point
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

strong and weak duality
[90C30]
(see: Duality for semidefinite programming)

strongly active constraints
[49M20, 90C11, 90C30]
(see: Generalized outer approximation)

strongly connected components of a digraph
[90C09, 90C10]
(see: Combinatorial matrix analysis)

strongly connected digraph
[90C09, 90C10]
(see: Combinatorial matrix analysis)

strongly connected network
[90C35]
(see:Minimum cost flow problem)

strongly convex
[90C30]
(see: Frank–Wolfe algorithm)

strongly convex
[90C30]
(see: Frank–Wolfe algorithm)

strongly determined variable
[65H20, 65K05, 90-01, 90B40, 90C10, 90C27, 90C35, 94C15]
(see: Greedy randomized adaptive search procedures)

strongly linearly monotonic over
[90C05]
(see: Extension of the fundamental theorem of linear
programming)

strongly monotone
[47J20, 49J40, 65K10, 90C30, 90C33]
(see: Cost approximation algorithms; Implicit lagrangian;
Solutionmethods for multivalued variational inequalities)

strongly monotone function
[65K10, 65M60]
(see: Variational inequalities: geometric interpretation,
existence and uniqueness)

strongly monotone function see: locally—
strongly monotonic at see: locally—
strongly nonsingular matrix

[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

strongly NP-hard
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

strongly polynomial algorithm
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)
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strongly polynomial algorithm
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

strongly polynomial solution
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

strongly polynomial time
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 65K05, 68Q, 68Q05,
68Q10, 68Q25, 68R, 68U, 68W, 90B, 90C, 90C05, 90C25,
90C26]
(see: Convex discrete optimization; Information-based
complexity and information-based optimization)

strongly polynomial time
[90C60]
(see: Complexity theory: quadratic programming)

strongly polynomial time algorithm
[90C35]
(see:Minimum cost flow problem)

strongly polynomial time problem
[90C60]
(see: Complexity theory: quadratic programming)

strongly positive definite matrix
[65K10, 65M60]
(see: Variational inequalities)

strongly regular matrix
[15A99, 65G20, 65G30, 65G40, 90C26]
(see: Interval linear systems)

strongly semismooth function
[90C30, 90C33]
(see: Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities)

strongly semismooth mapping
[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

strongly stable optimal solution
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

strongly stable solution
[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

structual stability of SIP(f,h,g) see: global —
structural analysis of cable structures

[49Q10, 74K99, 74Pxx, 90C90, 91A65]
(see:Multilevel optimization in mechanics)

structural analysis system see: stability of a—
structural constraints

[90C90, 91B28]
(see: Robust optimization)

structural design
[90C25, 90C26, 90C27, 90C29, 90C90]
(see: Optimal design of composite structures; Semidefinite
programming and structural optimization)

Structural optimization
(49M37, 65K05, 90C30)
(referred to in: Semidefinite programming and structural
optimization; Shape optimization; Structural optimization:
history; Topology of global optimization; Topology
optimization)

structural optimization
[49M37, 65K05, 90C15, 90C26, 90C30, 90C33, 90C90]

(see: Stochastic bilevel programs; Structural optimization;
Structural optimization: history)

structural optimization
[49M37, 65K05, 90C26, 90C29, 90C30, 90C90]
(see: Optimal design of composite structures; Structural
optimization; Structural optimization: history)

structural optimization see: Semidefinite programming and—
Structural optimization: history

(90C90, 90C26)
(referred to in: Design optimization in computational fluid
dynamics; Interval analysis: application to chemical
engineering design problems;Multidisciplinary design
optimization;Multilevel methods for optimal design;
Optimal design of composite structures;Optimal design in
nonlinear optics; Semidefinite programming and structural
optimization; Shape optimization; Topology of global
optimization; Topology optimization)
(refers to: Bilevel programming: applications in engineering;
Design optimization in computational fluid dynamics;
Interval analysis: application to chemical engineering
design problems;Multidisciplinary design optimization;
Multilevel methods for optimal design;Optimal design of
composite structures;Optimal design in nonlinear optics;
Structural optimization; Topology optimization)

structural response see: derivatives of —
structural shape optimization

[90C26, 90C90]
(see: Structural optimization: history)

structural stability
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

structural stability see: global—
structural stability in parametric programming

[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

structural stability of SIP
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

structural topology optimization
[90C26, 90C90]
(see: Structural optimization: history)

structural variables
[90C90, 91B28]
(see: Robust optimization)

structure see: analysing declarative program—;
block-angular—; coarse valuation—; cost—; dual
block-angular—; feasible spanning tree —; fine
valuation—; generalized upper bounding—;
information—; neighborhood—; optimal spanning
tree —; primary—; protein—; secondary—; seed—;
spanning tree —; tertiary —

structure determination see:molecular—
structure determination: convex global underestimation see:

Molecular—
structure factors see: normalized—
structure of interest rates see: term—
structure invariants

[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)
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structure invariants
[90C26]
(see: Phase problem in X-ray crystallography: Shake and
bake approach)

structure of an irreducible matrix see: inductive—
structure mixed integer ˛BB algorithm see: general —;

special —
structure prediction see: Genetic algorithms for protein—;

tertiary —
structure predictionmethods see: Protein loop—
structure for the QAP see: K-L type neighborhood—
structure refinement see: incremental strategy for model—
structure of the spatial price equilibrium problem see:

network—
structured matrices see: Stochastic programming: parallel

factorization of—
structured matrix

[90C25, 90C30]
(see: Solving large scale and sparse semidefinite programs)

structured matrix factorization
[90C15]
(see: Stochastic programming: parallel factorization of
structured matrices)

structured singular value
[93D09]
(see: Robust control)

structures see: design of composite—; engineering —; Global
optimization of planar multilayered dielectric—;maxdiag
fine—;mindiag fine—;model—; Optimal design of
composite—; prediction of crystal —; Steiner ratio of
biomolecular—; structural analysis of cable—

struts
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

(STSP) see: symmetric TSP—
(sub)gradients parametric representations see: necessary

optimality condition without using—
sub Lagrangian

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

sub-problems see: Kuhn–Tucker conditions for quadratic
programming—

sub-tour elimination constraints
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

sub-tours
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

subclass see: conjugate direction—; optimally scaled—;
orthogonally scaled—

subconjugate function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

subcritical function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

subcritical point
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

subdifferentiability spaces
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

subdifferentiable
[26B25, 26E25, 49J52, 65K99, 90C99]
(see: Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions)

subdifferentiable function
[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

subdifferential
[26B25, 26E25, 46A20, 49-XX, 49J40, 49J52, 49K27, 49K35,
49M27, 49Q10, 52A01, 58C20, 58E30, 65G20, 65G30, 65G40,
65K05, 65K10, 65K99, 70-08, 70-XX, 74K99, 74Pxx, 80-XX,
90-XX, 90C06, 90C25, 90C26, 90C29, 90C30, 90C35, 90C46,
90C48, 90C99, 90Cxx, 93-XX]
(see: Composite nonsmooth optimization; Convex
max-functions; Duality theory: triduality in global
optimization; Farkas lemma: generalizations;Generalized
monotone multivalued maps; Global optimization:
envelope representation; Image space approach to
optimization; Interval global optimization;Minimax:
directional differentiability;Nonconvex energy functions:
hemivariational inequalities;Nondifferentiable
optimization: minimax problems;Nondifferentiable
optimization: subgradient optimization methods;
Nonsmooth analysis: weak stationarity;Quasidifferentiable
optimization;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: optimality conditions; Set-valued
optimization; Simplicial decomposition algorithms)

subdifferential
[49J52, 65K05, 90C30]
(see: Nondifferentiable optimization: minimax problems;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods)

subdifferential see: 2- —; B- —; C-—; Clarke—; Clarke
generalized —; convex—; �- —; Fenchel–Moreau —;
Fréchet —; gâteaux —; generalized —; H-—; limiting
Fréchet —;Moreau–Rockafellar—; singular Fréchet —;
singular limiting—

subdifferential of F.H. Clarke see: generalized —
subdifferential laws see: variational formulation of —
subdifferential set

[46N10, 90-00, 90C47]
(see: Nondifferentiable optimization)

subdifferential set see: �- —
subdifferential Variational Principle

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

subdifferentials
[46A20, 52A01, 65Kxx, 90C30, 90Cxx]
(see: Farkas lemma: generalizations;Quasidifferentiable
optimization: algorithms for QD functions)

subdifferentials see: Continuous approximations to—;
estimation of—; Fréchet —; limiting (Fréchet) —;
Nonsmooth analysis: Fréchet —

subdigraph problem see: acyclic—
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subdivision see: cell of a polyhedral —; face of a polyhedral —;
guillotine—; polyhedral —; regular —

subdivision directions in interval branch and bound methods
see: Interval analysis: —

subdivision rule see: adaptive—
subdivision via (w,i)

[90B80, 90C11]
(see: Stochastic transportation and location problems)

subdual function
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

subface
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

subfamilies of n-valued PI-systems
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

subgame perfect
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

subgradient
[49J52, 49K27, 90C26, 90C29, 90C30, 90C35, 90C48]
(see: Global optimization: envelope representation; Image
space approach to optimization; Lagrangian duality:
BASICS;Multicommodity flow problems;
Nondifferentiable optimization: relaxationmethods;
Nondifferentiable optimization: subgradient optimization
methods; Set-valued optimization)

subgradient
[49J52, 90C30]
(see: Lagrangian duality: BASICS;Nondifferentiable
optimization: relaxationmethods; Nondifferentiable
optimization: subgradient optimization methods)

subgradient see: H-—
subgradient inequality

[46N10, 49M20, 90-00, 90-08, 90C25, 90C47]
(see: Nondifferentiable optimization; Nondifferentiable
optimization: cutting plane methods)

subgradient locality measure
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

subgradient method see: conjugate —; �- —
Subgradient Methods

[49J40, 49J52, 65K05, 90C30]
(see: Nondifferentiable optimization: subgradient
optimization methods; Solving hemivariational inequalities
by nonsmooth optimization methods)

subgradient optimization
[90C10, 90C11, 90C15, 90C26, 90C27, 90C30, 90C33, 90C57]
(see: Cost approximation algorithms; Set covering, packing
and partitioning problems; Stochastic bilevel programs)

subgradient optimization
[90C30]
(see: Cost approximation algorithms)

subgradient optimization see: Lagrangian relaxation with—
subgradient optimizationmethods see: Nondifferentiable

optimization:—

subgradient projection
[47H05, 65J15, 90C25, 90C55]
(see: Fejér monotonicity in convex optimization)

subgradient projection algorithm
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

subgradient techniques
[90C30, 90C90]
(see: Decomposition techniques for MILP: lagrangian
relaxation)

subgradients
[46N10, 49K35, 49M27, 65K10, 90-00, 90C25, 90C30, 90C47]
(see: Convex max-functions; Lagrangian duality: BASICS;
Nondifferentiable optimization)

subgraph
[90C35]
(see: Feedback set problems)

subgraph see: induced—; length of a—;maximal planar —;
maximumbipartite —;maximum planar—; planar —

subgraph approach
[05C69, 05C85, 68Q20, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set;
Optimal triangulations)

subgraph induced by a vertex subset
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

Subgraph Problem see: degree-constrained —;minMax
Matching—

subinterval adaptation
[90C26, 90C30]
(see: Bounding derivative ranges)

subinterval selection
[65K05, 90C30]
(see: Algorithmic improvements using a heuristic
parameter, reject index for interval optimization)

subject to moment conditions see: optimal integral bounds—
subjective curve fitting

[90C26, 90C30]
(see: Forecasting)

subjective curve fitting and extrapolation
[90C26, 90C30]
(see: Forecasting)

subjective interpretation
[94A17]
(see: Jaynes’ maximum entropy principle)

subjet
[90C26]
(see: Global optimization: envelope representation)

sublattice
[90C35]
(see:Multi-index transportation problems)

sublinear see: difference—
sublinear function

[90C30]
(see: Image space approach to optimization)

sublinear function see: difference—
sublinear system

[46A20, 52A01, 90C30]
(see: Farkas lemma: generalizations)

submatrix see: principal—
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submatroid
[90C09, 90C10]
(see: Oriented matroids)

submodular constraints
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

submodular function
[90C09, 90C10, 90C25, 90C27, 90C35]
(see: Combinatorial optimization algorithms in resource
allocation problems; L-convex functions andM-convex
functions)

submodular function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

submodular polyhedron
[90C09, 90C10, 90C35]
(see: Combinatorial optimization algorithms in resource
allocation problems;Multi-index transportation problems)

submodular system
[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

submodularity
[90C35]
(see:Multi-index transportation problems)

Suboptimal control
(90C30)
(referred to in: Control vector iteration CVI;Duality in
optimal control with first order differential equations;
Dynamic programming: continuous-time optimal control;
Dynamic programming and Newton’s method in
unconstrained optimal control;Dynamic programming:
optimal control applications;Hamilton–Jacobi–Bellman
equation; Infinite horizon control and dynamic games;
MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control;Optimal control of a flexible arm; Robust
control; Robust control: schur stability of polytopes of
polynomials; Semi-infinite programming and control
problems; Sequential quadratic programming: interior
point methods for distributed optimal control problems)
(refers to: Control vector iteration CVI;Duality in optimal
control with first order differential equations;Dynamic
programming: continuous-time optimal control;Dynamic
programming and Newton’s method in unconstrained
optimal control;Dynamic programming: optimal control
applications;Hamilton–Jacobi–Bellman equation; Infinite
horizon control and dynamic games;MINLP: applications
in the interaction of design and control;Multi-objective
optimization: interaction of design and control;Optimal
control of a flexible arm;Optimization strategies for
dynamic systems; Robust control; Robust control: schur
stability of polytopes of polynomials; Semi-infinite
programming and control problems; Sequential quadratic
programming: interior point methods for distributed
optimal control problems)

suboptimal control
[90C30]
(see: Suboptimal control)

suboptimal trajectories and controls
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

suboptimality
[90C30]
(see: Suboptimal control)

suborder
[90C29]
(see: Preference modeling)

subproblem
[90C06, 90C30]
(see: Decomposition principle of linear programming;
Simplicial decomposition)

subproblem
[90C30]
(see: Simplicial decomposition)

subproblem see: allocation—; column generation —;
master —; NLP—; primal—; quadratic programming—;
reduced quadratic programming—; regularized—

subproduct of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

subrelation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

subroutine library see: IMSL—
subroutines see: FORTRAN—
subset see: covering—; elemental —; good—;

independent —; optimal—; signed—; subgraph induced
by a vertex —

subset feedback vertex (arc) set problem
[90C35]
(see: Feedback set problems)

subset heterogeneity
[62H30, 90C39]
(see: Dynamic programming in clustering)

subset interconnection designs
[90C27]
(see: Steiner tree problems)

subset minimum feedback vertex (arc) set problem
[90C35]
(see: Feedback set problems)

subset of participants
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

subset selection
[90C15, 90C27]
(see: Discrete stochastic optimization)

subset-sum problem
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C, 90C20, 90C60]
(see: Convex discrete optimization;Quadratic knapsack)

subsets see: transversal of a collection of—
subspace see: concurrent—; finite-dimensional—
subspace optimization see: concurrent—
substationarity

[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
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(see: Nonconvex energy functions: hemivariational
inequalities)

substationarity point of a functional
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

substationarity point with respect to a set
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

substationarity problems
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX, 90C90,
91A65]
(see:Multilevel optimization in mechanics; Nonconvex
energy functions: hemivariational inequalities)

substationary point
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

substationary point
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

substitution
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

substitution see: forward—; successive—
substitution supernode

[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

substructure property see: optimal—
substructuring

[65Fxx]
(see: Least squares problems)

subtour elimination constraints
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

subtours
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

subtract
[90C11]
(see: Predictivemethod for interhelical contacts in
alpha-helical proteins)

subtree
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

subtree hypergraph
[90C27]
(see: Steiner tree problems)

subtree isomorphism
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

subtree isomorphism see:maximal—;maximal similarity—;
maximum—;maximum similarity—

successive affine reduction
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

successive affine reduction BFGS algorithm
[90C30]

(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

successive approximation
[49L20, 90C40]
(see: Dynamic programming: undiscounted problems)

successive displacements see:method of—
successive improvement of KKT points

[90C30]
(see: Large scale trust region problems)

successive overrelaxation
[90C33]
(see: Linear complementarity problem)

Successive quadratic programming
(90C30)
(referred to in: Convex max-functions; Feasible sequential
quadratic programming;Optimization with equilibrium
constraints: A piecewise SQP approach; Sequential
quadratic programming: interior point methods for
distributed optimal control problems; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: applications in the
process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)
(refers to: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
applications in the process industry; Successive quadratic
programming: decompositionmethods; Successive
quadratic programming: full space methods; Successive
quadratic programming: solution by active sets and interior
point methods)

successive quadratic programming
[65L99, 90C20, 90C25, 90C30, 90C90, 93-XX]
(see: Dynamic programming: optimal control applications;
Optimization strategies for dynamic systems; Successive
quadratic programming: applications in distillation
systems; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)

successive quadratic programming
[65K05, 65K10, 90C06, 90C20, 90C30, 90C34, 90C90]
(see: Feasible sequential quadratic programming; Successive
quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: decomposition
methods)

successive quadratic programming see: full space—
Successive quadratic programming: applications in

distillation systems
(90C30, 90C90)
(referred to in: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
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point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)
(refers to: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

Successive quadratic programming: applications in the
process industry
(90C30, 90C90)
(referred to in: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)
(refers to: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Successive quadratic programming: solution by
active sets and interior point methods)

Successive quadratic programming: decompositionmethods
(90C30, 90C20)
(referred to in: Decomposition principle of linear
programming; Feasible sequential quadratic programming;
Generalized benders decomposition;MINLP: generalized
cross decomposition;MINLP: logic-basedmethods;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Simplicial decomposition; Simplicial decomposition
algorithms; Stochastic linear programming: decomposition
and cutting planes; Successive quadratic programming;
Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
applications in the process industry; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)
(refers to: Decomposition principle of linear programming;
Feasible sequential quadratic programming;Generalized
benders decomposition;MINLP: generalized cross

decomposition;MINLP: logic-basedmethods;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Simplicial decomposition; Simplicial decomposition
algorithms; Stochastic linear programming: decomposition
and cutting planes; Successive quadratic programming;
Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
applications in the process industry; Successive quadratic
programming: full space methods; Successive quadratic
programming: solution by active sets and interior point
methods)

Successive quadratic programming: full space methods
(90C30, 90C25)
(referred to in: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach;Rosen’s method, global convergence, and
Powell’s conjecture; Sequential quadratic programming:
interior point methods for distributed optimal control
problems; Successive quadratic programming; Successive
quadratic programming: applications in distillation
systems; Successive quadratic programming: applications
in the process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: solution by active sets and interior point
methods)
(refers to: Feasible sequential quadratic programming;
Optimization with equilibrium constraints: A piecewise
SQP approach; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: applications in the
process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: solution by active sets and interior point
methods)

Successive quadratic programming: solution by active sets and
interior point methods
(90C30, 90C25)
(referred to in: Entropy optimization: interior point
methods; Feasible sequential quadratic programming;
Homogeneous selfdual methods for linear programming;
Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm;
Optimization with equilibrium constraints: A piecewise
SQP approach; Potential reductionmethods for linear
programming; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: applications in the
process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods)
(refers to: Entropy optimization: interior point methods;
Feasible sequential quadratic programming;Homogeneous
selfdual methods for linear programming; Interior point
methods for semidefinite programming; Linear
programming: interior point methods; Linear
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programming: karmarkar projective algorithm;
Optimization with equilibrium constraints: A piecewise
SQP approach; Potential reductionmethods for linear
programming; Sequential quadratic programming: interior
point methods for distributed optimal control problems;
Successive quadratic programming; Successive quadratic
programming: applications in distillation systems;
Successive quadratic programming: applications in the
process industry; Successive quadratic programming:
decompositionmethods; Successive quadratic
programming: full space methods)

successive shortest path algorithm
[90C35]
(see:Minimum cost flow problem)

successive shortest path algorithm
[90C35]
(see:Minimum cost flow problem)

successive substitution
[65H10, 65J15]
(see: Contraction-mapping)

sufficiency see: second order—; strong second order—
sufficiency theorem for the Hamilton–Jacobi–Bellman equation

[34H05, 49L20, 90C39]
(see:Hamilton–Jacobi–Bellman equation)

sufficient
[90C22, 90C25, 90C31, 90C33, 90C34, 90C46]
(see: Generalized semi-infinite programming: optimality
conditions; Linear complementarity problem; Semidefinite
programming: optimality conditions and stability)

sufficient see: column—; row—
sufficient condition

[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

sufficient condition
[90C30]
(see: Image space approach to optimization)

sufficient condition see: general second order—; general
strong second order—; saddle-point—; second order—;
strong second order—

sufficient conditions
[90C26, 90C31, 90C34, 90C39]
(see: Second order optimality conditions for nonlinear
optimization; Semi-infinite programming: second order
optimality conditions)

sufficient conditions see: necessary and—; second order—
sufficient decrease conditions

[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

sufficient matrix
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules; Principal pivoting methods
for linear complementarity problems)

sufficientmatrix see: column—; row—
sufficient optimality condition

[90C26, 90C31, 91A65]
(see: Bilevel programming: implicit function approach)

sufficient optimality conditions
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

sufficient optimality conditions
[90C26, 90C31, 90C39, 91A65]
(see: Bilevel programming: implicit function approach;
Second order optimality conditions for nonlinear
optimization)

sufficient optimality conditions see: necessary and—; second
order necessary and—

sufficiently high
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

sufficiently large
[90C11, 90C26]
(see: Extended cutting plane algorithm)

sufficiently small
[25A15, 34A05, 90C25, 90C26, 90C30, 90C31]
(see: Convexifiable functions, characterization of)

sum see:Minkowski —
sum of convex multiplicative functions

[90C26, 90C31]
(see:Multiplicative programming)

sum diagram see: cumulative—
sum game see: two-person zero- —
sum infinite horizon game see: nonzero- —
sum of integer infeasibilities

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

sum matrix
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

sum perfect-information game see: two-player zero- —
sum problem see: subset- —
sum of ratios see:maximizing a—
sum-of-ratios fractional program

[90C32]
(see: Fractional programming)

sum Rule
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

sum rule see: fuzzy—
sum of squared error

[62H30, 90C39]
(see: Dynamic programming in clustering)

sum of squares
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

sums program see: weighted- —
sums programs with constraints see: weighted- —
sup norm see: weighter —
sup-norm contraction see: weighter —
sup-stationary point

[90Cxx]
(see: Quasidifferentiable optimization: optimality
conditions)

sup-stationary point see: Dini —; Hadamard—
sup theorem see: James—
supconjugate function

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)
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super-polynomial time
[90C27, 90C60, 91A12]
(see: Combinatorial optimization games)

superadditive dual
[90C10, 90C46]
(see: Integer programming duality)

superadditive duality
[90C10, 90C46]
(see: Integer programming duality)

superadditive function
[90C10, 90C46]
(see: Integer programming duality)

superbasic variables
[90C30]
(see: Convex-simplex algorithm)

superbasic variables
[90C30]
(see: Convex-simplex algorithm)

superconsistency
[90C05, 90C25, 90C30, 90C34]
(see: Semi-infinite programming, semidefinite
programming and perfect duality)

supercritical function
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

supercritical point
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

supercritical point theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

superdifferentiable
[26B25, 26E25, 49J52, 90C99, 90Cxx]
(see: Quasidifferentiable optimization;Quasidifferentiable
optimization: optimality conditions)

superdifferentiable function
[90C06]
(see: Saddle point theory and optimality conditions)

superdifferential
[26B25, 26E25, 46A20, 49-XX, 49J52, 49K27, 52A01, 58C20,
58E30, 65K05, 65K99, 70-08, 90-XX, 90C25, 90C30, 90C48,
90C99, 90Cxx, 93-XX]
(see: Duality theory: triduality in global optimization;
Farkas lemma: generalizations;Minimax: directional
differentiability;Nonsmooth analysis: Fréchet
subdifferentials;Quasidifferentiable optimization;
Quasidifferentiable optimization: codifferentiable
functions;Quasidifferentiable optimization: optimality
conditions)

superdifferential see: Fréchet —; limiting—
superfluous

[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

supergraph see: three-layer —
superLagrangian

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

superLagrangian
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization;
Duality theory: triduality in global optimization)

superLagrangian duality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

superLagrangian duality theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

superlinear see: 2-step—; Q-—
superlinear convergence

[49J52, 90C30]
(see: Nondifferentiable optimization: Newton method)

superlinear convergence see: Q-—
superlinear convergence condition

[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

superlinear convergent rate
[90C30]
(see: Simplicial decomposition)

superlinear function
[90C30]
(see: Image space approach to optimization)

supermaximum point
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

superminimax point
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

superminimax theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

supermodular function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

supernode see: insertion—; substitution—
superpositions of functions

[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

superpositions of functions
[01A60, 03B30, 54C70, 68Q17]
(see:Hilbert’s thirteenth problem)

superpotential
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities)

superpotential see: nonconvex—; nonsmooth—;
quasidifferentiable—

superpotentials see: convex variational inequality for an
elastostatic problem involving QD-—; elastostatic problem
involving QD-—; variational equality for an elastostatic
problem involving QD-—

superproduct of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

superrelation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

superstep
[65K05, 65Y05]
(see: Parallel computing: models)
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superstructure
[03H10, 49J27, 49M37, 90C11, 90C34]
(see:MINLP: applications in the interaction of design and
control; Semi-infinite programming and control problems)

superstructure see: design—; distillation—; heat exchanger
network—;MEN—

superstructure model
[90C90]
(see:MINLP: heat exchanger network synthesis)

supervised classification
[90C90]
(see: Optimization in medical imaging)

supervised learning
[65K05, 68T05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20,
90C30, 90C52, 90C53, 90C55, 90C90]
(see: Disease diagnosis: optimization-based methods;
Unconstrained optimization in neural network training)

supervisor algorithm
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

supervisor and searcher cooperation minimization algorithms
[90C15, 90C30, 90C99]
(see: SSCminimization algorithms)

supply see: net —
supply chain

[90-02, 90B05, 90B06]
(see: Global supply chain models;Operations research
models for supply chain management and design)

supply chain
[90B50]
(see: Inventory management in supply chains)

supply chain see: global —; operational decisions in a—;
strategic design of a—

supply chain design
[90-02]
(see: Operations researchmodels for supply chain
management and design)

Supply chain management
[90-02]
(see: Operations researchmodels for supply chain
management and design)

supply chain management
[90-02]
(see: Operations researchmodels for supply chain
management and design)

supply chain management see: Bilinear programming:
applications in the—;Mathematical programming
methods in—; operational —; strategic —

supply chain management and design see: Operations
research models for —

supply chain models see: Global—
supply chain optimization

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

Supply chain performance measurement
(00-02, 01-02, 03-02)

supply chain simulation models
[90-02]
(see: Operations researchmodels for supply chain
management and design)

supply chains see: Inventory management in—

supply node
[90C35]
(see:Minimum cost flow problem)

support see: decision—; linear—;Multiple objective
programming—; total —

support function
[26E25, 49J52, 52A27, 65K05, 90C26, 90C30, 90C99]
(see: Global optimization: envelope representation;
Minimax: directional differentiability;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives)

support function
[65K05, 90C30]
(see:Minimax: directional differentiability)

support hyperplane
[90C26]
(see: Global optimization: envelope representation)

support of an integral vector
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

support methodologies for auditing decisions see:Multicriteria
decision—

support of a natural vector
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

support problems method see: extended—
support problems solution method

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

support set
[90C05, 90C10, 90C15]
(see:Maximum constraint satisfaction: relaxations and
upper bounds; Probabilistic constrained linear
programming: duality theory)

support set
[90C26]
(see: Global optimization: envelope representation)

support set of a function
[90C26]
(see: Global optimization: envelope representation)

support system see: Asset liabilitymanagement decision—;
decision—; intelligent multicriteria decision—;
multicriteria decision—;multicriteria group decision—

support systems see: decision—; intelligent multicriteria
decision—;Multi-objective optimization and decision—;
Optimization and decision—

support systems with multiple criteria see: Decision—
support vector machine see: generalized eigenvalue

proximal—
support vector machine problem see: Generalized eigenvalue

proximal—
support vector machines

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

supported efficient solution
[90C10, 90C29]
(see:Multi-objective integer linear programming)

supported efficient solutions
[90C10, 90C35]
(see: Bi-objective assignment problem)
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supporting function see: linear—
supports problems method

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

supremal generator
[90C26]
(see: Global optimization: envelope representation)

supremal generator
[90C26]
(see: Global optimization: envelope representation)

supremum see: essential —
surface

(see: State of the art in modeling agricultural systems)
surface see: response—
surface formula see: integral over —
surface and groundwater resources

[90C30, 90C35]
(see: Optimization in water resources)

surface and groundwater systems
[90C30, 90C35]
(see: Optimization in water resources)

surface method see: response—
surface traction

[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

surface water pumping facilities
[90C30, 90C35]
(see: Optimization in water resources)

surplus wealth
[91B28]
(see: Financial optimization)

surrogate see: document—
surrogate constraint

[90C10, 90C46]
(see: Integer programming duality)

surrogate dual
[90C10, 90C30]
(see: Integer programming: lagrangian relaxation)

surrogate duality
[90C10, 90C46]
(see: Integer programming duality)

surrogate relaxation
[90C10, 90C46]
(see: Integer programming duality)

surrogates see: binary—; similarity of —
surveys see: integration of —
survivability

[90-XX]
(see: Survivable networks)

survivable network
[90C10, 90C27, 94C15]
(see: Graph planarization)

survivable network design problem
[90-XX]
(see: Survivable networks)

Survivable networks
(90-XX)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Generalized networks;Maximum

flow problem;Minimum cost flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Shortest path tree algorithms; Steiner tree problems;
Stochastic network problems: massively parallel solution;
Traffic network equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks; Generalized networks;Maximum flow problem;
Minimum cost flow problem;Network design problems;
Network location: covering problems;Nonconvex network
flow problems; Piecewise linear network flow problems;
Shortest path tree algorithms; Steiner tree problems;
Stochastic network problems: massively parallel solution;
Traffic network equilibrium)

survival of the fittest
(see: Broadcast scheduling problem)

sVNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

(SVP) see: seismic Vessel Problem—
SVRP

[90C10, 90C15]
(see: Stochastic vehicle routing problems)

swap see: greedy —
swaps see:monotone sequence of greedy—
sweep algorithm

[68T99, 90C27]
(see: Capacitated minimum spanning trees)

sweep method see: Aitken double—
switches see:maximum number of well —
switching

[93-XX]
(see: Dynamic programming: optimal control applications)

switching circuit see: combinatorial—
switching curve

[90C30]
(see: Suboptimal control)

switching engines see: scheduling of —
switching time

[93-XX]
(see: Dynamic programming: optimal control applications)

Sylvester problem
[90B85, 90C27]
(see: Single facility location: circle covering problem)

symbolic differentiation
[26A24, 65D25, 68W30]
(see: Automatic differentiation: introduction, history and
rounding error estimation; Complexity of gradients,
Jacobians, and Hessians)

symbolic manipulation
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

symbolic preprocessing
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

symbolic translation
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)
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symbolically transforming declarative programs
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

symmetric
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

symmetric–Broyden method see: Powell-—
symmetric continuous form see: coercive bilinear —
symmetric element in a Hilbert space

[65M60]
(see: Variational inequalities: F. E. approach)

symmetric interior of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

symmetric interval matrix see: dimensional—; real —
symmetric matrix

[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

symmetric matrix
[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

symmetric matrix see: positive semidefinite—; skew-—
symmetric matrix M see: skew-—
symmetric multi-index transportation problem

[90C35]
(see:Multi-index transportation problems)

symmetric network equilibrium
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

symmetric proximity
[62H30, 90C39]
(see: Dynamic programming in clustering)

symmetric proximity see: skew-—
symmetric rank-one approach see: limited-memory—
symmetric rank-one quasi-Newton method

[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

symmetric rank-one update
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

symmetric relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

symmetric S2 × 2 × 2 group
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

Symmetric systems of linear equations
(65K05, 90Cxx)
(referred to in: ABS algorithms for linear equations and
linear least squares; Cholesky factorization;Gauss, Carl
Friedrich; Interval linear systems; Large scale trust region
problems; Large scale unconstrained optimization;
Orthogonal triangularization;Overdetermined systems of
linear equations;QR factorization; Solving large scale and
sparse semidefinite programs)
(refers to: ABS algorithms for linear equations and linear
least squares; Cholesky factorization;Gauss, Carl Friedrich;

Interval linear systems; Large scale trust region problems;
Large scale unconstrained optimization; Linear
programming;Orthogonal triangularization;
Overdetermined systems of linear equations;QR
factorization; Solving large scale and sparse semidefinite
programs)

symmetric TSP
[90C59]
(see:Heuristic andmetaheuristic algorithms for the
traveling salesman problem)

symmetric TSP (STSP)
[68Q25, 68R10, 68W40, 90B06, 90B35, 90C06, 90C10, 90C27,
90C39, 90C57, 90C59, 90C60, 90C90]
(see: Domination analysis in combinatorial optimization;
Traveling salesman problem)

symmetry model see: rotation- —
synchronized distributed state space search algorithm

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

synchronized parallel CA algorithm
[90C30]
(see: Cost approximation algorithms)

synchronous implementation of the auction algorithm
[90C30, 90C35]
(see: Auction algorithms)

synchronous parallel see: bulk—
synchronous parallel computer see: bulk—
synchronous parallel model see: bulk—
syndrome see: NIMBY—
synthesis see: heat exchanger network —; HEN—;MINLP: heat

exchanger network—;MINLP: reactive distillation
column—;Mixed integer linear programming: heat
exchanger network—; network —; problem—; process —;
robust control —; sequential —; simultaneous—

synthesis and control see: interaction of design—;mu—
synthesis and design under uncertainty see: process —
synthesis method see: sequential MEN—
synthesis model see:multiperiod MINLP MEN—
synthesis problem

[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

synthesis of separation processes
[90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes)

synthesis using MINLP see: HEN—
synthesis without decomposition see: heat exchanger

network—
system

[65K05, 90C30]
(see: Bisection global optimization methods)

system see: Aizenberg–Rabinovich—; alternative linear —;
ant—; Asset liabilitymanagement decision support —;
asymptotical stability of a—; bisubmodular—; center of an
interval linear—; curvilinear coordinate—; decision
support—; degenerate —; discrete event dynamic—;
DSL—; dual —; dynamical —; electric power —; expert —;
finite jump—; Fritz John—; generalized network
optimization—; Hamiltonian—; high performance
computing—; independence—; independent —;



4556 Subject Index

infeasible—; initial—; intelligent multicriteria decision
support—; interactive disaggregation —; interval linear —;
iterative function—; lattice-type many-valued logic—;
MAX-MIN ant—;moving coordinate—;multi-echelon
arborescence—;multicriteria decision support—;
multicriteria group decision support —; optimization—;
perturbed —; Post—; preferential bidding—; projected
dynamical —; propositional proof—; reduced RLT—;
rule-based—; selfdual—; sign-solvable linear —; solution
of a—; stability of a—; stability of a structural analysis —;
state of a—; sublinear—; submodular—; time-delay—;
tolerant—; totally dual integral —; variation of a—;
Variational inequalities: projected dynamical —; variational
inequality problem and a projected dynamical—

system of approximate reasoning see: interval logic—;
point-based logic—

system cohomology see: local—
system conditions see: economic—
system design see: distribution—
system design problem see: Production-distribution—
system of equations

[65H10, 65K10, 65M60, 90C26, 90C30]
(see: Global optimization methods for systems of nonlinear
equations;Variational inequalities)

system of equations
[65K10, 65M60]
(see: Variational inequalities)

system of equations see: nonlinear —; polynomial —
system of inequalities

[65H10, 90C26, 90C30]
(see: Global optimization methods for systems of nonlinear
equations)

system of nonlinear equations see: overdetermined—;
underdetermined —;well-determined—

system-optimization
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

system, optimization of see:Wastewater —
system-optimized transportation network

[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

system-optimizing environment
[90B80, 90B85, 90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities)

system of simplexes
[65K05, 90C30]
(see: Bisection global optimization methods)

system stability
[90B15]
(see: Dynamic traffic networks)

system stability
[90B15]
(see: Dynamic traffic networks)

system stability see: asymptotical —
system of variational inequalities

[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

systematic search
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,

70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

systems see: alternative —; batch production—; boundary
flux estimation in distributed—; conjunctive use of water
resource—; convex inequality—; convex-like—; decision
support—; discrete dynamical —; discrete-time—;
distribution—; estimating uncertainty in dynamical —;
expert —; Global optimization in the analysis and
management of environmental —; homogeneous—;
homogeneous dual —; inequality —; intelligent
multicriteria decision support —; Interval analysis for
optimization of dynamical —; Interval linear —;
inventory—; large scale linear —; linearly elastic —;Model
based control for drug delivery—;Multi-objective
optimization and decision support—; nondegenerate —;
Optimization and decision support —; Optimization in
operation of electric and energy power —; Optimization
strategies for dynamic—; projected dynamical —;
Quasidifferentiable optimization: stability of dynamic—;
reaction flux estimation in lumped—; satellite—; State of
the art in modeling agricultural —; stochastic dynamic —;
subfamilies of n-valued PI- —; Successive quadratic
programming: applications in distillation—; surface and
groundwater —; time-delay—; uncertain—; water
transportation —

systems by constructive nonlinear dynamics see: Robust
design of dynamic —

systems of equations see: error bound for approximate
solutions of nonlinear —; existence of solutions of
nonlinear —; linear —; nonlinear —; rigorous bound for
solutions of nonlinear —; uniqueness of solutions of
nonlinear —

systems of equations: application to the enclosure of all
azeotropes see: Nonlinear —

systems of linear equations see: Overdetermined—;
Symmetric —

systems of linear relations see: Tucker homogeneous—
systems of many-valued logic algebras see: Finite complete—
systems modeling and management see: applications in

environmental —
systems with multiple criteria see: Decision support—
systems of nonlinear equations

[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

systems of nonlinear equations
[65H10, 90C26, 90C30]
(see: Global optimization methods for systems of nonlinear
equations)

systems of nonlinear equations see: Global optimization
methods for —; Interval analysis: —

systems for oriented matroids see: axiom—
systems planning see: distribution—
systems theory and control

[49-XX, 60Jxx, 65Lxx, 91B32, 92D30, 93-XX]
(see: Resource allocation for epidemic control)

systems of variational inequalities see: QD laws and—

T
T see: prohibition parameter —
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t-coloring
[05-XX]
(see: Frequency assignment problem)

T-coloring frequency assignment see: order of a—; span of
a—

t-conorm
[03B50, 03B52, 03E72, 47S40, 68T15, 68T27, 68T30, 68T35,
68Uxx, 90Bxx, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Finite complete systems
of many-valued logic algebras)

t-conorms
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

t-norm
[03B50, 03B52, 03E72, 47S40, 68T15, 68T27, 68T30, 68T35,
68Uxx, 90Bxx, 91Axx, 91B06, 92C60]
(see: Boolean and fuzzy relations; Finite complete systems
of many-valued logic algebras)

t-norms
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

TA
[90C05, 90C30]
(see: Theorems of the alternative and optimization)

table see: contingency —; k-way—
table with given marginals

[90C35]
(see:Multi-index transportation problems)

table representation see: lookup—
tableau see: distinguished—; initial —; lexico-positive

basis—; terminal simplex—
tables see: triangulation problem for input-output—
taboo restriction

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

tabs search see: fixed—
tabu see: forbidden or—
tabu list

[05C69, 05C85, 68T99, 68W01, 90C27, 90C59]
(see: Capacitatedminimum spanning trees;Heuristics for
maximum clique and independent set)

tabu search
[03B05, 62C10, 65K05, 68P10, 68Q25, 68R05, 68T15, 68T20,
68T99, 90B80, 90C05, 90C08, 90C09, 90C10, 90C11, 90C15,
90C26, 90C27, 90C35, 90C57, 90C59, 94C10]
(see: Bayesian global optimization; Capacitatedminimum
spanning trees; Communication network assignment
problem;Maximum constraint satisfaction: relaxations and
upper bounds;Maximum satisfiability problem;
Metaheuristics;Multi-index transportation problems;
Quadratic assignment problem)

tabu search see: allowed neighbor in—; Hamming-reactive—;
prohibited neighbor in—; reactive—

tabu search methodology
[90C10, 90C11, 90C20]
(see: Linear ordering problem)

tactics see: trading—
TAG

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

tail see: RSM-distribution with algebraically decreasing—

tail(l)
(see: Railroad crew scheduling)

tail of operation
[90B35]
(see: Job-shop scheduling problem)

tail problem see: head-body-—
tailing-off

[68Q99]
(see: Branch and price: Integer programming with column
generation)

tailored optimization
[90C30, 90C90]
(see: Successive quadratic programming: applications in the
process industry)

taker see: price—
Tal SOCQ see: ben- —
Tanabe–Todd–Ye potential function

[37A35, 90C05]
(see: Potential reductionmethods for linear programming)

tangent
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

tangent see: bouligand—; weak—
tangent approximating vector see: high-order —
tangent cone

[65K05, 90C20, 90C22, 90C25, 90C31]
(see: Quadratic programming with bound constraints;
Semidefinite programming: optimality conditions and
stability)

tangent cone
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

tangent cone see: Bouligand—
tangent high-order approximating cone

[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

tangent high-order approximating cones
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

tangent high-order approximating curve
[41A10, 46N10, 47N10, 49K27]
(see:High-order necessary conditions for optimality for
abnormal points)

tangent hyperplane
[90C26]
(see: Global optimization: envelope representation)

tangent-plane criterion
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

tangent-plane criterion see: reaction—
tangent set see: first order —; second order—
tangent sets see: high-order —
tangents see: parallel —
tangents algorithm see: parallel- —
tangle basis

[68R10, 90C27]
(see: Branchwidth and branch decompositions)
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tangle number
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

tape
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

tape cell of a Turing machine
[90C60]
(see: Complexity classes in optimization)

tape heads
[90C60]
(see: Complexity classes in optimization)

tape of a Turing machine
[90C60]
(see: Complexity classes in optimization)

target
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

target analysis
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

targets
(see: Planning in the process industry)

targets see: environmental —
Tarjan planarity-testing algorithm see: Hopcroft–—
task

[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

task allocation
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

task-network see: state- —
tatonnement process

[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

�-estimate of the spot rate
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

�-programmed problem of spot rate estimation
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

�b statistic see: Goodman–Kruskal —
TAUT

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

TAUT-DNF
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

taxonomy
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

taxonomy of the PI-algebras of many-valued logics
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

taxonomy of Pi-logic algebras
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Taylor approximation see: truncated —
Taylor coefficients

[90C26, 90C30]
(see: Bounding derivative ranges)

Taylor form
[90C26, 90C30]
(see: Bounding derivative ranges)

Taylor form test
[90C26, 90C30]
(see: Bounding derivative ranges)

Taylor Operator see: interval —; Point—
taylor operators see: Automatic differentiation: point and

interval —
Taylor series

[65G20, 65G30, 65G40, 65L99, 90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method; Interval analysis: differential equations;
Suboptimal control)

Taylor series
[65K05, 90C26, 90C30]
(see: Automatic differentiation: point and interval taylor
operators; Bounding derivative ranges)

Taylor series expansion see: first order —
Taylor theorem

[65K05, 90C30]
(see: Automatic differentiation: point and interval taylor
operators)

TBP
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

TCF
[90C60]
(see: Computational complexity theory)

TCF of an algorithm
[90C60]
(see: Computational complexity theory)

Tchebycheff metric see: w-weighted —
Tchebycheff program

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

TCVSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

TDI
[90C35]
(see: Feedback set problems)

TDTSP
[90C27]
(see: Time-dependent traveling salesman problem)

technique see: auction—; Bland—; boundary variation—;
clipping—; dynamic load balancing—; greedy—; inexact
line search—; line search—; penalty —; perturbation —;
pictogram translation mapping—; receiver initiated
mapping—; reformulation-linearization—;
reformulation-Linearization/Convexification—;
Relaxation—; sender initiated mapping—; sphere
growing—; trust region—; uniform grid—; variance
reduction—

technique for global optimization see:
Reformulation-linearization—
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techniques see: acceleration devices and related—;
approximation—; branch and bound—; branch and bound
enumerative—; computer aided—; constraint
satisfaction—; decomposition—; dual—; enumeration —;
Estimating data for multicriteria decisionmaking problems:
optimization—; Load balancing for parallel optimization—;
measurement —; NLP —; presolving—; reformulation—;
reformulation-linearization/convexification—;
subgradient—

techniques for MILP: lagrangian relaxation see:
Decomposition—

techniques for minimizing the energy function see:
Optimization—

techniques for phase retrieval based on single-crystal X-ray
diffraction data see: Optimization—

technological comparison
[90C26, 90C30]
(see: Forecasting)

telecommunication
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

telecommunication
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

telecommunications
[90C35]
(see:Multicommodity flow problems)

teletherapy
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

temperature
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

temperature see: initial—; initial annealing—; start —
temperature cascade

[90C90]
(see:Mixed integer linear programming: heat exchanger
network synthesis)

temperature control
[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

temperature interval diagram
[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

temperature parameter
[65K05, 90C30]
(see: Random search methods)

template see: checklist—; pool—
templates see: De novo protein design using flexible—; De

novo protein designUsing rigid—; deformable—
Temple quotient

[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

temporal difference
[49L20, 90C39, 90C40]
(see: Dynamic programming: stochastic shortest path
problems;Neuro-dynamic programming)

temporal links
(see: Bayesian networks)

tensegrity
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

tensegrity see: unyielding—
tensor see: strain—
tensor method

[90C06]
(see: Large scale unconstrained optimization)

tenth problem see: Hilbert —
Terlaky criss-cross method

[90C05]
(see: Linear programming: Klee–Minty examples)

term see: intermediate—
term to maturity

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

term memory see: short- —
term memory in GRASP see: long-—
term of a polynomial see: initial—
term-recurrence see: three- —
term-recurrence algorithm see: three- —
term scheduling of batch processes see:Medium-—
term scheduling of batch processes with resources see:

Short- —
term scheduling of continuous processes see: Short- —
term scheduling, resource constrained: unified modeling

frameworks see: Short- —
term scheduling under uncertainty: sensitivity analysis see:

Short- —
term structure of interest rates

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

term structure of interest rates
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

terminal layout problem
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

terminal layout problem
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

terminal simplex tableau
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

terminals
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

terminals see: away—; home—
terminate

[90C26, 90C31]
(see: Robust global optimization)

termination
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)



4560 Subject Index

termination criterion
[92C05, 92C40]
(see: Protein loop structure predictionmethods)

termination on a secondary ray
[90C33]
(see: Linear complementarity problem)

terms see: bilinear—; cost—; indexing—; Interval analysis:
intermediate—; linear fractional—; posynomial—; shift—;
transportation—

ternary matroid
[90C09, 90C10]
(see:Matroids)

terrain/funneling methods see:Multi-scale global optimization
using—

terrain methods see: Global—
tertiary structure

[92B05]
(see: Genetic algorithms for protein structure prediction)

tertiary structure
[92B05]
(see: Genetic algorithms for protein structure prediction)

tertiary structure prediction
[92C40]
(see:Monte-Carlo simulated annealing in protein folding)

test see: feasibility—; Hessian—; infeasibility—; lower
bound—;midpoint—;minimum ratio —;monotonicity—;
monotonicity and nonconvexity—; Newton—;
nonconvexity—; redundancy—; Taylor form—;
upper-bound—;Wolfe—

test for the existence of solutions of equations
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

test and flexibility index see: Bilevel optimization: feasibility—
test nonmonotone Armijo-like criterion

[49M07, 49M10, 65K, 90C06, 90C20]
(see: Spectral projected gradient methods)

test of optimality
[90C05, 90C33]
(see: Pivoting algorithms for linear programming
generating two paths)

test problems and problem generators see: Combinatorial —
test set

[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

test sets
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

test sets in integer programming
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

testing see: planarity—
testing algorithm see: Hopcroft–Tarjan planarity- —
testing relational properties

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

tests see: feasibility convergence—;midpoint—; value
convergence—

text classification
[90C09, 90C10]
(see: Optimization in classifying text documents)

text classification
[90C09, 90C10]
(see: Optimization in classifying text documents)

text documents see: classification of—; Optimization in
classifying—

ThAlt
[15A39, 90C05]
(see: Linear optimization: theorems of the alternative)

than-truckload see: less- —
their simulation see: Derivatives of markov processes and—
theorem see: alternative —; asynchronous convergence—;

Bandler–Kohout compatibility—; basic alternative —; basic
sensitivity—; Bassett–Maybee–Quirk —; biduality—;
birkhoff’s—; block—; brouwer fixed point—; Broyden—;
Carathéodory—; Clarke duality —; classical Lyusternik —;
coincidence—; composition—; conic duality—;
convergence—; cook’s—; Cook–Levin—; Du–Hwang
minimax—; duality—; Dubovitskii—Milyutin—; Duffin—;
equivalence—; Finsler —; fixed point—; folks—; Frank
discrete separation—; gap—; Gauss–Markoff —;
Gauvin—; Geoffrion—; Gershgorin—; Gordan
transposition—; Hahn–Banach—; Hahn–Banach linear
extension—; Hansel —; Hardy–Littlewood–Pólya—;
high-order generalization of Lyusternik —; implicit
function—; integrality —; interlocking eigenvalue—;
James sup—; Jaynes entropy concentration—;
Kharitonov—; Krein–Milman—; L-separation—;
Liouville—; local quadratic convergence—; Lyusternik —;
M-separation—;majority—;max-flowmin-cut—;
Mazur–Orlicz—;Mazur–Orlicz version of the
Hahn–Banach—;mean value—;metaminimax—;
minimax—;Miranda fixed point—;mixedminimax—;
monotone convergence—;Moreau—;Motzkin—;
Motzkin transposition—;mountain pass —; parametrized
Sard—; Parrott —; Perron–Frobenius—; representation —;
Riesz—; right saddle-point—; Rosenbloom—; saddle
duality—; saddle-minimax—; sandwich—; Savitch—;
Schauder fixed point—; Schema—; Sierpinski —; Slater —;
solvability—; Stiemke—; Stiemke transposition—; strong
duality—; strong perfect graph—; supercritical point—;
superLagrangian duality—; superminimax—; Taylor —;
topological representation —; transposition—; triality —;
triduality—; Tucker’s —; Tucker transposition—; Tychonoff
fixed point—;weak duality—;Weyl fundamental —;
Yosida–Hewitt —; Zangwill —

theorem of algebra see: Fundamental —
theorem of the alternative

[15A39, 90C05, 90C30]
(see: Farkas lemma;Motzkin transposition theorem;
Theorems of the alternative and optimization; Tucker
homogeneous systems of linear relations)

theorem of the alternative
[15A39, 90C05, 90C30]
(see: Farkas lemma; Theorems of the alternative and
optimization; Tucker homogeneous systems of linear
relations)
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theorem of the alternatives
[05B35, 90C05, 90C20, 90C33]
(see: Least-index anticycling rules)

theorem for the Hamilton–Jacobi–Bellman equation see:
sufficiency—

theorem for linear optimization see: duality—
theorem of linear programming see: Extension of the

fundamental —
theorem of natural selection see: fundamental —
theorem prover see: resolution based—
theorems see:Minimax—; separation—
theorems of the alternative see: Linear optimization: —
Theorems of the alternative and optimization

(90C05, 90C30)
(referred to in: Farkas lemma; Image space approach to
optimization; Linear optimization: theorems of the
alternative)
(refers to: Farkas lemma; Farkas lemma: generalizations;
Image space approach to optimization; Linear
optimization: theorems of the alternative)

theoretic framework see: Bayesian decision-—
theoretical

(see: Global optimization: functional forms)
theory see: Alternative set—; arbitrage pricing—; axioms of

alternative set —; Cantor set—; complementary pivot—;
Complexity—; Computational complexity—; control —;
critical point—; decision—; degree—; Duality—;
evolutionary game—; Fenchel–Rockafellar duality —; fixed
point—; game—; geometric moment—; graph—;
Interval fixed point—; Lagrangian —; location—;
matroid—;Maximum entropy and game—;measure —;
minimax—;moment—;Morse—;multi-attribute utility—;
polyhedral —; portfolio—; Probabilistic constrained linear
programming: duality —; Probabilistic constrained
problems: convexity—; robust control —; scheduling—;
Stackelberg game—; Standard quadratic optimization
problems:—; Statistical convergence and turnpike—;
Topological methods in complementarity—; triality—;
triduality—; utility—

theory of algorithms see: complexity—
theory of automata

[01A99, 90C99]
(see: Von Neumann, John)

theory of automata
[01A99, 90C99]
(see: Von Neumann, John)

theory: biduality in nonconvex optimization see: Duality—
theory of CNSO problems see: second order Lagrangian —
theory and control see: systems —
theory for entropy optimization see: duality—
theory of envelopes

[01A99]
(see: Leibniz, gottfried wilhelm)

theory of envelops
[01A99]
(see: Leibniz, gottfried wilhelm)

theory and examples see: Derivatives of probability and
integral functions: general —

theory of games
[01A99, 90C99]
(see: Von Neumann, John)

theory of generalized functions
[01A99]
(see: Kantorovich, Leonid Vitalyevich)

theory: monoduality in convex optimization see: Duality—
theory and optimality conditions see: Saddle point—
theory of PI-algebras see: complexity—
theory: quadratic programming see: Complexity—
theory of real addition with order see: first order —
theory: stability of optimal trajectories see: Turnpike —
theory: triduality in global optimization see: Duality—
therapy see: Optimization based frameworkfor radiation—;

radiation—
thermal boundary conditions see: quasidifferential—;

variational formulation of quasidifferential—
thermal equilibrium

[90C27, 90C90]
(see: Simulated annealing)

thermal fluctuations
[60J15, 60J60, 60J70, 60K35, 65C05, 65C10, 65C20, 68U20,
70-08, 82B21, 82B31, 82B41, 82B80, 92C40, 92E10]
(see: Global optimization in protein folding)

thermal plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

thermal plant
[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

thermodynamic models
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

thermodynamic properties
[49K99, 65H20, 65K05, 80A10, 80A22, 90C90]
(see: Global optimization: application to phase equilibrium
problems;Optimality criteria for multiphase chemical
equilibrium)

thermodynamics
[01A99]
(see: Carathéodory, Constantine)

thermodynamics
[49K99, 65K05, 80A10, 90C30]
(see: Nonlinear systems of equations: application to the
enclosure of all azeotropes;Optimality criteria for
multiphase chemical equilibrium)

thermoelastic behavior of a generally nonhomogeneous and
nonisotropic body see: linear —

thermoelastic model see: classical—
thermoelasticity

[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

thermoelasticity see: Quasidifferentiable optimization:
applications to—

thesis see: parallel computation—
thickness

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

third slope lemma
[90C30]
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(see: Rosen’s method, global convergence, and Powell’s
conjecture)

thirteenth problem see: Hilbert’s —
thread

[90C35]
(see: Generalized networks)

three-argument function
[62H30, 90C27]
(see: Assignment methods in clustering)

three-dimensional transportation problem
[90C35]
(see:Multi-index transportation problems)

three-dimensional transportation problem
[90C35]
(see:Multi-index transportation problems)

three-index assignment problems
[90C35]
(see:Multi-index transportation problems)

three-index transportation problem
[90C35]
(see:Multi-index transportation problems)

three-layer supergraph
[65K05, 90-00, 90-08, 90C11, 90C27, 90C35]
(see: Algorithms for genomic analysis)

three phase algorithm
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

three-term-recurrence
[90C30]
(see: Conjugate-gradientmethods)

three-term-recurrence algorithm
[90C30]
(see: Conjugate-gradientmethods)

threshold see: determination of clusters size—; determination
of rmsd—; indifference—; preference—;
unsatisfiability—; veto—

threshold accepting
[68T20, 68T99, 90C27, 90C59]
(see:Metaheuristics)

threshold accepting algorithms
[90C59]
(see:Heuristic andmetaheuristic algorithms for the
traveling salesman problem)

THS
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

thumb see: rule of—
TID

[93A30, 93B50]
(see:Mixed integer linear programming: mass and heat
exchanger networks)

tie breaking rule
[90C60]
(see: Complexity of degeneracy)

tie-up time
(see: Railroad crew scheduling)

tie-up-time (l)
(see: Railroad crew scheduling)

tight constraints
[90C60]
(see: Complexity of degeneracy)

tight constraints
[90C60]
(see: Complexity of degeneracy)

tight convex underestimators see: Global optimization: —
tight relaxations

[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

tight relaxations
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

tightening see: node—
Tikhonov iterative regularization

[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

Tikhonov regularization
[65Fxx]
(see: Least squares problems)

Tikhonov regularization
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

Tikhonov’s regularization approach
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

tiling
[65K05, 90C30]
(see: Bisection global optimization methods)

time see: algorithm running inO(nc) —; arr- —; completion—;
cycle—; dep- —; idle—;minimization of cost/ —;
on-duty—; one clause at a—; output-polynomial —;
polylogarithmic—; polynomial —; radiation exposure—;
strongly polynomial—; super-polynomial —; switching—;
tie-up—

time algorithm see: efficient polynomially bounded
polynomial —; exponential —; nondeterministic
polynomial —; one clause at a—; polynomial —;
pseudopolynomial —; strongly polynomial—; weakly
polynomial —

time algorithms see: discrete- —; polynomial—
time analog of the dynamic programming equation see:

continuous-—
time approach see: one clause at a—
time approximation scheme see: fully polynomial—;

polynomial —
time-bounded Turing machine see: exponentially —;

polynomially—
time coefficient generation see: one-at-a- —
time complexity of a deterministic Turing machine

[90C60]
(see: Complexity classes in optimization)

time complexity function
[90C60]
(see: Computational complexity theory)

time complexity function
[90C60]
(see: Computational complexity theory)

time complexity function of an algorithm
[90C60]
(see: Computational complexity theory)
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time complexity of a nondeterministic Turing machine
[90C60]
(see: Complexity classes in optimization)

time computable function see: polynomial—
time constraints see: vehicle scheduling problems with—
time convergence see: polynomial —
time-delay system

[90C30]
(see: Suboptimal control)

time-delay systems
[93-XX]
(see: Dynamic programming: optimal control applications)

Time-dependent traveling salesman problem
(90C27)
(referred to in: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;MINLP: trim-loss problem;
Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs)
(refers to: Branch and price: Integer programming with
column generation;Decomposition techniques for MILP:
lagrangian relaxation;Graph coloring; Integer linear
complementary problem; Integer programming; Integer
programming: algebraic methods; Integer programming:
branch and bound methods; Integer programming: branch
and cut algorithms; Integer programming: cutting plane
algorithms; Integer programming duality; Integer
programming: lagrangian relaxation; LCP: Pardalos–Rosen
mixed integer formulation;Mixed integer classification
problems;Multi-objective integer linear programming;
Multi-objectivemixed integer programming;
Multiparametricmixed integer linear programming;
Parametric mixed integer nonlinear optimization; Set
covering, packing and partitioning problems; Simplicial
pivoting algorithms for integer programming; Stochastic
integer programming: continuity, stability, rates of
convergence; Stochastic integer programs)

time-dependent traveling salesman problem
[90C27]
(see: Time-dependent traveling salesman problem)

time deterministic algorithm see: polynomial —
time discretization see: uniform—
time equivalent of the dynamic programming algorithm see:

continuous-—
time formulation see: continuous-—
time formulations see: discrete-—
time horizon see: infinite—
time interior point methods see: polynomial —

time (l) see: tie-up-—
time local search problems see: polynomial —
timem see: algorithm solving a problem instance in—
Time Model see: continuous—; discrete—
timemodels see: continuous and discrete—; discrete- —
time network see: Space-—; weekly space-—
time optimal control

[90C30]
(see: Suboptimal control)

time optimal control see: continuous-—; Discrete- —;
Dynamic programming: continuous-—

time optimal control problem
[93-XX]
(see: Dynamic programming: optimal control applications)

time parallelism
[49-04, 65Y05, 68N20]
(see: Automatic differentiation: parallel computation)

time problem see: strongly polynomial—
time ratio see: cost-to-—
time ratio cycle see:maximum profit-to-—;minimum

cost-to-—
time reduction see: polynomial—
time replicated network

[90C30, 90C35]
(see: Optimization in water resources)

Time Representation see:mixed—
time Riccati equation see: continuous-—
time series

[90C26, 90C30]
(see: Forecasting)

time series analysis
[90C26, 90C30]
(see: Forecasting)

time slice
(see: Bayesian networks)

time solution see: polynomial —
time-stamped models

(see: Bayesian networks)
time-step

[90C10, 90C30, 90C35]
(see: Optimization in operation of electric and energy
power systems)

time systems see: discrete-—
time of a Turing machine see: running—
time window constraints

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

time windows
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

time windows see: vehicle routing problem with—
times see: the New York—; regenerative stopping—;

stochastic travel —
timetabling

[90C35]
(see:Multi-index transportation problems)

TM
[90C60]
(see: Complexity theory)
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TNE
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

Todd–Ye potential function see: Tanabe–—
Toeplitz matrix

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

tolerance
[90C33]
(see: Order complementarity; Peptide identification via
mixed-integer optimization)

tolerance closure of a relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

tolerance closure of a relation see: local —
tolerance relation see: local —
tolerances

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

tolerant system
[90C33]
(see: Order complementarity)

tollens see: checklist modus—;modus—
Tomlin penalty see: Driebeck–—
tomography see: computerized—
tON

[74A40, 90C26]
(see: Shape selective zeolite separation and catalysis:
optimization methods)

tongue-and-groove constraint
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

tools see: parallel AD—
TOP and BOT types of logical connectives

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

topological degree
[65G20, 65G30, 65G40, 90C33]
(see: Interval analysis: systems of nonlinear equations;
Topological methods in complementarity theory)

Topological derivative in shape optimization
(49Q10, 49Q12, 74P05, 35J85)
(referred to in: Shape optimization)

topological method
[90C33]
(see: Topological methods in complementarity theory)

topological methods
[90C33]
(see: Topological methods in complementarity theory)

Topological methods in complementarity theory
(90C33)
(referred to in: Equivalence between nonlinear
complementarity problem and fixed point problem;
Generalized nonlinear complementarity problem; Integer
linear complementary problem; LCP: Pardalos–Rosen
mixed integer formulation; Linear complementarity
problem;Order complementarity; Principal pivoting
methods for linear complementarity problems)
(refers to: Convex-simplex algorithm; Equivalence between

nonlinear complementarity problem and fixed point
problem;Generalized nonlinear complementarity problem;
Integer linear complementary problem; LCP:
Pardalos–Rosenmixed integer formulation; Lemke
method; Linear complementarity problem; Linear
programming;Order complementarity; Parametric linear
programming: cost simplex algorithm; Principal pivoting
methods for linear complementarity problems; Sequential
simplex method)

topological representation theorem
[90C09, 90C10]
(see: Oriented matroids)

topological search
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

topological separation
[93D09]
(see: Robust control)

topological space see: linear —
topological stability

[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

topological stability in parametric programming
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

topological vector spaces see: Increasing and
convex-along-rays functions on—; Increasing and
positively homogeneous functions on—

topology
[05C05, 05C85, 68Q25, 90B80, 90C26, 90C90]
(see: Bottleneck steiner tree problems; Structural
optimization: history)

topology
[03E70, 03H05, 91B16]
(see: Alternative set theory)

topology see: network —; ring—; strong operator —; tree —
Topology of global optimization

(90C30, 58E05)
(referred to in: ˛BB algorithm; Continuous global
optimization: applications;Continuous global
optimization: models, algorithms and software;Differential
equations and global optimization;Direct global
optimization algorithm;Globally convergent homotopy
methods; Global optimization based on statistical models;
Global optimization in binary star astronomy; Global
optimization methods for systems of nonlinear equations;
Global optimization using space filling; Parametric
optimization: embeddings, path following and
singularities; Semidefinite programming and structural
optimization; Topology optimization)
(refers to: ˛BB algorithm; Continuous global optimization:
applications;Continuous global optimization: models,
algorithms and software;Differential equations and global
optimization;Direct global optimization algorithm;
Globally convergent homotopy methods;Global
optimization based on statistical models;Global
optimization in binary star astronomy;Global
optimization methods for systems of nonlinear equations;
Global optimization using space filling; Parametric
optimization: embeddings, path following and
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singularities; Semidefinite programming and structural
optimization; Structural optimization; Structural
optimization: history; Topology optimization)

Topology optimization
(90C90, 90C99)
(referred to in: Semidefinite programming and structural
optimization; Structural optimization: history; Topology of
global optimization)
(refers to: Semidefinite programming and structural
optimization; Structural optimization; Structural
optimization: history; Topology of global optimization)

topology optimization
[49J20, 49J52, 49M37, 65K05, 90C26, 90C30, 90C90]
(see: Shape optimization; Structural optimization;
Structural optimization: history)

topology optimization
[49M37, 65K05, 90C30]
(see: Structural optimization)

topology optimization see: structural —
topology of transportation networks

[49M37, 90C11]
(see:Mixed integer nonlinear programming)

toric ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

toric ideal
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

toroidal butterfly
[90C35]
(see: Feedback set problems)

toroidal mesh
[90C35]
(see: Feedback set problems)

torus see: 2-dimensional—; d-dimensional—
total action

[49-XX, 90-XX, 93-XX]
(see: Duality theory: biduality in nonconvex optimization)

total coloring
[90C35]
(see: Graph coloring)

total coloring problem
[90C35]
(see: Graph coloring)

total consistency
[90C29]
(see: Estimating data for multicriteria decisionmaking
problems: optimization techniques)

total cost function
[90C10, 90C25, 90C27, 90C35]
(see: L-convex functions and M-convex functions)

total cost infinite horizon problem
[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

total Gibbs free energy
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

total least squares see: Generalized—

total least squares problem
[65Fxx]
(see: Least squares problems)

total support
[90C09, 90C10]
(see: Combinatorial matrix analysis)

total variation
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

totally acyclic oriented matroid
[90C09, 90C10]
(see: Oriented matroids)

totally asynchronous implementation of the auction algorithm
[90C30, 90C35]
(see: Auction algorithms)

totally asynchronous operation
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

totally dual integral system
[90C35]
(see: Feedback set problems)

totally unimodular
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C, 90C05, 90C09, 90C10, 90C27, 90C35]
(see: Assignment and matching; Combinatorial
optimization algorithms in resource allocation problems;
Convex discrete optimization)

totally unimodular matrix
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

tour
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: cutting plane algorithms)

tour elimination constraints see: sub-—
tour partitioning algorithm see: K-iterated —
tournament see: bipartite —; spanning acyclic—
tours see: sub- —
toy problems

(see: Planning in the process industry)
Toyoda primal heuristic

[90C10, 90C27]
(see:Multidimensional knapsack problems)

TPBVP
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

TPC
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

TR
[90C30]
(see: Large scale trust region problems)

TR strategy
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

trace see:maximumweight —
trace of an alignment

[90C35]
(see: Optimization in leveled graphs)
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trace polytope
[90C35]
(see: Optimization in leveled graphs)

trace of relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

tracing see: origin—
tracing infeasibilities see: diagnosing and—
tracing the states of plants

(see: Planning in the process industry)
track

[90C35]
(see:Multi-index transportation problems)

tracking
[34-XX, 49-XX, 65-XX, 68-XX, 90-XX]
(see: Nonlocal sensitivity analysis with automatic
differentiation)

tracking see:multitarget —
tracking stations

[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

tracking stations see: Automatic differentiation: geometry of
satellites and—

tractability see: analytical —; fixed parameter —
tractable algorithms see: fixed parameter —
traction see: surface—
trade see: pure—
trade economic equilibriummodel see: pure—
trade-off

[90-XX]
(see: Outranking methods)

trade-off cutting plane
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

trade-off question
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

trade-offs
[49M37, 90C11, 90C29, 90C90]
(see:MINLP: applications in the interaction of design and
control;Multi-objective optimization: interaction of design
and control)

trading tactics
[90C27]
(see: Operations research and financial markets)

traffic assignment
[90B06, 90B20, 90C90, 91A65, 91B50, 91B99]
(see: Bilevel programming: applications; Traffic network
equilibrium)

traffic assignment
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

traffic assignment see: dynamic—
traffic assignment problem

[90C30]
(see: Simplicial decomposition)

traffic assignment problem
[90C30]
(see: Simplicial decomposition)

traffic control see: ground delay problem in air —
traffic control and ground delay programs see: air—
traffic equilibrium problem see: standard—
Traffic network equilibrium

(90B06, 90B20, 91B50)
(referred to in: Auction algorithms; Communication
network assignment problem;Dynamic traffic networks;
Equilibrium networks; Financial equilibrium;Generalized
monotonicity: applications to variational inequalities and
equilibrium problems;Generalized networks;Maximum
flow problem;Minimum cost flow problem;
Multicommodity flow problems;Network design problems;
Network location: covering problems;Nonconvex network
flow problems;Oligopolistic market equilibrium; Piecewise
linear network flow problems; Shortest path tree
algorithms; Spatial price equilibrium; Steiner tree
problems; Stochastic network problems: massively parallel
solution; Survivable networks;Walrasian price
equilibrium)
(refers to: Auction algorithms; Communication network
assignment problem;Directed tree networks;Dynamic
traffic networks; Equilibrium networks; Evacuation
networks; Financial equilibrium; Frank–Wolfe algorithm;
Generalized monotonicity: applications to variational
inequalities and equilibrium problems;Generalized
networks;Maximum flow problem;Minimum cost flow
problem;Network design problems;Network location:
covering problems;Nonconvex network flow problems;
Oligopolistic market equilibrium; Piecewise linear network
flow problems; Shortest path tree algorithms; Spatial price
equilibrium; Steiner tree problems; Stochastic network
problems: massively parallel solution; Survivable networks;
Walrasian price equilibrium)

traffic network equilibrium
[90B06, 90B15, 90B20, 91B50]
(see: Dynamic traffic networks; Traffic network
equilibrium)

traffic network equilibrium
[90C30]
(see: Equilibrium networks)

traffic network equilibrium see: fixed demand—;
multimodal—

traffic network equilibriummodel see:multimodal—
traffic network equilibrium with travel disutility functions

[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

traffic network model see: dynamic—
traffic network problems see: fixed demand—
traffic network problems with travel demand functions see:

elastic demand—
traffic networks see: Dynamic—
traffic in transmission network see: routing of—
trails see: diverging—
train arc

(see: Railroad crew scheduling; Railroad locomotive
scheduling)

train connection see: train-to-—
train connection arcs see: train-—
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train-to-train connection
(see: Railroad locomotive scheduling)

train-train connection arcs
(see: Railroad locomotive scheduling)

training
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

training see: Unconstrained optimization in neural network—
training algorithms

[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

training data
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90, 91B28 90C90 90C05 90C20 90C30]
(see: Credit rating and optimization methods;Disease
diagnosis: optimization-based methods)

training a network
[90C39]
(see: Neuro-dynamic programming)

training samples
[62H30, 68T10, 90C05, 90C11]
(see: Linear programmingmodels for classification;Mixed
integer classification problems)

training set
[65K05, 90-08, 90C05, 90C06, 90C10, 90C11, 90C20, 90C30,
90C90]
(see: Disease diagnosis: optimization-based methods)

trajectories see: Turnpike theory: stability of optimal —
trajectories and controls see: suboptimal—
trajectory see: central —; optimal—; optimization over a—;

search—
trajectory and control functions see: asymptotically admissible

pair of —
trajectory-control pair see: admissible—
trajectory function

[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

trajectory-function and control-function see: admissible pair
of—

tramp steamer problem
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

transcription element identification see:Mixed 0-1 linear
programming approach for DNA—

transfer module see:mass/heat —
transfers see: principle of—
transform see: Cayley—; orthogonal —; principal pivotal —
transformable decision problem see: polynomially—
transformation see: canonical—; canonical dual—; code—;

contradual—; convex—; coordinate—; dual—;
exponential —; fast Givens—; Fenchel —; Given—;
Householder—; identity—; integral Fenchel–Legendre —;
inverted—; kernel —; Legendre —; linear—; logarithmic
and square-root—;Markov—;modified square-root—;
negation—; Piaget group of —; polynomial —; principal
pivotal —; projective—; source code—; square-root—;
square-root-free Givens—; unimodular max-closed form—

transformation method see: canonical dual —

transformation of problems
[90C60]
(see: Computational complexity theory)

transformations see: elementary —; elementary orthogonal —;
QR factorization using Householder —; unimodular
max-closed form—

transformed network
[90C35]
(see:Maximum flow problem)

transforming declarative programs see: symbolically—
transient class of states

[49L99]
(see: Dynamic programming: average cost per stage
problems)

transient regime
[60J05, 90C15]
(see: Derivatives of markov processes and their simulation)

transients
(see: Emergency evacuation, optimization modeling)

transit planning see: extra-urban—
transition matrix

[93-XX]
(see: Boundary condition iteration BCI)

transition probability density
[60G35, 65K05]
(see: Differential equations and global optimization)

transition probability matrix
[49L20, 49L99, 90C39]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: discounted problems)

transition rules of a Turing machine
[90C60]
(see: Complexity theory)

transitions
(see: State of the art in modeling agricultural systems)

transitions see: generic —
transitive relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

transitivity
[41A30, 47A99, 65K10]
(see: Lipschitzian operators in best approximation by
bounded or continuous functions)

translation see: symbolic—
translation mapping technique see: pictogram—
transmission network see: routing of traffic in—
transparency

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

transport see: Identificationmethods for reaction kinetics
and—

transportation
[90C15, 90C26, 90C30, 90C31, 90C33]
(see: Bilevel programming: introduction, history and
overview; Stochastic bilevel programs)

transportation
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C11, 90C27,
90C35]
(see:Multicommodity flow problems; Stochastic
transportation and location problems;Vehicle scheduling)
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transportation cost
[90B80]
(see: Facilities layout problems)

transportation decisions see: inventory and—
transportation and location problem see: stochastic—
transportation and location problems see: Stochastic —
transportation models

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

transportation network see: system-optimized—;
user-optimized—

transportation networks see: topology of—
transportation polytope see: k-way—
transportation problem

[90B80, 90C11, 90C35]
(see:Minimum cost flow problem;Multi-index
transportation problems; Stochastic transportation and
location problems)

transportation problem
[90C35]
(see:Multi-index transportation problems)

transportation problem see: 3D- —; axial multi-index—;
capacitated—; convex integer —; fixed charge—; integer
multi-index—; k-index—;minimum concave—;
multi-index—;multidimensional—; planar multi-index—;
stochastic—; symmetric multi-index—;
three-dimensional—; three-index —

transportation problems see:Minimum concave—;
Multi-index—

transportation systems see: water —
transportation terms

(see: Planning in the process industry)
transposed relation

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

transposition
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

transposition theorem
[15A39, 90C05, 90C30]
(see: Farkas lemma; Linear optimization: theorems of the
alternative; Theorems of the alternative and optimization)

transposition theorem
[15A39, 90C05, 90C30]
(see: Linear optimization: theorems of the alternative;
Motzkin transposition theorem; Theorems of the
alternative and optimization; Tucker homogeneous systems
of linear relations)

transposition theorem see: Gordan—;Motzkin—; Stiemke—;
Tucker —

transshipment
[90C30, 90C35]
(see: Auction algorithms)

transshipment model
[90C90, 93A30, 93B50]
(see:MINLP: heat exchanger network synthesis;Mixed
integer linear programming: heat exchanger network
synthesis;Mixed integer linear programming: mass and
heat exchanger networks)

transshipment model
[90C90]
(see:Mixed integer linear programming: heat exchanger
network synthesis)

transshipment model see: expanded—
transshipment node

[90C35]
(see:Minimum cost flow problem)

transshipment problem
[90C26]
(see:MINLP: application in facility location-allocation)

transshipment problem
[90C30, 90C35]
(see: Auction algorithms)

transshipment vertex
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

transversal of a collection of subsets
[90C09, 90C10]
(see:Matroids)

transversal intersection
[90C22, 90C25, 90C31]
(see: Semidefinite programming: optimality conditions and
stability)

transversal matroid
[90C09, 90C10]
(see:Matroids)

transversal to zero
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

trap-door point
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

trap-door point
[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

trapezoid graph
[90C35]
(see: Feedback set problems)

travel see: light—
travel behavior see: day-to-day dynamic—
travel demand see: elastic—; fixed—
travel demand functions see: elastic demand traffic network

problems with—
travel disutility functions see: traffic network equilibrium

with—
travel times see: stochastic—
Traveling purchaser problem

[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

traveling salesman see: probabilistic—
Traveling salesman problem

(90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90)
(referred to in:Domination analysis in combinatorial
optimization)
(refers to:Domination analysis in combinatorial
optimization; Evolutionary algorithms in combinatorial
optimization;Heuristic and metaheuristic algorithms for
the traveling salesman problem)



Subject Index 4569

traveling salesman problem
[05C05, 05C40, 68R10, 90C05, 90C06, 90C08, 90C10, 90C11,
90C27, 90C30, 90C35, 90C57]
(see: Assignment and matching; Integer programming;
Integer programming: cutting plane algorithms; Integer
programming: lagrangian relaxation;Network design
problems)

traveling salesman problem see: classical—; graphical —;
Heuristic and metaheuristic algorithms for the—; prize
collecting—; road—; Steiner graphical —;
Time-dependent—

Traveling Salesman Problem (ATSP) see: asymmetric —
traveling salesman problems

[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and cut algorithms)

traveling salesperson problem
[90C60]
(see: Computational complexity theory)

Traverso algorithm see: Conti–—
treatment design see: Beam selection in radiotherapy—
tree

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

tree see: additive—; attributed —; binary—; decision—;
directed—; empty —; full Steiner —; game—; index—;
k-—; level of a vertex in a rooted—;min-max Steiner —;
minimax—;minimum ratio spanning- —;minimum
spanning—; one- —; rectilinear Steiner —; rectilinear
Steiner arborescence—; root of a—; rooted—; scenario—;
spanning—; Steiner —; Steiner minimal—; Steiner
minimum—

tree algorithm see: parallel minimax—; sequential minimax
game—

tree algorithms see: Shortest path—
tree association graph

[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

tree association graph see: weighted —
tree constraints

[90C09, 90C10]
(see: Combinatorial optimization algorithms in resource
allocation problems)

tree decomposition
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

tree dissection
[90C15]
(see: Stochastic programming: parallel factorization of
structuredmatrices)

tree networks see: Directed—
tree node

[90B10, 90C27]
(see: Shortest path tree algorithms)

tree nodes set
[90B10, 90C27]
(see: Shortest path tree algorithms)

tree problem see: bounded degree minimum spanning—;
capacitated minimum spanning—;minimum spanning—;
resource-constrainedminimum spanning—; single source
shortest path —; Steiner minimal—

tree problem with minimum number of Steiner points see:
Steiner —

tree problems see: Bottleneck steiner —; shortest path —;
Steiner —

tree search
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

tree search
[68W10, 90C27]
(see: Load balancing for parallel optimization techniques)

tree search see: best-first —; depth-first —; Parallel
Best-First —; Parallel Depth-First —

tree search algorithm see: distributed game—; generalized
game—

tree searching see:Minimax game—
tree solution see: spanning—
tree-splitting algorithm

[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

tree structure see: feasible spanning—; optimal spanning—;
spanning—

tree topology
[05C85]
(see: Directed tree networks)

trees see: asymptotic behavior of CAP on—; barycentric
scenario—; binary—; bottleneck Steiner —; CAP on—;
Capacitated minimum spanning—; classification and
regression—; exact algorithm for solving CAP on—;
heuristic approach to solving CAP on—;minimum
spanning—; parallelizing the exploration of minimax—;
variations of Steiner —

treewidth
[68R10, 90C27]
(see: Branchwidth and branch decompositions)

trial point
[49M07, 49M10, 65K, 90C06, 90C20]
(see: Spectral projected gradient methods)

trial step
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

trial steplength see: compute a safeguarded new—
triality

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

triality theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

triality theory
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

triangle see: Cholesky—
triangle inequality

[05C05, 05C40, 68R10, 90B06, 90B35, 90C06, 90C10, 90C27,
90C35, 90C39, 90C57, 90C59, 90C60, 90C90]
(see:Multi-index transportation problems;Network design
problems; Traveling salesman problem)

triangle inequality see: strengthen —
triangle product see: fuzzy—
triangularization see: Orthogonal —
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triangulate
(see: Semidefinite programming and the sensor network
localization problem, SNLP)

triangulation
[13Cxx, 13Pxx, 14Qxx, 68Q20, 90C05, 90C10, 90Cxx]
(see: Integer programming: algebraic methods;Optimal
triangulations; Simplicial pivoting algorithms for integer
programming)

triangulation see: boundary—; delaunay—; greedy—;
Hickey–Cohen—;minimumweight —;minimumweight
Steiner —; regular —

triangulation of Euclidean space
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

triangulation problem for input-output tables
[90C10, 90C11, 90C20]
(see: Linear ordering problem)

triangulations see: Optimal—; pseudo-—; regular —; regular
family of—

tricanonical forms
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

tridiagonal matrix
[65K05, 90Cxx]
(see: Symmetric systems of linear equations)

triduality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

triduality
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

triduality in global optimization see: Duality theory: —
triduality theorem

[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

triduality theory
[49-XX, 90-XX, 93-XX]
(see: Duality theory: triduality in global optimization)

trim loss
[90C11, 90C90]
(see:MINLP: trim-loss problem)

trim-loss problem
[90C11, 90C90]
(see:MINLP: trim-loss problem)

trim-loss problem
[90C11, 90C90]
(see:MINLP: trim-loss problem)

trim-loss problem see:MINLP:—; numerical example of a—
trinomial distribution

[90C15]
(see: Logconcavity of discrete distributions)

trip see: passenger —; pull-in—; pull-out—
trip-route choice adjustment process

[90B15]
(see: Dynamic traffic networks)

trip-route choice adjustment process
[90B15]
(see: Dynamic traffic networks)

trip shifting see: Vehicle scheduling with—

triplet
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

triplet
[65K05, 90C30]
(see: Automatic differentiation: calculation of the Hessian)

triplet see: sparse—
triplets

[05C85]
(see: Directed tree networks)

trisection
[65K05]
(see: Direct global optimization algorithm)

tRT
(see: Integrated planning and scheduling)

truckload see: less-than- —
true continuum

[90C30]
(see: Conjugate-gradient methods)

truncated Buchberger algorithm
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

truncated Newton
[65K05, 90C30]
(see: Automatic differentiation: calculation of Newton
steps)

truncated Newton method
[90C06]
(see: Large scale unconstrained optimization)

truncated Newton method
[90C25, 90C30]
(see: Successive quadratic programming: solution by active
sets and interior point methods)

truncated Newton method see: discrete—
truncated Newton software package see: block—
truncated singular value decomposition solution

[65Fxx]
(see: Least squares problems)

truncated Taylor approximation
[49M37]
(see: Nonlinear least squares: Newton-type methods)

truss
[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

truss see: elastic bar of a—; node of a—
truss design

[90C25, 90C27, 90C90]
(see: Semidefinite programming and structural
optimization)

truss design see:multiload—; robust obstacle-free—
trust region

[49M37, 90C30]
(see: Large scale trust region problems;Nonlinear least
squares problems;Nonlinear least squares: trust region
methods; Unconstrained nonlinear optimization:
Newton–Cauchy framework)

trust region
[90C30]
(see: Nonlinear least squares problems; Successive quadratic
programming)
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trust region see: bundle—; large scale—
trust region approach

[90C30]
(see: Numerical methods for unary optimization)

trust region method
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

trust region method
[49M37]
(see: Nonlinear least squares: trust regionmethods)

trust region methodology
[49M37, 65K05, 65K10, 90C30, 93A13]
(see:Multilevel methods for optimal design)

trust region methods
[49M37]
(see: Nonlinear least squares: trust regionmethods)

trust region methods see: Nonlinear least squares: —
trust region model

[65F10, 65F50, 65H10, 65K10]
(see:Multidisciplinary design optimization)

trust region model
[90C20, 90C25]
(see: Quadratic programming over an ellipsoid)

trust region problem
[90C60]
(see: Complexity theory: quadratic programming)

trust region problem
[90C60]
(see: Complexity theory: quadratic programming)

trust region problem see: general case of the—; hard case of
the—; large scale—; Newton step case of the—

trust region problems see: Large scale—
trust region strategy see: pure—
trust region technique

[49M37]
(see: Nonlinear least squares: Newton-type methods)

trust regions
[90C30]
(see: Broyden family of methods and the BFGS update)

trustworthy space
[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

truth assessment see: fuzzy—
truth-functional

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

TS
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

TS see: reactive—; static—; strict —
Tsallis probability distribution

[90C90]
(see: Simulated annealing methods in protein folding)

tSP
[05-04, 68Q25, 68R10, 68W40, 90B06, 90B35, 90C06, 90C10,
90C27, 90C39, 90C57, 90C59, 90C60, 90C90]
(see: Domination analysis in combinatorial optimization;
Evolutionary algorithms in combinatorial optimization;
Traveling salesman problem)

TSP see: asymmetric —; euclidean—; generalized —;m-—;
max—; symmetric—

TSP (ATSP) see: asymmetric —
TSP (STSP) see: symmetric —
TSVSP

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Tucker approach see: Kuhn–—
Tucker, A.W.

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

Tucker conditions see: generalized Karush–Kuhn–—;
Karush–Kuhn–—; Kuhn–—

Tucker conditions for quadratic programming sub-problems
see: Kuhn–—

Tucker CQ see: Kuhn–—
Tucker equations see: Kantorovich–Karush–Kuhn–—;

Kuhn–—
Tucker homogeneous systems of linear relations

(15A39, 90C05)
(referred to in: Farkas lemma; Linear optimization:
theorems of the alternative; Linear programming;Motzkin
transposition theorem)
(refers to: Farkas lemma; Linear optimization: theorems of
the alternative; Linear programming;Motzkin
transposition theorem)

Tucker necessary optimality conditions see: Kuhn–—
Tucker optimality condition see: Kuhn–—
Tucker optimality conditions see: Karush–Kuhn–—; Kuhn–—
Tucker point see: Karush–Kuhn–—; Kuhn–—
Tucker points see:multiple Kuhn–—;multiple QP Kuhn–—
Tucker’s theorem

[15A39, 90C05, 90C30]
(see: Farkas lemma; Theorems of the alternative and
optimization)

Tucker transposition theorem
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

Tucker type condition see: Karush–Kuhn–—
tumors see: breast —
tuning

(see: Bayesian networks)
tuning parameter

[65K05]
(see: Direct global optimization algorithm)

tunneling method
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

turbine balancing problem
[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

Turing machine
[90C20, 90C25, 90C60]
(see: Complexity theory; Complexity theory: quadratic
programming;Quadratic programming over an ellipsoid)

Turing machine
[90C60]
(see: Complexity theory)

Turing machine see: accepting computation of a—; accepting
state of a—; alternating—; control state of a—;
deterministic—; execution of a—; exponentially
space-bounded—; exponentially time-bounded—; final
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state of a—; input alphabet of a—; language accepted by
a—; length of a partial computation of a—; logspace—;
move of a—; nonaccepting computation of a—;
nondeterministic—; partial computation of a—;
polynomially space-bounded—; polynomially
time-bounded—; running time of a—; size of the input of
a—; space complexity of a deterministic—; space
complexity of a nondeterministic—; start state of a—; state
of a—; tape of a—; tape cell of a—; time complexity of
a deterministic—; time complexity of
a nondeterministic—; transition rules of a—

Turing machine model
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

Turing machine solving a problem
[90C60]
(see: Complexity theory)

Turing machines see: complexity of—
Turing reducibility see: polynomial —
turning point

[90C31, 90C34]
(see: Parametric global optimization: sensitivity)

turning point see: quadratic—
turnpike theory see: Statistical convergence and—
Turnpike theory: stability of optimal trajectories

(49J24, 35B40, 37C70)
(referred to in: Statistical convergence and turnpike theory)
(refers to: Statistical convergence and turnpike theory)

twice codifferentiable
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

twice codifferentiable function
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

twice continuously codifferentiable
[65Kxx, 90Cxx]
(see: Quasidifferentiable optimization: algorithms for QD
functions)

twice continuously codifferentiable function
[49J52, 65K99, 70-08, 90C25]
(see: Quasidifferentiable optimization: codifferentiable
functions)

twice-differentiable function see: piecewise—
twice-differentiable MINLPs

[65K05, 90C11, 90C26]
(see:MINLP: global optimization with ˛BB)

Twice-differentiable NLPs
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

twice-differentiable part of a function
[90Cxx]
(see: Discontinuous optimization)

Twilt see: problem regular in the sense of Jongen–Jonker– —
twinplex

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

two affine functions see: program of minimizing a product
of—

two cardinalities axiom
[03E70, 03H05, 91B16]
(see: Alternative set theory)

two-dimensional marginal probability distribution function
[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

two-function minimax inequality
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

two-hop neighbors
(see: Broadcast scheduling problem)

two-layer feed-forward network
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

Two-level Optimization
(see:Mixed integer nonlinear bilevel programming:
deterministic global optimization)

two-parameter CG family
[90C30]
(see: Conjugate-gradient methods)

two paths see: Pivoting algorithms for linear programming
generating —

two-person game
[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

two-person game see: cooperative case of a—
two-person zero-sum game

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 62C20, 90C15,
91A05]
(see:Minimax theorems; Stochastic programming: minimax
approach)

two-phase
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C10, 90C26,
90C30, 90C35]
(see: Bi-objective assignment problem; Stochastic global
optimization: two-phase methods)

two-phase method
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

two-phase methods see: Stochastic global optimization:—
two-phase procedure

[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

two-player zero-sum perfect-information game
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

two-point boundary value problem
[34A55, 65L99, 78A60, 90C30, 93-XX]
(see: Optimal design in nonlinear optics;Optimization
strategies for dynamic systems)

two-point boundary value problem see: ODE—
two Polygons Arrangement

(see: State of the art in modeling agricultural systems)
two-stage model see: linear—
two-stage stochastic linear program

[90C15, 90C90]
(see: Chemical process planning; Two-stage stochastic
programs with recourse)
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two-stage stochastic program with recourse
[90C15]
(see: Stochastic programming: parallel factorization of
structuredmatrices)

two-stage stochastic programming
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

two-stage stochastic programming models
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

Two-stage stochastic programming models
[90C15]
(see: Two-stage stochastic programming: quasigradient
method)

two-stage stochastic programming problem see: dynamic—
Two-stage stochastic programming: quasigradientmethod

(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solutionmethods; General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programming models:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic programs
with recourse)
(refers to: L-shaped method for two-stage stochastic
programs with recourse;Multistage stochastic
programming: barycentric approximation; Simple recourse
problem: dual method; Simple recourse problem: primal
method; Stochastic linear programming: decomposition
and cutting planes; Stochastic linear programs with
recourse and arbitrarymultivariate distributions;
Stochastic quasigradient methods; Stochastic quasigradient
methods: applications; Stochastic quasigradientmethods in
minimax problems; Two-stage stochastic programs with
recourse)

Two-stage stochastic programs with recourse
(90C15)
(referred to in: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod)
(refers to: Approximation of extremum problems with
probability functionals; Approximation of multivariate
probability integrals;Discretely distributed stochastic
programs: descent directions and efficient points;
Extremum problems with probability functions: kernel type
solution methods;General moment optimization problems;
Logconcave measures, logconvexity; Logconcavity of
discrete distributions; L-shaped method for two-stage
stochastic programs with recourse;Multistage stochastic
programming: barycentric approximation; Preprocessing
in stochastic programming; Probabilistic constrained linear
programming: duality theory; Probabilistic constrained
problems: convexity theory; Semi-infinite programming:
discretizationmethods; Simple recourse problem: dual
method; Simple recourse problem: primal method;
Stabilization of cutting plane algorithms for stochastic
linear programming problems; Static stochastic
programmingmodels; Static stochastic programming
models: conditional expectations; Stochastic integer
programming: continuity, stability, rates of convergence;
Stochastic integer programs; Stochastic linear
programming: decomposition and cutting planes;
Stochastic linear programs with recourse and arbitrary
multivariate distributions; Stochastic network problems:
massively parallel solution; Stochastic programming:
minimax approach; Stochastic programmingmodels:
random objective; Stochastic programming:
nonanticipativity and lagrange multipliers; Stochastic
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programming with simple integer recourse; Stochastic
programs with recourse: upper bounds; Stochastic
quasigradientmethods in minimax problems; Stochastic
vehicle routing problems; Two-stage stochastic
programming: quasigradientmethod)

two-stage stochastic programs with recourse
[90C06, 90C15]
(see: Stochastic linear programming: decomposition and
cutting planes)

two-stage stochastic programs with recourse see: L-shaped
method for—

two-stage stochastic programs with simple integer recourse
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

two-stranded chain
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

two updates see: rank- —
Tychonoff fixed point theorem

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

type see: abstract variational inequality of elliptic—;
homotopy—; single locomotive—

type a see: gas lift wells of —; naturally flowing wells of—
type A well

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

type A wells
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

type algorithm see: Craig conjugate gradient—; simplex—;
SQP—

type approximation see: Padé- —
type b see: gas lift wells of —; naturally flowing wells of—
type B well

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

type B wells
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

type condition see: Fritz John—; Karush–Kuhn–Tucker —
type duality for M- and L-convex functions see: Fenchel- —
type function see:max-—;maximum-—;min-—
type functions see: difference of max-—; Lagrange- —
Type I requirement

[90C26]
(see: Invexity and its applications)

type iteration see: Gram–Schmidt—
type lower bounds see: Gilmore–Lawler—
type many-valued logic system see: lattice- —
type method see: Newton- —
type methods see: Krylov space—; Nonlinear least squares:

Newton- —
type models see:multiple locomotive—
type neighborhood structure for the QAP see: K-L —
type of optimization

[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

type solutionmethods see: Extremum problems with
probability functions: kernel —

type variable
(see: Bayesian networks)

types see: crew—;model—
types of logical connectives see: TOP and BOT—
types of vehicles see: Vehicle scheduling problems with

multiple—

U

U-concave function
[90C29]
(see: Generalized concavity in multi-objective optimization)

U-continuous function
[90C29]
(see: Generalized concavity in multi-objective optimization)

U-pseudoconcave function
[90C29]
(see: Generalized concavity in multi-objective optimization)

U-quasiconcave function
[90C29]
(see: Generalized concavity in multi-objective optimization)

U-quasiconcave function see: int —; Luc—
U0-quasiconcave function

[90C29]
(see: Generalized concavity in multi-objective optimization)

U-weakly pseudoconcave function
[90C29]
(see: Generalized concavity in multi-objective optimization)

UAF of CEP
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

uBD
[49M37, 90C11]
(see:Mixed-integer nonlinear optimization: A disjunctive
cutting plane approach)

UFVS
[90C35]
(see: Feedback set problems)

ultrametric
[62H30, 90C27, 90C39]
(see: Assignment methods in clustering;Dynamic
programming in clustering)

ultrametric
[62H30, 90C39]
(see: Dynamic programming in clustering)

umbrella function
[41A30, 62J02, 90C26]
(see: Regression by special functions: algorithms and
complexity)

umbrella regression see: quasiconvex and—
unary length

[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

unary operations on relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)
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unary optimization
[90C30]
(see: Numerical methods for unary optimization)

unary optimization
[90C30]
(see: Numerical methods for unary optimization)

unary optimization see: Numerical methods for—
unary optimization problem

[90C30]
(see: Numerical methods for unary optimization)

unavoidable edges
[68Q20]
(see: Optimal triangulations)

unbounded
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

unbounded controls
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

unbounded controls and non standard methods
[03H10, 49J27, 90C34]
(see: Semi-infinite programming and control problems)

unbounded cost
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

unbounded domains see: global optimization over—
unbounded optimization

[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization; Random search methods)

unbounded program
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

unbounded solution
[90C29]
(see:Multicriteria sorting methods)

uncapacitated center
[90C26]
(see:MINLP: application in facility location-allocation)

uncapacitated facility location problem
[90B10, 90B80, 90C10, 90C11, 90C27, 90C35, 90C57]
(see: Integer programming;Network location: covering
problems)

uncapacitated facility location problem
[90B10, 90B80, 90C35]
(see: Network location: covering problems)

uncapacitated network flow problem
[90B10]
(see: Piecewise linear network flow problems)

uncapacitated plant location problem
[90B80, 90B85]
(see:Warehouse location problem)

uncapacitated static multifacility see: discrete
single-commodity single-criterion—

uncertain
[37N40, 90C30, 90C34]
(see: Robust design of dynamic systems by constructive
nonlinear dynamics)

uncertain information
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

uncertain systems
[93D09]
(see: Robust control)

uncertainties
[93D09]
(see: Robust control)

uncertainty
[68Q25, 90B85, 90C26, 90C29, 90C70, 91B28, 94A17]
(see: Bilevel optimization: feasibility test and flexibility
index; Competitive ratio for portfolio management; Fuzzy
multi-objective linear programming; Jaynes’ maximum
entropy principle; Single facility location: multi-objective
rectilinear distance location)

uncertainty
[90C15, 90C26, 90C29, 94A17]
(see: Bilevel optimization: feasibility test and flexibility
index;Discretely distributed stochastic programs: descent
directions and efficient points;Global optimization in
batch design under uncertainty; Jaynes’ maximum entropy
principle;Two-stage stochastic programs with recourse)

uncertainty see: Bilevel programming framework for
enterprise-wide process networks under—; budget of—;
decisionmaking under —; design under —; disaggregation
under—; fictitious—; Global optimization in batch design
under—;measure of—;multi-objective linear
programming under—; nonstochastic—; probabilistic—;
process synthesis and design under—; Production
planning under—

uncertainty considerations
(see: Selection of maximally informative genes)

uncertainty, duality and applications see: Robust linear
programming with right-hand-side—

uncertainty in dynamical systems see: estimating—
uncertainty embedded in a probability distribution

[90C25, 94A17]
(see: Entropy optimization: shannon measure of entropy
and its properties)

uncertainty on hydrological exogenous inflow and demand
see: water resources planning under—

uncertainty modeling
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

uncertainty with perturbations see:minimax observation
problem under—

uncertainty: sensitivity analysis see: Short-term scheduling
under—

uncertainty set
[93D09]
(see: Robust control)

unclassifiable examples
[90C09, 90C10]
(see: Optimization in boolean classification problems)

unclassifiable examples
[90C09, 90C10]
(see: Optimization in boolean classification problems)

unconstrained and constrained optimization see: Interval
analysis: —

unconstrained dual in entropy optimization
[90C25, 90C51, 94A17]
(see: Entropy optimization: interior point methods)
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unconstrained global optimization
[65T40, 90C26, 90C30, 90C90]
(see: Global optimization methods for harmonic retrieval)

unconstrained implicit Lagrangian
[90C30, 90C33]
(see: Implicit lagrangian)

unconstrained minimization
[90C26, 90C39]
(see: Second order optimality conditions for nonlinear
optimization)

unconstrained minimization
[49M29, 65K10, 90C06, 90C30]
(see: Conjugate-gradientmethods; Local attractors for
gradient-related descent iterations;Unconstrained
nonlinear optimization: Newton–Cauchy framework)

unconstrained minimization see: algorithms for—
unconstrained nonlinear least squares problem

[49M37]
(see: Nonlinear least squares: Newton-type methods)

Unconstrained nonlinear optimization: Newton–Cauchy
framework
(90C30)
(referred to in: Automatic differentiation: calculation of
Newton steps; Broyden family of methods and the BFGS
update; Conjugate-gradientmethods;Dynamic
programming and Newton’s method in unconstrained
optimal control; Interval Newton methods; Large scale
unconstrained optimization;Nondifferentiable
optimization: Newton method; Nonlinear least squares:
Newton-type methods;Numerical methods for unary
optimization; Unconstrained optimization in neural
network training)
(refers to: Automatic differentiation: calculation of Newton
steps; Broyden family of methods and the BFGS update;
Dynamic programming and Newton’s method in
unconstrained optimal control; Interval Newton methods;
Large scale unconstrained optimization; Nondifferentiable
optimization: Newton method; Numerical methods for
unary optimization; Unconstrained optimization in neural
network training)

unconstrained optimal control
[49M29, 65K10, 90C06]
(see: Dynamic programming and Newton’s method in
unconstrained optimal control)

unconstrained optimal control see: Dynamic programming
and Newton’s method in—

unconstrained optimization
[65F10, 65F50, 65H10, 65K05, 65K10, 90C30]
(see: ABS algorithms for optimization; Broyden family of
methods and the BFGS update;Globally convergent
homotopy methods)

unconstrained optimization
[65K05, 68T05, 90C06, 90C30, 90C52, 90C53, 90C55]
(see: Broyden family of methods and the BFGS update;
Large scale unconstrained optimization; Unconstrained
optimization in neural network training)

unconstrained optimization see: branch and bound for—;
Large scale—; New hybrid conjugate gradient algorithms
for—; Performance profiles of conjugate-gradient
algorithms for —

unconstrained optimization algorithms
[65G20, 65G30, 65G40, 65K05, 90C30]
(see: Interval global optimization)

Unconstrained optimization in neural network training
(90C30, 90C30, 90C52, 90C53, 90C55, 65K05, 68T05)
(referred to in: Broyden family of methods and the BFGS
update; Conjugate-gradientmethods; Large scale
unconstrained optimization; Neural networks for
combinatorial optimization; Neuro-dynamic
programming;Numerical methods for unary optimization;
Replicator dynamics in combinatorial optimization;
Unconstrained nonlinear optimization: Newton–Cauchy
framework)
(refers to: Automatic differentiation: introduction, history
and rounding error estimation; Broyden family of methods
and the BFGS update; Conjugate-gradientmethods; Large
scale unconstrained optimization; Least squares problems;
Neural networks for combinatorial optimization;
Neuro-dynamic programming;Numerical methods for
unary optimization; Replicator dynamics in combinatorial
optimization; Unconstrained nonlinear optimization:
Newton–Cauchy framework)

unconstrained optimization problem
[65K05, 90C26, 90Cxx]
(see: Dini and Hadamard derivatives in optimization;
Discontinuous optimization; Smooth nonlinear nonconvex
optimization)

unconstrained optimization problem see: global —
unconstrained optimum

[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

unconstrained optimum
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

unconstrained optimum see: conditions for an—
unconstrained problem

[90C31]
(see: Sensitivity and stability in NLP)

undefined
[49M29, 65K10, 90C06]
(see: Local attractors for gradient-related descent iterations)

under control see: rounding errors are—
under extreme events see: decisionmaking—
under network constraints see: optimization—
under principal pivoting see:matrix class invariant—
under probabilistic constraint see: programming—
under uncertainty see: Bilevel programming framework for

enterprise-wide process networks —; decisionmaking—;
design—; disaggregation —; Global optimization in batch
design—;multi-objective linear programming—; process
synthesis and design—; Production planning—

under uncertainty on hydrological exogenous inflow and
demand see: water resources planning—

under uncertainty with perturbations see:minimax
observation problem—

under uncertainty: sensitivity analysis see: Short-term
scheduling—

under weak assumptions
[57R12, 90C31, 90C34]
(see: Smoothing methods for semi-infinite optimization)
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underdetermined system of nonlinear equations
[90C30]
(see: Nonlinear least squares problems)

underestimation see: convex global—;Molecular structure
determination: convex global—

underestimation matrix see: diagonal—
underestimator

[90C26]
(see: Global optimization in multiplicative programming)

underestimator see: convex—; convex global —; global —;
local—

underestimators see: feasible—; Global optimization: tight
convex—

underlying deterministic problem
[90C05, 90C15]
(see: Probabilistic constrained linear programming: duality
theory)

underlying deterministic problem
[90C15]
(see: Static stochastic programmingmodels)

underlying matroid
[90C09, 90C10]
(see: Oriented matroids)

underlying method see: single —
underprojection

[90C30]
(see: Relaxation in projectionmethods)

undirected multicommodity network flow models
[90B10, 90C05, 90C06, 90C35]
(see: Nonoriented multicommodity flow problems)

undiscounted problem
[49L20, 90C39, 90C40]
(see: Dynamic programming: infinite horizon problems,
overview)

undiscounted problems see: Dynamic programming: —
unfeasibility criterion see:minimum—
Unfolding see:maximumVariance—
UniCalc

[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms)

unichain policy
[49L99]
(see: Dynamic programming: average cost per stage
problems)

unicursal graph
[90B06]
(see: Vehicle routing)

unidimensional Euclidean representation
[62H30, 90C39]
(see: Dynamic programming in clustering)

unidimensional scale
[62H30, 90C39]
(see: Dynamic programming in clustering)

unidimensional scale see: circular—; linear —
unidimensional scales

[62H30, 90C27]
(see: Assignment methods in clustering)

unidimensional scaling
[62H30, 90C39]
(see: Dynamic programming in clustering)

UNIFAC equation
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

unification see: set —
unified algorithm

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

unified modeling frameworks see: Short-term scheduling,
resource constrained:—

uniform
[49M37, 65K10, 90B36, 90C26, 90C30]
(see: ˛BB algorithm;Maximum cut problem, MAX-CUT;
Stochastic scheduling)

uniform angle condition
[49J20, 49J52]
(see: Shape optimization)

uniform computations
[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

uniform cone property
[49J20, 49J52]
(see: Shape optimization)

uniform distribution
[52A22, 60D05, 68Q25, 90C05, 90C27, 90C90]
(see: Probabilistic analysis of simplex algorithms; Simulated
annealing)

uniform distribution
[90C11, 90C15]
(see: Stochastic programming with simple integer recourse)

uniform dose (eud) see: equivalent—
uniform extension

[49J20, 49J52]
(see: Shape optimization)

uniform fractional combinatorial optimization
[68Q25, 68R05, 90-08, 90C27, 90C32]
(see: Fractional combinatorial optimization)

uniform grid technique
[90C26]
(see: Global optimization using space filling)

uniform Hölder conditions
[90C26]
(see: Global optimization using space filling)

uniform matroid
[90C09, 90C10]
(see:Matroids)

uniform norm see: approximation in the—
uniform P-function

[90C30, 90C33]
(see: Implicit lagrangian)

uniform random sampling
[65C30, 65C40, 65C50, 65C60, 65Cxx, 65K05, 90C26, 90C30]
(see: Stochastic global optimization: two-phase methods)

uniform sequential coloring
[05-XX]
(see: Frequency assignment problem)

uniform time discretization
[90C26]
(see:MINLP: design and scheduling of batch processes)
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uniformity, conformity
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

uniformly convex function
[65F10, 65F50, 65H10, 65K10]
(see: Globally convergent homotopy methods)

uniformly differentiable function see: Dini —
uniformly directionally differentiable function see: Dini —
unilateral boundary value problem

[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

unilateral contact problem with friction see: coupled—
unilateral frictional contact see: Signorini-Coulomb—
unilateral growth condition

[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

unilateral growth condition
[35A15, 47J20, 49J40]
(see:Hemivariational inequalities: static problems)

unilateral mechanics
[49J40]
(see: Nonconvex-nonsmooth calculus of variations)

unilateral mechanics
[49J40, 49J52]
(see:Hemivariational inequalities: eigenvalue problems;
Nonconvex-nonsmooth calculus of variations)

unimodular see: totally —
unimodular matrix

[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)

unimodular matrix see: totally —
unimodular max-closed form transformation

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

unimodular max-closed form transformations
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

union
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

UNIQUAC equation
[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

unique
[12D10, 12Y05, 13P10, 34-xx, 34Bxx, 34Lxx, 60J15, 60J60,
60J70, 60K35, 65C05, 65C10, 65C20, 68U20, 70-08, 82B21,
82B31, 82B41, 82B80, 90C05, 90C10, 90C22, 90C25, 90C31,
92C40, 92E10, 93E24]
(see: Complexity and large-scale least squares problems;
Global optimization in protein folding; Gröbner bases for
polynomial equations; LP strategy for interval-Newton
method in deterministic global optimization; Semidefinite
programming: optimality conditions and stability;
Simplicial pivoting algorithms for integer programming)

unique path
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

uniqueness see: Variational inequalities: geometric
interpretation, existence and—

uniqueness problem see: entry- —
uniqueness of solutions of nonlinear systems of equations

[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

unit-Disk Graphs
[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

unit-disk graphs see: bisectored—; Optimization problems
in—

unit-resolution see: single-lookahead-—
unit-specific

(see:Medium-term scheduling of batch processes)
unit weight CMST

[68T99, 90C27]
(see: Capacitated minimum spanning trees)

united extension
[65H99, 65K99]
(see: Automatic differentiation: point and interval)

units see: building blocks for the process —
units problem see:minimum-—
unity demand

[90B80, 90B85]
(see:Warehouse location problem)

univalent relation
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

univariate discrete probability distribution see: logconcave—
univariate gradient free

[90C30]
(see: Powell method)

univariate interval Newton method
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

univariate interval Newton operator
[65G20, 65G30, 65G40, 65H20, 65K99]
(see: Interval Newton methods)

univariate linear model see: general —
universal

[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

universal class
[03E70, 03H05, 91B16]
(see: Alternative set theory)

universal cover
[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements)

universal Gröbner basis
[05A, 13Cxx, 13Pxx, 14Qxx, 15A, 51M, 52A, 52B, 52C, 62H,
68Q, 68R, 68U, 68W, 90B, 90C, 90Cxx]
(see: Convex discrete optimization; Integer programming:
algebraic methods)

universal Gröbner basis
[13Cxx, 13Pxx, 14Qxx, 90Cxx]
(see: Integer programming: algebraic methods)
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universal portfolio
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

universal properties of relations
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

universal wedge
[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

universality
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

universally accessible form of CEP
[49K99, 65K05, 80A10]
(see: Optimality criteria for multiphase chemical
equilibrium)

unknown information
[68Q25, 91B28]
(see: Competitive ratio for portfolio management)

unknown variables see: initializing—
unlimited intermediate storage

[90C26]
(see:MINLP: design and scheduling of batch processes)

unnormalized fuzziness
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

unpaired element see: left- —; right- —
unpinned

[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

unsatisfiability threshold
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

unsealed ABS class
[65K05, 65K10]
(see: ABS algorithms for linear equations and linear least
squares)

unsplitting of load see: splitting/—
unstructured optimization

[90C06]
(see: Large scale unconstrained optimization)

unsupervised
[90C26, 90C56, 90C90]
(see: Nonsmooth optimization approach to clustering)

unsupervised classification
[90C90]
(see: Optimization in medical imaging)

unsupported nondominated solution
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

unused partitions see: set Lfree of —; set Rfree of —
unweighted feedback vertex set problem

[90C35]
(see: Feedback set problems)

unweighted problem in OR
[90B80, 90B85]
(see:Warehouse location problem)

unyielding configuration
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

unyielding tensegrity
[51K05, 52C25, 68Q25, 68U05, 90C22, 90C35]
(see: Graph realization via semidefinite programming)

UONNT
[65K05, 68T05, 90C30, 90C52, 90C53, 90C55]
(see: Unconstrained optimization in neural network
training)

up to first order changes
[90Cxx]
(see: Discontinuous optimization)

up penalty
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

update see: BFGS—; BFGS quasi-Newton—; Broyden family of
methods and the BFGS—;
Broyden–Fletcher–Goldfarb–Shanno—;
Broyden–Fletcher–Goldfarb–Shanno quasi-Newton—;
Davidon–Fletcher–Powell —; DFP—; quasi-Newton—;
SR1—; symmetric rank-one—

update formula see: Sherman-Morrison rank-one—
update Newton method see: partial- —
updates see: quasi-Newton—; rank-two—
updating see: fractional—; inverse quasi-Newton—;

partial —; secant —
updating formula see:Moré—
updating input-output matrices

[90C35]
(see:Multi-index transportation problems)

updating rule see:momentum—
upper bandwidth

[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

upper bound
[90B35, 90C10]
(see: Job-shop scheduling problem;Maximum constraint
satisfaction: relaxations and upper bounds)

upper bound
[90C15]
(see: Stochastic programs with recourse: upper bounds)

upper bound see: Edmundson–Madansky—;
Hunter–Worsley —; parametric —; piecewise linear—;
polynomial—; valid—

upper-bound dichotomy see: generalized- —
upper bound on gas lift availability

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

upper bound for a set
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

upper-bound test
[49M37, 90C11]
(see:Mixed integer nonlinear programming)

upper boundary
[65K05, 90C26, 90C30]
(see:Monotonic optimization)
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upper boundary point
[65K05, 90C26, 90C30]
(see:Monotonic optimization)

upper bounding
[49M37, 65K10, 90C26, 90C30]
(see: ˛BB algorithm)

upper bounding structure see: generalized —
upper bounds

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

upper bounds see:Maximum constraint satisfaction:
relaxations and—; Stochastic programs with recourse: —

upper bounds constraints see: generalized —; lower and—
upper bounds for multivariate probability integrals

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

upper derivative
[65K05, 90Cxx]
(see: Dini and Hadamard derivatives in optimization)

upper derivative see: Dini —; Dini conditional—; Hadamard
conditional—

upper directional derivative see: Dini —; Hadamard—
upper directional derivatives see: lower and—
upper envelope

[90C26]
(see: Global optimization: envelope representation)

upper hemicontinuous operator
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

upper level problem
[90C26, 90C31, 90C34, 91A65]
(see: Bilevel programming: implicit function approach;
Parametric global optimization: sensitivity)

upper and lower bounds see: parametric —
upper and lower bounds to eigenvalues

[49R50, 65G20, 65G30, 65G40, 65L15, 65L60]
(see: Eigenvalue enclosures for ordinary differential
equations)

upper and lower well oil rate constraints
[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

upper problem
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

upper semicontinuous function
[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

upper semicontinuous function see: Rn+- —
upper semismooth function

[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

upper set
[62G07, 62G30, 65K05]
(see: Isotonic regression problems)

ups see: well-defined start- —
urban transit planning see: extra- —
URV factorization see: rank revealing—

use of groundwater see: rational—
use of PI-algebras

[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

use of water resource systems see: conjunctive—
used partitions see: set Lreac of—; set Rreac of—
user interface see: graphical —
user-optimization

[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

user-optimized transportation network
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

user-optimizing environment
[90B80, 90B85, 90Cxx, 91Axx, 91Bxx]
(see: Facility location with externalities)

using flexible templates see: De novo protein design—
using a heuristic parameter, reject index for interval

optimization see: Algorithmic improvements—
using Householder transformations see: QR factorization—
using MINLP see: HEN synthesis —
using pseudocosts see: best estimate—
using pseudoshadow prices see: best estimate —
using space filling see: Global optimization—
using (sub)gradients parametric representations see: necessary

optimality condition without—
using terrain/funneling methods see:Multi-scale global

optimization—
UTA see:meta- —
UTA method

[90C29, 91A99]
(see: Preference disaggregation)

UTASTAR algorithm
[90C29, 91A99]
(see: Preference disaggregation)

utilité
[90C05, 90C90, 91B28]
(see:Multicriteriamethods for mergers and acquisitions)

utilities see: consumption of—
utility

[90C29, 90C90, 91A65, 91B99]
(see: Bilevel programming: applications;Multiple objective
programming support)

utility
[90C29]
(see: Preference modeling)

utility function
[90-01, 90B30, 90B50, 90C29, 91B32, 91B52, 91B74]
(see: Bilevel programming in management; Preference
disaggregation approach: basic features, examples from
financial decisionmaking)

utility function see: coordinatewise increasing—; implicit—;
social—

utility functions see: additive—; estimation of—
utility theory

[03E70, 03H05, 91B16]
(see: Alternative set theory)

utility theory
[03E70, 03H05, 91B16]
(see: Alternative set theory)

utility theory see:multi-attribute—
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V

V see: vertex set —
V algebra

[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

v at see: insertion of vertex —
(v)-differentiable family of measures see: weakly L1 —
V-invex

[90C26]
(see: Invexity and its applications)

V-invex
[90C26]
(see: Invexity and its applications)

V-representation
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

valid cut
[90C26]
(see: Cutting plane methods for global optimization)

valid inequalities
[90C09, 90C10, 90C11]
(see: Disjunctive programming)

valid inequality see: nondominated—
valid lower bound

[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

valid upper bound
[90C10, 90C26]
(see:MINLP: branch and bound global optimization
algorithm)

validation see: cross-—;model —
validation sample

[91B28 90C90 90C05 90C20 90C30]
(see: Credit rating and optimization methods)

validity conditions
[90C35]
(see:Maximum flow problem)

valuation
[03E70, 03H05, 91B16]
(see: Alternative set theory)

valuation of a checklist
[03B50, 03B52, 03C80, 62F30, 62Gxx, 68T27]
(see: Checklist paradigm semantics for fuzzy logics)

valuation structure see: coarse—; fine—
value see: best —; continuity property of the objective

function—; convexity property of the objective function—;
critical—; incumbent—; incumbent objective—;
limiting—;marginal —;maximize net present —;mean—;
minimal—;minimax—; positive marginal —; positive
minimum—; regular —; saddle—; settle- —; structured
singular—

value analysis
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

value analysis
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,

91B06, 92C60]
(see: Boolean and fuzzy relations)

value bounds see: computable optimal —
Value for Composite Convexifiable Function see: integral

Mean- —
value conditions see: boundary—
value convergence tests

[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

value cross decomposition see:mean—
value cuts

[49M27, 90C11, 90C30]
(see:MINLP: generalized cross decomposition)

value decomposition solution see: truncated singular —
value extension see:mean—
value of a flow

[90C35]
(see:Maximum flow problem)

value formula see:marginal—
value function

[90C10, 90C15, 90C29, 90C46]
(see: Integer programming duality;Multi-objective
optimization; Interactivemethods for preference value
functions;Multiple objective programming support;
Multistage stochastic programming: barycentric
approximation)

value function
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions;Multiple objective
programming support)

value function see: expected —;mean—;mixed integer —;
optimal—; preference—

value function approach
[90-XX]
(see: Outranking methods)

value functions see:Multi-objective optimization; Interactive
methods for preference—; optimal—

value iteration
[49L20, 49L99, 90C39, 90C40]
(see: Dynamic programming: average cost per stage
problems;Dynamic programming: discounted problems;
Dynamic programming: infinite horizon problems,
overview;Dynamic programming: stochastic shortest path
problems;Dynamic programming: undiscounted
problems)

value iteration see: Gauss–Seidel—; relative—
value of a network flow

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

value of perfect information see: expected —
value problem see: bilateral boundary—; initial —;mean—;

ODE two-point boundary—; two-point boundary—;
unilateral boundary—

value of stochastic solution
[90C15]
(see: Two-stage stochastic programs with recourse)

value theorem see:mean—
valued analysis see: set- —
valued approximate inference see: interval- —
valued boundary laws and variational equalities see: single-—
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valued CNSO see: extended real- —; real- —
valued constraints see: set- —
valued families of the Pinkava logic algebras see:many- —
valued function see: Boolean 2- —
valued Lagrangian see: vector —
valued logic see: evaluation in multiple-—
valued logic algebra see: Boolean 2- —;many- —
valued logic algebras see: Finite complete systems of many-—
valued logic implication see:many- —
valued logic normal form see: complete many-—
valued logic system see: lattice-type many- —
valued logics see: classification of many- —;many- —;

taxonomy of the PI-algebras of many- —
valued maps see: Generalized monotone single—
valued normal form see:many-—
valued normal forms see: PI-algebras and 2- —
valued objective function see: set- —
valued optimization see: Set- —
valued optimization problem see: set- —
valued PI-systems see: subfamilies of n- —
valued relation

[90C29]
(see: Preference modeling)

values see: negative marginal —; positive marginal —; set of
formation—

VAM
[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

VAM construction procedure see:mixed—
vapor phases

[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

vapor pressure see: Reid—
variable

[90C10, 90C30]
(see:Modeling languages in optimization: a new paradigm)

variable see: auxiliary—; choice of the entering —; choice of
the leaving—; consistent—; distinguished—; dual—;
eligible nonbasic —; entering —; flow decision—;
leaving—;most/least infeasible integer —;multiple
branches for bounded integer —; strongly determined —;
type—

variable assignment
[90C60]
(see: Complexity theory)

variable coefficients see: generalized linear programming
with—

variable cost
[90C25]
(see: Concave programming)

variable dichotomy
[90C05, 90C06, 90C08, 90C10, 90C11]
(see: Integer programming: branch and boundmethods)

variable factor programming
[49M29, 90C11]
(see: Generalized benders decomposition)

variable formulation of SP see: split- —
variable metric

[58E05, 90C30]
(see: Topology of global optimization)

variable metric bundle method
[49J40, 49J52, 65K05, 90C30]
(see: Solving hemivariational inequalities by nonsmooth
optimization methods)

variable metric method
[90C30]
(see: Unconstrained nonlinear optimization:
Newton–Cauchy framework)

variable metric methods
[90C26]
(see: Smooth nonlinear nonconvex optimization)

variable neighborhood descent
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

Variable neighborhood search methods
(9008, 90C59, 90C27, 90C26)
(referred to in:Maximum cut problem, MAX-CUT)

variable precision interval package
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

variable representation see: splitting—
variable space

[90C29]
(see:Multiple objective programming support)

variable stage-length
[93-XX]
(see: Dynamic programming: optimal control applications)

variable-storage
[90C30]
(see: Conjugate-gradient methods)

variable-storage algorithm
[90C30]
(see: Conjugate-gradient methods)

variables
(see: Planning in the process industry; Short-term
scheduling under uncertainty: sensitivity analysis)

variables
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

variables see: adjoint—; basic —; binary—; Boolean—;
complementary pair of—; complicating—; constraints
on—; control —; decision—; dependent —; design—;
discrete—; discrete design—; dual —; eliminating blocks
of—; full space of x —; Generalized geometric
programming: mixed continuous and discrete free—;
independent —; initializing unknown—; integer —;
intermediate —; key —; nonbasic—; separable problem—;
sizing—; splitting—; structural —; superbasic—

variables model see: errors-in- —
variables x see: decision—
variance

[90C26, 90C90]
(see: Signal processing with higher order statistics)

variance see:mean- —; one-way analysis of —
variance clustering see:minimal—
variance model see: Portfolio selection: markowitz mean- —
variance of the number of shadow-vertices

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

variance optimization problems see: Decomposition
algorithms for the solution of multistage mean- —
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variance portfolio analysis see:mean- —
variance reduction

[65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30, 90C15]
(see: Approximation of multivariate probability integrals)

variance reduction see:Monte-Carlo sampling and—
variance reduction lower bounds

[90C08, 90C11, 90C27, 90C57, 90C59]
(see: Quadratic assignment problem)

variance reduction technique
[62F12, 65C05, 65C30, 65C40, 65C50, 65C60, 65Cxx, 65D30,
65K05, 90C15, 90C31]
(see: Approximation of multivariate probability integrals;
Monte-Carlo simulations for stochastic optimization)

Variance Unfolding see:maximum—
variant of the constraint-by-constraint method see:

lexicographic—
variant of the simplex algorithm

[52A22, 60D05, 68Q25, 90C05]
(see: Probabilistic analysis of simplex algorithms)

variants of GBD
[49M29, 90C11]
(see: Generalized benders decomposition)

variates see: control —
variation see: total —
variation of an eigenvalue of an interval matrix see: interval

of—
variation of the interval Newton method see: Krawczyk—
variation path see: principal —
variation splitting algorithm see: principal —
variation of a system

[65K05, 90C30]
(see: Bisection global optimization methods)

variation technique see: boundary—
variational equalities see: single-valued boundary laws and—
variational equality for an elastostatic problem involving

QD-superpotentials
[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

variational formulation see:mixed—
variational formulation of quasidifferential laws

[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

variational formulation of quasidifferential thermal boundary
conditions
[35R70, 47S40, 74B99, 74D99, 74G99, 74H99]
(see: Quasidifferentiable optimization: applications to
thermoelasticity)

variational formulation of subdifferential laws
[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

variational formulations see: Quasidifferentiable
optimization:—

variational-hemivariational inequality
[49J40, 49J52, 49Q10, 70-XX, 74K99, 74Pxx, 80-XX]
(see: Nonconvex energy functions: hemivariational
inequalities;Nonconvex-nonsmooth calculus of variations)

variational-hemivariational inequality
[49J40]
(see: Nonconvex-nonsmooth calculus of variations)

variational inclusion
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

Variational inequalities
(65K10, 65M60)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;Global
optimization methods for systems of nonlinear equations;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems; Implicit
lagrangian;Nonconvex energy functions: hemivariational
inequalities;Nonconvex-nonsmooth calculus of variations;
Optimization with equilibrium constraints: A piecewise
SQP approach;Quasidifferentiable optimization;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities: F. E. approach;
Variational inequalities: geometric interpretation,
existence and uniqueness;Variational inequalities:
projected dynamical system; Variational principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities: F. E. approach;
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Variational inequalities: geometric interpretation,
existence and uniqueness; Variational inequalities:
projected dynamical system; Variational principles)

variational inequalities
[26B25, 26E25, 46A22, 49J35, 49J40, 49J52, 49Q10, 49S05,
54D05, 54H25, 55M20, 65K99, 70-08, 74A55, 74G99, 74H99,
74K99, 74M10, 74M15, 74Pxx, 90C26, 90C30, 90C33, 90C90,
90C99, 91A05, 91A65]
(see:Hemivariational inequalities: applications in
mechanics;Minimax theorems;Multilevel optimization in
mechanics;Nonsmooth and smoothing methods for
nonlinear complementarity problems and variational
inequalities;Quasidifferentiable optimization;
Quasidifferentiable optimization: applications;
Quasivariational inequalities)

variational inequalities
[46N10, 49J40, 49M05, 49Q10, 49S05, 65K10, 70-08, 74G99,
74H99, 74K99, 74Pxx, 90C06, 90C25, 90C26, 90C30, 90C31,
90C33, 90C35]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems;Nonsmooth and
smoothing methods for nonlinear complementarity
problems and variational inequalities;Quasidifferentiable
optimization: variational formulations;Quasivariational
inequalities; Sensitivity analysis of variational inequality
problems; Simplicial decomposition algorithms)

variational inequalities see: approximation of—;multivalued
monotone laws and—; Nonsmooth and smoothing
methods for nonlinear complementarity problems and—;
parametric —; QD laws and systems of—; scalar—;
Solutionmethods for multivalued—; system of —;
vector —

variational inequalities: A brief review see: Generalized—
variational inequalities and equilibrium problems see:

Generalized monotonicity: applications to—
Variational inequalities: F. E. approach

(65M60)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
geometric interpretation, existence and uniqueness;

Variational inequalities: projected dynamical system;
Variational principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
geometric interpretation, existence and uniqueness;
Variational inequalities: projected dynamical system;
Variational principles)

Variational inequalities: geometric interpretation, existence
and uniqueness
(65K10, 65M60)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: projected
dynamical system; Variational principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
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Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: projected
dynamical system; Variational principles)

Variational inequalities: projected dynamical system
(65K10, 90C90)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods;Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness; Variational
principles)
(refers to: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Hemivariational inequalities: static problems;Nonconvex
energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;

Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
principles)

variational inequalities and quasivariational inequalities see:
implicit—

variational inequality
[47H05, 47J20, 49J40, 49J52, 49M37, 49Q10, 65J15, 65K10,
70-XX, 74K99, 74Pxx, 80-XX, 90C25, 90C26, 90C33, 90C55,
91A10]
(see: Bilevel programming; Fejér monotonicity in convex
optimization; Nonconvex energy functions:
hemivariational inequalities; Solutionmethods for
multivalued variational inequalities)

variational inequality see: generalized—;mixed—
variational inequality for an elastostatic problem involving

QD-superpotentials see: convex—
variational inequality of elliptic type see: abstract —
variational inequality formulation

[90B06, 90B20, 90C30, 91B06, 91B28, 91B50, 91B60]
(see: Equilibrium networks; Financial equilibrium;
Oligopolistic market equilibrium; Spatial price
equilibrium; Traffic network equilibrium;Walrasian price
equilibrium)

variational inequality formulation
[91B50]
(see: Financial equilibrium;Walrasian price equilibrium)

variational inequality formulation in link loads
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

variational inequality formulation in path flows
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

variational inequality formulations
[65K10, 65M60, 90B06, 90B20, 91B06, 91B28, 91B50, 91B60]
(see: Oligopolistic market equilibrium; Spatial price
equilibrium; Traffic network equilibrium;Variational
inequalities)

variational inequality problem
[49J52, 65K10, 65M60, 90C06, 90C15, 90C25, 90C26, 90C30,
90C33, 90C35, 90C90]
(see: Cost approximation algorithms;Nondifferentiable
optimization: Newton method; Simplicial decomposition
algorithms; Stochastic bilevel programs;Variational
inequalities;Variational inequalities: projected dynamical
system)

variational inequality problem
[49J52, 90C15, 90C26, 90C30, 90C33]
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(see: Cost approximation algorithms;Nondifferentiable
optimization: Newton method; Stochastic bilevel programs)

variational inequality problem see: dual—; finite-
dimensional—; parametric —; vector —

variational inequality problem and a projected dynamical system
[65K10, 90C90]
(see: Variational inequalities: projected dynamical system)

variational inequality problems
[90C33]
(see: Linear complementarity problem)

variational inequality problems see: Sensitivity analysis of—
variational-like inequalities

[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

variational-like inequalities
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

variational methods
[65L99, 93-XX]
(see: Optimization strategies for dynamic systems)

Variational Principle see: ekeland —; subdifferential —
Variational principles

(62H30, 65Cxx, 65C30, 65C40, 65C50, 65C60, 90C05, 49J40)
(referred to in: Generalized monotonicity: applications to
variational inequalities and equilibrium problems;
Hemivariational inequalities: applications in mechanics;
Hemivariational inequalities: eigenvalue problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: algorithms for QD
functions;Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system)
(refers to:Hemivariational inequalities: applications in
mechanics;Hemivariational inequalities: eigenvalue
problems;Hemivariational inequalities: static problems;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;Nonsmooth
and smoothing methods for nonlinear complementarity
problems and variational inequalities;Quasidifferentiable
optimization;Quasidifferentiable optimization: algorithms
for hypodifferentiable functions;Quasidifferentiable
optimization: algorithms for QD functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to

thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: optimality conditions;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Sensitivity
analysis of variational inequality problems; Solving
hemivariational inequalities by nonsmooth optimization
methods; Variational inequalities;Variational inequalities:
F. E. approach;Variational inequalities: geometric
interpretation, existence and uniqueness;Variational
inequalities: projected dynamical system)

variational principles
[49J40, 49J52, 49K27, 49M05, 49S05, 58C20, 58E30, 74G99,
74H99, 74Pxx, 90C33, 90C48]
(see:Hemivariational inequalities: applications in
mechanics;Nonsmooth analysis: Fréchet subdifferentials;
Quasidifferentiable optimization: variational formulations)

variational principles
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

variational problem see: ill-posed—
variational problems

[03H10, 49J27, 49K05, 49K10, 49K15, 49K20, 90C34]
(see: Duality in optimal control with first order differential
equations; Semi-infinite programming and control
problems)

variational problems
[49J40, 49M05, 49S05, 74G99, 74H99, 74Pxx]
(see: Quasidifferentiable optimization: variational
formulations)

variational problems see: Ill-posed—; implicit—
variational sensitivity

[90C90]
(see: Design optimization in computational fluid dynamics)

variations see: calculus of—; inverse problem of the calculus
of—; Nonconvex-nonsmooth calculus of—

variations of Steiner trees
[90C27]
(see: Steiner tree problems)

variations of Steiner trees
[90C27]
(see: Steiner tree problems)

varying dimension pivoting algorithms
[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

Vasicek model with impulse perturbations
[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

VDSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

vector
[90C09, 90C10]
(see: Oriented matroids)
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vector see: arc length —; augmenting —; characteristic —;
charactertstic —; control —; descent —; differential cost —;
dual—; feasible flow—; feasible high-order
approximating—; feature—; generic cost—; geodesic
gradient—; gradient —; high-order tangent
approximating—; incidence—; Lagrange multiplier—;
lexico-positive—; lexicographically positive—; position—;
primitive integral —; proposal—; reference direction—;
residual—; sign—; state —; steepest descent—; support
of an integral —; support of a natural —; weight—;
weighted characteristic —

vector configuration
[90C09, 90C10]
(see: Oriented matroids)

vector of decrease see: high-order approximating—
vector estimates for parametric NLPS see: Bounds and

solution—
vector forward automatic differentiation

[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

vector generalized concavity
[90C29]
(see: Generalized concavity in multi-objective optimization)

vector geometry
[26A24, 65K99, 85-08]
(see: Automatic differentiation: geometry of satellites and
tracking stations)

vector inequality
[90C29, 90C30]
(see:Multi-objective optimization: lagrange duality)

vector iteration see: control —
vector iteration CVI see: Control —
vector labeling

[90C05, 90C10]
(see: Simplicial pivoting algorithms for integer
programming)

vector lattice
[90C33]
(see: Equivalence between nonlinear complementarity
problem and fixed point problem;Order complementarity;
Topological methods in complementarity theory)

vector lattice
[90C33]
(see: Order complementarity)

vector machine see: generalized eigenvalue proximal
support—

vector machine problem see: Generalized eigenvalue proximal
support—

vector machines see: support—
vector maximization method

[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

vector minimization
(see: Planning in the process industry)

Vector optimization
(90C29)
(referred to in: Composite nonsmooth optimization; Image
space approach to optimization)
(refers to: Image space approach to optimization)

vector optimization
[49K27, 65K05, 90B50, 90C05, 90C29, 90C48, 91B06]
(see:Multi-objective optimization and decision support
systems; Set-valued optimization)

vector optimization
[46A20, 49K27, 52A01, 65K05, 90B50, 90C05, 90C29, 90C30,
90C48, 91B06]
(see: Composite nonsmooth optimization;Multi-objective
optimization and decision support systems; Set-valued
optimization)

vector of an oriented matroid
[90C09, 90C10]
(see: Oriented matroids)

vector space
[14R10, 15A03, 51N20]
(see: Linear space)

vector space see: optimization in a—
vector space model

[90C09, 90C10]
(see: Optimization in classifying text documents)

vector space model
[90C09, 90C10]
(see: Optimization in classifying text documents)

vector-space models for entropy optimization for image
reconstruction
[94A08, 94A17]
(see:Maximum entropy principle: image reconstruction)

vector spaces see: Increasing and convex-along-rays functions
on topological—; Increasing and positively homogeneous
functions on topological—; ordered—

vector valued Lagrangian
[90C29, 90C30]
(see:Multi-objective optimization: lagrange duality)

Vector variational inequalities
(58E35, 90C29)

vector variational inequalities
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

vector variational inequality problem
[46N10, 49J40, 90C26]
(see: Generalized monotonicity: applications to variational
inequalities and equilibrium problems)

vectorial matroid
[90C09, 90C10]
(see:Matroids)

vectors
[14R10, 15A03, 51N20]
(see: Linear space)

vectors see: equivalent cost—; high-order approximating—;
lexicographical ordering for n-dimensional—; ordering on
binary—

vectors space see: real —
vegetative

(see: State of the art in modeling agricultural systems)
vehicle block

[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

vehicle and duty scheduling problems see: Integrated —
Vehicle routing

(90B06)
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(referred to in: General routing problem; Stochastic vehicle
routing problems;Vehicle scheduling)
(refers to: General routing problem; Stochastic vehicle
routing problems;Vehicle scheduling)

vehicle routing
[90-02, 90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems;Operations
researchmodels for supply chain management and design)

vehicle routing
[90C10, 90C15]
(see: Stochastic vehicle routing problems)

vehicle routing problem
[05-04, 90B06, 90C10, 90C11, 90C15, 90C27, 90C57]
(see: Evolutionary algorithms in combinatorial
optimization; Set covering, packing and partitioning
problems; Stochastic vehicle routing problems;Vehicle
routing)

vehicle routing problem see: capacitated—;
distance-constrained—; dynamic—;Metaheuristic
algorithms for the—; stochastic —

vehicle routing problem with backhauls
[90B06]
(see: Vehicle routing)

Vehicle routing problemwith simultaneous pickups and
deliveries
(00-02, 01-02, 03-02)

vehicle routing problem with time windows
[90B06]
(see: Vehicle routing)

vehicle routing problems see: approximate methods for
solving—; constructive methods for solving—; exact
methods for solving—; Stochastic—

Vehicle scheduling
(90B06, 90B35, 68M20, 90C27, 90B80, 90B10, 90C10)
(referred to in: Airline optimization; General routing
problem; Integer programming; Job-shop scheduling
problem;MINLP: design and scheduling of batch processes;
Stochastic vehicle routing problems;Vehicle routing)
(refers to: Airline optimization; Complexity classes in
optimization; Complexity theory;General routing problem;
Integer programming; Job-shop scheduling problem;
MINLP: design and scheduling of batch processes;
Stochastic scheduling; Stochastic vehicle routing problems;
Vehicle routing)

vehicle scheduling problem
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

vehicle scheduling problem see:Multi-depot—;
Single-depot—

vehicle scheduling problems see:multi-depot—;
Single-depot—

Vehicle scheduling problems with a fixed number of vehicles
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Vehicle scheduling problems with multiple types of vehicles
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

vehicle scheduling problems with time constraints
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

Vehicle scheduling with trip shifting
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

vehicles see: number of —; Vehicle scheduling problems with
a fixed number of —; Vehicle scheduling problems with
multiple types of —

vehicles’ homogeneity/heterogeneity
[00-02, 01-02, 03-02]
(see: Vehicle routing problemwith simultaneous pickups
and deliveries)

venture capital investment
[91B06, 91B60]
(see: Financial applications of multicriteria analysis)

verification
[34-xx, 34Bxx, 34Lxx, 90C60, 93E24]
(see: Complexity and large-scale least squares problems;
Computational complexity theory)

verification
[65G20, 65G30, 65G40, 65H20]
(see: Interval analysis: intermediate terms; Interval analysis:
nondifferentiable problems)

verification see: automatic result —
verifying equilibrium solutions

[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

verifying feasibility see: Interval analysis: —
version of the Hahn–Banach theorem see:Mazur–Orlicz—
versus MultiperiodModels see: single —
versus noninteractive methods see: interactive—
vertex

[05B35, 20F36, 20F55, 52C35, 57N65]
(see:Hyperplane arrangements in optimization)

vertex see: child of a—; co-optimal—; improper—; parent of
a—; required—; shadow-—; transshipment —

vertex algorithm see: shadow-—
vertex (arc) deletion problem

[90C35]
(see: Feedback set problems)

vertex (arc) set problem see:minimum feedback—; subset
feedback—; subset minimum feedback—

VERTEX COVER
[03B50, 05C15, 05C62, 05C69, 05C85, 68Q25, 68R10, 68T15,
68T30, 68W40, 90C27, 90C59, 90C60]
(see: Complexity classes in optimization;Domination
analysis in combinatorial optimization; Finite complete
systems of many-valued logic algebras;Optimization
problems in unit-disk graphs)

vertex cover see:minimumweighted —
Vertex Cover Problem see:minimum—
vertex of a digraph

[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

vertex of a graph
[05C05, 05C40, 68R10, 90C35]
(see: Network design problems)

vertex insertion algorithm see: generic —
vertex insertion (FVI) see: farthest —
vertex insertion (NVI) see: nearest —
vertex insertion (RVI) see: random—
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vertex insertion (VI)
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

vertex matrix of an interval matrix
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: eigenvalue bounds of interval
matrices)

vertex packing
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

vertex in a rooted tree see: level of a—
vertex set

[49-01, 49K45, 49N10, 65K05, 90-01, 90C20, 90C26, 90C27,
90C30, 91B52]
(see: Bilevel linear programming: complexity, equivalence
to minmax, concave programs;Monotonic optimization)

vertex set see: feedback—;minimum feedback—
vertex set problem see: feedback—;minimumweighted

feedback—; unweighted feedback—
vertex set V

[90C35]
(see: Graph coloring)

vertex subset see: subgraph induced by a—
vertex v at see: insertion of—
vertex weights

[05C15, 05C17, 05C35, 05C69, 90C22, 90C35]
(see: Lovász number)

vertical linear complementarity problem
[90C33]
(see: Linear complementarity problem)

vertices
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

vertices see: expected number of shadow-—; intersatured —;
variance of the number of shadow-—

vertices in a graph see: adjacent—
very strong homomorphism

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

Vessel Problem (SVP) see: seismic—
veto threshold

[90-XX]
(see: Outranking methods)

(VI) see: vertex insertion—
via linear optimization see: Distance dependent protein force

field—
via mixed-integer linear optimization see: Global pairwise

protein sequence alignment —
via mixed-integer optimization see:Multi-class data

classification—; Peptide identification—
via negative fitness see: genetic engineering —
via parametric programming see: Design of robust

model-based controllers—
via semidefinite programming see: Graph realization—;

Maximum likelihood detection—
via (w,i) see: subdivision—

Vienna Fortran
[05-02, 05-04, 15A04, 15A06, 68U99]
(see: Alignment problem)

view see: beam’s-eye- —
view of linear semi-infinite programming see: perfect duality

from the—
violating point see: index of a constraint—
violation of constraints

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

violators algorithm see: pool adjacent —
VIP

[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

virtual
[34-xx, 34Bxx, 34Lxx, 93E24]
(see: Complexity and large-scale least squares problems)

virtual depot
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

virtual displacements
[49J52, 49S05, 74G99, 74H99, 74Pxx, 90C33]
(see:Hemivariational inequalities: applications in
mechanics)

virtual processor
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

virtual source
[90B10, 90C27]
(see: Shortest path tree algorithms)

virtual source algorithm
[90B10, 90C27]
(see: Shortest path tree algorithms)

virtual source concept in auction algorithms
[90B10, 90C27]
(see: Shortest path tree algorithms)

virtual work see: principle of—
visual binary star

[90C26, 90C90]
(see: Global optimization in binary star astronomy)

visual binary star see: spectroscopic—
visual inference

[90C26, 90C30]
(see: Forecasting)

visual interaction
[90C29, 90C70]
(see: Fuzzy multi-objective linear programming)

visual interactive method
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

visualization see: Optimization-based—
Vitalyevich see: Kantorovich, Leonid—
VLSI routing

[05C05, 05C85, 68Q25, 90B80]
(see: Bottleneck steiner tree problems)

vND
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)
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VND
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

vNDS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

VNDS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

vNFSS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

vNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

VNS
[9008, 90C26, 90C27, 90C59]
(see: Variable neighborhood search methods)

VNS see: basic—; bI-—; fH-—; j- —; Parallel —; pD-—;
Reduced—; Skewed—

vocabulary see: indexing—; optimal—; optimal indexing—
Vogel approximation method

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

Volterra filter
[90C26, 90C90]
(see: Signal processing with higher order statistics)

Volterra model of conflicting populations
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

volume
[90C05]
(see: Continuous global optimization: applications)

volume
[52B11, 52B45, 52B55]
(see: Volume computation for polytopes: strategies and
performances)

volume see: integral over a—; logarithmic—; normalized—
Volume computation for polytopes: strategies and

performances
(52B11, 52B45, 52B55)
(referred to in: Ellipsoidmethod;Quadratic programming
over an ellipsoid)
(refers to: Quadratic programming over an ellipsoid)

volume ellipsoid see:maximum-—;minimum-—
volume formula see: integral over —
volumetric method

[49M20, 90-08, 90C25]
(see: Nondifferentiable optimization: cutting plane
methods)

von Neumann algebra
[01A99, 90C99]
(see: Von Neumann, John)

von Neumann architecture
[01A99, 90C99]
(see: Von Neumann, John)

Von Neumann, John
(01A99, 90C99)
(referred to in: Duality theory: biduality in nonconvex
optimization;Duality theory: triduality in global
optimization;History of optimization)

(refers to:Duality theory: biduality in nonconvex
optimization;Duality theory: monoduality in convex
optimization;Duality theory: triduality in global
optimization;History of optimization)

von Stackelberg game
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

von Stackelberg games
[90C25, 90C29, 90C30, 90C31]
(see: Bilevel programming: optimality conditions and
duality)

Voronoi diagram
[68Q20, 90B80, 90C27]
(see: Optimal triangulations;Voronoi diagrams in facility
location)

Voronoi diagram
[90B80, 90B85, 90C27]
(see:Multifacility and restricted location problems;
Voronoi diagrams in facility location)

Voronoi diagram see: farthest-point —
Voronoi diagrams

[90B85, 90C27]
(see: Single facility location: circle covering problem)

Voronoi diagrams in facility location
(90C27, 90B80)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Warehouse location problem)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;
Warehouse location problem)

Voronoi edge
[90B80, 90C27]
(see: Voronoi diagrams in facility location)
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Voronoi point
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

Voronoi region
[90B80, 90C27]
(see: Voronoi diagrams in facility location)

voting
[55R15, 55R35, 65K05, 90C11]
(see: Deterministic and probabilistic optimization models
for data classification)

vous communication see: rendez- —
voxels

[90C90]
(see: Optimization in medical imaging)

VRP
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

VRPB
[90B06]
(see: Vehicle routing)

VRPTW
[05-04, 90C27]
(see: Evolutionary algorithms in combinatorial
optimization)

VSM
[90C09, 90C10]
(see: Optimization in classifying text documents)

VSM
[90C09, 90C10]
(see: Optimization in classifying text documents)

VSP
[68M20, 90B06, 90B10, 90B35, 90B80, 90C10, 90C27]
(see: Vehicle scheduling)

VSP see: p-—

W

(w,i) see: subdivision via—
w-weighted Tchebycheff metric

[90C11, 90C29]
(see:Multi-objective mixed integer programming)

W�-algebra
[01A99, 90C99]
(see: Von Neumann, John)

wait see: zero- —
wait-and-see

[90C15]
(see: Two-stage stochastic programs with recourse)

waits see: younger brother —
Walford-one algorithm see: Smith–—
Walford one-reducible graph see: Smith–—
walk

[90C35]
(see:Minimum cost flow problem)

walk see: directed—
walk search see: random—
Walker method see: overdetermined Yule–—
Wallenius procedure see: Zionts–—

Walras law
[91B50]
(see:Walrasian price equilibrium)

Walras law
[91B50]
(see:Walrasian price equilibrium)

Walrasian price equilibrium
(91B50)
(referred to in: Equilibrium networks; Financial
equilibrium;Generalizedmonotonicity: applications to
variational inequalities and equilibrium problems;
Oligopolistic market equilibrium; Spatial price
equilibrium; Traffic network equilibrium)
(refers to: Equilibrium networks; Financial equilibrium;
Generalized monotonicity: applications to variational
inequalities and equilibrium problems;Oligopolistic
market equilibrium; Spatial price equilibrium; Traffic
network equilibrium)

Walrasian price equilibrium
[91B50]
(see:Walrasian price equilibrium)

Wang algorithm see: Goldfarb–—
Wardrop first principle

[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

Wardrop second principle
[90B06, 90B20, 91B50]
(see: Traffic network equilibrium)

Warehouse location problem
(90B80, 90B85)
(referred to in: Combinatorial optimization algorithms in
resource allocation problems; Facilities layout problems;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Single facility location: circle covering problem;
Single facility location: multi-objective euclidean distance
location; Single facility location: multi-objective rectilinear
distance location; Stochastic transportation and location
problems;Voronoi diagrams in facility location)
(refers to: Combinatorial optimization algorithms in
resource allocation problems; Competitive facility location;
Facility location with externalities; Facility location
problems with spatial interaction; Facility location with
staircase costs; Global optimization inWeber’s problem
with attraction and repulsion;MINLP: application in
facility location-allocation;Multifacility and restricted
location problems;Network location: covering problems;
Optimizing facility location with euclidean and rectilinear
distances; Production-distribution system design problem;
Resource allocation for epidemic control; Single facility
location: circle covering problem; Single facility location:
multi-objective euclidean distance location; Single facility
location: multi-objective rectilinear distance location;
Stochastic transportation and location problems;Voronoi
diagrams in facility location)
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warehouse location problem
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

warmstart see: advanced—
Wastewater system, optimization of

(76D55)
water capacity constraints see:maximum oil, gas and—
water demand

[90C30, 90C35]
(see: Optimization in water resources)

water environment see:minimizing the degradation in quality
of both—

water pumping facilities see: surface—
water resource planning

[90C30, 90C35]
(see: Optimization in water resources)

water resource systems see: conjunctive use of—
water resources see: Optimization in—; stochastic approach to

optimization in—
water resources planning under uncertainty on hydrological

exogenous inflow and demand
[90C30, 90C35]
(see: Optimization in water resources)

water resources policies see: nonanticipative—;
nonanticipativity—

water storage capacity see: nodes with—
water transportation systems

[90C30, 90C35]
(see: Optimization in water resources)

wavelength-division multiplexing
[05C85]
(see: Directed tree networks)

wavelengths see: assignment of —
way analysis of variance see: one- —
way compatibility see: both- —
way graph partitioning problem see: k- —
way polytope see: k-—
way table see: k- —
way transportation polytope see: k- —
weak assumptions see: under—
weak compactness

[46A22, 49J35, 49J40, 54D05, 54H25, 55M20, 91A05]
(see:Minimax theorems)

weak convergence
[90C15]
(see: Approximation of extremum problems with
probability functionals)

weak convergence of probability measures
[90C11, 90C15, 90C31]
(see: Stochastic integer programming: continuity, stability,
rates of convergence)

weak discrete convergence
[90C15]
(see: Approximation of extremum problems with
probability functionals)

weak duality
[90C06, 90C30]
(see: Duality for semidefinite programming; Lagrangian
duality: BASICS; Saddle point theory and optimality
conditions)

weak duality see: strong and—

weak duality relation
[49K05, 49K10, 49K15, 49K20]
(see: Duality in optimal control with first order differential
equations)

weak duality result
[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

weak duality theorem
[49-XX, 90-XX, 93-XX]
(see: Duality theory: monoduality in convex optimization)

weak efficiency
[90C29]
(see: Generalized concavity in multi-objective optimization)

weak efficiency see: local —
weak extremal

[41A10, 47N10, 49K15, 49K27]
(see:High-order maximum principle for abnormal
extremals)

weak extremal see: abnormal —
weak homomorphism

[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

weak minimizer
[49K27, 90C29, 90C48]
(see: Set-valued optimization)

weak order
[90-XX, 90C29]
(see: Outranking methods; Preference modeling)

weak prespecification
[03B52, 03E72, 47S40, 68T27, 68T35, 68Uxx, 90Bxx, 91Axx,
91B06, 92C60]
(see: Boolean and fuzzy relations)

weak principle of optimality
[90C31, 90C39]
(see:Multiple objective dynamic programming)

Weak Slater CQ
[49K27, 49K40, 90C30, 90C31]
(see: First order constraint qualifications)

weak stationarity
[58C20, 58E30, 90C46, 90C48]
(see: Nonsmooth analysis: weak stationarity)

weak stationarity see: Nonsmooth analysis: —
weak tangent

[49K27, 58C20, 58E30, 90C48]
(see: Nonsmooth analysis: Fréchet subdifferentials)

weakly efficient
[90C11, 90C29]
(see:Multi-objective mixed integer programming;
Multi-objective optimization: pareto optimal solutions,
properties)

weakly efficient point
[90C29]
(see: Generalized concavity in multi-objective optimization)

weakly efficient point see: local—
weakly efficient solution

[90C29]
(see:Multiple objective programming support)

weakly efficient solution
[90C29]
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(see:Multi-objective optimization: pareto optimal
solutions, properties)

weakly informed
(see: Beam selection in radiotherapy treatment design)

weakly L1 (v)-differentiable family of measures
[90C15]
(see: Derivatives of probability measures)

weakly necessary constraint
[90C05, 90C20]
(see: Redundancy in nonlinear programs)

weakly nondominated solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties;Multiple objective programming
support)

weakly nondominated solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

weakly noninferior solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

weakly noninferior solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

weakly overtaking optimality
[49Jxx, 91Axx]
(see: Infinite horizon control and dynamic games)

weakly Pareto optimal solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

weakly Pareto optimal solution
[90C29]
(see:Multi-objective optimization: pareto optimal
solutions, properties)

weakly polynomial time algorithm
[90C35]
(see:Minimum cost flow problem)

weakly pseudoconcave function see: U-—
wealth see: surplus—
weather

(see: State of the art in modeling agricultural systems)
Weber objective function see:multifacility—
Weber problem

[90B85, 90C26]
(see:MINLP: application in facility location-allocation;
Multifacility and restricted location problems)

Weber problem
[90B85, 90C26, 90C90]
(see: Global optimization inWeber’s problemwith
attraction and repulsion;Multifacility and restricted
location problems)

Weber problem see: generalized—;multifacility—;
Steiner–—

Weber problem with attraction and repulsion
[90C26, 90C90]
(see: Global optimization inWeber’s problemwith
attraction and repulsion)

Weber’s problem with attraction and repulsion see: Global
optimization in—

Weber–Rawls objective function see:multifacility—
Weber–Rawls problem

[90B85]
(see:Multifacility and restricted location problems)

Weber–Rawls problem
[90B85]
(see:Multifacility and restricted location problems)

wedge see: universal —
wedge filters

[68W01, 90-00, 90C90, 92-08, 92C50]
(see: Optimization based frameworkfor radiation therapy)

wedge orientation optimization see: beam angle selection
and—

weekly space-time network
(see: Railroad locomotive scheduling)

weight
[68Q20, 90-XX, 90B10, 90C26, 90C27]
(see: Invexity and its applications;Optimal triangulations;
Outranking methods; Shortest path tree algorithms)

weight bounds see: lower—
weight clique see:maximum—
weight clique problem see:maximum—
weight CMST see: nonunit —; unit —
weight commonmutated sequence see:minimum—
weight of a constraint

[90C10]
(see:Maximum constraint satisfaction: relaxations and
upper bounds)

weight cost see:mean- —
weight of a customer

[90B80, 90B85]
(see:Warehouse location problem)

weight cut see:maximummean- —
weight of evidence see: expected —
weight feedback arc set problem see:minimum—
weight function of a matroid

[90C09, 90C10]
(see:Matroids)

weight independent sets see:maximum—
weight optimization see: beam—
weight Steiner triangulation see:minimum—
weight trace see:maximum—
weight triangulation see:minimum—
weight vector

[05C60, 05C69, 05C85, 37B25, 68W01, 90C20, 90C27, 90C35,
90C59, 91A22]
(see:Heuristics for maximum clique and independent set;
Replicator dynamics in combinatorial optimization)

weighted
[90C09, 90C10]
(see:Matroids)

weighted assignment model see: the multi-resource—
weighted barycenter

[90C20]
(see: Standard quadratic optimization problems:
applications)

weighted bipartite matching problem
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)
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weighted characteristic vector
[05C60, 05C69, 05C85, 37B25, 68W01, 90C20, 90C27, 90C35,
90C59, 91A22]
(see:Heuristics for maximum clique and independent set;
Replicator dynamics in combinatorial optimization)

weighted clique number
[05C60, 05C69, 05C85, 37B25, 68W01, 90C20, 90C27, 90C35,
90C59, 91A22]
(see:Heuristics for maximum clique and independent set;
Replicator dynamics in combinatorial optimization)

weighted coloring
[90C35]
(see: Graph coloring)

weighted distance see:maximum—
weighted Euclidean norm see: A-—
weighted feedback vertex set problem see:minimum—
weighted graph

[90C35]
(see: Feedback set problems)

weighted graph bipartization problem see:minimum—
weighted graph coloring problem

[90C35]
(see: Graph coloring)

weighted graph planarization see: branch and bound
algorithm for—

weighted independent set see:maximum—
weighted least squares

[90C30, 90C52, 90C53, 90C55]
(see: Gauss–Newton method: Least squares, relation to
Newton’s method)

weighted least squares problem
[65Fxx]
(see: Least squares problems)

weighted matching problem
[90C05, 90C10, 90C27, 90C35]
(see: Assignment and matching)

weighted matroid
[90C09, 90C10]
(see:Matroids)

weighted MAX-SAT problem
[03B05, 68P10, 68Q25, 68R05, 68T15, 68T20, 90C09, 90C27,
94C10]
(see:Maximum satisfiability problem)

weighted maximum norm
[90C30, 90C52, 90C53, 90C55]
(see: Asynchronous distributed optimization algorithms)

weighted planar graph see:maximum—
weighted problem in OR

[90B80, 90B85]
(see:Warehouse location problem)

weighted stability number
[05C69, 05C85, 68W01, 90C59]
(see:Heuristics for maximum clique and independent set)

weighted-sums program
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

weighted-sums programs with constraints
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

weighted Tchebycheff metric see: w-—

weighted tree association graph
[05C60, 05C69, 37B25, 90C20, 90C27, 90C35, 90C59, 91A22]
(see: Replicator dynamics in combinatorial optimization)

weighted vertex cover see:minimum—
weighter sup norm

[49L20, 90C40]
(see: Dynamic programming: stochastic shortest path
problems)

weighter sup-norm contraction
[49L99]
(see: Dynamic programming: average cost per stage
problems)

weighting space reduction
[90C29]
(see:Multi-objective optimization; Interactivemethods for
preference value functions)

weights
[65K05, 90C27, 90C29, 90C30, 90C57, 91C15]
(see:Multi-objective optimization; Interactivemethods for
preference value functions;Optimization-based
visualization)

weights see: barycentric —; vertex —
Weir dual see:Mond–—
Weiszfeld procedure

[90B85]
(see: Single facility location: multi-objective euclidean
distance location)

well see: type A—; type B—
well bore model

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

well-conditioned matrix
[15-XX, 65-XX, 90-XX]
(see: Cholesky factorization)

well-conditioned problem
[90C31]
(see: Sensitivity and stability in NLP)

well-defined start-ups
(see: Planning in the process industry)

well-determined system of nonlinear equations
[90C30]
(see: Nonlinear least squares problems)

well function see: double-—
well oil flowrate

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

well oil rate constraints see: upper and lower—
well-posed

[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

well-posed problem
[90C05, 90C25, 90C29, 90C30, 90C31]
(see: Nondifferentiable optimization: parametric
programming)

well-posed problem see: Levitin–Polyak—
well-posedness

[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)

well-posedness
[49J40, 49M30, 65K05, 65M30, 65M32]
(see: Ill-posed variational problems)
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well scheduling see:Mixed integer optimization in—
well-separated pair decomposition

[05C15, 05C62, 05C69, 05C85, 90C27, 90C59]
(see: Optimization problems in unit-disk graphs)

well switches see:maximum number of —
wells see: connection of—; operational status of the—; set

of—; type A—; type B—
wells of type a see: gas lift—; naturally flowing—
wells of type b see: gas lift—; naturally flowing—
West corner rule see: North–—
Weyl fundamental theorem

[15A39, 90C05]
(see: Tucker homogeneous systems of linear relations)

what-if-when scenarios
[90C06, 90C10, 90C11, 90C30, 90C57, 90C90]
(see:Modeling difficult optimization problems)

wheel procedure see: roulette —
when scenarios see: what-if- —
Whitney savings heuristic

[68T99, 90C27]
(see: Capacitatedminimum spanning trees)

Whitney statistic see:Mann–—
wide process networks under uncertainty see: Bilevel

programming framework for enterprise- —
width see: excess —
Wiener–Hopf equations

[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

Wiener–Hopf equations
[49J40, 62H30, 65C30, 65C40, 65C50, 65C60, 65Cxx, 90C05]
(see: Variational principles)

Wiener measure
[65K05, 68Q05, 68Q10, 68Q25, 90C05, 90C25, 90C26]
(see: Information-based complexity and information-based
optimization)

Wiener model
[62C10, 65K05, 90C10, 90C15, 90C26]
(see: Bayesian global optimization)

Wiener probability measure
[60J65, 68Q25]
(see: Adaptive global search)

Wiener process
[60J65, 68Q25]
(see: Adaptive global search)

Wiener process
[60J65, 68Q25]
(see: Adaptive global search)

wilhelm see: Leibniz, gottfried—
Wilhelm Leibniz see: Gottfried—
Williams algorithm see: Esau–—
Wilson equation

[90C26, 90C90]
(see: Global optimization in phase and chemical reaction
equilibrium)

Wilson equation see: regular solution of the—
window constraints see: time—
windows see: time—; vehicle routing problem with time—
wiring problem see: backboard—
with mathematical rigor

[65G20, 65G30, 65G40, 65H20]

(see: Interval analysis: unconstrained and constrained
optimization)

(with respect to another) see: pseudomonotone bifunction—
without decomposition see: heat exchanger network

synthesis —
without pivoting see: guaranteed to be stable—
without using (sub)gradients parametric representations see:

necessary optimality condition—
Wolfe see: Frank–—
Wolfe algorithm see: Frank–—; regularized Frank–—
Wolfe decomposition see: Dantzig– —; nonlinear Dantzig– —;

regularized Frank–—
Wolfe dual

[90C26]
(see: Invexity and its applications)

Wolfe dual
[90C26]
(see: Invexity and its applications)

Wolfe reduced gradient method
[65K05, 65K10]
(see: ABS algorithms for optimization)

Wolfe test
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Wolfowitz method see: Keifer–—
Woodbury formula see: Sherman–Morrison–—
wOR

[76T30, 90C11, 90C90]
(see:Mixed integer optimization in well scheduling)

word patterns
[90C09, 90C10]
(see: Optimization in classifying text documents)

word patterns
[90C09, 90C10]
(see: Optimization in classifying text documents)

words see:meaningful—
work

[03D15, 68Q05, 68Q15]
(see: Parallel computing: complexity classes)

work see: principle of virtual —
work first algorithm see:mandatory—
working basis

[49M25, 90-08, 90C05, 90C06, 90C08, 90C15]
(see: Simple recourse problem: primal method)

working basis
[49M25, 90-08, 90C05, 90C06, 90C08, 90C15]
(see: Simple recourse problem: primal method)

workloadBalanced
[65K05, 65Y05, 65Y10, 65Y20, 68W10]
(see: Interval analysis: parallel methods for global
optimization)

world see:model —; real —
world problem see: real- —
Worsley bounds see: Hunter– —
Worsley upper bound see: Hunter– —
worst-case analysis

[60J65, 62C20, 68Q25, 90C15]
(see: Adaptive global search; Stochastic programming:
minimax approach)
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worst-case analysis
[62C20, 90C15]
(see: Stochastic programming: minimax approach)

worst-case approach
[90C15, 90C26, 90C33]
(see: Stochastic bilevel programs)

worst-case complexity
[90C35]
(see:Minimum cost flow problem)

worst-case optimality
[65D25, 68W30]
(see: Complexity of gradients, Jacobians, and Hessians)

worst-case performance guarantee
[05C85]
(see: Directed tree networks)

WPE
[91B50]
(see:Walrasian price equilibrium)

wrapping effect
[65G20, 65G30, 65G40, 65L99]
(see: Interval analysis: differential equations)

X
x see: decision variables —
X-ray crystallography: Shake and bake approach see: Phase

problem in—
X-ray diffraction data see: Optimization techniques for phase

retrieval based on single-crystal —
x variables see: full space of —

Y
Yadegar linearization see: Frieze– —
Ye potential function see: Tanabe–Todd–—
yield see:˝-based—
yield curve see: interest rate—
yield to maturity

[90C34, 91B28]
(see: Semi-infinite programming and applications in
finance)

yOP
(see: Integrated planning and scheduling)

York Times see: the New—
Yosida-Hewitt decomposition

[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

Yosida–Hewitt theorem
[90C15]
(see: Stochastic programming: nonanticipativity and
lagrangemultipliers)

Young inequality
[90C05, 90C25]
(see: Young programming)

Young inequality see: Fenchel– —
Young programming

(90C25, 90C05)
(refers to: Linear programming)

Young programming
[90C05, 90C25]
(see: Young programming)

younger brother waits
[49J35, 49K35, 62C20, 91A05, 91A40]
(see:Minimax game tree searching)

Yuan algorithm see: Dai–—
Yule–Walker method see: overdetermined —

Z

z-critical cone
[90C30, 90C33]
(see: Optimization with equilibrium constraints:
A piecewise SQP approach)

Zamolodchikov differential equation see: Knizhnik–—
Zangwill algorithm

[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

Zangwill theorem
[90C30]
(see: Rosen’s method, global convergence, and Powell’s
conjecture)

zemel measure
[90B06, 90B35, 90C06, 90C10, 90C27, 90C39, 90C57, 90C59,
90C60, 90C90]
(see: Traveling salesman problem)

Zeolite Association see: atlas of the International —
zeolite separation and catalysis: optimizationmethods see:

Shape selective—
zero see: homogeneous of degree —; transversal to—
zero-epi mapping

[90C33]
(see: Topological methods in complementarity theory)

zero-epi mapping
[90C33]
(see: Topological methods in complementarity theory)

zero-error capacity see: shannon—
zero-Inventory Ordering

[55M05, 90B05, 90B10, 90C11, 90C39, 90C90]
(see: Economic lot-sizing problem)

zero-nonzero pattern
[90C09, 90C10]
(see: Combinatorial matrix analysis)

zero-one integer feasibility problem
[90C25, 90C33]
(see: Integer linear complementary problem)

zero-one integer problem see: linear —
zero-one integer program

[90C90, 91A65, 91B99]
(see: Bilevel programming: applications)

zero-one integer programming
[90C25, 90C33]
(see: Integer linear complementary problem)

zero-one knapsack problem
[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

zero-one knapsack problem see:multidimensional—
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zero-one optimization
[49M37, 90C26, 91A10]
(see: Bilevel programming)

zero-one problem see: quadratic—
zero-one programming see: Fractional—; pure—
zero-one programming problem

[90C10, 90C11, 90C27, 90C57]
(see: Integer programming)

zero pattern see: positive-negative- —
zero residual problem

[90C30]
(see: Nonlinear least squares problems)

zero-sum game see: two-person—
zero-sum perfect-information game see: two-player —
zero-wait

[90C26]
(see:MINLP: design and scheduling of batch processes)

zeros
[12D10, 12Y05, 13P10]
(see: Gröbner bases for polynomial equations)

Zhegalkin algebra
[03B50, 68T15, 68T30]
(see: Finite complete systems of many-valued logic algebras)

Ziont criss-cross method
[05B35, 65K05, 90C05, 90C20, 90C33]
(see: Criss-cross pivoting rules)

Zionts–Wallenius procedure
[90C11, 90C29]
(see:Multi-objective mixed integer programming)

zone consistency
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

zone of a function
[68W10, 90B15, 90C06, 90C30]
(see: Stochastic network problems: massively parallel
solution)

zonotope
[05A, 15A, 51M, 52A, 52B, 52C, 62H, 68Q, 68R, 68U, 68W,
90B, 90C]
(see: Convex discrete optimization)

Zuselevich see: Shor, Naum—
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A
Aarts, E. see:Heuristics for maximum clique and independent

set
Aasen, J. see: Symmetric systems of linear equations
Abaffy, J. see: ABS algorithms for linear equations and linear

least squares
Abel, N.H. see:Hilbert’s thirteenth problem; Lagrange,

Joseph-Louis
Aberth, O. see: Interval analysis: differential equations
Aboudi, R. see:Multidimensional knapsack problems
Abounadi, J. see: Resource allocation for epidemic control
Ackerman, E. see: Resource allocation for epidemic control
Adams, W.P. see: Disjunctive programming;Quadratic

assignment problem; Time-dependent traveling salesman
problem

Adler, I. see: Complexity theory: quadratic programming;
Linear programming: interior point methods; Probabilistic
analysis of simplex algorithms

Afentakis, P. see: Inventory management in supply chains
Ahmed, S. see: Chemical process planning
Ahuja, R.K. see: Greedy randomized adaptive search

procedures;Maximum flow problem
Aiyoshi, E. see: Bilevel linear programming; Bilevel

programming in management
Akgul, M. see: Complexity of degeneracy
Akl, S.G. see:Minimax game tree searching
Aksoy, Y. see:Multi-objective mixed integer programming
Al-Baali, M. see: Nonlinear least squares: Newton-type

methods
Al-Khayyal, F.A. see: Global optimization inWeber’s problem

with attraction and repulsion
Ali, A. see:Multicommodity flow problems
Almogy, Y. see: Fractional programming
Almquist, K. see:Minimax game tree searching
Althöfer, I. see:Minimax game tree searching
Altinkemer, K. see: Capacitatedminimum spanning trees
Altiok, T. see: Operations researchmodels for supply chain

management and design
Alves, M.J. see:Multi-objectivemixed integer programming
Alvim, A.C.F. see: Greedy randomized adaptive search

procedures
Aly, S. see: Design optimization in computational fluid

dynamics
Amberg, A. see: Capacitatedminimum spanning trees
Anandalingam, G. see: Bilevel linear programming; Bilevel

programming in management

Anderson, J.M. see: Alignment problem
Anderson, J.R. see: Neural networks for combinatorial

optimization
Anderson, R.M. see: Resource allocation for epidemic control
Ando, K. see: Combinatorial optimization algorithms in

resource allocation problems
Andricioaei, I. see: Simulated annealing methods in protein

folding
Anstreicher, K.M. see: Fractional programming
Apprey, V. see: Bilevel programming in management
Arbel, A. see:Multiple objective programming support
Argand, J.R. see: Gauss, Carl Friedrich
Aristotle see: Operations research
Armijo, L. see: Local attractors for gradient-related descent

iterations
Armstrong, R.D. see: Overdetermined systems of linear

equations
Arnol’d, V. see:Hilbert’s thirteenth problem
Arntzen, B.C. see: Operations research models for supply chain

management and design
Arora, S. see: Quadratic assignment problem; Steiner tree

problems
Arrow, K. see: Financial equilibrium;Generalized concavity in

multi-objective optimization; Inventory management in
supply chains;Multilevel optimization in mechanics

Asaithambi, N.S. see: Interval global optimization
Asano, T. see:Maximum satisfiability problem
Ashford, R.W. see: Financial applications of multicriteria

analysis
Asmuth, R. see: Spatial price equilibrium
Assad, A.A. see:Multicommodity flow problems
Athans, M. see: Robust control
Auchmuty, G. see: Quasidifferentiable optimization:

variational formulations
Avakov, E.R. see:High-order maximum principle for

abnormal extremals
Averbakh, I. see:Multidimensional knapsack problems
Avis, D. see: Complexity of degeneracy; Least-index anticycling

rules; Linear programming: Klee–Minty examples
Avriel, M. see:MINLP: application in facility

location-allocation
Axsäter, S. see: Inventory management in supply chains
Ayer, M. see: Isotonic regression problems
Ayguagé, E. see: Alignment problem
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B

Bäck, T. see:Heuristics for maximum clique and independent
set

Bafna, V. see: Feedback set problems
Bagajewicz, M.J. see:MINLP: mass and heat exchanger

networks
Baganha, M.P. see: Operations researchmodels for supply

chain management and design
Bajgier, S.M. see:Multicriteria sorting methods
Balabanov, V. see:Multidisciplinary design optimization
Balakrishnan, A. see: Operations research models for supply

chain management and design
Balakrishnan, V. see: Robust control
Balas, E. see: Disjunctive programming; Evolutionary

algorithms in combinatorial optimization; Global
optimization inWeber’s problemwith attraction and
repulsion; Integer programming; Integer programming:
branch and cut algorithms

Ballard, B.W. see:Minimax game tree searching
Ballone, P. see: Global optimization in Lennard–Jones and

morse clusters
Banach, S. see: Theorems of the alternative and optimization
Bandler, W. see: Boolean and fuzzy relations; Checklist

paradigm semantics for fuzzy logics
Bar-Yeruda, R. see: Feedback set problems
Barbosa-Póvoa, A.P.F.D. see:MINLP: design and scheduling of

batch processes
Bard, J.F. see: Bilevel programming in management
Bard, Y. see: Principal pivoting methods for linear

complementarity problems
Barmish, B.R. see: Robust control
Barnes, E. see: Linear programming: interior point methods
Barnett, D. see:Multicommodity flow problems
Barnhart, C. see:Multicommodity flow problems
Barrodale, I. see: Overdetermined systems of linear equations
Barros, A.I. see: Fractional programming
Barrow, H.G. see: Replicator dynamics in combinatorial

optimization
Bartels, R. see: Gauss, Carl Friedrich
Bartholomew-Biggs, M.C. see: Nonlinear least squares:

Newton-type methods
Barton, L.G. see: Piecewise linear network flow problems
Bassalygo, L. see:Hilbert’s thirteenth problem
Battiti, R. see:Heuristics for maximum clique and independent

set;Multidimensional knapsack problems
Baudet, G. see:Minimax game tree searching
Bauer, F.L. see: Complexity of gradients, Jacobians, and

Hessians
Baur, W. see: Automatic differentiation: introduction, history

and rounding error estimation
Beale, E.M.L. see: Least-index anticycling rules; Lexicographic

pivoting rules; Stochastic linear programming:
decomposition and cutting planes

Beall, C.L. see: Frequency assignment problem
Beasley, J.E. see: Evolutionary algorithms in combinatorial

optimization;Multidimensional knapsack problems; Set
covering, packing and partitioning problems

Becker, A. see: Feedback set problems

Beckmann, M.J. see: Dynamic traffic networks; Equilibrium
networks;Quadratic assignment problem; Traffic network
equilibrium

Bélisle, C.J.P. see: Random search methods
Bellman, R. see: Dynamic programming: optimal control

applications; Image space approach to optimization;
Multiple objective dynamic programming; Shortest path
tree algorithms

Ben-Tal, A. see: Second order constraint qualifications
Benders, J.F. see: Stochastic linear programming:

decomposition and cutting planes
Benichou, M. see: Integer programming: branch and bound

methods
Benoit, C. see: Least squares problems
Benton, W.C. see: Operations researchmodels for supply chain

management and design
Berger, A.J. see: Stochastic programming: parallel

factorization of structured matrices
Bergeron, M. see: Portfolio selection and multicriteria analysis
Berghammer, R. see: Boolean and fuzzy relations
Berman, O. see: Facility location with externalities
Berman, P. see: Feedback set problems; Steiner tree problems
Bern, M.W. see: Steiner tree problems
Bernoulli, Jakob see: Variational principles
Bernoulli, Johann see: Variational principles
Bertocchi, M. see: ABS algorithms for linear equations and

linear least squares
Bertsekas, D. see: Local attractors for gradient-related descent

iterations; Shortest path tree algorithms
Bertsimas, D.J. see: Survivable networks
Besanko, I.E. see: Interval global optimization
Best, M.J. see: Isotonic regression problems; Standard

quadratic optimization problems: applications
Bett, J.T. see: Nonlinear least squares: Newton-type methods
Beuthe, M. see: Preference disaggregation
Bhaskar, K. see: Financial applications of multicriteria analysis
Bialas, W.F. see: Bilevel linear programming; Bilevel

programming in management
Bickel, T.C. see: Chemical process planning
Biegler, L.T. see:MINLP: mass and heat exchanger networks;

Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
applications in the process industry; Successive quadratic
programming: decompositionmethods

Biggs, M.C. see: Successive quadratic programming
Billington, C. see: Operations research models for supply chain

management and design
Binkley, J. see:Multicommodity flow problems
Birge, J.R. see:History of optimization; Stochastic

programming: parallel factorization of structured matrices;
Stochastic programs with recourse: upper bounds

Bischof, C. see: Automatic differentiation: parallel
computation

Bixby, R. see: Alignment problem
Black, F. see: Financial equilibrium
Blackwell, D. see: Dynamic programming: average cost per

stage problems;Dynamic programming: discounted
problems;Dynamic programming: undiscounted problems

Bland, R.G. see: Criss-cross pivoting rules; Least-index
anticycling rules;Orientedmatroids
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Blau, G.J. see: Global optimization in generalized geometric
programming

Blom, R. see: Fractional programming
Blum, E. see: Generalized monotonicity: applications to

variational inequalities and equilibrium problems
Board, J.L.G. see: Portfolio selection: markowitz

mean-variance model
Bodon, E. see: ABS algorithms for linear equations and linear

least squares
Boffey, T.B. see: Communication network assignment problem
Boggs, P.T. see: Generalized total least squares; Nonlinear least

squares problems
Bogle, I.D.L. see: Interval analysis: application to chemical

engineering design problems
Böhm, M. see:Minimax game tree searching
Bojkov, B. see: Dynamic programming: optimal control

applications
Bomze, I. see: Replicator dynamics in combinatorial

optimization
Boncompte, M. see: Fractional programming
Bonferroni, C.E. see: Approximation of multivariate

probability integrals
Bookbinder, J.H. see: Operations researchmodels for supply

chain management and design
Boorstyn, R.R. see: Capacitatedminimum spanning trees
Booth, K. see: Graph planarization
Borchers, A. see: Steiner tree problems
Borchers, B. see:MINLP: branch and boundmethods
Border, K.C. see:Walrasian price equilibrium
Borgwardt, K.H. see: Probabilistic analysis of simplex

algorithms
Born, M. see: Carathéodory, Constantine
Bornstein, C.T. see: Piecewise linear network flow problems
Borodin, A. see: Parallel computing: complexity classes
Borůvka, O. see: Boolean and fuzzy relations;Network design

problems
Bouyssou, D. see: Preference disaggregation
Bowman, V.J. see:Multi-objective integer linear programming;

Multi-objectivemixed integer programming
Box, G.E. see: Forecasting
Boyd, S.P. see: Robust control
Boyle, P.P. see: Operations research and financial markets
Bracken, J. see: Bilevel programming: introduction, history

and overview
Braid, R.M. see: Facility location with externalities
Bramel, J. see: Set covering, packing and partitioning problems
Bramley, R. see: Relaxation in projectionmethods
Brandeau, M.L. see: Facility location with externalities;

Resource allocation for epidemic control
Brandstädt, A. see: Feedback set problems
Brealey, R.A. see: Portfolio selection: markowitz

mean-variance model
Breeden, D.T. see: Financial equilibrium
Bregman, L.M. see: Young programming
Brelaz, D. see: Frequency assignment problem
Brennecke, J.F. see: Global optimization: application to phase

equilibrium problems
Bresina, J.L. see: Greedy randomized adaptive search

procedures
Brezis, H. see: Generalized monotonicity: applications to

variational inequalities and equilibrium problems

Brock, W.A. see: Infinite horizon control and dynamic games
Broeckx, F. see:Quadratic assignment problem
Brooks, C.L. see: Simulated annealing methods in protein

folding
Brosilow, C.B. see:Multilevel optimization in mechanics
Browder, F. see: Cost approximation algorithms;Generalized

monotonicity: applications to variational inequalities and
equilibrium problems

Brown, K.M. see: Nonlinear least squares: Newton-type
methods

Brown, R.G. see: Forecasting
Broyden, C.G. see: ABS algorithms for linear equations and

linear least squares; Broyden family of methods and the
BFGS update; Farkas lemma; Nonlinear least squares:
Newton-type methods

Brucker, P. see: Quadratic knapsack
Brunk, H.D. see: Isotonic regression problems
Buehler, R.J. see: Conjugate-gradientmethods
Bui, T.N. see:Heuristics for maximum clique and independent

set
Bulger, D.W. see: Random search methods
Bulteau, J.P. see: Nonlinear least squares: trust regionmethods
Bunch, J.R. see: Least squares problems
Burch, S.F. see:Maximum entropy principle: image

reconstruction
Burgee, S. see:Multidisciplinary design optimization
Burkard, R.E. see: Biquadratic assignment problem;

Communication network assignment problem;Quadratic
assignment problem

Burke, J.V. see: Composite nonsmooth optimization
Burks, A. see: Von Neumann, John
Burns, L.B. see: Operations researchmodels for supply chain

management and design
Burstall, R.M. see: Replicator dynamics in combinatorial

optimization
Büttner, L. see: Gauss, Carl Friedrich
Bykadorov, I.A. see: Fractional programming
Byrd, R.H. see: Generalized total least squares;Nonlinear least

squares: trust regionmethods; Rosen’s method, global
convergence, and Powell’s conjecture; Semidefinite
programming and determinant maximization; Successive
quadratic programming: applications in the process
industry

Byrne, R.P. see: Interval analysis: application to chemical
engineering design problems

C
Cachon, G.P. see: Operations researchmodels for supply chain

management and design
Cai, J. see: Graph planarization
Cai, M. see: Feedback set problems
Calamai, P.H. see: Global optimization inWeber’s problem

with attraction and repulsion
Caley, A. see: Symmetric systems of linear equations
Calvin, J.M. see: Information-based complexity and

information-based optimization
Camm, J.D. see: Operations researchmodels for supply chain

management and design
Campbell, M.S. see:Minimax game tree searching
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Candler, W. see: Bilevel linear programming; Bilevel
programming: introduction, history and overview; Bilevel
programming in management

Cantor, D.G. see: Simplicial decomposition
Cantor, G. see: Vector optimization
Carathéodory, C. see: Image space approach to optimization
Carle, A. see: Automatic differentiation: parallel computation
Carlier, J. see: Job-shop scheduling problem
Carpenter, T.J. see: Financial optimization
Cartan, E. see: Variational principles
Carter, B. see:Heuristics for maximum clique and

independent set
Carvalho, L.A.V. see: Feasible sequential quadratic

programming
Cauchy, A.-L. see: Conjugate-gradientmethods;

Unconstrained nonlinear optimization: Newton–Cauchy
framework

Cayley, A. see:Matrix completion problems
Cederbaum, I. see: Graph planarization
Çela, E. see: Biquadratic assignment problem; Communication

network assignment problem
Černý, V. see: Quadratic assignment problem
Chaitin, G. see: Kolmogorov complexity
Chakravarti, N. see: Isotonic regression problems
Chakravarty, S. see: Infinite horizon control and dynamic

games
Chamberlain, G. see: Financial equilibrium
Chan, L.M.A. see: Operations research models for supply chain

management and design
Chandra, P. see: Operations researchmodels for supply chain

management and design
Chandrasekaran, R. see: Complexity of degeneracy; Simplicial

pivoting algorithms for integer programming
Chandru, V. see: Simplicial pivoting algorithms for integer

programming
Chang, K.-C. see:Hemivariational inequalities: eigenvalue

problems;Nonconvex-nonsmooth calculus of variations
Chang, M.S. see: Feedback set problems
Chang, Y.Y. see: Criss-cross pivoting rules
Chapman, B.M. see: Alignment problem
Charnes, A. see: Decision support systems with multiple

criteria; Extremum problems with probability functions:
kernel type solutionmethods; Fractional programming;
Lexicographic pivoting rules;Multicriteria sorting
methods; Preference disaggregation; Probabilistic
constrained linear programming: duality theory;
Semi-infinite programming, semidefinite programming
and perfect duality

Chebotarev, N. see:Hilbert’s thirteenth problem
Chebyshev, P.L. see: Nondifferentiable optimization;

Nondifferentiable optimization: minimax problems
Chen, D. see: Steiner tree problems
Chen, H.S. see: Successive quadratic programming:

decompositionmethods
Chen, J.J.J. see: Global optimization of heat exchanger

networks
Chen, L.H. see: Numerical methods for unary optimization
Chen, M. see: Alignment problem
Chen, M.L. see: Network location: covering problems
Chen, P.-C. see: Global optimization inWeber’s problem with

attraction and repulsion

Chen, T.-S. see: Alignment problem
Chen, X. see: Nonsmooth and smoothing methods for

nonlinear complementarity problems and variational
inequalities

Chenery, H.B. see: Linear ordering problem
Cheney, W. see: Nondifferentiable optimization;

Nondifferentiable optimization: cutting plane methods
Cheriyan, J. see:Maximum flow problem
Chesser, L. see: Portfolio selection and multicriteria analysis
Chiba, T. see: Graph planarization
Chiu, S.S. see: Facility location with externalities
Cho, Y.B. see: Graph planarization
Cholesky, A.L. see: Cholesky factorization; Least squares

problems
Choo, E.-U. see:Multicriteria sortingmethods;Multi-objective

mixed integer programming
Chopra, V.R. see: Portfolio selection: markowitz

mean-variance model
Chou, W. see: Capacitatedminimum spanning trees
Chow, S.N. see: Globally convergent homotopy methods
Chrystal, G. see: Single facility location: circle covering

problem
Chu, A.T.W. see: Estimating data for multicriteria decision

making problems: optimization techniques
Chu, P.C. see: Evolutionary algorithms in combinatorial

optimization;Multidimensional knapsack problems
Chudak, F.A. see: Feedback set problems
Chung, F.R.K. see: Steiner tree problems
Chung, S.-J. see: Complexity of degeneracy
Church, A. see:Modeling languages in optimization: a new

paradigm
Chvátal, V. see: Integer programming; Integer programming:

cutting plane algorithms; Least-index anticycling rules
Ciric, A.R. see:MINLP: heat exchanger network synthesis;

MINLP: reactive distillation column synthesis
Clark, A. see: Inventory management in supply chains
Clark, A.J. see: Operations researchmodels for supply chain

management and design
Clarke, F.H. see:Hemivariational inequalities: applications in

mechanics;Hemivariational inequalities: eigenvalue
problems;Multilevel optimization in mechanics;
Nonconvex energy functions: hemivariational inequalities;
Nondifferentiable optimization; Nonsmooth and
smoothing methods for nonlinear complementarity
problems and variational inequalities;Quasidifferentiable
optimization;Quasidifferentiable optimization: Dini
derivatives, clarke derivatives;Quasidifferentiable
optimization: variational formulations;Quasivariational
inequalities

Clarke, M.R.B. see:Multidimensional knapsack problems
Clausius, R. see: Entropy optimization: shannon measure of

entropy and its properties
Cleary, J.G. see: Interval constraints
Cleveland, A.D. see: Optimization in classifying text

documents
Cleveland, D. see: Optimization in classifying text documents
Clímaco, J. see:Multi-objective mixed integer programming
Cobham, A. see: Complexity classes in optimization
Cohen, J. see: Volume computation for polytopes: strategies

and performances
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Cohen, K.J. see: Portfolio selection: markowitz mean-variance
model

Cohen, M.A. see: Operations research models for supply chain
management and design

Cohon, J.L. see:Multi-objectivemixed integer programming
Coleman, T.F. see: Automatic differentiation: calculation of

Newton steps;Discontinuous optimization
Colson, G. see: Portfolio selection and multicriteria analysis
Conn, A. see: Successive quadratic programming: applications

in the process industry
Conn, A.R. see: Discontinuous optimization;Global

optimization inWeber’s problemwith attraction and
repulsion

Connor, G. see: Financial equilibrium
Conti, P. see: Integer programming: algebraic methods
Cook, S.A. see: Complexity classes in optimization;

Complexity theory; Computational complexity theory;
Finite complete systems of many-valued logic algebras;
NP-complete problems and proof methodology; Parallel
computing: complexity classes

Cooke, K.L. see:Multiple objective dynamic programming
Cooper, W.W. see: Decision support systems with multiple

criteria; Extremum problems with probability functions:
kernel type solution methods; Fractional programming;
Multicriteria sorting methods; Preference disaggregation;
Probabilistic constrained linear programming: duality
theory; Semi-infinite programming, semidefinite
programming and perfect duality

Coorg, S.R. see: Feedback set problems
Corley, H.W. see:Multiple objective dynamic programming
Cottle, R.W. see: Generalized monotonicity: applications to

variational inequalities and equilibrium problems;
Simplicial pivoting algorithms for integer programming

Courant, R. see:History of optimization; Interval global
optimization; Steiner tree problems

Cournot, A. see: Farkas lemma;Oligopolistic market
equilibrium; Second order optimality conditions for
nonlinear optimization; Spatial price equilibrium

Cover, T.M. see: Competitive ratio for portfolio management
Cox, J.C. see: Financial equilibrium
Cozzens, M.B. see: Frequency assignment problem
Crainic, T. see:Multicommodity flow problems
Crama, Y. see:Multidimensional knapsack problems
Craven, B.D. see: Fractional programming
Crooks, P. see: Alignment problem
Cross, H. see:Multilevel optimization in mechanics
Crouzeix, J.P. see: Fractional programming
Crowder, H. see: Integer programming: branch and bound

methods
Crowder, H.P. see: Integer programming: branch and cut

algorithms
Csiszar, I. see: Young programming
Cung, V.-D. see:Minimax game tree searching
Curtis, A.R. see: Automatic differentiation: calculation of

Newton steps
Cyganski, D. see: Quadratic assignment problem
Czyzak, P. see:Multi-objective combinatorial optimization

D
Dadebo, S.A. see: Dynamic programming: optimal control

applications
Daellenbach, H.G. see:Multiple objective dynamic

programming
Dafermos, S.C. see: Dynamic traffic networks; Equilibrium

networks;Oligopolistic market equilibrium; Spatial price
equilibrium; Traffic network equilibrium;Variational
inequalities;Variational inequalities: projected dynamical
system;Walrasian price equilibrium

Dai, Z. see: Steiner tree problems
d’Alembert, J. see: Leibniz, gottfried wilhelm
Dammeyer, F. see:Multidimensional knapsack problems
Dantzig, G.B. see: Complexity of degeneracy;Decomposition

principle of linear programming;History of optimization;
Integer programming: cutting plane algorithms;
Least-index anticycling rules; Lexicographic pivoting rules;
Linear programming;Monte-Carlo simulations for
stochastic optimization;Multicommodity flow problems;
Probabilistic analysis of simplex algorithms; Semi-infinite
programming, semidefinite programming and perfect
duality; Simple recourse problem: primal method;
Stochastic linear programming: decomposition and cutting
planes; Tucker homogeneous systems of linear relations

Darte, A. see: Alignment problem
Daskin, M.S. see: Operations researchmodels for supply chain

management and design; Time-dependent traveling
salesman problem

Davidon, W.C. see: Broyden family of methods and the BFGS
update; Conjugate-gradientmethods; Rosen’s method,
global convergence, and Powell’s conjecture

Davis, L. see: Evolutionary algorithms in combinatorial
optimization

Davis, M. see:Maximum satisfiability problem
de Bruin, A. see:Minimax game tree searching
De Bruyn, C. see: Portfolio selection and multicriteria analysis
de Fermat, P. see:History of optimization
de la Vallée Poussin, Ch. see:History of optimization
de Leeuw, J. see: Preference disaggregation
Deák, I. see: Approximation of multivariate probability

integrals
Debreu, G. see: Financial equilibrium
DeCani, J.S. see: Linear ordering problem
Dedekind, R. see: Inference of monotone boolean functions
DeKluyver, C.A. see:Multiple objective dynamic programming
del Ferro, S. see:Hilbert’s thirteenth problem
Del Vecchio A. see: Operations researchmodels for supply

chain management and design
Delchambre, A. see: Evolutionary algorithms in combinatorial

optimization
Demming, W.E. see: Generalized total least squares
DeMorgan, A. see: Boolean and fuzzy relations
Demyanov, V.F. see: Convexmax-functions; Nonconvex

energy functions: hemivariational inequalities;
Quasidifferentiable optimization;Quasidifferentiable
optimization: algorithms for hypodifferentiable functions;
Quasidifferentiable optimization: applications;
Quasidifferentiable optimization: applications to
thermoelasticity;Quasidifferentiable optimization: calculus
of quasidifferentials;Quasidifferentiable optimization:
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codifferentiable functions;Quasidifferentiable
optimization: Dini derivatives, clarke derivatives;
Quasidifferentiable optimization: exact penalty methods;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities

Deng, N.Y. see: Numerical methods for unary optimization
Deng, X. see: Competitive ratio for portfolio management;

Feedback set problems
Dennis, J.E. see: Nonlinear least squares: Newton-type

methods; Nonlinear least squares: trust regionmethods;
Optimal design in nonlinear optics

Deshpande, A.S. see: Optimization in boolean classification
problems

Despotis, D.K. see: Portfolio selection and multicriteria
analysis; Preference disaggregation

Desrosiers, J. see:Multicommodity flow problems
DeTremblay, M. see: Dynamic programming: optimal control

applications
Deuermeyer, B.L. see: Inventory management in supply chains
Devaud, J.M. see: Preference disaggregation approach: basic

features, examples from financial decisionmaking
Devine, M.D. see:MINLP: application in facility

location-allocation
Di Battista, G. see: Graph planarization
Di Pillo, G. see: Nonlinear least squares problems
Dial, R.B. see: Shortest path tree algorithms
Diderich, C.G. see: Alignment problem;Minimax game tree

searching
Dijkstra, E.W. see: Network design problems; Shortest path

tree algorithms
Dikin, I.I. see: Linear programming: interior point methods
Dincer, M.C. see: Operations researchmodels for supply chain

management and design
Ding, B. see: Standard quadratic optimization problems:

applications
Dinic, E.A. see:Maximum flow problem
Dinkelbach, W. see: Fractional programming;Quadratic

fractional programming: Dinkelbachmethod
Dion, M. see: Alignment problem
direct search optimization see: Dynamic programming:

optimal control applications
Dixon, L.C.W. see: Automatic differentiation: calculation of

Newton steps; Nonlinear least squares: Newton-type
methods; Rosen’s method, global convergence, and Powell’s
conjecture

Doherty, M.F. see: Global optimization: application to phase
equilibrium problems

Doig, A.G. see: Integer programming; Integer programming:
branch and bound methods

Doignon, J.P. see: Boolean and fuzzy relations
Dominiak, C. see: Portfolio selection and multicriteria analysis
Dong, J. see: Financial equilibrium
Dorigo, M. see: Evolutionary algorithms in combinatorial

optimization
Dosios, K. see: Linear programming: Klee–Minty examples
Doyle, J.C. see: Robust control
Drezner, Z. see: Global optimization inWeber’s problemwith

attraction and repulsion;Operations research models for
supply chain management and design

Du, D.-Z. see: Rosen’s method, global convergence, and
Powell’s conjecture; Steiner tree problems

Dubovitskii, A. Ya. see:High-order maximum principle for
abnormal extremals

Dubovitskii, A.Ya. see: Stochastic programming:
nonanticipativity and lagrangemultipliers

Dudàs T. see: Communication network assignment problem
Duff, J.S. see: Automatic differentiation: calculation of Newton

steps
Duffin, R.J. see: Theorems of the alternative and optimization
Duke of Brunswick–Wolfenbüttel see: Gauss, Carl Friedrich
Dunn, R.F. see:MINLP: mass and heat exchanger networks
Dupuis, P. see: Dynamic traffic networks; Variational

inequalities: projected dynamical system
Duran, M.A. see: Generalized outer approximation;MINLP:

outer approximation algorithm
Durso, A. see:Multi-objectivemixed integer programming
Dyer, M.E. see: Quadratic assignment problem
Dynkin, E.B. see: Stochastic programming: nonanticipativity

and lagrangemultipliers

E

Eades, P. see: Optimization in leveled graphs
Eaves, B.C. see: Nonsmooth and smoothing methods for

nonlinear complementarity problems and variational
inequalities; Spatial price equilibrium

Edelsbrunner, H. see:Hyperplane arrangements in
optimization

Edirisinghe, N.C.P. see: Stochastic programs with recourse:
upper bounds

Edmonds, J. see: Assignment andmatching; Combinatorial
optimization games; Complexity classes in optimization;
Complexity of degeneracy;Criss-cross pivoting rules;
Integer programming: cutting plane algorithms;Matroids;
Maximum flow problem;Oriented matroids

Edmundson, H.P. see:Multistage stochastic programming:
barycentric approximation; Stochastic programs with
recourse: upper bounds

Ekeland, I. see: Duality in optimal control with first order
differential equations; Financial applications of
multicriteria analysis

El-Halwagi, M.M. see: Interval analysis: application to
chemical engineering design problems;MINLP: mass and
heat exchanger networks;Mixed integer linear
programming: mass and heat exchanger networks

El-Yaniv, R. see: Competitive ratio for portfolio management
Elber, R. see: Simulated annealing methods in protein folding
ElGhaoui, L. see: Robust control
Elias, D. see: Capacitatedminimum spanning trees
Elias, P. see:Maximum flow problem
Elton, E.J. see: Portfolio selection: markowitz mean-variance

model
Elveback, L.R. see: Resource allocation for epidemic control
Ely, J.S. see: Interval analysis: differential equations
Elzinga, J. see: Single facility location: circle covering problem
Enke, S. see: Equilibrium networks; Spatial price equilibrium
Ensor, K.B. see:Monte-Carlo simulations for stochastic

optimization
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Enthoven, A.C. see: Generalized concavity in multi-objective
optimization

Eppley, P.H. see:Heuristics for maximum clique and
independent set

Erdös, P. see: Feedback set problems
Eremin, I.I. see: Fejér monotonicity in convex optimization
Ernst, R. see: Operations research models for supply chain

management and design
Esbensen, H. see: Evolutionary algorithms in combinatorial

optimization
Euler, L. see: Lagrange, Joseph-Louis; Nonlinear least squares

problems; Second order optimality conditions for
nonlinear optimization; Variational principles

Even, G. see: Feedback set problems
Even, S. see: Graph planarization
Everett, H. see: Integer programming: lagrangian relaxation
Evers, J.J.M. see: Lemke method
Evrard, Y. see: Portfolio selection and multicriteria analysis
Evtushenko, Y. see: ABS algorithms for optimization

F

Fábián, Cs.I. see: Cutting-stock problem
Facchinei, F. see: Implicit lagrangian
Fagnano, J.Fr. see:History of optimization
Fahringer, T. see: Alignment problem
Falk, J.E. see: Fractional programming;Global optimization in

generalized geometric programming
Falkenauer, E. see: Evolutionary algorithms in combinatorial

optimization
Fama, E. see: Portfolio selection: markowitz mean-variance

model
Fan, K. see:Minimax theorems
Fan, M.K.H. see: Robust control
Farkas, J. see: Farkas lemma; Farkas lemma: generalizations;

Second order optimality conditions for nonlinear
optimization; Theorems of the alternative and
optimization; Tucker homogeneous systems of linear
relations

Faustino, A. see: Bilevel programming: global optimization
Feautrier, P. see: Alignment problem
Federgruen, A. see: Operations researchmodels for supply

chain management and design
Fejér, L. see: Fejér monotonicity in convex optimization
Fekete, M. see: Logconcavity of discrete distributions;Von

Neumann, John
Feldman, R. see:Minimax game tree searching
Fenchel, W. see: Duality in optimal control with first order

differential equations
Feng, Q. see: Steiner tree problems
Fenstein, A. see:Maximum flow problem
Feo, T.A. see: Feedback set problems
Ferguson, M.J. see: Capacitatedminimum spanning trees
Ferguson, O. see: Preference disaggregation
Ferland, J.A. see: Evolutionary algorithms in combinatorial

optimization; Fractional programming;Heuristics for
maximum clique and independent set;Multicommodity
flow problems

Fermat, P. see: Global optimization inWeber’s problemwith
attraction and repulsion;Network design problems; Steiner
tree problems;Variational principles

Feron, E. see: Robust control
Ferreira, C. see:Multi-objective mixed integer programming
Feyerbend, P. see:Multi-objectivemixed integer programming
Fiacco, A.V. see: Linear programming: interior point methods
Fichera, G. see: Nonconvex energy functions: hemivariational

inequalities;Quasivariational inequalities
Filliman, P. see: Volume computation for polytopes: strategies

and performances
Fincke, U. see: Communication network assignment problem;

Quadratic assignment problem
Finkel, R.A. see:Minimax game tree searching
Fischer, A. see: Nonsmooth and smoothing methods for

nonlinear complementarity problems and variational
inequalities

Fischer, H. see: Automatic differentiation: point and interval
Fishburn, J.P. see:Minimax game tree searching
Fishburn, P.C. see: Decision support systems with multiple

criteria
Fisher, M.L. see: Operations research models for supply chain

management and design
Fisher, R.A. see:Multicriteria sorting methods; Statistical

classification: optimization approaches
Fisher, W.D. see: Dynamic programming in clustering
Fletcher, R. see: Automatic differentiation: calculation of

Newton steps; Broyden family of methods and the BFGS
update; Conjugate-gradientmethods;MINLP: branch and
boundmethods;MINLP: outer approximation algorithm;
Nonlinear least squares: Newton-type methods; Nonlinear
least squares problems; Rosen’s method, global
convergence, and Powell’s conjecture; Semidefinite
programming and determinant maximization; Successive
quadratic programming: applications in the process
industry; Successive quadratic programming: solution by
active sets and interior point methods; Unconstrained
nonlinear optimization: Newton–Cauchy framework

Fleurent, C. see: Evolutionary algorithms in combinatorial
optimization; Greedy randomized adaptive search
procedures;Heuristics for maximum clique and
independent set

Florian, M. see: Spatial price equilibrium
Floudas, C.A. see: Bilevel optimization: feasibility test and

flexibility index; Global optimization: application to phase
equilibrium problems;Global optimization in generalized
geometric programming;Global optimization in
Lennard–Jones and morse clusters;MINLP: applications in
blending and pooling problems;MINLP: heat exchanger
network synthesis;MINLP: mass and heat exchanger
networks

Folkman, J. see: Oriented matroids
Fonseka, J. see: Survivable networks
Fontanari, J.F. see:Multidimensional knapsack problems
Ford Jr., L.R. see:Network design problems
Ford, L.R. see:History of optimization;Maximum flow

problem; Shortest path tree algorithms
Fortuny-Amat, J. see: Bilevel programming: global

optimization; Bilevel programming in management
Foster, J.A. see:Heuristics for maximum clique and

independent set
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Foulds, L.R. see:Multicommodity flow problems
Fourer, R. see: Discontinuous optimization
Fourier, J.B.J. see: Farkas lemma; Fourier–Motzkin elimination

method;History of optimization; Second order optimality
conditions for nonlinear optimization

Fox, Ch. see: Optimization in classifying text documents
Fox, G.E. see:Multidimensional knapsack problems
Fox, K. see: Time-dependent traveling salesman problem
Francis, J.C. see: Financial equilibrium
Francis, R.L. see: Network location: covering problems
Frank, H. see: Capacitatedminimum spanning trees
Frank, M. see: Frank–Wolfe algorithm
Frankel, S. see:Metropolis, Nicholas Constantine
Frederick the Great see: Lagrange, Joseph-Louis
Freed, N. see:Multicriteria sorting methods; Preference

disaggregation
Freedman, B.A. see: Linear programming: interior point

methods
Freisleben, B. see: Evolutionary algorithms in combinatorial

optimization
Freling, R. see: Operations research models for supply chain

management and design
Frenk, J.B.G. see: Fractional programming
Frenk, J.C.B. see: Quadratic assignment problem
Freund, R.W. see: Fractional programming
Freville, A. see:Multidimensional knapsack problems
Friden, C. see:Heuristics for maximum clique and

independent set
Fridman, B. see:Hilbert’s thirteenth problem
Friedman, L. see: Operations research
Friedrich, C.M. see: Resource allocation for epidemic control
Friedrich, K. see: Variational principles
Friedrichs, K. see: Duality in optimal control with first order

differential equations
Frieze, A.M. see:Multidimensional knapsack problems;

Quadratic assignment problem
Frobenius, G. see: Carathéodory, Constantine
Frome, E.L. see: Overdetermined systems of linear equations
Fu, M. see: Complexity theory: quadratic programming
Fuchs, L. see: Carathéodory, Constantine
Fujii, Y. see: Interval global optimization
Fujishige, S. see: Combinatorial optimization algorithms in

resource allocation problems
Fujito, T. see: Feedback set problems
Fukuda, K. see: Complexity of degeneracy;Criss-cross pivoting

rules
Fukushima, M. see: Implicit lagrangian
Fulkerson, D.R. see:History of optimization;Maximum flow

problem;Network design problems
Funke, M. see: Feedback set problems

G
Gabasov, R. see: Semi-infinite programming and applications

in finance
Gabay, D. see: Oligopolistic market equilibrium
Gabow, H.N. see:Maximum flow problem
Gainanov, D.N. see: Inference of monotone boolean functions
Galantai, A. see: ABS algorithms for linear equations and

linear least squares

Gale, D. see: Preprocessing in stochastic programming; Tucker
homogeneous systems of linear relations

Galen of Pergamon see: Boolean and fuzzy relations
Galilei, G. see:History of optimization
Galli, M. see: Dynamic programming: optimal control

applications
Galois, E. see:Hilbert’s thirteenth problem; Lagrange,

Joseph-Louis
Galperin, E.A. see: Interval analysis: systems of nonlinear

equations
Gambardella, L.M. see: Evolutionary algorithms in

combinatorial optimization
Ganeshan, R. see: Inventorymanagement in supply chains;

Operations researchmodels for supply chain management
and design

Gao, B. see: Steiner tree problems
Garcia, C.B. see: Lemke method
Garcia, J. see: Alignment problem
Gardner, L.M. see: Survivable networks
Gass, S.I. see: Probabilistic analysis of simplex algorithms
Gassmann, H. see: Approximation of multivariate probability

integrals
Gaudioso, M. see: Fractional programming
Gauss, C.F. see: Fundamental theorem of algebra;Gauss, Carl

Friedrich;Gauss–Newton method: Least squares, relation
to Newton’s method;History of optimization; Lagrange,
Joseph-Louis; Least squares problems;Network design
problems;Nonlinear least squares problems; Second order
optimality conditions for nonlinear optimization; Steiner
tree problems

Gavish, B. see: Capacitatedminimum spanning trees;
Time-dependent traveling salesman problem

Gay, D.M. see: Nonlinear least squares: Newton-type methods;
Quadratic programming over an ellipsoid

Gehrlein, W.V. see: Statistical classification: optimization
approaches

Geiger, D. see: Feedback set problems
Geitner, U. see: Automatic differentiation: calculation of

Newton steps
Gelatt, C.D. see:Heuristics for maximum clique and

independent set;Quadratic assignment problem; Simulated
annealing

Gendreau, M. see:Heuristics for maximum clique and
independent set

Gengler, M. see: Alignment problem;Minimax game tree
searching

Genz, A. see: Approximation of multivariate probability
integrals

Geoffrion, A.M. see:MINLP: generalized cross decomposition;
Multicommodity flow problems;Operations research
models for supply chain management and design;
Simplicial decomposition

George, J.A. see: Least squares problems
Geraghty, M.A. see:Minimax theorems
Gerchak, Y. see: Operations research models for supply chain

management and design
Gerla, M. see: Simplicial decomposition
Gersht, A. see:Multicommodity flow problems
Ghouila-Houri, M.A. see:Minimax theorems
Giannessi, F. see: Generalized monotonicity: applications to

variational inequalities and equilibrium problems
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Gibbons, L.E. see:Heuristics for maximum clique and
independent set

Gilbert, E.N. see: Steiner tree problems
Gill, P.E. see: Nonlinear least squares: Newton-type methods;

Successive quadratic programming: applications in the
process industry

Gilmore, P.C. see: Cutting-stock problem; Fractional
programming;Quadratic assignment problem

Giunta, A.A. see:Multidisciplinary design optimization
Givens, W. see: QR factorization
Glover see:Multidimensional knapsack problems
Glover, F. see: Disjunctive programming;Greedy randomized

adaptive search procedures;Heuristics for maximum clique
and independent set; Linear ordering problem;Maximum
satisfiability problem;Multicriteria sorting methods;
Multidimensional knapsack problems; Simplicial pivoting
algorithms for integer programming

Glover, G. see: Preference disaggregation
Glynn, P.W. see:Monte-Carlo simulations for stochastic

optimization
Gochet, W. see:Multicriteria sorting methods
Goeleven, D. see: Nonconvex-nonsmooth calculus of variations
Goemans, M.X. see: Feedback set problems; Survivable

networks
Goffin, J.-L. see: Nondifferentiable optimization: subgradient

optimization methods
Goh, K.C. see: Robust control
Goldberg, A.V. see:Maximum flow problem
Goldfarb, D. see: Broyden family of methods and the BFGS

update; Linear programming: Klee–Minty examples;
Numerical methods for unary optimization; Rosen’s
method, global convergence, and Powell’s conjecture;
Successive quadratic programming: applications in
distillation systems; Successive quadratic programming:
applications in the process industry

Goldfeld, S.M. see: Nonlinear least squares: trust region
methods

Goldman, A.J. see:Homogeneous selfdual methods for linear
programming; Linear optimization: theorems of the
alternative; Tucker homogeneous systems of linear
relations

Goldschmidt, O. see: Graph planarization
Goldstein, A. see: Local attractors for gradient-related descent

iterations
Goldstein, A.A. see: Nondifferentiable optimization;

Nondifferentiable optimization: cutting plane methods
Goldstine, H. see: Von Neumann, John
Golub, G.H. see: Least squares problems
Gomez, S. see: Direct global optimization algorithm
Gomory, R.E. see: Cutting-stock problem; Fractional

programming;History of optimization; Integer
programming; Integer programming: cutting plane
algorithms

Gonzaga, C.C. see: Linear programming: interior point
methods

Gonzalez, T. see: Quadratic assignment problem
González-Velarde, J.L. see: Greedy randomized adaptive search

procedures
Gordan, P. see: Theorems of the alternative and optimization;

Tucker homogeneous systems of linear relations

Gorges-Schleuter, M. see: Evolutionary algorithms in
combinatorial optimization

Gossen, H. see: Financial equilibrium
Gouveia, L. see: Capacitatedminimum spanning trees;

Time-dependent traveling salesman problem
Granot, D. see: Combinatorial optimization games
GRASP see: Graph planarization
Graves, G.W. see:Multicommodity flow problems;Operations

researchmodels for supply chain management and design
Graves, S. see: Time-dependent traveling salesman problem
Graves, S.C. see: Inventory management in supply chains;

Operations researchmodels for supply chain management
and design

Green, K.A. see: Global optimization: application to phase
equilibrium problems

Greenberg, D.E. see: Quadratic semi-assignment problem
Greenberg, H. see: Linear optimization: theorems of the

alternative
Greenberg, H.J. see: Preprocessing in stochastic programming
Greenhalgh, D. see: Resource allocation for epidemic control
Griewank, A. see: Automatic differentiation: calculation of the

Hessian; Automatic differentiation: calculation of Newton
steps;Automatic differentiation: introduction, history and
rounding error estimation;Automatic differentiation:
parallel computation;Automatic differentiation: point and
interval

Griggs, J.R. see: Optimization in leveled graphs
Grippo, L. see: Nonlinear least squares problems
Grossman, B. see:Multidisciplinary design optimization
Grossman, T. see:Heuristics for maximum clique and

independent set
Grossmann, I.E. see: Bilevel optimization: feasibility test and

flexibility index; Chemical process planning;Generalized
outer approximation;MINLP: heat exchanger network
synthesis;MINLP: logic-basedmethods;MINLP: outer
approximation algorithm;Mixed integer linear
programming: heat exchanger network synthesis;
Time-dependent traveling salesman problem

Grötschel, M. see: Assignment andmatching; Survivable
networks

Grotzinger, S.J. see: Isotonic regression problems
Gruber, M.J. see: Portfolio selection: markowitz mean-variance

model; Preference disaggregation
Gu Jun see:Modeling languages in optimization: a new

paradigm
Guélat, J. see: Frank–Wolfe algorithm
Gugat, M. see: Fractional programming
Guignard, M. see:Multidimensional knapsack problems
Guisewite, G.M. see: Nonconvex network flow problems
Gumus, Z.H. see:MINLP: reactive distillation column

synthesis
Gupta, M. see: Alignment problem
Gustafson, S.-Å. see: Semi-infinite programming and

applications in finance; Semi-infinite programming,
semidefinite programming and perfect duality

H

Ha, Ch.-W. see: Farkas lemma: generalizations
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Habetler, G.J. see: Generalized nonlinear complementarity
problem

Haftka, R.T. see:Multidisciplinary design optimization
Hahn, H. see: Theorems of the alternative and optimization
Haimes, Y.Y. see: Dynamic programming: optimal control

applications
Haimovich, M. see: Probabilistic analysis of simplex

algorithms
Hájek, P. see: Checklist paradigm semantics for fuzzy logics
Hakimi, S.B. see: Network design problems
Hale, W.K. see: Frequency assignment problem
Halemane, K.P. see: Bilevel optimization: feasibility test and

flexibility index
Halkin, H. see: Infinite horizon control and dynamic games
Hall, L. see: Capacitatedminimum spanning trees
Hall, L.H. see: Complexity of degeneracy
Hall, M.A. see: Traffic network equilibrium
Halley, E. see: Lagrange, Joseph-Louis
Halsey, E. see:Multiple objective dynamic programming
Hamel, G. see: Second order optimality conditions for

nonlinear optimization
Hamilton, W. see: Lagrange, Joseph-Louis
Han, C.G. see: Quadratic knapsack
Han, J. see: Rosen’s method, global convergence, and Powell’s

conjecture
Han, S.P. see: Nonlinear least squares problems; Successive

quadratic programming; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: full space methods

Han, X. see: Graph planarization
Hanafi, S. see:Multidimensional knapsack problems
Hansel, G. see: Inference of monotone boolean functions
Hansen, E.R. see: Global optimization methods for harmonic

retrieval; Interval analysis: systems of nonlinear equations;
Interval global optimization; Interval linear systems

Hansen, P. see:Heuristics for maximum clique and
independent set;Maximum satisfiability problem

Hansmann, U.H.E. see: Simulated annealing methods in
protein folding

Hanson, M.A. see: Invexity and its applications
Harker, P.T. see: Estimating data for multicriteria decision

making problems: optimization techniques
Harris, F. see: Inventory management in supply chains
Hart, J.P. see: Greedy randomized adaptive search procedures
Hartig, F. see: Boundary condition iteration BCI
Hartley, H.O. see: Nonlinear least squares: Newton-type

methods
Hartley, R. see:Multiple objective dynamic programming;

Simulated annealing methods in protein folding
Hartman, G.J. see: Generalized monotonicity: applications to

variational inequalities and equilibrium problems
Hartman, J.K. see:Multicommodity flow problems
Hartman, P. see: Variational inequalities
Hartmanis, J. see: Complexity theory
Hasham, R. see: Portfolio selection andmulticriteria analysis
Hassouni, A. see: Generalized monotone multivalued maps
Haurie, H. see: Infinite horizon control and dynamic games
Hausdorff, F. see: Vector optimization
Haverly, C.A. see:MINLP: applications in blending and

pooling problems

Havránek, T. see: Checklist paradigm semantics for fuzzy
logics

He Jifeng see: Boolean and fuzzy relations
Healy, P. see: Optimization in leveled graphs
Hearn, D.W. see:Heuristics for maximum clique and

independent set; Simplicial decomposition; Simplicial
decomposition algorithms; Single facility location: circle
covering problem

Heath, M.T. see: Least squares problems
Hebden, M.D. see: Nonlinear least squares: trust region

methods
Hedayat, G.A. see: Alignment problem
Helgason, R.V. see: Convex-simplex algorithm;

Multicommodity flow problems
Helly, E. see: Theorems of the alternative and optimization
Henig, M. see: Operations research models for supply chain

management and design
Hensel, C.R. see: Portfolio selection: markowitz mean-variance

model
Herman, G.T. see:Maximum entropy principle: image

reconstruction
Hermite, Ch. see: Symmetric systems of linear equations
Herskovits, J.N. see: Feasible sequential quadratic

programming
Hestenes, M.R. see: Conjugate-gradient methods; Lagrangian

multipliers methods for convex programming;Nonlinear
least squares problems;Unconstrained nonlinear
optimization: Newton–Cauchy framework

Hethcote, H.W. see: Resource allocation for epidemic control
Hettich, R. see: Semi-infinite programming, semidefinite

programming and perfect duality
Hewett, R. see:Minimax game tree searching
Hext, G.R. see: Sequential simplex method
Hickey, T. see: Volume computation for polytopes: strategies

and performances
Hicks, J.R. see: Financial equilibrium; Portfolio selection:

markowitz mean-variance model
Hifi, M. see:Heuristics for maximum clique and independent

set
Higle, J.L. see:Monte-Carlo simulations for stochastic

optimization
Hilbert, D. see:Hilbert’s thirteenth problem
Hildebrandt, S. see: Duality in optimal control with first order

differential equations
Hildreth, C. see: Splittingmethod for linear complementarity

problems
Hill, A.V. see:Multicriteria sorting methods
Hillestad, R.J. see: Reverse convex optimization
Hillstrom, K.E. see: Automatic differentiation: introduction,

history and rounding error estimation
Himmelblau, D.M. see: Chemical process planning
Himsworth, F.R. see: Sequential simplex method
Hinkins, R.L. see: Automatic differentiation: parallel

computation
Hisdal, E. see: Checklist paradigm semantics for fuzzy logics
Hitchcock, F.L. see:History of optimization
Hoare, C.A.R. see: Boolean and fuzzy relations
Hoare, M.R. see: Global optimization in Lennard–Jones and

morse clusters
Hobson, A. see: Entropy optimization: shannon measure of

entropy and its properties
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Hochbaum, D. see: Feedback set problems
Hochbaum, D.S. see: Combinatorial optimization algorithms

in resource allocation problems
Hodder, J.E. see: Operations research models for supply chain

management and design
Hodges, S.D. see: Portfolio selection: markowitz

mean-variance model
Hoffman, A.J. see: Complexity of degeneracy; Least-index

anticycling rules; Lexicographic pivoting rules;
Preprocessing in stochastic programming

Höfner, G. see: Probabilistic analysis of simplex algorithms
Hogarth, R.M. see: Competitive ratio for portfolio

management
Hohl, D. see: Global optimization in Lennard–Jones and

morse clusters
Holland, J.H. see: Forecasting;Genetic algorithms
Holland, O. see: Assignment and matching
Holloway, C.A. see: Simplicial decomposition algorithms
Holmberg, K. see: Piecewise linear network flow problems
Holmes, D.F. see: Stochastic programming: parallel

factorization of structured matrices
Holt, C.C. see: Operations research models for supply chain

management and design
Holyoak, K. see: Forecasting
Homer, S. see:Heuristics for maximum clique and

independent set
Hong, S. see: Combinatorial optimization algorithms in

resource allocation problems
Hooker, J.N. see: Simplicial pivoting algorithms for integer

programming
Hopcroft, J. see: Graph planarization
Hopfield, J.J. see:Heuristics for maximum clique and

independent set; Neural networks for combinatorial
optimization

Horn, A. see: Combinatorial matrix analysis
Hoskins, J.A. see: Fractional programming
Householder, A.S. see: QR factorization
Hovland, P. see: Automatic differentiation: parallel

computation
Hrymak, A.N. see: Successive quadratic programming:

applications in the process industry
Hu, X.-D. see: Rosen’s method, global convergence, and

Powell’s conjecture
Hua, J.Z. see: Global optimization: application to phase

equilibrium problems
Huang, C.-H. see: Alignment problem
Huang, Z. see: Information-based complexity and

information-based optimization
Huber, P.J. see: Overdetermined systems of linear equations
Hughes, M. see: Financial equilibrium
Huhn, P. see: Probabilistic analysis of simplex algorithms
Hung, P.-F. see:Homogeneous selfdual methods for linear

programming
Hunter, D. see: Approximation of multivariate probability

integrals
Hurson, Ch. see: Portfolio selection and multicriteria analysis
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Milman, D. see: Krein–Milman theorem
Milyutin, A.A. see: Stochastic programming: nonanticipativity

and lagrangemultipliers
Minerbo, G. see:Maximum entropy principle: image

reconstruction
Minkowski, H. see: Carathéodory, Constantine; Krein–Milman

theorem
Minty, G.J. see: Criss-cross pivoting rules; Linear

programming: Klee–Minty examples
Mirnia, K. see: ABS algorithms for linear equations and linear

least squares
Mitchell, J.E. see:MINLP: branch and bound methods
Mitchell, J.S.B. see: Steiner tree problems
Mitjuschin, L.G. see: Generalized monotone multivalued maps
Miyazawa, S. see:Molecular structure determination: convex

global underestimation
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Mizuno, S. see:Homogeneous selfdual methods for linear
programming; Linear programming: interior point
methods

Modigliani, F. see: Financial equilibrium;Operations research
models for supply chain management and design

Mohamed, R.A. see: Generalized networks
Monaco, M.F. see: Fractional programming
Mongenet, C. see: Alignment problem
Monjardet, B. see: Boolean and fuzzy relations
Monma, C.L. see: Survivable networks
Monteiro, R.C. see: Linear programming: interior point

methods
Moon, I.D. see:Multiple objective dynamic programming
Moon, S. see: Operations research models for supply chain

management and design
Moore, E.H. see: Least squares problems
Moore, R. see:Minimax game tree searching
Moore, R.E. see: Automatic differentiation: point and interval;

Bounding derivative ranges; Interval analysis: differential
equations; Interval analysis: systems of nonlinear
equations; Interval constraints; Interval fixed point theory;
Interval global optimization; Interval linear systems;
Nonlocal sensitivity analysis with automatic differentiation

Morari, M. see:MINLP: applications in the interaction of
design and control

Moré, J.J. see: Complexity theory: quadratic programming;
Nonlinear least squares: Newton-type methods;Nonlinear
least squares: trust regionmethods;Quadratic
programming over an ellipsoid

Moreau, J.-J. see: Duality in optimal control with first order
differential equations;Hemivariational inequalities:
applications in mechanics; Lagrangianmultipliers methods
for convex programming;Nonconvex energy functions:
hemivariational inequalities;Quasidifferentiable
optimization;Quasidifferentiable optimization: variational
formulations

Morgenstern, O. see: Decision support systems with multiple
criteria; Tucker homogeneous systems of linear relations;
Von Neumann, John

Morrey, C.B. see: Duality in optimal control with first order
differential equations

Morris, J.G. see:MINLP: application in facility
location-allocation;Network design problems

Morton, D.P. see: Stochastic programs with recourse: upper
bounds

Morton, W. see: Successive quadratic programming:
applications in the process industry

Mossin, J. see: Financial equilibrium
Motreanu, D. see: Nonconvex-nonsmooth calculus of

variations
Motzkin, T. see:Multi-index transportation problems
Motzkin, T.S. see: Complexity theory: quadratic programming;

Fejér monotonicity in convex optimization;Heuristics for
maximum clique and independent set; Replicator dynamics
in combinatorial optimization; Standard quadratic
optimization problems: applications; Theorems of the
alternative and optimization; Tucker homogeneous systems
of linear relations

Moulin, H. see: Oligopolistic market equilibrium
Mousseau, V. see: Preference disaggregation

Mühlenbein, H. see: Evolutionary algorithms in combinatorial
optimization; Replicator dynamics in combinatorial
optimization

Mulvey, J.M. see: Financial optimization
Murchland, J.D. see: Simplicial decomposition
Murota, K. see: Combinatorial optimization algorithms in

resource allocation problems
Murray, F.J. see: Von Neumann, John
Murray, W. see: Nonlinear least squares: Newton-type

methods; Successive quadratic programming; Successive
quadratic programming: applications in the process
industry; Successive quadratic programming:
decompositionmethods

Murtagh, B.A. see: Convex-simplex algorithm; Successive
quadratic programming: applications in the process
industry

Murtagh, B.H. see: Rosen’s method, global convergence, and
Powell’s conjecture

Murthy, A.S. see:Heuristics for maximum clique and
independent set

Murthy, K.A. see: Quadratic assignment problem
Murty, K.G. see: Complexity of degeneracy;Complexity

theory: quadratic programming;Criss-cross pivoting rules;
Least-index anticycling rules; Lemke method; Linear
programming: Klee–Minty examples; Piecewise linear
network flow problems; Principal pivoting methods for
linear complementarity problems;Quadratic knapsack;
Second order optimality conditions for nonlinear
optimization

Mutzel, P. see: Graph planarization;Optimization in leveled
graphs

N

Nabonna, N. see:Multicommodity flow problems
Naghshineh, M. see: Frequency assignment problem
Nagurney, A. see: Dynamic traffic networks; Financial

equilibrium;Oligopolistic market equilibrium; Spatial
price equilibrium; Traffic network equilibrium;Variational
inequalities: projected dynamical system

Naitoh, T. see: Combinatorial optimization algorithms in
resource allocation problems

Nakayama, H. see: Portfolio selection and multicriteria
analysis

Naor, J. see: Feedback set problems
Narducci, R. see: Design optimization in computational fluid

dynamics;Multidisciplinary design optimization
Nash, J.F. see: Infinite horizon control and dynamic games;

Oligopolistic market equilibrium
Nelder, J.A. see: Sequential simplex method
Nemhauser, G.L. see: Dynamic traffic networks; Integer

programming: cutting plane algorithms;Nondifferentiable
optimization: cutting plane methods

Nemirovsky, A.S. see: Complexity theory; Complexity theory:
quadratic programming; Fractional programming;
Information-based complexity and information-based
optimization; Nondifferentiable optimization: relaxation
methods

Neogi, S. see: Global optimization: hit and run methods
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Nesterov, Yu.E. see: Conjugate-gradient methods; Fractional
programming;Nondifferentiable optimization: relaxation
methods

Neumaier, A. see: Interval linear systems
Newton, H.N. see:Multicommodity flow problems
Newton, I. see: Alternative set theory; Forecasting; Lagrange,

Joseph-Louis; Leibniz, gottfried wilhelm;Unconstrained
nonlinear optimization: Newton–Cauchy framework;
Variational principles

Nguyen, S. see: Convex-simplex algorithm
Niculescu, S. see: Robust control
Niehaus, W. see: Evolutionary algorithms in combinatorial

optimization
Nielsen, C.P. see: Least squares problems
Nielsen, H.B. see: Overdetermined systems of linear equations
Nieuwenhuis, J.W. see:Multi-objective optimization: lagrange

duality
Nirenberg, L. see: Generalizedmonotonicity: applications to

variational inequalities and equilibrium problems
Nisbett, R. see: Forecasting
Nishioka, I. see: Graph planarization
Nobert, Y. see: Operations research models for supply chain

management and design
Nocedal, J. see: Conjugate-gradientmethods; Rosen’s method,

global convergence, and Powell’s conjecture; Semidefinite
programming and determinant maximization; Successive
quadratic programming: applications in the process
industry; Successive quadratic programming:
decompositionmethods

Nold, A. see: Resource allocation for epidemic control
Noor, M.A. see: Variational principles
Northby, J.A. see: Global optimization in Lennard–Jones and

morse clusters
Norton, R. see: Bilevel programming: introduction, history

and overview; Bilevel programming in management
Nožička, F. see: Nondifferentiable optimization: parametric

programming

O

O’Boyle, M. see: Alignment problem
Oettli, W. see: Generalized monotonicity: applications to

variational inequalities and equilibrium problems; Interval
linear systems

Oguz, O. see:Multidimensional knapsack problems
Okamoto, Y. see: Simulated annealing methods in protein

folding
Okongwu, O.N. see: Dynamic programming: optimal control

applications
O’Neill, M. see: Generalized total least squares
Orchard-Hays, W. see: Nondifferentiable optimization:

parametric programming
Orden, A. see: Lexicographic pivoting rules
Orenstein, T. see: Feedback set problems
Orlin, J.B. see: Greedy randomized adaptive search procedures;

Maximum flow problem; Shortest path tree algorithms
O’Rourke, J. see:Hyperplane arrangements in optimization
Osman, I.H. see: Evolutionary algorithms in combinatorial

optimization

Ostresh, L.M. see: Global optimization inWeber’s problem
with attraction and repulsion

Ostrogradsky, M. see: Farkas lemma; Second order optimality
conditions for nonlinear optimization

Ouveysi, I. see: Survivable networks
Overton, M.L. see: Global optimization inWeber’s problem

with attraction and repulsion; Successive quadratic
programming: decompositionmethods

Owen, G. see: Combinatorial optimization games
Owens, D.K. see: Resource allocation for epidemic control

P

Padberg, M.W. see: Assignment and matching; Integer
programming: branch and boundmethods; Integer
programming: branch and cut algorithms;Quadratic
assignment problem

Padmanabhan, V. see: Operations researchmodels for supply
chain management and design

Paixão, J. see: Capacitatedminimum spanning trees
Pallaschke, D. see: Global optimization: envelope

representation
Pallottino, S. see: Shortest path tree algorithms
Palubeckis, G.S. see: Quadratic assignment problem
Pamiagua, C.N. see: Chemical process planning
Panagiotopoulos, P.D. see:Hemivariational inequalities:

applications in mechanics;Hemivariational inequalities:
eigenvalue problems;Hemivariational inequalities: static
problems;Multilevel optimization in mechanics;
Nonconvex energy functions: hemivariational inequalities;
Nonconvex-nonsmooth calculus of variations;
Quasidifferentiable optimization;Quasidifferentiable
optimization: applications;Quasidifferentiable
optimization: applications to thermoelasticity;
Quasidifferentiable optimization: stability of dynamic
systems;Quasidifferentiable optimization: variational
formulations;Quasivariational inequalities; Solving
hemivariational inequalities by nonsmooth optimization
methods

Pang, J.S. see: Nondifferentiable optimization: Newton
method; Spatial price equilibrium

Pantelides, C.C. see:MINLP: design and scheduling of batch
processes

Papadimitriou, C.H. see: Quadratic assignment problem
Papalexandri, K.P. see:MINLP: mass and heat exchanger

networks;MINLP: reactive distillation column synthesis
Paparrizos, K. see: Linear programming: Klee–Minty examples;

Pivoting algorithms for linear programming generating
two paths

Papoulias, S.A. see:Mixed integer linear programming: heat
exchanger network synthesis

Pardalos, P.M. see: Biquadratic assignment problem;
Complexity theory: quadratic programming; Concave
programming; Feedback set problems;Heuristics for
maximum clique and independent set; Lemke method;
Piecewise linear network flow problems; Preference
disaggregation approach: basic features, examples from
financial decisionmaking;Quadratic fractional
programming: Dinkelbach method;Quadratic knapsack
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Pareto, V. see: Generalized concavity in multi-objective
optimization; Infinite horizon control and dynamic games;
Vector optimization

Park, K. see:Heuristics for maximum clique and independent
set

Parker, M. see:Multicommodity flow problems
Passy, U. see: Global optimization in generalized geometric

programming
Paterson, W.R. see: Global optimization of heat exchanger

networks
Patriksson, M. see: Simplicial decomposition; Simplicial

decomposition algorithms
Peano, G. see: Image space approach to optimization
Pearl, J. see:Minimax game tree searching
Peinado, M. see:Heuristics for maximum clique and

independent set
Peirce, B. see: Single facility location: circle covering problem
Pelillo, M. see:Heuristics for maximum clique and

independent set; Replicator dynamics in combinatorial
optimization

Pell, R. see: Portfolio selection andmulticriteria analysis
Peng, J.-M. see: Implicit lagrangian
Penot, J.P. see: Generalized monotone multivalued maps
Penrose, R. see: Least squares problems
Perkins, J.D. see:MINLP: applications in the interaction of

design and control
Perl, J. see: Operations research models for supply chain

management and design
Perny, P. see:Multicriteria sorting methods
Perrott, R.H. see: Alignment problem
Peterson, C. see: Neural networks for combinatorial

optimization
Peterson, E.L. see: Spatial price equilibrium
Peterssen, F. see:MINLP: outer approximation algorithm;

MINLP: trim-loss problem
Petrovic, D. see: Operations researchmodels for supply chain

management and design
Pflug, G.Ch. see: Derivatives of probability and integral

functions: general theory and examples
Phillips, A.T. see:Heuristics for maximum clique and

independent set;Quadratic fractional programming:
Dinkelbachmethod

Piaget, J. see: Checklist paradigm semantics for fuzzy logics
Picard, J.C. see: Time-dependent traveling salesman problem
Pierce, C.S. see: Boolean and fuzzy relations
Pierskalla, W.P. see: Resource allocation for epidemic control
Pietrzykowski, T. see: Discontinuous optimization
Pigou, A.C. see: Traffic network equilibrium
Pijls, W. see:Minimax game tree searching
Pincus, M. see: Random search methods
Pinkava, V. see: Finite complete systems of many-valued logic

algebras
Pinson, E. see: Job-shop scheduling problem
Pippenger, N. see: Parallel computing: complexity classes
Pirkul, H. see:Multidimensional knapsack problems;

Operations research models for supply chain management
and design

Pistikopoulos, E.N. see: Bilevel optimization: feasibility test
and flexibility index;MINLP: mass and heat exchanger
networks;MINLP: reactive distillation column synthesis

Pitsoulis, L.S. see: Biquadratic assignment problem

Pitts, W. see: Neural networks for combinatorial optimization
Plambeck, E.L. see:Monte-Carlo simulations for stochastic

optimization
Plastria, F. see: Global optimization inWeber’s problemwith

attraction and repulsion
Plateau, G. see:Multidimensional knapsack problems
Platonoff, A. see: Alignment problem
Pnueli, A. see: Simplicial pivoting algorithms for integer

programming
Pogue, G.A. see: Financial equilibrium
Pogue, J.A. see: Portfolio selection: markowitz mean-variance

model
Polak, E. see: Feasible sequential quadratic programming;

Nondifferentiable optimization: minimax problems;
Quasidifferentiable optimization: algorithms for QD
functions; Rosen’s method, global convergence, and
Powell’s conjecture

Pollak, H.O. see: Steiner tree problems
Pollanski, D. see: Global optimization inWeber’s problem

with attraction and repulsion
Polterovich, W.M. see: Generalized monotone multivalued

maps
Polyak, B.T. see: Conjugate-gradient methods;

Nondifferentiable optimization: relaxationmethods;
Quadratic programming with bound constraints

Pomeranz, I. see: Feedback set problems
Popp, W. see: Probabilistic constrained problems: convexity

theory
Posa, L. see: Feedback set problems
Post, E. see: Finite complete systems of many-valued logic

algebras
Postlethwaite, I. see: Robust control
Potvin, J.-Y. see: Evolutionary algorithms in combinatorial

optimization
Powell, D.R. see: Generalized total least squares
Powell, M.J.D. see: Automatic differentiation: calculation of

Newton steps; Broyden family of methods and the BFGS
update;History of optimization; Lagrangianmultipliers
methods for convex programming;Nonlinear least squares:
trust regionmethods; Powell method; Rosen’s method,
global convergence, and Powell’s conjecture; Successive
quadratic programming; Successive quadratic
programming: applications in the process industry;
Successive quadratic programming: decomposition
methods; Successive quadratic programming: full space
methods; Unconstrained nonlinear optimization:
Newton–Cauchy framework

Powell, W.B. see: Frank–Wolfe algorithm
Prager, W. see: Interval linear systems
Prais, M. see: Feedback set problems;Greedy randomized

adaptive search procedures
Prékopa, A. see: Approximation of multivariate probability

integrals;Derivatives of probability and integral functions:
general theory and examples;History of optimization;
Probabilistic constrained linear programming: duality
theory; Simple recourse problem: dual method

Press, W.H. see: Global optimization in binary star astronomy
Prim, R.C. see:Matroids
Protasi, M. see:Heuristics for maximum clique and

independent set
Provan, J.S. see: Complexity of degeneracy
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Pryce, J.D. see:Minimax theorems
Pshenichnyi, B.N. see: Farkas lemma: generalizations
Pu, D. see: Rosen’s method, global convergence, and Powell’s

conjecture
Pugh, W. see: Alignment problem
Putnam, H. see:Maximum satisfiability problem

Q
Qi, L. see: Feasible sequential quadratic programming;

Nondifferentiable optimization: Newton method;
Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Stochastic programming: parallel factorization of
structured matrices

Qian, T. see: Feedback set problems
Quandt, R.E. see:Nonlinear least squares: trust regionmethods
Quang, P.H. see: Generalized monotone multivalued maps
Quesada, I. see: Generalized outer approximation
Queyranne, M. see: Quadratic assignment problem;

Time-dependent traveling salesman problem
Quinlan, J.R. see: Optimization in boolean classification

problems

R
Rabinowitz, P. see: Interval analysis: systems of nonlinear

equations
Rademacher, H. see: Interval global optimization
Radzik, T. see: Fractional programming
Raghavan, P. see:Multicommodity flow problems
Raiffa, H. see: Preference disaggregation approach: basic

features, examples from financial decisionmaking
Raik, E. see: Approximation of extremum problems with

probability functionals;Derivatives of probability and
integral functions: general theory and examples

Rall, L.B. see: Automatic differentiation: calculation of the
Hessian; Automatic differentiation: introduction, history
and rounding error estimation; Automatic differentiation:
point and interval; Bounding derivative ranges

Ramaiyer, V. see: Steiner tree problems
Ramana, M. see: Duality for semidefinite programming
Ramana, M.V. see: Semi-infinite programming, semidefinite

programming and perfect duality
Ramsey, F. see: Infinite horizon control and dynamic games
Rangan, C.P. see: Feedback set problems
Ranjan, R. see: Operations research models for supply chain

management and design
Rantzer, A. see: Robust control
Rao, M.R. see: Assignment and matching; Fractional

programming
Rao, S.K. see: Steiner tree problems
Rao, V.N. see: Load balancing for parallel optimization

techniques
Ratschek, H. see: Bounding derivative ranges
Ravindran, A. see: Lemke method;Multi-objective

optimization; Interactivemethods for preference value
functions

Rech, P. see: Piecewise linear network flow problems
Rechenberg, I. see: Genetic algorithms

Reece, K.E. see: Operations researchmodels for supply chain
management and design

Reese, S. see: Automatic differentiation: calculation of Newton
steps

Reeves, C. see: Conjugate-gradientmethods; Evolutionary
algorithms in combinatorial optimization; Unconstrained
nonlinear optimization: Newton–Cauchy framework

Reid, J.R. see: Automatic differentiation: calculation of
Newton steps

Reinelt, G. see: Feedback set problems
Reinert, K. see: Optimization in leveled graphs
Renaud, J.E. see:Multidisciplinary design optimization
Rendl, F. see: Quadratic assignment problem;Quadratic

programming over an ellipsoid;Replicator dynamics in
combinatorial optimization

Renegar, J. see: Complexity theory: quadratic programming;
Linear programming: interior point methods

Rescher, N. see: Boolean and fuzzy relations
Resende, M.G.C. see: Biquadratic assignment problem;

Feedback set problems;Graph planarization
ReVelle, C. see: Resource allocation for epidemic control
Rhee, W.T. see: Quadratic assignment problem
Rhodes, E. see: Fractional programming
Ribeiro, C.C. see: Feedback set problems;Graph planarization;

Greedy randomized adaptive search procedures
Ricci, N. see: Portfolio selection and multicriteria analysis
Rice, J.R. see: Optimization software
Richter, A. see: Resource allocation for epidemic control
Riguet, J. see: Boolean and fuzzy relations
Rijal, M.P. see: Quadratic assignment problem
Rinnooy Kan, A.G. see: Quadratic assignment problem
Rios-Garcia, A. see: Portfolio selection andmulticriteria

analysis
Rios-Insua, S. see: Portfolio selection and multicriteria analysis
Ritter, K. see: Adaptive global search; Information-based

complexity and information-based optimization; Rosen’s
method, global convergence, and Powell’s conjecture

Rivest, R.L. see:Minimax game tree searching
Robbins, H. see:History of optimization; Steiner tree problems
Robert, Y. see: Alignment problem
Roberts, F.D.K. see: Overdetermined systems of linear

equations
Roberts, F.S. see: Frequency assignment problem
Roberts, S.M. see: Chemical process planning
Robin, G. see: Steiner tree problems
Robinson, S.M. see: Nondifferentiable optimization: Newton

method; Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Sensitivity analysis of complementarity problems;
Sensitivity analysis of variational inequality problems;
Sensitivity and stability in NLP: continuity and differential
stability

Rockafellar, R.T. see: Composite nonsmooth optimization;
Duality in optimal control with first order differential
equations; Lagrangianmultipliers methods for convex
programming;Multilevel optimization in mechanics;
Nonconvex energy functions: hemivariational inequalities;
Quasidifferentiable optimization; Splitting method for
linear complementarity problems; Stochastic
programming: nonanticipativity and lagrangemultipliers

Rodríguez, J.F. see:Multidisciplinary design optimization



Name Index 4619

Rogers, P. see: Portfolio selection and multicriteria analysis
Rohn, J. see: Interval linear systems
Rokne, J. see: Bounding derivative ranges
Rolewicz, S. see: Global optimization: envelope representation
Romeijn, H.E. see: Global optimization: hit and run methods;

Operations research models for supply chain management
and design; Random search methods

Romero Morales, D. see: Operations researchmodels for
supply chain management and design

Rommelfanger, H. see: Fuzzy multi-objective linear
programming

Roos, C. see: Criss-cross pivoting rules; Linear programming:
interior point methods; Linear programming: Klee–Minty
examples

Rosen, J.B. see: Convex envelopes in optimization problems;
Global optimization inWeber’s problem with attraction
and repulsion;History of optimization; LCP:
Pardalos–Rosenmixed integer formulation; Lemke
method;Multicommodity flow problems;Oligopolistic
market equilibrium;Quadratic fractional programming:
Dinkelbachmethod; Reverse convex optimization; Rosen’s
method, global convergence, and Powell’s conjecture

Rosenberg, I. see: Finite complete systems of many-valued
logic algebras

Rosenbrock, H.H. see: Direct search Luus—Jaakola
optimization procedure;Robust control; Rosenbrock
method

Ross, S.A. see: Financial equilibrium
Rota, G.-C. see:Metropolis, Nicholas Constantine
Roth, R.M. see: Feedback set problems
Rothberg, E. see: Financial optimization
Roubens, M. see: Boolean and fuzzy relations
Roucairol, C. see:Minimax game tree searching
Roundy, R. see: Inventorymanagement in supply chains
Rousseau, J.M. see:Multicommodity flow problems
Roy, A.D. see: Portfolio selection: markowitz mean-variance

model
Roy, B. see: Decision support systems with multiple criteria;

Financial applications of multicriteria analysis;
Multi-objectivemixed integer programming;Multiple
objective programming support;Outranking methods;
Preference disaggregation

Ruan, L. see: Steiner tree problems
Rubin, P.A. see:Multicriteria sorting methods
Rubinov, A.M. see: Global optimization: envelope

representation;Quasidifferentiable optimization;
Quasidifferentiable optimization: algorithms for
hypodifferentiable functions;Quasidifferentiable
optimization: applications to thermoelasticity;
Quasidifferentiable optimization: codifferentiable
functions;Quasidifferentiable optimization: Dini
derivatives, clarke derivatives;Quasidifferentiable
optimization: stability of dynamic systems;
Quasidifferentiable optimization: variational formulations;
Quasivariational inequalities

Rubinstein, M. see: Financial equilibrium
Rudd, D.F. see: Chemical process planning
Rudolph, H. see: Semi-infinite programming and control

problems
Ruefli, T. see: Bilevel programming in management
Rump, S.M. see: Interval linear systems

Russell, B. see: Boolean and fuzzy relations
Rust, R. see: Piecewise linear network flow problems
Ruszczynski, A. see: Financial optimization
Rutenberg, D.P. see: Convex-simplex algorithm
Ryan, J. see:Multicommodity flow problems
Rydergren, C. see: Simplicial decomposition; Simplicial

decomposition algorithms

S
Saaty, T.L. see: Estimating data for multicriteria decision

making problems: optimization techniques;Multiple
objective programming support; Portfolio selection and
multicriteria analysis; Probabilistic analysis of simplex
algorithms

Sadayappan, P. see: Alignment problem; Steiner tree problems
Safonov, M.G. see: Robust control
Sahinidis, N.V. see: Chemical process planning;

Time-dependent traveling salesman problem
Sahni, S. see: Complexity theory: quadratic programming;

Quadratic assignment problem;Quadratic knapsack
Salomaa, A. see: Finite complete systems of many-valued logic

algebras
Salton, G. see: Optimization in classifying text documents
Sameh, A. see: Relaxation in projectionmethods
Samelson, H. see: Linear complementarity problem
Samuelson, P.A. see: Equilibrium networks; Spatial price

equilibrium; Traffic network equilibrium
Sanchez, E. see: Boolean and fuzzy relations
Sandberg, I.W. see: Robust control
Sano, M. see: Portfolio selection and multicriteria analysis
Santiago, M. see: Chemical process planning
Santibez, J. see: Chemical process planning
Sargent, R.W.H. see: Rosen’s method, global convergence, and

Powell’s conjecture; Successive quadratic programming:
applications in the process industry

Saunder, M.A. see: Convex-simplex algorithm
Saviozzi, G. see:Multicommodity flow problems
Sawaragi, Y. see:Multi-objective optimization: lagrange

duality
Scanella, G. see: Preference disaggregation
Scarf, H. see: Operations researchmodels for supply chain

management and design;Walrasian price equilibrium
Scarf, H.E. see: Integer programming: algebraic methods;

Inventory management in supply chains
Schaible, S. see: Fractional programming
Schell, E. see:Multi-index transportation problems
Scheraga, H.A. see: Simulated annealing methods in protein

folding
Schieber, B. see: Feedback set problems
Schilling, K.E. see:Multidimensional knapsack problems
Schittkowski, K. see: Successive quadratic programming:

applications in the process industry
Schmid, C. see: Successive quadratic programming:

applications in distillation systems
Schmidt, G. see: Boolean and fuzzy relations
Schmit, L. see: Structural optimization: history
Schnabel, R.B. see: Generalized total least squares; Nonlinear

least squares: trust regionmethods
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Schnepper, C.A. see: Global optimization: application to phase
equilibrium problems; Interval analysis: application to
chemical engineering design problems

Schneur, R. see:Multicommodity flow problems
Schnitger, G. see: Concave programming
Schoeffler, J.D. see:Multilevel optimization in mechanics
Schoenberg, I.J. see: Fejér monotonicity in convex

optimization;Matrix completion problems
Scholes, M. see: Financial equilibrium
Schräffer, A.A. see: Quadratic assignment problem
Schrijver, A. see: Disjunctive programming; Integer

programming
Schröder, E. see: Boolean and fuzzy relations
Schultz, G.L. see:Multicommodity flow problems
Schumacher, H.C. see:History of optimization
Schwarz, H. see: Carathéodory, Constantine
Schwarz, L.B. see: Inventory management in supply chains
Schweitzer, B. see: Checklist paradigm semantics for fuzzy

logics
Scott, A.J. see:MINLP: application in facility

location-allocation
Scott, C.H. see: Fractional programming
Scudder, G.D. see:Multidimensional knapsack problems
Sculli, D. see: Inventorymanagement in supply chains
Scutellá, M.G. see: Shortest path tree algorithms
Segall, R.S. see:Multicommodity flow problems
Seidel, R. see:Hyperplane arrangements in optimization
Seider, W.D. see: Global optimization: application to phase

equilibrium problems
Selten, R. see: Infinite horizon control and dynamic games
Sen, S. see: Disjunctive programming;Monte-Carlo

simulations for stochastic optimization
Sengupta, J.K. see: Robust optimization
Sengupta, P. see: Lemke method
Sengupta, S. see: Interval global optimization
Senju, S. see:Multidimensional knapsack problems
Sethi, S.P. see: Resource allocation for epidemic control
Seymour, P.D. see: Feedback set problems
Shah, B.V. see: Conjugate-gradient methods
Shahrokhi, F. see: Optimization in leveled graphs
Shallcross, D.F. see: Survivable networks
Shalloway, D. see: Global optimization in Lennard–Jones and

morse clusters; Simulated annealing methods in protein
folding

Shamir, A. see: Feedback set problems
Shamir, R. see: Complexity theory: quadratic programming;

Probabilistic analysis of simplex algorithms
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Woźniakowski, H. see: Information-based complexity and

information-based optimization
Wrathall, C. see: Automatic differentiation: introduction,

history and rounding error estimation
Wright, M.H. see: Successive quadratic programming:

decompositionmethods
Wu, C.H. see: Simplicial decomposition
Wu, T.S. see: Survivable networks
Wu, W.-T. see:Minimax theorems

X
Xia, Z. see: ABS algorithms for optimization
Xu, C.X. see: Nonlinear least squares: Newton-type methods;

Nonlinear least squares: trust regionmethods
Xu, J. see: Successive quadratic programming: applications in

distillation systems; Successive quadratic programming:

full space methods; Successive quadratic programming:
solution by active sets and interior point methods

Xu, X. see:Homogeneous selfdual methods for linear
programming

Xue, G. see: Single facility location: circle covering problem
Xue, G.H. see: Steiner tree problems
Xue, G.L. see: Global optimization in Lennard–Jones and

morse clusters;Global optimization in Weber’s problem
with attraction and repulsion

Y
Yabe, H. see: Nonlinear least squares: Newton-type methods
Yablonskii, S.V. see: Finite complete systems of many-valued

logic algebras
Yadegar, J. see: Quadratic assignment problem
Yaged, B. see: Nonconvex network flow problems
Yakowitz, S. see: Resource allocation for epidemic control
Yakubovich, V.A. see: Robust control
Yamada, J. see: Survivable networks
Yamashita, H. see: Successive quadratic programming:

applications in the process industry
Yamashita, N. see: Implicit lagrangian
Yang, X.Q. see: Composite nonsmooth optimization
Yannacopoulos, D. see: Preference disaggregation; Preference

disaggregation approach: basic features, examples from
financial decisionmaking

Yannakakis, M. see: Steiner tree problems
Yano, C.A. see: Operations research models for supply chain

management and design
Yanovskaya, E.B. see:Minimax theorems
Yao, J.C. see: Generalized monotone multivalued maps;

Generalized monotonicity: applications to variational
inequalities and equilibrium problems

Yao, Y.C. see: Steiner tree problems
Ye, Y. see: Complexity theory: quadratic programming;

Homogeneous selfdual methods for linear programming;
Linear programming: interior point methods; Linear
programming: karmarkar projective algorithm;
Nonsmooth and smoothing methods for nonlinear
complementarity problems and variational inequalities;
Quadratic knapsack

Yee, T.F. see:MINLP: heat exchanger network synthesis
Yorke, J.A. see: Globally convergent homotopy methods;

Resource allocation for epidemic control
Yoshise, Y. see: Linear programming: interior point methods
Young, F.W. see: Preference disaggregation
Young, L.C. see: Duality in optimal control with first order

differential equations; Semi-infinite programming and
control problems

Young, W.H. see: Young programming
Yu, G. see: Capacitatedminimum spanning trees
Yu, W. see:Multicriteria sorting methods; Rosen’s method,

global convergence, and Powell’s conjecture
Yuan, Y. see: Rosen’s method, global convergence, and

Powell’s conjecture
Yuan, Y.X. see: Implicit lagrangian
Yudin, D.B. see: Complexity theory; Complexity theory:

quadratic programming; Information-based complexity
and information-based optimization



4626 Name Index

Yue, M. see: Rosen’s method, global convergence, and Powell’s
conjecture

Z

Zabinsky, Z.B. see: Random search methods
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